

THE STANDARD MANUAL OF AMATEUR

> RADIO CQMMUNICATION

PUBLISHED BY THE AMERICAN RADIO RELAY LEAGUE

SCHEMATIC SYMBOLS USED IN CIRCUIT DIAGRAMS

[^0]
THE RADIO AMATEUR'S HANDBOOK

By the HEADQUARTERS STAFF of the
AMERICAN RADIO RELAY LEAGUE
WEST HARTFORD, CONN., U.S.A.

1953
Thirtieth Edition

COPYRIGHT 1953 BY
 THE AMERICAN RADIO RELAY LEAGUE, INC.

Copyright secured under the Pan-American Convention

International Copyright secured

This work is Publication No. 6 of The Radio Amateur's Library, published by the League. All rights reserved. No part of this work may be reproduced in any form except by written permission of the publisher. All rights of translation are reserved. Printed in U. S. A.

Quedan reservados todos los derechos

Foreword

With this thirtieth edition The Radio Amateur's Hanalbook reaches another mikstone in its history of twent y-seven years of continuous publication, a period during which the total circulation has climbed appreciably toward the three-million mark. Since the appearance of the first edtion in 1926, the Hamdbook hats enjoyed wide popularity and aceeptance because of its practical utility, its treatmont of radio communication problems in terms of how-to-do-it, and its long-established policy of presenting the soundest and best assperts of current amateur practice rather than merels the new and novel. These time-tested fratures have won for the Handbook world-wide acreptanee in other fields of radio endeavor - engineering, edueating, servicing, operating, military - even though the book is written primarily for the radio amateur. The planing, preparation and production of the Hardbook is the work of the Headquaters staff of the amateur's own organization, the American Radio Rolay Latgue.

As with its predecessors, this edition also has received extensive revision to kerp pace with the technical progress of amateur radio. The equipment chaptors have hern extonsively redone to refled the advances of the past year, esperially along the line of showing transmitting gear that is compatible with the advent of telerasting. of special note is a completely revised chapter on me:surements, featuring equipment and techniques that provide an entighterning and areurate cherk on the performance of station equipment. As usual, the chapter on vacuum tuhes has been favored with a very late deadline in order to matke it one of the most comprehernsive and up-to-the-minute sourees of tube information in the world.
Those to whom the /lambooh has for years been an indispensable companion are well aware of it, but for new readers it is worth pointing out that in contrast to most publications of a comparable nature, the Handbook is printed in the convenient format of the League's monthly magazine, Qs゙す'. This, together with extensive and usefully-appropriate catalog advertising by reputable manufacturers producing equipment for radio amatours and industry, makes it possible to distribute for a very modest charge at work which in volume of subject matter and profusion of illustration surpasses most available radio texts selling for several times its price.

It is sincerdy hoped that this new edition will succeed in bringing as much assistance and inspiration to amateurs and neweomers to the hobly as have its many predecessors.
A. L. Budeong

General Manager, A.R.R.L.

CONTRNTS

Frontispiece 2
The Amateur's Code 8
Chapter 1.......Amateur Radio 9
Chapter 2......Electrical Laws and Circuits 15
Chapter 3......Vacuum-Tube Principles 52
Chapter 4......High-Frequency Communication 70
Chapter 5......High-Frequency Receivers 76
Chapter 6......High-Frequency Transmitters 129
Chapter 7......Power Supplies 208
Chapter 8.......Keying and Break-In 231
Chapter 9......Speech Amplifiers and Modulators 240
Chapter 10...... Amplitude Modulation 266
Chapter 11.......Frequency and Phase Modulation 285
Chapter 12..... . Reduced-Carrier and Single-Sideband Transmitting Techniques 293
Chapter 13......Transmission Lines. 307
Chapter 14...... Antennas 330
Chapter 15.......About V.H.F. 361
Chapter 16...... V.H.F. Receivers 365
Chapter 17......V.H.F. Transmitters 385
Chapter 18......V.H.F. Antennas 412
Chapter 19......U.H.F. and Microwave Communication 421
Chapter 20...... . Mobile Equipment 433
Chapter 21...... Measurements 457
Chapter 22...... Asssembling a Station 490
Chapter 23.......BCI and TVI 496
Chapter 24...... Construction Practices 514
Chapter 25...... Operating a Station 522
Chapter 26..... . Miscellaneous Data 537
Chapter 27...... Vacuum-Tube Data V1
Catalog Section
Index

THE

AMATEUR'S CODE

ONETHE AMATEUR IS GENTLEMANLY . . . He never knowingly uses the air for his own amusement in such a way as to lessen the pleasure of others. He abides by the pledges given by the ARRL in his behalf to the public and the Government.

THE AMATEUR IS LOYAL . . . He owes his amateur radio to the American Radio Relay League, and he offers it his unswerving loyalty.

卫卫R $\boldsymbol{\text { HHE AMATEUR IS PROGRESSIVE . . . He }} \begin{aligned} & \text { THE } \\ & \text { keeps his station abreast of science. It is }\end{aligned}$ built well and efficiently. His operating practice is clean and regular.

T®TTR THE AMATEUR IS FRIENDLY... Slow and patient sending when requested, friendly advice and counsel to the beginner, kindly assistance and coöperation for the broadcast listener; these are marks of the amateur spirit.
HTTH THE AMATEUR IS BALANCED . . . Radio is his hobby. He never allows it to interfere with any of the duties he owes to his home, his job, his school, or his community.

STX THE AMATEUR IS PATRIOTIC ... His knowledge N1. and his station are always ready for the service of his country and his community.

- Paul M. Segal

CHAPTER 1

Amateur Radio

Amathur radio is a sciontifie hobbs, a means of gating personal skill in the fascinating att of ceretronies and an opportunity to commanicate wiah fellow citizns by private shortwate radio. Scattered over the globe are nearly 150,000 amateur radio operators who perform a sorvier defined in intemational law as one of "sisff traming, intoremmmention and technisal incestigations carriod on by . . . duly athonizod persons intorested in radio technique solely with a presonal aim and without pecunary interest."

From a humble begiming at the turn of the comury, amatcur radio has grown to become an ostahlished institution. Today the Americam followers of amatexur radio number nearly 100,000 , trained rommunicators from whose ranks will come the professional eommunieations: perialists and executives of tomorrowjust as many of today's radio leaders were first attracted to radio by their carly interest in amateur radio communication. . 1 powerfal and prosprome urganization now provides a bond bolworn amateurs and protects their interests; an internationally-respected magatzinu is published solely for their bencfit. The Amy and Navy sook the coiperation of the amatleur in developing communications resurves. Amateur radios supports a manufacturins imbustry which, by the very demands of amaterers for the latest and best equipment, is always up-to-date in its designs and production lechnigues - in itself a national assint. Amateurs have won the gratitude of the hation for their hervie performances in times of hatural disaster. Through their or-
 ing afrements whth sum ageneies as the I nited Nations and the Red Cross, Amateur radio is, indoed, a magnifieently usoful in--白い!i"!

Although as old ats the art of radio itself, : mateur radio did not always enjog surb mextige Its firs emhustasts were private
 inaginatims went wild when Mareoni first prowed that messages antually could be sem by weless. There set about learning enough about the new siontific marvel to build homemate stations. By 1990 there were numerous Govermment and commorial stations, and hamdreds of amateors: megulation was neederd, si laws, licenses amd wavelength sperofications for the varions serviees appeared. There was then no amateur organization nor spokesman.

The official viewpoint towarl amateurs was something like this:
"Amateurs". . . Oh, yes. . . . Well, stick 'em on 200 meters and below; theryll never get out of their backyards with that."

But as the years rolled on, amateurs found out how, and IIN (distance) jumped from local to 500 -mile and even occasional $1,000-\mathrm{mil} \cdot \mathrm{t}$ + way contacts. Because all long-distance messages had to be relayed, relaying developed into a fine art - an ability that was to prove invaluable when the Government suddenly called hundreds of skilled amateurs into war service in 1917. Meanwhile IT. S. amateurs began to wonder if there were amateurs in other countrie's across the seas and if, some day, we might not span the Athantic on 200 meters.

Most important of all, this period witnessed the birth of the Ameriean Radio Relay League, the amateur radio organization whose name Was to be virtually synonymous with subsequent amateur progress and short-wave development. Conceived and formed by the famous inventor, the late Hiram Perey Maxim, ARIRL Was formally latnehed in carly 1914. It had just begun to exert its full force in amateor activities when the [nited states declared war in 1917. and by that aet somded the knell for amateur radio for the next two and a half bars. There were then over 6000 amatenns. Over 4000 of them served in the armed forces during that war.

Today, few amateurs realize that Worle

HIRIM IREMCY MIXIM
l'resident ARRI, 1911-1936

War I not only marked the close of the first phase of amateur development but came very near marking its end for all time. The fate of amateur radio was in the balance in the days immediately following the signing of the Armistice. The Government, having had a taste of supreme authority over communications in wartime, was more than half inclined to keep it. The war had not been ended a month before Congress was considering legislation that would have made it impossible for the amatrur radio of old ever to be resumed. ARRRL's l'resident Maxim rushed to Washington, pleated, argued, and the bill was defeated. But there was still no amateur radio: the war ban continued. Repeated representations to Washington met only with silence. The league's offiees had been closed for a year and a lialf, its records stored away. Most of the former amateurs had gone into service: many of them would never come back. Would those returning the interested in such things as amateur radio? Mr. Maxim, determined to find out, called a meeting of the old Board of Directors. The situation was diseouraging: amateur radio still banded be law, former members seattered, no organization, no membership, nu funds. But those few determined men financed the publication of a notie to all the former amaterars that could be located, hired Kemoth 13. Warner as the League's first paid secretary, floated a bond issue among old League members to obtain money for immediate running cxpenses, bought the magazine (5 S' to be the League's official organ, started activities, and dunned officialdom until the wartime ban wats lifted and amateur radio resumed again, on October 1, 1919. There was a headlong rush by amateurs to get back on the air. (iamgway for King Spark! Mandfacturers were hard put to supply radio apparatus fast chough. Fach night saw additional dozens of stations crashing out over the air. Interference? It was bedlam!

But it was an era of prggress. Wartime needs had stimulated technical development. Vacuum tubes were being used both for receiving and transmitting. Amateurs immediately adapted the new gear to 200 -meter work. langes promptly increased and it became possible to bridge the eontinent with but one intermediate relay.

TRANS-ATLANTICS

Is DK became ${ }^{2} 1000$, then 1500 and then 2000 miles, amateurs began $t o$ dream of transAtlantie work. Could they get across". In December, 1921, ARRI, sent abroad an expert amateur, Paul F. Godley, 2ZE, with the best receiving equipment available. Tests were run, and thirty American stations were heard in Europe. In 1922 another trans-Atlantic test was carried out and 315 American calls weye logged by European amatrurs and one Fremeh and two British stations were heard on this side.

Everything now was centered on one objective: two-way amateur communication across the Atlantic! It must be possible - but somehow it couldn't quite be done. More power? Many already were using the legal maximum. Better receivers." They had superheterodynes. Another wavelength? What about those undisturbed wavelengths below 200 meters.' The engineering world thought they were worthhess - but they had said that about 200 meters. So, in 1922, tests botween Hartford and Boston were made on 130 meters with encouraging results. Early in 1923, AlRRL-sponsored tests on wavelengths down to 90 meters were successful. leports indicated that as the wavelength dropped the result: uere better. A growing exeitement began to spread through amateur ranks.

Finally, in November, 1923, after some months of careful preparation, two-way amatour traths-Atlantic communication was accomplished, when Srhnell. 1 MO, and Reinartz, 1.N.DM (now W9LZ and K6B.J, respeclively) worked for several hours with Deloy, SAB, in France, with all three stations on 110 meters: Additional stations dropped down to 100 meters and found that they, too, could casily work two-way across the Athatic. The exodiss from the 200 -meter region had started. The "short-wave" era had begun!

By 1924 dozens of commercial eompanies had rushed stations into the 100 -meter region. Chaos threatened, until the first of a series of national and international radio conferences partitioned off various bands of frequencies for the different services. Although thought still centered around 100 meters, League offirials at the first of these frequence-tetermining conforences, in 1924. wisely obtained amateur bands not only at 80 meters but at $40,20,10$ and evon $\overline{5}$ moters.

Eighty meters proved so sucerssful that "forty" was given a try, and QSOs with Australia, New Zealand and South Africa soon became commonplace. Then how about 20 meters: This new band revealed entirely unexpected possibilitios when 1XAM worked 6TS on the Wiest Coast, direct, at high noon. The dream of amateur radio - daylight DX! was finally true.

PUBLIC SERVICE

Amateur radio is a gratm and glorious hobber but this fate alone woukd hardly merit such wholehearted support as is given it by our (bevoment at intermational conferences. There are ofler reasons. One of these is a thorough appreciation by the Army and Navy of the value of the amateur as a source of skilled radio persomel in time of war. Another asset is best deseribed as "public service."

About 4000 amateurs had contributed their skill and ability in '17-'18. After the war it was obly natural that cordial relations should prewal bewern the Army and X ary and the amateur. These relations strengthened in the next
few years and，in gradual steps，grew into co－ operative activities which resulted．in 1925，in the establishment of the Naval Communica－ tions Reserve and the Army－Amateur Radio System（now the Military Affiliate Radio System）．In World War II thousands of ama－ teurs in the Naval Reserve were called to ac－ tive duty，where they served with distinction． while many other thousands served in the Army，Air Forces，Coast Guard and Marine Corps．Altogether，more than 25,000 radin amateurs served in the armed forces of the United States．Other thousands were engaged in vital civilian electronie reseateh．develnp－ ment and manufacturing．They also organized and manned the War Emergency Iadio sorv－ ice，the communications section of OCl）．

The＂public－service＂record of the amateur is a brilliant tribute to his work．These artivi－ ties can be roughly divided into two classes， expeditions and emergeneies．Amateur co－ operation with expeditions began in ly2？when a League member，Don Mix， 1 Tsi，of Bristol， Conn．（now assistant technical cditor of（QぶT）， accompanied MacMillan to the Aretic on the sehooner Bowdoin with an amatelur station． Amateurs in Canada and the l．s．provided the home contacts．The success of this venture wat such that other explorers followed suit．During subsequent years a total of perhaps two hum－ dred voyages and expeditions were assisted by amateur radio，and for many years no expedi－ tion has taken the field without such plans．

Since 1913 amateur radio has been the prin－ cipal，and in many cases the only，means of outside communication in several hundred storm，flood and earthquake emergencies in this country．The 1936 castern states flood，the 1937 Ohio River Valley flood，the Southern California flood and Long Island－New England hurricane disaster in 1！38，and the Florida－ Gulf Coast hurricanes of 1917 called for the amateur＇s greatest energeney effort．In these disasters and many others－tomadows． sleet storms，forest fires，blizzards－amateurs plaved a major role in the relief work and earned wide commendation for their resource－ fulness in effecting communication where all other means had failed．During 1938 ARRL， inaugurated a new emergency－preparedness program，registering personnel and equipment in its Emergency Corps and putting into of－ fect a comprehensive program of eoöperation with the Red Cross，and in 1947 a National Emergency Coördinator was appointed to full－time duty at league headquarters．
The amateur＇s outstanding record of organized preparation for emorgency communications and performance under fire has been largely respon－ sible for the decision of the Federal Government to set up suecial regulations and set aside special frequencies for use by amateurs in providing auxiliary communications for civil defense pur－ poses in the event of war．Under the banner， ＂Radio Amateur Civil Emergency Service，＂ama－ teurs are setting up and manning community and
aroa not works integrated with civil defense func－ tions of the munieipal governments．Should a war cause the shut－down of routine amateur activi－ ties，the RAC＇Es will be immediately available in the national defense．

TECHNICAL DEVELOPMENTS

Throughout these many years the amateur Was careful not to slight experimental develop－ mont in the enthusiasm incident to interna－ tional ON．The experimenter was constantly at work on ever－higher frequencies，devising improved apparatas，and learning how to cram soveral stations where previously there Was room for only onc！In particular，the ama－ teur pressed on to the development of the very high frequencies and his experience with five meters is esperially representative of his in－ itiative and resonecofulness and his ability to make the most of what is at hand．In 1924 ，first amateur experiments in the vieinity of 56 Mc． indicated that bath to be practically worth－ hess for 1）X．Nometheless，great＂short－han＂ activity eventually cana about in the band amb new gear was developed to meot its special problems．Begimning in 1934 ateries of inves－ tigations by the brilliant experimenter，Ross 11ull（tater（QN゙T＂s editor），developed the theory of v．h．f．wave－bemding in the lower atmos－ phere and led amaterms to the attainment of better distances：while occasional manifeste－ tions of ionospherice propagation，with still groater distances，gave the band uniquely er－ ratie performance．By Pearl Harbor thousands of amateurs wore spending much of their time on this and the next higher band，many having worked humdrods of stations at distances up to several thousand miles．Transcontinental（i－ moter I） X is now a commonplace oceurrence； wern the oceths have been bridged！It is a tribute to these indefatigable amateurs that today＂s concept of v．h．f．propagation was de－ voloped largely through amateur research．

The amateur is comstantly in the forefront of technical progress．IIis incessant curiosity，his eagerness totry anything new，are two reasons． Another is that ever－growing amateur radio contimually overcrowds its frequency assign－ ments，spurring amateurs to the development and adoption of new techniques to permit the

A corner of the ARIRI，laboratory．
accommodation of more stations. For examples, amateurs turned from spark to c.w., designed more selective receivers, adopted crystal control and pure d.c. power supplies. From the ARIRL's own laboratory in 1932 cane James Lamb's "single-signal" superheterodyne - the world's most advanced high-frequency radiotelegraph receiver and, in 1936, the "noise-silencer" circuit. Amateurs are now turning to speech "clippers" to reduce bandwidt hs of "phone transmissions and investigating "single-sideband suppressed-carrier" systems which promise to halve the spectrum space reguired by a voice-modulated signal.
During World War II, thousands of skilled amateurs contributed their knowledge to the development of serret radio deviees, both in Government and private haboratories. Equally as important, the prewar teehnical progress by amateurs provided the keystome for the development of modern military communications equipment. Perhaps more important today than individual contributions to the art is the mass cooperation of the amateur body in Govermment projerts such as propagation studies; cach participating amateur station is in reality a separate ficld laboratory from which reports are made for correlation and analysis.

Emergency relief, expedition contact, experimental work and countless instances of other forms of public service - rendered, as they always have bern and always will be, without hope or expectation of material roward - made amateur malio an integral part of our peacetime national life. The importance of amateur participation in the armed forees and in other aspects of national defense have emphasized more strongly than ever that amateur radio is vital to our national existence.

- THE AMERICAN RADIO RELAY LEAGUE

The ARIRI, is today not only the spokesman for amateur radio in this country but it is the largest amateur organization in the world. It is strictly of, by and for amateurs, is noncommereial and has no stockholdors. The members of the League are the owners of the ARRL and QST.

The Jeague is pledged to promote interest in two-way amateur communication and experimentation. It is interested in the relaying of messages by amateur radio. It is concerned with the advancement of the radio art. It stands for the maintenance of fraternalism and a high standard of conduct. It represents the amateur in legislative matters.

One of the League's principal purposes is to keep amateur activities so well conducted that the amateur will continue to justify his existence. Ainateur radio offers its followers countless pleasures and unending satisfaction. It also ealls for the shouldering of responsi-

The operating room at WIAW.
bilities - the maintenance of high standards, a cooperative loyalty to the traditions of amateur radio, a dedieation to its ideals and primeiples, so that the institution of amateur radio mate continue to operate " in the public interest, convenience and neeresity."

The operating territory of ARRRL is divided innof fitern C . S. and five Canadian divisums. The affairs of the League are managed by a Board of Directors. One director is elected every two years by the membership of each I. S. division, and one by the ('anadian membership. These directors then choose the president and vierepresident, who are also members of the Board. The seceretary and treasurer are also appoinfed be the Board. The divereors, as represemtatives of the amateurs in their divisions, ment ammally to examine current amateur problems and formulate AlRRL policies thereon. The directors appoint a general manager to supervise the operations of the League and its hadeduatrers, and to carry out the policies and instructions of the Board.

ARIRI, owns and publishers the monthly magrazine, Q.̛TV. Acting as a bulletin of the Learués orqunzed activities, (Q) T also servers as a medium for the exchange of ideas and forsters amateur spirit. Its techaical articles are renowned. It has grown to be the "amatemes bible," as well as one of the foremost radio magazines in the world. Membership dues inelude a subscription to QSTT.

ARRI, maintains a model headquanters amateur station, known :1 the Hiram Perey Maxim Memorial station, in Newingtom, Conn. Its call is W1.AW, the vall held by Mr. Maxim until his death and later transiemed to the League station by a special FCC artion. Separate transmitters of maximum legal power on each amateur band have permitted the station to be heard regularly all over the world. More important, WiAlV transmits on regular schedules bulletins of general interest to amateurs, conducts code practiee as a training feature, and engages in two-way work on all popular bands with as many amateurs as time permits.

At the headquarters of the leaque in West llartford, Conn., is a well-cquipped laboratory to assist staff members in preparation of technical material for QST and the Rudio Amateur's IIandbook. Among its other ac-
tivities, the League maintains a Communications Department concerned with the operating activities of League members. A large field organization is headed by a Section Communications Manager in each of the League's seventy-two sections. There are appointments for qualified members as Official Relay Station or Official 'Phone Station for traffic handling; as Official Observer for monitoring frequencies and the quality of signals; as Route Manager and 'Phone Activities Manager for the establishment of trunk lines and networks; as Emergency Coördinator for the promotion of amateur preparedness to cope with natural disasters; and as Official Experimental Station for those pioneering the frequencies above 50 Mc. Mimeographed bulletins keep appointees informed of the latest developments. Special activities and contests promote operating skill. A special sedtion is reserved each month in QST for amateur news from every section of the country.

- AMATEUR LICENSING IN THE UNITED STATES

The Communications Aet holges in the Fioleral Communications Commixion authority to clansify and liernse radio stations and to prescribe regulations for their operation. Pursuant to the law. FCC has iswed dotailed roguhations for the amaterur servie.

A radio amaterer is a daly athorized person interested in radio technigue soldely with a prorsonal aim and without peremiaryinterext. Amateur operator lieenses are given to ll. s. citizens who pass an examination on operation and apparatus amd on the provisions of law and regulations affecting amateurs. and who demonstrate ahility to send and roceive rode. There are five basic classes of amateur license (Novier, Terhmician, (ieneral-Conditional, Ddvanced, and Amateur Fxtra), (each having difforent requirements and each eonvering difforent priviloges as to frequencies available and whene of emission. Station licenses are granted only to licensed operators and promit commmancation between such stations for amateur purposes, i.e., for personal noneommerrial aims flowing from an interest in radio technique. An amateur station may not be used for material compensation of any sort nor for broadeasting. Narrow bands of frequencios are allocated exclusively for use be amateur stations. Transmissions may be on any fregueney within the assigned hands. All the frequencies may be used for c.w. telegraphy and some are available for radiotelephony by any amateur, while others are reserved for radiotelephone use hey persons holding higher grades of lieense. The input to the final stage of anmateur stations is limited to 1000 watts and on frequencies below $1+4$ Me. must be adequatelyfiltered direct current. Emissions must be free from spurious radiations. The licensee must provide for measurement of the transmitter frequency and establish a procedure for checking it regularly. A complete log of station oper-
ation must be maintained, with specified data. The station license also authorizes the holder to operate portable and mobile stations subject to further regulations. An amatour station may be operatod only by an amateur operator licensee, but any lieensed amateur operator may operate any amateur station within the scope of privileges convered by the licenses. All radio licensees are subject to penalties for violation of regulations.

Amateur licenses are issued entirely free of charge. They can be issued only to citizens but that is the only limitation, and they are given without regard to age or physical condition to anyone who sucerssfully completes the examimation. When you are able to eopy code at the required sperd, have studied basic transmitter theory and are familiar with the law and amathur regulations. you are ready to give serious thought fo socoring the (iovermment amateur license's which are issued you, after examination at a local district office or examining points in most of our larger (ities, through $1 \cdot \mathrm{CC}$ at V^{2} :thington. A romplete up-to-themimuto disemseion of lieomer requirements, and study guides for those preparing for the examinations, are to be found in an ARRIRL publication, The Rodio Amateur's License Manual, available from the American Radio Rolay lague, West llatiford $\overline{7}$, (omm., for inde, postpaid.

LEARNING THE CODE

In starting to loarn the code, you should (comsibler it simply another means of conveving

A didati	N daludit
B daldididit	O dahdahdah
C dahdidahdit	P didahdahdit
D dahdidit	Q dahdahdidah
E dit	R didahdit
F dididahdit	S dididit
G dahdahdit	T dah
H didididit	U dididah
I didit	V didididah
J didahatahdah	W didahdah
K dahadidah	X dahdididah
L didahdidit	Y dahdidaholah
M dahdah	2 dithdahdidit
1 didahdahdahdah	6 dahdidididit
2 dididahdahdah	7 dahdahdididit
3 didididahodah	8 dahdahdahdidit
4 didididielah	9 dahatahdahdahdit
5 dididididit	0 dahalahdahdahdah

1'eriod: didahdidahmidah. Comma: dahdahdididahdah. Question mark: dididahdahdidit. Lirror:didididididididio. Doubledash:dahdidididah. W:at: didahdididit. Find of message: didahdidahdit. Invitation to transmit: dahdidah. Find of work: didididatrdidah. Fraction bar: lahdididahdit.

Fig. 1.1 - The Continental (International Morse) code.
information. The spoken word is one method, the printed page another, and typewriting and shorthand are additional examples. Learning the code is ats cusy - or as difficult - as learning to type.

The important thing in begiming to study code is to think of it as a language of soumd, never as combinations of dots and dashes. It is casy to "speak" code equivalents by using "dit"" and "dah," so that A would be "didah" (the " t " is dropped in such eombinations). The sound "di" should be staccato: a eotle character such as " $\bar{\sigma}$ " should sound like a machinnegun burst: dididididit! Stress cath "dak" equally; they are underlined or italieved in this text berause they should be slightly accented and drawn out.

Take a few characters at a time. learn them thoroughly in didah language before going on to new ones. If someone who is familiat with code can be found to "send" to you, either by whistling or by means of a buzzer or code oscillator, entist his coöperation. Iearn the code by listening to it. Won't think about speed to start: the first requinement is to learn the characters to the point where you can recognize each of them without hesitation. Concentrateon any difficult letters. Learning the code is not at atl hard; a simple booklet treating the subject in detail is another of the beginmer publications available from the League, and is entitled, Learning the Radiotelegraph Code, 2jé postpaid.

THE AMATEUR BANDS

Amateurs are assigned bands of frequencies at approximate octave intervals throughout the spectrum. like assignments to all services, they are subject to modifieation to fit the changing picture of world communications needs.

In the adjoining table is a summary of the U. S. amateur bands on which operation is permitted ats of our press date. Figures are mogacreles. A0 means an ummodulated earrier, Al neans cew, telegraphy, 12 is tone-modulated cow. telegraphy, Ais is amplitude-modulated 'phone, At is facsimile, is is television, NFM designates narrow-hand fregurner- or phase-modulated radiotelephony, and FiI moans frequeney modulation, 'phone (including NFM) or telegraphy. In addition, amatours are assigned portions of the band $1800-2000 \mathrm{ke}$., subject to certain power and georraphical restrictions, as shown in the table below; cither c.w or voice may be used.

The subullocation of amateur hands to various types of emission is orcasionally rhanged to fit the needs and hathits of amateur activitios. At press time a considerable number of such changes were in process: e.g., opening parts of the 7 -and 21-N6. bands to voice, expanding the $14-$. Mc. voice ableration, providing some lower-frequency f.s.k. privileges, and possible modification of license requirements for restricted voice bands. Berause of the possibility of these and other changes each amateur should kerp himself eurrently informed be consulting QST' or wating ARLL for latest information.

```
    \(3.500-4.000-\mathrm{Al}\)
    3.800-4.000-A3. NFM, Advanced or Ex-
                                    tra Cliass
    \(7.000-7.300-.11\)
    14.(MK)-14.3.0 - -11
    14.200-14.300-. A3, NF.M, Adranced or Ex-
                            tra (lass
    21.000-21.4.50-. 11
    \(26.460-27.230-10 . A 1, A 2, ~ A 3, A 4, F M 1\)
    \(28.00(0-29.7100-\mathrm{A} 1\)
    \(25.5(x)-29.7(x)-.13 . ~\) SFM
    2! \(1.0(1)-29\) 7 (K) - FMI
    50.0-54.0-11. 12, A3, A4, NFM
    \(52.5-54.0-\) FM1
\(144-148-A 5, A 1,12, A 3, A 4\), FM
\(-200-205-.16 .11,12.13, ~ 14, ~ F 31\)
\(42\left(0^{*}-4500^{*}-A 6,11,12,13, A 4, A 5, F M\right.\)
\(1,215-1,300-A(5, A 1, A 2, A 3, A 4, A 5, F M\)
\(2.300-2.4501\)
\(3.3(k)-3.5(k)\)
```



```
\(\left.\begin{array}{rr}20,000 & -10,50(1)\end{array}\right\} \begin{array}{rr}10,100 & \text { Pulse }\end{array}\)
\(21,0(0)-22.0(0)\)
All above \(30,0(\mathrm{~K})\)
* Peak antenna power must not exceed 50 watts, but rheek with QST or ARKL Ha. for possible modification after Fefl, 15, 19\%3.
```


Electrical Laws and Circuits

- ELECTRIC AND MAGNETIC FIELDS

When something oceurs at one point in spate because something else happened at aunther point, with no visible means by which the "cause" can le related to the "effert," we say the two events are connected by a field. The fields with which we are concerned are the electric and magnetic, and the combination of the two called the electromagnetic fiold.

A field has two important properties, intensity (nagmitude) and direction. The fiold exerts a frome on an object immersed in it; this force represents potential (ready-to-hr-used) energy, so the potential of the field is a measure of the field intensity. The direction of the ficld is the direction in which the object on which the foree is exerted will tend to move.

An electrically-charged object in an electric field will be acted on by a furee that will tend to move it in a direction determined by the direction of the field. similarly, a magnet in a magnetic field will be subject to a foree. Everyone has seen demonstrations of magmetie fields with porket magnets, so intensity and direction are not hard to grasp.

A "static" field is one that neither moves mor (hanges in intensity. such a fiold can he set up) hy a stationary electric charge (electrostatic field) or by a stationary magnet (magnetostatic field). But if either an electric or magnetic fieh is moving in space or changing in intensity, the motion or change sets up the other kind of field. That is, a changing electric field sets up a natgnetic field, and a changing magnetic field generates an electric field. This interrelationship between magnetic and electric fields makes possible such things as the electromagnet and the elecetric motor. It also makes possible the electromagnetic waves by which radio communication is carried on, for such waves are simply traveling fields in which the energy is alternately handed back and forth between the electric and magnetice fields.

Lines of Force

Athough no one knows what it is that ront poses the field itself, it is useful to invent a picture of it that will help in visualizing the forces and the way in which they and.

A field can to frictured as being made up of lines of force, or flux lines. These are purely imaginary threads that show, by the direction in which they lie, the direction the object on
which the form is exerted will move. The mumber of lines in a chosen reoss section of the field is a metasure of the intensity of the force. The number of lines per square inch, or per square centimeter, is called the flux density.

- ELECTRICITY AND THE ELECTRIC CURRENT

Everything physiral is built up of atoms, partieles so small that they camot be seen even through the most powerful microscope. But the atom in turn consists of several different kinds of still smatler particles. One is the electron, essentially a small particle of electricity. The quantity or charge of electricity represented by the electron is, in fact, the smallest quantity of electricity that can exist. The kind of electricity assoriated with the electron is called negative.

An ordinary atom consists of a central core called the nucleus, around which one or more electrons rirculate somewhat as the earth and other planets circulate around the sum. The nueleus has an electric charge of the kind of electricity called positive, the amount of its charge being just exactly equal to the sum of the negative charges on all the electrons associated with that nucleus.

The important fact almout these two "opposite" kinds of electricity is that they are strongly attrarted to each other. Also, there is a strong force of repulsion between two rharges of the same kind. The positive nucleus and the negative electrons are attracted to each other, but two electrons will be repelled from each other and so will two nuclei.

While in a normal atom the positive charge on the nucleus is exactly balanced by the negative charges on the electrons, it is possible for an atom to lose one of its electrons. When that hapbens the atom has a little less negative charge than it should - that is, it has a net positive charge. Such an atom is said to be ionized, and in this case the atom is a positive ion. If an atom pirks up am oxtra electron, as it sometimes does, it has a not nogative charge and is called a negative ion. I pritive ion will attract any stray rlectron in the vicinity, including the extra one that may be attached to a nearby negative ion. In this way it is possible for electrons to travel from atom to atom. The movement of ions or electrons constitutes the electric current.

The amplitude of the current (that is, its intensity or magnitude is determined by the rate ut which electric charge - an accumulation of elec-
trons or ions of the same kind－moves past a point in a eirenit．Since the charge on a single electron or ion is extremely small，the number that must move as a group，to form even a tiny current is almost inconceivably large．

Conductors and Insulators

Atoms of some materials，notably metals and acids，will give up an electron readily，but atoms of other materials will mot part with any of their electrons even when the electrife force is extremely strong．Materials in which electrons or ions can be moved with relative case are called conductors， while those that refuse to permit sueh mowement are called nonconductors or insulators．The fol－ lowing list shows how some common materials divide between the eonduetor and insulator classifications：

（＇mulucturs	Insuluturs
Metats：	1）ry ${ }^{\text {dir }}$
Cartron	Wood
Acids	Poreelain
	Trextiles
	（llass
	Rubher
	liswins

Electromotive Force

The electric force or potential（ralled electro－ motive force，and abbreviated e．m．f．that causes current flow may be developed in several ways． The action of certain chemical solutions on dis－ similar metals sets up ath e，m，f．；such a combina－ tion is（alled a cell，and a group）of cells forms an electric battery．The amome of coment that stioh cells can carry is limited，and it the coumse of current flow one of the metals is ceten anas．The amount of clectracal morgy that can be taken from a battery conseruently is rather small． Where al large smount of energy is mended it is usually furnished hy ：th electric generator，whirh develops its com，f．by a combination of magnetic and mechanimal meats：

In pieturing courent fow it is natural to think of a single，constant fore causing the eloctrons to mover．When this is so，the electrons alwas move in the same direction through a path ow circuit made up of conductons commected togethere in ： continuous ehain．Such a eurrent is ealled at direct current，abbreviated d．c．It is the type of eurrent furnished by batteries and hy certain tupes of generators．However，it is ahoo passible to have an e．m．f．that periudically reverses．With this kind of com．f．the curcent fows first in one direction through the eirevit and then in the cther，such an e．m．f．i．：ralled an alternating e．m．f．，and the curront is callocl an alternating current（atheroviated a．c．）．Ther reversals（alter－
 seand up to seve：al liflion per sorond，＂lwore versals make a cycle；in mere crole the forere acte first in one dirention，then in the other，and then returns to the first direction．The number af eveles in onte serome is called the frequency of the alternating current．

Direct and Alternating Currents

The difference between direet current and alternating eurrent is shown in Fig．2－1．In these graphs the horizontal axis moasures time，in－ creasing toward the right away from the vertical axis．The vertical axis represents the amplitude or strength of the current，increasing in either the up or down direction anay from the hori－ zontal axis．If the graph is aboer the horizontal axis the current is flowing in one direction through the circuit（indicated by the + sign）and if it is belon the horizontal asis the current is fowing in the reverse direction through the cireuit（indi－ （ated by the－sign）．Fig．2－1．1 shows that，if we close the cireuit－that is，make the path for the eurrent complete－at the time indicated by \boldsymbol{X} ， the current instantly takes the amplitude indi－ cated by the height A．Sfter that，the eurrent continues at the same amplitude as time goes on． This is an ordinary disect current．

In Fig．2－113，the current starts flowing with the amplitude A at time X ，continues at that amplitude until time y^{\prime} and then instantly ceases． Ifter an interval ${ }^{-} Z$ the current again begins to How and the same sort of start－and－stop per－ formance is repeated．This is an intermittent direct current．We could get it by alternately closing and opening aswitrh in the circuit．It is a dircet curvent becalise the direction of current flow does not change ：the graph is always on the + side of the horizontal axis．

In Fig．＂－IC＇the current starts at zero，in－ areases in amplitude as time ges on until it reaches the amplitude A_{1} while flowing in the + direction，then decreases until it drons to zero cimplitude once more．It that time（ N ）the
（A）

（ $)$

（C）

Fiщ．ンーノ－Three typex of current flow．A－direct current： \mathbb{R}－intermittent direct current； C －alternat－ itac curacht．
direction of the current flow reverses; this is indicated by the fact that the next part of the graph is below the axis. Is time goes on the amplitude increases, with the current now flowing in the direction, until it reaches amplitude A_{2}. Then the amplitude derreases until finally it drops to zero (1) and the direction reverses once more. This is an alternating current.

Waveforms

The type of alternating current shown in Fig. 2-1 is known as a sine wave. The variations in many a.c. Waves are not so smooth, nor is one half-evole neressarily just like the preceding one in shape. However, these complex waves ran he shown to be the sum of two or more sine waves of frequencios that are exant integral (whole-number) multiplas of some lower froquency. The lowest freguency is called the fundamental frequency, and the higher frequencies (2 times, 3 times the fundamental frequeney, and so on) are called harmonics.

Fig. 2-2 shows how a fund:mental and a second harmonic (twice the fundamental) might add to form a complex wave. Simply by changing the relative amplitudes of the two waves, as well as the times at which they pass through zero amplitude, an infinite number of waverhapes can be constructed from just a fundamental and second harmonie. Waves that are still more eomplex can be constructed if more hamonies are used.

Electrical Units

The unit of electromotive force is alled the volt. An ordinary flahlight cell generates an e.m.f. of about l.i) bolts. The e.m.f. commonly supplied for domestic lighting and power is 11.5 volts, usually a.c. having a frequency of 60 eycles per second. The voltagnes used in radio receiving and transmitting diruits range from a fow volts (usually a.c.) for filtment heating to as high as a few thousand d.e. volts for the operation of power tubes.

The flow of electric current is measured in amperes. (Jne amprer is equivalent to the movement of many billions of electrons past a point in the circuit in one seromd. Currents in the neighborhord of an ampere are required for heating the filaments of small power tubes. The direct currents used in anatem radio equipment usually are not so large, and it is customary to measure such currents in milliamperes. One milliampere is equal to one one-thousandth of an ampere, or 1000 millimperes equals one ampere.

I "d.c. ampore" is a mosare of a stouty current, but the "ase. ampere" must measure a current that is continually varying in amplitude and periondically revorsing direction. To put the two on the same hasis, an a.e. ampere is defined as the amount of current that will cause the same heating effert (see hater soction) as one ampere of steady direct current. For sine-w:ive a.e., this effective (or r.m.s.) value is equal to the marimum : amplitude (A_{1} or A_{2} in Fig. $2-1(5$) multiplied be. 0.- The instantaneous value is the value

Fig. 2.2 - A complex waveform. A fundamental (top) and second harmonic (eenter) added together, point by point at each instamt, result in the waveform shown at the bottom. When the two bombonents have the same polarity at a alderted instans. therentinnt $\mathrm{i}=$ the simple sum of the two. When they hane uppoaite polarilios, the restitant is the difference: if dre nowative-polarity eompment is larger, the reantant is negative at that instant.
that the current (or voltage) hats at any selected instant in the cerle.

If all the instantaneno values in a sine wave are averaged ower a half-ryole, the resulting figure is the average value. It is equal to $0.6: 36$ tines the maximum amplitude. The average value is useful in comertion with rectifier systems, as desrribed in a later chapter.

FREQUENCY AND WAVELENGTH

Frequency Spectrum

Frequencies ranging from about 15 to 15,000 creles per seoond are called audio frequencies, because the vibrations of air particles that our ears recognize as sounds ocour at a similar rate. Sudio frequencies (abbreviated a.f.) are used to actuate loudspakers and thus ereate sound waves.
Prequencios above about 15,000 eveles are colled radio freguencies (r.f.) beeause they are usoful in radio transmission. Prequencios all the Way up to and beyond $10,000,000,(40)$ cyrles have been used for radio purposes. It matio freguencies the numbers berome so large that it becomes conveniont to we a larger unit than the erve. Two such units are the kilocycle, which is egual to 1000 crules and is abbervated kc., atrd the megacycle, which is erpat to $1,000,000$ ereres or 1000 kikerevers and is abbreciated Mc.
The varions radio frequencios are divided off into classifications for ready identifaration. These (lassifications, listed below, constitute the frequency spectrum so far as it extends for radio purposes at the present time.

Frequency
104030 ke . 30 to 300 kc . 300 to 3000 kc. 3 to 30 Mc . 30 10 300 Mc . 300 to 3000 Me. 3000 to $30,000 \mathrm{Me}$.

Claszification	Abbreriation
Very-low frequencics	-.1.f.
Low frequencies	1.f.
Medium frequencies	m.f.
High frequencies	h.f.
Very-high frequencies	¢, h.f.
I'ltrahigh frequencies	u,h.f.
Superhigh frequencies	8.h.f.

Wavelength

Radio waves travel at the same speed as light - 300,000,000 meters or about 186,000 miles a serond in space. They can be set up by a radiofrequency current flowing in a circuit, bectuse the rapidly-changing current sets up a magnetic field that changes in the same way, and the varying magnetic field in turn sets up a varying eleco tric fiold. And whenever this happens, the two fields move outward at the speed of light.
suppose an r.f. current has a frequency of $3,000,000$ ryedes per scond. The fields will go through (omplete reversals (one eycle) in $1 / 3,000,000$ serond. In that same period of time the fields - that is, the wave - will nove $3(30, O O C O, 000 / 3,000,000$ meters, or 100 meters. By the time the wave has moved that distance
the next eycle has begun and a new wave has started out. The first wave, in other words, covers a distance of 100 meters before the beginning of the next, and so on. This distance is the wavelength.

The longer the time of one cycle - that is, the lower the frequency - the greater the distance orcupied by each wave and hence the longer the wavelength. The relationship betwen wavelength and frequency is shown by the formula

$$
\lambda=\frac{300,000}{f}
$$

where $\lambda=$ Wavelength in meters
$f=$ Frequency in kilocycles
or

$$
\lambda=\frac{300}{f}
$$

where $\lambda=$ Wavelength in meters

$$
f=\text { Frequency in megacycles }
$$

Example: The wavelength corresponding to a
frequency of 3650 kilocyeles is

$$
\lambda=\frac{300,000}{3650}=82.2 \text { meters }
$$

Resistance

(iiven two conductors of the same size and shape, but of different materiak, the amount of curront that will flow when a given e.m.f. is applied will be found to vary with what is called the resistance of the material. The lower the resistance, the grater the current for a given value of e.m.f.
lesistance is measured in ohms. A cireuit has a resistance of one ohm when an applied e.m.f. of one volt causes a current of one ampere to flow. The resistivity of a matcrial is the resistance, in ohms, of a cule of the material measuring one rentimeter on arth adge. One of the best rondurtors is copper, and it is frequently convenient, in making resistance calculations, to compare the resistame of the material under consideration with that of a copper conductor of the same size and shape. Table 2-I gives the ratio of the resistivity of various conductors to that of copper.

The longer the path through which the current flows the higher the resistance of that condurtor. For direct cument and low-frequeney alternating

rurrents (up to a few thousand cycles per second) the resistance is inversely proportional to the cross-sectional area of the path the current must travel; that is, given two conductors of the same material and having the same length, but differing in cross-sectional area, the one with the larger area will have the lower resistance.

Resistance of Wires

The problem of determining the resistance of a round wire of given diameter and length - or its opposite, finding a suitable size and length of wire to supply a desired amount of resistance (an be easily solved with the help, of the ropperwire table in the Niscellaneous Data chapter. This table gives the resistance, in ohms per thousand feet, of each standard wire size.

> Example: Suppose a resistance of 3.5 ohms is needed and some No. 28 wire is on hand. The wire table in the Miscellancous Data chapter shows that No. 28 has a resistance of 66.17 ohtus per thousand feet. Since the desired resistance is 3.5 chms, the length of wirc required will be

$$
\frac{3.5}{66.17} \times 1000=52.89 \text { feet. }
$$

Or, suppose that the resistunce of the wire in the eircuit must not exced 0.0 ; ohm and that the length of wire reguired for making the connections totals 14 feet. Then

$$
\frac{14}{1000} \times R=0.05 \mathrm{ohm}
$$

where R is the maximum allowable resistance in ohms per thousand feet. Rearranging the for mula gives

$$
R=\frac{0.05 \times 1000}{14}=3.57 \mathrm{ohms} / 1000 \mathrm{ft}
$$

Reference to the wire table shows that No. is is the smallest size having a resistance lest than this value.

When the wire is not copper, the resistance values given in the wire table should be multi-

Types of resistors used in radio equipment. Those in the foreground with wire leads are cartom tyles. ranging in size from watt at the left to2 watts at the right. 'The larger resistors use resistance wire wound on reramic tubes: sizes sleew range from 5 watts to 100 watts. Three are the adjustable type, using a slinlink contart on an esposed section of the resistance winding.

plied by the ratios given in Table e-I to obtain the resistance.

$$
\begin{aligned}
& \text { Fxample: If the wire in the first example were } \\
& \text { irom instead of complor the length reguired for } \\
& \text { 3.5 ohtres would lee } \\
& \frac{3.5}{6 i t .17 \times 5.0 .5} \times 1000=0.3 .5 \mathrm{frect} .
\end{aligned}
$$

The resistance of a monductor changes with its temperature. . It hough it is seldom neressay to consider tomperature in making resistance calculations for amateur work, it is well to know that the resistance of practionly all metallir condurtors increases with increasing temporature. Carbon, however, acts in the opposite was: its resistance decreases when its temperature rises. The temperature effert is important when it is neressary to maintain a constant resistance under all eonditions. Suecial materials that have little or no change in fexistanee over a wide temperat ture range are used in that casc.

Resistors

A "package" of resistance made up into a single unit is called a resistor, Resistors having the same resistance value may be ronsiderably different in size and construction. The flow of current through resistance causes the conductor to become heated; the higher the resistance and the larger the current, the greater the amount of heat developed. Resistors intended for carrying large currents must be physieally large so the heat can be radiated quickly to the surrounding air. If the resistor ches not get rid of the heat quickly it may reach a temperature that will cause it to melt or burn.

Skin Effect

The resistance of a condurtor is not the same for alternating current as it is for direct current. When the current is altemating there are internal effects that tend to force the current to flow mostly in the outer parts of the conductor. This decreases the effective cross-sectional area of the conductor, with the result that the resistance incrramas.

For fow andio frequencies the incease in resistance is unimportant, but at radio frequeneios this skin effect is so great that practically all the conrent flew is confined within a fow thonsambthe of an turh of the eunductore surface. The r.f. rexistance is consequently many times the d.e. mesistance, and increases with incorasing froquenery. In the r.f. range a comductor of thin tubing will have just as fow resistamere as a solid "onductor of the same diameter, beranse material not vese to the surface camies prationly mo current.

Conductance

The receipromal of resistance (that $\mathrm{is}, \mathrm{I} / R$) in called conductance. It is usually represented bus the symbol $(i$, A riment having large comductance hats low resistance, and vice versal. In ratlin work the torm is used chiefly in connection with varumm-tube characteristies. The unit of conductane is the mho. 1 resistance of onte ohm has a conductance of one mho, at resistance of lown ohms has a comductance of 0.001 mho , athe son $\mathbf{0}$ on. A unit freguently used in commertion with varomm tulnes is the micrombo, on one-millionth of a mho. It is the condurtance of a resistance of one megohm.

OHM'S LAW

The simplest form of electric circuit is a battery with a resistance connected to its terminath, as shown be the symbols in Fig. :-3. 1 complete circuit must have an unbroken path so curnent

Fig. 2.3-A simple cirroit consisting of a bat. tery and resitior.

ran flow out of the battery, through the apparatus comerted to it, and back into the batterys. The circuit is broken, or open, if a comertion is removed at any point. A switch is a device for making and breaking comnections and thereby closing or opening the circuit, either allowing current to flow or preventing it from flowing.

TABLE 2-II Conversion Factors for Fractional and Multiple Units			
To change from	To	Diride by	Muttiply by
Units	Nicro-nnits Milli-units Kilo-units Mega-units	$\begin{gathered} 1000 \\ 1,000,000 \end{gathered}$	$\begin{gathered} 1,000,000 \\ 1000 \end{gathered}$
Micro-units	Milli-unit, Cnit:	$\begin{gathered} 1000 \\ 1,000,000 \end{gathered}$	
Milli-mints	Micro-units l'ints	1000	1000
Kilo-mits	lnits Vega-unita	10010	1000
Mratunit	Inita Kilurnmit:		$\begin{aligned} & 1,0100,000 \\ & 11060 \end{aligned}$

The values of current, voltage and resistance in a circuit aro be motans independent of each other. The relationship betwern them is known as Ohm's Law. It can be stated as follows: The current flowing in at rireuit is directly proportional to the applied com.f. and inversely proportional to the resistance. Fxpmessed as an equattion, it is

$$
I(\text { amperers })=\frac{E(\mathrm{volts})}{R(\text { ohms })}
$$

The equation above gives the value of current when the voltage and resistane are known. It may be transoosed so that eath of the three quantities may be fomm when the other two are known:

$$
E=I R
$$

(that is, the voltage adeting is equal to the eurrent in amperes multiphed by the resistance in ohmis: and

$$
h^{\prime}=\frac{E}{I}
$$

(or, the resistance of the cireuit is equal to the applied voltage divided by the current).
. Ill three fonms of the equation are used almost constantly in ratio work. It must be remembered that the cquatitios are in whlls, whens and amperes; other units camot be used in the equations without first bring converted. For example, if the curront is in milliamperes it must be changed to the equivalent fration of an ampere before the value ran be substituted in the equations.

Table 2-11 shows how to convert between the various units in common use. The prefixes attached to the basie-unit name indicate the nature of the unit. These prefixes are:

$$
\begin{aligned}
& \text { mirro - onc-millionth (abbreviated } \mu \text {) } \\
& \text { milli - one-t housandth (abbreviated } m \text {) } \\
& \text { kilo - one thousand (abbreviated } k \text {) } \\
& \text { mega - one million (abbreviated } I f \text {) }
\end{aligned}
$$

For example, one microvolt is one-millionth of a volt, and one megohm is $1,000,000$ ohms. There are therefore $1,000,000$ mierovolts in one volt, and 0.000001 megohm in one ohm.

The following examples illustrate the use of Ohn's Law:

The current flowing in a resistance of 20.000 ohn is 1.00 millianneres. What is the voltare? *ince the voltage is to be found, the equation to use is $E=/ R$. The current must first be converted from milliamperes to amperes, and reference to the table shows that to do so it is necessary to divide by 1000 . Therefore,

$$
E=\frac{150}{1000} \times 20,000=3000 \text { volts }
$$

When a voltage of 150 is applied to a circuit the current is measured at $2, \overline{3}$ anperes. What is the resistance of the rireuit? In this case K is the unknown, so

$$
h=\frac{E}{I}=\frac{150}{2, \overline{3}}=600 \text { hmms }
$$

No conversion was mocessary beranse the volt age and current were given in volte and aboperes.

How mutch current will flow if g.jo volta is apblied to as Joonoohm resishor? Since $/$ is anknown

$$
I=\frac{E}{R}=\frac{2.51}{5(0)}=0,005 \text { innupere }
$$

Nilliampere unite wombl te more conscerniont for the rurrent, and $0.0 .5: 41 \mathrm{p}, \mathrm{X} \quad 1000=50 \mathrm{mil}$ liamperes.

SERIES AND PARALLEL RESISTANCES

Vory few actual electric circuite are as simple as the illustration in the preceling seetion. Commonly, resistances are found comented in a

Fig, 2-1-Mesis. tor: conmectod in series and in par. allel.

variety of ways. The two fundamental methods of conneeting resistances are shown in Fig. "-4. In the upper drawing, the current flows from the sourere of e.m.f. (in the direction shown by the arrow, let us say) down through the first resistance, R_{1}, then through the second, R_{2}, and then back to the source. These sesistors are conneeted in series. The eurrent everywhere in the cireuit has the same value.

In the lower drawing the current flows to the common eomertion print at the top of the two resistors and then divides, one part of it flowing through R_{1} and the other through R_{2}. At the lower eonnection point these two curvents again combine; the total is the sime as the current that flowed into the upper common comection. In this case the two resistors are connected in parallel.

Resistors in Series

When a circuit has a number of resistances connerted in series, the total resistance of the circuit is the sum of the individual resistances. If these are numbered R_{1}, R_{2}, R_{3}, ete, then $R_{\quad} \quad($ total $)=R_{1}+R_{2}+R_{3}+R_{4}+$ where the dots indicate that as many resistors as necessary may be added.

Example: Suppose that three resistors are tonnected to a source of em.f. as shown in Fig. $2-\bar{y}$. The e.m.f. is $2 \overline{50} 0$ volts, h_{1} is $\overline{j 00()}$ ohms, R_{2} is $20,0 \% H_{0}$ ohms, and R_{3} is 8000 ohms. The total resistance is then

$$
\begin{aligned}
R=R_{1}+R_{2} & +R_{3}=5000+20,000+8000 \\
& =33,000 \text { ohms }
\end{aligned}
$$

The current fowing in the rircuit is then

$$
I=\frac{E}{R}=\frac{2.50}{33,000}=0.007 .57 \mathrm{amp}=7.37 \mathrm{ma}
$$

(We need not carry ralculations beyond three significant figures. and often two will suffice |ereatase the ateruracy of measurements is sedtom fuetter than a few per eant.)

Voltage Drop

Ohm's Law applies to an!! purt of a dircuit as well as to the whole rircuit. Although the current is the same in all three of the resistanees in the example, the total voltage divides among them. The valtage appearing areoss each resistor (the voltage drop can be found from ()hm:s Lalw.

$$
\begin{aligned}
& \text { is cathed } E_{1} \text {, that armos } / i 2 \text { is catled } E_{2} \text {, and that } \\
& \text { tuross Ras andion Eza. thent } \\
& \left.E_{1}=I R_{1}=0.010 .57 \times 3000\right)=37.9 \mathrm{volts} \\
& V_{2}=1 / H_{2}=0.007 .17 \times 20.000=1.51 .4 \text { volts } \\
& L_{3}=1 R_{3}=0.007 .57 \times 80 \mu 0=60.6 \text { volts: } \\
& \text { The appliad voltame must edmal the sum of the } \\
& \text { individual voltage drons: } \\
& E=E_{1}+E_{2}+E_{3}=37.9+151.4+60.6 \\
& =2.99 .9 \mathrm{volts}
\end{aligned}
$$

The answer would have been more nearly exart if the current had tren caleulated to more derimata plows, but as uxplained above a vory high order of aceursey is not necessary.

In problemss such as this considerable time and trouble can be saved, when the eurrent is small enough to be expressed in milliamperes, if the

Fig. 2.5 - An example of resistors in series, The solution of the circuit is worked out in the text.
resistance is expressed in kilohms rather than ohms. When resistance in kilohms is substituted directly in Ohm's Law the current will be in milliamperes if the e.m.f. is in volts.

Resistors in Parallel

In a circuit with resistances in parallel, the total resistance is less than that of the lowest value of resistance present. This is because the
total current is always greater than the current in any individual resistor. The formula for finding the total resistance of resistances in parallel is

$$
R_{i}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}+\cdots \cdot}
$$

Where the dots again indieate that any number of 1 esistors can be combined by the same method. For only two resistances in parallel (a very mommon (ase) the formula is

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Example: If a \quad n00-ohm resistor is paralleled with one of 1200 ohms, the total resistance is

$$
\begin{aligned}
R=\frac{k_{1} / R_{2}}{l_{1}+R_{2}} & =\frac{.000 \times 1200}{500+1200}=\frac{000, .000}{1700} \\
& =353 \mathrm{ohms}
\end{aligned}
$$

It is poobably casior to solve practical probIens bey different mether than the "reciprocal of reciprocals" formula. suppose the three re-

Fig. 2-6 - An example of resistors in parallet. The solution is workerl wit in the text.
sistors of the previous example are connected in parallel as shown in Fig. D-6. The same e.m.f., 2:50) volts, is applied to all three of the resistors. The eurrent in each can be found from (Ohm's Law as shown below, I, being the rurrent through R_{1}, I_{2} the eurrent through R_{2} and I_{3} the current through $R_{\text {s }}$.

For eomwenience the resistance will he expressed in kilohms so the current will be in milliamperes.

$$
\begin{aligned}
& I_{1}=\frac{E^{\prime}}{R_{1}}=\frac{250}{\vdots}=50 \mathrm{ma} \\
& I_{2}=\frac{E^{\prime}}{R_{2}}=\frac{2.50}{20}=12.5 \mathrm{ma} \\
& I_{3}=\frac{E}{R_{3}}=\frac{250}{8}=31.25 \mathrm{ma}
\end{aligned}
$$

The totit current is

$$
\begin{gathered}
I=I_{1}+I_{2}+I_{3}=50+12.5+31.25 \\
=93.75 \mathrm{ma}
\end{gathered}
$$

The total resistance of the circuit is therefore $\mathrm{I}=\frac{E}{I}=\frac{250}{93.75}=2.66$ kilohms $(=2660$ ohms $)$

Resistors in Series-Parallel

An actual circuit may have resistances both in parallel and in series. To illustrate, we use the same three resistances again, but now connected as in Fig. 2-7. The method of solving such a cirenit such as Fig. 2-7 is as follows: Consider R_{2} and R_{3} in parallel as though they formed a single resistor. Find their equivalent resistance. Then this resistance in series with R_{1} forms a simple series cireuit, as shown at the right in lig. 2-7.

Fig. 2-7 - An example of resistors in series-parallel. The solution is worked out in the text.

Example: The first step is to find the equivalent resistance of R_{2} and R3. From the formula for two resistances in parallel.

$$
\begin{aligned}
R_{\text {eq* }}= & \frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{20 \times 8}{20+8}=\frac{160}{28} \\
& =5.71 \text { kilohms }
\end{aligned}
$$

The total resistance in the eircuit is then

$$
\begin{aligned}
\mathrm{R}=R_{1} & +R_{\text {eq. }}=5+5.71 \text { kilohms } \\
& =10.71 \text { kilohms }
\end{aligned}
$$

The current is

$$
I=\frac{E}{R}=\frac{250}{10.71}=23.4 \mathrm{ma}
$$

The voltage drops arross R_{1} and $R_{\text {en. }}$ are
$E_{1}=I R_{1}=23.4 \times 5=117$ volts
$K_{2}=1 R_{\text {r-1 }}=23.4 \times 5.71=133$ volts
with sufleient accurace. These total $2: 50$ volts. thus checking the caleulations so far, because the sum of the volture drops must equal the applied voltage. Nince E_{2} appears across both R_{2} and R_{3},

$$
\begin{aligned}
I_{2} & =\frac{E_{2}}{R_{2}}=\frac{133}{20}=6.75 \mathrm{ma} \\
I_{3} & =\frac{E_{2}}{R_{3}}=\frac{133}{8}=16.6 \mathrm{ma} \\
\text { where } I_{2} & =\text { Current through } R_{2}
\end{aligned}
$$

$$
I_{3}=\text { Current through } R_{3}
$$

The total is 23.35 ma.. which eheeks closely enough with 23.4 ma., the current through the whole circuit.

POWER AND ENERGY

Power - the rate of doing work - is equal to voltage multiplied by current. The unit of electrical power, called the watt, is equal to one volt multiplied by one ampere. The equation for power therefore is

$$
I=E I
$$

where $P=$ Power in watts
$E=$ F.m.f. in volts
$I=$ Current in amperes
Common fractional and multiple units for power are the milliwatt, one one-thousandth of a watt, and the kilowatt, or one thousand watts.

Example: The plate voltage on a transmitting vacuan tube is 2000 volts and the plate current is 350 milliamperes. (The eurrent must be changed to amperes lefore substitution in the formula, and so is 0.35 amp .) Then

$$
P=E I=2000 \times 0.35=700 \text { watts }
$$

By substituting the Ohm's Law equivalents for E and I, the following formulas are obtained for power:

$$
\begin{aligned}
& P=\frac{E^{2}}{R} \\
& P=I^{2} R
\end{aligned}
$$

These formulas are useful in power calculations
when the resistance and either the current or voltage (but not both) are known.

Example: How much power will be used up in a 4000 -ohm resistor if the voltage applied to it is 200 volts? From the equation

$$
P=\frac{E^{2}}{R}=\frac{(200)^{2}}{4000}=\frac{40,000}{4000}=10 \mathrm{watts}
$$

Or, suppose a current of 20 milliamperes flows through a 300 -ohm resistor. Then

$$
\begin{gathered}
P=I^{2} R=(0.02)^{2} \times 300=0.0004 \times 300 \\
=0.12 \text { watt }
\end{gathered}
$$

> Note that the current was changed from milliamperes to amperes before substitution in the formula.

Electrical power in a resistance is turned into heat. The greater the power the more rapidly the heat is generated. Resistors for ractio work are made in many sizes, the smallest being rated to "dissipate" (or carry safely) about $1 / 4$ watt. The largest resistors used in amateur equipment will dissipate about 100 watts.

Generalized Definition of Resistance

Flectrical power is not always turned into heat. The power used in rumning a motor, for example, is converted to mechanical motion. The power supplied to a radio transmitter is largely converted into radio waves. l'ower applied to a loudspeaker is changed into sound waves. But in every case of this kind the power is completely "used up" - it cannot be recovered. Also, for proper operation of the device the power must be supplied at a definite ratio of voltage to current. Both these features are characteristies of resistance, so it can be said that any device that dissipates power has a definite value of "resistance," This concept of resistance as something that absorbs power at a definite voltage/current ratio is very useful, since it permits substituting a simple resistance for the load or power-consuming part of the device receiving power, often with considerable simplification of ealculations. Of course, every electrical device has some resistance of its own in the more narrow sense, so a part of the power supplied to it is dissipated in that resistance and hence appears as heat even though the major part of the power may be converted to another form.

Efficiency

In devices such as motors and vacuum tubes, the object is to obtain power in some other form than heat. Therefore power used in heating is considered to be a loss, because it is not the uscful power. The efficiency of a device is the useful power output (in its converted form) divided by the power input to the device. In a vacuum-tube transmitter, for example, the object is to convert power from a d.c. source into a.c. power at some radio frequency. The ratio of the r.f. power output to the d.c. input is the efficiency of the tube. That is,

$$
E f f .=\frac{P_{0}}{P_{1}}
$$

where Eff. = Efficiency (as a decimal)
$P_{o}=$ Power output (watts)
$I_{i}=$ l'ower input (watts)
Example: If the d.c, input to the tube is 100 watts and the r.f. power output is 60 watts, the efficiency is

$$
E f f .=\frac{P_{0}}{P_{\mathrm{i}}}=\frac{60}{100}=0.6
$$

Efficieney is usually expressed as a percentage; that is, it tells what per cent of the input power will be available as useful output. The efficieney in the above example is 60 per cent.

Energy

In residences, the power company's bill is for electric energy, not for power. What you pay for is the work that electricity does for you, not the rate at which that work is done.

Electrical work is equal to power multiplied by time; the common unit is the watt-hour, which means that a power of one watt has been used for one hour. That is,

$$
W=P T
$$

where $W=$ Energy in watt-hours
$\rho^{\prime}=$ Power in watts
$T=$ Time in hours
Other energy units are the kilowatt-hour and the watt-second. These units should be selfexplanatory.
linergy units are seldom used in amateur practice, but it is obvious that a small amount of power used for a long time can eventually result in a "power" bill that is just as large as though a large amount of power had been used for a very short time.

Capacitance and Condensers

Suppose two flat metal plates are placed close to each other (but not touching) as shown in Fig. ©-8. Normally, the plates will be electrically "neutral"; that is, no electrical charge will le evident on either plate.

Now suppose that the plates are comected to a battery through a switeh, as shown. At the

Fig. 2-8-A simple condenser.
instant the switch is closed, electrons will be attracted from the upper plate to the positive terminal of the battery, and the same number will be repelled into the lower plate from the negative battery terminal. This electron movement will continue until enough electrons move into one plate and out of the other to make the e.m.f. between them the same as the e.m.f. of the battery.

If the switch is opened after the plates have been charged, the top plate is left with a deficiency of electrons and the bottom plate with an excess. In other words, the plates remain charged despite the fact that the battery no longer is connected. However, if a wire is touehed betwern the two plates (short-circuiting them) the excess electrons on the bottom plate will flow through the wire to the upper plate, thus restoring cleetrical neutrality to both plates. The pates have then been discharged.

The two plates constitute an electricul capacitor ur condenser, and from the discussion above it should be clear that a condenser possesses the property of storing electricity. It should also be clear that during the time the electrons are moving - that is, while the condenser is being 'harged or discharged - a current is flowing in the circuit even though the "ircuit is "hroken" by the gap between the condenser plates. However, the current flows only during the time of
charge and discharge, and this time is usually very short. There can be no continuous flow of direct current "through" a condenser.

The charge or quantity of electricity that can be placed on a condenser is proportional to the applied voltage and to the capacitance or capacity of the condenser. The larger the plate area and the smaller the spacing between the plates the greater the capacitance. The caparitance also depends upon the kind of insulating material between the plates; it is smallest with air insulation, but substitution of other insulating materials for air may increase the capacitance of a condenser many times. The ratio of the caparitance of a condenser with some material other than air between the plates, to the caparitance of the same condenser with air insulation, is ralled the specific inductive capacity or dielectric constant of that particular insulating material. The material itself is called a dielectric. The dielectric constants of a number of materials

TABLE 2-1II		
Dielectric Constants and	Breakdown	Voltages
Material	Dielectric Constant	Puncture Voltage*
Air	1.0	19.8-22.8
Alsimag Al96	5.7	240
Bakelite (paper-base)	3.8-5.5	650-750
Bakelite (mica-filled)	5-6	$475-60)(0$
(elluloid	$4-16$	
Celurose acetate	6-8	300-1000
Fiber	5-5	1.31-180
Formisa	1.649	4.0
Class (window)	7 6-8	$200-250$
Glass (photographic)	7.5	
Glasm (Pyrex)	1.21 .9	335
lacite	- 3	480.500
Mica	- i-8	
Mica (elear ludia)	(1-7.5	600-1500
Mycalex	7	250
Paper	2.11-2.6	1250
Polyethylene	2.3-0.4	1000
Polystyrene	2.4-2.9	500-2500
Porcelain	6.2-7.5	40-100
Rubber (hard)	2-3.5	450
Steatite (low-loss)	4.4	150-315
Wood (dry oak)	$2.5-6.8$	
* In volts per mil (0.001	(inch).	

commonly used as dielectrics in condensers are given in Table 2-1II. If a sheet of photographic glass is substituted for air betwern the plates of a condenser, for example, the capacitance of the condenser will be increased 7.5 times.

Units

The fundamental unit of capacitance is the farad, but this unit is much tor large for practical work. (aparitance is usually measured in microfarads (abbreviated $\mu \mathrm{fd}$.) or micromicrofarads ($\mu \mu \mathrm{fd}$.). The microfarad is one-millionth

Fig. 2.4- I multiple-plate combenser. Alternate plates are connerted together.
of a farad, and the micromicrofarad is onc-millionth of a microfarad. Condensers nearly always have more than wo plates, the alternate plates being connerted together to form two sets as shown in Fig. 2-9. This makes it possible to attain a fairly large eaparitance in a small space as compared with a two-plate condenser, since several plates of smaller individual area can be stacked to form the equivalent of a single large plate of the same total area. Also, all plates, except the two on the ends, are exposed to plates of the other group on both sides, and wor are twice as effertive in increasing the capacitance.

The formula for calculating the capanitance of a condenser is:

$$
c^{\prime}=0.2 \cdot 24 \frac{K^{\prime} d}{d}(\prime \prime-1)
$$

where $C=($ Caparitance in $\mu \mu \mathrm{fl}$.
$K=$ Dielertric constant of material between plates
$\Lambda=$. Irea of one side of one plate in square inches
$d=$ heparation of plate suffaces in inches
$"=$ Number of phates

If the plates in one group do not have the same area as the plates in the other, use the area of the smaller plates.

Example: A " variabie" " condenser has 7 semicircular pates on its rotor. the diameter of the semicircle being 2 inches. The stator has 6 reetangular plates, with a semiciroular cut-out to Cluar the rotor shaft, bat otherwise larme enough to face the entire area of a rotor wate. The dian eter of the cut-out is $1 / 2$ inch. The distanee betwen the adjarent surfaces of rotor and stator phates is $1 / \frac{1}{}$ ineh. The dielectric is atir. What is the eajacitanee of the condenser with the platere filly meshed?
In this case, the "effective" area is the areat of the rotor plate minus the areat of the cut-out in the stator plate. The area of either semincirele is $\pi r^{2} / 2$. where r is the radius. The areat of the rotor wate is $\pi / 2$, or $1 . .37$ spluare inelons (the radius is 1 inch). The :urea of the euternt is $\pi\left(1 / \frac{1}{1}\right) 2 / 2=\pi / 32=0.10 \mathrm{sm}$ sutre inch, appreximately. The "effective" area is therefore 1.57 $0.10=1.17$ spuate inches. "The camatitane is therefore

$$
C^{\prime}=0.22 .4 \frac{K .4}{d}(n-1)=0.221 \frac{1 \times 1.47}{0.12 .5}(13-1)
$$

$$
=0.2: 4 \times 11.76 \times 12=31.6 \mu \mu \mathrm{fd} .
$$

(The answer is onty approximate, becanse of the difficulty of accurate measuriment, Hus a "fringing " effect at the edges of the phates that makes the actual capacitance a little higher.)
The usefulness of a condenser in electrical circuits lies in the fact that it can be charged with electricity at one time and then discharged at a later time. In other words, it is capable of storing electrical chergy that ran be released later when it is noeded; it is an "elertrical revervoir."

Condensers in Radio

The types of condensers used in radio work differ considerably in physial size, construction, and capacitance some representative types are shown in the photograph. In variable condensers calmost always constructed with air for the dielectride one set of phates is mate mowable with respert to the other set so that the rapacitance can be varied. Fixed condensers - that is, having fixed capacitance - akso can be made with metal phates and with air as the dielectric, but usually

Fiand and variable comdensers, 'The buttom row indinles. Ieft tor right. a high-voltake mica fixell eondenter. at tuhblar elontrolytic, Iubular paper. two sizo of "postagr-xtamp" minas. a small reramie ispe (tomperature ermpensating). an adjotalale com. denare with reramid in*utation for nowralizing in transmillers). a "hat -
 ju-table" "padting" cominnser, four siza of sariable comdersers are shown in the seromal row. The two. plater emblenser with the midrometer adjustmont is used in transmitters. The comolenzer romelosed in the metal case is a high-whtige palmer type used in pewer-supply filters.
are constructed from plates of motal foil with a thin solid or liguid dicheretrie sathelwhed in between, so that a relatively harge (aparitance ram be seerured in a small unit. The solid dieleetrics commonly used are miera, paper and sperial ceramies. In example of a liguid dielectrie is mineral oil. The electrolytic cundenser uses alumi-mum-foil plates with a semiliquid ronducting chemical compound between them: the artual dielectric is a rery thin film of insulating material that forms on one set of plates through aretrochemical artion when a der. voltage is applied to the condenser. The rapacitance ottained with a given plate area in ath clectrolytie condersor is wery large, compared with condensers havitg other dielectries, because the film is so extremely thin - much less than any thickness that is practicable with a solid dielectric.

Voltage Breakdown

When a high voltage is applied to the plates of a condenser, a considerable force is exerted on the edoctrons and muelei of the dielectric. Becatuse the dielectric is an insulator the clectrons do not berome detached from atoms the way they do in condurtors. However, if the foree is great mough the dielectric will "break down': usmally it will puncture and may ehat (if it is solid) and pe:mit current to flow. The breakdown voltage depends upon the kind and thiekness of the dielectrie, as shown in Table 2-1II. It is mot directly proportional to the thickness: that is, duabling the thickness does not quite double the brakdown woltage. If the dielertrie is air or any other gas, breakdown is evidenced by a spark or are betwern the plates, but if the voltage is removed the are eanses and the condenser is ready for use again. Breakdown will oceur at a lower voltage betwen pointed or sharp-edged surfares than betweon rounded and polished surfares; eonserpuotly, the breakdonn woltage lotween metal phates of given pacing in air can be increased by bufling the edges of the plates.
since the diedertrie must be thick to withstand high voltages, and since the thicker the dielectric the smaller the caparitance for a given plate area, a high-voltage condenser must have more plate area than a low-voltage condenser of the same caparitance. High-voltage high-rapacitance condensers are physically large.

- CONDENSERS IN SERIES AND PARALLEL

The terms "parallel" and "series" when used with reference to condensers have the same circuit meaning as with resistances. Whell a number of condensers are comereded in parallel, as in Fig. $2-10$, the total capacitance of the group is equal to the sum of the individual caparitaneres, so

$$
\left.C^{\prime}\left(t_{1}\right) t_{a l}\right)=C_{1}+C_{3}+\left(_{3}+c_{4}+\ldots \ldots \ldots \ldots\right.
$$

However, if two or more condensers are connected in series, as in the second drawing,

the total capacitance is less than that of the smallest condenser in the group. The rule for finding the capacitance of a number of seriesconnected condensers is the same as that for finding the resistance of a number of parwlelcomnected resistors. That is,
$C($ tot:al $)=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\frac{1}{C_{4}}}+\ldots \ldots \ldots \ldots$.
and, for only two eondensers in series,

$$
C(\text { total })=\frac{C_{1} C_{2}}{C_{1}+C_{2}^{\prime}}
$$

The same units must be used throughout; that is, all capacitances must be expressed in either $\mu \mathrm{fd}$. or $\mu \mu \mathrm{fd}$.; you cannot use both units in the same equation.

Condensers are connected in parallel to obtain a larger total capacitance than is available in one mit. The largest woltage that can be applied safely to a group of condensers in parallel is the voltage that can be applied sately to the condenser having the lowest voltage rating.

Whon condensers are connected in series, the applied voltage is divided up among the various condensers; the situation is much the same as when resistors are in series and there is a voltage drop across each. However, the voltage that appears across each condenser of a group connected in series is in inverse proportion to its capacitance, as compared with the capacitance of the whole group.

[^1]

Fig. 2-11 - An example of condensers conneeted in serics. The solution to this arrangement is worked out in the text.
neeted in series as shown in Fig, 2-11. The total annacitance is

$$
=0 . \pi] \mu \mathrm{fd}
$$

The voltage acroms each condenser in proportional to the total capacitance divided by the capacitance of the condenser in puestion. so the voltage arross (') is

$$
E_{1}=\frac{0.5 \pi 1}{1} \times 2000=1142 \text { volts }
$$

Similarly, the woltages arenss ('2 and C_{3} are

$$
E_{2}=\frac{0.571}{2} \times 2(m)=51 \text { volts }
$$

$$
E_{3}=\frac{0.571}{4} \times 2000=281 \mathrm{i} \text { volts }
$$

totaling approximately som colts. the applied voltage.
(ondensers are frequently connected in series to enable the group to withstand a larger voltage (at the expense of decreased total capacitance) than any individual rondenser is rated to stand. However, as shown by the previous example, the applied voltage does not divide equally among the condensers (exeept when all the rapacitanees are the same) so care must be taken to see that the voltage rating of no condenser in the group, is exceotled.

Inductance

It is prssible to show that the flow of current through a conductor is acempanied by magnetic effects: a compass needle brought near the conductor, for example, will be deflected from its mormal north-south prition. The current, in ot her words, sots up a magnetic field.

If a wire conductor is formed into a coil, the same rurrent will set up a stronger magnetic field than it will if the wire is straight. Ilso, if the wire is wound around an iron or sted core the field will be still stronger. The relationship between the strength of the field and the intensity of the current causing it is expressed by the inductance of the conductor or coil. If the same current flows through two coils, for example, and it is found that the magnetic field set up by one coil is twice as strong as that set up by the other, the first coil has twice as much inductance as the serond. Indurtance is a property of the conductor or enil and is determined by its shape and dimensions. The unit of inductance (oorresponding to the ohm for resistance and the farad for (:ipacitance) is the henry.

If the current through a conductor or coil is made to vary in intensity, it is found that an e.m.f. will appear across the terminals of the
conductor or coil. This e.m.f. is entirely separate from the e.m.f. that is causing the current (o) flow. The strength of this induced e.m.f. becomes greater, the greater the intensity of the magnetic field and the more rapidly the current (and hence the field) is made to vars. since the intensity of the magnetic field depends upon the inductance, the induced voltage (for : given current intensity and rate of variation) is proportional to the inductance of the conductor or coil.
The induced e.m.f. (sometimes ralled back e.m.f.) tends to send a current through the circuit in the opposite direction to the current that flows because of the external e.m.f. so long as the latter current is incrensing. However, if the current caused by the applied e.m.f. decrenses, the induced e.m.f. tends to send current through the circuit in the same direction as the current. from the applied e.m.f. The effect of inductance. therefore, is to oppose any change in the current flowing in the circuit, reyardless of the nature of the ehange. It accomplishes this by storing energy in its magnetio field when the current in the circuit is being increased, and by releasing the stored energy when the current is being decreased.

Inductance coils for power and radio frequencies. The two iron-core coils at the upper left are "chokes" for power-anpply filters. "The three "pie". wound coils at the lower right arr "werl az alookes in radio-frequency circuits. The other coils are for r.f. tuned circuits ranging in prwer from 2.5 watts to a kilowatt.

The values of inductance used in radio equipment vary over a wide range. Inductance of several henrys is required in power-supply eircuits (see chapter on Power Supplies) and to obtain such values of inductance it is necessary to use coils of many turns wound on iron cores. In radio-frequency circuits, the inductance values used will be measured in millihenrys (a millihenry is one one-thousandth of a henry) at low frequencies, and in microhenrys (one one-millionth of a henry) at medium frequencies and higher. Although coils for radio frequencies may be wound on special iron cores (ordinary iron is not suitable) most r.f. coils made and used by amatteurs are the "air-core" type; that is, wound on an insulating form consisting of nonmagnctic material.

Inductance Formula

The inductance of air-core coils may be calculated from the formula

$$
L_{\Delta}(\mu \mathrm{h} .)=\frac{0.2 a^{2} n^{2}}{3 a+9 b+10 c}
$$

where $L=$ Inductance in microhenrys
$a=$ Average diameter of coil in inches
$b=$ Length of winding in inches
$c=$ ladial depth of winding in inches
$n=$ Number of turns
The notation is explained in Fig. 2-12. The quantity 10 c may be neglected if the coil only has one layer of wire.

Example: Assume a coil having 35 turns of No. 30 d.s.c, wire on a form 1.5 inches in diameter. Consulting the wire table (Miscellaneous Data chapter). 35 turns of No. 30 d.s.c. will occupy $0 . \overline{3}$ inch. Therefore, $a=1 . \overline{5}, b=0 . \overline{5}$. $n=35$, and

$$
I=\frac{0.2 \times(1.5)^{2} \times(3.5)^{2}}{(3 \times 1.5)+(9 \times(0.5)}=61.25 \mu h_{1} .
$$

To calculate the number of turns of a singklayer coil for a reguiced value of inductance:

$$
N=\sqrt{\frac{3 u+9 b}{0.2 n^{2}} \times L}
$$

Example: Suppose an inductance of 10 microhenrys is required. The form on which the coil is to be wound has a diameter of one inch and is long enough to accommodate a coil length of $11 / 4$ inches. Then $a=1, b=1.25$, and $I .=10$. Substituting.

$$
\begin{aligned}
N & =\sqrt{\frac{(3 \times 1)+(0 \times 1.2 .5)}{0.2 \times 12} \times 10} \\
& =\sqrt{\frac{14.25}{0.2} \times 10}=\sqrt{712.5} \\
& =26.6 \text { turns. }
\end{aligned}
$$

A 27 -turn coil would be close coung to the refrimed value of inductance, in practical work.

Fig, 2.12-Coil dimensions used in the inductance formula.

Since the coil will be 1.25 inches long, the number of turns per inch will be $27 / 1.25=21.6$. Consulting the wire table, we find that No. 18 enameled wire (or any smaller size) can be used. We obtain the proper inductance by winding the required number of turns on the form and then adjusting the spacing between the turns to make a uniformly-spaced coil 1.25 inches long.

Every conductor has inductance, even though the conductor is not formed into a coil. The inductance of a short length of straight wire is small - but it may not be negligible, berause if the current through it changes its intensity rapidly enough the induced voltage may be appreciable. This will be the case in even a few inches of wire when an alternating current having a frequency of the order of 100 Me . is flowing. However, at much lower frequencies the inductance of the same wire could be left out of any calculations because the induced voltage would be negligibly small.

IRON-CORE COILS

Permeability

Suppose that the coil in Fig. 9-1:3 is wound on an iron core having a cross-sectional area of 2 square inches. When a certain current is sent through the coil it is found that there are 80,000$)$ lines of force in the core. Since the area is 2

Fig. 2-13 - Typical construction of an iron-core coil. The small air gap prevents magnetic saturation of the iron and increases the inductance at high currents.
square inches, the flux density is 40,000 lines per square inch. Now suppose that the iron eore is removed and the same current is maintained in the coil, and that the flux density without the irom core is found to be 50 tines per spuare inch. The ratio of the flux density with the given core material to the flux density (with the same coil and same current) with an air core is called the permeability of the material. In this case the promeability of the iron is $40,000 / 50=800$. The inductance of the coil is increased soo times by inserting the iron core, therefore.

The permeability of a magnetic material varies with the flux density. It low flux densities (or with all air core) increasing the corrent through the coil will cause a pooprotionate increase in flux, but at very high flux densities, inereasing the current may cause no appreciable change in the flux. When this is so, the iron is said to be saturated. "Saturation" causes a rapid decrease in permeability, because it decreases thr ratio of flux lines to those obtainable with the same rurrent and an air core. Obviously, the inductance of an iron-core coil is highly dependent upon the current flowing in the coil. In an air-core
eoil, the inductance is independent of current berause air does not "saturate."

In amateur work, iron-rore coils such as the one sketehed in Fig. 2-13 aro used chiefly in power-supply equipment. They usually have dircet current flowing through the winding, and the variation in inductance with current is usually undesirable. It may be overeome be keeping the flux density below the saturation point of the iron. This is done by rutting the core so that there is a small "air gap," as indirated by the dashed lines. The magnetic "resistance" introduced by such a gap, is so large - even though the gaj, is only a small fraction of an inch - compared with that of the iron that the gap, rather than the iron, controls the flux density. This naturally reduces the inductance compared to what it would be without the air gap - but the inductane is practically constant regardles: of the value of the current.

Eddy Currents and Hysteresis

When alternatng rurmet flow through a roil wound on an iron eore an e.m.f. will be induced, as previousliy explained, and since iron is a conductor a current will fow in the core. Such (urrents (called eddy currents) represent a waste of power berause they flow through the resistance of the iron and thus cause heating. Edelycurrent losses can be reduced by laminating the core; that is, bey rutting it into thin strips. These strips of laminations must be insulated from each other by painting them with some insulating material such as varnish or shellate.

There is also another type of energy loss in an iron core: the iron tends to resist any change in its magnetic state, so a rapidly-changing current such as ase is forced continually to supply energy to the iron to overeme this "inertia." Losses of this sont are callhed hysteresis lossers.

Fiddy-current and hysteresis loseses in irom increase rapidly as the fregueney of the alternating current is increased. For this reason, we can use ordinary iron cores only at power and audio frequencies - up to, sity, $\mathrm{li}, 000$ eveles. Liven so, a very gool grade or iron or steel is necessary if the core is to perform well at the higher audio frequencies. Iron cores of this type are completely useless at radio frequencies.

For radio-frequeney work, the losses in iron cores can be reduced to a satisfactory figure by grinding the iron into a powder and then mixing it with a "binder" of insulating material in such a way that the individual iron particles are insulated from each other. By this means cores can he made that will function satisfactorily even through the w.h.f. range - that is, at frequencies up to perhaps 100 Mr . Ibecause a large part of the magnetic path is through a nommagnetio material, the permeability of the irom is low eompared with the values obtained at power-supply frequencies. The core is usually in the form of a "slug" or "ylinder which fits inside the insulating form on which the coil is wound. Despite the fact that, with this construc-
tion, the major portion of the magnetie path for the flux is in the air surromding the eoil, the slug is quite effective in increasing the coil inductance. By pushing the slug in and out of the roil the inductance can be variod over a considerable range.

- INDUCTANCES IN SERIES AND PARALLEL

When two or more indurtance coils (or inductors, as they are frequently (alled) are connected in series (Fig. 2-14, left) the total indur-

Fip. 2-14-Inductances in series and parallel.

tance is equal to the sum of the individual inductances, provided the coils are sufficiently seprarated so that no coil is in the magnetic field of another. That is,

$$
L_{\text {total }}=L_{1}+L_{2}+L_{3}+L_{4}+
$$

If indurtances are comeded in parallol (Fig. $2-1$, right , the total inductane is

$$
L_{\text {total }}=\frac{1}{\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{23}}+\frac{1}{L_{4}}}+
$$

and for two inductances in parallel,

$$
L=\frac{L_{1} L_{2}}{l_{1.1}+l_{0.2}}
$$

Thus the rules for combining inductances in series and parallel are the stane as for resistances, if the coils are far enough apart so that each is matfected by amother's magnetio field. When this is not so the formulas given above camot be used.

- mutual inductance

If two coils are arranged with their axes on the same line, as shown in lig. 2-15, a current sent through (oil 1 will ratles a magnetic field which "cuts" Coil 2. Consequently, an e.m.f. will be indured in Coil 2 whenever the field strength is changing. This induced em.f. is similar to the e.m.f. of self-induetion, but since it appoars in the secome enil beranse of current flowing in the first, it is a "mutual" effert and results from the mutual inductance between the two coils.

If all the flux set up by one coil cuts all the turns of the ather eoil the mutual indurtance has its maximum possible value. If only a small part

Fig. 2-15 - Mutnal inductance. When the switch, s, is olosed current how through coil No. 1, setting up a magnctic ficld that induces an e.in.f. in the turns of coil No. 2.
of the flux set up be one coil cuts the thens of the other the mutual inductance is relatively small. Two coils having mutual inductane are said to be coupled.

The ratio of actual mutual indurtance to the maximum possible value that could theoretically be oftained with two given roils is called the coefficient of coupling betwern the coils. Coils that have nearly the maximum pessible mutual inductance are said to be closely, or tightly, coupled, but if the mutual inductance is relatively small the coils are said to be loosely coupled. The degree of eoupling depends upon the physical spacing lxetweon the coils and how they are placed with respert to each other. Maximum roupling exists whon they have a common axis and are as close together ats pussible (one wound over the uther). "The coupling is least when the coils are far apart or are placed so their axes are at right angles.

The maximum possible cocfficient of eoupling is closely appowed only when the two coils are wound on a closed iron eore. The eoeffieient with air-core coils may run as high as 0.6 or 0.7 if one eoil is wound over the other, but will be much less if the two coils are separated.

Time Constant

Capacitance and Resistance

In Fig. 2-16A a hattery having an e.m.f., E, a switch, \mathcal{S}, a resistor, R, and condenser, \boldsymbol{r}^{\prime}, are comeneted in series, suppose for the moment that R is shortecircuited and that there is no other resistane in the eircuit. If x is now dosed, condenser (' witl charge instuntly to the battery voltage: that is, the electrons that constitute the charge redistribute themselves in a time interval so small that it can be considered to be zero. For just this instant, therefore, a very large surmat flows in the circuit, berause all the clectricity needed to charge the condenser has moved from the battery to the condenser at an extremely high rate.

When the resistance R is put into the circuit the condenser no longer can be charged instantanemisly. If the hattery e.m.f. is 100 volts, for example, and R is 10 ohms, the maximum curront that can flow is 10 amperes, and even this much can flow only at the instant the switeh is closed. Buat as soon as any current fows, rondonser (' begins to acquire a charge, which means that the voltage between the rondenser plates rises. Since the upper plate (in Fig. $2-16 A$) will be positive and the lower nogative, the voltage on the condenser tries to send a current through the airmit in the opposite direction to the current from the battery. Immediately after the swith is closed, therefore, the curent drops below its

Fifs. 2-16 - Shemation illustrating the time constant of an $K C$ circuit.
initial Ohm's Law value, and as the condenser continaes to acquire charge and its potential or e.m.f. rises, the current beromes smaller and smaller.

The length of time required to romplete the charging process depends upon the capacitance of the condenser and the resistance in the eirruit. Theoretically, the charging promess is never really finished, but eventually the curment drops to a value that is smaller than anything that rean be measured. The time constant of such a rireuit is the length of time, in seconds, required for the voltage across the comdenser to reach 63 per ernt of the applied a.m.f. (this figure is chosen for mathematieal reasons). The voltage across the condenser rises logarithmically, as shown by l'ig. 2-17.

The formula for time eonstant is

$$
T=\left({ }^{\prime} R\right.
$$

Where $T=$ Time enstant in seconds
${ }^{\prime}=$ ('apmeritance in farads $^{\prime}$
$R=$ Resistance in ohms
If C is in mierofarads and R in megohms, the time constant also is in seconds. These units usually are more anvenimat.

$$
\begin{aligned}
& \text { Example' "The time constant of a } 2-\mu \text { id. con- } \\
& \text { denser athe a } 250,0(0) \text {-ohm resistor is } \\
& T=C R=2 \times 0.25=0.5 \text { sicond } \\
& \text { If the apmined e.m.f. is } 1000 \text { volts, the voltage } \\
& \text { ateross the condenser jlates will be fi30 volts at } \\
& \text { the end of } 1 / 2 \text { second. }
\end{aligned}
$$

If a charged condenser is discheryed through a resistor, as indicated in lig. $2-1613$, the same time constant applies. If there were no resistance, the condenser would discharge instantly when s was elosed. Howeror, sine R limits the rurrent flow the condenser voltage cammot instantly go to zero, but it will decrease just as rapidly as

Fit, 2.1\%- How the vollaga arooss a coundenser rises, with imm, when a eommenser is charged through a resistor. This lower renrse shows the way in which the voltage deareazes arross the combenser terminals on discharging throngh the same resistor.
the condenser can rid itse If of its charge through R. When the comdenser is discharging through a resistance, the time constant (calculated in the same way ats above) is the time, in seronds, that it takes for the condenser to lose 6 dis per cent of its voltage; that is, for the voltage to drop to 37 per cent of its initial value.

> Wxample: If the "ondenser of the example abow is charged to $1(000$ volts, it will discharge to 370 volts in $1 / 2$ sereond through the $2.50,000-$ ohm resistor.

Inductance and Resistance

A comparable situation exists when resistance and inductance are in series. In lig. 2-1s, first consider L to have no resistance and also assume that l is zero. Then closing s would tend to send a current through the circuit. However, the instantaneons transition from no current to a finite value, howerer small, represents a very rapid chatge in eurrent, and a hack e.m.f. is developed by the solf-inductance of L that is practually equal and opposite to the applied e.m.f. The result is that the initial current is very small.
The back e.m.f. chepends upon the change in current and would vease to offer opposition if the current did toot cont inue to insease. With no resistance in the circuit (which would lead to an infinitely-large current, by Ohm's Law) the current would increase forever, always growing just fast enough to keep the e.m.f. of self-induction equal to the applied e.m.f.

When resistance is in series, Ohm's Law sets a limit to the value that the eurrent can reach. In such a circuit the current is small at fist, just as in the case without resistance. But as
the current increases the voltage drop across R becomes larger. The back e.m.f. generated in L has only to equal the difference between E and the drop across R, because that difference is the voltage actually applied to L. This difference becomes smaller as the eurrent approaches the final Ohm's Law value. Theoretically, the back e.m.f. never quite disappears (thit is, the current never quite reaches the Ohm's Law value) but practically it beeomes unneasurable after a time. The difference between the actual current and the Ohm's Law value also becomes undetectable. The time constant of an inductive circuit is the time in seeonds required for the current to reach 63 per cent of its final value. The formula is

$$
T=\frac{L}{R}
$$

where $T=$ Time constant in seconds $L=$ Inductance in henrys
$R=$ Resistance in ohms
The resistance of the wire in a coil acts as though it were in series with the inductance.

Example: A coil having an inductance of 20 henrys and a resistance of 100 ohus has a time constant of

$$
T=\frac{L}{R}=\frac{20}{100}=0.2 \text { second }
$$

if there is no other resistance in the circuit. If a d.c. e.m.f. of 10 volts is applied to such a coil, the final current, by Ohm's Law, is

$$
I=\frac{E^{\prime}}{R}=\frac{10}{100}=0.1 \mathrm{arng} . \text { or } 100 \mathrm{ma}
$$

The current would rise from zero to 63 milliamperes in 0.2 second after closing the s witch.

An inductor cannot be discharged in the same way as a condenser, because the magnetie field disappears as soon as current flow ceases. Opening is does not kave the inductor

Fig. 2.18 - Tïme constant of an I, R circuit.
"rharged." The energy stored in the magnetic field instantly returns to the circuit when is is opened. The rapid disappearance of the ficld causes a very large voltage to be induced in the eoil - ordinarily many times larger than the voltage applied, because the induced voltage is proportional to the speed with which the field rhanges. The common result of opening the switch in a circuit such as the one shown is that a spark or are forms at the switch contacts at the instint of opening. If the inductance is large and the current in the cireuit is high, a great deal of energy is released in a very short period of time.

It is not at all unusual for the switch contacts to burn or melt under such cireumstances.

Time constants play an important part in numerous devices, such as electronic kevs, timing
and cont rol circuits, and shaping of keying characteristice loy vacuum tubes. The time constants of circuits are also important in such applications as automatic gain control and noise limiters.

Alternating Currents

PHASE

The term phase essentially means "time," or the time interval between the instant when onc thing oceurs and the instant when a second related thing takes place. When a bascball pitcher throws the ball to the catcher there is a definite interval, represented by the time of flight of the ball, between the act of throwing and the act of catching. The throwing and catching are "out of phase" because they do not occur at exactly the same time.

Fig. 2-14 - In inc. cycle is divided off into 360 degrees that are used as a measure of time or phase.

Simply saying that two events are out of phase dies not tell us which one occurred first. To give this information, the later event is said to lag the carlicr, while the one that occurs first is said to lead. Thus, throwing the ball "leads" the catch, or the catch "lags" the throw.

In a.c. circuits the current amplitude changes continuously, so the concept of phase or time heromes important. Phase can be measured in the ordinary time units, such as the second, but there is a more convenient method: Since each a.e. cycle oceupies exactly the same amount of time as every other cycle of the same frequency, we can use the cycle itself as the time unit. L'sing the rycle as the time unit makes the specification or measurement of phase independent of the frequency of the current, so long as only one frequency is under consideration at a time. If there are two or more frequencies, the measurement of phase has to be modified just as the measurements of two lengths must be reconciled if one is given in feet and the other in meters.

The time interval or "phase difference" under consideration usually will be less than one cycle. Phase difference could be measured in decimal parts of a cycle, but it is more convenient to divide the cycle into 360 parts or degrees. A phase degree is therefore $1 / 360$ of a cycle. The reason for this choice is that with sine-wave alternating current the value of the current at any instant is proportional to the sine of the angle that corresponds to the number of degrees - that is, length
of time - from the instant the evele beyan. There is no actual "angle" assoobiated with an alternating current. Fig. 2-19 should help make this methed of measurement clear.

Measuring Phase

To compare the phave of two currents of the same frequency, we monare betweon enresponding parts of cueles of the two currents. This is shown in Fig. 2-20. The current labeled A leads the one marked B by tiodegrees, sinere A s a cereles begin 45 degrees sonner in time. It is equally correct to say that B logs A by tio degrees.

Two important special cases are shown in Fig, 2-21. In the upper drawing B lags (0) degrees behind A; that is, its cyole bregins just onequarter cyole later than that of A. When one wave is passing through zero, the other is just at its maxinum point.

In the lower drawing A and B are 180 degrees out of phase. In this case it does not matter which one is to lead or lag. B is always positive while d is negative, and vice vorsa, The two waves are thus completely out of phase.

The waves shown in liges. $2-20$ and $2-21$ could represent current, voltage, or both. A and B might be two currents in separate circuits, or A might represent voltage while 13 represonted current in the same cimenit. If A and B represent two currents in the same circuit (or two voltages in the same circuit) the total or resultant curent (or voltage) also is a sine wavo, because adding any number of sine waves of the same frequeney always gives a sine wave also of the same frequency.

Phase in Resistive Circuits

When an alternating voltage is applied to a resistance, the current flows exactly in step with the voltage. In other words, the voltage and current are in phase. This is true at any frequency if the resistance is "pure" - that is, is free from the reactive effects discussed in the next section. Practically, it is often difficult to obtain a purely

Fig. 2-20-When two waves of the same frequency start their cyeles at slightly different times, the time difference or phase difference is measured in degrees. In this drawing wave 13 starts 4.5 legrees (one-righth cycle) later than wave 1 , and solag- 15 degrece behind A.

Fïg. 2.21 - Two important special catics of phase difference. to the upper drawing, the plate difference between A and B is 90 derrees: in the lower drawing the phase difference is 180 derrees.
resistive circuit at radiofrequencios, beanse the reative efferts berome more promounced as the frequency is increased.

In a purely resistive circuit, or for purely resistive parts of eircuits, Ohm's law is just as valid for a.ce of any frequeney as it is for d.e.

- reactance

Alternating Current in Condensers

suppose a sine-wave atce voltage is applied to a condenser in a rimuit contanimg now asistance, as indicuted in lig. 2-22. In the period (0.1, the applied whtage incerases from zero to 38 volts: at the end of this period the condenser is charged to that woltage. In inter val $1 / B$ the voltage inerease: to $\overline{1} 1$ volte: that is. 3.3 volts additional. In this interval a smellor quantity of chatge has been acked tham in 0.1 , beeatuse the voltager rise during interval 1 B is. smatler. (onsequently the average current daring $1 / 3$ is smatler that during (9.1. In the third interval, $B C^{\circ}$, the voltage rises from $\overline{6} 10$ to 2 volts, an incroase of 21 volts. This js lese thatn the voltage inerease huring $1 / B$, so the quantits of eleetrivity whed is less: in other words, the average current during interval $B C$ is still smaller. In the fourth interval, ('I), the voltage increases only 8 volts: the charge added is smaller than in any preceding interval and therefore the current also is smaller.

Thus as the instantanoous vatue of the appliod voltage increases the current dereases.

By dividing the first quarter cycle into a very large number of intervals it could be shown that the urrent charging the condenser has the shape of a sine wave, just as the applied voltage dors. The current is largest at the begiming of the revele and beoomes zero at the maximum value of the voltage (the condenser cannot be charged to a higher voltage than the maximum applied, so no furt her current can flow) so there is a phase difference of 90 degres hetween the voltage and current. During the first quarter cycle of the applied voltage the current is flowing in the nor-
mal way through the circuit, since the condenser is being charged. Hener the current is positive during this first quarter cecle, as indicated by the dashed line in l"ig. 2-2:3.

In the sceond quarter cercle - that is, in the time from $1 /$ to I, the voltage applied to the comdenser decreases. During this time the eondenser luses the charge it acquired during the first guarter cevcle. Applying the same reasoning, it is plain that the current is small in interval $/ / E$ and continnes to increase during each sureereding interval. However, the current is flowing afoinst the applied voltage herause the condenser is discharging into the circuit. Hence the current is negntive during this quarter cevcle.

The third and fourth quarter cycles repeat the events of the first and serond, respectively, with this difference - the polarity of the applied voitage has reversed, and the current changes to erorespond. In other words, all allernating curcet Hows "through" a coudenser when "In a.c. voltege is aplied to it. (Actually, current nevor flows "through" a condenser. It flows in the associated cirenit because of the altemate charging and discharging of the (apacitance.) Is shown by Fig. 2-3.3, the current starts its eycle ! 0 degrese before the voltage, so the current in a com-

Capacitive Reactance

The amont of charge that is alternately stored in and released from the condenser is proportional to the applied woitage and the raparitance. Comsequently, the cument in the circuit will be proportional to both these quantities, since current is simply the rate at which charge is moved. The current also will be proportional to the frequency

Fig, 2.22 - Voltage and current phase relationships when an alternating voltage is applied to a eondenser.
of the a.e voltage, becaluse the same charge is being moved back and forth at a rate that is proportional to the number of cyales per second.

The fact that the cmrrent is proportional to the applied voltage is important, berause it is the same thing that Ohm: law says about current. flow in a resistive cirroit. That being the case, there must be something in the comdenser that corresponds in a general way to resistance something that tends to limit the current that can flow when a given voltage is applied. The "something" clearly must include the effect of capaci-
tance and frequency, since these also affere the amount of eurrent that flows. It is ralled reactance, and its relationship to capacitane and fredueney is given by the formula

$$
\mathrm{I}_{\mathrm{C}}=\frac{1}{2 \pi f f^{\prime}}
$$

where $\mathrm{I}_{\mathrm{C}}=$ Condenser reatance in ohms
$f=$ Frequency in cycles per second
r: = Capacitance in farads
$\pi=3.14$
Reactance and resistance are not the same thing, lut berause ther have a similar curentlimiting effert the same unit, the ohm, is used for both. I'nlike resistance, reactance does mot consume or dissipate power. The energy stored in the condenser in one quarter of the cyole is simply returned to the circuit in the next.

The fundamental units (eyrles per second, farads) are too large for practical use in radio rirenits. However, if the (aparitance is in miomofarads and the frequency is in megaryeles, the reactance will come out in ohms in the formula.

$$
\begin{aligned}
& \text { Example: "The reactance of a condenser of tio } \\
& \mu \mu \mathrm{fd} \text {. (} 0.0 \mathrm{M} 0-17 \mathrm{ffd} \text {) at a frerpency of } 7150 \mathrm{ke} \text {. } \\
& \text { (7.15 Mc.) is } \\
& x^{-}=\frac{1}{2 \pi f f^{\prime}}=\frac{1}{6.28 \times 7.15 \times 0.00047}=47.4 \mathrm{ohms}
\end{aligned}
$$

Inductive Reactance

When an alternating voltage is applied to a circuit containing only indurtance, with no resistance, the current always changes just rapidly enough to indure a back com.f. that copuals and opposes the applied voltage. In Fig. e-e:3, the reve is again divided of into equal intervals, Assuming that the current has a maximum value of 1 ampere, the instantaneous current at the end of carth interval will be as shown. The value of the induced voltage is proportional to the rate al which the current chomeses. It is thorefore greatest in the intervals () A and (i / H and loast in the intervals: ('I) and D) E^{\prime}. The induced voltage actually is a sine watve (if the (urrent is a sine wave) as shown by the dashed curve. The aphliol voltage, because it is always equal to and opposed by the indued voltage, is equal to and 180 degrees out of phase with the induced volage, as shown be the sereond dashed curve. The result, therefore, is that the current flowing in ath inductance is 90 degrees out of phase

Fig. 2-2.3-Phase relationships between voltage and current when an alternating vellage is applied to an inductance.
when the applied voltage and frequency are fixed, the value of current required becomes less as the inductance is made harger, because the induced c.m.f. also is proportional to inductance.

When the frequency and inductance are constiant but the applied e.m.f. is varied, the neressary rate of current change (to induce the proper back e.m.f.) can be obtained only if the amplitude of the current is directly proportional to the voltage. This is Ohm's Law again, and again the rurent-limiting effert is similar to, but not identical with, the effert of resistance. It is called inductive reactance and, like caparitive reactance, is measured in ohms. There is no energy loss in inductive reartance; the energy is stored in the magnetic fich in one quarter cyrle and then returned to the circuit in the next.

The formula for inductive reactance is

$$
X_{\mathrm{L}}=2 \pi f I
$$

where $X_{\mathrm{L}}=$ Inductive reactance in ohms
$f=$ Frequency in cycles per second
$L=$ Inductance in henrys
$\pi=3,14$
Example: The reactance of a coil having an inductance of 8 henrys, at a frecpency of 120 eycles, is

$$
\therefore_{\mathrm{H}}=2 \pi f L=6.28 \times 120 \times 8=6029 \text { ohms }
$$

In radio-frequency circuits the inductance values usually are small and the frequencies are large. If the inductance is expressed in millihenrys and the frequency in kilocycles, the conversion factors for the two units cancel, and the formula for reactance may be used without tirst
 with the applied voltage, and lags behind the applied voltage, This is just the opposite of the condenser ("ase.

Since the value of the induced e.m.f. is proportional to the rate at which the current changes, a small current changing rapidly (that is, at a high freguency) (an generate a large back e.m.f. in a given inductance just as well ats a lange current changing slowly (low frequenery), ('onsequently, the current that flows through a given inductance will derease as the freguener is rased, if the applied e.m.f. is held comstant. Inso,
converting to fundamental units. Similarly, no conversion is nevessary if the inductance is in microhenrys and the frequency is in megacycles.

$$
\begin{aligned}
& \text { Example: The reaetance of a } 15 \text {-microhenry } \\
& \text { coil at a fremeney of } 14 \mathrm{Me} \text { is } \\
& \mathrm{X}_{\mathrm{L}}=2 \pi f L_{A}=6.28 \times 14 \times 15=1319 \text { ohms }
\end{aligned}
$$

The resistance of the wire of which the coil is wound has no effeet on the reactance, but simply arts as though it were a separate resistor connereded in seres with the coil.

Ohm's Law for Reactance

(Ohm's Law for an a.ce circuit containing omly reactance is

$$
\begin{aligned}
I & =\frac{E}{X} \\
E & =I X \\
X & =\frac{E}{I}
\end{aligned}
$$

where $E=$ E.m.f. in volts
$J=$ Current in amperes
$X=$ Reactance in ohms
The reactance may be either inductive or caparitive.

$$
\begin{aligned}
& \text { Lxample: If a current of } 2 \text { amperes is flowing } \\
& \text { though the eondenser of the previous example } \\
& \text { (reactance }=47.4 \text { ohms) at } 7150 \mathrm{ke} \text {., the volt- } \\
& \text { age drop abross the condenser is } \\
& \qquad E=I \mathrm{~S}=2 \times 47.4=94.8 \text { volts }
\end{aligned}
$$

If 400 volts at 120 eycles is applied to the 8 heary inductance of the previous example, the current through the coil will he

$$
I=\frac{E}{X^{\prime}}=\frac{400}{6029}=0.066 \mathrm{i3} \mathrm{amp} .(66.3 \mathrm{ma.})
$$

When the cireuit consists of an inductance in serics with a capacitance, the same current flows through both reactances. However, the voltage across the coil leads the current by 90 deyrees, and the voltage across the condenser lugs behind the current by 90 degrees. The coil and condenser voltages therefore are 180 degrees out of phase.

A simple circuit of this type is shown in Fig. $2-24$. The same figure also shows the current (heavy line) and the voltage drops across the inductance (E_{1}) and capacitance (E_{C}). It is assumed that X_{1} is larger than X_{C} and so has a larger voltage drop. Since the two voltages are completely out of phase the total voltage (that is, the applied voltage $E_{A C}$) is equal to the differouce between them. This is shown in the drawing as $E_{\mathrm{L}}-E_{\mathrm{C}}$. Notice that, because E_{L} is larger than E_{C}, the resultant voltage is exaetly in phase with $E_{\text {L }}$. In other words, the cireuit as a whole simply acts as thongh it were an inductance - an inductance of smaller value than the actual inductance present, since the effect of the aetual inductive ractance is reduced by the capacitive reartance in series with it. If X_{C} is larger than $X_{\text {I }}$, the arrangement will behave like a capacitance - again of smaller reactance than the actual capacitive reactance present in the circuit.

The "equivalent" or total reartance of any circuit containing inductive and capacitive reactances in series is equal to $X_{L}-X_{c}$. If there are several eoils and condensers in series, simply add up all the inductive reactances, then add up all the rapacitive reartances, and then subtract the latter from the former. It is customary to call inductive reactance "positive" and caparitive reactance "negative." If the equivalent or net reactance is positive, the voltage leads the current by 90 degrees; if the net reactance is negative, the voltage lags the current by 90 degrees.

Fig. 2-24 - Current and voltages in a circuit having inductive and calacitive reactances in series.

Reactive Power

In Fig. 2-24 the voltage drop arross the coil is larger than the voltage applied to the circuit. This might seem to be an impossible condition, but it is not; the explanation is that while energy is being stored in the coil's magnetic field, energy is being returned to the circuit from the condenser's electric field, and vice versa. This stored energy is responsible for the fact that the voltages across reactances in series can be larger than the voltage applied to them.
In a resistance the flow of current causes heating and a power loss equal to $I^{\prime} R$. The power in a reactance is equal to $I^{2} N$, but is not a "loss"; it is simply power that is transferred back and forth between the field and the circuit but not used up in heating anything. To distinguish this "nondissipated" power from the power which is actually consumed, the unit of reactive power is called the volt-ampere instead of the watt. Reartive power is sometimes called "wattless" power.

IMPEDANCE

The fact that resistance, inductive reactance and capacitive reartance all are measured in ohms does mot indieate that they can be combined indiseriminately. Voltage and current are in phase in resistance, but differ in phase by a quarter cycle in reactance. In the simple rireuit shown

Fig. 2-25 - Resistance and inductive reactance connected in series.

ELECTRICAL LAWS AND CIRCUITS

in Fig. 2-25, for example, it is not possible simply to add the resistance and reactance together to obtain a quantity that will indicate the opposition offered by the combination to the flow of current. Inasmuch as both resistance and reactance are present, the total effect can obviously be neither wholly one nor the other. In circuits containing both reactance and resistance the opposition effert is called impedance (Z). The unit of impedance is also the ohm.
The term "impedance" also is generatized to include any quantity that can be expressed as a ratio of voltage to current. Pure resistance and pure reactance are both included in "impedance" in this sense. A circuit with resistive impedance is either one with resistance alone or one in which the effects of any reactance present have been eliminated. Nimilarly, a reactive impedance is one having reactance only. A complex impedance is one in which both resistance and reactance effects are observable.
It ran be shown that resistance and reactance can be combined in the same way that a rightangled triangle is constructed, if the resistance is laid off to proper scale as the base of the triangle and the reartance is laid off as the altitude to the same scale. This is also indirated in Fig. $2-2 \%$. When this is done the hypotemuse of the triangle represents the impedance of the circuit,

Fig. 2-26- IResistance and eapacitive reactance in serits.
to the same scale, and the angle between Z and R (usually called θ and so indirated in the drawing) is equal to the phase angle between the applied e.m.f. and the current. By geonetry,

$$
Z=\sqrt{R^{2}+N^{2}}
$$

In the ease shown in the drawing,

$$
Z=\sqrt{(75)^{2}+(100)^{2}}=\sqrt{15,625}=125 \text { ohms }
$$

The phase angle can be found from simple trigonometry. Its tangent is equal to X / R; in this case $X / R=100 / 75=1.33$. From trigonometric tables it can be determined that the angle having a taugent equal to 1.33 is approximately 53 degrees. In ordinary amateur work it is seldom noressary to give much consideration to the phase augle.

A circuit containing resistance and caparitance in series (Fig. 2-26) can be treated in the same way. The difference is that in this case the current leads the applied e.m.f., while in the resistanceinductance case it lugs behind the voltage.

If either X or R is small compared with the other (say $1 / 10$ or less) the impedance is very nearly equal to the larger of the two quantities. For example, if $k=1 \mathrm{hhm}$ and $X=10 \mathrm{ohms}$,

$$
\begin{aligned}
Z=\sqrt{R^{2}+X^{2}} & =\sqrt{(1)^{2}+(10)^{2}} \\
& =\sqrt{101}=10,0 ; \text { ohms. }
\end{aligned}
$$

Hence if either X or R is at least 10 times as large as the other, the error in assuming that the impedance is equal to the larger of the two will not exceed $1 / 2$ of 1 per cent, which is usually negligible.

Since one of the components of impedance is reactance, and since the reactance of a given coil or condenser changes with the applied frequency, impedance also changes with frequency. The change in impedance as the frequency is changed may be very slow if the resistance is considerably larger than the reactance. However, if the impedance is mostly reactance a rhange in frequency will cause the impedance to rhange practically as rapidly as the reactance itself changes.

Ohm's Law for Impedance

Ohm's Law can be applied to circuits containmgimpedance just as readily as to circuits having resistance or reactance only. The formulas are

$$
\begin{aligned}
I & =\frac{E}{Z} \\
E & =I Z \\
Z & =\frac{E}{I}
\end{aligned}
$$

where $E=$ E.m.f. in volts
$I=$ Current in amperes
$Z=$ Impedance in ohms
Example: issume that the e.m.f. applied to the cirenit of Hig. $2-25$ is 250 volts. Then

$$
I=\frac{E}{Z}=\frac{250}{125}=2 \text { anperes. }
$$

The same current is flowing in both K and X_{L}, and Ohm's Law as apulied to either of these, quantities says that the voltage drop aeross h should equal $/ \mathrm{K}$ and the voltage drop aeross N_{L} should equal $I X_{\mathrm{L}}$. Substituting.

$$
\begin{aligned}
E_{\mathrm{R}}= & I R=2 \times 75=150 \text { volts } \\
& E_{\mathrm{X}_{\mathrm{L}}}=I X_{\mathrm{L}}=2 \times 100=2(00) \mathrm{volts}
\end{aligned}
$$

The arithmetieal sum of these voltages is greater than the applied voltage. However, the actual slan of the two when the phase relationship, is taken into arcount is equal to 250 volts r.m.s., as shown by Fig. 2-27, where the instantaneous values are added throughout the cyele. Whenever resistance and reactance are in series, the

Fis. 2.27-Voltage drops arouml the circuit of Fig. 2-25. Berause of the phase relationships, the appliod voltage is lese that the arithmetieal sum of the drops across the resistor and inductor.
individual voltame drops always add ufo arithmotically, to more that the applied voltage. There is nuthing firtitious about these voltare dross; they can be meakured readily by suitathe instruments. It is simply an illustration of the immortance of phase in a.c. circuits.
A more complex series circuit, containing resistance, inductive reactance and capacitive reactance, is shown in Fig. 2-28. In this case it is neressary to take into areount the fart that the phase angles between current and voltage dilfer

Fi, 2-2 $\%$ - Resistancr. inductive reactance, and caparitive reactance in series.
in all three elements. Since it is a series circuit, the current is the same throughout. Considering first just the inductance and caparitance and neglecting the resistance, the net reactance is
$X_{\mathrm{L}}-X_{\mathrm{C}}=150-50=100 \mathrm{ohms}$ (inductive)
Thus the impodance of a circuit containing resistance, inductance and capacitance in series is

$$
Z=\sqrt{R^{2}+\left(X_{\mathrm{L}}-X_{C}\right)^{2}}
$$

Fxample: In the cireuit of Fig. 2-28, the innpedance is

$$
\begin{aligned}
Z & =\sqrt{R^{2}+\left(K_{\mathrm{L}}-X_{0}\right)^{2}} \\
= & \sqrt{(20)^{2}+(150-.50)^{2}}=\sqrt{(20)^{2}+(100)^{2}} \\
& =\sqrt{10.400}=102 \text { ohus }
\end{aligned}
$$

The phase angle can be found from N / K, where $\boldsymbol{X}=\hat{X}_{\mathrm{L}}-\hat{X}_{\mathrm{C}}$.

Parallel Circuits

Suppose that a resistor, condenser and coil are conmected in parallel as shown in Firg. 2-29 and an a.c. voltage is applied to the combination. In any one brameh, the current will be undhanged if one or both of the other two branches is disconnerted, so long as the applied voltage remains unchanged. Hence the current in carh branch can be calculated quite simply by the Ohm's Law formulas given in the precoding sections. The total current, I, is the sum of the carrents through all three branches - mot the arithmetieal sum, but the sum when phase is taken into account.

Fif. -2.29- Resistance, indmetance and raparitance in parallel. Inatroments conneeted as shown will read the total current. I, and the individual corrents in the three branchec of the cirronit.

The rurrents through the various branches will be as shown in Fig. 2-30, assuming for purposes of illustration that X_{L} is smaller than $\boldsymbol{X}_{\mathrm{C}}$ and that X_{C} is smaller than R, thus making I_{I}, larger than I_{c}, and I_{c} larger than I_{R}. The current through C leads the voltage by 90 degrees and the current through L lags the voltage by 90 degreers, so these two eurrents are 180 degrees out of phase. As shown at E, the total reartive current is the difference between I_{0} and I_{L}. This resultant current lags the voltage by 90 degrees, berause I_{I}, is larger than I_{6}. When the rartive current is added to I_{R}, the tatal current, I, is as shown at F . It can be seen that / lags the applied voltage by an angle smaller than 90 degrees and that the total current, while less than the simple sum (neglecting phase) of the three branch currents, is larger than the current through R alone.

The impedance looking into the parallel circuit from the source of voltage is equal to the applied

Figg. 2-30 - I'hase relationships between branch curruts and applied voltage for the circuit of Fig. 2.29 . The total eurrent through I, and C in parallel ($I L+I C$) and the total current in the entire eircuit (I) also are shown.
voltage divided by the total or line current, I. In the case illustrated, I is greater than I_{R}, so the impedance of the circuit is less than the resistance of R. IIow much less depends upon the net reactive eurrent flowing through L and (' in parallel. If X_{L} and X_{c} are very nearly cqual the not reartive current will be quite small because it is equal to the difference between two nearly equal currents. In such a case the impedance of the eircuit will be almost the same as the resistane of R atome. On the ather hamd, il Xbame
X_{c} are quite different the net reactive current can be relatively large and the total current also will be appreciatbly larger than I_{R}. In such a rase the circuit impedance will be lower than the resistance of R alone.

Power-Factor

In the circuit of Fig. 2-25 an applied e.m.f. of 250 volts results in a current of 2 amperes. If the circuit were purely resistive (containing no reartance) this would mean a power dissipation of $250 \times 2=500$ watts. However, the circuit actually consists of resistance and reactance, and only the resistance consumes power. The power in the resistance is

$$
P=I^{2} R=(2)^{2} \times 75=300 \text { watts }
$$

The ratio of the power consumed to the apparent power is called the power factor of the circuit, and in the case used as an example would be $300 / 300=0.6$. Power factor is frequently expressed as a percentage; in this case, the power fartor would be 60 per cent.
"Real" or dissipated power is measured in watts; apparent power, to distinguish it from real power, is measured in volt-amperes (just like the "wattless" power in a reactance). It is simply the product of volts and amperes and has no direct relationship to the power actually used up or dissipated unless the power factor of the circuit is known. The power factor of a purely resistive circuit is 100 per cent or 1 , while the power factor of a pure reactance is zero. In this illustration, the reactive power is

$$
\begin{aligned}
V A(\text { volt-amperes })=I^{2} X & =(2)^{2} \times 100 \\
& =400 \text { volt-amperes. }
\end{aligned}
$$

Complex Waves

It was pointed out early in this chapter that a complex wave (a "nonsinusoidal" wave) can be resolved into a fundamental frequency and a series of harmonic frequencies. When such a complex voltage wave is applied to a circuit containing reactance, the current through the circuit will not have the same waveshape as the applied voltage. This is because the reartance of a coil and condenser depend upon the applied frequency. For the second-harmonic component of a complex wave, the reactance of the coil is twice and the reactance of the condenser one-half their values at the fundamental frequency; for the third harmonic the coil reactance is three times and the condenser reactance one-third, and so on.

Just what happens to the current waveshape depends upon the values of resistance and reactance involved and how the circuit is arranged. In a simple circuit with resistance and inductive reactance in series, the amplitudes of the harmonies will be reduced berause the indurtive reactance increases in proportion to frequency. When a condenser and resistance are in series, the harmonic current is likely to be accentuated berause the condenser reactance becomes lower as the freguency is raised. When both indurtive and caparitive reartance are present the shape of the current wave can be altered in a varicty of ways, depending upon the circuit and the "constants," or values of L, C and R, selected.

This property of nonuniform behavior with respect to fundamental and harmonies is an extremely useful one. It is the basis of "filtering," or the suppression of undesired frequencies in favor of a single desired frequency or group of surh frequencies.

Transformers

Two roils having mutual inductance constitute a transformer. The coil connected to the source of energy is called the primary coil, and the other is called the secondary coil.

The usefulness of the transformer lies in the fact that electrical energy can be transferred from one circuit to another without direct connection, and in the process can be readily changed from one voltage level to another. Thus, if a device to be operated requires, for example, 115 volts and only a 440 -volt source is available, a transformer can be used to change the source voltage to that required. A transformer can be used only with a.c., since no voltage will be induced in the secondary if the magnetic field is not changing. If d.c. is applied to the primary of a transformer, a voltage will be induced in the secondary only at the instant of closing or opening the primary circuit, since it is only at these times that the field is changing.

The Iron-Core Transformer

As shown in Fig. 2-31, the primary and secondary coils of a transformer may be wound on a core of nagnet ic material. This increases the inductance of the coils so that a relatively small number
of turns may be used io indure a given value of voltage with a small current. . closed core (one having a continuous magnetic path) such as that shown in Fig. 2-31 also tends to insure that practically all of the field set up by the current in the primary coil will cut the turns of the secondary coil. However, the core introduces a power loss because of hysteresis and eddy currents so this type of construction is practicable only at power and audio frequencies. The discussion in this sertion is confined to transformers operating at such frequencies.

SYMBOLS
Fig. 2-31 - The transfurner. Power is transferred from the primary coil to the secondary by means of the magnetid field. "Ohe upmer symbol al right indicates an irmcore trandiormer, the lowar ente all air-core tramsformer.

Voltage and Turns Ratio

For a given varying magnetic field, the voltage induced in a coil in the field will be proportional to the number of turns on the coil. If the two coils of a transformer are in the same field (which is the case when both are wound on the same closed core) it follows that the induced voltages will be proportional to the number of turns on earh coil. In the primary the induced voltage is practically equal to, and opposes, the applied voltage. Ilence,

$$
E_{\mathrm{s}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} E_{\mathfrak{p}}
$$

where $E_{\mathrm{B}}=$ Secondary voltage
$E_{1}=$ Jrimary applied voltage
$\mu_{s}=$ Number of turns on secondary
$n_{1}=$ Number of turns on primary
The ration n_{s} / n_{p} is called the turns ratio of the transformer.

Faxample: A transformer has a primary of 400 turns and a serondary of 2800 turns, and 115 volts is applied to the primary. 'lhae secondary voltage will be

$$
\begin{aligned}
E_{\mathrm{s}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} E_{\mathrm{p}} & =\frac{2800}{4(0)} \times 115=7 \times 115 \\
& =805 \mathrm{volts}
\end{aligned}
$$

Also, if 805 volts is applied to the 2800 -turn winding (whieh then beromes the primary) the outbint voltage from the 400 -tarn winding will be 155 volts.

Bither winding of a transformer can be used as the primary, providing the winding has enongh turns (crough indurtance) to induce a voltage enfual to the applied voltage without reguiring an excosive current flow.

Effect of Secondary Current

The surrent that flows in the primary when no current is taken from the secondary is called the magnetizing current of the transformer. In any properly-designed transtomer the primary inductance will be so large that the mannetiaing current will be quite small. The power consumed by the transformer when the secondary is "open" - that is, not delivering power - is only the amount necessary to supply the losses in the iron core and in the resistance of the wire of which the primary is wound.

When power is taken from the secondary winding, the secondary current sets af a magneticfield that opposes the field set up by the primary current. But if the indured voltage in the primary is to equal the applied woltage, the original field must be maintained. ('onsequently, the primary must draw enough additional current to set up a field exactly equal and opposite to the field set up by the secondary current.

In pratical caleulations on transformers it may be assumed that the entire primary current is caused hy the secondary "load." This is justifialble berause the magnetizing current should be very small in comparisem.

If the magnetic fields set up by the primary and secondary currents are to be equal, the Erimatry current multiplied by the pimary turns
must equal the secondary current multiplied by the secondary turns. From this it follows that

$$
I_{\mathrm{p}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} I_{\mathrm{a}}
$$

where $I_{\mathrm{p}}=$ Irimary current
$I_{\mathrm{s}}=$ Necondary current
$n_{\mathrm{n}}=$ Number of turns on primary
$n_{n}=$ Number of turns on secondary
Example: suppose that the secondary of the transformer in the previous example is defivering a corrent of 0.2 ampere to a load. Then the primary current will be
$I_{\mathrm{p}}=\frac{n_{\mathrm{B}}}{n_{11}} I_{\mathrm{s}}=\frac{2800}{400} \times 0.2=7 \times 0.2=1.4 \mathrm{amp}$.
Although the sceondary moltage is higher than the primary voltage, the secondary current is lower than the primary current, and by the same ratio.

Power Relationships; Efficiency

A transformer camnot create power; it can only transfer and transform it. Hence, the power taken from the socondary cannot exceed that taken by the primary from the source of applied e.m.f. There is always some power loss in the resistance of the coils and in the iron core, so in all practical cases the power taken from the source will exced that taken from the secondary. Thus,

$$
r_{0}=n P_{i}
$$

where $P_{o}=P^{\prime}$ wer output from secondary
$I_{i}=P^{\prime}$ ower input to primary
$n=$ Iefliciency factor
The efficieney, n, always is less than 1. It is usually expressed as a percentage; if $1 /$ is $0.6 \overline{0}$, for instance, the efficiency is 65 per cent.

Exampla: A transformer has an efliciency of $85^{\circ}{ }_{c}$ at its full-lond output of 150 watts. The power imput to the primary at full secondary load will be

$$
P_{i}=\frac{P_{0}}{n}=\frac{150}{0.85}=176.5 \mathrm{watts}
$$

I transformer is usually designed to have its highest efficiency at the power output for which it is rated. The efficiency decreases with either lower or higher outputs. On the other hand, the losses in the transformer are relatively small at low output but increase as more power is taken. The amount of power that the transformer can handle is determined by its own losses, because there heat the wire and core and raise the operating temperature. There is a limit to the temperature rise that can be tolerated, because tou-high

Fig. 2.32-The equivalent cirenit of a transformer inCludes the effects of leahage induetance and resintane of both primary and sedondary windings. 'The resistame Re is an equivalent re-i-tance representing the comstant core losese- since these are comparatively -mall, their effect may te neglected in many approximate calenlations.
temperature pither will melt the wire or cause the insulation to break down. I transformer always ran be operated at reduced output, even though the efficiency is low, because the actual loss also will be low under such conditions.

The full-load efficiency of small power transformers such as are used in radio receivers and trammitters usually lies hetween about 60 per cent and 90 per cent, depending upon the size and design.

Leakage Reactance

In a pratical transformer not all of the magnetic flux is common to both windings, although in well-designed transformers the amount of flux that "cuts" one cooil and not the other is only a small percentage of the total flux. This leakage flux ratuses an e.m.f. of self-induction; consequently, there are small amounts of leakage inductance associated with both windings of the transformer. Leakage inductance aets in exactly the same way as an equivalent amount of ordinary inductance inserted in series with the circuit. It has, therefore, a certain reactance, depending upon the amount of leakage induetame and the frequener. This reactance is callod leakage reactance.

Curvent flowing through the leakage reactance causes a voltage donp. This voltage drop increases with increasing current, hence it increases as more power is taken from the secondary. Thus, the greater the secondary rurrent, the smaller the secondary terminal voltage beomes. The resistances of the transformer windings also cause voltage drops when current is flowing; although these voltage drops are not in phase with those caused by leakage reartance, together they result in a lowor secondary voltage under load than is indicated by the turns ratio of the transformer.

At power frequencies (60 cycles) the voltage at the secondary, with a reasonably well-designed transformer, should not drop more than about 10 per cent from open-rireuit eonditions to full had. The drop in voltage may be considerably more than this in a transformer operating at audio frequencios becanse the leakage reactance increases directly with the frequency.

Impedance Ratio

In an ideal transformer - one without losses or leakage reactance - the following relationship is true:

$$
Z_{\mathrm{p}}=Z_{\mathrm{s}} N^{\prime 2}
$$

where $Z_{\mathrm{p}}=$ Impedance looking into primary terminals from source of power
$Z_{s}=$ Impedance of load comnected to secondary
$N=$ Turns ratio, primary to secondary
That is, a load of any given impedance connected to the secondary of the transformer will be transformed to a different value "Jooking into" the primary from the source of power. The impedance transformation is proportional to the square of the primary-to-secondary turns ratio.

Example: A transformer has a primary-tosecondary turns ratio of 0.6 (primary has $6 / 10$ as many turns as the secondary) and a load of 3000 ohms is conneeted to the secondary. The impedane looking into the primary then will bec

$$
\begin{gathered}
Z_{\mathrm{B}}=Z_{\$ N} N^{2}=3000 \times(0.6)^{2}=3000 \times 0.36 \\
=1080 \mathrm{ohms}
\end{gathered}
$$

By choosing the proper turns ratio, the impedance of a fixed load can be transformed to any clesired value, within practical limits. The transformed or "reflected" impedance has the same phase angle as the actual load impedance; thus if the load is a pure resistance the loat presented by the primary to the source of power also will be a pure resistance.
The ahove relationship may be used in practiral work even though it is hased on an "icleal" transformer. Aside from the nomal design requirements of reasonably low intemal losses and bow leakage reactance, the only requirement is that the primary have enough inductance to operate with low magnetizing current at the voltage applied to the primary.

The primary impedance of a transformer as it looks to the source of porer - is determined wholly by the load connected to the secondary and be the turns ratio. If the characteristics of the transformer have an appreciable effect on the impedance presented to the power source, the transformer is cither porly designed or is mot suited to the voltage at which it is being used. Most transformers will operate quite well at voltages from slightly above to woll helow the design figure.

Impedance Matching

Many devices require a specifie value of load resistance (or impedance) for optimum operation. The impedance of the actual load that is to dissipate the power may differ widoly from this value, so a transformer is used to transform the actual load into an impedance of the desired value. This is called impedance matching. From the preceding,

$$
N=\sqrt{\frac{Z_{\mathrm{B}}}{Z_{10}}}
$$

where $N=$ Required turns ratio, secondary to primary
$Z_{\mathrm{s}}=$ Impedance of load connerted to secondary
$Z_{1}=$ Impedance required
Fxample: A vacum-tube abf. amplifier requires a lend of $\overline{\mathrm{j} O} \mathrm{O}$ ohas for optimum performance, and is to be coniueted to a loudspeaker having an impedanee of 10 ohms. The turns ratio, secondary to primary, reguired in the coupling transformer is

$$
N=\sqrt{\frac{\bar{Z}}{Z_{0}}}=\sqrt{\frac{10}{5000}}=\sqrt{\frac{1}{500}}=\frac{1}{22.4}
$$

The primary therefore must have 22.4 times as many turns as the secondary.
Impedance matching means, in general, adjusting the load impodance - by motus of a transformer or otherwise - to a dowired value. However, there is also another meaning. It is
possible to show that any source of power will have its maximum possible output when the impedance of the load is requal to the internal impedance of the soluce. The impedance of the source is said to to "matehed" under this comdition. The efficiency is omly 00 per cent in suwh a case; just as much power is used up in the souree as is delivered to the load. Because of the poor efficiencr, this type of impedance matehing is limited to cases where only a small amount of power is available.

Transformer Construction

Transformers usually are designed so that the magnetie path around the core is as short as possible. A short magnetic path means that the transformer will operate with fewer turns, for a given applied voltage, than if the path were long. It also helps to reduce flux leakage and therefore minimizes leakage reatance. The number of turns required also is inversely proportional to the cross-sectional area of the core.

Fig. 2.33 - Two common types of transformer construc* tion. Care pieres are interleaved to provide a continuous mannetic path with as low relurtance as possilite.

Two core shapes are in common use, as shown in Fig. $2-333$, In the shell type loth windings are placed on the inner leg, while in the core type the primary and secondary windings may be placed on separate legs, if desired. This is sometimes done when it is necessary to minimize ratpacity efferts hetween the primary and secondary, or when one of the windings must operate at very high voltage.

Core material for small transformers is usually
silicon steel, called "transformer iron." The core is built up of laminations, insulated from cach wher (by a thin roating of shellac, for example) to prevent the flow of eddy currents. The laminations overlap at the ends to make the magnetic path as contimusus as possible and thus reduce Hux leakage.

Fig, 2-3.4-The autotransfurmer is based on the transformer prineiple, but uses only one winding. The line and load currents in the common winding (A) flow in opposite directions, we, that the reaultant carrent is the difference between them. "the voltage across A is proportional to the turns ratio.

The number of turns required on the primary for a given applied e,m.f. is determined by the size, shape and type of core material used, and the frequency. ds a rough indieation, windings of small power transformers frequently have about six to eight turns per wolt on a core of 1 -squarr-inch cross section and have a magnetio path 10 or 12 inches in length. 1 longer path or smalker cross section requires more turns per volt, and vice versa.

In most transformers the roils are wound in hayers, with a thin shect of paper insulation between each layer. Thicker insulation is used between coils and between coils and core.

Autotransformers

The transformer principle can be utilized with only one winding instead of two, as shown in Fig. $0-34$; the principles just diseussed apply equally woll. A one-winding transformer is called an autotransformer. The current in the common section (1) of the winding is the differenere between the line (primary) and the load (secondary) currents, since these currents are out of phase. Hence if the line and load currents are noarly equal the common section of the winding may be wound with eomparatively small wire. This will be the ease only when the primary (line) and secondary (load) voltages are mot very different. The autotransformer is used chiefly for bonsting or reducing the power-line voltage by relatively small amounts.

Radio-Frequency Circuits

RESONANCE

Fig. -3-35 shows a resistor, condenser and coil comerted in serios with a source of altermating current, the frequency of which can be varied over a wide range. It some low frequency the condenser reactanco will be much larger than the resistance of R, and the inductive reactance will be small compared with either the reactance of C or the resistance of R. (R is assumed to be the same at all frequencies.) (on the other hand, at some very high frequency the reactance of C^{c} will be very small and the reactance of L will be very
large. In either ease the current will be small, because the reactance is large at cither low or high frequencies.

It some intermediate frequencr, the reactances of (' and L, will be equal and the voltage drops across the coil and condenser will be equal and 180 degrees out of phase. Therefore they cancel each other completely and the rurrent flow is determined wholly by the resistance, R. . It that frequency the current has its largest possible value, assuming the source voltage to be constant regardless of frequency, A series cirmut in which
the inductive and caparitive reaetanees are equal is said to be resonant.
. Ithough resonance can oceur at any frequency, it finds its most extensive application in radio-frequency circuits. The reartive effects associated with even small inductances and capaeitances would place drastie limitations on r.f. circuit operation if it were not possible to "ancel them out" by supplying the right amount of reartance of the opposite kind - in other words, "tuning the circuit to resonance."

Resonant Frequency

The frequency at which a series cirenit is resonant is that for which $X_{\mathrm{L}}=X_{\text {0 }}$. Substituting the formulas for inductive and eapacitive reactance gives

$$
f=\frac{1}{2 \pi \sqrt{L C}}
$$

where $f=$ Frequency in cyeles per second
$L_{\Delta}=$ lnductance in henrys
${ }^{\prime}=$ Capacitance in farads
$\pi=3.14$
These units are inconveniently large for radiofrequency circuits. I formula using more appropriate units is

$$
f=\frac{10^{6}}{2 \pi \sqrt{L C}}
$$

where $f=$ Frequency in kilocyeles (ke.)
I = Indurtance in mierohenrys ($\mu \mathrm{h}$.)
$\gamma^{\prime}=$ (apacitance in micromicrofarads ($\mu \mu \mathrm{fl}$.)
$\pi=3.14$
Fixtmple: The resonant frequency of a series rirvit containing at $\quad 5 \mu h$. coil and a $35-\mu \mu \mathrm{d}$. condenser is

$$
\begin{aligned}
& =\frac{10^{6}}{2 \pi \sqrt{1.6}}=\frac{10^{6}}{6.28 \times \sqrt{5 \times 3.5}} \\
& =\frac{11^{6}}{6.28 \times 13.2}=\frac{10^{9}}{8.3}=12.050 \mathrm{kc} .
\end{aligned}
$$

The formula for resonant frequeney is not affected by the resistance in the circuit.

Resonance Curves

If a plot is drawn of the current flowing in the (ireuit of Fig. 2-35 as the frequency is varied (the applied voltage being constant) it would look like one of the curves in Fig. 2-36. The shape of the resonance curve at frequencies near resenanee is determined by the matio of reactance to resistance at the patioular frequener emsidered.

I'ig. 2-35-A serios cireuit containing L. (C and R is "resonamt" at the applied freduency when tho reastance of C is equal to the reactatier of L.

PER CENT CHANGE FROM RESONANT FREQUENCY
Fig. 2-36-Current in a series-resonant circuit with various values of series resistance. "The values are arbitrary and would not apply to all circuits. but represent a typioal rase. It is asinmed that the reactamoes (at the resonant frequency) are 1 (0) of ohns (minimam $\rho=10$). Note that at frequencies at least plus or minas ten per cent anay from the resonant frequency the current is substantially unafferted by the resistance in the circuit.
If the reatance of pither the coil or condenser is of the same order of mannitude as the resistance, the current decreases rather slowly as the frequency is moved in either direction away from resoname. Such a curve is said to be broad. ()n the other hand, if the reartance is considerably larger than the resistance the current decreases rapidly as the frequency moves away from resmance and the circuit is said to be sharp. I sharp circuit will respond a great deal more readily to the resonat frequeney than to frequencies quite chase to resonamere; a broad circuit will respend almost equally well to a group or boud of frequeneics contering around the resonant frequener.

Buth types of resomance curves are useful. A sharp circuit gives good selectivity - the ability to respond strongly (in terms of current amplitude) at one desired frequency and discriminate against others. I broad circuit is used when the apparatus must give about the same response wer a band of frequencies mather than to a single frequency alone.

Most diagrams of resonant circuits show only indurtance and caparetanere no resistanere is indimated. Nevertheless, resistance is always present. It frequencits up to promaps 30 Mr. this rowistance is mostly in the wire of the coil. Whove this frequency energy loss in the condenser (prineipally in the solid dielectric which must be used to form an insulating support for the condenser plates) becomes appreciable. This energy loss is equivalent to resistance. When maximum sharpmess or selortivity is needed the ohject of design
is to reduce the inherent resistance to the lowest possible value.

The value of the reactance of either the coil or condeniner at the resomant frequency, divided by the resistance in the eircuit, is called the Q (quality factor) of the cireuit, or

$$
Q=\frac{X}{R}
$$

where $Q=$ Quality factor
$X=$ Reactance of either eoil or condenser, in ohms
$R=$ Resistance in ohms
Fxample: The coil and condenser in at wios
rirenit cach have a reactance of 300 ohans at the
resonmat frequency. The resistance is 5 ohms.
Then the Q is
$Q=\frac{X}{R}=\frac{350}{5}=70$

The effect of () on the sharpness of resonance of a circuit is shown by the curves of lig. 2-37. In these curves the frequency change is shown in peremtage above and below the resmant frequency. (s of $10,20,50$ and 100 are shown; there values cover much of the range commonly used in radio work.

Voltage Rise

When a voltage of the resonant frequeney is imserted in series in a resonant circuit, the voltage that appeats aroses cither the eoil or eondenser is considerably higher than the applied voltage. The current in the circuit is limited only by the atotall resistane of the eoil-eondenser combination in the cireuit and may have a relatively high value; however, the same current

Fig. 2-37-Current in series-resonant eireuits having different Qs. In this graph the current at resonance is andimed to lee the same in all cases. The lower the (!) the umere wholy the eurrout derreases as the applied frequetry is nioved away from resonance.
flows through the high reactances of the coil and condenser and causes lamge voltage drops. The ratio of the reactive voltage to the applied voltage is edual to the ratio of reactande to resistance. This ratio is the () of the circuit. Therefore the voltage aneross either the eoil or eomedener is equal to (times the voltage inserted in series with the circuit.

Example: The inductive reatance of a cirent is 200 ohms, the capamitive rebetance is 200 ohms, the resistance $\overline{5}$ ohms, and the applied voltage is 50 . The two reactane comere and there will be but $\overline{5}$ ohans of pure resistance to limit the current flow. Thus the rurrent will be 50% or 10 amperes. The voltage devidomed aseross either the coil or the comdenser will the enmal to its rearetame times the "urvent. or $200 \times 10=2000$ wolts. in abternate methox: The \& of the rireuit is $X / R=2(6) / 5=10$. The reactive voltage is equal to Q times the applied voltage, or $40 \times 80=2000$ volts.

Parallel Resonance

When a variable-frequener source of eonstant voltage is applied to a paralled cireuit of the tope shown in lig. 2-38 there is a resonanme effect

similar to that in a seriore circuit. However, in this case the current (measured at the point indicated) is smallest at the frequeney for which the coil and condenser reactances are equal. At that frequences the current thromgh L is exactly canceled by the out-of-phase current through $(\dot{ }$, so that only the current taken by R flows in the line. At frequeneios before resoname the current theough L is lavger than that through C^{\prime}, beeatuse the teadane of L is smaller and that of C^{\prime} higher at low frequencies: there is only partial cancellation of the two reactive currents and the line current therefore is larger than the current taken by R alone. At frequencies alme resomance the sithation is reversert and more rurrent flows through (' than through L, so the line rurmen again increases. The rurvent at rexonather, being determined wholly by R, will toe small if h is large and large if $/ \mathrm{R}$ is smatl.
The rexistance R shown in Pig, 2-38 seddom is an actual resistor. In most casces it will be an "equivalent" resistance that represents the actual encrey lens in the cirenit. "his lass ram he int horem in the coil on combenser, or misy represint formg translemted to a hatd by mathe of the resonant eircuit. (For example, the remonat cireuit maty be used for transferring power from a Vacuum-tube amplifier to an antenua system.)
Parallel and series resonant cirruits are quite alike in some respects. For instanee, the cireuits given at A and 13 in Fig. 2-39 will hehame identically, whon an extemal voltage is apmbed, if (!) L and ${ }^{4}$ are the same in both casers and (2) R_{0}
multiplied by R_{s} equals the square of the reactance (at resonance) of cither L or C. When these conditions are met the two circuits will have the same Qs. (These statements are approximate, but are guite atecurate if the Q is 10 or more.) The cirmuit at A is a series cirenit if it is viewed from the "inside" - that is, going around the loop formed by L, (' and R-so its Q can be found from the ratio of X to R_{s}.

Thus a circuit like that of Fig. 2-39A has an equivalent parallel impedance (it resonance) equal to R_{r}, the relationship between R_{s} and R_{p}, being as explained above. Although R_{p}, is not an actual resistor, to the source of voltage the parallel-resonant circuit "looks like" a pure resistance of that valure. It is "pure" resistance berause the eoil and contenser currents are 180 degrecs out of phase and are equall thus there is no reatetive current in the line. At the resonant fresuency the patrallel impedance of a resonant circuit is

$$
Z_{\mathrm{r}}=Q X
$$

where $Z_{\mathrm{r}}=$ Resistive impedance at resonance
$Q=$ Quality factor
$X=$ Reactance (in ohms) of either the coil or condenser

Example: The parallel isnpedance of a circuit having a () of 50 and having inductive and capacitive reactances of 300 ohms will be

$$
Z_{r}=Q N=.30 \times 300=15,000 \text { ohms. }
$$

At frequencies off resonance the imperdaner is no longor purely resistive because the coil and condenser currents are not equat. The offresonant impedance therofore is complex, and

is lower than the resonant impedance for the reasons previonsly outlined.
The higher the Q of the circuit, the higher the parallel impedance. Curves showing the variation of impedance (with frequency) of a parallel circuit have just the same shape as the curves showing the variation of current with frequency in a series cireuit. Fig. 2-40 is a set of such curves.

Parailel Resonance in Low-Q Circuits

The preceding discussion is accurate only for Q s of 10 or more. When the Q is below 10 , resonance in a parallel circuit having resistance in series with the coil, as in Fig. $2-39 \mathrm{~A}$, is not so easily defined. There is a set of lvalues for L and ('that will make the parallel impedance a pure resistance, but with these values the impedance does not have its maximum possible value. Another set of values for L and C will make the parallel impedance a maximum, but this maxi-

PER CENT CHANGE FROM RESONANT FREQUENCY
Fir. 2-40-Relative impedance of parallel-rceomant circuits with different (Mis. $^{\text {. These curves are similar to }}$ those in Fig. 2-37 for current in a series-resonant circuit. The effect of Q on impedance is nost marked near the resonant fretuency.
mum value is not a pure resistance. Either condition could be ealled "resonance," so with low-Q circuits it is necessary to distinguish between maximum impedance and resistive impedance parallel resonance. The difference in t uning is appreciable when the Q is in the vicinity of 5 , and becomes more marked with still lower Q values.

Q of Loaded Circuits

In many applications of resonant circuits the only power lost is that dissipated in the resistance of the circuit itself, It frequencies helow 30 Mc. most of this resistance is in the coil. Within limits, increasing the number of turns on the coil increases the reactance faster than it raises the resistance, so coils for circuits in which the Q must be high may have reactances of 1000 ohms or more at the frequency under consideration.

However, when the circuit delivers energy to a load (as in the case of the resonant circuits used in transmitters) the energy consumed in the circuit itself is usually negligible compared with that consumed b, the load. The equivalent of such a circuit is shown in Fig. 2-41. , where the parallel resistor represents the load to which power is delivered. If the power dissipated in the

Fig. 2-41 - The equivalent circuit of a resonant circuit delivering power to a load. 'lhe resistor R represents the load resistance. At 13 the load is tapped across part of $I_{\text {, }}$, which by transformer action is equivalent to using a higher load resistance across the whole circuit.
load is at least ten times as great as the power int in the coil and condenser, the parallel impedance of the resonant circuit itself will be so high compared with the resistance of the load that for all practional purposes the impedance of the combined circuit is equal to the load resistance. U'nder these conditions the Q of a paralletresonant circuit loaded by a resistive impedance is

$$
Q=\frac{Z}{X}
$$

where $Q=$ Quality factor
$Z=$ larallel load resistance (ohms)
$X=$ Reactance (ohms) of either the coil or condenser
Example: A resistive load of 3000 ohms is connected aross a resonant circuit in which the inductive and cancitive reactances are each 250 ohms. The eircuit Q is then

$$
Q=\frac{Z}{X}=\frac{3000}{250}=12
$$

The "effective" Q of a circuit loaded by a parallel resistance becomes higher when the reactances of the coil and condenser are decreased. A circuit loaded with a relatively low resistance (a few thousand ohms) must have low-reactance elements (large capacitance and small inductance) to have reasonably high Q.

Impedance Transformation

An important application of the parallelresonant cireuit is an impedance-matching device in the output circuit of a vacuum-tube r.f. power amplifier. Is described in the chapter on vacuum tubes, there is an optimum value of load resistance for each type of tube and set of operating conditions. However, the resistance of the load to which the tube is to deliver power usually is considerably lower than the value required for proper tube operation. To transform the actual load resistance to the devired value the load may be tapped across part of the coil, as shown in Fig. $2-4113$. This is equivalent to connecting a higher value of load resistance across the whole circuit, and is similar in principal to impedance transformation with an iron-core transformer. In high-frequency resonant circuits the impedance ratio does not vary exactly as the square of the turns ratio, because all the magnetic flux thes do not cut cuery turn of the coil. A desired reflected impedance usually must be obtained by experimental adjust ment.

When the load resistance has a very low value (say below 100 ohms) it may he connected in series in the resonant circuit (as in Fig. 2-39A, for example), in which case it is transformed to an equivalent parallel impedance as previously described. If the Q is at least 10 , the equivalent parallel impedance is

$$
Z_{\mathrm{r}}=\frac{\mathrm{X}^{2}}{R}
$$

where $Z_{\mathrm{r}}=$ Resistive impedance at resonance
$X=$ leactance (in ohms) of either the coil or condenser
$R=$ load resistance inserted in series

If the Q is lower than 10 the reactance will have to be adjusted somewhat, as described previously, to obtain a resistive impedance of the desired value.

L/C Ratio

The formula for resonant frequency of a circuit shows that the same frequency always will be obtained so long as the product of L and C is constant. Within this limitation, it is evident that L can be large and ('small, L small and ('large, cte. The relation between the two for a fixed frequency is called the L / C ratio. A high- C eircuit is one which has more capacity than "normal" for the frequency; a low- C circuit one which has less than normal caparity. These terms depend to a considerable extent upon the particular application considered, and have no exact numerical meaning.

LC Constants

It is frequently convenient to use the numerical value of the $L C$ constant when a number of calculations have to be made involving different L / C^{\prime} ratios for the same frequency. The constant for any frequency is given by the following equation:

$$
L C^{\prime \prime}=\frac{2 \cdot \overline{3}, 3330}{f^{2}}
$$

where $L=$ Inductance in microhenrys ($\mu \mathrm{h}$.)
$C=$ Capacitance in micromicrofarads ($\mu \mu \mathrm{fd}$.)
$f=$ Frcquency in megacyeles
Example: Find the inductance required to resonate at 3650) ke . (3.65 Mc .) with caparjtances of $25,50,100$, and $500 \mu \mu \mathrm{fd}$. The L, C constant is

$$
\begin{aligned}
& L C=\frac{25,330}{(3.65)^{2}}=\frac{25.330}{13.35}=1900 \\
& \text { With } 25 \mu \mu \mathrm{fd} . L_{0}=1900 / \mathrm{C}=1900 / 2 \cdot \text {; } \\
& =76 \mu \mathrm{~h} \text {. } \\
& 50 \mu \mu \mathrm{~d} . L=1900 / C=10(0) / 50 \\
& =38 \mu \mathrm{~h} . \\
& 100 \mu \mu \mathrm{fd} . L=1900 / C=1900 / 100 \\
& =19 \mu \mathrm{~h} \text {. } \\
& 500 \mu \mu f \mathrm{~d} . L=1900 / C=1900 /-5(0) \\
& =3.8 \mu h_{\text {. }}
\end{aligned}
$$

COUPLED CIRCUITS

Energy Transfer and Loading

Two circuits are coupled when energy can be transferred from one to the other. The circuit delivering power is called the primary eircuit; the one receiving power is called the secondary circuit. The power may be practically all dissipated in the secondary circuit itself (this is usually the case in receiver circuits) or the secondary may simply act as a medium through which the power is transferred to a load. In the latter case, the coupled circuits may act as a radio-frequency impedance-matching device. The matching ean be accomplished by adjusting the loading on the secondary and by varying the amount of coupling between the primary and secondary.

Coupling by a Common Circuit Element

One method of coupling between two resonant circuits is through a circuit element common to both. The three variations of this type of coupling shown at A, B and (' of Fig. 2-42, utilize a common inductance, capacitance and resistance, respectively. Curront circulating in one L (e branch flows through the common element ($I_{\mathrm{c}},\left({ }_{\mathrm{c}}^{\mathrm{c}}\right.$ or R_{c}) and the voltage developed across this element causes current to flow in the other $L C$ branch.

Fig. 2-42 - Four methods of circuit coupling.
If both eircuits are resonant to the same frequency, as is usually the case, the value of compling reactance or resistance required for maximum energy transfer is generally quite small compared with the other reactances in the eircuits. The common-rircuitelement method of coupling is used only occasionally in amateur apparatus.

Capacitive Coupling

In the circuit at 1$)$ the coupling increases as the caparitance of ("e, the "coupling condenser," is made greater (reartance of C_{0} is decreased). When two resonant circuits are coupled by this means, the capacitance required for maximum energy transfer is quite small if the () of the seeondary circuit is at all high. For example, if the parallel impedance of the secondary circuit is 100,000 ohms, a reactance of 10,000 ohms or so in the condenser will give ample coupling. The corresponding capacitance required is only a few micromicrofarads at high frequencies.

Inductive Coupling

Figs. 2-43 and 2-44 show inductive coupling, or coupling by means of the mutual induetance between two crils. ('ircuits of this type resmble the
iron-core transformer, but because only a part of the magnetic flux lines set up by one coil eut the turns of the other coil, the simple relationships between turns ratio, voltage ratio and impedance ratio in the iron-core transformer do not hold.

Two types of indurtively-coupled eircuits are shown in Fig. 2-4.3. Only one circuit is resonant. The circuit at A is frequently used in receivers for coupling bet ween amplifier tubes when the tuning of the circuit must be varied to respond to signals of different frequencies. ('ircuit B is used principally in transmitters, for coupling a radiofrequency amplifier to a resistive load.

In these circuits the coupling between the primary and secondary coils usually is "tight" that is, the coeflicient of coupling between the coils is large. With very tight coupling either circuit operates nearly as though the deviee to which the untuned coil is comnerted were simply tapped aeross a corresponding number of turns on the tuned-circuit coil, thas either circuit is approximately equivalent to l-ig. $2-41 \mathrm{~B}$.

By proper choice of the number of turns on the untuned coil, and by adjustment of the coupling, the parallel impedance of the tuned circuit may be adjusted to the value required for the proper operation of the device to which it is connected. In any case, the maxinum energy transfer possible for a given coefficient of coupling is obtained whon the reartance of the untuned coil is equal to the resistance of its load.

The Q and parallel impedance of the tuned circuit are reduced by coupling through an untuned coil in much the same way as by the tapping arrangement shown in Fig. $2-413$.

Coupled Resonant Circuits

When the primary and secondary circuits are both tuned, as in Vig. $-4+$, the resonance effects in both circuits make the operation somewhat more complicated than in the simpler cireuits just considered. Imagine first that the two circuits are not coupled and that each is independently tuned to the resonant frequency. The impedance of each will be purely resistive. If the primary circuit is connected to a source of r.f. energy of the resonant frequency and the secondary is then loosely coupled to the primary, a current will flow in the secondary circuit. In flowing through the resistance of the secondary circuit and any load

Fig. 2-43-Single-tuned inductively-coupled circuits.
that may be connerted to it, the current causes a power loss. This power must eome from the encrgy source through the primary areuit, and manifests itself in the primary an an inerease in the equivalent resistance in serios with the primary coil. Hence the Q and parallel impedance of the primary circuit are decreased by the coupled secondary. As the coupling is made greater (without changing the tuning of either circuit) the coupled resistance beromes larger and the parallel impedance of the primary eontinues to decrease. Aso, as the compling is made tighter the amount of power transferred from the primary to the secondary will increase to a maximum at critical coupling, but then decreases if the coupling is tightened still more (still without changing the funing).

(B)

Fig. 2-44 - Inductively eroupled resonant circuits. Cir. cuit isused for high-resintance loads (at least seseral times the reactance of rithur h_{2} or C_{2} at the resonant frequency). (ireuit 13 is suitable for low resistance loads, where the reartance of either L_{2} or C_{2} is at least several times the load resistance.

Critical coupling is a fumetion of the $Q_{\text {s }}$ of the two circuits. I higher eoefficient of coupling is required to reach eritical coupling when the (as are low; if the ()s are high, as in receiving applieations, a coupling coefficient of a few per cent may give critical coupling.

With loaded circuits such as are used in transmitters the Q may be too low to give the desired power transfer even when the coils are coupled as tightly as the physical construction permits. In such case, increasing the Q of either circuit will be helpful, although it is generally better to increase the Q of the lower-Q circuit rather than the reverse. The Q of the parallel-tuned primary (input) circuit can be increased by decreasing the L / C ratio hecause, as shown in comnection with lig. $2-39$, this eircuit is in effect loaded by a parallel resistance (effect of coupled-in resistance). In the parallel-tuned secondary circuit, Fig. 2-44, , the Q can be increased, for a fixed value of load resistance, either by decreasing the L / C ratio or by tapping the load down (see Fig. 2-41). In the series-tuned secondary circuit, Fig. $2-44 B$, the Q may be increased by increasing the L / C ratio.

There will generally be no difficulty in securing sufficient coupling, with practicable coils, if the Q of each circuit is at least 10 . Smaller values will

Fig. 2-15-Showing the effect on the output voltage from the serondary circuit of changing the comflicient of coupling between two resontant circuits independently tuned to the same frequency. The voltage applied to the primary is held constant in amplitude while the fre. quency is varied, and the output voltage is measured aeross the secondary.
suffice if the coil construction permits tight coupling.

Selectivity

In Fig. 2-4.3 only one circuit is tuned and the selectivity curve will be that of a single resonant circuit. As stated, the offective Q depends upon the resistance connected to the untuned coil.

In Fig. $2-44$, the selertivity is the same as that of a single tuned circuit having a Q equal to the product of the (ls of the individual circuits - if the coupling is well below critical and both eircuits are tumed to resonance. The (Qs of the individual circuits are affected by the degree of coupling, berause each couples resistance into the other; the tighter the coupling, the lower the individual ()s and therefore the lower the over-all selectivity.

If both circuits are independently tuned to resonance, the over-all selectivity will vary about as shown in Hig. 2-45 as the coupling is varied. With lonse coupling, A, the output voltage (across the serondary riveuit) is small and the selectivity is high. .ts the coupling is increased the secondary voltage also increases until critical roupling, $/ 3$, is ratched. At this point the output voltage at the resonant frepuency is maximum but the selectivity is lower than with looser coupling. It still tighter coupling, 8 , the output voltage at the resmant froguency decrases, but as the frequener is variod either side of resonance it is found that there are two "humps" to the curve, one on either side of resonance. With very tight coupling, IS, there is a further decrease in the output voltage at resonance and the "humps" are farther away from the resonant frequency. Curves such as those at ${ }^{\prime}$ ' and D are called flattopped because the output voltage does not change much over an appreciable band of frequencies.

Note that the off-resonance humps have the same maximum value as the resonant output voltage at critical coupling. These humps are caused by the fact that at frequencies off resonance the secondary circuit is reactive and couples reactance as well as resistance into the primary. The coupled resistance decreases off resonance and the humps represent a new condition of critical coupling, at a frequency to which the primary is detuned by the coupled-in reactance from the secondary.

Band-Pass Coupling

Over-coupled resonant circuits are useful where substantially uniform output is desired over a continuous hand of frequencies, without readjustment of tuning. The width of the flat top of the resonance curve depends on the ()s of the two circuits as well as the tight ness of roupling; the frequency separation between the humps will increase, and the curve become more flat-topped as the $Q s$ are lowered.

Band-pass operation also is secured by tuning the two eircuits to slightly different frequencies, which gives a double-humped resonance curve even with loose coupling. This is called stagger tuning. However, to secure adequate power transfer over the frequency band it is usually necessary to use tight coupling and adjust the two eircuits, by experiment, to give the desired performance.

Link Coupling

A modification of inductive coupling, called link coupling, is shown in Fig. 2-46. This gives the effect of inductive coupling between two coils that have no mutual inductance; the link is simply a means for providing the mutual inductance. The total mutual inductance between two coils coupled by a link canoot be made as great as if the coits themselves were coupled. This is because the coefficient of coupling between aircore coils is considerably less than 1, and since there are two coupling points the over-all coupling roefficient is less than for any prir of coils. In practice this need not be disadvantageous berause the power transter can le made great enough by making the tuned circuits sufficiently high-Q. link coupling is convenient when ordinary inductive coupling would be impracticable for constructional reasons.

The link coils usually have a small number of turns compared with the resonant-circuit coils. The number of turns is not greatly important, because the coefficient of coupling is relatively independent of the number of turns on either coil; it is more important that both link coils should have about the same inductance. The length of the link between the coils is not critical if it is very small compared with the wavelength, but if the length is more than about one-twentieth of a wavelength the link operates more as a transmission line than as a means for providing mutual inductance. In such case it should be treated by the methods described in the chapter on 'ramsmission Lines.

Fig. 2-th - Link compling. The mutual inductances at both ends of the link are equivalent tomotoal inductanve between the toned circuits, and serve the same purpose.

Piezoelectric Crystals

A number of crystalline substances found in nature have the ability to transform mechanical strain into an electrical charge, and vice versa. This property is known as piezoelectricity. A small plate or har cut in the proper way from a quartz crystal, for example, and placed between two conducting electrodes, will be mechanically strained when the electrodes are connected to a source of voltage. Conversely, if the crystal is squeezed between two electrodes a voltage will develop between the electrodes.

Pieznelectric crystals can be used to transform mechanical energy into electrical energy, and vice versa. They are used, for example, in microphones and phonograph pick-ups, where mechanical vibrations are transformed into alternating voltages of corresponding frequency. They are also used in headsets and loudspeakers, transforming electrical energy into mechanical vibration. Crystal plates for these purposes are cut from large crystals of Rochelle salts.

Fig. 2-47-Eqquivalent rircuit of a crystal resonator. I, C and R are the eleetrical enpivalent* of mechanisal properties of the erystal; C_{h} is the eaparitance of the electroder with the erystal plate between them.

Crystalline plates also are merchanical vibators that have natural frequencies of vibration ranging from a few thousand cycles to several megacyeles per second. The vibration frequency depends on the kind of crystal, the way the plate is cut from the natural crystal, and on the dimensions of the phate. Because of the piezoclectrie effect, the crystal plate can be coupled to an electrical circuit and made to substitute for a coil-and-condenser resonant circuit. The thing that makes the crystal resonator valuable is that it has extremely high Q, ranging from 5 to 10 times the Qs obtainable with good $L C$ resonant circuits.

Inalogies can be drawn between various mechanical properties of the crystal and the elentrical eharacteristies of a tuned circuit. This leads to an "equivalent circuit" for the rrvistal. The electrical coupling to the crystal is through the electrodes between which it is sandwiched; these electrodes form, with the erystal as the dielectric, a small condenser like any other condenser constructed of two plates with a dielectric between. The erystal itwolf is equivalent to a sories-resonant "ircuit, and tugether with the capacitance of the electrodes forms the equivalent rircuit shown in Fig. 2-47. The equivalent inductance of the crystal is extremely large and the series capacitance, ${ }^{\circ}$, is correspondingly low; this is the reason for the high (Q of a crystal. The electrode caparitince, (h, is so very large compared with the series caparitame of the erystal that it has only a very small effect on the resomant frequency.
(rystal plates for use as resonators in radiofrequency dircuits are almost always cut from quartz crystals, because for mochanical reasoms quartz is by far the most suitable material for
this purpose. (quarth arystals are used as resomatons in recerivers, to give highla-selective reception, and as frequenc-controlling clements in transmitters to give a high order of frequencer stability.

Practical Circuit Details

COMBINED A.C. AND D.C.

Most radio rircuits are built around vacuum tubes, and it is the nature of these tubes to require dirẹct curront (usually at a fairly high voltage) for their operation. They convert the direct current into an alternating current (and sometimes the reverse) at frequencies varying from well down in the audio range to well up in the superhigh range. The ronversion process almost invariably requires that the direct and alternating eurrents meet somewhere in the circuit.

In this meeting, the ace and dec are actually combined into a single current that "pulsates" (at the ace frequency) about an average value equal to the dired current. This is shown in Fig. $2-48$. It is conveniont to ronsider that the atternating current is superimposed on the direct courent, wo we may look upon the artual current as having two components, one d.c. and the other a.c.

Fin. 2-48- Pulsatinir, composed of an altrrating current or voltage superimposed on a stranly direct eurrent or voltage.

In an alternating current the positive and neg:tive alternations have the same average amplitude, so when the wave is superimponed on a direct current the latter is alternately increased and decreased by the seme amonot. There is thus no average change in the direct current. If a d.e. instrument is being used to read the current, the reading will be exactly the same whether or not the a.c. is superimposed.

However, there is actually more power in such a combination corrent than there is in the direct current alone. This is beause power varies as the squmre of the instantancous value of the current, and when all the instantaneous squared values are averaged over a crale the total power is greater than the d.e power alone. If the a.e. is a sine wave having a peak value just equal to the d.e., the power in the circuit is 1.5 times the d.e. power. An instrument whose readings are proportional to power will show such an increase.

In many circuits, also, we may have two altermating currents of different frequencios; for example, an audio frerpency and a radio frequency may be combined in the same circuit. The two in turn may be combined with a direct current. In some cases, too, two rif. currents of widelydifferent frequencies may be combined in the same rireuit.

Series and Parallel Feed

Fig. 2-49 shows in simplifiod form how d.c. and ane, may be combined in a varum-tube circuit. (The tube is shown only in bure outline; so far as the dic. is concerned, it can be looked upon as a resistance of rather high value. (nn the other hand, the tube may be looked upon as the goncrator of the a.c. The merhanism of tube operation is described in the next whapter.) In this (ase, it is assumed that the a.c. is at radio frequency, as suggested by the coil-and-condenser tuned cirenit. It is also assumed that r.f. current can easily flow through the d.e. supply; that is, the impedance of the supply at radio frequencies is so smatl as to he negligible.

In the circuit at the left, the tube, tuned circuit, and der, supply all are connerted in series. The direct current flows through the r.f. coil to get to the tube; the r.f. eurrent generated by the tube flows through the d.e. supply to get to the tumed circuit. This is series feed. It works berause the impedance of the d.e. supply at radio frequencies is so low that it does not affect the flow of r. f. current, and liecauso the d.e. resistance of the coil is so low that it does not affere the flow of direct current.

In the circuit at the right the direct current dons not flow through the r.f. tuned cireuit, but instead goes to the tube through a serond ecill, RFC (radio-frequency choke). Direct current ramot flow through L beatuse a blocking condenser, r^{\prime}, is placed in the circuit to prevent it. (Without C^{\prime}, the d.e. supply would be shortcircuited he the low resistance of 1.) On the other hand, the r.f. current generated by the tube can easily flow through (' to the tuned circuit because the caparitance of r is intentionally chosen to have low reactance (compared with the impedance of the tuned (ireuit) at the radio frequency, The r.f. current cannot flow through the d.e. supply berause the inductance of $R F{ }^{\prime}$ is intentionally mate so large that it has a very high reactane at the radio frequenes. The resistance of RFC, however, is too low to have an appre-

ELECTRICAL LAWS AND CIRCUITS

riable effert on the flow of direct current. The two currents are thus in parallol, hence the name parallel feed.

Fither type of feed may be used for both inf. and r.f. circuits. In parallel feed there is no d.e. voltage on the a.e. circuit, a desirable feature from the viewpoint of safety to the operator, because the voltages applied to tubes - particularly transmitting tubes - are dangerous. On the other hand, it is somewhat difficult to make an r.f. choke work well over a wide range of frequencies. Series feed is usually proferred, therefore, because it is relatively easy to keep the impedance between the a.c. circuit and the tube low.

By-Passing

In the series-feed circuit just discussed, it was assumed that the d.e. supply had very low impedance at radio frequencies. This is not likely to be true in a practical power supply, partly

\approx

Fig. 2-50-Typical use of a by-pazs condenser in a series-feed circuit.
\approx
because the normal physical separation between the supply and the r.f. circuit would make it necessary to use rather long connecting wires or leads. At radio frequencies, even a few feet of wire can have fairly large reatence - too large to be considered a really "low-impedance" connection.

An artual eircuit would be provided with a by-pass condenser, as shown in Fig. 2-i50. ('ondenser C is chosen to have low reactance at the operating frequency, and is installed right in the circuit where it can be wired to the other parts with quite short connecting wires. Hence the r.f. current will tend to flow through it rather than through the d.c. supply.

To be effective, the reactance of the by-pass eondenser should not be more than one-tenth of the impedance of the by-passed part of the circuit. Very often the latter impedance is not known, in which case it is desirable to use the largest caparitance in the by-pass that circumstances permit. To make doubly sure that r.f. current will not flow through a non-r.f. circuit such as a power supply, an r.f. choke may be connected in the lead to the latter, as shown in Fig, 2-50.
The same type of by-passing is used when audio frequencies are present in addition to r.f. Because the reactance of a condenser changes with freçuency, it is readily pessible to choose a capaci-
tance that will represent a very low reactance at radio frequencies but that will have such high reactance at audio frequencies that it is practically an open circuit. A caparitance of $0.001 \mu \mathrm{fd}$. is practically a short circuit for r.f., for example, but is almost an open circuit at audio frequencies. (The actual value of capacitance that is usable will be modified by the impedances concerned.) By-pass condensers also are used in audio circuits to carry the audio frequencies around a d.c. supply.

Distributed Capacitance and Inductance

In the discussions earlier in this chapter it was assumed that a condenser has only caparitance and that a coil has only inductance. Enfortunately, this is not strictly true. There is always a certain amount of inductance in a conductor of any length, and a condenser is bound to have a little inductance in addition to its intended capacitance. Also, there is always caparitance between two conductors or between parts of the same conductor, and thus there is appreciable capacitance between the turns of :lll inductance coil.

This distributed inductance in a condenser and the distributed capacitance in a coil have important practical efferts. Actually, every condenser is a tumed circuit, resonant at the frequency where its caparitance and distributed indurtance have the same reactance. The same thing is truc of a coil and its distributed capacitance. It frequencies well below these natural resonances, the condenser will act like a normal caparitance and the coil will act like a normat inductance. Near the natural resonant points, the coil and condenser act like self-tuned circuits. Hove resonance, the condenser acts like an inductance and the coil acts like a condenser. Thus there is a limit to the amount of capacitance that can be used at a given frequency. There is a similar limit to the inductance that can be used. At audio frequencies, capacitances measured in microfarads and inductances measured in henrys are practicable. At low and medium radio froquencies, indurtances of a few millihenrys and capacitances of a few thousand micromicrofarads are the largest practicable. At high radio frequencies, usable inductance values drop to a few microhenrys and capacitances to a few hundred micromicrofirads.

Distributed caparitance and inductance are important not only in r.f. tuned circuits, but in by-passing and choking as well. It will be appreriated that a by-pass condenser that actually arts like an inductance, or an r.f. choke that acts like a condenser, cannot work as it is intended they should.

Grounds

Throughout this book there are frequent references to ground and ground potential. When a comnection is said to be "grounded" it does not mean that it actually goes to earth (although in many cases such earth connections are used). What it means is that an actual earth connection
coull be made to that point in the circuit without disturbing the operation of the circuit in any way. The term also is used to indicate a "common" point in the circuit where power supplies and metallic supports (such as a metal chassis) are electrically tied together. It is customary, for example, to "ground" the nogative terminal of a d.e. power supply, and to "ground" the filament or heater power supplies for vacuum tubes. Since the cathode of a vacuum tube is a junction point for grid and phate voltage supplies, it is a natural point to "ground." Also, since the various circuits romnected to the tube elements have at least one point connerted to cathode, these points also are "returned to ground." "(iround" is therofore a common reference point in the radio circuit. "(iround potential" means that there is no "difference of potential" - that is, no voltage - between the circuit point and the earth.

Single-Ended and Balanced Circuits

With reference to ground, a rircuit may be either single-ended (unbalanced) or balanced. In a single-ended circuit, one side of the circuit is connected to ground. In a balanced circuit, the electrical midpoint is comnerted to

Single-ended

Balanceo

Balanced Output

Fig. $2-51$ - Single-ended and balanced circuits.
ground, so that the circuit has two ends each at the same voltage "above" ground.

Typical single-ended and balanced cirruits are shown in Fig. 2-in1. R.f. circuits are shown in the upher row, while iron-core transformers (surh as are used in power-supply and audio cirruits) are shown in the lower row. The r.f. circuits may be balanced either by connerting the center of the coil to ground or by using a "balanced" or "split-stator" condenser" and connecting the condenser rotor to ground. In the iron-rore transformer', our or beth windings may be tapped at the center of the winding to provide the gromed comncetion.

In the single-ended circuit, only one side of
the circuit is "hot" -- that is, has a voltage that differs from ground potential. In the balanced circuit, both ends are "hot" and the grounded center point is at ground potential.

Shielding

Two circuits that are physically near earh other usually will be coupled to earh other in some degree even though no coupling is intended. The metallic parts of the two circuits form a small capacitance through which encrgy can be transferred by means of the electric field. Also, the magnetic field about the coil or wiring of one circuit can couple that circuit to a seeond through the latter's coil and wiring. In many cases these unwanted couplings must be prevented if the circuits are to work properly.

Capacitive coupling may readily be prevented by enclosing one or both of the circuits in grounded low-resistance metallic containers, called shields. The electrie field from the circuit components does not penetrate the shield. A metallir plate, called a baffle shield, inserted between two components also may suffice to prevent electrontatic coupling between them. It should be large enough to make the components invisible to cach other.

Nimilar metallic shichling is used at radio frequencies to prevent magnetic coupling. The shiedding effect increases with frequency and with the ronductivity and thickness of the shielding material.

A chosed shield is required for good magnetic shielding: in some cases separate shields, one alout cach coil, may be required. The baffle shield is rather ineffective for magnetic shielding, although it will give partial shielding if placed at right angles to the axes of, and between, the coils to be shielded from earh other.

Shielding a roil reduces its indurtance, because part of its fiold is cemneled by the shield. Also, there is always a small amount of resistance in the shicld, and there is therefore an energy loss. This loss raises the effective resistance of the coil. The decrease in inductance and increase in resistance lower the Q of the coil. The reduction in indurtance and Q will be small if the shield is sufficiently far away from the roil; the sparing between the sides of the coil and the shield should be at least half the coil diameter, and the spateing at the ends of the coil should at least equal the coil diameter. The higher the condurtivity of the shield material, the less the effert on the inductance and (). Copper is the best material, but aluminum is quite satisfactory.

For good magnetic shielding at audio frequencies it is neressary to endelose the coil in a container of high-permeability iron or steel. In this case the shield can be quite close to the coil without harming its performance.

Modulation, Heterodyning and Beats

Fince one of the most wialespread uses of rudio frempentifes is the thansmission of spererh and mosic, it would be very eronvenient if the andio
spectrum to be transmitted could simply be shifted up to some radio frequency, tansmitted as radio waves, and shiited hack down to the audio spee-
trum at the receiving point. Suppose the audio signal to be transmitted by radio is a pure 1000eycle tone, and we wish to transmit it at some frequency around $1 \mathrm{Mc} \cdot$. ($1,000,000$ cycles). One possible way might he to add $1,000,000$ cyeles and 1,000 cycles together, thereby obtaining a radio frequency of $1,001,000$ eveles. T'nfortunately, no simple method for doing surh a thing directly has ever been devised, although the effect is obtained and used in some advanced communications techniques.

Actually, when two different frequencies are present simultaneously in an ordinary circuit (specifically, one in Which Ohm's law holds) each behaves as though the other were not there. It is true that the total or resultant voltage (or current) in the circuit will be the sum of the instantaneous values of the two at every instant. This is because there can be only one value of current or voltage at any single point in a circuit at any instant. Fig, $2-52.4$ and 13 show two such frequencies, and C shows the resultant. The amplitude of the $1,000,000$-rycle current is not affected by the presence of the 1000 -cycle eurrent, but merely has its axis shifted back and forth at the 1000 -cycle rate. An attempt to transmit such a

Fig. 2.52-Amplitude-rs.-time and amplitude-rs. frequeney plots of various signals. (A) $11 / 2$ cycles of a 1000 -eyele signal. (B) A $1,000,000$-cycle signal plotted to the same scale as A. Iecause there are 1500 eycles during this time, they cannot be shown accurately. (C) The signals of A and IB flowing in the same circuit. (I)) The signals of A and 13 combined in a circuit where A can control the amplitude of IS. The $1,(100,000-\mathrm{ec} \cdot \mathrm{l}$ le signal is modulated by the 1000 -cycle signal. (E), (F^{\prime}), (C). (II) Amplitude-vs.-frequency plots of the signals in A, B, C and I).
combination as a radio wave would result simply in the transmission of the $1,000,000-\mathrm{cy}$ ale froquency, since the 1000 -rycle frequency retains its identity as an audio frequency and hence will not be radiated.
There are devices, however, which make it possible for one freguency to control the amplitude of the other. If, for example, a 1000 -cycle tone is used to control a 1-Mc. signal, the maximum r.f. output will be oltained when the 1000-cyrle signal is at one peak and the minimum will oereur at its other peak. The process is called amplitude modulation, and the effert is shown in Fig. 2-5)20. The resultant signal is now entirely at radio frequency, but with its amplitude varying at the modulation rate (1000 (eyrles). Receiving equipment aljusted to reroive the $1,000,000-\mathrm{cy}$ ale r.f. signal can reproduce these changes in amplitude, and thus tell what the audio signal is, through a process called detection or demodulation.

It might be assumed that the only radio frequency present in such a signal is the original $1,000,000$ eycles, but such is not the case. It will be found that two new frequencies have appeared. These are the sum $(1,000,000+1000)$ and difference $(1,000,000-1000)$ frequencies, and hence the radio frequencies appearing in the circuit after modulation are $999,000,1,000,000$ and $1,001,000$ cycles.

Many circuits have been devised for obtaining amplitude modulation, and they will be treated in detail in later chapters. When an audio frequeney is used to control the amplitude of a radio frequency, the process is generally cailed "amplitude modulation," as mentioned previously, but when a radio frequenes modulates another radio frequency it is called heterodyning. However, the processes are identical. A peneral term for the sum and difference frequencies generated during heterodyning or amplitude modulation is "beat frequencies," and a more specifir one is upper side frequency, for the sum โrequency, and lower side frequency for the difference frequoncy.

In the simple example, the modulating signal was assumed to be a pure tone, but the modulating signal can just as well be a band of frequencies making up speech or music. In this case, the side frequencies are grouped into what are called the upper sideband and the lower sideband. In any case, the frequency that is modulated is called the carrier frequency.

In A, 13, C and D of Fig. 2-52, the sketches are obtained by plotting amplitude against time. However, it is equally helpful to be able to visualize the spectrum, or what a plot of amplitude us. frequency looks like, at any given instant of time. E, F, G and H of Fig. 2-52 show the signals of Fig. 2-52A, 13, C and D on an amplitude-vs.frequency basis. Any one frequency is, of course, represented by a vertical line. lig. 2-52 I shows the side frequencies appearing as a result of the modulation process.

Amplitude modulation (AM) is not the only possible type nor is it the only one in use. This and other types of modulation are treated in detail in later ehapters.

Vacuum-Tube Principles

CURRENT IN A VACUUM

The outstanding difference between the vacuum tube and most other electrieal deviees is that the electric current does not flow through a conductor but through empty space-a vacuum. This is only positble when "free" electrons - that is, electrons that are not attached to atoms - are somehow introduced into the vacuum. Free electrons in an evacuated space will be attracted to a positivelycharged object within the same spare, or will be repelled by a negatively-charged object. The movement of the electrons under the attraction or repulsion of surh charged objects constitutes the current in the varumn.

The most practical way to introdure a suffi-ciently-large mumber of electrons into the evacuated space is by thermionic emission.

Thermionic Emission

If a thin wire or filament is heated to incandescence in a vacuum, clectrons noar the surface are given enough energy of motion to fly ofi into the surrounding sate. The higher the temperature, the groator the number of elertrons emitted. A more general name for the filament is cathode.

If the eathode is the only thing in the varuum, most of the emited elertrons stay in its immediate vicinity, forming a "choul" about the eathode. The reason for this is that the cleetrons in the space, being negative olectricity, form a negative charge (space charge) in the region of the cathode. The space charge repels

Representative tube types. The miniature, metal eovelope and small plass tubes in the foreground are receiving types. 'The two tubes with connertione at the top of the bulb, lying down, are transmitting triodes of mederate prower ratings. Those in the rear are trans. mitting-type beam tetrodes.
those electrons nearest the cathode, tending to make them fall back on it.

Now suppose a seomd condurtor is introduced into the vacuum, but not comected to anything else inside the tube. If this second ronductor is given a positive charge by connerting a source of e.m.f. between it and the

Fig, 3-1-Conduction by thermionic emission in a vactum tube. One hattery is used to heat the filament to a temperature that will eabse it to emit eleetrons. 'lhe other battery makes the plate positive with respect to the filament, therely ransing the emitted electrons to be altracted to the plate. Filectrons captured liy the plate flow back through the battery to the filament.
cathode, as indicated in Fig. 3-1, electrons emitted by the eathode are attracted to the positivelycharged comductor. An electric current then flows through the circuit formed by the cathode, the charged conductor, and the sourer of e.m.f. In Fig. 3-1 this e.m.f. is supplied by a battery ("B" battery): a second battery ("A" battery) is also indicated for heating the cathode or filament to the proper operating temperature.

The positively-charged condurtor is usually a metal plate or celinder (surrounding the cathode) and is called an anode or plate. Like the other working parts of a tube, it is a tube element or electrode. The tube shown in Fig. : 3 -1 is a two-element or two-electrode tube, one elemont being the eathode or filament and the other the anode or plate.

Nince elcotrons are negative electricity, they will be attracted to the pate omly when the plate is positive with respeet to the cathode. If the plate is given a negative charge, the electrons will be repelled back to the cathode and no current will flow. The varum tube therefore ean conduct only in one direction.

Cathodes

Before electron emission can occur, the rathode must be heated to a high temperature. However, it is not essential that the heating cur-

Fig. 3-2-I'ynes of cathode construction. Directly-heated cathodes or filament $=$ are shown at A , B , and ($:$. The inverted V filament is used in small rereiving tubes, the M in hoth receiving and transmitting tubes. The spiral filament is a transmittingtube type. The indircetly-heated cathodes at i) and E show two types of heater constrnction, one a twisted loop and the other lomehed heator wires. Both types tend to cancel the magnetic fields set up by the current through the heater.
rent flow through the actual material that does the emitting; the filament or heater can be electrically separate from the emitting cathode. such a cathorle is called indirectly heated, while an emitting filament is called directly heated. Fig. 3-2 shows both types in the forms in which they are commonly used.

Nuch greater electron emission can be obtained, at relatively low temperatures, by using special cathode materids rather than pure metals. One of these is thoriated tungsten, or tungsten in which thorium is dissolved. Still greater efficiency is achieved in the oxide-coated cathode, a cathode in which rare-earth oxides form a coating over a metal base.

Although the oxide-coated cathode has much the highest efficiency, it can be used surcessfully only in tubes that operate at rather low plate voltages. Its use is therefore confined to receiv-ing-type tubes and to the smaller varieties of transmitting tubes. The thoriated filament, on the other hand, will operate well in high-voltage tubes.

Plate Current

If there is only a small positive voltage on the plate, the number of electrons reaching it will be small because the space charge (which is negative) prevents those electrons nearest the cathode from being attrarted to the plate. As the plate voltage is increased, the effert of the spare charge is increasingly overcome and the number of electrons attracted to the plate becomes larger. That is, the plate current increases with increasing plate voltage.

Fig. :3-3 shows a typical plot of plate current vs plate voltage for a fwo-dement tube or diode. A curve of this type can be obtained with the rircuit shown, if the plate voltage is increased in small steps and a current reading taken (by means of the current-indicating instrument - a "milliammeter") at each voltage. The plate current is zero with no plate voltage and the curve rises until a saturation point is reached. This is where the positive charge on the plate has sub)stantially overcome the space charge and
almost all the dectrons are going to the plate. At higher voltages the plate current stays at practically the same value.
The phate voltage multiplicd bey the plate current is the power input to the tule. In a circuit like that of lig. 3-3 this power is all used in heating the plate. If the power input is large, the phate temperature may rise to a very high value (the plate may become red or even white hot). The heat developed in the plate is radiated to the bull, of the tube, and in turn radiated by the bulb, to the surrounding air.

RECTIFICATION

Since current can flow through a tube in only one direction, a diode can be used to change alternating current into direct current. It does this by permitting current to flow when the plate is positive with respect to the rathode, but by shutting off current flow when the plate is negative.

Fig. :3-4 shows a representative eircuit. Alternating voltage from the secondary of the trensformer, ' T, is applied to the diode tube in series with a load resistor, R. The voltage varies as is usual with a.c., but current flows through the tube and R only when the pate is positive with respect to the rathode - that is, during the half-cycle when the upper end of the transformer winding is positive. During the negative half-crele there is simply a gap in the current flow. This rectified alternating eurrent therefore is an intermittent direct current.
The load resistor, R, represents the actual circuit in which the rectified alternating current does work. . Ill tubes work into a load of one type or anothor; in this respert a tube is murh like a generator or transformer. I eircuit that did not provide a load for the tube would be like a short-circuit across a transformer; no useful purpose would be accomplished and the only result would be the generation of heat in the transformer. So it is with varuum tubes; they must deliver power to a load in order to serve a useful purpose. Ilso, to be cfficient most of the power must do useful work in the load and not be used in heating the plate of the tube. This means that most of the voltage should appear as a dropacross the load rather than as a drop between the plate and cathode.

Fig. 3.3-1'he diode, or two-element tube, and a typical rurve showing how the plate current depends upon the voltage applied to the plate.

With the diode comnerted as shown in Fig. 3-4, the polarity of the voltage drop across the load is surh that the end of the load nearest the rathode is positive. If the eonnections to the diode elements are reversed, the direetion of reetified current flow also will be reversed through the load.

Fig. 3.4 - Rectification in a diode. Current flows only when the plate i. prositive with respert to the cathode, so that only hallferycles of eurrent how throngh the load resistor, R.

Vacuum-Tube Amplifiers

TRIODES

Grid Control

If a third element - called the control grid, or simply grid - is inserted botween the rathode and plate as in Fig. 3-5, it can be used to control the effect of the space charge. If the grid is given a positive voltage with respert to the eathode, the positive charge will tend to neutralize the negative spate charge. The

Fig. 3.5-Comstrurtion of an elementary triode vatemm tube, showing the biament, prid (with an end virw of the grid wires) and plate, The relative density of the spare charge is indicated roughly by the dot density.
result is that, at any selected plate voltage, nore electrons will flow to the plate than if the grid were not present. On the other hand, if the grid is made negative with respert to the cathode the negative charge on the grid will add to the space charge. This will reduce the number of electrons that ran reach the plate at any selected plate voltage.

The grid is inserted in the tube to control the space eharge and not to attract elecetrons to it self, so it is made in the form of a wire mosh or epiral. Elertrons then cath go through the open spares in the grid to reach the plate.

Characteristic Curves

For any particular tubre, the offect of the grid voltage on the plate current can be shown by a set of characteristic curves. A typieal set of curves is shown in Fig. 3-6, together with the circuit that is used for getting them. For each value of plate voltage, there is a value of negative grid voltage that will reduce the plate eurrent to zero; that is, there is at the right.
a value of negative grid voltage that will cut off the plate current.

The curves could be extended by making the grid voltage positive as well as negative. When the grid is negative, it repels eleetrons and therefore none of them reaches it ; in other words, no current flows in the grid circuit. However, when the grid is positive, it attracts electrons and a current (grid current) flows, just as current flows to the prositive plate. Whenever there is grid current there is an arcompanying power loss in the grid circuit, but so long as the grid is negative no power is used.

It is obvious that the grid can act as a valve to control the flow of plate current. Actually, the grid has a much greater effect on plate current flow than does the plate voltage. I small change in grid voltage is just as coffective in bringing about a given change in plate current as is a large change in plate voltage.

The fact that a small voltage acting on the grid is equivalent to a large voltage arting on the plate indicates the possibility of amplification with the triode tube. The many uses of the electronic tube nearly atl are based upon this amplifying feature. The amplitied output is not ohtained from the tube itself, but from the source of e.m.f. comerted hetween its plate and eathode. The tube simply controls the power from this source, changing it to the desired form.

To utilize the controlled power, a load must be comnected in the plate or "output" cireuit, just as in the diode case. The load may be

Fis 3.6-Gril-voltane-rw.-plate-current eurves at varions fixed values of plate voltage (L_{i}) for a typinal small triode. Characteristic curves of this tym can be taken by varying the batsery voltages in the circuit
either a resistance or an impedance. The term "impedance" is frequently used even when the load is purely resistive.

Tube Characteristics

The physical construction of a triode determines the relative effectiveness of the grid and plate in controlling the plate current. If a very small change in the grid voltage has just as much effect on the plate current as a very large change in plate voltage, the tuhe is satid to have a high amplification factor. Inplification factor is commonly designated by the (ireek letter μ. An amplification factor of 20 , for example, means that if the grid voltuge is changed by 1 volt, the effect on the plate current will be the same as when the plate voltage is changed by 20 volts. The amplification factors of triode tubes range from 3 to 100 or so. A high- μ tube is one with an amplification factor of perhaps: 30 or more; medium- μ tubes have amplification factors in the approximate range 8 to $: 30$, and low- μ tubes in the range below 7 or 8 .

It would the natural to think that a tube that has a large μ would be the best amplifier, but to obtain a high μ it is neressary to construct the grid with many turns of wire per inch, or in the form of a fine mesh. This leaves a relatively small open area for celectrons to gos through to reach the plate, so it is difficult for the pate to attract large numbers of eloctrons. Quite a large change in the plate voltage must be made to effect a given change in plate current. This means that the resistance of the phate-rathonde path - that is, the plate resistance - of the tube is high. since this resistance ants in series with the load, the amount of rurrent that can be made to flow through the load is relatively small. (On the other hand, the plate resistance of a low- μ tube is relatively low.

The best all-around indiation of the clfortiveness of the tube as an amplitier is its transconductance - also called mutual conductance. This characteristic takes account of both amplification factor and plate resistance, and therefore is a figure of merit for the tube. Transeonductance is the change in plate current divided by the change in grid voltrge that caluses the patecurrent change (the plate voltage being fixed at a desired value). Since current divided by voltage is conductance, transconductance is monesured in the unit of eomductance, the mho. Practical values of transcondurtance are very small, so the micrombo (one-millionth of a mho) is the commonly-used unit. Different types of tubes have transeonductances ranging from a few handred to several thousand. The higher the transeonductance the greater the pexsible amplification.

AMPLIFICATION

The way in which a tube amplifies is best shown by a type of graph ralled the dynamic characteristic. suod a graph, together with the
circuit used for obtaining it, is shown in Fig. 3-7. The curves are taken with the plate-supply voltage fixed at the desired operating value. The difference between this circuit and the one shown in Fig. 3-6 is that in lig. 3-7 a lood resistance is emmerted in series with the plate of the tube. Fig. : $3-7$ thus shows how the plate current will vary, with different grid voltages, when the plate currant is mode w flow through a losed and thus do useful work.

Fip, 3-7- Dynamic charartoristios of a small triode with various had resistames from $5(000$ to 1010,000 ohms.

The several curves in lig. $3-\overline{7}$ are for various values of load resistance. When the resistance is small (as in the case of the 5000 -ohm load) the phate current changes rather rapidly with a given change in grid voltage. If the load rewistance is high (as in the 100,000 -ohm rurve), the rhange in plate current for the same grid-voltage change is relatively small, so the curve tends to he straighter.

Fig. : $3-\mathrm{x}$ is the sime trpe of curve, but with the circuit, arranged so that a source of alternating voltage (signal) is inserted between the grid and the srid battery ("C" battery). The voltage of the grid battery is fixed at $-\overline{5}$ volts, and from the curve it is seen that the plate current at this grid voltage is 2 milliamperes. This current flows when the load resistance is 00,000 ohms, as indicated in the circuit diagram. If there is no a.c. signal in the grid circuit, the voltage drop in the load resistor is $50,000 \times 0.002=100$ volts, leaving 200 volts between the plate and cathode.

When a sine-wave sigual having a prak value of 2 volts is applied in series with the bias voltage in the grid circuit, the instantaneous voltage at the grid will swing to - 3 volts at the instant the signal reaches its positive peak, and to -7 volts at the instant the signal reaches its negative mak. The maximum plate coment will oreur at the instant the grid voltage je -3 volts. is shown by the graph, it will have a value of $2.6{ }^{5}$ milliamperes. The minimum plate current oceurs at the instant the grid voltage is -7 volts, and has at value of $1.3 \overline{5}$ ma. At intermediate values of grid voltage, intermediate phate-durent values will oreur.

The instantaneous voltage between the plate

Fig. 3-8-Amplilier operation. When the plate curremt varies in response to the signal applied to the grid, a varying voltage drep appears aterosin the load, $R_{\text {bo }}$ as shown by the dashed curve. $E_{\text {po }} I_{1}$ is the plate current.
and rathode of the tute also is shown on the graph. When the plate current is maximum, the instantaneous voltage drop in R_{p} is 50,000 $\times 0.0026 .5=132.5$ volts; when the plate current is mininum the instantaneous voltage drop in R_{p} is $50,000 \times 0.00135=67.5$ volts. The adeal voltage between plate and cathode is the difference between the plate-supply potential, 360 volts, and the voltage drop in the load resistance. The phate-to-cathode voltage is therefore 163.5 volts at maximum phate current and 23.5 volts at minimum plate current.

This varying plate voltage is an a.c. voltage superimposed on the steady plate-cathode potential of 200 volts (as previously determined for no-signal conditions). The peak value of this a.c. output voltage is the difference between either the maximum or minimum plate-cathode voltage and the no-signal value of 200 colts. In the illustration this difference is $2: 32.5-200$ or $200-$ 167.5 ; that is, 32.5 volts in either case Since the grid sigmal voltage hats a peak value of 2 volts, the voltage-amplification ratio of the amplitier is $32.5 / 2$ or 16.25 . That is, approximately 16 times as much voltage is whtained from the plate cireuit as is applied to the grid circuit.

As shown by the drawings in lig. : $3-8$, the alternating component of the plate voltage swings in the negative direction (with reference to the no-signal value of plate-cathode voltage) when the grid voltage swings in the positive direction, and vice versa. This means that the alternating component of plate voltage (that is, the amplified signal) is 180 degrees out of phase with the signal woltage ow the grid.

Bias

The fixed negative grid voltage (called grid bias) in Fig. 3-8 serves a very uscful purpose. One object of the type of amplification thown in this drawing is to obtain, from the plate cireuit, an alternating voltage that has the same waveshape as the signal voltage applied to the grid. To do so, an operating point on the struight part of the curve must be selerted. The curve must be straight in both directions from the operating point at least far enough to acommodate the maximum value of the signal applied to the grid. If the grid signal swings the plate current bark and forth over a part of the curve that is not straight, as in Fig. $3-9$, the shape of the a.c. wave in the plate circuit will not be the same as the shape of the grid-signal wave. In such a case the output waveshape will be distorted.

I second reason for using ungative grid bias is that any signal whose peak positive voltage does not exceed the fixed negative voltage on the grid cannot cause grid current to flow. With no current flow there is no power comsumption, so the tube will amplify without taking any porer form the signal source. (However, if the positive peak of the signal does exceed the negative bias, current will flow in the grid circuit during the time the grid is positive.)

Ifistortion of the output warshape that results from working over a part of the curve that is not straight (that is, a nonlinear part of the (rurve) has the effect of transforming a sine-wave grid signal into a more complex waveform. As explained in an earlier chapter, a complex wave can be resolved into a fundamental and a series of hammonics. In other words, distortion from nonlinearity causes the generation of harmonic frequencies - frequencios that are not present in the signal applied to the grid. Harmonie distortion is undesirable in most amplifiers, although

Fip. 3.9-I Iarmonic distortion resulting from choice of an operating print on the curvel part of the tulse -haracteristice. The lower half-e pele of plate current dowes not have the same shape an thic upher halfervele.
there are oecasions when harmonies are deliberately generated and used.

Amplifier Output Circuits

The useful output of a vacuum-tube amplifier is the alternating component of phate current or plate voltage. The d.e. voltage on the plate of the tube is essential for the tube's operation, but it almost invariably would caluse diffieulties if it were applied, along with the a.c. output voltage, to the load. The output circuits of varoum tubes are therefore arranged so that the a.ce is transfered to the load but the d.c. is not.

Three types of coupling are in common use at audio frequencies. These are resistance coupling, impedance coupling, and transformer coupling. They are shown in Fig. :3-10. In all three rases the output is shown coupled to the grid eircuit of a subsequent amplifier tube, but the same types of circuits can be used to couple to other devices than tubes.

In the resistance-coupled circuit, the a.r. voltage developed across the plate resistor R_{p}, (that is, between the plate and cathode of the tube is applied to a second resistor, R_{k}, through a coupling condenser, ('c. The condenser "blocks off" the d.e. voltage on the phate "il the first tube and prevents it from being applied to the grid of tube 13 . The later tube has negative grid bias supplied be the battery shown. No current flows in the grid circuit of tube B and there is therefore no d.e. voltage drop in R_{g}; in other words, the full voltage of the bias battery is applied to the grid of tube 13 .

The grid resistor, h_{k}, usually has a rather high value (0.5 to 2 megohms). The reactance of the eoupling condenser, ('c, must be low enough eompared with the rexistance of R_{g} so that the a.c. voltage drop in (${ }^{\circ} \mathrm{c}$ is negligible at the lowest frequency to be amplified. If R_{k} is at least 0.5 negohm, a $0.1-\mu \mathrm{fd}$. condenser will be amply large for the usual range of audio frequencies.
so far as the alternating component of plate voltage is concerned, it will he realized that if the voltage drop in C_{c} is negligible then R_{p} and K_{c} are effectively in parallel (although they are quite separate so far as d.e is concerned). The resultant parallel resistance of the two is therefore the actual load resistance for the tube. That is why R_{g} is made as high in resistance as possibe; then it will have the least effert on the load represented by R_{p}.

The impedance-coupled eircuit differs from that using resistance coupling only in the sub)stitution of a high-inductance coil (usually several hundred henrys for audio frequencies) for the plate resistor. The advantage of using an inductance rather than a resistor is that its impedance is high for alternating currents, but its resistance is relatively low for d.e. It thus permits obtaining a high value of load impedance for a.c. without an excessive d.c. voltage drop that would use up a good deal of the voltage from the plate supply.

The transformer-coupled amplifier uses a transformer with its primary connected in the plate

Fis. 3-10-I'hree basic forms of coupling between vacuum-tube amplificrs.
circuit of the tube and its secondary connected to the load (in the circuit shown, a following amplifier). There is no direst connection between the two windings, so the plate voltage on tube A is isolated from the grid of tube 13 . The trans-former-coupled amplifier has the same advantage as the impedance-coupled circuit with respect to loss of voltage from the plate supply. Also, if the secondary has more turns than the primary, the output voltage will be "stepped up" in proportion to the turns ratio.

Resistance coupling is simple, inexpensive, and will give the same amount of amplification - or voltage gain - over a wide range of frequencies; it will give substantially the same amplification at any frequency in the audio range, for example. Impedance coupling will give somewhat more gain, with the same tube and same plate-supply voltage, than resistance coupling. However, it is not quite so good over a wide frequency range: it tends to "peak," or give maximum gain, over a comparatively narrow band of frequencies. With a good transformer the gain of a trans-former-coupled amplifier can he kept fairly constant over the audio-frequency range. On the
other hand, transformer (oupling in voltage amplifiers (nee below) is best suited to triodes having amplification factors of about 10 or less, for the reasm that the primary inductance of a practicable transformer canot he made large enough to work well with a tube having high plate resistance.

An amplifier in which voltage gain is the primary consideration is called a voltage amplifier. Maximum voltage gain is secured when the load resistance or impedance is made as high as possible in comparison with the plate resistance of the tube. In such a case, the major portion of the voltage generated will appear across the load and only a relatively small part will be "lost" in the plate resistance.

Voltage amplifiers belong to a group called Class A amplifiers. A class I amplifier is one operated so that the waveshape of the output voltage is the same as that of the signal voltage applied to the grid. If a class A amplifier is biased so that the grid is always negative, even with the largest signal to be handled by the grid, it is called a Class A_{1} amplifier. Voltage amplifiers are always (lass λ_{1} amplifiers, and their primary use is in driving a following (Olass λ_{1} amplifier.

Power Amplifiers

The end result of any amplification is that the amplified signal does some work. For example, an audio-frequency amplifier usually drives a loudspeaker that in turn produces sound waves. The greater the amount of a.f. porer supplied to the 'speaker, the louder the sound it will produce.

Fis. 3-II - In clementary power-amplifier circnit in whith the power-consuming load is coupled to the plate cirruit through an impedance-matehing transformer.

Fig. 3-11 shows an elementary power-amplifier cireuit. It is simply a transformer-roupled amphifier with the load connected to the secondary. Although the load is shown as a resistor, it actually would be some devier, such as a loudspeaker, that emploss the power usefully. Fvery power tube requires a specifie value of load resistance from plate to cathode, usually some thousands of ohms, for optimum operation. The resistance of the atual load is rarely the right value for "matehing" this optimum load resistance, so the transformer turns ratio is chosen to reflect the proper value of resistance into the primary. The turns ratio may be either step-up or step-down, depending on whether the actual load resistance is higher or lower than the load the tube wants.

The power-amplification ratio of an amplifier is the ration of the power output ohtained from the plate rircuit to the power required from the a.e. signal in the grid circuit. There is, no power lost in the grid circuit of a Class A_{1} amplifier, so such an amplifier has an infinitely large power-amplification ratio. However, it is quite possible to operate a (lass amplifior in such a way that current flows in its grid circuit during at least part of the revele. In such a case power is used up in the grid circuit and the power amplification ratio is not infinite. A tube operated in this fashion is known as a Class \mathbf{A}_{2} amplifier. It is necessary to use a power amplifier to drive a (lass A_{2} amplifier, berause a voltage amplifier cannot deliver power without serious distortion of the wave-shape.
Another term used in connection with power amplifiers is power sensitivity. In the case of a Chass Λ_{1} amplifier, it means the ratio of power output to the grid signal voltage that causes it If grid current flows, the term usually means the ratio of plate power output to grid power input.

The a.c. power that is delivered to a load by an amplifier tube has to be paid for in power taken from the souree of plate voltage and current. In fact, there is always more power going into the plate cireuit of the tube than is coming out as useful output. The difference between the input and output power is used up, in heating the plate of the tube, as explained previously. The ratio of useful power output to d.c. plate imput is called the plate efficiency. The higher the plate efficiency, the greater the amount of power that can be taken from a tube having a fixed plate-dissipation rating.

Parallel and Push-Pull

When it is necossary to obtain more power output than one tuhe is capable of giving, two or more similar tubes may be ronnerted in parallel. In this case the similar elements in all tubes are conneeted together. This method is shown in Fig. 3-12 for a transformereoupled amplifier. The power output is in proportion to the number of tubes used; the grid signal or exciting voltage required, however, is the same as for one tube.

If the amplifier operates in such a way as to consume power in the grid circuit, the grid power required is in proportion to the number of tubes used.

An increase in power output also ean be secured hy comnecting two tubes in push-pull. In this rase the grids and plates of the two tubes are comected to opposite ends of a balanced cireuit as shown in Fig. 3-12. It any instant the ends of the serondary winding of the input transformer, T_{1}, will be at opposite polarity with respert to the eathode connection, so the grid of one tube is swung positive at the same instant that the grid of the other is swung negative. Heme, in any push-pull-comected amplifier the voltages and currents of one tube are out of phase with those of the other tube.

Fig. 3-12 - I'arallel and puah-pull a.f. amplifier circuits.
In push-pull operation the even-harmonic (second, fourth, etc.) distortion is badanced out in the plate circuit. This means that for the same power output the distortion will be less than with parallel operation.

The exciting voltage measured between the two grids must be twice that required for one tule. If the grids consume power, the driving power for the push-pull amplifier is twice that taken by either tube alone.

Cascade Amplifiers

It is readily possible to take the output of one amplifier and apply it as a signal on the grid of a second amplifier, then take the second amplifier's output and apply it to a third, and so on. Gach amplifier is called a stage, and a number of stages used successively are said to be in cascade.

Class B Amplifiers

Fig. :3-1:3 shows two tubes connected in a push-pull circuit. If the grid bias is set at the point where (when mo signal is applied) the plate current is just cut off, then a signal can cause plate current to flow in cither tube oul! when the signal voltage applied to that particular tube is positive. Since in the balanced grid circuit the signal voltages on the grids of the two tubes always have opposite polaritios, plate current flows only in one tube at a time.
The graphs show the operation of such an amplifier. The plate current of tube B is drawn inverted to show that it flows in the opposite direction, through the primary of the output transformer, to the pate current of tube 1. Thus earh half of the output-transformer primaty works alternately to induce a half-cyole of roltage in the secondary. In the secondary of T 's, the original wawerm is restored. This type of operation is called Class B amplification.

The (lass: B amplifier is eomsiderably more efficient than the (lass it amplifier. Further-
more, the d.c. plate current of a Class B amplifier is proportional to the signal voltage on the grids, so the power input is small with small signals. The d.c. plate power input to a class A amplifier is the same whether the signal is large, small, or absent altogether; therefore the maximum input that can be applied to a class A amplifier is equal to the rated plate dissipation of the tube or tubes. Two tubes in a Class I 3 amplifier can deliver approximately twelve times as much audio power as the same two tubes in a (lass A amplifier.

A Class B amplifier usually is operated in such a way as to secure the maximum possible power output. This requires rather large values of plate current and to obtain them the grids must be driven positive with respect to the cathode during at least part of the cyele, so grid current flows and the grid circuit consumes power. While the power requirements are fairly low (as compared with the power output), the fact that the grids are positive during only part of the cyele means that the load on the preceding amplifier or driver stage varies in magnitude during the eyrle; the effective load resistance is high when the grids are not drawing current and relatively low when they do take current. This must be allowed for when denigning the driver.

Certain types of tubes have been designed specifically for (lass 13 service and can be operated without fixed or other form of grid bias ("zero-hiass" tubes). The amplification factor is so high that the phate current is small without signal. Because there is no fixed bias, the grids start drawing rurrent immediately whenever a signal is applied, so the grid-current flow is continuous throughout the recle. This makes the load on the driver much more constant than is the case with tubes of lower μ biased to phatecurrent cut-off.
('lass 13 amplifiers used at radio frequencies are known as linear amplifiers because they are

Fig. 3-13 - Class IB amplifier operation.
adjusted to operate in such a way that the power output is proportional to the square of the r.f. exciting voltage. This permits amplification of a modulated r.f. signal without distortion. Pushpull is not required in this type of operation; a single tube can be used equally well.

Class AB Amplifiers

A Class AB amplifier is a push-pull amplifier with higher bias than would be normal for pure (lass 1 operation, but less than the cut-off hias required for Class B. At low signal levels the tubes operate practically as Class A anplifiers, and the pate current is the same with or without signal. . It higher signal levels, the plate current of one tube is cut off during part of the negotive eycle of the signal applied to its grich, and the plate current of the other tube rises with the signal. The plate current for the whole amplifier also rises above the no-signal level when a large signal is applied.
In a properly-designed Class AB amplifier the distortion is as low as with a Class A stage, but the efficiency and power output are considerably higher than with pure Class I operat tion. I (lass AB amplifier can be operated either with or without driving the grids into the positive region. I Class AB_{1} amplifier is one in which the grids are never positive with respect to the cathode; therefore, no driving power is required - only voltage. A Class AB_{2} amplifier is one that has grid-current flow during part of the cyole if the applied signal is large; it takes a small amount of driving power. The (lass $A B_{2}$ amplifier will deliver somewhat more power (using the same tubes) but the Class $A B_{1}$ amplifier avoids the problem of designing a driver that will deliver power, without distortion, into a load of highly-variable resistance.

Operating Angle

Inspertion of Fig . 3-13 shows that either of the two tubes actually is working for only half the a.c. cycle and idling during the other half. It is convenient to describe the amount of time during which plate current flows in terms of electrical degrees. In Fig. 3-13 each tube has "180-degree" excitation, a half-cycle being equal to 180 degrees. The number of degrees during which plate current flows is called the operating angle of the amplifier. From the deseriptions given ahove, it should be clear that a (lass a amplifier has 3 bio-degree excitation, berause phate current flows during the whole evele. In a (lass: AB amplifier the operating angle is between 180 and 360 degrees (in cach tube) depending on the particular operating conditions chosen. The greater the amount of negative grid bias, the smaller the operating angle beomes.
An operating angle of less than 180 degrees leads to a considerable amount of distortion, beause there is no way for the tube to reproduce even a half-rycle of the signal on its grid. Using two tubes in push-pull, as in Fig. 3-13, would merely put together two distorted half-ereles. In operating angle of lews than liso degrees
therefore camot be used if distortionless output is wanted.

Class C Amplifiers

In power amplifiers operating at radio frequencies distortion of the r.f. waveform is relatively unimportant. For reasons described later in this chapter, an r.f. amplifier must be operated with tuned circuits, and the selertivity of surh circuits "filters out" the r.f. harmonics resulting from distortion.

A radio-frequency power amplifier therefore can be used with an operating angle of less than 180 degrees. This is called Class C operation. The advantage is that the plate efficiency is increased, because the loss in the plate is proportional, anong other things, to the amount of time during which the plate current flows, and this time is reduced by decreasing the operating angle.

Depending on the type of tube, the optimum load resistance for a Class (; amplifier ranges from about 1500 to 5000 ohms. It is usually secured by using tuned-circuit arrangements, of the tope described in the chapter on circuit fundamentals, to transform the resistance of the actual load to the value required by the tube. The grid is driven well into the positive region, so that grid eurrent flows and power is consumed in the grid circuit. The smaller the operating angle, the greater the driving voltage and the larger the grid driving power required to develop full output in the load resistance. The hest compromise between driving power, plate efliciency, and power output usually results when the minimum plate voltage (at the peak of the driving cycle, when the plate ourrent reaches its highest value) is just equal to the peak positive grid voltage. Under these conditions the operating angle is usually from 150 to 180 degrees and the plate efficiency lies in the range of 70 to 80 percent. While higher plate efficiencies are possible, attaining them requires excessive driving power and grid bias, together with higher plate voltage than is "normal" for the particular tube type.

With proper design and adjustment, a Class (; amplifier can be made to operate in such a way that the power input and output are proportional to the square of the applied plate voltage. This is an important consideration when the amplifior is to be plate-modulated for radiotelephons, as described in the chapter on amplitude modulattion.

- FEED-BACK

It is possible to take a part of the amplified energy in the plate circuit of am amplifier and insert it into the grid circuit. When this is done the amplifier is said to have feed-back.

If the voltage that is inserted in the grid circuit is 180 degrees out of phase with the signal voltage acting on the grid, the feed-back is called negative, or degenerative. On the other hand, if the voltage is fed back in phase with the grid signal, the feed-hack is called positive, or regenerative.

Negative Feed-Back

With negative feed-bark the voltage that is fed back opposes the signal voltage. This decreases the amplitude of the voltage acting between the grid and cathode and thus has the effect of reducing the voltage amplification. That is, a larger exciting voltage is required for obtaining the same output voltage from the plate circuit.

The greater the amount of negative feed-back (when properly applied) the more independent the amplification becomes of tube characteristios and circuit conditions. This tends to make the frequencr-response characteristic of the amplifier flat - that is, the amplification tends to be the same at all frequencies within the range for which the amplifier is designed. Mse, any distortion generated in the phate circuit of the tube tends to "luack itself out." Implifiers with nogrative feed-hark are therefore comparatively froe from harmonic distortion. These advantages are worth while if the amplifior otherwise has enough voltage gain for its intemded use.

(B)

Fig. 3.14- Sinıple cirenits for produring fred-thats.
In the circuit shown at A in Fig. :3-1t rexistor R_{0} is in series with the regular phate resistor, R_{p}, and thus is a part of the load for the tube. Therefore, part of the output voltage will appear across R_{c}. However, R_{c} also is commected in series with the grid cireuit, and so the output voltage that appears across R_{c} is in series with the signal voltage. The output voltage across $R_{\text {r }}$ opposes the signal voltage, so the actual ace voltage between the grid and cathode is equal to the difference between the two voltages.

The circuit shown at B in Fig. 3-1\& cin be ased to give either negative or positive fordhark. The secondary of a transformer is comocted back into the grid circuit to insert a desired amome of feed-back voltage. Reversing the terminals of either transformer winding (but not both simultaneously) will reverse the phase.

Positive Feed-Back

Positive feed-back increases the :mplification berame the feed-hack woltage adde to the original signal voltage allul the resulting largor woltage on
the urid canses a larger output voltage. The amplification tends to be greatest at one feequency (depending upon the particular circult arrangement) and harmonic distortion is increased. If enough energy is fed back, a selfsustaining oscillation - in which energy at essentially one frequency is generated by the tube itself - will be set up. In such case all the signal voltage on the grid can be supplied from the plate cirenit; no external signal is needed because any small irregularity in the plate current - and there are always some such irregularities - will he amplified and thus give the oscillation an opportmity to build up. Oscillations obviously would be undesirable in an ordinary audiofrequener amplifier, and for that reason (as well as the others mentioned above) the use of positive feed-back is confined principally to "oscillators."

- INTERELECTRODE CAPACITANCES

Kach pair of elements in a tube forms a small condenser, with earh element arting as a condenser "plate." There are three such eapacitanes in a triode - that between the gride and cathode, that botwen the grid and plate, and that between the plate and wathode. The capmatances are very smatl - only a few micromicrofarads at most - hut they frequently have a very pronounced effect on the operation of an amplifier circuit.

Input Capacitance

It was explained previously that the a.ce. grid voltage and a.ce plate voltage of an amplifier having a resistive houl are 1 so degrees out of phase, using the cathode of the tube as a reference point. However, these two voltages are in phase going around the circuit from plate to grid as shown in Fig. 3-15. This means that their sum is acting between the grid and plate; that is, aross the grict-plate caparitance of the tube.

As a result, a capacitive current flows around the circuit, its amplitude being directly proportional to the sum of the a.c. grid and pate voltages and to the grid-plate capacitance. The source of grid signal must furnish this amount of current, in addition to the caparitive current that flows in the grid-cathode capacitance. Hence the signal source "sees" an effective capacitance that is larger than the grideathode eapacitance. The greater the voltage amplification the greater this effective imput capmitance. The input apari-

Fig. 3-1. - 'J'lue are whage appraring lertwero the grid and plate of the amblitier is the sum of the signal

tance of a resistance-coupled amplifier is given by the formula

$$
C_{\text {input }}=C_{\text {kk }}=C_{\text {kpp }}^{\prime}(A+1)
$$

where $C_{k k}$ is the grid-to-cathode caparitance, $C_{\text {xp }}$ is the grid-to-plate capateitance, and A is the voltage amplification. The capacitance may be as much as several hundred micromierofarads when the voltage amplification is large, even though the interelectrode eapacitances are quite small.

Output Capacitance

The principal component of the output capacitance of an amplifier is the actual plate-tocathode eapacitane of the tube. The output caparitance usually need not be considered in audio amplifiers, but becomes of importance at radio frequencies.

Tube Capacitance at R.F.

At radio frequencies the reactinces of even very small interelectrode capacitinces drop to very low values. A resistance-coupled amplifier camot be ased at rof, for example, hecause the reantances of the interelectrode "condensers" are so low that they practirally short-circuit the input and output circuits and thus the tube is unable to amplify. This is overome at radio frequencies by using tuned circuits for the grid and plate, making the tube capacitances part of the tuning caparitances. In this way the cireuits (en have the high resist ive impedanees necessary for satisfactory amplitication.

The grid-plate rapacitance is important at radio, frequencies because it is, in effect, a coupling condenser between the grid and plate circuits. Since its reactance is relatively low at r.f., it offers a path over which energy ean be fed back from the phate to the grid. In practically every ease the feed-hack is in the right phase and of suflicient amplitude to cause oscilation, so the circuit beromes useless as an amplifier.

Sperial "noutralizing" rircuits can be used to prevent feed-back but they are, in general, not too satisfactory when used in radio receivers. They are, however, widely used in transmitters.

SCREEN-GRID TUBES

The grid-plate cemacitane ean be reduced to a negligible value by inserting a somond grid between the eontrol grid and the plate, as indicated in Pig. :3-16. The serond grid, callerl the screen grid, acts as an electrostatic shied to prevent eapacitive coupling between the eontrol grid and plato. It is made in the form of a grid or coarse sereren so that electrons can pass through it.

Berause of the shielding action of the soreen grid, the positively-eharged plate commot attract electrons from the cathode as it does in a triode. In order to get electrons to the plate, it is alio, neressary to apply a positive voltage (with respect to the eathede) to the sereen. The sereen then attracts electrons much as does the plate in a triode tube. In traveling toward the screen the electrons aeguire such velority that most of them
shoot between the screen wires and then are attracted to the plate. 1 certain proportion do strike the screon, however, with the result that some current also flows in the screen-grid circuit.

To be a good shield, the sereen grid must be comnerted to the cathode through a cireuit that has low impedance at the frequency being amplified. A by-pass condenser from screen grid to (athode, having a reactance of not more than a few hundred ohms, is generally used.

A tube having a cathode, control grid, sereen grid and plate (four elements) is called a tetrode.

Fig. 3-16-Representative arrangement of elements in a screen. grid tube, with front part of plate and sereen grid cut away. In this draw. ing the control-grid connection is made through a cap on the top of the tober, thus eliminating the rapacitance that wrould exist between the plate- and grid-lead wires if both passed throngh the hase. "Single-ended" tubes that have both lads going throngh the Juse use special shielding and construction to eliminate interlead ca. pacitance.

Pentodes

When an electron traveling at apprecialble velocity through a tube strikes the plate it dislodges other elcertrons which "splash" from the plate into the interelement space. This is called secondary emission. In a triode the negative grid repels the secondary electrons back into the plate and they cause no disturbance. In the sereen-grid tube, however, the positively-eharged sereen attructs the secondary electrons, causing a reverse current to flow between sereen and plate.

To overcome the efferts of secondary emission, a thiral grid, called the suppressor grid, may be inserted between the soreen and phate. This grid, which usually is connected directly to the eathode, repels the relatively low-velocity secondary clectrons. They are driven back to the pate without appreciably obstrueting the regular plate-current flow. A five-element tube of this type is called a pentode.

Although the screen grid in either the tetrode or pentode greatly reduces the influence of the plate upon plate-current flow, the control grid still can control the plate current in essentially the same way that it dues in a triode. Constquently, the grid-plate transconduetance (or mutual conductince) of a tetrode or pentode will be of the same order of value as in a triode of "ol-
responding structure. (In the other hand, since a change in plate voltage has very little effert on the plate-current flow, both the amplification factor and plate resistance of a pentode or tet rode are very high. In small receiving pentodes the amplification factor is of the order of 1000 or higher, while the plate resistance may be from 0.5 to 1 or more megohms. Because of the high plate resistance, the actual voltage amplification possible with a pentode is very much less than the large amplification fartor might indicate. A voltage gain in the vicinity of 50 to 200 is typical of a pentode stage.

In practical soreen-grid tubes the grid-plate capacitance is only a small fraction of a mideromicrofarad. This rapacitance is too small to cause an appreciable increase in input capacitance as described in the preceding section, so the input caparitance of a screen-grid tube is simply the sum of its grid-cathode caparitance and control-grid-to-srreen caparitance. The output capacitance of a sereen-grid tube is egual to the caparitance between the plate and sereen.

Pentode R.F. Amplifier

Fig. 3-17 shows a simplified form of r.f. amplifier rircuit using a pentode tube. Radiofrequency energy in the small coil coupled to L_{1} is built up in voltage in the tuned eireuit, $L_{1} 1^{\prime}$, when $L_{1}\left({ }_{1}\right.$ is tuned to resomane with the frequency of the ineoming signal. The voltage that appears across $L_{3} \mathrm{C}_{1}$ is applied to the grid and cathode of the tube and is amplified by the tube. A second resomant circuit, $h_{2} e^{\prime}$, is the load for the plate of the tulve, its parallel impedance being high berause it is tuned to resonance with the frequency applied to the grid. R.f. output can be taken from the roil coupled to L a. The sareengrid voltage is obtained from a tap on the plate hattery; most tubes are designed for operation with the sereen voltage considerably lower than the plate voltage. In this circuit the battorios are assumed to have low impediance for the r.f. current; in a practical eircuit, by-pass condensers would be used to make sure that the impedances of the return paths are so low as to be negligible.

Audio Amplification

In addition to their applications as radiofrequency amplifiess, pentode or tetrode sereengrid tubes also can be constructed for audiofrequency power amplification. In tubes designed for this purpose the chief function of the sereen is to serve as an arcelerator of the electrons, so that large values of plate current can be drawn at relatively low plate voltages. Such tubes have quite high power sensitivity compared with triodes of the same power output, although hatrmonir distortion is somewhat greater.

Beam Tubes

A beam tetrode is a four-element screen-grid tube constructed in such a way that the electrons are formed into concentrated beams on their way to the plate. Idditional design features overome the efferts of secondary emission so that a sup-

Fig. 3-17 - Simplified pentode r.f-amplifier circuit. $L_{1} C_{1}$ and $L_{2} C_{2}$ are tund to the same frequency.
pressor grid is not needed. The "heam" eonstruction makes it possible to draw large plate rurrents at relatively low plate voltages, and increases the power sensitivity.

For power amplification at both audio and radio frequencies beam tetrodes have largely supplanted the pentode type because large power outputs can be secured with very small amounts of grid driving power. The circuits with which they are used are practically identical with those used for pentodes.

Fig. 3-18-Curves showing the relationship between mutual condurtance and negative grid bias for two small receiving pentodes, one a sharp cut-off type and the other a variable- type.

Variable- μ Tubes

The mutual condurtance of a vacuum tube decreases with increasing negative grid bias, assuming that the other elertrode voltages are held constant. Since the mutuad eonductance controls the amount of amplifiation, it is possible to adjust the gain of the amplifier by adjusting the grid bias. This method of gain control is universally used in radio-frequency amplifiers designed for receivers, some means of controlling the r.f. gain is essential in a receiver having a number of amplifiers, because of the wide range in the strengths of the incoming signals.

The ordinary type of tube has what is known as a sharp cut-off characteristir. The mutual conductance decreases at a uniform rate as the
negative bias is increased, as shown in Fig. 3-18. The amount of signal voltage that such a tube can handle without causing distortion is not sufficient to take care of very strong signals. To overcome this, some tubes are made with a variable- μ characteristic (that is, the amplification factor rhanges with the grid bias), resulting in the type of curve shown in Fig. :3-18. The variable- μ tube can handle a much larger signal than the sharp cut-off type before the sigmal swings either berond the zefo grid-bias point or the plate-rurrent cut-off puint.

OTHER TYPES OF AMPLIfIERS

In the amplifier cireuits so far discussed, the signal has been applied between the grid and cathode and the amplified output has been taken from the plate-to-cathode circuit. That is, the cuthode has been the meeting point for the input and output circuits. However, it is possible to use any one of the three principal eloments as the common point. This leads to two different kinds of amplifiers, commonly called the grounded-grid amplifier (or grid-separation circuit) and the cathode follower.

Fin. 3-19 - In the upper circuit, the grid is the junction point between the input and ontpout eircuita. In the lower drawing, the plate is the junction. In either eave the output is deviloned in the hand resiatur. R, and may le coupled to a following amplifier by the u-lal methods.

These two circuits are shown in simplified form in Fig. 3-19. In both eirents the resister 1 A represents the load into which the amplifier work: the actual load maty be resistance-rapacitancecoupled, tatustomer-eoupled, may be a thmed circuit if the amplifier operates at radio frefuencies, and so on, Also, in buth rircuits the batteries that supply grid bias and plate power are assumed to have such negligible impedance that thes do not enter into the opmation of the cirruits.

Grounded-Grid Amplifier

In the grounded-grid amplifier the input signal is applied between the cathode and grid, and the output is taken between the phate and grid. The grid is thus the common element. The plate current (including the a.e. component) has to flow through the signal somere to reath the cathocte. This souree always has appreciable impedance,
and the alternating plate current causes a voltage drop that is out of phase with the signal and the eirenit is therefore degenerative. Aso, since the source of signal is in series with the load through the plate-to-cathode resistance of the tube, some of the power in the load is supplied by the signal source. The result is that the signal source is called upon to furnish a considerable amount of power.

The imput impedance of the gromnded-grid amplifier consists of a capacitance, calculated in a similar way as for the grounded-cathode amplifier, in parallel with an equivalent resistance representing the power furnshed be the driving source to the load. The output impedance, neglecting the interelectrode capacitances, is equal to the plate resistance of the tube. This is the same as in the case of the grounded-rathode amplificr.

The grounded-grid amplifier finds its chief application at v.h.f. and u.h.f., where the more conventional amplifier circuit fails to work properly. With a triode tube designed for this type of operation, an r.f. amplifier can be built that is free from the type of feed-back that causes osillation. This requires that the grid act as a shield betwen the cathode and plate, reducing the plate-cathode capacitance to a very low value.

Cathode Follower

The cathode follower uses the plate of the tube as the common dement. The input signal is apphied betwenn the grid and plate (assuming negligible impedance in the batteries) and the output is taken from betwern cathode and plate. This rireuit, like the grounded-grid amplifier, is degenerative: in fart, wll of the output voltage is fed batek into the input circuit. The input signal therefore has to be larger than the output voltage; that is, the cathode follower gives a loss in voltage, although it gives the same power gain as ot her circuits.

An important feat ure of the cathode follower is its low output impedance, which is given be the formula (neglecting the grid-io-rathote catparitance)

$$
Z_{\mathrm{outpu}}=\frac{r_{\mathrm{V}}}{1+\mu}
$$

where r_{p} is the tube plate resistance and μ is the amplification factor. This is a valuable characteristic in an amplifier designed to cover a wide band of irequencies. In addition, the input cat pacitance is only a fraction of the grid-to-eathode (apacitane of the tube a leature of further benefit in a wide-band amplifier. The cathode follower is wiciul as a sep-down impedance transformer, sine the input impedance is high and the output impedance is low.

CATHODE CIRCUITS AND GRID BIAS

Most of the equipment used by amateurs is powered by the ace, line, This includes the filaments on heaters of varuun tubers. . Dlthough supplies for the plate (and sumotimes the grid)

Fig, 3-20-Jilament center-tapping methods for use with directlyheated tuber.
are usually rectified and filtered to give pure d.c. - that is, direct current that is constant and without a superimposed arc. component - the relatively large currents required by filaments and heaters usually make a rectifier-type d.c. supply impracticable.

Filament Hum

. Iternating current is just as good as direct curront from the heating standpoint, but some of the a.ce. voltage is likely to get on the grid and rause a low-pitched "a.c. hum" to be superimposed on the output.
Hum troubles are worst with directly-heated cathodes or filaments, becouse with such cathodes there has to be a direct comnection between the source of heating power and the rest of the circuit. The hum can be minimized by cither of the connections shown in Fig. 3-20. In both cases the grid- and plate-return circuits are connected to the electrical midpoint (center-tap) of the filament supply. Thus, so far as the grid and plate are concerned, the voltage and current on one side of the filament are balaned by an equal and opposite voltage and current on the other side. The halance is never quite profect, however, so filament-type tubes are never completely humfree. For this reason directly-heated tilaments are employed for the most part in power tubes, where the amount of hum introduced is extromely small in comparison to the power-output level.
With indirertly-heated cathodes the chief problem is the magnetic field set up hy the heater. Occasionally, also, there is leakage between the heater and cathode, allowing a small a.ce voltage to get to the grid. If hum appears, grounding one side of the heater supply usually will help to reduce it, although sometimes better results are ohtained if the heater supply is center-tapped

Fig. 3-2l-Cathode biasing. K is the cathode resis. lor and C is the cathode by-pass condenser.
and the center-tap gromoled, as in Fig. 3-20.

Cathode Bias

In the simplified amplifier circuits discussed in this chapter, grid bias has been supplied by a battery. However, in equipment that operates from the power line cathode bias is the type commonly used.

The cathode-bias method uses a resistor (cathode resistor) romnerted in series with the cathode, as shown at R in Fig. 3-21. The direction of platerurrent flow is such that the end of the resistor nearest the cathode is positive. The voltage drop across R therefore places a negutive voltage on the grid. This negative bias is obtatined from the steady d.c. plate current.

If the altemating component of plate current flows through R when the tube is amplifying, the voltage drop caused by the a.e. will hre dogemerattive (note the similarity between this rircuit and that of Fig. 3-14.1). To prevent this the resistor is by-passed by a fondenser, (', that has very low reactance compared with the resistance of R. Depending on the type of tube and the particular kind of operation, k may be between about 100 and 3000 ohms. For good by-passing at the low audio frequencies, C should be 10 to 00 mierofarads (electrolytie condensers are used for this purpose). It radio frequencies, capacitances of about $100 \mu \mu \mathrm{fd}$. to $0.1 \mu \mathrm{fd}$. are used; the small values are sufficient at very high frequencies and the largest at low and medium frequencies. In the range 3 to 30 megacyeles a capacitance of $0.01 \mu \mathrm{fd}$. is sat isfactory.

The value of cathode resistor for an amplifier having negligible d.c. resistance in its plate circuit (transformer or impedance coupled) cin easily be caldulated from the known operating conditions of the tube. The proper grid bias and plate current always are specified by the manufacturer. Knowing these, the required resistance can be found by applying Ohm's Law.

Example: It is found from tube tables that the tube to be used should have a negative grid bias of 8 volts and that at this bias the plate current will be 12 milliamperes (0.012 amp). The required cathode resistance is then

$$
R=\frac{E}{I}=\frac{8}{0.012}=667 \mathrm{ohms}
$$

The nearest standard value, 680 ohms, would he close enough. The power used in the risistor is

$$
P=E I=8 \times 0.012=0.096 \text { watt. }
$$

A $1 / 4$-watt or $1 / 2$-watt resistor would have ample rating.

The current that flows through R is the total cathode current. In an ordinary triode amplifier this is the same as the pate current, but in a screen-grid tube the cathode current is the sum of the plate and screen currents. Hence these two currents must be added when calculating the
value of cathode resistor required for a screengrid tube.

Example: A receiving pentode requires 3 volts negative bias. At this biss and the recommended plate and screen voltages. its plate current is 9 mab and its screen current is 2 ma. The cathorde current is therefore 11 aia. (0.011 amp.). The required resistance is

$$
R=\frac{E}{I}=\frac{3}{0.011}=272 \text { ohms. }
$$

A 270 -ohm resistor wotd be satisfactory. The power in the resistor is

$$
P=E I=3 \times 0.011=0.033 \text { watt. }
$$

The cathode-resistor method of biasing is selfregulating, because if the tube characteristics vary slightly from the pulbished values (as they do in practice) the bias will increase if the plate current is slightly high, or decrease if it is slightly low. This tends to hold the plate current at the proper value.

Calculation of the cathode resistor for a re-sistance-coupled amplifier is ordinarily not practicable by the method described above, because the plate current in such an amplifier is usually much smaller than the rated value given in the tube tables. However, representative data for the tubes commonly used as resistance-oupled amplifiers are given in the chapter on audio amplifiers, including cathode-resistor values.

Screen Supply

In practical circuits using tetrodes and pentodes the voltage for the screen frequently is taken from the plate supply through a resistor, 1 typical circuit for an r.f. amplifier is shown in Fig. $3-22$. Resistor k is the screen dropping resistor, and C is the screen by-pass condenser. In flowing through R, the sereen current causes a voltage drop, in l that reduces the phate-supply voltage to the proper value for the sereom. When the plate-supply voltage and the screen current are known, the value of R can be calculated from Ohm's Law.

$$
\begin{aligned}
& \text { Example: An r.f. receping pentode has atrated } \\
& \text { serven current of } 2 \text { milliamperes (} 0.002 \text { atmp.) at } \\
& \text { normat operating conditions. The rated sereen } \\
& \text { voltare is } 100 \text { volts, and the plate suphly wives } \\
& 2.50 \text { volts. To put } 100 \text { volts on the sureen, the } \\
& \text { (droj) ateross } R \text { tumst lee entuat to the difference } \\
& \text { betwern the plate-suphly voltate and the sereen } \\
& \text { voltage; that is, } 2.00-100=1.50 \text { volts. "Then } \\
& R=\frac{F}{l}=\frac{1: 00}{0,002}=7.5,000 \text { ohms. } \\
& \text { The power to be dissinated in the resistor is } \\
& P=E I=1.30 \times 0.002=0.3 \text { watt } . \\
& \text { A } 1 / 2 \text { - or } 1 \text {-watt resistor would be satisfactory. }
\end{aligned}
$$

The reactance of the sereen by-pats condenser, C, should be low (compared with the sereen-tocathode impedane for radio-frequency applieations a capacitance in the vieinity of $0.01 \mu \mathrm{fd}$. is amply large.

In some circuits the sereen voltage is ohtained from a voltage divider comected across the plate supply: The design of voltage dividers is discussed at length in the chapter on I'ower supplies.

Fif. 3-22 - Screen-voltage supply for a pentode tube throngh a dropping resistor, R. 'The sereen by-quas comdenser, C, most have low enough reactance to bring the soreen to gromid potential for the freguency or freopmedes being amplified.

SPECIAL TUBE TYPES

Multipurpose Tubes

"Combination" tubes are available to perform more than one function, particularly in receiver arcuits. For the most part these are simply multiunit tules made up of individual tubeelement structures, combined in a single bulb for compactness and economy.

Among the simplest multipurpose types are full-wave rectifiers, combining two diodes in one envelope, and twin triodes, consisting of two triodes in one bulb. More complex types include duplex-diode triodes (two dionles and a triode in one structure), duplex-diode pentodes, converters and mixers (for superheterodyne ro(rivers), combination power tubes and rectifiers, and so on.

Mercury-Vapor Rectifiers

Fior a given value of plate current, the power lost in a diode rectifier will be reduced if it is possible to decrease the voltage drop from plate to cathode. I small amount of mercury in the tube will vaporize when the cathode is heated and, further, will ionize when plate voltage at least equal to a certain minimum value (ionizing voltage) is applied. The positive ions neutralize the space charge and reduce the plate-mathode voltage drop to a practically constant value of about 15 volts, regardless of the value of phate current.
Since this voltage drop is smaller than can be attained with purely themionic conduction, there is less power loss in a mercury-vapor rectifior than in a vacuum rectifier. Also, the voltage drop in the tube is constant despite variations in load current. Mercurs-vapor tubes are widely used in rectifiers built to deliver large power outputs.

Grid-Control Rectifiers

If a grid is inserted in a mercury-vapor rectifier it is found that, with sufficient negative grid bias, it is possible to prevent plate current from flowing. Howerer, this is true omly if the bins is present before plate voltage is applied. If, after applying plate voltage, the bias is lowered to the point where plate current can flow, the meroury vapor will ionizo and the grid will lose control of
plate current, because the spare charge disappears when ionization oceurs. The grid an assume eontrol again onle after the plate voltage is reduced below the deionizing voltage, which is somewhat less than the platerathode voltage drop during plate-current flow.

The same phenomenon also occurs in triodes filled with other gases that ionize at low pressure. Grid-control rectifiers or thyratrons find considerable application in "electronic switching," and in timing devices. Both triode and tedrode types are manufactured.

Oscillators

It was mentioned carlier in this chapter that if there is enough positive feal-back in an amplifier circuit, self-sustaining oscillations will be sot up. When an amplifier is arranged so that this condition exists it is called an oscillator.

Oscillations normally take place at only one frequency, and a desired frequency of oscillation can be obtained by using a resonant circuit tuned to that frequency. For example, in Fig, :3-2:3:1 the eireuit $L C$ is tuned to the derired frequency of oscillation. The cathode of the tube is conneeted to a tap on eoil L and the grid and plate are connected to opposite ends of the tuned circuit. When an r.f. current flows in the tunod circuit there is a voltage drop across L that increases progressively along the turns. Thus if the top end of L is prsitive at some instant the botton end will be negative, and the point at which the tap is comected will be at an intermediate potential. The amplified current in the plate rircuit, which flows through the bottom seretion of L, is in phase with the current already flowing in the circuit and thus in the proper relationship for positive feed-back.

(A)

Fíg. 3-2.3 - Basie nscillator eircuits. Ferd-hach voltage is obtained by tapping the grid and cathode atornse a portion of the tuned cirenit. In the Itartley circonit the tap is on the coil, but in the (inpitt- circuit the voltage is obtained from the drob acrose a condenser.

The amount of feed-hack depmeds on the prisition of the tap. If the tap, is too near the grid and the voltage drop between grid and cathode is tow small to give emough fered-hark to sustain onsillattion, and if it is tow near the plate end the impedance between the cathode and plate is tow small to permit good amplifieation. Maximum
feed-back usually is obtained when the tap is somewhere noar the center of the coil.
The rircuit of Fig. 3-23. 1 is parallel-fed, C_{b} being the blocking condenser. The value of C_{b} is not eritical so long as its reactance is low (a few hundred ohms) at the operating frequency.

Condenser (${ }_{k}$ is the grid condenser. It and R_{g} (the grid leak) are used for the purpose of obtaining grid bias for the tube. In practieally all oscillator circuits the tube generates its own bias. During the part of the cevele when the grid is positive with resuret to the cathode, it attracts clectrons. These electrons amot flow through L back to the cathode becouse ('g "blocks" direct current. Thes therefore have to flow or "leak" through R_{z} to cathode, and in doing so cause a voltage drop in l_{g} that places a negative bias on the grid. The amount of bias so developed is equal to the grid current multiplied by the resistance of R_{g} (Ohm's Law). The value of gridleak resistance reguired depends upon the kind of tube used and the purpesie for which the oscollator is intended. Values range all the way from a few thousand to several hundred thousand ohms. The capacitance of ('k should be large enough to have low reactance (a few hundred ohms) at the operating frequeney.
The rireuit shown at B in Fig. 3-2:3 uses the voltage drops arross two condensers in series in the tuned circuit to supply the feed-back. Other than this, the operation is the same as just deweribed. The feed-bark can be varied by varying the ration of the reactances of C_{1} and C_{2} (that is, by varying the ratio of their (apacitances).

Inother type of oscillator, called the tunedplate tuned-grid circuit, is shown in Fig. :3-24. Resonant circuits tuned approximately to the same frequency are comnerted between grid and cathode and between plate and cathode. The two roils, L_{1} and L_{2} tre not magnotically coupled. The feed-hark is through the grid-phate caparitance of the tube, and will be in the right phase to be positive when the plate rircuit, (${ }_{2} L_{2}$, is tuned to a slightly higher frequency than the grid circolit, $L_{1} \epsilon_{1}$. The amount of feed-barek can be adjusted by varsing the tuning of either rirruit. The frecpueney of aseillation is determined by the tured eireuit that has the higher (). The grid leak and grid comdenser have the same functions as in the other rireuits. In this case it is combenient to use series fered for the plate rimuit, su (io in a ber-pass condenser to guide the r.f. current aromed the plate supply.
"There are many useilator cirruits, some using two or more tubes, but the basic feature of all of them is that there is positive ferel-barek in the proper amplitude to sustain oseillation.

High-Frequency Communication

Abstract

Much of the appeal of amateur communieation on the high frequencies lies in the fact that the rewalts are not always predictable. Transmission conditions on the same frequeney vary with the year and even with the time of day. . Nthough there variations usually follow eertain established "yekes, mamy peruliar effects can be observed from time to time. Every radio amateur should have some understanding of the known farts about radio wave propagation so that he will stand some chance of intorpreting the unusual

conditions when ther oreur. The observant amateur is in an excellent position to make worthwhile contributions to the serience, provided he has: sufficient background to understand his results. He may discover now facts about propatgation at the very-high frequencies or in the microwave region, as amateurs have in the past. In fact, it is through amateme cefforts that most of the extended-range pessibilities of various radio freguencios have been diseovered, either throughacedent or long and careful investigation.

What To Expect on the Various Amateur Bands

The 1.8-Mc., or "Itio-meter," band offers reliable working over ranges up to 25 miles or so during daylight. On winter nights, ranges up to sereral thousand miles are not impossible. Only smatl sertions of the band are currently a vailable to amateurs, beqause of the presence of the loran sorviece in that part of the spertrum. The pulsetye interforenee somedimes caused be loran can be readily oliminated bey using an adido limiter in the remoiner

The 3.5-M(e, or "so-meler," band is a more useful band during the night than during the daylight hours, In the daytime, one "an seldom hear signals from a distance of greater than 20') miles or so, but during the darknoses hours distances up to several thousand mikes are not unusual, and transoceamid contacts are regularly made during the winter months. During the summer, the static level is high in some parts of the world.

The $\overline{-}$-Mre, or "40-meter," band has matyy of the same chatractoristies as 3.a, exept that the distames that can be covered during the day and night hours are increased. During darlight, distances up to at thousand miles can le covered under good conditions, and during the dawn and dusk periods in winter it is possible to work stat tions as far as the other side of the world, the signats following the darkness path. The winter months are somewhat better than the summer omes. In general, summer statio is mueh less of a problem than on 80 meters, atthough it can be scrious in the semitropiral zones.

The 1t-Mc., or "20-moter," band is probathy the best one for long-distance work. During bortions of the sunspot cyale (diseussed later in this (hapter) it is open to some part of the world during prawtically all of the 24 hours, while at other times it is generally usoful only during daylight hours and the dawn and dusk poriods.

The 21-Mr., or "15-met er", hand shows highly variable chatracteristice depending on the sumspot evcle. During sumpot maxima it is useful for long-distance work during a large part of the et hours, bat in vears of low sumspot ardivity it is almest wholly a daytime bamd, and sometimes unusable even in daytime. However, it is often possible to maintain communiation over dislances up to 1500 miles or more ber somadic- E ionization (described later), which may orcur dither day or night at ally time in the sunspot (erle.

The 2--Me. ("11-meter") and 28-Me. ("10moter") bands are generally considered to be f) $\mathrm{X}^{\text {h }}$ hands during the daylight hours and good for local work during the hours of darkness, although at the peak of the sumspot cerde, they are "open" into the late evening hours for DX communication. It the sunspot minimum these bands are usually "dead" for long-distanee communieation in the nothern latitudes. Nevertheless, sporadie- E propagation is likely to orear at any time, just ass in the ease of the 21-Me. hamel. The v.h.f. and u.h.f. bands (50 Me. and higher) are considered in detail in the chapter on v.h.f. propagation.

Characteristics of Radio Waves

Radio waves atre hasically of the same mature as light and heat. which also atre forms of ehetronagnetic radiation. The primeipal difterence is in the wawellength, which in the case of radio
 light or hatat. However, all there tepes of radiastion trawelat the same speed (300,000,000 meters per serond) in froe spare, and have similar prop-
erties in that they all ean be reflereded, refracted, and diffracted.

As described in the chapter on fundamentals, an electromagnetic wave is composed of moving fields of clectrie and magnetic force. The lines of foree in the two fiolds are at right angles, and are mutually perpendicular to the direction of travel. A simple representation of a wave is shown in Fig. f-I. In this drawing the cleetric lines are perpendiculat to the earth and the magnetie lines are horizontal. Ther could, however, have any position with respect to carth so long as they remain perpendicular to each other.

Fig. 4-1-Representation of electrostatic and electromagnetic lines of force in a radio wave. Arrows indicate intantatheots directions of the fielda for a wave travel. ing toward the readar. Reversing the direetion of one set of lines would reverse the direction of travel.

The plane containing the continuous lines of elecetric and magnetic foree shown by the grid- or mesh-like drawing in lig. $4-1$ is called the wave front.

Polarization

The polarization of a radio wave is taken as the direction of the lines of foree in the electrie field. If the electric lines are perpondicular to the earth, the wave is said to be vertically polarized; if parallel with the earth, the wave is horizontally polarized. The longer waves, when traveling along the ground, usually maintain their polarization in the same plane as was generated at the antenna. The polarization of shorter waves may be altered during travel, however, and sometimes will vary quite rapidly.

Medium of Propagation

The medium in which elertromagnetic waves travel has a marked influence on the speed with which they move. When the medium is empty spare the speed, as stated above, is $300,000,000$ meters per second. It is almost, but not quite, that great in air, and is much less in some other sulstances. In dielectries, for example, the speed is inversely proportional to the dielectric constant of the material.

When a wave meets a good conductor it cannot penetrate it to any extent (although it will
travel through a dielectric with ease) because the electric lines of fore are practically shortcirruited.

Reflection

A light ray traveling through air of uniform characteristics goes in a straight line, but when it meets some object having different propertios its path is shifted. If the "discontinuity" is sufficiently great in extent, as compared with the wavelength of light, and if the change in properties is abrupt, the ray may be reflected. The diseontinuity may be either at change in the dielectric constant or the rondurtivity of the modium. Similarly, a radio wave will be reflected under comparable conditions. However, the discontinuity set up by the reflecting object must at least be comparahle with the wavelongth in size, to cause reflection of radio waves. Nevertheless, objects as small as an airplane, a tree, or even a man's body will reflect waves a few feet long and less.

Refraction

When a wave meets a discontinuity that it can penetrate. the change in speed catuses its path to be deflocted, if it enters at any angle other than the perpendicular to the surface of the new medium. That part of the wave front that enters the new medium first travels at the now sped before the trailing part of the wave front enters, and so the wave as a whole is swung around or refracted. The new direction depends on the differener in speed in the two morlia, and on the wavelength. Wiave "bending" by refraction is the mechanism by which long-distance communication at high frequencies is possible. The medium in which the bending takes plare is an ionized region, called the ionosphere, in the upper atmosphere. 'The composition and properties of the ionosphere are discussed later in this chapter.

Diffraction

When a wave grazes the odge of an olject in passing, it tends to be bent around that edge. This effert, called diffraction, restults in a diversion of part of the cnergy of those waves which normally follow a straight path, so they may be received at some distance below the summit of an olstruction or around its pdges.

Spreading

The field intensity of a wave is inversely proportional to the distance from the source, Thus if one receiving point is twiee as far from the transmitter as another, the firld strength at the more distant point will be just half the firld strength at the nearer point. This results from the fart that the enorgy in the wave front must be distributed over a greater area as the wave moves awity from the source. This inverse-distance law is based on the assumption that there is nothing in the medium to absorb energy from the wave as it travels, which is true in free space but not in practical communication along the ground and through the atmosphere.

Types of Propagation

Acrording to the altitude of the pathe along which they are propegated, radio waves may be chassified as ionospheric waves, tropospheric waves or ground waves.
The ionospheric wave or sky wave is that part of the tota! radiation that is direeted toward the ionowhere. Depending upon variable conditions in that region, as well as upon transmitting Wavelength, the ionowherie wave may or mas not be returned to earth by the effects of refracetion and reflection.

The tropospheric wave is that part of the total radiation that undergoes refraction and reflection in rogions of athupt change of diclectric constant in the troposphere, such as the boundaries botwern air mases of differing temperature and moisture content.

The ground wave is that part of the total radiation that is direetly afferted by the presume of the earth and its surface features. The ground

Fing. f-2-s!owing how both direct and reflected

Wave has two components. (Mo is the surface wave, which is :un earth-guided wave, and the other is the space wave (not to be eonfused with the imospherie or sky wave). The spate wave is itsolf the resultant of two eomponents - the direct wave and the ground-reflected wave, as shown in Fig. $1-2$.

Ionospheric Propagation

PROPERTIES OF THE IONOSPHERE

Except for distaners of a few miles, noarly all amateur commmiation on frequencies below 30 Mc , is by means of the sky wave. Cpon leaving the transmitting antenna, this wave tavels upward from the carth's surfare at such an angle that it would eontime out into space wore its path not bent sufficiontly to bring it batek to earth. The medium that causes such bending is the ionosphere, a region in the upper atmosphere, above a height of about dit miles, where free ions and clectrons exist in sufficient quantity to have an appreciable offect on the speed at which the waves travel.
The ionization in the upper atmosphere is believed to be caused be ultraviolet radiation from the sun. The ionosphere is not a single region but is composed of a sories of layers of varying densities of ionization oceurring at different heights. Bach haver consiste of a cehtral region of relatively dense ionization that tapers off in internsity both abowe and below.

Refraction and Reflection

The greater the intensity of ionization in a laver, the more the path of the wave is bent. The amount of bending also depends on the wavelength; the longer the wave, the more the path is bent tor a given degree of ionization. Thus lowfrequency waves are more roadily bent than those of high frequency. For this reason the lower frequencies - 3.5 and 7 Me. - are more "reliable" than the higher frequencies - 14 to 28 Mc: ; there are times whon the ionization is of such low value that waves of the later frequenery range are not bent emough to return to earth.

In addition to rofraction, reflection may take place at the lower boundaty of an ionized laver if the boundary is shamply dofined: i.e., if there is an appreceiable change in ionization within a relatively short interval of travel. For waves approathing the layer at or new the perpendienlar, the change in ionization must take place within a difference in height comparable with
the wavelength; hener, ionospherie reflection is more apt to oceur at longer wavelongths (lower frequencios).

Absorption

In traveling through the ionosphere the wave gives up some of its energy bey setting the ionized particles into motion. The energy absorption from this cause increases with the wavelongth; that is, absorption is greater at lower frequencies. It also increases with the intensity of ionization, and with the density of the atmosphere in the ionized region.
Ionowherie absorption decreases the strength of the signal at the recerving point below the value that would be experted from the nomal spreading of a wave traveling the same distance.

Virtual Height

Nthough an ionospheric laver is a region of eonsiderable depth it is comvenient to assign to it a definite height, called the virtual height. This is the height from which a simple reflection would give the same effert as the gradual refraction that a tually takes place, as illustrated in Fig. 4-3. The wave traveling upward is bent back over a path having an apprectiable radius of turning, and a moasurable interval of time is consumed in the turning proress. The virtual height is the height of a triangle having equal sides of a total length proportional to the time taken for the wave to travel from T to R.

Fif. $A-3$ - Bonding in the ionosphere, and the echo or reflection metherd of determining virtual height.

Normal Structure of the Ionosphere

The lowest useful ionized layer is called the E layer. The average height of the region of maximum ionization is about 70 miles. The air at this height is suffiedently dense so that the ions and electrons set free by the sun's radiation do not travel far before they moet and reeombine to form neutral partieles, so the layer can maintain its normal intensity of ionization only in the presence of continuing radiation from the sun. Hence the ionization is greatest around local noon and practically disappears after sundown.

In the daytime there is a still lower ionized area, the D region. The I-region ionization is proportional to the height of the sun and is greatest at moon. Low-frequencer waves (80 meters) are almost complotely absorbed hy this layer while it exists, and only the highangle radiation is reflected by the E layer. (Lower-angle radiation travels farther through the 1$)$ region and is absorbed.)
The second principal layer is the F layer, which has a height of about 175 miles at night. At this altitude the air is so thin that recombination of ions and clectrons takes place vory slowly, inasmuch as particles can travel relatively great distanees before meeting. The ionization decreases after sundown, roaching a minimum just before sunrise. In the daytime the F layor splits into two parts, the F_{1} and F_{2} layers, with average virtual heights of, respectively, 140 miles and 200 miles. These layers are most highly ionized at about local noon, and merge again at sunset into the f laver.

SKY-WAVE PROPAGATION

Wave Angle

The smaller the angle at which a wave leaves the earth, the less will be the bending required in the ionosphore to bring it back and, in gen(ral, the greater the distance between the point where it leaves the earth and that at which it returns. This is shown in Fig. 4-4. The vertical angle (such as the angle A in the figure) that the wave makes with a tangent to the earth is called the wave angle or angle of radiation.

Skip Distance

Sinee greater bending is required to return the wave to earth when the wave angle is high, at the higher frequencies the refraction frequently is not enough to give the required bending unloss the wave angle is smaller than some critical value. This is illustrated in Fig. 4-t. where . 1 and smatler angles give useful signals while waves sent at higher angles ponetrate the layer and are not returned. The distane between $\bar{\gamma}$ and R_{1} is, therefore, the shortest possible distance, at that particular frequency, wer which communication by normal ionospherie refraction can he accomplished.

The area between the end of the useful ground wave and the begimning of ionospheric-wave reception is called the skip zone, and the distance from the transmitter to the nearest point where the sky wave returns to earth is callod the skip distance. The extent of skip zone depends upon the frequency and the state of the ionowhere, and also upon the height of the laver in which the refraction takes place. The highor lavers give longer akip distances for the same wave angle, Wave angles at the transmitting and roediving points are usually, athough not always, approximately the same for any given wave path.

Fig. 1-1- Refraction of aky waves, showing the rritical wave angle and the skipzone. Waves leaving tho transmitter at anslos above the eritical (greater than A) are not bent enomgh to bereturned to earth. As the angle is increased, the waves return to earth at increasingly greater distames.

Critical and Maximum Usable Frequencies

If the frequency is low enough, a wave sent vertically to the ionosphere will be reflected back down to the transmitting point. If the frequeney is then gradually increased, eventually a frequency will be rearhed whore this vertieal reflection just fails to oreur. This is the critical frequency for the laver under consideration. When the operating frequenes is bolow the eritieal value there is no skip zone.

The critical frequency is a useful index to the highest frequener that can be used to tramsmit over a specified distance - the maximum usable frequency (m.u.f.). If the wave leaving the transmitting point at angle A in Fig. $1-\frac{1}{1}$ is, for example, at a frequency of $1+$ Mc., and if a higher frequency would skip over the recoiving point R_{1}, then 14 Me. is the m.u:f. for the distance from T to R_{1}.

The greatest posible distance is covered when the wave leaves along the tangent io the earth; that is, at zero wave angle. Ithder average eonditions this distance is about foon kilometers or 2500 miles for the F_{2} laver, and 2000 km . for 1250 miles for the E laver. The distances vary with the laver height. Frequencies above these limiting m.u.f.'s will not be returned to earth at any distance. The $1000-\mathrm{km}$. m.a.f.'s for the F_{2}^{\prime} laver is approximately 3 times the critical frequeney for that layer, and for the E layer the $2000-\mathrm{km}$. m.u.f. is about 5 times the critical frequency.

Absorption in the ionosphere is least at the
maximum usable frequener for the distane, and increases very rapidly as the frequeney is lowered below the m.u.f. Consequently, best results with low power always are secured when the frequency is as close to the m.unf. as prossible.

It is radily possible for the ionospheric wave topass through the E laver and be refracted back to earth from the F^{\prime}, F_{1} or F_{2} layers. This is boratuse the eritical frequencies are higher in the latter layers, so that a signal too high in frequeney to he returned by the E layer ean still come back from one of the others, depending upon the time of day and the existing conditions. Depending upon the wave angle and the distanee, it is sometimes possible to carry on communication via either the E or $F_{1}-F_{2}$ layers on the same frequency.

Multihop Transmission

On returning to the earth the wave can be roflected upward and travel again to the ionosphere. There it may once more be refracted, and algain lont back to earth. This proeess may be repaited several times. Multihop propagation of this mature is necessary for tramsmission over great distances because of the limited heights of the lavers and the curvature of the earth, which restrict the maximum one-hop distance to the values montioned in the prereding section. Howarer, ground losses absorb some of the energy from the wave on each reflection (the amount of the bos varring with the type of ground and boing least for reflection from sea water), and there is also absorption in the ionosphere at each reflection. Hence the smatler the number of hops the grater the sigmal strength at the receiver, other things boing "ofual.

Fading

Two or more parts of the wave may follow slighty different pathe in traveling to the recoiving peint, in which rase the difference in path lougthe will canse a phase differeme to exist betwern the wave eomponents at the reaciving antemat. The total field strength will be the sum of the components and may be larger or smather than one eomponent alone, since the phases may be such as either to aid or oppose. Since the paths change from time to time, this causes a variation in signal strength called fading. Fading can also result from the combination of single-hop and multihop waves, or the combination of a ground wave with an ionospheric or tropospherie wave. The latter condition results in an area of severe fading in the region where the two waves have about the same intensity; better reception is obtained at either shortor or longer distances where one emoponent is considerably stronger than the other.

Fading may be rapid or slow, the former type usually resulting from rapidly-changing eonditions in the iomosphere, the latter occurring when transmission conditions are relatively stable.

It frequently happens that transmission condifions are different for waves of slighty different frequencins, so that in the case of voier-mondu-
lated tramsmission, involving sidebands differing slightly from the carrier in frequence, the carrier and various sideband components may not be propagated in the same rolative amplitudes and phases they had at the transmitter. This efferet, known as selective fading, causes severe distortion of the signat.

Scatter

Even though the operating frequency is above the m.u.f. for a given distance, it is usually possible to hear signals from within the skip zone. This phenomenon, called scatter, is cansed hy random reflections from distances beyond the skip zone. Such reflections ean occur when the transmitted energy strikes the carth at a distance and some of it is refleeted back into the skip zone to the receiver. (Other possible seatter sources are "patches" of ionization of different density than the average, or sporadic- E chouds (see later section). Scatter signats are weaker than those normally propagated, and also have a rapid liade or "flutiter" that makes them easily recognizable.

It is probable that scatter also plays a considerable part in long-distance transmission (heyond the maximum one-hop distance -- partionlarly in cases where, with multihop propagation, the m.a.f. at some intermediate refledion paint in the ionosphere is below the frequeney artailly being used.

- OTHER FEATURES OF IONOSPHERIC PROPAGATION

Cyclic Variations in the Ionosphere

Since ionization depends upon ultavioket radiation, conditions in the ionosphere vary with changes in the sun's radiation. In addition to the daily variation, seasmal changes resalt in higher retical frequences in the E laver in summer, aweraging about 4 Mre as against a winter average of 3 Ne: The f layer shows little variation, the eritical frecquence lexing of the order of $\&$ to 5 Me. in the evening. The F_{1} liver, whidh has a eritieal frequenes near 5 Me . in summer, usually disappears entirely in winter. The daytime maximum eritical frequencies for the F_{2} are highest in winter (10 to 12 Me.) and lowest in summer (around 7 Mc.). The virtual height of the F_{2} laver, which is about 18 i miles in winter, averages 250 miles in summer. These values are representative of latitude 40 deg . North in the Western homisphore, and are subject to considerable variation in other parts of the word.

Very marked chatges in ionization also orrur in step with the 11-year sunspot cycle. Athough there is no apparent dired correlation betwen sumphot atefivity and erition frequencies on a given day, there is a definite cormation betwern werafer sunspot activity and eritical frequencies The rritiden frequencies are highest during sumspot maxima and lowost during sumspot minima. During the period of minimum samspot artivity the lower fregumeros- 7 and $3 . \overline{5}$ Mr. - ire-
quently are the only usable bands at night. At such times the $28-10$. band is seldom useful for long-distance work, while the 1.t-Mc. band performs well in the daytime but is not ordinarily useful at night. The next sumspot minimum is forecast for the winter of $195: 55$. The most, recent maximum occurred in the winter of $1997-$. 18.

Ionosphere Storms and Other Disturbances

Certain typers of sunspot activity cause considerable disturbances in the ionosphere (ionosphere storms) and are accompaniod by disturbances in the earth's magnetic field (magnetic storms). Ionosphere stoms are charanterized by a marked increase in absorption, so that radio conditions become poor. The aritical frequencies also drop to relatively low values during a storm, so that only the lower frequencies are useful for communication. Ionosphere storms may last from a few hours to several days. Since the sun rotates on its axis once every 28 days, disturbances tend to recur at such intervals, if the sunspots responsible do not become inative in the meantime. Absorption is usually low, and radio conditions therefore good, just preceding a storm.

Unusually high ionization in the region of the atmosphere below the normal ionosphere maty increase absorption to such an extent that skywave transmission becomes difficult and sometimes even imposible. The length of such a disturtance may be several hours, with a gradual falling off of transmission conditions at the beginning and an equally gradual building up at the end of the period. Fade-outs, similar to the above in effert, are caused by sudden disturbances on the sum. They are characterized by very rapid ionization, with sky-wave transmission disappearing almost instantly, oreur only in daylight, and do not last as long as the first type of absorption.

Magnetic stoms frequently are accompanied bey unusual auroral displays, reating an ionized "rurtain" in the polar regions which can act as a reflector of radio waves, Auroral reflection maty be observed on any frequency, deponding upon the conditions, and it is always characterized by a flutter on all sigmals that makes voice work difficult. It is most moticeable in the northern latitudes and on signals traveling through the Auroral zone - that is, through the polar regions and over the North Atdantie.

Sporadic-E Ionization

Scattered patches or clouds of relative dense ionization orcasionatly appear at heights approximately the same as that of the E layer. This sporadic- E ionization is most provalent in the equatorial regions, where it is substantially continuous. In northern latitudes it is most frequent in the spring and early summer, but is present in some degree a fair perentage of the time the year 'round. It accounts for a good deal of the
night-time short distance work on the lower frequencies (3.5 and 7 Mc .) and, when more intense, for similar work on 14 and 28 Mc. Exereptionally intense sporadic- E ionization is responsible for work over distances exereding 400 or 500 miles on the $50-\mathrm{Mc}$. band.

There seems to be no direct relationship between sporadic- E ionization and sumspot activity, nor does it appear to be directly related to daylight and darkness since it may orear at any time of the day. However, there is an apparent tendency for the ionization to peak at mid-morning and in the early evening.

Meteor Trails

A phenomenon that frecuently occurs on sigmals from within the skip zone is a sudden increase in intensity, called a burst. Bursts are caused by meteors which, entering the earth's atmosphere at high speed, are followed by an ionized trail of rather high intensity. The ionization is caused by heating from the friction between the meteor and the air molecules in the ionosphere region. The ionization usually disappears in less than a second, but during that time it is often capable of reflecting signals up to 100 Mc . or so. The lower frequency limit depends on the length of the ionized trail. Bursts are frequently olserved on the 14- and 28-Mc. bands, esperially during those times of the vear when "meteor showers" occur. When the meteor is moving in a direction somewhat parallel to the wave path, it call induce a rising or falling "whistle" on the signal, for a secomed or so.

Tropospheric Propagation

Changes in temperature and humidity of air masses in the lower atmosphere often permit work over greater than normal ground-wave distances on 28 Mc. and higher frequencies. The offect can be observed on 25 Mc., but it is generally more marked on 50 and $14 t$ Me. The subjeret is trated in detail in a later chapter.

- PREDICTION CHARTS

The Central Radio Propagation Laboratory of National Bureau of Standards offers prediction charts three months in advance, by me:us of which it is possible to predict with considerable areuracy the maximum usal)le frequencer that will hold over any path on the earth during a monthly period. The chates arr based on ionosphere observations made at a number of stations throughout the world, coupled with ronsiderable statistical data. They are conservative enough to enable the amateur to anticipate and plam his best operating times, particularly on the 11 - and 2k-Mle. bands. The charts can be obtaned from the Superintendent of Decuments, U. S. Government Printing Office, Washington 25, D. (. for 10 cents a copy or $\$ 1,00$ per year on subscription. They are (alled "CRI'L-I) Basic Radio l'ropatgation Predictions."

CHAPTER 5

High-Frequency Receivers

A good receiver ia the amateur station makes the difference betwern modiocre contacts and solid (2st)s, and its importance camot be over emphasized. In the uncrowded v.h.f. bands, sensitivity (the ability to bring in weak signals) is the most important factor in a receiver. In the more arowded amaterur bands, good semsitivity must be eombined with selectivity (the ability to distinguish hetween signals separated by only a small frequenty difference), To receive weak signals, the receiver must furnish cough amplification to amplify the minute signal power delivered by the antenna up to a useful amount of power that will oprate a loudepaker or set of headphones. Before the amplified signal can oporate the 'speaker or 'phones, it must be converted to a adio-frequency power by the process of detection. The sequence of amplification is not too important - some of the amplifieation can take plate (and usually does) before dotection, and some can be used after detection.

There are two major differences between receivers for 'phome reception and for e.w. reception. A 'phone signal has sidebands that make the signal take up about 6 or 8 ke , in the band, and the audio quality of the rereived signal is impared if the pasolsand of the receiver is less than half of this. On the ot her hand, a e.w. signal ocrupies only a few hundred cercles at the most, and consequently the passhand of a c.w.
receiver can be small. In either case, if the passhand of the receiser is more than necessary, sigmals adjacent to the desired ons wan be heard, and the selectivity of the receiver is said to be poor. The detection prodess delivers directly the audio frequeneies present as modulation on a 'phone signal, There is no modulation on a cew. signal, and it is necessary to introduee a second radio frequener, differing from the signal frequency he a suitable adio frequence, into the detector circuit to produce an audible beat. The frequency difference, and hence the beat-note, is generally made on the order of 300 to 1000 eycles, since these tomes ate within the range of optimum response of both the ear and the headset. If the soure of the socond radio freguencer is a separate nseillator, the system is known as heterodyne reereption; if the deteretor is made to oscillate and produce the serond frequemes, it is known as all autodyne detentor. Monden superheterodyme receivers (eloseribed later) ge alty use a soparate aseilator to gemerate the beat-mote. summing up the two differeners, 'phone reedivers can't use as murh soloctivity as cew. receivels, and rew. receivens require some kind of beating oseilato to give an audible signal. Broadrast receivers an receise only phone signals becatuse no beat mecillator is included. Communications receivers inchude heat oscillators and often some means for varying the selectivity.

Receiver Characteristics

Sensitivity

In commereial circles "sensitivity" is defined as the strength of the signal (in microvolts) at the input of the receiver that is required to produce a sperified audiop power output at the 'spaker or headphomes. This is a satisfactory definition for broadeast and eommmications receisers operating below about 20 Mr., where atmaspheric and man-made eleotroal hoises nomally mask any moise generated by the receiver itself.

Inother commercial measure of sensitivity defines it as the signal at the input of the receiver required to give an audio output some stated amount (generally 10 db .) above the noise out put of the receiver. This is a more useful sensitivity measure for the amateur, since it indieates how well a weak signal will be heard and is not merely a measure of the over-all amplifieation of the rereiver. Ifowerer, it is not an absolute method for comparing two receivers, becalle the passhand width of the receiver ptays a large part in the result.

The randum motion of the molecules in the antoma and rocoiver cireuits generates small voltages called thermal-agitation noise voltages. The frequency of this noise is random and the mise exists aross the entire radio speretrum. Its amplitude increases with the temperature of the circuits. Only the noise in the antemata and first stage of a reedejer is normally signiffant, since the noise developed in later stages is masked by the amplified noise from the first stage. The omly noise that is amplified is that which falls within the passhand of the receiver, so the moise appearing in the output of a recober is less when the passhand is redured. similar noise is gromerated by the purrent flow within the first tube itself; this effect ean be combined with the themal noise and called receiver noise.

The limit of a receiver's ability to detect wak signals is the thermal mose generated in the input circuit. Eien if a perfect noise-free tube were developed and used throughout the
receiver, the limit to reception would be the thermal noise. (Itmospheric- and man-made noise is a mractical limit below 20 Mc.) The degree to which a receiver approathes this ideal is called the noise figure of the recoiver, and it is expressed as the ratio of ooise power at the input of the receiver required to increase the noise output of the receiver 3 db . Since the noise power passed by the receiver is dependent on the passband, the figure shows how for the receiver departs from the ideal. The ratio is generally expressed in dh_{h}, and runs around 6 to 12 dh. for a good receiver, although figures of 2 to $t(1)$, have beren ohtained. Comparisons of noise figuees can be made by the amateur with simple equipment. (Sce (2sT', Iugast, 1949, page '20.)

Selectivity

Selectivity is the ability of a receiver to diseriminate against signals of frequencies differing from that of the desired signal. The over-all selectivity will depend upon the selertivity of the individual tuned cireuits and the number of such circuits.
'The selectivity of a receiver is shown graphically by drawing a curve that gives the ratio of signal strengith required at various frequencies off resonance to the signal strength at resonance, to give constant output. A resonance curve of this type is shown in Fig. 5-1. The bandwidth is the width of the resonance curve (in cycles or kilocycles) of a receiver at a spocified ratio: in Fig. $\overline{\mathrm{T}}-1$, the bandwidth are indicated for ration of response of 2 and 10 ("2) times down" and "10 times down").

I receiver is more selective if the bandwidth (or passband) is less, but the bandwidth must be sufficient to pass the signal and its sidebands if faithful reproduction of the signal is desired. In the crowded amateur bands, it is generally alvisable to sacrifice fidelity for selectivity, since the added selectivity reduces adjacent-chamel interference and ako the noise passed by the receiver. If the solectivity curve has steep sides, it is said to have good skirt selectivity, and this feature is very useful in listening to a weak signal that is adjacent to a strong one.

Fia, 5.1 - Typical selectivity curve of a modern superheterodyne recaver. Relative response is photted against deviations abose and below the resoname fredueney. 'The soale at the laft is in terms of voltape ratios, the correspmang deribel steps are shown at the right.

Stability

The stability of a receiver is its ability to "stay put" on a signal under varsing conditions of gain-control setting, temperature, supplyvoltage changes and mechanical shook and distortion. The term "unstable" is also applied to a receiver that breaks into usillation or a regenerattive condition with some settings of its controls that are not speeifically intended to control such a condition.

Fidelity

Fidelity is the relative ability of the recoiver to reproduce in its output the modulation rabried by the incoming signal. For perfort fidelity, the relative amplitudes of the various components must not be changed by passing through the recoiver. Ilowever, in amatteur communication the important requirement is to transmit intelligence and not "high-fidelity" signals.

Detection and Detectors

Detection is the process of recovering the modulation from a signal (see "Modulation, Heterodyning and Beats"). . Iny device that is "nonlinear" (i.e., whose output is not exaclly proportional to its input) will act as a detector. It can be used as a detertor if an impedance for the desired modulation frequency is comnected in the output circuit.

Detector sensitivity is the ratio of desired detector output to the input. Detector linearity is a measure of the ability of the detector to reproduce the exact form of the modulation on the incoming signal. The resistance or impedance of the detector is the resistance or impedance it presents to the circuits it is con-
nected to. The input resistance is important in receiver design, since if it is relatively low it means that the detector will consume power, and this power must be furnished by the preceding stage. The signal-handling capability means the ability to arcept signals of a sperified amplitude without overloading or distortion.

Diode Detectors

The simplest detector for s.m. is the diode. A galena, silion or germanium crystal is an imperfert form of dionle (a small current can pass in the reverse direction), and the principle of detection in a crystal is similar to that in a vacuum-tube diode.

Fig. 5-2 - Simplified and practical diode detector circuits. A, the elementary half-wave diode detector; B, a practical circuit, with r.f. filtering ami antio ontput coupling: C, full-wave diode detector, with output coupling indieated. The eirenit, $/ .2 \mathrm{C} \cdot 1$, is tumed to the signal frequencs; typical values for C_{2} and R_{1} in A and C are $250 \mu \mu \mathrm{fi}$. and 250,000 ohms, respectively; in $B, C 2$ and $C 3$ are $100 \mu \mu f$. ead.l: $R_{1}, 50,\left(000\right.$ ohms; and $\left.R_{2}, 250,1100\right)$ ohms. C_{4} is $0.1 \mu \mathrm{fd}$, and R_{3} may be 0.5 to 1 megohm.

Cireuits for both half-wave and full-wave diodes are given in Fig, 5-2. The simplified half-wave circuit at $5-2.1$ includes the r.f. tuned circuit, $L_{2} C_{1}$, a coupling roil, L_{1}, from which the r.f. energy is fed to $L_{2} C_{1}$, and the diode, l, with its load resistance, R_{1}, and bypass condenser, C_{2}. The flow of rectified r.f. eurrent causes a d.e. voltage to develop across the terminals of R_{1}. The - and + signs show the polarity of the voltage. The variation in amplitude of the r.f. signal with modulation causes corresponding variations in the value of the d.e. voltage aeross R_{1}. In audio work the load resistor, R_{1}, is usually 0.1 megohm or higher, so that a fairly large voltage will develop from a small rectified-current flow.

The progress of the signal through the dotector or rectifier is shown in Fig. $\overline{5}-3$. A typical modulated signal as it exists in the tuned cireuit is shown at A. When this signal is applied to the rectifier tube, current will flow only during the part of the r.f. cycle whon the plate is positive with respeet to the eath-
ode, so that the output of the rectifier consists of half-cycles of r.f. These current pulses flow in the loid circuit comprised of R_{1} and C_{2}, the resistance of R_{1} and the eapacity of C_{2} being so proportioned that ('2 charges to the peak value of the rectified voltage on earh pulse and retains enough charge between pulses so that the voltage across R_{1} is smoothed out, as shown in C. C'2 thus acts as a filter for the radiofrequency component of the output of the rectifior, leaving a d.e. component that varies in the same way as the modulation on the original signal. When this varying d.c. voltage is applied to a following amplifier through a eoupling condenser (C_{4} in Jig. $5-213$), only the variations in voltage are transferred, so that the final output signal is a.c., as shown in 1 .
In the circuit at $5-2 B, R_{1}$ and C_{2} have been divided for the purpose of providing a more effective filter for r.f. It is important to prevent the appearance of any r.f. voltage in the output of the detertor, berause it may cause overloading of a succerding amplifier tube. The audiofrequenry variations can be transferred to another circuit through a coupling condenser, C_{4}, to a load resistor, R_{3}, which usually is a "potentiometer" so that the volume can be adjusted to a desired level.

Coupling to the potentioncter (gain control) through a condenser also avoids any flow of d.e. through the gain control. The flow of d.c. through a high-resistance gain control often tends to make the control noisy (scratchy) after a short while.

The full-wave diode circuit at $5-2 \mathrm{C}$ differs in operation from the half-wave circuit only in that both halves of the r.f. evele are utilized. The full-wave cireuit has the advantage that very little r.f. voltage appears across the load resistor, R_{1}, because the midpoint of L_{2} is at the same potential as the cathode, or "ground" for r.f., and r.f. filtering is easier than in the half-wave circuit.

The reactance of C_{2} must be small compared

Fig. 5-3-Diagrams showing the detection process.

Fig. 5-4-Cirenits for plate detection. A, trionle; B, pentode. The input ciremit, $L_{1} f(1$, is tured to the siqnal frequency. 'Typical value; for the other components are:
Component
Circuit 4
Cirruit 18

($200.3 \mu \mathrm{fd}$. or larger.	$10.5 \mu \mathrm{fl}$, or larsur.
(30.001 to (0.00) $\mu \mathrm{fll}$.	2.50 to $300 \mu_{\mu} \mathrm{lil}$.
(is 0.1 ufd.	$0.1 \mu \mathrm{fd}$.
C:5	0.5μ fil. or lararer.
$\mathrm{R}_{1} \mathbf{2 5 , 0 0 0}$ to 150,000) ohmss,	$10,000)$ to 20,060 , ohmis.
$\mathrm{R}_{2} \mathbf{5 0 , (1 0 0) ~ t o ~ 1 0 0 , 0 0 0 ~ o h m s . ~}$	
R_{3}	S1,000) ohms.
R_{4}	20,000 whms.
RFC 2.5 mh .	2.5 ml .
te voltages from 100 to	250 volts may lue
ctive screen volta	should be about 30

to the resistance of R_{1} at the radio frequency being rectified, but at audio frequencies must be relatively large compared to R_{1}. If the capacity of C_{2} is too large, response at the higher andio frequencies will be lowered.
(ompared with other detectors, the sensitivity of the diode is low, normally running around 0.8 in audio work. Since the diode eonsumes power, the Q of the tuned circuit is reduced, bringing about a reduction in selectivity. The loading effect of the diode is close to one-half the load resistance. The detector linearity is good. and the signal-handling capability is high.

Plate Detectors

The plate detector is arranged so that rectifieation of the r.f. signal takes place in the plate eircuit of the tube. Suflicient negative bian is applied to the grid to bring the plate current marly to the cut-off point, so that application of at signal to the grid circuit causes an increase in average plate eurront. The average plate current follows the changes in signal amplitude in a fashion similar to the rectified current in a diode detector.

Circuits for triodes and pentodes are given in Fig. i-4. C_{3} is the plate by-pass condenser, and, with $R F C$, prevents r.f. from appear-
ing in the output. The cathode resistor, R_{1}, provides the oprerating grid bias, and ('2 is a by-pass for both radio and audio frequencies. R_{2} is the plate loud resistance and ("4 is the output coupling condenser. In the pentode circuit at $13, R_{3}$ and R_{4} form a voltage divider to supply the proper screen potential (about 30 volts), and C_{5} is a by-pusis condenser. Ca and ('s must have low reartance for both radio and audio frequencies.

In general, transformer coupling from the plate cirenit of a plate detector is not satisfactory, berause the plate impedance of any tube is very high when the bias is noar the platecurvent cut-off point. Impedance coupling may be used in plate of the resistance coupling shown in lig. j-4. Isually 100 henrys or more inductance is required.

The plate detector is more sensitive than the diode because there is some amplifying action in the tube. It will handle lauge signals, but is not so tulerant in this respert as the dionde. Linearity, with the self-biased cireuits shown, is good. (1) to the werload point the detector takes no power from the tumed circuit, and so does not affect its () and solectivity.

Infinite-Impedance Detector

The eircuit of Fig, 5-i) combines the high signal-handling capabilities of the diode detector with low distortion and, like the plate detector, does not load the tuned cirenit it eomerts to. The circuit resembles that of the plate detector, except that the load resistance, R_{1}, is connerted between ent houle and ground and thus is common to both grid and plate circuits, giving negative feed-back for the audio frequencies. The cathode resistor is by-passed for r.f. but not for audio, while the plate circuit is by-passed to ground for hoth audio and radio frequencies, R_{2} forms, with C_{3}, an Re filter to isolate the plate from the "13" supply. An r.f. filter, consisting of a sories r.f. choke and a shunt condenser, c:an be romected between the wathode and C_{4} to eliminate any r.f. that might otherwise appear in the output.
The plate current is very low at no signal, increasing with signal as in the case of the plate detector. The voltage drop across R_{1} consequently

 circuit. $L_{2} C_{1}$, is tumed to the sipnal frequency. Typisa! values for the other components are:
$\mathrm{C}_{2}-250$ нufl. $\quad \mathrm{R}_{1}-0.15$ merohm.
$\mathrm{C}_{3}-0.5 \mu_{\mathrm{fll}} \quad \mathrm{R}_{2}-2.000$ ohnms.
 A tube having a medium amplification factor (alonut 20) should the used. Plate voltage should be 250 volts.
increases with signal. Because of this athe the large initial dron across R_{1}, the grid usually camot be driven mositive by the signal, and no grid current can be drawn.

- REGENERATIVE DETECTORS

l3y providing controlable r.f. feed-batck (regeneration) in atriode or pentode detertor cirvuit, the incoming signal can be amplified many times, thereby greatly increasing the sensitivity of the deteretor. Regeneration also inereases the affertive (Q of the cireuit and thus the selectivity. The grid-leak type of detector is most suitable for the purpose.
The grid-leak detertor is a combination diode rectifier and audio-frequency amplifier. In the circuits of Fig, i-ti, the grid eorresponds to the diode plate and the reetifying action is exartly the same as in a diode. The dee voltage from rectified-current flow through the grid leak, R_{1}, biases the grid megatively, and the audiofrequeney variations in voltage arosos R_{1} are amplified through the tube as in a normal atit. amplifier. In the phate rirenit, T_{1}, L_{4} and L_{3} are the plate load resistances, C_{3} is a by-pass comdonser and RF'C' an r.f. choke to climinate r.f. in the output circuit.

A grid-leak dotertor has considerably groator sensitivity than a diode. The sensitivity is further increased by using a serem-grid tube instend of a triode, as at at 6 B and (. The operation is cquivalent to that of the triode eireuit. The sareen bypass eondenser, (${ }_{5}$, should have low reatanie for both radio and audio frequencios. R_{2} and R_{3} constitute a voltage divider on the plate supply to furnish the proper sereen voltage. In both rireuits, C'2 must have low ref. reartance and high a.f. reatance compared to the resistance of l_{1}. Dthough the regemerative grid-leak deteetor is more sensitive than any other type, its many disadvantages commend it for use only in the simplest receivers. The linearity is rathor poor, and the signal-handlimg eapability is limited. The signal-handling capability can he impowed be reduring R_{1} to 0.1 megohm, but the sensitivity will be derreased. The degree of antemat couphing is often critioal.

The eirnuts in Fig, i-6 are regenerative, the feed-back being ohtaned by feeding some signal to the grid batk from the plate dircuit. The amount of regeneration must be controllable, becanse maximum regenerative amplifioation is sereured at the critieal peint where the eirenit is just about to oscillate. The eritional point in tum depends upm cirruit conditions, whirh may vary with the frequence to which the detector is tumed. In the oseillating condition, a remenerative detertor ean be detumed slightly from an incoming c.w. sjgual to give athenlyne reception.

The circuit of Frig. 5-6A uses a variable ber-pass condenser, (${ }_{3}$, in the plate circuit to control regeneration. When the eaparity is small the tube does not regenerate, but as it increases toward maximum its reactance herombes shatle matil there is sulficient feed-tarels to ranse

Oscillation. If L_{2} and L_{3} are wound end-to-end in the same direction, the plate comection is to the outside of the plate or "tiekler" roil, L_{3}, when the gride eomection is to the out side of L_{2}.

The circuit of $\overline{5}-6 \mathrm{~B}$ is for a pentede tube, regeneration being controlled by adjustment of the serem-grid voltage. The tiekler, L_{3}, is in the plate circuit. The portion of the eontrol resistar betweon the rotating contact and ground is by-passed by a lange rondenser (0.5)

(B)

Fig, 5.6 - Iriade and pentode ragomerative detector circuits. 'The input circuit. Lafi, is turned to the sigual frequents. 'The erid comenenser. Ciz should have a value of ahomi 100 mefil. in all circuits; the grid leak, K_{1}, may range in value from I to. m modims, 'lhe tiekler croil, La, ordinarily will have from Io to 25 per cent of the number of turns on l_{2} : in C. the wathende tap is about 10 per rent of the number of turna on 1 as alowa gromid. Requerationterntrol eombenare (s in I should hase a maximmon capacity of 1010 upfol, or mores by -pas- ron-

 henry inductance, $C 4$ is 0.1μ fd, in hoth cireuits. T_{1} in A is a conventional audio transformer for compling from the plate of a tulm to a following prid. RFC in 2.5 mh. In A, the plate voltage should be about 50 volis for best susitisits. Pantomer circuits require almut 30 volton the arrem; pate putential may be $10010: 250$ volts.
$\mu \mathrm{fd}$. or more) to filter out scratching noise when the arm is rotated. The feed-back is adjusted by varying the number of turns on L_{3} or the coupling between L_{2} and L_{3}, until the tube just goes into oscillation at a sereen 1 ortential of approximately : 30 volts.
(Vircuit ((is identical with B in principle of operation. Since the screen and plate are in parallel for r.f. in this circuit, only a small amount of "tickler" - that is, relatively few turns between the rathode tap and ground - is required for oscillation.

Smooth Regeneration Control

The ideal regeneration control would permit the detector to go into and out of oscillation smoothly, would have no effect on the frequency of oscillation, and would give the same value of regeneration regardless of frequency and the loading on the circuit. In practice, the effects of loading, particularly the loading that orcurs when the detector circuit is coupled to an antenna, are difficult to overcome. Likewise, the regeneration is usually afferted by the frequency to which the grid cirenit is tuned.

In all circuits it is best to wind the tickler at the ground or cathode end of the gride coil, and to use as few turns on the tickler as will allow the detertor to oseillate easily over the whole tuning range at the plate (and soren, if apentode) voltage that gives maximum sensitivity. should the tube break into oscillation suddenly as the regencration control is advanced, making a click, it usually indicates that the coupling to the antenna (or r.f. amplifier) is too tight. The wrong grid leak plus too-high plate and screen voltage are also frequent causes of lack of smoothness in going into oceillation.

Antenna Coupling

If the detector is coupled to all antema, slight changes in the antemat (as when the wire swings in at breene affere the fresuency of the oscillations gemerated, and thereby the beat frequeney when e.w. signals are being received. The tighter the antema roupling is made, the greater will be the feedback recquired or the higher will be the voltage necessary to make the detector oscillate. The antenna coupling should be the maximum that will allow the detector to go into oscillation smoothly with the correct voltages on the tube. If capacity coupling to the grid end of the coil is used, gemerally only a very small amount of capacity will be needed to comple to the antemas. Inereasing the eapacity increasess the coupling.
At frequencies where the antenna system is resonant the absorption of nergy from the oscillating detector circuit will be greater, with the eonseguence that more regeneration is needed. In extreme cases it may not be posisible to make the detector oscillate with normal voltages. The remody for these "dead spots" is to foosern the antenna coupling to a point that permits marmal asidlation and smooth regeneration control.

Body Capacity

A regenerative detector occarionally shows a tendency to change frequency slightly as the hand is moved near the dial. This condition (body capacity) can be corrected by better shielding, and sometimes by r.f. filtering of the 'phone leads. A good, short ground connection and loosening the coupling to the antenna will help.

Hum

Hum at the power-supply frequency, even when using battery plate supply, may result from the use of a.c. on the tube heater. Diffects of this type normally are troublesome only when the circuit of Fig. $5-6 \mathrm{C}$ is used, and then only at It Mr. and higher. Connecting one side of the heater supply to ground, or grounding the centertap of the heater-transformer winding, will reduce the hum. The heater wiring should be kept as far as possible from the r.f. circuits.

House wiring, if of the "open" type, may cause hum if the detector tube, grid lead, and grid condenser and leak are not shielded. This type of hum is easily recognizable because of its rather high pitch.

Tuning

For c.w. reception, the regeneration control is advanced until the detector breaks into a "hiss," which indicates that the deteretor is oscillating. Further advancing the regeneration control after the detector starts oscillating will result in a slight decrease in the strength of the hiss, indicating that the sensitivity of the detector is decreasing.

The proper adjustment of the regencration control for best reception of e.w. signals is where the detector just starts to oscillate. Then c. w, signals can be tuned in and will give a tone with each sigmal deprinding on the setting of the tuning eontrol. As the receiver is tumed through a signal the tone first will be hoad as a very high pitch, then will go down through "zero beat" and rise again on the other side, finally

Fig. 5.7 - As the tuning dial of a receiver is turned past a c.w. sipnal, the beat-note varies from a hiph tone down through "zero heat" (no audible frecturnev dififirrinee) and thach un to a hiph tome, as shown at A. 13 and C. The curve is a graphical representation of the artion, 'The leat rexiste past 8000 or fotome evales hit usualls is wot heard lecanse of the limitations of the andio system,
disappearing at a very high pitch. This behavior is shown in Fig. 5-7. A low-pitched beat-note cannot be obtained from a strong signal bocause the detector "pulls in" or "blocks": that is, the signal forces the detector to oscillate at the signal frequency, even though the cireuit may not be tuncd exaetly to the signal. This phenomenon, is also called "locking-in": the more stable of the two frequencies assumes control over the other. It usually can be corrected by advancing the regencration control until the beat-note is heard again, or be reducing the input signal.

The point just after the detector starts oseil-
lating is the most sensitive condition for cew. reception. Further advancing the regeneration control makes the receiver less susceptible to blocking by strong signals, but also less sensitive to weak signals.

If the detector is in the oseillating condition and a phone signal is tuned in, a steady audible beat-note will result. While it is possible to listen to 'phone if the receiver can be tuned to exact zero beat, it is more satisfactory to reduce the regeneration to the point just before the recciver goes into oscillation. This is also the most sensitive operating point.

Tuning and Band-Changing Methods

Band-Changing

The resonant circuits that are tuned to the frequency of the incoming signal constitute a special problem in the design of amateur receivers, since the amateur frequency assignments consist of groups or bands of frequencies at widely-spaced intervals. The same coil and tuning condenser cannot be used for, say, 14 Mc . to 3.5 Mr., because of the impracticable maxi-mum-to-minimum capacity ratio required, and also because the tuning would be excessively eritical with such a large frequency range. It is necessary, therefore, to provide a means for changing the circuit constants for various frequency bands. As a matter of convenience the same tuning condenser usually is retained, but new coils are inserted in the circuit for each band.

One method of changing inductances is to use a switch having an appropriate number of contacts, which connects the desired coil and disconnects the others. The unused coils are sometimes short-circuited by the switch, to avoid the possibility of undesirable self resonances in the unused coils. It is not necessary if the coils are separated from each other by several coil diameters, or are mounted at right angles to each other.

Another method is to use eoils wound on forms with contacts (usually pins) that can be plugged in and removed from a socket. These coils are advantageous when space in a multiband receiver is at a premium. They are also very useful when considerable experimental work is involved, because they are easier to work on than coils elustered around a switch.

Bandspreading

The tuning range of a given coil and variable condenser will depend upon the inductance of the coil and the change in tuning capacity. For ease of tuning, it is desirable to adjust the tuning range so that practically the whole dial scale is occupied by the band in use. This is called bandspreading. Because of the varying widths of the bands, sperial tuning methods must be devised to give the correct maximumminimum capacity ratio on each band. several of these methods are shown in Fig. 5-8.

In A, a small bandspread condenser, C_{1} (15to $25-\mu \mu \mathrm{fd}$. maximum caparity), is used in parallel with a condenser, ('2, which is usually large
enough (100 to $140 \mu \mu \mathrm{fd}$.) to cover a 2 -to-1 frequency range. The setting of ('2 will determine the minimum eapacity of the cireuit, and the maximum rapacity for bandspread tuming will be the maximum caparity of ('1 plus the setting of C. 3 . The inductance of the coil can be adjusted so that the maximumminimum ratio will give adequate bandspread. It is almost impossible, because of the nonharmonic relation of the various band limits, to get full bandspread on all bands with the same pair of condensers. ('2 is variously called the band-setting or main-tuning condenser. It must be reset cach time the band is changed.

The method shown at B makes use of condensers in series. The tuning condenser, C_{1}, may have a maximum capacity of 100 $\mu \mu \mathrm{ld}$. or more. The minimum capacity is determined prineipally be the setting of (3 , which usually has low rapacity, and the maximum capacity by the setting of ('s, which is of the order of 25 to 50 $\mu \mu \mathrm{fd}$. 'This mothod is capable of elose adjustment to practically any desired degree of bandspread. Either C_{2} and C_{3} must be adjusted for rach band or separate preadjusted condensers must be switehed in.

The rircuit at (; also gives complete spread on earh band. (' 1 , the bandspread condenser, may have any convenient value of rapacity; :ro $\mu \mu \mathrm{fd}$. is satisfactory ('2 may be used for continuons frequency eoverage ("general roverage") and as a band-setting condenser. The - fleretive maximum-minimum rapacity ratio depends upen the rapacity of ('2 and the point at which (') is tapped on the coil. The nearer the tap to the bottom of the coil, the greater the bandspread, and vice versa. For a given coil and tap, the handspread will be greater if C_{2} is set at higher capacity. ('2 may be mounted in the plug-in coil form and prevet, if desired.

This requires a separate condenser for each band. but clininates the necessity for resetting (r2 earh time the band is changed.

Ganged Tuning

The tuning condensers of the several r.f. circuits may be coupled together mechanically and operated by a single control. However, this operating convenience involves more complicated construction, both electrically and mechanically. It becomes necessary to make the various circuits track - that is, tune to the same frequency at each setting of the tuning control.

Fig. 5.9 - Showing the use of a trimmer condenser to set the minimum circuit capacity in order to obtain true tracking for gang-tuning.

True tracking can be obtained only when the inductance, tuning condensers, and circuit inductances and minimum and maximum capacities are identical in all "ganged" stages. A small trimmer or padding condenser may be connected arross the coil, so that variations in minimum capacity can be compensated. The fundamental circuit is shown in Fig. :-9, where C_{1} is the trimmer and ('2 the tuning condenser. The use of the trimmer necessarily increases the minimum circuit capacity, but it is a necessity for satisfactory tracking. Midget condensers having maximum rapacities of $1 \mathrm{i}^{5}$ to $30 \mu \mu \mathrm{fd}$. are commonly used.

The same methods are applied to bandspread circuits that must be tracked. The circuits are identical with those of Fig. 5-8. If both general-coverage and bandspread tuning are to be available, an additional trimmer condenser must be commected across the coil in each circuit shown. If only amateur-band tuning is desired, however, then ('3 in Fig. 5-8B, and C_{2} in Fig. $)-8($ ', serve as trimmers.

The coil inductance can be adjusted by starting with a larger number of turns than
necessary and removing a turn or fraction of a turn at a time until the circuits track satisfactorily. An alternative method, provided the inductance is reasonably close to the correct value initially, is to make the coil so that the last turn is variable with respect to the whole coil, or to use a single short-circuited turn the position of which can be varied with respect to the coil. The application of these methods is shown in Fig. 5-10.
still another method for trimming the inductance is to use an adjustable brass (or copper) or powdered-iron core. The brass eore acts like a single shorted turn, and the inductance of the coil is decreased as the brass core, or "slug," is moved into the coil. The powdered-iron core has the opposite effect, and increases the inductance as it is moved into the coil. The Q of the coil is not affected materially by the use of the brass slug, provided the brass slug has a clean surface or is silverplated. The use of the powdered-iron core will raise the Q of a coil, provided the iron is suitable for the frequency in use. Good pow-dered-iron cores can be obtained for use up to about i0 Mc.

Fig. 5.10-Methods of adjusting the inductance for ganging. The half-turn in A can be moved so that its magne tic field either aids or opposes the field of the coil. The shorted loop in 13 is not connected to the coil, hat operates by induction. It will have no effect on the coil inductance when the axis of the loop is perpendicular to the avis of the coil, and will give maximum reduction of the coil inductance when rotated 90°. The loop can he a solid disk of metal and give exactly the same effect.

The Superheterodyne

For many years (up to about 1932) practically the only type of receiver to be found in amateur stations consisted of a regenerative detector and one or more stages of audio amplification. Receivers of this type can be made quite sensitive but strong signals block them easily and, in our present crowded bands, they are seldom used except in emergencies. They have been replaced by superheterodyne receivers, generally called "superhets."

The Superheterodyne Principle

In a superheterodyne receiver, the frequency of the incoming signal is heterodyned to a new radio frequency, the intermediate frequency (abbreviated "i.f."), then amplified, and finally detected. The frequency is changed by modulating the output of a tunable oscillator (the high-fre-
quency, or local, oscillator) by the incoming signal in a mixer or converter stage (first detector) to produce a side frequency equal to the intermediate frequency. The other side frequency is rejected by selective circuits. The audiofrequency signal is obtained at the second detector. C.w. signals are made audible by autodyne or heterodyne reception at the second detector.

As a numerical example, assume that an intermediate frequency of 455 kc . is chosen and that the incoming signal is at 7000 ke . Then the high-frequeney oscillator frequeney may be set to 7455 kc ., in order that one side frequeney (7455 minus 7000) : will be 455 kc . The high-frequency oscillator could also be set to 6545 kc . and give the same difference frequency. To produce an audible c.w. signal at
the, serond detector of, say, 1000 reycles, the autodyming on heterodyning oscillator would he set to either 454 or tith ke.
The irefuency-conversion process permits r.i. amplification at a relatively low frequency, the i.f. High selectivity and gain can be ohtained at this frequency, and this selectivity and gain are constant. The separate oscillators can be devigned for best stability and, since the h.f. oseillator is working at a frequency considerably removed from the signal freguenes, its froquency is not affected by the incoming signal.

Images

Fach h.f. oscillator frequency will cause i.f. response at two signal frequencies, one higher and one lower than the oscillator frequence: If the oseillator is set to $74 \pi 5 \mathrm{ke}$, to tune to a rofo-kc. signal, for example, the receiver can respond also to a signal on 7910 ke ., which likewise gives a $45 \%-\mathrm{kc}$. beat. The undesired signal is called the image. It can cause unnecessary interference if it isn't eliminated.
The radio-irequency circuits of the receiver (those used before the frequency is converted to the i.f.) nomally are tuned to the desired signal, so that the selectivity of the circuits reduces or eliminates the response to the image signal. The ratio of the receiver voltage output from the desired signal to that from the image is called the signal-to-image ratio, or image ratio.

The image ratio depends upon the selectivity of the r.f. tuncd circuits preveding the mixer tube. Also, the higher the intermetiate frequenery, the higher the image ratio, since raising the i.f. increases the frequency separation betwoen the signal and the inage and places the latter further away from the resonance peak of the signal-frequence input circuits. Most receiver designs represent a compromise betwoen economy (few r.f. stages) and image rejection (large number of r.f. stages).

Other Spurious Responses

In addition to images, other signals to which the receiver is not ostensibly tuned may be heard. Ilarmonics of the high-frequency oseillator may beat with signals far removed from the desired frequeney to produce output at the intermediate frequency; such spurious responses can be reduced by adeguate selectivity before the miver stage, and by using sufficient shielding to precent signal pirk-up by any means other than the antemna. When a strong signal is received, the harmonies generated by rectification in the second detertor may, by stray coupling, be introdued into the r.f. or miver cireuit and converted to the intermediate frequenes, to gos through the receiver in the same way as an ordinary sigual. These "birdies" appoat" as a heterodyne beat on the desired signal, and are principally bothersome when the frequency of the incoming signal is not greatly different from the
intermediate frequency. The cure is proper circuit isolation and shielding.

Hammonies of the beat asciltator also may he converted in similar fashion and amplified through the receiver; these responses ran he reduced hy shielding the beat oscillator and operating it at low powor level.

The Double Superheterodyne

At high and very-high frequencies it is difficult to secure an adequate image ratio when the intermediate frequency is of the order of 45) ke. To reduce image response the signal frequently is converted first to a rather high (1500, 5000, or even $10,000 \mathrm{ke}$.) intermediate frequency, and then - sometimes after further amplification - reconverted to a lower i.f. where higher adjacent-channel selectivity (ran be obtained. Such a receiver is called a double superheterodyne.

FREQUENCY CONVERTERS

A circuit tuned to the intermediate frequency is placed in the plate circuit of the mixer, to offer a high impedance to the i.f. voltage that is developed. The signal- and asillator-frequency voltages appearing in the place eireuit are rejected by the selectivity of this circuit. The i.f. tuned circuit should have low impedance for these frequencies, a condition asily met if they do not approach the intermediate frequency.

The conversion efficiency of the mixer is the ratio of i.f. output voltage from the plate circuit to r.f. signal voltage applied to the grid. High conversion effieiency is desirable. The mixer tube noise also should be low if a grood signal-to-noise ratio is wanted, particularly if the mixer is the first tube is the receiver.

The mixer should not reguire too much r.f. power from the h.f. ascillator, since it may be difficult to supply the power and yet maintain good oscillator stability, Ako, the conversion efficiency should not depend too eritically on the oscillator voltage (that is, a small change in oscillator output should not change the gain), since it is difficult to maintain constant output over a wide frequency range.

A change in oscillator frequency caused by tuning of the mixer gride circuit is called pulling. Pulling should be minimized, because the stability of the whole receiver depends critically upon the stability of the h.f. oseillator. Pulling decreases with separation of the signal and h.f.oscillator frequencies, being less with high intermediate frequencios. Another type of pulling is caused by requation in the power supply. strong signals cause the supply voltage to change, and this in turn shifts the oscillator frequency.

Circuits

If the first dotector and high-frequency oscillator are separate tubes, the first detector is called a "mixer." If the two are eombined in one envelope (a_{s} is often done for reasons of economy or
efficiency), the first detector is called a "converter." In either case the function is the same.

Typical mixer circuits are shown in Fig. ot-11. The variations are chiefly in the way in which the owillator voltage is introduced. In)-11.1, a pentode functions as a plate detector; the oscillator voltane is rapacity-coupled to the grid of the tube through ('2. Inductive couphing may be used instead. The conversion gain and input selectivity generally are good, so long as the sum of the two voltages (signal and oscillator) impressed on the mixer grid does not exceed the grid hias. It is desirable to make the oscillator voltage as high as possible without exceeding this limitation. The oscillator power required is negligible. If the signal frequence is only 5 or 10 times the i.f., it may be diffieult to develop enough oscillator voltage at the grid (because of the selectivity of the tuned input circuit). However, the circuit is a sensitive one and makes a good mixer, particularly with high- $G_{\text {rn }}$ tubes like the $6.1\left(\begin{array}{c} \\ \hline\end{array}\right.$ and 6.1 K 5), I good triode also works well in the circuit, and tubes like the 7 F 8 (one section), the 6. 6 (one sertion), the $12 . \mathrm{AT} 7$ (one sertion), and the 6.Jt work well. When a triode is used, the signal frequency must be short-cireuited in the plate circuit, and this is done by connerting the tuning (alpacitor of the i.f. transformer directly from plate to rathode.

It is diflicult to avoid "pulling" in a triode or pentode mixer, and a pentagrid converter tube provides mush hetter isolation. A typical circuit is shown in Fig. :"-1113, and tubes like the $6 \mathrm{SA}_{6}$, 707 or 613 E 6 are commonly used. The oscillator voltage is introduced through an "injection" grid. Metsurement of the rectified current flowing in K_{2} is used as a check for proper oscillator-voltage amplitude. Tuning of the signal-grid circuit can have little effert on the oscillator frequency because the injection grid is isolated from the signal grid by a screen grid that is at r.f. ground potential. The pentagrid mixer is not quite as sensitive as a triode or pentonle mixer, but its isolating characteristics make it a very useful device.
Many receivers use pentagrid converters, and two typical eircuits are shown in Fig. ")-12, The circuit shown in Fig, io-12A, which is suitable for the $6 K$ K, is for a "triode-hexode" converter. A triode oscillator tube is mounted in the same envelope with a hexode, and the control grid of the oscillator portion is comected internally to an injection grid in the hexode. The isolation

Fig. 5-II - 'I'ypical circuits for separately eexcited mivers. (irid injection of a pentode mixer is shown at I, and weparate excitation of a pentagrid eonverter is given in 13. "ypieal values for 13 will he found in 'l'able 5-1 the values below are for the pentorle miver of \mathbf{A}.
$\left(S_{1}-10\right.$ to $50 \mu \mu \mathrm{fd}$.
R_{2} - 1.0 mergohin. (:2-5 $1010 \mu \mu \mathrm{fd}$. $\quad \mathrm{l}_{3}-0.17$ megohm. $\mathrm{Ci}_{3}, \mathrm{C}_{4}, \mathrm{C}_{3}-11.00 \mathrm{i} \mu \mathrm{fl} . \quad \mathrm{K}_{4}-1500$ ohms. $R_{1}-6800$ ohms.
l'usitive supply voltage can be 250 volts with a

betwen oscillator and eonverter tube is reasonably good, and very little pulling results, except on signal frequencies that are quite large compared with the i.f.

The pentagrid-converter circuit shown in Fig, $0-12 B$ (an be used with a tube like the $\mathbf{6 s i} 17$, 6SB7 1, 613.17 or GBL6. Generally the only care necessary is to adjust the feed-back of the oscillator circuit to give the proper oscillator r.f. voltage. This condition is checked by measuring the d.c. current flowing in grid resistor R_{2}.

A more stable receiver generally results, partieularly at the higher frequencies, when separate tubes are used for the mixer and oscillator. Practically the same number of circuit com-

TABLE 5-I								
Plate voltage $=\mathbf{2 5 0}$		Circuit and Operating Values for Converter Tubes Screen voltage $=\mathbf{1 0 0}$, or through specified resistor from 250 volts						
		Selfenciateid			Separate Eicitation			
Tube	Cathode Revistor	Screen Resistor	Grid Leak	Cirid Cirrent	Cuthode Resistor	Screen Resistor	$\begin{aligned} & \text { Grid } \\ & \text { Leeth } \end{aligned}$	Grid Current
$61317{ }^{1}$	0	12,000	22.000	0.3.5 ma.	${ }^{1} 8$	15,000	22,000	0.35 ma.
$613 \mathrm{E} 6^{1}$	- 0	$2 \mathrm{2}, 000$	22,000	0.5	1.11	2こ. 1100	22.000	
6K $8{ }^{2}$	210	27.000	17,000	0.1.5-10.2				
$6517^{2}\left(707^{3}\right)$	0	18,000	-2,000	1.5	151	18,000	2 Sa	0.5
	0	1.5,000	르․(1)	0.35	${ }^{\circ} \mathrm{B}$	1.3,000	22.100	0.35
${ }^{1}$ Miniature	Octal base	metal.	,ock-in					

Fig. 5-12 - Typical circuits for triode-hexode (A) and pentagrid (B) converters. Values for R_{1}, R_{2} and R_{3} can be found in Table 5-I; others are given below.
$\mathrm{C}_{1}-47{ }_{\mu \mu \mathrm{fd} \text {. }} \mathrm{C}_{3}-0.01{ }_{\mu \mathrm{fd}}$.
$\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.001 \mu \mathrm{fd} . \quad \mathrm{K}_{4}-1000$ ohms.
ponents is required whether or not a combination tube is used, so that there is very little difference to be realized from the cost standpoint.

Typical circuit constants for converter tubes are given in Table $5-1$. The grid leak referred to is the oscillator grid leak or injection-grid return, R_{2} of Figs. $5-11$ and $5-12$.

The effectiveness of converter tubes of the type just described becomes less as the signal frequency is increased. some oscillator voltage will be coupled to the signal grid through "spacecharge" coupling, an effect that increases with frequency. If there is relatively little frequency difference between oscillator and signal, as for example a 14- or 28-Mc. signal and an i.f. of 455 kc., this voltage can become considerable because the selectivity of the signal circuit will be unable to reject it. If the signal grid is not returned directly to ground, but instead is returned through a resistor or part of an a.v.c. system, considerable bias can be developed which will cut down the gain. For this reason, and to reduce image response, the i.f. following the first converter of a receiver should be not less than 5 or 10 percent of the signal frequeney, for best results.

Audio Converters

Converter circuits of the type shown in Fig. $5-12$ can be used to advantage in the reception of c.w. and single-sideband suppressed-career signals, by introducing the local oscillator on the No. 1 grid, the signal on the No. 3 grid, and working the tube into an audio load. Its operation can
be visualized as heterodyning the incoming signal into the audio range. The use of such circuits for audio conversion has been limited to selective i.f. amplifiers operating below 500 ke . and usually below 100 kc . An ordinary a.m. signal cannot be received on such a detector unless the tuning is adjusted to make the local oscillator zero-beat with the incoming carrier.
since the beat oscillator modulates the electron stream completely, a large beat-oscillator component exists in the plate rircuit. To prevent overload of the following audio amplifier stages, an adequate i.f. filter must be used in the output of the converter.

THE HIGH-FREQUENCY OSCILLATOR

Stability of the receiver is dependent chiefly upon the stability of the h.f. oscillator, and particular care should be given this part of the receiver. The frequency of oscillation should be insensitive to mechanical shock and changes

Fig. 5-13 - High-frequency oscillator circuits. A, pentode grounded-plate oscillator; B, triode gromiledplate oscillator; C, triode oscillator with tiekler cirenit. Coupling to the mixermas be taken frompoints N and). In A and B, coupling from Y will reduce pulling cffects, but gives less voltage than from X; this 1 ype is lest alapted to mixer circuits with small oseillator-voltage requirements. Typical values for components are as follows:

	Circuit 4	Circuit B	Circuit C
$\overline{C_{1}-}$	$100 \mu \mu \mathrm{fd}$.	$100 \mu \mu \mathrm{fl}$.	$100 \mu \mu \mathrm{fl}$.
$\mathrm{C}_{2}-$	$0.1 \mu \mathrm{fd}$.	$0.1 \mu \mathrm{fd}$.	$0.1 \mu \mathrm{fil}$.
$\mathrm{C}_{3}-$	$0.1 \mu \mathrm{fd}$.		
k_{1} -	47,000 ohms.	47,000 ohms.	47,000 ohms.
K_{2} -	47,000 ohms.	10,000 to	10,000 to
		25,000 ohms.	25,000 ohms.

The plate-supply voltage should be 250 volts. In circuits B and C, \dot{R}_{2} is used to drop the supply voltage to $100-150$ volts; it may be onitted if voltage is obtained from a voltage divider in the power supply.
in voltage and loading. Thermal efferts (slow change in frequency hecause of tube or eircuit heating) should be minimized. They can be reduced by using ceramic instead of bakelite insulation in the r.f. circuits, a large cabinet relative to the chassis (to provide for good radiation of developed heat), minimizing the number of high-wattare resistors in the receiver and putting them in the separate power supply, and not mounting the oscillator coils and tuning condenser too close to a tube. Propping up the lid of a receiver will often reduce drift by lowering the terminal temperature of the unit.

Sensitivity to vibration and shock can be minimized by using good mechanical support for coils and tuning condensers, a heavy chassis, and by not hanging any of the oscillator-circuit components on long leads. Tie-points should be used to avoid long leads, stiff short leads are excellent because they can't be made to vibrate.
smooth tuning is a great eonvenience to the operator, and can be obtained by taking pains with the mounting of the dial and tuning condensers. They should have good alignment and no back-lash. If the condensers are mounted off the chassis on posts instead of brackets, it is almost impossible to avoid some back-lash unless the posts have extra-wide bases. The condensers should be selected with good wiping contacts to the rotor, since with age the rotor contacts can be a source of erratic tuning. All jowints in the oscillator tuning circuit should be cavefully soldered, because a loose connection or "rosin joint" can develop trouble that is sometimes hard to locate. The chassis and panel materials should be heavy and rigid enough so that pressure on the tuning dial will not cause torsion and a shift in the frequency.

In addition, the oscillator must be capable of furnishing sufficient r.f. voltage and power for the particular mixer circuit chosen, at all frequencies within the range of the receiver,
and its harmonic output should be as low as possible to reduce the possibility of spurious responses.

The oseillator plate power should be as low as is consistent with adequate output. Low plate power will reduce tube heating and thereby lower the frequency drift. The oscillator and mixer circuits should be well isolated, preferably by shielding, since coupling other than by the intended means may result in pulling.

If the h.f.-oscillator frequency is affected by changes in plate voltage, a voltage-regulated plate supply (VR tube) can be used.

Circuits

Several oscillator circuits are shown in Fig. $5-13$. The point at which output voltage is taken for the mixer is indicated in each case by X or Y. Circuits A and 13 will give about the same results, and require only one coil. However, in these two circuits the cathode is above ground potential for r.f., which often is a cause of hum modulation of the oscillator output at 14 Mc. and higher frequencies when a.ce-heated-rathode tubes are used. The circuit of lig. o-1:3C reduces hum because the cathode is grounded. It is simple to adjust, and it is atso the best circuit to use with filament-type tubes. With filament-type tubes, the other two eireuits would reguire r.f. chokes to keep the filament above r.f. ground.

Besides the use of a fairly high C / L ratio in the tuned circuit, it is necessary to adjust the feed-back to obtain optimum results. Too much feed-back may cause the oscillator to "squeg" and generate several frequencies simultaneously; too little feed-back will cause the output to be low. In the tapped-coil circuits (A, B), the feedback is increased by moving the tap toward the grid end of the coil. I sing the oscillator shown at (\%, feed-back is obtained by increasing the number of turns on L_{2} or by moving L_{2} closer to L_{1}.

The Intermediate-Frequency Amplifier

One major advantage of the superhet is that high gain and selectivity can be obtained by using a good i.f, amplifier. This can be a onestage affair in simple receivers, or two or three stages in the more elaborate sets.

Choice of Frequency

The selertion of an intermediate frequency is a compromise between conflicting factors. The lower the i.f. the higher the selectivity and gain, but a low i.f. brings the image nearer the desired signal and hence decratses the image ratio. A low i.f. also increases pulting of the oscillator freguency. On the other hand, a high i.f. is beneficial to both image ratio and pulling, but the selectivity and gain are lowered. The difference in gain is least important.

An i.f. of the order of 40 k . gives good selectivity and is satisfactory from the standpoint of image ratio and oscillator pulling at frequencies
up to 7 Mc . The image ratio is poor at 14 Mc . when the mixer is connected to the antenna, but adequate when there is a tuned r.f, amplifier between antenna and mixer. At 28 Mc . and on the very-high frequencies, the image ratio is very poor unless several r.f. stages are used. Above 14 Mc., pulling is likely to be bad unless very loose coupling can he used between mixer and oscillator.

With an i.f, of about 1600 kc ., satisfartory image ratios can be secured on 14,28 and 50 Mr. but the i.f. selectivity is considerably lower. For freguencies of 28 Mc, and higher, the best solution is to use a double superheterodyne, choosing one high i.f. for image reduction ((5) and 10 Mc. are frequently used) and a lower one for gain and selectivity.

In choosing an i.f. it is wise to avoid frequencies on which there is considerable artivity ly the various radio sorvices, since such signals
may be picked up directly on the i.f. wiring. Shifting the i.f. or better shielding are the solutions to this interference problem.

Fidelity; Sideband Cutting

Modulation of a carrier causes the generation of sideband frequencies numerically equal to the carrier frequency plus and minus the highest modulation frequency present. If the receiver is to give a faithful reproduction of modulation that contains, for instance, audio frequencies up to $\mathbf{5 0 0 0}$ eveles, it must at least be capable of amplifying equally all frequencies contained in a hand extending from 5000 cycles above or below the carrier frequency. In a superheterodyne, where all carrier frequencies are changed to the fixed intermediate frequency, this means that the i.f. amplifier should amplify equally well all frequencies within that band. In other words, the amplification must be uniform over a band 5 ke. wide, when the carrier is set at one edge. If the carrier is set in the center, a $10-\mathrm{kc}$. hand is required. The signal-frequency circuits usually do not have enough over-all selectivity to affert materially the "adjacentchannel" selectivity; so that only the i.f.-amplifier selertivity need be considered.

If the selectivity is too great to permit uniform amplification over the band of frequencies occupied by the modulated signal, some of the sidebands are "cut." While sideband cutting reduces fidelity, it is frequently preferable to saicrifice naturalness of reproduction in favor of communications offectiveness.

The selectivity of an i.f. amplifier, and hence the tendency to rut sidebands, increases with the number of amplifier stages and also is greater the lower the intermediate frequency. From the standpoint of communication, sideband cutting is never serious with two-stage amplifiers at frequencies as low as $45 \% \mathrm{k}$. 1 two-stage i.f. amplifier at 8) or 100 ke . will be sharp enough to cut some of the higher-frequency sidebands, if good transformers are used. llowever, the cutting is not at all serious, and the gain in selectivity is worthwhile if the receiver is used in the lowerfrequency bands.

Circuits

I.f. amplifiers usually consist of one or two stages. At 455 kc . two stages generally give all the gain usable, and ako give suitable seleetivity for 'phone reception.

A typical circuit arrangement is shown in Jig. 5-14. A second stage would simply duplicate the circuit of the first. The i.t. amplifier praetically always uses a remote cut-off pen-tode-type tube operated as a ('lass A amplifier. for maximum selectivity, double-tuned transformers are used for interstage coupling, although single-tuned circuits or transformers with untuned primaries can be used for coupling, with a conserpuent loss in selortivity: All other things being equal, the selectivity of an i.f. amplifier is proportional to the number of t.uned cirenits it it.

In lig. $\bar{j}-14$, the gain of the stage is reduced by introducing a negative voltage to the lead marked "to a.v.e." or a positive voltage to R_{1} at the point marked "to manual gain control." In either case, the voltage increases the bias on the tube and reduces the mutual condurtance and hence the gain. When two or more stages are used, these voltages are generally obtained from common sourees. The decoupling resistor, R_{3}, helps to prevent unwanted interstage coupling. (${ }_{2}$ and R_{4} are part of the automatic volumecontrol (ircuit (described later); if no a.v.e. is used, the lower end of the i.f.-transformer secondary is comected to ground.

In a two-stage amplifier the screen grids of both stages may be fed from a common supply, either through a resistor $\left(K_{2}\right)$ as shown, the streens being connected in parallel, or from a voltage divider across the phate supply. Separate screen voltage-dropping resistors are preferable for preventing undesired coupling between stages.

Typical values of cathode and screen rosistors for common tubes are given in Table 5-11. The $6 \mathrm{~K} 7,6 \mathrm{SK} 7,613 \mathrm{~J} 6$ and 7117 are recommended for i.f. work. The indicated screen resistors drop the plate voltage to the correct screen voltage, as R_{2} in Fig. 5-14.

When two stages are used the high gain will tend to cause instability and oscillation, so that good shielding, by-passing, and careful circuit arrangement to prevent stray coupling, with exposed r.f. leads well separated, are necessary.

I.F. Transformers

The tuned circuits of i.f. amplifiers are built up as transformer units consisting of a metal shield container in which the eoils and tuning condensers are mounted. Both air-core and powdered iron-core universal-wound roils are used, the latter having somewhat higher (\&) and hence greater selectivity and gain. In universal windings the coil is wound in layers with each turn traversing the length of the coil, back and forth, rather than being wound perpendicutlar to the axis as in ordinary single-layer coils. In a straight multilayer winding, a fairly large

Fif, 5-14-Typical intermediate.frequeney amplifier rircuit for a superheterodyne receiver. Mepresintative valure for components are as follows:
 C2-0.01 $\mu \mathrm{fd}$.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.1 \mu \mathrm{fd}$, at $4.55 \mathrm{kc} . ; 0.01 \mu \mathrm{fd}$ above 1000 ke . $\mathrm{K}_{1}, \mathrm{~K}_{2}-$ see table 5 -II. $\mathrm{K}_{3}-18100$ ohms.
lin -0.27 megrim.

AIR TUNED
PERMEABILITY TUNED
Fig. 5.15- Kcpresentative i.f.-transformer construc. tion. Coils are supported on insulating tubing or (in the air-tuned type) on wax-impregnated wooden dowels. The shield in the air-tuned tranformer prevents rapacity coupling bet ween the tuning condensers. In the permeability-tuned transformer the cores consist of fincly edivided iron particles supported in an insulating binder, formed into cylindrical "plugs." I'he tuning eapacity is fixed, and the inductances of the coils are varied by moving the iron plags in and out.
capacity man exist between layers. Iniversal winding, with its "eriss-crossed" turns, tends to reduce distributed-caparity effects.

For tuning, air-dielectric tuning condensers are preferable to mica compression types because their rapacity is practically unafferted by changes in temperature and humidity. Iron-core transformers may be tuned by varying the inductance (permeability tuning), in which case stability comparable to that of variable air-condenser tuning con be obtained by use of high-stability fixed mical condensers, such stability is of great importance, since a circuit whose frequency "drifts" with time eventually will be thmed to a different frequency tham the other circuits, thereby reducing the gain and selectivity of the amplifier. Typical i.f.-transformer construction is shown in Fig. 5-15.

Besides the type of i.f. transformer shown in Fig. j-1is, special units to give desired selectivity characteristics are available. For higher-than-ordinary adjacent-channel selectivity tripletuned transformers, with a third tuned circuit inserted between the input and output windings, are sometimes used. The energy is transferred from the input to the output windings via this tertiary winding, thus adding its selectivity to the over-all selectivity of the transformer. Varia-ble-selectivity transformers also can be obtained. These usually are provided with a third (untuned) winding which can be connected to a resistor, thereby loading the tuned circuits and decreasing the Q to broaden the selertivity curve. The resistor is switched in and out of the circuit to vary the selectivity. Another method is to vary the coupling between primary and secondary, overcoupling being used to broaden the selectivity curve. Special circuits using single tuned circuits, coupled in any of several different ways, are used in some applications.

Selectivity

The over-all selectivity of the r.f. amplifier will depend on the frequency and the number of stages. The following figures are indiative of the bandwidths to be experted with goodquality transformers in amplifiers so constructed as to keep regeneration at a minimum:

	Bandwidth in Kilacycles		
	2 times	10 times	100 tim
Intermediate Frequenc!	down	domn	doun
One stage, toke. (ironcore)	0.8	1.4	2.8
Onestage, 450 kr . (air core)	8.7	17.8	32.3
Onestage, 45.5 kc . (iron more)	4.3	10.3	20.4
Twostages, 45 a ke . (iron core)	2.9	6.4	10.8
Twostages, 1600 kc ,	11.0	16.6	27.4
Two stages, 5000 kc .	25.8	46.0	100.0

Tubes for I.F. Amplifiers

Variable- μ (remote cut-off) pentodes are almost invariably used in i.f. : moplifier stages, since grid-bias gain control is practically always applied to the i.f. amplifier. Tubes with high plate resistance will have least effect on the selertivity of the amplifier, and those with high mutual conductance will give greatest gatn. The choice of i.f. tubes has practically no effect on the signal-to-noise ratio, since this is determined by the proceding mixer and r.f. amplifior.

When single-ended tubes are used, the plate and grid leads should be well separated. With these tubes it is advisable to mount the screen by-pass eondenser directly on the bottom of the socket, crosswise between the plate and grid pins, to provide additional shiekding. The outside foil of the condenser should the grounded.

THE SECOND DETECTOR AND beat oscillator

Detector Circuits

The second detector of a superheterodyne receiver performs the same function as the detector in the simple receiver, but usually operates at a higher input level because of the relatively

TABLE 5-II Cathode and Screen-Dropping Resistors for R.F. or I.F. Amplifiers				
Tube	Plate Volts	Screen Volts	Cathode Resistor	S̈reen hexistor
6.AB71*	300		200 ohuns	33,000 ohms
$6.4{ }^{7}$	300		160	62,000
6. ${ }^{\text {K }}{ }^{2}$	180	120	200	27,000
$6.15{ }^{\text {c }}{ }^{2}$	250	150	69	33,000
6B.A6 ${ }^{\text {* }}$	250	100	68	33,000
$6 \mathrm{BH} 6^{2}$	250	150	100	33,000
618J62*	250	100	82	47,000
$\mathrm{faj}^{\text {\% }}$	250	100	1200	270.000
${ }^{15 \mathrm{KF}}{ }^{\text {a }}$	250	125	240	47.000
	250	125	68	27,000
納年	250	150	200	47.000
$6 \mathrm{SH}^{171}$	250	150	68	39,000
B601	250	100	820	180,000
	250	100	270	56,000
7G7/12323	250	100	270	68.000
- 1173	2.50	150	$1{ }^{(1)}$	27,000
1 Octal has * Rennote c	metal -off ty	$2 \mathrm{Mir}$	ture tube.	${ }^{3}$ loock-in hase.

Fig. 5.16 - Automatie volume-control rircuit using a dual-diode-triode as a combined a.v.c. rectifier, second detertor and first a.f. amplifier.
R_{1} - 0.27 megohm.
$R_{2}-50,000$ to 250,000 ohms.
$\mathrm{R}_{3}-1800$ ohms.
$R_{4}-2$ to 5 megohms.
$\mathrm{R}_{5}-0.5$ to 1 megohm.
$\mathbf{R}_{6,} R_{5}, R_{s}, R_{9}-0.25$ megohm.
R_{10} - 0.5 -megohm variahle.
$C_{1}, C_{2},(: 3-1(0) \mu \mu \mathrm{fd}$.
$\mathrm{C}_{4}-0.1 \mu \mathrm{fd}$,
$\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}=11.01 \mu \mathrm{fd}$.
$\mathrm{C}_{\mathrm{n}}, \mathrm{Co}-0.01 \mathrm{t} 00.1 \mu \mathrm{fd}$.
C_{10} - 5. to $10-\mu \mathrm{fd}$. electrolytic.
$\mathrm{C}_{11}-2.70 \mu \mu \mathrm{frl}$.

great amplification ahead of it. Therefore, the ability to handle large signals without distortion is preferable to high sensitivity. l'late detection is used to some extent, but the diode detector is most popular. It is especially adapted to furnishing automatic gain or volume control. The basir circuits have been described, although in many cases the diode elements are incorporated in a multipurpose tube that contains an amplifier section in addition to the diode.

The Beat Oscillator

Any standard oscillator circuit may be used for the beat oscillator required for heterodyne reception. Special beat-oscillator transformers are available, usually consisting of a tapped coil with adjustable tuning; these are most conveniently used with the circuits shown in Fig. $5-13.1$ and 13 , with the output taken from Y. A variable condenser of about $25-\mu \mu \mathrm{fd}$. capacity may be connected between cathode and ground to provide fine adjustment of the frequency. The beat oscillator usually is coupled to the seconddetector tuned circuit through a fixed condenser of a few $\mu \mu \mathrm{fd}$. caparity.

The beat oscillator should be well shielded, to prevent coupling to any part of the receiver except the scoond detector and to prevent its harmonics from getting into the front end and loping amplified along with desired signals. The b.f.o. power should be as low as is consistent with sufficient audio-frequency output on the strongest signals. llowever, if the beat-oscillator output is too low, strong signals will not give a proportionately strong audio signal. Contrary to some opinion, a weak b.f.o. is never an advantage.

AUTOMATIC VOLUME CONTROL

Automatic regulation of the gain of the receiver in inverse proportion to the signal strength is an operating convenience in 'phone reception, since it tends to keep the output level of the receiver constant regardless of input-signal strength. The average rectified d.c. voltage, developed by the received signal across a resistance in a detector circuit, is used to vary the bias on the r.f. and i.f. amplifier tubes. Since this
voltage is proportional to the average amplitude of the signal, the gain is reduced as the signal strength becomes greater. The control will be more complete as the number of stages to which the a.v.c. bias is applied is increased. Control of at least two stages is advisable.

Circuits

A typical circuit using a diode-triode type tube as a combined a.v.e. rectifier, detertor and first audio amplifier is shown in Fig. j-16. One plate of the diode section of the tube is used for signal detection and the other for a.v.c. rectification. The a.v.ce diode plate is fed from the detector diode through the small coupling condenser, ('3. I nogative bits voltage resulting from the flow of rectified carrier current is developed across R_{4}, the diode load resistor. This negative voltage is applied to the grids of the controlled stages through the filtering resistors, K_{5}, R_{6}, R_{7} and K_{5}. When r_{1} is closed the a.v.e. line is grounded, removing the a.v.c. bias from the amplifiers.

It does not matter which of the two diode plates is selected for audio and which for a.v.e. Frequently the two plates are connceted together and used as a combined detector and a.v.c. rectifier. This could the done in Fig. j-16. The a.v.e. filter and line would connert to the junction of K_{2} and C_{2}, while (C_{3} and R_{4} would be omitted from the circuit.

Delayed A.V.C.

In Fig. 5-16 the audio-diode return is made directly to the cathode and the a.v.c. diode is returned to ground. This places bias on the a.v.e. diode equal to the d.e. drop through the eathode resistor (a volt or two) and thus delays the application of a.v.e. voltage to the amplifier grids, since no rectification takes place in the a.v.e. diode cireuit until the carrier amplitude is large enough to overcone the bias. Without this delay the a.v.c. would start working even with a very small signal. This is undesirable, because the full amplification of the receiver then could not be realized on weak signals. In the audio-diode circuit fixed bias would cause distortion, so the return there is directly to the cathode.

Time Constant

The time constant of the resistor-condenser combinations in the a.v.c. circuit is an important part of the system. It must be high enough so that the modulation on the signal is eompletely filtered from the d.c. output, leaving only an average d.c. component which follows the relatively slow carrier variations with fading. Audiofrequency variations in the a.v.c. voltage applied to the amplifier grids would reduce the percentage of modulation on the incoming signal. But the time constant must not be too great or the a.v.e. will be unable to follow rapid fading. The capacitance and resistance values indicated in Fig. 5-16 will give a time constant that is satisfactory for average reception.

C. W.

A.v.r. can be used for c.w. reception but the rircuit is more complicated. The a.v.c. voltage must be derived from a rectifier that is isolated from the beat-freguency oscillator (otherwise the rectified b.f.o. voltage will reduce the receiver gain even with mo signal coming through). This is gencrally done hy using a separate a.v.c. channel connected to an i.f. amplifier stage ahead of the second detector (and b.f.o.). If the selectivity ahead of the a.s.e. rectifier isn't grood, strong adjacent signals will develop a.v.r. voltages that will reduce the receiver gain while listening to weak signals. When clear channels are available,
however, e.w. a.v.c. will hold the receiver output constant over a wide range of signal input. A.v.e. systems designed to work on c.w. signals must have fairly long time eonstants to work with slow-speed sending, and often a selection of time constants is made available.

Amplified A.V.C.

The a.v.c. system shown in Fig. j-16 will not hold the audio output of the receiver exactly constant, although the variation becomes less as more stages are controlled by the a.v.c. voltage. The variation also becomes less as the delay voltage is inereased, although there will, of course, be variation in output if the signal intensity is below the delay-voltage level at the a.v.c. rectifier. In the circuit of Fig. 5-16, the delay voltage is set by the proper operating bias for the triode portion of the tube. However, a separate diode may be used, as shown in Fig. j-17A. Since such a system requires a large voltage at the diode, a separate i.f. stage is sometimes used to feed the delayed a.v.c. diode, as in Fig. $5-17 \mathrm{~B}$. A system like this, often called an "amplified a.v.c." system, gives superlative control artion, since it maintains full receiver sensitivity for weak signals and substantially uniform audio output over a very wide range of signal strengths. To avoid a slight decrease in signal volume "on tune," the transformer eoupling V_{2} to V_{3} should not be selective.

Noise Reduction

Types of Noise

In addition to tulne and rireuit noise, much of the noise interference experioned in reception of high-frectuence signals is caused by domestic or industrial elecetrical equipment athd by atutomotile ignition systems. The interference is of two trpes in its effects. The first is the "hiss" type, ronsisting of overlapping pukses similar in nature to the reaver noise. It is largely reduced by high selertivity in the receiver, especially for code reception. The second is the "pistol-shot" or "machine-gun" type, consisting of separated impulses of high amplitude. The "hiss" trye of interference usually is caused by commutator sparking in d.e. and series-wound a.e. motors, while the "shot" trpe results from separated spark discharges (a.c. power leaks, switeh and key clicks, ignition sparks, and the like).

The only known approach to reducing tube and circuit moise is through better "front-end" design and through more over-all seledivity.

Impulse Noise

Impulse noise, beramse of the slort durat tion of the pulses eompared with the time between them, must have high amplitude to contain much average ernergy. Hence, noise of this type strong enough to cause muth interference gemerally has an instantaneons amplitude mud higher than that of the signal being rereived. The general principles of devieres inteaded to reduce surh noise is to allow the desired signal

Fig, 5-18-series-alle moisedimitry cirmits, A. as used with an infinite-imoredanes detector: B, with a diode drtector 'Tyuical values for eomponethts are as fullows: $\mathrm{K}_{1}-0.2=$ mekohm. $\quad \mathrm{K}_{4}-20.0010 \mathrm{ta} .30,0010$ ohms. $\mathrm{K}_{2}-4 \overline{4}, 000$ ahmes. $\quad \mathrm{il}_{1}-2-0 \mu_{\mu} \mathrm{fil}$.

All other dimenecirenit constants in 13 are connantienal.
to pass through the receiver unatfected, but to make the receiver inoperative for amplitudes greater that that of the signal. The greater the amplitude of the pulse compatered with its time of duration, the more sucerssful the noise reduction.

Another approach is to "silence" (render inoperative) the receiver during the short duration time of any individual pulse. The listener will not hear the "hole" beraluse of its short durat tion, and very efferedive noise reduction is obtained. Such devires are called "sileneres" mather than "limiters."

In passing through selective receiver circuits, the time duration of the impulses is increated, beretuse of the Q of the cireuits. Thus the more solectivity ahead of the noise-reducing devier, the more difficult it becomes to secure good pulse-type noise suppression.

Audio Limiting

A considerable derree of noise reduction in code reception "ath be acomplished by :mm-plitude-limiting arrampements applied to the audio-output cireuit of a receiver. Such limiters also matintain the signal output nearly constant during fioling. These output-limiter sustems are simple, and adaptahle to most receivers. Howaver, ther ramot provent noise peaks from overloading previous stages,

SECOND-DETECTOR NOISE LIMITER CIRCUITS

The cireuit of Fig. 5-If ""hops" moise perks at the second detector of a superhet resociow loy meaths of a biased diode, which heromes noneondueting above a predetermine l siznal level. The audio output of the detector must pass through the diode to the grid of the :amplifier tube. The diode normally would be nonconducting with the ronnections shown were it not for the fitct that it is given positive hits: from a 30 -volt souree through the adjustable potentiometer, R_{3}. Resistors R_{1} and R_{2} must be fairly large in value to prevent loss of audio signal.

The audio signal from the detector can be considered to modulate the stomdy diode current, and ronduction will take phace so long as the diode plate is positive with respert to the cathode. When the signal is sufticiontly latge to swing the cathode positive with resinect to the plate, however, conduction weases, and that portion of the signal is cut off from the andio amplifier. The point at which rat-off orcurs can be selected hy adjustment of R_{3}. By setting R_{3} so that the signal just paseses through the "valve," noise pulses higher in amplitule than the signal will be cut off. The (ircuit of Fig. i-1NA, using :an infinito-impedathe deterter, gives a positive voltage on reedifi-

Fig. 5-19 - Self-arljusting serics (1) and shunt (B) noise limitors. The functions of I_{1} and I_{2} can be combined in one tulie like the 6lif or 6.1.5, or Type iN31 crystals pan the used.
C. -100$)_{\mu} \mu \mathrm{ffl}$.
(i2. Cis - $0.05 \mu \mathrm{ful}$.
 in B.
$\mathrm{H}_{2}-0.27$ meк. in $\mathbf{A} ; 0.15$ meg. II 3 .
B_{3} - $1.0 \mathrm{O}_{\text {megoh }}$.
11_{4} - 10.82 megohim.
"ation. When the rectified voltage is negative, as it is from the usual diode detector, the circuit arrangement shown in Fig. j-1813 must be used.

An audio signal of about ten volts is required for good limiting action. The limiter will work on either c.w. or 'phone signats, but in either case the potentiometer must be sot at a point determined by the strength of the incoming signal.
serond-detector noise-limiting cireuits that automatically adjust themselves to the recoiver arrier level are shown in Fig. $5-19$. In either circuit, F_{1} is the usual diode second detector, $R_{1} R_{2}$ is the diode load resistor, and C_{1} is an r.f. by-pass. I megative voltage proportional to the carrier level is developed across (' 2 , and this woltage cannot change rapidly beanse R_{3} and ('2 are both large. In the cireuit at A, diode l_{2} ants as at condurtor for the audio signal up to the point where its anode is negative with reopect to the rathode. Noise peaks that exeed the maximum arrier-modulation level will drive the anode negative instantaneously, and during this time the diode does not conduct. The large time constant of (' $2 R_{3}$ prevents any rapid change of the reference voltage. In the circuit at 13 , the diode I_{2} is inartive until its cathode voltage excereds its anode voltage. This condition will ohtain under noisc peaks and, when it does, the dionle 1_{2} short-circuits the signal and no voltage is passed on to the audio amplifier. Diode rectifiers such as the 6116 and $6.1 L^{5}$, or the $1 N 34$ germanium crystal diode, can be used for these types of noise limiters. Neither circuit is useful for c.w. reception, but they are both quite effective for 'phone work.

I.F. Noise Silencer

In the circuit shown in Fig. --20, noise pulses are made to decrease the gain of an i.f. stage momentarily and thus silene the receiver for the duration of the pulse. Ane noise voltage in excess of the desired signal's maximum i.f. voltage is taken off at the grid of the i.f. amplifier, amplified by the noise-amplifier stage, and reetified by the full-wave diode noise rectitier. The noise rircuits are tumed to the i.f. The rectified nowe voltage is applied as a pulse of negative bias to the No. 3 grid of the 61.7 i.f. amplifier, wholly or partially disabling this stage for the duration of the individual noise pulse, depending on the amplitude of the noise voltage. The noise-amplifier rertifier eirent is hiased hy means of the
"threshold eontrol," R_{2}, so that rertification will mot start until the noise voltage exceeds the desired signal implitude. With automatic volume control the a.v.e. voltage ean be applied to the grid of the moise amplifier, to augment this threshold bias. In a typical instance, this system improved the signal-to-moise ratio some 30 db . (power ratio of 1000) with heavy ignition interference, raising the signal-to-noise ratio from -10 db . without the silencer to +20 db . with the silencer.

SIGNAL-STRENGTH AND TUNING INDICATORS

In indicator that will show relative signal strength is a useful receiver aceessory. It is an aid in giving reports to transmitting stations, and it is helpful in aligning the recoiver circuits, in conjunction with a test oscillator or other steady signal.

Three types of indicators are shown in liig. i-21. That at Awes an electron-ray tube, several types of which are available. The grid of the triode seetion usually is romnerted to the a.v.e. line. The particular type of tube used deponds upon the voltage available for its grid; where the

 ($\left.\mathrm{C}_{\mathrm{i}}-51\right)-259 \mu \mu \mathrm{fl}$. (use smallest value posible without r.f. feed.hat-k).
($2-f, \mu \mu \mathrm{fd}$. $\quad \mathrm{R}_{2}-5000$ mom variable.
 $K_{1 .} K_{4}, K_{5}-0.1 \mathrm{meg}, ~ R H^{2}(-20 \mathrm{mh}$.
' I_{1} - Suceial i.f. transformer for noise reetilier.
a.v.c. voltage is large, a remote cut-off type (6G5, 6N5 or 6AD6(i) should be used in preference to the sharp cut-off type ($6 \mathrm{~F} \overline{5}$).

In B, a milliammeter is connected in series with the d.c. plate lead to one or more r.f. and i.f. tubes, the grids of which are controlled by a.v.c. voltage. Since the plate current of such tubes varies with the strength of the incoming signal, the meter will indicate relative signal intensity and may be calibrated in dh, above and below some input-voltage reference level. The scale range of the meter should be chosen to fit the number of tubes in use; the maxinum plate current of the average remote cut-off r.f. pentode is from 7 to 10 milliamperes. The shunt resistor, R, enables setting the plate current to the fullscale value ("zero adjustment"). With this system the ordinary meter reads downward from full scale with increasing signal strength.

The system at (uses a 0-1 milliammeter in a bridge circuit, arranged so that the meter reading and the signal strength increase together. The current through the branch containing R_{1} should be approximately equal to the current through that containing R_{2}. In some manufartured receivers this is done by draining the screen voltage-divider current and the current to the screens of three r.f. pentodes (r.f. and i.f. stages) through R_{2}, the sum of these currents being about efual to the maximum plate current of one a.v.c.-controlled tube. The sensitivity ran be increased by increasing the resistance of R_{1}, R_{2} and R_{3}. The initial setting is made with the manual gain control set near maximum, when K_{3} should be adjusted to make the meter read zero with no signal.

Fig. 5.21 - Tuning-indicator or S-meter circuits for superhet receivers. A, electron-ray indicator; B, plate. eurrent meter for tubes on a.v.e.; C. bridge circuit for a.v.c.-controlled tube. In 13 , resistor R should have a maximum resistance several times that of the milliam. meter. In C. representative values for the components are: $R_{1}, 270$ obms; $R_{2}, 330$ ohms; $R_{3}, 1000$-ohm variable.

Improving Receiver Selectivity

INTERMEDIATE-FREQUENCY AMPLIFIERS

As mentioned earlier in this chapter, one of the big advantages of the superheterodyne receiver is the improved selectivity that is possible. This selectivity is obtained in the i.f. amplifier, where the lower frequency allows more selectivity per stage than at the higher signal frequency. For 'phone reception, the limit to useful selectivity in the i.f. amplifier is the point where so many of the sidebands are cut that intelligibility is lost, although it is possible to remove completely one full set of side-bands without impairing the quality at all. Maximum receiver selectivity in 'phone reception requires good stability in both transmitter and receiver, so that they will both remain "in tune" during the transmission. The limit to useful selectivity in code work is around 100 or 200 cy/cles for hand-key speeds, but this much selectivity roquires good stability in both tramsmitter and receiver, and a slow receiver tuning rate for ease of operation.

Single-Signal Effect

In heterodyne c.w. reception with a superheterodyne receiver, the beat oseillator is set to give a suitable audio-frequeney beat note when the incoming signal is converted to the intermediate frequener. For example, the beat oscillator may be set to 456 kr . (the i.f. being 45.5 ke .) to give a 1000 -cyole heat note. Now, if an interfering signal appears at 4.5 kc ., or if the receiver is tuned to heterodyne the incoming signal to 457 ke ., it will also be heterodoned by the beat oscillator to produce a 1000 rvele beat. Hence every signal can be tuned in at two places that will give a 1000 -crele beat (or any other low audio frequency). This audiofrequency image effert ran be reduced if the i.f. selectivity is such that the incoming signal, when heterodyned to 457 kc ., is attenuated to a very low level.

When this is done, tuning through a given signal will show a strong response at the desired beat note on one side of zero beat only, instead of the two beat notes on either side of zero beat characteristic of less-selective rereption, hence the name: single-signal reception.

The necessary selectivity is not ohtained with nonregenerative amplifiers using ordinary tuned circuits unless a low i.f. or a large number of circuits is used.

Regeneration

Regeneration can be used to give a singlesignal effect, particularly when the i.f. is 4oj ke. or lower, The resomance curve of an i.f. stage at aritical regeneration (just below the oscillating point) is extremely sharp, a handwidth of 1 ke . at 10 times down and it kr . at 100 times down being obtainable in one stage. The audio-frequency image of a given signal thus can be reduced by a factor of nearly 100 for a 1000 -cyorle beat note (image 2000 eveles from resonance).

Regeneration is easily introduced into an i.f. amplifier by providing a small amount of cat parity coupling between grid and plate. Bringing a short length of wire, connected to the grid, inte the vieinity of the plate lead usually will suffice. The feed-back may be controlled by the regular cathode-resistor gain control. When the i.f. is regenerative, it is preferable to operate the tube at reduced gain (high bias) and depend on regeneration to bring up the signal strength. This prevents overloading and increases selectivity:

The higher selectivity with regeneration reduces the ower-all response to moise generated in the earlier stager of the receiver, just as does high selectivity produced by other means, and therefore improves the signal-to-noise ratio. However, the regenerative gain varies with signal strength, being less on strong signals, and the selectivity varies.

Crystal Filters

Probathly the simplest means for obtaining high selectivity is by the use of a piezoelectrie guartz erystal as a selective filter in the i.f. amplifier. Compared to a goobl tuned rircuit, the () of such a crestal is extremely high. The crystal is ground to be resomant at the desired intermediate frequenc: It is then used as a selective coupler between i.f. stages.

Fig. i-2e2 gives a typical crystal-filter resonance curve. For single-signal reception, the audio-frequency image can be reduced by a factor of 1000 or more. Besides practically eliminating the a.f. image, the high selectivity of the crystal filter provides good discrimination against signals very close to the desired signal and, by reducing the band-width, reduces the response of the receiver to noise.

Crystal-Filter Circuits; Phasing

Several crystal-filter circuits are shown in Fig. 5-23. Those at .1 and B are practically identical in performance, although differing in details. The crystal is connected in a bridge circuit, with the secondary side of T_{1}, the input transformer, balanced to ground either through a pair of condensers, ($-\left(C^{\prime}(A)\right.$, or by a centertap on the secondary, L_{2} (B). The bridge is completed by the erystal and the phasing con-
denser, (${ }_{2}$, which has a maximum capacity someWhat higher than the capacity of the crystal in its holder. When C_{2} is set to balance the crystal-holder capacity, the resonance curve of the crystal circuit is practically symmetrical; the rrystal arts as a series-resonant circuit of very high Q and thus allows signals of the desired frequency to be fed through C_{3} to $L_{3} L_{4}$, the output transformer. Without (2 , the holder caparity (with the crystal acting as a dielectric) would pass undesired signals.
The phasing control has an additional function besides neutralization of the crystal-holder caparity. The holder caparity becomes a part of the crystal circuit and causes it to act as a parallel-tuned resonant circuit at a frequency slightly higher than its series-resonant frequency. Signals at the parallel-resomant frequency thus are prevented from reaching the output circuit. The phasing control, by varying the effect of the holder capacity, permits shifting the parallelresonant frequency over a considerable range, providing adjustable rejection of interfering signals. The effect of rejection is illustrated in Fig. $5-22$.

Additional I.F. Selectivity

Many commercial communications receivers do not have suffirient selectivity for amateur use, and their performance can be improved by adding additional selectivity. One popular nethod is to couple a BC'-45.3 aircraft receiver (war surplus, tuning range 190 to 550 ke .) to the tail end of the 46.5 ke . i.f. amplifier in the communications receiver and use the resultant output of the $\mathrm{BC}-453$. The aircraft receiver uses an 85-ke. i.f. amplifier that is quite sharp - 6.5 kc . wide at -60 dt , - and it helps tremendously in separating 'phone signals and in backing up crystal filters for improved c.w. reception. (See (SST, January, 1948, page 40.)

Fig. 5.22 - Graphiral representation of single-signal melectivity. The shaded area indicates the over-all bandwidth, or region in which response is obtainable.

If a $B(C-4)^{3}$ is not available, it is still a simple matter to enjoy the benefits of improved selectiviny. It is ouly necessary to heterodyne to a lower frequency the 465 -ke, signal existing in the rereiver i.f. amplifier and then rectify it after passing it through the sharp low-frequency amplifier. The IIammarlund Company and the J. W. Miller Company both offer j0-kc. transformers for this application.
(ぶT' references on high i.f. selectivity include: Mr.Laughlin, "Selectable Ningle Nideband," Ipril, 1948; Githens, "Super-selective (.W. Receiver," Aug., 1948.

RADIO-FREQUENCY AMPLIFIERS

While selectivity to reduce audio-frequency images can be built into the i.f. amplifier, diserimination against radio-frequency images can only be obtained in circuits ahead of the first detector. These tuned rircuits and their assoriated varuum tubes are called radio-frequency amplifiers. For top performance of a communica-

Fin. 5-2.3- Cirystal-filter circuits of three types. All give variable bandwidth, with C having the greatest range of selectivity. Suitable circuit values are as follows: Circuit A, T_{1}, sperial i.f. input transformer with high-inductance primary, L_{1}, closely coupled to tuned scondary, $L_{2}: \mathrm{C}_{1}$, $50-\mu \mu \mathrm{fd}$. variable; C, each $100-\mu \mu \mathrm{fd}$. fixed (mica); Ca, 10- to
 tuned circuit, with I_{3} tapped to mateh crystal-circuit innpedance. In cireuit B, T_{1} is the same as in circuit 1 except that the secondary is eenter-tapped; i is 100$)_{-\mu \mu} \mathrm{fd}$. vari. able; C_{2}, C_{3} and C_{4}, same as for circuit $A: I_{2} L_{4}$ is a tramsformer with primary, L_{4}, corresponding to tap on $L_{\text {a }}$ in A . In circuit ©, T_{1} is a special i.f. input transformer with tuned primary and low-impedance secondary: C, each $100-\mu \mu \mathrm{fl}$. fixed (mica): (.2, opposed stator phasing condenser, approximately 8- $\mu \mu$ fid. maximum capacity each side; $L_{3} \mathrm{C}_{3}$, high-O i.f. tuned circuit; $R, 0$ to 3000 ohms (selectivity control).
tions receiver on frequencies above 7 Me., it is mandatory that it have one or two stages of r.f. amplification, for image rejection and impored sensitivity.

Receivers with an i.f. of 455 kc . can be expected to have some r.f. image response at a signal frequency of 14 Mc , and higher if only one stage of r.f. amplification is used. (IRegeneration in the r.f. amplifier will reduce image response, but regeneration usually requires frequent readjustment when tuning across a band.) With two stages of r.f. amplification and an i.f. of tin ke., no images should be apparent at 14 Mr., but they will show up on 28 Mc. and higher. Three stages or more of r.f. amplification, with an i.f. of 455 kc ., will reduce the images at 28 Mc ., but it really takes four or more stages to do a good job. The better solution at 28 Mc . is to use a "triple-detection" superheterodyne, with one stage of r.f. amplification and a first i.f. of 1600 kc . or higher. A normal receiver with an i.f. of $4 \pi \mathrm{jc}$. can be converted to a triple superhet by eonnecting a "converter" (to be desoribed later) ahead of the receiver.

For hest selectivity, r.f. amplifiers should use high-Q circuits and tubes with high input and output resistance. Variable- μ pentodes are practieally always used, although triodes (neutralized or otherwise connected so that they won't oscillate) are often used on the higher frequencies because thev introduce less noise. Pentodes are better where maximum image rejection is desired, because they have less loading effect on the cireuits.

FEED-BACK

Feed-back giving rise to regeneration and oseillation can occur in a single stage or it may appear as an over-all feed-back through several stages that are on the same frequeney. To avoid feed-back in a single stage, the output must be isolated from the input in every way possible, with the vacuum tube furnishing the only coupling between the two circuits. An oseillation can be obtained in an r.f. or i.f. stage if there is ans undue capacitive or inductive coupling between output and input cireuits, if there is too, high an impedance between cathode and ground or screen and ground, or if there is any appreciable impedance through which the grid and phate currents can flow in common. This means good shielding of coils and condensers in r.f. and i.f. cireuits, the use of good by-piss condensers (mica or ceramie at r.f., paper or ceramic at i.f.), and returning all by-pass condenser: (grid, eathode, plate and screen) with short leads to one spot on the chassis. If single-enderd tubes are used, the sereen or eathode hy-pars condenser should be mounted across the socket, to serve as a shield between grid and plate pins. Less care is required as the freguency is lowered, but in high-impedance cireuits, it is sometimes: necessary to shield grid and plate leads and to be careful not to run them close together.
To avoid over-all feed-bark in a multistage
amplifier, attention must be paid to avoid running any part of the output circuit back near the input circuit without first filtering it carefully. Since the signal-earrying parts of the eircuit (the "hot" grid and plate leads) can't be filtered, the best design for any multistage amplifier is a straight line, to keep the output as far away from the input as possible. For example, an r.f. amplifier might run along a chassis in a straight line, run into a mixer where the frequency is changed, and then the i.f. amplifier could be rum back parallel to the r.f. amplifier, provided there was a very latge frequency difference between the r.f. and the i.f. amplifiers. However, to aroid any possible coupling, it would be better to run the i.f. amplifier off at right angles to the r.f.amplifier line, just to be on the safe side. (iood shiclding is important in preventing over-all oscillation in high-gain-per-stage amplifiers, but it beromes less important when the stage gain drops to a low value. In a high-gain amplifier, the power leads (including the heater circuit) are common to all stages, and they can provide the over-all coupling if they aren't properly filtered. (iood by-passing and the use of series isolating resistors will generally eliminate any possibility of coupling through the power leads. R.f. chokes, instead of resistors, are used in the heater leads where neeessary.

CROSS-MODULATION

Since a one- or two-stage r.f. amplifier will have a passland measured in hundreds of ke. at If Me. or higher, strong signals will be amplified through the r.f. amplifier even though it is mot tuned exactly to them. If these signals are strong enough, their amplified magnitude may be measurable in volts after passing through sereral r.f. stages. If an undesired signal is strong enough after amplification in the r.f. stages to shift the operating point of a tube (low driving the grid into the positive region), the undesired signal will modulate the desired signal. This effeert is called cross-modulation, and is often eneoun-

Fig. 5.24 - Typical radio-frequency amplifier circuit for a superheterodyne reeciver. Representative salues for components are as follows:
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-0.01 \mu \mathrm{ful}$. below $15 \mathrm{Mc} ., 0.001 \mu \mathrm{ful}$. at 30 М1.
$\mathrm{R}_{1}, \mathrm{R}_{2}$ - Sce Table 5-II.
R_{3} - 1800 ohms.
J. -0.22 megohm.

(A)

(B)

Fig. 5-25-Converter-circuit tracking methods. Following are approximate circuit values for $450-10465-\mathrm{kc}$. i.f.s, with tuning ratmes of approximately $2.1 .3-10-1$ and C. 2 having 140 -u μ ff. maximum. amd the fotal minimum capacitance, inclucing C_{3} or C_{4}, being 30 to $36 \mu \mu \mathrm{fd}$.

Tuning Range	L_{1}	L_{2}	C5
1.7-1 11 c .	$50 \mu \mathrm{~h}$.	$40 \mu \mathrm{~h}$.	$0.0013 \mu \mathrm{fd}$.
3. -7.5 Mc.	$14 \mu \mathrm{~h}$.	$12.2 \mu \mathrm{~h}$.	$0.0022-2 \mathrm{fd}$.
\% -1.5 Mc .	$3.5 \mu \mathrm{~h}$.	$3 \mu \mathrm{~h}$.	$0.01015 \mu \mathrm{ft}$.
14-30 Nc .	$0.8 \mu \mathrm{~h}$.	$0.78 \mu \mathrm{~h}$.	Nome used

Ipproximate values for 450 - to $465 \cdot \mathrm{kr}$ i.f.s with a 2.i-to-1 tuning range, C_{1} and C_{2} heing 3int.und. maximum, minimum including C_{3} and C_{4} being 10 to $50 \mu \mu \mathrm{fd}$.

Tuning Range	L_{1}	L_{2}	C_{5}
0.5-1.5 M6.	$\bigcirc 10{ }^{2} \mathrm{~h}$.	$130 \mu \mathrm{~h}$.	$125 \mu \mu \mathrm{fil}$.
1.5-4 Mc.	$32 \underline{\mu} \mathrm{~h}_{\text {, }}$	2.34.	$0.00115 \mu \mathrm{fd}$.
$4-1011 c$	$1.5 \mu \mathrm{~h}$.	$4 \mu \mathrm{~h}$.	$0.0028 \mu \mathrm{fl}$.
$10-2.3 \mathrm{Mc}$	$0.8 \mu \mathrm{~h}$.	$10.75 \mu \mathrm{~h}$.	None used

tered in receivers with several r.f. stages working at high gain. It shows up as a superimposed modulation on the signal being listened to, and often the effect is that a signal com be tuned in at several points. It can be redued or eliminated by greater selectivity in the antenna and r.f. stages (difficult to obtain), the use of variable $-\mu$ tubes in the r.f. amplifier, reduced gain in the r.f. amplifier, or reduced antema input to the receiver.

A recolver designed for minimum cross-modulation will use as little gain as possible ahead of the high-selectivity stages, to hold strong unwanted signals below the overload point.

Gain Control

To avoid cross-modulation and other owrload effects in the first detector and r.f. stages, the gain of the r.f. stuges is usually made atdjustable. This is acomplished by using vari-able- μ tubes and varying the d.e. grid bias, either in the grid or eathode cireuit. If the gain control is automatic, as in the case of asver., the bias is controlled in the grid eirmit Mamal control of r.f. gain is generally done in the cathode circuit. A typical r.f. amplifier stage with the two types of gain control is shown in shematic form in Fig. $\mathrm{b}-2 \mathrm{t}$.

Tracking

In a receiver with no r.f. stage, it is no inconvenience to adjust the high-frequency oscillator and the mixer circuit independently, bocause the mixer tuning is broad and reguires littlo attention over an amateur band. However, when r.f. stages are added ahoud of the miver, the r.f. stages and mixer will require retuning over an entire amateur hand. Hence most recoivers with one or more r.f. stages gamg all of the tuning controls to give a single-tuning-control receiver. Obviously there must exist a constant difference in frequency (the i.f.) between the oscillator and the mixer/r.f. circuits, and when this condition is archieved the circuits are said to track.

Tracking methods for covering a wide frequency range, suitable for general-owerage receivers, are shown in Fig. in-2:. The tracking capacity, C_{5}, eommonly consists of two eon-
densers in parallel, a fixed one of somewhat less (apacity than the value needed and a smaller variable in parallel to allow for adjustment to the exact proper value. The trimmer, ('4, is first set for the high-frequence end of the tuning range, and then the tracking condenser is sot for the low-frequency end. The tracking caparity beromes largor as the pereontage difference between the asiblator and signal frequencies becomes smatler (that is, as the sigmal frequeney beromes higher, Typical cireuit values are given in the tables under lig. 5-2:. The roils ran be conveniently calculated with the .1 RRL Lightning Calculater and then trimmed in the eireuit for hest tracking.

In amateur-band receivers, tracking is simplified by chowsing a bandspread rireuit that gives practially straight-line-frequency tuning (equal frequency change for each dial division), and then adjusting the oseillator and mixer tumed cireuits so that both eover the same total number of kilocyeles. For example, if the i.f. is 4.5) ke, and the mixer eirenit tumes from $\mathbf{7 0 0 0}$ to 7300 ke. botwern two given points on the dial, then the oscillator must tune from $\overline{6}$ fis) to anj ke. betwern the same two dial readings. With the bandspread arrangement of Fig. i-8.1, the tuning will be practically straight-line-freguency if ('2 (bandset) is 4 times or more the maximum eapacity of ('i (bandspread), as is usually the case for strictly amatom-band coverage. 'ishould be of the straight-line-capacity type (semicircular plates).

Improving Receiver Sensitivity

The sensitivity (signal-to-noise ratio) of a receiver on the higher frequencios above 20 Mc . is dependent upon the bundwidth of the reeeiver and the noise contributed by the "front end" of the receiver. Neglecting the fart that image rejeretion may be poor, a reerever with no r.f. stage is gencrally satisfactory, from a sensitivity point, in the 3.5 - and 7 -Mc. hands. Ifowever, as the frequency is increased and the atmospheric noise becomes less, the advantage of a good "front end" becomos apparent. Ilence at 14 Mc. and higher it is worth while to use at least one stage of r.f. amplification ahead of the first detector for lost sensitivity as well as image rejection. The multigrid eonverter tubes have very poor noise figures, and even the best pentodes and triodes are three or four times noisier when used as mixers than they are when used as amplifiers.

If the purpose of an r.f. amplifier is to improve the receiver noise figure at it Mr. and higher, a high- g_{m} pentode or triote should be used. Among the pentodes, the brest tubes are the $6.107,6.155$ and the 6.aci7, in the order named. The 6.AK5 takes the load around 30 Mr. The $6 \mathrm{~J} 4,6 \mathrm{~J} 6,7 \mathrm{~F} 8$ and triode-connected 6.155 are the best of the triodes. For best moise figure, the antenna rircuit should be coupled a little heavier than optimum. This cannot give best selectivity in the antenna circuit, so it is futile to try to
maximize sensitivity $a m /$ seldedivitr in this cireuit.
When a recemor is satisfactory in every respect (stability and solectivity) exerept sensitivity on $1+\frac{1}{2}$ andor 28 Me., the best solution for the amatour is to add a preamplifier, a stage or two of i.f. amplification dexignod expressly to improve the somstivity, If mage rejection is lacking in the receiver, some selectivity should be built into the preamplifier (it is then called a preselector). If, however, the rereiver operation is poor on the higher freguencies but is satisfactory on the lower ones, a "converter" is the hest solution.
some commercial receivers that appear to lack sensitivity on the highor frequencies ean be improved simply be tighter coupling to the antenma. siner the receiver manufacturer has no way to prediet the type of antema that will be used, he gencrally dexigns the input for some compromise value, usually atound 300 or 400 ohme in the high-freguency ranges. If your turtema matehes to something far different from this, the receiver effectivences can he improved by proper matching. This an be areomplished by changing the antema to the right value (as determined from the receiver instruction book) or by using a simple mat ching device as described later in this chapter. Overcoupling the input circuit will often improve sensitivity but it will, of course, always roduce the image-rejection contribution of the antemat circuit.

Commercial reccivers can also be "hopped up" by substituting a high- y_{m} tube in the first r.f. stage if one isn't already there. The amateur must be prepared to take the consequences, however, since the stage may oscillate, or not track without some modifieation. A simplar solution is to add the "hot" r.f. stane ahead of the receiver.

Regeneration

Regeneration in the r.f. stage of a receiver (where only one stage exists) will often improve the sensitivity because the greater gain it prosvides serves to mask more completely the firstdetector noise, and it also provides a measure of automatic matrhing to the antenna through tighter coupling. However, accurate ganging becomes a problem, beatuse of the increased selectivity of the regenerative r.f. stage, and the receiver almost invariably becomes a two-handedtuning device. Regeneration should not be overlooked as an expedient, however, and many amateus have used it with considerable surers.

IIigh- g_{m} tubes are the best as regenerative amplifiers, and the feed-hack should not be controlled by changing the operat ing voltages (which should be the same as for the tube used in a high-gain amplifier) but by (changing the loading or the foed-hark coupling. This is a tricky process and another reatson why regencration is not too widely used.

Gain Control

In a rereiver front end designed for best signal-to-noise ratio, it is advantageous in the reception of weak signals to eliminate the gain control from the first r.f. stage and allow it to run "wide open" all of the time. If the first stage is controlled along with the i.f. (and other r.f. stages, if any), the signal-to-noise ratio of the receiver will suffer. As the gatin is reduced, the g_{m} of the first tube is reduced, and its noise figure becomes higher. A good receiver might well have two yain controls, one for the first radio-frequency saige and another for the i.f. and other r.f. stages.

Extending the Tuning Range

As mentioned earlier, when a receiver duesn't cover a particular frequency range, either in fict or in satisfactory performance, a simple solution is to use a converter. A converter is another "front end" for the receiver, and it is made to tune the proper range or to give the necessary performance. It works into the receiver at some frequency between 1.6 and 10 Me . and thus forms with the receiver a "triple-detection" superhet.

There are several different types of converters in vogue at the present time. The commonest type, since it is the oldest, uses a regular tumable oscillator, mixer, and r.f. stages as desired, and works into the receiver at a fixed frequener. A second type uses broad-banded r.f. stages in the r.f. and miver stages of the converter, and only the owillator is tuned. since the frequency the converter works into is high (7 Me , or more), little or no trouble with images is experienced, despite the broad-band r.f. stages. A third type of converter uses broad-banded r.f. and output stages and a fixed-frequency oscillator (self- or erystal-controlled). The tuning is done with the receiver the converter is connected to. This is an excellent system if the receiver itself is well shielded and has no external pick-up of its own. Many war-surplus receivers fall in this category. A fourth type of converter uses a fixed uscillator with ganged mixer and r.f. stages, and requires two-handed tuning, for the r.f. stages and for the receiver. The r.f. tuning is not criti-
cal, however, unless there are many stages.
The broad-banded r.f. stages have the advantage that they can be built with short leads, since no tuning capacitors are required and the unit can be thned initially by trimming the inductances. They are more prone to eross-modulation than the gang-tuned r.f. stages, however, because of the lark of selectivity. The fourth type of converter is probatbly the most satisfactory, particularly if a crystal-controlled highfrequency oscillator is used. It not only has the advantage of the best selectivity and protection against images and aross-modulation, but the (rystal gives it a stability unobtainable with selfcontrolled oscilators. Amateurs who specialize in operation on 28 and 50 Mc. generally use good converters ahead of conventional communications reccivers, and it pays off in better performance for the station.

While converters can extend the operating range of an existing receiver, their greatest advantage probably lies in the opportunity they give for gelling the best performance on any one band. By selecting the best tubes and techniques for any particular band, the amateur is assured of top receiver periormance. With separate converters for each of several bands, changes can be made in any one without disabling or impairing the receiver performance on another band. The use of converters ahead of the low-frequency receiver is rapidly becoming standard practice on the bands above $1+\mathrm{Mc}$.

Tuning a Receiver

C. W. Reception

For making code signals audible, the beat oscillator should be set to a frequency slightly different from the intermediate frequency. To
adjust the beat-oscillator frequency, first tune in a moderately-weak but steady carrier with the beat oscillator turned off. Adjust the receiver tuning for maximum signal strength, is indicated
by maximum hiss. Then turn on the beat osfillator and adjast its frequency (leaving the recoiver tuning unchanged) to give a suitable beat note. The beat oscillator need not subsequently he touched, exeept for occasional cheeking to make eertain the frequency has not drifted from the initial setting. The b.f.o. may be set on either the high- or low-frequency side of zero beat.

The last remeiver eondition for the remption of (.N. signats will have the first r.f. stage rumang at maximum gain, the following r.f., mixer and i.f. stages operating with just rnough gain to mantain the signal-tu-mois: ratio, and the andio gain set to give comfortable headphone or speaker volume. The atudio, volume should $\mathrm{bre}^{\text {controlled }}$ by the andio grem control, not the i.f. gain control. Ender the above conditions, the seleretivity of the recoiver is being used to best advantage, athe cross-modulation is minimized. It prochudes the use of a receiver in which the gatin of the first r.f. stage and the i.f. stages are controlled simultaneously.

Tuning with the Crystal Filter

If the reeciver is equipped with a erystal filter the tuning instruetions in the preceding parat graph still apply, but more ceire must be used both in the initial adjustment of the beat oweillator and in tuning. The beat oscollator is sot as dereribed above, but with the revstal filter sot at it, sharpest position, if vamiable selectivity is a vailable. The initial adjustment should le made with the phasing rontrol in an intermedite pesition. Onereadjusted, the beat oscillator should be left set and the recolver tuned to the other side of zero beat (atudio-fregueney image) on the same signal to give a beat note of the same tone, This beat will be emsiderably weaker than the first, and may be "phased out" almost completely by careful adjust ment of the phasing control. This is the adjust ment for no mal operation; it will be found that one side of zew beat has practically divappeared, leaving maximum response on the other.

An interfering signal having a beat note differing from that of the a.f. image can be similarly phased out, provided its frequency is not too ne:ar the desired signal.

Depending upon the filter design, maximum selectivity may cause the dots and dashes to, lengt hen out so that ther seem to "rum thgether." It must be emphasized that, to realize the benefits of the erystal filter in reducing interferenere, it is necessary to do wll tuming with it in the cirruit. Its high soloctivity often makes it difficult to find the desired station quickly, if the filtor is switched in only at times when interferemer is present.

'Phone Receptior

In reception of 'phone signals, the normal procedure is to set the r.f. and i.f. gain at maximum, witeh on the a.v.e., and use the audio gain eontrol for setting the volume. This insures maximum effectiveness of the a.v.r. system in com-
pensating for fading and maintaining corstant audio output on either strong or wak signals. On occasion a strong signal close to the frequency of a weaker desired station may take control of the a.s.e., in which case the weaker station may disappear because of the reduced gain. In this ease better reception may result if the a.v.c. is switched off, using the manual r.f. gain control to set the gatin at a point that prevents "blocking" by the stronger signal.

Whan receiving an . A. C signal on a frequency within 5 to 20 ke . from a single-sidelamel signal it may also be necessary to switeh off the a.v.s. and rosort to the use of manual gain control, unl:ss the receiver has cxellent skirt seleretivity. No ordinary a.v.e. cireuit can handle the s.llabic bursts of anorgy from the SSB station.

1 crystal filter will help reduce interference in 'phone reception. Athough the high solectivity cuts sidehands and reduces the audio output at the higher audio frequencies, it is possible to use quite high selertivity without destroving intelligibility. As in cow. reception, it is advisable to do all tuming with the filter in the cireuit. Va:iableselectivity filters permit a choice of selectivity to suit interference conditions.

An undesired carrier close in frequency to a desired carrier will heterodyne with it to produee a beat note equal to the frequeney difference. such a heterodyne ran be reduced by adjustment of the phasing control in the erystal filter.

It the control often will be of help in reducing the effects of high-pitched heterodynes, sideband splatter and noise, by cutting off the higher audio frequencides. This, like sideband cutting with high selectivity rircuits, causes some reduction in naturalness.

Spurious Responses

Spurious responses can be recognized without a great deal of difficulty. Often it is possible to indentify an image be the nature of the transmitting station, if the frequency assignments applying to the fredueney to which the receiver is tuned are known. However, an image also can be recognized by it: behavion with tuning. If the signal ratses a heterodyne leat mote with the desired signal and is artually on the same frequency, the beat note will not change as the receiver is thed through the signal; but if the interfering signal is an image, the beat will vary in pitch as the receiver is tuncd. The beat oscillator in the recoiver must be turned off for this test. [-sing a ervistal filter with the beat oscillator on, an image will prak on the side of zero beat op)posite that on whirh desired signals peak.

Hatmonic response can be recognized by the "tuning rate," or movement of the tuning dial reguired to give a sperified change in beat note. Signals of thing into the i.f. via high-fequeney oscillator harmonies tune more rapidly (less dial movement) through a given whage in beat note than do signals recoived by normal means.

Harmonies of the beat owillator can be recagnized by the tuning rate of the beat-oscillator
pitch control. A smaller movement of the control will suffice for a given change in beat note than that necessary with legitimate signals. In poorly-
shielded receivers it is often possible to find b.f.o. harmonies below 2 Mc., but they should le very weak at higher frecuencies.

Narrow-Band Frequency- and Phase-Modulation Reception

FM Reception

In the reception of NF.M (narow-band FM) by a normal I.X receiver, the a.v.e. is switehed off and the incoming signal is not tuned "on the nose," as indicated by maximum reading of the s-meter, but slightly off to one side or the other. This puts the carrier of the ineoming signal on one side or the other of the i.f. selectivity rharacteristic (see liig, 5-1). As the frequency of the signal changes bark and forth over a small range with modulation, these variations in frequency are translated to variations in amplitude, and the consequent $A M$ is detected in the normal manner. The signal is tuned in (on one side or the other of maximum carrier strength) until the audio quality appears to be best. If the audio is too wak, the transmitting operator should be advised to increase his swing slightly, and if the audio quality" is bad ("splashy" and with serious distortion on volume peaks he should be advised to reduce his swing. (oöpration between transmitting and recoiving operators is a noressity for hest audio quality. The transmitting station should always the advised immediately if at any time his bandwidth exceeds that of an . 1.2 signal, since this is a violation of F^{\prime} (' regulations, exrept in those portions of the bands where widebathed Fal is permitted.

If the rerefiver hats a diserminator or other detertor desigued expressly for PM reception, the signal is peaked on the reereiver (as indicated by maximum simeter reading or minimum back-
ground noise). There is also a spot on either side of this tuning condition where atudio is recovered through slope detection, but the signal will not be as loud and the background noise will be higher.

PM Reception

Phasemodulated signals can be recerived in the same way that NF.M signals are, exerept that in this ease the audio output will appar to be lacking in "lows," because of the differences in the deviation-rs-atudio chatacteristies of the two systems. This can be remedied to a considerable degree be advancing the lone control of the receiver to the point where more nearly normal speech output is ohtained.

NPM signals can also be recoived on communications receiver by making use of the rrystal filter, in which (eise there is mo need for audio compensation. The crystal filter should be sot to the sharesest position and the ramier should be tuned in on the erystal peak, not set off to one side. The phasing condenser should be set not for exact hentralization but to give a rajeetion noteh at some rombenient side freguency such ats 1000 cyeles off resomanere Theme is considerathe attenuation of the side bands with such tuning, but it can readily he overeome be using additional audio gain. NF.M signals rememod through the crystal filter in this fashion will have a "Ioomy" characteristic becatase the lower frequencios are arentuated.

Reception of Single-Sideband Signals

Singlo-siddoband signals are generatly transmitted with little of no carrier, and it is meresssary to furnish the carrier at the reecover before proper reception can be obtained. Beratuse litthe or mo carrier is transmitted, the at.ver, in the rereiver has nothing that indicates the average signal level, and manual variation of the r.f. gain control is required.

A single-sidehand signal can be identified by the absence of a strong carrier and he the sowere variation of the s-meter at a syllabie rate. When such a signal is encountered, it shoud first be peaked with the main tuning dial. (This centers the signal in the i.f. passband.) After this operation, do not touch the main tuning dial. lhen set the r.f. gain control at a very low level and switch off the a.v.e. Increase the audio volume control to maximum, and bring up the r.f. gain eont mol until the signal can be heard wokly. Switeh on the beat oscellator, and carefully adjust the frem quency of the beat oscillator until proper speech
is hemod. If there is a slight amount of carrier present, it is only noressatry to zero-bent the boat oscillator with this weak carrior. It will be noticed that with incorrect tuning of an sill signat, the speerh will somad high- or low-pit hed or even inverted (very garbled), hut no trouble will be had in getting the correct setting once a little experience has been ohtained. The use of minimum rif. gain and maximum andiog gain will insure that no distortion (overload oecurs in the receiver. It mayrequire a readjust ment of your tuning hatsits to tume the recoiver slowly conough during the first few trials.

Guce the proper setting of the b.f.o. has bern (stablished by the prowedure athove, all further tuning should be cone with the main tuning control. However, it is not unlikely that St B stations will be encountered that are transmitting the other sideband, and to recoive them will reguire shifting the b, foo. setting to the other side of the receiver i.f. passband. The initial tuning pro-
cedure is exactly the same as outlined above, exrept that you will end up with a considerably different b.f.o. setting. The two b.f.o. settings should be noted for future reference, and all tuning of sill signals can then be done with the main tun-
ing dial. After a little experience, it becomes a simple matter to determine which way to tune the receiver if the receiver (or transmitter) drifts off to make the received signal sound low- or high-pitched.

Alignment and Servicing of Superheterodyne Receivers

I.F. Alignment

A calibrated signal generator or test oscillator is a useful devier for aligmment of an i.f. amplifier. some means for measuring the output of the reroiver is reguired. If the receiver has a tuning meter, its indieations will serve. Lacking an S-meter, a high-resistance voltmeter or a vacuumtube voltmeter can be conneeted aross the sec-ond-detector load resistor, if the serond detector is a diode. Alternatively, if the signal generator is a modulated type, an ace. voltmoter ban be connected across the primary of the transformer fereding the 'speaker, or from the phate of the last audio amplifier through a $0.1-\mu \mathrm{fd}$. borking condenser to the recoiver chassis. Larking an are voltmeter, the audio output can be judged be ear, although this mothod is mot as areurate as the others. If the tuning meter is used as an indication, the a.v.e of the receiver should be turned on, but any other indieation requires that it be turned off. Lacking a test oseillator, a standy signal tuned through the input of the reeediver (if the job is one of just touching up the i.f. amplifier) will be suitable. However, with no oscillator and tuning an amplifier for the lirst time, onc:s only recourse is to try to peak the i.f. transformers on "noise," a difficult task if the transformers are badly off resomance, as they are apt to be. It would be much better to spend a little time and haywire together a simple oscillator for test purposis.

Initial alignment of a new i.f. amplifior is as follows: The test oscillator is set to the correct frequency, and its output is eoupled through a condenser to the grid of the last i.f. amplifier tube. The trimmer eondensers of the transformer feeding the second detector are then adjusted for maximum output, as shown be the indieating devier being used. The oscillator output lead is then clipped on to the grid of the next-to-the-last i.f. amplifier tube, and the second-from-the-last transformor trimmer adjustments are peaked for maximmm output. This process is continued, working batek from the serond detector, until all of the i.f. transiomers have been aligned. It will be neecesary to reduce the output of the tesit, oscillator as more of the i.f. amplifier is brought into use. It is desirable in all cases to bre the minimum signal that will give usefnl output readings. The i,f. transformer in the plate circuit of the mixer is aligned with the signal introdued to the grid of the mixer. Since the tuned eireuit feeding the mixer grid may have a very low impedance at the i.f., it may be neeresary to boost the test generator output or to disconnert the
tuned circuit temporarily from the mixer-stage grid.

If the i.f. amplifier has a crystal filter, the filter should first be switehed ont and the alignment carried out as above, sotting the test oseillator as elosely as possible to the arystal frequener. When this is completed, the erystal should be switehed in and the oscillat or frequeney varied back and forth over a small range either side of the erystal frequency to find the exact frequeney, as indieated by a sharp rise in outpht. Leaving the test oscillator set on the arystal park, the i.f. trimmers should be realigned for maximum output. The necossary readjustment should be small. The oscillator frequener should be checked freguently to make sure it has not drifted from the crystal peak.

A modulated signal is not of much value for aligning a crystal-filter i.f. amplifier, since the high seloctivity cuts sidebands and the results may be inaceurate if the audio output is used as the tuning indication. Lateking the a, v.e tuning moter, the transfomers may be conveniently aligned by ear, using a weak unmodulated signal adjusted to the crystal peak. Switeh on the beat oscillator, adjust to a suitable tone, and align the i.f. transformers for maximum audio output.

In amplifier that is only slightly out of alignment, as a result of normal drilt or aging, can he realigned be using any stady signal, such ats a local broadeast station, instead of the test oscillator. One's 100-ke. standard makes an excellent signal source for "touching up" an i.f. amplifier. Allow the reeceiver to wam up thoroughly, tune in the signal, and trim the i.f. for maximum output.

If you bought your receiver instead of making it, he sure to read the instruetion book carefully before attempting to realign the reeciver. Most instruction books include aligmment details, and any little special tricks that are peculiar to the reeciver will also be deseribed in detial.

R.F. Alignment

The objective in aligning the r.f. circuits of a gang-tuned receiver is to serure adequate tracking over each tuning range. The adjustment may be carried out with a test oscillator of suitable freguency range, with harmonics from your 100-ke. standard or other known oseillator, or even on noise or such signals as may be heard. First set the tuning dial at the high-frequency end of the range in use. Then set the test oscil-
lator to the frequency indicated by the receiver dial. The test-oscillator output may be connected to the antenna terminals of the receiver for this test. Adjust the oscillator trimmer condenser in the recoiver to give maximum response on the test-oseillator signal, then reset the reeceiver dial to the low-frequencer end of the range. Set the test-oscillator frequemer near the fregueney indicated be the receiver dial and tune the test oscillator until its signal is heard in the receiver. If the frequence of the signal as indicated by the test-oscillator ealibation is higher than that indicated by the recoiver dial, more inductance (or more capacity in the tracking condenser) is needed in the recelver oscillator rirenit: if the frequency is lower, less inductaner (less tranking eapacity) is required in the receriver oweillator. Most commerdial receivers provide some moans for varsing the induetance of the coils or the rapacity of the tracking condenser, to permit aligning the receiver tuning with the dial calibration. Set the test oscillator to the freguence indicated by the recoiver dial, and then adjust the tracking caparity or inductance of the receiver oscillator coil to oltain maximum response. After making this adjustment, recherk the high-frequency end of the scale as previonsly deseribed. It may be necessary to goback and forth betwern the ends of the range sevaral times before the proper combination of inductance and capacity is secured. In many cases, botter over-all tracking will result if frequencies near but not actually at the ends of the tuning range are selected, instead of taking the extreme dial settings.

After the oscillator range is properly adjusted, set the receiver and test oscillator to the highfrequency end of the range. Mljust the mixer trimmer condenser for maximum hiss or signal, then the r.f. trimmers. Reset the tuning dial and test oscillator to the low-frequence end of the range, and repeat; if the circuits are properly designed, no change in trimmer settings should be necessary. If it is necossary to incroase the trimmer eapacity in any circuit, it indicates that more inductance is needed; conversely, if less capacity resonates the circuit, less inductance is reguired.
Tracking seldom is perfeet throughout a tuning range, so that a check of aligmment at intermediate points in the range may show it to be slightly off. Normally the gain variation from this cause will be small, however, and it will suffice to bring the eireuits into line at both ends of the range. If most reception is in a particular part of the range, such as an amateur band, the circuits may be aligned for maximum performance in that region, even though the ends of the frequenc: range as a whole may be slightly out of aligument.

Oscillation in R.F. or I.F. Amplifiers

Oscillation in high-frequency amplifier and mixer circuits shows up as squeals or "birdies" as the tuning is varied, or by complete lark of audible output if the oscillation is strong enough to cause the a.v.e. system to reduce the receiver
gain drastically. Oscillation can be eaused by poor connections in the common ground circuits. Inadequate or defective by-pass condensers in cathode, plate and screen-grid circuits also can cause such oscillation. A metal tube with an ungrounded sholl may eatuse trouble. Improper sereen-grid voltage, resulting from a shorted or too-low sereen-grid serides resistor, also may be responsible for surh instability.

Oscillation in the i.f. circuits is independent of high-frequency tuning, and is indicated by a continuous spucal that appears when the gain is advanced with the e.w. beat oscillator on. It can result from defects in i.f.-amplifier circuits similar to those above. Inadeguate screon or plate br-pass capacitance is a common cause of such oseillation. An additional br-pass condenser of 0.1 - to $0.2 \overline{2}-\mu \mathrm{fd}$. caparitance of ten will remedy the troutbe.

Instability

"Birdies" or a mushy hiss ocrurring with tuning of the high-freduency oscillator may indicate that the owillator is "scuegging" or oseillating simultaneously at high and low frepuencies. This may be caused by a defertive tube, too-high oscillator phate or sereen-grid voltage, exensive feed-back, or too-high grid-leak resistance.

A varving beat note in c.w. reception indieates instability in either the hif. oseillator or beat oseillator, usually the formor. The stability of the beat oseillator can be checked by introducing a signal of intermediate frequency (from a test osicillator) into the i.f. amplifier; if the beat note is unstable, the trouble is in the beat osedlator. boor commertions or deferetive parts are the likely caluse. Instability in the high-irequency oveillator may be the result of poor circuit design, loose ronnections, defective tubes or cireuit eomponents, or poor voltage regulation in the oscillator plate- and or soreen-supply circuits, Mixer pulling of the oscillator circuit also will cause the beat not to "(hirp" on strong (c.w. signals because the osedlator load changes slightly.

In 'phone reception with a.v.c., a peculiar type of instability ("motorboating') may appear if the h.f-oscillator frequency is sensitive to changes in plate voltage. .ls the a.v.e. voltage rises the currents of the controlled tubes derrease, decrensing the load on the power supply and causing its output voltage to rise. Since this increases the voltage applied to the oscillator, its frequency changes correspondingly, throwing the signal of the peak of the i.f. resoname rurve and reducing the a.v.e. voltage, thus tending to restore the original conditions. The process then repeats itself, at a rate determined by the signal strength and the time constant of the powersupply cireuits. This effert is most pronounced with high i.f. solectivity, as whon a erystal filter is used, and can be cured by making the oscillator insensitive to voltage changes or by regulating the plate-voltage supply. The better receivers use VR-type tubes to stabilize the oseillator voltage -a defertive V'l tube will cause trouble with oscillator instability.

A One-Tube Regenerative Receiver

The receiver shown in Figs. 5-26, 5-27, 5-28 and $\bar{i}-29$ represents close to the minimum refuirements of a useful short-wave receiver. Under suitable conditions, it is capable of receiving signals from many foreign countries. It is an execllent recoiver for the begimere, berause it is easy to build and the components are not expensive.

Fig. 3.26 - The simple one-tule regenorative receiver i - hailt on a word-and-Presdwom chassis, with an alominum panel. 'The larke lefthand hoob drives the calibrated atale on the bandspread condeneer. The large right-hand kuob is for the band-aet condenser.
section serving as an audio amplifier to the headphones. A variable antenna-coupling condenser, ('1, minimizes "dead spots" in the tuning range that might be caused by antennaresonamee effeets. Two tuning condensers are nsed. The hamb-set eondenser, \boldsymbol{C}_{4}, tumes to the desired fregueney band, and the bandspread condenser, $C_{2}{ }^{*} C_{3}$, allows the operator to tune slowly through the band. The bandspread eondenser is a dual condenser made from a single midget variable, and on all of the amateur bands exerept 3.5 Mr. only the C_{3} portion is connered in the ereruit. The 3.s-Me. coil includes a jumper that conneets ('2 on that hamd. Requmeration is controlled by varving the plate voltage on the deteretor with R_{1}.

The mechaniat design is made as simpleac pessible. Work on the ehassis and the front panel ran be done with only a Xo. s drill, a $1 / 4$-inch drill, and a round file. There is no complieated metal work or benting. To redure the pand size, the knoh on the hand-set fombenser overlaps the frietion-driven tuning dial.

The front pancl is a 7×7-inch sheret of $\frac{16}{}$-inch aluminum. It carries the tuning rontrols, the regeneration adjustment and the antemna-roupling comdenser shaft. The sides of the chassis are soft wood strips, $7 \times 2 \times$ ís inchers. 'The derk of the chassis is a 7×7-ineh sheret of $1 / 4$-inch Presdwood

From the eireuit in Fig. 5-28, it can be seen that the only tube in the reeceiver is a $6 心 \mathrm{~S}^{2} 7$ twin triode. One section is used as a regenerative detector, the other triode

Fig. 5.27 - Another view of the anc-tulte regenerative recterer show - how the tule amd enil anckto are monated. Ihae hradphome
 tip jack= on the rear banel - the set of four machine sertws and butt is fur contnecting to the powerniply.
(or Ma*onite). The (6SC7 sorket is supported on s-inch-long mounting pillars, and the \boldsymbol{j} -

Fig. $5 \cdot 28$ - Wiring diagram of the onetule regenerative rereiver.
C_{1} - Ilomemande adjustahle come denser. Sen text.
$\mathrm{C}_{2}, \mathrm{C}_{3}$ - Reworked midget variable (Hillen 2103.5). See text.
$\mathrm{C}_{4}-100-\mu \mathrm{ffl}$. midyel variable (Millen 20100).
(5 - 100) $-\mu \mathrm{ffd}$. mira.

(: - - 120 fed. 1.00 . woll elertrolytic.
$\mathrm{Cg}-10 . \mu \mathrm{fl} .25$-valt electrolytic.
R_{1} - I. $\overline{5}$ megolime, $\frac{1}{2}$ watt.
H_{2} - 0.15 merghn, $1 / 2$ watt.
$\mathrm{H}_{3}-1.310$ ohms, 12 watt.
$114_{4}-30,000-1, h m$ wire-wound potentioneter.
$\mathrm{H}_{5}-33$, ,0W1 ohms, 1 watt.
$12 \mathrm{FC}_{1}-2 \cdot \mathrm{~T}$ mh. r.f. choke (National lot).
T_{1} - Interstage andion transformer (Stancor A.4:23).
prong eoil socket is on $7 / 8$-inch pillars. The grid leak, R_{1}, and grid condenser, ('s, are located above the dock. The back panel is made of 1/4-inch Presdwood and earries the binding posts. The binding posts are $3 / 4$-inch $0-32$ mat chine serews with suitable muts and washors. The chassis is assembled with $3 / 4$-ineh No. ${ }^{6}$ round-head wood sarews. Upon completion, the assembly is given a coat of flat black paint. The front panel is secured to the chassis side members with No. f round-head wood serews.

The bandspread condenser, $C_{2} \cdot C_{3}$, is made by modifying a Millen 21935 variable condenser. L'sing a hack-saw blade, the stator bars are carcfully cut between the eighth and ninth
plates (counting back from the front panel). The ninth plate is removed by twisting it loose with long-nosed pliers.

Coil sizes and data are given in the coil table. All coils are wound on 1 -inch diameter 5pin coil forms. The coil for the 80 -meter range is close-wound and requires no treat ment, but the spared-turns coils should be serured by rumning a thin line of Duen cement across the wire at several points. Before cementing the turns in place, each coil should be tried in the reederer. To obtain smooth regeneration, it may be neeresary to make minor coupling adjustments (ehanges in spacing) between L_{1} and L_{2}.

The antemat condenser, C_{1}, is made from two 1 -inch squares of sheet coppor. One plate is secured to the underside of the deck on a tiepoint. The other plate is carried by a $1 / 4$-inch diameter polystyrene rod. Rotating the shaft swings the moving plate away from the fixed plate and provides a capacity of from 5 to less than $1 \mu \mu \mathrm{fd}$. The polystyrene rod passes through the front pancl and out the back panel. It is secured at the back by a $1 / 4$-inch shaft collar. The panel end carries a tuning knob, and a rubber grommet under slight compression, placed between the knob and the panel, acts as a friction lock. The moving plate is secured to the polystyrene rod by a copperwire hairpin soldered to the plate and fixed into a pair of holes drilled in the rod. A flexible
fig. 5.29 - This vien un. derneath the andetulae re. generatisereceisershowsthe arrangement of parts and the eonstruction of the variable antmotroupling come denser.

COIL TABLE FOR THE ONE-TUBE REGENERATIVE RECEIVER
All coils wound on Millen 450051 -inch diameter coil forms. Both L_{1} and L_{2} should be wound in the same direction, with L_{2} chuser to the pins of the form. The gride end of L_{01} and the phate bod of L_{2} should be on the outside ands of the eroils.

Range	\boldsymbol{L}_{1}	L_{2}	Sep. $L_{1}-L_{2}$
$\begin{aligned} & 2.8-6.11 \mathrm{c} \text {. } \\ & \text { (80 meters) } \end{aligned}$	25t. No. 26 fnam.; clusi-wound	1t. No. 26 "nam., closi-wouth	$3 / 8 \mathrm{lnch}$
$\begin{gathered} 5.9-13.5 \mathrm{Mc} . \\ (40 \text { meters }) \end{gathered}$	$\begin{aligned} & 132_{2} \text { t. No. } 20 \\ & \text { enam., spaced } \\ & \text { to oceupy } \\ & 5 / 8 \text { inch } \end{aligned}$	1't. No. 20 rham., closc-wound	${ }^{1}$ inch
$13.6-30 \mathrm{Mc}$. (20 and $1:$ meters)	$\begin{aligned} & 5^{1}, \text { t. No. } 23 \\ & \text { enam., apaced } \\ & \text { to ocerupy } \\ & 5 / 8 \text { inch } \end{aligned}$	13/4t.No. 26 fnam., close-wound	3/8inh
$\begin{aligned} & 24,5-10.11 \mathrm{c} . \\ & (10 \text { and } 11 \\ & \text { meturs) } \end{aligned}$	1^{1} 亿 t. No. 2? enam.; clost-wound	13/4. t. No. 26 eham., elosi-Womend	5 50 inch

separation between strips is just enough ($11 / 4$ inches) to clear the tube socket and electrolytic condensers, and the leads from the transformer and choke also pass through this opening. Binding posts are made in the same manner as on the receiver, with No. 6 machine screws and suitable nuts and washers.

Although it is satisfactory to mount the power supply on the same table with the receiver, it should be at least one or two feet away, to avoid the possibility of a.c. hum pick-up. For the same reason, the antenna lead should not pass too close to any a.c. wiring from or to the power supply.
[sing the parts listed in Fig. 5 - 31 should result in a power supply that gives about 180 volts when connected to the recoiver. However, if the 6sN7 in the reeciver appears tor run too hot (as tested by touching the tube after the reeciver has beon rumning for is or 10 minutes), the output voltage can be reduced by inereasing the resistance at R_{1} (Fig. $5-31$). Adding
lead is soldered to the protruding wire, and the lead passess out through a hole in the side of the ehassis 10 make conneetion to the antemm. Kinots in this wire, on either side of the ehassis wall, secure the wire firmly in plate. The fixed plate is eovered with a simgle layer of cellophane Scotch Tapre, to prevent a short-cireuit whon the condenser is positioned at maximum capacity.

All wiring is No. 14 tinned copper. Direet leads from the condensers to the eroil socket add to the strength and rigidity of the rexerem. "lhe r.f. choke $R F C$, berass condensers, and the audio transformer all are fasterned to the underside of the deck.

The power supply for the receiber, shown in Figs. j-30 and j-31, is simple to assomble beratuse it is built on a wooden chassis. Two strips of 1 立 \times $3 / 4$-inch wood, 12 inches long, are nailed to two short end pieces. The

Fig. 5 -30 - The power supply for the regenerative receiver is luilt an a simple womlen chassis.

Fig. 5.31 - Circuit diagram of the power sapply for the regenerative recciver.
$\mathrm{C}_{1}, \mathrm{C}_{2}-16-\mu \mathrm{fd} .45\left(1-\right.$ volt electrolytic ($\mathrm{Ma}_{\text {allory }} \mathrm{RS}-2 \mathrm{I}$).
R_{1} - 20,000-ohm 10 -watt wire-wound.
I. - IShenry 50-ma. filter choke (Stancor C.I080).
J_{1} - 11.5 volt line plag.
$\mathrm{I}_{1}-2 \pi-0.2-5$ volts at 50 ma., 6.3 v. at 2.5 amp., 5 v . at 2 amp. (Thordarson 1220230).

5000 or 10,000 ohms in series with R_{1} should do the trick. Or it may be possible to borrow a voltmeter for measuring the output voltage.

The tuning procedure for a regenerative recover is given earlier in this chapter. Even a short piece of wire hung inside the operating room will sorve as an antenna, but for best results an antenna from 30 to 75 feet long, strung as high as possible, should be used.

In buying headphones for use with this recover, one should aroid the "low-impedance" headphones offered in many of the surplus outlets. While these headsets are excellent when used in the proper circuits, this simple receiver requires the use of "high-impedance" headphones for maximum signal output. Good, inexpensive headphones of this type can be found in any radio store.

A Two-Band Four-Tube Superheterodyne

The four-tube superheterolyne shown in Figs. 5-32, 5-3. 4 and 5 -36 is a double-eonversion reoriver tuning the 3 .is- and $\bar{\sigma}-\mathrm{Ma}$. amateme bands. It is not difficult 10 build, and it has stability and selectivity not surpased by factory-huilt receivers costing much more.

As can be sern in Fig. $5-33$, the cireuit diagram, the receiver uses intermediate freeguencies of 1700 and 100 ke . The $1700-\mathrm{ke}$, first i.f. permits using an oscillator that tunes only one lange for the two hands. Tuning the oscillator from 5.2 to $\overline{5} .7$ Me. gives an i.f. of 1700 ke . for the $3 . \mathrm{r}^{-5}-\mathrm{to} 4.0-\mathrm{Me}$. range and the same i.f. for the 6.9- to $7.4-\mathrm{Me}$. range. The osidillator components are soldered in place (no switching or plug-in coils) and the dial ratibration is made once and can then be relied upon. To change bands, it is only necessary to swing the input condenser, C_{2}, to the 80 or or 40 metor band. The 1 (olo-ke. i.f. eliminates any pulling on the oscillator, in cither range.

The fisibi-Y is a botter tube than the gisit, from the standpoint of gain, and is used for the first converter, sinee no r.f. stage is included. ' $م$ minimize spurious responses, two tuned arevits are used in the input hetweren anterna and converter grid. 'The stator plates of the dual condenser, Cen, are shidded from cath other, as are the two eroils L_{1} and L_{2} and the coupling betwern circuits is ohtained be the large condenser, C'3.

The $1700-\mathrm{ke}$, signal from the first converter is converted in the 6K8 second converter to 100 ke . The use of a $1600-\mathrm{ke}$, erystal for the oscillator at this point permits using a gain control (K_{10}) that has no effect on the frecpuency. No frequenery change with gain-rontrol setting is a desirable wharacteristie of any good receiver, so the 1600ke. arystal at $\$ 2.70$ is not a luxury. While the $1600-k{ }^{-}$. oscillator could be made self-controlled, it would be almost certain to "pull" with gaincontrol changes.

The specified $1700-\mathrm{ke}$, transformer, T_{1}, is a relatively expensive itan, but there can be no compromise at this point, because a poor transformer will not have enough rejeretion to avoid the secondary images (200 ke . away) that might otherwise ride through.

The l(O)-ke, output from the 6だ is filtered throngh thre Luned eireuits and ferds

Fig. 5.32-The four-tubu double-conversion suparhet erodyre tunes the 3.7- and Mc. banda without hand. switching. 'The romerols on the left are audios velume (uppre) and b,f.o. switeh, and those on the right are antemna tuning (upper) and i.f. kain.
a triode plate detector ($1 / 26 \mathrm{~S}_{\mathrm{N}} \mathrm{N} 7$). This detector is regenerative, but the regeneration is fixed and doesn't have to be bothered with bey the operator unless he ehanges tubes and the new tule has considerahby different characteristies. The regenerat tion in the $100-\mathrm{ke}$. detector gives the reereiver its single-signal c.w. reception characteristic, since there aren't enough tuned circuits to give it otherwise. The b,f.o. uses the ot her triode in the (is. $\times 7$ envelope, and stray coupling is used for the b.f.o. injection. No panel control of b.f.o. pitch is available, because the selectivity is not adjustable and the variable-piteh feature is not essential.
[p to this point the gain of the receiver is not too high, and two stages of audio amplification are used. (mitting the cathode be-pass rondensers still leaves more that enomgh audio for any pair of high-imperdane hoadphones.

By kerping the signal level low up to and through the selective stages, there is a minimum opportunits for overloading and reoss-modulation, and the gain need be kept only high enough to prevent degrading the signal-to-noise ratio. Further, a regenerative stage hats a tembeney to "flatten out" with st rong signals, so the regenerat tive detertor is somewhat protered by holding the gain down. However, the reereiver hats quite aderpater sensitivity - in any mormal loration and with a fair to good antema, any signal that can be heard bey a large recciver can be heard by this one, exeept in rare cases where the large receiver's superior selectivity makes the difference.

Construction

The construction of the receiver is unconventional in that two chassis are used, as shown in Figs. i- 32 and $5-34$, and the panel is mounted away from the chassis. All of the electrical compenents are mounted on the aluminum $7 \times 11 \times$ 2 -inch chassis, and this sits on an inverted 7×11 $\times 2$-inch steel chassis that serves as a base and bottom cover. The bottom chassis has rubber feeet (gromnets) at its corners that prevent its slipping

$C_{1}-10-\mu \mu \mathrm{fd}$. erramio or mioa.
 MCI-140-M).
C.3, $2,2-0,001-\mu$ fi, reramic or miva
(at $20-\mu \mu$ fi, silwer mica.
 marlund lfle.3.).
(:- $100-\mu \mu \mathrm{fl}$, midget ariable (National PSR-100).

(11, (12, (Si4, ,21, \%4-0.1- $\mu \mathrm{F}$
($1: 3-301)_{-\mu \mu \mathrm{fl}}$. mica).

$R_{1}-\frac{1}{2}$ ohms.
$\mathrm{R}_{2}-2 \boldsymbol{2},(00)$ oluns.

Fig, i-33 - Wiring diagram of the fomr-tube receiver.
$11_{3}-1700$ ohms
$\mathrm{R}_{4}, \mathrm{R}_{\mathrm{s},}, \mathrm{R}_{20}-1000$ ohms
$\mathrm{R}_{5}-0,1 \mathrm{~S}^{2}$ negoltm.
$126-200$ ohms.
 in parallel).
$\mathrm{R}_{10}-1000$-ohm wire-wound potentiometer (Mallory
lis AlMP).
R_{11} - 1800 ohms.
$\mathrm{R}_{12}-33,000$ ohms.

$\mathrm{R}_{15}-10,000$ ohms, 1 watt.
$\mathrm{K}_{18}-0.2 ;$ mercohtin volunie control
$\mathrm{R}_{17}-2200$ ohms.
$\mathrm{R}_{19}-0.22 \mathrm{mcgohm}$.
All resintors $1 / 2$ watt unless specified otherwise.
I. $2,1.2-35$ turns No. 30 d.c.e. elnse-womend on National XR-50 shag-tuned form. I'rimary on L_{1} is 8 turns No. 30 dac,e. close-wound at ground end.
 inch, $5 / 8$-incli diam. 'liokler is $13 / 1$ turnespaeed 1 turn from L_{3}. See tent. (Dade from $13 \&$

- 0 (

4 - $00-\mathrm{mh}$. (apprex) shy-tuned coil. See text. (12CA I 5 - 20-henry
L5-20-henry 15-ma. choke (Stancor 1515)
KFC $1-7.30 \mu \mathrm{~h}$. (Vational $\mathrm{K}-3.3$)
' I_{1} - lifookr. i.f. iransformer, modified. (Villen 6216I.) - In See text.

100-ke. transformers made from ' ${ }^{\prime}$ 'V compo nents (RCA 20:Bl). Soe teat. mall 3:1 andio transformer (Stancor A-63C) The 1600-he, crystal is a Peterson Radio type Z.-2.

F「ig. $5-35$ - The $1700-k e$ i.f. can is morlified by drilling two holes in the ride of the ran.

On the transformer asiembly proper, the old grid (green) and ground (hack) wiris are removed. On the tuning condenser connected to the coil nearest the tuning condensers, a new plate lead is ewnomeded to the stator and a new $18+$ lead to the rotor. The odd mate lead (hlue) becomes the new grid lead, and the old It + luad (red) heormes the new gromad lead hy transfarring it from the terminal to the rotor wire near the coil.

Huring reasembly, the new phate and $18+$ leads shomid be soldered to a longli of wire that is passed throngh the shielderan hole before the entire amembly is completed. Otherwise it is diffieult to shake out the new plate and $13+$ leads unless small flexihle wire is used.
on the table. The 8×12-inch panel is supported awity from the aluminum chassis on $1 / 2$-inch-long brass collars, secoured by suitable washers and (6-32 serews, as shown in Fig. 5-36.

The aluminum chassis is bolted to the steel chassis by two $41 / 4$-inch lengths of $1 / 8$-inch diameter brass rod, threaded (i-32 at each cond. These rods pass through holes in the top and lip of "ach "hassis. The only holes that are repuired in the steel chassis are those for the two tio rods, the four holes for the rubber fert. and a $11 / 4$-inch diameter hole to elarar the headphone jack.

In the ascillator circuit, the $355-\mu \mu \mathrm{t}$ d tuning
 num bracket, and the $1(4)$-mpld, trimmer, ('ois is mounted on the chassis so that it is ablustable from the top. Neither condenser is grounded to the chassis through its mounting - leads from the rotors are erounded to the chassis at one point
 is mounted bey its leads on a small multiple tie point.

The shield beet ween the input coils, L_{1} and $L_{\text {a }}$, is made of thin aluminum. It has a notch in the edge that goes against the rhassis side, to clear the anternatecoil leads, and it has a hole through it for the lead between the bottoms of L_{1} and L_{2}. The dual condenser, con, is fastened to the chassis by a single ($\mathrm{i}-32$ scrow, and the head of this sorew hats a eopmer shiold soldered to it for minimizing coupling betwern $C_{2 A}$ and Fiss. The shiche is casily cut out from copper flashing and soldered to the screw head. The rotor assembly of C_{2} must he removed to put the shield in place, but this is just

Fin. 5.34-A top view of the four-tabe superhelirodsur shows how an aluminum and a steel chaseis are sombinell for greater weight and atrength.
 the left, and the two fos is are at the extreme right. Dote the shield teetwers the tator sections of the condenser on the left.

a matter of loosening four screws. Don't touch the stator plates. The screw with the shield on it, which holds (2 to the chassis, also holds the eoil shield in plare underneath the chassis.

The 1700 -kr. i.f. trunsformer is mounted on its side because the chassis and panel sizes are such that the recoiver can be mounted in a small cabinet, and mounting the transformer upright would prevent any sueh installation. To lay the transformer on its side, two ${ }^{3}$-inch diameter holes are drilled in the side of the i.f. cim, opmosite the coils. The leads from the i.f. transformer are brought out these holes and through corvesponding holes in the chassis. An end plate on the transformer bats a clearatce hole for the grid lead. Fig. 5 - 35 shows these modifinations and how the leads are connerted. The 1 goo-ke. trinsformer is fastened to the chassis with two clampsusing spade bolts. In alternative method would be to make a bracket of the end plate and another bracket at the adjusting-serew end of the transformer.

The lon-ke. circuits use a TV component, the RCA 205lR1 Ilorizontal (oscillator coil. As purchased, the have the soldering lugs and tuning serew out of the top of the ean, hut they are easily reversed by unerimping the ran and reversing the assembly, Butore reassembly, however, there are a few things to be done. The large coil is used for

the 100 -ke, tuned circuit by eonnecting a 100 $\mu \mu \mathrm{fd}$. mica condenser betwern l'ins A and F and lifting the center-tap from l'in C. Don't break the (emter-tap - the easiest way is to serape the two wires first to remove the insulation, fow a drop of solder on the scraped portion, and then eut the two wires atway at the pin. The other winding is used ats the prinitry in T_{2} and the tiekler in T_{3}. The primary in T_{2} can be tuned from the top, beratuse there is also ath iron slug in this smatler coil.

In wiring the set, use tie points liberally so that no eomponents will be flopps. The only shielded wires are the one ruming from the volunge eontrol R_{16} to lin 1 of the audio amplifier and the leads from T_{3} to Pins 4 and 5 of the detertor. The shields are grounded to the chatsis at the enels and any other convenient points.

The oscillater coil, L_{3}, is made from 13 \& $\mathbb{I V}^{\circ}$ Miniductor. To separate the two enils of L_{3}, push the 3nd or Ith turn from one end of the pieere of Miniductor theough fowad the erenter of the exil. Snip, this wire with a pair of ruttors and push the two ends batk out. Fach end is then perded around for $\frac{1}{2}$ turn, The two roils are adjusted to the right mumber of turns her working in from the outside ends.

The rotor of C_{2} is grounded underneath the chassis by ruming at wire from the front support of the rotor through a hole in the top of the chatsisis to the lug under L_{1}. (irounding the rotor to the
top of the chassis is inalvisathe because the r.f. must then flow over :and under the chassis.

Adjustment

There are two typers of adjustment that must be mate to got the recoiver working: adjusting the cimeuts to the proper frequencies and adjusting the oscillators and the regenerative detector to the proper amplitudes To this later end, leave the grounded end of R_{5} disconneded in the originat wiring, and lightly solder (so that it can be changed later) the lead from l'in 5 of the detector to Perminal C of T_{3}. Resistors that may require changing are R_{3}, R_{7} and R_{13}, so don't solder them too well at first.

Comert a power supply to the rereiver and see that the tubes light and that the power-supply voltages are approximately correct. The 250 volts (an be anything 25) volte either side of 250 , and the $10 \mathrm{~h}^{\circ}$ volts, coming from a V'R tube, will be nothing to worry about if the VIR tube lights. A sugpeited power supply is shown in Fig. $\overline{5}-37$.

Next combert a low-range millianmoter beween R_{5} and ground (+ lead to ground) and apply power arain, The grid current should read about 0.05 mat. (50 ma.). If it reads much more than this, tre a slightly linger resistor at R_{7}, or a smatler one if the grid current is too low. Make these adjustment: with the rotor arm of R_{10} at the grounded end (maximum gain).

Fig. 5.36 - A botom view of the four-tuhe superheterolyme The audio whoke, $L_{5,}$, is in the wper right-hand corner, near where the power leads leave the chassis. The 6S ${ }^{\text {- }}$ sorket marer the pancl in the detector-b, fo, seetion.

Next check the oscillation of the oscillator portion of the $6 S_{B}-Y$. To do this, lift the end of R_{2} that connerets to the tuning condenser and insert a $0-1$ milliammeter betwern resistor and ground. With C_{7}^{\prime} set at about $3 / 4$ maximum capacity, your milliammeter should read about 0.2 mat. If it roads much more, increase the valur of R_{3} - if much less, the value of R_{3} should be decreased, If sou get no reading, it mans the oscillator isn't working. With both coils of L_{a} wound in the satme direction, the stator of the tuning condenser should be connested to the outerend of the larger coil, and Pin 6 of the $6 \mathrm{SB} \overline{\mathrm{B}}-\boldsymbol{1}$ should be commerted to the inside turn of the smaller coil.

If you can borrow a servioman's test oscillator that will give a modulated signal at 1700 kc ., this signal can be introdued at the grid of the 6K8 and the 100 -ke, i.f. circuits can be peaked (b,i.o. turned off), listening in the headphones for maximum response. The 1700-ke. signal can then be transferred to the grid of the 6sisi-Y and the trimmers peaked on Th. Lacking the signal genwator, the alternative is to provide a modulated signal in the 80- or 40 -moter hand and couple it to the stator of C'obs. If the signal is from at erstal oscillator or VF() at 3750 kc . (for example), rumning from an unfiltered power supply to furnish the modulation, set the tuning dial vertical. If the signal is at 3500 kc ., set the teming condenser C_{6} at almost full capacity. Rock ('z slow until the signal is heard. Then peak the $100-\mathrm{kc}$. transformers T_{2} and T_{3}, reducing the signal input as neoessaty to avoid overloating. Next turn on the b,fo. and adjust the slug in L_{4} until a beat note is heard. Then poak the trimmers in T_{1}.

With the initial tuning of the $100-\mathrm{ke}$. chamel done, the slugs of L_{1} and L_{2} can be adjusted for maximum signal, with no antenna comereted. set ('2 at almost full capacity, the sighal near 3.5 Mr., and adjust the iron slugs for maximum in the headphones. If a VFO or crestal oscillator is furnishing the signal, there will probably be enough pick-up without any apparent coupling, but a short 6 -inch wire eonnected to the antema terminal may be reguired to pick up the output from a low-powered signal sourer.

It is not likely that the 100 -ke. circuits will be tuned to the exact frequence that makes the calibrations eoincide on 80 and 40 metars. White this isn't neeessary, of course, it does make the dial look cleancr. To bring the calibrations into line, beg or borrow a frequencer standard that will give signals at $100-\mathrm{k}$ e, intervals. First locate the 4.0- and $\overline{7} .0-$ Me points on the receiver dial, he referring the harmonies from the $100-\mathrm{ke}$. standard to the original signal you used for aligmment. If, for example, the 80-meter signal you used was at 3650 ke , you know that the first $100-\mathrm{kc}$. harmonic you hear on the high-frequeney side will be 3 ion ke., and the first one on the low side will be 3600 ke . The second harmonic of the $3650-\mathrm{ke}$. signal will furnish a cherek point at 7300 ke . ($2 \times 3 \mathrm{3}$ ī̃0),

fïp. 5-37 - Sugernted cireuit diagram for the receiver power supply.

H_{1} - HOOO -ohm $10-$ watt wire-wound.
H_{2} - 0.1 -megohm I-watt composition.
1.1 - 8.henry Eimat fiker chohe (staneor C-13.5.).
$1.2-1$-henry 7 -mat filter choke (Stancor (:-1002).
S_{1} - S. p.s.t. togyle.
$\mathrm{T}_{1}-32 .-0-325$ volts at 55 ma: 6.3 v . at $2 \mathrm{amp}, 5 \mathrm{~s}$. at 2 amp. (Stancor P' 1 -8:0 0).
so swinging C_{2} to about $1 / 3$ meshed (where it will peak the --Mle signals) will allow you to locate the 7 -Mce points. Thus you will have lo(o-ke. intervals on the dial from 3.5 to 4.0 Ne and from 6.9 to 7.4 Me., but not neecessarily coinciding. To make them roincide, some slight retuning of the 100-ke. transformers is required. If, for example, the 7.0 -Mc. point oreurs to the right of the $3.6-$ Mr. point, the 100-ke: amplifier is tuned low, and the slugs should be turned out slightlys. A few trials will bring the circuits into pliace.

Now check the regeneration of the detector by connerting the load from lin 5 of the deteretor to D on I $\%$. If a steady beat is heard, indicating that the detector is oseillating, tume both circuits of To and see if the will kill the oscillation. Their action is to load the regenerative detector to where it won't oscillate - if the action persists, try a 4700 -ohm resistor at R_{13} as a last vesort. These circuits should be peaked on a modulated signal, with the b.for turned off.

After the detector has been made regenerative, the calibration can again be chereked as in a precoding paragraph, and any minor changes in tuning made as are found necessary: Once the $100-\mathrm{ke}$. circuits have been aligned theg can be left alone, and if the $3.5-$ and $4.0-\mathrm{Me}$. points don't come where you want them on the tuning dial, a slight adjustment of C_{7} will correct it.

Connect a $140-\mu \mu \mathrm{fd}$. variable in series between antenna and the antenna post. On 80 meters, peak ('2 on a signal and rock the adjust ment slug of L_{1}. If it tunes fairly sharp, the antema coupling is not too tight on that band. Siwing C_{2} out until you are listening on 40 (to a signal) and again rock the slug on L_{1}. If it tunes broad, reduce the capacity of the $14(0)-\mu \mu \mathrm{fd}$. antenna condenser until L_{1} shows a definite peak. Note the settings of the condenser for the two bands.

The imput condenser, C_{2}, will tune sharply on either hand, and it should always be peaked when listening to a weak signal. Detuning it slightly will attenuate abnormally loud signals.

The power-supply requirements for the receiver are slight: about 15 ma . at 250 volts and 25) ma. at 105 . A 60 -mat power supply will take care of this and the extra 10-12 ma. for a VR-105.

A Clipper/Filter for C.W. or 'Phone

 into the reeceiver headphone jack and the headphones are plugged into the limiter, with no work required on the reonver. The limiter will eut down serious noise on 'phone or e.w. signals, it

The cireuit is shown in lig. 5 -38. The constants are not too eritical, and have been adjusted for operation at the signal levels ordinarily a vailable from the headphone jack on at receiver. The elipper output circuit is heavily by-passed by C_{6}

Fig. 5-38- Circuit diamram of the audio elipper unit. Power reguirements are 16 mat at 2.50 v, d.e., 1.2 amp. at 6.3 v. a.c.

$$
\begin{aligned}
& \mathrm{C}_{1}, \mathrm{C}_{4}, \mathrm{C}_{7}-470-\mu \mu \mathrm{fl} \text {. mica } \\
& \text { (} 2-10 .(1)-\mu \text { fil. paper } \\
& \mathrm{C} 3-I I .1-\mu \mathrm{fl} \text {, parmer } \\
& \text { © - 8- }-\mu \mathrm{fl} \text {. Rint-volt deetrolytie. } \\
& \text { (:6-0.013. }-\mu \mathrm{fl} \text {, paper. } \\
& \text { (s - } 10-\mu \mathrm{fd}, \mathbf{2 . 5} \text {-volt cleretrolytic. } \\
& \text { C9 - } 0.2 .5-\mu \mathrm{fd} \text {. paper. } \\
& R_{1}, R_{3}-1 \text { mexohm, } / 2 \text { watt. } \\
& R_{2}, K_{0}-1500 \text { ohms, } 1 / 2 \text { watt. }
\end{aligned}
$$

will keep the strength of cow. signals at a constant level, and it will add selectivity to your recemer for e.w. reception. It will do much to relione the operating fatigue caused by long hours of listening to static arashes, key elicks eneountered on the air and with break-in operation. and the like.

$1 \mathrm{R}_{4}-10.000$ ohms. $1 / 2$ watt.
$R_{5}-2.2(1)(1)$ ohms, $1 / 2$ watt.
11_{8} - 33.01016 ohms, $1 / 2$ watt.
$\mathrm{H}_{B}-1$-mreohm whime control.
J_{1} - Phone jack, single circuit.
s_{1}-2-circuit 3 -position swith.
to reduee the amplitude of the harmonies generated in the clipping process, and additionat hepassing bey Co, across the headset, is used for the same purpose. Cathode-follower input and output circuits allow the unit to be used with any mo ceiver output and any headphones, and they also
 unit moluder mput and out. put amplifiers of the cathondefollower lyw, a dual-triode clipper circuit and a selectise audion ar-tow. It is built in a momall utility lime wilh a rabla for powar-aupply eonmertionz and acord and phag t." pith up atilis frome the re. ceiser"s headphone jack.

Fia. 5-10 - Inside view ot thr clipurer mits. The gain contrul, switch, headpheme jack, and the larger lixed ionndensers are mounted on tha walls of the hox. The two tubes and the seloctive andio circuit are mounted on the removable pant, 'The solen' tive circhit, consisting of the choke roil and two tubalar eondensers, orropies the upper half of the panel in this view. 'The socket at the left is for the input and output amplifiern: the rizht-hand socket is for the dauble-triode dipper.
(eontribute to the efferetiveluess of the audin filte:,
 su that the unit can be cut out entirely, used with straight limiting and no selectivity, or with both selectivity and limiting. The "off" position is uscoful principally to convinee the skeptical, and the limiting without selectivity is useful for impulse moise, when eneountered. High selectivity and goond noise suppression do not go hand in hand.

The unit, shown in Figs. 5-39 and $0-40$, is built on one panel and the sides of a 3 by 4 by is utility box. The parts on the panel and the hox proper are connerted through cabled leads mate long eoough so the panel can be swang out as shown. Any type of construction can be used, since there is nothing eritial in the layout. One preation to ohserve is to use a shielded lead botweren the "hot" input terminal and the switeh, to prevent possithe stray coupling between the input and later high-impedance circuits because of the cabled leads.

The selective audio circuit chosen gives a type of frequency-response curve that is quite useful. The peak at 800 cyeles is broad enough to avoid tuning difficulties, cvern when used in conjunction with the crystal filter in the receiver. Nevertheless, the response drops off rapidly conough, particularly on the high-frequener side, to make a marked difference in respect to the "espturing" of the limiter by strong off-resonance signals. There is a "notch" at 1700 cyeles.

There is a wide latitude in choice of indurtances for L_{1}. The Millen coil listed under lig. $5-38$ was

the best of available low-pried units tried, in terms of sharphess of the response curve and the depth of the rejeetion noteh. Some of the small filter chokes such as the Notacor (-1.515 and Thordarson T20(‘53 also work reasonably well. The former will resomate at appoximately the same freduencies as given abowe with $330 \mu \mu \mathrm{fil}$. at ('2 and $470 \mu \mu \mathrm{ft}$. at (' ${ }_{3}$; the latter ehoke requires $0.001 \mu \mathrm{fd}$, at (2 and $0.0002 \mu \mathrm{fl}$, at (3 . With any eoil the values of caparitather reguired to place the peak and noteh at frequencios that best fit one's taste in beat notes can casily and quiekly. bedetermined by simple eut-and-try. (Other types of selective audio cireuits can, of course, also be sulstituted.

In use, the receriver's gain controls should be set se that only the stronger signals are elipped; tow-derp clipping will make the receiver sound as though practically every signal overloads it. Once the proper settings for clipping level are determined, the actual andio volume is adjusted hy the gain control on the unit. A lit tle juggling back and forth between the reereiver controls and the output control in the elipper unit will eventually result in the recerver's sounding very much like it does without the elipper present. The differenee is that the signals and noise, induding one's own transmitter signal, don't rise above the level set as a ceciling.

The "Selectoject"

The Selectoject is a receiver adjunct that can be used as a sharp amplifier or as a single-frequency rejection filter. The frequency of operation may be set to any point in the audio range by turning a single knob. The degree of selectivity (or depth of the null) is continuously adjustable and is independent of tuning. In 'phone work, the rejection notch can be used to reduce or eliminate a heterodyne. In c.w. reception, interfering signals may be rejected or, alternatively, the desired signal may be picked out and amplified. 'The Selectoject may also be operated as a low-distortion variable-frequency audio oscillator suitable for amplifier frequency-response measurements, modulation tests, and the like, by advancing the "selectivity" control far enough in the selectiveamplifier condition. The Selectoject is connected in a receiver between the detector and the first audio stage. Its power requirements are 4 ma . at 150 volts and 6.3 volts at 0.6 ampere. For proper operation, the 150 volts should be obtained from across a VR-150 or from a supply with an output capacity of at least $20 \mu \mathrm{fd}$.

The wiring diagram of the Selectoject is shown in Fig. 5-41. Resistors R_{2} and R_{3}, and R_{4} and R_{5}, can be within 10 per cent of the nominal value but
they should be as close to each other as possible. An ohmmeter is quite satisfactory for doing the matching. One-watt resistors are used because the larger ratings are usually more stable over a long period of time.

If the station receiver has an "accessory socket" on it, the cable of the Selectoject can be made up to mateh the connections to the socket, and the numbers will not neessarily match those shown in lig. .j-41. The lead between the second detector and the recoiver gain control should be broken and run in shielded leads to the two pins of the socket corresponding to those on the plug marked "A.F. Input" and "A.F. Output." If the receiver has a $1 \mathrm{R}-150$ included in it for voltage stabilization there will be no problem in getting the plate voltage - otherwise a suitable voltage divider should be incorporated in the receiver, with a $20-$ to $40-\mu \mathrm{fd}$. electrolytic condenser conneeted from the +150 -volt tap to ground.

In operation, overload of the receiver or the Selectoject should be avoided, or all of the possible selectivity may not be realized.

The selectoject is useful as a means for obtaining much of the performance of a crystal filter from a receiver lacking a filter.

Fig. 5-41-Complete schematie of Selectojert using 12AN7 tubes.
$\mathrm{C}_{1}-0.01-\mu \mathrm{fd}$, mica, 400 volts.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.1-\mu \mathrm{fd}$, paper, 200 volts,
$\mathrm{C}_{4}, \mathrm{C}_{8}-0.002-\mu \mathrm{fd}$. paper, 400 volts.
$\mathrm{C}_{5}-0.05-\mu \mathrm{fd}$. paper, 400 volts.
$\mathrm{C}_{6}-16-\mu \mathrm{fd} .150$-volt electrolytic.
$\mathrm{C}_{7}-0.0002$ - -fd . miea.
$R_{1}-1$ megohm, $1 / 2$ watt.
$R_{2}, R_{3}-1000$ ohms, 1 watt, matehed as elosely as possible (see text).
$\mathbf{R}_{4}, \mathbf{R}_{5}-2000$ ohms, 1 watt, matehed as closely as possible (see text).
$R_{6}-20,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{1}-2000$ ohms, $1 / 2$ watt.
$R_{8}-10,000$ ohms, 1 watt.
$R_{9}-6000$ ohms, $1 / 2$ watt.
$R_{10}-20,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{11}-0.5$-megohm $1 / 2$-watt potentiometer (sclectivity control).
R_{12}, R_{13} - Ganged 5-megohm potentiometers, standard audio taper (tuning control).
$S_{1}, S_{2}-1$.p.d.t. toggle (can be ganged).

A Bandswitching Preselector for 14 to $\mathbf{3 0} \mathbf{M c}$.

The performance of many receivers begins to drop off at 14 and 30 Mc. The signal-tonoise ratio is reduced, and trouble with r.f.imane signals becomes apparent. The preselector shown in Figs. $\overline{3}-42$ and $\overline{3}-44$ can be added ahead of any receiser without making any rhanges within the receiver, and a selferontained power supply eliminates the problem of furnishing heater and phate power.

As can be seren from the wiring diagram, Fig. $5-43$, a 6AK5 ref. pentode is used in the preselector. Both the grid and plate cireuits are tuned, but the tuning condensors are ganged and only one control is required. The gain through the amplifier is cont rolled be changing the eathode voltage, through R_{3}. i selenium rectifier is used to supply plate power, and the heater power comos from a step-down transformer. The chassis is at r.f. ground but the d.e. circuit is isolated, to prevent shortcircuiting the a.e. line through external connections to the preselactor.

A two-sertion coramic switeh selerets either the 14- to 21-Me. or the 28-Me. coil, or the antema ran be fed through directly to the rereiser imput. When operating in an amateur hand between 14 and 30 Me., swith hing th the band not in use will attemuate ono's owo signal sufficiently to permit direet monitoring, in most cases.

As shown in lige. 5-12, the gatiged condensers are controlled from the front panel by a National M(N dial, and a small knob to the right of this dial is connected to the antenna trimmer, ("4, for peaking the tuning with various antemnas. The a.e. line is controlled by s_{2}, a togrle switeh mounted on the pand.

The preselector is built on a $3 \times \overline{5} \times 10$ inch chassis, and a 6×6-inch plate of thin noteal is used for a pancl. A $13 / 4 \times 3$-inch aluminum bracket mounted about $31 / 2$ inches behind the front panel supports the tuning
condenser, C_{5}, and the antenna trimmer, C_{4}. Millen 3900; flexible couplings are required to handle the offset shaft of C_{4}. Both C_{5} and C's are mounted on the chassis with 6-32 serews, but the chassis should be scraped free of paint before installation, to insure good comart.

The shidd partition between the two swit ch sections (Fig. $\overline{5}-44$) straddles the tube socket and shields the grid from the plate circuit. The switehed ends of all coils are supported by their respective switch points, and the other ends are soldered to tie points mounted on the

> COIL TABLE FOR THE PRESELECTOR
> $L_{1} 5$ t. No. 24, 3/4-inch diameter (13\& IV 3012)
> $L_{2} 5$ t. No, 2t, 1-inch diameter (13 \& W 3016)
> $L_{3} \quad 6$ t. No. 2•t, 3/4-inch diameter (13\&W3012)
> LA 7 t . No. 20, l-inch diameter (B\&W3014)
> $L_{5} 71 / 2$ t. No. 20, $3 / 4$-inch diameter (13\& IV 3010)
> $L_{6} \quad 3$ t. No. 2t, 1-inch diameter (13 \& W 3015)
> $L_{i} 11 \mathrm{t}$. No. 2 \& d.c.c., close-wound, 1/2-inch diameter
> Ls 4 t. No. 28 d.e.c., close-wound, 1/r-inch diameter
> $L_{i s}$ and L_{s} are wound adjarent on a $1 / 3$-inch diameter nolystyrene form (National PRD-2)
chassis. The mica trimmers, C_{9} and C_{10}, are supported on short lengths of stiff wire, and a hole in the side of the chassis is required to reach C_{10} with an aligning tool.

The power-supply components are mounted as near the rear of the chassis as possible. The solenium rectifier must be insulated from the chassis.
fig. 5-f2-A bandswitch. inis presclector for it and
 fier is uarol, and the posser surply is indaded in the unit. The antematrimming condenser is mounterl on thesmall aluminum partition.

$\mathrm{C}_{1}, \mathrm{C}_{2}-\mathrm{IO} . \mu \mu \mathrm{fd}$, mia:a.

(\%, (in - 3- to 30 - $\mu \mu \mathrm{fal}$, mica trimmer.

K_{1} - 2-, 000 ohms.
$\mathrm{K}_{2}-330$ ohms.
K_{3} - 5000 -chm wire-wonmd potentiometer.

The coils are made from $B \& W$ "Miniductors," as shown in the coil table, with the exception of one plate and coupling coil which are wound on a polystyrene form. The ground returns for the cathode and plate by-pass condensers are made to a common terminal, a soldering lug under one of the mounting serews for $\mathrm{C}^{2} 8$.

When the wiring has been comploted and chereked, the antemat is connected to J_{1} and a cable from J_{2} is run to the receiver input. Tune the receiver to the 11 - Mc. band and set S_{1} to the proper point. Then turn the main tuning dial unt il the noise or signal increases to a maximum. This should oceur with f_{5} and ('s set at close to maximum capacity. Then prak the noise by adjusting C_{10} and C_{4}.

The 28 -Mc, range is adjusted in the same
$1 k_{4}-400$ ohuns.
$\mathrm{R}_{5}-18,001$ ohma, 2 watts.
$1 \mathrm{Ri}, \mathrm{K}_{8}-1.00$ ohms.
1.1-1.s - Ser cail table.
$1.9-2(0$-heury 30 -ma. filter chohe.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - (Coavial-cable jack (Ionm*-101).

- - - gank 2-circuit 5 -position eeramic (Mallory 177C).

Sik - il) ma selenium rectifier.
J_{1} - 6.3-volt transformer.
way, with the exception that C_{9} is touched up. It may be found necessary to touch up ('s when diferent antemmas are used. The preselector may oscillate with no antenna connected, but with any type of wire or feed line the operation of the amplifier should ordinarity be perfectly stable.

As shown, the preselector is intended for use with coaxial-line feed to the antena and to the receiver. If a balanced two-wire line is used from the antenna, it is recommended that a suitable two-wire connect or he substituted for J_{1}. The grounded sides of L_{1} and L_{2} should be diseonneded from ground and returned to one side of the eonnect or. The out put connector can be loft as shown, since at the lower frequencies the proper antemna connection isn't so important.

Fig. 5 -ff - A view under. neath the chassis of the band. witelning preselector showing the shield partition betwern switeh sertions and the soleninm rectilier and ansociated filter.

An Antenna-Coupling Unit for Receiving

It will often be found advantageous on the 14-and 28-Mc. hands to tune (or mateh) the receiving-antemna feed line to the receiver, in order to get the most out of the antemma. One way to do this is to use, in reverse, any of the line-coupling devices advocated for use with a transmitter. Naturally the components can be smadl, because the power involved is negligi-

Fig. $3-5$ - Cirenit diagram of the coupling unit. C, 1 H0- $\mu \mathrm{fl}$. midget variable (Millen 221.40). (i2-100- $\mu \mathrm{ff} \mathrm{f}$. midget variable (Millen 22100).
l.1, $\mathrm{I}_{2}-25$ turns No. 26 d.c.c. spaec-whund to orrupy I inds on 1 -inch diameter form (Millen 4.5000), tapped at $2.5,8,12$ and 18 turns.
S_{1} - 2-rircuit 5-powition single-section ceramic wafer switch (Mallory 173C).
be, and small recoiving condensers and coils are quite satisfactory. Some provision for adijustable coupling is reommended, as in the transmitting case, berause the signal-to-noiso ratio at 11 and 28 Mc. is dependent, to a large extent, on the degree of eoupling to the anterna system. The tuning unit can be built on a small chassis located near the recciver, or it can be mounted on the wall and a piece of $12 \mathrm{G}-59 / \mathrm{L}$ run from the unit to the receriver imput, in the mannor of a link line in transmitting practiec. for case in changing bands, the coils can be switchod or plugged into a suitable socket. Adjustable couphine not only offers an opportunity to adjust for best sigmal to-moise ratio, but tho coupling can be derreased when a strong local signal is on the atr, to eliminate" "blowking" and erossmodulation effects in the receiver.

Fig. 5.46 - A compact coupling network for matching a batanced line (1) the receiser on 14 and 28 Me.

One convanient type of antenna-coupling unit for receivers uses the familiar pi-section filtor cireuit, and can be used to match a wide range of antema impedances. The diapram of a rompact unit of this type is shown in Fig. i- $\mathrm{F} . \mathrm{F}$. Through proper selection of condensers and inductaners, a match can be obtained over a wide range of values. The device ean be plated close to the receiver and foft connered all of the time, since it will have little or no effect on the lower freguencies. A short length of 300 -ohm Twin-I.oad is convenient for connecting the anterna coupler to the reeriver.

The antemna coupler is built in a $\quad \times 7 \times 2$ inch metal ehassis. All of the components exeqnt the two coils are mounted on the front and rear faces. The condensers are mounted off the panel by the spacers furnished with the condensers, and a elearance hole for the shaft prevents any short-circuit to the pancl. The coils, wound on Millen 45000 phenolie forms, are fastened to the chassis with brass sorews, and the coils should be wound on the forms as far away as possible from the mounting end. The switch should be wired so that the switehing seduence puts in, in carh coil, 2 turns, 5 turns, 8 turns, 12 turns, 18 and 25 turns.

The unit is adjusted for maximum signal by whiching to different coil positions and adjusting ('1 and (\%. It will not be neressary to ret rim the eondensers except when going from one end of a band to the other. and when the unit is bot in ther, as on 7 and 3.5 Me., the coils should be set at the minimum number of turns and the condensers set at minimum. The small reactances remaining have a megligible effeet. The coil in the grounded side should be shorted if comxial-line feed is used.

Receiver Matching to Tuned Lines

The pi-section coupler shown in Figs. 5-45 and 5-46 can be used in many instances for matching a balanced open-wire line to the receiver, and tean be used with an unbabanced line by short-circuiting the inductaner int the grounded side of the unbalanced line. However, there are many applications where another type of coupler is slightly more advantageous, as when an all-band antenna system with tuned feeders is used, or where a wide range of line imperances may be en-

Fig. 5-47-A small tuned compler for matching the receiver to a tuned line, 'The unit is mate eithor seriesor parallel-tumed by the position of the antenna connection block.
countered, This other type of coupler, shown in Figs. 5-47, 5-48 and 5-49, is simply a scaleddown transmitter coupler, with provision for either series or parallel tuning. The change from serics to parallel tuning is made simply by the manner in which the antema comection plate is plugged into the unit.

As can be seren in the wiring diagram, Fig. $5-48$, when the antenna connection plate is plugged in so that atl four contacte are engaged, the two condensers are connered ateross the coil in series, to give paralled tuning. When the plate is dropped down, so that only the antema plugs engage at A and B, the unit is comected for series tuning. small low-power transmitting coils with swinging links are used.

The unit is built in a $4 \times 4 \times 2$-inch box, with the coil socket mounted on one 2×4 inch side. One of the 4×4-inch side plates is replaced by a sheet of polystyrene or other insulating material, on which are mounted four banana jarks. I similar but smaller piece of insulating material is drilled at the same time

Fig. 5-18-Circuit of the tuned antema coupler. $\mathrm{C}_{1}, \mathrm{C}_{2}-100-\mu \mu \mathrm{fd}$. midget variahle (Millen $2=100$) L_{1} - Coil to tune to band in use, with swinging link (Xational IR-I6).
to take four banama plugs, A pair of clearance holes must be added to the larger plate to char two of the plugs when the series connection is used.

The two condensers are mounted in the box and gatuged with an insulated shaft coupling. The remaining $+\times 4$-inch side plate is drilled and filed to form an oval hole that will pass the 300 -ohm line from the coupler to the receiver. A rubber grommet should be fitted in the hole to protect the line from the metal and to provide a little clearance.

In operation, the coupler is used in exactly the same way that one is used with a transnutter. Some exporimenting is necessary to determine whether series or parallel tuning should be used on the various bands, and it may be neeessary to use the coil from the next lower-frequency hand if series tuning is indicated, or to remove a few turns from a coil if parallel tuning is required. In any event, the tumer should tune farly sharply and give a definite "prak" to the incoming signals. When this condition has been found on any one band, the coupling can then be adjusted for maximum response to the signals, by adjusting the position of the link winding within L_{1},

Fig. 5-49 - Another view of the tuned antenna coupler.

A One-Tube Converter for 10 and 11 Meters

The 10- and 11-meter converter shown in Figs. $5-50$ and $5-52$ is a simple unit that can be built in a few hours, for a cost of less than fourtem dollars. The converter uses a fixed-tune i.f. and tunable input and oseillator cireuits, in preference to a fixed-frequency oscillator and a tunable output circuit. With a ond-tube converter of the latter type, it is almost imposible to awoid picking up at loast a few signals in the tuming range of the recoliver. L'sing a tunable oseillator and a fixed-frefuence output cireuit permits one to select an i.f. free from interferenee. The platecurrent demand is only 5 mat, and it is usually possible to onorate the converter from the rereiver penter supply.

As can be seem in Fig. $\overline{0}-\mathrm{y} 1$, the Hartley circuit is used in the oscillator portion of the 63 A 7 pentagrid converter. A padding condenser, C_{2}, is switched in through S_{1} to change the range for 11-metor operation. (ondensor (${ }_{4}$ is used for tuning, and the input arrouit is tuned to either range with ('1. The sereen grid of the G13A7 is operated at about tis volts, since higher voltages will increase the total tube curent without any marked improvement in performanre. Howerer, sinee the avalable supply voltage will vary with different reacivers, the value of the sereen dropping resistor, h_{2}, cannot be sperified, and it must be calculated, as deseribed later.

There is a good reasom for not using an antema switch for straight-through operation of the comverter. With practically any available switeh it is very difficult to prewent capacity coupling betwern the imput and output cirenits of the converter. Any such capacity coupling incroases the problem of eliminating interference at the i.f. By equipping the converter and the recoiver with identioal input terminals and using similar plugs on both the antema feed line and the comverter output cable, antoma changower is moproblem. The metal partition separating L_{2} and L_{3}, shown in Fig. 5-52, redues the offert of oscillator harmonics beating with high-frequenes (FM) broadcast stations.

Construction

The converter is built on a 5 by 7 by 2 -inch aluminum chassis, and a 6 by 7 -inch pand is hold in place hy the eompenents mounted on the front wall of the chassis. 'The main tuning dial is a National type MCN.

It can he seen in Fig. $\bar{j}-\bar{z}\}$ that the owillator tuning condenser C_{4}, is mountod on $1 / 4$-inch
metal pillars. A National type GS-10 stand-off insulator is located at the front-right-hand side of C_{4}, and a soldering lug at the top end of this insulator is soldered to the stator terminal lug of the condenser. This added support for the tuning condenser improves oscillator stability, by preventing rocking of ('4 as the control shaft is turned. A feed-through bushing at the other front terminal of the condenser is used to support and insulate the load passing through the chassis to the wil below. The padder condensers for the ossillator circuit, C_{3} and C_{5}, are mounted on the rear terminal lugs of the tuning condenser.
The gride coril, L_{2}, is mounted on the terminal lugs of the input tuning eondenser, C_{1}. The antemna coil, L_{1}, should be wound around L_{2} before the larger eoil is soldered in phare. The tube socket, to the rear of (${ }_{1} L_{2}$, is mounted with pins No. 1 and 7 faring toward the rear of the chassis. The aluminum shield betwern the input and the oscillator eovis hats a $3 / 8$-inch lip bent over along one edge, for fastening to the chassis. The shield is sloted to clear the cathode-tap lead.
The screen and decoupling resistors, R_{2} and R_{3}, respectively, are supported at the powersupply ends by it tic-point strip which is held in place by the same serew that and hors the soldering lug for L_{3}. If the reoceiver supply voltage is known at this time, it is possible to calculate the correct value for the screen-dropping resistor, and the resistor can be mounted on the tiepoint strip. The resistor value is obtained from the equation
R (ohms) $=\frac{\text { supply voltage }-65}{0.0046}$
Example: Supply voltage 260; the resistor value is $\frac{260-65}{0,0046 i}=42,391$ ohms. Anything within 20%

The coaxial output rable is torminated at the chassis end at a tio-point strip, located at the left end of the chansis.

Fig. 5.50 - A one-tube convertor for externding the tuning range of a recriver to 10 and 11 meters. The reystal socket on the back of the chassis receives the antenna plag (Willen 3742).

Fik. 5-isl- (irruit diagram of the low-cost 10-and 11 -meter converter.
C_{1} - $1 \overline{5}-\mu \mu \mathrm{fd}$. variable (Millen $2001 . \overline{5}$).
(i, (is-3-30)- $\mu \mathrm{ffl}$. mica trimmer.
Ci4 - $0 . \mu \mu \mathrm{fd}$, variable (Millen 190:0 with 2 stator and 2 rotor plates removed).
($\%-68 \cdot \mu \mu \mathrm{fd}$, silver mio: a .
($6-1 /-\mu \mu \mathrm{fd}$, ceramic.
(\therefore, C $0-0.01-\mu \mathrm{fd}$. dise ceramie.
(ix-8- $-\mu \mu \mathrm{fd}$ mica.
$R_{1}-2,0,000$ ohms, $1 / 2$ watt.
K_{2} - Screen resistor: sre text.
$\mathrm{R}_{3}-1000$ ohms, $1 / 2$ watt.

It is important that the link from the converter to the receiver be well shichled, to avoid pieking up any signals directly in the receriver. A length of R(i-58 / 4 or R(i-59 \mathbf{U} can be used and, if neressary, a snatl shied should be mounted over the antemna binding post of the recoiver. However, it is usually possible to set the rereiver somewhere near 3 . It . that will be free from even the wakest straight-through interferenee.
If no communications receiver is available, a war-surplus BC-454 aireraft reociver (tuning range of 3 to 6 Me.) makes an inexpensive receiver for use with this converter.

Testing

Power for the converter can be obtained from a separate supply, hut it is usually more convonient to "steal" the power from the receiver. The convorter requires 6.3 volts at 0.3 ampere for the henter and 200 to 250 volts d.c. at is to 6 ma . for the plate and screen.

After the power supply has been comerted, it

$1.2-13$ turns $\mathrm{V}_{\mathrm{o}}, 20$ tinned, 58 -inch diam., 13 伯-inch long (B \& W 300:).
$1.3-6$ turns No. 18 tinned, $1 / 2$-ineh diam., $3 / 4$-inch long, eathode tap $13 / 4$ turna from ground cod (13 \& II^{\prime} $3002)$.
$I_{4}-$ Slug-tuned plate coil (CTC: $. S 3-5$ MC.).
1.5 - 10 turns No. 24 d.s.e. scramble wound at cold end of L_{4}.
J_{1} - l'anel-mounting make sorhet (Amphenol 86.CP'4) P_{1} - 300 ohm 'lwin-1 dad plug (Millen 321I2). $S_{1}, S_{2}-S_{0, p, t}$ toggle switeh.
is advisable to cheok the sureen and plate voltages with a voltmetor. It maty be necessary to change the value of R_{2} if the serven voltage isn't in the recommended range of tif to 70 .

If your transmitter uses VFO, set the VFO to have a hamonic fall at 28 Me., and tume the receiver to 3 . Ace, if vou have erystal control, turn on the oecillator and set the reeceiver to the erystal's 28-Mr. harmonic minus 25 Me. If, for exanple, your erystal has a harmonic at 28,650 ke ., sot the recoiver to 3650 kc . Not the tuning condenser, C ${ }_{4}$, to where vou want the test fraquency (transmitter-oscillator harmonic) to appear on the dial, and tune it in by adjusting ("3. If the signal is too loud, remove any test antemna from the converter. With a rasonable signal, chock the tuning of the input circuit, $C_{1} L_{2}$, and adjust L_{4} for maxinum signal in the receiver.

Once the converter has beren set up on known frequencies within the 10- and 11 -meter hands, C_{2} and ('s aro left fixed and the tuning is done with ("4. The bandspread will be approximately 80 dial divisions on 10 and 20 or so on 11 meters. Ciseed not be touched over a tuning range of about 200 ke ., and so should be used at intervals if the entire band is being combed.

Fig. $5 \cdot 52$ - A botton virw of the one-tube eonverter. The toggle switches are for band-rhanging and mening the heater cireuit.

Crystal-Controlled Converters for 14, 21 and 28 Mc.

The principle of using a fixed high-frequeney oseillator in a converter and tuning the receiver the converter works into can be claborated upon by using a stage of r.f. amplification ahead of the mixer and by using a erystalcontrolled oscillator for maximum stability. Since such a converter is gencrally used on a high frequency where fundamental crostals are not available, it is necessary to use a harmonie of a lower-frequency erystal. A erystaleontrolled converter of this type is shown in Figs. 5-53 and 5-55. A separate converter is required for the $14-$, 21- and 27-/28- Me. bands, since by using separate converters it is possible to simplify their construction and to maximize their performanere.
The converter uses the harmonic of a crystal oscillator to provide an exceodingly stable highfrequeney useillator signal. For example, in the 10-meter eonverter a 12.2.- Me ervistal doubles to 24.5 . Me, and this sigmal is fod to the mixer. By tuning the amplifier (your present receiver) following the mixor ower the range 3.5tos. 2 . .Ie., you are, in effert, tuning across the 2s-Mc. band. The r.f. eircuits in the converter are tuned to 28 . Me., and only hawe to be touched up when groing from one end of the band to the other.
'The wiring diagram is shown in Fig. 5-54. A mentralized triode-ronnected $6 . \ \mathrm{~K}$ 万 is used for the r.f. amplifier. There is some question as to its neressity on if and 21 Me, where the atmospheric noise is generally high cnough to limit the maximum usable somsitivity. A pentodereonnected $6: \mathrm{Nk}$ (eould probably be used with no detretable difieronee in performane on 14 and 21 , but the triode is easy to handle and you don't lose anything by using it. Lsing high-impedance cireuits with the penfode might give trouble from regeneration, unkess the stage were noutralized. Ndjust able antenna coupling and a loaraday sereen are in-
cluded to ateommodate various antenna systems and to climinate capacity coupling to the antenna line. The r.f. stage runs at 105 volts on the plate, since this gives the best noise figure. The separate plate lead also offers an opportunity to kill the converter by opening
 handle and quict enough so that its noisc doesn't impair the over-all porformance. A triode mixer might be used, but the pentorle runs with low current and is quict.

The plate circuit of the mixer is tuned to the center of the receiver tuning range by setting L_{4} to resonate with the various shunt circuit capacitios. The circuit has a low Q and there is lit tle variation in gatn over the range, a 6 C 4 cathode follower is used as a low-impedance coupling to the receiver input.

One seetion of a 6 j J 6 twin triode is used for the errestal oscillator, and the ot her hall serves as a frecucney multiplier. To minimize the other harmonies existing in the plate circuit of the multiplier, the plate is tapped down on L_{6}.

To get the best possible r.f. cireuits, within the space limitations, 13 de W^{*} "Miniductors" are used for L_{1}, L_{2} and L_{33}. Thrir (Q is well above that obtainable with smaller-diameter coils, and they are easy to handle. To insure good shobling and low-resistanoe ground paths, an aluminum chassis is used in preference to the more common sted units.

The converter is built on a 5×9 㐌 $\times 3$-inch aluminum chassis, with several shield partitions to reduce unwanted interstage coupling. The most important shied is the one that straddles the r.f. amplifier socket and separates the grid and plate circuits of this stage. The grid tuning condenser, C_{2}, is mounted on bakelite insulating washers, and its ground lead returns to the common ground at the tube socket, to eliminate stray coupling through chassis cur-

Fig. 5.5.3-1 28. Me. erystal-comtrolled converter. The adjustable antenna coupling can be seren at the left fromt. The tuter shimbls, from left toright, wover the triode eonmeeted G IKir.f. amplifier, the GIK.5 miver and the ol 4 cathode follower, The unshielled tube is the folf owrillator-multiplier.

rents．If this isn＇t done，you may have trouble neutralizing the amplifier．
d 2 友－inch diameter hole is punched in the chassis，so that the extermallemounterd an－ temar coil，L_{1} ，can be coupled io the grid coil． L_{2} ．The Fataday serem is then mounted across this hole on the underside of the rhassis．To construct the Faraday shichl，first cut a piece of $1 / 8$－inch－thick polstyrene（Millen Quartz－（Q） to measure $2^{\prime} \underline{\underline{2}}$ be $3{ }^{1} \frac{1}{4}$ inthors and drill a pair of holes at one rod to clate No． 6 sernews，for mounting the finished shield．（These are the same serews that hold the momoting strip for
 At the oppesite end of the poly sheeet，drill a small hole in carth corner，for seenring the wire used in making the shield．Then wind No． 20 timed wire tightly around the poly sheet in the long direction，spacing it with string or more No． 20 wire．When the winding is finished and secured at both ends，unwind the spacing string（or wire）and remose it．If you have done the job carefully．you will have neat paralled lines of wire arross the polystyreme，all entualty spaced and all lying faily flat．Thern apply two or three havy coats of Digen cement to men side omly，allowing sufficient time between coats for the cement to harden thoroughly．When this has been done，it will be found an mas job to cut wach wire on the unvemented side．Straight－
en out the wires so that you now have a flat sheot of parallel wives，and trinn off the wires at the mounting holes end of the sheot along a lime inside the mounting holdes．ligs．．－5．and j－56 show what this looks like．When trim－ ming these wires，be cameful to see that no wire is loft touehing an adjaent one．Trim the wire conds at the other end io about $1 / 2$ inch from the polystyreme．（lamp）the shied in a vise，be－ when two pieces of wood，and wrap each wire rond atound a piore of N゙o． 12 timned eopper， as shown in Fig．$\overline{\mathrm{s}}$－那．With a good hot iron， rum a bead of solder along the bus，and your shied is funshed．Wrork fast，and mo heat will reach the pols：The shicld is mounted with the smooth side exposed throtegh the hole，and one encl of the No． 12 bus is groumded at the r．f． tube socket．

The grid eobil，Lo，is supported bex its leads and a couple of drops of Duen ecment that hold its groumeded end to the Faraday sheded． The antemna＂oil，L_{1} ，is mounted be itwhads on a piece of $\frac{1}{4}$－inch diametor polvetyrene rod． The rod is suppopted be a shaft bushing．A small wire pin through the rod at the back of the bushing and a rubber grommet between the bushing and the control knob give a soft friction lock that holds the coupling in any position．Flexible leads run from the eoil to

The r．f．plate coil，L_{3} ，is comented to a small piece of polystyrene sheet that is supported by two small brackets．The neutralizing condenser，C_{6} ，is supported by one terminal of（＇zand a stiff wire lead batk to the grid pin on the tube socket． The coupling coudenser，（＇s， is simply an insulated wire wrapped once around the lead from（＂x to the grid of the mixer．It is brought out of the oseillator eompart－ ment through a propstyrene or rubber grommet．

After the usual last cherek of the wiring，commert a power supply and remove the（iAL5）r．f．amplifior from its sorket．Listen in on your reocerer at the ervatal fre－ quency，and if sou donit find the erystal signal，ad－ just L_{5} until you do．Then set your receriver on the proper harmonie frequency and peak L_{6} for maximum signal，as indieated thy vourk－meter．Then back off on L_{5} a little，heramse there is no need to run the erystal at maximum．

Then tune your receiver－its antemna cir－ cuit must complete the eathode cirenit of the 6 C 4 follower－to about 3.8 Ne．and pak L_{4} for maximum noise．The adjust ment is not sharp．If your recolver has an antenna trimmer， peak it too．Then plug in the $6 \mathrm{AK} \mathrm{S}^{5}$ r．f．amplifier and，after the tube has warmed up，rock（2，and （ ${ }^{7}$ ．＂1hhrough the hole in the bottom plate，use an alignment tool to adjust（＂6 a little at a time，until

14 Mc．

$L_{1} \quad 93$ t．No． 94 3 －inch diam． （13 \＆IV 3012）
 3／4－inch diam． （13 N゙ W 3012）

I． $3 \quad 38$ t．No． 24 3／4ineh diam．， centerotinpued （13 心 11 3012）

I． 5 No． 32 cham．， Mose－wound， $1 / 2$ incla lonis

L6 2．turns No，28
cnam．．close－wosund， center－tapped

Cif $i .9 \mu \mu \mathrm{fl}$ ．
C13 0
Xatal 0000 kc ．（triples）

COIL TABLE FOR THE CRYSTAL－CONTROLLED CONVERTER

21 Mc ．
91．No．こ1
I－inch diam．
（13 N W 113010
101．No． 20
1－ineh dian． （ 13 \＆ 113015 ）
－2 1．No． 24
3 －inch diam．，
renter－tapprol （13 \＆II 3012）

28 Mc：
10 t．No． 20
l－ind diam．
（ 15 d W^{3} 3015）
1．No． 20
1 －incli diam．
（13 \＆W 3015）
16 t．No． 21
3 － 4 －inch diam．，
center－tapled
（ 18 N W 3012）

L．Slug－tumed eoil（Cambridge Thermionic Corp．I－Mc．ISM with 2（M）turns removed）（Coils for Los and Loc are wound on $1 / 4$－inelh di－ ameter Cambridge Thermionic Corp．LSW forms）

No． 32 rilam．，
Close－wound．

20 t．No． 20
enamm．close，wound， center－tapped
$7.5 \mu \mu \mathrm{fd}$ ．
$2 \mu_{\mu} \mathrm{fll}$ ．
38：ke．（triples）

30 t．No． 28
enam．，
close－wound
20 t．No． 24
enam，close－wound， center－tapped
$3: 3 \mu \mathrm{fl}$ ．
$9: \mu \mu \mathrm{fl}$ ．
$12,250 \mathrm{kr}$ ．（doubles）

Fou lowe any umpleasant somble with all settings of（＇sa and C_{7} ，and the r．f．，stage is neutralized． Comnect the antema，and peak（＇2 and C_{7} on a sigual．10o all of your tuning with your regular receriver，and only use（＇2 and（＂7 to peak the sigual when you make a hig frequener exeursion． The auljustatbe antenta conpling provides some measure of gatn control for the unit，but it is gencrally best to use fairly tight coupling and hold the gain down in your regular receiver． The antenna coupling is designed for low－im－ pedance input，and will work satisfactorily with

Fig，5－5．5－Thi－view of the andersiate of the conserter with the bottont eover reatosiad stom：ther diaralats shield at the lower riyht the whield strad－ dlinge the r．f．amplifier socket（lewer rentor） and the shiediled asiof． lator itection（10）coll－ ter）．The moutralizing mondernser fur the r．f． \therefore tay is aldiaztad through a holle in the lubtems encer．

50- or $75-$ ohm line. If you use 300 -ohm TwinLead, it is better to leave the short length of coaxial line ungrounded and to use somothing other than a coaxial fitting for connecting the antenna. If your antema uses 600-ohm line or tuned feeders, it is best to use a small antonna tuning unit link-eroupled through a length of IR(i-69/C to the converter input.

There is nothing sacred about the erystal frecquencies used, other than to be sure that they have no harmonies falling within the sig-nat-frequency range. For the erystals suggested in the coil table, the receiver tumes from 4 to 3.6 to cover 14 to 14.4 Me. (yes, it tunes backwards!), 3.37 to $3.82 \overline{5}$ for 21 to 21.45 Mr., and 3.5 to $\overline{5} 2$ for 28 to 29.7 Me . The 27 -Mc. amateur band is also eovered by the 10 meter converter, simply by tuning your receiver below 3.5 Mc.

What first i.f. (tuning range of your receiver) you will use depends on the available crystals and the range your present reodiver tunes. lising the second or third harmonic of the erystal should be satisfactory in practically every case. By careful sedection of erystal frequeneies, you can arrange things so that the

Fig. $\quad 5-\mathrm{i} 6$ - Constructional detailo of the Faraday shield, before soldering the ends of the No. 20 wires to the No. 12 nire hus.

band edges start at some even 100-ke, mark on your roceiver, thus giving you frequencycalibrated reception (with the necessary mental correction factor). The accuracy of calibration of your receiver on the one tuning range, together with the accuracy of the crystal used in the osidlator portion of the converter, will determine the accuracy of calibration of the receiving system.

Power Supply

The eircuit diagram of a suitable power supply for use with the converters is shown in Fig. $\overline{\text { on }}$-i 7 , alt hough any source of 6.3 volts :a.e. and 10 and 180 volts d.e. will do. One set of conneetions runs to the converter in use, and the other goes to a small control box located on the operating table. If desired, the a.e. switeh can be incorporated in the power supply, but the plate switeh, in the 105 -volt lead to the r.f. stage, should be handy to the operator. A switch can be provided for shifting the pewer from one eonverter to another. Sinee separate receiving antennas are generally used at these frequencies, the antemas do not require switching.

Vig. $3 . . \pi z$ - 1 power supply for the erystalecontrolled converter.

$\mathrm{H}_{1}-1.000$ ohms, 10 watts.
$R_{2}-10,0010$ ohms. 10 watts.
$1.1-16-h y .50$-ma. chohe (stancor C. 10003).
T1 - 210-10-2 +10 at 40 ma., $\overline{3}$ and 6.3 v , (Staneor P-6297).

An All-Purpose Super-Selective I.F. Amplifier

'The amplifior shown in Figs. a-is and io-60 is designed to comeret to ang receiver at the grid of the first i.f. tube, to give superion seleetivity for either "phome or caw, reoption. The signals at $45 \overline{\mathrm{kc}}$. are heterodyned to 50 kc . and filtared through either or both of two selective amplifiers. Oue of the amplifiers uses 11 high-(Q tumed circuits to give a selectivity characteristio that is about 350 cereles wide at 6 dh. down and 1300 eroles wide at (i0 dib, down. The other amplifier uses ! "stanger-tuned" rircuits that give a $2: 300$-erold bandwidth at 6 d 1 , down and $\overline{5} \mathrm{kr}$. at do dh down. The brouler amplifier has its tuning adjusted so that it is centered about 1700 werles higher in freguency thatn the sharp ome. Thus, when a phone carrior is tuned to fall in the conter of the sharp amplifier, one sideband falls in the broader amplifier. The outputs of the amplifiers are ford to a common detertor, and the relative amplitude of ("arrier and sideband at the deteretor can be whanged be controlling the gains through the two amplitiers. By emphasizing the carrier at the detector, "exalted-aurier" reereption is ohtained, which has the advantage that fower distortion produets are generated on a signal in the presene of (QRM. For ew. reecoption, only the sharp amplifier is used, while the reception of sids signals requires only the broat amplifier.

The complete circuit of the amplifier is shown in Fig. 5-59, Recoiver output at 450 ke, at as low a level as possible (to avoid overloadinge, is fed into the gBEti ronverter stage, where a arystat-rontrolled oscillator is selected either so ke. higher or lower, to use the seleretable-sidehand principhe. ${ }^{1}$ I third position of the switeh. κ_{1}, permits running both erystals at oneer, for alignment purpeses, as deseribed later.

The two i.f. :mplifiers follow the converter, and two GBJJ variable- μ pentodes are used in each chamel. There are isolation resistors and condensers in each power lead to prevent any over-all ferd-batck.

1 Melaughlin, "Exit Heterodyne (2KM," QSTT, Ort., 1!447.
 and ground, is used to brimg the relative maximum gatins of the two chatnels to approxinate יfuality. "Ihe gain of the broad chammel will vary with the degrere of stager-tuning, so R_{50} should be inserted only after the aligument procedure has been rompleted. Its value, of course, maty work out differently than that shom,
 in the "product detector" "irenit. The advantage of the cireuit is that it minimizes intermodulation at the eleteretor athe dexant require a big hif.o. signal for exalted-carrion reerption. A signal-level indicator cirenit comereded to the sharp) amplifier doesn't indicate b.for, voltage, so the signallevel meter reats the same with h.f.o. on or off.

The sigual-ferel virenit, latroled "A.V.C.Rure." in Fig. 5-5!), consists of at cathode follower driving a diode. Ia three positions of s.e, the reetifiod current simply works the metor, hat an a.ver. voltage is applied throughout the amplifior in the fourth prosition.

The tuning meter is important. It permits the operator to center the carrier in the sharp amplifier, and also warns him when the amplifier is in danger of owrowding Oyorloading will temd to mullity the :udvantages of high sederetivity, soit is impertant that the unit always be operated be fow this point. The manual gain controls will take ratr of about (i0) - (l) ratag.
 to by-pass the r.f. and prevent its getting on the audio grids. A hoobe of two how-impedance outputs is provided, for 'phones and loudspeaker.

Construction

There are only a few departures from conventional construetion terhnigue in this amplifier. Miniature tulas were used only (o provide room for the tuncel circuits - - on a larger chassis or with a different lavout, metal tubes should the perfectly satisfactory. However, no attempt should be made to save space by mounting the

Fig. 5.58 - I'he super-nelective i.f. atrplitier uses two rhamels in barallela sharp one for rew. or for "whone car. rier, and a broad one for a whone sideband.
"The shary i.f. is the strip at the rear of the chassis, and the throad one is just in front of it. The two tulies at the right-hand cond of the broal amplifier are the "product detector." The h.f.o. can is at the front right. nest to the tube, and the noar-lys tube and ran are in the simal-motering circont. The witing of holem are chearancer holes for adjusting the broad i.f. strib tomed circuits.

The controls, from left to rikht, are sideband selerotor witch, audia valume, broad i.f. pain, sharg i.f. kain, function switoh, and lof.o. bitch constrol.

tuned circuits in anything but a straight line. The shield cans do not provide complete magnetic shielding at 50 kc ., and it is possible to couple right through the thin aluminum.

The i.f. strips proper are built on aluminum chanmels. All power leads are brought out through shieded wires, to minimize coupling via the common power cireuits. I'sing the shiclded wire is also an aid to construction, berause the shields are soldered to lugs at points near the tube sockets, and the isolating resistors are then mounted betwern tube sorket (or coil terminal and the exposed ends of the shinelded wires. The Hallicrafters coils leave no room for the assoriated shunt condensers, so they are commered directly across the terminals.

The RCC A roils, used in the broad amplifier, must be reworked slightly before using. As supplied, the terminals come out the top of the can, so the coil must be removed by untwisting
four small tabs. The coil to be used is connected to Terminals A and F, and another coil connected to Terminals (' and D should have its leads snipped. The $390-\mu \mu$ fid. silver-mica condenser can then be soldered to Terminals A and F before the assembly is replaced in the shiold ean.

The bif.o. eoil, L_{1}, uses both eoils of the lac $\%$ 20.5R1 connerted in suries. This is done be lifting the single wire from Terminal (' and connereting it to Terminal F. Fixternally, "erminals A and 1) alle used

The man chassis is aluminum, 12 be 17 by 2 inches, and the front panel is a standard relayrack affair 7 inches high. The shielded keads from the i.f. strips proper are brought out through holes to tio points ronveniontly lorated away from signal circuits. Two short pieres of R($\mathrm{i}-59$ / L^{+} conaxial rable are used - one from the input jark at the rear of the (hatssis up to the blBE6 grids, and the other from the output of the sharp

Fig. 5-59 - Wiring diagram of the 50 -ke. selective amplifier.
C $-0,005-\mu \mathrm{ff}$. erramic.
$\mathrm{C}_{2}, \mathrm{C}_{6}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{18}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{21}, \mathrm{C}_{26}, \mathrm{C}_{30}, \mathrm{C}_{31}$,
 $\mu \mathrm{fil}$. 1010 -woll.

$\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{14}, \mathrm{C}_{15}, \mathrm{C}_{16}, \mathrm{C}_{22}, \mathrm{C}_{23}, \mathrm{C}_{24}-2.4-\mu \mathrm{fi}$. mica (two $4 . i-\mu \mu \mathrm{fd}$. in series if lower value not a vailable).
$\mathrm{C}_{25}-100-\mu \mu \mathrm{fl}$. ceramic.
$\mathrm{C}_{27}, \mathrm{C}_{28}, \mathrm{C}_{33}, \mathrm{C}_{34}, \mathrm{C}_{40}, \mathrm{C}_{41}-4.7-\mu \mu \mathrm{fd}$, mica.
$\mathrm{C}_{46}, \mathrm{C}_{51}-16 \% \mu \mathrm{fd} .450$-volt electrolytie.
C.97-0.002 $\mu \mathrm{ff}$. ceramic.

C48-250-970- $\mu \mu \mathrm{fd}$. adjustable mica (El Menco 306).
$\mathrm{C}_{49}-\mathbf{0 . 0 0 1}-\boldsymbol{\mu} \mathrm{fd}$. ceramie.
$\mathrm{C}_{50}, \mathrm{C}_{53}-1(1)-\mu \mathrm{fel}$. $\mathbf{5 0}$-wolt electrolytic.
Cos - $4 \pi 10-\mu \mathrm{ffl}$. ceramic.
C $55-3.3-\mu \mu \mathrm{fl}$. midgut variahle.
C_{56} - $2=11-\mu \mu \mathrm{fll}$. silver mica.
$\mathrm{C}_{57}, \mathrm{C}_{54}-33010 \mathrm{H} / \mathrm{fl}$. silver mica

$\mathrm{C}_{62}-10$ - $\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{R}_{1}-0.15$ merohm.
$\mathrm{K}_{2}, \mathrm{~K}_{9}, \mathrm{~K}_{13}, \mathrm{~K}_{19}, \mathrm{~K}_{23}, \mathrm{H}_{32}, \mathrm{H}_{40},-0.1$ megohm.
$\mathrm{R}_{3}, \mathrm{R}_{5}-0.12$ mekohm.
$\mathrm{R}_{4}, \mathrm{R}_{6}-330$ olnns.
$\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{8}-2.00$ ohms.
$\mathrm{R}_{10}, \mathrm{R}_{14}, \mathrm{R}_{20}, \mathrm{R}_{24}, \mathrm{R}_{48}-100$ ohms.
$\mathrm{R}_{11}, \mathrm{R}_{12}, \mathrm{R}_{15}, \mathrm{R}_{16}, \mathrm{R}_{21}, \mathrm{H}_{22}, \mathrm{~K}_{27}, \mathrm{~K}_{28}-10,000$ olums.
$\mathrm{R}_{10}, \mathrm{R}_{2 \mathrm{i}}$ - ${ }^{2}(0) 0$ onhm wire-wound montentiometer.
$\mathrm{R}_{18}, \mathrm{R}_{25}-27,0 \mathrm{OH}$ ohmm. 1 watt.
$\mathrm{H}_{29}-1.500$ ohms.
i.f. amplifier to the grid of thr 12.11 t a.v.e.rectifier. The input and output signal leads from the i.f. amplifiers are fed through Millen 32150 ceramic bushings, where the projerting wire sorves as a tie peint. The detector bias control, K_{38}, is mountere at the rear of the ehassis, sincer it neod not be touched after the original adjustment for minimum deteretion in a single chanmel, except when a $12 . \mathrm{Al}^{7}$ detector tube is replaned.

Alignment

The best point in a recejver to take off the signal for this i.f. amplitier is at the grid of the first i.f. stage in the recoiver. If the recoriver has a "restal filter botwern mixer and i.f. stagr, it won't be used nomatly. The erystal filter can be used, but it requires gretting two oscillator erystals for the sharp i.f. amplifier of just the right frequencr:

The frequencer to which the selective amplifier
is aligned is determined by the frequencies of the two erystals in the 6 BE 6 converters. Assume that the nominal i.f. frequeney of the receiver is 45 kc ., and that the available errestals are 408 and $\overline{0} 0 \mathrm{k} \mathrm{kr}$. The sharp i.f. will then be aligned to half the diffurence, or $48.5 \mathrm{ke} .(408+48.5)$, but the fact that this is 1.5 ke , higher than the nominal 45 is nothing to worre about.

Liet a signal gemerator or test oscillator to half the ervstal-oscillator differenere (e.g., 48.5 kc .) and align the sharp channel bey working bate from the detector, introducing the signal first at the grid of the serond CBJIti, and aligning the following rireuits, and then introducing the signal at the first GBJJ and then the 6 BEN mixer. The final touching up of the sharp amplifier is done hy switehing S_{1} to the point where both GBDids are operative and tuning a signal at 555 kr., until it "zero beats" with itself, as heard in the output. The sharp cireuits are then given a fi-

nal peraking, as indicated by the tuning meter. During aligmment procedures, always work with a minimum signal and with the gain control, R_{17}, advanced to mavimum gatin.

The b.f.o. is aligned bes switehing it on. setting C_{55} to the center of its range, and adjusting the slug in L_{1} to zero lnat on a signal peaked through the sharp amplifier.
The broad i.f. amplifier is "stagyor-tumed," which means that alternate cireuits are tumed to the same frequencer. First, peate wircuits $L C_{10}$ through $L C^{\prime} g_{0}$ to a slightly highor (1.5 ke .) froguency than the sharp chanmel. Whild doing this, the lead from the meter circuit can be translarred from $L C_{11}$ to $L C^{\prime 2}$. and the signal introdued to the grid of a bBE: Th. Then set the signal sourere to a freguener 7 To ereles higher than the frequency at which the sharp chammel Was peaked, and pak eireuits $/ C^{\prime}{ }_{12}, L C_{14}, L C_{16}$, $L C_{1 x}$ and $L C^{2}$, as indicated be the meter. Then sel the signal source to a frequency 2750 (eveles higher than the sharp-ehamnel frequaner, and peat circuits $L C_{13}, L C_{15}, L C_{15}$ and I, C_{19}. Now, varying the frequence of the signal source, the response indieated liy the metor will show a response that has two unergual praks. The praks can be equalizenl, or nearly so, by readjust ment of L 'rig. The lead from the meter eircuit can now be returned to L ' ' 11 .

If an audie out put meter is availathle. get a final cherek on the response of the broad amplifier by setting the b.f.o. to the midfrequencer of the sharp amplifior and, with the sharp amplifier turned down. swing the input signal arross the range and wateh the audio response. It should the fairly Hat from about $5(0)$ to 2700 areles or so, dropping off rapidly beyond that.

Without arecess to at sigmat generator, it maby be
 with grood stathility and at slow tuning rate.

Operation

The operator has his choiee of several types of operation with this amplifier. For highly-selective c.w. reception, use switeh S_{2} in the "C.W", position, with the bef.o. offset to give the favorite Inat-mote frequence. Signals will drop in and out rapidly as one tumes across a band, and a slow tuning rate is highly desirable. For less critical rereption of $\begin{gathered} \\ \text { w., or for net opreation, switch to }\end{gathered}$ "sisls" and use the broad i.f. characteristic, reducing the gain in the sharp channel to a minimum. The same settings maintain for the reception of SSB 'phone signals - the b.f.o. is set to the midfregueney of the sharp chanmel and all tuning is dome with the main tuning dial of the reeciver.

Regular A.M 'phone signals are reecived with S_{2} sot wither to "MAN". or "A.V.C.," depending upon the QRM conditions. In either case, the carrier is peaked on the metor for areurate tuning, and the two gain controls are set for best listening. In "MAN." operation this will usually mean riding gain on the sharp chanmel so that the meter never goes beyond half-scale, and with the broad-amplifice gain control hacked off proportionately. In "A.V.(',"" Iooth controls can be run wide open, but as one tunes arross some signals the set may overload until the tuning is centered on the desired earrier, A heterodyme on one sideband will be eliminated by switching S_{1} " "pratice" is the only adviec one (an give on handling the i.f. amplitier to its greatest capabilitios, always remembering that you have the choier of two sidebands to listen to plus the ability to vary the relative amplitudes of carrior and sidehands.

Is in all selective amplifiers, overload is the big enemy, and it is generally best to run the audio volume at or near maximum and the i.f. gain at the lowest usable value.

fik. \quad-at - This , iew innlerneath the 'hassis shows the two oscillator crystals at the Iowier right. Most of the shiched leads are power leads to the i.f. strips, although some of the lowlevel audio Ifads are also run in shiolled wire.

High-Frequency Transmitters

The principle requirements to be met in cow. transmitters for the amateur bands between 1.8 and :30 Ne. are that the frequency must be as stable as good practice permits, the output signal must be free from modulation and that harmonies and other spurious emissions must be eliminated or reduced to the point where they do not cause interference to other stations.

The over-all design depends primarily upon the bands in which operation is desired, and the power output. I simple oscillator with satisfactors frequency stability may be used as a transmitter at the lower frequencies, as indicated in lig. 6-1A, but the power output obtainable is small. As a general rule, the output of the aspillator is fed into one or more amplifiers to bring the power fed to the antenna up to the desired level, as shown in 13 .

An amplifier whose output frequency is the sime as the input frequency is ealled a straight amplifier. If such a straight implifier is placed in an intermediate position between two other tramsmitter stages it is sometines called a buffer amplifier.

Berause it becomes increasingly difficult to maintain uscillator frequency stability as the frequency is increased, it is most usual practire in working at the higher frequencies to bperate the oscillator at a low frequeney and follow it with one or more frequency multipliers as required to arrive at the desired output frequency. A frequency multiplier is an :mplifier that delivers output at a multiple of the exciting frequency. A doubler is a multiplier that gives output at twice the exciting frequency; a tripler multiplies the expiting frequency by three, etc. From the viewpoint of any particular stage in a transmitter, the preceding stage is its driver.

Is a general rule, frequency multipliers should not be used to feed the antema system directly, but should feed a straight amplifier which, in turn, feeds the antema system, as shown in Fig. 1-C, 1) and E . As the diagrams indicate, it is ofton possible to operate more than one stage from a single power supply.

Good frequency stability is most casily obtained through the use of a crystal-controlled oscillator, although a different crystal is needed for each frequeney desired (or multiples of that frequeney). I self-controlled oscillator or VFO (variable-frequency oscillator) may be tuned to any frequency with a dial in the manner of a
receiver, but requires great care in design and construction if its stability is to compare with that of a ervistal oscillator.

In all typers of transmitter stages, sereen-grid tubes have the advantage over triodes that they require less driving power. With a lower-power exciter, the problem of harnomic reduction is made easier. The most satisfactory oscillator circuits require the use of a screen-grid tube.

Fig, 6.1-13lork diagrams showing typical combinations of watilator and amplifiers and power-supply arrangements for tranamitters. A wide selection is possilhe, depending ubon the mumber of bands in which operation is desired and the power output.

Oscillators

Crystal Oscillators

The frequency of a crystal-controlled oscillator is held constant to a high degree of accurace by the use of a quartz crystal. The frequency depends almost entirely on the dimensions of the crystal (essentially its thickness); other circuit values have comparatively negligible effect. llowever, the power obtainable is limited by the heat the erystal will stand without fracturing. The amount of heating is dependent upon the r.f. crystal current which, in turn, is a function of the amount of feed-back required to provide proper excitation. Crystal heating short of the danger point results in frequency drift to an extent depending upon the way the crystal is cut. Excitation should always be adjusted to the minimum necessary for proper operation.

Crystal-Oscillator Circuits

Fig. 6-2 shows three commonly-used crystaloscillator circuits. All are of the electron-coupled type in which the screen of the tube serves as the plate of a triode oscillator. A separate output tank circuit is used in the actual plate circuit. Because of the shielding effect of the screen and suppressor grids, the coupling between the two circuits is comparatively small and exists principally through the common electron stream within the tube. Thus when the load is coupled to the output circuit, its effect will be murh less than if it were coupled directly to the frequencygenerating circuit.

In the Tri-tet circuit of A, the screen is the grounded "plate" of a t.g.t.p. triode oscillator, the crystal taking the place of the coil-andcondenser grid tank. Excitation is controlled by adjustment of the tank $L_{1} C_{2}$ which should have a low L / C ratio and be tuned considerably to the high-frequency side of the crystal frequency (approximately 5 Mc . for a 3.5-Mc. crystal) to prevent over-excitation and high crystal current. Once the proper adjustment for average crustals has been found, C_{1} may be replaced with a fixed condenser of equal value.

In the grid-plate circuit of Fig. 6-213, the oscillating cireuit is the equivalent of a groundedplate Colpitts. Excitation is adjusted by changing the ratio of the two capacitanes, C_{6} and C_{3}. The oscillating circuit of the modified Pierce oscillator in (' is also basically a Colpitts, this time with a grounded cat hode. The grid-cathode and screen-cathode capacitances serve the same purpose as the two condensers connected across the circuit in B. To obtain proper adjustment of excitation, the screen-cathode capacitance is augmented by C_{9} which may be adjusted for optimum excitation.

In these circuits, output at multiples of the crystal frequency may be obtained by tuning the plate tank circuit to the desired harmonic, the output obtainable dropping off, of course, at the higher harmonics.

If the behavior of these circuits is to be pre-
dicted with any degree of accuracy, the tube used must be one having good screening. From all considerations, the 61 G 7 is recommended. With a well-screened tube and proper excitation adjustment, the output plate tuning characteristic

Fig. 6-2 - Commonly-used erystal-comerolled oseillator circuits. Values are those racommendied for a 0 AC 7 tube, (See reference in text for other tubers.)
C_{1} - Feed-lack-entrol condenser - 3.i-Me. arystals —approx. 220 ()- μ fid. mica. - --Mc. ery-tals approx. $150-\mu \mathrm{ffl}$. mica.
C_{2} - Output tank comlenser - IOO- $\mu \mathrm{ffl}$. variable for single-band tank: 250- μ fil, variable for twoband lank (ece text).
C_{3} - Screen hy-pass - 0.001- ff d disk ceramic.
C4 - l'late by-pass - 0.001- $\mu \mathrm{fl}$. disk ceramie.
C_{5} - Outpot eoupling condenser - 50 to $100-\mu \mu \mathrm{fd}$. mica.
C_{6} - Excritation-control comdenser - approx. $10-\mu \mu \mathrm{fd}$. mical.
$\mathrm{C}_{\overline{4}}$ - Excitation-centrol condenser - 2920 - $\mu \mathrm{fd}$. mica.
$\mathrm{C}_{8}-$ D.c. blecking coudenser - $0.001-\mu \mathrm{fI}$. mica.
C_{9} - lixcitation-control condenser - 2.2()$-\mu \mathrm{ffl}$. mica. C_{10} - Heater by-pass - $0.001-\mu \mathrm{fl}$. disk ceramic.
R_{1}-Grid leak- 0.1 megohm, $1 / 2$ watt.
$\mathrm{R}_{2}-$ Screcn resistor - $4 \mathrm{~T}, 000$) ohms, 1 watt (sce text if oscillator is to be keyed).
L_{1} - Excitation-control indactance - 3.5-Mc. erystals -approx. 4 ph:; T- Me crystals - approx. 2μ h.
$\mathrm{L}_{2}-$ Output-eireuit coil-single-band: - 3.5 Me -
 -1 1 h. Two-band operation: 3.5 \& 7 Ne.

$\mathrm{RFC}_{1}-2.5-\mathrm{mln} .50-\mathrm{ma}$, r.f. chohe.
at the erystal fundamental, as well as at harmonies, will be simitar to that shown in Fig. ($0-3$ and will cause less than 25 cycles change in frequency. Crystal current, under these conditions, should not be excessive. If the oscillator is to be keyed, best characteristics will be obtained by omitting the screen resistor, R_{2}, and comnerting the screen lead to a regulated source of 7 is to 150 volts.

If a tube with poorer serecning is used, the effect of tuming the output circuit will not be greatly different at harmonies of the erystal frequency, but the operation at the erystal fundamental may be altered drastically. When the output circuit is tumed near resonance, oscillation may stop, entirely, necessitating a critical adjustment to one side of resonance for good keving characteristics and to prevent a marked rise in crystal current. Inder these conditions, the frequency may vary as much as 200 cycles.

Crystal current may be estimated by observing the relative brilliance of a $60-\mathrm{ma}$. dial lamp connected in series with the crystal. For stable operation, crystal current should be limited as much as possible and satisfactory output should be obtained with a current of 40 ma . or less. If the oscillator is to be keyed, the lamp should be removed to prevent chirps.

For best harmonic output a tube with high mutual conductance should be used. This is especially important in the circuit of Fig. 6-2C. The $6.1(i)^{\text {also }}$ meets this requirement. I low- C output tank circuit is desirable, especially for harmonic output. Lowever, if a tank condenser large enough to rover two adjacent bands with the sume coil is used, the output at the erystal fundamental and at the harmonic will be approximately the same, since the L / C ratio will be high when the circuit is tuned to the harmonic, where low (' is of the greater importance.

For best performance with a 6.1177 tube, the values given under Fig. 6-2 should be followed dosely. (For a discussion of values for other tubes, see (Sist for March, 1950, page 28.)

Quartz-Crystal Characteristics

While arystals are produced for frequencies as high as iol Mr., by far the majority of those used in amateur high-frequency transmitters are cut for the 3.\%- and 7 -Mc. hands. With suitable frequency-multiplying stages, this permits the use of a single erystal for operation in the har-monically-related parts of higher-frequency bands, as well as at the crystal fundamental frequency. As an example, a 3501-kc. crystal with appropriate multipliers may be used for the frequencies of $7002 \mathrm{kc} ., 14,004 \mathrm{kc} ., 28,008 \mathrm{kc}$. etc.

The characteristics of a crystal - particularly in the thickness-frequency and temperaturefrequency relationships - depend upon the plane in which the crystal plate is cut from the natural quartz block. While other cuts are useful in certain applications, those for amateur transmitters invariably are of either the "AT" or "BT" types. Their respoctive temperature characteristics are as follows:

> AT-cut -+10 eveles per Me. per degrec at 0 degrees (\%
> Oeveles par Mc. per degree at 45 degrees C .
> — +20 eycles per Mc. per degree at 85 degrees C .
> BT-cut - - 10 cyrles per Mc. per degree at 0 degrees C.
> - 0 cyrles per Mc. per degree at 30 degrets C .
> - - 20 cycles per Me. per degree at 70 degrees C.

The relationship between the thickness of a crystal and its frequency is given by:

$$
f_{\mathrm{Mc}} .=\frac{k}{t_{\mathrm{mil}}}
$$

where f_{Mc}. is the frequency in megacycles, t the thickness in thousandths of an inch and k is a constant of the crystal cut approximately as follows:

$$
\begin{aligned}
& \text { AT-cut - } 66.2 \\
& \text { BT-cut - } 100.78
\end{aligned}
$$

An AT crystal usually is more active than one of the BT-cut type, but since it is thinmer for the same frequency, there is greater danger of fracture in operation. Thercfore, AT-cut crystals usually are used for frequencies below 5 Mc., while the BT-cut is used for crystals whose frequencies lie above \bar{j} Mc., although this is not true in all cases.

While crystals are sometimes cut for fundamental frequencies as high as 14 Mc., most crystals used by amateurs for frequencies higher than the 7 -Mc. band are "harmonictype" crystals; that is, the thickness corresponds to a frequency of one-third (sometimes one-fifth) of the normal operating frequency. The other dimensions of the crystal are proportioned so that the mechanical vibration is at three times (or five times) the fundamental frequency.

Regrinding Crystals

Because crystals near any desired frequency can be purchased reasonably these days, it is not profitable for the amateur to cut and grind his own blanks. However, frequently it may be desirable to make a limited increase in the frequency of a crystal at hand. Indispensable requirements are a piece of plate glass, a good micrometer, supplies of size 800 aluminum oxide for light grinding, and Size 400 silicon carbide for coarse grinding, and a test oscillator. A test oscillator of the regenerative type, such as the one shown in Fig. $6-213$, is preferred. The oscillator should be equipped with a grid-current milliammeter,
preferably one with a $0.5-\mathrm{ma}$. seale. The grid current should be cheoked first with the erystal to be reground, and preferably with several others known to have satisfactory activity, to obtain an average of the grid current to be expected for normal crystal artivity.

The most important factor in respect to activity is that of maintaining the proper surfare contour. When properly ground, the erystal is thicker in the center than at the edges. The difference in thickness should vary from about 0.001 inch for a $3.5-$ Mc. crystal $1 / 2$ inch square to about 0.00015 inch for a $7-$-Me. crystal.

The grinding compound should be sprinkled on the glass plate and moistened with water to make a very thin paste. One side of the reystal should be marked at a corner with a pencil and all of the grinding should be done on the opposite side. The erystal should be swirled around in figure-eight paths. The path should be changed frequently to another part of the glass plate so that the plate will be wom evenly. Light pressure with the finger on a comer of the erystal should be used. Make three or four " 8 's" to each of the corners in succession and then repeat. L'se lighter pressure and make fewer " 8 's" as the desired frequency is approached.

If a calibrated receiver is available, it can be used to keep a continuous cherk on the frequency as the crystal is being ground. Pace a sheet of tinfoil or metal under the plate glass and connect it to the antema terminal of the receiver. Then as the crystal is being ground, it will produce a hiss in the receiver that praks close to the crystal frequenes. To be safe, however, it is advisable to limit the use of this method of chereking to within 20 ke . of the desired frequeney at 7 Ne. Then if it is found that the activity is not up to normal, the contour can be corrected without overshooting the desired frequenery

The crystal should be thoroughly cleaned of grinding compound and other matter before using the micrometer or checking in the test oscillator, of course. Fse somp, warm water and a tooth brush, and dry with a lintless cloth or tissue. Dandle the erystal by the edges only after cleaning.

Lowering Frequency

If a crystal has accidentally been ground down too far, or if it is desired to lower slightly the frequeney of any other crystal, this can often be done by loading the erystal. Londing, however, may reduce the erystal activity if it is carried too far. With a good active erystal, it should be possible to decrease the frequency as much as one per cent - 35 ke for a 3300 -ke, crystal. Cold soft solder rubbed into the erystal surface is suitable. The solder should be applied gradually while the frequency and activity are checked. Start off by marking a circle about $\frac{1}{4}$ inch in diameter at the center of the erystal and use this as a boundary for additional applications of the solder. The loading should be applied to both surfaces as equally as possible.

VARIABLE-FREQUENCY OSCILLATORS

The frequency of a VFO depends entirely on the values of inductance and capacitance in the circuit. Therefore, it is neressary to take careful steps to minimize changes in these values not under the control of the operator. . Is examples, even the minute changes of dimensions with temperature, particularly those of the coil, may result in a slow but motieable ehange in frequency called drift. The effective input capacitance of the oscillator tube, which must be rommerted across the circuit, changes with variations in electrode voltages. This, in turn, canses a change in the frequency of the wisillator. To make use of the power from the oweillator, a load, usatally in the form of an amplifies, must be coapled to the oscillator and variations in the load maty reflect on the frequeney. Very slight merhational movement of components may result in a shift in frequency, and vibration can cause undesirable modulation.

VFO Circuits

Fig. 6-4 shows the most conmonly used circuits. They are designed to minimize the effects mentioned above. . 111 are of the electron-coupled type discussed in connection with crystal oscillators.

The oscillating circuits in Figs. 6-4.1 and B are the Hartley type; those in (;and I) are Colpitts cireuits. There is little choice between the eircuits of A and C. ln both, all of the effects mentioned, except changes in inductance, are minimized be the use of a high-() tank cireuit obtained through the use of large tank capacitances. .huy uncontrolled changes in capacitance thus becone a very small percentage of the total circuit caparitance.

In the series-tuned Colpitts cirenit of Jig. 6-41) (sometimes called the Clapp (ircuit), a high-(l circuit is obtained in a different manner. The tube is taped across only a small portion of the oscillating tank circuit, resulting in very loose coupling between tube and circuit. The taps are provided by a serios of three condensers arross the coil. In addition, the tube capacitanees are shunted by large condensers, so the efferets of the tube - changes in electrode voltages and loading - are still further reduced. In contrast to the preceding eircuits, the resulting tank rircuit has a high L / C ratio and therefore the tank current is much lower than in the circuits using high-C tanks. Is a result, it will usuably be found that, other things being equal, drift will be less with the low-C circuit.

For best stability, the ratio of $C_{11}+C_{12}$ to ('ı3 or ('11 (which are usually equal) should be as high as possible without stopping aseillation. The permissible ratio will be higher the higher the () of the coil and the mutual conductance of the tube. If the cirenit does not oscillate over the desired range, a coil of higher Q must be used or the capacitance of C_{13} and C_{14} reduced.

Load Isolation

In spite of the precautions already discussed, the tuning of the output plate circuit will cause a noticeable change in frequency, particularly in the region around resonance. This effect can be reduced considerably by designing the oscillator for half the desired frequency and doubling frequency in the output cirenit, although there will be some sucrifice in output.

It is desirable, although not a strict necessity if detuning is recognized and taken into account, to approach as closely as possible the condition where the adjustmont of tuming controls in the transmitter, bevond the VFO frequency control, will have negligible effect on the frequency. This is done liy using a non-resonant circuit in the output of the oscillator, as shown in Fig. (0-4B.

This trpe of output circuit may, of course, be substituted in the other oscillators shown. Power output is considerably reduced by this method and it is usually necessary to follow the oscillator with two or three amplifiers using the same type of output circuit, as shown in Fig. (6-5, both to bring the power level up and to provide the desired isolation. This arrangemont gives fundamental output only. A voltage-regulated supply is recommended.

Chirp

In all of the cirruits shown there will be some change of frequency with changes in screcn and plate voltages, and the use of regulated voltages for both usually is necessary. One of the most serious results of voltage instability occurs if

(A) Hartley

(C) Colpitts

(B) Hartley-Non-resonant Output

(D) Series-Tuned Colpitts

Fig. 64-VFO circuits. Approximate values for 3.5 Me. are given below. For I. i - Mc.. all tank ecircuit values of caparitance and inductance, all toning capacitanees and C_{13} and $C_{i 4}$ should be doubled; for 7 Wr.. they should be cot in half.
(:1-Oncillator bandmpead tuning condenser - 150 $\mu \mu f(\mathrm{~d}$. variable.
 alile.
C_{3} - Oscillator tanh condenser - 500 - $\mu \mathrm{ff}$. zero.temp. mira.
C. 4 - Grid roupling condenser $-100-\mu \mu \mathrm{fd}$. zero-temp. mica.
C_{5} - Ileater by-pass - 0.001 - ffl . disk ceramic.
C_{6} - Screen by-pass - $0.001-\mu \mathrm{fd}$. disk ceramie.
C:- Plate by-pass - 0.001 - ff d, disk ceramic.
C_{8} - Output coupling condenser - 50 to $100-\mu \mu \mathrm{fd}$. mira.
C 9 - Oscillator tanh eondenser - 680 - $\mu \mu \mathrm{fd}$. zero-temp. mil'a.
C_{10} - ()scillator tank condenser - $0.0022-\mu \mathrm{fd}$. zero-
 temp. mica.
C.12 $_{12}$ Oscillator bandspread tuning rondenser - 25. $\mu_{\mu} \mathrm{fl}$. varialle.
$\mathrm{C}_{13}, \mathrm{C}_{44}-\mathrm{T}$ 'ube-couphing condenser - $\mathbf{0 . 0 0 1 - \mu \mathrm { fd } \text { , zero- }}$ temp. mica.
$\mathrm{R}_{1}-12,001$ ohms, $1 / 2$ watt.
l_{1} - Oscillator tank coil - $4.3 \mu \mathrm{~h}$. , tapped about onc-third-way from gronnded end.
I_{2} - Output-rircuit tanh coil-22 $\mu \mathrm{h}$.
L_{3} - Oscillator tanh eoil - $4.3 \mu \mathrm{~h}$.
IA - Oscillator tanh coil - 33 ~h. (B \& N JFI,-80). RFC_{1} - $2 . \overline{3}$-mh. . $\mathbf{0} 0$-ma. r.f. rhohe.
$V_{1}-6 A C-$ preferred; other wellosreened types usable. $\mathrm{V}_{2}-6 . \mathrm{IG}^{2}$ required.
the oscillator is keyed, as it often is for break-in operation. Although voltage regulation will supply a steady voltage from the power supply and therefore is still desirable, it camot alter the fact that the voltage on the tube must rise from zero when the key is spen, to full voltare when the key is closed, and must fall bark again to zero when the key is upened. The result is a chirp each time the key is opened or closed, unless the time constant in the keying cirenit is redued to the point where the ehirp takes place so rapidly that the receiving operator's aar camot detere it. Confortmately, as explained in the chapter on keying, a ertain minimum time constant is necessary if key dieks are to be minimized. Therefore it is evident that the meandures necossary for the reduction of charp and clicks are in opposition, and a compromise is neressary. For best keving characteristies, the ascillaten should be allowed to run continuously while a subsequent amplifier is keyed. However, a keyed amplifier represents a widely variable load and unless sufficient isolation is provided hetween the oscilhator and the keved amplifier, the keving charateristies may be little better than when the oscilhator itself is keyed.

Frequency Drift

Frequency drift is further reduced most easily by limiting the power input as murh as possible and by mounting the components of the tuned

Fig. 6-5 - Wiagram showing two isolating amplifier stages following a VP(O. Will-sorenod tubes, surh as the 6 SK : or similar types are recommended.
C_{1} - Coupling condenser - $100-\quad \mathrm{R}_{1}$ - Crid latak - $50.000 \mathrm{ohms}, 1 / 2$ $\mu \mu$ fit, mic:a,
$\mathrm{Ci}-\mathrm{By}^{-p i s i s}$ condenser - 0.001$\mu \mathrm{fd}$. disk ceramie.
C_{3} - Heater by-pass - 0.001- $\mu \mathrm{fd}$. disk ceramic.
watt.
\mathbf{R}_{2} - Cathode hiasing resiator - 200 (1) $\overline{3} 00$, ohms, 1 watt.

RPCi-2.a-mh, 50-ma, r.f. choke. rillating section.

Variable rondensers should have ceramic insulation, good bearing contacts and should preferably be of the double-bearing trape and fixed condensers should have zero temperature ereffiriont. The tube sooket also should have ceramic insulation and special attention should be paid to the selection of a tank coil in the os-

Oscillator Coils

The () of the tank coil used in the ospiltating portion of any of the eireuits under discussion should be as high as eifoumstances (usually spare promit, since the loses, and therefore the heating, will be loss. With reeommended eare in regard to other finetors mentioned previously, most of the drift will originate in the coil. The roil should be well spaced from shielding and other large motal surfaces, and be of a type that radiates heat woll, such as a commercial airwound type, or should be wound tightly on a thereded er ramid form so that the dimensions will not change readily with temperature. The wire with whirh the coil is wound should be as large as practicable, esperially in the high-C circuits.

Mechanical Vibration

Torliminate morhanial vibution, romponents should be monented securely, l'articularly in the (ireuit of Fig. (i-11), the condenser should prefemably have smatl, thick plates and the eoil baterd, if neeressary, to prevent the slightest mechanical movernent. Wire conneretions botwern tank-6ireuit (omponents should be as short as possible and flexible wire will have less temdenery to vibrate thatn solid wire. It is advisable to cushion the entire uscillator unit be mounting on songer rubber or other shook mounting.

Tuning Characteristic

If the circuit is millating. touching the grid of the tube or any part of the cirreuit connected to it will show a change in plate curvent. In tuning the phate output cirenit without load, the plate curvent will be relatively high until it is funed near resonamer where the plate emrent will dip to a
pircuit in a separate shielded compartment, so that they will be isolated from the direct heat from tubes and resistors. The shichding atso will eliminate changes in frequency caused by movement of nearby objects, such as the operator's hand when tuning the VFO. The rirenit of lig. $6-4 \mathrm{D}$ lends itself well to this arrangenment, simee relatively long leads between the tube and the tank circuit have nogligible effect on fredueney because of the large shunting caparitances. The grid, cathode and ground leads to the tube can be bunched in a cable up to several feet long.
low value, as illustrated in fig. fi-3. When the output circuit is loaded, the dip should still be found, but broader and much lase pronounced as indicated be the dashed line. The eireuit should not be loaded brevond the point where the dip is stifl reeognizabla.

Checking VFO Stability

A VFO should te cherked thoroughly before it is placed in regular operation on the air. Since succeding amplifier stages may affere the signal characteristies, fimal tests should be made with
the complete transmitter in operation. Almost any VF() will show signals of good quality and stability when it is running free and not conneredel to a load. A well-isolated monitor is a necessity, l'erhaps the most conveniont, as well as one of the most satisfactory, well-shielded monitoring arrangements is a rereiver eombined with a crystal oscillator, as shown in Fig. 6.6. (Fore "Crystal (bscillators," this chateter.) The erystal frequency should lie in the hand of the lowest frequency to be checked and in the fresquener range where its hamonies will fall in the higher-frectuency bands. The reereiver b.f.o. is turned off and the V FO signal is tumed to beat with the sigmat from the arsatal oseillator itastead. In this way any receriver instability caused by overloading of the input rituates which may result in "pulling" of the h.f. weillator in the reeceiver, or be a ehange in line voltage to the receiver when the tramsmitter is kevod, will mot affect the reliability of the cherk. Most presentday erystals have a sulfiefonty-low temperature corflicient to give a satisfinetory wheck on drift as well ans on chirp and signal quality if they are not overlosaded.
Itamonics of the rerstal may be used to beat with the transmitter signal when monitoring at the higher frequencies. sinee any chirp at the lower frequencies will be magnified at the higher frecturncies, acerate cherking ran best be done by monitoring at the latter.

The distance between the crystal oscillator and receiver should be adjusted to give a good beat between the crystal oscillator and the transmiter signal. When using harmonics of the crystal oscillator, it may be necossary to attach a piece of wire to the oscillator as an antenna to give sufficient signal in the receiver.

Checks may show that the stability is suffi-

 stould be tuned preferably to a harmonic of the VP'O frepuence. The aryatal owillator may onerate somewhere in the hand in which the Vli') is operating. The receriser lofor, should the turmed olf.
riently good to permit oscillator keving at the lower frequeneres, where break-in operation is of greater value, but that chirp beromes objeetionable at the higher frequencies. If further improve mont does not seem possible, it would be logical in this case to use oscillator keving at the lower frepuencios and amplifier koying at the higher frerpeneies.

R. F. Power Amplifiers

R.f. power amplifiers used in antateur tramsmitters usually are operated under (lass C monditions (sere chapter on vatelum-tube fundamentals). Fige. $6-\overline{-}$, shows a sereon-grid tube with the required tuned tank in its plate circuit. Equivalent cathode conneretions for a filamenttype tube are shown in Fig. (i-8. It is assumed that the tube is being property driven and that the various electrode voltages are apmopriate for Class (operation. The main objertive of course, is to deliver as much fundamental power as possible (on as de:ired) into al load, R, withont exerecting the tube ratings. The load resistance $/ i$ maty be in the form of a transmission line to an antenna, or the grid cireuit of another amplifier. A further oljective is to minimize the harmonie energy (alwass gemerated by a (Class C amplifier) fed into the load rireuit. In attaining these objertives, the Q of the tank eircuit is of importance.

- PLATE TANK Q

The () is determined (wee chapter on electriad laws amd (circuits) be the L / C ratio and the load resistance of the tube (not the resistance of the load circuit). The tuhe load resistance is related, in approximation, to the ratio of the d.e plate voltage to d.e. plate current at which the tube is operated. The amount of ${ }^{\prime}$ " that will give a ($)$ of 12 for varions ratios is shown in Fig. (6-! i A () of 12 is a value choson as an average that will satisfy most of the reguirements to be discussed. Certain
sperifie eonsiderations may make a higher or hwer value desimable. For a given plate-voltage/ phate-current ratio, the Q will vary direetly as the tank eapacitaner. twior the rapacitance doubles the Q etc.

Effect of Q on Tube Plate Efficiency

For good tube plate officiener, the voltage drop aremes the tank (which determines the instantancous phate voltage should approach a sine wave chatracteristic. However, the plate rement flowing through the tank is in the highlydistorted form of short pulses rontaining considerable harmonie energy. As explained in the chapter on elecolrical laws, a resonant circuit diseriminates arainst harmonic voltages acrose the cireuit aceording to the () of the circuit. If the () is sufficiently high, the wave shape of the voltage drop arross the tank (ircuit will be cesentially simusoidal. So fian as tube phate efficiency is coneorned, requirements will be met satisfactorily if the tank () is $\overline{5}$ or greater. However, ats the () is increased, the current rirculating in the tank eireuit beromes greator, increasing the tankcirruit loss. If the () is greater than about 20, the losses in the tank cirenit will offset any further improvement in phate efliciencr.

Harmonic Output Reduction

Strictly speaking, a high-() tank cireuit does not "attenuate" harmonics. 'The plate current pulses remain unchanged with (Q. However, it has
beron explained above that the harmonic voltege drop across the tank circuit (a pure sine wave has no harmonic content) decreases with an increase in Q and thorefore when the load cirevit is coupled across the tank circuit (rapabitively, as shown in Fig. 6-i B, the harmonie voltage arcoss the load will be redured as the (of the tank eireuit is increased.

When indurtive coupling is used, as in Fig. 6-7.A, harmonic reduetion in the load comes about for a different reason. At resonance, as explained in the chapter on electribal laws and cireuits, there is a build-up of fundamental current in the tank eireuit, and this courent beromes greater as the (Q is inereased. As the current through the tank coil increases, the same power in the load will be obtained with looser inductive (eoupling (a smaller coupling coeflicient). Since the harmonice current through the coil rentains fixed irrespective of Q, the amount of harmonic enorgy coupled out becomes less as the coupling is decreased.

As stated ahove, tank-rireuit loss increases with Q. so that the choice of Q must be a compromise depending upon whether efficiency or harmonic reduction is considered the more important.

Q vs. Coupling

Also, ase explained above, it is sen that the Q has an influence on coupling to a load when the roupling is inductive. The higher the Q, the larger the tank courent and the smaller the cocefficient of coupling to the load ran be for a given value of current in the load. Conversely, the lower the (Q, the greater the coefficient of coupting must be.

Fig. 6-7-Ontput coupling circuits, A-Indurtive link roupling. 13 - Capacitive coupling.
(il Plate tank condonare - see text and Fig. (o.t) for eaparitance, lig. 6-20) for voltage rating.
(i_{2} - Heator by-pass - 0.001- μ fd. disk reramic.
(:3 - Screen livpass - voltage rating depends on method of surron xupuly. seresertion on sureen considerations. Volage rating same as pate voltage will he safe under any condition,
C - Ilate liy-pass - $0,0161-\mu$ fll. disk ceramic or mica. Voltage rating same $a=$ Ci, plus safety factor.
Cis - Coupling rondenser - sce lig. 6.18.
l. - T'o resmate at operating frequency with Ci. See LC chart in miscel-laneons-data chapter and inductance formula in electrical-laws Chapter, or we AlRRI, Lightning Calculutor.
I. 2 - Reartance equal to line impedance. See reactance chart in miscellane-ous-data chapter and indurtance formula in electricallaws chapter, or use IMRI. Lightning Calculator.
IR - Representing load.

Q and Broadbanding

Amateur frequencies are in bands - not spot frequencies - and it becomes desirable to design the eircuits of the transmitter so that it may be

Fig. 6.8 - IF̈lament rentor-tap eonneretions to he substituted in place of rathoule conncetions shown in dias prams when filamentigue mbes are substituted. T_{1} is the filament transformer. (it should the $(1.00) 1-\mu \mathrm{fal}$. dish coramir condensers.
operated within a band with a minimum of retuning. It is therefore desirable to use the minimum () that will satisfy the previously disrussed requirements.

OUTPUT COUPLING SYSTEMS

Coupling to Flat Coaxial Lines

When the load R in Fig. 6-T.S is loeated for convenienere at some distance from the amplifier, or when maximum harmonic reduetion is desired, it is advisable to foed the power to the low through a low-impedance enaxial rathe. The shielded construction of the cable prevents: radiation and makes it pmesible to install the lime in any ronvenient manore without danger of unwanted coupling to other eircuits.

If the line is more than a small fraction of a wavelength long, the load resistance at its output end should be adjusted, by a matehing circuit if necessary, to mateh the charareteristic impedanee of the eable. This redures losses in the eable to a minimum and makes the coupling adjustments at the transmitter independent of the cables length. Matching circuits for use between the eable and another transmission line are diseussed in the chapter on transmission lines, whik the matching adjustments when the load is the grid circuit of a following amplifior are described clsewhere in this chaptor.

Assuming that the cable is properly terminated, proper loading of the amplifier will be assured. using the circuit of Fig. 6-10(. if

1) The plate tank circuit has reasonably high value of Q. A value of 10 or more is usually sufficient.
2) The inductance of the pickup or link coil is close to the optimum value for the frequency

Fïg, 6.9 - Chart showing plate tank rapacitanee required for a () of 12 . 'lon use the chart, divide the tube plate voltage by the plate eurrent in milliamperes. Seleat the vertiral line corresponding to the answer obtained. Follow this vertisal line to the diagonal line for the band in question, and thenere horizontally to the left to read the capacitame. For a given ratio of platevoltage/plate evrrent, dobliling the capacitance shown doubles the 0 etr. When a splitstator rondenser is used in a balanced eirenit, the caparitance of each section may be our half of the value given by the chart.
and type of line used. The optimum coil is one whose self-inductanm is such that its reactance at the operating frequencer is equal to the chararteristie impedanere, \boldsymbol{Z}_{0}, of the line.
3) It is possible to make the coupling between the tank and pick-up coils very tight.

The serond in this list is often hard to moert. Fow manufatured lank coils have adequate int durtance even for coupling to a $\mathbf{5 0}$-ohm lise at low frequencies.

If the line is operating with a low s.w.r., the

Capacitance in $\mu \mu \mathrm{td}$. Required for Coupling to Flat Coaxial Lines with Tuned Coupling Circuit Frequency Characteristic Impedance of Line

Band	52	7.5
$M c_{5}$	ohms 1	ohms ${ }^{1}$
1.8	900	600
3.5	450	3100
7	2.310	1.50
1.4	11.5	75
28	60	10

${ }^{1}$ (apmeitaner values are maximum usable.
Vote: luductance in cirritit must be aljusted to resonatt at operating frecturney.
system shown in Fig. 6-10C will require tight coupling betwern the two coils. Since the serondary (pick-up coil) circuit is not resonant, the leakage reactance of the pick-up coil will cause some detuning of the amplifier tank circuit. This detuning effect increases with increasing coupling, but is usually not sorious, However, the amplifier tuning must be adjusted to resonamee, as indicated by the platerourrent dip, each time the coupling is changed.

Tuned Coupling

The design diffienlties of using "untuned" pick-up coils, montioned above, can be avoided by using a coupling circuit tuned to the operating frequencer. This contributes additional seleretivity as well, and henee aids in the suppression of spurious radiations.

If the line is flat the input impedane will be essentially resistive and equal to the $Z Z_{0}$ of the line. With couxial cable, which hats a Z_{0} of 7 on ohmes or less, a cireuit of reasomathe (Q) (ean be ob tained with prawticable values of indurdane and cobaritence connereded in series with the line's input terminals.
suitable cireuits are given in ligg. (i-10 at A and 13. The values of indurtaner and "tubucitanere in the coupling circuits are not highly eritieal, but the L / C ratio must not be tow small. The (Q of the coupling circuit often may be ats low as 2, without rumning into difficulty in getting adecquate coupling to a tank circuit of proqued dexign. laarger values of () ean be used and will result in inerased rase of coupling, but as the () is inerensed the freguency range over which the eireuit will operate without readjustment beromes smallor. It is usually good practice, therefore, to usce atooplingcircuit Q just low enough to promit oprobtion, over as much of a band as is nommatly used for a particular type of communiration, without refuiring retuning.

Fig. 6.10 - With that transmision lines power transfer is obtained with lomer coupling if the line input is tuned to resonanes. (it and l_{A} shond remonate at the operating frequency, See table for maximum usable value of (it. If circuit does not resonate with maximum (if or less, induetance of L_{1} must be increased, or added in series at L_{2},

Capacitance values for a Q of 2 and line imperlances of 52 and 70 ohms are given in the accompanying table. These are the maximum values that should be used. The inductance in the circuit should be adjusted to give resoname at the operating frequence. If the link eoil used for a particular band does not have enough inductance to resonate, the additional inductance may be connerted in series as shown in Fig, 6-10C.

In practice, the amount of inductaner in the circuit should bre chosen so that, with somowhat loose roupling betwern L_{1} and the amplifier tank coil, the amplifior plate current will increase when the variable condenser, ('1, is tuned through the value of capacitance given by the tables. The coupling between the two coils should then be incroased until the amplifier loads normally, without chamging the sotting of ('1. Slight retuning of the plate tank condenser may be roquired. If the transmission line is Hat over the entire frequency band under consideration, it should not be necessary to readjust C_{1} when changing freguchery, if the values given in the table are used. However, it is unlikely that the line actually will be flat over such a range, so some readjustment of (a may be needed to compensate for changes in the input impedaner of the line as the frequener is changed. If the input impedance variations are not large, C O may $_{1}$ he used as a loading control, no changes in the coupling between L_{1} and the tank coil being neecessary.

The degree of coupling between L_{1} and the amplifier tank coil will depend on the couplingrircuit (Q) With a (of 2 , the coupling should be tight - comparable with the coupling that is typical of "fixed-link" mamatactured coils. With a swinging link it may be necessary to increasio the Q of the coupling cireuit in order to get sulficiont power transfer. This can be done hy increasing the $L /($ ' ratio.

Pi-Section Output Tank

A pi-sertion tank circuit may also be used in coupling to a low-imperdance trammission lime. as shown in Fig. 6-11. The output condenser, ('2,

Fig. 6-11- Pi-seetion output tanh circuit.
C_{1} - Input condenser - see text and lige, 6-4 for caparitance. For voltager rating sere fi, liz. 6- -
C_{2} - Ontput eondenser -- adjustaline to half reartancer of line impedance - nee text and reactance chart in chapter of miscellancous data. Xoltage rating-receiving spacing kood for 1 kw . at 50 or 7.5 ohms.
C.3 - Heater hy-pass - 0.001 - μ fil. disk ceramic.
C_{4} - Screen by-pase - see lig. $6,-\overline{-}$
C 5 - Plate by-pass - sere Fig. 6-\%.
C C_{6} - Plate blocking mondenedr- $0,001 \cdot \mu \mathrm{fl}$, disk ceramic or mica. Voltage rating same as C_{1}.
L_{1} - Inductance approx. same as L_{1}, Fig. 6.7.
should be adjustable to a roactance of about half of the characteristie impedance of the line. C_{1}, the input eondenser, and L_{1} should have values approximately the same as used in a conventional tank cireuit for :a Q of 12 (se Fig. (i-9)).

A decrease in the capacitance of Co, or the inductance of L_{1}, will increase the coupling and vice versa. Bach time L_{1} or C_{0} is changed, C_{1} must be readjusted for resonance.

R.F. AMPLIFIER-TUBE OPERATION

Driving Power, Efficiency, Dissipation and Power Input

Que of the most sirnifieant tule ratings is the maximum phate-dissipation rating. This is the power that (ain be salely dissip)ated in the tube as heat without damage to the tube. It is the differenee betwern rif. power output and the d.e. power input to the plate. For a given dissipation rating, the theoretieal power output from a tube depends on the affierency with which it can be made to operate. The P_{0} / \dot{P}_{3} curve of Fig, (6 -12 shows the theoretical power output obtainable at various cfliciomeides in terms of the plate dissipation rating. For instance, at an efficieney wif fo per eront, the rure shows that the output will be $1 . \overline{5}$ times the dissibation rating, whike at an efficiency of ! of per ent a penver of 9 times the dissipation ratimg might he obtamed. However, the P_{i} / P_{a} enser shows that the power input at ! 0 per cent would hater to be 10 times the dissipation mating. An input of this magnitude would exeed the power-imput rating (plate voltage X phate (eurernt) of the tube, which is hased on rathode emission and electrode insulation. Also. roforing to lig. 6-13, it is seen that the higher efficiencies are obtainable only by the wed of an inordinate amount of driving power. In other words, as the curve shows. the porer amplification docreases rapidly, The typieal operating conditions given in the tube tables represent a compromise of there factors. The labels under the curves of Fig. (6-12 show the usual practical efficioncios attainable for various classes of tube operation. For instance, at an efficiener of 75 per eont, a Class C amplifier could nomatly be operated at a power input of 4 times its plate dissipation. A doubler, however, normally onerating at about 35 per cent efliedonev, could hathe an input of only about 1.5 times its dissipation rating. The efficioneres shown for Class B amplifiers are for full excitation and full input.
The figures for driving power listed in the tube tables do not include coupling-cireuit losses and to assure adequate excitation, the driver tube should be eapable of an output power there or four times the rated driving power of the amplifier. For normal operation, proper exeitation is indicated when rated d.e. gride current is obtained at rated bias (ree tube tables).

Deperding on the material from which the plate is made, the plate will show no color, or varying degrees of reducss, when operating at rated dissipation. This can be checked by oper-

Fig. 6-12-Curves showing the rolationship of pewor output (P^{\prime}). prower imput (P_{i}). plate dis-ipation (P_{1}) and eflicion's aroording to clase of amplifier tube opreralion.
ating the tube without exritation, but with phate and sereen voltages applied, for a perioxd approximating normal operation. Fixed bias should be applied to bring the plate current to some low vatue at the start. The bias should be gradually redued until the input to the tube (p)ate voltage X plate current in decimal parts of an ampere equals the rated dissipation. The color of the plate at this input should be moted so that it can be compared with the color showing in nomal operation. A brighter color in operation would, of course , indicate that the dissipation rating is being cexeredod.

Maximum Grid Current

Maximum grid dissipation usually is expressed in ternus of the maximum grid current at which the tube should le operated to prevent damage to the tube. A common result of exerssive grid heating is a combition where the grid current gradually falls off. If the hias is supplied largely by grid-late atotion, the bias drops and the tube draws exerssive plate current. The total efferet is one in whidh the termperature of the tube rapidly rises to the danger point. Sometimes, but net always, the tube will restore itself to normal if all power, excopt filament, is turned off for several minutes. If the overload has been serious or prolonged, with a thoriated-filament tube, it may be possible ter reactivate the filament, as clescribed below, hut sometimes the tube will be permat nently damaged.

Filament Voltage

The filament voltage for the indireetly-heated (athode-tspe tubes found in low-power classifications may vary 10 per wont above or below rating without seriously reducing the life of the tube. But the voltage of the higher-power fila-ment-type tubes should be held closely between the rated voltage as a minimum and $\overline{5}$ per cent above rating as a maximum. Make sure that the plate power drawn from the power line does not catuse a drop in filament voltage below the proper value when plate power is applied.

Thoriated-tepe filament: lose emission when the tube is overtoaded apperiably. If the overload has not been too prolonged, emission sometimes may be restored by oprating the filamemt at rated voltage with all other voltages removed for at period of 10 minutes or at 20 per cent above rated voltage for a fow minutes.

Bias and Tube Protection

The portion of the excitation eycle over which the amplifier draws plate grid current (operating angle) is geverned bey applying a megative biasing voltage betweon grid and eathode. Recommended values will be found in the tube tables, several mothods of ohtaining bias are shown in Fig. 6-14. In A, bias is obtained by the voltage dropateross a resistor in the grid d.e. return eireuit when reetified grid current flows. The proper value of resistance may be determined by dividing the reguired biasing voltage by the d.e. grid courent at which the tube will he operated. The tube is bitsed only when excitation is applied, sinee the voltage drop across the resistor depends upon grid-current flow. When excitation is removed, the bias falls to zero. At zero bias most tuhes drall power far in excess of the plate-dissipation rating. So it is advisable to make provision for proterting the tube when excitation fails bey accident, or hey intent as it does when a preereding stage in a cow, trammitter is keved. This proteetion can be supplied by obtaining all bias from

Fig. 6-13- (iurve -howing relationship of drising power. power amplification and plateorerenit efliviency of an r.f. pewer-amplifier stage.
a sourer of fixed voltage, as shown in Fig. fi-1413. It is preferable, however, to use only sufficient fixed bias to protect the tube and ubtain the balance needed for operating bias from a grid leak, as indieated in C . The grid-leak resistance in this ease is calculated as ahove, exeept that the fixed voltage used is subtracted first.

Fixed bias may lne obtained from dry batteries or from a power pack (see power-supply fhapter). If dry hatteries are used, they should be checked periodically, sume even though they may show normal or above-nomal voltage, they eventually develop a high intermal resistance. (irid-current flow through this battery resistance may increase the bias considerably above that anticipated. The life of batteries in bias service will be approximately the same as though they were subject to a drain egual to the grid current, despite the faret that the gridecurrent flow is in such a direction as to charge the battery, rather than to discharge it.

If the maximum c.w. ratings shown in the tube tables are to be used, the input should be cut to zero when the key is open. Aside from this, it is not neeessary that plate current be cut off completely but only to the point where the rated dissipation is not exeerded. In this case platemodulated 'phone ratings should be used for e.w. operation.

In Fig. $6-1+\mathrm{F}$, biats is obtained from the voltage drop across a resistor in the cathode (or filament (enter-tap) lead. Protective bias is ob-
tained by the voltage drop across R_{5} as a result of plate (and sercen) current flow. Since plate current must flow to ohtain a voltage drop across the resistor, it is obvious that rut-off protective bias cannot be obtained by this system. When excitation is applied, plate (amblerem) rurrent increases and the grid current also eontributes to the drop acrose R_{5}, theredey increasing the bias to the operating value. Sines the voltage betwern plate and cathode is reduced by the amount of the voltage drop across l_{5}, the ower-all supply voltage must be the sum of the plate and oproat-ing-hias voltages. For this reason, the use of cathode bias usually is limited to low-voltage tubee when the extrat voltage is not difficult to obtain.

The resistance of the cathode hiasing resistor R_{5} should be adjusted to the value whinh will give the correct operating hias voltage with rated grid, plate and screen currents flowing with the amplifier loaded to rated input. When excitation is removed, the input to most tepes of tubes will fa! to a value that will prevent damage to the tuhe, at least for the period of time required to remove phate voltage.

A disadvantage of thin biasing system is that the wathode r.f. comnertion to ground depends upon a by-pass condenser. From the consideration of v.h.f. hamonies and stability with highperveraner tubes, it is preferable to make the rathode-tompround immedaner as elowe to zero as posible.

 tigr. (- Combination lathry and grid leak. I) Grid leak and adjusted-voltage lias pack. J: - Combination gridl leak amd voltage-regulated pack. F- Cathode hias.

Protecting Screen-Grid Tubes

Screen-grid tubes canmot be rut off with bias unless the serem is operated from a fixed-voltage supply. In this cease the cut-off bias is approximately the sereen voltage divided he the amplification factor of the serem. This figure is not ahays shown in tube-data sherets, hut cut-off voltage maty be determined from an inspection of tube eurves, or bex experiment.

When the soreen is supplied from a series dropping resistor, the tube can he protected by the use of a screch-champer tube, as shown in Fig. 6-15. The grid-leak bias of the amplifier tube with excitation is applied also to the grid of the clamper tube. This is usually sufficiont to cut off the elamper tube. However, when excitation is removed, the clamper-tube bias falls to zero and it draws conough current through the sereen dropping resistor usually to limit the input to the amplifier to a sate value. If complete servenvoltage cut-off is desirod, a VIR tube may be inserted in the sareen leatd as shown. The Viktube voltage rating should te high mough so that it will extinguish when excitation to the amplifior is removed. One VIR tube should be used for each 40 ma. of sereren current, other tubes being added in parallel if needed.

Screen Considerations

Sinee the power taken by the sereen does not contribute to the r.f. output, it is dissipated entirely in heating the sereen, so the dissipation can be calculated sinply bey multiplying the serem voltage by the soren eurent.

It should be kept in mind that seremen current varics widely with both excitation and loading. If the soreon is operated from a fixel-voltage souree, the tube should never be operated without phate voltage and load, otherwise the sereen may be damaged within a short time. Supplying the serecon through a sories dropping resistor from a highor-voltage source, wurh as the plate supply, affords a measure of protection, since the resistor causes the sereen voltage to drop as the curront increases, theroby limiting the power drawn be the sereon. However, with a resistor, the screen voltage may vary considerably with excitation, making it necessary to check the voltage at the sereen terminal under actual operating conditions to make sure that the sereen voltage is normal. Reducing excitation will cause the sereen eurrent to drop, increasing the voltage; increasing excitation will have the opposito efferet. These changes are in addition to those caused be changes in bias and plate loading. so if a screen-grid tube is operated from a series resistor or a voltage divider, its voltage should be checked as one of the final adjustments after excitation and loading have been set.

An approximate value of resistance for the screen-voltage dropping resistor may be obtained by dividing the voltage drop required from the supply voltage (difference between the supply voltage and rated screen voltage) by the rated serern rurrent in derimal parts of an ampere.

Fip. 6.15 - Screen rlamper circuit for proterting screengrid power tubes. The VR tube is needed only for complete cut-off.

Some further adjustment may be neressary, as mentioned above, so an arljustable resistor with a total resistance above that calculated should be provided.

FEEDING EXCITATION TO THE GRID

In coupling the grid input circuit of an amplifier to the output circuit of a driving stage the objective is to load the driver plate circuit so that the desired amplifier gride excitation is obtained without exereding the plate-input ratings of the driver tube.

As explained carlier, the grid of a Class C amplifier must be driven positive in respert to rathode over a portion of the exeitation cyrle, and rectified grid current flows in the griderathode rircuit. This reprosents an avorage resistance across which the exciting voltage must be doveloped he the driver statge. In other words, this is the load resistance into which the driver plate circuit must be coupled. The approximate grid input resistance is given ly:

$$
\begin{aligned}
& \text { Input impedunce (ohms) } \\
& =\frac{\text { driving pourer }(\text { watts })}{\text { d.c. } \text { arid current (ma.) }} \times 622 \times 10^{3} .
\end{aligned}
$$

For normal operation, the values of driving power and grid current may be taken from the tube tahles.

Since the grid input resistance is a matter of a few thousand ohms, an impedanee step-down is necossary if the grid is to be feed from a lowimpedanee tramsmission line. This can be done by the use of a tank as an impedance-transforming device in the grid cireuit of the amplifier as shown in Fig. 6-16, This coupling system may be considered either as simply a means of obtaining mutual induetane between the two tank eoils, or as a low-impedance transmission line. If the line is longer than a smatl fration of a wavelength, and if a s.w.r. bridge is available, the line is more easily handed by adjusting it as a matehed transmission line.

Inductive Link Coupling with Flat Line

In adjusting this type of line, the object is to make the s.w.r. on the line as low as possible over as wide a band of frequencies as possible so that power can be transferred over this range without retuning. It is assumed that the output coupling considerations discussed earlier have bern observed in connection with the driver plate circuit. So far as the amplifier grid circuit is concerned, the controlling factors are the Q of the tuned grid circuit, $L_{2} \mathrm{C}_{2}$, (see Fig. 6-17) the inductance of the coupling coil, L_{4}, and the degree of coupling between L_{2} and L_{4}. Variable coupling between the coils is convenient, but not strietly necessary if one or both of the other factors can be varied. An s.w.r. indicator (shown as "SWIR" in the drawing) is essential. An indicator such as the "Micromatch" (a eommercially available instrument) may be connected as shown and the adjustments made under actual operating conditions; that is, with full power applied to the amplifier grid.

Assuming that the coupling is adjustable, start with a trial position of L_{i} with respect to L_{2}, and adjust ('2 for the lowest s.w.r. Then change the coupling slightly and repeat. Continue until the s.w.r. is as low as possible; if the circuit constants are in the right region it should not be difficult to get the s.w.r. down to 1 to 1 . The Q of the tuned grid circuit should be designed to be at least 10, and if it is not possible to get a very low s.w.r. with such a grid circuit the probable reason is that L_{4} is too small. Maximum coupling, for a given degree of physieal coupling between the two coils, will occur when the inductance of L_{4} is such that its reactance at the operating frequency is equal to the characteristic impedance of the link line. The reactance ean be calculated as described in the chapter on electrieal fundamentals if the induetance is

Fig. 6-16 - Coupling excitation to the xrid of an r.f. power amplificr by means of a low-impedance coaxial line
$\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{I}_{1,}, \mathrm{~L}_{3}$ - tiee corresponding components in Fi . 6-7.
C_{2} - Amplifier grid tank condenser - see text and lig. 6-17 for capacitance. Fix. 6-30 for voltage rating.
$\mathrm{C}_{4}-0.001-\mu \mathrm{fd}$. disk ceramic.
$\mathbf{1}_{12}$ - To resonate at operating frequency with C. C_{2}. Sce LC ehart in miscellane-ous-data chapter and inductance formula in electrical-laws chapter, or use AKRL Lightning Calculator.
\mathbf{L}_{4} - Reartance equal to line impedance - see reactance chart in miscel-laneons-data chapter and inductance formula in electrical-laws chapter, or use ABRL Lightning Calculator.
R is used to simulate grid impedance of the amplifier when a low-power s.w.r. indirator, such as a resistance bridge, is used. See formula in text for calculating value. Standing-waye indigator SH K is inserted in line only while line is made flat.

Fig. 6.17-Chart showing required grid tank capacitance for a O of 12. 'To use, divide the driving power in watts by the square of the d.e. grid eurrent in milliamperces and proceed as deseribed under Fip, 6-9. Driving power and prid current may be taken from the tube tables. When a splitstator condenser is used in a bal. anced zrid eircuit, the caparitance of each section may le half that shown ly the chart.
known; the inductance can cither be calculated from the formula in the same chapter or measured as deseribed in the chapter on measurements.
Once the s.w.r. has been brought down to 1 to 1, the frecuency should be shifted over the band so that the variation in s.w.r. can be observed, without changing C_{1} or the coupling between L_{2} and L_{4}. If the s.w.r. rises rapidly on either side of the original freguener the circuit can be made "flatter" by reducing the () of the tuned grid circuit. This may he done by decreasing (2 and correspondingly increasing L_{2} to maintain resonance, and by tightening the coupling hotwern L_{2} and L_{4}, going through the same adjustment process again. It is possible to set up the srestem so that the s.w.r. will not exceed 1.5 to 1 over, for example, the entire 7-Mc. band and proportionately on other bands. Ender these circumstances a single setting will serve for work anywhere in the band, with cissentially constant power transfer from the line to the power-amplifier grids.

If the eoupling between L_{2} and L_{4} is not adjustable the
same result may be sereured by varying the L / C ratio of the tuned grid eireuit - that is, by varying its Q. If any difficulty is encountered it can be overcome be changing the number of turns in L_{4} until a match is secured. The two coils should be tightly coupled.

When a resistanco-bridge type s.w.r. indicator (ser measuring-equipment chapter) is used it is not possible to put the full power through the line when making adjustments. In such case the operating conditions in the amplifier grid circuit ran be simulated by using a carbon resistor ($1 / 2$ or 1 watt size) of the same value as the calculated amplifior grid impedance, connected as indicated by the arrows in Fig. 6-16. In this case the amplifier tube must be operated "cold" - without filament or heater power. The adjustment process is the same as described above, but with the driver power reduced to a value suitable for operating the sw.w. bridge.

When the grid coupling system has beon adjusted so that the s.w.r. is close to 1 to 1 over the desired frequency range, it is certain that the power put into the link line will be delivered to the grid circuit. Coupling will be facilitated if the line is tuned as described under the earlier section on output coupling systems.

Link Feed with Unmatched Line

When the system is to be treated without regard to transmission-line effects, the link line must not offer apprectiatbe reactance at the operating frequency. Vnless the constants happern to tunc the link near resonance, any apprectiable reactance, inductive or capacitive, will in effect reduce the coupling, making it impossible to transfor sufficient power from the driver to the amplifier grid rircuit. Coaxial cables esperially: have considerable capacitance for even short lengths and for this reason it may be more desirable to use a spaced line, such as 'Twin-Lead, if the radiation can be tolerated.
The reactaner of the line can be nullified only by making the link resonant. This may require changing the number of turns in the link coils, the length of the line, or the insertion of a tuning capacitance. The disadvantages of such a resonant link are obvious. Since the s.w.r. on the link line may be quite high, the line losses incraase because of the greater current, the voltage increase mat be sufficient to catuse a break-down in the insulation of the cable and the added tuned eireuit makes adjustment more eritical with relatively small changes in frequener.
These troubles may not be encountered if the link line is kept very short for the highest frequency. A length of n feet or more maty be tolerable at 3.5 Me., but a length of a foot at 28 Mr. may be enough to cause serious effects on the functioning of the system.

Adjusting the coupling in such a sustem depends so much on the dimensions of the link line ured that it must neecesarily be largely a matter of cut and tre: If the line is short enough so as to have negligible reactance, the eoupling between the two tank eircuits will increase within
limits ly adding turns to the link coils, maintaining as close as possible equal inductances in each coil, or by coupling the link coils more tightly, if possible, to the tank coils. If it is impossible to change either of these, a variable condenser of $300 \mu \mu \mathrm{fd}$. may be connected in series with or in parallel with the link coil at the driver end of the line, depending upon which connection is the most effective. If coaxial line is used, the condenser should be connected in sories with the inner conductor. If the line is long enough to have appreciable reatance, the variable condenser is used to resonate the entire link circuit. As mentioned previously, the size of the link coils and the length of the line, as well as the size of the condenser, will affect the resonant frequency and it may take an adjustment of all three before the condenser will show a pronounced effect on the coupling. When the system has been made resonant, coupling may be adjusted by varying the link condenser.

Simple Capacitive Interstage Coupling

The capacitive system of Fig. 6-18A is the simplest of all coupling systems. (Sere Fig. ($\mathfrak{j}-8$ for filament-type tubes.) In this circuit, the plate tank circuit of the driver, $C_{1} L_{1}$, serves also as the grid tank of the amplifier. Although, it is used more frequently than any other system, it is less flexible and hats certain limitations that must be taken into consideration.

The two stages cannot be separated physically any appreciable distance without involving loss in transferred power, radiation from the coupling lead and the danger of feed-back from this lead. Since both the output capacitance of the driver tube and the input capacitance of the amplifier are across the single circuit, it is sometimes diffirult to obtain a tank circuit with a sufficiently low Q to provide an efficient circuit at the higher frequencies. The coupling can be varied by altering the capacitance of the coupling condenser, C_{2}, but no impedance transforming is possible. The driver load impedance is the sum of the amplifier grid resistance and the reactance of the coupling condenser in series, the coupling condenser serving simply as a series reactor. Driver load resistance increases with a decrease in the caparitance of the coupling condenser.

When the amplifier grid impedance is lower than the optimum load resistance for the driver, a transforming action is possible be tapping the grid down on the tank coil, but this is not recommended because it invariably causes an increase in v.h.f. harmonics and sometimes sets up a parasitic circuit.

So far as coupling is concerned, the Q of the circuit is of little significance. However, the other considerations discussed earlier in connection with tank-cireuit Q should be observed.

Pi-Section Tank as Interstage Coupler

A pi-section tank circuit, as shown in Fig. $6-1813$, may be used as a coupling device between sereen-grid amplifier stages. The circuit is actually a capacitive coupling arrangement with the
grid of the amplifier tapped down on the circuit by means of a capacitive divider. In contrast to the tapped-coil method mentioned previonsly, this sustem will be very effective in redueing v.h.f. harmonies, because the output condenser, C_{8}, provides a direct capacitive shunt for harmonies acros the amplifier grid cireuit.

To be most effective in reducing v.h.f. harmonies, C_{5} should be a mica condenser eonnected directly across the tube-socket terminals. Tapping down on the circuit in this manner also helps to stabilize the amplifier at the operating frequence becatse of the grid-circuit loading provided be ("s. For the purposes both of stability and harmonic reduction, experience has shown that a value of $100 \mu \mu \mathrm{fd}$. for C_{8} usually is

Fig. 6-18 - Caparitive-roupled amplifiers. A - Simple capacitive coupling. B - l'i-seetion coupling.
C_{1} - Driwer plate tank wondenser - see text and lize. 6.7 for capacitanes, Fig. ($0-29$ for voltage rating.
C_{2} - Coupling condenser - 50 to $150 \mu \mu$ fil. mica. as necessary for desired coupling. Soltage rating sum of driver plate and amplifier biasing voltages, phas safety fartor.
C_{3} - Driver plate ly-pass condenser-0.001- $\mu \mathrm{fl}$. disk ceramic or mica. Voltage rating same as plate voltage, plus safety factor.
C_{4} - Grid Ly-pass - $0.001-\mu \mathrm{fd}$. disk eeramic.
C_{5} - Heater by-pass - $0,001-\mu \mathrm{fl}$. disk ceramic.
C_{6} - Driver plata hlocking condenser - $0.0101 \mathrm{j}-\mu \mathrm{fl}$. disk ceramic or mica. Voltage rating same ats C_{2}.
C_{7} - I'i-section input condenser - see text and fig. 6-9 for eapacitance. Voltage rating same as C_{1}.
$\mathrm{C}_{8}-\mathrm{P}_{\mathrm{i} \text {-scetion }}$ output condenser - 100 - $\mu \mathrm{ff}$. mica. Voltage rating same as driver plate voltage plus safety factor.
L_{1} - To resonate at operating frequenry with C_{1}, see I.C chart in miscellanerous-data chapter and inductance formula in ele-tricalian's chapter, or use ARRL. Lightning Calculator.
$\mathrm{L}_{2}-\mathrm{Pi}$-section inductance - see text. Approximately same as I_{1}.
RFC_{1} - Grid r.f. ehohe - $2 . \mathrm{i}-\mathrm{mh}$. Current rating minimum of grid-earrent to he expected.
RFC_{2} - Driver plate r.f. choke - 2.5 m . Current rating minimum of plate current expected.

Fig. 6.19 - Cireuit of sensitive neutralizing indicator. Nhil is a IX3t erystal detertor, M.1 a 0-1 direct-qurrent milliammeter amd C a 1 . (0) $-\mu \mathrm{fd}$, mira by pasm condernare.
sufficiont. In general, r_{7} and L_{2} should have values approximating the capacitance and inductance used in a conventional tank rireuit. A reduction in the inductance of L_{2} results: in an increase in eoupling because C_{7} must be incrased to retune the circuit to resonance. This changes the ratio of $(' a$ to C_{8} and has the effect of moving the grid tap up on the eireuit. Since the coupling to the grid is comparatively hoose under. any condition, it may be found that it is impossible to utilize the full power capability of the driver stage. If sufficient excitation cannot be obtained, it may be neressary to raise the plate voltage of the driver, if this is permissible. Otherwise a larger driver tube may be required. As shown in Fig. 6-18B, paralled driver plate foed and amplifier grid ferd are necessary.

STABILIZING AMPLIFIERS

External Coupling

A straight amplifier operates with its input and output circuits tumed to tho same frequency. Therefore, unless the coupling betwen these two circuits is brought to the necessary minimum, the amplifier will oscillate as a tuned-phate tuned-grid circuit. Care should be used in arranging components and wiring of the two circuits so that there will be negligible opportunity for coupling external to the tube itself. Complete shielding betwern imput and output circuits usually is required. All r.f. leads should be kept as short as possible and particular attention should be paid to the r.f. return paths from plate and grid tank circuits to cathode. In general, the best arrangement is one in which the cathode (or filament center tap) connertion to ground, and the plate tank cireuit are on the same side of the chassis or other shiedding. Then the "hot" lead from the grid tank (or driver plate tank) should be brought to the socket through a hole in tho shiolding. Then when the grid tank condenser, or by-pass is gromuded, a return path through the hole to cathode will be encouraged, sinee transmission-line characteristios are simulated.

A check on external coupling between
input and output circuits can be made with a sensitive indicating device, such as the one diatgrammed in lig. 6-19. The amplifier tube is removed from its socket and if the plate terminal is at the socket, it should be diseonnected. With the driver stage ruming and tuned to resonanee, the indicator should be coupled to the output tank eoil and the output tank condenser tuned for any indication of r.f. feed-through. Experiment with shidding and rearangement of parts will show whether the isolation eatn be improved.

Neutralizing Circuits

The plate-gride eaparitance of sereen-grid tubus is reduced to a fraction of a micro-microfarad by the interposed gromaded sereen. Nevertheless, the power sensitivity of these tubes is so great that only a very small amount of feod-back is noreresary to stat oscilhation. To assure a stable amplifier, it is usually neressatry to load the grid cireuit, or to use a neutralizing eirenit. A noutralizing cirenit is one extomal to the tube that halances the voltage ferl bate through the grid-phate eapacitatuen, hy another voltage of opposite phates.

Fig, li-20) shows how a sereen-grid amplifier may be neutralized by the use of an inductive link line coupling the input and output tank cireuits in proper phase. The two coils must be properly polatized. If the instial comenetion proves to be incorrect, comertions to one of the link coils should be reversed. Neutralizing is adjusted be changing the distaner lad ween the link coils and the tank coils, one eoree polarization has been determined. A wrong comnertion will ratuse the amplifier to oscillate still more strongly. In the case of caparitive coupling. one of the link conils will be coupled to the plate tank roil of the driver stage.

A rapacitive neutralizing system for screvengrid tubes is shown in Fig. (i-2013. ('2 is the neutralizing condemser. The capacitane should be chosenso that at some adjust ment of $\left(\begin{array}{l}\text { '2, the }\end{array}\right.$ ratio of ('2 to ('1 equals the ratio of the tube grid-phate caparitance to the grid-cathode capacitance. If (1) is $0.001 \mu \mathrm{ft}$, then

$$
C_{2}=\frac{1000 C_{\mathrm{kpl}}}{C_{\mathrm{gl}}}
$$

The grid-cathode capacitanee must include all strays directly aros the tube capacitance, influding the capacitance of the tuning-eondenser stator to ground. This may amount to 5 to 20 $\mu \mu \mathrm{fd}$. In the cate of capacitane eoopling, as shown in Fig. 6 -200, the output capacitance of the driver tube must be added to the gridcatherde capacitance of the amplifior in arriving at the value of co. If ('2. works out to an impractically hargeorsmall value, Cu can be changed to compensate by using combinations of fixed mica condensers in parallel.

Neutralizing Adjustment

The procedure in neutralizing is essentially the same for all topes of tubes and eircuits. The filament of the amplifier tube should be
lighted and excitation from the precoding stage fed to the grid circuit. There should be no plate voltage applied to the amplifier.

The immediate objective of the neutralizing process is reducing to a minimum the r.f. driver voltage fed from the input of the amplifier to its output circuit through the grid-plate capacitance of the tube. This is done by adjusting carefully, hit by bit, the neutralizing condenser or link coils until an r.f. indicator in the output rireuit reads minimum.

The devier shown in Fig. (j -19) makes a sensitive neutralizing indieator. The link should be coupled to the output tank coil at the low-potential or

(A)

(B)

Fig, 6-20-Scren-krid neutralizing rircuits. A-InFig. $6-20-$ Scren-prid neutralizing eircuits. A-In-
ductive-link neutralizing. B - Capacitive neutralizing. durtive-link neutralizing. is - Capacitive netralizer. $0.001-\mu \mathrm{ff}$. Ci-Crid by-pas rondenser - approx. 0.001- μ for R, same as driver plate voltage in (..
C_{2} - Nentralizing condenser - approx. 2 to 10 pufd. - ste tost. Voltage rating same as amplifier phate voltage for $\mathrm{c} . \mathrm{w}$, I wice this value for plate modulation.
Is, I 2 - Noutralizing link - usually a turn or two will be sufficient.
"ground" point. Care should be taken to make sure that the coupling is loose cnough at all times to prevent burning ont the meter or the rectifier. The plate tank condenser should be readjusted for maximum reading after each ehange in ncutralizing.

A neon bulb touched to the "hot" and of the tank coil will glow if cnough fced-through voltage is developed across the tank, but it is a less-smsitive deviere. Another disadvantage is that its uso introdures caparitance arosss one side of the cireuit which maty unbalance the circuit, thes giving an inarcurate indication.

A more satisfactory indicator than the neon buth is a flasthlight buth (the lower the power the more sensitive) eommeded at the center of a turn or two of wire coupled to the tank coil at the low-potential point. Its sensitivity is poor compared with the milliammeter-rectifier.

The grid-current milliammeter may also be used as a neutralizing indicator. If the amplifier is not moutralized, there will be a large dip in grid current as the plate-tank tuning passes through resonancre. This dip in grid current reduces as medralization is approatched until at exact neutralization all change in grid current should disappear.

When meut ralizing an amplifior of medium or high power, it may not be possible to bring the reating of the rectifier indieator down to zero, but a minimum point in the adjustment of the neutralizing control should be formed where higher readings atfe whtained on either side. The plate tank cireuit should be kept tuned for maximum reating at all times.

Grid Loading

The use of a neutralizing cireuit may often be avoided by loading the grid cireuit if the driving stage hat some power eapability to spare. Loading hy tapping the grid down on the grid tank eoril (or the plate tank coil of the driver in the (ase of eaparitive coupling), or by a resistor from grid to eathode is effective in stabilizing an

Fig. 6.21-A - I'sual parasitic circuit. B - Resistive loading of parasitic circnit. C - Inductive coupling of loading resistance into parasitic circuit.
amplifier, but either deviee will increase v.h.f. harmonies. The best loading system is the use of a pi-section filter, as shown in Fig. 6-1813. This circuit places a capacitance directly hetween grid and cathode. This not only provides the desirable loading, but also a very effective capacitive short for v.h.f. harmonics. i $100-\mu \mu \mathrm{fl}$. mira condenser for C_{y}, wired diredly between tube terminals will provide sufficient loading for most sereengrid tubes.

V.H.F. Parasitic Oscillation

Unkess steps are taken to prevent it, parasitio oscillation in the v.h.f range will take plate in ahmost overy r.f. power amplifer. The hoave lines of lig. (6-21.1 show the usual parasitic tank rifeuit, which resonates. in most cases, tret weren 150 and 200 Mc. If a small coil, L_{1}, is added, as shown in 13, it becomas a portion of the parasitio circuit. 'This portion of the parasitie circuit can then be loaded to suppress the v.h.f. oscillation. From the consideration of TVI, the coil shouhd not be so large that it tumes this cireuit lowere than 100 Mc ., proferably 120 Mr . A coil of 4 or 5 turns, $1 / 4$ inch in diametor, is a good starting size. With the tank condenser turned to maximum capacitanes, the cirenit should tre checked with a g.d.o. to make sum the resoname is above 100 Me. Then, with the shortest possibhe leads, a honindurtive 100)-ohm 1 -watt resistor should bo comerted aress the contire coil. The amplifere should be tuned up to its highest-frequener hand and operated at low voltage. The tap should be moved a little at at time to find the minimum number of turns required to stupuress the parasitic. Then voltage should be inereased until the resistor begins to ferl warm after soweral minutes of operation, and the powor input noted. This input should be compared with the normal input and the pewer rating of the resistor increased hy this proportion: i.e., if the power is half normai, the wattare rating shoubd be doubled. This increase is lust made be connerting 1 -watt carbom resistors in parallel to give ar resultant of about 100 ohms. As power imput is increased, the parasitic may start up again, so powor should be applied only momentarily until it is mate eretain that the parasitic is still suppressod. If the parasitie starts up again when voltage is raised, the tap must be moved to inelude more turns. So long as the parasitic is suppressed, the resistors will hat up only from the operatingfrequency current.

Sinee the resistor can be plared across only that portion of the parasitic circuit represented $\mathrm{h}_{\mathrm{y}} L_{\mathrm{p}}$, the latter should form as large a portion of the cireuit as possible. Therefore, the tank and bypass condensers should have the lowest possible inductance and the leads shown in heave lines should be as short as possible and of the heaviest practical condurtor. 'This will permit L_{p} to be of maximum size without tming the circuit below the $100-\mathrm{Mc}$. limit.

Another arrangement that has been used successfully is shown in Fig. (i-21C. A small turn or two is inserted in place of L_{p} and this is cou-
pled to a cirenit tuned to the parasitie frequeney and loaded with resistance. The heave-line circuit should first beechecked withag.d.o. Then the louded rireuit should be tuned to the same freguency and coupled in to the point where the parasitic reases. The two eroils can be wound on the same form and the compling varied hy sliding one of them. sight retuning of the loweded rircuit may be required after coupling. Nitart out with low power as before, until the parasitie is suppressed. Nince the loaded circuit in this case carries much less operating-frequeney varrent, a single 100-ohm 1-watt resistor will often be sufficient and a $30-\mu \mu \mathrm{fd}$. mica trimmor should serve as the tuning condenser, (${ }^{\prime} \mathrm{p}$.

Low-Frequency Parasitic Oscillation

The screening of most transmitting sereon-grid tubes is sufficiont to prevent low-fregurney parasitic oscillation caused by resonant circuits set up by r.f. chokes in grid and plate circuits. Should this type of oscillation (usually between 1200 and 200 kc .) ocrur, sece seetion under triode amplifiers.

- PARALLEL-TUBE AMPLIFIERS

The circuits for paralleltube amplifiers are the same as for a single tube, similar terminals of the tubes lring comnertend togother. The grid impodance of two tubes in parallel is half that of a single tube. This means that twiee the grid tank capacitance shown in lig. 6-16 should be used for the same Q. The plate loud resistante is halved so that the plate tank rondenser caparitance for a single tube (Fig. (i-9) also should be doubled. The total grid eurrent will be doubled, so to maintain the same grid bias, the grid-leak resist-

(B)

Fig. 6-22 - Push-pull screen-grid amplifier circuits.
A - Inductive-link coupling. B - Capracitive compling.
C. - Split-stator prid tank condenser - see text and fiig. 6-17 for eapactanee, Fiz. (6.30) for voltage rating.
C_{2} - Split-stator plate tank condenser - see text and Figs, 6.9 for capacitance, Fig. 6-29) for voltage rating.
C_{3} - Grid hy-pass condenser - 0.001 - ffd . disk ceramic.
$\mathrm{C}_{4}, \mathrm{C}_{5}$ - lilament by pats - 0,001 - ff d. disk ceramic.
C: C_{7} - Screen by pats - 0.0 (0)- $\mu \mathrm{fl}$. dish ceramic or mica. Voltage rating depends on masimum voltage to which sercen may soar, drpending on how it is supplied. Soltage rating equal to plate voltake will ler safe in any case.
(: - Plate by-pass - $0.001-\mu \mathrm{fl}$. dish ceramie or mica. Voltage rating same as plate voltage for e.w.; twiee this value for plate modulation, plus safety factor.
(a) - I)river plate tank condenser - see section on simple caparitive ronpling with single tubns. For same O, eadh sertion should have half the eapacitance shown in Fif. (6-9. Veltage rating of each section should be twied dic, plate voltage of driver.
Cio, Cin-Coupling condenser - 50 - to $150-\mu \mu \mathrm{fl}$. mica. Vollage rating twiec driver plate voltage.
$\mathrm{C}_{12}-0.001-\mu \mathrm{fl}$. disk ceramic or mica. Voltage rating same as plate vollage plas salety factor.
C_{13}-See text.
$1_{1}, L_{2}$ - Too resomate at operating frequency. See $L C$ chart in miscellaneous-data chapter and inductance formula in electrical-laws chapter, or use AKhI, Lightning Calcthator.
$\mathrm{I}_{3}, \mathrm{I}_{4}$ - Compling linhs - reactance equal to fred-line impedancs. See reactance Chart in mixellaneonsodata chapter and inductance formala in clectrical-
laws chapter.
L.4, I, 5 - Neutralizing linhs - usually aturn or two will be suflicient.
$\mathrm{RHC}_{1}-2.5-\mathrm{mh}$. r.f. choke, to carry grid current.
$12 \mathrm{FC}_{2}-2.5-\mathrm{mh}$. r.f. choke to earry plate current.
ance should be half that used for a single tube. The required driving power is doubled. The capacitance of a neutralizing condenser, if used, should be doubled and the value of the sereen dropping resistor should be cut in half. In treating parasitic oscillation, it may be necessary to use individual chokes in each plate and grid lead. rather than one in the eommon leads. Input and output capacitanees are doubled, which may be a factor in efficient operation at higher frequancies.

PUSH-PULL AMPLIFIERS

Circuits for push-pull amplifiers are shown in Fig. (i-22. With this arrangement both gridinput impedance and optimum plate load resistance are doubled. For the same Q, each secfion of the split-stator tank condensers: should have half the capacitaner for a single tube drawing the same total phate current and having the same grid impedance shown by Figs, 6-9 and 6-1/. This means that the total tank-circuit capacitance is one-quarter that for a single tube and that the inductances of the tank coils must be quadrupled to resonate at the same freduener. Other values remain the sume, except that the total grid, sereen and plate currents will be twice the values for a single tube and the stage will require twice the driving power.

In Fig. 6-22.A, incluctive link coupling is shown. The neutralizing cirecuit is shown in heaty lines and may not be necessary. Fig. (i-2213 shows eapacitive coupling to the grids. The driver in this case must be provided with a balaneed output circuit. To maintain balanced excitation, it may be necessary to placer (' ${ }_{13}$, shown in dashed

lines, across the lower portion of the circuit to balance the driver-tube output capacitanereneross the upper half. The remainder of cireuit 13 is the same as A. If a neutralizing link is needed, it should be coupled at the center of the driver plate tank coil.

It is advisable to use soparate screen and heater by-pass condensers, esperially when T'I
is a factor. Fig, 6-23 shows equivalent "cathode" connections to be substituted when filament-trpe tubes are used. Also, individual v.h.f. parasitic chokes will be necessary.

Balance in Push-Pull Amplifiers

Proper push-pull operation requires an accurate balance between the two sides of the circuit. Otherwise the dissipation will not be distributed evenly between the two tubes, one being overloaded if an attempt is made to operate the amplifier at full rating. Unbalance is inclicated when the grid and/or plate currents are not equal and, if serious, is accompanied by a visible difference in the color of the tube plates. If interchanging the tubes does not change the unbalance, the eireuit is not symmetrical electrically.

If the eoil center-tap in split-stator tank circuits is sufficiently well-isolated from ground, the balance will depend upon the accuracy of capacitance balance in the tank condensers, the length of leads connecting the tubes to the condenser (including the return lead from rot or to filament) and the settings of the neutratizing condensers. Unbalance in the plate circuit will seldom influence the balanee in the grid cireuit, but the opposite may not be true. Lengthening one or the other of the leads between the tubes and the tank condenser will alter the balance, particalarly in the plate circuit. In extremes it may be necessary to plate a trimmer across one section of the split-stator condenser. Small differences often may be taken care of bey a readjustment of the neutralizing condensers, possibly to slightly unequal settings. ()therwise, the neutralizing condensers are adjusted together, kerping the capacitances as equal as possible at eath step.

(FREQUENCY MULTIPLIERS

Single-Tube Multiplier

Output at a multiple of the frequency at which it is being driven may be obtained from an amplifier stane if the output eircuit is tuned to a harmonic of the exciting frequeney instead of to the fundamental. Thus, when the frequency at the grid is 3.5 Me., output at 7 Mc., 10.5 Me., 14 Me, ete., may be obtained by tuning the plate tank circuit to one of these frequencies. The circuit otherwise remains the same as that for a straight amplifior, although some of the values and operating conditions may require change for maximum multiplier efficiency.

Efficiency in a single- or parallel-tube multiplier comparable with the efficioncy obtainable when operating the same tube as a straight amplifir involves decreasing the operating angle in proportion to the increase in the order of frequency multiplication. Obtaining output comparable with that possible from the same tube as a straight amplifier involves greatly increasing the plate voltage. A practical limit as to efficiency and output within normal tube
ratings is reached when the multiplier is operated at maximum permissible plate voltage and maximum pormissible grid current. The plate current should be redued as necessary to limit the dissipation to the rated value by increasing the bias. High efficiency in multipliers is not often reguired in practice, since the purpose is usually served if the frequeney multiplication is obtained without an appreciable gatin in power in the stage.

Multiplications of four or five sometimes are used to reach the bands above 28 Me. from a lower-frequency erystal, but in the majority of lowor-frequency transmitters, multiplication in a single stuge is limited to a factor of two or three, beeanse of the rapid deeline in practicably obtainable efficieney as the multiplieation factor is increased. Soreon-grid tubes make the best frequency multipliers berause their high power-sensitivity makes them basier to drive properly than triodes.

Since the input and output direuits are not tuned close to the same frectuence, neutralizattion usually will not be reguired. Instances may be encountered with tubes of high transconductance, however, when a doublor will oscillate in t.g.t.p. fashom, requiring the int roduction of neutralization. The link neutralizing system of Fig. (i-20) is convenient in such a contingenery.

Push-Pull Multiplier

A single- or parallel-tube multiplier will doliver output at either even or odd multiples of the exeiting frequenery, A push-pull multiplior does not work satisfabtorily at even multiples because even harmonics are largely canceled in the output. ()n the other hand, amplifiers of this type work well as triphers or at ot her odd harmonies. The operating recuirements are similat to those for single-tube multipliers.

Push-Push Multipliers

A two-tube cireuit which worles well at even harmonies, but not at the fundamental or odd harmonies, is shown in fig. 6 -24. It is known as the push-push cireuit. The grids are connected in push-pull while the plates are conneeted in parallep. The effierience of a doubler using this circuit may approach that of a straight amplifier under similar operating conditions, beeatuse there is a plate-eurrent pulse for each cycle of the output frequenes.

This arrangement has an advantage in some applications. If the heater of one of the tubes is turned off, making the tube inoperative. its grid-plate caparitance, being the same as that of the remaining tube, sorves to nomtralize the circuit. Thus provision is made for either straight amplification at the fundamental with a single tube, or doubling frequency with two tubes as desired.

The grid tank cirenit is tuned to the frequenery of the driving stage and should have the same constants as the grid tank eireuit of a push-pull

Fig. 6.24- Cirrouit of a push-mon-h frequency multiplier for even harmonis.
$\mathrm{C}_{1} \mathrm{~L}_{4}$ and $\mathrm{C}_{2} \mathrm{~L} \cdot 2$ - Sec text.
 Woltake rating cagual to plate voltage plus safety factor.
RFC-2.5-mh. r.f. choke.
amplifier (ser Fig. 6-22). The plate tank circuit is tuned to an even multiple of the exciting freguency, usually the second harmonic, and should have the same values as a straight amplifier for the harmonic frequency (ser Fig. 6-9), bearing in mind that the total plate eurrent of both tubes determines the C to be used.

- TRIODE AMPLIFIERS

C'ireuits for triode amplifiors are shown in Fig. 6-25. . Neglecting reforences to the sereen, all of the foregoing information applios equally well to triodes. .ll triode si raight amplifiers must be netitralizerl, as Fig. (i-25) indicates. From the tube tables, it will be seren that triocles recquire considerably more driving power than sorengrid tubes. However, they also have less power sensitivity, so that greater ferd-back can be tolerated without the danger of instability.

Low-Frequency Parasitic Oscillation

When r.f. chokes are used in both grid and plate circuits of a triode amplifier, the splitstator tank condensers combine with the r.f. chokes to form a low-frequency parasitic cireuit, unless the amplifier eireuit is arranged to prevent it. In the circuit of Fig. $6-2 \mathrm{~s}$ 3, the amplifier grid is series fed and the driver plate is parallel-fed. For low frequencios, the r.f. choke in the driver plate circuit is shorted to ground through the tank coil. In Figes. 6-25(and I), a resistor is sub)stituted for the grid r.f. choke. This resistance should be at least 100 ohms. If any grid-leak resistance is used for biasing, it should be substituted for the 100 -ohm resistor.

- TUNING A TRANSMITTER

Fig. 6-26 shows where milliammeters and voltmeters may be connected to obtain desired readings. Metering of all stages is usually not necessary except for initial adjustments. Aftor preceding stages have been adjusted for proper operating conditions, a transmitter can often be tuned up using only grid- and plate-eurrent milliammeters in the final-amplifier circuit.

While eathode metering often is used for rea-
sons of safoly to the operator and moter insulations, it is freguently difficult to intorpret readings that are the resultant of three eurrents, one of which may he falling white the other two are increasing, Fig. fi-27 shows a commonly-used system for swith hing at single moter to read current in any of several different cireuts. The resistors, R, are commeted in the varions circonits in place of the milliammoters shown in Fig. (6-26. Since the resistance of R is several times the internal resistance of the milliammeter, it will have no practieal effer upon the reading of the meter itself.

When the meter must read currents of widely differing values, a meter with a range suffiedently low to accommodate the lowest values of eurrent to be measured may be selected. In the circuits in which the current will be above the salate of the meter, the resistance of R can be adjusted to a lower value which will give the meter reading a multiplying fartor. (See chapter on measurements.) (are should be taken to ohsorve proper polarity in making the conneretions betwern the rexistors and the switeh.
The first step in adjusting eath stage is to check for parasitic oncillation as disenssod carlier. The second step is to adjust neutralizing if neutralization is requirod.

While it is usuatly possible to make all initial
funing adjustments of low-power stages with phate voltage applied, it is preferable to disconneet the plate voltage until adjustments of excitation have been made. Starting with the oscillator, its output tank circuit should be resonated as indicated by a dip in the plate-current reading (see Fig. (i-3), or by a maximum reading of grid (urrent to the following stage if it is coupled capacitively. Both readings should occur simultancously. It this point, the frequency of the oscillator output should be rhecked with an ahsorption wavemeter to make sure that it is tuned to the desired band. If transmission-line coupling js used, the coupling to the grid of the amplifier should first be adjusted for minimum standing-wave ratio as described earlier. After this adjustmont, the coupling at the oscilator end of the line only should be altered. If the amplifior gride current is much atoverated value, the compling to the owcillator should he redured. (omversely, if the amplifier grid current is low, coupling should be increased. . Is the coupling is inereased, the oscillator should draw mone plate courent and the di_{p} at resonanere should berome less pronounced, as indicated in Fig. (b-3. If it is possible to increase the coupling to the point where the oseillator plate current is up to the rated value and yet the required grid current is not up to rated value, the biasing voltage should

 (: Link compling. bushopull, U) - Giparitive coupling, purh-pull. Aside frum the neutralizing circuits, which are mandatory with trintes, the circuita are the same as for screen-grid tubes, and shouh have the same values threnghout. The neutralizing emonderse, C, should have a capacitance somewhat preater than the grid-phate capacitance of the tuhe. Dellage rating should be wice the ll. . pate voltage fer c.w., or four times for plate modulation, plus safety fartor. "The rewistance R_{1} should he at leasi loo ohms and it may consist of part or preferably all of the grid leak. For other emmpoumt values, see similar armen-grid diagrams.

Fig, 6-26- Diagrams showing placement of voltmeter and mil. liammater to obtain desired measuremento. 1 -Sories arid fred, paralled plate ford and serien sereen whagedropping resitar. paralled ghate red and serien erreen whagedroppong resiator.
siderations. If the excitation is adjustod first without plate and seroen voltages it mas be found that the grid current will change when these voltages are applied and the stage is loaded. It is normal for grid current to drop somewhat when these voltages are applied and still further when the load is coupled, esperiatly with triodes. When this occurs, excitation should the increased, to bring the gride eurent batek torated value.

If it is found that gride current increases when the plate tank eireuit is tuned slightly to the high-frecuseney side of resonance, this indieates megeneration. 'This may be of little conseguence in exviter stages solong as oscillation does not result under any normal tuning condition. But in the final amplifier, esperially if it is to be modulated, it is a condition to be avoided be better shielding or more are urate neutralization.
The main objective in the end, of conrse, is to obtain adeguate exemation to the final amplifier and, in gencral, any adjustment of carlior stages that will produce this result withont overloading answhere along the line will be satisfantory. In conservative desigh, tha full power capability of the cxeiter stanes may not be noeded. In the interasts of v.h.f. harmonic reduction, it is desirable to provide an cxatation control so that the cexcitation to the final amplifier ean tre limited to that wecesSary for satisfactors operation. 'This ran be in the form of a potentiometer control of the sereen voltage of the first
be measured with a high-resistance (20,000 ohms por volt) voltmoter. If the stage has a simple hassing resistor from grid to ground, connert a $2.5-m h 1$. f. choke in series with the voltmeter prod going to the grid. The bias should be measured with the stage operating under excitation. If the hiasing voltage measures too high, atny fixed bias should be reduced and then, if noeressary, the grid-leak resistance. If the driyer is operating up to rated plate curront and mated grid current camot be obtained with the required bias, the indication is that the sereen and/or phate voltage of the oscillator must be ratised if this can be done with safety to the osecillator tube. However, it should be borne in mind that evon if an intermediate stage is underdriven, it still may furnish the required driving power for the following stage, Therefore, it is, of course, advisable to cheek this hefore making any drastic changes in the oscillator.
'The satme process is followed in tuning up following amplifier stages, step) bey step. If thewe is any difficulty in obtaining the desired excitation to any partieular stage, he sure that the sereen voltage of the driver stage is up to normal as discussed earlier in the section on screen-grid con-

Fip. 6-2 - Method of witrhing a single milliammeter. 'line resistore R, should be 10 to 20 times the internal resistanere of the mettr: 4^{-}ohmes will usablly be atioface fory, x_{1} is a \underline{l}-setion rotary switeh, lis insulation should lee everamic for high voltages, and an insulating coupling shonld always be used between shaft and control hitob.
stage after the oscillator. Then reduction in screen voltage of this stage will reduce expitation all along the line, which is desirable.

MEASURING POWER OUTPUT

The power output of any transmitter stage can be cherked with reasonable areurater by simply (ompling ath ordinary lamp to the output tank cireuit athe comparing its brillianere with that of amother lamp of the same size operating from ace Since it is difficult to judge power aceurately when the lamp is over or under normal brilliance, the tamperserted should have at wattargeratimg as rlose as pessibla to that axperted from the amplifier. Flashlight hults atan be used for low power. At frequelmens above 7 Me . suffirient coupling usually is ohtained by comberting

(F)

Fig. 6.29- Diagrams showing the peak voltage for which the phate tank condentior should lio. rated for c.w. operation with arions circuit arrangements. E : is equal to the d.e. plate voltage. The values should be dembled for phate modulation. The sircuit is assumed to be fully loaded, Circuits 1 , (: and E: require that the tank condenser lee insulated from chasisis or ground, and from the control.
breakdown, the peak r.f, voltage across a tank circuit under load, but without modulation, may be taken conservatively as equal to the d.e. plate woltage. If the d.e. plate voltage also appears ateross the tank condenser, this must be added to the peak r.f. voltage, making the total peak voltage twice the d.e. phate voltare. If the amplifier is to be plate-modulated, this last value must be doubled to make it four times the d.e. plate voltater, because both d.e. and r.f. volatges double with loo-per-eent plate modulation. At the higher plate voltages, it is desirable to choose a tank circuit in whioh the d.e and modulation voltages do not apprear aroses the tank condenser, to permit the use of a smaller condenser with less plate spacing. lig. 6-29 shows the peak voltage, in terms of d.e. plate voltare, to be expeded across the tank condenser in various circuit arrangements. These peak-voltage values are given assuming that the amplifier is loaded to rated plate current. Without load, the peak ref. voltage will rum much higher. Since a cew. transmitter may be operated without load whild adjust ments are being made, although a modulated amplifier never should be operated without load, it is sometimes eonsidered logical to select a condenser for a c,w transmitter with a peak-voltage rating equal to that required for a phone transmitter of the same power. However, if minimum cost and space are eonsiderations, a condenser with half the spacing required for 'phone operation can be used in a e.w. transmitter for the same carrier
output, as indicated under Fig. 6-29, if power is reduced temporarily white tuning up without load.

In the circuits of Fig. $6-29 \mathrm{C}, \mathrm{D}$ and F , the rotors are deliberately comnected to the positive side of the high-voltage supply, eliminating any difference in d.c. potential betwern the rotors and stators.

The plate spacing to be used for a givern peak voltage will depend upon the design of the variable condenser, influeneing factors being the mechanical construction of the unit, the dieleetric used and its placement in respeet to intense fields, and the condenser-plate shape and degree of polish. Condenser manufacturers usually rate thoir products in torms of the pak voltage between plates.

Plate tank condensers should be mounted as dose to the tube as temperature considerations will permit to make possible the shortest caparitive path from plate to cathote. Besperially at the higher frequencies where minimum cirenit eapacitance becomes important, the eondenser should be mounted with its stator plates well spaced from the chassis or other shielding. In areuits where the rotor must be insulated from ground, the rondenser should be mounted on cramic insulators of size commensurate with the plate voltage involved and - most important of all, from the viewpoint of safety to the operator -a well-insulated coupling should be used brotwen the comdenser shaft and the dial. The wertion of the shaft attuched to the dial shomld be well grounterl. This can be done converiently through the use of panel shaft-bearing units.

Grid Tank Condensers

In the circuit of Fig. 6-30, the grid tank condenser should have a voltage rating approximately cqual to the biasing voltage plus 20 per cont of the plate voltage. In the balaned circuit of 13 , the voltage rating of each sertion of the condenser should be this same value.

The grid tank condenser is preferably mountod with shielding between it and the tube socket for isolation purposes. It should, however, be mounted close to the socket so that a short lead can be passed through a hole to the socket terminal. The rotor ground lead or by-pass lead should be run directly to the nearest point on the chassis or other shielding. In the circuit of Fig. 6-30.1, the same insulating precatutions mentioned in connection with the plate tank condenser should be used.

Plate Tank Coils

The inductance of a manufacturerl coil usually is hased upon the highest plate-voltage/ plate-current ratio likely to be used at the maximum power level for which the coil is designed. Therefore in the majority of cases, the raparitance shown by Figs. 6-9 and 6-17 will be greater that that for which the roil is designed and turns must be removed if a Q of 12 or more is needed. At 28 Mc., and sometimes 14 Mc., the value of capacitance shown by the chart for a
high plate-voltage/plate-current ratio may be lower than that attainable in practice with the components available. The design of manufartured eoils usually takes this into consideration also and it may be found that values af rapacitance greater than those shown (if stray capacitance is ineluded) are required to tume these coils to the band.

Manufactured coils are rated aceording to the phatepower input to the tube or tubes when the stage is loaded. Since the circulating tank current is muth greater when the amplifier is unloaded, care should be taken to operate the amplifier conservatively when unloaded to prevent damage to the coil as a result of exerssive heating.

Tank eoils should be mounted at least their diamoter away from shiekding to prevent a marked loss in (d. Nxeept perhaps at 28 Me., it is not important that the coil be mounted quite elese to the tank condenser. Leads up to 6 or 8 inches are permissible. It is nore important to keep the tank condenser as well as other components out of the immediate field of the coil. For this reason, it is preferable to mount the coil so that its axis is paratlel to the condenser shaft, either alongside the condenser or above it.

Plate-Blocking and By-Pass Condensers

llate-blocking condensers should have low inductance: therefore eondensers of the micat type are profered. For trequencies bet were 3.0 and 30 Mre.. a raparitance of $0.001 \mu \mathrm{fd}$. is eommonly used. The voltage rating should be 2: to $\overline{50}$ per cent above the plater-supply voltage.

Wherever their voltage rating will permit (500 volts), $0.001-\mu \mathrm{fd}$. disk ceramic condensers should be used as by-passes, since, when applied correctly (ser TVI chapter), they are series resonant in the TV range and therefore are an important moasure in filtering power-supply leads. For higher voltages, uso 0.001- $\mathrm{\mu fo}$. mica br-passes.

R.F. Chokes

'Ther r.f. choke in parallel plate feed must have high impedance at the operating frequeney to avoid loss. In multihand transmitters, if it is found that the choke heats axeresively on one or more bands, the only solution is to use a different choke for these bands.

Fig. $6-30$ - The voltage rating of the grid tank condenser in A should be equal to the biasing voltage plus about 20 per cont of the plate voltaze. This same rating should be applied to each section of the split-stator condenser in 13 .

A One-Tube Transmitter for the Beginner

Figs. 6-31 through 6-40 show the details of a simple and inexpensive low-power 80 -meter transmitter with power supply. It is designod particularly for the Novier or bergimer. The entire construetion of both mats can be cetred out with a minimum of skill and tomes, since no holes merd he drillod. It has an intut rating of ahout 10 watts and (an be operated using almost any

[nder the diagram of the tramemitter in leig. 6-35 are the values of parts used in the cireuit. In addition, an ortal tulx sooket (Amphemol type
 (Millen typn $331(0)$), a hair of small contmol knols, six 1^{1} z-inch metal angles or brackets (shown in loig. fi-ise and obtaitable in most hatdware or dime stores), a lenget of smatle-tiametere cambrie tuhing known at radio stores as "spatghetti" and a few solddring lugs, machine surness and nuts will be needed. A small piece of wosed is used for the hase. Aso reguired is a fibor hug strip measuring $1^{\text {l/ }}$ inches between mounting holes. some tyen have three terminals. If there are four, one cetr be ignowed.

The assombly is started hy making a pair of brackets for monnting the erystal, as shown in the foreground of ligg, ti-32. Ther are made of pireres of Co. 14 antenna wire 23 inches total lemeth, with a loop bent at eath end to pass the mounting serews. Whan eomplete, the eenters of the bops should be about 1 B indersatpart. The tube sorket is mounted at the cond holdes of one pair of the angle pieces with ${ }^{3}$ 3-inch No. 6-32 machine serews. The sorket is turned wo that its No. I prones is to the left. Nliperd onto each mounting serew in order ate the angle pieree, the tube sorket, : soldering lug perinting downward, the wire hracket for the erystal socket, a soldering lug peointing upward and finally the mut. The tope ende of the wire hrackets are inent over at right angles and twisted aroumd as meressary to mateh the momiting holes in the erystal socket. The erystal socket
is fastened to the loops with $1 / 2$-inch No. 4 machine serews and nuts.
The terminal lug strip is mounted temporarily with serews through the holes in the angle pieces: below the socket. A soldering lug is placed under

Fïf. 6.32 - First steps in assembly, showing the manner in which the angle pieces are fastened to the haselward. Nuch of the wiring ean be done before fastening to the haseloward as deseribed in the text. The pair of looped wires in the foregronnd show how the erystalswhet supports are made.
the head of the screw to the right as viewed from the rear of the socket.

Before proceeding with the assembly, it will be easier to do as much of the wiring as possible. Comparing Figs. 6-35 and 6-36 as you go along will help you to understand schematic diagrams. All connections shown by a "ground" symbol indicate connections to the metal framework. It should be possible to make most of the conneretions to the tube and crystal sockets as well as

Fis. 6.31 - The completerl Niwive transmitter with tule and rrvetal in place. The strips of wood at front and bath are safety harriers. Co is to the left. Cis to the right.

Fig. 6.34-Ruar view mowing the montming of the terminal strip. From left tor richt, the terminals are for key, heatar and poritive high voltage. 'The loy to the extreme laft is for monnections on the other side of heater. the other side of the kry and negative high voltane.

to the terminal strip at this stage. Where necessary, a lead with more than sufficient length can be attached and left hatheng free until hater assombly makes it prosible to attach the other ent. Wiring is most casily dome with bare No. 22 wire, althomen insulated wire can be used if the mods are seraped for eonnertioms. Whenever there is danger of wires touching each other or other motal patts, a picee of spaghetti should be slipped over the wire before the sereond mad is solderest.

The dial lamp is mounted in the following manner. A piece of hare wire is wound around the shell of the bulb in two or three of the threaded grooves. The wire should be heary enough to

Fig. 6.3.3-The Novice transmitter just before mounting the variable enndensers and coil. 111 wiring is completc except for connecting one side of C_{7}.
support the bult. One end of the wire is eut off elose to the shell, while a leanl of about an inch is belt at the wher cond so that it can be soblered to the outer teminal of RFC'.2 when the hatter is moment. One lead wire of h_{4} is cut to a lengeth of about an inch and covered with spagheti, This (ond is soblered to the sodder tip) at the esenter of the beve of the buth, taking care not to spread the solder aromed so that the tip is shorted to the shall.

The two angle pieeres shown toward the frome in Fig. 1-3-32 are addenl and the assembly is fastemed in the renter of the baseboarel with short wood screws in such a position that the tips of the lugs on the terminal strips are even with the rear edge of the hase. One of the two remaining zugle piees is attached to eateh of the variable condensers, C_{8} and ("s, with a shom (i-32) serow at the threaded front mometing hole in the base of the condenser, so that the shaft of the condenser will be pointing towad the front wher the angle piere is fastened ta the hase. Be sure that the serews are not so long that therego through and short against the stator plates of the eondensers. Attach a soldering lug to cach angle piece at the hole below the eondenser. The rear mounting holes in the beses of the condensers are matehed up, with the holes in the angle pieves already momented on the hase. Then the last two angle pieres ane finstened to the baselmard. The combenser to the left is C's and the one to the right C_{y}. The free cud of C_{3} is eomeneded to ("8 at the nearest rear stator assombly nut, placing a soblering lug under the nut if nocessary:

Now the sorew holding whe and of the terminal strip should be remosed and one of the ref. chokes attached at the same hole. Proveed with the wiring and then monut the other choker. The end of C4 marked "Positive" shouhd go to the outer end of $R P^{\prime} C_{1}$.

The coil is mounted between the two top front variable-condenser stator suphorts. Fïst remove the speceified number of turas from each cud of the eoil, being carcful not to bratk the plastie

Fig. 6-35 - Circuit diagram of the Novice metuber. $\mathrm{C}_{1}-47-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{2}-220-\mu \mu \mathrm{fd}$, mica.
$\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{10}, \mathrm{C}_{11}-\mathrm{O}, \mathbf{0} 01$ - ff d dish ceramic. $\mathrm{C}_{4}-10-\mu \mathrm{fd}$. 50 -volt miniature electrolytic. $\mathrm{C}_{8}-0.01$ - ffd . disk ceramie.
Cis, C9-150-upfd, variable (Nationat si-1.00).
$\mathrm{R}_{1}-15,(01)$ ohms, 謟 watt.
R_{2} - 22,000 ohms, 1 watt.
$\mathrm{R}_{3}-1 . \bar{j},(000)$ ohms, 10 watts.
h_{4} - 100 ohms, $1 / 2$ watt.
I. $-4.5 \mu \mathrm{~h} .-70$ turni No. 21 , 1 -inch diameter, $21 / 4$ inches long (13 \& W 3016 with 13 turns removed from cach end).
$\mathrm{F}_{1}-2.5$-volt 60 -ma, dial lamp, wrew base.
RFC_{1}, RFC_{2} - 2.j-mh, r.f. choke (National R100) or Millen 31(02).
Xtal - Crystal betwecn 3700 and 37.50 ke .
supporting strips. Now bend a piee of fairly heaver wire around the conds of one of the supporting strips. Solder the ends of the coil winding to these pieces of heavy wire, being careful to kerp the phastic strip in shape if it softens. Place a soldering lug under cath of the top front stator nuts of the variable condonsers. By bernding the lugs and the ends of the terminal wires in the right way, the ends of the platice strip will west on the ceramic stator insulators whore ther can be fixed with Duen eement. The ends of the three remaining supporting strips can be cut off dose to the winding. The rear upper stator terminal of

Fig. 6.36 - Picture diagram of the wiring of the Nov. ice transmit ter.
C_{9}, the condenser to the right, is the antenna torminal. A piece of flexible hook-up wire about two foet long should be soldered to cach of the lugs on the terminal strip and two lengths of similar wire to the grounding lug at the and of the torminal strip,

A small strip of wood $11 / 4$ inches high and the length of the baseboard should be nailed along the rear edge of the base, This and a similar strip $31 / 4$ inches long at the front between the two variable condensers sorve as harriers to prevent acoidental contact with points where there might he danger of shock where high voltage is exposed.

Power Supply

Figs. 6 --37 through 6 - 40 show the construction of a simple power supply for the tranmitter. In addition to the parts listed under Fig. 6-38, you will need another tube socket and four terminal

Transmitter and Power Supply Measurements

Power Supply

Output voltage at minimum load, key opern - 11.5
Cutput voltage at full transmitter luad - 3 mis

Transmitter

Antenna disconnected, key open - lamp-drain only - 27 ma.

Antenna disconnected, thened to resonance, kes clowd - total current 40 ma.

- plate and screen currents 13 ma.
- blate current 6 ma.

Antenna connected, foaded to maximum, tuned to resonance - total current ti3 ma.

- plate and scremeurrents 40 ma.
- plate current 32 m m.
- screen current 8 ma.
- screen voltage 180
- pate watts input 11.4
strip)s similar to those used in the transmitter, a Trpe is SBGT reetifier tube, a piece of ace. lamp cord with plag, four 1 -inch hardwarr-store angle. pieces and a few strips of $1-b$ or-2 wood (artual dimensions about $3 / 4 \times 15 / 8$ inchers).
('ut two pieces of the wood 12 inchers long. Laty the two pieeres side ber side with their wide faces down. Measure the total width of the two piecess and add $1 \frac{1}{8}$ inches. This measurement is neecessary becaluse the exact width of the wood maty vary slightly. ('ut two more pieces to the length caleulated. This will be approximately $43 / 8$ inches. Soparating the two 12 -inch pieces bex exactur $11 / 8$ inches, natil one of the short crospieres on edge under eath rond. Lise $11 / 2$-inch finishing nails, Then, turning the base upside down, fasten a 1 inch angle pioce under eath end of each long piece.

Condernoath, aeross the strips, near each end, fasten the input and output lug terminal strips. The switch is a regular wall switch, mounted with wood serews, and commonly seen in hardware and dime stores. Space the switeh, the power transformer, the rectifior-tube socket and the filter choke evenly along the top side of the hase.

Fig. 6.37 - A simple power supply for th. Xovice tranamitter. From left to rigint, the filter ehoke, Lit, the rectitier, ther power transformer and the switeh are spared along the wood framework baser.

C'enter the units across the wool strips and fasten them down with wood serews.

Fuder the power transiomern and botween the two groupsof wires coming from the bot tom of the transtomer, fasten two more lag terminal strips ators the base. These should be plated about 2 inches apart, or about a half inch more than the lenget of the filter condensers. Fiasten the two filter condensers between the two outside pairs of torminals on the strips, as shown in Fig. (i-39, The ends of the condensers marked "Negative" shond g^{\prime} (woward the switch end of the unit.

The wiring may be followed by reforing to Figs. (b-3S and 6-39, In comereting the wires from the (ransmitter to the power supply, correspondingly mumbered terminals should be cabled togother. The frame side of the kev connects also to terminal 4 , while torminal 1 on the transmitter emnocts to the other side of the key. After the wires have been conneeted, they ean be bound together in a cable with pieces of seoteh tape.

Testing

Plug the power plug into a wall outhe. 'Turn the power switch on. . Make it a habit neser to touch any part of the transmitter or power supply, exrept the insuluted controls, witil the pouser suitch has been furned off. Mthough both transmitter and power supply" are designed so that the dangerous parts are not readily arcessible, covery caution shoud always be pratiend in hadding electrical equipment of tan kind. When the power switeh is turmed on, the filament of the reretifier tube should light up immediately. After a minute or two, turn the two tuning condensers so that their
rotor plates are fully meshed with the stators (maximum eapacitance). With the key pressed, the indicator lamp, should light up to approximately nomal brilliance. Now start turning the input condenser ('s to the left slowly while you watch the lamp. When the plates are half out or more, the lamp should dim motieceblys. It should berome bright aseain ats wou continue to turn the output eombenser in the same direetion. The center of the peint where the lamp is dimmest is called resonamere.

Antenna

A full-size antenna for 80 moters is a wire that measures about 12.5 fere from the transmitter to the far end. As much of this lemgth as possible shontd be run horizontally as high above the ground as possible. Where space is restricted, shorter lengths down to so or fio fere should work well. The transmitter will ferd power into: wire as short as is fere but, naturally, the transmitting range will be restrieted with an antenna as short as this.

Often there will be a tree or gatage to the rear of the house that cou be used as a support for the far end of the antemat. The wire can be run from such a support to an anchorage as high as possible on the house and thence through a window to the transmitter.

No. 14 enameled wire is suggested for the antema, although almost any wire that will support its own weight may be used. The wire must be insulated from supports at all peints. lou can Use glass or poreclain antemna insalators at the far end and at the print where it is attached to the house. Keep the lead-in part of the wire elear

Fis. 6.38-Circuit diagram of the power supply for the Novice transmitter.
C_{1}, ($: 2-8 \cdot \mu \mathrm{fl}$, 500 -wolt midget electrolytic.
Ih - 0.1 megohm, 2 watts,
L_{1} - 8.h, $4(1$-ma, filter choke (Ihordarson 120(52).
$\mathrm{S}_{1}-115$-volt a.c. wall switeh.
' I_{1} - l'ower transformer: $350-0-350$ r.m.s., 70 ma.: 5 v., $\frac{9}{2}$ amp.: 6.3 v., 2.5 amp. (Thordarson TS-21R02).

Fig. 6-40-Bottom view of the power supply, showing the mounting of the filter condensers, turminal strips, Heeder resistor and tha' wiring.
of the building or other objects. In bringing the wire in through the window, it can be passed in over the top of the upper sash, or under the lower sash. When the windew is closed, the leadin will be held in place. Slip a length of spaghetti over the wire where it contacts the window frame. Make the wire on the inside just long enough to reach to the tramsmitter output terminal. This: terminal is the top rear stator nut of the output eondenser, ("g. Axide from this commection, keep the antema wire away from the transmitter and power supply. It is advisable to run the wire vertically away from the transmitter for at least a foot or two.
If an outside wime is impossible, sou can run a wire through two or three rooms, near the eviling, or even atrond three sides of the molding in the operating room.

Adjustment

With the anteman connected, set the two condensers at maximum as before, Showly rotate the input condenser (C 's) to the point where the lamp, is at its dimmost point. With the antemat connected, the lamp probably will not dim as much ats it does without the antenna. Now reduce the calacitance of the output condenser (r_{9}) until the lamp begins to brighten. Then readjust the input eondenser to the dimmest point. Go back and reduce the output comdenser a bit more until wou can notier the light brighten a little. Then again readjust the imput condenser to the dimmest point. As sou repeat this process, you will motiee that the lamp grows brighter at its dimmest point. 'This indieates that the antenna is taking power. The proper adjustment is one where the dimming of the lamp is just noticeable
as the input condensor is tumol. Sot the input condenser as exactly as possible at this point.

In general, the Jonger the antema wire, the less eritieal the eondenser adjustment beoomes. This applies particularly to the output condenser. For any wire longer than 40 or 00 feret, the output condenser usuahly will be set near minimum. With short wires, the setting of the sutput condenser esperially will be quite critieal and very slight adjustments will make eonsiderable difference in how bright the lamp gets at resonance.

Second-Harmonic Radiation

Under certain adjustments, second-harmonie output may be aecontuated. It is advisable when putting the transmitter on the air to test with another station $2 \overline{5}$ to 50 miles away, asking the operator to listern at twiee the operating froquence to make sure that second-harmonic output is not execssive. From this consideration, it is better to avoid antema lengths between about 35 and is feet. Seenol-harmonid output ran be reduced by connecting a wavetrap, tuned to the second harmonic in series with the antemaa. Such a wave trap maty consist of a coil of 2.25 $\mu \mathrm{h}$. (12 turns of No. 18 wire, 1 inch in diameter, turns spaced to make the coil length 1 inch, for example), a $150-\mu \mu \mathrm{fel}$. mica condensar, and a $100-\mu \mu \mathrm{fd}$. variable condenser all ronnected in parallel. The antemma should be cut a foot or so from the transmitter and the two ends of the antenna wire conmeeted to the two terminals of the variable condenser, one wire going to the stator plates and the other to the rotor phates. The variable condenser in the tratp should be adjusted until the second-harmonic signal at a distant point disappears or drops to minimum.

Fig. 6-39 - Picture diagran of the wiring of the power supply.

A Novice 807 Amplifier

Figs. 6-41 through 6-46 show the construction of a simple amplifier that may be added to the oscillator of Fig. 6-31. The circuit is shown in Fig. 6-42.
An 807 is used here, although a surplus 1625 would work as well if a 12 -volt filament supply is provided. R_{1} is the grid leak that furnishes bias for the amplifier grid. R_{2} is the series resistor that reduces to proper value the voltage applied to the screen. C_{2} augments the output capacitance of the pi-section tank of the oscillator to provide proper coupling, but, more important, it is very effertive in reducing TVI and stabilizing the amplifier at the operating frequency. Two cathode by-pass condensers are used, C_{4} for v.h.f. and C_{5} for the operating frequence. The plate is paralled fed through $R F^{\prime} C_{2} . I_{1}$ is provided as a resonance indicator, L_{1} is a small coil required to suppress oscillation in the v.h.f. range. C_{9} and L_{2} form the output tank circuit tuning to the operating frequeners. (10 and L_{3} comprise the antenna tuning and coupling system. I_{2} is a flashlight bulb used as an output indicator.

Construction

The complete transmitter, including the crys-tal-oscillator unit of Fig. 6-31, is assembled on a board 19 inches long and 5 inches wide. The board is covered with eopper (or bronze) window sereening. The sereening should be cut two or three inches wider and longer than the board. It is stretched across the top side and tacked fast underneath. The top surface of the screen should be sandpapered thoroughly.

The oscillator unit should first be nailed or screwed to the baselboard at the left-hand end. Connertions should be made to the Millen type $3: 3005$ tube socket before it is mounted, as shown in the sketch of Fig. 6-44. The two shielded wires shown should be long enough to reach to the key and power supply. After pushing back the shielding of one piece to expose the inner conductor, the shielding is soldered to l'in 5, while the inner
conductor goes to Pin 1. The shielding serves as the grounded side of the filament line. Similarly, the inner conductor of the second piece of shielded wire goes to l'in 4 and its outer conductor is used as the grounded side of the key circuit. Both outer conductors should be grounded close to the socket as described later. Make sure that the parts under the socket are mounted so that there will be no danger of a short circuit when the socket is mounted.

The socket is fitted with a Millen trpe 80008 shield can. Then the assombly is mounted on 1-inch tubular spacers with long wood screws to the baseboard. Make sure that none of the connecting wires (except the shield braid) touches the ground screening, the metal mounting spacers or the metal flange on the socket.

The free end of the grid choke, $R F C_{1}$, is fastened to an insulated terminal of a small lag strip. The grid leak, R_{1}, and the grid by-pass condenser, C_{1}, are fastened at the same point, while the free ends of both are soldered to a grounding lug on the strip.

The plate choke, $R F_{2}$, is threaded into the top of a National tupe GS-1 pillar insulator that can be fastened to the base with small wood screws. L_{1} is inserted between the choke and the plate cap of the tube. The plate cap should be of the insulated type. Wires are soldered to the terminals of I_{1} and it is commected between the bottom terminal of the choke and an insulated terminal of a small lug strip fastened to the baseboard behind the choke. The free end of R_{2} and a length of shielded wire, with the shield braid grounded to the base screen at the lug-strip mounting screw, also are soldered to the same terminal. The three shielded wires are bunched together at this point and the outer shields anchored to a soldering lug screwed to the baseboard.

The plate tank condenser, C_{9}, is mounted on dime-store angle pieces screwed directly to the baseboard. These measure 2 inches on each leg.

Fig. 6-41-Front view of the Nonice ampllfler showing the r.f. indicator pick-up loops and the mounting of the grid choke and gridleak resistor.

Fip. 6-42 - Circuit diagram of the Novice amplifier.

C_{2} - I(NO)- $\mu \mathrm{ff}$ f. mica.
(is-0.01-uflo. dish erramie.
(:8-0.10) 1 - μ fid. 1000 -volt mica.
(9-250- or 301- μ кfid variable (National TMS-250

Cin - $300-\mu \mu \mathrm{fi}$, variathe (National TMS-300).
$13_{1}-1 \overline{3},(1060$ ohms, $1 / 2$ watt.
H_{2} - $\mathbf{5 0}, \mathbf{0}, \mathrm{OK}$ ohame. 10 watts.
1.1 - 1 लh, - 2.5 turns No. 24 enam., 3 亿6-ineh diam., $1 / 2$ ind hong (X ational $18-33$ chohe).
1.2 - 9 h h. - 15 turns No. $16,11 / 2$ inches long, 2 -inch diam. (13 \& 11 3907 strip roil).
$1: 3-15 \mu \mathrm{~h}$. - 202 lurns No. 16, $21 / 4$ inches long, 2 -inch diam. (13 \& IV 390' strip coil).
14, 1.5 - Sie text.
I_{1} - 1.50 -mal dial lamp.

A soldering lug fastened at one of the lower bracket holes makes a convenient ground connection for the two shielded wires from the tulse socket.

The two coils, L_{2} and L_{3}, are mounted, cond to end, is elose together as possible on four N_{a} tional type (is-1 insulators. Two soldering lugs placed at the top of eateh of the insulators make
connections convenient to the eoil ends and the cireuit. The antenna condenser, $C_{\text {to }}$, is fistened to the tops of two similar insulators by the use of small 1 -inch angle pieces.
L_{5} is a single turn of reasonably heavy wire comected between the ungrounded and of L_{3} and the stator termimal of C_{20}. L_{4} is a similar turn of wire covered with spaghetti and with I_{2} connected in series to complete the ring. L_{4} is then banded to L_{5} with pieces of beoteh tape.
The input terminals of the amplifier should be connected across the output eondenser of the oseillator unit, the stator terminal of the rondenser connecting to the grid of the amplifier.

Adjustment

The amplifier can be worked on almost any power supply delivering up to fir) volts, the power output obtainable being in proportion approximately to the plate voltate. The supply diagrammed in Fig. 6-45 represents an economical compromise. It delivers 700 volts under load. It is preferable to operate the heater of the 8017 from the oscillator power supply, so that the oscillator catn be adjusted without phate voltage on the amplifier. It is also preforable to key the amplifier only, although both stiges maty be keyed simultaneously bey connerting the keving loads in paralled. If amplifier keying is used, a toggle switch should be connected arross the oscillator keying leads so that the oscillator maty be turned off during receiving periods.

The output condenser of the oseillator should be turned to full capacitance and left there. (If a high-resistance voltmeter is atvailable, it should be connerted across the amplifier grid leak.) Turning on the oscillator power supply only (807 heater operating from this supply), and closing the oscillator and amplifier key eireuits, the input condenser should be adjusted for the

Fig. 6-4.3-Re- Rear virw of the Novirr amblifier showing the mounting of the plate dowe, horehing rondenser amal blate bypame rolldanser.

Fig. 0.41 - Pieture diagram of eonnections to the 80: sochet (boltom view).
point of minimum brilliance of the oscillator tuning-indicator lamp. (At this adjustment, the biasing voltage should he iof or bil) volts.)

When the amplifier power supply is turned on and the key closed, the indicator lamp in the high-voltage lead of the amplifier should light. Tuning the amplifier plate tank cirenit to resonance will c:anse the light to dim or go out entirely. "lhe tank condenser should be set at the center of the range over which the lamp is out or dimmest. The key should not be held closed longer that it takes to tume to resonanme because the serem heats dangerously when the tube is not loaded. Resonamer should be found at about three-guarters maximum capacitance of $C_{9} . .1$ second resonance point may be found hear minimum capacitance, but this point should be avoided in tuning up the transmitter. It is the second-harmonic resonance point.

Antenna Tuning

The antennat-tuning syatem is designed to work with rambom lengthe of wire betwern about $2 \overline{5}$ and too fect, that other types of antomats maty be used. A water pipe or other good ground should be eomnected to the ground output terminal.

Fig. 6.f5- (ïronit diagram of a shitable power supply for the Xovicr amplitier.
 $\mathbb{K}_{1}, K_{2} K_{3}, \mathbb{K}_{4}-11,2,2$ merohem, 1 watt.
It - Io-liy. Ilo-mai. filtor mohe.
si_{1} - S.p.s.1. torgle switelı.
 mat: 5 volte, 2 amp, 6.3 whts, 2.5 amp.

Leaving the plate tank condenser set at resonunee, as described earlier, connert the antenna, fose the key and tume the antemal condenser, (${ }^{10}$, through its range. It some point, the antemma indicator lamp should come to a patak of brilliance, dimming on either side. The condenser should be set at the point of maximum brilliance. If the lamp burns too brightly, loosen the coupling between the loops hey placing wood or cardhoand spareds in hetwern. Now, without touching the antema toming, swing the plate tank eondenser lack and forth through resonance. At resonance, the plate-current bulb should dim noticeably, increasing brightness on aither side. If resonance camnot be found be the dimming point, the antemas coupling should be loosened by hending the antena coil slightly forward toward the antenna funing condonser. Use the tightest coupling that results in a well-defined dip in the pato-current bulb) at resonance, Leave the plate tank condenser sot at the conter of the

Hig. 6.-. 66 - If a wire longer than 100 feet is to he nsed as an antena, the antenna eandonzer shombld be conmered in parallel with the coil, as shown at A. For Inoo wire feeder systems, the connertions of either 13 or C ahould loe uaded depanding on the dimensions of the artemna system.
dimming point. (If a d.e. plate-current milliammeter with a seale of 150 mat or more is available and is connerted in series with the positive highvoltage lead to the amplifier, the coupling should be set at the point where the plate current is 110 mat. When both antenna and plate tank circuits are tuned to resonamee.)

If a single-wier antenna longer than 100 feet is used, it will be necessary to comnect the antema condenser aross the antemat eoil, as shown in Fig. 6-46.S. It will also be weressary to eomnert the indicator lamp in series with the antenna wire Antennas fed with two-wire lines, as deseribed in the antema chapter, can also be used by shifting the connedions as shown in Figs. 6 - 16 B 3 and C. Depending on how long the sustem is, the indicator hamp may have to be coupled with a loop as previously deweribot, rather than connected directly in the feder as shown. ()therwise, the lamp may burn out or show no indication, depending on whother it comes at a current loop or voltage loop in the antenna srstem.

A Single-Control Low-Power Transmitter

Figs. 6-47 through 6-i33 show the cireuit and constructional details of a 10 -watt two-stage transmitter that requires the adjustment of only one tuming control. The erystal oscillator uses a modified liarere circuit. The use of bandpass couplors in the output eireuit of this stage makes it unneressary to retune when changing frequency and at the same time provides inductive coupling as a measure toward reducing v.h.f. hamonics. The coupling betwern the two circuits is adjusted to give the desied broadband response and then fixed in that position. It is pessible to arrive at an adjustment where the amplifier gride excitation is substantially constant over any given hand and drops off quite sharply outside the band elges.

The output stage is a conventional $80{ }^{-}$amplifier normally working straight through on the output fregueney of the oseillator, exerpt for 28 Mc ., atthough it will double frequenery to any of the lower-frequency hands. $/ P P^{(} C_{3}$ and R_{6} are parasitie suppressors. The amplifier grid leak, R_{5}, is connected in series with the grid tank circuit, sinee the coupler frovides an opportunity to avoid parallel grid ford. RP' ${ }_{4}$ and $C_{12}, R F^{\prime}{ }_{5}$ and C_{13} are v.h.f. harmonic filters.

The unit is designed to operate from a single power supply delivering 300 to 400 volts. To avoid the need for fixed biats on the output
stage, both stages are kered simultaneousty in the eommon cathorle lead. The ortal soeket used as a crestal mounting also provides a means of ferding a VFO into the unit. Commertoms ame shown in Fig. (i-52.

Construction

The transmitter is built in a standard $\overline{5} \times 9 \times$ (-inch sted utility box. Most of the parts are mounted on an aluminum plate cut to fit the inside of the box and supported from its sides bey $1 / 2$-inch angle brackets as shown in the bottom view of the unit. Fig. 6-19. The plate is mounted 3^{5} wheles above the bottom of the box. Two verntilating holes are cut through the pate mear the front of the box, and adrlitional vents are punched through the top and botton covers of the box. These holes permit air io ciroulate through the entire box, vet do not reduce the efferetiveness of the shideding.
 bandpass couplar are mounted in line, $11 / 4$ inches from the rear of the alaminum plate. The socket for the sot is mounted in a Millen bracket assembly (8000 -) trimmed down to fit below in a horizomal position. It is plated so that the grid temminal is $3^{3}{ }_{4}$ inches from the rear of the box, atlowing ade puate space for mounting the smatl parts in the wsidlator circuit, yet retaining the desired short r.f. leads.

An octal socket used to hod the erystal and to comeret a VFO, an octal plag for power input conmertions, and a coasial output comertor are mounted at the rear, centered $11 / 4$ inches above the bottom edge. The key jark and a panel light arre mounted on the front, spared $15 / 8$ inches above the bottom edge.

The top view of the tramsmitter, Fig. 6-17. shows the arrangement of the plate tamk cirruit of the 807 stage a five-prong cramic sownt far the plug-in platu woils is supported alowe the derek ly 3-iuch ceramice stand-ofi insulators (National (is-10) 178 indmes beliand the fromt of the bex. The tuning condensery is mounted an ceramie button-type insulators (National Xi-(i) immediately in front of the coil socket. The motor

Fig. 6.f:- Firemt vew of ther transmitter with cosir remoned. The tanh eironit for the 80:- amplifire orrapio- the frum compartment, with the oll:7 wetillator and the plus-in bandpass rompler at the rear. Iemilation for the tubes is obtained through holes punched in the ton, bot tom, and the interior momenting plate which supborts the various components.

Fig. 6-48 - Cirenit diagram of a two-stage four-band transmitter utilizing bardpass coupling and including 'lll-redueing filters.
($1, \mathrm{Cs}, \mathrm{C} 9-0.01-\mu \mathrm{fd}$. dise eeramic.
(:2-0.00. $-\mu$ fol. Ilise reramic.
($3-2-\mu \mu \mathrm{fl}$. mica.

C. 7 - 100 $-\mu \mu$ fld mica.

Cio - 300- $3 \mu \mathrm{fil}$, transmitting variable (National TMS. 30(0).
(.11-0.00)- $\mu \mathrm{fd}$. mica, 1200 v. d.e. working.
$\mathrm{K}_{1}-5 \overline{5}, 000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{2}-330$ ohms, 1 watt.
$\mathrm{i}_{3}-12,000$ ohms, I watt.
$R_{4}-10.000$ ohms, 5 watt:, wire-wound.
$R_{5}-22.000$ ohms. I watt.
\mathbf{R}_{6} - F^{2} ohms. 1_{2} watt carbon.
$\mathrm{R}_{7}-20,000$ olms. $\overline{3}$ watt - wire-wound.
I_{1} - Primary, bandpase compler.
3.5 Ma. - 10 turns lo. 30 d.s.e., dose-wound, $11 / 2$-inch diam. form.
7 Me. - 16 turns \backslash. 26, d.s.c., close-wonnd, 1^{1} 'sinch diam. form.
14 Me. - 9 turns No. 20 d.a.e., close-wound, 1/2-inch diam. form.
1,2 -Secondary, bamdpass coupler. Wound on same form as L_{1}, spaced as indicated.
shaft of this condenser must be insulated from the front panel berause it carrios the full plate-supply voltage. The shatt is $11 / 2$ inches above the aluminum plate when mounted as described, and passes through the front of the box 2 inches below the top. The two leads that conneret the condenser to the tulee and to the plate he-pass condenser pass through the mounting plate in polystrrene feerl-through bushings such as the National trpe 'Tl'B.

An aluminum partition $33 / 8$ inches high divides the top portion of the box into two eompart ments. This provides shiedding between the bandpass coupler to the rear and the plate coil of the 807 in front. These two coils are mounted at right angles to each other as additional insurance against feed-back.

The coaxial ontput link runs from the prongs of the coil socket through a $1 / 4$-inch hole in the plate to the output comnector on the reate of the box. Both ends of the shield braid of this link circuit should be grounded to the chassis.

The eomponents used to filter the d.c. leads
3.5 Mc. - 35 tırns No. 30 d.s.c., elose-wound, $1 / 4$-ineh separation from L_{1}.
7 Me. - 15 turns No. 26 d,s.e., close-wound, $9 / 16$-ineh separation from L_{1}.
14 Mc. - 9 turns Vo. 20 d.s.e., elose-wound, $1 / 2$-inch separation from L_{1}.
L_{3} - Plate coil for 807 stage. (All are Bud type OEL coils).
 long, $11 / 4$-ineh diam.)
7 Mc. - OEL-20. (11 turns No. 16, $11 / 4$ inches long, [1/4-inch diam.)
14 Mc. - OEL. 1.5. (8 turns No. $16,15 / 8$ inches long, $11 / 4$-istch diam.)
28 Mc. - (OEI.-6. (1 turns No. 12, 2 inches long, 78 -inch diam.)
$1_{1}-6.3$-volt pilot lamp.
J_{1} - Oetal socket, reramie.
J_{2} - Closed-rircuit jack.
I3-Coaxial connector, female.
P_{1} - Octal plug, panel mounting.
IRFCC 1 , RF Co $-2.5-m h$. r.f. choke (Natinnal R-100-S). $1 \mathrm{FCC}-1.8-\mu \mathrm{h}$. r.f, choke (Ohmite Z .14).
RFC ${ }_{4}, \mathrm{RFC}_{5}-\mathrm{t}-\mu \mathrm{h}$. r.f. choke (Ohnite Z.50),
($R F C_{4}, R F C_{5}, C_{12}$, and C_{13}) are mounted as close as possible to the points where the leads pass through the shicld enclosure, using very short leads from the condensers to ground. Parasitic-suppressing choke $R F C_{3}$ is mounted right at the grid terminal of the 807 socket, and R_{6}, which also has a part in eliminating parasitics, is mounted betwcen the screcn-grid terminal and a small tic-point bolted to the mounting bracket. Sercen by-pass condenser C_{9} is connceted from this tie-point to the cathode pin on the tube socket. Plate by-pass condenser C_{11} is placed behind the 807 , between it and the mounting plate which serves as ground. The lead from the "high" side of this condenser to the plate tank circuit passes through a bushing immediately below the plate cap of the 807 .

All heater and d.e. wiring is made with shielded wire, with the braid grounded at each end. The sereen dropping resistor R_{7}, and R_{4}, which redueres the supply voltage to the proper level for the oscillater, are motmeded on tie-points near the ortal powor plug in the lower right-hand corner in the bottom view of Fig. 6-49.

Fia. 6×49 - Bottom view of the transmitter. The 80- socket is mounted in a cut-lown commercial bracket, with the sorkets for the 6, 16:7 and the handpass roupler spaced below
 rear of the hom are the erystal socket, the output jack, and the power plug.
and soldering their spike terminals, along with the coil emds, into the pins of the National Type NR-5 cuil forms. It is highly important that the windings be made as close as presible to the dimensions given under lige (i-ls. It is porhaps advisable to mot make the thans tow smug on the form so that the distane betwern the caile catn be given a final miljustment should this be fommed neerestars.

The saljustmont of the fand pase cond-
 amplifior hiasing voltage as the oscillator is luned across the band. This am be done by connceting a high-resistathe voltmeter between the 807 grid and ground, with a $2 . \overline{\text { a }}$-mh. r.f. choke in series with the meter lead that is conneeted to the grid.

The ehereking should be dome with the plate- and sereen-voltage line to the 807

The circuit diagram of a power supply for this transmitter is shown in Fig. 6--i.3. It is conventional with condenser-input filter. A separate filament transformer is provided so that the plate supply may be turned off independently.

Bandpass Couplers

Three couplers are needed to use the tramsmitter in four amateur hand*. (Jne eoupler is designed to provide exeitation arross the entire 3.5-1-Mc. band, another for the $-7.3-\mathrm{Me}$. band, and the third from $1+101+9 \mathrm{Mc}$. This latter ramge is considerably in exeess of what would be reguired for coverage of the $14-\lambda \mathrm{Al}$. band alone. The extension at the ligh-frequency end of the range is neressary if the transmitter is to operate in the 28 - Mic. band, becanse for output in this range, the 807 stage must be operated as a doubler from the $1+$ - Me excitation supplied to its grid circuit.

In crustal-controlled operation, 3.5-Me. fundamental crystals may be used for output in the 3.5 - and $\overline{-M c}$. bands, and 7 -Me. crystals for output in the $7-1 / 1$-, amd 2s-Mc. bathls. In instances where a VFO is used to
 used as a frequency doubler to climinate the posibility of oscillation.

The photograph of Fig. (6-i)0 and the sketch of Fig. ($0-51$ show how the bandpass couplers are constructed and wired. The lhillips trimmers are especially well adapted for this use, since they are readily mounted by inserting
diseonnerted. (hoose a crystal as elowe the the eronter of the band as possible and adjust C_{5} and C_{6} for maximum sot grid voltare. The two adjustment: will not he entirely independent, because of the coupling, and some juggling back and forth may be required before the setting for maximum roading is attained. Sow, without further ablustment of the

Fig. 6.50- One of the bamplase empplors. 'Jhe two trimmer comdensers are monnted inside the coil form, with connections made as shown in fig. 6.jl.

Fig. 6-5 - Details of the handpass rouplers. 'The trimmer condensers are soldered inside of the coil form, as deseribed in the text. making a simple, compart plug-in assembly that needs adjustment only once.
roupler, plag in other erystals for the same band. If it is found that the grid voltage falls off considerably with erystals whose frequenemes lie near the edges of the hand, the windings should be noved slightly closer torether and the eherk ancoss the hand made again if it is found that the voltage is high near both ends of the band, but low in the middle, the coupling should be loosened. When the voltage is considerably higher at one rod than the other, this ean usually be corrected by trial readjustments of C_{5} and C_{6} in small amounts. For erystal control, it is necessary to carry the adjustment only to the point where adeguate excitation tat least to wolts hise with the amplifier running and loaded) is ohtained with each of the available (ersestals. If a V'FO is used its output irequency should be one frequener band lower than the band of the coupler and the adjustments will have to be more exad if uniform excitation across the band is desired. Some means should be provided for adjusting the output of the VF() , since exerssive driving of the $6.1 \mathrm{G}^{-}$may have an effect on the shape of the excitation curve.

Once the eouplers are adjusted properly, the windings should be cemented in place with coil dope, and the rotors of the trimmers should be loeked in position with a drop of Duco cement.

CABLE CONNECTIONS FOR VFO OPERATION

(Botion View)

Amplifier Adjustment

Reconneet the d.c. serem lead to the 807 stage, and plug a milliammeter capable of reading up to 200 ma . in the ker jack where it will read the total current flowing in both stages. The $6 . \lambda \mathrm{B}^{-}$plate current normally will run between 10 and 15 ma., so this should be subtracted from the meter reading to determine the current flowing in the $80{ }^{-}$. Plug the desired coil in the 807 plate circuit, and the correct ervstal-oupler combination in the ascillator stage. Connect a 25 -watt lamp bulb to the output terminal to serve as a dummy load while the 807 stage is tested.
Apply plate voltage and resonate the 807 tank rivelut ber tuning C_{10}. The off-resonane plate current will be very high, in the neighborheod of 200 ma., dipping to 100 ma. or less at resonance. If it

Fig. 6.5.3-1 hagram of a power supply for the single. control low-power transmitter.

Ciz - $-\mu \mathrm{fd}$, min. lu() volt oil-filled.
K_{1} - 15,000 ohms, 2.5 watts.
$1.1-10 \mathrm{~h}$. min., 130 mat, min.
P_{1} - Wetal female plug.
Si, Sz - 3 -amg. toggle switch.
'l' - Power tranformer: 400 to 4.0 wolts r.mas. earh side of renter, 130 mat, min.: $\overline{3}$ volts, 3 amp. (6,3 volts. $1 . \overline{3}$ amp, min. if used. See text.)
T_{2} - Filament transformer: 6.3 volts, 1.5 amp, min.
is not possithe to load the 807 stage so that the total current indication is 100 ma. or slightly over, diseonmed the lamp from the output terminal and tap it across a few turns of the tank eoil. This should be done with the power off, of course! B3: changing the number of turns across which the lamp is tapped and re-resonating the plate circuit, it shoudd be possible to ohtain fall loading.

Check the keying charactoristie by listening to the signal, or a harmonic of it, in the receiver with the gain turned down as far as possible and the antenna disconneeted. With the circuit constants shown and active erystals, good keving shomad be obtained with both 3.5 - and 7 -Me. crestals. If, however, the keying is sluggish, and the erystal docsn't start oseillating readily, the size of condenser (" ${ }_{3}$ should be changed in $25-\mu \mu \mathrm{fl}$. stens until good kering is obtained.
(See (SST, Jan. 1951.)

A Compact 75-Watt 6-Band Transmitter

Fir. 6.54 - The complete Ti.watt o-hand transmitter fits into an $8 \times 1.1 \times 8$-inch eabinet. Along the lottom. from left to right, are the two power switches (S_{5} and S_{6}), the key jach $\left(J_{7}\right)$, the "oper-ate-tent switch $\left(S_{4}\right)$ and the rrystal socket. Leross the center are the meter switeh (S_{3}), the amplifier tank eontrol (C_{a}) and the oweilator tuning condenser (C.6). T'o the right of the meter at the top are the loadiug mondenoer (C_{10}) and the oseillator handswitch (S_{2}).

Figs. (i-i) through 6-ti0 show the cirevit and photographe of a two-stage tramsmitter delivering an r.f. output of 50 watts on all bands from 3.5 to 28 . Ice, inclusive. It is complete with power supply and a versatile metering system on a $11 \times 5 \times 2$-inch chatsis. Provision is mate for
 bator and also an external dmergeney power supply.

As the circuit diagman of Fig. (i-5) shews. :
 is a misa trimmer that permits adjustment of ascillator exsitation for proper keving and drive to the amplifier. st grounds the cethode through (3_{3} so that the $5-\left(6 ; 3\right.$ (an l_{n} driven from : VFO through the crystal socket. L_{1} is tapped to cover
3.5 through 28 Mr. with a switch, S_{2}. The oscillator output with (ither 3.5)- or $\overline{7}-\mathrm{Me}$. crystals, at cither fundimental or serond harmonic is mose than adeguate for proper drive to the (i) 16 amplifier. Sulficiont drive is also ohtained fuadrupling from :3.j- Me (erystals to 1.t M $\%$, or tripling to 21 Mc. from $\overline{\mathrm{T}}$ - Mr. crystals. Quad-
 supply aderfuate exditation, so frefuency is doubled in the output stage for 27 - or 28 -Me. operation, unhess !-Mc. arystals for triphing, or 2א-Mu, crustals, aro available.

Plug-in roils :re used in the output tank circuit. Since both stages are marallel-fod in the plate circuit, the power supply need not be turned off while changing coils. The amplifier is

Fig. 6.35-Whe oscillator in in the $2 \times 4 \times$. 1-inch box to the left, with the restal- Ific swith and il 10 ; im mediately helinul. "lhe amplifier is in the $: \times$ 6×9 Ginch box. Cin (bottom) and Cio (top) are mounted akainst the right-hamel side of the bex. Thie eril anchet is to the rear surromolded by the 1 turn neutralizing link.
 immediately in fromt of the eoil sarchel. 'lio the right are the two ositols. Hor power tramsformer ame $I \mathrm{~s}$. 'I'her pin jachs toward the front are metering jath c. 'The holes at the rear are for ventilation.

Fig. 6 -ion - Insida of the ossillater beex Crem the amplifier side. RIF'i amd Ci- are $^{-1}$ in the foregromat in this vien. lavads
 to the amplifier compartmont.
noutralized by moans of a simple inductive link sustem (L L_{5} and $L_{\text {a }}$) L_{2} is a v.h.i. partwitic suphensor.

Both stages are kerad simultancously in the wathonfe rireuit for break-in opreation, the kery being plugged in at . $/$:

Power Supply

An erunomical pownor supply delivering voltages for hoth stages is included on the chassis. A voltage of
 (ex) (under load for the final ampli-
fier is obtatined from an inexpensive broadeast replacement transformer through the use of at

COIL DATA

()scillator (oil, I_{1} : Wound with No. $2 f$ enamelnd wire on 1 -inch diameter form (Millen 45000) in four sections.

$$
\text { 1st section: } 20 \text { turns close-wound }
$$

2nd seetion: 10 turns close-wound
3rdsection: 5 turns close-wound
4th section: 4 turns spaced wire diameter
Tals taken of between sections, Sparing bretween sections appoximately $1 / 8$ inch. Fourth section (21-28 Mc.) turn spacimg should be adjusted to cover 30 M . with oscillator condenser, i_{6}, near minimum capacitanec.

Amplifier coilk, $I_{3} L_{4}$:

Band	Wire Size	Turns	Turne inch	Space Betwepn (oolds
L_{3}	22 cham.	15	20	
L. 4	22 enum,	20	close-wrunul	
Ls 3	18 cuam.	10	10	
L_{4}	18 enam.	8	ciose-wound	
L_{3}	18 enam,	5	10	
L_{4}	18 enam.	5	10	
$1 / 8$	18 enam.	3	10	
L_{4}	18 enam.	3	10	

Coils wound on 132 -ineh diameter forms National XR-4) with L_{3} at bottom and plate terminal down. See Fig. f-5: for comertions in coil form and sorket.
bridge rectifier circuit. The ernter tap of this sistem provides a voltage of 230 for operating the osseillater and the sreern of the amplifier, the latter through the dropping resistor, Rg. 'Tho choker, L_{s}, in the high-voltage filter, it should the noted, is commered in the negative side of the supply. When using the built-in supply, a plug with the pins shorted, as indieated by the doted limes, should be inserted in J_{8}. When using an comergeney supply, appropriate voltages ean be int rodued through J_{s} after the shorting plag has leern removed.

Metering Circuits

A 1 -mat. milliammeter,.$/_{1}$, is used for moasuring the essential currents and voltages. It is conmorted as a voltmeter hatving a full-scole range of i) volts by adding R_{4} in series. (Gurrent is determined be measuring the voltage drop across resistors of proper value inserted in stries with the rireuits in which current is to be measured. This permits the use of standard resistors as current shunts. The ranges seleeted here are as follows: oseilatore cathode current, 50 mat.; amplifior grid current, 10 mat, amplifier sereen curvent, 20 mat.; : amplifior cathode curront, 200 mat. In addition, three tip) jarks mounted on the chassis can be selfected hay it test prod connered to one position on the mater switeh. (one, J_{5}, is connereted to the powrer-supply low-voltage terminal through R_{13} which is a multiplier giving a full-scale meter reading of 300 volts. A serond tip jar k, J_{6}, is similarly connected to the high-voltage terminal through a 1000 -volt multiplier, R_{14}. The third tip jark, J_{4}, conneets to another similar jatek, J_{3}, at the rear of the ehatssis so that the meter ran be used for external measurements, such as an
indicator for an s.w.r. bridge or in an r.f. voltmeter for cherking power output.

Test-Operate Switch

A uscful adjunct is the "test-operate" switeh, S_{4}. In the "operate" position, the amplifier sereen is connerted to its normal supply. In the "test" position, the sereen is grounded. "This limits the plate current to about 15 or 20 ma. which results in just aloout the right amount of power to operate an s.w.r. bridge. If the 6146 is to be plate-sereen modulaterl, the screem voltatere must be obtained from the high-voltage tap through a dropping resistor, rather than from the
low-voltage tap. In this case, the eathode shoudd never be opened while the power supply is on, bereause the voltage ratings of both the tube sereft and the coramic bepatss condensers will be greatly exceoded. Sta guards against this he grounding the cathode through an anxiliare contate of J_{7} when the key is removed. "Then stat beromes the on-oll switeh, opering both cathode rircuits (through $S_{4,}$) and gromding the amplifier screen (through stas) when the switeh is in the "test" position. T"o turn the ose illator on athl rlose the amplifior cathode circuit for "test" use, a closed key, or shorted phag, must be inserted in the closed-eireuit jisek. J_{7}.

 amplifier low is fastenod permanently to the ohaseis and the amplifier parrialls anombled barfore fantening the bos in place. RF'G is in the forepromod, RFA, standme at the rear. The eroil serekel at the right is spaced up 1^{3} a ind hew, the tube sochet 3_{4} incl. Vortice the "rero-length" leads to the dish aramie comelamera.

Construction

Most of the important details of assombly are shown in the photograplis. As murh as possible of the subassembly work in the shidding lowes is dome before mointing the boxes. Coil dimensions ate shown in the areompanying table. The nevtralizing coil, L_{5}, is made simply hedrilling two smatl holes ditumetrically opposite close to the outer end of the form. A piece of rat her stiff wire is thataded through the holess and then the wire inside the form is pressed into it hatf-turn shater with the finger. Commeetions are made to eath eond outside the form and the half-thern may be rotated in the holes to adjust ment ralization.

Adjustment

With the key opern, the supply voltage at the high tap should measure ahout soo volts and 300
 sorket, the voltage at the low tap will be about 400.

With the swith set in the "tost" position, the aseillato tuning should be adjusted for maximum amplifier grid curvent. A reading of 4 mat. indicate's adequate drive, although on some bands it maty run as high as 10 mat. If the minimum reat-
ing of 4 ma. is not obtained, adjust C_{2}. Up to a rertain point, incroasing this raparitance will increase the oscillator output, hat tow much feodhatek mave result in chirper kering. ('a shombd be adjusted for the best compromise betwern adergate drive and gookl keroing characteristios. The oscillator catherte current should run 25 to 30 ma. on all bands.

Neutralization is adjusted by moving the half turn L_{5} duser to or farther away from the osrillator tank coil. With S_{4} in the "test" position, the oseillator shomild to adjusted for maximum amplifier grid current on 21 Mr., and the amplifier plate tank circuit tumed to ressmanes. If the amplifer is not neutralized, there will be a notienable kiek in gride current as the plate tank condonser is swung through resonatere. The netutralizing half turn should be adjusted carefully for minimum change in grid current. The same procedure should the followed for 1t Me. If the neutralizing must be readjusted, the hatf turn should be set for the best awerage result for the two batds. The amplifier should then be cherked for oscillation with S_{4} in the "operate" position, The amplifier phate rurent at resonanere should swing the meter off scale when the key is chased.
R_{1} - I memohm. I watt.
la - Sel roil data.
I. 2 - I turns, $3 / 6$-ind diam.. 3_{x} inch lanin.

I.:- Jibler chohe, 10 ma., 3100 ohms, approximately.
I. $\%$ - 10.5 honrsa, 110 ma., $\mathbf{2}$ か) ohms.
$F_{1}-F_{\text {Hes, }}^{2}$ amp.
J_{1} - (iry-tal =reket.
J_{2} - Cobs commertor, dhasis-mounting type.
 (8-II)
Ji- Chasel-rircuit phome jack.
Js- Octal surhet.
31 - $0-1$ d.c. milliammeter.
p_{1} - Phone tip text plag.

$\mathrm{S}_{2}-$ Single-pole $\mathrm{i}-\mathrm{wosition}$ ecramic wafer (Centralah) 2500 or 2501$)$.
 (Cantralal, type 1 (oli).
54 - I). bid.t toygle.
RFC. 1, RFC: RFP $2.000)$.

F - Filament transformer, 6.3 v... 1.2 amp.
 . $\sqrt[5]{ } . .3$ amp. : 6.3 v... 3 amp, or mose.
Dote: Damafarturer"s part mambers givelt above are to indieate size and style. Similar components are wenerally avaitable from a number of different suppliers.

Fig. 6.59-Looking into the oscillator compartment. It and S_{2} are at the top with (.6 brlow. RFC2 and Cill are sup. ported on a tie geint in the foreprounl. R_{1}, C_{2} and C_{4} are to) the rear of the tutw. © © is soldered bertween (e) and the tule sencher. NFC and cia are hidden lig the tubor and tuning condenser. The cover of the amplifier is hinged at the renter for changing roils. The lateh at the rear engayes the rear lif of the bex so that the lid is drawn down tight. Notier the numerome ventilating bules.

Do not close the key more than momentarily for this check.
The output coupling system is designed to work into a flat $\mathbf{3 0}$ or $\overline{0}$ - ohm line, "ither to an antemat or to an antemnat tumer. The amplifier may be loaded to at cathode current of $1-10 \mathrm{Ma}_{\mathrm{a}}$. on all bands exeret 28 Me . Cnder load, the amplifier grid current should he adjusted to 2 to 2.5 mit. by detuning the asciliator tank rireuit. The sereen current under these comblitions should rum between 10 and 12 mat. At 28 . Mc., with the final
amplifier doubling, the grid current should be adjusted to the maximum possible (s to 6 ma. under load) and the eathode current limited to
 which tunes the link cireuit.

In fringe arras. a low-pass filter maty be required for 21- and 28-N1. opration. On lower frequencies, or in the presence of good TV signals, the use of a romeontional antema tumer will ustadly breaderquate to suppres TVI
(For further details, see QST, Derember 1952.)

Fig. 6-б0- Boltom biew of the 6.1 and transmitter. 'The highvoltage filter comdens"ro. Cino and C Cis. and their equalizing rawistors, R_{11} and R_{12} arre at the rear of the chasis. T_{1} and I_{-}are to the liffowith Cise and R_{10} abose. J, is 111 the ex. treme rear left-hand corner. Al top renter. supported on insulated tiepoints, l. tor.. arre Ru, h_{2} and $h_{\text {s. }}$ It the wobur laft-hand rortere aro R_{1}, R_{13} and R_{14} andl f_{1}. RFC, Ci and (is are to the right. Shiclded wiring dat dinhereramber condernsars arr applied areording to method Aeseribed in the chapter on 'IVI.

A 75-Watt Transmitter for 3 Bands

Figs. (6-6it through 6-64 show the diagram and construetional details of a 3-stage (a)-watt transmitter for the 3.5-, 7 - and It-Mc, hands. It is (omplate with built-in power supply. The shiolding comelowire comsists of an assembly of standard aluminum ehatsis.

Circuit

The eirenit is shown in Fig. (i-6i3. 'The oscillator output condenser, ('re, has a sulficiont ranger of caparitance to rover both 3.5 and 7 Mc . The output of the oseillator can be fed either directly

Fig. 6 - 61 - Front view of the 75 -watt 3-band transmitter, showing the interior of the amplifier enclosure.
to the gride eireuit of the final amplifier, or to the grid of an intermediate frequency doubler for 14-Me. operation. The two triode sections of the 6N: doubler are conneted in parallel. The doubler is cut in and out of the cirenit by a system of crystal sockets and shorting plugs (Millen type $30+12$ with the pins wired together). When a shorting plug is inserted in J_{1}, the output of the oseillator is fed to the grid circuit of the amplifier. When this plug is shifted to J_{2}, the oscillator is connected to the doubler grid. Then a second plug inserted in J_{3} connects the output of the doubler to the input circuit of the amplifier. The biN7 cathode hiasing resistor is chosen to give the same final-amplifier grid current as obtained on the lower-frequency bands. When not in use, this tube draws only 1 or 2 ma.

Since an inexpensive 450 -volt power supply is used, two s07s are neceded to attain the desired power input. $R P^{\prime} C_{6}, R P^{\prime} C_{7}, R_{9}$ and R_{10} are neresssary to prevent v.h.f. parasitic oscillation, The amplifier is keved in the eathode cireuit. A single moter, $.1 / A_{1}$, may be switehed to read amplifior grid current when conneeted across R_{i}, or cathode eurrent when switched across R_{8}. The value of R_{8} is adjusted to give a meter-sacale multiplication of 10 . (See measurements chapter.)

Power Supply

The hasie power-supply cireuit is convontional. A choke-input filter is used to hold the voltage within the rating of the filter condensers. Reduced voltage for the osillator and doubler and also for the amplifier sureons is supplied across a pair of voltage-regulator tuber. High voltage is turned off during recoiving periokls by braking the transformer eronter tap by the power-control switch, S_{1}, which also controls the a.c. primary. With the switeh turned to the left in Fig. (i-(i3, the heater:s are turned on, but high voltage is off. In the central position, both cireuits are open. With ther switch turned to the right, both eireuits aro elosed for transmitting.

Construction

A $13 \times 17 \times 3$-inth aluminum chassis is used as the batese. All parts of the oscillater and dowher eireuits are moneme umderneath the hase ehatsis. The amplified (omponents are mounted on top ath shielded by an dulosure made up of 1 wo $7 \times 12 \times$ B-inch aluminum chatssis, one of which forms a cover hinged to the lower one. Good contant along the seam between the two chassis is: aswer by the use of a pair of ordinary window latches which fasily provide considerable pulldown forere. Any gap cathed by inaccuratelyformend chassis can be baken eare of he bending the (hassins lips outward with pliors wherever meressary to make a tight fit.
The power-sup)le components are along the rear alge of the hase rhassis. Inderneath, the two filter condensers are mounted on small lug strips which also provide terminals for making connertions to the condemsers. The crystal socket and the sockets for the oseillator and doubler tubes are all on a line 6 inches from the rear edge of the chassis. The tubes are central and their

Fig. 6.62- Hear view, showing the placement of the exciter tubes and the shortirp-plug sockets.

Fig. 6-6.3-Circuit liagram of the -is-watt 3-band transmitter.
$\mathrm{C}_{1}-\mathrm{I} 5-\mu \mu \mathrm{fl}$. mira.
($2-4 i-\mu \mu \mathrm{fl}$, mica.

 (0.) M1/- - fri, disk seramic.

$C_{8}-100-\mu \mu$ fid, mical.

Ci4-35- μ ud variable (National ST-35).
Cif - $\quad 1.01-\mu$ fil disk ceramic.
$\mathrm{C}_{21}-0.001$ - ffil . mica or 10.01 - -ffl . dish ceramic.
Ci23 - $3010-\mu \mu$ fd. sariable (Natimal TMS-306)
 BRIIV-(08).

$\mathrm{H}_{2}-100$ ohm: 1 watt.
$\mathrm{H}_{3}-4,0,00$ olmm, I watt.
$R_{4}-10,0100$ ohms, 1 watt.
R_{5}. $R_{6}-4000$ ohme, 11 watt.
$\mathrm{R}_{7}-$ - 100 ohme. ' ${ }^{2}$ watt.
K_{s} - Meter multiptying shum (see text).
Ra, $k_{10}-4:$ ohmo, 1_{2} wall, mominductive.
$\mathrm{R}_{11}-2.001$ ohmo, 2.0 watt.

conters spaced 6 inches apart. The two exotar tuning condensers, (' 7 and ${ }^{\prime}{ }^{\prime} 4$, are similarly spaced 6 inches apart and sufficiontly to the rear on the base chassis so that their forward mounting serews come about 'íf inch behind the amplifier enclosure. The three sockets for the shorting plugs should be placed as moarly as possible in the positions shown in the photographs.

The moter is mounted at the center of the front whe of the hase chassis. It is very important from the consideration of TV'I that the meter be tightly shiedded at the rear. The enclosure shown was bent up from sheet aluminum.

In the lower of the two smaller chassis, the sorkets for the two 80ts are spared with their conters: 3 inches from the edge of the chassis and about $2 \frac{1}{2}$ inches apart. The sockets are ringed with $1 / 4$-inch holes, which show in the bottom-
lone (13 \& $\mid 1$ 3008 Miniductor).
 lonk (13 I 113011 Miniductor)
 $11 / 4$ inches long (13 \& II JFIL-10 wilh : turns removed).
 kong (13 \& 11 , NF: $1-20$ O, 3 turns remoned).
-11 \1a- $0.8 \mu \mathrm{~h} .-6$ turne $11 / 2$ inches diam., 2 inche long (18 \& 11 JELL-IO).

$\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}$ - (ieramic ory atal surehet (Willan 331(12).
J_{1}-Open-erirenit phone jack.
Is-Coavial monnetor (Jomes S-10t).
M1, - I), milliammerer. 2̈-ma, suale.
 (National k-jo).

\therefore - Donble-pole thre B -position rotary (Wallory 32e3.3). 52 - 1).p.d.t. (1)gule.

 P-6t:ll or P(8111).
VR - VR-150 coltakerequlator tube.
view photograph, to provide ventilation for the tubes. Tho lower portions of the tubes are enclosed in Millen type 8000 or shidds and the ventilating holes must come within the diameter of the shiedds. The bettom wate. Which must be provided to cover the bottom of the bane chassis: with a tight fit. should likewise be propomated in the area helow the sorekets.

The shatt of the condenser and a shafterextension bearing set in the front edge of the chas, is: are joined be a flexible shaft coupling. The coil sorket alongside the tank condenser is mounted on pillars that raise the socket to clatar its prongs underneath. Cen is attathed to one of the rear stator nuts. The plate choke, $\operatorname{RF} \mathrm{F}_{8} \mathrm{~s}$, is mounted vertically immediately to the rear on a small ecramic feed-through insulator. I short lomgth of coaxial cable connects the link terminals of the

Fig. 6-ot - Bottom virw of the
 -pate is prosided ablhat compments need mot lee crowded.
eoil socket to the output eoaxial fitting sot in the end of the chassis.

As romon as all hodes have bern drilled in the small ihatsisis, it should lar plared on the hase
 chases and all holes in the hot-
tom of the smather chasis: shembld be traterel on the top of the batie chasis so that the two sets: of holes will mateh exatoth.

The cover "hatsis is altached to the lower one hy metans of a mertion of piano hinge - a hinge ruming the entire length of the chascis. The areat ower the tubes is preforaterl with 1_{1}-inch holes. The two window latehes should be fitted cateo fully so that they will exart a goned pull on the top chasese when it is coloend down.
. Ill power wiring is dome with shadded wire and all ber-gase eomdensers are appliod to the shielded wire in the matume deseribed in the TVI chapter. It is ofton simplen to run indivitual power wires from rach somed or rach choke. rather than to go from sum perint to the other and thene to the power-supply or other terminal With a single piero of wire. Fach filament, sereen and cathonde of the two sots should have its individual her-pass. Where the shieded wires rum parallel, the should be spot-soldered together cevery fow inches, and hold-down hugs should be placed wherever nerded to and hen the wire firmls:

The two exeiter coils, L_{1} and L_{2}, are soldered directly atrose the thang condensers. The sot sockets are turmed so that their grid terminals:

(Pins 3) ate closest. Then $R F^{\prime} C_{6}$ and $R F^{\prime} C_{7}^{\prime}$, end to cond, should just about bridge the gap between the two terminats. The comertions betwern the *horting-plug sockets and the junction of the two chokes atre mate with Vo. $1 / 1$ wire wedl spered from the chassis. This wire is also heed in connoeting (anh of the amplifior tank-entenser monnting serews lo one of the two tube cathond torminals: (Pins: 1).

Adjustment

The V'le tubes should glow soon after the power is tumen on. If ther dondet the resistame of R_{11} should be redued until the Vla tubere just stay ignited with the key rlosed. The transmittor shoulid first bre sed up for 3.5-Mro, operation, with ('; sel at maximum coblutitare amb sog tumed to read grid current, Ifter the key is closed, C_{-}^{-} should loe turned slowly until a reading of grid current is ohtaimed. This is the 3, j-Mc. resonamere point. Nowly reducing the caparitane of ('z should show another reading of grid corront at \rightarrow Me. Then the shorting phase for 1 t-Me, operat-
 The key should he chosed and Cia adjusted for maximum grid-eureent reading. The intiat reading mas be slight, hut it should be possithe to bring it u_{p} to normal by readjustment of C_{7}.

Setting up ageain for $3.5-\mathrm{M}$ \% operation, the 3.5-1hc. coil should lo phaged in the amplifier. (" should be adjusted for maximum grid current at 3.5 Mc. Switching the moter over to read cathode current and closing the kier, ("as should be turned to maximum capacitance and then showly durned backwatd to the point where a dip in the moter reading is obtainell. The first dip encountered should be resonanere at 3.5 Me. This sotting should be marked down and atways used thereafter when tuning up on this band. The amplifier tuning for the other hatuls is chone in a similar manner, alwatos sotting ('23 at maximam ans tuning for the first dip in cathode current. The acompataving table shows the average Value of currents amd voltages to be experted.
(sere (s.cT, Ont.1951.)

A Completely-Shielded 90-Watt Transmitter or Exciter

The transmitter shown in Figs. 6-6 6 through 6-69 is desighed for the reduction of v.h.f. harmonic radiation without reguiting sperial construction for shielding purposes. It uses a standard 3 by 4 by 17 inch chassis as the main enclosure. The plug-in coils are provided with individual shields using 3 -inch diameter removable shield cans that also are standard items.

The final amplifier is a 6146 , driven by a 6 A(i7 frequency multiplier that is driven in turn by a 6.A(i7 crustal oscillator-multiplier. Provision is made for driving the latter tube from an external IFO. The power output is approximately 60 watts on all bands from 3.5 through 28 Me. at the 90 -watt input $(\cdot, w$. rating of the 6146 . With plate modulation the 67 -watt input rating gives a carrier output of (rlose to a watts.

Oscillator Circuit

The crustal oscillator uses the griel-plate circuit and is intonded for use with either 3.j- on 7 Me. crustals. Its plate circuit, $L_{1} C_{4}$ in loig. (i-6i6, covers the range from 7 to 14.5 Me , and L_{1} is wired permanently in the circuit. When using 7-Me. crustals C_{4} is tuned towarl its highcapacity end when $7-$ Me, output is reguired for the following stage, and near the low-caparity and when the buffer is driven on lit Me. With 3.5-Me. ervatals C_{4} is set near maximum caparity for 7 -Me exeitation of the buffer, and at or below midscale for $3.5-$-Ne excitation. The tuming in the latter case corresponds to the setting that gives minimum harmonie output from the oscillator: at 3.5 Me. enough fundamontal voltage gots through to the buffer grid to give it adeguate drive. Coil changing in the oseillator circuit is avoided by this method.

For VFO input the feed-back condenser, ("2, is shorted to ground for r.f. by S_{1}. The crystal should be removed from its soeket when using the IFO. I coaxial conneretor is used for the VFO (irruit, and the VFO should be of the type that inrludes the length of coas as part of its tumed output rircuit. The $\mathrm{VF}^{\circ} \mathrm{O}$ output can be on cither 3.5 or 7 Me ., depending on the final output frequenery and the choier of method of operation, as described later.

Fig. 6-65 - A compact and completily shifelded low-power trans. mitter using a 01fo at the final amplifier. It ran be wed at an input of 90 watts on $\mathrm{c}, \mathrm{w}^{2}$ or 6 . watt for blate-modulated "मhome, 'I he unit is mounted on a $31 / 2$-inch rack panel.

Frequency Multiplier

The frequener multiplier or buffer stage is conpled to the final amplifier grid hy a pinet work. This type of circoit promits using a rolativoly large fixed caparitance. (g. diredty from grid to ground in the amplifier circuit and is highly atvantageous in proventing v.h.t. harmonies gencrated in the gride cireut from devoloping an appreciathle woltage betworn grid and gromed. This not only prevents amplification of such harmonies in the phate circuit but also helps kerp harmonie currents from flowing in the d.e. grid roturn ladad.
$\left({ }_{9}\right.$ is also usoful in stabilizing the final amplifier to provent selforscillation at the oprorating frocucones. The larger the capacitance of C_{9} in comparison with the cepacitane in use at r_{7}, the grater the impedatue step-down betwen the buffer plate and the amplifior grid, thus the buffor plate resistane is reflected ats a comparatively low rosistance at the grid of the amplifior. This, together with the fact that ans energy fed back from the amplifier plate cirenit through the tulve's grid-plate caparitance canmet develop much ferd-back voltage across the latge fixed capacitance betwern grid and cathode, defertively prevents selforscillation and avoids the neressity for neutralization of the amplifier. The optimum cireuit values for this purpose are given in Fig. 6-66 and the buffer coil tath)
 neeted in parallel with (sa to provide proper circuit operation. On all frequeneres the buffer tuning condenser, C_{7}, is near minimum copacity at the proper operating setting. A $50 \mu \mu \mathrm{fl}$. cont denser can be used instead of the one specified in Fig. 6-66, if desired.
L_{2} and L_{3} arre small coils in the huffor grid and plate circuits to provent v.h.f. parasitic oscillations in the Inffer stage.

Amplifier Output Circuit

The amplifier output cireuit alse is a pi notwork. designed specifically for working into essentially resistive loads intwom 50 ath 75 ohms. It is therofore suitable for working into property torminated consial cable of the usual impedance values. In case's where the anternat is fed by terpos of bine other than coix, ath antumat mitohing motWork or antemat tumer of the coaxcouphed trpe described in the whaper on tramsmission liness should bo used. 'This permits onerating the roax link at a low stamding-waver ration amd provides the proper lenal for the $61+6$ amblifing circuit.
The amplifier tank comdenser, ('me is a split-stator type comberted to the coil socket in such a way that only one sertion is used on all bands exerpt as. $\overline{3}$ Me., where the second section is connerted in by means of a jumper in the coil form.

Fig. $6-66$ - Cirvuit dialram of the transmitter.

(in - line- $\mu \mu$ lil. minal.

(10-0,010)- μ fel, mira, I2(0)-volt working.

Ci2 - low- $\mu \mu$ fil. per afrtion variahle, lobot-volt spacing

R_{2} - 15,1010 ohma. I watt.
h_{4} - 15,000 ohmw. 1 watt.
Rn - 2g,060 ohms. 1 watt.
$R_{s}-1.00$ olmos 12 watt.
$1 \mathrm{R}_{7}-2.2$ ohms (2 V shunt for $0-25$ milliammeter).
L_{4} in the amplifier phate lad is for the purpose of proventing v.h.f. parasitio ascillation in the amplifier.

Other Circuit Details

Cathome currents of all three tubns can be measured her meaths of the meter switching arrangement shown in Fig. fitio. The amplifier grid current also (ath be measured. The 0-25 milliam-
 lator rathode current and amplifine grid curront, the meter being shunted be 100 -ohm mesistances in and of thene two pasitions te presere rimuit contimut! when the switch is in other persitions. In the switeln pusition for moasuring buffer cathode current the moter is shanted by a low resistance that multiplies the seale by 2 , and when the final amplifier cathode current is measured the meter is similarly shunted by a resistance

Rs - 0.21 ohma (10 times multiplier shunt for $0-25$ milliammeter).
R9, Kin-Jllo ohmer, is watt.
$\mathrm{J}_{1}, \mathrm{~J}_{2} \longrightarrow$ Cobs rommeroors. chasist type.
J3- Chand-4irconit jark.
 timal R-|loms).

lab-Gturns Vo. 11, diameter sis imcly, lenkth 1 inch. la- 8 tarna Vo. 18, diameter $1 / 4$ inch. lankla $5 / 8 \mathrm{inch}$. I.5. I.fi-sure eroil tathe.
$\mathrm{M}_{1}-11.25$ d.e. milliammeter (Simponi Model 125).
\therefore - \therefore PO. 1. logyle.
$\therefore 2$ - -pole, 1-powition wafer swith, non-ahorting (Centralah 2.015).
that multiphes the range bey 10 so that the fullscald reading is 2.50 milliamperes. The values of multiplier resistane mequired in these two cases will depend on the type: of instrument used and should be adjusted to the proper value experimentally. The method is described in the chapere on measuring erguipment.

Loading is controlled bey the output eomdenser, Cus. Athough it hats the highest capaceitance availathle in comedensirs of this construction, it is mot large conongh lor proper oquration of the pi motwork on 3.5-t Mac... so an additional capanitanmer, C_{14}, is comberted in on this hand bey means of a jumper in the coil form. This large fixed raparitance restricts the adjustment range possible with ('13, ss, two coils are neded for proper loading in this band. The one covering the 3 a) () $3750-\mathrm{kc}$. range is adjusted for proper loading to maximum permissible tube input at c.w. ratings,

Fig. 6-6 - The shielded power wiring shomble be installed before the r.f. components are permanently monnted, ineloding the ceramic hy pases arrose the ends of the shibled wires. The wires ronning alome the center of the whasis go to the heater and grid chohe of the tinal amplifier. Ithe two that follow the ehasis enorner at the left are from the oscillator and luffer tathesline to the meter witul).
and the 3750 4000-ke. coil is similarly adjusted for sufficient range to give maximum tube input at 'phone ratings.

Amplifier cathode keving is shown in Fig. 6-66, hut any mothod may be used with approperiate changes in the diagram. I head is brought out from the "hot" and of the amplifier grid leak, R_{5}, so that the der. voltage developed hige exatat tion may be used to control a sereen protertive tube if ath carlier stage is keved. The eireuit constants in the uscillator and buffer stages in Fig. f-6if are surch that looth these tubes "an rum without expitation, with a $30(0$-volt plate supply, without excerding the plate dissipation rating of either 6.16:7. This permits keving the VFO when separate VFO input is used.

Shielded witing for preventing harmonies from flowing on supply leads is indiated in the eireuit diagram. These leads should be beynassed by midget coramie rondensers at the points indicated, using the terchnigue described in the TVI chapter. The corresponding terhnigue for highvoltage mica by-passes is used for the amplifier high-voltage plate lead.

All threre tubes have parallel plate ferd. This permits grounding the tank condonsers dire etly. to the chassis. which is advantageous looth mechanically and clextrically. In the huffer and amplifier stages parallel foed is a noeressity becanse the pi motworks cammot be series-fed.

Construction

All of the circuits with the exereption of the buffer and amplifier eoils are inside the chassis. The metal 6.Mi7s provide their own shidding. The 6146 mounts through the rear chassis wall and is covered hey the same type of shiold can (ICA No, 1549) as is used to cover the tank moils exrept that it is trimmed down a bit in lengeth and is drilled with $1 / 8$-inch holes alowe and below the tube to give ventilation. The locatom of the principal components is shown in the buttom view.

Since the space underneath the chassis is limited, some care must be used to fit the parts in. The best plan is first to lay out the complete transmitter and drill all holes in the chassis,
making sure that everything is provided for before anything is promanently mountel. Make the partitions and amplifier tube mounting bracket and fit them in place before drilling any monting holes for them in the chassis. Mounting holes in these pieres mas then he used to lowate the corresponding chassis holes. The tulue somet bracket and final tank womenser together form a separate subassombly on which most of its wiring may to done, indeluding the shielded cathorle head to the meter switeh, after the merhanimal fit has been wherked. The bracket is dribled ter clear the rear shaft extension of the condenser and uses holes already present in the condenser bark plate for mounting. The plate blocking comalensor, C_{10}. is mounted on the serew which is part of the stator phate assembly: this comdenser must be as clese as pessible to the eondenser so that it will clear the eoib socket mounted on the rear chassis wall. I short stand-off insulator is mounted just to the left of the tuhe soekert, at the left in the bottom view, to mount the plate lead and one end of the parasitic ehoke, L_{4}.

The eronter partition shouhd have at b-inch hole at the point whore the amplifior grid leat comes through from the buffer stage, and should bre rut out about $1 / 8$ inch at the hottom where it must fit over the shidded wiring laid on the

Buffer and Amplifier Coil Table

	Hire Nizt	lo.of Turns	$\begin{gathered} \text { Turns per } \\ \text { Iurh } \end{gathered}$	1. uh.*
$3.5-4 \mathrm{Mc}$.	26	12	3	f*
- Mc.	23	27	$2: 1$	141
14 Mc.	18	10	111	35
21 Mc.	18	5	19	131
2- 30 Mr .	18	31/2	10	0. W
Amplifier coil. I ,				
$3 \mathrm{~s}-3 \mathrm{~B} \mathbf{\mathrm { M }}$.	14	2:1/3	141	14.5
$3 \mathrm{~F} 5-1 \mathrm{Mc}$.	22	2;1页	21	12\%
- Nt.	18	171/3	12	- 3
1f Mr.	14	1.1\%	\%	3.85
21.	$11 ;$, 14	5	1.36
$27-30 \mathrm{Mr}$	14	$1{ }^{1} 3$	5	0.4

chassis. These parts and the meter shield should be the last things mounted, after all other assembey and wiring has beern completed.
The shiolded wiring should be laid in first, as shown in Fig. (i-67. Soldering lugs maty be used as hold-downs, the wire shicld being spot soldered to carch surfl hag. Start the leads. fitted with eramic hy-passess, at the output terminal strip or tuhe saket, as the case may be, and run them to their final lowations, temporarily mounting the part at which they terminate to get the exact lead length. Theon trim the wire and install the erramid ho-pass when called for in the diagram.

After the shiedded wiring is in plate, install the amplifier coil sorknt and wiring, kaving conough lead lengeth to reach the tank eondenser to be mounted later. This coil sorket must the mounted with the ring outvide the chassis in order to provide sufferent clearance for the amplifiertube subassembly. Then complete the ascillator and buffer assembly and wiring, exopet that the buffer eroil socket shombld not be mounted beeause it interferes with installing the amplifier subassembly: Also mount and wire the key jack and motor switch, induding mounting and finishing shielded leads for the meter.

When this has been done the amplifier tube subatsembly may be permanently installed and the conmertions to it completed. After installation the amplifier phate choke should he mounted, using the ehassis holo for the 6146 for aceess. The Iniffer coil sorket and amplifier output condenser, ('13. maty then be installed and the wiring compheted. The last (o)neration is to mount the meter shield.

Since the size of some parts is critioal, in view of the limited spare, the spereifer components used in the unit shown are designated in the circuit (:aption.

Operation

The final amplifier is operated straight through oin all bands and the buffer amplifier preforably, athough not nerossarily, is oprated as a froquencer multiplier. On hathes where the buffer is us od as a straight amplifier care must le taken to (honse tuning conditions that do mot permit sulforscillation in the buffer stage. On 3.5 Me. with either crustal or VF() control there is m trodeney for the butfer to self-useillate berathes its grid cirenit is not resonant at the operating frequene? On this frequence the primeipal procaution to be ohserved is that ('s should be tuned so that the drive at harmonice of the infut frequency is not excessive. The proper setting for (${ }_{4}$ is the one that results in maximum amplifior grid current when the buffer plate circuit is properly resematud.

When uperating on 7 ME., C_{4} should be toward minimum raparitance, hat not far enough to resonate at $1+$ Me. Adjust for masimum amplifier grid current, with the buffer plate eireuit ressmated, her varying C4 toward minimum cabacity. When the amplifior grid current is maximum, pull out the "rrstal or shut off the VFO and the grid curront should drop, to zoro. If it dons not, derrease C_{4} until it dex's. The grid current should be ample with (y_{4} sot so there is no danger of butfor uscillation.

For 14-MIc, operation, sut ('4 near maximum (:aparitance so that the bulfer is driven on 7 . Me. and operates as a doubler. Aljust for maximum amplifier grid current. On 21 Ma, werate the buffor as a tripher, driving it on 7 Me and adjusting C_{4} in the same way as for 14 Me.
The proferable mothod of aperation on 27-30 Me. is to use: 7 -Mr. ervstal or VFO () adjust C_{4} to resonate at 14 Me., and then double in the buffer stage. In this case ('4 will he near minimum capacity. Alternatively, a $3 . \mathrm{J}-$ Me. crystal or

Fig. 0 - 08 - Buttom view of the transmitter completely wired. The wibliator pate coil, $L_{1,}$, is between the two variable combersere at the right. The amplifier circuit oceupies the left-hand portion of the chassis in this photo-
 The tracket on which the amplifer socket is mounted is supported at one end by the pate tank condenser and at the other hy a partition that shield- the amplifier section from the owiliator-fuffer aretion. The amplifier plate choke is monted on the chasis betwen the thbe socket hracket and the chasio wall, just helow the plate-dead terminal. The meter is enclosed by a right -angle shich to prevent stray harmonic pick-up that might canse radiation through tho meter luole in the panel.

VFO may be used，in which（ase the optimum method is to double in the oscillator plate cirenit， the setting of C_{4} boing nowr maximum capacity， and use the buffer as a quadrupler．This results in higher amplifier grid current，in the average case，than can be obtained by guadrupling in the oseillator stage and doubling in the buffor．The grid drive for the final amplifier is less that when using 7－Me．crustals or VFO，but is sufficient for operating the 6146 at maximum ratings on either c．w．or＇phone．Care must be used to selecet the right harmonic whon quatrupling in the buffer， since the funing range is sufficient to reateh both 21 and 28 Me．on the $28-$ Mc．coil．In all the pro－ liminary tuning，it is excellent pravetice to cherek the actual frequenco of each circuit，particularly－ the buffer plate eircuit，with an absorption wave－ moter．

With any of the types of operation described above，the maximum griel current through the 27，000－ohm amplifier grid resistor should be from 3 mal to atrout 4.5 ma．，with the amplifior fully lowded．These vatues ane in exeess of the normal operating figures，the optimum current being 2．7 to 3 ma．for c．w：operation and 1.8 to 2 ma．for plate－modulated＂phome．This is for a plate－supply voltage of 600 ，with a plate current of 150 mai ． for c．w．operation and 113 ma．for phone．

The method of tuning the amplifier is the same on all bands．Assuming that the load has been adjusted to represent a pure resistanee，or nearly． so，of 50 to 75 chms，set C_{13} to maximum capaci－ tance，apply plate and sereen voltage，and adjust（＂12 for minimum plate rurent．Then der－rease the＂apacity of（c13 hy a small amount and reresonate（＇12．Continue until the plate cur－ rent at the minimum of the dip is the desired value．Since the off－resonance plate eurent of the 6146 may run as high as 2.50 ma．it is advisa－ ble to do preliminary tosting at reduced plate
and screen voltage，until the proper operating conditions have been once established．

If the load is mot the type that is represented by a properly－terminated poax lime it maty of may not be possible to control the lowding ade－ guately loy means of C Ci3．The pi network con－ stants are fairly critical as to loading，and if proper loading eamot be socured it is an indica－ tion that the coax line is not flat．

Power Supply

The oscillator and huffer require a total current of approximately 50 mat，at 300 volts．In order to avoid the excessive plate dissipation that might oreur with a supply that gives more than 300 volts，the plate voltage should be regulated by means of V＇R tubes．The plate currents taken by the oscillator and buffer do not vary greatly from band to band，the oseillator current being about 20 mat．on all bands and the buffer taking about 25 mat on all except 7 Mr．Where it is about 12.

The amplifier requires a （i0）－volt plate supply capable of an output courent of lion mat，approxi－ mately．The sereen current averages about 12 ma．through a dropping resistor of 3 3， 000 ohms． the optimum value．A sugested power supply： －ireuit is given in Figs，6－69．This utilizes a single phate transiomer designed to deliver 600 volts at $22 \overline{5}$ mat through a choke－input filter．

Gompared with other beam totrodes，the 6146 oprrates with quite low sereen voltage and the ordinary serem protective tube circuit does mot reduce the sereen voltage to a low－enough value te）prevent excessive plate dissipation when there is no r．f．excitation．The ripenit shawn here rom－ sequently ineludes a lik－75 to cut off the sereen voltage under such conditions．To emmpensate for the voltage drop through the Vle tube the screen resistor is reduead to 25,000 ohms．
（See（バ゙T，February，1952．）

A Single-813 Transmitter

Figs, (i-70 through 6-76 show diagrams and photographe of a tranemittor that can be oprerated on all hathds from 3.5 to 28 Ma. at a power input up to 3iol watts with masomable assuramere that no TVI will fesult, eren in fringe areas. Plug-in coils are used throughout and, exept for the 3.0) Mr. hand, where 3.j-Mo. urystals are required, of
 An 81:3 is used in the final amplifier. This is driven by a tilid buffor-doubler and a bitlia moclified Purere crystal weillator. C:a has suffienent range of capacitaner to rover two adjacent hands with the same coil, simplifying band changing. Possihow instability in the eivis stage, when working "straight through" at the erystal fundamental, is avoded by disemneroting \dot{C}_{3} and plagging in

 rireuit atutomationlly loy a jumper in the base of therenil form (ser Fige 6-7b).
 stage if desired. The ker is in the osidiator cirenit.

A bital a clamper tube holds the input to the 813: at ast wele when exemation is removet. An impertant provision in the circuit is the exatation ronterol. lis. It promits limiting excitation to the fored nemessary for adicient operation without exresive hammonic output. The sereern of the 813 is operatend from the low-voltage supply for the oseillator and hulfor-doubler stages. The sequate torminal is topermit the sereen to be diseommeded during prodininary adjustments of the axater stages. Filament transformers are incluted in the transmittor and atl power leads are filtered for v.h.l. h:rmonics.

Constructional Details

Most of the constructional details mave he obtained from the photographs and their captions. It painted panel and chassis are used, it is of first importance that the paint be removed wherever good contact to the shielding or other parts is reatured. This includes the area where the 813 socket mounting is plated. This is done cosily by using paint remover and hater sandpapering.

Aso of extrome importance are the by-pass comeretions at the 813 sorket. The tubular combenser mounted horizontally acress a portion of the sorket is C1:3 the "Hupatss" unit used as serenolix-pass. The monnting clamp is unseldered from the comdenser so that its case can be soldered directly to Terminals 1 and 2 of the tube socket. Terminal 1 is one side of the filament, and Torminal 2 , which hats no cireuit conmertion, is used merely for merhanical suppert. One of the axial leats of the comdenser is then conneeted to Terminal 3, the sereen grid, and the other gens to the seren-suppla lead. Note that this arangement returns the sereen-grid herpass to one side of the filam ont instand of to chassis ground.
Filament ben-pass condensers. Cin and C_{12}, are mounted as close as possible to Terminals: 1 and 7 with short ground leads going to the alaminum bracket. The eenter-t:ap lead from the filament transformer is connereded divedty to the bean-forming plate terminal (Pin of on the socket, where the ground connertion is math.

Plate by-pase condenser (ift is mounted between the frame of the tuning conslenser athe a soldering lug boited to the bracked that supports the 813 sucket. The ground connection is

Fig. $6 . \% 0$ - The panel of the 81.3 tranemither is $121 / 4$ inches high. "Har metere are' sub. whamed on a piece of 1/4-imeh I're-slworad,

 prod with a piere of servening. 'Tha' ron-trol- for (is amel the linh-aroupling adju=1ment are to the rinht.

Fig. 6-71 - Schematic diakram of the 813 tran-mittor. Sucket conncetions for phos
in coils L_{1} and L_{2} are shown. For connections to the eoil pins, see fiar. $6-1$.

(3-20n- $\mu \mu$ fil. rimeiving variable (Millen logon).

($:_{5}-1001-\mu \mu$ fil. miral. $\mathbf{0} 100$ volts d.c. working.
(\therefore - $100-\mu \mu$ fil, receiving varialle. (Villen 10100).
(:10-1010- $\mu \mu \mathrm{fd}$, miat, loot volt: d.e working.

 10.) 1).
C_{15} - 100 - $\mu \mu \mathrm{f}$ (l.-per-section variable, 3000 volts peak (National "MC.100-1)).
Cits - Ventralizing condenare: sec text.

$1 h_{1}$ - li,000 ohms. l_{2} watt.
$11_{2}-\cdots 0$ ohms, I watt.
$1_{3}-33,000$ ohms. 1 watt.
$R_{4}-I^{-1}, 000$, ohms. I watt.
$\mathrm{R}_{5}-\overline{\mathrm{x}} \mathrm{O}$) ohthos.? watts.
R_{6} -
$1 \mathrm{~K}_{7}-2.5000$ ohms. 10 watt - , wire-wound.
R_{s} - I O, (OOO ohms. 10 watts, wire-woumd.
$R_{0}-100$ ohms, I_{2} watt .
$11_{10}-2.010$ ohms. 10 waths, wire-wernd.
L_{1} - ()acillator plate roil:
 close-wound on I-ind diam. form.
 spaced to ocropy ís inch on 1 . inch diam. form.
 tional R-3:3) mounted inside coil form as shown in rig. (1-71). Fiorms for aloove coils are Nillen tionos.
$\mathrm{L}_{2}-1$ oubler plate eoil:

- 3..̈ Me. - $1^{-1} \mu \mathrm{~h} .93$ turns No. 18 d.s.e. close.
made close to the spot where the filament br-pass condensers atre returned, and a heavy lead made from ${ }^{3}$-inch copper strap makes the conneretion from the "hot" side of ' r_{14} to the tuning-condenser frame. The high-voltage lead passes from this junction point through the chassis in a
- 7 Mc. - wound on $11 / 2$-ineh diam. form.
 spared to cocrupy I inch on $1^{1}{ }_{2}$.
- 14 Mc - med diam. form.

Forms for tor oreapy 1 ineh on l-inch diam.
forma for alove coils aro Dational Xlk-3, exeept

L_{3} - Amplifior plate coil:
(III are B \& $\|$ 'TV series. Wionlime data, except imbuctance, given holow are for varh half of coil.)
 -120inch dians.. 2 inchers long.

- 14 Mr. - 0^{2}-inch diann. 3 inchers lonk. - 0 O IV: one turn remownd from Garh sidr, $4.2 \mu \mathrm{~h} .: 1$ turns Vo, IO, 2
 eath side, 1 uht.: 2 turns Vo. $6,23 / 8$. inch diam.. 1 sú imelue long.
I. 4 - Shielded link. 3 turn= (13 is $\|^{4}$ 3.3.8:3)

I2 - Coasial output jark (Amphenol 83.11R).
J_{3} - (Insed-cireuit jach.
$11 A_{1}-0.100$ ma. I.c.

II $\mathrm{A}_{3}-\mathrm{IN}+\mathrm{j} 10$ ma. d.e.

5 - Rotary wafer switrh. 2 prics, \bar{J} positions. ceramic.

T_{2} - 10-volt transformer, i amp. (Vhordaraon T'21818).
$3 / 4$-inch ceramie bushing (Millen 32103) to RFP(4 inside. In addition. the high voltage is applied to the rotor of ('1s through the erenter tap) of the plate coil, L_{3}. Commertion from this point to $R F C^{\prime}$ is made through at soond $3 / 4$-inch ceramic bushing that is visible in the botem view.
lipe f-it - The chazew for the 813 transmitter is 10 by 1? by 3 imelher, with the 12-ineh longth ahong the pant, C is mount of on $1 \frac{1}{4}-$-inch cene in-ulatote with the lower freel aksinint the ehassid ant the apper ones akaint andea fatened to the top of the chaswis, Angle pieere under the noper fret supmert the woll jach har. The 81.3 is mounted horizomtally with its
 Cio monsists of two stripe of mertal $3 / 8$ he 2 inches mometed on pillar hechind the worhet. Whe piece io bent to give at -pacing of atrout 1_{2} inch. $R I^{\prime} \mathrm{C}_{3}$ is to the right The cristals, oecillator tule and moil are to the rizht, the buffer-douller to the roar. The metern are emelosed in a shieldine tras. Paint is remosed from the chassis where needed toprovide gond eontant will the shirlding.

Adjustment and Operation

The cireuit diagram of a suitable power sup)ly for this transmitter is shown in Fig. (i-7i), although, of course, it is not meressaty to operate the 813 at maximum rated plate voltage.

The only eritical adjustments needed are to be rertain that the small phag-in coils cover the proper ranges, and to neutralize the sis. If the coil specifications set forth in the parts list are followed closely, it will be possibio. to there the plate circuit of the $6 . \backslash(17$ to wither 3.j of 7 Me. with the first coil, and to wither 7 or 14 Mr. with the semond. Resonance in both the 6ati7 and 606 stages is indicated by MA, which is commerted in the common supply Wead. With the desired coils in place, the exeitation control set fully clockwise and the key closed, apply plate voltage (betwern 350 and 400 volts d.e.) to the exciter stages. Turn the oseblator tuning condenser until the meter kieks upward. indirating that the bil6 stage is being driven. Next, furn the (6) 6 plate-tuning condenser until the meter reading dips, indicating that the stage is tunced to resonatice. Now, touch up the tuming of the osceillator stage slightly. This readjustment will produce a slight additional reduction in the curent indicated. At this point the 6-6 should be driving the 813 stage into grid current, as
indicated by $M A_{2}$. Depernding on the band solected and the plate voltare applied to the expiter stares. grid curment will be at least 1.5 Hat. (It will probably run (onsiderably more than this cxopt in the "ase of 28 - Mr. operation.)

Now aljust mentralizing comdenser ris to obtain minimum foel-through of ref. from the exciter stages to the final-atmplifior tank circuat. To do this. couple an indirating wavemeler to
 and adjust $\left(\begin{array}{l}\text { b } \\ \text { be } \\ \text { bemding or } \\ \text { omming the }\end{array}\right.$ plates to obtain minimum indiration.

Wher the amplifier is moutralizal, commot a dummy foad to the sutput rireuit. 'This is best dome bey comberting ant antemata conplar to the swinging link of the amplifier through a

 a fow turns of the coil in the coupler. Ipply plateand sereen power to the slas, abd resemate the tank cireuit as indieated by a sharp dip in the rurrent shown by $\quad 1 / I_{3}$. This shoult be dome quickly, becatise the wiferemathere plate rurrent will exoced 300 mat.. dipping to a vory low value at memature. land the amplifier by adjustment of the antenna tuncr and the swinging link until pate current of 200 mat. or slightly more is indicated. Now open the key. If

Fig. 6-73-View of the 813 transmitter with bottom plate removed. 'The chasisis is fatolned one inch from the left-hand edya of the pathel. From left to riaht, the crsstal witeh. Ga and fis are monatiod on brackets. these for the lather two bering insulated. R_{b} is monnted on the pancl. Y_{2} is (1) the rikht, while the terminals of Timuy ber sern through the cloarame hole
 sorket is abowe Cx. All prower wiring is done with shiedled wire and herbateres are conneected as reommended in the chapter on 'IV'. Ill v.h.f, filter iome pmonemt are monnted diremty at the powerterminals. The h.v. line gow through the end of the o haswis thermal ferol-thremph invabators.

Bottom View of Coil Form

 The arrangement used fur operation in all exept the 3.5-A1r, batul is shown at A. The jumper, which is soldered inside the coil form, connerte the aroil to thinge condenser Cis. In 13, used only for 3.5-Nle operation, the jumper is omitted. which disconnects the tuning condenser from the errenit, and an rof choohe is substituted as an mutuned plate imberdance to herep the olo stage stable when uprating atraight through.
trammitter and the antemma coluplor in all areas where TV reocerers are nearts.

With the 813 , there is no point in running the grid current berond 15 mat. Good effiedener can be ohtained with this level of exatation, or even fess, and increased excitation can acerntuate the generation of bhef. harmonies. Vnder test in a fringe area, with a TV recovere in the same room, faint interterence wats notierd when operating at $28,050 \mathrm{ke}$. until the grid current was redured to 10 mat. At frequencios above $2 x, 500$, grid current could be increased to 15 maz with no interference.

If am. 'phone operation of the transmitter is desired, a small iron-eore choke should be inserted in the sereen-grid supply lead as described in the chaptere on radiotelephomy.

the elamp tube is operating property, plate e current in the sis stage will drop to almout 40 mas, alled the current in the first two stages will be about h.5 mat, (irid rurrent in the 813 stage under these conditions should ber zero. 'To dherek for stability of the 813 stage, rotate the plate condenser slowly through its contire range, at the same time watching for any change in phate wurnent, and for any indication of grid current. If a chathge takes platere or if gride current fows, cheerk with: wavemeter to find the frepurnery at which the stage is owrillating. If it is near the operating frequener, readjustment of the neve tralizing comdenser is catled fors. If oscillation is in the v.h.f. ranger, the ustal cures for such paraties should be applied.

A low-pass filtor such as that dearribed in the chapter on TV'I, or onte of those availathe commercially, should be installed in the cosxial line between the

Fig. 6-65- Cirruit of a suitable power supply for the 813 transmitter.
 $\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-1-\mu \mathrm{fd}$, 60therolt elec. trolytie.
R_{1} - 2.,, 000 ohms, 200 watts.
R_{2} - IV, 0 (0) ohms. I 10 watts.
I.s - $5 / 2.5 \cdot h, 300$-ma, swinging filter rhooke.
I. $2-20-h_{1}, 301$-mat. smoothing choke
$\mathrm{I}_{3}, \mathrm{I}_{4}-\mathrm{i}$-h. I.ionma. filtor rhoke.
$s_{1}, s_{2}-10$-amp, switch.
s_{3} - 3-amp. witrh.
${ }^{\prime \prime}$ - lialament transformer: 2.5 volto, ll amp.
' I_{2} - I'lath transformer: 2000 volts d.a'. 300 ma.
I_{3} - Power transformer: 3-5-0. 3..) r.m.s., lion mat.: 5 voles, 3 amp.

Fig. 6.76 - The shidelink redtemere for the 81:3 transmitter i- made up of alumimum -herets fatstened together with strips of angle stome. whith are tapped for the screns. I hinged door sovers the hollog that prow ide arress to the phat-in revils. The large "ppening tw the le ft is $+1 / 4 \mathrm{im}$ inges splare- the ather tow dre 3 by 1 ionelans. The wemtating laoles ower the tulese are cosered underneath with serecning. The bath pathel is also rut out to elear the terminals set in the rear of the chassis, as shown in Fiz . 6-:2.

A 200 -Watt Transmitter for 160 and 80 Meters

Figs. 6-74 through 6-81 show eireuits and constructional details of a 200 -watt tramsmiter designed primatrily for the fotomoter band. However, it will ako work well doubling freduency to the $8(0)$-meter hand in the output stare.

Fig. 6.77 - 1 front view of the 160 -mber transmitier desigmed by W l'l゙KJ', showing the pancl layont. 'Jlo'
 Vational S(: dial. 'I'he lower row of controls are loft to right, heying jark, fuffer plate tunis, mener switch and the filament switel. 'I'o the right of the two moters are the final plate-toming and theswinging-link controls.

Circuit

The cirenit is shown in Fig. (i-79). A 6iA(i7 is used in the series-tuned $\backslash \boldsymbol{P}()$ which works on 160 . The oscillator platte circuit, which is untuned, is (aphewity eompled to :mother $6.1\left(i{ }^{6}\right.$ in the buffer stame. Cathode bias is supplied to the buffer stage he R3. The buffer soren voltage is taken from the regulated source that supplies the VI () seetion. The butfer operate's straight through and is
 was dosed bectuse of its low drive reguirements aud its adaptability to at wide ramge of plate poltages - it is pusilhe tor rum an mont of 2 inn watte with a plate voltage as Jow : 12%. The stage is noutratizad by means of a simple homemate combenser, ('s, 'The condentiomal nometratizing comeretion, shown in doted lines, wats mot Had in this instaner, shay witing cabmatames are surh that the rimenit is "ower-mentratized," requiring the introluction of positive instemb of negative, fered-back for neut ratization. Therofore, the ne ut ralizing capacitaner is dieectly from grid to plate. Howerer, the use of different eompenonts, or a slight! different layout, maty requiro the eonventional combertion shown in doterd lines, rather tham the one nsed.

Fixed hitas is supplied to the final amplifier hey ath-ma, selenium rectifior and a smatll filament transformer, 7_{2}, working in reverse from the $6.3-$ volt filament supply. A VR-150 is used to stabilize the bitwing voltage. siderom woltage is supplied from the high-voltage soure through h_{3} and i_{9} to provide at simple means of moslubating both plate and screen.

Construction

The trimsmitter is constructed entirely on a stamblard 10×17-inch chassis with a $101 / 2$-inch pancl. The VFO portion is built on the left-hand side of the chassis. The 6Mti- sorket is inverted so that the tube extends below the chassis. This method allows all of the wiring on the soeket to be coldowed within the shield. ('3. $\mathbf{C}_{4}, C_{5}^{\prime}$ and the grid resistor, R_{1}, are all soldered direrely to the socket, ath the filament hy-pats comblaners, ('23 and ('24, ass well as the sereen by-pass mondenser, C': are soldemed diredty to ground from their resperation pins. shabeded pawer wires are brought inte the eompartment through rubber grommets. The r.f. plate lead to the eroupling condenser, C's,
 cable and this also is brought up through the chassis along with the power leads. L_{1}, the VFO coil, is close-wound on a 1 -ind Millen form and is mounted on a half-inch conte insulator. The ends of the winding are soldered dieredly to the ir combertions. Two hatf-inch spurers arre wasd to hold the VFO tuming condenser, ('s, athove the chassis so as to line the shaft up with the drive merhanism of the Nattonal sC. dial. The oscilbator padder, C_{1}, and its mombing braket are bolled firmly to the chatsis. A $3 \times+\times$ in-inch athminum utility box is used to (meser the VFO aircuit. A smatlonening cut in the front cower athows the tuming dial to turn fredy:

The oscillator plate ehoke, RFC口, and the buther grid choke, RF' 3 , are munted vertically: The choke terminals are used as tie points for the compling condenser, C_{8}, and the buffer grid re-

Hig. 6-88-A viaw of the VFO seretion with the coner remoned. Ifle inverted ofl: werhet is just to the laft of
 wehet, the whielded wire cemmedted to the ehohe is the kesimglead. The arid coil is monnted on a half-imeh norye infulator. The paller combleneer is mounted on a "l" shaped brachet to the right of the tuning condenser.

$\mathrm{C}_{1}-100-\mu \mu \mathrm{fll}$. variable (Millen $2 \boldsymbol{2}$ l(01) .
(i2 - $50-\mu \mu$ fol varialole (Millen 190.50).
Cis. Cs, Cis4 - loo- $\mu \mu \mathrm{fl}$. mira.
Cit, C. C - $080-\mu \mu \mathrm{fl}$. silverenl miad.
 dise ceramie.
(.10-140- μ (id. variahle Millon |ol 10).
(:17 - Noutralizing capacitancre see text.

Cla-I Mal-wertion variable. 206- $\mu \mathrm{f}$ fl-prer-sertion (Nalional 1 IVIC:-20(0-1) .
C2s, (2r-8-ufil, 250-volt rlectrolytic.

K_{1}. $\mathrm{K}_{2}-22.0 \mathrm{OH} 0$ ohms. ${ }^{1} 2$ watt.
R3—220 ohms. I wat.
R K_{4} - I 0 (010 0 olims. 10 watts. adjustable.
$R_{R_{5},} R_{\text {fis }} R_{-}-100$ olims. 2 watts.

$R_{10}-5110$ ohtus. 2 watts.
 1-inch form.
$\mathrm{L}_{2}-70-\mu \mathrm{h} .-96$ turns No. 21 . 1 -inch diam., 3 inches long (13 \& 11 3016 Minidutor).
sistor, R_{2}. The buffer tuning condenser, C_{10}, is mounted direetly in front of the tube socket on the vertical bracket supplied with the endenser. A 13 \& W^{1} 3016 Miniductor has just about the right induct:nue for L_{2}.

The 813 soreket is mounted directly on the chatsis to the right of the buffer-tule socket, with the coupling condenser, ('us, placed so that the leads are as shom as pasible. RP' $C_{\text {5, }}$ the 81:3 grid choke, is in front of the tube socket, wear the grid-meter shunt. The meter shunting resistors for the buffer plate and the $81: 3$ grid cirruits are fastened to a pair of twoterminal lug strips. The 813 scrembecurrent shant is mounted on two small cone insulators and is comereded with high-voltage insulated wire. simer the sereen voltage rises to the supply value when the tube is not being driven. All external power leads hatve v.h.f. filters. The components are placed in the enclos-
1.3-1.8 N1. - $90 \mu \mathrm{~h}$. - 5 t turns Vo. 16.3 -ineh diam., 0 inches long over-all, $3 / 4$-inch space at eenter for L_{4} (B \& II 160'TVI or 'TV, with momenting for ploge in linh).
3.5 $\mathbf{3 1 .}-10 \mu \mathrm{~h}$. - 38 turns No. 14.3 -inch diann., 6 inches lons over-all. $3 / 4$-ind prace at center

I.4-5-turn variable linh (13 \& 11 35.5.5).
$\mathrm{M} \mathrm{A}_{1}$ - 1 Cr milliammeter, 50 -matale.
$\left.\mathbf{1 1} A_{2}-1\right)$.e millianmeter. EtO-ma-scale.
 tienal R-l00-s).

S_{1} - Single-wafer double-pole 3 -position ceramie rotary. S_{2}-S.p.s.t. togyle.
SR - $\overline{\text { S }} 0$-ma. splenium reotifier.
' 1 ' - 6.3-valt 3 -amp. filament transformer (Stancor P-50l. 4 or eruiv.).
T_{2} - 6.3-volt 1.2 -amp, filament transformer (Stameor P.ol3: or equiv.).
$\mathrm{T}_{3}-10$-volt 5 -anop. filament transformer (Stameor P-6139 or equiv.).
wre formed by the aluminum barrier shield running the length of the chassis.

The neutralizing "condenser," C_{17}, consists of a strip of aluminum about a half inch wide and 2 or 3 inches long, bent at right aughes and mounted on a feed-through insulator near the socket grid terminal. The feed-through is comnerted to the grid terminal and neutralizing is adjusted by altering the length of the strip or by lending it closer to, or farther from, the tube.

The output tank condenser, C_{19}, is mounted alove the chassis on half-inch cone insulators. The shaft is connected to the tuning dial through a coramic-insulated shaft coupling. The jack bar for L_{3} is supported on National GS-1 pillar insulators and mounted alongside the tank condenser. Another insulated shaft coupling is used to extend the shaft of the swinging link to the panel, I length of coaxial cable is run from the link assem-
 lefometer whasts remoned from the eahatert. Olo the rear edpe of the whas-is are Hee I wollament transformers and the I R culue far the hias sugrpla. T2 is andermath. Ia front of the transfinmors ate the 6 W:- luffer twhe. the \K-I.joregulator tor the \ill and the alumimum less aheid. ing the orallator aretion. F"o He left of the Blis are the linal tanh eomdenser and the -minging-linh azarmbly. None the rear of the chamois are the high-soltage commertor. the 1lis.solt input commertur. the krounding pest and the raviter low-siblame emmedor.

bly to the antemat terminal along the left drop of the chassis.

The shielding barior is spaced 3 inches from the rear. This enclosure contans all of the ate. wiring, the line ehokes and the bias supply. The high voltage to the final is routed through a feredthrough in the shield. Les is cemented betwerol lwo reramie rone stand-off insulators on the other side of the harrier.

The cireuit of a suitable power supply for this unit is shown in Fig. (i-75). I power tramsomer having a rating of 700 volts, c.t., 70 mat mat he substituted for the one spectifed under T_{3}, sis turns on the low-voltage supply and the filaments. of the high-voltage rectifiers. Sig turns on the high-voltage transformer. When S_{3} is open, a 115 -volt lamp, I_{1}, is eonnected in series with the primary of the high-voltage transformer to reduce voltage during adjustment.

Adjustment

After turning on the fow-voltage supply, the slider on R_{4} should be adjusted to the peint where the Vla tube just stays ignoted with the key closed. At resonamer, the butfer phate cument should he atout 22 mat. and sereen (urvent :ap)-
proximately 8 mas. This: should produre : 41 81:3 gride current of is or 20 mit. When the key is operned, the hufter phate current should (irop) to about 12 mat. While the sereobe current is reduced almost to zero If there is any variation in bution phate curvent as the tank rirenit is turned theroth its range with the keve open, at check should he mate for patasitic oscollation, as discussod carlier in this: whatpter.
In tuating up the linal amplifier, the seremen resistor, h^{\prime}, should be adiusted to beave about 20,000 ohnns itn the aireuit and guturn or hatif maximum phate voliago appliged. I dummy bent should the comenered and the output tank tmend (1) resonturee. As the lowd is adjusted to bake curvent, the plate and sareen voltages can he increased slowly while chereking the stabilite: For momal oproation at maximm legal inpul, the sereern voltage is raised to 3 Bat and the phate voltage to 1200 or 1250 . The coupling to the antenna or lowed can then be adiusted, bey means of the vantahb link. to bring the power input up to 200 w:

In the case of s()-motere operation, it may be of some advantage to ratise the sareen voltage to tol (For further details sece (S.ST for July 1!922.)

Fig. 0.81 - Bathom virw of the 160 -meter transmitter. R_{4} is to the left. Whe inverted 6if:- omeillator lube is just (1) the left of the buffer tuming +romdeneer shaft. In fromt of the 813 sochet are the meter-humting resistors and the meter withth. R_{s} and h_{0} are to the right of the 81:3 sochet. The linal plate whote is monated on the rixht drop of the chaswis. All prower wiring is donle with ahidden! wire to suppres , .l.f. harmonics.

A Simple VFO

The details of a simple VFO with output at 1.75, 3.5 or 7 Me. are slown in Fïs. 6-82 through ($\mathrm{i}-86$. In the cireuit, shown in Fig. ($\mathrm{j}-\mathrm{8}$), a Type 576i3 miniature pentede in a seriestumed ('uppitts oseillator circuit drives a similar tube as an amplifier or doubler. The output rivenit of the oscillator stage is broadhanded through the use

Fig. $6-82-A$ simple \backslash FOO deliscring matput at $1 . \overline{\text { an }}$. 3.5 or 7 Mc.
of self-resonant slug-tuned coils at L_{2}, and froquency may be dowbed in this ciredit, as well as in the output cireuit, to obtain $\overline{\mathbf{T}}$-Me. output. For 3.j-Mc. ontput, frequeney may be doubled in either stage. The nominal output is appoximately 2 watts - sufficiont for driving the ustal
erystal-oscillator stage of the tramsmitter.
To simplify the bathedspead moblem, the ose illator tuming rabge is restrioted. At $3 . \bar{s}$ Me. a range of apporimately 2.00 ke. is covered. For (., of: oration in this band, the band-set renthenser, ('2, is sed se that the thanig eondenser, ('i, wores appoximately 3.00 tw 37.0 ke . For operation in the 'phome pertion of the band, ('2 is rese to shift the ramge to appoximately 3750 to 400 ke . Corrmponding ranges are provided at the harmonios, athe the oscillator can be tuned low enough by (a) to cower the 11 -moter band with apprombite doublars.

Construction

'The unit is built in a $\overline{5} \times(\mathbf{0} \times 9$-inch steed box with eap-type eovers. The emponents are aswombed on an aluminum-shee hase supperted fre sotions of aluminum angle stock that hold the base halfway botween the two eovers. On top, the tuning condenser, C_{1}, is fastened direetly to the hase along the renter line. The shaft is fitted with a National lype AM vornior dial. The two tubes and L_{2} are in line to the right in Fig. (6-83 with the output tank woil, L.3, to the left of the amplifier tube. The L_{2} coils are wound on Nillen Tye 7 fool shiedded shig-tuned forms.

Inderneath, in Fig. 6-84, the band-set condonser, C_{2}, is mounted against the front of the box. A shom lead through a feed-horough point or clearance hole eommerts the stator of cez to the statore of ('a above. L_{1} is wound on a Millen 1-inch woil form and is placed immediately to the rear of 's. The output tank condenser, C_{14}, is nounted on a brakket with its rear stator termi-

Fig. o.8.3 - 'The top of the simple IV'() showing the oscillator tuning comdenser, the tubes and phug-in coils.

Fig. Bo8.f - Buttom wiew of the simple IPO showing the arrangement of parts underneath.

HIGH-FREQUENCY TRANSMITTERS

Fig. 6.85 - (.ircuit diagram of the simple VFO.
(it - Approx. 15- $\mu \mu \mathrm{fol}$, variable (Millen 10ne with all hut 1 rotor and 2 -tators removed)
(:2-100- 10 fid. varialla (Villen 22 100).
($3,(4,-0,001-\mu \mathrm{fd}$, silwered mica.

(ite $\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{11}, \mathrm{C}_{12}-0.01-\mu \mathrm{ft}$. dise ceramic.
(10 , Ciz-0,001- ffl . dise ceramic.
(i4-110-mefd. variahle (Villen 29 1.10).
$\mathrm{K}_{1}, \mathrm{R}_{2}-1 ., 000$ ohms, $1 / 2$ watt.
1.1-62turns No, 30 d,a, ... I inch diam.. dense wound. $1.2-1.5$ Me, - 211111 rn- Vo. 36 d.s.e., 12 inch liam.,

- 3.5 Mc. - 126 turns No. 30 d, 天,, 多 inch diam.,
nal close to the eril socket. It is plamed so that its insulated shafteextension control will babance up with the control for ('2 in fromt.

The various r.f. chokes and fixed comdonsers are grouped closely around the sockets with which they are associated in the cirenit. All power witug is done with sholded wire and coaxial output terminals are provided at the rear for either capacitive or link coupling. Key and power counections are made through the oretal plug. several ventilating holes are cut in the longer sides of the box and also in the top cover.

Adjustment

The unit recuires a regulated 150 -volt supply. The supply diagrammed in Fig. 6-sf is suitable. Finst adjust R_{1}, Fig. $\mathfrak{i}-86$, to the maximum resistatere that will permit the VR150) to stay ignited when the key is closed. Then, listening on a calibated receiver, chose the ker, sel C_{1} at maximum capacitanee and adjust (a) until the oseillator signal is heard at 3 Boon ke. Toning (1 should then eover the hand up to about 3750 ke. Mark the setting of f_{2}, set f_{1} at maximum again and adjust C_{2} until the signal is heard at 3750 kc .
dlose.wound (Villen 74001 form). ($75 \mu \mathrm{~h}$.)
 $11 / 2$ inches diam., clowe-wound (Bud OFLL-160, 1.4 turns remosed).
-3.5 Mc - $16 \mu \mathrm{~h} .-20$ turns No. 29 d.e.c., $11 / 2$ inches diam., dlose wound (Bud OELL.-80, 8 turns renoved).
 diam., $\frac{8}{4}$ indh lome (Bud OEL -20).
$\mathrm{J}_{1}-$ Chassis-monnting ortal phag.
$\mathrm{I}_{2}, \mathrm{~J}_{3}$ - Female coaxial connector (Jomes, s101-1)).

Then ('1 should cover the range from 3750 to approximately 4000 ke . Repeat the process, setting ("2 for about 33:0 ke. to obtain the proper range for 11 metors.
'lo adjust the remainder of the ciresuit, turn the slug of L_{2} in full. Toueh a small neen bulb, to the eapacitive output terminal and adjust ('14 for maximum indication. Cheek the output frequency with a wavemeter, since indications may be obtained at any multiple of 1.75 Mc . When the VOO is comected to a following stage, C_{14} and L_{2} should be adjusted for maximum grid current. For capatitive uotput coupling, comnection is made at J_{2}, while J_{3} is provided for link coupling. With capacitive coupling, the output tank circuit should resonate with conxial-cable lengths up to five or six feet. The frequenes should be rechereked, sinee the setting of C_{14} will be influenced somewhat by the length of the coaxial cable with capacitive coupling. (${ }_{14}$ may recpuire an occasional touch-up in tuming the VPO across the hand. A milliammeter connected in series with the key should read approximately 40 ma.; about half of this is taken by the oscilliator screen and plate circuits.

Fig. 6-86-Cirruit diagram of a power supply for the simple VFO. ($1_{1}, C_{2}-16-\mu \mathrm{fl}$. 150)-volt electroIntic.
R_{1} - 501010 ohms, 2.5 watts, adjustable.
1.1. $1.2=10-\mathrm{h}, \mathrm{B})$-ma. filter chone. J_{1}-Octal socket.
5 - 3-amp. mggle switeh.
H_{1} - Power transformer: 325-(0. $3: 5$ volts r.m.s., 40 ma.; 6.3 volts, 2 amp.; 5 volts, 2 amp.

Fig. 6.90- Carcuit dhapram of a suitable power supply for the silenced VFO .
$\mathrm{C}_{1}, \quad \mathrm{C}_{2}, \quad \mathrm{C}_{3}--40-\mu \mathrm{fd}, 450$-volt electrolytic.
$\mathrm{K}_{1}-10,000$ olims, 25 watts, adjustable.
$\mathrm{R}_{2}-5,000$ ohms, 10 watts, ad. justable.
$1,1, I_{2,3}-15 h_{y .}, 50 \mathrm{ma}$.
S_{1}-S.p.s.t. togyle.
T_{1} - Power transformer: 350-1)350 volts r.in...., 70 ma.; 6.3 volts, 2.5 amp.; 5 oolts, 2 amp.

oscillator output by incrasing the size of R_{3}, or decreasing the size of either R_{2} or R_{4} should correct the trouble.

To adjust the bandpass coupler in the output eireuit, it is first mecessary to comere the unit to the stage it is to drive in the main portion of the transmitter. This should be done with as short a lead as possible. In the arrangement shown in the circuit diagram, direet connection of the output to the grid of the next stage is shown, so that the fixed bias applied to the keving circuit cen also be applied to the following stage. This is a requirement if full advantage of
(A)

(B)

Fig. 6-91 - Two suggested methods of coupling the VFo unit to the tramsmitter. In both cases the 6.10: is used as either a choubler or guadrupher from the output of the $\mathrm{VF}^{\circ} \mathrm{O}$. In A , a former erystal-oscillator stage has heen revised to operate with fixed bias. In B , a switehing astem providing for either VFO or erystal contral is shown.
$\mathrm{C}_{1}-0.001-\mu \mathrm{fe}$. (or larger) mica.
$R_{1}-10,000$ ohms, $1 / 2$ watt.
$R_{2}, R_{3}-4 \overline{4}, 000$ olmms, $1 / 2$, att.
S_{1} - Double-pole 3 -or-more-position ceramic.
the "silenced" feature of the design is to be gained, as explained below. Once connection to the grid of the following stage is made, open one side of the secondary circuit of the bandpass coupler, sparate the two coils as far as possible. and resonate the primary eircuit with the oscillattor set to the eenter of the band. Recomert the secondary, open the primary circuit, and resonate the secondary circuit, adjusting it for resonamee in the center of the desired pass-band. I grid dip meter will be invaluable in making theso adjustments, although they can be done, at a sacrifice of time, by other methods. Once both rircuits are resonated properly, move one coil closer to the other a fraetion of an ineh at a time until the response of the coupler is flat across the band. Output should be observed by noting grid current in the following stage as the main tuning condenser is tuned through its range. If the output varies widely from one end of the band to the other, readjustment of the trimmer condensers, and the coupling between the windings, is required. Sufficient drive for the former crystal ospillator in ahost any modern tramsmitter should be available across the entire band. To eliminate the last trace of signal from the oscillator, it is usually neressary to apply a certain amount of fixed bias to the grid of the stage into which the VFO works When eonnected as indieated in Fig. (i-88, the 75 volts bias from the VFO power supply will be applied to the grid of the following stage. If the following stage has a grid hlorking or coupling condenser, this should be removed. Iny grid leak in this stage also should be eliminated.

Adjustment of the keying characteristies is made by changing the resistaner and caparitance in the keying cireuit, as deseribed elsewhere in this book. A variable resistance, R s, is included, but some experimentation with the value of ('a2 may be needed to suit individual tastes.

The diagram of a suitable power supply for this unit is shown in Fig. $6-100$. I_{1} should to adjusted until the two VR tubers operating from this branch stay ignited under load. Re shoudd similarly be adjusted until the VIf tube stays ignited under operating conditions.
(See QSTV, Fehruary 1950.)

A Beat-Frequency Exciter

Fig. ti-918 shows the cireluit diakram of at trams-

 ervistal oneillater at biono ke, and the output of the tilkid VFO, eovering tha range of 2 tion to Bono ke, are combined in a mixer of the babanedmendulator tape. Thas output of the mixer, which makes use of at pair of oblitis, is tuned to the differener betweren these two freguencies to give the range of 3500 to $38 \% 0 \mathrm{ke}$. This range includes the rew. portion of the Solmeter band and, hy adding suitable frefueney multijliors, :all other bathds up, to :nd including the 2s-Mre band (ath be povered. With a dhatige of erystal frequemes, the unit will also cover the su-meles' 'phome band.

The advantare of such a sestem is that neither oscillator need be keved for herak-in operation, since the fundamental athel harmonies of both nerillatem: fall outside amateur bands and therefore do mot catuse interference in the receriver. Both oweillators run continuonsly, while the mixer is keved. Thas the keving charateristio (em be shaped as desired to climinate key elicks withont the danger of introduring charp.

The tilstitis in the batamedemodulator cirent are combered with their phates in push-pull. The VOU drive is fed to the two No. 1 grids in paralled, while the erystal-oseillator signal is fed in pusthpull th the No. 2 grids. The VRO fundamental and harmonies are out of phase in the push-pull output rimenit and are eatreolled to megligibla. amplitude, so that the only signal present is the desired differeme leat to which the output cirenit is tuncel.

Amplifier Section

The ontput of the rimeuit shown in Figg, (i-9t will lx puite low, athl unle:s : an aderpate bufferdoubler suetion is abrealy : avaitahle, the addition of ath amplifer will he neressary. Fig. (i-9. shows the rimenit of : stable output sertion sufficient to drive a beam-totrode final to rated input on the

Fig. 6-92- A brat-frequeney exciter built by W6RZI. The dial at the left emmeds the fremencs of the (fio) and thereby the frequenes of the exifter output. The other fwo diab-are for the erystal-omeillator and amplificrocoupat tanks.
fundamental frequenters as a feature of convoniencer in tuning, a bathdase coupler is incorporated in tha output of the mixer, thas making readjustment of this stage bunorevsimy over the ratuge of oprating frepurnetes. This
 is merely substituted for the output cirenit $\mathrm{r}^{2}=L_{2}$ in Fig. ti.9. when the :mplifier sertion is added. The bides untuned butfor stare, although not strictly essomtial, provides a small amount of gain and, more important, eliminates the nered for neutralizing the output stage, wom when at poorly-sererned tulne, surh ats the iffe, is used.

Construction

Figs. 6-92 and 6-93 show an cxample of the construction of a unit of this type. The exciter shown in the photographs is mot the one whese cirenit hagram appears here, ath thoug the cirenit is exsentially the same aside from the deve of regular-size tubers. Merhanical stability of the variable oseillator, its drift chatamerristics amd freedon from ace ripple are just as important in the beat-frequency unit as they are in a con-
 is shown in the diagram, a Clapp-type rireuit (an be used just as well, with a probable improvemont in drift charactoristice. It is suggested that the first step in construction be the building of the variable oscillator, followed by the eristal rireuit and then the mixer and amplifier seretions in that order. The proper functioning of cath stager cam he chereked as construction progrewses. Individual shielding of the variathe-oseillator and mixer coils is rerommended. The outpur tank of the :mplitier seetion should he shielded from the precoding stages be a partition. In the rear-viow photograph of Fig. (6-93, the VP() is in as sparate. showk-momed box to the right. Tha tube is momeded externatly in at horizontal position. The power-suphly to the left is likewise a separate unit and is cushoned to prevent transmitting

Fig. 6.93 - Rear view of W6R7.L's exriter. 'The shielded compartment eneloses thee sarialile oscillator. 'lhe power supply is a drtachable shoch-mounted aswembly, ()etal. instedid of miniature tubes, werd used in this particular unit.

A Remotely-Tuned VFO

The VP() shown in Figs, 6-97 through 6-101 is a series-tumed (olpitts (Clapp) (ixeruit built in two sertions. The large (empantment contains only the tumed rireuit (Fig. 19-98.1), while the other contains the satis tule and a patir of (1)32 voltageregulators (Fig. (i-98B). The two are comneeded with at piere of double-conductor coaxial (ab) er that maty be of any length up to 10 foed or so. The adyantages of such as system are, first, that the tuned cireuit is well removed from heatgenerating equipment, indurling the waillator tube itself, :and secome, that it forms a comvenient means of remote frequence contral. While this arrangement w:ts designed primurily as at driver for the frequencemultiplior unit deseribed later in this chapter, in many cases the existing crystal-oseillator tube of at transmittor can be sulatituted for the second unit mentioned,
 crystal-oscillator rireuit is in use in the transnitter, it should be possible to ferel the tumed cirenit direetly through the 2-conductor cable to the arstal terminals without modifying the crystal circuit in any wis. R(i-22/[1 is recommended for the comoneting cable.

The oscillator operates in the 3,5 - Me, region and the handspreal tuning sistem, consisting of
 frequency ranges in theres steps, when ('1 :mid ("2 whe altered as deseribed under Fig. 6 ! 8 . With one sedting of ('2. the thange combenser ' 'a spreats the rimge of :35010 to :350 ke out over !aj per cent

 quencios, and hamenios of this ratuge eover all of the highor-frefuchey hands, excepting only
the 11 -meter band, this range will usually suffice for sh per rent of all operating. By shifting the setting of 8 '2. the range of 3750 to $\mathbf{b o n o} \mathrm{ke}$, is sprad ont over about at per cent of the dial. The 1 -moter land is provided for by it third sutting of C_{2}.

Tuned-Circuit Unit

The tuned circuit is housed in a $5 \times 6 \times!$-inch aluminum box. . In enclosture of this size is needed not only to provide mounting for an ade anate dial, but abso to permit spacing the eoil well away from the sides of the bos so that its ($)$ will not be drastically reduced bey the shiolding in its fiede.

The dial is first momed centrally on one of the is \times !-inch sides of the iox. The tuning comdenser, (1 , is then compled to the dial and the mounting step at the rear of the condenser is supported argainst the bottom of the box with a heaver metal sparer cut to fit. The band-set condenser, '?2, is shatthole monnted 1 inch in from the left side and bottom of the box. This nercesitates drilling the shatt hole through the odge of the dial frame. ('3 is soldered directly across the terminals of ('2. The kuoh is a National IIRSi-
'The B \& W^{\prime} eoil is removed from its mounting by first drilling out the rivets in the plug-in base, foaving the metal angle pieres at each end atttarbed to the coil, and unsodering the leats from the pins. The link winding is carefully removed be snipping the turns and prying the spaceing bloeks loose with a kiffo. ()ne turn is removed from the eoil itself. The coil is then mounted on National (asi-1 pillar insulaters so that it will he contratly located in the box in both directions.

The three-emtat jatek for the remote-tuning

 netur is at the end opponite tha mable romeretom.

shelf, alongside the tubers, on the same side of the box as the keving and output jacks. This makes it possible to remove the tubes and adjust the slider by removing the bank eover of the box. The resistor is supported betwern two smatl angle pieces joined with a piere of threaded rod (or a long (i-32 screw) through the resistor form.

Dll wiring, with the exception of the commertions to the keying and output jacks and
Fif. 6.98- Circuit of the remotely-tuncd 1 FO.
 rear statur blate remosed, rear roblor wate bent: spee test).
C_{2} - Appres. $23-\mu_{\mu} \mathrm{fl}$. variable (H ammarlume HF-3.5, last stater amd last (wo rotor plates remesed).
C:3-39- $\mu \mathrm{fld}$, silveral mica.
(4, C $-0,001$ - $\mu \mathrm{fl}$, nilvered mia.

R_{1} - 4 -. 0000 ohms, ${ }^{2}$ watt.
R_{2} - 10,1000 chms, 10 watte, with sider.
 inches diam. (13 \& II JF.L.-80, 1 turn and link remoned).
$\mathrm{J}_{1}, \mathrm{~J}_{2}-3$-rontant female jack (:8-1'(O;31').
J: Kry jack - phomo illint jack.
It- Insulated phome-tip jack.
Is - A-rontart male ronnertor ((:-J P-301-1B),

 with Amphemel 9I-MPM 36 mate emmeremer to fit J_{1} and J_{2}.
cable is set in the batek of the box, and Cis and ('5 are soldered to its terminals.

Tube Unit

The photographes show the aseential details of the atsembly of the tube unit. 'The emelosure is a standard $2 \times 2 \times 1$-indh ahminum box. The three tubes are mounted on a shelf spaced 1 ? 2 inches from the top of the Ima. This dimension is: critical if the tubes are to be removed without diffieulty. The kering and output jacks are moment in once of the renvers, Inloni the shalf level, abd the power combertor is momeded at one end and the jack for the coise ratibe at the othere The resistor, R_{2}, is momited on top of the

Fip. 6.99 - Interior of the tuned-ctrestit bex. Chand isare to the rear. Cis is sult dered atrose (i2 10 the left in fromt. the cable connector, cim be dome before the shelf is plated in the box. This includes commertions to the power comuector which mounts from the inside. In the loottom view of rig. 6-101, the phate rhoke, $R F^{\prime}$ '2 is to the lower le ft, soldered butween P'in 6 of the $\overline{\text { antias }}$ socket and Pin $\overline{5}$ of the sorkent of the first 01s2 regulator. The cathocle choke, $R P^{\prime} C_{1}$, is abowe, with one ond fastemed to Pin 7 of the $\overline{5}$ (ii3 soeket, white the othere end is left free until the cover phate carreing the ker jack is ready to be put in pare. (${ }_{6}^{6}$ is soldered direetly arross J_{3}. Latals of promer longth are medu for the jateks and cable commertor, and these commeretions catn be matd after the shaff has beren put in plater, and just before the coner is pat on. (eare should be used in flateing the tuthes in thoir somerts, since there is little height to apore. If neresssurs, the tips of the tubes com be rum up) through the ventiating holes in the fop of the bex to abbow the pins to flatu tha somets.

Power Supply

Iny power supply delivering bet worn 250 : thd 400 volts at 50 mat. or more maty lo used to opt arate this VF゙(). If : 120 -mat trabiformer, instaid
 diagram of lig. 6-10- , is provided, the VFO and the multiplier unit maty bererated from the single supply.

Fig. 6-100 - The com. pleted tube seretion with the tulues in plare. \ontilation holes are Irilled in the tap of the box and in the plate eovering the free side.

Adjustment

Adjustment of the fregueney range for maximum bandspread is quite simple. Set ('it to a dial reading of 5 . Then adjust ('2 until the oseillator signal is heard on the reeceiver at $35(k) \mathrm{kc}$. Fod the reecever to 3 万on ke and adjust C_{1} until the signal is heard. If this oceurs with the dial sed at less than loo, carofully bend the rearmost potor plate of ('1 away from the aljarent stator plate, making sure that the phates do not touch and short the condenser in any pesition of the rotor. Turn C_{t} again to a dial reading of 5 , resed ('a for 3500 ke . and cherek again for the print where (' tunes to 3750 ke . By proper adjust ment of the rotor phate
 cover the entire dial, or as much of it as desired.

'Phone Band

After this initial mange has beren set, tume the
 ('2 until the VF() signal is heard. Then the range of 35.50 to 1000 kes, should he approximately erentered on the dial with a coverage of about $\overline{\text { a }}$ divisions. The range can be shifted one waty or the other by simply shilting ('o slightly.

11-Meter Band

If it is desired to center the 11-meter hand on the dial, set (1 to midseale, set the reeeiver to $3: 387$ ke, and adjust ('2 until the VFO) is hourd. All three settings of C_{2} should be phainly marked so that they can be returned to when dexired.

The rathode current maty vary over the tuming range from ahout 28 mit. with both C_{1} and C $_{2}$ set at maximum ("ubucitance to 37 ma . with both at minimum.
In using the VFO, the tube unit should the planed dose to the stage to be driven and fastaned securely to the ehatsis. A short lead should be used to bonneet the output terminal to the grid of the stage to be drivern. If the driven stige hat no grid condenser, a 100 - μ id mica conhenser should te connered between the output terminal and the grid of the driven stage. If more than adequate drive is obtained, the sereen of the os(illator tube cat be comnerted to the junetion hotwen the two VR tubes, rather than to the end of R_{2} as shown in Fig. $6-48$. This unit is mot a power deviee, and adeppate gain in the way of a errestal-oscillator tube or other buffer amplifier should be provided.

Fig. 6. 10 I - Bottom view of the tulne-unit shelf. $R F_{1}$ is abowe, $R F_{2}$ below, Cif is soldered to J/3 on the roser wate. The two leads gening to the left sulder to the catile. comberome "like one te the
 luad to the right to J_{3}.

A 6-Band Frequency-Multiplier Unit

The unit shown in Figs. 6-102 through ($6-10)^{-}$is a subassembly containing all tubes and circuits necessary for multijulyg frequeney from :ny fow-power 1.5 T - or 3.5-Mc. Vf(or erystal oseillator. It gives emough output on :my of the six hands from 3.5 to 28 Mc . to drive ans amplifier tube such as the $24: 26$, 807 , or $614 t$. Changing from one band to another is simply a matlor of Aloking a switch and resonating with the single control lor maximum grid marent to a following amplifier.

The Circuit

The circuit diagram is shown in Fig. 6-10:3. The first stage, operating at 80 moters, uses a wellsoremed tube, the tiditi, beraluse it is called upon (o) work :se a straight amplifior when the VFO output is in the same band. Trese be triodes are used in the remaining stuges whidh are always operated as frequency multiphiers.

The R0-meter circuit is designed to cower 3.5010 to $\mathbf{H 0 0 0} \mathrm{ke}$. ('s is a bandsprad padder. However, when the bandwiteh is turned to the \bar{T}-Mc. and higher-frequency positions, Cin adds emough canaritancerarros the 80-meter tank cirenit to shift its lowest freepueney to about 3330 k ke. so that the harmonics will include the 11 -moter hathen. It is to this sereond range that the following stages are tracked. The 21-Anc, band is reached be tripling freguenceg in the stage otherwise used for 11 Me. Tha batuswith shots 041 :at appropriate portion of L_{3} for 21 Me.
 for the differener betwerol the input asabeitane of the lic'1s and the langer caparitance of the screongrid tube to be wised in the amplifier, theredy atomatically matataning proper condi-
tions for tracking. C_{16}, C_{24} and C_{35} adjust the range over which the tuning condensers will tune.

All tubes are proterted against exorssive dissipation, when not being driven, by the use of cathode biasing resistors.

Construction

If dimensions are to be kept to a minimum, it will be necessary to make a spectial shidding endosure of sheret aluminum. IIowever, if size is not considered an important factor, a standard $5 \times$ is \times ! -inch box cambe used.

The chassis shown is methe from sheet aluminum about ${ }^{1}$ to inch thick. It is $t_{2}, 2$ inches wide and 7 ! inches long, with! - inch lips bent down along the longer edges for fasterning to the sides of the box. The box is made to fit the chasisis as (losely as possible and hats an insite height of 4? inders. The front and the two sides ane made from a single piece, with! !-inch lips bent atong both top and bottom edges. Similar lips are bent along all four edges of the removable back. The two rear corners of the chassis must be not ched out for these lips.
The chassis is placed in the box with its top surface $21 / 4$ inches down from the top of the box :and a row of $1 / 4$-inch holes is drilled along cewh side of the box, just above the chassis level. The top rown also is perforated.

The bandswiteh is made uf, from ('ontrialat) Switchkit parts. The index assembly is Trepe 1'-123 and the eromie waters are Type . Maving (f positions, $\overline{5}$ of which are used. The switeh is mounted on aluminum brackets (with the tie rods in a vertical platere) to bring the erenter of the shaft $1 \frac{1}{8}$ inchers below the chatsis. In the bottomview photograph, the first wafer at the top (80) is

Fifa, /02 - 'fhis small pathageontains the meeresiry fre-
 put ont any of tho wix ham lands.
 or : B-Ma VFO or arstal oscillator. "Flue switelt hroble at the loritum anderts the band. while the single tuning romerol resmates all cirmits, Dacillator ingut is comberam to the pint jarh in front: ontput on the dosirad land is aken from the one to the rear. "llue large hole Lntme the row of vomilating holder in the sido to for :al jorting the 11-XIe, merid trimmer. I sineme hale in the onflomite wale provides arcess to the lo.meter grid trimmer.

Fig. 6. 103 - (ircuit diagram of the simgle-comorol frequency maltiplier.
(. -l - $0-\mu \mu \mathrm{fd}$, misa.
$\mathrm{C}_{2}, \mathrm{C}_{3} \mathrm{C}_{4}$ C Ci, Citio C_{10}. $\mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{18}, \mathrm{C}_{20} \mathrm{C}_{21}, \mathrm{C}_{22}$,
 μ fil. disc ceramic.
C. 7 - Approx. $6.5-\mu \mu \mathrm{fl}$, , variable (sere text).
(: 8 - 100- $10 \mu \mathrm{fl}$, silbered mica,

(11-17- $\mu \mu$ fol. silvered mica.
(:15-Appros. $3 \overline{\mathrm{~s}}-\boldsymbol{\mu} \mu \mathrm{fil}$, , ariable (sere text).
Cis - $150-\mu \mu \mathrm{ffl}$. nuaca trimmer or $30-\mu \mu \mathrm{fal}$. nica trimmer and 47-m 4 fd. silvered mica in parallem. 24, ($28, \mathrm{C}_{35}-30-\mu \mu \mathrm{fd}$. mica trimmer (Dillen
C_{17} ($\mathrm{C}_{25}, \mathrm{C}_{26}, \mathrm{C}_{27}-100-\mu \mu \mathrm{fl}$. mica
(23. (34-Approx. 25- μ ffl. variable (see text).
($33-4-\mu \mu \mathrm{fd}$ mica

R_{2} - 33.30001 ohms , 1 watt.
R_{5} - 3.900 ohme, watt.
R_{5} - 2300 ohme, I watt
$\mathrm{R}_{7}-23.00$ ohms, 2 watte (1 wo 4 (0)-ohm 1 -watt in
R_{9} - 1940 olvis.
$\mathrm{K}_{9}-1940$ ohms, 2 watte (3300 ohm 1 .watl and 4700 -
I - Aprox io in parallel)

- liam, close-wound. or smaller wire arat to longeh of $3 /$ ineth (ser

I2 - Approx +2 mh - $1^{-1}{ }^{-1}$
inch long (13 \& W 3012 Miniduetor).
 long, tapped at of turns from groumd end; see lext (is \& 113011 limiductor).
L_{4} - Approx. (0.4 нh. - 7 turns, ${ }^{1}$ z-inch diam., Eí inch long (13 \& N .3003 Miniductor).
J_{1} - Feor-rontart male power commetor (Jones !' 301 P AB).
P_{1} - Four-contart female cable ronnector (Jomes S-30.4-
 S_{1} - - $2.5-\mathrm{mh}$. r.f. choke (National li-loon-S).
S_{1} - t-pole o-contart rotary switch (see text for assemhly procedure).

Fig. 6.1/4 - Top interior view of the frestuency multiplier showing the tubes, woils and the tuningerondenser mang. The selmeter eail is in the foregromind with the GUK 6 to the riplat. The 16 -meter coil and bate armanor are behind the 6 akb with the -...le. beit to the left. In the sereond seetion to the rear, the 11 . Whe wil with its 2l-Ne. tap is to the left, followed by the 28-Nte. plate trimmer und tube. 'Whe 20 -meter of $: i$, ita plate trimumer and the 38 - Me. coil are to the right. The lipe atomg the topedges of the box are daplicated on the bectom.

Epaced $\frac{16}{2}$ inch from the index head, with its point contarte to the loft. The second wafer (.I6) is spaced 1 inch from the first with its point contacts to the right. The third water (20 and 15) is spared 2 inches from the second with its point rontacts to the left. The last wafer (output) is spaced 1 inch from the preeeding one with its point coutacts also to the left. The rear mounting bracket is spaced 34 inch behind the last wafer. The front monnting bracket is fastened to the inders head at the shatit bushing.

The tube sorkets are placed $7 / 8$ inch in from the edges of the chassis. The GAKti and the 14 Me. $\mathbf{~ d}$ (1 are to the right, spaced $11 / 4$ and $13 / 4$ inches respectively back from the front edge of
 the left, spaced batek 25 and $61 / 4$ inches rospectively.

The shafts of the two tuning-rondenser units are coupled together with a Millen type 3ames rigid coupling. It may be necessatry to file down the front end of the coupling close to the setserew hole to permit the setserew to get a good grip on the short texil shaft of the front condenser. In the first condenser section at the front ($8(0)$, the last 5 rotor phates are removed. In the secoud sertion (40), the first 9 rotor plates are removed. In the thind section (20) and 15), the first 4 rotor plates are left in and the remainder are removed. The fourth stator plate of this section also is removed, but the rest of the stators are left in. In the last sertion, all rotors except the last four are removed.

The condenser gang is mounted on top of the chassis with its front mounting hole 16 inch from the front edge of the chassis. In assembling the unit, the condenser gang should be mounted first with screws at the two inner mounting holes only. Then the switch gatng underneath should be positioned and the mounting holes in the bratekets drilled to match the front and rear mounting holes of the condenser gang. In other words, the switch brackets should he fastened to the chassis by means of the front and rear condensermounting screws. After the holes have bern drilled in the switch brackets, remove the front bracket, fasten it down with the front condensermounting serew, slide the front of the switch into the front bracket, fisten with the shaft nut, and then fisten the rear switeh brarket with the rear condenser-mounting sorew.

Mount the tube sockets with the plate terminals toward the nearest switch water.

The two grid trimmers, C_{19} and $\boldsymbol{C}_{2 \times}$, are mounted vertically underneath, fis just to the reat of the soend wafer and coo immediately behind the third water. Malf-inch holes are drilled in the sides of the box and the chassis lips are notethed out so that these condensers can be adjusted from the outside. The three plate trimmers are fastened on ton of the chassis, using the mearest choke-mounting serew to fasten the gromaded side to the chassis. The other terminal of the trimmer is soldered directly to the appropriate tuning-rondenser stator terminal.

Coils

Approximate inductance values for the coils are given under Fig. 6-10:3 for the benceft of those Who must wind their own. However, the use of the 13 d ${ }^{1}$ Minductor coils has the advantage that the original reil dimensions catn be duplicated closely: This is neressary if pruning of the coils for traking is to be avoided. The S: 1 -meter coil, L_{1}, is wound on : Millem bakelite !-inch diameter form, fistened to the chassis. The other coils are supported by thoir leads which are soldered directly to the eondenser terminals. The 21-Mc. tap on L_{3} should be made with a piece of wire about 3 inches long. When the outer ends of the coil are soldered across the condemier terminats, this tap, which comes near the top of the seventh

turn, should be bent in a sweeping curve around the ouler side of the coil (eounterelockwise as viewed from the front) to the end of a wire from the bandswiteh, coming up through a bote in the ehassis dribled alongsid the tondenser frames. The tap is soldered to the end of this switeh wire. Don't clip off the excess tap lenght until adjustments for tracking, deseribed later, have beon made.

The (entralah switchersher wo rotor contacte and Ca and ('1a are most conveniently mounted by opening up the lower rotor contan so that it does not make eonnection with the rotor, and then soldering the condenser betwem this terminal and the other rotor terminal above. The lower terminal is then used also ats a tio point for the prereding $0.001-\mu \mathrm{d}$, plate blowking condensor and a load going through the whasis to the tuning-rondenser stator teminal above. ('25 and ('26 are soldered diredty Inetwen the rontact terminals of the two switch sertions, While ('27 is soldered between the terminal of the switch and the topend of the near-hy grid choke. $R F C^{\prime}$. C'1 is soldered hetween the input pin jack and the grid terminal of the GAK6 socket.

Mounting the Unit in a Transmitter

In mounting the multiplier unit on a chassis with other stares, it is not necessary, of course, that it be placed elose to the panel. By using extension shatts, it can be phaced as far to the rear as desired. The unit should be fastened

Fie. o-105- Bettom sien of the maltiplier ehassis. showing the bandswitch, r.f. chokes and other small components. The 80-meter circuit is at the top, the 10 meler circhit at the bottom, 'The elometer wrid trimmer is to the rishtand hehind the serond switely water. 'The IO-meter erid trimmer is to the left ef the third wafer. 'This vew aton show = how the remon ablile batek of the ewhesure is made. 'The text deserilere a somewhat diffirent anal simplar methom of monnting the awitht.
socurely to the ehassis and the amplifior tube
 of the amplifier should be commerted to the output lerminal of the multiplied unit with it shomt wier well spared from the ehatsis.s and the cathode of the :mplifier should he grom de: or berepased inmediately to the chassis. If the grid wire or the path from the amplifier cathode to the multiplier box is much over 6 ine hes long, there mey be at hoticeable less in output at 28 . Ma., and it hoy not la pusibla to resonate the higher-frequener multiplier eirenits.

It is preferable also to have the oseillator located on the same chassis ats the multiplier unit so that the coupling leads will be short. However. if the uscillator has the power and tuming range to spare, a piere of coas cable can be used, as shown in Fig. 6-106. In order to do this, it must he possible to retune the oscillator output diremit ton compensate for the capacitance of the cable.

Power Supply

A power supply delivering 375 to 380 volts at 60 or 70 ma. is required to operate the unit. To assure adeguate output, the supply voltare should the close to this figure. A suitable eireuit is shown in Fig. (6-107.

Adjustment

[ntil the unit has been tuned up, no plate or sareen voltage should be applied to the amplifier. Means should be provided for checking the amplifier eride current, or the voltage arross its grid leak. ilhile it should be possible to make adjust-

TABLE 6-1 Typical Voltage Readings* (Supply Voltage 380)									
Stage		so		,	u	$3{ }^{3}$	15	10	
Suitch,	Cath-	Girid	sicreen	C'ath-	(irid	('ath-	lirid	Cath-	Girid
Poution		Leak		ode	Leak	odt	Lotak	ode	Leak
80	65	25	235	17	0	19	0	16	0
40	60	30	221	40	97	19	0	16	0
20	54	30	211	36	96	\%	126	16	0
15	5%	31	20:	34	89	93	106	16	0
10	58	30	$20:$	34	\$1	69	120	45	130
* By dividing these voltages by the associated resistancer values. any desired current value may be easily calculated,									

ments without metering the multiplier unit, the joh will ber a little easier if a milliammeter is inserted temporarily in the high-voltage lead to the power supply, at leasis.

With the witch in the 80 -meter pesition, turn on the oscillator and tume it to 3 300 0 ke . (17 aO ke . if the oseillator output is at lato meters). If the oseilfator is arystal-eontrolled, use the lowestfreguency erystal at hand. Now resonate the multiplar for maximum drive to the amplifier. With the multiplier tuned to resonance, adjust the coupling to the oscillator to give maximum drive to the :mplifier. Maximum drive should oreur with the ascillator developing a bias of 15 to :30 volts amoss the grid leatk of the $6 .$. Kiti. If no other means is available, the drive to the GAKiti can be reduced by reducing the size of' ('1, Fig. (6-1)ti. If a VFO) is usad, the multiplier should be rharemed at both 35000 and 4000 kr . to make sure it is covering the proper frepuracy mage. (The multiplier must alwass be retuned, of eourse, for any appreciable ehanger in oscillator fre(quener.) It maty be neeressary to spread out the last few turns of L_{1} on the coil form to get the circuit to hit bothends of the band. Drive to the

Fig. 6-106--Sugpested method of rempling \Fio to multiplier unit. Ci should be adjusted to gise proper drive to first malti-jlier-unitstake.
amplifier should be essentially the same anyWhere in the band, providing the output of the uscillator is rewsomathle ronstant.

With the so-meter stage working properly, the switels should the turned to the $\overline{-}$-Ma persition. fot the VFO to 3500 ke . and resenate the multiplier. If there is no indication of drive to the amplifier, it math be neressary to adjust the --Ale. trimmer, (ib, a little bit at at time, retuning the grong, until an indieation of output is ohtanced. $d s$ an atd, a milliammeter in the highvoltage lead should show a dip) when (16 is thened through resomanere. When an indication is obtained, tume the gamg for peak drive and then adjust ("s to increase the peak. The correct adjustment is the one where no readjust ment of either the gang or the trimmer will increase the drive. Now turn the oseillator to 3750 ke and retune the multiplier. The drive to the amplifier should be essontiatly und hanged.

Now tute the osedlaten batk to 3500 ke and retume the multiplier for maximum output. laetve the multiplier and oscillator tuning at this point and turn the handswith to it Me. Adjust first (est, athl then (i9, for maximum amplifier grid current. It may take ab little juggling batk and forth betwern these 1 wo before at maximum reading of drive is othtined. The milliammeter in the high-voltage lead should

Fig. 6-107 - Circuit diagram of a suitable power supply for the frequency-multiplier unit.

H_{1} - $\mathrm{B} 0,00 \%$ ohms, 10 watts.
1.1-12-hy. 80-ma. filter choke.
si-s.p.s.t. tokgle swith.
${ }^{\prime \prime} 1$ - Jower transformer: 350-0-3.30 volts r.m.s., $\mathbf{7 0}$ ma.: 6.3 volts, 2.5 amp. 5 volts, 3 amp, (Stancor P-4il:8 or equivalent).
show a dip when ('24 is tuned through resontunce.
Leaving all tuning adjustments fixed, turn the switch to the 21-Me. pesition. Now adjust C.24 rarefully and note whether an incrase or derrease in waparitance caluses an increase in drive to the amplifier. If it is an incerase, lengthen the tap wire (sere preceding section on coils) slightls: Then turn the switch back to $1+$ Mr. and reialjust (en for maximum drive. Then switch buck to 21 Me. and chere carefully agan. By adjusting the length of the tap wire carefully, it should be possible to arrive at a condition where maximum drive is ohtained both at 14 and 21 Me. with the same adjustment of C' 24^{2}.

Adjustment for 28 Me. is similar to that for It Me., although it will be more critical. Careful adjustment of (93 and C_{35} will be neressiary for maximum amplifier drive. The 11 -meter band is covered by funing the multiplier to resonatme at the desired frequency with the switeh in the 2s-Mte, position. The various circuits should be rhecked with an alsoorption wavemeter to make sure that there are tuning to the right multiple.

When the above adjustments for the lowfrecuency ends of the various hands have been completed as described, it should be found that the output will be essentially the same at any point within a given band.

The arcompanying tables show topical voltage readings taken with the unit in operation driving the grid of a $61+6$ amplifier. For further details see QST' for April 192.

TABLE 6-II Typical Total Current and Output Readings*					
	80	49	20	15	10
$1 \mathrm{mplificer} \mathrm{bias} \mathrm{**} \mathrm{(rolts)}$	152	195	187	141	140
Total B ma. of resonance	41	48	53	60	60
Total B ma. off resononce	45	58	75	\%	85
Tutal A ma., no exicitation - 35					
* A verage suply voltage 380 . ** Voltage measured across 39,000 -ohm grid leak of unlouded 6146 amplifier.					

A High-Power Tetrode Amplifier

Figs. 6-108 through 6-113 show the construction of a high-power tetrode amplifier covering all biuds from 3.5 to 29 Mc. It is capable of being operated at an input of 1 kw ., although it will operate efficiently at less input.

The circuit is shown in Fig. 6-109. The tube is the trpe $4-250 \mathrm{~A}$. A National trpe MB-40L "ill-band" tank is used in the grid circuit. This cireuit is a combination of inductance and variable condensers that may be tuned to any of the above bands without switching or changing coils. A pissection tank circuit is used in the output. It is designed to feed into a flat 52 - or 75 -olmm line, wither feeding an antemat direetly or through a conventional antenna coupler. A B \& W rollingtype variable indurtance makes coil switching unneressary in this cirruit also. L_{2} is a separate indurtance section for 28 Me. S_{1} selects the proper network output ratpacitance.

The amplifier is neutralized be the capacitivebridge method. ("2 is the neutralizing condenser. L_{1} and R_{1} form a v.h.f. parasitic-suppressor circuit. The phate of the amplifier is paratlel-fed through the special r.f. choke, $\operatorname{RF}\left({ }_{4}\right.$. All power leads are filtered for v.h.f. harmonics. B_{1} is a smadl clectric bower required as an aid in dissipating the heat developed inside the shielding enelosure. $R P C_{3}$ is as safety choke to provide a dee. path to ground in case C2; breaks down. Otherwise, high voltage will appear on the output cable if the condenser fails.

Construction

The amplifier is assembled on a standard chassis, $17 \times 10 \times 3$ inehes, with a $101 / 2$-inch pathel. The grid tuner is mounted in al separate shiclding enclesure at the right-hand end of the chassis in Fig. (i-1 10, This box is 31,2 inches wide, 5 inches high and 7 inches derep, mate of $/ 16$-inch aluminum sheet. This same material is used throughout the construction. I roas fitting at the rear of the grid-tumor box is the input con-
neetor. The grid and neutralizing leads pass through the side of the box into the large compartment. The constructional details of the latter may he seen in Fig. ($6-110$). The over-all dimensions of this section are $133 / 8 \times 10 \times 71 / 8$ inches high. Three-quarter-inch flanges are bent along all four edges of the side pieces. The front and back pieces have these lips only along the top edges, since they are made high enough to allow an overlap over the edge of the chassis at the bottom. All sides, except the top, aro fastened together with (j-32 screws and nuts. The top lid is fastened down be tapping sorew holes along the lips around the top adges, and is porforated with $1 / 4$-ineh holes above the area of the tube.

It is important that the pieces for this enclosure be made areurately so as to leave no gatp at any point. If neressary, the pieces can be made by a loeal sheet-metal worker.
The plate tank condenser is mounted centrally in the box, using shect-aluminum brackets to space it from the bottom. The condenser is placed with its end plates rumning vertically, i.e., on its side. The varriable inductance, L_{3}, is placed alongside the condenser with the smatl fixed coil, L_{2}, mounted b_{y} fastening one end to the forward right-hand terminal of the variable inductance and the other end to a lug under one of the rear condenser-stator muts. A flexible strip of copper connects the coax output fitting to the rear terminal of the variable eoil.

The output condensers, excepting (4 , are stacked up behind the variable coil and the selector switeh. š, is mounted on a small briacket to the rear, so that a control shaft may be rum to the panel in betwen the tank eoil and condenser. (4, is soldered direetly across the output connertor. It may be helpful to serios-resonate this condenser at the frequencer of a local TV' station to minimize TVI. This ean be done by :djusting the length of the condenser leads and cheeking with a grid-dip oscillator, as deseribed in the

Fig. 6-108-- I high-power shielded tetrode amplifier. Ther small ramosure at the left montains an all-hand tuner for the grid rircout. 'The diat near the renter eontrols the input romdenser of a pisectiont emtput tanh. whild the hoob at the right is the control fer a roller-lipe varialde imbuetanes. The switeh below ederis the proprer mutput eapasitaner.

Fig. 6.109 - (ir ruit diagram of the amplifier. The broken line separates the alove- and below-chassis wiring.
$\mathrm{C}_{1}-\mathbf{2 2 0} 0 \mu \mathrm{fd}$. mica.
C_{2} - Disc-t pe neutralizing condenser, approx. $2 \mu \mu \mathrm{fd}$. with at least $1 / 4$-inch sparing (National $\$ (:$800 \mathrm{~A})$.
$\mathrm{C}_{3}-1.50-\mu \mu$ fil variable, 6000 volts, 0.171 inch spacing (National TMA-150.)
$\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}-1010-\mu \mu \mathrm{fd}$, mira. 8,500 volts.
C7, (is - $220-\mu \mu \mathrm{fd}$. mica, 2500 volts.
Co, $\mathrm{C}_{10}-170, \mu \mu \mathrm{fi}$ mici, 2500 volts.
C.11 to C_{22}, ine - 0.001 - ff d. dise ceramic, 600 volts.

C:23. C.24. C:25. C.26-0.005- ffl . dise cramic, 010 volts. $\mathrm{C}_{27}, \mathrm{C}_{28} \mathrm{C}_{29}-5(0)-\mu \mu \mathrm{fI}$. ceramic, 10,1010 volts (Centralab T13.501).
R_{1} - Five 680 -ehm 1 -watt carhon resistors in parallel. L_{1} - P'arasitic coil, $51 / 2$ turns Ao. $14,1 / 4$-inch diam. K_{1} tapped across 3 tursis.
1,2 - 5 turns So. $10,21 / 2$ inches long. $11 / 2$ ind diam. L_{3} - Variable inductor, 15 h h max. (13 \& W 3852).
chapter on TVI. At the lower TV frequencies, the condenser lead ean be formed into a small coil of a turn or so.

The plate-feed r.f. choke, RFC_{4}, is placed to the rear of the tank condenser. To be effective on all hands, ineluding the 21-Me. band, it is neressary to alter the windings slightly, as shown in Fig. 6-111. It is a good idea to cheek the choke for resonances with a grid-dip oscillator after it has been placed in the position it is to orcupry, but before it has been wired in, because proximity to surrounding components and shiclding may affert the resonanoes. Performance of the choke will be poor at any frequency where the g.d.o. shows a resonance with the terminals of the choke short-circuited.

The tube socket is mounted above the chassis on sparers that are just long enough so that the shielded wires going to the sereen and filament terminals, with their be-pass condensers, just span the distance between the socket terminals and lugs fastened to the chassis bolow each terminal. The lead then immediately passes through the chassis. Strips of eopper sheet connert the plate terminal of the tube to the top terminal of the plate choke and the rotor terminal of the neutralizing condenser mounted on the righthand wall of the enclosure, as shown in lig.
1.4 - 'Lo series-resonate with C. at desired 'IV frequence.
B_{1} - Blower and motor, 115 v. a.c. (available from Allied Radio. Chicako, catalogg No. :2-702 moter and $\because 2-03$ fan).
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coasial comerctors, ehassis-mounting type. $\mathrm{MA}_{1}-0.50$ ma. A.c. milliammeter.
 RFGis not supplied with the National MB-10L multiland unit).
RFC.4 - National wiof R-175 choke modified as shown in Fig . 6-1 1 i .
 $18 .(01)$.
S_{1} - Single-circuit \quad-position ceramic switeh, propressive shorting (Centralall type I'L-S wafer). T_{1} - Filament transformer, 5 v . 13 amp . (LTC S.59).

6-110. The strips should he fitted earefully so as to avoid placing any strain on the cap terminal of the tube. The filament transformer is fastened down in the forward right-hand corner. Power torminals are lined up along the rear edge of the chassis. All r.f. grounds should be made direetly to the chassis with the shortest possible lead length - even a half inch is worth saving.

Underneath, the d.e. and a.c. leads come out in shielded wire. A $0.001-\mu \mathrm{fd}$. dise ceramic by-pass is used arross both ends of cach lead excepting the high-voltage lead (see TVI chapter for method of comection). The high-voltage lead is b-passed with TV filter caparitors. RFC $_{6}$ is installed close to the high-voltage terminal. $C_{211}, C_{25}{ }_{25}$, ${ }_{26}$ and (${ }^{\prime 2}=9$ likewise are fastened directly to the power terminals where the leads leave the chassis. The shielding of the power leads is grounded to the chassis bev soldering to lugs wherever ther pass through the chassis, The power wires are intentionally made to follow long paths around the edge of the chassis to provide additional harmonic attenuation. The braid is grounded at frequent intervals by soldering to lugs that also serve as hold-downs.
The bower is mounted on a bracket formed from a strip of aluminum. Air is forced through a set of holes in the chassis that duplicate in
size and arrangement the holes in the $4-2 ; 0 \mathrm{~A}$ socket. The filament-transformer terminals project through clearance holes drilled in the chassis, and the four v.h.f. by-pass condensers, Con, C'p, ('23 and ('24, are conneded direetly from the terminals to grounding hugs.

Adjustment

The diagram of a suitable power supply for this amplifior is shown in Fig. 6-113. With i.0 volts biats, a grid current of about 25 ma. is optimum. although the plate edficioner will ehange hut little with any grid current betwern 15 and 30 ma. The single fixed link provided with the grid tuner will not provide uniform loading of the driver stage with coax input. so means should te provided in the output cireuit of the driver for varying the coupling.
Optimum sereern voltage is about 400 and the screen current should run betwern 50 and 75 ma.. depending on the plate voltage used. It 2750 volts. a full kilowatt can be run to the amplifier, but it will work well at plate voltages as low as 1500, with a plate current of 350 ma.

It is important that the cosxial line into which the amplifier works be elosely matehed (see trams-mission-line (hapter) at its terminating end, otherwise there is danger of damage to the miea output condensers. To protert the contacts on the variable inductance, adjustments should be made with litle or no power input to the amplifier. Fxperience will show where the tap should be

 $\because 11 \%$
phared for each band and thereafter it can bo prese before applying full power, When reducing plate voltage, provision should also be made for reducing soreen voltage, sine otherwise the sereen current may run to damgeroms proportions.

It is advisable to set the tank condenser so as to operate the output circuit at a () in the neighborhoor of 12, as shown in the graph of Fig. 6-9, although it mas not be possible to attain this figure at the extremes of the tuang range.

Fig. o- 110 - Interior of the shiflding compartment fonsing the $4-2501$ and its onfput circuit. The nentralizing condenser and filament transformer may be seen in the forward right-hand corner.

The ne ut malizing condenser should be adjusted for minimum reaction on the grid current under artual operating conditions. The approximate setting can be determined by the use of a grid-dip oseillator tuncel to the operating frequencs. All voltages should be removed and the g.d.o. coupled to the plate tank circuit. The neut ralizing condenser should be adjusted for minimum r.f. in the grid tank circuit when both tanks are tumed to resonamee. R.f. in the grid direuit can hee chereked with the aid of an indieating wavemeter of the type described in the measurements
ehapter. Final touching up can be done after checking the operation with voltages applied to the tube. In commection with the nentrabizing eireuit, the value of C^{\prime} is fairly critical, but a caparitance within usual tolerance of the marked value should be satisfactory.

In adjusting the loading on the amplifier, increasing the output capacitance, or increasing the induetanere, or both, while maintaning resonance with the tank condenser, will redure the lowding and vire versia.

For further tetails, see QST for October 1952.

Fig. 6-113-Cirenit diagram of a prower-supily systum for the high. fower tetronde amplifier.
 C.2. C8-- $1-\mu \mathrm{ft}$. (0 ()-nolt elertrolstic. CA - 2- μ fd. nil-filled. woltage rating same as transformer r.m.s.
 same as transformer r.m.s.
$1 \mathbf{1 2}_{3}-25,000$ ohms, 2.5 watts.
$\mathrm{R}_{5}-25,000$ ohme, jll watts.
Re - in, (M)0 ohims, jll watts.
$R_{7}, I_{s}-20_{0}, 000$ ohms, $I(10)$ watts. It - 30-hy, $5(1$-1nat. lilter choke.
1.2-i/25-hy. lintoma. swinging.
I. 3 - 20-hy. linoma. smonthing.

1.5-20-hy. 500 -ma. smonthing.
I_{1} - IIj-volt lamp of suitahler size to redace voltage for thme-np.
$\mathrm{S}_{1}-20$-amp. s.p.s.t. switrh.
$\grave{s}_{2}, \stackrel{s}{3}_{3}, \mathrm{~s}_{4}$ - 1 B -anmp. N.p.s.l. switeh. s_{5} - Ceramic s.p.w.t. rotary switch. $\mathrm{T}_{1}, \mathrm{~T}_{3}$-Filament transformer: 5 volts, 3 amp .
'1'2-Ilate transformer: 100 volts d.e., J.50 ma.
${ }^{\prime} \mathrm{F}_{4}$ - I'ilament transformer: 2.5 volts, 10 amp., 10, 1806 -volt insula. tion.
'l's - Plate transformer: up to $2 \mathbf{5 5 0}$ volts d.c., 3.30 ma.
VK - V $12-150-30$.

S_{1} turns on all filamponts and the biam supply. Si turns on the sereen supply and siz the highevoltage sunply. With sis open, a 115 volt lamp is inserted in spries with the high-voltage-transformor primars to lower plate voltage for adjustment. (Oproing is lihewise reduces sereen voltage. With all switches except S_{2} closed, S_{2}
becomes the main control switeh. The tap on R_{3} should be adjusted to pise the desired siresn woltage under oprerating eonditions with s $_{5}$ clowed. Bias is obtained from the parallederonnerted $5 / 3: 3$ halfowave rectifier. 'The tap on R_{1} strould the adjusted until the VIf tuhe just ignites without excitation to the amplifier.

Rack Construction

Many of the units described in the constructional ehapters of the /Iandbook are designed for a standard rack mounting. This standardization facilitates the assembly and modification of station equipment. Since the advent of television, racks of the enclosed type have become a matter of practical necessity for transmitters to he operated without interference in neighborhoods where television receivers are in use. While endosed cabinet-type racks of metal are available on the market, many amateurs prefor to build their own less expensively from wood and copper soreoning. With eare, an excollent substitute can be mate.

Fig. (i-114.A shows a brokern top view of an enclosed rack made of eopper screconing stretched over a framework of wood strips 1 bey 2 or 1 bex 3. The copper sereon, represented by the dashed lines and the cross-hatehing, is stretched over the outside of cach frame, wrapped around the ends on all four sides and tacked fast on the inside. The top and bot tom are made in similar fashon. When the frames are fastened together, the sereening makes contact all atong carth joint. Contact at the hinge of the door at the rear is assured by the use of a fulllength piano hinge. Trim strips of thin wood

(A)

Fip. 6-11.5 - Detail sketeh showing proper drilling for standard rack and panels. As shown for the $31 / 2$ - and $51 / 4$-inch pancls, only sufficiont loles are drilled in the panel to provide the neressary strenxth. When the panels are drilled as shown, they may be moved up and down in steps of $13 / 4$ inches and the holes will always match.
along the two vertical 1 by 3 s, which hold the pancls, and across the top and bottom headers cover up the ragged edges of sereening.

As shown in Fig. (6-11413, the panel clearane should be $191 / 16$ inches and the hole centers $18 \frac{1}{4}$ inches apart. Standard panels are in unit heights of $13 / 4$ inches and the hole spacing alternates between $1 / 2$ inch and $11 / 4$ inches as shown in Fig. 6-115. The table shows the standard drilling for panels of various sizes.

(B)

table of standard rack drilling											
Panel IIt. In.	$\begin{gathered} * \text { Holes } \\ \text { h. } \end{gathered}$	I'anel $111.1 \mathrm{n} .$	$\begin{gathered} \text { * IIofes } \\ \text { In. } \\ \hline \end{gathered}$	$\begin{gathered} \text { linnel } \\ \mathrm{llo.} \mathrm{ln.} \end{gathered}$	* lloles	I'mel 1/t. In.	$\begin{gathered} * / 1 / n / e s \\ \text { ln. } \end{gathered}$	Praned IIt. In.	$\begin{gathered} \text { * Iloles } \\ \text { In. } \end{gathered}$	I'anel 1h. In.	* Holes In.
$\begin{aligned} & 311 / 2 \\ & 203 / 4 \\ & 28 \end{aligned}$		$\begin{aligned} & 201 / 4 \\ & 2+11 \\ & 2-23 \end{aligned}$	$\begin{array}{ll} 26 & -4^{3} 4 \\ 94 & 4 \\ 9 \end{array}$	$\begin{aligned} & 21 \\ & 191 \\ & 1: 1.9 \end{aligned}$	$\begin{aligned} & 20^{3}+1012 \\ & 10-10^{3} \\ & 171 / 10^{2} \end{aligned}$	$\begin{aligned} & 1.5^{3} \\ & 14 \\ & 1.1 / 4 \end{aligned}$	$\begin{aligned} & 1.15-11 / 4 \\ & 133^{3}-1210 \\ & 12-103 \end{aligned}$	$\begin{gathered} 101 / 2 \\ 8 \quad 84 \end{gathered}$	$\begin{aligned} & 101 / 4-9 \\ & 81 / 2-1 / 4 \\ & 6^{3}-.5^{1 / 2} \end{aligned}$	$\begin{aligned} & 51 / 4 \\ & 318 \\ & 13 / 4 \end{aligned}$	$\begin{aligned} & 5-33 / 4 \\ & 31 / 4-2 \\ & 11 / 2-1 / 4 \end{aligned}$
28	$23^{-3}-26^{1} 2$	$\mathrm{ZP}^{3} 4$	-9	1:1:	1-1/4-16	121/4				13/4	

[^2]
Constructing Safety Interlocks from Standard Parts

Although interlork switehes are recommended on all radio equipment so that when the cabinet door is operned all high-voltage cireuits are doenergized, such switches are not readily available, and many of the small commereial models are not in areord with local electrical codes.

Fig. 6.116 - Microwwitch mounting for service as rackcabinet interlork.

A neat and relatively inexpensive interlock switch that is quite safe and which will pass most eleretrical inspectors can be constructed easily from a Mirroswitch and a fow stamdard fittings. Constructional details are sketched in liig. ($\mathrm{i}-\mathrm{I} 1 \mathrm{o}$, Because all electrical parts are standard CL or .N fittings, and all fit together without alerations, appearane is quite workmanlike and neat. Mountings for most rack cahinots are quite simple, requiring only straght forward mathine work, with mo highly-reitieal dimensions,
langth of spacers, for Par-Metal rack cabinets of the LER-22:3 series, should be about $1 \frac{1}{4}$ ine hes. The switeh is held in place by two $10-32$ ratek serews through the side of the cablinet. Alternattive mountings include a right-imgle bracket somend to the rear frame of the cabimet, and at
bracket to support the switch from the rear of a ronvenient chatssis. Best location for the switeh is so that the artuating button is operated by the door catch housing when the cabinet door is latehed. This eliminates any tendency of the switch to watry the cablinet door.

A satisfactory electrical lowation for a safoty interloek switrh is betweren the man fuse and the matin sustem switch, as in Fig. (i-117. . If extra safety is desired, the interlock cat be used in conjunction with an choctrically self-holding what, as shown in Fig. 6-11713. This prevents acreidental or intentional turning on of the power by manual operation of the interlock. Gnce the circuit is hroken by So. it is neressary not only to rlose the interlock, but also to close" the "start" or "on" push-hutton switeh hefore the system is eleretrieally live. Nince this requires the use of both hatuds when the cabinet is open, the chamere of shorks is at at minimum.

Whatever cirmit is used, some sort of safety interfork should te incorporated in wery rack cabined. safety measures are much wheaper than funcrals!

Fis. $6.11 \overline{7}$ - A - Simple interlock rircuit. The switeh is simply platured in aerins with the ate line. $B=$ (iircuit using intorach in comjunction with a loching relay. The swithes are pheth-hathon twe sis (on) is normadly open, while sa (off) is normalls alusel.

Power Supplies

Essentially pure direct-current plate supply is required for receivers to prevent hum in the output. Covernment regulations require the use of d.c. plate supply for transmitters to prevent modulation of the carrier by the supply, which would result in undesired hum in the case of voice transmissions and an unnecessarily broad c.w. signal.
their use except where commercial a.c. lines are not available. Wherever such lines are available, it is universal practice to obtain low a.c. voltage for filaments and heaters from a stepdown transformer, and the required highvoltage d.e. by means of a transformer-recti-fier-filter system. Such a system is shown in the block diagram of Fig. 7-1. Power from the

Fia, 7 -I - Block diagram showing the essentials of a transformer-rectifier-filter system for ohtain. ing filament and plate power from an a.c. line.

The filaments of tubes in a transmitter may be operated from ace. Those in a recoiver, excopting the power audio tubes, may be a.e. operated only if the cathodes are indirectly heated.

The comparatively high cost and inconvenience of batterics and d.c. generators preclude
a.c. line is fed to a transformer which steps the voltage up to that required. The steppedup voltage is changed to pulsating d.e. by passing through a rectifier - usually of the vacum-tube type. The pulsations then are smoothed out to the required extent by a filtering system.

Rectifier Circuits

Half-Wave Rectifier

Fig. 7-2 shows three rectifier circuits covering most of the common applications in amateur equipment. Fig. 7-2A is the circuit of a half-wave rectifier. During that half of the a.c. cycle when the rectifier plate is positive with respect to the cathode, current will flow through the rectifier and load. lsut during the other half of the cyele. When the plate is negative with respect to the cathode, no current ean flow. The shape of the output wave is shown at the right. It shows that the current always flows in the same direction but that the flow of current is not continuous and is pulsating in amplitude.

The average output voltage - the voltage read by the usual d.e. voltmeter - with this circuit is $0.4 \overline{5}$ times the r.m.s. value of the a.e. voltage delivered by the transformer secondary. Because the frequency of the pulses in the output wave is relatively low, considerable filtering is required to provide adequately
smooth d.e. output, and for this reason this circuit is usually limited to applications where the current involved is smatl, such as in supplies for cathode-ray tubes and for protective bias in a transmitter.

Anot her disadvantage of the half-wave rectifior circuit is that the transformer must have a considerably higher primary volt-ampere rating (approximately 40 per cent greater) than in other rectifier circuits.

Full-Wave Center-Tap Rectifier

The most universally-used rectifier circuit is shown in Fig. 7-2B. Being essentially an arrangement in which the outputs of two halfwave rectifiers are combined, it makes use of both halves of the a.c. cycle. A transformer with a center-tapped secondary, or two identical transformers with their secondaries connected in series (with proper polarization), is required with the circuit. When the plate of rectifier No. 1 is positive, current flows through

Fig. 7-2 - Fundamental vacmumtube rectifier circuit., A - Ilalfwave. B - Fullwave. C - Bridge. Output voltages shown do not include rectifier drops.

(A)

(B)
 less filtering is reguired. Since the reetifiers work altermately, each handles half of the average load curent. Therefore the load current which maty be drawn from this circuit is twide the rated load current of a single reatifier.

When two separate transformers are used in the full-wave circuit with their secomdaries comented in serios, the same derating methtioned in regard to the half-wate rectifier circuit must be observed.

Full-Wave Bridge Rectifier

Another full-wave rectifier circuit is shown in Fig, 7-2C. In this arrangement, two rectifiors oprate in series on cach half of the evele. one rectifier being in the lead to the load, the other being in the roturn lead. Over that portion of the evele when the upper end of the transformer secondary is positive with respect to the other end, current flows through rectifier No. 1. through the load and thenee through rectifier No. 2. During this period current eamot flow through rectifier No. 4 becanse its plate is negative with respect to its cathode. Over the other half of the cyele, current flows through rectifier No. 3, through the load and thence
through rectifier No. 4. The erossover conneretion kerps the courrent flowing in the same direetion through the load. The output waveshape is the same as that from the simple eonter-tap rectifier circuit. The output voltage obtainable with this circuit is 0.9 times the r.m.s. voltage delivered by the transformer secondary. For the same iotal transformorsecomatary voltage, the average output voltage When using the beidge rectifier will be twiee that obtainable with the center-tap rectifior cireuit, However, when comparing rectifier circuits for use with the same transformer, it should be remembered that the power which a given transformer will handle remains the same regardless of the rectifier circuit used. If the output voltage is doubled by substituting the bridge eireuit for the center-tap rectifier circuit, only half the rated load current can be taken from the transformer without exceeding its normal rating. The value of load eurent which may be drawn from the bridge rectifier eircuit is twiee the rated d.c. load current of a single rectifier.

Rectifiers

Cold-Cathode Rectifiers

Tube reetifiers fall into three general classifications as to type. The cold-athode type is a diode which requires now cathode heating. (ortain types will handle up to 350 mat. at 200 volts d.c. output. The internal drop in most types lies between 60 and 90 volts. Rectifiers of this kind are
produced in both half-wave (single-diode) and full-wave (double-diode) types.

High-Vacuum Rectifiers

Ifigh-vateum rectifiers depend entirely upon the thermionic emission from a heated cathode and are characterized by a relatively high
internal resistance. For this reason, their applieation usually is limited to low power, although there are a fow types designed for medium and high power in eases where the relatively high internal voltage drop may be tolerated. This high intormal resistance makes them less susceptible to damage from temporary overload and they are free from the bothersome electrical noise sometimes associated with other types of rectifiers.

Some rectifiors of the high-vacuum full-wave trpe in the so-called receiver-tube chass will handle up to 250 mal at 400 to 500 volts d.e. output. Those in the higher-power class can be used to handle up to 500 mat. at 2000 volts d.e. in fultwave circuits. Most low-power high-vacuum rectifiers are produced in the full-wave trpe, while those for greater power are invariably of the halfwave tope.

Mercury-Vapor Rectifiers

In merrury-vapor reetifiers the internal resistance is rodued by the introduction of a small amome of mercury which vaporizos under the hoat of the filament, the vapor ionizing upon the applieation of voltage. The voltage drop through a rectifier of this type is practically constant at approximately 15 volts regardless of the load current. Tubes of this tope are produced in sizes that will handle any voltage or current likely to be: encountered in amateur tramsmitters. For high power they have the alvantage of cheapness. Rectifiors of this tope, however, have a tendence toward a type of oscillation whieh produces noise in near-by receivers. This can usually be eliminated by suitable filtering.

As with high-racuum rectifiers, full-wave types are avalable in the lower-power ratings only. For higher power, two tubes are required in a fullwave circuit.

Selenium Rectifiers

Sclenium rectifiers are available which make it possible to derign a power supply capable of delivering up to 400 or tiol volts, 200 ma . There units have the advantage of eompactuess as well as low internal voltage drop (about is volts). Jowever, to limit the charging current with condenser input, a resistance of 25 to 100 ohms should be used in series with the rectifier. They maty be substituted in any of the basie circuits shown in Fig. $7-2$, the terminal marked " + " or "cathode" corresponding to the eathode in these circuits. ('ireuits in which the selenium rectifier is particularly adaptable are shown later in Fige, 7-20 through $7-22$. Since they develop little heat if operated within their ratings, they are esperemally suitable for use in cequipment requiring minimum temperature variation.

Typical ratings are listed in the tube tables.

Rectifier Ratings

Vacuum-tube reetifiers are subidect to limitations as to breakdown voltare and current-handling eapability. Some topes are rated in terms of the maximum r.m.s. voltage which should be applied to the rectifier plate, while others, partic-
ularly mercury-vapon types, are rated acororling to maximum inverse pak voltage - the peak voltage between plate and cathode while the tube is not condurting. In the circuits of Jig. 7-2, the inverse peak voltate across each rectifier is 1.4 times the r.m.s. vilue of the voltage delivered be the entire transformer secondary.

All rectifier tubes are rated as to maximum d.c. boad current and many also carry peak-current ratings, both of which should be observed for normal tube life. With a condenser-input filter, the peak current maty rum several times the value of the d.c. load current, while with a choke-input, filter the peak value may not run more than a few per cent above the d.e. load current.

Operation of Rectifiers

In operating reotifiers requiring filament or eathode heating, care should be taken to provide the eorreet filament voltage at the tulse terminals. Low filament voltage can cause excessive voltage drop in high-vacuum rectifiors and a considerable reduction in the inverse pak-voltage rating of a merenry-vapor tube Jilament connections to the rectifier socket should be firmly soldered, particulatly in the case of the harger mereury-vapor tubes whose filaments operate at low voltage and high eurrent. The socket should be solected with care, not only as to eontact surfare but also an to insulation, since the filament ustally is at full output voltage to ground. Bakelite somets will serve at voltages up to 500 or so, but ceramie sockets, well spaced from the chassis, always should be used at the higher voltages. Serefal filament transformers with high-voltage insulation betwern primary and secondary are reguired for rectifiers oprating at potentials in cexess of 1000 volts inverse peak.

The rectifire tubes should be placed in the equipment with adequate space surrounding theme to provide for ventilation. When mercury-vapor tubes are first phared in service, and each time

Fig. 7-3- Connerting mer. cury-vapor rectifiers in paralIn for heavier currents. R_{1} and R_{2} should have ther same value, lewtween 30 and 100 ohme, and corresponding filament tirminals should be connected together.
after the merrury has been disturbed, as by removal from the socket to a horizontal position, they should be rum with filament voltage onle for 30 minutes lefore applying high voltage. After that, a delay of 30 seconds is reeommended each time the filament is turned on.

Rectifiers may le connered in parathel for current higher than the rated current of a single unit. This ineludes the use of the seetions of at double diode for this purpose. Equalizing resistors of 50 to 100 ohms should be connected in series with cach plate, as shown in Jig. $7-3$, as a measure toward maintaining an equal division of current.

Filters

The pulsating d.c. waves from the rectifiers shown in Fig. 7-2 are not sufficiently constant in amplitude to prevent hum corresponding to the pulsations. Filters consisting of eapacitane es and inductances are required bet ween the reetifier and the load to smooth out the pulsations to ath (wisentially constant d.e, voltage. Also, upon the design of the filter depends to a large extent the voltage regulation of the power supply and the maximum load current that can be dratw from the supply without execeding the pak-voltage rating of the rectifier.

Power-supply filters fall into two classifications, depending upon whether the first filter element following the regtifier is a condenser or a choke. Condenser-input filters are characterized by relatively high output voltage in respect to the transformer voltage, but poor voltage regulation, Choke-input filters result in much botter regulation, when properly designed, hut the output voltage is less than would be obtained with a condenser-input filter from the same transformer.

Voltage Regulation

The output voltage of a power supply always decreases as more current is drawn, mot only because of increased voltage drops in the transformer, filtor chokes and the reetifior (if highvacuum rectifiers are used) but also because the out put voltage at light loads tends to soar to the peak value of the transformer voltage as a result of eharging the first condenser. By proper filter design the latere effect can be climinated. The ehange in outpat voltage with load is ealled voltage regulation and is expressed as a percentage.

$$
\begin{aligned}
& \text { Per cent regulation }=\frac{100\left(E_{1}-E_{2}\right)}{E_{2}^{\prime}} \\
& \text { Fxample: No-load voltape }=E_{1}=1550 \text { volts. } \\
& \text { lull-loul voltuge }=E_{2}=1230 \text { volts, } \\
& \text { Percentage regulation }=\frac{100(1550-1230)}{1230} \\
& \qquad=\frac{32,000}{1230}=26 \text { per cent. }
\end{aligned}
$$

Regulation may be as great ats 100°; or more with a condenser-input filter, but by proper design can be held to 20% or less.

Good regulation is desirable if the load current varies during operation, as in a keved stage or a (lass 13 modulator because a large change in voltage may increase the temdency toward key elicks in the former case or distortion in the latter. On the other hand, a steady load, such as is represented by a reneiver, spoceh amplifior or unkered stages in a transmitter, does not require good regulation so long as the proper voltage is obtained under load conditions. Another consideration that makes good voltage regulation desirable is that the filtor condensers must have at voltage rating safe for the highest value to which the voltage will soar when the external load is removed.

When essentially constant voltage, regardless of current variation is required (for stabilizing an
oscillator, for example), special voltage-regulating circuits described elswhere in this chapter are used.

Load Resistance

In discussing the performance of power-supply filters, it is convenient to express the load conneeted to the output terminals of the supply in terms of resistance, The load resistance is equal to the output voltage divided by the total current drawn, including the current drawn by the bleeder resistor.

Input Resistance

The sum of the trathsormer-winding resistance and the rectifier resistance: is called the input resistance.

Bleeder

A bleder resistor is a resistance connected across the output terminals of the power supply. Its functions are to diseharge the filter condensers as a safety measure when the power is turned off and to inprove voltage regulation by providing a minimum load resistance. When voltage regulation is not of importance, the resistance may be as high as 100 ohms per volt. The resistance value to be used for voltage-regulating purposes is discussed in hater sections. From the consideration of satety, the power rating of the resistor should be as conservative as possible, sinee a burned-out bleder resistor is more dangerous than none at all!

Ripple Frequency and Voltage

The pulsations in the output of the rectifier can be considered to be the resultant of an alternating current superimposed upon a steady direct current. From this viewpoint, the filter maty be considered to consist of shunting combensers which short-cireuit the a.c. component while not interfering with the flow of the d.e. component, and series chokes which pass d.c. readily but which impede the flow of the a.c. component.

The alternating component is called the ripple. The effectiventess of the filter can be expressed in terms of per cent ripple which is the ratio of the r.m.s. value of the ripple to the d.e. value in terms of percentage. For e.w. transmitters, a reduction of the ripple to $\overline{5}$ per cent is considered aderguate. The ripple in the output of power supplies for voice transmitters and VFOs should be reduced to 0.25 per cent or less. High-gain speech amplifiers and receivers may require a reduction to as low as 0.1 per cent to prevent objectionable ripple hum.

Ripple frequency is the frequency of the pulsations in the rectifier output wave - the number of pulsations per second. The frequency of the ripple with half-wave rectifiers is the same as the frequence of the line supply - 60 creles with 60 cucle supply. Since the output pulses are doubled with a full-wave rectifier, the ripple frequency is doubled - to 120 cycles with 60 -cycle supply.

Fig. 7-4-Condenser-input filtor circuits. A-Simple condenser. B - Single.action. C - Donbla-sertion.

The amount of filtering (values of inductance and capacitance) required to give adequate smoothing depends upon the ripple frecuencer, more filtering being required as the ripple frequency is lower.

CONDENSER-INPUT FILTERS

Condenser-input filtor systems are shown in Fig. 7-4. Disregarding voltage drops in the chokes, all have the same eharateristics exerpt in respect to ripple. Better ripple reduction will be obtained when $L C$ sections are added, as shown in Figs, 7-4C and I).

Output Voltage

To determine the approximate d.e. voltage output when a condenser-input filter is used, reforence should be made to the graph of Fig. $7-5$.

Example:
Transformer rams, voltage - 3.0
Input resistaner - 200 ohns
Maximum load marrent, includiay bleder current - 175 ana.
Load resistance $=\frac{3.50}{0.175}=2000$ ohms ammox.
From Fig. 7-5, for a load resistance of 2000 ohms and an input resistance of 200 ohms, the d.e. output voltage is given as slightly over 1 times the transformer r.m.s. voltaige, or about 350 volts.

Regulation

If a bleeder resistance of 50,000 ohms is used, the d.e. output voltage, as shown in Fig. $7-\bar{j}$, will rise to about 1.35 times the transformer r.m.s. value, or about 470 volts, when the external load is removed. For greater accuracy, the voltage
drops through the resistaner of the ehokes should be subtracted from the values determined above. For best regulation with a condenser-input filter, the bleder resistance shoud be as low as possible without execerling the transformer, rectifier or choke ratings when the external load is connected.

Maximum Rectifier Current

The maximum load current that cam be drawn from a supply with a condenser-input without execeding the poak-current rating of the rectifier may be estimated from the gatap of Fig. 7 -th. Csing values from the proceding example, the ratio of poak rectifier eurrent to d.e load current for 2000 ohms, as shown in Fig. 7 - 6 is 3. Therofore, the maximum load current that can be drawn without exeerding the reetifier rating is $1 / 3$ the prak rating of the rectifier. For a load current of 175 ma., as above, the rectifior peak current rating should be at least $3 \times 175=525$ mad.

With bleeder current only, Fig. 7 - 6 shows that the ratio will increase to over 8 . l lut since the bereder draws less thath 10 mat. d.c., the reetifier peak current will be only 90 mat or less.

Ripple Filtering

The approximate ripple percentage after the simple condenser filter of Fig. 7 -4A mas be determined from Fig, $7-7$. With a load resistaner of 2000 ohms, for instaner, the ripple will be approximataly 10^{\prime} c with an $8-\mu \mathrm{fi}$, condenser or 20^{\prime} ' with a $4-\mu \mathrm{fl}$. condenser.

The ripple can be reduced furt her by the addition of $L C^{\ominus}$ sections as shown in Figs. 7-413 and C.

Fig. -. 5 - Chart showins apmoximate ratie of d.c. output voltage across filter input comdenser to transformer r.m... secondary voltage for different load and input resistances.

Fig. 7-6 - Craph -howing the relationshif belween the d, \because load current and the rectifier preak plate current with romdenacr input for varions values of loal and ingut resistance.
lig. 7-8 shows the factor he which the ripple from any preceding section is reduced depernding on the product of the (apmetitanoe and inductance added. For instance, if a suction compored of a choke of $\overline{5}$ hy. and at condenser of $4 \mu \mathrm{fd}$. were to be added to the simple comdenser of Fig. $7-4$, , the product is $4 \times 5=20$. Rig, $7-8$ shows that the original ripple (10 en abowe for example) with be redued by a factor of aloout 0.08. Therefore the ripple pererntage after the new sedion will be

 centage ripple across lilter input condenser for various loads.
approximately 0.0 . $\times 10=0.8 \%$. If another section is added to the filter, its reduetion factor from Fig. $7-8$ will be applied to the $0,8 \% / 6$ from the prereding seretion, erte.

CHOKE-INPUT FILTERS

Much botter voltage regulation results when a choke-input filter, as shown in l"ig. $7-9$, is used. Choke input also permits better utilization of the rectifior, since: h higher lowd current usually com be drawn without execeding the peak current rating of the rertifier.

If the first cholke has a value ergual to or greater thatn

$$
L_{0 \mathrm{hy} .)}=\frac{\text { Lond resislanes }^{(o h m s)}}{1000}
$$

the output voltage will not soar above the average value of the rectified wave at the input of the choke when the load current is small. This is in contrast to the proformanee of the condenser-

Fig. 7-8 - Ripple-reduction factor for varions values of I, and C in filter section. Output ripple $=$ inpul ripple \times ripile factor.
input filter where the output voltage tends to soar toward the poak value at light current loads, 'This value of inductanee is known as the critical value.

If the first choke has a value equal to or greater than

$$
L_{(\mathrm{k}, .)}=\frac{\text { Lond resislante }(\text { ohms })}{500}
$$

the parak rectifier current will not exeed the d.e. load current by more than 10 per cont when the loul current is large. This is in contrast to the condenser-input filter where the beak reetifier current may run 2 to is times the d.e. load current. This value of inductance is known as the optimum value.
lioth of the above conditions will usually be satisfied for all values of load current drawn from the supply if the choke has at least the critical

Fíp. 7.9-Choke-input filter circuits, A - Singlesece. tion. ls - Doublesection.
value of inductance for the minimum current load (usually the ble $\begin{gathered}\text { der resistance only) and does }\end{gathered}$ not fall below the optimum value for the greatest eurrent load to be drawn.

Specially-designed input chokes, called swinging chokes, are avaitable. These chokes are usually rated in terms of maximum d.e. current and the range of inductance over which they are designed to "swing" with different load currents. loor instance, a choke may have a rating of $\overline{5}$ to 25 hy., 250 ma. This means that the inductance is 5 hy, with 250 ma . d.c. flowing through it.

From the formula for optimum inductance, 5 hy: is optimum for a minimum load resistance of $5 \times 500=2500$ ohms. At 250 mat, this resistance means a minimum voltage of $2500 \times 0,250=625$ volts.

Bleeder Resistance

Also, 25 hy, is the eritical inductance for $25 \times 1000=25,000$ ohms. Therefore the bleeder resistance should be not greater than 25,000 ohms.

In the case of supplies for higher voltages in partieular, the maximum load resistance requirement may result in the wasting of an appreciable portion of the transformer power capacity in the bleeder resistance. A higher bleeder resistance drawing less current can be used, of course, but at a sacrifice in regulation. Two input chokes in series will permit the use of a bleeder of twiee the resistance, cutting the wasted eurrent in half. Amother alternative that can be used to advantage in a c.w, transmitter is to use a very highresistance bleoder for protective purposes and then use only sufficient fixed bias on the tubes operating from the supply to bring the total eurrent drawn from the supply, when the key is open, to the value of current that the required bleder resistance should draw from the supply. Operating bias is brought back up to normal by increasing the grid-leak resistance. Thus the entire current capacity of the supply (with the exerption of the small drain of the protective bloeder) can be used in operating the transmitter stages.

Output Voltage

Provided the input-choke inductance is at least the critical value, the output voltage may
be calculated quite closely by the following equation:

$$
E_{\mathrm{o}}=0.9 E_{\mathrm{t}}-\frac{\left(I_{\mathrm{b}}+I_{\mathrm{t}_{\mathrm{o}}}\right)\left(R_{1}+R_{2}\right)}{1000}-E_{\mathrm{r}}
$$

Where E_{0} is the output voltage; E_{t} is the r.m.s. voltage applied to the rectifier (r.m.s. voltage between center-tap, and one end of the secondary in the case of the enenter-tap rectifier); I_{b} and I_{1} are the bleder and load currents, respectively, in milliamperes; R_{1} and R_{2} are the resistances of the first and second filter chokes; and E_{r} is the drop between reetifier plate and cathode. These voltage drops are shown in Fig. 7-11. At no load I_{L} is zero, hence the no-load voltage may be calculated on the basis of bleeder carrent only, The voltage regulation may be determined from the no-load and full-load voltages using the formula previously given.

Ripple with Choke Input

The percentage ripple output from a singlesection filter (Fig. 7-9A) may be determined to a close approximation, for a ripple frequency of 120 cycles, from Fig. 7-10.

Example: $I=5 \mathrm{~h} ., C=4 \mu \mathrm{fd} ., L C=20$.
From Fig. $7-10$, percentage ripple $=5$ per cent.
Example: $L=\overline{5} \mathrm{hy}$. What capacitance is needed to reduce the ripple to 1 per cent? Following the 1 -per-cent line to the right to its intersection with the diagonal, thence downward to the $L C$ acale, read $L C=100,100 / 5=$ $20 \mu \mathrm{fd}$.

Fig, 7-10 - Graph showing combinations of inductance and eapacitance that may be used to reduce ripple with a single-section choke-input filter.

In selecting values for the first filter section, the inductance of the choke should be determined by the considerations discussed previously. Then the condenser should be selected that when combined with the choke inductance (minimum inductance in the case of a swinging choke) will bring the ripple down to the desired value. If it is found impossible to bring the ripple
down to the desired figure with practical values in a single section, a second section can be added, as shown in Fig. 7-913 amd the reduction fartor from Fig. 7-8 applied as discussed under condenser-input filters. 'The second choke should not be of the swinging type.

OUTPUT CONDENSER

If the supply is intended for use with an audio-frequency amplifior, the reactance of the last filtor condenser should be small (20 per (ent or less) eompared with the other a.f. resistance or imperdance in the circuit, usually the tube plate resistance and load resistance. (${ }^{n}$ the basis of a lower a.f. limit of 100 cyeles for sperech amplification, this condition usually is satisfied when the output capacitance (last filter capacitor) of the filter is 4 to $8 \mu \mathrm{fid}$, the highor value of rapacitance being used in the case of lower tube and load resistances.

RESONANCE

Resonamere effects in the sorics eircuit across the output of the rectifier which is formed by the first choke (L_{1}) and first filur eondenser (${ }^{\prime \prime}$) must be avoided, since the ripple voltage would build up to large values. This not only is the oppesite aretion to that for which the filter is intendod, but also mas cause exeasive reetifier peak currents and aboormally-high inverse peak voltages. For full-wave rectification the ripple frequency will be 120 cercles for a fo-cyele supply, and resonance will oceur when the product of choke inductance in henres times condenser rapacitance in microfarads is egual to 1.77. The corresponding figure for 30 -crele supply (100 -ecerde ripple frequence) is 2.53 , and for 2.)-excle supply (5)-eycle ripple frequeney) 13.5. It least twior thes products of inductance and caparitance should be used to ensure against resonance effects.

RATINGS OF FILTER COMPONENTS

Athough filter eondensers in a choke-input filter are subjected to smaller variations in d.c. voltage than in the condenser-input filter, it is
advisable to use condensers rated for the poak transformor voltage in case the bleder resistor should burn out when there is no loid on the power supply, since the voltage then will rise to the same maximum value as it would with a filter of the condenser-input type.

In a condenser-input filter, the condensers should have a working-voltage rating at least as high, and preferably somewhat higher, than the beak-voltage rating of the transformer. Thus, in the case of a center-tap rectifier having a transformer delivering bio volts each side of the center-tap, the minimum safe condenser voltage rating will be $5 \overline{5} 0 \times 1.41$ or 775 volts. An 800 -volt eondenser should be used, or preferably a 1000 -volt unit to allow a margin of safety.

Filtor eondensers are made in several different topes. Electrolytic condensers, which are available for voltages up to about 800 , combine high capacitance with small size, since the dielectric is an extremelv-thin film of oxide on aluminum foil. (ondensers for higher voltages usually are made with a dielectric of thin paper impregnated with oil. The working voltage of a condenser is the voltage that it will withstand continuously.

The input choke may be of the swinging tope, the required minimum no-load and full-foad inductance values being calculated as deseribod above. For the second choke (smoothing choke) values of 10 to 20 henrys ordinarily are usod. Since chokes usuatly are phaced in the positive leads, the negative being groundel, the windings should be insulated from the eore to withstand the full d.e. output voltage of the supply and be capable of handling the reguired load current.

Filter chokes or inductances are wound on iron eores, with a small gap in the core to provent magnetic saturation of the iron at high currents. When the iron becomes saturated its permeability docreasers, consequently the inductance also derreases. Despite the air gap, the inductance of a choke usually varies to some extent with the direct current flowing in the winding; hence it is necessary to specify the inductance at the current which the choke is intended to carrs. Its inductance with little or no direct curront flowing in the winding may be eonsiderably higher than the value when full load current is flowing.

Plate and Filament Transformers

Output Voltage

The output voltage which the plate transformer must deliver depends upon the required doc. load voltage athed the type of filter circuit.

With a choke-imput filter, the reguired rom.s. seomdary voltage (each side of enoter-tap for a contor-tap rectifier) (can be calculated by the erpution:

$$
E_{\mathrm{\imath}}=1.1\left[E_{\mathrm{o}}+\frac{I\left(R_{1}+R_{2}\right)}{1000}+E_{\mathrm{r}}\right]
$$

where E_{0} is the required d.e. output voltage, I is the load current (including bleoder current) in milliamperes, R_{1} and R_{0} are the d.e resistanees of the rhokes, and E_{r} is the voltage drop in the rectifier. E_{2} is the full-load r .m.s.s. secondary voltage; the open-direuit voltage usually will be 5 to 10 per eent higher than the full-load value.

The approximate transformer ontput voltage reguired to give a desired d.c. output voltage with a given load with a condenser-input filter

Fig, $7-11$ - Diagram showing varions voltage Irop= that must le taken into consideration in determining the required transformer voltage to deliver the desired output voltage.
sustem can be calculated with the help of Fig. 7-11.

Example:

Required d.c. output volts - 800
Load current to le drawn - IOM ma.
Lowh rewistance $=\frac{-300}{41}=5000$ ohms.
If the rectifier resistaner is 200 ohms. Fing 7 . shows that the ration of d.c. volts to the rempired transformor rom,s. voltate is approximately $1,16$.
The rombed transformer torminal voltage under losud with chokes of 200 and 300 ohms is

$$
\begin{aligned}
E_{t} & =\frac{E_{0}+I\left(\frac{h_{1}+R_{2}+R_{r}}{1000}\right)}{1.15} \\
& =\frac{500+100\left(\frac{200+300+200}{1000}\right)}{1.15} \\
& =\frac{570}{1.15}=40.5 \text { volts. }
\end{aligned}
$$

Volt-Ampere Rating

The volt-ampere rating of the transformer depends upon the type of fibter (condenser or choke input). With a condenser-input filter the heating ofle en in the sereondary is higher boeause of the high ratio of pak to average current, consequently the voltamperes consumed hy the transformer may ber several times the watts dolivered to the load. With a choke-input filter, provided the input choke has at least the eritical inductance, the seondary volt-amperes can be calculated guite chosely be the erguation:

$$
\text { Sec. } \Gamma_{. .1}=0.0007 . .1: 1
$$

where E is the total rims. voltage of the secondary (between the outside colds in the case of al center-tapped winding) and I is the d.e. output current in milliamperes (load courrent plus bleoder current). The primary volt-amperes will be 10 to 20 per cent higher bectase of transformer losses.

Filament Supply

lixeept for tubes designed for battery operation, the filaments or heaters of vacuum tubes used in both transmitters and receivors are universatly operated on alternating current obtained from the power line through a stepdown transformer delivering a secondary voltage equal to the rated voltage of the tubes used. The transformer should be designed to earry
the eurrent taken by the number of tubes whieh may be connceted in parallel across it. The filament or heater transformer penerally is enter-tapperl, to provide a balanced cireuit for - liminating hum.
for medium- and high-power r.f. stages of thamsmitters, and for high-power audio stages, it is desirabla to use a separate filament transformer for earh seetion of the transmitter, installed near the tube sockets. This avoids the neressity for abormally large wires to carry the total filament current for all stages without appreciable voltage drop. Maintenance of rated filament voltage is highly important, especially with thoriated-filament tubes, since under- or over-voltage may reduee filament life.

Rewinding Filament Transformers

Although the home winding of high-voltage transformors is a task that fow amateurs undertake these days, the rewindius of a smalltransformer secondars to give some desired filament voltage is mot difficult. It involves a matter of only a small number of turns and the wire is large enough to be handled easily. Oftem a broadeast-recoiver power transformer with a burned-out high-voltage winding, but with the primary winding intaet, can be converted into an entirely satisfactory filament transformer without great effort.

The primary volt-ampere rating of a transformer to be rewound mat be taken from the label on the transformer or from the manufacturers catalogue. This will indieate whether or not the transformer will be capable of hathding the necessary power. 'The secondary volt-ampere rating will be ten to twenty per cont less than the primary rating. The produet of the voltage and the number of amperes rectuired from the new filament winding, plus that for any other serombaries that may be kegt in use, should not excoed the secondary volt-ampere rating, unless the builder is willing to aceppt a lower safety fartor.

Before discommecting the winding leads from their terminals, each should be marked for identification. In removing the core laminations, care should be taken to note the manmer in which the eore is assembled, so that the reassembling will be done in the same mamer. Some transformers have secondaries woumd over the primary, while in others the orter is reversed. In rase the secondarios are on the inside, the turns can be pulled out from the eonter after slitting and removing the fiber core.

The turns removed from one of the original filament windings of known voltage should be ettrefully eounted as the winding is removed. This will give the mumber of turns per bold and the same figure should be used in determining the number of turns for the new secondars. For instance, if the old filament winding was rated at 5 volts and has 20 turns, this is $20 / 5=$ 4 turns per volt, If the new socondary is to deliver $7 . \bar{j}$ volts, the required number of turns
on the new winding will be $7.5 \times 4=30$ turns.
The Conpor-Wire Table in the chapher of miserelaneots data shows the curenterarring catpacity of various sizes of wire at a cross section of 1 ono cireular mils per ampere. This is a consorvative rating, A cross sertion of 1000 eireular mils per ampere is closer to the figure used for most amatebur-service transformens. In chataner broadeast-receiver transformers, the figure m:s run as low as 500 . The curent-c:arving capacity at 1000 cirentar mils per ampere mang be dotermined by printing off threr doedmal plares from the right in the figures in the third columm of the table showing cirealar-mil area, As an example, No. 18 wime has al capacity of 1.7 :mperes at 1500 cireular mils per ampere, 2.58 amperes at 1000 eireular mils per ampere and 5.16 ampores at $\mathbf{3 0 0}$ cireular mils per ampres. The choide of rating to be used in most cotses will he deceded he the size of available wire and the avatable
winding space. If the transformer being rewound is a filamont transfomer, it may be neressary to chowse the wire size earetully to fit the smell available space. On the other hand, if the transformor is a power unit, with the high-voltage wioding removed, there should be plents of room for a sizo of wire that will conservatively handle the required curment.

The insulation to be used botworn the primary and secondary windings (and also between the seeondary winding and the core if the seecondary is on the inside) will depend on whether the transformer is to be used to supply r.f. tabes or rectifior tubes in a high-voltage supply. A fow layers of limen paper should be sufficient for the formor service, but insulating cambrie sheet should be used if the voltage betweon frimary and socondary runs more than 1000 volts.

Voltage Dropping

Series Voltage-Dropping Resistor

Coptain plates and serens of the various tubes in a famsmitter or remeder oftern require a varicty of oparating voltares difforing from the output voltage of available pownerspolies. In most rases, it is not eronomically fasible 10 provide a separate power supply for eath of the required voltages. If the rurvent drawn by an eloctrode or combination of eloctrodes operating at the same voltage, is reasonathly constant under normal operating conditions, the reguired voltage may be obtained from a supply of higher voltage by means of a voltagedropping resistor in series, as shown in Fig. 7-12A. The value of the series resistor, l_{1}, may be obtained from Ohm's Law, $R=\frac{E_{3}}{l}$, where E_{d} is the voltage drop required from the supply voltage to the desired voltage and / is the total rated current of the load.

Example: The plate of the tube in one stage and the sereens of the tubes in two other stages repuire an operating voltage of 250 . The nearest avaidable sumply voltage is 400 and the total of the rated plate and screen currents is 3.5 ma. The required resistance is

$$
R=\frac{400-2.50}{0.075}=\frac{1.50}{0.0 i 5}=2000 \text { ohms. }
$$

The power rating of the reaistor is obtained from $P^{\prime}($ watts $)=I^{2} R=(0.025)^{2}(2000)=11.2$ watts. I 2n-watt resistor is the nearest safe rating to be used.

Voltage Dividers

The regulation of the voltage obtained in this manner obviously is poor, sime any change in current through the resistor will calne a di-reetly-proportional change in the voltage drop arross the resistor. The regulation can be improved somewhat by comerting a second rosistor from the low-voltage end of the first to the negative power-supply terminal, as shown in Fig. $7-12 \mathrm{~B}$, such an arrangement constitutes
a voltage divider. The second resistor, h_{2}, acts as a comstant load for the first, R_{1}, so that any variation in current from the tap becomes a smaller percentage of the total current through l_{1}. The heavier the rument drawn by the resistors when they alone are conneded across the supply, the better will be the voltage regulation at the tap.

Such a woltage divider may have more than a single tap for the purpose of ohtaining more than one value of voltage. A typieal arrange-

Fig. 7-12 - A - Series voltage-dropping resitur. 13 Simple voltage divider. (: - Multiple disider cirenit.

$$
R_{3}=\frac{I_{1}}{l_{1}}: R_{4}=\frac{I_{2}-I_{1}}{I_{1}+I_{1}}: R_{5}=\frac{I_{5}-I_{2}}{I_{1}+I_{1}+I_{2}}
$$

ment is shown in Fig. 7-12C. The terminal voltage is E, and two taps are provided to give lower voltages, E_{1} and E_{2}, at currents I_{1} and I_{2} respectively. The smaller the resistance betweon taps in proportion to the total resistance, the smaller the voltage between the taps. For convenience, the voltage divider in the figure is considered to be made up of separate resistances R_{3}, R_{4}, R_{5}, between taps. R_{3} carries only the bleeder current, $I_{1} ; R_{4}$ carries I_{1} in addition to $I_{5} ; R_{5}$ carries I_{2}, I_{I} and I_{b}. To calculate the resistances required, a bleder cur-
rent, I_{b}, must be assumed; generally it is low compared with the total load current (10 per cent or so). Then the required values can be calculated as shown in Fig. 7-1?C', I being in decimal parts of an ampere.

The method may be extended to any desired number of taps, each resistance section being calculated by Ohm's Law using the voltage drop across it and the total current through it. The power dissipated by each seetion may be calculated either by multiplying I and E or I^{2} and R.

Voltage Stabilization

Gaseous Regulator Tubes

There is frequent meed for matintaining the voltage applied to a low-voltage low-eurrent cireuit at a practically constant value, regardless of the voltage regulation of the power supply or variations in load current. In such applications, gaseous regulator tubes (VR10530, V1R150-30, ete.) ean be used to good advantage. The voltage drop ateross such tubes is constant over a moderately wide current range. Tubos are available for regulated voltagos of $150,105,90$ and 75 volts.

The fundamental circuit for a gaseous regulator is shown in Fig. $7-13$. . The tube is connected in series with a limiting resistor, R_{1}, across a source of voltage that must be higher than the starting voltage. The starting voltage is about 30 per cent higher than the operating voltage. The load is connected in parallel with the tube. For stable operation, a minimum tube current of 5 to 10 ma . is required. The maximum permissible current with most types is 40 mat: consequently, the load rurrent camot excerd 30 to 35 ma. if the voltage is to be stabilized over a range from zero to maximum load current.

The value of the limiting resistor must lie between that which just permits minimum

Fig. 7 -13 - Voltage-stabilizing circuits nsing VI: tubes.
tube current to flow and that which just passes the maximum permissible tube eurrent when there is no load current. The latter value is generally used. It is given by the equation:

$$
R=\frac{1000\left(E_{\mathrm{s}}-E_{\mathrm{r}}\right)}{I}
$$

where R is the limiting resistance in ohms, E_{s} is the voltage of the source ancoss which the tube and resistor are conneeted. E_{r} is the rated voltage drop aeross the regulator tube, and I is the maximum tube current in milliamperes (usually 40 ma.).

Fig. 7-13B shows how two tubes may be used in series to give a higher rogulated voltage than is obtamable with one, and anso to give two values of regulated voltage. The limiting resistor may becaleulated as above, using the sum of the voltage drops arross the two tubes for E_{r}. Since the upper tube must carry more current than the lower, the load eonnected to the low-voltage tap must take small current. The total current taken by the loads on both the high and low taps should not execed 30 to 33° milliamperes.

Voltage regulation of the order of 1 per cent can be obtained with regulator circuits of this type.

Electronic Voltage Regulation

Several cireuits have been developed for regulating the voltage output of a power supply electronically. While more complicated than the Viktube circuits, they will handle higher voltages and currents and the output voltage maty be varied continuously over a wide range. In the circuit of Fig. 7-14, the 5651 regulator tube supplies the grid (4) of the 6SLA with a constant reference voltage. When the load connected across the output terminals increases, the output voltage tends to decrease. This decreases the plate (5) voltage. simee grid (1) is commected directly to plate (i), grid (1) becomes less positive and that triode draws less plate current. The voltage drop across R_{3} being less, the bias on the grids of the $6.15 \overline{4} \mathrm{G}$ is reduced, decreasing the voltage drop across the 6. 157 G and thereby maintaining the original output voltage.

For a maximum regulated voltage output of 250 , the filtered d.e input voltage should te 325 volts at $22 \overline{\text { o max }}$ mor a constant line voltage the output voltage will remain constant within 0.2 volt over a load-current range of 0 to 225 ma . With a line-voltage variation of phas or minus 10

Table of Performanca for Circuit of Fig. 7-15			
1	II	[/I	Output voltage - 300
450 v .	22 ma	3 mv .	1.50 ma .2 .3 mv .
12.5	45 ma .	1 mv .	$125 \mathrm{ma}, 2.8 \mathrm{mv}$.
100 \%	徒 ma.	6 mv .	100 ma. 2.6 mv .
3.5 v .	97 ma.	8 mv	75 ma. 2.5 mv .
350 v .	122 ma .	9.5 mv	$50 \mathrm{ma}$,3.0 mv .
32.5	150 ma.	3 nı,	25 ma .3 .0 mv .
300 v .	150 ma.	2.3 mv ,	10 ma .2 .5 mv ,

Fig. 7.14-Electronic voltage-regulator cirruit.
C. C_{1} - $0.1-\mu \mathrm{fd}$. 400 -volt paper.
R_{i} - l(0)-ohm 10 -watt potentiometer (halanee).
$\mathbf{R}_{2}, \mathbf{R}_{3}-12,000$ ohme, 2 watts.
$R_{3}, R_{4}-0.17$ megolim, $1 / 2$ watt.
$\mathrm{R}_{\mathrm{B}}-68,000$ ohms, 1 watt.
$1 \mathrm{i}_{7}-1 \mathbf{5}, 0(10) \mathrm{ohms}, 2$ watts.
Rs - 10,000-ohmi potentiometer (output control).
$R_{9}-1$ megohm, $1 / 2$ watt .

por cent, the output voltage will vary less than 0.1 volt.

Another similar regulator circuit is shown in Fig. 7-15. The principal difference is that screengrid regulator tubes are usel. The fart that a sereen-grid tube is relatively insensitive to changes in phate voltage makes it possible to obtain a reduction in ripple voltage adequate for many purposes simply by supplying filtered d.c. to the sorcens with a consequent saving in weight and cost. The arcompanying table shows the performane of the circuit of Fig. $7-1$. . Column 1 shows various output voltages, while Column II shows the maximum current that c:a be drawn at that voltage with negligible variation in output voltage. Column III whows the measured ripple at the maximum current. The second part of the
table shows the variation in ripple with load current at 300 volts output.

A single VIR tube maty also be used to regulate the voltage to a load current of almost any value so long as the variation in the current does not exceed 30 to 35 ma . If, for example, the average load current is 100 mai, a VIR tube may be used to hold the voltage constant provided the current doos not fall bolow Sī mat. or rise above 115 ma. In this case, the resistance should be calculated to drop the voltage to the VR-tube rating at the maximum boad current to be experted plus about ${ }^{\circ}$ ma. If the load resistaner is constant, the effects of variations in line voltage maty be climinated by hasing the resistance on the load current plus 15 ma. Vhe tubes may also be used in parallel as described later in this chapter.

Fig. 7-15- Cirruit diagram of an clectronically-regu-
lated pewer supuly rated at 300 volta max, linlma. max.

[^3][^4]
Bias Supplies

As discussed in the chapter on high-frequency transmitters, the chief function of a bias supply for the r.f. stages of a transmitter is that of providing protective bias, although under certain circumstances, a bias supply, or pack, as it is sometimes called, can provide the operating bias if desired.

Simple Bias Packs

Fig, 7-16A shows the diagram of a simple bias supply. R_{1} should be the recommended grid leak for the amplifier tube. No grid lak should be used in the transmitter with this type of supply. The output voltage of the supply, when amplifier grid eurrent is not flowing, should be some value between the bias required for platerecurrent cut-off and the recommended operating bias for the amplifier tube. The transformer peak voltage (1.t times the r.m.s. value) should not exceed the recommended operating-bias value, otherwise the output voltage of the pack will soar above the operating-bias value with rated grid current.

This soaring can be reduced to a considerable extent by the use of a voltage divider across

(A)

(B)

(C)

(E)

(F)

Fig. 7.17 - Illustrating the use of VIt tubes in stabilizing protective-bias supplies. R_{1} is a resistor whose value is adjusted to limit the current through eath Vil the to. is ma. before amplifier extitation is applied. K and Re are eurrent-equalizing resistors of 50 to 300 ohms.
the transformer serondary, as shownat lk. Such a system can be used when the trathsformer voltage is higher than the op-erating-bias value. 'The tap on R_{2} shoudd be adjusted to give amplifier cut-off bias at the output terminals. The lower the total value of R_{2}, the less the soaring will be when grid current flows.

A full-wabe rireuit is shown in lig. 7-160. R R_{3} and R_{4} should have the same total rexistance and the tape should be adjusted symmetric:ally. In all cases, the transformer must be designed to furnish the current drawn by these resistors plus the current drawn by R_{1}.

 (1 - $20-\mu \mathrm{fa}$. 150-volt electrolytio. R ; - 0,1 -magohm potentioneter. $\mathrm{C}_{2}-20-\mu \mathrm{ffl}$. 150 -wolt electrolytic. R_{1} - $\boldsymbol{0}$ orw ohms, 25 watts. R_{2} - 2.0 .0 OH ohms, H_{3} - $68,(110$) ohman watt. 13_{4} - $1.2 \overline{2}$ mequhn, ${ }^{2}$ watt. $18,-3010$ ohms, 5 watt . $\mathrm{n}-0.12$ mequhn, $\frac{1}{2}$ watt.
$\mathrm{Rs}-: \mathbf{2} .000$ ohms, $1 / 2$ watt.
L_{1} - 30 -hy. 50 -ma. lilter ehoke.
' I_{1} - Power transformer: 3.50 volts r.m.s. each side of eenter, 50 ma.; 5 volts, 2 amp.; 6,3 volts. 3 amp .

Regulated Bias Supplies

The inconvenience of the rireuits shown in Fig. 7-16 and the diffeculty of predicting values in practical application can be avoded in most cases by the use of gaseous voltageregulator tubes across the output of the bias supply, as shown in Fig, 7-17A. A Vle tube with a voltage rating anywhere between the biasing-voltage value which will reduce the input to the amplifier to a safe level when excitation is removed, and the operating valare of bias, should be chosen. R_{1} is adjusted, without amplifier excitation, until the VR tube ignites and draws about 5 mat. Additional voltage to bring the bias up to the operating value when excitation is applied ean be obtatimed from a grid latak (ser transuitter whaptor).

Each V'R tube will handle 40 mat. of grid current. If the grid eurrent exceeda this value under any condition, similar VR qubes should be added in parallel, as shownin loig. 7-17B, for bach 40 ma., or less, of additional grid current. The resistors R_{2} are for the purpose of helping to maintain equal currents through each V'R tube.

If the voltage rating of a single V'l tube is not sufliciently high for the purpose, other V'l tubes may be used in series (or series-parallel if required to satisfy gridecurrent requirements) as shown in Fig. 7-17(and I).

If a single value of fixed bias will serve for more than one stage, the biasing terminal of each such stage may be conmeted to a single supply of this type, provided only that the total grid current of all stages so connected does not exeeced the current rating of the Vlk tube or tubes. Altermatively, other separate VR-tube branches may be added in any desired combination to the same supply, as shown in Fig. 7-17E, to suit the needs of each stage.

Providing the V'li-tube eurrent rating is not exreoded, a series arrangement may be tapped for lower voltage, as shown at F .

The circuit diagram of an electronicallyregulated bias-supply is shown in lig. 7-18.

The output voltage may be adjusted to any value botwen 20 volts and 80 volts and the unit will handle grid currents up to 200 ma. over the range of 30 to 80 volts, and 100 ma. ovar the remainder of the range. This will take care of the bias requirements of most tubes used in Class B amplifier service. The regulation will hold to about 0.001 volt per milliampere of grid current.

Other Sources of Biasing Voltage

In some cases, it may be eonvenient to oblain the biasing voltage from a source other than a separate supply. A half-wave rectifier may be connered with reversed polarization to ohtain biasing voltage from a low-voltage phate suphly, as shown in Fig. 7-19A. In another arrangenent, shown at B , a spare filament winding can be used to operate a filament

(A)

Fis, 7-19 - Convenient means of ohtaining biasing voltage. 1 - From a low woblage plate supply. 13 Frum spare filament winding. Ti is a filament transformer, of a voltage output similar to that of the spare filament winding, connerted in reverse to give 115 volts r.m.s. output. If cold-cathonle or selenium rectifiers are used, no additional filament supply is reçuired.
transformer of similar voltage rating in reverse to obtain a voltage of about 130 from the winding that is customarily the primary. This will be sufficient to operate a Vik75 or VR90.

A bias supply of any of the types discussed
requires relatively little filtering, if the outputterminal peak voltage does not approach the operating-bias value, berause the effeet of the supply is entirely or largoly "washed out" when grid current flows.

Selenium-Rectifier Circuits

While the circuits shown in Figs. 7-20, 7-21 and $7-22$ may be used with any type of rectifier, they find their greatest advantage when used with selenium rectifiers which require no filament transformer.

Fif. 7-20-Simple half-wave eircuit for seleainm reatifier.
C. $-0.0 . \bar{i}-\mu \mathrm{fi}$. 60H-volt paper.
(:2 - 40-pful. 20) volt electrolytic.
$\mathrm{H}_{1}-2.5$ to 100 ohms.
Fig. $7-20$ is a straightforward half-wave rectifier cireuit wheh may be used in applie:ttions where 115 to 130 volts des is desired. It can he used for hias supply, for instaner. In this, as well as other reireuits, it will be observed that the negative side of the output is common with one side of the ace line and it is suggested that this side be fused with a lo:mpare fuse.

Fig. 7-21 shows several voltage-doubler circuits. Of the three, the one shown at A is the most desirable since there is no series condenser. It is a full-wave cireuit and there will

Fig, $7-21$ - Voltage-doubling circuits for use with selenium rectifiers.
(: 1 - $0.05-\mu \mathrm{fd} .60 \mathrm{O}$-volt paper.
C_{2} - 40-mfd. 201-volt electrolytic.
C:3-Pilter comdenser.
$R_{1}-2 . z$ (0 1010 ohms.
Li - Filter chohe.
be vory little ripple voltage appearing at the output. The arrangement of cireuit B is such that one side of the output maty be grounded. In eireuit C , the point X is eommon to both condensers in the rectifier and filter, and a single-unit 3-sertion fondenser cam be used to save spare. If the load current is less than 100 ma., this is the best cireuit.
Fig. $7-22 \mathrm{~A}$ shows a voltage tripler, and B and C quadruplers.

Fig. 7-22- A - 'Iripler rirenit. I - Italf-wave quadrupler, C: - frull-wave quadrupler.
C1 - 0.015- -fel . 60 OH -voll paper.
C_{2} - 10- $\mathrm{\mu}$ fil. fint-volt eleretrolytic.
(is- $100-\mu \mathrm{fil}$. 150 -volt electrolytic.
$\mathrm{R}_{1}-25$ w 100 ohms.
All components are standard. ('1 in all eircuits is for "hash" filtering and its value is not critical. A 0.0.)- $\mu \mathrm{fd}$. 600-volt-working condenser should serve. All other coudensers should be $40-\mu \mathrm{fl}$. 200 -volt units, exerpt those in the tripher and quadrupler circuits. Those in the circuit of Fig. $-\mathbf{- 2 2}$ should hawe a rating of tion volts working. In the voltage multiphers and in other cirenits where a condenser is passing the full rurrent, good condensers should be used bectuse the ace ripple mentioned above appears across the condenser and inereases as the load increases. If the current is allowed to berome too high, it will eause heating and deterioration of the condenser. This ean be
kept to a minimum by using a capacitor of high valur and making sure it is of good make. h_{1} should be 25 ohms, but if it is found that the rectifier units are rumning a little foo warm, this value may be increased to ats high as 100
ohms, with a corresponding drop in output voltage, of course.

A single-section filter, as shown in Fig. 7-21C, will provide sulficiont smoothing for most applications.

Power-Line Considerations

POWER-LINE CONNECTIONS

If the transmitter is rated at much more than 100 watts, special consideration should be given to the ace line rumning into the station. In some residential systems, three wires are brought in from the outside to the distribution board, whike in other sirtoms there are only two wires. In the three-wire ssistem, the third wire is the neutral whirh is groumded. The voltage betweren the other two wires mormally is 230 , while half of this voltage (115) appeats between rach of these wires and neutral, as indicated in Figg. 7-23A. In systems of this tope, usually it will be found that the llisvolt housohold load is divided as eventy as possible between the t wo sides of the cireuit, half of the load being comnerted between one wire and the neutral, while the other half of the load is commeded between the other wire and neutral. Heavy appliances, surh as electric stoves and heaters, normatly are designed for 230-volt operation and therefore are connerted across the two ungroumded wires. Whilo both ungrounded wires should be fused, a fuse should never be used in the wire to the neutral, nor should a switch be used in this side of the

Fig. 7-23- Three-wire power-line cirrnits. 1 - Normal 3-wire-line termination. No frese should ber used in the grounded (neutral) line. B - Showing that a awith in the nentral does not remove voltage from cither side of the linc. C: Connertions for both 115 . and 230 volt transformere, (1) - Operating a llosolt plate transformer from the 230 -volt line to avoid light Dlinking. T_{1} is a $2-10-1$ step-down transformer.
line. The rason for this is that opening the neutral wire does not disconnect the equipment. It simply laves the equipment on one side of the 230 -volt circuit in series with whatever load mas be arross the other side of the (ireuit, as shown in Pig. 7-2:313. Furthermore, with the neutral open, the voltage will then be divided bet wean the two sides in proportion to the load resistance, the voltage on one side dropping below normal, while it soars on the ot her side, unloss the loads happen to be equal.
'The usual line running to baseboard outlets is rated at 15 amperes. Considering the power consumed by filaments, lamps, modulator, rereiver and other atuxiliary equipment, it is not unusual to find this 15 -ampere rating exceeded by the requirements of a station of only moderate power. It must also be kept in mind that the same branch may be in use for other household purposes through another out let. For this reason, and to minimize light blinking when keying or modulating the transmitter, a sepat rate heavior line should be run from the distribution board to the station whenever possible (A threevolt drop in line voltage whon the load is applied will cause notionable light blinking.)

If the systom is of the three-wire type, the three wires should be brought into the station so that the station load cath be distributed to kerp the line as balanced as possible. The voltage aroses a fixed load on one side of the circolit will increase as the load current on the other side is increasud. The rate of increase will depend upon the resistance introdured by the neutral wire. If the resistance of the neutral is low, the increase will be correspondingly small. When the currents in the two circuits are balanced, no current flows in the neutral wire and the system is operating at maximum efficienter.

Light blinking ean be minimized by using transformers with 230 -volt primaries in the power supplies for the keved or intermittent part of the load, connecting them across the two ungrounded wires with no ronnection to the noutral, as shown in Fig. 7-2:3C. The same (an be aceomplished by the insertion of a stepdown transformer whose primary operates at 230 volts and whose secondary delivers 115 volts. Conventional $11 \bar{j}$-volt transformers may be operated from the secondary of the step-down transormer (see Fig. 7-231)).

When a special heaverduty line is to be installed, the local power company should be consulted as to local reguirements. In some localities it is necessary to have such a job
done by a lieensed electrician, and there may be sperial requirements to be met in regard to fittings and the manmer of installation. Some amateurs terminate the special line to the station at a switch box, while others may use clectricstow receptacles as the termination. The power is then dist ributed around the station by means of reonventional outlets at convenient points. All rircuits should be properly fused.

- LINE-VOLTAGE ADJUSTMENT

In certain communities trouble is sometimes experienced from fluctuations in line voltage. Veually these fluctuations are calused by a variation in the load on the lime and, since most of the variation comes at cortain fixed times of the day or night, such as the times when lights are turned on at evening, they may be taken care of by the use of a manuallyoprotated compensating deviee. A simple arrangement is shown in Fig. 7-24.A. A tog transformer is used to boost or buck the line voltare as required. The transformer should have a lapped seomdary varying between 6 and 20 volts in step)s of $\underline{2}$ or 3 volts and its serondary should be capable of carruing the full load current of the contire transmitter, or that portion of it fed by the toy transformer.

The secondary is connected in serios with the line voltage and, if the phasing of the windinge is eorrect, the voltare applied to the primaries of the transmitter transtormers can be brought up) to the rated 115 volts by setting the toy-

Fia. $\mathrm{F} \cdot 2.4$ - Two methods of transformer primary control. At A is a tapped toy transformer which may be eonnected so as to bosit or buck the line voltage as required. At 13 is indicated a variatble transformer or antotransformer (Variae) which feeds the transformer primaries.
transformor tap switch on the right tap. If the phasing of the two windinge of the toy transformer happens to be reversed, the voltage will be reduced instad of increased. This connection may be used in cases where the line voltage may be above 115 volts. This method is pref-

Fig. 7. 25- With this cirenit, al single adjustment of the tap switeh S_{1}, hates the correct primary voltage on all transformers in the transmitter. Information on con. structing a suitable aututransformer at neplipible eost is contained in the text. The light winding represents the regular primary winding of a revamped transormer, the heavy winding the voltage-adjusting section.
arable to using a resistor in the primary of a power transformer since it dow not affect the voltage requlation as seriously. The circuit of $7-243$ illustrates the use of a variable transformer (Variace) for adjusting line voltage to the desired value.

Another scheme by which the primary vollage of cach transformer in the transmitter may be adjusted to deliver the desired secondary Foltage, witha master eontrol for eompensating for changes in line voltage, is described in Fig. 7-25.

This arrangement has the following features:

1) Adjust ment of the switeh S_{1} to make the volt meter read 105 volts automatically adjusts all transformer primaries to the predetermined correct voltage.
2) The neressity for having all primaries work at the same voltare is eliminated. Thus, 110 volts can the applied to the primary of one transformer, 115 to another, ete.
3) Independent control of the plate transformer is alforded by the tap switeh S_{2}. This permits power-input control and does not require an extra autotransformer.

Constant-Voltage Transformers

Although eomparatively expensive, sperial transformers called constant-voltage transformers are awailable for use in cases where it is necessary to hold line voltage and/or filamont voltage constant with flurtuating supply-line voltage. They are rated over a range of 17 va . at 6.3 volts output, for small tube-heater demands, up to several thousand volt-amperes at 115 or 230 volts. In average figures, such tramsformers will hold their output voltages within one per cont under an input-voltage variation of 30 per cernt.

Construction of Power Supplies

The length of most leads in a power supply is umimportant, so that the arrangement of components from this consideration is not a factor in construction. More important are the points of good high-voltage insulation, adeguate conduetor size for filament wiring, proper vontilation for rectifior tubes and -

Fig. 7-26-A typial ample receiver power supply, filament and plate voltares are tahen from the molticontart tuhe asoktt which serves az an outlet.
most important of all - safoty to the operator. Pexposed high-voltage terminals or wiring which might be bumped into atecidentally should not be permitted to exist. They should be covered with aderfuate insulation or plated inareresible to eontate during normal operattion and adjust ment of the transmiter. Powersupply units should be fused individualls
lade ifier filament ladds should be kept short to assure proper woltage at the rertifier sorket, and the sockets should have good insulation
and adequate contact surface. Plate leards to mer'ury-vapor tubes should be kept short to minimize the radiation of noise.

Where high-voltage wiring must pass throurh a metal chassis, grommet-lined elearance holes will serve for voltages up to 500 or -ijo but reramic foed-through insulators

Fig. 7.27 - Buttom view of the simple receiver power supply showing the cut eont for the flush-monnting trans. former.
should be used for higher voltages. Bleeder and voltage-dropping resistors should be placed where they are open to air cireulation. leacing them in confined sater redures the rating.

It is highly proferable from the standpoint of operating eonvenience to have separate filament trasemmer's for the reetifier tubes, rather thath to use combination tilament and plate thansformors, such as those used in rearivers. This promits the trathsmitter phate voltage to the switehed on without the neressity

Fig. 7-28 - A typieal high. woltage tram-mitter power supply. 'I'he transformers. rhokes and romulensers are inverted so that no terminals are exposed to acridental contart. The caps of the 866 rectiliers are the insulated type.

for wating for rectifer fibaments to come up to temperature after cheh time the high voltage has been turned off.

A bleeder resistor with a power rating giving a considerable margin of satedy should be used aeross the output of all transmitter power supplies so that the filter condensirs will be diseharged when the high-voltage transformer is turned off. To guart against the possibility of danger to the operator should the bleeder resistor burn out without his knowledpe, and also to protect him in caso he negleets to turn off the power supply before operning ace cabinet tratnsmitter enclosure, one of the deviers shown in Fig. $7-30$ is recommonded. In A, a grounded pivoted motal lever drops by gravity against a contact conmertad to the positive high-voltage terminal when the cabinet door is opened, shorting the powar supply. When the door is closed, it pushes against the end of the hever protruding through the door opening and the short is removerd automatieally. In another scheme, shown at B, a metal ball, suspended on a cood, drops into a triangle of contacts, one of which is grounded, while the other two goto

Fir. 7 -29 - Brotom virw of the transmitter powor antpply showing the cut-outfor the terminalo. Syparate power plons are uaed for thrretetifierfilament and pate tran-formers an that they may he switched indepondently from the cont rol pmsition,

fig. 7 -30 - 'I'wo - cheme for shorting the high-voltage -upply antomatiablly for safety purposes when the tramsmitter dome is opened.

Emergency and Independent Power Sources

Emergency power supply which operatos independently of ace limes is available, or can be built in a number of different forms, depomdings upon the reguirements of the sorvice for which it is intended.

The most pratical supply for the average individual amateur is one that operates from a 6 -volt car storage battery, such a supply may take the form of a small motor gembator (oftencalled a gememotor), a robary converter. or a vibrator-transformer-rectifier combination.

Dynamotors

A dynamotor differs from a motor gemerator in that it is a single unit having a double armat
ture winding. One winding sorves for the driving motor, while the sutput soltage is taken from the other. Dyatmotore usually are operated from 6-, 12-, ?2- on 32-volt storage batterios atad deliver from 300 to 1000 volts or more at variou* current rating

Genemotor is a term populatly wed when making reforence to a dyamotor dowighed espectatly for atumobilo-recoiver, soundtruck and similar applicationc. It has gow regulation and efficiency, combined with eronony of operation. Standard models of penemotors have ratings ranging from $2 \overline{5} 0$ volts at 50 ma. to fol bolts at $3 \overline{5} \mathrm{~T}$ ma. of 600 volts at 2.0 ma, The normal efficieney average aromel

50 per cent, increasing to better than (60 por cont in the higher-power units. The voltage regulation of a genemotor is comparable to that of well-designed a.e. supplies.
surcessful operation of dynamotors and genemotors requires heary direct leads, moWhancal isolation to reduee vibration, and thorough r.f. and ripple filtration. The shafts and bearings should be thoronghly "run in" before regular operation is attempted, and thereafter the tension of the bearings should be chereked oceasionally to make erertain that no looseness hats developed.

In mounting the genemotor, the support should be in the form of rubber mounting blocks, or equivalent. to prevent the transmission of vibration merhanicallys. The frame of the genemotor should be grounded through is heavy flexible connector. The brushes on the high-voltage end of the shaft should be bypatsed with 0.002- $\mu \mathrm{fd}$. mica condensers to a common point on the gencmotor frame, proferably to a point inside the end cover close to the brush hodders, short loads are essential. It may prowe desirable to shied the entire unit. or even to remove the unit to a distance of three or four feet from the recerver and antomat lead.

When the genemotor is used for receiving, a filter should bo ased similar to that deseribed for vibrator supplies. A $0.01-\mu \mathrm{fa}$. (600 -volt (d.c.) paper condenser should be commected in shunt across the output of the genemotor, followed by a 2.5 -mh. r.f. choke in the positive high-voltage lead. From this point the output should be run to the recorver power terminats through a smoothing filter using t- to 8 - $\mu \mathrm{fd}$. condensers and a 15 - or 30 -henry choke having low d.c. resistance.

D.C.-A.C. Converters

In some instances it is desirable to utilize existing equipment built for 115 -volt inc. operation. To operate such equipment with any of the power sources outlined above would reguite a ronsiderable amount of rebuilding. This can be obviated by asing a rotary converter capable of changing the des. from (i-, 12- or 32 -vol batteries to 115 -volt 60-revele ace. Such convortor units are buit todeliver out puts ranging from 40 to 250 watts, depending upon the hattery pewer avalathe.

The convarsion afficioney of these units aworges about so per cent. In appearance and operation they are similar to genemotors of equivalent rating. The over-all efficiency of the convertor will be lower, howerer, because of tosses in the a.c rectifier-filter circuits and the necessity for converting heater (which is supplied directly from the battery in the case of the genemotor) as well as plate power.

Vibrator Power Supplies

The vibrator type of power supply consists of a sperial step-up transformer combined with a vibrating interrupter (vibrator). When the
unit is conmeeted to a storage battery, plate power is obtained by passing eurrent from the battery through the primary of the transformer. The circuit is made and reversed rapidly by the vibrator contacts, interrupting the courent at regular intervals to give a changing magnetic field which induces a voltage in the secondary. The resulting squarewave d.e. pulses in the primary of the transformer catuse an alternating voltage to be devoloped in the secomdary. This high-voltage a.c. in turn is rectified, cither by a vacuum-t tube rectifier or by an additional sinchronized pair of vibrator contacts. The rectified output is pulsating d.c., which may be filtered by ordinary means. The smoothing filter can be a single-sertion affair, but the filter output caparitance should be fairly large - 16 to $32 \mu \mathrm{fl}$.
lig. 7-31 shows the two types of circuits. At A is shown the nonsynchronous type of vibrafor. When the battery is discomnected the reed is midway between the two contacts, fouching neither. On closing the battery cireuit the magnet coil pulls the reed into contact with one rontart point, causing current to flow through the lower half of the transformer primary winding. Nimult aneonsly, the magnet

Fig. F-31-Basie types of vibrator powersupply circuits. A-Nomsynefironous. 13 -Synchronous.
coil is short-circuited, deennergizing it, and the reed swings back. Inertian carries the reed into contare with the upper point, calusing curent to flow through the upper half of the transformer primary. The magnet coil again is energized. and the cyele repeats itself.

The synchronous circuit of lig. 7-31B is provided with an extra pair of eontacts which rectify the secondary output of the transformer, thus eliminating the need for a separate rectifier tube. The secondary center-tap furnishes the positive output terminal when the relative polarities of primary and secondary windings are correct. The proper connertions may be determined by experiment.

The buffer condenser, C_{2}, across the transformer secondary, absorbs the surges that vecur on breaking the current. When the magnetic fied collapeces practically instantameonsly
and hence causes very high voltages to be indueed in the serondary. Without this condonser excessive sparking occurs at the vibrator contacts, shortening the vibrator life. Correct values usually lie between 0.005 and $0.03 \mu \mathrm{fl}$. and for $250-300$-volt supplies the condernser should be rated at 1500 to 2000 volts d.e. The exact capacitance is eritical, and should be determined experimentally. The optimum value is that which results in least battery current for a given rectified d.e. output from the supply. In pratelice the value can be determined by observing the degree of vibrat or sparking as the capacitance is changed. When the system is operating properly there should be prartically nosparking at the vibator contatets. A 5000 -ohm resistor in series with C_{2} will limit the secondary current to a safe value should the condenser fail.

Vibrator-t ransformer units are available in a varicty of power and voltage ratings. Representative units vary from one delivering 125 to 200 volts at 100 ma . to others that have a 400 -volt output rating at 150 ma . Most units come supplied with "hash" filters, but wot all of them have built-in ripple filters. The requirements for ripple filters are similar to those for a.c. supplics. The usual efficienery of vibrator packs is in the vicinity of 70 per eent, so a 300-volt, 200-mat unit will draw ap-

proximately 15 amperes from a 6 -volt storate bathery. Apecial vibrator transformers are also avalahbe from transformer manufacturers so that the amateur may hath his own supply if he so desires. These have de. output ratings varying from 1.50 volts at 40 ma . 10330 volts at 135 m ma.

Vibrator-tepe supplies are also avalable for operating standard ace. equipment from a fi-volt storage hattery in power ratings up to 100 watts continuous or 125 watts intermittent.

"Hash" Elimination

Sparking at the vibrator contacts causes r.f. interference ("hash." which can be distinguishad from hum by its harsh, sharper pitch) when used with a recerver. To minimize this, r f. filters are incorporated. comsisting of $R F^{\prime} C_{1}$ and C_{1} in the battery cireuit, and $R F^{\prime} C_{2}$ with C_{3} in the d.e. ontput circuit.
ligually as important as the hash filter is thorough shidding of the power supply and it, connerting leads, since even a small piece of wire or metal will radiaternough r.f. to canse interference in a sensitive reroiver

Testing in connection with hash climination should be carried out with the supply operating a recerver. Since the interfereme usually is picked up on the recoiving-antema leads by radiation from the supply itself and from the battery leads, it is advisable to kerep the supply and battery as far from the reeover as the conneeting cables will permit. Three or four feret should be ample. The miorophone cord likewise should be kept away from the power supply and its leads.

The power supply should be huilt on a metal chats:is, with all unshiolded parts underneath. A bottom plate to complete the shiolding is advisathle. The transformer ease, vibrator eover and the metal shell of the tube all should be grounded to the chatesis. If a ghass tube is used it should be enclosed in a tube shield. "The battery leads should be evenly fwisted, since these leads are more likely to radiate hash than any other part of a well-shiededed supply. Experimenting with different values in the hash filters should come after radiation from the battery leads has been reduced to : minimum. Shiclding the leads is not often found to be partidularly helpful.
supply for emergeney work.
(. 1 - $0.01-\mu \mathrm{fl}$, 6010 -volt paper.
(. $2-8-\mu \mathrm{fd}$. 45 (l-volt electrolytic.

C $3-32-\mu \mathrm{fd} .450$-volt electrolytic.
C.4 - 0.015-to $0.01-\mu \mathrm{fd}, 160(0$-volt paper.

C $5-5(0)-\mu \mathrm{fil}$. electrolytic, 25 volts or higher.

$R_{1}-4700$ ohms, 1 watt.
$1.1-10 \cdot 10$ 12.hy. filter choke, 100 ma. (not over 100 ohms) (Stancor (i-2303 or equivalent).

 S_{1}, S_{2} - Joggle switeh.
T_{1} - L'ower transformer: 275 to 300 volts r.m.n. each side of center tap, 100 to 150 ma,, 0.3 -volt filament winding.
T_{2} - Vibrator transformer (Staneor P'ol31 or similar). VIS - Vibrator unit (Mallory $\mathbf{5 0 0 1}, \mathbf{2 9}$, etc.).

PRACTICAL VIBRATOR-SUPPLY CIRCUIT

A vibrator-t ype power supply may be designed to operate from a six-volt storage battery only, or in a combination unit which may be operated interehangeably from either battery or 11 voles a.c.

In example of the latter-tope cireuit is shown in Fig, 7-32. It consists essentially of two transformer-rectilier systems - one for 115 volts a.c. and the other a vibrator systom

 for low-power emerpeney work. The two transformers are monnted at rither roml of the rhasis. The filter rome denser is at the left, the two rextitier soekets att the center and the vilorator to the rear.
to operate from a 6 -volt storage battery A common filter is used for the 1 wo systems. In interefanging hetwern a.e and d.e. operation,
 the appropriate socket, while the filament eonnections are made to the proper matput terminals. If desired, 1 wo rectifier tubes may bo used and the changeover mate through suitable switches.
R.f. filters for reducing hash are incorporatod in both primary and secondary cireuits. The secondary filter consists of a $0.01-\mu \mathrm{h}$. paper eondenser directly across the rectifier output, with a $2.5-\mathrm{mh}$. r.f. choke in stries

Fig. 7-3.4-Circuit diagram of a compact vibrator-a.c. portable power supply using selenium rearifiers.

$\mathrm{C} 2-611-\mu \mathrm{ff}$. (110-volt eleetrolytie.

(in, Cif-15 - $-\mu$ fil. 2i-volt painer.
($\therefore-0,01 \pi-\mu \mathrm{fil}$, 1 inll-volt paper.
$R_{1}-2.3,040$ olma, 10 watts.
1.1-9.
$s_{1}-11 \bar{i}$-volt togsle switch.
S_{2} - I.p.dit. he'ary duty knife switch.
$S_{3}-2 \boldsymbol{O}$ amp. s.p.sit. switch.
T_{1} - Ser text.
\mathbf{V} - Heavy-duty vibrator (Cornell-I)uh. fle3).
aheal of the smoothing filter. In the primary cireuit a low-inductance choke and high-rapacitane eondenser are needed because of the low impedance of the cirenit. A choke of the sperifications given should be adequate, but if there is trouble with hash it may be benefieial to experiment with other sizes. The wire should be large - No. 12, preferably, or No. 14 as a minimum. Manufactured ehokes such as the Mallory RFiss: are more compart and give higher inductance for a given resistance berause they are bank-wound, and may be sulstituted if obtainahle. C's should be at least a00 $\mu \mathrm{fa}$: even mere capacitame may help in had cases of hash. The components are issembled on a $5 \times 10 \times 3$ ineh sterel chassis. Three socked holes are required - one for the 4-prong socket fore the vibrater and two ortal sockets for the rectifier. The a.c. line cord and battery and power-output loads are brought out at the rear.

The: comparthess of selenium rectifiers and the fiurt that they do not require filament voltage make them particularle suited to compact lightwoight power supplies for portable emorgency work.

Fig. 7-34 shows the circuit of a vibrator pack that will deliver an output voltage of 400 at 200 mat. It will work with either 11%-volt ate. or (i-volt hattery input. The eireuit is that of the familiar volage tripler whose d.e. output voltage is, as a rough approximation, three times the peak voltage delivered by the transformer or lime. In interesting feat ure of the circuit is the fact that the single transformer serves as the vibrator transformer when oprating from o-volt d.e. supply and as the filament transformer when operating from an a.e. line. This is accomplished without complicated switching.

The vibrator transformer, T_{1}, is a dualsecomdary 6.3-volt filament transformer eonnected in reverse. In either event, the filament windings must have a rating of 10 amperes if the full load current of 200 mas is to be used. Some exeellent surplus transformers that will handle the required eurent are now available on the surplus market. The vibrator also mast be capable of handling the current. The hashfilter choke, L_{1}, must carry a current of 20 amperes.

The following table shows the output voltage to be expected at various load currents, depending upon the size of condensers used at C_{1}, C_{2} and C_{3}.

$\underset{(\mu f(l,)}{C_{1}, C_{2}, C_{3}}$	50 ma .	$\begin{gathered} \text { Output } \\ 100 \mathrm{ma} . \end{gathered}$	Voltage at $1 \overline{0} 0 \mathrm{ma}$.	200 ma .
60	4%	430	415	$3!5$
40	425		360	3330
20	400	340	28.5	225

In operating the supply from an a.c. line, it is always wise to determine the plug polarity with respert to ground. Otherwise the reetifier part of the circuit and the transformer circuit cannot be connected to actual ground exeept through ber-pass eondensers. Rectangular cutouts are also needed for the two flush-mounting
transformers. 'The filter choke, L_{1}, and other small components can be fitted under the chassis. The clip leads to the battery should be no longer tham neressary.

GASOLINE-ENGINE DRIVEN GENERATORS

For higher-power installations, such as for commanieations control couters during comergencies, the most practical form of independent power supply is the gasoline-ongine driven generator which provides standard 11 b-volt b0)-cyche supply.

Such generators are ordinarily rated at a minimum of 250 or 300 watts. They are asailat ble up to two kilowatts. of big enough to handle the highest-power amateur rig. Most are arranged to charge automatically an auxiliary 6- or 12 -volt battery used in starting. Fitted with self-starters and adequate mulloers and filters, they ropresent a high order of performance and efficiency. Many of the larger models are liguid-cooled, and they will operate continuousty at full load.

A variant on the generator ideat is the use of fan-belt drive. The disadvantage of requiring that the automobile must be rumbing throughout the operating period has not lad to gemeral popularity of this idea among amaterurs. Such generators are similar in construction and capacity to the small gas-drivell mits.

The output frequence of an engine-driven generator must fall betweon the relatively natrow limits of 50 to 60 evoles if stathetad (6)-evele transomers are to operate efficiently from this sumee. A 60 -cycle elecerrie clock provides a me:ns of checking the output freguency with a fair degree of accuracy. The clock is conneeted across the output of the generator and the secoud hand is checked elosely against the seeond hated of a watch. The speed of the engine is adjusted until the two seeond hands are in symehomism. If a 50 -cyele elock is used to check a (0 -eycle generator, it should be remembered that one revolution of the second hand will be made in 50 seeonds and the clock will gain 4.8 hours in cach 24 hours.

Output voltage should be cheoked with a woltmeter since a standard 11 j -volt lamp bulb. which is sometimes used for this purposer. is very inaceurate. Tests have shown that what appears to be normal brillianoe in the lamp may oecur at voltages as high ats 150 if the cherek is midde in bright sunlight.

Noise Elimination

Electrical mose which maty interfere with reeoivers operating from engine-driven ate wollcrators maty be reduced or eliminated by taking proper preatations. The most imporiant point is that of grounding the frame of the generator amb one side of the output. The ground lead should be short to be effective, otherwise grounding may actuatly increase the
noise. A water pipe may be used if a short connection can be made near the point where the pipe enters the ground, otherwise a good sepatrate ground should be provided.

The next step is to loosen the brush-holder locks and slowly shift the position of the brushes while checking for noise with the recoiver. Lsually a point will be found (almost always different from the factory setting) where there is a marked decrease in noise.

From this point on, if necessary, by-pass condensers from various brush holders to the fame, as shown in Fig. 7-3.5, will bring the hash down to within 10 to 1.5 per cent of it: original intensity. if not entirely eliminating it. Most of the remaining noise will be reduced still further if the high-power audio stages are cout out and a pair of headphones is connereded into the sceond detector.

- POWER FOR PORTABLES

Dry-coll batteries are the only practical source of supply for equipment which must to transported on foot. From cortain considerations they maty also be the best source of voltage for a receiver whose filaments may be operated from a storage battery, sine moproblem of noise filtering is involved.

Fig. 7.35-Connectinns usel for eliminating inter: frernce from gas-driven menerator plants. C should be I $\mu \mathrm{fd}$. . 300 volt-. paper, while Ce maty be $1 \mu \mathrm{fd}$. with a voltage rating of twice the Il.r. ontpit voltage delivered ly the senerator. I indicates an added comertion te'twern the slip ring on the grommed side of the line and the gencrator frame.

Their disadvantages are woight, high cost, and limitod current apability. In addition. they will lose their power even when not in use. if allowed to stamed idle for priods of a yar or more. This makes them uneomomical if not used more or less continuously.
1)ry " B " batteries are made in a variety of sizes and shapes, from a tio-volt unit weighing about 1 lb . that has an intermittent service rating of 20 hours at a drain of 20 man , to a 12-1b, unit rated at 130 hours at 40 ma. " 1 " battories for fibament service range from a
 intermitent servere and aworge of 60 mat. for $1 \pi 0$ hours, to a $6{ }^{1}$ - $-\mathrm{lb}, 1 . \overline{\mathrm{b}}$-volt unit hatring a sorvice life of 870 hours at 200 ma . Miniature batterios, suitable for hamb-portable use, are also available.

Keying and Break-In

Offhand it would appear that keving a transmitter is a simple matter, since oit the face of it nothing more is involved than turning the tramsmitter output on and off to correspond to the code characeres being sent. Lonfortunately, it is mot this simple, and porfore keying
 voiere quality is with a 'phome transmitter. The prohlem cannot be dismissed bightly.

Ithough the operation is basidatly that of turning the tramsmiter output power on and off, it is emmplicated by the fart that it must not be turned on and olf instantunemashly. lnstead, the output must be made to rise to (and fall from) maximum in some finte period of time, if key clicks are to be avoided. There elicks are the ineseapable result of changing the power lexel raphedry, and they appear in the radios seretrum adjacent to the signal proper. The mowe rapidly the output is varied, the farther the elicks will extend in frequemes and the greater will be their amplitude. They interfore umberessatily with other signals and, if severe enough, call be eatuse for a diserepancy report by the FCO

Amother affere of improper keving of a transmitter is the introduction of chirp, a change in frequences at the instant of making or beaking the signal. A chirp of 20 eveles is emough to make a signal umpleasint to (oopy, and a chirp of several hundred eycles may remder the signal difficult to copy or a target for an $\mathrm{F}^{\circ} \mathrm{C}^{\circ}(\mathrm{disi}$ crepancy report. Much depends, of courser, upon the selertivity and beat note being used at the receiver, but the safest procedure is to aim for no detertable whirp.

I third keving fault is defined as backwave, and it consists of power leaking through and being radiated when the key is "up." If strong enough, backwave makes the signal unpleasant or difficult to eopy.

In rode tramimission, there are intervals between dots and dashes, and slightly longer intervals between letters and words, when no power is being radiated by the transmitter. If the receiver can be made to operate at normal sensitivity during these intervals, it is possible for the receiving operator to signal the tramsmitting operator, by holding his key down. This is useful during the handling of messages, since the receiving oper tor cinn immediately signal the transmitting operator if he mises part of the message. It is also useful in reducing the time neressary for calling in answer to a "C'()." The ability to hear signals during the
short "key-up" intervals is called break-in operation.

SELECTING THE STAGE TO KEY

It is often desirable from an operating standpoint to design the $\begin{gathered}\text { c. N. tramsmitter for brak- }\end{gathered}$ in operation. In most reses this requires that the ascillator be keyod, since a continuous lyruming ascillator will reate interforence in the receiver and prevent break-in on or mand ones on on frequener, unless the osiflator stage is well shieded. ${ }^{1}$ Howerer, ehirpless and diekless keying of an owillator is diffieult to obtain, since the nerossary slow turning on and off of the oscillator (for chick elimination) shows up ang ascillator frequenceve-voltage ehanges. It is casy to key an owillator without ehirps or without clicks but not without both. Since the effert of a rhipp is multiplied with frequenery, it is quite difficult to obtain chimpors osicillator kexing at an output frequencer of $1 t$ or 2 s Me.

The best-sounding koving (and the most simple to adjust) is usually obtained be keving the output or driver stage, or both. With the oscilator rumbing continuously and "bulfered" by several intermediate stages, its frequency remans constant throughout all parts of the keying evole, The only problem in keying then beeomes that of properly "shatping" the keving to reduce or eliminate rlicks. When keving several stages away from the output amplifier, it is nocessary to biats the stages following the keyed stage so that they draw little or no pate current when the key is up, to avoid excensive plate dissipation. If the stages are biased too heavily, however, these subsequent amplifiers tend to shorten the rise and fall times and thus reintroduce elicks. This should always be borne in mind when a multistage transmittor is used with oscillator or other low-level keying.

The power broken by the key is an important eonsideration, both from the standpoint of safety to the operator and that of sparking and sticking at the key eontants. Keving of the oscillator or a low-power stage is favorable on both counts. The use of a keying relay or keyer tube is recommended when a high-power circuit is keyed.

Because transmitters vary widely in design,

[^5]there is no sperific recommendation that ram be made about choosing the stage to key. If the oscillator alone keys satisfactorily (no (hirpe or (dicks), ayen when listening to its harmonies on 14 or 28 Me., the transmitter should be keyed there, but the effere of adding the additional multipliers and amplifiers should be carefully checked, to see that clicks are not reintroduced. Methods for cherking will be
given later. If the wsillator camot be keyed satisfactorily be itself or with the following stage added, a stage near the output should be keyed and any thought of break-in operation should be discarded. I close approarh to break-in operation can be obtaned by using a convenient and fast "on-off" switrh for the oscillator, or the break-in system deseribed later in the chapter can be used.

Keying Circuits

The plate circuit is a gnod one to key in an oscillator or low-voltage amplifier, berause it is easy to shape the keving properly in this circuit. When plate-circuit keying is used, howerer, it is usually done in the negative leat, sinee this permits one side of the key to be grounded. The stage can be keyed in the positive lead, but both sides of the keyed circuit will be "hot," and a keying relay is advisable. Fig. 8-1 shows the gencral circuit for negationlead keving in wither an oweillator on an amplifier. Two examples are shown using trioder, but soreen-grid tubos can be used just as readily. llate-rircuit keying is rerommended only for low-voltage cirecuits if no keving relay is used, since a large portion of the supply voltage can appear arross the open key.

Shaping circuits applicable to this and later circuits will be discussed in this chapter under "Testing Your keying."

Somewhat closely rolated to phate-cincuit keying is screen-grid keying, shown in Fig. 8- 2 . The only hasie difference is that the sereen grid is pulled down to a negstive voltage when the key is up, to avoid the backwave that may

Fig. 8.I - Neqative plate-lead heving for eathende or
 lator ur low-power tages. where the woltage acrose the open hey is not very dangerens. 'Tetrode or protedh' stakes can be keved in thi manmer, but the sereen dirruit should he stabilized with VR tules or a heave woltane divider. R_{1} is the mormal grid leak, C_{1}, C_{2}, C_{a} and Citare r.f. by-pass condensers.
be present when the sareen goes only to zero volts. The nogative supply ran be smatl, since its current demand is only a few milliamperes. If the sereen voltage is taken from the plate supply, it should come from a voltage divider rather than a simple dropping resistor.

Fïs.8-2-Screen-gritl keyina, suitahbr for oscillator or amplifier keying. R_{1} is the mormal mrid leak. R_{2} shomat be atont 200 to 500 ohms per sereen volt, and C_{1}, C_{2} and C_{3} are normal bepase comdeners.

Grid-circuit, or blocked-grid, keying is shown in Fig. s-3. With the key up, a negative voltage is applied to the grid sufficient to cut off the tube and prevent current flow. With the key closed, the grid rireuit develops normal grid bitw theough R_{2}. The drain on the negative-voltage supply is small, sineer it is limited by the size of R_{1}. (iriderement keying is most generally usod with low-power stages or where the voltage neressary to cut off the amplifier is only a few hundred volts. The value of c $_{1}$ determines the kering characteristic, together with the ratio of R_{2} and R_{1}, and will be discussed later.

By placing the key in the cathode (or center (at)) circuit of an oscillator or amplifier, both the grid and plate (and sereen, if any) cireuits are opened by the key. Cathode keying is grod for use with amplifiers, because the proper

Fig. 8-3- Blowked-gridkeying. R1. the current-limiting resistor, chould have a value of about $\overline{0}$ oloon ohmo. Ci may have a caparity of 0.I to I afi.. dequenting upon the keying characteriztie dewired. R_{2} ia the normal value of arid leak for the tule.

Fig. 8-4 - Cathode and center-tap keving. The condensers C. are r.f. by-pass condenners. Their capacity is not critical, values of 0.001 to $0.01 \mu \mathrm{fd}$. ordinarily being used.
shaping can be accomplished readily. It is also widely used with oscillators, but here the shaping is often complicated by the gridcircuit time constant. (athode keying is shown

Fig. 8-5 - The basie keyer-tube circuit for cathonde or negative-lead heying. in Fig. 8-t. It is popular for use in low- and me-dium-power stages, although a keying relay or keyer tube should bo usid where the plate voltage is nore than 300.

A popular method of keving involves using one or more tubes as keyer tubes, in plate of a relay. A kever tube (or tubes) can be used in the negative-load or cathotekeving rireuits of Figs. 8-1 and 8-t. One advantage of tube keving is that the voltage across
the key is limited by large resistors, and so the operator has no chance for anything but the slightest electrical shock. A further advantage is that the shaping is done in the grid circuit of the keyer tube with inexpensive parts. The basic keyer tube circuit is shown in liig. 8-5 - it is similar to the grid-circuit keying of Fig. 8-3.

A keying relay can be substituted for a key in any of the keying rircuits shown in this chapter. Most keying relays operate from 6.3 or 115 volts a.c., and they should be selected for their speed of operation and adequate insulation for the job to be done. Adequate cur-

Fip. 8.6 - A keying relay ran always be sulstituted for the key, to provide better isolation from the keyed cireuit. An r.f. fifterisgenerally requirod at the key, and the keying filter is eonnected in the keyed circuit at the relay contacts.
rent-handling capability is also a factor. A typical circuit is shown in Fig, 8-6,

The relay-coil current that is broken by the key will cause clicks in the receiver, and an r.f. filter (see later in this (hapter) is often neressary across the key. The normal keying filter connects at the relay armature contacts in the usual manner. Vibration effects of the keying relay upon the oscillator eircuit should be avoided.

Testing Your Keying

The choice of a keying circuit is not as important as its complete testing. Any of the circuits shown can be mado to give satisfactory keving, but they must be adjusted properly.

The easiest way to find out what your keyed signal sounds like on the air is to trade stations with a near-by ham friend some evening for a short (qso. If he is a half mile or so away, that's fine, but any distance up to the point where the signals are still sig will be satisfactory.

After you have found out how to work his rig, make contact and then have him send slow dashes, with dash sparing. (The letter "T" at about i) w.p.m.) With the crystal filter out, cut the r.f. gain back just enough to avoid receiver overloading (the condition where you get crisp) signals instead of mushy ones) and tunc slowly from out of beat-note range on one side of the signal through to zero and out the other side. Knowing the tempo of the dashes, you can readily identify any clioks in the vicinity as yours or someone clse's. A good signal will have a thump on "make" that is perceptible only where you can also hear the beat note, and the
click on "hreak" should be practically negligible at any point. Fig. 8-7.A shows how it should sound. If your signal is like that, it will sound good, provided there are no chirps. Then have him rum off a string of 35 - or $40-w . p . m$. dots with the bug - if they are easy to copy, your signal has no "tails" worth worrying about and is a good one for any speed up to the limit of manual keying. If the receiver has poor selectivity with the crystal filter out, make one last chorek with the filter in (Fig. $8-713$), to see that the clicks off the signal are negligible even at high signal level.

If you don't have any convenient friends with whom to trade stations, you can still check your keying, although you have to be a little more careful The first step is to get rid of the r.f. click at the key, because if you don't you will never know where you stand. Locally (meaning in your own receiver) this click will coincide in time with clicks that may or may not be on your signal, so there is just no way to observe your signal without first eliminating the r.f. click. And unless you have a keying system that breaks no current, you have a

Fig. 8.7 - Representations of a clean ew, signal as a receiver is tuned through $i t$. ($($) Ahows a receivar with ao crystal filter and the b.f.o. set in the center of the passband, and (13) shows the ers stal filter in and the rever ver and justed for single-simal reception. 'The variation in thioknes- of the lines represents the relative signal intersity, 'The
 of the signal.
click at the key. Fiven the current broken by the key in a sacuum-tube kerer erreuit (which is sometimes only (0.1 mat (or so) will (atuse r.f. dicks that can be heard in your receiver and often in the b.e. set. If you key with a relay, the key opens the relay-onil circuit and dicks are gemerated at the key as well as at the relay contacts. Dom t make the very common mistake of thinking these clicks are the same as the on-the-air clieks discussed carlier - they are not! They are simply local clicks that you must eliminate before you can observe your signal in your receiver. These olioks are the same as the ones you get when you turn an electric light on or off - when you suddenty start or stop current flow, no mater how little, you generate r.f. and that's the click.

Getting rid of this little diok is gemerally wow triak at all, unless youre breaking a lot of current. All it repuires is a small r.f. filter, ass shown in Fig. S-8. sometimes just a small (0.001- $\mu \mathrm{fd}$.) condenser mounted right at the key terminals will do it, and sometimes it will require the full treatment complete with r.f. chokes and serond condenser. Measure the normal current through the key leads, remose the transmitery leads, and then eommere a d.e. power supply and resistor to give the same curent through the key. When your key will break this current with no diek, whe obered in wour receiver and the b.e. set (tuned off ans station), you have a ruitable r.f. filter at the

Fis. 8.8-A filear for eliminating the r.f. elick at the kry. First try Ci, then add the two r.f. chokes. and then Co. This filtar dows not eliminate on-ther-air clicka. but it is neceranary if you are trying to eheek keying in your own rereiver. It should lo monnted right at the key.

key and you can reconnere the transmitter. If vor use a varuum-tube keyer, just don't turn on the tramsmitter but key the normal kever grid current. If you use a keving relay, first eliminate the click at the key by just kexing the relay and adding filter acrose the key, and then eliminate the click at the relay contacts with :mother r.f. filter in the relar-kered cirruit. The filter should be mounted right at the key or relay rontacts. The objective is to be able to make or break nomal key current without generating a loral click, and the filtering is usually so simple that the junk box will vield the parts and the proeess takes longer to deseribe than to apply.
so far you haven't done a thing for your signal on the air and you still don't know what it sounds like, but you may hate cleaned up some elieks in the b.e. set. Now disconmert the antema from your recoiver and short the antenna terminals with a short piere of wire. Tune in your own signal and reduce the ref. gain to the point where your receiver doesin't owerload. Detune any antema trimmer the recolver may have. If you can't avoid overload within the r.f. gain-control range, pull out the r.f. amplifier tuhe and try again. If you still ran't avoid overload, listen to the second harmonic as a last resort. Since an overloaded recober can generate clicks, it is case torealize the importance of eliminating owerload during any tests or observations.

Deseribing the volume level at which you should set your recriver for these "shack" tests is a little difficult. The r.f. filter should be efiective with the receiver rumning wide open and with ant antema connerted. When you turn on the transmitere and take the other steps mentioned to reduce the signal in the receiver, run the audio up and the r.f. down to the point where you can just hear a little "rushing" sound with the b.f.o. off and the receiver tumed to the signal. This is with the arystal filter in. At this level, a properly-adjusted keving circuit will show mo clicks off the rushing-sound range, With the b.f.o. on and

KEYING AND BREAK-IN

the same gain setting, there should be no clioks outside the beat-note range. When observing clicks, make the slow-dash and fast-dot tests outlined previously.

Now you know how your signal sounds on the air, with one exception. If keying your transmitter makes the house lights blink or the dial light in your receiver flicker, you may not be able to tell too aceurately about any chirp on your signal. IIowreor, if you are satisfied with the absence of chirp when tuning cither side of zero beat, it is safe to assume that your recoiver isn't ehirping with the light fleker and the observed sigmal is a true representation. No chirpeither side of zero beat is fine - some whirp can be either in vour transmitter or your receiver, when the lights flicker. But don't try to make these tests without first getting rid of the ref. eliek at the key - you will never be able to give yourself a clean bill of heath, becatuse elicks can mask a chirp.

In some instances, particularly if the transmitter power is several hundred watte or more,

Fig. 8-9 - A key-elick filer for cathome. negativelead or screenkeying. It can be located anywhere in the hesing line. 'I'he values of I, and (i, will varv widely with diffrront currents and voltages. and muat be fomm bes cot and-try, for screen hesing, the resistor h_{2} (lig. 8-iे) should connere to the jumetion of L and C^{\prime}
(: -0.05 to $2.0 \mu \mathrm{ft}$.
L. -0.5 to 30 hanrs.

Sou may find that a small click still persists on all frequencies. If such a click is ohserved, pull out the last i.f. amplifier tube in your receiver and listen again. If the rlick is still there, it indiates rectification in the audio system of your receiver, the same type of $B C 1$ we cuss out cheap midget reerivers for. You can cure it with the usual resistor-romdenser filter used for curing such B('I rases, or you can leave it in and make mental compensation for it. Any eliek you hear on your signal should reduce to this minimum click immediately off the signal.
. Inother unavoidable click can be encountered by r.f. pick-up on the lead from a rereiver i.f. amplifier to a (q)-er. Here again the click will be present at any setting of the rereiver tuning control. The solution here is to make your checks with the (2)-er discomected and the lead removed from the receiver.

Key clicks are caused by the key tuming Pour transmifter on and off ton fast - and sometimes by parasitie osedations in an amplifier - and all a key-rick filter does is to slow down the turning-on and turning-off processes. Parasitic clicks occur at points 2π to 100 ke , either side of the signal, and are caused by
how-frequency parasitio oseillations that are triggered by the keying. The eure consists of eliminating the oscillation, not adding keyclick filters.

Plate, sereen or cathode keying requires a key-rlick filter of the type shown in Fig, s-s). ddjustment of surh a filter is a simple materer. If the signal has too heary a chick or thump on "make," L should have more inductance. If the click is tow heary on "break," C should have more capacity. The "break" characteristie is also influenced by the value of L, so start with a value of C " that reduces the elieks noticrablly on "break," adjust the value of L for best "make" characteristic, and then clean up the "break" by further modifieation of (". Since you may have only a few stray inductances around the sharek, you may not find just the value you want for L. In this case, use a value that gives toon soft a "make" and then shant the inductance with resistance to reduce its affert. Transformer windings. will often serve as well as standard chokes in this applieation, so try everything around the shack until you find what you ned. For a given woltage, high-current circuits will respuire more (${ }^{\prime}$ and less L than will Jon-current mes.

In the screen-grid keving circuit, the value of he will also affert the "break" chatacteristic. If h_{2} is tow large the "brak"" will tail off tow gradually, if it is too small it may introduce a click on "hreak." In general it is best to start with a value as suggested in lig. 8 -2 and adjust C' for the proper "break" characteristic.

Adjustment of control-grid or keyer-tabe keying eharacteristios is simple, since the important components are ($1, R_{1}$ and R_{2} (Figs. 8 -i 3 and $8-5$). For a given value of $(1$, increasing the value of $h a$ will soften the "make" chararteristie, and increasing the value of R_{1} will soften the "break." The value of R_{1} will be many times the value of R_{2}. With grid-block kering, the value of R_{2} is dotermined abready if the tube runs grid current, berause this will be the normal grid leak, and so the value of ('1 must be adjusted for proper "make" characteristir and then the "break" made satisfactory by adjustment of R_{1}. Tubes rumning heave grid curent are not too suitable for grid-block keying because the value of R_{1} generally ends up comparatively low and the negativesupply must furnish too much current when the key is down.

If you are keving in a bow-level stage, don't werlook the dipping action of subsequent stages that are fixed-biased hevond rat-off. It ran reintroduce rlicks. ${ }^{2}$ And if vou key vour oscillator, don't be too disappointed in the chirp that shows up when wou have rliekle:s keying. Amplifier keving is the answer.

[^6]
Vacuum-Tube Keyers

The practical tube-keyer eireuit of Fig. 8-10) can be used for keying any stage of any transmitter. Depending upon the power level of the keved stage, more or fewer Twpe 45 tubes can be comected in parallel to handio the neressary current. The voltage drop through a single 45 varics from ahout 90 volts at 50 mat. to 50 volts at 20 mab . Tubes added in parallel will reduce the drop in proportion to the number of tuber used.

Whon connecting the output terminals of the kever to the circuit to be keved, the grounded output torminal of the kerer must be comnected to the transmitter ground. Thus the kever can be used only in negative-lead or cathode keying. When used in cathode keying, it will introduce
voltage is available from some other sourec, such as a bias supply. A simplified version of this cireuit could eliminate S_{1} and S_{2} and their associated resistors and condensers, since they are incorporated only to allow the operator to select the combination he prefers. But once the values have been soleded, they ran be soldered permanently in place. The rule for adjusting the keving characteristie is the stme as for blocked-grid keying.

A Low-Power Keyer

If a low-level stage ruming only a few watts is to lo keved, the tube-kever circuit of Fig. 8-11 offers a simple solution. by using a 117 La type

Fig. 8-10 - Wiring diagram of a practical vacumm-tube keyer.
$C_{1}-2-\mu \mathrm{fd}$. (000-sult paper.
(:2 - 0.00333- μ fil. mica.
(:3-0.001i- $\mu \mathrm{fl}$, mica.
$R_{1}-0.22$ megohm, I watt.
$\mathrm{R}_{2}-50.000$ ohms, 10 watts.
$R_{3}, 1_{4}-1.7$ megohms, 1 watt.
$\mathrm{R}_{5}-0.47$ megohm, 1 watt.
$\mathrm{s}_{1}, \mathrm{~s}_{2}$ - 1 -cirenit rotary switch.
$\mathrm{T}_{1}-35(1-0-350$ volts, 5 volts and 2.5 volts ((itancor P'(0143).
tule, which incorporates its own rectifier, it is only necessary to conneet to some existing power supply at the point marked " X ". The keving charactoristic will vary with many factors, so the values of K_{1} and k en only represent starting points for experimentation.

When the key or keying lead has poor insulation, the resistance may Ineome low enough (particularly in humid wather) to reduce the blocking voltage and allow the kever tube to pass some current. This may cause a slight hackwave, but it can be cured by better insulation, or by redued values of R_{3} and \dot{R}_{4} in Fig. 8-10 or R_{1} in Fig. 8-11.
 K_{2} - 11.1 merohm, $1 / 2$ watt.
cathode bias to the stage and redure the output. This can be compensated for be a reduction in the grideleak biats of the stage.

The negative-voltage supply (T_{1}, C_{1}, R_{1} and the 80 rectifier) ean be eliminated if a negative

Fig. 8-1 - Simple low-power vacuutn-tube keyer.

C2 - 8- μ fld. $1 . \operatorname{lo}$-voll electrolytic.
(i3-0.0) - ff . ceramic.
Comment keyer to a low-voltage power supply at print " X ".

Monitoring of Keying

In general, there are two common mothorls for monitoring one"s "fist" and signal. The first, and perhats nore common type, involves the use of an andio oscillator that is koped simultaneously with the transmitter.

The serond method is one that permits recerising the signal through one's rereiver, and this generally requires that the receiver be tuned to
the transmitter (not always comvenient unless working on the same frequencer) and that some mothod be provided for prevernting owerloading of the rerevere, so that a good replica of the transmitted signal will ho recedied. Fixerept where guite low power is used, this usually involves a relay for simultamously shorting the receiver input terminals and reducing the receiver gain.

The Monitone - for C.W. and 'Phone

The " Monitone" is a useful devire for monitoring c.w. or 'phone transmissions. When used for c.w. work, it furnishes an atudio tone every time the transmitter kev is closed, and it also blanks the reediver output at the same time. When used with a 'phone transmitter, it blanks the receiver when the transmitter carrior is turned on, and alsu furnishes an audio replira of the transmitted signal, at any clesired volume level. The Monitone reguires as direct comnertion to the transmitter or kee, and no changes are neerded in the reeciver. The sidetone and banking are keved by the ref. output of the transmitter, regardless of freguency.
leferring to Fig. 8-12, the (6sLD(iT arts as a dual amplificr, for the rereiver output and for the sidetone oscillator (eonsisting of the neon bulb

One method of construetion of the Monitone is to use a 6 -inch cube aluminum utility box (IC.A No. 2984:3) for a cabinet, mounting the compomonts on one removathe wall and a small 2 -inch chassis fastemed to this wall. R $6, \mathrm{R} 111, \mathrm{~N} 2, \mathrm{~J} 2$ and N1:2 (an be mounted on the panel, with N1以-2 projecting through a rubber grommet. The 1 N 34 cristal and most of the neon-oscillator parts can mount on the 6.5s socket, and the audio compononts can be grouped around the fisli, sorket. A tip jark for the r.f. pick-up lead can be mounted on the rear watl of the chassis, near where the 110-volt line eord and the shielded lead to IP are brought out. It is advisable to keep the powersupply wiring and components away from the audio.

Fic. 8-12 - W'iring diagram
of the Monitome.
(it - 0.005- ff . disc reramie.
Cis, C3-0.t- ffl . 4(0)-volt paper.
(4 - 25̆)- $-\mu_{\mu}$ fl. ceramio.
(is-100-mpfil. ceramie.
(:0-0.00) $-\mu \mathrm{fl}$. dies ceramic.
Ci, Cs - K- Cf (d. 450-volt elec-
trolytie.
R_{1} - 6800 ohms, 良 watt.
$R_{2}-1000$ ohms, $1 / 2$ watt.
K_{3} - $10 . \overrightarrow{0}$ (megohm, $1 / 2$ watt.
$\mathrm{K}_{4}, \mathrm{~K}_{5}-1=100$ ohms, $\mathbf{1}_{2}$ watt.
$R_{6}-1-m e h_{0}$ men potentiometer
(Mallors (-5:3).
$\mathrm{K}_{7}-22,0010$ ohms, I watt.
$\mathrm{R}_{8}-\mathbf{6 8 , 0 0 0}$ ohms, $1 / 2$ watt.
\mathbf{R}_{9}, \mathbf{K}_{10} - 1 meqohm. $1 / 2$ watt.
1R1-3-megohm potrintiome-
ter (Mallory (0.0)).
K_{12} - 2.2 megolims, $1 / 2$ watt.
$\mathrm{K}_{13}-47,(\%) 0$ ohms, I watt.
$1 R_{14}-1.1$ megolim, I watt.
$\mathrm{J}_{1}-\mathrm{lip} \mathrm{j}: \mathrm{ach}$.
J_{2} - ()pen-rircuit jack.
$l_{1}-$ - l'hone plug.
RFC. 1 - 2.i-mh, r.f. clooke.
$S_{1 A}, S_{1 B}$-S.p.d.t. switcla: see text. (Mallory (LS28.)
S_{2}-S.p.s.t. toggle switel.
${ }^{\prime} \mathrm{T}_{1}^{-}$- Replacement transformer (Stancor P-6010).
Xtal-1N34. IN51, etc. Connect "cathode" to J_{1}.

NE-2, C_{6} and $R_{10}+R_{11}$). When r.f. from the transmitter is fed in at J_{1} it is rectified by XTAL and a negative voltage is developed arross R9. This negative voltage ruts off the 6. 5) and
 goes into arrtion and the resultant tone is amplified in the other half of the 6SLAGCT. For 'phone work, $s_{1 B}$ is opened and $s_{1 a}$ is closed. This turns off the sidetone oscillator and ferds the rectified atulio from the transmitter through volume confrol R_{t}.

The tone of the neon-bull oscilator is varied be the position of K_{11}. Since the power drain of the Monitone is only alout 5 mat at 250 volts, a resistor is used instead of a filter choke in the power supply.

Changeover switch $S_{1 A} S_{1 B}$ is mounted on the tone potentiometer, R_{11}, and is wired so that $s_{1 A}$ is closed when the control arm for the petentiometer is rotated to the extreme eounterelorkwisc position. S_{13} should open at this sotting of the tone eontrol. $S_{1, t} S_{13}$, labeled by the manufacturer as a s.p.d.t. switch, is artually a pair of s.p.s.t. switches huilt into a single assembly.

Installation \& Operation

The Monitone is used by plugging the audio plag, P_{1}, into the headphone jack of the receiver, the headphones into, J_{2} of the Monitone, and applying 11.5 volts a.c. A length of wire must be run from the r.f. input jack, J_{1}, to a point where it can piek up r.f. from the transmitter
antema system. With Sus and the power switeh, S_{2}, closed, the transmitter may be turned on and the position of the r.f. piek-up lead (C'aution! High voltage!) adjusted for a sustained oscillation of the neon tube circuit. Sufficient r.f. roupling letween the transmitter and the monitor is indicated by a glow in the bulb and by the sidetone as heard in the headphones.

The f.f. field around the athemma sustem mas vary in strength as the transmittor is switched from one band to another. lisually, howerer, a roupling adjustmont made at one frequency will suffice for all other frequemerns as long is the pick-up line is coupled to one side of the antemat tuner and not the transmission line.

Break-In Operation

Break-in operation requires a sparate receiving antenna, since none of the asalable antema change-over relays is fast chough to follow keying. The receving antenna should he installed as far as possible from the trathsmitting antema. It should be mounted at right

the same time is often neressary. The system shown in Fig. 8-13 permits quiet break-in operation for ligher-powered stations. It requires a simple operation on the receiver but otherwise is perfectly straightformad. R_{1} is the regulal receiver r.f. and i.f. Lain control. The ground lead is lifted on this eontrol and run to a rheostat, R_{2}, that goes 10 ground. A wire from the jundion rums outside the reeviver to the keying relay, Ris. When the key is up, the ground side of R_{1} is comneeted to ground through the melay arm, and the receiver is in its mormal operating condition. When the key is closed, the relay doses, which breaks the ground eomnertion from h ! and applies additional bias to the tubes in the recouver. This bias is eontrolled by lis. When the relay closes, it also closes the cireuit to the iransmitter oscillator.

Fig. 8-I.3 - Wiring diagram for smowth break in operation. The leads shomon as heavy lines should lee kept as short as mosible, for minimum pick-up of the transmitter nignal.

K_{1} - Rerciver mannal wain control.

Ry - S.p.d.t. heying relay.
angles to the transmitting antemat and forl with low piok-up lead-in material such as coavial rablo or 300 -ohm Twin-dead, to minimize pick-up.

If a low-powered transmitter is used, it is often quite satiafactory to nise no sperial equipment for break-in operation other than the separate receiving antenna, since the transmitter will not block the receiver too serionsly. Even if the tramsmitter kers without click-. some elick: will be heard when the recerver is tuned to the transmitter frequency beranser of overload in the remeiver. An output limiter, as deseribed in Chapter Five, will wash out these clicks and permit good break-in operation wen on your transmitter frequenery.

When powers above 25 or 50 watts are used, special treatment is required for quiet break-in on the transmitter frequeney. A means should be provided for shorting the input of the rereiver when the code chatacters are sent, and a means for reducing the gain of the receiver at
 suppress the elieks raused by the relay current.

The keving relay should be momented on the recejver as close to the antematerminals as possible, :and the leads shown heary in the diagram should be kept short, since long leads will allow tow much signal to get through into the receiver. A good hightesed kesing relay shomblat bed. If a two-wire line is used from the receiving antenna, another r.f. choke, lif(s, will be required. The revised portion of the sermemtic is shown in lig. 8-1t.

A DE LUXE BREAK-IN SYSTEM

In many instames it is quite difficult to key an oseillator without clicks and (hirps. Mast oscillators will key without apparent charp if the rise and devay times are made very short, but this introduces lire clicks that cannot be

Fig. 8-11 - Xecenary eireuit revision of fiz. 8.13 if at two-nire lead from the receiving antema is used. RFC4 i- a $2, i-m h$. r.f. choke - other values are the satme as in lig. 8-1:3.

Fije. 8.15 - A de luxe break-in syctem that holds the oseillator circuit closed (and the receiver infut shorted) daring a string of fast dots but opens leetween letters or worda.
(it - 0.06)1-mfi. mica.
(i2 - 0.0017- $\mathbf{\mu} \mathbf{f l}$. mica.
H_{1} - 0.0000 chms, 10 watts, wire-wound.
$\mathrm{R}_{2}-1800$ whms.
$R_{3}-1.510$ ohms.

$1 \mathbf{R}_{6}-4.101$ ohms.
$18:-6.8 \mathrm{mogohm}$.
Ifs - 11.17 megohm.
Kg - . O-ohm renter-tapped resistor, 2 watts.
III re-i=lors I-watt composition mulesentherwise noted,

Ry - Wighemperd relas, 1 toon-ohm 18-volt coil (Etrvens. Arnold 'I'ype 172 Millisec relay).
avoided. The system shown in Figg. 8-15 avoids this trouble by turning on the oscillator quickly, keving an amplifier with a vacummtube kever, and tuming off the ovillator after the amplifier keving is finished. The oscillator is turned on and off without lag, but the resultant clicks are not pasied through the transmitter. Actually, with keving speeds faster than about $15 \mathrm{w} . \mathrm{p} . \mathrm{m}$, the oscillator will stay turned on for a letter or even a word, but it turns off between words and allows the transmitting station to hear the "break" signal of the other station. It requires one tube more than the ordinary vacumm-tube keyer and a sperial high-sperd relay.

As can he seen from Fig. 8-15, the circuit is a. combination of the break-in system of Fig. 8-13 and the tube keyer of rig. 8-11, with a 6s. 7 tube and a few resistors added. Normally the left-hand portion of the $6, \underset{N}{\prime} 7$ is biased to a low value of plate current by the drop through R_{2} (part of the bleeder $R_{1} R_{2} R_{3}$) and the relay is open. When the key is closed and C_{2} starts to discharge, the right-hand portion of the 65×7 draws current and this in turn puts a less-negative voltage on the grid of the left-hand
portion. The tube draws eurrent and the relay closes. The relay will stay closed until the negative voltage arross C_{2} is close to the supply voltage, and consequently a string of dots or dashes (which doesn't give C_{2} a chance to charge to full negative will kerep the relay elosed. In adjusting the system, R_{2} controls the amount of idling current through the relay and R_{6} determines the voltage arross the relay: R_{7}, R_{8} and C_{2} are the normal resistors and condenser for the tube keyer. Whon adjusted properly, the relay will close without delay on the first dot and open quickly during the spaces between words or slower letters. When idling, the voltage across the relay should be one or two volts - with the key down it should be 18 volts.
The oscillator should be designed to key as fast as possible, which means that series resistances and shunt capacitances should be held in a minimum. Negative plate-lead keying is slightly fastor than cathode keying and should be used in the oseillator. The keyer tubes are conneeted in the eathode circuit of an amplifier stage far enough romoved in the cireuit to avoid reaction on the oscillator. By using blocked-grid keying of the amplifier stage, the keyer tubes can be eliminated.

- ELECTRONIC KEYS

Eiloctronie keves, as contrasted with mechanical automatic kevs, use vachum tubes or relays (or both) to form automatic dashers as well as automatic dots. As first devised by amateurs in 1940, a dash could be "elipped short" if the dash lever were lifted too soon. More recent designs have resulted in "selferompleting dashes" that eliminate this possibility and permit the operator, with a reasonable amount of practies, to generate near-perfect coole. Full deseriptions of eleetronic keys that produre solf-completing dashes can be foumd in the following Qu゙l articles:
Brann, "In Search of the Ideal Electronic Key," Feb., 19:1.
Turrin, "Debugging the Electronic Bug," Jan., 1950.

Montgomerý, "'Corkey' - A Tubeless Automatic K"ry," November, 1950.
Bartlett, "Compact Automatic Key Design," Dee., 1951.
A simple unit that can be attached to a meehanical automatie key to give automatic dashes (not of the self-completing type, however) can be found fully described in the following QST article:
Gotisar", "The Dash Master," Aug., 1948.

Speech Amplifiers and Modulators

The audio amplifiers used in radiotelophone transmitters operate on the principles outlined carlier in this book in the ehapher on varuum tubes. The design rectuirements are determined principally be the type of modulation swatem to be used and by the type of microphone to be emploved. It is noeressaty to have a cken understanding of modulation primeles bofore the problam of laying out a sperch system can be appoached sucressfully. Those primeiples are discussed under appropriate chapter hadings.
The present chapter deals with the design of audio amplifier systems for communication purposes. In voice communication the primary objective is to ohtain the most effertive trathsmission: i.e., to make the message be understood at the rereiving point in spite of adverso conditions areated by mose and interferemere. The methods used to areomplish this elo not nesessarily eoincide with the methods used for
other purposes, surh as the reproduction of musid or other progeam material. In othor words, "naturalness." in reprodurtion is distinetly seroondary to intedligibilits:

The fact that satisfactory intelligibility wan be maintaned in a relatively narrow band of trequencies is particularly fortunate, becalluse the width of the channel occupied ley a phome transmitere is directly proportional to the width of the audio-freducury ham. If the chammed width is reduced, more stations can oreupy a given band of freguencies without mutual interference.

In sperech transmission, amplitude distortion of the voice watve has very little effert on intelligibility. Its importance in communication lics almost wholly in the fact that the audio-frequeney harmonics cathed bey such distortion may lie outside the whamel needed for intelligible spererh, and thas will create unneressary interforence to other stations.

Speech Equipment

In designing spereh equipment it is nerestary to know (1) the amount of audio power the modulation sysum must furnish and (2) the output voltage developed by the mierophome when it is spoken into from nomal distanere (a few inches) with ordinary loudnese. It then beromes possible to choose the number and tyene of amplifier stages needed to gemerate the required athdio power without overloading or distortion answhere in the sistem.

MICROPHONES

The level of a microphone is its eleretrical output for a given somad intersity. Lered varios greathe with midrophones of diflerent typers, and depends on the distance of the sueaker's lips from the microphone Only approximate values based on averages of "nomal" speaking voieces ean be given. The values given latere are based on chose talking; that is, with the microphone about an inch from the suaker"s lips.

The frequency response or fidelity of a microphone is its relative ability to convert sounds of different frequencies into alternating current. For understandable speerh tramsmission only a limited frequency range is neensary, and intelligible specech can be obtained if the output of the microphone does not vary more than a fow decibels at any frequency within a range of about 200 to 2500 cerles. When the variation expressed in torms of deribels is small betwern two frem
quener limits, the mirrophome is said to be flat botwern those limits.

Carbon Microphones

The carbon microphone ronsists of a motal diaphragm placed aganst an insulating rup containing loosely-packed carbon gramuke (microphone button). Current from a battery fows through the gramules, the diaphragm being one connection and the metal batekplate the other. Fig. ! 1.1 shows conncetions for carlon mierophones. A variable resistor is included for adjusting the button current to the vatue as sperified with the mierophone. The primary of a transformer is comereted in series with the battery and miserophone.

As the diaphragm vihmates, its preseure on the gramules altornately inereasers and derroases, catusing a correpording increase and derease of current flow through the cireait, sime the pressure changes the resistance of the mase of gramules. The resulting change in the current flowing through the transiomer primaty camses an altornating voltate, of corresponding frequence and intensity, to be sot up in the transformer seroudary.
(ionol-cquality carhon microphones give outputs ramging from 0.1 to 0.3 volt arross 50 to 100 ohms; that is, across the primary winding of the miserophone transformer. With the step-up of the tramsformer, a peak voltage of betwern 3 and 10 volts (an be assumed to be available at the grid of the
amplifier tube. The usual button current is $\overline{50}$ to 100 ma.

Crystal Microphones

The crystal microphone makes use of the piecoclectric propertios of Rochedle salts crystals. This type of microphome requires no battery or transformer and ean be conneded direetly to the grid of an amplifier tube. It is the most populat type of microphone among amateurs, for these reasons as well as the fact that it has good frequencer response and is available in inexpensive models, The input cireuit for the ervstal microphone is shown in Fig. ! 3 -Ils.

Although the lewel of erestal mirorophones varios with different models, an output of 0.03 volt or so is representative for communication typers. The lavel is atferedod by the length of the cable connereting the mirrophone to the first amplifier stage; the above figure is for lengths of © or 7 fere. The frequency characteristio is unaffereted be the cable, but the load resistance (amplifier grid resistor) does afferet it ; the lower frequencies are attemuated as the value of load resistance is lowered. a grideresistor value of at least 1 megohm should be used for reasonably that response, is megohms being a customary figure.

Velocity and Dynamic Microphones

In a velocity or "ribbon" microphone, the element acted upon be the sound waves is a thin corrugated motallic ribloon suspended betweren the poles of a magnet. When vibuating, the riblon rute the lines of fore between the poles, first in one direetion and then the other, thes generating an altermating voltage.

Velociter microphones are built in two tipers, high impedane and low impedanee, the former being used in most applications. I high-imperdance midrophone can be directly conneeded to the grid of ath amplifier tube, shunted be a rexistance of 0.5 to E^{5} megohms (Fig. 9-IC). Lowimpedane microphones are used when a long connecting cable (7 a feet or more) must be employed. In such a case the output of the mireophone is compled to the first amplifior stage through a suitable step-up transformer, ats shown in Fig. ©-1D.

The level of the velocity mirrophone is about 0.03 to 0.05 volt. This figure applies directly to the high-impedance tepe, and to the low-impedance tope when the voltage is measured across the serondary of the coupling transformer.

The dynamic microphone somewhat resombles a dynamic loudspeaker. I light-weight voice roil is rigidly attarehed to a diaphragm, the coil being suspended betwern the poles of a permanent magnet. Sound causes the diaphragm to vibrate, thus moving the roil back and forth between the magnet poles and generating an alternating voltage.
The dyamic microphone ustually is built with high-impredanee output, suitable for working directle into the grid of an amplifier tube. If the comnecting cable must be unusually long, a low-
impedance trpe should be used, with a step-up transformer at the cond of the cable.

I small permanent-magnet 'speaker can be used as a dynamic microphone, although the fidelity is not as good as is obtainable with a properly-designed nicrophone.

- THE SPEECH AMPLIFIER

The audio-frequency amplifier stage that causes the rif. carrier output to be varied is called the modulator, and all the amplifier stages precoding it comprise the speech amplifier. Depend ing on the modulator used, the speech amplifior mayy be called upon to deliver a power output ranging from practically zero fonly voltane re(quireed) to 20 or 30 wiatts.

(A) S B CARBON

R̈̈. 9 - 1 - Sprech innut circuits used wita varima typor of milicrophomes.

(B) CRYSTAL
(C) hi-Z Velocity

Before starting the design of a sperech amplifier, therefore, it is necessary to have selected a suitable modulator for the transmitter. This selection must be based on the power required to modulate the transmitter, and this power in turn depends on the type of morlulation system selected, as dewribed in other chapters. With the modulator picked out, its driving-power requirements (audio power required to excite the modulator to full output) (an be determined from the tube tables in the last chapter. Generally speaking, it is advisable to choose a tube or tubes for the last stage of the speech amplifier that will be capable of

Fig. 9-2-Re-i-tanceroupled voltanc-amplifier circuits, A, pentonle: B, trionte. Weriynations are as follows: Ci C Cathonle by-pass comdenser.
C_{2} - Plate hy prase comdenar.
Cis- Cutput coupling rondensur (blocking eondenier).
1is - sereen by pass combeneer.
Ri- Cathote resistor.
R_{2} - Gridd resimar.
H_{3} - Plate resistor.
R_{4} - Next-stage grid resistor.
Rs - Plate deronpling resistor.
R_{f} - Screen resistor.
Lalues for suitable tulus are xiven in Table 9.I. Values in the derou, ling circuit, CaR are wot criticad, R_{s} may be ahout 11% of $R_{3}:$ an 8 . or 10 . μ fid. electrolstic condenser is nsually large cmough at (in.
doweloping at least 50 per cent more power than the rated driving power of the modulator. This will provide a factor of safety so that loswes in coupling transformers, atce, will not unset the calculations.

Voltage Amplifiers

If the last stage in the spereh amplifior is a (lass AB3 or Class 13 amplifier, the stage ahemb of it mast be capable of sufficient power output to drive it. However, if the last stage is a (lamse A B_{1} or (lanss A amplifior the prereding stage can be simply a voltage amplifior. From there on back to the microphone, all stages are voltage amplifiorts.
The important chamactoristios of a voltago amplifier are its voltage gain, maximum undiotorted output voltage, and its frequency response. The voltage gain is the voltagermplitieation ratio of the stage. The output voltage is the maximum af. voltage that can be secured from the stage without distortion. The amplifier frequency response should be adequate for voice reproduction: this requirement is easily satisfied.

The voltage gain and maximum undistorted output voltage depend on the operating conditions of the amplifier. Data on the popular types of tubes used in speech amplifiers are given in Table ! 9 -I, for resistance-coupled amplifaration.

The output voltage is in terms of peak voltage rather than r.m.s.; this makes the rating independent of the waveform. lixceeding the peak value causes the amplifier to distort, so it is more useful to consider only peak values in working with amplifiers.

Resistance Coupling

Resistance coupling generally is used in volt-age-amplifier stages. It is relatively inexpensive, good frequence resonse can be secured, and there is little danger of hum pick-up from stray magnotir fields assoriated with heater wiring. It is the only trpe of coupling suitatbe for the output eircuits of pentodes and high- μ trioder, because with transformers: a sufficiently high load impedance cannot be obtained without considerable frequeney distortion. Typieal rireuits are given in Fig. 9-2 and dexign data in Table 9-I.

Transformer Coupling

Transformer coupling between stages ordinarily is used only when power is to be transforred (in such a case resistance coupling is very ineflicient), or when it is nevessary to couple betweon a single-onded and a push-pull stage. Trionles having an amplification factor of 20 or loss are used in transformer-coupled voltage amplifiers. With tratnsormer coupling, tubes should be onerated under the Class A ronditions given in the tube tables at the end of this book.
lapresentative cireuits for coupling singleended to push-pull stages are shown in Fig, !-3. The circuit at A combines resistance and transformer coupling, and may be used for exciting the

Fig, 9-3 - Transformer-wonpled amplifier circuits for driving a pu-hopill amplifier. I is for resistance-transformer compling: is for transformer compling. Inesignations correspond to those in l"ig. 9.2. In A, values tan be taken from Table 9.I. In B, the cathode resi-tor is calculated from the ratod plate curront and grid hias as kiven in the tuhe tables for the particular type of tube used.

TABLE 9－I－RESISTANCE－COUPLED VOLTAGE－AMPLIFIER DATA
Data are given for a plate supply of 300 volts．Departures of as much as 50 per cent from this supply voltage will not materially change the operating conditions or the voltage gain，but the output voltage will be in proportion to the new voltage．Voltage gain is measured at 400 cycles；condenser values given are based on 100 －cycle cut－off．For increased low－frequency response，all condensers may be made larger than specified（cut－off frequency in inverse proportion to condenser values provided all are changed in the same proportion）．A variation of 10 per cent in the values given has negligible effect on the performance．

	Plate Resistor Megohms	Next－Stage Grid Resistor Megohms	Screen Resistor Megohms	Cathode Resistor Ohms	Screen By－pass $\mu \mathrm{id}$ ．	Cathode By－pass $\mu \mathrm{fd}$ ．	Blocking Condenser $\mu \mathrm{ld}$ ．	Output Volts （Peak）${ }^{1}$	Voltage Gain ${ }^{2}$
6S37，12SJ7	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.37 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 500 \\ & 530 \\ & 590 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.09 \\ & 0.09 \end{aligned}$	$\begin{array}{r} 11.6 \\ 10.9 \\ 9.9 \\ \hline \end{array}$	$\begin{aligned} & 0.019 \\ & 0.016 \\ & 0.007 \end{aligned}$	$\begin{array}{r} 72 \\ 96 \\ 101 \\ \hline \end{array}$	$\begin{array}{r} 67 \\ 98 \\ 104 \\ \hline \end{array}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 1.10 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 850 \\ & 860 \\ & 910 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.06 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.4 \\ & 6.9 \end{aligned}$	$\begin{aligned} & 0.011 \\ & 0.004 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 79 \\ & 88 \\ & 98 \end{aligned}$	$\begin{aligned} & 139 \\ & 167 \\ & 185 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 8.0 \end{aligned}$	2.0 2.2 2.5	$\begin{aligned} & 1300 \\ & 1410 \\ & 1530 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.05 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.8 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 0.004 \\ & 0.002 \\ & 0.0015 \end{aligned}$	$\begin{aligned} & 64 \\ & 79 \\ & 89 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 838 \\ & 863 \\ & \hline \end{aligned}$
$\begin{aligned} & 617,7 C 7 . \\ & 1217-G T^{\prime} \end{aligned}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.5 \\ & 0.53 \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \\ & 600 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.07 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.3 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.01 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 55 \\ & 81 \\ & 96 \end{aligned}$	$\begin{aligned} & 61 \\ & 82 \\ & 94 \end{aligned}$
	0.25	0.95 0.5 1.0	$\begin{aligned} & 1.18 \\ & 1.18 \\ & 1.45 \end{aligned}$	$\begin{aligned} & 1100 \\ & 1200 \\ & 1300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.05 \end{aligned}$	5.5 5.4 5.8	$\begin{aligned} & 0.008 \\ & 0.005 \\ & 0.005 \end{aligned}$	$\begin{array}{r} 81 \\ 104 \\ 110 \end{array}$	$\begin{aligned} & 104 \\ & 140 \\ & 185 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 8.9 \\ & 8.95 \end{aligned}$	$\begin{aligned} & 1700 \\ & 2200 \\ & 2300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 4.1 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.003 \\ & 0.0025 \end{aligned}$	$\begin{array}{r} 75 \\ 97 \\ 100 \end{array}$	$\begin{aligned} & 161 \\ & 200 \\ & 230 \end{aligned}$
6AU6，6SH7， 12AU6，12SH7	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.24 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 500 \\ & 600 \\ & 700 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.11 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 16.4 \\ & 15.3 \end{aligned}$	$\begin{aligned} & 0.019 \\ & 0.011 \end{aligned}$ 0.006	$\begin{array}{r} 76 \\ 103 \\ 129 \\ \hline \end{array}$	$\begin{aligned} & 109 \\ & 145 \\ & 168 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.42 \\ & 0.5 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1100 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.098 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 12.4 \\ & 12.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 0.009 \\ & 0.007 \\ & 0.003 \end{aligned}$	$\begin{array}{r} 92 \\ 108 \\ 122 \end{array}$	$\begin{aligned} & 104 \\ & 230 \\ & 262 \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 1800 \\ & 1900 \\ & 2100 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.065 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.6 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 0.0045 \\ & 0.0028 \\ & 0.0018 \end{aligned}$	$\begin{array}{r} 94 \\ 105 \\ 128 \\ \hline \end{array}$	$\begin{aligned} & 248 \\ & 318 \\ & 371 \\ & \hline \end{aligned}$
6AO6，6AO7， 6AT6，607． 6SL7GT，6SZ7， 6T8，12AT6， 12O7－GT， 12SL7－GT （one triode）	0.1	$\begin{aligned} & 01 \\ & 0.29 \\ & 0.47 \end{aligned}$	－	$\begin{aligned} & 1500 \\ & 1800 \\ & 2100 \end{aligned}$	－	4.4 3.6 3.0	$\begin{aligned} & 0.027 \\ & 0.014 \\ & 0.0065 \end{aligned}$	$\begin{aligned} & 40 \\ & 54 \\ & 63 \end{aligned}$	$\begin{aligned} & 34 \\ & 38 \\ & 41 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 2600 \\ & 3200 \\ & 3700 \end{aligned}$	－	$\begin{aligned} & 2.5 \\ & 1.9 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.0065 \\ & 0.0035 \end{aligned}$	51 65 77	$\begin{aligned} & 42 \\ & 46 \\ & 48 \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$	$\underline{\square}$	$\begin{aligned} & 5200 \\ & 6300 \\ & 7200 \end{aligned}$	－	$\begin{aligned} & 1.2 \\ & 1.0 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 0.006 \\ & 0.0035 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 61 \\ & 74 \\ & 85 \end{aligned}$	48 50 51
$\begin{gathered} \text { GAV6, } 12 A V 6, \\ 12 A X 7 \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	－	$\begin{aligned} & 1300 \\ & 1500 \\ & 1700 \end{aligned}$	－	$\begin{aligned} & 4.6 \\ & 4.0 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 0.027 \\ & 0.013 \\ & 0.006 \end{aligned}$	43 57 66	45 59 57
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 2900 \\ & 2800 \\ & 3100 \end{aligned}$	－	$\begin{aligned} & 3.0 \\ & 2.3 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.006 \\ & 0.003 \end{aligned}$	54 69 79	59 65 68
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$	－	$\begin{aligned} & 4300 \\ & 5200 \\ & 5900 \end{aligned}$	－	1.6 1.3 1.1	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.002 \end{aligned}$	62 77 92	69 73 75
$\begin{gathered} \text { 6SC7, 12SC7 } \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	－	$\begin{array}{r} 750 \\ 930 \\ 1040 \end{array}$	－	－	$\begin{aligned} & 0.033 \\ & 0.014 \\ & 0.007 \end{aligned}$	35 50 54	$\begin{aligned} & 29 \\ & 34 \\ & 36 \end{aligned}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 1400 \\ & 1680 \\ & 1840 \end{aligned}$	－	－	$\begin{aligned} & 0.012 \\ & 0.006 \\ & 0.003 \end{aligned}$	45 55 64	39 49 45
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 8.0 \end{aligned}$	－	$\begin{aligned} & 2330 \\ & 2980 \\ & 3280 \end{aligned}$	－	－	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.002 \end{aligned}$	50 62 72	45 48 49
$\begin{gathered} \text { 615, 7A4, } \\ \text { 7N7, 6SN7GT, } \\ 1255-G T \\ 185 N 7-G T \\ \text { (one triode) } \end{gathered}$	0.05	$\begin{aligned} & 0.05 \\ & 0.1 \\ & 0.25 \end{aligned}$	－	$\begin{aligned} & 1020 \\ & 1270 \\ & 1500 \end{aligned}$	－	3.56 2.96 2.15	$\begin{aligned} & 0.06 \\ & 0.034 \\ & 0.012 \end{aligned}$	$\begin{aligned} & 41 \\ & 51 \\ & 60 \end{aligned}$	13 14 14
	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	－	$\begin{aligned} & 1900 \\ & 2440 \\ & 8700 \end{aligned}$	－	$\begin{aligned} & 2.31 \\ & 1.42 \\ & 1.2 \end{aligned}$	0.035 0.0125 0.0065	43 56 64	14 14 14
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 4590 \\ & 5770 \\ & 6950 \end{aligned}$	二	$\begin{aligned} & 0.87 \\ & 0.64 \\ & 0.54 \end{aligned}$	$\begin{aligned} & 0.01 \overline{3} \\ & 0.0075 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 46 \\ & 57 \\ & 64 \end{aligned}$	14 14 14 18
$\begin{gathered} 6 C 4, \\ 12 A U 7 \\ \text { (one triode) } \end{gathered}$	0.047	$\begin{aligned} & 0.047 \\ & 0.1 \\ & 0.22 \end{aligned}$	－	$\begin{array}{r} 870 \\ 1900 \\ 1500 \end{array}$	二	4.1 3.0 2.4	$\begin{aligned} & 0.065 \\ & 0.034 \\ & 0.016 \end{aligned}$	38 58 68	12 12 12
	0.1	$\begin{aligned} & 0.1 \\ & 0.29 \\ & 0.47 \end{aligned}$	－	$\begin{aligned} & 1900 \\ & 3000 \\ & 4000 \end{aligned}$	二	1.9 1.3 1.1	$\begin{aligned} & 0.032 \\ & 0.016 \\ & 0.007 \end{aligned}$	44 68 80	12 12 12
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	－	$\begin{array}{r} 5300 \\ 800 \\ 11000 \end{array}$	\square	$\begin{aligned} & 0.9 \\ & 0.52 \\ & 0.46 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.007 \\ & 0.0035 \end{aligned}$	57 89 92	12 12 12

t Voltage across next－stage grid resistor at grid－current point．
${ }^{2}$ At 5 volts t．m．s．output．
－Cathode－resistor values are for phase－inverter service．
grids of a Class A or $\mathrm{A} 3_{1}$ following stage. The resistance coupling is used to keep the die. plate current from flowing through the transformer primary, therelog preventing a reduction in primary inductane below its no-durent value: this improves the low-freduencer response. With low- μ triodes (6 ('5, 6, 5 , etc.), the gain is equal to that with rexistance eoupling multiplied by the sec-ondary-to-primary turns ratio of the transformer.

In 13 the transformer primary is in series with the plate of the tube, and thus must carry the tube plate current. When the following amplitier operates without grid current, the voltage gain of the stage is pratically equal to the μ of the tube multiplied by the transformer ratio. This circuit also is suitable for transforring power (within the capabilitios of the tube) to a following Class Al_{2} or Class 13 stage.

Phase Inversion

I'ush-pull output may be secured with resistance coupling by using "phase-inverter" circuits as shown in lig. !?-4.

The circuit shown in Fig. !-4. 1 is known as the "self-halancing" tupe. The amplified voltage

Fig. 9-4-Self-balancing phase-inverter rirenits. 1/ and I_{2} may be a double trionde such as the os तicit or 6SlaC'I'. I 3 may be any of the triode listed in Tahle 9-I, or one sertion of a dimille trionde.

H_{2} - Cathone remistor: u*e ome-half value given in Table 9-1 for tube and oprating conditions chowen.
$\mathrm{H}_{3}, \mathrm{~K}_{4}$ - Ilater resitur: seleert from Trable 9.l.
$\mathrm{K}_{5}, \mathrm{R}_{6}$ - frothowing-tage grid resintor (10.22 to 0.17 megotim).
$\mathrm{K}_{7}-0.22 \mathrm{mag}$ mim.
Rs - Cathende resistor: sellowt from Tahle 9.I.
Ro, K_{10} - Fach ome half of plate load resistor given in Table o.I.
C 10 - 10 - fel recetrolytic.
C.2, $\mathrm{C}_{3}-0.01-$ to $0.1-\mu \mathrm{Cd}$, paper.
from V_{1} appears across R_{5} and R_{7} in series. The drop across R_{7} is applied to the grid of V_{2}, and the amplified voltage from V_{2} appears across $h_{\text {f }}$ and R_{7} in series. This voltage is 180 degrees out of phase with the voltage from V_{1}, thus giving push-pull output. The part that appears across l_{i}^{\prime} therefore opposes the voltage from V_{1} aleross R_{T}, thus reducing the signal applied to the grid of V_{2}. The negative fered-back so obtained tends to regulate the voltage applied to the phaseinverter tube so that the output voltages from both tubes are substantially equal. The gatin is slightly less than twiee the gain of a single-tulw amplifier using the same operating conditions.

In the single-tube areuit shown in Fig. 9-4is the plate load resistor is divided into two equal parts, R_{9} and R_{10}, one being connected to the plate in the normal way and the other betwera cathode and ground. Since the voltages at the phate and eathode are 180 degrees out of phase, the grids of the following tubes are fed equal anf. voltages in push-pull. The grid return of V_{3} is made to the junction of R_{8} and R_{10} so normal bias will be applied to the grid. This circuit is highly dogenerative because of the way R_{10} is conneredel. The voltage gain is less than 2 even when a high- μ triode is used at V_{3}.

Gain Control

A moans for varying the over-all gain of the amplifier is nowessary for kepping the final output at the proper level for modulating the transmitter. The common mothod of gatin control is to adjust the value of ace. voltager applied to the grid of one of the amplifiers by means of a voltage divider or potentioneter.

The gain-control potentiometer should be near the input end of the amplifier, at a point where the ace voltage level is so low that there is no danger of owerloading in the stages ahead of the gain control. With earbon mierophones the gain control may be phaced diredty across the miero-phone-transformer secondary. With other types of mierophones, however, the gain control usuatly will affert the frequency response of the microphone when connerted diretly arross it. Also, in a high-gain amplifior it is better to operate the first tube at maximum gain, sinee this gives the best signal-to-hum ratio. The control therefore is: usually plated in the gride cireuit of the second stage.

DESIGNING THE SPEECH AMPLIFIER

The strps in designing a spert amplitier are as follows:

1) Determine the power needed to modulate the tramsmitter and sedere the modulator. It the fase of plate modulation, this will moarly alwats be a (lass 13 amplifior. seleet a suitable tube tope and determine from the tube tables at the emb of this book the grid driving power recuired.
2) As a saffety factor, multiply the requived driver power by at least 1.5.
3) Select a tube, or pair of tubes, that will deliver the power determined in the second step. This is the last or output stage of the speechamplifar. Recenver-type power tulx can be used (beam tubess such ats the bldi maty be needed in some cases as detormined from the reeriving-tube tables. If the spereh amplifier is to drive a ('lases IS modulator, use a (Class 1 or $\mathrm{AB} \mathrm{B}_{1}$ amplifier, in profernere to (lass Al3n, if it will give enough power output.
4) If the spereh-amplifior output stage must operattr (lass AB, use a mediunt μ triode (such as the ef.ja or corresponding types) to drive it. In the extreme (etse of driving tildos to maximum output, wo trioders should be used in pusth-pull in the driser. In dither case transformer coupling will hase to be used, and transformer mathufacturerse catalogs should be consulted for a suitable twe.
i) If the speeref-implifier output stage operates Chass ior Vh_{1}, it may he driven be a voltage amplifior. If the output stage is push-pull, the driver masy be at single tulke coupled theough at tramsformer with a batanced seromdary. or may be a dataltriode phase inwerter. Debormine the signal volt: gerequired for full output from the hast atage. If the bast stage is a singhe-tule ('lass it amplifirer. the peak signal is watal th the grid-hias voltage: if push-pull ("las:s Λ, the prath signal voltage is cugual to twion the grid hias: if (lass $A B_{1}$ wire the biats voltage when fixed bise is used; if cathonde bias is used, wioe har hiaw figured from the cal hode resistanerent the mo-signal plate cummert.
(i) From Tabla s-I, sellect a tulne rapathe of giving the reduired output voltage and mote its rated woltage gatim. A doubldetriode phase inverter (Fig. !-4A) will hate apmoximately twier the output voltage and wive the gain of one trionde oprerating as an ordinary amplifier. If the driver is to be tamsiomer-eouphed to the bast stage, solect at medimm- μ triode and caldulater the gation and output voltage as doseribed marlier in this chapter.
5) Divide the woltage required to drive the output stage be the gain of the precoding stage. This gives the peak voltage required at the grid of the mext-to-the-last stage.
s) Find the output voltane, under ordinary eonditions, of the microphone to be used. This information should be ohtained from the mathefacturer:s catalog. If mot awailathe. the figures given in the section on mirrophones in this chapter will serve.
(1) Divide the voltage found in (5) he the output voltage of the microphone. The result is the over-all gain required from the microphome to the grid of the mext-fo-the-last stage. To be on the safor side. doahle or triple this figure.
6) From Table 3-1, weleret a combitation of tubes whose gatins, whon multiplied together, give approximately the figure arrived at in (a). These ampliferes will be used in caseade. In meneral, if high gain is required it is adsisable to wes a pentode for the first sperch-amplifier stage, hat it is not adyisable to use a serond pentode berause
of the possibility of feed-hack and self-oscillation. In most cases a triode will give onough gain, as a serond stage, to make up the total gain required. If not, a third stage, also a triode, may be used.

SPEECH-AMPLIFIER CONSTRUCTION
Once a suitable cirruit has been selected for a spects amplificr, the construction problem resolves itself into avoiding two difficulties excesive hum, and unwanted feel-back. For reasomably humbes operation, the hum voltage should not exeed about 1 per cent of the maximum audio output voltage - that is, the hum should be at least 10 dt . below the output level. Inwathed ferd-back, if negative, will roduce the gain below the calculated value; if positive, is likely to calnse self-escillation or "howls." Feedback can be minimized by isolating each stage with "fecoupling" resistors and condensers, by avoiding layouts that bring the first and hast stages near ball other, and ber shielding of "hot" peints in the circuit, surh as grid leads in lowlovel stages.

Soerthamplifine equipment, experially voltage amplifiars, should be comstructed on steol chassis, with all wiring kepgt below the ohassis to take addvantage of the shiohling afforded. bexposed leads, partioulaty to the grids of low-level high-gain tubus, are likely to piek up hum from the electric fiold that ustally wists in the virinity of house wiring. Fivn with the chatsis, additional shielding of the input riment of the first tube in : highgain amplifior usually is neressatry. In addition, surh cireuits should be sparated as much as posible from power-supply transormers and chokes and also from atheradio transformers that operato at lairly-high power lowers: this will minimizr matgotio compling to the gride circuit and thus reduce hum or atadio-iregnencer feed-bark. It is always a sato plath, although not ath absolately neerssary ond to separate the spereh amplifior from its power supply, buidang them on separater chassis.

If a low-lowel mirerophone surh as the restal type is userl, the microphone, its connerting cable, and the plag or connertor be which it is attarhed to the speren amplifier, all should be shideded. The misorophome and cable usually are constructed with suitable shielding. The cable shield should berombered to the suereh-amplitier chatsis, and it is advisalble - as well ats usually necersary (1) commed the chassis to a ground such as a water pip.

Hoater wiring should be kept as far as possible from grid leads, and either the venter-tap or one side of the heater-t ratsifomer secondary windang should be romereded to the chassis. If the centertaj, is grounded, the heater leads to earh tube shoulat be 1 wisted together tor redure the matuet is field from the heater curront. With either tyon of connection, it is advisable to laty heater leads in the cormer formed be a fold in the chassis, bringing them out from the corner to the tube sorket be the shortest possible path.

In a high-gain amplifier it is sometimes helpful if the first tube has its grid comection brought out to a top cap rather than to a base pin; in the latter type the grid lead is exposed to the heater leals inside the tulne and hemee may piek up more hum. With the top-eap tubes. complete shichlding of the gride lead and gried cap is a meresity:

When metal tubes are used, alwats ground the shell eomertion to the chassis. (ilase tubes used in the low-level stages of high-gain amplifiers must be shielded: tube shields are obtainable for that purpose. It is a good plan to emelose the entire amplitior in a metal box, or at least provide it with a cane-metal covor, to aroid ferel-back diffirultios caused by the r.f. field of the tramsmitter. R.f. pieked up on exposed wiring, leads or tube fements catwes owerloading, distortion, and frequently osciltation.

When using paper condensers as hepanses, be sure that the terminal marked "outside foil" is connered to ground. This utilizes the out side foil of the condenser as a shield around the "hot" foil. When paper combensers are used as coupling condensers betwern stages, always comere the outside-foil terminal to the side of the cirenit having the lowest impedane to ground. Latally, this will he the plate side rather than the follow-ing-grid side.

- INCREASING THE EFFECTIVENESS OF THE 'PHONE TRANSMITTER

The effectiveness of an amateur 'phone transmitter can be incerased to a remarkable extent by taking advantage of surech characteristies. Measwres that mase he taken to make the modulation more deedive inelude band compression (filtering), volume rompression, and spereh elipping.

Compressing the Frequency Band

Most of the intelligibility in spereh is contained in the medium hand of frequencios: that is, between atout 500 and 2500 (evoles. ()n the other hathd, the major portion of speech power is nemmally comedrated holow son exales. It is these how frequencios that modulate the transmitter most heavily. If they atre eliminated, the frequencies that carry most of the atual commumieation can be increased in amplitude without exereding too-pererent modulation, and the affertiveness of the transmiter is correspondingly increaned.

One simple waty to reduce low-frepurney response is to use small values of roupling capaciaber betwern resistanceroupled stages, atsown in Fig. !-5. 1 . A time eonstant of 0.0005 serond for the coupling condenser and following-stage grid resistor will hate lite le effert on the amplification at 500 cyrese but will practically halve it at 100 cereles. In two cascaded stages the gain will be down about 5 (b) at 200 cyoles athd 10 db . at 100 cerlos. When the grid resistor is 1 名 mogohm a coupling eondenser of 0.001μ id. will give the required time constant.

The high-frequener resonse wan be reduced by using "tone control" mothods, utilizing it eon-

Fip. 9.5 - 1. Wse of a small coupling condenaer to redtuce low-frequmey reaponse; B, tone-centrol circuitfor reducing high-freguency response. Value: for t : and R are diacussed in the text; $0.01 \mu \mathrm{fl}$, and $\mathbf{2 5 , 0 0 0}$ ohms are typical.
denser in serios with a variable resistor connected across an audio impedance at some point in the surech amplifier. The best spot for the tome rontrol is across the primary of the output transformer of the eperech amplifier, as in Fig. !-inls. The eondenser should have a reactane at 1000 reves about equal to the load resistanere required be the amplifier tube or tubes, while the vartiable resistor in series may have a value equal to fous or five times the lead resistance. The control can the adjusted while listening to the amplifier, the object being to rut the high-ferguencs response as much is possihle without unduly starificing intelligibility.

Restrieting the freguency response not only puts more modulation power in the optimum frequenery hand but also redues ham, because the fow-frequency response is reduced, and holpsere deee the width of the chamed oceupied by the transmission, beralse of the reduction in the amplitude of the high atudio freduencies.

Volume Compression

Ilthough it is obviously desimable to morlutate the tramsmitter as complotely as possible, it is diffient to maintain monstant voier intensity When speaking into the miarophone. Ta overome this variable output level, it is posisible to use antomatie gain control that follows the aremer (net instantameons) variations in spereh amplitude. This can be done be reetifying and filtoring some of the audio output and applying the reetified and filtered d.e. to at control electrode in an early stage in the amplifier.

A practimal pircuit for this purpose is shown in Fig. !-fi. The rectifier must be comerted, through the transformer, to a tube rapatbor of delibering some power output fa small part of the output of the power stage may be used) or
else a separate power amplifier for the rectifier circuit alone may have its grid connected in parallel with that of the last voltage amplifier.

Resistor R_{4}, in scries with R_{5} across the plate supply, provides an adjustable positive bias on the reedifior cathodes. This prevents the limiting action from beginning until a dasired microphone input level is reached. $R_{2}, R_{3}, C_{2}, C_{3}$ and C_{4} filter the andio frequencios from the rectified output. The output of the rectifier may be connected to the suppressor grid of a pentode first stage of the sporeh amplifier.

A transformer with a turns ratio such as to give about 50 volts when its primary is connered to the output cirenit of the power stage should be used. If a transtormer having a centor-tapped seroondary is not available, a half-wave reetifior maty he used instaded of the full-wave direuit shown, but it will be harder to get satisfactory filtering.

The over-all gain of the system must be high emough so that full output can the socured at a moderately low voice laved.

Speech Clipping and Filtering

In sporeh waboforms the average power eontent is considerably less than in a sime wave of the same prak amplitude. Sinere modulation perrontage is hatsed.on peak values, the modulation or sidehand power in a tramsmitter modulated (0) per cent bey an ordinary voice waveform will be considerably less thath the sideband power in the same transmitter modulated 100 por erent by at sine wave, In Fig, !3-7 the upper drawing, Λ, repmesents a sine wate having a maximum anplitude that just mordulaters a given transmitter 100 per eront. The sperch wave at 13 also mpersonts 100-perpernt modulation.

If the amplitude of the wave shown at 13 is inereased so that its power is compatable with or highor than the power in a sine wave, but with averething above 100-por-eront modulation fut off, it will appear as shown at (. This signal will not modulate the transmitter more than 100 per rent, but the voiere power is several times greater than 13. The wave is not exately like the one at B, so the result will mot sound exactly like the origimal. However. "clipping" of this tope ean he used to serene a worth-while increase in modulattion power without sacrificing intelligithilit!, Once the systom is properly adjusted if will be impos-

Fig. 9-6-Spech-amplifiry output-limiting rircuit.

 t.x).

Fig. 9-7 - The normal weech wave (B) hats high peak: lint low average encrgy content. When the praks are clippal the signal mas be inerased to a considerahlyhighor jower level withont cansing overmodatation (i).
sible to mermonhatate the bransmittor bercause the maximum output amplitude is held to the same value no matter what the amplitude of the signal alpuliod.

By itself, clipping generates the same highordor harmonios that owomodulation dores, and a signal menhulated by the elipped waveform shown in Fig. !3-7 would "splatter". To prevent this, the audio frequencies abowe those needed for intelligible surech must be filtered out, after clipping and before mestulation. The filter sequired for this parpose shombl have relatively little at
 hut high attemation for all frequeneriss above 3000 ereles.
It is persible to use as much ats 25 dt . of clipping before intelligibility suffers: that is, if the original peak ampliturle is 10 volts, the signal eatm be clipped to such atn extent that the resulting maximum amplitude is less thatn one volt. If the original 10 -volt signal represented the amplitude that calused l00-per-aent modulation on peaks, the clipped and filtered signal (an then be amplified up to the same 10 -volt peak lavel for modulating the tramsmitter, with a very considerable increase in modulation power.

There is a loss in naturalness with "derep" erlip)ping, even though the voire is highly intelligible. With moderate clipping levels (6 to 12 dt). there is almost no perereptible change in "fuatity" but the voice power is four to sixteen times as great as in ordinary modulation.

Bafore drastie chipping can be used, the seperh signal must be amplified sevoral times more than is necessary for nomal modubation. Also, the hum and noise must be much lower than the tolerable level in ordinary amplification, because the noise in the output of the amplifier increases in proportion to the gain.

One type of clipper-filter system is shown in blook form in Fig. ?-8. The clipper is a peaklimiting rectifior of the same general type that is nsed in receiver noise limiters. It must celip beth positive and negative peaks. The gain or elipping

Fig. 9-8-Block diagram of speerh-clipping and filtering amplifier.
control sets the amplitude at which elipping starts. Following the low-pass filter for climinating the hamonie distortion frequeneies is a serond gain control, the "level" or modulation control. This control is sot initially so that the amplitude-limited output of the elipper-filter camot modulate the transmitter more than $\mathbf{1 0 0}$ per cent.

It should be noted that the peak amplitude of the audio waveform actually applied to the modulated stage in the transmitter is not neeressarily held at the same relative level as the pata amplitude of the signal coming out of the clipper stage. When the elipped signal gers through the filter, the relative phases of the various frequeney components that pass through the filter are shifted, particularly those components near the rut-off frequencer. This may ratuse the prak amplitude out of the filter to exered the peak amplitude of the cliperel signal applied to the filter input terminals. Similar phase shifts can oceur in amplifiers following the filter, esperially if these amplifiers, ineluding the modulator, do not have good low-fregueney response. With poor low-frequeney response the more-or-hess "square" waves resulting from clipping tend to be changed into triangular waves having higher peak amplitude. Best praction is to cut the lowfrequeney response before elipping and to make all amplifiers following the elipper-filter as flat and distortion-free as possibla.

The best way to sot the modulation rontrol in such a system is to cherek the aretual modulation pereentage with an oscilloseope commored as deseribed in the chapeter on modulation. With the gain control sat to give a desired elipping level with normal voier intensity at the mierophone, the level control should he adjusted so that the maximum modulation does not exered 100 por cent no matter how much sound is applied to the mierophone.

Practieal circuits for elipping and filtering are illustrated in a spereh amplifier doseribod in this chapter.

High-Level Clipping and Filtering

Clipping and filtering also can be done at high level - that is, at the point where the modulation is applied to the r.f. amplifior - instead of in the low-level stages of the epoceh amplifier. In one rather simple but effective arrangement of this type the clipping takes place in the Class-B modulator itself. This is aeromplished by carefully adjusting the plate-to-phate load rexistance for the modulator tubes so that the saturate or clip peaks at the amplitude level that represents

100 per cont modulation. The load adjustment (eall be made by choice of output transformer ratio or by adjusting the plate-voltage/platecurent ratio of the modulated r.f. amplifier. It is best done be examining the output wavoform with an oscilloseope.

The filter for such a system consist: of a rhoke and eondensers as shown in trig. 9-9. The values of L and (' should be chosen to form a low-pats: filter sertion having at cut-off irequency of about 2500 cerdes, using the modulating imperdane of the r.f. amplifier as the load resistance. loor this cut-off frequeney the formulas are

$$
\begin{aligned}
L_{1} & =\frac{R}{7850} \\
C_{1}=C_{2} & =\frac{63.6}{R}
\end{aligned}
$$

Where R is in ohms, L_{1} in henrys, and C_{1} and C_{2} in microfarads. For example, with a plate modulated amplifior oporating at 1500 volts and 200 ma . (modulating impedance 7.500 ohms) L would be $7500 / 78: 0)=0.96$ henry and C_{1} or C_{2}

Fig. 9-9 - Splatter-suppression filter for use at high level, shown here conneeted hetween a Class IB modnlator and wate-modnlated r.f. amplitier. Values for L_{1}, C_{1} and C_{2} are determined as described in the text.
would be $(33.6 / 7.500=0.0085 \mu \mathrm{fd}$. By-pass rondensers in the plate cireuit of the r.i. amplifior should be included in ('2. Woltage ratings for C ${ }^{\prime}$ and ('z must be the same as for the plate blocking condenser - i.e., at least wiee the d.e. voltage applied to the plate of the modulated amplifier. L and (' values (ain vary 10 per eent or so without soriously affecting the operation of the filter.

Besides simplicity, the high-lewel system has the advantage that high-frequency components of the adudio signal fed to the modulator grids, whether present legitimately or as a result of amplitude distortion in lower-level stages, are suppressed along with the distortion componants that arise in elipping. Also, the undesirable efferts of por low-freduency response following elipping and filtering, mentioned in the preceding section, are avoided. Phase shifts can still oreur in the high-level filter, howerser, so adjustments preferably should be made by using an oscilloscope to rhere the actual modulation pereentage under all conditions of speech intensity. (For further discussion see Brume, "High-Levol Clipping and Filtering', QST', November, 1951.)

A Clipper-Filter Speech Amplifier-Driver

The spereth amplifier shown in Figs. 9-10 to 9-11, inclusive, u*es push-pull triodes to whtain a power output of 13 watts with ungligible distortion - sufficiont th drive most of the erom-monly-used (lass-- 13 modulatur tubes. It includes a clipper-filter for increasing the offertiveness of modulation and for confining the chamel width to frequencies neoded for intelligible spereh. The wor-all gain is amplo for use with rommunica-tions-t yper aryata! microphones whon using alipping of the order of 12-15 dh. Miniature tutes are used in the voltage-amplifier stages. The output tubes are 6l3t(is, operated (lass Al31 with fixed bias. Two power supplies are included, whe for the voltage amplifier stages and the other for the output tube plates.

As show? in liig. 9-11, the first two stages are voltage amplifiers of ordinary dowign, using a GADtifuntode in the first stage and a 6 ('t triode in the seedend. The output of the seeond stage call be switchad bither for the $12.10^{\circ} 7$ doubletrionde elipper or to the if('t voltame amplifier that drives the f fl3 G grids. In the lather ease the amplifion operation is conventional. The elipper, when oprative, provides additional valtage gain as well as rlipping. Its output gene through a simple low-pass filter ($L_{1}\left({ }_{11} \mathcal{C}^{\prime}{ }_{12}\right)$ so that hatmonies goncrated by dipping will be attentated before the signal reaches the grid of the seerend 6('A. The frequencr response of the amplifer with the filter in cirenit, but with the signal below the elipping lovel, dropsat the rate of roughly 6 dh. per wetave bedow soo excles; above toot crales the response is down 2. dh. compared with the modium audio range.

A wo-sereten filter is used in the plate supply for the voltate-amplifier stages. The hum bew must be kept low becaluse of the high gain required when using clipping. A single wection filter is sufficient for the output stame Bias for the filsta grids is obtamed from the low-voltage supply by matne of R_{10}, by-pased by ('11.

Two gatin controls are included, one (R_{6}) for sotting the level into the clipner ciredit and thus dotemining the amont of rlipping, and the
second ($R_{\text {tis }}$) for sotting the output level after elipping. With the elipper in use, proper setting of R_{13} will keep the modulation level high but will prevent overmodulation.

Construction

As shown in :'ig. 9-10, the voltage amplitiors ocoupy the left front secetion of the chassis. The GAl'ti first anplifior is at the loft, followed in oreler to the right ly the first 6('t, the $12 \mathrm{Al}^{\circ} 7$, athe the secomel ti ' 4 . The tibt (is and their output transformer ane at the right front. The evelindrical unit just bohind the socemal enc't is the interstage andio tramsformer, T_{1}.

Power supply components aro grouped along the rear edpe of the chassis, with the low-voltage supply at the left. The power transformers should be kept well weparated from the voltage amplifiors, particularly the first two stages, in order (o) minimize hun difficulties.

On the from patmel, the mierephone input comnereor is at the lower left. Next to it is the clipping control, then the elipper in-out switeh, and then the nowlutat ion control. The two toggle switches at the right are Sig and $_{2} S_{3}$. The are input surket is hy-pasiod by C_{15} and $C^{\prime} 16$, to redure the prosibility that r.f. picked up on the line eord will get into the low-level sperd states.

The wiring undernath the chassis is melatively simphe, as shown by Fig. !-12. The microphone input airenit, including $R P C_{1}$:and C_{1}, is anclused
 to the (bide 0 grid also is shimbled.

Adjusting the Clipper-Filter Amplifier

The grod effert of the low-patsis filtor in oliminating eplatter can be contirnly mullified if the amplifier stanes following the filter ean introdure :aprecialble distortion. Amplifier stages following ${ }^{1}$ He buit must be uperated woll within their ("apabilities; in partimbar, the Class 13 output tratisformer (if a ('lass is modulator is to be driwon) should be shunted by eondensers to reduere the high-frequencer response as desirribed in the seetion on (lass B mondulators.

Fir. 9.10-Thi= everdh-amplifier and driver has ample main for a crvat misrophome umb
 ured umdinlorted watpus I- I!t wall-. It incorporates at clipper-iltare astom for incorazbing mondulation effectivemes and dereraming chamel width.

Fig. 9-11 - Cirnit diagram of the clipper-filter speed amplifier.
 per-filter speech amplifier. The relatively small number of component: below the chassis makes wiring simple.

The selting of h_{13} is most important. It is hast masily done with the aid of an oselloseope (one having a limar swerp) and an audio uscillator, using the lest sil-if, shan in the sertion on testing of speceh equipmont. Lise a rosistance load on the output transformer to refleet the proper load resistance (3000 ohms) at the plates of the 6B4(is. First set R_{13} at about $1 / 4$ the resistance from the ground end, switeh in the clipper-filter, and apply a \quad oobcyele sine-wave signal to the microphone input. Increase the signal amplitude until elipping starto, as shown by flattening of both the negative and pesitive peaks of the wave. 'lo chock whether the elipping is taking place in the clipper or in the following amplifices, throw St to the "normal" or "out" position; the waveshape should return to mormal. If it does mot, return S_{1} to the "in" position and reduce the setting of R_{13} until it does. Then reduere the amplifier gain bey metns of R_{6} until the signal is just below the elipping lemel. At this print the sigual should the a sime wave. In-
(i) - $\mid(0)-\mu \mu \mathrm{fl}$. mica.

(b, Cis - 8 - $\mu \mathrm{fil}$. A50-volt elertrolytie.
(

($\mathrm{Ci}_{12}-330$ - $\mu \mu \mathrm{fl}$. mica.
(:A4-30-pfit. 150 -volt electrolytic.

$K_{1}-2.2$ megolms, 1, watt.
$R_{2} R_{14}-22(0)$ ohms, $1 / 2$ watt.
$R_{3}-1$ megohm, $1 / 2$ watt.
$R_{4}, R_{4}=0.47$ megolm, $1 / 2$ watt.
$\mathrm{K}_{5}-4 \overline{\mathrm{~F}},(\mathrm{HN})$ ohms, $1 / 2$ watt.
K_{6} - 2 -megohm volume control.
R: - 3 (M) ohms, $1 / 2$ watt.
13, - 0.1 megohm, $1 / 2$ watt.
$R_{10}-1.000$ ohms, I watt.
$1_{11}-15,(N N)$ ohme, 1 watt.
$R_{12}-50,(0 N 0)$ ohms. $1 / 2$ watt.
K_{13} - 0.5 mexohm volume control.
$\mathrm{K}_{1:}-(0,010$ ohms, 20 watts.
K_{10} - 2(NK)-olim 25-watt adjustable.

J_{1} - Mirrophone calle receptade (Amphemol I'(il I).
J: - Chaswis-menonting 11 anobl phag.

- - W.p.d.t. rotary iwitch (Nallory 3122-J). $\mathrm{S}_{2}, \mathrm{~S}_{3}-\mathrm{S}_{\mathrm{f}} \mathrm{p}$:.t. toggle.
T_{1} - Audio tranformer, single pate to pip. arids, ratio 2:1 ("hordarson '1'20.11\%).
'I'g- Driver tran-former, variable ratio, p.p. Jrimer to Class-13 grido, pri. rating 120 ma. per side (Stancor 1.17.63).
 amp.: 6.3 צ. 3.5 amp, (Stancor $\mathrm{P}^{\prime}-110.9$),
'I'4 - Power tranaformer: 700 , c. $1 . .110$ mat: 5 v., 3 ampe: 6.3 , 1.3 amp. (stancor P- 1080).
BI'ti-2.is mh, r.f. choke.
crease R_{13}, willout touching R_{6}, until the wave starts to berome distorted, and then back off R_{13} until distortion disappeats.

Xext, change the input-signal frequency to 2500 reveles, without changing the signal level. Slowly increase R_{σ} while olserving the pattern. At this frequeney it should be almost impessible to get anything exept a sine wave through the filter, so if distortion appears it is the result of overloading in the amplifiors follouring the filter. Reduce the sotting of R_{13} until the distortion disatplears, even when R_{6} is set at maximum and the maximum available signal from the audio oscillator is applied to the amplifier. "The position of R_{13} should be moted at this point and the observed setting should wever be exeerded.
'lo find the operating setting of R_{13}, leave the audio-oseillator sigual amplituile at the value just under the rlipping level and set up the complete tramsmitter for a modulation cherek, using the "aseillosetpe to give the traperondal pattern. With the Class (' amplifier and modulator ruming, find the setting of R_{13} (keeping the atudio signal just under the elipping level) that just gives 100 -pererent modulation. This setting should be bolow the maximum setting of h_{13} as previously determined; if it is mot, the driver and modulator are sot capable of modulating the tramsmitter 100 per cent and must be. redesigned - or the (lass (${ }^{\text {amplifier input }}$ must he lowered. Assuming at satisfattory sotting is found, coment a microphone to the amplifier and set the amplifior gain control, R_{f}, so that the transmitter is modulated 100 per ement. Ohserve the pattern elosely at different seltings of R_{6} to see if it is pessible to overmodulate. If overmodulation doces not werur at anys setting of $R_{\text {fi }}$ the tramsmitter is roady for operation and R_{13} may te locked in position: it noed never low touched suhserpently. If some owemodulation does oceor, R_{13} should be hacked off until it disappears and then lockert.

In the ahsernere of an ascilleseope the other methorls of charking distortion deseribed in the section on suecelamplifier testing may be used. The objecet is to prevent distortion in stages following the filter, so that when the elipping level is coxereded the following stages will be working within the ir c:apabilities.

6L6 Modulators for Low-Power Transmitters

Plate modulation for transmitters operating at final-stage plate power inputs up to 75 or 80 watts can be prowided at relatively small cost by using Class AB 61.6s as modulators. The combined speeren amplifier and modulator shown in Fig. ! 133 uses the 61 , (is as Class AB, amplifiers and has an output (from the transformer socondary) of about 40 watts. The first stage is a fis.j high-gain pontode amplifier,
must be obtained from a separate suppls. Fixed bias for the $6 \mathrm{~L}, \mathrm{f}$ grids is obtained from the built-in supply by taking the drop across R1g. This resistor should be adjusted so the voltage drop amposs it is 22.5 volts when the sperech-amplifier stages arre taking normal current.

In building the amplifier, the usual prectations as toplarement of components and wiring to a woid hum and feed-hack should be observed. The micropheme combector. A_{1}, should be located elosis to tho Gis. 7 socket so the lead to the grid ran breshort. This lead also should be shimbled.

The power supply for the 6i.6s must have good voltage rogulation, since the total current varies from abpoximately 95 mat with no signal io, 220 mat at full sutput. I heavy-duty choke-input plate supply should be used: generaldesign data will be found in the pown-supply chatpter.

20. Watt Modulator

Pig. 9-16 is the cireut of at spereh amplitier and modulator that has an output of approximately 20 watts. This reircuit also uses didios ass output tuhere, but the amplifier operates (lass; Als, and thas reguires mo driving power. Beraluse of this, fewer voltageamplifier stages aro neoded than in the (ase of the 40 -watt amplifior. Jushpull impert for the gride of the 6Ldos is socured by using a singlo-phate-ta-push-pull adudo transommer betwern the 6.J.jamd the 6l, 6s. In this rase it is
and is resistance coupled to one section of a 6siv7G'T triode amplifier. The other seretion of the 6SNTGO is used as a single-tube phase inverter to ohtain push-pull output. The grids of the push-pull 616s are driven by a fis. 7 (it, with the two sections in push-pull, through transformer ${ }^{\prime}{ }_{1}$. The gatin control, R_{6}, is in the grid circuit of the first 6s.N7GT section, and is shumted by condenser C_{5} to reduce the highfredueney response. Comdenser F_{11}, across the secondary of T_{1}, serwes a similar parpose. The over-all circuit constants have bero chosen so that the maximum response is in the monst effoctive spech-frequetury band. The response is down about io (lb. at 100 and 3000 eyoles, as eompared inill the range 300 -1500 (eveles. The gatn is more than sufficient for typical ervatal microphones.

A power supply for the speechamplifier stages and for the 6 Le heaters is included in the mait, but the power for the 616 plates and sereens

 power-supply choke is munted below chassis at the rikht. The hiassetting resistor. Kig, is on the rear chat-is wall. at the lower right in this photograph. Other components are sromped near the tuhe sochet with which they are assoceiated.

Fig. 9-l. - Cirmit diasram of the llowatt modulator.

 $\mathbf{R}_{1}-1 . \%$ mumohns. ${ }^{2}$ watt.

$\mathrm{Ra}_{3}-1.5$ mexolmo. ${ }^{1}{ }_{2}$ watt.
$\mathrm{R}_{4}-0.22$ morrohm. ${ }^{1}$ watt.

R_{B} - 0.0 - mexphon potentiontiter. $K_{8,} K_{13}-50,1010$, ohms. ${ }^{1}{ }_{2}$ watt.

 R11 - 39.000 ohmons, ${ }^{1}$ watt.

R16-1:0 chma, 1 watt.

K_{19}, - Iombonhm wire-whand potentiometer, 4 watts.
$\mathrm{R}_{2 n}-12100$ ahms, 10 watts.
1.-Amoething choke: I2 henrya, 8 on ma. (Thordarson 120)(53).

11 - 0.3 - ond pilot lamp.

T: Chast $1 B_{2}$ driver tran-furmer. p.p. wates to p.p. krids (Staneor A-4116).
T_{2} - Modulatime transformer, 380 m ohms to desired load (unit shown is stancor (-3893).
T_{3} - Power trandiormer: 350 volts earla will center tap, © 0 mat: $\overline{3}$ volts, 3 amp.: 0.3 vols. 3 amp. (Stancor 1'. 10:8).
an input of to watts to the r.f. amplifier. It is nocessary, of course, to choosse the proper output-1 ransformer turns rat(io to couple the modulator and modulated amplifior. The output stage is designed to work into a plate-to-plate lead of 9000 ohms.

For the maximum power output of 20 watts, the plate supply for the amplifier must deliver 145 ma at 360 volts. A condenser-input supply of ordinary design may be used. The total plate current is approximately 120 ma . With no signal and 1.55 mat. at full output. If no more than 12 or 13 watts is needod, R_{9} and R_{10} may be omitted and all tubes fod directly from a " B " supply giving approximately 175 mat at 270 volts.

Fig. 9-16 - Cirmit diagram of a low-cost modnlator capahle of power outputs up 1020 watts.
$\left.\mathrm{C}_{1}, \mathrm{C}_{2}-20\right)_{\mu \mathrm{fl}}$. Dolvolt electroIytire.
C.3-0.1-ufti. 200-volt paper.
$\mathrm{C}_{4}-0.01-\mu \mathrm{fd}$. (000-volt paper.
$\mathrm{C}_{6}, \mathrm{C}_{6}-8 \cdot \mu \mathrm{fd}$. 450 -volt electrolytic.
$\mathrm{C}_{7}-50_{\mu} \mathrm{ff} \mathrm{d}$. 50 -volt electrolytic.
$1 R_{1}$ - 1.2 megolms, $1 / 2$ watt.
$R_{2}-1.500$ ohm- $1 / 2$ watt.
$1_{3}-1.5$ merohmo, $\frac{1}{2}$ watt.
$1 \mathbf{l}_{4}$ - 0.2 .2 megohm, $1 / 2$ watt.
$R_{5}-47,0000$ ohms, $1 / 2$ watt.
$\mathrm{K}_{B}-\mathrm{I}$-megohm volume control.
K_{7} - 1500 ohme. ! watt.
$1 \mathrm{k}-250$ ohms, 10 watts.
K_{3} - 2000 ohme, 10 watts.
$\mathrm{K}_{10}-20,1000$ ohms, 25 watts.
' Γ_{1} - Interstape audio tran-former, singleplate to p.p. grids, ratio 3:1.
T_{2} - Ontput transformer, type depending on requisemesits.

Screen Modulator Circuit

Fig. 9-17 is a representative circuit for a modulator for the sereen grid of a bean tetrode. Most r.f. Tules of this tepe require vers little modulating powor in the soreon eireuit, so a reeoivingtwo audio powor amplifier usually is sufficient. 'Iher cirruil shown has ample gain for a crustal mierophone and will fully modulate a sereen grid that doess nat require an average adalio power of more than three or four watts. It cath also be used for modudating a pair of r.f. tubes where these reguirements are not exereded. The ehapter on amplitude modulation shondal be consulted for information on detarmining the voltage swing and modulating power for a particular tube ispe. The turns ratio required in $\%_{\mathrm{l}}$. primary to serondary, will range from 1 to 1 to 0.8 to 1 for various r.f. tubes, sine the patak output woltare of the tube arross the primary of the transformor is about 200 volts. An inexpensive driver trathsformer, of the type used for coupling at triode on
 will be satisfactory: It should proferably hate two or three primary taps so the turns ration can be adjusted. Transtormer coupling is used in proference to direct coupting (i.e., "clamp-tul)e" modulation of the sereen) beratuse of simpler adjustment, ease of modulating 100 per cent, and because it permits using a fow-voltage supply for the sereen grid of the molulated r.f. amplifier.

The sperech input stage uses a des. 7 pentode and is followed by a (i.J. voltage amplifior. The five output stage uses negative ferd-back, the ferdharek voltage being taken from the plater circuit by meates of the voltage divider $R_{10} R_{11}$ and ap)
phied in series with the plate resistor, R_{7}, of the preereding stage. Negative ferd-back in the modulator is very desirable when a seremor eontrol grid is to be modulated because the load on the modulator varies over the audio-frepuenes cerbe, and feed-back redures the distortion that arises from this catuse. In this cireuit the perement feedbatk is chosen to be as large as prossible while still retaining erough voltage gain for normal voice intensity into al arystal microphone.
The fead between the mieropheme conneretor and the 6is. 7 grid should bre shielded, as should als, the first-stage grid-resistor, R_{1}, sur h shiohding preverits hum piek-up on the grid lound. Aside from this, nos sperial procautions need he observed in construeting the amplifier, bevond kerping the heater leads well anay from the plater and grid loads of the tubes.

The heater reduirement for the unit is 1 ampere at 6.3 volts. Plate-supply requirements varre from about 70 to 85 man at 2.50 to 300 volts, deponding on the sereen current taken bey the tube Ineing modulated. Ria should be adjustod, be moans of the slider, to give the proper ded voltage at the soreen of the modulated stage. This voltage will, in gemeral, be appeximately hatf the dece soreen voltage recommended for cow. operation, ats deseribed in the chapter oh amplitude modulation. The methoed of adjustment for linear modulation is also) (oovered in that (hapter.

The same cirruit may be used for control-grid modulation of either trionde or totrode r.f. amplifiors. The mothod of adjustment is deseribent in the chapter on amplitude modulation.

Fig. 9.17- Morlulator vircuit for sareen or control grid modulation.
$\mathrm{C}_{1}, \mathrm{C}_{4}-10-\mu \mathrm{fl}$. 25-volt ilectrolytie.
(2 - $0.1-\mu \mathrm{fl}$. 1 (00-volt pation.
$\left(\mathrm{C}_{3}, \mathrm{C}_{5}-0.01=\mu \mathrm{fd}\right.$. 10 (0)-volt paper.
C6- $\mathbf{3 0}-\mu \mathrm{fd}$. B 0 - iolt electrolytic.

$R_{1}-2.2$ megohms, $1 / 2$ watt.
$\mathrm{R}_{2}, \mathrm{~K}_{6}-15(0)$, whms, $1 / 2$ watt.
$\mathrm{R}_{3}-1$ megohm, $1 / 2$ watt.
$R_{4}-0.29$ megohm, 1,2 watt.
R_{5} - I-megohm potentionmeter. atulio taper.
$\mathrm{R}_{\mathrm{T}}, \mathrm{R}_{\mathrm{s}}=0.1$ megolim. R_{2} watt.
 parallel.)
$R_{10}, R_{12} \ldots 1.000$ ohms. I watt.
$\mathbf{R}_{11}-2 \overline{2}, 0100$ ohms, 1 watt.

J_ - Mirrophone jath.
\therefore - 1-pule 2-pmition rotars switoh (are trvt).

Push-Pull 807 Modulator and Speech Amplifier

The sperech amplifier and modulator shown in Fig. 9-18 is (apatble of modulating a power input to the modulated amplifier of apporeximate 200 watts when the maximum rated voltage of ind is applied to the sot plater. The maximum undistorted sudio power output is 100 watts at that plate voltage, after allowing for losses in the output transformer. The 80 as are operated as Class $A B_{2}$ amplifiers.

As shown in Fig. 9-19, the first sperech amplifier tube is a lisda, with its input rircuit arranged for use with a crastal microphone. The serond stare, also a mosistanco(riaplad voltare amplifier, 1 isw: : (i.,.). The third stagre, which must doliver pewter to the grids of the (lass lBa modulator tubes. uses a fikili pontorde. Negative ferd-hark is inmorporated in this stage as at meaths for impresomg its output voltage regalation and roblewing disturtion. The bikit is couphed to Une modulator grids through a treansformer.

In the modulater stage smabll
 neeted in the grid leads and lotoohm resistors are commereded in the surem leads to prevent the parasitio oseillations that freguently orear with 807 s . Eallh sereern resistor is

Fif: 9.18-Modulatur anit u*ing bush-pull 80: with speerh amplifier deoinued for crystal-miorophene input, It is luilt on a a loy 17 by 3 stee
 Thu andin prower motpot othainadde varive from 50 to 100 watta demend. ing on the plate valtage supptied to the 80ts.

separately by-passed to ground with a mio:a condenser for the same reason.

A filament transformer capable of handling all tube heaters is included as part of the unit.

Cireuit constants have berenserected so that the overatl frequenter response is sufficiontly flat in the normal range of woice frequencios, but drops off above 3000 crotes and below 150 cyeles.

Fig. 9.19 - (:ircuit diagratn of the phall-pull 80: momblator

> 18z. Is, 0.1 mequhm. ${ }^{1}$ 2́ watt.
> 16: 6810 ohms. 1 watt.
> $\mathrm{R}_{10}-10.1$ mequhm. I watt.
> R_{11} - ${ }^{2} \mathrm{Z}, .1 \mathrm{ken}$ ohms. 1 watt.
> $\mathrm{H}_{12}-1$-. 1101 ohms. 1 watt.
> R13. R14-100 ohmis. ${ }^{1} 2{ }_{2}$ watt.

> J - Micropione jack.
> s_{1} - S.p.s.t switeh (part of gain-rontrol assembly).
> T, - 0.3 volta a.s., 3 amp.
> T_{2} - Chasa $1 \mathrm{~B}_{2}$ driver tranformor. wingle phate to p.p. gride. turn- ratio, 2 to I, ori. (1) $1 / 2$ sace.

Fris. 9.20- Bottom vew of ther pmah. puil sin. modalator. In this siew the mioropheme rombertor is at the bower risht, with the सain control juzt to itlift. Whe fitamme tramaformer is in tho upper lift cornor. Ceramic feed-dhroush in-ulators are med to carry the output tran-formor connectiond through tho chatsis. and saffols brminals are wed for the hiph+bitager d.e. Iead and tho

The general layout of the unit is shown in Figs. 9-18 and 9-20. The metal tube nearest the front of the chassis is the 6is. 77 and the 6.55 is toward the rear. The latout is not critical, except that it is advisable to keep the filament transformer well separated from the low-level stages and the input transformer, $7 ?$.

To prevent hum pick-up, the lead from the misrophome comeretor to the grid of the 6s.J 7 should twe shidded, as should :also the grid resistor, R_{1}, A sitisfartore shicld for the grid resistor maty be made by slipping a shont piece of spachet ti tubing over the rusistor and then rovering the tubing with shicld bataid. The beaid should be grounded to the ehassis. The leads to the gain control, h_{5}. should be made from shidelded wire.

The trpe of output transformer to use will dopend on the modulating impedane of the ('lass (r.f. stage. At maximum ratings the 807 s require a plate-to-plate load of 69.00 ohmes, so the output transformer turns ratio must be selerted acrordingles.

In ease the input to the modulated stage is less than 200 watts, the 807 s may be operated at a redued plate voltage to ohtain the neressary atudio power outpat. Typirat oprerating conditions at various plate voltages aro given below:

Plate voltage	400	50	${ }^{(0) 0}$	750	volts
sereom voltage	300	300	3000	300	ts
(irid bias	-2.5	-29)	-30	-32	olts
Plate curront, max. sig.	210	240	200	240	11:1.
Plate current, mosig.	(1)	72	10)	0	
Lotal resistance	3200	12.40	6100	(60:0)	
Power output	3.5	7.	80	120	

The output figures given abowe are tube output only, athd do not inelude transformer lasses. Thery should be redued by about 1.5 per cent to antain the antual pewer available for modalating the transmittor. Fior example, with a plate-sinpply voltage of ath the artual output can be experted to be about (6.5 watts, sufliciont for modulating 130 watts input.
The table above gives the power supply requirments for the sots at various plate voltages. Tho fixed bias maty be suppliod hy batterias or a bias supply such as is described in the chapter on power supplies. The sereen voltage may he br-
twern 250 and 300 in the practical (ase; at 2.50 volts somewhat hess hias is neoded and the driving power required is slightly increased but the power output is approximately the same.

The first three stages of the unit maty be operatad from a small power supply giving approximately 70 mat. at 2.50 to 300 volts. 1 suitable ceirruit diagram is givem in Fig, 9-21. This cireuit also supplies the fixed bias for the soz grids, by utilizing the voltage drop between the megative side of the high-voltage output and ground through the tap on resistor Re. The slider on Re should be adjusted so that the proper bias voltage, as given by the table on this patge, is obtained. It is atvisalbe to chack the 807 serem current, with mo plate voltage on the $807 \mathrm{~s}, \mathrm{t}_{0}$ be sure that the rated sereen dissipation of 3,5 watts per tube is not exereded. If it is, the bias should he inereaserl to kerp the dissipation within rating. This will prevent damage to the sereens during stand-he prerions.

Such a power supply ean be ineorporated in the modulator unit, if desired. The principal precaution to be ohserved is that the power transformer should not tre mounted near the low-level stages. A slightly deeper chassis may be recquired.

Fig. 9-2l - Powar supply for aprech-amplitier stage* of 80^{-}mowlalator. 'The unit alzo auplie's fixed biat for the 80, prids.

I.1-Filter choher. 30 hornes:. $\overline{0}$ ma.

R_{2} - lotollohm adjustalle. 10 watta.

' 1 ma; 5 v. 3 amp; 6,3 v, 3 amp.

Class-B Modulators and Drivers

CLASS-B MODULATORS

Plate modulation of all but low-power transmitters requires so much audio power that the Class 13 amplifior is the only practical trpe to use. (Included in the Class 13 categrory are high-power modulators of the Class. $\mathrm{A} 3_{2}$ type; whether the operation is in one class or the other is principally a matter of degree.)

Class 13 modulator cireuits are practically identical no matter what the power output of the modulator. The diagrams of Fig. 9-22 therefore will serve for any modulator of this type that the amateur may elect to build. The trio le circuit is given at A and the circuit for tetrodes at B . When small tubes with indirectly-heated cathodes are used, the eathodes should be connected to ground.

Modulator Tubes

Class B audio ratings of various types of transmitting tubes are given in the chapter eontaining the tube tables. Choose a pair of tubes that is capable of delivering sine-wave adio power coual to somewhat more than half the d.e. input to the modulated Class C amplifier. It is somotimest convenient to use tubes that will operate at the same phate voltage as that applion to the Class C

Fig. 9-22-Class 13 modulator circuit diagrams. Tubes and circuit considerations are discussed in the text.
stage, because one power supply of adequate current capacity may then suffice for both stages.

In estimating the output of the modulator, remember that the figures given in the tables are for the hube output only, and do not include out-put-transformer losses. To be adequate for modulating the transmitter, the modulator should have a theoretical power eapability about 25 per cent greater than the actual power needed for modulation.

Matching to Load

In giving Class 13 ratings on power tubes, manufacturers specify the plate-to-plate load impe dance into which the tubes must operate to deliver the rated audio power output. This load impedance seldom is the same as the modulating impedance of the Class C r.f. stage, so a match must be brought about by adjusting the turns ratio of the coupling transformer. The required turns ratio, primary to seeondary, is

$$
N=\sqrt{\frac{Z_{0}}{Z_{01}}}
$$

where $N=$ Turns ratio, primary to secondary $Z_{\mathrm{m}}=$ Modulating impedance of Class C r.f. amplifier
$Z_{p}=$ Plate-to-plate load impedance for Class B tubes

Example: The modulated r.f. amplifier is to operate at 12.50 volts and 250 ma . The power input is

$$
P=E I=12.50 \times 0.25=312 \mathrm{watts}
$$

so the modulating power required is $312 / 2=$ lisi watts. Increasing this by 25 'i to allow for losses and a reasonable operating margin gives $1.56 \times 1.25=195$ watts. The modulating inpedaner of the C'laws C stage is

$$
Z_{\mathrm{m}}=\frac{E}{I}=\frac{12.20}{0.2 .20}=5000 \text { ohms. }
$$

From the tube tables a pair of Class 13 tubes is selected that will give 200 watts output when working into a 690 -ohm load, wate-to-plate. The primary-to-scondary turns ratio of the modulation transformer therefore should be

$$
N=\sqrt{\frac{Z_{1}}{Z_{\mathrm{u}}}}=\sqrt{\frac{6900}{3(000}}=\sqrt{1.38}=1.175: 1
$$

The required transformer ratios for the ordinary range of impedances are shown graphically in Fig. 9-2;3.

Commerical Chass 13 output transformers usually are rated to work between specified primary and secondary impedances and froquently aro dosigned for specific Class B tubes. In such a case, it will be umecessary to calculate the turns ratio when the rerommonded tube combination is used. Many transformers are provided with primary and secondary taps, so that various turns ratios can be obtained to meet the requirements of various tube combinations.

Fig. 9-23 - Transformer ratios for matehing a Class C modulating impedance to the requirod plate-to-plate load for the Class 13 modalator. 'Ther ration given on the chrves are from total primary to secondary. Resistame values are in kilohms.

It may be that the exact turns ratio required by a particubar tube combination canot be sorured, even with a tapped modulation transformer. simall departures from the proper turns ratio will have bo serious effect if the modulator is operating well within its capabilities; if the actual tums ratio is within 10 per cent of the ideal value the sustem will operater satisfactorily. Where the diserepuney is larger, it is always possible to choose a new set of operating conditions for the (lass (y stage to give a modulating impedance that can be matehod by the turns ratio of the available tramsormer. This may require operating the ('lass (amplifier at higher voltage and less plate current. if the modulating impedanere must be inereased, or at lower voltage and higher current if the modulating imperdanee must the decreased. Howerer, this prowess cannot be carried too far without exceeding the ratings of the (lass ('tubes for either plate voltage or current, even though the power input is kept at the same figure. In such a case the only solution is to operateat redured input and use less of the power available from the modulator.

Suppressing Audio Harmonics

Distortion in (ither the driver or Class B modubator will cause a.f. harmonies that maty lie outside the freducher band needed for intelligible spereh tramsmission. While it is almosi impossible to avoid some distortion, it is possible to rut down the amplitude of the higher-fregueney harmonics

The parnose of condensers C_{1} and Coweross the primary and secondary, respectively, of the (latss B output transommer in Fig. 9-22 is to reduee the strength of harmonics and unneressary highfregueney components existing in the modulation. The eondensers ant with the leakage indurtane of the tratheformer winding to form at rudimentary
low-pass filter. The values of capacitancerequired will depend on the load resistance (modulating impedanee of the Class (: amplifier) and the leakage inductanere of the particular transformer used. In gencral, (apacitances betwern about 0.001 and $0.01 \mu \mathrm{fd}$. will be required; the larger values are neeressary with the lower values of load resistance, it test set-up for meaturing frequener response (described in a hater seretion in this chapter) will quickly show the optimum values to use, if a small assontment of condensers is on hand for experimenting. The object is to find the combination of C_{1} and C_{2}^{\prime} that will give the most rapid reduction in response as the signal frequencer is raised above about 2500 cercles.

The voltage rating of carch condenser should at least be equal to the d.e. voltage at the transformor winding with which it is asociated. In the case of C_{2}, part of the total capacitance re(quired usually is supplied by the plate ber-pass or blocking eondenser of the modulated amplifier, so (as ned only be large enough to make up the differenter

I still bettor arrangement is to use a low-pans filter as shown in Fig, 9-9, evern though clipping is not deliberately emploved. The method dosoribed above may be used for chocking the performane of the filter.

Grid Bias

Many modern tramsmitting tubes designed for Class 13 audio work (an be operated without grid bias. Besides eliminating the need for a grid-bias supply, this reduces the variation in grid impedance over the audio-frequency cocle and thus gives the driver a more constant load into which to work. With thase tubes, the grid return lead from the eenter-tap) of the driver transformer secondary is simply connerted to the filament center-tap or cathode.

When the tubes require bias, it should alw:ys be supplied from a fixed voltage sourere, Noither eathode hias nor grid-leak bias can be used with a Clase 13 amplifier; with both types the bias changes with the amplitude of the signal voltage, whereas proper operation demands that the bias voltage be unvarying no matter what the strenget h of the signal. When only a small amount of bias is mequired it can be obtained conveniently from a few dry eolls. When greater valurs of bias are required, a hears-duty" "B" battery may be used if the grid current does not exceed to or 50 milliamperes on voiee peaks. Even though the hattories are charged by the grid current rather than discharged, a battory will deteriomate with time and its internat resistance will increase. When the increase in internal resistance beromes appre(ciable, the batery tends to act like a grid-leak resistor and the bias varies with the applied signal. Batteries should be checked with a voltmeter oreasionally while the amplifier is operating. If the bias varies more than 10 per cent or so with voico exatation the battery should be replaced.

As an altermative to batteries, a regulated bias supply may be used. This type of supply is deseriled in the power supply chapter.

Plate Supply

The plate supply for a Class B modulator should be sufficiently well filtered to prevent hum modulation of the r.f. stage. An additional requirement is that the output condenser of the supply should hatw low reactance, at 100 cerches or less, eompared with the load into which earh tuhe is working. A $t-\mu$ fil. output condenser with a 1000)-volt supple, or : 2 - μ Pd. condenser with a 20 (0)-volt supply, usually will be satisfactory: With other plate voltages, condenser values should he in inverse proportion to the plate voltage.

To kerp distortion at a minimum, the voltage regulation of the plate supply should be as good as it can be made. If the dec. output voltage of the supply varios with the amount of current taken, it should be kept in mind that the voltage at maximum current determines the amount of power that can be taken from the modulator without distortion. A supply whose voltage drops from 1500 at no load to 1250 at the full modulator phate current is a 1250 -volt suphly, so far as the modulator is concernod, and any estimate of the power output available should be based on the lower figure.

It is partieularly impertant, in the cense of a terode Class B stage, that the srreob-voltage power-supply source have excellent regalation, to prevent distortion. The sereen voltage should be set ase exactly as possible to the reommended value for the tube. The atudio impedance between sereen and cathode also must be low.

Overexcitation

When a Class 13 amplifior is overdriven in an attempt to sereure more than the rated power, distortion increases rapidly. The high-freguenery harmonies which result from the distortion mondalate the transmitter, producing spurious sidobands which can cause serious interference over a
band of frequencies several times the channel width recpuired for specth. This will happern, even though the transmitter is not being overmodulated, if the modulator is ineapable of delivering the power required to modulate the transmitter fully, or if the Class (amplifier is not adjusted to give the proper modulating impedanee.

Ls stated earlier, such a comdition may be reached bey detiberate design, in cate the modubator is io be adjusted for peak elipping. But whether it happens be areddent or intention, the splatter and spurious sidehands (an be eliminated by inserting a low-pass tilter (Fig. 9-9) between the modulator and the modulated amplifier, and then taking care to see that the actual modulation of the r.f. amplifier does not exceed 100 per cent.

Operation Without Load

Fixcitation should nevor be applied to a Class B modulator until after the Class \mathbf{C} amplifier is turned on and is drawing the value of plate current required to present the rated load to the modulator. With no load to absomb the power, the primary impedance of the transformer rises to a high value and exoessive audio voltages are developend across it - frequently high mough to break down the transformer insulation, If the modulator is to be tested separatoly from the transmitter, a resistance of the stme value as the modulating imporatace, and capable of dissipating the full power output of the modulator, should be commertad arross the transformer secondary.

DRIVERS FOR CLASS-B MODULATORS

Class 13 :amplifiers are driven into the gridcurrent region, so power is consumed in the grid rircuit. The preereding stage or driver must be capable of supplying this power at the rectuired poak audio-fredurncy grid-ho-prid voltage. Both

Fip. 9.2.4-A typical chassis layout for a (Sas- I modulator. Bevond adequate inabation for ilae voltages used, and suflicient ventilation for the modalator tabes. "In partienlar emotructional precautions are neres. sary. If the size of the enmpminemtr mahes it neressary to nar more than me rhasnis, the Jriver tranaformer may be included with the viresh amplifier. In such can it is arlvinathle to shield the "hot" audio leads to the modulator grids if they have to ron ans considerable distance.

of these quantities are given in the manufacturer's tube ratings. The grids of the ('lass I3 tubes represent a variahle load resistance over the audio-frequency cerle, beatuse the grid rurrent does not inerease directly with the grid voltage. To prevent distortion, therefore, it is neeresary to have a driving source that will maintain the waveform of the signal without distortion "ven though the load varies. That is, the driver stage must have good regulation. To this end, it should be capable of delivering somewhat more power thatn is consumed bey the (lass B grids, ats proviously deseribed in the discussion on speech amplifiers, It is also desirable to use an input coupling transformer having a turns ratio giving the largest step-down in the voltage between the driver plate or plates and the Class 13 grids that will promit obtaining the specified grid-to-grid a.f. voltage.

The driver transformer, T or Tg in Fig. 9-2 $\bar{\sigma}^{2}$ maty couple directly between the driver tube and the modulator grids or may be designed to work into a low-impedance (200- or $50(0)-$ ohm $)$ line. In the latter case, a tube-to-line output transformer must be used at the output of the driver stage. This type of coupling is recommended only whon the driver must be at a considerable distance
from the modulator; the second transformer not only introduecs additional losses but also impairs the voltage regulation of the driver stage.

Driver Tubes

The variation in grid resistance of a Class B amplifier over the audio-frequency cyrle poses a special problem in the driver stage. To avoid distortion, the driver output doltaffe (not power) must stay constant (for a fixed signal voltage on its grid) regardless of the variations in load resistance.

The fundamental requirement for good voltage regulation in any electrical generator is that the internal resistance must be low. In a varummtube amplifier, this means that the tubes must have a low value of phate resistanere. The best tubes in this respect are low- μ triodes - the fill 1 is an example - and the worst are tetrodes and pentodes as represented by the 6V6 and fidi. This dors not mean that tetrodes or pentodes cannot be used, but it does mean that they should not be used without taking measures to reduce the effoctive plate resistance (see next sertion).

In selocting a driver stage always choose Class A or $A B_{1}$ operation in preference to Class $A B_{2}$. This not only simplifies the sperechamplifier design but also makes it casier to apply negative feed-back to tetrodes for reduction of plate resistance. It is possible to obtain a tube power output of approximately 2 2) watts from glos without going bevoned Class AB operation; this is ample driving power for the popular Class B modulator tubes, even when a kilowaft transmiter is to be modulated.

The rated tube output as shown by the tube tables should be redueced by about 20 per cent to allow for losse's in the C Class B input tansformer. If two transformors are used, tube-to-line and line-togrids, allow about 3 3 per cent for transtormer losses. Another 25 per cent should be allowed, if possible, as a safuty factor and to improve the voltage regulation.

Fig. 9-25 shows representative circuits for a push-pull triede driver using (athode bias. If the amplifier operates ('lass A, the cathode resistor need mot be ber-passod, bro cause the af. currents from carh tube flowing in the cathode resistor are out of phase and cancel each other. However, in Class AB operation this is not true; considerable distortion will be generated at high signal levels if the eathode resistor is not by-passed. The hepass caparitane required can be calculated by a simple rule: the cathode resistance in ohms multiplied by

Fig. 9.26 - Negative feed-back circuits for drivers for Class 13 modulators. A Single-ended beam-tetrode driver. If V_{1} and V_{2} are a $0, \mathrm{~J}$ and $6 \mathbf{V}$, respertively, the following values are suggested: $R_{1}, 47,1001$ ohms: $R_{2}, 0,47$ mexolim; $R_{3}, 250$ ohms; $R_{4}, R_{5}, 22,000$ ohms: C.1, $0.111 \mu \mathrm{ful}$: C.2, $50 \mu \mathrm{fol}$.

13 - Push-pull heram-tetrode driver. If I_{1} is a $6, I$ and f_{2} and J_{3} 6Los, the following values are suggested: $R_{1}, 0.1$ megohm; R_{2} 2.2000 ohms: $R_{3}, \stackrel{0}{2} 0$ ohms; $\left(\dot{1}, 0.1 \mu \mathrm{fd} ; \mathrm{C}_{2}, 100 \mu \mathrm{fd}\right.$.
the by-pass capacitanee in microfarads should equal at least 25,000 . The voltage rating of the condenser should be equal to the maximum bias voltage. This can be found from the maximumsignal plate current and the cathode resistance.

Example: A pair of 6134Gs is to be used in Class $A B_{1}$ self-biased. From the tube tables, the cathode resistance should be 780 ohms and the maximum-signal plate current 120 ma . lrom Ohm's Law,

$$
E=R I=780 \times 0.12=93.6 \text { volts }
$$

From the rule mentioned previously, the by-pass capacitance required is

$$
C=25,000 / R=25,000 / 780=32 \mu \mathrm{fd}
$$

A $40-$ or $50-\mu \mathrm{fd}, 100$-volt electiolytic condenser would be satisfactory.

Negative Feed-Back

Whenever tetrodes or pentodes are used as drivers for Class 13 molulators, negative feed-back should be used in the driver stage. This will redure the distortion caused be the variable load resistance represented by the Class 13 grids. It also reduces the distortion inherent in the driver stage itself, when properly applied. The effect of feed-hack is to reduce the apparent plate resistance of the driver, and this in turn helps to maintain the a.f. output voltage at a more constant level (for a constant signal on the grid) when the load resistance varies. It is readily possible to reduce the plate resistance to a value
comparable with or lower than that of low $-\mu$ triodes surh as the 2.13 or 6134 (i.
Suitable cireuits for single-ended and push-pull tetrodes are shown in Fig. $9-26$. Fig. $9-26.1$ shows resistance coupling between the preceding stage and a single tetrode, such as the $6 \mathrm{~V}^{\prime} 6$, that opriates at the same plate voltage as the preceding stage. Part of the a.f. voltage across the primary of the output transformer is fed back to the grid of the tetrode, I^{2}, through the plate resistor of the preereding tube, V_{1}. The total resistance of R_{4} and R_{5} in series should be ten or more times the rated load resistance of V_{2}. Instead of the voltage divider, a tap on the transformer primary can be used to supply the feedback voltage, if such a tap is available.

The amount of feod-back voltage that appears at the grid of tube V_{2} is determined by R_{1}, R_{2} and the plate resistaned of I_{1}, as well as by the relationship betwern R_{4} and K_{5}. Cirruit values for a tupical tube combination are given in detail in lig. 9-26.

The push-pull circuit in Fig. 9-2613 requires an audio transformer with a split seeondary. The ferel-back voltage is ohtained from the plate of each output tube by means of the voltage divider, R_{1}, R_{2}. The blocking condenser, C_{1}, prevents the d.e. plate voltage from being applied to $R_{1} R_{2}$; the reartance of this condenser should be low, compared with the sum of R_{1} and R_{2}, at the lowest audio frequeney to be amplified. Also, the sum of R_{1} and R_{2} should he high (ten times or more) compared with the rated load resistance for V_{2} and V_{3}.

In this circuit the feed-back voltage that is developed aeross R_{2} appears at the grid of V_{2} (or V_{3}) through the transformer secondary and

Fif. 9.27-Output voltage regulation of two types of beam-tetrode drivers with negative feed-back. For comparison, the regulation with a pair of 2 A 3 s (no feed-back) also is shown.

Fïg. 4.28 - Circnit diagram of speed amplifier using 61.6x with neqative
feot-back, suitable for driving (lass 18 modulators up to $\mathbf{3 0}$) watt ontput.

Cis. (9, (in - II. $1-\mu \mathrm{fl}$. foll-volt paper.
(3, (in- $0.01-\mu$ fol. followoll paper.

Cil - $11010-\mu \mathrm{fd}$, inf-volt electrolytic.
$\mathrm{K}_{1}-2.2$ mumohms, $1 / 2$ watt.
$\mathrm{K}_{2}, \mathrm{~K}_{7}-1.000$ ohmo, 16 wall.
$\mathbf{K}_{3}-1.5$ mosohtur, 1_{2} watt,
K_{4} - 0.22 mexchen, $\mathbf{1}_{2}$ watt.
$R_{5}, R_{8}-47,000$ ohm", $1 / 2$ watt.
K_{B} - 1 -megohm volume control.
grid-cathonk cirenit of the tube, provided the tubes are not driven to grid current. If the gridrathode impedathere of the tulses is relatively low, as it is when grid current flows, the feed-bark voltage decreases because of the voltage drop through the transformer secondary. The circuit should not be used with tubes that are operated (lass AB, The per cent feed-back is

$$
n=\frac{R_{2}}{R_{1}+R_{2}} \times 100
$$

Where n is the feed-back percentage, and R_{1} and R_{2} are connected as shown in the diagram. The higher the feed-bark perrentage, the lower the effortive plate resistance. However, if the promcontage is made too high the preceding tube, l_{L}, may not be able to develop enough voltage, through T_{1}, to drive the push-pull stage to maximum output without itself generating harmonis distortion. Distortion in V_{1} is not eompensated for by the feed-batek circuit.

If V_{2} and V_{3} are 6 dis operated self-hiased in Class $A 3_{1}$ with a load resistance of 9000 ohms, V_{1} is a 6.5.5, and T_{1} has a turns ratio of $2-t 0-1$, total secondary to primary, it is possible to use over 30 per cent feed-back without going berond the output-voltage capabilities of the (6.J.). Twents per cent feed-back will reduce the effective plate resistanee to the point where the output voltage regulation is better than that of 6l34Gs or 2.43 s without feed-back.

Instead of the voltage-divider arrangement shown in Fig. 9-25B for obtaining feed-batck voltage, a separate winding on the output transformer can be used, provided it has the profer
K_{g} - 0.15 mexohm, $1 / 2$ watt.

$R_{12}, R_{13}-0,1$ megehom, 1 watt.

$1810-250$ chms, 10 watts.
H_{17} - 2010 OH ohme, 10 walt-
T_{1} - Interstaze andio. $2: 1$ seondary (total) to primary, with aplit -recondary wimding.
I_{2} - Clase is input transformer to asit modulator tubes.
number of turns to give the dexired feed-batek perrentage. Suecial transformers are available for this purpose.

The improvemment in constaney of output voltage resulting from the use of negative feed-bark is shown graphically in Fig. 9-27. In order to compare the various tupes of tubes, the variation in output voltage is shown as a peremtage of the output voltage when the tubes are working into the rated load. The load resistance also is exproseded as a percentage of the rated hand rosistance for the particular tube, or pair of tubes, userl.

SPEECH-AMPLIFIER CIRCUIT WITH NEGATIVE FEED-BACK

A rircuit for a speerh amplifior suitable for driving a Class 13 modulator is given in lig. ! $1-2 \mathrm{~s}$. In this amplifier the didis are operated (hass $A B_{1}$ and will deliver u, to 20 watts to the grids of the Clase B amplifier. The ferd-back cireuit requires no adjustment, but does require an interstage transformer with two separate socondary windings (split secondary).
This amplifier maty be constructed along the same lines as in Fig. 9-13, observing the same precations with respect to shielding the (is.J/ grid eircuit. The power output is the same as from the eireuit of Fig. 9-16.
The output transformer, T_{2}, should be selected to work between a 9000 -ohm plate-to-phate load and the grids of whatever Class B tubes will be used. The power-supply requirements for this amplifer are essentially the same as for the amplifier of Fig. $1 /-16$.

Checking 'Phone-Transmitter Operation

SPEECH EQUIPMENT

Livery 'phone tramsmitter requires ehocking before it is initially put on the air. In adequate job can be done with equipment that is neither (laborate nor expensive. A simple set-up is shown in Fig. ! $1-29$. The only equipment that is not likely to be already at hand is the audio oscillator, the construction of which is deseribed in the chatper on measurements. The voltmeter -one that operates at audio frequencos is neressary - can be rither a vacumm-tube volteneter or a multiange volt-ohm-milliammeter that has at reetifier-type ace ratnge. The headset is induded for atural ehereking of the amplifier performanee.

The audio osedlator usually will have an output control, bat if the maximum output voltage is in exeres of a wolt or so the output setting mas In rather eritional when a high-gain sureroh amplifior is being tested. In such eases an attembator such is is shown in Fig. ! 9 -29 is a convenience. Fiach of the ewo voltage dividers redues the voltage by a factor of foughly 10 to 1 , so that the over-all attemuation is ahout 100 to 1 . The relat tively low value of resistaneer, R_{4}, ateross the input torminals of the amplifior also will minimize straty hum pick-up on the romureting leads.

 The aulia-mscillator freluatey range shoula lec from about loli th iono or mere ryoles. li is not meressary that it be continos. mests sariable: a momber of "sput" frequencies will he satisfac: tory. Suitahle resistor values are: \boldsymbol{R}_{1} and \boldsymbol{R}_{3}, 111.0100 ohme: \boldsymbol{R}_{2}
 mitput - tage: Ri. detormine hy trial for ommfortable headphone Lerel (2.5 to 100 ohms. ordinarily). 1 is a high-resistance ace. woltmeter, multirange rectilier type.

As a prediminary check, cover the microphone imput terminals with a metal shicld (with the audio oscillator and attenuator diseonnected) and, while listening in the heardset, note the hum level with the amplifior gain control in the off position. The hum should be very low under these eonditions. Then inerease the gatu-eont rol setting to maximum and olserve the ham: it will no doubt increase. Xext emmert the audio oscillator and attemator and, starting from minimum signal, inerease the andio inpert voltage until the voltmeter indicates full power output. (The voltage should equal $\sqrt{\prime} / R$, where P is the expereted power output in watts and R is the load resistance - K_{6} in the diagram.) While increasing the input, listen carefully to the tone to see if there is any change in its chamater. When it begins to sound like a musical octave instead of a single tome, distortion is hegiming. Assuming that the output is sulnatantially without :undible distortion at full
output, substitute the microphone for the audio oscillator and speak into it in a mormal tone while watching the voltmeter. Reduce the gain-rontrol setting until the meter "kieks" nearly up to the full-power reading on voiec poaks. Note the hum level, as read on the voltmeter, at this point; the hum level should not exered one or two per eent of the voltage at full output.

If the hum level is too high, the amplifier stage that is causing the trouble can be located by tomporarily short-circuiting the grid of cach tube, in turn, to ground. When shorting a particular grid makes a marked decrease in hum, the hum prosumably is coming from a precerting stage, although it is possible that it is getting its start in that particular grid circuit. If shorting a grid does not decrease the hum, the hum is originating either in the plate cireuit of that tube or the grid circuit of the next. Aside from wiring errors, a defertive tube, or inadequate plate-supply filtering, objertionable hum usually originates in the first stage of the amplifier.

If distortion orcurs below the point at which the expereod power output is secured, the stage in which it is oceurring can be loeated by working from the last stage toward the front end of the amplifier, applying a signal to each grid in turn from the audio oscillator and adjusting the signal voltage for maximum output. In the (ase of push-pull stages, the signal may be applied to the primary of the interstage transformer - after diseonmerting it from the plate-voltage source. Assuming that normal design prineiples have been folfowed and that all stages are theoretically working within their eapabilities, the probable causes of distortion are wiring errors (such as aceidental short-cirenit of a cathode resistor), defertive components, or use of wrong values of resistance in cathode and plate circuits.

Using the Oscilloscope

Spereh-amplifier wherking is facilitated considerably if an oseilloscope of the trpe having amplifiers and a linear sweep circuit is available. A trpical set-up for using the oseilloseope is shown in Fig. 9-30. With the conneetions shown, the swoep eircuit is not required but horizontal and vertical amplifiers are necessary. Audio voltage from the oscillator is fed directly to one oscillosoope amplifer (horizontal in this ease) and the output of the spereh amplifier is connected to the other. The 'scope amplifier gains should be adjusted so that each signal gives the same line length with the other signal shut off.
[nder these conditions, when the input and output signals are applied simultaneously they are compared directly. If the speech amplifier is distortion-free and introduces no phase shift, the resulting pattern is simply a straight line, as shown at the upper left in Fig. 9-31, making an angle of about tis degrees with the horizontal and vertical axes. If there is no distortion but there
is some phase shift, the pattern will be a smooth ellipse, as shown at the upper right. The greater the phase shift the greater the tendency of the ellipse to grow into a circle. When there is evenharmonic distortion in the amplifier one end of the line or ellipse becomes curved, as shown in the second row in Fig. 9-31. With odd-harmonic distortion such as is characteristie of overdriven push-pull stages, the line or ellipse is curved at both ends.

Patterns such as these will be obtained when the input signal is a fairly good sine wave. They will tend to become complicated if the input waveform is complex and the speech amplifier introduces appreciatble phase shifts. It is therefore advisable to test for distortion with an input signal that is as nearly as possible a sine wave. Also, it is best to use a frequency in the 500-1000 cycle range, since improper phase shift in the amplifier is usually least in this region. Phase shift in itself is not of great importance in an audio amplifior of ordinary design because it does not change the character of speech so far as the ear is conerned. However, if a complex signal is used for testing, phase shift mas make it difficult to dated distortion in the oscilloseope pattern.

In amplifiers having negative feed-back, excessive phase shift within the feed-baek loop may cause self-oseillation, since the signal fed back may arrive at the grid in phase with the applied signal voltage instead of out of phase with it. Such a phase shift is most likely to he associated with the output transformer. ()scillation usually ocrurs at some frequency above 10,000 eveles, although occasionally it will oceur at a very low frequency. If the pass-band in the stage in which the phase shift occurs is deliberately restricted to the optimum voice range, as described earlier, the gain at both very high and very low frequencies will be so low that self-oseillation is very unlikely, even with large amounts of feed-batek.

Generally speaking, it is easier to detect small amounts of distortion with the type of pattern shown in Fig. ()-31 thatn it is with the waveform pattern obtained by feeding the output signal to the vertical plates and making use of the linear sweep in the 'scope. This is because it is quite easy to determine whether or not a line is straight, but not so easy to decide whether a pattern displayed by the sweep circuits meets given specifications.

However, the waveform pattern can be used satisfactorily if the signal from the audio oseilla-

Fig. 9-30- 'lest set-up using the oscilloseopes to check for distortion. These connertions will result in the type of pattern shown in lig. 9.31, the horizontal sweep being provided by the audio input signal. For waseform patterns, omit the connection between the audio ossillator and the horizontal amplifier in the scope, and use the horizontal linear sweep.

Fig. $9-31$ - 1 ypiral patterns obtained with the ronnes. tions shown in lig. 9,30. Depending on the number of stages in the amplifer, the pattern may slope upward to the right, as shown, or upward to the left. Nso, depending on where the distortion originates, the curvature in the second row may appear either at the top of buttom of the line or ellipae.
tor is a reasonably good sine wave. One simple method is to examine the output of the osidlator alone and trace the pattern on a sheot of transparent paper. The pattern given by the output of the amplifier ean then be compared with the "standard" pattern by adjusting the oscilloseope gain to make the two patterns coind ide as elosely as possible. The pattern discrepancies are a measure of the distortion.

In using the oscilloseope care must be taken to avoid introducing hum voltages that will upset the measurements. Ifum piek-up on the 'scope leads or other exposed parts such as the amplifier load resistor or the voltmotar c:an be detected by shutting off the audio oscillator and sperech amplitier and romerting first one and then the other to the vertical plates of the 'seope, setting the intornal horizontal sweep to an appropriate width. The trace should be a straight horizontal line when the vertieal gain control is sot at the position used in the actual measurements. Waviness in the line indieates hum. If the hum is not in the 'seope itself (cherk by disconnerting the leads at the instrument) make sure that there is a grod ground comertion on all the equipment and, if necessary, shield the hot leads.

The oscilloseope ran be use: to grood advantare in stage-bu-stage testing to cherek waveforms at the grid and plate of each stage and thus to determine rapidly where a soure of trouble may be located. When the 'seope is connected to circuits that are not at ground potential for d.e., a con-
denser of about $0.1 \mu \mathrm{fd}$. should be connected in series with the hot oscilloscope lead. The probe lead should be shielded so that it will not pick up hum.

- Class-b modulators

Once the sperch amplifier is in satisfactory working condition, the Class I modulator can be checked by similar means. A simple cireuit is shown in Fig. ! $)$-32. The resistance of R_{1} should be equal to the modulating impedance of the Class C amplifier to be modulated, and the resistor should have a power rating equal to the rated power output of the modulator. Calculate the voltage to be expected across R_{1} at full output; if it execeds the range of the metor the meter may be comerted across say half or one-fourth of R_{1} and the readings multiplied be 2 or 4 , respectively. Only a few ohms will be needed at $R 2$, in the average atase, to give a good signal in the headphones. As a safety prectation, ground the output terminal to which the healphones are connected and use a resistor at he that has ample current-carrying caparity'.
llum will seldom be a problem in the molulator. Distortion may be chorked as deseribed previously; the oscilloseope is excellent for this purpose. If a variable-froquence audio oscillator
is used, a check on the frequency response of the over-all system can be oltatined by varying the oscillator frequeney (check its output voltage at each frequency change) and observing the variation in the modulator output voltage. The highfrequency response of the system can be attenuated by trying condensers of various values across the primary and secondary of the output transformer, as pointed out in the discussion on

Fig. 9-32-Set-up for checking a Class B modulator.
Class 13 modulators. The object is to reduce the response above 3000 cycles to a low value as compared with the response in the 200 - to 2500 -cycle region, so that the chamel occupied by the transmitter will not be excessive. A simple method of adjustment is to apply an audio tone of about 1500 cereles and increase its amplitude until distortion becomes noticeable; when this occurs the tone is no longer pure but sounds like a musieal octave. The condenser values should then be adjusted until the test tone sounds pure again at the same signal amplitude.

Amplitude Modulation

The type of modulation most commonly employed in amateur radiotelephony is called amplitude modulation (AM). The name arises from the fact that the methods of generating a modulated wave of a particular type all aceomplish the desired result by varying the instantaneous amplitude of the r.f. output of the transmitter. As deseribed in the chapter on circuit fundamentals, the process of modulating a signal sets up groups of frequencies called sidebands, these sidebands appearing both above and below the frequency of the unmodulated signal or carrier. An amplitude-modulated signal actually consists of a carrier which does uot vary in amplitude plus sets of side frequencies or sidelands which in turn may or may not vary in amplitute. Modulation by a single-frequency, constantamplitude tone, for example, sots up side frequencies that do not vary in amplitude. Modulation by voice sets up bands of side frequencies that do vary with the amplitude of the sperch.

Amplitude modulation is frequently deseribed as a process of "varying the amplitude of the "arrier". A variation in amplitude does take place, when the rommosite signal as a whole is viewed in a circuit that aceepts equally well atl frequeneres, carrior and sidebands, contained in the signal. 'The total r.f. output amplitude varies at the modulation-frequener rate berause it is the resultant of the instantameous amplitudes of the earrior and all side frequencies, which continually vary (at radio frequoney) in both amplitude and phase relationships. Misunderstanding often occurs because commonly no distinetion is made between the carrier, which docs not vary in amplitude at modulation frequeney, and the signal as a whole, which does vary in amplitude with modulation. In this chapter the term "signal" is used for the eomposite affect of carrior plus sidebands.

It is illuminating to consider amplitude modulation as a process of freguency conversion or mixing, in which casc the relationship betwern the carrior, modulating frequencies, and sidebands is straightforwad (ace chapter on fundamentals). The amplitude variations in the signal arise as a result of the mixing process. These amplitude variations are highly important from a design standpoint, since they set up certain power requirements that must be met, so they are considered in detail in this chapter.

AM Sidebands and Channel Width

As deseribed in the chapter on fundamontals, combining or mixing two frequencies in an appropriate circuit gives rise to sum and difference frequencies. Speed can be electrically reproduced, with high intelligibility, in a band of fre-
quencios lying betwern approximately 100 athe 3000 cyeles, When the se frepueneite atre combined with at radio-frequeney carrice, the sidebamds weresp the freguency spectrum from about 3000 cales below the earrier fregueney to 3000 eveles above - a totat hand or "chammel" of about ${ }^{6}$ kilocyeles. Actual speoch frectuenciess extemd up 1010,000 (eyeles or so, so it is pessible to or(cupe a 20 -ke. chammel if no provision is made for reducing its width. For communication purposes such a chammel width represents a waste of valwable spoctrum space, since a 6 -ke. chammel is fully adequate for intelligibility. Oceupying more than the minimum channel creates unneressary interference, so speceh cquipment and trathemitter adjustment and operation should be pointed toward matutaning the chambel widh at the minimum.

THE MODULATED SIGNAL

In Fig. 10-1, the dratwing at A shows the unmodulated r.f. signal, assumed to be a sine wave of the desired radio frequenes. The graph can be taken to represent aither voltage or current.

In 13, the signal is assumed to be modulated bs the audio-frepurmey shown in the small drawing above. This frequency is much lower than the carrier frequencer, a necossary condition for good moclulation, and ahasys the case in radiotelophony berause the atudio frequencies used ate vory low compared with the radio frequener of the carrier. When the modulating voltage is "positive" (abowe its ansis) the signal amplitude is increased above its unmodulated amplitude; when the nodulating voltage is "negative" the signal amplitude is decreased. Thus the signal grows larger and smaller with the polatrity and amplitude of the modulating voltage.

The drawings at ('shows what happens with stronger nomblation. The amplitude is doubled at the instant the modulating voltage reachere its. positive peak. On the negative peak of the modulating voltage the amplitude just roathes zero; in wher words, the signal is completely modulated.

Percentage of Modulation

Whern a moxulated sigmal is deteroted in a roeover, the detertor eliminates the carrier and takes from it the modulation. The stronger the modulation, therefore, the greater is the useful recover output. Obviously, it is desirable to make the modulation as strong or "heary" as possible. A wave modulated as in Fig. 10-10 would produce eonsiderably nore usiful audio output thatn the one shown at 13 .

The "depth" of the molulation is exprosered
ats a perrentage of the ummondated (arrior amplitude. In either B or (', Fig. 10-1, X reprevents the ummodulated carrier amplitude, Y is the maximum amplitude on the modulation up-peak, and Z is the minimum amplitude on the modulation downecak.

The outline of the modulated wave is called the modulation envelope. It is shown hy the thin line outlining the patterns in Fig. 10-1. In a properly-operating modulation sustem either side of this outline is an aremate reproduction

Fip. 10 - - Craphacal representation of (D) r.f. output unmodalated, (iB) modulated 50%, (C) mordulated 100%.
of the modulating wave, as ean be seen in Fig. $10-1$ at 13 and ('by compating the upper outline of the modulation envelope with the waveshape of the modulating wave. The lower outline duplinates the upper, but simply appears upside down in the drawing.

The percentage of modulation is
$\% \mathrm{Mod}=\frac{Y-X}{X} \times 100($ (upnatad morlulation $)$, or
$\%$ Morl. $=\frac{x-Z}{x} \times 100$ (downward modulation)
If the waveshape of the morduation is such that its prak positive and negative amplitudes are equal, then the modulation pererntage will be the same both up and down. If the two pererentages differ, the larger of the two is customatily spectified.

Power in Modulated Wave

The amplitude values shown in Fig. 10-1 correspond to current or voltage, so the drawings may be taken to represent instantaneous values of either. Now power varies as the square of either the current or voltage, so at the peak of the modulation up-swing the instantaneous power in the signal of Fig. 10-1(is four times the unmodulated earrier power (because the current and voltage both arr doubled). At the prak of
the down-swing the power is zero, sine the atmplitude is zero. These statements are true of 100 per cent modulation no matter what the waveform of the modulation. The instantaneous power in the modulated signal is proportional to the square of its amplitude at every instant. 'This fart is highly important in the operation of every method of amplitude modulation.

It is convenient, and customary, to describe the operation of modulation systems in terms of sine-wave modulation. Although this waveshape is seldom antually used in practice (voice waveshapes depart very considerably from the sine form) it lends itself to simple calculations and its use an a standard permits eomparison between sovioms on a common basis. With simenave modulation the power in the modulated signal averaged over ans number of full cereles of the modulation frequeney is found to be 1 后 times the power in the unmodulated carrier. In other words, the power output increases io per cent with 100 -prereent modulation bes a sine wave. This relationsthip is very useful in the design of modulation shistems and modulators, since any such system that is capable of increasing the average power output by 0 per cent with sinewave modulation atutomatically fulfills the requirement that the imstantaneous power at the modulation up-poak be four times the carrier power. No such simple relationship exists with complex waveforms, consequently systems in which the additional power is supplied from outside the modulated r.f. stage ($1 \cdot . g$., plate modulation) usually are designed on a sime-wave hasis as a matter of convenience. Modulation sustems in which the additional power is secured from the modulated r.f. amplifier (e.g., grid modulation) usuatly are more conveniently designed on the basis of pak power rather than average power.

The extra power that is contained in a modulated signal goos entirely into the sidebands, half in the upper sideland and half in the lower. As a numerical example, full modulation of a $100-$ watt carrier by a sine wawe will add to watts of sideband power, 25 in the lower and 25 in the upper sideband. Supplying this additional power for the sidebands is the oljeet of all of the various systems devised for amplitude modulation.

Complex waveforms such as speech do not, as a rule, contain as much average power as a sine wave. Ordinary spereh waveforms have about half as much average power as a sine wave, for the satme peak amplitude in both waveforms. Sinere it is the prak amplitude, not the average power, that determines the percentage of modulation, the sideland power with ordinary speech awerages onle about half the power with sinewave modulation, for the same modulation percentage in both cases.

Unsymmetrical Modulation

In an ordinary electric circuit it is possible to increase the amplitude of current flow indefinitely, up to the limit of the power-handling capability of the components, but it cannot very woll be derreased to less than zero. The same

Fig. 10-2 - Modulation by an unsymmetrical waveform. This drawing shows 100% downward modulation along with 300% upward modulation, There is no distortion, since the modulation envelope is an accurate reproduction of the waveform of the modulating voltage.
thing is true of the amplitude of an r.f. signal; it can be modulated upward to any desired extent, but it cannot be modulated dounuard more than 100 per cent.
When the modulating waveform is uns:mmetrical it is possible for the upward and downward modulation percentages to be different. A simple case is shown in Fig. 10-2. The positive peak of the modulating signal is about 3 times the amplitude of the negative peak. If, as shown in the drawing, the modulating amplitude is adjusted so that the peak downward modualtion is just 100 per cent ($Z=0$) the peak upward modulation is 300 per cent ($Y=4 X$). The carrier amplitude is represented b, x, as in Fig. 10-1. The modulation envelope reproduces the waveform of the modulating signal accurately, hence there is no distortion. In such a modulated signal the inerease in power output with modulation is considerably greater than when the modulation is symmetrical and has to be limited to 100 percent both up and down. However, the poak amplitude, Y, is four times the carrier amplitude, X, so the peak pouer is 16 times the carrier power. When the upward modulation is more than 100 per cent the peak power capacity of the modulating system obviously must be increased sufficiently to take care of the much larger peak amplitudes.

Overmodulation

If the amplitude of the modulation on the downward swing becomes too great, there will be a period of time during which the output is entirely cut off. This is shown in Fig. 10-3. The shape of the downward half of the modulating wave is no longer accurately reproduced by the modulation envelope, consequently the modulation is distorted. Operation of this type is called overmodulation. The distortion of the modulation envelope causes new frequencies to be generated (harmonics of the modulating frequency, which combine with the carrier to form new
sidebands correspondingly spaced from the carrier frequency) that widen the channel occupied by the modulated signal. These spurious frequencies are commonly called "splatter".

It is important to realize that the channel occupied by an amplitude-modulated signal is dependent on the waveshape of the modulation envelope. If this waveshape is complex and can be resolved into wide band of audio frequencies, then the channel occupied will be correspondingl.: large. The modulation-envelope waveshape shown in Fig. 10-3 will contain a large number of harmonics of the original sine-wave frequency of the modulating wave because of the sharp corners in the waveshape when it is "clipped" at the zero axis. However, if the original modulating wave had had exactly this same shape the channel occupied by the modulated signal would be exactly the same. Basically, it is not the fact that the signal cannot be modulated more than 100 per cent downward that causes splatter, but the fact that any distorted waveshape contains higher frequencies than were present in the original undistorted wave. A wave that is efficiently clipped, as is the case with the waveshape shown in Fig. 10-3, will contain a wider range of spurious frequencies than one in which there are no highly abrupt changes in amplitude.

Fig. 10-3 - An overmodulated signal. 'The modulation envelope is not an accurate reprodiction of the waveform of the modulating voltage. This or any type of distortion occurring during the modulation process generates spurious sidebands or "splatter,"

Because of this clipping action at zero amplitude, it is important that care be taken to prevent applying too large a modulating signal in the downward direction. Overmodulation results in more splatter than is caused by most other types of distortion in a 'phone trinsmitter.

GENERAL REQUIREMENTS

For proper operation of an amplitude-modulated transmitter there are a few general requirements that must be met no matter what particular method of modulation mas be used. Failure to meet them is accompanied by undesirable effects, principally distortion of the modulation envelope that increases the channel width as compared with that required by the legitimate frequencies contained in the original morlulating wave.

Frequency Stability

For satisfactory amplitude modulation, the carrier frequency must be entirely unaffected by modulation. If the application of modulation causes a change in the carrier frequency, the frequency will wobble back and forth with the modulation. This causes distortion and widens the channel taken by the signal. Thus unnecessary interference is catused to other transmissions.

In practice, this undesirable frequency modulation is prevented by applying the modulation to an r.f. amplifier stage that is isolated from the frequence-controlling oscillator by a buffer amplifier. Amplitude modulation applied directly to an oscillator always is accompanied by frequency modulation. I'nder existing F(") regulations amplitude modulation of an oscillator is permitted only on frequencies above $1+4 \mathrm{Me}$. Below that frequency the regulations require that an amplitude-nodulated transmitter be completely free from frequency modulation.

Linearity

At least up to the limit of lo()-per-eent upw:ard mondulation, the amplitude of the r.f. output should be directly proportional to the amplitude of the modulating wave. Fig. 10-4 is a graph of an ideal modulation characteristic, or curve showing the relationship between r.f. output amplitude and instantaneous modulation amplitude. The modulation swings the r.f. amplitude back and forth along the curve A, as the modulating voltage alternately swings powitive and negative. . Issuming that the negative peak of the modulating wave is just sufficient to reduce the r.f. output to zero (modulating voltage equal to -1 in the drawing), the same modulating voltage peak in the pusitive direation (+1) should cause the r.f. amplitude to reach twice

Fig. 10.4-1'ter modulation characteristic shows the relationship between the instantaneous amplitude of the r.f. output current (or voltage) and the instantaneous amplituele of the modulating voltage. The ideal characteristic is a straight line, as shown ly curve A.
its unmodulated value. The ideal is a straight line, as shown by curve A. Such a modulation characteristic is perfectly linear.

A nonlinear characteristic is shown by curve l3. The r.f. amplitude does not reach twice the unmodulated carrier amplitude when the modulating voltage rearhes its positive peak. A modulation characteristic of this type gives a modulation envelope that is "flattened" on the uppeak; in other words, the modulation envelope is not an exact reproduction of the modulating wave. It is therefore distorted and harmoniss are generated, causing the transmitted signal to oceupy a wider channel than is necessary. A nonlinear modulation characteristia can easily result when a transmitter is not properly designed or is misadjusted.

The modulation capability of the transmitter is the maximum percentage of modulation that is possible without objectionable distortion from nonlincarity. The maximun capability can never exced 100 per cent on the down-peak, lout it is possible for it to be higher on the up-peak. The modulation apability should be as close to 100 per cent as possible, so that the most effective signal can be transmitted.

Plate Power Supply

The d.c. power supply for the plate or plates of the modulated amplifier should be well filtered; if it is not, plate-supply ripple will modulate the carrier and cause annoving hum. The ripple voltage should not be more than about 1 per cent of the d.c. output voltage.

In amplitude modulation the plate current varies at an audio-frequency rate; in other words, an alternating current is superimposed on the d.c. plate current. The output filter condenser in the plate supply must have low reactance, at the lowest audio frequency in the modulation, if the transmitter is to modulate equally well at all audio frequencies. The condenser capacitance required depends on the ratio of d.e. plate current to plate voltage in the modulated amplifier. The requirements will be met satisfa storily if the catpacitance of the output condenser is at least equall to

$$
C=2 \overline{5} \frac{I}{E^{\prime}}
$$

where $C=$ Capacitance of output condenser in $\mu \mathrm{ffl}$.
$I=$ D.c. plate current of modulated amplifier in milliamperes
$E=$ Plate voltage of modulated amplifier

Example: A modulated amplifier operates at 1250 volts and 275 ma. The rapacitance of the output condenser in the plate-supply filter should be at loust

$$
C=25 \frac{I}{E}=25 \times \frac{275}{1250}=2.5 \times 0.22=5.5 \mu \mathrm{fd} .
$$

Modulation Systems

An amplitude-modulated signal can be generated by a varicty of methods, the only pres-ently-used ones being those in which a modulat-
ing voltage is applied to one or more tube choments in an r.f. amplifier. The proper object of all methods is to generate an r.f. signal having a modutation envelope which reproduces the waroform of the modulating voltage with as little distortion as possible.

The methods deseribed in this chapter are the basic ones. There are many spedializerd variations, usually involving some form of grid modulation
with the object of increasing the rather low plate efficiener that is an ioherent characteristic of grid modulation. Such systems, when they actuallv achieve substantially distortionless modulation, are rather complicated circuitwise, are difficult to adjust and are not well adapted to raphed frepuency change. Ther have so far had little or mo lasting application in amateur communieation.

Amplitude Modulation Methods

PLATE MODULATION

The most popular sustem of amplitude mondubation is phate modulation. It is the simplest to apply, gives the highest efficiency in the motulated amplifier, and is the easiest to adjust for proper operation.

Fig. 10-5 shows the most widely-used system of plate modulation, in this case with triode r.f. tubes. A balanced (push-pull (Class A, Class Als or ('lass B) modulator is transformer-coupled to the plate circuit of the modulated r.f. amplifier. The audio-frequency power gencrated by the moduhator is combined with the d.c. power in the modulated-amplifier phate eireuit by tramser through the coupling transformer, T. For 100 -per-cent modulation the audio-frequence output of the modulator and the turns ratio of the coupling transformer must be such that the voltage at the plate of the modulated amplifier varies between zero and twiee the d.e operating plate voltage, thus causing corresponding variations in the amplitude of the r.f. oatput.

Fig. 10-i - Plate modulation of a Class C : r.f. amplifier. The r.f. plate liy-pase condenser, (, in thar amplifier stage shonld have reasonably high reartance at andio freguencien. A value of the order of $0.0601 \mu \mathrm{fal}$. to $0.005 \mu \mathrm{~F}$? . is satiofactory in practically all cases. (sice chapter on modulators.)

Audio Power

As stated earlior, the average power outpot of the modulated stage must inerease during modulation. The modulator must be capable of supplying to the modulated r.f. stage sime-nawe audio power equal to 50 per cent of the d.c. plate input. For example, if the d.c. plate power input to the r.f. stage is 100 watts, the sine-wave autio power output of the modulator must be in0 watts.

Modulating Impedance; Linearity

The modulating impedance, or load resistanmer presented to the modulator by the modulated r.f. amplifier, is equal to

$$
Z_{11}=\frac{E_{10}}{I_{\mathrm{p}}} \times 1000 \mathrm{ohms}
$$

where $E_{b}=1$.e. plate voltage

$$
I_{\mathrm{p}}=\text { D.c. plate current (ma.) }
$$

L_{1}, and I_{p} are measured without molulation.
The power output of the r.f. amplifier must vary as the square of the instantameous plate voltage (the r.f. voltage must be proportional to the plate voltage) in order for the modalation to be lincar. This will be the case when the amplifior oprerates under Class C conditions. The linearity depends upon having sufficient grid exeitation and proper bias, and upon the adjustment of circuit constants to the proner values.

Adjustment of Plate-Modulated Amplifiers

The general operating conditions for ('lass (opration are described in the chapter on transmitters. The grid bias and grid current required for plate modulation usually are given in the oprating data supplied by the tube manufasturer; in general, the bias should be such as to give an operating angle of about 120 degrees at the d.e. plate voltage used, and the grid exeitation should be great emough so that the amplifire's plate efficiener will stay constant when the phate voltage is varied over the range from zero to twice the unmodulated value. For best linearits, the grid bias should be obtained partly from a fixed souree of about the cut-off value, and then supplemented by grid-leak bias to supply the remainder of the required operating bias.
The maximum permissible d.e. plate powor input for 100 -per-cent modulation is twiee the sine-wave audio-frequency power output available from the medulator. This input is obtained be varying the loading on the amplifier (kerping its tank eireuit tuned to resomanere until the
product of d.e plate voltage and plate current is the desired power. The modulating impedance under these conditions must be transformed to the proper valuc for the modulator bey using the eorrect output-transformer turns ratio. This point is considered in detail in the chapter on modulator design.

Neutralization, when triodes are used, should be as nearly perfect as possible, sime regeneration maty caluse nomlinearits. The amplifier also must be completely free from parasitice oscillattions.

Although the total power input (d.e. plus audio-frequency ace.) increases with modulation, the dec plate current of a plate-modulated amplifier should not change when the stage is modalated. This is becadue each increase in plate voltage and plate current is balanced by an equivalent decrease in voltage and current on the next halfererle of the modulating wave. D.e. instrumonts cannot follow the a.f. variations, and since the average d.e. plate current and plate voltage of a properls-operated amplifier do not change, neither do the meter readings, A change in plate current with modulation indieates nomlinearits, On the other hand, athermo-coupie r.f. :mmeter comenected in the antenna or tramsmission line will show an inerease in r.f. current with modulation, because instruments of this type respond to power rather than to current or voltage.

Screen-Grid Amplifiers

Screen-grid tubes of the pentode or beamtetrode type can be used as ('lass (' phate-modulated amplifers be applying the mordulation to both the plate and sereen grid. The usaal method of ferding the sereen grid with the necessary d.e. and modulation voltage is shown in Fig. 10-6. The dropping resistor, R, should be of the proper value to apply nomal d.e voltage to the screen under steady carrier conditions, Its value ran be calculated by taking the difference botween plate and weren voltages and dividing it by the rated serven eurrent.

Fig. 10.6 - Plate and screen modulation of a Class (: r.f. amplifier using a screen-grid tube. The plate r.f. by-pass condenser, (i, should have reasonaby high reactance at all audio frequencies; a value of 0.001 to $0.005 \mu \mathrm{~d}$. is generally satisfactory. The screen by-pass, (. 2 , should be 0.ont $\mu \mathrm{fd}$, or lens in the usual case.

When the modulated amplifier is a beam tetrode the suppressor connection shown in this diagrans may be ignored. If a base terminal is provided on the tube for the twam-forming plates, it should be connected as recommended hy the manufacturer.

The morlulating impedance is found by dividing the d.e. plate voltage by the sum of the plate and screen currents. The plate voltage multiplied by the sum of the two currents gives the power input to be used as the hasis for determining the aludio power required from the modulator.

Fig. 10 - - - Plate modulation of a bean tetrole, using an andio impedance in the sereen eircuit. 'The value of L_{1} is dincumed in the text. See lig. 10-6 for data on by-pa-s rapmators Ci and Co.

Modulation of the sereen along with the plate is necossary because the sereen voltage has a mueh greater effect on the plate current than the plate voltagr docs. Vers little modulation takes phace and the modulation pharacteristic is nonlinear if the plate alone is molulated. However, beam totrodes can be modulated satisfactorily bey applying the modulating power to the plate "irruit alone, provided the sereen is "floating" at andio frepucneies - that is, is not grounded for :t f. but is connected to its d.e. supply through an audio impedance. The circuit is shown in Fig. 10-7. The choke coil L_{1} is the audio impedance in the screen cireuit; its inductance should be large enough to have a reactance (at the lowest desired audio frequency) that is not less than the impedane of the sereern. The latter can be taken to be approximately equal to the d.e sereen voltage divided by the d.e. sereen current.

Choke-Coupled Modulator

One of the oldest tupes of modulation system is the choko-coupled Class A modulator shown in Fig. 10-8. Because of the relatively low power output and phate efficiency of a Cless A amplifier, the method is seldom used now exeept for a few eperial applications. The audio power output of the modulator is combined with the d.c. power in the phate eireuit, just as in the case of the transformer-roupled modulator. However, there is considerably less fredom in adjustment, since no transformer is available for matching impedances.

The modulating impedance of the r.f. amplifier must be adjusted to the value of load impedance required bex the particular modulator tube used, and the power input to the r.f. stage must not exced twiee the rated a.f. power output of the modulator. A complication is the fact that the phate voltage on the modulator must be higher that the plate voltage on the r.f. amplifier, for loo-per-cent modulation. This is because the a.f.

Fig. $10-8$ - (hoke-roupled (liass A modulator. ']'he cathode resistor. R_{2}, shomld have the normal value for operation of the modulator tulue as a (lasis itower amplifier. The mondulation choker, l.i, should he \boldsymbol{s} henrys or more. A value of 0.001 to $0,00.5 \mu$ fl, is satinfactory at Ci2, the r.f. amplifier plate by opass comdenser. See text for dismasion of C and K_{1}.
roltage developed by the modulator camot swing to zero without a great deal of distortion. R_{1}, provides the neressary d.e, voltage drop betwern the modulator and r.f. amplifier, but its value camont be calculated without using the published plate family of curves for the modulator tube used. The voltage drop threugh R_{1} must cequat the minimum insiantaneors plate coltage on the modulator tube under normal operating comditions, (${ }_{1}$, ath adudio-frequeney br-pase adross R_{1}, should have a capacitancersich that its rearetare at 100 eseles is not more than about one-tenth the resistane of h_{1}. Without $R_{1} f_{1}$ the pererntage of modulation is limited to 70 ta 80 per aront in the average case.

- GRID MODULATION

The principal disadvantage of plate mondulation is that a considerable amount of atudio powner is required. This recpuirement ean be avoded be applying the modulation to a gride clement in the modulated amplifior. Howerer, the convenionere and economy of the low-power modulator must be paid for, siner no modulation sestem pives something for nothing. The increased power output that aceompanies modulation is paid for, in the ease of grid modulation, bey a reduetion in the carrier power output ohtambinde from a given r.f. amplifier tube, and by more rigorous oprating requirements and more complicated adjust ment.

The term "grid modudation" as used here atpplies to all typer - control mpid, seresol, or sappreswor - since the operating principles ane exactly the same no matter which grid is actuatly.
modulated. With grid modulation the plate voltage is constant, and the increase in power output with modulation is obtained bey making both the phate rurrent and plate officieney vary with the modulating signal as shown in Fig. 10-9. For 100-per-eem modulation, both plate current and efficience must, at the peak of the modulation up-wing, be twioe their carrier values. Thus at the modulation peak the power input is doubled, and sinere the phate efficioney also is doubled at the same instant the peak output power will be four times the carier power. The effeciency obtainable at the peak deprends on how earefully the modulated amplifier is adjusted, and sometimes can be as high as 80 per cent. It is generally less when the amplifier is adjusted for good linearity, and under avequge eonditions a round figure of $2 / 3$, or tif per erent, is representative. Since the
 the afticiency for earier aonditions, without modulation, is only about 33 per eent. Thus the (arrier output is about one-fourth the power obstainable from the same tube in c.w. operation, and atout one-third the carrior output obtainable from the tube with plate morlulation.
"The modulator is required to furnish only the atudio power dissipated in the modulated prid under the operating conditions chosent. A spereh amplifier eapable of delivering 3 to 10 watte is usually sufficient.
(ionmally spaking, grid modulation dores mot give as linear a modulation characteristio as plate modulation, eroon under optimam operating conditions. When misadjusted the monlinearity maty be severe, resulting in had distortion and phatter. Howerer, with earoful adjustment it is capable of quite satistiatory results.

Fig. 10.4 - In a perfert mrid-modulated amplifier looth plate current and plate eflicieney womld wary with the in. stantancons modulating voltage as shown. When this is so the modalation eharaterintio is as givm hy curve A in Fig. II-I. and the perak butpul powar is four times the monoblalated carrior power. 'I he variations in phate
 ter on a dic. moter, 6 the Mlate met ahows no change when the signal is modulated,

Plate-Circuit Operating Conditions

The die. plate power imput to the modulated amplifior, assuming a round figure of $1 / 3$ (33 por eent) for the plate afficienes; should not exeeed $1{ }^{1} 2$ times the plate dissipation rating of the tube or tubes used in the modulated stage. It is gerncrally best to we the maximum plate roitage permitted by the mandacturer"s ratings, becatuse the optimum operating eonditions are more rasily achieved with high plate voltage and the limearity also is improsed.

$$
\begin{aligned}
& \text { Exampte: Two tubes having pate dissipation } \\
& \text { ratinge of 8.5 watts each afo (o) be used with grid } \\
& \text { modnlation. } \\
& \text { The maximm permissible powter ingut, at } 33 \% \\
& \text { aflicieney: is } \\
& P=1 . \overline{5} \times(2 \times 5.5)=1.5 \times 110=10.5 \text { watts } \\
& \text { The maximum recommamded plate voltage for } \\
& \text { these tubers is } \mathrm{t} 000 \text { whlts. I"sing this figure, the } \\
& \text { averago plate curront for the two tubes will he } \\
& I=\frac{P}{E}=\frac{16.5}{1 . \sigma(O)}=0.11 \mathrm{atM},=110 \mathrm{Ha} . \\
& \text { At } 33 / 2 \text { eflicieners, the carrier onfout to he ex- } \\
& \text { pected jo .j. watto. } \\
& \text { The phatevoltame/materourrent ratio at farice } \\
& \text { carriar mate cutrent is } \\
& \frac{1.0(0)}{230}=0.8
\end{aligned}
$$

The tank-rirevit L. I' ratio should be chosen on the basis of there the average or carrier phater corrent. If the L /f ratio is hased on the plate voltage plate ewrent ratio under carrier conditions the () mat be tow low for good roupling to the outpent rircuit.

Control-Grid Modulation

Control-grid modulation may be used with any type of ref. amplifier tube. A typical triode circuit is given in l"ig. 10-10. The same rireuit can be used with sereon-grid tubes merely bex sholying the normal value of sereen voltage biy any eonvenient means; howerer, the sereme should be beymased for audio (1 plid. of more) as werld as radio freguenecies. The andio signal is inserted. hy means of transformer T, in sertes with the grid-hias lead. In a push-pull amplifier the transformer is eomenered in the eommon bias lead.

In eontrol-grid modulation the d.e. grid hias is the same as in normal (lass-(' amplifior serviere, but the r.f. gride exedation is somewhat smaller. The audio voltage superimpesed on the d.e. bias ohanges the instantaneous grid bias at ath andio rate, thus varsing the operating conditions in the grid cirenit and controlling the oatput and erfirienery of the amplifier.

The change in instantancous hias voltage with modulation caluses the reatified gride current of the amplifier to vary, which places a variable load on the modalator. 'To re luere distention, resistor R in Fig. 10-10 is combertel in the oatpat (ircuit of the molalator as a constant load, so that the overall loa I variat ions will be minimized. This resistor shall be equal to or somewhat higher than the lowd into whirl the modalator fube is rated to work at mormal adedo outpat. It is also recenmmended that the mondatator cirauit iocorporate as much nogative foe thanck as

 pliticr. 'Phe r.f. arid by-pass condenacr, (E , whould hate

possible, as a further aid in reducing the internal resistance of the modulator and thus improving the "regulation" - that is, redueing the effect of load variations on the adudio output voltage. The tarns ratio of transformer T should be aboat 1 to 1 in most rases.

The loud on the ref. driving stage also varies with modalation. 'I'his in turn will cause the exritation voltage to vary which may rame the modulation ehamateristie to be nombinatar. F'o overeome it, the driver should be eapable of two or there times the r.f. power output actually required to drive the amplifier. The exeres power maty be dissipated in a dummy load (such ass an incandescent lamp of appropriate power rating) that then performs the same fundion in the rif. rireuit that resistor R dons in the andio cirenit.

The d.e. bias soture in this sestem should have low internal resistancer Batterios or a voltangoregulated supply are suitable. (irid-leak hias should not be used.

Adjustment

A rontrol-grid modulated amplifier shoulal be adjusted with the aid of an ascilloseope eonnerted as shown in Fig. 10-11. I tome souree for motulating the transmitter is a eomernienere, since a steady tone will give a steady pattern on the asilloserope. A steady pattem is easier to stady than one that flickers with voier modulat tion.

Ilaving determined the permissible carrior plato (errent as proviously described, apply r.f. exritation and plate voltage and, without modulation, adjuat the plate loading to give the roquired plate current (kerping the plate tank ritedit tuned to rewomane $)$. Next, apply modulation and increase the modulating voltage until the molulation characteristic shows curvature (sere later sertion in this chapter for use of the ascilloseope). If curvature orcurs well below 100-per-cent modulation, the plate efficiency is too

Fin. 10-11- Using the oseilloseope for adjustment of a krid-motulated amplifier. The connections shown are for prid-hias mondulation. With sereen or mippresor modulation the connection to the horizontat plates of the "arope should he taken from the grid being modulated; the r.f. piek-up arrangement remains unchanged.
I and C should tume to the operating frequency, and may he coupled to the transmitter tank circuit throngh at wisted pair or coas. uning single-turn links at rach end. The 0.0)- -fl . blocking condenser that rouples the audio voltage to the horizontal plater of the oweilloscope should have a voltage rating "qual to at least twier the d.c. voltage on the grid that is being modulated.
former, as shown in rig. 10-12. In an ideal beam tetrode the plate current and output should be completely cut off with zero screen voltage, but in practical tubes it is neressary to drive the sereen somewhat hegative with resperet to the "athode to get com-pletereut-off. For this reason the prak modulating voltage required for 100 -pro rent modulation is usually 10 per cent or so greater than the d.e. serern voltage. The latter, in turn, is approximately half the rated screen voltage under maximum ratings for c.w. oporation.

The atuelio power required is approximately.
high. Increase the plate loading slightly and redure the exoitation to maintain the same plate current; then apply modulation and check the charateristic again. Continue this process until the characteristie is as linear as possible from the horizontal axis to twice the earrier amplitude.

Screen Modulation

Power tubes of the beam totrode tupe have very good motulation chatacteristies when the modulating voltage is superimposed on the d.e. sereen-grid voltage. The efficiones and plate current should vary with the modulating voltage as shown in Fig. 10-9.

In many ways sereen modulation is more satisfactory than control-grid modulation, since the sustem does not require a fixed-bias supply for the control grid, and is not highly eritical as to excitation voltage. However, the operating pritiriples are identical, athd the earrier output is limited to about one-half the plate dissipation rating of the tube or tubres used in the modulated amplifier.

The mont satisfactory way to apply the modulating voltage to the sereerit is through a trans-

Fig. 10-12-Screen-grid modulation of heam tetrode. Condenser C is an r.f. by-pass condenser and should have high reactance at audio frequencies. A value of $0.012 \mu \mathrm{fd}$, is satifactory. 'Whe grid leath ran have the same value that is used for ew, operation of the tube.

Fig. 10-13 - I typiral scrven voltage-current curve of a beant tetrode adjusted for optimom conditions for sorren modubation.
one-fourth the d.e power input to the serem under cew. operation, but varices somewhat with the operating conditions. A recoiving-t ree adio power amplifier will suffice as the modulator for most transmitting tubes. Because the relationship, between sereen voltage and sereen rurvent is not lincar (a trpical rurve giving this relationship is shown in Fig. 10-13) the load on the modulator varies over the audio-frequency evele, and it is therefore highly advisathe to use negative foedtarek in the modulator circuit. If exeres audio power is avalable, it is also advisable to load the modulator with a resistance correponding to R in Fig. 10-10, the value of R being adjusted to dissipate the excess power. C'nfortunately; there is no simple way to determine the proper rosistance exerpt experimentally, be observing the effere of different values on the waveshape with the aid of an oseilloseope.

On the assumption that the modulator will be fully lowded by the sereen plus the additional load resistor R, the turns ration reguired in the
coupling transformer may be calculated as follows:

$$
N=\frac{E_{\mathrm{d}}}{2.5 \sqrt{\rho^{\prime} R_{\mathrm{L}}}}
$$

where N is the turns ratio, secondary to primars; Ed, is the rated sereen voltage for e, w, operation; P is the rated autios power output of the modulator: and R_{L} is the rated load resistane for the medulator.

The best mothod of adjustment is to use an oseilloseope (the connertions of fig. 10-11 mas bo used, exeept that the audio werep voltage is taken from the sereen instead of the eontrol grid) and adjust plate loading, grid excitation, and modulating voltage for the greatest output compatible with good linearity at 100 per erent modulation. The amplifier should be loaded heavily and the gride current should be kept at the point where a further reduction deereases the r.f. output. Conder proper operating conditions the plateeurrent dip as the amplifier plate circuit is tuned through resonanee will be little more than just diserernible.

In an altermative adjustment mothod not requiring an oseilloseope the r.f. amplifier is first tumed up for maximum output without modulation and the rated d.e. sereen bolage (from a fixed-voltage supply) for (ew. 口иeration applied. ["se heavy loading and reduere the grid excitation until the output just starts to fall off, at which point the resemanere dip in phate current should be small. Note the plate eurrent and, if possible, the ref. antenna or feder eurrent, and then reduce the d.e. sereen voltage until the plate current is one-half its previous value. The r.f. output current should also be one-half its previous vatue at this sereen woltage. The amplifier is then ready for modulation, and the molulating voltage mat be increased until the phate current just starts to shift upward, which indicates that the amplifior is moxulated 100 per ment. With woice modulation the plate eurent shoud remain stads, or show just an occasional small upward kick on intermittent peaks.

It is alesirable to operate with the grid eurent as low as possible, simer this reduces the sereen current and thus redueces the amount of power required from the modulator. With proper adjustment the linearity is good up to about 90 per cent modulation. When the sereen is driven negat tive for 100 per cent modulation there is a kink in the modulation wharacteristic at the zorovoltage point that introduces a small amount of distortion. The kink can be removed and the overall limarity improved by applying a small amount of modulating voltage to the control grid simultaneously with screon modulation, but this requires adjusiment with the oscillosecope.

'Clamp-Tube" Modulation

A mothod of sercen-grid modulation that is convenient in transmitters provided with at sereen protective tube ("clamp" tube) is shown in Fig. 10-1 1. Basiealls, the idea is that an audio-froqueney signal is applied to the grid of the clamp tube, which then becomes a modulator. The
simplicity of the eirenit is somewhat deceptive, since it is eonsiderably more difficult from a design standpoint than the transformer-coupled arrangement of Fig. 10-12.

For proper modulation the clamp tube must be operated as a triode Class-A amplifier, and it will be reoognized that the method is essentially identimal with the choke-eoupled Class-A plate modulator of Fig. 10-8 with a resistance, R_{2}, substituted for the choke. R_{2} in the usual case is the seroen dropping resistor normally used for c.w. opera-

Fig. 10.1 .1 - Screnen mombalation by a "clamp" tube. The gritl Irak is the normal value for es, we oration and Cis should the o, oht μ fil, or less, See text for discussion of C_{1}, K_{1}, R_{2} and R_{3}. R_{3} should have the proper value for Clase A operation of the modnlator tube, but cannot bre calculated unlesis triode eurves for the tube are availahle.
tion. Its value should be at least two or three times the lead resistance required by the class A modulator tube for optimum atadio-frequeney output, L'nfortunatoly, relatively little information is available on the triode operation of the tubes mosit frequently used for sereen-protective purposes.
like the choke-coupled modulator, the clamptube modulator is incapable of modulating the r.f.stage 100 per cent unless the dropping resistor, R_{1}, and audio by-pass, C_{1}, are ineorporated in the circuit. The same desigu considerations hold, with the addition of the fact that the sereen must be driven negative, mot just to zero voltage, for 100 por cent modulation. The modulator tube must thus be operated at a voltage ranging from 20 to to per eont higher than the sereen that it modulates. Proper design requires knowledge of the sereen charateristies of the r.f. amplifier and a set of pate-voltage plate-current curves on the modulator tule as a triode.

Adjustment with this sustem, one the design voltages have been determined, is carried out in the same waty as with transformer-coupled serom modulation, preferably with the oscilloseope. Without the ascilloseope, the amplifier may first be adjusted for ew, operation as deseribed carlior, but with the modulator tube removed from it.
socket. The modulator is then replaced, and the cathode rewistance, K_{3}, adjusted to reduce the amplifier plate current to one-half its c.w. value. The amplifier plate current should remain constant with modulation, or show just a small upward flicker on oceasional voice peaks.

Controlled Carrier

As explained earlier, a limit is placed on the output obtainable from a grid-modulation system bey the low ref. amplifier plate efficiency (approximately 33 per cent) under unmodulated earrier

Fig. $10-15$ - Cirenit for earrier control with sereen modulation. A small triode such as the 6J. can be used as the control amplifier and a biog is suitable as a carrieresontrol tube. T is an interstage andio transformer having a $1-t 0-1$ or larger turns ratio. R_{4} is a O.i-bucgohn wolnme control and also serves as the grid resistor for the modulator. A permanium erystal may be used as the rectilier. Other values are discussed in the text.
conditions. The phate efficience increases with modulation, since the output increases while the d.e. input romains constant, and reaches a maximum in the neighborhood of 50 per erent with 100 -per-rent sine-wave modulation. If the power input to the amplifier can be reduced during periods when there is little or no modulation, thus reducing the plate loss, advantage can be taken of the higher efficieney at full modulation to ohtain higher effective output. This can be done be varying the power input to the modulated stage, in arcordance with average variations in voice intonsity, in such a way as to maintain just sufficient carrier power to keep the modulation high, but not exceeding 100 per cent, under all conditions. Thus the carrier amplitude is controlled by the voice intensity. Properly utilized, controlled carrier permits increasing the efferetive carrier output at maximum level to a value equal to the rated plate dissipation of the tuhe, or twice the output obtainable with constant earricr.

It is desirable to control the power input just enough so that the plate loss, without modulation, is safely below the tube rating. Dexersive control is disadvantageous because the rememer's a.v.c. system must contimally follow the varia-
tions in avorage signal level. The eircuit of Fig. 10-15 permits adjustment of both the maximum and minimum powor input, and although someWhat more complicated than some cireuits that have been used is actually simpler to operate becanse it separates the functions of modulation and carrier eontrol. A portion of the audio voltage at the modulator grid is applied to a Class A "eontrol amplifier" which drives a rectificr cireuit to produce a d.e. voltage negative with resperet to ground. Ci filters out the audio variations, leaving a d.e. voltage proportional to the average voice level. 'lhis voltage is applied to the grid of a "clamj)" tube to control the d.c. sereen voltage and thus the ref. carrier level. Maximum output is obtained when the earrier-control tube grid is driven to cut-off, the voice level at which this oceurs being determined by the setting of R_{4}. Minimum input is set to the desired level (usually about equal to the phate dissipation rating of the modulated stage) by adjusting R_{2}. R_{3} may be the normal sereen-dropping resistor for the modulated beam tetrode, hat in case a separate sereen supply is used it need be just large (nough to give sufficiont voltage drop to reduce the no-modulation power input to the desired valuc.
('1 R_{1} should have a time eonstint of about 0.1 second. The time constant of ($2 R_{3}$ should be no larger. Further detaik may be found in QsT for April, 1051, patge 64. An oscillostope is recpuired for proper adjustmant.

Suppressor Modulation

Pentode-type tubes do not, in genoral, modulate well when the modulating voltage is applied to the sereen grid. However, a satisfactors modulation characteristic can be obtained by applying the modulation to the suppreseor grid. The cireuit arrangement for suppressor-grid modulation of a pentode tube is shown in Fig. 10-16.

The method of adjustment closely resembles that used with soreon-grid modulation. If an oscilloscope is not available, the amplifier is first adjusted for optimum ce.w. output with zero bias on the suppressor grid. Negative bias is then applied to the suppressor and inereased in valur until the plate current and r.f. output current drop, to half their original values. When this rondition has been obtained the amplifier is ready for modulation.

Fig. 10-10-Suppresonr-grid malulation of an r.f. amplifier using a pentode-type tule. 'The suppressorgrid r.f. by-pass rondenser, C., should he the same as the grid by quass condenser in control-grid medulation

Since the suppressor is always negatively biased, the modulator is not required to furnish any power, so a voltage amplificr can be used. The suppressor bias will vary with the type of pentode and the operating conditions, but usually will be of the order of -100 volts. The peak a.f. voltage required from the modulator is equal to the suppressor hias.

CATHODE MODULATION

Circuit

The fundamental cireuit for cathode modulation is shown in Fig, 10-17. It is a eombination of the plate and $\underline{\text { rid }}$ methods, and permits a carrier officiency midway between the two. The audio power is introduced in the cathode cireuit, and both grid hias and plate voltage are modulated.

Fïg. 10.17 - Circuit arrangement for cathode modulation of a Class C r.f. amplifier. Values of by-pass condensers in the r.f. circuits should be the same as for other modulation methods.

Because part of the modulation is by the control-grid method, the plate efficieney of the modulated amplifior must vary during modulation. The carrier efficieney therefore must be lower than the efficiency at the modulation peak. 'The reguired reduction in efficiency depends upon the proportion of grid modulation to plate modulation; the highor the percentage of plate modulation, the higher the permissible carriar efficiency, and vice versa. The audio power required from the modulator also varies with the pererntage of plate modulation, being greater as this percentage is increased.
The way in which the various quantities vary is illustrated by the curves of Fig. 10-18. In these curves the performance of the eath-ode-modulated r.f. amplifier is plotted in terms of the tube ratings for plate-modulated telephony, with the percentage of plate modulation as a base.

Fig. 10.18-Cathode-modulation performance curves, in terms of percentage of plate modulation plotted against percentage of Class C telephony tube ratings. $W_{\text {in }}-1$.e. plate inpht watts in terms of percentage of plate-modulation rating.
W。- Carrier output watts in per cent of plate-modulation rating (based on plate efficiency of 77.5%).
Wa - Audio power in per cent of d.e. watts input.
\mathbf{N}_{p} - Plate efliciency of the amplifier in percentage.
As the percentage of plate modulation is deereased, it is assumed that the grid modulation is increased to make the over-all modulation reach 100 per cent. 'The limiting condition, 100 -per-eent plate modulation and no grid modulation, is at the right (A); pure grid modulation is represented by the left-hand ordinate (B and C).

Example: Assume that the r.f. tube to be used has a $100 / 6$ pater-modulation rating of 250 watts input and will give a carrier power output of 190 watts at that infout. Cathode modulation with 40% plate modulation is to be used, From Fig. 10-18, the carrier efficieney will be 56% with 40% plate modulation, the permissible d.c. input will be 65% of the plate-modulation rating, and the r.f. output will be 48% of the plate-modulation rating. That is,

Power input $=250 \times 0.65=162.5$ watts
Power output $=190 \times 0.48=91.2$ watts
The required andio power, from the chart, is equal to 20% of the di.c. input to the modulated amplifier. Therefore

Audio power $=162.5 \times 0.2=32.5$ watts The modulator should supply a small amount of extra power to take care of losses in the grid circuit. These should not exered four or five watts.

Modulating Impedance

The modulating impedanee of a cathodemodulated amplifier is approximately equal to

$$
m \frac{E_{1}}{I_{\mathrm{b}}}
$$

where $m=$ Percentage of plate modulation (expressed as a deeimal)
$E_{\mathrm{b}}=$ D.e. plate voltage on modulated amplifier
$I_{\mathrm{b}}=$ I).c. plate current of modulated amplifier
Example: Assume that the modulated amplifier in the example above is to operate at a plate potential of 1250 volts. Then the d.c. plate current is

$$
I=\frac{P}{E}=\frac{162.5}{1250}=0.13 \mathrm{amp} .(130 \mathrm{ma} .)
$$

The modulating impedance is

$$
m \frac{E_{\mathrm{b}}}{I_{\mathrm{D}}}=0.4 \frac{1250}{0.13}=3846 \mathrm{ohms}
$$

ray spot appears on the sereen. When the unmodulated carrior is applied, a vertical line appears; the length of the line should be adjusted, by means of the pick-up eoil coupling, to a eonvenient value. When the carrier is modulated, the weolge-shaped pattern appears; the highor the modulation pereentage, the wider and more pointed the wedge beromes, At 100 -per-ent modulation it just makes a point on the axis, X, at one end, and the height, $P()_{2}$, at the other end is equal to twice the carrier height, $Y \%$. Overmodulation in the upward direction is indicated be increased height over $P^{\prime}()$, and in the downward direction by an extension along the axis Λ at the pointed end.

Checking Transmitter Performance

The trapozodal pattern is far more useful than the wave-encolope pattern for cherking the operation of a phome trammitter. The latter type of pattern is of use principally for checking modulation pereentage, and even when the spereh sutem is fed with a sine-wave tone for close examination

Fip. 10-2I - Top - a typical trapmoidal pattern ohtained with sereen modulation adjnsted for optimum conditions, The sudden change in sope near the point of the wedge oceurs when the arreen voltake basings through zero. Center - If there is no audio distortion, the unmodulated carrier will have the height and position shown by the white line superimposed on the sinewave modulation pattern. Bottom - Viven-harmonic distortion in the audio system. when the andies sixnal applied to the sperech anplitior is a ane wave is indicated by the fact that the modulation pattern doses not extend equal distances either side of the unmodulated carrier.
of the pattern it is difficult to tell with sufficiont aceuracy whether the tramsmitter is operating linearly. Also, even when distortion is evident in the wave-embelope pattern there is no clue as to whether it is occurring in the modulated amplifior or is caused by some defect in the speech equipment.

On the wher hand, the trapezoidal pattern is actualde a graph of the moctulation characteristio of the modulated amplifier. The sloping sides of the wedge show the r.f. amplitude for every walue of instantaneous modulating voltage, exactly the trpe of curve plotted in Fig. 10-4. If there sides are perfertly straight lines, as drawn in fig. 10-20 at II and I, the modulation eharacteristie is linear. If the sides show eursature, the characteristic js nonlinear to an extent that bs shown he the degree to which the sides depart from pertect straighthers. This is true regetdens of the wave form of the modulating voltage.

If the speech system can be driven by a good athdio sinc-wave signal instead of a micrephone, the traporoidal pattern also will show the presemee of even-harmonic distontion (the most common tree, expecially when the modulator is owerloaded) in the specech amplifior or modalator. If there is no distortion in the audio ststem, the trapozoid will extend horizontally ergual distances on cach side of the vertioal line representing the unmodulated earrior. If there is erom-harmone distortion the trapezoid will extem larther to one side of the unmodulated-carrier position thatn to the other. "This is shown in Fig. 10-21. The probable canse is inadequate powor output from the modulator, or incorrect load on the modulator.

An atudio oscillator hatring reasomably good sinc-wate output is highly desirable for testing both wereh equipmont and the 'phone tramsmittor as a whole. A very simple single-tome oscillator such as is shown in the chapter on metaurements is quite adequate. With surh ath oseillaten and the 'seope', the pattern is steady and can be studied closely to determine the efferes of various operating aljustments.

The patterns shown in Figs. 10-2I and the top four groups of Fig. 10-22 show both correct and incorrect transmitter adjustments. The object of modulated-amplifier adjustment is to obtain a pattern closely resembling that in lig. 10-22A, which shows excedlent limearity (sides of wedge pattern quite straight) ower the whole characteristic at 100-pereerent modulation, Since no modulated amplifier is perfert, the sides will ne wer be perfertly straight, but a close approach is possible. Diffornt mothors of modulation give different chamacteristic results. Fig. 10-22A is trpical of eorrectly-operated plate modulation. With control-grid modulation the sides usually are somewhat concave, partieularly now the point of the traperoid, while sereen modulation gives the charactoristic pattern shown in Fig. 10-21. As montioned carlier, it is neecessary to drive the sereen somewhat negative in order to reach complete plate-current cut-off and thus modulate 100 per cent downward.

Aside from overmolulation downward, Fig.

I'roperly-operated iplone transmitter mondalated 100 per cent.

IB
Overmodulation of a trans. mitter having high mombla. tion rapability. Distortion oecurs only on the down-puahs.
(
Nonlinearity in monlulated r.f. stake. frecpuenty caused by insufficient excitation of a plate-modndated amplilier or overexcitation of a grid. hias modulated amplifier. 'The amplitier modulates linearly in the downward direction lut the up-neahs are flattened.

I)

Overmodtalation and mon. limear operation (insuflicient modulation capability). 'Those patterns are similar to those rlirerlly alover. lout with the modnlation carried heromed 100 per cent in the downward alirection.

I

Overmodulation and parasitic reseillations in the monlulated amplifior. 'The trape. zuidal putter!! alan shows phame diztartien rathame by incorreet coupling between the oscilloseope and atatio system.

F

Left - l'hase distortion caused by incorrect conpling hetween andio sysitem and oscilloscope. Right - Multiple pattern caused by incorrect setting of oscilloacone time-base control. In both cases the wave is modulated low per cent.

[^7](Photographs reproduced through courtesy of the Allen B. DnMont Laboratories, Ine., D'assaic, N. J.)

10-22l3, which is easily cured by kerping the speceh amplifier gain or speech intensity below the point that causes it, the most common type of improper operation is shown by the pattern of Fig. $10-22 \mathrm{C}$. The flattening at the large end of the trapezoid results from the inability of the modulated amplifier to doliver suffiesent power output on the modulation up-peak. With plate modulation the most likely cause is insufficiont gride excitation or incorrect grid bias or both. With grid modulation this flattening is the result of attompting to operate the amplifier at too-high rarrior efficience. The remedy is to increase the loading on the output circuit and reduce the grid excitation, or both in combination, until the pattern sides are straight.

In this connection, it should be noted that while the trapezoidal pattern of Fig. 10-222(shows nonlinearity in the modulated amplifier, the corresponding wave-envelope pattern of the same figure could result either from this cause or from modulator overloading. With the trapezoidal pattern, modulator overloading will be evident he the fare that the position of the vertical line representing the unmodulated carrior will not be at the center of the pattern (when the modulating voltage is cut off) but modulator overloading will not affect the shape of the pattern. This assumes that the audio signal is a sine wave,

Curvature near the point of the traperond rausing it to approach the horizontal axis more showly than would oceur with straight sides, indicates that the output power does not decrease rapidty enough in this region; it may le caused ber r.f. loakage from the exciter through the final stage. This can be checked by removing the voltage from the modulated stage, when the carrior should disappear, leaving only the beam spot remaining on the sereen (Fig. 10-20F). If a small vertioal line rematus, the amplifier should be airefully neutralized; if this does not eliminate the line, it is ant indication that the serope is getting r.f. from lower-power stages, cither hy (roupling through the final tank or via the piek-up) boop.

Faulty Patterns

Figs. 10-20, 10-2 , and 10-22A through 1) show What is nomally to be expereted in the way of pattern shapes when the oseilloscope is used to cherek modulation. If the actual patterns differ considerably from those shown, it may be that the pattern is faulty rather than the transmitter.
It is important that only r.f. from the morrlated stage only be coupled to the oseilloserper, and then only to the vertical plates. The effee of stray r.f. from other stages in the transmitter has been mentioned in the preceding section. If r.f. is present also on the horizontal plates, the pattern will lean to one side instead of being upright. If the oseilloseope cannot be moved to a position where the unwanted piek-up disappears, a small her-pass condenser ($10 \mu \mu \mathrm{til}$.) should tre eomoerted acruse the horizontal plates as elose to the cathombray tube as possible An r.f.
rhoke (2.5 mhe or smaller) may also be connected in series with the ungrounded horizontal plate.
"Folded" trapezoidal patterns, and pattorns in which the sides of the traperoid are efliptical instrad of straight, lig. 10-22 F (loft), oceur when the audio sweep voltage is taken from some point in the audio system other than that where the a.f. power is applied to the modulated stage. such patterns are caused by a phase difference betwern the swerep voltage and the modulating voltage. 'The connections should always be as shown in Fig. 10-11 and 10-1913.

MODULATION CHECKING WITH THE PLATE METER

The phate milliammeter of the morlulated amplifier provides a simple and fairly reliable means for checking the performance of a 'phone transmitter, although it does not give nearly as definite information as the oscilloseope does. If the modulated amplifior is perfectly linear, its plate current will not change when modulation is applied if

1) The upward modulation pereentage does not exced the modulation rapability of the amplifier,
2) The downward modulation does not exceed 100 mer cent, and
3) There is mo change in the d.e. operating voltages on the transmitter when monlulation is appliod.

This is true of any of the mothods of modulafien disenssed in this chapter, with the single exerption of the controlled-arrier system. The plate meter cannot give a reliable chock on the performaner of the latter system hereause the phate current increases with the intensity of motulation. With this sustem the phatererurrent variations should be corredated with the tramsmitter performance as ohserved on an oscillosereme before the plate moter is used for chaceking modulation.

Plate Modulation

With plate modulation, a downward shift in plate current may indicate one or more of the following:

1) Insufficient excitation to the modulated r.f. :mplifior.
2) Insufficient grid bias on the modulated stage.
3) The r.f. amplifier is not loaded properly to present the reguired value of modulating impedane to the modulator.
4) Insufficient output rapacitance in the filter of the modulated-amplifier plate supple.
5) D.e. input to the r.f. amplifier, under earrior conditions, is in excess of the manufacturer's ratings for plate modulation. Alternatively, the filament emission of the amplifier tubes may be low.
(i) In plate-and-screen modulation of tetrodes or pentodes, the sereen is not being sufficimetly modulated along with the plate. In systems in which the die. serem voltage is
obtained through a dropping resistor, a downarard dip in plate eurrent mas orear if the sereen by-pass condenser caparitance is large enough to be-pass audio frequeneies.
6) Poor voltage regulation of the mordalatedamplifior phate supply. This may be caused be voltage drop in the supply itself, when the modulated amplifier and a Class-13 amplifier are operated from the same supply, or maty he catused hy voltage drop in the primary supply from the powe line when the modulator load is thrown on. It is readily: chereked be meesuring the voltage with and withont modulation. Poor line regulation will be shown bỵ a drop in filament voltage with modulation.
Any of the following mate canse an mpwat shift in phate eurrent:
7) Orermodulation (exerswive atudio power, athdio gain toc great).
8) Incomplete neutadization of the modulated amplifier.
9) Patasitic: oscillation in the modulated amplifier.

Grid Modulation

With :my type of grid mudulation, any of the following mas catuse adownatad shift in modu-hated-atuplifier plate current:

1) Tron murh r.f. excitation.
2) Insufficient grid bias. particularly with control-grid modulation. (irid bias is usuallynot ritical with sereen and suppreseor modulation, the value of grid leak recommonded for ew: operation bering satisfactory.
3) With rontrol-grid modulation, excersive resistance in the bias supply:
4) Insufficient output capacitance in patesupply filter.
5) Plate effecmer too high under earrier eonditions: amplifier is not londed heravily ronough.
Bratuse grid modulation is not perfectly linear (alwass less wo than phate modulation) a propertyopreating amplifier will show a small upward phate-current shift with modulation, 10 per eent on less with sinc-wave modulation and amounting to an werasional upward flicker with roice. An upward plate current shift in exeress of this may be calused by
6) Overmodulation (exersive modulating voltag($)$.
7) Regeneration (ineomplete neutralization).
8) With control-grid or suppreseor morlulation, bias too great.
9) With sereen modulation, d.e sereen wolage too low.
In grid-molulation systems the modulator is not necessarily operating lincarly if the plate current stays constant with or without modulation. It is readily possible to arrive at a set of operating conditions in which flattening of the up-peake is just balanoed by overmodulation downard, resulting in practically the same plate current as when the transmiter is ummolulated.

The ascillosecope provides the only certatin check on grid modulation. While the same terpe of improper operation is posible with plate modulation, it oceurs only rarely.

- COMMON TROUBLES IN THE 'PHONE TRANSMITTER

Noise and Hum on Carrier

Noise and hum may be deterted by listening to the signal on a receiver, provided the reeriver is far colough away from the transmiter to avoid overtoading. The hum levol should be low compared with the voiceat loon-per-eent modulation. Hum may come ather from the sueech amplifier and modulator or from the r.f. section of the transmitter. Ifum from the ref. section can be detected by eompletely shatting off the modubator: if hum remains when this is done, the power-supply filters for one or more of the r.f. stages have insufficient smoothing. With a humfree carrier, hum introduced by the modulator can be ehecked be turning on the modulator but leaving the sperech amplifior off: power-supply filtering is the likely source of such hum. If camerer and modulator are both clean, connect the spered amplifier and observe the inerease in hum level. If the hum disappeares with the gain control at minimum, the hum is being introduced in the stage or stages preeceding the gatin control. The microphone also mas pick up hum, a condition that can be chereked by removing the microphome from the circuit but leaving the first spereflamplifier grid eircuit otherwise unchanged. A gomed ground (to a cold water pipe, for example) on the microphone and spereh system usually is essential to hum-free operation.

Spurious Sidebands

A superheterompe roweiver having a erystal filter is needed for checking spurious sidebands outside the nomat eommunieation chamel. The r.f. input to the receiver must be kept low anough, be removing the antema or be adequate separation from the transmitter, to awoid owromading and conseguent spurious reepiver responses. An "S"-meter reading of about half seale is satisfactory. With the crystal filter in its sharpest pesition tune through the regien outside the normal channel limits (3 to + kiloeveles each side of the carrier) whild another person talks into the midrophone. Spurious sidehands will be ohserved as intermittent "chieks" or crackles well away from the earrier freguency. Nidebands more than 3 to 4 kiloweles from the carrier should be of nogligible strength, compared with the carrier, in a properly-modulated phone transmitter, The caluses are overmodulation or nonlinear operation.

With sinc-wave modulation the relative intensity of sidebands can be observed if a tone of 1000 eycles or so is used, since the crystal filter readily. ("ath separate frequencies of this order. The "s" meter will show how the spurious side frequencies (those spaced more than the modulating frequency from the earrier) eompare with the carrier itself. Without an "s" meter, the a.v.e.
should be turned off and the b.f.o. turned on; then the r.f. gain should be set to give a moderately strong beat note with the earrier. The intensity of side frepuencies can be estimated from the relative strength of the beats as the receiver is tuned through the spectrum adjacent to the carrier.

R.F. in Speech Amplifier

A small tmount of r.f. current in the speech amplifier - partieularty in the first stage, which is most susceptible to such r.f. piek-up - will cause overloading and distortion in the low-level stages. Frequently also there is a regenerative effect which causes an atudio-frequencer oscillation or "howl" to be set up in the audio system. In such cases the gain control camot be advanced very far before the how builds up, even though the amplifier may be perfectly stable when the r.f. section of the tranmitter is not turned on.

Complete shiedding of the micerophone, microphone cord, and speech amplifior is neeessary to prevent r.f. pick-up, and a ground conncetion separate from that to which the transmitter is eomected is advisable.

MODULATION MONITORING

It is always desirable to modulate as fully as possible, but 100 -per-cent modulation should not be exereded - partieularly in the downward dirertion-because harmonic distortion will be introduced and the chamed width increased. This causes unnecessary interference to other stations. The oscilloseope is the best instrument for continuously checking the modulation. However, simpler indicators maty he used for the purpose, once calibrated.

A eonvenient indicator, when a ('lass I modulator is used, is the plate milliammeter in the (lass B stage, sinee plate current of the modulator fluetuates with the voice intensity: lising the oscilloscope, determine the gatin-control setting and voice intensity that give 100 -per-cent modulation on voice peaks, and simultaneously olserve the maximum Class 13 phate-milliammeter reading on the peaks. When this maximum reading is obtained, it will suffice to adjust the gain so that it is not excereded.

A high resistance (1000 -ohms-per-volt or more) rectifier-type voltmeter (eopper-oxide or germanium type) also (an be used for modulation monitoring. It should be connerted across the output cireuit of an audio driver stage where the power level is a few watts, and similarly calibrated against the oscilloseope to determine the reading that represents 100 -per-cent modulation.

The plate milliammeter of the modulated r.f. stage also is of value as an indicator of overmodulation. As explained earlier, the d.c. plate current stays constant if the amplifier is linear. When the amplifier is overmodulated, especially in the downward direction, the operation is no longer linear and the average plate current will
change. A flicker of the pointer maty therefore be taken as an indication of overmodulation or monlinearity. However, sinme it is possible that under some operating conditions the plate current will remain constant even though the amplifior is considerably overmodulated, an indicator of this tope is not wholly reliable unless it has been chereked against an oscilloseope.

Overmodulation Indicators

Overmodulation on negative peaks is usually the worst type, as explained earlier in this chapter. The milliammeter in the negative-peak indicator of Fig. 10-23 will show a reading on each peak that carries the instantaneobs voltage on a plate-modulated amplifier "bedow zero" - that is, nogative. 'the rectifior, l^{\prime}, camot comduct so long as the negative half-ecrele of audio output voltage is less than the d.e. voltage applied to the r.l. tube.

The inverse-peak-voltage rating of the rectifier tube must be at least twice the d.e. plate voltage of the modulated amplifier. The filament transformer likenvise mast have insalation rated to withstand twier the d.e. plate voltatge. l'ither mereury-vapor or high-vacuum rectifiers can be used. The 1 b-volt breakdown voltage of the former will introduer a slight error, since the plate voltage must go at least lib volts negative before the rectifier will ionize. but the error is inconsequential at plate voltages above a fow hundred volts.

The effectiveness of the monitor is improved if it indicate's at somewhat less than 100-pereent modulation, as it will then warn of the damgor of overmodulation before it actually oceurs. It can be adjusted to indicate at any desired modulation pereentage be making the meter return to a point on the powresupply bleeder as shown in the alternative diagram. The be-pass condenser, (", iusures that the full audio voltage appears arross the indicator circuit.

Fig. 10.23 - Vegative-peak overmodudation indirator. The milliammeter M may be any low range intrament (up to $0-50$ ma, or wo). The inverserpeak woltage rating of the rectifier, V, must be at least twice the d.e. voltage applied to the plate of the r.f. amplitior. The alternative meter-return cireuit can he used to indicate modulation in excess of any desired value below 100 per cent. The reartance of the by-pass condenser, C, at 100 cyides should be small eompared with the resistance across which it is connected. An $8-\mu \mathrm{fd}$, electrolytic condenser will be satisfactory if the resistance it shunts is 1000 ohms or more.

CHAPTER 11

Frequency and Phase Modulation

Although the most common type of modulation is that in which the amplitude of the carrier is varied, it is also possible to conver intelligence by varying the frequency or phase of the carrier.

The primary advantage of freguencemodulation (FM) or phase molulation (PMI) over amplitude modulation ($. \ . \mathrm{I}$) comes from the fart that moise or "statie," whether natural or sot up big cheotrical mathimes, is fumdamentally an amplitude ceffect. . In . . . I detertor responds 1o noise just as readily as to the dosired montulation on a signal. Llowerer, if the reodiving system responds primeipally to frepuence or phase changes and is insensitive to amplitude fartations, it will givo normal rereption of all FM or PM signal but moise will be greaty reduced.

The improvement that can be realized by using FM or l'M instead of AM depends on the strength of the reeoived signal, the ehatanter of the moise, and the way the noise is distributed wor the receriver pasband. In gemeral, the wider the channel used the better the noiser suppression.

On the lower amatere frequencies lix and lix are often used berause the yetusa less interference than AMI in unshielded broadeast recervers in the vicinity.

Frequency Modulation

lig. 11-1 is a representation of frequenc! modulation. When a modulating signal is applied, the rarrier frequeney is inereased during one half-rerle of the modulating signal and decreased during the half-reve of opposite polarits. This is indieated in the drawing be the fact that the ref. creles oceupe less time (higher frequener) when the modulating signal is positive, and more time (lower frequency) when the modulating simal is nogative. The whane in the carrore frequency (frequency deviation) is proportional to the instantaneous amplitude of the modulating signal, so the deviation is smatl when the instantancous amplitude of the modulating signal is small, and is greatest when the modulating signal reaches its pak, withor positive or negative. That is, the frequence deviation follows the instantaneous changes in the amplitude of the modulating signal.

As shown be the drawing, the amplitude of the signal does not change during modulation.

Phase and Frequency

To understand the difference between FM and I'M it is necessary to appreciate that the frequence of an alternating current is determined by the rate at which its phase changes. A eurrent in which the phase changes rapidly has a higher freguence than one in which the phase changes sowly. Fon example, if the whase moves through 360 dearees in one second the frequener is one cyrle per secomd, but if the phase moves through 1080 degrees in one second (3×360 degrese there are three (omplete cerces in one second.

If the phasse of the current in a circuit is changed - this might be done by adjusting the toming of an amplifier tank circuit, for example - there is an instantaneous frequeney change during the time that the phase is being shifted. The amount of freguency ehange, or deviation, deponds on how rapidly the phase shift is acoomplished. It is also dependent upon the total amount of the phase shift. In a properly-operating PM sistem the amount of phase shift is proportional to the instantaneous amplitude of the modulating signal. The rapidity of the phase shift is diecetly proportional to the frequemes of the modulating signal. Consequently, the frequener deviation in PM is proportional to both the amplitude and frequency of the modulating signal. The latter
(A)

(B)

(C)

Fip. 11.1 - Graphical representation of frequency modalation. In the unmodulated carrier at A, each r,f, cycle rocupies the same amount of time. When the modulating sisnal, K, is applied, the radio frequency is increased and decreased according to the amplitude and polarity of the modulating signal.
represents the outstanding difference between $F M$ and PM, since in FM the frequency deviation is proportional only to the amplitude of the modulating signal.

Modulation Depth

In FM or PM there is no condition that corresponds exatety to overmodulation in AM. "Percentage of modulation" has to be defined a little differenty for these systems. I'ractically, "100-per-cent modulation" is reached when the transmitted signal oreupies a chamol just equal to the bandwidth for which the receiver is designed. If the chammel ocrupied is wider than the receiver can accept, the receiver distorts the signal and the end effect is much the same as overmodulation in AM. However, on another receiver designed for a different bandwidth the same signal might be equivalent to only 2-per-cent modulation.

In amateur work mo serifications have been set up for chamel width except in the ease of "narrow-band" FM or PM (frequently abbreviated NFMI, where the chammel width is defined as being the same as that of a properlymodulated AM signal. That is, the ehammel width for N FM does not exceed twiee the highest andio frequency in the modulating signal. NFM transmissions based on an upper audio limit of 3000 cyeles therefore should oceupy a chamel no wider than 6 ke .

$F M$ and $P M$ Sidebands

It might be surmised that the channel orcupied by an PM or PM signal is no greater than the frequens $\begin{gathered}\text { deviation on both sides }\end{gathered}$ of the carrier. Similar resosoning applied to amplitude modulation would bad to the conclusion that an A.M signal takes up no more space than the carrier atone, since only the amplitule of the carrior varios. However, the fact is that both FM and PMI set up sidebands, just as AM does. In the rase of FM and PM, single-tone modulation sets up a whold series of pairs of side frequencies spated at intervals equal to the modulating frequence, whereas in AM there is only one pair of side frequencies.

The number of "extra" sidebands that orcur in PM and PM depends on the relationship betwen the modulating frequency and the carrier frequeney deviation. The ratio between the frequency deviation, in ereles per second, and the modulating frequency, also in cyrles per second, is called the modulation index. That is,
Modulation index $=\frac{\text { C'arrier frequency dmiation }}{\text { Modulating frequency }}$
Example: The naximun frequency deviation in an FAI transmitter is 3000 eycles either side of the earrier frequency. The modulation index when the modulating frequency is 1000 cycles is

$$
\text { Modulation index }=\frac{3000}{1000}=3
$$

> At the same deviation wish 3000 -rescle nombulation the index wouthl the 1 ; at 100 cycles it would be 30 , and so on.

The modulation index is also equal to the phase shift in radians. In P.M the index is constant regardless of the modulating frequeney; in liM it varies with the modulating frequeney, as shown in the previous example. An FM system is identified by its limiting modulation index - that is, the ratio of the maximm, carrier-freduence deviation to the highest modulating frequency used - which is called the deviation ratio.

Fig. 11-2 shows how the amplitudes of the carrier and the various sidebands vary with the modulation index. This is for single-tone modulation; the first sideband (artually a pair, one above and one below the rarrier) is dispaced from the carrier by an amount equal to the modulating frequency, the second is twice the moduating frequency away from the carrier, and so on. For example. if the modulating frequeney is 2000 cueler and the carrier frequeney is $29,500 \mathrm{ke}$., the first sideband pair is at $29,498 \mathrm{ke}$ and $29,502 \mathrm{ke}$, the second pair is at $29,496 \mathrm{ke}$. and $29,50 \mathrm{k}$ ke, the third at $29,494 \mathrm{kc}$ and $29,506 \mathrm{ke}$., etc. The amplitudes of these sidehands depend on the modulation index, not on the frequency deviation. In AM, regardless of the percentage of modulation (s) long as it does not exreed 100 per (ent) the sidebands would appear on!! at 29,498 and $29,502 \mathrm{ke}$. under the same conditions.

Note that, as shown by Fig. 11-2, the earrier strength varies with the modulation index. (In amplitude modulation the carrier strength is constant; only the sidehand amplitude

Fik. 11.2 - Ilow the ampliturde of the paire of sidelands varies with the madulation indev in an FV or P'l zignal. If the eurse wree evembed for greater values of modalation index it would he aren that the earriar amplitude ques through zero at several prints. The same atatement also applies to the sidebathe.
varies.) It a modulation index of approximately 2.4 the carrier disappears entirely and then becomes "negative" at a higher index. This simply means that its phase is reversed as compared to the phase without modulation. In FM and PM the energy that goes into the sidebands is taken from the carrier, the totul power remaining the same regardless of the modulation index. In . IM the sideband power is supplied by the modulator in the case of
plate modulation, and by varying the power input and efficieney in the case of grid-bias modulation.

The curves of Fig. 11-2 can be carried out to considerably higher modulation indexes, in which ease it will be discovered that more and more additional sidehands are set up and that the earrier goes through several "zeros" and reversals in phase.

Frequency Multiplication

In frequeney or phase modulation there is no change in the amplitude of the signal with modulation, consequently an FM or PM signal can be amplified by an ordinary Class C amplifier without distortion. The modulation can take place in a very low-level stage and the signal can then te amplified by either frequency multipliers or straight amplifiers. The audio power required for modulating an FMI or PMI transmitter is negligible.

If the modulated signal is passed through one or more frequence multiplicrs, the modulation index is multiplied by the same factor that the carrier frequency is multiplied. For example, suppose that modulation is applied on 3.5 Me. and the final output is on 28 Me. The total frequency multipliration is 8 times, so if the frequeney deviation is 500 escles at 3.5 Ma., it will be 4000 eveles at 28 Me. Frequene.: multiplication offers a means for obtaining pratically any desired amount of frequency deviation, whether or not the modulator itself is capable of giving that much deviation without distortion.

Where FM or PM is used in erowded 'phone bands (particularly below 29 Mc .) it is of utmost importance that the transmissions should oceuper a channel no wider than would be orcupiod by an AM signal. It is evident from Fig. 11-2 that this requirement ran be met only by using a relatively small modulation index. It must be realized that the higherorder sidebands always are present, even at very small indexes. If the modulation index (with single-tone modulation) does not exceed about 0.6 the most important extra sideband, the second, will be at least 20 db . below the unmodulated carrier level, and this should represent an effective chanmel width about equivalent to that of an . . M signal. In the ease of specch, a somewhat higher modulation index can be used. This is beause the energy distribution in a complex wave is such that the modulation index for any one frequency component is reduced, as compared to the index with asine wave having the same peak amplitude as the voice wave.

The ehief advantage of marrow-band FM or PM for frequencies below 30 Me . is that it eliminates or reduces certain types of interference to broadeast reception. Also, the modulating equipment is relatively simple and inexpensive. However, assuming the samo momodulated carrier power in all cases, narrow-band liM or PM is not as effertive as AM. As shown
by Fig. 11-2, at an index of 0.6 the amplitude of the first sideband is about 25 per cent of the unmodulated-carrier amplitude; this compares with a sideband amplitude of 50 per cent in the case of a 100 -per-cent modulated AM transmitter. In other words, so far as effectiveness is concernod, a narrow-band FM or PM transmitter is about equivalent to a 100-per-cent modulated AM transmitter operating at one-fourth the carrier power.

Comparison of $F M$ and $P M$

The methods used by amateurs for the reception of FM or PM signals (see rereiving ehapter) are for the most part better adapted to frequeney modulation than to phase modulation. On a recciver properly adjusted for FM reception the outstanding difference between the two systems is that FM someds matural, while a PM signallacks"lows." This is because, for a given receiver bandwidth, the audio output from a receiver set for laI reception is proportional to the frequency deviation. In F. I transmission the deviation is the same for all audio frequencies of the same amplitude, but in PM the deviation is proportional to the audio frequency. Hence if a 3000 -e vele modulating signal of given amplitude results in a eertain frequency deviation, a 100 -rale modulating signal of the same amplitude will give only one-thirtieth as much deviation. The erestal-filter rereiving mothod desaribed in the recolving chapter overcomes this, but is not used by many amateurs because the adjustment is somewhat critieal.

Frequence modulation cannot be appliod to an amplifier stage, but phase modulation ram. $P \backslash I$ is therefore readily adaptable to transmitters cmploving oseillators of high stability such as the crystal-oontrolted type. The amount of phase shift that can be obtained with good linearity is limited to about, onehalf radian: in other words, the maximum practicable motulation index is 0.5 at the radio frequency at which the modulation takes place. Berause the phase shift is proportional to the morlulating frequency, this index can be used only at the highest frequency present in the modulating signal, assuming that all frequemeies will at one time or another have equal amplitudes. Taking 3000 reveles as a suitable upper limit for voice work, and setting the modulation index at 0.5 for 3000 eveles, the freguence response of the speechamplifier system above 3000 eroles must be sharply attenuated, to prevent sideband splatter. Also, if the "timny" quality of PM as received on an FM receiver is to be avoided, the PM must be changed to FM, in which the modulation index decreases in inverse proportion to the modulating frequencr. This requires shaping the speech-amplifier fre-quenc'r-response curve in such a way that the output voltage is inversely proportional to frequener, at least over the voice range. When this is done the maximum modulation index
can only be used at the lowest audio frequency, approximately 100 cycles in voice transmission, and must decrease in proportion to the incrase in frequenes. The result is that the maximum linear frequency deviation is only about 50 cycles, when PM is changed to FM. Tou increase the deviation to 3000 cycles requires a frequency multiplication of $3000 / 50$, or 60 times.

In contrast, it is relatively easy to secure a faidy-large frequency deviation when a selfcontrolled oscillator is freguency-modulated directly. (True frequency modulation of a erystal-controlled osidilator results in only
very small deviations and so requires a great deal of frequency multiplication.) The chief problem is to maintain a satisfactory degree of carrier stability, since the greater the inherent stability of the oscillator the more difficult it is to secure a wide frequency swing with linearity. However, it is possible, with a eompromise design, to secure a frequency deviation of 3000 erales at all amateur freguencies on which fill is permitted. It is very eaty to do so at li Mc. and higher, especially when the osillator frequency is such that a frequency multiplication of 4 or more is possible.

Methods of Frequency and Phase Modulation

- FREQUENCY MODULATION

The simplest and most satisfactory device for amateur FM is the reactance modulator. This is a vacuum tube connected to the r.f. tank cireuit of an oscillator in such a way as to act as a variable inductance or capacitance. Fig. 11-3 is a representative circuit. The con-trol-grid circuit of the 61.7 tube is eomnected across the small eapacitance, (1 , which is in series with the resistor, R_{1}, across the oseillator tank circuit. Any type of oscillator cilcuit may be used. The resistance of R_{1} is made large compared to the reactance of C_{1}, so the r.f. current through $R_{1} C_{1}$ will be practically in phase with the r'f. voltage appearing at the terminals of the tank circuit. However, the voltage across C_{1} will lag the current by 90 degrees. The r.f. current in the plate circuit of the 6 L 7 will be in phase with the grid voltage, and consequently is 90 degrees behind the eurrent through C_{1}, or 90 degrees behind the r.f. tank voltage. This lagging current is drawn through the oscillator tank, giving the same effect as though an inductance were conmected across the tank. The frequency increases in proportion to the amplitude of the lagging plate current of the modulator. The value of plate current is determined by the voltage on the No. 3 grid of the $6 \mathrm{~L}, 7$; hence the oscillator frequency will vary when an audio signal voltage is applied to the No. 3 grid.

If, on the other hand, C_{1} and R_{1} are interchanged and the reactance of C_{1} is made large compared to the resistance of R_{1}, the r.f. current in the 61.7 plate circuit will lead the oscillator-tank r.f. voltage, making the reactance caparitive rather than inductive.

A circuit using a receiving-type r.f. pentode of the high-transeonductance type, such as the 6.sci7, is shown in Fig. 11-4. In this case, both r.f. and audio are applied to the control grid. The audio voltage, introduced through a radiofrequency chokr, $R F^{\prime} C^{\prime}$, varies the tramscomductance of the tube and thereby varies the r.f. plate current. The capaci-

Fig. 11.3 - Reactance-molulator sirenit asing a 61.7 tube.

(${ }_{3}$ - 8 . $\mu \mathrm{fal}$, electrolytia (alf. by-pa-~) in parallel with (0.01-ufd. paper (r.f. liv.pai*-)
$\mathrm{C}_{4}-\mathrm{Il}-\mu \mathrm{fl}$ e elecetrolytio in parallel with $11.01-\mu \mathrm{fl}$. paper.
I_{1} - IR.f. tank imbuctance $\quad \mathrm{K}_{2}, \mathrm{R}_{3}-0.15 \mathrm{megohm}$.
$\mathrm{R}_{1}-1: .1000$ ohm ${ }^{2}$.
$\mathrm{R}_{3}-33,(001$ ohm - .
$\mathrm{R}_{2}, \mathrm{~K}_{:}-0.17 \mathrm{~m}$
$\mathrm{R}_{\mathrm{t}}-330$ ohm:.
$\mathrm{R}_{4}-330$ ohms.
$\mathrm{RH} \mathrm{C},-.5 \mathrm{mh}$.

A reactance modulator can be connected to a crystal oscillator as well as to the selfcontrolled type. However, the resulting signal is more phase-modulated than it is frequencymodulated, for the reason that the frequeney deviation that can be secured by varying the tuning of a crystal oscillator is quite small.

Fig. 11-4 - Reactance modulator using a high-transconductance pentode ($6 \mathrm{SG} 7,6 \mathrm{AG}$, ete.).
C_{1} - J.f. tank capacitance (see text).
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.001-\mu \mathrm{fu}$. mica.
$\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{8}-0.004 \mathrm{~T}_{\mathrm{i}}-\mu \mathrm{ff}$. inica.
(. 7 - $10-\mu \mathrm{fl}$. electrolytic.

Cis - 'l'ube input capacitance (see text).
$\mathrm{R}_{1}-47,000$ ohns.
$\mathbf{K}_{2}-0.47$ megohm.
K_{3} - Screen dropping resistor: select to give proper sereen voltage on type of modulator tube used. R_{4} - Cathode bias resistor; select as in case of R_{3}.
l.1- J.f. tank inductance.

RFC - 2.5-mh. r.f. ehoke.

Design Considerations

The sensitivity of the modulator (frequency change per unit change in grid voltage) depends on the transconductance of the modulator tuhe. It increases when C_{1} in Fig. 11-3 (or C_{8} in Fig. 11-4) is made smaller, for a fixed value of R_{1}, or when R_{1} is made smatler in comparison with C_{1}. It also increases with an increase in L / C ratio in the oscillator tank circuit. Since the carrier stability of the oscillator depends on the L / C ratio, it is desirable to use the highest tank capacitance that will permit the desired deviation to be secured while keeping within the limits of linear operation. When the circuit of Fig. 11-3 is used in connection with a $7-\mathrm{Mc}$. oscillator, a linear deviation of 1500 cyc cles above and below the carrier frequency can be secured when the oscillator tank rapacitance is approximately $200 \mu \mu \mathrm{fl}$. A peak a.f. injut of two volts is required for full deviation.

A change in any of the voltages on the modulator tube will cause a change in r.f. plate current, and consequently a frequency change. Therefore it is advisable to use a regulated plate power supply for both modulator and oscillator. At the low voltages used (250 volts) the required stabilization can be secured by means of gaseous regulator tubes.

Speech Amplification

The speech amplifier preceding the modulator follows ordinary design, except that no power is required from it and the a.f. voltage
taken by the modulator grid usually is small not more than 10 or 15 volts, even with large modulator tubes. Because of these modest requirements, only a few speech stages are needed; a two-stage amplifier consisting of a pentode followed by a triode, both resistance-coupled, will more than suffice for crystal microphones.

PHASE MODULATION

The same type of reactance-tube circuit that is used to vary the tuning of the oscillator tank in FM can be used to vary the tuning of an amplifier tank and thus vary the phase of the tank current for l'M. Hence the modulator circuits of Figs. 11-3 and 11-4 can be used for PM if the reactance tube works on an amplifier tank instead of directly on a self-controlled oscillator.

The phase shift that occurs when a circuit is detuned from resonance depends on the amount of detuning and the Q of the circuit. The higher the Q, the smaller the amount of detuning needed to secure a given number of degrees of phase shift. If the Q is at least 10 , the relationship between phase shift and detuning (in kilocycles either side of the resonant frequency) will be substantially linear over a range of about 25 degrees. From the standpoint of modulator sensitivity, the Q of the tuned circuit on which the modulator operates should be as high as possible. On the other hand, the effective Q of the circuit will not be very high if the amplifier is delivering power to a load since the load resistance reduces the Q. There must therefore be a compromise between modulator sensitivity and r.f. power output from the modulated amplifier. An optimum figure for Q appears to be about 20 ; this allows reasonable loading of the modulated amplifier and the necessary tuning variation can be secured from a reactance modulator without difficulty. It is advisable to modulate at a very low power level - preferably in a transmitter stage where receiving-type tubes are used.

Reactance modulation of an amplifier stage usually also results in simultaneous amplitude modulation. This must be eliminated by feeding the modulated signal through an amplitude limiter or one or more "saturating" stages that is, amplifiers that are operated Class C and driven hard enough so that variations in the amplitude of the grid excitation produce no appreciable variations in the final output amplitude.

For the same type of reactance modulator, the speech-amplifier gain required is the same for PM as for FM. However, as pointed out earlier, the fact that the actual frequency deviation increases with the modulating audio frequency in PM makes it necessary to cut off the frequencies above about 3000 cycles before modulation takes place. If this is not done, unnecessary sidebands will he generated at frequencies considerably away from the carrier.

Reactance-Modulator Unit for Narrow-Band FM

The FM speech-amplifier and modulator unit shown in Figs. 11-5 and 11-6 uses a pentode reactance modulator in a circuit which is basically that of lig. 11-4. It differs only in the delail that the audio signal is applied to the control grid in parallel with the r.f. voltage from the oscillator, instead of the series-feed arrangement shown in loig. 11-4. Becanse of the parallel feed, resistor h_{4} is incorporated in the circuit to prevent r.f. from appearing in the plate circuit of the speech-amplifier tube.
The unit uses miniature tubes for the sake of making a compact assembly that can be mounted in any conveniont spot near the V] H tuned circuit. In Fig, 11-5 it is shown mounted on the outside of the VJO (ase. When this type of mounting is used the mit should be placed so that the lead between the lFO tuned circuit and the modulator is as short as possible. If there is space availahle, it is preferable to mount the unit inside the VPO cabinet.

The chassis for the unit is 4 inches long by 2 inches wide, and has a mounting lip '2 inches deep. As shown in the photographs, it is formed from a piece of aluminum with the edges turned over to stiffen it. The various components are easily aecommodated underneath. The r.f. leads should be kept short and separated as much as possible from the audio and powersupply wiring.

Filament and plate power can usually be taken from the VFO supply, since the total phate current is only a fow milliampores. Jibament current required is 0.6 amp. The mirrophone input is carried through a sliched lead

Fig. 11-5 - Miniature reactance modulator that can be used with any YFO. The shielded lead is for miorophone input; the other two wires bring in filament and plate supply.
to the unit, thus the microphone connector can be placed in any convenient location on the VFO unit itself. Once the proper setting of the

Fis. 11-6- Linderneath the modulator unit. The r.f. connection to the VFO goes through the feed-through bushing at the left.
gain control is found it need not be touched again, so screwdriver adjustment is quite adeguate.

The adjustment of reactance modulators is discussed in a later sertion in this chapter.

Fig. 11-7- Cirmit diagram of the narrow-hand FM modulator unit.
$C_{1}-680-\mu \mu \mathrm{ff}$. mica.
Ci. Ci4-0.0.01- ffl . patir. 400 wolts.
 C:s. C: $-17-\mu \mu \mathrm{fd}$. mica, $k_{1}-1.2$ mexrohms, ${ }^{2} 2$ watt.
$R_{2}, R_{4}-0.22$ megohm, $\frac{1}{2}$ watt.
$R_{3}-0.5$-megohm potentiometer.
R_{4} - 10.1 megohm, $1 / 2$ watt.
R_{5} - 10.01010 ohms, $\frac{1}{2}$ watt.
R_{6} - 10.1 i mequhm, $1 / 2$ watt.
RR- 390 ohmis, ! 2 watt.
RFC - シ.in-mh. r.f. whoke.

Checking FM and PM Transmitters

Accurate checking of the operation of an F.M or I^{2} M transmitter requires different methods than the corresponding checks on an A M set. This is because the common forms of measuring devices either indicate amplitude variations only (a d.c. milliammeter, for example), or because their indications are most casily interpreted in terms of amplitude. There is no simple instrument that indicates frequency deviation in a modulated signal directly.

However, there is one favorable feature in FM or PM checking. The modulation takes place at a very low level and the stages following the one that is modulated do not affect the linearity of modulation so long as they are properly tuned. Therefore the modulation may be chacked without putting the transmitter on the air, or even on a dummy antemma. The power is simply cut off the amplifiers following the modulated stage. This not only avoids unnecessary interference to other stations during testing periods, but also keeps the signal at such a

Fig. 11-8-1).e, method of checking frequency devia. tion of a reatiance-tube-modidated nseillator. A 500. or $1000-\mathrm{ohm}$ motentiometer may be used at R.
low level that it may be observed quite easily on the station receiver. A good receiver with a crystal filter is an essential part of the checking coguipment of an FM or 1'M transmitter, particularly for narrow-hand FM or PM.

The quantities to be cherked in an FM or l'M transmitter are the linearity and frequency deviation. Because of the essential difference between FM and l'M the methods of checking differ in detail.

Reactance-Tube FM

1t was explained earlier that in FM the frequency deviation is the same at any audio modulation frequency if the audio signal amplitude does not vary. Since this is true at any audio frequency it is true at zero frequency. Consequently it is possible to calibrate a reactance modulator by applying an adjustable d.e. voltage to the modulator grid and noting the change in oscillator frequency as the voltage is varied. A suitable circuit for applying the adjustable voltage is shown in Fig. 11-8. The battery, B, should have a voltage of 3 to 6 volts (two or more dry cells in series). The arrows indicate clip connections so that the battery polarity can be reversed.

The oscillator frequency deviation should be measured by using a receiver in conjunction with an accurately-calibrated frequency meter, or by any means that will permit accurate
measurement of frequency differences of a few hundred cycles. One simple method is to tune in the oscillator on the receiver (disconnecting the receiving antenna, if necessary, to keep the signal strength well below the overload point) and then set the receiver b.f.o. to zero beat. Then increase the d.c. voltage applied to the modulator grid from zero in steps of about $1 / 2$ volt and note the beat frequency at each change. Then reverse the battery terminals and repeat. The frequency of the beat note may be measured by comparison with a calibrated audio-frequency oscillator, or by comparison with a piano or other musical instrument (sce miscellaneous data chapter for frequencies of musical tones). Note that with the battery polarity positive with respect to ground the radio frequency will move in one direction when the voltage is increased, and in the other direction when the battery terminals are reversed. When a number of readings has been taken a curve may be plotted to show the relationship between grid voltage and frequency deviation.

A sample curve is shown in Fig. 11-9. The usable portion of the curve is the center part which is essentially a straight line. The bending at the ends indicates that the modulator is no longer linear; this departure from linearity will cause harmonic distortion and will broaden the chamel occupied by the signal. In the example, the characteristic is linear 1.5 kc . on either side of the center or carrier frequency. This is the maximum deviation permissible at the froquency at which the measurement is made. It the final output frequency the deviation will be multiplied by the same number of times that the measurement frequency is multiplied. This must be kept in mind when the check is made at a frequency that differs from the output frequency.

A good modulation indicator is a "magiceye" tube such as the 6L5. This should be conneeted across the grid resistor of the reactance modulator as shown in Fig. 11-10. Note its deflection (using the d.c. voltage method as in

Fig. 11.9-A typical curve of frequency deviation us. modulator grid voltage.

Fig. 11-8) at the maximum deviation to be used. This deflection represents " 100 -per-cent modulation" and with speech input the gain should be kept at the point where it is just reached on voice peaks. If the transmitter is used on more than one band, the gain control should be marked at the proper setting for each band, because the signal amplitude that gives the correct deviation on one band will be either too great or too small on another. For narrow-band FM the proper deviation is approximately 2000 cycles (based on an upper a.f. limit of 3000 cycles and a deviation ratio of 0.7) at the final output frequency. If the output frequency is in the $29-\mathrm{Mc}$. band and the oscillator is on 7 Mc ., the deviation at the oscillator frequency should not exceed 2000/4, or 500 cycles.

Checking with a Crystal-Filter Receiver

With I'M the d.c. method of checking just described cannot be used, because the frequency deviation at zerofrequency also is zero. For narrow-band l'M it is necessary to check the actual width of the channel occupied by the transmission. (The same method also can be used to check FM.) For this purpose it is necessary to have a crystal-filter receiver and an a.f. oscillator that generates a 3000 -cycle sine wave.

Fig. 11-10-6E5 modulation indicator for FM or PM modulators. To insure sufficicnt grid voltage for a good deflection, it may be neccssary to connect the gain control in the modulator grid circuit rather than in an earlicr speech-amplifier stage.

Keeping the signal intensity in the receiver at a medium level, tune in the carrier at the output frequency. Do not use the a.v.c. Switch on the beat oscillator, and set the crystal filter at its sharpest position. Peak the signal on the crystal and adjust the b.f.o. for any convenient beat note. Then apply the 3000 -cycle tone to the speech amplifier (through an attenuator, if necessary, to avoid overloading; see chapter on audio amplifiers) and increase the audio gain until there is a small amount of modulation. Tuning the receiver near the carrier frequency will show the presence of sidebands 3 kc . from the carrier on both sides. With low audio input, these two should be the only sidebands detectable.

Now increase the audio gain and tune the receiver over a range of about 10 kc . on both sides of the carrier. When the gain becomes high enough, a second set of sidebands spaced 6 kc . on either side of the carrier will be detected.

The signal amplitude at which these sidebands become detectable is the maximum speech amplitude that should be used. If the 6E5 modulation indicator is incorporated in the modulator, its deflection with the 3000 -cycle tone will be the " 100 -per-cent modulation" deflection for speech.

When this method of checking is used with a reactance-tube modulated FM (not PM) transmitter, the linearity of the system can be checked by observing the carrier as the a.f. gain is slowly increased. The beat-note frequency will stay constant so long as the modulator is linear, but nonlinearity will be accompanied by a shift in the average carrier frequency that will cause the beat note to change in frequency. If such a shift occurs at the same time that the 6 -kc. sidebands appear, the extra sidebands may be caused by modulator distortion rather than by an excessive modulation index. This means that the modulator is not able to shift the frequency over a wide-enough range. The 6 -kc. sidebands should appear before there is any shift in the carrier frequency.

R.F. Amplifiers

The r.f. stages in the transmitter that follow the modulated stage may be designed and adjusted as in ordinary operation. In fact, there are no special requirements to be met except that all tank circuits should be carefully tuned to resonance (to prevent unwanted r.f. phase shifts that might interact with the modulation and thereby introduce hum, noise and distortion). In neutralized stages, the neutralization should be as exact as possible, also to minimize unwanted phase shifts. With FM and PM, all r.f. stages in the transmitter can be operated at the manufacturer's maximum c.w.-telegraphy ratings, since the average power input does not vary with modulation as it does in AM 'phone operation.

The output of the transmitter should be checked for amplitude modulation by observing the antenna current. It should not change from the unmodulated-carrier value when the transmitter is modulated. If there is no antenna ammeter in the transmitter, a flashlight lamp and loop can be coupled to the final tank coil to serve as a current indicator. If the carrier amplitude is constant, the lamp brilliance will not change with modulation.

Amplitude modulation accompanying FM or PM is just as much to be avoided as frequency or phase modulation that accompanies AM. A mixture of AM with either of the other two systems results in the generation of spurious sidebands and consequent widening of the channel. If the presence of $A M$ is indicated by variation of antenna current with modulation, the cause is almost certain to be nonlinearity in the modulator. In very wide-band $F M$ the selectivity of the transmitter tank circuits may cause the amplitude to decrease at high deviations, but this is not likely to occur on amateur frequencies at which wide-band F M would be used.

Reduced-Carrier and Single-Sideband

 Transmitting Techniques

 Transmitting Techniques}

The most significant development in amateur radiotelephony in the past several years has beren the increased use of single sideband suppressedcarrier transmissions, This system has tremendous potentialitios for inereasing the effectiveness of 'phone transmission and for reducing interferenee, Because only one of the two sidehands normally produced in modulation is transmitted, the channel width is immediately cut in half. However, when only one sidehand is tramsmited the carrior - which is essential in doublde-sideband transmission - no longer is nocessary; it gan be supplied without too much difficulty at the receiver. With the carrier eliminated there is a great saving in power at the transmitter - or, from another viewpoint, a great increase in effertive power output. Assuming that the same finalamplifier tube or tubes are used cither for normal AM or for single-sideband, carriou supprossed, it ran be shown that the use of SSB gives an offeretive gain of at keast 9 dh. over $\mathbf{A M}$ - equivalent to increasing the transmittor power 8 times. biminating the carrier also climinates the hoterosdrone interference that wrecks so much eommuniataon in congested 'phone bathls.

SUPPRESSING THE CARRIER

The carrier can be suppressed or narly eliminated by an extremely sharp filtor or by using a balanced modulator. The basic principle in any balanced modulator is to introduce the carrier in such a way that it does not appear in the output but so that the sidebands will. This requirement is satisfied by introducing the audio in push-pull and the r.f. drive in paralled, and connecting the output (plate circuit) of the tubes in push-pull, as shown in Fig. 12-1A. Balanced modulators can also be eonneeted with the r.f. drive and audio inputs in push-pull and the output in parallel (lig. 12-113) with equal effertiveness. The choice of a balanced modulator circuit is genorally determined by constructional considerations and the method of modulation preferred by the buider. Screen-grid modulation is shown in the examples in Fig. 12-1, but control-grid or plate modulation can be used equally as well. Batancedmorlulator circuits using four rectifiers (germanium, copper oxide, or thermioni() in "bridge" or "ring" circuits are often used, particularly in commercial applications.

In any of the circuits, there will be no output with no audio signal because the circuits are balanced. The signal from one tube is balanced or eancelled in the output circuit by the signal from the other tube. The circuits are thus balanced for any value of parallel audio signal. When push-pull audio is applied, the modulating voltages are of

Fig. 12-I - ' Wo examples of balanced-modulator circuits using screen-grid modulation. In A the r.f. excitation is in parallel in both tuhes, and the audio and output are in push-pull. In I3 the excitation and andio are in push-pull, the output is in parallel. In either case, the carrier frequency, f, does not appear in the output cirruit - only the two sidehand frequencies, $f+F$ and $f-F$, will appear. The bias fed to the screens is a practical requirement with all screen-grid tubes for proper linear operation, and is not a special requirement of balanced modulators.
opposite polarity, and one tube will conduct more than the other. since any modulation process is the same as "mixing" in receivers, sum and difference frequencies (sidebands) will be generated. The modulator is not balaneed for the sidebands, and ther will appear in the output.

The amount of earrier suppression is dependent upon the matching of the two tubes and their associated circuits, Normally two tubes of the same type will balance dosely enough to give at least 15 or 20 db . carrior suppression without anyadjustment. If further suppression is reguired, trimmer eondensers to balance the grid-plate capacities and separate bias adjustments for setting the operating points can be used.

DOUBLE-SIDEBAND REDUCEDCARRIER TRANSMISSIONS

Double-sideband reduced-carrier signals, obtained by unbalancing a balaneed modulator sufficiently to allow some carrier to appear in the output, offer a number of advantages over conventional AM signals: considerably highor efficiency, where efficiency is defined as the ratio of sidoband (useful) power output to total power imput; high output with comparatively little audio power; and a considerable reduction in heterodyne interference. The sigmal can be received by ordinary mothods, and merely sounds as though it had "a lot of modulation for the carricr."

In ordinary amplitude-modulated sustems, the sideband annplitude (an never exreed 0.5 the carrier amplitude without generating spurious side freguencies (when sinc-wave modulation is used). Euder these conditions, $2 / 3$ of the total power is in the carrier and $1 / 3$ is in the sidehands. However, with DsiRe', generated bes the unhalaneing of a babaneed modulator, it is possiblo to have an!! amplitude of sideloands without generating spurions side frequencios. In prartical tosts it has beon found that a modulation fartor of 4 is perfectly mactical, and the distortion under normal domodulation is not enough to impair the communication value of the signal. Under these conditions, the sideband power is $21 / 2$ times as great as could be obtained with straight A:3 transmission (grid-modulated) with the same tubers, or about $3 / 4$ of what could be obtained with the same tubes phate-modulated 100 per eont, since the adio-power reguirments cam be kept low, and the no-modulation plate current maty be only a little more than half of the full-signal plate current, the advantages of Insle are olovious for work where the total power available is limited, as in mobile or portable work.

A DSlac signal can be generated at a low power level and amplified in a linear amplifier (discussed later in this chapter). Under these conditions, a relatively powerful signal can be ohtained with a minimum of audio power and total power input.
(For further information on DSRC, see Grammor, "D.s.R.C. Radiotelephony," (2st, May, 19:1, and (irammer, "Practical IDS.S.C. Transmitter Design," (QS'T, June, 1951.)

SINGLE-SIDEBAND GENERATORS

Two basic systems for generating SSB signals are shown in Fig. 12-2. One involves the use of a bandpass filter having sufficient selectivity to pass one sideband and reject the other. Filters having such eharacteristics can only be constructed for relatively low frequencios, and most filters used buamateurs are designed to work somewhere betweon 10 and 20 ke . Good sideband filtering can be done at frequencies as high as 500 ke . by using multiple-crrstal filters. The low-frequency oseillator output is combined with the audio output of a spreech amplifier in a balanced modulator, and only the upper and lower sidebands appear in the output. One of the sidebands is passed by the filter and the other rejeeted, so that an ssis signal is fed to the mixer. The signal is there mixed with the output of a high-frequency r.f. oscillator to produce the desired output frequencs. For additional amplification a linear r.f. amplifier (Class A or Class B) must he used.

Fig. 12.2 - 'Iwo hasir systems for generating singlesideband suppresised-earrier signals.

When the SSB signal is gemerated at 10 or 20 ke ., it is generally first heterolyned to somewhere around 500 ke and then to the operating frequener. This simplifies the problem of rejecting the "image" frequencios resulting from the heterodyne process. The problem of image frequeneies in the frequency conversions of SSils signals differs from the problem in reecevers because the beating-oscillator frequency becomes important. Either balanced modulators or sufficient solectivity must be used to eliminate the possibility of unwanted radiations.

The second sustem is based on the phase relationships between the carrier and sidebands in a modulated signal. As shown in the diagram, the audios signal is split into two components that are identical except for a phase difference of 90 de-
grens. The output of the r.f. oscillator (which may be at the operating frequener, if desired) is likewise split into t wo separate components having a SO-degree phase difference. One r.f. and one atudio component are combined in cach of two soparate balanced modulators. The carrior is suppressod in the modulators, and the relative phases of the sidebands are such that one sideband is babaneed out and the other is aceentuated in the eombined output. If the output from the balaneed modulators is high emough, such an sisl exciter eam work directly into the antema, or the power level can be increased in a following amplifier.

Which is the botter mothod of gomerating an Sill signal, the fitter or the phasing mothod, is a controversial question. Properly adjusten, wither system is (eapbible of good results. Arguments in favor of the filter system are that it is somewhat easier to adjust without an oscilloseope, since it reguires only a recoiver and a v.t.v.m. for alignment, and it is more likely to remain in adjustment over a long period of time. The chief argument against it, from the amateur viewpoint, is that it requires quite a few stages and at least one fregueney conversion after modulation. The phasing system requires fewer stages and can be designed to require no frequener conversion, but its aligmment and adjustment are often considered to be a little "trickier" than that of the filter system. This probably stems from latck of faniliarity with the system rather than ame actual difficulty. In most cases the phasing system will cost less to apply to an existing transmitter.

Regardless of the method used to generate a SSB signal of 5 or 10 watts, the minimum eost will be found to be higher than for an AMI transmitter of the same low power. However, as the power level is increased, the SSB transmitter becomes more coonomical than the AM rig, both hasically and from an operating stampoint.

AMPLIFICATION OF SSB SIGNALS

When an SSB signal is generated at some frequency other than the operating freguency, it is necessary to change frequency by heterodye methods. These are exactly the same as those used in receivers, and any of the normal miver or converter circuits can be used. One exception to this is the case where the original signal and the heterodyning oseillator are not too different in frequency (as when heterodyning a 20 -ke, signal to 500 kc .) and, in this case, a balanced mixer should be used, to eliminate the heterodyning oseillator frequency in the ontput and thas reduce the chanees for spurious signals appearing in the output.

To increase the power level of an SSB signal, a linear amplifier must be used. The simplest form of lincar amplifier (r.f. or audio) is the (lass A amplifier, which is used almost without exception throughout our receivers and our lowlevel speech equipment. While its linearity can be made phenomenally good, it is unfortunately quite inefficient. The theoretical limit of efficioney in this case is 50 per cent, while most practical
amplifiers run 25-35 per cont efficiont at full output. At low levels this is not worth worrying about, but when the 2 - to 10 -watt level is excoeded something olse must be done to improve this efficiency and reduee tube, power-supply and operating costs.

Clase 13 amplifiers are theoretically capable of 78.5 per eent effieiency at full output, and practi(al amplifiers run at $60-70$ per cent efficioncy at full output. Tubes normally designod for Class B andio work can be used in r.f. lincar amplifiers and will oprote at the same powor rating and efficiency provided, of exurse, that the tube is capable of operation at the radio freduenes. The operating conditions for r.f. are substantially the same as for audio work - the only difference is that the input and output transformers are replaced by suitable r.f. tank circuits. Further, in r.f. circuits it is readily possible to operate only one tube if only hall the power is wanted - pushpull is not a meoossity in Class B r.f. work. llowever, the r.f. harmonics will be higher in the case of the single-ended amplifier, and this should bo taken into consideration if TVI is a problem.

In a fow instancer, Class IS r.f. amplifier ratings of tubes are given in the tube books, and the eflicieney shown will be about 33 per cent. These ratinge are for use when carrior is present and do not apply to Sils suppressed-carrier operation. The Class Is audio ratings are a botter indication of what can be expereded.

For proper operation of Class 13 amplifiers, and to reduce hamonics and farilitate coupling, the imput and outpat circuits should not have a low C-to- L ratio. A good gaide to the proper size of tuning condenser is Figs. 6-9 and 6-17 and, in case of any douht, it is well to be on the high(alpamity side. If zero-bias tubes are used in the Class 13 stage, it may not be necersary to add much "swamping" resistance across the grid rircuit, because the grids of the tubes load the cireuit at all times. However, with other tubes that regaire bias, the swamping resistor should be such that it dissipates from five to ten times the power required bey the grids of the tubes. This will insure an almost constant load on the driver stage and good regulation of the grid voltage of the Class 13 stage.

Before going into detail on the adjustment and loading of the Class 13 linear amplifier, a fow general considerations should be kept in mind. If proper operation is experted, it is essential that the amplifier be so constructed, wired and neutralized that no trace of regeneration or parasitic instability remains. Needless to say, this also applies to the stages driving it.

The bias supply to the Class 13 linear amplifier should be quite stiff. A Class C stage thrives on grid-leak bias, but for really good operation the Class 13 should be supplied from a very stiff source, such as batteries or some form of voltage regulator. If nonlinearity is noticed when testing the unit, the bias supply may be checked by means of a large electrolytic capacitor. Simply shunt the supply with $100 \mu \mathrm{ft}$. or so of capacity
and see if the linearity improves. If so, robuild the bias supply for better regulation. Do not rely on a large condenser alone.

Adjustment of Amplifiers

The two critical adjustments for obtaining proper operation from the linear amplifier are the plate loading and the grid drive. Since these adjustments are preferably made with power on, it is a matter of practical convenience to have both controls readily available, at least during initial tune-up.

The 'scope can show misadjustment at a glance and will greatly facilitate all adjustments. In addition, it is the most reliable instrument for observing modulation amplitude and, once used, is likely to become the most nearly essential instrument in the shack. Nothing elaborate is needed.

With single sideband, 100 per cent modulation with a single tone is a pure r.f. output with no modulation envelope, and the point of amplifier overload is difficult to observe. However, if the input signal consists of two sine waves of different frequencies (for example, 1000 e.p.s. difference) but equal amplitudes, the output of the singlesideband transmitter should have the envelope

Fig. 12-3- (Nacilloscope pattern obtained with a twotone test signal through a correctly-adjusted linear amplifier.
shown in lig. 12-3. This is called a "two-tone" test signal to distinguish it from other test signals. Its first advantage lies in the fact that any flattening of the positive peaks is readily discernible, which makes the adjustment of the linear-amplifier drive and output coupling as simple a procedure as that for AM systems. Flattening of the peaks (to be avoided) is illustrated in Fig. 12-4.

Those who use the filter method for obtaining single-sideband signals can obtain such a test signal by mixing the output of two audio oscillattors of good waveform. The experimenters using the phasing method of single-side-band signal generation will recognize the pattern as that obtained when a single test tone is applied to one of their balanced modulators. For this latter group a two-tone test signal may be readily obtained by disabling one of the balanced modulators in the exciter and applying a single input tone. Other variations are possible in different exciters, and the final choice of any one operator will be dictated by convenience.

Suppose that the linear amplifier has been
coupled to a dummy load and the single-sideband exciter has been connected to its input. By observing the oscilloscope coupled to the amplifier output, it will be possible to adjust the drive and output coupling so that the peaks of the two-tone test signal waveform are on the verge of flatten-

Fig. 12-1-Flattening of the peaks of the two-tone test signal indicates dintortion. It is eaused by overdrive or insufficient plate loading.
ing. The peak input power may now be checked. This is readily possible, for with the two-tone test signal applied, the peak input power will be 1.57 times the d.c. power input to the linear amplifier. Should this be different from the design value for the particular linear amplifier, the drive and loading adjustments can be quickly changed in the proper direction (always adjusting the loading so that the peaks of the envelope are on the verge of flattening) and the proper value reached.

As a final cheok, before coupling the linear amplifier to the antema, the single-sideband operator will do well to check the linearity of the sustem, since distortion in the linear amplifier (for that matter, in any of the r.f. amplifiers) probably will result in the generation of sidebands on the side that was suppressed in the exciter. Here again the two-tone test signal will be of great help, since distortion of the signal will be readily recognized. A check of the bias supply has already been recommended. The next most likely form of distortion will be caused by eurvature of the tube characteristic near cut-off, and will be reeognizable from a two-tone test pattern that looks like Fig. 12-5. A slight readjustment of bias (or applying a few volts of positive or negative bias, in the case of zero-bias tubes) will usually straighten out the kink that exists where the pattern crosses the zero axis. Make this ad-

Fig. 12-5 - The distorted two-tone test-signal pattern obtained when the bias voltage is incorrect.
justment with special care, however, because the dissipation of the tubes with no input signal will be very sensitive to this adjustment. There are a few tubes that will not permit this adjust ment to be carried to the point where the kink is entirely eliminated without exceeding the rated plate dissipation.

The antenna may now be coupled to the linear amplifier until the plate input with the exeitation as determinod above is the same as that obtained with the dummy load. The sustem has now been adjusted for optimum performance.
(For further reading on linear amplifiers, see Long, "Sugar-Coated Iinear-Amplifior Theory," QST, Oetoher, 1951, and Ehrlich, "How To Test and Align a Linear Amplifier," QST, May, 1952.)

VOICE-CONTROLLED BREAK-IN

Although it is possible for two SSB stations operating on widely different frequencies to work "duplex" if the carrier suppression is great enough (inadequate carrier suppresision woudd be a violation of the FCC rules), most sill operators prefor to use voice-eontrolled brak-in and operate on the same frequence. This overcomes any possibility of violating the IFCC rules
and permits three or more stations to engage in a "round table." Voice-controlled break-in is not popular with straight AM because turning the carrier on and off at a syllabic rate results in a "keyed" type of heterodyne interference that is particularly annoying.

Many various systems of voice-controlled break-in are in use, but they are all basically the same. Lime of the audio from the speech amplifier is amplified and rectified, and the resultant d.e. signal is used to key an oscillator and one or more stages in the SSl3 transmitter and "blank" the receiver at the time that the transmitter is on. Thus the transmitter is on at any and all times that the operator is speaking but is off during the intorvals between sentences. The voice-control circuit must have a small amount of "hold" huilt into it, so that it will hold in between words, but it should be made to turn on rapidly at the slightest voice signal coming through the speech amplifior. 13oth tube and relay kevers have been used with good success. Most voicereontrol systems require the use of headphones by the operator, but a loudspeaker can be used with the proper rireuit. (See Nowak, "Voice-Controlled Braak-In . . . and a Loudspeaker," QST, May, 19.51.)

A Phasing-Type SSB Exciter

The exciter shown in Figs. 12-6, 12-8 and 12-10 is an exeellent unit for the amateur who might like to try single-sideband with a minimum of cost and effort. It requires r.f. driving power from one's present exciter and a power supply. It will deliver sidl output in the 3.9-Mc. 'phone band, either to an antenna for local work or to an r.f. amplifier adjusted for linear operation. The operating frequency can be varied over a wide range without seriously impairing the adjustment. Provision is made for transmitting either the upper or the lower sideband.
The schematic of the exciter is shown in loig. 12-7. Four 6 iv6 tubes are used as balanced modulators. The plate circuit of the balanced modulattors uses a push-pull-parallel arrangement. The grids of one pair of balanced modulators are fed through a phase-shift network eonsisting of a 300 -ohm resistor and an inductance that is adjustable to 300 ohms reactance at the operating frequenc:. The grids of the second pair of balanerel morkulators are fed through a phase-shift network consisting of a 300 -ohm resistor and a condenser which is adjustable to 300 whma maetance at the operating frequener. The input impedaner of the two phase-shift networks in parallel is 300 ohms.

Each balanced-modulator tube grid is fed through a blocking condenser and provided with grid-leak bias. The bias circuit of each balaneed modulator is made adjustable for control of the carrier suppression. Provision is also made for the addition of fixed hias, in case the exciter is used in a voiep-controlled circuit where the r.f. excitation is removed during listoning periods.

Screen modulation is used, and the screen of
each modulator tube is hy-passeci to ground for r.f. I transformer with a center-tapped secondary is used in the output of each audio amplifier to provide push-pull modulating voltages.

A reversing switch, S_{l}, allows switehing to pither the upper or lower sideband. If this switeh has a center "off" position, it will facilitate using the "two-tone test" procedure mentioned earlier. I voltage divider is inserted between each output of the audio phase-shift network and the eorresponding amplifier grid. One of these voltage dividers is made variable to provide for balaneing of the two audio channels. The network constants are compensated for the load of these dividers.

Fig. 12.6 - A small single-sideband exciter that includes voice-controlled break-in. Receiving-type tubes are used throughout.

Microphone input and audio gain control are at the left-hand side of the front - the switeh selects the upper or lower sideband. (Revised version, W2UNJ, Aug., 19.49, (SST.)

Fig. 12-7 - Cirenit diagram of the single-sideband exriter.
C.-C. - See Trahle 12-I.
C) - $150-\mu \mu \mathrm{d}$. air padder condenser.
C_{8} - Approx. $400 \boldsymbol{y}_{-\mu \mu \mathrm{fl} \text { l. per section, b.c. receiver thong }}$ condenser.
C. $-0.001-\mu \mathrm{fd}$. 1000 -volt mica.
C.10-(.18-0.001- μ fll. 500-volt mira.

Cin, C20-4- μ fid. lin)-volt electrolytic.
$\mathbf{R}_{1}-\mathbf{R}_{\boldsymbol{R}}$ - Sce 'T'able 12-I.
$K_{7}, R_{8}-300$ ohms, 5 watts (5 1.300-ohm 1 -watt in parallel).
$R_{9}-0.5$-megohim linear volume control.
$\mathrm{R}_{10}-\mathbf{0 . 1 7}$ megohm.
$R_{13}-0.75$ megohni.
$\mathbf{R}_{12}-0.24$ megohm.

Speech Amplifier and Voice Control

The speeeh amplifier is designed to attenuate both low and high frequencies, amplifying only the audio range required for good intelligibility. The wiring diagram is shown in lig. 12-9. The output of the spered amplifier is coupled to the input of the audio phase-shift network through a transformer with a center-tapped secondary, to provide push-pull audio for the phase-shift network.
l'art of the output of the s.rech amplifier is taken off through an adjustable voltage-divider circuit and blowking condenser to the voiceeontrol circuit. There it is reetified by the diodes of the bisQd, and the resulting d.c. voltage is used to charge C_{14} negative. An audio choke prevents
$\mathrm{R}_{13}-\mathrm{R}_{16}-10.000$ ohms.
$R_{1 i}, R_{18}-1.5,000$-nlun potentiometer, wirewound.
R19 - 7.000 ohms, 10 watts.
R_{20}. $\mathrm{K}_{21}-680$ ohms, 2 watts.
All resistors 1 -watt unless specified otherwise.
$\mathrm{L}_{1}-25$ turns No. 28 rmam. closewound at monnting end of slot of Vational XR-50 slug-tuned form.
$1.2-40$-meter $\overline{3}-$ watt tanh coil with swinging link (Bud OLS. [10).
R $\mathrm{FC}_{1}-2 . \overline{3}-\mathrm{mh}$. r.f. choke.
s_{1} - II.p.d.t. toggle, preferathy with center off. Sce text.
$\mathrm{T}_{1}, \mathrm{~T}_{2}-5$-watt modulation transformer. 10,000 ohms c.t. to 4000 ohme (Stancor A-3812).
audio eomponents from appearing across C_{14}. The triode : ection of the bise ${ }^{7}$ is normally conducting and holding the rolay closed, but when the nemative voltage appears across C_{14} the (6SQ ${ }^{2}$ phate current is cut off and the relay opens. When the audio signal is removed, ('a discharges through R_{15} and the triode again eonducte, closing the relas:

The Audio Phase-Shift Network

The atudio phase-shift network reruires elose matching of resistance and capacity values and, to do this economically, advantage is taken of the fact that resistors and condensers in junk boxes and in stock at local deathers vary considerably from their nominal values.

TABLE 12-I Phase-Shift Network Design Data			
Part	Nominal Value	Target I alue	Measured I alue
C_{1}	0.001	0.00105	(Cim)
C_{2}	0.002	0.00210	$\left(\mathrm{Cm}_{2}\right)$
C_{3}	0.006	0.006630	(Cm3)
${ }^{4} 4$	0.00 .5	0.0045	(Cim4)
C_{5}	0.01	0.000950	(Cm5)
Cf	0.03	0.0285	(C'mme)
R_{1}	100,000	1011	
		$\overline{\text { Cmi }}$	
μ_{2}	50,000	105	
		$\overline{\mathrm{Cm}}$	
R_{3}	15,000	100	
		$\overline{\mathrm{Cm}}$	
R_{4}	100,000	453	
		Cim_{4}	
R_{5}	50,000	470	
		Cms	
R_{6}	15,000	45.3	
		Cimb	

All condensers mica, and all resistors 1 watt.

Table 12-I is used in selecting the network components. The procedure is to collect as many resistors and condensers as possible with nominal values as indicated in the second column of the chart. Measure all of the condensers first, and select the six condensers whose measured values are elosest to the "target values" in the third column. Enter the measured values of these condensers in the fourth column of the chart. Then caleulate the "target values" for the resistors and select the six resistors whose measured values are closest to these target values.

A capacity bridge, of the type used by servicemen, and a good ohmmeter should give sufficient accuraey in selecting the network components. Absolute accuracy is not important, if the components are all in correct proportion to each other. A difference in percentage error between the resistance measurements and the capacitance measurements will merely shift the operating range of the network. The network eomponents are mounted on a small sheet of insulating material to facilitate wiring.

Construction

The exciter and its associated audio equipment are assembled on a 13 by 17 by 2-inch aluminum chassis. The four 616 balanced-modulator tubes are arranged in a square pattern toward the front center of the chassis, with the plate tuning condenser and coil off to one side and the 6k6 audio amplifier tubes on the other. The two modulation transformers are under the chassis directly below the plate tuning condenser. The speech amplifier is arranged along the loft-hand side of the chassis, with the $6 \mathrm{SJ7}$ at the rear and the output transformer on the top of the chassis at the front. The audio phase-shift network is below the output transformer.

The reactive components of the r.f. phasing network, L_{1} and C_{7}, are mounted in a plug-in
shield can that mounts directly behind the balanced-modulator tubes. The shield ean is grounded to the chassis through the spare pins of its plug. The voltage regulator tube is mounted to the left of the shield can, and the $6 \mathrm{~S}(27$ voicecontrol tube is to the right. The components in the voice-control circuit are mounted under the chassis at the rear.

Associated Equipment

The r.f. input impedance of the exeiter is 300 ohms, but a link line of lower characteristic impedance will operate satisfactorily for the short distance usually required. A means for adjusting the r.f. driving power is desirable. A surplus Command set transmitter (BC-696 or T-19/ARC-5), operating at low plate voltages, makes an ideal r.f. source, but any VFO or crystal oscillator with a few watts output will do.

The plate voltage for the speech amplifier must not be taken from the same point in the power supply that furnishes voltage for the 6 K 6 amplifiers, since interaction may occur that will upset the phase relationship at the output of the two 6 K (s.s. If separate plate voltage sourees are not available, an added filter section may be used to isolate the voltage to the speceh amplifier.

The built-in woice-eontrolled relay cam be used in a number of ways to provide the rapid voice break-in commonly used on 3.9-Mc. SSB 'phone. If a good c.w. break-in sustem is already in use at the station, the voice-control relay contacts may be substituted for the key, and no other changes are necossary.

If the local oscillator in the receiver will key in the plate voltage lead satisfactorils, then a simple voice break-in system may be obtained by using the rolay contacts to shift the plate voltage from the reediver local oseillagor to the VF(). A drifting receiver oscillator must be avoided in this swstem, however.

Operating Conditions

If voice eontrol is not used, and d.e. operating voltages are removed when excitation is removed

Fig. 12-8-A rear view of the phasing-type exciter. The two r.f, phasing adjustments project from the shield can. 'The potentiometer shaft at the left sets the voice-control threshold level. The jack is for the keyed eircuit, the r, f. connector takes the excitation cable, and the octal socket is for the power cable.

Fig. 12.9 - Wiring diagram of the speech amplifier and voire-control circuit.
$\mathrm{C}_{1}-100-\mu \mu \mathrm{fd}$. mica or ceramic.
$\mathrm{C}_{2}, \mathrm{C}_{7}, \mathrm{C}_{11}-4$ - $\mu \mathrm{fd}$. 150 -volt electrolytic.
$\mathrm{C}_{3}-0.02-\mu \mathrm{fd} .400$-volt paper.
$\mathrm{C}_{4}, \mathrm{Cs}-8-\mu \mathrm{fd}$. 450 -volt electrolytic.
$\mathrm{C}_{5}-270-\mu \mu \mathrm{fd}$, mica or ceramic.
C. $-0.001-\mu \mathrm{fd}$. mica or ceramic.
$\mathrm{C} 9-0.0033-\mu \mathrm{fd}$. mica or ceramic.
$\mathrm{C}_{10}-0.002-\mu \mathrm{fd}$. mica or ceramic.
$\mathrm{C}_{12}-0.005-\mu \mathrm{fd}$. ceramic or miea.
$\mathrm{C}_{13}-0.01-\mu \mathrm{fd} .400$-volt paper or ceramic.
$\mathrm{C}_{14}-0.5-\mu \mathrm{fd} .200$-volt paper.
$R_{1}, R_{9}-0.1$ megohm.
$R_{2}-2.2$ megohm,
$\mathrm{R}_{3}, \mathrm{R}_{12}-910$ ohms.
$R_{4}-1.0$ rnegohm.
$\mathrm{R}_{\mathrm{s}}-0.27$ megohm.
$\mathrm{K}_{8}-2 \overline{2}, 000$ ohms.
1k - 0.5 -megohm volume control.
Rs - 2.00 ohms.
$R_{10}, R_{13}-10,(10)$ ohms, I watt.
$R_{11}, R_{15}-0.47$ megolim.
R_{1} - $\mathrm{I}, 00 \mathrm{O} 0$-ohm wolume control.
All resistors $1 / 2$-watt unless specified otherwise.
$\mathrm{F}_{1}-5$-watt modulation transformer, 10,000 ohms c.t. to 4000 ohms (Stancor A-3812).
I, - Small filter or andio choke (Stancor C-1707).
R_{1}-Sensitive 10,000 -ohm relay.
for stand-by, then no fixed bias is required on the balanced modulators and a jumper can be placed across the bias terminals. When excitation is removed with d.c. voltages applied, as in voicecontrolled operation, then $41 / 2$ volts of fixed bias should be used to limit the plate and sereen currents on the balanced modulators.

With 400 volts applied to the balanced-modulator plates and 250 volts to all other plate supply inputs, the operating currents will be approximately as follows:

Total balanced-modulator plate current 85 ma .

VR tube supply current

20 ma .
Total 6K6 amplifier current (12 ma.
Total speech-amplifier current
12 mil
The total balanced-modulator grid current, measured at the bias terminals, will vary with excitation, but it should be in the range 3 to 5 ma .
These currents will not change appreciably with varving audio input and, with the exception of the grid current, will not change appreeiahly when the excitation is removed, provided that $41 / 2$ volts of fixed bias is used on the balancedmodulator grids.

The exciter may be coupled directly to an antenna for use as a low-power transmitter, but most amateurs will wish to use it to drive a buffer or final amplifier. All stages following the exciter must be operated under Class A, AB, or B conditions. In general, the correct operating conditions for stages following the exciter may be found by
referring to the audio operating conditions for the tube under consideration. Grid-bias and sereen voltages should have very good regulation. For amateur voice operation, tubes may be operated considerably beyond the ratings given in the tube manuals, as discussed later. When the r.f. amplifior is operated Class AB_{2}, the grid tank circuit will require shunting by a resistor in order to provide better regulation of the exciting voltage. The value of this resistor is not eritical and may be determined by experiment.

Adjustment

Adjustment of the exciter is best made under actual operating conditions. Connect the exciter to the transmitter, load the exeiter with a dummy load, apply r.f. exeitation, feed sine-wave audio into the speech amplifier, and tune in the conventional way for maximum output.

Reduce the audio input to zero, and adjust potentiometers R_{17} and R_{18} for minimum carrier output. Minimum carrier output may be determined by any sensitive r.f. indicator coupled to the final-amplifier plate circuit. A $0-1$ milliammeter, in series with a crystal detector and a two-turn coupling loop, will make a satisfactory indicator. The meter should be by-passed with a $0.005-\mu \mathrm{fd}$. condenser. If a null indication cannot be obtained within the range of the potentiometers, the 6 V 6 tubes are not evenly matched. Exchanging the positions of the 6 V 6s may aid in

Fig. 12-10 - L'nderneath the chassis of the extiter. The two poteutioneters are the bias balancing controls, R_{17} and R_{18}.
the screen, the same indication as is given by an unmodulated carrier. This is illustrated in Fig, 12-11. If carrier output, or unwanted sideband output, is present, it will be indicated by "ripple" on the top and bottom edges of the oscilloscope pieture. A small amount of ripple can be tolerated, but if the exciter is badly out of adjustment, the output will appear to be heavily modulated. Adjustment with the 'scope is accomplished by acljusting all controls to oltain the smallest possible amount of ripple. The oscilloscope may also be used for continuous monitoring during transmissions to avoid overloading of any stage of the transmitter. Overloading is indicated by a flattening of the modulation-peak patterns at the top
obtaining the balance, or other tubes may have to be used.

After the carrier balance is obtained, tune in the r.f. source on the station receiver, and with the antenna terminals shorted, and the crystal selectivity in sharp position, adjust the ervatal phasing to the point where only one sharplypeaked response is obtained as the receiver is tuned through the signal. Now apply sine-wave audio of about 1500 -evele frequency to the speech amplifier, and find the two sidebands on the receiver. Three distinct peak indications will be observed on the simeter as the receiver is tuned. Set the receiver on the weaker of the two sidebands and adjust L_{1}, C_{7} and R_{9} for minimum sideband strength. If suppression of the other sideband is desired, throw S_{1} to its other position. A dip obtained with one set of adjustments is not necessarily the minimum. Other combinations should be tried. The final adjustment should give S-meter readings for the two sidebands which differ by at least 30 db . The bias voltage on all four balanced modulator tubes will be approximately equal.

After the adjustments have been completed, the r.f. drive to the exciter should be adjusted to the point where a decrease in drive will cause a decrease in output, but an increase in drive will not cause an increase in output. The complete adjustment procedure should then be rechecked. The rig is then ready for a mierophone, an antenna, and an on-the-air test.

If an oscilloscope is available, a simpler and more reliable adjustment procedure may be used. Lither linear or sine-wave horizontal sweep may be used on the oseilloscope. The vertical input should be coupled to the output of the transmitter in the same manner as is used for observing amplitude modulation. The sine-wave audiofrequency input to the speech amplifier should be any convenient multiple of the oscilloscope sweep frequency. A 60-cycle sweep frequency and a 600 -cycle audio frequency are commonly used.

When the exciter is modulated with a single sine-wave audio frequency, the output should be a single radio frequency. Therefore, the oscilloscope should show a straight-edged band across
and bottom. In observing these patterns, it is difficult to separate the effects of sideband and carrier suppression. However, eonsidered separately, sideband or carrier suppression of 30 db . would give a 3 per cent ripple, 25 db , a ripple of 6 per cent, and 20 db , a 10 per cent ripple. Harmonics present in the audio modulating signal will modify the results and invalidate this test if they run more than 1 per cent.

The exciter is capable of driving any pair of beam tubes commonly used in amateur transmitters, or any pair of triodes in Class AB_{1}. A buffer stage will ordinarily be required to drive Class B triodes.

Fig. 12-11 - Sketches of the oscilloscope face showing different conditions of adjustment of the exciter unit. (A) shows the substantially clean carrier obtained when all adjustments are at optimum and a sine-wave signal is fed to the audio input. (B) shows improper r.f. phase and unbalance between the outputs of the two balanced modulators. (C) shows improper r.f. phasing but outputs of the two balanced modulators equal. (D) shows proper r.f. phasing hut unbalance between outputs of two balanced modulators.

A Crystal-Filter SSB Exciter

The exciter uses a quartz crystal filter operating at 450 kc . (or vieinity). The filter allows a passband of 300 to 3000 cyeles; the sideband rejection should run $35-10 \mathrm{db}$. over 300 to 3000 cyeles. At no time within the reject range is the rejection less than 30 db .; at some places it approaches 60 db. Suppression of the carrier is obtained without the use of balaned modulators, and the stability of suppression is excellent. Crystals suitable for use in the filter are available on the war surplus market for less than one dollar each. The most useful of these crystals are in the series that runs from 375 to 525 ke . in 1.388-kc. steps; this sories is marked at 72 times the crystal frequency in a series of channels from 28.0 to 38.0 Mc . The crystals were manufatured by Wostem Electric for the Signal Corps, and are of the phated variety, mounted in an FTI-2 $11 . \mathrm{A}$ holder. The holder pins have $1 / 2$-inch spacing. The crostals may be socketmounted or soldered directly into the filter at the builder's discretion.

The filter is of bridue design with complex entry and terminating seations. The complex sections are used to suppress the carrier and modify the response characteristics of the bridge. Fig. 12-12 shows the filter proper, set for rejection of the upper sideband. The transformer, T_{1}, is a re-placement-tye $455-\mathrm{ke}$. interstare i.f. transformer, mica-tuned, and air-cored. T_{2} is also a
replatement type, designed to feed into a diode detrector.

The original filter was designed to operate at a carrier frequency of 450 kc ., although the filter will work at frequencies between 425 and 490 kc. without alteration of the circuit or transformers. Under the condition of design for 450 -ke.

Fig. 12.12 - The 450 .he. quartz erystal filter used for sideband and carrier rejection.
$\mathrm{C}_{1}, \mathrm{C}, \mathrm{C}, \mathrm{C}, \mathrm{s}$ - $\mathrm{IOO}(\mu \mu \mathrm{fd}$. mira or ceramie.
C 3 - 3: 11 30 $-\mu \mu$ fil. ceramic trimmer.
 $16 .(60.39)$,
' I_{2} - 45.5 -ke. diode i.f. transformer (Deiswer $\left.16-6660\right)$. Fiur a carrier frequency of 4.50 kr , the erystals

$$
\begin{array}{lrl}
\text { are: } & B & C
\end{array}
$$

Wigh-freq, reject 452.8 ke .48 .6 kc .4 .30 .0 ke . Law-freq, reject $47.2 \mathrm{kc}, 451.4 \mathrm{kc}$. 450.0 kc .
carrier, cristal " B " is 2.78 ke. higher than ti50 ke., or 2 chamels higher in the ervstal series. Crystal "C" is 1.39 kc . Iower than t.50 ke., or 1 channel lower. Crystal "1)" is 450 ke. Crystal ". Λ," also at tion ke, is used in a crystal oseillator

Fig. 12.13 - Complete diagram of the crystal-filter SSB exciter.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{8}, \mathrm{C}_{7}-0.1-\mu \mathrm{fd} .100$ volt paper.
$\mathrm{C}_{4}, \mathrm{C}_{5}-34-\mu \mu \mathrm{ftl}$. eeramic.
$\mathrm{C}_{8}-100-\mu \mu \mathrm{fl}$. variable air condenser.
$\mathrm{C}_{9}-0.02-\mu \mathrm{fd}$. 600-volt mica.
$\mathrm{C}_{10}-0.01 . \mu \mathrm{fd} .400$ volt paper.
C_{x} - Trimmers in T_{3}.
$\mathrm{R}_{1}-0.47$ megohm.
$\mathrm{R}_{2}-220$ ohms.
Ra, $\mathbf{R}_{11}-20,000$ ohms, 1 wat .
$\mathrm{R}_{4}, \mathrm{R}_{5}-0.1$ megohm,
$\mathbf{R e}_{6}, \mathbf{R}_{7}, \mathbf{R}_{8}-10,000$ ohms.
$\mathrm{K}_{9}-150$ ohms, 1 watt.
R10 - 1000 ohms.
$\mathrm{R}_{12}-4 \overline{4}, 0$ on ohms.
III resistors $1 / 2$ watt unless specified otherwise.
I_{1} - 2.5-mh. r.f. choke.
I. 2 - $0 . \overline{3}-m h$. r.f. choke:
${ }^{\prime} \mathrm{H}_{3}-5 . \mathrm{Nc}_{\mathrm{c}}$ slug-tuned i.f. transformer.
${ }^{\prime} \mathrm{I}_{4}^{\prime}-5-\mathrm{Mc}$. shag-tuned i.f. transformer. Scendary removed and 8-1urn link wound ovir cold end of primary. All fixed capacitors removed.

Fig. 12-1t - 'Ihe crystal-filer ssls exciter, as designed for mobile work, complete with recciver converter and SFO, 'The low dish is the exciter (with rover removed). The meter reads cathode current to a pair of 80 ts driven by the unit, and the iwo knots handle carrier reinsertion and 6AG7 plate tuning. (NIJEO/O, Nov., 1950, (S゙J:)
to generate the initial earrier. Chand markings on these crystals are an follows:

$$
\begin{aligned}
& \text { "A" - 32.4 Me., Chammel } 324 \\
& \text { "I'" - 32.6 Mc., Channel } 326 \\
& \text { "(") - } 32.3 \text { Me., Channel } 323 \\
& \text { "I)" - } 32.4 \text { Mr., Chamel } 324
\end{aligned}
$$

Any other group within the range of the i.f. transformers may be utilized; only the chamed relationship noed be retained.

A diagram of the exeiter proper is shown in Fig. 12-13. The (ik8 hexode-triode serves as 450-ke, oscillator and audio mixer. Approximately 3 volts of audio is required at the signal grid of the 6k8 for optimum results. The filis clelivers a carrier (450 ke .) and sidebands to the input of the filter. The filter rejects one sideband (depending upon the selection of erystals) and delivers simgle-sideband energy to the 6xN7 mixer. The filter also suppresses the carrier some (i0 dh. below the peak sidethand emergs. The (ENT mixer combines the single-sideband energy (in the vicinity of 450 ke .) with the output of the $\mathrm{VFO}(3400$ to 350 kc .) : ind the sum prolucts are recovered in the output ($3850 \mathrm{to} \cdot 4000 \mathrm{ke}$.). The
balanced mixer is used to remove the VFO component from the output tank. Balance is not eritical and no adjustments are required or provided. A VFO signal of about 6 to 8 volts is required. The output of the mixer is fed to the grid of a $6 \mathrm{~A}(\mathrm{~B} 7$ which runs as a Class A tuned r.f. amplifier. The output of the 6 AG 7 is sufficient to drive a pair of 807 s Class AB_{2}. (operation on 10 and 20 meters can be accomplished by heterodyning again to the desired band. Most VF()s in use cover or may he easily made to cover 3400 to 3550 ke . A single untuned $6 \mathrm{~S} . \mathrm{I}_{7}$ or $6 . \mathrm{AC}^{7}$ Class A amplifier following a BC-221 might be used as a driver for this exciter.

Construction

The original transmitter was built for mobile operation and much hole drilling and experimentation has occurred on the chassis. Mounting the eristals on opposite sides of the transformers will kerp stray caparity coupling at a minimum. No shichling other than that provided by the i.f. cans and the output tank can is required. It is important that capacity coupling around the erystal filter be minimized - in other words, no modulated signal must reach the 6SN7 miver by any route exeept through the filter. Before construetion is started, a decision must be made as to whether or not choice of sidebands is desired. If choice of sidehands is desired, a dual filter using 5 crystals will be required. This filter is shown sehematically in lig. 12-15. A double-section wafer switch solecets the upper or lower sideband. These wafor sections must be separated by appoximately 3 inches to minimize stray coupling. It is recommended that the erystals be wrapped with several layers of adhesive tape and then strapped to the chassis with metal brackets; connertions may then be made by soldering to the holder pins.

Alignment

Alignment of the filter is straightforward, and onee alligned it will need little attention.

1) Crystal " A " is first removed from the circuit. This erystal is best provided with a socket

Fig. 12-15 - The , louble-ehannel crystal filter. All components are the same as in Fig. 12-12, except for the addition of the d.p.d.t, wafor switch, S_{1}, and the compensating condensers, C and $C:(3-10,30)-\mu_{\mu} f d$, ceramie). The trimmer on the input side of I_{2} is set at minimum and the alignment procedure is followed with Cobr Gis werever the instructions call for adjusting the input condenser.

Fig. 12-16 - An alignment chart of the crystal filter. The numbers in the circles correspond to the steps nutlined in the text.
to 1.2 ke. higher than the null and adjust C_{3} for minimum response.
10) Move the signal generator higher until another null is found; this will be the series-resonant frequency of crystal "B," approximately 452.8 kc . with the crystals shown.
11) Continue approximately $1 / 2 \mathrm{kc}$. higher than this null and adjust the output trimmer on T_{1} slightly for moderate null.
12) Repeat Steps 7 through 11 to compensate for interaction, and alignment is complete.

For alignment of the dual filter the procedure is identical but must be done once
mount so it can be removed during alignment.
2) A calibrated signal generator covering the crustal range is connected to the grid of the triode section of the 6 K 8 .
3) A vacuum tube voltmeter is connected from grid to ground of one of the 6SN7 grids.
4) Swing the signal generator through the crystal range until a maximum response is noted at the voltmeter. This will indicate the series-resonant frequency of crystal " C " and with the crystals described, based on a 450 -ke. carrier, will be approximately 448.6 kc .
5) Align all transformer trimmers for maximum response on this frequency.
6) Next, adjust the signal generator slowly in the higher-frequency direction until a null is obtained. This will be the series-resonant frequency of erystal "D," 450 ke . with the crystals indicated.
7) Move the signal generator $1 / 2 \mathrm{kc}$. lower than this null and adjust the trimmer on the input side of T_{2} for maximum response.
8) Return signal generator to null.
9) Move the sigual generator approximately 1
for each sideband. However, when adjusting the filter for rejecting the lower sideband and where Steps 1-12 mention "higher" you must insert "lower" and vice versa. The aligiment chart, Fig. 12-16, will simplify the alignment procedure. For additional information, see Webb, "Aligning the Crystal-Filter S.S.B. Exciter," QST', August, 1952.

The slug-tuned i.f. transformer is peaked at 3930 kc . and then stagger-tuned slightly to provide coverage of the entire band. The 6AG7 plate tank capacitor is adjustable from the front panel and is touched up when shifting frequency.

Many variations of this basic exciter circuit are possible. If a balanced modulator (using a pair of 6 K 8 s) is used, the carrier suppression is readily obtained without close matehing of crystals. Other filter circuits can be used, as those shown in Good, "Crystal Filter for 'Phone Reception," QST, October, 1951. For a more advanced design for a crystal-filter SSB exciter, which includes voice-control operation, see Weaver \& Brown, "Crystal Iattice Filters for Transmitting and Receiving," QST, August, 1951.

A Two-Stage Linear Amplifier

The amplifier shown in Figs. 12-17, 12-19 and 12-20 is designed to follow a low-powered SSB exciter. As can be seen from the wiring diagram, Fig. 12-18, an 807 Class A driver is used to exeite a pair of 811 -As operating Class I3. Only a few watts is required to drive the 807 , since it is never operated with grid current and the driving power is necessary only to overcome circuit losses. The 811-As will deliver about 180 watts peak with 1000 volts on the plates and 250 watts peak at 1200 volts. Operation as a limear amplifier for SSB with 1500 volts on the plates is not recommended because the driver stage is likely to introduce too much distortion, although a small amount of fixed bias ($3-41 / 2$ volts) on the grids of the 811-As will permit c.w. operation at this higher plate voltage.

The circuit is not unlike ordinary Class C practice, except for the bias voltages involved. The 80^{-}stage uses cathode bias, and the 811-As run with zero bias (bias terminals short-circuited by a jumper wire). The most important factor in linear operation is the loading of the amplifiers, and thus provision has been made for varying the coupling on the $80{ }^{\circ}$ plate and the plates of the $811-\mathrm{As}$. The 807 loading is adjusted by varsing the position of the link coil in L_{3}, and the link to L_{6} is controlled from the front panel.

A low-inductance by-pass condenser, C_{2}, made from a picce of coaxia! line, helps to eliminate parasitics in the 807 stage, as does returning the sereen by-pass condenser, C_{3}, to the cathode instead of to ground. Grid chokes, L_{4} and L_{5}, were found necessary to avoid high-frequency para-

Fig. 12.17-A iwostage lincar amplifior for bowsting the power level of a SSB signal. Large knohs control the antenna coupling and output plate tuning. The meteri indicate grid and plate currents of the push-pull 811-A output stage.
sitic oscillations in the $811-\mathrm{A}$ stage, as were resistors R_{3}, R_{4} and R_{5}. All wiring other than r.f. was run in shield braid. Filament by-pass condensers in the 811-A stage were found to be unnecessary.

Construction

The amplifier is built on a 13 by 17 by 3 -inch atuminum chassis. The panel is an aluminum relay-rack panel, $153 / 4$ inches high, that is held to

Fig. 12.19 - I rear view of the linear amplifier, showing the push-pull 811 - A output amplifier and the 807 driver. The cover of the rectangular shichl can slides off for access to the final grid coil. The round shield cans are for the 80^{-6} grid and plate coils.
the chassis by the shaft bearings and meters, and it is further braced by two strips of $1 / 16$ by $1 / 2$-inch brass.

The grid coil for the $80{ }^{-}$plugs in to a socket mounted at the rear of the chassis and shielded ber an ICA No. 1549 3-inch diameter aluminum shield can.

CLASS-B AMP.

Fig. 12-18-Wiring diagram of the linear amplifier.
$\mathrm{C}_{1}-140-\mu \mu \mathrm{fd}$. variable (Millen 19140).
$\mathrm{C}_{2}-13-\mu \mu \mathrm{fd}$. tubular, made of $\mathrm{IR} \mathrm{G}-58 / \mathrm{U}$. Active length, 6 inches.
($\mathrm{C}_{3}, \mathrm{C}_{4}-0.0 \mathrm{~K} \overline{5}-\mu \mathrm{ffl}$. dise ceramic.
($\mathrm{C}_{5}-140-\mu \mu \mathrm{fd}$. variable (Millen 22140).
C. $-0.001-\mu \mathrm{fd}$, 1200-volt mica.
$\mathrm{C}_{7}-$ IJual variable, $100 . \mu \mu \mathrm{fi}$. per section (Villen 24100).
$\mathrm{C}_{8}, \mathrm{C} 9$ - Disc-tvpe neutralizing condensers with feedthrough hase (13 ud NC. 853).
Cto - Dual variable, $200-\mu \mu \mathrm{fd}$, per section, 0.077 -inch spacing (National MC-200I)).
$R_{1}-100$ ohms, $1 / 2$ watt.
K_{2} - 680 ohms. 2 watts.
$R_{3}-2700$ ohms, 4 watts (12700 -ohm in series-parallel).
$\mathrm{R}_{4}, \mathrm{R}_{5}-20$ ohms, 2 watts.
$R_{6}-1000$ ohms, 1 watt.
Ill resistors are composition, not wirewound.
L.4, $1.5-9$ turns No. 12 enam., $1 / 2$-inch diarneter, $11 / 4$ inches long.
J_{1} - Input connector (Jones S-101-I)).
J_{2} - Coaxial-line connertor (Amphenol 83-1/k).
M. H_{1} - 0 - 50 milliammeter.
$\mathrm{MA}_{2}-0-500$ milliammeter.
RFC $C_{1}-2.5-m h .125 \cdot m a$. r.f. choke.
RFCC2 - $250-\mu \mathrm{h}$. $75-\mathrm{ma}$. r.f. choke (M illen 34300).
RFC K_{3} - $5-\mathrm{mh}$. 300 -ma. r.f. choke (National IR300S).
$\mathrm{l}_{1}-6,3$-volt 10 -amp. transformer (Stancor P-6308).

COIL TABLE FOR TWO-STAGE LINEAR AMPLIFIER

Band	Turns	rire No.	Diam.	Length	$\mu \mathrm{h}$.	Link	Spacing
L_{2} *							
	221/2	20 enam.	1	$3 / 4$	10	4	316
	25	20 enam.	1	7/8	11.2	4	
14	12	18 enam.	$11 / 4$	11/8	3.3	4	Idjustable
3.9	22	16 enam.		$21 / 4$	20	3	Adjustalil
14	8	. 15 tuting	$21 / 2$	$33 / 4$	2.3	3	Adjustathe
* Wound on Millen 4.5004 plug-in furm. ** Wound on Millen tivens plus-in form.							
*** National AR-16-10S and AR-16-20S. T-meter coil shumel							
$150-\mu \mu \mathrm{fd}$. mica condenser.							

variable link mounts on the jack bar and is controlled from the panel.

Adjustment

With a signal from the excitor coupled through J_{1}, and plate and sereen voltages on the 807 , it should be quite possible to drive the 811-. grid current off soale (with no plate voltage on the $811-\mathrm{A}$). Back off the excitation to about 25 mat. gride current and neutralize the $811-\mathrm{A}$ stage by adjusting C_{8}^{γ} and C_{9}. The "flick" in grid current as Cio is tuned through resonance can be used, but a more sensi-

The plate coil plugs in to a sorket mounted 4 inches above the chassis. The platform for the socket also shields the phate condernser, ('s. Another 3 -inch diameter shield can proterets the 807 plate coil. The plate br-pass condenser, Co, is mounted under the chassis noar the 807 socket, and the lead from ('s and L_{2} is brought down to it in shickded wire.
The grid coil for the 811-, Is is shieded by an ICA No. $29842+$ by 5 hy 6 aluminum utility cabinet. To simplify eoil changing, the eabinet is fastened to the chassis and a friction-fit cover is made from a piece of sheret aluminum. The inside lips on the top of the cabinet should be bent down to allow more room for the hand that changes coils.

The output tank condenser, C_{16}, is mounted on the ehassis with aluminum brackets that also support the jack har for the output coil, L_{6}. The

Fig. 12-20-I inderneath the chassis, dhowing all but r.f. leads in whiehl braid. The erils in the leads from the split-stator grid condensar are paranitio ehokes.

CHAPTER 13

Transmission Lines

The place where rif. power is generated is very frequently not the place where it is to be utilized. A transmitter and its antenna are a good example: The antenna, to radiate well, should be high ahove the ground and should be kept clear of trees, buildings and other objects that might absorb energy, but the transmitter itself is most conveniently installed indoors where it is rataly acerssible. There are numerous other instances where power must be delivered from one point to another, even though the distance mary be only a few feret.

The means by which power is transported from one spot to another is the r.f. transmission line. At radio frequencies a line exhibits en-
tirely different characteristics than it does at commeretal power frequencies. This is because the sped at which electrical energy travols, while tremendously high as compared with mechanical motion, is not infinite. The peculiarities of r.f. transmission lines result from the faet that an interval comparable with the time of an r.f. cycle must elapse hefore energy laving one point in the rircuit can reach another just a short distance away.
The discussion to follow assumes that the line consists of two parallel wires, soparated be a distance very small compared with the wavelength. The parallel-eonductor lime is not the only type, but the same principles apply to all varricties of limes.

Operating Principles

Suppose we have a battery and a pair of parallel wires extending to a very great distance. It the moment the battery is ronnected to the wires, electrons in the wire near the positive terminal will be attracted to the battery, and the same number of electrons in the wire near the negative battery terminal will be repelled outward along the wirc.

Thus a current flows in each wire near the battery at the instant the battery is connected. However, a definite time interval will elapse before these currents are evident at a distance from the battery. The time interval may be very small. For example, one-millionth of a second (one microsecond) after the connection is made the currents in the wires will have traveled 300 meters, or nearly 1000 feet, from the battery terminals.

The current is in the nature of a charging current, flowing to charge the capacitance between the two wires. But unlike an ordinary condenser, the conductors of this "linear" condenser have appreciable inductance. In fact, we may think of the line as being composed of a whole series of small inductances and capacitances connected as shown in Fig. 13-1, where each coil is the inductance of a very short section of one wire and each condenser is the capacitance between two such short sections.

Characteristic Impedance

An infinitely-long chain of coils and condensers connected as in Fig. 13-1, where each L is the same as all others and all the Cs have the same value, has an important property. To an electrical impulse applied at one end,
the combination appears to have an impedance - called the characteristic impedance or surge impedance - that is approximately equal to $\sqrt{L / C}$, where L and (" are the inductance and capacitance per unit length. This impedance is purely resistive.

In defining the characteristic impedance as $\sqrt{L / C}$, it is assumed that the conductors have no inherent resistance - that is, there is no I^{2} / R loss in them - and that there is no power loss in the dielectric surrounding the conductors. In other words, it is assumed there is no power loss in or from the line no matter how great its leugth. This does not seem consistent with calling the characteristic impedance a pure resistance, which implies that power supplied is all dissipated in the line. But in an infinitely-long line the effect, so far as the source of power is concerned, is exactly the same as though the power were dissipated in a resistance, because the power leaves the source and travels outward forever along the line.
The characteristic impedance determines the amount of current that can flow when a given voltage is applied to an infinitely-long

Fig. 1.3.1-Equivalent of a transmission line in Inmped circuit constants.
line, in exactly the same way that a definite value of artual resistance limits current flow when a given voltage is applied.

The inductance and capacitance per unit length of line depend upon the size of the conductors and the sparing between them. The closer the two conductors and the greater their diameter, the higher the capacitance and the lower the inductance. A line with large conductors closely spaced will have low impedance, while one with small conductors widely spaced will have relatively high impedance.

"Matched" Lines

Actual transmission lines do not extend to infinity but have a. definite length and are connerted to, or terminate in, a load at the "output" end, or end to which the power is delivered. If the load is a pure resistance of a value equal to the characteristic impedance of the line, the current traveling along the line to the load does not find conditions changed in the least when it meets the load; in fuct, the load just looks like still more transinission line of the same characteristic impedance. Consequently, comecting such a load to a short transmission line allows the current to travel in exactly the same fashion as it would on an infinitely-long line.

In other words, a short line terminated in a purely-resistive load equal to the characteristic impedance of the line acts just as though it were infinitely long. Such a line is said to be matched. In a matched transmission line, power travels outward along the line from the source until it reaches the load, where it is completely absorbed.

$R . F$. on Lines

The discussion above, although based on direct-current flow from a battery, also holds when an r.f. voltage is applied to the line. The difference is that the alternating voltage causes the amplitude of the current at the input terminals of the line to vary with the voltage, and the direction of current flow also periodically reverses when the polarity of the applied voltage reverses. In the time of one cycle the energy will travel a distance of one wavelength along the line wires. The current at a given instant at any point along the line is the result of a voltage that was applied at some earlier instant at the input terminals. Hence the instantancous amplitude of the current is different at all points in a one-wavelength section of line; in fact, the current flows in opposite directions in the same wire in adjacent half-wavelength sections. However, at any given point along the line the current goes through similar variations with time that the current at the input terminals did.

The result of all this is that the current (and voltage) travels along the wire as a series of waves having a length equal to the velocity of travel divided by the frequency of the a.c. voltage. On an infinitely-long line, or one prop-
erly matched at the load, an ammeter inserted anywhore in the line will show the same current, since the ammeter averages out the variations in current during a cycle. It is only when the line is not properly matched that the wave motion becomes apparent. This is discussed in the next section.

STANDING WAVES

In the infinitely-long line for its matched counterpart) the impedance is the same at any point on the line because the ratio of voltage to current is always the same. However, the impedance at the end of the line in Fig. 13-2 is zero - or at least extremely small - because the line is short-circuited at the end. A.given amount of power in a very low impedance will result in a very large current and a very small voltage, as compared with the current-voltage ratio that exists in a few hundred ohms (which is a typical impedance value for some types of transmission lines). Souncthing has to happen, therefore, when the power traveling along the transmission line meets the short-circuit at the end.

What happens is that the outgoing power, on meeting the short-circuit, reverses its direction of flow and goes back along the transmission line toward the input end. There is a large current in the short-circuit, but substantially no voltage across the line at this point. We now have a voltage and current representing the power going outward toward the short-circuit, and a second voltage and current representing the reflected power traveling back toward the source.

The reflected current travels at the same speed as the outgoing current, so its instantaneous value will be different at every point along the line, in the distance represented by the time of one cycle. At some points along the line the phase of the outgoing and reflected currents will be such that the currents cancel each other while at others the amplitude will be doubled. At in-between points the amplitude is betwern these two extremes. The points

Fig. 13-2 - Standing waves of voltage and current along a short-circuited transmission line.
at which the currents are in and out of phase depend only on the time required for them to travel and so depend only on the distance along the line from the point of reflection.

In the short-circuit at the end of the line the two current components are in phase and the total current is large. At a distance of one-half wavelength hack along the line from the shortcircuit the outgoing and reflected components will again be in phase and the resultant current will again have its maximum value. This is also true at any point that is a multiple of a half-wavelength from the short-eireuited and of the line.

The outgoing and reflected eurrents will cancel at a point one-quarter wavelength, along the line, from the short-circuit. At this point, then, the current will be zero. It will also be zero at all points that are an odd multiple of one-quarter wavelength from the short-circuit.

If the current along the line is measured at successive points with an ammeter, it will be found to vary about as shown in Fig. 13-2 13 . The same result would be obtained by measuring the current in either wire, since the ammeter camot measure phase. However, if the phase could be checked, it would be found that in each successive half-wavelength section of the line the currents at any given instant are flowing in opposite directions, as indicated by the solid line in Fig. 13-2C. Furthermore, the current in the second wire is flowing in the opposite direction to the current in the adjacent section of the first wire. This is indicated by the broken curve in Fig. 13-2C. The variations in current intensity along the transmission line are referred to as standing waves. The point of maximum line current is called a current loop or current antinode and the point of minimum line current a current node.

Voltage Relationships

Since the end of the line is short-circuited, the voltage at that point has to be zero. This can only be so if the voltage in the outgoing wave is met, at the end of the line, by a reflected voltage of equal amplitude and opposite polarity. In other words, the phase of the voltage wave is reversed when reflection takes place from the short-circuit. This reversal is equivalent to an extra half-cyele or halfwavelength of travel. As a result, the outgoing and returning voltages are in phase a quarter wavelength from the end of the line, and again out of phase a half-wavelength from the end. The standing waves of voltage, shown at D in Fig. 13-2, are therefore displaced by onequarter wavelength from the standing waves of current. The drawing at H shows the voltages on both wires when phase is taken into account. The polarity of the voltage on each wire reverses in each half-wavelength section of transmission line. A voltage maximum is called a voltage loop or antinode and a voltage minimum is called a voltage node.

Open-Circuited Line

If the cud of the line is open-circuited instead of short-circuited, there can be no current at the end of the line but a large voltage can exist. Again the outgoing power is reflected back toward the source. In this case, the out-
(A)

Fig, 13.3-Standing waves of corrent and voltage along an open-circuited tranmission line.
going and reflected components of current must be equal and opposite in phase in order for the total current at the end of the line to be zero. The outgoing and reflected components of voltage are in phase and add together. The result is that we again have standing waves, but the conditions are reversed as compared with a short-circuited line. Fig. 13-3 shows the open-circuited line case.

Lines Terminated in Resistive Load

Fig. 13-4 shows a line terminated in a resistive load. In this case at least part of the outgoing power is absorbed in the load, and so is not available to be reflected back toward the source. Because only part of the power is reflected, the reflected components of voltage and current do not have the same magnitude as the outgoing components. Therefore neither voltage nor current cancel completely at any point along the line. However, the speed at which the outgoing and reflected components travel is not affected by their amplitude, so the phase relationships are similar to those in open- or short-circuited lines.

It was pointed out earlier that if the load resistance, Z_{r}, is equal to the characteristic impedance, Z_{0}, of the line all the power is absorbed in the load. In such a case there is no reflected power and therefore no standing waves of current and voltage. This is a special case that represents the change-over point between "short-circuited" and "open-circuited" lines. If Z_{r} is less than Z_{0}, the current is largest at the load, while if Z_{r} is greater than Z_{0} the voltage is largest at the load. The two conditions are shown at B and C , respectively, in Fig. 13-4.

The resistive termination is an important practical case. The termination is seldom an
(A)

(B)

Fig. I.3-4-Standing waves on a Iransmission line terminated in a resistive load.
actusl resistor, the most common terminations being resonant circuits or resonant antemat systems, both of which have essentially resistive impedances. If the load is ractive as well as resistive, the operation of the line resembles that shown in Fig. 13-4, but the presence of reactance in the load caluses two modilications: The loops and nulls are shifted toward or away from the load; and the amount of power reflected back toward the souree is increased, as compared with the amount reflected by a purely resistive load of the same total impedance. l3oth effects become more pronounced ats the ratio of ractance to resistance in the load is made larger.

Standing-Wave Ratio

'lhe ratio of maximum current to minimum current along a line, Fig. 13-5, is called the standing-wave ratio. The same ratio holds for maximum voltage and minimum voltage. It is a measure of the mismatrh betwern the load and the line, and is equal to 1 when the line is perfectly matched. (In that rase the "maximum" and "minimum" are the same, since the current and voltage do not vary along the line.) When the line is terminated in a purely-resistive load, the standing-wave ratio is

$$
\begin{equation*}
\text { S.H.R. }=\frac{Z_{r}}{Z_{0}} \text { or } \frac{Z_{0}}{Z_{\mathrm{r}}} \tag{13-A}
\end{equation*}
$$

Where S.IV.R. = Ntanding-wave ratio
$Z_{\mathrm{r}}=\operatorname{lmpedance}$ of load (must be
pure resistance)
$Z_{0}=$ Chatacteristic impedance of line
Example: A line having a characteristic imperlance of 300 ohms is terminated in a resistive load of 25 ohms. The s.w.r. is

$$
S . W \cdot R .=\frac{Z_{0}}{Z_{5}}=\frac{300}{25}=12 \text { to } 1
$$

It is customary to put the larger of the two quantities, Z_{r} or Z_{0}, in the numerator of the fraction so that the s.w.r. will be expressed by a number larger than 1 .

It is easier to measure the standing-wave ratio than some of the other quantities (such as the impedance of an antenna) that enter into transmission-line computations. Consequently,
the s.w.r. is at convoniont basis for work with lines. The higher the s.w.r., the greater the mismatch beotween line and load. In practical lines, the power loss in the line itself inreases with the sw.r.

INPUT IMPEDANCE

The input impedance of a transmission line is the imperdance sern looking into the sending-end or input terminals; it is the impordance into which the source of power must work whon the line is connerted. If the load is perfectly matched to the line the line appears to be infinitely long, as stated earlior, and the input impedance is simply the characteristic impedance of the line itself. However, if there are standing waves this is no longer true; the input impedance may have a wide range of values.

This can be understood be referring to Figs. 13-2, 13-3, or 13-4. If the lime length is such that stamling waves cause the voltage at the input terminals to be high and the curvent low, then the input impedane is higher than the Z_{0} of the line, since impedance is simply the ratio of voltage to current. Conversely, low voltage and high current at the imput terminals mean that the input imperdance is lower than the line Z_{0}. ('omparison of the three drawings also shows that the range of input impedance values that may be concountered is greater when the far end of the line is opern- or short-eircuited than it is when the line has a resistive load. In other words, the higher the s.w.r. the greater the range of input imperdance values when the line length is variod.

In aldition to the variation in the absolute value of the input impedance with line length, the presence of standing waves also causes the input impedanere to contain both reactanere and resistancer, even though the load itself mat be a pure pesistance. The only execptions to this occur at the exact current loops or nodes, at which points the input impedance is a pure resistance. These are the only points at which the outgoing and reflected voltages and currents are exactly in phase: At all other distances along the line the current either leads or lags behind the voltage and the effert is exactly the same as though a capacitance or

Fig. 13.5-Measurement of standing-wave ratio. In this drawing, $I_{\text {max }}$ is $1 . \overline{\mathrm{D}}$ and I_{mm} is $0 . \bar{n}$, so the s.w.r. $=I_{\text {nas }} / I_{\text {min }}=1.5 / 0.5=3$ to 1.
inductance were part of the input impedance of the line.

The in put impedance can be represented by either a resistance and a capacitance, or as a resistance and an inductance, as shown in Fig. 13-6. Whether the impedance is induetive or eapacitive depends on the characteristies of the load and the lengt h of the line. It is possible to represent the equivalent circuit by resistance and reactanee either in series or parallel, so long as the total impedaner and phase anglo are the same in either case. Meeting this last condition requires different values of resistance and reactane in the series ease than in the parallel case.

Fig. IB-6 - Series and parallel equivalente of a line whose input impedance has both reactive and resistive components. "The series and parallel equivalents do not, have the same values; e.g., in A, I. does not equal $1!^{\prime}$ and R does not equal R^{\prime}.

The magnitude and character of the input impedance is quite important, sinee it determines the mothod by which the power sourer must be coupled to the line. The calculation of input impedance is rather complieated and its measurement is not feasible with ordinary equipment. Fortumatoly, in amateur work, it is unnecessary either to caleubate or measure it. The proper coupling can be achieved be relatively simple methods deseribed later in this chapter.

Unterminated Lines

The input impedance of a short-rimuited or open-circuited line not an exact multiple of one-quarter wavelength long is practically a pure reactanere. This is because there is very little power lost in the line. Surh lines are frequently used as "lincar" inductances and capacitances.

If a shorted line is hess than a quarter wave long, as at X in Fig. 13-2, it will have industive reactance. The reactance increases with the line length up, to the quarter-wave puint. Bewond that, as at re the reactance is capacitive, high moar the quarter-wave point and beroming lower as the half-wave point is approached. It them alternates betwern induetive and capacitive in successive quarter-wave
scetions. Just the reverse is true of the opencircuited line.

At exact multiples of a quarterwavelengt the impedance is purely resistive. It is apparent, from examination of 13 and I) in Fig. 13-2, that at points that area multiple of a half-wavelength - i.c., $1 / 2,1,11 / 2$ wavelengths, ete. - from the short-circuited end of the line the current and voltage have the same values that they do at the short-cireuit. In other words, if the line were an ceact multiple of a half-wavclength long the generator or souree of power would "look into" a short-circuit. ()n the other hand, at points that are an odd multiple of a quarter wavelength - i.e., $1 / 4,3 / 4,11 / 4$, ete. - from the short-circuit the voltage is maximum and the current is zoro. since $Z=E / I$, the impedance at these points is theoretically infinite. (Actually it is very high, but not infinite. This is bereases the emrent does not artually go to zoro when there are losses in the line. Losses aro always present, but usually are small.)

Impedance Transformation

The fact that the input impedance of a line dopends on the s.w.r. and line length can be used to advantage whon it is necessary to transform a given imperdance into another value.
study of lig. 13-4 will show that, just as in the open- and short-cireuited cases, if the line is one-half wavelength long the voltage and curent are exactly the same at the input terminals as theg are at the load. This is also true of lengths that are integral multiples of a half wavelongth. It is also true for all values of s.w.r. Hence the input impedance of any line, no matter what its Zo, that is a multiple of a half-wavelongth long is exactly the same as the load impodance. Such a line can be used to transfer the impedanere to a new location without changing its value.

When the line is a quarter wavelength long, or ath odd multiple of a puarter wavelength, the load impedanee is "inverted." That is, if the current is low and the voltage is high at the load, the input impedanee will be such as to require high current and low voltage. The relationship between the load impedance and input impedance is given by:

$$
\begin{equation*}
Z_{\mathrm{s}}=\frac{Z_{0}{ }^{2}}{Z_{\mathrm{r}}} \tag{13-B}
\end{equation*}
$$

where $Z_{s}=$ Impedance looking into lime (ino length an odd multiple of onequarter wavelength)
$Z_{\mathrm{r}}=$ Impedance of load (must be pure resistance)
$\%_{0}=$ Characteristie impodance of line
Fxample: A quarter-wavelength line having a characteristic impedance of 300 ohms is terminated in a resistive load of 75 ohms. The immedance fooking intu the input or sending end of the line is

$$
Z_{\mathrm{a}}=\frac{Z 0^{2}}{Z_{\mathrm{r}}}=\frac{(500)^{2}}{75}=\frac{25(0,(000}{75}=3333 \mathrm{ohns}
$$

If the formula above is rearranged, we have

$$
\begin{equation*}
Z_{0}=\sqrt{Z_{\mathrm{s}} Z_{\mathrm{r}}} \tag{13-C}
\end{equation*}
$$

This means that if we have two values of impedance that we wish to " match," we can do so if we connect them together by a quarterwave transmission line having a characteristic impedance equal to the square root of their product. A quarter-wave line, in other words, has the characteristics of a transformer.

Resonant and Nonresonant Lines

Because the input impedance of a line operating with a high s.w.r. is critically dependent on the line length, and furthermore is usually reactive as well as resistive, speeial tuning means are required for effective power transfer from the source to the line. Lines operated in this way are commonly called "tuned" or "resonant" lines. On the other hand, if the s.w.r. is low the input impedance is close to the Z_{0} of the line and does not vary a great deal with the line length. Such lines are called "flat," or "untuned", or "nonresonant".

There is no sharp line of demarkation between tuned and untuned lines. If the s.w.r. is below 1.5 to 1 the line is essentially Hat, since the same coupling method will work with all line lengths. If the s.w.r. is above 3 or 4 to ${ }^{-} 1$ the type of coupling system, and its adjustment, will depend on the line length and such lines fall into the "tuned" category.

It is always advantageous to make the s.w.r. as low as possible. "Tuning the line" becomes necessary only when a considerable mismatch between the load and the line has to be tolerated. The most important practical example of this is when a single antenna is operated on several harmonically-related frequencies, in which case the antenna impedance will have widely-different values on different harmonics.

RADIATION

Whenever a wire carries alternating current the electromagnetic fields travel away into space with the velority of light. At power-line frequencies the field that "grows" when the current is increasing has plenty of time to return or "collapse" about the conductor when the current is decreasing, because the alternations are so slow. But at radio frequencies fields that travel only a relatively short dis-
tance do not have time to get back to the conductor before the next cycle commences. The consequence is that some of the electromagnetic energy is prevented from being restored to the conductor; in other words, energy is radiated intospace in the form of electromagnetic waves.

The amount of energy radiated depends, among other things, on the length of the conductor in relation to the frequency or wavelength of the r.f. current. If the conductor is very short compared to the wavelength the energy radiated will be small. However, a transmission line used to feed power to an antenna is not short in this sense; in fact, it is almost always an appreciable fraction of a wavelength long and may have a length of several wavelengths.

The lines previously considered have consisted of two parallel conductors of the same diameter. Provided there is nothing in the system to destroy symmetry, at every point along the line the current in one conductor has the same intensity as the current in the other conductor at that point, but the currents flow in opposite directions. This was shown in Figs. $13-2 \mathrm{C}$ and $13-3 \mathrm{C}$. It means that the fields set up about the two wires have the same intensity, but opposite directions. The consequence is that the total field set up about such a transmission line is zero; the two fields "cancel out." Hence no energy is radiated.

Actually, the fields do not completely cancel out because for them to do so the two conductors would have to occupy the same space, whereas they are slightly separated. However, the cancellation is substantially complete if the distance between the conductors is very small compared to the wavelength. Radiation will be negligible if the distance between the conductors is 0.01 wavelength or less, provided the currents in the two actually are balanced as described.

The amount of radiation also is proportional to the current flowing in the line. Because of the way in which the current varies along the line when there are standing waves, the effective current, for purposes of radiation, becomes greater as the s.w.r. is increased. For this reason the radiation is least when the line is flat. However, if the conductor spacing is small and the currents are balanced, the radiation from a line with even a high s.w.r. is inconsequential. A small unbalance in the line currents is far more serious.

Practical Line Characteristics

The foregoing discussion of transmission lines has been based on a line consisting of two parallel conductors. Actually, the parallelconductor line is but one of two general types. The other is the coaxial or concentric line. The coaxial line consists of a round conductor placed in the center of a circular tube. The inside surface of the tube and the outside surface of the smaller inner conductor form the two conducting surfaces of the line.

In the coaxial line the fields are entirely inside the tube, because the tube acts as a shield to prevent them from appearing outside. This reduces radiation to the vanishing point. So far as the electrical behavior of coaxial lines is concerned, all that has previously been said about the operation of parallel-conductor lines applies. There are, however, practical differences in the construction and use of parallel and coaxial lines.

PARALLEL-CONDUCTOR LINES

A common type of parallel-eonductor line used in amateur installations is one in which two wires (ordinarily No. 12 or No. 14) are supported a fixed distance apart lyy means of insulating rods called "spacers." The spacings used vary from two to six inches, the smaller spacings being necessary at frequencies of the order of 28 Me , and higher so that radiation will be minimized. The construction is shown in Fig. 13-7. Such a line is sad to be airinsulated. Typical spacers are shown in Fig. 13-8. The characteristic impedance of such "open-wire" lines runs between about 400 and 600 ohms, depending on the wire size and spacing.

Parallel-conductor lines also are sometimes constructed of metal tubing of a diameter of $1 / 4$ to $1 / 2$ inch. This reduces the characteristic impedance of the line. such lines are mostly used as quarter-wave transformers, when different values of impedance are to be matched.

Fig. 13-7- Ty pical construction of open-wire line. The line conductor fits in a grove in the end of the spacer, and is held in place liy a tieswire anchored in a hole near the grome.

Prefabricated parallel-conductor line with air insulation has been developed as a low-loss line for television reception and can also be used in transmitting applications. This line consists of two No. 18 conductors held at a spacing of one inch by molded-on spacers. The characteristic impedance is 450 ohms.

A convenient type of manufactured line is one in which the parallel conductors are imbedded in low-loss insulating material (polyethylene). It is commonly used as a TV lead-in and has a characteristic impedance of 300 ohms. It is sold under various names, the most common of which is "Twin-Lead". This type of line has the advantages of light weight, close and uniform conductor spacing, flexibility and neat appearance. However, the losses in the solid dielectric are higher than in air, and dirt or moisture on the line tends to change the characteristic impedance. Moisture effects can be reduced by coating the line with silicone grease. A special form of $300-\mathrm{ohm}$ Twin-Lead for transmitting uses a polyethylene tube with the conductors molded diametrically opposite; the longer dielectrie path in such line reduces moisture troubles.

Fig. 13.8-Typical manufactured 1 ransmission lines and spacers.

In addition to 300 -ohm line, Twin-Lead is obtainable with a characteristic impedance of 75 ohms for transmitting purposes. Lightweight 75 - and 150 -ohm Twin-Lead also is available.

Characteristic Impedance

The characteristic impedance of an airinsulated parallel-conductor line is given by:

$$
\begin{equation*}
Z_{0}=276 \log \frac{b}{a} \tag{13-D}
\end{equation*}
$$

where $Z_{0}=$ Characteristic impedance
$b=$ Center-to-center distance between conductors
$a=$ Radius of conductor (in same units as b)
It does not matter what units are used for a and b so long as they are the same units. Both quantities may be measured in centimeters, incher, etc. since it is necessary to have a table of common logarithms to solve practical problems, the solution is given in graphical form

Fig. 13-9 - Chart showing the characteristic impedance of spaced-conductor parallel transmission lines with air dielectric. 'liubing sizes given are for outside diameters.
in Fig. 13-9 for a number of rommon conductor sizes.

In solid-diclectric paralleb-wonductor lines such as Twin-Lead the characteristic impedance cannot be calculated readily, because part of the electric field is in air as well ats in the solid dielectric.

Unbalance in Parallel-Conductor Lines

When installing paralleleconductor lines care should be taken to avoid introducing electrical unbatance into the system. If for some reason the current in one conductor is higher than in the other, or if the currents in the two wires are not exactly out of phase with each other, the electromagnetic fields will not cancel completely and a considerable amount of power may be radiat ed by the line.

Maintaining good line balance requires, first of all, a balaneed load at its end. For this reason the antenna should be fed, whenever possible, at a point where ach conductor "sees" exactly the same thing. Usually this means that the antemna system should be fed at its electrical conter. Even though the antenna appears to be symmetrical, physically, it can be unbalanced electrically if the part connected to one of the line conductors is inadvertently coupled to something (such as house wiring or a metal pole or roof) that is not duplicated on the other part of the antenna. Every effort should be made to keep the antenna as far as possible from other wiring or sizable metallic objects. The transmission line itself will cause some unbalance if it is not brought away from the antenna at right angles to it for a distance of at least a quarter wavelength.

In installing the line conductors take care to see that they are kept away from metal. The minimum separation between either conductor and all other wiring should be at least four or five times the conductor spacing. The

Fig. 13.10-Chart showing chararteristic impedance of varions air-insulated eoncentric lines.
shment capacitance introduced by close proximity to motallic objocts can dation off enough current (to ground) to unbalance the line currents, resulting in increased radiation. A shunt capacitanme of this sort also constitutes a re:ctive load on the line, causing an impedance "bumb" that will prevent making the line actually flat.

COAXIAL LINES

The most common form of coaxial line consists of either a solid or strathded-wise inner conductor surrounded by polyethylene dielectric. Copper braid is woven over the dielectric to form the outer conductor, and a waterproof vinyl covering is placed on top of the braid. This eable is made in a number of different diameters. It is moderately flexible, and so is convenient to install. some different types are shown in Fig. 13-8. This solid coaxial cable is commonly avalable in impedances approximating 0 and 70 ohms.
dir-insulated coasial lines have lower losses than the solid-dielectric type, but are less used in amateur work berase they are expensive and difficult to install as compared with the flexible cable. The common type of air-insulated coaxial line uses a solid-wire conductor inside a copper tube, with the wire held in the center of the tube by means of insulating "beads" at regular intervals.

Characteristic Impedance

The characteristic impedance of an airinsulated conxial line is given by the formula

$$
\begin{equation*}
Z_{0}=138 \log \frac{b}{a} \tag{13-E}
\end{equation*}
$$

where $Z_{0}=$ Charactoristie impedane
$b=$ Inside diameter of outer conduetor
$a=$ Outside diameter of inner conductor (in same units ats b)
Curves for typical conductor sizes are given in Fig. 13-10.

The formula for coaxial lines is approximately eorrect for lines in which bead spacers are used, provided the beads are not too closely spaced. When the line is filled with a solid dielectric, the characteristic impedance as given by the chart should be multiplied by $1 / \sqrt{K}$, where K is the dielectric constant of the material.

- ELECTRICAL LENGTH

In the discussion of line operation carlier in this chapter it was assumed that currents traveled along the conductors at the speed of light. Actually, the velocity is somewhat less, the reason being that electromagnetic fields travel more slowly in material dielectrics than they do in free space. In air the velocity is practically the same as in empty space, but a practical line always has to be supported in some fashion by solid insulating materials. The result is that the fields are slowed down;

Fig. 1.3-ll-Atemuation data for common types of transmission lines. Curve \hat{A} is the mominal attemuation of $600-$-rhim opet1-wire linewith No. 12 eonductors, not including dielectric loses in spacers nor possible radiation losses. Additional line data are given in 'Table 13-1.

the currents travel a shorter distance in the time of one cercle than they do in spare, and so the wavelength along the line is less than the wavelength would be in free spare at the same frequency.

Whenever roference is made to a line ats being so many wavelengths (such as a "half-wavelength" or "(quarter wavelength") long, it is to be understood that the electrical length of the line is meant. Its actual physical length as measured by a tape alwass will be somewhat

TABLE 13-1 Transmission-Line Data				
Type	Description or 'lype Number	Characteristic 1mpedance	Velocity F'actor	Capacitance ber foot: $\mu \mu \mathrm{ft}$.
Coaxial	$\begin{aligned} & \text { dir-insulated } \\ & \text { R(} ;-8 / 1 \\ & \text { R }(;-58 / \mathbf{1} \\ & \text { R }(;-11 / 1 \\ & \text { R(} ;-50 / 1 \end{aligned}$	$\begin{gathered} 30-100 \\ 33 \\ 53 \\ 73 \\ 73 \end{gathered}$	0. 85^{1} 11.60 0.60 0.06 0.66	29.5 28.5 20.5 21.0
Parallel-Conduetor		$200-6000$ $\because 3$ $\vdots 9$ 130 300 300 300	$\begin{aligned} & 0.9 .5^{2} \\ & 0.68 \\ & 0.71 \\ & 0.77 \\ & 0.82 \\ & 0.84 \\ & 0.85 \end{aligned}$	$\begin{array}{r} 10.0 \\ 20.0 \\ 10.0 \\ 5.8 \\ 3.9 \\ 3.0 \\ 3.0 \end{array}$
${ }^{1}$ Average figure for small-diameter lines with ceramic beads. ${ }^{2}$ Average figure for lines insulated with ceramic spacers at intervals of a few feet. ${ }^{3}$ Amphenol type numbers and data. Line similar to 141156 is made ly sceveral manufarturers, but rated loss may differ from that given in Fig. 13-11. 'I'ypes 14-(123, 14-0.6), and $14-022$ are thade for transmitting applications.				

less. The physical length corresponding to an electrical wavelength is given by

$$
\begin{equation*}
\text { Length in feet }=\frac{984}{f} \cdot V \tag{13-F}
\end{equation*}
$$

where $f=$ Frequency in megacyeles
$V=$ Volocity fartor
The velocity factor is the ratio of the aetual velority along the line to the velocity in free spare Values of V for sevoral common types of lines are given in 'Table 13-1.

Example: A 75-foot length of 300 -ohm 'TwinLabd is used to carry power to an antenna at a frepuency of 71.00 ke . From Trable $13-1,1$ is 0.82 . At this frequeney (7.15 Mc .) a wavelength is

$$
\begin{gathered}
\text { Length }(\mathrm{feet})=\frac{984}{f} \cdot V=\frac{0.4}{7.15} \times 0.82 \\
=137.6 \times 0.82=112.8 \mathrm{ft}
\end{gathered}
$$

The line length is therefore $\overline{75 / 112.8=0.665}$ waveleogth.
berause a quarter-wavelength line is frequently used as a lincar transformer, it is convenient to calculate the length of a quarterwave line directly. The formula is

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{246}{f} \cdot V \tag{13-G}
\end{equation*}
$$

where the symbols have the same meaning as above.

- LOSSES IN TRANSMISSION LINES

There are three ways by which power may be lost in a transmission tine: by radiation, by heating of the condactors ($I^{2} R$ loss), and by heating of the dieloctric, if any. There is no appreciable radiation loss from a conxial line, but radiation from a parallel-conductor line may exceed the heat losses if the line is un-

Fig. 13-12 - Effect of standing-wave ratio on line loss. 'The ordinates give the additional loss in deribels for the lons, under perfectly-matehed conditions, shown on the borizontal sealc.
balanced. Since radiation losses cannot readily be estimated or measured, the following discussion is based only on conductor and dielectric losses.

Heat losses in both the conductor and the dielectric inerease with frequency. Conductor losses also are greater the lower the characteristic impedance of the line, because a higher current flows in a low-imperdanere line for a given power input. The converse is true of dielectric losses because these increase with the voltage, which is greater on high-impedance lines. The dieleetrie loss in air-insulated lines is
negligible (the only loss is in the insulating spacers) and such lines operate at high efficiency when radiation losses are low.

It is convenient to express the loss in a transmission line in decibels per unit length, since the loss in dh. is directly proportional to the line length. Losses in various types of lines operated without standing waves (that is, terminated in a resistive load equal to the characteristie impedance of the line) are given in graphical form in Fig. 13-11. In these curves the radiation loss is assumed to be negligible.

When there are standing waves on the line the power loss increases as shown in Fig. 13-12. Whether or not the increase in loss is serious depends on what the original loss would have been if the line were perfectly matched. If the loss with perfect matching is very low, a large s.w.r. Will not greatly affect the efficiency of the line - i.e., the ratio of the power lelivered to the load to the power put into the line.

> Example: A 150-foot length of R(i-11/C' cable is oprerating at 7 Mc . with a 5 -to-1 s.w.r. If perfertly matehed, the loss from lig. 13-11 wothd be $1 . j \times 0.4=0.6 \mathrm{dt}$. From Fig. $13-12$ the additional loss lecanse of the s.w.r. is 0.73 db . The total loss is therefure $(0.6+0.73=1.33 \mathrm{~d})$.

An appreciable s.w.r. on a solid-dielectrie line may result in excessive loss of power at the higher frequencies. Such lines, whether of the parallel-conductor or coaxial type, should be operated as nearly flat as possible, particularly when the line kength is more than 50 feet or so. As shown by Fig. 13-12, the increase in line loss is not too serious so long as the s.w.r. is below 2 to 1 , but increases rapidly when the sw.r. rises above 3 to 1. Tuned transmission lines such as are used with multiband antemons always should be air-insulated, in the interests of highest efficiency.

Matching the Load to the Line

The load for a transmission line may be any device capable of dissipating r.f. power. When lines are used for transmitting applications the most common type of load is an intenna, but there are also practical bases where the grid circuit of a power amplifier may represent the load. When a transmission line is connected between an antenna and a recciver, the receiver input circuit (not the antenna) is the load, berause the power taken from a passing wave is delivered to the receiver.

Whatever the application, the ronditions existing at the load, and only the load, determine the standing-wave ratio on the line. If the load is purely resistive and equal in value to the characteristic impedance of the line, there will be no standing waves. If the load is not purely resistive, and/or is not equal to the line Z_{0}, there will be standing waves. No adjustments that can be made at the input end of the line can change the s.w.r., nor is it affected by ehanging the line longth.

Only in a few special cases is the load in-
herently of the proper value to mateh a practicable transmission line. In all other cases it is necessary rither to operate with a mismatch and aceept the s.w.r. that results, or else to take steps to bring about a proper match between the line and load by means of transformers or similar devices. Impedance-matehing transformers may take a variety of physieal forms, depending on the circumstances.

Note that it is essential, if the s.w.r. is to be made as low as possible, that the load at the point of ronnertion to the transmission line be purely resistive. In general, this requires that the load be tuned to resonance. If the load itself is not resonant at the operating frequency the tuning sometimes can be accomplished in the matching system.

- THE ANTENNA AS A LOAD

Every antenna system, no matter what its physical form, will have a definite value of impedance at the point where the line is to be connected. The problem is to transform this
antenna input impedance to the proper value to match the line. In this respect there is no one "best" type of line for a particular antenna system, because it is possible to transform impedances in any desired ratio. Consequently, any type of line may be used with any type of antenna. There are frequently reasons other than impedance mateling that dictate the use of one type of line in preference to another, such as ease of installation, inherent loss in the line, and so on, but these are not considered in this section.

Although the input impedance of an antenna system is seldom known very accurately, it is often possible to make a reasonably close estimate of its value. The information in the chapter on antennas can be used as a guide.

Matching circuits may be constructed using ordinary coils and condensers, but are not used very extensively because they must be supported at the antenna and must be weatherproofed. The systems to be described use linear transformers.

The Quarter-Wave Transformer or " Q " Section

As described earlier in this chapter, a quarter-wave transmission line may be used as an impedance transformer. Knowing the antenna impedance and the characteristic impedance of the transmission line to be matehed, the required characteristic impedance of a matching section such as is shown in Fig. 13-13 is

$$
Z=\sqrt{Z_{1} Z_{0}}
$$

where Z_{1} is the antenna impedance and Z_{0} is the characteristic impedance of the line to which it is to be matrhed.

> Example: To mateh a 600 -olim line to an aneenna presenting a $72-$ ohm load, the quarterwave nathing section would require a characteristic impedance of $\vee 72 \times 600=\sqrt{43,200}$ $=208$ ohms.

The spacings between conductors of various sizes of tubing and wire for different surge impedances are given in graphical form in Fig. 13-9. (With $1 / 2$-inch tubing, the spacing in the example above should be 1.5 inches for an impedance of 208 ohms .)

The length of the quarter-wave matching section is given by Equation $13-\mathrm{G}$.

The antenna must be resonant at the operating frequence: Setting the antenna length by formula is amply aceurate with single-wire antennas, but in other systems, particularly

Fig. 13.13- "Q" matching section, a quarter-wave impedance transformer.

Fig. 13-14 - Natching the antenna to the line by means of a stub, Y. Curves for determining the lengths X and) are given in Vigs, 13-15 and 13-16, for the case where the line, section X and section Y all have the same Characteristic impedance.
close-spared arrays, the antenna should be adjusted to resonance before the matching section is connerted.

When the antenna input impedance is not known accurately, it is advisable to construct the matching section so that the sparing between conductors can be changed. The sparing then may be adjusted to give the lowest possible s.w.r. on the transmission line.

Stub Matching

When a transmission line is not matched by the load, the impedance looking into the line toward the load varies with the distance from the load, as discussed earlier in this chapter. Considering the input impedance to be equivalent to a resistance in parallel with a reactance, at some distance along the line such as X in lrig. 13-14 the resistive part of the input impedance will be equal to the Z_{0} of the line. If at this point a reactance equal to the reatotive part of the input impedance, but of the opposite type, is connected arross the line, the reactances will cancel and leave only the resistive component. From this point back to the transmitter or other source of energy the line will be matehed.

The reactances used for matching in this way are usually linear reactances - sections of transmission line - called stubs. Stubs may be open or closed, depending on whether the free end is left open or is short-circuited, according to the type of reactance required in a particular case. The trpe and length of stub, as well as the point at which it should be attached to the line, can be found without any knowledge of the antenna input impedance, providing that the s.w.r. on the line can be measured before the stub is attarhed, and providing that the position of a current node (voltage loop) can be determined under the same conditions.

When the s.w.r. and the position of a current node are known Figs. 13-15 and 13-16 give the stub information necessary for impedance matching. Stub lengths are given in wavelengths, which may be converted to fect with the help of Equation 13-F. The data in Figs. $13-15$ and $13-16$ are based on the assumption

Fig. 13-15 - Graph for determining position and length of a shorted stub. Dimensions may le converted to linear units after values have been taken from the graph.
that the line and stub both have the same Z_{0}.
With this sustem of matching it is not necessary that the anterna system be exactly resonant, since the match is hased on the position of a current node along the line. The node nearest the antenna should be used for determining the position of the stub so that as much as possible of the transmission line will be operating with a low s.w.r.

Study of the curves in Figs. 13-15 and 13-16 will show that when the initial s.w.r. is high (over 4 to 1) the sum of the stub) length and distance from a current node is very close to 0.25 wavelength in the case of the closed stub and to 0.5 wavelength in the case of the open stub. In such cases the system may be visualized as shown in Figs. 13-17, as though a quarter-wave section of line formed a transformer along which the main transmission line can be tapped for impedance matching. When using this concept the antenna system should first be resonated to the operating frequency without the matching section attached. The positions of the line taps on the matching sertion are then adjusted to give the lowest possible s.w.r. on the feed line.

Folded Dipoles

A half-wave antenna element itself may he used to match various line impedances if it is split into two or more parallel conductors with

Fig. 13.16 - Graph for determining position and length of an open stub. Dimensions may be converted to linear units after values have been taken from the graph.
the transmission line attached at the center of only one of them. Various forms of such "folded dipoles" are shown in Fig. 13-18. Currents in all conductors are in phase in a folded dipole, and since the conductor spacing is small the folded dipole is equivalent in radiating properties to an ordinary single-conductor dipole. However, the current flowing into the input terminals of the antenna from the line is the current in one conductor only, and the entire power from the line is delivered at this value of current. This is equivalent to saying that the input impedance of the antenna has been raised hy splitting it up into two or more conductors.

If the conductors of a folded dipole are all the same diametor and the spacing between them is small, the impedanee at the imput terminals is approximately equal to the input impedance of an ordinary dipole multiplied by the square of the number of conductors. A simple half-wave antenna has an average im-

Fis. I3-/7 - Matching by neans of gharter-wave lincar trallifurmers.
pedance of 70 ohms, so a t wo-conduct or folded dipole will have an imput impedance of 280 ohms, and a threc-conductor dipole an impedance of 630 ohms. These values are sufficiently close for good matehing to 300 -ohm or 600 -ohm line, respectively.

Other values of impedance ratio may be obtained by making one conductor larger in diamoter than the other, as shown at C in Fig. 13-18. The required ratio of conductor radii (or diameters) for a desired impedance ratio using two conductors may be ohtained from Fig. 13-19. similar information for a 3-conductor dipole is given in Fig. 13-20. This graph applies where all three conductors are in the same plane and the two conductors not connected to the trammission line are equally spaced from the fed conductor, and have equal diameters. This diameter may or may not equal the diameter of the fod conductor. The unequal-conductor method has bern found particularly usoful in matching to low-impedance antennas such as directive

Fig. 13-18 - The folded dipole, a method for using the antenna element itself to provisle an impedance transformation.
arrays using close-spaced parasitic elements.
The length of the antenna element should be such as to be approximately self-rewonant at the median operating frequencs. The length is usually not highly critical, because this method of matching tends to compensate for

Fig. 13.19-Impedance transformation ratio, twoconductor folded dipole. The dimensions d_{1}, d_{2} and s are shown on the inset drawing. Curves show the ratio of the impedance (resistive) seen by the transmission line to the radiation resistance of the resonant antenna system.
changes in antenna reactance with frequency and thus broadens the frequency-response curve of the antenna.

"T" and 'Gamma'" Matching Sections

The method of matching shown in Fig. 13-21A is based on the fact that the impedance between any two points along a resonant antenna is resistive, and hats a value which depernds on the spacing between the two points. It is therofore possible to choose a pair of points between which the impedance will have the right value to match a transmission line. In

Fip. 13-20-Impedance transformation ratio, threeconductor folded dipole. The dimensions d_{1}, d_{2} and s are shown on the inset drawing. Corrves show the ratio of the impedance (resistive) seen by the transmission line to the ratiation resistance of the resonant antenna system.
practice, the line eannot be connected directly at these points because the distance between them is much greater than the conductor spacing of a practicable transmission line, The " T " arrangement in Fig. 13-21A overoomes this difficulty by using a second conductor paralleling the antenna to form a matching section to which the line may be connected.

The "T" is particularly suited to use with a parallel-conductor line, in which case the two points along the anterna should be equidistant from the center sa that elecerical balance is maintained.

The operation of this system is some what complex. Each " T " conductor (y in the drawing) forms with the antenna conductor opposite it a short section of transmission line. Each of thess transmission-line sections can be considered to bo terminated in the impedance that exists at the point of conncetion to the antenna. Thus the part of the antenna between the two points carries a transmission-line current in addition to the
normal antenna current. The two transmissionline matching sections are in series, as seen by the main transmission line.

If the antenna by itself is resonant at the operating frequency its impedance will be purcly resistive, and in such case the matching-section lines are terminated in a resistive load. However, since these sections are shorter than a quarter wavelength their input impedance - i.e., the impedance seen by the main transmission line looking into the matehing-section terminals will be reactive as well as resistive. This prevents a perfert match to the main transmission line, since its load must be a pure resistance for perfect matching. The reactive component of the input impedance must be tuned out before a proper match can be secured.
One way to do this is to detune the antenna just enough, by changing its length, to cause reactance of the opposite kind to be reflected to the input terminals of the matching section, thus cancelling the reactance introduced by the latter. Another method, which is considerably easier to adjust, is to insert a variable condenser in series with the matching section where it connects to the transmission line, as shown in Fig. 13-22. A condenser having a maximum capacitance of $150 \mu \mu \mathrm{fd}$. or so will be about right in the average case, for 14 Mc. and higher. The condenser must be protected from the weather.

The method of adjustment commonly used is to cut the antenna for approximate resonance and then make the spacing x some value that is convenient constructionally. The distance y is then adjusted, while maintaining symmetry with respect to the center, until the s.w.r. on the transmission line is as low as possible. If the s.w.r. is not below 2 to 1 after this adjustment, the antenna length should be changed slightly and the matching-section taps adjusted again. This process may be continued until the s.w.r. is as close to 1 to 1 as possible.

When the series-condenser method of reactance compensation is used (Fig. 13-22) the antenna should be the proper length to be resonant at the operating frequency. Trial positions of the matching-section taps are taken, each time adjusting the condenser for minimum s.w.r., until

Fig. 13-21 - The "T" match and "gamma" match.
the standing waves on the transmission line are brought down to the lowest possible value.

The umbalanced ("gamma") arrangement in Fig. 13-2113 is similar in principle to the " T ," but is adapted for use with single coax line. The method of adjustment is the same.

Dimensions of matching sections in practical cases are given in the chapter on antennas.

Fiy. 13-22-Using series condensers for tuning out reactance in the matching section with the " Γ " match and "gamma" match. The condenser C should have a maximum capacitance of approximately $150 \mu \mu \mathrm{fd}$. for 14 Mc. and may have proportionately lower capacitances for shorter wavclengths. Receiving-type condensers can be used for powers up to a few hundred watts.

The 'Delta'" Match

The matching system in Fig. 13-23 is based on the variation in impedance between two points symmetrically located with respect to the center of the antenna, as in the case of the "T" match, but uses n different matching section. If the two conductors of a transmission line are fanned out, the Z_{0} of the line will increase with the increase in spacing. A fanned section of line can be used to match a given load impedance to the Z_{0} of a uniformlyspaced transmission line, provided the line Z_{0} is lower than the impedance of the load. Strictly, such a match can be made only if the conductor spacing in the fanned section of line increases at an exponential rate, but the "delta" arrangement in Fig, $13-23$ is a rough approximation to this type of spacing.

Dimensions a and b in Fig. 13-23 depend on the antenna impedance (whether it is a simple half-wave antenna or the driven element of a multielement beam), the size of the conductors in the delta, and the Z_{0} of the transmission line to be matched. Methods for calculation are not available, but dimensions for practical cases are given in the chapters on antennas.

Line Balancers

An antenna with open ends, of which the halfwave type used as an illustration in this section is an example, is inherently a balanced radiator, having equal and opposite voltages at its ends

Fig. 13-23 - "The "delta" matching section.
and minimum voltage at the renter. When opened at the center and fed with a parallel-conductor line this balance is maintained throughout the system, including the transmission line, so long as the causes of unbalance discussed earlier in this chapter are avoided.

If the antenna is fed at the center through a coaxial line, as indicated in Fig. 13-24. , this balance is upset because one side of the radiator is connected to the shield while the other is connected to the inner conductor. The antenna current on the side connerted to the shield can flow down over the outside of the coaxial line, and the fields thus set up cannot he cancelled hy the fields from the inner conductor because the fields inside the line cannot escape through the shielding afforded by the outer conductor. Hence these "antenna" currents flowing on the outside of the line will be responsithe for radiation. (In the gamma match of Fig. 13-21B such radiation is largely prevented hecause the radiator is continuous and the outer conductor is connected to its center, a point which is at ground potential.)
line radiation can be prevented by a number of devices whose purpose is to detune or decouple the line for "antenna" currents and thus greatly, reduce their amplitude. Such devices generally: are known as baluns (a contraction for "balanced to unbalanced'). Fig. $13-2+13$ shows one such arrangenent, known as a bazooka, which uses a sleeve over the transmission line to form, with the outside of the outer line conductor, a shorted quarter-wave line section. Is described carlier in this chapter, the impedance looking into the open end of such a section is very high, so that the end of the outer conductor of the coaxial line is effertively insulated from the part of the line below the sleeve. The length is an clectrical quarter wave, and may be physioally shorter if the insulation between the sleeve and the line is other than air. The bazooka has no effect on the impedance relationships bet ween the antenna and the coaxial line.

Another method that gives an equivalent effect is shown at C. This uses a second conductor, generally of the same diameter as the roaxial line (a piece of the same type of line may be used, the inner conductor being disregarded) to form a parallel-condurtor quarter-wave "insulator," thus isolating both halves of the antenna equally from the remainder of the line below the shorting eonnertion.

Fig. 13-24D shows a third balun, in which equal and opposite voltages, balanced to ground, are taken from the inner conductors of the main

Fing. 13.24- Radiator with coaxial feed (A) and methods of preventing unlaalance currents from flowing on the ontside of the transmission line (B and (:). The halfwave phasing section shown at 1) is used for coupling hetween an unbalanced and a balanced circuit when a 4-to-1 impedance ration is desired or can be accepted.
transmission line and a half-wave phasing section. Since the voltages at the balanced end are in series while the voltages at the unbalanced end are in parallel, there is a t-to-1 step-down in impedance from the balanced to the unbalanced side. This arrangement is useful for coupling between a balanced 300 -ohm line and a 75 -ohm coaxial line, for example.

- NONRADIATING LOADS

Important practiral cases of nonradiating loads for a transmission line are the grid circuit of a power amplifier (considered in the chapter on transmitters), the input circuit of a receiver, and another transmission line. This last case includes the "antenna tuner" - a misnomer berause it is actually a devire for coupling a transmission line to the transmitter. Because of its importance in amateur installations, the antonna coupler is considered separately in a later section of this chapter.

Coupling to a Receiver

A good match between an antenna and its transmission line dors not guarantee a low standing-wave ratio on the line when the antoma system is used for receiving. The s.w.r. is determined wholly be what the line "sees" at the receivers antenna-input terminals. For minimum s.w.r. the receiver input circuit must be matched to the line. The rated input impedance of a redeiver is a nominal value that varies over a considerable range with fre-
quency. Methods for bringing about a proper match are discussed in the chapter on receivers.

It should be noted that if the receiver is matched to the line, then it is desirable that the antema and line also be matched, since this results in maximum signal transfer from the antenna to the line. If the recriver is not matched to the line, the input impedance of the line (at the terminals of the antenna itself) in turn cannot mateh the antemnal impedanee. In such a case the signal input to the receiver depends on the coupling system used between the line and the receiver. For greatest signal strength the coupling system has to be adjusted to the best compromise between receiver input impedance and load appearing at the input (antema) end of the line. The proper adjustments must be determined by experiment.

A similar situation exists when the receiver input impedance inherently matehes the line Z_{0}, but the line and antenna are misnattohed. Under these conditions perfert matching at the receiver does not result in greatest signal strength; a deliberate mismateh has to be introduced so that the maximum power will be taken from the antenna.

The most desirable condition is that in which the receiver is matehed to the line Z_{0} and the line in turn is matched to the antenna. This transfers maximum power from the antenna to the receiver with the least loss in the transmission line.

Coupling the Transmitter to the Line

The type of roupling system that will be needed to transfer power adequately from the final r.f. amplifier to the transmission line deponds almost entirely on the input impedanee of the line. As shown carlior in this chapter, the input imperdance is determined by the standingwave ratio and the line length. The simplest case is that where the line is terminated in its characteristie impedance so that the s.w.r. is 1 to 1 and the input impedance is morely the Z_{0} of the line, regarilless of line length.

Coupling systems that will deliver power into a that line are readily designed. For all pratetical purposes the line can be considered to be flat if the s.w.r. is no greater than about $1 . \overline{5}$ to 1. That is, a coupling system designed to work into a pure resistance equal to the line Z_{s} will have enough leeway to take eare of the small variations in input impedance that will orcur when the line length is changed, if the s.w.r. is higher than 1 to 1 but no greater than 1.5 to 1.

Coupling circuits suitable for coavial lines are discussed in the chapter on trimsmitters. As stated in that chapter, an untuned "pick-up" or "link" coil connerted directly to the transmission line should have an
inductance such that the reactance at the oprating frequeney is approximately equal to the Z_{0} of the line, to assure adequate coupling to a lino that is actually flat. While this condition is sometimes met well enough at the higher frequencies, at least for coaxial lines, by manufatured link coils, it is definitely not mot when a parallelronductor line having a Z_{0} of 300 ohms or more is used. The optimum pick-up coil for coupling to such lines will have about the same induetance as: the plate tank coil itself.

Amateurs are frequently suceressful in coupling power into at line even though the piek-up eoil is guite small and is loovely eoopled to the amplifier tank coil. When such coupling is possible it is an

Fig. 13-25 - ']uned circuite for coupling to allat parallel-conductor line. Values for Cit are xiven in 'Table 13-1I: I_{1} is chosen to resonatiwith the value given at the operaling freduency. In the alternative circuit the total inductance of L_{1}, L_{2} and L_{3} should equal L_{1} in the circuit at the left.

indication that the line is operating at a fairly high s.w.r. and that the line length is such as to bring at current loop near the input end. It is customary to "prune" the line length in such cases until adecuate roupling is secured - a practice that has given rise to the wholly fallacious belief, on the part of mans, that pruning the line reduces the standing-wave ratio and that a flat line will load an amplifier with a small link and very loose coupling. Pruning the line areomplishes mothing if the line is actually flat because, as explainod earlior in this chapter, the input impedance of at matched line is equal to its Z_{0} regardless of the line longth. If the line is not flat, pruning changes the input impedance and eventually results in a value such that the link or piek-up coil is actually tunced to the operating frequency by the line, a condition that will give maximum power transfor with minimum coupling. The higher the s.w.r. the more loose the coupling ran be. Although there is nothing inherently wrong with this method of adjustment, it works only when the s.w.r. is fairly high and will not work with a line that actually is flat.

Tuned Coupling

A tuned coupling rircuit has the same advantages, when used with properly-terminated paral-lel-conductor lines, that were outlined in the transmitting chapter in eonnection with coaxial lines. The principles are the same as well, but a resistance of 300 to 600 ohms is too high to be connected in series with a tuned rircuit. Consequently, paralleltuned circuits must be used with these lines. Typical arrangements are shown in Fig. 13-25. The capacitance values given in Table 13-11 are for a Q of 2 and are the minimum values that should be used. The Q may be increased, permitting full power transfer with looser coupling between the roils, by inereasing the caparitance and derreasing the inductancerorrespondingly to maintain resonance.

The capacitance values given are the total capacitance required, so if a balanced condenser is used as indicated at C_{1} in Fig. 13-25
each section of the condenser should have twice the capacitance given. A single-ended rondenser may be used if care is taken to mount it far enough away from the chassis or any other grounded conductor so that the caparitance from stator and frame to ground is small. In such case the condenser should be tuned by an insulated extension shalt.

The series-tuned circuit shown in the transmitter chapter for coax line can be adapted to use with 75 -ohm parallel-conductor line by using two variable condensers, one in earh line conductor and cach having twice the capacitance sperified, and removing the ground connertion. This is the best arrangement for maintaining balance to ground, but if reasonable care is taken to mount the condenser as described in the preceding paragraph, a single condenser may be used. In that case the only circuit difference is that noither side of the line should be grounded.

Link Coupling

The coupling arrangements for parallel-conductor line shown in Fig. 13-25 are not entirely satisfactory from a constructional standpoint. It is usually more convenient to build the coupling apparatus separate from the final amplifier, and this leads to greater operating flexihility as well. For lines operating at a low standingwave ratio this is easily accomplished by connecting the amplifier and coupling circuits through a short length of transmission line or "link." When properly designed and adjusted, the tuning of both eircuits will be completely independent of the length of the line connecting them. This method has the further advantage that, if the connecting line is coaxial cable, it offers an ideal spot for the insertion of low-pass filters for preventing harmonic interference to television and FM reception.

The circuit for coax-link coupling is given in Fig. 13-26. The constants of the tuned circuit $C_{1} L_{3}$ are not particularly critical; the principal requirement is that the circuit must be capable of being tuned to the operating frequency. Constants similar to those used in the plate tank circuit will be satisfactory. The construction of

Fig. 13.26 - Matching circuits using a coaxial link, for use with parallelconductor transmission lines. Adjustanent set-up using an s.w.r. bridge is shown in the lower drawing. Design considerations and method of adjust ment are discussed in the text.
L_{3} must be such that it cam be tapped at least every turn. L_{2} must be tightly coupled to L_{3}, and the inductance of La should be approximately the value that gives a reactance equal to the Z_{0} of the connecting line at the frequeney in use. An averige reactance of about 60 ohms will suffiee for either 52 - or 75 -ohm coaxial line.
The coupling eircuit at the amplifier end is merely designed and adjusted for working into a flat coaxial line, as described in the transmitter chapter. Hence the adjustment of coupling at the output end ($L_{2} L_{3} C_{1}$) is entirely independent of the adjustment at the input end (tank rireuit and L_{1}).

When the system is properly designed and operated, the circuit formed by $L_{2} L_{3} C_{1}$ acts purely as a matching device to transform the input impedance of the main transmission line to a value equal to the Z_{0} of the coaxial link.
The most satisfactory way to set up the system initially is to conned a coaxial s.w.r. bridge in the link as shown in Fig. 13-26. A simple resistance bridge such as is deseribed in the chapter on measurements is perfectly adequate, requiring only that the transmitter output be reduced to a very low value so that the bridge will not be overloaded. Take a trial position of the line taps on L_{3}, keeping them equidistant from the center of the coil, and adjust (cy for minimum sw. s . as indicated by the bridge. If the s.w.r. is not close to 1 to 1 , try new tap positions and adjust C_{1} again, continuing this procedure until the s.w.r. is practically 1 to 1 . The setting of C_{1} and the tap positions may then be logged for future reference, since they will not change so long as the antenna system and frequency are not changed. At this point, cherk the link s.w.r. over the frequeney range normally used in that band, without changing the setting of C_{1}. No readjustment will be required if the s.w.r. does not excerd 1.5 to 1 over the rangr, but if it goes higher it is advisable to note as many settings of C_{1} as may be necessary to keep the s.w.x. bolow $1 . \overline{3}$ to 1 at any part of the band. Changes in the link s.w.r. are caused chiefly by changes in the sw.r. on the main transmission line with frequency, and relatively little by the coupling circuit itself. A single setting of C_{1} at mid-frequenter will suffice if the antenna itself is broal-tuning.

If it is imposible to get a 1-to-1 s.w.r. at any settings of the taps or (' 1 , the s.w.r. on the main transmission line is high and the line length is probably unfavorable. Ordinarily there should be no difficulty if the transmission-line s.w.r. is not more than about 3 to 1 , but if the line s.w.r. is higher it may not be possible to bring the link s.w.r. down exrept by using the methods for reartance compensation described in a subsequent section.

The matching adjustment can be considerably farilitated by using a variable rondenser in series with the matching-rircuit coupling coil as shown in Fig. 13-27. The additional adjustment thus provided makes the tap settings on L_{3} much less critical since varying C_{2} has the effect of varying the coupling between the two eireuits. For
optimum rontrol of coupling, L_{2} should te somewhat larger than when C'2 is not used - porhaps twiee the reactance recommended ahove - and the reartance of C_{2} at maximum raparitano should be the same as that of L_{2} at the operating frequeney. I_{3} and C_{1} are the same as before. The mothod of adjustment is the same, except that for each trial tap position C_{1} and C_{2} are alternately adjusted, a little at a time, until the s.w.r. is brought to its lowest possible value. In general, the adjustment sought should be the one that keops ('2 at the largest possible rapacitance, since this broadens the frequency response. Also, the taps on L_{3} should be kept as far apart as possible, while still permitting a match, since this also broadens the frequency response of the circuit.

Fig. 13-27-I'sing a series condenser for control ol conpling tertween the link and line circuits with the coax-coupled matehing rirenit.

Once the matching circuit is properly adjusted, the sw.r. bridge may be removed and full power applied to the transnitter. The input should be controlled by the coupling betwern L_{1} and the amplifier tank coil, never by making any changes in the settings of the matehing circuit. If the amplifier will not load properly, tuned coupling should he used into the eoas link.

It is possible to use a cireuit of this type without initially setting it up with the s.w.r. bridge. In such a case it is at matter of cut-and-try until adequate power transfer betwen the amplifier and main transmission line is sereured. However, this method frequently results in a high s.w.r. in the link, with ronseguent power loss, "hot spots" in the coaxial cable, and tuming that is reitial with frequeney. The bridge method is simple and gives the optimum operating conditions quickly and with certainty.

- "TUNED" LINES

If the s.w.r. on a transmission line is high enough to cause the input impedance to change appreciably as the applied frequency is varied, the coupling between the transmitter and the line must be ehanged accordingly to keep the amplifier loading eonstant. So far as the coupling apparatus is concerned, the principal difference between flat and tuned lines is that the system can be designed for relatively constant impedance for flat lines, but must be capable of coupling into a wide range of impedances if the line is "tuned."

As mentioned carlier, a simple coil can be used for coupling to a line having a high standing-wave ratio providing the line length is adjusted so there is a current loop near the point where it connects to the piek-up eoil. The eoupling will be maximum, for a given degree of separation be-

Fig. 13-2 - Sories and parallel tuning. This method is useful with remonant lines when the length is such as to bring either a current or voltage leop near the input end. Design data and methods of adjustment are given in the text.
tween the pick-up coil and the amplifier tank coil, if the line is pruned to a length such that the input impedance is just sufficiently capactitive to cancel the inductive reartance of the pick-up coil. This can be done by cut-and-try. The higher the s.w.r. on the line the easier it becomes to load the amplificr with loose coupling between the two coils. Whether or not good loading can be olstained over a band of frequencies depends on the characteristics of the antenna system. The sharper the antema and the higher the line s.w.r. the more difficult it becomes to operate over a band without progressively changing the line length.

Series and Parallel Tuning

Rather than adjusting the line length to fit a given coupling eoil, it is more practical to adjust the coupling circuit to fit the conditions existing at the input end of the transmission line.

A high standing-wave ratio occurs principatly on parallel-conductor lines, either because no attempt has been made at matching the antema and the line or because the system is used for multiband operation, which precludes such matching. In the latter case, cutting the line length to a multiple of a quarter wavelength will bring either a current or voltage loop near the input terminals of the transmission line (assuming that the antenna itself is resonant) depending on the termination and the line length. If there is a current loop near the input end the impedance will be lower than the line Z_{0}; if a voltage loop, the input impedance will be higher than the line Z_{0}. In both cases the input impedances will be essentially resistive.

Under these conditions the circuit arrangements shown in Fig. 13-25 will work satisfactorily. Series tuning is used when a current loop occurs at the input end of the line; parallel tuning when there is a voltage loop at the input end. In the series case, the circuit formed by L_{1}, C_{1} and C_{2} with the line terminals short-circuited should tune to the operating frequency. C_{1} and C_{2} should
be maintainel at aplablapacitance. In the parallel case, the circuit formed by L_{1} and C_{1} should tune to resonance with the line discomected.

The L / C ratio in either circuit depends on the transmission line Z_{0} and the standing-wave ratio. With series tuning, a high L / C ratio must be used if the s.w.r. is rolatively low and the line Z_{0} is high. With parallel thange, a low L^{\prime} / C ratio must he used if the s.w.r. is relatively low and the transmission-line Z_{0} :also is low. With either serics or parallel tuning the L / C ratio beeomes less critical when the s.w.r. is high. As a first approximation, coil and condenser values of the same order as those used in the plate tank circuit may be tried.

To adjust the series-tuned circuit, first couple L_{4} loonsly to the amplifier tank coil and then vary C_{1} and C_{2}, keeping their rapacitances equal, until the sotting is found that makes the amplitier plate current kick upward. Feep adjusting the amplifier tank condenser, C, for minimum plate current while this is being done. When the proper settings are found, incrase the coupling between the two coils until the amplifier draws normal plate current with C adjusted for minimum. It is unneressary to readjust (C_{1} and ('2 when the coupling is increased. Kerp the coupling betwern the coils at the smallest value that will load the amplifier properly. If full loading cannot be obtained with the tightest possible coupling, use a coil of more indurtance at L_{1}.

The same adjustment procedure is used with parallel tuning, exerpt that there is only one condenser, C'. If full loading cannot be secured, reduece the inductance of L_{1} and increase C_{1} eorrespondingly to maintain the same frequency, until the amplifier loads properls.

The r.f. ammeters shown in Fig. 13-2s are not strictly neecssary, but are useful for indicating maximum output. They may be omitted if desired; in most cases the amplifier plate current is a good enough indication of output, providing the amplifier is operating at normal ratings and efficiency.

In case full loading cannot be obtained even when the L / C ratio is varied, the type of tuning in use probably is not suitable and should be changed; e.g., from series to parallel. If satisfactory loading still cannot be secured, the probabilit y is that the s.w.r. is quite low and the coupling methods designed for flat lines, described earlier, should be used.

Two condensers are used in the series-tuned circuit in order to keep the line balanced to ground. This is hecause two identical condensers, both connected with either their stators or rotors to the line, will have the same capacitance to ground. A single condenser would be perfectly usable so far as the operation of the coupling circuit is concerned, but will slightly unbalance
the eircuit because the frame has more capacitance to ground than the stator. The unbatanee is not esperially serious unless the condenser is mounted near a large mass of metal, such as a chassis or shied assembly.
A balanced eondenser is used in the parallel circuit, in proference to a single unit, for the same reason. An alternative soheme to maintain halance is to use two single-ended condensers in parallel, but with the frame of one connereded to one side of the line and the frame of the othere connereded to the other side of the lita. The sume two condensers may be switched in series when series tuning is to be used.

Link Coupling

The mireuits shown in lig. 13-2s require a means for varying the coupling betwern two sizable eoik, a thing that is somewhat inconvenient ronstructionallys. It is easier to uso separate fixed mountings for the final tank and antenna coils and couple them by means of a link. As explained in the ehapter on circuit fundamentals, a shorf link is equivalent to providing mutual inductane lotwen two tuned rirruits. Typieal arrangements for series and parallel tuning are shown in lig. 13-29. . It hough these drawings show variable coupling at both ands of the link, a fixed link coil can be used at cither end so long as variable eoupling is available at the other.

There is no essential difference between the funing procedures with these circuits and those of Fig. 13-28. 'lhe only change is that the cooupling is adjusted by means of a link inste:ad of by varying the spating between L and L_{1}.

In casers where the link will be more than a few inches long, or when coaxiad cable is to be used for the link, it is murh better to consider the link as a transmission line that should be propery matehed. The eireuit of Fig. 13-26; is reommended in that case, except that wither a series-ar parallod-tuned circuit is substituted for $C_{1} L_{3}$ in that figure. The same considerations apply with respere to the sizes of the link coils, and the bost adjustment procedure is that using an s.w.r. bridere.

Lines of Random Length

Series or parallel tuning will always work sat isfactorily with lines having a high stand-ing-wave ratio solong as the electrieal tength of the line is approximately a multiple of a quarter wavelongth. Dlowerer, it is not alway posible to couple satisfactorily when intermediate linc lengths are used. This is berause at some length: the input impedance of the line hats a considerable reactive compmont, and berame the resistive component is tow large to be comected in series with a tuned eireuit and too low to be eonnereded in paradlel.
The coupling system shown in Fig. 13-2t; is capable of hamdling the resistive component of the input impedane of the tramsmission lines used in most amateur installations, regardless of
the standing-wave ratio on the line. Consequently, it ean querally be used wherever either series or patallel tuning would normally be called for, simply by setting the taps properly on the coil. (A possible exerption is where the s.w.r. is considerably higher than 10 to 1 and the line length is such as to bring al current loop at the input end. In such a case the resistaner maty be only a few ohms, which is difficult to mateh by means ol taps on a cooil.)

Within limits, the same circuit is capable of bering adjusted to mompensate for the reative component of the infut impedanere; this merely metns that at 1 -to-l s.w.r. in the link will be ottained at a different setting of C_{1} (Fig, 1:3-21i) than would be the case if the line "looked like" a pure resistanere sometimes, howerer, C_{1} docs not have enough range available to give complete compensation, patioularly when (as is the case with some line longths when the sw.w. is high) the ituput impedaner is prinejpally reactive.

Gheder such conditions it is nevessary, if the line length camot be changed to a more satisfactory value, to provide additional means for compensating for or "cancelling out " the reactive compenent of the input impedatee. As deseribed (andior in this chapter (Fig. 13-6) the input impedaner can be considered to be equivalent to a circuit consisting either of resistance and inductance or resistance and caparitance. It is generally more convenient to ronsider these elements as a

Fif, 13.29 - Iink-coupled serics and parallal tuning.
parallel eombination, so if the line "looks like" $L^{\prime} R^{\prime}$ at A in Pig. 13-fi, it is apparent that if we counect a capacitance of the right value ateross L^{\prime} the cireuit will berome resonatht and will appear to be a pure mesistane of the value R^{\prime}. Similarly, eomerting an imduetane of the right value arross (" in Fig. 13-til3 will resonate the cireuit and the impedatnee will be equal to R^{\prime}. The resistive impedanere that remains can easily be matched to the coax link by means of the (rircuit of Fig. 1:3-20.

The practical applieation of this principle is shown in Fig. 13-30, where L and C are the react-
ances required to cancel out the line reactance, L for cases where the line is capacitive, C for lines having inductive reactance. The amount of either inductance or capacitance required is casily determined by trial. Using the s.w.r. bridge in the coax link, first discomert the main transmission line and connect a noninductive resist or to the line terminals. A $1 / 2$ - or 1 -watt carbon resistor of about the same resistance as the line Z_{0} will do. Adjust the coil taps and C_{1} for a $1-t(0-1$ standingwave ratio in the link, as deseribed carlier. This determines the proper setting of C_{1} for a purely resistive load. Then take off the resistor and conneet the line, again adjusting the taps and C_{1} for minimum s.w.r. If a 1 -to-1 ratio cam be ohtained further compensation is not needed, but if not, make the s.w.r. as low as possible and compare the new setting of C_{1} with the original setting. If the capacitance has inereased, the line reactance is inductive and a condenser must be connected at C in Fig. 13-30. The amount of caparitance needed to bring the proper setting of C_{1} near the original setting con be determined by trial. On the other hand, if the capacitance of C_{1} is le'ss than the original, an inductance must be connerted at L. Trial values will show when the proper tuning conditions have been reached. It is not necessary

Fig, 13-30-Reaetanee rancellation on random-length lines haviug a high standing-wave ratio.
that C_{1} be at exactly the original setting after the compensating reactance has been adjusted; it is sufficient that it be somewhere in the same vicinity.

Using this procedure practically any length of line can be coupled properly to the transmitter, even when the line s.w.r. is quite high. Unfortunately, no sperifie values can be suggested for L and C, since they vary widely with line length and s.w.r. Their values usually are comparahle with the values used in the regular coupling circuits at the same frequency.

Coupler or Matching Circuit Construction

The design of matching or "antenna coupler" eircuits has been covered in the preeeding section, and the adjustment procedure also has been outlined. Since circuits of this type are most froquently used for transferring power from the transmitter to a parallel-conductor transmission line, a principal point requiring attention is that of maintaining good balance to ground. If the coupler circuit is anpreciably unbalanced the currents in the two wires of the transmission line will also be unbalanced, resulting in radiation from the line.

In most cases the matching circuit will be built on a metal chassis, following common practice in the construction of transmitting units. The chassis, because of its relatively large area, will tend to establish a "ground" - even though not actually grounded - particularly if it is assembled with other units of the transmitter in a rack or cabinet. The components used in the coupler, therefore, should be placed so that they are electrically symmetrical with respeect to the chassis and to each other.
In general, the construction of a coupler cireuit should physically resemble the tank layouts used with push-pull amplifiers. In parallel-tuned eircuits a split-stator condenser should be used. The condenser frame should be insulated from the chassis because, depending on line length and other factors, harmonic reduction and line balance may be improved in some cases by grounding and in others ber grounding. It is therefore advisable to adopt construction that permits: (ither. Provision also should be made for grounding the center of the coil, for the same reason.

The coil in a parallol-tuned cireuit should be mounted so that its hot ends are symmetrically placed with respecet to the chassis and ot her components. This equalizes stray capacitances and helps maintain good balance.

When the coupler is of the type that can be shifted to series or parallel tuning as required, two separate single-rnded condensers will be satisfactory. As described carlier, they should be connected so that both frames go to the same side of the circuit - i.e., cither to the coil or to the line-for sories tuning, and when used in paratlel for parallel tuning should be commected frame-to-stator.

A coupler designed and adjusted so that the connecting link acts as a mat ched transmission line may be placed in any convenient location, Some amateurs prefor to install the coupler at the point where the main transmission line enters the station. This helps maintain a neat station layout when an air-insulated parallel-eonductor transmission line is used. With solid-dielectrie lines, which lend themselves well to neat installation indoors, it is probably more desirable to install the coupler where it can be reached casily for adjustment and band-changing. The use of coavial line between the transmitter and coupler is strongly recommended if the link line is more thinn a few inches long, for the reasons outlined in the prereding section.

COAX-COUPLED MATCHING CIRCUIT

The matching unit shown in Fig. $1: 3-31$ is constructed aceording to the design principles outlined earlier in this chapter. It uses a parallel-

tuned circuit with taps for matching a parallelcondurtor line through a link coil to a coaxial line to the transmitter. It will handle ahout 500 watts of r.f. power and will work, without modification, into lines having an s.w.r. bolow 3 or 4 to 1 . If the s.w.r. is high, it may le nowessary to compensate for the reatetive part of the input impedance of the line, at certain line lengthe, by using an additionat coil or condenser as discussed earlier. The necessity for such compensation can be avoided, on lines having a high s.w.r., by making the elect rieal length of the line a multiple of a quarter wavelength.

As shown be the circuit diagram, Fig. 13-32, the link cirrouit is adjusted ber means of at variable contenser, (${ }^{1}$, to facilitate matching the main transmission line to the coax link. The eoils are constructed from commererially-availahle coil materiat, and the link inductances are chosen to provide adequate coupling for flat lines. The link coil, of smaller diamoter than the tank coil, is mounted inside the later at the erenter. Wued cement is used to hold the coils together at the ir bottom tie strips. The coils are mounted on Sillen type $40: 305$ plugs and require no other support than the stiffness of the short lengths of wire going into the end prongs of the plug from the tank coil. Short lengths of sparghetti tubing are slipped over the lads to the link coil where thes go between the tank coil turns to reach the plug.

Taps on the tank coil for connection to a parabl-iel-conductor tramsmission line are made by hending ordinary soldering lugs around the wire and
l'ig. 13.31 - A coax-coupled matching circuit of simple construction. The entire circuit is mounted on a 3 by 4 by 5 box. C_{1} is inside: C_{2} and the plug-in coil assembly are mounted on top.
soldering them in place. The elips are Johnson type 2:35-860, adjusted so that they fit snugly. over the taps when pushed on sidewise. C'sed this way, the clips provide an easy and rapid method of connecting and diseonneeting the line. The proper positions for the taps may be determined l,y first using the rlips in the normal fashion.

The maximum length of coil that can be mounted satisfactorily on the plugs is about 1 inches, and a coil of this sizo comnot be tuned to the $3 . \overline{5}$ - Mc. band with the 100 - $-\mu$ fid.-per-sertion split-stator condenser used in this unit. Tor rover the 3.5 -.Me, band it is necessary to shunt the coil with an additional capacitance of about $7.5 \mu \mu \mathrm{fl}$.
The matching circuit should be adjusted with the aid of an s.w.r. bridge, as described earlier in this chapter. In general, the tuning will be less critical, and the circuit will work over a wider frequency range without readjustment, if the taps are kept as far toward the ends of the coil as possible and C_{1} is set at the largest capacitance that will permit bringing the s.w.r. in the co:s link down to 1 to 1

A "UNIVERSAL" MATCHING CIRCUIT

The matching circuit shown in Fig. 13-333 of fers considerahle flexibility in that it can be used as a tapped-coil matching network of the same

Fiq. 13.32-Circuit diagranı of the coax-eoupled matching circuit.
C. - 300 - $-\mu_{\mu}$ fl. variable, approximately ($1.12 \cdot 4^{\prime \prime}$ spacing. C. 2 - 100 mpfd. per sertion, ling volts (National 'IVK-1001)).

(Coil Data

Band

3.5 \$1.*
$18(12 \mu \mathrm{~h}$.
$14 \mathrm{Mc} \quad 10(5 \mu \mathrm{~h}$.
2-28 M1e. $\quad 0$ (2.5 $\mu \mathrm{h}$.)
$6(2.5 \mu \mathrm{~h}$.
$3(1 \mu \mathrm{~h}$.

* Adel $75 \mu \mu \mathrm{fel}$ in parallel with (i.
L_{1} - No. 12 tinned wire, $21 / 2$ inehes dia., 6 turns per inch (B\& W 3905:1).
1.2 - No. 16 wire, 2 inches dia., 10 turns per inch (13 \& W 3907 or 3907-1).

Fig. 1.3-3.3- A coupler or matching network that can also be used for series or paral. Ifl tuning of tumed tines.

type as that just described, and also can he used as either a seriess or parallel-tuned "antenna coupler." It can also be adapted to other types of coupling by simple changes in the plug-connection arrangement of the coils.

Fig. 13-34 - Circuit diagram of the "universal" coaxcoupled matching network. For use as a tapped matching eircuit, connect the line to taps on L_{1}, as at $A-B$, and connect the jumper, X, to $A \cdot B$; the jumper is also used for parallel tuning but with the line connected to E-F. For series tuning, remove the jumper and connect the line to $C-D$. The ground connection to the middle prong of the coil socket is provided for cases where it is desirable to ground the center of L_{1}.
C_{1} - $300-\mu \mu \mathrm{fl}$. variahle, approximately $0.024^{\prime \prime}$ spacing. $\mathrm{C}_{2}, \mathrm{C}_{3}-300 \cdot \mu \mu \mathrm{fd}$. variable, 1000 volts (National TMS. 300).
J_{1} - Chassisitype conax connector.

Coil Data		
Band	Li, turns	$L_{2,}$, turns
3.5-7 Mc.	20 (14 $\mu \mathrm{h}$.	10 (5 $\mu \mathrm{h}$
-14 Mc.	10 ($5 \mu \mathrm{~h}$.)	6 (2.5 $\mu \mathrm{h}$.
14-28 Mc.	4 (1.5 $\mu \mathrm{h}$.	2
L_{1} - No. 12 timed wire, $21 / 2$ inches dia., 6 turns per inch (B \& W 3905-1).		
L_{2} - No. 10 wire, 2 inches dia., 10 turns per inch (is \& W 3907 or $390-1$).		

Two condensers are used in the tank circuit. Their rotors are insulated from each other but are turned simultaneously ly a right-angle drive unit. When used either for parallel tuning or the tapped-coil method of matching, the rotors are connected together to form a split-stator condenser having a maximum capacitance of 150
$\mu \mu \mathrm{fd}$. When used for series tuning the condenser frames connect to the parallel-conductor tramsmission line, the jumper that connerts the rotors: together being removed.

The unit is built on a 7 by ! by 2 aluminum chassis and has a 7 by 10 pancl. The tank rondensers are mounted on small aluminumplates supported on $3 / 4$-inch stand-off insulators, to insulate the frames from the chassis; this method is preferable to mounting the condensers directly on the insulators as it lessens the mechanical strain on the latter. The soldering lugs projecting from the condensers provide means for connecting the line clips for series and parallel tuning. The jumper for conneeting the rotors together is in the foreground; it uses banana plugs that fit into jacks mounted on the condenser mounting plates. The link condenser is underneath the chassis.

The coils shown are designed primarily for use in the tapped matching circuit or for parallel tuning, but will also be satisfactory for series tuning if the transmission line length is such ar to bring a current loop near the input end. Coil taps are made in the same way as in the coupler previously described. Soldering lugs are also used as taps on C_{2} and C_{3} to make the necessary connections for series or parallel tuning. lecause of the fairly large value of maximum caparitance available when the tank condensers, C_{2} and C_{3}, are used together as a split-stator condenser, it is possible to cover a 2 -to-1 frequeney range. Consequently, only three coil assemblies are needed to cover the 3.5- to 30-Nic. range, and each one can be used for two (in the case of the smallest coil, three) adjacent amateur bands.

As a tapped matehing circuit, adjustment is the same as for the unit just described. When using either series or parallel tuning, the s.w.r. bridge should be used as before, adjusting C_{1} and $C_{2}-C_{3}$ for minimum s.w.r. in the coax link.

CHAPTER 14

Antennas

An antenna system can be considered to include the antenna proper (the portion that radiates the r.f. energ.), the feedline, and any roupling devices used for transferring power from the transmitter to the line and from the line to the antenna. Some simple systems may omit the transmission line or one or both of the coupling devices. This chapter will cleseribe the antenna proper, and in many cases will show popular trpes of lines, as well as line-toantenna couplings where they are required. However, it should be kept in mind that any antenna proper can be used with ony trye of feedline if a suitable coupling is used between the antenna and the line. Changing the line does not change the type of antenna.

Selecting an Antenna

In selecting the type of antenna to use, the majority of amateurs are somewhat limited through space and structural limitations to simple antenna sustems, except for v.h.f. operation where the small space requirements make the use of multiclement beams readily possible. This chapter will consider antennas for frequencies as high as 30 Mi , - a later chapter will describe the popular types of v.h.f. antennas. However, even though the available space may be limited, it is well to consider the propagation characteristies of the frequency band or bands to be used, to insure that best possible use is made of the available facilities. The propagation characteristies of the various bands, up to 30 Me ., are deseribed in Chapter Four. In general, antenna construction and location become more critialal and important on the higher frequencies. On the lower frequencies (3.5) and 7 Me.) the vertical angle of radiation and the plane of polarization may be of relatively lit the importance; at 28 Me, they may be all-important. (In a given frequency, the particular type of antemna best suited for long-distance communication may not he as good for shorter-range work as would a different type.

Definitions

The important properties of an antenna proper are its polarization, vertical and horizontal angles of maxinum radiation, impedance, gain and bandwidth.

The polarization of a straight-wire antenna is determined by its position with respect to the earth. Thus a vertical antenna radiates vertically-polarized waves, while a horizontal
antenna radiates horizontally-polarized waves in a direction broadside to the wire and vertically-polarized waves at high vertical angles ofi the ends of the wire. The wave from an antenna in a slanting position, or from the horizontal antenna in directions other than mentioned above, contains both horizontal and vertical components.

The vertical angle of maximum radiation of an antenna is determined by the free-space pattern of the antenna, its height above ground, and the nature of the ground. The angle is measured in a vertical plane with respect to a tangent to the carth at that point, and it will usually vary with the horizontal angle, except in the case of a simple vertical antenna. The horizontal angle of maximum radiation of an antenna is determined by the free-space pattern of the antenna.

The impedance of the antenna at any point is the ratio of the voltage to the current at that point. It is important in connection with feeding power to the antenna, since it eonstitutes the load to the line offered by the antenna. It can be either resistive or complex, depending upon whether or not the antenna is resonant.

The field strength produced by an antenna is proportional to the current flowing in it. When there are standing waves on an antema, the parts of the wire carrying the higher current have the greater radiating effect. All resonant antennas have standing waves - only terminated types, like the terminated rhombic and terminated "l"," have substantially uniform current along their lengths.

The ratio of power required to produce a given field strength, with a "comparison" antenna, to the power required to produce the same field strength with a specified type of antemna is called the power gain of the latter antenna. The field is measured in the optimum direction of the antenna under test. In amateur work, the comparison antenna is generally a half-wave antenna at the same height and having the same polarization as the antenna under consideration. I'ower gain usually is expressed in decibels.

In unidirectional beams (antenna systems with maximum radiation in only one direction) the front-to-back ratio is the ratio of power radiated in the maximum direction to power radiated in the opposite direction. It is also a measure of the reduction in received signal when the beam direction is changed from that for maximum response to the opposite
direction. Front-to-back ratio is usually expressed in decibels.

The bandwidth of an antenna generally refers to the frequency range over which the
gain and impedance are substantially constant. It is of importance primarily in connection with multielement beams fed by a "flat" transmission line.

Ground Effects

The radiation pattern of any antenna that is many wavelengths distant from the ground and all other objects is called the free-space pattern of that antenina, The free-spare pattern of an antenna is almost impossible to obtain in practice, except in the v.h.f. and u.h.f. ranger. Below 30 Mc ., the location of the antenna with respect to ground plays an important part in determining the actual radiation pattern of the antemna.

When any antenna is near the ground the free-space pattern is modified by reflection of radiated waves from the ground, so that the actual pattern is the resultant of the free-space pattern and ground reflertions. This resultant is dependent upon the height of the antenna, its position or orientation with respect to the surface of the ground, and the electrical characteristics of the ground. The effect of a perfectly-reflecting ground is such that the

Fig. 14-I - Effect of ground on radiation of horizontal antennas at vertical angles for four antenna heights. This chart is based on perfectly-conducting ground.
original free-space field strength may be multiplied by a factor which has a maximum value of 2 , for complete reinforcement, and having all intermediate values to zero, for complete cancellation. These reflections only affect the radiation pattern in the vertical plane - that is, in directions upward from the earth's surface - and not in the horizontal plane, or the usual geographical directions.

Fig. 14-1 shows how the multiplying factor varies with the vertical angle for several representative heights for horizontal antennas, As the height is increased the angle at which convplete reinforcement takes place is lowered, until for a height equal to one wavelength it occurs at a vertical angle of 15 degrees. At still
greater heights, not shown on the chart, the first maximum will occur at still smaller angles.

Radiation Angle

The vertical angle of maximum radiation, is of primary importance, especially at the higher frequencies. It is advantageous, therefore, to ereet the antenna at a height that will take advantage of ground reflection in such a way as to reinfore the space radiation at the most desirable angle. Since low angles usually are most effertive, this generally means that the antenna should be high - at least one-half wavelength at 14 Me., and preferably threr-quarters or one wavelongth, and at least one wavelength, amd preferably higher, at 28 Mc. The physical height required for a given height in wavelengths decreases as the frecuenco is increased, so that good heights are not impracticable; a half-wavelength at $1+M \mathrm{c}$. is only 3°) feet, approximately, while the same height represents a full wavelength at 28 Mc. At 7 Me. and lower frequencies the higher radiation angles are offertive, so that again a useful antemma height is not diflicult of attainment. Heights between $3 \overline{5}$ and 70 feet are suitable for all bands, the ligher figures being preferable.

Imperfect Ground

Fig. $14-1$ is hased on ground having perfect conductivity, whereas the actual eurth is not a perfect conductor. The principal effect of actual ground is to make the eurves inaccurate at the lowest angles; appreciable high-frequence radiation at angles smaller than a few degrees is practically impossible to obtain over horizontal ground. Ahove 15 degrees, however, the curves are accurate enough for all practical purposes, and may be taken as indicative of the result to be expected at angles between $\overline{5}$ and 15 degrees.

The effective ground plane - that is, the plane from which ground reflections can be considered to take place - seldom is the actual surface of the ground but is a few feet below it, depending upon the character of the soil.

Impedance

Waves that are reflected directly upward from the ground induce a current in the antenna in passing, and, depending on the antenna height, the phase relationship of this induced current to the original current may be such as either to increase or decrease the total current in the antenna. For the same power input to the antema, an increase in current is equivalent to a decrease in impedance, and vice versa. Hence, the impedance of the an-
tenna varies with height. The theoretical curve of variation of radiation resistance for an antenna above perfectly-reflecting ground is shown in Fig. 14-2. The impedance approaches the free-space value as the height becomes large, but at low heights may differ considerably from it.

Choice of Polarization

Polarization of the transmitting antenna is generally unimportant on frequencies between 3.5 and 30 Mc. However, the question of whether the antenna should be installed in a horizontal or vertical position deserves consideration for other reasons. A vertical halfwave or quarter-wave antenna will radiate equally well in all horizontal directions, so that it is substantially nondirectional, in the usual sense of the word. If installed horizontally, however, the antenna will tend to show directional effects, and will radiate best in the direction at right angles, or broadside, to the wire. The radiation in such a rase will be least in the direction toward which the wire points.

The vertical angle of radiation also will be

Fig. 14-2 - Theoretical curve of variation of radiation resistance for a half-wave horizontal antenna, as a function of height in wavelength above perfectly-reflecting ground.
affected by the position of the antenna. If it were not for ground losses at high frequencies, the vertical half-wave antenna would be preferred because it would concentrate the radiation horizontally.

The Half-Wave Antenna

The fundamental form of antenna is a single wire whose length is approximately equal to half the transmitting wavelength. It is the unit from which many more-complex forms of antennas are constructed. It is variously known as a half-wave dipole, half-wave doublet, or Hertz antenna.

The length of a half-wavelength in space is:

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{492}{\text { Freq. (Mc.) }} \tag{14-A}
\end{equation*}
$$

The actual length of a half-wave antenna will not be exactly equal to the half-wave in space, but depends upon the thickness of the conductor in relation to the wavelength as shown in Fig. 14-3, where K is a factor that must be multiplied by the half-wavelength in free space to obtain the resonant antenna length. An additional shortening effect occurs

Fig. IA-3-Effect of antenna diameter on length for half-wave resonance, shown as a multiplying factor, K. to be applied to the free-spare half-wavelength (Eipuation 1/-1). The effeet of comduetor diameter on the impedanee measured at the center also is shown.
with wire antennas supported by insulators at the ends because of the capacitance added to the system by the insulators (end effect). The following formula is sufficiently accurate for wire antennas at frequencies up to 30 Mc .:

$$
\begin{align*}
& \text { Length of half-wave antenna (feet) }= \\
& \frac{492 \times 0.95}{\text { Freq. (Me.) }}=\frac{468}{\text { Freq. (Me.) }} \tag{14-B}
\end{align*}
$$

Example: A half-wave antenna for 7150 kc . (7.15 Mc.) is $\frac{468}{7.15}=65.45$ feet, or 65 feet 5 inches.
Above 30 Mc . the following formulas should be used, particularly for antennas constructed from rod or tubing. K is taken from Fig. 14-3.

Length of half-wave antenna (fect) $=$

$$
\begin{gather*}
\frac{492 \times K}{\text { Freq. }(\mathrm{Mc} .)} \tag{14-C}\\
\text { or length (inches) }=\frac{5905 \times K}{\text { Freq. }(\mathrm{Mc.})} \tag{14-D}
\end{gather*}
$$

Example: Find the lengt of a half-wavelength antenna at 29 Mc ., if the antenna is made of 2 inch diameter tubing. At 29 Mc., a half-wavelength in space is $\frac{492}{29}=16.97$ feet, from Eq. 14-A. Ratio of half-wavelength to conductor diameter (changing wavelength to inches) is $\frac{16.97 \times 12}{2}=101.3$. From Fig. $14-3, K=0.963$ for this ratio. The length of the antenna. from Eq. 14-C, is $\frac{492 \times 0.963}{29}=16.34$ feet. or 16 feet 4 inches. The answer is obtained directly in inches by substitution in Eq. 14-1): $\frac{5905 \times 0.963}{29}$ $=106$ inches.

Fig. 14-4 - The above scales, hased on Eif. 14-B, can be used to determine the length of a half-wave antenna of wire.

Current and Voltage Distribution

When power is ferd to a half-wave antema, the current and voltage vary along its length. The current is maximum at the center and nearly zero at the ends, while the opposite is true of the r.f. voltage. The current does not actually reach zero at the current nodes, because of the end effect; similarly, the voltage is not zero at its node because of the resistance of the antenna, which consists of both the r.f. resistance

Fig. 14.5 - The free-space radiation pattern of a halfwave antenna. The antenna is shown in the vertical position. This is a cross-section of the solid pattern described by the figure when rotated on its vertical asis. The "doughnut" form of the selid pattern can be more easily visualized by imagining the drawing glued to a piece of cardboard, with a short length of wire fastencd on it to represent the antenna. 'Twirling the wire will give a visual representation of the solid radiation patterts.
of the wire (ohmic resistance) and the radiation resistance. The radiation resistance is an equivalent resistance, a convenient conception to indicate the radiation properties of an antenna. The radiation resistance is the equivalent resistance that would dissipate the power the antenna radiates, with a current flowing in it equal to the antenna current at a current loop (maximum). The ohmic resistance of a half-wavelength antenna is ordinarily small enough, in comparison with the radiation re-

Tll/Ground
Fig. $\quad 14-6$ - Illustrating the importance of vertical angle of radiation in determining antenna directional effects. (Iff the end, the radiation is greater at higher angles. Ground reflection is neglected in this drawing of the free-spare pattern of a horizontal antenna.
sistance, to be neglected for all practical purposes.

Impedance

The radiation resistance of an infinitelythin half-wave antenna in free space - that is, sufficiently removed from surrounding objects so that they do not affert the antenna's characteristies - is 73 ohms, approximately. The value under practical conditions is commonly taken to be in the neighborhood of 70 ohms. It is pure resistance, and is measured at the center of the antenna. The impodance is minimum at the center, where it is equal to the radiation resistance, and incroases toward the ends. The actual value at the ends will depend on a number of factors, such as the height, the physical construetion, the insulators at the ends, and the position with respect to ground.

Conductor Size

The impedance of the antenna also depends upon the diameter of the conductor in relation to the wavelength, as shown in Fig. 14-3. If the diameter of the conductor is made large, the capacitance per unit lengtl increases and the inductance per unit length dereases. Since the radiation resistance is afiected relatively little, the docreased L / C ratio causes the O of the antenna to decrease, so that the resonance curve becomes less sharp. Hence, the antenna is capable of working over a wide frequency range. This effect is greater ats the diameter is increased, and is a property of some importance at the very-high frequencies where the wavelength is small.

Fig. 14-7- Ilorizontal pattern of a horizontal half. wave antenna at three vertical radiation anglo's. "I'hr' notid line is refative radiation at $1 \overline{\mathrm{j}}$ degrees. Dotted limex show deviation from the 15 -degree pattern for angles of 9 and 30 degrees. The patterns are useful for shape only, since the amplitude will depend upon the height of the antenua above ground and the vertical angle considered. The patterns for all three angles have been proportioned to the same seale, but this does not mean that the maximum amplitudes neeessarily will be the same. The arrow indicates the direction of the horizontal antenna wire,

Radiation Characteristics

The radiation from a half-wave antenna is not uniform in all directions but varies with the angle with respect to the axis of the wire. It is most intense in directions perpendicular to the wire and zero along the direction of the wire, with intermediate values at intermediate angles. This is shown by the sketch of Fig. 14-5, which represents the radiation pattern in free space. The relative intensity of radiation is proportional to the length of a line drawn from the center of the figure to the perimeter. If the antenna is vertical, as shown in the figure, then the field strength will be uniform in all horizontal directions; if the antenna is horizontal, the relative field strength will depend upon the direction of the receiving point with respect to the direction of the antenna wire. The variation in radiation at various vertical angles from a half-wavelength horizontal antenna is indicated in Figs. 14-6 and 14-7.

feeding the half.wave ANTENNA

Direct Feed

If possible, it is advisable to locate the antenna at least a half-wavelength from the transmitter and use a transmission line to carry the power from the transmitter to the

Fig. $14-8$ - Methods of directly exciting the half-wave antenna. A, current feed, series tuning; 13 , voltage feed, capacitive coupling; C , voltare feed, with in-ductively-coupled antenna tank. In A, the coupling circuit is not included in the effertive electrical length of the antennasystem proper.
antenna. However, in many cases this is impossible, particularly on the lower frequencies, and direct feed must be used. Three examples of direct feed are shown in Fig. 14-8. In the method shown at A, C_{1} and C_{2} should be about $150 \mu \mu \mathrm{fd}$. each for the $3.5-\mathrm{Mc}$. band, $75 \mu \mu \mathrm{fd}$. each at 7 Mc., and proportionately smaller at the higher frequencies. The antenna coil connected between them should resonate to 3.5 Mc . with about 60 or $70 \mu \mu \mathrm{fd}$., for the $80-$ meter hand, for 40 meters it should resonate with 30 or $35 \mu \mu \mathrm{fd}$, and so on. The circuit is adjusted by using toose coupling between the antenna coil and the transmitter tank coil and adjusting C_{1} and C_{2} until resonance is indicated by an increase in plate current. The coupling between the coils should then be increased until proper plate current is drawn. It may be necessary to reresonate the transmitter tank circuit as the coupling is increased, but the change should be small.

The circuits in Fig. 14-8B and C are used when only one end of the antenna is accessible. In B , the coupling is adjusted by moving the tap toward the "hot" or plate end of the tank coil - the condenser (' may be of any convenient value that will stand the voltage, and it doesn't have to be variable. In the circuit at C, the antenna tuncd circuit ($\left({ }_{1}\right.$ and the antenna coil) should be similar to the transmitter tank circuit. The antenna tuned circuit is adjusted to resonance with the antenna connected but with loose coupling to the transmitter. Heavier loading of the tube is then obtained by tightening the coupling between the antenna coil and the transmitter tank coil.

Of the three systems, that at A is preferable because it is a symmetrical system and generally results in less r.f. power "floating" around the shack. The system of B is undesirable because it provides practically no protection against the radiation of harmonies, and it should only be used in emergencies.

Transmission-Line Feed for Half-Wave Antennas

Since the impedance at the center of a halfwavelength antenna is in the vicinity of 75 ohms, it offers a good match for $75-\mathrm{ohm}$ twowire transmission lines. Several types are available on the market, with different powerhandling capabilities. They can be connected in the center of the antenna, across a small strain insulator to provide a convenient connection point. Coaxial line of 75 ohms impedance ean also be used, but it is heavier and thus not as convenient. In either ease, the transmission line should be run away at right angles to the antenna for at least one-quarter wavelength, if possible, to avoid current unbalance in the line caused by pick-up from the antenna. The antenna length is calculated from Equation 14-B, for a half-wavelength antenna. When No. 12 or No. 14 enameled wire is used for the antenna, as is generally the case, the length of the wire is the over-all length measured from the loop through the insulator at each end. This is illustrated in Fig. 14-9.

The use of 75 -ohm line results in a "flat" line over most of any amateur band. However, by making the half-wave antenna in a special manner, called the two-wire or folded dipole, a good match is offered for a 300 -ohm line. Such an antenna is shown in Fig. 14-10. The open-wire line shown in Fig. 14-10 is made of

Fig. 14-9-Construction of a half-wave doullet fed with 75 -ohm line. The length of the antenna is calculated from Equation 14-13 or Jig. 14-4.

Fig. 14-10 - The construction of an open-wire folded daublet fed with 3 mintorm line. The length of the antenna is calculated from Equation 14-13 or Fig. 14-1.

No. 12 or No. 14 enameled wire, separated by lightweight spacers of Jucite or other material (it doesn't have to be a low-loss insulating material), and the spacing can be on the order of from 4 to 8 inches, depending upon what is convenient and what the operating frequency is. At 14 Mc., 4 -inch separation is satisfactory, and 8 -inch or even greater spacing can be used at 3.5 Mc .

The half-wavelength antenna can also he made from the proper length of 300 -ohm line, opened on one side in the center and connected to the feedline. After the wires have been soldered together, the joint can be strengthened by molding some of the excess insulating material (polyethylene) around the joint with a hot iron, or a suitable lightweight (lamp) of two pieces of Lucite can be devised.

Fig. 14-1] - The construction of a 3-wire folded dipole is similar to that of the 2 -wire folded dipole. The end spacers may have to le slightly stronger than the others lereause of the greater compression force on them. The hongth of the antenna is oltained from Equation 11.13 or lig. It-4. A suitable line can be made from No, 14 wire spaced $41 / 2$ to 5 inches, or from No. 12 wire spaced 6 inches.

Similar in some respects to the two-wire folded dipole, the three-wire folded dipole of Fig. 14-11 offers a good mateh for a $600-\mathrm{ohm}$ line. It is favored by amateurs who prefer to use an open-wire transmission line instead of the $300-6 \mathrm{hm}$ insulated line. The three wires of the antenna proper should all be of the same diameter.

Another method for offering a match to a 600 -ohm open-wire line with a half-wavelength antenna is shown in Fig. 1.1-12. The system is ealled a delta match. The line is "fanned" as it approaches the antenna, to have a gradu-ally-increasing impedance that equals the antenna impedance at the point of connection. The dimensions are fairly critical, but careful measurement before installing the antenna and matching section is generally all that is neces-
sary. The length of the antenna, L, is calculated from Equation 14-B or Fig. 14-4. The length of section C is computed from:

$$
\begin{equation*}
C(\text { feet })=\frac{118}{\text { Freq. (Mc.) }} \tag{14-E}
\end{equation*}
$$

The feeder clearance, E, is found from

$$
E(\text { feet })=\frac{1.18}{\text { Freq. }(\mathrm{Mc} .)}
$$

(14-F)
Example: For a frequency of 7.1 Mc ., the length
$L=\frac{468}{3.1}=65.91$ feet, or 65 feet 11 inches.
$C=\frac{118}{7.1}=16.62$ feet, or 16 feet 7 inches.
$E=\frac{148}{7.1}=20.84$ feet, or 20 feet 10 inches.

Fig. 14-12 - Delta-matched antenna system. The dimensions $C . D$, and E are found by formulas given in the text. It is important that the matehing section, E, comestraight away from the antenna without any bends.

Since the equations hold only for 600 -ohm line, it is important that the line be elose to this value. This requires $43 / 4$-inch spaced No. 14 wire, 6 -inch spaced No. 12 wire, or $33 / 4$-inch spaced No. 16 wire.

If a half-wavelength antenna is fed at the eonter with other than 75 -ohm line, or if a two-wire dipole is fed with other than 300 -ohm line, standing waves will appear on the line and coupling to the transmitter may become awkward for some line lengths, as described in the preceding chapter. However, in many cases it is not convenient to feed the half-wave antenna with the correct line (as is the case where multiband operation of the same antenna is desired), and sometimes it is not convenient to feed the antenna at the center. Where multiband operation is desired (to be discussed later) or when the antenna must be

Fig. 14-13 - The half-wave antenna can be fed at the center or at the end with an open-wire line. The antenna length is obtained from Equation 14.B or Fig. 14-4.
fed at one end by a transmission line, an openwire line of from 450 to 600 ohms impedance is generally used. The impedance at the end of a half-wavelength antenna is in the vicinity of several thousand olms, and hence a standingwave ratio of 4 or 5 is not unusual when the line is connected to the end of the antenna. It is advisable, therefore, to keep the losses in the line as low as possible. This requires the use of
ceramic or Micalex feeder spacers, if any appreciable power is used. For low-power installations in dry climates, dry wood spacers that have been boiled in paraffin are satisfactory. Mechanical details of half-wavelength antennas fed with open-wire lines are given in Fig. 14-13. If the power level is low, below 100 watts or so, 300 -ohm Twin-Lead can be used in place of the open line.

Long-Wire Antennas

An antenna will be resonant so long as an integral number of standing waves of current and voltage can exist along its length; in other words, so long as its length is some integral multiple of a half-wavelength. When the antenna is more than a half-wave long it usually is called a long-wire antenna, or a harmonic antenna.

Current and Voltage Distribution

Fig. 1+-1t shows the current and voltage distribution along a wire operating at its fundamental frequency (where its length is equal to a half-wavelength) and at its second, third and fourth harmonics. For example, if the fundamental frequency of the antenna is 7 Mc., the current and voltage distribution will be as shown at A. The same antenna excited at 14 Mc . would have current and voltage distribution as shown at I3. At 21 Mc., the third harmonic of 7 Mc ., the current and voltage distribution would be as in ('; and at 28 Mc., the fourth harmonic, as in D. The number of the harmonic is the number of half-waves con-
 B

2ND HARMONIC (FULL-WAVE)
 D

4 TM HARMONIC (2-WAVE)
Fig, 14-14-Standing-wave current and voltage distribution along an antenna when it is operated at various harmonics of its fundamental resonant frequency.

Fif. 14-15-Curve A shows variation in radialion resistance with antenna length. Curse B shows power in lohes of maximum radiation for long-wire antennas as a ratio to the maximum radiation for a half-wave antenna.
tained in the antenna at the particular operating frequency.

The polarity of current or voltage in each standing wave is opposite to that in the adjacent standing waves. This is shown in the figure by drawing the current and voltage curves successively above and below the antenma (taken as a zero reference line), to indicate that the polarity reverses when the current or voltage goes through zero. Currents flowing in the same direction are in phase; in opposite directions, out of phase.

It is evident that one antenna may be used for harmonically-related frequencies, such as the various amateur bands. The long-wire or harmonic antenna is the basis of multiband operation with one antenna.

Physical Lengths

The length of a long-wire antenna is not an exact multiple of that of a half-wave antenna because the end effects operate only on the end sections of the antenna; in other parts of the wire these effects are absent, and the wire length is approximately that of an equivalent

Fig. 14.16- IIorizontal patterns of radiation from a full-rever antenna. The solid line shows the pattern for a vertical anple of 15 degredes; dotted liners show deviation from the 1 .-dngree pattern at 9 and 30 Inerees, All three fratterns are drawn to the samerelativescale: actual am. plitudes will depend upon the heipht of the antenna.
portion of the wave in space. 'The formula for the length of a long-wire antema, therefore, is

$$
\text { Length }(\text { feet })=\frac{492(\mathcal{N}-0.05)}{\operatorname{Preq} .(\mathrm{Mc})} \quad 14-\mathrm{G}
$$

where N is the number of half-wsves on the antena.

Example: An antemm 4 half waves long at 14.2

$$
\text { Me, would be } \frac{492(4-0.05)}{14.2}=\frac{492 \times 3.95}{14.2}
$$

$=136.7$ fere, or 136 feet 8 inches.
It is apparent that an antenna cut as a halfwave for a given frequency will be slightly off resonance at exactly twice that frequency (the

Fig, 14.17- Iorizontal patterns of radiation from an antenna three half-toures long. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -degree patternat 9 and 30 degrees. Minor lobes coincide for all three angles.
second harmonic), because of the decreased influence of the end effects when the antenna is more than one-half wavelength long. The effect is not very important, except for a possible unbalance in the feeder system and consequent radiation from the feedline. If the antenna is: fed in the exact center, no unbalance will occur at any frequency, but end-fed systems will show an unbalance in all but one frequency, the frequency for which the antenna is cut.

Impedance and Power Gain

The radiation resistance as measured at a current loop beoomes larger as the antenna length is increased. Also, a long-wire antemat radiates more power in its most favorable direction than does a half-wave antenna in its most favorable direction. This power gain is

Fig. 1f.18 - Horizontal patterns of radiation from an antenna tico wacelengths long. The solid line shows the pattern for a vertical angle of 1.5 degrees; dutted linsshow deviation from the $\bar{\delta}$-degree pattern at 9 and 30 degrees. The minor lohes coincide for all three angles.
secured at the expense of radiation in other directions. Fig. $1+-15$ shows how the radiation resistance and the power in the lobe of maximum radiation vary with the antema length.

Directional Characteristics

As the wire is made longer in terms of the number of half-wavelengths, the direetional effects ehange. Instead of the "doughuut" pattern of the half-wave antenna, the directional chararteristic splits up into "lobes" which make various angles with the wire. In general, as the length of the wire is increased the direction in which maximum radiation occurs tends to approach the line of the antenna itself.

Directional characteristics for antennas one wavelength, three half-wavelengths, and two wavelengths long are given in Figs. 14-16, $14-17$ and $14-18$, for three vertical angles of radiation. Note that, as the wire length in-
creases, the radiation along the line of the antema becomes more pronounced. Still longer antemnas can be considered to have practically "end-on" directional characteristics, even at the lower radiation angles.

Me, tods of Feeding

In a long-wire antemma, the currents in adjacent half-wave scctions must be out of phase, as shown in Fig. i $4-14$. The feeder system must not upset this phase relationship. This requirement is met by fecding the antenna at either end or at any current loop. A two-wire feeder cannot be inserted at a current node,
however, because this invariably brings the currents in two adjacent half-wave sections in phase; if the phase in one section could be reversed, then the currents in the feeders necessarily would have to be in phase and the feeder radiation would not be canceled out.

No point on a long-wire antenna offers a reasonable impedance for a direct match to any of the common types of transmission lines. The most common practice is to feed the antenna at one end or at a current loop with a low-loss open-wire line and accept the resulting standing-wave ratio of 4 or 5 . When a better match is required, "stubs" are generally used (deseribed in the preceding chapter).

Multiband Antennas

As suggested in the preceding section, the same antenna may be used for several hands by operating it on harmonics. When this is done it is necessary to use resonant feeders, since the impedance matching for nonresonant feeder operation can be accomplished only at one frequency unless means are provided for changing the longth of a matehing section and shifting the :rint at which the feeder is attached to it

Furthermore, the current loops shift to a new position on the antenna when it is operated on harmonies, further complicating the feed situation. It is for this reason that a half-wave antomia that is conter-fed by a solid-dielectric line is practically useless for harmonic operation; on all even harmonics there is a voltage maximum occurring right at the feed point, and the resultant impedance mismateh is so bad that there is a large standing-wave ratio and consequently high losses arise in the solid dielectric. It is wise not to attempt to use on its harmonies a half-wave antema center-fed with coaxial cable. High-impedance solid-dielectric lines such as 300 -ohm Twin-I ead may be used, however, provided the power does not exceed a few hundred watts.

When the same antemat is used for work in several ban :- it must be realized that the directional characteristic will vary with the band in use.

Simple Systems

The most practical simple multiband antemna is one that is a half-wavelength long at the lowest frequency and is fed either at the center or one end with an open-wire line. Although the standing-wave ratio on the feedline will not approach 1.0 on any band, if the losses in the line are low the system will be efficient. From the standpoint of reduced feedline radiation, a center-fed system is superior to one that is end-fed, but the end-fed arrangement is often more convenient and should not be ignored as a possibility. The center-fed antenna will not have the same radiation pattern as an end-fed one of the same length, except on frequencies where the over-all length of the antenna is a half-wavelength or less. The end-fed antenna acts like a long-wire antenna on all bands (for which it is longer than a half-wavelength), but the center-fed one act: like two antennas of half that length fed in phase. For example, if a full-wavelength antenna is fed at one end, it will have a radiation pattern as shown in Fig. 14-16, but if it is fed in the center the pattern will be somewhat similar to Fig, 14-7, with the maximum radiation broadside to the wire. Either antemna is a good radiator, but if the radiation pattern is a factor, the point of feed must be considered.

Since multiband operation of an antema does not permit matching of the feedline, some attention must be paid to the length of the feedline if convenient transmitter-coupling arrangements are to be obtained. Table 14-I gives some suggested antenna and feeder lengths for multiband operation. In general, the longt of the feedline should be some integral multiple of a quarter wavelength at the lowest frequency.

Antennas for Restricted Space

If the space available for the antenna is not large enough to accommodate the length necessary for a half-wave at the lowest frequency to be used, quite satisfactory operation can be secured by using a shorter antenna and making

TABLE 14-I Multiband Resonant-Line Fed Antennas			
Antenna J.ength (ft.)	Ferrler Lengeh (ft.)	Band	Tupe of Tuning
With end feed: 120	60	4-Mc. 'phone	scries
136	67	3.5-Mc. c.w. 7 throush 28-Mc.	$\begin{aligned} & \text { series } \\ & \text { parallel } \end{aligned}$
67	33	7 and 21 Mc. 11 and 28 Mc.	series parallel
With renter feed: 13 .	67	$\begin{aligned} & 3.5 \text { through } \\ & 28 \mathrm{Mr} \text {. } \end{aligned}$	parallel
68	66	7 and 21 Mc. 14 and 28 Mc.	series parallel
68	34	$\begin{aligned} & \text { Throught } \\ & 28 \text { In }_{6} \end{aligned}$	parallel

The antenna lengths given represent compromises for harmonic operation becanse of different end effects on different bands. The 136 -foot endfed antenna is slighty long for 3.5 Mc. but will work well in the region (3500-3600 he.) that quadruples into the ld.Mr. band. Bands not listed are not reommended for the partionlar antenna. The centerfed systems are less critical as to length. 'Tuning comections are for open-wire line and may differ for 300 -ohm 'lwin-J.ead.

The end-fed and center-fed antennas will have the same directional characteristics only on the lowest freduency, as explained in the text.
up the missing length in the fecder system. The antenna itself may be as short as a quarter wavelength and still radiate fairly well, although of course it will mot be as effective as one a half-wave long. Nevertheless, surh a system is useful where operation on the desired band otherwise would be imposible.

Resonant feeders are a practical necessity with such an antenna system, and a center-fed antenna will give best all-around performance. With end feed the feeder currents become badly unbalaneed.

With center feed practically any convenient length of antenna can be used, if the feeder length is adjusted to alcommodate at least one half-wave around the whole system.

I practical antenna of this type can be made as shown in Fig. 14-19. Table $1 \nmid-I I$ gives a few recommended lengths. However, the antenna can be made any convenient length, provided the total length of wire is a half-wavelength at the lowest frequency, or an integral multiple of a half-wavelength.

In using the tables, it should be held in mind that the "trpe of tuning" will vary from that listed if the feed-line lengths are not as shown or if solid-dielectric line (Twin-Lead) is used. This should not be interpreted as a fault in the antemna, and any tuning system (series or paralle!) that works well without any trace of heating is quite satisfactory.

Bent Antennas

Since the field strength at a distance is proportional to the current in the antenna, the high-current part of a half-wave antenna (the eenter quarter wave, approximatcly) does most of the radiating. Advantage can be taken of this fact when the space available does not permit building an antenna a halfwave long. In this case the ends may be bent, either horizontally or vertically, so that the

Fig, 14-20-Folded arrangement for shortened antennas. The total length is a half-wave, not including the feeders. The thorizontal part is made as long as convenient and the ends dropped down to make up the required length. The cnds may be bent back on themselves like feeders to cancel radiation partially. The horizontal section should be at least a quarter wave long.
total length equals a half-wave, even though the straightaway horizontal length may be as short as a quarter wave. The operation is illustrated in Fig. 14-20. Such an antenna will be a somewhat better radiator than a quarterwavelength antenna on the lowest frequency, but is not so desirable for multiband operation because the ends play an inereasingly important part as the frequency is raised. The performance of the system in such a case is difficult to predict, especially if the ends are vertical (the most convenient arrangement) because of the complex combination of horizontal and vertical polarization which results as well as the dissimilar directional characteristies. However, the fact that the radiation pattern is incapable of prediction does not detract from the general usefulness of the antenna. For one-band operation, end-loading with coils (5 feet or so in from each end) is practical and efficient.

TABLE 14-II Antennas and Feeder Lengths for Short Multiband Antennas, Center-Fed			
Antenna I.ength (ft.)	Ferder Length (ft.)	Band	Type of Tuning
100	83	$\begin{aligned} & 3.5 \mathrm{Mc} \\ & \begin{array}{l} 11.21 \mathrm{Me} . \\ 28 \text { N1. } \end{array} . \end{aligned}$	parallel series series or parallel
68	34	$\begin{gathered} 3.5 \mathrm{Mc} \\ \begin{array}{c} 7,14,21 \\ \text { and } 28 \mathrm{Mc} . \end{array} \end{gathered}$	series parallel
50	43	$\begin{gathered} 7,1+, 21 \\ \text { and } 2811 \mathrm{ll} . \end{gathered}$	parallel
33	51	$\begin{gathered} 7,1+, 21 \\ \text { and } 28.12 . \end{gathered}$	parallel
33	31	$\begin{aligned} & 7 \text { and } 21 \mathrm{Mc} . \\ & 14 \text { and } 28 \mathrm{Mc} . \end{aligned}$	serips parallel

Grounded Antennas

A vertical quarter-wavelength antenna is often used in the low-frequency amateur bands to obtain low-angle radiation. Four trpical examples and suggested methods for feeding are shown in Fig. 14-21. The antenna may be wire or tubing supported by wood or insulated guy wires. When

Fig. 14-21-A quarter-wavelength antenna can be fed directly with 50 -ohm coaxial line (A) with a low stand-ing-wave ratio, or a coupling network can be used (B) that will permit a line of any impedance to be used, In (B), L_{1} and (is should resonate to the operating frequency, and L_{1} should be larger than is normally used in a plate tank circuit at the same frequency,

13y using multiwire antennas, the guarter-wave vertical can be fed with (C) 150 - or (D) 300 -ohm line.
tubing is used for the antenna, or when guy wires (broken up by insulators) are used to reinforce the structure, the length given by the formula is likely to be long by a few per cent. A check of the standing-wave ratio on the line will indicate the frequency at which the s.w.r. is minimum, and the length of the antenna can be adjusted accordingly.
The examples shown in Fig. 14-21 all require an antenna insulated from the ground, to provide for the feed point. A grounded tower or pipe can be used as a radiator by emploving "shunt feed," which consists of tapping the inner conductor of the coaxial-line feed up on the tower until the best mateh is obtained, in much the same manner as the "gamma match" (deseribed later) is used on a horizontal element. If the antemm is not an electrical quarter-wavelength long, it is necessary to tune out the reactance by adding capacity or inductance between the coaxiat line and the shunting conductor. A metal tower supporting a TV antenna or rotary beam ean be shunt-fed only if all of the wires and leads from the supported antenna run down the center of the tower and
underground away from the tower, since otherwise they would become part of the low-frequency antenna system,

ANTENNAS FOR 160 METERS

Results on 1.8 Me will depend to a large extent on the antenna system and the time of day or night. Almost any random long wire that can be tuned to resonance will work during the night but it will gencrally be found very ineffective during the day. A vertical antenna - or rather an antenna from which the radiation is predominantly vertically polarized - is probably the best for 1.8-Mc. operation. A horizontal antenna (horizontallypolarized radiation) will give better rosults during the night than the day because daytime absorption in the ionosphere is so high at this frequency that the reflerted wave is too weak to be useful. At night the performance improves because nighttime ionosphere conditions generally permit the reflereded wave to return to earth without too much attenuation. The vertically-polarized radiator gives a strong ground wave that is effective day or night, and it is to be preferred on 1.8 Mc.

There is another reason why a vertical antenna is better than a horizontal for $160-$ meter operation. The low-angle radiation from a horizontal antenna $1 / 8$ or $1 / 4$ wavelength above ground is almost insignificant. Iny reasonable height is small in terms of wavelength, so that a horizontal antenna on 160 meters is a poor radiator at angles useful for

Fig. $14-2 \boldsymbol{2}$ - bent antenna for the $160 \cdot m e t e r$ band. In the aystem at A, the vertical portion (length X) should be made as long as posisible. In either antenna syotem, $L_{1} C_{1}$ should resonate at 1900 kr ., roughly. To adjust L_{2} in antenna A, resonate $L_{1} C_{1}$ alone to the operating frogueney, then connect it to the antenna system and adjust L_{2} for maximum loading. Further loading ran be ohtained by increasing the coupling between L_{1} and the link.
long distances ("Jong, " that is, for this band). Its chief usefulness is over relatively short distances at night.

Bent Antennas

Since ideal vertical antennas are generally out of the question for practical amateur work, the best compromise is to bend the antenna in such a way that the high-current portions of the antenna run vertically. It is, of course, advisable to place the antenna so that the highest currents in the antenna occur at the highest points above actual ground. Two antenna systems designed along these lines are shown in lig. 14-22. The antennat at A uses a loading coil, L_{2}, to increase the electrical length of the antenna to a half wavelength, so that the antenna can be fed at its high-voltage point through the coupling circuit $L_{1} C_{1}$. The antenna of Fig. $14-22$ IS uses a full half-wavelength of wire but is bent so that the high-current portion runs vertically. The horizontal portion running to $L_{1} C_{1}$ should run 8 or 10 feet above ground.

Grounds

A good ground connection is generally important on 160 meters. The ideal system is t number of wire radials buried a foot or two underground and extending 50 to 100 feet from the central connection point. As many radials as possible should be used.

If the soil is good (not rocky or sandy) and generally moist, a low-resistance connection to
the cold-water pipe system in the house will often serve as an adequate ground system. The connection should be made close to where the pipe enters the ground, and the surface of the pipe should be scraped clean before tightening the ground clamp around the pipe.

A 6 - or 8 -foot length of 1 -inch water pipe, driven into the soil at a point where there is

Fig, 1.4-2.3-An arrangement for heeping the main radiating portion of the antenna vertical. considerable natural moisture, can be used for the ground connertion. Three or four pipes driven into the ground 8 or 10 feet apart and all joined together at the top with heavy wire are more effective than the single pipe.

The use of a counterpoise is recommended where a buried system is not practicable or where a pipe ground cannot be made to have low resistance because of poor soil conditions. A counterpoise consists of a number of wires supported from 6 to 10 feet above the surfare of the ground. Generally the wires are spaced 10 to 15 feet apart and located to form a square or polygonal configuration under the vertical portion of the antenna.

Long-Wire Directive Ārrays

THE "V" ANTENNA

It has been emphasized that, as the antenna length is increased, the lobe of maximum radiation makes a more acute angle with the
build and operatc. It can also be used on harmonies, so that it is suitable for multiband work. A top view of the " V " antenna is shown in lig. 14-24.

Fig. 14-24-1'he hasic "V" antenna, made by comlining two long wires.
wire. Two such wires may be combined in the form of a horizontal "V" so that the main lobes from each wire will reinfore along a line bisecting the angle between the wires. This increases both gain and directivity, since the lobes in directions othor than along the bisector cancel to a greater or lesser extent. The horizontal " V " antenna therefore transmits best in either direction (is bidirectional) along a line bisecting the "V" made by the two wires. The power gain depends upon the length of the wires. Provided the necessary space is available, the " V " is a simple antenna to

Fig. 14-25-1 Design chart for horizontal "V" antennas, giving the enclosed angle between sides ts. the length of the wires. Values in parentheses reprecent approximate wave angle for height of one-half wavelength.

Fig. 14-25 shows the dimensions that should be followed for an optimum design to obtain maximum power gain for differentsized "V" antennas. The longer systems give good performance in multiband operation. Angle α is approximately equal to twice the angle of maximum radiation for a single wire equal in length to one side of the "Y."

The wave angle referred to in Fig. 14-25 is the vertical angle of maximum radiation. Tilting the whole horizontal plane of the " 5 ", will tend to increase the low-angle radiation off the low end and decrease it off the high end.

The gain increases with the length of the wires, but is not exactly twier the gain for a single long wire as given in Fig. 14-1\%. In the longer lengths the gain will bo somewhat increased, heratuse of mutual mophing between the wires. A " $V^{\prime \prime}$ " eight wavelengthe on a leg. for instance, will have a gain of about 12 (lb). over a hatf-wave anterna. Whereas twioe the gain of a single eight-wavelongth wire would he only approximately 9 db .

The two wires of the " \mid " must be fed out of phase, for correct operation. A resonant line may simply be attached to the ends, as shown in Fig. 14-24. Alternatively, a quarter-wave matching section may be employed and the antenna fed through a nonresonant line. If the antenna wires are made multiples of a half-wave in length (use Equation 14-(i for computing the length), the matching section will be closed at the free end. I stub can be connected across the resonant line to provide a match, as described in the preeding chapter.

THE RHOMBIC ANTENNA

The horizontal rhombic or "diamond" antema is shown in Fig. 14-26. Jike the "V," it requires a great deal of space for erection, but it is capable of giving excellent gain and directivity. It also can be used for multiband operation. In the terminated form shown in

Fig. 14.2:-Compromise-method design chart for rhomhir antennas of various leg lengths and wave anglic. 'The following examples illustrate the use of the ehart:
(I) Biven:

Sength $(L)=2$ wavelengths
Desired wave angle $(\lambda)=20^{\circ}$.
'lı Find: $/ \boldsymbol{I}, \Phi$.
Method:
Draw vertical line through point $a(J .=\because$ wavelengths) and point bon abseisal ($د=20^{\circ}$). Read angle of tilt (Φ) for point a and height (II) from intersection of lime ab at point c on curve $I I$. Result:
$\phi=60.5^{\circ}$. $I I=0.73$ wavelength.
(2) Given: J.ength $(L)=3$ wa velengths. Ingle of tilt $(\Phi)=78^{\circ}$.
'Ton ['ind: $I I$, د.
Method:
Jraw a vertical line from point d on curve $L=3$ wavolengths at $\Phi=78^{\circ}$. Read intersecetion of this line on curve $I I$ (point e) for height, and intersection at point f on the abserisaid for \mathcal{D}.

```
Result:
    I = 0.56 wavelength.
    د=26,6
```

Fig. 14-26, it operates like a nonresonant transmission line, without standing waver, and is unidirectional. It may also be used without the terminating resistor, in which ease there are standing waves on the wires and the antenna is bidirectional.

The important quantities influencing the design of the rhombie antema are shown in Fig, 14-26. While several design methods maty be used, the one most applimable to the conditions cexisting in amateur work is the se-called "compronise" method. The chart of Fig. 14-27 gives design information based on a given lengt hand wave angle to determine the remaining optimum dimensions for best operation. Curves for values of lengtl of two, three and four wavelengths are shown, and any intermediate values may be interpolated.
With all other dimensions correct, an increase in length causes an increase in power gain and a slight reduction in wave angle. An increase in height also causes a reduction in wave angle and an increase in power gain, but not to
the same extent as a proportionate increase in length. For multiband work, it is satisfactory to design the rhombic antenna on the basis of 14Me. operation, which will permit work from the 7 - to 28-Mc. bands as well.

A value of 800 ohms is correct for the terminating resistor for any properly-constructed rhombie, and the system behaves as a pure resistive load under this condition. The terminating resistor must be capable of safely dissipating one-half the power output (to eliminate the rear pattern), and shonld be noninductive. Such a resistor may be made up from a carbon or graphite rod or from a long 800 -ohm transmission line using resistance wire. If the carbon rod or a similar form of lumped resistance is used, the deviee should be suitahly protected from weather effects; i.e., it should be covered with a good asphaltic compound and sealed in a small lightweight box or fiber tube. Suitable nonreactive terminating resistors are also available commereially.

For feeding the antenna, the antenna impedance will be matched by an 800 -ohm line, which may be constructed from No. 16 wire
spaced 20 inches or from No. 18 wire spaced 16 inches. The $800-\mathrm{hm}$ line is somewhat ungainly to install, however, and may be replaced by an ordinary 600 -ohm line with only a negligible mismatch. Alternatively, a matching section may be installed between the antenna terminals and a low-impedance line. However, when such an arrangement is used, it will be necessary to change the match-ing-section constants for each different band on which operation is contemplated.

The same design details apply to the unterminated rhombic as to the terminated type. When used without a terminating resistor, the system is bidirectional. Resonant feeders are generally used with the unterminated rhombic. A nonresonant line may be used by incorporating a matching section at the antema, but is not readily adaptable to satisfactory multiband work.

Khombic antennas will give a power gain of 8 to 12 db . or more for leg lengths of two to four wavelengths, when constructed according to the charts given. In general, the larger the antenna, the greater the power gain.

Directive Arrays with Driven Elements

By combining individual half-wave antennas into an array with suitable spacing between the antennas (called elements) and feeding power to them simultancously, it is possible to make the radiated fields from the individual elements add in a favored direction, thus increasing the field strength in that direction as compared to that produced by one antenna element alone. In other directions the fields will more or less oppose each other, giving a reduction in field strength. Thus a power gain in the desired direction is secured at the expense of a power reduction in other directions.

Besides the spacing between elements, the instantancous direction of current flow (phase) in individual elements determines the directivity and power gain. There are several methods of arranging the elements. If they are strung end to end, so that all lie on the same straight line, the elenents are said to be collinear. If they are parallel and all lying in the same

Fig. $14-28$ - Collinear half-wave antennas in phase. 'The system at A is gencrally hnown as "two half-waves in phase." ${ }^{\text {" }} \mathbf{1 3}$ is an extension of the system; in theory the mumber of elements may be carried on indefinitely, but practical considerations usually limit the elements to four.
plane, the elements are said to be broadside when the phase of the current is the same in all, and end-fire when the currents are not in phase. Elements that receive power from the transmitter through the transmission line are called driven elements.

The power gain of a directive system inereases with the number of elements. 'lhe proportionality between gain and numbor of elements is not simple, however. The gain depenls upon the effect that the spacing and phasing has upon the radiation resistance of the elements, as well as upon their number.

Collinear Arrays

Simple forms of collinear arrays, with the current distribution, are shown in Fig. 14-28. The twoelement array at A is popularly known as "two half-waves in phase." It will be recognized as simply a center-fed antenna operated at its second harmonic. The way in which the number of elements may be extended for increased directivity and gain is shown in Fig. 14-28B. Note that quarter-wave phasing sections are used between elements; these give the reversal in phase necessary to make the currents in individual antenna elements all flow in the same direction at the same instant. r---- Any phase-reversing section may be used as a quarter-wave matehing section for attaching a nonresonant feeder, or a resonant transmission line may be substituted for any of the quarter-wave sections. Also, the antenna may be endfed by any of the systems previously described, or any element may be center-

TABLE 14-III Theoretical Gain of Collinear Halt-Wave Antennas					
Spacing betueen centers of adjacent half-uaves	Number of half-uates in array vs. gain in db.				
	2	3	4	5	6
$\frac{1}{3} / 4$ wave	1.8	3.3	4.5	5.3	6.2
	3.2	4.8	6.0	7.0	7.8

fed. It is best to feed at the center of the array, so that the energy will be distributed as uniformly as possible among the elements.

The gain and directivity depend upon the number of elements and their spacing, center-to-center. This is shown by Table 14-III. A)though three-quarter wave spacing gives greater gain, it is difficult to construct a suitable phase-reversing system when the ends of the antenna elements are widely separated. For this reason, the half-wave spacing is most generally used in actual practice.

Collinear arrays may be mounted either horizontally or vertically. Horizontal mounting gives increased horizontal directivity, while the vertical directivity remains the same as for a single element at the same height. Vertical mounting gives the same horizontal pattern as a single element, but concentrates the radiation at low angles. It is seldom practicable to use more than two elements vertically at frequencies below 14 Mc . because of the excessive height required.

Broadside Arrays

Parallel antenna elements with currents in phase may be combined as shown in Fig. 14-29 to form a broadside array, so named because

Fig. 14.29 - Broadside array using parallel half-wave elements. Arrows indieate the direction of current flow. Iransposition of the feeders is necessary to bring the antenna eurrents in phase. Any reasonalile number of elp. ments may be used. The array is bidirectional, with naximum radiation "broadside" or perpendicular to the antenna plane (perpendicularly through this page).
the direction of maximum radiation is broadside to the plane containing the antennas. Again the gain and directivity depend upon the number of elements and the spacing, the gain for different spacings being shown in Fig. 14-30. Half-wave spacing generally is used, since it simplifies the problem of feeding the system when the array has more than two elements. Table 14-IV gives theoretical gain as a function of the number of elements with half-wave spacing.

Broadside arrays may be suspended either with the elements all vertical or with them horizontal and one above the other (stacked). In the former case the horizontal pattern becomes quite sharp, while the vertical pattern is the same as that of one element alone. If the array is suspended horizontally, the horizontal pattern is equivalent to that of one element while the vertical pattern is sharpened, giving low-angle radiation.

Broadside arrays may be fed either by resonant transmission lines or through quarterwave matching sections and nonresonant lines. In Fig. 14-29, note the "crossing over" of the feeders, which is necessary to bring the elements into proper phase relationship.

Combined Broadside and Collinear Arrays

l3roadside and collinear arrays may be combined to give both horizontal and vertical directivity, as well as additional gain. The general plan of constructing such antennas is shown in Fig. 14-31. The lower angle of radiation resulting from stacking elements in the vertical plane is desirable at the higher frequencies. In general, doubling the number of elements in an array by stacking will raise the gain from 2 to 4 db ., depending upon whether vertical or horizontal elements are used - that is, whether the stacked elements are of the broadside or collinear type.

The arrays in Fig. 14-31 are shown fed from one end, but this is not especially desirable in the case of large arrays. Better distribution of energy between elements, and hence better over-all performance, will result when the feeders are attached as nearly as possible to the center of the array. Thus, in the eight-element array at A, the feeders could be introduced at the middle of the transmission line between the second and third set of elements, in which case the connecting line would not be transposed between the second and third set of elements. Alternatively, the antemna could be constructed with the transpositions as shown and the feeder connected between the adjacent ends of either the second or third pair of collincar clements.

Fig. 14-30 - Gain cs. spacing for two parallel half-wave elements combined as either broadside or end-fire arrays.

Fig. 14-31-Combination broadside and collinear arrays. A, with verical elements; 13 , with horizontal ele. ments. Both arrays give low-angle radiation. T'wo or more sections may be used. 'lher gain in dlb, will be equal. approximately, to the sum of the gain for one set of broadside elements ('able l-I-IV) plus the gain of one set of collinear elements ('Iable 1t-lll). For example, in A each broadside set has four elements (gain $7 \mathbf{d b}$.) and each collinear at two clement: (gain 1.8 dt ,), giving a total gain of 8.8 th). In B, cach broadside set has two ellements (qain 1 (lt,) and carh collinear set there elements (gain 3.3 db.), making the total gain ...3 db. The result is not strictly acourate becanse of mutual coupling between the elements, but is good enough for practiral purgosen.

A four-riment array of the general type show'n in lig. 14-31I, known as the "lazy-lI" antenat, hats been quite frequently used. This arrangement is shown, with the feed point indicated, in Fig. 14-32.

End-Fire Arrays

Fig. $14-33$ shows a pair of parallel latf-wave elements with currents out of phase. This is known as an end-fire array because it radiates best along the plane of the antennas, as shown.

The end-fire array may be used either ver-

Fig. 14-32- I four-element combination hroadside: collinear array, popularly known as the "lazy-11" antenna. A clesed quarter-wave stulb may be used at the feed juint to mateh into a 600 -ohm transmission line, or resmant feeders may be attached at the point indicated. 'The gain over a half-wave antenna is 5 to 6 d).
tically or horizontally (elements at the same height), and is well adapted to amateur work because it gives maximum gain with relatively close element spacing. Fig. $14-30$ shows how the gain varies with spacing. End-fire elements: may be combined with additional collinear and broadside elements to give a further increase in gain and directivity.

Either rewonant or nonresonant lines may be used with this type of array. Nonresonant lines
preferably are matched to the antenna through a quarter-wave matching section or phasing stub.

Phasing

Figs. 14-31 and 14-33 illustrate a point in connection with feeding a phased antenna system which sometimes is confusing. In Fig. 1-43, when the transmission line is connected as at A there is no crossover in the line connecting the two antennas, but when the transmission line is connected to the center of the connecting line the crossover becomes necessary (B). This is because in B the two halves of the connecting line are simply branches of the same line. In other words, even though the connecting line in $I 3$ is a half-wave in length, it is not actually a half-wave line but two quarter-uave lines in parallel. The same thing is true of the untransposed line of Fig. 14-31B. Note that, under these conditions, the antenna clements are in phase when the line is not transposed, and out of phase when the tramposition is made. "lhe opposite is the case When the half-wave line simply joins two antema elements and does not have the feed line combeeted to its center, as in Fig. 14-29.

Adjustment of Arrays

With arrays of the types just described, using half-wave spacing between elements, it

/ig. 1/-33 - End-fire arrays using parallel half-nave clements. 'The elements are shown with half-wavespacing to illustrate feeder connections. In practice, closer spacings are desirable, as shown by Fig. 14-30. Direction of maximom radiation is shown by the large arrows.
will usually suffice to make the length of each element that given by Equations $14-13$ or $14-\mathrm{C}$. The half-wave phasing lines between the parallel elements should be of open-wire construction, and their length can be calculated from:

$$
\begin{align*}
& \text { Length of half-wate line (feet) }= \tag{14-H}\\
& \frac{480}{\text { Freq. (Me.) }} \\
& \text { Example: A half-wavelength phasing line for } \\
& 28.8 \mathrm{Me} \text {, would be } \frac{480}{28.8}=16.66 \text { feet }=16 \text { feet } \\
& 8 \text { inches. }
\end{align*}
$$

The spacing between elements can be made equal to the length of the phasing line. No special adjustments of line or element length or spacing are needed, provided the formulas are followed closely.

TABLE 14-IV Theoretical Gain Vs. Number of Broadside Elements (Half-Wave Spacing)	
No. of elements	Gain
2	4 dh.
3	5.5
4	7
5	8
6	9

With collinear arrays of the type shown in Fig. 14-2sl3, the same formula may be used for the element length, while the length of the quarter-wave phasing section can be found from the following formula:

Length of quarter-urue line (feet) $=$
(14-I)

$$
\frac{240}{\text { Preq. }\left(M c_{0}\right)}
$$

Example: A quarter-wavelength phasing line for 143.5 Mc . would he $\frac{.240}{14.25}=16.84$ feet $=16$ feet 10 iturher.

(D)

Fig. 14.3.t - Simple directive-antema syotems. A is a twoelement end-fire array: Is is the same array with equter feed, wheh permit - wad of the array on the seromd harmonie. where it heromes a four-dement arras with quarterow ase sparing. ($:$ is a fonretlement end-lime arras with 'x wave spacing. I) is a simple twoeloment bread. side array using extemded in-phase antemnas "extended double-7epp") "The wain of 1 and 13 is slightly over 4 Itb. 6n the aereond harmonice 13 will give about $\bar{j}-1 \mathrm{lb}$. 4 ain, With C., the gain is approximately o dlo.. amd with $\|$, approsimately 3 dh . In 1,13 and \mathbb{C}, , the phasimg line anntribute alont ito wavelongth to the transmiseion line: when 13 is nsed on the serond harmonie, this contrilution is $1 / 8$ wavelength. Nternatively, the ans. tematenda mas be lemt to mert the tramsmiasion lines, in whioh cask eath fredar is simply connerted to onte anttembal. In I). point: J.) indicate a quarterwave point (hish eurrent) and 1.1 a half-wave point (high volt. ane . The lime may lee externded in multiples of quarter waves if resomant feeders are to ber used. A, 13 and (: may lue suspended on woden spreaders. The plane containing the wirss should be parallel to the ground.

If the array is fed in the center it should not be neressary to make any particular adjustments, although, if desired, the whole system can be resonated by comerting an r.f. ammeter in the shorting link of each phasing section and moring the link back and forth to find the maxi-mum-current position. This refinement is hardly necessary in pratice, however, so long as all eloment: are the same length and the system is symmetrical.

The phasing sections can be made of 300 ohm Twin-lead, if low power is used. Llowever, the lengths of the phasing sections must then be only 84 per cent of the length obtained in the two formulas above.

> Example: The half-wavelength line for 28.8 Me, would berome $0.8 t \times 16.6$ if $=13.9$ feet $=$ 14 feet 0 inehes.

Using Twin-lead for the phasing sections is most useful in arrays such as that of lig. 14-2813, or any other system in which the element sparing is not controlled by the length of the phasing section.

Simple Arrays

Several simple dirertive-antenna systems using driven clement: have achieved rather wide we among amateurs. Four of these systems are shown in Fig. 14-34. Tuned feeders are assumed in all cases: however, a matehing sertion readily can be substituted if a nonresonant transmission line is preferred. Dimensions given are in terms of wavelength; atetual lengths can be calculated from the equations for the antenna and from the equation athove for the resonant transmission line or matehing section. In easer where the transmission line proper connects to the midpoint of a phasing line, only half the length of the latter should be added to the line to find the quarter-wave peint.

At A and 13 are two-clement endfire arangements using close spacing. Thes are Coctrically equivalent; the only difference is in the method of comnerting the feeders. I3 may also be used as a four-element armay on the second harmonic, although the sparing is not quite optimum (Fig. 1-4-30) for such operation.

A elose-spaced four-element array is shown at C. It will give about 2 db). more gain that the two-element array.

The antomata at D, commonly kuown as the "extended double-Zepp," is designed to take advantage of the greater gain pasibible with collinear antemas having greater than halfwave renter-to-center sparing, but without introducing feod complications. The elements are made longer than a half-wave in order to bring this about. The gain is 3 db . over a single half-wave antenna. and the broadside directivity is fairly sharp.

The antemmas of A and B may be mounted either horizontally or vertically: horizontal suspension (with the elcments in a plane paratlel to the ground) is recommended, since this
tends to give low-angle radiation without an unduly sharp horizontal pattern. Thus these systems are useful for coverage over a wide horizontal angle. The sistem at C , when mounted horizontally, will have a sharper hor-
izontal pattern than the two-element arrays because of the effect of the collinear arrangement. The vertical pattern, however, wilt be the same as that of the antennas in A and 13 .

Directive Arrays with Parasitic Elements

Parasitic Excitation

The antema arrays previously described are bidirectional; that is, they will radiate in directions both to the "front" and to the "back" of the antema system. If radiation is wanted in only one direction, it is neressary to use different element arrangementr. In most of these arangements the additional elements receive power by induction or radiation from the driven element, qenerally called the "antenma," and reradiate it in the proper phase relation-

Fig. 1.f-35-Cain e's, element sparing for an antenna and one parasitic element. The reference point, 0 dh. is the field strength from a halfowave antoma alone. The
 0.14 wavelength. and in diredion B at greater spacings. The front-to-tach ration is the differener in dh. between carves A and B. Variation in radiation resintance of the drivenelement also is shomen. These curves are for a selfresonant parasitic rlement. At mos spacings the gain as a reflector can lew increased ly slight longthening of the parasitic element: the gain as a director can be inereased by shortening. "This alsoimprowe the front-to-bach ratio.
ship to achieve the desired effert. These elements are called prarusitic elements, as contrasted to the driven elements which receive power direetly from the transmitter through the transmission line.

The parasitic element is called a director when it reinforees radiation on a line pointing to it from the antenna, and a reflector when the reverse is the case. Whether the parasitic element is a director or reflector depends upon the parasitic-clement tuning, which usually is adjusted ber changing it: length.

Gain vs. Spacing

The gain of an antema with parasitio clements varios with the spacing and tuning of the elements, and thus for any given spacing there is a
tuning condition that will give maximum gain at this spareing. The maximum front-to-back ratio soldom, if ever, oceurs at the same condition that gives maximum forward gain. The impedance of the driven element also varies with the tuning and sparing, and thus the attenna system must be tuned to its final condition bofore the match between the line and the antenna can be completed. However, the tuning and matching may interlock to some extent, and it is usually necessary to run through the adjustments several times to insure that the best possible tuning has been obtained.

Two-Element Beams

A 2-element beam is useful where space or other considerations prevent the use of the larger structure reguired for a 3 -element beam. The general practice is to tune the parasitie element as a reffector and space it about 0.15 wavelength from the driven element, although some suceessful antemnas have been built with 0.1wavelength spacing and director tuning. Gain v s. clement spacing for a 2 -element antemna is given in Fig. 14-35, for the sperial case where the parasitic clement is resonant, but it is indieative of the performance to be expected under maximumgain tuning conditions.

Fig, 1.4.36- Cain es, clement spaeing for 3 -element beama using a driven element and a direetor and a reflector. The 0-db, reference level is the field strength from a half-wavelength antenna alone. These curves are for the systom tomed for mavimum forward pain.

The element spacing shown is the fraction of a wavelength determined ly $\frac{98 t}{f \text { (Nie.) }}$. Thus a wavelength at $14.2 \mathrm{Mc}=984 / 14.2=60.3$ feet. A spacing of 0.15 wavelength at 14.2 Nc. would be $0.15 \times 69.3=$ 10.1 feet $=10$ feet 5 inches.

Three-Element Beams

Where room is available for an over-all length greater than 0.2 wavelength, a 3 -element bean is preferable to one with only 2 dements. Once the over-all length has been decided upon, the curves of Fig. 14-36 can be used to determine the proper spacing of director and reflector. If, for example, the distanee between director and reflector can be made 0.4 wavelength, Fig. $14-36$ shows that a spacing of 0.2 D - 0.2 R gives a gain of 7.9 (th., and a spacing of $0.25 \mathrm{D}-0.15 \mathrm{l}$ gives a gatin of 8.2 db . Obviously the latter is the better choice, although the practical difference might be difficult to measure, and practical (mechanieab) eonsiderations might call for using the more balanced $0.2 \mathrm{D}-0.2 \mathrm{R}$ construction.

When the over-all length has been decided upon, and the element spacing has been determined, the element lengths ean be found by referring to Fig. 14-37. It must be remembered that the lengthe determined be these charts will vary slightly in actual practice with the element diameter and the mothod of supporting the elements, and the tuning of a beam should always be checked after installation. Hlowever, the lengths obtained by the use of the charts will be close to correct in practically all cases, and they can be used without checking if the bam is difficult of arcess.
The preferable method for checking the beam is by means of a field-strength meter or the s-meter of a communications receiver, used in conjunction with a half-wave dipole antenna located at least 10 wavelengths away and as high as or higher than the beam that is being checkel. A few watts of power fed into the antenna will give a useful signal at the observation point, and the power input to the transmitter (and hence the antenna) should be held constant for all of the readings. Beams tuned on the ground and then lifted into place are subject to tuning errors and cannot be depended upon. The impedance of the driven element will vary with the height above ground, and good practice dictates that all final matching between antenna and line be done with the antema in place at its normal height above ground.

Simple Systems; the Rotary Beam

Two- and 3 -element sustems are popular for rotary-beam antennas, where the entire antemna sustem is rotated, to permit its gain and directivity to be utilized for any compass direction. They may be mounted either horizontally (with the plane containing the elements parallel to the earth) or vertically.

A 4-element beam will give still more gain than a 3 -element one, provided the support is sufficient for at least 0.2 -wavelength spacing between elements. The tuning for maximum gain involves many variables, and complete gain and tuning data are not available.

The elements in close-spaced (less than onequarter wavelength element sparing) arrays preferably should be made of tubing of one-
half to one-inch diameter. A conductor of large diameter not only has less ohmic resistance but also has jower Q; both these factors are important in close-spaced arrays berause the impedance of the driven element

Fig. 14.37- Fiement lengths for a 3 -element beam. These lengths will hold cosely for tubing elements supported at or near the center. 'The radiation resistaner (I)) is useful information in planning for a matrhing system, but it is subject to variation with height above gromen and must be considered only as an approximation.

The driven-element length (C) may require modifiration for turing out reactance if a 1 - or gamma-mateh feed system is used, as mentioned in the text.
A 0.21)- 0.2 R beam cut for 28.6 Mc. would have a director length of $452 / 28.6=15.8=15$ feet 10 inches, a reflector length of $490 / 28.6=17.1=17$ feet 1 inch , and a driven element length of $470.5 / 28.6=16.45=16$ feet 5 inches.
usually is quite low comparod to that of a single half-wave dipole. With 3 - and 4 -element arrays the radiation resistance of the driven element may be so low that ohmie losses in the conductor can consume an appreciable fraction of the power. Low radiation resistance means that the antema will work over only a small frequeney range without retuning unless largediameter conductors are used.

Feeding Close-Spaced Arrays

Any of the usual methods of feed may be applied to the driven element of a parasitic array. The preferred methods are shown in Fig. 14-38. Resonant feeders are not recommended for lengths greater than a half-wavelength unless open-wire lines of copper-tubing conductors are used.

Three versions of the popular " T "-match are shown, for two-wire lines of Twin-Lead at A, for single coaxial line at B, and for double coaxial line at C. The mateh is adjusted by moving the shorting bars, keeping them equidistant from the center, until the minimum s.w.r. is obtained on the line. If the s.w.r. minimum is not 1.5 or less, the transmitter freguency should be shifted to find the frequeney where the minimum s.w.r. occurs. If it is higher than the original test frequencr, increase the antenna clement length slightli: The parasitic element lengths taken from lig. 14-37 should not reguire mueh adjustment umless considerably different spacing is used, but it may be nocessary to ehange the prosition of the shorting hars and the length of the antenna element oner or twice before the s.w.r. at the test freguency is acereptable. The matehing section may be made of the same type of conductor as the element and spaced a few inehes from it. The length of the matching section will be greater with higher-impedance lines and with wider clement sparing. A good starting point for a 28-Mc. wide-spaced (0.2D-0.15R) beam fed with $300-$ ohm Twin-Lead is 28 inches each side of center. A similar antenna and line on 14 Mc . might raquire about 56 inches each side.

The gamma mateh, shown in Fig. 14-381), can be considered as one-half a "T"-mateh, and the same prineiples hold. However, when the length of the element is changed, in an offort to minimize the s.w.r., only the side to which the movable bar is connected should be changed - the other side should remain at one-half the length obtained from Fig. 14-37. With 52 -ohm coaxial line feed, the length of the matching element may run around 15 to 20 inches in a $28-M c$. beam, and twice this value in a 14 -Mc. array.

An alternative to adjusting the clement length fo: tuning out the residual reactance is to use a small variable condenser in series at the junction of the coaxial-cable inner conductor and the matching section of the gamma match. A small $140-\mu \mu \mathrm{fd}$. receiving-type variable is adequate at powers of a few hundred watts, and it can be weatherproofed by mounting it in a small plastie

Fig. 14-38- Recommended methods of feeding the driven antenna element in close-spaced parasitic arrays. 'I'he parasitic elements are not shown. A, B, C, "I". match; D, "gamma" match; F., delta matching transformer; F, coaxial-line quarter-wave matching section; G, folded dipole. Adjustment details are discussed in the text.
cup or other housing. The T-match of Figs. $14-38 \mathrm{~A}, \mathrm{~B}$ or C would require two condensers, one in each side.

The delta matching transformer shown at E is probably easier to install, mechanically, than any of the others. The positions of the taps (dimension a) must be determined experimentally, along with the length, b, by checking the standing-wave ratio on the line

Fig. 14-39 - Antenna-switching arrangements for variou* types of antennas and coupling systems. A - For tuned lines with separate antenna tuncrs or low-impedance lincs. J 3 - For a voltage-fed antenna. C - For a thned line with a single antenna tuner. J) - For a voltage-fed antenna with a single tuner. E-For two tuned-line antennas with a tuner for cach antenna or for two low-impedance lines. F-For combinations of several two-wire lines.
as adjustments are made. Dimension 6 should be about 15 per cent longer than a.

The coaxial-line matching section at F will work with fair aceurace into a close-spaced parasitic array of 2,3 or 4 elements without necessity for adjustment. The line is used as a quarter-wavolength transformer, and, if its characteristio impedance is 70 ohms (RCi$11 /[$), it will give a good matrh to a 600 -ohm line when the resistanee at the termination is about 8.5 ohms. Over a range of 5 to 15 ohms the mismatch, and therefore the standingwave ratio, will be less than 2 -to- 1 . The length of the quarter-wave section mat be calculated from

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{246 V}{f} \tag{14-J}
\end{equation*}
$$

where $V=$ Velocity factor

$$
f=\text { Frequency in Mc. }
$$

Fxanple: A quarter-wave transformer of $\mathrm{RG}\left(\mathrm{i}-11 / \mathrm{t}^{-}\right.$ is to be used at 28.7 Me. From the table in Chapter 'Thirteen, $V=0.66$.

$$
\begin{aligned}
\text { Iength }=\frac{246 \times 0.66}{28.7} & =5.67 \text { fect } \\
& =5 \text { fect } 8 \text { inches }
\end{aligned}
$$

The folded-dipole antenna, Fig. 14-38G, presents a good mateh for the line when properly designed. Details are given in ('hapter Thirteen. Different impedance step-up ratios can be obtained by varving the number of conductors or their diameter ratio.

Sharpness of Resonance

Peak performance of a multielement parasitic array depends upon proper phasing or tuning of the elements, which can be exaet for one frequency only. In the case of close-spaced arrays, which because of the low radiation resistance usually are quite sharp-tuning, the
frequency range over w!ich optimum results can be secured is only of the order of 1 or 2 per cent of the resonant frequency, or up to about 500 ke . at 28 Mc . However, the antenna can be made to work satisfactorily over a wider frequency range by adjusting the director or directors to give maximum gain at the highest frequency to be covered. and by adjusting the reflector to give optimum gain at the lonest frequency. This sacritices some gain at all frequencies, but maintains more uniform gain over a wider frequency range.

As mentioned in the preceding paragraphs, the use of large-diameter conductors will broaden the response curve of an array because the larger diameter lowers the Q. This causes the reactances of the elements to change rather slowly with frequency, with the result that the tuning stays near the optimum over a considerably wider frequency range than is the case with wire conductors.

Combination Arrays

It is possible to combine parasitie elements with driven elements to form arrays eomposed of collinear driven and parasitie elements and combination broadside-collinear-parasitic elements. Thus two or more collinear elements might be provided with a collinear reflector or director set, one parasitie element to each driven element. Or both directors and refleetors might be used. A broadside-collinear array could be treated in the same fashion.

When combination arrays are built up, a rough approximation of the gain to be expected may be obtained by adding the gains for each type of combination. Thus the gain of t wo broadside sets of four collinear arrays with a set of reflectors, one behind each element, at
quarter-wave spacing for the parasitic elcments, would be estimated as follows: From Table 14-III, the gain of four collinear elements is 4.5 db . with half-wave spacing; from Fig. 14-30 or Table 14-IV, the gain of two broadside elements at half-wave spacing is 4.0 db .; from Fig. 14-36, the gain of a parasitic reflector at quarter-wave spacing is 4.5 db . The total gain is then the sum, or 13 db . for the sixteen elements. Note that it makes no difference in the final result if the array is considered as a grouping of several sets of antennas plus reflectors or as an array of antennas plus an array of reflectors. The actual gain of the combination array will depend, in practice, upon the way in which the power is distributed between the various elements and upon the effect which mutual coupling between elements has upon the radiation resistance of the array, and may be somewhat higher or lower than the estimate.

A great many directive-antenna combinations can be worked out by combining elements according to these principles.

RECEIVING ANTENNAS

Nearly all of the properties possessed by an antenma as a radiator also apply when it is used for reception. Current and voltage distribution, impedance. resistance and directionat characteristics are the same in a receiving antenna as if it wore used as a transmitting antenna. This reciprocal behavior makes possible the design of a recoiving antenna of optimum performance based on the same considerations that have been discussed for transmitting antennas.

The simplest receiving antenna is a wire of random length. The longer and higher the wire, the more energy it abstracts from the wave. Because of the high sensitivity of modern receivers, sometimes only a short length of wire strung around the room is used for a receiving antenna, but such an antenna camot be expected to give good performanee, although it is adequate for
loud signals on the 3.5- and 7-Mc. bands. It will serve in emergencies, but a longer wire outdoors is always better.

The use of a tuned antenna improves the operation of the receiver, however, because the signal strength is raised more in proportion to the stray noises picked up than is the case with wires of random length. Since the transmitting antenna usually is given the best location, it can also be expected to serve best for receiving. This is especially true when a directive antenna is used, since the directional effects and power gain of directive transmitting antennas are the same for receiving as for transmitting.

In selecting a directional receiving antenna it is preferable to choose a type that gives very little response in all but the desired direction (small minor lobes). This is even more important than high gain in the desired direction, because the cumulative response to noise and unwanted-signal interference in the smaller lobes may offset the advantage of increased desired-signal gain. The feed line from the antenna should be balanced so that it will not pick up signals and greatly reduce the directivity effects.

Antenna Switching

Switching of the antenna from receiver to transmitter is commonly done with a changeover relay, connected in the antenna leads or the coupling link from the antenna tuner. If the relay is one with a 115 -volt a.c. coil, the switch or relay that controls the transmitter plate power will also control the antenna relay. If the convenience of a relay is not desired, porcelain knife switches can be used and thrown by hand.

Typical arrangements are shown in Fig. 14-39. If coaxial line is used, the use of a coaxial relay is recommended, although on the lower-frequency bands a regular switch or change-over relay will work almost as well.

Antenna Construction

The use of good materials in the antenna system is important, since the antenna is exposed to wind and wothor. To keep electrical losses low, the wires in the antenna and feeder system must have good conductivity and the insulators must have low diclectrie loss and surface leakage, particularly when wet.

For short antennas, No. 14 gauge hard-drawn enameled copper wire is a satisfactory conductor. For long antennas and directive arrays, No. 14 or No. 12 enamoled copper-clad steel wire should be used. It is best to make feeders and matching stubs of ordinary soft-drawn. .Vo. 14 or No. 12 enameled copper wire, since harddrawn or copper-elad steel wire is difficult to handle unless it is under considerable tension at all times. The wires should be all in one piece;
where a joint cannot be avoided, it should be carefully soldered.

In building a two-wire open line, the spacer insulation should be of as good quality as in the antenna insulators proper. For this reason, good ceramic spacers are advisable. Wooden dowels boiled in paraffin may be used with untuned lines, but their use is not recommended for tuned lines. The wooden dowels can be attached to the feeder wires by drilling small holes and binding them to the feeders with wire.

At points of maximum voltage, insulation is most important, and l'yrex glass, Isolantite or Steatite insulators with long leakage paths are recommended for the antenna. Glazed porcelain also is satisfactory. Insulators should be
cleaned once or twice a year, especially if they are subjected to much smoke and soot.

In most eases poles or masts are desirable to lift the antenna clear of surrounding buildings, although in some locations the antenna will be sufliciently in the clear when strung from one chimney to a nother or from a housetop to a tree. Small trees usually are not satisfactory as points of suspension for the antenna because of their movement in windy weather. If the antenna is strung from a point near the center of the trunk of a large tree, this difficulty is not so serious. Where the antenna wire must be strung from one of the smaller branches, it is best to tie a pulley firmly to the branch and run a rope through the pulley to the antenna, with the other end of the rope attached to a counterweight near the ground. The counterweight will keep the tension on the antenna wire reasonably constant even when the branches sway or the rope tightens and stretches with varying climatic conditions.

Telephone poles, if they can be purchased and installed coonomically, make excellent supports because they do not ordinarily require guving in heights up to 40 feet or so. Many low-cost television-antenna supports are now available, and they should not be overlooked as possible antenna aids.

"A"-FRAME MAST

The simple and inexpensive mast shown in Fig. $14-40$ is satisfactory for heights up to 35 or 40 feet. Clear, sound lumber should be selected. The completed mast may be protected by two or three coats of house paint.

If the mast is to be erected on the ground, a

Fig. 14-40 - Details of a simple 40 -foot "A"-frame mast suitable for crection in locations where space is limited.
couple of stakes should be driven to keep the bottom from slipping and it may then be "walked up" by a pair of helpers. If it is to go on a roof. first stand it up against the side of the building and then hoist it from the roof, keeping it vertical. The whole assembly is light enough for two men to perform the complete operation - lifting the mast, carrying it to its permanent berth, and fastening the guys with the mast vertical all the while. It is entirely practicable, therefore, to erect this type of mast on any small, flat area of roof.

By using 2×3 s or $2 \times 4 s$, the height may be extended up to about 50 feet. The 2×2 is too flexible to be satisfactory at such heights.

SIMPLE 40-FOOT MAST

The mast shown in Fig. 14-41 is relatively strong, easy to construct, readily dismantled, and costs very little. Like the " A "-frame, it is suitable for heights of the order of 40 feet.

The top section is a single 2×3, bolted at the bottom between a pair of $2 \times 3 \mathrm{~s}$ with an overlap of about two feet. The lower section thus has two legs spaced the width of the narrow side of a 2×3. At the bottom the two legs are bolted to a length of 2×4 which is: set in the ground. A short length of 2×3 is paced between the two legs about halfway up the bottom section, to maintain the spacing.

The two back guys at the top pull against the antenna, while the three lower guys prevent buckling at the center of the pole.

The 2×4 section should be set in the ground so that it faces the proper direction, and then made vertical by lining it up with a plumb bol. The holes for the bolts should be drilled beforehand. With the lower section laid on the ground, bolt A should be slipped in place through the three pieces of wood and tightened just enough so that the section can turn freely on the bolt. Then the top section may be bolted in place and the mast pushed up, using a ladder or another 20 -foot 2×3 for the job. As the mast goes up, the slack in the guys can be taken up so that the whole structure is in some measure continually supported. When the mast is vertical, bolt B should be slipped in place and both A and B tightened. The lower guys can then be given a final tightening, leaving those at the top a little slack until the antenna is pulled up, when they should be adjusted to pull the top section into line.

GUYS AND GUY ANCHORS

For masts or poles up to about 50 feet, No. 12 iron wire is a satisfactory guy-wire material. lleavier wire or stranded cable may be used for taller poles or poles installed in locations where the wind velocity is high.

More than three guy wires in any one set usually are unnecessary. If a horizontal antenna is to be supported, two guy wires in the top set will be sufficient in most cases. These

CENTER GUYS

Fig. 14-41 - A simple and sturdy mast for heights in the vicinity of 40 feet, pivoted at the base for easy erection. The height can be extended to 50 feet or more by using $2 \times$ 4 s instead of $2 \times 3 \mathrm{~s}$.
should run to the rear of the mast about 100 degrees apart to offset the pull of the antenna. Intermediate guys should be used in sets of three, one running in a direction opposite to that of the antenna, while the other two are spaced 120 degrees either side. This leaves a clear space under the antenna. The guy wires should be adjusted to pull the pole slightly back from vertical before the antenna is hoisted so that when the antenna is pulled up tight the mast will be straight.

When raising a mast that is big enough to tax the facilities available, it is some advantage to know nearly exactly the length of the guys. Those on the side on which the pole is lying can then be fastened temporarily to the anchors beforehand, which assures that when the pole is

Fig. 14-42 - Using a lever for twisting heavy guy wires.
raised, those holding opposite guys will be able to pull it into nearly-vertical position with no danger of its getting out of control. The giry lengths can be figured by the right-angledtriangle rule that "the sum of the squares of the two sides is equal to the square of the hypotenuse." In other words, the distance from the base of the pole to the anchor should be measured and squared. To this should be added the square of the pole length to the point where the gry is fastened. The square root of this sum will be the length of the guy.

Guy wires should be broken up by strain insulators, to avoid the possibility of resonance at the transmitting frequency. Common practice is to insert an insulator near the top of each guy, within a few feet of the pole, and then cut each section of wire botween the insulators to a length which will not be resonant either on the fundamental or harmonics. An insulator every $2 \overline{5}$ feet will be satisfactory for frequencies up to 30 Mc . The insulators should be of the "egg" type with the insulating material under compression, so that the guy will not part if the insulator breaks.

Twisting guy wires onto "egg" insulators may be a tedious job, if the guy wires are long and of large gauge. The simple time- and finger-saving device shown in lig. 14-42 can be made from a piece of heave iron or steel be drilling a hole about twice the diameter of the guy wire about a half inch from one end of the piece. The wire is passed through the insulator, given a single turn by hand, and then held with a pair of pliers at the point shown in the sketch. By passing the

wire through the hole in the iron and rotating the iron as shown, the wire may be quickly and neatly twisted.

Guy wires may be anchored to a tree or building when they happen to be in convenient spots. For small poles, a 6 -foot length of 1 -inch pipe driven into the ground at an angle will suffice. Additional bracing will be provided by using two pipes, as shown in Fig. 14-43.

HALYARDS AND PULLEYS

Halyards or ropes and pulleys are important items in the antenna-supporting system. Particular attention should be directed toward the choice of a pulley and halyards for a high mast since replacement, once the mast is in position, may be a major undertaking if not entirely impossible.

Galvanized-iron pulleys will have a life of
only a year or so. Especially for coastal-area installations, marine-type pulleys with hardwood blocks and bronze wheels and bearings should be used.

For short antennas and temporary installations, heavy clothesline or window-sash cord may be used. However, for more permanent jobs, $3 / 8$-inch or $1 / 2$-inch waterproof hemp rope should be used. Even this should be replaced about once a year to insure against breakage.

Nylon rope, used during the war as glider tow rope, is, of course, one of the best materials for halyards, since it is weatherproof and has extremely long life.
It is advisable to carry the pulley rope back up to the top in "endless" fashion in the manner of a flag hoist so that if the antenna breaks close to the pole, there will be a means for pulling the hoisting rope back down.

Fig. 14-44 - A - Inchoring feeders takes the strain from feedthrough insulators or window glase. B - Going through a full-length screen, a cleat is fastened to the frame of the screen on the inside. Clearance holes are cut in the cleat and also in the screen.

Fig. $14-45$ - An antenna lead-in panel may he placed over the top sash or under the lower sash of a window. Substituting a smaller height sash in half the window will simplify the weatherproofing problem where the sash overlap.
gaskets will render the holes waterproof. The lower sash should be provided with stops to prevent damage when it is raised. If the window has a full-length screen, the scheme shown in Fig. 14-44B may be used.

As a less permanent method, the window may be raised from the bottom or lowered from the top to permit insertion of a board which carries the feed-through insulators. This lead-in arrangement can be made weatherproof by making an overlapping joint between the board and window sash, as shown in Fig. 1+45.

LIGHTNING PROTECTION

An ungrounded radio antenna, particularly if large and well elevated, is a lightning hazard. When grounded, it provides a measure of protection. Therefore, grounding switches or lightning arresters

BRINGING THE ANTENNA OR FEED LINE INTO THE STATION

The antenna or transmission line should be anchored to the outside wall of the building, as shown in Fig. 14-44, to remove strain from the lead-in insulators. Holes cut through the walls of the building and fitted with feed-through insulators are undoubtedly the best means of bringing the line into the station. The holes should have plenty of air clearance about the conducting rod, especially when using tuned lines that develop high voltages. P'robably the best place to go through the walls is the trimming board at the top or bottom of a window frame which provides flat surfaces for lead-in insulators. Either cement or rubber gaskets may be used to waterproof the exposed joints.

Where such a procedure is not permissible, the window itself usually offers the best opportunity. One satisfactory method is to drill holes in the glass near the top of the upper sash. If the glass is replaced by plate glass, a stronger job will result. Plate glass may be obtained from automobile junk yards and drilled before placing in the frame. The glass itself provides insulation and the transmission line may be fastened to bolts fitting the holes. Rubber

Fig. 14-46 - Low-Ioss lightning arresters for trausmit. ting-antenna installations.
should be provided. Wexamples of construction of low-loss arresters are shown in Fig. 14-46. At A, the arrester electrodes are mounted by means of stand-off insulators on a fireproof asbestos board. At B, the eloctrodes are enelosed in a standard steel outhet box. The gaps should be made as small as posible without danger of breakdown during operation. Lightaing-arrester sustems re-
quire the best ground connection obtainable.
The most positive protection is to ground the antenna system when it is not in use; grounded flexible wires provided with clips for ronnection to the feeder wires may be used. The ground lead should be short and run, if possible, directly to a driven pipe or water pipe where it enters the ground outside the building.

Rotary-Beam Construction

It is a distinct advantage to be able to shift the direetion of a heam anternata will. thas soedrine the bendite of power gain and direer tivity in any desired eompats dirertion. I favorite method of doing this is to monst mat

 beam. It is monoted on a pipe ma-t that projerets through a bearing in the roof and is turned from the attic operating room. ($111 / 1 / 1 / \mathrm{K}$ in Augut, 10.2t, (!st\%.)
the anterna so that it can be rotated in the horizontal plathe. Obviously, the use of such rotatable antemas is limited to the higher frequencies - 14 Me . and above - and to the simpler antenna-element combinations if the structure size is to be kept within practicable bounds. For the 14- and 28-Mr. bande such antennas usually consist of two to four edements and are of the parasitic-array type described carlier in this chapter. At 50 Ne, and higher it becomes posisible to use more elaborate arrays herame of the shorter watelength and thus obtain still higher gain. Autemas for these bands are dermibed in athother aloapor

The problems for rotary-beam ronstruction are those of providing a suitahle merhanimal support for the antemat ements, fumishing a mealle of rotation and attaching the trankmission lime that it dises mat interfere sith the rotation of the system.

Elements

The antenna clements usually are made of metal tubing so that they will be at least partially self-supporting, thus simplifying the supporting structure. The large diameter of
the enduetor is beneficial also in redueing resistance, which becomes an important eonsideration when elose-spaced elements are used.

Dural tubes often are used for the elements, and thin-walled rorrugated steel tubes with copper coating also are avalable for this purpose. The elements frequently are constructed of sections of telescoping tubing making length adjustments for tuning quite easy, Filectrician's thin-walled conduit also is suitable for rotary-bean elements.

If steel elements are used, special precautions shothl be taken to prevent rusting. Even cop-per-coated steed does not stand up indefinitely, since the coating usually is too thin. The erlements should be coated both inside and

Fig. 1.4.48-A fourelement 14 Me. beam of light. weight all-metal construction. Fed hy coaxial cable and hand-rotated, the antenna and boom assembly weighs only 40 pounds. (K1161J, Dee., 1947, QST.)

Fig. 14-49- Details of the 4 -element beam construction. The general dimensions and arrangement of the beam are given in . the detail of the ends of the boom is shown at I3, and C shows the eonstruction of the central pivot. A discarded forge-hlower gear train is used to drive the assembly.
out with slow-drying aluminum paint. For coating the inside a spray gun may be used, or the paint nay be poured in one end while rotating the tubing. The excess paint may be caught as it comes out the bottom end and poured through again until it is certain that the entire inside wall has been eovered. The ends should then be plugged up with corks sealed with glyptal varnish.

Supports

The supporting framework for a rotary beam usually is made of wood or metal, using as lightweight construction as is consistent with the required strength. Generally, the frame is not required to hold much weight, but it must be extensive enough so that the antenna elements can be supported near enough to their ends to prevent excessive sag, and it must have sufficient strength to stand up under the maximum wind in the locality. The design of the frame will depend on the size of the elements, whether they are mounted horizontally or vertically, and the method to be employed for rotaitng the antenna.

The general preference is for horizontal polarization, primarily because less height is required to clear surrounding obstructions when all the antenna clements are in the horizontal plane. This is important at 14 and 28 Mc. where the elements are fairly long.

The support may be coupled to the pole by any convenient means which permits rotation or, alternatively, it may be firmly fastened to the pole and the latter rotated in bearings affixed to the side of the house.

One type of construction is shown in Fig. 14-47. It uses a section of ordinary ladder as the main support, with crosspieces to hold the tubing antenna elements.

Metal Booms

Metal can be used to support the elements of the rotary beam. For 28 Mc ., a piece of 2 inch diameter duratuminum tubing makes a good "boom" for supporting the elements. The elements ean be made to slide through suitable holes in the boom, or special clamps and brackets can be fashioned to support the elements. By making use of tubing or duraluminum angle, a lightweight support for a $20-$ meter antenna can be built. The four-element beam shown in Figs. 14-48, 14-49 and 14-50 is an example. It uses $1 \frac{3}{4}$-inch angle for the main pieces and $3 / 4$-inch angle for the other members, and the entire framework plus elements weighs only forty pounds. This simplifies considerably the problem of support.

The following aluminum pieces are required:
$4-1$-inch diameter tubing, 12 feet long, 1/16-inch wall
$8-7 / 8$-inch diameter tubing, 12 feet long, $1 / 32^{-}$ inch wall. Must fit snugly into 1 -inch tubing.
$2-13 / 4$-inch angle, 21 feet long
2 - $3 / 4$-inch angle, 21 feet long
4 - $3 / 4$-inch angle, 1 foot long
2 - $1 / 2$-inch diameter tubing, 6 feet long
Aluminum tubing and angle corresponding to the above sizes can possibly be bought from scrap dealers at reasonable prices, if not di-

Fig. 14-50 - The boom for the 4 -element beam is crossbraced at two points, about $61 / 2$ feet in from the ends.
rectly from the manufacturer. If the sections of the elements do not fit snugly, insert shims or make some other provision for a tight fit, since the appearance of the beam will be spoiled by sagging elements. Some amateurs reinforce their beam elements with copper-clad steel wire supported a foot above the elements at the hoom and tied to the extreme ends of the dements.

As shown in Fig. 14-49A, two $13 / 4$-inch aluminum angles 21 feet long serve as the main members of the boom. They are spaced one foot apart. The elements are spaced 7 feet apart. Wooden spacers of 2×2 are placed at the end of the boom and screwed on with brass screws. These spacers are also placed under each element where it crosses the boom. These spacers may be unnecessary if the elements are bolted to the boom, but if the construction is as in Fig. 14-49B the spacers are recommended.

The cross braces shown in Fig. 14-50 are put into position at the very last, after the beam is hung in position on the central pivot, since they offer a means for truing up minor sag in the elements.

The central pivot consists of a structure made from $3 / 4$-inch angle iron and $1 / 2$-inch pipe, as shown in Fig. 14-49C. It has to be brazed. The crossbar rest is made separate from the boom and central pivot, and affords a means for tilting the beam when unbolted from these structures. The $1 / 2$-inch pipe is drilled for the coaxial line that is fed through this pipe. The pinion gear on the $1 / 2$-inch pipe should be brazed on.

A washing-machine gear train is well suited for this type of beam. Another possibility (used in this instance) is a discarded forge blower. It was fitted with a $1 / 2$-inch pipe which serves as the central pivot. The gear train ends up in a " V "'-pulley, and the beam is easily rotated by a system of ropes and pulleys that ends up in an automobile steering wheel at the operating position. A plumb bob attached to th shaft of the steering wheel serves as a direction indicator. A small cardboard scale mounted along the line of plumb-bob travel can be readily calibrated to show the direction of the beam.

The supporting structure for this beam consists of a 4×4 pole 30 feet long, with ten-foot extensions of 2×4 bolted to both sides of the bottom, making the total length about 36 feet.

Two sets of guy wires should be used, approsimately 2 feet and 15 feet from the top. As ath alternative, the pole can be set against the side of the house, and only the top set of guys used to provide additional support.

With all-metal construction, delta, "gamma" or "T"-match are the only practical matching methods to use to the line, since anything else requires opening the driven element at the center, and this complicates the support problem for that element.

A Wooden Boom for 14 Mc .

Many amateurs prefer to build their beam booms from standard pieces of lumber, and the beam shown in Figs. 14-51 and 14-52 is an example of excellent design in wooden-boom construction. The boom members are two 20foot 2×4 s fastened to the $4 \times 12 \times 24$-inch center block with six lag screws. The two center screws serve as the axis for tilting the other four lock the boom in position after final assembly and adjustment have been completed. The blocks midway from each end are 2×4 spaced about six inches apart, with a long bolt between them. When this bolt is drawn light, a very sturdy box brace is formed. The crossarms are 3×3 s twelve feet long, bolted to the boom with carriage bolts.

Fig. 14-51 - A wooden boom for a 4 -element 14-Mic. boom can be made guite strong by judicious nse of guy wires. This installation is made on a windmill tower, and the drive motor is moment halfway down on the tower. (WONIIS, Nov., 1917, QST.)

Fig. 14.52 - Details of the wooden boom. its method of support and the construction of the slip rings.

The umbrella guys should have turnbuckles in them, and the guys are fastened to the renter support after the heam has been permanently locked in its horizontal position. With the turnbuckles properly adjusted, there will be no sag in the boom and the elements will be neat.

The elements are $13 / 8$ - and $11 / 2$-inch diameter duralumin tubing, supported by $11 / 2$-inch stand-off insulators. Hose clamps are used to hold the elements on the insulators. Final adjustment of element lengths is possible through "hairpin" loops. The tower for the beam shown in Fig. 14-51 was a sears-Roebuck windmill tower. The driving motor for the beam was located half way down the tower, the torque being transmitted through a length of $11 / 2$-inch drive shaft. A pipe flange is welded to the drive shaft and bolted to the center block. A cone bearing is obtained by turning both the flange and a sleeve of 2 -inch pipe to
match, as shown in Fig. 14-52.
One method of matching the line to the antenna is to use a quarter wavelength of 75 -ohm Twin-Lead between the radiator and the slip-ring contarts. to mateh a 600 -ohm line from the slip rings to the transmitter.

A 600 -ohm open-wire line is run to a point about halfway up on the tower, then up the side of the tower to the slip rings. The slip rings are mounted on the top of the tower, directly under the center block. A quarter-wavelength matrhing section of transmittingtype 75 -ohm Amphenol TwinLead hangs in a loop, between the driven element and the slip-ring contacts.

"Plumber's-Delight" Construction

The lightest beam to build is the so-called "plumber's delight" -an array constructed entirely of metal, with no insulating members bet ween the clements and the supporting structure. Suggested constructional details are shown in Figs. 14-53, 14-54, 14-55, 14-56 and 14-57.

The boom can be built of two lengths of 3 -inch diameter 24ST dural tuthing of 0.072-inch wall thickness, as shown in Fig. 14-53. The two sections are spliced together with a threc-foot length of 6×6 oak, turned down at each end to fit inside the tubing. The center of the block is left square to provide a fiat surface to attach to the vertical rotating pipe. At each extremity of this boom is cut a hole the exact diameter of the parasitic elements. A two-foot length of $3 / 4$-inch pipe, complete with flange mounting plate, is bolted to the top surface of the oak blook, and a single guy wire is run to cach end of the boom, An ege insulator and a turnbuckle are placed in earh guy. The turnbuckles should be tightened until there is no sag in the boom when it is supported at the center, and then safety-wired. Finally the center block should be given a good coat of paint or varnish.

The clements can be made of three 12-font lengths of dural tubing, the two out side lengths telescoping inside the center section. The ends of the center section should be slotted for a distance of about 4 inches with a hack saw, but it is advisable to do the slotting after the center sections have been assembled on the boom. The parasitic-element center sections are fastenced to the boom with $1 / 4$-inch bolts, as shown in Fig. 14-54, while the driven de-

Fig. 14.53 - The boom is made of two 10 -foot lengths of dural tubing slipped over a 3 -foot oak block and held in place with 2 -inch wood screws. Guy wires from the center add strength to the boom structure.
the antenna and the other fixed in position, the two coils being arranged so that the coupling does not change when the antenna is rotated. A quarter-wave feeder system is connected to a tuned pick-up circuit whose inductance is coupled to a link. The link coil connects to a twisted-pair transmission line, but any type of line surch as flexible coaxial cable can
ment is secured in a cradle made of half sections of iron pipe welded together, as shown in Fig. 14-55. The cradle is bolted to the boom with three $1 / 4$-inch bolts, and the driven element is held fast with two bolts or with adjustable aircraft-tubing clamps.
The feed line for the antenna can be any balanced line, of from 200 to 600 ohms impedance, and it is most conveniently coupled through a "T"-match. This "T"-match assembly can be made from two 4 -foot lengths of dural tubing joined together by a piece of broomstick, as shown in Fig. 14-57. The " T " is connected to the antenna by two clamps fashioned of 1 -inchwide brass strip.

A convenient method for supporting the boom atop the pipe used to rotate the beam is shown in Fig. $1+56$. A " U "-channel into which the boom will fit is welded to the end of the pipe. Holes are drilled in the side of the channel corresponding to holes in the boom. The boom is hoisted up and positioned bet ween the two flanges and a bolt run through the flanges and the boom. The boom can then be swung into a horizontal position and the second bolt put in place.

Feeder Connections

For beams that rotate only 180 degrees, it is relatively simple to bring off feeders by making a short section of the feeder, just where it leaves the rotating member, of flexible wire. Enough slack should be left so that there is no danger of breaking or twisting. Stops should be placed on the rotating shaft of the antenna so that it will be impossible for the feeders to "wind up." This method also can be used with beam antennas that rotate the full 360 degrees, but again a safety stop is necessary to avoid jamming the feeders.

For continuous rotation, the sliding contact is simple and, when properly built, quite practicable. The chief points to keep in mind are that the contact surfaces should be wide enough to take care of wobble in the rotating shaft, and that the contact surfaces should be kept clean. Spring contacts are essential, and an "umbrella" or other scheme for keeping rain off the contacts is a desirable addition. Sliding contacts preferahly should be used with nonresonant open-wire lines where the characteristic impedance is of the order of 500 to 600 ohms, so that the line current is low.
The possibility of poor connections in sliding contacts can be avoided by using inductive coupling at the antenna, with one coil rotating on
be used. The circuit would be adjusted in the same way as any link-coupled circuit, and the number of turns in the link should be varied to give proper loading on the transmitter. The rotating coupling circuit of course tunes to the transmitting frequency. The whole thing is equivalent to a link-coupled antenna tuner mounted on the pole, using a parallel-tuned tank at the end of a quarter-wave line to center-feed the antenna. To maintain constant coupling, the two coils should be quite rigid and the pole should rotate without wobble.

Fig. 14-54 - The center element section is held in the boom with a $1 / 4 \cdot 28$ machine screw, nut and Inck washer. The guy wire attaches to the head of the bolt.

The two coils might be made a part of the upper bearing assembly holding the rotating pole in position.

Other variations of the inductive-coupled system can be worked out. The tuned circuit might, for instance, be placed at the end of a 600 -ohm line, and a one-turn link used to couple directly to the center of the antenna, if the construction of the rotary member permits. In this case the coupling can be varied by changing the L / G ratio in the tuned circuit. For mechanical strength the coupling coils preferably should be made of $1 / 4$-inch copper tubing, well braced with insulating strips to keep them rigid.

Rotation

It is convenient to use a motor to rotate the beam, but it is not always necessary, especially if a rope-and-pulley arrangement can be brought

Fig. 14-55 - The clamp for the driven element is made by splitting 1 -foot lengths of iron pipe and welding them as shown.

Fig. 14.56 - The mounting plate is made from a length of ${ }^{*} \mathrm{C}^{-\cdots}$-channel iron cat and drilled as shown. The boom is raised vertically until one set of bolt holes is in line and a bolt is slipped through. 'The boom is then swung into its horizontal position and the other holt is put in place.
into the operating room. If the pole can be mounted near a window in the operating room, hand rotation of the beam will work out quite well, as has been proven by many amateur installations.

If the use of a rope and pulleys is impractieable, motor drive is about the only alternative. There are several complete motor-driven rotators on the market, and they are easy to mount, convenient to use, and require little or no maintenance. However, to many the cost of such units puts them out of reach, and a homemade unit must be considered. Generally

Fig. 14-57- Details of the " T "-match assembly.
speaking, lightweight units are better because they reduce the load on the mast or tower.

The speed of rotation should not be too great - one or two r.p.m. is about right. This requires a considerable gear reduction from the usual $1750-r . p . m$. speed of small induction motors; a large reduction is advantageous because the gear train will prevent the beam from turning in weather-vane fashion in a wind. The ordinary structure does not require a great deal of power for rotation at slow speed, and a $1 / 8$-hp. motor will be ample. Even small series motors of the sewing-machine type will develop enough power to turn a 28 -Mc. beam
at slow speed. If possible, a reversible motor should be used so that it will not be necessary to go through nearly 360 degrees to bring the beam back to a direction only slightly different, but in the opposite direction of rotation, to the direction to which it may be pointed at the moment. In cases where the pole is stationary and only the supporting framework rotates, it will be necessary to mount the motor and gear train in a housing on or near the top of the pole. If the pole rotates, the motor can be installed in a more accessible location.

Parts from junked automobiles often provide gear trains and bearings for rotating the antenna. Rear axles, in particular, can readily be adapted to the purpose. Driving motors and gear housings will stand the weather better if given a coat of aluminum paint followed by two coats of enamel and a coat of glyptal varnish. Even commercial units will last longer if treated with glyptal varnish. Be sure, of course, that the surfaces are clean and free from grease before painting them. Grease can be removed by brushing it with kerosene and then squirting the surface with a solid stream of water. The work can then be wiped dry with a rag.

If hand rotation of the beam is used, or if the rotating motor drives the beam through a pulley system, bronze cable or chain drive is preferable to rope. However, if you must use rope, be sure to soak it overnight in pure linseed oil and then let it dry for several days before permanent installation.

The power and control leads to the rotator should be run in electrical conduit or in lead covering, and the metal should be grounded. Often r.f. appearing in power leads can be reduced by suitable filtering, but running wires in conduit is generally easier and more satisfactory. Any r.f. in the wiring ean sometimes be responsible for feed-back in a 'phone transmitter. "Hash" from the motor is also reduced by shielding the wires, but it is often necessary to install a small filter at the motor to reduce this source of interference. Motor noise appearing in the reeeiver is a nuisance, since it is usual practice to determine the proper direction for the beam by rotating it while listening to the station it is desired to work and setting the antenna at the point that gives maximum signal strength.

The outside electrical connections should be soldered, bound with rubber tape followed by regular friction tape, and then given a coat of glyptal varnish.

About V.H.F.

While it is possible to use the frequencies above 30 Mc. without knowing anything about wave propagation, the amateur who understands something of the means by which his signals reach distant points will be able to do a better job of it. Because much of the pleasure
and satisfaction to be derived from v.h.f. work lie in making the best possible use of propagation vagaries associated with natural phenomena, a working knowledge of the basic principles of wave propagation is a most useful tool for the v.h.f. operator.

Characteristics of the Bands Above $\mathbf{5 0} \mathbf{~ M c}$.

The assignments from 50 Mc. up are superior to our lower bands in one outstanding respect: their ability to provide interferencefree communication consistently within a limited service area. Lower frequencies are more subject to varying conditions that impair their effectiveness for work over a radius of 100 miles or less at least part of the time, and the heavy occupancy they support creates a continuing interference problem. Our v.h.f. bands, on the other hand, are seldom crowded, and their characteristics for local work are more stable. Because of these attributes the 50- and 144-Mc. bands, particularly, enjoy considerable popularity in areas where there are dense concentrations of population.

In addition, it has been found that there are several media by which v.h.f. signals are propagated beyond the local range, and operation on the v.h.f. bands has been taken up by many operators who must depend almost entirely on "DX" for their contacts. The latter group, particularly, will benefit from a familiarity with common propagation phenomena. The material to follow is intended to supplement the more detailed information in Chapter Four, dealing with wave propagation as it affects the world above 50 Me .

50 to 54 Mc .

This band is borderline territory between the frequencies regularly used for long-distance communication and those normally employed for local work. Thus just about every form of wave propagation to be found throughout the radio spectrum will appear, on occasion, in the $50-$ Me, region. This diversity has contributed greatly to the growing popularity of the 50-Mc. band in the amateur picture.

During the peak years of the sunspot eycle it is occasionally possible to work 50 -Mc. DX of worldwide proportions, by reflection of signals from the F_{2}^{\prime} layer. Sporadic- E skip provides opportunities for work over distances from 400 to 2500 miles or so during the early
summer months, regardless of the solar cycle. Reflection from the aurora regions accounts for communication over 100 to 600 -mile paths during pronounced ionospheric disturbances. The ever-changing weather pattern offers frequent opportunities for extension of the normal coverage to as much as 300 miles. This tropospheric condition develops most often during the warmer months, but may occur at any season. In the absence of any favorable propagation, the average wellequipped 50 - Me. station should the able to work regularly over a radius of 75 to 100 miles or more, depending on local terrain.

144 to 148 Mc .

Ionospherie effects are greatly reduced at 144 Me. It is doubtful whether F_{2}-layer reflection ever occurs at this frequency, and sporadic- E skip is a rare phenomenon. Aurora reflection is fairly common, but the signals so reflected are generally weaker than on 50 Mc . Tropospheric effects are much more pronounced than on 50 Mc., and distances covered during favorable weather conditions are much greater than on lower bands. Air-mass boundary bending has been responsible for communication on 144 Mc. over distances in excess of 1100 miles, and 500 -mile work is fairly common in the warmer months. The reliable working range under normal conditions is slightly less than on 50 Mc., when comparable equipment and antennas are used.

220 Mc. and Higher

Amateur experience on the higher bands is insufficient to provide a complete picture of what may be expected in the way of unusual propagation. There is reason to believe that tropospheric bending and duct effects become more prevalent as we go higher in frequency and that much interesting work lies in store for us when we move to the frequencies above 200 Me. in larger numbers and with improved equipment.

Propagation Phenomena

The various known means by which v.h.f. signals may be propagated over unusual distances are discussed below.

F_{2}-Layer Reflection

The "normal" contacts made on 28 Mc. and lower frequencies are the result of reflection of the transmilted wave by the F_{2} layer, the ionization density of which varies with solar activity, the highest frequencies being reflected at the peak of the 11-year solar cycle. The maximum usable frequency (m.u.f.) for F_{2} reflection also rises and falls with other welldefined cycles, including daily, monthly, and seasonal variations, all related to conditions on the sun and its position with respect to the earth.

At the low point of the 11-year cycle, such as the period we encountered in the early '50s, the m.u.f. may reach 28 Mc. only during a short period each spring and fall, whereas it may go to 60 Mc . or higher at the peak of the cycle. The fall of 1946 saw the first authentic instances of long-distance work on 50 Mc. by F_{2}-layer reflection, and as late as 1950 contacts were still being made in the more favorable areas of the world by this medium. In the northern latitudes there are peaks of m.u.f. each spring and fall, with a low period during the summer and a slight dropping-off during the midwinter months. At or near the Equator conditions are more or less constant at all seasons.

Fortunately the F_{2} m.u.f. is quite readily
determined by observation, and means aro available whereby it may be estimated quite accurately for any path at any time. It is predictable for months in advance, ${ }^{1}$ enabling the v.h.f. worker to arrange test schedules with distant stations at propitious times. As there are numerous signals, both harmonics and fundamental transmissions, on the air in the range between 28 and 50 Mc ., it is possible for an observer to determine the approximate m.u.f. by careful listening in this range. A series of daily observations will serve to show if the m.u.f. is rising or falling from day to day, and once the peak for a given month is determined it can be assumed that the peak for the following month will occur about 27 days later, this cycle coinciding with the turning of the sun on its axis. The working range, via F_{2} skip, is roughly comparable to that on 28 Mc . though the minimum distance is somewhat longer. Two-way work on 50 Mc. by reflection from the F_{2} layer has been accomplished over distances ranging from 2200 to 10,500 miles. The maximum frequency for F_{2} reflection is believed to be in the vicinity of $70 \mathrm{Mc} . F_{2} \mathrm{DX}$ on 50 Mc . is unlikely ugain before 1956.

Sporadic-E Skip

Patchy concentrations of ionization in the E-layer region are often responsible for re-

[^8]

Fig. 15-1 - The principal means by which v.h.f. signals may be returned to earth. The F_{2} layer, highest of the known reflecting regions of the ionosphere, is capable of reflecting 50. Mc. signals during the peak period of the 11 . year solar cycle. Such communication may be world-wide in scope. Sporadic ionization of the E layer produces the familiar "sliort skip" contaets over medium distances at 28 and 50 Mc . On these bands it is a fairly frequent occurrence regardless of the solar cycle. It is most common in May through August. Refraction of v.h.f. waves also takes place at air-mass boundaries in the lower atmosphere, making possible communication over distances of several hundred miles, usually without a skip zone, on all v.h.f. bands.
flection of signals on 28 and 50 Mc. This is the popular "shori skip" that provides fine eontacts on both bands in the range between 400 and 1300 miles. It is most common in May, June and Juls, during morning and carly evening hours, but it may oreur at any time or sonson. Since it is largely unpredietable, at our present state of knowledge, sporadic-E skip is of high "surprise value." Multiple-hop effeets may apparar, when ionization develops simultanoously over large areas, making possible work over distances of more than 2500 miles.

The upper limit of frequency for sporadir- E skip is not positivoly known, but sattered instances of $1+1-$ Me. propagation over distances in exeess of 1000 miles indicate that E-hayer rellection, possibly aided by tropospheric effects, may be responsible.

Aurora Effect

Jow-frequency communication is occasionally wiped out by absorption of these frequencies in the ionosphere, when ionospheric storms, associated with variations in the earth's magnetic firld, wecur. During such disturbances, however, v.h.f, signals maty be reflected back to carth, making communication possible over distanes not normally workable in the v.h.f. range. Magnetic storms may be accompanied by an aturora-borealis display, if the disturbance oceurs at night and visibility is good. When the aurora is confined to the northern sky, aiming a directional array at the auroral curtain will bring in signals strongest, regardless of the true direction to the transmitting station. When the display is widespread there may be only a slight improvement noted when the directional array is aimed north. The latter condition is often noticed during the period around the peak of the 11-vear cyele, when solar activity is spread well over the sun's surface, instead of being concentrated in the region near the solar equator.

Aurora-refleeted signals are characterized by a rapid flutter, which lends a "dribbling" sound to 28-Mc, carriers and may render modulation on 50- and 144-Mc. signals completely unreadable. The only satisfactory
means of communication then becomes straigit c.w. The effect may be noticeable on signals from any distance other than purely local, and stations up to about 800 miles in any direction may be worked at the peak of the disturbance. Ünlike the two methods of propagation previously described, aurora effect exhibits no skip zone. It is observed frequently on 50 Me., and pronounced disturbanees affert the $1+t-$ Mc. band similarly. The highest frequency for aurora retfection is not yet known.

Scatter

When long-distance communication is possible on 50 Me ., stations within the skip zone may be heard with a wavery quality indieative of multipath recoption. Such signals have traversed a normal ionospheric path, via either the F_{2} or E^{\prime} layer, and a small amount of energy has returned to the receiver by reflection from a distant point on the carth's surface. The process is similar to that of a radar echo, except that an ionospherie route is followed.

The effert is most marked with high-gain directional arrays and high transmitter power. The direction from which scatter signals are observed indicates the region of most intense ionization, and adaptations of radar methods make it possible to "sound" the ionosphere to determine what distanees and directions may be covered on a given frequeney.

Reflections from Meteor Trails

Probably the least-known means of v.h.f. wave propagation is that resulting from the passage of meteors across the signal path. Refleetions from the ionized metcor trails may be noted as a Doppler-effect whistle on the carrier of a signal already being received, or they may cause bursts of reception from stations not normally receivable. Sudden large increases in strength of normally-weak signals are another manifestation of this effect. Ordinarily such reflections are of little value in extending communication ranges, since the increases in signal strength are of short duration, but meteor showers of considerable magnitude and duration may provide fluttery v.h.f.

Fig. 15.2 - Illustrating a typical weather sequence, with associated variations in v.h.f. propagation. At the right is a cold air mass (fair weather, high or rising barometcr, moderate summer temperatures). Approaching this from the left is a warm mosist air mass, which overruns the cold air at the point of contact, creating a temperature inversion and considerable bending of $\mathrm{y}, \mathrm{h} . \mathrm{f}$. wavec. At the left, in the storm area, the inversion is dissipated and signals are weak and subject to fading. Barometer is low or falling at this point.
signals from distances up to 1000 miles or more. Signals so reflected have a combination of the characteristics of aurora and sporadic- E skip.

Tropospheric Bending

Refraction of radio waves takes place whenever a change in refractive index is encountered. This may occur at one of the ionized layers of the ionosphere, as mentioned above, or it may exist at the boundary area between two different types of air masses, in the region close to the earth's surface. A warm, moist air mass from over the Gulf of Mexico, for instance, may overrun a cold, dry air mass which may have had its origin in northern Canada. Each tends to retain its original characteristics for considerable periods of time, and there may be a well-defined boundary between the two for as much as several days. When such airmass boundaries exist along the path between two v.h.f. stations separated by 50 to 300 miles or more, a considerable degree of refraction takes place, and signals run high above the average value. Under ideal conditions there may be almost no attenuation, and signals from far beyond the visual horizon will come through with strength comparable to that of local stations.

Many factors other than air-mass movement of a continental character may provide increased v.h.f. operating range. The convection that takes place along our coastal areas in warm weather is a good example. The rapid cooling of the earth after a hot day in summer, with the air aloft cooling more slowly, is another, producing a rise in signal strength in the period around sundown. The early-morning hours, when the sun heats the air aloft, before the temperature of the earth's surface begins its daily rise, may' frequently be the best hours of the day for extended v.h.f. range, particularly in clear, calm weather, when the barometer is high and the humidity low.

Any weather condition that produces a pronounced boundary between air masses of different temperature and humidity characteristics provides the medium by which v.h.f. signals cover abnormal distances. The ambitious v.h.f. enthusiast soon learns to correlate various weather manifestations with radiopropagation phenomena. I3y watching temperature, barometric pressure, changing cloud formations, wind direction, visibility, and other easily-observed weather signs, he is able to tell with a reasonable degree of accuracy what is in prospect on the v.h.f. bands.

The responsiveness of radio waves to varying weather conditions increases with frequency. Our $\overline{5} 0-\mathrm{Mc}$. band is considerably more sensitive to weather variations than is the 2s-Mc. band, and the $144-$ Mc. band may show strong signals from far beyond visual distances when the lower frequencies are relatively inactivg. The maximum distance over which
tropospherie propagation is frequently observed on 50 Mc . is in the neighborhood of 300 miles. On 144 Mc. distances of 500 miles are not uncommon. It is probable that this tendency continues on up through the microwave range, and that our assignments in the u.h.f. and s.h.f. portions of the frequency spectrum may someday support communication over distances far in excess of the optical range. Already $144-\mathrm{Mc}$. tropospheric communication by amateurs has passed the 1100 -mile mark, and even greater distances are believed possible on this and higher frequencies.

STATION LOCATIONS

In line with our early notions of v.h.f. wave propagation, it was once thought that only highly-elevated v.h.f. stations had any chance of working beyond a few miles. Almost all the work was done by portable stations operating from mountain tops, and only hilltop home sites were considered suitable for fixed-station work. It is still true that the fortunate a mateur who lives at the top of a hill enjoys a certain advantage over his fellows on the v.h.f. bands, but high elevation is not the all-important factor it was once thought to be.

Improvements in equipment, the wide use of high-gain antenna systems, and an awareness of the opportunities afforded by weather phenomena have enabled countless v.h.f. workers to achieve excellent results from seemingly poor locations. In $50-\mathrm{Mc}$. DN work particularly, clevation has ceased to be an important factor, though it may help in extending the range of operation somewhat under normal conditions. A high elevation is somewhat more helpful on 144 Mc. and higher frequencies, particularly when no unusual propagation factors are present, as during the winter months. Other factors, such as close proximity to large bodies of water, may more than compensate for lack of elevation during the other seasons of the year, however.

Stations situated in sea-level locations along our coasts have been consistent in their ability to work long distances on $14 \pm$ Mc.; weather variations provide interesting propagation effeets over our Middle Western plain areas; and even the worker situated in mountainous country need not necessarily feel that he is prevented by the nature of his horizon from doing interesting work. Contacts have been made on 50 and 144 Mc. over distances in excess of 100 miles in all kinds of terrain.

The consistently-reliable nature of 50 and 144 Me. for work over such a radius and more, regartless of weather, time or season, and the oceasional opportunities these frequencies afford for exciting I). , have caused an inereasing number of amateurs to migrate to the v.h.f. bands for extended-local communication, once thought possible only on the lower frequencies.

V.H.F. Receivers

Even more than in work on lower frequencies, receiver performance is all-important in the v.h.f. station. High sensitivity and good signal-to-noise ratio, necessary attributes in a receiving system for 50 Mc . and higher bands, are best attained through the use of a converter, working in conjunction with a communications receiver designed for lower frequencies. Though receivers and converters for 50,14 , and even 220 Mc . are avalable on the amateur market, it is possible for the v.h.f. worker to build his own with fully as good results, and at a considerable saving in cost.

In its basic principles, modern receiving equipment for these bands differs little from that employed on lower frequencies, and the same order of selectivity may be used in amateur work up to at least 220 Mc . The greatest practical selectivity should be used in v.h.f. work, as well as on the frequencies below 30 Me., as it not only permits more stations to operate in a given band, but is an important factor in improving the signal-to-noise ratio. The effective sensitivity of a receiver having "communication" selcetivity can be made considerably better than is possible with broadhand systems. First on 56 Mc., more than a decade ago, then more recently on 144 Mc., and currently on 220 and 420 Mc ., the change to selective superheterodyne receivers marked the beginning of real extensions of the operating range.

The superregenerative receiver, once very popular for v.h.f. work, is now used principally for portable operation, or for other applications where maximum sensitivity and selectivity are not of prime importance. It is still capable of surprising performance, for a given number of tubes and components, but its lack of selectivity, its poor signal-to-moise ratio, and its tendency to radiate a strong interfering signal rule out the superregenerator as a fixed-station receiver in areas where there is appreciable v.h.f. activity.

R.F. AMPLIFIER DESIGN

The amount of noise generated within the receiver itself is an important factor in the effectiveness of v.h.f. receiving gear. At lower frequencies the external noise is a limiting factor, but at 50 Mc . and higher the receiver noise figure, gain and selectivity determine the
ability of the system to respond to weak signals. l'roper selection of r.f. amplifier tubes and appropriate circuit design aimed at low noise figure are of more importance in the v.h.f. receiver "front end" than mere gain.

Certain triode or triode-connected pentode tubes have been found superior in this respect, their superiority becoming more pronounced as we go higher in frequency. At $14 \pm$ Mc., for instance, a triode r.f. stage may give sub, stantially the same gain as a pentode, but with a much lower noise figure. With the exception of the simplest unit, the equipment described in the following pages incorporates low-noise r.f. amplifier technique.

When triodes are used as r.f. amplifiers some form of neutralization of the grid-plate capacitance is reguired. This can be capacitive, as is commonly used in transmitting applications,

Fig. 16-1 - Schematic diagram of a push-pull r.f. amplifier for v.h.f. receiver use. This circuit is well suited to use with antenna systems fed by balanced lines. Coil and condenser sizes will be governed by the band for which the amplifier is to be used.
$\mathrm{C}_{1}-0.005-\mu \mathrm{fd}$. disc ceramic.
$\mathrm{C}_{\mathrm{N}}-$ Neutralizing capacitance, about $2 \mu \mu \mathrm{fd}$. May be made from lengths of 75 -ohm Twin-Lead about $1 \frac{1}{2}$ inches long.
K_{1} - 150 ohms, $1 / 2$-watt carbon.
H_{2} - 1000 ohms, $1 / 2$-watt carbon.
or inductive. The alternative to neutralization is the use of grounded-grid technique. Circuits for v.h.f. triode r.f. amplifier stages are given in Figs. 16-1 through 16-4.

A dual triode operated as a neutralized push-pull amplifier is shown at 16-1. This arrangement is well adapted to v.h.f. preamplifier applications, or as the first stage in a converter, particularly when a balanced transmission line such as the popular 300 -ohm Twin-Lead is used. It is relatively selective

Fig. 16-2 - Cirenit of the cascode r.f. amplifier. Preferred antenna coupling methods for coaxial or balaned lines are shown. The first r.f. grid coil, and the neutralizing coil. $L_{\text {t }}$, should be a high-Q design, Other coils are not eritical as to Q. $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{2}-\mathbf{0} .00 \mathrm{D}-\mu \mathrm{fd}$. dise ceramic.
$\mathrm{C}_{3}-50-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{R}_{1}, \mathrm{R}_{2}$ - 100 ohms, $1 / 2$ watt carlon.
$\mathrm{R}_{3}, \mathrm{R}_{4}-1000$ ohms, $1 / 2$ watt carbon.
L_{an} - Should resonate at signal frequency with 6AK5 gridplate capacitance.
and may require resistive loading of the plate circuit, when used as a preamplifier. The loading effect of the following circuit may be sufficient to give the required bandwidth, when the push-pull stuge is inductively coupled to the mixer.

A two-stage triode amplifier having excellent noise figure and broadband characteristies is shown in Fig. 16-2. Commonly called the cascode, it uses a triode or triode-connected pentode followed by a triode grounded-grid stage. This circuit is extremely stable and uneritical in adjust ment. At 50 Mc . and higher its over-all gain is at least equal to the best single-stage pentode amplifier and its noise figure is far lower.

Neutralization is areomplished by the coil L_{n}, whose value is such that it resonates at the signal frequency with the grid-plate capacitance of the tube. Its inductance is not eritieal; it may be omitted from the eircuit without the stage going into oscillation, but neutralization results in a lower noise figure than is possible without it. Any of several v.h.f. tubes may be used in the cascode circuit, the most popular arrangement being the 6AK5-6J6 combination, Fig. 16-2.

A simplificd version of the cascode, using a dual triode tube designed especially for this application, is shown in Fig. 16-3, 13y reducing stray capacitance, through direct coupling between the two triode sections, this circuit
makes for improved performance at the frequencies above 100 Mc . The two sections of the tube are in series, as far as plate voltage is concerned, so it requires higher voltage than the other circuits shown.

The neutralization process for the cascode and neutralized-triode amplifiers is somewhat similar. With the circuit operating normally the neutralizing adjustments (eapacitance of C_{n} in Figs, 16 -1 or 16-3; setting the slug in L_{n} in Fig. 16-2) can be changed until the stage stops oscillating. The middle of the range over which no oscillation occurs is approxinately the proper setting. Finer adjustment can be made by disconnecting one heater lead from the r.f. amplifier tulse socket and adjusting the neutralizing for minimum signal. A burned-out r.f. tube or one with one heater prong cut off may be insorted in the r.f. socket, instead of cutting the hatater voltage, if desired. The best results are oltained using a noise generator, adjusting for lowest noise figure, but the two mothods described above will provide a satisfactory approximation.
Grounded-grid r.f. amplifier technique is illustrated in Fig. 16-4. Here the input eircuit is comnected in the eathode lead, with the grid of the tube grounded, to act as a shield between eathode and plate. The grounded-grid eireuit is stable and easily adjusted, and is well adapted to broadband applications. The gain per stage is low, so that two or more stages are ordinarily required. Choice of tubes is fairly limited, the best for the job being the 6.Jt, a triode especially designed for grounded-gird service. The 6AB4 and 6 AF 4 are suitable, and the 6 J 6 is used occasionally, as in Fig. 16-2. Dise-seal tubes such as the "lighthouse" and "pencil tube" types are often used as r.f. amplifiers above 300 Mc ., where ordinary miniature tubes become ineffective because of excessive lead inductance.

Fig. 16.3-Simplified version of the cascode circuit using the 6BQ7 dual triode. 'This circuit is particularly effective at $1+4 \mathrm{Mr}$, and higher.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-0.001$ - fd . or larger $\quad \mathrm{R} . \mathrm{R}_{1}-1001$ ohms, $1 / 2$ watt. disk ceramic. $\mathrm{H}_{2}-470,000$ ohms, $1 / 2$ watt. $\mathrm{C}_{5}-2-\mu \mu \mathrm{fd}$. ceramic. $\quad \mathrm{C}_{\mathrm{n}}-0.5$ to $3 \mu \mu \mathrm{fld}$.
RFC - Bifilar-wound r.f. chokes to be resonant with plate-to-ground capacitance of the first triode, at the highest frequeney to be received.

Fig. 16-4-Grounded-grid r.f. amplifier. Position of cathole taps on coils should the adjusted for lowest noise figure.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{3}, \mathrm{C}_{6}-0.005-\mu \mathrm{fd}$. dise ceramic.
$\mathrm{C}_{4}-50-\mu \mu \mathrm{fd}$. ceramir.
$\left\|_{1},\right\|_{3}-2 \underline{2} 0$ ohms, $1 / 2$-watt carbon.
$\mathrm{K}_{2}, \mathrm{~K}_{4}-470$ ohms, $1 / 2$-wat carbon.

MIXER CIRCUITS

Triode tubes are favored for v.h.f. applications, as they are less critical as to operating conditions and the highest frequency at which they will operate satisfactorily is well above that of most pentodes. When used in mixer circuits triodes are usually quieter in operation as well.

A simple triode mixer circuit is shown in Fig. $16-5 \mathrm{~A}$. The grid circuit is tuned to the signal frequency, the plate circuit to the intermediate frequence. A duat-triode version is given at 13 . The latter is particularly suitable for use at the higher frequencies. Frequently a

Fig. 16.5- Two types of triode mixers suitahle for v.h.f. receivers. A single eended triode circuit is shown at A. 'The tube may be half of a dual triode, with the other portion used as the oscillator, or separate tubes may be used. 'The dual-triode version, B, is particularly useful for 144 Nc. and higher bands.
$\mathrm{C}_{1}-50-\mu \mu \mathrm{fd}$. ceramic or mica.
$\mathrm{C}_{2}, \mathrm{C}_{6}-30$ - to $50-\mu \mu \mathrm{fd}$. ceramic or mica.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.0(5 \mathrm{5} \mu \mathrm{ff}$. dise ceramic.
\mathbf{R}_{1} - 1 megohm, $1 / 2$ watt.
$\mathbf{R}_{2}, \mathbf{R}_{4}-1000$ olms, $1 / 2$ watt.
$\mathbf{R}_{3}-150$ ohms, $1 / 2$ watt.
dual triode is used as a combination mixer-oscillator, using the circuits of Figs. 16-5A and 166 A. The amount of oscillator injection is usually not critical, but in the interest of stability it should be kept as low as practical. In dual triodes having separate cathodes (7F8, 12A'T7, 2C51, etc.) some external coupling may be required, but the common cathode of the 6.56 will provide suflicient injection in most cases. If the injection is more than necessary it can be reduced l_{y} dropping the oseillator plate voltage, either directly or by increasing the value of the dropping resistor, R_{1}.
A pentode mixer may be less subject to oscillator pulling than a triode, and it will probably require less injection voltage. If a pentode mixer is used, its plate current should be held to the lowest usable value, to reduce tube noise. This may be controlled by varying the mixer sereen voltage. The principal use of pentode mixers in v.h.f. work is in the interest of simplicity of circuit layout, as in multiband converters employing handswitching.

Oceasionally oscillation near the signal frequeney mas be enerountered in v.h.f. mixers. This usually results from strat lead inductance in the mixer plate circuit, and is most common with triode mixers. It maty be corrected by connecting a small capacitance from plate to cathode, directly at the tube socket. Ten to $25 \mu \mu$ fd. will be sufficient, depending on the signal frequency.

- oscillator stability

When a high-selectivity i.f. system is employed in v.h.f. reecption, the stability of the oscillator is extremely important. Slight variations in oscillator frequency that would not he noticed when a hroadband i.f. amplifier is used become intolerable when the passband is reduced to erystal-filter proportions.

One satisfietory solution to this problem is the use of a erystal-controlled oscillator, with frequeney multipliers if needed, to supply the injection voltage. Such a converter usually employs one or more broadhand r.f. amplifier stages, and tuning is done by varying the intermediate frequency to cover the desired frequency range.

When a tunable oscillator and a fixed intermediate frequeney are used, special attention must be paid to the oscillator design, to be sure that it is mechanically and electrically stable. The tuning condenser should he solidly built; preferably of the double-bearing type. Splitstator condensers specifically designed for v.h.f. service, usually having ball-bearing end plates and special construction to insure short leads, are well worth their extra cost. leads should be made with stiff wire, to reduce vibra-
tion effects. Mechanical stability of air-wound coils can be improved by tying the turns together with narrow strips of household cement at several points.

Recommended oscillator circuits for v.h.f. work are shown in Fig. 16-6. The single-ended oscillator may be used for 50 or 144 Mc . with good results. The push-pull version is recommended for higher frequencies and may also be used on the two lower bands, as well. Circuit A works well with almost any small triode, the $6 \mathrm{Al34}$, or one half of a $6.56,7 \mathrm{~F} 8$, or 12 AT 7 being most eommonly used. The 6 J 6 is well suited to push-pull applications, as shown in circuit 16-6B.

Fig. 16-6- Jecommended circuits for v.h.f. oseillators. 'The push-pull arrangement at $\mathbf{1 3}$ is recommended for 220 and 420 Mc ., partirularly.
$\mathrm{C}_{1}-50 \mu \mathrm{fl}$.
\mathbf{R}_{1} - Any small rarbon resistor, 1000 ohms or less.
$R_{2}-10,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{3}-3000$ to 5000 ohms, $1 / 2$ watt.

THE I.F. AMPLIFIER

Superheterodyne receivers for 50 Mc . and up should have fairly high intermediate frequencies, to reduce both oscillator pulling and image response. Approximately 10 per cent of the signal frequeney is commonly used, with 10.7 Me. being set up as the standard i.f. for commercially-built FM receivers. This particular frequency has a disadvantage for 50-Mc. work, in that it makes the receiver subject to image response from $28-\mathrm{Mc}$. signals, if the oscillator is on the low side of the signal frequency. A spot around 7 Mc. is favored for amateur converter service, as practically all communications receivers are capable of tuning this range.

For selectivity with a reasonable number of i.f. stages, double conversion is usually employed in complete receivers for the v.h.i. range. A $\overline{-}$-Mc. intermediate frequency, for instance, is changed to 455 kc ., by the addition of a second mixer-oscillator. This procedure is, of course, inherent in the use of a v.h.f. converter ahead of a communications receiver.

If the receiver so used is lacking in sensitivity, the over-all gain of the converter-receiver combination may be inadequate. This can be corrected by building an i.f. amplifier stage into the converter itself. Such a stage is useful even when the gain of the system is adequate without it, as the gain control can be used to
permit operation of the converter with receivers of widely-different performance. If the receiver has an S-meter, its adjustment may be left in the position used for lower frequencies, and the converter gain set so as to make the meter read normally on v.h.f. signals.

Where reception of wide-band FM or unstable signals of modulated oscillators is desired, a converter may be used ahead of an FM broadeast reeeiver. A superregenerative detector operating at the intermediate frequeney, with or without additional i.f. amplifier stages, also may serve as an i.f. and detector system for reception of wideband signals. By using a high i.f. (10 to 30 Mc . or so) and by resistive loading of the i.f. transformers, almost any desired degree of bandwidth can be secured, providing good voice quality on all but the most unstable signals. Any of these methods may be used for reception in the microwave region, where stabilized transmission is extremely difficult at the current state of the art.

- THE SUPERREGENERATIVE RECEIVER

The simplest type of v.h.f. receiver is the superregenerator. It affords fair sensitivity with few tubes and elementary circuits, but its weaknesses, listed earlier, have relegated it to applications where small size and low power consumption are important considerations.

Fig. 16.7-Superregenerative deteretor circuit using a self-quenched deteetor. $\operatorname{lag}_{2} \mathrm{C}_{1}$ tumes to the signal frequenery. Typical values for other components are given below.
(: $2-47 \mu \mu \mathrm{fd}$.
($.3-0.001$ to $0.005 \mu \mathrm{fil}$.
$\mathrm{K}_{1}-2$ to 10 megohms.
$\mathrm{K}_{2}-50,000$ - ohm potentioneter.
$\mathrm{R}_{3}-1 \overline{7}, 000$ ohms, 1 watt.
RI C - Single-layer r.f, ehoke, for frequency involved. T_{1} - Interstage audio transformer.

Its sensitivity results from the use of an alternating quenching voltage, usually in the range botween 20 and 200 kc , to interrupt the normad oseillation of a regenerative detector. The regeneration can thus be inereased far beyond the amount usable in a straight regenerative circuit. The detector itself can be made to furnish the quenching voltage, or a separate oscillator tube can be used. IRegeneration is usually controlled by varying the plate voltage in triode detectors, or the screen voltage in the case of pentodes. A typical circuit is shown in Fig. 16-7.

Crystal-Controlled Converters for 2, 6 and 10 Meters

The family of converters shown in Figs. 16-8 through 16-15 was designed to provide optimum performance on 28, 50 and 144 Mc. Crys-tal-controlled oscillators are used, to insure stability, and the triode r.f. sections provide excellent sensitivity and low noise figure. A separate "front end" for each band is plugged into a base unit containing the power supply. i.f. amplifier stage, and other parts that are not changed in shifting from one band to another.

The R. F. Circuits

The cascode circuit is used in the r.f. amplifiers of the converters for 28 and 50 Mc . A triode-connected 6AK5 with inductive neutralization works into a 656 grounded-grid amplifier. Circuits for the two units are similar, only the components affecting frequency being different. The functions of erestal-controlled oscillator and mixer are combined in a 6J6. The mixer plate coil is included in the plug-in unit. The schematic diagram is given in Fig. 16-9.

The 144 -Mc. converter, Figs. $16-11$ and 16-12, uses push-pull cireuits, with a neutralized 6J6 r.f. amplifier and another 6 J 6 as a push-push mixer. Oscillator injection is provided by another $6 J 6$ as crystal oscillator and multiplier. If a coaxial-line fed antenna system is used on 144 Mc. the builder may wish to use the cascode circuit on this band as well. There is little to choose from between the two circuits, except that the push-pull arrangement is better adapted to use with balanced line.

An improved version for 220 and 144 Mc., using a $613(27$ dual triode, a type of tube not available when the first models were designed, is shown in Figs. 16-16, 16-17 and 16-18.

When a fixed oscillator and variable i.f. are used, the r.f. and i.f. circuits in the converter must be made broadband, to avoid the need for readjusting them as the receiver with which
the converter is used is tuned across the band. This broadbanding is accomplished in the converters for 28 and 50 Mc . by using slug-tuned plate coils in the first r.f. and mixer plate circuits. These are resonated by the circuit capacitance only, and are relatively low- Q design. Coupling between the second r.f. and mixer stages employs overcoupled tuned circuits. These serve the additional purpose of providing a bandpass response, preventing interference from signals in the i.f. range. The $144-\mathrm{Mc}$. converter uses closely-coupled circuits between the r.f. and mixer stages for the same

TABLE 16-I				
Crystal-Controlled Converter Data				
Band $\left(. M_{c}\right)$	$\begin{gathered} \text { Crvstal } \\ (\text { hc. }) \end{gathered}$	Ocertone	Injection (Mc.)	$\begin{gathered} I . F . \\ \left(M_{c .}\right) \end{gathered}$
28	7000	3rd	21	7-8.7
50	8600	5th	43	7-11
1.4	6850	5 h $\times 4$	137	7-11
14.4	7611	$3 \mathrm{rd} \times 6$	137	7-11
220	7100	$3 \mathrm{rd} \times 10$	213	7-12

purposes. The mixer plate coil is loaded by resistor R_{4} for further broadening of the over-all response.

Crystal Oscillator Details

Crystal frequencies were selected so that the four bands would start at the same spot on the communications receiver dial, and so that the crystals would be readily obtainable. Relatively low-cost crystals are used in a regenerative triode oscillator circuit, working at an odd overtone of the crystal frequency. In the 28 Mc. unit a $7000-k c$. crystal oscillates on its third overtone. Fifth-overtone operation of an $8600-\mathrm{kc}$. crystal furnishes the injection voltage in the $50-\mathrm{Mc}$. converter. A $6850-\mathrm{kc}$. crystal

Fik. 16-8-Cirsstalcomitulled centerters for 28,50 and 144 Mc. At the left the 50. Ve. unit is seen mounted on the base. The latter inclades an i.f. amplifier and power supply. The 28-Mc. converter (center) is similar mechanically and electrically to the 50. Mc. one. At the right is the 144-Nc. plug-in unit.

Fig. 16.9-Schematic diagram of the crystal-controlled converters for 28 and 50 Mc . Unless otherwise indicated, parts are the same for both units.
C_{1} - $15-\mu \mu \mathrm{fd}$. variable (Millen 20015).
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{3}, \mathrm{C}_{12}, \mathrm{C}_{13}-0,005$ - $\mu \mathrm{fl}$. dise ceranir.
$\mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{10}-50-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{5}-500-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{8} \mathrm{C}_{9}-5-20-\mu \mu \mathrm{f}$. ceramic trimmer.
C_{11} - 50 Mc , 50 - $\mu \mu \mathrm{fil}$. air trimmer (Millen 26050).
28 Mc.: $75-\mu \mathrm{fd}$. air trimmer (Millen 260 5 F).
$\mathrm{K}_{1}, \mathrm{R}_{2}-100$ ohms, $1 / 2$ watt.
$R_{3}, K_{4}, R_{6}, K_{8}-1000$ ohms, $1 / 2$ watt.
$\mathrm{K}_{B}-0.68$ megohm, $1 / 2$ watt.
$\mathrm{K}_{7}-3300$ ohms, 1 watt.
l.t - 4 turns No. 28 e . het ween turns of L_{2} at cold end.
$\mathrm{L}_{2}-50$ Mc.: 10 turns No. 20 tinned, $1 / 2$-inch diam., $5 / 8$ inch long (B \& H Minidnctor 3003). 28 Mc .: 14 turns No. 20 tinned, $5 / 8$-inch diam., $/ 8$ inch long ($1 \mathrm{~B} \& \mathrm{~A}$ Miniductor 3007).
$\mathrm{L}_{3}-50 \mathrm{Mc.:} 25$ turns No. 32 e., elose-wound on (TTC LS.:. form ($1 / 4-$-inch diam., slug-tunfed). $28 . \mathrm{Me}$.: CTC I.S3 10-Mc. roil, slug-tuned.
$\mathrm{L}-50 \mathrm{Mc}$: Slug.tuned plate coil Cl'C 1.2330 Mc .
oscillates on its fifth overtone in the 144-Mc. converter, multiplying by four in the second 6 J 6 triode section. Table $16-\mathrm{I}$ gives complete information for all models.

Operation of erystals in this way results in a frequency that may not be an exact multiple of the frequency marked on the crystal holder; hence the term "overtone." It is close enough for ordinary dial calibration purposes, however. Overtone-type crystals of the proper frequency could be obtained on order, but the cost would be materially higher. Conventional operation of lower-frequency crystals, making up the multiplication with additional stages, is

28 Mc.: CTC. LSM $10-\mathrm{Mc}$. coil with 4 turns removed, slug-tuned.
$\mathbf{1}_{5}$, I. 8 - 50 Mc.: 8 turns No. 18 tinned, $5 / 8$-inch diam. 1 ineh long (B \& W Miniductor 3006), $1 / 4$ inch space between cold ends. 28 Mc:: 9 turns No. 24 timed, $1 / 2$-inch diam., $9 / 32$ inch long ($13 \&$ Miniductor 3004), $3 / 16 \mathrm{inch}$ spare between cold ends.
$L_{7}-50 \mathrm{Mc} .: 10$ turns $\mathrm{Vo}_{0} 20$ tinned, tapped $31 / 3$ turns from erystal end (B \& W Miniductor 3003), $1 / 2$-inch diam., $5 / 8$ inch long. 28 Mr.: 10 turns No. 20 tinned, $5 / 8$.inch diam., $5 / 8$ inch long: tapped $31 / 3$ turns from erystal end ($B \& H$ Miniductor 3007).
J_{8} - CTC L.s 5 F Mc. coil with ? turns removed.
$I_{T}, C_{T}-F M$ trap. 7 turns Ko. 20 tinned, $1 / 2$-inch diam., $\frac{3}{8}$ inch long (B \& W Miniductor 3003), tuned with $5-20-\mu \mu$ fll ecramic trimmer.
J_{1} - Crystal sochet for antenna terminals.
$\mathrm{P}_{1}-4$-prong male plug.
not recommended, because of the difficulty in avoiding birdies from erystal harmonics. In the overtone circuit, no frequency lower than the overtone at which the crystal oscillates is heard.

Layout

The units are built on aluminum chassis of stock sizes. The base is 3 by 5 by 13 inches (ICA 20003), and the r.f. units are $11 / 2$ by 5 by $91 / 2$ inches (ICA 29001). The only metal work required is the making of small aluminum guide plates for the front and rear of the converter chassis, and the mounting bracket for

Fig. 16.10-Bottom view of the 28-Mc. plutg.in unit. th the left is the tunord inprit pircuit, followed ley the gakis r.f. stage, with its slug-tuned plate and nentralizing windings. At the middle of the chassis is the 6.16 grounded-grid stage, with its bathdpass conpling to the mixer grid. Oscillator components are at the upper right. Parts arrangement in the $50-\mathrm{Mc}$. converter is similar.

Fig. 16-11 - Bottom view of the 1H. Me. converter. Across the top of the photo. left to right, are the input circuit, the push-pult r,f, stage, the push-push mixer, and it, slugtuned plate circuit, Oscillator and multiplier components are at the bottom of the pieture.
the interconnecting socket at the rear of the base unit. Ventilation holes aro cut in the sides of the base unit, and two $11 / 4$-inch holes are cut in the top surface of this chassis to provide
 greater clearance around the major coils of the r.f. assemblies, when they are in the operating position. The placing of the power supply and i.f. amplifier components on the base unit is not critical, though the arrangement shown in the photographs works out nicely from a mechanical standpoint. Chief consideration here is to avoid mounting parts on the outside walls of the units, thereby preserving to the fullest degree the deep-but-narrow form factor. This shape takes up a minimum of high-
priority space on the operating table.
Care should be used in mounting the socket and plug on the bave unit and converters, respectively, in order that they may line up exactly. When the job is properly done it is merely necessary to place the converter unit on the base, with the front edge tilted upward slightly, slide the plug into the socket, and then drop the converter in place. The converter assemblies should be kept free of parts in the portion

Fig. 16.12 - Wiring diagram of the 144 - Nc. crystal -ontrolled converter.
C_{1}, $\mathrm{C}_{5}-5.3-\mu \mu \mathrm{fl}$.-per-sertion hutterfly (Johnson 5.1311)
$\mathrm{C}_{2}, \mathrm{C}_{6}, \mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{10}, \mathrm{C}_{14}-0,005-\mu \mathrm{fd}$, disc ceramic.
$\mathrm{C}_{3}, \mathrm{C}_{4}-75 \cdot \mathrm{ohm}$ 'J'win-l.ead neut capacitors (see text).
$\mathrm{C}_{9}-50-\mu \mu \mathrm{fl}$. cerannic.
C11 - $50-\mu \mu \mathrm{fi}$. air trimmer (Millen 26050).
($\mathrm{A}_{12}-100-\mu \mu \mathrm{fd}$, ceramic.
Ci3-5-20- $\mu \mu \mathrm{fd}$. ceramie trimmer.
$\mathrm{H}_{1}, \mathrm{H}_{3}-1.50$ ohms, $1 / 2$ watt.
$H_{2}, R_{s}, R_{5}, R_{g}-1000$ ohms, $1 / 2$ watt.
$\mathrm{H}_{4}-2200$ ohms, $1 / 2$ watt.
$\mathrm{R}_{6}-0.22$ megohm, $1 / 2$ watt .
$\mathrm{H}_{8}-3300$ ohms, I watt.
I. -4 turns, No. 18 enam., $5 / 16$-inch diam., $1 / 4$ inch long.
La, $\mathrm{L}_{3}-6$ turns No. 18 enam., 3 turns cach side of cen-
ter tap, with $3 / 8$-inch epacing between sections, $3 / 8$-inch diam. Allusi turn spacing as necded.
I_{4} - 5 turns No. $18 \mathrm{cnam}, 3 / 8$-inch diam,, close-wound and center-tapped.
$L_{5}, I_{9}-1$ turn hook-11] wire wound around L_{5} and I_{9}. 75 -ohm Twin-lead used to connect between the two coils.
Lo-Slug-tuncd plate coil (CIC: LS3 5-Mc. coil with 20 turns removed).
$L_{\text {t }}-11$ turne No. 20 tinned, $1 / 2$-inch diam, $11 / 16$ inch long, tapped 4 turns from crystal end of coil ($13 \mathbb{\&} 113003$).
$1.8-3$ turns No. 18 tinned, $1 / 2$-inch diam., $8 / 8$ inch long (13 \& 11 3002).
J_{1} - Crystal socket for antenna terminal.
$\mathrm{l}_{1}=4$-pronk male plug,

Fig. 16.13- Base unit, with converter removed, showing the plug in fitting for the mixer output and power connections. 'The 613 16 i.f. amplifier stape is at the Inwer right.
loration near to FM broulcast stalimas this trap is mecessary to prevent the second harmonic of the injertion frequency from beating with the FM signals and producing spurious responses in the $50-$ Mc. band.
that is over the rectifier tube sorket, in order that no components be damaged in the plugging-in operation.
looking at the converters for 28 and 50 Mc . from the front we see the tuning condenser for the r.f. input circuit, followed by the GAK5 and 6.JG r.f. stages and the $6 . J 6$ miver-oseillator, in that order. The 6AK5 plate coil, the neutralizing coil, and the mixer plate coil are slug-tuned, resonating with the circuit capacitances only. Condensertuned circuits are used in the r.f. input, second r.f. plate, and mixer grid circuits. The difference in position of the r.f. tuning condenser, C_{1}, in the two converters is the result of an improved parts arrangement used in the $28-\mathrm{Mc}$. job. Mounting of this condenser on the front wall of the converter chassis is recommended for both units.

Note the alternative input circuit for the $50-\mathrm{Mc}$. converter, shown in Fig. 16-9. This includes a $100-\mathrm{Mc}$. trap for elimination of FM interference. If the converter is to be used in a

In the 2 -meter converter the r.f. and mixer tubes are in line at the right side of the chassis, as viewed from the front, with the oscillatormultiplier at the left. This lavout makes for symmetrical arrangement of the push-pull circuits. All the r.f. coils are self-supporting, so that their length and coupling can be adjusted readily. Link coupling of the injection voltage is accomplished with single-turn coils around the multiplier-plate and mixer-grid windings, connected by at short length of 75 -ohm TwinLead.

Adjustment and Operation

Work on the r.f. sections is made easier if a patch cord is made up so that the r.f. units can be removed from the base and kept in operating condition. The only critical portion of the adjustment procedure is that involved in getting the crystal oscillator to work properly, and on the right overtone. The important factor here is the amount of regeneration,

Fig. l6.14 - Wiring diagram of the power supply and i.f.
amplifier unit for use with the erystal-controlled converters.
$\mathrm{C}_{1}, \mathrm{C}_{2}-10 \cdot \mu \mathrm{fd} .450$ volt clectrolytic.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.005 \cdot \mu \mathrm{fd}$. dise ceramic.
$\mathrm{K}_{1}-2500$ ohms, 10 watts.
R_{2} - 1 megohm, $1 / 2$ watt.
$\mathrm{R}_{3}-10,(000$-ohm wire-wound potentiometer.
$\mathrm{R}_{4}-68$ ohms, $1 / 2$ watt.
$\mathrm{R}_{5}-56,000$ ohms, 2 watts.
$\mathrm{R}_{6}-39,000$ ohms, 1 watt.
$R_{7}-2200$ ohms, $1 / 2$ watt.
$\mathrm{R}_{8}-1000$ ohms, $1 / 2$ watt.
$\mathrm{L}_{1}-10 \cdot \mathrm{hy}, 50 \cdot \mathrm{ma}$. filter choke.
 turns removed).
L3 - 15 turns No. 32 cnam., scramble-wound at hottom end of L_{2}.
J_{1} - 4-prong female plug.
J_{2} - Coaxial-cable jack.
S_{1} - S.p.s.t. toggle switch.
T_{1} - Power transformer, 2.5 v , each side c.t. at 50 ma, 6.3 v . at 2.5 amp .; 5 v . at 2 amp . (Thordarson 'T-221330).
controlled by the position of the tap on the oscillator coil, L_{7}. The process is the same for all three converters, but the tap position may be somewhat more critical in the 50 - and $144-$ Mc. units, as a higher-order overtone is used.

The proper position for the tap is that at which oscillation takes place only at the third or fifth overtone, as the converter requires. If the tap is too high on the coil oseillation will be on random frequencies, determined by the setting of C_{11}, rather than controlled by the crystal. If the tap is too low on the coil no oscillation at all will develop. The L / C ratio in the tuned circuit is also fairly critical, for best operation, but if the values given in the parts lists are followed no trouble should be encountered on this score.

To check operation of the oscillator insert a meter in series with R_{8}, apply plate voltage, and rotate C_{11} until a sharp dip in plate current occurs, indicating oscillation. There may be a tendency to self-osciliation at the minimumcapacity end of the tuning range, but this may be disregarded if it disappears quickly as the condenser is turned toward maximum capacity. Crystal oscillation should occur somewhere between half and maximum capacity. It is helpful if a receiver is a vailable for listening on the frequency of oscillation (indicated over L_{-7} in the diagrams) to see whether or not the crystal is controlling the frequency. If the frequency ehanges markedly or if pronounced handcapacity effects are present, move the tap toward the low end of L_{7} by one turn and try again. A fraction of a turn change may be necessary, in some instances, to achieve crystal control without random oscillation. It is also possible that the wrong overtone may develop. With incorrect values of inductance and capacity this type of cireuit may produce oscillation on any odd overtone, so a wavemeter or receiver check should be made to be certain that the proper injection frequency is being used.

Next a rough alignment of the r.f. and i.f. circuits should be made. This can be done on noise, with the receiver set at the approximate midpoint of the frequency range to be tuned, or if one has a signal generator the process is made easier. This need he nothing more than the
crystal oscillator in the transmitter, using the proper harmonic.

Neutralizing is next in order. This should be done following the procedure outlined in the section on r.f. amplifier design earlier in this chapter.

Final adjustment of the converters may now be made. Peak all circuits in the 10 - and ($6-$ meter converters at one end of the band, then move the receiver to the other end of the band and repeak either the miser or i.f. amplifier plate winding for maximum response. Receiver noise is satisfactory for this test. If the response is not sufficiently broad, correction can be made with the bandpass circuits in the second r.f. plate and mixer grid circuits, stagger tuning these and the i.f. coils until reasonably flat response is attained. All this is best done with a 300 -ohm resistor connected across the antenna terminals, to eliminate antenna resonance effects. If the response is flat with this set-up, variation in noise over the band with the antenna on may be disregarded, since it is a function of the antenna itself. Absolutely flat response is not important, for the over-all gain of the system can be adjusted by means of the i.f. gain control. It should be set so that, with the antenna connected, the normal noise level just starts to read on the meter. Turning the gain beyond the point at which noise becomes a limiting factor effects no improvement in signal readability.

The flatness of response in all converters can be varied by adjusting the r.f.-mixer coupling. In the 2 -meter unit the coupling between L_{3} and L_{4} should be increased to the point where it is unnecessary to change the setting of C_{5} to cover the entire band. There will be a slight amount of repeaking of C_{1} necessary in all converters, though it should not make more than about one S-unit difference from one end of the band to the other, and it will have a negligible effect on the noise figure.

The converters are now ready for use, but some work on the receiver may be needed. A few communications receivers radiate harmonics of the high-frequency oscillator frequency, and these will show up as birdies throughout the v.h.f. range. The cure is similar to that employed in treating transmitters for TVI.

Fig. 16-15 - inder-chassts view of the hase unit, showing the power supply and i.f. amplifier compments. The circular cut outs provide additional clearance around the tuned circuits in the phag-in unit.

A Crystal-Controlled Converter for 220 or 144 Mc.

The converter of ligs, 16-16-16-18 uses an improved dual triode, the 6BO7, designed especially for s.h.f. r.f. amplifirr service. The eireuit is a simplified version of the easeote, giving improved performance on the higher frequencies. Parts values are given for operation on either 220 or 144 Me. Only the coile and the arystal frequency are different for the two bands. The mechanical layout is such that the eonverter may be used with the i.f. amplifior base unit of Figs. 16-13-16-15, by slight modification of the base power supply. In performance the converter is similar to the G.J6 model on 144 Me., but on 220 Me. it is considerably better than is possible with the circuits and tubes of the earlier morkels.

A third-overtone oscillator is used for cither band, the erystal frequeney being 7100 ke , for $220-\mathrm{Mc}$. operation and 7611 ke , for 1 ft Me. One half of a 6.36 is the crystal oscillator, the serond half tripling to 68.5 Mc. in the $144-\mathrm{Me}$. set-up, or quintupling to 106.5 for 220 Me. A second 6.56 is a combined dubbler and mixer, the injection frequency being 137 or 213 Me. (Nere Table 16-1.)

Adjustment of overtone oseillators is deseribed in detail in the chapter on v.h.f. transmitters. A separate fered-back winding is used in the oseillator, instead of a tapped coil as in the other converters described. The amount of feedback being not particularly eritical in this ease, the two coils, L_{5} and L_{6}, were made from a single piece of $13 \& W$ Miniductor. If a ehange in feredback is needed, the two portions can be separated for adjustment purposes. Provision for maintaining the coupling between the two exartly should be made if this is done.

No injection coupling, other than that through the tube itself and that inherent in the associated circuits, is shown. Additional coupling was not needed for 144 Me., but it was found desirable to

Fig. 16-16-The 613O7 crystalecontrolled converter for 220 or 1+4 Me. is shown here mounted on the hase unit previously deseribed, "I'lue 6l30" is the larse tube at ther front. It the left, behind the arymal, is the $\mathbf{6 J 6}$ coreillator-multiplier. The other ollo, right, is a combined mixer and injection frequeney donbler. Vote the plog-in lead for taking off the high voltage for the 613(10.
add a small capacitance betwern Pins 2 and 6 of the 6if6 doubler-mixer for 220 Mc. About one inch of $7 \overline{0}-$ ohm Twin-Lead was used for this purpose. A piece of insulated wire soldered to lin 6 and wrapped around the lead to Pin 2 will sorve equally well. The capacitance should be incrensed until adding more makes no improvement in sensitivity, but probably not more than $2 \mu \mu \mathrm{fd}$. will be needed.

Note that the two portions of the 6BQ7 are in series as far as the plate voltage is eoncerned. This requires a higher plate supply voltage than is ob-

Fis.16-17-Bottom view of the 6IBQ7 converter with 220. Me, coils installori, At the upper left is the antenna trimmer. The larke cuil near the center of the chassis rontaine the overtone oscillator inductances, L_{5} and L_{6}. The two mul tiplier tuncd circuits are visible at the lower right, with the slugtuncd mixer plate coil at the upper right.

Fig. 16.18 - Schematic diagram and parts list for the $618\left(\begin{array}{l}\text { enverter for } 220 \text { or } 144 \text { Mc. }\end{array}\right.$
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-5-20-\mu \mu \mathrm{fd}$. ceramic trimmer (Centralab 820-13).
$\mathrm{C}_{4}-5-50-\mu \mu \mathrm{fd}$. ceramic trimmer (Centralah 829-AN').
$\mathrm{C}_{4} \mathrm{C}_{6}, \mathrm{C}_{6}, \mathrm{C}_{9}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{14}, \mathrm{C}_{18}-0.001-\mu \mathrm{fd}$. disk ceramic.
$\mathrm{C} . \overline{\mathrm{C}} \mathrm{C}, \mathrm{B}-2-\mu \mu \mathrm{fl}$. ceramic.
Cio- $10-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{13}, \mathrm{C}_{15}, \mathrm{C}_{15}-50-\mu \mu \mathrm{fd}$, ceramic.
$\mathrm{R}_{1}-100$ ohms.
$\mathrm{R}_{2}-470,000$ ohms.
$\mathbf{R}_{3}, R_{4}, R_{8}, R_{8} R_{12}-1000$ ohms.
$\mathrm{R}_{5}-0.68$ megohm.
R_{f} - 0.22 megohm.
R_{7} - 2200 ohms.
$\mathbf{R}_{10}-3300$ ohins.
$\mathrm{R}_{11}-47,000$ ohms.
All resistors $1 / 2$-watt.
$\mathrm{L}_{1}-220 \mathrm{Mc}$. - 1 turn $\frac{3}{8}$-inch diam., closely moupled to L_{2}.

- 144 Mc. -2 turns as almes.
$\mathrm{L}_{2}-220 \mathrm{Mc} .-2$ turns $3 / 8$-ineh diam., spaced diam. of wire.
- 144 Mc. - 5 turne $3 / 8$-inch diam., $5 / 8$ inch long.
tained through the regulator system (Pin 2 of the power plug) so a change in the base unit must be made to permit tapping into the high-voltage line. An insulated pin jack is installed in the base unit, connecting it to the junction of R_{5} and R_{6} in Fig. 16-14. Connection to the converter is made by means of Γ_{2}, a test-lead type plug on the end of a flexible lead. Another pin jack is mounted on the converter chassis to hold this plug when the converter is not in use.

Except for the setting of C_{t}, all adjustments of the r.f. stages are extremely broad. A variable trimmer may be tried in place of C_{8}. but in this unit it was not found necessary to change the value for 220 or 144 Mc. The bifilar-wound chokes in the heater leads are designed to be self-resonant at approximately the highest frequency for which the converter will be used. There is no particular advantage in changing them for $144-\mathrm{Mc}$. work, though if the converter
$\mathrm{L}_{3}-220 \mathrm{Mr} .-31 / 4$ turns $1 / 4$-ineh diam., $3 / 8$ inch long tapped at $11 / 2$ turns from Cs end.

- $1+4$ Nr. -5 turns $3 / 8$-inch diam., $3 / 4$ ineh long, tapped at $1^{1 / 2}$ turns from C_{8} end.
$L_{4}-44$ turns Xo. 30 enam., close-wound on $\frac{3}{8}$-ineh diam, slug-tined form.
L.5, L. - - Made from one piece of B \& W Miniductor Xn. 3003, 17 turns total. Cint at 5 turns for $L .6$; balance for 1,5 .
$\mathrm{L}_{7}-220 \mathrm{Mc}$. - 6 turns $1 / 4$-inch diam., $5 / 8$ inch long.
-14 Mc . -8 turns $3 / 8$-inch diam., $3 / 4$ inch long.
Ls - 220 M M. - 2 turns $1 / 4$-inch diam., spared $1 / 8$ inch.
- $144 \mathrm{Mr} .-3$ turns $3 / 8$-inch diam., $1 / 4$ inch long.

All coila No. 18 enameled wire unlesi otherwise noted.
RIC $C_{1}, \mathrm{RFC}_{2}-5$ turns cach No. 22 enam., close-wound side-by-side (bitilar) on $3 / 16$-inch diameter. Cement turns together with enil dope.
$\mathbf{P}_{1}-4$-prong plug (Amphenol 86-C(P'4).
P_{2} - Test-lead type plug. Matching fitting must be added to power supply, or P_{1} and matching fitting changed to 5 -prong.
is to be used solely on 144 Mc. they maty be about two turns larger than given in the parts list.

For best results, the inductance of the antenna coil should be as low as possible and still resonate at the signal frequency with adjustment of C_{1}. The setting of C_{1} should be done with the antenna attached, as a standing wave on the feed line will require a change of tuning. For first tests a $300-$ ohm resistor across the antenna terminals may be used. C_{1} will tune sharply, but once set properly for the middle of the band it need not be changed in tuning aeross the band.

Resonance at the middle of the band in L_{2} and L_{3} may be checked with a grid-dip meter, if one is available, or the turns may be spaced for maximum response on a test signal. Only a slight change in signal will be observed with large changes in inductance, so the converter should be capable of good reception before any adjustment is made, other than the setting of C_{1}.

A Simple Converter for 50 and 144 Mc.

Though the more complex equipment already described is typical of the gear that must be used in order to attain top performance on the v.h.f. bands, it is possible to start with simpler devices and still do a good job. The converter shown in Figs. 16-19 through 16-22 provides the best performance that can be expected from simple equipment. It was not built to be the simplest possible receiving device; rather, it was designed to provide good results with a minimum of complication and cost.

It uses a dual triode, 6J6, as a combined mixer-oscillator, followed by a 6 AK 5 i.f. amplifier. The latter is necessary; do not try to do without it. The output of a triode mixer is too low to give adequate gain for most receivers. The i.f. amplifier stage makes the converter usable with even the simplest receivers, and provides a convenient means of controlling the over all gain of the system. Plug-in coils mounted inside tube-base type forms provide the means of changing bands.

Mechanical Details

Though it could be built in a much smaller space, the converter uses a 3 by 5 by 10 -inch chassis, allowing plenty of room for the work that must he done underside. The main tuning condenser is a split-stator variable made from a double-hearing double-spaced $15-\mu \mu \mathrm{fd}$. type. Each section is reduced to three stator and two rotor plates. This unit is mounted under the chassis, as close to the top plate as possible, to make room for the vernier dial on the front panel. The mixer and i.f. plate coils, L_{4} and L_{5}, are mounted under the chassis. Normally this will provide all the shielding necessary for the i.f. circuits. If trouble is experienced with signals on the intermediate frequency a bottom plate may be added to the chassis. The panel is set out from the chassis front with half-inch pillars.

A smooth-running dial on the oscillator tuning is a necessity in a v.h.f. converter when com-munications-receiver selectivity is used. The Na-
tional type SCN has a good tuning rate, plus ample space for calibration scales for both bands.

The circuit is so simple that no trouble should be experienced if the general parts arrangement is followed. Look over the photographs closely before starting to lay out the chassis for drilling. In the rear view, Fig. 16-20, the oscillator coil, the 6J6 tube, and the mixer grid coil, $L_{1}-L_{2}$, appear in that order, from left to right, close to the panel. The 6AK5 tube is nearer the back, with the slug adjustment screws of the mixer plate coil, L_{4}, and the i.f. plate coils, $L_{5}-L_{6}$, at the right and left, respectively. Holes are drilled in spare space at the back of the chassis to provide for storage of the set of coils not in use.

Looking in the bottom view, Fig. 16-22, we see the oscillator tuning condenser, C_{5}, at the center, the 6J6 socket at the left and the coil socket at the right. Note that the latter is as close to C_{5} as possible.

The only critical job in the adjustment procedure is involved in getting the inductance of the oscillator plug-in coils, L_{3}, to the correct value. There being only one parallel trimmer for the oscillator (C_{4}) the coils must be made and adjusted carefully in order to have the desired bandspread on both ranges.

Considerable care must be used in the placement of the oscillator and mixer components, so that all leads will be very short; otherwise it will not be possible to resonate these circuits at 148 Mc . The 6 J 6 socket is at the left of C_{5} in the bottom view, and the mixer grid circuit components appear just to the left of the middle. The i.f. amplifier gain control, R_{7}, is at the right. The $300-0 h m$ line from the crystalsocket antenna terminal, J_{1}, may be seen at the far left.

The mixer plate coil, the i.f. amplifier socket, and the output coil assembly are across the bottom of this view, from left to right. The antenna terminal, power plug and i.f. output connector are on the rear wall in the same order.

Fig. 16.19 - I 2-tube converter for 50 and 144 Mc. The vernier dial is for oscillator tuning. The two kaols are the i.f. gaith control, right, and the mixer tuning condenaor. In fromt are the 2 -meter mixer and oseillator plug.in coils.

Fig. 16.20- Kear vicw of the simple converter. Near the panel, left to right, tho oceillator mile are shown in place. The i.f. am. plifier tube is nearer the hack of the chassis, with the slug-tuned mixer and i.f. plate coils at either side. Coils not in use are stored at the back of the chassis.

Test Procedure

When the assembly and wiring are completed, the oscillator operation should be checked. The power supply should deliver 6.3 volts a.c., at 1 ampere, and 150 volts d.c. at 30 ma., preferably regulated. Insert a milliammeter in series with R_{3} and check for oscilla-

Fig. 16-21 - Schematic diagram of the two-tube converter for 50 and 144 Mc.
$\mathrm{C}_{1}-\mathbf{1 5}$ - μ ffd. midget variable (Hammarlund IIF.15). $\mathrm{L}_{2}-50 \mathrm{Mc}$.: 7 turns No. 22 tinned, $1 / 2$-inch diam., $7 / \mathrm{s}$ $\mathrm{C}_{2}-100-\mu \mu \mathrm{fd}$. mica or ceramic.
$\mathrm{C}_{3}, \mathrm{C}_{8}-47-\mu \mu \mathrm{fd}$. mica or ceramic.
$\mathrm{C}_{4}-35 \cdot \mu \mu \mathrm{fd}$. ceramic trimmer (Centralab 820.C).
C_{5} - Double -spaced split-stator variable, about $8 \mu \mu \mathrm{fd}$. per section (Hammarlund HFD-15-X, reduced to 3 stator and 2 rotor plates in each section).
$\mathrm{C}_{6} \mathrm{C}_{11}-68 . \mu \mu \mathrm{fd}$. mica or ceramic.
$\mathrm{C}_{7}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{12}-0.01$ - fd . disk ceramic.
$\mathrm{C}_{13}-15-\mu \mathrm{fd}$. ceramic. Connect directly from Pin 5 to Pin 7 on 6AK5 socket.
$R_{1}, R_{5}-1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{2}-10,000 \mathrm{ohms}, 1 / 2$ watt.
$\mathbf{R}_{3}, \mathbf{R}_{4}, \mathrm{R}_{9}, \mathbf{R}_{10}-1000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{6}-220$ ohms, $1 / 2$ watt.
$\mathrm{R}_{7}-2000$-ohm 4-watt potentiometer.
$R_{8}-22,000$ ohms, 1 watt.
$\mathrm{L}_{1}-50 \mathrm{Mc}$.: 2 turns No. 22 enam. interwound in cold end of L_{2}.
144 Mc.: 3 turns No. 22 enam. $1 / 4$-inch diam., close-wound at cold end of L_{2}. inch long ($\mathrm{B} \& \mathrm{~W}$ No. 3003).
144 Mc.: 2 turns No. 16 tinned, $1 / 4$-inch diam., $1 / 4$-inch long.
$\mathrm{L}_{8}-50 \mathrm{Mc}$.: 6 turns No. 22 tinned, $\frac{1}{2}$-inch diam., 7 íc inch long center-tapped (B \& W No. 3003, with end turns spread slightly). Alternate design for more bandspread, see text.
144 Mc.: U-shaped loop No. 12 wire, $3 / 4$ inch wide, 1 inch long, center-tapped.
Coils L_{1} and L_{2} are supported inside Millen 1 -inch diameter 4 -prong forms. L_{3} in Millen 45005. 5 -prong. Saw off to $3 / 4$-inch length.
$L_{A}, L_{5}-23$ turns No. 22 enam. close-wound on V_{a}. tional XR-50 slug-tuned form.
$L_{6}-3$ turns No. 22 enam. close-wound at cold end of L_{ε}.
J_{1} - Crystal socket for antenna terminal.
J_{2} - Coaxial fitting, female.
$P_{1}-4$-prong power fitting, male.
this case. If more bandspread is wanted on 144 Mc., the setting of C_{4} can be increased to around $23 \mu \mu \mathrm{fd}$, and I_{3} reduced to 4 turns. The 2 -meter band will then cover around 72 divisiens. It will not he possible to cover the whole of the 50-Mc. band with this arrangement, without resetting C_{4}, but this is no great handicap so long as activity is concentrated in the lower portion of the hand, as at present.

The frequency of the oscillator may be checked with an absorption-type wavemeter or Lecher wires. For the 50-Mc. range, the oscillator should tune from $5 \overline{3} .4$ to 61.4 Me. in order to heat with an incoming signal to produce a 7.4-Me. i.f. (The oscillator is on the high side of the signal.) A kick in the oscillator plate current, or a tlicker in the voltageregulator tube in the power supply, can be used to show when the frequency is found with the measuring device.

Set the padder, C_{4}, so that 57.4 . Me. comes at about 5 divisions in from the maximumcapacity end of the tuning range, and check to see where 61.4 Me is found. It should come just inside the minimum-rapacity end of the range. If the circuit will not tune to 61. A Me. the inductance of L_{3} is too low. Move the turns closer together, and reset C_{4} as before for 57.4 Mc. If the handspread is too small, spread the turns and increase the capacitance of C_{4} to comperisate, for the desired amount of spread, about 90 divisions on the dial.

Next check the 2 -meter range. Here the coil must be adjusted in inductance until the oscillator will hit 136.6 Mc. somewhere between the middle and the maximum-eapacity end of the tuning range of C_{5}. The high end, 140.6 Mr., will then appear about 50 divisions higher on the dial. The oscillator is on the low side of the signal on this range. Do not change the setting of C_{4} in this process, or it will be necessary to alter the $50-\mathrm{Mc}$. coil again.

Once the oscillator covers the proper frequency ranges the romverter may be tested in actual re-
ception. Connect the output through a coaxial cable to a receiver tuned to approximately 7.4 Mic. There should be an increase in noise as the gain control is turned up. The miver and i.f. amplifier phate windings can be tuned to the proper frequency merely by adjusting the core serews for maximum noise.

The mixer grid circuit may also be peaked on noise, though care should be taken to see that it is not peaked on the image, 14.8 Mc . away from the signal frequency. If the grid circuit is tuned to the desired frequency there will be a considerable increase in the strength of a signal as the grid condenser, C_{b}, is tuned through resonance. If the cireuit is tuned to the image frequency the noise will prak up, hut an amateur-hand signal will drop in strength as the moise peak occurs. Thung the mixer grid circuit shifts the oscillator frequenery slightly, so it may be peaked more accurately on noise than when listerning to a signal.

A final check of the dial calibration may be made by tuning in signals of known frequency, or be means of an accurate signal generator. Few wavemoters are sufficiently accurate for final calibration by the method outlined earlier.

If trouble is encountered with signals in the T-Mc. region leaking through, the i.f. can be shifted slightly to tune out the interference. In some instances it may be necessary to put a bottom plate on the chassis. Small changes in intermediate frequency can be made without resetting either the oscillator padder or the i.f. coils. With the i.f. amplitier built into the converter, the setup will have adequate gain for use with almost any receiver. Reception will be ncarly as good as with more complex designs, the principal difference being a somewhat higher noise figure (slightly degraded signal-to-noise ratio) in the simpler job. The use of a low-noise r.f. amplifier ahead of the converter (an example is the preamplifier of Fig. 16-24) will make possible reception equal to the best ohtainable in a converter having a tunable oseillator.

Fig. 16-22-Bottom view of the two-band converter. The splitstator condenser at the center is for oscillator tuning. The oscillator coil socket is at the right and the 6 J 6 socket at the left. The mixer tuning rondenser and grid coil socket are in the upper left corner, with the i.f. coils and tube socket at the rear.

6BQ7 Preamplifiers for 50 and 144 Mc.

The triode preamplifiers ehown in Figs. 16-2:3 to $16-25$ will improve the sensitivity and lower the noise figure of receivers for 50 and 1 H Mc . that are deficient in these respects. Two separate preamplifiers are shown running from at enmmon power supply, but the design c:an be used for either band if the constructor is inmerested in only one of them. (only one r.f. rireuit is shown in the diagram, as the two amplifiers atre wentical circuitwise.

The 6BO7 is a duat trimde designed reperially for v.h.f. amplifier service. More information on the tube and cirenit may be found entier in this chapter. The power supply uses a TV booster power transformer, an selenium reetifier, and an R-(' filter. It furnishes 160 volte d.c. and 6.3 volts a.c. Plate voltage is on both tubere as loug as the power is on, and the heater voltage is applieyd to either amplifier lyy the control switch.

Construction

It will be seen from the parts list that the 50 Me. plate circuit is tuned by a variable trimmer, whereas the capacitor at C_{8} in the $14-M \cdot$. side is fixed. Resoname in the $1+4-$ Me. plate eirenit is achieved by spreading the turns of L_{3} abowe the tap. The input eireuits are set up for ' 3 J)-ohm or other balanced lines. If coaxial-line fed antomnas are used, the grid circuit should be tuned, and

Fig. 16-23-The $\mathbf{5 0}$ - and the $141-\mathrm{Mc}$. r.f. amplifiers are at the right and the left ends of the chassis, respectively. The power transformer is to the rear of the filter capacitor and the comtrol switch is centered on the front wall of the assembly.
the coaxial line tapped on the grid coil, as shown in F"ig. 16-2.

The chassis is atuminum, 2 by 5 by 7 inches. Wore compant design is possithe if only one band is included, but it is suggested that the general layout of parts be followed. The tube sockets are

Fig. 16.24 - Circuit diagram of the 6 BO ? amplifier unit.
$\mathrm{C}_{1}, \mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{7}-0.001-\mu \mathrm{fd}$. disk ceramic.
 (Wallory $\mathbf{F P} \mathrm{P}_{2}$ 1).
(.3-15. $\mu \mu \mathrm{fd}$. variable (Millen 20015).

C s - $1-\mu \mu$ fd. silver mica.
Cis - 50 Mc .: 4.5-25 $\mu \mu \mathrm{fd}$. ceramic trimmer (Centralah 822).
14. Mc.: 2- $\mu \mathrm{p}$ fd. ceranic (l:rie Ceramion).
H_{1} - 22 ohms, $1 / 2$ watt.
$\mathrm{H}_{2}-3300$ ohms, $1 / 2$ watt.
R_{3} - 100 ohms, $1 / 2$ watt.
R_{4} - 0.47 megohm, $1 / 2$ watt.
K_{5} - 1000 ohms, $1 / 2$ watt.
$\mathrm{L}_{\mathrm{i}}-50 \mathrm{Mc} . \mathrm{S} 6 \mathrm{turns}$ No. 20 tinncd, $5 / 8$-inch diam., $8 / 8$ inch long (B \& W. Miniductor No. 3007).
144 Mc.: 3 turns No. 16 enam., 8/8.inch diam., turns spaced wire diam.
1.2 - 50 Me.: 11 turna No. 20 tinned, 5 - inch diam., ${ }^{1316}$ inch long (B \& W Miniductor No. 3007)
144 Mc.: 5 turns No. 16 enam., $3 / 8$-inch dian., $1 / 2$ inch long.
$\mathrm{L}_{3}-50 \mathrm{Mc}$: 14 turns Vo. 20 tinned, $1 / 2$-inch diam. is inch long, tapped at 3 turns from 65 end (B \& 11 Viniductor No. 3003).
11.4 Me.: 6 turns No. 14 tinned, $3 / 8$-inch diam., 5 turns spaced diam., last turn adjustable, tapped 1 turn from Cs end.
14- 50 Mc.: 3 turne Xo. 22 enam. wound around L_{3} just above the tap.
114 Me:: 2 turns No. 18 cnam., $3 / 8$ inch diam., inserted between th and Eth turns of L_{3}.
J_{1} - Coaxial cable connertor.
RFC1. $1 \mathrm{FHC}_{2}$ - 50 Mc.: 8 turns cach No. 18 enam., cloke-wound (hifilar) on 36-inch diam.
1.4 Mc.: Same as ahove only 5 turns each.
$S_{1 A}, S_{1 B}-3$-pole 3 -position selector awitch with one section unused (Centralab 1407).
$\mathrm{SR}_{1}-20$-ma, selenium rectifier (Radio Receptor Corp. 8Y1).
T_{1} - Power transformer: 150 volts r.m.s., 25 ma.; 6.3 volts, 0.5 amp . (Merit P-3046).

two inches from the front of the chassis. Power supply parts and control switch occupy the middle, with the $144-$ Mc. amplifier at the left in both views. Input and output connectors and a.c. fitting are on the rear wall.

Looking at the bottom view, it will be seen that small pieces of flashing copper about one inch square are soldered across the sockets, to isolate the input and output circuits.

First check the power supply, with the decoupling resistors, R_{5}, disconnected. Voltage should be about 200, dropping to 160 when either stage is placed in operation. Insert a low-range meter in series with R_{5}, and check for oscillation.

CHAPTER 16

Fig. 16.25 - A bottom view of the amplifier unit show. ing the input and the output connectors uounted on the rear wall of the chassis. Power supply components are centered in the chassis.

The rurrent should remain steady at about 6 ma . when the plate or grid circuit is touched with a metal object.

If there is fluctuation, indicating oscillation, neutralization is done by moving the tap position on the coil. On the $144-\mathrm{Mc}$. side it may be possible to spread the end turn (below the tap) away from the rest of the coil to achieve neutralization. The capacitor, C_{5}, can be made variable for a neutralization adjustment, if desired.

While listening to a signal near the middle of the band, adjust the antenna trimmer for maximum signal, and peak the plate circuit, by C_{8} in the $50-\mathrm{Mc}$. amplifier, or by spreading the turns above the tap on L_{3} on the $144-\mathrm{Mc}$. side. The adjustment of the plate circuit should be broad enough to cover the entire band, but repeaking of the input circuit may be necessary at the band cdges.

Gain should be around 12 db . at 144 Mc., and 15 db . at 50 Mc . If the receiver with which the preamplifier is used has a pentode r.f. stage, or no r.f. amplifier at all, the preamplifier should effect an improvement of as much as 6 to 10 db in signal to noise ratio at 144 Mc ., and somewhat less at 50 Mc . If more gain is needed, a separate power supply delivering 250 volts or so may be used.

Receivers for 420 Mc .

For best signal-to-noise ratio, receivers for any frequency should have the highest degree of selectivity that can be used successfully at the frequency in question. With crystal control or its equivalent in stability accepted as standard practice on all bands up through 225 Mc ., there is little point in using more bandwidth in receivers for these frequencies than is necessary for satisfactory voice reception, a maximum of about 10 kc . Such communication selectivity is now being used successfully by most workers on 420 Mc., too, but it imposes several problems not encountered on lower bands.

First is the matter of oscillator instability in the converter. Even the best tunable oscillator at 420 Mc . suffers from vibration and hand-capacity effects sufficiently to make it difficult to hold the signal in a 10 -kc. i.f. bandwidth.

Then, there are still quite a few unstable transmitters being used in 420 -Mc. work. It is out of the question to copy these on a selective receiver.

Last, searching a band 30 megacycles wide is excessively time-consuming when communica-tions-receiver selectivity is used in the i.f. system.

There is no single solution to these problems, but the best approach appears to be that of breaking up of the band into segments for different types of operation. This is being done by mutual agreement among $420-\mathrm{Mc}$. operators at
present, as follows: 420 to 432 Mc . - modulated oscillators and wideband FM; 432 to 436 Mc . -crystal-controlled c.w., AM and narrow-band FM; 436 to 450 - television.
The first segment can be covered with a superregenerative receiver, a superheterodyne having a wideband i.f. system, or a converter used ahead of an FM broadcast receiver. The high selectivity required for best use of the middle portion makes a crystal-controlled or otherwise highly stable converter and communications receiver combination almost mandatory. Amateur TV is usually received with a converter ahead of a standard TV receiver, tuned to some channel that is not in use locally.

Many of the tubes used on the v.h.f. bands are useless at 420 Mc ., and the performance of even the best u.h.f. tubes is down compared to lower bands. Only the lighthouse or pencil-triode tubes and a few of the miniatures are usable, and these require modifications of conventional circuit technique to produce satisfactory results.

Crystal diodes are often used as mixers in $420-$ Mc. receivers, as in this frequency range they work just about as well as vacuum tubes. The over-all gain of a converter having a crystal mixer is about 10 db . lower than one using a tube, so this difference must be made up in the i.f. amplifier. The noise figure of a receiver having a crystal

Fig. 16.26-Sehematic diagram of a converter for 420 Mc .
$R_{\theta}-100$ ohms, $1 / 2$ watt.
R_{10} - 3300 ohms, $1 / 2$ wat .
$\mathrm{K}_{11}-2.500$ ohms, 10 watts.
$\mathrm{K}_{12}-33,000$ ohms, $1 / 2$ watt.
$\mathrm{L}_{1}, \mathrm{~L}_{2}-\mathrm{T}$-shaped inductances cut from sheet copper, $7 / 8$ by $17 / 8$ inches over all. Cut-out portion is $1 / 4$ inch wide. Solder directly to flat plates on the tuning condenser stators, adjusting position of L_{2} for proper tracking.
$1_{3}, I_{4}$ - Injection coupling loops of stiff wire, width of $I .1$ and $I .2$, and mounted closely under them.
Is - Antenna coupling loop of stiff wire $13 / 4$ inches long, coupled closely to L_{1}.
In - 10 turns No. 21 d.s.c. spaced to fill National XR-50 form.
L; - Same as $L_{\text {. }, ~ b u t ~ t a p p e d ~ a t ~ s e c o n d ~ t u r n ~ f r o m ~ c o l d ~}^{\text {, }}$ end.
J_{1} - Antenna terminat - Nillen 33102 erystal socket. J_{2} - Coaxial fitting (Jones S-201).
P_{1} - t.prong power fitting.
$18 \mathrm{FC}_{3}, 1 \mathrm{RFC}_{2}-10$ turns No . 22 enameled wire, close. wound on 1-watt resistor.
mixer includes the noise figure of the i.f. amplifier following it, so best results require that the i.f. system employ low-noise techniques discussed carlier in this chapter. The higher the intermediate frequency, the more important this becomes. If the i.f. is 50 Mc , or higher a triode i.f. amplifier is recommended.

Crystal diodes of the type used in radar mixers, such as the 1×21 series, are well suited to $420-\mathrm{Mc}$. mixer service, though care must be taken to avoid damage from transmitter r.f. energy. Other types of crystal diodes such as the $1 N ⿱ 1 \mathrm{I}$ will stand higher values of crystal current, and their use is recommended.

Few conventional vacuum tubes work well as mixers at 420 Mc , and higher. The GJ6 is useful where a balanced input circuit is desired, as in the converter of Fig. 16-31. For single-ended circuitry the 6AMt is recommended.

For high-selectivity coverage of the 432- to 436-Mc. segment of the band, a common practice
is to use a crystal-controlled converter working into another converter for either the $50-$ or 144 Mc. band, tuning the latter for the four-megacycle tuning range.

- A 420-MC. CONVERTER

The converter shown in Figs. 16-26 through 16-28 represents about the simplest design that can be used effectively at 420 Mc. The i.f. is 30 Mc., permitting its use with any of the several receivers that have provision for wideband F M at this frequency. These include the $\mathrm{S}-27, \mathrm{~S}-36$, SX-42 and S.S-62. It may also be used with more selective i.f. systems, though there will be some trouble with oscillator instability. When high selectivity is used, best results can be obtained by setting the converter in the middle of its tuning range, and then tuning the receiver to which the converter is connected. If the i.f. coils and oscillator tuning range are suitably modified, the converter may be used with a standard home TV

receiver for amateur television work, or with an FM broadcast receiver for wideband FM reception.

The mixer and oscillator stages use $6 J 6 \mathrm{~s}$, with gang-tuned push-pull circuits. A 30-Mc. i.f. amplifier is included, as the gain of most receivers at 30 Mc . is insuflicient for best reception. The i.f. stage uses a $6 . \\left(\begin{array}{l}\text { a }\end{array}\right.$, which works well at this frequency, but if the i.f. is to be shifted to a higher frequency it would be well to use the cascode circuit in the i.f. amplifier, for adequate gan and low-noise characteristies. Details of the cascode amplifier will be found carlier in this chapter. Plate voltage for the oscillator and mixer is maintained at 105 volts by means of an 0.12 regulator tube.

The tuning condenser is a ganged unit especially designed for v.h.f. service. The mixer and oscillator inductances, L_{1} and L_{2}, are cut from sheet copper in U shape, and soldered directly to the stator assemblies in the tuning condenser. The 6J6 tube sockets are mounted on brackets

Fig. 16.28 - Bottom view of the $\mathbf{4 2 0} \mathbf{- M e}$. converter.

Fig. 16.27 - A ronverter for $120-\mathrm{Mc}$, reception. The ascillator section in in back of the vernier dial, with the mixer at the rear. Both use 6Jtis in push-pull circuits. The tubes at the right are the 30 - Ne . i.f. amplifier, a $6 \mathrm{AG5}$, and a voltage regulator.
supplied with the condenser assembly, permitting romnertions to be made without leads other than the socket lugs themselves. Padder calpacitane for the oseillator is supplied by two eopper plates, also soldered direetly to the stator terminals.
R. F. AMPLIFIERS FOR 420.MC. RECEPTION
Two coaxial-line r.f. amplifiers for 420-Me. use are shown in Figs. 16-29 through 16-32.

Fig. 16.29 - Schematic diagram of the 420 . Mc, amplifiers. Connections for the oAFt are as follows: P'ins 1 , 7 - plate; 2, 6 - grid; 3, 4 - heater; 5 - cathode.
C_{1} - Copper tab tuning capaeitor; see text and photographs.
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{3}$ - Feed-through eapaeitors, $100 \mu \mu \mathrm{fd}$. or larger.
$\mathrm{C}_{\mathrm{s}}-100-\mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{6}-2-\mu \mathrm{fd}$. ceramic. L'se only if neutralization is needed.
$\mathrm{H}_{1}-220$ ohms.
1_{1} - Inner conductor of plate line; 3 30. or $1 / 8$-ineh ropper tubing or rod, $7 \frac{1}{2}$ inches long for 6 J 4 or $6 \mathrm{~F}^{4}$.
I_{2} - Coupling loop of insulated wire. Runs adjacent to L_{1} for 1 ineh.
1.3- liac only if nemtralization is nepeded. Spe text for details.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial fitting, female. J_{2} is shown as a crystal socket in the photographs.
$\mathrm{RFC}_{1}-\mathrm{RFC}_{4}-7$ turns No. 2 2 cnam., 3 /s-inch diam., $1 \frac{1}{2}$ inch long. A 1000 -nhm $1 / 2$-watt resistor can be substituted for RFC4.

Either is capable of about 12 db . gain and they may effert a considerahle improvenent in the sigmal-ta-noise ratio and stability of simple mixerusidlator converters. By isolating the nixer from, the aintenna, the usi of such an r.f. stage reduces oscillator radiation, and may at least partially correct oscillator stahility troubles that result from swinging feeders and body capacity offects.

Designs for two different types of tubes are shown. The longer line (rear of Fig. 16-30) uses a Type 5675 "pencil" tube; the other a 6 J 4 miniature. Both have halfwave line tuned plate circuits, the outer conductors of which are made from flashing eopper. Dimensions of the tank

V.H.F. RECEIVERS

Fig. 16-30 - T'wo coaxialdine r.f. amplifiers for $\mathbf{4 2 0} \mathbf{M c}$. The shorter one, in the foreground, uses a 6 J 4 triode; the other a 56% "pencil tube" triode. Both employ plate lines tuned with small eopper tab eapacitors at the open ends of the lines.
circuit parts, in flat form before bending, are given in Fig. 16-31.

A shielding partition is soldered inside the line two inches from one end when a $65 \mathrm{~J}+$ is used. This partition crosses the center of the tube socket, with a prong fitting inside the shielding ring that is part of most miniature tube sockets. For the pencil tube two plates are required, the grid plane of the tube being clamped between them. The heater and cathode circuit components are mounted in the small compartment, the heater voltage being brought in by feed-through eapacitors mounted on the end plate. If one side of the heator is to be grounded it can be done inside the compartment and only one feed-through capacitor used.

The inner conductor is supported near its midpoint by a block of polystyrene drilled to pass the tubing or rod with a rlose fit. Plate voltage is brought through the side wall of the outer comductor on a feed-through eapacitor and applied to the inner conductor near its midpoint through a small r.f. choke or isolating resistor. The connection should be made to the point of lowest r.f. voltage.

Tuning is done with small circular plates of copper, one of which is soldered to the end of the line. The other is mounted on an adjusting screw. A hole about $1 / 8$-inch diameter is drilled in the outer conductor about one half inch from the open end. A $4 / 40$ brass screw is run through the hole, with brass nuts on either side of the sheet copper. These are then soldered to the copper, taking care not to run the solder up over the nuts onto the screw thread. Another nut is then put on the end of the screw and the copper tuning dise is soldered to this. A brass sleeve or piece of $1 / 4$-inch copper tubing is soldered to the head of the screw to provide a shaft for mounting a knob.

Output coupling is by means of a loop of insulated wire alongside of the inner conductor. The position of the coupling loop is not particularly critical. Moving it away from the point of lowest r.f. voltage, toward either end of the line, decreases the gain and increases the bandwidth slightly. If the r.f. stage is used as a soparate preamplifier unit the coupling link to the receiver proper should be coax.

Because the input impedance of a groundedgrid amplifier is quite low, there is little to the gained by the use of a tuned input cireuit, so the

antenna is connected directly to the cathode through a small blocking condenser. This is necessary only to keep the cathode from having its bias resistor shorted out if a grounded antenna system is used. The cathode and heater are kept above ground for r.f. be the use of small airwound r.f. chokes. Though the photograph shows erystal sockets as antenna terminals, implying the use of 300 -ohm Twin-Lead or other halanced line, the direet connertion to the cathode is more suited to use of rouxial line. 'The input connections have since been changed to coaxial fittings. If $300-0 \mathrm{hm}$ line is used on the antenna sustem, more effective coupling can be made with a bazooka, for balanced to unbalanced coupling, as shown in Fig. 16-33.

Adjustment and Operation

A grounded-grid amplifier that is operating correctly should not be particularly critical in adjustment. With heater and plate voltages applied and the r.f. stage connected to the receiver with which it is to be used, the line should be

Fig. 16-31 - Flashing eopper parts of the 420. Mc. tank eirenits. The outer conductor (top sketeh) is 10 inehes long for the line using miniature thbes, or 12 inehes for the pencil tube model. The middle drawing shows the bottom plate (left) and an end view of the assembled line. At the bottom left is the shielding fin used with the miniature tubes, and at the middle is one of the two plates needed for mounting the pencil tube. These plates should be tailored to fit the line assembly after it is bent up. 'They are soldered in place, two inches from the end of the trough. The right-hand plate is fastaned in the end of the trough, the two boles being for the heater by-passes, C_{2} and C_{3}.

adjusted to resonance, as indicated by maximum signal and a slight noise peak. The point of conneetion for the plate voltage should be cheeked by touching a pencil lead along the inner conductor and finding the point at which there is the least effect on the strength of the received signal. A good starting point is just toward the tube end of the line from the midpoint. The output coupling loop should run close to the inner conductor for about one inch, beginning near the low r.f. voltage point. It can be moved toward the tube or the open end if more bandwidth is desired.

There may be a tendency toward regeneration with the 6.J. when no antenna is connected, showing up as a sharp and pronounced noise peak at resonance. This effect was encountered when 300 -ohm line was attached directly to the cathode, but disappeared when coaxial input and output coupling fittings were installed. Neutralization, if needed, can be accomplished by coupling a small amount of energy from the plate back to the cathode, as indieated by C_{6} and L_{3} in Fig. 16-29. The length of the loop in the plate portion of the line should be adjusted until neutralization is arhieved.

Fig. 16-32 - Interior view of the r.f. umplifier units. A 2 -ineh space at the left pnd takes care of the heater and cathode circuits. When a mingature tube is used, as in the upper model, a shielding fin is fitted across the center of the tube socket. The pencil tube (lower unit) has its urid plane clamped between two copper plates. The inner conductor in each line is supported near its center with a polyatyrene block.

The $5675,6.1 J 4$ and 6.34 tubes are most suitable for this application, but other types, including the $6 . \mathrm{F} 4,6 \mathrm{~F} 4$, 6. 13 s and 656 might be usalble. It is possible that these types would rerpuire neutraliza-

Fig. 16-3.3- A bazook a for coupling into the 420- Me r.f. amplifier with 300 -ohm transmiswion lines. 'I'wo pieces of any small coaxial line are needed, one of them a half-wave longer than the other. A 300 -ohm balaned line may be connected to the left enf. The inner conductors are tied together at the other end, fording into the hot terminal of a coaxial fitting.
tion, however, as they do not have huilt-in shielding between eathode and plate. lighthouse tubes work well in such circuits, but their construction requires revisions in design of the line.

CHAPTER 17

V.H.F. Transmitters

Beginning with the v.h.f. region, amateur frequence assigments are not in direct harmonie relationship with our lower-frequency bathls. This fact, compled with the necessity for extreme care in soledtion and placement of components for low circuit caparitance and minimum lead inductance, makes it highly desirable to construct separate gear for v.h.f. work, rather than attempt to adapt for v.h.f. use a transmitter designed for the lower amatelur frequencies.

Transmitter stability regulations for the \quad 00Me. band are the same as for lower bands, and proper design may make it possible to use the same rig for $50,28,21$, and even 14 Me., but incorporation of 50 Mc. and higher in the usual multiband tramsmitter is generally not feasible. Rather, it is usually more satisfactory to rombine 50 and 144 Me . since the two bands are close to a third-harmonic rolationship. It least the cexeiter portion of the transmitter may be made to cover the requirements for both these bands very readily.

Though no stability restrictions are imposed by haw on operation at $14 t$ Me. and higher amateur bands (other than that the entire cmission must be kept within the limits of the band in question), experiener has demonstrated the value of using erystal control or its equivalent in v.h.f. work. Crystal-controlled transmitters and reecivers having the minimum bandwidth necessary for voice communication make it possible for hundreds of stations to operate without undue interference in a band that would appear crowded if occupied by a dozen or less stations using broadband receivers and unstable transmitters.

The use of narrow-band communications systems also pays off in the form of improved refficiency in both transmitter and receiver. It is this factor, perhaps more than the intorference potentialities of the wide-band systems, whieh makes it desirable to employ advanced techniques at 220 and even 420 Me. Stabilized
transmitters for $2: 20$ Ne. are not too difficult to build, and their use at this frequency is highly recommended.

Construction of multistage rigs for 420 Me . is not easy, and the choice of tubes suitable for this type of work is quite limited, but the advanced amateur who is interested in making the most of the interesting possibilit ies afforded by this developing field will be satisfied with nothing less. The t20-Me band is much witer than our lower v.h.f. assignments, however, and interference is not likely to beeome a limiting factor in this band for along time to come. Thus it may be more important, in many localities, to got activity rolling with any sort of gear, leaving perfection in design to come along as the need develops.

At 420 Mc. and in the higher amateur assignments most standard tubes canmot be used with any degree of success, and speceial tubes designed for these frequencies must be amployed. Thes: types have extremely close cheetrode spacing, to reduce transit-time efferts, and are constructed with loads hatving virtually no inductance. Soveral more-or-less conventional tubes are now available which will operate with fair efliciency up to about 500 Mr., but best performance is obtained with the "lighthouse," "pencil tube," or coaxial-elecetrode trpes built especially for u.h.f. applications, and requiring specially-designed tank circuits.

Frequency modulation may be used throughout the v.h.f. and higher bands, wide-band emission being permitted above 52.5 Mo. and narrow-hand FII anywhere. Where suitable rereivers are available to make best use of such emissions, either wide-band or narrow-band FM can provide effective v.h.f. communication. Their use is particularly advantageous in congested areas where the freedom from interference to broadeast and television reception they enjoy may permit operation when an amplitude-modulated transmitter of any power would be a constant source of trouble.

Transmitter Technique

The low-power stages of a transmitter for the v.h.f. bands need not be greatly different in design from those used for lower bands, and many of the ideas in (hapter Six may be used to good advantage in the initial stages of the v.h.f. rig. The constructor has the choice of starting at some fower frequence, usually around 6,8 or 12 Mc ., multiplying to the operating frefuency in one or more additional stages, or he can use a high
initial frequency and thus reduce the number of multiplier stages recpuired or eliminate them entirely. The first approath has the virtue of cmploying low-cost crestals, and it usually results in beteer stability when methods other than erystal control are used, but high-frequency erystals may effect a considerable eronomy in power consumption, an important factor in portable or emor-gency-powered gear.

A high starting frequency may be helpful in preventing TVI that can result from amplification of unwanted harmonics from a crystal oscillator on 6.8 or 12 Mc . Several troublesome harmonics are eliminated if a crystal frequency of 24 Mc . or higher is used.

CRYSTAL OSCILLATORS

Crystal oscillator stages for v.h.f. transmitters may make use of any of the circuits shown in Chapter 6, when crystals up to 12 Mc . are employed, but certain variations are helpful for higher frequencies. Crystals for 12 Mc . or higher are usually of the overtone variety. Their frequency of oscillation is an approximate multiple of some lower fregueney, for which the erystal is actually ground. Thus $24-$ Mc. crystals commonly used in 144-Mc. work are 8-Mc. cuts, specially treated for overtone characteristies. Lintil recent years such crystals were tricky in operation and subject to excessive drift if operated at high erystal current. The overtone erystals now being suppliod are approximately as stable as those designed for fundamental operation, and they are easy to handle in properly designed circuits.

Best results are usually obtained with overtone rystals if some regeneration is added. This makes for cosy starting moder load and groater output than would he obtainable in a simple triode or tetrole cirevit. 'Two regenerative circuits, with constants for 24 or 2)-Mc. erystals, are shown in Fig. 17-1. Triodes are shown, but the same arrangement may be used wit h totrode or pentode tubers. The important point in cither case is the amount of regeneration, controlled by the position and number of turns in the ferd-back winding, L_{2}, in Fig. 17-1-A or the position of the tap on L_{1} in 13. There should be only euough feed-bated to assure casy crystal starting and satisfactory operation under load: too much will result in ramdom uscillation not under the control of the ervistal.

(B)

Fig. $1 \pi-1$ - Remenerative crystal ose illator eirenits for v.h.f. use. Feed-hark is controlled ly the position of L_{2} with respect to L_{1} in A, or by the pesition of the tap on L_{1} in B. Constants below are for 24 to 27 Mc .
($12-50-\mu \mu$ fil variable.
C_{2} - $0.000 . \mathrm{m}-\mathrm{ff}$, ceramic or mira.
(:3- $25 \cdot \mu \mu \mathrm{fl}$, cerramic or mica.
R_{1} - Deconpling resistor, 1000 to 5000 ohms, carbon. 11_{2} - Grid trak, to suit tube nised.

L_{2} (A) -3 turns similar to A , mounted on same axis, alout $\frac{1}{3}$ inch apart.
 at about $4 \frac{1}{2}$ turns (see text).

Fig. 17-2 - Whe functions of crystal oscillator, cathode follower and frequency multiplier are combined in this dual-triode circuit. The circuit $L_{3} C_{1}$ tuncs to the de. sired overtome frequeney, and $I_{2} \mathrm{C}_{2}$ its second or third harmonic. L_{3} should resonate with tube and erystal capasitaner just helow the frequency of oscillation. The value of the r.f. chokes in the rathode eircuit is not critical. Values for oltaining $1+1-\mathrm{Mc}$. output with a 2t-Mc, restal are given below.
$\mathrm{C}_{1}-20-\mu \mu \mathrm{fd}$, variable.
$\mathrm{C}_{2}-10-\mu \mathrm{ffl}$. variable.
$\mathrm{L}_{1}-5$ turns No. $18,1 / 2$-inch diam., $1 / 2$ inch long.
$12-2$ turns No. $18,1 / 2$ inch diam., $1 / 2$ inch long.
1.3-4 turns No. 18, 3 -inch diam., $1 / 4$ ineh long.

Overtone operation is possible with standare fundamental-type crystals, using the cireuits of Pig. 17-1. Practically all will oseilate on their third overtones, and fifth and higher odd overtomes may be possible. Adjustment of regeneration is more eritical, however, if the arrstats are not ground for owertone characteristics. It should also be noted that the frequency may not be an exatet multiple of that marked on the crystal holder, so care should be used in working with crystals that are near a band edge.

Crystals ground for overtone sorvice can be made to oscillate on other overtomes than the one marked on the hoder. A $24-$.Ife. crestal, artuatly an S-Me. eut, may be made to oseillate on 40, 56 , 72 Me, or even higher odd multiples of its 8 - Me. fundamental frequence. The circuits of Fig. 17-1 may be used, but for hightorder overton's the dual triode circuit of Fig. 17-2 is more reliable Values for achioving 14-Mc. output with a $24-$ Ahe revistal (9th overtone insteard of 3rd) are given.

The crystal is resomated, by means of L_{3} conmoted arooss it, at atrequemer just below the desired overtone, or about 70 Me . in this example. (ircuit $L_{1} C_{1}$ tunes to the desired overtome, 72 Me.; Led 2 to a harmonie, in this case 144 Me. Regeneration is controlled by varying the coupling loctwern L_{1} and L_{3}, so that only crestal oseillation is developed. Polarity of these windings is important: bringing them closer should reduce the temdeney to self oscillation.
('rystals are now available for frequeneies up to around 100 Mc . They are somewhat more expensive than those for 30 Me. and lower, however, so they have not been used widely in amateur work, except where a saving in power is important. Use of $50-\mathrm{Me}$. erystals is made occasionally as a means of preventing radiation of
the harmonies of lower frequency crystals that might ranse interference to television reception.

FREQUENCY MULTIPLIERS

Frequency multiplying stages in a v.h.f. transmitter follow standard practice, the primeipal precaution being arrangement of components for short tead longth and minimum stray capacitance. This is particularly important al 14 Me . and higher. To reduce the possibility of radiation of oscillator harmonies on frequencies that might interfere with television or other services, the lowest satisfactory power level should be used. Low powered stages are casier to shicld or filter, in case such steps become neecessary.

Common practice in wh.f. exeiter design is to make the tuned circuits capathle of operation over the whole range from 48 to is Mc., so that the output stage can drive either a $50-\mathrm{Mr}$. amplifier or a tripher from 48 to $14 t \mathrm{Mc}$. Tripling is often done with push-pull stages, particularly when the output frequency is to be 144 Me . or higher. The output caparitances of the tubes in such a cireuit are in series, permitting a botter $/ / / C$ ratio than is possible with single-ended circuits.

AMPLIFIERS

Most transmitting tubes now used by amateurs will work on 50 Me ., but for 144 Me, and higher the tube types are limited to those having low input and output capacitances and eompact physieal structure. leads must be as short as possible, and soldered eomnections should be avoided in high-powered circuits, where heating may be great enough to reach the melting point of the solder used.
Plug-in coits and their associated sockets or jack bars are generally unsatisfactory for use at 144 Mc. and higher because of the stray inductance and capacitance they introduce. One way around this trouble is the dual tank cireuit shown in Fig. 17-3. Here the tank circuit for $1+4 \mathrm{Mc}$. is a conventional tuned line, with its shorting bar made removable by plugs or clips. When the stage is to be used on another band the shorting bar is removed and a coil is plugged into the jack bar, the line then serving as a pair of plate leads.

Fig. 17-3-An effieient twobland tank eircuit for 50 and 144 Mc. For operation on 144 Mc, the shorting bar is plugged into the end of the line. For 50 Mc. a suitable tank coil is plugged into the jack bar. The line then serves merely as a pair of plate leads. $R F C_{1}$ is a $1 \cdot 4-\mathrm{Mc}$. choke; $R F C_{2}$ a 50 . Me. choke. The split-stator variable, C_{1}, tunes either circuit.

Fig. 17.4- Half-wave line tank circuit, for use at 220 or 420 Mc ., where tube and sircuit capacitances prohihit the use of an ordinary tuned circuit. Plate voltage is fed into the line at the point of lowest r.f. voltage (see text).

Such an arrangement will operate as efliciontly on 14t Me. as if it were designed for that band alone, yot it can be made to work properly on any lower band.

At 220 Me, and higher it may be neecssary to (mploy half-wave lines as tuned cireuits, as shown in Fig. 17-4. Here the tuning catparitathere, instead of being connected directly in parahel with the

Fig. 17.5 - Crounded-grid r.f. amplificr. Driving voltage is fed into the eathode circuit, with the control grids maintained at ground potential.
output eapacitance of the tube, is at the far end of a half-wave line. Plate voltage is fed into the line near the middle, at the point where the r.f. voltage is lowest. The proper point can be located by first operating the stage with the voltage fed in near the middle of the line, and then touching a permeil point along the line to locate the spot where the least offect on the grid or plate current is noted. This check should be made with the pencil in an insulating mount, if dangerous values of phate voltage are used.

Neutralization of triode amplifiers for 50 and 144 Mc. can follow standard practice, but the stray inductance and capacitance introduced by the neutralizing circuits may be excessive for 220 Mc . and higher. In such instances groundedgrid amplifiers may be used as shown in Fig. $17-\overline{5}$. Driving power is applied to the cathode circuit, with the grid acting as a shied. Groundedgrid amplifiers are stable, but they require high driving power. Some of the drive appears in the output, so both the driver and amplifier must be modulated when amplitude modulation is used. For this reason the grounded-grid amplifier is used mainly for F.I applications.

Tetrode and pentode amplifiers may operate without neutralization, but it is advisable to

 tetrode posh-pmll amplifier. C: and C:2 may be the two halves of a sulitestator variable condenser, if the circoit is symmetrieal electrically. The r.f. choke and condenser values vary with frequency, making this form of neutralization essentially a one-land device. C3 should be about $0.001 \mu \mathrm{fd}$. for v.h.f. applications.
plan for it in the original layout. With such tubes as the 829 or 832 emough neutralizing capacitance can be obtained by running short lengths of stiff wire up through the chassis alongside the tube plates, crossing them over to the apposite grid terminals below the chassis. Neutralization is adjusted by trimming or bending the wires.

Instability may show up in tetrode amplifiers as the result of ineffective sereen by-passing, in which case conventional cross-over neutralization will accomplish little or nothing. The solution lies in series-resonating the sereen cireuits to ground, as shown in Fig. 17-6. A small split-stator variable can be used for (c1 and Co if the layout is comphetely symmetriab, The ref. choke and condenser valums vary with frequency, so sereon neutralization is essontially a ono-band device.

- FREQUENCY MODULATION

Though F.M hats not enjoyed great popularity in v.h.f. operation, probably beramse of lack of suitable recedivers in most v.h.f. stations, its possibilities should not be overlooked, particularly for the higher bands. At 420 Me ., for instance, the efficiency of most amplifiers is so low that it is often difficult to develops sufficiont grid drive for proper AM servier. With FM any amount of grid drive may be used without affecting the audio quality of the signal, and the modulation process adds nothing to the plate dissipation. Thus considerably higher pewer cam be run with FM than with dil before damage to the tubes develops or the signal is of poor quality.

Frequener modulation also simplifies transmitter design. The principal obstacle to greater use of FMI in v.h.f. work is the wide variation in selectivity of v.h.f. receivers, making it difficult for the operator to set up his deviation so that it will be satisfactory for all listeners.

TVI PREVENTION AND CURE

Interference to television reception is not ordinarily so serious a problem with v.h.f. gear as with equipment for lower amateur bands, where more harmonics of the operating frequency fall within the television channels. The prineipal
causes of TVI from v.h.f. transmitters are as follows:

1) Adjacent-channel interference in Chamel 2 from 50 Mc .
2) Fourth hamonic of 50 Mc . in Chanmels 11 , 12 or 13 , depending on the aperating frequence:
3) Radiation of unused hamonics of the oscillator or multiplier stages. Fixamples are 9th harmonie of 6 Me, and 7 th harmonic of 8 Mc. in Channel 2; 10th harmonic of 8 Mc. in Chamel 6; 7 th harmonic of $25-\mathrm{Mc}$. stages in (Chanel 7; th harmonic of 48-Mr. stages in (Channel 9 or 10 ; and many other combinations. This maty include i.f. pick-up, as in the cases of $24-\mathrm{Mc}$. interference in rereivers having 21-Mc. i.f. sustems, and 48-Mc. trouble in 45-Mc. i.f.'s.
4) Fundamental blocking effects, including modulation bars, usually found only in the bower chamels, from 50 - Me. equipment.
5) Image interference in Channel 2 from 144 Mc., in receivers having a tö-Mc. i.f.
6) Sound interference (picture chear in some (:asss) resulting from r.f. pick-up by the audio circuits of the TV receiver.
There are many other possibilitios, and u.h.f. TV in general use will add to the list, hut nearly all can be corrected completely, and the rest can be substantially redured.

Items 1,4 and 5 are roceiver faults, and nothing can be done at the tramsmitter to redure them. except to lower the power or inerease separation between the tramsmitting and TV antematsystems. Item d is also a receiver fatult, but it can be alleviated at the trammitter by using FM or c. W. instead of $A . M{ }^{\text {p }}$ phone.

Treatment of the various harmonie troubles. Items 2 and 3 , follows the standard methods detailed elsewhere in this / Iambook. It is suggested that the prospertive buikder of new v.h.f. equipment familiarize himself with TVI prevention terehniques, and incorporate them in new construction projects.
l'se as high a starting frequency as posible, to reduce the number of harmonics that might cause trouble, select arsal frequencies that do not have harmonics in 'T'V chamels in use locally. Fxample: The 10 th harmonie of 8-Me. erystals used for operation in the low part of the 50 - Ma . band falls in (hamed (i, but (i-Mc. arystals for the same frequency range have no harmonic in that chammel.

If TVI is a serious problem, use the lowest transmitter power that will do the job at hand. Much interesting work can be done on the v.h.f. bands with but a few watts output, particularly if a good antenna system is used.

Krep the power in the multiplier and driver stages at the lowest prantionl level, and use link coupling in preference to caparitive coupling, particularly in the later stages.

Plan for complete shiolding and filtering of the r.f. sertions of the transmitter, should these steps become necessary.

L'se coaxial line to feed the antema system, and locate the radiating portion as far as possible from TV receivers and antenna systems.

A Complete Transmitter for 144 Through 21 Mc.

The rack-mounted equipment shown in Jig. $1 \overline{7}-\overline{7}$ is an example of the way in which the lowpower stages of a rig can be designed to provide for several hands. Wach piece of equipment can be used alone, or they eombine rcadily to eover $21,28,50$ and 144 Me., at a power level approaching the legal maximum.

It the bottom is a VFO unit tailored to the needs of the v.h.f. man, but useful on lower frequencies as well. Next is an exciter eapable of up to 40 watts output on 21,28 or 48 to 51 Me. It is a fine low-powered rig for use on $1 \overline{5}, 10$ or 6 meters as well. Above the exciter are two units designed for high-power operation on 144 and 50 Me.

THE EXCITER

The transmitterexciter shown in Figs. 17-8 through 17-10 was designed for the v.h.f. man who likes to work some of the lower bands as well. It delivers up to 40 watts output on 21, 28 or 50 Me., and eovers the range down to 48 Mc. so that it may be used as a source of exritation for additional stages that multiply to 144 Mc . Though it was intended for use with the highpowered :mplifiers described later, it may he used effeetively as a complete transmitter in itself.

Shiclding for TVI reduction wats arhievord hy bulding the unit inside a standard aluminum chassis. Parch power lead is br-passed at the power plug, and all wiring was done with shielded wire. Output is taken off through a coaxial fitting, so that a low-pass filter can lee inserted in the line for hammaic attemuation if needed.

Circuit Details

The exesitor circuit follows standard pratice throughout. The oscillator is a 5763 Tri-tet with provision for 10) crystals and Vro input. Crys-

Fig. 17-7-A complete trans. mitter for 144 through 21 Mc . The four units are, from the lottom up, a \l'O with reactance modulator: an exeltur. transmitter with ap to 10 watts output: a rripler-Itriveramplifier for 1.44 Mc.: and a shielded amplifier for 50,28 and II Mr.
tals may be in the $3.5-, 6-, 7-, 8-14$ - or $24-\mathrm{Me}$. ranges. (On 21 Mc, the oscillator output is on the signal frequency, and best results are obtained with 7 -AIc. crystals, tripling in the plate circuit. For 28 Mc , the ascillator doubles to 14
 Me., or works straight through with 14 - Me. overtone crustals. For operation on $\boldsymbol{j 0}$ or $14+$ Ic., the oscillator output is on 24 to $2 \overline{7}$ Mc., (quadrupling, tripling or working straight through, for 6-, 8or 21-Mc. crystals, respectively. The $100-\mu \mu \mathrm{fd}$. tuning capacitor at C_{6} tunes the oscillator plate circuit from $1+$ to $2 \overline{\mathrm{Me}}$, so no bandswitehing is needed in this stage.
Another 57(0;3 follows the oscillator, working straight through on 21 Me., or doubling to 28 or 48 to 54 Mc. Two roils, L_{2} and L_{3}, and a $5\left(1-\mu \mu \mathrm{fd}\right.$. condenser, C_{10}, cover 21 to 30 Mc ., and 48 to 54 Mr , respectively. In rase trouble is encountered in making the $5 \overline{0} 63$ run stably as a 21-Me, amplifier, a third switch position is available for eonnecting a damping resistor, R_{8}, in series with L_{2}.

The output stage uses a 6146, with a tapped coil for 21 and 28 Mc., and a second coil for 48 to 54 Me. Output coupling links in these two

 the left eompartment, the douhler and power conneretor in the center, and the butput stage at the right. Note that the 6110 sochet is mounted inside the output stane compartment.
coils are also switcheol. The tilth works nime over a wide ramge of phate voltares, so this rig maty he used in exciter sorviee with as little as 300 volts on the final, or it maty be used as a complete transmitter at up to 500 volts. A $21: 26$ may be used in the final stage where ite power output is adequate for the joh at hamd.

The exciter is built largely inside a $3 \times 5 \times 17-$ inch aduminum chassis and is fitted with a stamdard 3, , e-inch rack pancl. Only the errstals, the first two tules :und the filament transformer are outside, and these are mounted on the reat wall of the chassis to keep down the vertical dimension.

Arrangement of parts is not particularly aritical, the principal consideration in the first two stage: being to mount the tubes in such prition that the coupling lead (f_{25}^{2} to the gride of the sacond 5763) is short. The grid circuit of the second stage should be isolated from the rest of the components to reduce the tendency toward self-useillation when the stage is operated straight
through on 21 Me. The feat to the grid is mate
 a slot in the top of the partition, and a smatl piere of flashing eroper is soldered arross the 5 563: soket between Pins 1 and 3 to isolate the input and out cirenits further. Laxels from the tube phate to the bandwitch, s.e, athl thenere to the thang condenser, ('in, atre made with $\frac{1 / 4-\text { indh- }}{}$ wide coppor strap, to hohd down lead inductance.

Note the method of mounting the serket for the 6 (6i. Contrary to common pratiere, this sucket is mumted on the fube side of the partition. Gathode, heater and sereen pins (Nos, 1, 3, 1, is and 7) are by-paseol individually to sepabate points on the partition with the shortest pessible. leads. Ileator and rathode leads are brought through the partition with shielded wire, and the control give and sereen leads are rum through on shor lengthe of stiff wire insulated with spaghetti sleeving. Mountiag the 6116 sorket inside the final stage compartment provides at shout phate-

Fig. $17-9$ - Rear view of the exciter, On the rear wall at the right are lo erystal sockets of varions types. 'Jhen come the two $5: 63 \mathrm{~s}$, the power plug, the filament transformer, and the output coaxial fitting. On the inside front wall are, in the same order, the crystal owithh, ocillator tuning, doubler bandiwiteh, douller tuming. and final bandswiteh.

(: (in - $.50-\mu \mu \mathrm{fd}$. midet variahle, shaft-mominting type. C. 12 - $\overline{5}-\mu \mu \mathrm{fd}$. mica or ceramic.
 monoting type.
(:2й - $\mathbf{0} 0$ - $\mu \mu \mathrm{fl}$. ceramie or mira.
$\mathrm{K}_{1}, \mathrm{~K}_{4}-0.1 \mathrm{megohm}, 1 / 2$ watt.
$11_{2}-2,0$ olms. $1 / 2$ watt.
$1 R_{a}, R_{n}-22,000$ olmms, 1 watt.
R3. R_{10} - 1000 ohms, 1 to watt.
$\mathrm{H}_{3}-100$ ohms. $1 / 2$ watt.
$\mathrm{li}_{8}-7.5$ ohms 1 watt (1 wo 15 -ohm $1 / 2$-watt resistors in parallel).
13,3 - 33,000 ohens, 1 watt.
$1 R_{11}-20,000$ ohms, 10 watts.
$R_{12}-68$ ohmes, 1_{2} watt.
$1.1-81 / 2$ turns Vo. 20 tinned. $3 / 4$-inch diam., $1 / 2$ ineh long (13 \& II Miniductor No . 3011).
I. 2 - Fturns like l.1. is inch long.
J.ab- 1 turns \o. 20 limed, $5 / 8$-ineh diam., $1 / 2$ inch long (13 N II No. 3106).
l.4-2 lurts No. 18 push-lath, $5 / 8$-inch diam., coupled to cold end of L_{3}.
In - 4 turn: No. 20) timned, 3 -inch diam., $1 / 2$ inch long
to-cathode return. The stage may possibly be unstable if the sorket is mounted on the opposite side of the partition from the tube, as is usual!? done.

The three tuning rondensors should be the shaft-mounting type, not the sort that mount on small pillars. Cnless the rotor shaft is grounded solidly to the panel it will act as an "antenna" to radiate harmonic energy that is almost certain to cause TVI. The meter tip jarks, J_{5} and J_{6}, maty also turn out to be hamonic radiators, unless by-passed right at the point where they come through the rear wall.

The output coupling links, $L_{A f}$ and L_{a}, are the smatlest diameter 13 © 16 , Miniductor, which makes a close fit inside the larger size used for L_{5} and L_{i}. They are hedd in place with household cement. A coupling link is also provided for L_{3}, so that a small amount of power can be taken off at 48 Mc, if desired. This is made of selfsupporting stiff insulated wire, eoupled closely to the cold end of L as.

Note that the front-panel appearane is completely symmetrical, the controls being spaced at regular intervals horizontally, and in the center of the panel vertically. 'The chassis is
(3 \& W No. 3010).
It - $11 / 2$ turns No. 20 tinned, $1 / 2$-ineh diam., $1 / 2$ inch long, mounted inside cold end of Ls. (13 X W Niniductor Vo. 3003.)
1.7-11 turns like L_{1}, tapped at 7 turns, $3 / 4$ inch long.
1.x - 9 turns 13 \& W No. $3004, \frac{1}{2}$-inch diam., 8/6 inch long, mounted inside cold end of 1.7 .
J_{1}, J_{2}, J_{3} - Conaxial fitting. J_{1} is for CH (input.
J_{4} - Clowed-circuit jach.
Js. If - Tip jack.
$J_{7}-8$-pin male chassis fitting.
RFC: 100 -mh. r.f. choke (Vational R-J00-s).
RJ' E_{2} - J'arasitic choke, 6 turns No. 20 enamel, $1 / 4$-inch diam., $3 / 8$ inch long.
$S_{1 A}, S_{1 B}-11$-pmation 2 -spertion ceramic wafer switeh. (Made from centralah P-122 index assembly and \because centralah type y switch seetions. Complete assembly (: $1 \mathrm{~L}, 2513$.)
S_{2} - Similar to above, but single section (Cl1, 2501 on 2503, wafer type Nor $^{\prime}$ ').
$S_{3 A}, S_{3 B}-$ Same thit 2 -pole 3 -position single section ((:R1. 2505, wafer type lR R).
h_{1} - 6.3-v. 3-amp. filament transformer.
bottom up, with the eover at the top. This allows ready acres to the inside when the unit is in its normal operating position, but it may he used the other side up, if the buikder so desires. Ventilation of the 6146 is afforded by twenty $1 / 4$-inch holes drilled in the top and bottom surfaces over and under the tube.

Testing and Use

For initial tests a power supply delivering 200 to 250 volts is adequate. Diach stage has its platesereen power lead brought out to the plug sepatrately, so that individual metering is possible. Applying voltage threugh l'in 3, we note that the stage draws low current until ascillation is obtained, because of the cathode bias. Plug a lowrange meter into J_{5} to read the grid current of the following stage, and tune C_{6} for maximum indication, which will be about 0.5 to 1 mat at normal operating voltage. The oscillator platescreen current will be around 20 ma .

Should the oscillator refuse to start, try other arvials, and then experiment with the values of (1 and C_{3}. The grid-to-athode caparitor, C_{1}, maty not be necessary, particularly if crustals no lower than 6 Me, are used. Use the lowest value
that will permit oscillation with all crastals. The value of ('3 may be criticoll when ovartone-type crystals are used. Improper values at aither of these positions may result in istomittent oseillat tion, or nome at all.

Check the output freguency with as calibrated wavemeter, or her listroning with a receover whose calibration (an le relied upon, and proceed to the following stage. Plug the grid meter into J_{b}, apply power through Pin t, and chock the output frequency whon ('un is tured for maximum grid curvent, It leat 2 mas. should be availathe. Cherk for sedf-owillation bey remoring exeitation, Should self-oscillation oceur on the 21-Ma. range, switch in the damping resistor, R_{8}. This should he the lowest value permissible, the the output from the stage drops rapidly as the series resistance is increased above a few ohms.

When around 2 mat, of grid current is obtained the output stage may be checked. This maty he done initially with 250 to 300 volts applied through Pias 5 and 6 , using a $2 \overline{5}$-watt lamp, plugged into J_{3} for a dummy lowd. (atting the excitation (don it ouly briofly- biftos dean a tremendous amount of phate current!) should lesult in zoro grid current. If the stage is operating correcely the output should be around 15 watts with 3 on volts on the plate.

Increasing to 400 to tiol voles it should be possible to get at least 35 watts output on all frequencios. In an enclosed layout of such small dimensions it is not advisable to go much berond this level, as the heat dissibation mas be high enough to damage the smatl coils used. Where the expiter is used to drive a high-powered tetrone final atiage, 300 volts on the 6116 and 2010 to 2 an 0 volts on the 5 g(i)3s is plenty. The rig may be used as a complete tramsmiter, mondulating the output stage on 28 or io MLC., at 30 to $\overline{0} 0$ watts input. The operating conditions in all stages com In adjusted to suit the hailder's men requirements by varying the screen resistor values. The exeiter is kesed in the 6146 cathode lead for caw. apratition.

A 144-MC. DRIVER-AMPLIFIER

Shown just above the exciter in the composite photograph, Fig. 17-7, and separately in ligs. 15-11 through $17-13$ is a three-stage tripher-driver-implifier for high-power operation on $1 / 1$ Nac. It may be used with ang exator thet is capable of delivering $\overline{5}$ watts or more on to Mc. If a 2 -metor exefor is avalable the tripler may be omitted. The driving power reguired in that catse would be about 10 watts on 1.44 Me.

Ss maty be seen from the shematic diagram, Fig. 1T-12, a push-pall tripher stage with a pair of 506) drives a tetrode amplifier using an.X 99003/8894. , which, in turn, drives a pair of $f-125.1 s$ in the final stage. Input to the final can be up to slightly over 600 watts on AMI 'phone, or $\overline{50}$ watts on cow. By suitable adjustment of the grid drive and the finat-ampliferer sereen and plate voltages, the input ean be run as low as 150 watts with good efficiency. Some mothod of varying the input is recommended, as much of the opreation on 1/t Des ean he carried on satisfactorily with moderate power.

Electrical and Mechanical Details

The tripler uses two tubes in push-pull in proference to a single tube, as this athows the tubes to be operated at low ingut and still deliver adequate drive to the sucereding st:uge without eritical adjustments. The tripler grid fircuit is self-resemant. The tripler and driver plate tuning adjustments are gabged. Strals of flashing copper ${ }^{3}$, inch wide are used for the leads from the 5 get plates to the tuming eondenser, (${ }_{1}$, to hold down lesud inductane

From the bottom view, Fige 15-1:3, it will be seren that sherts of flashing eopper are fastemed to the bettom of the chassis, covering the area of the driver and final stages, to improve grounding circuit condurtivity. Note that the rotor of the driver tuming condenser, C_{2}, is grounded through a 100 -ohm resistor, R_{5}. This was done to cure a 250 -Mc, parasitic oscilhation. Centila-

fin. 1:-11 Rearviawnf the +1254 amplifier for Il| V1a.. stowing details. of the parallel-line plate vircuit. Ther 5.603 tripler tubes are al the left. Note watilation holes. helow whith is mounted the driver tube. out of night ander the chatsis.

Fig. 17-12 - Wiring diagram and parts list for the high-powered 1 H. Me. transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{2}-10-\mu \mu \mathrm{fl}$ - -per-section butterfly variable (Cardwell I:R-6-131/S. Johnson 10Li315 alternate: see text).
(:3, $\mathrm{C}_{4}-10-\mu \mu \mathrm{fl}$. mica.
Cs, C_{6} - 0.001 - $\mu \mathrm{fd}$. divk ceramie.
$\mathrm{Ci}_{5}-0.005-\mu \mathrm{fd}$. disk ceramic.
C:s - 50 - $\mu \mu$ fll-per-sertion split-stator varialle (made from Nillen 19140: see text).
C: - Plate-line tuming adjustment (made from nentralizing comdencer: see text).
Cio - $0.001-\mu \mathrm{Cd}$, 5000 .wolt mica.
Cil - $0.25 . \mu$ ful. tulutar.
$R_{1}-150,000$ olims, 1 watt.
$\mathrm{R}_{2}-18,000$ ohmes, 1 watt.
R_{3} - 1000 ohms, $1 / 2$ watt.
$\mathrm{K}_{4}-10,000$ ohms, 1 watt.
$\mathrm{R}_{5}-10 \%$ ohms, 1 watt.
$\mathrm{R}_{8}-10,000$ ohms, 10 watts.
R_{i} - $-\mathbf{5 0 0 0}$ ohms, 10 watts.
$\mathrm{R}_{\mathrm{s}}-2 \overline{2}, 0000$ ohms. I se only if necded; see text.

1. - 1 turn No. 14 enam., $3 / 4$-ineh diam.
$1.2-6$ turns parh side of center, No. $20,5 / 8$-inch diam., spaced wire diam., $1 / 4$-inch spare at center for L_{1} (B \& W Miniductor No. 3000°).
L.3-2 turns No. 14 enam., spared $1 / 8$ inch, $1 / 2$-inch diam.
L_{4} - 2 turns No. 14 enam., spaced $3 / 6$ inth, $13 / 8$-incis diam.
tion for the driver tube is provided by drilling holes through the eopper plate and chassis over the tube. An 820 IS may be used in place of the $99003 / 589+4$, with some saterifier in driver stage efficiencr.

If the 990:3 is used, the tube plate leads should be very pliable material, as the tube structure is fragile. The 5894. , an improved version of the !90:3, is considerably more rugged mochanically: If standard heat-dissipating connertors are used they should be filed down by about one-third of their diameter because of the close pin spacing. Cardwell butterfly capacitors were used for C_{1} and C_{2} because of their inherent provision for ganging. Other trpes such as the Johnson 10LB15 can be substituted by soldering a ganging extension to the rear end of the rotor shioft of C_{2}.

The driver plate and final grid circuits are widely separated so that coupling between them will be confined to the link eireuit. This helps to keep unwanted harmonies from being transferred to the final grids. This potential source of TVI can be further reduced by installing link-coupled tuned cireuits in the tripler plate and driver grid positions, if the station loration is one where

Lis-2 turns No. 18 push-back, close-spaced, inserted between turns of t.
L_{6} - Inop of No. 14 enam., 4 inches long, inside L_{7}.
1.7 - Copper strap, s_{16} inch wide and 8 inches overall from grid to grid; see text and bottom-view photsgraph.
Ls - Plate line, $3 / 8$-inch o.d. copper tubing 12 inclaes long, spaced $13 / 8$ inches center-to-center. Bend on 1 -imeh radius to make inverted "L" $41 / 2$ inches high.
L_{9} - Output conpling loop, made from $131 / 2$-inch piece of No. 1.4 enam. Sides $7 / 8$ inch spaced. Vertical portion $21 / 2$ inches high.
$\mathrm{L}_{10}-5 \cdot \mathrm{hy}$. (min.) eloke, 100 ma. or more rating.
$\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}-$ (ilosed-cirenit jack.
J_{4} - Coaxial fitting.
J_{5} - Crystal sorket for output terminal.
$\mathrm{MA}_{1}, \mathrm{MA}_{2}, \mathrm{MA}_{3}, \mathrm{MA}_{4}$ - External meters, not shown in photographs, $200,50,100$ and 500 ma., respectively.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}, \mathrm{RFF}_{3}, \mathrm{RFC}_{4}, \mathrm{RFC}-1.8$ - Hhy , solenuid v.h.f. elooke (Ohmite Z-14i).

RFC C_{5}, RPC. $-7 . \mu$ hy. solenoid v.h.f. choke (Ohmite Z.50).
$\mathrm{s}_{1}, \mathrm{~S}_{2}$ - S.p.s.t. toggle switeh.
T1-6.3-vit 4 -amp, filament transformer.
''s - j -wolt 13 -amp. filament transformer (Chicago P(0.513).

102-Mc. energy might rause TVI in Channels ! or 10 .

The relatively high input and output capaceitances of the $4-125$ is rule out conventional coil-and-condenser circuits at 144 Me , so no grid tuning capacitor is used in the final stage, and only a very small variable capacitance is used in the plate circuit. The entire grid circuit is made of $5 / 6$-inch-wide eopper strup. Two pieces each $1 \frac{1}{2}$ inches long connect the grid terminals 10 fred-through bushings that are provided for mounting neutralizing tabs, if needed. The center portion of the grid circuit is an egg-shaped loop mounted on the feed-throughs, as seen in the bottom view. The bushings are mounted near the inner corners of the $4-125, \mathrm{~d}$ sockets. The holes for them are drilled larger than needed to pass the ceramie portions, to keep the grid-to-ground capacitance at a minimum.
The principal neutralizing adjustmont is the split-stator variable condenser, C_{s}, connected from the sereens to ground. A single-sertion variable (Millen 19140 or Hammarlund MC-1 40) having supports at each end of the rotor shaft wits modified for this purpose as these types provide a symmetrical path from rotor 10 ground

Fip. 17.13-1aoking under the chassis of the hinh-power 2-meter rig. It the lower right are the components of the tripler stage, with the IX. conous Iriver tube jual above the aluminum partition, 'Iha 1.12.5. sochets, grid cirsuit, and screen-neutralization rapacitor are at the feft. 'Thu' IR-tube hias system is monnted "II ther ratar rhassis wall.
for each side of the circuit. A strip of brass or aluminum is first serewed to the metal mounting brackets at carh end, tring them together colertrically and mechanically, Then the stator bars are sawed in half, leaving an equat number of plates on earch side. These rondensars have ? plates each on stator and rotor originally. The middle stator plate is cut out and the front rotor plate removed, leaving a split-stator condenser with 4 plates on each stator and 8 on the rotor. The two sereen terminals on each socket are strapped together, and the connection to the stators of C'8 is made with copper strap. Symmetry and low inductanceare ext remely important in this circuit.

The sereen circuit also includes two solenoidtype r.f. chokes comected directly to the sereen terminals. These are under ('8 and do not show in the bottom view. Their common connection is by-passed, and a small filter choke is comeeted in the sereen voltage lead for modulation purposes. The sereen variable raparitor is driven through two universal joint couplings to bring the drive shaft out to a point that provides a pleasing front pand appearance.

Fixed bias for the final stage is provided without use of batterios or an external supply by inserting a voltage regulator tube in series with the grid leak and by-passing the tube with a low-leakage eapacitor. When the gas tube fires with application of expitation, ("u charges. Removing excitation stops the current flow through the 1 R tube and leaves the charge in C_{11} applied to the +-125 A grids. This cuts off the plate and sereen current until the charge in C_{11} leaks off. The cut-off time varies with the leakage characteristies of ("1 and assoriated components, and some experimentation may be neecessary, An external bias source of 90 volts or more mas, of course, be substituted.

The construction of the final plate circuit is obvious from the top-view photograph. The tuning device, C_{9}, is made from parts of a standard
neutralizing eapacitor (Millen lowol1) mounted on 4 -inch ceramic stand-offs (Nitional (iS- 1) in the center of the chassis. The lead serew on the adjustable plate is extended by means of a short length of $1 / 4$-inch diameter brass rod soldered to its end, and this is commerted through an insulating coupling and a polysterene rod to a knob on the front panel. This tuning arrangemont provides no logging serale or reset indicator of any solt, but it results in a very worth-while improvement in tank-cireuit eflidioney over conventional tuning methods.
The copper tubing tank rircuit is mounted in place by moans of straps of ahuminum wrapped around the lines and fastened to the top of the stand-offs. Connertion to the tube plates is made with $3 / 4$-inch-wide eopper straps that are bolted to the plate lines. No solder is used anywhere in this plate lime assembly; the heat dissipated at the tube end of the line would be suffiedent to melt soldered connections. The heat-dissipating connertors for the $4-125$. plates were cut down to four fins high to redure plate lead length. Just bevond the stand-off insulators and Co the phate lines are bent to a vertical position around a ratius of about oue inch, the bottom of the line ending about a half ineh above the chassis. Here an adjustable strap) of flashing copper is wrapped around the lines, and an r.f. choke is comected through a lug to a feed-through bushing carrying the high-voltage d.e. The by-pass, (${ }_{10}$, is under the chassis.

Details of the anterna coupling loop are visible in the top view. The pick-up loop is made adjustable by mounting it through a polystyrene rod that can be rotated from the front pand. This rod passes through a shaft bearing and a tension arljusting device (National SlB and Millen 10061) mounted on a small aluminum bracket. Sote that a short length of rod is fastened at the top of the loop, so that no adjustment of the coupling will allow it to come in contact with the line electrically.

Adjustment and Operation

This rig contains its own filament transformer so only plate and screen supplies are external. These should be capable of furnishing 250 volts at $\overline{5} \mathrm{ma}$. for the tripler, 400 volts at 200 mat. for the driver, 300 to 400 volts at 75 mat. for the final screens, and 1000 to 2000 volts at 400 mat. for the amplifier plates. The servens of the final and the driver plates may be run from the same supply; though a more flexible set-up is possible if the voltage applied to the final sercens is adjustable separately:

The tripler should be tuned up first. Plug a lowrange milliammeter in the tripler grid current jack, J_{1}, and apply grid drive through a coaxial cable and J_{4}. Adjust the spacing hetwern the two halves of the grid coil, L_{2}, and the position of L_{1}, for maximum grid current. This should be 1 to 2 ma. Transfer the moter to the driver grid jack, J_{2}, and apply plate voltage through R_{3}, tuning f't for maximum grid current, which should be hetween 3 and 5 ma. The inductance of L_{3} should be adjusted so that the low end of the hand is reached with ('1 set somewhere betwern the mid-point and the maximum end of its range. Total phate-sereen current to the andibs need not be more thatn thout 50 mat.

Next, tune ('2 through resonane and note whether the grid current changes. Should it dip, down at resonance the stage will require neatrabization. This is unlikely with the 99003 or $589+\mathrm{A}$, however, as these tubes are designed to be inherently neutralized at frequencies around $1 \overline{50} 0$ Mc. Next, phug a $2(0)$-mat. metor into J_{3}, or connert one externally in sorics with the phate-serem supply, as shown in Fig. 17-12, and apply plate voltage, preferably with a lamp load eoupled to L_{4}. If the stage is working correctly, it should be possible to light a 10 -watt lamp to full brilliance. Check for self-oscillation ber removing excitation briefly: To protect the driver tube, it might be well to make these initial tests at 2 気 volts or so, increasing to 100 to $5(0)$ volts only when the stage is found to be working correctly:

Next, couple the output from the driver stage to the grid circuit of the final, by means of a coaxial cable and L_{5} and L_{6}. The latter should be the same general shape as L_{7}, and mounted inside or just above it, with about $1 / 8$-inch separation. The resonant frefueney of the grid circuit can be changed slightly by altering the shape of the grid inductance, siquerzing the sides together raises the frequency; making the tank more neaty round lowers it. When the direuit is properly resonated, it should be possible to develop; $2 \overline{5}$ to 30 mat. grid current, measured in series with the VR tube and ground ($1 / A_{2}$ in Fig. 1). The setting of the sereen-to-ground ("apacitor, ('s, will affert the grid rurrent, but it may be set approximately to the proper point by adjusting it for maximum give current with the plate voltage off. The total plate and sereen current should be 175 to 200 mat. When the coupling loops at both ends of the coas have been adjusted so as to give maximum grid curront,
adjust the turn spacing of L_{4} so that its tuning capacitance will be the same as that of C_{1}. The two condensers may then be ganged by means of flexible couplings and an insulating shaft.

Now connert a 100 watt lamp, at the output terminals and apply about $5(\kappa)$ volts to the final plates and 200 or less to the sereens, motering hoth cirruits as shown in the schematie diagram. Adjust C'g for maximum output, watching the grid and plate meters. Move the setting of the soreen adjustment in small steps until maximum output, minimum plate current, and maximum grid current all occur at the same setting of the plate tuning. This is the sereen adjustment at which the amplifier will operate most stably. Noutralization can also be done ber running the amplifier without excritation, adjusting C_{8} until there is no 'videnere of oscillation, but this gives a broader indication than the first method.
Should it be impossible to achieve eomplete stability by the sereen adjustment alone, it may be necersary to ald grid-plate capacitance by mounting stiff wires or tals on the feed-through bushings. In this amplifier, the rapacitance added by the feed-through rods alone was just ahout the right amount, however. This is not the convelitional cross-over neutralization, but rather additional grid-plate capacitance. The amount of catauditance added is adjusted in the same way ats for triode neutralizing circuits of the "roswover trpe.

Once the amplifier is stabilized at low voltages, proceed to final checks at normal plate and screen operating ronditions. A suitable load for high-power tests is somet hing of a problem, as no lamp combination represents a load that simulates an antemat system at this frequences. A fair load can be made, however, by conmerting three or four 100-watt lamps in parallel. Lamps larger than the 100 -watt variety are useless for load purposes, as they tend to develop filament hot spots and burn out belore reaching anything like normal brilliance.

A method of varying the sereen voltage rontinuously is extremely useful at this juncture, as the final tubes can be made to draw any desired plate current by suitable variation of the sereen voltage. Screen dissipation should be watched closely to sce that it does not run much over 20 watts in plate-modulated service or 30 watts on c.w., and it is strongly recommended that a screen-current meter be made a permanent part of the metering system. Efficient operation is possible over ar range of 800 to 2500 volts on the plates.

The tetrode amplifier with soparate screen voltage supply should never be operated without lowd, or with no plate voltage applied. sercen dissipation is certain to be exerssive in either case and tube damage or failure is invited.

Tests with the lamp load should be monitored for freedom from modulation. With some types of chokes for L_{10}, there may be a tendency to oscillation at some andible frequence. Should this develop, it cin be damped by loading the choke slightly with a resistor, as shown by R_{8} in Fig.

15-12. The highest value of resistance that will stop the oscillation should be used, if any is necessary: Substituting another choke is a better method. It should have a minimum of 5 honrys inductance, but a wide variety of small filter chokes matr be satisfartory.
In general the manufarturer's typical operating ronditions for the $4-125$ ds cun be followed with good results, but many variations are possible. In v.h.f. work there is no need to rum high power at all times, so provision should be made to drop the plate and sereen voltages. D:flicient operation at plate voltages ats low as 800 is possible, if the sereen voltage is altered in proportion. Considerable latitude in prid drivo is also possible. The primeipal precaution is to see that none of the tube clements is operated above the maximum saff dissipation given in the manufacturer's literature.

A FINAL AMPLIFIER FOR 50, 28 AND 21 MC .

The top unit in the rack of v.h.f. erguipment, lig. 17-7, shows in dotail in Figs. 17-14 through 17-16, is a high-powered companion to the exciter deseribed earlier. It covers the same three bathe, with a maximum power rating of bot watts input (on A.V 'phone, of 800 on (e.w., and may he used with any exeiter capable of delivering 15 to 25 wats output in the proper fregueney range. It is completely shielded, for TVI reduction, and may he whanged from band to hand without opering the enclosure.

The plate circuit is a pi network, with a va-
riable inductor as the main element. Conventional bandswitching is employed in the grid circuit. D'arasitic suppression and meutralizing mothods are the prineipal departures from familiar practice. The aluminum enclosure calls for forced-air cooling.

Electrical and Mecharical Features

Looking into the top of the amplifier, is in lig. $17-14$, we see the +250 A tetrode tube at the left. Just below it is the meutalizing eaparitor. At the center of the chassis is the input, tuning condenser, ('9, of the pi-network tank cireuit, with the variable inductor at its right. The variable condenser at the far right is the output condenser, ('ro. The small components to the right of the tube comprise the parasitic suppression circuit. The coupling capacitor, $\boldsymbol{r}_{\mathrm{k}}$, ath the ह)-Mc. auxiliary coil, L_{8}, are near the renter of the photograph. (irid-cireuit components are visible in the bottom view, along with the filatment transformer, cooling fan, and modulation choke.

In order to obtain a satisfactory tuning range and minimum stray inductance, a large neutrab-izing-type condenser is used for tuning the input to the pi-network plate circuit. The caparity range is about 5 to $20 \mu \mu \mathrm{~d}$. 'The output tuming ramge neded for (${ }^{10}$ is roughly 50 to $1.00 \mu \mu f f^{\prime}$., so a conventional transmitting variable may be used. With a property matehed load the ref. voltage aroses J_{2} is low, and a phate spacing of 0.(0) 1^{-}inch is adectuate, even with high power.

The variable inductor assembly has considerable stray capacitance, which would make it
 put to the pinmotwork tank circuit. The small air-wound coil, center, is the $50-\mathrm{Mc}$. portion of the tank, L.s.

Fig. 17.15 - Schematic diagram and parts list for the 4-250.1 amplifier.
(.1 - 22() $\mu \mu \mathrm{fl}$, wilver mica.
(.2 - $30-\mu_{\mu} \mathrm{ff}$. miniature varialile, domble-spared (IIammarlind IIF゙-30.X, shaft-mounted).
 carimic.
 TV3-701).
C9-5-20- $\mu \mu \mathrm{fl}$. disk type variable (National NC:- 5 (fo noutralizing eondenser, with monnting bracket revereme.
(10 - $200-\mu \mu \mathrm{ffl}$. variable, 0.04 -inch spacing (National IVK-200).
(in - 3-30- $\mu \mu \mathrm{fl}$. mira trimmer.
(iti-2-8- $\mu \mu \mathrm{fl}$. neutralizing condenser (National N(: $800 \mathrm{~A})$.
$\mathrm{R}_{1}-10,000$ ohms, 5 watts.
R_{2} - See tevt - use only if needed.
R_{3} - Aproximately 100 ohms, 6 watts (three 330 -ohm 2 -watt resistors in parallel).
$1,1-212$ turns Vo. 20 timed, 3 -inch diam.: turns spared $1 / 8$ inch (B \& W Viniductor No. 3010).
imposible to develop proper circuit Q at 50 Mc . if the variable coil alone were used, so a small airwound coil, $L_{\mathrm{s},}$ is comnerted ahead of the variable unit. Its inductance is such that only a small portion (one turn or less) of L_{9} is used at 50 Mc .

Parallel feed of the high voltage, through $R F C_{2}$, permits the tank circuit to be operated with no d.ce applied to its components. The purpose of $R P C^{\prime} 3$ is to provide a path to ground for the high voltage in case ('s should break down. The coils L_{5} and L_{6}, the capacitor C ${ }_{11}$, and the resistor R_{3} comprise a parasitic-suppression circuit that will he diseussed later.
The grid cirenit is largely self-explanatory, with the possible exception of the neutralizing mothod used. (1 and (${ }_{17}$ make up a caparity bridge, by means of which energy is fed back into the grid circuit from the plate. In this method, ('1 has a critical value. It should be such that the amplifier c:an be uentralized with ('is at approximately the midprint of its range. It is possible that some variation in layout might eliminate the need for neutralization, though provision
$1.2-1$ turns 13 \& W No. $300 \cdot 1$ eemented inside cold end of L_{1}.
L.3-8 turns No. 211 timed, 3^{3}-inch diam., if inch long, tappert at 6 turns (No. 3011).
$L_{1}-\mp$ turns $13 \mathbb{W} W$ No. 3001 cemented inside cold end of I. 3 .
Ls - 3 turns No. 16 timed, spaced 16 inch, on $1 / 2$-ineh diam. ceramie standeoff, I inch tong.
$1.6-2$ turns similar $10 / 25$, and about $1 / 4$ inch away from it en same form.
L_{i} - IO-hy. I(0) ma. filter elohe.
Ls - 4 turns Vo. 14 timmed, 5/8-inch diam., spaced 1/8 inch.

B_{t} - Blower motor and fan (Nlied Catalog Nos. :2-ine and 72-703).
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial fitting, female.

$S_{1 A}, S_{1 B}-2$-pole 3 -position reramio nafer switch (Centralab 2505, wafer tyoe RR).
S_{2} - Single-pole single-thron togyle switch.
should be made for it when the amplifier is built.
Note that the $4-250$. socket is mounted above the chassis, with the control grid toward the front. It is raised so that the prongs just clear the chassis. Each contact, with the exception of the control grid, is then by-passed individually to the chassis with the shortest possible leads.

The sereen voltage is oltained from a separate source, in preference to the use of a dropping resistor connected to the plate supply. The modulation choke, L_{7}, should have a minimum of 10) henrys inductance, and a current-carrying capacity of about twire the expected soreen current. The resistor comnected across the choke should be added only if needed to suppress "singing" resulting from choke resonance in the audio range. It should be the highest value that will stop sueh tone modulation of the transmitted signal.

Arrangement of parts should be such that r.f. leads are short, and copper or silver strap should be used in preference to wire in r.f. circuits wherever it is mechanically feasible. The by-pass, C_{7},
and the blocking canacitor, C_{8}, are high-voltage ceramic units of the type used in TV receiver power supplies. The parasitic-suppression circuit and the parallel-feed r.f. choke are mounted on a ceramie pillar made from two 3 -ineh stand-off insulators. The r.f. choke should be as far from the tubre envelope as possible, to prevent blistering of the paint by heat radiated from the tube.

The filament transformer, modulation choke, gride-circuit components and cooling fan are mounted below the chassis, which is a standard $3 \times 10 \times 1$-inch joh. The fan may be placed at any point where the bades can rotate close to an intake hole. If this is not possible, a duct just larger than the area of the fan blades can be used to chamel the air to the fam. The blades must be bent so that air will be drawn inward. Holes in the chassis just below the tube socket and in the top cover over the tube provide the only air path out of the enclosure. Any other holes should be plugged, and the shiolding of the upper portion of the amplifier should make a good fit to the chassis. (ireulation may be cherked by phemen a smoke souree near the intake hole The smoke should be drawn in rapidly, flowing out through the top holes only. A light piece of paper phaced over the holes in the top cover should rise pereptibly when the fan is started.

The shielding of the main assembly is made in four pieces, fitted to the front, back and sides of the chassis. The edges are folded over three quarters of an inch and drilled and tapped, or the assembly may be made with self-tapping serews. The entire joh should make good contact electrically and mochanically, if cooling and TVI prevention measures are to be effertive.

Adjustment and Operation

Initial tests may be made on the amplifier with the parasitio suppression and neut ralizing circuits omitted, though both will probably be needed. Start with resistor bias only, as instability will be more evident if the plate current is not cut of in the alssence of excitation. The plate and sereen voltages should be such that the dissipation by these elements is below the permissible maximum for the tube. A suitable load for the first tests cam be made by connerting three 100 -watt lamps in parallel at J_{2}.

With a $2 \overline{5}-$ or $50-\mathrm{ma}$, meter connerted between R_{1} and ground, apply plate and sereen voltages (but not grid drive) and watch for sigus of grid current. If any appears it will indicate oscillation, either a v.h.f. parasitic, or tuned-plate tuned-grit feed-back near the operating freduency. If a v.h.f. parasitic is encountered, it can he suppressed with the L (' R combination shown in the schematic diagram. L_{6} and C_{11} tune to the parasitic frequenes. L_{5} should he as low inductance as possible, in order to keep the frequency of the parasitic high. The lower the parasitic frequency the greater will be the $50-\mathrm{ll}$. energy dissipated in the suppression rireuit. With the values given in the parts list there is no overheating of the resistors by dissipation of $50-\mathrm{Mc}$. energy, yet the loading at the parasitic frequency is sufficient to prevent oscillations from starting up, if the tuning of C_{11} and the coupling bet ween L_{5} and L_{6} are adjusted carefully.

A check on the need for neutralization may be made by operating the amplifior normally and observing the grid and plate currents simul-

Pis. 17-16 - Ibothom , lew of the amplifier for 50,28 and 21 Ma, with luttom rover removed. Sote method of momting the ventilating fan. 'The ehaswis shmuld lie made as noarly airtipht an monible. "xcept for the fan thole and holes drilled under the mbe sosket. Air is thus drawn in theongh the base and forced up around the base seal of the tube, leaving through holes in the top cover.
tameously, Maximum grid current and minimam plate current should oreur at the same setting of C_{9}. If the grid current rises as the plate cireuit is tuned to the high-frequency side of resonance, more neutralizing catpacitance is needed. If noutralization camot be arhieved at any setting of $C_{1 ;}$ it mas be necessary to use a different value of capacitance at C C ${ }^{\prime}$. Perfect neutralization may not be possible on all three hands with one selting of C_{17}, but it should be possible to find : satisfactory eompromise.
With the amplifier operating stably, actual on-the-air conditions can be set up. The typiad onrating conditions given by the tube manufacturer can be used as a guide, but any of the values can be varied considerably, provided the maximum sate figure for each of the tube chements is not exceeded. Thus it may be desirable to lower the grid bias when operating at low phate voltage, in order to get the amplifier to draw more plate current. As little as 1000 volts on the phate works well, provided that the grid drive and screen voltage are properly altered.

If the antema system has an open-wire or other halanced line, the output of the amplifier should be fed through an antema coupler that provides for conxial imput and balameed output. A low-pass filter can then be used, if needed, between the amplifier and the antenna coupler, to reduce harmonic radiation that might canse TVI.
Though the adjustments are not eritieal, there are eretain optimum values of C'9 and L_{9}. Their selection is explatined in the discussion of tamk circuit Q elsewhere in this Mandbook. Caparcitance required at ('9 will be of the order of 7 to $12 \mu \mu \mathrm{fd}$. for $50 \mathrm{Me}, 10$ to 15 for 28 Me , and around 20 $\mu \mu \mathrm{fd}$, for 21 Me. This will be nearly" all out" for 50 Mc., near the midpoint for 28 , and down to about $1 / 4$ inch for 21 . The variable coil can be adjusted for resoname for each band, and the approximate number of turns required can be logged for future reference. Logging of settings
for C_{9} can be done similarly. Adjustment of the variable coil should be made at low power level, to avoid areing at the contact surfice and possible damage to the roller and coil.

The capacitance needed at C_{10} will be about 50 $\mu \mu \mathrm{fd}$ for 50 Mc ., 100 for 28 and 150 for 21 Mr. Adjustment of this control is similar to the use of the familiar swinging link. It is an output coupling adjustment only, and either L_{9} or C_{9} should be resed for resoname whenever (Go is varied. Adjustment should be made with a standingwave bridge connerted in the eoaxial line between J_{2} and the antemat coupler, taking care to see that the load is properly matehed.

- A V.H.F. MAN'S VFO

The frequencerontrol unit shown in Figs. 17-7 and 17-17-17-19 is designed for the v.h.f. operator, though it may be used on all bands from 3.5 Me. up :se welli. When used with the other equipment deseribed in these pages it converts the erystal oscillator stage of the exciter to a frequency multiplier. The VFO unit has a speed amplifier and at reactance modulator for narrowband FXI built in.

The oscillator is a 57633 , with a sories-tuned Colpitts circuit having a tuning range of $30(0)$ to $f(x) \mathrm{kc}$. Its plate circuit is untumed, and the output is fed to another 5 atio3 that serves as either amplifier or doubler. The plate cercuit of the seeond stage may be tuned to the osedilator frequency or to its second harmonic.

With the values given in the parts list, one sweep of the vernier dial tunes the oseillator from 3000 to 3713 ke ., with a little leway at each comb. The second stage is normally tuned from 6000 to 7425 kc ., taking c:are of the $21-, 27-, 28-$ - 50 - and $14+$ Mc. requirements of the eomplete station as desired. By resetting the hand-set condenser, (2, slightly the oscillator range can be extended to $4(100) \mathrm{ke}$, permitting use of the VF() over the entire 3.5-Mc. band, as well as the 7 - and 14-Me. bands if the user so desires.

Fig. 17-17 - 'I'np view of the SFO unit, with cover removed, Speeh-amplifier and reactance-modulator components are at the right, with the oscillator tuning condenser and coil near the center. An aluminmmartition dividen the ospillator sochet. 'The amplifier stage is at the left end.

Fig．1：－18－Schematie diagram and parts list for the UFO and reactane mondalator．
$\mathrm{C}_{1}, \mathrm{C}_{2}-50-\mu \mu \mathrm{fd}$ ．variable with rotor bearing at each enil of shaft（lammarlund $V($（ono）．Remose plates in Cifor dreired bandspread－see text．
（ $\left.:_{3}, \mathrm{C}_{4}-680\right)_{-\mu \mu \mathrm{ffl}}$ ．silver mica．
C．5．（ C_{15} ，Can－ $\mathrm{H}_{1}-\mu \mu \mathrm{fl}$ ．vilver mica．

（：－ $25-\mu \mu \mathrm{fl}$ ，reramic or mica．
Cio－ $140-\mu \mu$ fil．variathl（Itammarlund VI（．－1－40）．

1_{1}－ 68.000 ohmm．${ }^{1}$ 告watt．
$\mathrm{H}_{2}-1000$ ohm：．${ }^{1}$ 年 watt．
$18_{3}-33.00 \mathrm{~m}$ ohms．${ }^{1}{ }_{2}$ watt．
$\mathrm{R}_{4}-20,000$ olmos， 1 watt．
$R_{r}-1$ megolim， i_{2} watt．
$K_{\text {f，}}, K_{10}, \mathbb{R}_{11}-0.1_{1}^{2}$ meq口ohm， $1 / 2$ watt．
$\mathrm{R}_{-}-0.22$ misuhtm．
Rs－0．5－mequhm potentiometer，with switel．

Construction

Mechanically，the VFO is similar to the exciter， in that it is built inside a standard $3 \times 4 \times 1{ }^{-1}$－ inch aluminum chassis，with the tubes and fila－ ment transformer projecting from the rear wall． This makes a comparet shielded unit that mounts on a 3 ！ 6 －inch rack panel．Looking into the top front view，Fig．15－15，wo see the oseillator tuning condenser，C_{1} ，at the eenter，driven by the ver－ nier dial．The osediator inductance is to the left． An aluminum partition splits the oscillator tube socket，with pins 4 to 7 on the right side of the partition．Components of the output stage are at the far left．On the right side are the reactance modulator and speech－amplifier sockets，the de－ viation control，the band－set condenser，（＇2，and the microphone jack．
R_{9}－ 0.1 megoh 0 ， $1 / 2$ watt．
$R_{12}-820$ ohmes， $1 / 2$ watt．
$R_{13}-10,000$ ohmes， $1 / 2$ watt．
 ludnctur，type 80 M ，with phas－in hase remowei）
I .2 － 14 － h ． 2 S －watt transmitting poil．end－linked（13 \＆ II type f0． MD l ，with pluy－in base remored）．
f．3－1－turn link，part of 1.2 asscmbly．
J_{1}－（lonedod orircuit jack．
$\mathrm{J}_{2}, \mathrm{~J}_{3}$－Comaial litting，female．
 type（Sational R－100S or R－10100）．
$1 \mathrm{RC}_{3}-2.3-\mathrm{mh}$ ．r．f．choke（ National R－101）．
s_{1} —Sp．e．t．switth，shaft type．
s_{2}－Swith or gain control，R_{s} ．
＇T1－6．3－volt 3－amp．filam＇n＇transformer（thicaso FO．6．3）．

The indurtanees in both stathes are made from commereial phy－in coil assemblies．The plug－in bases are removed，and the coils monnted on pillars．The oscillator coil sinoud have at least one half its diameter in all ditertions clear of metal objects of appreriable size．Wiring should be done with stiff wire，and all eomponents con－ nected with the oscillator cireuit should be mounted rigidly：

Where the cable betwere the VFO and the fol－ lowing equipment is very short，the output from J_{2} maty be fed directly into the erystal sorket． For more remote operation it maty be nerossary to install a tuned circuit and link coupling at the expiter end in order to insure efficient trans－ fer of energy between the two units．

The reactance modulator follows standard practice．The gain of the first 6ib． 16 stage is sulfi－

 He wornier dial. The large wariate at the right allows the output cireuit to be tuned to the oseillator frequency or it - second harmonic.

Cient to permit NFM operation on 10, for 2 meters, with a ersatal mierophone. With the method of romertion betweron the modulator and the oscillater shown in the sehematir, the deviation is too low for use on frequencies lower than the 27-. 1 le. hand. More deviation can be obtained ber connecting the lead from the coupling capareitors, ('15 and (${ }^{\circ} 16$, to the stators of C_{1} and C_{2}, instead of :uroses the tuned cireuit. If the F.M is to be used only athow 2^{-}Ma., however, the method shown is reerommended.

Provision is mate for turning off the heaters of the tiB: Dts when the F.X portion of the VF() is mot in use. There is some frequener shift when the heaters are turned on and off in this way, howerer, and if the user experts to change frequently from FW to other modes it would be well to have so break the B-plus lead, rather that the heaters. Where the deviation eontrol is comented in the reatimenemodulator grid eirenit, as is dome heres, at borking (:aptecitor, ('it, must be added in series with the arm of the potentiometer. ()harwise, variation of the control will atfert the frevtuency of the oscillator.

Operation

Deviation should be adjusted by listeming to the signal on the hand where the transmitter is to be used, is it increases with each frequency multiplieation. Monitoring the signal is easer, :hes the proper hamonie of the VFO ran he used, and atl the rest of the rig left inoperative, thus prewenting bocking of the receever. Deviation requirements of various recelvers will vary widely, but a safe starting point is to set the control so that sperech somuds clean in a communieations reereiver with its arestal filter in the broudest "on" position.

The VFO dial (National M(N) can be calibrated with the aid of a receiver capable of tuning the oscillator or doubler range. sat the vernier dial so that the variable condenser is at maximum. Then adjust the bandset eondenser until the osecillator frequencer is 3000 kr. Cherk the tuning range before removing plates from C_{1}.

The tuning range can be made to cover 3000 to fool ke , without resetting the bamdsel romdenser, or if the user is interested in the v.h.f. bendsonly, it can be redued to 30 ano to 333.5 kr ., multiples of which cover the ato and $114-\mathrm{Il}$ e. hands. Plates can be remowed from Ci, one at a time, reset ting C e each time so that the frequenery of the oscillater is 3000 kr . With (1) at maximum. and cheeking the tuning range on the calibsated receiver. To cover 3000 to 3513 ke ., ('1 wits roduced to 3 stator and 2 rotor phates.

To use the VFO with the exciter described carlier, no more than laty to 200 volts is meded on the serond stige. Cathode aurent, motered at J_{2}, will be around 10 mat. when the doubler plate eircuit is tuned to resonane. It this bow input the tuning is unimportant, so long as the stages following recorive sufficient exaitation. It is not neressary to retune the doulder plate cirenit for frequence shifts normatly mate within and one bethd.
The construction of the VFO is surf that there should be lit tle frequency drift due to heating as the tubes are operated far below ratings, and heing mounted outside the main assembly they catue little temperature change in the frequenescontrolling elements of the owillator cirevit. No spectial TVI precautions were taken, other than the shiolding inherent in the design, and the use of shiedded wire for atl power wiring.

It is important that the power supply used on the CF() and modulator be well filtreded and free from hum, Particularly where Fill is used, the slightest ace ripple will show up in objectionable proportions. With sufficiont filtering in the power supple, the mote should be nearle romparable to erystal control, even on the v.h.f. mage.

Note that no mention is male of keying the VFO unit. Experionec has shown that escillator keving results in too much frequency shift to be usable in v.h.f. work without preatutions that are out of line for a simple unit such as this. In v.h.f. work, at least, keving should be done two stages or more away from the oscillator unless extensive stability measures are taken.

Transmitter-Exciters for 50 and 144 Mc.

The units shown in Figs. $17-20$ through 17-2: are designed to serve several purposes. They may be used individually or together, depending upon whether the builder wishes to operate on both $\boldsymbol{0} 0$ and 144 Mc, or on either band abone. They maty serve as complete transmitters for either mobile or home-station servier, or they may be used as exciters for driving higher powered stages. The dual tetrode amplifier of Fig. 17-26 would be a suitable following stage for up to 100 watts input

Overtone oscillator cireuits are employed in the interest of low power consmmption, circuit simplicity and ease of TVI prevention. Power wiring is done with shiedded wire, and the physical arrangement of the parts is such that nearly comphete shiedding is obtatined. If further onclosure is needed to prevent TV' it is merely neeressary to cover the top of the unit, Power output is taken off be means of coaxial fittings, for convenione in mobile operation, and for complete shiohting

The two units are as similar, both meentanically and clectrically, as possible. Both are built antirely on their 5×10-inch sheet aluminum top plates. These are serewed onto inverted $3 \times$ is \times 10-inch sted or aluminum chassis. Both use a 12.AU7 dual triodo as uscillator and fregumers multiplier, with a 2 P:26 final amplifier. The $144-$ Me. unit has at istis3 doubler stage betwern the 12AC7 and the 2 E 26 , and the operating conditions of the stages vary somewhat.

The neecssary driving power for the final is more readily obtained on 50 Me., so the oseillatormultiplier is set up to rum at lower input. Indurtive neutralization (L_{4} and L_{5} in Fig. 17-02? was used to stabilize the $50-. .16$, unit, whereas a small caparitance aroomplishes the same end in the 1H-Me. amplifier. In and-linked tank cireuit works well on of Me., hut a babanced tank with center link is more satisfactory for $1+4 . \mathrm{Me}$.

Both transmitters are set up to pormit complete metoring of all stages. Looking at the make chassis fittings in the sehematic diagrams, it maty be seen that each grid return, sereen and plate load is brought out to a separate pin. It is helpful during the adjustment of the rigs to be able to meter each stage without breaking into the main
wiring. This is done by connecting a meter temporarily between the proper power plug pins. After adjustment is completed the meter can be replaced with a jumper in the plug. The exciter stages require 2.00 to :300 volts. The amplifier may be operated at the same level, or if more power is wanted the final plate voltage may be raised to 400 volts.

Adjustment and Operation

With either rig the uscillator stage should be checked first. This should be done with lion to 200 volts until eorrect operation is established, and with no voltage on the following stages. Proper operation of the oscillator depenels on the amount of feed-back, which can be adjusted by varying the position of L_{2} with respect to L_{1}, or be changing the number of turns in either winding. For best mechanical stability, the two coils are made from a single pieree of B \& W Miniductor, breaking the wire to give the sperefied number of turns in cach winding. Breause the chatarteristics of tubes and rrssals vary somewhat, it is well to start with at least one extraturn on each winding.

The feed-hack should be only enough to insure easy starting of the oscillator under load. Adjustments should be made with the grid cireuit of the following stage completed, with a low-range milliammeter comneted to the proper terminals on the plug to read grid current. Oscillation will be evidenced by the sudden appearanee of grid current as C_{1} is rotated. If the feed-barek is correet, this will oreur at only a small portion of the funing range of C_{1}. Listen to the oscillation at 24 or 25 . Ite. It should vary only slightly in frequoners, if at all, as ('1 is tuned. If the frequener changes gradually across the tuning range the oscillator is not crystal controlled, and too much fend-hack is indieated. lumove a turn at a time from L_{2} until only ersstal-controlled oscillation remains. If there is insufficiont feed-bark there will he no oseillation. Fond-back can be inereased by removing turns from L_{1}, or adding turns to L2. If several ertstals are available, try to find a median sefting that will work with all of them.

Crystals may be the overtone variety, marked

Fig. $1 \% .20$ - $12 \pi-$ walt tramamillet or exciter for $\mathbf{2 0}$ Mr. Os illator and donther are thmed by surewdriver
 of top plate. The amplifier control is the knolo at the right. '1he II-pin power fitting is at the rionter, rear, and the antema ontput fitting in in the upper right.

Fik． $17.2 I$－buttom view of the 50－Mc，tranmitterexiter．Oscilla－ tor，doubler and final circuits are from left to right．Note the inductive neutralization link leetween L a and I．4．Disregard the power fitting at the lewer left and follon lige，lize？for power connections．

for frequencios between 24 and 27 Me．，or they mav he fundamental－type cuts for 8 to 9 Me．， working on their third overtone．Murh less feed－ bark is needed for overtone erystals ordinarily， and if ther are to be used exclusively L_{2} may be reduced to as little as threre turns．If difliculty with starting tunder load is encountered，the size of the coupling capateitor，C_{3} ，can be reduced，and it may be advantageous to connert an r．f．choke between lin＇2 of the frequency multiplier and the grid leak，R_{3} ．

The second half of the 12AU7 is operated as a doubler to 50 Mr ．in the unit for that band，and as a tripler to 72 Mr ．in the $14 t-\mathrm{Mc}$ ．model．It hats no unusual features in either case．The am－ plifier is so casy to drive on ofo Me．that input to both the oscillator and doubler stages can be kept at quite low level－not more than about 10 mat． plate current for each sertion．In the 144－Mr．unit the current drains will run about 12 to 15 ma ．for eath stage．（irid current should be 1 mat．or more in either case．

C．$-50-\mu \mu \mathrm{fl}$ trimmer（ H illen $2601.50-1 . \mathrm{N})$ ．
$(2, \mathrm{C}, \mathrm{C}, \mathrm{Ca}-0.01-\mu \mathrm{fl}$ ，diar coramic．

Cis－ $20-\mu \mu \mathrm{fl}$ ）domble－spared waft－type trimmer（ Ii － 1．11 20020）．
R_{1}－ 39,000 ohms． 1 自 watt．
$R_{2}, R_{4}-470$ olimus， $1 / 2$ watt．
$\mathrm{R}_{3}-100,0100$ ，ohms， $1 / 2$ watt．
$\mathrm{H}_{5}-68.0100$ ohms，$\frac{1}{2}$ watt．
$R_{b}-30,000$ whens， 3 watts．（3 10，4010－ohmi l－watt re－ sidtors in acrids．Way be reduced in resi－tance and wattage for 300 －volt opration．）
$\mathrm{L}_{1}-9$ turns to． 20 ， 1_{2} imeh diam．， 910 inch long （ 13 \＆W Miniductor No．3003）．
1.2 － 1 turns Vo．20， 1 g－inch diam．， $1 / 4$ inch long．L_{1} and I：2 are made from a single pirere of 13 N $\mid 1$ Nini－ ductor Vo．3003， 13 turns total．See toxt and ドiz．1－2l．
I－3－5 turns So．20， $1 / 2$ inch diam，5io inch long （ 3 \＆ 11 \o，301：3）．
I．4，I．s－I－turn neutralizing lonps connected by link， So． 11 enam．sere Fix．lo：21．
d．e－ 5 turns No． 16 ．l－inch diam．， $11 / 4$ inch long （13 \＆ 11 No． 3021 ）．
$1.7-3$ thrn－Do．It enam．． $3 / 4$－inch diam．，inside cold end or les．
J－Coavial outprt fitting．
$\mathrm{J}_{2}-11$－pin male claswie fiting（Amphenol 86liCl＇ll）． RIRC1－1－mh．r．f．choke（National R－50）．

Fig. 1:-2:3 Ton viow of tho 25. watt 14-Me. tranamitter. Iayome is similar to the sto- \1e mondelo exrept for the additional dondoler stage and the mounting of the final tank circiat almor the rhamsis.

The 5763 doubler stage in the 2 -meter unit is of eonventional design. Care must be taken in layout to keep down load inductance. Note that the lead from the plate to the tuning condenser is made of quarter-ineh wide copper strip.

Berame of the difference in layouts required for the two freguencias, the two amplifiers op-
 the final tank coil and antenna coupling underneath the chassis. There is thus more fered-hack, and neutralization was needed. This is furnished by the link that may be seen in the bottom view, Fig. $17-21$. A loop of No. 14 enameled wire is
mounted on stand-ofl's, with one turn colupled to L_{3} and the other end to L_{6}. The position of the coupling loop at either end is adjusted for mentralization in the same way as for eaparitively neutralized amplifiers. The loop ($/$ /5) is betwern the second and third turns of L_{6}, with the antemna coupling eoil below. Slight variations in layout may eliminate the ned for neutralization, so the amplifier operation should be checked without it at first.

In order to shorten the plate lead, the plate circuit of the 2 -meter unit was monnted above the chassis. This permits use of a balaneed tank cir-

 ceramir.

(4-2. $-\mu \mu$ (fid, trimmer (National P'sile-25).
(:) - $10 . \mu \mathrm{mfl}$. double-spared trimmer (Millen $209: 30$ rut down to 2 retor and 3 stator plates).
C_{12} - 10 - $\mu \mu \mathrm{fd}$. ceramic.
Cis - $10-\mu \mu \mathrm{fl}$. per section butterily (Johnson 10I.BI.).
\mathbb{R}_{1} - 10,00010 ohms, 1 watt.
$R_{2}, R_{4}-100$ ohmes, $1 / 2$ watt.
$\left.\mathrm{R}_{3}-100,040\right)$ whms, $1 / 2$ watt.
R_{5} - $\mathbf{0 8 , 0 0 0}$ ohms, $1 / 2$ watt.
R_{6} - 12.000 ohnis, $1 / 2$ watt.
$\mathrm{R}_{7}-22,000$ obms, $1 / 2$ watt.
R_{s} - 23.000 whms. I wath. Matre like R_{o} in Fix. 1 -. 22
if using more that 3 on woll plate anply.

1.3-4 turns So. 18, ${ }^{1}$ zinch diam., ${ }^{1} 2$ inth lomg

1.4 - 4 thens Nos, 1.1. $1 / 4$-inch diam.. 5 s inch lones.
L_{5} - 6 turns. No, 11.3 turns carh side of ernter zoamed diameter of wire, $1 / 2$. inch diam.. $1 / 4$-ineds epace at center of I.
I.s - 2 urns Vo. 14 enam., $1 / 2$-inch diam.
$J_{1}-$ Coaxial outphat fitting.
$\mathrm{J}_{2}-11$-prong male chassis fitting (Amphenol 86 RCPII).

$\mathrm{RFC}_{2}, \mathrm{RFC}_{3}, \mathrm{RFC}_{4}$ - $1.8-\mu$ f. r.f, ehoke (Ohmite $\%$-141).

Fig. 17-25 - Under-chassis view of the 144. Mr. transmitter. Oseillator, tripler and dombler tuned rircuits are from left to right.
cuit and practically climinates the need for neutralization. To make up the difference in capacitance on the two sides of the circuit, a lead from the low side is run through a chassis bushing to just below the chassis level. If there is instability, the length of the lead below the chassis can be varied to cffect neutralization. Contart is made to the 2L26 motal ring externally by means of a spring elip, mounted under one of the sorketmounting screws. This contributes to more stable opration of the amplifier, though connertion is made to the ring internally through l'in 8 . Shiching may or may not be necessary on the 5763. Operation of the tube without a complete shield results in more offertive cooling, and is recommonded if possible.

Operating conditions for the various stages follow the tube manufacturer's recommendations elosely. If more or less input to the final stage is

desired it can be controlled loy variation of the sereen voltage, with a smaller or larger dropping resistor value.

If both transmithers are to be used, their operation may be controlled by an external switeh that furnishes heater voltage to the unit desired at the moment. Plate voltages may be lift connerted to both units in this case, as only the one whose heaters are energized will draw eurrent. Loading on the amplifier is variod be adjusting the position of the output coupling winding. In some cases the insertion of a series tuning eondenser between the coupling loop and ground may be desirable. Power output will be about 15 watts maximum on 50 Me. and about 10 watts for the $1+4-$-Me. unit. If the plug conncetions given in the sehematie diagrams are followed it will be possible to interchange the two power plugs without affecting the operation of the rigs.

A 100-Watt R.F. Amplifier for 50 and 144 Mc.

The r.f. amplifier shown in lijus. 17-26, 17-27 and $17-2 \mathrm{~s}$ is dewigned for use with a dual beam tertrode such as the 82913 or A.N-9903. It is capatWhe of hamdling an input of up to 120 watts on (c.w. or FMI and about 100 wat 1 s on A.II 'phone. The driver stage should have an output of 5 watts or more, to assure adequate driving pewer. The same general layout may be used with an 832 A or 815 , if a suitable value of grid resistor is used. The 815 alse requires a different soeket.

Tho amplifier is built on an aluminum chassis 3 by 4 by 17 inches in size, with pratically all components mounted topside. The two-band
tank cireuit deseribed in Fig. 17-3 is used, to facilitate casy band changing and assure efficient opration on 144 Me. Only the plate circuit is tuned. The grid eoils are made to resonate with the input caparitance of the tube. The plate tuning eondenser is cut down to a capanitance suitable for $1+4-$ Ic. used by removing plates, leaving two stator and three rotor plates in cach section. The two stator plates left are those on either side of the stator connection lug. One rotor plate is removed from each end of the shaft and four from the middle.

The tube socket is mounted on a bracket $35 / 8$

Fig. $17-2 \theta$ - A dual-tetrode amplifier for 51 and 144 Mc , with EO- Mr. coils in plate. In the foreground are the $1 / 1-$ Me. grid enoil and the antema coupling lesop used for I4+Mr. operation.

inches high, with the tube centered 212 inches above the chassis. The tuning condenser and eoil socket are also mounted on brackets, the former $23 / 3$ inches high. Both brackets have Ushaped cutouts to pass the plate lines with at least afo inch clearancer all around.

The plate lines are $51 / 2$ inches long, exclusive of the flexible portion at the phate end. This is of timned braid, making $11 / 4$ inches additional, from the end of the lines to the slip-on commertors. The flexible portion of the line is made last ber insorting the rad of the braid in the tubing and erimping the fubing in a vise. The conncetion is soldered for added firmmess, but the tubing should be squerzed tight enough to hold the braid in place, as: long periods of operation may heat the line sufficiontly to loosen soldered connedions. Commections from the lines to the tuming eondenser are made bey wapping the tubing with four thrms of thmed wire and soldering this wrap to the line and the condenser tab). The far fond of the line is mounted on 2 inch standoffe and small copper brackets, bringing the over-all height to $2 \frac{1}{2}$ inches.
The spacing of the lines, $3 / 4$ inch eonter to center, is determined by the spacing of the pins of the Millen 37212 plug used for as shorting har. A short is plaed across the terminals of the plug, and connertion is made for the 13 -plus with a flexible

Fig. $1:-28$ - Bottom view of the tetrode amplifier.
lead. The Millen 37211 soek ${ }^{2}$, mounted at the end of the chassis, serves as a convenient storage device for the plug and as a terminal strip for $R F$ ('2. The plug may be used to adjust the line length: sliding it into or out of the line permits an adjustment of about $1 / 4$ inch in over-all length. This may be useful in counteracting for slight variations in tube characteristies.

The grid coil socket is mounted on a plate held in position by the screws on which the tube socket is mounted. It is positioned for minimum lead length - an important consideration. The

Fis. 17-27 - Sehematic diagram of the two-band tetrode amplifier.
$\mathrm{C}_{1}, \mathrm{C}_{2}$ - Neutralizing capacitors, see text.
(3, (i4-0.001- $\mu \mathrm{fl}$, dise ceramic:
 Q stator and 3 rotor phates removed from each section).
(is - 0.0101 -ufid mica, 1300 volt rating.
1 R - 1000 ohms. I wats.
$\mathrm{R}_{2}-10.1000$ ohms, 10 watts.
It - 50 Mr.: 3 turns No. 18 , $11 / 4$-inch dia.. turns spaced wire dia.
14! Vr.: U-shaped loop $1 / 2$ inch wide and $11 / 8$ inch long, No. 14 tinurd.
 Can be made by removing one turn from each end of a National Ah-16 lo-s asembly.
111 Mr: (1 -shaped lowp, similar to I_{1}, but center tapped. See Fig. $1 \div-20$.
I.3-3 turn earla side of center, No. I? tinned, 1 inch dia., spaced 1 dia., centor tapped. Leave $1 / 2$-inch space for L_{4}.
If - 3 turns Vor, 14 rnamen, 1 -inch dia,. spared 1 dia.
1.5A, $1.5 B$ - $1 / 4$-inch od copper tubing, $5 \frac{1}{2}$ inches long, spaced $\frac{3}{4}$ inch on centers.
$1_{6}-1$ airpin coupling hoop $3 \frac{1}{2}$ inches long, $3 / 4$ inch wide, No. 12 enamel. J_{1} J2- Closed-circuit jack.
J_{3} - Male a, ce comector.
RFC $-7.0-\mu \mathrm{h}$. r.f. choke (ohmite 2.50).

T_{1} - Filament transformer, 6.3 volts, 3 amp.
input capacitance of the 829 l is high enough so that it may be impossible to resmate the grid circuit at i48 Me., if appreciable lead length or straty capacitance is introduced. lf an 832A or AN-9903 is used the grid eoil will be somewhat latrer that that sureiferd and meutralization may not be needed.

Coutralization is aceomplished, when required, by means of leals brought through the branket, adjawent to the tube plates. These are arossord wer to the upposite grids at the sombert. Feodthrough bushings are used and soldering lugs are attached to the bushings to provide the neut ralizing taparitatace. If more is nerded these can be replared with small tathe of shere eopper.

There may be a slight change in meutralizing calateitane needed for the two bands. As neatratization is indined to be more eritical at the higher freguencer, the adjustment should be made earefully on $1+4$ Me. This same setting may be satisfactory for 50-Mc. operation as well.

The plug-in crils are mounted on National Pl3-16 hases, fitting XB-16 sockets. When the stage is used on $1+4 \mathrm{Mc}$. the coupling is by means of a hairpia leop which plugs into the eoil socket. The r.f. output is thus fed down to a crystal socket on the back of the chassis, for either band. A similar crystal socket is used for the r.f. input, at the tube end of the chassis.

Crystal Control on 220 Mc.

Construction of a multistage transmitter for the $220-$ Mc. band is not as difficult as might be imagined, and the serious worker on this frequency will find the use of erystal control or its equivalent highly worth while fortunately the erystals used are also usable on $14 \pm$ Me., cutting down the total cost of buidding equipment for both bands, if the erystal frequencies are selected with this use in mind.

The transmitter-exciter shown in Figs. $17-29,17-30$ and $17-31$ emplows either 8 - or 12-Me. erystals, and if they are between \$148 and $x 222$ or $12,22: 3$ and 12,3333 ke, they may also be used for operation in the upper portion of the 14t-Me. band. By using miniature tubes and components, and by arranging the parts for minimum lead length, efficient operation on 220 Mc . is obtained, with a simplicity of construction that puts the equipment wedl within the eapabilities of the average experienced amateur.

Four 6.J6 dual triodes are used. The first works as a triode oscillator and frequeney multiplier, the serond section doubling or tripling, depending upon whieh type of arystal is employed. Tuning is less critical, and the various stages operate somewhat more efficiently with 12-Me, ervitals, but 8 -Me, erystals may also be used. The next two stages are push-pull triplers, and the output stage is a neutralized amplifier. (Capacitivo eoupling is used between stages. The chassis is $21 / 2$ inches wide, 2 inches high, and 12 inches long, with $1 / 2$-inch edges folded over. It may be made from a piece of sheet aluminum $71 / 2$ by 12 inches in size. The first tube sorket is $1 \frac{1}{2}$ inches in from the left end and the other sockets are spaced along the chassis, $21 / 4$ inches center to center. The tuning condensers are spaced equally between the sockets, the last two, C_{13} and $\left({ }_{17}\right.$, being mounted on the top surface of the chassis for minimum lead longth and symmetrical layout. l'in jacks, labeled a and b on the schematic diagram, are
mounted on the front wall of the chassis and may be used for metering or keying of the output stage.

Initial Adjustments

Meter jacks for the individual stages were not considered necessary, as there will normally be few oceasions for shifting frequeney and retuming, one the initial adjustment of the exciter is completed. For these first measurements the various circuits may be opened and tests made with a portable meter.

With a meter in series with R_{2}, set the core in L_{1} at an intermediate position and adjust ("s for oscillation, as indieated by a dip) in plate current to about 10 ma. The frequency and note should be checeded in a eommunications receiver, making sure that the oscillation is controlled by the crystal. Next, insert the meter in series with R_{4} and tune (' 4 for a dip at the proper frequency, which should be between 24.5 and 25 Me. Siljustment of the multiplier tuning may be britical, if fundamen-tal-type erystals are used, the erystal temoling to "pop out" when (${ }_{4}$ is tuned on the mose. With "overtone" or harmonic-type erystals this trouble will not be in evidences and the sotting of C_{4} (or the core in L_{2}) will not be fussy. Adjustmont should be for maximum gride current in the seeond 6.Jts.

Adjustment of the push-pull tripler stages is merely a matter of resonating the vircuits for maximum output as indicated by the grid current in the succeding stage, being errain that the stages are tripling and not quintupling, which they will also do with fair officioncy. Fach stage has eathode bias to prevent damaging the fubes during the adjustment period. Input to each will run about 2.5 ma. at 200 volts, when oprating correedly.

Seatralization of the butput stage is accomplished in the rustomary manner, exeept that the neutralizing capacitors are made from short lengths of $75-0 h m$ 'rwin-Lead.

Fig. 18-29-Front view of the 290. Me. transmitter-exciter. Across the front of the rhassic are the oscillator wate-coil adjustment, erystal, multiplieronil adjustmatht, firat-tripler plate condrnser, and tip jacks for final cathode motoring.
 are mounted on the top portion of the chasois. Output terminals are at the far right.

Fig. 17.30 - Sehematic diagram of the 6.56 transmitter. exciter for 220 Me .

C1, (:- - 680-unfd. mica
C2. \therefore - $3-311-\mu \mu \mathrm{ft}$, minatrimmer.

C \therefore ($\theta_{1}^{-}-\mu \mu \mathrm{f}$, mica.

 (John*on lor
 (16 - 201)- $\mu \mu$ fld, ciramio.
(if - 1. \quad - $3.3-\mu u f 1$ midgat butterfly variahle (Johnson 160-3033)
C. $_{1}$, (x_{2} - Ventralizing capacitors made of Tisolom Twin-Idedd: zeretert.
$R_{1} . R_{3}-6800$ olmms. $1 / 2$ watt.
$\mathrm{R}_{2}-170$ ohms. $1 / 2$ watt.
R_{4} - $\mathbf{3 0 0 0}$ ohnse, 1 watt.

$\mathrm{R}_{\mathrm{i}}, \mathrm{R}_{11}, \mathrm{R}_{13}-4.70$ ohms, 1 watt.
starting with sections about two inches long, they should be trimmed a small amount at a time until tuning the final plate through resonance (with plate voltage removed) causes no downward kick in grid current.

Performance

With the voltages shown, the output on $2: 20$ Me. will be about 2 wats, as indieated by a full-brilliance indication in a Number 16 (bluc bead) pilot lamp. More output can be obtained be increasing the voltage above 200 , but the inerease is seldom worth the extra strain on the tubes. Operated as shown, the rig will give ample output to drive an $8: 32$ amplifier which will deliver about 12 watts,
$\mathrm{R}_{8,} \mathrm{~K}_{12}, \mathrm{R}_{14}-1,500$ ohms, 1 watt.
1.f-31 turns No. 28 des.c., close-wound on National X1R-50 slug-tuned form, center-tapped.
1.2-12 turns No. 2.4 d.c.c., elose-wound on National Xils-su slus-tuned form, eenter-tapped.
1.3-7 turns Nor. 16 enamel, $3 / 8$-ineh inside diameter, spared wire diameter, eenter-tapped.
$\mathbf{l a m}_{4} \mathbf{2}$ turns . Dn. 16 enamel, $3 / 8$ inch inside diameter, spared ${ }^{4}$ inch, ecenter-tapped.
$1 s-11 / 2$ turna No. 12 enamel, $3 / 4$-ind inside diameter. ennter-tapled. Spare turns about 3 ís inch apart. Coil $1 / 2$ inches long over all. See hottom-wiew photorraph.
I.6-Hairpin lomp No. 16 enamel inserted between turns of 1 ,3.
RFC_{1} - 2.01)- $\mathrm{\mu ly}$, r.f. chohe (Millen 31300).
$\mathrm{RHC}_{2} \mathrm{RFC}_{3}$ - Solenoid v.h.f. rhohe - No. 28 d.s.e. wire wound on $1 / 2$.watt carbon resistor, $1 / 8$-ineh diameter, fío inch long.
or the final 6.16 may be modulated and the unit operated as a complete low-powered transmiter.

The same general arrangement described above may be used to get to 220 Me , with three tubes instead of four, if the regemerative harmonic-oscillator circuit shown in lig. 17-1 is used to replace the more conventional erystal oseillatur circuit of Fig. 17-30. An 8.3-Me. erystal is then made to oscillate on 25 Me. in the first 6.Jis section. The second section triples to $\overline{5} 5 \mathrm{Mc}$. The rest of the unit, from L_{3} on, is the same as in Fige 17-30. It is suggested that the deseription of the 6 - and 2 -meter transmitters of Figs $17-20$ through 17-25 be studied carefully before this sulstitution is attempted.

Fis. 1:.31 - Bottom view of the 0,16200 . He. rig, slowing the simplicity of the lay. out.

Transmitting Equipment for 420 Mc .

As on lower freguencies, best results will be obtained in $420-M \mathrm{M}$. work if the narowest practieal passband is used in the recerver. This dictates the use of stabilized transmitters, if the full possibilities of the $420-\mathrm{Mc}$. hand are to be realized. The bath is 30 megacyeles wide, however, so there is plenty of room for the use of simple rigs and broadband roceivers, both of which may be entirely adeguate for short-distance experimontal work.

Many descriptions of equipment in this category have appeared in $Q S T$ in recent years. A bibliography at the end of this chapter lists these and various articles dealing with the conversion of war-surplus equipment for 420 - Me. use, as well as articles on more advanced equipment. Segregation of narrow and wideband techniques within the band appears desirable, however, and it is suggested that use of the 420 -. Mc. band be apportioned as follows:
420 to 432 Mc - Modulated oscillators and widehand F.M.
$4: 32$ to 436 Me. - Crystal-control AM, c.w. and narrowband FM.
436 to 450 Mc . - Amateur television.

A SIMPLE LOW-POWERED TRANSMITTER

The transmitter shown in Figs. 17-3: through 17-31 is typical of the sort of thing that can be used to grood advantage in developing local activity on 420 Mc. It runs only a few watts input, and delivers only about one watt of output, but it is quite capable of working over a radius of several miles when used with a good antenna

Fig, $1 \%-33$ - Bottom view of the oscillator assembly. The trough in which the components are mounted is made of tlashing copper. It is 6 inches long, $17 / 8$ inches high, and $21 / 4$ inches wide, with $1 / 4$-inch edges folded over for sliding into a clip attached to the main chassis.
system. A single 6J6 is used as a push-pull oscillator, with a half-wave line in its plate circuit, The complete oscillator assembly is built in a trough made of Hashing copper. The 6. 285 motulator and $6 \mathrm{C}+$ speech amplifier are on the matin chassis, at the back of which is a copper clip into which the oscillator unit is fitted. This arrangement permits experimenting with different types of r.f. sections without the necessity of making changes in the audio portion of the rig.

Only three adjustments are meressary in plaring the unit into operation. The frequeney should be checked with Lecher wires or a calibmated wavemeter, setting the frequeney near the middle of the band. The method of determining the proper point for feeding the B-plus to the line is discussed earlier in this chatptor. When this is

Fig. 17-32-- A 420-Ne transmitter huilt in two minits. The modulator portion, on a $7 \times 7 \times 2$-inch chassis. uses a oCit driving a GAQD modulator. The omeillator uses a 6,56 and is assembled on a removable troughshaped chassis.

Fig. 17-3. - Schematic diagram of the 420. М1 6 . transmitter.

Cis (4 - 10 - 4 Cd. 25 -volt clectrolytie.
C_{2} - 8- $\mu \mathrm{ff}$) his)-volt elecirolytic.

C_{5} - Miniaturesplit-stator variable, $4 \mu \mu \mathrm{fl}$. per section.
(Willon 219101). with one rotor pate removed
from rach section.)
$R_{1}-1.0$ ohma. 1 watt.
$\mathrm{R}_{2}-0,33$ mexoh min. ${ }^{1}$ watt.

R_{5} - 11.1. murghm, ${ }^{2}$ watt.
R_{0} - 080 ohms, 1 watt.

done the coupling loop should be adjusted for maximum power in the antenna and the transmitter is ready for use. Frequency chocks should be made arain, after the antenna is comered to be sure that the signal radiated is well inside the band limits.

AMPLIFIERS AND FREQUENCY MULTIPLIERS

Not many presently-available tubes work satisfactorily above 400 Me . The 316.A, 703A, 15l", 8012 and s025, all triodes, work fairly well as oscillators, but are relatively ineffective as frequency multipliers. The dale will deliver a small amount of power as a tripler, and more can be obtained with a pair comected in push-pullparallel.

Of the tetrodes, the 832A and AN0903 are most used in 420 - Me frequency multipliers and amplifires. One of these tubes as a push-pull tripler from 141 to 432 Me. will drive another as a 432-Me. amplificr. The 832 A will give about 2 and 5 watts, while the A. 09003 delivers 10 and 25 watts, respertively, in these applieations. The 5675, 2('43, $2(39$ and 4 N10) d are typical of the spereial u.h.f. tubes that are capable of high-efficioney operation, but their use involves the employment of sureial tank cirenits and fored-air cooling.

The tripler-amplifier of Fig. 17-35 user two AX9903 $88: 1-4$ dual tetrodes to deliver 25 to 30 watte output when driven by a $1+1-$ dide. exciter of about 10 watts output. Half-wave lines are used in all $432-$ Me circuits, and a self-resomant coil in the grid circuit of the tripler. Adjustment of coupling between the stages is done by varying the position of the grid lines, L_{4}, with respect to the tripler plate lines.

Be certain that no mechanical stress is imposed on the plate pins by the tank cirvuits, as the 090;3
K_{9} - ${ }^{-100}$ whms, ${ }^{\text {b }}$ watt.
1: Widget filter choke.
l. - Plate line made of two pieces of No. I: wire, $41 / 4$ inches lomer, 3 inch apart, center to center.
I. 3 - Ilairpin of No. 18 wire. Portion which comples to L.2 is ahout "s inch long. I'osition shonld be adjusted for mavimum transfer of power to antenna.
J_{1}, J_{2} Closed-circuit jark.
RFC, $12 \mathrm{FC} 2-12$ turns No. 20 enameled wire, 3ito-inch diam.. ${ }^{3}$ 年 incla long.
${ }^{\prime} \mathrm{T}_{1}$ - Single-hutton microphone transformer.
is very easily broken. The 990:3/5894. A is more rugged type recently introduced.

The point of comnection for the plate voltage should be cheeked to be sure that it is at the minimum r.f. voltare point. A pencil lead may be touched along the line until the smallest effect on the output is observed. Initially, the plate voltage may be fed into the line at a point just toward the tube end from the center.

The position of the grid lines, L_{4}, is quite eritieal and must be adjusted earefully if maximum grid drive is: to be obtained. Move the eopper strips a small amount at a time, readjusting C_{1} meanwhile, until at least 5 mad of gride current is obtained. More may be used if obtainable. The: grid eireuit r.f. chokes are connereded directly to the tube socket terminals, the input capacitance of the tube being high enough so that the notal point is within the tube itself. Great care should be taken to see that the plate and grid lines do not come in eontact with each other in the course of adjusting the coupling. This may be prevented by inserting thin sherets of mica or teflon betweren the plate and grid lines. Polystyrene is not usable for this purpose, as the heat radiated from the plate lines will melt it.

Adjustment of antema coupling is also vory critical, and can best be aceomplished with a field-strength moter, which need be nothing more than a crystal diofle inserted in a pick-upantemna. A line of any length may be run from the antenna to the meter, for remote indication.
because of the relatively low efficience obtainable at this frequency, the tubes should not be run at more than about to per cent of their normal rat ings unless provision is made for forecd-air cooling. The power capabilities can be stepped up by shiolding the tubes and tank eireuits and blowing air through the shields for cooling pur-

Fig．17．35－A triplar－ amplifier for 120 Nhe． I sing two dual tet． rodes，one as a tripler from 141 Me and the second as a straight． through amplifier，ihis． mit dolivers 9.5 watts ontput on 43\％Me． It can he driven hy any $1+1$－Mr．esciter having all output of 8 watt or more．

poses．Up to about $3 \overline{5}$ watts output can be de－ veloped saffoly in this way：

Bibliography on 420－Mc．Equipment

＂Groting sitarted on 420 Mc ．＂（Howington）， June 1946 （）N゙T，page 43.
＂Four－Twonty is Fun＂（Tilton），Nov． 1947 QST，page 13.
＂Operating the B（－645 on 420 Mc ．＂（Ratph and Wood），Foh 1947 （2s＇T，page 15.
＂Fun on 420 with the BC－788＂（Clapp），July 1948 （S）
＂Operating the APS－13 on 420 Mc．＂（Addison）， May 1948 QST＇，page 57.
＂Tripling to 420 Mc．＂（Bramin），June 1948 （sㄱT，page 52.
＂A boorknol，Oscillator for 420 Mc．＂（＇Tilton）， Janaary 1949 （\＆がT，page 29.
＂simpler（bar for the $+20-$ Ne．Begimer＂（Til－ ton），May 1949 （RN＇T，page 11.
＂Botter lesults on t20 Me．＂（＇Tilton），August 19.00 QS＇T，page 11.
＂（＇onsial－＇Tank Amplifier for 220 and 420 Mc．＂ （13rayey），May 1951（2s7，page 30.
＂New Low－N＂oise Twin＇riode＂August 1951 （2sT，page 46.
＂A 432－Mc．Converter from the Guld－Plated Test Oscillator，＂June 1952 QST＇，page 14.

Fis，17．36－Schematie diagram of the tripler－amplifier for 132 Mc ．
$\mathrm{C}_{1}, \mathrm{C}_{2}-$ Midget split－stator variable，about $4 \mu \mu \mathrm{fd}$ ．per section（Millen 219121））．
$\mathrm{C}_{3}-2.50-\mu \mu \mathrm{fd}$ ．ceranic．
$\mathrm{R}_{1}-50,000$ ohns， 2 watts．
$R_{2}-100$ ohms， $1 / 2$ watt，at center tap of L_{1} ．
$\mathrm{R}_{3}-2.0,000$ ohms， 10 watts．
$\mathrm{R}_{4}-10,001$ olms， 1 watt．
$\mathrm{R}_{5}-20,000$ ohms， 10 watts．
l．1－ 2 turns Xo．it conamel， 9 ，io－ineh diameter，spaced twice wire diameter．
$L_{2}-2$ turns No． 20 enamel， 916 －inch diameter，between turns of I_{1} ．
L_{3}－Flexible eopper or ailver ribbon， $1 / 2$ inch wide and
4 inches long．Averake spacing atow $5 / 8 \mathrm{in}$ ．
L_{4}－Stiff copper strips 3 inclies hong．Wlonat sparing between L_{3} and L_{4} for maximum krid enrrent， as read in J_{2} ．
Ls－Flexible eopper or silver riblon， $1 / 2$ inch wide and
$43 / 4$ inches long，ingluding $1 / 4$ ineh hent over for fasterning to heat dissipating connetors．Aver－ age spacing of line is ahout $5 / 8$ inch．Bend last half inch inwaril to form padder calbacitance． （See Fig． $1 \overline{6}-3 \overline{3}$ ．）The entmertors must be filed down to provide a spacing of at least $1 / 4$ inch between their inside edges．
L_{6}－Compling loop of No． 14 enameled wirc．U－shaped portion is alout l inch long．
$\mathrm{J}_{1}, \mathrm{~J}_{2}$－Closed－circuit jack．
J_{3}－（Crystal socket（aillen 33102）．
J_{4}－Antenna terminal（National FWG）．Not nsed in revised version．（See blig．1－3．35．）
RFC_{1} ， RPC_{2} ， RFC_{5} ，RPC－I．h．f．choke（Ohmite O．－2．3．5）．Atach to plate lines at point of lowest r．f．voltake．
$\mathrm{RFC}_{3}, \mathrm{RPC}_{4}-11$ turns Xo． 22 enamel， 3 伯－ineh diam－ eter， 1 ineh long．Attach directly to socket tabs．

CHAPTER 18

V.H.F. Antennas

While the basie prineiples of antenna design are essentially the same for all frequencies where conventional elements are used, certain features of v.h.f. work call for changes in antenna teehniques above 50 Mc . Ilere the physical size of arrays is reduced to the point where an antenna system having some gain over a simple dipole can be used in almost any location, and experimentation with various types of arrays is an important part of the program of progressive v.h.f. amateurs. The importance of high-gain antennas in v.h.f. work camot he overemphasized. By no other means can so large a return be obtained from a small investment as results from the erection of a good directional array.

DESIGN CONSIDERATIONS

At 50 Mc . and higher the frequency range over which antenna systems should operate effectively is usually wider than that encountered on lower hands; thus more attention must be focussed on broad frequency response, possibly to the extent of sarerificing other qualities such as high front-to-back ratio.

As we go higher in frequency transmission-line lossos rise sharply, and it becomes more important to match the antennasystem to the line properly. Most v.h.f. transmission lines are long in terms of wavelength, so it may be more effective to use a high-gain array at relatively low height, rather than a low-gain system at great height, particularly if the antenna location is not completely shielded by heavy foliage buildings or other obstructions.
The effectiveness of a v.h.f. array is almost directly proportional to size, rather than number of elements. A 4 -element array for $4: 32 \mathrm{Mc}$. may have as much gain over a dipole as a similarlydesigned array for $14+$ Me., but it will intercept only one-third as much energy in reeeiving. To be equal in communication, the array for 432 Mc . must equal the $144-\mathrm{Mc}$, system in area, requiring three times the number of elements, if similar element configurations are used.

Polarization

Early v.h.f. work was done with simple antennas, and since the vertical dipole gave as good results in all directions as its horizontal counterpart offered in only two directions, vertical polarization became the accepted standard. Later when high-gain antennas came into use it was only natural that these, too, were put up vertical in areas where v.h.f. activity was already well established.

When the discovery of various forms of longdistance propagation stirred interest in v.h.f. operation in areas where there was no previous experience, many neweomers started in with horizontal arrays, these having been more or less standard practice on frequencies with which these operators were familiar. As use of the same polarization at both ends of the path is necessary for best results, this lack of standardization resulted in a confliet that, even now, has not yet been completely resolved.

Tests have shown no large difference in results over long paths though evidence points to a slight superiority for horizontal in certain kinds of terrain, but vertical has other factors in its favor. Horizontal arrays are generally easier to build and rotate. Where ignition noise and other forms of man-made interference are present, horizontal systems usually provide better signal-to-noise ratio. Simple 3- or 4 -element arrays are more effective horizontal than vertical, as their radiation patterns are broad in the plane of the eldments and sharp in a plane perpendicular to them.

Vertical systems can provide uniform coverage in all directions, a feature that is possible only with fairly complex horizontal arrats. Gain can be built up without introducing directivity, an important feature in net operation, or in locations where the installation of rotatable systems is not possible. Mobile operation is simpler with vertieal antennas. Fear of increased TVI has kept v.h.f. men in densely-populated areas from adopting horizontal as a standard.

The factors favoring horizontal have been predominant on 50 Mc ., and today we find it the standard for that band, except for emergeney uet operation involving mobile units. The slight advantage it offers in D. work has accelerated the trend to horizontal on 144 Me. and higher binds,

though vertical polarization is still widely used.
The picture on 220 Mc . is still confused, the tendency being to follow the local $144-\mathrm{Mc}$. trend. Most 420-Mc. work is heing done with horizontal. The newcomer to the v.h.f. hands should ascertain which is in gencral use in the areas he expects to work, and go along with the others in those areas. In setting up activity where there is no operation presently, it is recommended that horizontal polarization be used, primeipally as a step) toward much-needed standardization.

IMPEDANCE MATCHING

Becathe line lossos increase with frequency it is important that v.h.f. antenna systems be matehed to their transmission lines carefully. lines commonly used in v.h.f. work include open-wire, usually $f(0)$ to (0 (o) ohms impedance, spaced one to two inches: polyethyleme-insulated flexible lines, available in 300,150 and 72 ohms imper ance: and coasial lines of 50 to 90 ohms impedance. some of the methods hy which these maty be used to feed antemats of differing impedance are given below.

The "J"

Ised manly for feeding a vertical radiator

rif. 18-2-De. tails of the folded dipole.
with balanced or coaxial line. The " J " is useful in 144 -. Mc. mohite applications, usually in the form shown in Fig. 18-1 B.

The Delta or "Y'' Match

A simple arrangement for feeding a dipole, either alone or as part of a parasitic array, is the delta or " Y " mateh, in which the line is fanned out and attached to the radiator at the points where the impedance along the element equals the line impedance. Dimensions for v.h.f. applications can be figured from data in the transmis-sion-line chapter. Its chief weakness is the likelihood of radiation from the matching section, which may impair the effectiveness of a multielement array.

The "T" Match

The principal disadvantages of the delta sustem can be overcome through the use of the "T" match, also detailed in the tranmission lines
chapter. It provides a means of adjustment, by sliding elips along the parallel conductors, yet the radiation from the matching section is negligible because of its close proximity to the main element. Its rigid construction is well suited to rotatable arrays. Because the matehing is adjustable, the dimensions of the "T" section are not particularly critical. The system may he used with any halanced line, including a pair of coaxial lines, the outer conductors of which maty be honded together and grounded.

The Folded Dipole

A flexible means of matching a wide range of antenna impedances is the folded dipole, shown in its simplest form in Fig. 18-2. When made of uniform conductor size the imperdance at the feed point is equal to the square of the number of elements in the folded dipole. Thus, the example of Fig. 18-2 has a feed-point impedance of 4×72, or approximately 288 ohms, making it at good mateh to 300 -ohm line. A 3 -wire dipole steps the impedance up! 9 times.

Greater step-up can be obtained by making the fed portion of the dipole smaller in diameter than the solid portion. The spacing of the conductors affects the step-up in this case. Condurtor ratios and spacings can be derived from the foldeddipole monogram in the transmission lines chapter. 'This principle is applied in the telement array of Fig. 18-6.

The Gamma Match

A simple device for feeding parasitic arrays with a single coaxial line is shown in Fig. 18-3. Known as the gamma mateh, it is a modification of the "T" system for unbalanerd lines, well adapted to feeding arrats of all-metal construction. With the latter, the outer conductor of the coasial line maty be grounded to the metal boom, or to the center of the driven element. The inner conductor is then connected to a matehing seetion, usually provided with a sliding elip for varying the point of connection to the driven element. The effectiveness of the system is improved if a condenser is connected in series with the gamma section, to tune out its reactance, as shown in Fig. 18-3. This should be mounted in a weatherproof box, which may be of metal and attached to the boom, or to the center of the driven element. A standing-wave bridge should be connected in the coanial line, and the point of connection between the driven element and the matching section varied, readjusting the series condenser each time until minimum s.w.r. is ob-

Fig. 18-3-Schematic version of the gamma match. Values for C and D are given in the text.
tained. The distince out from the efonter of the driven element will be athout 10 ind hes for at Ma. and t inehes for $14 t$. Ther maximum raparitanere

 oprating fre fuctory.
rectuired at C will he about ${ }^{-5}$ and $25 \mu \mu \mathrm{fd}$. respecetively. The ref. voltage is low at this point so :a rociving-type variable condenser may be used.

The Balun

Balaneod loads such as are presented by a split dipole or folded dipole can be fed properly with consial line ouly if some form of hataned-tounbalaned coupler (often called balun) is used at the feed point. Dotails of the various types of batuns may be found in the transmission lines chapter. One of these provides a 1 -to- -1 impedane step-up, in addition to conversion from unbalanced line to babaned load.
The conversion may also be acomplished with a balanerd rireuit, link coupled to the coaxial line, as in Fig. 18-4. The bataned lowd is tapped onto the tuned circuit at the proper impedance points, in this case. Such a circuit can be in the array itsalf, or at any point between the transmitter and the antemna where such a eonversion is convenient.

Fig. $18-\mathrm{j}$ - Collinear array far 141 Mr. made of I'I ground wire monted on a $11 / 2+i n$ h rug pole.

The ' Q ' Section

A quarter-wavelength of lime known as a " Q " section may be used to match a low conter impedance to a higher value of line impedanee, as described in the transmission lines chapter. This may take the form of two pieces of tubing, $1 / 2$ to 1/4 ineh in diameter, mounted so that their center-to-center spating can be varied to achieve an impedance mateh between the antema and the line, where the antemna imperdanee is not preris ly known in advance. Lower values of "(?" seretion impedance than ore available with tubing sizes can be made from lengths of insulated wire, or even coaxial line. The length of the "()" seetion will take into account the propagation factor

Fia. 1800 - Dimpnsional drawing of a 1 - element 50 . Mc. array, likment longth and spacing were derived ex. promentally for maximum forward gain at 50.5 Wc .
of the line, where such insulating materials are usicd.

In some installations it may be convenient to use " Q " seetions longer that a single quarter wavelength, in which rase any odd multiple of a quarter wavelength may be employed. The exaet length for any such section may be determined by coupling the line to a souree of r.f. energy of the proper frectueney and trimming the line for maxi-

TABLE 18-I
Dimensions for V.H.F. Arrays, in Inches

Freq. (1/r.)	50	1.11	200	$1: 0$
Jriven Elemrat	110	38	2.178	123/4
Keflector	116	11.	$261 / 8$	133/8
$\begin{aligned} & \text { l=t } \\ & \text { \| Irector } \end{aligned}$	10.5	36	$235 / 8$	121/8
2 nd I Direelor	103	353/4	2338	12
Phasing Scelion*	114	391/2	2.5,8	131/4
11.25 Wavelongth	37	1034	1.3	65/8
$\begin{aligned} & 0.2 \\ & \text { Wavelength } \end{aligned}$	46	153/4	103/8	53/8
0.15 Wavelength	34	$113 / 4$	73/4	4

[^9]mum loating. Such a " ($)$ " section is oftern used as the flexible portion of a line feeding a rotatable array, to make connection from the array to a fixed transmission line anchor point at the top of the supporting tower.

Where it is desirable to repeat the antenna impedance at the anchor point, a sertion of flexible line any multiple of a half wavelength may be used.

ANTENNA SYSTEMS FOR 50 AND 144 MC.

The designing of $v . h . f$ array is both a merehanical and electrical problem. The electrical principles are basir, but a very wide range of meechanical ideas may be used, and the form that an array will take is usually dietated by the materials that are available Most v.h.f. arrays can be built to formula dimensions given in Table 18-1. The driven element is usually eut from the formula:

$$
\text { Leuglh (in inches) } \quad \frac{5540}{\text { F'req. (.lle.) }}
$$

Reffector elements are usually 5 per cent longor than the driven element. Directors are is per eent shorter, for the one nearest the driven element, and 6 per eent shorter for the next.

Fig. 18-7 - Wrtail drawing of inserts which may be used in the ends of the elements of a parasitic array to permit accurate adjustment of element length.

Parasitic element spacing from the driven element is usually 0.15 to 0.25 wavelongth for a reflector, and 0.2 or more for directors. The closer the elements are spaced, the lower will be the feed impedanee of the drivern element. ('lose-spared arrays are generally more difficult to tune up properly, and the frequency range over which they work is sharper, so they are seldom used in v.h.f. work.

Dements for 50 Me . are usually $1 / 2$ to 1 inch in diameter: $1+4-$ Me. clements $1 / 4$ to $1 / 2$ inch; 220and $420-$ Mc. clements $3 / 8$ inch or less.

A Collinear Array for 144 Mc.

Where some gain over a dipole is meded, yet dircetivity is undesirable, several half-wave clements maty be mounted vertically and foed in phase, as shown in Fig. 18-i). The photograph shows three half-wave elements, but five may be used in a similar way. The center eloment is fed at its midpoint, eithor directly with 300 -ohm Twin-ladd, or through a " Q " section, The two end elements are kept in phase with the center one by folded half-wave sections.

The array of Fig. 18-5 is built on a $11 / 2$-inch

 all-metal eonstrmetion methods ontlined in Figs. $18-11$ to 18-13, The 4 -clement array for 50 Mc. below is also all-metal design.
wooden rug pole, using aluminum TV ground wite for the clements and phasing sections. Inexpensive TV screw-eve insulators are used to support the clements, with the exception of the supports at the element ends. At these points better insulation is desirable, so ceramic pillars are used.

Two 117 -inch pieces of wire or tubing are needed. The end elements are 38 inches long, the folded sections 40 inches over all, and the quarterwave portions of the midelle dipole are 19 inches. The " Q " section, if used, is 20 inches long. The phasing and "(?" sections are bent around into loops, as shown in the photogriph. If the arraty is fed with 300 -ohm line the "($?$ " seetion maty bo omitted without serious mismateh. With openwire line, a "(Q" section made of the cloment material, spaced about one inde, gives a good mateh. The spacing may be adjusted for mininum s.w.r.

A 4-Element Array for 50 Mc .

The array of Fig. 18-6 uses dimensions derived for maximum gain at 50.5 Mc. It will work well over the range from the low end of the band to ne:arly 52 Me. If wider frequeney response is clesired, the driven element should be cut to the formula given above for the desired center frequency, and the reflector made slightly longer and the directors somewhat shorter than the dimensions given. The driven element is a folded dipole of nonuniform conductor size, stepping up the impedanere so that the array ean be feel with 300-ohm line. A B-element array of similar dimensions eould be matehed with a 3 -to-1 ronductor ratio, instead of $4-t 0-1$. The boom maty be of metal or wool. The 50-Me array shown in

Fig. $18-9$ - Schematic drawing of a 16 element array. A variable "(V)"etion may be inserted at the feed point if arcurate matching is desired. Reflector spacing is 0,2 wavelength.

Fig. $18-8$ uses 0.15 -wavelength sparing for the reflector and 0.2 for the directors, resulting in slightly less gain than the wider spacing, but allowing eonsiderably more compact construction.

Most v.h.f. arrays are erected to formula dimensions. but if the builder wishes to do so he may tume the array for optimum front-to-back ratio or forward gain. Adjustable inserts for tubing elements may be made by cutting short sertions of the clement stock lengt hwise and insertrige these extensions in the ends of the elements as shown in Fig. 18-7.

Stacking Parasitic Arrays

The radiation angle of a v.h.f. antenna sustem ean be lowered and worthwhile gain obtained by stacking two parasitic arrays one above the other and feeding them in phase. The horizontal pattern of a vertically polarized array may be sharpened and gain added by mounting two arrays side by side and phasing them in the same way. The physical spacing between the two arrays is usu-alli- $\frac{1}{2}, s^{\prime}$ or 1 wavelength, deperding on the phasing method used. Stacked arrays are usually fed at the center of the system to insure uniform current dist ribution between the driven elements.

In stacking $50-M e$ arrays the phasing line is usually 0.5 wavelength long. If the two arrays were set up originally for 300 -ohm feed when used separately, the phasing line, which serves as a double " Q " section, should have an impedance of about 380 ohms, if the main transmission line is to be 300 ohms. No. 12 wires spaced one ineh apart make a convenient phasing line. The gain of
two arrays stacked 0.5 wavelength apart is approximately 4 db. over that of a single array.

Slightly more gain can be obtained by increasing the spacing to 5 s wavelength. A phasing line for this spacing maty be made of two pieces of coaxial line, with the outer conductors connected toget her and grounded, if desired. Because of the propangation factor of the coasial line, surh a phasing sertion is clectrically a full wavelength long. The impedaner at the midpoint betwern the two arrays is appoximately half that of one array atone.

For I 44 Mc. and higher, where the dimensions are within practical limits, the spacing between two stacked arrays may be increased to a full wavelongth. This wide spacing is recommended only for arrats having three or more elements, and is most commonly used with z-edement arrays. The phasing line may be open wire, of any converiont wire size and sparing, and the impedaner at the midpoint betwern the two arravs will be half that of one array alone. A "($)$ " section at the feed point is a convenient method of matehing such a "5-over-s") array. Its dimensions will depend on the type of dipoles used in the individual arrays.

Phased Arrays

Superior performance is obtainable on 144 Me. and higher by using curtains of $4,6,8$ or more driven half-wave elements, arranged in pairs fed in phase, and backed up by reflectors. Figs. 18-8 and 18 -9 show a 16 -element array, while $18-10$ is a 12 -年ement array of similar design. The gains are about 14 db . for the 1 ti-clement and 12 db . for the 12 -element. They maly be used for eithor horizontal or vertical polarization. The pattern of the 12 -element is similar in both plimes.

The elements used in the 16 -element array shown in the photograph are $1 / 4$-inch diameter dural, mounted in the manner shown in Pigs. 18-11 and 18-12. The entire structure is of metal; the supports being at the low-voltage point of the elements, no insulation is required. The supporting structure for a 12 element arrat of similar

Fig. 18.10- Vlement arrangement and feod syatem of the 12 -element array. Iheflectors are spaced 0.15 wavelength behind the driven elements.
design is shown in detail in Fig. 18-12, with the clamps for holding the array together made as shown in Fig. 18-13.

Element lengths as spacings are not partieularly critical in arrays having many driven chemonts, and careful adjustment is not required for good results. The freguence response of these systems is broader than is the case in arrays where the gain is built up be the use of directors as well as reflectors. Wither the 12- or l6-element arras

Fig. 18-11 - Monlel showing the method of assembling for all-metal constrution of phased arrays. Dimensions of dampe are given in lig. 18.13,
mase be fod with 300 -ohm line conneeterl at the eenter of the system, as shown in the sketehes. The reflectors in the 12 -eldement array are spaced only 0.15 wavelength in back of the driven elements, in order to bring the feed impedance down to roughly 300 ohms. In the 16 -ilement array 0.2 -wavelength spacing is used for the reflectors, and ewon so, the feed impedance may be somewhat lower than 300 ohms. If a long feedline is neeressary it may be desirable to insert a variable "()" section at the feed point, in order to insure accurate matehing for minimum s.w.r. In the litelement array shown in the photograph, a "Q" section having an odd number of guarterwavelengths of 300 -ohm Twin-Lead is used to match the center impedance of around 200 ohms to the 4.50 -ohm open wire line used for a 100 -foot run to the operating position,

In all-metal construction it is important that the supporting structure be entively in bark of the reflector plane 'This can be done readily be using the elamp method of assembly detaled in Figs. 18-11, 18-12 and 18-1;3 Dimensions given in Fig, 18-13 are for use with the tubing sizes given in Fig. 18-12. suitable dimensions for other combinations can be worked out readily by making experimental elys from soft sheet copper, and using the se for templates in making the elips to be used in the final assembly When the array is completely assembled the serews holding it together should be drawn up as tightly as possible and then coated with durable lacquer or paint to prevent corrosion.

Long-Wire Antennas

Where long-wire systems designed for use on lower frequencies are available they may often be used on the r.h.f. bands with good results, particularly if the feed lines are not tow long. "f" and rhombic anternat sestems dosigned expressly for the v.h.f. hands are small enough in size to be used in many loseations where similar arrays for lower frequeneres would be out of the question. The polarization of longwire systems is normally horizontal, but in locat tions where they have a downward slope they may also have a considerable vertical eomponent. Their polarization discrimination is seldom as sharp ats that of stistems using half-wave elloments.

Information on the various types of longwire arrays will be found in an earlier chapter. At $14 t$ Me. and highor it is relatively ease to stark two or more "l"" of rhombie arrays a half wave apart. This improves their performance eromsiderably, but makes them essentially one-band devires.
Matehing devices that permit foerling longwire antenna systems with flat lines also introduce one-band limitation, so their use is not advisable except in the case of 50 and 14 Mr ., two bands that are elose to third-hamonic rolationship. A "Q" section that is approximatoly. three quarter-wavelengths long at 14 Mc . is one ruarter-wavelength long at 50 Mc., so it the feed impedance of the antenna system is the same for both frepuencies a " Q " section about

Fig. 18.12 - Supporting frameworh for a 12 -element 111-Mr. array of all-metal design. Dimensions are as follows: element supports (1) $3 / 4$ by 16 inches: horizontal members (2) $3 / 4$ by 40 inches; vertical members (3) $3 / 4$ by 86 inches; vertical support (1) $11 / 2$-inch diameter, length as required; reflector-to-driven-element spacing ID inches, l'arts not shown in sketch: driven elements $1 / 4$ by 38 inches; reflectors $1 / 4$ by 10 inches; phasing lines No, 18 spaced 1 inch, 80 inches long, fanned out to $31 / 2$ inches at driven elements (transpose each halfwave section).

Fig. 18-1.3- Detail drawings of the elamps used to assomble thr all-metal 2-meter array. A, B and C are before bending inte "t" shaper "ther risht-ansle burnds should be made first, along the dotted lines as shown, then the plates may be hent around a piece of pipe of the proner diameter. Sheet stock should be $1 / 16$-inch or heavier aluminum.

58 inches long may be used for both bands. In the case of a thombie terminated in 800 olms and fed with 300 -ohm line. the matehing serotion should have an impedance of about 500 ohms.

- ARRAYS FOR 220 AND 420 MC.

The use of high-gain antemna systems is almost a neressity if work is to be done over any great distance on 220 and 420 Me. Experimentation with antemat arrays for these frefurnemes is fascinating indond, as their size is so small as.to pormit truing various clemont arrangements and ferd systems with case. Arrass for 420 Mc., particularly, are convenient for investigation and demonstration of antenna principles, as even high-gain systems may be of table-top proportions.

Any of the arrus described previously may be used on these bands, but those having large numbers of driven elements in phase are more readily adjusted for maximum effeetivenoss. The 12and 16 - l ement arrays of Figs. 18-9 and $18-10$ arm well adapted to usi on 220 or 420 . suitable dimonsions may tre found in Table 18-1.

A 16 -dement array for 220 Mc . and a $24-$ plement array for 420 Me. are shown mounted bark-to-bark in Fig. 18-14. The 220-Mre, portion follows the 1 figedement design already deseribed. It is fed at the conter of the system with 300-ohm tubular Twin-Lead, matehed to the center impedanere of the array through a " $(2$ " section of 7/16-inch tubing, spaced about $11 / 2$ inches conter to conter. This sparing was aljusted for minimum standing-wave ratio on the line.

Elements in the array shown are of 7, in-inch aluminum furt-line tubing, which is very light in weight and easily worked. The supporting struc-
ture is dural tubing, using the clamp assembly methods of Fig. 18-12.

The $420-\mathrm{Mr}$. array uses two 12 element assomblies similar to Fig. 18-10, mounted one above the other, about one half wavelength separating the bettom of one from the top of the other. The two sets of phasing lines are joined by means of one-wawlength sections of Twin-Lead at the midelle of the array. This junetion, which has an impedance of around 150 ohms, is fod with $300-$ ohm tubular Twin- S_{f} ad through an adjustable "()" seetion.

Elements in the 420-Mc. array are cut from thin-walled $1 / 4$-inch tubing. Their supports are the $7 / 16$-inch stock used for the 220 - Me, elements. Slots were rut in the emds of these supports to take the elemonts, and a $4 / 40$ screw was run through both pieces and drawn up tightly with a mut. The horizontal supports wre fastened in holes drilled in the vertical members, and were also held in place with a $6 / 32$ screw and nut. The small size and light weight of the 120-Mc. array did not roquire the use of clamps to make a strong assemhy.

The two one-wavelength sections of 300 -ohm line are $213 / 4$ inches long, taking the propagation factor into aceount. The "()" section may be of any convaniont size of tubing, $1 / 4$ to $1 / 2$ inch diameter. It should be made adjustable, as matching is important at this frepuence. Dinensions for both arravs can be taken from Table 18-I.

Plane-Reflector Arrays

At 220 Mre, and higher, where their dimensions berome practicable, plane-reflector arrays are widely used. Wxeept at it afferets the impedanere of the system, as shown in Fig. 18-15, the spacing betweon the driven cloments and the roflecting plane is not particularly critical. Maximum gain oecurs around 0.1 to 0.15 wavelongth, which is also the region of lowest impedance. Ilighest impedaner appears at about 0.3 wavelength. A plane reflector spaced 0.22 wavelength in back of the driven dements has no dffect on their feed imperdance. Is the gain of a planereflector array is nearly constant at sparings from 0.1 to 0.25 wavelongth, it mas be seon that the spacing may be varied to achocve an impedance match.

In advantage of the phate reflector is that it may be used with two driven element systems, one on earh side of the plater providing for twoDand oprotation, or the incorporation of horizontal and vertical polarization in a single structure. The gain of a plane-reflector array is slightly higher than that of a similar number of driven clements bateked up be parasitic reflectors. It also hats a broader frectueney response and higher front-to-back ratio. To achieve these conds, the reflecting plane must be larger than the area of the driven elements, extending at least a quarter wavelength on all sides. Chicken wire on a wood or metal frame makes a goorl plane reflector. (losely-spated wires or rods may be substituted, with the spacing betwern them running up to 0.1

Fig. 18-1.1- A 24efement array for 120 Mr, and a 16 clement for 220 mounted back-lo-bach on a single support.
wavelength without appreciable reduction in effectiveness.

Corner Reflectors

In the corner reflector two plane surfares are sot at an angle, usually between to and !o degrees, with the antema on a line bisecting this angle. Maximum gain is obtained with the antenma 0.5 wavelength from the vertex, but eompromise designs can be built with closer spaceings. There is no focal point, as would be the ease for a
parabolic reflector. Corner angles greater than 90 degrees can be used at some sacrifice in gain. At less than 90 degrees the gain increases, but the size of the reflecting sheets must be increased to realize this gain.

It a sparing of 0.5 wavelength from the vertex, the impedane of the driven element is approximately twier that of the same dipole in free spare. The impedaner decreases with smaller spacings and corner angles, as shown in Fig. 18-15. The
 angle, 0.5 wawdength sparing and sides I wavelongth long is approximately 10 dh . Principal advantages of the corner reflector are broad frequencer response and high front-to-back ratio.

- MISCELLANEOUS ANTENNA SYSTEMS

Coaxial Antennas

With the "J" antemm, radiation from the matrhing section and the transmission line tends to combine with the radiation from the antemat in such a way as to raise the angle of radiation. At v.h.f. the lowest possible radiation angle is essential, and the coaxial antemat shown in litg. 18-1t; was devoloped to eliminate foeder radiation. The erenter conductor of a 70-ohm concentric transmission line is extended one-gutarter wave beyond the end of the line, to art as the upper half of a half-wave antemna. The lower half is provided by the quarter-wave sleeve, the upper end of which is connerted to the outer eonductor of the conerntric line. The sleeve ade s as a shied about the transmission line and very little current is induced on the outside of the line by the antemnat field. The line is non-resonant, sinee its wharacteristice impedanere is the same as the center imperdane of the half-wave antenna. The sleeve maty be made of copper or brass tubing of suitable diameter to clear the transmission lime. The eoaxial antenna is somewhat diffent to construct, hut is superior to simpher systems in its performance at low radiation angles.

Fig. 18.15-Feed impedanee of the driven element in a corner-reflector array for corner angles of 180 (flat sheet $), 90,(60$ and 45 degrees. " 1 " $"$ is the dipole to vertex spacing.

Fig. 18.16-Coavial antemna. The insulated inner conductor of the Slohma romentric line is connereded to the quarter-wavemetal rod which forms the upper half of the athtorna.

Broadband Antennas

Certain types of antemnas used in television are of interest because they work across a wide band of frequencies with relatively uniform response. At very-high freguencies an antenna made of small wire is purely resistive only over a very small frequency range. Its Q, and therefore its selectivity, is sufficient to limit is optimum performance to a narrow frequency range, and readjustment of the length or tuning is required for each narrow slice of the spectrum. With tuned transmission limes, the effective length of the antema can be shifted by retuning the whole system. However, in the case of antennas fed by matched-impedance lines, any appreciable frequency change requires an actual nechanical adjustment of the system. Otherwise, the resulting mismatch with the line will be sufficient to cause significant reduction in power input to the antenna.

A properly designed and constructed widdband antema, on the other hand, will exhibit very nearly constant input impedance over several megacyeles.

The simplest method of obtaining a broatband characteristic is the usc of what is termed a "erlindrimal" antoma. This is no more than
a conventional doublet in which large-diameter tubing is used for the elements. The use of a rulatively large diameter-to-length ratio lowers the Q of the antenna, thus broadening the resonance characteristic.

As the diameter-to-length ratio is increased, end efferts also increase, with the result that the antenna must be made shorter than a thinwire antemat resonating at the sime frequence. The reduction factor may be as mueh as 20 per went with the tubing sizes commonly used for amateur antrmas at v.h.f.

Cone Antennas

From the eylindrical antemat various spocialized forms of broadly-resonant radiators have been evolved, indluding the ellipsoid, spheroid, cone, diamond and double diamond. Of these, the conical antemm is perhaps the most interesting. With large angles of revolution, the variation in the characteristic impedance with changes in frequeney can be reduced to a very low value, making such an antenna suitable for extremely wide-hand operation. The cone may be made up either of sheet metal or of multiple wire spines. A variation of this form of conical antonna is widely used in TV reception.

Parabolic Reflectors

I plane sheet may be formed into the shape of a parabolie curve and used with a driven radiator situated at its focus, to provide a highlydirective antenna sustem. If the parabolie reflector is suffieiontly large so that the distance to the foral point is a number of wavelengths, optical conditions are approathed and the wave arross the mouth of the reflector is a plane wave. However, if the refleetor is of the same order of dimensions as the operating wavelength, or less, the driven radiator is appreciably coupled to the reflecting sheet and minor lobes ocrur in the pattern. With an aperture of the order of 10 or 20 wavelengths, sizes that maty be practical for microwave work, a beam-width of approximately 5 degrees may be achieved.

A reflecting paraboloid must be carefully designed and constructed to obtain ideal performance. The antema must be located at the foral point. The most desirable focal length of the parabola is that which plawes the radiator along the plane of the mouth; this langth is equal to one-half the mouth radius. At other foral distances interference fields may deform the pattern or cancel a sizable portion of the radiation.

U.H.F. and Microwave Communication

In moving into the microwave region the amateur eneonnters marked difforenees in both the teehnical approach and the uses to which his frequence assigmments may be put. Above 1000 Me. Wrembst discard mosi of our conventional circuitry and antoma ideas. ('oils and condensers ate replaced by resonant cavities, Paral-lel-wire transmission lines give way to coaxial lines or waveguide. Parasitic arrays are abandoned in favor of parabolic reflectors or horns. Aud in contrast to the random operating that has been so large a part of the amateur picture on our communication frequencies, microwave work is principally a matter of point-to-point communiration betwern two eooperating siations.

These basie differeneres have tended to raise a natural boundary in the region around s 00 Me ., beyond which relatively few communicating amaterurs have ventured. The frequencies at the high end of the speetrum have a strong appeal to the
experimenter, however, and new rlasses of liconses, now under discussion, are experted to provide the means whereby this type of worker may legally engage in two-way communication.

At least some amateur work has been done in all the assignments now open to our use. The work of these pioneers in adapting the frequencies above 1000 Mc . to communication purposes has been in line with the best amateur tradition, and it is hoped that the bands beginning at 1215 Me. will see much amateur exploration in the near future. The frequencies assigned to amateors in the microwave region are as follows: 1215 10 1300 Me., 2300 to $2450 \mathrm{Me}, 3300$ to 3500 Mr ., 5650 to 592 :5 Me., 10,000 to $10,500 \mathrm{Me}$, and 21,000 to $22,000 \mathrm{Mc}$. Any frecuency above 30,000 Mc. may be used. Any type of emission may be used in any of these hands, except in the case of the lowest, where pulse transmission is prohibited.

U.H.F. Tank Circuits

In resonant circuits as emploved at the lower frepucmerdes it is possible for consider cath of the reactance components as a separate entity. A coil is ued to provide the reguired inductance and a rondenser is comected across it to provide the needed capacitance. The fact that the coil itwolf has a certain amount of self-capacitance, as well as some resistance, while the condenser also possesses a small self-imductance, rath usuatly be dissegarded.

At the very-high and ultrahigh frequencies, however, it is no longer possible to separate these eomponents. The eonnecting leads which, at tower frequencies, would serve merely to join the condenser to the coil now may have more inductance than the coil itself. The required inductance eoil may be no more than a single turn of wire, yet even this single turn may have dimensions comparable to a wavelength at the operating frequencs. Thus the energy in the field surrounding the "coil" may in part be radiated. At a sufficiently high frequency the loss by radiation mate represent a major portion of the total energy in the circuit. Since energy which cannot be utilized as intended is wasted. regardless of whether it is consumed as heat by the resistance of the wire or simply radiated into space, the effect is as though the resistance of the tuned rireuit were greatly increased and its Q greatly reduced.

For this reason, it is common practice to utilize resomant sertions of transmiswion tine as tuned circuits at frequencies above 100 Me . A quarter-wavelength line, or any odd multiple theroof, shorted at one end and open at the other, exhibits large standing wares. When a voltage of the frequency at which such a line is resonant is applied to the open emd. the response is very similar to that of a parallel resonant eircuit; it will have very high input impedance at resonance and a large current flowing at the short-circuited end. The input impedance may be as high as 0.4 megohm for a well-onstructed line.

The action of a resonant quarter-wavelength line can be compared with that of a coil-andcondenser combination whose constants have been adjusted to resonance at a corresponding frequence. Around the point of resonance, in fact, the line will disphy very nearly the same characteristics as those of the tuned circuit. The equivalent relationships are shown in Fig. 19-1. At frequencies off resonance the line displays qualities comparable to the inductive and capacitive reactances of the coil-andcondenser circuit, although the exact relationships involved are somewhat different. For all practical purposes, however, sections of resonant wire or transmission line can be used in muth the same manner as coils or condensers.

In circuits operating above 300 Mc., the spacing between conductors becomes an appreciable fraction of a wavelength. To keep the radiation loss as small as possible the parallel conductors should not be spaced farther apart than 10 per cent of the wavelength, center to center, On the other hand, the spacing of large-diameter conductors should not be reduced to much less twice the diameter because of what is known as the proximity effect, whereby another form of loss is introduced through eddy currents set up by the adjacent fields. Because the cancellation is no longer complete, radiation from an open line beeomes so great that the Q is greatly reduced. Consequently, at these frequenties coaxial lines must be used.

Construction

Practical information coneorning the construction of transmission lines for such specific usis as foeding antennas and as resomant cireuits in radio transmitters will be found in this

Fif. 19-1-Equivalınt coupling circuits for parallelline, conasial-line and conventional resonant circuits.
and other ehapters of this Mamibook. Certain basic considerations applicable in general to resonant lines used as cirenit coments may be considered here, however.

While either parallel-line or coaxial sections may be used, the latter are preferred for higherfrequeney operation. Representative methods for adjusting the length of such lines to resonance are shown in Fig. 1!)-2. At the left. a sliding shorting disk is used to reduce the effective length of the line by altering the position of the short-rireuit. In the center, the same effert is accomplished by using a telescoping tube in the end of the immer condurtor to vary its length and thereby the effertive length of the line. At the right. two possible methods of momnting parallel-plate condensers, used to tune a "foreshortened" line to resonance, are illustrated. The arrangement with the loading capacitor at the open end of the line has the greatest tuaing effect per unit of capacitance; the alternative method, whieh is equivalent to "tapping" the condenser down on the line, has less effect on the Q of the circuit. Lines with capacitive "loading" of the sort illustrated will
be shorter, physically, than an unloaded line resonant at the same frequency.

The short-circuiting disk at the end of the line must be designed to make perfect electrical contact. The voltage is a minimum at this end of the line; therefore, it will not break down some of the thimest insulating films. Lsually a

Fig. 19-2 - Methods of tuning coaxial resmant lines.
soldered connection or a tight clamp is used to secure good contact. When the length of line must be readily adjustable. the shorting plug is provided with spring collars which make contact on the inner and outer conductors at some distance away from the shorting plug at a point where the voltage is sufficient to break down the film between the collar and conductor.

Two methods of tuning parallel-conductor lines are shown in Fig. 19-3. The sliding shortcircuiting strap can be tightened by means of screws and nuts to make good electrical contact. The parallel-plate condenser in the second drawing may be placed anywhere along the line, the tuning effect becoming less as the condenser is located nearer the shorted end of the line. Although a low-capacitance variable condenser of ordinary construetion can be used, the circular-plate type shown is symmetrical and thus does not unbalance the line. It also has the further advantage that no insulating material is reguired.

Fig. 19-3 - Mrthods of tuning paralleltype resnoant lines.

Equivalent impedance points, for coupling or impedanee-transformation purposes, are shown in lig. 19-1 for parallel-line, coaxial-line, and conventional coil-and-condenser cirenits.

Lumped-Constant Circuits

At the very-high frequencies the low values of L and C required make ordinary coils and condensers impracticable, while linear circuits offer mechanical difficulties in making tuning adjustments over a wide frequency range, and radiation from unshielded lines may reduce their effectiveness materially.

To overcome these difficulties, special high- Q
lumped-constant circuits have been developed in which connections from the "condenser" to the "coil" are an inherent part of the structure. Integral design minimizes hoth resistance and inductance and increases the ('/L ratio.

The simplest of these circuits is based on the use of disks combining half-turn inductance loops with semidiroular condenser phates. By connecting several of these half-turn coils in parallel, the effective inductance is redured to a value appreciably below that for a single turn. Tuning is accomplished by interleasing grounded rotor plates between the turns. Both by shielding artion and short-circuited-turn effect, these further reduce the indurtance.

Anothar type of high-C circuit is a singletum toroid, "ommonly termed the "hat" resonator. Two copper shells with wide, flat "brims" are mounted faring each other on an axially-aligned ropper rod. The rapateitature in the circuit is that between the wine shells, while the entral rod comprises the induetance.

"Butterfly" Circuits

The tank circuits deseribed in the procoding sertion are primarily fixed-frequency devieres. The "hutterfly" eircuits shown in Fig. 19-t are eapable of being tuned wor an exceptionally wide range, while still having high () and reasonable physioal dimensions. The eirenit at a is derived from a monventional bataneed-type variable condenser. The induetance is in the wide circular band connerting the stator phates. At its minimum setting the rotor plate fills the opening of the loop, reducing the indurtance to a minimum. C'onnections are made to points 1 and 2. This basie structure eliminates all connecting loads and avoids all sliding or wiping electrical contacts to a rotating member. A disadvantage is that the electrical midpoint whifts from point 3 to point 3^{\prime} as the rotor is turned. Constant magnetic coupling may be obtained by a coupling loop located at point 4 , however.

In the modification shown at D, t wo sertoral stators are spared 180 degrees, thercby achicr-

Fig. 19-4 - "Butterfly" tank circuits for v.h.f., showing front and eross-sertion views and the eduivalent circuit.
ing the dectridal symmetry required to permit tapping for balancod operation. Connections to the cireait should be made at prints 1 and 2 and it may be tapped at points 3 and 3^{\prime}, which are the clectrical midpoints. Where magnetie coupling is employed, points $\left\{\right.$ and 4^{\prime} are suitablo lowations for compling links.

The eaparitance of any butterfly circuit may be computed by the standard formula for parallel-plate eondensers givenin the dita chapter. The maximum induetanere can be obtained approximately hy finding the inductance of at full ring of the same diameter and multiplying the result by a factor of 0.17 . The ratio of minimum to maximum inductance varios between 1.5 and 4 with conventional constrution.

Any number of butterfly secetions may be connoeted in parallel. In pratiene, units of four to eight plates prove most satisfactory. The ring and stator seetions may bithor be made in a single piece or with separate sectoral stator plates and spacing rings assembled with machine sorews,

Wave Guides and Cavity Resonators

A wave guide is a conducting tube through which conergy is transmitted in the form of eleetromagnetic waves. The tube is not considered as carrying a current in the same sense that the wires of a two-conductor line do, but rather as a boumbery which eonfines the waves to the endosed spare. Stin effere prevents any electromagnetic effects from being avident outside the guide. The enorgy is injorted at one end, either through capacitive or inductive coupling or by radiation, and is received at the other end. The wave guide then merely confines the energy of the fiodds, which are propagated through it to the receiving end by means of reflections against its inner walls.

The difficulty of visualizing energy transfer without the usual closed circuit can be relieved somewhat by considering the guide as being evolved from an ordinary two-conduetor line.

In Fig. 19-5A, several elosed quarter-wave stubs are shown connected in parallel arross a two-wire transmission line. Since the open end of (ach stub) is equivalent to atn open circuit, the line imperdance is not affected be their presence. Bhough stubs may be added to form a "U"shaped rectangular tube with solid walls, as at 13, and another identical " [T" -shaped tube may be added edge-to-edge to form the rectangular pipe shown in Fig. 19-5C. As before, the line impedance still will not be affected. Isut now: instad of a two-wire transmission line, the energy is being conducted within a hollow rectangular tube.

This analogy to wave-guide operation is not exact, and therefore should not be taken too literally. In the evolution from the two-wire line to the closed tube the electric- and mag-netie-field configurations undergo considerable

(B)

Fig. $19-5$ - Evolution of a wave guide from a wo-wire transmission line.
tributions of electric and magnetic fields in a rectangular guide are shown in Fig. 19-6. It will be observed that the intensity of the electric field is greatest at the center along the x dimension, diminishing to zero at the end walls. The latter is a necessary condition, since the existence of any elec-
change, with the result that the guide does not actually operate like a two-conductor line shunted by an infinite number of quarter-wave st ubs. If it did, only waves of the proper length to correspond to the stubs would be propagated through the tube, but the fact is that such waves do not pass through the guide. Only waves of shorter length - that is higher frequency - can go through. The distance x represents half the cut-off wavelength, or the shortest wavelength that is unable to go through the guide. Or, to put it another way. waves of length equal to or greater than $2 x$ cannot be propagated in the guide.

A second point of difference is that the apparent length of a wave along the direction of propagation through a guide always is greater than that of a wave of the same frequency in free space, whereas the wavelength along a two-conductor transmission line is the same as the free-space wavelength (when the insulation between the wires is air).

Operating Principles of Wave Guides

Analysis of wave-guide operation is based on the assumption that the guide material is a perfect conductor of electricity. Typieal dis-

(A)

Fig. 19-6-Field distribution in a rectangular wave guide. The $\mathrm{TH}_{1,0}$ mode of propagation is depicted.
tric field parallel to the walls at the surface would cause an infinite current to flow in a perfect conductor. This represents an impossible situation.

Zero electric field at the end walls will result if the wave is considered to consist of two separate waves moving in zigzag fashion down the guide, reflected back and forth from the end walls as shown in Fig. 19-7. Just at the walls, the positive crest of one wave meets the negative crest of the other, giving complete canerllation of the electric fields. The angle of

Fig. 19. $\overline{\mathrm{i}}$ - Reflection of two emmponent waves in a rectangular guide. $\lambda=$ wavelength in space, $\lambda g=$ wavelength in guide. Direction of wave motion is perpendicular to the wave front (crests) as shown by the arrows.
reflection at which this cancellation oceurs depends upon the width x of the guide and the length of the waves; Fig. 19-7 A illustrates the case of a wave considerably shorter than the cut-off wavelength, while B shows a longer wave. When the wavelength equals the cut-off value, the two waves simply boumee back and forth between the walls and no energy is transmitted through the guide.

The two waves travel with the speed of light, but since they do not travel in a st raight line the energy does not travel through the guide as rapidly as it does in space. A further consequence of the repeated reflections is that the points of maximum intensity or wave arests are separated more along the line of propagation in the guide than they are in the two separate waver. In other words. the wavelength in the guide is greater than the free-space wavelomgth. This is also shown in Fig. 1!l-7.

Modes of Propagation

Fig. 19-6 represents a relatively simple distribution of the clectric and magnetic fields. There is in general an infinite number of ways in which the fields can arrange themsetves in a guide so long as there is no upper limit to the

U.H.F. AND MICROWAVE COMMUNICATION 425

frequency to be transmitted. Each field configuration is called a morle. All modes may be separated into 1 wo general groups. One group, designated $7 . M$ (transuerse magnetio), has the magnetic fich entirely transverse to the direction of propagation, but has a component of electric field in that direction. The ot har type, designated Tl:' (trunsuerse electric) hats the clectric fioll entirely transerse, but has a component of magnotic fiold in the direction of prophation. TVM waves are sometimes called E Waves, and $T E$ waves are sometimes called $I I$ waves, hut the $T . I$ and TE dexignations are preferred.

The particular mode of transmission is identifid by the group, letters followed by two subseript mumerals: for example. TEA, $T . M_{1.1}$. etc. The number of possible moder increases with frequencey for a given size of guide. Thore is only whe possible mode (ralled the domimat mode for the lowest frequency that can be tansmitted. The dominant made is the one wenerally used in practical work.

Wave-Guide Dimensions

In the rectangular guide the critical dimension is x in Fig. 19-5; this dimension mus: be more than one-half wavelength at the lowest frequeney to be transmited. In praclice, the ! dimenoion ustally is mathe aboll rembal to $\frac{1}{2}$ 10 a woid the possibility of oper:ation at other than the dominant mode.

Other cross-sertional supes Hath the remtangle ratn be wed, the most important being the rireutar pipe. Much the sathe eomsiderattions apply ats in the rectanghatar ane.

Waveloumth formulas for rectamgatar and circular gudes are given in the foltowing table, where x is the width of a reetangulatr suide and r is the radius of a circulan guide. All figures are in terms of the dominatit mode.

1	Reckumular	Circular
mation	1 . 6.0	$3.2 r$
Shortest wavergigh before		
noxt moxe treomes mos-		
sible.	1.1.x	$2.8 r$

Cavity Resonators

At low and mediam radio frequencies resonant eircuits usually are composed of "lumped" eonstants of L and C; that is, the inductance is concentrated in a coil and the capacitanee concentrated in a condenser. However, at the frequeney is increased, poils and condensers must be reduced to impracticably small physical dimensions. I poto a certain point this diffienalty may be owereome be using linear circuits but even these fail at extremely high frequencies. Another kind of cireuic particolarly applicable at wavelengths of the order of emtimeters is the encity resonntor, which may be looked upon as a section of a wave guide with the dimensions chosen so that waves of a given length can be maintained inside.

The derivation of one type cavity resonator from an ordinary $L C$ circuit is shown in Fig. 19-8. As in the case of the wave-guide derivation, this pieture must be areepted with some reservations, and for the same reasons.

Considering that even a st might piece of wire has appreciable inductance at very-high frequencies, it may be seen in lig. 19-8: and 13 that a direct short across a twoplate condenser with air dielectric is the equivalent of a tuncd circuit with a typical coiled inductance. With two wires between the plates, as shown in Fig. 19-8(', the eirenit may be thought of

(A)

(D)

Fig. $19-8$ - Steps in the derivation of a cavity reromator from a conventional coil-and-ondenser tuned cireuit.
as: a resonant-lime section. For de. or exen low frequency r.f., this line would appear as a short arross the two condenser plates. At the ultrahigh frequencies, however, such a section of line a quarter wavelength long would appear as an open circuit when viewed from one of the plates with respert to the other end of the sertion.

Jncrasing the mumer of parallel wites hetween the plates of the comdenser would have no effert on the equivalent cireuit, as shownat 1). Eventually, the closed figure at E will be developed. since each wire which is added in b) is like commecting inductanes in parallel. the total inductance arross the comdenser beromes increaningly smaller as the solid form is approarherl and the resonat frequency of the figure therefore beromes higher.

If romery now is introdured into the cavity in at mamer such as that shown at Fhe orernit will respond like any equivalent roil-eondenser tank cirruit at its resomant frequence. A ravity resonator may thorefore be used as a a.h.f. tuming coloment, along with a vacuum tube of suitable design, to form the main componemts of an oseillator cireuit which will be rapable of functioning at frequencies considerably beyond the maximum limits possible when converntional tuber, eoils and eondensers are emplowed.

Other shapes than the cylinder maty be used as resonators, among them the rectangular box, the sphere, and the sphere with re-entrant cones, as shown in Fig. 19-9. The resomant fre-
quency depends upon the dimensions of the cavity and the mode of oscillation of the waves (comparable to the transmission motes in a wave guide). dror the lowest modes the resonant wavelengths are as follows:

The resonant wavelengths of the relinder and square box are independent of the height when the height is less than a half-wavehongth. In other moder of oseillation the height must be a multiple of a half-wavelength as measured insith the cavity. Fig. 19-8F shows how a cylindrical cavity can be tuned when operating in such a mode. Other tuning methods include placing adjustable tuning paddles or "slugs" inside the cavity so that the standing-wave pattern of the clectric and nagnetic ficlds can be varied.

SQUARE PRISM

SPHERE

CYLINDER

SPHERE WITH reentrant cones
Fig. I 9.9 - Forms of cavity resonalors.
A form of cavity resonator in wide practical use is the re-entrant cylindrical type shown in Fig. 1!1-10. It is useful in connection with var-umm-tube oscillators of the typer described for u.h.f. use elsewhere in this whapter. In ronstruction it resembles a concentric line closed at both ends with capacitance loading at the top, but the actual mode of oscillation may differ considerably from that occurring in coasial lines. The resonant frequency of such a cavity depends upon the diameters of the two exlinders and the distance d between the ends of the inner and outer eylinders.

CROSS-SECTIONAL VIEW
Fig. 19-10 - Re-entrant cylindrical cavity resonator.

Compared to ordinary resonant circuits, cavity resonators have extremely-high Q. A value of Q of the order of 1000 or more is readily obtainable, and Q values of several thousand can readily be secured with good design and construction.

Coupling to Wave Guides and Cavity Resonators

Energy may be introduced into or abstracted from a wave guide or resonator by means of either the electric or magnetic field. The energy transfer frequently is through a roaxial line t wo methods for coupling to which are shown in Fig. 1!9-11. The probe shown at A is simply a short extension of the inner ronductor of the coaxial line, so oriented that it is parallel to the electric limes of fores. The loop shown at B is arranged so that it encluses some of the magnetic lines of fores. The point at which maximum compling will be secured depends upon the particular mode of propagation in the guide or cavity; the coupling will be maximum when the coupling device is in the most intense field.

Coupling can be varied by turning either the probe or loop through a 90 -degree angle. When the probe is perpendicular to the clectrie lines the coupling will be minimum; similarly, when the plane of the loop is parallel to the magnotic lines the coupling will have its least possible value.

Fig. 19.11-Coupling to wave gaides and resonators.

U.H.F. and Microwave Tubes

At very-high frequencies, interelectrode eapacitance and the inductance of internal leads determine the highest possible freduency to which a vacuum tube can be tuned. The tube usually will not oscillate up to this limit, however, because of dielectrie losses, grid emission, and "transit-time" "ffects. In low-frequeney operation, the acetual time of flight of clectrons bet ween the eathode and the anode is negligible in relation to the duration of the cyele. At 1000 ke, for example, tramsit time of 0.001 mierozece ond, which is typical of conventional tubes, is only $1 / 1000$ cycle. But at 100 Mc., this same
transit time representa $1 / 10$ of a cyele and a full cevele at 1000 Mr . These limiting factors estabiish about 3000 Me as the upper frequener limit for negative-grid tubes.

With tubes of ordinary eonstruction, the upper limit of oscillation is about 150 Mc . For higher frequencies, v.h.f. tubes of sperial construction are used. The "acorn" and "doorknob" types and the spectial r.h.f. "miniature" tubes, in which the grid-cathode spacing is made as little as 0.00) inch, are capable of operation up to about $700-800 \mathrm{Mc}$. The normal frequency limit is around 600 Me ., although

U.H.F. AND MICROWAVE COMMUNICATION 427

output may be obtained up to 800 Megacycles.
Very low interclectrode capacitance and lead inductance have been achieved in the newer tubes of modified construction. In multiplelead types the electrodes are provided with up to three separate leads which, when connected in parallel, have considerably-reduced effective inductance. In double-lead types the plate and grd elements are supported by heavy single wires which run entirely through the envelope, providing terminals at either end of the bulb. When a resonant circuit is connected to each pair of leads, the shonting capacitance divides between the two circuits. With limear eircuits the leads become a part of the line and have distributed rather than lumped constants. ladiation loss is minimized and the effect of the transit time is reduced, In "lighthouse" tubes or megutrons the plate, grid and cathode are assembled in parallel planes, as shown in Fig. 19-12, instead of coaxially. The uniform coplanar electrode design and disk-scal terminals permit low interelentode capacitance.

Velocity Modulation

In negative-grid operation the potential on the grid tends to reduce the electron velocity during the more negative half of the oseillation cycle, while on the other half-eycle the positive potential on the grid serves to accelerate them. Thus the electrons tend to separate into groups, those leaving the cathode during the negative half-eycle being collectively slowed down, while those leaving on the positive half are accelerated. After passing into the grid-plate space only a part of the electron stream follows the original form of the oscillation cycle, the remainder traveling to the plate at differing velocities. Since these contribute nothing to the power output at the operating frequency, the efficiency is reduced in direct proportion to the variation in velocity, the output reaching a value of zero when the transit time approaches a half-cycle.

This effect, such a disadvantage in conventional tubes, is an advantage in velocity-modulated tubes in that the input signal voltage on the grid is used to change the velocity of the electrons in a constant-current electron beam, rather than to

Fig. 19.12 - Sectional view of the "lighthouse" tube"s construction. Close electrode spacing reduces transit time while the disk clectrode connections reduce lead inductance. vary the intensity of a con-stant-velocity current flow as is the method in ordinary tubes.

A simple form of velocit y -modulation oscillator tube is shown in Fig. 19-13. Electrous emitted from the cathode are

Fig, 19.13 - Simple form of cylindrical-grid velocitymodulated tube with retarding-fidld collector and coavial-line output rircuit, used as a superheterodyne high-freguency osciltator or as a superregenerative detector. Similar tuhes can also be used as r.f. amplifiers and frequency converters in the $5-50-\mathrm{em}$. region.
arcelerated through a negatively-biased cylindrieal grid by a fonstant positive voltage applied to a slecve electrode, shown in heavy lines. This electrocle, which is the velocity-modulation control grid, consists of two hollow tubes, with a small spare at each end between the inner tube, through which the electron beam passes, and the disks at the ends of the larger tube portion. With r.f. voltage applied across these gaps, which are small compared to the distance traveled by the electrons in one half-cycle, electrons entering the tube will be accelerated on positive half-cycles and decelerated on the negative half-cycles. The length of the tube is made equal to the distance covered by the electrons in one-half cycle, so that the clectrons will be further accelerated or decelerated as they leave the tube.

As the beam approaches the collector clectrode, which is at nearly zero potential, the electrons are retarded, brought to rest, and ultimately turned back by the attraction of the positive sleeve electrode. The collector electrode is, therefore, also termed a reflector. The point at which electrons are returned depends on their velocity. Thus the velocity modulation is again translated into current modulation.

Velocity-modulated tubes operate satisfactorily up to 6000 Me , (5 cm .) and higher, with outputs of 100 watts or more.

The Klystron

In the klystron velocity-modulated tube, the electrons emitted by the cathode are aceelerated or retarded during their passage through an electric field established by two grids in a cavity resonator, or rhumbutron, called the "buncher." The high-frequency electric field between the grids is parallel to the electron stream. This field accelerates the electrons at one moment and retards them at another, in accordance with the variations of the r.f. voltage applied. The resulting velocity-modulated beam travels through a field-free "drift space," where the slowly-moving electrons are gradu-
ally overtaken by the faster ones. The electrons emerging from the pair of grids therefore are separated into groups or bunched along the direction of motion. The velocity-modulated electron stream is passed to a "catcher" rhumbatron. Again the beam passes through two parallel grids; the r.f. current created by the bunching of the electron heam induces an r.f. voltage between the grids. The catcher cavity is made resonant at the frequency of the velocity-modulated electron beam, so that an oscillating field is set up within it by the passage of the electron bunches through the grid aperture.

If a feed-back loop is provided between the two rhumbatrons, as shown in Fig. 19-14, oscillations will oecur. The resonant frequency depends on the electrode voltages and on the shape of the cavities, and may be adjusted by varying the supply voltage and altering the dimensions of the rhumbatrons. The bunched beam current is rich in harmonics, but the output waveform is remarkably pure because the high Q of the catcher rhumbatron suppresses the unwanted harmonics.

Magnetrons

A magnetron is fundamentally a diode with cylindrical electrodes placed in a uniform magnetie field with the lines of electromagnetic force parallel to the elements. The simple cylindrical magnetron consists of a filamentary cathode surrounded by a concentrie eylindrical anode. In the more efficient split-anode magnetron the eylinder is divided longitudinally.

Magnetron oscillators are operated in 1 wo different ways. Electrically the circuits are similar, the difference being in the relation between electron transit time and the frequency of oscillation.

In the negative-resistance or dyonatron type

Fig. 19.14 - Cirruit diagram of the klystron oscillator, showing the feed-back loop coupling the frequency -controlling rhumbatrons and the output loop in the catcher.
of magnetron oscillator, the element dimensions and anode voltage are surh that the transit time is short compared with the period of the oseillation frequency. Electrons emitted from the cathode are driven toward both halves of the anode. If the potentials of the two hatves are unequal. the effect of the magnetio field is such that the majority of the clectrons

Fig. 19.15-Conventional magnetrons, with equivalent schematic symbols at the right. A, simple relindrical magnetron. B , split anode negative resiatancemagnetron.
travel to that half of the anode that is at the lower potential. In other words, a decrease in the potential of either half of the anode results, in an increase in the electron current flowing to that half. The magnetron consequently exhibits negative-resistance characteristics. Nega-tive-resistance magnetron oscillators are useful between 100 and 1000 Me. I'nder the best operating conditions efficiencies of 20 to 25 per cent may be obtained. Since the power loss in the tube appears as heat in the anode, where it is readily dissipated, relatively large power-handling rapacity can be obtained.

In the transit-time magnetron the freguency is determined primarily by its dimensions and by the electric and magnetic field intensities rather than by the tuning of the tank circuits. The efficiency is much better than that of a positive-grid oscillator and good power output can be obtained even on the superhighs.

In a nonosedlating magnetron with a weak magnetic field. electrons traveling from the cathode to the anode move almost ratially, thיir trajectories being bent only slightiy by the magnetio fied. With increased magnetic field the electrons tend to spiral around the filament. their radial component of velocity being much smatler than the angular component. ['nder eritical conditions of magnetia field strength, a clond of electrons rotates about the filament. It extends up to the anode but does not athally reach it.

The nature of these clectron trajectorios is shown in Fig. 19-16. Cases A, 13 and C correspond to the nonoseillating eondition. For a small magnetic field (A) the trajectory is bent slightly near the anode. This bending increases for a higher magnetic field (B) and the electron moves through quite a large angle near the anode before reaching it, signifying a large increase of space charge near the anode. For a

U.H.F. AND MICROWAVE COMMUNICATION

strong magnetic field (C) electrons start radially from the cathode but are soon bent and curl about the filament in the form of a long spiral before reaching the anode. This means a very long transit time and a very large space charge in the whole region where the spiraling takes place. Under eritical conditions (1)), no current flows to the anode and no electron is able to move from cat hode to anode, but a large space charge still exists between the cathode and anold. The spiraling becomes a set of concentric circles, and the entire space-charge distribution rotates about the filament.

Fig. 19-16 - Flectron trajertories for increasing values of magnetic field wtrength, $I /$. Below is shown the corresponding curve of plate current, I_{a}. Oscillations commence when // reaches a critical value, $\|_{\mathrm{c}}$; progressively highererraler mondes of oscillation oecur begond this point.

Fig. 1!1-16F:, F and (; depicts higher-order (harmonie-type) modes of operation in which the space charge oseillates not only symmetrically but in transverse directions contrasting to the vibrations of the fundamental.

In a transit-time magnetron oscillator the intensity of the magnetie field is adjusted so that. under static conditions, electrons leaving the cathode move in curved paths which just fail to reach the anode. All electrons are therefore deflected back to the cathode, and the anode current is zero. When an alternating voltage is applied between the two halves of the anode causing the potentials of these halves to vary about their average positive values, the conditions in the tube become analogous to those in a positive-grid oscillator. If the period of the alternating voltage is made equal to the time required for an electron to make one complete rotation in the magnetic field, the a.c. component of the anode voltage reverses direction twice with each election rotation. some electrons will lose energy to the electric field, with the result that they are unable to reach the eathode and contimuc to rotate about it. Mcanwhile other electrons gain energy from the field and are roturned to the cathode.

Fig. 19.17-Split-anode magnetron with integral resonant anode catity for use at u. h.f.

Since those clectrons that lose energy remain in the interelectrode space longer than those that gain energy, the net effect is a transfer of anergy from the electrons to the electric field. This energy can be applied to sustain oscillations in a resonant transmission line connected between the two halves of the anode.

Split-anode magnetrons for u.h.f. are constructed with a cavity resonator built into the tube structure, as illustrated in Fig. 19-17. The assembly is a solid block of copper which assists in heat dissipation. At extremely high frequencies operation is improved by subdividing the anode structure into from 4 to 16 or more segments, the resonant ravities for each anode coupled by slots of eritical dimensions (1) the common cat hode recrion, as in Fig. 19-18.

The efficiency of multisegment magnetrons reathes 65 or 70 per cent. Slotted-anode magnetrons with four segments function up to 30.000 Me (1 cm), delivering up to 100 watts at efficiencies greater than 50 per cent. Using larger multiples of anodes and higher-order modes, performance can be attained at 0.2 cm .

Traveling-Wave Tubes

Gain as high is $2: 3 \mathrm{db}$, over a bandwidth of 800 Me. at a center frequence of 3000 Me . has been obtained through the use of a fairly-simple traveling-wave amplifier tube. Shown schematically in Fig. 19-19, the circuit consists of a helix, down which an electromagnetic wave travels. An clectron beam is shot through the helix parallel to its axis, and in the direction of propagation of the wave. When the electron velority is about the same as the wave velocity in the absence of the clectrons, turning on the electron beam causes a power gain for wave propagation in the direction of the electron motion.

Fig. 19-19 - Schematic drawing of a travelingwave amplifier tube.

The portions of Fig. 19-19 marked "input" and "output" are wave-guide sertions to which the ends of the holix are coupled. In practier two electromagnetic focusing coils are used, one forming a lens at the electron gun end, and the other
a solenoid rumning the length of the helix. The most valuable feature of the travolingwave tube is its great bandwidth. The gain is high, though the effieiemery is rather low. Typical power output is of the order of 200 milliwatts.

Amateur Microwave Technique

All the bands that have been assigned to amateurs in the mierowave region have been used for experimental two-way communieation. (omplete deseriptions of suitable equipment for all these bands is beyond the seope of this text, but examples of the technigues cmployed are shown bolow. Roforonce is made to various articles that have appeared in Qry, describing mierowave gear used by amateurs, for those who wish more details.

1215 Mc .

In this band it is possible to use a few more-or-less conventional triodes with linear circoits, though great care raust be used in designing such layouts, and the effiedeney will be very low. A transmittor for 1215 Mr ., dosigned and built by W3MIN and W"3IIFW, is shown in Figs. 19-20 - 19-22. It uses a $70: 3$ id doorkmots triode, completely shielled, with the antemna as an integral part of the assembly. The tube is mounted at the end of a halfwave line. Output is eapacitively coupled to the folded quarter-wave antenna by means of a probe mounted alongside the plate line.

It should be emphasized that eomplete shielding of the oseillating cireuit (including the tube elements) is absolutely necessary. The cireuit will not oscillate at all if the shided is removed from the grid and plate rods, and only very weakly if the tube shield is not in place. Output is only about one watt, with an input of 80 ma . at 350

Fia. $19-20-$ An oscillator and antenna system for 1215 Mc ., built as one unit. (W:3HFW - W3MLN)
volts, but two of thesio units have leeron used to commmmiode orer distaneros up to 12 mikes or so with s9 signals. The equipment is deseribed in detail by the designers in (d S $^{\prime} T$ lor April, 1948 , page 16.

Fig, 10-21-Schematic diagram of the 1215-Mc. oscillator.

Gighthouse tubes in suitably designed cireuits are more efficient at this frequency. For best results eavities should be used, though trough-line and flat-plate circuits have been used.
Parabolie reflectors are usually employed for this and higher frequencies. It is desirable to make the transmitter or recoiver an integral part of the antemna system if possible. If this camot be done, coaxial line of the shortest usable length may be used. Air-insulated line is preferred to the flexible polyethybere-insulated variety, because of the higher losses in the latter.

2300 Mc .

Most of the work on 23300 Me, has been done with lighthouse tubes in ravity oscillators, though some of the klystron tyons such as the 707l have been usod. (avities for this frequency may be a quarter wavelength, half wavelength or throw-quarter wavelength lomg.

1) otails of a half-wave cavity oseillator uning a 2 ('10 lighthouse tube are shown in Figs. 19-22 and 1!3-2:3. This oseillator was designod and built hy W2RMA. It maty loe duplicated by ans worker who has aceress to a few metal-working touls.
The main bonly of the eavity is 1 -ineh brass pipe, silver plated. The end that fitsover the tube is cut out to an inside diameter of $1 / 1 / 22$ inch, the

Fig. 19.22 - Detail drawing of the 703: oscillator for 1215 Mc .
only lathe work required. This end is also sawed crosswise at sevoral points so that it may be damped tightly to the tube with a brass stap, as seen in the photograph. Plate voltage is fed into the cavity through a feed-through capacitor mounted on the side of the tubing, and power is coupled out by means of a capacity probe and eonaxial fitting at the hot end. The cavity is tuned with a screw mounted in the end, providing a variable capacitance to the anode post.

Output, with a 250 -volt supply, will be 50 to $2: 00$ milliwatts. This sermingly smatl amount of power may be made to do vory well with the antenna gain that is possible at this frequency with a parabolic reflecter of reasonathe dimensions. Gear for 2300 . Me. is deseribed in QS'T for July, 1946. page 32, August, 1947, page 128, and February, 1948, page 11.

3300 Mc.

Lighthouse oscillators may be used on this frequeney, but it is close to the top limit of their capabilities, so better results are obtainable with the klystron types. An advantage of the latter is that the frequency of oscillation may be varied over an appreciable range by changing the roflector voltage. This characteristic is also usoful in providing a convenient means of obtaining frequency modulation. This sensitivity to voltage changes makes it desirable to use a regulated hum-free supply.

On this and higher frequencies a convenient system for two-way work is the use of a klystron as both transmitting oscillator and as a local oscillator for receiving. A crystal mixer is used in this case, its output being fed into a receiver serving as the i.f. system. If the receiver so used is capable of f.m. detection it is only necessary to modulate the klystron reflector voltage to provide f.m. communication of grood quality. The oscillators of the two stations in communication are then operated on frequencies differing by the
value of the intermediate frequency selected. A single antenna system is used for both transmitting and receiving, and no change-over arrangement is needed.

5650 Mc .
Amateur work in this range has been done largely with reflex klystrons, two types of which (2 K 43 and 2 K 44) are capable of operation within our band. The one-tube system deseribed abowe may be used for eath station, or of eourse separate tubes may be used for transmitter and local oscillator. In the latter case two antemat systems are required, but the transmitter efficiency is somewhat higher as some power is dissipated arross the crystal in the one-tube arrangement,

Firguoncy modulation of klystrons is more practical than amplitude modulation. Modulation of the repellor voltage requires no audio power, as there is no current drawn by this tube element, A carbon microphone and a microphone transformor, with the reprellor voltage fed through the serondary, will handle the audio requirements nicely.
The first wo-way mierowave eommunication in amateur history was carried out in this way by A. E. Harrison, WGIBMS/2, and R. F: Mormant, W2l.aF, who operated in the temporary b300Me. band, 'Their equipment, deseribed in $Q s^{\prime \prime} T$ for January, 19Hi, page 19, will also worls in the present band.

$10,000 \mathrm{Mc}$.

The $723.4 / 3$ reflex klystron, available at low cost for some time on the surplus market, provided amateurs with a converient and inexpensive means of operation on $10,000 \mathrm{Mc}$. As manufactured, the tube will not ordinarily operate in the amateur band without modification.
Like other tubes of the reflex klystron variety, the frequency of oscillation is varied by warping the built-in cavity. It is used with a modified octal socket, with pin No. 4 removed and the

Fig. 19-23-A half-wave cavity oscillator for 2300 Mc . (W211MA)

Fig. 19.24 - Mechanical details of the 2300-Mc. lighthouse oseillator.
hole enlarged to pass the coaxial line that is part of the tube. This line is terminated in an "antenna" which is ordinamily used to transfer power to a waveguide.
Two vertical struts are provided for tuming, one of which is already variable by means of a stud, which spreads or contracts the flexible strut on the right side, compressing or stretehing
the hellows, lowering or raising the frequeney respectively.

The upper limit of frequeney range, reached bey rotating the tuning stud, will seldom be within the amateur band, hence it is necessary to perform the following operation. It may be seen that the top of the cavity is held in a fixed position on the strut on the side of the tube by two small nuts which, after having been tightened, have been spot-welded to each other. The spot weld should be filed away until each nut ean be moved freely on the threaded stud. Next, the position of these nuts should be adjusted very carefully, to raise the top of the cavity as was done on the other side. Extreme care should be used in this operation, as exressive stretching of the bellows may break some of the seals and render the tube imoperative. It is advisable to move the lower nut only until a firm resistance is felt. The operating frequency should then be checked, and if it is still below the limit of the band another tube should be triod, as ang further attempt to raise the frequence will almost certainly ruin the tube

Lquipment for use on $10,000 \mathrm{Me}$, is deseribed in detail in QST' for February, 1947, page 58.

$21,000 \mathrm{Mc}$.

Operation in this frequeney, and in the unassigned region abowe $30,000 \mathrm{Mr}$, is still highly experimental in nature. Only once has the $21,000-$ Mr. band been used for amateur two-way cemmunication. This was aceomplished under laboratory conditions by two enginerers whose specialty is development work in this fiold. Their work is detailed in QST for August, 1946, page 19. Type Z-668 reflex klystrons were used, with horn and parabolie antenna systems, to work two-way over a distance of 800 fert.

CHAPTER 20

Mobile Equipment

The amateur who goes in for mobile operation will find plenty of room for exercising his individuality and developing original ideas in equipment. Fam installation has its sperial problems to be solved.

Most mohild reeriving systems are designed around the use of a h.f. converter working into a standard rar broadeast receiver tuned to 1500 kc . Which server as the i.f. and audio amplifiers. The car receiver is modified to take a noise limiter and provide power for the converter.

While a few mobile transmitters may run an input to the final amplifier as high as 100 watts or more, an input of about 30 watts normally is considered the practical limit unless the ear is equipped with a special battery-charging system. The majority of mobile operators use 'phone.

In contemplating a mobile installation, the car should be studied carefully to determine the most suitable spots for mounting the equipment. Then the various units should be built in a form that will make best use of that spare. The location of the converter should have first ronsideration. It should be phated where the rontrols ean be operated conveniontly without distracting attention from the whect. The following list suggests spots that maty be found suitable, depending upon the individual car.

On top of the instrument panel
Attarhed to the steering post
Under the instrument panel
In a unit made to fit between the lower lip of the instrument panel and the floor at the eenter of the car
On the left-hand door panel (detachable when not in use)
Under the left-hand front seat
In the motor eompartment (eontrols extended through the instrument pand)
The transmitter power control ran be placed close to the receiver position, or included in the converter unit. This control normally operates relays, rather than to switeh
the porier circuit directly. This permits a minimum length of heave-current battery circuit. Freguency within any of the 'phone bands sometimes is changed remotely by means of a stopping-switch system that switches crystals. In most cases, howerer, it is neeessary to stop the car to make the several changes required in changing bands.
bepending upon the size of the transmitter unit, one of the following places may be found convenient for mounting the transmitter:

In the glove compart ment
Under the instrument panel
In a unit in combination with or withont the converter, built to fit betwern the lower edge of the instrument panel and the floor at the center
Cuder the right-hand or left-hand front seat
On the ledge above the rear seat
Fastenced to the back of the front seat
In the trunk
In the motor compartment
Most mobile antemas eonsist of a vertical whip with some system of adjustable loading for the lower frequencies. Power supplies are of the vibrator-transformer-rectifier or motor-gemerator type operating from the car storage batters.

L-nits intended for use in mobile installattions should be assembled with greater than ordinary care sine they will be subjeet to considerable vibration. Šoldered joints should be well made and wire wrap-arounds should he used to avoid deprodence upon the solder for mechanieal strength. Self-tapping serews should be used wherever feasible, otherwise lock-washers should be provided. Any shatts that are normally operated at a permanent or semi-permanent sotting should be provided with shaft locks so ther camot jar out of adjustment. Where wires pass through motat, the holes should be fitted with rubber grommets to prevent ehating. Any eabling or wiring between units should be securely elamped in place where it camot work loose to interfere with the operation of the rar.

Noise Elimination

Electrical-noise interference to reception in a car may arise from several different sources. As examples, trouble may be experienced with ignition noise, generator and voltage-regulator hash, or wheel and tire static.

A noise limiter added to the car b.c. receiver will go far in reducing some types, especially. ignition noise from passing cars as well as your own. But for the satisfactory reception of weaker signals, some investigation and treat-
ment of the car's clectrical system will be necessary.

Ignition Interference

Fig. 20-1 indicates the measures that may be taken to suppress ignition interference. The condenser at the primary of the ignition coil should be of the coavial type; ordinary types are not effective. It should be placed as close to the coil terminal as possible. In stubborn cases, two

on the frame of the generator.
To reduce the noise at 28 Me., it may be necessary to insort a parallel trap, tuned to the middle of the band, in series with the generator output lead. The eoil should have ahout 8 turns of No. 10 wire, space-wound on a 1 -inch diameter and should be shunted with a $30-\mu \mu \mathrm{fl}$. mica trimmer. It cun be protuned by putting it in the antemna lead to the home-station receiver tuned to the middle of the band, and adjusting the trap to the point of minimum noise. The tuning mave need to be moaked up after installing in the ear, since it is fairly eritical.
of these condensers with an r.f. choke between them may provide additional suppression. The size of the choke must be determined experimentally. The winding should be made with wire heavy enough to carry the coil primary current. A 10,000 -ohm suppressor resistor should be inserted at the center tower of the distributor, a 5000 -ohm suppressor at each spark-plug tower on the distributor, and a 10,000 ohm suppressor at each spark plug. The latter may be built-in or external. A good suppressor element should be molded of material having low caparitance. Brice type LAVR-10NIE and LITVR-5ME are satisfactory. In extreme cases, it may be neressary to use shiclded ignition wire. The 1951 Pontiac car was equipped with suppressor ignition wires, the resistince being distributed throughout the length of the wire. This is somewhat superior to lumped resistance and maty be used if the lead lengthe are right to fit your car. They should not be eut, but used as they are sold.

Generator Noise

Generator hash is raused by sparking at the commutator. The piteh of the noise varies with the speed of the motor. This type of noise maty be eliminated by using a $0.1-$ to $0.25-\mu \mathrm{fd}$. coixial condenser in the generator armature circuit. This condenser should be mounted as near the armature terminal as possible and directly

Fig. 20.2 - The right way to install by-passes to reduce interforence from the regulator. I condenser should never he connected across the senerator field lead without the small series resistor indicated.

Voltage-Regulator Interference

In eliminating voltage-regulator noise, the use of two coaxial condensers, and a resistor-mica-condenser combination, as shown in Fig. 20-2, are efferetive. A $0.1-$ to $0.2 \overline{5}-\mu \mathrm{fd}$. consial condenser should be plated between the battery terminal of the regulator and the battery, with its case well grounded. Another condenser of the same size and type should be placed between the genemator terminal of the regulator and the gonerator. . $0.002-\mu \mathrm{fl}$, mica rondenser with at tohm earbon resistor in series shoukd be comereted between the field terminal of the regulator and ground. Never use a condenser arress the field eontants or between fiedd and ground without the resistor in series, sine this greatly reduces the life of the regulator. In some cansor, it may be nerossary to pull double-braid shielding over the leads ixetween the generator and regulator. It will be advisible to run new wires, grounding the shiclding well at both conds. If regulator noise persists, it may be necessary to insulate the regulator from the car body. The wire shiclding is then connected to the regulator case at one end and the generator frame at the other.

Wheel Static

Wheel static shows up as a steady popping in the receiver at speeds over about $15 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. on smooth dry streets. Front-wherel static colleetors are available on the market to eliminate this variety of interference. They fit inside the dust cap and bear on the end of the axle, effectively grounding the wheel at all times. Those designated partieularly for your car are proforable, since the universal type does not always fit well. They are designed to operate without lubriation and the end of the axle and dust cap should be cleaned of grease before the installation is made. These collectors require replacement about every 10,000 miles.

Rear-wheed collectors have a brush that bears against the inside of the brake drum. It
may be necessary to order these from the factory through your deater.

Tire Static

This sometimes sounds like a leaky power line and can be very troublesome even on the broadeast hand. It can be remedied beinjecting an antistatic powder into the inmer tubes through the valve stem. The powder is marketed by Chevrolet and possibly others. Clevouled deaters ata also supply a convenient injector for inserting the powder.

Tracing Noise

To determine if the recoiving antenna is picking up all of the noise, the shiedded lead-in should be disconnereded at the point where it connerts to the antenna. The motor should be started with the receiver gain control wide open. If no noise is heard, all noise is being picked up via the antenna. If the noise is still heard with the antema discomected, evon though it may be reduced in strength, it indicates that some signal from the ignition system is being pieked up by the antenna transmission line. The lead-in may not be suffieiontly-well shiedded, or the shiold not properly grounded. Noise may also be pieked up through the 6 -volt circuit, although this does not normally happen if the receiver is provided with the usual r.f.-choke-and-by-pass-condenser filter.

In ease of noise from this sourer, a direet wire from the "hot" battery terminal to the recoiver is recommended.
Ignition noise varies in repetition rate with engine speed and usually ean be recognized by that characteristic in the carly stages. Later, however, it may resolve itself into a popping noise that does not always correspond with engine spered. In such a case, it is a good idea to remove all leads from the gencrator so that the only source left is the ignition system.

Regulator and generator noise may be detected by racing the engine and cutting the ignition switch. This eliminates the ignition noise. Generator noise is characterized by its musical whine contrasted with the ragged raspy irregular noise from the regulator.

With the motor running at idling speed, or slightly faster, cherks should be made to try to determine what is bringing the noise into the field of the anterna. It should be assumed that any control rod, metal tube, stecring post, ete, passing from the motor compartment through an insulated bushing in the firewall will carry noise to a point where it ean be radiated to the antemna. All of these should be boneled to the firewall with heavy wire or braid. Insulated wires can be stripped of r.f. by be-passing them to ground with $0.5-\mu \mathrm{fl}$. metal-ease conderisers. The following should not be overooked: battery lead at the ammeter, gasoline gaupe, ignition switeh, headlight and taillight leads and the wiring of any aceessories running from the motor compartment to the instrument panel or outside the car.

Fig. 20-3 - Diagrams showing addition of moise limiter to car receiver. A - Isual circuit. B - Modification. (, 1, C $3-100$ - $\mu \mu$ fil. mica.
$\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{6}-0 .(11-\mu \mathrm{fd}$. paper.
($\mathrm{B}_{5}-0.1-\mu \mathrm{fl}$, paper.
$\mathrm{R}_{1}-17,000$ ohms.
$R_{2}, R_{10}-1$ megohm.
R_{3} - $1 / 2$ megolim
$\mathrm{K}_{7}, \mathrm{~K}_{\mathrm{s}} \mathrm{K}_{9}-0.17$ megohm.
$1 R_{4}-10$ megolums.
R_{5} - $1 / 4$ megohm.
R. 0.1 megohm.
'li - I.f. transformer.
V_{1} - Second detector,
The firewall should be bonded to the frame of the car and also to the motor block with heavy braid. If the exhaust pipe and mufller are insulated from the frame by rubber mountings, they should likewise be grounded to the frame with flexible copper braid.

Noise Limiter

Fig. 20-3 shows the alterations that may be made in the existing rar-receiver eircuit to provide for a noise limiter. The usual diodetriode second detector is replaced with a type having an extra independent diode. If the car receiver uses octal-base tubes, a 6N8GT may be substituted. The 7.57 is a suitable replacement in recoivers using loktal-type tubes, while the GT8 may be used with miniatures.

The switch that cuts the limiter in and out of the circuit may be located for convenience on or near the converter panel. Regardless of its phacement, however, the leads to the switch should be shielded to prevent hum piek-up.

A Compact Multiband Mobile Converter

Figs. 20-4 through $20-9$ show photogratphe and diagrams of a smatl mobile converter covering all bands from 3.5 to 29 Mc .

As the diagram of fig. 20-6 indicates, the circuit includes atn r.f. stage, mixer and h.f. oweillator, each using a (i.d.je ohtaned from surplus glide-path receivers. This tube was chosen berebuse of its small size and low filament drain. It is similar to the $6 . \mathrm{AK}$ which can be used interchangeably in this circuit. The imput circuit can be peaked up with the $50-\mu \mu \mathrm{fd}$, air trimmer, C_{1}. The plate rircuit of the mixer is browdbanded, requiring no further attention aftere preliminary aljustment. The main tuning control is C_{15} in the h.f. oscillator circuit. Fixed parallel padders are selected to spread each of the hands over a good share of the diat. All coils, including the i.f., are slug-tuned. Included in the bandswitch are the seetions S_{10} and s_{11} which turn off the filanent and plate power, as woll as the dial lamps, when the gang is thrown to the b.e. position. A smatl relay, controlled from the trinsmitter panel, cuts the B supply to the converter while transmitting. The over-all dimensions are $35 / \mathrm{b}$ y $5 \frac{1}{8}$ be $6 \frac{1}{2}$ inches, not including protuberances, such as the r.f. tuning knob and the power plug. The panel is 5 hy $31 / 2$ inches and includes the dial, antenna-trimmer eontrol and bandswitch. The chassis is 5 by $53 / 4$ by $13 / 4$. All parts of the enelosure are made from atuminum sheet.

The diat mechanism is a planetary unit with a 5 to 1 ratio (National AVI). This is mounted

Fip. 20.. - Bamdewitching euncerice draigned by II $3 \backslash 1 \mathrm{R}$ and $13 \mathrm{BI} \%$ in. stalled under the dashboard near the hece recoiver.
rif. 20-5 - The dial of the handwithehing mohile conserter is a biese - If elear plastir with calibration marks inseribed. The handswiteh eontrol is at the lower lift and the antenna trimmer to the right.

from Centralab switch-kit parts and consists of five ceramie wafers. Three wafers carry two cirruits of five positions (Contralah) type RRR). The sixth position, shown in the diagram, is the arm slider contart which ean be used in this case hecause the last switeh position for all but S_{11} is an open-circuit position. S_{10} and $S_{1 D}$ are separate wafors cach having one circuit and six positions (C'on-
tralah type X). The switeh is mounted directly behind the main tuning condenser in a vertical position, its shaft $33 / 8$ inches from the front edge of the chassis. This unusual mounting is convernient for grouping tubes and coils around the switch sections. Only the switch index head and the first wafer are below the ehassis. The two eircuits of this wafer, comprising $S_{1 A}$ and S_{13}, hando.

Fig. 20-6- Cirenit of the handswitehing eomsertor.
$\mathrm{C}_{1}-50-\mu \mu \mathrm{fd}$. miniature variable.
(.2, (if - 50) $\mu \mu \mathrm{fd}$, mica.
(i3-100- $\mu \mu \mathrm{fd}$. mira.

(9-2: $0_{-\mu \mu \mathrm{ft}}$ nica.
(10 - $3 \mu \mu \mathrm{ft}$.

($12-1.5 \cdot \mu \mu \mathrm{fd}$. misa.
$\mathrm{C}_{13}-145-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{14}-33-\mu \mu \mathrm{fd}$. mica.
Cis - $15-\mu \mu \mathrm{fd}$. variable.
$\mathrm{Cl}_{10}-3: 3-\mu \mathrm{fd}$, mica.
$R_{1}, R_{4}, R_{6}-10,000$ ohms, ${ }^{2} 2$ watt.
$R_{2}-180$ ohme, $1 / 2$ watt.
$R_{3}, R_{5}-2000$ ohms, $1 / 2$ watt.
$R_{\text {r }}, R_{x}$ - Values dependent on supply voltage, Aljust for voltages marked.
$1_{1}, 1_{2}$ - le-volt dial lamp.
$\mathrm{J}_{1}, \mathrm{~J}_{3}$ - Conasial connector.
$J_{2}-5$-pin male power plug.
kyt - (6-volt relay.
s_{1} - Ceramic rotary switeh - 1 wafers, ? circuits per wafer, 6 positions per circuit, and 1 wafer, circuit, 6 positions (1 helow, 4 above chassis) (made from (Centralab kit parts).

Fig. 20-7-"Top view of the bandswitching converter, showing nacillator and mixer coils gronped around the bandswitch. The relay monnted against the fromt edpe of the chassis cuts the power to the converter during transmissions.
the r.f. input circuits. The other four wafers are mounted above and a cleanance hole for the switch shaft is drilled in the chassis. Addition:al bracing against the action of the eontrol lever is provided by adding a strap bracket across the index head at right angles to the asimbly rods. This strap is fatoned to holes in the index head and with loug serews to the chassis.

A sketch of the switch operating mechanism is shown in Fig. 20-s, Dimensions ram be adjusted to suit a variety of conditions. It is merely a matter of experimenting with a few pieces of card-

Coil Table for Bandswitching Converter								
Coil	Band Mc.	L. μ h.	Turn*	Wire	friam. Inches	I.ensth lurhes	N/ug	Millen Form
L_{1}	2--29	0.6	17	24 d.s.c.	14	$3 / 8$	romper	69047
L_{2}	14-21	2.5	25	21ds.c.	1/2	1	('0)pper	69015
L_{3}	1	33	70	37 d.s.c.	1/2	1	iron	69016
I_{4}	2--29	1.2	17	$21 \mathrm{ds.c.c}$	1/2	1	copper	69045
I. 5	21	2.3	24	21 d.s.c.	1/2	1	* 019 pr	69045
1.6	14	5	3.5	$2+$ d.s.c.	1/2	1	copper	69045
L_{7}	4	ii^{5}	95	34 d.s.c.	1/2	1	iron	69046
1.8	1.5	45	80	34 d.s.c.	1/2	1	iron	69040
L_{6}	2--29	0.294	10	21 d.s.c.	1/4	$3 / 8$	copper	990) 0°
L_{10}	21	0.344	11	$2 \mathrm{td.s.c}$.	1/4	3/8	copprer	6904
L_{11}	14	0.131	12	$21 \mathrm{~d} . \mathrm{scc}$.	14	3/8	coppier	6901%
L_{12}	4	14.6	16	31 dsce.	142	1	iron	90014

hoard and some thumbtarks to find dimensions then will fit ewh case. The short arm attached to the switch shaft should preferably be of brass so that the mut can be soldered fast. The set-serew collar to which the short arm is attached is a panel bearing. The threaded neek is cut and filed down so that it is a little longer than the thickness of the arm. The exerss is then hammered down over the arm to matke a firm joint. Solder flowed around the hole will indel strength. The flange of the pand bearing should be drilled and tapped for two set screws. The bandswiteh scale is a strip of thin abluminum. 'The arm positions for the various bands are marked with a soribor and then the lines are filled in with (rayou.

Alost of the other details of construction rem he seen in the photographs. The ref. tube is the only one mounted top-side up. The mixer and oseillator tubes are upside down and have their connertions and assorated coils above the ehassis. This arrangemont permits bettor utilization of spare and the chassis becomes a shield for the r.f. rircult.

Adjustment

Standard automobile receivers are designed for high-impedane antennas and 1ranmission lines. Sine the output of the converter is coupled to a low-impedance coax line, considerable mismatch results. Most b.c. receivers have enough gain so that the losses as a consequence can be

Fig. 20-8-sketrhem showing the comstruction and dimensions of the bandswitel merhamism for the multiband converter.

toletated. Hownver. the gatin can be incorased considerably bey moditying ther r.f. wil in the b.e. sot. This is andomplished ley winding a link of sbout 25 turns of So. 2 t wire on the "eold" and of the antemear roil. This monlification. however, will reduce the gatin on the bee band. ()ne rompromise is to use one push button only
for the eronverter and modify only the coil associated with that ehanmel.

The entire converter wiss wired and aligned with a grid-rlip moter before applying power. Depending on the forms used, some slight alteration in the number of turns shown in the coil table may be necessary.

Fig. $20-9$ - Bottom siow of the handswitching converter showing the switch operating mechanism and inserted mounting of the li.f. werillator and mixer tubes.

A Mobile Converter for 28 and 50 Mc .

The eonverter shown in Figs. 20-10 to 20-13 was designed for mobile reception on 6 , 10 , and 11 meterss, but it may also be used in fixedstation work with good results. The intermediate frequeney is 1500 ke, to permit its use with mobile broadeast recoivers.

Circuit Details

The converter eircuit diagram is shown in Fig. 20-11, A 6AKG broadhand r.f. amplifier is followed be a 6.06 mixer-osollator. The ospillator cirent is the ultatadion type, operatitge 1500 ke . below the signal frequenes. The ned for gang-tumed cirouts is eliminated by the broadband r.f. amplitier; thus only the osdillator tuning eondenser, C_{l}, reduires adjustment during normal tuning operation. Band

Fig. 20.10-I bandiwitching converter for 6, 10 and If metera. The pilot light at the lower right has an adjustable bean, for conveniense in mobile work.
changing is accomplished with a ${ }^{\text {andection }}$ selector switeh, shown on the diagram as $\mathrm{S}_{1 \mathrm{~A}}, 13,1,11$, E.
seren eommerrially-a valable coils are used, six of them being identieal exerpt for the setting of the slugs. The wide induetance range of the slug-tumed units makes it possible to use similar coils for the r.f., mixor and oscillator eoils for both ranges. Padder capacitanoe is added acress the 10-meder r.f. and miver coils, L_{4} and L_{6}, and adross both oscillator coils, L_{7} and $h x$. Varving the slug position takes care of the necessary differences in coil inductance for all these positions.

A single whip antenna may be used for both broadeast and amateur reception. A jumper connection botwern seetions A and E of S_{1} completes the eireuit between the antenna and the broadcast receiver, with the switch in the position marked B.C. in Fig. 20-11. A filament
switath, S_{2}, is provided to remone the latad of the converter tubes from the ear battery when the reediver is being used for broateast reception.

Broadhanding of the r.f. and mixer cireuits is aeromplished through the use of low- (Q coils and tight coupling in the antemna cireuit. The plate eril of the mixer is self-resemant al the intermodiate frequencr, giving a degree of broadmess sufficient to permit tuning the reseriver over at limited range near the high end of the broadeast band, providing a vernier effere

Construction

All of the metal eomponents are formed from 1/16 ineh aluminum stock. The interior view, l'ig. 20-12, shows the "L"'-shaped section which surves as the front panel and the botom plate of the unit. The pand and the botem areats are cath 5 inches squares. lips, $\frac{1}{2}$ inch wide, are folded over along the top and side colges of the pamel amb alse along the sides of the bothom sertion. The rolled-over edges are drilled and tapped to arommodato b-32 machine serests.
I threr-sided portion and a sumate lop plate emplete the conserter cabinet. The sides are is inches spuate and the wat wall is
 high with ! e-ineh flanges folded over on the top odges athod dillod and tapual for di-32 serew: The sides and holtom angers al the eqsion are drilled to elear mathine serews: the holes shoubd lime up with the sapped holes of the batmebobtom assembly: A reetangular holde, If inches high athd 2 itehes wide, is ent at the buthom leth-hand corner (as soen from the rear of the eonverter) of the rear wall, to provide clearame for the cable comeretors. The app plate for the converter measures o bis inches. Holes, drilled along the edges, allow the eover to be fastemed to the flathges at the top of the cabimet.

The physical shape of the converter chassis can best be visualized by stuty of the interior views. The chassis is 5 by $t^{7} 8$ by $13 / 4$ inchers in size, with flanges 1_{2} ind wide folded over along the front and the bottom codges to provide a means of mounting. A $21 / 4 \times 33^{3} / 4$-ineh cut-out at the center of the ehatsis allows clearance for the hathdewiteh. A large round hole located in the rear wall of the chassis simplities the job of finding the oscillator padder condenser when this eontrol reguires adjustmont.

A vertial partition used as the mounting surface for the oseillator 1 uning eondenser, (${ }^{2}$, also serves as the shield betweren the plate and the grid cireuits of the ref. amplifier. It is $3^{1} \frac{1}{2}$ inches wide and $43 / 4$ inches high, and is notehed to elear the main chassis and the spacer hars and rotor arm of the bandswitch. The partition is held in place by a spade lug which passes through the chassis and by a mounting

Fig. 20-11 - (:ircuit diagram of the bandswithing v.h.f. converter.
$\mathrm{C}_{1}-1,-\mu_{\mu} \mathrm{fd}$. variable roduced to one stator and 2 rutor platm (Villen 2010.5).

Cis, C10-10- 10 fid. ceramir (Centralal, (C:20\%).

$\mathbf{R}_{1}-220$ ohms. $1 / 2$ watt.
$R_{2}, R_{B}-680$ ohms, $1 / 2$ watt.
$1 R_{3}-1 .-7$ megohms, $1 / 2$ walt.
$\mathbf{R}_{4}-12,01010$ ohm*, 1 ² watt.
$\mathrm{K}_{5}-\mathrm{I}^{-}, 0100$ ohms, l_{2} watt.
$\mathrm{K}:-5000$ ohms, 10 wat to.
I.1, I. $2-1$ turns No. 28 d.s.e. elose-wound of er ground ends of $L_{.3}$ and I_{4}.
lip which is serewed to the bottom side of the cabinet. It is located 3 inches in from the front edge of the chatssis.

The heater switch and the pilot-light as. sembly are mounted at the fower left- and right-hand worners of the front panel with the bandswiteh at the center, $11 / 8$ inches up from the bottom edge. The seloctur-switah index plate should have a rotorwhaft lougth of at least 3 inches, and the switeh wafers should be mounted on the shaff with the first separated from the index plate by 1-inch shateres and with the serond Wafer separated from thr first by 15, incher.

Tho Ninfonal MCX dial is aentered above the bandswiteh with therentrol wate 3 inchers ahowe the bottom edge wit the pand. It is wise to eut the large mounting hole suggrested in the dial-monenting instruetion sheet and then do the final fastening down of the dial after the tuning condenser and its monnting

Iig. 20-12 - Interior view of the ronverter. Only the oscillator is tuned hy thr-front-panel control, eliminating traching problems.
 Mose-wound on ${ }^{\text {a }}$-inch diameter form; shayfoned: inductanere range 0.3 .7 tu $1.0 \quad$ ph. (Cambridge 'Whermionic (Eorp. A. $3-30$ Me, ,
L_{9} - s. samblatype winding on $8 / 8$ inoh slan-tanad
 bridge Thermionic Corp. Is $3-1$ Mr.).
I. 10 - 20) turna No. 28 A.s.c. seramble-wound next to La。
H_{1} - Ajustable-beam dial-light asembly.
J_{1}, J_{2} - Coaxial-cable jacks (Amphenol Ti.P-C.IM).
$\mathrm{J}_{3}-3$ proner cable connetor (lones P.303 3 B).

S_{1} A, B, C, D, E - 2-gang (becireuit hamdswitch (wo Centralal, ลス sections).
s_{2}-S.p.s.f. togiqle swithh.
plate have been permanently secured in plare.
The interion wiew of the eompleted converter shows the fi.1K5 amplifier tube in front of the shicld partition, with the grid induetanees to

the right of the tube. The padder condensers for 27 and 28 Mc , are mounted on the forward coil. From left to right across the rear of the chassis are the mixer-oscillator tube, five of the slug-tuned inductances, and the regulator tube. The i.f. outpat eoil and the two owillator coils are mounted bolow the ehassis, as soron in the bettom view of the chassis subatemblas. The ref. plate wils are above the ohatssis to the left of the OB2 remulator, the $2 \mathrm{~N}-\mathrm{Me}$. coil being the one with the trimmer condenser monnted atross the terminals.

Construction will be simpler if the buider uses coils ats shown. The Type L心: 30-Mr. inductors will resonate at 50 Me . With the tube and rircuit caparitances, and only a small padher caparitane is required to tune them to 27 and 28 Mr.

Coaxial jacks for the antenna and i.f. output cables are at the rear of the chassis to the left of the power-cable jack. They are dosely grouped so that the imput and output cables may be taped together to form a rommon cable

Wiring ran be done readily if the subatssembly method is emplayed. 'lihe bottom-view photograph of the "hassis, Figg 20-13, shows how the circuit components atre closely grouped around the tube sorkets, with wiring completed to the point of making connertions to the hand-swited. Twin-Lead of the 75 -oh hem tyer is used to make the eonnection betwern the antemat input jark and the bandswitch. The two wires enclosed in spaghetti at the right of the chassis in the botom view are the 6.3 -volt leads which go to the heater switch.

Testing

The heater requirements of the converter are 6.3 volts at 0.625 amp, and the plate supply should deliver 200 to 250 volts at 25 to 30 ma. These may the drawn from the reerever with which the ronverter is to be used, or a separate supply may be employed. With power turned on, the plate voltage of the mixer and
r.f. amplifier should measure 105 volts and the $6 . \mathrm{K} 5$ cathode resistor should provide a drop of approximately 2 volts. The $6 . A K 5$ cathode current should be about 8.5 ma. The regulatortube drain will be about 8 ma.

Alignment of the converter is made most simple if a calibrated signal gencrator is a wailable, ot horwise amatour tramsmitter signats of known frequency may be used. The r.f. and i.f. circuits can be peaked on background noise. The oseillator stage should be on the low side of the signal frequency. It is possible to vary the bandspread of the converter over a wide range. With a fairly low order of padder caparitance, and with the inductance increased by the tuning slug, the 10- and 11meter bands can be covered with one swing of the tuning dial. Anyone not interested in 11 meters can increase the bandspread on the 10-meter range by adding more padder caparitance and by decretsing the inductance of L_{8}. The convertor as shown has 13 divisions of handspread at 11 meters and 52 divisions at 10 meters, with the logging of frequeneies made on the is srate of the dial. Bandepread for the so-Mre band is 48 divisions on the A scale. This spread may be increased by the same mothod.
some operators favor a selected group of frequencies within a band. A slight improvement in the performanere of the converter can be made in this case by peaking the r.f. amplifior circuits at a favorite spot rather than at the center of a band. There may be a tendency toward regeneration in the $50-$ Me. r.f. amplifier, however, if the imput and phate circuits are peaked at proeisely the same frequency, making stagger tuning desirathe.

Reducing Spurious Responses

In loralition whore there are stations operating in the high FII band a converter or recoiver having broabbad r.f. stages will experience considerable interference on the 50-Mc. range, This ran be corrected in several ways, the simplest being the insertion of a $100-\mathrm{Al}$ - trap in the antermas lead.

fis, 20.1.3 - (Ans:truction of the comserter is male vasior if as mowh wiring apossithe is dome hefore the asisimbling is rompleted. This betlem view of the -has is sulasesmbly shows the wiring completed to the print of connection to the bandswiteh.

A Crystal－Controlled Converter for Two－Meter Mobile Reception

Fig，20－14－Top view of N上LTII：rrystal－con－ trolled emoverter for 2 ． meter mohile reception． ＇The osedlator－maltiplier tube and erystal are at the left．It the right are the r．f．amplifier，miser and i．f．amplifier，looking up from the lootom，Because mo extermal allonstments are needed，the converter may be lonit in almost any shape that will fit avail． ahle space in the car．

The 14－Mc．mohile converter shown in Figs． 20－14 through 20－16 is designed primatrily for mobile operation．Therefore to serve the aims of simplicity，compactuess and low battery drain， some of the features that might be eonsidered desirable in a home－station unit have been omited．Itowerer，the eost is low and the per－ formance of the system is entirely satisfactory， both as to stability and somsitivity．

Circuit

Since the toming range of the usual car broad－ cast receiver is insufficient to permit coverage of the entire 2 －moder band without ehanging erys－ tals，this converter is designed to work into an－ other ronverter which，in turn，works into the regular car receiser．This seromel converter is used as a tunable i．f．and should cower the ramge of 26 to 30 Me ，to provide the neressaty $4-\mathrm{Mc}$ ． range totake care of the whole of the 2－meter band．

The r．f．stage uses a $6.1 \mathrm{~K}^{2}$ ，pentode connected． This resulte in at slight salcrifice in noise figure， compared to that obtainable with a triode，but with the other moses ustatly prevalent in mobile work，the ultimate in first－fube is not so imper－ tant in pratetice．The mixere is a dialst triorde．

The uscillator is the simplest form of trionde cireuit，using a cerstal at $39.3: 3 \mathrm{Me}$ ．in the first half of the 6 J ti，the second portion tripling to 118 Me ．（rystals such as the James Knights JK－HIT or 11－173，the Bliley BM－6，or（iE Gifill，am he readily obtained for this frequenery．

Where the mixer is a separate tube from the oscellator－mmaltiphier，some injere ion coupling may be necessary，although the minimum required value should be used．The $1.5 \mu \mu \mathrm{fl}$ ，neded was ohtained by combert ing two： $3-\mu \mu \mathrm{fd}$ ，units in sorvies．
 put circuit that provides low－impedance coupling to the following eonverter．

ドig．20－15－Ihat（nm virw of the 2 －meter comerter． The coil form at the upper left i＝the mixer plate cir－ cuit．（hacillator－multipliar components are at low uluer right．

The converter is built on a 5×5-inch chassis that fits inside a standard utility box. Since there is no adjustment recuuired during operation, the unit can be built in almost any shape that can be fitted into available space in the ear. The coils and condensers are mounted under the chatsis, and onece the initial adjustment is made, they are left alone.

In order to isolate the input and output circuits, of the r.f. amplifier, a small right-angle shield is phated aross the 6.AK5 socket in such a waty as to enclose the antemna coil. The shiold may be sern in the lower left side in the bottom view of Fig. 20-15. The antemas is connected directly to the grid mil through coaxial cable.

The mixer output coil, L_{4}, is mounted between
the 6AB4 and the i.f. amplifier tube, in the upper right-hand corner in the top view of Fig. 20-14.

At a supply voltage of 150 , the converter drain will be about 15 ma . If a higher supply voltage is used, R_{15} should be increased areordingly, Adjustment is straightforward. The slug in L_{5} is first adjusted for maximum background noise in the output of the system. Then L_{4} is adjusted for maximum response on 2 -meter signals in the most-used part of the band. L_{1} can be peaked up be squecaing the turns together or spreating them apart slightly as needed.

With a 19 -inch whip grod signals have beren obtaned with this converter at distinces up to 30 miles or more.

Fig. 20.16-Schematic diagram and parts list for the crystal-controlled 2 -meter converter. If erystals lower in frequency than 39 Mc , are to be used an overtone oscillator circuit can be substituted for the crystal circuit shown.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{18}, \mathrm{C}_{18}-0.00 \mathrm{~J} \mu \mathrm{fd}$.
($4, \mathrm{Cl}_{11}-5$ м $\mu \mathrm{fd}$.
($\mathrm{E}, \mathrm{C}, \mathrm{s}-\mathrm{J}$) $\mu \mathrm{ffl}$.

$\mathrm{Ci}-10 \mu \mu \mathrm{fd}$.
(.12-30 $\mu \mu \mathrm{fll}$.
($\mathrm{C}_{15}, \mathrm{C}_{1} \approx-1-30-\mu \mu \mathrm{fd}$. ceramic trimmer.
$\mathrm{C}_{16}-2.5 \mu \mathrm{fd}$.
(All fined caparitors ceramic.)
$\mathrm{R}_{1}-1.50$ olms.
$1 i_{2}-10,000$ ohms.
R_{3} - 0.08 megohm.
$\mathrm{K}_{4}-1000$ ohms.
$\mathrm{R}_{5}-3300$ ohms.
$\mathrm{K}_{6}-0.1$ megohm.
R: - 680 olmis.
$\mathrm{R}_{8}-39,0010$ ohms.
R_{3} - $\mathbf{- 0 0 0}$ ohms.
$h_{1_{0}}-1500$ ohms.
$\mathrm{R}_{11}-4, \mathbf{4}, 000$) ohms.
$\mathrm{R}_{12} \mathrm{~K}_{14}-\mathrm{I}_{10} 00$ ohms.
$1813-0.22$ megolm.
$\mathrm{R}_{1,3}$ - 500 m ohms, 1 wath. (All other resistors $1 / 2$ watt.)
L_{1} - 5 turnis No. $16,{ }^{3}{ }^{2}$-inch diam., ${ }^{1}$ ginch long, tapped at $11 \underline{2}$ turns.
$1.2-1 / 2-$ watt resistor wound full of Do. 30 enameled wire.
1.3-3 turns Do. 16, 3 -incla diam., $1 / 4$ inch long.
L. - 10 turns So. 21 enam. on 1×3-inell diam. form (Millen b90t1), brase slug.
L.s - 10 turns No. 20 enams on ${ }^{1}$-inch shag-tuned form from BC. $62+4$ receicior. Xational XR. 50 also usable.
L -11 turns No. 18, Yónch diam. (B \& W No. 3003 Miniductor).
$1.7-3$ urns \o. 18 , $1 / 2$-inch diam.
La, Le - 1,2 watt resistor wound full of No. 18 enam.
J_{1} - Couxial litting, female.
J_{2} - Coaxial fitting, male.
s_{1} - Double-pole single-throw toggle switch.

A Multiband Mobile Transmitter

Fig. 20-17 - The bandswitching mobile transmitter installed under the dashboard of $122 / 3 P \mathrm{~L}$'s car.

The unit shown in Figs. 20-17 through 20-19 is a complete bandswitehing mobile transmitter, including modulator and covering all bands from + to 29 Mc .

The circuit diagram is shown in Fig. 20-19. Bither crustal control or VFO is available simply he snapping the toggle, S_{1}. A $6 C+$ is used in the ${ }^{\prime} \mathrm{F}()$ and this is the only indirectly-hoated tule in the transmitter. All others are direct-heater tupes. The heater of the $6 C+\begin{gathered}\text { operates from a sep- }\end{gathered}$ arate circuit through S_{2} so that it can be left on during receriving proriods. This cuts down initial drift and eliminates waiting for the rathode to come up to temperature lefore earh transmission. VF() output is taken from the cathode tap to minimize loading efferts on frequency. The tuming range of the VFO is limited to 3500 to 1000 ke . This makes it necessary to use crustal control on 11 meters, unkess it is desired to extend the VFO range. The plate voltage for the VFO is stabilized by an ()32 regtalator tube.
The 5618 following the VFO) may be used as an 80- or 40 -meter crystal oscillator, or as an amplifier or doubler for the VFO, since the output eireuit, $C_{3} I_{21}$, will tune to cither band, one near maxinum capacitance and the other neme minimum.

The next stare, also using a 5618 , may he onerated as a doubler to $1+$ Me., as a tripler to 21 Me., or a (quadrupler to 28 Me. . depending on the setting of C_{13} which covers all three hands. This stage is inserterl or removed from theo rircuit bes S_{3}. Thirty volts of fixed bias from the modulatorbiasing lattery practically cuts off plate current to the etil8 when this stage is not in use

A 5516 is used in the final amplifier. This tule has the same power rating as the 2 l 2 2 , but it is shorter physically so that it can be fitted into a smaller space. The use of an all-band tuner in the final-amplifier output circuit elinninates the necessity for plug-in coils or switching.

In the audio section, a carbon microphone drives a triode-conneeted 5618 which, in turn, drives two 2li30s in the Class $A 3_{2}$ modulator.

Mierophone voltage is obtained from the car hat tery through the filter consisting of ('2n and L_{9}.
The milliammeter, $1 / A_{1}$, catn be switehed to read current at the important points in the circuit. When switched to position $l:$, it can be used to cherk plate voltage for the rig's final amplifier stang

In the fromt-view photograph of lige 20-17, the control kmols across the paned are. from left to right, for VF'O, first atil8, seromd mils, and final amplifier. The meter switeh is to the left of the meter. Aong the bottom are the VF()-revstal switelh, a dual (rystal socket (one somet unwired for a spare (eystal), the frequener-multipher switch, S_{3}, microphone-rontrol jack ant the VFO heater switch.

In the rear-view photograph of Fig. 20-18, the four tuning condensers are lined up across the panel, just above the chassis level. (${ }_{19}$ is a dual midged liammardund, origitally of $1-10 \mu \mu \mathrm{fl}$. por sertion. To obtain the desired range, one rotor and two stator plates were removed from atach sertion. The high-frequency coil, L_{4}, is mounted vertically at the rear of the condenser, while L_{5} is placed at right angles alongside the condenser to minimize coupling between the two. Care should be taken to make sure, with a grid-dip moter. that the circuit when completerd does not tune simultancously to fundamental and hamonic froquencies. This can be controlled by altering the coils somewhat.
L_{3} is mounted vertically behind the meter. L_{2}, at right angles, is fastened to ('9. L_{1} is vertionl behind C_{1}. The r.f. tubes are lined up atross the center of the chassis. The $6 \mathrm{C} \cdot \mathrm{t}$ is hidden by the biasing battery to the right. The two stilss are to the right of the 5516 final-amplifier tube. 1 batfle shield is placed between the tube and L_{3} to the right. The audio components and the 0ls'

Fig. 20.18-Rear interior view of N'2RPL's mobile transmitter, showing the arrankement of components on the chassis.
occupy the rear portion of the chassis. All small components are mounted underneath. The chassis measures $81 / 4$ inches long, $57 / 8$ inche's from front to back and 1 inch deep.

Although this transmitter may be operated from a suitable dymamotor, there is an advantage in the use of two supplies. While the rest of the transmitter may be operated at 300 volts, a voltage of 250 is the maximum rated value for the $2 \mathrm{~L}: 30$ modulators. A separate supply for the C'lass Al3 modulator with its varving plate current also improves the voltage regulation for the rest of the transmitter. Two 100-ma. vibrator-tipe
power supplies, one delivering 300 volts and the other 250 volts, are recommended.

The two exciter tank circuits, $C_{9} L_{2}$ and $C_{13} L_{3}$, c:an le resonated to the desired bands by observing grid current to the following stage. A grid curront of 2 to 3 mat should be adequate for the multiplier stage and 3 to 5 ma. for the final.

The antemna should be of the center-loaded type. The RCG-8/L coaxial cable feeding the base of the antenna is tapped on L_{5} at a compromise point that serves for all bands. Some slight improvement ean be gained bey adjusting the tap for the band considered most important.

Fig. 20-19 - Circuit diagram of the multiband mobile transmitter.

$\mathrm{C}_{2}-100-\mu \mu \mathrm{fd}$. sil vered miea.
$\mathrm{Ci}_{3}, \mathrm{C}_{4}-0.001-\mu \mathrm{fd}$. silvered mica.

C $\mathrm{i}_{\mathrm{i}}-0.01-\mu \mathrm{ff}$. mica.
(is, C $\mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{15}-\mathbf{0} .001-\mu \mathrm{fI}$. mica.
 $3 / 4$-inch shaft).
$\mathrm{C}_{10}, \mathrm{C}_{14}-4^{-}-\mu \mu \mathrm{fl}$. ceramic.

C. 18 - $0.01-\mu \mathrm{fl}$. 1000 -volt mica.
$C_{10}-110-\mu \mu \mathrm{fd}$-per-section variable (IIammarlund
(1FI)-14); sce text).
C20 - 25- $\mu \mathrm{fl}$. 25-volt plectrolytie.
$\mathrm{R}_{1}, \mathrm{R}_{2}-0.1$ megohm, $1 / 2$ watt.
$R_{3}-56,0(0)$ ohms, $1 / 2$ watt.
$R_{4}, R_{6}-100$ ohms, $1 / 2$ watt.
$1 R_{5}-2{ }^{-}, 000$ ohms, I watt.
R_{7} - $2.2(0)$ ohms, 5 watts.
$1 \mathrm{R} 8-10,0(0)$ ohms, 2 watts.
$R_{9}-27,0(0)$ ohms, 2 watts.
$\mathrm{R}_{10}-2000$ ohms. 2 watts.
$\mathrm{K}_{11}-\mathbf{5 0 , 0 0 0}$ ohms, 2 watts.
$1 R_{12}-5000$ ohme, 2 watts.
$K_{i 3}, K_{14}-$ Meter shunts thade of resistance wire to provide for fulloscale meter reading of 100 ma.
$\mathrm{H}_{15}-0.15$ inegohm, I watt (depends on meter used).
$\mathrm{L}_{1}-48$ turns No. 26 enam., J-ineh diam., $11 / 4$ inehes lomg (may have to he slightly modified to provide proper handspread).
L.2-28 turni No. 24 enam., 1 -incla diam., $/ / 8$ ineh long.

1,3 - ${ }^{1}$ turn: No. 20 enam., $3 / 4$-inch diam., $7 / 8$ ineh lonk.

1. - 16 turns No. 20 enam., $3 / 4$-inch diam. $7 / 8$ inch lonk.
J.s - 10 turns No. 20 enam., $11 / 4$-ineh diam., $11 / 4$ inehes fong, tapped $41 / 2$ turns.
Iti - 10-hy. 30-ma, choke (filter).
$13-30$-volt hattery with tap at $\overline{1} / 2$ volts.
J_{1} - 3 -contact open-cireuit microphone jack (midget). $\mathbf{M} \mathbf{A}_{1}-$ Milliammeter, II-ma. scale.
RFC., $\mathrm{RFC}_{2}-2.5-\mathrm{mh}$. r.f. choke (National R-.30).
RF(:3-2.5-mh, r.f. chohe (National R-1000 ${ }^{\circ}$).
$S_{1}-$ S.p.d.t. toggle switch.
S_{2} - S.p.d.t. togule switch.
S_{3} - 1). pid.t. toghle switelt.
S_{4} - 2 -pole 5 -pusition rotary switeh.
s_{5} - I'ush-to-talk switch.
Tr - Midget output transformer: single plate to 200 ohms (mic. connerted to 200 othans).
' I_{2} - Single plate to p.p. prids for Class Al3 ${ }_{2}$.
' ${ }_{3}{ }_{3}$ - Nodulation transformer, Class Al_{2}.
Note: Power-connector connections as follows: (1) VFO heater, (2) other heaters, (3) push-totalk control to power supplies, (t) +h.s. andio, (5) ground, (6) + li.v. r.f.

Mobile Gear with Quick-Heating Filaments for 50 and 144 Mc .

A worth-while saving in battery drain can be made by using filament type tubes in the mobile station, arranging the control cireuits so that the filanent voltage is applied simultaneously with the starting of the generator or vibrator supply. The mobile transmitters shown in Figs. 20-20 to 20-28 combine operattion on 50 and 14.4 Me. They use llytron instant-heating filament tubes throughout. All the necessary control and power-supply circuits are given in the sehematic diagrams.

Fig. 20-20 shows the three units, At the left is the 14-Mce transmitter, with the 50-Mc. rig at the right. The modulator, shown betwern them, may be used with either unit. l3y means of suitable interconnecting cables, connections for which are shown in the schematic diagrams, it is possible to select either band hy operation of a single switch at the control position. Operation thereafter is controlled entirely by the push-to-talk swit eh on the microphone.

Both units use Valpey type CM-5 erystals in the 2t-27-Me, range, with a 2E30 Tri-tor oscillator doubling 10 48-at Me. The oveillatordoubler drives a H bitron 5016 amplifior direetly in the ofo- Me transmitter. I Type $\bar{s} 812$
 The modulator uses two 2E:30s driven directly by a carbon microphone. Conxial output fittings are provided for antemata connection, and a serics-tuned antema coupling circuit is included in eateh unit. Note that the jacks for motering purposes are recossed in hack of the pancels, to prewont eontact with the high voltage, a danger spot in many mobile installations.

The 5O-Mc. R.F. Section

The $50-$ Me. r.f. unit, Figs 20-21, 20-22, and $20-23$, is built on an aluminum chassis 4 inches square and 2 itches high. The panel is 4 inches square, with a half-inch lip folded over across the botom for fastening to the
chassis. Arrangement of the parts is obvious from the photographs. It will be seen that the screen dropping resistor, R_{2}, is a lower value in this unit than in the $14+$ - Me. one. More oscillator power was required, as the final stage is driven directly, and the value of the sereen resistor is a good means of controlling oseillator output.

So neutralization of the final was required, but a slight regenerative tendency at some condenser settings was corrected by the insertion of R_{5}, a 22 -ohm resistor, at the grid terminal of the 5.516 .

The 144-Mc. Portion

The 2-meter r.f, section is built on a standard $2 \times i \times 7$-inch chassis, with a 6×7-inch

Typical Operating Conditions in the 50- and 144-Mc. Mobile Transmitters of Fig. 20-20 When Used with a 300 -Volt Supply.			
Stage	Plate r'urrent	Screen Voltage	Grid ('urrent
50, Mc. 13 sc	30 ma .	200 v .	-
141-Mr. (1) se.	30	175	-
111-Mc. Tripler	40	150	-
50-310. Amp.	60	220	3 ma .
1 11-Mc. Amp.	60	160	3
Modulator	50-80	300	-

panel. The oscillator is similar to the (i-meter one, exerpt as noted above. It is followed loy a 1 riplor stage using a 5812 a thbe similar to the 2 l:30 but designed specitically for freguenery multipheation. The plate circuit of this tubo is inductivedy coupled to the final grid eirenit, L_{3} and L_{4} boing hairpin-shaped loops visible in the bottom view, Fig. 20-26.

Note the method of neutralization used in the final stage. The copper fin (designated as C_{16} in Fig. 20-25) visible in the rear view of the $144-M c$. unit is a device occasionally found necessary in tetrode amplifiers. In this

Fig. 20.20 - A com. plete motrile station for $\mathbf{5}$ () and 111 Nr. us. ing fuick-lieating filament tubes. 'The 14. Mc. r.f. serction is at the loft, the so. Me. portion at the right, and the modulator in the middle.

Fig. $20-21$ - Rear view of the 50-Mc. r.f. seetion. The hnob abose the chasisis is the cathode control. The final tank circuit is at the upper left, with antema series tuning at the upper right.
case the physical layout was such that the gridplate capacitance was effectively negative; thus the addition of external capacitance directly from grid to plate. The position of the fin is adjusted in the normal manner. It was made be hammering out the end of a piece of $3 / 16$-inch copper tubing.

Details Common to Both Units

The Tritet eireuit is modified for filamenttype tubes by using closoly-couplod (interbunnd) coils in the filament leads and tuning one of them. This cathode circuit is resonated slightly higher than the ferfurney matred on the erystal. It may be tuned for maximum grid current indication in the succooling stage There ame various typers of reystals for the 24-2- Me range, Coutil rement! such erystah: have bern highy active but very unstable, antd great eare hats been meressan! forevent extreme drift when they were used. Mosit crssal companits now supply hatmonicotyon arysthe that ate lese active, but mush mow stable. 'The satme cathode circuit will work with dither variety, but more inpult will have to be run to the wedilator to achiow the same grid drive when the new tye of erystal is used. If the old-type crystals are used the sereen resistor, l la, can be inereased to ats much as 120,000 ohms, dropping the total cathode current to about 20 ma. . It this input the drift, with the unstable 1 ype of erystal, is not severer. It amounts to approximately 20 to 30 ke , al 114 Mc ., but maty be as muchas and times this value if the oscillator is not operated correctly. The newer types of erystals show a quick drift of a few kilocycles at 14t Mc., as the plate voltage is applied, but remain fairly steady after the first few seconds.

The eathode-cireuit values given are corree for either type of crystal. The cathode coils. $L_{1 \mathrm{~A}}$ and $L_{1 \mathrm{~B}}$, are made by winding with two wires simultanoously. A coating of household cement over the windings will hold them together, giving the coil the appearance of a single winding.

Fig. 20-22 - schematic diagram of the $\mathbf{5 0}-\mathbf{M c}$ c mobile unit.

[^10] long (BS \& W Winiductor, No, 3002).
 long (B \& W No. 300:).
14 - 7 turns No. 20 tinned, ${ }^{1}$ g-inch diameter, $\overline{3} 18$ imeh long ($\mathrm{B}_{\mathrm{N}} \mathrm{IN}$ No. 3003).
I_{1} - Pilot-lamp assembly with 60 -ma. lullb.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Closed-circuit jack.
J_{3} - Coaxial output fitting.
P_{1} - 4 -prong male plug (Jones $\mathrm{P} \cdot 30 \mathrm{~A}$ - AB).
$1 \mathrm{FCO}, \mathrm{RFC} 2-7-\mu \mathrm{h}$. r.f. chowe (Ohmite $\mathrm{Z}-50$).

Fig, 20.2.3-Bottom view of the Ell. \te. riz. Note the intor. wound eathode coil at the left.

The Modulator and Control Circuits

The modulator, Fig ${ }^{\text {F }}$. 20-27 atud 20-28, is also the puwer-distribution unit. Control of the pewer wrotiom is be the puash-tu-talk micerophone l,ut-
 the trathemitter maty be turned on amb

Provision is made for metering the grid and plate cireuits of the final stages by means of jacks in each rig. An approximate chere on the final plate currents, sufficient for normal tuning-up purposes, is provided bey a forma. pilot lamp eonnered in the high-woltagelead 10 the final plateroil. Ifter a few comparisons between the bull, hilliane and observed phatemeter readings it will bepossible toestimate the plate courent fairly elosely be this means. The red jowol in front of the lamp also allows it to serve as a poweron indieator. Off-resomanero or no-driwe phate current in the $\overline{\text { ond }}$ - Me. final stage may ho sufferient to hurn out a fiot-ma. pilot lamp, so a $150-\mathrm{ma}$. bulb mat be hased during the initialtest phases. Once the rig is adjusted there is litte likelihood that the current will expeod 80 mat. or se, which the fill-ma, lamp will take in stride.

Fiц, 20.2. - Mear view of the IIt-Mc. mobile unit. The cope pure fin at that side of the lenal tubre is a nentraliving atjuatment.
off comorniontly from the test position. This switeh is, of course, normally open. The only other eontrol switeh is one to be mounted at the operating position to select the batul to be used. If only one r.f. seetion is constructed this remote solector switch (not shown in the schomatio diagrams) and its associated power sorket, J 2 in Fig. 20-28, can be dispensed with.

The male power plug, P_{1} in Fig. 20-28, and the three female power sockets, J_{2}, J_{3} and J_{4}, am momated along the back of the modulator chassis, Power details of a tepical installation are shown at A and B in this diagram. A 3 -wire

Fig. $20.25-$ Schematic diagram of the $14+$. Nc. r.f. section.
$C_{1}-50-\mu \mu \mathrm{fl}$, variable (Millen 200 s 0)
$\left(i_{2}, C_{3}, C_{4}-15-\mu \mu f_{1}\right.$, variable (Millen 20015) .
(is-6- $\mu \mu \mathrm{fd}$-per-section butterfly variable (Cardwell VR-6.13F゙S).
C: - 3i- $-\mu$ fll, variable (Willen 20035).
$\mathrm{C}_{1}, \mathrm{C}_{5}, \mathrm{C}_{9}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15}, \mathrm{C}_{17}, \mathrm{C}_{18}, \mathrm{C}_{10}, \mathrm{C}_{20}, \mathrm{C}_{21}$ -4.0. -1 fd. micia,
Cio- $\mathrm{I}^{-}-\mu_{\mu} \mathrm{fl}$. mica.
Cis - Veutralizing-raparitor plate - see text and Fig. 20.2t.
$\mathrm{H}_{3}, \mathrm{~K}_{4}-0.1 \mathrm{megohm}, 1 / 2$ watt.
$\mathrm{H}_{2}-82,000$ ohms, $1 / 2$ watt.
$\mathrm{H}_{3}-1010 \mathrm{ohms}, 1 / 2$ watt.
$\mathrm{R}_{5}-33,000$ ohms, $1 / 2$ watt.
$1 k_{6}-1 \overline{3}, 000$ ohms, $1 / 2$ watt.
shiclded cable can be used between the power sources, B, and the power plug, P_{1}, on the modulator. The wires earrying the filament current and the gencrator starting current should, of course, be heavy conductors. The cable shield can be used for the common ground, Pin 2 on P_{1}.

If the filament selector switch is located at a distance from the modulator the leads from it to I_{2} should be of wire capable of carrying 2 amperes without appreciable drop. As indi-
\mathbf{R}_{7} - 22,000 ohms, 1 watt.
$\mathrm{L}_{1 \mathrm{~A}}, \mathrm{~L}_{1 \mathrm{~B}}$-Interwound enils, each 13 turns No. 18 enamel, $3 / 8$-inch diameter.
$\mathrm{L}_{2}-7$ turns \mathbf{N} o. 18 timned, $1 / 2$-inch diameter, $7 / 8$ inch long (B \& W Minidnetor No. 3002).
$\mathrm{I}_{3}, \mathrm{~L}_{4}-$ IIairpin loops No. 14 wire, $11 / 4$ inches long, $7 / 8$ inch wide. (See bottom view, Fig. 20-26.)
It 5 - 6 turns No. It, e.t., with $3 / 8$-inch spare at center, $1 / 2$-inch diameter, 1 ineh total length.
1.6 - $11 / 4$ turns No. 14 enamel. $3 / 8$-ineh diameter.
l_{1} - Pilot-lamp assemtly with 60 -ma. bulb.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Closed-circuit jack.
J_{3} - Coaxial output fitting.
PI-4.prong male plug (Jones It-301-AB).
$12 \mathrm{FC}_{1}, \mathrm{RFC}_{2}, \mathrm{RFC}_{3}-1.8$ - $\mu \mathrm{h}$. r.f. choke (Ohmite 7.-144) ${ }^{\circ}$
cated in the diagram, there should be 4-conductor cables from J_{3} to the $50-$ Me. r.f. seetion, and from I_{4} to the 14 - Me. unit.

The modulator uses a single stage, without a sperech amplifier. Though this neressitates close talking it makes for economy and simplifies bias problems. It also keeps down powersupply noise (electrical) and car noise (mechanical). With a 300 -volt supply there is adequate audio for modulating the final stage of either rig. Bias is supplied hy a 30 -volt hear-

Fik. 20-26 - 13attom virw of the 114. Als. transmitter. Vote the hairuin loops in the tripler-plate and am-plifirr-grid circuits. (baillator emmponents are at the left. the tripler in the middte. and the amplifier at the right.

Fin. 20.27- Bulinm view of the modulator and power-distrilntion tunit.

ing-aid batters, which should be good for two years or more of ordinary use.

Testing

Operation of this equipment is similar to that of any transmittor using tefrode tubes,

Fig. 20 -28 - Schematic diagram of the modulator unit. Chassissize, 2 hy 5 hy \bar{z} inches. Connections to the power plug and jackson the unit are shown at A. Fixternal power circuits are siven in 13.
131 - 13 ias hattery, 30 volts (Eveready No. 430 hearing. aid type).
J_{1} - Mirroibhone jark, double-button type.
$\mathrm{J}_{2}, \mathrm{~J}_{3}, \mathrm{~J}_{4}-4$-prong female phag (Jonce - -304 - IB).
l' - t-prong mate plus (Jones P-304-AB).
s_{1} - Sp.p.e. toggle switch.
T_{1} - Mierophone tranaformer (Thorilarson T-20A02).
T_{2} - Modulation transformer (Stancor A-38.45).
exeept for the removal of filament voltage during stand-hy periods. A supply voltage of 300 is recommended, though lower or higher voltages may be used with suitable modifieation of the eirenit values. No more than 300 volts should be applied to any of the smaller tubes, in any casc, and the generator type of supply is recommended.

Bench tosting can be done with an ate. supply, though there will be some hum in the modulation. Operation should be ehereked, starting with the ascillator, with plate voltage applied to this stage only until it is running properly. Aninsulated rod, or an emptre phone plug, can be inserted in the amplifior plate jack to permit tuning the exciter portion without damaging the final tuhe. The accompanying table shows the approximate voltages and currents that will result from use of a 300 -volt suppls, when the rigs are properly tuned. All controls except the final plate and antenna coupling should be adjusted for maximum final grid current.
The antenna coupling circuit shown will permit the use of almost any cooxial-line-fed antenna system. The proper method of adjustment is to set the coupling at the loosest value that will permit the proper plate current to be drawn when the series condenser is tuned for plate current peak. If the system is properly tuned there will be little, if any, change in the position of the final plate tuning for minimum plate current, with and without the antenna connected to the coaxial output fitting.

Conclusion

Because the form factor of the mobile installation will be different with almost every car, no particular ease or mounting is shown. The designs merely show practical parts arrangements and electrinal values, leaving the shape and placement of the units to the individual constructor,

Mobile Power Supply

By far the majority of amateur mobile installations depend upon the car storage battery as the source of power. The tube types used in equipment are chosen so that the filaments or heaters may be operated directly from the battery. lligh voltage may be obtained from a supply of the vibrator-transformer-rectifier type or from a small motor-generator operating from the battery.

Filaments

Because tubes with directly-heated cathodes (filament-type tubes) have the advantage that they can be turned off during receiving periods and thereby reduce the average load on the battery, they are preferced by some for transmitter applications. However, the choice of types with direet heating is limited, especially among those for 6 -volt operation, and the saving may not always be as great as antieipated, because direetly-heated tubes may require greater filament power than those of equivalent rating with indirectly-heated cathodes. In most cases, the power reguired for transmitter filaments will be quite small compared to the total power consumed.

Plate Power

Under steady running conditions, the vi-brator-transformer-rectifior system and the motor-generator-type phate supply operate with approximately the same efficiency. However, for the same power, the motor-generator's over-all cffieconcy may be some what lower hecause it draws a heavier starting curront. On the other hand, the output of the generator requires less filtering and sometimes trouble is experienced in eliminating interference from the vibrator.

Mobile Power Considerations

Since the car storage battery is a low-voltage source, this means that the current drawn from the hattery for even a moderate amount of power will be large. Therefore, it is important that the resistanere of the b -volt cireuit be held to a minimum bey the use of heary eonductors, no longer than necessary, and good solid connections. A heavy-duty relay should be used in the ine betwen the battery and the plate-power unit. An ordinary toggle switch, located in any convenient position, may then be used for the power control. A second relay may sometimes be advisable for switching the filaments. If the power unit must be located at some distance from the battery
(in the trunk, for instancer) the fi-volt cable should be of the heary military type.

A complete mobile installation may draw 30 to 40 amperes or more from the 6 -volt battery. This reguires a considerably increased demand from the ear's battery-eharging gencrator. The voltageregulator systems on cars of reecent varas will take bare of a moderate increase in demand if the car is driven fair distanees regularly at a speed great enough to ensure maximum charging rate. However, if much of the driving is in urban areas at slow speed, or at night, it maty be nerossary to modify the charging system. Spexial commu-nications-type gemerators, such as those used in policerear installations, are designed to charge at a high rate at slow engine speeds. The eharging rate of the standard system can be increased within limits hy tightening up on the voltage-regulator spring. This should be done with cation, however, wherking for excessive generator temperature or aboormal sparking at the commutator. The average car gemerator has a rating of 35 amperes, but it maty be possible to adjust the regulator so that the generator will at least hold even with the transmitter, recoiver, lights, heater, ete., all operating at the same time.

Another soheme that has been used to increase generator watput at slow driving speeds is to decrases sightly the diameter of the generator pulley. This means, of course, that the generator will be rumning above normal at high driving speods. some generators will not stand the higher speed without damage.

If higher transmitter power is used, it may be neweswry to install an a, charging system. In this sytem, the generator delivers a.e and works into a reetifier. A wharging rate of 75 amperes is easily ohfand. Commutator trouble often experienced with d.e. generators at high current is avoided, but the cost of such a syotem is rather high.
some mobile operators prefor to use a separate hattery for the radio equipment. Such a system can be arranged with a switeh that cuts the auxiliary hattery in parallel with the cat battery for eharging at times when the car battery is lightly loaded. The auxiliary battery can also be eharged at home when not in use.

A tip: many mobile operators make a habit of carrying a pair of heary cables five or six foet long, fitted with clips to make a commedtion to the battery of another car in case the operator's battery has been allowed to run too far down for starting.

Mobile Antennas

Most mobile antenna systems are basically of the quarter-wave type, the car body serving as a ground plane Exceptions are the half-wave systems somotimes used for 50 - and $114-\mathrm{Mc}$. operation. At 29 Mc , a simple quater-wave
vertical whip (approximately- 8 feet) is feasible for mounting on a car. If the distance betweon the fransmitter and the base of the anteman is short, such an antenma can be fed simply as shown in Fig. 20-29. , the condenser tuning out

Fig. 20-29 - It 28 Ve, an 8-ft. whip ran twe coupled by a simple link if the antenna is rlose to the tranamitter, or otherwine by a coasial cable.
the reactance of the coupling link. If the line must be wer a foot or sor, it is best to fied the antenna with coaxial eable, as shown at 13. Fiftre-two-ohmeable provides a reasonable match, but a more aceurate mateh can be ohtained by using two seetions of 73 -ohm cable in parallel.

4-MC. OPERATION

A quarter-wave system for lower frequencies usually is simulated be the addition of loading inductane and capaeitance to the 10 -meter whip (1) make the swatem resonatut at the operating frequencer, athough mochanical considerations sometimes may make it neersary to hase a radiator shortere than 8 feret.

The approximate theoretieal equivalent of a bory short antema is shown in Fig. 20-300 A. R repmenente esentially the radiation resistane Which is in the vicinity of 0.5 ohm for an 8 -lt. Whip at I Me, while f ' is the capacitanere of the athenna which may be dotermined approximatoly from:
where

$$
\begin{aligned}
& C_{n}=\text { Caparitance of antemns in } \mu \mu \mathrm{fl} \text {. } \\
& L=\text { antennat height in fert } \\
& 1)=\text { diameter of radiator in inches } \\
& F^{\prime}=\text { operating frequenory in Me. }
\end{aligned}
$$

$$
\log _{\mathrm{c}} \frac{21 L}{D}=2.3 \log _{10} \frac{2+I}{D}
$$

(A)

(B)

Fig. 20-30-A - Fiquivalent circuit of thort antenna without loading. 13-E.guivatent eirenit witl loading coil.
lig. 20-31 shows approximate capacitances for various sizes of eomoluctor and lengths.

From the eireuit of Fig. 20-30), it is sern that any current flowing through R must also flow through the reateme of © 'The capacitane of an
 capacitive reactance of about 2000 ohms at 4 Me. This reatanere can be climinated by adding a loading coil in series, as shown in Fig. 20-3013. The reactane of the coil must be egual to the reatetane of the eondenser: in other words, the system is tuned to resonanee, leaving only the resistanee of the eonil in series with the radiation resistance of the antoma.

Loading Coils

Since the power output of the transmitter is now divided betwern the antemnat and the loading coil in proportion to their resistances, maximum power will be dolivered to the antemata when the resistance of the loading eobil is made as small as

Fig. 20-31-Ciraph showing the rapacitance of short wrtical antembse for various diameters and lengths.
possible. Buratuse the resistaner of even a good coil may ber several times the antemar resistance, it is most important that the () of the coil be as great as posible. (cils of high () require large diamoter, and large conductor wound in "airwound" fashion. "The turns should be spaced approximately the diameter of the eonductor and the insulation should be good. Where "atirwound" comstruction is not mechamically feasiWhe, the form should be of the best low-loss material available, such as large-diameter polvo styrene rod.

Top Capacitive Loading

Ninere the coil resistance varies with the inductance of a coil, the resistance can be further reduced by decereasing the size of the eoil. This can low done if the rapacitaner of the antemas atove the eroil is increased correspondingly to maintain resonamer. In addition, such capacitive loading inereases the current in the upper part of the antenna from which most of the useful radiation takes place. some capacitance can be added by increasing the diameter and length of the antemata, as Fig. 20-31 indicates, but to obtain appreciable increase in eapacitance, it is

Fig. 20-32-The top-lozaled t- 11 c. antematased by
 The coil ean be tuned hy the variable link which is conmeded in series with the Iwo halvers of the roil.
neecesary to add a large capmeritive surfare at the top of the amtennat, or as elosio to the top as merhanimally forsibl) (apatitivo "hats," as they are usually ralled, maty comsist of a large motal hall, at crlindrical ("an or, as shown in lïg. 20-32 (Bib. ${ }^{1}$), at whel structure of aluminum wire. The capacitane of the hater can he inereased hy conrring it with aluminum sereming. Fig. 20-33 gives the approximate eaparitane to be expered with top-leading devices of various forms and dimensions.

Coil Location

Whether a top caparitanter is used or not, plating the boading coil at the hase is a aricst merhanieally, but apperiable increase in effective radiation can be obtained by moving the (eoil up on the antemat, since this increases the current in the upper portion of the antenna. (If the coil is commented at the base, it shombl make little difference whe ther the eoil is momented inside or outside of the car, In wither case, the eoil and its lead to the antema should be kept well spacere from the car bode and the connereting lead should he short.) Is the eoil is raised on the antenna, the capacitanere tuning it is reduced, so that more turns must be added to the coil to maintain
reshathere Thus the gain is oftiset some what hy the increased resistathere of the roil. If the erit abone were mowerl to the lep of the antomata, only the self-raparitance of the eroil would remain athl the woil would become inpmatially later. Experionere has slown that the best ampromise is obtaimed when the coil is placed at about the eontar of the antema.

Howerer, if sufficiont top koding capacitanere is added, the Inst position for the coil is at the. tojl) of the antemata, direertly under the "hat," sinere the aded caparitane sets a remsonable value on coil size sometimes the "hat" is made in the form of a cath enclosing the eroil. But a netal enclosure will lower the () of the eoil atppreciably, unless it is about there times the diamator uf the emil. If the diameter af the emelosure is limited for mordanical reasons, it is much better (1) use a plastic emelosure to protect the mil against weather.

Tuning

Sime the total mesistanme of the antoma systela is low, it heromes very eritieal in adjustment (1) fesmather, and the pewer drawn from the transmiter will drop off rapidly as the frepuenery is changed cither side of the resomant frepurnes of the anteman system, reguiring retuning for (hanges of more than 5 kc . or so in opreating frequeners Various schemes have been devised for tuning the loading coil. In addition to the use of chesely-spaced taps on the woil and at shorting (clip, at variabla bras slug or disk flippor is sometimes used (sere ligg. 20-31.1) (Bib, ${ }^{2}$). Thurns cath abob be sherted out with a slider arrangement, ats shownat B ($\mathrm{Bib}^{3} .^{3}$). A motal ring, surrounding the coil, hut mot in contan with it, can be weed to vary the tuning 100 ke . or so by moving it up and down along the coil. This arrangement issketehed at (' (Bib, ${ }^{4}$). The physical form of high-() coils doces not !emd itself well to any of these devieres, howerer. In this caree, a mall variable imdurtane at the hatse of the anterna is somotimes used for thang purposes. lecanse of the resistane it introduces, it should be made only large poough to

Fig. 20-33-Caparitanerw of spheres. disks and rylinders in free space. "Jhese values are approximately these to be experted when used with top-loaded whip antennas. 'The evpinder length is assumed to be equal to its diameter.

(A)

(B)

(C)

Fig. 20-34- Three methods of varying loading-coil inductance. In A, a brass slug is moved up or down inside the conl form. A sider contacting the turns of the coil is shown at K . In C, a eopper ring surrounding the coil is moved up or down on a sliding arm. The bakelite tubing prevents contact between the ring and the coil.
cover the desired band of frecumenes, being antirely shorted out for the high-fregueney and of the range.

Feeding the Loaded Whip

Since the total resistance of the loading coil athe antemat is usually a matter of 10 ohms or so,

Fig. 20.35-Matchimg abasial line to the loaded whin. I_{1} is a coil of alout $\overline{3} \mu \mathrm{~h}$. for 1 Mr . The line is tapped on at abont 1μ h. I_{2} is the regular loarling coil, re. doced loy the amount of inductather in I..

7- and 14-Mc. Operation

The operation of the antema for 7 and 14 Me . is similar to that described for 4 Me., except that the loading eoil will be smaller and the efficieney will be higher. At 14 Ire, it maty be possible to dispense with the loading coil entirely if the top loading capacitanor is make sufficiently large.

- ANTENNAS FOR 50 AND 144 MC.

A common type of antemna emploved for nobile operation on 50 and 144 Me. is the quarter-wave radiator which is fed with a coaxial line. The antema, which may be a flexible teleseoping "fish pole," is monnted in any of several planes on the car. Quite a good match masy be obtained by this method with the 50 -ohm roaxial line now avatable: however, it is well to provide some meaths of tuning the system, so that all variables ean be taken care of. The simplest tuning arrangement consists of at variable condenser eonneeded between the low side of the transmit-

Fia, 20.30- Method of feeding quarter-wave mohile anternats with coasial lime (i) should have a masimnon cabacitance of 55 to $100 \mu \mu \mathrm{fd}$. for 28 - and $50 . \$ 1 \mathrm{c}$, work. I_{1} is an adjustable link.

ter coupling eoil and ground, as shown in Fig. 20-36. This condenser should have a maximum
 *hould bo adjusted for maximam loading with the least compling to the transmitter. Some method of varying the coopling to the transmitter should be provided.

fig. 20-3 - W Sllfics remter-lonaded anteman with matching coil at hase.

Tha short antenma required for 14. Mc. (approximately 19 inches) promits monnting the antemat on the top of the ear. This provides gund coverage in all dimetions, the car body acting as a groumd platue. When the antemata is montiond Asembere on the ear, it is apt to show guite marked dimetivits. Procause of this it is desimatele to use the same antemat for both transmitting and recoiving.

Bibliography

 11!u!" (0sT, Jan. 1452.
${ }^{2}$ Buff, "A Tunable 7.5 Moter Mohile

${ }^{3}$ Saumders, "An Easily-Adjustod lowFrequency Mobile Antenna," QST, Aug. 1051.
 Tunable Whip," (2sT, April, 19.je.

5 swathert, "lumirowed romprowd for Dow-Frounency Mobile Antennas." QsT.

Measurements

It is practically impossible to operate an amateur station without making moasurements at one time or anothere "ven though the methods used may be quite crude. An example of a simphe measurement is one that determines whether an amplifier stage in a tramsmittor is properly tumed: it can be done with no more claborate equipment than a flashlight lamp, and a pioce of wire, but Whatever the mothod used, a measurement is essential berause the cireuit itself gives no visible indication of the state of its tuning. The more refined the moasuring equipment and methods, the more information can be obtained, and with more information at hand it beromes possible to adjust a pioce of equipmont for optimum performance more quickly and surcks. Measuring and test eguipment is esprecially valuable in building and in the initial adjustment of radio gear, and in lowating and correcting breakdowns and fanlts.

The basie measurements are those of current, voltage, and fropuence. Intermination of the values of circuit choments - resistanere, inductance and (apaceitance -aro almost equally important. The inspecetion of wavoform in andiofrequence eircuits is highly usoful. For these pur-
poses there is available a wide assortment of instruments, both complate and in kit form: the latter, particularly, compare very favorably in rost with strictsy home-built inst ruments and are frequently more satisfactory both in appearance and calibration. The instruments deseribed in this chapter are ones having foatures of particular usulumess in amate our applications.

In using athy instrument it should always be kept in mind that there is no such thing as an "absolute" measurement, and that measuremonts depema not only on the inherent areurary of the instrument itself (which, in the case of commercially built units is usually within a fow per wont, and in any evont should be sperified by the manulacturer) but abso the conditions under which the measurement is made. Large errors can be int roduced by failing to reognize the existence of conditions that afferet the instrument readings. The instrument can only record what it seesand what it sees maty be something guite different from what the oprorator thinks it sers. This is particularly true in certain tepes of r.f. measuremonts, where there are many st ray offects that are hatd to eliminate.

D.C. Measurements

A direct-current instrument - voltmeter. ammeter, milliammeter or microammetor-is a deviere in which magnotic force is used to defleert a pointer over a cablibrated scale in proportion to the curront flowing. In the D'Arsonval type a coil of wire, to which the pointer is attached, is piroted between the poldes of a premament mangnot. and when corrent Hows through the coil it canses a magnotic fied that interacts with that of the magnet to catise the roil to turn. The turning fored is cexted atainst a spiral spring at tadeded to the roil amd the pointer deflection is direetly propertional to the current.

A less expensive type of instrument is the moving-vane type. in which a pivoted iron wate is putled into a coil of wire bey the magnotie field set up when current flows through the coil. The farther the vane extends into the coil the greater the magnetic forre on it. for a given change in "urrent, so this type of instrument does not have "linear" deflection - that is. the seale is cramped at the low-rarrent end and spread out at the highcurrolt end.
The same hasie instrument is used for mentsuring either current or voltage, Good-quality instruments are made with failly high sensitivit!that is, they give full-scale pointer deflection with very small currents - when intended to be used as voltmeters. The sensitivity of instru-
ments intended for mosuring large rurrents can be lower. but a highty sonsitive instrument ant be and frequently is. used for meseuremont of currents much greater than noeded for full-swale deflection.

VOLTMETERS

Only a fraction of a volt is recpuired for fullscate defleretion of a sernsitive instrument (1 mil liampere or hess full scalde) so a high resistance is comereted in sories with it, Fig. 21-1, for measur-

Fig. 2l-1-How voltmeter maltipliers and milliam moter shonts are conmected to extend the range of a d.e.meter.
ing voltage, Knowing the current and the resistance. the voltage can easily be calculated from (Hhm's Latw. The meter is calibrated in terms of the voltage drop, arross the series resistor or multiplier. Practically any desired full-scalo
 multiplier resistanere, and woltmeters frequently have soveral ranges solected hy a switch.

The sensitivity of the voltmeter is usually expressed in "ohms per volt." A sansitivity of 1000 ohms per volt means that the resistance of the voltmeter is 1000 times the full-serale voltage. and by (Ohm's Saw the current required for fullseale deflection is 1 milliampere. A sonsitivity of 20.000 ohms per volt, another commonly used value, means that the instrument is a so-mieroampere meter. The higher the resistance of the voltmeter the more areurate the measurements:

Fig. 2I-2 - Effect of voltmeter resistance on arcurary of readings. It is assumed that the d.ce resistance of the screen cireuit is constant at 100 kilohms. The actual carrent and voltane without the voltmeter eonnerted are 1 ma. and lon volts. The voltmeter radings will differ lecause the different typer of meters draw different amounts of current throngh the lino.kilohm reaistor.
in high-resistance cirouts, becanse the current taken by the voltmeter may cause the voltage to differ from its value with the voltmeter disconnerted. This is shown in Fig. 21-2.

The required multiplier resistance is found by dividing the desired full-seake voltage be the eurrent, in amperes, required for full-scale deflection of the meter alone. Strietly, the intermal resistance of the meter should be subtracted from the value so fomed, hut this is seldom neressars (exrept prothaps for very low ranges) because the moter resistanee will be negligibly smatl eompared with the multiplier resistanere, An exerption is when the instrument is already provided with an internal multiplier, in which case the multiplier resistane required to extend the range is

$$
R=R_{\mathrm{tn}}(n-1)
$$

where R is the multiplier resistance, R_{m} is the total resistanee of the instrument itself, and n is the factor by which the seale is to the multiplied. For examphe, if a 1000 -ohms-per-volt voltmoter having a calibrated range of $0-10$ volts is to be extembed to 1000 volts, R_{m} is $1000 \times 10=$ 10,000 ohms, n is $1000 / 10=100$, and $R=$ $10,000(100-1)=900,000$ ohms.

If a millitmmeter is to be used as a voltmeter, the value of sories resistance can be found by Ohm's Law:

$$
R=\frac{1000 E}{I}
$$

where E is the desired full-seale voltage and I the full-scale reading of the instrument in milliamperes.

The aremary or a voltumer depends on the calibration aceurary of the instrument itself and the areuracy of the multiplier resistors. I'recision wire-wound resistors arre used in high-quality instrumbuts, but for most purposes standard $1 / 2$ or 1-watt composition resistors will make an arereptable and economical substitute. Such resistors are supplied in tolerances of 5,10 or 20 per rent \pm the marked values. By obtaining matehad pairs from the dealer's stock, one of which is, for example, 4 per ernt low while the other is 4 per cent high, and using the pairs in paralled or series to obtain the required value of resistance, good accuracy can be obtained at small cost. Iligh-voltage multipliers are preferably made up of several resistors in series; this not only raises the breakdown voltage but tends to average out errors in the individual resistors at tributable to manufacturing tolerances.

MILLIAMMETERS AND AMMETERS

A microammeter or milliammeter can be used to measure currents larger than its full-seale reading by conneeting a resistance shunt across its terminals as shown in Fig. 21-1. This diverts part of the current through the shunt, and the total current is the sum of that through the shunt and that through the meter. Knowing the meter resistanee and the shunt resistanee, the relative currents can easily be calculated.

The value of shunt resistance reguired for a given full-seale current range is given by

$$
R=\frac{R_{\mathrm{m}}}{n-1}
$$

where R is the shunt, R_{m} is the internal resistance of the moter, and n is the factor be which the original meter scale is to be multiplied. "The internal resistance of a milliammeter is preferably determined from the manufarturer's catalog, but if this information is not available it can be determined hey the method shown in Fig. 21-3. Do not use an ohmmeter to medsure the internal resistanee of a milliammeter; it may ruin the instrument.

Fig, 2l-3- Determining the internal resistance of a milliammeter or microammeter. R_{1} is an adjustable resistor having a masimum value about twice that necessary for limiting the current to full scale with R_{2} disponmected: aljust it for exardy full-seale reading. 'Then connect R_{2} and adjust it for exactly half-scale reading. The resistance of R_{2} is then equal to the internal resistance of the meter, and the resistor may he removed from the cirenit and measured separately. Internal resistances vary from a few ohms to several hundred ohms, depending on the sensitivity of the instrument.

Homemade milliammeter shunts can be constructed from any of the various spereial kinds of resistance wire, or from ordinary eopper Wire if no resistane wire is a vailable. The (opper Wire Table in the data chapter gives the resistance per 1000 fect for various sizes of eopper wire. After computing the resistance reguired, determine the smallest wire size that will carre the full-seale current (at $2 \overline{0} 0$) rireular mils per ampere). Me:asure off onough wire (pulled tight but not aremeded) tu provide the required resistance. Aecurace can be chereked by catasing enough current to flow through the meter to make it read full scale without the shunt : connereting the shunt should then give the eorrect reading on the new full-seate range.

Ans curront-mosasuring instrument should have very low resistance compared with the resistance of the circuit being measured: otherwise, inserting the instrument will cause the current to differ from its value with the instrument out of the circuit. (This docs not matter if the instrument is left permanently in the cireuit.)

Fig. 21-7- Ioltmeter method of measuring rurrent, This method permits using relatisely larpe valurs of resistaner in the shme, standaril values of fixed resistors frequenty being nsable. If the multiplier resistance is ? 1 times the shant resistance (or more) the error in asisuming that all the corront flows through the shant will nett te of eomseduence in most practical applications.

However. the resistance of many eirenits in radio eguipment is quito high and the rireuit opreration is affereded little, if at atl. beydding as much as a few humdred ohms in series. In such cases the voltemater method of mastsuring current, shown in Fig. 21-4. is frequently convenient. A voltmoter - or low-range milliammeter provided with a multiplier and operating as a voltmeter - having a full-scale voltage ratuge of a few volts, is used to moasure the volate drop across a comparat tively high resistance acting as a shont. The formula above is used for finding the proper vatue of shumt resistance for a given seale-multiplying fartor, R_{m} in this case being the multipher resistance.

D.C. Power

Power in direxterurnet direnits is determined by measuring the eurent and voltage. When these are known. the power is cqual to the voltage in volts multipliod by the current in amperes, If the current is measured with a milliammeter. the reading must be divided by 1000 to convert it to amperes.

RESISTANCE MEASUREMENTS

Measurement of d.e. resistance is based on measuring the current through the resistance when a known voltage is applied, then using Ohm's Law. A simple cireuit is shown in Fig. 21-i).

Fig. 21-7- Measuring resistance with a voltmeter and milliammeter. If the approximate resistance is known the woltake can le selected to ranse the milliammeter, $11 . f$, to read about half satale. If not, additional resistancer should te first conmeted in series with R to limit the current to a safe value for the milliammeter. 'I'he set-up then merasures the total resistaneer, and the value of K can be found by subtracting the hrown additional resistance from the iotal.

The internal resistane of the ammeter or milliammeter, A, should be low compared with the resistance, R. being measured. since the voltage read hes the voltmeter, V, is the voltage aross A and l in series. The instruments and the d.e. voltage should be chosen so that the readings are in the upper half of the scate. if pesible. since the percentage error is lass in this region.

An ohmmeter is an instrument eonsisting fundamentally of at voltmeter (or milliammeter. depending on the cireuit used) and a small dry battery as a somere of d.e. voltage, calibrated so the value of an unknown resistance can be read
(A)

(B)

(C)

\because if. 21-6- Ohmmeter cireuits. Values are discussed in the text.
diredty from the salde. Typieal ohmmeter cirruits are shown in Fig. 21-6. In the simplest trpe. shown in Fig. 21-6A, the moter and battery are connocted in serits with the unknown resistance. If a given deflection is obtained with terminals $A-B$ shorted. inserting the resistance to be measured will rames the metor reading to dermase. When the resistaner of the voltmeter is known, the following formula (an be applied:

$$
R=\frac{e R_{\mathrm{m}}}{E}-R_{\mathrm{m}}
$$

where R is the resistance under measurement, e is the voltage applied ($.1-13$ shorted),
E is the voltmoter reading with R eonneroted, and
R_{m} is the resistance of the voltmeter.
The rircuit of Fig. 21-6id is not suited to measuring low values of resistance (below a hundred ohms or so) with a high-resistance voltmeter. For such measurements the circuit of Fig. 21-6B atan be used. The milliammeter should be a $0-1$ mat. instrument, and h_{1} should be equal to the hattory voltage, e, multipliod by 1000 . The unknown resistance is

$$
R=\frac{I_{2} R_{\mathrm{tn}}}{I_{1}-I_{2}}
$$

where R is the unknown,
h_{m} is the internal resistance of the mibliammeter.
I_{1} is the current in mat. with R disconnerted from torminats $1-13$, and
I_{2} is the current in mat with R connereded.
The formula is approximate, but the urror will be negligible if is at least 3 volts so that R_{1} is at leatit 3000 ohms.

A thind rircuit for measuring resistance is shown in Fig. 21-6(\%. In this case a high-resistance voltmeter is used to measure the voltage drop across a reference resistor, R_{2}, when the unknown resistor is eommerted so that rurrent flows through it, Re and the hattery in sorids. By suitable choice of Ro (low values for low resistance, high values for high-resistance unknowns) this circuit will give ergually good results on all resistance values in the range from one ohm to several mogohms, provided that the voltmeter resistanco, $R_{\text {tue }}$ is always very high (50 times or more) (empareal with the resistance of R_{2}. I 20,000 -ohms-per-volt instrument (00) - atmp. movement) is gencrally used. Assuming that the current through the voltmotar is negligible compared with the current through R_{2}, the formula for the unknown is

$$
R=\frac{e R_{2}}{E^{\prime}}-R_{2}
$$

where R and R_{2} are as shown in Fig. 21-(ic.
e is the voltmoter roading with $A-B$ shorted, and
E is the voltmeter reading with R connerted.
The "zero adjuster," R_{1}, is used to set the
voltmeter reading exametly to full soald when the meter is calibrated in ohms. A 10,000 oohm variable resistor is suitable with a 20,000 ()-chamsepr-volt meter. The battery valtage is usually 3 volts for ranges up to 100,000 ohms or so and 6 volts for higher ranges.

Combination Instruments

Fince the same basio instrument is used for measuring current, voltage and resistanere the three functions renn readily be combined in one unit using a single meter. Various models of the "YoNI" (volt-ohm-milliammeter) are available commercially, the less expensive ones using a 0-1 milliammeter. A simple circuit based on such a meter is shown in Fig. 21-7. It has five current

Fia. 21-i- Diagran of the volt-ohm-milliammeter.

$R_{2}-30110$ ohmo. ${ }^{2}$ watt.
If: - In-ma, -hmm. 6. 11 whms (are test).

R:- - loll. volt mateiplier. ©h.0160 whms, ${ }_{2}{ }_{2}$ watt.

S.A-13-9-poini 2-pole selector ewitch.

A1-0-1 milliammeter.
rampes, from 1 mat. to 1 ampere, threr voltage ranges. 10 volts to loon volts, and two resistance ranges. Fig. 21-8 shows the ohmmeter caliln:ttion: the low-ohms curve is for a meter having an internal resistane of sis ohms and should be caldeulated from the formula above (Fig. 21-6ib) for instrummente of difieront resistance.
()rdinary ("arbon resistors can be used as voltmetor multipliers, comnerting them in sories or paralled to obtain a givern value. The 10-, 100 and $1000-\mathrm{ma}$. shunts can be made of copper wire wound on small forms. The approximate lougt hs and sizes of the wire for the shunts are as follows: R_{3}. 9 foret No. 38 rnamelled: $R_{4}, 5$ feret No. 30 rimanded; R_{5}. $81 / 2$ feet No. 18 .

It is possible to buy sperial VOM scales to rephate the 0-1 scald for certain tepers of milliammeters. In such case the "ireuit recommended for that scale should be used.

More expensive instruments use a $50-\mu \mathrm{am}$ and meter in the loal, with large scales for cass. reading. such instruments frequently include at. scales as well, and in general are better purehased complete than made at home.

The VOM, even a very simple one, is anong the most useful instruments for the amateur. Besides current and voltage measurements, it

Pip. 21.8 - Caliliration rurve fer the high-and lewe. rexi=tance ranges of the volterhmemillianameter.
rath be used for cherking continuity in rircuits, for finding defortive components be fore installat-tion-shorted condensers. open or otherwise defertive resistors, ote. - shorts or operns in wiring. and many other chereks that if applied during the construction of a piece of equipment, sater much time and trouble. It is erfually useful for sorvicing, when a component fails during regular opration.

THE VACUUM-TUBE VOLTMETER

The usofulness of the vacuum-tube voltmeter (VTVM) is based on the fact that a varumen tube can amplify without taking jower from tho soutce of voltage applied to its grid. It is therefore possible to have a voltmoter of extremely high resist -
ance, and thus take negligible current from the circuit under measurement, without using a d.c. instrument of exceptional sensitivits.

While there are several possible circuits, the one commonty used is shown in Fig. 21-9. A dual triode, l_{1}, is arranged so that, with no voltage applied to the left-hathe grid, equal currents flow through both sections. Luder this condition the two eathodes are at the same potential and no current flows through $1 / 1$. The currents can le adjusted to balance by potentiometer R_{11}, which takes care of variations in the tube seetions and in the values of cathode resistors K_{9} and R_{10}. When a voltage is applied to the left-hand grid the current through that tube section changes but the e eurrent through the other section remains unchanged, so the batance is upset and the meter indirates. The sensitivity of the meter is regulated by R_{8}, which serves to adjust the calibration. R_{12}, common to the cat hodes of both tube socetions, is a feed-back resistor that stabilizes the system and makes the readings linear. K_{6} and C_{1} form a filtor for any a.c. component that may be prosent, and R_{6} is balanced $b_{y} R_{7}$ connected to the grid of the serond tube seretion.
'Fostay woll within the limar range of operaw tion the scale is limited to 3 volts or less in the average commercial instrument. Higher ranges are ohtained beverans of the voltage divider formed by R_{1} to R_{5}, inclusive. As many ranges as desired rean be used. Common practice is to use 1 megohm at R_{1}, and to make the sum of R_{2} to R_{5}, inclusive, 10 megohms, thus giving a total resist:anco of 11 megohms, constant for atl voltage ranues.

For momaring ace voltares the rertifier circuit shown at the lower heft of Fig. $21-4$ is used. (hae section of the double diode, l_{2}^{2}, is a hatf-wave revetifire and the serond half adts ats a batancing dovier, adjustahla by R_{17}, to diminate contant potential effects that would cause a constant d.e. voltage to appear at the V"TVA grid. When measuring a.e., R_{s} is usually set so that tie r.m.s. a.c. calibration eoinededs with the d.e. calibration. A separater resistor is frequently switehed in for the purpose.

Vialues to be used in the cireuit depend consid-

Fig. 21-9 - Vacuum-tube voltmeter circuit.
$\mathrm{C}_{1}-0.002$ - to 0.005 - $\mu \mathrm{fd}$. miea.
$\mathrm{C}_{2}-0.01 \mu \mathrm{fid}$, 1000 to 2000 volts, paper or mica.
$\mathrm{R}_{1}-1$ mekohm, $1 / 2$ watt.
H_{1} to R_{5}, inclusive - 'To give desired voltake ranges, totaling 10 mekohms.
$\mathrm{K}_{6}, \mathrm{~K}_{7}-2$ to 3 meqohnis.
R_{9} - $10,0,000$-nhm sariable.
$\mathrm{R}_{9}, \mathrm{R}_{10}-\mathbf{2 0 0 0} \mathbf{1 0} 3090$ ohms.
R_{11} - $\mathbf{3 0 0 0}$ - to 10,000 -ohm potentiometer.
$\mathrm{R}_{12}-10,000$ to $\mathbf{5 0 , 0 0 0}$ ohms.
$\mathrm{R}_{13}, \mathrm{R}_{14}$ - App. 25,0000 ohms. A $\mathbf{5 0 , 0 0 0}$.oblom slider-type wire-wound can be used.
R_{15} - 10 megohms.
$\mathrm{R}_{1 \mathrm{~s}}-3$ megohms.
R_{1} - -10 - mex wohm variable.
M - Microammeter, range from (0-20) дamp, to 0-1 ma.
V_{1} - Dual triode, osx 7 or I2AUZ.
V_{2} - Dual diode, 6 II 6 or 6 ALF .
arably on the supply voltage and the semsitivity of the meter, M, R_{12}, and $R_{13}-R_{14}$, should be adjusted so that the voltmeter cireduit can be brought to balanere, and to give full-scale defleretion on .If with about 3 volts applied to the grid. The meter connections can be reversed to read voltages that are negative with respect to ground.
The VTVM has the disadvantage that it reguires a souree of power for its operation, as compared with a regular d.c. instrument. Also, it is susceptible to r.f. pick-up) when working around an operating transmittor, unless well shielded and filtered. The fart that one of its terminals is grounded is also disadvantageous in some cases, since ace readings in particular may be inarenrate if an attempt is made to measure a circuit hatving hoth sides "hot" with resperet to ground. Nevertheless, the high resistance of the VTVM more thatn compensates for these disadvantages, Cspectially sine in the majority of measurements ther do not apply.

Calibration

When extending the range of a d.c. instrument calibration usuatly is neressary, although resistors for voltmeter multipliers oftern can be purchased to close-enough tole rameres so that the new range will he areurately known. However, in calibrating an inst rument such as a VTV.M a known voltage must be available to provide a starting
point. Fresh dry cells have an open-rireuit terminal voltage of approximately 1.6 volts, and one or more of them maty be comereted in serics to provide several calibration points on the low range. (ias regulator tubes in a power supply, surli as the OCB, ODB, ette., also provide a stable source of voltage whose value is known within a few per cont. Once a few such points are dotermined the voltmeter ranges may be extended readily be adding multipliers or a voltage divider as appropriate.
Shunts for a milliammeter may be adjusted be first using the meter alone in series with a source of voltage and a resistor selected to limit the curront to full scale. For example, a $0-1$ milliammetur may be comerted in series with a dry coll and at 2000-ohm variable resistor, the latter theing adjusted to allow exactly 1 milliampere to flow Then the shunt is added arross the meter and its resistance adjusted to reduee the motor reading by exactly the scale factor, n. If n is 5 , the shant would be adjusted to make the meter read 0.2 milliampere, so the full-scale current will be 5 mat. Using the new scale, the serond shunt is added to give the next range, the sime procedure being followed. This can be carried on for several ranges. but it is advisable to rherek the meter on the highest range against a separate meter used as a stambard, simer the errors in this prowess tend to ter cumulative.

Measurement of Frequency and Wavelength

ABSORPTION FREQUENCY METERS

The simplest presible frequencer-muaturing deviee is a resonant circuit, tumable over the desired freguency range alnd having its tunimg dial catibated in terms of frequenes. It opmators by extracting a small amount of energe from the oscillating cireut to be measured, the fergueney being determined be the tuning sotting at which the energy absorption is maximum (Fig. 21-10).

Although such an instrument is not rapable of

 application. The meter consiato simpls af at calitrated revonant eirenit J.C. When eropled bin an amplitier or wacillator the tube plate emeremt will riad when the fre
 may le commered in series at $\$ tor give a visual indication, but it derreases the selectivity of the intrument and makes it neresary to use rather ilose mopling to the cirruit heing measured.
very high aceuracy, berause the () of the tumed circuit cannot be high enough to avoid uncertainty in the exact setting and becalles any two couphed rireuits interact to some extent and change each others' tuning, the absorption wavemeter or frequency metor is nevertheless a highly useful instrument. It is compact. inexpensive and reguires no power supply. 'There is no ambiguity in its indieations, as is frequently the case with the heteredyne-tepe instruments deseribed hater.

When an absorption moter is used for chereking a tramsmiter, the phate purrent of the tube comnected to the eireuit being rherked ean provide the neressary resonance indieation. When the freguency meter is loosely roupled to the tank rereuit the plate current will give a slight upward flicker as the moter is tumed through resonance. The areuracy is greatest when the loosest possible coupling is used.

A receiver oseillator may be chereked by tuning in a steady signal and heterodyning it to give a beat mote as in ordinary \cdot. w. reception. When the frequener meter is coupled to the osciflator roil and thaned through resonataee the beat mote will change. Again, the rouphing should be made lonse enough so that a justperemptible ehange in hatt note is ohserved.

An approximate calibation for the wavemetrer, adequate for mos purposes may be obtained by comparison with a calibrated re-
cajer. The usual recerior dial rablitation is sufficiently arenarate. A simple oseillator cireuit covering the same range as the frequency meter will be useful in calibration. Sot the receiver 10 a given freducnery, tune the oscillator to zoro beat at the same frequence, and adljust the frepuener metor to resonance with the wicillator as described above. This gives one calibration peint. When a sufficient number of such points has beew obtained a graph may be drawn to show frequener is. dial settings on the frequency moter.

INDICATING WAVFMETERS

The plain ahosorption meter repuines fairly - lose coupling to the oscillating circuit to affer the plate current of a tube sufferently to give visual indication. The sensitivity of the instru-

fig, 2l-11- Cirenit diagram of indicating wavemeter. With the meter plug removed, it ean be uned as a conupact absorption meter of the ordinary type.
$\mathrm{C}_{1}-\quad .30-\mu \mu \mathrm{fd}$. variable (IIammarlund HF.50).

It- Open-eirenit jack.
MA-IV, milliammeter, 0-1 or less.
P_{1} - 'I'home plag.
Coil Data, L_{1}

Freq. Range	Turns	Wire	Diameter	Turn. $/$ inch	Tap*
1.6-4.2 Mc.	139	32 enam.	${ }^{3} \mathrm{i}$ in.	Close-wound	32
3.6-10.5 Mc.	40	32 enam.	${ }^{3} \mathrm{in}$,	(llose-wound	12
7.8-24.0 Mr.	40	24 tinned	$3 / 2 \mathrm{in}$.	32	14
$178-520$ Ntc.	15	20 tinned	约in.	16	5
$8-117$ Mc.	4	20 tinned	$1 / 2 \mathrm{ll}$	16	$11 / 3$

$80-270$ Mc. Hairpin of No. 14 wire, $8 / 8$ in. spacing, 2 inches long including coil form pins. Tapped $11 / 2$ in from ground and.
*Turns from ground end.
Coil forms are Amphenol $2 \ddagger-5 \mathrm{H},{ }^{3} \mathrm{i}$ in. diameter.
ment ean be increased, by adding a rectificr and d.c. microammeter or milliammeter, to the point where very loose coupling will suffice for a good reading. A typieal circuit for this purpose is given in Fig. 21-11, and Figs. 21-12 and 21-13 slow how such an inst rument can be const ructed. For ronvenienere in use, the tuned circuit is mounted in a small metal box that can be held in one hand for close coupling to a circuit. The d.c. meter can be comected or not as desired, since it is separate (it can also be mounted in a small box) so the instrument can be used either as a plain absorption meter or as an indicating-type meter.

The rectifier is a crustal diode, tapped down on the tuned-circuit coil to avoid excessive loading

Fig. 21.12-A compact absorption wavemeter proviled with a crystal rectificr and jach for an indicating meter. The meter can be monnted in a separate lone if desired. The dial is similar to that used on the grid-dip meter described latur in this chapter.
of the circuit which would broaden the tuning. Tapping down also improves the sensitivity, by providing an approximate impedanere mateh botween the tuned cireuit and the revstal-eireuit load. By phaging a headset into the output jack ("phones having 2000 ohms or greater resistance should be used for greatest sensitivity) the wavemeter can be used as a monitor for modulated transmissions.

It is of course possible to mount the dere, meter in the same unit with the wavemeter proper, but this increases the bulk and weight. The separate units have the advantage, also, that a long line can be used to comneret the two, since such a line carries only d.e., so the meter can be placed at a remote point to pick up r.f. while the indicator is placed at the spot where adjustments are boing made. This is frequently useful in antenna work, for example.

Where connerdion to an a.ce, line is convenient, a TTVM can tre used insted of the milliammeter or mieroammeter, and bereanse of its high resistance will eonsiderably increase the sensitivity and selectivity of the wavemeter.

In addition to the uses mentioned above, a meter of this type may be used for final adjust-

Fig. 21.13-Inside the indicating-type wavemeter. The tuning condenser should be mounted as close as possible to the coil socket so the leads will be of negligible length. The box is $15 / 8 \times 21 / 8 \times 4$ inches.
ment of neutralization in r.f. amplifiers. For this purpose it may be loosely coupled to the plate tank coil. Alternatively, \dot{L}_{1} may be removed and the final-amplifier link output terminals conneeted to the roil socket. The latter method tends to emsure that the piek-up, is from the final tank coil only.

- LECHER WIRES

At very-high and ultrahigh frequomeios it is possible to determite freguener by actually measuring the length of the waver generated. The measuremont is made by ohserving standing waves on a two-wire parallel tramsmission line or Lecher wires. such a lime shows pronounced rewonance effeets, and it is possible to determine quite aceurately the current loops (points of maximum corment). The phesical distance betwentwo consentive current loons is equal to ond half wavelength. Thus the wavelongth can be read directly in moters (39.37 inches $=1$ meter; $0.39: 37$ inch $=1$ (.mı), or in contimeters for the very-short wawlengths.

The Lecher-wire line should be at least a wavelength long - that is. 7 feet or mone on 144 Me . - and should be entirely air-insulated except where it is supperted at the ends. It may be made of copper tubing of of wires strotched tightly. The sparing betwern wires should not exped about 2 per cent of the shortest wavelongth to be measured. The positions of the current loops are found by moans of a "shorting bar," which is simply a metal strip or knife edge which can be slid along the line to vary its effertive length.

Making Measurements

For mosasuring the frequency of a transmitter, a conveniont and fairly sensitive indieator can be made by soldering the ends of a one-turn loop of wire, of about the same diameter as the tramsmitter tank roil, to a low-current flashlight bull). The loop should the coupled to the tank coil to give a moderately bright glow. A coupling loop) should be connered to the ends of the Lather wires and brought near the tank coil, as shown in Fig. 21-15. Then the shorting bar should be slid along the wires outward from the transmitter until the lamp gives a sharp dip in brightness. This point should be marked and the short-
ing bat moved out until a serond dip is obtained. The distane betwern the two points will he equal to half the wavelength. If the mensurement is mater in inchas, the frequency will be

$$
F_{\mathrm{M}_{\mathrm{c}}}=\frac{5905}{\text { length (inches) }}
$$

If the length is measured in meters,

$$
F_{\mathrm{Mc}}=\frac{150}{\text { length (moters) }}
$$

In checking a superregenerative recoiver, the Leeber wires may be similaty eoupled to the reerever eoil. In this rase the resonamen indication may be obtamed by setting the receiver just to the point where the hiss is obtained, then as the bar is slid along the wires a spot will be formend where the reerever gros out of oscillation. The disatace betwern two such spots is equal to a half-wavelengeh.

Fib. 2I-I - Coupling a Jacher wire ss-tem to a transmitter tank cosil. Trpical tanding-wave diatribution is - hown lis the da-herd line. The diztane V betwern the
 one-half wavelength.

Thu shorting bar mast bekept al right anges to the two wires. A sharp entre on the har is desirabhe, since it mot only helps make good contad but also definitely locates the point of contatet.

The most aceurate readings result when the lonsest possible coupling is used betwern the line and the tank roil. ('areful measurement of the exaet distane betwern two enrent loms also is ('ssential.

HETERODYNE METHODS

Heteronlyne mothods of freguener manasurement make use of a stable uscillator gemerating a known frequeney or variable over a known range of frequeneries. Xeasurement consists in eomparing the unknown frequeney with the known fregueney of the oscillator, using ath ordinary rereiver for deterting both froguene ies. This mothot is more aceruate than others, beramse frequency

Fig. 2l-1.4- One and of a typical I, echer wire sostem. Tha" wire is No, lohare salid- copper antenna wire (hardolrawn). The turnlonekles are held in place by a $310 \times$-inch bolt throuph the anchor boch. "the other end of the linee. "hicll is connerted to the' pick-ap linp, slumidel lue inululated.

 are suitable.

(12-I50- 10 Cd mira.
(is - 0.0022- $\mathbf{4}$ fil. miva.
Cis-0.01. $\mu \mathrm{fl}$, paprer.
C 5 - $2 \boldsymbol{2}-\mu \mu$ (d), mica.
$\mathrm{R}_{1}-0 . \mathrm{f}^{\prime}$ mencohm, ${ }^{1}{ }_{2}$ watt.
$\mathrm{H}_{2}-1000$ ohms. l_{2} watt.
$R_{3}-0.1$ meknhm, ${ }^{1} \boldsymbol{y}$ watt.
$R_{4}-0.15$ megohm, $1 / 2$ watt.
differences of less than a cevele can be ohserved hes aural (beat-uote) mothods, and the oscillator "an he cablibrated to practially any degree of precision be comparison with standard frogucto ries transmitted from WWV and WWVII.
('are must be used in hetarodyme fremumer measurement beretuse in most rasts harmonie's are used and the measured fropuoney ran be in error by at large factor if the wrong hamonio is picked Also, a superhet rodymereriver will give many spurious responses in the presence of a strong sigual and harmonies, so these mast be recognized and ignored in making mensurements. In gemeral, heteronlyme methods are most useful in measuring fregueney to a high degrese of aco curace after the frequonce is known apmoximately from other mothods. The ahsorption wavemeter is useful for making the first apporimation and thus eliminating the possible gross crrors.

Frequency Measurement with the Receiver

An ordinary receiver has the essential obments nowded for frequence mosarurement. Its dial readings must be catibrated in terms of frequence, of course, before measurements can be made. Manufatured reeriversare geberally so calibrated; the aterurace of the calibration will vary with the rercivor model, but if the rereviver is wroll madre and hav roend inheront
 relied upon to within merhatps 0.2 per ceat. for most accurato monaremont, maximum rob sponse in the receriver should be determined bey means of a carrior-operated tuning indicator (such as an simeter), the recoiver beat uscillator being turned off. If the recobiver has a crystal filter, it should be set in a fairly "sharp" position to increase the arcurare.

When cherking the freguency of vour own transmitter, the receiving antemna should be diseounerted so the sigmal will not overload or "block" the receriser. Ilse, the r.f. gatin should be reduced as a further precaution against overloading. If the receiver still blocks without
an :antemat the frequeney may be cherked by turning off the mower amplitier and tunibs in the oscillator athote. It is dillicult to avoid boreking umder almost ans conditions with a regomerative reodior, and so this type is soot very suitable for checkitg the frequency of oners own transmitter.

- THE HETERODYNE FREQUENCY METER

'I'ho heterodyne frequency meter is: all oscillator with a promise trequency rallabation. Tho oseillaton must be so designod and eomstructed that it "an he acenately calibnated and will retain its callibation over long perions of time.

The uscillator used in the freducher moter must be very stable. Mechanical monsiderat tions are most important in its construction. Son mater how good the instrument may be cheotrically, is acouracy esmot be depended upon if the meshanical constumem is flimser. Frequeney stahility can be improved by amoding the use of phemilie compeonds and therme-
 lator cireait. amploving only high-grade ceramies instead. Plug-in exik ordinarily are not arereptablof: instead, asolidly-huilt and firms-mounterd tunced eirenit should be permanentls installed. Thre oscillator patel and rhatsis should he as rigid as passible.

For amatene purposes the most useful type of meter is one rovering the amateur hemels only. 'The VFos deseribed in the ehaptere on transmitters are typieal of the cireuits and comstru-

Fig. 21-17-A compaet fregueney standard and harmonic amplifier for generating rither (0)O- or loon-kr. intervals throushout the suectrum to l.5l Me. It has a self-contained power supply using the tramaformer shown in the upper part of the plato. "The watput contrel is at the upper left, and the switel in the foregromend is the harmonir-amplifier bandswiteh. The dat erssal is between the bandswith and output control. The togele switch at the lower left eorner of the panel selecte either 1000 or 100 -kc. intervals.
tion sine ther are teximed with the same contsiderations in mind-i.e., to la highly stable both efoctrisally and mochanically. Hence a good 1 Po , if acourately calibrated in frepuency, is also a good heterodyne frequenes moter.
(atibration must he done by comparing the oseilator frequency at various points in its range with signals of known frequeney. The best method is to calibrate from a seomdary frequeners stand-
and, dessribed in the bext seretion, at intervals of, say, 100 ke . and fill in the matibation forme hy interpolation. The ascillator usually works ower the approximate range $17 \overline{3}()-2000$ ke., hatmonics being used for the higher amateur bands. If the calibration is done on the highest band - 28-32 Me. - at intervals of 100 ke . it is muivalent to having calibration points at intervals of $100 / 16$ $=6.25 \mathrm{kc}$. on the fundimental-frerpency range.

STANDARD FREQUENCIES AND TIME SIGNALS

Standiard radio and atudio frequencies are broadeast continuously from WWV, operated by the (entral Radio Propathation Laborat tory, National Bureatu of standards, Washington, 1). C. on the following frequences:

Freq. Mc.	Modulations (c.j.s.)
2.5	1, 4.40 or 800
5	1. 4.40 or $\mathbf{~} \mathbf{6}(0)$
10	1, 440 or (40 (
1.5	
20	1. 440 or 80
2.5	1,440 or 600

Similar broadeasts are given from WWV11,

Freq., Mc.	Modulations (c.j.s.)
\vdots	1,410 or 600
10	1,410 or 600
1.5	1,410 or 600

Transmissions are as given in the charts above, exeept that the WWVII broadeast is interrupted for 4 minutes following carh hour and half hour and for perionds of 40 minutes beginning at 0700 and 1900 universal time.

Time Signals

The 1 -e.p.s. modulation is a 5 -milliserond pulse at intervals of precisely one serond, and is heard as a tick. Time intervals ats transmitted are arcurate to within 2 parts in 100 million +1 microsecond. The tick on the b9th second is omitted.

Accuracy

Transmitted frocurncies are accurate within 2 parts in 100 million.

Propagation Notices

During the amouncement intervals at 20 minutes after and 10 minutes before the hour, propagation notiers applying to transmission paths over the north Stlantic are transmited from WWV on 2.5, $5,10,15,20$, and 25 Me . These notieres, in tolegraphie code, consist of the letter N, W, of f followed by it number. The letter designations apply to propagation conditions ats of the time of the broadeast, and have the following signifieance:

> W - Iomespheric disturbance in progress or exberted.
> U - C'nistable comditions, thut commmication pmesible with high power.
> 人- No warning.

The number designations apply to expereted propagation conditions during the subsequent 12 hours and have the following signifieance:

Dignt	forrecast
1	Inpossible
2	Very Poor
3	Poor
4	Fuir to Poor
5	Fuir
6	Fair to Good
7	(iood
8	Very Good
9	Excellent

Iİg. 21-18 - Circuit diagram of the frefuency standard and harmonic amplifier.

Cis. $\mathrm{C}_{4}-11.1-\mu$ fil ${ }^{2}$ paper, Herl wolts.
(is - $2.51-\mu \mu$ fid. ceramic.

(is- $1106-\mu \mu$ fil ceranic.

R_{1} - $\mathrm{I} . \overline{\mathrm{T}}$ megohm, I_{2} watt.
$\mathrm{H}_{2}-29.0$ (0) ohms, 1_{2} wat1.

$\mathrm{R}_{6}-470$ olums, $1 / 2$ watt.
R:- . MOHO-nhm potentiometer.
$\mathrm{R} s$ - 4,000 ohms. 1 watt.
B. - 1000 ohms, I watt.
L. 1 - Lamh. r.f. chake (National R-.00).

1/2-1-mli r.f. eloohe (National R-601).

1.4-0. 0.5 h. (1 - μ h. r.f. whoke, \ational R-3s3, with 10 (lurns remoned).
1.5-3 turne No. 16. $1 / 4$-inch diam., 3 s ineh long. Cll - 6 -ma, sideninm reetiliar. . 11 - 'lüp jack.
 RNE $2-\operatorname{Tomh}$ r.f. chohe (National R-lows).

Sa- 1-pole bopsition selector swith: shorting type (Centralat 23.001).
T_{1} - Power tranaformer, 1.01 volta, 9.5 mata: 6.3 volte, 0.7 amp . (Merit P-3046).
 DES).

- THE SECONDARY FREQUENCY STANDARD

The secondary frequency standard is a highlystable oncillator generating a single frepurnery. usually 100 kr . It is nearly always crystal-emtrollend. and inexpersive 100 -ke. (ryentals are a a ailable for the purpose. Since the harmonies are multiples of 100 ke. throughaut the spectrum. some of them can be compared direetly with the standard frequmeres tramsmitted by WWS. The edpers of mos athateme hands alsor are exare multiples of 100 ke ., so it becomes posithe to determine the band odges very arcurately. This is an important consideration in amateur frefuetury measurement, sine the only regulatory
requirement is that an amateur transmission b_{x} inside the assigned hand and not on a sperifie frecuener.

Intervals of 100 ke , are sometimes too close for acrurate identification of a given harmonir, so sperial crystals that operate at both 1000 and 100 ke . are available. Intervals of 1000 ke , are sufficiently far apart to avoid confusion, since the average receiver calibration is grod emough to provide positive identification. Onve the 1000 -ke. harmonies are spotterl, it is eas. to count off the $100-\mathrm{ke}$. intervals from the known 1000-ke. points.

Manufarturers of 100-ke. aristals usually supply circuit information for their partionalar crustals. The dircuit given in fig. $2 \boldsymbol{l}-16$ is representative, and will gemerate usable harmonires up to 30 Me, or so. The variable condenser, C_{1}, provides a means for adjusting the frequencey to exartly 100 ke . Marmonic output is taken from the circuit through a small comdenser, C_{5}. There are no partioular constructional points to be observed in building surb a unit. Power for the tube heater and plate maty be taken from the supply in the rereiver with which the unit is to be used. The plate woltage is mot eritioal, but it is recommended that it be taken from a VR-150 regulator if the recobiver is equipped with one.

Sufficient signal strength usually will be sectured if : wire is rom between the output terminal connered to ('s and the antemab post on the recober. At the lower frequencies a motallie connertion may not be necessary.

Figs. 21-17 through 21-19 show a emmpact standard, "omplete with power supply, that will give usable harmonies from looth 100 and 1000 ke. up through the 1 ff - Xle. hamd. It uses a dual crostal, either fundamental freguence being selected by a switeh, and the output of the osceillator is fed to a crustad-diode rectifior to increase the amplitude of the high-order harmonies. These harmonies are then amplified in the seromed tube, a stage having hoadly-tumed plate circuits centering in the higher-frequency amateur bands, switehed in or out ats required. A rathode gatin control is provided in the amplifier cireuit for regulating the output amplitude. The whole unit is construeded in a $5 \times 3 \times 4$ box of the type having its own chassis, the small size being used so the unit can be sequeroed into limited spare on the operating table. It can le pat on a larger chassis and box if desired, sime the construetion is not eritical. Sufficient signal sterngth in the rereiver shothd bre serured by rommerting a short piece of wire to the output terminal, but on very high frequencies it maty be beressary to commeet the wire to one anternat post on the reereiver.

Adjusting to Frequency

In wither Fig. 21-16 or 21-18 the freduenery can be adjusted exatly to 100 ke , by making use of

Fig. 21-14-Byow - hassis siew of the fremperney vandard. 'tho 1 \ild harmonic pemerator is al the upper left. 'The variable condenser at the foottom is for adjust. ment of the osidlator frequens to exactly 100 ke . At the upirer risht, monnted on the rear lif of the chaswis, is the meleninm rectifier for the power supply. The filter comilenaer is just below it. Smali resistors and conderners: are promped arosind the there serekrts.
the WWV transmissions tabulated in this chaptor. seled the WWY frequence that gives a good signal at your location at the time of day most convenient Tune it in with the receriver b.f.o. off and wait for the period during which the modulation is absont. "Then switch on the 100-ke. oscillator and aljust its frequencr, by means of c_{1}, wntil its hamonie is in zero beat with IVWV. Thu exate setting is easily foumd by ohsorving the sow pulsation in background noise as the harmonir comes जhas to zerob beat, and adjusting to where the pulsation disappears or oreours at a very slow rater The pulsations can be obsorved even more radily ha switching on the reodivers b,for, aftor ath proximate zero beat has bern sedured, and ohsurving the rise and fall in intensity (not froquences) of the beat tome. fion best resulte the WWi signat and the signal from the loon-ke. oseillator should be about the same strength. It is advisable hot to try to set the look-ke oscillator when the WIVY signal is modulated. sine it is difficult to tell whe the the hamonice is being adjusted to zero beat with the carrier or with one of the sidehamels.

Frequency Checking

The secondary stamdard prowides sigmals of known frequency that can be tuned in on the station reweder. Inetrmination of the frequeney of a transmitter is then carried out bey the mothoel described carlier under "Frequerey Masurement with the Rucewer." using these pints as positive identification of hand edges. By using
the known loo-ke. points the receiver calibration (an be cormeted so that, he interpolation, the frequeney of a signal lying between the calibration prints can le detarmined with good arcurary

More Precise Methods

The methods described in this section are quite alepuate for the primary purpose of amateur irequency measuremonts - that is, dotermining Whether or not a tramsuittor is operating inside the limits of an amateur band, and the approximate frequency inside the hand. For masurement of an unkown frequency to a high degreo of aceuracy more advanced methots can be used. Aerurate signals at closer intervals can be obstained be using a multivibrator in comjunction With the boo-ke. standard, and thus obtaining signals at intervals of, say, 10 kc . or some other integral divisor of 100 . 'remperature control is frequently used on the lo0-ke. oseillator to give a high order of stability (Collicer, "What P'rice Procision?", QSTV, soptember and October, 1952). Mso, the secondary standard can tre used in conjunction with a variahle-frequener interpolation uscillator to fill in the standard intervals (Woodward, "A Linear Beat-Frequeney Oseillator for Frequence Masurement," (SN'T, May, 1951). An interpolation osedlator and standard can be combined in one instrument, one appliatation of this type having bern described in gst for May, 1!4!9 (Grammer, "The Additive Frequency Meter').

Test Oscillators

For many me:surements and tests, it is necessary to have a souree of signat at some desired frequence or range of frequencies. Athough there is a wide variete of test oscillators capable of gencrating surh signals. for most amateur work one or two simple types are quite adecuate. A variable-frequency oscillator covering as much as
possible of the r.f. spectrum. calibrated in frequeney, has mamy useful applications. For 'phone work, an audio signal wouree is cqually valuable in testing and adjust ment of spoech amplifiers, modubators and assoriated atudio circuits and "quipment. Both types can be built quite easily and at low cost.

THE GRID-DIP METER

The grid-dip meter is a simple valoum-tuber oscillator to which a low-ratnge millismmetter or mierommanter hass berom added to read the owidlator grid current. i (0)-1 milliammeter is semsitive romoth in most rases. 'The grid-dip metor is so ratled beeatuse when the oseillator is couphed to a tuned efrenit. the grid current will show a do"rease or "dip" when the oseillator is tumed therugh resemanere with the unknown cireuit. The mason for this is that the external circuit will absorb anorgy from the wisillator when both are tumed to the same freductuce: the loss of
 batk to decrease and this in turn is aremmaniod hy a deremese in grid current. 'The dip in grid current is quite shap when the eimenit fo which the esaillator is coupled has reatsomathe high (a.

The grid-dip meter is most useful when it cowris a wide frequeney range and is eompably romstructed so that it ean be coupled to diremits
 roceiver chassis. It wan thas be used to wherk thaing ranges and to find umsanted resonamers of the type described in the ehapter on TVI. Since it is its own sedure of r.f. emergy it dons mot, like the atsongtion wavemoter, reguire the rircuit bring eherked to In emergized. In addition to resomatme wherks, the wrid-tipe metor atso can be used ats at signald sourer for rocerver alighment and similat purposes athl, as deseribed later in this (hitpter, is useful in motasumement of inductane and raparitance in the range of values used in ref. rircuits.

Pigs. 21-20 to 2l-22, indusive, show a grid-dip melarof ghite compant construation using phas-in roils to cover a contmuous frequeney range of Hion kr . Wh lio Mre, and thus useful in all amat tour bauds up through itt Mr. as well as for Wherking tor resomanes in the low group of vin.f. TV chanmels. the most impurtant from the stathe point of harmonic TVI. It is smatl athd light, and nath be hede and tuned with one hand situer the

Fig. $21.20-$ A compart and light-weight grid-dip meter for one hamd operation. It is huilt in a $15 \times x$ 2^{1}. $\times 1$-inch "Chanmel-loch" bon and usts six plog-in roil- to eoser the range If00 ke, to I60 N1. 'Ther power -upply and milliammeter for reading grid carrent are in a seprate unit.

Fig. 2l-2l- (ircuit diagram of the gridedip metrer.
 © $2=100 . \mu \mu \mathrm{lid}$. reramic.

(\% - $11.01-\mu \mathrm{fil}$, dise ceramis.

$$
\text { Cisil Data, } L_{1}
$$

Frit, Runge	Turns	Wire	Diampler	Turns/inch	Tup*
151-3.5Mc.	139	32 enam.	, in .	(${ }^{\text {losm-wound }}$	32
3.15- \times M Mc.	10	32 rbamm.	$3_{1} \mathrm{in}$.	(Cose -wound	1:
75.5-17 5 Me.	111	21 timaed	$1 / 2 \mathrm{il}$.	32	11
172-40 Mr.	1.5	24) timued	$1 / 2 \mathrm{ill}$.	16	5
$37-85$. Mc.	1	20 timied	1/2in.		$11 / 3$

 induding rail form pins. T"apmed 1 1/2in. frem wround ent.

* 'lurus from ground $\mathfrak{- m b}$.
((iil forms are Amphenol 2 a-5ti, 3^{\prime} ' in. diameter.
dial extemels slightly over the odges of the bex so it can be operated with the thumb. The milliammeter is met contained in the aseilatore it self but cat be mounted separtately in any convenient spot for viewing. Fig. 21-2:3 shows the milliannnuter momuted in a standard mutor catse whith also rontaius the power supply for the oscillater. The cable comereting the two waits can be any desired lougth.

The uscillator cirruit, shown in Fige 21-21, is a grounded-j) atar Hatwers, with the eathode tap adjusted for maximum somsitivity - that is. groatest change in grid current when tuning throngh resonamme with : roupherl rirenit rather thath maximum grid current. For satisfatetory operation at the highest frequenery, the feads in the tuncel direuit should be kept as short as possible, and the tuning rondenser, (1 , is mounted so that its rotor dud stator terminals are pratetacally touching the corresponding pins on the coil sorket. The tube socket is mounted on a brateket made from aluminum and platerd at an angle so that the fube atn be removed. The rathode conneretion between the tube socket and the coil socket is made of flat copper strip to redure its inductance ats murh as possible.

Coils for the two low-frequencer ranges are wound on the outsides of the forms in nommal fashion, but with the exerption of the highest range the remaining coils are lengths of 13 \& 16 Miniductor motuted inside the forms. A hairpinshaped coil is used for the higest range. As the roil forms are polyst yrene, which softens at relatively low temperatures, mare must be used in soldering to the pins. It is helpful to drill a metal plate, a few inches square and 1/16 inch or so thick,

F\%g. 2l-22- The krilldif owillator is built on the C-shaped jortion of the lers. Ci3. Cis and Cif are grounderd to a soldering has at the left of the anchet. Wires in the power and meter rable terminate at a 1 -proint terminal strip at the left.
so the eoil pins will fit smugly; then if the phate is pressed firmly against the bottom of the form cluring soldering it will comduct the heat atway from the polswiveme rapidly enough to prowent soltoning, if the soldering oprration is mot prolonged.

Itramsparent diat cut from a piece of $1 / 8$-inch Plexiglas (obtainable at hohby storrs) is used in preference to at solid dial so the calibration can be plated on top of the lox, where there is more romm for lettering 1 hatirline indacator is scratehed on the dial. which is also provided with a standard small knol, fastemed to it bey small machine serews thended in from the botom.
The power supply shown in Fig. 21-2;3 uses a miniature power transformer with a selenimm rextifier and a simple filter to give approximately. 120) volts for the oscillator plate The potentiomator shown in Pig. 21-21 is for adjustment of plate voltage. In any grid-dip meter the grid current will be different in different parts of the freyuoney range, with fixed plate voltage, so it is ordinarily nerossary to chonse a plate voltage that will keres the reating on scale in the part of the rathere where the grid eurentat is highest. This usually results in rathor low grid durent at some other part of 1 he ramge. With variathe phate voltage this compromise is untheressary.
Thu instrument maty be calibuated be listerning to its output with a calibrated reereiver. The calibration should be as areurate as possible, adthough "frepurner-meter arcurare" is mot ro(quired in the applications for which is gridedip) metor is useful.
The grial-dip meror may he used as an indicat-ing-typ absorption wavernoter by shatting off the phate voltage and using the grid and cathoule af the tube :s: a dionde. Howerer, this type of cir-

 pla anel milliammeter for the erial-dip meter are -rntaimel in a mutur -an". 'I'he voritral on tol, in for varsiap dar olato woltage tor thaintan tha* prid currem in the braper ramiol.
(ruit is not as sensitive as the erratal-chetertor type shown carlier in this chapter, bectanse of the high-

In using the grid-dip moter for thereking the resomant frequence of a rireuit the coupling should the kept to the point where the dip in grid rurrent is just pereeptihlo. 'This reduces interartion betwern the two "ireuits to a minimum and gives the highest areurater. With too-elose

Fig. 21-24-C Cirmit ilagram of the power supply for the grid-dip meter.

R_{1} - l0010 ohms, 1_{2} watt.
$R_{2}-1.1$-megolim pirtentiometer.
' l_{1} - P'encer transformer. 6.3 voles and I2. to 1.00 wits. (Verit P-30t6 ur equivalemt.)

II (1 - 1 d.c. milliammetor.
coupling the weillator frepuener may be "pulled" by the circuit being checked, in which case different readings will be ohtained when resonance is approached from the high side as compared with approarhing from the low side.

AUDIO-FREQUENCY OSCILLATORS

1 userfal aceressory for tosting athdio-fregatory
 signal gomerator or uscillator. ('hereks for distortion, main, atme the ordinary troubles that oreorr in surb amplifiers do mot require elatorate equipmont: in most coses, a single audiof froquency will suffier. 'The ehief repuirement is that
 aloly Hood sizo Wavo.

Fign. 21-25 to 21-27. inclusive. show a simple
 fatmandter lesting using the methots deseribed is the "haptere on amplitude modulation. It wetrcrates a fixed frequency of appoximately foo

Fig. 21-25- Cirruit diatgram of the simple audio oscillator.
$\mathrm{C}_{1}, \mathrm{C}_{4}-0.1 \mu \mathrm{fl}$., $\mathbf{6}(\mathbf{0})$-volt paper. C.2-0.01 μ fll., (wol-volt paper (surague бTM SV).
$\mathrm{C}_{3}-0,03{ }_{\mu}$ fid., 000 -volt paper ((Aprague b'TM.:3).
H_{1} - 1 mrgohm, $1 / 2$ watt.
H_{2} - I 10,01001 ohmas, $\frac{1}{2}$ wat1.

$\mathrm{H}_{6}, \mathrm{H}_{\mathrm{i}}-4 \overline{\mathrm{~F}}, 0100$, ohmer, $\frac{1}{2}$ watt.
J_{1} - 1 -pronge chassis emonector, male.
T_{1} - Interstage audin transfurmer (Stancor 1-171).

cyeles, and since it is provided with a step attonuator giving maximum outputs of approximately 1, 0.1, and 0,01 volts rim.s., as well ats continuously-variable output control, it can bo used as a sulstitute for any tepe of mierophone by proper choice of the high, medium, or low coutput.

The circuit diagram is given in Fig. 21-25. One socetion of a doubla triode is used as a Colpitts oscillator, with $\mathrm{C}_{2}, \mathrm{I}_{3}$ and the secondary winding of T_{1} forming the tuned cirecuit. (With the transformer sperified, the entire secondary winding is used.) The primary winding of T_{1} is connerted to the grid of the second triode section, which is used as a cathode follower. Variable output from the unit is taken from the arm of a potentiometer, R_{3}, connereded as the cathode-foltower load. Thes high output is taken directly from R_{3}, while the two lower outputs are taken from a laddar-type divider, $R_{4} R_{6}$ and $R_{5} R_{7}$. These points are brought out to tip jacks.

Molded paper condensers should be used at r_{2} and ('3: cardmoardecased tuhulars have been found to be unreliable in this cireuit

The power recquirements are quite low - the
 mat and can be takenfrom any convenient source of athout 150 volts. The fisciou (iT heater requires 0.6 amp at ($i .3$ volts.

Fif. 2l-2t - A smple and inexpensive andio owrillator for use in cheching phone transmitter operation. It gencrates a good sine wase of fixed fregueney and is provided with an attennator so that the output level can le set at the proper value for sulntituting for any type of microphone.

VARIABLE-FREQUENCY
AUDIO-I.F. OSCILLATOR
For measurements reguiring a variablo-frequency audio source the signal genmator shown in Figs. 21-28 to 21-31, inclusive, is mlatively inexpensive and easy to build. It is also useful as an intermediate-frequency signal penerator for aligning recover i.f. circuits at any frequener up to 500 kc . The complete frequency range is 50 eveles to ano kilocyedes.

The oscillator consists of a batcit amplifier coupled to a Gid(i7 rathode follower. Two foedback loops are provided: (1) at athode-to-eathode regenerative long eonsisting of ('3 and lamp I_{1}; (2) a cathome-to-grid degenerative loop consisting of a bridged-T cirruit. Oseillation ocerurs at the null frequency of the bridge, where the degeneration is minimum, and is detormined prineipally by the values of C_{6}, C_{i}, C_{8} and R_{6} through R_{13}. The oscillator output is fed to the gried of a dive cathode follower, which serves as an isolation stage hetween nseilator and lead. Potentioneter R_{18} in the grid cireuit contmols the output woltage.

Output from the unit is takern arooss the fil6 cathode resistor, R_{19}, through the coupling com-

denser, C_{11}. At 100 everes the vatue wiven for C_{11} is suitable for working into lowd impodances as
 athd hats betwern ofol ohms and 20,000 ohms, exceswive loss of woltage am be avoided by sub)-

A t-watt 110-wolt lamp, I_{1}, requlates the feedback current and thas tembe to krop the output voltage constam thenghat the rature. Potentiomber Roprovides fre motan for aljusting the operating conditons to give minimum waverom distortion.
 in foner raman, as follows:

Runge	Fraquerty
A	
B	.000 to. 0 (0,000 creles
C	500 to 5000
1)	

Eath step eowers a 10 -to- 1 frequeney mate.
The erramie temmer, f_{1}, commeded betwern the 6ide (athones, has little effeet at the lower frequeneres, hat to maintan the $10-10-1$ frequeney ratio on the high range this trimmer is exsemtial.

The power supply uses a tworsertion choke input filter to insure wend filtering. The components are contined t, the extreme rear of the chassis and shieded wire is used for the filament wiring.

Construction

The complete unit is housed in a standard $8 \times 10 \times 8$-inch sted cabinet. The chassis is $7 \times 9 \times 2$ inches.

The power transformer, T_{1}, is submounted at

Fig. 21-27- Botrom view of Hu simple andio owrillator. IVaroment of parts is unt at all critioal. In thiunit it waz merosary to barallil romdenatrs to form fiz and (is of the
 simple units of the proprer caparitane wore mot awaikble at the time. The rhatuis is \bar{n} 人

 the filtor edalsian are plated hedow.

The matin tuning condenser, ('6, must the insillated from the chassis. small provelam stamd-ufts or at sath of poldstyreme of bakelite sheet will be Satisfactory. An insulated conplitar must be usad
 dotormining resisturs, R_{b} through R_{13}, aro menumed on the reramir range switeh, sio which is located under' the tuning controt. 'These resistons must have the designtited values or bho frequeney rangem will differ form these wivelt. hor

On the form pabel there ato four coments and
 is used fur tuninge. In the lower comen of the patel is a toggle witch, sio, for the ater line. The bambchaturing swith is phated thater the tuming knob. At the bower right is the attentation control, R_{18}. Just abme this contmol is the output connectur, I_{1}, These enontrols fatan the pand to the chatsins.

Preliminary Adjustment

Ancosilloseope should be used for allusting the Wavelom and for catibnating the low-frempency ramges. (ommert the output of the decillator to the vertical platere of the 'scope and, with the rampe solochor in prsition 1) and the tuming combensor, (${ }_{6}$, nearly at maximum, adjust the imternal horigontal swep in the 'seope for synchemization.

Fig. 2I.28-An RC oscillator covering the unusually wide range of $\overline{3}$ evele to .500 kilorycles, with good waveform and practically constant output.

R_{2} should h_{n} adjusted to give a grond sine wave. In (asise the 'sempe has mo internal swerp, ath external somper of fol (eydes from a filament transionmer ran be Hised at the horizontal swere, and the tuming romathere of the hest meillator atjusterl
 pallewn will resumble wither at "irele, ellipser, or straight lime dojustmont of R will affer the symmetry of the lowp aboul its own axes amd the distertion will be least when the lonep is perforety smanerrial.

To adjust the ratures, sel the tuning condensor appoximately 10 dial divis.jons from mintman (aparity with sion rathge D). 'lymmers ('zand ('s shoulal be sit to full catpacity. Comeret the Outpat of the oscillatan 10 the vertical plates of the 'sempe. lioed the adodion ouput of a recevere tumed ow WWY th the horizontal plates. WWY
 sure that the adjustment is made during the ta) evele periond. Deljust trimmers ''z and C'x a litte at a time, kerping their raparitios about equal, until a single-loop lissajous figure is seren on the P(:111).

Fis. 2/-29-Cirenit diagram of the ambio-if. teat onvillator.
Cit-0.00I2- $\mu \mathrm{fel}$, mica.
(20-40-4fd. 1.50-solt electrolytic.

 mers (Cintralal, Tye 8:2. 13才.

R_{1} - 1001 ohms, 1 wat.
K_{2} - ? OnO-ohm wirc-wound potentiometer.
$\mathrm{K}_{3}, \mathrm{R}_{16}-68$ ohmis, 1 watt.
K_{4}. K_{1} - - B 100 ohms, 10 watts.
$\mathrm{R}_{5}-\underline{?}$ - 0010 ohms, $\frac{2}{1}$ watts.
Ry- 1.5000 ohms, 19 watt, 10%.
$\mathrm{R}_{-}-0.18$ megelam, ${ }^{1} 2$ watt, $10 \mathrm{C}_{6}$.
R. - 1.8 megohms, $\frac{1}{1}$ watt, 10%.
$16,-20.0$ moknhms, ! watt. 10%
$11_{10}-2.00$ ohms. ! 2 watt. 10%.
$R_{11}-39.000$ ohmos. Io watt. 10 0_{c}°.
$1812-0.33$ mexolam. 2 wati. loce.
$\mathrm{R}_{10}-3.3$ megehma. ${ }^{2}$ watt 10%.
K_{1}. R_{15} - 1.0 mmgohm I watt.

1.1, $1,2-10$ hy, si-mat, whokes.
l - I-watt lis-volt lamp.

s_{1} - Singla -aterion - -pode t-position peramie.
S-Son. luggle = witeh.

screorn. 'This adjustment sets the high and of range l) and at the same time fixes ranges B and C.

I simple vol effertive method for :aljusting the high end of range A utilizes a reverver calibrated ower the hroadeast band. For preliminary adjustments, the amoke, intorvals starting at I Mre are nerded. Howerer, the 10-ke. perints from tiOO ke. and up will be usoful later on for calibration. Broadeast stations can be used to spot frepuernrises on the dial. Bs: interpulation, the lo-kr. points can be marked with reasomable acruracy. After calibrating the receiver, the output of the oscillator should be comededed to the antemas terminals through a shieded cable. Sot $R_{1 s}$ at maximum and the main tuning dial five divisions from minimum capacity. With the reeceiverset at

Fif. 21.31- Buttom view of the audio-i.f. test oxeillator. 'Ther filter whokes are at the hottom right. The frequeney-determining resistors are supmorted his the reramic range switch at the top center.
(xatotly I(ON) ke. and the b.f.o. in the "on" position, adjust trimmer (eat for zero beat. The weit-
 at 1000 ke , and 1500 ke . It may be neressary to try a fow settings of C_{4} before the right one is found.

Calibration

Up to 5000 (evoles, cowered by ranges ('and I), the ascilloseope and the WVWi standard audio signal are used for calibrating. Information on using lissajous figures is given later in this chapter. Assmang that 60 eveles from the power line
 stambard sigmals available, it is feasible to calibrate up to fiono eveles; above this frequency the patterns are too complex for rapid analusis.

Beweren d000) and 10,000 creles, the most feasible method is to nbtain the prints from at regular cadibated audionseillator, Alternatively, a fixed-frepuency oseillator (such as the simple type deseribed earlior in this sedion) (an be constructod in temporary fashion and adjusted to,
say, 2000 cyeles and used for obtaining points at 2 -ke. intervals between 6 and 10 ke. by the l issajous-figure method.

To spot points from 10 ke . to 500 ke , the full output of the oseillator on range (' is fed into the calibrated receiver anternat terminals, and the tuning eontrol should be adjusted until the signals fall at every 10 -ke. point through the broadeast band. At this setting the oseillator frequency will be 10 ke . Considerable care, and sevaral attempts, will undoubtedly be neressary before the correct sutting is reached. Harmonics are used similarly (1) obtain calibration points through the remainder of the range.

In using the instrument, a warm-up period of about 20 minutes should be allowed for the frequeney to stabilize. At the setting of R_{2} that gives good waveform, the output with R_{18} at maximum is approximataly 10 volts r.m.s. The attemator gives smooth output control and is readily adjustable to outputs in the microvolt region even at 500 kc .

R.F. Measurements

The measurement of fundamental quantitios such as current. voltage and power at radio frequencioss and cireuit clements such as inductanec and caparitance. can be aecomplished with equipment readily available to or easily constructed by the amateur. Measurements of this type at r.f. are cqually as useful in building, testing, and oprotang equipment as their counterparts in d.e. circuits.

R.F. CURRENT

R.f. current-measuring devides use a thermocouple in conjunction with an ondinary d.e. inst rument. 'The thermorouple is matde of two dissimilat metals which. When heated. gellepate :a smatl d.e. voltages The thermorouple is heated les: mesistatue wire through which the r.f. cur-
rent flows and since the d.e. voltage developed is proportional to the heating. which in turn is proportional to the power used by the heating alement. the deflections of the d.e. instrument are proportional to power rather that to current. This catuses the calibrated sale to be compresead at the low-eurrent end and spread out at the highcurrent end. The useful range of sueh an instrument is ahout 3 or 4 to 1 : that is. an r.f. ammeter hasing a full-siale reading of 1 ampere can bo read with satisfactory accuracy down to about 0.3 ampere one having a full scale of 5 amperes ran be read down to aloout 1.5 amperes and so on. Nos single instrument ran be mathe to hathde :a wide ramge of curtents. Noither can the dif. athmetor he shunted satisfactorily. as can be dome with der. instruments, because even a very small
amonent of readande in the shont will rame the readinge to be highly dompadent on frequency.

R.F. VOLTAGE

. In r.f. voltmeter is a reatifier-type instrument. in which the r.f. is converted to d.c., which is then measured with a d.e. milliammeter. "he bost type of rertifier for mont applications is a arsatal diode, surh as the 1×34 and similar typer, becatuse its rajaritance is so low as to have little effect on the hehavior of the r.f. circuit to wheh it is conneded. The principal limitation of these rectifiers is their rather low value of safe inverse peak voltage. Varuum-tube diodes are considerably hetter in this resperet, bet therir size. shunt capacitame , and the fact that power is reguired for heating the cathode constitute serious disadvantages in many applications. "Typical rireuit: for ervstal-riode r.f, voltmeters are given in Fig. 21-32.
One of the principal uses for such voltmeters is as muil indicators in r.f. bridges, as deseriberd later in this ehapter. Another useful application is in measurement of the voltage between the conductors of a coaxial tine, to show when a transmitter is adjusted for optimum output. In either case the voltmeter impedanee should be high compared with that of the circoit under measurement. to avoid taking appreciable power, and the relationship between r.f. wottage and the reading of the d.e. instrument should be as linear as possi-

Fig. 21-32-R.f. voltmeter circuits nsing a crystal rectifier and d.e. microammeter or 1 -1 milliammeter, 'The eirenit at A is suitable for measuring low voltages up to about 35 volts maximum. 13 is for measuring the voltage between the conductors of a coaxial line. The total resistance of R_{2} and R_{3} should be of the order of © 500 ohms, with the ratio of R_{2} to R_{3} chosen to apply not more than 10 volts to the crystal eircuit, hased on the unmodulated carrier power in the line. ha both cirruits, R_{1} should be not tess than $10,0(10)$ olums for a 0 -1 milliammeter, and should be inereased in propertion to the sensitivity of the meter ($\mathbf{r} . \underline{\mu} ., 20,000$ ohme for a $0-300)$ microammeter, 100,060 ohms for a $0-100$ mieroammeter). C_{1} and C_{2} should be 0,001 pfl. or more. In B , J_{1} and J_{2} represent coavial connecturs. The valtmeter is preferally built in a shielded box, the $2 \times+\times 4$ size breing large enough to contain the whole instrument.
ble - that is, the dae indication should be directly propertional to the r.f. voltage at all prints of the satale.

Fig. 21-33- R.f. ammeter monatal for connerting into a coaxial lime for measuring power. I "Y-incla" instrument will fit into a $2 \times 1 \times 4$ metal hox. The shant capacitance of an ammeter mounted in this way hate a nexligible effect on the aecurary at frequencies as high as 30 Mc. if the instrument has a bakelite rase. Mrtalcased metcern should be mounted on a bahelite panel which ran in turn be mounted in al rut-out which elears the meter cate by about $1 / 4$ inch.

All rectifiers show a variation in resistance with applied voltage, the resistanee being highest when the applied voltage is small. These variations can be fatirly well "swamped out" be using a high value of resistance in the d.e. rireuit of the reetifier. A resistance of at least 10,000 ohms is neeressary for reasonably good linearity, and higher vatues are beneficial. For this reason a fairly sensitive d.e instrument should be used if pessible, a $0-100$ mideroammeter, although a (0-1 milliammeter will serve quite well in many cases. A VTYVI is ideal for the purpose sinco its extremely high imput resistance exceeds anthing that is practical with an ordinary microammetor. Lligh resistance in the d.e cireuit also raises the impedance of the r.f. voltmeter and redueces its power consumption.

The basic voltmeter circuit is shown in lig. 21-32A, and is simply a half-wave rectifier with a meter and a resistor, R_{1}, for improving the linearity. The time constant of (${ }_{1} / R_{1}$ should be large compared with the period of the lowest radio frepueney to be measured - a condition that can easily be met if R_{1} is 10,000 ohms and C_{1} is 0.001 $\mu \mathrm{fd}$. or more - so C_{1} will stay charged near the peak value of the r.f. voltage. The radio-freguenes choke may be omitted if there is a low-resistance d.e. path through the eircuit being measured. C_{2} provides additional r.f. filtering for the d.c. circuit.

A practical arrangement for measuring the r.f. voltuge in a coaxial line from a transmitter is shown at B. A voltage divider, $R_{2} R_{3}$, is connerted atross the line, the resistance vatues beeing chosen so the inverse prak voltage rating of the rectifier is not excerded. This rating is in the vicinity of 50 volts, which limits the r.m.s. voltage that may be applied to the crustal to a maximum of 35 volts. If the approximate power earried by the line is known, the voltage can easily be calculated if the line is flat. A standing-wave ratio of 4 to 1 will cause the voltage to be twice the ealculated value at a voltage loop, and 100 per cent modulation also doubles the voltage. Sinee it is unlikely that the s.w.r. will exceed 4 to
(A)

(B)

FïR. 2l-34-set-ups for meanaing indurtance and capacitaner with the grid-dip meter.

1 in a properly operated coax line, the safety factor will be adequate if the voltage divider is designed on the hasis of applying one-four the the rated value of voltage, or 8 to 10 volts, to the crystad. The total resistanee in the divider should be about 100 times the line impedane so the power consumed be the woltmeter will not exeered I pre eent of the pawer in the line. (omposition resistors should the used, allowing 1 watt dissipattion in R_{2} (whirh usually dissipates practically all the voltmeter power for "ach 100 watts in the line. The neressary dissipation ran be built up by using resistors in series.

In constructing sueh a voltmeter care must be used to prevent st ray coupling betwem the line and any part of the voltmeter, and also betwern the voltage divider and the cressal reetition dircuit. Also, the resistor or resistors comprising R_{2} should be kept away from grounded motal in orler to reduce stray capacitance.

Calibration

Calibration is not necessary for purely comparative measurements. A adibration in actual voltage reduires a kuown resistive load and an r.f. ammeter. The set-up, is the same as for ref. power measurement as described later, and the voltage calibration is obtained by cateulation from the known power and known had resistance, using Ohm's Law - $E=\sqrt{ }=\sqrt{P} R$. Is many points ats possible should be obtained, he varring the power output of the transmitter, so that the linearity of the voltmeter ran be cherked.

Wifferent voltage ranges may be secured, with a fixed voltage divider, be changing the value of R_{1}. It is advisably to calibrate on the lowest range and then, with a fixed value of power in the line, increase R_{1} until the desirm scale factor is obtained.

R.F. POWER

Measurement of r.f. power reguires a resistive load of known value and either an r.f. ammeter or a calibrated r.f. voltmeter. The power is then either $I^{2} R$ or L^{2}, R, where R is the load resistance in ohms.

The simplest method of ottaining a load of
known resistance is to use ath antemat system with coax-coupled matehing cireuit of the type deseribed in the chapter on transmission lines. When the cireuit is adjusted. hy means of ant s.w.r. bridge, to bring the s.w.r. down to 1 to 1 the load is resistive and of the value for which the bridge was designed (52 or 75 ohms). Fig. $21-3: 3$ shows a conveniont way of mounting an ref ammeter for motsuring current in a rotsial line. The instrument can be inserted in the line in place of the s.w.e. bridge after the matehing has beren completed, and the tramsmitter is then adjusted - without touching the matching circuit - for maximum current. The ammeter may be left in the line during regular operation if desired, but it should be kept in mind that a mismateh such as might be catused by an acodent to the antemat system materesult in damage to the inst rument simer under such comditions it is possible for the current to reath several times its normal value.
In ref. voltmeter of the tepe described in the preceding section also cath be used for power measurement in a similar set-up. It has the antvantage that. |recause its seale is substantially linear, a much wider range of powers ean be meatiared with a single inst rument.

INDUCTANCE AND CAPACITANCE

The ability to measure the indurtance of coils and the capacitance of contensers frequontly saves time that might otherwise be spent in cut-and-try. A convenient instrument for this purpose is the grid-dip oscillator, deseribed carlion in this chapter.

Fig. 2/-35-A convenient mounting, using bindingpost plates, for L and (standards made from commer. cialay-available parts. The condenser is a lloo-mpfal. silver mica unit, monited so the lowd length is as mearly enero as possible. 'The inductance standard, ip pho. is 1 : turns uf Vo. 301.i B \& W Miniductor, I-imeh diamever. 10 turus per inch.

For measuring inductance, the coil is connected to a condenser of known capatitance as shown at A in Fig. 21-34. With the anknown coil comereded to the standard combenser, the piek-up loop is couphed to the coil and the oscillator frepquenes adjusted for the grid-eurrent dip, using the lowsest coupling that gives a detectable indication. The inductance is then given by the formula

$$
L_{\mu \mathrm{h} \cdot}=\frac{2 \overline{5}, 330}{C_{\mu \mu \mathrm{fil}} \cdot f_{\mathrm{Mc}}{ }^{2}}
$$

 using standards of $1000 \mu \mu \mathrm{fd}$, and $\mathrm{S}_{\mathrm{m}} \mathrm{m}$.

The reverse procedure is used for measuring eapacitanere - that is a mol of known inductance is used as a standard as shown at IS. The unknown capacitanco is

$$
C_{\mu \mu \mathrm{fit}=}=\frac{25,330}{L_{\mu+1 .} \cdot f_{\mathrm{M} \cdot .}{ }^{2}}
$$

The aceurace of this method depends on the areuracy of the grid-dip) meter calibration and the arecurace with which the standard values of L and C^{C} are known. Postage-stamp silver-micai combensers make satisfartory capabitanere standards. since their rated toleramere is +5 per erent. lifually good inductance standards can be made from machine-wound eoil material such as the B \& W Minductors, using the chare in the data chapter to determine the inductance.

A single pair of standards will serve for moensuring the L and C ' values commonly used in amate \cdot or equipment. A good chaier is $100 \mu \mu \mathrm{ti}$. For the condenser and 5 μ h. for the eoil. Based on these values the chatrt of Fig. $21-36$ will give the unknown direetly in terms of the resomant frequency registered ber the gridedip meter. In measuring the fregueney the coupling between the grid-dip moter and resonant areuit should be kept at the smallest value that will give a definite indication.

A correction should be applied to measurements of very small values of L and (' to include the efferets of the shant eapacitance of the mounting for the eoil and for the inductance of the leads to the condenser. These amount to approximately $1 \mu \mu$ id, and $0.03 \mu h_{1}$, respertively, with the method of mounting shown in Fig. 21-35.

R.F. RESISTANCE

Aside from the bridge mothods used in trians-mission-line work, described later, there is relatively litte need for measurement of r.f. resistance in amaterur pratioe. Also, motsurement of resistance ber fundamental methods is not practicable with simple erpuipment. Where such measurements are made, they are usually hatsed on known eharateristics of avalable resistors used as standards.

Most tupes of resistors have so murh inherent reartaner and skin efleet that they do not ant like "pure" resistanco at radio freguencies, bat instead their effertive resistance and ithpedanere vary with frequency. This is asperially true of wire-wound resistors. Composition (ailone resistors as a rule have negligible induetaner for frequencies up to 100 Mc , or so and the skin efferet also is small, but the shumt capacitatere cannot be neglerted in the highor values of these resistors, sime it reduces their impedence and makes it reartive. Howerver, for most purposes the raparitive afferts rem be eonsidered to be negligible in composition resistors of values up to 1000 ohms, for frequencies up to 50 to 100 Mr ., and the r.f. resist:ane of sueh units is prowtically the seme as their d.e. resistemee. Hence they ran be considered to be pratically pure resistanere in surh applications as r.f. bridges, ate., provided they are mounted in sudh a way as to avoid magnetic coupling to other cireuit components, and are not so close to grounderl metal parts as to sive all apprectiable ineratse in shant caparitance. The half-watt units are best berause of their smaller size, but the 1 -watt units will be equally satisfactory in most cases.

Antenna and Transmission-Line Measurements

Two primepal topes of measumments:ate mate on antemat sustems: (I) the standing-ware ration on the tramsmission line as a mems for dotermining whether or not the antenna is property matehed tu the line: (2) the emparative radiafion field strength in the viemity of the antemna. as a means for chaceking the directivity of a beam antomata and as an add in adjustment of olemont tuning and phasing. Both typers of measurements (an be made with rather simple equipment.

- FIELD-STRENGTH MEASUREMENTS

The radiation intensity from an anternat is measured with a deviec that is esomitally a very simple recoiver equipped with an indiestor to give a visual representation of the comparative signal strength. Such a field-strength meter is used with a "pick-up antemna," which should always have the same polarization as the antemat being chereked - e.g., the pick-up) anterma should Ine horizontal it the tramsmitting antema is horizontal. Care should be taken to prevent stray pick-uf by the ficld-strength meter itself or hey any tramsmission line that may comere it to the piek-up antermat.

Fiodd-strongth measurements proferably should be made at at distance of several wavelengths from the transmiting anterma being testod. Measurements made within a wavelength of the antomat maty be misleading, becaluse of the possibility that the measuring equipment may be responding to the combined induction and radiation fields of the antenna, rather than to tho radiation field alone. Also, if the pirk-up antemma has dimensions romparable with those of the antenna under test it is likely that the coupling betwern the two antemas will be great enough to caluse the pick-up antemai to tend to berome part of the radiating system and thus result in misleating fiedd-strongth readings.

A desirable form of pick-up antemat is a dipole installed at the same height as the athemba boing tested, with low-impedance line such as $\overline{0}$ - - ohm Twin-Lead comereted at the erenter to transerer the r.f. signal to the fied d-strength meter. The length of the dipole need only be great amough to give adequate meter readings. . 1 half-wave dipole will give maximum sensitivity, but such longth will not be needed unless the distance is several wavelongths and a relatively insensitive meter is used.

Field-Strength Meters

The crustal-detector wavemoter described carlier in this chapter may be used as a fiedelstrength meter. It mas be couphed to the tramsmission line to the piek-up antemat by means of a link of a fow turns wound around the wave meter eoil. . Who, the watmoter proper maty be comnected to the milliammeter through a seetion of lampeord or similar tworemductor eatble of any convenient length. This permits the milliammeter unit to be neat the point where adjust-

Hig. 21-38- V iring diagram of the sensitive lield strength meter.
C_{1}, (2. ($\mathrm{C}_{6}-0,001$) $\mu \mathrm{fl}$. (ruramic.

(it-0. $065-\mu \mathrm{fl}$. ceramic.
$R_{1}-1 . \bar{n}$ megohms.
1.1 - 14 Me.: 8 turns No. 30 il.e.c.

28 Me.: 6 turns No. 29 d.e.e.
$1.2-14$ Mr.: 34 turns No, 30 d.e.e.

I.3-It Mr: 27 turns No. 28 d.r.e.

28 Me.: 16 turns No. 20 al.e.e.
L_{11} wound over pround end of L_{2}. L_{2} and L_{33} closewound on National X $\mathrm{K}-50$ shin-tumed cent forms.

Si-E.pot. toggle.
11 A - 0.5 milliammeter.
ments are being made, even though the piok-up antenna and wavemeter may be several wavelengthe away.

The indieations with a erystal watemeter connected as shown in Fig, 21-11 will tend to be "square law" - that is, the meter reading will be proportional to the square of the r.f. voltage. This exaggerates the effect of relatively small adjustments to the antemm system and gives a false impression of the improvement secured. The moter reading can be made more linear by

Fig. 21-37-A logarithmic field-strength meter of higls mensitivity. It use lwominiature battery-operated tubes and a 0.500 mieroanmeter. and gives radings, that are approximately proportional to the change in ficlat strengh in dewibuls.

Fig. 21.39 - The logarithmic f.s. moter is constructed on a small aluminum thamael. A stall copper plate between the two coils is used for redueing the interstage coupling to the point where the r.f. amplifier is nonregentralive.

connecting a fairly large resistance in series with the milliammeter (or microammeter). About 10,000 ohms is required for good lincarity. This considerably reduces the sensitivity of the meter, but the lower sensitivity can be compensated for by making the pick-up antenma sufficiontly large.

A Sensitive Logarithmic F.S. Meter

For indieating the effect of antenna adjustments at a distant station, a logarithmic type of indicator is desirable in the fiold-strength moter since the moter readinge with such an instrument are directly proportional to decibels, ligs. 21-37 to 21-39, inclusive, show a moter of this tepe. It makes use of the fact that the rectified d.e. output of a detector following a.v.e.econtrolled r.f. stages tends to be logarithmie with respect to the r.f. voltage applied to the reecever.

As shown in Fig. 21-38, the circuit includes an r.f. amplifier, a dotector, and a d.e. amplifier, using miniature battery tubes. The rectified r.f. voltage developed arross h_{1} in the diode circuit of the 1 t 5 is applied through the ground connertion to the grid of the ITt r.f. amplifier and thas controls its gain. The $11 / 2$-volt " A " battery is not connerted to ground but is atlowed to "Hosat," permitting the a.vec, voltage to be efferetive on the grids.

In the unit shown in the photographs, slugtumed coils are used bereatse of their smath sizo

Fig, 21-10-Iypical calibration merve of the logarith. mie field-atrength meter. The curve is suffieiently logarithmic, for practioal purpones, betwern abont 10,05 and 0.45 ma. 'I'he way in which the readings vary with applied signal, and not the alnolute value of the signal, is the important print, and since this will not change simnificantly so long as the same circuit is used, the curve above may le used with any similar instrument.
and because they eliminate the need for variable tuning condensers. However, ordinary condensertuned circuits can be substituted; the only requirement is that the eireuits must be tumable to the frequency at which the antema is being adjusted. The only critieal point about the construction of such a meter is to lay out the tumed circuits so that the r.f. amplifier is stable; otherwise, any convenient layout may be used.

With the values shown in Fig. 21-38 the nosignal plate current should be very close to 0.5 milliampere. A less-sensitive d.c. instrument will require more "IS" voltage. Whatever the type of moter, the current may be brought to exactly full sate, with no signal input, by shunting it with a variable resistor of suitable range, depending on the intermal resistance.

Fig. 21-40 is a typiral calibration curve. The readings are approximately logarithmic over about 70 per cent of the seale, with a range of about 20 db . Itsed with a folded-dipole piek-up antenta, the instrument is somsitive enough for use a frow thousand foot away from a beam antenna ford with a few humdred watts.

Checking standing waves

Standing waves on a transmission line can be moasured if it is possible to measure the current at every point along the line, or the voltage between the two conductors at every point along the line. Rough checks on parallelconductor lines can be made by going along the line with an absorption wavemeter having a crustal rectifier, taking care to keep the pick-up coil (or pick-up antenna) at the same distance from the line at every measurement. With such a device the maximum milliammeter reading usually will indicate current loops if a small pick-up coil is used, and voltage loops if a short pick-up antemna is used.

An alternative indicator, also useful with parallel-conductor lines, is a neon lamp. With moderate amounts of transmitter power, a lowwattage lamp will glow when the glass bulb is brought into contact with one line wire. As the lamp is moved along the line, a change in brightnoss indicates standing waves. If the glow is substantially the same all along the line the s.w.r. can be ronsidered to be low enough for practical purposes.

Standing-Wave Ratio Indicators

Simple indicators such as those just mentioned are useful for checking the presence of

Fin, 21.fl - This fundamental bridge cirmit is the hasis for olle t? ratio.
standing waves along a tramsmission line but are not adequate for atequal measurement of the stamberwate ratio. Also, it is frequently ineonvenient, and sometimes imposible, to move a current or woltage indicator atong at transmission lime for the distanere required in rherking stambing waves.

An alermative method uses a bridge rircuit to measure the standing-wave ratio. lige 21-11 will serve to illastrate the basid prinriphes. R_{1} and R_{2} are fixed resistors having known values, and h_{s} is a calibrated vatiable resistor. "The unkmown resistane to be measured, R_{L}. is comberterl in sories with $R_{\text {s }}$ (o) form a voltage divider areoss the sourer of voltage, E. The resistaner of the voltmeter', I', should fre very much largor than ang of the four resistanec "arms" of the bridge for maximum arcurace From (ohms Law it is apparent that When $R_{1} R_{2}$ ectuals R_{s} / R_{1}, the voltage drops adoss h_{1} and R_{s} are ergatal (this is also true of the voltage drops across R_{2} and R_{L}) and there is no difforene of potential hetwern points (' and 11 . Hence the voltmeter reading is zoro ("mull") and the bridget is said to be "habancerl." ['uder any other conditions the potentials at (and 1) are mot the same and the voltmetor reads the difference of potential.

The hasis for s.w.r. measurements with a bridge is the fart that the inphat impedathe of a properly-terminated traminission line is a pure resistane equal to the limes eharatoristio impedance, If a mathed tine is commerted ats the unknown arm of an appoppriate brikge rireuit the bridge can be balatheed in the ustal way and the budicating instrument will show a mull. However, if the line is mot properly terminated the voltage meflectad batek from the far end of the line will appear at the terminats of the britge and will register on the wolmeter. 'The relationship between woltheter roading (int perremtane of full sate) and statheling-wave ration is shown in Fig. 21-f2. This curve appliss ofly When the coltmeter impedane is extremely high - 20 times or more - compared with the impedatere for wheh the bridge is designed.

While wher bridge cireuits eath be used for s.w.r. measurement, the rexistatme bridge is
about the simplest and casiest to build. It lends itsolf well to construdion for enaxial lines and when so designed can be waed for measurement of open-wire lines as shown later in this chapter.

Bridge Construction

The voltmeter used in s.w.r. bridge aireuits (omplous a crestal dionte and is subject to the considerations described carlier in this chapter. In most cases, the bridge is used chinfly in the adjustment of an antema matching system or in the adjustment of a roas-coupled matching network of the type described in the chapter on transmission lines. The objeet in such cases is to get the best possible matel, as indieated by a null reading on the voltmeter, and not particularly to make areurate s.w.r. measurements. For this purpose the voltmeter requirements are not rigorous berause it takes no rurrent whern the bridge is bataned, and a $0-1$ milliammeter with a few theusand ohms resistance in series will serve very well. The circuit of Fig. 21-43 and the constriction of Fig. 21-4t are quite sat isfartory for a bridge intended primarily for impedance matehing.

I primepal point in the construction of an s.w.r. bridge is to avoid stray eoupling betwem the resistors forming the bridge arms and betwoen the arms and the woltmeter circuit. This ran be done hy kerping the resistance arms separated and at right athgles to eateh other, and by placing the crustal and its comereting leates so that the loop so formed is not in induetive relat tionship) with any loope formed bey the bridgre arms, shielding betwere the bridge arms and the arsistal circuit is helpful in reducing such contplings, although it is not always neressary. The two resistors forming the "ratio arms," R_{1} and

Fize. 2l-42--Stambind-wave ratio in terms of meter roading (relative to full stale) after setting mutgoing voltage to foll sate. This graph is a plot of the formala

$$
\text { S.H.R. }=\frac{10+1 r}{l_{0}-1 r}
$$

where Io and Ir are the outsoing and reflected compo. nonts, respectively, of the voltage an the transmission line.

 ancematohing in coavial lines.
$\mathrm{C}_{1}, \mathrm{C}_{2}-19.100 .5$ - fd . disk ceramic.
K_{1}. $R_{2}-\Gamma_{-0}-1$ tin comprosition, $1 / 2$ watt.
 comporition. 12 watt.
H_{4} - lonkt-ohm composition. I_{2} watt.
$\mathrm{J}_{1}, \mathrm{~J}_{2}-\mathrm{Com}$ ial commedor
The meter mas be a 0 - I milliammetores dice voltmeter of any tore having a sensitisity of fonO ohms prer volt
 tive side of meter eonaterts to ground.

Re, should have identical relationships with motal parts. to kow the shunt rapmertances equal, and also should have the same leat lengths so the inductanes will balance. Leads shomald be kept as short as possible.

S. W.R. Measurement with a Bridge

For reasomably aneurate measurement of s.w.r. the bridge musi not only be well eonst nucted, atong the lines described atove, hat must have a voltmeter of very high impedance eompated with the lime imperdaner and must have provision for moasuring the voltage applided to the bridge. as wedl as the voltage develoged betwern the arms. This is so the appliod voltage can be kept comstant (he regulating the tramsmitter output) both with and without the transmission line conmered to the load terminals. If the input voltage is not maintained at a constant value the reatings are umreliable. The same dec. instrument can be used for both voltage measurements, Int separate. (rystal rectifiers must be provided. Fig. 21-45) is the circuit of a bridge so erguiperd. Sinere the "input" voltmeter is simply used as a referener, its lincurity is mot important, nor dows its reading

Fig. 2l-f1 - In incepensive bridge for matehnge adjustments using the aronit of fig. 21-1:3. It is huilt in a

 jach is prosided for comention to the der. meter: the
 litting.
have to bear any definite redationship to that of the "bridge" voltmeter, exeept that its range has to be at least wier that of the lattere.
'The resistane in the hridge voltmetere aremit shemald the of the order of 100 times the lime impedance to avoid woltmeter errors: that is, R_{4} plas the voltmeter resistane should he at hast 50,000 ohms. This gemerally roguires a semsitive d.e. inst rument surh as a $0-100$ midroammeter, a 20,000-shms-per volt voltmeter, or, better, a VTYM.

Testing and Calibration

In a bridge intemed for s.w.r. measurement rather than simple matching, the first cheek is toapply just enough ref. voltage so that the bridge voltmeter reads full scale with the load terminals opent. Messure the input voltage, then shortcirmit the bead terminals and readjust the input to the same voltage. The bridge wolt moter should again register full scale. If it does not, the ratio arms. R_{1} and R_{2}. probably are not exatctly equal. These two resistors should be carefully matched. although their actual value is not rritiatal. This test should be made at the highest frequences to be usod. If a similat test at a low freguency shows botter balaner, the probable canse is stray indurtane or capacitance in one arm not baianced heremual strats in the other.

Dfter the "short" and "opern" readings have beren muatized. the bridge should be whereked for mall hatane with a "dummy" resistor "qual to the lime impedane comereded to the load terminals. It is comemient to mount a half' or 1-watt resistor of the proper value in a coax comeetor, kerping it contered in the connector and using the minimum lead length. The bridge voltmeter should read zero at all frequencios. A rading above zoro that remains constant at all fre"fueneies indicates that the "dummy" resistor is

Pi\&. 21-45- Bridge cirenit for s.w.r, meanurements, This rirunt is intendod for use with a d.e. voltmeter, range it to 10 wolls, having a resistane of 10,000 ohms per volt or greater.

11:50- or 75 -ohm (depending on line impedance) composition, ${ }^{2}$ or 1 watt.
$R_{4}, R_{5}-10$, Wh() whms, ${ }_{2}$ watt.
$\mathrm{J}_{1} \mathrm{~J}_{2}$ - Coavial eonmertors.
Meter commects to either "input" or "brilge" position as required.
not matehed to R_{3}, while readings that vary with frecpurney indicate stray reactive oferets or stray eoupling betweren parts of the briage.

When the operation is satisfactory on the two points just described, the mall should be chereked with the dummer resistor commected to the bridge through sererial different lengths of transmission line, to ensure that $h_{\text {a }}$ atotually matehes the line imperatiner. If the null is tot complete in this test both the dommer resistor and h^{\prime}, will have to he adjusted until a good mateh is obtained. With (aire, composition resistors can be filed down to raise the resistance, so it is best to start with re-

Fig. 2l.f6-'Inp and bottom views of sw.r. liridge

 doep and $1 \frac{b}{x}$ wide. the width lwing sclewted to be just great conogh tor promit ronmerting al -watt standaral resistor, R_{3}. to the coma fitlings with substantially no
sistors somewhat low in value. Wit heach change in R_{3}, adjust the dummy resistor to give a good null when connected directly to the bridge, then try it at the end of several different lengths of line, cont inuing unt il the null is satisfactory under all conditions of lime length and frequence. A discrepancy of a few por cont of the full-scale reading is tolerable.

With a high-impelance voltuneter, the s.w.r. readings will closely approximate the theoretical curve of Fig, 21-42. The calibration can be chereked by using composition resistors ats loads. Aljust the transmitter coupling so that the bridge voltmeter reads full seale with the output terminals open, and then cheok the imput voltage. (ommert various values of resistaner aross the output terminals, making sure that the input voltage is readjusted to be the same in cach case, and note the reading with the meter in the bridge position. The s.w.r. is given by

$$
s . H^{2} \cdot R=\frac{R_{1}}{R_{0}} \text { or } \frac{R_{0}}{R_{\mathrm{t}}}
$$

where R_{0} is the line impedance for which the bridge has beren adjusted to mull, and R_{1}. is the resistance used as a load. Use the formula that places the larger of the two resistames in the numerator. If the reatings do not correspond exactly for the same s.w.r. when appropriate resistors above and below the line impedance for Which the bridge is designed are used, the current taken hy the voltmeder is affecting the measuremonts.
['sing a (0-100) microammeder, a 20,000)-ohmsprovolt volt meter win a $\overline{5}$-volt or higher range, or a V"T woltmeter, the differener betwern "up" and "down" s.w.r. measurements should be negligiher, provided the load resistors used for this terst (am be measured (at d.e.) with sufficiont areurace: Values over 1000 ohms or so should not be used at the higher freguencies.

 arme from the restal rectifiors, R_{1} athe R_{2} are summetricalls placell with respert la R_{3} and are at risht
 of the d.e. meter combera to the ferel-through bushings athl the begatice the serew ledon them.

Using the Bridge

The procedure is the satue whether the bridge is used for matwhing or for s.w.r. masurement. Apply power with the boul termibals wither open or shorted, amed adjust the input unt the bridge voltmeter reads full sarale. Beceuse the brielg. operates a very fow power fevel it may be meressary to coupli: it to a low-powor driver dag rather than to the fimal amplifier. Altematively, the plate voltage and excitation for the final amplifier maty be redued to the peint where the power output is of the order of a few watts. There comere the load amel ohserve the voltmeter reading. For matehnge adjust the mat hing met work until the hest pessible null is obtaimed. For s.w.r. measurement, note the input woltage after adjusting for full-scale with the load terminals open or shorted, the remmeet the load and readjust the transmitter for the same iuput voltage. The bridge voltmeter then indicates the standingwave ratio.

Parallel-Conductor Lines

Bridgo measurements mate directly on paral-hel-comductor limes are frequenty subjeet to comsiderable crror trecamse of "antemat" curvents flowing on such lines. Theso currents, which are ather indued on the line by the fied aroumd the anternat or empled into the line from the trans-
 phase in inoh line wires and heme do not balance cout like the true transmisson-lite currents. They will mevethetess attuate the bidge voltmeter, (ansing an imbication that has no mationship to the standing-wave ratio.

Fig. 21-4:- Cirmait for using comial s,w.r. bridge for measurcmonta on parallolecomdturer limes. Dathes of rircuit components ard inlentiral with these used for the similar "antomba-roupler" cirmit disensased in the" chapter on transmisuion limes.

The effert of "antenna" currents on s.w.r. medsurements can be largely overonme by using a conxial britge and compling it to the parallelembluctor line through a properly-designed impedance-matching cireuit. A suitable circuit is givern in Fig. 21-47. It chasely resembles the common type of "antenata couphor," and in fact such a coupler can be used for the purposed. In the balaned tank cireat the "antenta" or parallel components on the line tomd to batance out and so are not passed on to the sw.w. bridge. It is cessential that L_{1} be eompled to a "erold" print on L_{2} to minimize capatitive coupling, and also desirable that the conter of L_{2} be grommed to the chassis on whieh the circuit is monnterd.

Values should be such that $L_{2} \mathrm{C}^{\prime 2}$ esin be tuned to the operating frequency and that L_{1} provides sufficient coupling, as doseribed in the trans-

Fig. 21.18-The "I win-lamp" tandinw-wave indicator mountad on 300 ohm 1 win-Jcad. Scoteh tape is used for fastening.
mission-line chapter. The measurement procedure is as lohtows:
(onnect a momindmetive (1 - or 1-watt carbon) resistor, having the same value as the characteristice impedance of the parallel-eonductor line, to the "line" torminals. Apply r.f. to the bridge, adjust the taps on L a kerping them equilistant from the conter), while varsing the eapacitatien of ('1 and ' $_{2}$, matil the bridge shows anme. After the null is obtained, do mot tourb any of the cirmuit adjustments. Xext, short-eireut the "lime" terminals :mid adjust the ref. input until the bridge woltmeter reads full seale. Remow the shortrireuit and test resistor, and ronnere the regular transmission line. The bridge will them indieate the standing-wate ration on the line.

The circuit requires rematching, with the test resistor, whenever the frepuency is changed appresiably. It can, however, be used over a portion of all amateur band without readjustment, with negligible error.

The "Twin-Lamp"

A simple and inexpensive standing-wave indic:ator for 300 orhm line is shown in ligg. 21-48. It consists ouly of $t w o$ flashlight lamps and a short pioce of 300 -ohm line. When laid flat against the line to be chereked, the emmbination of inductive and capacitive coupling is such that outgoing power on the line causes the lamp nearest to the transmitter to light, while reflectod power lights the lamp, nearest the load. The power input to the line should be adjusted to make the lamp nearest the transmitter light to full brilliance. If the line is properly matched and the reflected power is very low, the lamp toward the antema will be dark. If the s.w.r. is high, the two lamps will glow with practically equal brilliance.

The length of the piece of 300 -ohm line needed in the twin-lamp will depend on the transmitter power and the operating frequency. A few inches will suffice with high power at high frequoncies, while a foot or two mas be needed with low power and at low frequencies.

In construeting the twin-lamp, cut one wite in the exact center of the piece and pret the conds hack on sither side just far emough to proside loads to the flashlight lamps. Remowe about 'i

Fig. 21-.10- Viring diagram of the" "twith-lamp" standing-wave indicator.
inch of insulation from one wire of the main transmission line at some conveniont point. ['se the lowest-current flathlight hulbs or dial hanps a a ailable, solder the tips of the bulbs together and comeer then to the hare print in the transmission lime, then solder the embs of the cut portion of the short pieree to the shedls of the bulthes. Figs. 21-48:and 21-49 shesuld make the comst ruetion elear.

Installing the twin-lamp on a line introduces a diseominuty in the lime impedane which mases the s.w.r. from the twin-lamp back to the transmitter to differ from the s.w.r. existing between the antema and twin-lamp, For this reason it is desirable to remove it after s.w.r. chereks have beromade. It is conveniont to mount the twin-lanp, on a short length of line fitted to a 300 -ohm plug at one end and a mating socket at the other. If similar plugs and serkets are used on the transmitter and regular transmission line, the whole test unit can be inserted and taken out at will.
'The twin-lamp will pespond to "antemna' "urrents on the transmission line in murh the same Why as the bridge circuits diselussed carlier. "There is therefore always a pessibility of error in its indieations, unless it has beon dotermined by ofter means that "antemna" corrents arre ineonsequential compared with the true tratminission-line current.

The Oscilloscope

The cathode-ray oscilloscope gives a visual representation of signals at both audio and ratio freguencios and ran therefore be used for many types of measurements that are not posible with instruments of the tepes disensed earlier in this chapter. In amataur work, one of the primeinal uses of the "soope is for displating an amplituremodulated signal so a phone tramsmitter (:an be adjusted for proper modulation and contimuously monitored to keep the modulation pererentage within proper limits. For this purpose a very simple cirenit will suffiere and an oseilloseope designed expressly for this purpose is deseribed in this section.

The versatility of the 'soope can be greatly increased by adding amplifiors and linear deflection cireuits, hut the design and adjustment of such rimuits tends to be eomplicated if optimum prorfommance is to be secured, and is somewhat outside the fied of this chapter. Speecial components: are generally required. (harilloseope kit a for home assembly are vailable from a momber of suppliers. and sine their cost compares very facorably with that of a home-built instrument of combparable design, they are recommended for serious (4nsideration by those who have need for or are
interested in the wide range of measurements that is possible with a fully-equipued seoper

CATHODE-RAY TUBES

The heart of the oscilloscope is the cathoderay tube, a vacuum tube in wheh the elertmons emitted from a hot sathode are first aceelerated to give them eonsiderable velocity, then formed into a beam, and finally allowed to strike a special tramslucent sereen which fluoresces, or gives off light at the point where the beam stikes. A narrow beam of mowing electrons is analogous to a wire carrying current, and can be moved laterally, or deflected, by electric or magnetic fields.
since the cathode-ray beam consists only of moving electrons. its weight and inemita are negligibly small. For this reason, it can be made to follow instantly the variations in periondeallychamging fiedds at both amdio amd ration freghencios

The electrode arrangement that forms the Weetrons into: beam is called the electrongun. In the simple tube structure shown in Fig. 21-50, the gun consists of the cathode, rrid,

and anodes Vos. 1 and 2 . The intensity of the electron beam is regulated by the grid in the same way as in an ordinary tube, Anode No. 1 is operated at a positive potential with respert to the eathode, thus aceelerating the electrons that pass through the grid, and is provided with small apertures through which the electron stream passes. On emerging from the apertures the electrons are traveling in practically parallel straight-line paths. The elertrostatio fields set up by the potentials on anode No. 1 and anode Xo . 2 form an electron lens syatem which make the clectron pathe converge or forcus to a point at the fluoreserent sereen. The potential on anode No. 2 is usually fived. whik that on anode Xo. 1 is varied to bring the beam into forms. Amode No. 1 is, therefore called the focusing electrode.
sharpest foens is ohtained when the elertrons of the beam have high volucity, su that relatively high d.e. potentials are common with cathode-ray tubes. However, the current roquired is small, so that the power consumption is negligible. A second grid may be placed between the control grid and anode No. 1, for additional acceleration of the electrons.

Methods of Deflection

When formed, the beam from the gun produces only a small spet on the sereen, as desoribed above. However, if after leaving the gun the beam is deflected bey either magnetie or electric fields, the spot will move atoross the serem in acordance with the forco exerted on the beam. If the motion is rapid, the path of the spot (trace) appears as a continuous line.

Flectrostatic deflection, the type generally used in the smaller tubes, is produced by deflecting plates. T"wo sets of pates are pared at right angles to each other, as indirated in Fig. $21-\mathrm{i})$. The fields are created by applying suit-
able voltages between the two phates of each pair. Isually one plate of each pair is conneeted 10 anode No. 2 , to establish the polarities of the vertical and horizontal fields with respect to the beam and to each other.

Formation of Patterns

When periodically-varying voltages are applied to the two sots: of deflecting plates, the path traced by the fluorescent spot forms a pattern that is stationary so long as the amplitude and phase relationships of the voltages remain unchanged. Fig. 2l-i) shows how such patterns are formed. The horizontal sweep, bolatge is assumed to have the "sawtooth" waveshape indicated. With moltage applied to the vertical phates the trace simply sweeps from left tor right acress the screen along the honizontal axis $X^{\prime}-X^{\prime}$ until the instant $I /$ is reached, when it reverses direction and returns to the starting point. The sine-wave voltage applied to the vertical pates similarly would trace a lincoalong the axis $Y^{\prime}-Y^{\prime}$ in the absence of any deflecting voltage on the horizontal bates. However, when both voltages are present the position of the spot at any instant depends upon the voltages on both sets of plates at that instant. Thus at time l the horizontal voltage has moved the spot a short distance to the right and the vertical voltage hat similarly moved it upward, so that it reateses the atetual position B^{\prime} on the serven. The resulting trace is easily followed from the other indicated positions, which are taken at equal time intervals.

Types of Sweeps

A sawtooth where-voltage waveshape, such as is shown in loig. 21-i)h, is called a linear sweep, berause the deflemion in the horizontal direction is direatly proportional to time. If the sweep were porfere the fly-back time, or time taken for the spot toreturn from the end (II) to the hegimning (I Or A) of the horizontal trace, would bezero, so that the line $/ I /$ would be perpendicular to the axis $Y-Y^{\prime}$. Although the fly-back time camot he made zero in practicable sweep-voltage generators it can be made quite small in comparison to the time of the desired trace $A I I$, at least at most frequencies within the audio range. The fly-back time is some what exaggerated in lig. 21-al, to show its effeet on the pattern, The line $I^{\prime} I$ ' is called the return trace; with a lincar sweep it is less brilliant than the pattern, beeause the spot is moving much more rapidly during the fly-back time than during the time of the main trace. If the fly-bark time is short enough, the return trace will be invisible.

The linear sweep has the advantage that it shows the shape of the wave in the same way that it is usually represented graphieally. If the time of one cycle of the a.c, voltage applied to the vertical plates is a fraction of the time taken to sweep horizontally across the screen, several cycles of the vertical or "signal" volt-
are will dippear in the pmatran. Tho shatom of only the last dyele for the last fow owne, depending upon the number in the pattern and the chatracheristies of the swepl toraperar will be atfored by the fly-hatek in such at axa.

The shape of the pattern obtained, with a given signal waseshape on the vertiod plates, obviously will depend upon the shaphe of the horizontal swerp voltage If the homizantal swerp is smusidal, the matmand roturnswers each oreapy the same time athl the -pot moses faster horizontally in the conter of the patem that it does at the ands. When two simmendat voltages of the same frequener are applied to both sets of plates, the pattom may be a straight lime, an elliper, or a cirele, depending upon the amplitudes and phase melatomshipe of the two voltans.

 quenes ration for a thedenroe phater relationship belwern the whages applied to the twore - of deflereting phaters.

For many amatcur purposes a satisfatory horizontal swerp i- simply a 60 -evele voltage of adjustable amplitude. In modulation monitoring deseribed in the chapter on amplitude modulation) autio-fredueney voltage (an be taken from the modulator to supply the horizontal sworp. For examination of adion-frequency Wavefoms, the limear swop is essomial. It: frequeners should be adjustable wer the entire range of audio frequencies to be inspected on the ascilloscope.

Lissajous Figures

When simusoidal a.e. voltages are applied to the two sots of defleerting plates in the oscilloscope the resultant pattern depends on the relative amplitudes, frequencies and phase of the 1 wo voltages. If the relationship bet wern these quatatities is random the pathern is in continusus motion, but if the ratio betwern the two frequencies is constant and can be

Fis. 21-53-12-inch oseilloseope of compact comatruction, shitable for modulation moasurements and memitoring. It is designed aromen the 2BPI rathode-ray tube and can be mounted pither in the transmiter itself or

expressed in integors the pattern will be stat tionary. This makes it possible to use the oscilloscope for detormining an unknown frequenes, provided at variable frequenes standard is avalable or for determining calibration point: for a variable-freguency oscillator if a few kown trequencios are available for comparison.

The stationary pattorns ubtained in this way are catled Lissajous figures. Examples of some of the simpler liswajous figures atre given in Fig. 21-2.2. Patterns of the typrewn in Fig. 21-i) are obtained when the two volt-

Fig. 21-5. - Circuit diagram of the 2 -inch oscilloseope. Her high voltage may be hetwen 500 and 1000 volts, aceording to the voltage available.
(1), Cis, Ci4, Cis - 0.01- H (d., 1000 -volt rating.
(i3-0.5 μ (d., 50) wolt -
$R_{1} . R_{2}-3$-miquhtu volume control.
$\mathrm{R}_{3} . \mathrm{R}_{4}-82.010$ ohms. 16 watt.
$R_{5} R_{6}-2.2$ megohms. ${ }^{2}$ watt.
IR:-10.5.5 mrgohm, I watt.

Rg - (I.I meqohm, I watt.
$1 R_{11}-0.25$ megohm, I watt.
ages have equal amplitudes; in case one has greater amplitude than the other the patterns will be clongated in the direction having the larger amplitude but will retain the same essential features. The form of the pattern for a fixed freguency ratio depends on the phase relationship botwern the two voltages: these figures are for a 90 -degree phase difference.

In every ease the pat terns shown will be produred when the higher of the two frequencies is applied to the vertional deflecting plates. Fhould the lower frequence be applied to the vertical plates the pattern will be turned at right angles. The frequencer ratio is found by counting the number of loops along two adjacont edges. Thus in the third figure from the top there are three loops along a horizontal edge and only one along the vertical, so the ratio of the wertieal frequency to the horizontal frequener is 3 to 1. Similarly, in the fifth figure from the top there are four loops atong the horizontal edge and threr along the vertical edge, giving a ratio of +103 . Assuming that the known frequenery is applied to the horizontal plates, the unknown frequency is

$$
f_{2}=\frac{n_{2}}{n_{1}} f_{1}
$$

where $f_{2}=$ known frequencer applied to horizontal plates,
$f_{2}=$ unknown frequenes applied to vertical plater.
$n_{1}=$ number of loops along a vertical edge, and
$n_{2}=$ mumber of loops along a horizontal elye.
In ralibrating ath oscillator, one of the frequencies is usually variable. The 90 -degree pattern can bo obtaned by careful adjust ment of the variahbe freguency until at stationary pattorn resombling those shown is ohtaned. As the phase is varied the patterns will assume

Fig, 21-65 - kear view of the 2-inh oseillascope. The 2131 lis supported be the strap at the end of the shielth, whish clamps around the tube hase. I'ler tulee sochet floats, with short texible leads running to the terminal board.

Fig. 21-56 - Sugested power supply for the 2-inch osillosope if power is not supplied by the transmitter. I bo-cyde swerp circonit is induded.

$\mathrm{R}_{1}-0.5$ - memolim velume control.

' T_{1} - Small replacoment transformer, 2.50 to 3.30 volts each side ".t.. current rating unimportant. The 2 X 2 rectifior filament is supplied by one-half of the j-volt rectilier winding. Filament secondary 6.3 volts. current required t1.6 amp.
T_{2} - Audio transfarmer, I to I ratio suitalble.
various forms, for a given frequency ratio, but the 90-degree pattern is easily identified becallese it is the most symmetriad.

An important application of hissajous figures is in the calibration of audio-frequency signal gonerators, such as the variable-fregueney a.f. oscillator described earlier in this chapter. Standard audio frequencies for this purpose are readily available. For very low frequencies the do-cerele power-line freduency is held accuratoly enough to be used as at standard in most localities. The medium atudiofrequency range ran be covered by eomparison with the 480 - and (600-evelo modulation on the WIVY transmissions. An oscilloserpe having both horizontal and vertical amplifiers is desirathe, since it is convenient to have a means for adjusting the voltages applied to the deflection pates to secure a suitable pattern size. The sigual to the horizontal plates is fed directly to the amplifier, the horizontal linear sween (if anys) in the 'soope being switehed out. The fio-wele voltage can he obtained from the secondary of a filament transommer. The +10 and foon cucle woltares from the WWV signal can be taken from the headphone jack on a receiver. It is possible to calibrate over a $10-$ to-1 range, both upwards and downwards, from each of the latter frequencies and thus cover the audio range usoful for voide ermmunication.

A Simple Oscilloscope

Figs. 21-5; through 21-5in show the rireuit and constructiomal details of a simple 2 -ineh oseilloscope suitable for the r.f. measurments de-
seribed in the chapter on amplitude modulation. The compact assembly, with everything supported by the $31 / 4$ by $51 / 1$ ineh panel, makes it possible to mount it right in a tramsmittor unit, if desired. In such case the heater power and high voltage for the 213P' tube may be taken from the transmitter power supply. The heater of the thbe reguires 6.3 volts at 0.6 ampere. The high voltage may be anything between mol and 1000 volts, the maximum current locing about 600 microamperes.

Fig. 21-it is the cireuit diagram of the unit. Four controls are provided, for adjust ing the focus and brightness and for centering the pattern both horizontally and vertieally. The horizontal and vortical signal imput torminats are isolated from the e.r.t. deflection plates for d.e. by blocking condensers ('1 and ('2. These comensers should be rated to stand the maximum voltage applied to the tube plus the peak signal voltage. 'The signal voltage required for full dellertion deponds on the high voltage used, and for ano-volt operation is (ij) volts per ind horizontally and 40 volts per inch vertieally, At 1000 volte the corresponding figures are 130 volts per inch horizontally and 80 volts per inch vertically.

As shown in ligs. 21-53 and 21-5is, the folur control potentiometers are mounted in pairs earh side of the e.r.t. face on the pathel. Quarter-inch brass rods support a small bakelite panel at the rear. Power comeretions are made by means of a
torminal strip, and double binding-post assemblies are used for the signal inputs. The brass rod supports are drilled and tapped at the ends, and at the front are assembled to the same holes that mount the beal (Miltern 80072) and the tube shiod (Millon $80(0+2$). The latter is used to protee the tube from both low-freguener a.e and r.f. fiolds that aret on the bram and distort the pattern.
(ommertions and use of an oscilloseope of this type for modulation rhereking are described in the chapter an amplitude modulation, For the trapezoidal pattern some of the audio voltage from the modulator should be applied to the horizontal phates through a voltage divider as deseribed in that chapter. For continuous monitoring of modulation a do-ryele sweep eath be used on the horizontal plates. The fio-evele voltage can be obtained through a small audio transformor from the power line, as indicated in Fig. 21-5t, with a potentiometer for setting it to the proper value to give a pattern of the desired size.

The unit catn of course be mounted in a standard utility box or cabinet, if desired, in which evont it is convenient to inchude a power supply. A suitablo diagram is givern in Fig 2l-56. Ang small replacement transformer can be used for the purpose, sine the power required is extremely small.

Signal Monitoring

fivery amateur should make provision for chereking the quality of his transmitter's output. This requires that some moans be avatable in the station for reducing the strength of the signal from the transmitter to the point where its characteristics can be examined without danger of fabse indications from overloating the receiving equipment.

The simplest mothorl of cheeking the quality of c.w. transmissions is to use the regular station recoiver. If the receiver is a superheterodyne the process may simply be that of reducing the r.f. gatin to minimum and tuning to the transmitter frequency. If distant siguals are stable and have "pure-d.e." tome in normal reception, then the local tramsmiter should, too, when the receiver gatn is redued to the point where the reediver does not overload.

If the signal is too strong with the r.f. gain "off", shorting the recoivor antema imput terminals may redued it to suitable proportions, of the mixer equat in the receriver may be tomporarily detuned to arrive at the same desired result.

An altermative method is to set the recerver on the next lower-freduency band than the one in use, then thane the receiver so that the seeond harmonie of its oseillator beats with the transmitter signal to produce the intermediate frequeney. Higher-order harmonics also may be used for this purpose. With this harmonic mothod there is ordinarily no danger that the reeviver will overload, because the r.f. and mixer tuned eireuits are su far from resonance with the transmitter frequeney. The setting of the tuning dial bears no direet relation to the

Fig, 2l-57-C:ircuit of directrading modulation meter.
C. C $\mathrm{C}_{4}-1000-\mu \mu \mathrm{fel}$. reramic. (.2-l(k)- $\mu \mathrm{ff}$) variable milget. ($3-12-\mu \mu \mathrm{fl}$) mica. (s - $1: 0-\mu \mu \mathrm{fl}$. mis'a. R1 - 1100 whm-. 0%, 1 watt.
 J - Choed-riretait jack. II 1 - 0 - 1 ma., 100 ohms. HV: - $20 \mu \mathrm{~h}$.
 T_{1} - I'ush-pull inturstaye transformer, $1: 1$ ratio.
transmitter frequency under these conditions, since the oscillator harmonic must maintain a constant difference with the transmitter to produce the i.f. beat.

A phone signal may be monitored in the same way, provided a headset is used for reception. I*se of a loudspeaker is not usually praeticable because the sound output feeds back to the microphone and causes howling. A crysial deteretor and headset may also be used for the same purpose, as deseribed in preeding sections. In monitoring a phone signal the best plan is to have another person speak into the mierophone rather than to listen to one's own voice. It is difficult to judge quality when speaking and listening at the same time.

MODULATION MONITOR

Fig. 21-57 is the circuit of a 'phone monitor that can be used both for aural checking and for measuring modulation pereentage. When a small r.t. voltage is applied to the input circuit it is rectified by the erystal. With switch S_{1} in the "r.f." position the average value of the rectified current is measured by the 0-1 milliammeter, I/A. With the switeh in the "a.f." position, the audio modulation on the signal is transferred through T_{1} to a second rectifier. The average value of the rectified audio is again read by the milliammeter. The circuit constants are chosen so that if the input is arljusted to make the meter read full scale on r.f., the a.f. meter readings will be directly proportional to percentage of modulation (for voice morlulation), 100 per cent modulation being represented by a current of 1 milliampere. Switeh S_{2} provides for
reversing the "polarity" of the modulation, giving a qualitative indication of the up- and down-peaks, A headphone jack, J_{1}, is provided for listening to the quality of the morlulation. (The percentage modulation cannot be read with 'phones plugged into J_{1}, so the 'phones must be removed when readings are to be taken.)

In constructing such an instrument, care should be used to prevent r.f. pick-up in the audio reetifier circuit. This ean be checked by testing the instrument on an ummodulated carrier (which must be substantially hum-free); with a full-seade reading when \dot{s}_{1} is in the "r.f." position, the moter should read zero when S_{1} is switched to "a.f." The values of resistors R_{1} and R_{2} are eritical and should be within plus or minus 5 per cent of the recommended values.

A sample of the modulated carrier may be couphed into the instrument through a oneturn link and a length of Twin-Lead, the link being placed willin a fow inches of the final tank cireuit of the transmitter. The coupling between the link and final tank coil must be adjusted to give a full-scale r.f. reading, after C_{2} has been set for maximum reading. Alternatively, a coil that will resonate with C_{2} at the operating frequency may be comnected to the input terminals and the instrument located so that a suitable full-scale raading will be obtained.

Besides indicating modulation percentage, the instrument will show carrier shift (as shown by a change in the reading, when modulating, with S_{1} in the "r.f." position) and thus detect montinearity in the modulated amplifier.

Assembling a

Station

An amateur station is generally far better known by its signal and good operation than by its physical appeamace. Good operating and a clean signal will build a reputation faster than thousands of chollars invested in sperial equipment and an elaborate "shack," and it is this very fact that makes amatemradio the democratic hobby that it is. IIowever, most amatemes take pride in the arrangement of their stations, in the same way that they ane careful of the appeatance and arrangement of anything else which is part of the household. An antemat installation is the only external indication of the amateur station. and the degree of nothese required is qenerally dotermined by the district where the ambene lives and the attitude of the neighbors. IIowever, with the adrent of all different kinds of television reveciving antomas, notighbors are in a much fess favorable position to eomplain about the appearance of an amateur anteman systom in the vieitity. TVI is something dise, howe yer!

The atetual looation inside the house of the "shack" - the rewm where the transmitter and remiver ate located - depends. of eondse. on the free spate asalable for amateur artivities. Fintumate indeed is the amateur with a separate room that he can devote to his amateur station. or the few who cam have a special small building separate from the main homse.

This compact station is arranged for dean-cut cow, operation, with no frills or extras. 'The homemade modernostyo table probides andequate operating space, a cubbohole for loge and Call Book, and drawers for QSi.cards and sparm parts. (INON, Jprs Paines, Ill.)

However, most amateurs must share a room with other domestic artivities, and amateur stations will be found tucked away in a comor of the living room, a bedroom, a large closet, or even under the kitehen sture! A spot in the cellar or the attie can almost be clasied ats a separate room, although it may lack the "finish" of a normal room.

Regaralless of the lucation of the station, however, it should be designed for maximum operating convenience and satety. It is foolish to have the station arranged so that the throwing of several switches is required to go from "rercive" to "tramsmit." just as it is silly to have the equipment aranged so that the operatom is in an uneomfortable and cramped position during his operating hours. The reat sons for building the station as safe as possible are obvious, if you are interested in spending a number of years with your hobby!

CONVENIENCE

The first comsideration in any amateur station is the operating position. Which includes the operator's table and chair and the pieces of equipment that are in constant use the recoiver, send-recoive switdh, and key or midrophone). The table should be as large as possible, to allow sufficient room for the receiver or receivers, frequence-measuring equipment, monitoring equipment, control switeher. and keys and microphones, with conough space loft over for the hoghook, a pad and peneil, and perhaps a lage ash tray. suitable space should he included for radiogram blamke and a call bomk, if these aberestries are in frequent use. If the table is small. of the number of pieces of equipment is large it is often neressary to build a shelf or rame for the amiliary equipment, or formont it in some less conveniont location in or under the table. If ane hat the farilities, a seminirnular "remsols" rath he buitr of wood, or at simpler solution is to use two small wooden (eabincts to support a table top of wood or Masonite. Home-built tables or ronsoles can be finished in any of the available oil stains, vamishes, paints or lacquers. Many operators use a large piece of plate glass over part of their table, since it furnishes a good writing surface and can cover miscellaneous charts and tables,

ASSEMBLING A STATION

prefix lists, operating aids, calendar, and similar accessories.

If the major interests never require frequent band changing, or frequency changing within a band, the transmitter can be located some distance from the operator, in a location where the meters can be observed from time to time (and the color of the tube plates noted!). If frequent band or frequency chamges are a part of the unal operating ponemiture, the transmitter should be mounted chose to the operator, eithor along owe sido or above the ro coiver. so that the controle are cavily areeswiblo without the need for leaving the operating pasition.

Fig. 22-I - In a station assembled for maximmm ease in frequency or band rhanging, the transmitter should he located next to the oprerating position, as shown alove. In the oprerating table, the remeiver is in fromt of the operator and IFO or orystal-anitching oseillator on the left. ('lie Vfol) or arystal dacillator could bee part of the transmitter proper, but most operators seem to prefer a separate VF().)

The frefueney standard and other ansiliary equipment ean be mounted on a shelf above the receiver. 'I'lie operating table can be an old desh, or a lop supported by two small wooden cabineta. The "send-rective" snitch is to the right of the telegraph keys - other switehes are on the transmiter or the individaal muts.

The above arrangement can be made to look eloaner by arranging all of the edfipment on the table lehind a single pancl or a set of pancls. In this case, provision must be made for getting lehing the panel for sorviding the units.

A compromise arrangement would place the VFO or crystal-switched oscillator at the operating position and the transmitter in some convenient location not adjarent to the aperator. Since it is nsually possible to operate over a portion of a band without retuning the transmitter stages, an operating position of this type is an advantage ove whe in whith the operator must leave his position to make a change in frequency.

Controls

The operator has an execllent chance to exereise has Ingenulty in the lacation of the of)erating rontrols. The monst important rontrols in the station are the receiver tuning dial and the send-receive switeh. The roceiver tuning dial should be lowated four to eight inches above the operating table, and if this requires mounting the receiver off the table, a small shelf or bracket will do the trick. With the

One of the most eonvenient station arrangements is to build a semicireular operating table as shown tere, All operating eontrols are radily availahle, and consider. ably more equipment can be grouped around the operator than when an ordinary desk is usell. (N'2SAI, Riverton, N. J.)
single exception of the amateur whose work is almost entirely in traffice or rag-chew nets, Which require little or no attention to the rorobiver, it witi be found that the operator's hand is on the receiver tuning dial nosit of the time. If the tuning knob is too high or tom low. the hand gets cramped after an extended period of operating, hence the importance of a properly-located reeciver. The majority of c.w. operators tume with the left hand, preferring to leave the right hand free for copsing messages and handling the key, and so the receiver should be mounted where the knob can be reached by the loft hand. 'Phone operators aren't tied down this way, and tune the commanications receiver with the hand that is more convenient.

The hand key should be fastened semurely to the table, in a line just outside the right shoulder and far enough back from the front edge of the table so that the chlow can rest on the table. A good location for the semianto-

In this arrangement, the two receivers (with separate loudspeakers) and the transmitter I FO are all within easy reach of the operator, while the monitoring oscilloscope on the left-hand transmitter rack can be easily seen froru the operating position. ($17 . \mathrm{JL}$, Boulder City, Xev.)
matic or "bug" key is right next to the handkey, although some operators prefer to mount the automatic key in front of them on the left, so that the right forearm rests on the table parallel to the front edge.

The best location for the mierophone is directly in front of the operator, so that he doesn't have to shout across the table into it, or run up the speech-amplifier gain so high that all mamner of external sounds are pioked up. If the microphone is supported by a hoom or by a flexible "goose neek," it can be phaced in front of the operator without its hase taking up valuable table spare.

In any amatenr station worthy of the name, it should be neoessary to throw no more than one switch to gos from the "recoive" to the "transmit", condition. In 'phone stations. this switch should be located where it can be casily reached by the hand that isn't wh the receiver. In the rase of c.w. operation. this switeh is most conveniently located to the right or left of the key, although some operators prefer to have it momated on the left-hathe sible of the operating position and work it with the left hand while the right hand is on the key. b:ither loration is satisfactory, of course. and the choine depelds upon personal preference. some operators we a font-controlled switeh. Which is a convenienoe but doesn't allow ton moch fredom of position during long operating preriods.

If the miorophome is hamb-held daring "phone operation, a "push-to-talk" switch on the microphome is eonvenient. but hand-hedd mirrophones tie up the use of one hand and

Fís. 22.2 - When little space is available for the amatenr station, the equipment has to be spotted where it will fit. In the above arrandment, the transmitter. modulator athl peower supplies (epparate units) are sandwiohed in alomside the operating table and on a shelf ahove the table. The antemna tuning unit is monmed oner the ford-through insulators that bring the anterna line into the "*hack," and loudnpeaker and small power supplies are mounted umder thr table. The operating pusition is clean, however, with the VFo. rerever and krys at table lovel. Ihe timing knot of this reneiver would be uncomfurtably low if the resediver wren't raised hy the wooden arch, and the "sendrecerice" swith H_{i} mometed on the right hand side of this areh, nevt to the hand key. Interconnerting leads ahombl be rabled along the back of the table and table bege, to keep them inconspicuous.

This jlhstrates how coneraling all intereomeretine wires and climinating gear not meressary to rommmaication resulta in an extremely neat station. (V:3 \l J. Nomd. stock, Ont.)
are not too desirable, although they are widely used in mobile and portathe work.

The location of otherswitehes, sud ats thase used to eontrol prewor supplies, filaments. 'phome/rew, whage-over and the like, is of mo partientar impurtance, amel they can be located on the mit with which they are assoriated. This is mot strictly true in the ease of the 'phone s.w. 1)X man, who sometimes has
 In this ease, the whangower swite should be at the operating table. althengh the actmal changeoner should be done hy a relay eontrolled by the switch.

If a rotary beam is ned the rontrol of the beam shoula be comvenient th the operator. Thedirection indicator, however. can be located anywhere withen sight of the operatore and does not have to be lowated on the operatiner table maless it is ineluded with the control.

When several fixed beams are wed. the seleetion of any our should be possible from the operating prestion. to minimize the time required to select the proper one. This genemally means using a series of antenna relays or a stepping switch.

Frequency Spotting

In a station where a VFO is used, or where a number of erystats is aralable the operator should be able to turn on only the wiseillator of his tramsmitter, so that he catm smot amenrately his location in the band with respeet to other stations. This allows him to see if he has anything like a clear chammel (if such a thinge exists in the amateur bands!). or to see what his froqueney is with respert to another statiom. such, a provision can be part of the "send-recebive" switrh. Switches are avalable with a renter "off" prasition, a "holl!" position on one side, for turning on the oscillator sinly and a "lock" position on the other side for turning on the transmitter and antenna relays. If oscillator keying is used, the key serves the same pur-

 anterna relay would be commeterd in circutit
 -nitable wimtingz on tranaformer-.
" ith" "uwh-tw-alk" "pration, the"send-remive" swith can be a d.p.d.t. affair, with the second pole controlling the "om-aff" eirenit of the receiver.
pose, provided a "semd-rereive" switch is abaibable to turn off the high-voltage supplies and prevent a signal going ont on the air during aljustment of the oscillator frequenery.

For 'phone operation, the telograph key or all anxiliary switch cam eontrol the tranmitare wrillator, and the "send-receive" switeh ram then be wired into the control system so ats to ("ontrol the ascillator as well as the ot her eireuits.

Comfort

Of prime importance is the romfort of the operater. If you find vourself getting tired after a short period of operating, examine wour station to find what canses the fatigure. It may be that the chair is too soft or hasin't a straight batek or is the wrong hoight for son. The key or reecever may be lonated so that you assume an uncomfortable position while nsing them. If you get sleepy fast, the ventilation may be at fanlt. (Or soum maty ued sleep!)

POWER CONNECTIONS AND CONTROL

Following a fow simple rules in wiring your power supplies and contmol cirenits will make it an easy job to whage units in the station. If the station is planmed in this way from the start, or if the rules are recalled when you are rebuilding, vou will find it a simple matter to reviee your station from time to time without a major rewiring job,

It is neater and safer to run a single pair of wires from the outlet over to the operating table
or some remtral puint, rather than to use a number of adapters at the wall outlet.

Interconnections

The wiring of any station will entail two or three eommen eireuts, as shown in Fig. 22-3. The cirenit for the reodere, monitoring equipment and the like, assuming it to be taken from a wall outlet, should be run from the wall to at ineonspicuous point on the oprating table, where it terminates in a multiple ontlet large emough to handle the required number of phags. A single swit \cdot h botween the wall outlet and the receptacle will then turn on all of this equipment at one time.

The serond eommon cireuit in the station is that supplying voltage to rectifice- and trans-mitter-tube filament $=$. bias supplies, and anything else that is not a witched on and off during tramsmit and reveive periods. The eoil power for control relases should also be obtained from this rircuit. The power for this cireuit can come from a wall ontlot or from the transmitter line, if a sperial one is used.

The third circuit is the one that furnishes power to the phate-supply transfomers for the r.f. stages and for the modalatur. (Nee chapter on Power supplies for high-power considerations. When it is opened. the transmitter is disabled except for the filaments, and the transmitter should be safe to work on. However, one always fecls safer when working on the transmitter if he has turned off every power supply pertaining to the transmitter.

In this example of a compract highopowor station, the oferating tathe fold- up whon but in use and coser- that recoivor and -pued amplifier. Sureial furniture. like thiz
 ing the sure prohlem for many amateurs. (IN $4 \| A V$, Fort 'Ihomas, Ky.)

With these there rirenits established. it becomes at simple mattor to arrange the station for ditferont contitions and with new units. Anything on the onerating table that runs all the time ties into the first rirenit. Any new power supply or r.f. unit gets its filament power from the seond eirenit. since the thitad circuit is controlled be the semererenve switch (or relay) amy power-suphly primary that is to be switherd on atme off for send and aredive connerts to circuit No. 3.

Break-In and Push-To.Talk

In e.w. queration, "break-in" is any ystem that allows the tramsmitting operator to hata the other fellow's signal daring the "ker-up" periods between whataters athd heters. This allows the sembing station to be "broken" hy the recobings station at any time, to shorten calls, ask for "fills" in messages, and spered ap) operation in goneral. With persent forbnigues, it requires the hase of a separate remot ing antenmatand, with high power, some means: for proterting the reeciver from the transmitter when the kery is "down." sereval methents. applicable to high-power stations. are doseribed in (hapter leight. If the tramsmitter is low-pwered (ion watt: or so), now serial equipment is required except the saparate por reiving antematalatarecerverthat "recomers" fast. Where break-in operation is nsed. there shombla be a witel on the operating table to turn off the plate supplies when adjusting the waillator to a new frequmery althoush during all break-in work this swit ol will be elowed.
"Push-th-talk" is an expmesimu derisod from the "pmsh" switch om whe miorophontes. and it moans at 'phone station with at simgla. control for all changerever fumetions. Straty poaking. it should apply only to a station Where this single send-reconve switoh must bo held in plate aluring trammionion perionls. bit any fast-acting switeln will give practionlly the
same rafect. A control switch with a center "off" poxition, and one "holl" and one"lewk" position, will qive more flexibility than a stratight "push" switeh. Tha oure switeh must fontrol the antenna changencor relay the transmitter power stmplies, and the rocomer "on-ofl" cirenit. This latter is neressatry to disable the areover during transmit periods, to aboid aconstio feml-hanok.

Switches and Reluys

It is dangerous to use :ll owernalled wwith in the power cirenits. After it has bern used for some time. it may fath. leatimg the pown on the direnit exon aftor the switu is theman to the ", ff" mosition fö, this reatom, largeswitches. or relas with adequate ratinas, shmald be wand to control the plate power. liolays are rated by (ail voltares for their control cirenits) and by their contate emernt matinge.

When relays are used, the send-reecive switrh chases the cirouit to their eroils, thas rlosing the relay contacts. The relay contaets are in the power ciremit being controlled, and thas the switeh hamelles muly the relay-eoil current.

SAFETY

Of prime inportance in the laviut of the station is the persental satfety of the operater alld of visitors. invited or othorwise, during normal uperating pratioe. If there are small -hikdren in the homse. avery step mast be taken to prevent their acedental contan with power leads of any woltage. A lowedrom is a fine iden, if it is missible. ot herwise homsing the transmittor amb power supplies in metal cabinets is an exerllent, aldhoush expensive, solution. Lateking a metal rathinet, at wooden rabinet or a wooden framework obvered with wire serem is the next-best solution, Mans stations have the pewer supplies homed in metal cabinats in the oparating room or in at aloset or basement, and this rabinet of entry is kept looked - with the key ont of reath of 'eseryone but the operator. The puwer leads are run thromgh ermdent to the tramsmitter. using iguition cable for the high-voltage leads. If the bewer supplew and trathanter are in the same rabinet a low k-type matin witch for the ineoming line power in a good preatution.

I simple subtitute for a lork-type main switeh is an omtinary linte phag with a short connerting wire betwern the two pins. By wiring a fomald reopetade in sories with the main power line in the transmither, the sherttug phar will ant an the math sathoty lork. When the plage is remosed and hidlen, it will be impossible 10 emerge the tramsuitter, athl a stanger or chalal isut likely fospot or suspert

In exsential alymat to any station is a shorting stick for diswharging athy high voltage to sround before any work or coil ehanging is done in the tramsmitter. Fiven if interlocks and power-supply bleders are used, the failure of
one or more of the ese components may leave the tramsmitter in a dangerous condition. The shorting stiek is made by mounting at small motal hook, of wire or rod, on one ermel of a dry stick or bakelite rod. A piere of ignition cable or ot her wedl-insulated wire is then run from the hook on the stiek to the chatsis or common ground of the transmitter, and the stick is hang alongside the tramsmitter. Whenewer the power is turned off in the transmittor to work on the rig, or to change cevils, the shorting stick is first usod to touch the several high-voltagn leads (tank rondeniser, filter comdenser, tuber plate commertion, ate.) to insum that there is an high voltage at ame of there perints. This simple device has sabed many a life. I-se it!

Fusing

A minor hazard in the amateur station is the possibility of fire throush the failure of a component. If the failure is complete and the comporment is large, the house fuses will genevally blow. However, it is unwise amblineonvenient to depend upon the house fuse's to protere the limes running to the radio (quip)ment, and every power supply should hate it. own set of fuses, with the fuse ratings solected at about $1: 0$ or 200 per cemt of the mavimum rating of the supply. If, for example, a power transformer is rated al foll watts, it would draw about 5 amperes from the a.e line (6i00) $\div 15=5.2$), and a 10 -ampere fuse hould be used in the primary eimenit of the tramsformor. Cireuit breakers can be used instead of fusen if dexired.

Wiring

Control-rimuit wires rumning between the operating position and a transmitter in another part of the room should be hidden, if pussible This can be done hy ruming the wires under the floor or belind the base medding, bringring

This station gees all the way in conevatment by housing the entire station in a sperial cabinet. When the cabinet is opened, the sperating table is formed and all pieese of gear are aceesible. ($\mathbb{1} 6) \ X$, Nountain View, Calif.)

'Ihere was emough romat at thin station to build the
 dowse. In an installation like this, it i- comveniem lot hane arese to the raar of the transmither units, for mahing commertion the them and for terames. If the roar cannot be reanhed, all pewer lead= shombl be calied np aloug the side walls, at the rear. (W6)V, Whitier,
Calif.)
the wires out to terminal boses or rearulat wall fixtures. Futh construction, however, is mencrally only possible in chaborate installations, and the average athatern must contont himsself with trying lo make the wires as inconspicuolus as posibile. If several paras of leats must be rua foom the operatime lable to the transmitter, as is menerally the case, a single pioce of rubber or vinvi-eovered multiennductor eable will alwatys look neater than several pieces of rublser-comered lamp (ond.

The anterna wires always pereent a problem, unless coaxial-line feerl is used. Open-wine line from the peint of entry of the anteman line should always be arranged noatly, and it is gencrally best to support it at sevoral poomes. Mans operators prefor to mount their antemmatuning assombles right at the point of enn ry of the fordline, bogether with an anternat changewoor relay if one is used), and them the link from the tuning assembly to the transmitter (an be made of inconspicuons roasial line or Twis-leat. If the transmittor is mounted notar the point of "ntry of the line, it simplifies the problem of "What to do with the feeders":"

General

You can check bour station arrangement by asking yoursilf the following questions. If ail of vour answers ate an honest " Yes," your station will be one of which geou can he proud.

1. Is your station afte, under nowmal operating ewnditions, buth for the operator and the visitor".
2) Is the operating position comfortable, (everafter several hours of operating.?
3) Do wou threw not more that one switeh to form "recelve" to "transmit"."
4) Does it take onls a short time to explain to another amateur how fo work your station?
5) Do you show your station to visiting amateurs or laymen without apologizing for its appearance?

BCI and TVI

It is the duty of every amateur to make sure that the operation of his station does not, because of any shortemings in equipment, catuse interference with other radio services.

However, there is a larger obligation - to eliminate interfererne with regular broadeasting (BC'I) and television (TMI) to the greatest perssible extent even when your own transmitter is not at fault. The institution of amaterur radio cannot continue to flourish in the face of ill feeling on the part of a large segment of the gemeral publie - ill fereling that is only too readily generated if the publices favorite programs are broken up by amateur transmissions. The future of amateur radio depends in large part on the offorts wou exort now to make it possible for your noightors to eontinue to enjoy their radio reception while you pursue your transmitting antivitios. It is unfortunately true that much interference is directly the fault of receiver eonstruetion. Neverthelasis, the amateur can and should help to alleviate interference even though the responsibility for it does not lie with him.

The regulation of the Federal Communieations Commission covering interference to broadeasting is quot ed below:
§ 12.152 . Restricted operation. (a) If the operation of an amatear station catuses general intorference to the remption of transmissions from stations operating in the domestic broadrast arwine when receivers of good enginerering dexign inchding ateguate selectivity whrateristios are wed to rew ene subh tranmiswions and this fact is made known to the amateur station licensce, the amateme station shall not the operated during the hours from \& o'dork p.a, to $10: 30$ p.m. local time, and on sunday for the additional perion from 10:30 A.M. until I P.m., local time, won the fromency or frequeneies used when the interferenee is areated. (1) in general, surh step ats maty he neressaty to minimize interferrnce to stations operating in other sorvises may be required after investiration hy the Commission
FCC recognizes the fact that much interference occurs because receivers are not capable of rejecting signals far outsite the freguency bated to which the receiver is tuned. "(Quid hours" are not imposed unfess it is shown that the interfereme is actually the falt of the transmitter.

GETTING LISTENER COOPERATION

To be sucressful in handling interferener cates you have get to win the listemers comperation. The first step is to earn the listener's ennfidence in your technical ability and to convine him of your sinecrity in wanting to elear up interference. Here are a few pointers on how to go about it.

Clean House First

We've said above that the first obligation of every amateur is to clean up his transmitter so it has no radiations outside the bands assigned for amateur use. The best cherek on this is your
own AM or 'T receiver. It is always convincing if you can say - and demonstrate - that you donot incerfere with reception in your own home.

Don't Hide Your Identity

Whenever you change lowation, or mode of transmission, or incrase power, or put upat mew amtema, chock with your neightors to make sure that they are wot experiencing interfermer. Announce vour presence and condued oreasional tests on the air, reguesting athone whose reeder tion is boing spriled to lat you kiow about it so that you may take steps to climinate the trouble.

Act Promptly

The average persom will tokrate a limited amount of intorferemed, but now one can be experted to put up with frequent and externded interruptions to programs. The souner you take steps to eliminate the interferenere the mere agreeable the listener will be; the longer he has to wat for you, the lass willing fer will be to coönurate.

Present Your Story Tactfully

When you interfere, it is natural for the complanant to aswume that your trammiter is at fanlt. Explain that you do not opromate on the broudeast frequences, and the real trouble is that you and he happen to be lowated so close to math other. Peint ont that the average receriver is made to sell as whaply as prosible, and that leatures that would present interference from noar-by stations are left out.

It should be explained to the listemer that if it is simply the presence of your strong signal on his receiving antenna that canses the difliculty, the situation can be cleared upby a filter or wavetrap. If the wiring of the reenver itsolf is picking up your sigmal, such cases can be cured anly be suppressiag this unwanted piek-up in the recoiver itself; in other words, some morlifications will have to be mate in the recoiver it he is to experet interferene-free rexption.

Arrange for Tests

Most listeners are not very competent observers of the various aspects of interference. If at all possible, enlist the help of another amatcur and have him operate your transmitter while you see what happorns at the affeeted receiver. Fon can then determine for yourself where the trouble is most likely to be.

A void Working on the Receiver

If your tests show that the fault has to be remedied in the receiver itself, do not offer to roork on the receiter. It is mot your fatult that the recoiver design is defertive. Recommend that the work be done by a reliable service-
man, and offer to advise the latter as to the catue and cure if neeessary.

However, if the owner of the receiver obsinusly prefers to have rou make the modifications, do an only with the understanding that it is purely because you are anxious to coüperate.

In General

In this "public relations" phase of the problema great deal deperods on your own attitude. Most people will be willing to moet sou half Way, particularly when the interference is met of long standing, if wou as a person make a good impression. Your personal appearance is important, so is what you say about the rerover, A dizplay of lofty technical superiority is more likely to generate resent ment than cooproation. Above all, don't make remarks on the air about "bum broadeast recoivers" and "cheap midgets." No one takes kindly to hearing his possessions publicly derided. If you diseruss wour interference problems on the air, do it in a eonstructive way - one calculated to increase listener comperation, not destroy it.

RADIO-CLUB INTERFERENCE COMMITTEES

Organized amateur radio clubs can do a Iot
to pave the way toward comperation between individual amatomes and the broadeast listenrrs. Many clubs mantain interformae emmatteres charged with handling both the public selattions and the terhmieal asperts of amatere interforencer Through such momitters, terhaical assistance is made availathe to all mombers of the rlub so that those less qualified ran have the benefit of the experionce of others. The committee should also mantain contact with the lusead radio serviecmen, supplying them with information and technical assistance whenever possible. The committer can maintain valuable contacts with the local mewspapers, broadeast stations and other authoritios to provide the right kind of publicity for the offorts of individuals or groups who aro trying to rloar up interference problems.

League Aids

The ('ommunications I)epartment of AleliL, as one of its serviees to affiliated clubs, has prepared material suggesting various was in which local rluhs can form intertereme committeer, and methods by which such groups can function efficiently for the good of all concerned. This material is available to affiliated cluls on request, addressed to ARIRL headquarters.

Causes and Cure of BCI

There are no magir cures for all cases of intorference to standatd . X M broadeasting. The great number of different topes of broadeast receivers makes it mesessary to tailor the remedy to the specific set. However, interierence does usually fall into one or more rat her welldefined eategories. A knowlodge of the general typer of interference and the met hods required to climinate it will lead to a rapid appraisal of the situation and will avoid much cut -andtiy in finding a cure.

Transmitter Defects

Out-of-band radiation is something that must be cured at the transmitter. Darasitic oscillations are a frequently unsuspected source of such radiations, and no transmitter can be considered satisfactory unt it it has been thoroughly checked for both low- and highfrequency parasitics. Very often parasities show up only as tramsients, causing key clieks in c.w. transmitters and "splashes" or "burps" on modulation peaks in AM transmitters. Mothods for detecting and eliminating parasities are discussed in the transmitter chapter.

In c.w. transmitters the sharp make and break that occurs with unfilt ered keving causes transionts that, in theors, contain frequency components through the entire radiospect rum. Practically: these transients do not have very much amplitude at frequencies very far away from the transmitting frequener. Nevertheless ther are often st rong enough in the immediate vicinity of the transmitter to cause serious
interfernce to broadeast recention. Koy clieks can be diminated by the methods detailed in the chapter on keving.

A distinction must be made between clicks generated in the transmitter itself and those set up by the mere opening and closing of the key contacts when current is flowing. The lat er are of the same nature as the dicks heard in a rerever when a wall switch is thrown to turn a light on or off, and may be more troublesome nearby than the clicks that act ually go out on the signal. A filter for eliminating them usually has to be installed as close as possible to the key contacts.

Overmodulation in AM 'phone transmitters generates transionts similar to key clicks. It can be prevented either by using automatic systems for limiting the modudation to 100 per cent, or by continuously monitoring the modulation. Methods for both are described in the chapter on amplitude modulation. In this connection, the term "overmodulation" moans any trpe of non-linear modulation that results from overloading or inadequate design. This ean occur even though the actual modulation pereentage is less than 100 .

IBCl is frequently made worse by radiation from the transmitter, power wiring, or the r.f. transmission line. This is becanse the signal causing the interference, in such cases, is radiated from wiring that is nearer the broadeast receiter than the antenna itself. In such cases much depends on the method used to couple the transmitter to the antenna, a subject that
is discussed in the chapters on tranmiswion lines and antemas. If it is at all possible the antenna it solf should be placed so that it is not in close proximity to house wiring, thephone and power lines, and similar conductors.

Image and Oscillator-Harmonic Responses

lelatively fow superhet broadeast rerefivers have any r.f. amplifeation preceding the mixer, so that the selectivity at the signal frequency is not experially high (the i.f. amplifier provides most of the working selectivity). The posult is that strong signals from near-by transmitters, even though the transmitting frequenes is far removed from the broadeast band, can foree themselves to the mixer grid. They will momally the eliminated by the i.f. selectivity, exerpt in cases where the transmitter freguency is the image of the broadeast signal to which the reerever is tuncel, or when the tramsmiter frequeney is so related to a harmonic of the broadeast recedvers local osedlator as to produce a beat at the intermediate frequener.

These image and oseilator-hamonic responses tume in and out on the broadeast rereiver dial just like a broadeast signal, exeept that in the case of harmonic rexponse the tuning rate is more rapid. Since most receivers use an intermediate frequeney in the noighborhood of $4 \overline{0} 0 \mathrm{kr}$., the interforence is a true image only when the amateme tramsmitting freguenery is in the 1750 b -ke. hand. Oxcillator-hammonic responses oceur from 3.5. and 7-Mc. transmissons, and sometimes even from higher frequencies.

Regatrdess of whether the interferene is catused by either an image or hy harmonic response, the problem is ter reduce the amplithide of the amateur signal in the front end of the ber recomer. If the reecemer uses ath extermal antemat a wavetrap at the reecoiver antemata terminals may help. It may also be helpful to redure the length of the reeviving antema - and partioularly to atooid a longth that might be near resonanere at the transmitter frequeney - or to change its direetion with respert to the transmitting antenna. If the signal is being pieked up by the anternat it will disappear when the antenna is diseonmerted. If it is still prosent under these circumstances the piek-up is in the set wiring or the power rireuits. A line filter may be tried for the hatter. Pick-up on the sel wiring can only he cured hy installing some shiching around the r.f. circuits. Copper window screrning cut and fitted to size will usually do the trick.

Since images and harmonic responses oreur at definite freguencios on the receiver dial, it is always possible to choose an operating frequency that will not give such a response on top of the broadcast stations that are fawored in the vieinity. While your signal may still be heard when the receiver is tuned off the local stations, it will at least not interfere with program reception.

Cross-Modulation

With 'phone transmitters, there are oceasionally estes where the voice is hetrd whenever the broadeast recoiver is tuned to a b.e. atation, bat there is mo interforence when thang betwern stations. This is cross-modulation, a result of rectification in one of the carly stages of the recoiver. Rerevivers that are susceptible to this trouble usually also get a similar trpe of interforcone from regular broadeasting if there is a strong local ber. station and the reeriver is tuned to some ofler station.

The remedy for cross-modulation in the recepiver is the same as for imatge and oscillatorhamonie responses - reduce the strength of the :mateder sigmal at the recoiver hy meats of a Wawo-trap, line filtor, of shiolding, as reguired. The trouble is not always in the reereiver, however, sincereross modulation com ore ur in any rectifying ripruit - surh as a poor conteret in water or steam piping, gutter pipes, and other conductors in the strong field of the tramsmitting antemat.

Blanketing

" Blanketing" is a form of interference that partially or completely masks reception, no matter where the bere reociver is tuned. Fath time the carrier is thrown on, whether by keving or for modulation, the program disappertrs or is redued in amplitude. Amplitude modulation is usuatly distorted rather severely:

When the transmitter is operated on the lower frequencios this tupe of interforence oreurs only when the reeciver and transmitter are very chose together. It is the result of simple overloading of the rocolver by the very strong fied in the vicinity of the transmitting antenna. It occurs principally on receibers using external antennas (as contrasted with a built-in loop), and can be reduced by the steps recommended above: i.e., using ashort reeriving antenna, repositioning the antemat with resperet to the trammitting anterna so the pick-uf) is reduced, or using watvetrats and line filters.

When the transmitter is operated on 28 . Mc. or v.h.f., "hlanketing" by overloading r.f. stages oceus rather ravely, and then only when the transmitting and rereiving installations ane located exerpionally elose together.

Audio-Circuit Rectification

The most frequent cause of interberence from operation at the higher frequencies is from rectification of a signal that bey one meams or another gets into the audio system of the receiver. In the milder cases an amplitudemodulated signal will be heard with reasonably good qualit \because but is not tunable - that is, it is present no matter what the frequener to which the receriver dial is set. An ummodulated carrier may have no observable effere in such cases beyond causing a litthe hum. However, if the signal is very strong there will be a reduction of the audio output level of the receiver whenever the carrier is thrown on. This causes an annoving "jumping" of the program when
the interfering signal is keyed. With 'phone transmission the change in audio level is not so objectionable berause it oceurs at less frequent intervals. Also, ordinary rectifieation gives no audio out put from a frequenc y-modulated signal, so the interference can be made almost completely unnoticeable if FMI or P'M is used inst ead of AM.

Interference of this type is most prevalent in a.c.-d.c. receivers. The pick-up may occur in the audio-cirenit wiring or the interfering signal may get into the audio circuits by way of the line cord. Power-line pick-up can be treated by means of line filters, but pirk-up in the receiver wiring requires individual attention. Remedies that have been found sureessiful are described in the sections following.

CHECKING AND CURING BCI

When a case of broadeast interferener comes to your attention, set a definite time to conduct tests and then prepare to do the job as expodit iously as possible. Provide yourself with one or two wavet raps and line filters, since they can be tried immediately without getting into the recoiver. As suggested before. get another amateur to operate bour transmitter while you do the actual observing and testing at the listener's receiver. The procedure out lined below will save time in getting at the sourer of the trouble and in satisfactorily eliminating it.

1) Determine whether the interference is tunable or not. This will usually indicate the mothods required for edimination of the trouble, as it will show which of the general types of interference diselussed above is present. In severe cases it is possible that two or more types will be present at the same time, and steps will be necessary to climinate carh type.
2) If the set has an external antemna, disconnect it and turn the volume control up full. If the interference is no longer present, it is meroly necossary to prewent the r.f. appearing on the antenna from ent ering the set. If wavetraps reduee the amplitude of the interfering signal but do not eliminate it entirely, try a short piece of wire as a receiving antenna. Aternatively, the antenna may be reloeated. It should be placed as far as possible from the transmitting antenna, and should run at right angles to it to minimize coupling.

If the interference persists after the ant enna is diseonnected. the seareh is narrowed to an investigation of whether the signal is coming in on the power lines, or is being pieked up directly on the reecivar wiring.
3) Cherk for power-line interference by using a sensitive wavometer such as that deseribed in the rhapter on meatiurements to probe along the ace cond that comects the sot to the power soupere. (hecks should be made at the transmitt er frequenev, and also at harmonic frequencies. If r.f. is detected in the line, by-pass both sides of the a.c. line to ground with $0.005-\mu \mathrm{d}$. erramie condensers at the
point where the line cord enters the set. (A simple plug-and-socket adapter ean be made u_{p} for this purpose.) If this does not completely climinate the interfernee, try a line filter designed for the operating frequency.
4) If it is evident that the interference is being picked up on the receiver wiring, explain the situation to the owner and tell him that the exact cause camot be determined without ramoving the chassis from the cabinct, and that, in any event, the receiver will have to be modified if the interference is to be climinated. Recommend that the actual work be done by a radio serviceman. Offer to check into the cause yourself, if he will allow you to take the set to your shop (with the understanding that you will not make any changes in the receiver without his (xpress permission) so the serviceman can be told what needs to be done.
5) In the event that the owner allows you to take the receiver, set it up near your transmitter and check to see if the amplitude of the interfering signal is changed by various settings of the receiver volume eontrol. If it is, the r.f. is entering the set aheal of the volume control, If it is unaffected by the volume control, it is getting into the audio stages at a point following the volume control.
6) l'in the source down, if it is ahead of the volume control, by removing one tube at a time until one is found that kills the interference when it is removed. In sets using seriesconnected filaments, this will be possible only if a tube of equal heater rating, and with all but the heater pins elipped off, is substituted for the tube.

Fig. 23-1 - Two methods of eliminating r.f. from the grid uf a combined detector/first-audio stake. It I. the value of the grid leak is reduced to 2 or 3 meqolmme, and a mica hy-pass condenser is added. At B, both grid and cathonle are by-passed.
7) Determine which element (or elements) of the tube is picking up the interference by tourhing each tube pin with a test lead about three feet long. The lead, acting as an antenna, will canse the interference to increase when it is placed on a tube pin that is contributing to the interference. Once the sensitive points have bern determined, the trouble can be eliminated hy shiedding the leads connected to the tube clement that is afferted, and by shielding the tube itself. Grid leads are the principal offenders, especially the long leads that run from a tube cap to a tuning condenser.
8) If the piek-up is found to be in the audio
system - as is the cease in many sets, esperially when the transmitter is operating at 28 Mc. or higher - it ran be eliminated by one or anot her of the mothods shown in Figs. 23-1 and 23-2. Fig. 23-1 A is a method that has proved sucerseful with many a.e.-d.c. receisers. The value of the grid leak in the combined detector first-adudio tube usually a 12S(27 or it: equivalent is reduced to 2 or 3 megohms. The grid is then her-pased for r.i. with a 2 ant $\mu \mu$ fol. mica combenser. Fig, $23-1$ iS is a similar method. A third methond that has worked in

Fiu. 2.3-2 - 1 sing a $\quad . \quad .0$ (0)(0)-oham resi-lor to form a low-pass filler with the tule vaparitames. The re-i=tor musi lie momented at the tuber pin, between the grid and all other grid ermmertions.
a.c.-d.e. receivers requires only that the heater of the delector first-atudio stage be be-pased to ground with a $0.001-\mu \mathrm{d}$. condenser. The
 1/2-watt resistor to form, with the tube capacitance, a low-pass filter. The resistor is connered between the grid pin of the audios stage and all other wires commeded to the grid. In all cases, both sides of the a.ce line should be by-passed to chassis with $0.001-$ to $0.01-\mu \mathrm{ft}$. rombensirs.

Wavetraps and A.C. Line Filters

A wavetrap consists of a parallel-tuned circuit that is commerted in series with the broadcast antenna and the antemma post of the reeoiver. It should be designed to resomate at the frequenes of the interfering signal. The cireuit of a simple trap is shown in Fig. 23-3. If interference results from operation in more that one amateur band several traps may be connerted in sories, cach tuned to the center of one of the bands in which operation is contemplated. To

Fis. 23-3-A ximple wavetran circuit. I. and 6 mont rewnate at the frequeney of the intorforing signal. suitable ronstants are tabilated helow.

liand	C	1.		
3.7		$16 \mu \mathrm{~h} ., 32$ turns	"22. 1" liam.	$\mathrm{I}^{\prime \prime \prime} \mathrm{long}$
\because	$11119 \mu \mathrm{fl}$.	o 14	$=22.1_{1 \prime \prime}^{\prime \prime}$	$1^{\prime \prime \prime}$
11		$3.5 \quad 1!$	18. 1"	$\begin{aligned} & 1^{\prime \prime} \\ & \mathbf{1}^{\prime \prime} \end{aligned}$
21	$3.3 \mu \mathrm{ff}$.	$2.2 \quad i 2$	$18.1^{\prime \prime}$	$\mathbf{I}^{\prime \prime}$
28	$2.7 \mu \mu \mathrm{fil}$.	1.50	\#18. ${ }^{\prime \prime}$	${ }^{\prime \prime}$

Fig, 23-4- A.c. line fiter for receivers, The values of
 from 0.1001 to $10.111 \mu \mathrm{fd}$. can be nierl. L_{1} and L_{2} ean be a -ineh winding of No. 18 cnameled wire on a half-ineh diameter form.
adjust the wavetrap, have another liensed amateur operate the tramsmitter while you tume the trap for maximum attenuation of the interfereme.

A common form of a.c. line filter is shown in Fig, 23-4. This type of filter will usually do some good if the signal is being pieked up on the house wiring and transferred to the set bey way of the lime eord. The values used for the coils and condensers are in general not eritical.

Pin. 2.3-5-Rusomant filter for the a.e. line. I single condenser tums looth I_{1} and $l_{2,}$ whidh are unitycompled, ine wonad on top of the other. (donstants for amateor hands are tabobated below.

Hand	1	I.1- 1.2
3.3	$110+1.311$ fixed	2.i 1. Nis. 18. $11 / 4^{\prime \prime}$ dia. $\times 23 \mathrm{sm}$ /ong
7	I $10 \mu \mu$ fol.	
11	$1401 \mu \mu \mathrm{fs}$.	
21	. $0 \mu \mu \mathrm{fl} 1$.	
28	$25^{\mu} \mu \mathrm{fl}$,	

D.e.e. wire is recommended for all couls.
"The effectiveness of the filter will depend considerably on the ground connection used, and it may be nocessary totry grounding to several different possible ground connections to secure the best results. A filter of this type will usually not be vors holpful if the signal is treing pieked up on the line cord it selt, which may be the fase when the transmitter is on v.h.f. In such a case it should be installed inside the receiver chassis and grounded to the chassis at the point where the line cord enters.

The tuned filter shown in Fig. 23-6 is often more effective than the untuned trpe when only one frequency needs to be eliminated. After installation. the eondensor is simply adjusted to reduce the interforence to the great ost possible extent. It is advisable to mount either type of filter in a small shield box. to prevent pirk-up in the filter and to make it less conspicuous.

Interference with Television

Interference with the reception of television signals presents a much more difficult problem than interforence with AM broadeasting. In BC' 1 cases the interferener almost abwas ean be attributed to defieient selectivity or spurious rosponses in the BC ' receiver. While similar defiriencides exist in many telerision receivers, it is also true that amateur trathsmitters generate

Frequency Effects

The degree to which transmitter harmonics must be suppressed or attenuated depends principally on two factors, the strength of the TV signal on the chammel or chamels affected tey hammone radiation, and the relationship betwern the frecueney of the harmonie and the frequencies of the 'TV picture and somud carriers

Fig. 2.3-6- Relation-hip of amatour hamel harmomie- lo v.h.f. TV chammela. Ilarmonic interference from transmittoroperating laclow 30 No, is mose likely to lue serious in the lowe ehannel group (.) (11) 88 Mr).
harmonies that fall inside many on all television chamels. These spurious radiations eatuse interferenere that ordinarily (ammot be climinated bex anything that maty be done at the recodiore so must be prevented at the tramsmitter itself.

Ther medationship hetwern telebision chamels and hatromide of anateur hands irom I 1 through 28 Mc. is shown in Fix. 23-6, Hammente of the 7-and 3.i-Me. bands are not shown berame they fatl in every television dhamel. Also, the hatrmonies above st Me. from these hamde are of such high order that they are usually rather low in amplitude. Thery are not, however, too weat to interfere if the tele vision receriver is quite elose to the amateur transmitter. low-order harmonios - up to about the sixth -are usuadly the most difficult to elimintate.
 within the eltamel. If the TV signal is very strong, hamonic interferencer can be climinated by comparatively simple methods. However, if the 'l'V signal is very wath, as in "fringe" areas where the reocived pieture is visibly degrader by the appearance of sot moise on "smow" on the sereen, it may be necessary to go to extrome measures.
In either case the internsity of the interferenere depends very greatly on the exant frequency of the hammonic. Jig. 23-7 shows the plarement of the pieture and somed carriers in the standarel TV dhamel. In ('hamed ?, for example, the pieture carrion frequoner is $5+1.25=5.525$ Mc. and the somblearrior frepurnos is $\quad 60-0.2 \overline{5}=59.75$ Mc. The swond harmonic of $28,010 \mathrm{kr}$. ($56,020 \mathrm{ke}$. or $3(5,0)^{2} \mathrm{Mc}$.) fall: 2x. $02-\mathrm{j} 4=2.02 \mathrm{Mc}$ above the low odge of the chamel and is in the region marked "severe" in Fig. 2:3-7. (On the other hand, the serond harmonic of $29,5(6) \mathrm{ke}$. ($59,000 \mathrm{ke}$. or 59 Mr .) is $59-$ $5 t=5$. Me. from the low edge of the rhatmel and falls in the region marked "Mild." I harmonie on this frequelicy has to be about 100 times as strong as the harmonie at $\overline{j 6}, 020 \mathrm{kr}$. We wase interferenere of equal intensity. In other words, an oproting freguence that puts a harmonic near the pieture (arrier requires atout 40 dtb, more hatmonie sup)pression in order to avodid interferemere as compared with an operating frequeney that puts the harmonie near the upper edge of the ehamel.

For a region of 100 ke , or so cither side of the sound earrier there is athother "severe" region where a harmonic will interfere with reesetion of the sound program, and this reqion also should the avoided. In gemeral, a harmonic of intemsity

Frig.23-7- Iocation of picture and sonnd carriers in a television channel, and relative intensity of interference as the location of the interfering signal within the channel is varied withont whanging its strength. The three regions are not actually sharply defined as shown in this drawing, but merge into one another gradually.
equal to that of the picture camior will not cause notierable interference if its frequenes is in the "Mild" region shown in lig. 23-7, but tha same harmonic intensity in the "severe" region will utterly destroy the picture.

Interference Patterns

The visible dfecte of interfermen vary with the type and intensity of interferrneer ('omplete "blackont," where the picture and somud disappear eompletely, leaving the sereen dark, oreurs only when the transmitter and receiver are quite close together. Strong interference ordimatily eatuse the pieture to be brokern up, having a jumble of light and dark lines, or tums the picture "negative" - the nomally white parts of the pieture turn back and the normally hatack parts turn white. "(ross-hateling" - diagonal bars or lines in the pieture - areompanies the latter, usually, and also represents the most rommon type of lesservere interference. The bats are the result of the beat between the harmone fresueney and the pieture carrier frequence. They are broad and relatively few in number if the beat frequeney is eomparatively low - harmonie near the pieture carrior - and are nat merous and very fime if the beat freruenery is wery high - toward the upper end of the ehamnel. 'Typical cross-hatching is shown in Fig. 2:3-8.

Fig. 2:3-8- "Crosinateling," ratused by the brat hetwren the pirture carriar and an interfering harmonie inside the "I'I chamel.

If the harmonie falls in the "Mild" region in Fig. 2:3-7 the cros-hatching maty be so fine as to be visible only on elone inspertion of the pieture, in which ease it may simply canse the apparent bright ness of the serern to change when the transmitter catrier is thrown on and off.

Whether or not cross-hatching is visible, an amplitudemodulated transmittor may catuse "sound bars" in the pieture. These look about as shown in Fig. 23-9. They result from the variations in the intersity of the interfering signal when modulaterd, and sine the adio frepuenemes are Dedow the tele vision line fergerner the vatiations form horizontal hars. Under most circumstances modulation hars will mot oreme if the amatear tatusmitter is frefuency- or phastmodulated. With these types of modulation the cross-hatching will "wiggle" from side to side with the modulation.

Except in the more severe cases, there is seldom

Fig. 2.3-9 - "Somal bars" or "morlalation lars" areompanying amplitule modulation of an interferingsignal. In this ease the interforing carrier is ztrong enough tor destroy the picture. but in milal rases the pioture is visible ilmangla the lurimontal bars, somond hars may ascompany modulation evers thongh the ummodulated carrier gis es no visible reos.hatehing.
any effect on the sound reepgtion when interference shows in the pietare, unless the harmonic is quite close to the sound earrier. In the latter event the sound maty be interfered with even though the pieture is clean.

Reference to Fig. 2:3-6 will show whether or mot hamonies of the frequencer in use will fall in :my television chammels that aun be recoived in the locality: It should be kept in mind that not only harmonies of the final frequener mas interfere, but also harmonies of any frequencies that may be present in buffer or frequener-multiplier stages.

Harmonic Suppression

Effertive hamonie suppression has three scparate phases:

1) Reducing the amplitude of harmonies generated in the tramsmiter. This is a matter of eirenit design and operating conditions.
2) Prosenting atray radiation from the
 requires aderpate shichding and filtering of all cireuits and loads from which radiation can take phace.
3) Preventing harmonies from being fed into the antemat.

It is imposible to build a tramsmiter that will mot gencrate som harmonics, but it is obviously advantageous to reduce their strength, by circuit dewign and choire of operating eonditions, be as large a factor as powiblo before attempting to prevent them from being radiated. serond-harmonie radiation from the transmiter itsolf or from its associated wiring obviousty will catuse interferene just as readily as radiation from the antenna, so measures taken to prevent hamonios from reaching the antema will not reduce 'TVI if the trammitter itself is radiating harmonies. but once it has been found that the transmither itself is free from harmonic radiation, devies for presenting harmonics from reaching the antenna can be experted to produce rosults.
'There is no magie "gimmick" that will climinate TVI eaused by hamonies. The problem has to be worked on one step at a time.

REDUCING HARMONIC GENERATION

Reasomablyofficient operation of r.f. power amplifiers alows is aceompaniod by hamonic gemeration, and in the ease of frequener multipliers the harmonic output is deliberately aremtuated he over-driving. From the standpoint of TVI redidetion, geod judgment ralls for operating all freguencymultipher stages at a very low power level - receiving tubses and plate voltages not exeereding 2.50 or 300 . When the final output frequener is reached, it is highty desirable to use as few stanes as possible in reaching the output power level, and to use tubes that require a minimum of driving power. The smaller the number of stages operating at appreriable power levels, the smatler the number of points where damaging harmonies can be generated.

Circuit Design and Layout

Ilarmonic currents of considerable amplitude flow in both the grid and plate cireuits of r.f. power amplifiers. They will do relatively little harm if they can be effectively bepassed to the cathote of the tule, but this is frequently difficult to do. Fig. 23-10: A shows the paths followed by harmonic currents in an amplifier circuit ; becatuse of the high reactance of the tank coil there is little harmonic current in it, so the harmonic courents simply flow through the tank condenser, the plate (or grid) blocking condenser, and the tube capacitances. The lengths of the leads forming these paths is of great importanee, since the inductance in this circuit will resonate with the tube capacitance at some frequener in the v.h.f. range (the tank and bocking capacitances usually are so large compared with the tube capacitance that they have little effect on the resonant frequency). If such a resonance happens to oceur at or near the same frequency as one of the transmitter harmonies, the effect is just the same as though a harmonic tank circuit had been deliberately introduced; the harmonic at that frequence will be tremendously increased in amplitude.

Such resonances are unavoidable, but by keeping the path from plate to cathode and from grid to cathode as short as is physically possible, the resonant frequence usually can be mised above 100 Me . in amplifiers of medium power. This puts it between the two groups of television channels, Except in very low power miniature-tube transmitters, it is usually not feasible to raise the resonance above 216 Mc .

Where physically-short return paths from phate or grid to cathode are diffieult berause of the shape and size of tubes and tank condensers, the arrangement shown in l'ig. 23-10]3 is frequently heppul. Condensers (C_{5} and C_{6} should be of the vacuum or tubular type and should be mounted as close as possible to the tube comeretions. Ther form resonant circuits in themselves with the tube capaeitance, but gencrally at a sufficiontly high freguences so that no harm is done. It lower frequencies than this self-resonance, they effectively add to the tube cepacitance and thus tume
the inductance of the leads through the regular tank and blocking condensers to a considerably lower frequency than the tube alone. The resenance therefore can be shifted to a frequeney below it Mre and again is outside the TV range. This mothorl is most usoful at 3.5 and 7 Mc . It. increases the tank capacitance to the peint where there maty be wry little tank eoil loft, when the transmitter is used on 28 Mc ., unless the leads are eliminated by using the shunting condenser as the tank condenser and adjusting the tank coil inductance to resonate, no regular tank condenser being used.

It is casior to place grid-circuit v.h.f. resonances where they will do no harm if the amplifier is link-roupled to the driver stage, sinere this generally permits shorter leads and more laworable comditions for be-passing the harmonies than is the case with caparcitive coupling. Link coupling ako reduces the eompling between the driver and amplifier at harmonice freguencies, thus preventing driver harmonies from being amplified.

The inductance of leads from the tule to the tank eondenser can be redued not only by shortconing but by using flat strip instead of wire conductors. It is also better to use the chassis as the return from the blocking condenser to cathode, since a chassis path will have less inductance than almost any other form of eomeretion.

The v.h.f. resonance points in amplifier tank (ireuits (eth be found by coupling a grid-dip meter eovering the $50-250$ Me. range to the grid and plate leads. if a resonathere is found in or near a TV chatumel, methods such as those deseribed above should be used to move it well out of the TV range. The grid-dip meter also should be useed to check for v.h.f. resonances in the tank coils, beretuse coils made for 14 Me , and below usually will show such resonances. If a resonance falls in a 'TV chamel that is in use in the locality, changing the number of turns will move it to a frequeney where it will not be troublesome.

In many r.f. amplifiers the cathode connection
(A)

(B)

Fig. 23-10 - (A) I v.h.f. resonant circuit is formed by the tube caparitance and the leads through the tank and bowking condensers. Regular tank coils are not shown. siner they have little effert on such resonances. (13) I sing low inductance condensers shunting the tube elements to lower the resonance point below the 'TV channels. (.'5 and C.6 usually are 1.5 to $50 \mu \mu \mathrm{fd}$, and either of vacuum or tubular ematruction.
of the tube is below chassis whike the plate (amd sometimes the grid connertion frequently is above. In surh a case the blocking eombenser should be mounted belou chassis. If the gromed return is made to the top, the r.f. current has to flow over the top and either through the hole for the tube socket or else entirdy over the chassis surfare berome it reathes the eathode. This condition is highly undesirable not only berause of v.h.f. resonances but beratuse surh chassis currents freduently cense instability in the amplifier. If the by-pass condenser is mounted above, it should be cennected to the cathode bey me:ns of an insulated lead ruming through the chassis by the shortest posible path.

Operating Conditions

Grid hias and grid current have an important effert on the hammenic content of the r.f. currents in both the grid and plate circuits ln general, harmonic output increases as the grid hias and grid current are increased, but this is not necessarily true of a partientar harmonia. The thind and higher hamonies, esperially, will go through fluctuations in amplitude the the grid curent is increased, and sometimes a rather high value of gride current will minimize one harmonic as compared with a low value of grid current. This charatereristic ean be used to atvantage where a particular harmonic is (:using interferenere, keep)ing in mind that the oprating conditions that minimize one harmonic mas greatly increase another.

For equal operating conditions, there is little

Fig. 23-1I - Harmonic trap in an amplifier plate circuit. L and C: stombld resonate at the frequency of the har-
 midget, and L. usually consists of 3 to 6 thrms alomot 1,2 inch in diametor. The inductance should be adjusted so that the trap resonatea at about half caparity of C before being installod in the tramsmitter. It may be cherked with a priddip meter. When in place, it is adjusted for minimum interference to the 'I'I picture.
or mo differene betwern single-emded and pashpull amplitions in respect to harmonie gencration. Push-pull amplifiers arre frequently trouble-makars on cero harmonies beratuse with such amplifiers the exen-harmonic voltares are in phate at the ends of the tank eiredit and henere appear with ergual amplitude across the whold tank coil, if the cemter of the eoil is not grounded. L'nder
 couphed to the output cirenit through stray eapacitane Thewern the tank and coupling emils. 'This dees not oredr in a singherented amplifier if the compling coil is placed at the cold cond of the tank.

Harmonic Traps

If a harmonic in only ont "TV' chamel is particularly buthersome - freduently the cas when the transmittor operates on es Mr. - its amplitude ean be reduced by a vory eonsiderable factor if a trap tumed to the harmonic frepurnery is int stalled in the plate lead as shown in Fige 23-11. .It the harmonic frequency the trap represents a very high impedaner and henee reduces the amplitude of the hamonice corrent flowing through the tank cirenit. In the pusth-pull cireuit both traps hatwo the same eonstants. The L ' '' ratio is not rritical but a high-C cireuit usually. will hate heast affert on the performanere of the plate circuit at the bormal operating frequener.
since there is a censiderable hamonic voltage built uparross the trap, there may he radiation from the trap unfers the transmitter is well shichded. The traps should be placed so that there is mo compling betwern them and the amplifier tank circuit.

A trap is a highly-seloctive device and so is useful only oror a smatl range of fropurnedes. 1 second- or third-hammonie trap on a $2 \mathrm{~S}-\mathrm{Me}$. tank cireuit hasally will mot be effective over more than 50 ke . ur so at the fundamental frequence, depending on how serious the interference is without the trap. Beramse they are aritical of adjustment, it is hetter to prevent TVI be other me:ths, if possible, and use traps only as a last resort.

PREVENTING RADIATION FROM THE TRANSMITTER

The extent to which harmonia interference will be caused by tramsmitter radiation depends on the operating frequeser, the tramsmittor power level, the strenget of the telesision signal, and the distance betwern the transmitter and TV reeriver, as well as on the strengeth of the harmonics generated in the transmitter. Trammitter radiation ean be a very surious problem if the TV signat is marginal or below, if the "T recerver and amaterur tramsmitter are close together, and if the transmitter is operated with high power on 28 Mc.

Shielding

Direct ratiation from the tramsmitter cireuits and components can be prevonted hy proper shidding. To be effertiver, a shidd must comphetely collose the ciredits and parts and must have no openings that will permit rif. energy to

Fig, 23-12 - Propror nuthod of by passing the end of a shielded load, for either ater, or die, leads at voltages of got or less. 'The dish ceramic condenser, 0.00) μ fil. has its leads wraped aroumal the inner and outere eonduetors and solderol. so that the lead length is megligible, The Sta-inch size condenser should be used. This photograph is about four times artual size.
esatue. ["nfortunate]y, ordinary metal boxes and cabinets do not provide good shiolding, since such openings as louvers, lids, holes for rmming in comertions, and so on, allow far too much leakagre.

A primary recquisite for good shielding is that all joints must make a good electrical commertion along their entire leugth. A small slit or crack will let out a surprising :mount of r.f. chergy: : so will ventilating louvers and large holes such as those used for mometing meters. (on the other hand, smatl holes do not impair the shichding very greatly, and a limited number of ventilating holes maty be usod if they are small - mot over $1 / 4$ inch in diamoter. Also, wire spreen makes quite affertive shielding if the wires make good electrical romertion where they eross over, so the leakiage through harge opronings ata be very murh redued bey eovering such openings with sereening, well bouded to all edres of the opening.

The internity of r.f. liedds about coils, combensers, tubes and wiring decreases very rapidly with distance, so shielding is more effective, from a practieal standpoint, if the components and wiring are not too close to it. Henere it is advisable to have a separation of severab inches, if possible, between "hot" points in the rircuit and the nearest shiclding.

For a given thickness of metal, the greater the eonductivity the better the shielding. Copper is best, with aluminum, brass and steel following in that order. However, the material used is not esperially important, prateteally, if the thickness is indequate for struetural purposes (over

Fig, 23.13-By-passing the end of a high-woltage leand. The end of the shield braid is soldered to a luy fastened to the chasis directly undorneath. 'The other terminal of the eondeaser is similarly boited directly to the: Phitssis. When the by-pans is nsed at at terminal connere tion blowe the" "hat" lead should be soldered directs on the terminal. if posible, but in any event connected in it by a vory short lead.
(0.02 inch) and the shield and at "hot" point in the riment are not in close proximity. (ireater soparation should be used with steel shiodding than with the other materials not only beeame it is considerably poorer as a shield hut also hocatme it will catuse greater losese in near-hy airruits than would copper or aluminum at the same distanco. Wire sereen used as atheld should also be kept at some distames from highvoltage or high-emrent r.f. points, sine there is considerably more leakage through the mesh than through solid motal.

Where two piecese of metal join, as in forming at coruer, they should overlap at least a half inch and be fastened together firmly with sorews or bolts spared at close-mough intervals to maintain firm contart all along the joint. The eontant surfaces should be celean before joining, and should te checked oreasionatly - experiatly stem, which is almost cortain to rust after a period of time.

Lead Treatment

Fiven very good shielding can be made completely uscless when comeretions are run from extornal power supplies and other equipment to the ciremits inside the shield. livery eomduetor so introduced into the shodding forms a path for the escape of r.f., which is then radiated bey the connecting wires. Honee a step that is essential in every ease, and more important than the shiehding itself in most, is to prevent harmonie currents from flowing on the leads leaving the shielded anclosure.

Fig. 23-14- Adilitional r.f. filtering of supply leads may be required in regions where the 'I'I signal is very weak. The r.f. chose should be physically smallo and may ronsist of a 1 -inch winding of 10,20 enameled wire on a $1 / 4$-inch form. Fose-wound, Mamufactured single-laver floshes having an induct. anee of a few microhenrys also may be used.

fig. 2.3-15-The best methorl of using the "Hymas" type feed-through condenser. (apacitances of o.01 to 0.1μ fl. are satiffactory. Condensirs of this type are useful for hiph-current circuits, such as filament and 115-volt leads, as a substitute for the r.f. ehoke shown in Fig. 23-11, in cases where additional lead filtering is needed.

Harmonic currents: alwats fow on the d.e. or a.ce leatds comeneting to the tube cireuits. A vers effective means of preventing subh currents from being coupled into other wiring, :und one that provides desirable by-pasing ats well, is to use shedded wire for all such kads, maintaining the shielding from the peint where the lead emmede to the whe or r.f. cirenit, right through to the point where it is about to leave the chassis. The shiedd braid should be grounded to the ehatssis at both conds and at frequent intervals along the path.
(iond br-passing of shiedded leads also is essontial. Bearing in mind that the shied brated about the conductor confines the hammone currents to the inville of the shielded wire, the whjeed of he:passing is to prevent their eseale. Figs. 2:3-12 and 23-1:3 show the proper way to byepass. The smatltype 0.(k)t-uld. ceramie disk rondenser, when mounted on the end of the shieded wire as shown in Fig. 2:3-12, atotually forms a series-resomatht circuit in the iot-88-Mr. range and thus represents practivally a short-0ireuit for TV harmonies. These condensers may be used on all leads op-

Fig. 23.16-Meter shieding aml ly-passing. It is essential to shied the meter mononting hole since the meter will carry r.f. througlt it to be radiated, suitalde shiehds can be made from $21 / 2-$ or 3 -inch diameter shichl cans of the type made for enclosing coils.
erating at biok volts or less. The exposed wire to the conneretion terminal should be kept as short as is phesirally possible, to prevent ang possible harmonie piek-up exterior to the shiedded wiring. For higher voltages the shielded lead should be: br-passed as shown in Fig. 2:3-13, mounting the condenser flat against the chassis and grounding the end of the shield braid directly to chassis, keeping the exposed part as short as possible, Fither $0.001-\mu \mathrm{fl}$, or $470-\mu \mu \mathrm{fd}$. ($500 \mu \mu \mathrm{fd}$.) Condensers should the used. The larger caparitanee is series-resomant in Chamel 2 and the smaller in Chamel 6, so the capacitaner should be chosen acrording to which chamed needs the most proteretion.

These he-passes are essential at the commedionboek termimals, and desirable at the tube ends of the leads also. Installed as shown with shielded

 but there will atill be radiation if the lead= inside can piek upr.f. from the tranamitting cireuits.
wiring, the have been found to be so affective that there is usually no need for further hammonic filtering. Howevor, if a test shows that additional filtering is required, the armangement shown in Fig. 2:3-14 maty tre used. surh ath r.f. filter should We installed at the tube end of the shielded lead, and if mowe than one cirenit is filtomed rare should be taken to kerep the r.f. chokes separated from eath other and so orientel as to minimize coupling betwern them. This is neressary for preventing harmonics present in one riveuit from being coupled into another.

Is an alternative to the series-resomant berpassing described abowe, ferd-through type condensers such as the sprague "llypass" trepe may be used as torminals for external comeretoms. The efferetivemess of these comenterers maty be largely mullitied if the wiring to them is not completely shiefled, "sperially on the side going to the contertion terminal. 'The ideal method of installation is to mount them so they protrude. through the chassis, with thorough bonding to the chassis ath around the hole in which the condenser is mounted. The principle is illustrated in Fig. 2:3-1\%.

Meters that are mounted in an r.f. unit should In enelosed in shielding eovers, the eonneretions locing made with shieddend wire with rach lead lob-passed as deseribed above. The shich hataid should be grounded to the panel or chassis immerliately ontside the meter shiodd, as indieated in Fig. 2:3-16. A by-pass may also be commeded aross the meter tarminals, principally to prevent any fundamontal current that may be present from flowing through the moter itself. As an altornative to individual meter shielding the meters may be mounted entirely bohind the panel, and the pand holes needed for olservation mat he covered with wire sereen that is carrofully bonded to the panel all around the hole.

Care should be used in the selection of shielded wire for tramsmitter use. Not only should the insulation be conservatively rated for the de voltage in use, but the insulation should be of matterial that will not easily deteriorato in soldering.

Fig. 2.3-18-Inmmy -antomna cirruit for chacoking harmonic radiation from the transmitter and leads. "The matehing circuit belos prevent harmonies in the oupput of the tramsmitter from flowing batk ower the trathemitter itself, which may oreour if the lamploal is simply connerted to the output esil of the final amplifier, tie transmission-line chapter for dotails of the matrohing circuit. Tuning must be adjusted lis rent-and-try, as the bridge method described in the transmisaim-line ebapter will not work with lamp loads becaune of the change in resistance when the lamps are bot.

For high woltages, automobile ignition cable covered with shiclding brad is recommended. Where the wiring crosses or runs paralled, the shiolds should be opot-soldered together and conneeted to the chassis.

Proper shielding of the transmitter requires that the r.f. circuits be shiched entirely from the external comerting lauds. A situation such as is shown in Fig. 23-17, where the leads in the r.f. chassis have been shiedded and properly filtered but the chassis is momed in a large shiedd, simply invites the harmonic currents to travel over thi chassis and on out over the leads outside the chassis. The shielding about the r.f. eireuit: should make eomplete contart with the chassis on which the parts are mounted.

Checking Transmitter Radiation

A check for transmitter ratiation always should be made before at tempting to use low-pass filters or other devices for preventing harmonies from reaching the antenna system. The only really satisfactory indicating instrument is a television receiver. In regions where the TV signal is strong an indicating wavemeter such as one having a crystal or tube detector is useful in a negative sonse. That is, if it is possible to get any indica-
tion at all on TV hamonies ather on supply leads or around the tramsmitter itsolf, the hatrmonios atre probably strong abough to catme interforemer, hut the absence of :thy surh indicittion dors mot masan that harmonie interferemer will not be cansed. If the terehnigues of shielding and lo:ud filtering described in the procoding seretion are followed, the harmonie intensity on any external leads should the far below what ing such instruments can detere, so they are useful chiefly to determine whether some really bud erom has been made.

Radiation eherks should be made with the tramsmitter dolivering full power into : dummy antemat, such as an ineandescent lamp of suitable power rating, preferably installed inside the shielded anclosure. If the dummy must be external, it is desirable to connoet it through a coaxmatehing circuit such as is shown in lig. 23-18. Shielding the dummy antemna circuit is also desirable, although it is mot always neesessary. Make the radiation test on all frerpuencies that are to be used in transmitting, and note whether or not interference patterns show in the recoived picture. (These tests must be made while a TV signal is being recerved, since the beat patterns will not be formed if the 'TV picture carrior is not present.) If interferenee exists, its souree can be deterted bey grasping the various extornal leads (by the insulation, not the live wire') or bringing the hand near moter faces, louvers, and other possible points where harmonie onergy might escape from the traminitter. If any of these tests catuse a change-not neressarily an increase - in the intensity of the interferener, the presenee of hatrmonics at that point is indicated. The loration of such "hot" spots usuatly will point the way to the remedy.

As a final test, connect the antemata or transmission line terminals to the outside of the transmitter shielding. Interference created when this test is applied indicates that weak curronts

Fij. 23-14 - The stray capacitive coupling between coils in the upper circuit leads to the equivalent circuit shown below, for v.h.f. harmonics.
are on the outside of the shiedel and ean be comducted to the antemat when the nomat antemas combertions are used. ('urrents of this mathere represent interference that can be condueded orer low-pass filters, ofle, and which therefore camment be dimimated by such filters.

- PREVENTING HARMONICS FROM REACHING THE ANTENNA

The thiral and last step in reduring hamonie TVI is to keep the hamonies gemeratent in the final stage from traveling ower the transmission line to the antemas. It is seldom worthwhile eren to attempt this until the radiation from the transmitter and its commerting leads has beon redued to the point where, with the transmiter delivering full power into a dummy antenna, it has been determimed he adual testing with a television remiver that the radiation is below the level that (ath cabluse interferemes. If the dummy antenma test shows enough radiation to be sere in at TV picture, it is at prational certanty that hatrmonics will be coupled to the antemas sestem no matter what preventive measures are taken.

In inductively-coupled output systoms, some harmonic emergy will he transferred from the final amplifier through the mutual inductatme bet ween the tank coil and the output coupling coil. Hatmonics transforred in this wat ate not too hared to hander, and can he greatly reduced by providing sufficient selectivity betwern the final tank and the tramsmission line. A good deal of seleetivity, amomating to 20 to 30 dt . reduction of the second harmonic and much highor roduction of higher-order harmonies, is furnished by a matching cirenit of the type shown in Fig. 23-18 and deseribed in the ehapter on transmission lines. An "antemata coupler" is therefore a worthwhile addition to the transmituer.

Capacitive Coupling

Itarmonies transferred from the tank be straty capactance are not suppresed by an antentas eoupler to the simme extent as those tramsinerd by pure inductive coupling. The upper drawing in Fig. 23-19 shows the link-eoupled system as it might he used to couple into a parather-onductor line. Intismuch as at eoil is a sizable motaltio objeret, it will have caparitance to any other metallic objects in its vicintes, including otloer coils. Conserumety there is catberitane between the final tank coil and its assoriated link coil, and

Fig. 23-21 - Shichled conpling coil constructed from coavial cables.
 the eoil diametor is 3 indhes or less, becanse of grtater flexibility. For

Intweren the antemat tank eoil aml its link. Energy compled through these eaparitane travels ower the liak rirenit and the tramsmission line as though these were merely single robstuctors The tuned direnits simply ate as masers of motal and offer no selertivity at all for eaparity-roupled
 smatl, they oftion a very good coupling modium for frequencies in the v.h.f. ramge.

Capacitive conpling can be whared by eoupling to : " "oold" point on the tank coil - the eme cont neected to ground of cathome in at singhe-ended stage. In push-pull eireuits having a split-stator
eondenser with the rotor gromeded for r.f., all parts of the tank coil are "hot" at even hatmonies, but the center of the coil is "cold" at the fundamental and ohd harmonics. If the center of the tank eoil, rather than the rotor of the tank condenser, is grounded through a by-pass condenser the renter of the coil is "eold" at all frequencies, but this arrangement is not very desimble because it cases the hamonie currents to flow through the eoil rather than the tank condenser and this increases the hamonic tramser by pure inductive coupling.

With either singlemuded or hataned tank eirenit: the coupling coil shomld be grounded to the chatsis be a short, dired commertion as shown in Fig. 23-20. If the coil feeds a bataneed line or link, it is preforable to ground its center, but if it feeds at cosx line or link one side maty be grounded. Coaxial output is murh proferatibe to bataneed output, becatmes the hamonics have to stay inside a pronemy installed coax system and temd to be attenuated be the eable before reaching the antemat coupler.

At high frequencies - 28 and possibly It Mc . - capacitive compling can be greatly reduced by using a shielded coupling coil as shown in leig. 23-21. The inner conductor of a lemgth of coaxial cable is used to form a one-turn coupling coil. The (anle (hat

Fis. 23-20- Nt-thods of coupling and qrounding link circuite to reslace caparitive coupling lietwern the tank and link covils. Where the link is wound wier one end of the tank eoil the side toward the het end of the tank should be groumbed, as shown at 13 .

(B)

(C)

Fig, 23-22 - Kight (B) and wrong (A and (i) ways to eommet a cosavial line to the transmitter. lon either 1 or G, hamomice energy coupled by stray eapaeitance to the outsinte of the rabla will flow without hindrance to the antenna system. In B the emergy ramot hase the shiche and hence ean flow out only throngh, not war, the calde.
outer eomductor serves as an openerincuited shield around the turn, the shield being grounded to the chassis. The shielding has no effeet on the inductive compling. Because this construetion is suitable only for one turn, the coil is not wedl adapted for use on the lower frequencies where many turns are reguired for good eopupling. Shielded coupling eobls having a larger number of turns are available commereiallys. A shieded roil is particularly useful with push-pull amplifiers when the suppression of even hamonices is impontant.

A shielded coupling evil or conxial output will not prevent stray cabacitive eorapling to the athtomata il hamonir eurrents can flow wer the outside of the eoan line. In Fig. 23-22, the arrangement at either A or C' will allow r.f. to fow over the outside of the cable to the anteman system. The proper way to use coaxial cable is shiold the transmitter completely, as shown at I3, and make sure that the outer conductor of the cable is a continuation of the transmitter shiselding. This prevents r.f. inside the transmitter from getting out by any path exeept the insile of the cable. Harmonies flowing through a coax line can be stopped from reaching the antenna system be an antemnat coupler or by a low-pass filtor installed in the line.

Low-Pass Filters

A low-pass filter properly installed in a coaxial linc, feeding either a matching circuit (antenna coupler) or feeding the antenna directly, will provide very great attenuation of harmonies. The coax-coupled matching-cireuit arrangement is highly recommended when the main transmission line is of the paralleleconductor type.

A properly-designed tow-pats filter will mat introdue apperiable power loss at the fundamental frequenery if the emaxial line in which it is inserted is teminated so that the swer. is low. The sw.r. can casily be mesared bex mothe of a simple bridge as described in the chapters on mowsurements and transmission lines. Such a filter has the property of passing without loss all fregurneises below its "cutofif" frequener, but simultaneously has large athemation for all freghomer above the out-off fretuenes. Spate does not promit a complete description here, but detailed intormation, including simplified design methods, can be found in a series of atieles in (SNT" (Grammor, "Eliminating TVI with LowPass Filters," (OST, in three parts, Fehruary, Mareh, and April, 1950).

Low-patss filters of simple and inexpernsive construction are shown in Figs, 2:3-23 and 2:3-25. These are dewigned to we mient condensers of readily-atvaliable rabateitance values, for compatherse and low rost. Both use the same circuit, Fig. 2:3-24, the moly difference being in the L and (valures. Terhuically, they are thror-secetion filtors having two full constant-k sertions and two m-dorived terminating half-sertions, and their attenuation in the it-88-. Ife range varies from over 30 to nearly 70 dhe, depending on the freeruency and the partieular set of vables used. Whove 17. Me. the thereretieal attenuation is better than 85 (dh., hut will depend somewhat on intarnal resomat monditions assoriated prin"apally with the lead lengths to the condensers. These leads should be kept as shome is is physically possible.

The power that these filters can hatmede saffely is determined the the voltage and current limitat tions of the mion eondensers. These limitations are

Fig. 23-23 - An inexpensive low-pass filter using silvermica postage-stamp comdensers. The hox is a 2 hy 1 hy 6 aluminum chassis, Nluminum shields, lomt and folded at the sides and botom for fastening to the chassis, form shields between the filter aertions. The diagonal arrangement of the shielde provides extra roon for the roils and makes it easier os fit the shields in the tona, sime broding to exaet dimensions is net essential. The bottom plate. made from shert aluminum, extends a half inch beyond the ende of the rhassis and is prowided with mounting holers in the extensions. It is held on the chasisis with sheet-metal serews.
such that the power capacity is reast at the highast frequence. The unit using postare-stamp silver mica condensers is (atpable of hathding abpproximately 50 watts in the 2S-Ma. bend, when working into a properly-matchas line, but is good for about 150 Witts at 21.118 . and 300 watto at 14 Mes and lower frequencies. The unit with
 will (arry about 2 20) watts sately at 28 Mc., this rating increasing to 500 watts at 21 Me , and a kilowatt at $1+$ Me. and lower. If there is an atppreciable mismateh between either filter and the line into which it works, these ratings will be considerably decreased, so in order to avoid condenser fitilure it is highly essentiab that the line on the output side of the filter be carefully matched by its load. This can be done with an s.w.r. bridge, and the matching is casy to control if the line from the filter terminates in a matehing circuit of the trpe described in the ehapter on transmission lines.

The power capacity of these filters can be in-

Fig. 23-24-Low-pass filter circuit for attennating harmonios in the ' T ' hands. J_{1} and J_{2} are chassis-t ype coaxial comectars. In the table below the letters refer to the following:
A- Constructed as in Fig. 2:3-23, using 100- and 70. $\mu \mu \mathrm{fl}$. $50(1)$-volt silver mica condensers in parallel for C_{2} and C3.
$\mathrm{B}-\mathrm{S}$ Gme as 4 but with 70 - and $50-\mu \mu \mathrm{fll}$. silver mica condensers in parallel for C_{2} and Cis. $_{3}$
C - Constructed as in l"ig. 23-25. using 100- and 50 $\mu \mu \mathrm{fi}$. mica condensers, 1200-volt (case-style CNI 45) in parallel for C_{2} and C_{3}.

D and \mathscr{F} - Construted with variable condensers, 500 - to 1000 -volt rating, adjusted to values given.

	A	13	C	D	E	
Zo	52	75	52	52	75	ohms
f_{c}	36	3.7. 5	41	40	40	Hc.
f_{∞}	44.4	47	51	50	50	Nc.
f_{1}	25.5	25.2	29	28.3	28.3	Hc .
f_{2}	32. 5	31.8	37.5	36.1	36.1	Mc.
C_{1}, C_{4}	50	40	50	46	32	$\mu \mu \mathrm{fd}$.
$\mathrm{C}_{2}, \mathrm{C}_{3}$	170	120	150	15.4	106	$\mu \mu \mathrm{fal}$.
$L_{1,}, L_{5}$	51/2	6	4	5	61/2	turns*
$L_{2,} L_{4}$	8	111	7	7	91/2	turns*
L_{3}	9	13	8	81/2	111/2	turns*

[^11]

Fig. 23-25-Iow-pass filter using "ase-type CM-45 condensers. The box is a 2 by 5 by 7 alaminum chassis. fitted with a botton phate of similar construction to the one used in Fig. 23-23.
creased considerably by substituting r.f. tupe fixed condensers (such as the Centralah, 850 series) or variable air condensers, in which event the power capability will be such as to handle the maximum amateur power on any band. The construction can be modified to aceommodate either of the latter types of condenser, using a similar layout in a larger box.

U'sing condensers of standard tolerancos, there should be little difficulty in getting proper filter operation. A grid-dip meter with :th aceurate calibation should be used for adjustment of the coils. First, wire up the filter without L_{2} and L_{4}. Short-circuit J_{1} at its inside end with a sorewdriver or simitar eonductor, couple the grid-dip meter to L_{1} and adjust the indurtanere of L_{1}, by varying the turn spacing, until the circuit resonates at f_{∞} as given in the table. Do the same thing at the other end of the filter with L_{5}. Then couple the meter to the circuit formod by L_{3}, C_{2} and C_{3}, and adijust L_{23} to resonate at the fregueney f_{1} as given bey the table. Then remove L_{3}, instali L_{2} and L_{4} and adjust L_{2} to make the cirruit formed ! y L_{1}, L_{2}, C_{1} and C_{2} (without the short abeoss J_{1}) resonate at f_{2} as given in the table. Do the same with L_{4} for the eireuit formed $b_{\text {w }} L_{4}, L_{5}, C_{3}$ and C_{4}. Then replace L_{3} and chook with the grid-dip) meter at any (ooil in the filter; a distinct resonance should be found at or very chose to the cut-off frequeney, f_{c}. The filter is then ready for use.

The filter constants suggested at D and E in Fig. 2:3-2.4 are based on the optimum design for good impedance characteristids - that is, with $m=0.6$ in the end sections - and a cut-off frequency below the current RTM. 1 standard i.f. for television receivers (sound corrier at +1.25 Mc.; picture carrier at 45.75 Mc .). This is to avoid possible harmonic interference from 21 Mc. and below to the receiver's intermediate amplifier. The other designs similarly eut off at 41 Xic. or below, but m in these cises is neressarily based on the capacitances available in standard fixed condensers.

Fig. 23-26 - The proper metbod of installing a bow epas filur betwern the transmiter and antenna coupler or matrhing cirenit. If the antrma ing fed through coan the matching cironit mas tre ontitted but the same construction should be used between the transmitter and filter. 'The filter should the theroughly shielded.

Filter Installation

In order to give the harmonie attenuation of which it is capable, a low-pass filter must be installed in such a way that all the outpint of the tramsmitter flows through it. If harmonie currents are permitted to flow on the outside of the connerting eotxial cables, they will simply flow ower the filter and on up to the antenna, and the filter does not have an opportunity to stop them. That is why it is so important to reduce the radiation from the transmitter and its leads to negligible proportions.

Fig, 23-26 shows the proper waty to install a filter betwere a shielded tramsmitter and a matehing cireuit. Note that the ense, together with the shields about the tramsmitter and filter, forms a continuous shield to kerp all the ref. inside. It is thus fored to How through the filter and the harmonies are at temuated. If there is no harmonte ermerg leftafter passing through the filter, shiolding from that print on is not neressary; emser-
 dows not need to be shidded. Howewor, the antennateoupher ehassis arrangement shown in Fig. $23-24$ is desirable beratuse it will tend to prevent fundamental-freguene energy from flowing from the matching eirevit batek over the transmitter; this helps eliminate ferd-back troubles in audio serstems.

If the antemat is driven through conxial line the matching circuit shown in Fig. 23-26 may be omited. In that cetse the line goes direcoly from the filter to the antenna.

When a filter dows not seem to give the harmonice attronation of which it should be capable. the probable reason is that harmonies are bepassing it beoase of improper installation and inadequate tramsmitter shiohding, including lead filtering. However, there are oreasionally eases where the cirents formed by the eonnecting cables and the apparatus to wheh they eonmert herome resonath at a harmonie frequeners. This greatly incereases the harmonie output at that fremueney and the wer-all attenuation suffers. such troubles ean be eompletely werrome hes suhtituting as slightly different cable length. The most aritial hongth is that comenering the transmitter to the filter, Cheeking with a arid-dip moter at the timal amplifier output coil usually will show whether an unfavorable resomather of this type exists.

SUMMARY

The methors of hammaic elimination outlimed in this chapter have bren proved bryond doubt
to be effertive even under highly unfavorable conditions. It must he emphasized once more, however, that the problem must he solved one step at a time, and the procedure must be in logieal order. It camot be done properly without a few items of simple equipment. These are:

1) A grid-dip meter and wavemeter covering the TV hands.
2) A dummy athenna.

The proper provedure maty be summarized as follows:

1) Take a critieal look at the transmitter on the hasis of the elesign considerations outlined under "Reducing Iharmonic Generation".
2) Cherk all circuits, partieularly those conneeted with the final amplifier, with the grid-dip moter to dotermine whether there are any resonanees in the 'TV bands. If so, rearmange the circuits so the resomanees are moved out of the eritieal frequeney region.
3) Conne the fransmitter to the dummy antemat and checek with the wavemeter for the presencer of harmonies on learls and around the trammitter enclosure. Sal off the wak spots in the shiclding and filter the leads until the wavemeter shows no indication at any harmonie frequencer:
4) At this stage, eherek for interference with at TV reverer, If there is interterente, detormine the catuse by the mothods deseribed previously and apply the reommended remedies until the intorformer disampats.
5) When the transmitter is emmpletely clean on the dummy antenna, comere it to the regular antemata and eheck for interference on the TV receiver. If the intorference is not bad, an antenna eompler or matehing circuit installed as previously desoribed should elear it up. Aternatively, a lowpass: filter may be used. If neither the anterma roupler nor filter makes ang difference in the interference, the evidenee is strong that the interforonce, at least in part, is being caused by receiver overloading becaluse of the strong fundat-mental-frequency field about the TV antemat and receriver. (Soe later section for identification of fundamental-frequeney interference. A coupler and 'or filter, installed as described above, will invariably make a difference in the intemsity of the interterence if the interference is catused by frammiter harmonies ahone.
(i) If there is still interference after instatling the coupler and/or filtor, and the evidence shows that it is probably calused by a harmonie, more attenuation is noeded. A more elaborate filter may be neeresary. Itowever, it is well at this stage (o) assume that part of the interference maty be falluad hy remiver owortording, and take steps to alleviate such a condition before trving highlydatherate filtors, traps, we, on the tratmsmitter.

Harmonics by Rectification

Ween though the transmitter is eompletely frea from harmonic output it is still possible for interference to oerur berabse of hamonics gen-
rated outside the transmitter. These result from reetifieation of fundamental-frequence currents induced in conductors in the vierinity of the transmitting antemub. Rectification can take pare at any point where two conductors ard in poor electrical contat, a condition that froquently exists in plumbing, downspouting, BX cables erossing cateh other, and numerous other platers in the ordinary residence. It also can oceur in any expered vacumm tuber in the station, in power supplies, spereh equipment, ete., that mas. not be enclosed in the shielding about the r.f. cireuits. Poor joints anywhere in the antemat swisem are experially bad, and reetification also maty take plate in the contarts of antemat changeower relays. Another common cause is overloading the front end of the communieations reeciver when it is used with a separate antemn (which will radiate the hammoners gemerated in the first tubre) for break-in.

Rextification of this sort will not only catuse harmonic interforence but abso is frequently responsible for cross-modulation efferts. It a a m be detected in greater or less degree in most locations, hut fortunately the harmonies thus gen(rated are not usuably of high amplitude. Howcerr, they ras catus considerable interference in The immediate vicinity in fringe areas, experially when operation is in the 28-Mc. band. The amplitude deeroases rapidly, with the order of the harmonie, the serond and third being the worst. It is ordinatily found that even in cases where destructive interference result: from 28 - - 1 e. operation the interference is comparatively mild from 14 Me., and is mogligible at still lower frequemios,

There is nothing that ean be done at cither the trammitter or rerever when rectifeation oremes. The remedy is to find the souree and eliminate the poor contate either by separating the eonducdors or bonding them together. A arestal wavemeter (tuned to the fundamental frequences) is useful for hunting the source, be showing which rondutors are carring r.f. and, comparatively, how mueh.

fig. 23-2: - Migh-pass filters for installation at the TV reveiver antenna terminals, A - halanced tiler for 300 -

 through a $0.1601-\mu \mathrm{fl}$. mida condenter.

Interforemee of this kind is frequently intermitent, sinee the reetifieation efficiener will vary with vibration, the weather, and so on. The possibility of eorroded contants in the TV reeriving antemat should not be overlooked, esperially if it has been up a year or more.

- TV RECEIVER DEFICIENCIES

Front-End Overloading

When a television receiver is quite close to the tramsmitter, the internere rif. signal from the transmitter's fundamental may overgad one or more of the recoiver ciredits to produce spurious responses that catuse interference.

If the overlowd is moderate, the interferenee is of the same nature as harmonie interference; it i , (:aused by hamonies generated in the early stares of the recoiver and, since it accurs only on what nels harmonically related to the tramsmitting froguency, is dificult to distinguish from harmonies actually radiated be the tramsmitter. In such cawes additional harmonie suppression at the transmitter will do no good, but any means taken at the receiver to reduce the amate fundamental strength feed to the first tule will affert an improvement. With more severe overlonding interferemer adso will oreur on channels not harmonically related to the trammitting frequeney, so sudh cases are casily identifiod.

Cross-Modulation

Inder some circumstances overloading will pesult in crose-modulation of the amateur signal and that from a local FM or 'TV station. For ex-
 FX station to produce a beat at is Me and cabse interferne in (hammel $\overline{5}$, or with a TV station on Chamel 5 to catuse interforence in Chamel :3. Neither of the rhamels interfered with is in hammonie relationship to 14 Me . Both signals hate to be on the air for the interterene to oredr, and eliminating either at the TV receiver will eliminate the interfermer.

I. F. Interference

Some TV rerceivers do not have sulfiejent selectivite to prevent strong signals in the intermedi-ate-frequeney range from foreing their waty through the front cond and getting into the i.f. amplifier. The older R'TMI. intermediate frequence of, roughly, 21 to 27 Mc., is subjert to interference from the fundamental-fregumery output of transmitters operating in either the $21-$ and 27-Mr. bathes. Tramsmitters on 28 Mc. somptimes will ratuse this type of interlerence as well.
I.f. interforemer is asisy identified since it orcurs on all ehamels - athough sometimes the intensity varies from chamel to channel - and the cross-hateh pattern it canses will rotate when the rereiver's fine-tuning control is varied. When the interferemere is catused by a hamonie, overlowding, or eross modulation, the strueture of the interferene pattern does not change as the fine-
thaing rontrol is varied, althmgh its intemsity mity chatnge.

High-Pass Filters

In ath the athere cases the interfereme can be chiminated if the fundamental signal strength ram tre redured ta a level that the readiver rath hatade. The most satisficetor devier for this purpose is a high-pases filtor hatving at cut-off frepurners be1 wern 30 athd 50 Mr., installed at the tuner input forminals of the rocoiver. (iberuits that have proved affertive atre shown in Fige. e23-27 and 23-28. Frig, 2:3-2s has one more seretion thatn the filtere of Fig. $23-27$ and as a consegurner hats somewhat better eut-off chatacteristics. . Wll the circuits given are designed to have little or mo offere on the 'l'V signals but will aftrmate all

 chm lines "The mils mas be wome on $\frac{3}{3}$-imeh diameter mastir hnitting needten. Impertant: Do not nse a dirert
 pfid, mira condenser.
signals lower in frequencer than about 40 Me . 'These filters proferably should te constructed in some sont of shielding container, although shielding is not always necessary. The dashed line in Fig. 23-28 show how individual filter coils can be shidded from eath other. The eondensers can be tubular ceramic units eentered in holes in the partitions that separate the coils.

High-p:ss filters dexigned for this purpose are available commercially at moderate prices. In this commeetion, it should be understood be all patties eoneromed that while an amateur is mosponsible for harmonir radiation from his transmitter, it is mo part of his responsibility to pay for or install filters, wavettaps, etce, that may be required at the receiver to prevent interference callesed bey his fundumental fropurney. It is a good ideat for the :materur to have a high-pass filter that ean be tried on a recover when interferfollere existe. If trial shows it to be effective, the reason why it works should he carefully explained to the set owner, who should then be advised to get in touch with the orgatization from which he purchased the reoriber or which serveres it, to make arrangemonts for proper installation. Proper installation usually repuires that the filter be instatled right at the input terminals of the ref. tuner of the l wet and mot merely at the antemat
terminals, which may lw at a considerable disfanere trom the tuner. The question of cost is onm to be settled between the sed owner and the arganzation with which he deals. some of the larger manufacturers of Treceres have instituted artangements for cooperating with the sot lealer in installing high-pass filters at no enst to the reerever owner.

Wavertaps may be used instead of high-pass filters. If the reweiver hats a balanced (30(0)-ohm) transmission line a trap shoud be used in emeh line wire. They mat be construeted frem the data in Fig. 23-3. When properly tumed, wavetrape will greats attenuate the fundamental sigmal but suffer the disadrantage, as compared with a highpass filter, that ther must be refuned if the transmitter frepuctiey is moved. They are of course of no value in rejeeting a freguenery to which they camot be bumed, and therofore mestally are good maly for one amaterur hame.

If the fundamental signal is gotting into the reepiser be way of the line cord a lime filter such as that shown in Fige 2:3-1 will holp. Tho be most afiective it should be installed inside the reenemer Thasis at the point where the cord enters, making the ground eomenetions direetly to chassis at this point. It mas mot be so helpful if plated between the line plug and the wall socket unless the r.f. is actualts pieked up on the house wiring rather than on the line corel itsedf.

Antenna Installation

Mathy telerision receliops will respond strongly to parallel currents on the recoiving transmission line. l'sually, the tramsmission line pieks up a great deal more ractay from a near-by transmitter that the television receriving antenma $\mathrm{it}-$ self. calusing patallel eurents that should be, but :are not, rejected by the receiver's input cireuit. This situation rath be improved by using shiedded transmission line coax or, in the bataneod form. "1winax" - on the rereiving instatlation. For best results the line should terminate in a roate fitting on the rerefiver chassis, but if this is not possible the shield should her grounded to the rhatsis right at the antemat terminals.

The use of shiflded transmission line for the reseder also will be helpol in reducing response to harmonies actually being radiated from the tramsmitter or tramsmitting antemma. In most receiving installations the tramsmission line is very much longer than the anterna itself, and is conserquently far more expesed to the harmonic firlds from the transmitter. Much of the harmonis pick-up, therefore, is on the receiving transmission line when the thansmitter and reecoiver are quite elose together. Shichded line, plus relacation of either the trathsmitting or reereving antenna to take advantage of directive effects, ofton will result in reduring overloading, as well as hammonic piok-up, to a leved that does not intorfere with reepetion.

Construction Practices

TOOLS AND MATERIALS

While an easier, and perhaps a better, job can be done with a greater varicty of tools available, by taking a little thought and care it is possible to turn out a fine piece of equipment with only a few of the common hand tools. A list of tools which will be indispensable in the construction of radio equipment will be found on this page. With these tools it shoutd be possible to perform any of the required operations in preparing

INDISPENSABLE TOOLS

Tong-rose pliers, fi-inch.
Diagonal eutting pliers, fintich.
Wire stripper.
screwdriver, 6 - to 7 -inch, $1 / 4$ inch blade.
Acrewdriver, 4 - to $\overline{3}$-inch, $1 / 8$-inch Made.
Seratch awl or seriber for marking lines.
Combination square, 12 -inch. for laving out work.
Hand drill, ${ }^{1}$ f-inch chuck or larger. 2 -spred type preferable.
Electric soldering iron, 100 watts.
Hack saw, 12 -inch hlades.
(©nter minch for marking hole centers.
llammer, hall-peen, 1-!b. head.
Heary knife.
Yardstick or other straightedge.
Carnenter's lirace with adjustable hole cutter or sorket-hole punches (see text).
Jarge, coarse, fat file.
Large round or rat-tail file, $1 / 2$-inch diameter.
Three or four small and medium files-fiat, round,
half-round, triangular.
Drills, particularly $1 / 4$-ineh and Nos, $18,28,33,4:$ and 50 .
('ombination oil stone for sharpening tools.
Solder and soldering paste (noncorroding).
Medium-weight machine oil.
ADDITIONAL TOOLS

lunch vise, f-inch jaws.

Tlin shears, 10 -inch, for mitting thin sheet motal.
Thaper reamer, $1 / 2$-inch, for enlarcink small fioles.
Taper reamer. 1 -inch, for enlarying holes.
(ountersink for brace.
(arpenter's plane, 8- io 12-inch, for woodworking. (arpenter's saw, crossrut.
Motor-driven emery whel for grinding.
Long-shank screwdriver with serew-holding cliz for tight places.
Set of "Spintite" socket wrenches for hex nuts.
Set of small, flat, open-ead wrenches for hox nuts.
Wood chisel, $1 / 2$-inch.
Cold chisel, $1 / 2$-inch.
Wing dividers, 8 -inch, for scribing rircles.
Set of machine-screw taps and dius.
Dusting hrush.
Socket punches, esp, $11 / 8^{\prime \prime}$ and $114^{\prime \prime}$.
panels and metal chassis for assembly and wiring. It is an excellent idea for the amatern who does constructional work to add to his. supply of tools from time to time as financos permit.

Several of the pieces of light woodworking mathinery. often sold in hardware stores and mail-order retail stores, are ideal for amateur radio work, especially the drill press, grinding head. hand and circular saws, and joiner, Althongh mot essential, they aro desirable should yon he in a perition to aronime them.

Twist Drills

Twist drills are made of rither high-speed sted or carbon stem. The latter type is more common and will usually be supplied unless sperifie request is made for high-speed drills. The carbon drill will suffice for most ordinary equipment construction work and costs less than the high-speed trpe.

While twist drills are available in a number of sizes those listed in bold-faced type in Table 24-I will be most commonle used in construction of amaterur equipment. It is usually dersirable to purchase sevoral of each of the commonly-used sizes rather than a standard set, most of which will he used infreduently, if at all.

Care of Tools

The proper care of tools is not alone a matter of pride to a good workman. He also realizes the energy which may be saved and the annoyance which may be aroided by the possession of a full kit of well-kept sharp-edged tools.

Drills should be sharpened at frequent intervals so that grinding is kept at aninimum each time. This makes it easier to maintain the rather critical surface angles required for best routting with least wear. Oreasional oilstoning of the cutting edges of a drill or reamer will extend the time between grindings.

The soldering iron can be kept in good condition by keeping the tip well tinned with solder and not allowing it to run at full voltage for long periods when it is not being used. After each period of use, the tip should be removed and cleaned of any scale which may have accumulated. An oxidized tip may be pleaned hy dipping it in sal ammoniae while
hot and then wiping it clean with a rag. If the tip becomes pitted, it should be filed until smooth and bright, and then timned immediately by dipping it in solder.

Useful Materials

Small stocks of various miscellaneous materials will be required in constructing radio apparatus, most of which are available from hardware or radio-supply stores. A representative lint follows:

Shect aluminum, 16 or 18 gauge for brackets and shielding.
$12 \times 1 / 2$-inch aluminum angle stock.
$1 / 4$-inch diameter round brass or aluminum rod for shaft extensions.
Machine serews: Round-head and flat-head, with nuts to fit. Most useful sizes: 4-36, $6-32$ and $8-32$, in lengths from $1 / 4 \mathrm{inch}$ to $11 / 2$ inches. (Nickel-plated iron will be found satisfactory except in strong r.f. fields, where brass should be used.)
Bakelite, lucite and polystyrene seraps.
soldering lugs, pathel bearings, rubber grommets, terminal-lug wiring strips, var-nished-cambric insulating tubing.
Shielded and unshielded wire.
Timed bare wire, Nos. 22, 11 and 12.
Machine screws, nuts, washers, soldering lugs, etc., are most reasonally purchased in quantities of a gross.

Chassis working

With a few essential tools and proper proredure, it will be found that building radio gear on a metal (bhassis is no more of a chore than building with wood. and a more satisfactory job results. Aluminum is to be prefered to sterl, not only because it is a superior shielding material, but because it is muh casier to work and to provide good chasis contartw.

The placing of components on the chassis is shown quite clearly in the photographs in this Handbook. Aside from rertain essential dimensions, which usually are given in the text, exact duplication is not necessary.

Much trouble and energy can he saved by spending suffieient time in plathing the job. When all details are worked out beformand

Fig. 24.1 - Method of measuring the lieights of condenser shafts, ete. If the stuare is adjustable. the end of the scale sbouhi be wet liosh with the face of the lead.

TABLE 24-1			
Number	Diameter (mils)	Will Clear Screw	Drilled for Tapping Iron, Steel or Brass*
1	228.0	-	-
2	221.0	12-24	-
3	213.0	-	14-24
4	209.0	12-20	-
5	205.0	-	-
6	204.0	-	-
7	201.0	-	-
8	199.0	-	-
9	196.0	-	-
10	193.5	10-32	-
11	191.0	10-24	-
12	184.0	-	-
13	185.0	-	-
14	182.0	-	-
15	180.0	-	-
16	177.0	-	12-24
17	173.0	-	-
18	169.5	8-32	-
19	166 . 0	-	12-20
20	161.0	-	-
21	159.0	-	10-32
22	157.0	-	-
23	154.0	-	-
24	152.0	-	-
2%	149.5	-	10-24
24	147.0	-	-
27	$1+4.0$	-	-
28	140.0	6-32	-
29	136.0	-	8-32
30	128.5	-	-
$3!$	120.0	-	-
32	116.0	-	-
33	113.0	4-30, 4 40	-
34	111.0	-	-
35	110.0	-	6-32
36	106.5	-	-
37	104.0	-	-
38	101.5	-	-
$3!$	1994	3-4k	-
40	098.0		-
41	0146.0	-	-
42	093.5	-	4-36, 4-40
43	188.0	2-56	-
44	086.0	-	-
45	$08: .0$	-	3-48
46	1181.0	-	
17	078.5	-	-
48	074.0	-	-
49	073.0	-	2-56
50	070.0	-	
51	067.0	-	-
52	063.5	-	-
53	059.5	-	-
54	055.0	-	-
*Use ot rubber.	size larger	r tapping ba	kelite and hard

the actual construction is greatly simplified.
Cover the top of the chassis with a piece of wrapping paper or, preferably, cross-section paper, folding the edges down over the sides of the chassis and fastening with adhesive tape. Then assemble the parts to be mounted on top of the chassis and move them about until a satisfactory arrangement has been found, keeping in mind any parts which are to be mounted underneath, so that interferences in mounting may be avoided. Place condensers and other parts with shafts extending through the panel first, and arrange them so that the controls will
form the desired pattern on the panel. Be sure to line up the shafts squarely with the chassis front. Locate any partition shields and panel brackets next, and then the tube sockets and any other parts, marking the mounting-hole centers of each accurately on the paper. Wateh out for condensers whose shafts are off center and do not line up with the mounting holses. Do not forget to mark the conters of socket holes and holes fur leads under i.f. tramsformers. ete, as well as holes for wiring leads. The smatl holes for soeket-mounting serews are bex borated and center-punched, using the sorket itwelf as a template, after the matin center hole has been cut.

By means of the square. lines indicating arcurately the centers of shafte should be coxtended to the front of the chassis and marked on the panel at the chassis line the panel being fastened on temporatily. The hole wenters may then be punched in the chassis with the center punch. After drilling. the parts whieh require mounting underneath may be located and the monnting holes drilled, making sure by trial that no interferences exist with parts mounted on top. Mounting holes along the front edge

Fig. 24-2- T'o cut rectangular holes in a clatasis corner, holes mav be fibed out as shown in the shaded portion of B, making it posibite witart the havk-an" hilade atong the cuttins line. A shom- how a singla. ended handle may be constructed for a hack-sal blade.
of the chassis should be transferred to the panel, by once again fastening the panel to the chassis and marking it from the rear.

Next, mount on the chassis the condenser: and any other parts with shafts extending to the panel, and measure accurately the height of the center of each shaft abowe the whasis. as illustrated in Fig. 24-1. The horizontal displacement of shafts having already been marked on the chassis tine on the panel. the vertical displacement can be measured from this line. The shaft centers may now be marked on the back of the panel, and the holdes drilled. Holes for any other panel equipment coming above the chassis line may then be marked and drilled, and the rematinder of the apmatus mounted. Holes for terminals ete., in the rear edge of the chassis should be marked and drilted at the same time that they are done for the top.

Drilling and Cutting Holes

When drilling holes in metal with a hand drill it is important that the centers first be located with a center punch, so that the drill point will not "walk' away from the erenter when starting the hole. When the drill stants to break through, sperial are must be bised. Often it is an advantage to shift a two-sprod drill to low gear at this point. Holes mose than $1 / 4$ inch in diameter may be started with at smallerdrill and reamed out with the langedrill.

The chuck on the usual type of hand drill is limited to $1 / 4$-inch drills. Although it is rather tedious, the $1 / 4$-imeh hole may be filed out to harger diameters with round files. Another methorl possible with limited tooks is to drill a series of :mall holes with the hand drill along the inside of the diameter of the large hole, placing the holes as close together as posible. The center may then be knocked ont witla a cold chisel and the edges smoothed up with a file. Taper reamers which fit into the carpenter's brace will make the job casier. A large rattail file clamped in the brace makes a very good reamer for holes us to the diameter of the file. if the file is revolved counterdorkwise.

For socket holes and ot her karge round holes. an adjustable colter designed for the purpose may be used in the brace. Oerasional appliattion of marhine oil in the cmtting groove will help. The cutter firs should be tried olat on a block of wored, to make sure that it is set for the correce diameder. The most comenient device for cutting sorket holes is the serekethold punch. The best tree is that which works by turning a take-up screw with at wrowh.

Rectangular Holes

Square or rectangular holes may be cut out by making a row of small hotes as previously deseribed, but is more easily done by drilling a ${ }_{2}$-inch hole inside eadeh comer. as illustrated in Fig. $24-2$ and using these holes for starting and turning the hack saw. The sockethole punch and hoe square phathes which are now a wailable alsu may be of considerable assistance in cutting out large rectangular ountrings. The burrs or rough edges which usually result after drilling or cutting holes may be removed with a file. wr sometimes more eonveniently with a sharp kuife or chisel. It is a gowd idea to keep an old wowd chised shatreened and available for this purpose. A bur reamer will also be useful.

CONSTRUCTION NOTES

If a control shaft must be extended or insulated, a flexible shaft coupling with adequate insulation should he used. satisfartory support for the shaft extersion can be provided by means of al metal panel hearing made for the parpose. Never use panel bearings of the nonmetal type unless the condenser shaft is grounded. The metal bearing should be comnected to the chassis witha wire or gromming strip.

This prevents any possible danger of shock.
The use of fiber washers between ceramic insulation and metal brackets, serews or nuts will prevent the ceramie parts from broaking.

Cutting and Bending Sheet Metal

If a sheet of metal is too large to be cut eonveniently with a hack saw, it may be matred with seratches as deep as passible along the line of the wat on buth villos of the sheet and then remmed in a vise and worked hark and forth until the sheot brokes at the line. Do, not eary the bending too far until the break begins to weaken: otherwise the edge of the sheet may berome bent. A pair of iron bars or pieces of heary angle stock, as long or longer than the width of the sheet, to hoble it in the vise will make the job casier." ("'-elamps may be used to keep the bars from spreading at the ends. The rough edges may be smoothed up with a file or bey poreing a large piece of emery cloth or sandpaper on a flat surface and running the odge of the metal back and forth over the sheet.

Bends maty be made similarly. The sheot should be seratched on buth sides. but not so deaply as to calue it to hreak.

Finishing Aluminum

Aluminum chatsis, pathels athed parts may be given a sheen finish by treating them in a coustice bath. An enamelled container, sueh as a dishpan or infant's bathtub, should be used for the solution. Dissolve ordinary houshombly lye in cold water in a proportion of 1 to 1 名 call of later per gallon of water. The stronger solution will do the joh more rapidly. Stir the solution with as stick of wood unt the lye erystals are comphete dissolved. Be very careful to aroid any skin contare with the solution. It is also hatrmful to clothing. Sufticient solution stould be prepared to enver the pieere completelys. When the alumitum is immursed, a very pronowned bubhling takes plane and ventilation should be provided to disperse the escaping gas. A half hour to two hours in the solution should be sufficient, dep)ending upen the strength of the solution and the desired surface.
lamove the aluminum from the solution with st:ces and rinse thoroughly in cold water white swabling with a rag to remove the blark deposit.

Then wipe off with a rag soaked in vinegar to remove any stubhorn stains or fingerprints. (Bre Mas, 1950, QST for a method of coloring and anorlizing aluminum.)

Soldering

The secret of good soldering is in allowing time for the joint, as well as the solder, to attain sufficient temperature. Dinough heat shomald he applied so that the solder will melt when it eomes in rontact with the wires being juined. without toudhing the solder to the iron. . Whases use rosin-rore solder, never arid-eore. Wesept wherealisolutely neressary, solder should never he depended upon for the merhanical strength of the joint: the wire should be wrapped around the torminals or clamped with soldering torminals.

When soldering erwstal diodes or carbon resistors in plate, esperially if the leads have bern cut short and the resistor is of the small ? -watt size, the resistor lead should be gripued with a pair of pliers up (lose wo the resistor so that the heat will be eonducted away from the resistor. Owerheating of the resistor while soldering am callec a permanent resistancer change of as murh as 20 per cont. Aso, moehtmical stress will have a similar affert, so that a small resistor should be mounted so that there is no appreciable merehanical strain on the leats.

Trouble is sometimes experienced in sodering to the pins of coil-forms or male cable pluge It helps first to tin the inside of the pins ber applying soldering paste to the hole and ther flowing solder into the pin. Then immediately clear the solder from the hot pin by a whipping motion or by blowing through the pin from the insite of the form or plug. Before inserting the wire in the pin, file the nickel plate from the tij). After soldering, round the solder tip) off with it file.

When soldering to sorkets, it is a grod idea to hawe the tube or coil form inserted to prevent solder ruming down into the sorket prongs. It also helps to conduct the heat aw: when soldering to polvstarenc sorkets, which offen soffen under the heat of the iron.

Wiring

The wire used in connereting up annaterur equipment should be selocted considering both the maximum current it willo called upon to handle and the voltage its insulation must stand witheut breakelown. Aso, from the eonsideration of TVI, the power wiring of all transmitters should be done with wire that has a braded shiedding rover. Rereiver and atudio circuits mate also recture the use of shiolded wire at some points for stability, or the dimination of hum.

No. 20 stranded wire is rommonly used for most rederiver wiring (except for the highfrectuenes (iveruts) where the curvent does mot exend 2 or 3 amperes. For higher-courent heater cirenits, No. is is available. Wire with rellutese areetate insulation is grod for voltages up to about mot For higher voltager, thermoplastia-insulated wire should be used. Inexpensive wire strippers that make the removal of insulation from hook-up

Vig. 24-3-Cable-stripuing dimensions for Jomes "Ype P-101 plogs. Smaller dimensions are for $1 / 4$-imed phose, the larger dimensions for $\frac{1}{2}$-ind plugs. As indicated in (:) the remaining copper braid is wombl with bare or tinued wire to mahe a snug fit in the slecve of the phag.
wire an easy job are available on the market.
In ases where power leals have severat branches in the chassis, it is conveniont to use fiber-insulated tie points or "lug strips" ats :unchorages or junction points. Strips of this type are also useful as insulated supports for resistors, r.f. chokes and condensers. High-voltage wiring should have exposed points held to at minimum, and those which camot be avoided should be rendered as inaccessible as possible to arcidental contant or short-cireuit.

Where shielded wire is called for and caparitance to ground is not afactor, Belden type 888.5 shichded grid wire may be used. If ciblumither must be minimized, it maty he nersiny to usa a piece of car-radio low-capacitance lead-in wire, or coaxial cable.

For wiring hightfrequence eireuits, rigid wire is often used. Bare soft-drawn timed wire, sizes 22 to 12 (depending on medhanical requiremonts), is suitable. Kinks cin be removed by stretehing a piece 10 or 15 fert long and then cutting into short lengths that can be handled conveniently. R.f. wiring should be run directly from point to point with a minimum of sharp bends and the

Fir. 24-1 - 1)imensions for striphing ${ }^{1}$-inch cathe to

ドif. 24-5- Method of assembling $1 / 4$-inch eahlr, Ampherno 'Type 8; 3 -IS' (P' .-2.5) plug and adapter.
wire kept well spared from the chassis or other groumad metal surfices. Where the wiring must patses theongh the chassis or a partition, a elearance hole should be cout and lined with a rubter grommet. In case insulation frecomes necessarry, varnished (ambric tubing (spathetti) ram be slipped over the wire.

In tramsmitters where the poak voltage does not exered 2500 volts, the shielded grid wire mentioned above should besatisfactory for power
 Birulnoh type 1820, or shiclded ignition eable ean be used. In the case of filament eirenits rarrving heave current, it may be neressary to use No. 10 or 12 hare or enameled wire, slipped through sparhetti, and then covered with copper braid pulled tighty ower the spinghetti. The chapter

F̈ig. 24-6-Stripping dimensions for Amphenol 82-830 anol 82-832 mhy-in connertors. The longer exposed liraid is for the firmt tyer.

Fig. 24.7 - Methods of lacing cables. The method shown at C is more serfure but takra more time than
 amateur requirement-
on TVI shows the manner in which shiedded wire should be applied. If the shielding is simply stid back over the insulation and solder flowed into the end of the braid, the braid usually will stay in place without the nocersity for cutting it hark or binding it in place. The brad should he burnished with sandpaper or a knifeso that sohder will take with a minimum of heat to protere the insulation underneath.
R.f. wiring in transmitters usually follows tho method deseribed above for recomers with due respect to the voltages involved.

Power and control wiring (external to the transmitter chassis preferably should be of shielded wire bound into a rable. Fig. $21-7$ shows the correct methorls of laring cathles.

Coaxial Plug Connections

Considerable time and trouble can be saved in making cable connections to coaxial phugs by starting out with the correct stripping diment sions. Fig. 2t-3 shows how the end of the cable should be prepared for connecting to Jomes Type P-101 plugs. After the exposed braid has bern wound, it should be carefully timnerd, applying no more heat than is neeressary, to atoid melting the inner insulation. A small amount of solder alsol should be flowed into the sleceve of the plug. Thern, when the eable is inserted in the sleever, the connection ran the made serure by holding the iron against the sloeve until the solder inside melts. While joining the two, the plug may be
held by inserting it in a hole drilled in a board. Figs. 2:4, 24-5 and $24-(\mathrm{f}$ show details of connections to diffurent types of Amphenol plugs and adapters. In Fig. 24-4, it is easiest to cut through to the wire with a sharp knife at a distance of 13/16 inch from the end of the wire and remove the insulation and shielding in one piece. Then slice off a $1 / 1 \sigma^{- \text {inch }}$ piece of polyethylene which may he slid back onto the wire.

Alter the braid in Fig. 24-5 has been frayed hark, it will be neeressary to file the hraid down as much as possible to make it fit the plug.

COMPONENT VALUES

Values of composition resistors and small condensers (mica and ceramic) are specified throughont this Handbook in terms of "preferred values." In the preferred-number system, all values represent (approximately) a constant-percentage incrase over the next lower value. The base of the system is the number 10. Only two significant figures are used. 'Table 2 t-ll shows the preferred values based on tolerance steps of 20,10 and 5 per eont. All other values are expressed by multiplying or dividing the base figures given in the table by the appropriate power of 10. (For example, resist or values of 33,000 ohms, 6800 ohms, and 150 ohms are obtained by multiplyinis the base figures by 1000,100 , and 10 , respectively.)
"Tolerance" means that a variation of plus or minus the percentage given is considered satisfactory. For example, the actual resistance of a " 4700 -ohm" 20 -per-cent resistor can lie anywhere between 3700 and 5600 ohms, approximately, The permissible variation in the same resistance value with i-per-cent tolerance

TABLE 24-11		
Standard Component Values		
$\begin{gathered} 20 \% \\ \text { Tolprance } \\ \hline \end{gathered}$	10% Timerance	5\% Tolerance
10	10	10
15		11
	12	12
		13
	1.)	1.5
		16
	15	18
22		20
	22	22
		24
33	27	27
		30
	333	33
		36
47	34	39
		43
	47	47
		51
68	51	56
		62
	is	68
		75
100	$8:$	82
		91
	100)	100

would be in the lange from 4500 to 4900 ohms, approximatels.

Only those values shown in the first column of Table $2+11$ are available in 20 -per-eent toleraner. Additional values, as shown in the second column, are available in I0-per-eant toldramed still more values can be obtaned in 5-per-ent tolerance.

In the romponent sperifieations in this Ifamlbow, it is to be understood that when no toleranee is spereified the largest tolerance available in that value will be satisfatory.

Values that do not fit into the preforednumber swom (such as $500,25,000$, etc.) casily ran be substituted. It is ohvious, for example, that a 5000 -ohm resistor falls well within the tolerance range of the 4700 -ohm 20-pur-cent resistor used in the example above. It would not, however, be usable if the tolerande ware sperified as 5 per ernt.

COLOR CODES

Stamdardized color codes are used to mark values on small components sueh as composition resistors and mica condensers, and to identify leads from transformors, ate. The resistor-condenser number color eode is given in Table 24-111.

Fixed Condensers

The methods of marking "postage-stamp" mica condensers, molded paper condensers, and tubular reramic condensers are shown in Fig. $2+8$. Condensers made to Ameriean Wiar Stameards or Joint Army-Navy sperifications are marked with the b-dot code shown at the top. Practically all surplus condensers are in this category. The 3-dot RTMA code is used for condensers having a rating of 300 yolts and $\pm 20 \%$ tolerance only: wher ratings and tolerances are eovered by the 6-dot RTMA code.

lixamples: A condenser with a 6-dot eode has

 the following markings: Pop, row, left to risht, black, sellow, violet ; botton row, right to left, brown, silwer, red. sinee the first color in the top, row is hack (signifirant figure zero) this is the AWS codio and the condenser has mica dielectric. The signifieant figures are 1 and 7 , the derimal multiplier 50 (brown, at right of second row), so the caparitance is $470 \mu \mu \mathrm{fil}$. The tolerance is $\pm 10 \%$. The final color. the characteristie, duals with temperature confficients and methods of testing, and may he igmored.A condenser with a 3 -lot conle has the following colors, left to right: brown, black, red. The signifieant figures are 1,0 (10) and the multipliar is 100 . Tha eabacitane is therefore $1000 \mu \mu \mathrm{fd}$.

A condenser with a i-dot conde has the following markings: © Top row, left to right, brown, bawk, hack; hottom row, right to laft, back. gedid, bume Sine the first color in the top row ineither black nor silver, this is the RTMAA wode. 'The significant figures are $1,0,0$ (100) and the decimal maltipler is 1 (blark). The eaparitanere is therefore $100 \mu \mu \mathrm{fd}$. The gold dot shows that the tolerance is $\pm \bar{s} / 2$ and the bhe dot indieates (600-volt rating.

Ceramic Condensers

Conventional markings for coramic con-
densers are shown in the lower drawing of Fig. 24-8. The colors have the meanings indicated in Table $24-1 V$. In practice, dots may be used instead of the narrow bands indieated in 1"ig. 2t-8.

Fixamble: A eramic eondenser has the folIowing markings: Broad hand, violet: narrow hatds or dots, green, brown, back, grean, The diznifiemt figure are is, 1 (31) and the decimal multiplier is 1 , so the cabacitanee is $\overline{s l} \mu \mathrm{ff}$. The temaneathere coefficient is - 7.00 parts per millinn per degrep (\because ans given by the broad bathe and the rabacitane toldrane is $\pm \pi$ 有

Fixed Composition Resistors

Composition resistors imeluding small wirewound units molded in cases identieal with the composition type are color-coded as shown in

AWS and JAN fixed capacitors

RMA 3-40t 500 -volt $\pm \mathbf{\pm} 20 \%$ tolerance only

Fig. 24-8-Color coding of fived mica, molded paper, and tubular ceramic condensers. "The edor code for mica and molded paper condensers is wiven in Tabla 2t-III. "'able 24.1 V pises the rolor rode for tubular reramic condensers.

Fixed composition resistors
Fin. 2.4.4 - Collow conding of fixad comburition resiature
 areas have the following -ignificame:
A - lïrs significant figure of resistance in ohms B - Seromb significant ligure.
(i) Inerimal maltiplier.
() - Resintance toleraner in per emat. If no color is shown. the toleramoe is $=20$ o.

Figg. 24-9. Colored bambe are wed on rexistors having axial teads: on radial-leal rosistors the colors are phaced as shown in the drawing. When bands are used for color coding the body color has no vimuificance.

Examples: A resistor of the type shaw in the lower drawing of Fig. 2.4.! has the following "olur bands: A. red: B, ried; (, oratage; I), no
 derimal mattiplien is lown. 'Ihn value of resistance is therefora $2=2000$ ohans amd the inderame is $=20^{\prime}$.

A resistor of the topre show in the ung er drawing has the following colors: body (. W). blan: ened (13). grays; dot. red: and (ID), wold. The significant figures are (i. 8 (f8) and the derimal multinher is lon, so the resistame is fisich ohmas. The tolerance is $\pm \overline{7}$ '

I.F. Transformers

Blue platelead.
Red -- "B" + lead
Green grid (or diode) toad.
Blocl:- grid (or diode) return.
Nore: If the seeondary of the i.f.t is combertapped, the seromd diode plate load is sieen-

Prolur	TABLE 24-III Resistor-Condenser Color Code			
	Nifusficun Figura	- Itrcirmal Miltintion	Tolermuce $(1,)$	I'inturye Ru/nu*
13lark	0	1	-	- -
lirown	1	10	1*	100
Red	2	106	2*	200
()range	3	1006	3*	$316)$
Yallew	4	10,000	4*	100
Cirem	;	$1(0)$,100	i*	:10
Bhar	6	1,000, \%\%	(;*	гія)
Violet	7	10.600, (10)	7*	7)
(iray	8		8*	Sin
White	11		4*	(1)
Ciold	-	0.1	-	11000
Silver	-	0.01	110	26M0
Sur molor	-	-	20	50)

TABLE 24-IV Color Code for Ceramic Condensers					
Color	Nimmificant Figure	Decimal Unltimier	Craparitunce Tolerinet		Temp. 'oent. p.p.m. deq. C.
			$\left\|\begin{array}{l} \text { More than } \\ \text { (19 } \mu \mu \mathrm{fd} \\ \left(\text { in }{ }^{2}\right. \text {) } \end{array}\right\|$	$\begin{gathered} \text { I.ess than } \\ 10_{\mu \mu} \text { fil. } \\ \left(\text { in }_{\mu \mu} f(d) .\right. \end{gathered}$	
Black	0	1	上, 0	$\because 0$	0
Brown	1	111	± 1		-30
liced	\cdots	100	$\pm \underline{\prime}$		- sil
Orantu	3	8000			-1.50
Yallow	4				-
Gireen	F		± 3	0.5	-3:311
Blue	6				- 4i0
Tiolnt	\div				- 7.010
Gray	8				30
White	4	11.1	± 10	10	Su0

and-black stripold and bhack is used for the centor-tap) load.

A.F. Transformers

Blue - plate (finish) lead of primars
Red - "13" + head (this applies whether the primary is pain or conter-tapened).
Brown -plate (start) lead on comter-tapped primaries. (llate may be used for this lead if polarity is not important.)
(ireen - grid (finish) leat to seromdary.
Black - yrid riftron (this applies whether the sucondary is plain or emater-taphed).
Yollow-grid (start) lead on conter-tapped secondarios. (Groon may be used for this lead if polarity is not important.
Note: These markings apply ako to line-togrid and tube-to-line tramsformers.

Loudspeaker Voice Coils

Green - finish.
Bluck - start.

Loudspeaker Field Coils

Bluch und Red - start.
Fellorr and Red - finish.
Nhte and Red - tap (il any).

Power Transformers

1) Jrimary Leads.Bhack Il tapped:

Common Black Tap. Bluck and Vellour Striped Finish. Black and Red striped
2) High-Voltare Plate Winding. Ked

Centur-Tap. . Real and Vellor striped
3) Rertifier liabanent Winding. Vellow Contor-Tap. . Ypllour and Blue Nbriped

1) Filamont Wimding No. $1 \ldots .$. Crren Conter-Tap. Areen and Yellow Striped
2) Filament Winding No. $2 \ldots . .$. . Brown Center-Tap. Brown and Yellow striped
(6) Filament Winding No. 3........ . Slate Center-Tap.. . Slate and Vellow Striped

Operating a Station

The enjosment of our hobby usually comes from the operation of our station one we have finished its construction. ["pon the station and its operation depend the communication records that are made.

An operator with a slow, steady, clean-cut method of semding has a big advantage over the poor operator. Good sonding is partly is matter of practice but pationce and judgment are just as important qualities of an operator as a good "fist." The terhnique of speaking in connected thoughts and phrases is equally important for the oprator who uses voice.

- OPERATING COURTESY AND TOLERANCE

Nomal operating interests in amateur radio vary eonsiderably, some prefer to rag-chew, others handle traffie, others work D. , others concentrate on working cortain aroas, combtries or states and still others get on for an occasional contact only to check a new transmitter or antenna.

Interforence is one of the things we amatedurs have to live with. Howerer, we cath combluct our oprerating in a way designed to alleviate it as much as possible. Before pulting the trolusmitter on the air, listen on your own fiequenely. If som hear stations congaged in eommunisetion on that frequency, stand bex until you are sure no intoiforence will the raused by gour operations, on shift to another frequency. Xo amatour or any group of amateurs has any exclusioe claim to any frequency in any hand. We must work together, each respecting the rights of others. Remember, those other ehapes can rause you as much interforence as you callse them, somotimes more! Where a dro is used it is not necessary to stick to a single operating frequeney though it is wod to have one or two preferred and alternate frequencies. It has berome general operating procedure these days to work stations on or mear your own frequence. This practice will atomatically assist in reducing interference.

C.W. PROCEDURE

The best operators, both those using voice and c.w., observe certain operating proeedures developed from experience and regarded as "standard practice."

1) Calls. Calling stations may eall effieiently by transmitting the call signal of the station ralled three times, the lotters llis, followion by
one's own station call sent three times. (Short calls with frequent "breaks" to listen hater proved to be the best method.) Raporating the call of the station ralled four or five times and signing bot more than two or threr times has
 Wobs Woby Werly IDE WIAW W1AW AR
((Q) The gemeral-inquiry call (CQ) should be sont not more than five times without interspersing oness station identification. The length of ropeated calls is carefully limited in intedligut amateur oprating. (CQ is not to be used when testing or when the soluder is not expecting or looking for tat answer. Naver semd a Ce"blind." Whase be sure to liston on the transmitting fro quemer first.)
The directional CQ: To reduee the number of usoloss answors and lessen (QRM, remy CO call should be nade informative when posisible.
Examples: A ['nited States station looking for
any hawaiian amateur calls: CQ KHG CQ
Kilg CQ KHG DE What wha Wha K. a
Wistern station with traffic for the East Cosst
when looking for an intermediate relay station
calle: (Q FALIM ('Q EALTC CQ EAST DE
messatres for points in sassachuset to calls: CQ
mass CQ MASS CQ MASS DE W7CZY
WZCZY W7C\%Y゙к.

Hams who do mot raisu stations readily maty find that their sumding is poor, their calls ill-timed or judgment in error. When conditions are right to bring in signals from the desired borality, you (an call them. Retwonably short calls, with appropriate and brief breaks to listen, will raise stations with minimum time and trouble.
2) Answering a ('all: ('all three times (or less): send 1)E: sign three times (or loss); after contact is established decerease the use of the catl signals of both stations to once or twice. When a station rererives a cath but dows not reereve the call letters of the station calling, (QRZ) maty be used. It means "By whom am I leing catled"." QR\% should not be used in phate of C(Q.
3) Emding Sitmals amd Siam-()ff: The propor usc of $\overline{M R}, K, K \times N$, $\overrightarrow{S K}$ and CL ending signals is as tollows:
$\overline{A R}$ - End of transmission. Recommended after call to a specific station before contact has been established.

Example: WG.ABC WGABC WGABC WGABC

WGABC DE WMLAN W?LAN AR. Also at the
end of transmis-ion of a radiogram, immediately fellowing the signature, preceding identification.
Ki- (io ahead (any station). Recommended aftor (() and at tho cond of cach transmisemon
during QS() when there is no objoction to others breaking in.

> Example: CQ (QQ (CQ DE W1ABC W1ABC

K or W9.EY\% DE W1ABCK.
KN - Go ahead (specific station), all others keep out. Recommended at the end of each transmission during a (gsi), or after at call, when calls from other stations are not desired and will not be answerd.

E.rample: WमF(iH IME XLigGiRI, KN.

SK - End of (2SO). Recommended before signing last transmission at cond of a (2NO).

Example: . . . SK W81,MN 1)F W:BCID.
Cl. - I am closing station. Recommended when a station is going off the air, to indicate that it will not listen for anf further calls.

> Erample: . . . SK W7HIJ WE Wथ.JにL, CL.
4) Test signals to permit another station to adjust recoiving equipment may consist of a serios of V's with the call signal of the transmitting station at frequent intervals. Remember that a test signal can be a totally unwarranted catase of QRM, and ahmals listen first to find at clear spot if possible.
5) Receiptin! for conversation or traffie: Never send acknowledgment until the transmission hats beren contirely received. " R " means " $A l l$ right, OK, I understand completely." ['se IR only when all is reccived correctly.
6) Repocats. When most of a transmiscion is lost, a call should be followed bererrect aboroviations to ask for repeats. When a fow words on the end of a transmission are lost, the lese word received correstly is given after "AA, meaning "all after." When a few words on the begimeng of a transmission are lost, "Als for "all before" a stated word should be used. The quickest way to ask for a fill in the middle of a tramemission is to sernd the last word reerived corredty, a guestion mark, then the next word reweded correretly. Another way is to semd ":BN [word] and /word]."

Do not send words twice (Q)゙\%) unless it is requested. Send single. Do not fatl into the bad habit of sending double without a request from follows you work. Don't say "(2IRM" or "(QRS"" when you mean "QRS." Don't C() umless there is definite reason for so doing. When semding CQ, use judgment.

General Practices

When a station has receiving trouble, the operator asks the transmitting station to "QsV." The letter " R " is often used in place of a derimal point (e.g., "3125 Mc.") or the colon in time designation (e.g., "2R30 PM"). A long dash is sometimes sent for "zero."
The law coneerning superfluous signals should be noted. If sou must test, disconnect the antenna system and use an equivalent "dummy" antenna. Send your call frequently when operating. lick a time for adjusting the station apparatus when few stations will be hothered.
The up-to-date amateur station uses "break-
in." For hest results sond at a medium speed. Send evenly with proper spacing. The standardtupe telegraph key is best for all-round use. Regular daily practice poriods, two or three priods a day, are hest to acquire real familiarity and proficiencer with code.

No excuse can he made for "garbled" eopy. Operators should copy what is sent and refuse to acknowledge a whole transmission until every word has bern received correctly, Good operators do not guess. "Swing" in a fist is not the mark of a good operator. Cinusual words are sent twice, the word repeated following the transmission of "?". If not sure, a good operator systematically asks for a fill or repeat. Nign your call frequently, intorspersed with calls, and at the end of all transmissions.

On Good Sending

Assuming that an operator has learned sending properly, and comes up with a precision "fist" - not fast, but cloan, steady, making wellformed rhythmieal charactors and spacing beatutiful to listen to - he then beromes subjeet to outside pressures to his own possible detriment in evervday operating. He will want to "speed it up" berause the operator at the other end is going faster, and so he begins, unconsciously, to run his words together or develops a "swing."

Perhaps one of the rasidest ways to get into bad habits is to do too much playing around with sperial keys. Too many operators spend "nly cough time with a straight key to acquire "passable" sending, then subject their newlydrvoloped "fists" to the entirely different novements of bugs, side-swipers, chectronic keps, or what-have-you. All too often. this results in the ruination of what may have berome a very good "fist."
Think about vour sonding at little. Are you satisfied with it", You should not be - ever. Xobodyes smang is perfect, and therefore every operator should continually strive for improvement. Do you ever rum letters together - like (? for MA, or P for $A N$ - esperially when you are in a hurre". Practically everybody does at one time or another. Do you have a "swing"? Any recognizable "swing" is a deviation from perfeetion. Strive to send like tape sending: coper a W1.AW Bulletin and try to send it with the same spacing using a local oscillator on a subsequent transmission.

Cherk your spacing in characters, botween characters and between words oceasionally by making a recording of vour fist on an inked tape recorder. This will show up sour faults as nothing else will. Practice the correction of faults.

USING A BREAK-IN SYSTEM

Break-in avoids unnecessarily long calls, prevents QRM, gives more communication per hour of operating. Brief calls with frequent short pausea for reply can approach (but not equal) break-in efficiencr:

A separate receiving antenna facilitates break-
in operation. It is only neressary with break-in to pause just a moment with the key up cor to cut the carrier momentarily and parse in a "phome enversation) to listen for the other station. The click when the carrier is cut off is as affertive as the word "hreak."
(.ur. trleqraph break-in is usually simple to arrange. With brak-in, ideas and messages to be transmitted can be pulled right through the holes in the gRXI. Siappry, efficient amaterar work with break-in usually reruites a separate rereiving antomatand arrangement of the transmitter and reerever to eliminate the neressity for throwing switches between tramemissions.

In calling, the transmitting operator sends the letters "BK" at frequent intervals during his call so that stations hearing the call maty know that twak-in is in use and take adsantage of the fact. He panses at intervals during his eall, to listen for a momont for a reply. If the station Ineing called ders not answor, the call can be contimuel.

Withat alp of the kery the mate on the reereiving (ond (:an interrupt (if at word is missed). The other oprator is comstantly monitoring, awating just such diremtions. It is not neressary that frem have perfere facilities to take aldantare of break-in when the stations you work are hereak-ineguipperl. Dter any invitation to breal: is given (and at (atch pather) press your key - and colltact can start inmerlialtyly.

VOICE OPERATING

The use of proper procedure to get best results is just as important as in using coote. In tremgraphy womk must be pelled out koter lis ketter. It is therefore bat satural that ahbowiations and shorteuts should hawe rome into widespread use. In voice work, howrow, ablareviations atre not neressary, and should have lese importane in our operating procedure.
"The letter "K" has beron agred to in toleEraphie pratice so that the aperator will mot have to pound out the separate hetters that suelt the words "wo ahead." The voied oprorator can sat! the words" go ahoad" or "ower," or "come in please."

One latugh on rew. loy emelling out HI. On
 ural as you would with your family and frionds.
The mattor of reporting cerelability and strength is as important to phome operators as to those using eote. With tolegraph momenelature, it is nocresary to suell out words to deseribe signats of has the aboreviater signal reporting sastem (RベT . . . sor (hapher Twenty-six) I Ining volere, we hate the ability" to "s:yy it with womk." "Readability four. strength right" is the hest way to give a quathitative report. Reporting an be dome so muth more meaningfally with ordinaty worts: "You are watk but you are in the clear and I wan understand rou, so go ahead," or "Your signal is strong hut you are huried under loral interfermere." Why not siny it with worls:"

Voice-Operating Hints

1) Tiston before calling.
2) Makr short ralls with breaks to listem. Amod long (Cla; do mot answer ally.
3) Cow push-to-lalk. (iive cessential data concisely in first tramimission.

4 Make reports henest. C'se definitions of strength and readability for reference. Make gour reports informative athd useful. Honest reperts and fill word desoription of signals save amateme operators from Fe' (trouble.

क) Limit transmission length. Two minuter or hers will comery murh information. When three or more stations eonterse in round tables, brevity is assontial.
(i) Display sprotsmanship and eourtess. Bamds are comgested . . . make transmissions meaningful . . . give others a break.
7) Cherk tramsuittor :djusiment ... avoid A.M overmodulation abd phatter. Do not radiate when moving VPO frequency of rhorking NFM swing. Ise receiver b.f.o. for wherk stability of signal. Complete testing before besy hours!

Voice Equivalents to Code Procedure

Eflicient voice communication, like good r.w. commaniation, demands good operating. Adherence to certain points: "on getting results" will gor a long way toward improving our 'phontband oprarating eonditions.

INe push-tu-falk techuique. Where persible atramge on-off switeher or controls for fast hack-an:l-forth exchanges that emulate the practieality If the wire tulephone. This will help redue the lengeth of transmissions and kerp brother amat teurs ivom calling you a "momologuist" - a guy who likes to hear himself talls!

Listen with core. Kerp moise and "backgromads" out of sour operating rom to facilitate good listoming. It is natural to atherer the strongcost signal, but take time to listera and give some consideration to the beve signals, regarderes of strengh. Livery amatour camot rum a kibwat, but there is 10 reasom why every amatere "amot have a sigual of grod quality, and utilize uniform operating pratelies to atid in the understandability and case of his own communications.

Intorposes your call regularly and at frequent imerrals. "Three short calls are botter than one
long one．In calling CQ，one＇s ath should certainly appear at least once for every five or six Ces． （alls with frequent broaks to listen will save time and he most produrtive of results．In iden－ tifying，alwats 1 ransmit yomm ourn call lawt．Dom＇t say＂This is W1．1B（＇satading by for W21）EF＂；
 hations show the rall of the tramsmitting sation sent lemet．

Iurlude comutry prefix before call．It is not cor－

 regulations require proper uso of calls；stations have bern afod for failure to comply with this reguirement．
．Iomitor ！！ar ourn frequency．This holps in tim－ ing calls amd mamsmissions．Sond when there is a chather of hoing mopind suceresfully－not when you are merely．＂more（QRM，＂Timing transmis－ －ions is an art to cultivate．

Keep mothlation constomt．Sy turning the gain ＂witle open＂you are sulijecting anyone listening to the diversion of whatever moses are present in of hear gour operating room，to say nothing of the prosibitity of feed－back，echo due to poor aromistics，amd modulatimeneresses due to sudden loud moses．samak near the microphone，and den＇t let sour gaze wander all over the station rathings sharply－varying input to your spoed amplifier，at the same time，kerp far enourh from the microphene so bour sigmal is mot modulated he rour heathimg．（hange distane or gatu only as beressary to insure uniform transmitter per－ formaner without overmodulation，splatter or distortion．
．Walie roumedtel thoughts and phrases．I on＇t mix disemmerted subjects．Ask questions comsistently． Pather and wet answers．
llave a pad of paper handy．It is convenient and desirable 10 jot down questions as they come in the course of discussion in onder not to miss any．It will help you to make intelligent tothe－ point replies．

Sterer dear of manitios cent smap－apera stuff．Our amaterur radio and also our persomal reputation as a serious communications worker depend on us．

Ace id reptition．Don＇t repat buck what the ohber fellow has just said．Too often we hear a comversation like his：＂Okay on your new an－ lema there，okaty on the trouble vou＇re having with sour reviver，okay on the eompany who just came in with sume ice eream，okay
｜efle］．＂Just say you received evorything Ok： I onet bry to prose it．

Cof phometios omly as required．When clarifying womuinely doubtful expressions and in grotime wour ceali identified prositively we suggest use of the dlekl．Phonedic List．Limit such use to ratly－nemesatry charifation．

The sped of radiotelephone transmission（with prifed aceurary dopends almost entirely upon the skill of the two nomators invelved．Gne must loatn to spak at a rate allowing perfect under－ standing as well ats perminting the receriving ofremor then dexw the message text，if that is zocessary．Because of the similarity of many

English speech sounds，the use of alphabetical word lists has been found meressary．All voice－ oprorated stations should use a standard list as nereded to ithonify call signals or unfamiliar expressions

ARRL Word List for Radiotelephony		
Al．IM	JOHN	SUSMN
B．1K1：R	KlN（	THOMAS
ClIMRILI：	R．FWIs	［「10N
1）A111	MARS	VI（ ${ }^{\text {TOPIR }}$
	NANOY	WII．ISAM
FRANK	OTMO	N－12A）
（illorace	Priwtir	Yots0
111\％以	（ ）EEN	ZLEBSRA
11.1	ROBPIR＇C	

Bample：WIAW ．．W I ADAM WILdtaM．
Round Tables．The round table has many ad－ vantages if run properly．It cheatrs freguencios of interference，apmerially if all stations involved are on the same frequeney，while the enjovment value remains the same，if not greater．By use of mash－totalk，the conversation can he kept lively amd intoresting，giving each station operator ample opportunity to particibate without wat－ ing overlong for his turn．

Round tables can berome very unpopular if thes are not eonducted properly．The momologu－ ist，off on a long spide about nothing in particular， cammet be interrupted；make your tramsmissions short cull the point，＂Butting in＂is discourterous： and unsjortsmanlike；don＇t eriter a roumel bable，or any rembuct heturecn two other andeters，artess you ＂re inited．It is bad enough trying to understand voico through prevailing interference without the added difficulty of poor quality；cherk your tramsmiller aljustments frequently．In general， follow the precepts as hereinbefore outlined for the most enjowment in roumd tables as well ats any other form of radiotelephone communication．

－WORKING DX

Most amateurs at one time or another make ＂working 1）X＂a major aim．As in every other phase of amateur work，there are right and wrong ways to go about getbing best results in working foreign stations，and it is the intention of this sertion to outline at fow of them．

The ham who has trouble raising DN stations readily may find that poor transmitter efficieney is not the reason．He may find that his sending is poor，or his calls ill－timed，or his judgment in erom．Whan conditions are right to bring in the D． ，and the rereviver sensitive enough to bring in several stations from the desired locality，the way to work 1）．is to use the appropriate fre－ gueney and timing and coll these stations，as against the common pratefice of calling＂CQ D心．＂

The call（＇（）IN＇means slightly different things to amateurs in different hands：
a）（On v．h．f．，（X）I）X is a general call ordi－ narily used only when the band is open，under
favorable "skip", conditions. For wh.f. work such a call is used for looking for new states and countries, also for distances beyond the customary "line-of-sight" range on most v.h.f. hands.
b) CQ DN on our $7-$, 14- and 28-Mc. bands may be taken to mean "Conoral call to any forcign station." The term " foreign station" usually refors to any station in a foreign continent. (Experienced amateurs in the U. S. A. and Canseda do not use this call, but ansuer such calls made by foreign stations.)

DX OPERATING CODE (For W/VE Amateurs)

Some amateurs interested in DX work have caused considerable confusion and QRM in their efforts to work WN stations. The points below, if olserved by all W/VE amateurs, will go a long way toward making DX more enjoyable for everybody.

1. Call I)X only after he calls (Q , QRZ?, signs EK, or 'phone equivaldents thereof.
2. Do mot call a DX station:
a. On the frequency of the station he is working until gou are sure the (2SO is ower. This is indicated by the ending signal SK on c.N. and any indication that the operator is listening, on 'phome.
b. Because you hear somerne else calling him.
c. When the sigus $\overline{\mathrm{KX}}, \overline{\mathrm{IR}}$, (1), or 'phone erquivaleonts.
d. Exactly on his frequence:
e. After the calls a directional (Q, unless of course vou ate in the right direction or area.
3. Kerp within frequence-band limits, Some DS stations oprate outside. Porhatpe they can get away with it, but you cammet.
4. Ohserve calling instructions of 11.8 stations. " 10 I " $^{\prime}$ means wall ten ke. up from his frequency, "15n)" means 1.5 ke. doum, ete.
5. Give honest reports. Many foreign stations depend on W and VE reports for adjustment of station and equipment.
6. Keep your signal dean. Key elicks, ehirps, hum or splatter give you a bad reputation and may get you a citation from $\mathrm{F}^{\prime} \mathrm{C}^{\prime}$.
7. Listen for and call the station you want. Calling CQ DX is not the best assurance that the rare DN will reply.
8. When there are several 15 or VI: stations waiting to work a DX station, avoid asking him to "listen for a friend." Let your friend take his chances with the rest. Also avoid engaging $D N$ stations in rag-chews against their wishes.
(c) (C) 1)N Used on 3.5 Me , under winter-night conditions may be used in this same mamer. It other times, under average 3.5-Mc. propagation conditions, the call may be used in domestic work when looking for new states or countries in one's own continent, usually applying to stations located ovar 1000 miles distant from your own.

The way to work DN is not to use a (X) call at all (in our continent). Instead, use your he:st tuning skill-and listen - and listen-and listen. 'ou have to hear them before you con work them. Hear the desired stations first; time sour calls well. ['se your utmost skill. A sensitive receiver is often more important than the power input in working forcign stations. If you can hear stations in a particular country or area, chances are that you will be able to work somme there.
(he of the most effective ways to work I)X is to know the operating habits of the D. stations sought. Doing too much transmitting on the DX bands is not the way to do this. Again, listenin! is clferetive. Onee you know the operating habits of the DX station rou are after vou will know when and where to call, and when to remain silent waiting your chance

Many DN stations use the signals HM, MH, I,M and MS, to indicate where they are tuning for rephes. The meaminge of these signals are as follows:
11.11 - Whill satart to listen at hioh-frempency end of band and tutue toward middle of band.
MH - Will start to listen in the middle of the band and tune toward the high-frergueney ernd.
L. I - Will start to listen at lou-frepueney end of land and tume toward middle of hand.
MI, - W'ill start to listern in the middle of the batud and tune towsard the lou-frenuency end.

Esomple: If the procolure will be to tunu frons the middle of the band to the high ernd. :

ARRL has reeommernded some operating procodures to D. S^{-}stations aimed at controlling some of the thoughtess operating pramions sometimes used by W/VF amateurs. A copy of these recommendations (Operating Aid No. is can be obtained free of charge from ARRI. Headquarters.

In any band, particularly at line-of-sight frequencies, when directional antemas are used, the directional ('() such as C'Q W5, ('Q north, ote., is the proferable type of call. Mature amateurs agree that (Q U X is a wishful rather tham a practieal type of call for most stations in the North Americas looking for contats in foreign comutries. Ordinarily, it is a cause of unnecessary QRM.
conditions in the transmission medium make all field strengths from a given region more nearly equal at a distance, irrespective of power used. In general, the higher the frequeney band, the less important power considerations become. This aecounts in part for the relative popularity of the 14 -and 28-Mr, bands among amateurs who like to work DN.

KEEP AN ACCURATE IND COMPIETE STATION IOG AT ADL TIMES! F.C.C. REQUIRES JT.
A page from the offirial $A R K I$. Og is shown alove, answering every Government requirement in respect to station records. Bound hogs made up in aecord with the above form ean be obtained from Headquarters for a nominal sum or you ean preparr your own, in which case we offer this form as a suggestion. The ARRI, log has aspecial wire hinding and lies perfectly fat on the table.

- KEEPING AN AMATEUR STATION LOG

The Fe(' requires every amateru to kery a complete station operating recood. It may also contain records of experimental texts and adjustment data. A stemgrapher's notebook can be ruled with vertioal lines in any form to suit the user. The Federal Communications ('ommission requirements are that a log be maintained that shows (1) the date and time of each transmission, (2) all calls and transmissions made (whether two-way contacts resulted or not), (3) the input
power to the last stage of the transmitter, (4) the freguency band used, (5) the time of ending each (2NO and the operator's identifying signature for resomsibility for each seswion of operating. Messages may he written in the log or scparate records kept - but record must be made for one yoar as required by the FC(. For the convenience of amateur station operators ARIRL stocks both logbooks and message blanks, and if one uses the official log he is sure to eomply fully with the Covernment requirements if the prerautions and suggestions included in the \log are followed.

Message Handling

Amateur operators in the L'nited States and a few other comatries enjos a privilege not available to amateurs in mosi countrios - that of handling third-party mesauge traflic. In the early history of amateur radio in this country, some amateurs who were among the first to take advantage of this privilege formed an extensive relay organization which became known as the American Radio Relay League.

Thus, amateur message-handling has had a long and honorable history and, like most sorvines, has gone through many periods of develop)ment and change. Those amatoms who handed traffic in $19 \mathrm{I}+$ would hardly recognize it the way some of us do it today, just as equipmont in those days was far different from that in use mow. Irogress hats been made and new mothods have been developed in step, with advancement in communication techniques of all kinds. Amateurs who handled a lot of traffic found that organized operating schedules were more effective than random relays, and as techniques advanced and messages increased in number, trunk lines were organized, spot frequencies began to he used, and there sprang into existence a numher of traffic nets in which many stations operated on the same frequeney to effert wider cov-
crage in less time with fewer relays; but the old methots are sill available to the amateur who handles ouly an oceasional message.

Athough message handling is as old an art as is amateur ratio itself, there are many amateurs who do not know how to handle a message and have mever done so. As each amateur grows older ath gains experience in the amateur servire, there is bound to come a time when he will be called upon to handle a written message, during a communications emergency, in casual contact with one of his many acquaintances on the air, or as a result of a request from a nonamateur friend. Regardless of the orcasion, if it comes to you, you will want to rise to it! Considerable cmbarrasmont is likely to be experiened by the amateur who finds he not only does not know the form in which the message should he prepared, but does not know what to do with the message once it has been filed or received in his station.

Traffic work need not be a complicated or time-consuming activity for the casual or ocrasional message-handler. Amateurs may participate in traffic work to whatever extent they wish, from an occasional message now and then to beroming a part of organized traffic: systemes.

This chapter explains some principhes so the rader may know where to find out more about the subject and may exerejse the messuge-handling privilege to best effect as the spirit and opportunity arise.

Responsibility

Amateur: who originate messages for transmission or who rereive mossages for relay or delivery should first emsider that in doing so they are aceepting the responsibility of clearine the message from their station on its way to its destination in the shortest posible time. Fortyeight hours after filing or reacipt is the generalliarecepted rule among traflic-handling amateurs, but it is obvious that if every amatemer who relayed the message allowed it to remation in his station this long it might be a long time reaching its destination. 'Tratfic should be relayed or delivered as quiekly as possible.

Message Form

Once this responsibility is realized and arcepted, handing the message beromes a matter of following generatly-atrecphed standards of form and trasmission. For this purpose, bach neseage is divided into four parts: the proamble, the addreses, the text and the signature, some of these parts themsedves are subdivided. It is mereessary in preparing the message for tramsmission and in actuatly tranmitting it to know mot only what each part is and what it is for, but to know in what order it should be tramsmitted, and to know the various procedure signals used with it when sent by e.w. If you are going to sond at message, you mang as well semel it right.
standardization is important? There is a great deal of room for expressing originality and individuality in amateur radjo, but there ate also times and phares where such expression can only ratuse confusion and inctficience. Recognizing the need for standardization in message form and mossage transmitting procedures, ARLRL. hat long sinter recommended such standards, and most traffie-interested amateurs have followed them. In general. these recommendations, and the varbous changes they have undergone from year to reatr. hatre beren at the request of amat

Here is ant example of a olain-langtage mesage in correet ARRL form. The preamble is always ant a-dhow: number. station of orizin, whech, wate of origin. time filed, date.
tours participating in this activity, and they are completely outlined and explatined in Operthing an Amateur Ratio station, at cops of which is avalable upon request or by use of the coupon at the end of this chapter.

Clearing a Message

Amaters not experienced in musare handing should depend on the experieneed messagehatuder to get a message through, if it is impertant; but the average amaterur can coliog operating with a message to be handled either though a local tratio net or by fro-lancing. 'lhe latter maty be aromplished by caroful listoning for an amateur station at desired points, directional ('Qs, use of the Gomeral ('alling frequencos, of by making and keepping a sehedule with atombly amateur for regular work low weon sperifal prints. He may woll am at haming athe mig ying through doing. The jey and acermplishment
 perfection has a mewat all its own.

The best way to chear a message is to put it into one of the many onganized traffic nolworks, of to give it to a station whe ean do so. There aro many amateurs who make the han Hing of traffic their prineipal operating adrivits, and many more still who participate in this atotivity to a greater or heser extent. The result is a syo tem of trattio mots whieh sumads lo all eothers of
 sions and ('alladal. Wher atmesage gots intu one of these mets, regatralles of the bet's size or covmage, it is syomatioally monted towamb its destimaton in the shortest pessible thme.

If you deceite to "take the bull bey the homse" amd put the mossage into at ratfice neot pompalf (and mune power to you if pon do! y you will nowed to know something abruit how matlie nets: oprater, and the sperial (2 signals and procedure thoy usie to dispatch all matlie with a maximam of efficiones. Roforemer to mod lists in (2.9\% (as:nally in the Xowomber ant Jannary issum will give you the frequency and operating tibue of the not in sour suction or other mol into when your message call go, Vistering fin a fow minuters al the time and fregumery indealed should an-

 irathe. From that time on wan follow the instra-
 When ant whem and on that frequeney, if
 messager sine must mots nse the sperial "()N" signats, it is matally very halpoul on hate a list
 114.

Network Operation

Ahout this time, you may fimd that you are

 dioterl" to tratlie hatalling after maly ome of two

communication seems to be more popular for record purposes - but this does not mean that high rode speed is a necessary proreguisite to working in traffic networks. There are mang mots orgatized specificatly for the sow-sperel anateur, alud most of the so-ealled "fats" nets are ustarlly glad to slow down to accommedate shewer operators, experially thene netsat state or serdion lavel.

The signifioant fact of not operation, how(ver, is that conde sped alome dones not make for efficioncy - somedimus quite the eontrary! A high-spered oprotator who dees not know not pro-
 pletely and mome quickly than can a slow onerattors. It is a proven lact that a bunch of high-suered operatoms who :40 not "saver" in ne operation (atmon aromplish as much during a sperified

 dotor you from wetting into traffic work. (iivern a little time, vour spend will reach the perint Where vou can comperte with the hest of them. (oncentrate first on learaing bey prowedure, bor most traffic mowadays is hathalled on mots.

Tream work is the theme of net operation. The met which functions mest afficiently is the met in which all paticipatus atre thoroughly familiar with the prowedure used, and in which aprotars: mofain from transmiting exerpt at the direction of the nut control station, and do bot oweypy time with extranemus comments, wen exchange of phasathtres. There is a time and plate for corrething. When at wed is in session it should concontrate on hatuling traffic matil all traffie is
 rag-chewing and disension. some details of tury oprration ame included in operating an Amaterr Redios station, mentioned a:trlier, but the whale story camot be told. There is mo substitute for arthall participalion,

The National Traffic System

To facilitate and sured the movernent of message traflie, there is in existener an integrated national sistem log means of which originated

Abstract

One of the most important ways in whith the anameur sorys the public, thus making his oxFshence: hational ascot, is he his preparation for and his participation itn communications emergences Fivers amatem, regarthes of the extent some hought to the presitsility of his la ing the only meaths of communication should his combmunity be rot off from the outside world, !t has happentel many times, when in the most unlikely phators it ham hapmoned withut waming, finding to ! ! 1 . Ar son rataly:

Theme ate (wn princibal wats in which athe amaterar "alt prepare himself for sum ath com- goney phwer i.e., wither ace or d.e.t, and "quip)-

traflic will normally reach its destination area the same day the messuge is originated. This systom uses the loral sertion net as a basis. Fach section net sembs a representative to a "regional" not (nomatly covering a call aroa) and wath "reqionat" net sonds a representative to an "area" net (nomally covering a time zone). Titer the armat has cleared all its tratfic. its members then go back to their respective rogiomal nots, where they clear taflic to the various sertion met representativers. When this is done, the seetion mpresentatives meturn to the ir section turts to distribuate the traffie to or near its ultimate destination. By means of eommerting sehofules betwern the four area nets, tratfic catn flow both ways so that traflic origimated on the Weest Coast reaches the bast Coast the same night it is originated, and vier versad In gemeral local sertiont mets function at 1 !oon, regional mets at
 regional and section groups ment agatiu at 2130 and 2200 resuretively. Local time is refored to in (:uch c:se.

The NTS plan somewhat spreads tratfore opportunity so that casual traffic maty be reported into nets bor efficient hatulling one or two nights per week, carly or later: or the ardent traffic man can operate in both carly and late groujs and in bebetwern to roll up impressive totals and speed traffice reliably to its destination, ()d-time traffic nuen who profer a high degree of orgatization and teamwork have returmed to the traffie game as* a result of the bew sistem. Begimers have shown more interest in beroming part of a tem nationwide in sopere, in which an!!nere (atn particijate. The National Traffic Sysum has vast and intriguing posibilities as an amateur servier. It is open to any amateur who wishes to participate.

The above is but the briefest resume of what is of neressity at rather complicated armangement of tote and sehedules. (omplete details of the Sistem and its operation are available to anyone interested. Just drop a line to ARRL, Headyuaturs.

Emergency Communication

ment which can readily be transported to the serme of disastar'. Mobile equipment is expecially desirable in mest amergeney situations.
such equipment, reqardless of its chaborateness or modermess, is of little use, howerer, if it is nor used properly and at the right times; and so another way for an andatour to prepare himsill for comergencies, hy mo mans less impomant than the first, is to learn to operote eflim ciently. There are many amatcurs who ford that they knew how to oproate efficiently who find themsedves ronsiderably hatadicapped at the ratial time he not knowing proper procodure, by being umable due to satas of casual amateme "peration to adapt themselves to shappe, abbreviated transmisesoms, and be boing untamiliar with message form and routing procedures. It is dangerons twoy $\begin{gathered}\text { rate yourahility in this respect; it }\end{gathered}$

participate fully in the activitios and to apply the SCM for one of the following station appointments:

OPs Offorial 'lhone station. Vice opserating, example in sutting ofneratjug stambards, artivitios on voime. devotes radio efforts to firthoring voire mets and t rallic.
 nets and trank lines; noterl for 15 w.p.m. and proscedure ability.
OBs Offocial Bulferin Station, Transmits ARliL and F'(' bulletin information to atmatemrs.
OFS Oflejal lixuerimental station Fxperimental opserating, collerets and reports v.h.f.-h.h.f.-s.f.f. fronagation data, may engage in facsimile, TV, TV, ctc., expurimurnts.
00 Official (bbserver, Sunds coonserative notices to atmaters to assiof in frembeney ohservither, insures higlt-qualitṣ signals, and prevonts $\mathscr{F}^{\circ} \mathrm{CC}$ (rouble.

Emblem Colors

Members war the emblem with hack-enamel background. A red barkground for an emblem will indicate that the wearer is SCM. SEC's, EC's, RMS, PAMs may wear the cmblem with green beckground. Ohservers and all station appointens are contited to wear emblems with blue background.

- SECTION NETS

Amateurs can add much experienee and pleasure to their own amateur lives, and sulstanee and areomplishment to the eredit of all of amat ledur radio, when organized into effeetive intercombertion of citios and towns.

The suceresful operation of a not deponds a fat on the Net Contme station. This station should be chosen carefully and be oue that will bot hesitate to enforer each and every wet rule and sot the example in his own uperation.

A progressive net grows, ohtaining new members buth direetly and through wher not momfors Bulletins may the issued at intervals to korp in direet contact with the members regarding general net activity, to keep tab on net procedure and make suggestions for improvement, to kerep track of active members and weed out inative oncs.

A National Traffie sustem is sponsored hy ARRL to fareilitate the over-all expeditious relay ath d delivery of messane traffic. The sustem reorgnizes the need for handling traffie beyond the
section-level networks that have the popular support of both 'phone and c.w. groups (OPS and (ORN) throughout the League's field organization. Area and regional provisions for NTS are furthered by Headquarters correspondence. Tho ARLIL Not Directory, revised in Derember each year, includes the frectuencies and times of opcration of the humdreds of different nets operating on amathur band frequencies.

Radio Club Affiliation

ARRRL is plemend to gram affiliation to any amateur sorioty having (1) at least 51^{\prime}, of the voting (lub membership) as full members of the Learue, and (2) at least a! ${ }^{\text {b }}$, of socioty goveru-ment-lieresed tadio amateurs. Where a socicty has common aims and wishes to add strength to that of other club groups to strengthen amateur radio bey affiliation with the national amateur organization, a reguest addresed to the Communications Danager will bring the neressary forms and information to initiato the applieation for affilation. Such chuls recobe fidd-orgatization bulletias and sperial intoment ion at intervals for pasting on chub bulletin boards or for relay to their memberships. A tawel pan providing eommunications, terhnioal and serrotarial contat from the Ileadquarters is worked out seasomatly to give maximum bermelits to as many as possible of the severat humded artive affiliated radio clubs. Japers on rluh work, suggestions for organizing, for constitutions, for radio courses of st udy, ete, are available on request.

Club Training Aids

One seetion of the AliRl. Communications Department hatd!es the Training Ails Program. This program is a survier to ARRI affiliated clubs. Material is supplied for clubprograms aimed at education, training and embraimmont of club members, to make your chub meetings more interesting and consequently better attonded. Intaresting quiz material is available on a varicty of subjects.

Training dids include such items as motionpieture films, film strips, slides, and lecture outlines. Alsa, code-proficioley taining equipment such as reotoders, tape transmitors and lapus will be haned when such items are a a ailable.
dil Training dids materials are haned free (exeept for shipping charges) to ARRRL atfiliated duts, Xumerous groups use this AlRlRI, servien to good advantage. If your chab is affiliated hut has not yot taken advantage of this servier, you are missing a good chance to add the available fatures to your meting programs and general (lub) attivitios. Wateh chab bulletins and gsic' or write the ARRK, (ommmainations Dopartment for full atetails.

Wlaw

The Maxim Memorial station, W1AW, is dedieated to fratermity athd sorvier. Oprated by the League hembuaters, WIAW is lexated about four mikes south of the Headquarters of-
fices on a seven-arre site. The station is on the air daily, exeept holidats, abd available time is divided between different hands and moders Telagriph
 alld 'phomas tramsmittors are provided for all hathe from 1.8 to 1 H We. The normal frequthries in cach band for \cdot (.). and voice transmissions are as follows: 1885, 3j55, 3450, $7130,14.100,14,280,28,768,52,000)$ and $116,000 \mathrm{ke}$. Oproating-visiting hours and the station sedodule are listod every other month in QST.

All amateres are invited to visit 111 AW , as well as to work the station from their own shacks. The station was extablished wo be a living momonial to Hiram Porey Maximand to carry on the work and traditions of the amateur trat tornity.

OPERATING ACTIVITIES

Within the Al?lरI. fiold orgamization there alle soveral sperial artivitios. The first Satumbay night rach momth is sot aside for all ARIRI. officials, wfleme sum divertors to get together over the air from their own stations. "This artivity is known to the gatge ats I(o-NITF. Dor all appointers, quartury lows catled ('I) partion are seluofuled to develop operating ability and at spirit of fraternatism.

In addition (6) these serial atotivitios for appointare and members, ARRL spmens: various wher :utivities open to all amatours. The J.Nminded amateur may parti-ipate in the Ammal
 Fobruary and Mareh. This popular contest may bing sou the thill of working now countries. Then there is the ever-pepular swerestakes in Covember. Of domestic soper, thesis affords the opportunity to work mew states for that WIS award. A Novieremetivity is phamed anmatly and for the $28-M$. gang there is the Trom-Merer What ('ontest held each rear. The interests of v.h.f. conthusiasts are also provided for in speriad artivities plammed hy ARRL.

As in all our operating, the ideat of having at grood time is combined in the Ammal Fiold I aty with the mone serious thought of preparing ourselves to remder pablid servier in times of emermener. A premium is plated on the use of equipmont without commertion to commercial pewer sources. (lubs and individual gronps always have :a good time in the "pliJ)" learn much abont the requiraments for operating under knockaloout ronditions: aficded.

DRlal. contex adtivitios are diversified to appoal to all oprotating imteresta, and will be fromed ammuncer in detail in iswos of ost preasline the different arents.

AWARDS

The Lemgur-spmaned onderating abtivitios haretofore mentimed have useful objertives atal provide much anjoymat for mombers of the fraternite: Adehowemt in amateme ratio is remognizad by vatrons reptificates offered through the larague and detailad below.

WAS Award

WAS means "Worked All States." This awatod is atailable regathes of athliation on nomatfiliation with ally organaztion. Hewe are the rules to follow in applying for W. SN:

1) Two-w゙ay combumications mast bee exthlished on the anthbur honde with al! Forty-rieht L'nited states; any and

al! amateme hamds may twe used. A mand from the lointrict of

 nume than 2.5 milco ataly.

 only that all contant are from the satur lowation.
 tions from -tation worlod confirning the womesary two-
 berthenation

2) Addrose all apmoations and confirmations to the
 West Ilartfort, (onn.

DX Century Club A ward

Ilere are the rutes under which the I)N (entury ('lab) Award will be iswed to amaterurs who have worked and confirmed contat with 100 "routrios ia the postwat periad. If you worked
 since worked athd confirmed at suthichont mumber
 able to wou unter ther rules devailed on pare $7 t$ of Jum, 1946, (2s?

1) The Conturs (luh Award ('rutificate for confirmed
 athatomes exery here in the womd.
2) ('onfirmations must bre sumbitued direct to ARRRI. hathbartors for atl comatrion claimed. (latims for a total of
 firmation from forevers roment lous mats heremested in the "ase of the ARRRI. Intembational 1) C Compertion only, whinet to the following combitions:
a) Sufficient ronfirnationt of other tryes mast be sub
mitted so that these, plise the DX Contest confirmations, will total low. In erery case, (Oontest contirmations must not be requested for any conntries from which the applicant has regular confirmations. That is, contest confirmations will be granted only in the ease of countries from which applicants have no regular confirmations,
b) Look up the contest results as published in QST to see if your man is listed in the foreign scores. If he isn't, he did not send in a log and no confirmation is possible.
c) Give year of contest, date and time of (2NO.
d) In future INX Contests do not request confirmations until after the final results have been puhlished, wenally in one of the parly fall iswer. Rombests before this time tulast low ignored.
3) The ARRRI. (ountrias List, printed periodiaalle in QST', will he ued in determining what ronstitutes a "rountry." The Misecllaneous Data chapter of this IIauthook eontains the Postwar Comotries Dist.
4) Confirmations must be aceompanied by a list of elaimed countrise and stations to aid in checking and for future referense.
i) Confirmations from additional countries may be submitted for credit each time ten additional confirmations are available. Endorsements for affixing to certificates and showing the new confirmed total ($110,120,130$, ete.) will he awarded as additional credits are granted. ARRL DN ('ompetition logs from foreign stations may he utilized for these andorsements, subjeet to eonditions stated under (2).
fi) All eontacts most be made with amatemr stations working in the anthorized amateur bands or with other stations lieensed to work amateurs.
5) In pases of ponntries where amatemrs are tieonsed in the normal mantur, rredit may be clamed only for stations ming regular gevernmentassigned eall letters. No eredit may Ix rlamed for rontacts with stations in any conntries in which amateurs have been temporarily closed down hy anecial kowernment ediet where umaterr licemes wore formerly issued in the mormal manner.
6) All stations contarted must be "land stations" eontacts with shios, anchored or othorwise, and aireraft, cannot le ronnted.
(9) All stations must be eontaped from the same rall area, where such areas exist. or from the same mountry in caser where there are no eall areas. One expeption is allowed to this rule: where a station is moved from one eall areat io another. or from one country to another, all contacto mant In made from within a radiux of 150 miles of the initial location.
7) (ontacts maty be made orer ang neriod of sears from November $15,194$. , provided only that all montact be mathe buder the grovisions of Rulo !a, and low the same station
 Letters in the same aroit (or eomory), if the livensece for all was the same.
8) All confirmations must be submitted exately as roeoived from the stations worked. Ang altered or forged rothfirmations submitted for C' erodit will result in discualifieation of the applieant. The eligibility of any I NCC applieant who was ever barred from I.N('C' to maply, and the conditions for such application, shall the determined hy the Awards (ommittee. Ans holder of the ('entury Club Award submitting forged or altered eonfirmations most forfeit his right to be considered for further ridorsements.
9) OPIFRATIN(i ETHIC's: Fair play and pood sportsmanship in operating are remuired of all amateurs working toward the I)X Century ('lnb) Award. In the erent of sprofife ohjections relative to rontimued poor operating othies an individual may be discualified from the I)Ne' (' by artion of the ARRL Awards Committere.
10) Suffient postage for the return of confirmatoms must be forwarded with the application. In order to insure the safe return of large batehes of confirmations, it is simegested that enough postage be sent to make possible their return by first-elass mail, registered.
11) Decisions of the ARHL Awards Committee regarding interpretation of the rules as here printed or hater amended shall be final.
12) Address all applications and confirmations to the Communieations Department, AlRRL, 38 La Salle Road, West Hartford 7, Conn.

WAC Award

The International Amateur Radio C'nion issues WAC (Worked All Continents) certificates
to all members of member-societies who submit proof of two-w:y commoniration with at loast one station on cach continent. Foreign amateurs submit their proof direct to member-societies of the I.Slid. (Others may make application to ARRIS, hoadquaters society of the Inion, A (e. W, and a telephong erertificate are available. Also, special adderament will be plated on certificates upon receipt of request aceompanied by prof of having worked all continconts on 50 Me.

Code Proficiency Award

Many hams can follow the peneral idea of a contact "by ear" but when pressed to "write it down" they "muff" the ropy. The dorle Proficienes Award invites every amateur to prowe himself as a proficiont operator, and sets up a system of awards for stap-by-step gains in copying proficiency. It enables every amateur to cherk his code proficieney, to better that proficioncy, and to recoive a certifieation of his recoiving sperd.

This program is a whale of a lot of fun. The League will give a certificate to any lieensed radde amatem whe demonstrates that he can ropy profertly, for at least one minute, planlanguge (continental corde at 10. 15, 20, 25, 30 or 3.) words per minute as transmitted during steceal monthly transmissions from $11.1 / 1{ }^{\prime}$ and VGOMP.

As part of the ARIRI. Code Proficieney program W1AW transmits phain-language practice material evenings, Monday through Friday, at spede from 5 to 3.) w.p.m, . Ill amatears are incited to nise these tranmissions to increase

their coldocopying ability. Non-amateurs are invited to utilize the lower spereds, $5,51 / 2$ and 10 w.p.m., which are transmitad for the benefit of proms studying the code in preparation for the amatene license examination. Rofer to any issue of $Q S T$ for cletails of the practice sehedule.

Rag Chewers Club

The Rag Chewers Club is designed to encourage friendly contacts and diseourage the "hello-good-by" type of QsO. Its purpose is to bond together operators interested in honest-to-
goodness rag-chewing over the air. Membership certificates are available.

How 'To Get in: (1) Chew the rag with a member of the chab for at least a solid half hour. This does not mean a half hour suent in trying to get a message over through bad QRM or (QRN, tmit a solid half hour of conversation or mrssage handling. (2) Report the conversation by card to The Rag Chewers Cluh, ARRL, Communcations Department, West Hartford. Conn., and ask the member station you talk with to do the same. When both report. are remelved ron will ter sont a memberaig erortificate entitling yon to all the

How To Stay in: (1) |he a eromerationalist on the air instead of one of those tongue-tied infants whe don't know any words except "ctagn" or "mal," or "QRt"" or "nil." Talk to the follows you work with and get th know them. (") Operate your station in areordane with the radio laws and ARIRL practice. (3) Ohmerne rales of comrten on the air. (4) Nign "RCC" after each call so that others may know you can talk as well as call.

A. 1 Operator Club

The A-1 Operator ('lub should include in its ranks every good operator. 'To beome a membor, one must be nominated by at least fwo oprotors who already ledong, (ieneral kering or voice technigue, procedure, ropsing ahilits. judgment and courtesy all count in rating candidates under the club rules detailed at kongth in operating an . 1 mateur Ralio station. . I m (1) make yourself a fime operator, and one of these days you may be phasantly surprised hy an insitation to belong to the A-1 (Operator (lab), which carries a worth-while certificate in its own right.

Brass Pounders League

Every individual reporting more thatn a specified minimum in official monthly traffie totals is given an honor plare in the (est listing known as the Brass Poumders Lague and a certilicate to rerognize his pertormance is furnishod low the SCM,

The value to amateurs in operator training, and the utility of amateur message handling to the members of the fraternity itself as well as to the general public, make message-handling work of prime importance to the fraternits: Fun, enjoyment, and the feeling of having done something really worth while for one's fellows is accentuated by pride in message files, rerords, and lemters from those served.

Old Timers Club

The Old Timers Club is open to anyone who hodds an amateur rall at the present time, and who held an amateur license (operator or stattion) 20-or-more sears ago. Lapses in artivity during the intervening years are permitted.

If you can qualify as an "Old Timer," send us: a brief chronology of your ham career, being sure to indicate the date of your first amateur license, and your present eatl. If the evidonce subnitted proves you eligible for the ote, gou will be added to the roster and will rompe at nembership certificate.

INVITATION

Amateur radio is (apable of giving (mjosment. self-t taining, social and orgathization benefits in propertion to what the individual amateur pats into his hobley. dil amaterurs are invited to hecome . IRRI, mombers, to work toward anards, and to accept the chatlenge and invitation offored in field-organization appointments. Drop a line to ARRL. Headquarters for the booklet Operating an 1 mateur Redio Niation, which has drataled information on the fiedd-organization apprintments and awards. Acerpt today the invitat tion to take full part in all lamgur ativithes and organization work.

536

\rightarrow Operating an Amateur Radio Station coversthe details of practical amateur operating. In it you will find information on Operating Prac. tices, Emergency Communication, ARRL Operating Activities and Awards, the ARRL Field Organization, Handling Messages, Network Organization, "Q" Signals and Abbreviations used in amateur operating, important extracts from the FCC Regulations, and other helpful material. It's a handy reference that will serve to answer many of the questions concerning operating that arise during your activities on the air

- If you as a licensed amateur should ever tind yourself in a position to serve during an emergency, there are a lot of things you will wish you had known betorehand. You will do the best you can, and those you serve will sing your praises - but you yourself will realize that had you been better prepared you could have done more and done it more effectively. The booklet Emergency Communications would have told you all you needed to know. You should have had it, studied it, and followed up its advices. Don't wait until the emergency is upon you to wonder what you should do and how you should do it. Get a copy of Emergency Communications and make your preparations now!

The two publications described above may be obtained without charge by any Handbook reader. Either or both will be sent upon request.

AMERICAN RADIO RELAY LEAGUE 38 La Salle Road
 West Hartford 7, Connecticut, U. S. A.

Please send me, without charge, the following:
 OPERATING AN AMATEUR RADIO STATION EMERGENCY COMMUNICATIONS

\qquad
Address

Miscellaneous Data

Q SIGNALS

(iiven below are a mumber of () signats whas meanings most often meed to he expresed with brevity and cleammes in amathur work. (Q) ab)breviations lake the form of questions onls when eath is sent followed hes a question mark.)

QR(i Will yon tell me my exact frequmes. fer that of.......)? lour (exact fropucher (or that of) is.....he:

QRI How is the tome of my tramemision? The fone of
 (3. B:al).

QRE Whar is the madability of my signals for those of)." "the madablity of sentr signals (or these of) in (I. I noradathe: :2. Reatablle bow and then: :3. Rardatbe luat with dif-

QRI. Arr you busy? I ath batoy (or I asta buey with). I'losase dos bot inturfore.
QRM Ire you beine interfared with? I atn intorfered with.
QRN Are son tromblod be -atir? I an, being troubled bey static.
QRQ shall I sond fatutor? som! fastor (. words per min.).
QLes Whall I send morn showly? Sichal bore slowly (. . . w. li,ti.).

QRTT Shall I stop sembling? stop, sembing.
QREC Have you ans thing for tue? I have nothing for you.
QIRV Are your ready? I am mady.
QRW shall I tell.....that sou are calling him on ke." Ileasw inform.... that 1 an calling him on.....ks.
QRX Whath will yont call me again? I will rath som again at heours (on ke.).
QRZ Who is calling me? Vou arm boing callod by (on kr.).
Qsid What is the strength of my simnals (or those of ? The strenoth of somp sionals (or those of.....) is....... (1. searedy perceptible; 2. Whak: 3. l'airly good: to (ioudi 5. lery grod).
QSB Are my signals faline? lour signals are farling.
QsD Is wy keying deforefiser? lour hereing is defective.
Qsi Nhall I send. messatges at a time? Fend messares at a time.
Qsi. Can gom acknowlodre receipt? I amacknowdowing receipt.
QSM shatl I roweth the last mowsage which I wht yon, or some frevions me-sarse? Repat the hast mosage which son sent me for managots) numbers(s)........
Qso (aty ven commumimath with. .. atireet or by relay? I catm mommonicate with. difeet (or by relay through.).
QsP Will son relas to.? I will rolay to.
Q:V whall I semd a sories of V : on this fremumes (or . ke.)? semd a suries of Vis on this fremeney (or..... ke.).
QSW Will you send on this frequeney (or ont....ke.)? I amsering to send on this freguency (or onke.).
QSE Will you liston to. on..... kr.? I am listening to.on..........

QNi shatl I change to trammission on amother froquencs? (hathgo to transmission on amother frocurney (or on . . .kr.).
Qu\%\% thall I send "ath worl or gromp more than one en? somd mach word or gronp iwier (or . . . times).
QTS Shall I cancel message muntmo. . .as if thad hot thent sont? (aturiol mosage monher as if it had mot been semt.
QT'ls 1) yom atrece with my counting of worls? I do not atree with wentr romating of words: I will repeat the first leteer or digit of each word or gromp.
QTE How many mowates hateren to sond? I have. . . : mowsages for wor (or for. . . .).
Q'Tla What is your laration? My location is. . . .
Q'Tle What is the exact thme? The time is.

 amatemers atml WRRI. members. This is in effeet "('Q . 1R1R1.."
QRRR Official ARRK. "land sos." I distrows eall for "mory sitnation.

THE R-S-T SYSTEM

 READABILITY1 - Inreadable.
2 - Barely randatio, momisional words distinguishable.
3 - Rearlable with consilerable diflimulty.
4-Readabla with prave imally no difficulta:
5- Perfertle readable.

SIGNAL STRENGTH

1 - Faint siphals, barely pererptible.
2- Very "rak signals.
3 - Weak signals.
4 - Fiair sigutals,
j- Fairly goond sigmals.
6- (iood signals.
7 - Moteratuly strong signals.
8 - Ntrong signals.
9 - Extromoly strong simasts.

TONE

1 - Extremaly rough hissing note.
2 - Vers rough a.ce note, mo trace of musirality.
3 - Rough low-pitshed a.e. note. slighty musital.
4-Rather romgh a.e. note, molerately musieal.
5- Musically-molulatud note.
(i - Moxhlated note, slight trace of whistle.

8-Goul d.e note just a trame of ribule.
9 - Purest dice note.
If the signal has the chararteristic stemdiness of frestal control, add the letter X to the RS'T report. If there is a chirp, the leterer C may her adeded to so indiate. simiarly for at diek, add K. The ahove reporting system is used on hoth ew. and woice, leating out the "tone" reqort on voice.

Alahama
Arizona．
Arkansas
California
Colorado
Connectient
［ Delavare
District of Columbia
Florida
（ieorgia．
Idaho．
Jllinois．
Indiana
Iowa
liansas．
Kenturky．
Loulisiana ．

W PREFIXES BY STATES

Maine	Wl	Ohin．	
Maryland	W3	Oklahoma	
Massachusett：	W1	Oregon．	W
Michigan	W8	Pennevlvania	W
Minnesota	W\％	Rhode Island	W
Mississipui	W：	South Carolina．	W
Minsomri	W0	South Dakot：	W
Montana	W7	Tennessce．	W
Nelorask：	W\％	Texas．	W
Nevada．	W7	L＇tah．	W
New Hampriore．	W1	Vermont	W
New Jersey	W：	Virginia	
S＂ew Mexico	W：5	Washington	W
Now Y゙ork	W2	West Virginia	
North Carolina	W	Wisconsin．	1
North Dakota．	W\％	Wyoming．	W

INTERNATIONAL PREFIXES

A．A．A－AL\％	じ．N．A．
AMA－AOZ	Sprain
APA－AS\％	Pakistan
－TA－AW\％	India
AXA－AXZ	Australia
AYA－AZ\％	Argentine Republic
CAA－CEZ	Chile
（CFA－CKZ	C＇anada
（＇LA－CMZ	Cuba
CNA－CNZ	Morosco
（ $\mathrm{OA} A-\mathrm{COZ}$	C＇uba
CPA－C1＇／	Bolivia
（＇QA－CR\％	Portuguese Colonics
CSA－CLZ	Portugal
（ V A－CNZ	Trughay
CYA－CZ\％	Canada
DAA－DMI\％	Girmany
DNA－DQ\％	Belsian Congo
DRA－DT\％	Biclorussia
DUA－DZ\％	Philipuines
FiAA－E1I\％	Spain
FIA－E．JZ，	Ircland
FKA－EKZ	$1{ }^{\circ}$ ，s．S．R．
ELA－EL\％	Republic of liberia
EMA－1：OZ	l＇S．S．R．
EPA－EQZ	1 ran
ERA－EIS\％	l＇s．s．s．R．
ESA－EsZ，	Estonia
ETA－E＇TZ	Ethiopia
FL＇A－EZZ	
IFAA－FZZ	France and Colonios
（iAA－GZZ	（ireat Britain
HAA－HAZ	Hungary
HBA－IIB\％	Switzerland
HCA－HDZ	Fevador
HEA－HEZ	Switzerland
HFA－HFZ	Poland
HGA－HG\％	Hungary
HHA－HHZ	Republic of Haiti
11IA－IIIZ	Dominican Republie
IIJA－HKZ	Republir of Colombia
HLA－HMZ	Korea
HNA－HN\％	Iraq
110A－HPZ	Republic of l＇anama
HQA－HRZ	Republic of Honduras
IISA－1ISZ	Siam
HTA－HTZ	Nicaragua
HCA－HLZ	Republir of Et Salvador
I1VA－111\％	Vatican City State
HWA－HYZ	France and Colonies
HZA－HZZ	Sandi Arabia
IAA－IZ7	Italy and Colonies
JAA－JSZ	Japan
JTA－JV\％	Mongolian Repmblic
JWA－INZ	Norway
JYA－İZ	Jordan

JZA－JZZ	Nethrorlands New（iumen	XYA－XZ\％	Hurma
にАА－にZZ	U．S．A．	Y．AA－YAZ	Afghanistan
1．AA－IN\％	Norway	Y13．A－Y11\％	Netherlands Indies
LOA－LW\％	Arpentine Republic	liA－YI\％	Iral
LXS－LXZ	linxemboure	1．J．${ }^{\text {¢\％J\％}}$	New Hebrides
1．YA－1．1\％	Lithuania	どイージス	Syria
1．\％A－L．$/ \mathrm{Z}$	Buluaria	リヒ」－ri\％	1．atvia
MAA－MZZ	（ireat Britain	1MA－Y゙M\％	Turkey
NAA－NZ\％	I＇SA．	IN．A－Y\％	Niearagua
0．A．A－OC\％	P＇eru	YO．i－YR\％	Rommania
ODA－0D\％	Republic of I，ebanon	「心A－rs\％	Republic of El salvader
OEA－OEZ	Austria	1TA－1゙\％	Y＇ugoslavia
OFA－OJ\％	F＇inland	YVA－YY\％	Venezuela
OK゙A－OM\％	（＇zeehoslovakia	YZA－Y\％\％	Fugoslavia
ON．${ }^{\text {OSTKZ }}$	Belgitm and Colonics	\％A．1－\％A\％	Athania
OLA－OZ\％	Dentuark	\％IS．A－Z．J\％	British Colonim
PAA－PIZ	Sethertands	Zト．${ }^{\text {\％－ZN\％}}$	
P＇JA－PJ\％	C＇uracao	KKı－Z．1\％	New Zealand
PK，${ }^{\text {Proz }}$	Netherlands Indies	2．1－20\％	British Colonies
PPA－19\％	Mrazil	ZPA－Z1\％／	I＇araguay
P＇A－P＇ZZ	Surinam	\％Q． 1 －\％Q	Britisll Colonips
QAA－QZ\％	（Service abhreviations）	ZR．1－ZIT\％	Innon of south ． A fica
R．A．A－RZZ	Uss心．18．	ZV゙さ－Z\％\％	Brazil
AAASNIK	Sweden	2．1．1－2Z\％	（ireat I3ritain
SNA－SR\％	Poland	3．A．A．3．1\％	Primeinality of Monam
SSA－N［\％	Exypt	3H．1－31\％\％	Canada
SVA－STZ	（irceer		Chilv
TAA－TC\％	Turkey	311．1－31\％	C＇hina
TDA－TD\％	Guatemala	$3 \mathrm{Cl}-3 \mathrm{~V} \%$	Franer and Colonies
TEA－TE\％	Costa Rica	3W A－3W\％	Viet－Nam
TFA－TF\％	lecland	31．1－3\％\％	Norway
TGA－TGZ	Guatemala	3Z．－3ZZ	Porway
＇IHA－TH\％	1＇ranee and Colonies	$3 Z .1-3 Z \%$ ＋AA－4 $\%$	Poland Mexico
TIA－TIZ	Costa Rica	AA－4C\％	Mexico．
「JA－TZ\％	Franee and Colonies	＋D． $1-41 \%$	Philippines
UAA－（＇QZ	－S．s．R．	4．J．－4L\％	I＇S．s．lR．
L＇RA－C＂T\％	1＊krainian Republic	4MI－4M\％	Venezuela
（1LA－C゙Z\％	l＇心．sR．	－1N．1－40\％	Vugoshavia
VAA－V＇\％	（＇anada	1PA－4N\％	British Colomias：
VHA－V．\％	Australia		I＇ern
¢OA－TO\％	Newfoundland	15．1－11\％	Conited Nations
VPA－VEZ	Hritish（ ${ }^{\text {colonies }}$		Republic of Itaiti
V「．1－VW\％	India	f10．4－4W\％	licmen
VXA－VY\％	Canada	4N．1－4N\％	Israel
VZA－VZZ	Australia	4YA－4Y\％	International Civil
WA．A－WZZ	CSA．	－18－4\％	Aviation organizatio
NAA－NIZ	Mexico	5．A－5．4Z	I．jbya
X．J．A－NOZ	Canada	5BA－E ${ }^{\text {S }}$	Moroceo
XPA－XP＇	Dermark	5BA－¢ ${ }^{\text {¢ }}$	Moroceo
XQA－XR\％	Chile	5C．A－5\％	French Morocco
NSA－XEZ	China	6．A－6ZZ	（Not atlocated）
XTA－XT\％	France and Colonics	7AA－7\％7	（ Not allocated）
NUA－NでZ	（rambodia	8AA－8Z\％	（Not allocated）
イ゙Vホーズ\％	Viet－Nam	9．A．A－9．1\％	San Marino
XW．A－KW\％	Lans	9NA－9N\％	Nopal
XXA－XX\％	Portuguese Colonies	9＊A－9＊\％	Satar

A.R.R.L. COUNTRIES LIST - Official List for ARRL DX Contest and the Postwar DXCC

STANDARD METAL GAUGES			
$\begin{gathered} \text { Gauge } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Imerican } \\ & \text { or } B . \text { \&N, } \end{aligned}$	C．S． Strudard？	Birminghan w＂Stuhe ${ }^{3}$
1	．2843	2812.5	． 300
2	． 2.976	． 20.902%	．284
3	．2304	2.8	.259
4	． 2013	．234375	．238
5	． 1819	．2187．5	．220
6	．1620	．20319．3	． 203
7	．1443	．1875	． 180
8	． 1285	． 17187.5	． 16.5
9	．1114	．15625	． 148
10	． 1019	． 140305	． 134
11	． 0361074	．12．5	． 120
12	．08081	．100：375	． 109
13	． 07196	．0437．5	． 09.5
14	． 146108	． 07812.5	．083
15	．0380\％	．070：312．	．083
16	． 0.508	．092．）	． 616
17	． 01506	．0．0125	．038
18	．01030	． $0: 1$	． 019
19	．03380	． 01837	． 012
20	．03136	．037．	．03．）
21	． 02816	．03137．	．0：32
22	．023：35	．0312：5	． 028
23	．022：7	． 02812.5	．02\％
24	．02010	．02．	022
25	． 01760	． 021875	．1030
26	．01597	．01875	． 018
27	.01420	．0171875	． 0119
28	． 01364	． 01.51020	．014
29	． 01126	0140625	．01：3
30	． 01003	．013：	．013
31	．018428	． 010102375	． 010
32	（067950	． 010101625	． 0109
33	．007080	．019：375	． 0088
34	（\％）6i3：0	．008．34375	.007
35	． 00.5615	．007812．5	，00，
36	． 00.5000	．0070：312．	． 004
37	． $00+1.9 .3$	． 0106640026	．．．
38	．0033963	． 00412 s	．．．．
30	． 00.3 an31	．．．．．	．．．
40	．003145	．．．．．	
${ }^{1}$［＇sed for alumintum，copmer，hrass and nonfer－ rous alloy shoets，wire and rots． ${ }^{2}$ I＇sed for iron，stece，nickel and fermons allow shepets，wire and rohls． ${ }^{3}$ l＂sed for seamless tubes：also by some mamufar－ turers for coppert athd brass．			

GREEK ALPHABET					
Greck Letter	Greek Name	English Equivalent	Greek Letler	Crees liame	English Equivalent
A a	Aphat	a	N ν	Nu	n
B β	130tal	b	$\Xi \xi$	Xi	x
I\％	Giamma	$\underline{1}$	${ }^{1}$ o	Omicron	¢
$\pm \delta$	1 ）eltir	d	11π	1＇i	p
E．ϵ	Leprilon	c	1＇ρ	13ho	，
75		z	$こ ゙ \sigma$	Sigmal	s
117	lita	é	T	T：u	t
00	Theota	th	ro	Vpilon	1
1 ，	Iota	1	中 ϕ	l＇hi	$\mathrm{p}^{\text {h }}$
K к	К゙：¢p！	k	$x \times$	Chi	ch
A λ	Lambeda	1	$\psi \psi$	$1 \times s$	poss
M μ	Mu	m	$\underline{\square} \omega$	Onlegat	$\bar{\square}$

THE DECIBEL

In most radio commmeneation the rereeved sigual is converted into somme. This bering the rase, it is useful to appraise signat st renget he in terms of relative lombness as registered hey the car. A peculianity of the car is that an incerase

or cherrease in loudhess is responsive to the ration of the amounts of power insolverl, and is practieally indermembent of ahsolute metue of the power. For example, if a person oxtimates that the signal is "twice as loud" when the transmitter bower is increased from 10 watts to
 signal is twion as loud as a lo()-watt signal. In other words, the humath ear hats at logarithmic response.
'This fact is the hasis for the hese of the rolative-power unit abled the decibel. A change of one decibel (ahhreviate.el db. in the power lowed is just delectathe as at change in loudhess umber ideal comditions, 'The power ration and deribels are related bey the following formatat:

$$
I h_{0}=10 \log \frac{l_{2}}{l_{1}}
$$

Common logatithms (base for are used.
Note that the deribul is bised on power ratios. Voltage of current ratios can be used, but only when the imperlunce is the seme for both celimes of coltates, of curcent. The gain of an amplifier eanmot be exprosided correetly in dt). if it is based on the ration of the output woltage to the input voltage unlese both voltages are measured aceves the same value of impedance. When the impedance at bothpeints of meatsure ment is the same. the following formulat may be used for voltage or cument ratios:

$$
\begin{aligned}
& I t)=20 \log \frac{I_{2}}{I_{1}} \\
& \text { or } 20 \log \frac{I_{2}}{I_{1}}
\end{aligned}
$$

The two formulas are shown graphically in the areompanving chant for ratios from 1 to 10.

Gains (increases) expressed in deribels may be added arithmetically: lowes (decreases) may be subtracted. I power decreave is indieated bey prefixing the deribel figure with a minus sign. Thus +6 dh. means that the power has Inern multiplied by 1 , while -6 dh. means that the power has beren divided by 4. The chart may be used for other ratios hy adding (or subtracting, if a loss) 10 db . each time the rat io scale is multiplied by 10 , for power ratios: or hes adding (or subtracting) 20 dh. cach time the seale is multiplied by 10 for voltage on current ratios.

VOLTAGE DECAY IN $R C$ CIRCUITS

The accompanying chart enables caleulation of the instantaneons voltage acrose the termi-

nats of a condenser dischatrging through a rexistance. The voltage is given in terms of percentage of the voltage to which the rondemerr is initially chatged. To ohtain the wiltagederay time in seronds, multiply the factor" (t ("R) by the time constant of the re-sistor-rombenser eireuit.

Example: A $0.01-\mu \mathrm{fd}$. rondenser is charged to 150 volts and then allowed to diseharge through :a $0.1-\mathrm{meg}$ ghan resistor. How long will it take the voltage to fall to 10 volts". In perrentage 10 150 $=6.7$. From the chate the factor eorrexponding to 6.7'/ is 2.7. The time comstant of the edirreuit is equall to $(\% R=0.01 \times 0.1=0.0(0)$. The time is therefore $2.7 \times 0.001=0.00127$ serond, or 2.5 milliseconds.

Frample: In RC' cireuit is deximed in which the voltage will fall to EO'; of the initial value in 0.1 seromel. From the chart, t ("R = 0.7 at the sor a-voltage paint. Therofore $(1 / 2=1,0.7=0.1 / 0.7=1.43$ Say romblatation of resistane and capanitance whose product (R in megohms and ${ }^{\prime}$ in mierofarads) is equal to 1.43 (ean he used: for rexample, (could te 1μ fel. and $R 1.13$ megohms.

- FILTERS

The filter sections shown on the facing page can be used alone or, if greater attenuation and sharper cut-off are required, several sections can be connected in series. In the low- and high-pass filters, f_{c} represents the cut-off frequency, the highest (for the low-pass) or the lowest (for the high-pass) frequency transmitted without attenuation. In the bandpassfilter designs, f_{1} is the low-frequency cut-off and f_{2} the high-frequency cut-off. The units for L, C, R and f are henrys, farads, ohms and eycles, respertively.

All of the types shown are for use in an unbalanced line (one side grounded), and thus they are suitable for use in coaxial line or any other unbalaneed circuit. To transform them for use in balanced lines (e.g., 300 -ohm transmission line, or push-pull autio circuits), the series reactances should be equaily divided between the two legs. Thus the balaned con-stant- $k \pi$-section low-pass filter would use two induetances of a value equal to $L_{\mathrm{k}} / 2$, while the balanced constant- $k \pi-$ seetion high-pass filter would use two combensers of a value equal to 2C ${ }^{\prime}$.

If several low- (or high-) pass sections are to be usel, it is advisable to use m-derived end sections on cither side of a constant- k section, although an m-terived center section can be used. The factor m relates the ratio of the cutoff frequency and f_{x}, a frequency of high attenuation. Where only one m-derived section is used, a value of 0.6 is generatly used for m, although a deviation of 10 or 1.5 per cent from this value is not too serious in amateur work. For a value of $m=0.6, f$ will be 1.25 fe for the low-pass filter and $0.8 f$ for the high-patss filter. Other values can be foumd from
$m=\sqrt{1-\left(\frac{f_{0}}{f_{\infty}}\right)^{2}}$ for the low-pass filter and $m=\sqrt{1-\left(\frac{f_{\infty}}{f_{c}}\right)^{2}}$ for the high-pass filter.

The filters shown should be terminated in : resistance $\Rightarrow R$, and there should be little or in reactive eomponent in the termination.

Simple audio filters can be madt. with pow-dered-iron-core chokes and paper condensers. sharper cut-off chararteristics will be ohtained with more sections. The values of the components can vary by $\pm 5 \%$ with little or no reduetion in performance. The more sections there are to a filter the greater is the need for arcuracy in the values of the components. High-perfornance audio filters can be built with only two sections by winding the induetances on toroidial powdered-iron forms - it generally takes three sections to obtain the same results when using other inductances.
sicteband filters are usually designed to operate in the range 10 to 20 ke . Their attenuation requirements are such that usually at
least a five-section filter is required. The coils should be as high-Q as possible, and mica condensers are the most suitable capacitors.

Low-pass and high-pass filters for harmonic suppression and receiver-overload prevention in the television frequencies range are usually marle with self-supporting coils and mica or ceramir condensers, depending upon the power requirements.

In any filter, there should be no magnetie or capacity coupling bet wren sertions of the filter unless the design specifically calls for it. This requirement makes it necessary to shield the coils from each ot her in some applications, or to mount them at right angles to each other.

Further information on filter design can be found in the following artieles:
Bennett, "Audio Filters for Eliminating QRM,"QST', Juls, 1949.
Berry, "Filter Design for the single-Sideband Transmitter," Qs'T, June, 1949.
Buchheim, "Low-l'ass dudio Filters," QS'I', July, 1948.
(irammer, "Pointers on llarmonic Reduction," (LST', April, 1919; " High-P'ass Filters for TVI Rerluction," QS'T, May, 1949.
Mann, "An Inexpensive sideband Filter," QST, March, 1919.
Rand, "The Little slugger," $\langle S T$ ', February, 1949.

Snith, "Premodulation speech Clipping and Filtering," QST, February, 1946; "More on Speech ('lipping," QS'T', March, 1947.

TUNED.CIRCUIT RESPONSE

The graph below gives the response athl phase angle of a high-(l parallel-tuned circuit.

Circuit Q is cqual to

$$
2 \pi f R\left(, \text { or } \frac{l i}{2 \pi j l}\right.
$$

where L and C are the inductance and caparitance at the resonant frequency, f, and R is the parallel resistance across the circuit. The eurves above become more accurate as the circuit Q is higher, but the error is not especially great for values as low as $Q=10$.

In the above formulas K is in ohms, C in farads, L in henrys, and f in cyoles per second.

INDUCTIVE AND CAPACITIVE REACTANCE VS. FREQUENCY CHART

By use of the chart above, the approximate reactance of any caparitanec from $1.0 \mu \mu \mathrm{fl}$. to $10 \mu \mathrm{fd}$, at any fre queney from 100 eycles to 100 megaeycles, or the reartance of any inductance from $0.1 \mu \mathrm{~h}$. to 1.0 henry, can be read directly. Intermediate values can be estimated lev interpelation. In making interpolations, remember that the rate of change between lines is logarithmic. I se the frequency or reactance seates as a guide in estimating imermediate values on the capacitance or inductane seales.

This ehart also can be nsed to find the approximate resonaner freguencies of LC eombinations, or the frequency to which a given coil-and-rondenser combination will tune. Firat lorate the respertive slamting lime for the caparitance and induetance. The point where they interswet, i.e., where the reactances are equal, is the resonant frequency (projected downward and read on the frepurney seale).

ELECTRICAL CONDUCTIVITY OF METALS

	Relative Conductivity ${ }^{1}$		Temp. CHef. ${ }^{2}$ of hesistance		Relative Conductivity	Temp. Cuef. ${ }^{2}$ of Resistance
Aluminum (2 S ; pure).		59	$0.00!3$	Lead.	7	0.0041
Aluminum (allos:s):				Manganin.	3.7	0.000002
Soft-annealed.		45-50		Meremry.	1,66	0.0001×1
Heat-treated.		30-4.5		Modytulemam.	33.2	0.0033
Brass.		28	0.002-0.007	Mencl.	4	0.0019
Cadmium.		19		Xichrome.	1.45	0.00017
Chromium.		5.5		Xickel.	12-16	0.00 .5
Climax.		1.83		Phosphor lironze	36	0.004
Cobalt,		16.3		Platimma. .	1.5	
Constantin.		3.21	0.00002	Silver.	106	0.004
Copper (hard drawn).		89.5	0.001	Steel	3-15	
Copper (annealed)		100		Tin.	13	0.0042
Everdur		6		Tungsten.	28.9	0.004 .3
Gernıan Silver (18\%)..		5.3	0.00013	Zinc.	28.2	0.013 .3
Gold.		65		Approsinate relations		
Iron (pure)		17.7	0.006			
Iron (cast). ${ }_{\text {Iron (wrought). }}$.		2-12 11.4		An increase of I in A. W. G. or B. \& S. wire size increases resistance 2.5%.		
Iron (wrought).		11.4		An inerease of " increases resistance 60 oro An increase of 3 increasess resistane 10,10 o.		
${ }^{1}$ At $20^{\circ} \mathrm{C}$., based on	as	0. $\mathrm{P}^{1} \mathrm{er}{ }^{\circ}$	at $20^{\circ} \mathrm{C}$.			

COPPER-WIRE TABLE

Gauge No. B. \& S.	$\begin{aligned} & \text { Diam. } \\ & \text { in } \\ & \text { Mits } \end{aligned}$	('ircular Mil Area	Turns per Linear Inch ${ }^{2}$				Turns per Square Inch ${ }^{2}$			Feet per Lb.		$\begin{gathered} \text { Ohms } \\ \text { per } \\ 1000 \mathrm{fl} . \\ 25^{\circ} \mathrm{C} . \end{gathered}$	Currene Carrying Capacity at 1500 C.M. per Amp. ${ }^{3}$	Diam. in min.	Nearest liritish S.W.G. No.
			Enamel	S.S.C.	$\begin{aligned} & \text { D.S.C. } \\ & \text { or } \\ & \text { S.C.C. } \end{aligned}$	D.C.C.	S.C.C.	Enamel s.C.C.	D.C.C.	Bare	D.C.C.				
1	289.3	83690	-	-	-	-	-	-	-	3.947	-	. 126.1	53.7	7.348	1
2	257.6	163370	-	-	-	-	-	-	-	4.977	-	. 1593	44.1	6.544	3
3	229,4	52640	-	-	-	-	-	-	-	6.276	-	. 2009	35.0	5.827	4
4	204.3	+1740	-	-	-	-	-	-	-	7.914	-	. 2533	27.7	5.189	5
5	181.9	33100	-	-	-	-	-	-	\cdots	9.980	-	. 3195	22.0	4.621	7
6	162.0	26250	-	-	-	-	-	-	-	12.58	-	. 4028	17.5	4.115	8
7	144.3	20820	-	-	-	-	-	-	-	15.87	-	. 5080	13.8	3.605	9
8	128.5	16510	7.6	-	7.4	7.1	-	-	-	20.01	19.6	. 6405	11.0	3.264	10
9	114.4	13090	8.6	-	8.2	7.8	-	-	-	25.23	24.6	. 8077	8.7	2.906	11
10	101.9	10,380	9.6	-	9.3	8.9	87.5	84.8	80.0	31.82	30.9	1.018	6.9	2. 588	12
11	90.74	8234	10.7	-	10.3	9.8	110	105	97.5	40.12	38.8	1.284	5.5	2.305	13
12	80.81	6530	12.0	-	11.5	10.9	136	131	121	50.59	48.9	1.619	4.4	2.053	14
13	71.96	5178	13.5	-	12.8	12.0	170	162	150	63.80	61.5	2.042	3.5	1.828	15
14	64.08	4107	15.0	-	14.2	13.8	211	198	183	80.44	77.3	2.575	2.7	1.628	16
15	57.07	3257	16.8	-	1:5.8	14.7	262	250	223	101.4	97.3	3.247	2.2	1.450	17
16	50.82	258:3	18.9	18.9	17.3	16.4	321	306	271	127.9	119	4.094	1.7	1.291	18
17	45.26	20.48	21.2	21.2	19.9	18.1	397	372	329	161.3	150	5.163	1.3	1.150	18
18	40.30	16124	23.6	23.6	22.0	19.8	493	454	399	203.4	188	6.510	1.1	1.024	19
19	35.819	1288	26.4	26.4	24.4	21.8	592	$55: 3$	479	256.5	237	8.210	. 86	. 9116	20
20	31.96	1022	29.4	29.4	27.0	23.8	775	72.5	625	323.4	298	10.35	. 68	. 8118	21
21	28.46	810.1	33.1	32.7	29.8	26.0	940	895	754	407.8	370	13.05	. 5.4	.7230	22
22	25.35	6.42 .4	37.0	36.5	34.1	30.0	1150	1070	910	514.2	461	16.46	. 43	. 61388	23
23	22.57	(1)4, is	41.3	40.6	37.6	31.6	1400	1300	1080	6.48 .4	584	20.76	. 34	. 5733	24
24	20.10	404.0	46.3	45.3	41.5	35.6	1700	1570	126\%	817.7	745	26.17	. 27	. 5106	25
25	17.90	320.4	51.7	50.4	4. 6.6	38.6	2060	1910	1510	1031	903	33.00	. 21	. 45.47	26
26	15.94	254. 1	58.0	55.6	50, 2	41.8	2500	2300	1750	1300	1118	41.62	. 17	. 4049	27
27	14.20	201.5	64.9	61.5	55.0	45.0	3030	2780	2020	1639	1422	52,48	.13	. 36015	29
28	12.64	159.8	72.7	68.6	(i0). 2	48.5	3670	3350	2310	2067	1759	66.17	. 11	. 3211	30
29	11.26	126.7	81.6	74.8	65.4	31.8	4300	3900	2700	2fio7	2207	88.44	. 084	. 28.9	31
30	10.03	100.5	90.5	83.3	71.5	5 5 .5	5040	$46 \mathrm{fi0}$	3020	3287	25.34	105.2	. 017	. 2516	33
31	8.928	79.70	101	92.0	77.5	50.2	5920	5280	-	4145	2768	138.7	-053	. 2268	34
32	7.950	63.21	113	101	83.6	62.6	7060	6250	-	5227	3137	167.3	. 042	. 2019	36
33	7.080	50.13	127	110	90.3	66.3	8120	7360	-	6591	4697	211.0	. 033	. 1798	37
34	6.305	39.75	143	129	97.0	70.0	9600	8310	-	8310	6168	266.0	. 026	. 1601	38
35	5.615	31.52	158	132	104	73.5	10900	8700	-	10.480	6737	335. 0	. 021	. 1426	38-39
36	5.000	25.00	17.5	143	111	77.0	12200	10700	-	13210	7877	423.0	. 017	. 1270	39-40
37	4.453	19.83	198	154	118	80.3	-		-	16660	9309	533.4	. 013	. 1131	41
38	3.965	15.72	224	166	126	83.6	-	-	-	21010	10666	672.6	. 010	. 1007	42
39	3.531	12.47	248	181	133	86.6	-	-	-	26500	11907	848.1	. 008	. 0897	43
40	3.145	9.88	28:	194	140	89.7	-	-	-	33410	14222	1069	. 006	. 0799	44

[^12]GERMANIUM CRYSTAL DIODES

Type	Use	Max. Inverie Volts	$\begin{gathered} \text { Peak } \\ \text { Recelif'd } \\ \text { Mo. } \end{gathered}$	Max. Surge Mo.	Max. Roverse μ-Amp.	Mox. Average Ma.	Type	Use	Max. Inverse Volts	$\begin{aligned} & \text { Pook } \\ & \text { Rectif'd } \\ & \text { Ma. } \end{aligned}$	Max. Surge Ma.	Max. Revarse μ-Amp.	Mox. Average Ma.
$\begin{aligned} & \text { IN34 } \\ & \text { IN34A } \end{aligned}$	General	60	150	500	50 (a) 10 V. 800 @ 50 V	40	IN58	100.Volf Diode	100	150	500	800 (13) 100 V	40
1N35	1	50	60	100	10 @ 10 V .	22.5							
$\begin{aligned} & \text { IN38 } \\ & \text { IN38A } \end{aligned}$	100-Voll Diode	100	150	500	$\begin{aligned} & 6(a) y v . \\ & 625(a) 100 v . \end{aligned}$	40	IN60	Vid. Dat.	25	150	500	30 (6) 1.5	50
							IN61	Diode	130	150	500	300 (ii) 100.V.	40
1N39	$\begin{aligned} & \text { 200.Volt } \\ & \text { Diode } \end{aligned}$	200	150	500	$\begin{aligned} & 200 \text { (a) } 100 \mathrm{~V} . \\ & 800 \text { (a) } 200 \mathrm{~V} . \end{aligned}$	40	$\begin{aligned} & \text { 1N63 } \\ & \text { GSE } \end{aligned}$	General	125	150	400	50 (6) 50 V	50
1N402	Varistor	25	60	100	50 (a) 10 V	22.5	$\begin{aligned} & \text { IN641 } \\ & \text { G5F } \end{aligned}$	Vid. Det.	20	-	-	-	-
1N4 1^{2}	Varistor	25	60	100	50 (a) 10 V	22.5	$\begin{aligned} & \text { 1N65 } \\ & \text { G5 G } \end{aligned}$	Hi Back Resistonce	85	150	400	200 (a) 50 V .	50
1N42	Varistor	50	60	100	$\begin{aligned} & 6 \text { (a) } 3 \mathrm{~V} . \\ & 625 \text { (13) } 100 \mathrm{~V} . \end{aligned}$	22.5	G56 1 IN662	Resistance	60	150	500	800 (13) 50 V .	50
1N43	Varistor	601	125	500	850 (1) 50 V	40	IN67	Hi Back Resisiance	80	100	500	50 (3) 50 V	35
IN44	Varistor	115	100	400	1000 @ 50 V	40							
1N45	Varislor	754	100	400	410 (c) 50 V .	40	1N68	Restarer	100	100	500	625 (1) 100 V.	35
IN46	Varistor	604	125	500	1500 (a) 50 V .	40	IN69	General	75	125	400	850 (a) 50 V	40
1N47	Varislor	115	90	350	410 (c) 50 V .	30	IN70	General	125	90	350	410 (a) 50 V .	30
	Vorisior	85	150		833 (if) 50 V .		1N7 1^{2}	Varistor	504	200	1000	300 (a) 30 V .	60
$\begin{aligned} & \text { iN48 } \\ & \text { G53 } \end{aligned}$	General			400		50	1NT2' G7	U.H.F.	2	75	-	-	25
$\begin{aligned} & \text { 1N51 } \\ & \text { GSC }^{3} \end{aligned}$	General	50	100	300	1667 (a) 50 V .	25	IN73	Quad	75	60	100	50 @ 10 V	22.5
$\begin{aligned} & \text { INS2 } \\ & \text { G5D } \end{aligned}$	General	85	150	400	150 (e) 50 V .	50	IN74	Ouad	75	60	100	-	22.5
						40	1N75	General	125	150	400	50 (6) 50 V .	50
IN54A	Hi Back Resistance	35	150	500	10 (a) 10 V		CK705	Generol	60	150	500	800 (a) 50 V .	50
$\begin{aligned} & \text { JN55 } \\ & \text { iN55A } \end{aligned}$	150-VoltDiode	150	150	500	$\begin{array}{\|ll\|} 300 & \text { (d) } \\ 800 & 100 \mathrm{~V} . \\ 800 & 150 \mathrm{~V} . \end{array}$	40	CK706	Vid. Det. ${ }^{1}$	40	125	300	-	35
IN56 IN56A				1000		50	CK707	Restorer	80	100	500	625 (a) 100 V .	35
	Hi-Conduction	40	200		300 (a) 30 V .		CK708	Reslorer	100	100	500		35
IN57	Diode	80	150	500	500 (a) 75 V .	40	CK710	U.H.F. Mix.	5	75	-	$500 \text { (a) } 2 \text { V. }$	25

Ratings given are for individuad diodes. Avorage life is over 10,000 hours, Ambient temporature range for all typers- $-50^{\circ} \mathrm{C}$.

${ }^{1}$ Matched dual diode.
2 Unit has four matched diodes.
${ }^{3}$ G.E. designation.
${ }^{4}$ Nin. reverse volts for zero dynamic resistance.

MINIATURE SELENIUM RECTIFIERS

Manufacturer	Type Number	Max. A.C. Volts	Peak Inverse Volts	Peak Currant Ma.	Max. R.M.S. Ma.	Max. D.C. Oulput Ma.	Rectifier Service
Federal Telephone and Radio Copporation	40203200	117	380	-	-	50	Half-Wave
"	$\begin{aligned} & 40202788 \\ & 40203150 A \end{aligned}$	117	380	900	220	75	Half-Wave
*	$\begin{aligned} & 40302625 \\ & 403 D 2625 A \end{aligned}$	117	380	1200	325	100	Half-Wave
"	402 D 3151	18	-	-	-	100	Half-Wave
"	40203239A	160	-	-	-	75	Doubler
"	40303240A	160	-	-	-	100	Doubler
General Electric Co.	$6 \mathrm{RS5GH2}$	117	380	650	163	65	Half:Wave
"	6RS5GHI	117	380	750	187	75	Half-Wave
Radio Receplor Company, Ine.	51.1	117	380	-	-	75	Half-Wave
	5 MI	117	380	-	-	100	Half-Wave
Circular plates-discontinued.							

Vacuum-Tube Data

For the convenience of the designer, the re-eriving-type tubes listed in this chapter are grouped by filament voltages and construction types (glass, metal, miniature, ete.). For example, all 6.3 -volt metal tubes are listed in Table I, all lock-in base tubes are in Table III, all miniatures are in Table XI, and so on.
Transmitting tubes are divided into triodes and tetrodes-pentodes, then listed according to rated plate dissipation. This permits direct romparison of ratings of tubes in the same power classification.

For quirk reformen, all tubes are listed in numerical-alphabetioal order in the index begimning on the following page.

Tube Ratings

Vacuum tubes are designed to be operated within definite maximum (and minimum) ratings. These ratings are the maximum safe operating voltages and currents for the electrodes, based on inherent limiting factors such as permissible cathode temperature, emission, and power dissipation in electrodes.

In the transmitting-tube tables, maximum ratings for electrode voltage, current and dissipation are given separately from the typical operating conditions for the recommended classes of operation. In the receiving-tube tables, because of space limitations, ratings and operating data are combined. Where only one set of operating conditions appears, the positive electrode voltages shown (plate, screen,
etc.) are, in general, also the maximum rated voltages for those electrodes.

For cortain air-cooled transmitting tubes, there are two sets of maximum values, one designated as CCs (Continuous Commercial Service) ratings, the other 1CAS (Intermittent Commercial and Amateur Service) ratings. Continuous Commercial Service is defined as that type of service in which long tube life and reliability of performance under continuous operating conditions are the prime consideration. Intermittent Commereial and Amateur Sorvice is defined to include the many applications where the transmitter design factors of minimum size, light weight, and maximum power output are more important than long tube life. ICAs ratings are considerably higher than CCS ratings. They permit the handling of greater power, and although such use involves some sacrifice in tube life, the period over which tubes will continue to give satisfactory performance in intermittent service can be extremely long.

Typical Operating Conditions

The typical operating conditions given for transmitting tubes represent, in general, maximum IC.IS ratings where such ratings have been given by the manufacturer. They do not represent the only possible method of operation of a particular tube type. Other values of plate voltage, plate current, grid bias, etc., may be used so long as the maximum ratings for a particular voltage or current are not exceeded.

INDEX TO TUBE TABLES

INDEX TO VACUUM-TUBE TYPES

For convenismer in lecating data on epecific tule types the index belon lists all tuhes in mumerical-aphaterical order, showing the mage nomber where individual tubes may be foum in the elassified-data sertion (pages $V 13-160$) and the identifying base-diagram mumber in the basediagram section (pages V5-V12).

VACUUM-TUBE BASE DIAGRAMS

The diagrams on the following pages show standard socket connections corresponding to the base designations given in the colunn healed "Sockrt Connections" in the clasified tuhedata tables. Bottom views are shown throughout. 'Terminal designations are as follows:

A = Anode	$\mathrm{Cl}=\mathrm{C}$	11	$\mathbf{P}=$ Plate (Anode)	Ref $=$ Reflector
I $13=13 \mathrm{am}$	1) = Deflerting Plate	16: $=$ Internal Com.	$\mathrm{P}_{1}=$ Starter-Anode	
$11^{\prime}=13$ ayonet l'in	$\mathrm{F}=$ Filament	1s $=$ lnternal Shield	Pbr $=$ Beam Plates	TA = Ta
$B S=$ Base sleeve	$\mathrm{Ft}=$ Focus Flect.	$\mathrm{k}=$ Cathode	RC $=$ Ray.Control	1
(${ }^{\text {c }}$ = Ext. Coating	$\mathrm{C}=$ Crid	$\mathrm{XC}=\mathrm{So}$ Connecti	Electrode	Gas

Mphabetical subscripts I), P, 'I' and IIX indicate, respectively, diode unit, pentode mit, triode unit or hexode unit in multi unit types. Subseript $\mathrm{I}_{\text {, 'I' }}$ or C'I' indicates filament or heater tap.

Gemralls when the V_{0}. 1 pin of a metal type tube in 'lable I, with the exception of all triodes, is shown connected to the shell, the No. I pin in the glass (C (or (O^{\prime}) equivalent is eonnected to an internal shield.
R.T.M.A. TUBE BASE DIAGRAMS

Bottom views are shown. 'lerminal designations on sockets are shown above.

2AG

36

4AT

480 (4) (3) (2)

4 H

$4 S$

20

3N

4AF
(1)

$4 B R$

4J

4SA

2N

$3 T$

48

48 U

40

$4 n$

4V

$2 T$

4BB

$4 E$

4M

$4 \times$
c(3)

22

$4 A M$

3C

4BC

4BJ

4C8

$4 F$

4 P
46

$4 R$

42

R.T.M.A. TUBE BASE DIAGRAMS

5A
(5C:

$5 B$

SBT

5AA

5AJ

5BA

5L

$5 U$

5Bu

5M

SC(4) (5) NC

$$
\text { (2) } \mathrm{S}_{5}^{2}
$$

SC(2)

5K

R.T.M.A. TUBE BASE DIAGRAMS

Bottom views are shown. 'lerminal designations on sochets are given on page V.

		6AR			
					6 J
$6 S$					
	 7AJ				

R.T.M.A. TUBE BASE DIAGRAMS

Bottom views are shown. 'Verminal dexignations on menets are given on page Vib.

				$7 A Z$	
$7 B A$	78 B	$7 B C$	78D		
				7BN	
				7EW	
	7 Cu	7.CV			
				70K	

R.T.M.A. TUBE BASE DIAGRAMS

Bottom views are shown. 'Terminal designations on sockets are given on page V5.

	\%	7 R	\%	7	TM
8AS					

R.T.M.A. TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page 15.

TUBE BASE DIAGRAMS
Bottom virws are shown. 'Terminal designations on sockets are given on page $\mathbf{V} 5$.

	$11 F$	11 M			
	B1			FIG 3	
FIG. 5		FIG. 7	FIG B	FIG 9	FIG. 10
FIGII	FIG 12			FIG 15	
	FIG. 18			FIG 27	FIG. 28
FIG. 29			FIG. 3.3		
FIG 36			FIG 39	FIG 40	
Fig 42	Fig. 43				FIG 47
			Fis 51	FIC 52	FIG 53

Bottom views are shown. Terminal designations on sockets are given on page V.

Characteristics given in this toble opply to all tubes having type numbers shown，incluading metal tubes，glass fubes with＂ G ＂suffix，and bantam tubes with＂ GT ＂suffix． For＂G＂and＂GT＂tubes not listed（not having metal counterports），see Tables II，VII，VIII and IX．

Typo	Name	Sockel Connec． lions	Fil．or Heater		Capocitance $\mu \mu \mathrm{fd}$ ．			Use	Plofé Supply Valts	Grid Bias	Screen Volts	Screen Current Mo．	Plote Current Ma．	Plate Resistance Ohms	Transcon－ ductance Micromhas	Amp． Factor	LoodResistonceOhms	PowerOutpulWotts	Type
			Volts	Amp．	In	Out	Plote： Grid												
648	Pentagrid Converter	8 A	6.3	0.3	Osc．Grid leak＝ 50000』？			Convertar	250	－ 3.0	100	2.7	3.5	Anode－grid（No．2） 250 valts max，thru 20，000 ahms					6AE
$\begin{aligned} & 6 A B 7 \\ & 1853 \end{aligned}$	Remole Cut－aff Pentade	8 N	6.3	0.45	8	5	0.015	Class－A Amp．	300	－ 3.0	200	3.2	12.5	700000	5000	3500	—	－	$\begin{aligned} & 6 A B 7 \\ & 1853 \\ & \hline \end{aligned}$
$\begin{aligned} & 6 A C 7 \\ & 1852 \end{aligned}$	Sharp Cut－off Pentode	8 N	6.3	0.45	11	5	0.015	Class－A Amp．	300	160＊	150	2.5	10	1000000	9000	6750		－	$\begin{aligned} & 6 A C 7 \\ & 1852 \end{aligned}$
6 6G7	Power Penlode	8 Y	6.3	0.65	13	7.5	0.06	Class－A Amp．	300	－ 3.0	150	7／9	30／30．5	130000	11000	－	10000	3.0	6AG7
6AJY	5harp Cut－off Pentode	8 N	6.3	0.45			－	Class－A Amp．	300	160＊	300	2.5	10	1000000	9000	－			6AJ7
6 AK7	Penlode Power Amp．	8 Y	6.3	0.85	13	7.5	0.06	Class－A Amp．	300	－ 3	150	7	30	130000	11000	－	10000	3.0	6AK7
688	Duplex－Diode Pentode	8 E	6.3	0.3	6	9	0.005	Class－A Amp．	250	－ 3.0	125	2.3	9.0	650000	1125	730	－	－	6B8
$6 \mathrm{C5}$	Triode	60	6.3	0.3	3	11	2	Class－A Amp．	250	－8．0	－	$\underline{\square}$	8.0	10000	2000	20	－no signol	1 －	$6 \mathrm{C5}$
								Blas Datector	250	－ 17.0		－	Plate current odiusted to 0.2 ma ．with no signol						
6 65	High－μ Triade	5M	6.3	0.3	5.5	4	2.3	Closs－A Amp．	250	－ 1.3		－	0.2	66000	1500	100	－	－	$6 F 5$
$6 F 6$	Pentade Pawor Amplifior	75	6.3	0.7	6.5	13	0.2	Closs－A，Pent．${ }^{\text {S }}$	$\begin{aligned} & 250 \\ & 315 \end{aligned}$	$\begin{array}{\|l\|} -16.5 \\ -22.0 \end{array}$	$\begin{array}{r} 250 \\ 315 \end{array}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 36^{7} \\ & 42 \end{aligned}$	$\begin{array}{r} 80000 \\ 75000 \end{array}$	$\begin{aligned} & 2500 \\ & 2650 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 7000 \\ & 7000 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 5.0 \end{aligned}$	6F6
								Class－A，Triode ${ }^{1}$	250	－20．0	－	－	34^{7}	2600	2600	6.8	4000	0.85	
								Class－AB2 Amp．${ }^{\text {B }}$ Class－AB2 Amp．${ }^{6}$	$\begin{aligned} & 375 \\ & 375 \end{aligned}$	$\begin{array}{r} 340^{*} \\ -26.0 \\ \hline \end{array}$	$\begin{array}{r} 250 \\ 250 \\ \hline \end{array}$	$\begin{gathered} 8 / 18 \\ 5 / 19.5 \end{gathered}$	$\begin{aligned} & 54 / 77 \\ & 34 / 82 \end{aligned}$	Power output for 2 lubes at stated lood，plate－lo－plate			$\begin{aligned} & 10000^{8} \\ & 10000^{8} \end{aligned}$	$\begin{aligned} & 19.0 \\ & 18.5 \\ & \hline \end{aligned}$	
								Class－AB2 Amp．${ }^{18}$	$\begin{array}{r} 350 \\ 350 \end{array}$	$\begin{array}{\|c} \hline 730 * \\ -38 \end{array}$	二	－	$\begin{aligned} & 50 / 61 \\ & 48 / 92 \end{aligned}$	－	$=$	$=$	$\begin{array}{r} 10000{ }^{8} \\ 6000 \text { s } \end{array}$	13	
6H6	Twin Diode	70	6.3	0.3				Rectifier	Max．a．c．vollage per plate $=150$ r．m．s．Max．output current 8.0 ma．d．c．										$6 \mathrm{H6}$
$6 J 5$	Triade	60	6.3	0.3	3.4	3.6	3.4	Class－A Amp．	250	-8.0	－		9	7700	2600	20	－	－	$6 J 5$
6.77	Sharp Cut－off Pentode	78	6.3	0.3	7	12	0.005	R．F．Amp．	250	－ 3.0	100	0.5	2.0	1.5 mog ．	1225	1500		－	657
								Bias Detector	250	－ 4.3	100	Cothode current 0.43 mo ．					0.5 meg．		
$6 \mathrm{K7}$	Varioble－μ Pentode	7R	6.3	0.3	7	12	0.005	R．F．Amp．	250	－ 3.0	125	2.6	10.5	600000	1650	990			$6 \mathrm{K7}$
								Mixer	250	－10．0	100			－	Oscillator peak volts $=7.0$				
6 KB	Triode Hexado	8K	6.3	0.3	－		－	Converter	250	－ 3.0	100	6	2.5	Triode Plate（No．2） 100 volis， 3.8 ma．					6 K 8
616	Beam Power Amplifier	7 AC	6.3	0.9	10	12	0.4	Single Tube Closs A_{1}	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & 170^{\circ} \\ & 220^{\circ} \end{aligned}$	$\begin{aligned} & 250 \\ & 200 \end{aligned}$	$\begin{aligned} & 5.4 / 7.2 \\ & 3.0 / 4.6 \end{aligned}$	$\begin{gathered} 75 / 78 \\ 51 / 54.5 \end{gathered}$	－	－		$\begin{aligned} & 2500 \\ & 4500 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	616
								Single Tube Class A	$\begin{array}{r} 250 \\ 350 \end{array}$	$\begin{array}{r} -14.0 \\ -18.0 \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 5.0 / 7.3 \\ & 2.5 / 7.0 \end{aligned}$	$\begin{aligned} & 72 / 79 \\ & 54 / 66 \end{aligned}$	$\begin{array}{r} 22500 \\ 33000 \end{array}$	$\begin{aligned} & 6000 \\ & 5200 \end{aligned}$	=	$\begin{aligned} & 2500 \\ & 4200 \end{aligned}$	$\begin{array}{r} 6.5 \\ 10.8 \\ \hline \end{array}$	
								P．P．Class $A_{1}{ }^{6}$	270	$125 *$	270	11／17	134／145		－		$5000{ }^{8}$	18.5	
								P．P．Clos：$A_{1}{ }^{\text {B }}$	250 270	$\begin{aligned} & -16.0 \\ & -17.5 \end{aligned}$	$\begin{aligned} & 250 \\ & 270 \end{aligned}$	$\begin{aligned} & 10 / 16 \\ & 11 / 17 \end{aligned}$	$\begin{aligned} & 120 / 140 \\ & 134 / 155 \end{aligned}$	$\begin{array}{r} 24500 \\ 23500 \end{array}$	$\begin{aligned} & 5500 \\ & 5700 \end{aligned}$	二	$\begin{aligned} & 5000 \mathrm{~B} \\ & 5000^{\mathrm{B}} \end{aligned}$	$\begin{aligned} & 14.5 \\ & 17.5 \end{aligned}$	
								P．P．Class $A B_{1}{ }^{\text {a }}$	360	250＊	270	5／17	88／100	Power oulput for 2 tubes． Lad plale－lo－plote			$9000{ }^{\text {B }}$	24.5	
								P．P．Clos：$A B_{1}{ }^{\circ}$	360	－22．5	270	5／15	B8／132				$6600{ }^{\text {8 }}$	26.5	
								P．P．Closs $\mathrm{AB}_{2}{ }^{\text {B }}$	$\begin{aligned} & 360 \\ & 360 \end{aligned}$	$\begin{aligned} & -18.0 \\ & -22.5 \end{aligned}$	$\begin{array}{r} 225 \\ 270 \end{array}$	$\begin{gathered} 3.5 / 11 \\ 5 / 16 \end{gathered}$	$\begin{aligned} & 78 / 142 \\ & 88 / 205 \end{aligned}$				$\begin{aligned} & 6000{ }^{8} \\ & 3800^{8} \end{aligned}$	$\begin{aligned} & 31.0 \\ & 47.0 \end{aligned}$	
								R．F．Amp．	250	-3.0	100	5.5	5.3	800000	1100	－		－	$6 \mathrm{L7}$
617	Penlogrid Mixer Amplifio	71	6.3	0.3				Mixer	250	-6.0	150	8.3	3.3	Over 1 meg．	Oscillatar－grid（No．3）voltoge $=-15$				
6N7	Twin Triode	8B	6.3	0.8				Class－8 Amp．	300	0	－	－	35／70	\square	－	－	8000	10.0	6 N7
607	Duplex－Diode Triode	75	6.3	0.3	5	3.8	1.4	Triode A．mp．	250	－ 3.0	－	－	1.1	58000	1200	70	－	－	607
6R7	Duplex－Diade Triade	$7 V$	6.3	0.3	4.8	3.8	2.4	Triode Amp．	250	-9.0	－	－	9.5	8500	1900	16	10000	0.28	6R7
657	Remate Cut－off Pentade	7R	6.3	0.15	6.5	10.5	0.005	Class－A Amp．	250	－ 3.0	100	2.0	8.5	1000000	1750	－	－		657
6SA7	Pentagrid Converter	8R2 ${ }^{2}$	6.3	0.3				Converter	250	03	100	8.0	3.4	B00000	Grid No． 1 resistor 20000 ohms				6SA7
6587Y	Penlagrid Canverter	8R	6.3	0.3	9.6	9.2		Converter	100	－ 1	100	10.2	3.6	500000	900		－	－	6SB7Y
								Converter	250	－ 1	100	10	3.8	1000000	950	－	－	\cdots	
					Osc．Section in 88－108 Mc．Serv．				250	22000 ${ }^{\circ}$	12000 ${ }^{\circ}$	12．6／12．5	6．8／6．5	－			－		
$65 C 7$	Twin－Triode	85	6.3	0.3	－	－	－	Class－A Amp．	250	－ 2.0	－	\square	2.0	53000	1325	70	\square	－	$65 C 7$

TABLE I-METAL RECEIVING TUBES - Continued

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES
(For "G" and "GT"-Type Tubes Not Listed Here, See Equivalent Type in Toble I; Characteristiss and Connections Will Be Identical)

Type	Name	Socket Connec. tions	Fil. or Heater		Capacitance $\mu \mu \mathrm{ld}$.			Use	Plate Supply Volts	Grid Bios	Screen Volts	Screen Current Ma.	Plote Current Ma.	Plate Resistance Ohms	Transcon ductance Micromhos	Amp. Factor	LoadResistonceOhms	Power Output WaHs	Type
			Volts	Amp.	In	Out	Plote $=$ Grid												
2822	Diode	Fig. 37	6.3	0.75	2.2			U.h.f. Detector	Average cathode Mo. $=5$; Output volts $=50$ d.c.; Load resislance $=10000$.										2822
$2 \mathrm{C22}$	Triode	4AM	6.3	0.3	2.2	0.7	3.60	Closs.A Amp.	300	-10.5			11	6600	3000	20		\square	$2 \mathrm{C22}$
6ASGT	Triode Power Amplifior	$6 T$	6.3	1.0				Class-A Amp. ${ }^{4}$	250	-45.0			60	800		4.2	2500	3.75	6A5G
						-		P.P. Class AB ${ }^{\text {5 }}$	325	-68.0		-	80	-	5250	-	$3000{ }^{\circ}$	15.0	
								P.P. Class ${ }^{\text {A }}{ }^{\text {s }}$	325	850*			80	-			$5000{ }^{\circ}$	10.0	
6AB6G	Direct-Coupled Amplifer	TAU	6.3	0.5				Class-A Amp.	250	0	Input		5.0	40000	1800	72	8000	3.5	6AB6G
	Direct-Couplod Amplner		6.3	0.5				Class-A Amp.	250	0	Output		34						
GACSGT	High - μ Power-Amplifier	60	6.3	0.4		-		P.P. Closs B ${ }^{\text {s }}$	250	0			5.0	36700	3400	125	$10000{ }^{\circ}$	8.0	6ACSCT
ancsor	Triode	60	6.3	0.4				Dyn.-Coupled	250				32				7000	3.7	
6AC6G	Direct-Coupled Amplifer	7 AU	6.3	1.1				Class-A Amp.	180	0	Input		7.0	-	3000	54	4000	3.8	6AC6G
6ADSG									180	0	Output		45						
	High- μ Triode	60	6.3	0.3	4.1	3.9	3.3	Class-A Amp.	250	- 2.0	-	-	0.9	-	1500	100	—		6ADSG
6AD6G ${ }^{10}$	Electron-Ray Tube	$7 A G$	6.3	0.15	-			Indicator	100	0 for 90°; - 23 for $1355^{\circ} ; 45$ for 0°. Target current 1.5 ma. for 0°.									6AD6G
6AD	Triode-Pentade	8AY	6.3	0.85		-		Triode Amp.	250	-25.0	$\overline{\overline{250}}$	-	4.0	19000	325	6.0	-	-	6AD7G
6 AD								Pentode Amp.	250	-16.5		6.5	34	80000	2500	$\underline{\square}$	7000	3.2	

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES—Continued

Type	Name	Sockel Connections	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plote Supply Volts	Grid Bias	$\begin{gathered} \text { Screan } \\ \text { Volis } \end{gathered}$	Screen Current Me.	Plate Current Ma.	$\begin{gathered} \text { Plate } \\ \text { Resistonce } \\ \text { Ohms } \end{gathered}$	Transeonductance Micromhos	Amp. Factor	$\begin{array}{\|c} \text { Load } \\ \text { Resistonce } \\ \text { Ohms } \end{array}$	Power Output Wotts	Typ*
			Valts	Amp.	In	Out	PiateGrid												
6AE5G ${ }^{10}$	Triode Amplifier	60	6.3	0.3	-			Closs-A Amp.	95	-15.0			7.0	3500	1200	4.2			6AE5G
6AE7GT ${ }^{10}$	Twin-Input Triode	7AX	6.3	0.5				Driver Amplifior	250	-13.5			5.0	9300	1500	14			6AE7
6AF5G	Triode	60	6.3	0.3				Closs-A Amplifier	180	-18.0			7.0	-	1500	7.4			AFF5G
6AF7G	Twin Election Ray	8 AG	6.3	0.3		-		Indicator Tube											GAF7G
6AG6G ${ }^{10}$	Power-Amplifer Pentode	75	6.3	1.25				Class-A Amplifier	250	-6.0	250	6.0	32		1000	8	85	3.75	GAG6G
6AH4GT	Triode	8EL	6.3	0.75	7.5	3.2	4.2	Closs-A Amplifier	250	-23		-	30	1780	4500	8	4200		6AH4GT
6AHSG	Beam Power Amplifier	6AP	6.3	0.9				Closs-A Amplifier	350	-18	250			33000	5200		4200	10.8	CAH5G
6AH7GT	Twin Triode	8BE	6.3	0.3				Converter a Amp.	250	-9.0			$12{ }^{1}$	8800	2400	16			
6AL6G	Beam Power Amplifier	6AM	6.3	0.9				Class-A Amplifier	250	-14.0	250	5.0	72	22500	6000		2500	6.5	ALOG
BALTGT	Electron-Ray Tube	8CH	6.3	0.15			-	Indicator	Outer edge of any of the three illuminated areas displaced $1 / 18 \mathrm{in}$. min. outword with +5 volts to its elactrode. Similar inward disp. with -5 volts. No pattern with -6 volts grid.										6ALTGT
6AO7GT	Duplex Dlode Triode	8CK	6.3	0.3	2.3	1.5	2.8	Class-A Amplifier	250	- 2.0			- 2.3	44000	1600	70			6AO7GT
GARS	Beam Power Amp.	6BO	6.3	1.2	11	7	0.55	Class-A Amplifier	250	-22.5	250	5	77	21000	5400	95	-		6AR6
								D.C. Amplifier	135	250*			125	280	7500	2.1	$6000 \cdot$		6AS7G
6AS7G	Low.Mu Twin Triode	8BD	6.3	2.5	-			Class-A Amp. P.P.	250	2500*			100/106	280	225 ${ }^{\circ}$		6000 volis.	13	6AU5GT
6AU5GT	Beam Pentode	6CK	6.3	1.25	11.3	7	0.5	Horz. Def. Amp.	$450{ }^{11}$	-5011			10011	oak pos. plate pulse $=5000$					6AUSGT
GAV5GT	Beam Pentade	6CK	6.3	1.2				Horr. Def. Amp.	500^{11}	-5011	17511		10011	Peak pos. plate pulse $=4500$ volis.					6AVSGT
6AW7GT	Twin Triode	8 CO	6.3	0.3				Class-A Amplifier	100	0			1.4		1200	80			6AW7 GT
6B4G	Triode Power Amplifier	55	6.3	1.0				Power Amplifer	Charocteristics same as Type 6A3-Table IV										BSG
6866	Duplex-Diode High- μ Triode	7 V	6.3	0.3	1.7	3.8	1.7	Deteclor-Amplifier	Characteristics same as Type 75-TablelV										6B6C
6BD5GT	Beam Pentode	6CK	6.3	0.9				Horz. Def. Amp.	32511		32511		10011	Peok pos. plate pulse $=4000$ volts.					T
6BLTGT	Double Triode	8BD	6.3	1.5	4.4	1.1	4	Class-A Amp.	250	-9			$40{ }^{1}$	2000	7000	14			BL7 GT
6BC6GT	Beam Penlode	6AM	6.3	1.2				Deflection Amp.	55011		150		10	Peak pos. plate pulse $=4000$ volts.					Q66G
6BG6G	Beam. Power Amplifier	5BT	6.3	0.9	11	6.5	0.5	Deflection Amp.	70011	-5011	350		10011	Peak pos. plate 1300 1800		pulse $=6$	6000 volts		G6G
6BX7GT	Twin Triode	8BD	6.3	1.5	4.4	1.1	4.2	Class-A Amplifier	250	390*			42			10	-		6BX7GT
6C8G	Twin Triode	8 G	6.3	0.3				Amp. 1 Section	250	- 4.5			3.1	Peak pos. plate pulse $=6000$ volis.					6C8G
6CD6G	Beam Pentode	5BT	6.3	2.5	26	10	1.0	Horz. Def. Amp.	70011	-5011	17511		170^{11}						6CD6G
608G	Pentagrid Canvertor	8A	6.3	0.15				Converter	250	- 3.0	Triode Plate 150 volis								6088G
6E8G10	Triode-Hexode Converter	80	6.3	0.3				Converlar	250	- 2.0									
6F8G	Twin Triade	8 G	6.3	0.6				Amplifier	250	- 8.0			91	7700	2600	20			F8G
G6G	Pentode Power Amplifer	75	6.3	0.15				Class-A Amplifier	180	- 9.0	180	2.5	15	175000	2300	400	10000	1.1	$6 G 6 G$
								Class-A Amplifier ${ }^{2}$	180	-12.0				4750	2000	9.5			6H4GT
6H4GT	Diode Rectifior	5 AF	6.3	0.15				Detector	100				8.0	650000	2400				6H8G
$6{ }^{6} 8 \mathrm{G}$	Duo-Diode High- μ Pentode	8 E	6.3	0.3				Class-A Amplifier	250	- 2.0	100		8.5	Anode-grid (No. 2) 250 volis max. ${ }^{3} 5$ mo.					6J8G
$6 \mathrm{6J8G}{ }^{10}$	Triode Heptode	8 H	6.3	0.3				Converter	250	-3.0 -3.0	100	2.8	1.2						6K5GT
6K5GT ${ }^{10}$	High- μ Triade	5U	6.3	0.3 0.4	2.4	3.6	2.0	Closs-A Amplifier	Characleristics same as Type 41-Table IV										6K6GT
6K6GT	Pentode Power Amplifier Triode Amplifier	75	6.3	0.4 0.15				Class-A Amplifier	250	- 9.0	-	Char	\| 8.0		\| 1900	17	-		6L5G
615G	Triode Amplifier	60	6.3	0.15 1.2	2.8	5.0	2.8	Closs-A Amplifer	250	- 6.0	250	4.0	36		9500		7000	4.4	6M6G
6M6G ${ }^{10}$	Power Amplifier Penlode Pentode Amplifier	78	6.3	1.2				Closs-A Amplifier	250	- 6.0	125	2.8	10.5	900000	3400				6M7G
$6 \mathrm{M7G}$	Pentode Amplifier	7 R	6.3	0.3				R.F. Ampliner	100				0.5	91000	1100				6M8GT
6M8GT	Dlode Triode Penlode	8 AU	6.3	0.6				Pentode Amplifier	100	- 3.0	100	-	8.5	200000	1900				
6N6G ${ }^{10}$	Direct-Coupled Amplifier	7 AU	6.3	0.8	-	-		Power Amplifer	Characteristics some as Type 6B5-Table IV										6PSSGT
6P5GT10	Triode Amplifier	60	6.3	0.3	3.4	5.5	2.6	Closs-A Amplifier	250	-13.5	-		5.0	9500	1450	13.8			6P7G
6P7 G ${ }^{10}$	Triode-Pentade	70	6.3	0.3				Closs-A Amplifier	Chorocteristics same as 6F7-Table IV										6P8G
6P8G	Triode-Hexode Convertor	${ }_{6 K} \mathrm{Y}$	6.3	0.8				Converter	250	-2.0 -3.0	75		1.2	-	\| 1050	- 65	,		6066
6966	Diode.Triode	6Y	6.3	0.15				Closs-A Amplifer		- 3.0	100	1.7	7.0		1450	1160			6R6G
6R6G	Pentode Ampliner	6AW	6.3	0.3	4.5	11	0.007	Class-A Amplifer	250	$-\quad 3.0$ -2.0	- 100	3.0	13	350000	4000				6S6GT
6S6GT	Remole Cut-off Pentode	5AK	6.3	0.45															

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES-Continued

Type	Name	Socket Connecfions	Fil. or Healer		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{aligned} & \text { Seroen } \\ & \text { Volts } \end{aligned}$	Screen Current Ma.	Plato Current Ma.	$\begin{aligned} & \text { Plate } \\ & \text { Resistence } \\ & \text { Ohms } \end{aligned}$	Transconductance Micromhos	Amp. Factor	$\begin{gathered} \text { Load } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Power Output Watls	Type
			Volls	Amp.	In	Out	Plate. Grid												
658GT	Triple Dlode Triode	8 CB	6.3	0.3	1.2	5	2	Cless-A Amplifier	250	- 2.0									
6SD7GT	Medium Cut-off Pentode	8 M	6.3	0.3	9	7.5	. 0035	R.F. Amplifior	250	- 2.0	100		0.9	91000	1100	100			658GT
6SE7GT	Shatp Cut-off Pentode	8 N	6.3	0.3	8	7.5	. 005	R.F. Ampilifor	250	-2.0	100	1.9	6.0	1000000	3600		-		6507GT
6SH7L	Penlode R.F. Amp.	8BK	6.3	0.3				Class-A Amplifior	250	- 1.5	100	4.5	4.5	1100000	3400	3750			6SE7GT
6SLIGT	Twin Triode	880	6.3	0.3				Class-A Amplifor	250	- 2.0				90000	4900				65 H 7 L
$\begin{aligned} & \hline \text { 6SN7GT } \\ & \text { 6SN7GTA } \end{aligned}$	Twin Triode	880	6.3	0.6				Class-A Amplifer	250	- 2.0			2.31	44000	1600	70			6SL7GT
6SU7GTY	Twin Triode	8BD	6.3	0.3				Class-A Amplifer	250	- 2.0									6SN7GTA
6T6GM 10	Amplifier	62	6.3	0.45				Class-A Amplifier	250	-1.0	100	2.0	10	1000000	1600	70			6SU7GTY
OUSGT	Beam Power Amplifer	7AC	6.3	0.75				Class-A Amplifer	200	-14.0	135	3.0	56	1000000	5500		300		6T6GM
6U7G	Varioble-s Pentode	7R	6.3	0.3	5	9	. 007	Class-A Amplifier	Characteristics same as Type 6D6-Table III										6U6GT
6V5GT	Beam Power Amplifier	6AO	6.3	0.45	9.0	10	0.6	Class-A Amplifier											6V5GT
6V7G ${ }^{10}$	Duplex Diode-Triode	7 V	6.3	0.3	2	3.5	1.7	Datector-Amplifer	Characteristics same as Type 85-Table III 5.5										6V7G
SWW7G	Beam Power Amplifer	$7 \mathrm{7R}$	6.3	1.25				Class-A Amplifer	135	- 9.5	135	12.0	61.0		9000	215	2000	3.3	6W6GT
6X6G	Electron-Ray Tube	7AL	6.3	0.15	5	8.5	. 007	Class-A Amplifier	250	- 3.0	100	2.0	0.5	1500000	1225	1850	-		6W7G
6YOG	Beam Power Amplifar	7 AC	6.3	1.25	15	8	0.7	Class-A Ampli	250	-13	0 v for $300^{\circ}, 2 \mathrm{ma},-8 \mathrm{v}$ for $0^{\circ}, 0 \mathrm{ma}$. Vone grid 125 v .								6X6G
6Y7G ${ }^{10}$	Twin Triode Amplifer	88	6.3	0.3				Class-B Amplifior				3.0	60.0	9300	7000	-	2000	3.6	6YGG
627 G	Twin Triode Ampli								Characleristics same as Type 79-Table IV										6Y7G
	T	88	6.3	0.3				Class-B Amplifor	135	0			8.4	-	-	-	12000 9000	4.2	6276
717 A	Sharp Cut-off Pentode	88K	6.3	0.175				Class-A Amplifer	120	- 2.0	120	2.5	7.5	390000	4000				717A
1223	Sharp Cut-off Pentode	7 R	6.3	0.3				Class-A Amplifer	Charactaristics same as 6C6-Table IV										1223
1635	Twin Triode Amplifer	88	6.3	0.6				Class-B Amplifier	400	0	-	-	10/63	-			14000	17	1635
5691	Hi-Mu Twin Triode	88D	6.3	0.6	$\begin{gathered} 2.4^{7} \\ 2.7^{8} \end{gathered}$	$\begin{aligned} & 2.37 \\ & 2.78 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.6^{7} \\ 3.6^{8} \\ \hline \end{array}$	Class-A Amp.	250	- 2			$2.3{ }^{1}$	44000	1600	70	-	\square	5691
5692	Medium-Mu Twin Triode	880	. 6.3	0.6	$\begin{array}{\|l\|} \hline 2.3^{7} \\ 2.6^{\circ} \end{array}$	$\begin{aligned} & 2.57 \\ & 2.78 \end{aligned}$	$\begin{aligned} & 3.5^{7} \\ & 3.3^{8} \end{aligned}$	Class-A Amp.	250	- 9		-	6.51	9100	2200	18	-	-	5692
5881	Beam Power. Amp.	7 AC	6.3	0.9				Audio Amplifier	Characteristics same as 616, Tablo 1										5881
6080	Low-Mu Twin Triode	8BD	6.3	2.5	6.4	2.2	8.4	D.C. Amplifier	135	250*		Charocteristics same as Type 6JJ-Table I				2	-		6080
7000	Low-Noise Amplifler	7 R	6.3	0.3				- Values are for single tube. ${ }^{5}$ Values are for two tubes in push-pull.											7000
${ }^{3}$ Through 20,000-ohm dropping resistor.												${ }^{6}$ Plote-lo-plote value. 7 No. 1 triode.			8 No. 2 friode. ${ }^{2}$ Peak a.f. volis G-G.		${ }^{10}$ Discontinued. ${ }^{11}$ Max. value.		

TABLE III-7-VOLT LOCK-IN-BASE TUBES—For other lock-in-bose Iypes soe Tobles VIII, IX, ond X

Type	Nome	Socket Connections	Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Mo.	Plate Resistance Ohms	Transconduetance Mieromhos	Amp. Factar	LoadResisionceOhms	Power Oulput Watts	Type
			Volls	Amp.	In	Out	PloteGrid												
744	Triode Amplifor	SAC	7.0	0.32	3.4	3	4	Closs-A Amplifior	250	- 8.0	-	-	9.0	7700	2600	20			
745	Beam Power Amplifier	6AA	7.0	0.75	13	7.2	0.44	Class-A, Amplifor	125	-9.0	125	3.2/8	37.5/40	17000	6100	20	2700	1.9	$7 \mathrm{7A4}$
7 7A ${ }^{\text {7 }}$	Twin Diode	7AJ	7.0	0.16				Rectiliter	Max. A.C. volis per plate-150. Max. Output current-10 ma. 2700										746
$7 \mathrm{7AB}$	Remote Cut-of Pentode	8 V	7.0	0.32	6	7	. 005	Class-A Amplifier	250	- 3.0	100	2.0	8.6	200000	2000	1600	-		747
7 7AD7	Muligrid Converter	8 V	7.0	0.16 0.6	7.5	9.0	0.15	Convertar	250	-3.0	100	3.1	3.0	50000	Anode-grid 250 volis max. ${ }^{1}$				7AB
7 AF7	Twin Triode	8 AC	6.3	0.3	2.2	1.6	2.3	Class-A Amp.	250	-10	150	7.0	28.0	300000	9500				7 AO7
7 AG7	Sharp Cut-off Pentode	8 V	7.0	0.16	7.0	6.0	0.005	Closs-A, Amp.	250	250*	250	2.0	6.0	750000	2100	16			7AF7
7 7AH7	Penlode Amplifier	8 V	6.3	0.15	7.0	6.5	0.005	Closs-A Amplifier	250	250*	250	1.9	6.8	1000000	3300	-			7AG7
74.37	Sharp Cut-off Pentode	8 V	6.3	0.3	6.0	6.5	0.007	Class-A1 Amp.	250	- 3	100	0.7	2.2	1 Meg.	1575				
									100	- 1	100	1.8	5.5	400000	2275				7AJ7

TABLE III-7-VOLT LOCK-IN-BASE TUBES-Continued

table iv-6.3-volt glass receiving tubes-Continued

TABLE V-2.5-VOLT RECEIVING TUBES

Type	Name	Base	$\left\lvert\, \begin{gathered} \text { Socket } \\ \text { Connec- } \\ \text { tions } \end{gathered}\right.$	Fil. or Heater		Caparitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{aligned} & \text { Serean } \\ & \text { Volts } \end{aligned}$	Screen Current Mo.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Mieromhos	Amp. Factor	LoadResistanceOhms	Power Outpul Watts	Type
				Volts	Amp.	In	Out	$\begin{aligned} & \text { Plafe- } \\ & \text { Grid } \end{aligned}$												
25/45	Duadiode	M.	50	2.5	1.35				Delector	Al 50 d.c. Volts per plate, eathode ma. $=80$										25/45
243	Triode Power Amplifior	M.	4D	2.5	2.5	7.5	5.5	16.5	Class-A Amp.	Characteristiss same as Type 6A3, Table IV										243
$2 A 5$	Pontode Power Amplifier	M.	68	2.5	1.75	-			Closs-A Amp.	Characteristics same as Type 42, Table iV										245
2 A 6	Duplex-Diode Triode	5.	6 G	2.5	0.8	1.7	3.8	1.7	Class-A Amp.	Characlaristics same as Type 75, Table iv										2A6
247	Pontagrid Converter	5.	7 C	2.5	0.8				Convertar	Charactaristics same as Type 6A7, Table IV										247
286	Direct-Coupled Amplifier	M.	71	2.5	2.25				Amplifier	250	-240		-	40.0	5150	3500	18.0	5000	4.0	286
287	Duplex-Diode Pentode	S.	70	2.5	0.8	3.5	9.5	. 007	Pentode Amp.	Characteristics same as Type 6B7-Table IV										287
$2 E 5$	Electron-Ray Tube	5.	6R	2.5	0.8				Indicator Tube	Characteristics same as Type 6E5-Table IV										2E5
$2 \mathrm{G5}$	Eloctron-Ray Tube	5.	6R	2.5	0.8				Indicator Tube	Characteristics same as 6U5/6G5-Table IV										2 G 5
24-A	Tetrode R.F. Amplifier	M.	5E	2.5	1.75	5.3	10.5	. 007	Sereen-Grid R.F. Amplifier	250	- 3.0	$20 / 45$	1.7	4.0	600000	1050	630			24.A
									Bias Delector	250	-5.0 -21.0		Plate current adjusted to 0.1 mo. with no signal							
								3.3	Class-A Amp.	250		-		5.2	9250	975	9.0			27
27	Triode Detector-Amplifier	M.	SA	2.5	1.75	3.1	2.3		Bias Detector	250	-30.0		Plate current adjusted to 0.2 ma . with no signal							
35/51	Remote Cut-off Pentode	M.	$5 E$	2.5	1.75	5.3	10.5	. 007	Sereen-Grid R.F. Amplifier	250	-3.0	90	2.5	6.5	400000	1050	420	-	-	35/51
45	Triode Power Amplifier	M.	4D	2.5	1.5	4	3	7	Class-A Amp.	275	-56.0			36.0	1700	2050	3.5	4600	2.00	45
45	Dual-Grid Power Amp.	M.	5 C	2.5	1.75	-			Class-A Amp. ${ }^{2}$	250	-33.0		-	22.0	2380	2350	5.6	6400	1.25	46
46									Class-B Amp. ${ }^{3}$	400	0			12	Power output for 2 tubes			5800	20.0	
47	Pentode Power Amplifier	M.	5B	2.5	1.75	8.6	13	1.2	Class-A Amp.	250	-18.5	250	6.0	31.0	60000	2500	150	7000	2.7	47
53	Twin Triode Amplifier	M.	78	2.5	2.0				Class-8 Amp.	Characteristics same as Type 6AB, Table IV										53
55	Duplex-Diode Triode	5.	$6 G$	2.5	1.0	1.5	4.3	1.5	Closs-A Amp.	Characteristics same as Type 85, Table IV										55
56	Triode Amplifier, Detecior	5.	5 A	2.5	1.0	3.2	2.4	3.2	Class-A Amp.											56
57	Sharp Cut-off Pentode	S.	6F	2.5	1.0				R.F. Amplifer	250	- 3.0	100 100	0.52.0	2.0	1500000	1225	1500	-		
58	Remote Cut-off Pentode	5.	$6 F$	2.5	1.0	4.7	6.3	. 007	Screen-Grid R.F. Amplifier	250	- 3.0			8.2	800000	1600	1280	-	-	58
59	Penlode Power Amplifier	M.	7 A	2.5	2.0				Class-A Triode ${ }^{\text {a }}$	250	-28.0	-	-	26.0	2300	2600	6.0	5000	1.25	59
									Class-A Pentode ${ }^{1}$	250	-18.0	250	9.0	35.0	40000	2500	100	6000	3.0	
RK15	Triade Power Ampllitier	M.	40:	2.5	1.75				Characteristies same as Type 46 with Class-8 connections											RK15
RK16	Triode Power Amplifier	M.	5A	2.5	2.0				Characteristics same as Type 59 with Class-A triode connections											RK16
RK17	Pentode Power Amplifier	M.	5F	2.5	2.0															RK17
${ }^{1}$ Grid	nection to cap; no conne	on to	3	2 Grid No. 2 tied to plate. 3					Grids Nos. 1 and 2 tied together.			4 Grids Nos. 2 and 3 connected to plate.				${ }^{5}$ Grid No. 2, sereen; grid No. 3, suppressor.				

TABLE VI-2.0-VOLT BATTERY RECEIVING TUBES

Typ*	Namo	Base	Socket Connections	Filoment		Copacilance $\mu \mu \mathrm{ld}$.			Us*	Plate Supply Volts	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volis } \end{gathered}$	Screen Current Ma.	Plate Current Ma.	Plofo Resistance Ohms	Transeonductance Misromhos	Amp. Factor	Lood Resistance Ohms	Power Outpul Watts	Type
				Volls	Amp.	In	Out	PlateGrid												
1A4P	Variable- μ Pentode	S.	4M	2.0	0.06	5	11	. 007	R.F. Amplifier	180	-3.	67.5	0.8	2.3	1000000	750	750			IA4P
TA4T	Variable μ Tetrode	5.	4K	2.0	0.06	5	11	. 007	R.F. Amplifier	180	-3.0	67.5	0.7	2.3	960050	750	720	-	-	1A4T
IA6	Penlagrid Converter	5.	61	2.0	0.06	-			Converter	180	- 3.	67.5	2.4	1.3	500000	Anode grid (No. 2) 180 max. volis				1ab
184/951	Pentode R.F. Amplifier	5.	4M	2.0	0.06	5	11	. 007	R.F. Amplifier	$\begin{array}{r} 180 \\ 90 \end{array}$	-3.0 -3.0	$\begin{aligned} & 67.5 \\ & 67.5 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 1500000 \\ & 1000000 \end{aligned}$	$\begin{aligned} & 650 \\ & 600 \end{aligned}$	$\begin{array}{r} 1000 \\ 550 \end{array}$	-	-	184/951
185/255	Duplex-Diode Triode	s.	6 M	2.0	0.06	1.6	1.9	3.6	Triode Class-A	135	-3.0			0.8	35000	575	20.			185/255
IC6	Penlagrid Converlar	S.	6 L	2.0	0.12	10	10		Converter	180	-3.0	67.5	2.0	1.5	750000	Anode grid (No. 2) 135 max. valts				156
1F4	Pentode Power Amplifier	M.	5K	2.0	0.12			-	Class-A Amp.	135	- 4.5	135	2.6	8.0	200000	1700	340	16000	0.34	154
					0.06	4	9	. 007	R.F. Amplifier	180	- 1.5	67.5	0.6	2.0	1000000	650	650			1F6
1F6	Duplex-Diode Penlode	s.	6W	2.0	0.06	4	9	. 007	A.F. Amplifier	135	- 1.0	135	late, 0.25 megohm; screen, 1.0 megol					Amp. $=48$		

TABLE VI-2.0-VOLT BATTERY RECEIVING TUBES - Continued

Type	Name	Base	Sockel Connecfions	Filament		Capacitance $\mu \mu \mathrm{ld}$.			Use	Plate Supply Volis	Grid Bias	Screen Volis	Screen Current Mo.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor		Power Ouipul Walts	Type
				Volts	Amp.	In	Out	Plate. Grid												
15.	Sharp Cut-off Pentode	5.	5 F	2.0	0.22	2.3	7.8	0.01	R.F. Amplifer	135	-1.5	67.5	0.3	1.85	800000	750	600			15
19	Twin-Triode Amplifer	5.	6 C	2.0	0.26				C̄lass-B Amp.	135	0				Load plate-to-plate			10000	2.1	19
30	Triode Delector Amplifer	S.	4D	2.0	0.06	-			Class.A Amp.	180	-13.5		\longrightarrow	3.1	10300	900	9.3			30
31	Triode Power Amplifer	5.	4 D	2.0	0.13	3.5	2.7	5.7	C̄lass-A Amp.	180	-30.0			12.3	3600	1050	3.8	5700	0.375	31
32	5harp Cur-off Pentode	M .	4K	2.0	0.06	5.3	10.5	. 015	R.F. Amplifler	180	-3.0	67.5	0.4	1.7	1200000	650	780			32
33	Pentade Power Amplifer	M.	5K	2.0	0.26	8	12	1	Class-A Amp.	180	-18.0	180	5.0	22.0	55000	1700	90	6000	1.4	33
34	Variable- μ Pentode	M.	4M	2.0	0.06	6	11	. 015	R.F. Amplifier	180	-3.0	67.5	1.0	2.8	1000000	620	620			34
49	Dual-Grid Power Amp.	M.	5 C	2.0	0.12	-	-	-	Class-A Amp. ${ }^{1}$	135	-20.0	-		6.0	4175	1125	4.7	11000	0.17	
									Class-B Amp. ${ }^{2}$	180	0			Power output for 2 tubes				12000	3.5	49
840	Pentode	S.	5J	2.0	0.13		-	\square	Class-A Amp.	180	- 3.0	67.5	0.7	1.0	1000000	400	400	-		840
950	Pentode Power Amplifler	M.	5 K	2.0	0.12	-	-	-	Class.A Amp.	135	-16.5	135	2.0	7.0	100000	1000	125	13500	0.575	950
RK24	Triode	M.	4D	2.0	0.12	\square			Class-A Amp.	180	-13.5			8.0	5000	1600	8.0	12000	0.25	RK24
1229	Terrode	M .	4K	2.0	0.06				Special Type 32 for low grid-current applications											1229
1230	Triode	M.	40	2.0	0.06	3.0	2.1	6.0	Special Type 30 for low grid-current applications											1230

TABLE VII-2.0-VOLT BATTERY TUBES WITH OCTAL BASES

TABLE VIII-1.5-VOLT FILAMENT BATTERY tUBES-Continued

Type	Name	Base	Sacket Connections	Filament		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volfs	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconduetance Micromhas	Amp. Factor	Load Resistance Ohms	Power Oulput M-Watts	Type
				Volts	Amp.	In	Out	Plate. Grid												
1 AB5	Pentode R.F. Amplifier	L.	5BF	1.2	0.05	2.8	4.2	0.25	R.F. Amplifer	90	0	90	0.8	3.5	275000	1100				1485
	Pentoda R.F. Ampliner		SBF	1.2	0.05	2.8	4.2	0.25	R.F. Amplifier	150	-1.5	150	2.0	6.8	125000	1350				
187GT	Heptode	0.	72	1.4	0.1			-	Converitar	90	0	45	1.3	1.5	350000	Grid No. 1 resistar 200,000 ohms				187 GT
188GT	Diode Triode Penforie	0.	8AW	1.4	0.1	-	-		Triode Amplifier Pentode Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{gathered} 0 \\ -6.0 \end{gathered}$	90	1.4	$\begin{aligned} & 0.15 \\ & 6.3 \end{aligned}$	240000	$\begin{array}{r} 275 \\ 1150 \end{array}$	—	14000	210	1B8GT
1C5GT	Pentode Powar Amplifier	0.	$6 \times$	1.4	0.1				Class-A1 Amp.	90	-7.5	90	1.6	7.5	115000	1550	165	8000	240	IC5GT
108GT	Diode Triode Pentode	0.	8AJ	1.4	0.1	-	-	-	Triode Amp. Pentode Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{gathered} 0 \\ -9.0 \end{gathered}$	90	1.0	$\begin{aligned} & 1.1 \\ & 5.0 \end{aligned}$	$\begin{array}{r} 43500 \\ 200000 \end{array}$	$\begin{aligned} & 575 \\ & 925 \end{aligned}$	25	-		1D8GT
1E4G	Triode Amplifer	0.	55	1.4	0.05	2.4	6	2.40	Class-A Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{array}{\|c\|} \hline 0 \\ -3.0 \end{array}$	-		$\begin{aligned} & 4.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 11030 \\ & 17000 \end{aligned}$	$\begin{array}{r} 1325 \\ 825 \end{array}$	$\begin{aligned} & 14.5 \\ & 14 \end{aligned}$	-		IE4G
IG4GT	Triode Amplifier	0.	55	1.4	0.05	2.2	3.4	2.80	Class-A Amp.	90	-6.0			2.3	10700	825	8.8	ーー		1G4GT
1G6GT	Twin Triode	0.	7AB	1.4	0.1				Class-A Amp.	90	0			1.0	45000	675	30			1G6GT
reser	Twin Trioce	O.	7 AB	1.4	0.1				Class-8 Amp.	90	0			1/7	34 voit	Is input per g	grid	12000	675	
1H5GT	Diode High- μ Triode	0.	52	1.4	0.05	1.1	6	1.00	Class-A Amp.	90	0			0.14	240000	275	65			IH5GT
ILA4	Pentode Power Amplifer	L.	5AD	1.4	0.05				Class-A Amp.	90	haracteristics same as 1A5GT									lla4
ILA6	Pentagrid Convertar	L.	7AK	1.4	0.05	Osc. Grid leak 20000082			Converter	90	0	45	0.6	0.55	750000	250	Anode Grid Volts 90			ILA6
1LB4	Pentode Power Amplinor	1.	5AD	1.4	0.05		,		Class-A Amp.	90	-9	90	1.0	5.0	200000	925	-	12000	200	1184
1186	Heptode Converter	1.	8AX	1.4	0.05				Converter	90	0	67.5	2.2	0.4	Grid No. 4-67.5 v., No. 5-0 v.					1186
ILC5	Remole Cut-osf Pentode	1.	7 AO	1.4	0.05	3.2	7	. 007	R.F. Amplifier	90	0	45	0.2	1.15	1500000	775	v,			1165
1LC6	Pentagrid Converter	L.	7AK	1.4	0.05	Osc. Grid leak 200000s			Converter	90	0	351	0.7	0.75	650000	275	Anode Grid Volts 45			1LC6
1LD5	Dlade Pentodo	L.	6AX	1.4	0.05	3.2	6	0.18	Class-A Amp.	90	0	45	0.1	0.6	950000	600		-		1105
1153	Triode Amplifier	L.	4AA	1.4	0.05	1.7	3	1.70	Class-A Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	0 -3	-	-	$\begin{aligned} & 4.5 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 11200 \\ & 19000 \end{aligned}$	$\begin{array}{r} 1300 \\ 760 \end{array}$	14.5	-	-	ILE3
1LF3	Triode	L.	4AA	1.4	0.05	1.7	3	1.7	Class-A Amp.	90	-3			1.4		760	14.5			$11 F 3$
1LG5	Pentode R.F. Amp.	L.	7AO	1.4	0.05				Class-A Amp.	90	0	45	0.4	1.7	1000000	800				ILG5
1LH4	Diodo High- μ Triode	1.	5AG	1.4	0.05	1.1	6	1.00	Class-A Amp.	90	0			0.15	240000	275	65			1LH4
ILN5	Remote Cut-off Pentode	t.	7AO	1.4	0.05	3.4	8	. 007	Class-A Amp.	90	0	90	0.3	1.2	1500000	753	-	-		ILNS
INSGT	Remole Cut-off Pentode	0.	$5 Y$	1.4	0.05	3	10	. 007	Class-A Amp.	90	0	90	0.3	1.2	1500050	750	1160	-		INSGT
INSG \#	Dioda-Power-Pentode	0.	TAM	1.4	0.05				Class-A Amp.	90	-4.5	90	0.6	3.1	300000	800		25000	100	IN6G
1P5GT	Pentode	0.	5 Y	1.4	0.05	3	10	. 007	R.F. Amplifier	90	0	90	0.7	2.3	800000	800	640			1P5GT
105GT	Tetrode Power Amplifier	0.	6AF	1.4	0.1	-	-	-	Class-A Amp.	$\begin{aligned} & 85 \\ & 90 \end{aligned}$	$\begin{aligned} & -5.0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & 85 \\ & 90 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 7.2 \\ & 9.5 \end{aligned}$	$\begin{array}{r} 70000 \\ 75000 \\ \hline \end{array}$	$\begin{aligned} & 1950 \\ & 2100 \end{aligned}$	-	$\begin{aligned} & 9000 \\ & 8000 \end{aligned}$	$\begin{array}{r} 250 \\ 270 \end{array}$	105GT
184/1294	U.h.f. Diode	1.	4AH	1.4	0.15				Rectifier	Max. r.m.s. voltage per plate-30 90 0 67.5 0.68 2.45					Max. d.e. output current- $340 \mu \mathrm{o}$.					1R4/1294
1SAGGT	Medium Cut-off Pentode	0.	6CA	1.4	0.05	5.2	8.6	0.01	R.F. Amplifier						800000	\| 970		-	-	1SAGGT
1SB6GT	Diode Pontode	0.	6CB	1.4	0.05	3.2	3	0.25	Class-A Amp.	90	0	67.5	0.38	1.45	700000	665				1SB6GT
									R.C. Amplifier	90	0	90	Screen resistor 5 meg., grid 10 meg.					1 meg.	110^{2}	
ITSGT	Beam Power Amplifier	0.	6AF	1.4	0.05	4.8	8	0.50	Class-A Amp.	90	-6.0	90	1.4	6.5	-	1150	-	14000	170	1T5GT
387/1291	U.h.f. Twin Triode	1.	78 E	$2.8{ }^{3}$	0.11	1.4	2.6	2.6	Class-A Amp.	90	0		-	5.2	11350	1850	21	-	-	387/1291
1293	U.h.f. Triode	1.	4AA	1.4	0.11	1.7	3.0	1.7	Class-A Amp.	90	0	-	-	4.7	10750	1300	14	-		1293
306/1299	U.h.f. Tetrode	L.	688	$2.8{ }^{3}$	0.11	7.5	6.5	0.30	Class-A Amp.	135	-6	90	0.7	5.7	-	2200	-	13000	500	306/1299
$3 E 6$	R.F. Pentode	L.	7 CJ	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.05 \end{aligned}$	5.5	7.5	0.007	Class-A Amp.	90	0	90	1.3	3.8	300000	2100	-	-	-	3E6
RK42	Triode Amplifier	S.	4D	1.5	0.6				Class-A Amp.	Characteristics same as Type 30-Table V1										RK42
RK43	Twin Trigde Amplifier	S.	6 C	1.5	0.12		-		Class-A Amp.	135	-3	-	-	4.5	14500	1900	13	-	-	RK43
\# Discontinued. ${ }^{1}$ Th		h	ies re	or.	v	loge	t be	ea	voits lowor	ose	a		2 Voltage gain.		3 Center-lap filament pormits 1.4-voll operation.					

table ix-high-voltage heater tubes

Typo	Nam*	Base	Sockel Connecfions	Heater		Capacilance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconduclance Micromhos	Amp. Factor	$\begin{gathered} \text { Load } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Power Output Watts	Type
				Volts	Amp.	In	Out	PlateGrid												
$12 \mathrm{AS}{ }^{3}$	Pentode Power Amplifier	M.	7F	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	9.0	9.0	0.3	Class-A Amp. ${ }^{\text {d }}$	$\begin{aligned} & 100 \\ & 180 \end{aligned}$	$\begin{array}{r} -15 \\ -25 \end{array}$	$\begin{aligned} & 100 \\ & 180 \end{aligned}$	$\begin{aligned} & 3 / 6.5 \\ & 8 / 14 \end{aligned}$	$\begin{aligned} & 17 / 19 \\ & 45 / 48 \end{aligned}$	$\begin{aligned} & 50000 \\ & 35000 \end{aligned}$	$\begin{aligned} & 1700 \\ & 2400 \end{aligned}$	——	$\begin{aligned} & 4500 \\ & 3300 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 3.4 \end{aligned}$	12 A 5
12A6	Beam Power Amplifier	0.	7AC	12.6	0.15	-	--		Class-A Amp.	250	-12.5	250	3.5	30	70000	3000		7500	3.4	12 A 6
12 A 7	Rectifier-Amplifier	M.	7 K	12.6	0.3				Class-A Amp.	135	-12.5	135	2.5	9.0	102000	975	100	13500	0.55	1247
12 ABGT	Heptode	0.	8 A	12.6	0.15	9.5	12	0.26	Converter	Characteristies same as 6A8-Table I										12A8GT
12AH7GT	Twin Triode	0.	8BE	12.6	0.15	Eoch Triode Sect.			Class-A Amp.	180	1-6.5		-	7.6	8400	1900	16			12AH7GT
1286M	Diode Triode	0.	6Y	12.6	0.15				Class-A Amp.	250	- 2.0			0.9	91000	1100	100			1286m
1287 ML	Pentode Amplifier	0.	8 V	12.6	0.15				Class-A Amp.	250	- 3.0	100	2.6	9.2	800000	2000				1287ML
1288GT ${ }^{\text {8 }}$	Triode-Pentode	0.	8 T	12.6	0.3	Triode Section Penlode Saction			Class-A Amp. Class-A Amp.	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\left[\begin{array}{l} -1 \\ -3 \end{array}\right.$	100	2	${ }_{8}^{0.6}$	$\begin{aligned} & 73000 \\ & 170000 \end{aligned}$	$\begin{aligned} & 1500 \\ & 2100 \end{aligned}$	$\begin{aligned} & 110 \\ & 360 \end{aligned}$	[1288GT
$12 \mathrm{C8}$	Duplex-Diode Pentode	0.	8 E	12.6	0.15	6	9	. 005	Class-A Amp.	Characteristics same as 688-Table I										12C8
12E5GT	Triode Amplifer	0.	60	12.6	0.15	3.4	5.5	2.60	Class-A Amp.	250	\|-13.5		Chara	50	- -	- 1450	13.8			12ESGT
12F5GT	Triode Amplifier	0.	5M	12.6	0.15	1.9	3.4	2.40	Class-A Amp.	Characteristics same as 6SF5-Table 1										12FSGT
12G7G	Duplex-Diode Triode	0.	7 7	12.6	0.15				Class-A Amp.	250	- 3.0	-		-	58000	1200	70	\longrightarrow		12G7G
$\frac{12 \mathrm{HS}}{12 \mathrm{~J} G \mathrm{GT}}$	Twin Diode	0.	70	12.6	0.15				Reclifer	Characteristics same as 6H6-Table I										12H6
12J5GT	Triode Amplifier	0.	60	12.6	0.15	3.4	$\frac{3.6}{5.0}$	$\frac{3.40}{3.8}$	Class-A Amp.	Characteristics same as 6J5-Table I										12J5GT
12K7GT	Remote Cut-off Pentode	0.	7R	12.6	0.15	4.2	12	3.8	Class-A Amp.	Charocteristics same as 6J7-rable I										12 J 7 GT
12K8	Triode Hexode Converler	0.	8 K	12.6	0.15				Converler	Characteristics same as 6K7-Table I										12K7GT
12L8GT	Twin Pentode	0.	8BU	12.6	0.15	5	6	0.70	Class-A, Amp.	180	- 9.0	180	2.8	13.0	160000	2150			1.0	12K8
12a7gi	Duplex-Diode Triode	0.	75	12.6	0.15	2.2	5	1.60	Class-A Amp.	Characteristics same as 697-Tablel										1207GT
12S8GT	Triple-Diode Triade	0.	8CB	12.6	0.15	2.0	3.8	1.2	Class-A Amp.	250	- 2.0			0.9	91000	1100	100	-		12S8GT
125A7	Heplode	0.	8R	12.6	0.15	9.5	12	0.13	Converter	Characteristics same as 6SAT-Table I										12SAT
125 C 7	Twin Triode	0.	8 S	12.6	0.15	2.2	3.0	2.0	Class-A Amp.	Characteristics same as 6SC7-Table I										$12 \mathrm{SC7}$
12SF5	High- μ Triade	0.	6AB	12.6	0.15	4	3.6	2.40	Class-A Amp.	Characteristics same as 6SF5-Tablel										125 F 5
12SF7	Diode Variable $-\mu$ Pentode	0.	$7 A Z$	12.6	0.15	5.5	6.0	. 004	Class-A Amp.	Characteristics some as 6SF7-Table I										12587
$125 \mathrm{G7}$	Medium Cut-off Pentode	0.	8BK	12.6	0.15	8.5	7.0	. 003	Class-A Amp.	Characteristics same as 6SG7-Table										12SG7
$12 \mathrm{SH7}$	Sharp Cut-off Pentode	0.	8BK	12.6	0.15	8.5	7.0	. 003	H-F Amplifier	Characteristics same as 6SH7-Table I										12587
12517	Sharp Cut-off Peniode	0.	8 N	12.6	0.15				Class-A Amp.	Characteristies same as 6SJ7-Table I										125 J 7
12517	Remole Cut-off Pentode	0.	8 N	12.6	0.15	6.0	7.0	. 003	R.F. Amplifier	Characteristics same as 6SK7-Table I										125K7
12517 GT	Twin Triode	0.	8BD	12.6	0.15				Closs-A Amp.	Characteristics same as 6SI7 GT-Table II										12SL7GT
12SN7GT	Twin Triode	0.	8 BD	12.6	0.3			--	Class-A Amp.	Characleristics same as 6SN7GT-Table II										12SN7GT
12507	Duplex-Diade Triade	0.	80	12.6	0.15	3.2	3.0	1.60	Class-A Amp.	Characteristics same as 6SO7-Table I										12SQ7
$125 R 7$	Duplex-Diode Triode	0.	80	12.6	0.15	3.6	2.8	2.40	Class-A Amp.	Characleristics same as 6R7-Table I										12SR7
125W7	Duplex-Diode Triode	0.	80	12.6	0.15	3.0	2.8	2.4	Class-A Amp.	250	-9			9.5	8500	1900	16	-		125w7
125×7	Twin Triode	0.	8 BD	12.6	0.3	3.0	0.8	3.6	Class-A, Amp. ${ }^{3}$	250	-8			9	7700	2600	20			125×7
$125 Y 7$	Heptode Converter	0.	8R	12.6	0.15	Osc. -Grid leak 20000 ohms			Converter	250	- 2	100	8.5	3.5	1000000	450	-	-	-	125Y7
14 A 4	Triode Amplifter	1.	5AC	14	0.16	3.4	3.0	4.00	Class-A Amp.	Characteristics same as 7A4-Table III										14A4
1445	Beam Power Amplifier	1.	6AA	14	0.16				Class-A, Amp.	250	-12.5	250	$3.5 / 5.5$	30/32	70000 ?	3000		7500	2.8	14A5
$\begin{aligned} & 14 A 7 / \\ & 12 B 77 \end{aligned}$	Remote Cut-off Pentode	L.	8 V	14	0.16	6.0	7.0	. 005	Closs-A Amp.	250	- 3.0	100	2.6	9.2	800000	2000	-	-	.	$\begin{aligned} & 14 A 7 / \\ & 12 B 77 \end{aligned}$
14AF7	Twin Triode	1.	8 8F	14	0.16	2.2	1.6	2.30	Class-A Amp.	250	-10		-	9	7600	2100	16			14AF7
1486	Duplex-Diode Triode	1.	8 w	14	0.16			-	Class.A Amp.	Characieristics same as 7B6-Table III										1486
1488	Pentagrid Converter	1.	$8 \times$	14	0.16	$\mathrm{lc} 2=4 \mathrm{Ma}$.			Converter	Characteristics same as 788-Table III										1488
14 Cs	Beam Power Amplifier	1.	6AA	14	0.24		-	--	Closs-A Amp.	Characleristics same as 6V6-Table I										$14 \mathrm{C5}$
$14 \mathrm{C7}$	R.F. Penlode	1.	${ }^{8} \mathbf{V}$	14	0.16	6.0	6.5	. 007	Class-A Amp.	250	- 3.0	100	0.7	2.2	$1000000 \mid$	1575	\square			14C7
14E6	Duplex-Diade Triode	1.	8W	14	0.16	-			Class-A Amp.	Characteristics same as 7E6-Table III										$14 E 6$
$14 \mathrm{E7}$	Duplex-Diade Pentode	1.	8AE	14	0.16	4.6	5.3	. 005	Class-A Amp.	Characleristics same as 7E7-Table III										$14 E 7$

TABLE IX - HIGH-VOLTAGE HEATER TUBES-Continued

Type	Name	Base	Socket Connecfions	Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Oulput Watts	Type
				Volts	Amp.	In	Out	PlateGrid												
$14 F 7$	Twin Triode	1.	BAC	14	0.16				Class-A Amp.	Characleristics same as 7F7-Table III										$14 \mathrm{F7}$
14 F 8	Twin Triode	L.	8BW	12.6	0.15	2.8	1.4	1.2	Class-A, Amp.	Characleristics same as 7F8										14F8
14H7	Semi-Variable- μ Pentode	1.	8 V	14	0.16	8.0	7.0	. 007	Class-A Amp.	250	- 2.5	150	3.5	9.5	800000	3800				1447
14.7	Triode-Hexode Converler	1.	8 BL	14	0.16	$\underline{\|p\|}=5 \mathrm{Ma}$.			Converter	Characleristics same as 7J7-Table III										$14 J 7$
14N7	Twin Triode	1.	8AC	14	0.32				Class-A Amp.	Characteristics same as 7N7-Table 111										14N7
1407	Heptode Pentagrid Converter	L.	8AL	14	0.16	-	-	-	Canverter	Characteristics same as 707-Table III										14Q7
14R7	Duplex-Diode Pentode	1.	8AE	14	0.16	5.6	5.3	. 004	Class-A Amp.	Choracteristics same as 7R7-Toble III										14R7
1457	Triode Heplode	1.	8 BL	14	0.16	$\mid \mathrm{pt}=5 \mathrm{Ma}$.			Converter	250	-2.0	100	3	1.8	1250000	525				1457
14V7	H.f. Pentode	L.	8 V	14	0.24				Class-A Amp.	300	- 2.0	150	3.9	9.6	300000	5800				$14 \mathrm{V7}$
14W7	Pentode	1.	8BJ	14	0.24	Rk $=160 \mathrm{ohms}$			Class-A Amp.	300	- 2.2	150	3.9	10	300000	5800				14W7
14×7	Twir Diode Triode	1.	8 BZ	12.6	0.15	\square	-		Class-A Amp.	250	-1		-	1.9		1500	100			14×7
18	Pentode	M.	68	14	0.30				Class-A Amp.	Characteristics same as 6F6G										18
198G6G	Beam Power Amp.	0.	5 ST	18.9	0.3	11	6.5	0.65	Deflection Amp.	400	Peak surge $\mathrm{E}_{\mathrm{p}}=4000$ V. Peak surge $\mathrm{E}_{\mathrm{G}}=-100 \mathrm{~V} . \mathrm{I}_{\mathrm{i} 2}=6 \mathrm{ma} . \mathrm{I}_{\mathrm{P}}=70 \mathrm{ma}$.									198G6G
20J8GM	Triode Heplode Converter	0.	8 H	20	0.15				Convertar	250	- 3.0	100	3.4	1.5	Triode Plate (No. 6) 100 v. 1.5 ma.					20J8GM
2147	Triode Hexode Converter	1.	8 AR	21	0.16			-	Converter	$\begin{array}{r} 250 \\ 150 \end{array}$	$\left\{\begin{array}{l} -3.0 \\ -3.0 \end{array}\right.$	${ }^{100}$ Triode ${ }^{2.8}$		$\begin{aligned} & 1.3 \\ & 3.5 \end{aligned}$	二	$\begin{array}{r} 275 \\ 1900 \end{array}$	32			21 A7
2546	Pentode Power Amplifier	0.	75	25	0.3	8.5	12.5	0.20	Class-A Amp.	135	-20.0	135	8	37	35000	2450	85	4000	2.0	25A6
25ATGT ${ }^{\text {S }}$	Rectifier Power Pentode	0.	8F	25	0.3				Class-A Amp.	100	-15.0	100	4	20.5	50000	1800	90	4500	0.77	25A7GT
										110	+15.0			45	-	3800	58	2000	2.0	
25ACSGT	Triode Power Amplifer	0.	60	25	0.3				Class-A Amp.	165	Used in dynamic-coupled circuit with 6AF5G driver							3500	3.3	25AC5GT
25AV5GT	Beam Pentode	0.	6CK	25	0.3				Horz. Def. Amp.	$250{ }^{9}$	-50^{9}	175		$10{ }^{9}$	Peak pes. plate pulse $=4500$ volls.					25AV5GT
25B5 ${ }^{\text {8 }}$	Direct-Coupled Triodes	5.	6D	25	0.3	-			Class-A Amp.	110	0	110	7	45	11400	2200	25	2000	2.0	25B5
25B6G ${ }^{8}$	Pentode Power Amplifier	0.	75	25	0.3				Class.A Amp.	95	-15.0	95	4	45		4000		2000	1.75	25B6G
$2588 \mathrm{GT}^{8}$	Triode Pentode	0.	8 T	25	0.15				Class-A Amp.	Charocteristics same as 1288GT										25B8GT
25806GT	Beam Pentode	0.	6AM	25	0.3				Deflection Amp.	250	47*	150	2.1	45	-	5500		-		25806GT
$25 \mathrm{C6G}{ }^{8}$	Beam Power Amplifier	0.	7AC	25	0.3				Class-A, Amp.	135	-13.5	135	3.5/11.5	58/60	9300	7000		2000	3.6	25C6G
25D8GT	Diode Triode Pentode	0.	8AF	25	0.15		-	-	Triade Amp.	100	-1.0			0.5	91000	1100	100			2508GT
									Penlode Amp.	100	- 3.0	100	2.7	8.5	200000	1900	-	-		
2516	Beam Power Amplifier	0.	7AC	25	0.3	16	13.5	0.30	Class-A, Amp.	110	-8.0	110	3.5/10.5	45/48	10000	8000	80	2000	2.2	2516
25N6G:	Direct-Coupled Triodes	0.	7 W	25	0.3				Class-A Amp.	110	0	110	7	45	11400	2200	25	2000	2.0	25N6G
26A7GT	Twin Beam-Power Audio Amplifiar	0.	88 U	26.5	0.6	Each Unit Push.Pull			Class-A Amp.	26.5	-4.5	26.5	2/5.5	20/20.5	2500	5500		1500	0.2	26A7GT
									Class-AB Amp. ${ }^{3}$	26.5	- 7.0	26.5	2/8.5	19/30	-	-		2500 -	0.5	
32 TGT	Diode-Beam Telrode	0.	82	32.5	0.3				Class-A Amp.	110	-7.5	110	3	40	15000	6000	-	2500	1.5	32L7GT
3545	Beam Power Amplifier	1.	6AA	35	0.15			-	Class-A1 Amp.	110	- 7.5	110	3/7	40/41	14000	5800	-	2500	1.5	35A5
35L6GT	Beam Power Amplifier	0.	7AC	35	0.15	13	9.5	0.80	Class-A1 Amp.	110	- 7.5	110	3/7	40/41	13800	5800	-	2500	1.5	3516GT
43	Pentode Power Amplifier	M.	68	25	0.3	8.5	12.5	0.20	Class-A Amp.	95	-15.0	95	4.0	20.0	45000	2000	90	4500	0.90	43
$48{ }^{8}$	Tetrode Power Amplifer	M.	6 A	30	0.4				Closs-A Amp.	96	-19.0	96	9.0	52.0	-	3800	-	1500	2.0	48
50A5	Beam Power Amplifar	1.	6AA	50	0.15		-	-	Class-A1 Amp.	110	-7.5	110	4/11	49/50	10000	8200		2000	2.2	5045
SOC6GT	Beam Power Amplifier	0.	7 AC	50	0.15				Class-A, Amp.	135	-13.5	135	3.5/11.5	58/60	9300	7000	\square	2000	3.6	50C6GT
SOL6GT	Beam Power Amplifier	0.	7AC	50	0.15	-		\cdots	Class-A Amp.	110	-7.5	110	4/11	49/50		8200	82	2000	2.2	50L6GT
70ATGT	Diode-Beam Tetrode	0.	$8 A^{1}{ }^{1}$	70	0.15				Class-A Amp.	110	- 7.5	110	3.0	40	-	5800	80	2500	1.5	70A7GT
7017GT	Diode-Eeam Tetrode	0.	8AA	70	0.15				Class-A, Amp.	110	-7.5	110	3/6	40/43	15000	7500	-	2000	1.8	7017GT
117L7GT/ 117M7GT	Rectiffer-Amplifier	0.	8 AO	117	0.09	-		-	Class-A Amp.	105	- 5.2	105	4/5.5	43	17000	5300	-	4000	0.85	$\begin{array}{\|l\|} \hline 1177 \mathrm{GT} / \\ 117 \mathrm{M} 7 \mathrm{GT} \\ \hline \end{array}$
117N7GT	Rectifier-Ampliffer	0.	BAV	117	0.09			-	Class-A Amp.	100	- 6.0	100	5.0	51	16000	7000		3000	1.2	117N7GT
117P7GT	Rectifier-Amplifier	0.	SAV	117	0.09				Class-A Amp.	105	- 5.2	105	4/5.5	43	17000	5300		4000	0.85	117P7GT
1280	Pentode	1.	8 V	12.6	0.15	6.0	6.5	0.007	Class-A, Amp.				Same as	14C7 15 p	cecial Non-m	icrophonic)				1280

table ix-high-voltage heater tubes-Cortinuod

TABLE X-SPECIAL RECEIVING TUBES

Type	Name	Dase	Sockel Connec fions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Us*	Plate Supply Volis	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volts } \end{gathered}$	Screen Current Ma.	Plate Current Ma.	$\begin{gathered} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Transconductance Micromhos	Amp. Factor		Powar Oulput Watts	Type
				Volts	Amp.	In	Out	Plate. Grid												
00-A	Triode Detector	M .	4D	5.0	0.25	3.2	2.0	8.50	Grid-Leak Def.	45	-	-	-	1.5	30000	666	20	-		00.A
$01-A$	Triode Detector Amplifier	M.	4 D	5.0	0.25				Class-A Amp.	135	-9.0			3.0	10000	800	8.0			01-A
3A8GT	Diode Triode Peniade	0.	8A5	1.4	0.1	2.6	$\overline{4.2}$	2.0	Class-A Triode	90	0			0.15	240000	275	65	-		
	Diode Triode Peniade			2.8	0.05	3.0	10.0	0.012	Class-A Pentode	90	0	90	0.3	1.2	600000	750		-		3ABGI
385GT	Beam Power Amplifier	0.	7 AP	$\begin{aligned} & 1.4 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \\ 0.05 \\ \hline \end{array}$	-	-	-	Class-A Amp.	67.5	-7.0	67.5	$\begin{aligned} & 0.6 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.7 \end{aligned}$	100000	$\begin{aligned} & 1650 \\ & 1500 \end{aligned}$	-	5000	$\begin{aligned} & 0.2 \\ & 0.18 \end{aligned}$	3B5GT
3C5GT	Power Output Pentode	0.	7AQ	$\begin{array}{r} 1.4 \\ 2.8 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	\ldots	-	-	Class-A Amp.	90	- 9.0	90	1.4	6.0	-	$\begin{aligned} & 1550 \\ & 1450 \end{aligned}$	\square	$\begin{array}{r} 8000 \\ 10000 \end{array}$	$\begin{aligned} & 0.24 \\ & 0.26 \end{aligned}$	3C5GT
3 C 6	Twin Triode	1.	78v	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	-		-	Class-A Amp.	90	0	-	—	4.5	11200	1300	14.5	-	-	$3 \mathrm{C6}$
32.4	Power Amplifier Pentode	L.	6BA	2.8	0.05				Class-A Amp.	90	- 9.0	90	1.8	9.0	110000	1600		6000	0.30	3LE4
3LF4	Beam Pentode	L.	6BB	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	-	-	-	Class-A Amp.	90	- 4.5	90	$\begin{aligned} & 1.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 75000 \\ & 80000 \end{aligned}$	2200	-	8000 7000	$\begin{aligned} & 0.27 \\ & 0.23 \end{aligned}$	3LF4
3C5CT	Beam Powor Amplifar	0.	7 AO	$\begin{array}{\|l\|} \hline 1.4 \\ \hline 2.8 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$		lel Fila es Fila	amonts ments	Class-A Amp.	90	- 4.5	90	$\begin{aligned} & 1.3 \\ & 1.0 \end{aligned}$	9.5	-	$\begin{aligned} & 2100 \\ & 1800 \end{aligned}$	-	8000	$\begin{aligned} & 0.27 \\ & 0.25 \end{aligned}$	3G5GT
4A6G	Twin Triode Amplifer	0.	8 L	$\begin{array}{\|l\|} 4 \\ 2 \end{array}$	$\begin{aligned} & 0.06 \\ & 0.12 \end{aligned}$	Trio	des Par	rallel	Class-A Amp. Class-B Amp.	90 90	\|-1.5			2.2	13300	1500	20	8000	-	4A6G
674	Acorn Triode	A.	7BR	6.3	0.225	2.0	0.6	1.90	Class-A Amp.	80	150*			13.0	2900	5800	17	80		$6 F 4$
	U.M.F. Triode	A.	7BR	6.3	0.225	1.8	0.5	1.6	Class-A1Amp.	80	150*	-		9.5	4400	6400	28			614
10	Triode Power Amplifer	M.	4D	7.5	1.25	4.0	3.0	7.00	Class-A Amp.	425	-39.0	-		18.0	5000	1600	8.0	10200	1.6	10
$11 / 12$	Triode Detector Amplifier	M .	4F/4D	1.1	0.25			4.10	Class-A Amp.	135	-10.5		-	3.0	15000	440	6.6	-	-	11/12
$20{ }^{7}$	Triode Power Amplifior	S.	4D	3.3	0.132	2.0	2.3	4.10	Class-A Amp.	135	-22.5	-		6.5	6300	525	3.3	6500	0.11	20
227	Terrode R.F. Amplifier	M.	4 K	3.3	0.132	3.5	10	0.02	Class-A Amp.	135	-1.5	67.5	1.3	3.7	325000	500	160	-		22
26	Triode Ampliflor	m .	4D	1.5	1.05	2.8	2.5	8.10	Class-A Amp.	180	-14.5			6.2	7300	1150	8.3	-		26
40^{7}	Triode Voltage Amplifer	M.	4D	5.0	0.25	2.8	2.2	2.00	Class-A Amp.	180	-3.0			0.2	150000	200	30			40
50	Triode Power Ampliner	M.	4D	7.5	1.25	4.2	3.4	7.10	Class-A Amp.	450	-84.0	\square	-	55.0	1800	2100	3.8	4350	4.6	50

table X-Special receiving rubes-Continued

TABLE XI-MINIATURE RECEIVING TUBES—Other miniature types in Tables XIIt and XV

Typ	Name	Baso	Socket Connections	Fil. or Heatar		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bios	$\begin{gathered} \text { Screan } \\ \text { Volts } \end{gathered}$	Screen Current Ma.	Plate Current Ma.	Plate Resistonce Ohms	Transconductance Mieromhos	Amp. Factor	LoodResistonceOhms	Power Outpul Walts	Prototype
				Volts	Amp.	In	Out	PlateGrid												
143	H. F. Diode	8.	5AP	1.4	0.15	-	-		Detector F.M. Diserim.	Max. a.c. voltoge per plate-117.										
IAE4	Shorp Cut-off Pentode	B.	6AR	1.25	0.1	3.6	4.4	0.008	Closs-A: Amp.	90	0	90	1.2	3.5	500000	1550				-
laf4	Pentode	B.	6AR	1.4	0.025	3.8	7.6	. 008	Closs-A, Amp.	90	0	90	0.5	1.65	1800000	950				
IAF5	Diode Pentode	B.	6AU	1.4	0.025				Class. A_{1} Amp.	90	0	90	0.4	1.1	2000000	600				
1 C 3	Triode	B.	5CF	1.4	0.05	0.9	4.2	1.8	Class-A, Amp.	90	-3			1.4	19000	760	14.5	\square	-	ILE3
114	Sharp Cut-off Pentode	B.	6AR	1.4	0.05	3.6	7.5	. 008	Class-A Amp.	90	0	90	2.0	4.5	350000	1025				iNSGT
116	Pentagrid Converler	B.	70C	1.4	0.05	7.5	12	0.3	Converter	90	0	45	0.6	0.5	650000	300	Grid No. 1100000 ohms			ILAG
185	Pentogrid Converter	B.	7AT	1.4	0.05				Canvertar	90	0	67.5	3.0	1.7	500000	300				147GT
154	Pentagrid Power Amp.	B.	7AV	1.4	0.1				Class-A Amp.	90	- 7.0	67.5	1.4	7.4	100000	1575		8000	0.270	105 GT
155	Diode Pentode	B.	6AU	1.4	0.05				Closs-A Amp.	67.5 90	0	67.5 90	0.4	Screen resistor 3 meg., grid 10 meg .				1 meg.	0.050	
174	Voriable- μ Pentode	B.	6AR	1.4	0.05	3.6	7.5	0.01	Class-A Amp.	90	0	67.5	1.4	3.5	500000	900	-			IPSGT
$1{ }^{1} 4$	Sharp Cut-off Pentode	B.	6AR	1.4	0.05	3.6	7.5	0.01	Closs-A Amp.	90	0	90	0.5	1.6	1300000	900	-	-	-	IN5
IUS	Diode Pentode	B.	68W	1.4	0.05				Class-A Amp.	67.5	0	67.5	0.4	1.6	600000	625		-		-
106	Pentogrid Converter	B.	7DC	1.4	0.025	8	12	0.4	Converter	90	0	45	0.55	0.55	600000	275	-	-	-	\square
IW4	Power Amplifier Pentode	B.	5BZ	1.4	0.05	3.6	7	0.1	Class-A1 Amp.	90	-9	90	1	5	300000	925		1200	0.2	1184
$2 \mathrm{C5} 1$	Twin Triode	B.	8 CJ	6.3	0.3	2.2	1.0	1.3	Class-A1 Amp.	150	- 2			. ${ }^{1}$	-	5500	35			7F
2E30	Beam Power Pentade	B.	760	6.0	0.7	10	4.5	0.5	Class- A_{1} Single	250	450*	250	7.42	44^{2}	63000	3700	40^{5}	4500	4.5	
									Class-A Amp. ${ }^{3}$	250	225*	250	14.82	88.	-	-	80^{5}	$9000{ }^{8}$	9 9	-
									Class-AB1 Amp. ${ }^{\text {a }}$	250	-25	250	$13.5{ }^{2}$	80^{2}	\cdots	-	$48{ }^{5}$	$8000{ }^{\circ}$	12.5	
									Class-AB2 Amp. ${ }^{\text {a }}$	250	-30	250	20 =	120^{2}	-	-	40^{5}	$3800{ }^{\circ}$	17	
344	Power Amplifier Pentode	B.	7BB	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \\ & \hline \end{aligned}$	4.8	4.2	0.34	Class-A, Amp.	$\begin{array}{r} 135 \\ 150 \\ \hline \end{array}$	$\begin{aligned} & -7.5 \\ & -8.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.6 \\ 2.2 \\ \hline \end{array}$	$\begin{aligned} & 14.9^{2} \\ & 14.1^{2} \\ & \hline \end{aligned}$	$\begin{array}{r} 90000 \\ 100000 \end{array}$	1900	-	8000	$\begin{aligned} & 0.6 \\ & 0.7 \end{aligned}$	-
$3 \mathrm{A5}$	H.F. Twin Triode	B.	78 C	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.11 \end{aligned}$	0.9	1.0	3.20	Class-A Amp.	90	- 2.5	-	-	3.7	8300	1800	15	-	-	-
3 E 5	Power Amplifier Pentade	B.	68X	$\begin{aligned} & 1.4 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{gathered} 0.05 \\ .025 \end{gathered}$			-	Class-A Amp.	90	-8	90	1.5	5.5	120000	1100	-	8000	. 175	-
			7BA	1.4	0.1	Poral	liel Fila	amonts	Class-A Amp.	90	-4.5	90	2.1	9.5	100000	2150		10000	$\frac{0.27}{0.24}$	305GT
304	Power Amplifer Pentode	B.	7BA	2.8	0.05	Serie	as Filam	ments	Class-A Amp.		- 4.5		1.7	7.7	120000	2000			0.24	
354	Power Amplifor Penlode	B.	7BA	1.4	0.1 0.05	Parall	Filol Fila	ments	Closs-A Amp.	90	- 7.0	67.5	1.4	7.4	100000	1575		8000	0.27 0.235	305GT
				2.8	0.1	Paral	lle 1 Fila	aments	Class-A Amp.	90	- 4.5	90	2.1	9.5	100000	2150		10000	0.27	305GT
3V4	Power Amplifier Penlode	B.	68 X	2.8	0.05	Serie	es Filam	ments	Class-A Amp.	90	- 4.5	90	1.7	7.7	120000	2000		10000	0.24	
6AB4	U.h.f. Triode	B.	5CE	6.3	0.15	2.2	0.5	1.5	Class-A Amp.	250	200*		-	10	10900	5500	60	-	-	$\begin{array}{\|l\|l\|} \text { Single unit } \\ 12 A T 7 \end{array}$
6AE8	Triode Hexode	B.	90	6.3	0.3				Freq. Converter	-	-		-	-		-				$6 \mathrm{K8}$
6AE8	Triode Hexode	B.	90	6.3	0.3	22		1.9	Class-A1 Amp.	80	150*		-	16	2270	6600	15	-		-
6AF4	U.h.f. Triode	B.	7DK	6.3	0.225	2.2	0.45	1.9	Osc. at 950 Mc .	100	10000:2		$0.4{ }^{10}$	22	000000			-		
6AG5	Shorp Cut-off Pentade	B.	7BD	6.3	0.3	-	-	-	Class-A Amp.	$\begin{aligned} & 250 \\ & 100 \end{aligned}$	$\begin{aligned} & 200^{\circ} \\ & 100^{\circ} \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 800000 \\ & 300000 \\ & \hline \end{aligned}$	$\begin{aligned} & 5000 \\ & 4750 \\ & \hline \end{aligned}$	-	二	-	6SH7GT
									Pentode Amp.	300	160*	150	2.5	10	500000	9000		-		6AC7
6AH6	Sharp Cut-off Pentade	B.	7CC	6.3	0.45	10	2	0.03	Triode Amp. ${ }^{\text {P }}$	150	160*			12.5	3600	11000	40			
6AJ4	U.h.f. Triode	8.	98X	6.3	0.225	4.4	0.18	2.4	Class-A Amp.	125	68*		-	16	4200	10000	42	-	-	
6AJ5	Sharp Cut-off Pentode	B.	7PM	6.3	0.175	-	\square		R.F. Amplifier	28	200**	28	1.2	3.0	90000	2750	250	$28000{ }^{\circ}$	1.0	
									Class-AB Amp. ${ }^{\text {a }}$	180	200*	120	2.4	7.7	690000	5100	3500	-	-	
6 AK5	Shorp Cul-off Pentode	B.	7BD	6.3	0.175	4.3	2.1	0.03	R.F. Amplifier	150	$330{ }^{\circ}$	140	2.2	7.0	420000	4300	1800	1 -	\square	
										120	200*	120	2.5	7.5	340000	5000	1700			
6AK6	Power Amplifler Pentode	B.	78K	6.3	0.15	3.6	4.2	0.12	Class-A Amp.	180	- 9.0	180	2.5	15.0	200000	2300	-	10000	1.1	

IADLE XI-MINIAIUKE KELEIVING IUBES—COntinued

TABLE XI - MINIATLRE RECEIVING TUBES - Continued

Type	Name	Base	Socket Connec fions	Fil. or Heater		Copacitonce $\mu \mu \mathrm{fd}$.			Use	Plofe Supply Volis	Grid Bios	ScreenVolts	Screen Current Mo.	Plote Current Mo.	$\begin{array}{\|c\|} \hline \text { Plote } \\ \text { Resisionce } \\ \text { Ohms } \end{array}$	Transconductonce Micromhos	Amp. Factor 4	$\begin{gathered} \text { Load } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Power Oulpu: Wafts	Prototype
				Volts	Amp.	In	Out	PlateGrid												
6CL6	Power Pentode	B.	Fig. 68	6.3	0.65	11	5.5	0.12	Closs-A1 Amp.	250	- 3	150	7/7.2	30/31	15000	11000	-	7500	2.8	6AG7
$6 J 4$	U.h.f. Grounded-Grid R.F. Amplifier	B.	7BQ	6.3	0.4	5.5	0.24		Grounded -Grid	150	200*			15.0	4500	12000	55			
									Class-A, Amp.	100	100*			10.0	5000	11000	55			
656	Twis Triode	8.	78F	6.3	0.45	2.2	0.4	1.6	Class-A: Amp. Mixer, Oscillotor	100	50*	-	-	8.5	7100	5300	38	-	-	-
6M5	Power Amplifier Pentade	8.	9 N	6.3	0.71	10	6.2	1	Class-A, Amp.	250	170*	250	5.2	36	40000	10000	-	7000	3.9	-
6N4	U.h.f. Triode Amplifier	B.	7CA	6.3	0.2	3.0	1.6	1.10	Class-A Amp.	180	-3.5			12	-	6000	32			
6N8	Duodiode Pentode	B.	9 T	6.3	0.3	4	4.6	. 002	Class-A Amp.	250	- 2	85		1	1600000	2200		-		
604	Grnd.-Grid Triode	B.	95	6.3	0.48	5.4	. 06	3.4	Class-A, Amp.	250	-1.5			15	-	12000	80			
6R4	U.h.f. Triode	8.	9 R	6.3	0.2	1.7	0.5	1.5	Closs-A, Amp.	150	- 2	-	\square	30		5500	16			
6R8	Triple Diode Triode	8.	9 E	6.3	0.45	1.5	1.1	2.4	Class-A, Amp.	250	-9		\square	9.5	8500	1900	16	10000	0.3	
654	Triode	B.	9AC	6.3	0.6				Class-A1 Amp.	250	-8			26	3600	4500	16			
678	Triple-Diode Triode	B.	9 E	6.3	0.45	1.5	1.1	2.4	Class-A1 Amp.	250	- 3			1.0	5800	1200	70			
										100	-1		-	0.8	5400	1300	70	-		
608	Triade	B.	9AE	6.3	0.45	2.5	1.0	1.8	Closs-A Amp.	150	56*			18	5000	8500	40	-		
	Penlocie					5.0	2.6	0.01	Class-A: Amp.	250	68*	110	3.5	10	400000	5200				
6V8	Triple-Diode Triode	8.	9AH	6.3	0.45				Class-A Amp.	100	-1			0.8	54000	1300	70			
										250	-3			1.0	58000	1200	70			
									Diode											
6×8	Medium Mu Triode	8.	9AK	6.3	0.45	2.6	1.0	1.4	Triode Ose.	150	27008		-	13	.	-	-			
	Sharp Cut-off Pentode					4.5	1.2	0.008	Pentode Mix.	150	-3.5	150	1.1	4.6		1600				
12A4	Triode	B.	9AG	6.3 12.6 12.6	0.6 0.3				Class-A Amp.	150	-17		-	30	1200	5200	6.5	-		-
12AL5	Twin Diode	8.	685	12.6	0.15	2.5	-	-	Detector	R.m.s. volioge per plate $=117$; d.c. outpul $=9$ ma. per plate; peak ma. per plate $=54$; peak inverse voltoge $=330$.										12H6GT
12ATS	Duplex Diode Triode	8.	78T	12.6	0.15	2.3	1.1	2.10	Class-A Amp.	253	- 3.0	-	porplato	1.0	58000	\| 1200	70			1207GT
12AT7	Double Triode	8.	9 A	6.3	0.3	2.57	0.457	1.457	Closs-A1 Amp. Each Unif	250	- 2			10	10000	5500	55			
				12.6	0.15	2.58	$0.35{ }^{\text {8 }}$	$1.45{ }^{\text {s }}$		180	-1			11	9400	6600	62			
12AU6	Sharp Cut-off Pentode	B.	7CC	12.6	0.15	5.5	5.0	. 0035	Class-A Amp.	250	-1.0	150	4.3	10.8	1 meg.	5200				12SH7GT
12 AU7	Twin-Triode Amplifier	B.	94	6.3	0.3	1.6^{7}	0.5 0.35	1.57	Class-A1 Amp.	250	-8.5		-	10.5	7700	2200	17	-		12SN7GT
l2AV6		8.		12.6	0.15	$1.6{ }^{8}$	$0.35{ }^{\text {8 }}$	1.58	Class-A, Amp.					1.2	62500	1600	100			
12AV7	Double Triode	B.	9 A	12.6	0.225	3.1	0.57	1.9	Class-A Amp. ${ }^{11}$	100	120*	-	-	9.0	62500	6100	37			
				6.3	0.45		$0.4{ }^{8}$			150	56*	-		18	4800	8500	41			
12AW6	Sharp Cul-off Pentode	8.	7CM	12.6	0.15	6.5	1.5	0.025	Pentode Amp.	250	200*	150	2.0	7.0	800000	5000				
									Triode Amp. ${ }^{\text {P }}$	250	825*	-	-	5.5	11000	3800	42			
12AW7	Sharp Cut-off Pentade	B.	7CM	12.6	0.15	6.5	1.5	0.025	Closs-A1 Amp.	250	200*	150	2.0	7.0	0.8 meg.	5000		-		
12AX7	Double Triode	B.	9 A	12.6	0.15	1.67	0.467	1.77	Class-A Amp.	250	- 2	-	-	1.2 ?	62500	1600	100	-		
				6.3	0.3	1.68	$0.34{ }^{8}$	$1.7{ }^{\text {8 }}$		100	- 1		-	0.51	8000	1250	100			
12AY7	Dual Triode	B.	94	12.6	0.15	1.3	0.6	1.3	Class-A Amp.	250	- 4	-	-	3	-	1750	40	-		
				6.3	0.3				Lo-Level Amp.	150	2700*	Plote resistor $=20000$ R. Grid resistor $=0.1$ Meg. V.G. $=12.5$								
12AZ7	Double Triode	B.	9 A	12.6	0.225	3.17	0.57	1.97	Class-A Amp.	100	270*	-	-	3.7	15000	4000	60	-		-
$12 A 27$	Double Triode	B.	9 A	6.3	0.45	$3.1{ }^{8}$	$0.4{ }^{8}$	1.98		250	200*	-	-	10.0	10900	5500	60	—		
1284	Triode	8.	9AG	12.6	0.3	6.4	7	4.3	Class-A Amp.	150	-17.5	-	-	35	-	6500	6.5	-	-	-
12BA6	Remote Cut-off Pentode	8.	7CC	12.6	0.15	5.5	5.0	. 0035	Class-A Amp.	250	68*	100	4.2	11.0	1500000	4400				12SG7G
128A7	Pentogrid Convertor	8.	8 CT	12.6	0.15	9.5	8.3	-	Converter	250	-1	100	10	3.8	1000000	3.5				-
128D6	Remote Cut-off Pentode	B.	7CC	12.6	0.15	4.3	5.0	. 004	Class-A Amp.	250	-3	100	3.5	9.0	700000	2000	$\underline{-}$	-		12SK7GT
12BE6	Pentagrid Converter	8.	7CH	12.6	0.15	Osc. Grid 50000Ω			Converter	250	-1.5	100	7.8	3.0	1000000	475			-	I2SA7GT

Wनाd Radio मilsory

table XI-Miniature receiving tubes-Continued

table Xil-sub-miniature tubes

Type	Name	Base	Sockel Cannec tions	FiS. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Valts } \end{gathered}$	ScreenCurrentMa.	Plate Current Ma.	Plole Resislance Ohms	Transconductance Mlcromhos	Amp. Factar	LoadResistanceOhms	Power Outpul Waths	Type
				Volis	Amp.	In	Out	$\begin{aligned} & \text { Plate- } \\ & \text { Grid } \end{aligned}$												
1 AC5	Power Pentode	Bs.	Fig. 14	1.25	0.04			-	Class-A1 Amp.	67.5	-4.5	67.5	0.4	2.0	150000	750	-	25000	0.05	IAC5
1 AD4	Pentode	1	2	1.25	0.1	4.5	4.5	0.01	Class-A1 Amp.	45	0	45	0.8	3.0	500000	2000				1AD4
1 AD5	Sharp Cut-off Pentode	Bs.	Fig. 16	1.25	0.04	1.8	2.8	0.01	Class-A1 Amp.	67.5	0	67.5	0.75	1.85	700000	735	-			IAD5
IAES	Heptode	1	2	1.25	0.06	4.9	2.1	4.0	Mixer	45	0	45	2.0	0.9	200000	200				IAE5
1 CB	Heptode	-	-	1.25	0.04	6.5	4.0	0.25	Converter	30	0	30	0.75	0.32	300000	100				$1 \mathrm{C8}$
103	Triode	1	2	1.25	0.3	1.0	1.0	2.6	Class-A Amp.	90	-5		-	12.5	-	3400	8.7	-		ID3
158	Pentagrid Converter	Bs.	Fig. 27	1.25	0.04	6	-	\square	Converter	67.5	0	67.5	1.5	1.0		150		-		1E8
156	Diode Pentode	Bs.	2DA	1.25	0.04			-	Detector Amp.	67.5	0	67.5	0.4	1.6	400000	600	-	-	-	156
176	Dlode.Pentode	Bs.	Flg. 28	1.25	0.04				Class-A Amp.	67.5	0	67,5	0.4	1.6	400000	600	\square	-	-	1T6
IV5	Audio Pentode	1	2	1.25	0.04				Class-A1 Amp.	67.5	-4.5	67.5	0.4	2.0	150000	750	$\underline{-}$	25000	0.05	IV5
IW5	Sharp Cut-of! Peniode	1	2	1.25	0.04	2.3	3.5	0.01	Class-A1 Amp.	67.5	0	67.5	0.75	1.85	700000	735	-	-		IW5
2B5	Twin Triode	1	?	1.2 2.4	0.26	0.8	0.8	1.2	Class-A Amp.	90	-1	\square	-	2.6	18700	1150	21.5	-	-	285
2E31	R.F. Pentode	1	2	1.25	0.05				Class-A1 Amp.	22.5	0	22.5	0.3	0.4	-	500	-	-		$2 \mathrm{E31}$
2 E 32	R.F. Pentode	1	2	1.25	0.05				Class-A Amp.	22.5	0	22.5	0.3	0.4	350000	500	-	-		$2 E 32$
2 E 35	Audio Pentode	1	1	1.25	0.03				Class-A Amp.	22.5	0	22.5	0.07	0.27		385			0.0012	$2 E 35$

TABLE XII-SUB-MINIATURE TUBES-Continued
TABLE XII-SUB-MINIATURE TUBES-Continued

Type	Nam*	Bose	Socket Connec lions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Us*	Plote Supply Volts	Grid Bias	$\begin{aligned} & \text { Screen } \\ & \text { Volts } \end{aligned}$	Screen Current Mo.	Plofe Current Ma.	Plate Resistance Ohms	Transeon. ductonce Micromhos	Amp. Foctor	Lood Resistanee Ohms	$\begin{array}{\|l\|} \hline \text { Powar } \\ \text { Outpul } \\ \text { Oafts } \end{array}$	Type
				Volts	Amp.	In	Oul	PlateGrid												
2 E 36	Audio Pentode	1	2	1.25	0.03					22.5	0	22.5	0.07	0.27	220000	385		150000	0.0012	
	Audio Panlode			1.25	0.03				Class-A1 Amp.	45	-1.25	45	0.11	0.45	250000	500		100000	0.00	$2 E 36$
2E41	Diode Pentode	1	2	1.25	0.03				Delector Amp.	22.5	0	22.5	0.12	0.35	$\underline{-}$					$2 E 41$
$2 \mathrm{E42}$	Diode Pentode	1	3	1.25	0.03				Delopior Amp.	22.5	0	22.5	0.12	0.35	250000	375		1 mog.		$2 \mathrm{E42}$
$2 \mathrm{G21}$	Triode Heptode	1	2	1.25	0.05	-		-	Converier	22.5		22.5	0.2	0.3		75				2G21
$2 \mathrm{G22}$	Converior	1	2	1.25	0.05				Convertor	22.5	0	22.5	0.3	0.2	500000	60				$2 \mathrm{G22}$
6 60.	Triode	Bs.	-	6.3	0.15	2.8	3.2	1.31	Class-A1 Amp.	100	820*			1.4	26000	2700	70	-		6 AD4
6A25	Dual Diode	${ }^{1}$	-	6.3	0.15				Rectifior		Mox. a.e	volts-	50. Peok	nverse v	olls-420.	ark Mo.-2	4. Av. Ma	Ma.-4.0		6A25
6BA5	Pentode	${ }^{1}$	-	6.3	0.15	4.0	6.5	0.19	Class-A1 Amp.	100	270*	100	1.25	4.8	150000	3300	,		-	68A5
6BF7	Dual Triode	Bs.	80G	6.3	0.3	2.0	1.6	1.5	R.F. Amp.	100	100*			8.0	7000	4800	35			6BF7
6BG7	Dual Triode	Bs.	8DG	6.3	0.3	2.0	1.6	1.5	R.F. Amp.	100	100*			8.0	7000	4800	35			68G7
6 K 4	Triode	1	2	6.3	0.15	2.4	0.8	2.4	Class A1 Amp.	200	$680{ }^{*}$			11.5	4650	3450	16			6 K 4
1247	Diode	1	9	0.7	0.065				R.F. Probe			Max. a,	c. volts-3	$00 \mathrm{r.m.s}$. .	D.C. P	plate current-	-0.4 Mc			1247
CK501	Pentode Voltage Amplifier	-	2	1.25	0.033	-		-	Class-A Amp.	30	0	30	0.06	0.3	1000000	325				CK501
CK502	od Output									45	-1.25	45	0.055	0.28	1500000	300				CKSO1
CK503	Pentode Output Amp	-	${ }^{2}$		0.033				Closs-A Amp.	30	0	30	0.13	0.55	500000	400	\cdots	60000	0.003	CK 502
CK504	Pentode Output Amplifie	-1	\%	1.25	0.033				Closs-A Amp.	30	0	30	0.33	1.5	150000	600		20000	0.006	CK503
					0.033				Class-A Amp.	30	-1.25	30	0.09	0.4	500000	350		60000	0.003	CK504
CK 505	Pentode Voltage Amplifier	- 1	:	0.625	0.03	-	-	-	Class-A Amp.	30	0	30	0.07 0.08	0.17	1100000	140		-	-	CK505
CK506	Penlode Output Amplifier	- ${ }^{1}$	2	1.25	0.05				Class-A, Amp.	45	-4.5	45	0.4	1.25	120000	500		30000	0.025	CK506
CK507	Penlode Output Amplifier	-	?	1.25	0.05				Class-A Amp.	45	-2.5	45	0.21	0.6	360000	500	-	50000	0.010	CK507
CK509	Triode Voltage Amplitier	-1	1	0.625	0.03	-			Class-A Amp.	45	0			0.15	150000	160	16	1000000		CK509
CK510	Dual Space-Chorge Tetrode	-1	${ }^{2}$	0.625	0.05				Class-A Amp.	45	0	0.2	$200 \mu \alpha$	$60 \mu \alpha$	500000	65	32.5			CK510
CK512	Low Microphonic Pentode	1	\%	0.625	0.02				Voltage Amp.	22.5	0	22.5	0.04	0.125	-	160		-		CK412
CK515BX	Triode Vollage Amplifier	- ${ }^{1}$:	0.625	0.03				Class-A Amp.	45	0			0.15		160	24	1000000		CK515BX
CK5204X	Audio Pentode	1	2	0.625	0.05				Closs-A1 Amp.	45	-2.5	45	0.07	0.24	\cdots	180	\cdots	100000	0,0045	CK520AX
CK521AX	Audio Pentode	1	2	1.25	0.05				Closs-AI Amp.	22.5	-3	22.5	0.22	0.8	\cdots	400	\square		0.006	CK521AX
CK522AX	Audio Pentode	1	2	1.25	0.02	\cdots	-		Class-AI Amp.	22.5	0	22.5	0.08	0.3		450			0.0012	CK522AX
CK523AX	Pantode Outpul Amp.	1	-	1.25	0.03				Class-A Amp.	22.5	-1.2	22.5	0.075	0.3		360		$-\quad 0$	0.0025	CK523AX
CK524AX	Pentode Output Amp.	1		1.25	0.03			-	Closs-A Amp.	15	-1.75	15	0.125	0.45		300		$\cdots 0$	0.0022	CK524AX
CK525AX	Pentode Oulput Amp.	1		1.25	0.2				Class-A Amp.	22.5	-1.2	22.5	0.06	0.25	-	325	-	- 0	0.0022	CK525AX
CK526AX	Pentode Outpul Amp.	1	-	1.25	0.2				Class-A Amp.	22.5	-1.5	22.5	0.12	0.45		400	$\underline{\square}$	- 0.0	0.004	CK526AX
CK527AX	Pentode Output Amp.	1		1.25	0.015				Class-A Amp.	22.5	0	22.5	0.025	0.1	-	75			0.0007	CK527AX
CK529AX	Shielded Oulput Pentode	1	-	1.25	0.02				Class-A Amp.	15	-1.5	15	0.05	0.2	-	275			0.0012	CK529AX
CK551AXA	Diode Pentode	1	${ }^{2}$	1.25	0.03		-	-	Delector-Amp.	22.5	0	22.5	0.04	0.17	\square	235		-	-	CKS51AXA
CK553AXA	R.F. Pentode	1	2	1.25	0.05				Closs-A Amp.	22.5	0	22.5	0.13	0.42		550		\square		CK553AXA
CK556AX	U.h.f. Triode	1	2	1.25	0.125				R.F. Oscillator	135	-5	-		4.0	-	1600				CK556AX
CK568AX	U.h.f. Triode	1	2	1.25	0.07			-	R.F. Oscillator	135	-6			1.9		650				CK568AX
CK569AX	R.F. Pentode	1	2	1.25	0.05				Ciass-A1 Amp.	67.5	0	67.5	0.48	1.8		1100				CK569AX
CK605CX	Sharp Cut-off Pentode	1	\square	6.3	0.2				Closs-A Amp.	120	-2	120	2.5	7.5	-	5000				CK605CX
CK606BX	Single Dlode	1	2	6.3	0.15	-	-	-	Detector	150 a.c.	-			9.0 d.c						CK606BX
CK608CX	U.h.f. Triode	1	2	6.3	0.2				500.Mc. Osc.	120	-2	-		9.0	-	5000		-	0.75	CK608CX
CKS19CX	Hi-Mu Triode	1	2	6.3	0.2				Class-A Amp.	250	-2			4.0		4000			-	CK619CX
CK624CX	Shorp Cut-off Pentode	1	-	6.3	0.2				Class-A Amp.	120	-2	120	3.5	5.2		3000				CK624CX
CK650AX	Shatp Cut-off Pentode	1	2	6.3	0.2			-	Class-A A Amp.	120	-2	120	2.5	7.5	-	5000				CK650AX
CK5672	Pentode Output Amp.	1		1.25	0.05		-		Class-A Amp.	67.5	-6.25	67.5	1.0	2.75	\square	625		- 0.0	0.06	CK5672
$\begin{aligned} & \text { HY113 } \\ & \text { HY122 } \end{aligned}$	Triode Amplifier	- ${ }^{1}$	5K	1.4	0.07	-	-	-	Class-A Amp.	45	-4.5	,	-	0.4	25000	250	6.3	40000	0.0065	$\begin{aligned} & \text { HY113 } \\ & \text { HYI23 } \end{aligned}$

table xiv-CATHODE-RAY TUBES AND KINESCOPES-Continued

Type	Nome	Sockel Connections	Heater		Use	Size	Anode No. 2 Voltage	Anode No. 1 Voltage	Cut-Off Grid Voltage	Grid No. 2 Voltage	fon. Trap Ma.	Max. Inpul Voltage ${ }^{1}$	Focus Coil Ma.	Deffectian Sensitivity ${ }^{6}$		Anode No. 3 Voltage	Pattern Color	Type
			Volts	Amp.										$\mathrm{D}_{1} \mathrm{D}_{2}$	$\mathrm{D}_{\mathbf{8}} \mathrm{D}_{4}$			
21EP4A	Electromagnetic Kinescope	Fig. 44	6.3	0.6	Television	21"		12000	-33/-77	300	70		95				White	21EP4A
21FP4A	Electrostatic-Magnetic Kinescope	Fig. 43	6.3	0.6	Television	$21^{\prime \prime}$	14000	± 200	-33/-77	300	40^{8}			-			White	21FP4A
21KP4A	Electrostatic-Magnetic Kinescope	Fig. 45	6.3	0.6	Television	21"		12000	-33/-77	300	50						White	21KP4A
$21 \mathrm{MP4}$	Electrostatic-Magnetic Kinescope	Fig. 43	6.3	0.6	Television	$21^{\prime \prime}$		16000	-33/-77	300	50^{8}						White	21 MP4
22AP4	Electromognetic Picture Tube	Fig. 35	6.3	0.6	Television	22"		14000	-33/-77	300	358		117	-	-		White	22AP4
24AP4A	Electromagnetic Piclure Tube	12D	6.3	0.6	Television	24"		12000	-33/-77	300	32 ${ }^{\text {² }}$		97		-		White	24AP4A
24BP4	Electrostatic-Magnetic Kinescope	Fig. 43	6.3	0.6	Television	24"	14000	-56/310	-33/-77	300	85						White	248P4
27 AP4	Electrostotic-Magnetic Kinescope	Fig. 43	6.3	0.6	Television	$27^{\prime \prime}$	15000	-60/300	-33/-77	300	85				$\overline{0.22}$		White	27 AP4
$902{ }^{3}$	Electrostafic Cathode-Ray	Fig. 1	6.3	0.6	Oscillograph	$2^{\prime \prime}$	600	150	- 60			350		0.19	0.22		Grean	902
903 .	Electromagnetic Cathode-Ray	6AL	2.5	2.1	Oscillograph	$9{ }^{\prime \prime}$	7000	1360	-120	250							Gree	903
904	Electrostatic-Magnetic Cathode-Ray	Fig. 3	2.5	2.1	Oscillograph	5"	4600	970	- 75	250		4000		0.09			Green	904
9057	Electrostalic Cathode Ray	Fig. 6	2.5	2.1	Oscillograph	5"	2000	450	- 35		-	1000		0.19	0.2		n	905
907	Electrostatic Cothode-Ray	Fig. 6	2.5	2.1	Oscillograph	5"			Characterist	ies same	Type			-			Blue	907
$908{ }^{7}$	Electrostatic Cathode-Ray	7AN	2.5	2.1	Oscillograph	$3^{\prime \prime}$		Chara	acteristics	ame as T	3AP 1	/906P 1					Blue	908
							1500	430	- 50	-		500		0.223	0.233		Blue	908-A
908-A	Electrostatic Cathode-Ray	7CE	2.5	2.1	Os cillograph	$3{ }^{\prime \prime}$	1000	287	33	-		500		0.334	0.348		3lue	
909 s	Electrostatic Cathode-Ray	Fig. 6	2.5	2.1	Oscillograph	5 "			Characteris	ics same	Type 9						3lue	909
910^{3}	Electrostatic Cathode-Ray	7 AN	2.5	2.1	Oscillograph	$3^{\prime \prime}$		Chara	cteristics :	ame as Ty	3API	906P1		-			Blue	910
$911{ }^{\text {9 }}$	Electrostatic Cathode-Ray	7AN	2.5	2.1	Oscillogroph	$3^{\prime \prime}$		Chara	cleristics 8	me as T	3AP 1	906P 1		-		-	Green	911
912	Electrostatic Cathode-Ray	Fig. 8	2.5	2.1	Oscillograph	5'	10000	2000	- 66	250		7000		0.041	0.051		Green	912
913	Electrostatic Cathode-Ray	Fig. 1	6.3	0.6	Oscillograph	$1 \prime$	500	100	- 65			250		0.07	0.10		Grean	913
9147	Electrostatic Cathode-Ray	Fig. 12	2.5	2.1	Oscillograph	$9 \prime 1$	7000	1450	- 50	250	-	3000		0.073	0.093		Groen	
1800^{5}	Electromagnetic Kinescope	6AL	2.5	2.1	Telovision	9 9	6000	1250	- 75	250							Yellow	1800
$1801{ }^{3}$	Electromagnetic Kinescope	Fig. 13	2.5	2.1	Television	5"	3000	450	- 35								Yeliow	1801
1816P4-A	Electromagnetic Kinescope	Fig. 65	6.3	0.6	Monitor	$10^{\prime \prime}$		9000	- 63	250							Whito	1816P4-A
2001	Electrostatic Cathode-Ray	4AA	6.3	0.6	Oscillograph	I'				Ch	cteristic	essentiall	ame	0.16				2002
2002	Electrostatic Cathode-Ray	Fig. 1	6.3	0.6	Oscillograph	$2{ }^{\prime \prime}$	600	120	- 35	200	-	-	-	0.16	0.17		Green	2005
2005	Electrostatic Cothode-Ray	Fig. ${ }^{14}$	2.5	2.1	Television	$5^{\prime \prime}$	2000	1000	- 35	200				0.5 0.14	0.56			24.XH
24.XH	Electrostatic Cathode-Ray	Fig. 1	6.3	0.6	Oscilloscope	2"	600	120	- 60					0.14	0.16		Blue	24.XH
	${ }^{1}$ Between Anode No. 2 and any 2 Grid No. 4 voltage.	flecting	plate.		${ }^{3}$ D.c. ${ }^{4}$ Cathe	olts/in. de conn	cted to			s Discontis ${ }^{6}$ In mm.	d. it d.c.		$\begin{aligned} & \text { 'Sup } \\ & \text { sion } \end{aligned}$	eded by p gauss		with suffix	'A."	

TABLE XI-MINIATURE RECEIVING TUBES-Continued

table Xil-sub-miniature tubes

Type	Name	Base	Socket Connections	Fil. or Heater		Copocitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volts } \end{gathered}$	Screen Current Ma.	Plate Current Ma.	Plate Resisiance Ohms	Transcon. duclonce Mieromhos	Amp. Factor	LoadResistanceOhms	Pawer Outpui Watis	Type
				Volis	Amp.	In	Oul	PlateGrid												
IAC5	Powar Pentode	Bs.	Fig. 14	1.25	0.04	-	-		Class-A ${ }^{\text {a }}$ Amp.	67.5	-4.5	67.5	0.4	2.0	150000	750		25000	0.05	IACS
1 AD4	Pentode	1	2	1.25	0.1	4.5	4.5	0.01	Class-A1 Amp.	45	0	45	0.8	3.0	500000	2000		-		IAD4
1 ADS	Sharp Cut-off Pentode	Bs.	Fig. 16	1.25	0.04	1.8	2.8	0.01	Class-A1 Amp.	67.5	0	67.5	0.75	1.85	700000	735				IADS
IAES	Heplode	,	2	1.25	0.06	4.9	2.1	4.0	Mixer	45	0	45	2.0	0.9	200000	200				IAES
168	Heplode	-	-	1.25	0.04	6.5	4.0	0.25	Converler	30	0	30	0.75	0.32	300000	100			\square	1 Cs
103	Triode	1	2	1.25	0.3	1.0	1.0	2.6	Class-A Amp.	90	-5			12.5		3400	8.7		-	103
128	Penlagrid Converter	$8 \mathrm{s}$.	Fig. 27	1.25	0.04	6			Convertor	67.3	0	67.5	1.5	1.0	-	150				1E8
156	Diode Pentode	Bs.	80A	1.25	0.04				Detector Amp.	67.5	0	67.5	0.4	1.6	400000	600	-	-	-	156
116	Diode.Pentode	Bs.	Fig. 28	1.25	0.04	\cdots			Class-A1 Amp.	67.3	0	67.5	0.4	1.6	400000	600				176
IV5	Audio Pentode	1	2	1.25	0.04				Class-A1 Amp.	67.5	-4.5	67.5	0.4	2.0	150000	750	-	25000	0.05	IV5
IW5	Sharp Cut-off Pentode	1	?	1.25	0.04	2,3	3.5	0.01	Class-A1 Amp.	67.5	0	67.5	0.75	1.85	700000	735		25000		1W5
285	Twin Triode	1	2	1.2 2.4	[0.26	0.8	0.8	1.2	Class-A Amp.	90	-1	-	-	2.6	18700	1150	21.5	\square	-	285
2 E 31	R.F. Pentode	1	2	1.25	0.05				Class-A Amp.	22.5	0	22.5	0.3	0.4	-	500	-	-	-	$2 \mathrm{E31}$
2 E 32	R.F. Pentode	1	2	1.25	0.05				Class-A Amp.	22.5	0	22.5	0.3	0.4	350000	500		-	-	2 E 32
2 E 35	Audio Pentode	1	2	1.25	0.03				Class-A Amp.	22.5	0	22.5	0.07	0.27		385	-	-	0.0012	2 E 35

TABLE XII-SUB-MINIATURE TUBES-Continued

Type	Name	Bose	Socket Connec. tions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Blas	$\begin{aligned} & \text { Screen } \\ & \text { Volts } \end{aligned}$	Screen Current Mo.	Plate Current Mo.	PlateResistanceOhms	Transconductance Micromhes	Amp. Factor	Lood Resistance Ohms	PowerOutpulWotts	Type
				Volts	Amp.	In	Oul	$\begin{aligned} & \text { Plate - } \\ & \text { Grid } \end{aligned}$												
$2 E 36$	Audio Pentode	1	2	1.25	0.03				Closs-A Amp.	22.5	0	22.5	0.07	0.27	220000	385		150000	0.0012	2E36
										45	-1.25	45	0.11	0.45	250000	500		100000	0.00	
$2 \mathrm{E41}$	Diade Pentode	1	2	1.25	0.03				Delectar Amp.	22.5	0	22.5	0.12	0.35				-		2E41
$2 E 42$	Diode Penlode	1	2	1.25	0.03				Delactor Amp.	22.5	0	22.5	0.12	0.35	250000	375		1 meg.		$2 \mathrm{E42}$
$2 \mathrm{G21}$	Triode Meptode	1	:	1.25	0.05	-	-	-	Converier	22.5		22.5	0.2	0.3	\longrightarrow	75				2G21
2 222	Convertar	1	2	1.25	0.05				Converter	22.5	0	22.5	0.3	0.2	500000	60			-	$2 \mathrm{G22}$
6AD4	Triode	B.	-	6.3	0.15	2.8	3.2	1.31	Class-A Amp.	100	820*			1.4	26000	2700	70			6AD4
6AZ5	Dual Diode		"	6.3	0.15				Rectifier Class-A1 Amp.	Max. a.c. volts-150. Peak inverse volis-420. Peak Ma.-24. Av. Ma.-4.0										$\begin{array}{\|l\|l\|} \hline 6 A Z 5 \\ \hline 6 B A 5 \\ \hline \end{array}$
68A5	Pentode	1	2	6.3	0.15	4.0	6.5	0.19		100	270*	100	1.25	4.8	150000	3300	-			
6BF7	Dual Triode	Bs.	80G	6.3	0.3	2.0	1.6	1.5	R.F. Amp.	100	100*			8.0	7000	4800	35			6BF7
6867	Dual Triode	Bs.	8DG	6.3	0.3	2.0	1.6	1.5	R.F. Amp.	100	100*		-	8.0	7000	4800	35			6BG7
6 K 4	Triode	1	2	6.3	0.15	2.4	0.8	2.4	Class A Amp.	200	680°	-		11.5	4650	3450	16			6 K 4
1247	Diode	1	2	0.7	0.065				R.F. Prabe	30 Max. a.c. volts-300 p.m.s. D.C. plate current-0.4										1247
CK501	Pentode Voltage Amplifier	- ${ }^{1}$	2	1.25	0.033	-		-	Class-A Amp.											CK501
CK502	Pentode Output Amplifier		2	1.25						45	-1.25	45	0.055	0.28	1500000	300		—		
CK503	Pentode Output Amplifier	-1	2	1.25	0.033				Class-A Amp.	30	0	30	0.13 0.33	0.55	500000 150000	400	-	60000	0.003	CK502
CK504	Pentode Output Amplifier	-1	2	1.25	0.033				Closs-A Amp.	30	-1.25	30 30	0.33	1.5	150000	600		20000	0.006	CK503
CK505	Penlode Voltage Amplifier	- 1	2	0.625	0.03				Class-A Amp.	30	0	30	0.07	0.17	1100000	140				
									Class-A Amp.	45	-1.25	45	0.08	0.2	2000000	150				CK505
CK506	Pentade Output Amplifer	- ${ }^{-1}$?	1.25	0.05				Ciass-A, Amp.	45	-4.5	45	0.4	1.25	120000	500		30000	0.025	CK506
CK507	Pentode Output Amplilier	- 1	$\stackrel{2}{2}$	1.25	0.05				Closs-A: Amp.	45	-2.5	45	0.21	0.6	360000	500		50000	0.010	CK507
CK509	Triode Voltage Amplifier	-1	2	0.625	0.03	-			Class-A Amp.	45	0			0.15	150000	160	16	1000000		CK509
CK510	Duol Spoce-Chorge Tetrode	-	2	0.625	0.05				Class-A Amp.	45	0	0.2	$200 \mu \alpha$	$60 \mu \boldsymbol{x}$	500000	65	32.5	-		CK510
CK512	Low Microphonle Pentode	1	$\stackrel{2}{2}$	0.625	0.02				Voltage Amp.	22.5	0	22.5	0.04	0.125	S0000	160		-	-	CK412
CK515BX	Triode Voltage Amplifier	-1	2	0.625	0.03				Closs-A Amp.	45	0	-	-	0.15	-	160	24	1000000		CK5158X
CK520AX	Audio Pentode	,	2	0.625	0.05				Class-A1 Amp.	45	-2.5	45	0.07	0.24		180		1000000	0.0045	CK520AX
CK521AX	Audio Pentode	1	?	1.25	0.05		\cdots		Closs-A1 Amp.	22.5	-3	22.5	0.22	0.8		400			0.006	CK521AX
CK522AX	Audio Penlode	1	2	1.25	0.02				Class-A Amp.	22.5	0	22.5	0.08	0.3	-	450		- 0.0	0.0012	CK522AX
CK523AX	Pantode Oufput Amp.	1	-	1.25	0.03				Class-A Amp.	22.5	-1.2	22.5	0.075	0.3		360			0.0025	CK523AX
CK524AX	Pentode Output Amp.	1	-	1.25	0.03	\square		-	Class-A Amp.	15	-1.75	15	0.125	0.45		300			0.0022	CK524AX
CK525AX	Penlode Oulpul Amp.	1	-	1.25	0.2				Class-A Amp.	22.5	-1.2	22.5	0.06	0.25	-	325	-	- 0.	0.0022	CK525AX
CK526AX	Pentode Output Amp.	1	-	1.25	0.2			\cdots	Class-A Amp.	22.5	-1.5	22.5	0.12	0.45	-	400			0.004	CK526AX
CK527AX	Pentode Output Amp.	1		1.25	0.015				Class-A Amp.	22.5	0	22.5	0.025	0.1	-	75	-		0.0007	CK527AX
CK529AX	Shielded Output Penlode	1	-	1.25	0.02				Class-A Amp.	15	-1.5	15	0.05	0.2	$\underline{-}$	275			0.0012	CK529AX
CK551AXA	Diode Pentode	1	${ }^{2}$	1.25	0.03				Delector-Amp.	22.5	0	22.5	0.04	0.17	-	235		-	-	CKSSIAXA
CK553AXA	R.F. Pentode	1	2	1.25	0.05				Class-A1 Amp.	22.5	0	22.5	0.13	0.42		550			-	CK553AXA
CK556AX	U.h.f. Triode	1	2	1.25	0.125				R.F. Oscillator	135	-5	\cdots	-	4.0	-	1600		-	-	CKS56AX
CK568AX	U.h.f. Triode	1	2	1.25	0.07				R.F. Os elllator	135	-6			1.9	-	650				CK568AX
CK569AX	R.F. Pentode	1	?	1.25	0.05				Ciass-A Amp.	67.5	0	67.5	0.48	1.8	-	1100				CK569AX
CK605CX	Sharp Cut-off Pentode	1	-	6.3	0.2				Class-A Amp.	120	-2	120	2.5	7.5	-	5000	-	-	-	CK605CX
CK606BX	Single Dlade	1	$\stackrel{2}{2}$	6.3	0.15			-	Defoctor	150 a.c.	-	$\underline{\square}$		9.0 d.e.		-	\cdots			CK6068X
CK608CX	U.h.f. Triode	1	2	6.3	0.2				500-Mc. Osc.	120	-2	-		9.0		5000		-	0.75	CK608CX
CK619CX	Hi-Mu Triade	1	2	6.3	0.2				Class-A1 Amp.	250	-2			4.0	-	4000			0.7	CK619CX
CK624CX	Sharp Cut-off Pentode	1		6.3	0.2			-	Class-A Amp.	120	-2	120	3.5	5.2	-	3000			-	CK624CX
CK650AX	Sharp Cut-off Pentode	1	2	6.3	0.2				Class-A Amp.	120	-2	120	2.5	7.5	-	5000			-	CK650AX
CK5672	Pentode Output Amp.	1	-	1.25	0.05				Class-A Amp.	67.5	-6.25	67.5	1.0	2.75	$\underline{\square}$	625		- 0	0.06	CK5672
$\begin{aligned} & \text { HY113 } \\ & \text { HY122 } \end{aligned}$	Triode Ampllifier	- 1	5K	1.4	0.07	-	-	-	Class-A Amp.	45	-4.5	-	-	0.4	25000	250	6.3	40000	0.0065	$\begin{aligned} & \text { HY113 } \\ & \text { HY123 } \end{aligned}$

table Xil-sub-miniature tubes-Continued

Type	Name	Base	Socket Connec tions	Fil. or Heater		Capacipance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	PlateCurrentMa.	PlateResistanceOhms	Transconduclance Micromhos	Amp. Factor	Load Resistance Ohms	Power Outpul Watis	Type	
				Volts	Amp.	In	Out	Plafe- Grid													
$\begin{aligned} & \text { HY115 } \\ & \text { HY145 } \end{aligned}$	Pentode Voltage Amplifier	- ${ }^{1}$	5K	1.4	0.07	-	-	-	Cless-A Amp.	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{aligned} & -1.5 \\ & -1.5 \end{aligned}$	$\begin{array}{r} 22.5 \\ 45 \end{array}$	$\begin{aligned} & 0.008 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.48 \end{aligned}$	$\begin{array}{r} 5200000 \\ 1300000 \end{array}$	$\begin{array}{r} 58 \\ 270 \end{array}$	$\begin{aligned} & 300 \\ & 370 \end{aligned}$	-	-	$\begin{aligned} & \text { HY115 } \\ & \text { HY } 145 \end{aligned}$	
$\begin{aligned} & \text { HY125 } \\ & \text { HY155 } \end{aligned}$	Pentode Power Amplifier	- 1	5K	1.4	0.07	-			Class-A Amp.	45	$\begin{aligned} & -3.0 \\ & -7.5 \end{aligned}$	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 825000 \\ & 420000 \end{aligned}$	$\begin{aligned} & 310 \\ & 450 \end{aligned}$	$\begin{aligned} & 255 \\ & 190 \end{aligned}$	$\begin{aligned} & 50000 \\ & 28000 \end{aligned}$	$\begin{aligned} & 0.0115 \\ & 0.09 \end{aligned}$	$\begin{aligned} & \text { HY } 125 \\ & \text { HY } 155 \end{aligned}$	
M54	Tetrode Power Amplifier	1	2	0.625	0.04				Class-A Amp.	30	0	30	0.06	0.5	130000	200	26	35000	0.005	M54	
M64	Tetrode Voltage Amplifier	1	2	0.625	0.02				Class-A Amp.	30	0	-	-	0.03	200000	110	25	\cdots		M64	
M 74	Tetrode Vollage Amplifier	1	2	0.625	0.02				Class-A Amp.	30	0	7.0	0.01	0.02	500000	125	70	-		M74	
RK61	Gas Triode	1	2	1.4	0.05				Radio Control	45				1.5					-	RK61	
$\begin{aligned} & \overline{S D 917 A} \\ & 5837 \end{aligned}$	Triodo	1	2	6.3	0.15	2.6	0.7	1.4	Class-A Amp.	100	820*	-	-	1.4	26000	2700	70	-	-	$\begin{aligned} & \text { SD917A } \\ & 5637 \end{aligned}$	
$\begin{aligned} & \text { SD828A } \\ & 5638 \end{aligned}$	Audio Pentode	1	2	6.3	0.15	4.0	3.0	0.22	Class-A, Amp.	100	270*	100	1.25	4.8	150000	3300		—	-	$\begin{aligned} & \text { SD828A } \\ & 5638 \end{aligned}$	
$\begin{aligned} & \text { S0828E } \\ & 5634 \end{aligned}$	Sharp Cut-off Pentode	4	-	6.3	0.15	4.4	2.8	0.01	Class-At Amp.	100	150:	100	2.5	6.5	240000	3500		-		$\begin{aligned} & \text { SD828E } \\ & 5634 \end{aligned}$	
$\begin{aligned} & \text { SN944 } \\ & 5633 \end{aligned}$	Remote Cut-off Peniode	4	-	6.3	0.15	4.0	2.8	0.01	Class-A, Amp.	100	150*	100	2.8	7.0	200000	3400		-	-	$\begin{array}{\|l\|l\|} \hline \text { SN944 } \\ 5633 \end{array}$	
SN946	Diode	1	2	6.3	0.15	1.8			Rectifier	150				9.0		-		-	-	SN946	
$\begin{aligned} & \text { SN947D } \\ & 5640 \end{aligned}$	Audio Beam Pentodo	1	2	6.3	0.45	-	-	-	Class-A Amp.	100	-9	100	2.2	31.0	15000	5000		3000	1.25	$\begin{aligned} & \text { SN947C } \\ & 5640 \end{aligned}$	
SN948C	Voltage Regulator	1				-			Regulator	Operoting voltage =95; Max. current $=25 \mathrm{Ma}$.										SN948C	
SN953D	Power Pentode	1		6.3	0.15	9.5	3.8	0.2	Class-A Amp.	150	100°	100	4/7.5	21/20	50000	9000		9000	1.0	SN953D	
$\begin{aligned} & \text { SN954 } \\ & 5641 \end{aligned}$	Half-Wave Reclifier	1	2	6.3	0.45	-	-	-	Rectifier	300	-	-	-	45.0	-	-	-	-	-	$\begin{aligned} & \hline \text { SN954 } \\ & \text { 5641 } \end{aligned}$	
SN9558	Dual triode	1	2	6.3	0.45	2.8	1.0	1.3	Class-A: Amp. ${ }^{\text {a }}$	100	100*			5.5	8000	4250	34			SN955B	
$\begin{aligned} & \text { SN956B } \\ & 5642 \end{aligned}$	H.V. Half-Wave Reclifiar		-	1.25	0.14	-	-	-	H.V. Rectifier	Peak inverse V. $=10000$ Max. Average Ip $=2 \mathrm{Ma}$. Peak $\mathrm{Ip}=23 \mathrm{Ma}$.										$\begin{array}{\|l\|} \hline \text { SN956BB } \\ 5642 \end{array}$	
$\begin{aligned} & \text { SN957A } \\ & 5645 \end{aligned}$	Triode	1	2	6.3	0.15	2.0	1.0	1.8	Class-A Amp.	100	560*	-	-	5.0	7400	2700	20	-	- ${ }^{\text {S }}$	$\begin{aligned} & \text { SN957A } \\ & \text { S645 } \end{aligned}$	
SN1006	Triode	1	2	6.3	0.15				Class-A1 Amp.	100	820*			1.4	29000	2100	70			SN1006	
SN1007B	Mixer	4		6.3	0.15	5.0	2.8	0.003	Mixer	100	150*	100	5.0	4.0	230000	900	-			SN10078	
5635	Dual Triode	Bs.	8DB	6.3	0.45	2.6	1.6	1.2	Class-A Amp. ${ }^{5}$	100	100*			4.8	10000	3800	38			5635	
5636	Pentode Mixer	Bs.	80C	6.3	0.15	4.0	1.9	0.034	Closs-A Amp.	100	150*	100	4.0	5.6	110000	3200		-		5636	
5639	Video Pentode	1	8DL	6.3	0.45	9.5	7.5	0.10	Class-A1 Amp.	150	100*	100	4.0	21	50K	9000		9000	1.0	5639	
5641	Single Diode	1	6CJ	6.3	0.45				H. W. Rectifier	235 volts a.c. max.; 45 Ma . d.c. output.										5641	
5643	Tetrode Thysatron	1	800	6.3	0.15	1.7	1.6	0.1	Relay Tube Grid Contr. Reet.	Poak anode valts $=500$; Inv. volts $=500$; Peak $I_{k}=100 \mathrm{Ma}$.; Avg. $=22 \mathrm{Ma}$.										5643	
5644	Cold Cathode Diode	1	4CN	-	-	-	-	-	Voltage Reg.	Starting volfage $=125 \mathrm{max}$. d.c. Operating vollage $=95$. Operating current $=5-25 \mathrm{Ma}$. Regulation $=\mathbf{4}$ volts approx.										5644	
5646	Triode	1	-	6.3	0.15	2.4	3.4	1.2	Class-A Amp.	100	820*	I	-1	1.4	\| 29000		[2400 \|	701	,	- 5	5646
5647	Single Diade	1	81	6.3	0.15	2.2	-			150 volts a.c. max; 9 Ma. d.c. ouppul.										5647	
5718	U.h.f. Medium-Mu Triode	1	8DK	6.3	0.15	2.2	0.7	1.4	Class-A A Amp.	150	180*	-	-]	13	4150	6500	27	-		5718	
5718	U.h.P. Medium-Mu Triode	-	80K	6.3	0.15	2.2	0.7	1.4	U.h.f. Oscillator	150	-12	Fme. $=500$		20		$19=3.7$	Mo.		0.9	5718	
5719	Hi-Mu Triode	1	8DK	6.3	0.15	2.4	0.6	0.7	Class-A1 Amp.	150	680*	---	-	1.7	26000	2700	70			5719	
5840	U.h.f. Sharp Cut-off Pent.	1	8DL	6.3	0.15	4.2	4.0	0.015	Class-A1 Amp.	100	150*	160	2.4	7.5	230K	5000		-	- 5	5840	
5896	U.h.f. Dual Diode	1	801	6.3	0.3	3.0			Det.-Roclifier	150 volis o.c. max.; 9 Ma. d.c. output per plate.										5896	
5897	U.h.f. Medium-Mu Triode	1	8DK	6.3	0.15	2.2	0.7	1.4	Class+A, Amp.	150	180*	-1	\longrightarrow	13	4150	6500	27	\cdots	-	5897	
									U.h.f. Oscillator	150	-12	-	-	20	$1 \mathrm{~g}=3.7 \mathrm{Ma}$. Fmc. $=300$.				0.9	5897	
5898	Hi-Mu Triode	1	8DK	6.3	0.15	2.4	0.6	0.7	Class-A, Amp.	150	880*	-	-n-	1.7	26000	2700	70	-	\square	5898	
5899	U.h.f. Serni-Kemote Pent.	1	801	6.3	0.15	4.4	4.0	0.015	Class-A, Amp.	100	120*	100	2.2	7.2	260K	4500		-	- 5	5899	
5900	U.h.f. Semi-Remole Pent.	1	8DL	6.3	0.15	4.4	4.0	0.015	Class-A1 Amp.	100	120*	100	2.2	7.2	260K	4500		-	- 5	5900	
5901	U.h.f. Sharp Cut ooff Pent.	1	801	6.3	0.15	4.2	4.0	0.015	Class-A, Amp.	100	150*	100	2.4	7.5	230K	5000	-	-		5501	
5902	Audio Beam Pentode	1	8DL	6.3	0.15	6.5	7.5	0.11	Class-A1 Amp.	110	270*	110	2.2	30	15K	4200	-	3000	1.0	5902	

TABLE XII-SUB-MINIATURE TUBES-Coninued

Type	Name	Base	Socket Connec tions	Fil. or Heater		Copacitance $\mu \mu \mathrm{fd}$.			Use	Plole Supply Volis	Grid Bias	Screen Volis	Screen Current Ma.	$\begin{array}{\|c} \text { Plote } \\ \text { Current } \\ \text { Ma. } \end{array}$	Plate Resisfance Ohms	Transconductance Micromhos	Amp. Foctor	LoadResistanceOhms	Power Oufput Wafts	Type
				Volts	Amp.	In	Out	Plate. Grid												
5903	U.h.f. Dual Diode	1	8 BJ	26.5	0.075	3.0		-	Det.-Reclifier	150 volis a.c. max.; 9 Ma. d.e. output per plate.										5903
5904	U.h.f. Medium-Mu Triode	1	8DK	26.5	0.045	2.2	0.8	1.8	Class-A1 Amp.	26.5	-3.5			3	3800	5000	19		0.06	5904
									U.h.f. Oscillator	26.5	0			20	$1 \mathrm{~g}=7.5 \mathrm{Ma}$. Fmc. $=400$.					
5905	U.h.f. Sharp Cul-off Pent.	1	8DL	26.5	0.045	4.4	4.2	0.015	Closs-A1 Arnp.	26.5	$2.2{ }^{\text {8 }}$	26.5	0.9	2.3	110K	2850				5905
5906	U.h.f. Sharp Cul-off Pent.	1	8DL	26.5	0.045	4.2	4.0	0.015	Closs-A ${ }_{1}$ Amp.	100	150*	100	2.4	7.5	230K	5000				5906
5907	U.h.f. Remote Cut-off Pent	1	8DL	26.5	0.045	4.4	4.0	0.015	Class-A1 Amp.	26.5	$2.2{ }^{\text {5 }}$	26.5	1.1	2.7	125K	3000				5907
5908	U.h.f. Pentode	1	80C	26.5	0.045	4.4	4.6	0.08	Closs-A Amp.	26.5	$2.2{ }^{\text {b }}$	26.5	1.6	2.3	30K	1750				5908
590									Mixer	26.5	$2.2{ }^{\text {b }}$	26.5	1.6	1.0	100K	800				
5916	U.h.f. Pentode		80C	26.5	0.045	4.2	4.0	0.015	Class-A1 Amp.	100	150*	100	3.4	4.4	130K	3000				5916
									Mixer	100	150*	100	4.6	2.5	400K	1100		-		
5977	Triede	85.	80K	6.3	0.15	2.0	0.8	1.3	Class-A Amp.	100	270*	-		10	3650	4500	16	-		5977
5987	Triode	Bs.	80M	6.3	0.45	2.8	1.5	3.2	Class-A1 Amp.	150	-24	-	-	22.5/28	2220	1850	4.1	3500	0.75	5987
6111	Twin Triode	Bs.	8DG	6.3	0.3	1.9	0.3	0.009	Class-A Amp.	100	220*	-	-	8.5	4000	5000	20			6111

TABLE XIII-CONTROL AND REGULATOR TUBES

Type	Name	Base	Sockel Connec fions	Cathode	Fil. or	eater	Use	Pook Anode Volifge	Max. Anode Ma.	Minimum Supply Voltage	Operating Voltoge	Operoling Ma.	Grid Resistor	Tube Voltage Drop	Type
					Volts	Amp.									
$\begin{aligned} & \overline{O A 2} \\ & 6073 \end{aligned}$	Voltage Regulator	7-pin B.	5BO	Cold	-	-	Voltaga Regulator	-	-	185	150	5-30	-	-	042
0A5	Gos Pentode	7 -pin 8 .	Fig. 33	Cold		-	Reloy or Triggor	Plote-750 V., Screen-90 V., Grid+3 V., Pulse-85 V.							OA5
$\begin{aligned} & 082 \\ & 6074 \end{aligned}$	Voltage Regulator	7-pin B.	580	Cold	-	-	Vollage Regulator	-	-	133	108	5-30	-	-	082
$\begin{aligned} & \overline{\text { AA4G }} \\ & 1267 \end{aligned}$	Gas Triode Stcriter-Anode Type	6-pin 0.	$\begin{aligned} & 4 V \\ & 4 V \\ & \hline \end{aligned}$	Cold	-	-	Cold-Cathode Starter-Anode Relay Tube	With 105-120-volt a.c. anode supply, peak starter-anode a.c. volfage is 70, peak r.f. voltage 55. Peak d.c. $\mathrm{ma}=100$. Average d.c. $\mathrm{ma}=25$.							$\begin{aligned} & \hline 044 \mathrm{G} \\ & 1267 \end{aligned}$
1847	Voltago Regulator	7-pin 8		-	-	-	Voltage Regulator	-		225	82	1-2	-	-	1847
IC21	Gos Triode	6 -pin 0.	4V	Cold	-	-	Relay Tube	125-145	25	66^{8}	-	-	-	73	IC21
$1{ }^{1}$	Glow-Discharge Type	6-pin 0.	4	Cold	-		Voitage Regulator		0.1 '	1804				55	
2A4G	Gos Triode Grid Type	7-pin 0.	55	Fil.	2.5	2.5	Contral Tube	200	100		-	-	-	15	2A4G
605G	Gas Triode Grid Type	8-pin O.	60	Hir.	6.3	0.6	Sweep Circuit Oscillator	300	300	-	$\underline{\square}$	1.0	0.1-10 ${ }^{7}$	19	695G
284	Gas Triode Grid Type	5-pin M.	5 A	Hir.	2.5	1.4				-	-				284
$2 \mathrm{C4}$	Gas Triode	7 -pin 8.	5AS	Fil.	2.5	0.65	Control Tube	Plate volis $=350$; Grid volts $=-50$; Avg. Mo. $=5$; Peak Ma, $=20$; Vollage drop $=16$.							$2 \mathrm{C4}$
2021	Gas Telfode	7-pin B.	7BN	Htr.	6.3	0.6	Grid-Controlled Rectifer	650	500	-	650	100	0.1-10 ${ }^{7}$	8	2021
2021	Gas Telrode	7-pin B .	7 BN	Hir.	6.3		Relay Tube	400	-	-	-	-	1.0^{7}	-	
$3 C 23$	Gos and Mercury Vapor Grid Type	4-pin M.	3 G	Fil.	2.5	7.0	Grid-Controlled Rectifler	1000	6000	-	500	1500	-4.58 -2.58	15	$3 \mathrm{C23}$
604	Gas Triode	7-pin B.	SAY	Hir.	6.3	0.25	Control Tuba	Piate velit =350; Grid volis = -30; Avg. Ma. =25; Peak Mc. $=100$; Volloge drop $=16$.							604
17	Mercury Vapor Triode	4-pin M.	3 G	Fil.	2.5	5.0	Grid-Contralled Rectifler	$\begin{aligned} & \hline 7500^{3} \\ & \hline 2500 \\ & \hline \end{aligned}$	2000	-	-	500	200-3000	-	17
17	Mercury Vapor Triode	4-pin M.	36	Fi.	2.5					-53	1000	250	-	10-24	
874	Voltage Regulotor	4-pin M.	45	-	-	-	Voltags Regulator	-	-	125	90	10-50	\cdots		874
876\#	Current Regulator	Mogul	-	\cdots	-	-	Current Regulator	\cdots	\cdots	—	40-50	1.7	-	-	876
884	Gas Triade Grid Type	6 -pin 0.	60	Hir.	6.3	0.6	Sweep Ciscuit Oscillator	300	300	-	-	2	25000		884
	Gas Triade Grid Type	6-pin 0.	60	Hir.	6.3		Grid-Controlled Rectiflar	350	305	-	-	75	25000	-	
385	Gas Triode Grid Type	5-pin 5.	54	Hir.	2.5	1.4	Same as Typa 884	Characteristics some os Type 888							885
886\#	Current Regulator	Magul	-		-	-	Currerit Regulator	-	-	-	40-60	2.05	-	-	886
967	Mercury Vapar Triode	4-pin M.	3G	Fil.	2.5	5.0	Grid-Controlled Reclifler	2500	500	-5^{3}	-	-	-	10-24	967
991	Voltage Regulator	Bayonel	-	-	-	-	Voltage Regulator	\cdots	\cdots	87	55-60	2.0	-	-	991
1265	Voltage Regulator	6-pin 0.	4AJ	Cold	-	-	Voltage Regulator	-	-	130	191	5-30	-	-	1265

TABLE XIII-CONTROL AND REGULATOR TUBES - Continued

TABLE XIV-CATHODE-RAY TUBES AND KINESCOPES—Continued

Type	Name	Socket Connections	Heater		Use	Size	Anode No. 2 Voltage	Anode No. 1 Voltage	Cut-Off Grid Voltage	Grid No. 2 Voltage	Ion- Trap Ma.	Max. Inpul Voltage:	Focus Coil Ma.	Deflection Sensitivity ${ }^{6}$		Anode No. 3 Volloge	Paftern Color	Typo
			Volls	Amps.										$\mathrm{D}_{1} \mathrm{D}_{2}$	$\mathrm{D}_{3} \mathrm{D}_{4}$			
3MP1	Electrostatic Cothode-Roy	Fig. 2	6.3	0.6	Oscillograph	$3^{\prime \prime}$	1000	200/350	- 68					1903	180^{3}		Green	3MP1
3RPI	Electrostatic Cathode-Ray	12E	6.3	0.6	Oscillogroph	$3^{\prime \prime}$	1000	165/310	-67.5					73/973	52/703	-	Green	3RP1
							2000	330/620	-135			-		146/198 ${ }^{3}$	104/1408	\longrightarrow		
$\begin{aligned} & \hline \text { 5AP1/ } \\ & 1805-P 1 \\ & 5 A P 4 / \\ & 1805-P 4 ; \end{aligned}$	Electrestatic Pieture Tube	11 A	6.3	0.6	Oscillograph Telovision	5"	2000	575	- 35			500		0.17	0.21	-	Green White	$\begin{aligned} & 5 \text { AP 1/ } \\ & 1805 \text {-P1 } \\ & 5 A P 4 / \\ & 1805 / \mathrm{P4} \end{aligned}$
							1500	430	- 27					0.23	0.28	-		
$\begin{aligned} & \text { 58P1/ } \\ & 1802-\mathrm{P} 1 . \end{aligned}$	Electrostotic Picture Tube	11A	6.3	0.6	Oscillogroph	5"	2000	450	- 40	-		500		0.3	0.33	—	Green White Blue	$\begin{aligned} & \text { 5BP 1/ } \\ & 1802-\mathrm{P} 1 . \\ & 2-4-5.11 \end{aligned}$
							1500	337	- 30					0.4	0.45			
$\begin{aligned} & 5 C P 1- \\ & 2-4-5-7 . \\ & 11 \end{aligned}$	Electrostatic Cathode-Ray	148	6.3	0.6	Oseillogroph Television	5"	2000	575	- 60		-	550		0.28	0.32	4000	White Green Blue	$\begin{aligned} & \text { 5CP 1. } \\ & 2-4-5-7-11 \end{aligned}$
							1500	430	- 45					0.37	0.43	3000		
							2000	575	-60					0.36	0.41	2000		
$\begin{aligned} & \text { 5FP1- } \\ & 2-4-11-14 \end{aligned}$	Electromognetic Cothade-Ray	5 AN	6.3	0.6	Oscillograph Television	5"	7000	250	- 45			-		-	-		Green	5FP
							4000	250	- 45					-	-		Whive	2-4.11-14
$\begin{aligned} & 5 \mathrm{HPI} \\ & 5 \mathrm{HP4} \end{aligned}$	Electrostatic Cathode-Ray	11A	6.3	0.6	Oscillograph	5"'	2000	425	- 40			500		0.3	0.33	-	Green White	$\begin{aligned} & 5 \mathrm{HP} 1 \\ & 5 \mathrm{HP4} \end{aligned}$
							1500	310	- 30					0.4	0.44	-		
$\begin{aligned} & \text { 5JP 1. } \\ & \text { 2-4-5-1 } \end{aligned}$	Electrostatic Cathode-Ray	IIE	6.3	0.6	Oscillograph	5"	2000	520	- 75			500		0.25	0.28	4000	White Green Blue	$\begin{aligned} & \text { 5JP1. } \\ & 2.4-5.11 \end{aligned}$
							1500	390	- 56					0.33	0.37	3000		
$\begin{aligned} & \text { 5LP 1- } \\ & 2-4-5-11 \end{aligned}$	Electrostatic Cathode-Ray	$11 F$	6.3	0.6	Oscillegraph Television	5"	2000	500	- 60			500		0.25	0.28	4000	White Green Blue	$\begin{aligned} & \text { 5LP1. } \\ & \text { 2.4-5.11 } \end{aligned}$
							1500	375	- 45	-				0.33	0.37	3000		
							1000	250	- 30					0.49	0.56	2000		
$\begin{aligned} & 5 \mathrm{MP1} \\ & 4-5-11 \end{aligned}$	Electrastatic Cathoda-Ray	7 AN	2.5	2.1	Oscillograph	5"	1500	375	- 50			660		0.39	0.42		White	5MP1.
							1000	250	- 33	-				0.58	0.64		Green Blue	4-5.11
$\begin{aligned} & \text { SRP1-1. } \\ & \text { 2-4-7.11 } \end{aligned}$	Electrostatic Cathode-Ray	14F	6.3	0.6	Oscillograph	5"	3000	-	- 90	-		1200	-	0.12	0.12	15000	Green White Blue	$\begin{aligned} & \text { 5RP1. } \\ & 2-4-7-11 \end{aligned}$
							2000	575	- 60					0.18	0.18	10000		
5TP4	Projection Kinescope	12C	6.3	0.6	Television	5"1	27000	4900	- 70	200		-		-	-	-	White	5TP4
$\begin{aligned} & \text { 5UP1. } \\ & 7.11 \end{aligned}$	Electrostatic Cathode-Ray	12E	6.3	0.6	Oscillograph	5"	2500	640	- 90			500		$38.5{ }^{3}$	$77{ }^{3}$	-	Green Yel- low Blue	$\begin{aligned} & \text { 5UP1. } \\ & 7.11 \end{aligned}$
							2500	340	- 90	-		500		$28{ }^{3}$	56^{3}	-		
							1000	320	- 45	-		500		313	62^{3}	-		
							1000	170	-45	-		500		$23{ }^{3}$	463			
5WP11	Transeriber Kinescope	12C	6.3	0.6	Television	5"	27000	5400	-42/-98	200		-		-			Blue	5WP 11
5WP15	Flying-Spot Cothode-Ray	12 C	6.3	0.6	Vid. Sig. Gen.	5"	20000	$\begin{aligned} & 3000 / \\ & 3800 / \end{aligned}$	-42/-98	200		-	-	-	-	-	Blue Green	5WP 15
5ZP16	Flying-Spot Cathode-Ray	Fig. 46	6.3	0.6	Vid. Sig. Gen.	5"	20000	4700	-70	200		-		-	-		-	5ZP16
$7 \mathrm{AP4}$	Electronıagnetic Piclure Tube	5AJ	2.5	2.1	Television	7"	3500	1000	-67.5	-		-			-		White	$7 \mathrm{AP4}$
$\begin{aligned} & 7 \mathrm{BP} 1 . \\ & 2-4-7.11 \end{aligned}$	Eleclromagnetic Cathode-Roy	5AN	6.3	0.6	Oscillograph Television	7"	7000	250	- 45	-		-	-	-	-	—	White Green Blue	$\begin{aligned} & \text { 7BP1. } \\ & 2-4-7.11 \end{aligned}$
							4000	250	- 45	-								
$\begin{aligned} & 7 C P 1 / 5 \\ & 1811-\mathrm{P1} \end{aligned}$	Electromagnetic Cathode-Ray	6AZ	6.3	0.6	Oscillogroph	7''	7000	1470	- 45	250		-	-	-	-	-	Green	$\begin{aligned} & 7 \mathrm{CP} 1 / \\ & 1811 . \mathrm{PI} \end{aligned}$
							4000	840	- 45	250				-				
70P4	Kinescope	12 C	6.3	0.6	Television	7"	6000	1430	- 45	250				-	-		White	70p4
7EP4	Electrostatic Cathode-Ray	IIN	6.3	0.6	Television	7"	2500	650	- 60	-				110^{3}	953		White	$7 \mathrm{EP4}$
$7 \mathrm{GP4}{ }^{5}$	Electrostatic Kinescope	Fig. 47	6.3	0.6	Television	7"'	3000	1200	- 84	3000		-	-	$123{ }^{3}$	$102{ }^{3}$	-	White	$7 \mathrm{GP4}$
7JP1	Electrostatic Cathode-Ray	146	6.3	0.6	Oscillograph	7"	2000	800	- 56	-		-		62/82 ${ }^{3}$	50/68 ${ }^{3}$	-	Green	7 JPI
							4000	1600	-112	-		-		124/164 ${ }^{3}$	100/136			
$7 \mathrm{JP4}$	Electrostatic Kinescope	14G	6.3	0.6	Television	$7{ }^{\prime \prime}$	6000	2400	-168					$246{ }^{3}$	$204{ }^{3}$	-	White	7JP4
$7 \mathrm{MP7}$	Electromagnelic Cathode-Ray	120	6.3	0.6	Oscillograph Radar	$7{ }^{\prime \prime}$	-	7000	-27/-63	250	-	-	85	-	-	-	Gr'nish	$7 \mathrm{MP7}$
							-	4000	-27/-63	250	-	-	62	-	-	-	Yellow	

TABLE XIV-CATHODE-RAY TUBES AND KINESCOPES—Continued

Type	Name	Socket Connections	Heater		Use	Size	Anode No. 2 Voltage	Anode No. 1 Voltage	Cut-Off Grid Volfage	Grid No. 2 Vollage	IonTrap Ma.	Max. Input Voltage ${ }^{1}$	Focus Coil Ma.	Deflection Sensitivify ${ }^{6}$		Anode No. 3 Voliage	Paftern Color	Type
			Volts	Amps.										$\mathrm{D}_{1} \mathrm{D}_{2}$	$\mathrm{D}_{3} \mathrm{D}_{4}$			
7NP4	Projection Kinescope	14N	6.6	0.62	Television	7"	75000	$\begin{gathered} 16000 / \\ 18000 \end{gathered}$	-155	400/600	-				-	-	White	7NP4
7 QP4	Electromagnetic Kinescope	120	6.3	0.6	Monitor	$7{ }^{\prime \prime}$	-	$\begin{aligned} & 912 / \\ & 1368 \end{aligned}$	-67.5	250	-		-		-	6000	White	70P4
$7 \mathrm{RP4}$	Electromagnelic Picture Tube	12D	6.3	0.6	Talevision	7"		9000	-27/-63	250			120				White	7RP4
7 TP4	Monitor Kinescope	12C	6.3	0.6	Television	$7{ }^{\prime \prime}$	10000	$\begin{aligned} & 1040 / \\ & 1400 \end{aligned}$	-22/-52	200	0/8 ${ }^{\text {3 }}$					-	White	7TP4
7 WP4	Projection Kinescope	14N	6.6	0.62	Television	7"	75000	18000	-155	400/600					-		White	7WP4
8AP4	Electromagnetic Picture Tube	12H	6.3	0.6	Television	$8^{\prime \prime}$		7000	-27/-63		45*	-	115				White	8AP4
$8 \mathrm{BP4}$	Electrostatic Picture Tube	14G	6.3	0.6	Television	$8{ }^{\prime \prime}$		2400	-72/-168	6000				146/1983	124/1683		White	8BP4
$\begin{aligned} & 9 A P 4 / \\ & 1804-P 4 \end{aligned}$	Electromagnetic Kinescope	6AL	2.5	2.1	Television	9"	7000	1425	-40 -38	250	-	-	-	-	-	-	White	$\begin{aligned} & 9 A P 4 / \\ & 1804: P 4 \end{aligned}$
$9{ }^{9} \mathrm{CP4}$	Electromagnetic Kinescope	4AF	2.5	2.1	Television	$9{ }^{\prime \prime \prime}$	7000		-110				\cdots				While	$9 \mathrm{CP4}$
$\begin{aligned} & 9 \mathrm{JPI} / \\ & 1809 \cdot \mathrm{P} 1 \end{aligned}$	Electrostatic-Magnetic Cathode-Ray	8BR	2.5	2.1	Oscillograph	$9{ }^{\prime \prime}$	5000	1570 785	-90 -45	-	-	3000		0.136		-	Green	$\begin{aligned} & 9 \mathrm{JP} \text { 1/ } \\ & 1809-\mathrm{F} 1 \end{aligned}$
$108 P 4$	Magnelic Kinescope	12D	6.3	0.6	Television	$10^{\prime \prime}$		9000	-45	250	-		-		-	-	White	108F4
IOEP4	Magnetic-Focus Cathode-Roy	12D	6.3	0.6	Television	$101 / 2^{\prime \prime}$		8000	-45	250			-	-	-		White	10EP4
10FP4	Electromagnatic Picture Tube	12D	6.3	0.6	Television	10"		9000	-27/-63	250	-	\cdots					White	10FP4
$10 \mathrm{HP4}$	Electrostiotic Cathode-Ray	14G	6.3	0.6	Television	$10^{\prime \prime}$		5000	$-60 /-140$	1800	-			130^{3}	$10{ }^{3}$		White	10 HP 4
10KP7	Magnetic Coihodo-Ray	120	6.3	0.6	Oselllagraph	$10^{\prime \prime}$		9000	-27/-63	250							-	$10 \mathrm{KF7}$
10SP4	Monitor Kinescope	12 C	6.3	0.6	Television	$10^{\prime \prime}$	14000	$\begin{aligned} & 1640 / \\ & 2255 \end{aligned}$	-18/-48	200	-		-	-	-	-	White	105P4
$\begin{aligned} & 12 A P 4 / \\ & 1803-\mathrm{P4} \end{aligned}$	Electromagnetic Piclure Tube	6AL.	2.5	2.1	Television	12"	7000	1460	- 75	250	25	—	10	-	-	-	White	$\begin{aligned} & \text { 12AP4/ } \\ & 1803 . \mathrm{P4} \end{aligned}$
$12 \mathrm{CP} 4^{7}$	Electromagnetic Piclure Tube	4AF	2.5	2.1	Television	12"	7000		-110	-	25		10				White	12CP4
12DP4-7	Electromagnetic Cathode-Ray	5AN	6.3	0.6	Television	12'	7000	250	-45 -45		-						White	12DP4
12KP4-A	Electromagnetic Plicture Tube	Fig. 35	6.3	0.6	Television	$12^{\prime \prime}$		11000	-27/-63	250					$\underline{\square}$	-	White	12KP4.A
12LP4 ${ }^{\text {P }}$	Electromagnelic Kinescope	12D	6.3	0.6	Television	12"		11000	-27/-63	250			-				White	12LP4
12QP4	Electromagnelic Picture Tube	Fig. 35	6.3	0.6	Television	12'1	-	10000	-27/-63	250	80		135				White	12QP4
12RP4	Electromagnelic Picture Tube	12D	6.3	0.6	Television	12"		10000	-27/-63	250	52^{8}		135			-	White	12RP4
12SP7	Electromagnetic Cathode-Ray	12D	6.3	0.6	Oscillograph	12"	-	10000	-27/-63	250	-	-	107	-	-	-	Gr'nish Yellow	12SP7
12184	Electromagnetic Picture Tube	12D	6.3	0.6	Television	12' ${ }^{\prime \prime}$		11000	-27/-63	250	120		110		\cdots	-	White	12TP4
$12 \mathrm{PP4}$	Electromognelic Piclure Jube	120	6.3	0.6	Television	12"		11000	-27/-63	250			110				White	12UP4
$14 \mathrm{BP4}$	Electromagnelic Picture Tube	Fig. 35	6.3	0.6	Television	14"		11000	-27/-63	250	120		110				White	14BP4
$14 \mathrm{CP4}$	Electramagnetic Picfure Tube	12D	6.3	0.6	Television	14"	-	12000	-33/-77	250	32^{8}	-	105	-	-	-	White	14 CP 4
$14 \mathrm{DP4}$	Electromagnetic Picfure Tube	12D	6.3	0.6	Television	14"		11000	-27/-63	250	120		100			-	White	14DP4
14EP4	Electromagnetic Picture Tube	120	6.3	0.6	Television	14"	-	12000	-33/-77	-	110		110		-	-	White	14EP4
14 GP4	Electrostatic-Magnatic Kinescope	Fig. 42	6.3	0.6	Television	$14^{\prime \prime}$		12000	-33/-77	300						2940 ${ }^{2}$	White	14GP4
14HP4	Electrostolic-Magnetic Kinescope	Fig. 43	6.3	0.6	Television	14"	12000	-48/264	-33/-77	300	70	-	-	-	-	-	White	14HP4
15 AP4	Electromagnetic Cathode-Ray	12D	6.3	0.6	Television	15"	-	8000	- 45	250		-	-	-		-	White	15AP4
$15 \mathrm{CP4}$	Electromognelic Picture Tube	Fig. 35	6.3	0.6	Television	15"		9000	- 45	250	109	-	115		-		While	15CP4
15DP4 ${ }^{7}$	Electromagnetic Picture Tube	12D	6.3	0.6	Television	15"		13000	-27/-63	250	105		146				White	15DP4
16ADP4	Electromagnetic Cathode-Roy	Fig. 69	6.3	0.6	Oscillograph	16"	-	12000	-27/-63	250						-	Gr'nish Yellow	16ADP4
16AP4	Electromognetic Piclure Tube	Fig. 35	6.3	0.6	Television	16"	-	12000	-33/-77	300	-	-	-	-	-	-	White	16 AP4
$16 \mathrm{CP4}$	Electromagnetic Piclure Tube	Fig. 35	6.3	0.6	Televisian	16"	-	12000	-27/-63	250	120	-	110	-	-	-	White	16CP4
16EP4A	Electromagnetic Picture Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	-	-	105	-			White	16EP4A
16FP4	Electromagnetic Piclure Tube	Fig. 35	6.3	0.6	Television	16"	-	13000	-27/-63	250	105	-	146	-	-	-	White	16FP4

TABLE XIV-CATHODE-RAY TUBES AND KINESCOPES-Continued

Type	Nome	Socket Connecfions	Heoter		Use	Size	Anode No. 2 Voltage	Anode No. 1 Volloge	Cut-Off Grid Voltoge		$\begin{aligned} & \text { Ion. } \\ & \text { Trop } \\ & \text { Ma. } \end{aligned}$Ma.	Max. Input Volfogel	Focus Coil Ma.	Deflection Sensitivity		Anade No. 3 Voltage	Paltern Color	Type
			Volts	Amps.										$\mathrm{D}_{1} \mathrm{D}$:	$\mathrm{D}_{3} \mathrm{D}_{4}$			
16GP4	Electromognetic Picture Tube	12 D	6.3	0.6	Television	$16^{\prime \prime}$	-	12000	-33/-77	300	23:		100				White	$16 \mathrm{GP4}$
16GP48	Electromognetic Pielure Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$	-	12000	-33/-77	300	358		100			-	White	$16 \mathrm{GP48}$
16GP4C	Electromagnetic Picture Tube	120	6.3	0.6	Television	$16^{\prime \prime}$	-	12000	-33/-77	300	45^{3}		100				White	16GP4C
$16 \mathrm{HP4}$	Electromagnetic Pliclure Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$	-	12000	-33/-77	300	120		110				While	16HP4
$16 \mathrm{JP4}$	Electromagnetic Picture Tube	120	6.3	0.6	Television	$16^{\prime \prime}$		11000	-27/-63	250	120		115				White	16JP4
$16 \mathrm{KP4}$	Electromagnelic Picture Tube	120	6.3	0.6	Television	$16^{\prime \prime}$		14000	-33/-77	300	30°		90				White	$16 \mathrm{KP4}$
18194	Electromognetic Picture Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$	-	12000	-33/-77	300	120		110				White	$16 \mathrm{LP4}$
$16 \mathrm{MP4}$	Electromagnetic Kinescope	12D	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	120		110				White	$16 \mathrm{MP4}$
$16 \mathrm{RP4}$	Electromognetic Picture Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	120		100				White	16RP4
$165 \mathrm{P4A}$	Electromognefic Picfure Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	129		110				White	165P4A
16 TP4	Electromognelic Picfure Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$	-	12000	-33/-77	300	45\%		115		-		White	16 TP4
16 UP4	Electromognetic Picture Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$		12000	-27/-63	300	23^{8}		100				White	16UP4
$16 \mathrm{VP4}$	Electromognetic Kinescope	12D	6.3	0.6	Television	$16^{\prime \prime}$	\cdots	12000	-27/-63	250	120		110				White	16VP4
16WP4A	Electromagnetic Picfure Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$	-	12000	-27/-63	250	120		110				White	16WP4A
$162 P 4$	Electromagnetic Picture Tube	120	6.3	0.6	Television	$16^{\prime \prime}$	-	12000	-33/-77	300	120		110		-	-	White	162P4
17 AP4	Electromagnetic Picture Tube	120	6.3	0.6	Television	17"		12000	-33/-77	300	75	-	100				White	17 AP4
178P4A	Electromognetic Kinescope	Fig. 45	6.3	0.6	Television	17'1	-	14000	-33/-77	300	50^{8}		99				While	178P4A
$178 \mathrm{P}^{178}$	Electromognelic Picture Tube	120	6.3	0.6	Television	17"		12000	-33/-77	300	35^{*}		100				White	178P48
$17 \mathrm{CP4}$	Electromagnetic Picture Tube	120	6.3	0.6	Television	17'1	-	14000	-33/-77	300	50^{8}		104				White	$17 \mathrm{CP4}$
$17 \mathrm{FP4}$	Electrostatic-Magnetic Kinescope	Fig. 42	6.3	0.6	Television	17"	16000	$\begin{array}{r} 3100 / \\ 4100 \\ \hline \end{array}$	-33/-77	300	40^{3}						White	17FP4
$17 \mathrm{GP4}$	Electroslatic-Magnetic Kinescope	Fig. 43	6.3	0.6	Television	17"		14000	-33/-77	300	40^{8}		-		-	3620 ${ }^{2}$	White	$17 \mathrm{GP4}$
17HP4	Electrostatic-Magnetic Kinescope	Fig. 42	6.3	0.6	Television	17"	14000	0-350	-33/-77	300	85						White	17HP4
$17 \mathrm{JP4}$	Electramagnetic Kinescope	Fig. 45	6.3	0.6	Television	$17^{\prime \prime}$		16000	-33/-77	300	45^{8}		-	-			White	17JP4
$17 \mathrm{KP4}$	Electrostatic-Magnetic Kinescope	Fig. 45	6.3	0.6	Television	17"		12000	-33/-77	300	0/8 ${ }^{8}$					\square	White	$17 \mathrm{KP4}$
$17 \mathrm{LP4}$	Electrostatic-Magnelic Kinescope	Fig. 42	6.3	0.6	Television	17"		16000	-33/-77	300	50^{8}				-	-	White	17184
17 OP4	Electromognetic Kinescope	12D	6.3	0.6	Television	17"		12000	-33/-77	300	35^{8}		100				White	17C1P4
$17 \mathrm{RP4}$	Electrostolic-Magnetic Kinescope	Fig. 66	6.3	0.6	Television	17"	14000	0	-33/-77	300	35^{8}						White	178P4
$17 \mathrm{YP4}$	Electromognetic Kinescope	Fig. 45	6.3	0.6	Television	$17^{\prime \prime}$		12000	-33/-77	300	35^{8}		92				White	$17 \mathrm{YP4}$
19AP4	Electromognetic Piclure Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$	-	13000	-27/-63	250	105		146		-		Whils	19A:4
19AP4A	Electromognetic Picfure Tube	12 D	6.3	0.6	Television	$16^{\prime \prime}$	-	12000	-33/-77	300	75		140	-	-	-	White	19AP4A
$19 \mathrm{DP4A}$	Electromagnetic Piefure Tube	12D	6.3	0.6	Television	1911		13000	-26/-63	250	105	-	146				White	19DP4A
19EP4	Electromognetic Picture Tube	Fig. 35	6.3	0.6	Television	1911	-	13000	-26/-63	250	105		146			-	While	$19 \mathrm{EP4}$
$19 \mathrm{FP4}$	Electromognetic Piclure Tube	Fig. 35	6.3	0.6	relevision	$16^{\prime \prime}$		13000	-27/-68	250	100	-	100/130	-			White	19FP4
$19 \mathrm{GP4}$	Electromogretlic Picture Tube	120	6.3	0.6	Television	$19^{7 \prime}$		13000	-27/-63	250	105		110/130				White	19GP4
$19 \mathrm{JP4}$	Electromagnetic Kinescope	12D	6.3	0.6	Television	$19^{\prime \prime}$		12000	-33/-77	300	75	\square	95				White	$19 \mathrm{JP4}$
$208 \mathrm{P4}$	Electromagnetic Cothode-Rny	120	6.3	0.6	Television	$20^{\prime \prime}$		15000	-45	250	-		-			-	White	$208 P 4$
$20 \mathrm{CP4}$	Electromagnetic Picture Tuter	Fig. 44	6.3	0.6	Television	20"		12000	-33/-77	300	75		95				White	20CP4
20CP4A	Electromagnetic Kinescope	Fig. 44	6.3	0.6	Teievision	20"		12000	-33/-77	300	75		95				White	20CP4A
20DP4	Electromagnetic Kinescope	Fig. 44	6.3	0.6	Television	$20^{\prime \prime}$		12000	-33/-77	300	75		95			\cdots	White	20084
20FP4	Electrostotic-Magnetic Kinescope	Fig. 66	6.3	0.6	Television	20"	12000	$\begin{aligned} & 2300 / \\ & 3100 \end{aligned}$	-33/-77	300	75				-		White	20FP4
20GP4	Eloctrostotic-Magnetic Kinescope	Fig. 42	6.3	0.6	Television	$20^{\prime \prime}$	-	16000	-33/-77	300	40^{8}					42702	White	20GP4
$20 \mathrm{HP4}$	Electrostatic-Magnetic Kinescope	Fig. 66	6.3	0.6	Teievision	20"	14000	-56/310	-33/-77	300	85	-	-		-		White	20HP4
$203 P 4$	Electrastotic-Magnetic Kinescope	Fig. 45	6.3	0.6	Television	20"	-	12000	-33/-77	300	0/88	-					White	20JP4
$20 \mathrm{LP4}$	Electrostatic-Mognetic Kinescope	Fig. 43	6.3	0.6	Television	20"	14000	0	-33/-77	300	35^{3}	-	-	-			White	20184
20MP4	Electrastatic-Magnetic Kinescope	Fig. 42	6.3	0.6	Television	20"1	-	16000	-33/-77	300	50^{8}	-	-	\square			White	20MP4
21 AP4	Electromagnetic Kinescope	Fig. 44	6.3	0.6	Television	21"	-	16000	-33/-77	300	503	-	110		-	-	White	21 AP4

table xiv-CAThode-ray tubes and kinescopes-Continued

Tуpe	Name	Socket Connections	Heater		Use	Size	Anode No. 2 Voltage	Anode No. 1 Voliage	Cut-Off Grid Volioge	Grid No. 2 Voltage	lonTrop Ma.	Max. Inpui Voltage ${ }^{1}$	Focus Coil Ma.	Deflection Sensitivity ${ }^{\text {s }}$		Anode No. 3 Voltoge	Poltern Color	Type
			Volis	Amp.										$D_{1} D_{2}$	$\mathrm{D}_{3} \mathrm{D}_{1}$			
21EP4A	Electromagnetic Kinescope	Fig. 44	6.3	0.6	Telavision	$21^{\prime \prime}$		12000	-33/-77	300	70		95				White	21EP4A
$21 F P 4 A$	Electrostatic-Magnetic Kinescope	Fig. 43	6.3	0.6	Television	21"	14000	± 200	-33/-77	300	40^{8}						White	21FP4A
21\%P4A	Electrostatic-Magnetic Kinescope	Fig. 45	6.3	0.6	Television	21"		12000	-33/-77	300	50		-	\square			White	21KP4A
$21 \mathrm{MP4}$	Electrostotic-Magnetic Kinescope	Fig. 43	6.3	0.6	Television	$21^{\prime \prime}$	-	16050	-33/-77	300	50^{8}		\square				White	21MP4
$22 \mathrm{AP4}$	Electromagnetic Picture Tube	Fig. 35	6.3	0.6	Television	2210	\cdots	14000	-.33/-77	300	35^{8}		117		-		White	22AP4
24AP4A	Electromagnetic Picture Tube	12D	6.3	0.6	Television	24"	-	12000	-33/-77	300	32^{8}		97				White	24AP4A
$248 P 4$	Eleclrostatic-Magnetic Kinescope	Fig. 43	6.3	0.6	Television	$24^{\prime \prime}$	14000	-56/310.	-33/-77	300	85						White	24BP4
27 AP4	Electrostatic-Magnetic Kinescope	Fig. 43	6.3	0.6	Telavision	27"	15000	-60/300	-33/-77	300	85					-	White	27 AP4
902	Electrostatic Cathode-Ray	Fig. 1	6.3	0.6	Oscillograph	2"	600	150	-60			350		0.19	0.22		Green	902
903.	Electromagnetic Cothode-Ray	6AL	2.5	2.1	Oscillograph	$9 \prime$	7000	1360	-120	250			-				Green	903
904	Electrostatic-Magnelic Cothode-Ray	Fig. 3	2.5	2.1	Oscillograph	5"	4600	970	- 75	250		4000		0.09			Green	904
905 :	Electrostatic Cathode-Ray	Fig. 6	2.5	2.1	Oscillograph	5"	2000	450	- 35			1000		0.19	0.23		Grean	905
907	Electrostatic Cathode-Ray	Fig. 6	2.5	2.1	Oscillograph	5"	Characteristics same as Type 905							-			Blue	907
908 :	Electrostatic Cathode-Ray	7AN	2.5	2.1	Oscillograph	$3^{\prime \prime}$	Characteristics same as Type 3AP1/906P1										Blue	908
							1500	430	-50	-		500		0.223	0.233		Blue	908-A
908.A	Electrostatic Cathode-Ray	7 CE	2.5	2.1	Oscillograph	$3^{\prime \prime}$	1000	287	- 33			500		0.334	0.348		Blue	908-A
9095	Electrostatic Cathode-Ray	Fig. 6	2.5	2.1	Oscillograph	5"	Characteristics same as Type 905										3lue	909
9103	Electrostatic Cathode-Ray	7AN	2.5	2.1	Oscillograph	$3^{\prime \prime}$	Characleristics same as Type 3AP1/906P 1										Blue	910
9114	Electrastatic Cathode-Ray	7 AN	2.5	2.1	Oscillograph	3"	Characteristics same as Type 3AP1/906P1									-	Green	911
912	Electrostatic Cathode-Ray	Fig. 8	2.5	2.1	Oscillograph	5"	10000	2000	-66	250		7000		0.041	0.051		Green	912
913	Electrostatic Cathode-Ray	Fig. 1	6.3	0.6	Oscillagraph	$1{ }^{\prime \prime}$	500	100	- 65			250		0.07	0.10		Green	913
914°	Electrostatic Cathode-Ray	Fig. 12	2.5	2.1	Oscillograph	$9{ }^{\prime \prime}$	7000	1450	- 50	250		3000		0.073	0.093		Green	914
$1800{ }^{5}$	Electromagnetic Kinescope	6AL	2.5	2.1	Telavision	$9{ }^{\prime \prime}$	6000	1250	-75	250		-					Yellow	1800
$1801{ }^{\text {s }}$	Eleciromagnetic Kinescope	Fig. 13	2.5	2.1	Television	5"	3000	450	- 35	-							Yellow	1801
7816P4-A	Electromagnetic Kinescope	Fig. 65	6.3	0.6	Monitor	10"		9000	- 63	250		-				-	White	1816P4.A
2001	Electrostatic Cathode-Ray	4AA	6.3	0.6	Oscillograph	1"	Characteristics essentially same as 913											2001
2002	Electrostatic Cathode-Ray	Fig. 1	6.3	0.6	Oscillograph	$2{ }^{\prime \prime}$	600	120			\cdots	-		0.16	0.17	-	Green	2002
2005	Electrostatic Cathode-Ray	Fig. ${ }^{14}$	2.5	2.1	Television	$5^{\prime \prime}$	2000	1000	-35	200	-	-	-	0.5	0.56	-	-	2005
24-XH	Electrostatic Cathode-Ray	Fig. 1	6.3	0.6	Oscilloscope	2"	600	120	- 60		\cdots			0.14	0.16		Blue	24-XH
${ }^{1}$ Between Anode No. 2 and any deflecting plate. : Grid No. 4 voltage.				${ }^{3}$ D.c. Volts/in. ${ }^{4}$ Cathode connected to Pin 7.						5 Discontinuad. e in mm./volid.c.			TSuperseded by same type with suffix "A." ${ }^{1}$ lon-trap gousses.					

TABLE XV-RECTIFIERS-RECEIVING AND TRANSMITTING
See also Toble XIII-Conirol and Regulotor Tubes

Type Na.	Name	Base	Secket Conneclions	Cathade	Fil. or Heater		Max. A.C. Volfage Per Plafe	D.C.Output Current Ma.		Peak Plate Current Ma.	Type
					Volts	Amp.					
BA	Full-Wava Rectifer	4-pin M.	4 J	Cold		-	350	350	Tube dr	P 80 v .	G
BH	Full-Wave Rectifler	4-pin M.	4 J	Cold	-		350	125	Tube dr	90 v.	G
BR	Half.Wave Rectifer	4-pin M.	4H	Cald	-		300	50	Tube dr	p 60 v .	G
CE-220	Half +iVava Rectifler	4-pin M.	4P	Fil.	2.5	3.0		20	20000	100	HV
OY4	Half-Wave Rectifler	5-pin O.	4BU	Cold	Connect Pins 7 and 8		95	75	300	500	G
OZ4	Full-Wave Rectifler	$5-\mathrm{pin} 0$.	4R	Cold	\cdots		350	30-75	1250	200	G
1	Half-Wave Rectifler	4-pin S.	4G	Hir.	6.3	0.3	350	50	1000	400	MV
$1 \mathrm{AX2}$	Malf-Wove Rectifier	9-pin B.	9 Y	Fil.	1.4	0.65	20000	1.0	25000	11	HV
1-V	Half-Wave Rectiner	4-pins.	4G	Hir.	6.3	0.3	350	50			HV
IV2	Half-Wave Rectifier	9-pin 8 .	9 U	Fil.	. 625	0.3		0.5	7500	10	HV
183GT/8016	Half-Wave Rectifier	6-pin 0.	3 C	Fil.	1.25	0.2		2.0	4000	17	HV
1848	Half-Wave Rectifer	7 -pin 8.		Cold			800	6	2700	50	G
1×2	Half-Wave Rectifier	9-pin B.	9 Y	FII.	1.25	0.2		1	15000	10	HV
1 $\times 2 \mathrm{~A}$	Half-Wave Rectifier	9-pin B .	9 Y	Fil.	1.25	0.2		1.1	20000	11	HV
122	Half-Wave Rectifler	7-pin B.	7CB	Fil.	1.5	0.3	7800	2	20000	10	HV
2825	Half-Wave Rectilier	7-pin B.	31	Fil,	1.4	0.11	1000	1.5	-	9	HV
2V3G	Half-Wave Rectifler	6-pin 0.	4 Y	Fil.	2.5	5.0		2.0	16500	12	HV
2W3	Half-Wave Reclifler	5-pin 0 .	4X	Fil.	2.5	1.5	350	55	- -		HV
2×2/87910	Half-Wave Rectifier	4-pin S.	4AB	Hir.	2.5	1.75	4500	7.5	-		HV
2 $\times 2$-A	Half-Wave Reclifier	4-pin 5 .	4AB	Same as 2×2/879 but will withstand severe shock \& vibration							HV
2 Y 2	Half-Wave Rectiner	4-pin M.	4AB	Fil.	2.5	1.75	4400	5.0	-		HV
2こ2/G84	Half-Wave Rectiller	4-pin M.	4B	Fil.	2.5	1.5	350	50			HV
3824	Half-Wave Rectifler	4-pin M.	T.4A	Fil.	$\begin{aligned} & 5.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 60 \\ & 30 \end{aligned}$	$\begin{aligned} & 20000 \\ & 20000 \end{aligned}$	$\begin{array}{r} 300 \\ 150 \\ \hline \end{array}$	HV
3825	Half-Wave Rectifler	4-pin M.	4P	Fil.	2.5	5.0		500	4500	2000	G
3826	Half-Wave Reclifer	8-pin 0.	Fig. 31	Hir.	2.5	4.75		20	15000	8000	HV
DR-3B27	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0	3000	250	8500	1000	HV
3828	Half-Wave Rectifier		4P	Fil,	2.5	5.0	1700	500	5000	2000	G
3828	Half-Wave Reclitier	4-pin-M	4 P	Fil.	2.5	5.0	3500	250	10000	1000	G
5AX4GT	Full-Wave Rectifier	5-pin 0.	$5 T$	Fil.	5	2.5	$\begin{aligned} & 3501 \\ & 500^{7} \end{aligned}$	175	1400	525	HV
5AZ4	Full-Wave Rectifier	$5-\mathrm{pin} 0$.	5 T	Fil.	5.0	2.0	Same as Type 80				HV
5R4GY	Full-Wave Rectifler	5-pin 0.	$5 T$	Fil.	5.0	2.0	$\begin{aligned} & 9004 \\ & 9507 \end{aligned}$	$\begin{aligned} & 1504 \\ & 1757 \end{aligned}$	2800	650	HV
574	Full-Wave Reclifier	$5-\mathrm{pin} 0$.	51	Fil.	5.0	3.0	450	250	1250	800	HV
5U4G	Full-Wave Rectiner	8-pin O.	51	Fil.	5.0	3.0	Same as Type 523				HV
5V4G	Full-Wave Reclifer	8-pin 0 .	51	Hir.	5.0	2.0	Same as Type 83V				HV
5W4	Full-Wave Rectifler	5-pin O.	5 T	Fil.	5.0	1.5	350	110	1000		HV
5×3	Full-Wave Rectifier	4-pin M.	4 C	Fil.	5.0	2.0	1275	30			HV
5×4G	Full-Wave Reclifler	$8-\mathrm{pin} 0$.	50	Fil.	5.0	3.0	Same os 573				HV
5Y3G	Full-Wave Rectifler	5-pin 0 .	51	Fil.	5.0	2.0	Same as Type 80				HV
5Y3WGT	Full-Wave Reclifier	$5-\mathrm{pin} 0$.	5 T	Fil.	5.0	2.0	375	120	1550	375	HV
5Y4G	Full-Wave Reclifler	8 -pin 0 .	50	Fil.	5.0	2.0	Same as Type 80				HV
523	Full-Wave Reclifler	4-pin M.	4 C	Fil.	5.0	3.0	500	250	1400		HV
524	Full-Wave Rectifler	5-pin 0 .	51	Hir.	5.0	2.0	400	125	1100	-	HV
6AX4GT	Damper Diode	6.pin 0 .	4CG	Hir.	6.3	1.2		125	4000	600	HV
6AX5GT	Full-Wave Reclifier	6-pin 0.	65	Hir.	6.3	1.2	450	125	1250	375	HV
6AX6G	Full-Wave Reclifier	7-pin O.	70	Hir.	6.3	2.5	350	250	1250	600	HV
6BY5G	Full-Wave Rectifier	7-pin 0.	6CN	Mir.	6.3	1.6	3754	175	1400	525	HV
6U4GT	Half-Wave Reclifier	5-pin O.	4 CG	Hir.	6.3	1.2		138	1375	660	HV
6 V 4	Full-Wave Rectifier	$9-\mathrm{pin}$ B.	9 M	Hir.	6.3	0.6	350	90		-	HV
6W4GT	Damper Service	$6-\mathrm{pin} 0$.	4CG	Hir,	6.3	1.2		125	2000	600	HV
	Hall-Wave Rectifier						350	125	1250	600	
6W5G	Full-Wave Rectifer	$\begin{aligned} & \text { 6-pin } 0 . \\ & 7-\operatorname{pin} 8 . \\ & 6 \cdot \operatorname{pin} 0 . \end{aligned}$	65	Hir.	6.3	0.9	350	100	1250	350	HV
$\begin{aligned} & 6 \times 4 \\ & 6 \times 5 \end{aligned}$	Full-Wave Rectifier		$\begin{aligned} & 7 \mathrm{CF} \\ & 65 \end{aligned}$	Hir,	6.3	0.6	$\begin{aligned} & 3251 \\ & 450 \end{aligned}$	70	1250	210	HV
6Y3G	Half-Wave Rectifior	$5-\mathrm{pin} 0$.	4AC	Hir.	6.3	0.7	5000	7.5	-	-	HV
6Y5 ${ }^{10}$	Full-Wave Rectifler	6-pin 5 .	6.	Hir.	6.3	0.8	350	50			HV
673	Half-Wove Reclifer	4-pin M.	4G	Fil.	6.3	0.3	350	50	-	-	HV
62519	Full-Wave Reclifler	6-pin S.	6 K	Hir.	6.3	0.6	230	60	-	-	HV
6ZYSG	Full-Wave Rectifler	6-pin 0 .	65	Hir.	6.3	0.3	350	35	1000	150	HV
7Y4	Full-Wave Rectifler	8-pin L.	5AB	His.	6.3	0.5	350	60	-	-	HV
724	Full-Wave Rectifler	8-pin L.	5 AB	Mir.	6.3	0.9	$\begin{aligned} & 4501 \\ & 3254 \end{aligned}$	100	1250	300	HV
1247	Rectifler-Pentade	7-pin S.	7K	Hir.	12.6	0.3	125	30	-	-	HV
12AX4GT	Damper Dlode	6-pin 0 .	4CG	Hir.	12.6	0.6		125	4000	600	HV
1273	Hall-Wave Rectifler	4-pin S.	4 G	Hir.	12.6	0.3	250	60	-		HV
1225	Vollage Daubler	$7-$ pin M.	71	Hir.	12.6	0.3	225	60		-	HV
14 Y 4	Full-Wave Rectifler	8-pin L.	5AB	Hir.	12.6	0.3	$\begin{array}{r} 4501 \\ 3254 \\ \hline \end{array}$	70	1250	210	HV
1423	Half-Wave Rectifler	4-pin 5.	4G	Hir.	12.6	0.3	250	60	-	-	HV
25A7G ${ }^{10}$	Rectifler-Pentode	8 -pin 0.	8 F	Hir.	25	0.3	125	75	-	-	HV

TABLE XV-RECTIFIERS-RECEIVING AND TRAHSMITTING - Continued
See also Tcble XIII-Control and Regulator Tubes

Type No.	Name	Base	Scckel Cannec. tions	Cathode	Fil. or Heater		Max. A.C. Volitage Per Plate	D.C. Current Ma.	Max. Inverse Peak Volfage		Type
					Volts	Amp.					
25W4GT	Half-Wove Reclifier	6-pin 0.	4CG	Hir.	25	0.3	350	125	1250	600	HV
25X6GT	Vollage Doubler	7 -pin 0.	70	Hro.	25	0.15	125	60			HV
25Y4GT	Hall-Wave Rectiflar	6-pin 0.	5AA	Hrs.	25	0.15	125	75			HV
$25 Y 5{ }^{10}$	Vollage Doubler	6-pin S.	6E	Hir.	25	0.3	250	85			HV
2573	Half-Wave Reclifler	4 -pin S.	4G	Hir.	25	0.3	250	50	-		HV
2574	Hall-Wave Reclifier	6-pin 0.	5AA	Hir.	25	0.3	125	125			HV
2575	Rectifier-Doubler	6-pin S.	6E	Hir.	25	0.3	125	100		500	HV
2625W	Full-Wave Rectifier	9-pin B.	985	Hir.	26.5	0.2	$\begin{aligned} & 3254 \\ & 450^{7} \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	1250	300	HV
2576	Rectifler-Daubler	7-pin 0.	70	Hir.	25	0.3	125	100		500	HV
2825	Full-Wave Rectifler	8-pin L.	5AB	Hir.	28	0.24	$\begin{aligned} & 4507 \\ & 3254 \end{aligned}$	100	-	300	HV
3217 GT	Rectifier-Tetrode	$8-\mathrm{pin} 0$.	8 Z	Hir.	32.5	0.3	125	60			HV
35 W 4	Half-Wave Recliffer	7-pin B.	580	Hir.	352	0.15	125	100^{8}	330	600	HV
$35 Y 4$	Half-Wave Rectifter	8-pin 0.	5 AL	Hir.	352	0.15	235	$\begin{gathered} 60 \\ 100^{8} \end{gathered}$	700	600	HV
3573	Half-Wave Reclifier	8-pin L.	4Z	His.	35	0.15	$250{ }^{3}$	100	700	600	HV
3514GT	Half-Wave Reclifier	6-pin 0.	5AA	Hir.	35	0.15	250	100	700	600	HV
3515G	Half-Wave Reclifler	6-pin 0.	6AD	Htr.	35 *	0.15	125	$\begin{gathered} 60 \\ 100 \end{gathered}$	-	-	HV
3516G	Voltage Doubler	6-pin 0.	70	Hip.	35	0.3	125	110	-	500	HV
4025GT	Half-Wave Raciffler	6-pin 0.	6AD	Hir.	40:	0.15	125	$\begin{gathered} 60 \\ 100^{8} \end{gathered}$	-	-	HV
4523	Half-Wave Reclifler	7-pin B.	5AM	Hir.	45	0.075	117	65	350	390	HV
4515GT	Half-Wove Rectifier	6-pin 0.	6AD	Hir.	452	0.15	125	$\begin{gathered} 60 \\ 1008 \end{gathered}$	-	\cdots	HV
S0AX6G	Full-Wave Reclifier	7-pin 0.	70	Hir.	50	0.3	350	250	1250	600	HV
50×6	Vallage Doubler	8 -pin L.	7 AJ	Hir.	50	0.15	117	75	700	450	HV
50Y6GT	Full-Wave Reclifier	7-pin 0.	70	Hir.	50	0.15	125	85		--	HV
5OY7GT	Voltage Doubler	8 -pin L.	8 AN	Her.	50^{2}	0.15	117	65	700		HV
5076G	Voltage Daubler	7-pin 0.	70	Hir.	50	0.3	125	150			HV
50Z7G10	Vallage Daubler	8-pin 0.	8AN	Hir.	50	0.15	117	65		-	HV
70A7GT	Rectifier-Tetrode	8 -pin 0.	8 AB	Hir.	70	0.15	125°	60		--	HV
$70 \mathrm{7GT}$	Rectifier-Tetrode	8 -pin 0.	84 A	Hir.	70	0.15	117	70	-	350	HV
72	Half-Wave Rectifier	4-pin M.	4 P	Fil.	2.5	3.0	-	30	20000	150	HV
73	Half-Wave Reclifier	8-pin O.	$4 Y$	Fil.	2.5	4.5		20	13000	3000	HV
80	Full-Wave Rectifier	4-pin M.	4C	Fil.	5.0	2.0	$\begin{aligned} & 3501 \\ & 5007 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	1400	375	HV
81	Half-Wave Rectifer	4-pin M.	48	Fin.	7.5	1.25	700	85			HV
82	Full-Wave Rectifler	4-pin M.	4C	Fil.	2.5	3.0	500	125	1400	400	MV
83	Full-Wove Rectifier	4-pin M.	4 C	Fil.	5.0	3.0	500	250	1400	800	MV
$83 . \mathrm{V}$	Full-Wave Rectifler	4-pin M.	4AD	Hir.	5.0	2.0	400	200	1100		HV
64/674	Full-Wave Reclifier	5-pin S.	50	Hir.	6.3	0.5	350	60	1000		HV
$117 \mathrm{FGT} /$	Rectifier-Tetrode	8 -pin 0.	840	Hir.	117	0.09	117	75		-	HV
117 N 7 GT	Rectiner-Telrode	8 -pin 0.	8AV	Hir.	117	0.09	117	75	350	450	HV
117P7GT	Reclifier-Tetrade	8 -pin 0.	8AV	Hir.	117	0.09	117	75	350	450	HV
11723	Holf-Wove Rectifier	7-pin B.	4SR	Hir.	117	0.04	117	90	330		HV
11724 GT	Half-Wave Rectifier	6 -pin 0.	5AA	Hir.	117	0.04	117	90	350		HV
11716GT	Valloge Daubler	7-pin 0.	70	Hir.	117	0.075	235	60	700	360	HV
217-A ${ }^{10}$	Half-Wave Rectiner	4-pin J.	4AT	Fil.	10	3.25	--	-	3500	600	HV
217.C	Half-Wave Rectifier	4-nin J.	4AT	Fil.	10	3.25	-	-	7500	600	HV
$\underline{Z 225}$	Half-Wave Rectifier	4-pin M.	4P	Fii.	2.5	5.0	-	250	10000	1000	MV
249-B	Hall-Wave Rectifier	4-pin M.	Fig. 53	Fil.	2.5	7.5	3180	375	10000	1500	MV
HK253	Half-Wave Rectifer	4-pin J.	4AT	Fil.	5.0	10		350	10000	1500	HV
$\begin{aligned} & 705 A \\ & \text { RK-705A } \end{aligned}$	Half-Wave Rectifler	4-pin W.	T-3AA	Fil.	$\begin{aligned} & 2.5^{9} \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 5.0 \\ 3.0 \end{gathered}$	—	$\begin{array}{r} 50 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 35000 \\ & 35000 \end{aligned}$	$\begin{array}{r} 375 \\ 750 \\ \hline \end{array}$	HV
816	Holf-Wave Rectifier	4-pin S .	4 P	Fil.	2.5	2.0	2200	125	7500	500	MV
836	Half-Wave Rectifier	4-pin M.	4 P	Kir.	2.5	5.0	-	\cdots	5000	1000	HV
868A/866	Holi-Wave Reclifer	4-pin M.	$4{ }^{4}$	Fil.	2.5	5.0	3560	250	10000	1000	MV
8668	Hall-Wave Rectifler	4-pin M.	4P	Fil.	5.0	5.0	-	\cdots	8500	1000	MV
866 Jr.	Holl-Wave Reclifer	4-pin M.	4B	Fi,	2.5	2.5	1250	$250:$	-	-	MV
HY866 Jr.	Hall-Wave Rectifler	4-pin M.	4P	Fil.	2.5	2.5	1750	250:	5000	\longrightarrow	MV
RK865	Half-Wave Rectifer	4-pin M.	4P	Fil.	2.5	5.0	3500	250	10000	1000	MV
871^{10}	Half-Wove Rectifler	4-pin M.	4 P	Fil.	2.5	2.0	1750	250	5000	500	MV
878	Half-Wave Rectifer	4-pin M.	4P	Fil.	2.5	5.0	7100	5	20000	-	HV
879	Half-Wave Rectiflor	4-pin 5.	4P	Fil.	2.5	1.75	2650	7.5	7500	100	HV
$872 \mathrm{~A} / 872$	Hall.Wave Rectifier	4-pin J.	4AT	Fil.	5.0	7.5	\square	1250	10000	5000	MV
$\begin{aligned} & 975 \mathrm{~A} \\ & 575 \mathrm{~A} \end{aligned}$	Half-Wave Rectifer	4-pin J.	4AT	Fil.	5.0	10.0	-	1500	15000	6000	MV
$\begin{aligned} & \text { OZ4A/ } \\ & 1003 \end{aligned}$	Full-Wave Rectifler	5-pin 0.	4R	Cold	-	-	\square	110	880	-	G
$\begin{aligned} & 1005 / \\ & \text { CK } 1005 \end{aligned}$	Full-Wave Ractifier	8 -pin 0.	5AQ	Fil.	6.3	0.1	-	70	450	210	G

TABLE XV-RECTIFIERS-RECEIVING AND TRANSMITTING-Continued
See also Toble XIII-Conirol and Regulator Tubes

Type No.	Nome	Base	Socket Connecfions	Cathode	Fil. ar Heater		Max. A.C. Voliage Per Plote	D.C. Output Current Ma.	Max. Inverse Peak Voligge	Peak Plate Current Ma.	Type
					Volls	Amp.					
$1006 /$ CK1006	Full-Wave Rectifier	4-pin M.	46	Fil.	1.75	2.25	\longrightarrow	200	1600	\longrightarrow	G
CK. 1007	Full-Wave Rectifier	B-pin 0.	T-9G	Fil.	1.0	1.2		110	980	\longrightarrow	G
CK1009/BA	Full-Wave Rectifier	4-pin M.		Cold			\longrightarrow	350	1000		G
1274	Full-Wave Rectifier	6-pin 0.	65	Hir.	6.3	0.6	5ame as 7Y4				HV
1275	Full-Wave Rectifier	4-pin M.	4C	Fil.	5.0	1.75	Same as $5 \mathrm{Z3}$				HV
1616	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0		130	6000	200	HV
$1641 /$ RK60	Full-Wave Reclifler	4-pin M.	T-4AG	Fii.	5.0	3.0	\longrightarrow	50	4500	-	HV
								230	2500	\square	
1654	Half-Wave Rectifler	7-pin B.	22	Fil.	1.4	0.05	2500	1	7000	8	HV
5517	Holf-Wave Rectifier	7-pin B.	5BU	Cold		-	1200	6	-	50	G
5825	Half-Wave Reclifier	4-pin M.	4P	Fil.	1.6	1.25	\square	2	60000	40	HV
8.008	Half-Wave Rectifier	4-pin ${ }^{\text {b }}$	Fig. 11	Fil.	5.0	7.5	-	1250	10000	5000	MV
E013A	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0	-	20	40000	150	HV
8016	Half Wave Rectifier	6-pin 0 .	4AC	Fil.	1.25	0.2	-	2.0	10000	7.5	HV
	Half-Wava Restifler			Fil	5.0	5.5	10000	100	40000	750	HV
8020	Halr-Wave Rectifier	4-pin M.	4	Fil.	5.8	6.5	12500	100	40000	750	HV
RK19	Full-Wave Rectifler	4-pin M.	4AT	Htr.	7.5	2.5	1250	2004	3500	600	HV
RK21	Half-Wave Rectifier	4-pin M.	4P	Hir.	2.5	4.0	1250	2004	3500	600	HV
RK22	Full-Wove Rectifier	4-pin M.	T-4AG	Htr.	2.5	8.0	1250	2001	3500	600	HV

${ }^{1}$ With input choke of at least 20 henrys.
${ }_{2}$ Tapped for pilot lamps.
${ }^{3}$ Per pair with chake input.

- Candenser inpul.
${ }^{5}$ With 100 ahms min. resistance in series with plafe; withaut sorias resistar, maximum r.m.s. platerating is 117 volts.
- Same as 872A /872 except far heavy-duty push -type base. Filament cannected ta pins 2 and 3, plote fa top cap.

8 Withaut panel lamp.
${ }^{9}$ Using anly ane-half af filament.
${ }^{10}$ Discontinued.

TABLE XVI-TRIODE TRANSMITTING TUBES

Type	Mor. Plate Dissipotion Watts	Cathode		Max. Plofe Voltage	Max. Plate Current Mo.	Max. D.C. Grid Current Ma.	Amp. Factor	Inferalectrode Capacitances ($\mu \mu \mathrm{f}$.)			Max. Freq. Mc. Full Ratings	Base	Socket Conneclions	Typical Operation	Plate Volitage	Grid Voltage	Plate Current Ma.	D.C. Grid Current Ma.	Approx. Grid Driving Power Wotts	$\begin{gathered} \text { Class B } \\ \text { P-ta-P } \\ \text { Lood Res. } \\ \text { Ohms } \end{gathered}$	Approx. Output Power Wotts
		Volts	Amp.					$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$	$\begin{aligned} & \text { Grid } \\ & \text { tad } \\ & \text { Plate } \end{aligned}$	Plate to Fil.											
958.A	0.6	1.25	0.1	135	7	1.0	12	0.6	2.6	0.8	500	A.	5BD	Class-C Amp.-Oscillator	135	- 20	7	1.0	0.035		0.6
3B7 :	-	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.11 \end{aligned}$	180	25	-	20	1.4	2.6	2.6	125	O.	7 AP	Closs-C Amp. (Telogrophy)	180	0	25	-	-	-	2.8
RK24	1.5	2.0	0.12	180	20	6.0	8.0	3.5	5.5	3.0	125	S.	4D	Class-C Amp.-Oscillator	180	- 45	16.5	6.0	0.5		2.0
6162	1.5	6.3	0.45	300	30	16	32	2.2	1.6	0.4	250	B.	78F	Class-C Amp. (Telegrophy) ${ }^{2}$	150	- 10	30	16	0.35		3.5
9002	1.6	6.3	0.15	250	8	2.0	25	1.2	1.4	1.1	250	B.	7TM	Class.C Amp.-Oscillator	180	- 35	7	1.5	\cdots	——	0.5
955	1.6	6.3	0.15	180	8	2.0	25	1.0	1.4	0.6	250	A.	5BC	Class-C Amp. - Oscillotar	180	-35	7	1.5	-		0.5
HY114B														Class.C Amp.-Oscillator	180	-30	12	2.0	0.2		$1.4{ }^{3}$
HY148	1.8	1.4	0.155	180	12	3.0	13	1.0	1.3	1.0	300	O.	2 T	Class-C Amp. (Telephony)	180	- 35	12	2.5	0.3		$1.4{ }^{3}$
3A5 ${ }^{2}$	2.0	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.11 \end{aligned}$	150	30	5.0	15	0.9	3.2	1.0	40	B.	7BC	Closs-C Amp.-Oscillotor ${ }^{2}$	150	- 35	30	5.0	0.2	—	2.2
6 F4	2.0	6.3	0.225	150	20	8.0	17	2.0	1.9	0.6	500	A.	7BR	Class-C Amp.-Oscillator	150	$\begin{gathered} \overline{15} \\ 550^{*} \\ 2000^{* *} \end{gathered}$	20	7.5	0.2	-	1.8
HY24	2.0	2.0	0.13	180	20	4.5	9.3	2.7	5.4	2.3	60			Closs-C Amp. (Telegrophy)	180	-45	20	4.5	0.2	-	2.7
HY24	2.0	2.0	0.13	180	20	4.5	9.3	2.7	5.4	2.3	60	s.	40	Closs-C Amp. (Telephony)	180	- 45	20	4.5	0.3		2.5
RK331, 2	2.5	2.0	0.12	250	20	6.0	10.5	3-2	3-2	2.5	60	s.	T.7DA	Class-C Amp.-Oscillator ${ }^{2}$	250	-60	20	6.0	0.54		3.5
12AU7:	2.758	6.3	0.3	350	12\%	$3.5{ }^{6}$	18	1.5	1.5	0.5	54	B.	9 9	Closs-C Amp.-Oscillotor ${ }^{2}$	350	-100	24	7			6.0
6N4	3.0	6.3	0.2	180	12		32	3.1	2.35	0.55	500	B.	7CA	Class-C Amp. Oscillator	180	-			-		-
6026	3.0	6.3	0.2	150	30	10	24	2.2	1.3	0.38	400	N.		Closs-C Oscillator-400 Mc.	135	1300**	20	9.5			1.25
														Class-C Amp.-Oscillator	330	- 30	20	2.0	0.2	-	3.5
Hrosscix	3.5	6.3	0.3	330	20	4.0	20	4.2	3.8	5.0	60	O.	60	Class-C Amp. (Tolephony)	250	- 30	20	2.5	0.3		2.5
2C22/7193	3.5	6.3	0.3	500	-		20	2.2	3.6	0.7	-	0.	4AM	Class-C Amp. (Telography)							
HY615	3.5	6.3	0.175	300	20	4.0	20	1.4	1.6	1.2	300	0.	T-8AG	Class-C Amp. Oscillator	300	- 35	20	2.0	0.4		$4.0{ }^{3}$
HY-E1148									1.6	1.2	300	0.	T-8AG	Class-C Amp. (Telephony)	300	-35	20	3.0	0.8		$3.5{ }^{3}$
$\begin{aligned} & \text { GL.446A }{ }^{\prime} \\ & \text { GL.446B } \end{aligned}$	3.75	6.3	0.75	400	20	-	45	2.2	1.6	0.02	500	0.	Fig. 19	Class-C Amp.-Oscillator	250	-	-	-	-	-	-
$\begin{aligned} & \mathrm{GL} .2 \mathrm{C} 44 \mathrm{t} \\ & \mathrm{GL} .464 \mathrm{~A} \end{aligned}$	5.0	6.3	0.75	500	40	-	-	2.7	2.0	0.1	500	O.	Fig. 17	Class-C Amp.-Oscillator	250	-	-	-	-	-	-
$6 \mathrm{C4}$	5.0	6.3	0.15	350	25	8.0	18	1.8	1.6	1.3	54	B.	68 G	Class-C Amp.-Oscillator	300	- 27	25	7.0	0.35		5.5
1626	5.0	12.6	0.25	250	25	8.0	5.0	3.2	4.4	3.4	30	0.	60	Class-C Amp.-Oscillotor	250	-70	25	5.0	0.5		4.0
$\begin{aligned} & \text { 2C21// } \\ & \text { RK33 } \end{aligned}$	5.0	6.3	0.6	250	40	12	-	1.6	1.6	2.0	-	S.	T-7DA	Class-C Amp.-Oscillator ${ }^{2}$	250	- 60	40	12	1.0	-	7
2C36	5	6.3	0.4	1500 ${ }^{\text {\% }}$			25	1.4	2.4	0.36	1200	N.	Fig. 36	Plate-Pulsed 1000.Mc. Osc.	1000 s	0	$900{ }^{3}$		-		2003
$\begin{aligned} & 2 C 37 \\ & 5766 \\ & 5787 \end{aligned}$	5	6.3	0.4	350	-	-	25	1.4	1.85	0.02	3300	N.	Fig. 36	1000-Mc. C.W. Osclilator	150	3000 **	15	3.6	-	-	0.5
5764	5	6.3	0.4	1500	11.5		25	1.4	1.85	0.02	3300	N.	Fig. 36	Plate-Pulsed 3300-Mc. Osc.	$1000{ }^{5}$	0	1300		-	-	$200{ }^{5}$
5765	5	6.3	0.4	350	-		25	1.3	2.1	0.03	2900	N.	Fig. 36	1900-Mc. C.W. Oscillator	180	10000 **	25		\cdots		0.225
5794	-	6.0	0.16	-	-	-	-	-	-	-	-	N.	Fig. 36	Fixed Tuned Oscillator Approximately 1680 Mc.	85/108	-	-	-			-
5675	5	6.3	0.135	165	30	8	20	2.3	1.3	0.09	3000	N.	Fig. 36	Grounded-Grid Osc.	120	- 8	25	4	-		0.05
6N7 ${ }^{2}$	5.5 ${ }^{\circ}$	6.3	0.8	350	30°	$5.0{ }^{6}$	35	\square		-	10	0.	8B	Class-C Amp. Oscillotor ${ }^{2,11}$	350	-100	60	10			14.5
5876	6.25	6.3	0.135	300	25	\longrightarrow	56	2.5	1.4	0.035	1700	N.	Fig. 36	Grounded-Grid Oscillator	250	- 2	23	3	-	-	0.75
					25	-				0.035			Fig. 36	Frequency Multipller	300	- 70	17.3	7	-		2.0
$2 \mathrm{C40}$	6.5	6.3	0.75	500	25	-	36	2.1	1.3	0.05	500	0.	Fig. 19	Class-C Amp.-Oscillator	250	- 5	20	0.3	-		0.075
					40	10	8.5	4.0	8.3	3.0	6	M.	4D	Class-C Amp. (Telegraphy)	350	-80	35	2	0.25		6
5556	7.0	4.5	1.1	350	40	10	0.5	4.0	0.3	3.0	6	m.	4 D	Class-C Amp. (Telephony	300	-100	30	2	0.3		4
														Class-C Amp. (Telegraphy)	350	- 33	35	13	2.4	-	6.5
5893	8.0	6.0	0.33	400	40	13	27	2.5	1.75	0.07	1000		Fig. 36	Class-C Amp. (Telephony)	300	- 45	30	12	2.0	-	6.5

Woid Radio मistory

TABLE XVI-TRIODE TRANSMITTING TUBES-Continued

Type	Max. Plate Dissi. palion Watts	Cathode		Max.PlateVoltage		$\begin{aligned} & \text { Max. } \\ & \text { D.C. } \\ & \text { Grid } \\ & \text { Current } \\ & \text { Ma. } \end{aligned}$	Amp. Factor	$\begin{aligned} & \text { Interelectrade } \\ & \text { Copocitonces (} \mu \mu \mathrm{fd} .) \end{aligned}$			Max.Freq.Mc.FuilRatings	Base	Sockel Connec tions	Typical Operation	Plate Voltage	Grid Voltage	Plate Currenl Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Apprax. Grid Driving Power Watts	$\begin{gathered} \text { Class } 8 \\ \text { P-to. } \mathbf{P} \\ \text { Cood Res. } \\ \text { Ohms } \end{gathered}$	Apprex. Outpul Power Watts
		Volis	Amp.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fii. } \end{gathered}$	Grid to Plate	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
$2 \mathrm{C43}$	12	6.3	0.9	500	40	-	48	2.9	1.7	0.05	1250	0.	Fig. 19	Class-C Amp.-Oscillator	470		38 ?	-	-	-	97
2C26A	10	6.3	1.10	\cdots	-	-	16.3	2.6	2.8	1.1	250	0.	488		-	-	-		-	-	
$\begin{aligned} & 2 C 34 / \\ & \text { RK342 } \end{aligned}$	10	6.3	0.8	300	80	20	13	3.4	2.4	0.5	250	M.	T-7DC	Class-C Amp. Oscillator ${ }^{2}$	300	- 36	80	20	1.8	-	16
														Class.C Amp. Oscillator	400	-112	45	10	1.5	-	10
205D	14	4.5	1.6	400	50	10	7.2	5.2	4.8	3.3	6	M.	4D	Class-C Amp. (Telephony)	350	-144	35	10	1.7		7.1
				450		15						M.	4D	Class-C Amp.-Oscillator	450	-100	65	15	3.2	-	19
2 C 25	15	7.0	1.18	450	60	15	8.0	6.0	8.9	3.0	-	m.	40	Closs-C Amp. (Telephony)	350	-100.	50	12	2.2		12
											8	M.	4D	Class-C Amp.-Oscillator	450	-100	65	15	3.2		19
10Y	15	7.5	1.25	450	65	15	8	4.1	7.0	3.0	8	m.	4 D	Class-C Amp. (Teléphony)	350	-100	50	12	2.2	-	12
														Class-C Amp.-Oscillator	450	-140	30	5.0	1.0		7.5
843	15	2.5	2.5	450	40	7.5	7.7	4.0	4.5	4.0	6	M.	5A	Class-C Amp. (Telephony)	350	-150	30	7.0	1.6	-	5.0
RK59 ${ }^{2}$	15	6.3	1.0	500	90	25	25	5.0	9.0	1.0	-	M.	T-4D	Class-C Amp.-Oscillator	500	- 60	90	14	1.3		32
														Class-C Amp. (Telegraphy)	450	-140	90	20	5.2	-	26
HY75A	15	6.3	2.6	450	90	25	9.6	1.8	2.6	1.0	175	0.	27	Closs-C Amp. (Telephony)	400	-140	90	20	5.2	-	21
														Class-C Amp.-Oscillator	450	- 50	80	12			21^{2}
HY75	15	6.3	2.5	450	80	20	10	1.8	3.8	1.0	60	O.	21	Class-C Amp. (Telephony)	450	- 60	80	12	-	-	163
$1602{ }^{1}$	15	7.5	1.25	450	60	15	8.0	4.0	7.0	3.0	6	M.	4D	Class-C Amp. (Telegraphy)	450	-115	55	15	3.3		13
														Class-C Amp. (Telephony)	350	-135	45	15	3.5	-	8.0
														Class.8 Amp. Audio ${ }^{\text {a }}$	425	- 50	1108	2609	$2.5{ }^{8}$	8000	25
														Class-C Amp. (Telography)	450	- 34	50	15	1.8		15
841	15	7.5	1.25	450	60	20	30	4.0	7.0	3.0	\bigcirc	m.	4 D	Class-C Amp. (Telephony)	350	- 47	50	15	2.0	-	11
101 RK10 ${ }^{1}$	15	7.5	1.25	450	65	15	8.0	3.0	8.0	4.0	$\overline{60}$	M.	4D	Class-C Amp. (Telegraphy)	450	-100	65	15	3.2	-	19
														Class-C Amp. (Telephony)	350	-100	50	12	2.2	-	12
														Class-8 Audio?	425	- 50	55^{8}	1309	$2.5{ }^{8}$	8000	25
														Class-C Oscillator	110	-	80	8.0	-		3.5
RK100:	15	6.3	0.9	150	250	100	40	23	19	3.0	-	M.	1-68	Class-C Amplifer	110	-	185	40	2.1	-	12
TUF-20	20	6.3	2.75	750	75	20	10	1.8	3.6	0.095	250	0.	2T	Class-C Amp.-Oscillator	750	-150	75	20	1.5/2.5	-	40
1608	20	2.5	2.5	425	95	25	20	8.5	9.0	3.0	45	M.	40	Class-C Amp. (Telegraphy)	425	-90	95	20	3.0	-	27
														Class-C Amp. (Telephony)	350	-80	85	20	3.0	-	18
														Class-8 Amp. Audio ${ }^{7}$	425	- 15	$190{ }^{8}$	1309	$2.2{ }^{8}$	4800	50
310	20	7.5	1.25	600	70	15	8.0	4.0	7.0	2.2	6	M.	4D	Class-C Amp. (Telegraphy)	600	-150	65	15	4.0		25
														Class-C Amp. (Telephony)	500	-190	55	15	4.5	-	18
703.A	20	1.2	4/4.5	350	75	12	8	0.9	1.1	0.6	1400	N.	-	Class-C Amplifier	350	-120	75	12			2/2.5
801-A/801	20	7.5	1.25	600	70	15	8.0	4.5	6.0	1.5	60	M.	4D	Class-C Amp. (Telegraphy)	600	-150	65	15	4.0	-	25
														Class-C Amp. (Telephony)	500	-190	55	15	4.5	-	18
														Class-8 Amp. Audio ${ }^{\text {\% }}$	600	-75	130	$320{ }^{9}$	$3.0{ }^{8}$	10000	45
														Class-C Amp. (Telegraphy)	600	-200	70	15	4.0	-	30
HY801.A	20		1.25	600	70	15	8.0	4.5	6.0	1.5	60	M.	4D	Closs.C Amp. (Telephony)	500	-200	60	15	4.5	-	22
													36	Class-C Amp. (Telegrophy)	750	-85	85	18	3.6	-	44
T20	20	7.5	1.75	750	85	25	20	4.9	5.1	0.7	60	m.	36	Closs-C Amp. (Telephony)	750	-140	70	15	3.6	-	38
TZ20	20	7.5	1.75	750	85	30	62	5.3	5.0	0.6	60	M.	36	Class-C Amp. (Telegraphy)	750	- 40	85	28	3.75	-	44
														Class-C Amp. (Telephony)	750	-100	70	23	4.8	-	38
														Closs-8 Amp. Audio ${ }^{\text {] }}$	800	0	40/136	160	$1.8{ }^{3}$	12000	70
15E	20	5.5	4.2	-	-	-	25	1.4	1.15	0.3	600	N.	T-4AF	Class-C Amp. (Telegraphy)	Characleristics similar to 25T						

TABLE XVI-TRIODE TRANSMITtING TUBES-Continued

Type	Max. Plale Dlssipation Wafls	Cathode		Max. Plate Volfag*	Max. Purrent Ma.	Max. D.C. Grid Current Mo.	Amp. Factor	$\begin{gathered} \text { Inforalectrods } \\ \text { Capacifances }(\mu \mu \mathrm{fd} .) \end{gathered}$			Max. Freq. Me. Full Raling:	Base	SockelConnac-tions	Typical Operation	Pate Volfoge	Grid Volioge	Plate Current Ma.	D.C.GridCurrent Ma.	Approx. Grid DrivingPower Watts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { CoadRes. } \\ \text { Ohms } \end{gathered}$	Approx. Outpul Power Walft
		Volts	Amp.					$\begin{gathered} \text { Grid } \\ \text { io } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { fo } \\ & \text { Plaie } \end{aligned}$	Plate to Fil											
$\begin{aligned} & \text { 3-25A3 } \\ & 25 T \end{aligned}$	25	6.3	3.0	2000	75	25	24	2.7	1.5	0.3	60	M.	3 G	Class-C Amp.-Oscillator	2000	-130	63	18	4.0	-	100
															1500	- 95	67	13	2.2	-	75
															1000	-70	72	9	1.3		47
														Class-B Amp. Audio ${ }^{7}$	2000	-80	16/80	270 ${ }^{\circ}$	0.78	55500	110
$\begin{aligned} & 3.2503 \\ & 3 C 24 \\ & 246 \end{aligned}$	25	6.3	3.0	2000	75	25	23	$\begin{aligned} & 2.0 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	150	5.	20	Class-C Amp.-Oscillotor	2000	-170	63	17	4.5	-	100
															1500	-110	67	15	3.1	-	75
															1000	- 80	$\begin{array}{c\|} \hline 72 \\ \hline 16 / 80 \\ \hline \end{array}$	15	2.6		47
														Class-B Audio ${ }^{7}$ Class-C Amp.-Oseliltotor	2000	-85		2909	$1.1{ }^{8}$	55500	110
$3 \mathrm{C28}$	25	6.3	3.0	2000	75	25	23	2.1	1.8	0.1	100	5.	Fig. 36		Characteristics same as 3C24						
3 C 34	25	6.3	3.0	2000	75	25	23	2.5	1.7	0.4	60	S.	$3 G$	Class-C Amp.-Oseillator	Charceteristies same as 3C24						
	25	6.3	3.0	750	105	35	20	7.0	7.0	0.9	60	M.	36	Class C Amp. (Telegraphy)	750	-120	105	21	3.2	-	55
RKII														Closs-C Amp. (Telephony)	600	-120	85	24	3.7	-	38
														Closs-C Amp. (Telegraphy)	750	-100	105	35	5.2		55
RK12	25	6.3	3.0	750	105	40	100	7.0	7.0	0.9	60	M.	36	Class-C Amp. (Telephony)	600	-100	85	27	3.8	-	38
											60	5.	3 G	Class-C Amp. (Telegraphy)	2000	-140	56	18	4.0		90
HK24	25	6.3	3.0	2000	75	30	25	2.5	1.7	0.4	60	5.	36	Class-C Amp. (Telephony)	1500	-143	50	25	5.5	-	60
MY25	25	7.5	2.25	800	75	25	55	4.2	4.6	1.0	60	M.	3 G	Class-C Amp. (Telegraphy)	750	- 45	75	15	2.0		42
HY25	25	7.5	2.25	800		25	55	4.2	4.6	1.0	60	m.		Class-C Amp. (Telephony)	700	- 45	75	17	5.0	-	39
8025	$\begin{aligned} & 30 \\ & 20 \\ & 30 \\ & \hline \end{aligned}$	6.3	1.92	1000	$\begin{aligned} & 65 \\ & 65 \\ & 80 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	18	2.7	2.8	0.35	500	M.	4 AO	Class-C Amp. (Grid. Mod.)	1000	-135	50	4	3.5		20
														Class-C Amp. (Tolephony)	800	-105	40	10.5	1.4	-	22
														Class-C Amp. (Tolegraphy)	1000	- 90	50	14	1.6		35
HY302 ${ }^{1}$	30	6.3	2.25	850	90	25	87	6.0	4.9	1.0	60	M.	480	Class-C Amp.-Oscillator	850	-75	90	25	2.5		58
														Class-C Amp. (Telephony)	700	-75	90	23	3.5		47
		6.3	3.5											Class-C Amp. (Telegraphy)	500	-45	150	25	2.5		56
HY12312,	30	12.6	1.7	500	150	30	43	5.0	5.5	1.9	60	M.	T-40	Class-C Amp. (Tolephony)	400	-100	150	30	3.5		45
3164											500	N.	-	Class-C Amp. (Telegraphy)	450	\cdots	80	12			7.5
VT.191	30	2.0	3.05	450	80	12	6.5	1.2	1.6	0.8	500	N.	-	Class-C Amp. (Telephony)	400	-	30	12			6.5
809	30	6.3	2.5	1000	125		50	5.7	6.7	0.9	60	At.	36	Class-C Amp. (Telegraphy)	1000	-75	100	25	3.8	\square	75
						-								Class-C Amp. (Tolophony)	750	-60	100	32	4.3	-	55
														Class-B Amp. Audio ${ }^{7}$	1000	-9	40/200	155.	2.78	11600	145
1623	30	6.3	2.5	1000	100	25	20	5.7	6.7	0.9	60	M.	36	Class-C Amp.-Osciltatar	1000	- 90	100	20	3.1		75
														Class-C Amp. (Talephony)	750	-125	100	20	4.0		55
														Class-B Amp. Audio	1000	- 40	30/200	2309	$4.2{ }^{8}$	12000	143
53A	35	5.0	12.5	15000	-	-	35	3.6	1.9	0.4	-	N.	T-4B	Oseillator at 300 Mc .	Approximately 50 walts oulput						
RK301	35	7.5	3.25	1250		25	15	2.75		2.75	60	M.	2D	Class-C Amp. (Telegraphy)	1250	-180	90	18	5.2	-	85
kK30.	35	7.5	3.25	1250	80	25	15	2.75	2.5	2.75	∞	M.	20	Class-C Amp. (Tolephony)	1000	-200	80	15	4.5	-	60
800	35	7.5	3.25	1250	80	25	15	2.75	2.5	2.75	60	M.	2D	Class-C Amp. (Telegraphy)	1250	-175	70	15	4.0	-	63
														Class -C Amp. (Telephony)	1000	-200	70	15	4.0	-	50
														Closs-B Amp. Audio ${ }^{\text {? }}$	1250	- 70	30/130	300.	$3.4{ }^{\text {\% }}$	21000	106
$1628{ }^{2}$	40	3.5	3.25	1000	60	15	23	2.0	2.0	0.4	500	N.	T.4B3	Class-C Amp.-Oscillator	1000	-65	50	15	1.7	\cdots	35
														Closs-C Amp. (Telephony)	800	-100	40	11	1.6	-	22
														Grid-Modulated Amp.	1000	-120	50	3.5	5.0	ーー	20
$\begin{aligned} & 8012 \\ & G L-8012 \cdot A \end{aligned}$	40	6.3	2.0	1000	80	20	18	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.4 \end{aligned}$				Class-C Amp.-Oscillator	1000	-90	50	14	1.6	\cdots	35
											500	N.	T-48B	Class-C Amp. (Telephony)	800	-105	40	10.5	1.4	-	22
														Grid-Modulated Amp.	1000	-135	50	4.0	3.5	-	20
RK18 1	40	7.5	3.0	1250	100	40	18	6.0	4.8	1.8	60	M.	3 G	Class-C Amp. (Tolegraphy)	1250	-160	100	12	2.8	-	95
														Class-C Amp. (Telephony)	1000	-160	5	13	3.1	- -	64

table XVI-triode transmitting tubes-Continued

Typo	Max. Plate Disstpation Watis	Cathode		Max. Ploto Voltage	Max. Piate Current Mo	Max. D.C. Grid Curroni Ma.	Amp. Factor	Intorelectroda Capacifances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Fult Rating:	Baso	Sockel Connections	Typical Operation	Plote Volitage	GridVoltoge	Plate Current Mo.		Approx. Grid Driving Power Wotts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Lood Res. } \\ \text { Ohms } \end{gathered}$	Approx. Output Power Wafts
		Volis	Amp.					$\begin{gathered} \text { Gild } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { lo } \end{aligned}$	$\begin{gathered} \text { Plata } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
RK31	40	7.5	3.0	1250	100	35	170	7.0	1.0	2.0	30	M.	3G	Class-C Amp. (Telegraphy)	1250	- 80	100	30	3.0	-	90
							170	7.0	1.0	2.0	30	m.	36	Class-C Amp. (Telephony)	1000	-80	100	23	3.5	-	70
HY401	40	7.5	2.25	1000	125	25	25	6.1	5.6	1.0	60	M.	3 G	Class-C Amp. (Telagraphy)	1000	- 90	125	20	5.0		94
														Class-C Amp. (Telephony)	850	- 90	125	25	5.0	-	82
														Grid-Modulated Amp.	1000		125			-	20
HY402 ${ }^{1}$	40	7.5	2.6	1000	125	30	80	6.2	6.3	0.8	60	M.	36	Class-C Amp. (Telegrophy)	1000	- 27	125	25	5.0		94
														Class-C Amp. (Telephony)	850	-30	100	30	7.0	-	82
														Grid-Modulated Amp.	1000		60	-			20
140	40	7.5	2.5	1500	150	40	25	4.5	4.8	0.8	60	M.	$3 G$	Class-C Amp.-Oscillotor	1500	-140	150	28	9.0	\cdots	158
	40	7.5	2.5	1500	150	40	25	4.5	4.8	0.8	60	m.	36	Class-C Amp. (Telaphony)	1250	-115	115	20	5.25	-	104
T240	40	7.5	2.5	1500	150	45	62	4.8	5.0	0.8	60	M.	36	Class-C Amp.-Oscillator	1500	-90	150	38	10	-	165
														Class-C Amp. (Telephony)	1250	-100	125	30	7.5	-	116
														Closs-8 Amp. Audio?	1500	- 9	$250{ }^{8}$	285:	6.08	12000	250
HY57	40	6.3	2.25	850	110	25	50	4.9	5.1	1.7	60	M.	3 G	Class-C Amp. (Telegraphy)	850	-48	110	15	2.5	-	70
														Class-C Amp. (Telephony)	700	-45	90	17	5.0		47
														Grid-Modulated Amp.	850		70		-	-	20
7561	40	7.5	2.0	850	110	25	8.0	3.0	7.0	2.7	-	M.	4D	Class-C Amplifer	850		110	25	-	-	-
8301	40	10	2.15	750	110	18	8.0	4.9	9.9	2.2	15	M.	4D	Class-C Amplifier	750	-180	110	18	7.0	-	55
														Grid-Moduloted Amp.	1000	-200	50	2.0	3.0		15
$\begin{aligned} & 3.50 A 44 \\ & 35 T \end{aligned}$	50	5.0	4.0	2000	150	50	39	$\begin{aligned} & 4.1 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	M.M.	$\begin{aligned} & \text { 3G } \\ & \text { 2D } \end{aligned}$	Class-C Amp. (Telegraphy)	2000	-135	125	45	13	-	200
$3-5004$														Class-C Amp. (Telephony)	1500	-150	90	40	11	-	105
														Class-B Amp. Audio?	2000	- 40	4/167	255 ${ }^{9}$	4.0*	27500	235
8010-R	50	6.3	2.4	1350	150	20	30	2.3	8.5	0.07	350	N.	-	Class-C Amplifer	-	-	-		--		
RK321	50	7.5	3.25	1250	100	25	11	2.5	3.4	0.7	100	M.	2D	Class-C Amp. (Telegraphy)	1250	-225	100	14	4.8	-	90
RK32	so	7.5	3.25	125	100	25	1	2.5	3.4	0.7	100	M.	20	Class-C Amp. (Telephony)	1000	-310	100	21	8.7	-	70
RK35 ${ }^{1}$	50	7.5	4.0	1500	125	20	9.0	3.5	2.7	0.4	60	M.	2D	Class-C Amp. (Telegraphy)	1500	-250	115	15	5.0	-	120
														Class-C Amp. (Telephony)	1250	-250	100	14	4.6		93
														Grid-Modulated Amp.	1500	-180	37		2.0	-	25
RK37	50	7.5	4.0	1500	125	35	28	3.5	3.2	0.2	60	M.	2D	Class-C Amp. (Telegrophy)	1500	-130	115	30	7.0		122
														Class-C Amp. (Telephony)	1250	-150	100	23	5.6	-	90
														Grid-Modulated Amp.	1500	-50	50	-	2.4		26
$\begin{aligned} & 3-50 G 2 \\ & \text { UH5O } \end{aligned}$	50	7.5	3.25	1250	125	25	10.6	2.2	2.6	0.3	60	M.	2D	Class-C Amp. (Telegraphy)	1250	-225	125	20	7.5	-	115
														Class-C Amp. (Telephony)	1250	-325	125	20	10	-	115
														Grid-Modulated Amp.	1250	-200	60	2.0	3.0		25
UH51 ${ }^{1}$	50	5.0	6.5	2000	175	25	10.6	2.2	2.3	0.3	60	M.	2D	Class-C Amp. (Telegraphy)	2000	-500	150	20	15	-	225
														Class-C Amp. (Telechony)	1500	-400	165	20	15	-	200
														Grid-Moduloted Amp.	1500	-400	85	2.0	8.0	-	65
HK54	50	5.0	5.0	3000	150									Class-C Amp. (Telegrophy)	3000	-290	100	25	10	-	250
						30	27	1.9	1.9	0.2	100	M.	2D	Class-C Amp. (Telephony)	2500	-250	100	20	8.0	-	210
														Class-B Amp. Audio?	2500	- 85	20/150	$360{ }^{\circ}$	5.0	40000	275
														Class-C Amp. (Telegrophy)	1500	-590	167	20	15	-	200
HK1541	50	5.0	6.5	1500	175	30	6.7	4.3	5.9	1.1	60	M.	20	Class-C Amp. (Telephony)	1250	-460	170	20	12	-	162
														Grid-Modulated Amp.	1500	-450	52		5.0	-	28
HK158	50	12.6	2.5	2000	200	40	25	4.7	4.6	1.0	60	M.	2D	Class-C Amp.-Oscillator	2000	-150	125	25	6.0	-	200
		12.6	2.5	2000	200	40	25	4.7	4.6	1.0	60	m.	20	Class-C Amp. (Telephony)	2000	-140	105	25	5.0	-	170
$\text { WE304A } 1$ 3048	50	7.5	3.25	1250	100	25	11	2.0	2.5	0.7	100	M.	2D	Class-C Amp. (Telegraphy)	1250	-200	100		-	-	85
														Class-C Amp. (Taiephony)	1000	-180	100		-	-	65

TABLE XVI-TRIODE TRANSMITTING TUBES-Continued

Type	Max. Plate Dissipation Wafts	Cothode		Max. Plafa Voltage	Max. Plafe Ma.	Max. D.C. Grid Current Ma.	Amp. Factor	InterelectrodeCapactonces ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Rolings	Baso	Socke f Connections	Typical Operation	Plate Volfage	Grid Voltage	Plate Current Mo.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Curent } \\ \text { Mo. } \end{gathered}$	Approx. Grid Driving Power Watts	Class B P-to-P Load Res. Ohms	Approx Outpul PowerWalts
		Volis	Amp.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plole } \end{aligned}$	Plote to Fil.											
356A	50	5.0	5.0	1500	120	35	50						T-4BD	Class-C Amp. (Telegraphy)	1500	- 60	100	-	-	-	100
356 A	50	5.0	5.0	1500	120	35	so	2.25	2.75	1.0	60	N.	7.4BD	Class-C Amp. (Tolephony)	1250	-100	100	35			85
808	50	7.5	4.0	1500	150	35	47	5.3	2.8	0.15	30	M.	2D	Class-C Amp. (Telegraphy)	1500	-200	125	30	9.5		140
														Class-C Amp. (Telephony)	1250	-225	100	32	10.5		105
														Class-B Amp. Audio ${ }^{7}$	1500	-25	30/190	2209	$4.8{ }^{8}$	18300	185
834	50	7.5	3.1	1250	100	20	10.5	2.2	2.6	0.6	100	M.	2D	Closs.C Amp. (Telegraphy)	1250	-225	90	15	4.5		75
														Class-C Amp. (Telephony)	1000	-310	90	17.5	6.5		58
84141	50	10	2.0	1250	150	30	14.6	3.5	9.0	2.5	-	M.	3 G	Class-C Amplifar	-		-				85
8415 W	50	10	2.0	1000	150	30	14.6		9.0		-	M.	3 G	Class.C Amplifer	-		-				-
T55	55	7.5	3.0	1500	150	40	20	5.0	3.9	1.2	60	M.	3 G	Class-C Amp. (Telegraphy)	1500	-170	150	18	6.0		170
TSS	5	7.5	3.0	1500	150	40	20	5.0	3.9	1.2	60	m.	36	Class-C Amp. (Telephony)	1500	-195	125	15	5.0		145
811	55	6.3	4.0	1500	150	50	160	5.5	5.5	0.6	60	M.	3 G	Class-C Amp. (Telegraphy)	1500	-113	150	35	8.0	-	170
														Class-C Amp. (Telephony)	1250	-125	125	50	11	-	120
														Class-B Amp. Audio?	1500	- 9	20/200	$150{ }^{\circ}$	$3.0{ }^{8}$	17600	220
812	55	6.3	4.0	1500	150	35	29	5.3	5.3	0.8	60	M.	36	Class-C Amp. (Telegraphy)	1500	-175	150	25	6.5		170
														Class-C Amp. (Telephony)	1250	-125	125	25	6.0		120
														Class-B Amp. Audio ${ }^{\text {i }}$	1500	-45	50/200	$232{ }^{\text {a }}$	$4.7{ }^{8}$	18000	220
RK51	60	7.5	3.75	1500	150	40	20	6.0	6.0	2.5	60	M.	3 G	Class-C Amp. (Telegraphy)	1500	-250	150	31	10	-	170
														Class-C Amp. (Telephony)	1250	-200	105	17	4.5	-	96
														Grid-Modulated Amp.	1500	-130	60	0.4	2.3	-	128
RK52	60	7.5	3.75	1500	130	50	170	6.6	12	2.2	60	M.	3G	Class-C Amp. (Telegraphy)	1500	-120	130	40	7.0	-	135
														Class-C Amp. (Telephony)	1250	-120	115	47	8.5		102
														Class-B Amp. Audio :	1250	0	40/300	180*	$7.5{ }^{\text {s }}$	10000	250
T-60	60	10	2.5	1600	150	50	20	5.5	5.2	2.5	60	M.	2D	Class-C Amp.-Oscillator	1500	-150	150	50	9.0	-	100
826	55	7.5	4.0	1000	140	40	31	3.0	2.9	1.1	250	N.	780	Closs-C Amp.-Oscillator	1000	-70	130	35	5.8	-	90
														Closs-C Amp. (Telephony)	1000	-160	95	40	11.5	-	70
														Grid-Modulated Amp.	1000	-125	65	9.5	8.2	-	25
$\begin{aligned} & 830 \mathrm{~B} \\ & 930 \mathrm{~B} \end{aligned}$	60	10	2.0	1000	150	30	25	5.0	11	1.8	15	M.	3G	Class-C Amp.-Oscillator	1000	-110	140	30	7.0	-	90
														Class-C Amp. (Telephony)	800	-150	95	20	5.0	-	50
														Class-B Amp. Audio ${ }^{\text {? }}$	1000	- 35	20/280	$270{ }^{9}$	$6.0{ }^{8}$	7600	175
811-A	65	6.3	4.0	1500	175	50	160	5.9	5.6	0.7	60	M.	3G	Class-C Amp. (Telegraphy)	1500	- 70	173	40	7.1	-	200
														Class-C Amp. (Telephony)	1250	-120	140	45	10.0	\square	135
														Class-B Amp. Audio ${ }^{\text {a }}$	1500	- 4.5	32/313	170°	4.48	12400	340
812-A	65	6.3	4.0	1500	175	35	29	5.4	5.5	0.77	60	M.	36	Class-C Amp. (Telegraphy)	1500	-120	173	30	6.5	-	190
														Class-C Amp. (Telephony)	1250	-115	140	35	7.6	-	130
														Class-B Audio?	1500	- 48	78/310	270°	5.0	13200	340
HY51AI HY518	65	$10^{7.5}$	$\begin{aligned} & 3.5 \\ & 2.25 \end{aligned}$	1000										Class-C Amp. (Telegraphy)	1000	-75	175	20	7.5	-	131
					175	25	25	6.5	7.0	1.1	60	M.	$3 G$	Class.C Amp. (Telaphony)	1005	-67.5	130	15	7.5	-	104
														Grid-Moduloted Amp.	1000	-	100			-	33
														Class-C Amp. (Telegrophy)	1000	-22.5	175	35	10	-	131
HY5121	65	7.5	3.5	1000	175	35	85	7.9	7.2	0.9	60	M.	480	Class-C Amp. (Telephony)	1000	- 30	150	35	10	-	104
														Grid-Modulaled Amp.	1000	-	100	-	-	-	33
														Class-C Amp. (Tolegraphy)	1500	- 106	175	60	12	-	200
5514	65	7.5	3.0	1500	175	60	145	7.8	7.9	1.0	60	M.	4BO	Class-C Amp. (Telephony)	1250	- 04	142	60	10	-	135
														Class-B Audio	1500	-4.5	$350{ }^{8}$	$88{ }^{8}$	$6.5{ }^{8}$	10500	400

TABLE XVI-TRIODE TRANSMITTING TUBES-Continued

Type	Max. Plafe Dissipation Watts	Cathode		Max. Plate Voltage	Mox.PlateCurrentMa.	Max.D.C.GridCurrentMa.	Amp. Factor	$\begin{gathered} \text { Interelectrode } \\ \text { Capacitances (} \mu \mu \mathrm{fd} .) \end{gathered}$			$\begin{gathered} \text { Max. } \\ \text { Froeq. } \\ \text { Mc. } \\ \text { Fuli } \\ \text { Rotings } \end{gathered}$	Base	Socket Connec tions	Typical Operotion	Plate Voltage	$\begin{array}{\|c\|} \hline \text { Grid } \\ \text { Volfage } \end{array}$	Plafe Current Mo.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Lood Res. } \\ \text { Ohms } \end{gathered}$	Approx. Output PowerWafls
		Volts	Amp.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	Grid 10 Plate	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fill. } \end{gathered}$											
UH35 1	70													Class-C Amp. (Telegraphy)	1500	-170	150	30	7.0	-	170
U35	70	5.0	4.0	1500	150	35	30	1.4	1.6	0.2	60	M.	$3 G$	Class-C Amp. (Telephony)	1500	-120	100	30	5.0		120
${ }^{\text {V70 }}$	70	10	2.5	1500	140	25	14	5.0	9.0			J.	3N	Class-C Amp. (Telography)	1500	-215	130	6.0	3.0		140
	70	10	2.5	1500	140	25	14	5.0	9.0	2.3	-	M.	3 G	Class-C Amp. (Telephony)	1250	-250	130	6.0	3.0	-	120
$\begin{aligned} & \text { V70A } \\ & \text { V70C } \end{aligned}$	70	10	2.5	1500	140	20	25	5.0	9.5	2.0	-	$\stackrel{\mathbf{d}}{\mathbf{M}} .$	$\begin{aligned} & \text { 3N } \\ & \mathbf{3 G} \end{aligned}$	Class-C Amp. (Talography)	1000	-110	140	30	7.0		90
														Class-C Amp. (Telephony)	800	-150	95	20	5.0	-	50
$501{ }^{1}$	75	5.0	6.0	3000	100	30	12	2.0	2.0	0.4		M.	2D	Class-C Amplifiar	3000	-600	100	25	-	-	250
$\begin{aligned} & 3.75 \mathrm{~A} 3 \\ & 75 \mathrm{TH} \end{aligned}$	75	5.0	6.25	3000	225	40	20	2.7	2.3	0.3	40	M.	2D	Class-C Amp. (Telography)	2000	-200	150	32	10		225
						40	20	2.7	2.3	0.3				Class-B Amp. Audio ${ }^{\text {] }}$	2000	- 90	50/225	3509	3^{8}	19300	300
$\begin{aligned} & 3.75 \mathrm{A2} \\ & 75 \mathrm{TL} \end{aligned}$						35	12	2.6					2 D	Class-C Amp. (Telegraphy)	2000	-300	150	21	8		225
						35	12	2.6	2.4	0.4				Closs-B Amp. Audio ${ }^{\text {? }}$	2000	-160	50/250	$535{ }^{\text {\% }}$	5^{8}	18000	350
HF-60	75	10	2.5	1600	160		28	5.4	5.2	1.5	30	M.	2D	Class-C Amp. (Telegraphy)	1600	-190	158	12	3.5	-	200
						-								Closs-C Amp. (Telephony)	1250	-190	113	8	2.5	-	110
														Class-B Amp. Audio?	1600	-75	50/248	310^{9}	3.0	13800	262
20-60	75	10	2.5	1600	160	40	80	6.1	5.8	1.85	30			Class-C Amp. (Telegraphy)	1500	-95	158	31	6.0	-	190
					160	40	80	6.1	5.8	1.85	30	M.	20	Class-8 Amp. Audio?	1500	- 9	30/305	2089	12.5	11200	320
111H	75	10	2.5	1500	160	30	23	5.0	4.6	2.9	30	M.	2D	Class-C Amp. (Telegraphy)	1500	-200	150	18	6.0	-	170
														Class-C Amp. (Telephony)	1250	-250	110	21	8.0		105
														Class-8 Amp. Audio ${ }^{7}$	1750	- 62	40/270	3249	9.0	16000	350
HF75	75	10	3.25	2000	120	-	12.5	-	2.0		75	M.	2 D	Class-C Oscillator-Amp.	2000	-	120	-			150
TW75	75	7.5	4.15	2000	175	60	20	3.35	1.5	0.7	60	M.	2D	Class-C Amp.-Oscillatar	2000	-175	150	37	12.7	-	225
					175	60	20	3.35	1.5	0.7	60	m.	20	Class-C Amp. (Telephony)	2000	-260	125	32	13.2	-	198
$\begin{aligned} & \text { T-100 } \\ & \text { HF100 } \end{aligned}$	75	10	2.5	1500	150	30	23	4.0	4.5	2.6	30	M.	2D	Class-C Amp. (Telegraphy)	1500	-200	150	18	6.0	-	170
														Class-C Amp. (Telaphony)	1250	-250	110	21	8.0	-	105
														Grid-Modulated Amp.	1500	-280	72	1.5	6.0		42
														Class-8 Amp. Audio ${ }^{\text {? }}$	1750	- 62	40/270	3249	9.08	16000	350
UE. 100	75	10	2.5	1750	150	30	23	3.5	4.5	1.4	30	M.	2D	Class-C Amp. (Telegraphy)	1500	-200	150	18	6.0		170
														Class-C Amp. (Telephony)	1250	-250	120	21	8.0	-	105
														Class-8 Audio ${ }^{\text {? }}$	1750	-62	5408		9.0	16000	350
Z8120	75	10	2.0	1250	160	40	90	5.3	5.2	3.2	30	J.	4E	Class-C Amp. (Talography)	1250	-135	160	23	5.5		145
														Class-C Amp. (Telaphony)	1000	-150	120	21	5.0	-	95
														Grid-Modulated Amp.	1250	-	95	8.0	1.5	-	45
														Class-B Amp. Audio ${ }^{\text {? }}$	1500	-9	60/296	1969	5.08	11200	300
3278	75	10.5	10.6	-	-	-	30	3.4	2.45	0.3	-	N.	T-4AD	-	-	-	-				-
242A	85	10	3.25	1250	150	50	12.5	6.5	13	4.0	6	J.	$4 E$	Class-C Amp. (Telography)	1250	-175	150		-	-	130
	85							6.5	13	4.0	6	J.	45	Closs-C Amp. (Telephony)	1000	-160	150	50	-	-	100
284D		10	3.25	1250	150	100	4.8	6.0	8.3	5.6		J.	$4 E$	Class-C Amp. (Telegraphy)	1250	-500	150	-	-	-	125
											-			Closs-C Amp. (Telephony)	1000	-450	150	50	-	-	100
														Closs-8 Amp. Audio ${ }^{\text {T }}$	1250	-250	30/200		-	11200	140
$812-\mathrm{H}$	85	6.3	4.0	1750	200	45		5.3	5.3	0.8	30	M.	3G	Closs-C Amp. (Tolegraphy)	1750	-175	170	26	6.5	-	225
															1250	-125	125	25	5.0	-	116
							-							Closs-C Amp. (Telephony)	1500	-125	165	21	6.0	-	180
															1250	-125	125	25	6.0	-	120
														Closs-B Amp. Audio ${ }^{\text {? }}$	1500	- 46	42/200	-	-	18000	225

TABLE XVI-TRIODE TRANSMITTING TUBES—Continued

Type	Max. Plato Dissi- potion Watts	Cathode		Max. Plate Voltage	Mox. Plale Current Ma.	Max. D.C. Grid Current Ma.	Amp. Factor	$\begin{gathered} \text { Inferelectrode } \\ \text { Capacitances (} \mu \mu \mathrm{fd} . \text {) } \end{gathered}$			Max. Freq. Mc. Full Ratings	Base	Sockel Connactions	Typical Operation	Plate Volfoge	Grid Voliage	Plate Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Curront } \\ \text { Mo. } \end{gathered}$	Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { LoadRes. } \\ \text { Ohms } \end{gathered}$	Approx. Oulput Walts
		Volis	Amp.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { fo } \\ & \text { Ploto } \end{aligned}$	Plate to Fit.											
8005	85	10	3.25	1500	200	45	20	6.4	5.0	1.0	60	M.	3G	Class-C Amp.-Telegrophy	1500	-130	200	32	7.5		220
														Class-C Amp. (Telephony)	1250	-195	190	28	9.0		170
														Class-B Amp. Audio :	1500	-70	40/310	310^{9}	4.0	10000	300
V-70-D	85	7.5	3.25	1750	200	45		4.5	4.5	1.7	30	M.	3G	Class-C Amp. (Telegraphy)	1750	-100	170	19	3.9		225
							-								1500	-90	165	19	3.9	-	195
														Class-C Amp. (Telephony)	1500	-90	165	19	3.7		185
															1250	- 72	127	16	2.6		122
RK361	100	5.0	B. 0	3000	165	35	14	4.5	5.0	1.0	60	M.	2D	Class-C Amp. (Telegraphy)	2000	-360	150	30	15		200
														Class-C Amp. (Telephony)	2000	-360	150	30	15	$\underline{\square}$	200
														Grid-Modulated Amp.	2000	-270	72	1.0	3.5	-	42
RK38:	100	5.0	8.0	3000	165	40		4.6	4.3	0.9	60	M.	2D	Class-C Amp. (Telegraphy)	2000	-200	160	30	10		225
							-							Cluss-C Amp. (Telophony)	2000	-200	160	30	10		225
														Grid-Modulated Amp.	2000	-150	80	2.0	5.5		60
$\begin{aligned} & 3.100 \mathrm{A4} \\ & \text { 1001H } \end{aligned}$	100	5.0	6.3	3000	225	60	40	2.9	2.0	0.4	40	M.	2D	Class-C Amp. (Telegraphy)	3000	-200	165	51	18	-	400
														Class-C Amp. (Telephony)							
														Grid-Modulated Amp.	3000	-400	70	3.0	7.0	-	
														Closs-B Amp. (Audio)	3000	- 65	40/215	3359	$5.0{ }^{3}$	31000	650
$\sum_{i}^{3-100} 100 \mathrm{TL}$	100	5.0	6.3	3000	225	50	14	2.3	2.0	0.4	40	M.	2D	Closs-C Amp. (Telegraphy)	3000	-400	165	30	20		400
														Class-C Amp. (Telephony)							
														Grid-Madulated Amp.	3000	-560	60	2.0	7.0	-	90
														Class-B Amp. (Audio) ${ }^{\text {] }}$	3000	-185	40/215	$640{ }^{3}$	6.0 \%	30000	450
Vil27A	100	5.0	10.4	3000	-	-	15.5	2.7	2.3	0.35	150	N.	T-4B	Class-C Amp. (Telegraphy)Class-B Amp. (Audio)	$\begin{array}{r} 2000 \\ \hline 1500 \\ \hline \end{array}$	-340-125	$\begin{aligned} & \hline 210 \\ & \hline 242 \\ & \hline \end{aligned}$	$\frac{67}{44}$	25	$\overline{3} \overline{00}$	315200
						-															
227 A 327 A	100		10.7	—	-	-	31	3.0	2.2	0.30	-	N.	T-4B	Oscillator at 200 Mc .	--	--	--	- -	-	-	- -
						-	31	3.4	2.3	0.35	-	N.	T-4AD	Oseillotor at 200 Mc .	--	--	--	--		-	-
HK254	100	5.0	7.5	4000	200	40	25	3.3	3.4	1.1	50	J.	2N	Class-C Amp. (Telegraphy)	4000	-380	120	35	20	-	475
														Class-C Amp. (Teiephony)	3000	-290	135	40	23	-	320
														Grid-Modulated Amp.	3000	-	51	3.0	4.0		58
														Class-B Amp. (Audio) ${ }^{\text {i }}$	3000	-100	40/240	456"	7.0	30000	520
RK58	100	10	3.25	1250	175	70	-	8.5	6.5	10.5	-	J.	3N	Class-C Amp. (Telegraphy)	1250	- 90	150	30	8.0		130
							-			10.5	-	J.	3 N	Class-C Amp. (Telephony)	1000	-135	150	50	16	-	100
HF120	100	10	3.25	1250	175	50	12	5.5	12.5	3.5	15	J.	4F	Closs-C Amp.-Oscillator	1250	-300	166	8	3.5	-	148
HF125	100	10	3.25	1500	175		25	-	11.5	-	30	J.		Class-C Amp.-Oscillator	1500	-	175	-	-	-	200
HF140 $203 A$ $303 A$	100	10	3.25	1250	175	-	12	5.5	13.0	4.5	15	J.	4F	Class-C Amp.-Oscillotor	1250	-300	166	8	3.5	\square	148
	100	10	3.25	1250	175	60	25							Class-C Amp. (Telegraphy)	1250	-125	150	25	7.0	-	130
								6.5	14.5	5.5	15	J.	$4 E$	Closs-C Amp. (Telephony)	1000	-135	150	59	14	-	100
														Class-B Amp. (Audio) ${ }^{\text {a }}$	1250	-45	26/320	330 ?	119	9000	260
														Class-C Amp. (Telegraphy)	1500	-200	170	12	3.8	-	200
203H	100	10	3.25	1500	175	60	25	6.5	11.5	1.5	15	J.	3rd	Closs-C Amp. (Telephony)	1250	-160	167	19	5.0	-	160
														Class-8 Amp. (Audio) ${ }^{\text {\% }}$	1500	- 52	30/320	$304{ }^{\text {a }}$	$5.5{ }^{3}$	11000	340
														Class-C Amp. (Telography)	1250	-225	150	18	7.0	-	130
$\begin{aligned} & 311 \\ & 8351 \end{aligned}$	100	10	3.25	1250	175	50	12	6.0	$\begin{aligned} & 14.5 \\ & 9.25 \end{aligned}$	5.5	15	J.	4 E	Class-C Amp. (Telephony)	1000	-260	150	35	14	--	100
														Class-B Amp. (Audio) ${ }^{\text {i }}$	1250	-100	20/320	410^{9}	8.0^{8}	9000	260
2428 3428	100	10	3.25	1250	150	50	12.5	7.0	13.6	6.0	6	J.	4E	Class-C Amp. (Telegroptiy)	1250	-175	150	-	-	-	130
3428												J.	4 E	Closs-C Amp. (Telephony)	1000	-160	150	50	$\underline{\square}$	-	100

TABLE XVI-TRIODE TRANSMITTING TUBES-Continued

Type	Max. Plate Dissipation Watts	Cathade		Max. Plate Volfage	Max. Plata Cuprant Ma.	Max. D.C. Grid Cupren Ma.	Amp. Factor	$\begin{gathered} \text { Intaralectrode } \\ \text { Capacifances (} \mu \mu \mathrm{fd} .) \end{gathered}$			Max. Freq. Mc. Full Rating:	Base	Socket Connecfions	Typical Operatian	Plate Voltage	Grid Voltage	Plate Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P-fo-P } \\ \text { LoadRes. } \\ \text { Ohms } \end{gathered}$	Approx. Output Pawer Watts
		Volts	Amp.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	Grid to Plate	$\begin{aligned} & \text { Plate } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$											
242C	100	10	3.25	1250	150	50	12.5	6.1	13.0	4.7	6	J.	4E	Class-C Amp. (Telegraphy)	1250	-175	150	-	-	-	130
														Class-C Amp. (Telephony)	1000	-160	150	50		7000	100
														Class-8 Amp. (Audio) ${ }^{\text {J }}$	1250	- 80	25/150		25 *	7600	200
$\begin{aligned} & 261 \mathrm{~A} \\ & 361 \mathrm{~A} \end{aligned}$	100	10	3.25	1250	150	50	12	6.5	9.0	4.0	30	J.	4 E	Class-C Amp. (Telegraphy)	1250	-175	125				100
														Class-C Amp. (Telephony)	1000	-160	150	50		-	100
														Class-8 Amp. (Audio) ${ }^{7}$	1250	- 90	20/150		25 *	7200	200
$\begin{aligned} & 276 A \\ & 376 A \end{aligned}$	100	10	3.0	1250	125	50	12	6.0	9.0	4.0	30	J.	4E	Class-C Amp. (Telegraphy)	1250	-175	125		-	-	100
														Class-C Amp. (Telephony)	1000	-160	125	50			85
														Class-8 Amp. (Audio) ?	1250	- 90	20/125	-	25 *	9000	175
2848	100	10	3.25	1250	150	100	5.0	4.2	7.4	5.3		J.	3 N	Class-C Amp. (Telegraphy)	1250	- 500	150			--	125
											-			Class-C Amp. (Talephony)	1000	-430	150	50		\square	100
														Class-8 Amp. (Audio) ${ }^{7}$	1250	-245	15/150		10	7200	200
295A	100	10	3.25	1250	175	50	25	6.5	14.5	5.5		J.	4E	Class-C Amp. (Telegraphy)	1250	-125	150	-		-	125
											-			Class-C Amp. (Telephony)	1000	-125	150	50		-	100
														Class-8 Amp. (Audia) ${ }^{\text {] }}$	1250	- 40	12/160		20*	9000	250
$\begin{array}{r} 838 \\ 938 \end{array}$	100	10	3.25	1250	175	70		6.5	8.0	5.0	30	J.	4E	Class-C Amp. (Telegraphy)	1250	- 90	150	30	6.0	-	130
							-							Class-C Amp. (Telephony)	1000	-135	150	60	16	-	100
														Class-B Amp. (Audio)	1250	0	148/320	200 *	$7.5{ }^{\text {8 }}$	9000	260
852	100	10	3.25	3000	150	40	12	1.9	2.6	1.0	30	M.	2D	Class-C Amp. (Telegraphy)	3000	-600	85	15	12	-	165
														Class-C Amp. (Telephony)	2000	-500	67	30	23	-	75
														Class-E Amp. (Audio) ${ }^{\text {] }}$	3000	-250	14/160	$780{ }^{3}$	$3.5{ }^{9}$	10250	320
					100	50	100	8.75	1.95	0.035	2500			Class-C Amp. (Telegraphy)	1000	- 50	50	18	4		30
564812	100	6.3	1.1	1000	100	so	100	8.75	2.95	0.035	2500	N.	-	Class-C Amp. (Telephony)	600	- 25	55	22	6	-	20
8003	100	10	3.25	1500	250	50	12	5.8	11.7	3.4	30	J.	3N	Class-C Amp.-Oscillator	1350	-180	245	35	11		250
														Class-C Amp. (Telephony)	1100	-260	200	40	15	-	167
														Class-B Amp. (Audio) ${ }^{\text {] }}$	1350	-100	40/490	480*	$10.5{ }^{\text {8 }}$	6000	460
$\begin{aligned} & 3 \times 100 A 11 \\ & 2 \mathrm{C} 39 \end{aligned}$	100	6.3	1.1	1000	60	40	100	6.5	1.95	0.03	500	N.	-	"Grid Isolation' Circuit	600	- 35	60	40	5.0	-	20
														Class-C Amplifier	800	-20	80	32	6	-	27
2C39A	100	6.3	1.0	1000	80	50	100	6.5	1.95	. 035	500	N.		Class-C Amp. (Telephony)	600	- 16	75	40	6	-	18
311.CH	125	10	3.25	1750	200	50	12	5.5	8.0	4.5	30	J.	Fig. 57	Class-C Amp. (Telegraphy)	1750	-200	200	20	4.5	-	260
														Class-C Amp. (Telephony)	1250	-200	166	8	3.5	\square	148
														Class-8 (Audio) ${ }^{7}$	1500	-110	$400{ }^{8}$	--	-	8200	400
3 C 22	125	6.3	2.0	1000	150	70	40	4.9	2.4	0.05	500	0.	Fig. 30	Class-C Amp.-Oscillatar	1000	-200	150	70			65
$4 \mathrm{C36}$	125	5	7.5	4000	-	-	29	3.2	3.0	0.4	60	J.	Fig. 56	Class-C Amp.-Oscillator	-	-	-		18		480
$\begin{aligned} & \text { F-123-A } \\ & D R-123 C \end{aligned}$	125	10	4.0	2000	300	75	14.5	6.5	8.5	3.3		J.	Fig. 26	Class-C Amp. (Telegraphy)	1500	-250	250	30	11		300
											-			Class-C Amp. (Telephony)	1500	-290	160	25	10	-	200
														Class-8 Amp. (Audio) ${ }^{\text {7 }}$	2000	-130	30/175	217^{9}	$3.4{ }^{\text {\% }}$	13800	522
RK57/805	125	10	3.25	1500	210	70		6.5	8.0	5.0				Class-C Amp. (Telegraphy)	1500	-105	200	40	8.5		215
							-				30	J.	3N	Class-C Amp. (Telephony)	1250	-160	160	60	16	-	140
														Class-8 Amp. (Audia) ${ }^{7}$	1500	- 16	84/400	$280{ }^{3}$	7.0^{3}	8200	370
						60	25			1.3	60			Class-C Amp. (Telegraphy)	2500	-200	240	31	11	-	475
T125	125	10	4.5	2500	250	60	25	0.3	6.0	1.3	60	J.	2N	Class-C Amp. (Telephony)	2000	-215	200	28	10	-	320
MF130	125	10	3.25	1250	210	-	12.5	5.5	9.0	3.5	20	J.	-	Class-C Amp.-Oscillator	1250	-250	200	10	3.5		170
HF150	125	10	3.25	1500	210	-	12.5	5.5	7.2	1.9	30	J.		Class-C Amp.-Oscillator	1500	-300	200	10	4	-	220
HF175	125	10	4.0	2000	250	-	18	4.8	6.3	2.7	25	J.	T-3AC	Class-C Amp.-Oscillotor	2000	-250	200	23	9	-	320

table xvi-triode transmitting tubes-Continuod

Type	Max. Plate Dissipation Watts	Cathode		Max.PlateVoltage		Max.D.C.GridCurrentMa.	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Socket ConnecJions	Typical Oporation	Plate Voltage	Grid Voltoge	Plate Current Ma.		Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class } 8 \\ \text { P-fo-p } \\ \text { Lood Res. } \\ \text { Ohms } \end{gathered}$	Approx. Output Power Wotts
		Volts	Amp.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	Plate fil.											
GL146	125	10	3.25	1500	200	60	75	7.2	9.2	3.9	15	J.	T-4BG	Closs-C Amp.-Oscillator	1250	-150	180	30		-	150
														Class-C Amp. (Telephony)	1000	-200	160	40		-	100
														Class-B Amp. (Audio) ${ }^{\text {? }}$	1250	0	34/320			8400	250
GL152	125	10	3.25	1500	200	60	25	7.0	8.8	4.0	15	J.	T-4BG	Closs-C Amp.-Oscillator	1250	-150	180	30			150
														Class-C Amp. (Telephony)	1000	-200	160	30			100
														Class-B Amp. (Audio) ${ }^{7}$	1250	- 40	16/320			8400	250
805	125	10	3.25	1500	210	70	40/60	8.5	6.5	10.5	30	J.	3N	Class-C Amp. (Telegrophy)	1500	-105	200	40	8.5		215
														Class-C Amp. (Telephony)	1250	-160	160	60	16		140
														Class-B Amp. (Autio) ?	1500	-16	84/400	280^{9}	7.0^{8}	8200	370
AX9900/ 5866^{12}	135	6.3	5.4	2500	200	40	25	5.8	5.5	0.1	150	N.	Fig. 5	Class-C Amp. (Telegraphy)	2500	-200	200	40	16		390
														Class-C Amp. (Telephony)	2000	-225	127	40	16		204
														Class-B (Audio) ;	2500	-90	80/330	3509	$14{ }^{8}$	15680	560
$\begin{aligned} & 3 \times 150 A 3 \\ & 3 \mathrm{C} 37 \end{aligned}$	150	6.3	2.5	1000	-	-	23	4.2	3.5	0.6	500	N.	-	-	-	-	-	-	-	-	-
$150 \mathrm{~T}^{1}$	150	5.0	10	3000	200	50	13	3.0	3.5	0.5		J.	2N	Class-C Amp. (Telegraphy)	3000	-600	200	35		-	450
3.150 A 3	150	5/10	12.51	3000	450	85	20	5.7	4.5	0.8	40	J.	4BC	Class-C Amp. (Telegraphy)	3000	-300	250	70	27	\square	600
152 TH														Class-B Amp. (Audio) ${ }^{7}$	3000	-150	67/335	$430{ }^{9}$	3.0 *	20300	700
$\begin{aligned} & 3.150 A 2 \\ & 152 \mathrm{TL} \end{aligned}$			6.25			75	12	4.5	4.4	0.7			4BC	Class-C Amp. (Telegraphy)	3000	-400	250	40	20	-	600
														Closs-B Amp. (Audio) :	3000	-260	65/335	6759	3.08	20400	700
TW150	150	10	4.1	3000	200	60	35	3.9	2.0	0.8	-	J.	2N	Closs-C Amp.-Oscillator	3000	-170	200	45	17		470
					200	60	35	3.9	2.0	0.8	-	J.	2 N	Closs-C Amp ((elaphony)	3000	-280	165	40	17		400
HK252-L	150	5/10	13/6.5	3000	500	75	10	7.0	5.0	0.4	125	N.	4BC	Class-C Amp. Oscillator	3000	-400	250	30	15	-	610
HK252-L	150	$5 / 10$	13/6.5	3000	500	75	10	7.0	5.0	0.4	125	N.	48 C	Class-C Amp. (Telephony)	2500	-350	250	35	16		500
$\begin{aligned} & \text { DR200 } \\ & \text { HF200 } \\ & \text { HV18 } \end{aligned}$	150	10-11	3.4	2500	200	50	18	5.2	5.8	1.2	20	J.	2N	Class-C Amp. (Telegraphy)	2500	-300	200	18	8.0		380
														Class-C Amp (Telephony)	2000	-350	160	20	9.0	-	250
														Class-B Amp. (Audio) ${ }^{\text {a }}$	2500	-130	60/360	460^{9}	$8.0{ }^{\text {\% }}$	16000	600
HD203A	150	10	4.0	2000	250	60	25	-	12	-	15	J.	3N	Closs-C Amplifier	-	-	-	-		-	375
HF250	150	10.5	4.0	2500	200	-	18	-	5.8		20	J.	2 N	Class-C Amp.-Oscitlatop	2500	-	200	\cdots	-	-	375
HK 354 HK354C	150	5.0	10	4000	300	50	14	4.5	3.8	1.1	30	J.	2N	Class-C Amp. (Telegrophy)	4000	-690	245	50	48		830
														Class-C Amp. (Telephony)	3000	-550	210	50	35	-	525
														Grid-Modulated Amp.	3000	-400	78	3.0	12		85
														Class-B Amp. (Audio) ${ }^{\text {a }}$	3000	-205	65/313	630^{9}	20^{-4}	22000	665
HK354D	150	5.0	10	4000	300	55	22	4.5	3.8	1.1	30	J.	2N	Closs-C Amp. (Telegraphy)	3500	-490	240	50	38		690
HK3s40	150	5.0	10	4000	300	5	22	4.5	3.8	1.1	30	J.	2N	Class-C Amp. (Telephony)	3500	-425	210	55	36	-	525
HK354E	150	5.0	10	4000	300	60	35	4.5	3.8	1.1	30	J.		Class C Amp. (Telegraphy)	3500	-448	240	60	45	-	690
HK3	150	5.0	10	4000	300	60	35	4.5	3.8	1.1	30	J.	2N	Class-C Amp. (Telephony)	3000	-437	210	60	45		525
HK354F	150	5.0	10	4000	300	75	50	4.5	3.8	1.1	30	J.	2N	Class-C Amp. (Telegraphy)	3500	-368	250	75	50	-	720
-								4.5	3.8	1.1	30	J.	2	Class.C Amp. (Telephony)	3000	-312	210	75	45	-	525
UE-468	150	10	4.05	2500	200	60	18	8.8	7.0	1.25	30	J.	Fig. 57	Class-C Amp. (Telegraphy)	2500	-300	200	18	8.0		380
														Class-C Amp. (Telephony)	2000	-350	160	20	9.0	-	250
														Class-B (Audio) ${ }^{\text {l }}$	2500	-130	$320{ }^{8}$	410^{9}	2.5	16000	500
$\begin{aligned} & 810 \\ & 1627! \end{aligned}$	175	$\begin{gathered} 10 \\ 5.0 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	2500	300	75	36	8.7	4.8	12	30	J.	2N	Class-C Amp. (Telegraphy)	2500	-180	300	60	19	-	575
														Class-C Amp. (Telephony)	2000	-350	250	70	35	-	380
														Grid-Moduloted Amp.	2250	-140	100	2.0	4.0	-	75
														Class-B Amp. (Audia) ${ }^{\text {? }}$	2250	- 60	70/450	380	13.	11600	725

TABLE XVI-TRIODE TRANSMITTING TUBES-Conlinued

Type	Max. Plate Distipation Watts	Cathode		Max. Plate Voltage	Max. Plato Ma.	Max. D.C. Grid Current Ma.	Amp. Factor	InterelectrodeCapacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Me. Full Ratings	Base	Socket Connec. tions	Typical Oparation	Plate Voltage	Grid Voltage	Plate Current Ma.		Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Load Res. } \\ \text { Ohms } \end{gathered}$	Approx. Output Walts
		Volts	Amp.					$\underset{\text { Grid }}{\text { to }}$ Fil.	$\begin{aligned} & \text { Grid } \\ & \text { Plo } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { FiI. } \end{gathered}$											
8000	175	10	4.5	2500	300	45	16.5	5.0	6.4	3.3	30	J.	2N	Class-C Amp.-Oscillator	2500	-240	300	40	18	-	575
														Class-C Amp. (relephony)	2000	-370	250	37	20	-	380
														Grid-Modulated Amp.	2250	-265	100	0	2.5		75
														Class-B Amp. (Audio) ${ }^{\text {a }}$	2250	-130	65/450	560.	$7.9{ }^{8}$	12000	725
												N.	Fig. 26	Class-A Amp. (Audio)	1500	-155	107	-	-	$8200{ }^{3}$	55
Gl-5C24	160	10	5.2	1750	107	-	8	5.6	8.8	3.3	-			Class-AB, Amp. (Audio) ${ }^{\text {P }}$	1750	-200	$320{ }^{8}$	390%		8000	240
$\begin{aligned} & \text { RK63 } \\ & \text { RK63A } \end{aligned}$	200	$\begin{aligned} & 5.0 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	3000	250	60	37	2.7	3.3	1.1	-	J.	2N	Class-C Amp. (Telegraphy)	3000	-200	233	45	17	-	525
														Class-C Amp. (Telephony)	2500	-200	205	50	19	-	405
														Grid-Modulated Amp.	3000	-250	100	7.0	12.5	-	100
														Class.C Amp. (Telegraphy)	2500	-280	350	54	25		685
T200	200	10	5.75	2500	350	80	16	9.5	7.9	1.6	30	J.	2N	Class-C Amp. (Telephony)	2000	-260	300	54	23	\square	460
														Class-C Amp. (Telegraphy)	3000	-250	250	47	18		600
F.127-A	200	10	4.0	3000	325	70	38	13	4	13	-	J.	Fig. 26	Class-C Amp. (Telephony)	2500	-300	200	58	25.2	-	420
														Class-B Amp. (Audio) ${ }^{\text { }}$	2800	- 75	20/400	175*	6.658	16600	820
$\begin{aligned} & 822 \\ & 822 \mathrm{~S} \end{aligned}$	200	10	4.0	2500	300	60	30	8.5	13.5	2.1	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	J.	$\begin{aligned} & 3 \mathrm{~N} \\ & \mathbf{2 N} \end{aligned}$	Class-C Amp. (Telegraphy)	2500	-190	300	51	17	-	600
														Class-C Amp. (Telephony)	2000	-75	250	43	13.7	-	405
														Class-B Amp. (Audio) ${ }^{7}$	3000	-80	$450{ }^{\text {8 }}$	$362{ }^{\text { }}$	8.0^{8}	16000	1000
4C32	200	10	4.5	3000	300	60	30	5.5	5.8	1.1	60	J.	2N	Class-C Amp.-Oscillator	2000	-165	275	20	10		400
														Class-C Amp. (Telephony)	2000	-200	250	20	15	-	375
$\begin{aligned} & \text { GL-592 } \\ & 3-200 A 3 \end{aligned}$	200	10	5.0	3500	250	50	25	3.6	3.3	0.29	150	N.		Class-C Amp. (Telegraphy)	3000	-220	222	25	11	-	466
													Fig. 52	Class-C Amp. (Telephony)	2500	-300	200	35	19		375
														Class-B (Audio) ${ }^{\text {] }}$	2000	- 50	120/500	$520{ }^{9}$	25^{3}	8500	600
$\begin{aligned} & 4 C 34 \\ & \text { HF300 } \end{aligned}$	200	11-12	4.0	3000	275	60	23	6.0	6.5	1.4	$\begin{aligned} & 60 \\ & 20 \end{aligned}$	J.	2N	Class-C Amp. (Telegraphy)	3000	-400	250	28	16	-	600
														Class-C Amp. (Telephony)	2000	-300	250	36	17	-	385
														Class-8 Amp. (Audio) ${ }^{7}$	3000	-115	60/360	450"	138	20000	780
T814 HV12	200	10	4.0	2500	200	60	12	8.5	12.8	1.7	30	J	3N	Class-C Amp. (telegraphy)	2500	-240	300	30	10	-	575
														Class-C Amp. (Telephony)	2000	-370	300	40	20	-	485
														Class-B Amp. (Audio) ${ }^{\text {T }}$	2000	-160	50/275	$350{ }^{9}$	$7.0{ }^{8}$	14400	400
														Class-C Amp. (Telegraphy)	2500	-175	300	50	15	-	585
HV27	200	10	4.0	2500	300	60	27	8.5	13.5	2.1	30	J.	3 N	Class-C Amp. (Telephony)	2000	-195	250	45	15		400
T. 300	200	11	6.0	3000	300		23	6.0	7.0	1.4				Class-C Amp. (Telegraphy)	3000	-400	250	28	20	-	600
						-					-	-	-	Class-C Amp. (Telephony)	2000	-300	250	36	17	-	385
														Class-B (Audio) ${ }^{7}$	2500	-100	60/450		7.5^{8}	-	750
806	225	5.0	10	3300	300	50	12.6	6.1	4.2	1.1	30	J.	2N	Class-C Amp. (Telegraphy)	3300	-600	300	40	34	-	780
														Class-C Amp. (Telephony)	3000	-670	195	27	24	\cdots	460
														Class-B Amp. (Audio) ${ }^{\text {T }}$	3300	-240	80/475	930^{9}	35^{8}	16000	1120
$\begin{aligned} & \text { 3-250A4 } \\ & 250 \mathrm{TH} \end{aligned}$	250	5.0	10.5	4000	350	100	37	5.0	2.9	0.7	40	J.	2N	Class-C Amp. (Telegraphy)	2000	-120	350	100	34	-	500
														Class-C Amp. (Telephony)	3000	-210	330	75	42	-	750
														Grid-Modulated Amp.	3000	-160	125	4.5	20	-	125
														Class-B Amp. (Audio) ${ }^{\text {] }}$	3000	-65	100/560	4609	24^{8}	12250	1150
$\begin{aligned} & 3.250 A 2 \\ & 250 T L \end{aligned}$	250	5.0	10.5	4000	350	50	14							Class-C Amp. (Telegraphy)	3000	-350	335	45	29	-	750
								3.7	3.1	0.7	40			Class-C Amp. (Telephony)	3000	-350	335	45	29	-	750
								3.7	3.1	0.7	40	J.	2 N	Grid-Modulated Amp.	3000	-450	125	2.0	15	$\underline{-}$	125
														Class-8 Amp. (Audio) ${ }^{\text {] }}$	3000	-175	100/500	840^{9}	17^{8}	13000	1000

TABLE XVI-TRIODE TRANSMITTING TUBES-Continued

table XVII-tetrode and pentode transmitting tubes

Type	Max. Plate Dissipation Watts	Cathode		Max. Plate Voltage	Max. Screen Voltoge	Max. Screen Dissipation Watts	$\begin{gathered} \text { Inleralectrode } \\ \text { Capacitances }(\mu \mu \mathrm{fd} .) \end{gathered}$			Max. Freq. Mc. Full Ratings	Base	$\begin{gathered} \text { Socket } \\ \text { Con- } \\ \text { nec. } \\ \text { fions } \end{gathered}$	Typical Operation	Plate Voltage	$\begin{gathered} \text { Screen } \\ \text { Volt- } \\ \text { age } \end{gathered}$	Suppressor Voltage	Grid Vollage	Plate Current Ma.	Screen Current Ma.	Grid Current Ma	Screen Resistor Ohms	Approx. Grid Driving Power Watts	Class B P-to-P Load Res. Ohms	Approx Oulpul Walls
		Volts	Amp.				Grid Fil.	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	Plate to Fii.															
344	2.0	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	150	135	0.9	4.8	0.2	4.2	10	B.	78B	Class-C Amp. (Telegraphy)	150	135	0	- 26	18.3	6.5	0.13	2300	-	-	1.2
306	4.5	$\begin{aligned} & 2.8 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.22 \end{aligned}$	180	135	0.9	7.5	0.3	5.5	50	1.	6BB	Class-C Amp. (Telegraphy)	150	135	-	- 20	23	6.0	1.0	-	0.25	-	1.4
384	3.0	$\begin{aligned} & 2.5 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 0.165 \\ & 0.33 \end{aligned}$	150	135	-	4.6	0.16	7.6	100	B.	7CY	Class-C Amp.	150	135	-	- 75	25	-	-	-	-	—	1.25
		2.5	0.1125										Class-C Amp. (Telegraphy)	200	100	-	-22.5	20	4.0	2.0		0.1		3.0
HY631	3.0	1.25	0.225	200	100	0.6	8.0	0.1	8.0	60	0.	T-8DB	Class-C Amp. (Telephony)	180	100	-	-35	15	3.0	2.0		0.2		2.0
6AK6	3.5	6.3	0.15	375	250	1.0	3.6	0.12	4.2	54	B.	7BK	Class-C Amp. (Telegraphy)	375	250		-100	15	4.0	3.0	-	-		4.0
5 SA6	5.0	$\begin{aligned} & 2.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.46 \\ & 0.23 \\ & \hline \end{aligned}$	150	150	2	8.5	0.15	9.5	100	B.	91	Class-C Amp.	150	150	0	- 24	40	11	1.2	—	-	-	3.1
5618	5.0	$\begin{aligned} & 6.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.46 \end{aligned}$	300	125	2.0	7.0	0.24	5.0	80	B.	7CU	Class-C Amp. (Telegraphy)	300	75	0	- 45	25	7.0	1.5	32000	0.3	-	5.4
														250	250		- 50	40	10.5	2.0		0.15		6.5
5686	7.5	6.3	0.35	250	250	3.0	6.4	0.11	4.0	160	B.	Fig. 29	Class-C Amp. (Telegraphy)	250	180		- 30	30	6.5	2.0		0.10		5.0
6AO5	8.0	6.3	0.45	350	250	2.0	7.6	0.35	6.0	54	B.	7 BZ	Class-C Amp. (Telegraphy)	350	250		-100	47	7.0	5.0		-		11
6VEGT	8.0	6.3	0.45	350	250	2.0	9.5	0.7	7.5	10	0.	7AC	Class-C Amp. (Telegraphy)	350	250		-100	47	7.0	5.0		\square		11
6 6AG7	9.0	6.3	0.65	375	250	1.5	13	0.06	7.5	10	0.	8 Y	Class-C Amp. (Talegraphy)	375	250	\cdots	-75	30	9.0	5.0	-	-		7.5
													Class-C Amp. (Telegraphy)	400	100	30	-30	35	10	3.0		0.18	-	10
RK64 ${ }^{1}$	6.0	6.3	0.5	400	100	3.0	10	0.4	9.0	60	M.	5AW	Class-C Amp. (Telephony)	300	-	30	-30	26	8.0	4.0	30000	0.2		6.0
1610	6.0	2.5	1.75	400	200	2.0	8.6	1.2	13	20	M.	T-5CA	Class-C Amp. (Telegraphy)	400	150		-50	22.5	7.0	1.5	-	0.1	-	5.0
											M.	5AW	Class-C Amp. (Telegraphy)	400	300		- 40	62	12	1.6		0.1		12.5
RK56	8.0	6.3	0.55	300	300	4.5	10	0.2	9.0	60	M.	saw	Class-C Amp. (Telephony)	250	200		-40	50	10	1.6	2800	0.28		8.5
$\begin{aligned} & \text { RK231 } \\ & \text { RK25 } \\ & \text { RK25B } 1 \end{aligned}$	10	$\begin{aligned} & 2.5 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 0.9 \end{aligned}$	500	250	8	10	0.2	10		M.	6BM	Class-C Amp. (Telegraphy)	500	200	45	-90	55	38	4.0		0.5		22
										-			Class-C Amp. (Telephony)	400	150	0	-90	43	30	6.0	8300	0.8	-	13.5
													Suppressor-Modulated Amp.	500	200	-45	-90	31	39	4.0		0.5		6.0
													Class-C Amp. (Telegraphy)	350	200		-35	50	10	3.5	20000	0.22	-	9
1613	10	6.3	0.7	350	275	2.5	8.5	0.5	11.5	45	0.	75	Class-C Amp. (Telephony)	275	200	-	- 35	42	10	2.8	10000	0.16		6.0
2E30	10	6.0	0.7	250	250	2.5	10	0.5	4.5	160	B.		Class-C Amp. (Telegrophy)	250	200		- 50	50	10	2.5	-	0.2		7.5
2 E 3	10	6.0	0.7	250	250	2.5	10	0.5	4.5	160	B.	7 Ca	Class-AB2 Amp. (Audio) ${ }^{\text {B }}$	250	250		- 30	40/120	4/20	$2.3{ }^{7}$	878	0.2	3800	17
5812	10	6.0	0.65	300	250	2.5	9.0	0.2	7.4	165	B.	7 Ca	Class-C Amp. (Telegraphy)	300	200	-	-45	55	3.0	0.75	-	1.5		7.0
$\begin{aligned} & 837 \\ & \text { RK44 } 1 \end{aligned}$	12	12.6	0.7	500	300	8	16	0.2	10	20	M.	6BM	Closs-C Amp. (Telegraphy)	500	200	40	- 70	80	15	4.0	20000	0.4		28
													Class-c Amp. (Telephony)	400	140	40	-40	45	20	5.0	13000	0.3		11
													Suppressor-Modulated A mp.	500	-	-65	-20	30	23	3.5	14000	0.1		5.0
													Class-C Amp. (Telegraphy)	300	250	0	-60^{-}	50	5.0	3.0	-	0.35		8.0
5763	12	6.0	0.75	300	250	2	9.5	0.3	4.5	175	B.	9 K	Doubler to 175 Mc .	300	250	0	-75	40	4.0	1.0	12500	0.6		3.6
6F6 6F6G	12.5	6.3	0.7	400	275	3.0	6.5	0.2	13	10	O.	7 AC	Class-C Amp. (Telegraphy)	400	275		-100	50	11	5.0	-	-		14
							8.0	0.5	6.5				Class-C Amp. (Telephony)	275	200		-35	42	10	2.8	-	0.16		6.0
$2 E 24$	$\begin{array}{r} 9.0 \\ 13.5 \end{array}$	$6.3{ }^{5}$	0.65	500	200	2.3	8.5	0.11	6.5	125	0.	7CL	Class-C Amp. (Telephony)	400	180		-45	50	8.0	2.5	27500	0.15	-	13.5
				500		2.3								500	180	-	-45	54	8.0	2.5	40000	0.16		18.0
				800	200	2.5							Class-C Amp. (Telegraphy)	400	200	-	-45	75	10.0	3.0	20000	0.19		20
				600	200	2.5							Class-C Amp. (telegraphy)	600	195		- 50	66	10	3.0	40500	0.21	-	27
$2 E 26$	$\begin{array}{\|r} 13.5 \\ 9.0 \end{array}$	6.3	0.8	600	200	2.5	13	0.2	7.0	125	0.	7CK	Class-C Amp. (Telegraphy)	600	185		-45	66	10	3.0	41500	0.17	-	27
													Class-C Amp. (Telephony)	500	180	-	-50	54	9.0	2.5	35500	0.15	-	18
				500	200	2.3							Class-AB2 Amp. (Audio) ${ }^{\text {a }}$	500	125	-	- 15	22/150	$32{ }^{7}$	-	60^{8}	0.367	8000	54
802	13	6.3	0.9	600	250	6.0	12	0.15	B. 5	30	M.	6BM	Class-C Amp. (Telegraphy)	600	250	40	-120	55	16	2.4	22000	0.30	-	23
													Class-C Amp. (Telephony)	500	245	40	- 40	40	15	1.5	16300	0.10	-	12
													Suppressor-Modulated Amp.	600	250	-45	-100	30	24	5.0	14500	0.6		6.3

table XVII－TETRODE AND PENTODE TRANSMITTING TUBES—Continued

Type	Max． Plate Dissi－ pation Wotts	Cathode		Max． Plote Voll－ age	Max． Screen Volt． age	Max． Screen Dissi－ pation Wotts	$\begin{array}{\|c\|} \hline \text { Intarelectrade } \\ \text { Capacitances }(\mu \mu \mathrm{fd} .) \end{array}$			Max． Freq． Mc． Full Ratings	Base	SocketCon－nec－tions	Typical Operation	Plate Volt－ age	ScreenVolf－age	Sup． pressor Volt－ oge	Grid Volt－ age	Plate Current Ma．	Screen Current Ma．	Grid Current Ma．	Screen Resistor Ohms	Apprax． Grid Driving Power Watts	Class B P－to－P Load Res． Ohms	Approx． Output Power Watts
		Volts	Amp．				Grid to Fil．	Grid lo Flate	Plate Fil．															
HYoV6－	13	6.3	0.5	350	225	2.5	9.5	0.7	9.5	60	0.	7 AC	Class－C Amp．（Telegraphy）	300	200		－ 45	60	7.5	2.5		0.3	－	12
			0.5	350	225	2.5	9.5	0.7	9.5	60	0.	7 AC	Class－C Amp．（Telephony）	250	200		－ 45	60	6.0	2.0	15000	0.4		10
HY60	15	6.3	0.5	425	225	2.5	10	0.2	8.5	60	M．	5AW	Class－C Amp．（Telegraphy）	425	200		－62．5	60	8.5	3.0		0.3	－	18
					225	2.5	10	0.2	8.5	60	m．	5AW	Class－C Amp．（Telephony）	325	200		-45	60	7.0	2.5		0.2		14
HY65 ${ }^{1}$	15	6.3	0.85	450	250	4.0	9.1	0.18	7.2	60	0.	T－8DB	Class－C Amp．－Oscillator	450	250		－ 45	75	15	3.0		0.5		24
							9.1	0.18	7.2	60	－．	T－8DB	Class－C Amp．（Telephony）	350	200		－45	63	12	3.0	－	0.5		16
$2 \mathrm{E25}$	15	6.0	0.8	450	250	4.0	8.5	0.15	6.7	125	O．	58J	Class－C Amp．－Oscillatar	450	250		－ 45	75	15	3.0		0.4		24
													Class－C Amp．（Telephony）	400	200		－ 45	60	12	3.0		0.4		16
													Class－AB ${ }^{\text {a }}$ Amp．（Audio）${ }^{6}$	450	250		－ 30	44／150	10／40	3.0	1428	0.97	6000	40
306 A	15	2.75	2.0	300	300	6.0	13	0.35	13	－	M．	T－5CB	Class－C Amp．（Telephony）	300	180		－ 50	36	15	3.0	8000			7.0
$\begin{aligned} & 307 \mathrm{~A} \\ & \text { RK }-75 \end{aligned}$	15	5.5	1.0	500	250	6.0	15	0.55	12		M．	T－5C	Class－C Amp．（Telegraphy）	500	250	0	－ 35	60	13	1.4	20000			20
										－			Suppressor－Modulated Amp．	500	200	－50	－35	40	20	1.5	14000			6.0
$832{ }^{3}$	15	$\begin{array}{\|r} 6.3 \\ 12.6 \\ \hline \end{array}$	$\begin{aligned} & 1.6 \\ & 0.8 \\ & \hline \end{aligned}$	500	250	5.0	7.5	0.05	3.8	200	N．	7BP	Class－C Amp．（Telegrophy）	500	200		－ 65	72	14	2.6	21000	0.18	－	26
													Class－C Amp．（Teleohony）	425	200		－60	52	16	2.4	14000	0.15		16
$832 A^{3}$	15	$\begin{array}{\|c} 6.3 \\ 12.6 \\ \hline \end{array}$	$\begin{aligned} & 1.6 \\ & 0.8 \end{aligned}$	750	250	5.0	7.5	0.05	3.8	200	N．	78P	Class－C Amp．（Telegraphy）	750	200	－	－65	48	15	2.8	36500	0.19	－	26
													Class－C Amp．（Telephony）	600	200	－－	－65	36	16	2.6	25000	0.16		17
8441	15	2.5	2.5	500	180	3.0	9.5	0.15	7.5	－	M．	5AW	Class－C Amp．（Telegraphy）	500	175		－125	25		5.0	－－	－－		9.0
										－			Class－C Amp．（Telephony）	500	150	－	－100	20	－	－	－	－	－	4.0
865	15	7.5	2.0	750	175	． 0	8.5	0.1	8.0	15	M．	T－4C	Class－C Amp．（Telegraphy）	750	125		－ 80	40		5.5		1.0	－	16
													Closs－C Amp．（Telephony）	500	125		－120	40	－	9.0	－－	2.5	－	10
1619	15	2.5	2.0	400	300	3.5	10.5	0.35	12.5	45	0.	T9H	Class－C Amp．（Telegraphy）	400	300	－	－ 55	75	10.5	5.0	9500	0.36	ーー	19.5
													Class－C Amp．（Telephony）	325	285	－	－ 50	62	7.5	2.8	5000	0.18	－	13
													Class－AB ${ }^{\text {a }}$ Amp．（Audio）${ }^{6}$	400	300	0	-16.5	75／150	6．5／11．5		778	0.4 －	6000	36
5516	15	6.0	0.7	600	250	5.0	8.5	0.12	6.5	80	0.	7CL	Class－C Amp．（Telegraphy）	600	250		－60	75	15	5.0	－	0.5	－－	32
													Class－C Amp．（Telephany）	475	250		－ 90	63	10	4.0	22500	0.5		22
													Class－AB ${ }_{2}$（ Audio）${ }^{\text {b }}$	600	25		－ 25	36／140	1／24	43	808	0.16	10500	67
$\begin{aligned} & \text { AX- } \\ & 9905^{3} \end{aligned}$	16	6.3	0.68	400	250	5	8.5	0.05	3.3	186	0.	Fig． 34	Class－C Amplifier	400	250	－	-80 -70	80	6	3.5	－	0.39		20.8
254A	20	5.0	3.25		175			0.1						250 750	175	－	－ 70	80	6.5	4.2	－	0.26		16.9
$\frac{616}{616 G}$	21	6.3	0.9	400	300	3.5	$\begin{aligned} & 10 \\ & 11.5 \end{aligned}$	0.1		10	m．	7 AC	Class－C Amplifier Class－C Amp．－Oscillator	750 400	175	－－	-90 -125	100		－ 5.0	－	－	－	25
								0.9	9.5		0.		Class－C Amp．－Oscilloror	300	250	一	-125 -70	100 65	12	9.0	－	－ 0.8	－	28 11
6L6GX	21	6.3	0.9	500	300	3.5	11	1.5	7.0	- -	0.	7 AC	Class－C Amp．（Telegraphy）	500	250	ーー	－ 50	90	9.0	2.0	－	0.25	－	30
													Class－C Amp．（Telephony）	325	225	－－	－ 45	90	9.0	3.0	\cdots	0.25	－	20
HY6L6． GIX	21	6.3	0.9	500	300	3.5	11	0.5	7.0	60	O．	7AC	Cass－C Amp．Oscillator	500	250	－	－ 50	90	9.0	2.0	－	0.5	－	30
													Class－C Amp．（Telephony）	400	225	－	－ 45	90	9.0	3.0	16000	0.8	－	20
T21	21	6.3	0.9	400	300	3.5	13	0.7	12	30	M．	6A	Class－C Amp．（Telegraphy）	400	250	－－	－ 50	95	8.0	3.0	－－	0.2	－－	25
												ba	Class－C Amp．（Telephony）	350	200	－－	－ 45	65	17	5.0	ーー	0.35	－	14
RK4\％	21	6.3	0.9	400	300	3.5	11.5	1.4	10.6	－	M．	6A	Class－C Amp．（Telegraphy）	400	250	－－	-50	95	8.0	3.0	－－	0.2	－	25
											m．		Class－C Amo．（Telephony）	300	200	－－	－ 45	60	15	5.0	6700	0.34	－	12
5881	23	6.3	0.9	400	300	3	－		－	－	0.	7AC	Class－C Amplifier						Same as					
													Class－C Amp．（Telegraphy）	450	250	－	-45	100	8	2.0	12500	0.15	－	31
1614	25	6.3	0.9	450	300	3.5	10	0.4	12.5	80	0.	7AC	Class－C Amo．（Telephony）	375	250	ーー	-50	93	7.0	2.0	10000	0.15		24.5
													Class－AB1 Amp．（Audio）${ }^{\text {c }}$	530	340	ーー	－ 36	60／160	20^{7}	－－	728	－	7200	50
$\begin{aligned} & \text { RK41 }{ }^{1} \\ & \text { RK39 } \end{aligned}$	25	$\begin{aligned} & 2.5 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.9 \end{aligned}$	600	300	3.5	13	0.2	10	30	M．	5AW	Closs－C Amp．（Telegraohy）	600	300	——	$\begin{array}{r} \\ -90 \\ \hline 50\end{array}$	93	10	3.0	－－	0.38	－	36
RK39									10	3	M．	saw	Class－C Amp．（Telephony）	475	250	－－	－ 50	85	9.0	2.5	25000	0.2	－	26

TABLE XVII-TETRODE AND PENTODE TRANSMITTING TUBES - Continued

Type	Max. Plate Dissipation Watts	Cathode		Max. Plate Voltago	Max. Screan Voli. age	Max. Screen Dissi- pation Watts	Interalectrode Copacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base		Typical Operation	Plate Vollage	$\begin{aligned} & \text { Screen } \\ & \text { Valf- } \\ & \text { age } \end{aligned}$	Sup-pressor Voltage	Grid Volfage	Plate Current Ma.	Screen Current Ma.	Grid Current Ma.	Screan Resistor Ohms	Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P-10.P } \\ \text { Load } \\ \text { Res. } \\ \text { Ohms } \end{gathered}$	Approx Oulpul Pawer Walts
		Volls	Amp.				Grid to Fil.	Grid to Plate	Plate to Fil.															
HY61	25	6.3	0.9	600	300	3.5	11	0.2	7.0	60	M.	5 AW	Class-C Amp. (Telegraphy)	600	250		- 50	85	9.0	4.0	39000	0.4		40
													Class-C Amp. (Talephony)	475	250	-	- 50	100	9.0	3.5	25000	0.2		27
													Class-AB ${ }^{\text {Amp. }}$ (Audio) ${ }^{5}$	600	300		- 30	200:	10°	-		0.1 *		80
8153	25	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 0.8 \\ & 1.6 \end{aligned}$	500	200	4.0	13.3	0.2	8.5	125	-.	8BY	Class-C Amp.-Oscillator	500	200		- 45	150	17	2.5		0.13		56
													Class-C Amp. (Telephony)	400	175	-	- 45	150	15	3.0	-	0.16	-	45
													Class-AB2 Amp. (Audio) ${ }^{3}$	500	125		- 15	22/150	32	-	60*	0.36	8000	54
254B	25	7.5	3.25	750	150	5.0	11.2	0.085	5.4	-	M.	T.4C	Class-C Amplifier	750	150		-135	75	-		-	\longrightarrow	-	30
1624	25	2.5	2.0	600	300	3.5	11	0.25	7.5	60	M.	T.5DC	Class-C Amp. (Telegraphy)	600	300		-60	90	10	5.0	30000	0.43		35
													Closs-C Amp. (Telephony)	500	275		- 50	75	9.0	3.3	25000	0.25		24
													Class-AB Amp. (Audio) ${ }^{\text {b }}$	600	300	-	- 25	42/180	5/15	106*		$1.2{ }^{7}$	7500	72
30×3	25	6.3	3.0	1500	200	-	-	-	-	250	S.	Fig. 40	Class-C Amp. (Telegraphy)	1000	200		-155	75		2.8		0.57		50
$\begin{aligned} & 6146 \\ & 6159 \end{aligned}$	25	$\begin{array}{r} 6.3 \\ 26.5 \end{array}$	$\begin{aligned} & 1.25 \\ & 0.3 \end{aligned}$	750	250	3.0	13.5	0.22	9.0	60	M.	7CK	Class-C Amp. (C. W. 15 Mc .)	750	160		-85	120	14.7	3.0		0.3		69
													Class-C Amp. (C. W. 175 Mc .)	400	200		- 54	150	9	1.8		3.0		35
													Class-C Amp. (Talephony)	600	150	-	-85	112.5	12	3.0	-	0.3		52
													Class-AB2 Amp. (Audio) ${ }^{\text {c }}$	750	165		- 45	351240	0.6/21	101*		0.07	8000	130
3E22 ${ }^{3}$	30	12.6	0.8	560	225	6.0	14	0.22	3.5	200	O.	8BY	Class-C Amp. (Telagraphy) ${ }^{3}$	600	200		- 55	160	20	7.0	20000	0.45		72
		6.3	1.6										Class-C Amp. (Telaphony) ${ }^{3}$	580	200		- 50	160	20	6.5	18000	0.4		67
RK66	30	6.3	1.5	600	300	3.5	12	0.25	10.5	60	M.	T.5C	Class-C Amp.-Oscillotor	600	300		-60	90	11	5.0		0.5		40
		6.3	. 5	600	300	3.5	12	0.25	10.5	60	M.	T.SC	Class-C Amp. (Telephony)	500	-	-	- 50	75	8.0	3.2	25000	0.23		25
$\begin{aligned} & 807 \\ & 807 \mathrm{w} \\ & 5933 \\ & 1625 \end{aligned}$	30	6.3 12.6	0.90.45	750	300	3.5	11	0.2	7.0	60	M.	SAW	Class-CAmp. (Telegraphy)	750	250	-	- 45	100	6	3.5	85000	0.22	ーー	50
													Class-C Amp. (Telephony)	600	275	-	- 90	100	6.5	4.0	50000	0.4		42.5
													Class-AB: Amp. (Audio) ${ }^{\text {s }}$	750	300		- 32	60/240	5/10	$92{ }^{8}$	5000	$0.2{ }^{\text {\% }}$	6950	120
													Class-B Amp. (Audio)"1	750			0	15/240		553.		$5.3{ }^{7}$	6650	120
$2 \mathrm{E22}$	30	6.3	1.5	750	250	10	13	0.2	8.0		M .	5.	Class.C Amp.-Qscillator	500	250	22.5	-60	100	16	6.0	15000	0.55	-	34
										-			Class-C Amp.-Oscillator	750	250	22.5	-60	100	16	6.0	30000	0.55	-	53
													Suppressor-Modulated Amp.	750	250	-90	-65	55	29	6.5	17000	0.6		16.5
$\begin{aligned} & 3023 \\ & \text { TB.35 } \end{aligned}$	35	6.3	3.0	-	-	-	6.5	0.2	1.8	250	M.	Fig. 54	Class-C Amp. (Telegraphy)	1500	375		-300	110	22	15		4.5	L	130
$\begin{aligned} & \hline \mathbf{A X} \cdot \\ & 9903^{3} \\ & \mathbf{5 8 9 4 A} \\ & \hline \end{aligned}$	40	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 1.8 \\ & 0.9 \end{aligned}$	600		-	6.5	0.2	1.8	250	m.	rig. 54	Class-C Amp. (Telephony)	1000	300		-200	85	14	10		2.0		60
					250	7	6.7	0.08	2.1	150	N.	Fig. 10	Class.C Amp. (Telegraphy)	600	250		- 80	200	16	2		0.2		80
													Class-C Amp. (Telephony)	600	250		-100	200	24	8		1.2		85
$\begin{aligned} & \text { RK201 } \\ & \text { RK20A } \\ & \text { RK46! } \end{aligned}$	40	$\begin{array}{r} 7.5 \\ 7.5 \\ 12.6 \end{array}$	$\begin{aligned} & 3.0 \\ & 3.25 \\ & 2.5 \end{aligned}$	1250	300	15	14	0.01	12		M.	T-5C	Class-C Amp. (Telegraphy)	1250	300	45	- 100	92	36	11.5	--	1.6	-	84
													Class-C Amp. (Telephony)	1000	300	0	- 100	75	30	10	23000	1.3		52
													Suppressor. Modulated Amp.	1250	300	-45	-100	48	44	11.5	-	1.5		21
													Grid-Modulated Amp.	1250	300	45	-142	40	7.0	1.8		1.5		20
HY69	40	6.3	1.5	600	300	5.0	15.4	0.23	6.5	60	M.	T-5D	Class-C Amp.-Oscillator	600	250	-	- 60	100	12.5	4.0	30000	0.25		42
													Closs-C Amp. (Telephony)	600	250		- 60	100	12.5	5.0	30000	0.35	-	42
													Modulated Doubler	600	200		-300	90	11.5	6.0	35000	2.8		27
													Class-AB2 Amp. (Audio) ${ }^{\text {c }}$	600	300	-	- 35	$200{ }^{7}$	18 :	5.07	-	$0.3{ }^{7}$		80
8291.3	40	$\begin{aligned} & 6.3 \\ & 12.6 \end{aligned}$	$\begin{array}{\|l\|l} 2.25 \\ 1.12 \end{array}$	500	225	6	14.5	0.1	7.0	200	N.		Class-C Amp. (Tolegraphy)	500	200		- 45	240	32	12	9300	0.7		83
												7BP	Class-C Amp. (Talephony)	425	200		-60	212	35	11	6400	0.8	-	63
													Grid-Modulated Amp.	500	200		- 38	120	10	2.0		0.5		23
													Class-C Amp.-Oscillator	750	200	-	- 55	160	30	12	18300	0.8	-	87
829A ${ }^{1.3}$	40	12.6	1.12	750	240	7.0	14.4	0.1	7.0	200	N.	7BP	Class-C Amp. (Telephony)	600	200		- 70	150	30	12	13300	0.9	-	70
													Grid-Modulated Amp.	750	200	\cdots	- 55	80	5.0	0		0.7		24
82983													Class-C Amp. (Telegraphy)	500	200	-	- 45	240	32	12	9300	0.7	\cdots	83
$3 \mathrm{E293}$	40	6.3	2.25	750	240	7	14.5	0.12	7.0	200	N.	78 P	Class-C Amp. (Telephony)	425	200	-	- 60	212	35	11	6400	0.8	-	63
													Class-B Amp. (Audio) ${ }^{6}$	500	200		- 18	27/230		56^{3}	-	0.39	4800	76

table XVII-TETRODE AND PENTODE TRANSMITTING TUBES—Continued

table Xvil-tetrode and pentode transmitting tubes - Continued

Type	Max. Plate Dissipation Watts	Cathode		Max. Plate Volf. age	Max. Screen Voltage	Max. Screen Dissipation Watls	InferelectrodeCopacilonces ($\mu \mu \mathrm{id}$.)			Max. Freq. Mc. Full Ratings	Bose	Socket Confions	Typical Operation	Plate Voll. age	Screen Volfage	Sup.pressor Voleage	Grid Volt. age	Plato Curfent Ma.	Screen Current Ma.	Grid Current Ma.	Screan Resistor Ohms	Approx. Grid Driving Power Motts	Class B P-10-P Load Res. Ohms	Approx Output Watts
		Volls	Amp.				$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{aligned} & \text { Plote } \\ & \text { to } \\ & \text { fil. } \\ & \hline \end{aligned}$															
$\begin{aligned} & \text { HK257 } \\ & \text { HK257B } \end{aligned}$	75	5.0	7.5	4000	750	25	13.8	0.04	6.7	$\begin{array}{r} 75 \\ 120 \end{array}$	J.	78M	Class-C Amp. (Talegraphy)	2000	500	60	-200	150	11	6.0		1.4		230
													Class-C Amp. (Telephony)	1800	400	60	-130	135	11	8.0		1.7	\square	178
													Suppressor-Moduloted Amp.	2000	500	-300	-130	55	27	3.0		0.4		35
828	80	10	3.25	2000	750	23	13.5	0.05	14.5	30	M.	5.3	Class-C Amp. (Telegraphy)	1500	405	75	-100	180	28	12	45000	2.2		200
													Closs-C Amp. (Telephony)	1250	400	75	-140	160	28	12	30000	2.7	-	150
													Grid-Modulated Amp.	1500	400	75	-150	80	4.0	1.3	-	1.3		41
													Class-AB: Amp. (Audio) ${ }^{6}$	2000	750	60	-120	50/270	2/60	240	-	0	18500	385
RK28	100	10	5.0	2000	400	35	15	0.02	15		J.	5J	Closs-C Amp. (Telegraphy)	2000	400	45	-100	150	55	13	21000	2.0	-	210
													Class-C Amp. (Telephony)	1500	400	45	-100	135	52	13	21000	2.0	-	155
										-			Suppressor - Modulaled Amp.	2000	400	-45	-100	85	65	13	-	1.8		60
													Grid-Modulated Amplifier	2000	400	45	-140	80	20	4.0		0.9		75
RK48 RK48A	100	10	5.0	2000	400	22	17	0.13	13		J.	T-5D	Class.C Amp. (Telegraphy)	2000	400		-100	180	40	6.5		1.0	-	250
										-			Class-C Amp. (Telephony)	1500	400	-	-100	148	50	6.5	22000	1.0		165
													Grid-Modulated Amplifier	1500	400		-145	77	10	1.5	-	1.6	-	40
850	100	10	3.25	1250	175	10	17	0.25	25	15	J.	T.3B	Class-C Amp. (Telegraphy)	1250	175		-150	160		35		10		130
													Class-C Amp. (Telephony)	1000	140	-	-100	125		40		10		65
													Grid-Modulated Amplifier	1250	175		-13	110		-	-			40
860	100	10	3.25	3000	500	10	7.75	0.08	7.5	30	M.	T-4CB	Class-C Amp.-Oseillator	3000	300		-150	85	25	15		7.0		165
													Class-C Amp. (Telephony)	2000	220		-200	85	25	38	100000	17		105
813	125	10	5.0	2250	400	22	16.3	0.2	14	30	J.	5BA	Closs-C Amp. (Telegraphy)	2250	400	0	-155	220	40	15	46000	4.0		375
													Class-C Amp. (Telephony)	2000	350	0	-175	200	40	16	41000	4.3	-	300
													Grid-Modulated Amplifier	2250	400	0	-110	85	2.5			-	-	75
													Class.B Amp. (Audio) ${ }^{\text {b }}$	2500	750	0	- 95	35/360	1.2/55		-	0.35	17000	650
$\begin{aligned} & 4.125 A \\ & 4021 \\ & 6155 \end{aligned}$	125	5.0	6.2	3000	400	20	10.3	0.03	3.0	120	N.	58K	Class-C Amp. (Telegraphy)	3000	350		-150	167	30	9		2.5		375
													Closs-C Amp. (Telephony)	2500	350	-	-210	152		9	-	3.3		300
													Closs-AB: Amp. (Audio) ${ }^{\text {c }}$	2500	350	-	-43	43/260	0/6	178 8	-	1.0	22200	400
$\begin{aligned} & \text { 4E27A/ } \\ & 5.125 B \end{aligned}$	125	5.0	7.5	4000	750	20	10.5	0.03	4.7	75	J.	7BM	Class-C Amp. (Telegraphy)	3000	500	60	-200	167	5	6	-	1.6		375
														1500	500	60	-130	200	11	8		1.6	-	215
														1000	750	0	-170	160	21	3		0.6	-	115
RK28A	125	10	5.0	2000	400	35	15	0.02	15		J.	5.	Class.C Amp. (Telegrophy)	2000	400	45	-100	170	60	10	\cdots	1.6		250
													Class-C Amp. (Telegrophy)	1500	400	45	-100	135	54	10	18500	1.6	-	150
													Grid-Moduloted Amp.	2000	400	45	- 55	80	18	2.0	-	0.5		60
													Suppressor-Modulated Amp.	2000	-	-45	-115	90	52	11.5	30000	1.5	-	60
803	125	10	5.0	2000	600	30	17.5	0.15	29	20	J.	5.	Class.C Amp. (Telegraphy)	2000	500	40	-90	160	45	12	-	2.0		210
													Class-C Amp. (Telaphony)	1600	400	100	-80	150	45	25	27000	5.0		155
													Suppressor-Moduloted Amp.	2000	-	-110	-100	80	48	15	35000	2.5		53
													Grid-Modulated Amplifier	2000	600	40	- 80	80	20	4.0	-	2.0		53
														1000	250		- 80	200	39	7	-	0.69	-	148
$\begin{aligned} & 4 \times- \\ & 150 A^{9} \end{aligned}$	150	6.0	2.0	1000	300	15	16.1	0.02	4.7	500	N.	T.9.	Class-C Amp. (Telegrophy)	750	250	-	-80	200	37	6.5	-	0.63	-	110
														600	250	-	- 75	200	35	6		0.52	-	85
$\begin{aligned} & 4 \times . \\ & 150 \mathrm{c} \end{aligned}$	150	2.5	6.25	1250	300	15	16.1	0.02	4.7	165	N.	-	Class-C Amp. (Telegraphy)	1250	250	-	- 90	200	20	11	-	1.2	-	195
													Class.C Amp. (Telegraphy)	3000	400	-	-290	200	27	7	-	2.6	-	450
$\begin{aligned} & \text { PE340/ } \\ & 40233^{2} \end{aligned}$	150	5.0	7.5	4000	400	-	11.6	0.06	4.35	120	N.	5BK	Class-C Amp. (Telephony)	2500	400	-	-425	180	27	9	—	4		350
													Class AB_{2} Audio ${ }^{\text {a }}$	2500	400		-95	$284{ }^{3}$	77		-	$1.8{ }^{1}$	19100	460

table Xvil-tetrode and pentode transmitting tubes-Continued

TABLE XVIII-KLYSTRONS—Continued

TABLE XX-CAVITY MAGNETRONS

Type	Closs	Band or Range Mc.	Heoter		Moximum Rotings					Typleal Operation				Paok Pwr. Cutput KW.
			Volts	Amps.	Anode KV.	Anode Amps.	Duty Cycle	Inpul Watts	Anode KV.	Anode Amps.	Figld Causs	Pulse Sac.	P.P.S.	
RK2J22	1	3267-3333	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2250	1.0	1000	265
RK2J23	1	3071-3100	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J24	1	3047-3071	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J25	1	3019-3047	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J26	1	2992-3019	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J27	1	2965-2992	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J28	1	1939-2965	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J29	1	2914-2939	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J30	1	2860-2900	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	1900	1.0	1000	285
RK2J31	1	2820-2850	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	1900	1.0	1000	285
RK2J32	1	2780-2820	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	1900	1.0	1000	285
RK2J33	1	2740-2780	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	1900	1.0	1000	285
RK2J34	1	2700-2740	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	1900	1.0	1000	285
RK2J36	1	9003-9168	6.3	1.3	13.5	12.0	. 002	200	11.5	10.0	2500	1.0	1000	15.0
RK2J38	1	3249-3263	6.3	1.25	6.0	8.0	. 012	200	4.9	3.0	Pkg.	1.0	2000	5.0
RK2J39	1	3267-3333	6.3	1.25	6.0	8.0	. 002	200	5.4	5.0	Pkg.	1.0	2000	8.7
2 J 42	1	9345-9405	6.3	0.5	5.7	6.5	. 001				4800	2.5		14
2J42A	1	9345-9405	6.3	0.5	8.0	7.0	. 001				6500	2.5		35
RK2J48	1	9310-9320	6.3	1.0	16.0	16.0	. 002	230	12.0	12.0	4850	1.0	1000	50.0
RK2J49	1	9000-9160	6.3	1.0	16.0	16.0	. 0012	180	12.0	12.0	5400	1.0	1000	58.0
RK2J50	1	8740-8890	6.3	1.0	16.0	16.0	. 0012	180	12.0	12.0	5400	1.0	1000	58.0
RK2 J54	2	3123-3259	6.3	1.5	14.0	15.0	. 002	250	11.5	12.5	1400	1.0	2000	45.0
RK2 J55	1	9345-9405	6.3	1.0	16.0	16.0	. 001	180	12.8	12.0	Pkg.	1.0	1000	50.0
RK2 J56	1	9215-9275	6.3	1.0	16.0	16.0	. 001	180	12.8	12.0	Pkg.	1.0	1000	50.0
RK2J58	2	2992-3100	6.3	1.5	22.0	15.0	. 002	600	10.5	12.5	1450	1.0	2000	50.0
RK2J61A	2	3000-3100	6.3	1.5	15.0	15.0	. 002	250	10.7	12.5	1300	1.0	2000	35.0
RK2J62A	2	2914-3010	6.3	1.5	15.0	15.0	. 002	250	10.2	12.5	1300	1.0	2000	35.0
RK2J66	2	2845-2905	6.3	1.5	20.0	25.0	. 001	400	18.0	25.0	1700	1.0	1000	150
RK2J67	2	2795-2855	6.3	1.5	20.0	25.0	. 001	400	18.0	25.0	1700	1.0	1000	150
RK2J68	2	2745-2805	6.3	1.5	20.0	25.0	. 001	400	18.0	25.0	1700	1.0	1000	150
RK2J69	2	2695-2755	6.3	1.5	20.0	25.0	. 001	400	18.0	25.0	1700	1.0	1000	150
3 J 1	1	23744-24224	6.0	1.9	15.0	14.0	. 0005				7600	1.0		54
RK4J31	1	2860-2900	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J32	1	2820-2860	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J33	1	2780-2820	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J34	1	2740-2780	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J35	1	2700-2740	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J36	1	3650-3700	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J37	1	3600-3650	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J38	1	3550-3600	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J39	1	3500-3550	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J40	1	3450-3500	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J41	1	3400-3450	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J43	1	2992-3019	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J44	1	2965-2992	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
4 J 50	1	9345-9405	13.6	3.5	23.0	27.5	. 004			-	6300	0.5	\square	300
4 4 52	1	9345-9405	12.6	1.9	16.0	15.0	. 002			-	5000	6.0	-	120
RK4J53	1	2793-2813	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J54	1	6875-6775	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
RK4J55	1	6775-6675	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
RK4J56	1	6675-6575	12.6	3.75	25.0	35.9	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
RK4J57	1	6575-6475	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
RK4J58	1	6475-6375	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
RK4J59	1	6375-6275	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
4 4 78	1	9003-9168	13.6	3.5	23.0	27.5	. 004		-	-	6300	0.5	-	300
RK725A	1	9345-9405	6.3	1.0	16.0	16.0	. 001	180	12.0	12.0	5400	1.0	1000	50.0

1 Fixed-frequency-Pulsed.
2 Tunoble-Pulsed.

Jhe
 Catalog Section

In the following pages is a catalog
file of products of the principal manu-
facturers and the principal distributors
who serve the radio field: industrial, commercial, amateur. All firms whose advertising has been accepted for this section have met The American Radio Relay League's rigid standards for established integrity; their products and engineering methods have received the League's approval.

30th EDITION 1953
 INDEX OF ADVERTISERS CATALOG SECTION The Radia Amateuri Htandlaok

FROM FROZEN WASTE TO STEAMING JUNGLE

Slosh your way
through the African jungle
to a movie company
on location - you'll find
National receivers on the job?

Literally, you'll find National receivers all over the world - on Navy ships at sea - on South American mountain tops - in the offices of London's famed Scotland Yard on hazardous expeditions like Kon-Tiki! No wonder National is the number one choice of experienced amateurs - for top performance under all conditions, year in and year out!

COVERAGE: 50.430 kc ., $480 \mathrm{kc} . ~-35 \mathrm{mc}$. And 50.54 mc Voice, CW. NFM (with adaptor).
FEATURES: Edge-lighted, direct frequency-reading scale with one range in view at a time. 3 I.F. stages at 456 kcs . employing 12 permeability-tuned circuits on all bands plus one I.F. stage at 2010 kcs . on all frequencies above 7 mcs . Switching is done automatically when coil set is plugged in. Built-in, isolated heavy-duty power supply. Sensitivity of 1 mv . or better at 6 db . sig./noise. Selectivity variable from 8 kc . overall to app. 1200 cps . at 40 db . Current-regulated high frequency oscillator and second converter heaters. Voltage-regulated high frequency oscillator and S-meter amplifier. Negligible drift after warmup. Micrometer dial for logging. Provision for crystal calibrator unit. Variable ant. trimmer. Lively S-meter. Min. tubes in front end and high freq. osc. Osc. circuits not disabled when receiver in send position. High-fidelity push-pull audio ($\pm 2 \mathrm{db} 50$ $15,000 \mathrm{cps}$.) with phono jack. BFO switch separated from BFO freq. control. Illumination dimmer control., Accessory socket for Select-0-Ject.
CONTROLS: Bandswitch, Oscillator, Tone, Ant. Trimmer, Dimmer, AVC, Limiter, AF Gain, Calibration, CWO, Phasing, Selectivity, On-OHf, RF gain, AM-NFM-PHONO.

TUBE COMPLEMENT: 6BA6, 1st r.f.; 6BA6, 2nd r.f.; 6BE6; mixer; 6C4 h.f. oscillator; 6BE6, 2nd high -frequency conv.; 6SG7 1st i.f.; 6SG7, 2nd i.f.; 6SG7, 3rd i.f.; 6H6 det. \& a.v.c. $6 H 6$, a.n.I.; 6SJ7, 1st audio; 6SN7, phase splitter and S-meter amp.; 6V6GT (2) p.p. audio; 5V4G, rect.; 6SJ7, b.f.o.; OB2, volt reg. 4 H 4 Osc. Fit. Cur. Reg.

SIZE: Table $19 / /^{\prime \prime}$ wide $\times 101 / 8^{\prime \prime}$ high $\times 16 / \frac{1}{2 \prime \prime}$ deep. Rack: $19^{\prime \prime}$ wide $\times 103^{\prime \prime}$ high $\times 17^{-} / 6^{\prime \prime}$ from rear of front panel incl. $11 / 8^{\prime \prime}$ handle.

ACCESSORIES: 50TS
(10" PM Speaker), $\$ 16.00$; 50 SC-2 (Speaker Coil Compartment), \$49.75; S0J. 3 (Select-0-Ject), $\$ 28.75 ; 650 \mathrm{~S}$ (Vibrator Pack - 6 V.), \$75.00; MRR-2 (Table Relay Rack 29" High), \$16.85; $50 \times \mathrm{CU}-2$ ($100 / 1000 \mathrm{kc}$ xtal Calibrator), $\$ 24.50$; NFM 83.50 (NBFM Adaptor), $\$ 17.95$; E and F coils ($900-2050$ Kc and $480-960 \mathrm{KC}$), $\$ 24.50$ each. Other coils available covering 50 Kc to $430 \mathrm{Kc}, 21.0$ to 21.5 mc Bandspread, 27.30 mc Bandspread, 25 to 35 mc . And 50.54 mc .

$\$ 483^{50^{*}}$

*Slightly higher west of the Rockies.
(Less Speaker)

COVERAGE: Continuous from 540 kcs .1031 mcs . plus 48 to 56 mcs . for 6 -meter reception.
FEATURES: Two tuned R.F. stages. 3 stages of I. F. Voltage regulated OSC. and BFO. Main luning dial covers range in five bands. Bandspread dial catibrated for amateur 80,40 , $20,15,11-10$ and 6 -meter bands. Bandspread usable over entire range. Six-position crystal filter. New-type noise limiter. High fidelity push-pull audio. Accessory socket for NFM adaptor or other unit, such as crystal calibrator.

CONTROLS: CWO Switch, CWO pitch, Tone, AF Gain, Main Tuning, Bandspread, Ant. Trimmer, Bandswitch, Send-

Receive, Phono-Radio, Selectivity, Phasing, Limiter, RF Gain.
TUBE COMPLEMENT: Uses 2-6BA6R.F.;2-6BE6 First and second converter; 3-6BA6 I.F.; 1-6AL5 second det.AVC; 1-6AH6 AVC amplifier; 1-6SJ7 C.W. OSC; 1-6AL5 Limiter; 1-6SJ7 First Audio; 1-6J5 Phase Inverter; 2-6V6GT Audio Output; 1-0B2 Voltage Reg.; 1-5U4G Rect.

ACCESSORIES: Matching $10^{\prime \prime}$ PM Speaker, $\$ 16.00$; NFM 83-50 Narrow Band FM adaptor, \$17.95.

\$36950*

*Slightly higher west of the Rockies.

NATIONAL COMPANY, INC., 61 SHERMAN ST., MALDEN, MASS.

COVERAGE: 560 kcs . to 35 mc . in 4 bands. Voice or CW.
FEATURES: Edge-lighted direct-reading scale with amateur, police, foreign, ship frequencies clearly marked. Sensational National Select-0-Ject built-in. Exceptional sensitivity on all bands. Lively S-meter reads $\$ 9$ to 50 mv . signal. AVC, ANL, jack for phono or NFM adaptor, volt. reg., stabilized osc., audio essentially flat to 10,000 c.p.s.
CONTROLS: Main Tuning, Bandspread, Freq. (SOJ), Boost (SOJ), Send-Receive, Pitch, CWO-MVC-AVC-ANL, AF Gain, Tone, Trimmer, Bandswitcl, RF Gain.

NC-125

TUBE COMPLEMENT: 6SG7 RF amp., 6SB7-Y osc.-mixer, 6SG7 1st IF, 6SG7 2nd IF, 6H6 2nd det-AVC-ANL, 6SL7GT phase shifter, 6SL7GT boost-reject aud. amp., 6SL7GT 1st aud. -CWO, 6V6GT aud. output, OD3/VR-150 volt. reg., 5Y3GT rect.
ACCESSORIES: NC-125TS Speaker, $\$ 11.00$; NFM-73 (Narrow Band FM adaptor), \$18.95.
$\$ 149^{50}$
*Slightly higher west of the Rockies.
(Less Speaker)

COVERAGE: Entire frequency range from 540 kc . to 30 mc . in 4 bands. Voice, music or code.

FEATURES: Sensitive and selective superhet circuit, using new miniature tubes. Slide rule general coverage dial with police, foreign, amateur and ship bands clearly marked. Unique plastic bandspread dial is adjustable to assure logging accuracy over entire range. Built-in speaker and power supply. Volume, Receive-Standby, Bandswitch, AM-CW, Speaker, Phones.

TUBE COMPLEMENT: 12BE6, converter; 12BA6, CW osc. - IF amp.; 12AV6, 2 nd det. 1 st aud. - A. V. C.; 50 C 5 , audio output; 3525, rectifier.

SIZE: $11^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $7^{\prime \prime}$ deep.
\$4995*

Set SELECT-0-JECT for REJECT, tune by ear and - presto! -an annoying heterodyne or other unwanted signal practically disappears without materially affecting the wanted signal! Set SELECT-0.JECT for BOOST, tune and presto!- a selected c.w. signal rises above background noise and interfering signals! Can also be used as audio oscillator having over 100 to 1 frequency range with a single rotation of the tuning knob! Exce!lent as a code practice oscillator! Effective on any frequency from 80 c.p.s. to

9,000 c.p.s.! Easily connected to any receiver having $6.3 v$. and filtered $B+$ supply available.
$\$ 28^{75^{*}}$

POPULAR

COMPONENTS

HR

SB

ODD

HRT-M

HRM-

ODL

HRT (aray or black)
The HRT knob is $21 / 8^{\prime \prime}$ in dia. and fits $1,4^{\prime \prime}$ shafts. This knob has a chrome appearance circte and combined with the HRS series shown be'ow gives the new look to panel layouts.
HRS (qray or black)
The HRS series lnobs are a popular easy to grip knob. They are molded of tiah $q=a^{13} y \mathrm{pa} a^{\circ} \mathrm{C}$ and have $13^{\prime \prime}$ " oid. chrome plaed bevel skirts fit $1 / 4^{" 1}$ shafts available in the following scales:
HRS-I ON.OFF through 30°
HRS-2 5-0.5 through 180°
HRS-3 0-10 throuah 300°
HRS-4 Single etched line
HRS-5 0.10 throuah 180°
HRT and HRS knobs can be supplied in quantity in any color.
HR (gray or black)
An HRS type knob without the chrome plaied skirt but with a white dot for spotising relative control seltings.

HRB

ideat for bandswitching or other app calions where a swi.h is turned to several index positions, the new HRB lever knob has just the right feel - a bright zinc alloy die casting.
HRM
Small knurled brass knob, satin chrome finish, arrow head biack filled. Two 4-40 Allen set screws used.
SB
A nickel plated brass bushing $1 / 2{ }^{\prime \prime}$ dia. (Fits $1 / 4^{\prime \prime}$ shaft).

ODL

A locking device which clamps the rim of O, K, L and M Dials. Brass, nickel plated.
ODD
Vernier pinch drive for O, L, or other plain dials.
RSL (fits $1 / 4^{\prime \prime}$ shaft)
Rotor shaft lock for TMA, TMC and similar condensers.

DP-1

Chrome-plated dial pointer
DP-2
Diamond head dial pointer
AN Vernier Mechanism
A verrier meshanism ratio 5-1 tas an insulatea ouip." sha. (a-p \boldsymbol{g} for l/f" shaits. Drive Shait firis 3/16 knob.

AVD Vernier Mechanism
Sim'ar to AN-Ou'p t shaft couplina is non insula.ec.
For commercial uzes many varia ticn available. Write for furiner pariicuiars.

R

This small dial has a $1^{5 \prime} 3^{\prime \prime}$ dia. scae ca onara 0-1t in 13? ? in $n=\ldots$ so reas
rotaton. Back bare iie krob. Fits $1 / 4$ shait.

VD-16

National's poo:lar dial k-ab. Same as ued on i,pe N krud. Fiis 1/4 shaf

VD.16A

Same as above but fits $3 / 16^{\prime \prime}$ shaft
HRP-P
B ack bakelite knob ll/4" long ard $\frac{1}{2}$ vioe. Eq apped with norer. Esperia y zu'abe for use or v.afer and oiner ropary swiicnes on lab oratory eq ipment and the like. (Fits $1 / 4$ " shail)

HR P

The type HRP knob has no pointer but is otherwie the same a the knob above. Recomme-ded fo uncaibraied or hard-tuning controls. (Fits $1 / 4^{\prime \prime}$ shaft)

HRK
B'ack bakelite knot $2^{3, \prime} 8^{\prime \prime}$ dial -ex-reme'y rugged. This is the kiob used on National type O and typa L dials.

HRT-M
This is a smaller version of the HRT. Avaiable in choice o' gra; or b'ack - is $1.7 / 16^{\prime \prime}$ in diameier.

POPULAR

Matanal COMPONENTS

\downarrow Dial
1D Dial
te "our-inch N and $A D$ Dials have ncine civided and cie s-amped ca es re pec'vely. The N Dia' has a cecimal vernier; the AD Dial em. doys o pointer. The planetery drive las a ratio of 5 to 1 , and is consinat within the body of the dial. 3, 4, 5 or b'ank scale. Fits $1 / 4^{\prime \prime}$ hai. Specify scale.
1 Dial
'Vevet Vernier" Dial, Type B, has a ompact varab'e ra•io b to \mid min., OO to I max. arive ihat is smonth 3nd trouble free. The case is biack rabe"te. 1 or 5 scale. 4" dia. Fits i_{2} shaff. Specify scale.
$3 M$ Dial
the BM Dial is a smaller version of he E for we where puce is li-i. ea. The arive raio is liaced. , All. hough smail in size, the BM Dial has the same sme -h acrion as ine arceer u-its. I or 5 srá . 3" dia.

4 M Dial

re ciginal "Ve'vet Vern"ar" mech. mitun i- a merni biere dial $3^{\prime \prime}$ in dia. rario 5 io 1. hi is ava abe vit $2,3,4,5$ or 6 scale alid iits /a haft.
' Dial
re rew P dial is the same as the AMA el $=00^{+}$dirert drive.
lype $0.3!2$ dia.. scale 2 , with -TRK inco, fi's $\frac{1}{4}$ srafls. -IRT-O, same as type O dial but ssing gray HRT knob.
-RT-N same as above, but using slack HRT knob.
Type L, same as O except $5^{\prime \prime}$ dia., xa, e 2 oniy.
Type K, same as O except less tnob. zompere with ODD vornier drive. jcule 2 only.

Type M, same as K except $5^{\prime \prime}$ dia., scale 2 only.
The dials at the right are for individual ca'ibiacion: all four employ the noled $5: 1$ drive ratio Velvet Vernier mechanism and are of excellent quality.
MCN Dial
The MCN dial has been scaled down to lend itself ideally to mobile insta ations and small converters and thre's. It mav also be mounted on the standard $3!/ 2^{\prime \prime}$ rack panel where such mounting may be desrable. The dial provides three calibrating scales and a $0-100$ loaging scale. On the rear side of the dial, the mechoriam outends $1 / 4^{\prime \prime}$ helow the dial frame. $234^{3 \prime \prime} \mathrm{H} . \times 378^{\prime \prime} \mathrm{W}$.

SCN Dial

The SCN dial provides the same dial srales as the MCN dial but in - 'educed size. It is used where ecconom, of ponel-mounting space is aesirabe ana where a sma er dial would be ou- of proportion with 1t.. rize of the panel, $4-7 / 10^{\prime \prime} \mathrm{Hx}$ 61,4 W.

ICN Dial

Tic CN dial mee's those hundreds of requents itcin andiu..n the werd over tor an illuminaied ACN dial. Twe dia lights mo:nted on the top ccreers of the dial provide effcient ans alm i' mina"oll on all Lurds. Tr. dic winoow har been blamed out in semi-circuiar shope to prevent shadow castina. Dial scales are the same ar tho e u ed on the ACN dial. $51,8^{\prime \prime} \mathrm{H} \times 71 / 4^{\prime \prime} \mathrm{W}$.

ACN Dial

The $A C N$ is the original of this type dia a Nalional aerisin for the benefi of evearimeniers wro build their own" and desire direct calibration. $5^{\prime \prime} H \times 71 / 4^{\prime \prime} W$.

SCN

dIAL SCALES

Seale	Divisions	Rolation	Direction of Condenser Rotetionforincreare of didelreading
1	0-100-0	180°	Either
$\frac{8}{3}$	0-100	180°	Counter Clock wise
3	19000	1870°	Clockwiso
5	800-0	360°	Clockwis
6	0-150	870°	Counter Clockwise

AM

N
AD

HRT-0

M

POPULAR
 COMPONENTS

R-100S

R-100ST

R-33

R-100, R-100U, R-100S, R-I00ST

These RF chokes are identical electrically, but differ in mounting provisions. The R-100 employs piqtail leads: the R-IOOU has piqtail leads and a removable stand-off insulator: the R-IOOS has cotter-pin lug terminals and a non-removable stand-off insulator: the R-IOOST has a 6-32 threaded stud at each ond. These chokes are available in 2.5, 5 and 10 millihenry sizes and are rated at 125 milliamperes.

R. 33

The R-33 series chokes are 2-section RF chokes available in 10,50, 100 and 750 microhenry sizes. Also available in this series is a single layer solenoid choke of I microhenry inductance. All are rated at 100 milliamperes. The chokes are wound on a $5 / 8^{\prime \prime}$ long form and range in diameter up to $5 / 16^{\prime \prime}$ maximum.

R-50

The R-50 series chokes are 3 and 4 -section RF chokes available in $0.5,1$, and 2.5 millihenry sizes. They are rated at 100 milliamperes. The chokes are wound on a I" long form and have a maximum diameter of $15 / 32^{\prime \prime}$.

R-50-I

A 10 millihenry choke wound on an iron core.

R-33G

The R-33G choke is a 2. section 750 microhenry RF choke hermetically sealed in glass with a current rating of 33 milliamperes. The choke body is !" long by $5 / 8^{\prime \prime}$ diameter.

R-60

The R-60 choke is a high current RF choke (500 milliamperes) available in 2 and 4 microhenry sizes. The choke is $11 / 8^{\prime \prime}$ long by $5 / 16^{\prime \prime}$ diameter.

R-300, R-300U, R-300S, R-300ST

These RF chokes are similar in size to R-IOO series but have higher current capacity. The R-300U is provided with a removable stand-off insulator at one end. The R-300S has a non-removable stand-off insulator and cot-ter-pin luq terminals. The R-300ST has a 6 -32 threaded stud at each end. Inductance values of $0.5,1.0,2.5$ and 5.0 millihenries are available with a current rating of 300 milliamperes. R-300, R-300U, R-300S and R-300ST are identical electrically.

R- 152

For use in the range between 2 and 4 Mc . Ideal for high power transmitter stages operated in the 80 meter amateur band. Induct. ance $4 \mathrm{~m} . \mathrm{h}$., DC resistance 10 ohms, DC current 600 ma. Coils honeycomb wound on steatite core.

R-154, R-154U

For the 20,40 and 80 meter bands, Inductance I m.h., DC resistance 6 ohms, DC current 600 ma . Coils honeycomb wound on steatite core. The R-I54U does not have the third mounting foot and the small insulator, but is otherwise the same as R-I 54. See illustration.

R-175

The R-175 Choke is suitable for parallel-feed as well as series-feed in transmitters with plate supply up to 3000 volts modulated or 4000 volts unmodulated. Unlike conventional chokes, the reactance of the R-175 is high throughout the 10 and 20 meter bands as well as the 40 and 80 meter bands. Inductance 225μ h. distributed capacity 0.6 mmf ., DC resistance 6 ohms, DC current 800 ma., voltage breakdown to base 12,500 volts.

Manufacturers: We have facilities for quantity production of RF chokes of practically any type. Send us your specifications.

R-152

POPULAR

TX-8

TX-11

SHAFT COUPLINGS

TX-19

A steatite insulated flexible coupling for 1,4 " shafr. Conservatively raled al 5000 volts peak. Diameter 18 length I'. Length and fla,h over votage can be increased by turning collars outboard

TX-11
The flexib'e shaft of this coupling conne.ts shat, at angles up to 90 degiees, and eliminates misa igrment problems. Fits $1 / 4^{\prime \prime}$ shafts. Length $41 / 4^{\prime \prime}$

TX-12, Length $4 \frac{5}{8}$,
TX-13, Length $71 / 8$
These couplings use flexible shafting like the TX-1I above, but are also provided with steatite insulators at each end

TX-1. Leakage path 1"
TX-2, Leakage path $21 / 2^{\prime \prime}$
Flexible couplings with glazed steatite insulation which fit $1 / 4^{\prime \prime}$ shafts.

TX-23

A deluxe insulated flexiblo coupling designed for coupling $1 / 4^{\prime \prime}$ shafts. Will handle a maximum radial misalignment of $1 / 16^{\prime \prime}$ also 2 degrees maximum angular misalign. ment.

TX-24
Same as TX-23, shaft size 5/32
TX-25
Same as TX-23, non-insulated.

TX- 8

A non-flexible rigid coupling with steatite insulation. diam. Fits $1 / 4^{"}$ shaft.

TX- 10

A very compact insulared coup 'ig free from backlash. Insulation is canvas bakelite. $1-1 / 16^{\prime \prime}$ diam. Fits $1 / 4^{\prime \prime}$ shaft.

TX-IOF (Not illustra'ed)
A new ver,ion of the TX-10 which employs thin canvas bakelite strips for flexibility.

TX-22 (Not illustrated)
A non-insulated coupling identical to TX-10 except of all metal consiruction. Makes good electrical connection berween coupled snafts.

TX-9

This small insulated fle rible coupling provides high siectrical efficien-y when used to is late eire its. Insu'ation is steatite. $15,8^{\prime \prime}$ diam. Fits $1 / 4^{\prime \prime}$ shaft.

TX-21 (Not illurtraled)
Similar to TX-10 except 13/16" long and comples $1 / 4^{\prime \prime}$ shaft to $5 / 32^{\prime \prime}$ shaft

SAFETY GRID AND PLATE CAPS

SPP-9

Ceramic insulation. Fits $9 / 16^{\prime}$ diameter.

SPP-3
Ceramis insulation. Fits $3 / 8^{\prime \prime}$ diameler. National Safely Grid and Plaie Caps have a ceramic body which offers protection against acciden. tal contact with high voltage caps on tubes.

GRID AND'PLATE GRIPS

Type 12, for $9 / 16^{\circ "}$ Caps
Type 24, for $33^{\prime \prime}$ " Caps
Type 8, for 1/4" Caps
National Grid and Plate Grips provide a secure and posilive contact with the tube cap and yet are released easily by a slight pressure on the ear.

RIGHT ANGLE DRIVES

ACD-1, ACD-2, ACD-3
The e $5^{t} u$ d drives sere deveoped for use with the new Narional AMT cordensers. The, are as compact as the torque requiremenis will allow and have nickel plated cast frames and bronze gears which operaie smooitly with out chater or binaing. The ACD-1 has 32 pitch gears and a 14 dia. dial s?a: and drives $1 / 4$ " shafts. $A C D-2$ has 24 pich gears (for heavier servi-e) and $1 / 4^{\prime \prime}$ dia. shaft driving "i" shafis ACD-3 is the some as ACD-2 except that it drives $3 / 3$ diameter shafts.

Nmtlonal

XLA

TSA-1

TSA- 2

XOA-7 (Axial)

XOR-7 (Radial)

TC SERIES MINIATURE TUbe CLAMPS
Easy to assemble - just two pieces - a spring clip and a base of stain'ess $5^{*} \epsilon e^{\prime}$. Base mourts in same holes, using e's. Easy to remove tube, simoly snap off soring clip. Made to government specifications. Types available for all standard miniature fubes.

Type No.	Tube Body Length	Type Socket
TC-1	$11 / 8^{\prime \prime}$	7 -pin
TC-2	$11 / 2^{\prime \prime}$	7 -pin
TC-3	$2^{\prime \prime}$	$7-$ pin
TC-4	$11 / 8^{\prime \prime}$	9 -pin
TC-5	$11 / 2$	$9-$ pin
TC-6	$2^{\prime \prime}$	$9-$ pin

CIR SERIES SOCKETS
Always a popular National comporert, type CIR Soskets fea-ure lom-loss steatite insua.icn, a cortact that grips he ube prong for its enire six position mounting.
XC-4, 5, 6, 7S, 7L and CIR-4 $5,6,7 \mathrm{~S}$ and 7 L all have 1-27/32' moun'ing centers. CIR-8E has sloted ho es in plae but will mourit on 1-27/32 center. CIR-8 and XC. 8 have $11 / 2^{\prime \prime}$ mounting

XC SERIES SOCKETS

XC.4, XC-5, XC-6, XC-7S, XC-7L, XC-8
National wafer sockets have exceptionally good contacts with high current capacify together with low loss seatite insuation. All types have a locating groove to make tube inserion easy
HX-29, A. Iow lose wafer sccket with steatite insulation for the pcpular 829 ard 832 tubes. JX-51 A low loss steatite water socket for the 813 and other tubes having the Giant 7-pin base. (not illustrated) XM-10 A heavy duty metal shel socket for tubes having the $X \cup 4$-pin base.
XM-50 (see XM-10 for style) A heavy duty metal shell sorket for tubes having the Jumbo 4-pin base ('fifty watiers").
HX-100 A low loss wafer sock et suitable for the type 4-125-A, 4-250-A and other tubes using the Giant 5-pin base. Shield grounding clips are supplied which mount on the cnassis with the socket mounting screws to ground the tube shield at three poirts. Air holes are provided in the socket to permit forced air

CIR-5

CIR-8E

XC-8

HX-29

XM-10

HX-100

POPULAR

CFA

PLUG-IN BASE AND SHIELD

Coil Forms molded of R-39 RS Coil Shield
mica-filled bakelite permitting them to be grooved and drilled. Coil Form diameter $1^{\prime \prime}$, length $11 / 2^{\prime \prime}$

XR-I, Four Prong

XR-2, Without Prongs

XR-3, molded of R-39 Diameter $9 / 16^{\prime \prime}$, length $3 / 4^{\prime \prime}$ without prongs.

XR-4, Four Prong

XR-5, Five Prong

XR-6, Six Prong
Molded of R-39 permitting them to be grooved and drilled. Coil Form Diameter $11 / 2^{\prime \prime}$, length $21 / 4^{\prime \prime}$. A special socket is required for the XR-6. National type XC-6C

SC, Crystal Sockets
The SC-1, SC-2, and SC-3 are crystal mounting sockets for crystal holders with mounting pins spaced $0.5000^{\prime \prime}$, $0.486^{\prime \prime}$, and $.750^{\prime \prime}$ respectively and pin diameters of $1 / 8^{\circ 1}$ and $3 / 32^{\prime \prime}$ and $1 / 8^{\prime \prime}$ respectively, steatite insulation. Single 4-36 or 4-40 screw mounting for SC-1 and SC-2, single 6-32 screw mounting for SC-3.

SC-4 Ceramic crystal socket with clamp. Pin spacing $.500^{\prime \prime}$. Pin dia. $1 / 32^{\prime \prime}$.

CFA

The National chart frame is supplied with a celluloid sheet to cover the chart size $21 / 4^{\prime \prime} \times$ $31 / 4^{\prime}$ with sides $1 / 4^{\prime \prime}$ wide. Durable finish.

PB-10-5
5 Prong base and shield

PB-10-6
6 Prong base and shield

PB-10-A-5
5 Prong base only

PB-10-A-6
6 Prong base only

RZ Coil Shield
13/8' square $\times 4^{\prime \prime}$ high.
$1 / 16^{\circ} \times 17 / 8^{\prime \prime} \times 31 / 2^{\prime \prime}$ high.
RO Coil Shield
$2 " \times 23_{8}^{\prime \prime} \times 41 / 8^{\prime \prime}$ high. Notional Coil Shields are formed from a single piece of pure aluminum. They are mechanically strong and have ample thickness to mount small parts on the walls, and include spade belts, for chassis mounting.
T. 78 Tube Shield

National Tube Shield type T-78 is a three-piece pure aluminum shield suitable for shielding glass tubes with ST-12 bulb, such as the 6C6 and 6D6 tubes.

JS-1 Jock Shield
For shielding small standard jacks mounted behind a panel, or on the ends of extension coils. Indispensable for reducing hum pickup.

XOS Tube Shields
The XOS tube shield is a twopiece shield for the miniature Button 7 and 9 pin base tubes.

The shield contains a spring which centers tube in shield and holds tube and shield firmly in place.

SHIELDS 7-pin SOCKETS XOS-1 fit $11 / 8^{\circ}$ tube body XOS-2 fit $1 / 2^{\prime \prime}$ tube body XOS-3 fit $2^{\prime \prime}$ tube body

SHIELDS 9-pin SOCKETS
XOS-4 fit $11 / 8^{\prime \prime}$ body
XOS-5 fit $1 \frac{1}{2} 2^{\prime \prime}$ tube body XOS-6 fit 2 " tube body

FXT Fixed tuned exciter tank similar in general construction to National I.F, transformers, this unit has two 25 mmf ., 2000 volt air condensers and an unwound XR-2 Coil form.

FXT (Without plug-in base)
FXTB-5 (With 5 prong base)
FXTB-6 (With 6 prong base)
Paint (not illustrated)
CP-1, dark gray
CP.2, block
A hiah quality air-drying paint tha: may be applied with a brush.

CP-3, light gray, for spraying and baking.

xos-3

FIXED-TUNED EXCITER TANK

POPULAR
 Mationmi
 .
 COMPONENTS

I. F. TRANSFORMERS

IFC. Transformer IFCO, Oscillator.

Lifz coils wound on a polystyrere form and ceramic insulated air-dielectric trimming condensers make these transformers inherently stable and exceptionally retentive of tuning. The $41 / 2 \times 2,8 \times 2 "$
shield can has two 6.32 spade boits for mounting. Avai'able for either 175 KC or $450-550$ KC. Specify frequency
IFL FM Discriminator
IFM IF Transformer
IFN IF Transformer
IFO FM Ratio Discriminator
IFL, IFM, IFN and IFO trans formers operate at 10.7 Mc . and are designed for use in FM Superheterodyne receivers. Colis are prerisinn wnand on grooved polystyrene forms and tunirg is accomplisted by movable iron cores. Band width is not affected by tuning slug position. The transformer cans are 13,8 " square and stand $31 / 8$ " apove the chassis. Two 6-32 spade bolts are provided for mourtirg. The IFL transformer is a 10.7 Mc. Fivl duccriminater trans. former suitable for use in conventional FM receiver discriminator circuit and is kinear over a band of $\pm 100 \mathrm{Kc}$. The IFM transformer is a 10.7 Mc. If transformer with a 150 Kc . bandwidth at 1.5 db attenuation. Approximate

COILS AND

AR-2 H.F. Coil
AR-5 H.F. Coil
The $A R-2$ and $A R-5$ coils are high Q permeability tuned RF coils on low loss mica-filled bare te 75 Mc . to 220 Mc . with capacities from 100 to 10 mmid . Tre AR-5 coil tunes from 37 Mc . to 110 Mc . with capacities from 100 to 10 mmfd. The inductive w'ndings sumolied ma. be replaced by
other windings as desired to modify the tuning range.

XR-50

These mica filled bakelite coil forms may be wound as des'red to provide a permeubiity tuned coil. The form winding length is $11 / 16$ " and the form winding diameter is $1 / 2$ inch. The iron
slug is $3 / 8$ " dia. by $1 / 2$ " long. slug is $3 / 8 \prime$ dia. by $1 / 2$ long. CERAMIC SLUG-TUNED COIL FORMS
XR-70 (grooved for 19 wire, with
XR-7I (same, brass slug)
XR-72 (not groovea, winding lenglt XR-73 (same, bra-s slug)
XR-60 (grooved for 726 wire, with iron slug)
XR-61 (same, brass slug) XR-62 (not grooved, winding length
stage gain of 30 is obtained with IFM Transformer and 6SG7 tube
The IFN transformer is a 10.7 Mc. IF rransformer with a 100 Kc . pass band at 1.5 db arenuation. Approximate stage gain of 30 is obtaired with IFN transformer and 6SG7 tube.
The IFO transformer is a 10.7 Mc. FM diserimilnator |ransformer of the ratio type and is linear over a band of ± 100
Kc.

IFR. Low-priced quality IF transformer. $455 \mathrm{kc} .23 / 8^{\prime \prime}$ high $\times 11 / 8^{\prime \prime}$ square
IFS. Same as IFR but 1720 kc . IFJ, with variable coupling IFK, with fixed coupling
15 Mc. IF transformers suitable for ultra high trequenty suberheterodynes. They are made in two models with ard without variabe coupil - g. Approximate stage gain ot 10 is obtained with IFJ or IFK Transformer and 6AB7 tube.

SA:4842

A 456 kc . discriminator transformer for rarrow hand frequency modulation. Two slugtuned secordaries are emplo.ed ana discrimination is accomplished by resona-ing one at approximately 10 kc . above, the other at approximate'y 10 kc . below the center frequency of the i.f. channel.

COIL FORMS

XR-63 (same, b-ass slug)
High-grace ceramic coil forms con:orming to JAN specllications. May be wound as desired to provide a permeability-tuned coil. Extra lugs provived.
NEW PERMEABILITY
TUNED CERAMIC COIL FORMS
signed signed prmarily for high fre-
quency applications and conforming to government specifications. Coil form is Grade L4 ceramic (JAN 1-10): base is silver-plated b-ass; co-e is brass or iron. Supplied with two nylon rings to separate coils if more than one is wound on same form. Small holes in rings can be used to

TYPE	CORE	$\begin{aligned} & \text { "A"" } \\ & \text { DIM. } \end{aligned}$	$\begin{aligned} & \text { "B'" } \\ & \text { DIM. } \end{aligned}$
XR 80	BRASS	11/4"	${ }^{17} / 84^{\prime \prime}$
XR 81	IRON	$11 / 4{ }^{\prime \prime}$	${ }^{17 \times 1 \%}$ "
X 882	BRASS	13/4	${ }^{17} \mathrm{Hij}^{\prime \prime}$
Ye 83	IRON	1% "	17ije"
XR 90	BRASS	11/4"	5/8
XR 91	IRON	$11 / 4$	5/8"
XR 92	BRASS	1\%"	\%"
XR 93	IRON	1\%/4	3/6"

XR-80—XR-90 Series

XR-70 XR-71 XR-72 XR-73

XR-60 XR-61 XR-62 XR-63

POPULAR

MINIATURE

CONDENSERS:

Type PS varable cordensers are compact silver plaied units of so'dered construc-
tion for use as sem"-fixed bardsets or padders. Base is
steati+e - bearirg is "smug" but smooth. PSR modets are
screw-driver adiust type: PSE have $1 / 4^{\prime \prime}$ diameter shafts both ends: PSL are simiar to PSR but include rotor shaff iock.
Type M-30
The M. 30 is a tiny $113^{\prime} 16^{\prime \prime}$ $\left.\times 9 / 16^{\prime \prime} \times 1 / 2^{\prime \prime}\right)$ mica trimmer - 30 mmf . max. - steatite base.
Type W. $75,75 \mathrm{mmf}$
Type W-100, 100 mmf .
Smalt är-aie ec-ric padding
corder ers having a very low
temperature ccefficier: They are mounted in $1 / 4^{\prime \prime}$ diameter aluminum shields and have $1 / 4^{\prime \prime}$ hex heads for

The UM condensers are low. loss, aluminum fare staked constraction minia"ure variabes desiered for UHF conver'ers, VFOs and the like minimum capacity is exceptiona ly low. The UMs can be mounted in PB-10 or RO stield cans and have $1 / 4^{\circ}$ dia. shafts front and rear for garaing (see paces 21,23 and 24 for shield cans and coundinas). Plates: straight-line-cap., 180° rotation. Dimensions: Base $1^{\prime \prime} \times 2^{1 / 4^{\prime \prime}}$ mig. holes on $5^{\prime} \mathbf{B}^{\prime \prime} \times 1-23 / 32^{\prime \prime}$ centers, 2-5/16" max. length.

The UMB-25 and UMB-50 are diterent (balanced stator) mede's. UM-IOD and UMA-25 are double-spaced and the lafter is bolted construction for experimen'al capacity reduction. Hardware for panel or chassis mounting is supplied with all UM con-

Capacity	Catalog Symbol		
25 mm.	PSR-25	PSE-25	PSL-25
50	PSR-50	PSE-50	PSL-50
75	PSR-75	PSE-75	PSL-75
100	PSR-100	PSE-100	PSL-100

Capacity	Minimum Capacity	No. of Plates	Air Gap	Catalog Symbol
$\begin{aligned} & 15 \mathrm{mmi} . \\ & 35 \\ & 50 \\ & 75 \\ & 100 \\ & 10 \\ & 25 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.5 \\ & 3 \\ & 3.5 \\ & 4.5 \\ & 1 \\ & 3.4 \end{aligned}$	$\begin{array}{r} 6 \\ 12 \\ 16 \\ 22 \\ 28 \\ 8 \\ 14 \end{array}$	$\begin{aligned} & .017^{\prime \prime} \\ & .017^{\prime \prime} \\ & .17^{\prime \prime} \\ & .017^{\prime \prime} \\ & .017^{\prime \prime} \\ & .042^{\prime \prime} \end{aligned}$	UM-15 UM-35 UM-50 UM-75 UM-I00 UM-10D UMA-25
BALANCED STATOR MODEL				
25 50	2	$\begin{aligned} & 4-4-4 \\ & 8.8-8 \end{aligned}$	$\begin{aligned} & .017^{\prime \prime} \\ & .017^{\prime} \end{aligned}$	UMB-25 UMB-50

NEUTRALIZING

 CONDENSERS:NC. 600 U
With standoff insulator NC. 600

Wihout insulator

For neutralizing low power beam tubes requiring from .5 to 4 mmf ., and 1500 max. total volts such as tre 6L6. The NC-b00U is suppied with a GS. 10 standoff insulator screwed on one end, which may be removed for pigtail mounting.

"TU BY'" CONDENSERS

Tubular condensers providing short r.f. patn between plate and cainode for tudes having the paie connection at the iop. Design reduces harmonics and helps eliminate
parasitics. 3,000 volts or 1.500 volts. 15 mmfd .

STN
The Type STN has a maximum caracity of 18 mmf . $(3000 \mathrm{~V})$, making it suitable for such qubes as the 809. It is supplied with two standoff insulaiors.
NC.800A
The NC-800A disk-type neutralizing condenser is suitable for the T40, 35TG, 808 and similar tubes. It is equipped with a clamp for locking. The chart be ow gives capacify and air gap for different settings.
NC. 75
For 812, 75TH and similar tubes.
NC-I 50
For RK36, I00TH, HK354, 250TH, etc.

UMA-25

UMB-25

NC-800A

NC-75
NC-150

POPULAR

TYPE ST (180° Rotation) STRAIGHT-LINE WAVELENGTH
ST Type condenser las Straight-Line Wavplenath plates. All doublezaring models have the front beering insulated to prevent noise. Un spercial rder a shaft extension at each end is available. for ganging. Un doublezaring single shaft models, the rotor contact is through a constant impudance igtal Steatite insulation.
IOTE - Type SS Condensers, having straight-line capacity plates but therwise similar to the Type ST, are available. Capacities and Prices same : Type ST.

Capacity	Minimum Capacity	No. of Plates	Air Gap	Length	Catalog Symbol
	SINGLE BEARING MODELS				
$\begin{aligned} & 15 \mathrm{Mmf} . \\ & 25 \\ & 50 \end{aligned}$	$\begin{aligned} & 3 \mathrm{Mmf} . \\ & 3.25 \\ & 3.5 \end{aligned}$	3 4 7	$\begin{aligned} & .018^{\prime \prime} \\ & .018^{\prime \prime} \\ & .018^{\prime \prime} \end{aligned}$		$\begin{aligned} & \text { STHS } 15 \\ & \text { STHS } 85 \\ & \text { STHS- } 50 \end{aligned}$

SPLIT STATOR DOUBLE BEARING MODELS

$50-50$	$5-5$	$11-11$	$.096^{\prime \prime}$	$233^{\prime \prime}$	STD. 50
$100-100$	$5.5-5.5$	$14-14$	$.018^{\prime \prime}$	$23_{4}^{\prime \prime}$	STHD. 100

DOUBLE BEARING MODELS

35 MmI .	6 Mmf.	8	.026"	$2{ }^{\prime \prime}$	ST. 35
50	$7 \mathrm{Mm}$.	11	. $026^{\prime \prime}$	21"	ST. 50
75	8	15	.026"	2'1"	ST. 75
100	9	20	.026"	21"	ST-100
140	10	27	.026"	$2^{3} 4^{\prime \prime}$	ST-140
150	10.5	29	.026"	$23^{\prime \prime}$	ST-150
200	12.0	27	. $0188^{\prime \prime}$	21,"	STH-200
250	13.5	32	.018"	23:"	STH.850
300	15.0	39	.018"	2^{31}	STH. 300
335	17.0	43	.018'	2:"	SJH. 335

TYPE SE (270° Rotation)

 STRAIGHT-LINE FREQUENCYYPE SE - All models have two rotor bearings, the front bearing being usulated to prevent noise. A shaft extension at each end, for ganging, is vaitable on special order. On models with single shaft extension, the rotor ontact is through a constant impedance pigtail. The SEU models (illustrated) ontact is through a constant impedance pigtai. The SEU modess (Illustrated) re suitable for high voltages as their plates are thick polished duminum with
ounded edges. Other SE condensers do not have polished edges on the lates. Steatite insulation.

15 Mmf . 20 25	$\begin{aligned} & 7 \mathrm{Mmf} \\ & 7.5 \\ & 8 \end{aligned}$	6 7 9	$\begin{aligned} & .055^{\prime \prime} \\ & .055^{\prime \prime} \\ & .055^{\prime \prime} \end{aligned}$		$\begin{aligned} & \text { SEU. } 15 \\ & \text { SEU. } 20 \\ & \text { SEU. } 25 \end{aligned}$
	9	11	.026 ${ }^{\prime \prime}$	21:"	SE. 50
75	10	15	.026"	21:"	SE. 75
100	11.5	20	.096"	21!"	SE-100
150	13	29	.026"	$2^{4} 4$	SE-150
200	12	27	.018'	21%	SEH-900
250	14	39	.018"	$2^{3}{ }^{\prime \prime}$	SEH-950
300	16	39	.018"	23:"	SEH.300
335	17	43	.018"	$2^{3}+$ "	SEH.335

TYPE EMC (180° Rotation) STRAIGHT-LINE WAVELENGTH

TYPE EMC. - A qeneral purpose condenser availsble in large sizes and havina Strasaht Line wavelanath plates. They are similar in constiuction to the TMC Transmittina condenser, and have high efficiency and rugaed frame Insulation is Steatite, and Peak Valtage Rating is 1000 volts. Same sizes avalable with stralaht line capacity plates, type DXC condenser.

Capacity	Minimum Capacity	No. of Plates	Length	Catalog Symbol
$\begin{aligned} & 150 \mathrm{Mmf} . \\ & 950 \\ & 350 \\ & 500 \\ & 1000 \end{aligned}$	$\begin{aligned} & 9 \mathrm{Mmf} . \\ & 11 \\ & 12 \\ & 16 \\ & 29 \end{aligned}$	$\begin{array}{r} 9 \\ 15 \\ 20 \\ 99 \\ 56 \end{array}$		EMC. 150 EMC. 250 EMC. 350 EMC- 500 EMC-1000

VHF CONDENSERS

- Shaft extension at rear for ganging purposes. Dual condensers ided for mixer-oscillator unit. Ball bearings front and back for smooth rotation and freedom from back-lash. - Brackets for mounting 7 -pin miniature tube sockets, i.e. National XOA for very short leads from tube to condenser essential for VHF efficiency, and rigid compact unit-dssembly that produces better sesbilizy. - Wide low-Inductance stator strap connections raise frequency limit of condensers. Coil or strap tank can be connected directly to stator straios allowing maximum inductance in tank and a minimum of inductance between tank and stator. Stators, rotors and stator strap connecdions silver-plated for best efficiency. - Rigid sauare construction, heavy tions silver-plated or best efficiency. - Rigid saudre construction, hedyy extreme rigidity. - Flexible insulating coupling dvailable to connect condenser shafe to "t" dial shaft. "Flexible insulating coupling available to connect two or more condensers together as ganged units. - High capacity single spaced units for general coverage. - Low capacity double spaced units for bandspread, suitable for ham use, particularly in the VHF and UHF ham bands. - Stators solder construction can be removed and replaced by strap tanks for special VHF and UHF application.

DOUBLE SPACED MODELS

Two section VHF-2D,

Maximum capacity per section stator to stator.	6.75 mmF .
Minimum capacity per section stator to stator.	3.0 mmf .
Net change .	3.75 mmf .
Single section VHF-1D,	
Maximum capacity stator to stator.	6.75 mmf.
Minimum capacity stator to stator.	3.0 mmm.
Net chand	3.75 mmf.

SINGLE SPACED MODELS

Two section VHF-2S,
$\begin{array}{ll}\text { Maximum captcity per section stator to stator } & 22.5 \mathrm{mmf} \text {. } \\ \text { Minumum capacity per section stator to stator } & 19.0 \mathrm{mmf} \text {. } \\ \text { Net change. }\end{array}$
Single section VHF-1S,
Moximum cipscity stator to stator . 29.5 mmf.
Minimum capacity stator to stator . 3.0 mmF .
Net change 19.5 mmf.

POPULAR Natanal COMPONENTS

TYPE TMS TRANSMITTING CONDENSERS

This is a condenser designed for transmitter use in low power stages. It is compact, rigid, and dependable. Provision has been made for mounting either on the panel, on the chassis, or on two stand-off insulators. Insulation is steatite. Voltage ratings listed are conservative.

Capacity	Minimum Capacity	Length	Air Gap	Peak Voltage	No. of Plates	Catalog Symbol
SINGLE STATOR MODELS						
$\begin{aligned} & 100 \mathrm{Mmi} . \\ & 150 \\ & 250 \\ & 300 \\ & 35 \\ & 50 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 11 \\ & 13.5 \\ & 15 \\ & 8 \\ & 11 \end{aligned}$	3'' $3^{\prime \prime}$ $3^{\prime \prime}$ $3^{\prime \prime}$ $3^{\prime \prime}$ $3^{\prime \prime}$ 1	$\begin{aligned} & .026^{\prime \prime} \\ & .026^{\prime \prime} \\ & .026^{\prime \prime} \\ & .026^{\prime \prime} \\ & .065^{\prime \prime} \\ & .065^{\prime \prime} \end{aligned}$	1000v. 1000 v . 1000 v . 1000 v . 2000 v . 2003v.	$\begin{array}{r} 9 \\ 14 \\ 22 \\ 27 \\ 7 \\ 11 \end{array}$	TMS-100 TMS-150 TMS-250 TMS-300 TMSA-35 TMSA-50
DOUBLE STATOR MODELS						
$\begin{aligned} & 50.50 \mathrm{Mmi} . \\ & 100-100 \\ & 125-125 \\ & 50.50 \end{aligned}$	$\begin{gathered} 6-0 \\ 7.7 \\ 8-8 \\ 10.5-10.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3^{\prime \prime} \\ & 3^{\prime \prime} \\ & 3^{\prime \prime} \\ & 3^{\prime \prime} \end{aligned}$	$\begin{aligned} & .026^{\prime \prime} \\ & .026^{\prime \prime} \\ & .026^{\prime \prime} \\ & .065^{\prime \prime} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{v} . \\ & 1000 \mathrm{v} \\ & 1000 \mathrm{v} . \\ & 2000 \mathrm{v} . \end{aligned}$	$\begin{gathered} 5-5 \\ 9.9 \\ 11.11 \\ 11.11 \end{gathered}$	TMS-50D TMS-100D TMS-125D TMSA.50D

TYPE TMK TRANSMITTING CONDENSERS

This is a new condenser for exciters and low power transmitters. Special provision has been made for mounting AR-I6 coils in a swivel plug-in mount on either the top or rear of the condenser. For stand-off or panel mounting-steatite insulation.

Capacity	Minimum Capacity	Length	Air Gap	Peak Voltage	No. of Plotes	Catalog Symbol
SINGLE STATOR MODELS						
$\begin{aligned} & 35 \mathrm{Mmf.} \\ & 50 \\ & 75 \\ & 100 \\ & 150 \\ & 900 \\ & 250 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8 \\ & 9 \\ & 9 \\ & 10 \\ & 10.5 \\ & 11.5 \end{aligned}$		$\begin{aligned} & .047^{\prime \prime} \\ & .047^{\prime \prime} \\ & .047^{\prime \prime} \\ & .047^{\prime \prime} \\ & .047^{\prime \prime} \\ & .047^{\prime \prime} \end{aligned}$	$\begin{aligned} & 1500 \mathrm{v} . \\ & 1500 \mathrm{v} . \\ & 1500 \mathrm{v} \text {. } \\ & 1500 \mathrm{v} . \\ & 1500 \mathrm{v} . \\ & 1500 \mathrm{v} . \\ & 1500 \mathrm{v} . \end{aligned}$	$\begin{array}{r} 7 \\ 9 \\ 13 \\ 17 \\ 95 \\ 33 \\ 41 \end{array}$	TMK-35 TMK-50 TMK-75 TMK-100 TMK-150 TMK-200 TMK-250
DOUBLE STAIOR MODELS						
$\begin{aligned} & 35-35 \mathrm{Mmf} . \\ & 50-50 \\ & 100-100 \end{aligned}$	$\begin{gathered} 7.5-7.5 \\ 8-8 \\ 10-10 \end{gathered}$	$\begin{aligned} & 3^{\prime \prime} \\ & 31 / 1^{\prime \prime} \\ & 41^{\prime \prime \prime} \end{aligned}$	$\begin{aligned} & .047^{\prime \prime} \\ & .047^{\prime \prime} \\ & .047^{\prime \prime} \end{aligned}$	1500 v . 1500 v . 1500 v .	$\begin{gathered} 7-7 \\ 9-9 \\ 17-17 \end{gathered}$	TMK-35D TMK-50D TMK-100D
Swivel Mounting Hardware for AR 16 Coils						SMH

TYPE TMH TRANSMITTING CONDENSERS

A condenser that features very compact construction. Excellent power factor, and aluminum plates $.0400^{\prime \prime}$ thick with polished edges. It mounts on the panel or on removable stand-off insulators. Steatite insulators have long leakage path.

Copacity	Minimum Capacity	Length	Ail Gap	Peok Voltoge	No. of Plates	Catalog Symbal
SINGLE STATOR MODELS						
$\begin{aligned} & 50 \mathrm{Mml} . \\ & 75 \\ & 100 \\ & 150 \\ & 35 \end{aligned}$	$\begin{aligned} & 9 \\ & 11 \\ & 19.5 \\ & 18 \\ & 11 \end{aligned}$	$\begin{aligned} & 3^{3} 4^{\prime \prime \prime} \\ & 3^{3}{ }^{\prime \prime \prime} \\ & 511^{\prime \prime} \\ & 6!3^{\prime \prime \prime} \\ & 53^{\prime \prime \prime} \end{aligned}$	$\begin{aligned} & .085^{\prime \prime \prime} \prime \prime \\ & .085^{\prime \prime \prime} \prime \prime \\ & .085^{\prime \prime \prime} \end{aligned}$	$\begin{aligned} & 3500 \mathrm{v} . \\ & 3500 \mathrm{v} . \\ & 3500 \mathrm{v} . \\ & 3500 \mathrm{v} . \\ & 6500 \mathrm{v} . \end{aligned}$	15 19 95 37 17	TMH. 50 TMH-75 TMH-100 TMH-150 TMH-35A
DOUBLE STATOR MODELS						
$\begin{aligned} & 35-35 \mathrm{Mmb} \\ & 50-50 \\ & 75-75 \end{aligned}$	$\begin{gathered} 6-6 \\ 8-8 \\ 11-11 \end{gathered}$	$\begin{aligned} & 3^{3} 1^{\prime \prime \prime} \\ & 5^{1 / 1 / 1} \\ & 6^{1 / 2} 2^{\prime \prime \prime} \end{aligned}$	$\begin{aligned} & .085^{\prime \prime} \\ & .085^{\prime \prime} \\ & .085^{\prime \prime} \end{aligned}$	$\begin{aligned} & 3500 \mathrm{v} . \\ & 3500 \mathrm{v} . \\ & 3500 \mathrm{v} . \end{aligned}$	$\begin{gathered} 9-9 \\ 13-13 \\ 19-19 \end{gathered}$	TMH-35D IMH-50D TMH-75D

TYPE TMC TRANSMITTING CONDENSERS

A condenser designed for use in the power stages of transmitters where peak voltages do not exceed 3000 volts. The frame is extremely rigid and arranged for mounting on panel, chassis or stand-off insulators. The plates are aluminum with buffed edges. Insulation is steatite. The stator in the split stator models is supported at both ends.

Capacily	Minimum Capacity	Length	Alr Gad	Peak Voltage	No. of Plotes	Catalog Symbal
SINGLE STATOR MODELS						
$\begin{aligned} & 50 \mathrm{Mmf} . \\ & 100 \\ & 150 \\ & 950 \\ & 300 \end{aligned}$	$\begin{aligned} & 10 \\ & 13 \\ & 17 \\ & 93 \\ & 95 \end{aligned}$	$\begin{aligned} & 3^{\prime \prime} \\ & 3^{1 / 21} \\ & 4^{\prime 5} / 5^{\prime \prime} \\ & 6^{\prime \prime} \\ & 6^{3 / 4^{\prime \prime}} \end{aligned}$	$\begin{aligned} & .077^{\prime \prime \prime} \\ & .0777^{\prime \prime} \\ & .077^{\prime \prime} \\ & \hline \prime \end{aligned}$	$\begin{aligned} & 3000 \mathrm{v} . \\ & 3000 \mathrm{v} . \\ & 3000 \mathrm{v} \text {. } \\ & 3000 \mathrm{v} \text {. } \\ & 3000 \mathrm{v} . \end{aligned}$	$\begin{array}{r} 7 \\ 13 \\ 91 \\ 39 \\ 39 \end{array}$	TMC-50 TMC-100 TMC. 150 TMC- 250 TMC-300
DOUBLE STATOR MODELS						
$\begin{aligned} & 50-50 \mathrm{Mmf} . \\ & 100-100 \\ & 900-200 \end{aligned}$	$\begin{gathered} 9-9 \\ 11-11 \\ 18.5-18.5 \end{gathered}$	$\begin{aligned} & 488^{\prime \prime} \\ & 631^{\prime \prime} \\ & 916^{\prime \prime} \end{aligned}$	$\begin{aligned} & .077^{\prime \prime} \\ & .077^{\prime \prime} \\ & \hline 077{ }^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 3000 \mathrm{v} . \\ & 3000 \mathrm{v} . \\ & 3000 \mathrm{v} . \end{aligned}$	$\begin{gathered} 7-7 \\ 13-13 \\ 95-25 \end{gathered}$	TMC-50D TMC-100D TMC-200D

POPULAR

TYPE AMT
A larger and sturd er model of the TMK condenser. The frame is extremely rigid, with mounting feet a part of the end plates. Heavy steatite insulation.
The solid aluminum tie bar across the
top of the condenser acts as a mount. ing for AR-18 series coils in the double stator models.
The double stator models are available in either standard end drive (D series) of center-drive (DG series) with 1/4" dia. shaft extension.

TYPE TMA
his is a larger model of the popular TMC. The frome is extremely rigid ond arranaed for mounting on panel, chassis or standffi insulators. The p'ates are of heavy aluminum with rounded and buffed edges. Insulation is steatite located outside of tho oncentra*ed field.

TYPE LMT
I heavy duty transmitting condenser that completely eliminates troublesome closed loops, vastly simplifying the problem of unwanted harmonics. The rotor shaft is completely insulated from the end plates. Long leakage path (higher safety factor). 'lates and parts are extra heavy with highly polished rounded edges to prevent flash-over. Adjustable stator plate mounting ind end bearings. Avaitable in sirgle-stator, double-stator, or double-stator right angle center drive models. Same capacities and prices as National TML Condenser.

TYPE TML
is a heavy duty job throughout. The frame structure (ruaged aluminum castings with dural tie bars) and prec'sion bearings assure permanent rotor alignment. All platas are extra thick with rounded and pali hed edzes. This, plus specially treared steatite insulators and - husky self-cleaning rotor contact. provides high flashover, current and voltoge ratings.

POPULAR
 Matlanal COMPONENTS

PRECISION CONDENSERS

Originally developed for the famous HRO and NC-100 receivers, National PW and NPW condensers and drive units are well known to professional and amaieur radio men throughout the world. Sturdily constructed of the finest materials and carefully adjusted by skilled hands, they have become "standard specifications" for applications requiring smooth, precise control and high re-set accuracy.
The Micrometer Dial reads direct to one part in 500. Division lines are approximately $1 / 4^{"}$ apart. The drive, at the mid-point of the rotor, is through an enclosed preloaded worm gear with 20 to I ratio. Each rotor is indiv"dually insulated from the frame, and each has its own individual rotor contact. Stator insulation is steatite. Plate shape is straight-line frequency when the trequency range is $2: 1$.
PW Cordensers are avai ab!e in 1, 2, 3 or 4 sections, in either 160 or 225 mmf per section. Larger capacities cannot be supplied.
PW-IR Single section righi
PW-IL Single section left
PW-2R Double section right
PW-2L Double section left
PW-2S Single section each side
PW-3R Double section right; single left
PW-3L Double section left; singie right
PW-4 Double section each side
NPW-3 Three sections, each 225 mmf .
Similar to PW models, except that rotor shaft is perpendicular to panel.
NPW-O
Uses parts similar to the NPW condenser. Drive shait perpendicular to panel. One TX-9 coupling supplied.
PW-O
Uses parts similar to the PW condenser. Drive shaft parallel to panel. Two TX-9 couplings supplied.

PW-D

The Micrometer Dial used on the condensers and drives above is available separately. It revolves ten times in covering the compete range and as there is no gear reduction unit furnished, the driven shaft will revolve ten times, also. The PW-D dial fits a shaft $5 / 16^{\prime \prime}$ in diameter.

MULTI-BAND TANK ASSEMBLIES

The unique MB-I50 Multi-Band Tank tunes all amateur bands from 80 through 10 maters with 180° rotation of the shaft; the coils are never changed. The unit is built around a circuit which tunes to two harmonically unrelated frequencies at the same time. Thus, it becomes possible to cover a wide frequency range and yet maintain a reasonably constant L/C ratio. $3^{\prime \prime}$ wide $\times 81 / 4^{\prime \prime}$ high (including the GS. 10 standoffs) $\times 9^{\prime \prime}$ long overall including the $1 / 4^{\prime \prime}$ dia. shaft and output terminals.

MB. 40 L .

Features of the MB-150:
(1) For use as the all-band plate tank in push-pull or sing'e-ended stages running up to 150 -watts input || 500 volis peak). It is ideal for a pair of 807 s or 809 s or a single 829 B.
(2) Separate link coupling coil has special clips which adjust to match impedances up to 600 ohms directly. Output couples into a higher powered amplifier, an antenna or an antenna tuning network.
(3) Fast band changina is accomplished without handling coils, thus removing one of the danger points in the amateur station.

MB 40L LOW-POWER MULTI-BAND TANK
Same principle as the famous MB-150. Logical application as grid circuit for tubes having MB-I50 in plate circuit. Will handle 40 watts input if link kept loaded

MB-150

MEASUREMENTS Laboratory Standards

Leader in Electronic Measuring Instruments

NEW!

Model 84-TV, with its high voltage output and low VSWR, fills the need for a reliable signal sourse for the UHF television band. Built to Measurements strict standards af accuracy and presision, this new in. strument is ideally suited to making a variety of Electronic meosure. ments.

MANUFACTURERS OF
Standard Signal Generators Pulse Generators FM Signal Generators Square Wave Generators TV Standard Signal Generators Vacuum Tube Voltmeters UHF Radio Noise \& Field Strength Meters Megacycle Meters Intermodulation Meters TV \& FM Test Equipment

MODEL 84-TV UHF TELEVISION

 Standard Signal Generator $300-1000 \mathrm{Mc}$.SPECIFICATIONS
FREQUENCY RANGE: 300-1000 megacycles. OUTPUT:. 1 Microvolt to 1 Volt, across 50 Ohms. OUTPUT IMPEDANCE: 50 Ohms coaxial. MODULATION: Internal 400 sycle, confinuously variable from 0 to 30%. Provision for external modulation of 50 to 20,000 sycles. LEAKAGE: Negligible.
SIZE: Overall Dimensions: $113 / 4$ inches high, 19 inches wide, 11 inches deep WEIGHT Approximately 40 pounds POWER. 115 volts, 60 cycles, 120 walts.

MEGACYCLE METER

Model 59
frequency range 2.2 Mc. to 400 Mc .

Measurements Megacycle Meter, while often imitated, remains the choice of those who pul accuracy first. This versotile instrument deter. mines the resonant frequen. cy of luned circuits, antennas, and transmission lines. It measures capacilance, inductance, relative " Q " and has many other applications.

fEATURES:

- Compact oscillator unit for coupling to circuits in small spaces.
- Individually calibrated, direct reading frequency dial; accurate to $\pm \mathbf{2 \%}$.
- Internal modulation.
- May be battery operafed.

Descriptive literature sent upen request

|Al|brafters

world Leaper in pizects
? divis. COMMUNICATIOAS

EQUDPMENT

20

another engineering advance foto-etched circuits
"Foto-Etched" circuits are a new Hallicrafters develapment that, for the first time, bring true one operation soldering to a camplete circuit. The result is a set produced at less cast-a set that is lighter-yet uniformly perfect. Here's haw "Foto-Etching" circuits are accamplished.

1. First a sheet of bakelite and a sheet af copper are bonded together under high heat and pressure.
2. Next a phatographic emulsion is applied to the copper side of the sheet.
3. A negative of the circuit is then placed over this, and then exposed to light, just as in making a photographic print.
4. When developed the unwanted copper is etched away by acid-leaving only the circuit lines.
5. Holes are then punched to accommodate tube sockets, leads to small parts, etc.
6. When all the parts are an the sheet, the entire assembly is dipped in a non-corrosive cleaner.
7. And then, in ane fast, single aperation, it is dipped in molten solder and all cannections are soldered at ance!
In use only in the clock radio illustrated at present, here, nonetheless, is the type of engineering thinking that makes Hallicrafters radios and communications equipment the best buys, dollar for dollar, and the finest performing instruments in the world.

allicrefters

model SX-73 the finest in versatility-

Here, from Hallicrafters world-famous short wave laboratories is a superb new communications re-ceiver-the SX-73, proud successor to so many famous top-quality Hallicrafters receivers. Absolutely without equal in its combination of ruggedness, sensitivity, stability, selectivity, resetability, and image and i-f rejection. Based on an original design developed by Hallicrafters for the armed forces for universal use all over the world, this new receiver will surpass all others in versatility, dependability, performance and value.
Performance: Continuous frequency coverage 540 kc to 54.0 Mc . Two r-f, two i-f stages. Dual conversion above 7 Mc ; second beat oscillator is crystal controlled. Choice of six pretuned crystal controlled channels in range 1.5 to 30 Mc . Single tuning knob turns main and bandspread dials (6 to 1 ratio between the two); 50 to 1 tuning ratio. Resetability accurate to within 30 cycles per megacycle. Selectivity variable 14.5 kc to 300 cycles at 6 db down. Sensitivity less than 2 microvolts for .5 watts output. Signal to noise ratio 10 db for 2 mv input. Image rejection 80 to 120 db . I-f rejection
not less than 60 db . AVC circuit will hoid up to one volt without overload. Series type noise limiter. Carrier level meter. Audio response plus or minus $11 / 2 \mathrm{db}$ from 300 to 3500 cycles.
Controls: Tuning knob with dial lock; Band Selector 540 - $1350 \mathrm{kc}, 1.35-3.45 \mathrm{Mc}, 3.45-7.00 \mathrm{Mc}, 7.00-$ 14.4 Mc, 14.4-29-7 Mc, 29-7-54.0 Mc; r-f Gain and AC on/off BFO Pitch, Xtal Phasing, 6-pos. Xta! Selectivity, 6 -pos. X tal fixed-frequency channel selector, a-f Gain, Xtal tuning Vernier; Rec./Standby, BFO, AVC, and ANL switches; BFO injection control and carrier meter adj. on rear.
Physical Data: Two-tone gray steel cabinet with satin chrome trim. Piano hinge top. Size 20 in . wide, 11 in . high, $181 / 2 \mathrm{in}$. deep.
External Connections: Antenna Input 50 to 200 ohms throughout tuning range. Output 600 and 50 ohms. For $50 / 60$ cycle current at $75,105,117,130$, 190, 210,234 , or 260 volts.

17 tubes plus voltage regulator, ballast tube and rectifier.

Model SX-73-Use R-46 Speaker
$\$ 97500$
|ralifirafiers
model SX-62 all-wave high fidelity

The world's finest receiver for the All-Wave listener. Unequalled in coverage and performance on all wave bands - Standard Broadcast, ShortWave or FM. Continuous coverage from 540 kc to 109 Mc . Having basically the same chassis as a fine communications receiver, the SX- 62 provides $=0 \mathrm{~m}$ -munications-receiver performance in simplified form. A single tuning control covers the wide-vision dial. Only one band lights up at a time-you always know just where you are tuning. In addition a 500 ke crystal calibration oscillator is built in, enabling you to adjust the dial pointer to show the exact frequency being tuned at any time.

Performance: Continuous AM reception 540 kc to 109 Mc ; FM band 27.109 Mc . Temperature compensated, voltage regulated. Two RF, three IF stages; dual IF channels (455 kc and 10.7 Mc). Audio flat 50-15,000 cycles; 10 watt push-pull output.

Controls: Band Selector 540-1620 kc. 1.62-4.9 Mc, 4.9-15 Mc, 15-32 Mc, 27-56 Mc, 54-109 Mc; Receive/Standby, Calibration Osc. On/Off, Noise

Limiter, Tuning, AF Gain, Phono/FM/AM/CW, sixposition Selectivity, four-position Tone, RF Gain, Calibration Reset.
Physical Data: Satin black steel cabinet with satin chrome trim. Top opens on piano hinge. Cabinet $20^{\prime \prime}$ wide by $10^{1 / 4^{\prime \prime}}$ high by $16^{\prime \prime}$ deep.

External Connections: Doublet or single wire antenna. 500 and 5000 -ohm outputs. Phone jack. Phonograph input jack. Socket for external power and Remote control connections. 105-125 V. 50/60 cycle AC line.
14 Tubes plus Voltage Regulator and Rectifier: Two 6AG5 RF Amps., 7F8 Conv., 6SK7 IF Amp., 6SG7 IF Amp., 6SG7 IF Amp., 6SG7 FM Limiter and AM Det., 6H6 FM Det., 6J5 BFO, 6H6 ANL, 6 SL7 AF Amp., two 6 V6 Push-Pull Output, 6C4 Calibration Osc., VR-150 Regulator, 5U4G Rectifier.
Universal Model SX-62U: Same as above only for $115 / 250$ volts, $25 / 60$ cycle $A C$.

Model SX62 or SX-62U

hallicratifers model SX-71 command performance

Fram the Hams at Hallicrafters to Hams everywhere comes this top-performing receiver in the medium price class. Extra sensitivity, selectivity, and stability, definitely superior image rejection with double superheterodyne circuit, plus built-in Norrow Band FM reception. Extra wide dials for main and bandspread tuning. Surpasses in ham performance many receivers priced considerably higher.
Performance: Continuous AM reception from 538 kc to 34 Mc , and 46 to 56 Mc . Built-in limiter and balanced detector stages for hiss-free NBFM reception. Double conversion (2075 and 455 kc i-f channets) gives image rejection of better than 150 to 1 at 28 Mc . Temperature compensated, voltage regulated. One r-f, two conversion, and 3 i-f stages yield high gain for sensitivity of .7 microvalts with 50 milliwatts output. Audio peaked for communications frequencies, with 3 watt output.
Controls: Band Selector $538.1650 \mathrm{Kc}, 1600-4800$ kc, 4.6-13.5 Mc, 12.5-34 Mc, 46-56 Mc. Separate moin and Bandspread tuning controls; bandspread dial calibroted for $80,40,20,15,10$, and 6 Meter

Bands. BFO Pitch 3-position Selectivity, Crystal Phasing, Tone, a-f Gain, and r-f Gain cantrols. ANL, BFO, and Receive/Send switches. "S" Meter adjustment on rear.
Physical Data: Satin black steel cabinet with chrome trim. Piano hinge top. Size $18 \frac{1}{2} \mathrm{in}$. wide by $87_{8} \mathrm{in}$. high by 12 in . deep. Ship. wt. 33 lbs .

External Connections: Use doublet or single wire antenna. 500 and 3.2 ohm outputs for separate speaker. Phone jack. Socket for external power supply. Connections for remote control. Far $105-125$ volts $50 / 60$ cycle AC.

11 Tubes plus Voltage Regulator and Rectifier: 6BA6 r-f Amp., 6C4 Osc., GAU6 Mixer, 6BE6 2nd Conv., three 6SK7 i.f Amps., 6H6 ANL and delayed AVC, 6 SC7 BFO and a-f Amp., 6AL5 Det., 6K6GT Output, VR-150 Reg., and 5Y3GT Rect.

Universal Madel SX71U: Same as above only for 115/250 volts, $25 / 80$ cycle AC.
$\$ 22450$

24

model S-76 double super-hes

Double conversion receiver, double superhet with 50 kc second i-f and 4 -inch " S " Meter.

Performance: Continuous coverage 538-1580 kc and 1.72-32 Mc. Double conversion eliminates images. 50 ke second i-f gives excellent "skirt" selectivity with "nose" selectivity variable from 5.6 kc down to 500 cycles. Temperature compensated, voltage regulated. One r-f, two conversion, and two i-f stages. $2 \frac{1}{2}$ watts output.
Controls: Band Selector 538-1580 kc, 1.72-49 Mc, 4.6-13 Mc, 12.32 Mc; Separate Main and Bandspread tuning; tandspread calibrated for 80, 40, 20, 15, 11, 10 meters; five-position Selectivity with phono switch built-in; BFO Pitch; full-range Tone; AVC, BFO, ANL, Rec./Standby switches. "S" Meter
adjustment on rear.
Physical Data: Satin black steel cabinet with plastichrome skirts. Piano hinge top. Size $18^{\prime} z^{\prime \prime}$ wide, $87 / 8^{\prime \prime}$ high, $9 \frac{1 / 2^{\prime \prime}}{}$ deep. Ship.wt. approx. 46 lbs .
External Connections: Use doublet or single wire antenna. 500 or $3-2$ ohm outputs. Phone jack. Phono input jack. Connections for external power and remote contral. Mounting holes provided for coax connector. For $105-125$ volts $50 / 60$ cycle AC.
9 Tubes plus Regulator and Rectifier: 6CB6 r-f Amp., 6AU6 list Conv., 6C4 Osc., 6BA6 list i-f, 6BE6 2nd Conv., 6BA6 2nd i-f, 6AL5 Det., ANL, 6SC7 BFO, 6K6GT Output, VR-150 Reg., 5Y3GT Rect.
Model 576-AC

model S-40B ham favorife

Superior performance. Complete with PM speaker. Performance: AM reception 540 kc to 43 Mc . Temperature compensated oscillator. One RF and two IF stages. Audio response to 10,000 cycles.
Controls: Band Switch $540-1700 \mathrm{kc}, 1700-5300$ $\mathrm{kc}, 5.3-15.7 \mathrm{Mc}, 15.7-43.0 \mathrm{Mc}$. Main tuning in Mc; band-spread dial has arbitrary scale. AF and RF Gain controls; AVC, BFO, and Noise Limiter switches; three-position Tone, BFO Pitch, and Receive/Standby controls.
Physical Data: Satin black steel cabinet. Size $18^{12^{\prime \prime}}$ wide by $8^{7} 8^{\prime \prime}$ high by $9^{\prime} 2^{\prime \prime}$ deep. Ship. wt. 32 lbs.

External Connections: Doublet or single wire antenna. Phone jack. S-40 uses 105-125 V. 50/60 cycles $A C$ only. S-77A uses 105-125 V. DC or 50/60 cycle AC.
7 Tubes plus Rectifier: (in S-40B) 6SG7 RF Amp., 6SA7 Conv., two 6SK7 IF Amps., 6 H 6 ANL and AVC, 6SL7 BFO and Det., 6F6G Output, 5Y3GT Rectifier.
Universal Model 5-40BU: Same as above only for 115/250 volts, 25/60 cycle AC.
Model S4OB $\$ 11995$
Model S40BU $\$ 12995$

model S-53A top performance -small size

Unquestionably the finest small communications receiver built. Several steps better than the S-38C but not as good as the S-40B. Complete in itself, with built-in PM speaker.

Performance : Coverage $540-1600 \mathrm{kc}, 2.6-31 \mathrm{Mc}$ plus 48.54.5 Mc. Two stages IF amplification.

Controls: Main tuning in Mc; separate bandspread dial with logging scale plus Mc calibration for 48-54.5 Mc band; Receive/Standby switch; Band switch $540-1630 \mathrm{kc} ; 2.5-6.3 \mathrm{Mc}, 6.3-16 \mathrm{Mc}$, 14-31 Mc, and 48-54.5 Mc; AM/CW; RF Gain, Noise Limiter, AF Gain, two-position Tone; Speaker/

Phones switch on rear.
Physical Data: Satin black steel cabinet with chrome trim. Top opens on piano hinge. Size 127."' wide by $7^{\prime \prime}$ high by $7^{3 / 4} 4^{\prime \prime}$ deep. Ship. wt. 19 lbs.

External Connections: Doublet or single wire antenna. Phone tip jacks. Phonograph input jack. 105.125 V. 50/60 cycle AC line.

7 Tubes plus Rectifier: 6C4 Osc., 6BA6 Mixer, two 6BA6 IF Amps., 6H6 Det., AVC and ANL, 6SC7 BFO and AF Amp., 6K6GT Output, 5Y3GT Rectifier.

Model S 53-A
$\$ 8995$

A compact, easy-to-operate new FM receiver covering police, fire, taxicab, truck, private telephone, railroad, and other industrial frequencies. Especially suited for civilian defense groups in metropolitan areas where a reliable, low cost receiver is required to hear industrial and emergency-service communications. Headphone tip jacks on rear. Builtin PM speaker.
Performance: Newly designed FM chassis provides low frequency dirift and high signal-to-noise ratio. Regular model S.81 covers VHF FM frequencies 152 to 173 Mc ; low-band model S. 82 covers H/F FM frequencies 30 to 50 Mc . Two i-f stages for extra sensitivity to pull in weak stations.

emergency frequency-FM

Physical Data: Steel cabinet in black wrinkle enamel finish. Size $12^{7} \mathrm{~g}^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $7^{1} 4^{\prime \prime}$ deep. Ship. wt. approximately 14 lbs.

External Connections: Use single wire or twinlead antenna. Tip jack for headphones on rear. 105-125 V. DC or 50/60 cycle AC.

6 Tubes plus Rectifier: 12AT7 Osc. Mixer, two 12BA6 IF Amps., 12AL5 FN, Det., 12SQ7 1st Audio, 50 L 6 Power Output. Selenium Rectifier.

Model S.81 Covers VHF FM 152.173 MC
\$4950
Model S. 82 Covers HF FM 30.50 Mc
s4950

Matching 10" PM speaker for use with Hallicrafters Communications receiver SX-71, SX-73, SX-62, or S-76, 80 to 5,000 cycle range. Matching transformer with 500/600-ohm input. Speaker voice coil Impedance, 3.2 ohms.

Black steel cabinet matches SX-71 and other Hallicrafters cabinets. Cloth covered metal grill. $15^{\prime \prime} \times 107 / 8^{\prime \prime} \times 1078^{\prime \prime}$ deep. Ship. wt. 17 pounds.

Model R-46 Speaker
$\$ 1995$

The lowest priced communications receiver on the market . . . with many features found in much higher priced sets. Standard Broadcast plus three Short-Wave bands. Built-in PM speaker.

Performance: Continuous AM reception 540 kc to 32 Mc . Maximum sensitivity and selectivity from expertly engineered chassis.

Controls: Main Tuning in MC; separate electrical bandspread dial with arbitrary scale; Speaker/ Phones, AM/CW switches; Band Switch 540-1650 kc , 1.65-5 Mc, 5-14.5 Mc, 13.5-32 Mc; AF Gain, Receive/Standby.

Physical Data: Steel cabinet in gray hammer-
tone finish. Size $12{ }^{2 / \mathrm{m}^{\prime \prime}}$ wide by $7^{\prime \prime}$ high by $73_{4}^{3 \prime}$ deep. Ship. wt. 14 lbs.

External Connections: Doublet or single wire antenna. Phone tip jacks. 105-125 V. DC or 50/60 cycle AC.
4 Tubes plus Rectifier: 12SA7, Conv., 12SK7 IF Amp. and BFO, 12SQ7 Det. and AVC, 50L6GT Output, 35Z5GT Rectifier.
220-Volt Line Cord: Available separately. Works for AC or DC.

Model S-38C
$\$ 4950$
Line Cord for 220 V . Operation
\$200

hallicrafters

model HT-20 AM-CW transmitter

This new Hallicrafters 100 watt AM-CW Transmitter is the modern successor to the HT-9 known throughcut the world for reliability, ruggedness, flexibility and lowest cost for maximum dependable watts per dollars.

Performance:T.V.I. proofed-completely shielded and filtered rf compartment plus built-in low-pass 52 ohm coaxial line output filter provides 90 db or greater suppression of all frequencies higher than 40 Mc .100 watt AM phone output.

Components: Heavy duty commercial type power and modulation transiormers. All parts rated for
commercial service conditions.
Frequency Coverage: Continuous coverage from 1.79 to 30 Mc .

Controls: Full band switching. No plug-in coilschoice of 10 crystals-all controls on front panel.
Tubes: Seven rf and audio tubes plus 5 rectifiers.
Physical Data: Cabinet size-20 inches long, $12 \frac{1}{2}$ inches high, 171_{4} inches deep-panel size for rack mounting- $19 \times 10^{\prime} 2$ inches. Shipping wt. 130 lbs . For 105-125 V. 60 cycle.

Model HT-20 Transmitfer
$\$ 44950$

A new radiation-proof FM/AM chassis to meet the popular demand for a medium-priced unit with top performance characteristics, offers automatic frequency control assuring clearest possible reception of FM stations by eliminating the human error in tuning; as the station is approached, this circuil "takes over" electronically, and hold's the station in perfect tune. Radiation-proofing is especially important in that normal oscillator radiation from many ordinary FM receivers has been severely criticized by the F.C.C. for interfering with VHF aircraft navigational aids. The new S-78A reduces this radiation by extensive shielding and filtering.
Performance and Controls: Covers standard

radiation proofed FM/AM funer
breadeast band 540-1700 kc and FM $88-108 \mathrm{Mc}$. One tuned r-f, two $i-\frac{f}{4}$ siages. Audio response 50 to 14,000 cycles. 7 watt Push-Pull Output. Full Range Tone Control, Band Switch, Volume and Tuning.
 high, 11" deep. Tuning knobs and escutcheon furnished. Ship. wt. approximately 25 lbs .
External Connections: Phonograph input Jack. Four antenna terminals--two for $A M$ and two for FM. 500 and 3.2 ohm outputs for separate speaker. For 105-125 volts $50 / 60$ cycle AC only.
10 Tubes plus Rectifier:
Model S78A
$\$ 8950$

Designed for the person who wants better than average operation and for the Radio Amateur.

Performance: Regular Model S. 72 covers standard broadcast and three short-wave bands 540 kc to 30 Mc continuously. Long-Wave Model S-72L covers airways ranges and towers and marine beacons 175.420 kc , plus Broadcast and 2 short-wave bands 540 kc to 12.5 Mc . One stage tuned r-f amplification; separate electrical bandspread tuning. Two built-in antennas-loop for broadcast and 61 . inch telescoping whip for short-wave. Overall sensitivity 1.8 microvalts af 30 Mc , ranging to 6 microvolts at 1.7 Mc .

Controls: Band Selector, r-f Gain, AVC, BFO, a-f Gain, Main tuning, Bandspread tuning.
Physical Data: Luggage-type cabinet in brown
leatherette. Space inside for phones. Size $14^{\prime \prime}$ wide, $12 \frac{1}{4}{ }^{\prime \prime}$ high, $71 / 4^{\prime \prime}$ deep. Ship. wt. 16 lbs., less battery pack.
External Connections: Phone jack. Antenna terminals if needed. $105-125 \mathrm{~V}$. DC or $50 / 60$ cycle AC line. Battery power 100 ma . at 7.5 V . and 30 ma. at 90 V. Takes RCA VSO18, Burgess G6M60, General 6CB6F65 and similar packs; life 50 to 100 hours.
8 Tubes plus Rectifier: 1T4 r-f Amp., 1R5 Osc., IU4 Mixer, two $1 U 4$ i-f Amps., IU5 Det. and a-f Amp., IU5 BFO, 3V4 Output, long-life selenium rectifier.
Model S72
s10995
Model S72L
\$11995

This AM/FM Super-Fidelity unit carries the UL seal of opproval and meets the F.C.C. specifications on oscillator radiation. Phono inputs, built-in pre-amp., accessory inputs for TV, tape recorders, etc. Dual outputs; medium and low impedance, tone controls; bass 12 db , treble 12 db .

Accessary power sockets dual at 200 watt 117 volts each. Tubes 6CB6 FM r-f amplifier, 12 AT7 FM osc. converter, 6CD6 AM r-f amplifier, 6BE6 AM osc. converter, 6BA6 Ist i-f amplifier $10.7 \mathrm{Mc}, 6 \mathrm{BA} 6$

hallicratiters

 model ST-83 finest hi-fi FM/AM tuner2nd i-f amplifier 455 kc and 10.7 Mc , 6BA6 3rd i-f omplifier, 6AL5 FM detector, 6AV6 AM detector and phono pre-amplifier, 6 C 4 cathade follower, 12AU7 oudio tone control amplifier, 6×5 rectifier.

Black steel with silver finish trim and chrome lite base. $14^{\prime \prime} \times 17 \frac{1}{2^{\prime \prime}} \times 91_{2}^{\prime \prime}$ deep. Ship. wt. 18 lbs. Ten tubes plus rectifier.

For $105 / 125 \mathrm{~V} .50 / 60$ cycle $A C$
$\$ 12995$

The perfect mate for any $A M / F M$ tuner. Exclusive output transformer giving widest range ever praduced. Frequency range, 10 to 100,000 cycles per second at 10 wotts (with perfect uniformity) and harmonic distortion of less than 0.25% at 10 watt level. Power output of 15 watts maximum.

 model A-84 widest range hi-fi amplifier

Mineral oil impregnated caupling condensers, power supply input condenser oil filled.

Chrome lite chassis base. $13 \frac{12^{\prime \prime}}{} \times 7^{58_{8}^{\prime \prime}} \times 1312^{\prime \prime}$ deep. Ship. wt. 26 lbs. All five tubes triode.

For 105/125V.50/60 cycle AC
$\$ 9950$

The Littlefone series of equipment are FM two-way radio telephone units operating at $25-50 \mathrm{Mc}$ or 152-174 Mc. Both the receiver and transmitter are crystal controlled and a total of 22 sub-miniature tubes are used. The complete portable model with antenna and telephone hand-set weighs only fourteen pounds and will operate for more than eight hours on the self-contained rechargeable storage batteries. Models for AC power line and $6 / 12$ volts

DC operation employ the same rf chassis as the portable units but an audio power output stage is added to drive the loud speaker. Adjustable squelch controls are available on all models. Power outputs 2 watts on $25-50 \mathrm{Mc}$ and 1 watt on $152-173 \mathrm{Mc}$. Lower powered dry battery models also available.

Hand Carry. from ${ }^{\$} \mathbf{3 2 4 9 5}$ to $\$ \mathbf{3 9 9 9 5}$

plus $\$ 17.12 \mathrm{~F} . \mathrm{E} . \mathrm{T}$. plus $\$ 21.93 \mathrm{~F} . \mathrm{E} . \mathrm{T}$.

Central Station... Same performance and specifications as Hand Carry unit. Audio-amplifier, providing one watt of audio for loud speaker. AC operated with power consumption of 35 watts.

Plugs in any $A C$ outlet of 117 V . Hallicrafters S-81 receivers may be used as extra stationary stations.
Central Station $\$ \mathbf{4 8 5 0 0}$
plus $\$ 23.00 \mathrm{~F}$. E.T.

hallicratters

finest SW and broadcast portable made

The Hallierafters "World-Wide," Model TW-1000, the finest short-wave and broadcast portable radio made. Superior Standard Broadeast covers 535 . 1620 ke plus seven other bands covering 1.7-3.9, 3.8-8.2, 9.2-10.4, 11.4-12.4, 14.6-15.7, and 17.318.3 Mcs , plus special marine weather band.

Sleek metal trim on smart leatherette cabinet. Full-view, easy to tune, overseas dial-a Hallierafters exclusive. World-wide short-wave radio map tells you what's on the air. Red indicator for easy
band identification.
Three antennas for maximum performance-builtin loop, 64" telescope "whip" antenna, and removable "Skyrider" that fastens to car, railroad or airplane windows - lets the "World-Wide" play anywhere. Simplificd controls include Dynamic Turret Tuner for accurate band selection. Five tubes plus rectifier. $105-125 \mathrm{~V} . A C$ or $D C$ or battery.

Model TW. 1000
$\$ 14995$

Hallicrafters plants, four of them, are the most modern in the entire field of electronics. Here skilled craftsmen on modern assembly lines produce the Hallicrafters equipment that is known for highest quality in 89 countries - that is first choice of 33
governments - that is by long odds the overwhelming choice of all of our own armed services. And, most exacting test of all, Hallicrafters is the choice of the most critical expert in the world - the American ham operator.

hallicratters
 the people

Companies are only as good as the people that work for them. Hallicrafters has, for years, been fortunate in the people that have made the company great, and have kept it that way. One thing makes them unusual-they bring an attitude and an interest to their jobs that other men reserve for their hobbies. Hallicrafters men are hams at hearl -and most of them are hams by license. Here's what Bill Halligan, Senior, says about his job:
"The radio ham market," expounds Bill Halligan, "today is the most challenging and the most thrilling in all radio. The ham is never fooled by expensive cabinets - he wants every nickel's worth of performance in the chassis. And he wants the absolute latest in circuit design. If your set is good, he'll praise it to other hams over the air; if it is not, he'll be even more vociferous in warning them away from it. In working with him and pioneering equipment for him, we feel we are building a background for future developments."

Ass't Communicatians Sales M $3^{\prime \prime}$.

For Years the Overwhelming Favorite with the World's Mest Discriminating Expert - The Americon Amateur r. .
For Years the Preducer of Mare Radio Commanications For the Armed Services than All Other Mariufacturers Combined . . .

Now Brings You

 lig with high ferequency circuitry litve grovided the experiance, the knowihow that hut gothe into these televiaion initruments. Here is a new concept of pigture
 Hallicreftes, there is a minimum ef ctift, inlevference-a musimum of power und diatance divvouring performance.

This is Hallicrafines falevition - shts se supprior, sa dqpondeble, that they ere guurantoed for a full ynor. See $\#$ Mallicrafters- you'll tee a difference fhat you'li apprecioth-ur a prive that you'lf oppreciate:

Warld Leader in Precision Communicotions Equipment

CAPACITORS

Frle (faloricaled phater) amit other dr: electrolylies. Plascapr phatic tobuhars. ceratmid frithousers. diac caramira
CONTR OLS
Midertrols mimglr- amd dasal comerntriar rarlbentrontral. wire wonnd constrols
POWER RHEOSTATS
50 ta Fill Whtt

RECTIFIERS

Magne-vinm ropprar sulfile atul sele-tintur rectificr tuche, revtifiar unwer supplies:

RESISTORS

Fiverd anmed atjumatior vitraots- ramamel ly ioms

SWITCHES

Circmit selrator and
"Hamland" pritchio jark - andipluys.
VARIABLE
inductance TUNERS

VIBRATORS

Vibralosp and Vibra.

Make Sure...

 Muke It mallory
 Ifrondurt for hong. mouble-free prerformane. They are hachent he seare of skillod deriyn and manufacturing experience.
EMallory alse ofiers you a wealhh of hedpful, up-to-date flerature and alsior on your terhnical problems. | Call on sour Wallory distributor whemerer you I med parte or infurmation. He is ready to serve you. | I

P. R. MALIORY \& CO., Inc., INDIANAPOLIS 6. INDIANA

35

J A M ⿷匚⿱乛龰己 M ALDEN

90921

SECONDARY FREQUENCY STANDARD

A precision frequency stondord for both laborotory and production uses，o diustoble oulput，provided of intervols of $10,25,100$ and $1005 . e$ ，with mag． nitude useful to 50 me ．Hormht amplifier with puned plate circuit ond pont）ange switch． 800 cyele modulotor with ponffontral switch．In oddi－ tion to oscillotors，myty itrotors，modulators and omplifier，o built－inctector with phone jock ond goin control is ingergutoted．Self－contained power supply．
Model 90505，whth rubes

ABSORPTION WAVEMETERS

The 90600 serie，of absorption wovemeters ore ovoilable in several styles ond mony different ronges．Most populor is kit of four units，covering ronge of 3.0 to 140 mc ．
Model 90600

GRID DIP METER

The No． 90651 MILLEN GRID DIP METER is compoet and completely self contoined．The AC power supply is of the＂fransformer＂Pype．The drum dial has seven calibrated uniform length scales from 1.5 MC to 300 MC with generous over lops plus an orbitrary scole for use with speciol opplicotion in－ ductors．Internal terminal strip permits battery operotion for ontenno measurement
No． 90651 ，with lube
Additional Inductors for lower Frequencies No． 46702 － 925 to 2000 KC No． 48703 － 500 to 1050 KC No．46704－325 10 600 KC No． $46705-220: 10$ 350 KC

LABORATORY SYNCHROSCOPES

Tha $5^{\prime \prime}$ Inberoiney sureheocopar arm avoilable with ond willout detector－video strips．
Model P．4．2，with tube
Modef P． 4 E－2，with rube

MINIATURE SYNCHROSCOPE

The compoet design of the No． 90952 ，meosuring only $71^{\prime \prime} \times 5 \frac{s}{/^{\prime \prime}} \times 13^{\prime \prime}$ ，ond weighing only 17 lbs，mokes avoilable for the first time o truly DESIGNED FOR APPLICATION＂lield service＂ Synchroscope．

No． 90952 with tubes

CATHODE RAY OSCILLOSCOPES

The No． 90902 ．No． 90903 and No． 90905 Rock Ponel Oscilloscopes，for two，three ond five inch tubes，respectively，ore inexpensive bosic units comprising power supply，brillioney ond center ing controls，saffiy feolupes mognetic shielding switches，etc．As a transmitter monitor，no oddi－ lionol equipment or occessories ore required．The well－known trapezoidal monitoring potterns are secured by feeding modulated corrier voltoge from a pickup loop directly to vertical plotes of the cothade ra，tube and audio modulating volt－ age io horizontal plotes．By the addition of such units os sweeps，pulse generators，amplifiers， servo sweeps，efc．，all of which can be con－ veniently and neotly canstructed on camponion rack panels，the original bosic＇scope unit moy be expanded to serve any conceivoble industrial or laboratory application．
No．9C902，less lubes
No．90903，less lubes
No． 90905 ，less rubes

SCOPE AMPLIFIER－SWEEP UNIT

Vertical and horizantal amplifiers olang with hord tube，saw loath sweep generotor．Complete with power supply mounted on a stondard $51 / 4^{\prime \prime}$ rack ponel．
No． 00921 wilh qutes．
REGULATED power supples A compoct，uncosed，regula whower supply， either for toble use in the fhatory or for in－ corporation os on integid hart of lorger equip． ments． 50 watts，with（1）lated voltage from 0 in 200 volts Model 90201 ．le phes

90952

J A M E \mathbb{S} M I L W E MALDEN. MASSACHUSETTS

0810

INSTRUMENT DIALS

The No. 10030 is on extremely sturdy instrument type indicator. Control shatt hos if to I cutio. Veeder type counter is direct reodling in 99 revo lutions and vernier scole permits reodinas to 1 port in 100 of o single revolution. Hos built-in diol lock ond $1 / 4^{\prime \prime}$ drive shoft coupling. Moy be used with multi-revolution tronsnitter controls, etc., or through aeor reduction machonism for coritul ch fractionol revalution copocitors, etc., in recpivers or loborotory instruments.
The No. 10035 illuminated ponel diol hos 12 to 1 ratio; size, $8^{1 / 2}$ ' $\times 61 / 2^{\prime \prime}$. Smoll No. 10039 hus 8 to 1 rotio; size, $4^{\prime \prime} \times 3^{1 / 4^{\prime \prime}}$. Both are of compoct mechonicol design, easy to mount and hove potally self-contoined mechonism, thus eliminotinn boek of ponel interference. Provision tor mounting ond marking auxiliary controls, such as switches, potentiometers, efc., provided on the No. 10035 Stundurd finish, either size, flot black art metol.
No. 10039
No. 10035
No. 10030

DIALS AND KNOBS

Just o few of the many stock types of smoll diols and knobs are illustrated herewith. 10007 is $15 / 1$ diompter, 10009 is $21 / 2^{\prime \prime}$ and 10008 is $31 / 2^{\prime \prime}$.
No. 10007
No. 10008
No. 10009
No. 10021
No. 10065

PANEL MARKING TRANSFERS

The ponel morking tronsters have $1 / \mathbf{y}^{\prime \prime}$ block letters. Speriol solution furnished. Must not be used with woter. Equally sotisfactory on smooth or wrinkle finished ponels or chossis. Ample supply of every populor word or morking required for omoleur or commerciol equipment.
No. 59001 , white letters

HIGH FREQUENCY USANSMITTER

The No. 90810 crystol cant onsmitter provides

 75 wott output (higher gater mov be oblained by the use of forced coolinhto the 20, 10-11, 6 and 2 meler omoleur bate. Provisions ors muidu for quieh band, hify (h) imeans of the new $4 \dot{b} u \overline{0} 0$ sefie. high treatody
No. Ninalii. Alube und a, atols.

HIGH FREQUENCY RF AMPLIFIER
A ph, licolly smoll unit copable of o power output of 70 to 85 wotts on 'phone or 87 to 110 watts on C - W on $20,15,11,10,6$ or 2 meter omateur bands Pravision is made for quick bond shift by meams of the nem 110.18000 :aria VHF plum-In coils. The No. 90811 unit uses either on $829 . \mathrm{B}$ or 3 E29.
No. 90811 with 10 meter bund coils, less tube.

HIGH VOLTAGE POWER SUPPLY

The No. 90281 high volto ge power supply hos o

 d.c. outpu' of 700 volts, with moximum current of 250 mo . In oddision, u.c. filoment power of 6.3 volts of 4 umperes is olso avaloble so thot this power supply is on ideol unir for use with tronsmitters, such as the Millen No. 90800, os well os general lobaspery purnne. The oner supply uses No 816 rectifers and nas a wo section sillo No 16 rectifipes and has a wo section pi liller with 10 henra General Electric chokes and o 2-2-10 mfd . bonk of 1 UOU voit Gellerol Elechic F, rans copocitors. The ponel is stondord $834^{\prime \prime} \times 19^{\prime \prime}$ rock mounting.No. 90281 , less fubes.

RF POWER AMPLIFIER

Thi, 500 wotl omplifier moy be used as the bosis of a high power amoteur tronsmitter or as a means for increasing the power output of an existing tronsmitter. As shipped from the foctory, the No. 90881 RF power omplifier is wired for use with the populor RCA or G.E. "812" pype fubes, but odequote instructions ore furnished for reodiusting for operotion with such other popular amoteur style tronsmitting tubes as Toylor TZ40, Eimac 35T, etc. The omplifier is of unusuolly sturdy mechanical construction, on a $101 / 2^{\prime}$ relay rock ponel. Plua in inductors are furnished for operotion on 10,20. 40 or 80 meter omateur bonds. The stondord Millen No. 90800 exciter unit is an ideal driver for the new No 90881 RF power omplifier
No. 90881 , with one set of coils, but less Iubes.

90281

$\square \sqrt{a}$
 $\sqrt{9} \sqrt{\square} \sqrt{n}$ $\left\{\begin{array}{l}5 \pi / 2 \\ y_{2}^{2 \pi} 5\end{array}\right.$
 $M \mathbb{M} \mathbb{E} \mathbb{E}$ MALDEN •MASSACHUSETTS

15011

04000 and 11000 SERIES TRANSMITTING CONDENSERS

A new member of the "Designed for Application" series of transmitting variable air capacitors is the 04000 series with peak voltage ratings of 3000,6000 , and 9000 volts. Right angle drive, 1-1 ratio. Adjustable drive shaft angle for either vertical or sloping panels. Sturdy construction, thick, roundedged, polished aluminum plates with $13 / 4^{\prime}$ radius. Constant impedance, heavy current, multiple finger rotor conlactor of new design. Available in all normal capacities.
The 11000 series has 161 ratio center drive and fixed angle drive shaft.

Code	Volis	Capacity	Price
11035	3000	35	$\$$
11050	3000	50	
11070	3000	70	
04050	6000	50	
04060	9000	60	
04100	6000	90	
04200	3000	205	

12000 and 16000 SERIES

 TRANSMITTING CONDENSERSRigid heavy channeled aluminum end plates. Isolantite insulation, polished or plain edges. One piece rotor contast spring and connec. tion lug. Compact, easy to mount with connector lugs in convenient locations. Same plate sizes as 11000 series above
The 16000 series has same plate sizes as 04000 series. Also has constant impedance, heavy current, multiple finger rotor contastor of new design. Both 12000 and 16000 series available in single and double sections and many capacities and plate spacing.

THE 28000-29000 SERIES VARIABLE AIR CAPACITORS

"Designed for Application," double bearings, steatite end plates, cadmium or silver plated brass plates. Single or double section $.022^{\prime \prime}$ or $.066^{\prime \prime}$ air gap. End plate size: $1916^{\prime \prime} \times 1116^{\prime \prime}$. Rotor plate radius: $3 / 4^{\prime \prime}$ Shaft lock, rear shaft extension, special mounting brockets, etc., to meet your requirements. The 28000 series has semi-circular rotor plate shape. The 29000 series has approximately straight frequency line rotor plate shape. Prices quoted on request. Many stock sizes.

NEUTRALIZING CAPACITOR

Designed originally for use in our own No. 90881 Power Amplifier, the No. 15011 disc neutralizing copacitor has such unique feafures as rigid channel frame, horizontal or vertical mounting, fine thread over-size lead screw with stop to prevent shorting and rotor lock. Heavy rounded-edged polished aluminum plates are $2^{\prime \prime}$ diameter. Glazed Steatite insulation.
No. 15011

I.F. TRANSFORMERS

The Millen "Designed for Application" line of I.F. transformers includes air condenser tuned, and permeability tuned types for all applications. Standard stock units are for 453,1600 and 5000 kc. B.F.O. also available.

JAMESEMMRIEN

TUBE SOCKETS

DESIGNED FOR APPLICATION

MODERN SOCKETS for MODERN TUBES! Lony Flashover path to chassis permits use with tronsmitting fubes, 866 rectifiers, etc. Long leakage path between contacts. Contacts are type proven by hundreds of millions already in government, commercial and broadcast service, to be extremely dependable. Sockets may be mounted either with or without metal flange. Mounts in standard size chassis hale. All types have barrier be. tween contacts and chassis. All but actal and crystal sockets olso have barriers between individual cantacts in addition.
The No. 33888 shield is for use with the 33008 octal socket. By its use, the electrostatic isolation of the grid and plate circuits of single-ended metal tubes can be increased ta secure greater stability and gain. The 33087 tube clamp is easy to use, easy to install, effective In function. Available in special sizes far all types of tubes. Single hole mounting. Spring steel, cadmium plated.
Cavity Socket Contoct Discs, 33446 are for use with the "Lighthouse" ultra high frequency tube. This set consists of three different size unhardened beryllium copper multifinger contact discs. Heat treating inslrucfions forwarded with each kit for hardening after spinning or forming to frequency requirements.

Voltage regulator dual contact bayonet socket, 33991 black Bakelite insulation and 33992 with low loss high leakage mica filled Bakelite insulation.
No. 33004
No. 33005 .
No. 33006 .
No. 33007
No. 33008.
No. 33888.
No. 33087
No. 33002
No. 33102
No. 33202.
No. 33302
No. 33446
No. 33991
No. 33992

* For set of 3 . Sinale discs $\$$ eact.

RF CHOKES

Many have copled, few have equalled, and none hicve surpassed the genuine original design Millen Designed for Application series of midget RF Chokes. The more popular styles now in constant production are illustrated herewith. Special styles and variations to meet unusual requirements quickly furnished.
General Specifications: $2.5 \mathrm{mH}, 250 \mathrm{~mA}$ for types $34100,34101,34102,34103$. 34104 , and $1 \mathrm{mH}, 300 \mathrm{~mA}$ for types 34105 , 34106, $34107,34108,34109$.
No. 34100
\$
No. 34101
No. 34102
No. 34103
No. 34104.

CERAMIC PLATE OR GRID CAPS

Soldering lug and contact one-piece. Lug ears annealed and solder dipped to facilitate easy combination "mechanical plus soldered" connection of cable
No. 36001-9 $16^{\prime \prime}$
No. $36002-3 / 8^{\prime}$
No. 36004 - $1 / 4^{\prime \prime}$

SNAP LOCK PLATE CAP

For Mobile, Industrial and other applications where tighter than normal grip with multiple finger 360 low resistance contact is required. Contact self-locking when cap is pressed into position. Insulated snap button af top releases contact grip for easy removal without damage to tube,
No. 36011-9 16' No. 36012 - $3 / 8^{\prime \prime}$

SAFETY TERMINAL

Combination high voltage terminal and thrubushing Tapered contact pin fits firmly into conical socket providing large area, low resistance connection. Pin is swivel mounted in cap to prevent twisting of lead wire.
No. 37001, Black or Red.

No. 37501, Low loss.

TERMINAL STRIP

A sturdy four-terminal strip of molded black Textolite. Barriers between contacts. "Non turning" studs, threaded 832 each end. No. 37104

POSTS, PLATES and PLUGS

Designed for Application! Compact, easy to use. Made in black and red regular bakelite as well as low loss brown mica filled bakelite or steatite for R.F. uses. Posts have captive head.
No. 37202 Plates (pr.) \$
No. 37212 Plugs.
No. 37222 Posts (pr.)

STEATITE TERMINAL STRIPS

Terminal and lug are one piece, Lugs are Navy turret lype and are free floaling so as nct to strain steatite during wide temperature variations. Easy to mount with series of round holes for integral chassis bushings.
No. 37302
No. 37303
No. 37304

No. 37305
No. 37306.

MIDGET COIL FORMS

Made of low loss mica filled brown bakelite. Guide funnel makes for easy threading of leads through pins.
No. 45000.
No. 45004
No. 45005 .

TUNABLE COIL FORM

Standard octal base of low loss mica-filled bakelite, polystyrene $1 / 2^{\prime \prime}$ diameter coil form, heavy aluminum shield, iron funing slug of high frequency type, suitable for use up to 35 mc . Adjusting screw protrudes through center hole of standard octal socket.
No. 74001 , with iron core \$
No. $7: \div 002$, less iron core.

Midget Absorption Frequency Meters

Many amateurs and experimenters do not realize that one of the most useful "tools" of the commercial transmitter designer is a series of very small absorption type frequency meters. These handy instruments can be poked into small shield compartments, coil cans, corners of chassis, etc., to check harmonics; parasitics; oscillator-doubler, etc., tank tuning; and a host of other such applications. Quickly enables the design engineer to find out what is really "going on" in a circuit.

Types 90605 thru 90609 are extremely small and designed primarily for engineering laboratory use where they
will be handled with reasonable care. The most useful combination being the group of four under code No. 90600 and covering the total range of from 3.0 to 140 megacycles. When purchased in sets of four under code No. 90600 a convenient carrying and storage case is included. Series 90601 are slightly larger and very much more rugged. They are further protected by a contour fitting transparent polystyrene case to protect against damage and dirt. This latter series is designed primarily for field use and are not quite as convenient for laboratory use as the 90605 thru 90608 types. All types have dials directly calibruted in frequency.

Code	Description	Nef Price
90604	Ronge 160 to 210 mc .	8
90605	Ronge 3.0 to 10 mc .	
90606	Ronge 9.0 to 23 mc .	
90607	Ronge 23 to 60 mc .	
90608	Ronge 50 to 140 mc .	
90609	Ronge 130 to 170 mc .	
90610	Ronge 105 to 150 mc .	
90619	Ronge 350 to 1000 kc . - Neon Indicotor	
90620	Ronge 150 to 350 kc . - Neon Indicotor	
90625	Ronge 2 to 6 ms.- Neon Indicotor	
90626	Ronge 5.5 to 15 mc .-Neon Indicolor	
$\begin{aligned} & 90800 \\ & 90601 \end{aligned}$	Complete set of 90605 thru 90608, in cose Complete set Field type Frequency Meters in metol corrying cose	

DISTRICT SALES OFFICES

JAMES MILLEN
 MAIN OFFICE
 739 Boylsion Streel
 34th \&roadwoy Aves.

SAN FRANCISCO
Moulthrop \& Hunter 228 Ninth St.
CHICAGO
G. G. Ryan

549 W. Woshington Blvd.
BOSTON
Harry Gerber

DALLAS
Jook Yound
1431 Pleasont Grove Dr.
LOS ANGELES
W. Bert Knight 10373 W. Pico Blvd.

KANSAS CITY
J. O. Schmitz

GREENSBORO, N. C.
Alcheson $\&$ Adoms
P.O. Box 2158

MINNEAPOLIS
Ellioft Equipment Co.
712 6th Avenue South

CANADA

H. R. Groy 44 Danforth Reod Toronto

NDIANAPOLIS
V. MocNabb

909 E. Westfiald Blvd.

Where Dependability countsUse OHMロ『!

RHFOSTATS

Insure permanently smooth, close conirol. All-ceromic vitreous enameled: $25,50,75,100,150,225,300$, 500,750 , and 1000 -watl sizes.

"BROWN DEVIL" RESISTORS

Sturdy, wire-waund, vitreous-enameled resistors for voltage dropping, bias units, bleeders, etc. In 5, 10, and 20 -watt sizes; volues fram 0.4 to 100,000 ohms.

"LITTLE DEVIL" RESISTORS

Tiny, molded, composition resistarseoch marked with resistance and waltage $-1 / 2,1$, and 2 -watt sizes, $\pm 10 \%$ or $\pm 5 \%$ tol. 10 Ohms ta 22 megohms.

FIXED RESISTORS

Resistance wire is lacked in place and protected by virreous enomel. Stock sizes $-25,50,100,160$, and 200 wotts; volues 1 to 250,000 ohms.

ADJUSTABLE RESISTORS

Vitreous enameled. Quickiy odjustable to the value needed. Adjustable lugs can be oftoched for multi-top resistors and valtage dividers. Sizes 10 ta 200 Watts, to 100,000 ohms.

R. F. CHOKES

Single-layer-wound on law power factor cares, with maisture proof coating. Seven stock sizes, 3 la 520 mc . Two units roted 600 mo , others 1000 ma.

TAP SWITCHES

Compact, high-current rotory selectors far o-c use. All ceramic. Self. cleaning silver-to-silver contocts. Rated at $10,15,25,50$, and 100 amperes.

PRECISION RESISTORS

Three types ovailoble: vitreous-enomeled, vacuum-impregnated, or glasssealed. Tolerance $\pm 1 \%$, in $1 / 2$ and 1 -watt sizes, from 0.1 to $2,000,000$ ohms.

DUMMY ANTENNA

These rugged, vitreous-enomeled units ore practically nonreactive within their recommended frequency range. In 100 and 250 -wall sizes, 52 to 600 ohms, $\pm 5 \%$.

Write for Stock Catalog

OHMITE MANUFACTURING COMPANY
4822 Flournoy St., Chicago 44, Illinois

NEW Preathket "Q" METER KIT

- A HICH QUALITY Q METER AT LOW COSt.

MODEL QM-1 SHIPPING
 53950

Measures O and
dutance of coils.

Measures O and ea pacity of copocitors.

- first Q METER within the

 price range of all.- Read Q's of 0-500 di rectly on calibrated scale.
- Stable oscillator supplies R.F. frequencies of 150 ks to 18 megacycles.
- Calibrated capacitor with range of 40 mmf to 450 mmf with vernier of $\pm 3 \mathrm{mmf}$.
- Simple, easy operation.
- Can be used to measure small inductances or capacitors.
- Measures Q of condensers, RF resistance and distributed copacity of coils.
- Measures capacity by

Another outstanding example of progressive MEATH. KIT enginecring. Now a highly desirable Q MFTER "ithin the price range of all laboratories, sehools and experimenters. No longer is it necessary to deny yourself the many medurement advantages offered by this instrument

Use the new HIEATHKIT O METER tor the following simple basic measurements: capacity by substiturion, eapacity by resonance, inductance by resonance and Q at the OPERATING frequency all can be read on the calbhrated sales. The method used to obtain intormation regarding the (O of condensers. RF resistance, distributed capacaty in coils, etc. is only slightly more involved. In the HEATHKIC Q MEIER, the generated RF signal is coubled through a cathode follower and injested across a low impedance condenser which is included in the resonant circuit under test. Large $\frac{11}{2} 2^{\prime \prime} 50$ microampere Simpson meter reats Q directly. The resonating condenser and vernicr condenser are calibrated in mmf for substitution method capacity tests. The resonating condenser is also calibrated in effective capacity for resonance tests. The inductance calibration serves for rapid determination of the approximate inductance of a coil. The HEATHKIT Q METER has a generator frequency range of 150 kc to 18 s megacycles. Vernicr capacity covers $\ddagger 3 \mathrm{mmt}$ and the resonating condenser is calibrated from to mmito i50 mmf actual capacity or 40 mmf of 350 mmt effective capacity. Meter reads Q directly up to 250. Higher and lower tull scale readings can be obtained by varying the injection voltage levels.

The entire kit consists of $12 \mathrm{AT}^{\top}, 6 \mathrm{AL}, 6 \mathrm{Ci}, \mathrm{OD} 3$ and 6 X 5 tubes, 50 microampere Simpson meter, power transformer, cabinet amd all other parts necessary for construction as well as inseructions for assembling, testing and operation of the completed instrument.

- Slanted panel for convenient operation.

Heathkit DECADE RESISTANCE KIT

The JiEATHKIT DECADF: RESISTANC, KIT is widely used by schools, experimenters and laboratories because of the extremely wide resistance range offered and the useful, dependable service provided. The DECADF consists of 5 rotary 2 deck ceramic wafer switches with silver plated contacts and twenty 1 'ir ptecision resistors in a circuit which provides the resistance range of 1 ohm to 99.999 ohms in । ohm steps. The HEATHKIT DECADE KESISTANCE KIT is simple to construct and is housed in a beautiful polished birch cabinet with an attractise panel. The DECADE will furnish ycats of accurate trouble-free service
Individual decade sections of above can be purchased separately for special applications.

NEW \#eathkit DECADE CONDENSER KIT

Extremely useful in all experimental and design work such as determination of condenser values tor: compensating networks, filters, bridge impedanees, runed circuirs, etc. Uses all precinion silver mica condensers within $\pm 1 \%$ acturacy. Values run in three decales from 100 MMFD to 0.111 MIF) in steps of 100 MMFD. Smooth acting, ftositive detent, highest quality ceramic wafer switches make all capacitor values easy to set up and keep losses io a minimum. Low loss dielectric termina! board mounes on outside of panel for easy cleaning. Heatakit binding posts accommodate a wide variety of test leads. Comes complete with all parts, including polished birch cabinet.
Individual decade sections of above can be purchased separately.

MODEL DC. 1 SHIPPING 57550

NEW Preadhbet OSCILIOSCOPE KII

- NEW WIDE BAND VERTICAL AMPLIFIER ± 2 DB 10 CYCLES TO 1 MC.
 cobinet opening provisions for direct connections 10 deflecting plates.
- Newly siyled formed and ventilated aluminum cabinet. - Wide band swecp generator 15 eycles to over 100 ke . Will synchronize with 5 megacycle signal.
- 10 tube circuit featuring push pull operation of vertical and antal amplifier
- Internal synchronization on either positive or nequtive
peaks.
- Reproduces faithfully the frant and back porches of TV sync pulses. Excellent square wave reproduction to aver 100 k
- Optional Intensifier kif available for 2200 volt operation.
decided athanage to' TV service men Permits clear
 accelerating voltages. A handome, entilated cabinet with vomoth rounded corners and a snug hatting drawn panel add to the smarly sted profewional appearance. Longer jife is assured through cooler inverument operatwon. push pull output seages in both vertical and horizontal amplifiers for balanced deflection of the spot. All of the many fine features of the pretious model have been retanced. Rear cabinet access to terminal board for direct manual for asscinbly and operation of the inverument inctuded

NEw Heathkit
 VOLTAGE CALIBRATOR KIT

MODEL VC.I
SHIPPING
WT. 5 LBS
\$9.50

Ise the If Cathbit Vohtuge C. measure peak-es-peak TV ent plex waseshapre. TV manutactuper's specitheations indicate corfect peak-th-peak whatges
and this kit will permit making

A big help "o engineers in cireuit wark. Makes Deak-to- peak volage meanurements of complex weateshapes of all hands. Fat
 The Voltage (alibrator can remain connectest on gour oseiltes) scope at all times for instant use, "Signal" pasition connects signal under study directy thraugh calibrator and into seape input citruit A uonderfal sape. .ta

Heathkit ELECTRONIC SWITCH KIT

A few dollats spent firs this accessury will mensurahly. An electronic switich will pleations for sou The S-2 allow Tu SIGNAIS to be observed at the SAME Tadt this imprortant feature allows yous to inmediately spor phase shiff, dip ping, distortion. cec. The twes signals un separated tor individual study. Each signad input has an individual gain coneral tur properly midusting supe trace pat-
terns, Has buth coarse and fine trectuency controls for adjusting swith hing rime Multivihrator swieching frequency is from lews than 10 cps to over 2000 eps in three overlapping ranges, Kit comes complete including 5 tubes. power erans(armer, all somatenk. instruction manaly

Refisitin VOLTMETER KIT

- NEW 1½ VOLT RANGE ON 1953 VIVM.

MODEL V-6 SHIPPING wr., 7 Les.

- New H_{2} volt low range gives over $2^{\prime \prime}$ of scale per volt instead of less than 3,4 " found on 5 volt range type.
- Increased accuracy due to expanded scales.
- New 1500 volt DC high range gives 50% greater coverage. - Seven ranges in all. $11 \frac{2}{2} 5$ 15, $50,150,500$ and 1500 volts only).
- Pro
- Provides proper service ranges 150 volts for $A C$ DC work and 500 volts for AC type
- High input impedance, megohms minimizes circuit loading.
- Variety of accessory probe kits avaitable.
- 1°. precision resistors in multiplier circuits.
- 200 microampere Simpson
- Center scale zero adjust.
- Transformer aperated.
- Test leads included.
- New cabinet styling.
- Large, clearly marked meter scales indicate ohms, $A C$ volts $D C$ volis and DB.

The 1953 Heathkit V. 6 VTVM has improved ranges! The lowcst range has been moved way down to 1.5V tull scelle. This give, $312^{2 r}$ of actual seale length for the 1.5 V
 make your low level measurements faster and with getater accuracs.
And the upper range has been mowed up. Kindings up io 15011 DC can be readly made with nes. improved for execnledus reading up to 1000 V on AC . Higher ranges for extended use-
Bow sereical chassis mounting gises added chassis
 space tur really caty "iring- no sight corners to uorry Simpion 200 microampere meter movement combuncd with 1 , i precision resistors in muleiplier circuit insure highly aceurate and denendable readings. -a sotal of cesen tanges for contentent securse reading-500V.1500V. (1000 V max. reading on AC)
 venient multiples of 10 urth no kips. Has Db scale in red tor casy indentification. . An . styled. fornied. compate rabinet with rounded edger and crackle finish is truly mandsome Comprehensive, decailed instruction manual with step-by-step instructions, hgures, fictorials, etc. makes assembly a sinch.

	Freathkit 30,000 V. D.C. PROBEKIt 	

NEW \#eathkit BATTERY TESTER KIT

The new Heathkit Burtery Tester measures all types of dry batteries beeween $1{ }^{1} 2$ volts and 150 voles under actual load conditions. Readings are made directly on a three-color GOOD-W'EAK-REPLACE scale that your customers can readily understand. Operation is extremely simple and mercly requires that the leads be conncuted to the hattery under test. Only one control to adjust in addition to a panel swiech for A or B battery sypes.

The Heathkit Battery Tester fea. turcs compact assembly. An accurate meter movement and wire wound control menont in the portable, rugzed plastic case.
Use the BT-1 to check portable radio batteries. hearing aid batteries, lantern batteries and photo flash gun hatteries.

\#eathkit AC VACUUM TUBE VOLTMETER KIT

A ne ${ }^{\prime}$ AC VTVal that makes possible those sensitive AC measurements required by laboratories, audio enthusiasts and experimenters. Ten full scale ranges of .01 . .03, 1, 3, 1, $, 2,10.30$. 100 and 300 volts RMS. 10 DB ranges from - 52 to +52 DB . Irequency response within 1 DB trom 20 cycles to 50 kc . Simpson 200 mi croampere meter with large plainly marked meter scales. Precision multiplier resistors. Two amplitier stages using miniarure tubes. A unique bridge rectifier meter circuir and a clean layout of parts. Order the AV-2 today and become acquainted with the interesting possibilities offered by this instrument

MODEL AV. 2
SHIPPING
WT. 5 LBS.
\$2950

The CIEATCI

NEW FHeathait GRID DIP METER KIT

- CONVENIENT ONE HAND OPERATION.

MODEL GD-1 SHIPPING WT. 41 BS.
Complete unil eavil, with one hand.

- New GRID DIP METER with assembled calibrated coils.
- Uses quality Simpson 500 microampere meter.
- One hand operation, extremely compact. Only $2^{1} z^{\prime \prime}$ wide by $3^{* *}$ high by 7^{*} long. - Variable meter sensitivity contral.
- Uses newest type 6AF4 high frequency triode in a Colpitis oscillatar circuit.
- Continuous coverage from 2 megacycles to over 250 megacycles in 6 ranges. - Head phone monitoring jack.
- AC power transformer operated for maximum sofety.

Here is the GRID DIP METER KIT you have been aking for. This new HEATHKIT inserumene is compact, highly sensitive and easy' to use: Housed in a handsome formed aluminum cabinct-rounded corners-durable owen baked finish on pancl and cabinct The entire instrumene c.tn be e.ssil; held and operated in one h.ind tuaing tceomplished with the thumb whed drive. This cxecllent design ferure leaves the oxher hand entirely free for making circuit adjustmenss. The intrument with mans applications - with nscillator energized. use it for finding the reson.int frequences of tuned circuits. kutating parasisics. determining characteristes of filter cir; cuits, roughly tuning transmitter stages with power off. and neutralizing tranmmeters. ('setul in TV and radio repair work for alignment of traps, filters. If stages. feaking and compensation networks within the 2 to 250 megacycle fange. W'ith the oscillator not energized. the instrunent acts an on absorption wase meter and indicates the frequency of radiating perwer eources. Li cates spurious incilhations. as a relative inditation of power in various eransmiterer stages. etc. Phone j.usk permiss monitoring of Aal transmirter for derermination of radiared hum, audio cuallirs. ete. Head phones not included). (omplete kit includes plug-in coils, tube, all necessary parts .tas ect..iled assembly and inseruction manual.

BRIDGE KIT

MODEL IB-IB
SHIPPING
WT. 15 LBS.

$\$ 6950$

The heathelt imped. ANCE BRIDCEE is especially uscful in calucational training uscful in educational traning programs. induserial libborato. ries and for experimental work.
["e it for me.suring $A C$ and DC. revistance value of resistors. determination of condener capacizance and dassipution factor, fonding eonil in luctince and seorage factor. electrical measurenents work. etc. Quality (umponemts GR biof cocle hummer. GR main control. Millory ceramic Water silver phited watate wirches. I Pretision fecistors. etc. The basic circuit is a calt powered. \& apm hrialge (boite of Wheastone. (apacitance comparisen. Maswell or Haty bridge circuits. Rowintate trom 10 milliohns (0) 10 megohm. (apatrance 10 namt ro 100 mtd. Induetance 16 micohenry

 en electric.t menturemene. The HEATHRIT INPIDAN(I: BRIDGI:

Heathkit HANDITESTER KIT

The HFATHKIT Model M-I HANIDTESTER fultills requireneents for a portable wolt ohns millammerer. This kit fearures preciaion ! ${ }^{\text {f }}$ resistors. 3 deck switch for trouble free mounting of parts, specially devigned battefy bracket. smoxtio acting olims adijuse conntrol, heauriful molded toakelite case and a $4(0)$ microampere meter movement. 5 convenient $A C$ and $D C$ voltage ranges as follows: 10 - $30-300$. 10000 - 50100 voles. Ohms ranges (1) E000 and 0. 300,000 . DC milliampere ranges 0.10 milliamperes and 0-100 millam peres. The insetumene is easily wembled from complete instructions and pietorial dingrams. Tent leads are included. Carry the HIFATHKIT M-I HANDITESTER in oour mond box att all times for thase simple kobs and climinate that exsta trip for addational sesting equipment.

MODEL M-1 SHIPPING WT. 3 LBS.
$\$ 13^{50}$.

zuHtec AUDIO GENERATOR KIT

RANGE EXTENDED TO 1 MEGACYCIE

Low impedance output High voltage output

- Improved design - new
low price.
- Frequency coverage in five ranges from 20 cycles per second to 1 megacycle. - Response flat 1 DB from 20 cycles to 400 kilocycles. Down 3 DB at 600 kilocycles. Down only 8 DB af 1 megacycle.
- Five calibrafed output voltage ranges, continuously variable $1 \mathrm{mv}, 10 \mathrm{mv}, 100$ $\mathrm{mv}, 1 \mathrm{v}, 10 \mathrm{v}$
- Low impedance output circuit. 600 ohms.
- Distortion less than .4 of 1 \% from 100 cycles per second through the audible range.
- New HEATHKIT universal type binding posts.
- Durable infra-red boked enamel panel.
- Transformer operated for safe operation
- Sturdy, ventilated steel cabinet.

A new Audio Generator with features heretofore found in only the noost expensive generators. Such features as complete

Sine wave output from 20 eycles to 1 megacycle.

MODEL AG-8

 coverage from 20 cycles to 1 Mc - response hat ± 1 db fron 20 cydes to 400 Kc . down 3 db at 600 Kc and down only© db at 1 Mc
And it has calibrated output . Calibrated continuously variable and step attenuator output controls allow you to casily set calibrated output voltage. Moreover, distortion is less than it of $1 \because$ from 100 (ps through the audible range

Oscillator section consists of a two stage resistance coupled amplifice ($65 \mathrm{~J}^{-}$and 6 Ak 6) urilizing borh positive and negative feedback for oscillator operation and reduction of distortion.
 oscillator from wariations in koad and presents a low impedance ourput (600) (Ohms). Power supply is transformer operated and utilizes 6×5 rectifier with 2 sections of RC filtering.

An unbeatable dollar value - for here is an dudio generator with wide frequency coverage. excellent frequency response, stepped and continuously variable calibrated output, high signal level, low impedance output, and low inherent distortion.

NEW Heathkit
 AUDIO OSCILLATOR KIT

A new Audin Oscillator with

both sine and square wate cove age frons 20 50 20.000 cyelen. An instrument designed ios com pletely fultill the necals ot the rudio engineer and enthundast Has numerous adsabager sueh as high level output upe lol $10 \mathrm{~V}^{\circ}$ ob tainable a rows the entire range) desorsion tess than or and bes mpedance ourput he use of a thermistor in the second inctut her stage tor keeping the output eshentially
MODEL AO. 1 SHIPPING WT. 14 LBS.
$\$ 2 \longdiv { 5 0 }$
flat across the entire fanpe
A carthede coupleal elipper circuir produces
 - precision resistors in rante multiplier circuit tor sreatere accurack
Y'oull like the operation of this fine new

Heathkit square wave GENERATOR KIT

IEW Fiearksts ISUAL - AURAL

 SIGNAL TRACER KIT

 SIGNAL TRACER KIT}

- NEW NOISE LOCATOR AND WATMMETER CIRCUITS.

(4)

- Permis visual signal observation as well as aural oper-
ation. - Iremendous RF channel sensitivity. Adequate for octual signal defection of receiver input.
- Separate high gain RF and low gain audio channels.
- A unique and useful noise ocater circuit
- Built-in calibrated watt. - Two - Iwo separate shielded probes for RF and audio appli-- Additional test leads supplied.
- Substitution test speaker and output transformer eliminates necessity for speaker removal in service work.
- Utility amplifier. Check record changers, tuners, microphones, instrument pickups, etc. - VTVM and Scope panel terminals. circuit.

NEW \#eathkit CONDENSER CHECKER KIT

model c. 3 shipping WT. 7 LBS.

s1950

Announcing the new improved Model C. 3 HEATHKIT (ON DENSER housed in a new smartly styled professional ap pearing cabinct featuring rounded corners and snug fitting drawn rancl. Adequate provisions for ventilation insures longer instrument life through coor and resistor, value the all to accurately measure those unknown condenser and resistor values. All reading of condenscri and resistorn are read directly on the calibrated scales. Range resistance measurements can be made from 100 ohms to 5 megohm. a leakuge rest with a choice of 5 DC pharizing voltages will quickly indicate condenser operating qualay under actual volrage load conditums. The spring return leakage test switch automatically discharges the condenser under test and diminates shock hazard. An electran ray beam indicator tube is used in a new leakage test circuit for added senvitivity. The instru. ment is transformer operated for safety and wall prove an extremcly wel come addition to your shap equipment. The kit is furnished complete uith all neesesafy parts, text leads and includes a step by step deraled converuc tion manual for assembly and operation.

\#eathkit tVallonment GENERATOR KIT

MODEL TS. 2 5HIPPING WT. 20 LBS
$\$ 39{ }^{50}$.

Here is an excellent TV AIIGNMENT GENERA. TOR designed to do TV service work quickly, easily
 and properly. The Model TS. 2 when used in conjunc. 1ion with ase Oscilloscope rrosvides a means of correcty uligning TV receivers. The instrument furnishes a frequency modu lated signal conering in 2 bands the range of 10 to 90 megacycles and (i) (t) 2 i() megacycles. An absorption tipe frequency marker covers from 20 to ${ }^{75}$ mesacycles in 2 ranges therctore yru have a simple. cunvenient means of checking If:'s independent of oscillator calibral cunvenuent means of checking if sindepenuent of oscillator calibral
tion. Sweer width is variable from 10 to 12 negacyeles. Other excellent thon. Sweet with is varlable from oto in megacycles. Other excclient - boeb step and continuously variable attentuation for setting the output signal to the desired level-a convenient stand by switch and blanking tor establishing a single trace with a base reference level. Make yuar work casicr, save time and repair with confidence Order your HEATHKIT TV ALIGNMENT GENERATOR now

Freathket TUBE CHECKER KIT

MODEL TC. 1 SHIPPING WT. 12 LBS.

Checks 7, 9, 9 prong tuber,octals, lostals, 7 and 9 prong minioture 5 prong Hytrons, pilot lights.

Chocks for opens, shorts. omission, filament and filament tap continuity.

- Beautiful counter type birch cabinet.
- 41/2" simpson 3 color meter. - Simplified setup proce.
- Bure. Buit-in gear driven roll chart
- Checks emission, shorted elements, open elements and continuity.
- Complete protection against obsolescence.
- Sockets for every mod-
ern tube.
- Blank for new types.
- Individual element
switches
- Contact type pilot light test socket.
- Line adjust control

PORTABLE TUBE CHECKER KIT MODEL IC-IP
Same as TCF-1 except supplied with polished birch cabinet (with er eype cabinet. Sheppine weight 14 lbs................ $\mathbf{\$ 3 4 . 5 0}$
No. 365 Polished Birch Tube Wecker (abinct only. $\$ \mathbf{\$ 7 . 5 0}$
Weight y 16 s .

With the HEATHKIT TC-I TUBE CHECKER rest all types of tubes commonly encountered in AM-FM and TV receiver circuits. Test setup procedure is simplifed. rapid and flexible. Tube qualiey is read directly a a beatitul 412 " Simpson three color BAD - - GOOD scale that your customers an readily underseand. Pancl sackets acommodate \&. 5, 6 and 7 prong tubes, octals, loctals, ${ }^{7}$ and Is prong miniatures. 5 prong Hytrons, a blank socker for new tuhes and a contace type socket for quick checking of pilot lights. Wuilt-in gear driven roll chare tor inseant reference. Neon short indicator, individual three position lever switech for each zube element. spring return test swith. line set conerol to compensate for supply veltage variations. At this low price. no service man need be without the advantages offered by the HEATHKIT TUBE CHECKER
\#eathkit iv picture tube TEST ADAPTER Tis your HEATHKIT TIBE ChEGKER With this new T" TEST ADAPTER to determine picture tube quality. Check for independent of TV: pouer supply. of standard whe socher. \& fece of anctor and such-: cond Quichly prowe IV pic $\begin{array}{ll}\text { Quichly prowe TV pic- } & \text { No, } 355 \\ \text { rure rube condition to Ship, W\%, } \$ 450\end{array}$ tomer.

Heathkit RESISTANCE SUBSTITUTION BOX KIT

MODEL RS.
SHIPPING
WT. 3 LBS.
S5.

NEW HEATHKIT RESISTANCE SUBSTITU. TION BOX KIT provides switch sclection of any single one of 36 RTMA 1 watt 10°, tandard value resistors, fanging from 15 ohms to 10 meg ohms. This cowerape wailable it 2 ranges in decades of $15,22,35,47$. 68 and 100 . Housed in rugged plastic cabiner featuring new HEATHKIT universal type binding posts. The entire kit priced less than the retail value of the resistors alone

Feathkit BATTERY ELIMINATOR KIT

Alean o wit d-C suppl source is detinitely require for succenful automobile ra* dion servicing. Has a continuously variable d-c ontput from of to of voltes. It can be sately operated at a secady 10 amb rere level and will deliver up (i) 15 amperes tor intermitectit periods. The voltate nuepue termimals are completely iso. commodate akditional serv ice rpplications such as supplying bias voltages or d-c sulatiturion volages for batery operated rube thament circuits.

The output of the Batecry Eliminator is conseantly monitored by ad d-c voltmeter and a d-c ammeter. The circuit teatures an autamatic overlosat relay of self resetting type. For additional protection. a pancl mounting fuse is provided. Build this kit in a few hours and pocket a substantial savings.

MODEL BE. 3 SHIPPING
WT. 20 LBS.
$+\sqrt[4]{40}$

Heathkit VIBRATOR TESTER KIT

Repair time is valuable. and the Heathkit V'ibrator licster will save fou hours ot work. Instantly tells the condition of the vibrator under test - and the check is thorough and complete. Checks vi brator for proper starting, and the casy-to-read meter indicates the quality ot output on large BADG(OOD scales. Tests both interrupter and selfectetifer types of vibrators
 Five different sockets for checking hundreds of vibrators.

Operates from any batery eliminator capable of delivering continuously variable voltage from $1-6 \mathrm{~V}$ at 4 amps . The Heathkit Bl:-3 Battery Eliminator is ideal for operating this kit.
laulty vibrators can be spotted within seconds and you're free to go on to other service jobs.

MODEL VI-1 SHIPPING
${ }^{\text {s }} 14^{50}$ bocke intenmational. COLT NEW Yoter city (10)

Heatheit SIGNAL GENERATOR KIT

"

Aodulated or unmodulated RF outpul

- Step altenuated RF ouput.
- 6 to 1 vernier dial ratio
- Turret mounted coil sub-
- Pre-calibrated and adjusted cails.
- Hartley RF oscillator circuit
- Colpitts oscillator 400 cycle
sine wave oulput.
- Modulated or unmodulated RF output.
- Frequency coveraqe on fundamentals 160 ke to 50 mega cycles in five ranges. 51 megacycles to 150 mequcycles on calibrated harmonics.
- RF output in excess of 100 , 000 microvolis.
- Audio outpu: $11 / 2$ to 2 volts
- AC transformer operated
- Professionally styled cabinel
- Infra red baked enamel panel.

The new HEATHKIT Model SG-7 SIGNAI. GENERATOR easily fulthlls requirements for a controllable, modulated or unmodulated source of variable frequency. A convenient 400 cycle sine wave output is available tor audio work. All RF oscillator coils are precision wound and adjusted to calitration before shipment thereby assuring maximuns accuracy. The coils, band switch and zuning condenser all nount as a turret assenthly so as to offer the advantage of short wiring leads and easy mounting of parts. The RI' output circuit is of the low impedance type obtained by the use of cathode coupling to the outpur jacks. The level of RF output is varied by means of the RF step and RF output conerol. Use the HEATHKIT SG-7 as an R1: signal source modulated or unmodulated for radio repair, laboratory work, experimental testing, 400 cycle sine wave audio testing, checking RI: stages, alignment of both AM and FM 1f stages, marker generator for TV alignment, etc. The kit is transformer operated and utilizes miniarure rubes for ease in handling high frequency. Panel jacks and a convenient switching system permit either external or internal modulation. The entire kit is supplied complete with zubes and all necessary material as well as a detailed step by step instruction nanual for the assembly and operation of the instrument.

Heathkit INTERMODULATION

ANALYZER KIT

MODEL IM-I SMIPPING WT. 18 LBS.

${ }^{\text {s39s. }}$

The HEATHKIT MODEL IM-I is an exeremely versatile instrument specifically designed for measuring the degree of inestaction herween two signots c.atased by a specific piece of apparatus, or a chain of equip. ment. It is primerily inecoded for tests of audio equipment hut mas be used in wher applications such as making tests of microphmes. recordis. recording equipment, phonograph pickups and Wuat speakers. Ilse it for checking tape or disc recordings. as a senstuse AC, volmeter, is a high puss noise meter for adjusting tape bias, curtiog necdte pitch or other applications. High and lisw test frequency source intermodulation section. power supply and AC voltmeter all in one complete unit. Percent intermodulation is direcely read on three calibrated ranges, $30^{2} n$. $0^{\circ} \mathrm{r}$ and 3%, full seale. lorth of to 1 and 1 to 1 ratios of low to high fre quencies cisily set up. At this low hit price lou can enjoy the benefies of Intermodulation amalysis for accurate audio interpretations.

Heatheit laboratory regulated POWER SUPPLY KIT

MODEL PS. 2
SHIPPING Wi. 20 LBS.

s29.5.

New HEATHKIT LAB. ORATORY POWER SUPPLY provides con. rinuously variable resulated DC volate outpue from 160 volts 6 fot yolts depending on load. Panel terminals supply separare 6.3 V . AC; supply at 4 amperes for filment circuits. A 31 ," plastic cased panel mounted meter provides accurate metered outpur for either voltage of current measurements. Ex. ceptionally low ripple content of .012'; admirably qualities the HEATHKIT I.ABORATORY POWER SUPPI,Y for ligh gain audio applications. Ideal for laboratory work requiring a reference volage for meter calibration or for plotting rube characteristics. In service work, it can be used as a separate variable voltage supply to deecrmine the desirable operating voltage in a specific circuit. Use it as a DC, substitution voltage in trouble shooting TV circuirs exhibiting symptoms of extraneous undesirable components in plate supply circuits. Entire kit, including all S rubes now available at this low price.

 the larest impromements descrbed in Audio Engincering's "Gidding the 1.15.: 5881 ourput tubes and a new Peerless output transtormer with addicional primary taps afford peak power output of well over 20 watts. Firequency response $=1 \mathrm{db}$ from 10 cocles 101010 kc allowes reproduction of bghs and lows with equal crippness and clarity. Harmonic and intermoduation distortion have been reduced to less than ${ }^{1} 2$ of $l^{\prime \prime}$ at 5 watts. This liminates the harsh unpleasant qualities whith contribute to listening tatigue. Make this amplitier the heart of your radio system to achieve the the reproduction that is the geal of . .tl music lovers.The HEATHKIT PREAMPLIHIFR (awalable separatcly or in combination with the amplitier kit) features inputs for magnetic or low evel cartridges. cristat pickups and tuncrs. turnower control for t.p or 7 ofe rewrth. indswall hass and treble tothe controls each prowiding up fontrols and swieches atapeathe ro cussom installation. The preamplitur an be monated in any position and a liheral length of connecting whble is supplied. No radio experience is reguired to construct this amplifter. All runching. forming. or drilling has already been done. The complete kit includes all necessary parts as well as a detailed step by step conseruction manual with pictorial diagrams to ereatly simplify the construction.

ACROSOUND TRANSFORMER OPTION. If desired, the output iransformer use of this tansformer permos ulta-fonear operatom as destribed in Auda

Heathkit FM TUNER KIT

 The HEATHKIT MODEL TM- 2 TLNER specitically designca features simplitied kit ad adjusted tuning simpleasembled and adust if uans. a preat. Three double uned arnor transunt. Tormers and a discriminnor circuir. formers and ased in an $\begin{gathered}\text { tulue cirrough }\end{gathered}$ forner ure cong is obsained through 1) to 1 ratio yernier drive utc rype Galibratel six inch slide rute erpe 3inl. The usual frequency coverage at 88 to 108 megacydes in provided. Fxperience the thrill of building your Fxperience the through your amplifiet own FM maner. Operate it adventinges of true FM

SHIPPING
WT. 9 LBS or radio and enjoy, ince operated power supply reception. Transformer operapes of audio system reception . simplify connectied complete with construction. A

PRICES OF VARIOUS COMBINATIONS
 cumplete inserv.

Feathkit HIGH FIDEIITY 20 WATT AMPLIFIER KIT

The HEATHKIT MODFI. A.S amplifier kit was designed to deliver high fidelity performance with adequate puser outpur at moderate coss. The frequency response is within $\pm 1 \mathrm{Dl}$ from 20 io 20.000 cycles. Distortion at 3 DB below maximum power ourpur at 1000 cycles is only Si^{\prime}. The amplifier features a Chicago power transformer in a drawn sted cane and a Peresless oupput transtormer with output impedances of 1.8 and 16 ohms avalable. Separate bass and ereble tone controls permit wide range of tonal adjusement (t) mees the requirements of the most discerning listener. The amplifier uses a $6 \mathbf{S} 17$ voluge amplifier. a GSN7 amplities and phase splites and two (TL6's in punh pull output and a 5 IG rectiter. Two input bicks for cither cryseal or tuncer operation. The kit includes all

MODEL A. 8
SHIPPING WT. 19 LBS.

54550

THE MODEL A7A amplifier incorporates a preamplifier stage with spetal compensated network to prowide the necessary wolsage gatn for aperation with variable reluctance or low output leael phono careridges. Fxectlent gain tor matrophone operation in a mokerate powered sound system.

Treathbit SUPERHETERODYNE RECEIVER KITS

- High gain dual iron core tuned type IF transformers
- AC transformer operation for safety
- Continuously variable tone control
- Sturdy punched and plated steel chassis
- Ideal for custom installation
- Full AVC action
- Inverse feedback for improved frequency respanse
- Kit supplied with all necessary canstruction material except speaker and cabinet. (Available separately if desired)

Model AK-1

\$23.50

「Two exectlent radion reteiver kis fanuring dean design and open layout for simplifed umseruction. Satist) that urge to build sur own radion receiver and

 Ac . recepacle for the phom monor. A sis inch calihrated slide rule type dial with a 9 (w) 1 ration vernier diald drive insures colsy tuning.

SHIPPINGINEORMATION

 I NFORMATION

 I NFORMATION}ON PARCIEL POST ORDERS include postage for weight shown and insurance. (W'e insure all shipments.) Don't worry alour sending more than the currect amount -- if you send us $t(x)$ much, every extra cent will be prompety returned
ON EXPRESS ORDERS do not include eransportation charges. They will be collented by Express Agency on delivery.

ORDERS FROM CANADA must include full remitance for merchandise.

Orders processed on the same day received. Customers notimed of unavoidable delay
L. S. prostal or express money orders, bank druftes or chechs are accepable. Do not send loose coins or stamps.

E. F. JOHNSON COMPANY

JOHNSON VIKING II TRANSMITTER KIT

VIKING II TRANSMITTER KIT

VIKING VFO KIT

LOW PASS FILTER

180 Watts CW Input
135 Watts Phone Input
100% AM Modulation

130 Watts CW Output
100 Watts Phone Output
TV) Suppression Fealures

The JOHNSON Viking II is a self-contained, bandswitching omateur transmittel supplied in kit form. It hos all the desirable features of its predecessor, the Viking l, plu: many improvements including effective TVI suppression. Full output is available on the $160,80,40,20,15,10-11$ meter omoteur bands. Complete ronge of output frequencies os follows:

BAND	LOW FREO. LIMIT	HIGH FREO. LIMIT
160	1.8 mc	2.4 mc.
80	2.9	4.4
40	5.2	8.0
20	9.8	15.0
15	15.0	21.0
$10-11$	21.0	30.0

The RF section consists of a 6AU6 oscillotor, a 6AO5 buffer/doubler and parallel 6146 output omplifier. Modulotor; pp 807's operating class AB, with 6 AU6 speech amplifier 6 AL 5 bias rectifier. Fixed bias opplied to buffer and output amplifier for breok-in CW operation. Audio response is limited to the center of the speech ranoe. The pi-network amplifier matches o wide ronoe of impedances, ond will provide up to 30 db second harmonic attenuation before filtering.
One of the outstanding features of the Viking II is its completely new cabinet. Heavily copper ploted, it is a complete shield yet allows easy occess to the chassis. The lid, bonded with silver plated, pliosphor brunze fingers, con be opened easily by the removal
of just three thumbscrews. Perforotion of the lid and bottom plate permits free air circulation and cooling is oreatly impraved.
Special shields ore provided for the dial operture and meter, while filtering of the line power leads, VFO receptacle, key jack and microphone connector eliminales harmonic radiation at these points. Other filters ore used to suppress spuriaus output at its source. Antenno relay terminals have been added and they too are filtered. Shielded coaxial connectors are used for VFO inpul and RF output terminols.
All parts furnished includino a complete set of tubes, cabinet, punched chassis, wirino harness, wire, ferminals, grommets and all other hordwore. Corefully detailed and
Suppliad for 11 s voll 50,60 cycle operation only. Cabinet dimensions 20° wide, $103 / 6^{\prime \prime}$ high, $13^{\prime \prime}$ deep. Nel weight assembled, 65 pounds.
Cor. No.
Amateur Ne !
.... $\$ 279.50$
VIKING VFO KIT
Variable frequency oscillator with 160 and 40 meter autput for frequency multiplying transmitters. Accurately calibrated for all amateur bands from 160 thru 10 meters. 6 AU6 electron coupled oscillator, OAQ voltage regulotor. Excellent stobility is assured by temperature compensated padders and rigid canstruction. 6-1 vernier tuning with high
reset accuracy. Power requirements 6.3 volis, 3 amperes, $250-300$ volts mo, DC unreguloted. (Power ond input connections provided on every Viking tronsmitter.) Kit furnished complete, less tubes. All parts, ossembly ond colibration inspructions included. When used with o Viking II or other shielded tronsmitter hoving filtered power leads, no TVI suppression meosures are required.
Cor. No.
240-122 VIKING VFO KIT.
Amoteur Net
LOW PASS FILTER
The JOHNSON Low Poss Filter consisis of four individually shielded sections, copable of handling more than 1000 wotts RF, amplitude modulated. Cut-off freavency is 45
mcs. with " M " derived end sections odjusted to provide moximum ottenuotion at 57 mcs. with " M^{\prime} derived end sections odjusted to provide moximum oltenuotion at 57
mes., the center of TV Chonnel 2. Attenuotion of harmonic and spuripur frequenaies obove 54 racy. i, 75 DB or more. Insertion loss less than .25 DB. Chorocteristic impedance of the filter is 52 ohms. Construction permits the replocement of Tellon dielectric of the fixed capocitors should there be domoge due to accidental overloods. Standord SO-239 cooxiol connectors are used for input and output rerminols. Completely assembled, pre-funed and equipped with convenient mounting hordwore. Cor. No.
$250-20$ Low Poss Filter.
Amoteur Nel
VIKING I, TVI SUPPRESSION KIT
This TVI suppression kit enobles owners of the JOHNSON Viking I to shield their transmitlers and suppress hormonic rodiotion. All the necessary custom mode shields, chokes, copacitors and hordwore ore included and have been corefully designed for eosy installation.
The shield encompossing the transmitter chossis fits inside the stondard Viking I cobinet without affecting its oppeorance or operotion. Perforated etched oluminum shield is removoble lor eosy access to tubes and crystals. Shielding is completed with on oluminum chassis bottom plote, meter, and diol operture shields. Self-topping screws ore furnished to aid in the speedy ossembly of this kit.
Nine individual filters consistino of low inductance chokes ond ceramic disc capocitors are locoted as follows: meter leads, keying leod, VFO power socket, PA hioh voltoge leod, PA screen ond buffer plote supply. Similar filters ore provided for the $A C$ line, included.
Cal. No.
250-21 TVI Suppression Kif. .. $\$ 24.75$

CAPACITORS, INDUCTORS, SOCKETS, INSULATORS, PLUGS
 AND JACKS, KNOBS AND DIALS, AND PILOT LIGHTS

WASECA

VIKING MOBILE TRANSMITTER KIT

Sesigned especially for amateur mobile use, the Viking Mobile Transmitter Kit features lash mounting and instant bandswitching for operating convenience. Maximum PA nput is 60 watts on 10, 20, or 75 meters. Provision for one additional band, either 15 or 40 meters. All inductors contained within the transmitter. 100% amplitude modulation ufficient audio gain for either high impedance or carbon microphones.
Three gang tuned RF stages, 6BH6 oscillator, 6AO5 buffer/doubler, and an 807 implifier. Separate adjustable antenna coupling links, one for each band, failored for implitier. Separate adjustable antenna coupling links, one fit each bal ind, latored i2 ohm coaxial ine. ront panel crystal mounting-hour position crystal se ector switch. and power receppocles ure uruvided for this purpnse. The audio system is comprised of 1 6BH6 speech amplifier, 6BH6 driver and DD AB: 807 modulator. Audio gain control s located on the frant ponel. Three circuit microphone connector for "push to talk" speration.
Nhile a 600 volt power supply is required for 60 watts PA input, 30 watts input can be yttained with 300 volts. $A 68 \mathrm{H} 6$ used in an RF type fixed bias supply improves overal efficiency by conserving plate supply voliage (eliminates cathode bias) and by keeping nodulator idling current low.
An illuminated meter, switched from front panel, measures ascillatar, buffer, PA, modulaor cathode, and PA grid currents. Front panel control of excitation to prid of the 807 PA a three position function switch ("Tune". "Transmit", and "Receive") can be used to Jrovide receiver muting, "Non-Swish" VFO tuning, and to make use of the receiver sower supply as a source of plote voltoge for the exciter and speech omplifier. Push to alk operation is optional
The Viking Mobile is supplied as a kit with detailed assembly instructions. Punched :hassis, cabinet, small hardware items, and all necessary parts are included. Housed in
 eess tubes, crystals, microphone. Llleruivie arid power fupply prices available on request.

Amateur Ne
240-141 Mobile Transmitter Kit

JOHNSON ROTOMATIC ROTATOR

An improved all-weather antenna rotator designed for the most rigorous service. Housed n a sturdy, light weight aluminum casting with $5 / 6$ " steel rotating table and $1 / 4$ " "tilt iead" base plate. The rotator unit weighs 76 pounds, and will safely supmort dual zeams weighing 175 pounds even when heavily loaded with ice.
An oversized, continuously lubricated, steel worm gear assembly provides large safety actor at high wind loading. Drive unit consists of a $1,20 \mathrm{HP}$, instantly reversible, :apacitor tyne genr motor. Motor and integral gears, are equipped with ball bearings and special all weather lubricant. Beam rotation is 11_{4} RPM. full torano delivered sven of extremely low temperatures. Motor produces no radio or TV interference.
2F slip rings insulared with glass bonded mica permit continuous rolation thry 360 degrees n either CW or CCW direction. Heavily chrome plated slip rings provide low resist ance contact, noise-free operation and resist corrosion. Rolator is equipped with yuxiliary slip rings and convenient terminals for beam swithing reloy
Eomplete rotator assembly includes a conirol box with selayn indicater, Acrirate zzimuth bearings are continuously presented on an illuminated dial. Controls include -W-Off-CCW switch, power switch ond antenna relay switch.

Eat. No.
Amoleur Net 138-112 Rolemalic Rotator

JOHNSON PARASITIC BFAM ANTENNAS

2arasitic Beam Antennas for use on the 20, 15 and 10 meter amateur bands. Elements gre strong, lightweight aluminum alloy tubing, center-grounded to the boom assembly, 3oth length and spacing of the elements are continuously variable. Balanced open wire transmission lines may be matched to the driven element by means of an adjustable 'T" matching section. Cooxial transmission lirics matched by "Cormulic' or half" "T" sactinn 3oom assemblies are $2^{\prime \prime}$ galvanized steel tubing. Elements are firmly clamped to the zoom and cannot work loose, yet their positions are readily adjustable. Assembled zeam requires no cross-brocing and has low wind resistance.
Ten meter elements consist of o $\%$ " diameter tube 12 feet long with $5 / 3^{*}$ adjustable ends. Maximum element length is 19 feet, minimum, 12 feet. Fifteen meter elements ore imilarly constructed with a maximum length of 25^{\prime} feel. Tubing diameters of 20 meter elements are $11 / 8^{*}, 7 / 8^{\prime \prime}$ and $5 / 8^{*}$, and elements can be extended to a maximum length of 37 feet.

Boom assemblies are fixed in length and avoilable as follows:

Cat. No.	Amateur Nel	Length	For beams:
138-151	\$9.60	$8^{\prime} 0^{\prime \prime}$	3 elements 10 meters
138-152	13.75	$12^{\circ} 0^{\prime}$	3 elements 15 meters
138-153	18.95	18' ${ }^{\prime \prime}$	3 elements 20 meters or
			dual-3 elements 20
			3 elements 10
			dual-3 elements 20

A complete parasitic arrayfor one band consists of one element kit and the approprinte boom ussembly. A dual interlarad berm for two bands reauires one element kit for ench band, a 138-153 boom, and a 138-108 antenna switching relay

Cal. No.
$138-210-3$
138-910-4
138-214-3
138-914-4
138 -220.3
138-108
144 -16

Description

Amateur Net 3 element 10 meter kit
$\$ 37.30$
48.20
46.90
60.65
85.10
17.20
. 26 , fool

CAPACITORS, INDUCTORS, SOCKETS, INSULATORS, PLUGS AND JACKS, KNOBS AND bIALS, AND PIIOT LIGHTS

WASECA MINNESOTA

TUBE SOCKETS

Highest Quality Sockets for Every Applicotion

23-209 Medium 4 pin bayonet, white glazed porcelain base, melal shell, heavy phosphor bronze side wiping contacts. 2^{11} "in "Dia.
23-209SB Same as 209 but with Steatite base and beryllium copper contacts.
23-210 Same as 209 except contact to shell spacing not as areal. 2^{1} " Dia
23-211 Standard 50 watt type. Similar to - 209 bui double flament coniacis. 3 ."Dia.
Q3-211SR Same as 211 tut with Steatite tuist and beryllium copper contucts.
24-212 Steatite socket for RCA833 or 833A. 5^{\prime}, "plate leads.
23-216 Giant 5 pin Bayonet. For tubes such as 803, RK28. 3^{3} " Dia.
23-216SB Same as -216 but with Steatite base and beryllium copper contacts.
24-213 For Eimac 152TL and 304 TL . Contacts arranged for etther series or parallel filaments.
24-214 For Eimac 1500TH, with ventilating hole for cooling
24-215 For 250 watt tubes such as 204A, 849 , etc. The plate terminal has a "safery cup" which prevents accidental dislodgement.

Wafer Types

Steatite, top and sides glazed. Brass conlacts with steel springs cadmium plated.

$22-2177$ pin small.	122-225 5 Din.	$122-2277$ Din medium.
$22-2244$ pin.	$122-2266$ pin.	122.228 Octal socket.

22-237 Gianl 7 pin Steatite water. For transmitting tubes such as HK257 and RCAB13. With
" diam ventlating hole (not Hystrated) in base.
22-247 7 pin Steatite for tubes such as 826 . Etched aluminum shield.
22-211 1 piri Steulite. Super juntü base lubes such us BOOB
22-101 7 pin Steathe wafer with shield retainer springs and provision for mounting bution mica by pass capacifors. Designed for VHF use with tubes such as 832 22-275 Giant 5 pin Sieatite wafer socket for 4-125A, RK48 tubes. Ventilation holes in base

Miniature Sockets

20-267 all ceromic, 7 pin.
20.277 B with shield base, 7 pin. 33-277S shield base only.

JAN Miniature Sockets

op mounting, saddle type sockets per JAN Sec 5.884
20-177 7 Pin
20-199 9 Pin

Shields

For Socket
133-278-6 $1^{3} \mathrm{~s}^{4}$ High, N.P. Brass. 177,277 133-278-7 $1^{3}{ }^{3}$ " High, N.P. Brass. 177,277 133-278-8 $2^{1}{ }^{\prime \prime}$ "High, N.P. Brass,

177,277 133-278-9 $1^{1} 2^{\prime \prime}$ High, N.P. Brass. 199 133-278-10 ${ }^{11}$ "|" High, N.P. Brass. 133-278-11 2"*" High, N.P. Brass.

PLUGS AND JACKS

Banano Spring Type

Accurately turned from brass with milled iuts and tinned terminals. Nickel plated. Vickel-silver springs (other metals optional). ow cantact tesistance, high current capacity.
-75 series plugs $\mathrm{f}_{\mathrm{t}} 94$ series locks, 77 eries pluys fir 76 juck. 7451 utid -7452 ave mulded phemolic heads.

JACKS

08.74 ' $^{1}-28 \times$ thread

08-7451 ${ }^{1}-28 \times{ }^{1}-2$ thread, red. 08.74521 the theod, tlack.
08.76^{3}, $24 \times{ }^{1}$ if thread.

PLUGS

108.75 6-32x a thread.

108-75A 6-32 $\times{ }^{3}$; thread.
108-75BB $\times 1^{3}$, handle, black.
108-75BR ${ }^{3}-\times 1^{3}$, handle, red.
108-75C $632 x$ in screw.
108-77 1032×3 thread.
108-77A $10-32 \times 3.3$ screw.
108.77BB ; $x 1^{3}$ handle, black. $108.77 \mathrm{BR}{ }^{5} \times 1^{3}$ handle, red.

Tip Jacks and Plugs

PLASTIC HEAD TIP JACKS

Attractively colored strong Plaskon heads, accurately threaded :-32 with milled hex nut und insulanting wathers for " , hole.
Cur. IVo. Color Cat No. Color
105-520 Red 105.524 Oiange 105.591 Blach 105.527 Yellow 105.522 . Dk. Green 105.528 Li Green 105.524 . Brown 105.529 Dk Blue 105-525 Lt. Blue 105.530 ivory

Molded Tin Jacks

teour dulv tuae. Nin bel nirned brare body molded into phenolic head. " 40 thread, and insulating washers for ". hole.
No. 105-418 Red No. 105-419 Black

All Metal Tip Jeck

Nickel plated brass, if hex head, 1,-32 thread, with insulating washers for " hole. 1051 similar but headless, no nut or washers, or mounting in ': -32 tapped panel hole.
No. 105.417 No. 105.1
Solderless Tip Plugs
No. $105.15{ }^{\text {in }}$ in prong
No. 105.415 prong
No. 105-14 Long, sharpened point.

NYLON TIP JACKS

Eompletely insulated jack body molded from low-loss N, lon. Threaded $\mathrm{I}_{1}-32$, jack mounts with ingle nut Overall dimensions; diameter n, length ": Avalable with beryllium copper or shosphor bronze coniact.
3.C. Cont. PB. Cont.

Sal IVo.
105-601-1
105-602-1
105-603-1 105-604-1 105-605-1

Cat. No. 105.601-2 105-602-2 105-603-2 105-604.2 105.605.2

- BC. Cont. Color Cat. No. White $\quad 105.606 .1$ Red 105-607.1 105-607.1 105-609-1 105-610-1
P.B. Cont. Cat. No. 105-606-2 105.607-2 105-608-2 105-609-2 105-610.2

Color Orange Yellow beと... Derik'le

$$
105.611-1 \quad 105-611.2 \quad \text { lvory }
$$

Name Your Power..

and there's a dependable RCA tube for it

RCA has the most complete line of transmitting and receiving type tubes in the amateur field. No matter what type of equipment you are planning, you will find RCA tube types to meet your needs efficiently and economically.
RCA has a popular tube for every amateur service, every power, and every band. To get maximum power, performance, and life from the tubes you use, buy RCA tubes from your local RCA Tube Distributor.
For technical data on specific tube types, see your local RCA Tube Distributor, or write RCA, Commercial Engineering, Section 35AM, Harrison, N. J.

Don't miss RCA HAM TIPS. It's published bi-monthly, and distributed free through your local RCA Tube Distributor.

RCA Specialized Tubes
 for Commercial and Industrial Applications

- Cold-Cathode Types
- Cathode-Ray Tubes
- Gas \& Vacuum Phototubes
- High Power RF Types
- Ignitrons
- Klystrons
- Low-Microphonic Types
- Magnetrons
- Multiplier Phototubes
- "Special Red" Tubes
- Thyratrons
- Transducer Tube
- TV Camera Tubes
- UHF "Pencil" Triodes
- Vacuum \& Gas Rectifier Tubes
- Vacuum-Gauge Tubes
- Voltage Regulator Tubes

For information on specialized types, write RCA, Commercial Engineering, Section 3SAM, Harrison, New Jersey.

COMPONENITS FOR EVERY APPICATION

FREE 236-PAGE BUYING GUIDE
You'll find everything you need in this latest 236 -page ALLIED Catalog-not only all the station supplies you want, but the world's largest selection of industrial electronic equipment, special tubes, test instruments, recording and high-fidelity audio equipment, replacement parts-all at lowest, moneysaving prices. Get and use the ALLIED Catalog-your dependable one-source Buying Guide.

keep it handy

We are also lecding suppliers of RCA parts, TV components, speakers and batteries. Simplify and speed your purchases-send us your orders for all RCA equipment-get quick, expert shipment from our complete stocks of Amateur and industrial equipment.

236-Page ALLIED Buying Guide

 Write for your FREE copy of the latest ALLIED Catalog-the only complete Buying Guide for all Amateur and Industrial Electronic Equipment. Lists all new developments-includes all the RCA equipment you need. Be sure to get and use your 236page ALLIED Catalog.
keep it handy
 equipment. Be sure to get and use your 236-page ALLIED Catalog.

833 WEST JACKSON BLVD. CHICAGO 7, ILLINOIS

THE WORLD'S TOUGHEST

Hermetically-Sealed Units

WE STOCK THE COMPLETE LINE

We can supply the complete line of chicago "Sealed-in-Steel"
Transformers-units designed 10 fit today's amateur circuits . . . units 10 meet all MIL,-T-27 specifications for military requirements . . . units for a wide range of industrial applications. Whatever your transformer needs. there's nothing tougher, nothing better than chicago ' Sealed-in-Steel" units -and allabd has them in stock for quick shipment. Order from tour allien Catalog for prompt, expert delivery.

236 Poge AllIED Buying Guide
Write for your FREE copy of the latest ALLIED Catalog - the only complete Buying Guide for all Amateur and Industrial Electronic Equipment. Features the widest selection and largest stocks of equipment-includes the CHICAGO Transformers you need. Get and use your 236page ALLIED Catalog now.

C-TYPE
With Leads
S-TYPE
Lug ferminals

H-TYPE
Meets all MIL-T- 27 specs

ALIIED RADIO

COLLINS Gear for the Amateur THE COLLINS 75A-3

The selectivity curves shown here tell the story of a new concept in receiver performance. The Mechanical Filter recently developed by Collins and incorporated in the 75A-3 receiver represents an entirely new approach to the attainment of selectivity. Using resonant mechanical elements rather than tuned electrical circuits, the Mechanical Filter gives a close approach to the ideal rectangular selectivity curve. Each 75A-3 receiver has plug-in provisions for two Mechanical Filters. A 3 kc Filter is standard factory equipment and when still greater selectivity for CW operation is desired, the 1 kc plugin unit is available as an optional accessory. With both the 1 kc and 3 kc Filters in the receiver, a switch on the front panel provides instantaneous choice of selectivity characteristics. When required, the crystal filter may also be switched into the circuit to notch out interfering signals and heterodynes.

The nearly flat top and sharp cutoff at the sides of the selectivity curve of the 3 kc Mechanical Filter permit all AM signals to be tuned so as to accept the carrier and either one of the sidebands at will, while the other sideband is rejected. Thus much distortion due to fading is eliminated, and susceptibility to interference is greatly re-
duced. Alternatively, both AM and SSSC signals may be received with carrier supplied by the BFO; and the ideal selectivity curve of the Mechanical Filter permits full advantage to be taken of the benefits of local carrier reinsertion.

Because of the Mechanical Filter's straight-sided selectivity curve, the 75A-3 receiver can be tuned near a strong signal without responding to that signal. As the receiver is tuned across the band, signals suddenly appear and disappear. This is because of the absence of broad skirts which "drag out" the tuning of conventional receivers.

All of the proven features of the 75A-2 have been retained in the 75A-3. These features, such as crystal controlled frontend, highly stable variable frequency oscillator, and accurate dial calibration, to name but a few, combine with the new Collins Mechanical Filter to give unequalled performance.
Whether you ragchew, handle traffic, or work dx , here is the receiver for solid contacts. The straight-sided, flat-topped, selectivity curve and the excellent frequency stability of the 75A-3 make it a natural for the single-sideband operator.

The Mechanical Filter is a resonant mechanical device that is coupled into the receiver's 455 kc IF strip by means of magnetostriction. As shown here, it consists of three general sections: an input transducer, a mechanically resonant section consisting of a number of metal disks, and an output transducer. A 455 kc electrical signal applied to the input terminals is converted to a 455 kc mechanical vibration at the input transducer. This mechanical vibration travels through the resonant mechanical section to the output transducer, and is converted to a 455 kc electrical signal

which appears at the output terminals. The Mechanical Filter is enclosed in a hermetically sealed case and requires no adjustment.

SELECTIVITY never before achieved in a Communications Receiver

The Collins 75A-3 with Mechanical Filter. A 3 kc Mechanical Filter is installed at the factory. The Filters are plug-in units, and a 1 kc Mechanical Filter may be installed at any time.

The curves above show a comparison between the selectivity curve of a good IF strip using nine tuned circuits, and typical selectivity avalable in a Collins $75 \mathrm{~A}-3$ receiver incorporating a 1 kc and a 3 kc Mechanical Filter. When both Mechanical

Filters are installed in the receiver, either one may be selected at the flip of a switch. These curves show performance without the crystal filter. W'hen required, the crystal filter may be called into play to phase out unwanted signals or heterodynes.

The 8R-1 100 kc crystal calibrator and the 148C-1 NBFM adapter, shown above on this page, are available as accessories, for plugging into completely wired sockets on the top of the chassis. The operation of both units may be controlled by switches located on the front panel.

Gear for the Amateur

The KW.1's power amplifier assembly

Dimensions.

$28^{\prime \prime}$ wide, $1 s^{\prime \prime}$ deep, $661 / 2 "$ high

Pouer Source:

115 volts or $115 / 230$ vohts $50 / 60$ cycle single phase grounded neural
Net Domestic Price $\$ 3,850.00$

The $\mathrm{KW}^{\mathrm{W}}-1$ transmitter is engincered to equip the amateur for use of the maximum power permitted. Its input is a full 1000 watts on phone and CW. The entire transmitter and power supply are integrated in an attractive wrinkle linish cabinet.

The KW'1"s frequency range covers the 160,80 , 40 , 20, 15, 11 and 10 meter hand. Compleac bandswitching of the exciter, driser, and power amplifier is accomplished by a single contor on the front pancl. This reduces to four the number of tuning fanctions: bandswith selection, frequency setting, $P A$ tuning, and P. loading. Over any marrow frequency range, it is only necessary to adjust the frequency control, which is by means of an extremely stable, hermetically seated master oscillator.

TVI reduction is accomplished by the use of multipletuned circuits at the output freguency on every band. A minimum of three circuits at the output frequency Heaty attentates not only the second and third harmonics, but also sub-hamonics. (iteat care has been given whitering all control and power leads entering the exciter-power amplifier comparment, which is itself a totally enclosed and shielded structure. A Collins 35C low pass filter is incomporated as standard equipment. The output network is a conventional pi followed by an L section for increased harmonic attentation.

The specch amplifier has a peak clipper, and a low and high level filter, permiting high-percentage modulation without splater.

Tube complement: Oscillator-awo 6B.VG's. Exciterone GBAG, four GAQ5's, one so ${ }^{-1}$, ano VRIOF's, one GA 10 ballast tube. Power amplifier-awo f-250A's. Specth amplifier-one $12.1 \mathrm{X}^{\top}$, one 6. LL 5 , two $12 \mathrm{Al}^{-1}$'s, two GBifis, two 810's. Rectifiers-two s72A's, one

Meters: Modulator current, PA plate current, high voltage, line voltage, multipurpose meter, antenna ammeter. Line fuses, plun werload relay in Class \mathbf{C} amplifier current lead, provide circuit protection.

COLLINS

32V-3 TRANSMITRER

The Collins $32 \mathrm{~V}-3$ is a VFO controlled bandswitching gang-tuned amateur transmitter, conservatively rated at 150 watts input on CW and 120 watts input on phone. It covers the 80, 40, 20, 15, 11 and 10 meter ham bands and is specifically engineered for reduction of TVI.

The cabinet of the $32 \mathrm{~V} \cdot 3$ is solid metal, open only in front to receive the chassis. Even the handhole at each end is lined. There is no liftable lid, and quaiter-inch perforations replace slots for ventilation. Thus wo types of leakage paths have been eliminated. Two pull handles have been added for easy removal of the panel and chassis. When firmly screwed in place, bare panel metal makes proper electrical contact with bare cabinet metal, eliminating another leakage path.

The entire r-f section of the $32 \mathrm{~V}-3$ has been completely enclosed in an outer shield of perforated metal which permits adequate ventilation while blocking radiation of troublesome harmonics.

35C-2 Low Pass Filter

A coaxial fittong is provided at the rear of the $32 \mathrm{~V}-3$ cabinet. This permits the use of a well shielded transmission line in which the Collins 35C-2 Low Pass Filter may be inserted. The $35 \mathrm{C}-2$ is a 52 ohm three-section filter which, with approximately 0.2 db insertion loss helow 29.7 mc , provides approximately 75 db attenuation of harmonic emmissions at the television frequencies. This attentuation is added to that provided in the $32 \mathrm{~V}-3$. Unbalanced output permits grounding of the outer conductor of the line and the case of the filter.
Net Domestic Price $\$ 40.00$

Low pass filters are installed as follows: both sides of the a-c power line and the antenna relay line and both sides of the receiver disabling circuit: at the microphone connector and the key circuit: one in each lead to each of the two meters.

The r-f tube line-up: A GSJ7 VFO, GAKG buffer, 6ACi7, 7C5 and 7C5 frequency multipliers, and 4D32 final amplifier. Speech line-up: A 6SL7 in cascade to GSN7 to a pair of 807 modulators, which furnish (0) watts audio power to modulate the final amplifier. The power supply contains a $5 \mathrm{Z4}$ (low voltage) and two 5R4GY (high voltage) rectifiers, a VR75 bias regulator, one OA2 and one OB2 oscillator plate whage regulators, and wo OA2 screen voltage limiters.

Dimensions: $211 / 8^{\prime \prime}$ wide, $127 / 16^{\prime \prime}$ high, $137 / 8^{\prime \prime}$ deep
Pouer Source: 115 wolts 50 /60 cycles a-c
Sbipping Weight: 133 pounds
Net Domestic Price
$\$ 775.00$

70E-8A VFO

Aa extremely accurate, stade, variable frequency oscillator. The $70 \mathrm{E}-8 \mathrm{~A}$ is permeability tuned, and has a linear range of 1600 kc to 2000 kc . Sixteen turns of the vernier dial are reguired to
 cover the 400 kc range. This oscillator is factory calibrated, using a secondary standard continually checked against WWV.

Net Domestic Price

(dial included) . . \$97.50
(
THE BEST IN

INSULATION
H24 Man

Custom Made Technical Ceramics

FOR ELECTRONIC AND ELECTRICAL USES SOLD ONLY TO MANUFACTURERS

AMERICAN LAVA CORPORATION, Chatianooga 5, Tennessee 51 STYEAR OF CERAMIC LEADERSHIP

Few instruments will prove so handy in so many ways as this versatile B\&W Model 600 Dip Meter. Ideal for lab, production, service, or ham shack use, it provides a quick, accurate means for measuring resonant circuit frequencies, spurious emissions and many ot her tuned circuit characteristics. Shaped for easy use in today's compact electronic assemblies. highly sensitive and accurately calibrated. it incorporates many features previously found only in higher-priced instruments. You'll tind dozens of uses for it as .
. . A Grid Dip Osciliator for determining resonant frequencies of tank circuits, antennas, feed line systems, and parasitic circuits; aligning filters and traps; peaking coils, neutralizing and tuning xmitters before power is applied.
... An Absorption Wave Meter for accurately ident ifying the frequency of radiated power from various xmitter stages; locating spurious emissions causing troublesome "TVI and BCI . and nuany similar uses.
. . . An Auxiliary Signal Generator providing a signal for tracing purposes and for prelininary alignment of receivers, converters, and I-F stages.
.. . An R-F Signal Monitor for audible observation of hum, audio quality, and other audible characteristics of radiated power.
... For Capacity, Inductance, and " Q " measurements in conjunction with other components of known value.

A Quality Instrument Priced Within Reach of All

Sold by B \& W distributors throughout U.S.A. and
Conada. Data bulletin sent on request.

BARKER \& WILLIAMSON, Inc. 237 Faiffeld Avenue, Upper Darby, Pa.

Freq. Range: 30 to 30,000 cycles. lireq. Response: letter than ± 1 DB. 30 to 15,000 cycles with 500 ohm load.
Stahility: Better than 1%.

$B_{\&} W$ PARTS and

Heavy Duty Butterfly Variable Capacitors

> Bases and Mounting Assemblies

These accessories permit compact assemblies with companion units such as capacitors, jack bars, plug-in coils, and links. Two groups are available, one for open wire plug-in swinging links, and another for Faraday Shielded links. Assemblies for Faraday Shielded links. Assemblies
include a jack bar, arm and hinge, link (open wire or shielded), and either a (open wire or shelded), and either a
metal botton plate or capacitor mounting bracker. Individual parts may be purchased.
B \& W Low-Pass Filters are highly effective in the attenuation of harmonics causing television interference. Attenuates all frequencies above 30 MC 75 DB or more throughout the entire TV band. Two " M " derived end sections and three midsections of the constant " K " type are used. Each section is contained in a completely sealed copper compartment to prevent inductive transfer of unwanted frequencies from section to section.
$B \& W$ heavy duty butterfly variable capacitors with coils integrally mounted pave the way for increased efficiency in singleended and push-pull circuits. Better L. C. ratios at high frequencies, with beam power tubes as well as a host of other desirable features, are a reality with these husky units. These include: compact assembly, shorter tuned circuit leads, shorter R. F. paths and optional built-in neutralizing condensers.

Fraq. Range: Fundamentals from 30 to 15,000 cycles. Measures harmonics to 15,000 cycles. Seusitivity: 3 volts minimum in. put required.

Frequency Meter
Freq, Range: 0 to 30,000 cycles. Sensitivify: 0.25 volts minimum input required.
Heate lorm: Any form with peak ratios less than $8: 1$.

EQUIPMEDT

Having 25% of the frontal area of the Heavy Duty Type, these split-stator variable capacitors are ideal for medium power triode or tetrode stage plate circuits and many other applications. Heavy rounded edge plates permit ratings up to 2500 volts de unmodulated and 1500 volts de in modulated final amplifier circuits. Design provides peak efficiency and more power in less space.

This compact, versatile unit is in keeping with modern trends toward miniaturization. Operated w ith either crystal or VFO. it serves as an exciter for a high powered rig or as a low powered transmitter with a full 30 watt of output on the amateur hands including 80-40-20-15-11 and 10 meters. It avoids the most laborious and time consuming part of the job during construction of a new transmitter.

Provides an efficient watertight insulated connector for center-feed antenna systems using coaxial cable for feed lines.

Light in weight, it will withstand pulling strains up to 500 lbs.

B \& W Rotary Coils are available for all medium and high power requirements of pi-nerwork, final circuits, and antenna coupling and loading units. 500-watt units are supplied with inductances of 1.6 . $6.2,15$, and 72 micro-henries, 1000 -watt types with 60 or 96 micro-henries.

504 Multiplier

CC 50
Coaxial Connector

Rotary Coils

INSTRUMENTS

Sine Wave Clipper

Does the work of a square wave gencrator costing many dime more. Sped accurate cercuit analysis.

Linear Detector

Providesk-Fdetectionand audio bridging circuits. It is an invaluable accesors for distortion meters lack. ing these features.

Match 75
 anced ornm unhal.

 and zumpurs to 75 anced feed ohm hal. of the feed lines. Two of these sturds bifilar air-wound balum in. ductors serve as a compati, highly efficient multi-hand (80) to 10 meters) unit for matching feed line shems to hoth transmitters und receivers.

WHEREVER THE CIRCUIT SAYS -W-

ADVANCED TYPE BT RESISTORS

 iFilly iteulied le Cetatog yocs.

BW INSULATED WIRE

 WOUND RESISTORS

 is yourt moleeit it in tpebed an
 (Ralr anstibed in Cei=log abcs.)
 ho ropleit dasas, pet ther hatste lipiot!

 Soner 306 thrit to 19 mpphes. Aphen: metuth True 76 Seli,h

2 WATT

RHEOSTAT-POTENTIOMETER
bevigred for k-qu iteperfotle vervice not boteno 2 velt. verloble nut- Mind w Conncis Fier thon matime odoptadinior fo woil ine ital

 volen 2 ohtmi is 10,000 otm.
ifiey decaitind in Cotaley nDCI-A.)

POWER WIRE WOUND RESISTORS

Fixed and adiustable Power wire Wounds -10 to 200 watts - handle full roted power in all standard ranges, require no derating of high ranges. Dark, rough coating dissipates heat more rapidly. Unique ferminals assure easy installation. 10 and 20 watt fixed types have lead and lug terminal, and lug may be clipped off for space saving in crowded chassis. Permanent, fadeless marking shows type, size, resistance
Where limited space is a factor, Type FRW Flat Wire Wounds give higher space-power ratio than standard tubular types. Construction allows easy vertical or horizontal mounting, singly or in stocks.
(Fully described in Catalogs RDC-5 and RC-1.)

7 Multisections

For ganged controls, IRC MULTISECTIONS are added to Q controls like switches to provide an endless variety of duals, triples and auad. ruples. Avallable in 17 values from 1000 ohms to 10 megohms. MULTISECTIONS are as easily and quickly attached as switches - and duals will accommodate Type 76 switches
(Fully described in Catalog RDCI-A)

WHEREVER THE CIRCUIT SAYS -WW

CLOSE TOLERANCE

DEPOSITED CARBON PRECISTORS

 entethent it ppretorkiontlient

HIGH FREQUENCY RESISTORS

HIGH VOLTAGE RESISTORS

WATER COOLED RESISTORS

SEALED VOLTMETER MULTIPLIERS

Dependable multipliers far use under the most severe humidity conditions, Type MF Resistars consist af a number of IRC Precisians intercannected and hermetically sealed in a glazed ceramic tube. Compact, rugged, stable, fully moisture-proof and easy ta install. Maximum current: 1.0 M.A.; 0.5 megahms to 6 megohms.
(Fully described in Catalog RD-2.)

MATCHED PAIR RESISTORS

Two resistors matched in series or parallel to as clase as 1% initial accuracy. Dependable low-cast salutian to clase talerance requirements. Both Types $B T$ and $B W$ resistors are available in matched pairs. Tolerances from $\pm 5 \%$ to $\pm 1 \%$ can be furnished.
(Fully described in Catolog RB-3.)

INSULATED CHOKES

Ideal for TV and similar circuits. Wide range of size and characteristic cambinations permit accurate specification to individual requirements. Types CLA and CL-I Chokes are fully insulated in molded phenolic housings-protected from high humidity, abrasion, physical damage ar shorting to chassis.
(Completely described in Catalog RDC7.)

IRC RESIST-O-GUIDE

New aid in easy resistor range identification. Turn 3 wheels to correspond with color code on resistors and standard RMA Range is automatically indicated. 15 c at all IRC Distributors. When ordering direct, send stamps or coin.
For full information on any of IRC's many resistor types, write taday for catalog bulletins in which you are interested. Also, ask for the name of your IRC Distributar.

INTERNATIONAL RESISTANCE COMPANY
 401 N. Broad Street

One of the many labotatory developments is seen in the sealing of a glass envelope on the G. 9 crystal holder.

Wherever there's a need for crystals - old type or wholly new in design-consult JAMES KNIGHTS first.

FOR YESTERDAY

This JK H-11-developed in the mid-' 30 s for aircraft communications - is one of many old-time erystals still made by JK.

TODAY

Typilying wide current usage of JK crystals is the JK T.9, so popular for frequency standards.

AND TOMORROW

Every day finds dramatic new uses for the hermetically sealed G-9. This stable crystal is used for "audio frequency" work.

CRYSTALS FOR "HAMS" - OR HELICOPTERS!

Wherever you look in industry and science, you will find James Kuights crystals forging Americas future. For the JK ability to pioneer into new fields of eryetal design and adaptation - "ren as the company is producing the more common, "garden variety" erystals - has mate James Knights the SLRE sourre, what. ever the use.
Whether it be atomic research, a crystal for a commercial watch timer, or an amateur desiring a frequency control for his transmitter, youll find the crystal answer at James Knights.

Crystals for the Critical

For a rapid scaming of the dozens of various type precision crystals available for sou at Jame Kinights, write for this free JK' catalog.

The James Knights Company sindich

84

the newe AMPHENOL AMATEUR ANTENNA KIT

Antenaa	Conter Frequency	*Trim Leneth af Antena a trom Center 10 Each Ent	Finished Overall Length
$\begin{aligned} & 139-080 \\ & 80 \text { Meter } \end{aligned}$	3.5 mc	$66^{\prime} 8^{\prime \prime}$	$1320{ }^{\prime \prime}$
	3.6	64 $4^{\prime \prime}$	$128{ }^{\prime \prime}$
	3.7	$63^{\prime 2} 2^{\prime \prime}$	$125^{\circ} 0^{\prime \prime}$
	3.8	61 5"	$121{ }^{\prime \prime}$
	3.9	59.11	$118^{\prime \prime}{ }^{\prime \prime}$
	4.0	$58^{\prime \prime} 4^{\prime \prime}$	$115{ }^{\prime \prime}$
$\begin{aligned} & 139-040 \\ & 40 \text { Meter } \end{aligned}$	7.0 mc	$33^{\prime} 8^{\prime \prime}$	$66^{\prime} 0^{\prime \prime}$
	7.1	$33^{\prime \prime} 3^{\prime \prime}$	$65^{\prime} 2^{\prime \prime}$
	7.2	32' $9^{\prime \prime \prime}$	$64^{\prime} 2^{\prime \prime}$
	7.3	32'5*	$63^{\prime} 6^{\prime \prime}$
$\begin{aligned} & 139-020 \\ & 20 \text { Meter } \end{aligned}$	14.0 ms	$17^{\prime \prime} 2^{\prime \prime}$	$33^{\prime \prime} 0^{\prime \prime}$
	14.1	17'1"	$32^{\prime \prime} 10^{\prime \prime}$
	14.2	16'11/2"	$32^{\prime} 7^{\prime \prime}$
	143	$16^{\prime} 10^{\prime \prime}$	$32^{\prime \prime} 4^{\prime \prime}$
	14.4	$16^{\prime \prime}$	$320^{\prime \prime}$
15 Meter	21.2 mc	11'7"	$21^{\prime \prime} 10$
$\begin{aligned} & 139-010 \\ & 10 \mathrm{Meter} \end{aligned}$	280 mc	$8^{\prime} 11{ }^{\prime \prime}$	$16^{\prime \prime} 6^{\prime \prime}$
	28.5	$8^{\prime} 9^{\prime \prime}$	$16^{\prime \prime} 2^{\prime \prime}$
	29.0	$8^{\prime \prime} 7^{\prime \prime}$	$15^{\prime} 10^{\prime \prime}$
	29.5	$8^{\prime} 6^{\prime \prime}$	15' 8"
For Shortwave Reception 139-040	9.6 mc	$24^{\prime} 10^{\prime \prime}$	$48^{\prime} 4^{\prime \prime}$
	(31 Mefers)		
	$\begin{aligned} & 12.2 \mathrm{mc} \\ & (25 \text { Meters) } \end{aligned}$	$19^{\prime \prime} 8^{\prime \prime}$	$38{ }^{\prime \prime}$

*NOTE: Includes $8^{\prime \prime}$ extra length for splice to insulator.

These RF Connectors are unsurpassed for mechanical design and electrical efficiency. They provide low-loss continuity in critical RF circuits with little or no impedance change or increase in standingwave ratio.
Amphenol RF Connectors are available in Types BNC, BN, HN, LC, N, C and the very popular 83 series, including plugs, jacks, receptacles, adapters, etc. All Amphenol RF Connectors meet or surpass present rigid government specifications.

VAMPHENOL TWIN-LEAD

Amphenol Twin-Lead, flat or tubular, is made of the finest materials available. Manufacture is carried out under constant and rigid inspection. The brown pigmented polyethylene permits only a minimum of RF loss and assures constant impedance.
Amphenol flat twin-lead is available in a variety of types and sizes. The patented 14-271 Tubular Twin-Lead is ideal for use where RF loss must be kept to a bare minimum at all times. It is unaffected by age or adverse weather conditions.

This antenna kit has been designed to meet your need for a simple, effective, folded dipole antenna system. The efficiency of the Amphenol Amateur Antenna for both transmitting and receiving has been demonstrated by years of use.

This antenna is now available in an economical, easy-to-assemble kit form. All the kits are pre-cut to band length and are ready for final assembly and installation. Complete assembly instructions are included with each kit.

BARRIER TYPE INDUSTRIAL OCTAL SOCKETS

You are assured of peak performance and the utmost in dependability when you use Amphenol Industrial Sockets. These sockets are molded in one piece of Melamine which provides high arc-resistance. The rugged insulating barriers provide a long creepage path between contacts and to ground. The patented "clover leaf" contacts are removable. RMA numbered reversible screw type terminals simplify wiring and permit the use of wiring harness and terminal lug connections. Illustrated is the top mounted 146-103 socket. Bottom mounting industrial sockets. high voltage barrier type sockets, barrier type miniature sockets and sockets for jumbo tubes are also available.

"S" SOCKETS and "CP" PLUGS
"S" Sockets and "CP" Plugs mate with each other. They feature the Amphenol retainer ring design. Mount without screws or rivets on pancl or chassis. These sockets and plugs are extremely compact in size. ruggedly built for trouble free service. Available in black bakelite or mica-filled bakelite. "S" type sockets are also available in Amphenol Steatite. They are available in a variety of sizes, with the number of contacts ranging from 4 to 11 . Supplied with retainer rings for chassis mounting. Plugs and sockets are also available with plates for replacement use and caps for cord connectors.

STEATITE TRANSMITTING TYPE TUBE SOCKETS

These Sockets are designed for use where other, less rugged, sockets cannot do the job. They are made of low-loss Amphenol Steatite and feature the "clover leaf" contacts that provide four full lines of contact. Barriers provide long creepage paths that prevent arcing and flashover. Available in various sizes with 4,5 ,

Faur Amphenal Distributar

has what you need in the way of radio and electronic components. You'll save time by see. ing him for the part you want. All the components listed on these pages, and many others in addition, are carried in his stock and are immediately available.

MINIATURE 7 AND 9 PIN SOCKETS

Amphenol has a complete line of miniature 7 and 9 pin sockets for every application. Materials used are the best available, including black bakelite. mica-filled bakelite, Steatite and Amphenol's own Ethylon-A. which has an exceptionally high " Q " factor and low-loss. Zip-In sockets are molded of Ethylon-A, a resilient dielectric. and need no mounting plate or retainer ring.

"MIP" SOCKETS

The world's strongest socket! The plated steel mounting plate is molded right into the solid bakelite body. It cannot come loose or vibrate, reducing the possibility of tube microphonics. Two holes in each contact provide wiring and anchoring points for resistors, condensers, chokes, etc. These sockets are available in black bakelite or mica-filled bakelite in a wide variety of contact arrangements. Compact MIP sockets are also available for 8 pin Octal and Loktal tubes.

COAX and TWINAX

Amphenol cables are produced in strict conformity to the rigid military specifications. Constant checks and inspections are made to assure the best in mechanical and electrical construction.
Utilizing Amphenol coaxial cable will help a great deal in reducing line pickup which causes television interference.
Most of the RF cables in the Amphenol line have top grade polyethylene dielectric for low-loss, flexibility and mechanical stability. Amphenol also has available a complete line of cables with Teflon dielectric for high temperature applications.
Coax and Twinax are available from Amphenol in a wide variety of types and sizes.

AN CONNECTORS

- For Power. Signal and Control Circuits in Radio and Electronic Equipment, Amphenol has the most complete line of AN Connectors offered by any single manufacturer in the world. Many of the design features included in the MIL-C-5015A Specification were originated and developed by Amphenol Engineers.

Features of the Amphenol AN Connectors are:

- Lowest Milivolt drop.
- Coupling rings machined from solid aluminum bar stock. Extra high tensile strength (53,000 pounds).
- Amphenol non-rotating contacts for easy, fast soldering.
- Coupling rings and assembly screws drilled for safety wiring.
- Simple assembly requiring no special tools or jigs.
Specifying Amphenol AN Connectors is your assurance of getting the proper connector for the job and of getting the best quality in AN Connectors.

RACK and PANEL CONNECTORS

These connectors for rack and panel mounting are available with 11,15 or 20 contacts. All have eyelets inserted in the mounting holes for added strength, holes for wiring and interlocking barriers to prevent accidental shorting. They can be supplied with or without the protective can and cable clamp. Voltage rating is 500 volts. 60 CPS at sea level. Mounting screw spacing on 11 contact is $864^{\prime \prime}$; on 15 contact, $1.188^{\prime \prime}$; and on the 20 contact, 1.620°.

FM and TV ANTENNAS

The Amphenol Inline Antenna is the superior allchannel VHF television antenna. It is available in single bay or stacked as high as four bays depending on the need for signal strength. Amphenol also has a Piggy Back Antenna for installations requiring separate orientation of the high and low bands, a complate line of UHF TV antennas and a line of FM antennas for the best in High Fidelity reception.

A GENERAL CATALOG

 OF AMPHENOL COMPONENTS
HEAVY DUTY RADIO CONNECTORS

Compact. lightweight. used extensively for connecting various units of transmitters and testing apparatus and as power connectors for mobile transmitters and receivers. Completely encased in heavy drawn brass cadmum plated shell. Entirely free of shock hazard-will not radiate RF, Polarized shell permits 4 different element positions for added circuit !protection. Plugs, jacks and receptacles available in $4,5,6,8$ and 12 contacts.

CATALOG B-2

This complete 48 page catalog of Amphenol Components will be sent on request. The catalog contains illustrations and specifications on the over 9,000 items now included in the Amphenol line of manufacture.

AMERICAN PHENOLIC CORPORATION
1830 South 54 th Avenue - Chicago 50, Illinois

ESICO
 INDUSTRIAL SOLDERING IRONS

are the result of 25 years of specializing in the manufacture of high quality electric saldering irons ond they are used taday in a great majority of the country's electrical, radio and electronic plants.

No. 61

A lightweight ($21 / 2$ aunce), low cost unit far pin-point accuracy in the mast delicate soldering aperatians. Element canstruction is of same type used in ESICO industrial irons. Handle temperature is never higher than body temperature. Diameter of handle $3 / \mathbf{4}^{\prime \prime}$. Tips available in 3 shapes: type $B-1 / 4^{\prime \prime}$ dia., pyramid point; type $A-1 / 3^{\prime \prime}$ dia., straight pencil point; type C- $1 / 3^{\prime \prime}$ dia., bent 90 degrees, with pencil-like point. Regularly wound to 25 watts at 105-120 volts. May be obtained in higher wattages at no extra cost when purchased in quantities Iron, as illustrated, is $1 / 2$ actuol size.

No. 61A

The $\quad 61 \mathrm{~A}$ iron is very similar to the $\mathbf{6 1}$ except that the case enclosing the element is slightly longer. Where an iron which can be held as a pencil is required, it is possible to have this iron in wattages as high as 75 watts for fast soldering of maderate size parts. The iron, as illustrated, is $1 / 2$ octual size.

No. 62B

This iron is ovailable in 100 watts for either $105 / 120$ volts or 220240 volts. It is intended for 100 waft capacity work, but where a small diometer case is required in arder to get to the connections to be soldered. The iron is extremely light, and due to special construction has an extremely low handle temperature. Iron, as illustrated, is $1 / 3$ actual size.

No. 38

This is the iron that is so widely used in the large rodio plants ond, in many instances, is used in a 150 watt capacity, though the standard wattage of the iron is 100 watts. It is recommended that 150 watts be used only where there is foirly continuous soldering. The iron is af a type in which the element can be easily reploced by loosening a knurled nut at the back of the case, and after lead wires are loosened, by pulling out the old element and inserting the new one in a few minutes. The iron is ruggedly constructed and requires a minimum of attention and is completely serviceable within one's own plant. This iron is fast becoming the most popular iron in use in the electronic industry. The iron, as illustrated, is $1 / 3$ actual size.

Temperature Control Stand

A practical, time ond money soving device which occurately regulates and maintains soldering iron temperature between jobs, Lengthens iron life by reducing tip axidation and amaigamation of tip with solder which increases with over-heating. When placed on stond, iron rests in a copper cradle which conducts heat of iron and actuates a bimetal to open or close a switch. Temperature is easily regulated by an adjusting slide at bottom of stand. As iron is removed from stand, full current is instantly supplied. Stem rest is adjustoble to accommodate various lengths of irons. Stond is a heavy gray iron casting-stays firmly fixed without being fastened.

Solder Pots

Designed to meet rigorous production requirements, ESICO solder pots are made from high quality gray iron castings. They are fitted with heater plate type elements which can be easily and quickly reploced. Elements wound from highest quality nickel chrome resistonce wire. Elements of the three pots are interchangeable for greater economy and flexibility.

ELECTRIC SOLDERING IRON CO., INC., Deep River, Conn., U.S.A.

At Electronics Park, near Syracuse, N. Y., General Electric maintains headquarters for electronic research and development. From radio to radar, from computers to semi-conductors, potential uses of the electron are explored unceasingly by an army of scientists and engineers in this modern plant.

POWER SUPPLY

OSCILLOSCOPE

An Entire Family of

for Laboratory, Industrial, and High Quality Test Applications

Power Supply ST-9A - 1)ual regulated power supply gives electronic overload protection plus built-in modulator. YPD-2 - General laboratory purposes. Accurate and dependable.
Oscilloscope ST-2B - Has direct coupled amplifier. ST-2A - General purpose use.
Germanium Diode Checker ST-12A - Checks static characteristics of diodes.
Sweep Generator ST-4A - Completely electronic . . no moving parts. Sweep Marker Generator ST-5A - Crystal referenced calibrator from 10 mc to 300 mc .
iV Channel Sweep Generator St-1IA - Speeds production line testing. Binary Scaler $4 S N$-IA3 - For general counting applications.

- For full information call your nearest G-E Test Equipment Distributor or write: General Electric Company, Section 563, Electronics Park, Syrucuse, New York.

GENERAL ELECTRIC

industay

electronic tubes

Tubes of all types for communications and amateur radio ... plus dravir help in HAM NEWS - pioneer in new amateur gear!

AARMONIKER, ANNOUNCED IN HAM NEWS NOV.-DEC., 1949

SSB JR., ANNOUNCED IN HAM NEWS NOV.-DEC., 1950

HOW 10 GET HAM NEWS

- Copies are free, if you pick up the magazine from your G-E tube distributor Or . . . for $\$ 1$ a year ... G.E. will mail Ham News to your home. Ask your distributor for a subscription card, or write direct to Ham News, Tube Dept., General Electric Co.. Schenectady 5, N. Y., enclosing \$1. Subscriptions are limited to the U. S., Alaska, Hawaii, Panama C. Z., and Puerto Rico.

DE LUXE RELAY RACKS

These relay racks are made of 16 gauge steel with panel supports. The panel mounting supports are recessed so that no edges of the panel will be exposed
The front and back of the top. the two sides and the door are well louvered to provide adequate ventilation. Snap catches are positioned on the door. A stream-lined appearance is achieved by the use of rounded corners and red-lined chrome trim. The relay rack is shipped knockeddown and complete with all necessary hardware for assembly. All standard $19^{\prime \prime}$ panels will fit these racks
A SPECIAL FEATURE IS THE USE OF FOUR STURDY SUPPORTS ON THE BOTTOM SO THAT CASTERS CAN BE FAS TENED DIRECTLY TO THE BASE, THERE BY ACHIEVING READY MOBILITY. Bud RC-7756 casters will fit this unit. Casters are not included in price of cabinet. These relay racks are supplied in either black or grey wrinkle finish. The overall width is $22^{\prime \prime}$ and the depth is $174^{\prime \prime}$ on all sizes listed.

Catalog	Overall	Panel	Shipp
No.	Height	Space	Wt.
CR-1774	$42^{\prime} 16^{\prime \prime}$	$36^{3 \prime}{ }^{\prime \prime}$	90 lbs
CR-1771	$47^{5} 16$ "	$42^{\prime \prime}$	100 lbs
CR 1772	$66^{3}{ }_{16}{ }^{\prime \prime}$	$61^{1 \%}$	135 lbs
CR-1773	$82^{5} 16^{\prime \prime}$	$77^{\prime \prime}$	155 lbs

INSTRUMENT AND RECEIVER CABINETS

Each cabinet has an evenly recessed hinged cover with convenient finger lift The panel on front of cabinet is readily attached with self-tapping screws. Louvers provide ample ventilation. These Cabinets are finished in Black Wrinkle only.
Zat. $N o$.
$=-973$
$=-993$
$=-995$
$=-1190$
$=-975$

Height
$7^{\prime \prime}$
$7^{\prime \prime}$
$7^{\prime \prime}$
$7^{\prime \prime}$
$8^{\prime \prime}$
$9^{\prime \prime}$

Depth

STEEL CHASSIS BASES
These chassis are made from one piece of steel, all corners are reinforced and spot welded. The four sides are folded on bottom for additional strength - this also permits a bottom plate to be attached f desired. Furnished in either Black Wrinkle or Electro-Zinc plated. Black Wrinkle Zinc Plated

* Indicates chassis which are punched to accommodate Chassis Mounting Brackets.

For additional sizes consult Bud Catalog

ALUMINUM CHASSIS

The construction and design of these chassis is exactly the same as our steel chassis. The aluminum hassis are welded on yovernment haproved spot welders that are the pproved spot welders that are the ame as used the welding of aluminum airplane parts. As a Aluminum Chassis to do a perfect job. Etched Aluminum finish. The gauges in table below are aluminum gauges
Zatalog
Number
$1 \mathrm{C}-430$
$1 \mathrm{C}-402$
$1 \mathrm{C}-423$
1C-420
IC-416
Depth
$4^{\prime \prime}$
$5^{\prime \prime}$
$7^{\prime \prime}$
$13^{\prime \prime}$
$10^{\prime \prime}$

Height
$3^{\prime \prime}$
$2^{\prime \prime}$
$3^{\prime \prime}$
$3^{\prime \prime}$
$3^{\prime \prime}$
Gauge

For additional sizes consult Bud Catalog

DE LUXE CABINET RACKS

These cabinet racks have rounded corners and attractive red-lined chrome trim. There is a recessed, hinged door on the top with a snap catch. These racks are made of heavy gauge steel and are of sturdy construction. The five large sizes have a hinged rear door. while the small sizes have a welded panel in the rear
Adequate ventilation is assured by means of louvered sides and a two inch opening in the bottom of the back extends the entire width. 'NO-SCRATCH" EXTENDED METAL FEET ARE EMBOSSED ON THE BOTTOM TO MINIMIZE MARRING OF A TABLE TOP. Racks are furnished in either black or grey wrinkle finish. Depth $14^{3 \prime}{ }^{\prime \prime}$, width 22". Will fit standard $19^{\prime \prime}$ panels.

Catalog	Height	Panel Space	Shipping
CR-1741	$10^{3}{ }^{\prime \prime}{ }^{\prime \prime}$	$8{ }^{3 /}$	29 lbs .
CR-1740	12^{\prime} и"'	$101 /{ }^{\prime \prime}$	31 lbs .
CR-1742	14'16"	$12^{1 / \prime}$	32 lbs .
CR-1739	$15^{13} 16^{\prime \prime}$	14"	36 lbs .
CR-1743	$19^{\prime \prime} \mathrm{ns}^{\prime \prime}$	171/2"	40 lbs.
CR-1727	$22^{13} 11^{\prime \prime}$	$21^{\prime \prime}$	4.5 lbs .
CR-1744	$28^{3} 16^{\prime \prime}$	$26^{1}{ }^{\prime \prime \prime}$	50 lbs .
CR-1728	$33^{\prime \prime} 16^{\prime \prime}$	$311 /{ }^{\prime \prime}$	55 lbs.
CR-1745	$36^{13} 1{ }_{16}{ }^{\prime \prime}$	$35^{\prime \prime}$	60) 1 hs .

STANDARD RELAY PACK PANELS
Made of Steel or Aluminum. Steel Panels are made of high grade steel , thick. Alunfnum Pancis are Panels $10^{\prime \prime}$ thick Aluminam. Al either Black or either Black or Grey Wrinkle. Aluminum panels ${ }^{3}$ " 15 " thick may be had if desired at 60% increase in cost over ' Q ".

STEEL		ALUMINUM	
Catalog		Catalog	
PS-1250	Height	$\stackrel{\text { No. }}{\text { PA-1101 }}$	Height
PS-1251	$31^{\prime \prime}{ }^{\prime \prime}$	PA-1102	$31 /{ }^{\prime \prime}$
PS-1252	51 "	PA. 1103	$5{ }^{\prime \prime}$
PS-1253		PA-1104	$7{ }^{\prime \prime}$
PS-1254	$8{ }^{\text {s }}$ "	PA-1105	$83^{\prime \prime}$
PS-1255	$10^{1} 2$ "	PA-1106	101/2"
PS-1256	121. ${ }^{\prime \prime}$	PA-1107	$12{ }^{1{ }^{\prime \prime}}$
PS-1257	14"	PA-1108	$14^{\prime \prime}$
PS-1258	153."	PA-1109	15*"',
PS-1259	171/2",	PA-1110	$171 /{ }^{\prime \prime \prime}$
PS-1260	191,"	PA-1111	$19{ }^{\prime \prime}$
PS-1261	$21^{\prime \prime}$	PA-1112	$21^{\prime \prime}$

Catalog No.
CU-883
CU-728
CU- 729
CU-729
CU-1098
CU-1099
CU- 879
CU-1124
CU- 880
CU- 881
CU. 882

METAL UTILITY CABINETS

The large number of sizes available makes this line useful for all sorts of electronic equipment, monitors, frequency meters. etc. These cabinets have two removable sides for easy accessibility and are finished in Black Wrinkle.
Depth
$2^{\prime \prime}$
$3^{\prime \prime}$
$4^{\prime \prime}$
$6^{\prime \prime}$
$5^{\prime \prime}$
$7^{\prime \prime}$
$6^{\prime \prime}$
$8^{\prime \prime}$
$8^{\prime \prime}$
$7^{\prime \prime}$

Width
$4^{\prime \prime}$
$5^{\prime \prime}$
$5^{\prime \prime}$
$6^{\prime \prime}$
$6^{\prime \prime}$
$8^{\prime \prime}$
$7^{\prime \prime}$
$10^{\prime \prime}$
$11^{\prime \prime}$
$9^{\prime \prime}$

MINIBOXES
There are thousands of uses in the fields of radio and electronics for these new boxes. They are made from heavy gauge aluminum. The design of the box permits installation of more components than would be possible in the conventionally designed box of the same size. It is of two piece construction, each half forming three sides. The flange type construction assures adequate shielding. Available in etched aluminum finish and gray hammerloid finish.

Catalog Numbers

Grey	Etched
CU.2100	CU-3000
CU-2105	CU-3005
CU-2108	CU-3008
CU-2111	CU-3011
CU-2115	CU-3015

Length
$2^{3 / 3 / \prime \prime}$
$5^{\prime \prime}$
$7^{\prime \prime}$
$12^{\prime \prime}$
$4^{\prime \prime}$

Width
$21 /{ }^{\prime \prime \prime}$
$4^{\prime \prime}$
$5^{\prime \prime}$
$7^{\prime \prime}$
$2^{\prime \prime}$
Height
$15 /{ }^{\prime \prime}$
$3^{\prime \prime}$
$3^{\prime \prime}$
$4^{\prime \prime}$
$2^{3} / 4^{\prime \prime}$

For additional sizes consult Bud Catalog

TYPE DUAL MIDGET CONDENSERS These Midget Condensers were designed to meet the rigid requirements in design of efficient high frequency electronic devices and precision laboratory equipment. The large front and rear bearings provide for smooth rotation. They feature a retor wiping contact placed at center of the rotor assembly to assure maximum efficiency at high frequencies. Opposed rotor construction assures perfect counterbalance and provides even torque at any position of rotation. Steatite insulation eliminates closed induction loop in frame. All metal parts cadmium plated.

"CE" MIDGET CONDENSERS

 SINGLE SECTION DOUBLE BEARINGThese Midget Condensers were designed to meet the rigid requirements in design of efficient high frequency electronic devices and precision laboratory equipment. Brass rotor and stator plate stacks are assembled into permanent units by means of electro-soldering, which assures ong life and accurate plate spacing. End-plates of Steatite insulate the mounting bushings and angles from the rotor and stator assembles. The large front and rear bearings provide for smooth rotation. Special wiper contact provides noise-free tuning. All metal parts are cadmium plated. Rotor plates semi-circular shaped. Provision for either panel or base mounting,

Catalog	
Number	
CE-2000	
CE-2001	
CE-2002	
CE-2003	
CE-2004	
CE-2005	
CE-2008	

Max.	Min.		No.
Cap.	Cap.	Air	of
MMFD.	MMFD.	Gap	Plates
15	4	.030"	3
35	6	.030"	7
50	7	.030"	9
75	8	.030"	14
100	9	.030"	18
150	10	. 030 "	27
300	15	.030"	52

Overall Length $21 / 2$ 2 2 3 3 312 $5^{?}$ ",

For additional sizes consult Bud Catalog

TINY MITE TUNING CONDENSER SINGIE SECTION

This series of condensers has been designed for applications where space or weight are limiting factors and for tuning of high frequency circuits. Rigid construction. close fitting bearing. positive rotor contact and Steatite insulation are the outstanding features. Cadmium plated, soldered. brass plates and rods insure high frequency efficiency.

	Max.	Min.		No.
Catalog	Cap.	Cap.	Air	Of Number
MMFD.	MMFD.	Gap.	Plates	
LC-1640	8	2.5	$.017^{\prime \prime}$	3
LC-1644	50	6	$.017^{\prime \prime}$	19
LC-1646	100	9	$.017^{\prime \prime}$	37
LC-1652*	59	8	$.037^{\prime \prime}$	35
LC-1654	15	5.5	$.073^{\prime \prime}$	15
LC-1655*	25	9	$.073^{\prime \prime}$	27

For additional sizes consult Bud Catalog

THREE-GANG TINY MITE CONDENSERS
Hanss, Radio Constructors and Experimenters can find many uses for these compact, three-gang condensers. Designed particularly for high frequency use, they are adaptable for use in converters. preselectors and receivers covering the Amateur. Television and F.M. bands. Well constructed with soldered brass plates and ceramic brackets. Rotor shaft extended ${ }^{\prime \prime}$ "at rear. Height $15 / 16^{\prime \prime}$. Width $13 / 16^{\prime \prime}$. Length behind panel $3^{3},^{\prime \prime}$. Mounting holes $2^{3 / 1 / 6^{\prime \prime}}$ apart.
Catalog
Number
LC-1845
L-1846

Cap. Per Section	
Max.	Min.
11	5
17	5
25	6

MIDGET CONDENSERS

Small size, sturdy construction and high mechanical and electrical efficiency are the outstanding features. Insulation used is Steatite. Rotor and Stator plates are brass and are electro-soldered to their respective rods. All metal parts are cadmium plated. These condensers have both front and rear bearings and are furnished in either mid-line type plates (straight line wave length), or semi-circular plates (straight line capacity.)

SEMI-CIRCULAR TYPE-DOUBLE BEARING

Catalog Number MC-1850
MC-1853
$\mathrm{MC}-1855$
$\mathrm{MC}-1863$
$\mathrm{MC}-1863$
$\mathrm{MC}-1865$
MC-1865
MC-1867

Cap.
Max.

Max.	Min.
15	3
50	5
100	7
50	7
100	12
50	10

For additional sizes consult Fud Catalog

BUD TINY MITE DUAL CONDENSERS

The construction of these units is similar to the regular Tiny Mite Tuning Condensers. The two end pieces are held together firmly with three tie-rods.

A separate round plate is soldered on rotor rod to shield the two stator sections. Large surface front and rear sleeve bearings. provide smooth rotation.

Catalog

CAP, PER SECTION
Number $\begin{array}{cc}\text { Max. } & \text { Min. } \\ \text { MMFD }\end{array}$

LC-1660
LC-166才
LC- 1661
M M
$\begin{array}{cc}\text { MMFD. } & \text { MMFD. } \\ 8 & 2.5 \\ 15 & 3 \\ 25 & 4 \\ 50 & 6 \\ 100 & 9 \\ 10 & 4 \\ 15 & 5 \\ 25 & 5.5 \\ 35 & 6\end{array}$
Air
Gap
$.617^{\prime \prime}$
$.017^{\prime \prime}$
$.117^{\prime \prime}$
$.017^{\prime \prime}$
$.017^{\prime \prime}$
$.037^{\prime \prime}$
$.037^{\prime \prime}$
$.037^{\prime \prime}$
$.037^{\prime \prime}$
No. Plates
Per
Section
3
5
9
19
37
7
11
17
21

Number

LC-1662
LC-1663
LC-1664
LC- 1565
LC- 1666
LC-1667

NEUTRALIZING AND HIGH FREQUENCY TUNING CONDENSERS
This line of condensers will fill every neutralizing and high frequency tuning requirement that modern circuits pose. The two-pillar construction makes this unit unusually sturdy and eliminates any possibility of capacity variation due to vibration. The movable plate is adjusted by means of the threaded shaft to which it is attached, and it is permanently locked in any thread is taken position by the lock-nut provided. Any loose operation. All metal parts are of aluminum or brass. Plates have rounded edges. Steatite insulation is used.

Catalog	Plate		MMFD. Capacitv	
Number	Diameter		Max.	Min.
NC-1000	$127 / 32^{\prime \prime}$		11	1
NC-1001	$213 / 16^{\prime \prime}$	24	2	
NC-1002	$43 / 4^{\prime \prime}$		27	6

IRON CORE R. F. CHOKES

The efficiency of any circuit requiring an R, F choke will be definitely improved by utilizing one of these chokes with a finely divided molded metallic core. The improved " Q " possible with this construction results from the D. C. resistance of these chokes being from 40 to $50^{\prime} i$ less for a given inductance than for regular air-core types. Thus, ductance than for regular air-core types. Thus;
the D. voltage drop through the choke is considerably less, yet the choking action is equally as good. Windings are made with silk-covered enameled wire terminated on convenient soldering lugs, and the chokes are mounted in small square shield cans measuring $1^{3 / 8^{\prime \prime}} \times 13 / 8^{\prime \prime} \times 1^{1 / 1} 6^{\prime \prime}$

Catalog	Inductance	D. C. Resistance	Current
Number	mh.	Ohms	ma.
CH-1277	1.5	11.5	125
CH-1278	2.5	16.	125
CH-1279	3.4	19.5	125
CH-128.	5.5	27.5	125
CH-1281	8.	36.	125
CH-1282	10.	42.5	125
CH-128.3	16.	5.3.	125
CH-1284	39.	82.	100
CH-1285	69.	131.	100
CH-1286	80.	163.	90
CH-1287	125.	221.	90
CH-294	Shield Can Only		

Also available Pie wound and Lattice wound

PUD BUD Products for high quality and best results

75-WATT TRANSMITTER COILS

These coils are distinguished by their rigid construction, attractive appearance and conservative power rating. The polystyrene mounting base keeps the coil a safe distance from the chassis it also permits easy coil removal without disturbing the winding. All coils are air-wound and mount in 5 prong tube sockets.

OEP and OCP Coils are designed for use in circuits using Pentode tubes with ligh output capacity such as 6L6. 807, etc.

OEL coils have fixed end link and are not tipped,
OCL have fixed center link with main winding center tapped, OLS have adjustable center link, main winding center tapped OES have adjustable end link and are not tapped.
OEP have adjustable end link and are not tapped
OCP have adjustable center link main winding center tapped.

AM-8673 Coil Base only

ADJUSTABLE LINK TRANSMITTER COILS

Listed are two types of Coils. CL type of coil has an adjustable CENTER link. ES type of coil has an adjustable END link The CL and ES can be used where fixed links are specified. No additional cost is involved and more efficient coupling is as sured because of this special adjustable link, an exclusive BUD feature.
150 WATT RATING

Catalog No. Center Link	Catalog No. End link		Capacity*	
Adjustable	Adjustable	Band		
RCL-160	RES-160	160 Meters	110	MMFD
RCL-80	RES-80	80 Meters	68	MMFD
RCL-40	RES-40	40 Meters	36	MMFD
RCL-20	RES-20	20 Meters	27	MMFD
RCL-15	RES-15	15 Meters	27	MMFD
RCL-10	RES-10	10 Meters	25	MMFD
AM-1932 -	ounting Base	CL and RES		

VARIABLE LINK TRANSMITTER COILS

The most effective method of varying the loading of an R.F. Stage is by the use of a variable link to the plate tank, feature incorporated in all Bud Vari able Link Coils. The link winding is connected to the jack bar into which the coils are plugged, and this link may be used with any of the coils regardless of the band being worked. The link winding is so arranged that it may be readily controlled from the panel by means of an extension shaft if required. 500 WATT COILS

Catalog			Length	Mounting

SHIELDED COIL-LINK

These links are made to fit RLS, VLS, and MLS series of coils. This These links are made to fit RLS, VLS, and MLS series of coils. This
link will prevent capacity coupling between the link will prevent capacity coupling between the tank coil and the link and will reduce TVI by
greatly attenuating harmonics. The links can be used on co-ax or balanced lines.

Catalog No.
Description
AM-1300 AM-13:1 Used with RLS coils (150 W) $\begin{array}{ll}\text { AM-13.1 } & \text { Used with VLS coils (S) S } \\ \text { AM-13n2 } & \text { Used with MLS coils (Kilowatt) }\end{array}$

ADD-A-LINK

When the circuit that you are using requires a different number of turns on the coillink than is furnished with the standard coil, the liaks listed below can be used to replace the standard link.

Cat. $\overline{\text { No. }}$	Used With	No. of Turns
AM-1303	RLS	31/2
AM-134.4	RLS	$41 / 2$
AM-1305	RLS	$51 / 2$
AM-1307	VLS	$31 / 2$
AM-1308	VLS	$41 / 2$
A AM-1309	VLS	$51 / 2$
6 AM-1310	VLS	612
6 AM-1311	MLS	$31 / 2$
\checkmark AM-1312	MLS	$41 / 2$
O AM-1313	MLS	$51 / 2$
AM-1314	MLS	$61 / 2$

CODE PRACTICE OSCILLATOR AND MONITOR CPO-128

The BUD Codemaster is a real moneysaver. No longer do you have to consider your code practice oscillator useless after you have learned the code. A hip of the switch and you have a good CW monitor. This is a really versatile instrument

It has a $4^{\prime \prime}$ built-in permanent mag. netic dynamic speaker and will operate up to twenty earphones.

A volume control and pitch rontrol permit adjustments to suit individual requirements. Any number of keys can be connected in parallel to the oscillator for group practice.

This unit will operate on 110 volts A.C. or D.C. An external speaker may be plugged in without the use of an out put transformer. All controls are placed on the front of the unit and all jac's are in the rear. The unit is $61 / 2^{\prime \prime}$ high. $51 / 2^{\prime \prime}$ wide and $31 / 2^{\prime \prime}$ deep. It is finished in Grey Hammertone enamel with red lettering.

MODEL CPO-130

This unit is similar to the CPO-128. The difference is that the $4^{\prime \prime}$ speaker is not in difference is that the 4 speaker is not in-
cluded. The monitor feature, however, is cluded. The monitor feature, however, is output and as many as 20 pairs of phones and keys can be operated at one time for class-room operation. This model will also operate a permanent magnetic dynamic speaker. Size is $51 / 2^{\prime \prime}$ wide, $41 / 3^{\prime \prime}$ high, $31 / 2^{\prime \prime}$ deep.

GIMIX GX-79

The BUD Gimix is a multipurpose unit requiring no batteries or power supply. It is calibrated for use on batteries or power supply. It is calibrated for use on
the $10,15,20.40$ and 80 meter amateur bands. No additional coils are needed as the one coil does the work on all bands. It can be used as a Wave-Meter, a Monitor, a Field Strenßth Indicator, a Carrier Shift Indicator and a sensitive Neutralizink Instrument. Operating instructions supplied with each unit.

FREQUENCY CALIBRATOR FCC-90 To comply with federal regulations, some means of accurately checking transmitter frequency must be available at every "ham" station. The BUD FCC-90 consists of a 100 kc . crystal oscillator that is Completely Self-Powered. It will give 100 kc . check prints on all bands up to 30 megacycles. This enables the operator to determine exact band edges. No extra wiring is required to install this unit. Plug the FCC-90 into a 110 volt receptacle, connect the pick-up lead to the antenna binding post of the receiver and the unit is ready for operation. An ON-OFF switch and a STANDBY switch are provided.

3 REASONS WHY CENTRALAB ELECTRONIC COMPONENTS ARE FIRST CHOICE

1. Availability - It's easier to buy Centralab components. More than 800 distributors stock them, and there's one near you.
2. Widest Line - America's most complete line of controls; Switches, Ceramic Capacitors and Printed

Electronic Circuits.
3. Highest Quality - Smallest Size - Compare these
3. Highest Quality - Smallest Size - Compare these
outstanding Centratab electronic components with all others. Y'ou'll find you get highest efficiency, matlest size, true permanence.

CERAMIC CAPACTIORS with a wide range of ratings and in miniature sizes meet the exacting requirements of radio and television circuits. They offer high accu. racy, low power factor, space saving and the most desirable temperature and humidity characteristics. This means freedom from service trouble not possible with older style condensers of moisture absorbing paper construction, or mica construction.

TUBULAR TC HI-KAPS temperature compensating ceramic capacitors, TC.Z units show no capacity change over wide range of temperature ; TCN'svary capacitance according to temperature.

NEW BLUE SHAFT VOLUME CONTROLS available in all generally required sizes , . plain and switch types. Factory-assembled and tested ready to install.

HAM TYPE SWITCHES - heavier thatl normal Steatite insulation. For use with tubes operating up to 1000 volts and inputs up to 150 wats. Nonshorting.

PRINTED ELECTRONIC CIRCUITS. Now available, everything from single value capacitors and resistor plates to complete 3 -stage speech amplifiers.

POWER SWITCHES are specially designed for transmitter, power supply convertors and other medium duty power applications. Efficient up to 20 megacucles.

ROTARY BAND SWITCH is used pri-

 marily for band change and general tap switch applications. Made with Steatite or phenolic insulation.

Get your free copy of Centralab's new Catalog 28. Hundreds of new components. Just tell us you are a radionamateur - it will be mailed at once.

LEVER . . . SPRING RETURN . . . TONE SWITCHES. See your Centralab distributor for complete details on these switches - and the complete line of quality CRL parts

Centralab

A Division of Globe-Union Inc.

940 East Keefe Avenue, Milviaukee, Wisconsin In Canada: 635 Queen St., East, Toronto, Ontario

Centralab offers the widest variety of ceramic capacitors on the market today for all ranges of voltage and frequency - for any application in circuitry.

Centrolab

A Division of Globe-Union Inc. 940 E. Keefe Ave., Milwoukee 1, Wis. In Canada: 635 Queen St., Eost, Toronto, Ontario

Centralab introduced ceramic capacitors and has constantly devoted more research and larger laboratory and production facilities to this field, than can be said of any other firm. Ceramics are known as the most permanent type of capacitors.

MOLDED DISC HI-KAPS

Another Centraleb first in the coramic capacitor field. MD Mi-Kaps are complataly molded with in. sulating Centrathene. Ultre-conservative rating of 600 V.D.C.W. with 1800 V. test. No dangar of shorting adjacent to chessis, insulation sa fo to $\mathbf{2 5 0 0}$ V.D.C. Moisture absorption less than $.005 \%$. Values permanently stampad. Size "Ko" d. x K." thisk. Pacted 5 per envelope
NET PRICE EACH
8.15

Car, No.	Cap. MMF.	Cat. No.	Cap. MMF
MD.050	5	M0.391	390
MD. 100	10	MD.401	400
MD-120	12	MD.471	470
MD. 150	15	MD-501	500
MD.180	18	MD.561	560
MD-200	20	MD. 601	600
MD. 220	22	MD-681	680
MD. 250	25	MD.751	750
MD. 270	21	MD.821	820
MD. 330	33	MD. 102	1000
MD. 390	39	MD-122	1200
M0.470	47	MD. 152	1500
MD. 500	50	MD. 182	1800
MD-560	56	MD-202	2000
MD.680	68	MD-222	2200
MD. 750	75	MD. 252	2500
MD. 820	82	MD. 272	2700
MD. 101	100	MD. 302	3000
MD. 121	120	MD. 332	3300
MD-151	150	MD. 402	4000
MD.18	180	MD. 472	4700
MD-201	200	MD-502	5000
MD. 221	120	MD. 562	5600
MD. 251	250	MD.682	6800
MD. 271	270	MD. 752	7500
MD. 301	300	MD-103	10000
MD.331	130		

STANDARD DISC HI-KAPS

fit narrow spaces. Tolerances GMV except Cat. No. DD. 2.502 is $-20 \%+80 \%$. 1000 d.c. test; 600 velis d.c. worling. Minimum order quantity, 5

$\begin{aligned} & \text { Csat. } \\ & \text { No. } \end{aligned}$	Cop. MFD.	Diam.	Thick.	Net Price
	TYPE DD - SINGLE DISCS			
D0.471	. 00047	14"	. $156{ }^{\prime \prime}$	\$. 15
DD.801	. 00088	1/"	.156"	. 15
DD. 102	. 001	'6'	. $156{ }^{\prime \prime}$. 15
DD. 152	. 0015	$3{ }^{\prime \prime}$.156"	. 15
DD. 1032	. $01(\pm 20 \%$)	\%"	.156"	. 18
DD. 203	. 02	\%',	.219"	. 18

TYPE DD.3* - 5HIELDED DUAL DISCS

DD.3-102	2 $\times .001$	3' ${ }^{\prime \prime}$.225"	. 27
D0.3.152	2×.0015	$3{ }^{\prime \prime}$.225"	. 27
DD.3-202	2:.002	ha"	.225"	. 21
DD.3.502	2:.005	4,	.225"	. 30
D0.3-103	2	\%"		

[^13]TV HI-VO-KAPS

The accepted standard for filter and bypass applications in telavision high voltage powar supply. Body sizes - 501, $1^{\prime \prime}$ diam. z 510°. 502. $1^{1 "}$ diam \# 1.050°. 503, 1.4° diam. 1.250°. Tarminels A-Plain studs. B-One slotted hu" wide \#hio deep, other topped 6.32. $1 / 4^{\text {" }}$ deep. $\mathrm{C}-\mathrm{Scram}$ terminals, male $6.32 \times 1 / 4^{\prime \prime}$, femele $6-32 \times 1 / 9^{\prime \prime}$. D Two 6.32 male terminals. E - Two 6.32 female ter minals. f - One 6.32. ont 8.32 male terminals Tolerance $-20 \%+50 \%$

Cat. No.	Cap. MMF.	V.D.C. Worting	Tarm.	Not Price
TV1.501	500	10,000	A	\$1.03
TV2-501	500	10,000	d	1.0
TV3.501	500	10.000	C	1.0
TV1.502	500	20,000	A	t.
TV2.502	500	20,000	B	1.1
TV3-502	500	20.000	c	1.1
TV4-502	500	20.000	D	1.1
TV5.502	500	20,000	E	1.1
TV7.502	500	20.000	F	1.
TV1.503	500	30,000	A	2.

CERAMIC TRIMMERS
New Type 827 miniature, moldad

body for dust protaction. Sine:
"n $1 / 4$. All 600 . NET ${ }^{14}$. All 600 V.D.C.W. $\$$ $\begin{array}{llll}\text { Type } & \text { Cap. } & \text { Type } & \text { Cap. } \\ 827 \mathrm{~A} & 2.5-7 & 827 \mathrm{C} & 5.30\end{array}$ Type 822, at right, "ru" \& "q口". Nos onding in Z, rero temp. coef. (NPO). ending in N , neg. temp. cout.

Cat. No.	Range MMF,	Nat	
822.CZ	2. - 7.5	\$ 888	
822-8Z	2.5.13.	. 88	
822-AZ	4.5.25.	. 88	()
$822-\mathrm{CN}$	4.5.25.	. 88	
822-EN	1. -45	. 88	
822.AN	5. -50	88	

HAM TYPE SWITCHES
Heavier than normal Steatite insulation. Use with tubes operating up to 1000 volts and inputs up to 150 watts . Nan-shorting. 90° positive inder. Mtg. bushing $3 /{ }^{\prime \prime}=32$ thread. $1 / 0^{\prime \prime}$ long. Shaft, $1 / 4^{"}$ long.

| Cob. | Poles per | Tot.
 Sec. | Sec. | Positions |
| :---: | :---: | :---: | :---: | :---: |\quad| Net |
| :---: |
| Price |

NEW MINIATURE SWITCHES STEATITE INSULATION

$11 / 2^{\prime \prime}$ overall diamater gives saving of $11^{\prime \prime}$ over standard switches with same current ratings. One intre active pasition than standard witch. I pole 12 pes. or 2 pole 6 pos. per section. Withstand 50 hour calt spray test. Adiustable stop. One pioce able. Paction. Suparate sactions and hardware aval for information on spacers, tie bolts, Enob, nuts and washers, shiolds, adj. stops, many variations.

C.t. No.	Total Poles	No. Sect,	Positions	Net Price
	SHORTING CONTACTS (make before breal)			
PA. 2000	1	1	$2-12$	\$1.50
PA. 2002	2	1	2.6	1.56
PA. 2004	2	2	2.12	2.25
PA.200\%	3	,	2-5	1.65
PA.200\%	3	3	2.12	3.00
PA-2010	4	2	2-6	2.14
PA-2012	4	4	2-12	3.75
PA-2014	5	,	2.3	1.71
PA. 201%	5	5	2-12	4.50
PA-2018	6	1	2	1.71
PA. 2020	6	2	2.5	2.40
PA. 2022	6	3	2.6	3.15
PA-2024	6	6	$2 \cdot 12$	5.25
PA-2026	${ }^{1}$	4	2.6	3.90
PA-2026	9	3	2.5	3.15
PA. 2030	10	2	2.3	2.55
PA-2032	10	5	2.6	4.65
PA. 2034	12	4	2	2.55
PA-2036	12	6	2.6	5.40
PA-203\%	15	3	2.3	3.30
PA. 2040	18	4	2	3.30
	NON-SHORTING (break before mole)			
PA. 2001	1	1	2.12	1.50
PA. 2003		1	2.6	1.56
PA. 2005	2	2	2-12	2.25
PA-2001	3	1	2.5	1.65
PA-2009	3	3	2.12	3.00
PA-2011	4	2	2.6	2.34
PA-2013	4	4	2-12	3.75
PA-2015	5	,	$2 \cdot 3$	1.71
PA. 2017	5	5	2.12	4.50
PA. 2019	6	1	2	1.71
PA-2021	6	2	2.5	2.40
PA. 2023	6	3	2.6	3.15
PA-2025	6	6	2.12	5.25
PA. 2021	8	4	2-6	3.90
PA. 2029	9	3	$2-5$	3.15
PA-2031	10	2	2.3	2.55
PA. 2033	10	5	2.6	4.65
PA-2034	12	2	2	2.55
PA. 2037	12	8	2-6	5.40
PA. 2039	15	3	2.3	3.10
PA-2040	18	3	2	3.30

STEATITE SECTIONS FOR PA-2000 SERIES

Cot. No. Shork. ing	Cat. No. Non. Short.	Potes	Posi. fions	Not Prise
PA. 0	PA. 1	1	2-12	\$ 81
PA. 2	PA. 3	2	2-6	. 81
PA. 4	PA. 5	3	2-5	. 90
PA. 8	PA. 7	5	2.3	. 90
PA. 8	PA.9	6	2	. 90
PA. 10	-......-	1	2.5	81
	Unused contects on one side of common connected and shortad out			
PA-18	PA.11	1	2.14	81
	All unused contacts connected and shorted out			
	60° INDEXING			
PA-12		1	2.10	. 81
---*	PA.17	I	2.6	81

SUPREME

Since 1927

"Supreme by Comparison"

AF, RF, and TELEVISION SIGNAL GENERATORS

Whether you need a dependable sigthal source for testing audio devices. viduo cireuits of RF and IF ambliffiers, you will find supreme Signal Ginmerators a pleasure to use. Illustrated on the left is a jopular general [urpose combintation $A F$ and RI Signal Gemerator irefuenty seen o:t the service benches of better electronic techniciaths everywheres. To the right is that well known hupreme Composite Vifter Celiotatur which delivers the standard R'l"MA Television synchronizing signal-even the equalizing pulse's to assure proper interlace. Ideal for hams setting un
 wete information reque'st Datai Shere No. AR-36.5-60

TUBE TESTERS

supreme Tube Testers known for giving dependable ser wice over long periods of use. All circuits employed in Supreme Tube Testers demmo strate the ultimate in design Hexibility to minimize obsohesconce. New tube setting data is published in the supreme Test Equipment Bulletins and mailed quartarly, at no charge. to all test instrument users on our mailing list to keep them up-to-date. Bend your name and address to our Service Division. Attention: AR-TAS, and get on this list.

VOLT-OHM-MILLIAMMETERS

 both single function atud multi-function types. Also, Vacuum Tube Voltmeters. Request bata sheets AR-342-74.

PANEL METERS

Every year more and more manutacturers are selcoting Supreme meters as initial equipment in hundreds of elect rical and electronic devices. Quality built in every respect with many outstanding features such as - EFFFICIENT N. NICO BIR MAICNET - SELECTED PIOOTS ANH JFINELS - HIGII TOROUE MOXEMENT - STRONG;
 MONCG ELEMENT, Arailable in a variety of sizes and types with or without special dials. Write for Spec. Data人io. , 1R-3400.

Amateurs -

Engineers•
Technicians•
 illustrated above, we are often called upon to proluce sipecial purpose panel metters and testing instrmments for intuetrial organiza tions, public utilities, and government services. lerhaps, with our khow how plus our design, weting and manufarurimg facilitiens we can solve a broblem for you

NOVICE AMATEUR ENGINEER

Write today for your FREE copy of this great new book that gives you complete details, pictures, and lowest prices on:

Amateur Radio Antennas Audio Amplifiers Audio Furnifure Batteries Books Copacitors Chossis, Rocks, and Panels
Chokes
Clips
Connectors Counter tubes Crystals Dials and Knobs Electric Tools
Fuses
Hand Tools
Headphones Hi-Fi Speakers Inductances Inculation Insulators Intercoms Loud Speakers Microphones Music .Systems Noise Filters P. A. Equipment

Phono Needles Phono Pickups Pilot Lighis Plugs and Jacks Power Supplies Radio Hardware Radio Sets
Radio Tuners Receiving Tubes Record Changers Rectifers
Retays Resistors
Sockets
Soldering Equipment Special-purpose Tubes Switches Tope, Wire, Dises Tope Recorders Telegroph Keys Terminals Test Equipment Transformers Turntables
TV Replocements
TV sels
Vibrators
Voltage Conirols
Wire

EASY TIME-PAY TERMS!

YOU NEED THIS

224-PAGE NEW, 1953
 RADIO SHACK

${ }_{\substack{\text { neaill } \\ \text { getatalog }}}$

Please send me your new calalog No. 53-AH
Name \qquad
\qquad
\qquad

these two STANCOR transformers

. . . are part of Stancor's extensive line of catalog part numbers . . . available for immediate delivery from your local electronic parts distributor.

These units are examples of the many specialized transformers in the Stancor cataloged line . . . units that are regularly carried in stock,

Check the Stancor Catalog first when you need transformers for industrial, amateur, audio, radio, TV or any other electronic application. You're almost sure to find it there.

You can get your FREE copy from your Stancor distributor, or by writing Stancor direct.

STANDARD TRANSFORMER CORPORATION is one of the leading suppliers of industrial and military transformers built to the manufacturers specifications. Stancor is your best source for hard-to-design, tough-to-build haransformers. At Stancor you will have the services of experienced equiped sign engineers and a fully equippede test laboratory wind tant testing facilities for in-plant of MIL-T-27 compo built in the transformers will be transformer industry's newest most modern plant, using the most equipment. plant,

STANDARD TRANSFORMER CORPORATION
 3580 Elston Avenue, Chitago 18, Illinois

PLATE TRANSFORMER, PT8315. Mounting style provides protected path to anodes of rectifier tubes with heavily insulated HV leads out of top of unit. Primary leads brought out through bottom. Primary. 117 volts, 60 cycles: secondary, 2065-0-2065 AC volts: 1750 DC volts, DCMA 200 CCS, 250 ICAS. weight 24 pounds. DC output rated at load terminals of single-section. re-actor-input filter with full-wave mercurv vapor rectifiers.

CATHODE RAY TUBE POWER TRANSFORMER, P-8151, for use with type 2×2 rectifier tubes in a conventional half-waye high voltage supply. Plate supply 2.400 AC volts, half wave, 5.0 DCMA. Rectifier flament 2.5 volts at 2.0 amps. Other windings, 2.5 volts at 2.0 amps. Height $45 / 16^{\circ}$. base area $3 \% / 16^{\prime \prime} \times 37 / 8^{\prime}$.

Triangular cross-section transmission towers for rotary beam support ...for insulated vertical radiators . . . for special, complex arrays of rhombics or curtain antennas ... or any tower problem you have, you'll have the best results with Wincharger.
$78 \quad 150 \mathrm{ft} . \quad 14^{3} / \mathrm{m} \mathrm{in} . \quad 35 \mathrm{ft} . \quad 7.8 \mathrm{lbs} . \quad 5,000$
42-47 $125 \mathrm{ft} . \quad 13 \frac{1 \mathrm{z} \text { in. } \quad 30 \mathrm{ft} . \quad 4.7 \mathrm{lbs} . \quad 3,000}{}$

[^14]Whatever you need-simple antenna support towers or heavier towers for complex transmitting arrays-Wincharger Towers can do the best job for you.

104

that's why

 NOVICES,AMATEURS, ENGINEERS, and EXPERIMENTERS Across the Nation RELY UPON HARVEY for all their ELECTRONIC and COMMUNICATION REQUIREMENTS!

Because Harvey's stocks are so large and so complete, almost anything you can name in electronics, can be shipped within minutes of your letter, wire, or phone call. And you can depend upon Harvey that what you receive is exactly as ordered, and that it will function and perform to your complete satisfaction.

Harvey has been the reliable headquarters for hams, experimenters, professionals, commercial and industrial engineers for over 25 years. And the experience gained over these years is always at work for you. Six active amateurs are in Harvey's employ, plus a staff of well informed, trained experts who stand ready to assist you in the selection of parts and equipment, and in troubleshooting your problems. Every possible field is covered, including radio communications and broadcasting, TV, audio, recording, and industrial electronics.

Remember, you are always welcome at Harvey's. So, when in New York, make it a point to come in and say, "Hello".

Harvey is Always af your Service

AUTHORIZED DISTRIBUTORS OF

> RECEIVING AND NON-RECEIVING TUBES BATTERIES • TEST EQUIPMENT TEIEVISION COMPONENTS SERVICE PARTS
... and all the products of all the
famous names in radio and electronics
Free rca ham tips

There's a free copy of RCA HAM TIPS waiting for you at Harvey Radio. If you can't call personally, write.

performance proven!

Tris
 新
 $+\mathrm{H}^{5}$

 multi-channel, combination UHF-VHF, primary or fringethere's a performance proven VEE-D. X antenna or combination of antennas that will provide brilliant reception. All VEL-D-X antennas for UHF were developed by professional engineers (some are also Radio Amateurs) and extensively field-tested with the experimental UHF transmitter (KC2XAK) located at Bridgeport, Connecticut (since 1919) - and only 60 miles from the Vee-D-X development laboratory. So, be safe - be sure with Vec-D-X performance proven UHF antennas

THE UHF COLINEAR
A high gain allchannel fringe area antenna. Here is the mighty mite of all tion and considered by a leading TV set manufacturer as the finest UHF antenna yet perfected. Rug ged four-bay conaluminum elements with fiberglass cross arms. List $\$ 11.10$

SIDE-BY-SIDE STACKED COLINEAR For additional gain two Colinears may he stacked hy using ee. - Stacking Kit. Model CA-L.SSH which consists of 2 mask, 2 boom and a stacking harness.

THE VEE-D-X 'V'' All-channel primary area antenna. Excelacteristics. Supplied as a atraight UHF antenna or with Vee-D X Mighty Match for use in cornbination with a VHF antenna using a single transmission lists $\$ 2.75$
 MIGHTY MATCH (Model MM-30)
Provides a most efficient method of combinna systems with a single transmission line. Entirely automatic in action. Employs new printed cir-

VEE-D-X ALL-CHANNEL UHF-VHF ANTENNAS

companion the ULTRA Q.TEE Suburban combine both UMF and VHF into a single antenar using a single transmussion line. Both con tain eight patented printed circuit chansel separators The Ulia Q Tee is desikned for primary areis and 4.35

THE ULTRA O-TEE SUBURBAN is designed for all-channel VHF and fringe area UHF Lists for only $\$ 17.60$

FREE!

UHF ANTENNA GUIDE An authentic guide to IHF antenna systems. Tells how, what, and where for every area

H'site ThE LaPOINTE-PLASCOMOLO CORPORATION,
Rockville, Connecticut

All models of VEE-D-X Lightning Arresters are ready for UHF:

LEADING DISTRIBUTORS CARRY A COMPLETE STOCK OF ALL ERIE ELECTRONIC COMPONENTS

ERIE DISC and PLATE CERAMICONS

ERIE UNIVERSAL 20 KV CERAMICONS

McELROY

MANUFACTURING CORPORATION, LITTLETON, MASS.

Telephone, Boston Liberty 2-6960-1. Cable, Tedmac, Boston
MARS and Red Cross and other Emergency Communicotion Systems pleose note
Tens of Thousands of radio operators have been trained on AIcELROY equipment.
Hundreds of Radiotelegraph Stations - military, naval, commercial - use McELROY equipment.

Now even the Smallest Station

 can convert from manual to automatic operation.The McElroy Portable Morse Package Unit MP-() -sturdy, light, compact - gives you perforated tape keyed transmission and inked siip recording at speeds up to 100 words per minute.

Technical Information will be sent upon request

Morse Package MP-()
Recciving
 Closed

DEPENDABLE High Speed Communications
 By SKILLED Communications Engineers of long EXPERIENCE and INTEGRITY

111

CALL ON US FOR NATIONALLY ADVERTISED BRANDS
OF HAM EQUIPMENT

A Ham's Dream-Communications Receiver SX-71 double conversion set, NBFM limiter stage. 538 kc to 34 mc , in 5 bands. Plus A 46 to 55 mc band. Temperature comp.; voltage regulator. 1 r-f, 2 converters, 3 i-f stages. Xtal. filter, 3 -position selectivity. $115 \mathrm{~V} . \mathrm{AC}$, 11 tubes, regulator, rectifier . $\$ 224.50$

Precise Selectivity-The 5-76-Double conversion with $50 \mathrm{kc} 2 \mathrm{nd} \mathrm{i} \cdot \mathrm{f}$. 4 -in. " S " meter. $540-1580 \mathrm{kc}, 1.72-32 \mathrm{mc}$ in 4 bands. 1 r-f, 2 converters, 2 i-f stages. 5 -position selectivity. Phono input jack, 3 watt output. $115 \mathrm{~V} . \mathrm{AC}, 9$ tubes, regulator, rectifier \$179.50

The Finest Buy in SWI-The S-38CBest performance per dollar! 540 kc to 32 mc in 4 bands. Maximum sensitivity per tube-far outperforms ordinary sets. Built-in speaker. 115 V. AC or DC. 4 tubes plus rectifier $\$ 49.50$

Srasen PPerformance

WITH SONAR
 TWO-WAY COMMUNICATION EQUIPMENT
 $\mathscr{T}_{\text {wa }}$ Complete $\operatorname{Receivens~}^{2}$ MOBILE OR FIXED
 AND HAM STATIONS
 Equipped with BFO for CW, $S S B$ or SSB, or spotting weak phon signols.

 MODEL MR-3 5 bANDS - 8 TUBES
 Ideally suited for mobile with its compact size, lightweight, the MR-3 is excellent for CD, CAP, or ony emergency operotions. The MR-3 is o COMPLETE 5 BAND RECEIVERNOT a converter-for $80-75,20,10.11 \mathrm{mfr}$ bands, with less thon 1 microvolt of sensitivity - comes complete with 8 tubes, one of the best outomatic noise limiters yet designed, voltoge reguloted oscillotor, occurote slide- rule, diol ond mounting brockets.........Net

and...

MODEL SR-9

- 2 MTRS
- 6 MTRS
- IO-II MTRS

Here is the hottest little RECEIVER on the morket
 todoy. Less thon 1 microvolt of sensitivity (RMA
Stondords) the SR-9 really pulls in the weok signols. Mony hove used the SR-9 os the receiver in their fixed stotions, it's so stoble ond sensitive. Many cities ore now using the SR-9 in their CD operotions with great success. Complete with 9 tubes, outomotic noise limiter, valtoge regulated oscillator, precision stide rule dial and mounting brockets. $\$ 7245$
and a Comp/arian Transmittex FOR - 2 MTRS

- 6 MTRS
- 10-11 MTRS
- 20 MTRS

MODEL MB-26
This 6 tube Tronsmitter is designed os the perfect componion to the obove receivers, operating from
the some power supply of 200 to 300 VDC of 100 mo .. ond instructions for coble connections make push to tolk operation outomatic. Crystol controlled (8 or 24 me crystal), screwdriver odjustments, ont?nno looding network, power supply fitter network, oll stoge meter switching, the MB-26 comes complete with mounting brackets ond
plugs $~-~ l e s s ~ c r y s t o l ~ o n d ~ m e t e r N e t ~$ 7245
alia. . . Sonar makes a complete line of Commercial and Aircraff Equipment for both AM and FM. WRITE FOR DETAILS.

FOR THE FIRST TIME MOBILE or FIXED

MODEL SRT-120 BAND-SWITCHING 100 WATT XMTR

COMPLETELY TVI SUPPRESSED

It's here at last, a 100 wott transmitter small enough physically ($12^{\prime \prime} \mathrm{W} \times 71 / 2^{\prime \prime} \mathrm{H} \times 814^{\prime \prime} \mathrm{D}$) to be used for any mobile instollotion or CD work and iarge enough ond ottroctively designed for the most exacting shack . . . and it's COMPLETELY TVI SUPPRESSED.

Designed, engineered and styled by the Sonar Engineering Staff who have given Ham radio complete mobile receivers (SR-9 for 2 or 10-11; and the MR-3 all-band, and the companion transmitter MB-26) and who have now combined al the needs of the average Ham in one small, powerful package. Compare our features with anything on the market todayhere are our specifications:

- 100 WATTS PHONE - 120 WATTS C.W.
- ONE KNOB BAND SWITCHING-80, 75, 40, 20, 15 , 10-11 and a spare position on the bandswitch for 160, 6 or any new development.
- SIMPLE SWITCHING. Switch to the band and tune to resonance - THAT'S ALL!
- HIGH-LEVEL CLASS 'B' MODULATION using any high impedance mike, with PUSH-TO-TALK OPERATION.
- PI-NET WORK AND LOW PASS FILTER BUILT IN.
- PROVISION FOR EXTERNAL VFO with any length coax for car panel mounting.
- ALL CIRCUITS METERED with front panel switch.
- AMPEREX 9903 5894A STRAIGHT-THRU FINAL.
- POWER INPUT: 6.3V at 6.4A; 600 VDC at 350 MA MAX. Lower voltage for lower output (ideal for novice).

FREE LITERATURE ON REQUEST
COMPLETE LESS PWR. SUP. \& XTAL.
$\$ 198^{50}$
RADIO DISTRIBUTING COMPANY, INC.

Learn Code the EASY Way
 Beginners, Amateurs and Ex-

perts alike recommend the INSTRUCTOGRAPH, to learn code and increase speed.

Learning the INSTRUCTOGRAPH way will give you a decided advantage in qualifying for Amateur or Commercial examinations, and to increase your words per minute to the standard of an expert. The Government uses a machine in giving examinations.

Motor with adjustable speed and spacing of characters on tapes permit a speed range of from 3 to 40 words per minute. A large variety of tapes are available - elementary, words, messages, plain language and coded groups. Also an "Airways" series for those interested in Aviation.

MAY BE PURCHASED OR RENTED

The INSTRUCTOGRAPH is made in sev. eral models to suit your purse and all may be purchased on convenient monthly payments if desired. These machines may also be rented on very reasonable terms and if when renting should you decide to buy the equipment the first three months rental may be applied in full on the purchase price.

ACQUIRING THE CODE

It is a well-known fact that practice and practice alone constitutes ninety per cent of the entire effort necessary to "Acquire the Code," or, in other words, learn telegraphy either wire or wireless. The Instructograph supplies this ninety per cent. It takes the place of an expert operator in teaching the student. It will send slowly at first, and gradually faster and faster, until one is just naturally copying the fastest sending without conscious effort.

BOOK OF INSTRUCTIONS

Other than the practice afforded by the Instructograph, all that is required is well directed practice instruction, and that is just what the Instructograph's "Book of Instructions" does. It supplies the remaining ten per cent necessary to acquire the code. It directs one how to practice to the best advantage, and how to take advantage of the few "short cuts" known to experi enced operators, that so materially assists in acquiring the code in the quickest possible time. Therefore, the Instructograph, the tapes, and the book of instructions is everything needed to acquire the code as well as it is possible to acquire it.

MACHINES FOR RENT OR SALE

ACCOMPLISHES THESE PURPOSES:

FIRST: It teaches you to receive telegraph symbols, words and messages.

SECOND: It teaches you to send perfectly.
THIRD: It increases your speed of sending and receiving after you have learned the code.

With the Instructograph it is not necessary to impose on your friends. It is always ready and waiting for you. You are also free from Q.R.M. experienced in listening through your receiver. This machine is just as valuable to the licensed amateur for increasing his speed as to the beginner who wishes to obtain his amateur license.

Postal Card wiu brime fuu pasicicuars IMMEDIATELY

THE INSTRUCTOGRAPH CO.

IT PAYS TO DEAL WITH WRL

Any experienced ham will tell you that you'll save time and money if you deal with WRL, one of the world's largest distributors of amateur radio transmitting equipment. WRL offers wonderfully liberal trade-in allowances on all types of used equipment-an extremely flexible time payment plan-as little as 15° down-no interest charges if bill paid within 60 days. NO RED TAPE-all credit arrangements strictly confidential. Special attention given to foreign orders through our special export department. CABLE ADDRESS WRLI.

NEW WRL GLOBE SCOUT TRANSMITTER
 (50 Watts Phone-(W)

A beautiful, campact XMTR, campletely self-contoined, including power supply Covers 160 M thru 10 M . Complete kit includes all parts, chassis, panel, pawer supply, cabinet, tubes, meter and one set of cails.

NEW WRL WATT

GLOBE CHAMPION

TRANSMITTER

More Watts Per Dollar R. F. Section a camplete 165 watt XMTR. Pravisians far ECO. Autamatic fixed bias on final and Buffer. Class B Speech Madulatar. 165 wotl input - 10 thru 160 meter bands. Camplete with tubes, meters, and ane set of coils. Law Dawn Payments.
 KIT FORM $\$ \mathbf{3 2 9 . 5 0}$ wiRED $\$ \mathbf{3 4 9 . 5 0}$

WRL 1953
 CATALOG

IT'S NEW! IT'S FREE!

 Send For Your CopyContains everything new in radio and television. Jampacked with bargains.

LIBERAL TRADE-INS LOW DOWN PAYMENTS PERSONALIZED SERVICE

$\$ 475.00$ \$495.00

GIANT RADIO REFERENCE MAP

ust right far your contral roam walls, Approximotely $28^{\prime \prime}$ $\times 36^{\prime \prime}$ Cantains time zones, amateur zones, monitoring stations. Mail cau pun todar

75 METERS

Did you know-

that the U. S. Air Force and Signal Corps are now using WRL Globe King and Globe Champion Transmilters.

waite fon ditaite sprcimication couipmitit smitis

World Radio Laborataries Inc.
HB-53
744 West Broadway
Council Bluffs, lowa
Please send me
\square New Lag Baok
\square New Calalag
\square Rodia Map
Name__ State_
Address
City
115

PULSESCOPES are Oscilloscopes to portray the attributes of the pulse: such as shape, amplitude, duration and time displacement. Both of the PULSESCOPES have Video amplifiers with frequency response up to 11 megacycles with Video delay of 0.55 microseconds and pulse rise and fall time better than 0.07 microseconds.

S-4-A SAR PULSESCOPE-Video Sensitivity 0.5 vp to p / in. S Sweep 80 cycles to 800 KC , either trigger or repetitive. A sweep 1.2 microseconds to 12.000 microseconds. IR Delay 3 microseconds to 10.000 microseconds directly calibrated on precision dial. R Pedestal (or Sweep) 2.4 microseconds to 24 microseconds. Internal Crystal Markers 10 microseconds and 50 microseconds. Size $91 / 8 \times 111 / 4 \times 171 / 4^{\prime \prime}$. Weight: Less than ${ }^{\prime}$ 32 pounds.

> S-5-A LAB PULSESCOPE-Video Sensitivity 0.1vp to p/in. Sweep 1.2 microseconds to 120,000 microseconds with 10 to 1 expansion. Sweep either trigger or repetitive. Internal Markers synchronized with Sweep from 0.2 microseconds to 500 microseconds. Trigger Generator and built-in precision amplitude calibrator. Completely cased. Size: $161 / 2 \times 141 / 8 \times 141 / 2^{\prime \prime}$. Weight: Iess than 60 pounds.

3 SP

WATERMAN RAYONIC TUBE DEVELOPMENTS

Since the introduction of Waterman RAYONIC BMPI tube for miniaturized oscilloscopes, Waterman has developed a rectangular tube for multi-trace oscillosiopy. Identified as the Waterman RAYONIC 3S1', it is available in P1. P'. P7 and P11 screen phosphors. The fare of the tube is $1^{1} 2^{\prime \prime} \times 3^{\prime \prime}$ and the over-all length is $9^{1} 4^{\prime \prime}$. Its unique design permits two 3SP tubes to occupy the same space as a single $3^{\prime \prime}$ round tube. a feature which is utilized in the S-15-A TWIN-TUBE POCKETSCOPE. On a standard $19^{\prime \prime}$ relay rack, it is possible to mount up to ten 3SP tubes with sufficient clearances for rack requirements. All RAYONIC cathode ray tubes are available in P1, P2, P7 and P11 phosphors. We are authorized to supply 3SP1, 3JP1 and 3.JP7 with J.AN stamp. All RAYONIC tubes listed below operate on 6.3 volts heater with .6 amp . current.

3 MP

TUBE	PHYSICAL DATA			TYPICAL VOLTAGES				DEFLECTION FACTOR V/IN.		MAX. VOLTS	
	Face	Length	Base	Anode $=3$	Anode $=2$	Anode $=1$	Grid $=1$	D1 to D2	D3 to D4	Anode = 3	Anode $=2$
3.8P	3 inch Round	10 inches	Medium Diheptal 12 Pin	3000	1500	300 to 515	$-22.510-67.5$	127 to 173	9410128	4000	2000
				4000	2000	400 to 690	$-3010-90$	17010230	125 to 170		
3MP	3 inch Round	8 inches	Small Duodecol 12 Pin		1000	20010350	090-68	14010190	13010180		2500
					2000	400 to 700	010-126	280 to 380	280 to 360		
35P	$\begin{aligned} & 11 / 2 \times 3 \\ & \text { inches } \end{aligned}$	9.12 inches	Smoll Duoderol 12 Pin		1000	16510310	$-28.510-67.5$	73 t0 99	521070		2750
					2000	330 to 620	$-5810-135$	146 to 198	104 to 140		

THE WATERMAN LINE-UP

PCCKEISCODE.

HI. WIDF and HANDNOMF: PO('KE'I'S('OPES are -haraterized by small sioe, light weight, and outstanding electrical performance. All units have frequeney compensated attemators ats well as non-frequency discriminating gain controls. All units have both periodia and trigher sweeps from ${ }^{\prime}$ evele to onkC. The amplifiers are direet coupled thus frequency response starts from 0 cycles. No peaking coils are usad. thas, the tramsient response is good. Full expansion of trace. Ionth vertical and horizontal, is built in. Means for amplitude calibration are pro-
 unusuat stability of the trace, regardless of the line voltage changes or variations of imperdanees in the

The Model s-11-A ludustrial \& Television POCKETACOPF is a small. compact. lightweight instrument for ohscervation ot repetitive electrical circuit phemomena. The Industrial \& Pelevision I'OCKE'KS(O)P plete cathode ray oscilloseope ineorporating the cathode ray tube vertical. horizontal, abd intensity amplifiers. linear time base oseillator. blanking. sunchroni\%ation means and self-contained power supply. The Industrial \& Television POCKET'SCOPE can be used, not only for AC measurements, but for IDC as well. inasmuch as it has vertical and horigontal amplifiers which are capable of reprodueing faithfully within - 2 dh, from 0 to 200 KC . The sensitivity of the vertical and horizontal amplifiers is high and is in the order of $1(0) \mathrm{nv} \mathrm{rms} / \mathrm{in}$.

input fireut 'The HI, WIDE and HANDSOME
 pioneering of the first commercial minature oserilloseoper. which has proved to be useful and rediable ower a period of vears. combination filter and graph sareens are used for better visibility, thus traces can be observed even under high ambient light conditions. Binding posis for convenience of conseections. with an effertive shiekd.
 pass hand above 2onkr . S-14-13 has sernsitivity of so mw/ineh with pass band above 1 megatyede. S-lo-A is similar to S-lf-A exerpt that it has two independent CR Pubes for multi-t race oscilloseope work. Accesssories such as corroing cases abd probes are avalable.

Model S-12-13 RAKNCOPH: has the features of $\mathrm{S}-11-\mathrm{A}$
 KAK S(O)' E is . ANized and the government model number
 is OS-11. The Sweep, from 5 eveles 10 50KC is either repetitive or triggered. Vertical and torizontal amplifiers are 50 millivolts rms per inch with hand pass from 0 to 200 KC . Special calibrating circuitry is provided for frequency comparison. Both the vertical and horizontal amplifiers are identical and use no peaking. The panel is only $7^{\prime \prime}$ high and the scope fits standard rack. The functional layout of the control permits ease of operation.

BOB HENRY

gives terrific

 trade-ins-easy
credit terms

on new hallicrafters

MODEL HT-20...T.V.I. proof 100 watt AM-XW transmitter with all spurious outputs at least 90 db . below full rated output. All stoges metered; single meter with eight position meter switch; oufput funing indication. Frequency range of 1.7 Mc to 30 Mc continuous on front panel control. Provisions for external VFO. Seven tubes plus five rectifiers. For 117 V .60 cycle. $\$ 449.50$

MODEL SX-7 1 ... Double superheterodyne circuit plus built-in Narrow Band FM reception. Temperafure compensated, voltage regulated. 5 position band selector for $538-1650 \mathrm{Kc}, 1600-4800 \mathrm{Kc}, 4.6-13.5 \mathrm{Mc}$, 12.5-35 Mc, 46-56 Mc. 11 tubes plus voliage regulator ond rectifier. \$224.50

Choose from our complete stock of new Hallicrafters receivers and transmitters. Prompt delivery plus 90 -day FREE service. I have a payment plan for you. Write, wire, phone or visit either store today! Export orders welcome.

MODEL 5-76 . . . Dual conversion 11650 Kc and 50 Kc). Four bands $538-1580 \mathrm{Kc}, 1720 \mathrm{Kc}$ to 32 Mc . 5 position selectivity. Sensitivily 2 microvolts or better with 5 watt output. 9 iubes plus regulator, rectifier. $\$ 179.50$

MODEL SX-62 ... AM, CW or FM with continuous coverage from 540 Kc to 109 Mc in six bands and 27-109 Mc FM. Fourteen tubes plus regulator, rectifier. $\$ 299.50$. Other popular Hallicrafters models: S-38C \$49.50; 5-72 \$109.95; 5-72L \$119.95; S.40B \$119.95.

half waye rectifier EL 16 F
D.C. Output (Amps.) .. 16.0 Peak Anode Current ., 96.0 Peak Inverse Volts 620 Filament Volts 2.5 Filament Amperes 36
Overall Length \qquad
(Panel Mounting)

GRID CONTROL RECTIFIERS

EL (IK
D.C. Output (Amps.) .. 1.0

Peak Anode Current .. 8.0
Peak Forward Volts 1000 Peak Inverse Volts 1250 Filament Volts 2.5 Filament Amperes 6.3
Overall Length \qquad . $41 / 4^{\prime \prime}$

EL (3)

D.C. Output (Amps.) .. 2.5
Anode Current
ak Forward Volts 750
Inverse Volts.... 1250
Filament Amperes $\quad 9.0$

EL (3)/A

D.C. Output (Amps.)

Peak Anode Current. Peak Forward Volts 750
Peak Inverse Volts..... 1250
Filament Volts 2.5
Filament Volts 2.5

EL (6)
D.C. Output (Amps.) .. 6.4 Peak Anode Current .. 77.0 Peak Forward Volts 750 Peak Inverse Volis 1250 Filament Volts 2.5 Filament Amperes 21.0 Overall Length

EL (16)
D.C. Outpuf (Amps.) .. 16.0 Peak Anode Current " 160.0 Peak Forward Volis 1000 Peak Inverse Volts 1250 Filament Volts 2.5 Filament Amperes...... 31.0 Overall Length (Panel Mounting)
O.C. Oulput (Amps.) .. 6.4 Peak Anode Current .. 77.0 Peak Forward Volts 2000 Peak Inverse Volts 4000 Filament Voits 2.5 Filament Amperes 240 Overall Lenglh 11°

EL CoC
....

EL (6)/A

D.C. Output (Amps.) .. 6.4

Peak Anode Current .. 77.0
Peak Forward Volts 1000
Peak Inverse Volis 1250
Filament Volts 2.5
Filament Amperes 21.0 Dverall Length 9"

ELECTRONS. INCORPORATED 127 AUNEFX AVENUE NEWARK゙4.N.J.

"Surprise

TRADE-IN ALLOWANCES on your used (foctory-builh) comm nication equipment. Get your trade in deal working today. Use handy coupon below.

All prices

F.O.B. St. Louis Phone
CHestnut 1125

FREE CATALOG! Send for your copy today
 RG/U TRANSMISSION LINE CABLES

You know what you are doing when you use Belden RG/U Transmission Line Cables - they're aptitude rated. They are designed to provide desirable electrical characteristics, and rigid control assures constant quality. Specify Belden Radio Wires.
Belden Manufacturing Co., 4617 W. Van Buren St., Chicago 44, Ill.
 can come only from a "know. how' that has grown through actual service since the inception of Radio.
-an ability to co-oper
ate in proneering new
wires to meet or antici-
pate industry's growing needs.

In the years that follow

The
Aptitude-Jested LINE

THIS VALUABLE BOOK all about code

heres what worldchampionted mcelroy SAYS ABOUT THE FAMOUS CANDLER SYSTEM "My skill and speed are the result of the exclusive, scientific training Walter Candler gave me. Practice is necessary, but without proper training to develop Concentration, Co-ordination and a keen Perceptive Sense, practice is of little value. One is likely to practice the wrong way."
McElroy is the Official Champion Radio Operator, 75.2 w.p.m. won at Asheville Code Iournament, July 2,1939.

LEARN CODE

BEGINNERS

THE EASY CANDLER WAY

 maximum sered and protionerey in conde opreration . . . right in
 TEX in trabing thestmers to develop and apply their talents to tol sperd and eflicirnes is sound preme of what the CANDIEK Sistrin affers you.
 ing by conde will prople all over the werld . . when you heeome a

 code monding and reweiving and the primeiples of fast, eflicieat

OPERATORS

INCREASE SPEED and SKILL THE CHAMPION CANDLER WAY

 anll shill in "onde armling and reveiving. I'he (

 pmint - eliminate brratum tronion athl pave the way to a tuplorachel gmokition ats all rapert Operator.

 ant eatsy therobph and intertating was. It is the outstanding

FIND OUT HOW THE CANDLER SYSTEM CAN HELP YOU. SEND NAME AND ADDRESS ON COUPON OR POSTCARD FOR FREE COPY OF CANDLER BOOK OF FACTS.

CANDIER SYSTEM CO P.O. Box 928, Dept. 26, Denver 1, Colorado, U. S. A. Or: 52b, Abingdon Rd., Kensington High St., London W.8, England

SPECIAL COURSES FOR BEGINNERS \& OPERATORS

The SCIENTIFIC CODE COURSE, especially designed for the beginner. Teaches the basic principles of code operation scientifically.

The HIGH SPEED TELEGRAPHING COURSE, intended for the operator who wishes code speed and skill to become a good operator or a beller one faster.

The HIGH SPEED TYPEWRITING COURSE, designed for those who desire typewriting proficiency and speed. Especially designed for copying messages ond press with typewriter.

[^15]City . Zone. . . .State

COMPLETE OUTFITTERS for the HAM . . .

COMMUNICATIONS

AND
ELECTRONIC
ENGINEERS

EUGENE G. WILE

218-220 South 11th Street
Philadelphia 7, Pa.
Kingsley 5-8370

Distributors of
Nationally Advertised Lines of RADIO, TELEVISION and ELECTRONIC Parts

ADVANGE RHATS

FOR EVERY APPLIGATION

Series 300 F

Type: 961 C ;
962 C; 963 C

Series 1000

Series 750

K 1504 RF (AC);
K 1604 PF (DC)

Series 950

Type 400

Series 600

Series 1200

Series K 1500 (AC); K 1600 (DC)

Write for new, descriptive Catalog containing detailed information about ADVANCE Relays and facilities.

ADVANCE ELECTRIC AND RELAY COMPANY

2435 NORTH NAOMI STREET, BURBANK, CALIFORNIA
Sales Representatives in Principal Cities of U. S. and Canada

Volt-Ohm-Mil-Ammeters for your every need

ABSORPTION FREQUENCY METER

Model 3256

A band-switching, tuned absorption type frequency meter that covers five amateur bands. Has Germanium crystal and a DC Milliammeter indicator for greater sensitivity. Direct calibration on panel - no coils to change. Switching permits instantaneous band change. Audio jack provides tor monitoring of phone signals - another new feature. Calibration is in Megacycles in following bands: 20-21.5 MC; $28-30 \mathrm{MC}$. Coil is removable and other coils may be substituted for special bands. Useful for checking: Fundamental trequency of oscillating circuits; Presence, order and relative amplitude of harmonics; Parasitic oscillations, etc. Size: $71 / 2^{\prime \prime}$ $\times 21 / 2^{\prime \prime} \times 21 / 4^{\prime \prime}$. Metal case with gray
 enamel tinish black trim.

A COMPLETE LINE OF METERS

Triplett panel and portable meters are available in more than 26 case styles - round, square and lan $2^{\prime \prime}$ to $7^{\prime \prime}$ sizes. Included are volpmeters, ammeters, milliammeters, millivoltmeters, microammeters, thermo-ammoters, DB meters, VU meters and electrodynnmameter type instruments.

Address oll inquiries to Dept. Q-53 For your $A C$ and $D C$ Voltage, Direct Current and Resistance analyses to 3 Megohms. Enclosed selector Megohms. Enclosed selector switch of molded construc-
tion keeps dirt out. Retains tion keeps dirt out. Retains nently. Unit Construction All Resistors, shunts, recti* fier and batteries housed in a molded base integral with theswitch. Eliminates chance for shorts. Direct con. nections. No cabling. All precision film or wire-wound cision film or wire-wound resistors, mounted in their own compaxtment-assures Greater accuracy. 3" RED-DOT Lifetime Guaranteed instrument. Red and black markings on a white background. Easy to read scale. Precalibrated recti-
 fier unit. Self-contained batteries.
RANGES: AC.DC Volts: 0-10-50-250-1000-5000, 1000 Ohms Volt; Direct Current: 0-10-100 Ma., $0-1$ Amp.; Resistance: 0-3000-300,000 $0 \mathrm{hms}, 3 \mathrm{Meg}$. Black molded case, completely insulated, $31 / 16^{\prime \prime} \times$ $57 / 8^{\prime \prime} \times 21 / 16^{\prime \prime}$. White panel markings.
Model 666-HH VOLT-OHM-MILLIAMMETER
A complete miniature laboratory for DC-AC Voltage, Direct Current and Resistance analyses. The answer to V-O-Ma. requirements of radio servicemen, amateurs, industrial engineers, efc. Greater scale readability on the $3^{\prime \prime}$ RED-DOT Lifetime guaranteed instrument with red and black scale markings. Simplified switching.
RANGES: AC-DC Volts: $0-10-50-250-1030-5000$, 1000 Ohm Volt; DC Ma: 0-10-100-500; OHMS: $0-2000-400,000$. Selt-contained plug-in batteries. Black molded case, completely insulated, $3 / 16^{\circ}$ $\times 57 / 8^{\prime \prime} \times 21 / 16^{\prime \prime}$. Panel with white markings.

FOR THE MAN WHO TAKES PRIDE IN HIS WORK

triplett eifctrical instrument company - atuefton, ohio. u.s. A.
126

Model 50D "Aristocrat."

Model 80 Crystal Microphone. So tiny it hides in your palm. Trim, modern and a big performer on stand or in the hand.

Model 51D Dynamic. Exceptionally high quality at a new low cost.

Model 70
Dynamic or Carbon, Watertight, dust-proof, corrosion-proof.

Model 22X-22D
Crystal or Dynamic

III Microphones UNLIMITED!

buy TURNER for ... UNLIMITED QUALITY ... UNLIMITED VALUE ... UNLIMITED SELECTION

Turner microphones are designed to outperform and outlast under the most severe service conditions. Compare for quality . . . value . . . selection. Then buy Turner - the best on the market for your money. Write for literature.

IN CANADA:
Conodion Morconi Co., Toronto, Ont. and Branches. EXPORT:
Ad Auriemo, Inc., 89 Broad St., New York 4, N. Y.

the TURNER company

931 17th 5t., N. E. Cedar Rapids, Iowa

Here's 6 Good Reasons

Why Amateurs and Industrials

 Prefer Doing Business with HARRISON...

They like the speedy, accurate and deend able service that our experienced Harrison orgamzation
and desire to render
They know that Harrison's efficient They know that and large scale putbusiness methods us to sell everything chasing enables us ole pricesalways. at the lowest poss
They have found by pleasant experionce that Harrison's tremendous invenence that Host usually contains the compotory most usually sep a production line nents needed to kep that can experolling - the equipment project - the parts dits a developinent promplete a rig or urgently required to keep on-the-arir argention-the tubes to keep on- It!" (Or In short. . "Harrison Has lt. has advantageous factory
They value the savings in expense and effort available through centralized purchasing. A single order to Harrison can bring the products of over eon leading electron
manufacturers.

FREE! BUYERS' GUIDE

Ask your Electronic Parts and Equipment Purchasing Agent to write our Industrial Sales Department for his copy of the new edition of this 1200 -
page Radio's Master Encyclopedia.

1

apostate the security afforded They appreciate the secure of complete by Harrison's guarantee on d with satisfaction with every transaction.
They have confidence in a company hat has been continuously successiu hat has been con here at Harrison are since 192 , and we 28 -year reputation for integrity.

If you are not already one of our custome friends, enjoying the many your antages of having Harrison as your animas source of supply. we ask the prime source serving you, too. It wi opportunity of pleasure!

Remember...
 HARRISON HAS IT! BARCLAY 7-7777 . . . First!
 And Telephone BARCLAY

1

A hARRISON RADIO CORPORATION
 225 GREENWICH ST. • NEW YORK 7, N. Y.
 Cable Address: HARRISORAD
 JAMAICA BRANCH: Hillside Ave. at 172nd St. • REpublic 9-4102

128

The Complete Story

of ARRL publications and printed forms follows, emphasizing the League's policy of providing all services within its power by making available complete and timely publications on amateur radio. Constantly revised to keep abreast of changing regulation, application and technique, League publications are practical, accurate and authoritative, prepared at the ARRL Administrative offices, the national and international headquarters of radio amateurs. Whether a novice or old timer, an amateur or engineer, you will find ARRL publications invaluable in helping you to a greater understanding and enjoyment of electronics.

 Ranking high among the leading technical publicalions of the world, QST presents cover to cover reading each month. The oldest continuously published radio magazine (it was founded in 1915 \}, its technical articles are aimed at all classes of radio enthusiasts. Articles o radio theory literally point word pictures for easy and thorough understandina of th subject .. . construction articies are slearly illustrated with pictures and diagram Typography and clarity ore tops. Through the years its pages have presented man famous "firsts" in the radio field. Seneral interest articles and speciat columns obounc Complete advertising coverage. Truly, the "complete magazine on amateur radio."

QST and ARRL membership $\$ 4$ in USA, $\$ 4.25$ in Canada $\$ 5$ Elsewher

The radio amateur's handlook

- -......*t.

Cown and icmotitic cealm

HOW TO BECOME A RADIO AMATEUR Fointing the way far the b t ginner, How to Become
Rodio Amateur tells what amateur radio is and how to get started in this fascinatir hobby. Through its pages in clear, concise language you learn about amateur radi Special emphasis given to the needs of the Novice licensee with three complete simp stations featured.

50c postpaid (no stamps, please)

THE RADIO AMATEUR'S LICENSE MANUAL Sludy guide and refe ence book, the Licen
Monual points the way toward the coveted amateur license. Complete with typical que fions and answers to all of the FCC amateur examinations-Novice, Technician, Geners Advanced and Extra-Class-it provides an ideal means of self-study and examinatio Continually kept up to date. Complete FCC regulations included.

50f postpaid (no stamps, please)

THE ARRL ANTENNA BOOK

A complete book on antennas and antenna systems representing an accumulation of years of practical experience and know-how. Its sixteen chaplers are divided into two principal divisions: (1) a basic text on antennas and transmission lines, wave propagation and its relationship to antenna design, and the performance characteristics of directive antenna systems, and (2) specific designs for a multitude of antennas for various amateur bands. 268 pages, 408 illustrations.
$\$ 1$ us 4 proper, $\$ 1.25$ Elsenthere

teur's Handbook, it enables the student to learn thoroughly the principles of radio by following the time tested principle of "learning by doing." Study assignments, experiments and examination questions make this book equally applicable to individual home study or classrom use. Fight parts lead the student from basic Electricity and Magnetism to Wave Propagation and Antennas.

50c postpaid (no stamps, please)

HINTS AND KINKS If you build equipment and operate an amateur

 radio station you will find Hints and Kinks a mighty valuable book in your shack and workshop. More than 200 practical ideas plus a surplus conversion section give you a helping hand at all times.\$1.00 USA proper, \$1.25 Elsewhere (postpaid in the US, US possessions and Canada)

LEARNING THE RADIOTELEGRAPH CODE

Supplying the key toward mastery of the International
Morse Code, this publication trains you to handle the code skillfully and easily. Based on the accepted method of "sound conception," it is a boon to the beginner without access to the help of an experienced operator or code machine. Practice material for both home study and classroom use, as well as general operating information, is included.

25d postpaid (no stamps, please)

A COURSE IN RADIO FUNDAMENTALS A complete course of study

 for use with the Radio Ama-

ARRL WORLD MAP Printed in eight colors on heavy map paper with 267 countries clearly outlined. Call letter prefixes printed on the coun4 tries and in the margin. Continental boundaries and time zones plainly marked. Thirteen countries have call districts indicated. An equi-distant azimuthal projection centered on Wichita, Kansas. Prepared by ARRL and Rand-McNally.
$\$ 2.00$ postpaid anywhere in the world

QST BINDERS No need to let your copies of QST rest in a disordered pile. . . . A QST Binder will keep them neat and orderly. Sturdy binders hold a one year file, protecting and preserving your copies. QSTs in the Binder open and lie flat at any page permitting quick and easy reference.
$\$ 2.50$ available in the U.S. and possessions only

ARRL LIGHTNING CALCULATORS Quick as a flash the answer is yours when you use an ARRL Lightning Cal. culator to solve your radio problems. TYPE A provides rapid, accurate and simple solutions of problems involving frequency, inductance and capacity. TYPE B provides direct reading answers to Ohm's Law problems involving resistance, voltage, current and power. An invaluable aid for the amateur, technician or engineer. \$1.00 each postpaid anywhere.

LOG 30 OK Record keeping made easy. Fully ruled $81 / 2$ by 11 inch pages with legible headings permitting all necessary entries. Spiral bound to lie flat when open. 50c USA proper, 60c elsewhere. Available in looseleaf form (3-hole) at 100 sheets for 75 d .

Mobile and portable operational needs are met by this pocket size log. Spiral bound, 4 by 6 inch pages. Headings for all necessary information. 30c USA proper, 35c elsewhere.

Abstract

RADIOGRAMS First impressions are important. Official ARRL Radiogram Forms printed on high grade paper add prestige; informs the addressee about amateur radio. Per pad of 70 blanks, 35 c . Also available in the same form on postcards. $4 \hat{\varepsilon}$ each stamped, 2 c each unstamped.

ARRL members' stationery is available on quality bond paper in standard $81 / 2$ by 11 inch sheets. Ideal for all amateur radio correspondence. 100 sheets, $\$ 1.25 ; 250$ sheets, $\$ 1.50$;
500 sheets, $\$ 2.50$

Abstract

ARRL EMBLEM Found wherever amateurs gather as a hallmark of distinction and fraternalism. With both gold border and lettering on a black enamel background it is available in either pin (with safety clasp) or screw back button type (24K polished extra heavy goid plate). Available also as a mounted printing electrotype for use by members on amateur printed matter. \$1.00 each postpaid

85 CORTLANDT ST., NEW YORK 7, N.Y. phone: WOrth 4-3311

"VU"

"MC"

Designed with the Ham in Mind

Here are capacitors constructed with the care given to making jeweled watches; built by precision craftsmen with long experience and with the knowledge that quality is a major requirement for good ham operation.

The circuits in your gear demand precisionmade reliable capacitors. Those built by Hammarlund have been designed with the amateur and experimenter in mind since

the first units were produced nearly 30 years ago.

Today, with this vast background and experience, Hammarlund continues to take the lead to advanced developments. The new Hammarlund miniatures and the "VU" VHF-UHF capacitors are being accepted as standards in modern amateur radio design.

Meanwhile, the old-timers, the "APC", the "MC", and others in the Hammarlund com-plete-line, continue as favorites-capacitors you know from experience meet your requirements for both conventional and unique circuits.

Hammarlund Capacitors are stock items available from jobbers and dealers everywhere. Using them in your equipment will assure you of the finest circuit performance possible. Always select a Hammarlund!

Built to Satisfy the most Critical

Through the years Hammarlund receivers have topped the preferred list of discriminating amateurs. Just listen to the ragchewing over the air, or at hamfests, and you'll hear praise for the old $\mathrm{Hi}-\mathrm{Q}$, the Comet Pro, the HQ-120, the Super Pro 200 and 400, and today's HQ-129-X and new SP-600-JX.

The "HQ-129-X" is a professional quality receiver, designed with conveniently placed dials and switches to provide maximum operating ease. Incorporating the Hammar-lund-patented crystal filter and highly efficient series noise limiter, its outstanding ability to pull in a signal under adverse conditions is well-known. These features, plus the calibrated band-spread dial for $3.5-4 \mathrm{mc}, 7-7.3 \mathrm{mc}, 14-14.4 \mathrm{mc}$ and $28-30$ mc , make it an extremely valuable receiver for operating in today's crowded ham bands.

The "SP-600-JX" communications receiver, now also available to hams, is a masterpiece of receiver design and already is worldknown for its outstanding design, construction and performance. This professional receiver, with its six bands covering the frequency spectrum from 540 kc to 54 mc , is being used in large quantities by the military and governmental agencies, as well as by commercial services, for both single and diversity reception.

Want to know more about Hammarlund Receivers?

Write immediately to have your name placed on our Receiver mailing list.

VAIPET (Quertz $e_{\text {eysath }}$ are famous for accuracy!

Since 1931 , Valpey Crystals have earned and maintained a foremost reputation in aiding amateur and professional electronic engineers in experimentation and development., A portion
of the line of crystals is shown here.

COMPACT—HERMETICALLY SEALED

Type VR6, hermetically sealed in compact metal case, has 4000 to 60000 Kc . frequency range. For mobile or fixed stations, VHF and experimental work. Vertical mount for $.486^{\prime \prime}$ spacing special crystal socket. Jan type HC6.

FOR FREQUENCY STANDARDS

Type XL100, with a frequency of 100 Kc ., is used extensively in frequency standards. Mounts in $3 / 4$ " spacing crystal socket or the standard 5 -prong socket. Compact and dependable.

FAVORITE OF AMATEURS

Type CM5. Frequency range 1000 to 60000 Kc .; used extensively for marine, police and other mobile or fixed stations. Fits Valpey Xtalector for instant, accurate frequency shiff; fixed air gap, vertical mount, standard .486" spacing socket or standard octal socket.

AUTHORIZED FOR BROADCAST USE

Type CBC-O Used widely by broadcast, fixed stations and frequency standards. Frequency range 60 to 10000 Kc . Available with 6, 8, or 10 volt over plus-minus $1 / 2$ degree C. temperature stability. Micrometeradjustable air-gap. Mounts in standard 5-prong socket.

HIGH ACCURACY

Type DFS Features
separate 100 and 1000 Kc . crystals in one compact mounting, with accuracy
 plus or minus $.005 \%$ over range of minus $10^{\circ} \mathrm{C}$ to plus $60^{\circ} \mathrm{C}$ when used in recommended circuits. This is a Valpey development for secondary standards and receiver calibration.

SINGLE OR DUAL CRYSTALS

Type VD5 Frequency range 1000 to 6000 Kc . Single or dual crystals, popular for marine, aircraft and police applications. Mounts in special 3-prong socket.

FOR FIXED OR MOBILE TRANSMITTERRECEIVERS

Type VDO Frequency range 1000 to 10000 Kc . Used for railraad and bus communications, fixed or mobile units. Single or dual crystals with 6 volt over
 plus-minus $1 / 2$ degree temperature stability. Mounts in standard 5 -prong socket.

For additional details on these or other types write:

- Highest Quality - Greatest Variety-meet every need in radio, sound, TV and related fields - Standard on leading microphones

CANNON plugs

For microphone and related uses. 3 30:1 contacts only. Plug shown 03-12. Avalable in 6 basic shapes. Inecre $t^{\prime \prime}$ side. Zine alloy shell, satin chrome finish. Molded phenolic insert. Latch loch coupling method.

For audio. TV and instrument uses. 2 fox contacts 30 a max. Plug shown P3-C(i-II, Avalable in 16 hasic shapes. Insert Dia. 1". Zinc or steel shells, satin chrome finish. Molded phenolic insert. Latch lock coupling method

For audio, instrument and related uses. 1 to 4 contacts $15 a$ max. Receptacle vown X-3-14. Available in 5 batic shapes. Insert Dia. .625". Zinc alloy thell, bright nithel finish. Molded phenolic insert. Coupling held by contact friction

X SERIES

For audio. instrament and related bses. 1 to 4 contack $15 a$ man. Plug shown XK-3-11. Avalathe in 4 hasic thaper laserl Dia. .62s". Zince or steel shells, bright nickelfinish. Wolded phenolic insert. Acme thread coupling nul.

	For audio. instrument wes. 3-15:a contacts only XL-3-1 . A bailable in 14 Imert fia. .62s". /inc or Molded phenolic imert. coupling method.
intrament andrelated 4 cont.acks. 15il man. Plug -3-\|]. Avitilathle in 4 hasic sell Dia. hes". Zinc or sert. Acme thread compling	UA SERIES

The recturacle SK- $17-32 \mathrm{~S}$ (shown)
 stamdard equipmem for the fecorder connectors wed by It tephone Compames as subserfores woice recorder.

TELEVISION

For TV cameras and cable. Coax contacts available. Insert Dia. 2.250". Plug shown LKT-R24C-22-7.4". Straight and 90° shells, ribbed coupling nut, gland nut. friction washer. bushing, thand washer and packing ring to support cable are leatures.

CANNON ELECTRIC

Since 1915

CANNON ELECTRIC CO., LOS ANGELES 31, CALIF.
Factories in Los Angeles, Toronto, New Haven. Great L.akes Division, Renton Harbor, Mich. Representatives in principal cities. Address inquiries to Cannor
 Electric Co. Dept. 138, P.O. Box 75, Lincoln Heights Station, Los Angeles 31, Calif.

Outstanding features of UNITED vacuum capacitors are the employment of large elements and large periphery glass to capper seals, as illustrated. This constructian results in a low temperature co-efficient, low R.F. losses and low inherent inductance. End terminals are gold ploted to prevent corrosion.

Type designations of UNITED vacuum capacitors symbolize their capacitance ratings and their maximum current and voltage ratings- thus CAP 50/60/35 means:

$$
\underset{\substack{\text { Capacitance } \\(50 \text { vuf }}}{\text { C }}
$$

$\stackrel{A}{=}$
Amperes
(60)
$\stackrel{P}{-}$
Potential
(35 KV)

The numerals are significant as shown in direct relation to the prefix letters.
When the older types of vacuum condensers were designed, the sole conception of advantage was to attain a voltage breakdown characteristic higher than could be accomplished with condensers of the same physical size with air or other substance as dielectric.

The limitatians af the old types of vacuum capacitors resulted principally from high R.F. lasses ond a high temperature co-efficient. This caused considerable capacitance drift, and the added heat losses in the glass envelope led to external voltage breakdown or internal breakdawn due to the liberation of gas. Actual seal puncture in these early type vacuum capacitors was also a frequent cause of failure. Extraneous inductance was caused by the use of conventional ferrous meial rod seals and copper strand leads soldered to the terminal cops, in the old type of construction. The higher the frequency and R.F. power, the more these limitations were accentuated.
All metal parts of UNITED vacuum capacitors are oxygen free, high conductivity copper.
For complete information on UNITED vacuum capacitors, transmitting and special purpose electron tubes write for Catalog 2-GPW.

Type	Copacitonce uuf	Maximum Current	Peak R. F. Valtage	Overall Dimensions		$\begin{aligned} & \text { D.awing } \\ & \text { Oppotive Page } \end{aligned}$
				length	Width	
CAP-6/30/20	6	30 amps.	20 KV	3-11/16"	3"	A
CAP-12/30/20	12	30 amps.	20 KV	3.11/16"	$3^{\prime \prime}$	A
CAP-25/60/20	25	60 amps.	20 KV	3.11/16"	3"	A
CAP-50/60/20	50	60 amps.	20 KV	3-11/16"	3"	A
CAP-50/60/25	50	60 amps.	25 KV	4-1/2"	2.5/8"	8
CAP-6/30/35	6	30 amps.	35 KV	6.19/32"	2.13/16"	C
CAP-12/30/35	12	30 amps.	35 KV	6.19/32'	$2.13 / 16^{\prime \prime}$	c
CAP-25/60/35	25	60 amps.	35 KV	6.19/32"	2.13/16"	C
CAP-50/60/35	50	60 amps.	35 KV	6.19/32"	2.13/16"	C
CAP-75/80/35	75	60 amps.	35 KV	6.19/32"	2.13/16"	C
CAP-100/60/35	100	60 amps.	35 KV	6.19/32"	2.13/16"	C
CAP-150/60/35	150	60 amps.	35 KV	6.19/32	2-13/16"	C
CAP-200/60/35	200	60 amps.	35 KV	6.19/32"	3.1/16"	D
CAP-250/80/35	250	60 amps.	35 KV	6.19/32"	$3.1 / 16^{\prime \prime}$	0
CAP.450/60/20	450	60 amps.	20 KV	8-15/32"	3"	E
CAP-500/60/20	500	60 amps.	20 KV	9.7/32"	$3{ }^{\prime \prime}$	F

CAPACITY TOLERANCES
All capacitors identified by Drawing A have a capacity talerance $\pm 1 \mathrm{mmfd}$, except CAP. $6 / 30 / 20$ which is $\pm 0.5 \mathrm{~mm} \mathrm{fd}$. All other capacitors listed have capacity talerance $\pm 2 \%$ af rated valuas.
Above table lists standard sizes. Special sizes can be furnished within capacity and valfage ranges shown, and inquiries are invited.

LOW LOSS, COPPER ELEMENT CONSTRUCTION

COMPARISON OF THE VACUUM CAPACITOR WITH THE MICA, OIL, AIR AND PRESSURE TYPES

The present and potential advantages of vacuum capacitors, compared with air, mica, oil and pressure types will be quickly appreciated by a study of the following tabulation. The comparison is based on a unit or combination for each class condenser af 1000 uuf, 30,000 volts rating. Sizes, values, weights and casts shown are appraximate.

Size	$\begin{aligned} & 61 / 2^{\prime \prime} \times \times \\ & 41 / 4^{\prime \prime} \end{aligned}$	10 condensers in parallel $141 / 4 " \times 93 / 4 "$ $\times 121 / 4^{\prime \prime}$ eo.	Mica $4^{\prime \prime} \times 4^{\prime \prime} \times 6^{\prime \prime}$	Oil $\begin{aligned} & 3 \text { cond. in series. } \\ & 151 / 2^{\prime \prime} \times 18^{\prime \prime} \\ & \times 51 / 4 \times 2 . \end{aligned}$	Press. Cond. 12" diam. $30^{\prime \prime}$ lang
Tatal Weight	5 lbs.	250 lbs.	10 lbs .	120 lbs.	100 lbs.
Current	$\begin{aligned} & 100 \text { amps. } \\ & 30 \mathrm{Mc} . \end{aligned}$	$\begin{aligned} & 70 \text { omps. } 5 \mathrm{Mc} \text {. } \\ & 140 \mathrm{amps} .10 \mathrm{Mc} \text {. } \end{aligned}$	20 amps . of 3000 KC	$\begin{aligned} & 100 \text { omps. of } \\ & 540 \mathrm{KC} \end{aligned}$	60 mpss .
Cost	\$100	\$200	\$100	\$450	\$300
Comparative Characteristics	Completely enclased, needs no cleoning: self-healing; im. mune to changes in ofmospheric condi. tions: minimum copacily drift.	Needs frequent cleaning and affected by chonges in oir pressure and hu. midity.	Needs no maintenance but is ruined by puncture of insulation.	Relatively high loss but is dependable ond self-heoling on orc-aver.	In case of orcover may have ta be taken aport to clean plotes. Requires connection to nitrogen lank and intermittent check on the pres. sure.

VACUUM

THE BIG B-A 1953 ANNUAL CATALOG NUMBER 531 IS A...

. . . Complete guide to the very latest in Elec-tronics-everything in the Radio, TV. Sound and Recording fields . . . everything on down to the little things usually too troublesome for others to list and stock.

Saves you time-takes only minutes, at times most convenient to you, to order by mail the items and quantities you alone decide on . . . no waiting for salesmen . . . no breaking into your busy hours . . no pressure to sell you more than your needs . . . A "One Stop" source for your every need.

Saves you money-B-A Volume sales permit big buying at savings passed on to you. Every page lists many special, big, money-saving values made possible only by huge B-A special purchases. Net
prices are shown so you can see at a glance what each item costs you.
Prompt, Speedy Service is assured because of always adequate stocks and the B-A "linow-How" acquired in 25 years' experience in the mail order Electronic distribution field. The location of Kansas City, a foremost transportation "hub" in the exact "Center of America" . . . days closer to Everywhere . . . is more reason why you will get faster delivery from B-A.
The B-A reputation . . . 25 years of honest, dependable and friendly dealings protect your every purchase.

Write now for your Free copy of Cat. No. 531

SHURE MICROPHONES $\substack{\text { Filide) } \\ \text { firoved }}$ from SHACK to CAR!

In the Shack . . .

This sfurdy Confrolled Reluctance unit is designed to handle the most severe requirements of amateur communicating, paging, and dispatching systems. It provides high speech intelligibility, makes your messages instantly understood. The "Dispatcher" has a 2-conductor shielded cable, and is wired to aperate both microphone and relay circuits. Firm downward pressure on the grip-bar locks the switch. The "Dispatcher" is immune to severe conditions of heat and humidity. Output is 52.5 db below one volt per microbar. High impedance. Furnished with 7 -foof cable.

In the Car . . .

A hign-quality carbon microphone specially designed for mobile equipment. Used throughout the world for Ham, Police, Fire, and Transportation Services-more thon all other makes combined! Rugged, dependable unit with clear, crisp voice response and high output. Fits enugly into palm of hand. Heavy duty switch for push-to-talk performance. Furnished with brackep for wall mounting, plus coiled-cord cable. Oupput level: 5 db below 1 volifor 100 microbar speech signal. 70 to 80 ohms impedance.

MODEL	SWITCH arRangement	CABLE	CODE	$\begin{aligned} & \text { LIST } \\ & \text { PRICE } \end{aligned}$
1016	Two Wire Relay Switch normally open. (No microphone switch)	Standord Coiled Cord 11" retracted; 5^{\prime} extended	RUCEC	\$27.50
101E		Tinsel Coiled Cord 11 retrocted; 5^{\prime} extended with Amphenol MC4M Connector	RUCAD	\$32.50
102C	Reloy normally open. Microphone switch nermally apen.	Standard Coiled Cord 11" retracted; 5' extended	RUCEM	\$21.50
102E		Tinsel Coiled Cord $11^{\prime \prime}$ retracted; 5^{\prime} extended with spode lugs	RUCAF	\$30.00

Microbar $=$ one dyne per sq. © m.

SHURE BROTHERS, Inc. *

List Price $\$ 35.00$

Microphones and Acoustic Devices
from your own experience that Cornell-Dubilier products \longrightarrow are time-tested

Consistently Dependable

High and Medium Voltage Trans. mitter Capacitors in all popular capacities.

Disc and hi-voltage ceramic capacitors.

Receiver and transmitter capacitors.

CDR Rotators, TV-AM-FM and Auto Antennas.

Vibrator-powered converters and inverters.

Auto radio, heavy duty, railroad converter vibrators.

CORNELL-DUBILIER ELECTRIC CORPORATION

Taradon
142

The West's largest and anly campletely exclusive industrial electranic distributars are praud ta present a new kind af parts warehause, especially arganized ta serve all industrial electranic users: Aircraft, TV, Braadcast, Mabile Cammunicatians, Gavernment Agencies, Schaals, Labarataries, Geaphysical Campanies, Manu facturers, etc.

Thousands af items fram all the leading manufacturers ore now in Kierulff Electronics' huge building housing a half-million dollar inventary. Sixty-six specially trained people insure fast service. In fact, all orders for material in stock are shipped the same day they are received. Factory orders ore expedited by our full-time expediting deportment.

Ask for complete list and catalog!
For immediate service, phone, wire or write:

KIERULFF ELECTRONICS

NCORIORATEI

820.30 W OLYmpic blvo - los angeles is. Calif Richmond 7 -(0271 - Zenith 0271

143

NEW NEW NEW

MONITORADIO MODEL DR2OO

Mutel DR:00 Two Band Communicalions Recriver newly developed-low contonly one of its kind. Fixed and Tunable Combination AC Recriver for $30-50$ IIC and $152-1$ i. 1 MC -a long-waited-for development in hess expensive units for monitoring existing 2-way radio communication systems.

Operating in two mertinent fixed frequency ranmes. the tunable feature can be used alternately with the flip of a switch. Cuder routine operating conditions the DRE00 performsanany standard crusal controlled monitor receiver. But when conditions require. a flip-of-theswitch makes the unit tunable across the full frequenie range.
Such flexibility of proformance makes the Monitoradio DREOn ideat for expanding communications sistems of monicipal police, civil defence. fire, forestry. state police, pipelines. ituns. L'se and application of this unigue receiver is limited only by the imagination.

Builtin sensitive squelch with level conlrol. Dual comersion, 10.7 MC and 45.) K 6. Fully tuned KF stage. Fourteren tubtes plus rectifier. Sensitivity for 20 DH quieting, ont microvolt low band, fino microvalts high frand. Selectivity 3 IN3 at phas or minas $20 \mathrm{KC}, 80 \mathrm{DB}$ at plus or minus 30 KC Crysial selector control with provision for two crystals fiwd frequency ognration (one for each Land).

MONITORADID MODEL MM32 AC RECEIVER FOR 30.50 MC

Built-in squelch for level control. Sensitivity 6 microvolts, a tubes plus rectifier. Power (ransformer. Fully tuned NF゙いage

RADIO APPARATUS CORPORATION S5 NORTM NEW JERSEY STREET IMDIANAPOLIS 4, IND. PHOME: AILANTIC 1624

THE FAMOUS

HAS EVERYTHING

foremost in design

by Kenyon engineers long recognized as authorities in the iransformer industry.
last woid in construction
is achieved through the use of the finest grade materials fabricated in a modern plant and checked progressively through each operation.
uniformity of style
because of four mounting holes af top and botiom of casing transformer can be mounted upright or inverted with completely concealed wiring.

Wost practical uniorersal mounting
throughout the entire \mathbf{T} line in durable
black dull satin enamel.

Kenyon

is also one of the foremost manufacturers of transformers for

JAN Applications • Radar • Atomic Energy Equipment •
Special Machinery • Automatic Controls • Experimental Laboratories

Submit your transformer problems or specifications to us
Kenyon Transformer Co., Inc.
840 Barry St., New York 59

Cetron
Cinch-Jones
Clorestat
Colins
Cornell-Dubilier
Diol Light
Drake
Eby
Eimac
El-Menco
Erie
Federal
General Cement
Guardian
Greenlee
Hallierafters
Hytron
ICA
IRC
Jensen
E. F. Johnson

Kester
Kraeuter
Littlefuse
Millen
Notional
Nafional Electronics
Ohmite
Par-matal
Plastoid
Potter \& Brumficld
Premax
Presto
Guam-Nichols
RCA
Raytheon
Sarkes-Tarzian
Seleiron
Shure
Simpson
Sola
Stancer
Switcheraft
Sylvonio
Triad
University
Useco
UTC
Vectar
Westinghouse
Weston
Be Sure YOU Receive DALE's NEW 1953 BUYER'S GUIDE and REFERENCE MANUAL

Your guide to complete selection... classified by category for easy reference and comparison of any item ... complete with illustrations, descriptions, specifications, prices PLUS a wealth of valuable, useful technical information for your ready reference.

Reserve Your FREE Copy - Write Today to:

Division of DALE CONNECTICUT, INC.
1 SO JAMES STREET • NEW HAVEN 13, CONN.
Telephone: Spruce 7.5555
148

New sweep generator

Covers alt TV.FM alignment frequancies, $500 \mathrm{KC}-228 \mathrm{MC}$. Vermuer-driven dial; eanrer al eoch of 13 TV chonnels markon on tront panel. Sweepwidth voriabte 0.30 MC with mechanical inductive swoup-permits goin comparison of adjacent RF IV channels. Crystal marker ascillator, voriable amplilude. Provides for injection of external morkor. Phasing conriph. Com plere With Hf fubal. 5 MC Chual 00.95 Model 360-K, KIT, only $\$ 34.95$ Model 360. tectary wired. \$49.95

ULII-SIGNAL TRACER
3hest gain and nexibilily in low.cost held dibly troces all IF, RF, Video ond Audio m ANT to SPKR or CRT without switching. sponve wall over 200 MC. Integras tess eakerf. Provision for visual trocing with
Vm . Complate with 65 J . 6 KK , 6×5. Gervi. Complate whe 3 .color esthed ponsla inium sleal case. 115 v., 80 eycie AC 10

odel 145-K, KIT, only $\$ 19.95$
sol 145, foctory wiend, 326.95

New battery eliminator

 CHARGER \& BOOSTERFor ofl outo rodio leasting. totest-rype fulli-wove bridge circuits. 4.stork mongonese ropper-oxide rectinters. Specially
designed
 filer condenser. Meter meosures current and volioge outpur. Fused primory; outomatic reser overload device for secondary. Hammertone sleal case. 115 v, , 60 cycle AC. $101 / 2 \mathrm{x}$ $7 \% \mathrm{~m}=\mathrm{s} / \mathrm{c}^{\prime \prime}$.
Model 1040-K, KIT, only $\$ 25.95$
Moder 1040, factory wired, 330.95

New deluxe signal generator

A loboratory-precision generotar ELCO Service.Enginaered with 1% accuracy. Extremely stable. feequency $75 \mathrm{KC}-150$ MC in 7 colibroted ronges. Illuminoted hairline vernier iuning. VR stobilized line supply. 400 -cycle pure sine wove with less than 5% distortion, Yube complement: 6×5, 787 , 60 cycle AC $12 \times 13 \times 7{ }^{\prime \prime \prime}$. Model 315-K, KIT, only $\$ 39.95$ Model 313, fertory wirwed, 339.95

GIFD SUPER-SIMPLIFIED INSTRUCTIONS

Easy-to-follow step-by-step EICO pictorial and schematic instructions-most explicit and comprehensive in electronics!-supplied with each Kit. Anyone can build the EICO Kits!

ELECTRONIC INSTRUMENT CO., Inc. 84 WITHERS STREET, BROOKLYN 11, N. Y.

Specifications and prices subject to change without notice. MUITIMETERS
 31 ronges. DC/AC Volts: Zoro to 1, 5, 10, 50, 100, 500, 5000. OC/AC Cur. rent: $0.1 \mathrm{mo}, 10 \mathrm{~mol} 0.1$ omp,
$500, ~ 100 \mathrm{~K} p$. Ohms
0. $500,100 \mathrm{~K}, \mathrm{I}$ meg. 6 db rangesz -20 to +60.3.
inch 400 wo meter move. ineh 0 wo metor move ment. Duc
Model 536-K, KIT, model $\$ 12.90$.
only
model
538.
R factary witod,

New signal generator

For FM.AM precision alignment and TV morker frequencies. Vernier Tuning Condenser, Wighly stable RF ascillator, range: $150 \mathrm{KC}-102 \mathrm{MC}$ with fundamenrats to 34 MC . Separate audio modulated if or pure AF for externol pesting. 115 ve, 60 eycle AC. $10 \times 8 \times 4^{\prime \prime}$.
Model 320-K, KIT, only $\$ 19.95$
Madel 320, facroery wired. 329.95

New audio generator

Complete sine wave coveroge: 20.200 .000 cPs . Complet iquare wave coveroge: $60-30,000 \mathrm{cps}$ (5% round-of of 30 kc). 4. gang condenser. Respanse $\pm 1.5 \mathrm{db}, 60 \mathrm{cps}$ to 150 kc . 1 m . proved Wien bridge 'lype oscillator. Rated load 1000 ahms of roled output. Hy less than 0.4% roted output. Tubes: 6×5 of roled outpun. Hym 6SJ7, 2.6K6, 6SN7. 1F\% x 7/4 a 7/1
Model 377-K, KIT, only \$31.95.
Model 377, factory wieed. $\$ 49.93$.
New 1000 Ohms Volt

high voltage probe
corofully designed and insulated far extro safoty and versatility. Extends range o TVM3 and volitmeters UP 10 30,000 . Lucire hoad. Large nash vards, Multi-layer processed handle. Complete wit HVP-1 (wired) only $\$ 6.95$
the exclusive EICO Make-Good GUARANTEE Eoch EICO kit and Instrument is doubly guaranteed, by EICO and your iobber, to contoin anly selected quefity components. ELCO quaranteas to replace any component which factory tramportation charges prepopid within 90 doys of purchase ElCO guarantess all Kirss assembied occording to EICO's simplined instructions will operate as specifod therein. EICO guarantoes sarvice and calitrotion of every EICO Kit and Instrument at the nominat eharge as stated in the instructions.

Be sure to look at the EICO line before you buy any higher-priced equipment! Each EICO product is jam.packed with unbelievable value YOU be the judgecompare EICO at your local jobber today, and SAVE! Write NOW for free newest Catalog H .

PAR-MEA BACHS - CHAS5I5. qRBMETS AR MEA porecectaoncappanatus

HINGED
 STEEL CABINETS

SERIES CA-300
(DeLuxe Type)

\qquad
SERIES CA-200
(Rounded Corner Type)

	Punel	For	Net
${ }_{8}{ }^{\prime \prime}$	- $8^{\prime \prime}$	7. Chussis ${ }^{\prime \prime}$	Price
$8^{\prime \prime}$	$8^{\prime \prime}{ }^{\prime \prime} \times 10^{\prime \prime}$	$7^{\prime \prime \prime}$, $7^{\prime \prime \prime}$, $2^{\prime \prime \prime}$	53.39
${ }^{\times} 8^{\prime \prime}$	$8^{\prime \prime} \times 10^{\prime \prime}$	$7^{\prime \prime \prime} \times 9^{\prime \prime} \times 2^{\prime \prime \prime}$	3.62
v 11 "	$9^{\prime \prime} \times 15^{\prime \prime}$	$10^{\prime \prime} \times 14^{\prime \prime} \times 3^{\prime \prime}$	4.77
, 12'	$12^{\prime \prime}$, 18"	$10^{\prime \prime} \times 17^{\prime \prime} \times 3^{\prime \prime}$	8.18

SERIES SF-500
(Sloping Front iype)

AMPLIFIER FOUNDATION CHASSIS
(Rounded Corner Type)

 nushad in late erry with blat k rimule chas istor a ohtraty.

UTILITY STEEL CASES

19"' BLANK RACK PANELS

BLANK STEEL CHASSIS BASES

PAR-METAL PRODUCTS CORP.

32-62 49th Street, Long Island City 3, N. Y.
13 E. 40 Street
New York 16, N. Y.
150

ER-225

ER-215

P-6918

F-6618

RR-195

Specify PAR-METAL Standardized Housings for maximum
economy, atfractiveness, and efficiency. Items described in these pages are typical of the most popular units.

$\begin{gathered} \text { Cat } \\ \text { Nn } \end{gathered}$	Overal/ Dimensions	Panel Space	$\begin{gathered} \text { Net } \\ \text { Price } \end{gathered}$
R-223	$43^{\prime} 1^{\prime \prime} \times 22^{\prime \prime} \times 18^{\prime \prime}$	363" ${ }^{3} \times 19^{\prime \prime}$	\$42.12
E.R-225	$67^{+1} 1^{\prime \prime} \times 22^{\prime \prime} \times 18^{\prime \prime}$	$61^{\prime \prime \prime} \times 190$	54.6

 225 aro shipped with all mecesarary bolts for batsy awembly.

Cat No.	Onerall Dimensinn:	Panel Space	Net Price
ER-213	42 " $\times 22$ " $\times 161 / 2$ "	$36^{\prime} \%^{\prime \prime} \times 19^{\prime \prime}$	\$29.64
ER-215	$66^{1}{ }^{\prime \prime} \times 22^{\prime \prime} \times 16^{1 / 2 \prime}$	$61^{1 / 2} \times 19^{\prime \prime}$	43.98

ER-215 664. $\mathrm{t}_{2}^{\prime \prime} \times 22^{\prime \prime} \times 16 \mathrm{~K}_{2}^{\prime \prime} 61^{\prime \prime \prime} \times 19^{\prime \prime} \quad 43.98$
ER-217 821" $\times 22^{\prime \prime} \times 16^{1 \prime^{\prime \prime}} 77 \prime \prime \times 19^{\prime \prime} 52.41$

SERIES P-6918 or P-6924 RACKS:
(0)matrinterd of

CHANNEL RELAY RACKS (For Stondard $19^{\prime \prime}$ Rack Panels)

DESK PANEL RACKS
(for $19^{\prime \prime}$ Wide Panels)
Vertical fromt corners are roumded atal tupand bettoth trimmed with chromefinished maldings. I'anelsare redesed. Made from $1 / 16^{\circ}$ shect steel throught out for any 'hassisup io $1.3^{\prime \prime} \times 6^{\prime \prime}$

Cal

- DL-128
- DL-1225
-DL-1225
$15 .{ }^{15} \times 21^{\circ \prime \prime} \times 15^{\prime \prime}$ deep $12{ }^{\circ}, \quad 12.66$

*Dl.-3513 36," $\times 21^{\prime \prime \prime} \times 15^{\prime \prime}$ deep 35 " 22.47

$$
\begin{aligned}
& \begin{array}{c}
\mathrm{Cat} \\
\mathrm{Nr} \\
\hline
\end{array} \\
& \text { RR-193 } \\
& \begin{array}{l}
\text { RR-193 } \\
\text { RR-195 }
\end{array}
\end{aligned}
$$

Panel	Nel
Space	Price
$36 " \prime$	$\$ 15.90$
$713^{\prime \prime}$	19.02

ROLLER TRUCKS

There tracks ate resignerl for atse with the racks slows atomes. Wrotall siza is albout $3^{\text {s }}$ "wider that räths fur better distribution nf weight. Chronte trim. Pinish is shate wrey rimple.

$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$	Use with Rack Nos.	Inside Clearance	Net Price
RT-111	ER-213. ER-215. ER-217	$22^{\prime \prime} \times 17{ }^{\prime \prime}$	\$8.58
RT-112	$\begin{aligned} & \text { ER-223. ER-225, ER-227 } \\ & \text { F-6618, F-8318 } \end{aligned}$	22*** 18 "	9.66
RT-118	P \& PC; -6918, 7818, 8518	23 /6" $\times 19^{\prime \prime}$	12.15
RT- - 2.4	P \& P P - 6924, 7824, 8524		13.08

PAR-METAL PRODUCTS CORP.

EXPORT DEPT. ROCKE INT., CORP

13 E. 40 Street
New York 16, N. Y.

For the EASIEST-WORKING KEY you ever used ask for VIBROPLEX
 Twice as easy as hand sending

World's No. 1 Semi-Automatic Key

Until you've used a Vibroplex key you've no idea how casy sending can be. Vibroplex brings to you the simplicity, ease of operation and machine speed which makes kering a pleasure instead of a task. No other key gives Vibroplex amazing keying performance. or is so easy on the arm. Preferred by professionals and amateurs the world over.

Above - Vibroplex model
Presentation - Suits any hand. Wider speed range Needs no additional weight for slowest keying. This key has a "touch" that lessens arm fatigue and makes keying easier than ever before. Richly finished in polished chromium, red trim and $24-\mathrm{K}$ gold-plated base top. It is a revelation to everyone who has used one. . $\mathbf{2 9} 9.95$

Sends Better Sends Easier Sends Faster Lasts Longer

Tibroplex model Original - This famous allpurpose key has won international fame for ease of operation and all-around keying excellence by thousande of the world's best operators. Built thunsande of the worids best
for long life and hard usage.
Standard . $\$ 17.95$
DeLuxe . $\$ 22.50$

Vibroplex Carrying Case - IIandsome simulated black moroces. Cloth-lined. Reinforced corners. Flexible leat her handle. Keeps key free from dirt and moisture. and insures safe-keeping when not in use. With lock and key.
$\$ 5.75$
Avoid intitations!
The "BC'G"'Trade Mark Genuine \'ibroplex. Don't stitle for a shbstitute

Vibroplex model Liehtning Bur llas many advanced features which contribute to its remarkable ease of uperation and professional performance. Maintains clear, snappy signals at all speeds. At popular choice. Standard. $\$ 15.95$ DeLuxe $\$ 21.50$

Vibroplex model Blue RacerOnly half the size of the Original. yet operates with the same eare and perfection as that famous hey Weighs 2 lbs. 8 oz. Occupies small space. In high favor with radio men. Standard $\$ 17.95$ DeLuxe . .$\$ 22.50$

Alf Vibroplez keys are available for left-
hand uperation, \$1.00 mores.

NEW SPECIAL ENLARGEI) Edition of PHILLIPS CODE $\$ 2.00 \begin{gathered}\text { Post } \\ \text { paid }\end{gathered}$

Radio Cole Signals
Hutnational Morse Annerican Morse Kussian, Greek. Arabic Turkish and Japanese Morse Corles
World Ime Chart

And no matter what the choice, you get the same easy, professional performance which has made Vibroplex the world's No. 1 semiautomatic key. Every Vibroplex is designed to meet exacting operating standards, and to provide trouble-free long life for the user. At your dealer or ORDER DIRECT.

Write for FREE catalog

Prices subject to change without notice
THE VIBROPLEX CO., INC., 833 Broadway, New York 3, N. Y. W. W. ALBRICHY, Prenident

IF YOU TELEGRAPH YOU SHOULD USE A vIBROPLEX KEY

THERE'S AM

ILHNOIS EEctrootric capactor of 7 ime 7ested 2uality FOR EVERY ELECTRONIC APPLICATION

Seventeen years of successful production experience, making millions of quality capacitors, has created this complete, outstanding line.

This engineering and manufacturing experience has enabled ILLINOIS CONDENSER COMPANY to meet every demand for new capacitor types, whether for peace or defense applications, with components of exceptional value and dependability.
Illiwtrated are hut a few of the many capacitor types now manufactured by ILLINOIS CONDENSER. There is i guaranteed ILLINOIS Con denseif for every electronic application. Whatever your igavienemspecify ILL INOIS CONDENSER. Benefit by the vee -1t eapmeering and manufertuing evserience behind these conoenam of "Time Tested Quality

IHC idaol for repiacement an ner a equipment, thil thee hat then ols
are leaut inam erature rade caras z i impa aly hai rajio
 plied in common nelysives, tour an tion type ir figal rezatves orth
 from 5 1o SuU W.v.U

1 Has screw neal ryee ming rin eltruded aluminumit cani ong a arl ot is in $1^{\prime \prime} 11 "$ mipters r rice iv ranges frum 8 : 30 MPJ an il Ir m 450 to $6.2 \mathrm{Vv}-\mathrm{V}_{2} \mathrm{C}$.

UMP Ideal for :immuriatin radis and TV simonjus teli, hi, nJ
 m. mised.
 eevoractry roroth limavet, the unzer a neerg'ra luaze ap, hai

PEtar wa - a Eolifotion en+ma, Fansi=5 Tubsc. Plat wi

 Aralabe il. iqse met at phern ma. I JAPd a

 in husi. zan, Muytur Cinemen Governme I sotituotions Hernem cail, sealea, warer retal $\mathrm{N}=\mathrm{m}$, des zhing mal cungertor

 cipalition atins

UMC
MFU p

 aye. Di, ho the Maser itarting strobe limp of flah types
Audie a power lifer ravarl. Audie bi power f lier reiviarla.

A Complete Line of Vibrators
Designed for Use in Standard Vibrator -Operated Auto Radio Receivers. Built with Precision Construction, featuring Ceramic Stock Spacers for Longer Lasting Life.
Backed by more than 17 years of experience in Vibrator Design, Development, and Manufacturing.-
afr pioneered in the vibrator field.

For Inverting D. C. to A. C. . . .
Specially Designed for operating A. C. Radios, Television Sets, Amplifiers, Address Systems, and Radio Test Equip. ment from D. C. Voltages in Vehicles.
"A" BATTERY
 ELIMINATORS

New Models

For DEMONSTRATING AND TESTING AUTO RADIOS
New Models . . . Designed for Testing D. C. Electrical Apparatus on Regular A. C. Lines. Equipped with Full - Wave Dry Disc Type Rectifier, Assuring Noiseless, Interference-Free Operation and Extreme Long Life and Reliobility.

154

What do you want in a MICROPHONE?

 Check the features and characteristics for which E-V microphones have become favorites in every fierformance microphones hoice, and know you can expect perfing. Here take your choice, that is guaranted by $\mathrm{E}-\mathrm{V}$ research-engine ering. are 9 models of today's
950 GARDAK

 Hegtie $18=d=d$ ontal ecrophent win af alt tapher melitant for ing ghefle is zound poch p er flot etite crinonils of inetith Otereforinetoat ant d background nisisn |hede ai rellemato On O. ra ge retpe vinch. Meta \$to erial $1,542.50$

Popdar wigh ridelly
Popo ar ah rideliy Reiponie 0011,00 cpl Reipanit 80 11,00 cpl
0 diraterial Enc.... A Lovitalo ditiphrogm. Alouitalo" dit phragm
litre tegged T aole litre "gag d ${ }^{\text {F/ aole }}$
head On Of smith Ava able in high 9 lon impedances Nodel 63U. List \$42.00

208 MOBILE
Smail size, high o itpt single-buttan carben तr crophone for marmur intesiligibility Closn Es'yreg, nowe-cannoiley Ditranal typt Frat Dinem al typi frof
svater preal, ab 184*a. Catíab
 hre teh Pane ounting

636 SIMANR 4
5ili vpriotive dreaniinl nextping al amplitr

 4 - bivad iop wind and beath bla 4 irsithlatio diaphragm Trin 90 On Off s=itsh. Mlath or tie impedante selection (in) $\$ 70.00$

AICROPHONES - PHONO-CARTRIDGES HIOH FIDELITY SPEAKER SYSTEMS TV ACCESSORIFS - PA PROJECTORS

See your E-V Distributor or Write for Bulletins
Cryatal miles licensed under Brush patents. E.V Pat Pen

- century

Lp*-cost al purpor Crpital Diname and Cersamoe raviols fon tp eesti in hiond an itand Remortable parterman Satil Chrote min if ligh and - impedances th fron $\$ 11.25$ to $\$ 18.50$ Todrl 415 Dent Movt mithem12?

mercury

Model 61 Drna*ic u^{-d} Model 911 Crital Smar design Rugged and design Rygged and $50-80 j 0 \mathrm{cp} . \mathrm{H}$ sh oid $50-8030 \mathrm{cp}$ Mgh a
level Omin diractienal level Omni diractiana Titable head 'On-Off Writch Avalab=? high or Inw impadonnel. List from \$25.50 o $\$ 35.50$

$\square \ln +\ln$

TOUCH-TO-TALK
Model 428 Breat in Thich-to Iat Sizild with luentily fo ithe. rio in feroptont taf ind B-27 throud lever rpe beritch givet Angern+p relar opiralimen in Al. ophat

On-Of' Single pale dab b-throt live \$14.00

(M-51/U HANDSET

Virtial. r indewingibole Transmiss speech clearl and MinH gro', nderat mbint nowe cnarlition fint enwrollinn vemena order differential carbor merophont 600 oh merophane. 200 on hondla puh-ie-tall swimb. honda puh-te-fall heir
10 long. Fiag gis 1 f 10 long. Fia gis 1 N Lns, \$180.00

Expart: 13 East 40ih Streat, N.Y. 16, U.S.A. Cables: Arlab
-Patent No. 2,350,010
ABOVE - Master Contiol System
manufactured for "Voice of America".

GAT 59

GATES RADIO COMPANY

 manufacturing enginers since 1922Quincy, Mlinois, U. S. A.
2700 Polk Avenue, Houstion, Texas - Warner Building, Washington, D. c.
International Division, 13 E. 40th St., New York City
Canadian Marconi Company, Montroal, Quebec

GATES Studioette with pre-ret console.

Types AX2 and AX3, designed especially for this service, bring price and precision together in the ham bands. Blilcy's packaged oscillator, Model $\mathrm{CCO}-2 \mathrm{~A}$, is a favorite for $2-6-10-11$ meter home built rigs. Price and details are given in Bulletin 44.

Types MC7. SR5 and SR8 are suggested for shipboard dependability. Price and details given in Bulletin 44.

Types BC46T, MO3B, TC92 are first choice for automatic temperature control in AM, FM and TV transmitters. Consult Bulletin 43 for basic details.

Types SR10 and MC9 provide wide range frequency choice for TV service, diathermy and citizens band. Re uest Bulletin 44 for price and description.

Type BH6A is the predominant choice for land mobile and airborne applications. Consult Bulletin 43 for basic information.

Types KV3, MC9, SMC100 and MS433 cover reference frequencies from 100 kc through 10.7 mc . Price and "stock tolerances" given in Bulletin 44.

For reference in this broad category, see the "Specification Index for Military Crystal Units" in Bulletin 43.

Custom built fused quartz delay lines provide high stability and precision time intervals for manipulation of pulsed or pulse modulated signals. Consult Bulletin 45 for technical information.

REQUENCY STANDARDS
Model BCS-1 A is a high stability instrument for precision reference at 100 kc . Ideal choice for research and development laboratories. Descriptive information given in Bulletin 43.

BLILEY ELECTRIC COMPANY UNION STATION BUILDING • ERIE, PENNSYLVANIA

"HAMS" in Industry and in the Shack...

depend on

IPIRIECTISSIIDNV

ELECTRONIC TEST INSTRUMENTS...because...

.. they recognize that there is no compromise, no guesswork, behind the design and workmanship of a "PRECISION"-built instrument.
.. . they have seen the "insides" of the equipment, which reveals the infinite and painstaking care given to "Precision Individualized Production". .
... they have learned, over the past nineteen years - in the shack, on the production line, at the service bench - that they can always look to "PRECISION" Test Equipment, as the standard of performance, accuracy and value.

SERIES EV- 20
True Zero-Center VTVM and Multi-Range Test Set
with Direct Peak Reading
High-Frequency Scales
Ranges to:
1200 V., 2000 Megs., 12 Amps., +63 DB
Net Price …..................... $\$ 69.75$
RF.IUA Hi-Freq. Probe (Accessory) Net Price $\$ 11.40$

SERIES E-200C
A modern, multi-band SIGNAL and MARKER GENERATOR for AM, FM, and TV Receiver Alignment Direct Reading from 88 KC . to 120 MC . Net Price.
.$\$ 73.25$

PRECISION TEST EQUIPMENT Standard of Ahounacy...

SERIES 40
Compact. Wide-Range AC-DC CIRCUIT TESTER

1000 !! V. Sensitivity
31 Self-Contained Ranges to: 6000 V., $600 \mathrm{MA} ., 5 \mathrm{Meg} 5 .,+70 \mathrm{DB}$ Ideal general-purpose, compact Test Set...... $35 / 4 \times 61 / 4 \times 21 / 2^{\prime \prime}$. Net Price........ $\$ 26.95$

SERIES 85 Laboratory Type AC-DC CIRCUIT TESTER $(20,000!(\mathrm{V} . \mathrm{DC})$ 34 Self-Contained Ranges to: 6000 V., 60 Megs., 12 Amps., $+700 B$ A wide range, high-sensitivity. Test Set, engineered for madern electronic circuit maintenance... Size $51 / 2^{\prime \prime} \times 71 /$ " $^{\prime \prime} 3^{\prime \prime}$ Net Price........ $\$ 39.95$

SERIES ES-500A High Sensitivity, Wide-Range 5" OSCILLOSCOPE
Push.Pull V. and H. Amplifiers Net Price $\$ 173.70$

PRICISTON APPARATUS CO, IHC.
92-27 Horace Harding Boulevard, Elmhurst 11, New Yark
Export Division: 458 Broadway, New York 13. U.S.A. ©.Cables-Morhanex In Canada: Atlas Radio Corp., Ltd., 560 King Street, W., Toronto 2B

Now available

 for commercial use HUGHES
GERMANIUM DIODES

$$
\text { hermetically sealed } \frac{\text { for }}{}
$$ performance stability

Hughes Germanium Diodes were developed to meet the Com. pany's exacting requirements for a high-quality diode in airborne electronic equipment for interceptor flight, navigation and fire control. Many thousands of Hughes diodes have been utilized in electronic systems for both aircraft and guided missiles.

The Hughes point-contact diode combines the following desirable characteristics:
high electrical stabil. ITY. Hermetically sealed in glass against humidity penetration. Oscillo-scope-tested for performance stability.
extreme ruggeoness. Examined for construction strength, resistance to vibration and shock damage in accordance with JAN specifications.

Expansion of production capacity now enables the Company to accept commercial orders. Hughes diodes are being produced to RTMA specifications and also are supplied tested to special customer specifications.

Hughes
Germaninm
Diodes-
Electrical Specifications
at $25^{\circ} \mathrm{C}$.

RTMA Type	Peak Inverse Voltage	Minimum Forward Current at 1 voll-ma.	Maximum Back Current ma. (volts)
1N55B	190	5.0	$0.5-150)$
1 N70A	130	3.0	$0.01(-10) ; 0.41(-50)$
1 N67A	100	4.0	$0.005(-5) ; 0.05(-50)$
1 N81A	50	3.0	0.01 (-10
1N89	100	3.5	$0.008(-5) ; 0.1$ (-50)
1 N68A	130	3.0	0.625 (-100)
1N69A	75	5.0	$0.05(-10): 0.85(-50)$
1 N90	60	3.0	0.8 (-50)
NOTE: 80% of	has bee his invers	found that H voltage applie	hes diodes will support continuously at $25^{\circ} \mathrm{C}$.

TETRODES

$4-65 A$	$4 W 20000 A$
$4-125 A$	$4 \times 150 A$
$4-250 A$	4×1500
$4-400 A$	$4 \times 150 G$
$4-1000 A$	$4 \times 500 A$
4 PR $60 A$	$4 \times 500 F$

PENTODE
4E27A/5-125B

AIR SYSTEM SOCKETS
4-400A/4000 4-1000A/4006* 4-400A/4006* 4X150A/4000 4-1000A/4000 4X150A/4006*
*Replacement Chimneys

ACCESSORIES

HR Heal dissipaling connectors Preformed Contact Finger Stock

ION GAUGE
100 IG ion gouge

VACUUM CAPACITORS

VC6-20	VC25-20
VC6-32	VC25-32
VC12-20	VC50-20
VC1 2-32	VC50-32

4-125A

The radial-beam power tetrode that made transmitting screen-grid tubes popular. This tube will take a plate input of 500 watts for CW or 380 watts for fone. Driving power is less than two watts. A pair of these tetrodes make an ideal high power fone or CW final for the amateur.

4-250A

A pair of these radial-beam power tetrodes will easily handle a kilowatt for fone. In CW service, one tube will take a kilowatt input. Driving power is only two to three watts per tube. As modulators a pair will deliver as much as 750 watts audio with simple resistance coupled driver stages.

FINGER STOCK

Preformed Contact Finger Stock is a useful electrical "weather strip" around accesses to equipment cabinets as well as providing good circuit continuity between adjustable components. It is ideally designed for making connections to coaxially constructed and external anode designed tubes.

4×150A

This small external anode radial-beam power tetrode operates efficiently at all frequencies into the UHF range with a driving power of only a few watts. Its small size and ruggedness make it ideal for compact equipment such as mobile.

4W20,000A

This water cooled, radialbeam power tetrode has a plate dissipation rating of 20 kilowatts. It will operate efficiently as a power amplifier at frequencies up to 250 mc . One 4W20000A operating as a visual rf amplifier in television service will deliver 20 kw at 216 mc ., with a five mc bandwidth.

4E27A

With simple circuits and less than two watts driving power this radial-beam power pentode gives dependable operation and high output. It is capable of an easy 500 watts input in Class-C service - or when suppressor modulated will deliver 75 watts output at carrier conditions.

3K20,000L (A-F-K)

These Klystrons, the latest development in UHF television transmitting, have a power output of 5000 watts. Three versions of the Klystron will cover the entire UHF range - 470. 890 mc . This water and air cooled Klystron has a power gain of 100 times.

2501

A tried, proven and continually improved 250 watt triode. The ideal triode for one KW CW input. Will handle 825 watts input on fone. With plate voltage as low as 1500 volts in Class-B audio service a pair will modulate a $K W$ RF stage.

VVC60-20

This is but one type in the Eimac line of variable and fixed vacuum capacitors for plate tank circuits. It is variable over a range of 10 mmfd to 60 mmfd . Maximum rf voltage is 20 kv at 40 amperes.

- Write for 28-page booklet, "Care and Feeding of Power Tetrodes." Available free upon request.

EITEL-MCCULLOUGH, INC.

World Radio History

Eimac maintains an Amateurs' Service Bureau for amateur radio operators. Free information may be obtained by writing. Available for engineering consultation and information is the Eimac Application Engineering department.

The new model 770 - An Accurate Pocket Size VOLT-OHM MILLIAMMETER

Model 770 is an accurole pockef-size V.O.M. Measures only $\mathbf{3 '}^{\prime} 1 / \mathbf{s}^{\prime} x$ $51 /{ }^{\prime \prime} \times 21 / 4^{\prime \prime}$

features

Compoct-measures $31 /{ }^{\prime \prime \prime} \times 57 \%^{\prime \prime}$ $\times 21 / 4^{\prime \prime}$
Uses lotest design 2% accurate 1 Mil. D'Arsonval type meter.
Some zero adiustment holds for both resistance ranges. It is not necessary to readjust when switching from one resistonce range to another. This is on important timesaving feoture never before included in o V.O.M. in this price ronge.

Housed in round-cornered, molded case.

Beoutiful block etched panel. Depressed letters filled with permonent white, insure long-life even with constant use.

SPECIFICATIONS

6 A.C. VOLTAGE RANGES: $0-15 / 30 / 150 / 300 / 1500 / 3000$ volts.
6 D.c. Voltage ranees: $0-7.5 / 15 / 75 / 150 / 750 / 1500$ volts.
4 D.C. CURRENT RANGES: $0-1.5 / 1.5 / 150 \mathrm{MA}$. $0-1.5$ AMPS 2 RESISTANCE RANGES: $0-500$ OHMS. O-1 MEGOHM.

$$
\begin{aligned}
& \text { The Model } 770 \text { comes complete \$1 } 901 \\
& \text { with self-contoined batteries, tesi } \\
& \text { leads and all eperating instructions }
\end{aligned}
$$

The new model 670-A
SUPER-METER
A COMBINATION VOLT-OHM MILLIAMMETER PLUS CAPACITY REACTANCE INDUCTANCE AND DECIBEL MEASUREMENTS

ADDED FEATURE

The Model 670-A includes a speciol GOOD-BAD scole for checking the quolity of electrolytic condensers at a rest potential of 150 Valts.

SPECIFICATIONS

D.C. VOLTS: 0 to $7.5 / 15 / 75 /$ $150 / 750 / 1,500 / 7,500$ Volts. A.C. VOLTS: 0 to $15 / 30 / 150 /$ $300 / 1,500 / 3,000$ Volts.
OUTPUT YOLTS: 0 to $15 / 30 /$ $150 / 300 / 1,5 \mathrm{CO} / 3,000$ Volts. D.C. CURRENT: 0 to $1.5 / 15 /$ 150 Mo 0 to 1.5 Amperes. RESISTANCE: 0 to 500/100,000 Ohms. 0 to 10 - Megohms.
CAPACITY: COI to $.2 \mathrm{Mfd} ., 1$ to 4 Mfd. (Quality test for electrolytics).
'REACTANCE: 700 to 27,000 Ohms 13,000 Ohms to 3 Meg --ohms.
INDUCTANCE: 1.75 to 70 Henries, 35 to 8,000 Henries. decibels: - 10 to $+18+10$ to $+38+30$ to +58 .
The Model 670.A comes housed in a rugged, cracklefinished stael cabinet complete with test leads and test leads and operat

The New Model TV-11

TUBE TESTER

SPECIFICATIONS
alubes includ ing 4, 5, 6, 7, Oetol Lock-in, Peanut, Bontam, Hearing Aid, Thyratron, Miniatures, Sub-miniotures, Novais, Sub-minars, Proximity fuse types, ef.

Uses the new selfcleoning Lever Action Switches for individual clement testing. Be. cause all elements are numbered occording to pin-rumber in the RMA base numbering system, the user can instantly identify which element is under test. Tubes having topped filoments and tubes with filaments terminating in more thon one pin are truly tested with the Model TV. 11 as any of the pins moy be ploced in the neutrol position when necessory.

The Model TV-II does not use any combinotion type sockets Instead individual sockets are used for eoch type of fube. Thus it is impossible to domoge a rube by inserting it in the wrong socket.

Free-moving buitp-in roll chort provides complete dato for all tubes. Newly designed Line Voltoge Control compensates for variotion of ony Line Voltoge between 105 Volts and 130 Volts.
EXTRA SERVICE-The Model TV.II moy bo used os an extremely sensitive Condenser Leakage Checker. A, relaxotion type oseillator incorporoted in this model will defect leakoges even when the frequency is one per minute.

The Model TV. 11 operotes on $105-130$ Volt 60
Cycles A.C. Comes housed in o beoutiful hond- $\$ 750$
rubbed oak cobinet complete with portable cover net

New Model

TV BAR GENERATOR

Provides vertical sweep signol for adiusting and synchronizing vertical oscillator dischorge and output tubes.
Provides verticol signal to replace verticel oscillator to check verticol omplifier operotion.
Provides horizontol sweep signal for odusting ond synchronizing horizontol oscillator A.F.C. ond output tubes.

TV.F.C. Ond output tubes.
Can be used when no stotions are on the air. test.
ericarions Power supply: $105-125$ vor 60 Cycles.
Power Consumption: 20 Watts. Channels: 2-5 on ponel, 7-13 by hormorics, Horizontol lines: 4 to 12 (Vorioble). Vertical lines: 12 (Fixed). Verticol sweep output: 60 Cycles. Horizontol sweep output: 15,750 Cysles.

IV Bar Generotor comes complete with shielded leads and detailed operating instructions. Only

THROWS AN ACTUAL BAR PATTERN ON ANY TV RECEIVER SCREEN!

Two Simple Steps:

1. Connest Bor Generotor to Antenna Post of ony TV Receiver.
2. Plug Line Cord into A.C. Outlet and Throw Switch.

RESULT: A stoble never-shiffing vertical or horizontol pattern projected on the screen of the iv receiver under

SUPERIOR INSTRUMENTS CO

Dept. HB-53 * 227 FULTON STREET \quad NEW YORK 7, N. Y.
PLEASE PLACE YOUR ORDER WITH YOUR REGULAR RADIO PARTS JOBBER. IF YOUR JOBBER DOES NOT HANDLE OUR LINE PLEASE SEND YOUR ORDER DIRECT TO US

The World's Finest Equipment!

Complete Dependable Service...

* HAM GEAR and Supplies.
* HAM GOUNSEL. Bob Gunderson, W2JIO, and other hams on our staff will be happy to help you with your problems.
* SOUND STUDIOS. See! Hear! Compare! The world's finest High-Fidelity and Audio Equipment.

Visit our High-Fidelity and P.A. Sound Studios when in New York! thems.

the GREAT MEW 1953

HUDSOU catalog

Everything in Electronics at your fingertips in this greatest of all Hudson Gatalogs. INCLUDES the latest JAN CROSS-REFERENCE GUIDE and fully approved Jan COMPONENTS. Over 192 pages of the latest and largest selection of Radio, IV and Industrial Electronic Equipment, Ham Gear, Tubes, Test Instruments, Recording and High Fidelity Audio and Sound Equipment. Complete Lines! Wide Selection! Save Time and Money with this complete buying guide. Send for your FREE copy!

RADIO \& TELEVISION CORP.
t SUPER-MARKET. Serve Yourself and Save! Thousands of Bargains in Standard and Surplus Radio, TV and Electronic

* COMPLETE STOCKS of ALL Standard Electronic Equipment.
\rightarrow LOWEST PRICES Prompt Delivery

Complete Stock of RCA Tubes to meet every Industrial, Laboratory and Communications requirement.


```
48 WEST 48th SI. - }212\mathrm{ FULTON SI.
New York 36, N. Y.
New York 7, N. Y.
Clircle 6-4060
```

166

HUDSON RADIO \& TELEVISION CORP.
 ... Fverything in Electronics for AMATEUR and IIDUSTRY!

Complete Stocks of RCA Tubes, Batteries, Parts, Test Equipment . . . Always On Hand for Prompt Delivery!

NEW! 5" OSCILLOSCOPE WO-88A

 High Gain - Wide Band - Direct Coupled Response flat from dc to 100 Kc ; within - 3 db at 500 Kc ; within - 10 db at 1 Mc . Excellent square wave response with negligible tilt and over-shoot. Vertical deflection sensitivity 25 rms millivolts per inch. Direct-coupled push-pull, two stage vertical amplifier. Frequency compensated, voltage-calibrated attenuators. 5" CR tube with graph screen scaled directly in peak-to-peak voltage. Overall input resistance 10 megohms shunted by 9.5 uuf with WG-216B Low Capacitance Probe. "Plus" and "minus" sync, 1-volt peak-to-peak calibrating voltage.Complete with Matched Probes and Cables Price $\mathbf{\$ 1 5 9 . 5 0}$

Master VoltOhmyst*
Price $\$ 112.50$

WV-97A
Senior VoltOhmyst*
Price $\$ 67.50$

Prompt Shipments to any Part of the World

WV-77A Junior VoltOhmyst*

Price $\$ 47.50$
*T.M. Reg

$$
\underset{\text { New York 36, N. Y. }}{48 \text { WI. }} 2 \underset{\text { New York 7, N. Y. }}{212 \text { FUITON ST. }}
$$

RADIO \& TELEVISION CORP.

168

GONSET FIXED-MOBILE EQUIPMENT

the "Commander"

35-50 watt MULTI-BAND TRANSMITTER

featuring

HIGH "Q" HIGH OUTPUT FINAL

FREQUENCY RANGE: 1.7 to 54 Mc . continuous.
TUBES: R.f.-6A;ㅜ, 6146. A.f.-12AT7, 2-7C5's.
MICROPHONE INPUT: Any standard carloon or p. a. type crystal.
MODULATOR: (lass AB, tetrodes and integral high level speech clipping.
POWER REQUIREMENTS: 300 volts d.c. at $\mathbf{2 0 0 . 2 2 5}$ ma. (phone) and 6.3 volts ac. or I.c. at 3.15 amp . 3.5 watts input on phone, 50 watts on c.w.
 (Completely wired and tested, with all tuhes, and including two high-Q final tank roils which cover $10.11,15,20,10,75$, and 80 meters. Final coils for other frequencies are available mparately.)
 Shipping wt. 4 lbs. price net $\$ 29.95$
"SUPER 6" AMATEUR CONVERTER:
A compact converter covering the amateur 10, 11, 15, 20, 40, and 75 meter phone bands. Also covers the 19 and 49 meter broadeast bands. The suecessor to the famous GONSET "TRI-BAND."

Shipping wt. 4 lbs. price net $\$ 52.50$

POWER SUPPLY:

Heavy duty 6V. D.C. input companion power supply for Commander transnitter complete with control relay. No rectifier tubes used. Mininum drain. Shipping wt. 12 lbs. price net $\$ 69.95$

SIGNAL SLICER:

3.5 ke . nose selectivity. Buitt-in noise clipper. Can be used with almost any auto or fixed radio using 4.5 ke . i.f. Broad-sharp position switch. Adaptable for any converter. Easily installed. Compact, only $6^{\prime \prime}$ wide, $5^{\prime \prime}$ high, $3^{\prime \prime}$ deep.

Shipping wi. 4 lbs. price net $\$ 29.95$

NOISE CLIPPER:

A "must" for every mobile installation operating above 2 or 3 Mc. to reduce ignition interference. Works with all sets using conventional diode detector circuits. Complete with miversal installation instructions, ready to attach.

Shipping wi. 1 lb . price net $\$ 9.25$

Order Now:

To Manufacturers

and Distributors of

Products Used in Nhort - Wave

Radis Commenicution

The Ramo Amateer's IIavobook is the standard reference on the technique of high-frequency radio communication. Now in its thirtietl annual edition, it is used universally by radio engineers and technicians as well as by thousands of amateurs and experimenters. Year after year it has sold more widely, and now the Handbook has an annual distribution greater than any other technical handtook in any field of human activity. 'To manufacturers whose integrity is established and whose products meet the approval of the American Radio Relay League technical staff, and to distributors who sell these products, we offer use of space in the Ilandbook's Catalog Advertising Section. This section is the standard guide for amateur, commereial and govermment huvers of short-wave radio equipment. Particularly valuable as a medium through which complete data on products can be made casily available to the whole radio enginecring and exprimenting field, it offers an incxpensive mothod of producing and distributing a catalog impossible to attain by any other means. We solicit inquiries from qualified manufacturers and distributors.

TOP HAT RETAINERS

 An improved clamp that holds electron tubes, relays, capacitors and pluggable components in position.

EASY TO APPLY...INSTANTLY RELEASED

POSITIVE LOCKING ACTION

POSITIVE-Component even when inverted will not loosen under the most severe shock or vibration. RESILIENT - Positive retention is achieved with minimum rigidity or strain on component. ACCESSIBLE-Clamp fits on top of component and can be tastened or re. leased easily without tools. CORROSION RESISTANT-Hat and Posts are stainless steel. All materials and finishes comply with Armed Forces Specifications. VERSATILE - Top Hat Retainers may be applied to practically any fube or plug-in component.

WRIIE TODAY FOR FREE CATALOG

1523 L Street, N. W.
Washington 5, D.C.

PRECISE MEASUREMENTS COMPANY

942 KINGS HIGHWAY, BROOKLYN 23, N. Y., TEL. ES-5-9435

HIGH VOLTAGE POWER SUPPLIES

A precision, well constructed high valtage supply for television, meter testing and calibrotion, electrostatic painting, breakdown tests, nuclear physics and wherever high potentials of low currents are needed. Output is well filrents are needed. Output is well filtered direct current. Adjustoble by Avoilable with or without meter, Input voltoge is 115 volts, 60 cycles.

Model	Moximum Voltoge	Price
$\mathbf{6 0 0 0}$	2,500	$\$ 40.00$
$6000-A$	With Meter	2,500
6005	5,000	60.00
$6005-A$	With Meter	5,000
6010	10,000	$\mathbf{4 5 . 0 0}$
$6010-A$	With Meter	10,000
6015		15,000
$6015-A$	With Meter	15,000
6025		$\mathbf{7 5 . 0 0}$
$6025-A$	With Meter	25,000

RUBBER CIRCUIT STAMPS

These handy rubber stamps provide cleor sharp impressions of all the most widely used radio and electrical circuit symbols. Not only saves considerable drowing and drotting time but provides a neoter-loaking appearance as well. Available in two popular sizes. Stamps may be purchased separately or in complete sets. When ordering, specify stomp number and size.

SIZE A	CIRCUIT STAMP SET	12 stamps $)$	$\$ 8.50$
SIZE A	Individual Circuit Stomps	each	.85
SIZE B	CIRCUIT STAMP SET	$\{12$ stomps $)$	$\mathbf{8 0 . 0 0}$
SIZE B	Individual Circuit Stamps	eoch	.95

MICRO
CIRCIE
CUTER
Cuts
Metals
Woods
©
Plastics

For quickly cutting those extra large hole sizes. Perfect for making washer.

Model	Shank	Size	Price
9	Round	$10^{\prime \prime}$	$\$ 12.50$
10	Round	$15^{\prime \prime}$	$\mathbf{1 5 . 0 0}$

Extro cutting bits 50c

MICRO CIRCLE CUTTER

Cut holes in all types of metals from stainless steel to magnesium. Perfect for plastics and wood. Expeciolly recommended for cutting meter holes in panels.
panels.
Built-in micrometer type size control for precise settings. Extra heovy construction of the moin beam and body moke it useful for production jobs as well as experimental work. All ore equipped with a $1 / 4^{\prime \prime}$ high speed steel cutting bit.

1 Round Shonk (for drill press or hond drill)
1-A Square Topered (for hand broce)
5 Round Shank
Extra cuttina bit 60c

$\$ 12.50$
15.00

SCALE PRINTING MACHINE

Prints lettering, numbers and divisians on meter scoles, dials, name plates, scoles, dials, name plates,
labels, etc. Perfect lettering is assured by the use ing is assured by the use
af standard printers type. Send far camplete details.

Model 1500

Standard Scale Printing Machine. $\$ 95.00$
Prites do not include printers type.
 toils.
$2^{\prime \prime}$ high $\times 21^{\prime \prime}$ wide. Bose $23{ }^{\prime \prime}$ Mtg. Centers $27 / 3^{\prime \prime}$

INSTRUMENTS BUILT TO SPECIFICATIONS

Precise Measurements company equipment is used by leating industrial concerns, research laboratories, government and serious amateurs everywhere.
Your Local Distributor will be glad to show you our products

ANTENNAS MOUNTS Mater Mare

All the prime requisites of a reliable, long lasting mobile antenna system are incorporated into MASTER MOBILE MOUNTS through scientific engineering, high quality of materials and workmanship...AND THE PRICES ARE RIGHT.

MOIINT SPECIFICATIONS: Packaged and sealed at factory. Ship. wt. Approx. 3 lbs.

COAXIAL CONVERSION KIT
No. 118. Fits all No. 132 and 132J Models...... Net $\$ 1.00$
SEPARATE SPRINGS FOR ANTENNA MONTS
00 Regular, Net $\$ 4.50$ 100X-Heary EXTENSIONS - Model 90, $26^{\prime \prime}$ Net 53.25 Model 92, $18^{\prime \prime}$ Net $\$ 3.25$ Model 94, $36^{\prime \prime}$ Net 5425 AIL BAND MOBILE ANTENNA - Center -loaded antenna comes with one cait-20, 40 or 75 meters. Change coils to any band 80 through 20... For 10 meter operation, short coll in use High Weigh: 28 Shipping less spring mount. Extra coils $-20,40$ or 75 meters: Net $\$ 3.30$
CIVIL AIR PATROL ANTENNA $-2374,3507.5$ or 485 KC . With coil, less mount..... Net $\$ 9.95$ Extra Coils-2374 KC. . Net $\$ 3.60$

- X -Heavy Duty, C-Coaxial Type, S-Stainless Steel.

> IWO METER COAX ANTENNAS

SILICON-CHROME WHIP ANTENNAS -Fits all Master SERIES 9
Stainless steel Overall
00.605
00.72 S
100.78 S
100.865

06-725
06.785

06-865
$06-965 \quad 90$

$$
\begin{aligned}
& \text { - o super i } \\
& \text { of } 140 \text { to }
\end{aligned}
$$

NO. 214-MASTER DE LUXE-a SUperior new, ruggedly-constructed, vertically polarized an jena with frequency range of 140 to 170 MC . Completely waterproofed. Attractive, highly polished chrome finish enhances appearance of any vehicle. Furnished with approx. 10^{\prime} of 72 Ohm Coax Cable. MOUNTING JYPES: Type 1 -on side with 2 brackets furnished-NEI: $\$ 15.95$ Type 2, MASTER MOUNI (Na. $132 \times$ of 140 X). Mounts sold separately. Complete antenna: $\$ 17.45$ Adjustable mounting-adiusts to $17^{\prime \prime}$
NO. 113 - MASTER VHF ROOF TOP ANTENNA - for police, fire, taxi cabs and amateurs using 140 MC to 165 MC . Stainless steel wire with threaded fitting -easily replaced or changed without disturbing mounting. Comes with 10^{\prime} Coax Cable. NET: \$3.96.
NO. IIA-MASTER COAX VHF ANTENNA-for open type vehicles, convertibles, station wagons, fire trucks, taxis and amateurs using 140 MC to 165 MC . Design permits mounting on any convenient place by use of any Master's Standard Mounts. Supplied with $18{ }^{\prime \prime}$ adjustable section and 10^{\prime} of Coax Cable. NEI $\$ 9.95$.

MODEL 138

MODEL 140

MODEL
142

Net Price

Net Price	
$\$ 8.75$	
9.40	ALL BAND
8.75	MOBILE
9.40	ANTENNA
8.75	
9.85	

ANTENNA
8.75
9.85
with 38 " 24 thread studs:
Overall

Model Na. Length Net Price 9.60 T

 $9.721 \quad 60^{\prime \prime} \quad \$ 2.97$ $\begin{array}{llr}9.721 & 72^{\prime \prime} & 3.97 \\ 9.847 & 84^{\prime \prime} & 3.24\end{array}$ $\begin{array}{lll}9.84 & 84^{\prime \prime} & 3.30 \\ 9.86-7 & 86^{\prime \prime} & 3.60\end{array}$ $\begin{array}{lll}9.86-8 & 3.60 \\ 9.961 & 96^{\prime \prime} & 3.75\end{array}$ NEW \& SERIES - without studs: Overall Model No. Length Net Price8.60 $8.60 \quad 60^{\prime \prime}$ Net Price
$\mathbf{\$ 2 . 8 2}$
3.08
3.13
3.42 3.55

HERES HOW TO SQUEERE TME MOST OUT OF EVERY TEST EQUIPMENT DOLLARI BUY famous EIFD Instrument KITS

at Federated

You build them in 1 evening-they last a lifetime! And you save over 50\%
EICO gives you Laboratory Precision at Lowest Cost

GFM
214K VTVM KIT $\$ 34.95$
WIRED \$54.95
71/2" METER

221K VTVM KIT $\$ 25.95$ WIRED \$49.95

the complete EICO line of 24 MATCHED INSTRUMENTS
NOW IN STOCK and KITS—available at all of our 5 great stores. See the EICO ad on Page 149 of this Handbook.

 9.3050 Prinity 1781 (Col. Easion, Fenno. Allentown 3-7441 Allentown 3-7441 Market 3-903s

174

International

 RECTIFIER CORPORATION
Selenam

 l SEGUNDOHI-VOLTAGE SELENIUM RECTIFIERS
Phenolic Cartridge Type

Type P

Type F三-~․․

Type S
DIAMETER: From $1 / s^{\prime \prime}$ to $1^{\prime \prime}$ LENGTH: From $1 / 2^{\prime \prime}$ to $12^{\prime \prime}$ CURRENT, half-wave: 1.5 ma to 60 ma VOLTAGE, DC output: 20 volts to 10,000 volts Send for Bulletin H-1

SELENIUM DIODES

DIAMETER: From $1 / 8^{\prime \prime}$ to $13 / 32^{*}$
LENGTH: From $1 / 4$ " to $1 / 2 "$
RMS applied voltare: From 26
volts to 104 volts
RMS input current: max. 500
microamperes
DC output voltage: From 20 volts to wo volts
DC output current: avg. from 200 Reverse Leakaze at 10 uls Reverse Leskage at 10 volts RMS: 0.6 microsmperes to 2.4 microamperes
Potted in ther mosettink compound Temperature Range: From $-60^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Available in 1,2,3 and 4 cell Diodes

Actual Size

Send for Bulletin SD-1

HERMETICALLY SEALED RECTIFERS	POWER RECTIFIERS
DIAMETER: From $3 / 16^{\prime \prime}$ to $1-1 / 4^{\prime \prime}$. LENGTH : From 9/16" to $10^{\prime \prime}$ CURRENT, half-wave: 1.5 ma to 60 ma VOLTAGE, DC output: From 20 volts to 4,000 volts. Write for Engineering Data	 CELL SIZES: F'rom $1^{\prime \prime} \times 1^{\prime \prime}$ to $61 / 4^{\prime \prime} \times 71 / 2$ CURRENT RATINGS, per cell: 0.125 amperes to 7 amperes VOLTAGE RATINGS. in. verse per cell: 22 volts rms to 40 volts rms titticieney to 87% Puwer factor 95\% Suitable for oil immersion. Hatings to 250 KW Send for Bulletin C. 349

(SHOTO-ELECTRIC CELLS - SELF-GENERATING TYPE

[^16] shows you exactly how Noctur in each ection of the Tviroy occur in each section pot wher for corrocting oach.
to correct if.
ceiver. Detailed, illustrated trouble-shooting procedures tell you just what to do. Brief, clear reviews of the principles involved and full instruction on the use of test equipment, with oscilloscope patterns for checking test results, help you to be SURE that the adjustments you make will achieve the desired results.

You won't have to thumb through batches of manufacturers' notes, never sure that of manufacturers
you have the right directions for the latest improvements. Here is all the information and the detailed how-to-do-it instruction you want in order to KNOW exactly how to get the RIGHT results, with many ex. pert suggestions for improving overall performance. $\$ 5.50$

- Full explanation of unusual hard-to-find troubles, where they occur, how to overcome them.
- Ways of improving overall performance, improve gain, reduce ghost reception, minimize inferference.
- Special servicing instruction for color TV; for VHF and UHF receivers; the latest circuils and innovotions.
- Large, clear schematics of commercial circuits for all basic parts of the TV receiver.
- New, original pholographe showing trouble symptoms as they appear on the TV screen for auick identification.

Jor the Right answer to your problem, turn to

Television for Radiomen

by Edward M. Noll

'By the time you are through with this book you'll have a GOOD foundation in TV," writes a radio and TV engineer. "You'll discover that the author has treated a much writenabout subject in a refreshingly original manner," Written by a man nationally known for his many helpful articles on TV operation and servicing, this book explains VERY fully and clearly the construction, function, and operating principles of EVERY circuit and element in TV reception, the principles of transmission. and the techniques of installing. aligning. and adjusting today's TV receivers. From this book you'll find it easy to acquire the fundamental knowledge you MUST have to qualify for the many good jobs now waiting for you in television.
$\$ 7.75$

Radio and Television Mathematics

by Bernhard Fischer

"By far the best book for preparation for FCC exams," writes one radioman, echoing the opinion of countless others. "A book for the place of honor beside its natural partner, the slide rule," says Radio-Elecrronics. Here are step-by-step solutions not only for every question requiring mathematics in the FCC study guide, but also for hundreds of other circuit problems in radio. TV, and industrial electronics. You"ll find, conveniently arranged under radio copics such as antenna power, plate-to-plate voltage and 400 others, the formulas to use, the numerical values to substitute, and the step-by-step solutions to 721 problems. Whatever YOUR problem, whether it is how to correct the power factor of a motor, convert polar to i -notation in a matter of seconds. find the impedance and length of a matching stub between a TV antenna and its, transmission line, or any of hundreds of other problems you're apt to encounter, here is the clear and exact solution. $\$ 6.75$

Television \& FM Antenna Guide

by E. M. Noll and M. Mandl

A basic course on antenna theory combined with a complete handbook on all types of antennas, including all commercial models, high-gain antennas for fringe areas, antennas for special locations and for the proposed UHF allocations. Shows you exactly how to determine, quickly and accurately, the best type of antenna for the site and the best position for it; how to minimize standing waves, noise, etc. on the transmission line: how to overcome special kinds of interference, and all other techniques for getting the most out of the ancenna system. Based on extensive testing done by the authors, all information on antenna characteristics, dimensions, and comparative performance is complecely accurate and reliable.
$\$ 6.25$

Introduction to Practical Radio

by D. J. Tucker

One of the best "fundamentals" book ever published, widely praised by authorities. "The chapter on Kirchhoff's laws is a model." writes the reviewer in Electronics. "Also goes further into the use of vectors for solving a-c cifcuit problems-a must for today's radio technicians."
$\$ 5.00$

See them at your bookstore or wrise for on-approtal copies from

The Macmillan Co. 60 FIFTH AVENUE NEW YORK 11 CHICAGO 16 DALLAS 1

POPULAR WITH HAMS BECAUSE THEY'RE ...

ugged	Exceptionally high ratio, torque to weight, for fast pointer response. Sturdy construction throughour. Molded inner unit with coil frames and insulators integral for maximunn rigidity.
Good Looking	Dials are metal so they stay attractive in spite of ape and moisture. Metal cases throughout with rich telephone black finish. Concealed coils and good, readable scales.
Well Designe	AC meters are double-vane repulsion type using hair and jeweled bearing. Most DC meters are polarizedvane solenoid type. High internal resistance voltmeter available in popular ranges. Accuracy well within 5%.
Guaranteed	For one year from date of purchase against defective workmanship and material, and will be repaired or replaced if sent to the factory postpaid with 40c handling charge.

Priced Right.
For instance, the meters pictured above are priced at

> Model 950, 0-100 DC. Ma.............................. $\$ 1.60$
> Model 650, 0-10 DC: Amps.............................. 1.55
> Model 550, 0-150 AC Volts........................... 3.30

Other meters are correspondingly reasonable in price. You get the benefit of low costs made possible by large quantity production.
A Complete Line All of these features are availabe in 323 ranges and upes; AC, DC, Volmeters, Ammeters, Milliammeters, Resistance Meters. For instance, DC Milliamoneters are made in 65 types and ranges. The newest meter is a 0-3 DC Millianmeter with 500 ohms internal resistance and built-in zero adjustor with ten times the sensitivity of previous (0-3 DC Milliammeters.
Atailable Stocked by leading electronic dissributors in a wide variety of types and ranges. In spite of stepped-up Shurite production, some meters may occasionally be out of stock. Authorized distributors will be the first to get stock replacements.

THEY'RE TODAY'S BEST VALUE

Ask for Catalog Sheet F-56(SII), latest revision

Shurite
 thede mank

SHURITE METERS • 87 Hamilton Street, New Haven 8, Conn.

Flybacks: Universal replacement with complete installation data.
Exact replacement for the "big 10 " *where necessary.
*RCA-Zenith-Motorola-Admiral-etc.
Transformers: Complete coverage of the replacement market.

IF-RF Coils: A complete line constantly expanding to meet current and future needs.

Merit Replacement Data: \#405 TV "Repl" Guide-\#3 Auto Radio replacement guide-\#10 comparative transformer part nos. - \#14 comparative coil part nos.

- Listed in John Rider's Tek-File and Howard Sams' Counter Facts and Photo Facts-Tape Marked* to help you.
*originated by Merit
Merit Coil and Transformer Corp.

largest producer of TEST LEADS and PROBES!

INSULINE manufactures over 2000 items for the radio, automotive, electronic, aircraft, television and marine industries. For over 30 years, INSULINE has been the leading producer of test leads and probes (standard and special types) . . outselling the combined production of the next three leaders

Whether it be test leads, probes, tools, metal goods or antennas, insist on INSULINE . . .
a respected name since 1921.

Write Dept. HB-53 for latest catalog illustrating and describing one of the largest selections of electronic equipment made by one manufacturer.

You will find a plug, jack or connector for your specific need in our latest catalog. INSULINE products are sold through radio and electronic jobbers throughout the United States and Canada.

insuline

CORPORATION OF AMERICA
insuline building - 36-02 35th avenue - long island city, N. Y. West Coost Branch and Warehauge:
1335 Sauth Flower Straet, Los Angoles, Colif.
Exclusive Conodion Soles Agents: CANADIAN MARCONI COMPANY, Torante

179

\#tawen-weris BANDMASTER \& ACCESSORIES

ENGINEERED SPECIFICALLY FOR THE VERSATILE HAM

40 to 50 Watts - 8 Bands - Phone or CW NO PLUG-IN COILS

THE MEW BANDMASTER V F 0

Designed specifically for the Harvey-Wells Bandmaster, but may be used with all types of transmitters. Extremely stable - both electrically and mechanically - rugged tests produce no loss of power or frequency shift even on 28 mc . Slanted, illuminated dial face provides ease of operation and full visibility. Cabinet styled specifically to save valuable space in the shack. Your Bandmaster and VFO become an integral unit. 300 ohm output plugs into crystal socket. The Bandmaster VFO has been designed to meet the flexible requirements of today's versatile amateur. Six bands each directly calibrated on the oversize slide rule dial - provides 30.35 volls R.F. output over entire frequency range, measured across the 6AQ5 in the transmitter oscillator - Plate and heater voltages are obtained from the terminal strip on the transmitter. Power requirements are 6.3 v @ 0.65 amps . and 300 v @ 30 ma. Highly stable clap type oscillator eircuit uses $6 A Q 1$ and OB2 voltage regulator.

Delivers 425 v. at 275 . ma. and 6.3 v. at 4 amps. May be mounted on rack panel. For 110 Volt A.C. 50-60 cycles
\$39.50
T/MNOM-mELES ELECTRONICS, INC.
SOUTHBRIDGE, MASS.
Export Dept. 13 East 40th Street. N.Y.
CANADIAN DISTRIBUTOR: Canadian Marconi Co. 861 Bay St., Toronto, Onlario

Page	page
Buck－E゙．H，V．．．．．．．．．．．．．．．．．．．．．．．．．．．． 26	Catherde－IRay Ostilloscopes ．．．．．．．．．．．． 484 －488
Back－Wave ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2331	Cavity lesonators．．．．．．．．．．．．．．．．．．．． 424 －426
Batlle Shiolds．．．．．．．．．．．．．．．．．．．．．．．．．．．50	Cell ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 16
Batanced Cireuit ．．．．．．．．．．．．．．．．．．．．．．．j0	Center－led Antenna ．．．．．．．．．．．．．．．．．． $3344-337$
Balamerd Modulator ．．．．．．．．．．．．．．．．． 29.3 －20．4	Center－Tap，Filament ．．．．．．．．．．．．．．．．．．． 64
Balun．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 414	Center－Tap loull－Wiave Rectifier ．．．．．．．． 208000
Band－Changing，Reroivers．．．．．．．．．．．．．．．．s．	Center－「ap Keving ．．．．．．．．．．．．．．．．．．． 3 32－233
Batndyass liilters ．．．．．．．．．．．．．．．．．．．．．．． 543	Center－Tup Modulation ．．．．．．．．．．．．．．27i－27x
B：nds，Amatteur ．．．．．．．．．．．．．．．．．．．．．． 14	Chanmel ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $\mathbf{2 6 6 5}$
Bundspreading ．．．．．．．．．．．．．．．．．．．．．．．．82－8．3	Characteristic Curves ．．．．．．．．．．．．．．．．．．． 5 －t－55
Bandwidth ．．．．．．．．．．．．．．．．．．．．．．． 77	Characteristic Impedance ．．．．．．．．．307，31：3－－314
Bandwidth，Antennat ．．．．．．．．．．．．．．．．．．． 331	Characteristies，Crystals ．．．．．．．．．．．．．．．． 131
Busie Rudio l＇ropagation l＇redictions ．．．．．．．．363	Characteristics，Dynamic ．．．．．．．．．．．．．．．． 55
Battery ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 16	Chararteristics of Amateur Bands ．．．．．．．．70， 361
Batanokit ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 384	Characteristios of Radio Waves．．．．．．．．．． 0 （0－72
13CI．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 4 97－501	Charges，Filectrical ．．．．．．．．．．．．．．．．．．．．．15， 16
Beam Antemans ．．．．．．．．．．．．．3：37－3：38，34：3－351	Chassis Layout ．．．．．．．．．．．．．．．．．．．．．515－516
Beam Tetrodes ．．．．．．．．．．．．．．．．．．．．．．．．． 63	Chirp，Keving ．．．．．．．．．．．．．．．．．133－134，231
Beat Frentuencies ．．．．．．．．．．．．．．．．．．．．．．．． 51	Choke：
Beat Note ．．．．．．．．．．．．．．．．．．．．．．．．．．． 76	Coil ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．26，21：3
Beat Oseiltator ．．．．．．．．．．．．．．．．．．．．．．． 90	Filter ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $21: 3$
Bending，Tropospheric ．．．．．．．．．．．．． $72-75,364$	Radio－Frequency ．．．．．．．．．．．．．．．．．．． 48.153
Lent Antennas ．．．．．．．．．．．．．．．． 3339 ，340－．341	Swinging ．．．．．．．．．．．．．．．．．．．．．．．． 214
Вias．．．．．．．．．．．．．．．．．．． 50 （i－57，1：39－140，235， 258	Choke－Coupled Morlulation ．．．．．．．．．．．． $271-272$
Bias，（athorle ．．．．．．．．．．．．．．．．．．．．．．．．． 65	Choke－Input Filter ．．．．．．．．．．．．．．．．．． 213 －215
Bias Modulation ．．．．．．．．．．．．．．．．．．．．272－274	Circuit Tracking ．．．．．．．．．．．．．．．．．．．．．．8\％3， 98
13iss supplies．．．．．．．．．．．．．．．． 2 20－222	Clapp Ospillator ．．．．．．．．．．．．．．．．．．．．．．．．．1333
＂Birdies＂．．．．．．．．．．．．．．．．．．．．．．．．．st，103	Chass A Amplifiers ．．．．．．．．．．．．．．．．．．．．．． 5 ．
131anketins ．．．．．．．．．．．．．．．．．．．．．．．．．．． 4199	Chass A 13 Amplifiers．．．．．．．．．．．．．．．．．．．．． 60
	Clisss 13 Amplifiers ．．．．．．．．．．．．．．．．．．．．． 59 －60
Blorked－Grid hevius ．．．．．．．．．．．．．．．．．．232	（＇atss 13 Modulators ．．．．．．．．．．．．．．．．． 255 －262
13lorkium Condenser ．．．．．．．．．．．．．．．．．． 48	（latss C Amplitiers ．．．．．．．．．．．．．．．．．．．．．． 60
Body Catparity ．．．．．．．．．．．．．．．．．．．．sl	（ licks，Kexing ．．．．．．．．．．．．．．．．．．．．231，233－235
Bromis，Rotary Beamm ．．．．．．．．．．．．．．．．35tj－3t50	（＇lipping，speech ．．．．．．．．．．．．．．．．．．．． 2475 －251
I3rass Pounders Leaghe ．．．．．．．．．．．．．．． 53.35	Clipping－l＇itter Circuit ．．．．．．．．．．．．．．．． 241 －251
13reakdown Voltage ．．．．．．．．．．．．． 25	
13ridge leretifiers ．．．．．．．．．． 309	Coaxial Antennas．．．．．．．．．．．．．．．．．．．． 419
13ridge－Typestanding－W：are Indieators ．．179－ 1×3	Conxial－Elertrode Tubes ．．．．．．．．．．．．．．．．． 380
13roudhand Antemmas．．．．．．．．．．．．．．．120）	Conxial－Line Cirenit．．．．．．．．．．．．．．．．． 421 422
Broadmaxt Interferencr，lidimination of ．．．4ta－is）	Coaxial Plag Commertions．．．．．．．．．．．．．5lx 519
Broadside Arrays．．．．．．．．．．34：3，345	Coaxial－Line Matchingr Section ．．．．．．．．．．． 349
	Conxial Transmission Limes．．．．．．．．．．． 312 ， 314
	Code（Continental）and Cohb Prabtie ．．．．1：3－1．4
＂Buncher＂．．．．．．．．．．．． 127	Code Proficiency Certiticate ．．．．．．．．．． 5 ．3．t
	（irelfi－ient of（ioupling ．．．．．．．．．．．．．．．．29， 4 4
Button，Miorophone	Coefficient，「emperature ．．．．．．．．．．．．．．．．${ }^{\text {a }}$
Buzzer（ode－Pratetire Set ．．．．．．．．．．．．．．． 14	Coil（see＂Indurtame＂）
135－Pass Condernser ．．．．．．．．．．．．．4！，1．5：3	Cold－（athode Rectifiers ．．．．．．．．．．．．．．．．． 209
	Collinear Arrays ．．．．．．．．．．．．．．343－344
	Color Codes，K「MA ．．．．．．．．．．．．．．．52．）－521
（ $/ R$ and $L / / R$ Time Constants．．．．．．．． $29-31,541$	
	（ombination Arrass ．．．．．．．．．．．．．．．．．． 3 30）
Cimadian Director ．．．．．．．．．．．．．．．．．．．．．．12	Compatet Antennas ．．．．．．．．．．．．．．．．．．333！，340）
Capacitance and Commensers ．．．．．．．．．．．．． $2: 3-2 \mathrm{za}$	Complex Waves．．．．．．．．．．．．．．．．．．．．．17， 37
Cuparitance：	Commonent Values ．．．．．．．．．．．．．．．．．．． 519
Distributerl ．．．．．．．．．．．．．．．．．．．．．．4t	Compression，speech Amplifier ．．．．．．．．．246－247
Ferel－13atk ．．．．．．．．．．．．．．．．．．．．．62	Concentrio－Line Matching Vection．．．．．．．．．3 34，
Inductance，and Frequeney Charts ． $344,545,546$	Concentria Transmission Line ．．．．．．．．．．．．． 311
1uterdectrode．．．．．．．．．．．．．．．．．．．61，62，145）	Condenser ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 233
Mexsurement ．．．．．．．．．．．．．．．．．．．．．．．．． 477	
Sperific Inductive ．．．．．．．．．．．．．．．．．．．．	Condenscrs：
Tute Input ．．．．．．．．．．．．．．．．．．．．．．． 61 －62	Bandspread．．．．．．．．．．．．．．．．．．．．．．．．．．．x2
＇Tube Outiput ．．．．．．．．．．．．．．．．．．．．．．．（j＇3	Buffer ．．．．．．．．．．．．．．．．．．．．．．．．．． 227 －228
Caparitanco－l Resistance＇lime Constant ．．．．．． 29	13x－Pass ．．．．．．．．．．．．．．．．．．．．．．．．．．．49，153
Caphacitive Coupling ．．．．．．．．．．45，143， 20×-509	Ceramic ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 520
Heatranse ．．．．．．．．．．．．．．．．．．．．．．．．3：3i3	Eleatrolstic．．．．．．．．．．．．．．．．．．．．．．．．．．． 25
Catron Microphone ．．．．．．．．．．．．．．．．．．．． 241	Filter ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $212-215$
Ciarrier ．．．．．．．．．．．．．．．．．．．．．．．．．．． 51 ，2tif	Fixerd ．．．．．．．．．．．．．．．．．．．．．．24－25，505，520
（arrier Suppression ．．．．．．．．．．．．．．．．．．． $2933-204$	Mitin－Tıning ．．．．．．．．．．．．．．．．．．．．．．．．82
Castade Amplifiers ．．．．．．．．．．．．．．．．．．．．． 58	Neutralizing ．．．．．．．．．．．．．．．．．．．．．．．．．1－4i）
Cascorte IR．F，Anplifier ．．．．．．．．．．．．．．．．．36ts	Padding ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．8：3
＂（＇atcher＂．．．．．．．．．．．．．．．．．．．．．．．． 427 －428	Trimmer．．．．．．．．．．．．．．．．．．．．．．．．．．xi3
Cithorle ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．52－5；3	Variable ．．．．．．．．．．．．．．．．．．．．．．．．．．．． $24-2.85$
Cathorde－bias Calaulation ．．．．．．．．．．．．．．．． 65	

	,	P. Page:
nuble superta	S 1	Fading
1)rift, lirequences if	-1is. 1:32, 1:34	Farad . 24
1)rift space	42742 x	Faradixy ihiod . 124
1)rill sizes (Table)	615	Feed, surios and Pamallel. 4 ¢ 49
Driven-Elemont Directive Antennas	3.4:3	Freed-13ark. diotil, 96-97, 261-262
1)river	5!1, 12!	Feeders and Feed sistems. . . .3117 389, 3:34-3336
Priver I'owar	1:A 1:39, 241	
1)rivers for (lans 13 domatator-	25^{27}	
		Foeding Long-Wire datemats. 3 \%
Dummy Autemat		Fidelity 77. ss, 2.41
Dupdex-1 ioder Trioders and Pentode.	fif	l-ield Dirertion 5
$1) \mathrm{CO}$	-333-334	Field, Electromagnetic .
1)ynamic:		liedd, Elertrostatic . 15
Charameristu's	5is	licld lntensity . 10.5 , $3: 30$
lusitability	678	Field, Mametostatic
Microphones	241	lield streugth . 3330
D y mamotors	$\underline{21}$	lield-strongth Meter. 478 479
Dynatron Orillator	154 409, 428	Irilament .jx - - . 3
E. (Voltage)	17	Filament ('buter-Tap, if.t fī̃
E Latyer	73	Filament Hum . $64-650$
F..M.F., Back	24	Fïlament supply . 216
E.M.M., Indured	21	Filament Voltage 1 .
Eduly Curren	2x. 40	
D:ffretive Current Vahue	17	
E:ficieney.	20.3	Filter Resonance . 215
Amplifier	1:38-1:39	Hilters.
Conversion	84	High-Prass .il:3, j4:3
Trimsformer	3n, 39	keving .2.33-2 3
Flertric Current	16	Linu . 500
Filerarimal (harge	1\%	
Elortrical Latws and Circuits	15-51	Power-supply .211-215
	5	R.1. $233383-235$
1:lertrontic (imdensers	25	Filtering, surerh .247-248
1:lereromagnetir:		Finishing Alumiaum . ont $^{\text {a }}$
Deflection.	1×4	First Intertor.............. 8 \% 3
Fietd.		Fixed Comdenser . $24-25$
Winer	15, 17	Flat Limes . 31 ± 3
Elertrmative Foree (E.M.F.)	16	Flux Density, Masneticis, $2 \times$ x 29
Liderema-(oupled ()arilatur	1:3, 1:3:'	Flux, Lextkiko . 39
E:Jereron:		Flux Limes . 15
Gun.	4×4	Fly-Batck . 4xi)
Lens	485	Forusing Vilertrode 4×5
Transit Time	(26) 127	Folded I ipole 31, 319, 33:4-335, 34, 31.3
1:dertronic:		Force, Vlectromotive. 16
Conduction		Force, Lines of . 15
Kırs.	$23: 9$	Form, Message . 5 ,
Swithing.	6if	Free-spare Pattern . 3 3:3:3
Voltage Regulation	21×2	Frequener. 16
Efertrons		Frequency Measurement :
1:Inemenstatic:		
(cmp) ${ }^{\text {ang }}$	45.45	
J efleretion		Heterodyme Fremueney Metors. 4 is - 46 it
Fiold.		Interpolation-Type Frequency Mroter . . . 467 -46x
shicld.	124, 515	Leeher Wires.......... 464
Waves	7172	WWV sicherdules. 466 fi
loloment sparing, Antennat	34:3	
Didments, Antenna	34:3	Constructional
Whments, Varmum Tube	52	Narrow-Band Reactanc-Modalator Conit 290
Emergency (ommuniration	.520-531	Deviation Ratio. $2 \times$ et
	5:311	Diseriminator . 101
	531	Index . 2 est
Fimerseney Power suphe	226-30	Methods. 2ns $^{\text {d }}$
Smisuion:		On V.II.F. 3 38
Piderirom.	52	Principles. .
Sieremdars	(i2	Reartane Momblator 288 -289
Thermionic		Rereption . 101
Eind Effert.	$33:$	Tramsmittor Chorking 291-292
End-Fire Array-	:3:3, : $: 114-344$	Frequeney-Wavelongh Conversion is
1:1mers.	22	Fromt-tn-Back Ratio..................... 3330
Pxatiation	1:3 1:49	Full-Wave Jridme Reetifiers. 209
Pariter ("nit- (ser "Prammitters")		Full-Wave Conter-Tay Rectifiers. 20x 200
N:xriting Voltar		Fusing . 4 . ${ }^{\text {a }}$
	346	
FW (sere "Frernemer Modulation")		"(iamma" Matteh 319 - $3: 30,349$
1 -Lamer	.73, 36:	Gauged Tuning. 8 8
Padeothts, Radio.		Gatseous Regulator Tubes. 218

	didit
Current	458459
Field Strength	478478
Frequency	462474
Inductance	476
Modutation	263-265, 279
Output l'ower.	152
Phase	
Power.	476
Resistance	459-461, 478
standing-Wave latio	479 - 4×4
Voltare.	457-4is
Measuring Instruments.	457
Ledium of Propagation.	71
Iedium- μ Tubes.	
Megaevele.	
Megatrons	427
Megohm	20
lereury-Viapor Rectifiers	66, 210
Iessake Form	58
Message Itandling	527-5\%9
Meteor Trails.	75, 364
Metering	14-152
Meters, Volt-Ohm-Milliampere	460-461
Ieter switching	149-152
Mho	19
Iieroampere.	20
Microfarad and Mieromicrofarad	24
Microhenry	27
Micromho.	55
licrophones	240
Microvolt	20
Microwaves (see also "Ultra-lligh cies")	requen- 421
Milliammeters.	53, 45×-459
Milliampere.	17
Millihenry	27
Millivolt.	
Milliwatt	2
Misrellaneous 1 mata	5: $56-544$
Mixers.	8:3-4, ,367
Mobile Antemats	452-456
Mobile Leguipment.	4333-456
Mobile Power Supply	45
Mohile Rercivers	436-444
Mobile Tramsmitters	445-452
Modes of Propagation.	429-425
Modulation, Heterodyning and Beats	50) 51
Dodulation:	
Amplitude Modulation	51, 246
Capability	269
Cathode Modulation	$207-278$
Charartoristio	269
Cheeking AM 'Phone Operation	26:3-265
Choke-(\%upled Modulation.	271-272
Controlled-Carriersistems.	276
$1)$ epth.	266-267, 286
Drixing Power	260
Envelope	267
Frequencs Moxtulation	2855, 388
Grid-Mias Modulation.	27-974, 2×3
Heising Modulation	.272-273
Imperlance.	270
Index	28s
Linearity	
Methods.	2690-270
Monitoring.	284.4×8.48
Narrow-Band l'reguency	2xt
Perrentage of	2660-27
Phase Modulation	2×6
Plate Modulation	$270-272$
Plate Supply	209, 269, 2x2
Power.	
Surcen-(irid Amplifiers	274-276
Suppressor-(irid Modulation	276-277
Test Emmipment	263-20.3, 279
Velorits Modulation	42742 x

- Miat:	1.abr
Power . 22 23	Radiotelegraph Opmratiur Promedure522 523
Power Amplification sa - 60	Radiotelephone Operating Procedure 524.525
Power-Amplification Ratio bs $^{\text {d }}$	Radiotelephony:
Power factor. 37	Adjustment* and Testing $2603-2650.279$
Power Giain, Antenhat 33610,3367	
Power Lnput . 33	
Power Measurement20 -3.376	
Power Ontput is, 15iz	Cherking FM and PM Transmitters. . . . 2911 29\%
Power, Reartive. 31	Constructional:
Power, Reflerted. 3018	20-Watt Surech Lmplitior Modulator 25\%-253
Power sensitivity is	f0- $\mathrm{W}_{\text {ialt }}$ Medutator
Power-Supply Construction Datat 225529	(6Lif Modulators for Low-powered Trans-
Pruar Mumbios:	mitters
A.C.-1).('. Converters. 297	Clipmer-Filter simeeh Amplitier 249251
	Pusti-Pull sor Mondutator and sipeeh
Combination A.C.-Storame Bathers sumples 2230	. Amplifier . 255 . 2.56
Constructional (foe (hapters five amd Six)	Screern Modulator ${ }^{\text {a }}$ 25
Dry Batteries. 2 est	Crystal-Fittersis bxater 30208304
1)ymamotors . 223	High-Power Mendulators. 257
Emergency Power supply 23i - 230	Narrow-Band Reactance-Modulator Unit 290
Filament Supply 216	Phasing-Trye sibl Exeiter 2997 -301
Gienemotors. 3.30	Driver stakes. .259 -262
Heary-buty Regulated Power Suphy 219	Measurements $2633-265$, 270
Noise Limimation220, 230	Microphones. 210
Plate Supply . 25:3, 269	Mondulation . 2 2fi
Principhos. .	Monitors.
	Oup ${ }^{\text {Oft Limiting. } 247}$
Vibrators .	Overmodulation Indicators.
Vibrator supplies. 227 -230	Principles . 2 26i
Preamplifier, Rereiver 98 - 90	Rereption . 100
Prediction Charts. .	Resistame- (oupled speedh-implifier Data. . 24 \%
Preferred Salues, Compment	
Prefixes . 3.38 - 530	Speerch Amplifiers. 2.41
Preselertars	Volume Compression 24i-24
Primary (coil .	Radio Waves, (harameristics of . . . $70-72,3622-365$
	Ras Chewers Club. 5.34
Procedure, Voise 521525	Ramae. V.11.F. 3 . 315
Propakation, lonospheric $72-7$-7, 362 -36,3	Ratio, Image .
Propar:ation Modes. 424 . 42 \%	Ratio, Imperdance . 344 40
Proparation Pratterns $333: 3$-3:3\%	Ratio, Turns................................ . 3 . ${ }_{\text {c }}$
Proparation Phenomena 36 ; 36 ; 3 \%	Ratio, Power-Amplifiation.
Propagation, V.H.F.	Ratio, Tramsformer . ${ }^{2} 5$
Protective Bi:ts. 1330 140	Ratio, Voltage-Amplification. 56
	Ratio, I/ / ${ }^{\text {a }}$.
Public service . 11 -11	Reatance, (apacitive 3 - -3.3
Pulleys, Antenna 3i8.	Reactance, Inductive. $3: 3$-3:
"Pulling" .st- $\mathbf{* 2}$, s4	Reatature, Leakage . 3 . 39
	Roactance. Linear . 317
Piuncture Voltare . 23.2 .5	Reactanee, Modulator 2 ess
Push-P'ull Amplifier 5 - 59.14 s	Reartare, Transmission-Line 3us
Push-Pull Multiphier 149	Reative Power . 3 it
Push-Push Multiplier . 14!	
Push-to-talk . 4 tht	Retrsund. 364
(2, 41-4x, 83, 95, 135-13x, 142, 273, 349, 424;	Receiver sorvicing102 103
	Receivers, hligh-Frequenry: (seealso "Y.h.F.")
"(2) Antenna . 414 415	Antenmas for . 350 ()-351
(). Lended ('irruits. 4 3-14	Construetional:
"(2"-Sertion Transformer 317.414 - 415	1-Tube Cowwerter for 10 and 11 Meters. 119-120
(2 Siguals .5.37	1-Tate Remenerative Rereiver 10t 106
	All-Purpose super-sidective L.F. Amplitie:
Quarter-Wave Transformer 317	125 128
Quench Frequencr . 3 is	Antuna Compling Vnit for Receiving. . . . 117
If (Resistamee) . $1 \mathrm{~s}-2 \times 2$	Bandswitching Preselertor for 14to 30
	Me. 115 116
R.F.................................... 17	Clipper/Filter for C.W. or 'Phone 112 -113
R.M.s. Ciurrent Value 17	Crystal-Controlled (onverters for 14, 2.1
RSTM Sestem . 537	and $2 \times$ Mr.121-124
	Receiver Matching to Tuned Lines. $11 \times$
1radiation Angle 7 -3, 3:30, 3:31	"sidertopert"....................... 114
Rathation ('haracteristios................... 334	Two-Band Four-Tube superhet 107-111
	Rereption NFM. FMand PM............. 101
Radiation Patterns......................333:3, 3:37	Recoption, single-sidebrand. $101-102$
Madiation Resistance333:3, 3:37	Reptification. 53 -54
Radio Amateur Civil Emergency servire 5.31	Rertitied . A.C. 5 .3
Itadio Prequency . 17	Heptifiers. 66, 209-210, 548

	lage		ge
Rectifiers, Grid-Control		Selective Fuding.	
Rectifiers, Mereury-\apor	66, 210	Solectivity	$46-47,76$
Rectifiers, sencmiam 2	10, 222-223, 54 5	Seleetivity Control	95
Retheoted Impedance	35	Selectivity, Receiver	9-98
Reflected Wisers	3115, $363: 3685$	seldenium Rectifiers.	0, 222-223, 548
Redection of Radio Waves	71, 72, 36:3-365	Self-Rias	139-140
Reflection from Meteor Prails	36.4	Self-Controlled Oscillators.	129
Reflection, (iround	72,331	Self-Inductance	
Reblector, Antemba	$3 \cdot 17$	self-Oscillation	66-67, $66-97$
Rethex kiystrons	28	Self-(2uenching	368
Refraction of Radi	72,365	Sending	3
Regeneration	60, 61,99	Sensitivits, Recerver	
Regonerative Deter	$810-82$	Series Antemat Tuning	3
Regrenerative I.F.	93-45	Sories Capacitances	\%
Regenerative R.F. Stage, Remeiver.	9	Series Circuits	25-26, 28
Regutation, Voltage	211,212	Series Feed	49
Hegutations, Amateur	1:3-14	Series Inductances.	
Requlator Tubes	218	Seriex-Parallel Resistances	1
Regulator, Voltage	219	Series lesistances	1
Relays.	2:33, + $10 \cdot 4$	Series Resonance	2
Rexistance	15-29	Suries Voltage-Dropping Resistor	
Resistance-Bridge Nitanding-Wave I	Indicator 479-483	Sorvicing Superhet Reveivers	03
Rexistance-Capacitance Time Const	tant 29-30	Shary Cut-Off Tubes.	
Rexistance-Compled Amplifior Ditat	: (Chart) ... 24.3	Sheet Metal Cotting and Bending.	17
Resistance in series and Parallel. $20-22^{2}$	Shielding	6, 62
Resistivity		Shields	
Resistor	19	Shield, Electrostatio	124, 3118
Resistor Color Code	521	Short Skip	3164
Resistor Wattage	22-23	Shorting stick	5
Resoname	$40-44$	Short-Circuiting	
Resonamee Curve	41-43, 46-47, 27	Shot Noise	
Resonance, Filter	215	Shunts, Meter	458-460
Rexonance, sharpmes of	41-43,349	Sideband Cutting	
Resomant-Line Cirenits.	422	Sideband Interforence	266, 2tis
Resonant Transmission Lines.	312	Sidebands	51, 266
Resomator, Cavity	$424+426$	side Frequencios.	21, 266
Rexponse, Flat	61	Signal Gomerators.	71-474
Response, Frequency	61, 240, 242	Signa-Handling Capability	
Response, Tuned-('ircuit	542	Signal-to-Image Ratio	
Restricted-spare Antemasas	33:88-33:39	Signal Monitor	$236,488-489$
Restriction of Frequeney Response	e 240	Signal Monitoring	
Return Trace.	48	Signal-strength Indicators	-94
Rewinding 'Transformers	$216 \cdot 217$	Signal-strength sicale	
Rhombic Antema	:342-34:3	Signal Vohage	
Rhumbatrons	427-42x	Silencers, Noise	92-933
"Ribbron" Mierophone	241	Sinc Wave	17,31-37
Ripple Frequency and Voltage	211-212	Singhe-Ended Circuits	
Rochelle salts Crystals	47	Single Sideband:	
Rotary Antemats	348	Amplification	17, 304-304;
Rotary-Beam Construction	.354-360	Expiters.	2977 -314
Route Manazger ...	531	Signal Reception	86. 101
S-Meters.	9:3-94	Transmission	2993-306
Stsate	537	Reception	
SSB Exciters	299-304	Single-Signal Rereption	(94-45
Safets:	$444-193$	skin Effeet.	
Saturation	27,215	skip Distance	73-74, 362-345
saturation Point	5.3	skip \%one.	
Sawtooth swerp	485-486	skirt Selectivity	
simater	74,364	Sky Wave.	72-7.5
Streen By-Pass (budenser	66	shog-Tuned Inductame	
Sereen (ircuits, Tuned.	:387-388	smoothing Choke	
Sicreen Diswipation	141	Soreket Connections () ingrams)	5-112
Sicreen-Dropping leesistor	66	Solar Cyele. .	3163
Sirreen-(irid Amplitiers.	134, 141. 271	soldering.	517
Sirreen-Grid Kering.	23:	Spare Charge	
Srem-(irid Modulation	274-276	space Wave.	
Srrem-Girid Tube Protection	141	Spark Plug Suppressors	4:3:3-4:34
Sereen-(irid Tubes.	. $62-63$	spercial-Type Tures.	
Sirem-Voltage Supply		sperific modurtive Capmety	
Surond Jetector	8:3-84, 80-97	Speetrim. Frequency	17-18.70
Sierondary Coil		Speerh Amplitiers	241
Sceondary limission	62	Speech Implitier Design	$2+4-245$
Secondary Frequeney Standard	467-465	Sprech Clipuing and Filtering	$247-248$
Sertion Commmirations Manager	r 3.31	Spreeh Compression	$246-2.47$
Section Emergeney Coordinator		Speech Equipment	$24(1-2.45$
Sertion Nets	533	Splatter	

[^0]: 1 Where it is neressary or desirable to identify the electrodes, the eurved element represents the outside electrode (marked "ontside foil," "ground," ete.) in fised paper-and ceramic-dielectric condensers, and the nepative electrode in eleetrolytic combensers.
 ${ }_{2}$ In the modern symbol, the curved line indicates the moving element (rotor plates) in variable and adjustable airor mica-dielectric condensers.

 In the case of switehes, jacks, relays, etr., only the basic combinations are shown. Any combination of these symbols may be assembled as required, following the elementary form shown.

[^1]: Example: Three condensers having capacitances of 1,2 and $4 \mu \mathrm{fd}$. respectively; are con-

[^2]: * Iny or all holes for smaller mancls that follow may be added or substituted an desirable. Hole distances are from either top or lont ton cdges of panc!.

[^3]: $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{5}-16-\mu \mathrm{ft}$. $6(0)$-volt electrolytic.
 C 3 - $11.015-\mu \mathrm{fl} 1$. paper.
 C.4 - 0.1 - μ fd. paper.
 $\mathrm{l}_{1}-0.3$ megohm, $1 / 2$ watt.
 $R_{2}, R_{3}-100$ ohms, $1 / 2$ watt.
 $\mathrm{R}_{4}-510$ ohms, $1 / 2$ watt.
 $\mathrm{R}_{5}, \mathrm{R}_{8}-30,000$ ohms, 2 watts.
 $11_{6}-0.24$ megohm, $1 / 2$ watt.
 $187-0.15 \mathrm{megohm}, 1 / 2$ watt.

[^4]: R_{9} - $9 \mid 00$ ohms, 1 watt.
 R10- I.1-megohnı protentiometer.
 $\mathbf{R}_{11}-43,010$ ohms, $1 / 2$ watt.
 1.1 - 8-hy., to-ma. filter choke.

 St - S.p.s.t. toggle.
 'T' - Power transformer: 375-375 volts r.m.t., 160 ma.; 6.3 volts. 3 amps. 5 volts. 3 amps.
 (Thor. 29 1: 33).

[^5]: ${ }^{1}$ For a deserigtion of a whinhiolded oseillator, soe simith. "A siolution to the lieyed-V'J I'roblem," $Q 心 T$, l'ebruary, $1!50$.

[^6]: ${ }^{2}$ For a more complete disenswon of thin effect, sece Carter, "Reducing Kes Clicks," QNT, Mareh, t! 49 .

[^7]: Fig. 10.2 - PHOTOGRAPHS OF TYPICA. OACII.LOSCOPE PATMERNS
 These photograph show varions conditions of modalation as dizplayed by the wedge or trapeodidal patterns in the left-hand eolumn and the wave-envelope patterns in the right-hamd column.

[^8]: ${ }^{1}$ Basic Radio Propagation Predictions, issued monthly, three months in advance, by the Central Radio Propagation Laboratory of the National Bureau of Standards. Order from the Supt. of Documents, Washington 25, D. C.; $\$ 1.00$ per year.

[^9]: * On'n+wire line anly.

[^10]: ($\mathrm{B},(\mathrm{C}-50-\mu \mathrm{ffl}$. variable (Millen 20050).
 (2. (3- $15-\mu \mu \mathrm{ff}$. variahle (Millen 20015)

 (S - $-\mu \mu \mathrm{fd}$, mi"a or ceramic.
 $1 k_{1}-0.1$ megohm, watt
 R_{2} - 39.100 ohms, 1 watt.
 K_{3} - 100 ohms, ${ }_{2}^{2}$ watt.
 R_{4} - 15,0100 ohms. $1 / 2$ watt.
 R_{5} - 202 ohms, $1 / 2$ wall.
 R_{B} - 80M10 ohme, 2 watts.
 1.1A, h.13-Interwond cuils, cach 12 turns No. 18 enamel, $3 / 8$-inela diameter.

[^11]: * No. 12 or No. 14 wire, $1 / 2$ inch inside diameter, 8 turns per inch.
 1 I 9 -turn coil with eloser turn spacing to give the same inductance is shown in Fig. 23-23.

[^12]: 1 A mil is $1 / 1000$ (one-thousandth) of an inch.
 The figures given are approximate only, since the thickness of the insulation varies with different manufacturers.
 ${ }^{2}$ The current-carrying capacity at $1000 \mathrm{C} . \mathrm{M}$. per ampere is equal to the circular-mil area (Column 3) divided by 1000.

[^13]: TYPE DF FLAT-PLATE HI-KAPS*

 -Paclagod tingly.

[^14]: -Tower stepl onlv-weight of suys, insulators, ete not included. thaulation for greater power available at slight extra cost.

[^15]: CANDLER SYSTEM CO., Dept. 26 ,
 P.O. Box 928, Denver 1, Colo.

 Or: 52b, Abingdon Rd., Kensington High Si., London W.8, England I am a beginner.

 I am an operator.
 Gentlemen: Yes... I'm interested in the CANDLER Code Troining Systom. Please rush my FREE copy of the CANDLER Book of Facts todoy.

 Name .
 Address .

[^16]: General Offices: 1521 E. Grand Ave., El Segundo, Calif. . Phone: El Segundo 1890

