FREE BOOK OFFER:
Exclusive to EW+WW readers:
complete 4-book microprocessor library for £37.50 price of three!

NEWS SPECIAL
FM broadcasts to end?

APPLICATIONS
Bar graph pressure gauge

DESIGN
The mos controlled thyristor

HISTORY
Technology of the S-Phone

AUDIO
Front end distortion

PC ENGINEERING
Electronic Workbench reviewed
THE WORLD'S NO.1 BEST SELLING UNIVERSAL PROGRAMMING AND TESTING SYSTEM.

The PC82 Universal Programmer and Tester is a PC-based development tool designed to program and test more than 1500 ICs. The latest version of the PC82 is based on the experience gained after a 7 year production run of over 100,000 units.

The PC82 is the US version of the Sunshine Expo 60, and therefore can be offered at a very competitive price for a product of such high quality. The PC82 has undergone extensive testing and inspection by various major IC manufacturers and has won their professional approval and support. Many do in fact use the PC82 for their own use!

The PC82 can program E/EPROM, Serial PROM, BPROM, MPU, DSP, PLD, PEEL, GAL, FPL, MACH, MAX, and many more. It comes with a 40 pin DIP socket capable of programming devices with 8 to 40 pins. Adding special adaptors, the PC82 can program devices up to 84 pins in DIP, PLCC, LCC, QFP, SOP and PGA packages.

The unit can also test digital ICs such as the TTL 74/54 series, CMOS 40/45 series, DRAM (even SIMM/SIP modules) and SRAM. The PC82 can even check and identify unmarked devices. Customers can write their own test vectors to program non standard devices. Furthermore it can perform functional vector testing of PLDs using the JEDEC standard test vectors created by PLD compilers such as PALASM, OPALjr, ABLE, CUPL etc. or by the user.

The PC82's hardware circuits are composed of 40 set pin-driver circuits each with TTL I/O control, D/A voltage output control, ground control, noise filter circuit control, and OSC crystal frequency control. The PC82 shares all the PC's resources such as CPU, memory, I/O hard disk, keyboard, display and power supply.

A dedicated plug in card with rugged connecting cable ensures fast transfer of data to the programmer without tying up a standard parallel or serial port. Will work in all PC compatibles from PC XT to 486.

The pull-down menus of the software makes the PC82 one of the easiest and most user-friendly programmers available. A full library of file conversion utilities is supplied as standard. The frequent software updates provided by Sunshine enables the customer to immediately program newly released ICs. It even supports EPROMs to 16Mbit.

Over 20 engineers are employed by Sunshine to develop new software and hardware for the PC82. Not many competitors can boast of similar support!

Citadel, a 32 year old company are the UK agents and service centre for the Sunshine range of programmers, testers and in circuit emulators and have a team of engineers trained to give local support in Europe.

NOW SUPPLIED WITH SPECIAL VALUE ADDED SOFTWARE (worth over £300 if bought seperately):

- MICROTEC disassemblers for Z8, 8085, 8048, 8051, 6809 & 68HC11.
- SOFTWARE supplied to write own test vectors for custom ICs and ASICs etc.
- Software supplied to write own test vectors for custom ICs and ASICs etc.
- Protection circuitry to protect against wrong insertion of devices.
- Ground control circuitry using relay switching.
- One model covers the widest range of devices, at the lowest cost.
- No need to tie up a slow parallel port.
- Two year free software update.
- SPEED OPTIMISED RANGE OF PROGRAMMING ALGORITHMS.

Our stocked range of own manufactured and imported Sunshine products include:

- Super fast EPROM Erasers.
- 1, 4 & 8 gang EPROM 8Mbit production programmers.
- Battery operated portable EPROM programmers.
- "IN CIRCUIT" Emulators.
- Handy pocket IC testers.

ORDERING INFORMATION

PC82 complete with interface card, cable, software and manual only £395

Please add £7 carriage (by overnight courier) for UK orders, £20 for export orders, and VAT where applicable.

ACCESS, MASTERCARD, VISA or CWO

Free demo disk with device list available.
CONTENTS

FEATURES

VOICE LINK OVER SPREAD SPECTRUM RADIO .. 716
Spread spectrum techniques in GPS, and now cellular phones, will be followed by many other civil applications. James Vincent examines the technology by describing an experimental direct sequence voice transmission system.

USING MOMENTUM TO DETHrone Einstein ... 738
John Ferguson sends forth an iconoclastic Mechanistic theory into the searing light of the relativistic world.

CAN TEACHERS WAVE BYE BYE TO THE LAB BENCH? 744
Electronics Workbench could be ideal for colleges wanting to try electronic simulation and schematic capture – if they can afford the hardware to run it, says John Anderson.

THE REAL CHOICE FOR ACTIVE FILTERS ... 758
Op-amp parameters can have a drastic effect on filter response. Steve Winder analyses op-amp characteristics.

AUDIO INDUCTION TECHNOLOGY FOR THE DEAF 723
Magnetic induction loops provide an electronic communication channel for deaf people. J P Wilson details the essential design data for induction audio systems.

DOWNWARD TREND IS GOOD NEWS FOR DESIGNERS 727
Designers are being forced to rethink their device supply levels. Rupert Baines reports on an industry in transition.

DISTORTION IN POWER AMPLIFIERS: THE INPUT STAGE 730
Input stage design is not something to be taken lightly for minimal amplifier distortion. Even the fine details of current distribution at this point can have a surprisingly powerful effect on distortion. By Douglas Self.

REGULARS

COMMENT .. 707
Putting pen to paper

UPDATE .. 708
FM stations may close in spectrum shake-up. Mercury to launch new mobile phone service. Apple cuts to Newton licence. Signal set to “go” for DUR. Woolies pick ‘n’ mix.

RESEARCH NOTES ... 713
Gate opens for molecular logic. Soft electrons for a smoother etch. Magnetic fields that upset the brain. STM puts electrons in the picture. Computer has designs on its own patent rights. Optical switch that needs no power.

LETTERS .. 747

CIRCUIT IDEAS ... 756

DESIGN BRIEF ... 763
The MCT combines the versatility of a transistor, the low forward conduction losses of a thyristor and the gate characteristics of a mosfet. Ian Hickman puts a new type of high power switching device into a test bed.

NEW PRODUCTS ... 767
Round up of all that’s new in electronics.

APPLICATIONS ... 778
Fast 10-bit converter with power-down mode. Pressure gauge with bar indicator. Slotted ferrites for non-contact current measurement. Planar power inductors – lower profile and higher efficiency. GaAs tuner for VHF and UHF.

A GUIDE TO INTEGRATION ... 782
Integration is fundamental to electronics. In this extract from his book Understand Electrical and Electronics Maths, Owen Bishop shows how to go about it.

In next month’s issue: The top ten audio IC power amplifier chips are put to the Ben Duncan test. We present a detailed, independent assessment of distortion performance using the test equipment normally reserved for the best in hi-fi equipment. Also in this issue: Cold Fusion warms up.

OCTOBER ISSUE IS ON SALE SEPTEMBER 30
MEET THE MAN WHO DIDN'T TALK TO SEAWARD ELECTRONIC

Health & Safety requirements encourage all organisations which use electrical appliances to implement regular testing procedures. Keeping and maintaining regular records of every appliance in an organisation can be a major headache.

Now, for the first time, an instrument is available which not only simplifies the testing process, but which also automatically records results in its memory - eliminating all unnecessary paperwork.

Seaward's award winning and competitively priced PAT1000 is the world's first microprocessor controlled Portable Appliance Tester.

- Provides protection to the user and the equipment with electronic interlocks.
- Tests insulation, earth bonding, flash tests, load tests and earth leakage.
- Offers comprehensive test facilities for Class 1 and 2 appliances.
- Available for testing all appropriate Australian and other International standards.

For further information contact
EMONA ENTERPRISES PTY LTD, 86 Parramatta Road, P.O.Box 15, Camperdown, NSW 2050
For all other countries contact
SEAWARD ELECTRONIC, Bracken Hill, South West Industrial Estate, Peterlee, Co. Durham. SR8 2J, England
CIRCLE NO. 105 ON REPLY CARD
Putting pen to paper

As a freelance technical journalist I am constantly invited to put the latest technology to the test. It strikes me that companies often pursue technology as much for its own sake than for fulfilling a genuine need. The computer sector seems especially prone to this.

Take PDAs, for example. The Personal Communicators, or Personal Digital Assistants, either available or coming from Apple, EO, Amstrad and Casio. Without doubt Apple’s Newton is a remarkable piece of technology. It recognizes cursive script, which in plain English means joined-up writing. It plays a clever trick to make users teach it the peculiarities of their writing, by challenging them to a game.

But there were glum faces at Apple in Cupertino when I was asked for honest comments and asked in reply for good reasons why I would want to use a $700+ PDA, rather than a 50p notepad and pen. Writing on the LCD screen is nowhere near as easy as on paper.

Because of the communications feature, came the reply. You can write notes on the move and send them electronically. For another $150 extra for the modem feature, Newton can send faxes or electronic mail. (Provided of course that you can find a friendly phone socket).

OK, I said, let’s use Newton to log into Telecom Gold, via Tymnet. No go. Newton has no terminal emulation. This shuts off the market for on-the-movers who have spent the last ten years learning email and Hayes AT commands, and have grown one arm longer than the other by humping round a keyboard PC with big enough batteries to keep it running for longer than a short-haul hop.

Software houses appear just as indifferent to real needs; new does not necessarily mean better. The thick manuals that come with new software equate to a lost weekend. The latest version of IBM’s OS/2 comes on 25 disks, and sentences anyone willing to try it to a whole new world of unexpected compatibility problems while learning a new command vocabulary.

I would try Hayes’ new version of Smartcom if it came with a utility that automatically converts all the telephone directories and logon scripts from my existing comms software.

I would upgrade to the warring Word or Wordperfect if either had a simple utility to convert a decade’s worth of text files stored in an old format, without the hassle of going through ascii export routines. But instead of writing in facilities that people actually want, the purveyors of this modern software have spent their time on piling in fancy features that most users will never discover, let alone need, want or use. In so doing they have missed the simple trick of winning new customers who are currently trapped into continuing with old software.

They miss the trick because, in their mad rush to innovate, the innovators do not stop to think what people might actually want. They have lost sight of the purpose of innovation, and the object of the whole exercise.

All of which prompts a thought. Perhaps the best thing to come out of the recession is the buying public’s growing resistance to things that are new for the sake of being new.

Barry Fox.
FM stations may close in spectrum shake-up

FM broadcasting by BBC and commercial stations could come virtually to a stop in little more than 15 years, if plans to supersede it with digital technology are put into effect. The proposal is expected to be among the recommendations of Sir Colin Fielding's independent spectrum review committee, which is preparing an assessment of present and future use of the 28-470MHz spectrum.

If the Government follows its practice with previous spectrum reviews, it will accept and implement most of the committee's conclusions.

Terrestrial digital audio broadcasting, T-DAB, could open in a temporary parking band in about two years. But the committee proposes a strict timetable for rehousing it in Band II: from 2007 onwards, national and regional FM transmitters would close to make room, leaving only a few community stations on FM. The remainder of Band II would be occupied by ancillary services such as programme links and talkback.

Broadcasting was just one of the areas of spectrum activity discussed by committee members when they presented their emerging conclusions at a seminar in London. A major problem facing them is lack of time: the CEPT is beginning its own Euro-study of the VHF and UHF bands, and the DTI wants to have the UK report ready as input for it.

Specific issues on which the committee has focused include finding a suitable temporary band for T-DAB; identifying military frequencies which can be released to meet demand from civilian users; relieving the overcrowding of business radio in the private mobile radio (PMR) bands, especially in London (described by a committee member as "a disaster area"); and deciding how the current regulatory regime might be improved.

Of the 800,000 or so mobile radio users, 77% of licences were for systems with 10 mobiles or fewer. Radio is vital to the business of these smaller users, who might be unwilling to move to shared (trunked) systems if it meant losing control of their communications. But to what extent would they shift to public networks over the next 10 to 15 years as services such as cellular and the PCNs became cheaper?

The role of the Radiocommunications Agency had attracted adverse criticism, the most damning of all from the RA's main consultative body on mobile radio, which accused it of "lack of strategic direction, lack of openness, regulatory culture, lack of available data and inappropriate performance measures."

Sir Colin Field said at a seminar in July that there was clearly a case for having a single spectrum management authority for the UK, for which the RA had some of the credentials. However, there ought to be independent oversight of spectrum management, with wide consultation in the radio community.

One major problem is lack of time: the CEPT is beginning its own Euro-study of the VHF and UHF bands, and the DTI wants to have the UK report ready as input for it.

Virtually every user of the band would like more channels, even the armed services, which, despite the ending of the cold war, are sitting on no less than 55% of the band. The Ministry of Defence view is that the world is still a turbulent place and that British forces are needed to maintain a high state of readiness.

Signal set to "go" for DLR

When the Docklands Light Railways' Beckton extension opens in October, it will be controlled by the most advanced signalling system currently available. It replaces the traditional block working – admitting one train at a time to a section of track – with a software-controlled "moving block" system which maintains a distance, variable according to speed, between trains. When extended to the rest of the railway it will increase capacity fourfold.

The new system, Seltrac, designed by Canadian firm Alcatel, is part of an £800m upgrade designed to rid the the DLR of the stigma of failure and ridicule which has dogged it – built on a £77m shoestring in 1985 – since development in the area outpaced capacity. Reliability fell to an ignominious 66% in 1991.

Signalling is something of a misnomer, since the computer controls the driverless trains like a life-size model railway, communicating with their on-board computers through induction loops laid between the rails. An independent computer system keeps track of train locations by counting axle revolutions. This device has been introduced to prevent a repetition of Seltrac's worst moment, when the Vancouver Sky Train system went down. All trains had to be manually driven to known points – an operation lasting four hours - before it could be restarted.

Services in the band under review include broadcasting, aviation, business radio networks, the emergency services – a bit of almost everything other than television and cellular telephones.
Mercury to launch new mobile phone service

Mercury, British Telecom’s main rival in the British telecommunications market, is now embarking on its biggest gamble yet. Mercury is launching a cellular phone service, called One-2-One, to rival the established networks. BT’s Cellnet and Vodafone. Although the potential rewards are high, Mercury is in uncharted waters. Mercury is allowed by law to sell its service direct to subscribers, whereas Cellnet and Vodafone must sell through a third party layer of “service providers”. This gives Mercury a price advantage. But it will be short-lived because the DTI plans to change the rules for Cellnet and Vodafone. Also, while Mercury has to build a completely new network of base stations, Cellnet and Vodafone already have them and can easily slash prices to undercut One-2-One.

At the same time Mercury faces a completely new set of technical problems, never before faced by any cellphone operator. Whereas the existing services use analogue technology to carry the speech signals, Mercury’s One-2-One service will use new all-digital technology. By unhappy coincidence Mercury’s launch comes just as the main cellular operator in the US, Ameritech, announces the results of a long-term trial which has convinced Ameritech that digital technology is not yet ready to offer the public.

One-2-One’s technology was born from the mess of incompatibility between the existing cellphone services in Europe. Cellnet and Vodafone launched their UK services in January 1985, using the Total Access Communications System. TACS was based on technology developed in the US. Although the control signals which set up calls, and switch them from cell to cell, are digital, the speech is analogue. All the other services in Europe are analogue, but differ from country to country.

In the mid eighties all European governments agreed on a new pan-European standard, called Global System for Mobile communications. GSM is all-digital. Speech is converted into digital code before transmission. Eight speech channels are then squeezed into one transmission channel using a technique called Time Division Multiple Access. TDMA relies on the natural spaces between words of human speech. Each digitally coded conversation is chopped into short bursts, and the code bursts interleaved. The receiver stitches them together again.

Both Cellnet and Vodafone are obliged, by European Memorandum of Understanding, to co-operate in providing a pan-European GSM service, using frequencies (at around 900MHz) reserved for (GSM in all countries. This will eventually let travellers use their cellphones anywhere in Europe. The service is already behind schedule, because GSM cellphones are heavier and more expensive than analogue phones, and consume more battery power.

Mercury’s new service will use GSM technology, but at a higher frequency (around 1800 MHz). It realises a dream enjoyed by Lord Young in January 1989 while Secretary of State for Trade and Industry. In his White Paper, ‘Options on the Move’, Lord Young proposed a new Personal Communication Network of small wireless phones, providing an “office in the pocket”, with freedom from wires.

The DTI granted three licences to run PCN services, to Mercury, and two other consortia, Microlnet and Unitel. So far only Mercury has pursued the dream, after merging with Unitel. Instead of spending the billions needed to build base stations all round the UK, Mercury is cutting costs to a third by offering a service only within the M25 ring, with around 300 base station sites. Mercury will then push slightly outside the M25, to cover 24% of the population by next April.

GSM/PCN technology uses a clever trick to limit power drain, and so let a phone work longer on each battery charge. When the phone sets up a call it automatically tests the strength of the signal coming from the nearest base station, and then adjusts the strength of the signal it transmits to the base station to the lowest level for reliable communication.

Since May, Mercury’s engineers have been touring the M25 coverage area, testing the consistency of signal strength from the base stations. Mercury now feels confident to launch, but darest advertise only for the M25, to cover 24% of the population by next April.

GSM/PCN uses smart cards (credit cards with built-in computer chips). As sold, the phones are useless. They have a slot for a card which makes them work. This lets high street stores sell the phones like hi-fi or video.

As the first company to introduce a high profile digital cellphone service, Mercury knows it must cope with questions about the electrical interference which digital phones
GSM, has studied the problem and found blips on the picture. Nokia of Finland, Europe’s leader in GSM, has studied the problem and found that it will be worst indoors or in a car, where the phone is partially shielded from the base station and must thus work at high power to communicate. The interference will also be worst whenever the phone is switched on, and goes through the automatic procedure of testing local signal strengths.

The system recently won a Silver Award from the British International Multimedia Association was designed for Woolworths by Julia Schofield Consultants, a small (18 staff) outfit based in Richmond-on-Thames which specialises in interactive systems. Some 16,000 titles are stored, with clips for about a quarter of them. Part-screen full-motion video clips, entered using a VideoLogic MediaSpace card, last around 15 seconds, in addition to a 4.5-minute intro sequence. Based on a 486 PC with 32 megabytes of RAM and 3 gigabytes of disk storage, the system uses a VideoLogic MediaSpace card.

MULTIMEDIA IN RETAILING PARLANCE USUALLY MEANS NOTHING MORE EXCITING THAN AN ELECTRONIC CATALOGUE, BUT A MORE REWARDING INTERACTIVE SYSTEM, NOW ON TRIAL IN A HANDFUL OF WOOLWORTHS STORES, USES DIGITAL VIDEO AND AUDIO TO ALLOW CUSTOMERS TO SAMPLE MOVIE AND CD TITLES. NOW BEING EVALUATED IN A HANDFUL OF WOOLWORTHS STORES, IT IS CLAIMED TO BE THE FIRST PUBLIC-ACCESS MULTIMEDIA SYSTEM IN THE UK HIGH STREET, AND THE FIRST FULLY-DIGITISED HARD-DISK SYSTEM IN THE WORLD.

The touch-screen system has been described by a Woolworths manager as “easier to use than a bank’s cash machine - and more fun.” The same cannot be said of its appearance, which calls to mind an arcade game designed by the East German government. It is eventually planned to hold details of every CD, tape and video produced in Britain. Titles not in stock in the store (the vast majority, presumably) can be ordered for mailing to home.

UPDATE

Woolies pick 'n' mix

MULTIMEDIA IN RETAILING PARLANCE USUALLY MEANS NOTHING MORE EXCITING THAN AN ELECTRONIC CATALOGUE, BUT A MORE REWARDING INTERACTIVE SYSTEM, NOW ON TRIAL IN A HANDFUL OF WOOLWORTHS STORES, USES DIGITAL VIDEO AND AUDIO TO ALLOW CUSTOMERS TO SAMPLE MOVIE AND CD TITLES. NOW BEING EVALUATED IN A HANDFUL OF WOOLWORTHS STORES, IT IS CLAIMED TO BE THE FIRST PUBLIC-ACCESS MULTIMEDIA SYSTEM IN THE UK HIGH STREET, AND THE FIRST FULLY-DIGITISED HARD-DISK SYSTEM IN THE WORLD.

The touch-screen system has been described by a Woolworths manager as “easier to use than a bank’s cash machine - and more fun.” The same cannot be said of its appearance, which calls to mind an arcade game designed by the East German government. It is eventually planned to hold details of every CD, tape and video produced in Britain. Titles not in stock in the store (the vast majority, presumably) can be ordered for mailing to home.

The news in July that Apple was sacking 2500 of its 16,000 employees worldwide, contained a coded message. The one division spared the axe is the division which is ploughing a new furrow on licensing policy, and thereby proving that Apple now accepts that its current predicament is born from past strategic blunders. Significantly Apple clammed up, ducking the simple question of how many people work in its Personal Interactive Electronics division, soon after letting it slip that PIE would be untouched by the cuts.

Officially Apple blames the job cuts on the sharper price war between Apple’s Macintosh range and the wide variety of rival IBM-format models which have dropped in price by 40% over the last year. But there is now widespread recognition inside Apple’s workforce that they are paying the price for a basic error made by their company ten years ago.

When Apple launched the Mac in 1984 it refused to licence the technology which made the computer so easy to use. Apple has continued to refuse Mac licences every since. This has created the competition from IBM-format personal computers which is now crippling Apple.

Apple has now changed its policy and will licence others to use the new technology for Newton, the new hand-held personal communicator which works with a pen and pressure-sensitive screen instead of a keyboard. PIE developed Newton and is actively licensing it to third parties.

In the early 80s Apple developed a computer called the Lisa which was very easy to use, and then refined it into the Mac. When Apple refused even to consider licensing the technology, IBM chose another US software company, Microsoft, to provide the control software or “operating system”. Microsoft developed the MS-DOS operating system which was very awkward to use, and has spent the last ten years perfecting Windows, a refinement which now makes an IBM-PC look and feel like an Apple Mac. PIE has already licensed four companies, Motorola, Siemens, Sharp and Matsushita (under its brand name Panasonic) to use the Newton technology and make rival model communicators which adhere to the Newton standard. PIE is now talking with other electronics companies in Europe and Japan, including Philips and Sony, in an effort make Newton a new de facto standard. Apple will then collect royalties under patents, software copyright and a trade mark logo depicting a stylised light bulb and the word Newton.

Licences will not be required to use the Apple logo, though. “This is a completely new experience for us” says Subra Iyer, in charge of licensing Newton. “In the past we had complete control of all hardware and software. But the old way was proven wrong. Now we have to find a new way of ensuring that anything with the Newton trade mark is compatible with anything else, regardless of who makes it and where. But we don’t want licensing control to be a bottleneck.”
EASY FAST & POWERFUL
CAD SOFTWARE THAT GIVES YOU THE EDGE

ISIS - SCHEMATIC CAPTURE
Easy to use yet extremely powerful schematic entry system with all the features you need to create input for ARES or other CAD software. Now available in a super-fast 32 bit version capable of handling huge designs even on A0-sized sheets.

- Graphical User Interface gives exceptional ease of use - two mouse clicks will place & route a wire
- Automatic wire routing, dot placement, label generation
- 2D drawing capability with symbol library
- Comprehensive device libraries
- Heterogeneous devices (e.g. relay and coil) allowed in different places on the schematic
- Special support for connector pins - put each pin just where you want it
- Output to printers, plotters, Postscript
- Export designs to DTP and WP packages
- Netlist formats for most popular PCB & simulation software
- Bill of Materials and Electrical Rules Check reports
- Multi-sheet and hierarchical design support
- Automatic annotation/packaging
- ASCII data import database facility

from £275

ARES - PCB DESIGN
Advanced netlist based PCB layout software newly updated to version 2.5. Major new features include SMT library, real time snap (for those tricky SMT spacings), thermal relief power planes and enhanced autorouting.

- Graphical User Interface
- Real time snap
- Auto track necking
- Curved, 45/90 or any angle tracks
- Extensive through hole and SMT package libraries as standard
- 2D drawing capability with symbol library
- Connectivity highlight
- Output to printers, plotters, Postscript, Gerber and NC drill
- Gerber View facility
- Graphics export for DTP etc.
- Advanced netlist management with forward design modification
- Component renumber and back annotate to ISIS
- Full physical and electrical design rule checks
- Autorouter handles single, double or multi layer boards
- Power plane generator with reliefs
- Strategy & DRC information loaded from ISIS
- Gerber import utility available

from £275

ISIS ILLUSTRATOR
Schematic capture for MS Windows 3.1 - produces high quality schematics like you see in the magazines with your choice of line thicknesses, fill styles, fonts, colours etc. Once entered, drawings can be copied to most Windows software through the clipboard.

New version 2 includes netlisting, bill of materials, hierarchy, and much more. An ideal front end for Windows Simulation and PCB design.

new low prices from

£99

CADPAK - BUDGET PRICE CAD
Two programs - ISIS SUPERSKETCH and PCB II - for the price of one.

CADPAK has everything you need to produce circuit diagrams and PCBs on your PC and is exceptionally easy to use.

superb value at only

£79

Call us today on 0274 542868 or fax 0274 481078 for a demo pack. Combination, multi-copy and educational discounts available. Prices exc P&P and VAT.
MICROWAVE CONTROL PANEL. Mains operated with touch switches. Complete with high lift, display clock and 2 relay outputs for power and one for public voice (programmable) for local all for precision timer applications etc. Now only £6.00.

GOOD SEPARATING RAPID INK. 1000ml. £29.00.

FIBRE OPTIC CABLE. Stranded optical fibres sheathed in black PVF. Five metre length £7.00 ref SF750/2 for 2 metre.

12V SOLAR CELL. 200mA output ideal for towing chargers etc. 300 mm square. Our price £5.00 ref SF752. Gives up to 300 hours.

PASSIVE INFRA-RED MOTION SENSOR. Complete with daylight sensor. £19.00 ref SF19P1.

12V CHARGER UNIT. Designed for use in motor vehicles, recreational vehicles and battery operated equipment. £6.00 ref SF600. Good range.

MINIATURE RADIO TRANSCEIVERS. A pair of walkie talkies with a range of up to 2 kilometres. Units measure 262x155mm. Complete with cases and express £30.00 ref SF30P1.

FM CORDLESS MICROPHONE. Small hand held unit with a range of over 200'. £8.00 ref SF800.

LOW COST WALKIE TALKIES. Pair of battery operated units with a range of about 200'. Our price £8.00 a pair ref SF800. Ideal for general use as an educational toy.

7 CHANNEL GRAPHIC EQUALISER plus 60 watt power amp. SF78P1.

NICAD BATTERIES. Brand new top quality 4 x AA's £4.00 ref SF401. 2 x C's £4.00 ref SF47P1. 2 x D's £9.00 ref SF9P1. 12x 1.2V £4.00 ref SF45P1.

GSBGER COUNTER KIT. Complete with tube, PCB and components to build a battery operated geiger counter. £30.00 ref SF30P1.

FM RADIO KIT. New design with PCB embedded circuitry for anyone to build. £40.00 ref SF40P1.

COMPOSITE VIDEO KITS. These complete consumer grade kits separate in sync, v sync and video. 12V, £6.00 ref SF60P1.

SINCLAIR CS MOTORS. 12v 29A (full load) 3300 rpm 6N4, 1/4" separate H sync, V sync and video. 12v DC. £8.00 ref SF800.

LOW BATTERY SYS. For the Spectrum plus 3 give +5 @ 900mA & -12 @50mA. £8 ref SF800.

CIRCLE NO. 107 ON REPLY CARD

PC CASES Desktop/DESKTOP CASES £50 to £1000 DESKTOP CASES £100 to £2500

HARD DRIVES £30 to £500 IDE, £80 to £1000 SITEN

MONITORS 17" SVGA £200 to £500 19" SVGA £300 to £600 21" SVGA £400 to £700

ADD ON CARDS Multi1/0 card 2 serial, 1 parralel, 1 game, 2 floppy, £40 ref BPC502.

ADD ON CORDS 30FT 2 PIN TO 2 PIN £15.00 ref BPC503.

CONNECTORS 386SX-25 UMC £200 ref BPC504.

REFERENCES To STANDS, QUENTIES and OTHERWISE STATED

GUARANTEED FOR 30 DAYS.

BILL OF LADING UNLESS OTHERWISE STATED

REJECTED FOR 30 DAYS

RIGHTS RESERVED TO CHANGE PRICES & SPECIFICATIONS WITH OUT FOGEL NOTICE.

APPLICATION TO STOCK, QUOTATIONS ARE WHOLLY GIVEN FOR QUANTITIES HIGHER THAN THOSE STATED.

BULL ELECTRICAL

250 PORTLAND ROAD HOVE SUSSEX BN3 2QT

MAIL ORDER TERMS: CASH OR PO CHEQUE WITH ORDER PLUS £3.00 PLUS VAT.

FOR ALL ORDERED ITEMS DELIVERY TELEPHONE ORDERS WELCOME.

T Tel: 0273 263500 Fax: 0273 323677

CIRCUIT ONE 107 ON REPLY CARD

IN SUSSEX? CALL IN AND SEE US!

TURN YOUR SURPLUS STOCK INTO CASH. IMMEDIATE SETTLEMENT. WE WILL ALSO QUOTE FOR COMPLETE FACTORY CLEARANCE

MUCH MUCH MORE IN OUR 1999 CATALOGUE. PLEASE SEND 41P, A4 SIZED SAFE FOR YOUR FREE COPY.

PC CASES Desktop/DESKTOP CASES £50 to £1000 DESKTOP CASES £100 to £2500

HARD DRIVES £30 to £500 IDE, £80 to £1000 SITEN

MONITORS 17" SVGA £200 to £500 19" SVGA £300 to £600 21" SVGA £400 to £700

ADD ON CARDS Multi1/0 card 2 serial, 1 parralel, 1 game, 2 floppy, £40 ref BPC502.

ADD ON CORDS 30FT 2 PIN TO 2 PIN £15.00 ref BPC503.

CONNECTORS 386SX-25 UMC £200 ref BPC504.

REFERENCES To STANDS, QUENTIES and OTHERWISE STATED

GUARANTEED FOR 30 DAYS.

BILL OF LADING UNLESS OTHERWISE STATED

REJECTED FOR 30 DAYS

RIGHTS RESERVED TO CHANGE PRICES & SPECIFICATIONS WITH OUT FOGEL NOTICE.

APPLICATION TO STOCK, QUOTATIONS ARE WHOLLY GIVEN FOR QUANTITIES HIGHER THAN THOSE STATED.

BULL ELECTRICAL

250 PORTLAND ROAD HOVE SUSSEX BN3 2QT

MAIL ORDER TERMS: CASH OR PO CHEQUE WITH ORDER PLUS £3.00 PLUS VAT.

FOR ALL ORDERED ITEMS DELIVERY TELEPHONE ORDERS WELCOME.

T Tel: 0273 263500 Fax: 0273 323677

CIRCUIT ONE 107 ON REPLY CARD

IN SUSSEX? CALL IN AND SEE US!

TURN YOUR SURPLUS STOCK INTO CASH. IMMEDIATE SETTLEMENT. WE WILL ALSO QUOTE FOR COMPLETE FACTORY CLEARANCE

MUCH MUCH MORE IN OUR 1999 CATALOGUE. PLEASE SEND 41P, A4 SIZED SAFE FOR YOUR FREE COPY.
RESEARCH NOTES

Gate opens for molecular logic

A team in the Department of Chemistry at Queen's University, Belfast, has developed the world's first molecular AND gate. It is a derivative of anthracene and is able to produce a photonic output in response to two separate ionic inputs.

Dr A P de Silva and his colleagues say (Nature, Vol 364, No 6432) that the gate was developed from a variety of single-input molecular switches known for some years. These are essentially molecules that fluoresce in the visible part of the spectrum in the presence of a particular ionic species, eg hydrogen ions. The "power supply" is usually a beam of ultraviolet light.

When powered by UV, the molecular gate normally provides no visible light output. Nor is there any output in the presence of just hydrogen ions (protons) or just sodium ions. But when both ions are present, the anthracene-based molecule will emit blue fluorescence. A truly "wireless" AND gate!

The molecule itself contains two recognition sites, corresponding to the two inputs of a silicon AND gate. When both recognition sites are satisfied, the output part of the molecule - a fluorophore - generates the logical response. Dr de Silva emphasises that the AND gate and other related molecules provide only a rudimentary foundation for future molecular photonic devices. A molecular computer is "well on the horizon, if not over it". Nevertheless, the fact that a useful logic function can be performed at the level of a single molecule must offer considerable impetus in this area. Experiments to implement a molecular OR function are already advanced.

Practical obstacles to the further development of molecular computing systems include the need to make electrical interfaces with switching devices - creating some form of molecular "wire". Alternatively, it might be possible to operate in the wet chemical domain as at present: much human brain logic clearly operates very satisfactorily in this way.

In the short term, de Silva and his co-workers have found some very practical applications for their molecular logic. Interestingly enough they give a foretaste of how such devices could interface with the human body, either in the true thinking sense, or as biochemical sensors looking for malfunctions.

Soft electrons for a smoother etch

An electron assisted etching technique being developed may allow routine fabrication of nanometre scale microelectronic devices without the surface damage caused by current etching systems.

GeorgiaTech researchers hope that nanometre devices will fuel the next wave of development in the microelectronics industry. The technology may also find use in electro-optic devices, optical processing, and radiation devices.

Conventional ion-beam etching can damage surfaces altering optical and electronic properties and potentially limiting how the devices can be used. Because of their mass and high kinetic energy, the ion particles can disrupt the crystalline structure of the semiconductor surface and introduce unwanted materials.

The new process, however, uses low energy electrons (10 to 500eV) with reactive hydrogen to cut the electronic features through the patterning process. Because the electrons are lighter and carry less energy, there is less damage to the surface.

Dr HP Gills, an associate professor working on the project said: "If we can make this process work commercially, it will help enable the routine fabrication of these quantum scale devices."

He added: "The impact on the microelectronics industry is tied to the ultimate impact of these quantum well devices, which will be quite important in the future."

According to Gills, it is easy to disorder the surface of a material so that it no longer functions properly as a transistor junction.

But one worry is the potential surface effects from the reactive hydrogen.

Gills explained: "It remains to be seen whether hydrogen has any detrimental effects in our process. But hydrogen is attractive because the chemistry is simple compared to the species used in the conventional technique."

He estimated that there is at least two years of work to go before the research produces a practical process that can be used routinely.
Magnetic fields that upset the brain

As for static magnetic fields, we are all constantly exposed to the Earth’s magnetic field, varying from 30-70μT over the surface of the planet. Even large static fields of 1-2T seem to have no adverse effects on health – at least not in the short term. In a report published last year, the National Radiological Protection Board concluded that although static magnetic fields might have effects on biological reaction parameters, any health implications have yet to be established.

But the new twist to the story comes with publication of a US/Swiss study showing that external magnetic fields can trigger nerve activity in brains of patients with epilepsy. A team from the University of California, Santa Barbara, the Institut für Geophysik in Zurich and the University Hospital in Zurich have shown that fields only 100 times stronger than the Earth’s can trigger brain cell discharges associated with epileptic seizures. At a meeting of the American Geophysical Union, evidence was also produced for the presence of magnetic particles in the same region of the brain. Although there is no proven link, these particles would be a plausible means by which the magnetic field exerts its effect.

Not only do these discoveries shed new light on the extent of human sensitivity to magnetic fields, they may also provide a new tool that neurosurgeons could use in the treatment of drug-resistant epilepsies. Being able to induce epileptic firing in order will make it easier to identify the area of the brain. Although not yet confirmed in formal research, there is no adverse effect on health – at least not in the short term. In a report published last year, the National Radiological Protection Board concluded that although static magnetic fields might have effects on biological reaction parameters, any health implications have yet to be established.

But the new twist to the story comes with publication of a US/Swiss study showing that external magnetic fields can trigger nerve activity in brains of patients with epilepsy. A team from the University of California, Santa Barbara, the Institut für Geophysik in Zurich and the University Hospital in Zurich have shown that fields only 100 times stronger than the Earth’s can trigger brain cell discharges associated with epileptic seizures. At a meeting of the American Geophysical Union, evidence was also produced for the presence of magnetic particles in the same region of the brain. Although there is no proven link, these particles would be a plausible means by which the magnetic field exerts its effect.

Not only do these discoveries shed new light on the extent of human sensitivity to magnetic fields, they may also provide a new tool that neurosurgeons could use in the treatment of drug-resistant epilepsies. Being able to induce epileptic firing in order will make it easier to identify the precise area affected. The question remains as to whether smaller fields, such as those generated by commonplace consumer devices could trigger an epileptic seizure. The Swiss and US team say no. They argue that such devices generate fields about ten times too small to bring about the effect observed. Yet there remains strong evidence from animal and human studies that biological systems can detect magnetic fields as small as the Earth’s – that may be how pigeons (and some humans) can navigate.

Being able to detect something and being affected by it are two very different things. But if a biological system can respond in any way at all to an external stimulus, it must at least be worth asking a few more questions about the health implications of regular exposure.
Computer has designs on its own patent rights

A computer program has submitted a patent application for some of its own inventions, according to the June issue of Chemistry In Britain. The program called *Invention* is named as the primary applicant, along with its developer Todd Wipke of the University of California, Santa Cruz.

Zany perhaps, but *Invention* has now designed a whole series of morphine analogues that have the same overall chemical structure as the natural substance. The fact that none of these compounds exists and none has yet been synthesised is immaterial: they could well form the basis of some of tomorrow's pharmaceutical drugs. *Invention* took a whole day to churn out hundreds of morphine look-alikes and has chosen the three best ones for the patent disclosure. The University has yet to decide on whether to submit a full patent application.

Wipke says that in future, computer programs are far more likely than human chemists to invent new chemicals. He believes that, like their white-coated counterparts, computer programs are more able to make inventive leaps and are less constrained by preconceived ideas. More importantly still, they have no problems visualising complex three-dimenional chemical structures.

Invention will now be harnessed to the task of trying to think up potential new AIDS drugs.

Optical switch that needs no power

Researchers in the Department of Electrical and Electronic Engineering at King's College London have demonstrated an all-optical switch, at a recent summer exhibition of the Royal Society. It is a novel method of routing optical signals to different destinations without the need for mechanical or electronic switching. At the moment it is still very much at the laboratory stage, but the new device demonstrates clearly the potential for locating optical data switches away from the main switching centres traditionally employed in electronic data networks. Jeremy Everard, one of the team, says there is no reason in principle why an optical routing switch could not be located in the middle of the Atlantic.

Secret of the optical switch is that it dispenses with the traditional “three-terminal” approach; there is no external signal to control the switch. Instead, the switching signal is coded in the data itself. So when a stream of data reaches the switch, the switch is able to recognise where, of maybe ten different destinations, it is meant to go.

The switch itself relies on the fact that when two laser beams are applied to an optically non-linear crystal (barium titanate), they give rise to a three-dimensional diffraction grating. What happens then is complex. The “pump” beam is created, not by a second laser, but by a process of phase conjugation within the crystal. This, together with the addition of semi-reflecting mirrors at varying distances from the non-linear crystal enables the system to route an input signal only to (and through) the mirror that reflects a beam that is phase-coherent with the input beam. The angle of routing is determined in practice by superimposing on the input signal a slightly delayed version of the same signal.

In the experimental system, demonstrated at the Royal Society, routing to two different outputs was achieved by creating the delayed signal using a second set of mirrors. Jeremy Everard is confident that in a future practical system, the destination address could be coded optically at source. In this way the switch itself could be buried under the streets, maybe miles away from the source. Instead of being a bench-top arrangement of lasers, mirrors and crystals, it would be miniaturised inside an integrated optic package only a few millimetres across.

Looking even further ahead, Dr Everard sees the possibility of cascading these switches in such a way that it might be possible to code an input signal so that it would route itself automatically to any one of hundreds of thousands of different destinations.

At the moment this remains a dream; the experimental switch is still cumbersome and slow. But with new crystal materials and integration technologies, the day is not too far off when thousands of tv or data channels could be routed almost anywhere with total reliability and without the overheads of electrically switched networks.

Research Notes is written by John Wilson of the BBC World Service.
Until quite recently spread spectrum techniques were almost exclusively in the military domain. Their use in GPS and the latest cellular phones will be followed by many other civil applications. This article, the first of three parts, examines the technology by describing an experimental direct sequence voice transmission system as a worked example.

By James Vincent*.

Voice link over spread spectrum radio

1: basic principles

Most Communication Engineers are used to minimising transmission bandwidths. The trend has been to use narrower bandwidths, as with the transition from double sideband to single sideband modulation. It is quite obvious that narrower bandwidths permit more communication channels to be packed into a defined frequency band.

However the rationale of using the very wide bandwidths required by Spread Spectrum systems needs explanation. Claude Shannon produced a ground breaking paper on the mathematical theory of communication in 1949. Shannon’s resulting theorem can be expressed as:

$$C = \log_2 \left(1 + \frac{S}{N}\right) \text{bits/s}$$

where C = data rate in bits per second, W = bandwidth (Hz), S = average signal power (W), N = mean white gaussian noise power (W). It can be seen from the equation that the only options available to increase a channel’s capacity are to increase either the bandwidth (W) or the signal to noise ratio (S/N).

An increase in the signal to noise ratio requires an increase in transmitter power as
the noise within the channel is beyond our control! Thus we can either trade power or the noise within the channel is beyond our control. Because of the logarithmic relationship, increasing the power output is often unrealistic. However, if frequency allocation constraints permit, the bandwidth can be increased. An appreciable increase in data capacity or signal to noise ratio (for a fixed data rate) can then be achieved.

Spread spectrum systems utilise very wide bandwidths and low signal to noise ratios. From Shannon’s theorem:

\[C = W \log_2 \left(1 + \frac{S}{N} \right) \]

changing bases

As \[\log_a P = \frac{\log_b P}{\log_b a} \]

\[C = \frac{W \log_2 (1 + \frac{S}{N})}{\log_2 a} \]

Now \[\log_b b = \frac{1}{\log_b a} \]

\[C = \frac{W \log_2 (1 + \frac{S}{N})}{\log_2 a} \]

\[C = 1.44 \log_2 \left(1 + \frac{S}{N} \right) \]

By logarithmic expansion

\[\log_2 \left(1 + \frac{S}{N} \right) = \frac{S}{N} - \frac{1}{2} \left(\frac{S}{N} \right)^2 + \frac{1}{3} \left(\frac{S}{N} \right)^3 - \frac{1}{4} \left(\frac{S}{N} \right)^4 + \frac{1}{5} \left(\frac{S}{N} \right)^5 \]

In a spread spectrum system the signal to noise ratio (S/N) is typically small, much less than 1.0

\[C = 1.44S \]

\[W = \frac{NC}{S} \]

From the derived relationship it can be clearly seen that a desired signal to noise ratio for a fixed data rate C, can be achieved by increasing the transmission bandwidth.

For example, assume a data rate of 32Kbits/s and a signal to noise ratio of 0.001 (−30dB)

\[W = \frac{CN}{1.44S} \]

\[W = \frac{32 \times 10^3 \times 1000}{1.44} = 22MHz \]

So for a data rate of 32Kbits/s, operation at the very low S/N ratio of −30dB is achievable by spreading the signal over a bandwidth of 22MHz. By using a very much wider bandwidth than that of the original data it is possible to maintain data capacity without increasing the transmitter output power. It is an extreme example of a power-bandwidth trade off.

Two criteria (see Dixon) for a spread spectrum system are:

- that the transmitted bandwidth is much greater than the bandwidth of the information being sent, and
- that some function other than the information being sent determines the resulting radio frequency bandwidth.

The two major techniques used in spread spectrum systems are frequency hopping (fh) and direct sequence (ds). Of the two, frequency hopping is perhaps the easiest to visualise. In a frequency hopping system the frequency or channel in use is changed rapidly. The transmitter hops from channel to channel in a pre-determined but pseudo-random sequence (see Fig. 1). The receiver has an identical list of channels to use (the hop set) and an identical pseudo-random sequence generator to that of the transmitter. A synchronising circuit in the receiver ensures that the pseudo-random code generator in the receiver synchronises to the one in the transmitter. When the transmitter and receiver are synchronised the user is unaware that the transmitter and receiver are rapidly changing frequency.

However should the receiver not be synchronised to the transmitter or a conventional receiver be used, nothing will be heard unless the transmitter hops onto the receiver’s tuned frequency. As a frequency hopping transmitter typically hops over tens to thousands of frequencies per second (the hop rate), the time it stays on a particular channel (the dwell time) is very short and as a result the signal would appear as a burst of interference.

The other major spread spectrum technique is known as direct sequence or pseudo-noise. In this technique a pseudo-random code directly phase shift keys the carrier increasing its bandwidth (see Fig. 2). In a typical direct sequence system a double-balanced mixer (DBM) is driven by the pn code to switch a carrier’s phase between 0° and 180°. This is known as biphase shift keying (BPSK) or sometimes phase reversal keying (PRK). Unlike a frequency hopping transmitter where the pseudo-random sequence commands a synthesiser to change frequency, the direct sequence signal is directly generated by the pseudo-random sequence.

The receiver despreads this wideband signal by using an identical synchronised pseudo-random code to that in the transmitter. As with the frequency hopper, the receiver must use a circuit to adjust its clock rate so that the receiver’s pseudo-random code is at the same point in the code as the transmitter. A tracking circuit is necessary to maintain synchronism once it has been attained.

Sending data with spread spectrum

Spread spectrum signals (whether direct sequence, frequency hopping or their hybrids) can support any conventional analogue or digital modulation scheme to impress data onto the spread spectrum carrier.

Obviously some modulation formats are less suitable than others. Amplitude modulation and its derivatives are the least desirable as their use will destroy the signal’s uniform power spectral density. This constant carrier envelope is very desirable for spread spectrum systems designed for covert usage.

Frequency modulation (frequency shift keying for data) is often used in frequency hopping systems, but is infrequently used in direct sequence systems. This is because when a direct sequence signal passes through a squar-
A frequency doubling circuit, a carrier at twice the signal's centre frequency is produced. This twice frequency narrowband carrier will contain any modulation impressed on the direct sequence signal. Thus with analogue modulation it is possible for the signal to be demodulated without any prior knowledge of the pseudo-random spreading code.

One of the commonest modulation techniques used in conjunction with direct sequence is known as code inversion or modulation. The digitised voice or digital data is exclusive ORed with the pn spreading code. This will invert the pn code sequence if the data is a "1" or pass the pn code unmodified if it is a "0". Provided that the data stream is synchronised with the pn code, the correlation properties of the code are unaffected.

Prototype direct sequence spread spectrum exciter and receiver system for 435MHz. Detailed circuitry will be appear in the next two issues of Electronics World.

Assuming synchronisation at the receiver, the unmodified code despreads the direct sequence signal. This produces a narrowband signal which is still biphase shift modulated, but this time with the data or digitised speech. This signal can then be demodulated by a conventional biphase shift demodulator such as a squaring or Costas loop demodulator.

This code modification modulation is simple to implement in the transmitter and relatively easy to demodulate in the receiver. It also has the advantage of providing message privacy which the analogue modulated direct sequence signal does not have. It should be noted that it

Fig. 3. Delta modulation provides a digital bit stream equivalent of the audio modulation signal which will be used to modify the spreading code. A practical system uses a compressor/expander system to optimise performance.
is possible to directly demodulate uncorrelated spectral components of an analogue modulated direct sequence signal should the demodulating receiver be very close to the transmitter. In addition the code modification technique preserves the constant power envelope of the direct sequence signal.

One disadvantage of code modification is that voice or other analogue signals require digitisation. As in any system design, the selection of the digitisation technique is very important. The technique selected must use the lowest possible data rate as data rate is inversely proportional to the process gain of the system. The technique selected for the system described uses an enhanced form of delta modulation to digitally encode the voice into a serial data stream.

Delta modulation

Delta modulation is a variation of pulse-code modulation. It compares successive signal samples and transmits only their differences, rather than the actual amplitude as in PCM. This reduces the number of bits required to code the speech. The continuous audio signal together with some additional time dependent function (such as Sinot) is compared with an identical replica time shifted by a magnitude and summed (integrated) for all values of t. This function has a maximum at \(r = 0 \) which shows that (obviously) a function is most similar to itself when it has not been time-shifted. For periodic functions, further maxima appear for a multiple of this period.

The response of the correlation function at other values than \(r = 0 \) determines how well the original function \(f(t) \) can be found again by variation of the time shift \(r \). It is also possible to compare various functions \(f(t) \) and \(g(t) \) using the cross-correlation function:

\[
\Psi_k(r) = \int f(t) \times g(t - r) \, dt
\]

This cross-correlation function is a measure of the degree of agreement between functions. Since the functions to be compared are different \(\Psi_k(r) \) may never achieve the maximum value of \(\Psi_k(0) \). It is an indication that the functions are different when a certain threshold \((-1 \text{ in the case of a binary code})\) is not exceeded.

In the correlation of binary code sequences, the result for cross-correlation will be +1 if the functional values coincide and -1 if they do not. The integration then forms a summation of all bits of the code. The correlation value for a certain phase-shift can therefore be simply calculated by placing the bits over another and comparing them bit by bit. The correlation rate is the sum of agreements and disagreements.

For example, the maximal code sequence 1 1 0 0 1 0 is compared with itself in the seven possible phase-shifts:

<table>
<thead>
<tr>
<th>shift</th>
<th>sequence</th>
<th>agreements</th>
<th>disagreements</th>
<th>agreements minus disagreements</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 1 0 0 1 0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0 1 1 0 0 1</td>
<td>3</td>
<td>4</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>1 0 1 1 0 0</td>
<td>3</td>
<td>4</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>0 1 0 1 1 0</td>
<td>3</td>
<td>4</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>0 0 1 0 1 1</td>
<td>3</td>
<td>4</td>
<td>-1</td>
</tr>
<tr>
<td>5</td>
<td>1 0 0 1 0 1</td>
<td>3</td>
<td>4</td>
<td>-1</td>
</tr>
<tr>
<td>6</td>
<td>1 1 0 0 1 0</td>
<td>7</td>
<td>0</td>
<td>+7</td>
</tr>
</tbody>
</table>

As can be seen the auto-correlation function value is always -1, except for the case of coincidence, where it is a maximum. The greater the length of the code, the higher the auto-correlation amplitude and the greater the code discrimination or cross-correlation response. The auto-correlation function for maximal and non-maximal codes are shown in the drawing below. As shown in the figure, maximal codes have only one auto-correlation maximum, whereas non-maximal codes have side maxima as well.

When non-maximal codes are used it is important to ensure that a sufficiently large spacing exists between the main and side maxima. Despite these disadvantages, non-maximal codes are used to exploit their main advantages of rapid synchronisation and message security.
Circuit description

The system is described in functional blocks. First, the transmitter direct sequence modulator. The exciter’s clock frequencies are provided by a master 4MHz crystal oscillator and a divider. Power-up reset (with manual override) is configured around a Schmidt-trigger.

A shift register and exclusive OR gates are configured as a 4MHz 127 chip (code bit) long maximal pseudo-random code generator (see section pseudo-random codes and generation).

Microphone audio is amplified by the vogad (voice operated gain adjusting device) to the optimum level for the input of the delta modulator. The delta modulator converts the audio into a 32Kbits serial data stream. This serial binary data stream must be coded into a format which is polarity insensitive because the receiver demodulator cannot recover the despread data’s absolute phase. Only data transitions are recovered at the receiver, hence there is no way of determining whether the output data stream is inverted or not.

The digitised audio is converted from a non return to zero (NRZ) format into a polarity insensitive diphase (biphase-mark) data stream. This subcircuit produces a diphase signal (Fig. 4), where a logic 1 has start, mid-bit and end transitions and a logic 0 has only start and finish transitions.

In addition to providing phase insensitive data transmission, the format also makes clock recovery at the receiver relatively easy, as unlike NRZ even a continuous stream of diphase encoded 0’s results in many start and finish data cell transitions. The diphase encoded delta modulated digital voice signal is exclusive-ORed with the pseudo-random code producing a code modified pn spreading code.

The data modified pn code from the output of the exclusive-OR gate provides a balanced drive (+24mA as an AC logic family device has equal sink and source currents) via a coupling capacitor and 50Ω matching pad, to a double balanced mixer (DBM) configured as a biphase shift keyer.

The pn code output alternately sinks and sources current, causing the diodes in the DBM to alternately switch on and off producing 180° phase reversals in the 435MHz carrier signal (see Fig. 5). The output spectrum consists of a series of symmetrical sidebands which have a Sinc² distribution due to the many frequency components of the pseudo-random code.

As the spreading code has a pseudo-random character, the occurrence of a particular frequency is pseudo-random in time and the direct sequence output appears as noise on a spectrum analyser. The spread spectrum signal has a main lobe bandwidth of 8MHz (twice the pn code clock rate for BPSK). This is amplified by a MAR8 MMIC (monolithic microwave integrated circuit) and further amplified to around 100mW by a Motorola CA4812 class A amplifier module. Helical band pass filtering is used to ensure that the output signal is within the permitted bandwidth before free-space transmission.
Spread spectrum terminology

Process gain (Gp) is a fundamental concept in spread spectrum systems. The process gain indicates the gain or signal to noise improvement exhibited by a spread spectrum system by nature of the spreading and despreading process. Process gain can be estimated by the following empirical relationship:

\[
G_p = \frac{G_{\text{ref}}}{R_{\text{info}}}
\]

where
\[BW_{RF} = 3\text{dB bandwidth of the transmitted spread spectrum signal (Hz)}\]
\[R_{\text{info}} = \text{data rate of the information transmitted (bits per second)}\]

For a direct sequence signal, \(BW_{RF}\) is assumed to be equal to the 3dB bandwidth of the spectrum (which is 0.88 times the pseudo-random code clock rate for a biphase shift keyed direct sequence system). For a frequency hopping system \(BW_{RF}\) is equal to \(m\) times the channel bandwidth where \(m\) is the number of frequency channels available.

Jamming Margin. Although the process gain is directly related to the interference rejection properties a more indicative measure of how a spread spectrum system will perform in the face of interference is the jamming margin \(M_j\). The process gain of a system will always be greater than its jamming margin.

\[
M_j = G_p - (L_{\text{system}} + \{S/N\}_{\text{ref}})\text{dB}
\]

where
\[L_{\text{system}} = \text{system implementation losses (dB)}\]
\[G_p = \text{process gain (dB)}\]
\[\{S/N\}_{\text{ref}} = \text{signal to noise ratio at the information output (dB)}\]

A spread spectrum system with a 30dB process gain, a minimum required output signal to noise of 10dB and system implementation loss of 3dB would have a jamming margin of 30-(10+3)dB which is 17DB. The spread spectrum system in this example could not be expected to work in an environment with interference more than 17DB above the desired signal.

Power spectral density. By nature of the spreading process, the output power of the spread spectrum transmitter is spread over typically many megahertz of bandwidth. The spectral density is the number of Watts of radio frequency power present per Hertz of bandwidth. Thus for a direct sequence transmitter of 1W output and a spread bandwidth of 8MHz the power spectral density is:

\[
\frac{1}{8,000,000} \text{W/Hz} = 125nW/\text{Hz}
\]

For a conventional AM transmitter, power spectral density is around \[
\frac{1}{6000} \text{W/Hz} = 166\mu W/
\]
some 31dB greater

The advantage to the military user is that the signal strength apparent to a conventional narrowband receiver is very low and would probably not be recognised as a communications signal, hence the expression “Low Probability of Intercept” and “Low Probability of Recognition”.

Glossary

Anti-jamming (AJ): Techniques used to minimise the effects of jamming or unintentional interference.

Auto-correlation: This is a measure of similarity between a signal and a time shifted replica of itself. Auto-correlation is a special case of cross-correlation. The auto-correlation function is the fundamental theoretical basis of spread spectrum communications.

Biphase Shift Keying (BPSK): A phase shift keying technique where the carrier phase changes between 0° and 180° (0 and π radians) under the control of a binary code. BPSK is frequently used to generate direct sequence spread spectrum signals, where the binary code is a pseudo-random sequence.

Chip: A single element of the spreading code. This may be one or more of the pn code bits, depending on the modulation technique used. For BPSK one chip represents one code bit, whereas for quadrature phase shift keying (QPSK) one chip represents two code bits.

Code: The term code usually refers to the pseudo-random code used to control the modulation technique used to spread the carrier.

Code Division Multiple Access (CDMA): A multiplexing technique where each user is given a different pseudo-random spreading code. To communicate with a particular user, the sender must select the code assigned to that user.

If the CDMA codes are carefully selected to ensure good correlation properties, then unwanted CDMA transmissions will not be correlated and hence rejected as wideband interference (up to the limit of the jamming margin \(M_j\) of the system). This technique can permit many users to operate simultaneously on the same frequency.

Correlator: A device to measure the similarity of two signals. Sometimes referred to as a de-spreader in direct sequence systems.

Costas Loop: A compound phase locked loop sometimes called an I-Q (In-phase/Quadrature phase) loop. It is used for demodulating double-sideband suppressed carriers (DSBSC) which is the modulation format of a biphase phase-shift keyed signal.

Cross-correlation: This is a measure of the similarity of two signals.

Delay Locked Loop: A tracking circuit which ensures the direct sequence receiver pn clock tracks (follows) any variation in the transmitter’s pn clock rate once synchronisation has been achieved. (See column The Delay Locked Loop).

Delta Modulation: A analogue to digital conversion technique (see column Sending Data with Spread Spectrum).

Diphase (biphase-mark): A polarity -insensitive waveform, where a transition occurs at the beginning of every data period. A logic 1 is represented by a transition one half period later. There is no second transition for a logic 0.

Direct Sequence (ds): A spread spectrum modulation technique where a pseudo-random code directly phase modulates a carrier, increasing the bandwidth of the transmission. The resulting signal has a noise-like spectrum. The signal is despread by correlating with a pseudo-random code identical to and in synchronism with the code used to spread the carrier at the transmitter.

Frequency Hopping (fh): A spread spectrum modulation technique where the transmitter frequency hops from channel to channel in a predetermined but pseudo-random manner. The signal is de-hopped at the receiver by a frequency synthesiser controlled by a pseudo-random sequence generator synchronised to the transmitter’s pseudo-random generator.

Jamming Margin (Mj): A measure of a spread spectrum system’s resistance to jamming or un-intentional interference, (see column Spread Spectrum Terminology).

Linear Codes: Pseudo-random codes generated using only modulo-2 addition or subtraction, (see column Pseudo-Random Codes and their Generation).

Maximal Code: A maximal code is the longest that can be generated with a feedback type pseudo-random generator (see column Pseudo-Random Codes and Generation).

Process Gain (Gp): The measure of the gain or signal-to-noise improvement exhibited by a spread spectrum system by nature of the spreading and de-spreading process.

Pseudo-noise: Code sequences which have noise-like properties. The term pseudo-noise (pn) is often used for direct sequence systems which use such codes to spread the carrier.

\[\text{Sinc } x = \sin x / x\]

A BPSK spread spectrum has a Sinc2x power spectrum.

Squaring Loop: A BPSK (or DSBSC) demodulator which regenerates the suppressed carrier through a frequency squaring (or doubling) process. This doubling process produces a twice frequency unmodulated carrier, which when divided by two can be multiplied with the input BPSK signal to recover the data.

In next month's issue: detailed transmitter circuitry.
MINIATURE FERRITE MAGNETS 4x4x3mm

10,000pF 100V SPRAGUE/PHILIPS

28 PIN USED TEXTOOL ZIF SOCKETS

PLASTIC 3055 OR 2955 equiv 50p

N POWER FET IRF531 8A 60V

0C29 2N3819 FETS short leads £1.40; 100 £30; 1000 £3

BC107 BCY70 PREFORMED LEADS

36M81875 36M83125 36M84375 38M900 49M504 54M19166

36M75625 36M76875 36M78125 36M79375 36M80625

2716-4 USED ALL USED EPROMS ERASED AND BLANK CHECKED

6845 CRT

17M000 20M000 21M300 21M855 22M1184 24M000 34M368

7126312 DIGIT LCD DRIVER CHIP

9 x 41256-15 SIMM

BBC VIDEO ULA

2817A-20 (2K x 8) EEPROM ex eget.

COMPUTER ICS

KEYTRONICS

FEED THRU’ CERAMIC CAPS 1000pF CERAMIC FILTERS 4M5 6M9.°10M760p ea

5-105pF £1 EA

20 C 200R £1 ea

TRIAC 1A V0C £1.50

TRIAC 1A V0C £1.50

Diodes 2N3819 £1.40; 100 £30; 1000 £3

BC107 BCY70 PREFORMED LEADS

36M81875 36M83125 36M84375 38M900 49M504 54M19166

36M75625 36M76875 36M78125 36M79375 36M80625

2716-4 USED ALL USED EPROMS ERASED AND BLANK CHECKED
Magnetic induction loops are valuable to hearing aid users because they effectively bring the ears much closer to the source of the sound so reducing the muddling effects of reverberation.

Sound intensity decreases according to the inverse square law and the direct sound pressure \(P_{\text{dir}} \) is inversely proportional to the distance \(r \) and is given by \(P_{\text{dir}} = (\rho_k W/4\pi r^2)^{1/2} \). \(W \) is the acoustical source power and \(\rho_k = 415 \text{Pa s m}^{-1} \), the characteristic air impedance.

A room acts like an acoustic hall of mirrors in which the sound energy density builds up until the rate of sound absorption by the walls and furnishings equals the source power \(W \). The absorbing properties can be expressed as an equivalent area \(A \) of perfect sound absorber equal to the total surface area \(S \) times the mean absorption coefficient \(a \). The resulting reverberant sound pressure is given by \(P_{\text{rev}} = P_{\text{dir}} \), substitution in the above equation gives \(r_{\text{crit}} = (V/312T)^{1/3} \). For distances less than \(r_{\text{crit}} \) the reverberant sound will suffer, particularly for those with hearing difficulties.

The purpose of a loop system is in effect to place the ears of the user within this critical distance, which might typically be, say, 2m. Two other factors influence this critical distance. First, the presence of other sound sources can drastically reduce it so, at a party with 100 people talking together, the critical distance would be reduced by \(10^{15} \) corresponding to 0.2m in this example.

Secondly, the use of a directional microphone can improve matters substantially. Cardioid and figure of eight patterns each pick up only a third of the reverberant power and therefore increase the critical distance by a factor of 1.73 and, better still, noise cancelling microphones are insensitive to the plane waves of the reverberant field. Although the message here is to get close to the microphone, its penalty is undue sensitivity to speaker distance and, for directional microphones, a distance dependent emphasis of the lower frequencies.

But using a voice operated gain adjusting device (vogad) accommodates different speaker distances and voice strengths, letting a less powerful amplifier produce the required mean current without clipping, and avoiding the need for critical adjustment of gain setting.

Magnetic induction loops provide an electronic communications channel for deaf people. J P Wilson details the essential design data for induction audio systems.

Magnetic basis of the loop system
A loop works by direct magnetic induction and does not involve conversion to radio frequencies or infra red light. The system acts as a transformer whose primary winding is the horizontal loop and whose magnetic core with secondary winding is vertical in the hearing aid. This replaces the internal microphone when the aid is on the T (telephone) setting.

The loop is normally one or more turns of wire surrounding the area concerned and connected in place of a loudspeaker to a normal audio power amplifier. The average magnetic field specified for the loop system is 0.1Am\(^{-1}\) (IEC118, part 4, 1981, BS6084).

Any practical layout can usually be typified as either a singular circular turn of diameter \(d \) and current \(I \), where the field at the centre is \(\mu_0 \mu_r I d \), or as a pair of parallel wires separated by \(h \), where the field halfway between is \(2\mu_0 \mu_r I h \).

Excessive vertical field components near the conductor can be avoided by mounting the loop at a distance \(h \) above or below the receiver, giving a volcano shaped field profile with a null just outside the loop. For the field to remain within ±3dB the rim must not exceed the crater by more than 6dB, which requires \(dh < 13 \). A maximally flat top (mesa) will be obtained under the Helmholtz-coil condition of \(dh = 4 \), and a rounded top for lower values of \(dh \). But lower values need higher currents.

Empirical equations, correct to within a few percent for \(2 < dh < 20 \), for the field 3dB

Preamplifier for dynamic (M) or electret microphone (E) followed by gain adjusting amplifier (HY60), loop current setting amplifier, power amplifier (HY60), and magnetic loop.
below the rim or peak, and therefore covering the greatest area within ±5dB, are given by
\[H = 0.19(d/\mu)0.6/Ld, \]
for a circular loop and for a rectangular loop of the same area with sides \(a \) and \(b \) (giving \(d = (4ab)^{0.3} \)). But when \(a = b \) a similar approximation for parallel wires gives
\[H = 0.14(h/h)^{0.6}/lb. \]

The field specification implies frequency independence for loop current with a resistive load, giving a pick-up voltage proportional to frequency in the receiving coil; this is corrected in the aid. A loop also has self inductance estimated from the length \(l \) and diameter \(d \) of the conductor from
\[L(\mu H) = 0.410 \log l/d \]
for single turn loops. The inductance produces a 6dB/oct cutoff for frequencies above \(f_c = R/2\pi L \), which if moderate can be corrected without loss of available power, due to the reduced level of high frequencies in speech.

Multiple turns \(N \) will increase field strength proportionately but, if closely spaced as in multicore cable, will reduce cutoff frequency by the same factor \((R = N, L = N^2) \). Wire gauge and number of turns should be chosen so that \(R \) matches amp impedance and \(f_c > 1kHz \). Loops used in adjacent rooms need a more complex multiple loop geometry to minimise crosstalk 1-3.

Electronic design

The circuit has a universal preamp for low impedance dynamic and electret microphone inputs, 0.270 vogad and HY60 power amp. As the vogad's output is only 90mV sine or 30mV long term speech average, extra gain of about 4.5 x is needed to fully drive the power amp module without clipping, giving a speech average of 3V. The 47k preset feedback resis-
tor is set for the mean loop current needed.

The 12k coupling resistor determines the level at which compression starts, and reducing it excessively renders ambient noise and microphone noise obtrusive in the absence of signal.

The parallel 6n6 capacitor is set for loop inductance correction at 2kHz and should be adjusted according to requirements. The attack time of the vogad is determined by the capac-
tor from pin 1 to earth and the recovery time by the combination of this capacitor and resis-
tor. Overall the response covers 70Hz to 10kHz ±3dB and subjectively gives high qual-
ity reproduction of speech and music.

References

This Hewlett-Packard oscilloscope combines the feel and display of a top line analogue instrument with the precision and programmability of digital electronics. This DSO is easy to use because it was designed by electronics engineers for electronics engineers.

Electronics World is looking for freelance authors who can bring applied electronics design alive for other electronics professionals through their writing. We want to commission articles on circuit design using the wealth of modern components now available to electronics engineers. Possible areas of interest could be RF, microwave, audio, video, consumer electronics, data acquisition, signal processing and computer peripherals.

All articles accepted for publication will be paid for -- in the region of several hundred pounds for a typical design feature.

The author of the best script received over the period June 1, 1993 to May 30, 1994 will receive an HP54600A oscilloscope in addition to the normal author's fee.

The judging panel will be drawn from Electronics World and Hewlett-Packard.
M & B RADIO (LEEDS)
THE NORTH'S LEADING USED TEST/EQUIPMENT DEALER

BENCH POWER SUPPLIES from DIAWA INDUSTRY CO

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Voltage Range</th>
<th>Current Range</th>
<th>Independent Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS120</td>
<td></td>
<td>230V/117V</td>
<td>170V/117V</td>
<td>YES</td>
</tr>
<tr>
<td>PS140</td>
<td></td>
<td>230V/117V</td>
<td>170V/117V</td>
<td>YES</td>
</tr>
<tr>
<td>PS304</td>
<td></td>
<td>230V/117V</td>
<td>170V/117V</td>
<td>YES</td>
</tr>
<tr>
<td>RS40X</td>
<td></td>
<td>230V/117V</td>
<td>170V/117V</td>
<td>YES</td>
</tr>
</tbody>
</table>

*Carriage extra
- **Compact and lightweight**
- **Cost efficient**
- **Rapid delivery**

SOUTH MIDLANDS COMMUNICATIONS LIMITED
S M House, School Close, Chandlers Ford Ind Est.
Eastleigh, Hampshire, S05 3BY
Tel: (0703) 255111 Fax: (0703) 263507

CIRCLE NO. 110 ON REPLY CARD

ALL PRICES PLUS VAT AND CARRIAGE
86 Bishopsgate Street, Leeds LS1 4BB
Tel: (0532) 435649 Fax: (0532) 426881

ADVANCED ACTIVE AERIAL

The aerial consists of an outdoor unit with a control and power unit and offers exceptional intermediate performances: SOIP +90dBm, TOIP +55dBm. For the first time this permits full use of an active system around the If and mf broadcast bands where products found are only those radiated from transmitter sites.

- **General purpose professional reception 4kHz–30MHz**
- **1–10dB Gain, field strength in volts/metre to 50 Ohms**
- **Preselector and attenuators allow full dynamic range**
- **-10dB gain, field strength in volts/metre version**
- **Aerial consists of an outdoor head unit with a control and power unit and offers exceptional intermediate performances**

SURREY ELECTRONICS LTD
The Forge, Luxury Green, Cranleigh, GU6 7BG
Telephone: 0483 275997. Fax: 276477.
Manufacturing constraints combined with power-saving demands of the portable market are forcing designers to rethink their device supply levels. Rupert Baines reports on an industry in transition.

Traditionally, you could be fast, but you were power-hungry — increasing a device’s switching speed required a proportionate boost in power consumption. But manufacturers are now finding different ways to improve on the established compromises by releasing chips running off lower voltages.

Many are offering device variants for different supply rails, optimised for particular markets. AMD’s release of 3.3V-supply 386 clones was a deliberate attempt to offer something different to Intel. But designers are gradually abandoning the general standard of the revered 5V VCC, altogether. DEC’s new Alpha is only available in a 3.3V form, and while Intel’s Pentium may be available in either 3.3 or 5V versions, future processors in the line will solely operate at 3.3V or less.

The reasoning stems from the physics of the devices that make up the chip.

A processor such as Alpha (100MHz, true 64 bit) has to squeeze a massive number of transistors (1.7 million of them) onto a single 230mm² die. For reliable manufacture, the die — and its components — must be as small as possible, demanding finer connections that are able to withstand less electrical stress. So the voltage that can be withstood is lower, and the designer must reduce the supply rail.

Margins cut
Of course the gains do not come without cost. The reduced voltage level makes design more difficult by cutting down device noise margins, a situation worsened by the higher frequencies involved.

But all future “super processors” are likely to be based on low voltage operation. Indeed, 3.3V may be too high — the successor to the revered 5V VCC, altogether, DEC’s new Alpha is rumoured to run at 300MHz on 2.5V. AMD’s 386DX-40, and 386SX-25 operate on 3.3V, and dissipate 28% less power than their 5V counterpart running at the same clock frequency.

The shift to lower voltages also affects other components, especially memory. A dram cell consists of very little more than a single capacitor. Speed is determined by how quickly the cell can be charged, and so the attraction of low voltage operation is reinforced. Hitachi have just announced a prototype dram that runs off just 1.5V.

Series notes
Computers do not exist in isolation and must communicate with other equipment. The RS232 serial interface (the “standard” that exists in more varieties than any other), specifies a maximum data rate of 20k baud/s, and minimum output levels of 5V.

Given the move to a lower supply rail, it is not surprising that a new version of 232 has been developed to suit the demand for more efficiency. EIA562 has been specified by the EIA (electrical industry association) as an improved version of the old standard. It is compatible such that a laptop with the new link will work with a printer or modem using

RS232 serial interface (the “standard” that exists in more varieties than any other), specifies a maximum data rate of 20k baud/s, and minimum output levels of 5V.
TELEVISION TRANSMITTERS AND TRANSPOasers

- High stability crystal locked output
- Phase lock loop and saw filter technology
- 5W, 10W, 15W and 30W systems also available
- Transposers can up or down convert in bands I, III, IV or V.
- Up to 50 Watts RF output
- Studio, Satellite or RF input
- Single channel, Bands I, III, IV or V
- Pal System B,G,H or I
- Automatic Output Protection
- Output Power Meter
- Integral forced air cooling
- Integral power supply
- Dimensions 4 Units high 19” panel
- Prices from £2,650 (5W) to £4,950 (50W) ex-works & ex-VAT

RESEARCH COMMUNICATIONS LTD
Unit 1, Aerodrome Industrial Complex, Aerodrome Road, Hawkinge, Folkestone, Kent CT18 7AG, UK
Tel: (UK) 0303 893631 (Overseas) 44 303 893631
Fax: (UK) 0303 893838 (Overseas) 44 303 893838

CIRCLE NO. 112 ON REPLY CARD

R.S.T.
LANGREX SUPPLIES LTD
One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country

Over 5 million items in stock covering more than 6,000 different types, including CRT’s camera tubes, diodes, ignitrons, image intensifiers, IC’s, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thyatrons, transistors, transmitting tubes, triodes, vidicons.

All from major UK & USA manufacturers.

Where still available.

Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available.

LANGREX SUPPLIES LTD
1 Mayo Road, Croydon, Surrey CR0 2QP
Tel: 081-684 1166
Telex: 946708
Fax: 081-684 3056

CIRCLE NO. 113 ON REPLY CARD

Custom metalwork — good & quick!
Plus a wide range of rack-mounting cases etc. from stock.
Send for our new Product Catalogue.

IPK Broadcast Systems
3 Darwin Close Reading Berks RG2 0TB
Tel: (0754) 311830 Fax: (0754) 318356

CIRCLE NO. 114 ON REPLY CARD
just 0.7V, rather than the 2.0V of 232, making the two noise margins is not that significant in waveform shape. Also, the difference between will be somewhat balanced by the benefits of the newer one, as power consumption is fixed whether the receiver uses the old standard or other cables, or ground loops. But the problem of reducing levels is that the noise margin (the space between the minimum output level at the driver of ±3.7V. The receiver’s sensitivity remains unchanged at ±0.3V. As a result the minimum power required by the new driver will be just 55% of the power delivered to the load by a 232 driver. These power savings will be there whether the receiver uses the old standard or the newer one, as power consumption is fixed by the transmitting device.

Disadvantage of reducing levels is that the noise margin (the space between the minimum output of the driver, and the sensitivity of the receiver) is lessened. It has now dropped to just 0.7V, rather than the 2.0V of 232, making the new standard more sensitive to corruption from external interference, cross-talk from other cables, or ground loops. But the problem should not prove too important. For a start it will be somewhat balanced by the benefits of waveform shape. Also, the difference between the two noise margins is not that significant in practice: if you have problems with 562, you would probably have had them anyway with 232. The solution is the same, involving shorter cables, lowering the baud rate, and moving equipment to the same power source to eliminate ground loops.

If corruption remains, moving to a more robust protocol – RS485 for example, differential not single ended – might be the answer.

Most of the major manufacturers (Maxim, Linear, TI etc) are producing interface chips for 562. Increasingly commonly, these contain internal charge pumps to generate the required voltages, allowing them to operate from the single 3.3V supply.

There is growing concern about the power consumption of computer systems as a whole. In the US, President Clinton has announced that the US government will give preference to items meeting the Energy Star standard. To qualify, a computer, monitor or printer must have an idle mode in which it consumes 30W or less (45W for colour printers and some other special items). Conventional components use 200-250W.

Given that computer equipment is estimated to use between 5% and 10% of commercial energy use, the potential for saving is clear; the EPA (Environmental Protection Agency) believes that widespread adoption of Energy Star could save $1bn a year.

Though computer users could make even more savings. According to the EPA, 30-40% of commercial machines are left running 24h/day. As the number of networks increases, even more PCs will be left switched on “in case someone needs to access my disk”.

Switching off before leaving work would be vastly more effective (and would mean that air conditioning need only be set to comfortabe, rather than “arctic” so making more savings).

However, where there is a bandwagon, people are going to jump on it. The latest PC Expo was full of “Green PCs”, which – of course – were no such thing. Instead they were conventional pieces of equipment, upgraded with a timer circuit and a suitable exorbitant price.

One machine that takes a more thorough approach is IBM’s PS2/E, using the power saving ideas of a portable in desktop machines: flat screen, smart power management (eg sending the hard drive to sleep) and low power PCMCIA expansion cards.

Of course, it still has an exorbitant price tag, and the misleading “Green” motif. A truly green PC would go far further, reducing “whole life” energy consumption, improving recycling and

POWER POLITICS

Contact SMART Communications for our full range of Programmers, Emulators, Cross-Assemblers, Compilers and Simulators.

Tel: 081 441 3880
Fax: 081 441 1843

CIRCLE NO. 115 ON REPLY CARD

SHERWOOD Data Systems

The Firefly

Single Board Controller

- Single 16/23 board
- CMOS technology
- 2 serial ports
- 4 parallel ports
- Standard industrial I/O connector
- 4 counter/timers
- Battery backed up
- Power fail detection
- Watchdog timer
- LCD and keyboard Interfaces
- Options: Debug monitor and Basic
- 3V only power converter
- Various connector options

for information contact:
Sherwood Data Systems Ltd.
Tel: 0494 464264
Fax: 0494 445374

CIRCLE NO. 116 ON REPLY CARD
Input stage design is not something to be taken lightly for minimal amplifier distortion. Even the fine details of current distribution at this point can have a surprisingly powerful effect on distortion.

By Douglas Self.

Distortion in power amplifiers

2: the input stage

The input stage of an amplifier performs the critical duty of subtracting the feedback signal from the input, to generate the error signal that drives the output. It is almost invariably a differential transconductance stage; a voltage-difference input results in a current output that is essentially insensitive to the voltage at the output port. Its design is also frequently neglected, as it is assumed that the signals involved must be small, and that its linearity can therefore be taken lightly compared with that of the voltage amplifier stage (VAS) or the output stage. This is quite wrong, for a misconceived or even mildly wayward input stage can easily dominate HF distortion performance.

The input transconductance is one of the two parameters setting HF open-loop (o/l) gain, and thus has a powerful influence on stability and transient behaviour as well as distortion. Ideally the designer should set out with some notion of how much o/l gain at 20kHz will be safe when driving worst-case reactive loads – a precise measurement method of open-loop gain was outlined last month – and from this a suitable combination of input transconductance and dominant-pole Miller capacitance can be chosen.

Many of the performance graphs shown here are taken from a model (small-signal stages only) amplifier with a Class-A emitter-follower output, at +16dBu on ±15V rails. However, since the output from the input pair is in current form, the rail voltage in itself has no significant effect on the linearity of the input stage. It is the current swing at its output that is the crucial factor.

Vive la differential

The primary motivation for using a differential pair as the input stage of an amplifier is usually its low DC offset. Apart from its inherently lower offset due to the cancellation of the Vbe voltages, it has the added advantage that its standing current does not have to flow through the feedback network. However a second powerful reason is that its linearity is far superior to single-transistor input stages. Figure 1 shows three versions, in increasing order of sophistication. The resistor-tail version at 1a has poor CMRR and PSRR and is generally a false economy; it will not be further considered. The mirrored version at 1c has the best balance, as well as twice the transconductance of 1b.

![Figure 1: Three versions of an input pair: a) Simple tail resistor; b) Tail current-source; c) With collector current-mirror to give inherently good l, balance.](image)
Intuitively, the input stage should generate a minimal proportion of the overall distortion because the voltage signals it handles are very small, appearing as they do upstream of the vas that provides almost all the voltage gain. However, above the first pole frequency P_1, the current required to drive C_{dom} dominates the proceedings, and this remorselessly doubles with each octave, thus:

$$I_{pk} = 2\pi f C_{dom} V_{pk}$$ \((\text{Eqn 4})\)

For example the current required at 100W, 8Ω and 20kHz, with a 100pF C_{dom} is 0.5mA peak, which may be a large proportion of the input standing current, and so the linearity of transconductance for large current excursions will be of the first importance if we want low distortion at high frequencies.

Fig. 2, curve A, shows the distortion plot for a model amplifier (at +16dBu output) designed so that the distortion from all other sources is negligible compared with that from the carefully balanced input stage. With a small-signal class A stage this essentially reduces to making sure that the vas is properly linearised. Plots are shown for both 80kHz and 500kHz measurement bandwidths to show both HF behaviour and LF distortion. It demonstrates that the distortion is below the noise floor until 10kHz, when it emerges and heaves upwards at a precipitous 18dB/octave. This rapid increase is due to the input stage falling at 6dB/octave since we are almost certainly above the dominant pole frequency P_1. The combined effect is an 8dB/octave rise. If the vas or the output stage were generating distortion, this would be rising at only 6dB/octave and would look quite different on the plot.

This form of non-linearity, which depends on the rate-of-change of the output voltage, is the nearest thing to what we normally call TID, an acronym that now seems to be falling out of fashion. SID (slew-induced-distortion) is a better description of the effect.

If the input pair is not accurately balanced, then the situation is more complex. Second as well as third harmonic distortion is now generated, and by the same reasoning this has a slope of closer to 12dB/octave. This vital point requires examination.

Input stage in isolation

The use of a single input transistor (Fig. 3a) sometimes seems attractive, where the amplifier is capacitor-coupled or has a separate DC servo; it at least promises strict economy. However, the snag is that this singleton con-
Dear Ms Pat Bunce,

Following on from the review of Quickroute 2.0 for Windows 3/3.1 in the June 1993 issue of Electronics World and Wireless World, we have experienced a tremendous surge in sales at POWERware, much of which can be attributed to the review. We have received enquiries from as far afield as Brazil, China, Africa, and New Zealand, as well as North America, Canada and Europe. Sales have been made to universities, colleges, schools, small and large businesses, as well as individual users in the professional, semi-professional and hobbyist markets.

Many of our customers are looking for cost effective, professional design tools and as such we feel that EW&WW provides a good forum for selling Quickroute in both Windows and DOS versions. EW&WW seems to be particularly successful at reaching professional electronic engineers both in the UK and abroad.

Quickroute has enjoyed healthy sales through advertisements in EW&WW over the past few years, and we look forward to many more years of business through the magazine.

Yours faithfully,

Dr Ian R. Frost B.Sc. (Hons), Ph.D(UMIST), Business Manager POWERware Software Design.

Call Pat Bunce on 081-652 8339 for advertising rates

"... there is no doubt that running under Windows puts it ahead of the field and makes it a visually attractive package." Electronics World + Wireless World July 1993

High Quality PCB and Schematic Design for Windows 3/3.1 and DOS

- Supports over 150 printers/plotters including 9 or 24 pin dot-matrix, DeskJet, LaserJet, Postscript, and HPGL. Professional Edition imports GERBER files, and exports GERBER and NC-DRILL files.
- Up to 200,000 pads/track nodes depending on memory. Simple auto-router and schematic capture tools with SPICE compatible net-list output.
- Low cost DOS version (reduced features) also available. Ring for full details!

"Quickroute provides a comprehensive and effective introduction to PCB design which is a pleasure to use" Radio Communication May 1993.

POWERware, Dept EW, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, UK.
Ring us on 061 449 7101 or write, for a full information pack.

Quickroute is available for Windows 3/3.1 in Professional (£99.00) and Standard (£59.00) editions, and for DOS with reduced features (£39.00). All prices inclusive. Add £5 P+P outside UK.
figuration has no way to cancel the second-harmonics generated by its strongly-curved exponential \(V_{in}/I_0 \) characteristic. The result is shown in Fig. 2 curve B, where the distortion is much higher, though rising at the slower rate of 12dB/octave.

Although the slope of the distortion plot for the whole amplifier tells much, measurement of input-stage nonlinearity in isolation tells more. This may be done with the test circuit of Fig. 4. The op-amp uses shunt feedback to generate an appropriate AC virtual earth at the input-pair output. Note that this current-to-voltage conversion op-amp requires a third -30V rail to allow the input pair collectors to work at a realistic DC voltage - i.e. about one diode's-worth above the -15V rail. \(R_1 \) can be scaled to stop op-amp clipping without effect to the input stage. The DC balance of the pair may be manipulated by \(VR_1 \); it is instructive to see the THD residual diminish as balance is approached until, at its minimum amplitude, it is almost pure third harmonic.

The differential pair has the great advantage that its transfer characteristic is mathematically highly predictable. The output current is related to the differential input voltage \(V_{in} \) by:

\[
I_{out} = I_e \times \tanh\left(-\frac{V_{in}}{2V_T}\right)
\]

where \(V_T \) is the usual "thermal voltage" of about 26mV at 25°C and \(I_e \) the tail current. This equation demonstrates that the transconductance, \(g_{m} \), is highest at \(V_{in} = 0 \) when the two collector currents are equal, and that that the value of this maximum is proportional to the tail current, \(I_e \). Note also that beta does not figure in the equation, and that the performance of the input pair is not significantly affected by transistor type.

Fig. 5a shows the linearising effect of local feedback or degeneration on the voltage-in/current-out law. Fig. 5b plots transconductance against input voltage and demonstrates a reduced peak transconductance value but with the curve made flatter and more linear over a wider operating range. Adding emitter degeneration markedly improves input stage linearity at the expense of noise performance. Overall amplifier feedback factor is also reduced since the HF closed-loop gain is determined solely by the input transconductance and the value of the dominant-pole capacitor.

Input stage balance

One relatively unknown property of the differential pair in power amplifiers is its sensitivity to exact DC balance. Minor deviations from equality of \(I_c \) in the pair seriously upset the 2nd-harmonic cancellation by moving the operating point from A in Fig. 5a to B. Since the average slope of the characteristic is greatest at A, serious imbalance also reduces the

| Curve No. | \(I_c \) Imbalance |
|-----------|----------------|---|
| 1 | 0% |
| 2 | 0.5% |
| 3 | 2.2% |
| 4 | 3.6% |
| 5 | 5.4% |
| 6 | 6.9% |
| 7 | 8.5% |
| 8 | 10% |

Imbalance defined as deviation of \(I_c \) (per device) from that value which gives equal currents in the pair.

Fig. 6: Effect of collector-current imbalance on an isolated input pair; the 2nd harmonic rises well above the level of the 3rd if the pair moves away from balance by as little as 2%.
open-loop gain. The effect of small amounts of imbalance is shown in Fig. 6 and Table 1: for an input of -45dBu a collector imbalance of only 2% increases THD from 0.10% to 0.16%; for 10% imbalance this deteriorates to 0.55%. Unsurprisingly, imbalance in the other direction (i.e., +2%) gives similar results.

This gives insight into the complex changes that accompany the simple changing of the value of R3. For example, we might design an input stage as per Fig. 7a, where R3 has been selected as 1kΩ by uninspired guesswork and R1 made highish at 10kΩ in a plausible but misguided attempt to maximise o/l gain by minimising loading on Tr1 collector. R3 is also made 10kΩ to give the stage a notional "balance", though unfortunately this is a visual rather than electrical balance. The asymmetry is shown in the resulting collector currents: this design will generate avoidable second harmonic distortion, displayed in the 10kHz curve of Fig. 8.

However, recognising the importance of DC balancing, the circuit can be rethought as per Fig. 7b. If the collector currents are to be roughly balanced, then R3 must be about 2 x R1, as both have about 0.6V across them. The effect of this change is shown in the 2.2kHz curve of Fig. 8. The improvement is accentuated as the o/l gain has also increased by some 7dB, though this has only a minor effect on the closed-loop linearity compared with the improved balance of the input pair. R3 has been excised as it contributes little to stage balance.

The joy of current mirrors

While the input pair can be approximately balanced by the correct choice of R1 and R2, other circuit tolerances are significant and Fig. 6 shows that balance is critical, needing to be accurate to at least 1% for optimal linearity. The standard current-mirror configuration shown in Fig. 7c forces the two collector currents very close to equality, giving proper cancellation of 2nd harmonic. The resulting improvement shows up in the current-mirror curve of Fig. 8. There is also less DC offset due to unequal base currents flowing through input and feedback resistances; we often find that a power-amplifier improvement usually gives at least two separate benefits. This simple mirror has its own residual base current errors but they are not large enough to affect distortion.

The hyperbolic tangent law also holds for the mirrored pair9, though the output current swing is twice as great for the same input voltage as the resistor-loaded version. This doubled output occurs at the same distortion level as for the single-ended version, as linearity depends on the input voltage, which has not changed. Alternatively, to get the same output we can halve the input which, with a properly balanced pair generating only third harmonic, will produce just one-quarter of the distortion, a pleasing result.

A low cost mirror made from discrete transistors forgoes the Vbe matching available to IC designers, and so requires its own emitter degeneration for good current-matching. A voltage drop across the mirror emitter resistors in the range 30-60mV will be enough to make the effect of Vbe tolerances on distortion negligible. If degeneration is omitted, there is significant variation in HF distortion performance with different specimens of the same transistor type. Adding a current mirror to a reasonably well balanced input stage will increase the total o/l gain by at least 6dB, and by up to 15dB if the stage was previously poorly balanced. This needs to be taken into account in setting the compensation. Another happy consequence is that the slew-rate will be roughly doubled, as the input stage can now source and sink current into Cdom without wasting it in a collector load. If Cdom is 100pF, the slewrates of Fig. 7b is about 2.8V/µs up and down, while 7c gives 5.6V/µs. The unbalanced pair at 7a displays further vices by giving 0.7V/µs positive-going and 5V/µs negative-going.

Improving linearity

Now that the input pair has been fitted with a mirror, we may still feel that the HF distortion needs further reduction; after all, once it emerges from the noise floor it goes up eight times with each doubling of frequency, and so it is well worth pushing the turn point as far as possible up the frequency range. The input pair shown has a conventional value of tail current. We have seen that the stage transcon-
ductance increases with \(I_e \), and so it is possible to increase the \(g_m \) by increasing the tail-current, and then return it to its previous value (otherwise \(C_{\text{dom}} \) would have to be increased proportionately to maintain stability margins) by applying local NFB in the form of emitter-degeneration resistors. This ruse powerfully improves input linearity despite its rather unsettling flavour of something-for-nothing. The transistor nonlinearity can here be regarded as an internal nonlinear emitter resistance \(r_e \), and what we have done is to reduce the value of this (by increasing \(I_e \)) and replace the missing part of it with a linear external resistor, \(R_e \).

For a single device, the value of \(r_e \) can be approximated by:

\[
 r_e = 25 I_e \Omega \quad \text{(for } I_e \text{ in mA)}
\]

Our original stage at Fig. 9a has a per-device \(I_e \) of 600µA, giving a differential (i.e., mirrored) \(g_m \) of 23mA/V and \(r_e = 41.6 \Omega \). The improved version at Fig. 9b has \(I_e = 1.35 \text{mA} \) and so \(r_e = 18.6 \Omega \). Emitter degeneration resistors of 22Ω are required to reduce the \(g_m \) back to its original value, as 18.6+22=41.6. The distortion measured by the circuit of Fig. 4 for a 40dBu input voltage is reduced from 0.32% to 0.032%, which is an extremely valuable linearisation, and will translate into a distortion reduction at HF of about five times for a complete amplifier. For reasons that will emerge later the full advantage is rarely gained. The distortion remains a visuallinear on harmonic so long as the input pair remains balanced. Clearly this sort of thing can only be pushed so far, as the reciprocal-law reduction of \(r_e \) is limited by practical values of tail current. A name for this technique seems to be lacking; "constant-\(g_m \) degeneration" is descriptive but rather a mouthful.

Since the standing current is roughly doubled so has the slew rate: 10V/µs to 20V/µs. Once again we gain two benefits for the price of one modification.

For still better linearity, various techniques exist. When circuit linearity needs a lift, it is often a good approach to increase the local feedback factor, because if this operates in a tight local NFB loop there is often little effect on the overall global-loop stability. A reliable method is to replace the input transistors with complementary-feedback (CFP or Sziklai) pairs, as shown in the stage of Fig. 10a. If an isolated input stage is measured using the test circuit of Fig. 4, the constant \(g_m \) degenerated version shown in Fig. 9b yields 0.35% third-harmonic distortion for a 40dBu input voltage, while the CFP version gives 0.045%. Note that the input level here is 10dB up on the previous example to get well clear of the noise floor. When this stage is put to work in a model amplifier, the third-harmonic distortion at a given frequency is roughly halved, assuming other distortion sources have been appropriately minimised. However, given the steep slope of input stage distortion, this extends the low distortion regime up in frequency by less than an octave. See Fig. 11.

The CFP circuit does require a compromise on the value of \(R_e \), which sets the proportion of the standing current that goes through the NPN and PNP devices on each side of the stage. In general, a higher value of \(R_e \) gives better linearity, but more noise, due to the lower \(I_e \) in the NPN devices that are the inputs of the input stage, as it were, causing them to match less well the relatively low source resistances. 2.2kΩ is a reasonable compromise.

Other elaborations of the basic input pair are possible. Power amp design can live with a restricted common-mode range in the input stage that would be unusable in an op-amp, and this gives the designer great scope. Complexity in itself is not a serious disadvantage as the small-signal stages of the typical amplifier are of almost negligible cost compared with mains transformers, heatsinks, etc.

Two established methods to produce a linear input transconductance stage (often referred to in op amp literature simply as a transconduct) are the cross-quad\(^a\) and the cascomp\(^b\) configurations. The cross-quad (Fig. 10b) gives a useful reduction in input distortion when operated in isolation but is hard to incorporate in a practical amplifier because it relies on very
low source resistances to tame the negative conductances inherent in its operation. The cross-quad works by imposing the input voltage to each half across two base-emitter junctions in series, one in each arm of the circuit. In theory the errors due to non-linear r_e of the transistors is divided by beta, but in practice things seem less rosy.

The cascomp (Fig. 10c) does not have this snag, though it is significantly more complex to design. T_2,T_3 are the main input pair before, delivering current through cascode transistors T_4,T_5 (this does not in itself affect linearity) which, since they carry almost the same current as T_2,T_3 duplicate the input V_{ce} error at their emitters. This is sensed by error diff-amp T_6,T_7 whose output currents are summed with the main output in the correct phase for error-correction. By careful optimisation of the (many) circuit variables, distortion at ~30dBu input can be reduced to about 0.016% with the circuit values shown. Sadly, this effort provides very little further improvement in whole-amplifier HF distortion over the simpler CFP input, as other distortion mechanisms are coming into play – for instance the finite ability of the VAS to source current into the other end of C_{don}.

Power amplifiers with pretensions to sophistication sometimes add cascoding to the standard input differential amplifier. This does nothing to improve input stage linearity as there is no appreciable voltage swing on the input collectors; its main advantage is reduction of the high V_{ce} that the input devices work at. This allows cooler running, and therefore possibly improved thermal balance; V_{ce} of 5V usually works well. Isolating the input collector capacitance from the vas input often allows C_{don} to be somewhat reduced for the same stability margins, but it is doubtful if the advantages really outweigh the increased complexity.

Other considerations

As might be expected, the noise performance of a power amplifier is set by the input stage, and so it is briefly examined here. Power amp noise is not an irrelevance: a powerful amplifier is bound to have a reasonably high voltage gain and this can easily result in a faint but irritating hiss from efficient loudspeakers even when the volume control is fully retarded. In the design being evolved here the EIN has been measured at ~120dBu, which is only 7 or 8dB inferior to a first-class microphone preamplifier. The inferiority is largely due to the source resistances seen by the input devices being higher than the usual 150Ω microphone impedance. For example, halving the impedance of the feedback network shown in pt (22kΩ and 1kΩ) reduces the EIN by approx 2dB.

Slew rate is another parameter usually set by the input stage, and has a close association with HF distortion. The amplifier slew rate is proportional to the input’s maximum-current capability, most circuit configurations being limited to switching the whole of the tail current to one side or the other. The usual differential pair can only manage half of this, as with the output slewing negatively half the tail-current is wasted in the input collector load R_2. The addition of an input current-mirror, as advocated, will double the slew rate in both directions. With a tail current of 1.2mA, the slew rate is improved from about 5V/µs to 10V/µs. (for C_{don}=100pF) The constant g_m degeneration method of linearity enhancement in Fig. 9 further increases it to 20V/µs. The mathematics of voltage-slewing is simple: Slew rate $= I/C_{don}$ in V/µs for maximum I in µA. C_{don} in pF.

The maximum output frequency for a given slew rate & voltage is:

$$F_{max} = S/2\pi V_{PK} = S/2\pi \times V_{rms}$$

Likewise, a sinewave of given amplitude has a maximum slew-rate (at zero-crossing) of:

$$S_{r,max} = \frac{dV}{dt} = \frac{w_{max}}{\pi} \times V_{pk} = 2\pi F_{max}$$

So, for example, with a slew rate of 20V/µs the maximum frequency at which 35V rms can be sustained is 64kHz, and if C_{don} is 100pF, then the input stage must be able to source and sink 2mA peak.

A vital point is that the current flowing through C_{don} must be sourced/sunk by the vas as well as the input pair. Sinking is usually no problem, as the vas common-emitter transistor can be turned on as hard as required. The current source or bootstrap at the vas collector will however have a limited sourcing ability, and this can often turn out to be an unanticipated limitation on the positive-going slew rate.

Next month: the voltage-amplifier stage.

References

2. Gray & Meyer, ibid, p194. (tanh law of simple pair)
3. Gray & Meyer, ibid, p256. (tanh law of current-mirror pair)
APPROVED

Standard Range of Toroidal Transformers to EN 60742

We are pleased to announce our twelve standard ranges of toroidal transformers approved to EN 60742.

EN 60742

The European Standard EN 60742 (based on the international standard IEC 742), covers the requirements for Isolating Transformers and Safety Isolating Transformers. It was ratified in 1988 by CENELEC, giving the standard the status of a national standard without any alteration for CENELEC members.

The standard is recognised as a national standard by each of the eighteen member countries of CENELEC and is known as BS 3535 in the UK and VDE 0551 in Germany.

AS EN 60742 is derived from IEC 742, it is in the main identical to any other national standard derived from IEC 742, such as the Australian standard AS 3108.

Twelve Power Ratings

We currently manufacture twelve approved power ratings of toroidal transformers:-

- 15VA
- 30VA
- 50VA
- 80VA
- 125VA
- 250VA
- 300VA
- 500VA
- 625VA
- 800VA & 1kVA!

KEMA Approval

Our transformers were tested and approved by N.V.KEMA the national CENELEC body of the Netherlands. KEMA KEUR agreement 919691. We are also approved to ISO 9003.

Low Mechanical Noise

- Electrostatic Screens
- Safety Screens
- Magnetic Shieds

Audio Grade Transformers
- 100V Line Transformers
- Inverter Transformers
- Autotransformers
- Fully Potted Transformers
- Low Profile Transformers
- Designs to UL & CSA Standards
- Medical Equipment Transformers (IEC 601/BS 5724)
- Valve Output Transformers

Custom Designs from 15VA to 3kVA

Antrim Transformers Ltd

25 Randalstown Road, Antrim,
Co Antrim, N.Ireland, BT41 4LD

Tel: 08494 28734
Fax: 08494 68745

Z8 Z80 Super8

6502 65816

68HC11

68000... from only £49

8051... and many more

and many more COMPILERS CROSS- ASSEMPLERS SIMULATORS

Call for data sheets
HYPOTHESIS

Using momentum to dethrone Einstein?

Stepping out from behind the towering shadows of Maxwell, Einstein and Bohr takes nerve. John Ferguson sends forth an iconoclastic Mechanistic theory into the searing light of the relativistic world.

Quantum mechanics

During the years 1905-1925 it seemed that the concept of photons could not be reconciled with the wave theory of light. A possible solution came via the work of Louis de Broglie, who pointed out that if Universal laws exhibit symmetry, then "matter" might be expected to have properties similar to those of waves.

At first, de Broglie's idea was ignored. But experiments showed that sub-atomic particles such as electrons can behave either as waves or particles. One type of experiment will demonstrate projectile behaviour with clearly defined trajectories, others will show wave characteristics, with peaks and troughs adding or cancelling to produce interference effects. As yet, no experiment has shown both simultaneously.

Common sense says that it is impossible for something to be both a wave and a particle. But quantum mechanics say light and similar entities can behave either as waves or as particles, depending on the experiment.

It is this dual wave/particle property of sub-atomic particles that is the central mystery of the theory of quantum mechanics.

An explanation of the theory was offered by Heisenberg's Uncertainty principle, which states that the so-called "complementary properties" of a quantum object cannot be determined simultaneously. For instance, if we measure a quantum object's position in space with absolute certainty, then there is infinite uncertainty in its momentum.

It is fair to add that regardless of the dual nature of quantum entities, and their illogical dependence on observers for their existence, quantum mechanics has been remarkably successful in describing the behavior of the sub-atomic world.
tronic engineers. But ever-increasing numbers of new optical components - lasers, displays, optical fibres, discs and switches - are steadily being developed for use with electronics. Light pulses used to transmit signals are faster and less subject to distortion than electrical pulses. They can cross each other without interference and can be sent from component to component via optical fibres and mirrors.

So tomorrow's electronic engineers will require a knowledge of the theory of light: Huygens' principle, Snell's law, Fermat's principle, Relativity theory, Maxwell's equations, Uncertainty principle, wave-particle duality and quantum mechanics. (Readers wanting to remind themselves how the theory of light has evolved should see the various boxes.)

Mechanistic theory of light

Light is a unique form of energy: it can interact with matter and be transformed into mechanical, thermal, electrical or even chemical energy. The Mechanistic theory attempts to explain its behaviour in mechanical, rather than electromagnetic terms.

The theory assumes that light is generated as particles which are bunched at the source into photons, and radiated in waves of different frequencies. White light, for example, consists of a beam of velocity-modulated bunches of particles, radiated together at the various frequencies of the spectrum.

Conservation of Momentum requires that the momentum of the incident element is equal to the total momentum of the reflected and refracted portions of the element. Therefore \(m \sin \theta_i \cos \theta_r + (1 - \cos \theta_i) \sin \theta_i = m \sin \theta_i \cos \theta_i = m \sin \theta_r \cos \theta_r \)

So \(\cos \theta_r \cos \theta_i = \mu (1 + \alpha \gamma) (1 - \alpha \gamma) \)

These equations, obtained without reference to Fermat's principle, or Maxwell's equations, enable us to calculate, for each value of \(\theta_r \), the angle of refraction (\(\theta_r \)) and the fraction (\(\alpha \)) of the light reflected at the interface. They show that at an air-to-glass interface, for angles of incidence (\(\theta_r \)) up to about 50°, less than 10% of the light energy is reflected at the interface. But for angles of incidence near to 90°, most of the light is reflected.

The Mechanistic theory differs from Einstein's in that it makes no postulates concerning the observed speed of light. So, an observer approaching the source with velocity \(v \) would measure the velocity of the light pulse used to transmit signals are faster and less subject to distortion than electrical pulses. They can cross each other without interference and can be sent from component to component via optical fibres and mirrors.

So tomorrow's electronic engineers will require a knowledge of the theory of light: Huygens' principle, Snell's law, Fermat's principle, Relativity theory, Maxwell's equations, Uncertainty principle, wave-particle duality and quantum mechanics. (Readers wanting to remind themselves how the theory of light has evolved should see the various boxes.)

Mechanistic theory of light

Light is a unique form of energy: it can interact with matter and be transformed into mechanical, thermal, electrical or even chemical energy. The Mechanistic theory attempts to explain its behaviour in mechanical, rather than electromagnetic terms.

The theory assumes that light is generated as particles which are bunched at the source into photons, and radiated in waves of different frequencies. White light, for example, consists of a beam of velocity-modulated bunches of particles, radiated together at the various frequencies of the spectrum.

Conservation of Momentum requires that the momentum of the incident element is equal to the total momentum of the reflected and refracted portions of the element. Therefore \(m \sin \theta_i \cos \theta_r + (1 - \cos \theta_i) \sin \theta_i = m \sin \theta_i \cos \theta_i = m \sin \theta_r \cos \theta_r \)

So \(\cos \theta_r \cos \theta_i = \mu (1 + \alpha \gamma) (1 - \alpha \gamma) \)

These equations, obtained without reference to Fermat's principle, or Maxwell's equations, enable us to calculate, for each value of \(\theta_r \), the angle of refraction (\(\theta_r \)) and the fraction (\(\alpha \)) of the light reflected at the interface. They show that at an air-to-glass interface, for angles of incidence (\(\theta_r \)) up to about 50°, less than 10% of the light energy is reflected at the interface. But for angles of incidence near to 90°, most of the light is reflected.

The Mechanistic theory differs from Einstein's in that it makes no postulates concerning the observed speed of light. So, an observer approaching the source with velocity \(v \) would measure the velocity of the light pulse used to transmit signals are faster and less subject to distortion than electrical pulses. They can cross each other without interference and can be sent from component to component via optical fibres and mirrors.

So tomorrow's electronic engineers will require a knowledge of the theory of light: Huygens' principle, Snell's law, Fermat's principle, Relativity theory, Maxwell's equations, Uncertainty principle, wave-particle duality and quantum mechanics. (Readers wanting to remind themselves how the theory of light has evolved should see the various boxes.)

Mechanistic theory of light

Light is a unique form of energy: it can interact with matter and be transformed into mechanical, thermal, electrical or even chemical energy. The Mechanistic theory attempts to explain its behaviour in mechanical, rather than electromagnetic terms.

The theory assumes that light is generated as particles which are bunched at the source into photons, and radiated in waves of different frequencies. White light, for example, consists of a beam of velocity-modulated bunches of particles, radiated together at the various frequencies of the spectrum.
EASY-PC, SCHEMATIC and PCB CAD

Over 17,000 Installations in 70 Countries World-wide!

- Runs on: PC/XT/AT/286/386/486 with Hercules, CGA, EGA or VGA display and many DOS emulations.
- Design: Single sided, double sided and Multi-layer (8) boards.
- Provides full Surface Mount support.
- Standard output includes Dot Matrix / Laser / Ink-jet Printer, Pen Plotter, Photo-plotter and N.C. Drill.
- Tech Support - free.
- Superbly easy to use.

Still Only £98.00!

British Design Award 1989

Options:
- 500 piece Surface Mount Symbol Library £48,
- 1000 piece Symbol Library £38, Gerber Import facility £98.

Electronic Designs Right First Time?
Ask for our fully functional Integrated Demo

Integrated Electronics CAD

Schematic Capture

Analogue & Digital Simulation

And PCB Design

For Less than £400/$775!

Affordable Electronics CAD

EASY-PC: Low cost, entry level PCB and Schematic CAD

$195.00 £98.00

EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III and PULSAR.

$375.00 £195.00

PULSAR: Low cost Digital Circuit Simulator - 1500 gate capacity

$195.00 £98.00

PULSAR Professional: Digital Circuit Simulator - 50,000 gate capacity

$375.00 £195.00

ANALYSER III: Low cost Linear Analogue Circuit Simulator ~ 130 node capability

$195.00 £98.00

ANALYSER III Professional: Linear Analogue Circuit Simulator ~ 750 node capability.

$375.00 £195.00

Z-MATCH II: Smith Chart program for RF Engineers - direct import from ANALYSER III.

$375.00 £195.00

We operate a no penalty upgrade policy. You can upgrade at any time to the professional version of a program just for the difference in price.

For full information, Write, Phone or Fax:

One Systems Ltd.

REF: WW, HARDING WAY, ST.IVES, HUNTINGDON, CAMBS, ENGLAND, PE17 4WR.

Telephone: 0480 461778 (7 lines) Fax: 0480 494042

International: +44-480-461778, Fax:+44-480-494042

ACCESS, AMEX, MASTERCARD, VISA Welcome.

+ TECHNICAL SUPPORT FREE FOR LIFE!
+ PROGRAMS NOT COPY PROTECTED.
+ SPECIAL PRICES FOR EDUCATION.

CIRCLE NO. 122 ON REPLY CARD
approaching wavefront to be the vector sum \((c + v)\), where \(c\) is the velocity at which the wavefront is radiated by the source.

To demonstrate the particle nature of light, return to the space-ship example. From the observer’s point of view, the laser pulses will have a velocity vector \(v\) in the direction of the space-ships’ motion, and a transverse velocity vector \((c)\).

If the pulse returned to the first space-ship after time \(2t\) (i.e. \(t\) in each direction) the astronaut would calculate the distance of separation of the space-ships to be \(c t\).

An observer measuring the space-ship’s velocity, \(v\), would calculate the speed of the laser pulse to be the vector sum \((c + v)\) and would compute the distance travelled by the pulse to be \(2(c + v)\).

But like the astronaut, the observer would calculate the distance of separation to be \(c t\) and there is no reason to invoke time dilation or to suppose time is affected by speed.

Red-shift

In the 1920s, astronomer Edwin Hubble discovered that the wavelength of light from distant galaxies is shifted towards the red end of the spectrum. According to his theory, such galaxies are receding at speeds proportional to their distances of separation. The frequency shift was at first explained as a Doppler effect. But if there is no ether, and if the speed of light is independent of the speed of the source as postulated by Einstein, then why should wavelengths change?

Cosmologists tell us that 15 billion years ago, there was a ‘big bang’, after which space inflated faster than light, and the Universe grew from the size of a grapefruit to its present size. Relics of the big bang can, we are told, still be measured as background radiation and observed as ‘ripples in space’.

The Mechanistic theory offers a more down-to-earth solution.

If a light source emits bunches of particles in waves of frequency \(f_0\) and velocity \(c\), the distance between the wave crests is \(\lambda_0 = c/f_0\).

An observer directly approaching the source with velocity \(v\) would measure the frequency of the wave crests to be \(f_a\) and the speed at which they approached would be \(c_a = (c + v)\).

So the wave crests would reach the observer at time intervals of \(\tau = \lambda_0/f_a = c/f_0(c + v)\) who would measure the frequency as \(f_a = 1/\tau\). Therefore:

\[
f_a f_0 = (c + v)\tau.
\]

But during time \(\tau\), the observer moves a distance \((\tau v)\) towards the source, reducing the distance that each wave crest has to travel. It would appear to the observer that the distance between the wave crest was

\[
\lambda_0 = \lambda_a - \tau v = \left(\frac{c}{f_0}\right)(c + v) = \lambda_a = \frac{c}{f_0(c + v)}
\]

\[
\lambda_a f_a = \frac{c}{(c + v)}.
\]
HYPOTHESIS

Expressed in plain English, Eqs 1 and 2 show that if a source is directly approaching an observer with speed s then the observer would find that frequency had increased by a factor (c + v)/(c - v), and the wavelength of the light had decreased by a factor (c + v)/c.

For example, if a galaxy were approaching at a speed equal to half the speed of light, the frequencies in the spectrum of its light would be increased by a factor 1.5 and wavelengths would be decreased by a factor 2/3. Conversely, if the galaxy was receding at a similar speed, the wavelengths would increase by a factor 1.5 which astronomers would observe as a "red-shift".

Doppler equation

If a source is moving at an angle \(\theta \) to the line-of-sight of the observer, then the Doppler equation can be derived.

Assume a spaceship travelling at speed \(v \) relative to Earth, transmits laser pulses at a pulse repetition frequency \(f \) towards an observer at an angle.

Since the speed of light \(c \) is finite, the observer would not see the spaceship at its true position \(S \), but at an earlier true position \(P \) such that the time taken for the spaceship to travel from \(P \) to \(S \) is equal to the time taken for a laser pulse to travel from \(P \) to \(S \).

The pulse’s velocity from \(P \) to \(O \) can be resolved into three vectors:
- \(v \) in the direction of ship’s motion \(\cos \theta \) in the direction of ship’s motion \(\sin \theta \) in the direction of ship’s motion.
- The speed of the pulse from \(P \) to \(O \) is \(v = (V + 2V \cos \theta) \).

Therefore the observer would measure the repetition frequency of the pulse as:

\[f_o = f_p k = f_p \sqrt{1 - \frac{v^2}{c^2}} \]

which is the Doppler equation.

The Doppler equation derived from the Mechanistic theory differs from that derived from the Special Theory of Relativity, which requires the speed \(v \) of the laser pulse from \(P \) to \(O \), as measured by the observer, should be \(c \) regardless of the spaceship’s speed.

Mass of a photon

The theory of relativity was not taken seriously for some years, during which time Einstein studied the photoelectric effect.

His work led him to conclude that the results of many optical experiments could best described by a theory of "photons" - which he regarded as localised concentrations of energy, not too unlike Newton’s corpuscles.

During that same period, Planck studied the way in which light is emitted by hot bodies. Like Einstein, he concluded that energy is only emitted in "quanta" i.e. multiples of an energy unit, the size of which depended on the wavelength of the radiation.

Photons could explain the photoelectric effect: the wave theory could not. So the entire theory of light was thrown into confusion.

According to the Special Theory of Relativity, the relativistic energy of a free particle mass is given by:

\[E = mc^2 \]

For a photon, \(v = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}} \) is speed of light \(c \). It follows that the rest mass of a photon must be zero.

According to some books, the relativistic mass \(m \) is \(m = E/c^2 \) though not all agree on that point.

If light has mass, then a beam at right angles to a gravitational field would be deflected, and according to the General Theory of Relativity, the deflection would be about twice that calculated using Newton’s theory.

To find out which theory was correct, an attempt was made in 1919 to measure the deflection of star light by the Sun’s gravitational field. The measurement appeared to favour Relativity theory, though in recent years, the claim has been disputed.

Corpuscular light

Newton believed that light consisted of tiny corpuscles reflected by mirrors in much the same way as balls bounce off walls. He assumed that all corpuscles could penetrate a transparent medium such as glass, but his experiments showed that part of the incident light was reflected while the remainder was refracted into the glass. He then assumed that corpuscles representing one kind of light were not all of the same size, in which case the structure of the glass would filter out a fraction of the incident light.

But tests using a beam of monochromatic light falling directly on a sheet of glass showed that a fraction was always reflected. If the transmitted fraction was then allowed to fall on a second sheet of glass, as before, the same fraction was reflected at the surface of the second sheet.

Newton concluded that all corpuscles are capable of both reflection and transmission, but that they have "fits of reflection" and "fits of transmission" and so their behavior cannot be predicted.
Can teachers wave bye bye to the lab bench?

Electronics Workbench could be ideal for hard pressed colleges wanting to try electronic simulation and schematic capture — if they can afford the hardware to run it, says John Anderson

Electronics Workbench is a grandly named software simulation system with integral schematic capture. Target market is the educational user, though whether the well-trodden principle of lower specification (and lower prices) for education compared with industry actually assists education is questionable. But on its own terms, how does this educational package compare with its full scale industrial rivals?

Components connections are made when the cursor is within range: a little black square appears at the connection node allowing a simple visible “snap” during the node connecting process. Connections can follow simple paths. Workbench will decide on its own route between two nodes — which may not be the best visually — but editing is very fast and a complete schematic can be put together more quickly than almost any of the industrial schematic capture programs (and this on the first time of using).

Values for individual components are input by double clicking on the component, entering the mantissa part of the value and then moving the mouse to set the exponent. The methodology is rather awkward, but usable.

Bring on the scope

Testing with an “oscilloscope” is made easy. The scope icon is picked up from the icon ribbon at the top of the screen and dragged on to the workbench where it is connected to the circuit in the same manner that the circuit is constructed. Double clicking on the icon increases its size to about a quarter of the screen area so that the trace can be viewed.

Other analogue instruments can be brought into the test, including DVM, Bode analyser and function generator. All are used in the same neat intuitive manner, picking them up and moving them onto the workbench and connecting to the circuit.

Instruments are adjusted for amplitude, gain etc by clicking on the control and moving the mouse up or down to increase or decrease that particular setting — unfortunately somewhat more cumbersome in practice than it sounds. But seeing sufficient detail on the scope and Bode analyser displays can be a problem, as even when the scope icon is maximised, it fills less than a quarter of the display. The same is also true of other instruments.

Slow simulation

A toggle switch at the top of the screen is used to “power-on the circuit” and start the simulation. Instruments are updated as the simulation progresses so that, for example, the oscil-
Educational software, but it should not be unacceptable, and on a 33MHz 486 platform the simulation run speed is lamentably slow and so loscope trace advances throughout the test. This is just as well because simulation run speed is lamentably slow and so it is comforting to know that something is happening.

Even so on a 25MHz 386 the simulation was so slow as to be unacceptable, and on a 33MHz 486 platform the simulation of a relatively simple op-amp circuit took several seconds. Perhaps this is the difference between professional and educational software, but it should not be so. No user should have to wait unnecessarily.

A further test using a simple two transistor circuit also took a very long time to run. Indeed for certain component values it failed to complete the simulation at all, reporting a (non-existent) connection error. The flip side of simulation at all, reporting a (non-existent) connection error. The flip side of simulation are reduced to almost ineffectualness because of simulation and poor results detail are not.

An excellent schematic editor and a truly novel approach to digital workbench - just like the real thing.

Digital Workbench
In the digital mode, the editing scheme is identical to the analogue system, but the choice of library components is severely restricted. The list of components boils down to a number of basic gates, flip-flops and a BCD counter.

Simulation is also desperately slow. This might be helpful to students, showing the operation at a human speed, but the slow speed means that it is impractical to use the simulation system for any real application.

Test gear available for digital operation includes a multimeter, a word generator and a logic analyser.

Cleverest facility is the "truth table instrument" which, apart from sounding like a medieval torture, is a very neat digital synthesis tool. A truth table is entered into the tool, accomplished by selecting variables, and digital Workbench then generates a list of all the Boolean combinations.

Users can edit the output node for each of the combinations. With the truth table input completed, a reduction algorithm is run to produce an output expression (eg A'+BC) which in turn may be converted directly to an array of gates entered directly into the schematic. Very nice!

On the debit side the scheme only works for a single output and cannot support flip flops or logic state machines.

Alternative to lab work
An excellent schematic editor and a truly novel approach to simulation are reduced to almost ineffectualness because of slow simulation, poor results detail and very limited libraries.

Of these problems, the limited component library is probably acceptable in the educational environment. But slow simulation and poor results detail are not.

The product tested was optimistically described as the
A complete BCD to seven-segment decoder and display leads to a very full screen.

"professional version", but, with the exception of the simplest circuits, this is in no way a practical professional tool. So can it provide a useful alternative to lab work for students of electronics? The answer is undoubtedly yes, qualified by the need for a college to invest in high performance PCs to run the package. Any such electronics modelling education will have to be supplemented with real lab work so that students are made aware of the differences between simulation and the real world.

Cost is an important issue in all colleges, and the relative prices, depreciation and value for money need to be weighed against educational benefit. In the end, the cost of a good PC and Electronic Workbench is likely to be significantly less than purchasing lab equipment.

That said, many cash strapped colleges are still struggling with 8086/80266 machines and with Workbench running too slowly even at a 80486, the performance is woefully inadequate on more ancient hardware.

A pity, because in some senses the ideas behind Electronic Workbench are way ahead of its industrial cousins.

Broadband Transmission Equipment

DOS 3.3 or later
640k memory
256 byte of hard disc
Mouse
Math co-processor (optional)
CGA, EGA, VGA or Hercules display
D3 matrix, HPGL plotter or LaserJet printer

System Requirements

<table>
<thead>
<tr>
<th>BROADCAST TRANSMISSION EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMUNITY BROADCAST TRANSMITTER. 88-108 MHz band. 0.5W HF output. Widerband FM meets the requirements of the EMI Restricted Service Licence. Synthesized 40 channel in 50 kHz steps giving a 70 MHz portion of the broadcast band. Portion of the band is preset at manufacture to suit the customer. Audio passband 50 kHz to 70 MHz. Dacast box 171 x 121 x 55mm. Power requirements 13.5V DC at 200mA. Type CTX100, boxed and tested.</td>
</tr>
<tr>
<td>TRANSMIT AMPLIFIER. 88-108 MHz band. 0.5W maximum input, 25W minimum output, class C amplifier designed to complement the Community Broadcast Transmitter. Tuned to a specific 25MHz portion of the 88-108 MHz broadcast band. Dacast box with heat-sink, size 171 x 121 x 55mm overall. Power requirements 13.5V DC at 20A. Type ANOX100, boxed and tested.</td>
</tr>
<tr>
<td>POWER SUPPLY. 25W AC input. 13.5V DC output.</td>
</tr>
<tr>
<td>LINK TRANSMITTER. Based on the Community Transmitter design with PLL synthesizer but preset to one frequency in the 48MHz or 52MHz link frequency band. Typically 1W output with deviation of ±25kHz. Can be licensed on a consecutive weekly basis at low cost. Diecast box size 171 x 121 x 55mm. £106.00</td>
</tr>
<tr>
<td>LINK RECEIVER. Single channel in the band 48MHz or 52MHz to suit the Link Transmitter detailed above. Sensitivity 0.5 µV/gal. quiesc. and has 90dB rejection of adjacent band signals. Has its own monitor speaker and volume control. The 2V-p-p audio output port. Signal meter gives near logarithmic readout for signal strengths between 10 and 100µV. Supplied in attractive grey and white or black and white cabinet. £150.00</td>
</tr>
<tr>
<td>LINK AERIALS. To suit the link transmitters and receivers. Three element yagis with 6dBd. Overall length about 3m. boom length about 2m. £45.00, carriage £5.00</td>
</tr>
</tbody>
</table>

Supplier Details

- **Electronics Workbench.** By Interactive Image Technologies Inc, Toronto, Canada. £1189. Available from Robinson Marshall (Europe), 17 Middle Entry, Tamworth, Staffs B79 7NJ. Tel: 0827 66212 Fax: 0827 58533.

Spectrum Communications

- **UNIT 4, GROVE TRADING ESTATE, DORCHESTER, DORSET**
- **TEL: 0805 262250**
- **OPENING TIMES: 9-1, 2-5 TUE-FRI, 9-1 SAT. CLOSED Sun and Mon.**
Nervous call for help

The letter from John Curver (EW + WW, July) is of some interest to me. Some 30 years ago I made some #24046;conclusive attempts to speed the healing of fractures by the use of pulsed electromagnetic fields. The work was not completed because of lack of interest by my surgical colleagues.

Curver is of course correct in his statement that many biological processes are carried out via an electro-chemical action. A typical effect of a grossly inappropriate cable link might have on listening quality.

...with an electrical current in a wire. I would like to hear from your readers as to the feasibility of producing local anaesthesia by reversal of the electrical impulses in such nerves using modern equipment not available when the suggestion was first made some 20 years ago.

V Keating Nailsworth Gloucestershire

Mortals with golden ears

In response to the letters by Stan Curtis and Stephen Merrick (EW + WW, July) regarding our letter (May) concerning super-cables, it was never our intention to deny the effect that a grossly inappropriate cable link might have on listening quality.

Moreover, we mortals concede that there are those with golden ears who believe they are more subjectively sensitive than we are to subtle flaws in sound quality caused by system inadequacies.

However, the central point of our letter remains simple. We say that there is no justification for the outrageous quasi-scientific claims made by the super-cable manufacturers who supply, a product falsely specified and wildly over-priced. We say that the same performance can be obtained by using standard good quality cable. If, as some audiophiles claim, they can #24046;hear a difference between two electrically appropriate cables, then we must presuppose that some other factor is involved.

Having spent effort and possibly large sums of money in a re-wiring exercise, few of us are likely to admit that it was an expensive waste of time. We convince ourselves otherwise and our wish for a positive outcome to our endeavours is fulfilled.

Merrick points out that he discerned an improvement after re-wiring his speakers, but this doesn’t support super-cables, merely that there may have been an initial inadequacy in the manufacturers’ conductors or connections that Merrick appears to have corrected. In this context, there is no adequate substitute for double blind tests, carried out ideally by three people – one to set the conditions, one to select them, and one to listen. In this way even the person selecting one particular set of connections does not know which he or she is selecting so there is no possibility of significant pre-warning being perceived by the listener.

Regarding Curtis’ letter, one wonders whether he really was surprised that he could hear a difference when a 1Ω series resistor was inserted in the tweeter circuit. After all, he was affecting just one part of the system’s response range – and with resistance many times greater than that of any suitable cable. We quote 0.04dB for the difference between ideal and good, so this says nothing about inappropriate and inadequate conductors. No one (sensibly) would employ 1m ohm iron conductors would they?

Dr BC Blake-Coleman
Dr R Yorks
Southampton

CFA death exaggerated

With regards to the article by Colin Davies “CFA – RIP” (EW + WW, May) on cross field antennas, perhaps you may know that the CFA originated from my PhD research (I think) and so on.

Since the CFA is a two field reaction control device, it does not follow the present Maxwell’s equations or present antenna art. The CFA macroscopic field dynamics follow the corrections of Maxwell’s equations which is clear in our IEE paper in October 1990.

Consequently, up to date measuring equipment such as not discover or get the CFA into operation, because this equipment is current functioning, not field functioning as in a CFA; that good radiation on a CFA does not come from all input resistances.

This is why the CFA is sometimes a dummy load, poor radiator or good radiator. Of course, there are many important points about the CFA not mentioned in our articles regarding antenna design, field reaction formulas, equivalent circuit, input resistance control, the steps of setting the antenna for good radiation and so on.

The reason why Colin Davis failed to get his CFA to work was that his antenna is not a CFA.

Following the CFA discovery, many scientific and more rigorous research work has been carried out with quantitative results and successful radiation, in the UK and Egypt, with different power radiation CFAs used for different purposes.

The theory of the CFA has been the subject of lectures and projects for BSc and MSc in Egyptian Universities since 1987.

Here is the Egyptian CFA Research Team, we welcome visits to our stations to confirm that the CFA is a good radiator, radiating as good as (or better) than conventional mast antennas in regard to bandwidth and signal strength.

The radiation begins from the near field, that is 1/R dependence (R is the distance from the antenna), with no heat loss from any component of the CFA system. Almost all input power is radiated at an efficiency between 85 and 93%.

FM Kabbary
Cairo
Dr Kabbary supplied tabular results to support aspects of this letter – ed.

Getting the wind up

The letter “Have the twins gone with the wind?” (EW + WW, July) was like a breath of fresh air. At last someone has been very careful in their choice of words when discussing relativity. The use of electronics to clarify the points made showed an understanding of how to communicate difficult ideas. If this does not put the wind up the relativists nothing will.

C L Wee
Bagilt, Clwyd
SMALL SELECTION ONLY Listed - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

Marconi
TF2006 - AM-FM signal generator - Also sweeper - 10kHz - 50Mc/s - £500 tested to £550 as new with manual - probe with wooden carrying box.

HP
Frequency counter type 54650B - £200.

Fluke
Sampling Voltmeter (Broadband) type 349A - £300.

Tektronix
High impedance signal generator type 8767A - 2 to 15GHz £400.

Fluke
Clock/counter record type 744A - £400.

Fluke
Pointer type 972B - 4 pens - £200.

Tektronix
Sweeper type 7A02 and A304 to 1MHz and 18-400kHz - P.O.R.

Fluke
Pointer type 972B - 4 pens - £200.

HP
Testing for above-for many of these frequencies - £150.

Hewlett Packard
Counter type 5240A - 16GHz - LED readout - £200.

Tektronix
Signal Generator type 8665B - £1000.

Fluke
Amplifier type 8447A - 1 to 2MHz £200; HP8447F - 1 to 3MHz £300.

Marconi
Receive 7A01. £150-£200 - New.

B&K
4140 A 1GHz - £300.

Hewlett Packard
A 110 - £900.

Fluke
117ZB (111-2) £400.

Tektronix
491 spectrum analyser - 1.5GHz - 40GHz - £1000 or 10MHz - 40GHz.

Infra-red Binoculars in fibre-glass carrying case - tested - £100.

Infra-red AFV sights £100.

Marconi
6700A sweep oscillator + 6730A - 1 to 2GHz.

Fluke
8506A thermal RMS digital multimeter.

HP
3763A error detector.

HP
8565A word generator.

HP
489A micro-wave amp - 1-2GHz.

HP
8565A spectrum analyser - 1-22GHz - £400.

HP
5065A vapour filling standard - £50.

Fluke
3938 cryostat £1000.

Systron Donner
Microwave counter type 6057 - 18GHz - nixey tube - £600.

Tektronix
7L12 analyser -.1Mc/s-1.8GHz - £1500 - 7L14 ANZ - £2k.

Racal/Dana
Signal generator 9082 - 1.5-520Mc/s- £800.

HP

HP

HP8620A or 8620C sweep generators - £250-10 C1kHz with IEEE.

Racal/Dana
9300 RMS voltmeter - £250.

Racal/Dana
9300 RMS voltmeter - £250.

HP
8564A digital full range voltmeter - £200.

HP
8565A word generator.

Racal/Dana
9064 - 9065 - 9066 - 9067 - 9068 - 9069 - 1-5Mc/s - 10GHz - £300.

R & S
Signal generator SMS - 0.4-1040Mc/s - £1500.

Racal/Dana
Counter/timer A+ B+C inputs -18GHz - £1k.

B&K
7003 tape recorder - £300.

Racal/Dana

Fairchild
Interference analyser model EMC -25 - 14kHz-1 GHz.

Tektronix
4851A digit/analogue converter - 10-30Mc/s - 1-2-3kHz.

Fluke
FV 3089 - 2Mc/s - £100-£150 - £200-£300.

Racal/Dana
Signal generator 8629 - 2-18.6GHz. 86245A 5.9-12.4GHz.

Racal/Dana
9300 RMS voltmeter - £250.

HP
3763A error detector.

HP
5006A Signature Analyser £250 - book.

Racal/Dana
Signal generator 9082 - 1-5GHz- £250-£300.

Racal/Dana
Signal generator 5065B - 1-5GHz- £300-£400.

Marconi
Low distortion meter type 5065 £100.

Marconi
5054A automatic frequency converter - 0.1-4GHz.

Fluke
3762A data converter.

Philips
Panasonic receiver model TX8710 £100.

Racal/Dana
4D recorder - £350 - £450 in carrying bag as new.

Ball
Efratom rubidium standard PT2568-FRKL.

Rhodes & Schwarz
Vector analyser -ZPV+EI+E3 tuners - .3-2000Mc/s.

Rhodes & Schwarz

R & S
Signal generator SMS - 0.4-1040Mc/s - £1500.

Marconi
6155A Signal Source - 1 to 2 GHz - LED readout - £600.

HP
5006A Signature Analyser £250 - book.

Racal/Dana
9064 - 9065 - 9066 - 9067 - 9068 - 9069 - 1-5Mc/s - 10GHz - £300.

Marconi
Sweep oscillator type 537 - £450.

R & S
Signal generator SMS - 0.4-1040Mc/s - £1500.

Marconi
6155A Signal Source - 1 to 2 GHz - LED readout - £600.

Marconi
Frequency counter type 537 - £450.

Racal/Dana
9064 - 9065 - 9066 - 9067 - 9068 - 9069 - 1-5Mc/s - 10GHz - £300.

Marconi
Sweep oscillator type 537 - £450.

R & S
Signal generator SMS - 0.4-1040Mc/s - £1500.
Pinching electrons in the aether

Few of your readers will have heard of a phenomenon discovered by William Hooper. Hooper died in 1971. His discovery was later confirmed by researchers at Montana State University, USA.

I suggest the Hooper experiment back on itself to form a non-inductive bifilar circuit configuration which has two closely adjacent oppositely directed identical current flows. It should describe a magnetic electric field at radial distances that are significantly larger than the cross-sectional dimensions of the circuit.

Hooper incorporated 4020 such conductors in a non-inductive circuit assembly and passed up to 30A through the circuit. He encased the assembly in a stainless steel cylindrical capacitor, with the inner conductor grounded and the outer conductor connected to a high impedance voltmeter. He found that whether he used AC or DC, and even though the circuit was screened by the inner conductor of the capacitor, he obtained a DC voltage across the capacitor that was function of the current.

I should not be surprised by this Swiss development. However, the prospect seems too daunting to be credible and yet, if such, an invention were to intrude on the energy scene. What is more likely than that it would make its entry in this way? Certainly, no respectable energy authority would be interested in learning that according to quantum electrodynamics (see for example “QED - the strange theory of light and matter” by Professor RP Feynman) electrons keep station by photon exchanges that take place at the velocity of light. So there would be no problems there with energy transferring very fast but electrons remaining relatively stationary.

Catt could regard his experiment by pointing out that he is concerned primarily with the removal of what to his mind seems to be an obvious contradiction within existing theory, but I think that it would be far wiser to accept the theory in the form it is, rather than try to improve it on the basis of concepts that might not have a very long life expectancy.

And, after all, existing theory has served well, as evidenced by impressive technological achievements. What is more remarkable is that:

- It is not said that the aether is not there and that we are not rotating either. If they are not rotating then there is nothing to stop them falling to earth unless they are held there by the combined faint of those who believe the earth rotates.

- On the subject of the aether, I recall many years ago someone writing to say that he had added a switch in his speaker leads which reversed the polarity of both speakers (together). A loudspeaker will induce positive pressure when moving out and negative pressure when moving in.

- I wonder if Ivor Catt’s conceptual difficulty (EW + WW, August) is as follows. If the earth does not rotate then geo-stationary satellites should come out of the loudspeaker as positive pressure and vice versa because the car is not a far transducer (and there is no reason why it should be).

- If true then two amp fiers with same measurable quality could sound different if one was inverted relative to the other.

John Kennaugh
Crawley

Catt’s Difficulty

I wonder if Ivor Catt’s conceptual difficulty (EW + WW, June) stems from a rather outdated picture of the electron, and of physics generally.

Around 1980, you published an interesting article by Professor Jennison, called “What is an electron?”. Jennison’s team of researchers, recognising that the quantum mechanical picture of the electron is expressed in a rather high level language (in the sense that it does not say anything about the electron’s physical structure), had been working on the idea that the electron is like a resonant cavity which contains energy that is oscillating back and forth at the velocity of light.

On the basis of such a picture, there might not be any problems with apparently slow-moving electrons transferring energy at velocities far in excess of their average velocity. Catt might also be interested in learning that according to quantum electrodynamics (see for example “QED - the strange theory of light and matter” by Professor RP Feynman) electrons keep station by photon exchanges that take place at the velocity of light. So there would be no problems there with energy transferring very fast but electrons remaining relatively stationary.

We still have a paradox but at least M & M and Einstein are rendered mutually consistent and furthermore the aether is not ruled out. I have never wavered from the view that the universe is filled with a medium; how can a void have measurable properties? For the capacitor we have a, the inductor is μ. What is more remarkable is that:

- E = μa. μ is the magnetic field where c is the speed of light. So not only can space have properties that can be measured but these properties have dimensions which are non-rational (not simply ratios of classical dimensions). Though the aether’s presence is not proven, there is overwhelming circumstantial evidence for it. It is even more so when engineers on earth assume it exists and design high speed logic circuit boards that prove that equation (1) holds when a = μ and μ are local values determined by materials and c is the local speed of transmission.

Radio engineers know that, with the dimensions of impedance and for space the value is 1257 Ω/m. For circuit boards the same equation, but not value, holds.

Now for the clever part! Light is repudied to be bent in a gravitational field (here is yet another example of energy being represented by a field) and red shifted. The expression gravitational lens is used to describe the effect. Now we know that light bends when it passes through optical
Einstein has the last laugh

Martin Berner may not have received many replies to his query (EW + WW, July), which I must say is surprising, do any physicists read EW + WW? Fortunately, the answers can be found almost any text on special relativity, which will explain the relativistic Doppler shift. However, for the sake of completeness, there is no paradox regarding the invariance of the speed of light and the longitudinal Doppler shift.

Consider a source, in an inertial frame such that special relativity is valid, emitting pulses of light with frequency ν as measured in that frame. To an observer moving away from this source at velocity v, or vice-versa, the situation is symmetric in this instance; the light pulses must cover an increasing distance to reach the observer and so an increased wavelength is observed.

A few hours working through decent introductory texts will introduce you to how to derive the expression for the frequency measured by the observer, ν', to be:

$$\nu' = \frac{\nu}{\sqrt{1 - \frac{v^2}{c^2}}}$$

If I can do it, and it’s been a few years since this engineer did basic physics, anyone can. All that is required is the invariance of the velocity of light, as predicted by Maxwell (1864), and some careful thought (but no sleight of hand).

As with all special relativity results, this too has been confirmed by experiment, for example, with the Michelson-Morley experiment (see for example “Special relativity” by AP French).

In regard to John Ferguson’s query (Letters, April) about the transverse Doppler shift, this too has been confirmed by experiment for (example) with the Michelson-Morley experiment by W Kundig in 1906 to be in agreement with special relativity.

Moreover, special relativity predicts a shift even when the source and observer are passing at M^2, which is not even predicted by classical theory, but which is observed.

French’s introduction to special relativity discusses this effect mathematically and phenomenologically.

Moving on to David Chalmers’ problem (Letters, July), acceleration cannot be ignored in the twin paradox. No matter how little a fraction of the journey time it encompasses, and has nothing to do with quantum mechanics. Indeed, it has long been known that the acceleration effects are the key to the solution. Only one twin experiences real accelerating forces (the one who gets up, goes, turns around and returns then stops), so breaks the symmetry by changing reference frames, leading to the unequal time intervals predicted to special relativity, though obviously the proposed experiment cannot (easily) be performed.

No experimental evidence, only “common-sense”, “I think not” and a knowledge of electronics which seemingly gives insight into nature, is given to justify a statement that both clocks will read the same on return. However, accurately measured particle decay in nuclear accelerators is in agreement with Einstein’s time dilation, so Albert has the hard experimental results from many closely related experiments in this instance.

Time is very well defined in special relativity — indeed any introduction to special relativity begins with a very careful examination of just what is meant by time and distance to an observer — an essential base for any rigorous study.

This paradox has been flagged to death in attempts to distinguish special relativity, and repeating old arguments which have been resolved and hoping for non-relativistic experimental verification does not change the result. It does not matter if your clock is “Gone with the wind”, a blob of plutonium, or came free with cereal. Nor does special relativity say anything about modifying nuclear decay, only the consequences of measuring it as an observer in relative motion.

If we engineers refuse, on the grounds of compromise, to accept the experimentally tested answer, preferring to cling to Newton — nature, Einstein and the rest of the world are in for a cruel goad on us. Andrew Myles Edinburg
FLOPPY DISK DRIVES

Only £99.00 (F)

5¼" from £22.95 - 3½" from £21.95!

Massive purchases of standard 5¼" and 3½" drives enables us to present prime product at industry beating low prices! All units (unless stated) are removed from often brand new equipment. Power supplies are standard SMD interface. Ultra hi speed transfer and access time and comes complete with manual. Only £299.00 (E)

POWERSUPPLIES

Power One SLP-205/00P 200 Watt (220 v peak). Semi open frame giving 44.0V, 50, 60Hz. Open frame giving 44.0V, 50, 60Hz.

-5v 2.5a. +12v 4a (8a peak), -12v 1.5a.

Massive Reductions on NTSC versions!!

Virtually New, Ultra Smart!

SPECIAL INTEREST

Superb QTY of Made in Japan, broadcast quality 600 Lines Televisions. Some with Beta KME, some others KME 10" models. Nice to have and suitable for撅e. (Surplus always wanted for cash!) £135.00 (G)

CALL FOR PRICING ON NTSC VERSIONS!

Surplus Quality 6 foot 40v cable too.

NEED NO FEAR ABOUT NO MEN SCREWING UP YOUR SYSTEM WITH THEIRgeois!

Surveys of the equipment market for the last 2 years show that the public are always after a quick deal and that is what we have - deals. We are well known for not overcharging or undercharging and we put our stock in the best possible state if possible and we advertise that. We are also known for having an extensive list of customers who come to us for their requirements. The reason is that we have a good reputation. We are also known for having a wide range of choices for our customers and we try to cater to everyone.

THE AMAZING TELEBOX!

Converts your colour monitor into a QUALITY COLOUR TV!

The TELEBOX consists of an attractive front panel and mains powered unit, containing all electronics ready to plug into a host of video monitors such as MICROVITEC, ATARI, SANYO, YAMAHA, PHILIPS, TATUNG, AMSTRAD and many more. The composite video converter links directly to most video recorders, allowing reception of TV channels not normally receivable on most domestic video units. Push button controls on the front panel allow selection of 9 functions, all selectable. An RF output connector and 9vdc power leads for RF are included.

The TELEBOX makes use of actual television frequencies VHF and UHF including the HYPERBAND as used by most cable TV operators. Connectors and RGB video outputs are located on the rear panel for connection to most makes of monitor. For complete compatibility even for monitors without sound - an integral 4 way audio amplifier and low level Hi-Fi audio output are provided as standard.

Teletbox STL as ST but with integral speakers £99.50 (F) or £119.50 (E) + VAT.

No Break Uninterruptable PSU's

Brand new and boxed 230 volts uninterruptable powers supplies from DEC-805F. £99 (F) to £117.50 (E) + VAT.

Microline 183, NLD-17x17 dot matrix. Full width. £235 (E)

Hyundai HPO-902, NLG-24x18 dot matrix full width. £149 (F)

Centronics 120-2 0 dot matrix. Full width. £157 (E)

Centronics 159-4 9 dot matrix serial. 9-1/2" wide. £99.50 (F)

Microsoft Excel for your choice of computer £145.00 (F)

Enhanced 102 keyboard 1.2 meg 5-1/4" floppy. Kwik Disk Accelerator £59.95 (B)

Compact 1086 large drum 3 pen plotter £65.00 (E)

Thurl LA 160B analyser 5.5 or 6mhz soundspecs. £185 (E)

Kenwood DK-3015 digital oscilloscope simulator £350 (E)

Calcomp 1036 large drum 3 pen plotter £150.00 (E)

Nikon PL-2 Projection lens meter/scopes £185.00 (G)

Newtron Dominator £150.00 (E)

Anton Pillar 400 H 3 frequency converter 75Kw DOA £299.00 (E)

£299.00 (D) are 77-1/2'H x 32-1/2'D x 22'W.

£95.00 (C)

£65.00 (C)

£59.95 (B)

£50.00 (E)

£470

£65.00

£35

£375

£115

£165

£249

£252 (G)

£139.00

£149.00

£180.00

£350

£275.00

£165.00

£145.00

£275.00

£165.00

£119.50

£99.50

£375

£550

£185

£350

£20.00

£375

£550

£650

£150

£470
in grasping electrical and electronics theory. This book has been written to help such students to understand the mathematical principles underlying their subject so that they can go on with confidence to tackle problems in practical circuits. Paperback 256 pages. Price £14.95 0 7506 0924 9

CIRCUIT MANUALS
Ray Marston
A series of books dealing with their subjects in an easy-to-read and non-mathematical manner, presenting the reader with many practical applications and circuits. They are specifically written, for the design engineer, technician and the experimenter, as well as the electronics student and amateur. All the titles are written by Ray Marston, a freelance electronics design engineer and international writer.

Op-amp Circuits Manual
Paperback 224 pages
Price £13.95 0 434 91207 7

Audio IC Circuits Manual
Paperback 168 pages
Price £13.95 0 434 91210 7

CMOS Circuits Manual
Paperback 192 pages
Price £13.95 0 434 91212 3

Electronic Alarm Circuits Manual
Paperback 144 pages
Price £13.95 0 7506 00640

Timer Generator Circuits Manual
Paperback 224 pages
Price £13.95 0 434 91291 3

Diode, Transistor and FET Circuits Manual
Paperback 240 pages
Price £13.95 0 7506 0229 7

Instrumentation and Test Gear Circuits Manual
Ray Marston
Modern instrumentation and test gear circuits of value to the industrial, commercial, or amateur electronic engineer or designer make up this book. Almost 500 outstandingly useful and carefully selected practical circuits are in here. This is one book you must have if you need access to practical working circuits ranging from simple attenuators and bridges to complex digital panel meters, waveform generators, and scope trace doublers. Paperback 400 pages.
Price £16.95 0 7506 0758 0

Logic Designers Handbook
Andrew Parr
Easy to read, but none the less thorough, this book on digital circuits is for use by students and engineers and provides an accessible source of data on devices in the TTL and CMOS families. It’s a ‘Designers Handbook’ that will live on the designer’s bench rather than on the bookshelf. The basic theory is explained and then supported with specific practical examples. Paperback 488 pages.
Price £25.00 0 7506 0535 9

Digital Audio and Compact Disc Technology
Luc Baert, Luc Theunissen & Guido Vergult
Essential reading for audio engineers, students and hi-fi enthusiasts. A clear and easy-to-follow introduction and includes a technical description of DAT (digital audio tape). Contents includes principles of digital signal processing, sampling, quantization, A/D conversion systems, codes for digital magnetic recording, principles of error correction, the compact disc, CD encoding, opto-electronics and the optical block, servo circuits in CD players, signal processing, digital audio recording systems, PCM, Video 8, R-DAT and S-DAT. Paperback 240 pages.
Price £16.95 0 7506 0614 2

NEWWES POCKET BOOKS
A series of handy, inexpensive, pocket sized books to be kept by your side and used every day. Their size makes them an ideal ‘travelling’ companion as well.

Newnes Electronics Engineer’s Pocket Book
Keith Brindley
Hardback 319 pages
Price £12.95 0 7506 0937 0

Newnes Electronics Assembly Pocket Book
Keith Brindley
Hardback 304 pages
Price £10.95 0 7506 0222 8

Newnes Television and Video Engineer’s Pocket Book
Eugene Trundle
Hardback 364 pages
Price £12.95 0 7506 0677 0

Newnes Circuit Calculations Pocket Book
T Davies
Hardback 300 pages
Price £10.95 0 7506 0195 7

Newnes Data Communications Pocket Book
Michael Tooley
Hardback 192 pages
Price £12.95 0 7506 0427 1

Newnes Telecommunications Pocket Book
JE Varrall & EA Edis
Hardback 400 pages
Price £12.95 0 7506 0307 0

Newnes 280 Pocket Book
Chris Roberts
Hardback 165 pages
Price £12.95 0 7506 0308 9

Newnes 68000 Pocket Book
Mike Tooley
Hardback 257 pages
Price £12.95 0 7506 0309 7

Newnes Electrical Pocket Book
21st edition
E A Parr
Paperback 526 pages
Price £12.95 0 7506 0132 9

Newnes Guide to Satellite TV
D J Stephenson
A practical guide, without excessive theory of mathematics, to the installation and servicing of satellite TV receiving equipment for those professionally employed in the aerial rigging/TV trades. Hardback 256 pages.
Price £17.95 0 7506 0215 5

Newnes Practical RF Handbook
Ian Hickman
Pressure on the RF spectrum has never been greater and it’s people with knowledge and skills of RF design who are now in demand in the electronics industry to design, produce, maintain and use equipment capable of working in this crowded environment. This practical introduction to modern RF circuit design will equip you with the necessary RF knowledge and skills to enable you to compete effectively in the industry. Paperback 320 pages.
Price £16.95 0 7506 0871 4

Troubleshooting Analog Circuits
R A Pease
Bob Pease is one of the legends of analog design. Over the years, he’s developed techniques and methods to expedite the often-difficult tasks of debugging and
troubleshooting analog circuits. Now, Bob has compiled his
‘battle-tested’ methods in the pages of this book. Based on his
immensely popular series in EDN Magazine, the book contains a
wealth of new material and advice for Digital/ Analog
electronics engineers on using simple equipment to
troubleshoot. Paperback 217 pages.
Price £14.95 0 7506 16326

PC-Based Instrumentation and
Control
M Tooley
Do you need information to enable you to select the
necessary hardware and software to implement a wide
range of practical PC-based
instrumentation and control
systems? Then this book is for
you. Paperback 320 pages.
Price £14.95 0 7506 1631 8

Electronic Circuits Handbook
M Tooley
Provides you with a unique
collection of practical working
circuits together with supporting
information so that circuits can
be produced in the shortest
possible time and without
course to theoretical texts.
Paperback 345 pages.
Price £24.95 0 7506 0750 5

Communication Services via
Satellite
G E Lewis
DBS is already with us, and will
create a series of new technical
problems for engineers/technicians
in television and communication
services. This book gives you the
solutions to these problems by:
explaining how the system
functions; describing several
actual systems and giving
several analyses and design
rules. You can’t afford to be
without this invaluable
technology update if you’re a
systems design engineer, service
engineer or technician.
Paperback 448 pages.
Price £19.50 0 7506 0501 4

The Circuit Designers
Companion
T Williams
This compendium of practical
wisdom concerning the real-
world aspects of electron c circuit
design is invaluable for linear and
digital designers alike.
Hardback 320 pages.
Price £25.00 0 7506 1142 1

Credit card orders accepted by phone
081 652 3614
High-power, class-A amplifier

To draw only direct current from the supply, to provide high power and to eliminate crossover distortion were the aims of this design.

Main circuitry is concentrated around IC1, which has AC and DC feedback and provides a gain of 28 from 2Hz to 59kHz at a power output of 50W. Power transistor Tr1 completes the DC feedback loop from the drain of Tr1 to maintain constant current flow in the upper power transistor, taking as much current from the supply as may be needed to do that. The driver mosfet thereby acts as an ideal transistor.

A M Wilkes
Glasgow.

Gyrator acts as electronic choke

A gyrator can take the place of a straight resistor or inductor in filtering out noise and ripple on a power supply bus. Like the inductor which it simulates, it passes DC current with minimal voltage drop across its two terminals while providing a high impedance to AC.

The maximum level of AC noise and ripple which it can deal with is determined by the DC voltage drop across the transistor, itself determined by the ratio of R1 to R2. The simulated inductance relates directly to the size of C2 and has a value in henries of about half the value of C2 in µF.

The gyrator may also be used to hold down a PSTN line while providing a high impedance path to the 600Ω audio.

P Strict
Reigate
Surrey.
Pulse-width detector

Pulses whose width is within an adjustable window pass to the output of this circuit. Positive-going edges of input pulses trigger the 74121 monostable, output Q going high for a period $t_1 = 0.7R_1C_1$. This output and the input pulse go to the 2-input Xor, the monostable output also charging C_2 to 5V. Voltage V_2 is a variable reference between zero and 5V.

While Q is high, X1 is low, X2 is low and the circuit output remains low. When the monostable times out after t_1, X1 is in the same state as the input, this being passed to the circuit output via the 3-input Xor. Capacitor C_2 starts to discharge through R_2 and, at time $t_2 = RC2\ln(5/V_2)$ after Q collapses, X2 goes high. Since two inputs of the 3-input Xor are high, circuit output is low.

Pulses of width greater than t_1 and less than $t_1 + t_2$ pass to the output, the limits being adjustable by R_1 and R_2.

KV Madanagopal
Madras
India

Tweaking a D-to-A converter

It is possible to improve the linearity of a cheap digital-to-analogue converter by means of two resistors.

Ramping the input of the D-to-A from zero and viewing the output on an oscilloscope shows that the major non-linearity appears half-way, when the code changes from 0111...111 to 1000...000, secondary discontinuities coming at each quarter, Fig. 1. Since the end of the second quarter is the half-way point, it is simplest to start by correcting first and third quarters.

Ramp up the D-to-A and select R_m in Fig. 2 to make the two halves linear; then choose R_n to align the halves with each other. Resistor R_n will probably need readjustment, but the procedure is simple - if a number of high-value resistors are available. Alternatively, feed static codes to the input and use a precise DVM in place of the oscilloscope; this may be more accurate, but the first method is visual and quick.

The offset resistor R_o compensates for V^+ current through the two linearising resistors and is optional. Since linearity errors can be either positive or negative R_m, must pull up or down; hence the Xors or possibly Nands. Do not move the non-inverting op-amp input, since this would vary gain with input-code changes.

If the D-to-A has built-in latches, the state of the two MSBs must be stored separately in a dual flip-flop updated with the D-to-A.

CJD Catto
Cambridge
Auto-reverse motor control

This one-chip circuit not only runs a motor in alternate directions for adjustable times, but stops it on reverse to avoid damage. An oscillator based on IC_A is adjustable in period and duty cycle, R_4 controlling its output duration at high level and R_5 that at low level, both between 10s and 10min. The levels themselves control direction via IC_C, T_{11} and RL_1. Resistors R_{10} avoid the need for C_1 to charge from zero at switch-on, causing a longer high-level period. Narrow pulses formed by C_{22}, R_{22} and D_{23} from the edges of the IC_A waveform discharge C_5 at each direction change, turning off T_{11} and relay RL_1 to stop the motor for a time adjustable up to 10s by R_9. Resistor R_6 and C_4 delay direction changes until the motor has stopped.

Valery Georg Chkalov
Oblinsk, Russia

Yongping Xia
Torrance, California, USA

Linear ramp generator

Linearising an ordinary RC integrating circuit produces a long-period, adjustable ramp for use in timers. As C charges, the voltage across it is applied to one input of the resistive summer, the other input being taken from the R_1, R_2 tapping point. Voltage at the non-inverting op-amp input and, since the op-amp provides a gain of 2 to make good the loss in the summer, at the top of R_1 is therefore $V_d + V_{C(t)}$. Voltage at the lower end of R is $V_{C(t)}$, so that the voltage across it is $VR = V_d + V_{C(t)} - V_{C(t)} = V_d$, the bootstrap voltage providing constant current through R and therefore linear charging. This voltage sets the ramp time, with no RC timing circuit adjustment needed. A negative-going ramp is formed by a negative voltage on the voltage divider.

Valery Georg Chkalov
Oblinsk, Russia

Linear, long-period ramp results from bootstrap constant-current charging circuit, adjustable by pot. setting.

756 ELECTRONICS WORLD + WIRELESS WORLD September 1993
$1 Bargain Packs

- 10 x 10amp Screwclips

- 5 x 5amp Pulp Cord Ceiling Switches

- 2 x 5amp 250V Fuses

- 2 x 250V Fuses

- 2 x 6V Operated Reed Relays

- 1 x 6 Digit Mains Operated Counter

- 1 x Mains Solenoid

- 2 x 12V Rocker Switches

- 1 x 24V / 230V Mains Transformer, 20VA

- 3 x Rocker Switches

- 2 x Crossover Cables, Black and White

- 1 x Black Plastic Boxes

- 1 x Case

<table>
<thead>
<tr>
<th>$1 Bargain Packs</th>
<th>$1 Bargain Packs</th>
</tr>
</thead>
</table>

Bargains Galore

- **Safety Leads**
 - Only coil cut so they don't hang down.
 - Can avoid saving a child from scalding.
 - 3 core, 5amp, 5 x 10amp
 - Order Ref: 10P56

- **200W Mains Transformers**
 - Normal primaries 20-20 at 2A, 25VA at 2.5A, 40VA at 5A, 5VA at 6A
 - Order Ref: 49P50, 50V at 24A, Order Ref: 49P50

- **Philips 3 High Resolution Monitor**
 - White and black in metal box for easy packing, different packing, offered at less than price of tube alone.

- **16 Character 2-line Display**
 - Screen size 85mm x 36mm, adjustable LCD display panel, LED backlight, microprocessor.
 - Order Ref: 16023A, Order Ref: 16027A

- **Insulation Tester with Multimeter**
 - Internally generates voltages which enable you to test insulation for megohms. The multimeter has four ranges, 0-1000V, 300m A, 300m A, 300m A, 300m A.

- **Stereo Amp**
 - 3W into 4 ohm speaker or 1W into 8 ohm speaker

- **9V Battery**
 - A/C or D battery

- **910.**
 - 12v Stepper Motor. 7.5 degree.

- **911.**
 - 5 x reels Insulation Tape.

- **912.**
 - 4 x 14Mn Bull-races.

- **913.**
 - 2 x Cord Grip Switch lamp Holders.

- **914.**
 - 1 x DC Voltage Reducer. 12v -6v.

- **915.**
 - 2 x Lithium Batteries.

- **916.**
 - 1 x 25W Crossover.

- **917.**
 - 1 x Case. 31/2x21/4x13/4 with 13A socket pins.

- **918.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **919.**
 - 1 x Mini Mono Amp. 3W into 4 ohm speaker or 1W into 8 ohm speaker.

- **920.**
 - 2, 3 and 4 Way Terminal Blocks.

- **921.**
 - 5 x 13A Rocker Switch.

- **922.**
 - 2 x 1/2hp 12V Motor - The Famous Sinclair C5.

- **923.**
 - 2 x 25W 3-Core Lead. Terminating with 1 x 13A socket pins.

- **924.**
 - 2 x 5amp Pulp Cord Ceiling Switches.

- **925.**
 - 1 x 2.5A, 12V DC Brushless Axial Fan. Japanese made, battery cooler.

- **926.**
 - 1 x 12V And 24V DC PULSES.

- **927.**
 - 1 x 24V DC Solenoid.

- **928.**
 - 1 x 25A Phenolic Resin.

- **929.**
 - 1 x 16V 1A Mains Transformers.

- **930.**
 - 2 x Flat Solenoids.

- **931.**
 - 1 x Mini Mono Amp. 3W into 4 ohm speaker or 1W into 8 ohm speaker.

- **932.**
 - 1 x AM-FM Radio.

- **933.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **934.**
 - 2 x 250W Crossovers.

- **935.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **936.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **937.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **938.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **939.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **940.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **941.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **942.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **943.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **944.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **945.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **946.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **947.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **948.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **949.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **950.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **951.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **952.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **953.**
 - 1 x 12v Stepper Motor. 7.5 degree.

- **954.**
 - 1 x 12v Stepper Motor. 7.5 degree.
Op-amp parameters can have a drastic effect on filter response. Steve Winder shows how analysis of op-amp characteristics will give a better indication of filter performance.

Butterworth and Chebyshev filters are reasonably simple to design using tables given in a number of textbooks, including Williams. Passive component values obtained using these tables should give the desired response. But identifying the correct passive component is only part of the story; the active device can also play an important part. Using the wrong op-amp for a filter can result in poor performance, high insertion loss, excessive ripple in the pass band or an incorrect cut-off frequency.

Basic op-amp theory says that a device connected to form a unity gain buffer, with its output tied to its negative input pin, has the characteristics of high input impedance, low output impedance and a bandwidth of typically 1MHz or more.

In reality devices have input resistance and capacitance. They also have an output impedance which rises with frequency and approaches the open-circuit output resistance at the unity gain bandwidth.

Operational amplifiers have a very high open-loop gain but also an open-loop bandwidth of a few hertz. Generally devices with higher open-loop gains have lower bandwidths deliberately applied by the manufacturer to ensure stability. All these characteristics have an effect on the filter response.

Examples of op-amp characteristics are given in Table 1. Butterworth and Chebyshev filters use op-amps that are connected as unity gain buffers (Fig. 1). But it would be wrong to assume that the cut-off frequency of a filter using these devices could be as high as the unity gain bandwidth. Positive feedback is also present due to the capacitor which connects the op-amp output to the RC network at the input.

Computer analysis

The effect of op-amp parameters on the overall filter performance has been simulated by a computer program. The program calculates component values and creates a netlist which can be read by the proprietary software ECA2. Filter modelling is necessary because of the large number of designs and frequencies involved.

Butterworth and Chebyshev filters in high-pass and low-pass configurations have been modelled, covering all orders from two to nine. Each of the designs has been tried with the four op-amps described, so that 128 designs must be tested at several frequencies to find the limit of acceptable performance.

The limit of acceptable performance has been arbitrarily chosen as the frequency where pass-band ripple or insertion loss is not greater than 2dB. Performance is unacceptable if the cut-off frequency is not at its design frequency – even if the loss or ripple is less than the

Table 1. Examples of op-amp characteristics.

<table>
<thead>
<tr>
<th>Device type</th>
<th>741</th>
<th>OP-42</th>
<th>NE5532</th>
<th>TLE2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input resistance</td>
<td>2MΩ</td>
<td>10Ω</td>
<td>100Ω</td>
<td>2MΩ</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>2μF</td>
<td>5μF</td>
<td>2μF</td>
<td>8μF</td>
</tr>
<tr>
<td>Open-loop bandwidth</td>
<td>10Hz</td>
<td>45Hz</td>
<td>200Hz</td>
<td>1Hz</td>
</tr>
<tr>
<td>Open-loop gain</td>
<td>200k</td>
<td>250k</td>
<td>10k</td>
<td>40M</td>
</tr>
<tr>
<td>Closed-loop bandwidth</td>
<td>1MHz</td>
<td>10MHz</td>
<td>10MHz</td>
<td>15MHz</td>
</tr>
<tr>
<td>Open-loop output resistance</td>
<td>75Ω</td>
<td>45Ω</td>
<td>100Ω</td>
<td>50Ω</td>
</tr>
</tbody>
</table>

The TLE2027 is available from Texas Instruments and is an improved OP-27.

Table 2. Results obtained for Butterworth filters.

<table>
<thead>
<tr>
<th>Butterworth</th>
<th>741</th>
<th>OP-42</th>
<th>5532</th>
<th>2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order</td>
<td>LPF</td>
<td>HPF</td>
<td>LPF</td>
<td>HPF</td>
</tr>
<tr>
<td>2</td>
<td>700k</td>
<td>60k</td>
<td>3.5M</td>
<td>2M</td>
</tr>
<tr>
<td>3</td>
<td>100k</td>
<td>100k</td>
<td>400k</td>
<td>400k</td>
</tr>
<tr>
<td>4</td>
<td>200k</td>
<td>100k</td>
<td>1M</td>
<td>700k</td>
</tr>
<tr>
<td>5</td>
<td>150k</td>
<td>80k</td>
<td>600k</td>
<td>400k</td>
</tr>
<tr>
<td>6</td>
<td>100k</td>
<td>60k</td>
<td>500k</td>
<td>300k</td>
</tr>
<tr>
<td>7</td>
<td>80k</td>
<td>50k</td>
<td>300k</td>
<td>250k</td>
</tr>
<tr>
<td>8</td>
<td>60k</td>
<td>40k</td>
<td>250k</td>
<td>200k</td>
</tr>
<tr>
<td>9</td>
<td>40k</td>
<td>30k</td>
<td>180k</td>
<td>150k</td>
</tr>
</tbody>
</table>
LOW COST RANGE 1 PCB DESIGN FROM SEETRAX

- Circuit Schematic
- Circuit Capture
- PCB Design
- Host Of Outputs

All-In-One Design System

£100

Fully Integrated Auto Router

£50

Ask Us About Trade-In Deals

Call Now For Demo Disk on 0705 591374

Seetrex CAE • Hinton Daubny House
Broadway Lane • Lovedean • Hants • PO8 0SG
Tel: 0705 59137 • Fax: 0705 599036

What The Press Said About RANGE1

For most small users, Seetrex Range1 provides a sophisticated system at an affordable price. It is better than EasyPC or Telsys Boardmaker since it provides a lot more automation and takes the design all the way from schematic to PCB - other packages separate design for both, that is, no schematic capture. It is more expensive but the ability to draw in the circuit diagram and quickly turn it into a board design easily makes up for this.

Source: JUNE 1991 Practical Electronics

Pay by Visa or Access
DESIGN

2dB limit. Clearly the results obtained are subjective, but errors are minimised by double checking.

Butterworth filters

Results show (Table 2) that the filter cut-off frequency range increases with increasing amplifier open-loop gain and open-loop bandwidth. The cut-off frequency range falls as the square of the filter order. High-pass filters have a lower cut-off frequency range when compared with low-pass filters of the same order and which use the same op-amp. Filters of the third order often have a lower frequency range than fourth order designs. As a guide, the following empirical formula gives the acceptable bandwidth:

Butterworth frequency range = open-loop gain \times open-loop bandwidth

(frequency order)

Butterworth example 1: 7th order filter using 741 op-amp
- Frequency range limit = 200kHz \times 10Hz/249 = 40.8kHz.
- Limits using Table 2: 80kHz for LPF and 50kHz for HPF.

Butterworth example 2: 5th order filter using an OP42 op-amp.
- Frequency range limit = 250kHz \times 45Hz/25 = 450kHz.
- Limits using Table 2: 600kHz for LPF and 400kHz for HPF.

The formula given for working out the frequency range is moderately accurate in both examples – particularly for the high-pass filter. To find the frequency range limit for third order filter designs, which do not agree with the general pattern, determine the second order filter limit and divide it by five.

Chebychev filters

Chebychev designs have a lower acceptable frequency range than the comparable Butterworth filters (Table 3). Again the frequency range is approximately proportional to the product of open-loop gain and open-loop bandwidth, and inversely proportional to more than the cube of the filter order. But unlike the Butterworth designs, Chebychev high-pass filters generally have a higher acceptable cut-off frequency range than their low-pass counterparts. An empirical formula for determining the acceptable Chebychev range of Chebychev filters is given by:

Chebychev frequency range = open-loop gain \times open-loop bandwidth

(frequency order)²

Chebychev example 1: 6th order filter using NE5532 op-amp
- Frequency range = 100kHz \times 200Hz/309 = 64.7kHz.
- Limits using Table 3: 40kHz for LPF and 100kHz for HPF.

Chebychev example 2: 9th order filter using TLE2027 op-amp
- Frequency range = 40kHz \times 1Hz/1131 = 35.4kHz.
- Limits using Table 3 = 30kHz for both HPF and LPF.

The formula given for determining the Chebychev frequency range limit is also reasonably accurate.

Chebychev third order filters do not follow the general pattern, and their limit is found by dividing the second order limit by twenty.

Testing validity of models

The results give an idea of what characteristics an operational amplifier must have to provide the expected performance of an active filter. The limits of acceptable performance were arbitrarily chosen for my own purposes, and if better performance is needed the frequency ranges could be much lower than those tabulated. Choice is really a case of balancing performance against bandwidth. The performance unacceptable by the criterion used here, may be satisfactory in some applications.

Validity of the filter models was tested against the results of built designs. A 150kHz low-pass filter was designed using both 741 and TLE2027 op-amps. The practical results of built designs (Figs 2, 3, 4) show slightly worse performance than the modelled response in both cases.

References

2. ECA (Electronic Circuit Analysis), Those Engineers Ltd.

Filter characteristics

Filters have a pass band, which is the range of frequencies that should be passed without attenuation. They also have a skirt response, which is where the attenuation increases as the frequencies moves further from the cut-off point, outside the pass band.

Butterworth filters have a frequency response which is flat within the pass band. Chebychev filters have a small amount of pass band ripple which can be defined at the design stage. The filter skirt response is steeper if more pass band ripple is allowed in the design.

<table>
<thead>
<tr>
<th>Chebychev Order</th>
<th>741</th>
<th>OP42 LPF</th>
<th>5532 LPF</th>
<th>TLE2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>500k</td>
<td>500k</td>
<td>2M</td>
<td>3M</td>
</tr>
<tr>
<td>3</td>
<td>30k</td>
<td>30k</td>
<td>40k</td>
<td>100k</td>
</tr>
<tr>
<td>4</td>
<td>25k</td>
<td>30k</td>
<td>120k</td>
<td>200k</td>
</tr>
<tr>
<td>5</td>
<td>10k</td>
<td>25k</td>
<td>50k</td>
<td>100k</td>
</tr>
<tr>
<td>6</td>
<td>5k</td>
<td>10k</td>
<td>60k</td>
<td>40k</td>
</tr>
<tr>
<td>7</td>
<td>4k</td>
<td>5k</td>
<td>25k</td>
<td>20k</td>
</tr>
<tr>
<td>8</td>
<td>2k</td>
<td>3k</td>
<td>10k</td>
<td>20k</td>
</tr>
<tr>
<td>9</td>
<td>1.5k</td>
<td>2k</td>
<td>6k</td>
<td>8k</td>
</tr>
</tbody>
</table>

Table 3. Results obtained with Chebychev filter designs.
Simulating capacitor ripple

Are you about to design a linear regulator circuit, switched mode power supply or amplifier power pack? Take a look at a simple program from A M Wilkes first.

My program calculates the peak and trough voltages on the dc rail of an ac-to-dc mains supply, simulating the reservoir capacitor ripple. A sinusoidal supply is assumed. Full wave rectification is simulated and the output is smoothed by a capacitor.

Load may be a constant current, a constant resistance or a constant power and so the program can be useful in designing linear regulator circuits, switched mode power supply front ends and amplifier power supplies.

Coding is in Pascal and should be easy to follow for non-Pascal users since it is heavily commented, remarks enclosed between curly brackets.

The program body is a sequence of procedure calls at the end of the listing enclosed between begin and end statements.

Seven variables may be edited by the user to suit a problem. To simulate half-wave rectification, the value of NC (number of missing cycles) should be set to 0.5, and as the diode drop will be one so Vd should be set to, say, 0.8.

When the program is run it simply lists the adjustable parameters and the result – peak voltage and trough voltage across the reservoir capacitor.

General form of the simulated circuit.

```
program CapacitorRipple; { Simulates the capacitor ripple voltage of a bridge rectifier circuit. }
uses CRT;
type
  LoadType = (Power, Current, Resistive);
var
  { Global variables }
  C, Vs, F, Value, NC, Vpk, Vd : Real;
  Load : LoadType;
procedure InitialiseValues;
  { Edit these values to your liking }
begin
  C := 1500; { Reservoir capacitor, value in microfarads }
  Vs := 15; { Source voltage (Vrms) }
  F := 50; { Frequency of source voltage in hertz }
  Load := Current; { Type of load: Power, Current or Resistive (All constant) }
  Value := 1; { Load value in Watts, Amps or Ohms }
  NC := 0; { Number of cycles to skip (0.5 for half-wave rectification) }
  Vd := 1.6 { Total of diode drops };
end;
procedure ListValues;
begin
  WriteLn('Capacitor Value in Microfarads = ' , C :6 :0);
  WriteLn('Input Voltage in Volts = ' , Vs :6 :0);
  WriteLn('Supply Frequency in Hertz = ' , F :6 :0);
  WriteLn('Load value in ' , Load :1 :0);
  case Load of
    Power : Write('Watts ');
    Current : Write('Amps ');
    Resistive : Write('Ohms ');
    end;
  WriteLn('Number of cycles to skip = ', NC :6 :1);
  WriteLn('Total of diode drops in volts = ', Vd :6 :1);
end;

procedure Calculator; { Do the work }
const dT : Real = 0.0001; { Time step = 0.1 milli seconds }
var
  Local variables
  Kv, Ke, P, Value, NC, Vpk, Vd : Real;
begin
  Period := 1 / F; { 1 / Frequency }
  Vp := 2 * Pi * F; { Constant used for calculating sine wave }
  Vcap := Sqrt(Vp) * Vs - Vd; { Peak source voltage minus diode drop }
  Ke := 0.5 * C * 1e-6; { Constant used in calculating capacitor energy }
  Vc := 0; { Initial capacitor voltage }
  Vmin := Vpk; { Initialise trough voltage }
  Toff := Period / 4; { Start of missing cycles }
  Ton := Toff + Period * NC; { End of interval of missing cycles }
  Tstop := Period * 1 cycle
  T := 0; { Initialize start time }
  repeat ({ *** Start of loop *** }
    { Calculate change in capacitor energy for time step dT }
    case Load of
      Power : P := Value; { Power = Watts }
      Current : P := Vcap * Value; { Power = V X I }
      Resistive : P := Sqrt(Vcap) * Value; { Power = V X V / R }
    end;
    dE := P * dT; { Energy change = power x time change }
    if Ecap < 0 then Ecap := 0; { Test for complete discharge }
    Ecap := Sqrt(Ecap) / Ke; { Calculate new cap voltage };
    if Period > Ton then { Set stop time for calculations }
      Tstop := Period * 1 cycle
      else Tstop := Toff + Toff; { Resumption of supply - 1/4 cycle }
    if T > Tstop then { Initialize start time }
      T := T + dT; { Increment time }
    until T > Tstop; { *** Loop then display result *** }
  ```
This reference book is divided into five parts: techniques, physical phenomena, materials and components; electronic design and applications. The sixth edition was updated throughout to take into account changes in standards and materials as well as advances in techniques, and was expanded to include new chapters on surface mount technology, hardware and software design techniques, semi-custom electronics and data communications.

Fraidoon Mazda has worked in the electronics and telecommunications industry for over twenty years, and is currently Product and Operations Manager, Generic Network Management, with Northern Telecom. He is the author of six technical books (translated into four languages) and the editor of the Communications Engineers Reference Book published by Butterworth-Heinemann.

CONTENTS:
Techniques
Trigonometric functions and general formulae;
Calculus; Series and transforms; Matrices and determinants;
Electric circuit theory; Statistics. Physical Phenomena
Quantities and units; Electricity; Light; Radiation; The ionosphere and troposphere. Materials and components
Resistive materials and components; Dielectric materials and components;
Magnetic materials; Inductors and transformers; Relays;
Piezoelectric materials and components; Connectors; Printed circuits; Power sources; Discrete semiconductors; Microwave semiconductor devices; Optical digital integrated circuits; Linear integrated circuits; Semiconductor memories; Microprocessors; Application-specific integrated circuits; Electron microscopy; Digital design; Software engineering; Digital systems analysis; Control systems; Antennas and arrays; Noise management in electronic hardware; Noise and communication; Computer aided design; Television and sound broadcasting. Applications
Communication satellites; Point-to-point communication; Fibre-optic communication; The integrated services digital network (ISDN); Local area networks; Radar systems; Computers and their application, Videotape recording, Office communications; Medical electronics.

1006 pages PAPERBACK ISBN 07506 0809 9
£42.50 (inc post & packaging)

Please return to: Lorraine Spindler, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

* Now available to Electronics World & Wireless World readers in paperback.
* Expert coverage of all aspects of electronics
* Over 60 contributors
* For electronic engineers, technicians and students

Please supply me —— copies of the ELECTRONIC ENGINEERS REFERENCE BOOK (ISBN 07506 0809 9) @ £42.50 (INC POST & PACKAGING)

Add VAT at local rate
NB ZERO RATE FOR UK & EIRE TOTAL

Business purchase: Please send me the books listed with an invoice. I will arrange for my company to pay the accompanying invoice within 30 days. I will attach my business card/letterhead and have signed the form below.

Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resalable condition for a full refund.

Remittance enclosed £
Cheques should be made payable to Reed Book Services Ltd.

Please debit my credit card as follows:
Access/MasterBarclay/Visa
AmexDiners
Credit Card No. Exp date
NAME (Please print)
ORGANISATION
STREET
TOWN
COUNTY POST CODE
COUNTRY
DATE TELEPHONE NUMBER
SIGNATURE
T3000

VAT RATES
6% Belgium, 25% Denmark, 5.5% France, 7% Germany, 4%
Greece, 4% Italy, 3% Luxembourg, 6% Netherlands, 5%
Portugal, 3% Spain. FOR COMPANIES REGISTERED FOR
VAT PLEASE SUPPLY YOUR REGISTRATION NUMBER
BELOW (customers outside the EEC should leave this part blank).

VAT NO.

If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.

Please delete as appropriate. I do/don't wish to receive further details about books, journals and information services.

Credit card orders accepted by phone.
Call 081 652 3614.
The MCT combines the versatility of a transistor, the low forward conduction losses of a thyristor and the gate characteristics of a mosfet. Ian Hickman puts a new type of high power switching device into a test bed.

THE MOS CONTROLLED THYRISTOR

Thyristors and triacs have developed to the point where they can handle hundreds of amps and volts, but can need quite a hefty pulse of current to trigger them on. The exceptions are the mos based devices. One type is similar to an N channel power mosfet but with an additional P layer in series with the drain, resulting in a four layer device. Thus when conducting, the usual majority carriers are augmented by the injection of minority carriers resulting in a lower bottoming voltage. These devices are variously known as comfets, gemfets etc, depending on the manufacturer and, like the power mosfets from which they are derived, can be turned on or off by means of the gate.

Not so the mos thyristor, which has the usual four layer structure of an SCR with its very low forward volt drop when conducting, and like them must be turned off by reducing the current through it to zero by external means. However, unlike SCRs, it does not require a sizeable current pulse to turn it on. The GTO (gate turn-off) thyristor can be switched off again by means of the gate, but the drive power needed to do so is considerable. The main characteristics are summarised in Fig. 1.

A recent development has resulted in yet another variation on the thyristor theme, possessing many of the best points of all the various device types mentioned so far – this is the MCT (mos controlled thyristor: not to be confused with the mos thyristor). As Fig. 2a shows, this is basically an SCR, but instead of the base of the NPN section being brought out as the gate terminal the device is controlled by two mosfets, one n-channel and one p-channel. These are connected to the anode of the

Fig. 1 Variations on the Silicon Controlled Rectifier theme. (Reproduced by courtesy of Motorola Inc.)

<table>
<thead>
<tr>
<th>Device</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR</td>
<td>Silicon controlled rectifier</td>
</tr>
<tr>
<td></td>
<td>4kV - 4kA</td>
</tr>
<tr>
<td>ASCR</td>
<td>Asymmetric silicon controlled rectifier</td>
</tr>
<tr>
<td></td>
<td>2kV - 1.5kA</td>
</tr>
<tr>
<td>GTO</td>
<td>Gate turn off</td>
</tr>
<tr>
<td></td>
<td>4kV - 2kA</td>
</tr>
<tr>
<td>TRIAC</td>
<td>Triode AC switch</td>
</tr>
<tr>
<td></td>
<td>600V - 40A</td>
</tr>
<tr>
<td>Mos Thy</td>
<td>Mos Thyristor</td>
</tr>
<tr>
<td></td>
<td>500V - 20A</td>
</tr>
</tbody>
</table>

**Fig. 2a. Equivalent circuit of the MCT, showing the complementary bipolar latch which forms the main current path, the n-channel "off" mosfet which shorts the base-emitter junction of the pnp section, and the p-channel "on" mosfet which feeds base current into the npn section. b) Cross section and equivalent circuit of one of the cells of an MCT; there are tens of thousands of these cells in a typical device. c) Comparison of current capability of the MCT and other devices for a given chip size.
MCT, making it a p-MCT and in effect a high side switch. The p-channel mosfet can turn the device on by feeding current into the base of the npn section of the complementary latch, while the n-channel mosfet can turn it off again by shorting the base of the pnp section to its emitter. To turn the device on, the p-channel mosfet has only to feed enough current into the base of the npn section to cause the loop gain of the npn-pnp pair to exceed unity, consequently it does not need a very low on resistance. But to turn the device off, the n-channel mosfet needs to take over the main current, and pass it with a volt-drop lower than the forward V(b-e) of the npn section. This description of the operation applies not only to the device as a whole, but also to each and every one of the many thousands of constituent cells, Fig. 2b. If carrying a heavy current, the base-emitter shorting fets must be turned on uniformly and rapidly to ensure that all MCT cells turn off essentially the same current. If the gate voltage rises slowly, the current will redistribute among the cells, reaching a value in some cells that cannot be turned off.

Taking the simplest possible view, the main current path via the four layer pnp-npn latch should be either on or off, depending upon which of the controlling mosfets was last in conduction. An MCTV75P60E1 in its five lead TO-247 package was connected up as in Fig. 3a. The base connections and circuit symbol being shown in b. Now the device's input capacitance C_{in} that is to say the capacitance looking in at the gate pin with respect to the gate return pin, is listed as the not inconsiderable figure of 10nF, so to ensure that the gate received almost the full $\pm 18V$ pulses which are recommended, the value of C_{in} in Fig. 3a was set at 100nF. When the supplies were switched on, the device did not conduct. Momentarily connecting point X to the $-15V$ rail switched it on, and likewise connecting point X to the +15V rail switched it off again.

The device's holding current (the minimum needed to keep the device in conduction, below which the loop gain falls below unity and the device turns off) is not stated on the data sheet and is merely indicated in the applications notes as being "mA". With the device switched on, the voltage of the $+24V$ supply was slowly reduced. At 12V, the voltage across the 1k resistor suddenly collapsed to zero, indicating a holding current of 12mA for this particular sample at room temperature.

Since the drive was obtained via a capacitor, the drive circuit did not need to be referenced to the gate return pin – this was verified by breaking the circuit at point K and returning the junction of the two 10uF capacitors to the negative end of the 24V supply. Thus in certain relatively low power applications, the device could be used as a high side switch without the need for any auxiliary supplies referenced to the high side voltage. It is true that spikes on the main supply could then be coupled to the gate, but due to the large ratio of the 100Ω gate resistor to the 8.2kΩ recharging resistor, unintentional switching from this cause is not likely, nor is it likely from stray capacitive coupling given the very large internal gate capacitance. However, this is not the recommended mode of operation for the following reason. The circuit of Fig. 3a barely

![Fig. 3 a) Simple on/off test circuit. b) Base connections and circuit symbols of the Harris MCT](image)

flies the device, given its 600V blocking capability and 75A continuous cathode current rating (at 90°C). Therefore the device leakage current was only micromaps, way below the current at which the loop gain exceeds unity. Thus the off condition could persist, despite the fact that the bases of the two internal bipolar devices were floating. However, at a case temperature $T_c=150^\circ C$, the peak off-state blocking current I_{ch} (with $V_{gb} = -600V$) could be as much as 3mA, even with the n-channel mosfet fully enhanced ($V_{gs} = +18V$). If the n-channel mosfet were not fully enhanced, or even off completely, the collector leakage current of the npn bipolar section flowing into the base of the pnp section could result in the loop gain exceeding unity; the device would turn on, its blocking ability would have failed. For this reason, the recommended switching and steady state gate voltages are as shown in Fig. 4.

To meet these requirements, the circuit of Fig. 5a was sketched out, using a 2N5859 (nnp) and 2N4406 (pnp). Both types are switching transistors, rated at 2A and 1.5A
continuous collector current respectively, so they seemed at first sight a plausible choice since to charge a \(C_{\text{eq}} \) of 10nF through 25V in 200ns requires just 1.25A. (Note that the MCT's \(C_{\text{eq}} \) is relatively constant; it is not augmented during switching by the Miller effect unlike a power mosfet). The circuit was a resounding failure, being quite incapable of swinging the MCT's gate through 25V in 200ns. This was presumably due to the fall of current gain of the driver transistors with increasing collector current, and the absence of suitable speed-up capacitors.

Changing from a discrete driver approach to a Unitrode minidip UC3705N High Speed Power Driver (also available in a 5-pin TO-220 package) in the circuit of Fig. 5b) rectified the problem; 5c shows this device’s internal arrangement. Fig. 6 shows the gate waveform with a 10kHz squarewave applied to the input of the driver chip, the double exposure showing both the positive and negative going transitions; 10V/div vertical, 20µs/div switching to 200ns/div horizontal. A 30V swing across 10nF results in the 4.5µJ stored energy being dissipated in the UC3705N switch, well within the 20µJ rating of the n-package and with the 200ns rise/fall time in Fig. 6, the peak current is within the n-package’s ±1.5A peak rating. At 10kHz the average dissipation is 20000 x 4.5µJ = 90mW, again well within the 1W (25°C) rating.

Note that while the UC3705X series are specified for operation over the range 0 to 70°C, it incorporates an internal over-temperature shutdown operating at 155°C typical. Shutdown drives the output low, which would turn the MCT on—this will usually be undesirable if not fatal. There are various possible solutions, such as making sure that an external shutdown (perhaps associated with the MCT’s heatsink) shuts the whole system down before the driver nears its shutdown limit. A simpler solution is to use one of the other devices in the series such as the UC3706X which has complimentary outputs: using the inverted output will result in shutdown turning the MCT off.
A satisfactory driver circuit allowed operation of the MCT nearer its limits. With its 600V 55A rating, it is capable of controlling over 50kW and indeed the manufacturer has produced modules containing 12 paralleled devices with a megawatt capability. To keep the average power within bounds, the device was pulsed on for 4μs at a 250pps rate – a 0.1% duty cycle – as in Fig. 7a. Messing about with 600V on the lab bench is not a thing to be undertaken lightly, so I settled for a modest +85V from raw supplies. With the mains to the supplies was wound up with a Variac, the MCT happily passed pulses of current through the 1Ω load resistor, the voltage across which is shown in Fig. 7b, lower trace, the upper trace being the gate drive waveform.

My experiments showed that the MCTX75P60E1 is reliable and easy to use. In applying these devices, one must seek to obtain maximum advantage from their good points, which include a very low forward voltage drop even compared to other minority carrier devices such as IGBTs - let alone mosfets - while working within their limitations. As a double injection device - both p- and n-emitters - the MCT conduction drop is well below that of the insulated gate bipolar transistor, especially at high peak currents (Fig. 8a). Clearly their turn-off time will be longer than a mosfet which conducts purely by majority carrier action, although they can be used at higher frequencies than power Darlington.

Spice models for the devices, Fig. 8b, show the close agreement between measured and predicted turn-off dissipation. With the present models, a notional snubber network may be needed to reduce numerical noise in the simulation, but then a snubber may be required for real, depending on the application. This is because the p-MCT's safe operating area is rated at half the device's breakdown voltage rather than 80% typical of an n-type power device. If an application involves hard switched inductive turn-off above the SOA, a snubber is not cost effective, then the MCT is not the best choice. Furthermore, if with a snubber the switching losses now approach the conduction loss, there may be little advantage in using an MCT.

On the other hand, with their minimal conduction losses, these devices are ideal in soft switched or resistive load circuits and above all in zero current switched applications such as resonant circuits. The maximum operating frequency f_{max} depends upon both the conduction and switching losses, and can be defined in more than one way, Fig. 8c (note that "E" here indicates energy, not erf). From this it will appear that in most applications, the operating frequency will be 30kHz or lower. A point to bear in mind is that the peak reverse V_{KA} is +5V, so that in a bridge or half bridge circuit with an inductive load, anti-parallel commutation diodes should be fitted to provide a path for the magnetising current at the start of each half cycle, when operating at low loads.

References
MCTX75P60E1, MCTA75P60E1, Harris Semiconductor, File Number 3374 MCT User’s Guide, Harris Semiconductor, Ref. DB307A.
ACTIVE

A-to-D & D-to-A converters

Four-channel A-to-D. National’s ADC0934/CMPF is a 20mW, 2μs serial 8-bit analogue-to-digital converter with four channels in a thin shrink small outline package intended for the PCMCIA disk-drive application. Its four-channel multiplexer operates in single-ended, differential and pseudo-diff. modes, the device also containing a 2.5V reference. National Semiconductor, 0793 697428.

Low-power A-to-D converter. CS5369 stereo 18-bit delta-sigma A-to-D converter has an S/N ratio of 107dB and snared better than100dB. Crystal’s new chip needs no extra components and includes digital anti-aliasing filtering, sample-and-hold and a voltage reference. Phase and magnitude responses of the filter are flat from 0-22kHz, stop-band rejection being more than 80dB and ripple in the pass-band <0.01dB. Sequoia Technology Ltd, 0734 311822.

Discrete active devices

Dual-gate mosfet. BF90/4 from Philips is a 12V dual-gate mosfet with a 25mS transfer admittance, 2.2pF input and 2.0B noise figure. It also has an internal bias circuit that removes the need for external components while allowing adjustment of quiescent drain current. It can be turned off at any electrode. BF90 has 35mS transfer admittance and a 1.5dB noise figure at 800MHz but no bias circuit. Philips Semiconductors, 011-436 4144.

Power transistors. Zetex claims its FZT850/950 power transistors to be the world’s best performers in SOT233 packages where input voltage is 33mV at a continuous current of 7A and the devices exhibit a gain of 100. The range includes n-p-n and p-n-p types, some with collector ratings to 60V and all handling 20A peak. Zetex plc, 061-627 4963.

Hyperabrupt varactors. Zetex’s range of SM voltage-controlled capacitors works at video frequencies in the 0-2GHz range. Control voltages of -20V or -0.6V tune over an octave. Devices in the 22V ZC840 series vary from 0.7pF to 5pF and in the 12V ZC930 range the variation is 3-9pF. At a reverse voltage of 4V and at 50MHz, Q is 600 minimum. Zetex plc, 061-627 4963.

Digital signal processor

Audio processor. All the filtering, composing and analogue control circuitry needed by an analogue cellular telephone fit into TI's new TCM8000 audio processor chip. Current consumption from the single supply is 14mA. Fillers are programmable to comply with AMPS, TACS or NMT standards. Texas Instruments, 0234 223502.

Linear integrated circuits

Video difference amplifier. For use in systems where high common-mode and noise must be rejected, Analog’s AD630 video difference amplifier has a unity-gain bandwidth of 100MHz, CMRR of 100dB at DC and 60dB at 4MHz and <2.3V clipping. Common-mode range is ±13V to ±11.5V, settling time of 35ns to 0.1%, diff. gain phase error of 0.05%/0.08% and gain flatness of 0.1dB to 15MHz. Analog Devices Ltd, 0932 253320.

10V reference. REF01 by Burr-Brown is an improved version of the standard REF01, giving a 30% accuracy enhancement to ±0.2% and 75% lower noise at 5V/1kHz from 0.1Hz to 1kHz. Stabilisation and regulation are 0.002% and 0.01%. Burr-Brown International Ltd, 0923 233837.

Variable-gain amp. C mornings’ CCLK522 is a DC-coupled two-quadrant multiplier with differential voltage input and single-ended output, with two input buffers and an op-amp output. Gain control is by way of a high-impedance voltage input. Maximum gain is set by two resistors from 2 to 100 with control over a 40dB range. Bandwidth is 165MHz. C composer Europe Ltd, 0203 422958.

850MHz buffer. Harris’s current-feedback, closed-loop buffer, the HFA1113, exhibits an 850MHz -3dB bandwidth, 2050μV sinusoiding rate. 1μs settling time to within 0.1%, and 0.075dB gain flatness over 200MHz. There is a programmable output clamp to prevent succeeding circuits in circuitry and programmable gain of +1 and -1. Output current is 60mA and third-harmonic distortion -80dB. Harris Semiconductor (UK), 0276 686886.

Analogue multipliers. Two high-speed, four-quadrant multipliers by Harris for use in mixer and AGC circuitry are 65MHz (HA-2556) voltage output and 100MHz (HA-2557) current output devices, the latter needing an off-chip amplifier HA-2556 offers 40V/div slewing, 0.2dB gain tolerance to 6.5MHz, -50dB feedthrough, 0.1% error and 0.1 differential phase error. Harris Semiconductor (UK), 0276 686886.

DC converter. Maxim’s MAX1743 is a 5V in, ±12V or ±15V out, power supply module that needs no extra components. Output voltage is within 4% of the strap-selected value for all specified input, output and temperature conditions and current is 125mA or 100mA, depending on output voltage. Protection is included. Maxim Integrated Products Ltd, 0734 845255.

RF amplifiers. In six-pin SOT23 packages, NEC’s µP277XX wide-band RF amplifiers cover the 1GHz-3GHz range and use the MMIC technique. The amplifiers are meant for use in cost-gain and buffer stages in cellular and PCM telephones, GPS receivers, DBS tuners and test gear. The range comprises 3.4V, 15.3mW types working at 1.8GHz and 1.2GHz, low-noise 5V amplifiers, producing 3dB-12dB noise figures at 10GHz and medium-power 5V types at 1.5GHz-3GHz with saturated power outputs of 10dBm-13.5dBm. NEC Electronics (UK) Ltd, 0908 691153.

FM IF amplifiers. Two FM chips by Sony are in SOP and VSOP packages with a view to reducing space and parts count. CAR4174 is for use in single-conversion pages and the CXA1474 has a second on-chip mixer and oscillator for use in double-conversion systems. Both devices use a single 1.4V supply with current drains of 920μA and 1.4mA.

4-Mbit flash memory. Atmel has a 3V, 4-Mbit flash memory, claimed to the world’s first of its type. AT29LV040 needs only the 3V supply for both read and writing, with an 8μs read access requirement, offers a 70% or saving over a 5V-only flash. It is available as 512K by 8-bit and individual sectors can be written to in 20ms. Atmel (UK) Ltd, 0276 666777.

Sensitivities are 17dBμV and 70dBμV with input bandwidths of 1MHz and 20MHz. Sony Semiconductor Europe, 0784 466660.

Logic building blocks

Programming module. A 14-pin module which contains a complete flash-memory programming supply, the Maxim MAX702 occupies only 0.25mm² and provides 120mA at 12V from a 4.5-6V input. Load regulation is ±2%. Normal 1.7mA quiescent current reduces to 70μA in digitally actuated shutdown mode. Maxim Integrated Products Ltd, 0734 845255.

Reset monitors. The MAX709 supervises a microprocessor’s supply voltage and issues resets if it falls below a trip threshold, versions to handle 3V, 3.3V and 5V systems being available. The reset output remains low for 200ms after the supply is restored. Devices are in 8-pin dip and SO packages and need no extra components. Maxim Integrated Products Ltd, 0734 845255.

SCSI termination. TI has a single-ended terminator for SCSI-based computer systems, which contains the external components on one chip and will handle the proposed Fast SCSI III 100Mbps/μs speed. The nine-channel TLI21F-285 uses current-mode termination, in which a constant high current is supplied to the SCSI cable.
NEW PRODUCTS CLASSIFIED

Please quote “Electronics World + Wireless World” when seeking further information

during transitions to give a faster digital signal with fewer distortions. Output capacitance is 6µF. Texas Instruments, 0234 223252.

Memory chips
Regproms. New technique used by Silicon Storage Technology to make their 28CE010/10 exproms offers sector erasing, a single 3.3V or 5V supply and fast erasing, while retaining Jedic pins for byte-wide memories. Both are 128K by 8 devices with 10-year data retention, access times down to 120ns and standby current of 15µA. Byte-write time is 39µs and pre-loading of data enables the whole memory to be written in 5.3s.lace Microelectronics, 0844 278781.

Video rams. Two three-port rams for television use are available from Sony. CXX12066AM is a 1,2Mbit ram with a 4-bit word, while CXX4632Q is a 2.4Mbit device with 8-bit organisation to make it capable of storing an 8-bit Pal or NTSC field. Each has one write port and two read ports, all transfers between i/o and memory blocks being controlled internally. Both recursive and non-recursive modes are available. CXX4632Q has write and read times of 50ns and 30ns. Sony Semiconductor Europe, 0784 466680.

Microprocessors and controllers
Micros for portables. 32-bit microcontrollers from Motorola, 68414, 68349 and 68040, are meant for low-power, high-performance portable equipment, all having 3.3V (v) versions. 341 is for the CD-i market, working at 16MHz and featuring 64kb ROM, 8kb SRAM, 64kb EPROM and 32-bit code processor, 32-bit DMA controllers, dual serial comms port, power management and a system interface. This is the highest performing device of the three. Motorola Ltd, 0908 614614.

2V, 4-bit controllers. New members of the NEC µC/CM7X family of cmos single-chip microcontrollers operate from supplies down to 2V. The 74004/68 series have 4, 6 or 8k of ram and 512 byte of ram. There are 34 i/o lines, four external and four internal interrupts, three 8-bit timers and a serial comms port. Clock speed is 1.5MHz, giving an instruction cycle time of 0.95µs. Devices using LCDs have on-chip drivers for 34 by 4 segment displays. Sunrize Electronics Ltd, 0908 200583.

Mixed-signal ICs.
GSM synthesisers. Dual biocom PLL synthesisers with VCO, RF buffer, prescaler and filter amplifier and are meant for the 900/1800MHz range, although the synthesiser spans 800-1100MHz. Both 5V and 3V versions are available. Current drain is 35mA. Altea Micro Systeme Ltd, 0276 29353.

Video analogue input interface. The GPS VP8706 is intended for use in PC cards to perform video overlays on graphics displays in multimedia systems, but can also be used in frame grabbing, digital picture processing etc. Output is selectable between binary and two's complement. The device is compatible with the Philips TDA8708. GEC Plessey Semiconductors, 0793 518510.

Teletext decoder, GEC Plessey’s MV1915 single-chip teletext 625-line standard. The cmos chip has an on-board data slice, dual page memory and clocking and up to 254 display pages stored in external dram. It has an IEC bus and multiple-language capabilities. Gothic Crelton Ltd, 0734 788878.

Digital video processing, Digital Transient Improvement ICs from ITT make television and computer systems compatible for multimedia work and are also suitable for high-quality, multi-standard and multi-format television receivers. DT2250/11 versions are usable as 4:1 YUV systems with software-selected function. DT2260 improves picture quality by interpolating chroma signals from 4:1 to 4:2:2 using processing via a digital colour transient improvement filter. The devices’ skew compensation allows the DIGIT2000 television system to produce computer-compatible “square pixels,” ITT Semiconductors, 0923 315116.

CT2 processor. VP23070 is a CT2 processor providing a full Common Air Interface base-band function but using only 15Wm at 3V. VLSI's design has a burst-mode controller, data clock and sync extractor with a fully compliant GT21 ADPCM transcoder and interfaces for most handsets and base-stations and a domestic cordon telephone and Teletext application. VLSI Technology Ltd, 0908 567595.

Oscillators
Directly heated crystal osc. Contains in one cubic inch. Anglia’s DHOX has its heater deposited on the crystal blank itself to provide rapid warm-up. The technique also improves ageing, phase noise and vulnerability to vibration compared with larger, oven oscillators. Frequency range is from a stability of 2 parts in 1012 from 410MHz to 70°C, with 1 part in 1010 per year ageing. Phase noise is -153dBc/Hz at 10kHz. Anglia Microwaves Ltd, 0277 630000.

SM oscillators. Surface-mounted oscillators in a new range by Murata are 40% smaller than earlier ones. MGE series of voltage-controlled oscillators cover frequencies for EAMPS, ETACS, NMT and GSM carriers, with more types in the pipeline. Carrier-to-noise ratio is 73dB and output is -2dBm minimum. Murata Electronics (UK) Ltd, 0252 811666.

Small rubidium oscillator. Stealite’s System Electronics Division believes its FE-6050 rubidium frequency standard to be the smallest atomic oscillator available. Measuring 3in by 1in by 1.4in, it consumes less than 7.5W, warming up in less than four minutes, exhibiting low phase noise with low spurious content and harmonics. Frequency range is 510MHz-2.5GHz. Stealite Group, 0203 873571.

Capacitance meter. Boonton’s 7200 capacitance meter calculates and displays equivalent parallel or series resistance, series C-dissipation factor in Q, K and the range 0-2000µF, or to 4000µF with auto-zero, with stray compensated. Accuracy is ±0.25% of reading plus 0.2% FSD. Internal 100V or external 200V bias voltages can be used for biased devices and capacitance can be displayed as a deviation from a preset reference in percentage or µF. Aspen Electronics Ltd, 0811 896131.

Power semiconductors
Low-R Hexfets. HEX 6 power models from 250W range from 600V devices with an on resistance of 9mΩ to 600V types offering 40mΩ. Drain current for the 60V type is 70A at case temperature of 130°C. International Rectifier, 0883 713215.

Passive components
SM inductors. Waycom’s range of surface-mounted inductors includes ultra-low-profile coils, transformers and power inductors made by Sumida. The CLS93 DC-to-DC converter transformer has a maximum inductance of 1.8mH, works up to 500kHz and 200W. GJB power inductors cover the 1.1H-2.4H range at 3.8A to 0.36A, with resistances of 0.333Ω-2.1Ω. Cases are 3.5-4mm high and 4.12-6.6mm diameter. Acal Electronics Ltd, 0344 727272.

Electrolytic capacitors. Philips’ PLLS-508/509 power electrolytics offer a 33-150,000µF range of values, operating at temperatures of -40°C to 105°C, and affording a life of 10,000h at the higher temperature. Diameters are 22mm to 33mm and cases are between 25mm and 50mm long, with snap-in terminals. Gothic Crelton Ltd, 0734 788878.

Electrolytics. KL series electrolytics by Nichicon exhibit a leakage current of 0.2µA at working voltages of 6.3V, 100V, in values from 0.1µF to 10,000µF. Ripple is 1.9A and load life 32,000 hours at 55°C. Nichicon (Europe) Ltd, 0276 685393.

Film chip capacitors. In the capacitance range 0.47µF-0.047µF. Panasonic’s ECH-U components provide better than 0.5%/year stability. Size is 3.2 by 2.5 by 1.6mm and the capacitors can be flow or
rerefloW soldered, Panasonic Industrial UK Ltd, 0344 853B37.

Filters

2.5GHz filter. For front-end filtering in GPS, cellular telephones and RF data exchange. Toko’s 2.5GHz surface-mounted filter measures 9.4mm by 4mm by 4mm and, in spot frequencies between 1.3GHz and 2.5GHz offers a 100MHz – 1dB bandwidth, less than 0.5dB ripple and 1.5dB insertion loss. Impedances are 50Ω. Circit Distribution Ltd, 0992 444111.

Hardware

EMC cabinet. Eurorack HF2 from Schroff is an electromagnetic compatibility cabinet with individually plugged stainless steel contact springs, mounted at any interval, to tailor the characteristic for any application. Widths and depths are 600mm to 800mm and heights from 16U to 43U. The units being upgraded to IP20. Schroff UK Ltd, 0442 240471.

Instrumentation

Field-strength meter. ITT’s VX600 television field-strength meter performs measurements in all VHF, UHF TV bands, including satellite, and the FM band: acts as a TV monitor for sound and vision testing; and performs spectrum analysis. Sensitivity is 20dBV and there is a scan connector for an external D2mac or video. The VX600 meets both IEC and VDE safety and EMC standards. Amplicon Liveline Ltd, 0800 525 335.

Dielectric measurement. HP’s HP 5850M is a software/hardware system designed to perform dielectric measurements for the food and chemical industries. HP 8231B is the software used to control a 3GHz HP 8752A or 20GHz HP 8720C network analyser, which makes swept, high-frequency stimulus/response measurements, then translated into the relevant terminology and format. Measurements include dielectric constant, permittivity, loss factor and loss tangent. Software runs under Windows in MS-dos format for PCs or HP Basic for HP workstations. The system includes all peripherals, including an 486 computer. Hewlett-Packard Ltd, 0344 362277.

Universal counter. Hewlett-Packard’s HP 53131A counter uses a technique developed by HP for modulation-domain analysers to provide extremely high resolution at very high speeds, display 10 digits in 1s. Bandwidth is 225M Hz or 3GHz. Each channel and facilities include 500s single-shot time interval: all standard court: functions including phase angle, peak voltage and rise time: an analogue display, measurement statistics: znc single-key recall for measurement set-ups. Hewlett-Packard Ltd, 0344 362277.

Microwave power meter. Although a portable, cordless instrument, Marconi’s 6970 RF power meter provides benchtop functions: in the range 30kHz–40GHz at power levels of –70dBm to 35dBm (100μW–3W). The option of 0dBm 5GHz power reference is traceable to national standards and gives a ±0.2dB accuracy. Marconi Instruments Ltd, 0727 502922.

Dialled port access. Multilog from Mutek allows dial-in access to multiple serial ports in PABX or computer systems. It is battery-backed and there is an internal modem and large buffer for data capture or remote access. Dialling selects one of five serial ports and several isolated single-line inputs and outputs. Mutek Ltd, 0225 866501.

Digital oscilloscope. Hitachi’s VC7104 DSO has 150MHz analogue bandwidth and samples at 100M/s on four channels simultaneously. Memory cards up to 2Mbyte are accepted to provide storage of up to 200 waveforms of 9K each in dos format for PC use. The built-in printer automatically records waveforms and there is a plotter output. Programming is by way of GPIB and RS 232 interfaces. Thurlby-Thandar Instruments, 0480 412451.

10-trace oscilloscope. A 10-trace, four-channel 100MHz oscilloscope from Kenwood has 100-step programming and PanNTSC line counter. The CS3030 nine-on-screen readout is a delayed timebase allowing independent A and B sweep trigger setting. Vertical sensitivity is 1mV/division at a sweep speed of 20μs-50Ms/div on B and 20μs-50Ms on A. Accelerating voltage is 17kV. Trio-Kenwood UK Ltd, 0923 816444.

Literature

Data acquisition. Features of Amplicon Liveline’s 200 series data acquisition systems are described in a new brochure. Amplicon Liveline Ltd, (Free) 0800 525 335.

SM leds. Dialight has a colour guide to their range of surface-mounted led, which includes top-view and right-angle configurations in colours from blue to infrared, and photodetectors.

Pulse generator. Models 240 and 233 and generators by Level are 0.5Hz-50MHz instruments, the 223 being a dual-trip and its manual to ISO rate and width control and the facility of running the two outputs independently, parallelised, summed, in series or with one channel running as an oscillator to give a burst function. Rise and fall times are independently adjustable in the 240. Level Electronics Ltd, 0992 501231.

The microLED 597 series are claimed to be the smallest available leds and the P/KSM CBI is the first true right angle mounted SM led with integral optics. BLP Components Ltd, 0638 665161.

SM devices. Murata has a new catalogue detailing the company’s range of surface-mounting components such as chip ceramic capacitors, trimmer pots, EMF suppression devices, ceramic filters, coax, connectors, isolators and VCOs. There is a section on a bulk feed system for the components. Murata Electronics (UK) Ltd, 0252 811666.

Power supplies. 200W DC-to-DC modules. Single and triple output converters from Advanced Power Conversion use a current-fed push-pull converter circuit switching at a fixed 50kHz rate, the units being mounted and aro made to ISO 9000 QC in a chassis or PBC mountings. Advanced Power Conversion Ltd, 0252 371036.

Long-life cells. Lithium coin cells from Fuj, the CR series are meant for battery backup, the CR2450, for example, providing five years of life at 10μA drain. All cells give 3V nominal

Please quote “Electronics World + Wireless World” when seeking further information
and capacities are in the 70mA-850mA range. Smallest in the range measures 20mm by 1.6mm. Price is about one-sixth that of thionyl chloride cells. Suvicon Ltd, 021 643 6999.

Bench power supply. Tri-Kenwood’s PD 110-5 PSU gives 0-110V at 0-5A, having a phase-control circuit with a pre-regulator to give rapid response and high-stability large currents. Remote sensing is used and remote control of outputs is included, as is over-voltage protection. Tri-Kenwood UK Ltd, 0203 816444.

DC-to-DC converter. 15W and 30W DC-to-DC converters from Computer Products in the WR15 and WR30 series are intended for three particular markets: telecommunications, industrial electronics and test/mobile equipment. They are pin-compatible with standard WR units, but smaller. Outputs are in three ranges: 9-18V, 18-36V and 36-75V. They meet the relevant international standards in the three classes. XP plc, 0734 845515.

Radio communications

Miniature radio receiver. For remote-control and alarm applications, the Celm hybrid regenerative receivers measure 38.1mm by 13.7mm in a 15-pin dual in-line package. They are self-quenching and modules are either fixed or tuneable in the range 200-450MHz. Sensitivity is -16dBm and supply is 5V or 8V at 4mA. Acal Electronics Ltd, 0344 727212.

SM VCO. A surface-mounted voltage-controlled oscillator by Z-Comm is only 0.5mm by 0.3mm and covers the 1-2.2 GHz band in response to a 0-2V control voltage. Drawing 35mA from 5V, C-660M puts out 3dBm into 500Ω, with second harmonic 10dB down. Phase noise at 1kHz from carrier is -76dBc/Hz and -98dBc at 10kHz. Eurosource Electronics Ltd, 081 977 1105.

Chirp synthesiser. Improving on the often non-linear FM chirp signals used in various forms of radar, Sliceg’s DCP-1 chirp synthesiser provides a linear sweep, wide bandwidth and excellent spectral purity. Frequency range is 1-230MHz, with step size less than 0.3Hz and spurious signals <55dB and 2ns update. Lyons Instruments Ltd, 0992 471616.

Keyfob transmitter. Quantelec’s SPTXM-418/RS is a small FM transmitter working at 418MHz for telemetry and control in both domestic and industrial applications. It is UK type-approved. Radiated power is -6dBm from one MN21/GP23A alkaline battery to give a range of 100m outdoors and 50m in buildings. A positive data bit is transmitted if battery voltage falls below 7.5V to warn that only 200 operations are left. Quantelec Ltd, 0993 776488.

Switches and relays

Tough PCB connectors. Two-part PCB connectors in the SPF range from Hypertac were developed for aerospace and military use and are suitable for use in hostile surroundings. A moulded top shroud protects the pins and guides ensure accurate connection. The units are available in two or three row versions with up to 160 contacts rated at 170V at 4A. Hypertac Ltd, 081-450 8033.

Transducers and sensors

Load cell. A load cell measuring 13mm high and between 15mm and 25mm diameter, the Mini-UTC by Control Transducers is for both tension and compression loads in ranges from 50g to 500kg to within ±0.3%. Optional spherical bearings avoid off-axis loading and overload protection is 150% of full scale. Output from the 10V bridge is 2mV/V. Control Transducers, 0234 217704.

Computer board level products

Virtual voltmeter for PCs. Operating as a virtual voltmeter on a PC, CIL Microsystems’s PC-Precise comes in single or dual channel versions and is essentially an A-to-D converter plug-in card providing up to 21-bit resolution from 20mV to 20V analogue input. The virtual instrument software and other software for calibration and sampling rate variation are included. CIL Micro Systems Ltd, 0193 706225.

Software

Schematic capture. TopNET, introduced by CRaG Systems, is a schematic capture program for Spice, running from the control shell of TopSPICE and generating a Spice netlist. Symbols for standard Spice components and TopSPICE digital elements plus a few others are available: an extended library is to come. A PC with VGA is needed. CRaG Systems, 0835 688557.

Filter design. FILDES software from CRaG assists in the design of low-pass, high-pass, band-pass, band-stop and GP filters using Butterworth, Tchebychev, Cauer, Bessel, general-purpose biquad and other functions. After menu-assisted specification entry, the program displays magnitude, phase and delay against frequency. Component values are shown and the design is output in ascii format. CRaG Systems, 0835 688557.

Universal programmer. Latest addition to Smart’s range of programmers is the truly universal ALL-07 which, connected to a standard PC printer port, programs all current and, says Smart, future devices: it drives up to 256 pins. In addition to memory chips, it also handles memory cards, logic arrays including MACH, MAX and MAPL families, and a range of microcontrollers including Motorola’s new PIC17C42. An eight-gang adaptor and single-key operation make it suitable for low-to-medium volume production use, Smart Communications, 081-441 3890.

Development and evaluation
Prototypes manufactured directly in your own Lab in only a few hours.

LPKF offers a complete solution:
Professional periphery
for every CAD System.

Time spec sheet
of a 4 layer multilayer
milling inner layer: 45 min
pressing: 120 min
drilling: 10 min
through plating: 105 min
milling outer layer: 60 min
operating time: 5 hrs. 40 min

LPKF offers a complete solution:
Professional periphery
for every CAD System.

For prototype production LPKF Mill/Drilling
machines have proven their merits in thousands
of installations all over the world. CAD data can
be downloaded from any CAD system and
prototypes are manufactured automatically
either through the mill/drilling machine or by
means of our latest laser technology.

The CONTAC through plating system and the
MULTIPRESS completes the system.
Suitable for any CAD system!

NOTE: Request information or call:
Tries 84946? IELEFAC

CIRCLE NO. 134 ON REPLY CARD

PORTABLE VIDEO DISTRIBUTION
AMPLIFIER - TYPE PGP1

- DIFFERENTIAL INPUT
- OUTPUT GAIN AND EQ. ADJUSTMENT
 (600 METRES)
- 3 ISOLATED OUTPUTS

- VIDEO OPTICAL ISOLATORS
- 4 CHANNEL VIDEO EQ PCB
- SOUND-IN-SYNC BLANKERS
- 3 O/P PORTABLE VIDEO DA
- MICROPHONE C/O UNITS
- VIDEO & AUDIO MATRICES –
 4x1, 10x1, 16x4, 32x2, 12x2
- MIXER/MATRIX AUDIO SYSTEM
- TV TX PI EQUIPMENT
- 8 BIT VICS ENC/DECODERS
- DESIGN AND MANUFACTURE OF SPECIALS
 All equipment to full broadcasting specifications

INVOTRON LIMITED
P.O. Box 55, Bray, Co. Wicklow, Ireland
Tel: (Intl + 353 1) 2863725/2863759
Fax: (Intl + 353 1) 2863484

CIRCLE NO. 135 ON REPLY CARD

FREE TO SUBSCRIBERS

Electronics World offers you the chance to advertise
ABSOLUTELY FREE OF CHARGE!

Simply write your ad in the form below, using one word per box, up to a maximum of twenty
words (remember to include your telephone number as one word). You must include your latest
mailing label with your form, as this free offer applies to private subscribers only. Your ad will
be placed in the first available issue.

This offer applies to private sales of electrical and electronic equipment only.
Trade advertisers should call Pat Bunce on 081-652 8339

All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence
with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer.

Please send your completed forms to:
Free Classified Offer: Electronics World, 11th Floor, Quadrant House, The Quadrant, Sutton,
Surrey SM2 5AS
HISTORY

Homing S-Phone: Halifax leaving the drop zone during an actual operation.

The secret radio that kept Resistance lifelines open

Good communication and reliable parachute drops of supplies were vital for coordinating Resistance fighters in occupied Europe. Charles Bovill describes how the S-Phone met both needs – and the enemy never knew.

In a Europe occupied by the German Army, and a Britain under threat, Winston Churchill issued a directive to "Set Europe ablaze". Until the return of the Allies to Europe, that was an instruction that could only be accomplished by formation of a Resistance movement, organised by patriotic nationals – often in conjunction with agents from Britain who infiltrated occupied countries. Armaments, explosives and agents were parachuted in by the RAF, and the work of the Resistance was to harass the Occupying Forces, mainly by sabotage.

But for the work to be effective, good communications between Resistance Groups and allied agents was essential. Low-powered HF equipment was in use – and was entirely successful. But for parachute drops, a specially designed communication system with a homing component was needed. The S-Phone, developed by Captain H Lane, was the answer.

Captain Lane, of Royal Signals, was engaged in radio work for the Inter-Service Research Bureau, later to become the Special Operations Executive (SOE). He knew that suitable equipment had to be small and very simple to operate. Reliability was an extremely high priority too, as equipment repair was practically impossible in the field.

Lane's basic idea was to use a new approach to secure communications built on the line of sight performance of UHF, with operational range depending on the relative heights of the sending and receiving stations. So an aircraft flying thousands of feet above the ground station could communicate over considerable distances. The generally used formula for the horizon distance, upon which the idea was based is \[D = \sqrt{\left(\frac{11}{2} \right) + H_2} \] where \(D \) = distance of the horizon in miles, \(H_1 \) is the height in ft of the aircraft and \(H_2 \) is the height in ft of the ground equipment.

In a typical case the horizon distance between an aircraft flying at 3000ft and a ground station would be about 50 miles for an S-Phone at 100 feet ASL. In practice, this meant that with the low power available from the ground station the range, under favourable conditions, would be about 20 miles – an adequate range for its intended use. But as a by-product, the system was extended to intelligence work communications where it was extensively used almost as soon as the system became operational.

At short ranges, various effects severely restricted ground-to-ground communication. Over normal terrain, the range was not more than a maximum of one mile, with a power output of 200mW. Experiment indicated that the S-Phone should operate in the 400-450MHz band. But why did SOE not use the already developed VHF? The answer is that communications equipment had to be compact. It was also known that the enemy carried out extensive monitoring on the VHF band, but very little on UHF – though they did operate communication links on UHF.

For the period in question, fifty years ago, miniaturisation was hardly an option. Only valves were available and for VHF, suitable types were rare and mostly absorbed for radar development.

Ground S-Phone

The ground S-Phone prototype hardly changed throughout the war. It consists of the transmitter-receiver unit, in a contoured metal case, a dipole antenna plugged in and a belt to which the unit was clipped and which also contained rechargeable batteries and a vibrator HT generator.

Experiment showed that the circuit arrangement used is very simple and consists of a free-running UHF oscillator and Heising modulator for the transmitter. The oscillator valve, an RLJ1/S is fed into the antenna inductively and provides an output of about 200mW. The vibrator, driven by 6V from the battery belt, provides 200V for the HT of all valves in the
The lightweight self-contained SPhone enabled communication between ground and air while minimising the chance of transmissions being picked up on the ground.

Transmitter and receiver sections. Batteries provide about 4h of continuous operation and a charger operating from the 110 or 220V mains was supplied.

The receiver uses a super-regenerative detector, also an RL18-type of valve, and audio is fed to an amplifier, using Hivac valves. A tuning control provides an adjustment of ±5MHz to take up transmitter and receiver frequency drift.

The detector is connected to the antenna inductively. Closeness of the transmitter circuits to the receiver input results in a side-tone signal.

The microphone is a normal RAF air crew type and gave good quality. Intelligibility was deemed essential during the experimental period as, in many cases, the ground operator and opposite number on the aircraft did not always share the same first language. Repeating signals were not desirable, because of the risk of night fighter activity.

Overall, the S-Phone, using duplex, had been conceived to resemble a normal telephone as far as possible. With correct operation on the part of the aircraft and ground operators it went near to fulfilling the task.

Crash setback

The airborne equipment presented less development difficulty in and, in the first days of trials, consisted of a transmitter of similar type to the ground model but using a superheterodyne receiver. Within a few days of the completion of the prototype, the Whitley aircraft in which it was installed crashed at Stradishall, with the loss of the crew and total destruction of the S-Phone equipment.

The situation was particularly serious because the S-Phone was urgently needed and the equipment destroyed had been the only one in existence. Worse, it was then discovered that no drawings of circuits had been prepared.

But such was the attitude and the “press on” spirit during the war that, on the evening of the crash, work was immediately put into hand and new equipment was available for airborne tests within three days.

The new airborne unit altered the receiver to a super-regenerative type using tuned lines, as did the transmitter, both with good performance— the receiver had a sensitivity of the order of 5μV for “a loud and clear signal”. Transmitter power was also increased.

Because of the unusual conditions attached to parachute dropping, the speech output from the transmitter and the receiver were connected to the intercommunication circuits of the aircraft, facilitating operations and eventually saving several aircraft and crew on dangerous missions.

The simple ground S-Phone circuit was built around a free-running UHF oscillator and Heising modulator for the transmitter. The receiver and transmitter operated simultaneously with a frequency separation of about 50MHz allowing full duplex speech transmission.
Antenna fine-tuning
The airborne installations – in the first instance on Whitley, Wellington and Halifaxes, bombers, converted for dropping parachutes – hit problems with the antennas. Fitting the antennas on the lower surface of the fuselage seemed to be the most suitable solution for ground-to-air communication.

But on the first test flight, with the aircraft at a low altitude, received signals experienced severe distortion from the ground, due to the inherent radiation of a super-regenerative receiver reflected back from the ground below.

Further experiments showed that the difficulty could be overcome by mounting the antenna – a quarter wave type – on top of the fuselage.

The best position was not determined until several flight tests has been made, because, at some angles of flight, such as steep banking and climbing, the antenna was shielded.

During these experiments developers noted that in some positions of the antenna, distortion of signals occurred, only to be eliminated when the aircraft was flying directly towards the ground transmitter. The effect was in fact due to reflections from the airscrews, an unsophisticated but practical homing system. It was never adopted and better solutions were to come into service later.

The combined characteristics of the ground and airborne antennas added together in quite a fortunate manner. Lobes of radiation from the ground S-Phone were not what is found in textbooks, mainly because of the position, and basic nature of the antennas. The result was several radiation lobes at low angles, causing gaps which, when flown through at relatively low altitudes, were distinctly noticeable by the drop in signal strength, followed by a clear “cone of silence” when signals were not heard.

These special conditions were exploited in dropping operations. The aircraft would fly towards the DZ (drop zone) and the levels of signal strength would be noted by the pilots and the dispatcher – the crew member responsible for the release of the parachutes. Although crude by today’s standards, the method was frequently used and was, in its way, successful. When the S-Phone homing system was developed and in operational use, the pilots and the dispatcher were assisted by a signal strength meter which gave accurate indications for a precise drop.

Receiver and DF units were far more advanced than the super-regenerative receiver which had been used on S-Phone operations for the previous years – the super-regenerative receiver being unsuitable for a homing system.

The transmitter remained the same, but by this time, successful UHF superheterodyne designs were available and a reliable sensitive
Halifax leaving drop zone at tree top height to avoid radar detection.

receiver was produced. In essence, the homing receiver was associated with a phase comparison unit, signals being received on three spaced dipole antennas located below the nose of the aircraft.

Examination of the equipment reveals some strange techniques in implementation. But the extreme shortage of components and time available had to be taken into consideration. The main consideration was that it all worked.

Transmitting and receiving antenna

During development of the S-Phone ground equipment, one of the main difficulties was the antenna. Position of the dipole made it necessary to use vertical polarisation. Tip of the lower element was about a quarter of a wavelength from the ground, producing a slight abnormal radiation in the vertical plane which was actually an operational advantage. In addition, the antenna – being forward of the operator – had poor back to front performance, with considerable loss of signal if the operator was not facing towards the transmitting-and-receiving aircraft.

Attempts were made to rectify this operational weakness but, short of mounting a quarter wave antenna on the operator’s head, no practical solution was found and the original antenna layout was retained until the end of the war.

The weakness did lead to some operational failures. An operator knew beforehand the direction from which the aircraft should arrive – he had heard from Berlin that progress had been made in the design of VHF sets for agents’ use. It is quite possible that the enemy is using them and our normal interception service can’t pick them up”.

Later in his book, he reports the capture of a Dutch SOE agent with an S-Phone, although again not specified as such, who reported that the radio telephone was for communication with English ships at sea. He reports later that tests showed the equipment was capable of: “... communicating over 5km – quite a good performance at the time”.

Proved by history

In these days there is a rather unfortunate tendency for authors and journalists to find fault with military operations. But the S-Phone has not yet suffered in this way and it can be concluded that the development and operations were worth the effort.

The system saved lives and was of great assistance to the valiant agents and Resistance groups in many countries.

In Holland, when the Germans had retreated to the north of the Maas river, an air-ground

Airborne S-Phone homing unit making use of phase difference between three nose-mounted aerials. In operational use pilots were aided by a signal strength meter.

Trials and operations re-commenced and included demonstrations at night. On one of these tests, to a most secret military organisation, Colonel Lord Sandhurst was critical that, when worn under an overcoat, the operator looked pregnant. The quick-witted SOE Flight Lieutenant handling the presentation, instantly replied that this was an advantage as it was a standing order that, in the presence of pregnancy, a German soldier must avert his eyes and salute.
HISTORY

One spectacular operation using the S-Phone was when an enemy headquarters was to use the present day term — bugged.

Ground equipment was infiltrated into the building and a remote microphone installed in an office where discussions of interest to the Allies were to take place.

For the remainder of the war, an aircraft carrying out routine flights was able to cover conversations through the S-Phone link.

In Denmark, valuable use was made of the S-Phone in establishing a link between Helsingfors and a listening post on the adjacent coast of Sweden.

The Resistance realised that an ancient high tower near Helsingfors could provide an S-Phone transmitter and receiver site for direct communication with Sweden. To meet the requirement, special mains-operated equipment was designed and air dropped complete with all associated accessories. After installation on the tower, it was put into operation and regular communication was carried out until the cessation of hostilities. The tower's already-existing telephone-system was connected to the S-Phone enabling information to be passed at will and without interception. After the war, the general excitement and relief of peace resulted in the installation being completely forgotten and it was not until some years after that an ex-SOE radio engineer, who had designed the equipment, discussed the system with an ex-Danish Resistance operator. The tower was later visited and the S-Phone was found to be in perfect working order. Now the equipment is still serving a useful purpose — in a museum in Copenhagen.

Operations were, in the main, successful and were, from the beginning of 1944, assisted by the Eureka-Rebecca 200MHz guidance system which provided a homing and distance facility.

The marine activity using S-Phones was considerable in all theatres of war and assisted in many clandestine landings of agents from small boats and submarines. The only comparable system to the S-Phone was the American Joan Eleanor, first used in late 1943. An operation with this system is described in detail by V J Layton in an article "Above Intercept" which appeared in "73 for Radio Amateurs" during October 1985.

Further reading

As F/Lt. Bovill, Charles Bovill designed and tested the first widely used airborne homing S-Phone set. He remained intimately involved with clandestine radio operations throughout the war. Charles Bovill is still active as a counter surveillance consultant.
Subscribe to the magazine that experienced electronics professionals never miss

Whatever your interest in the world of television electronics, there’s a wealth of news, advice and hard information for you in TELEVISION.

TELEVISION offers you a definitive guide to today’s TV electronics business, keeping you up-to-date with new developments in TV, video and satellite – whilst furnishing you with ‘hands-on’ advice and information on the latest equipment.

EVERY MONTH – EVERYTHING YOU NEED TO KNOW

Once you are a subscriber to TELEVISION you’ll enjoy a great information advantage. You’ll be ahead of all of the latest product developments – you’ll receive inside information on important techniques and time-saving work methods – and, importantly, you’ll have access to the most comprehensive marketplace for components and services in the UK.

Quite simply TELEVISION is the ‘bible’ of the television electronics industry – if you want to keep up with the competition, you can’t afford to be without it.

SUBSCRIBING IS SIMPLE

Complete the coupon and return it to us at TELEVISION, Reed Business Publishing, FREEPOST, 9th Floor, Quadrant House, The Quadrant, SUTTON, Surrey SM2 5BR.

Please send me TELEVISION

<table>
<thead>
<tr>
<th>One Year at a cost of</th>
<th>£26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two Years at a cost of</td>
<td>£49 SAVE £3</td>
</tr>
<tr>
<td>Three Years at a cost of</td>
<td>£70 SAVE £8</td>
</tr>
</tbody>
</table>

Name ____________________________
Job Title _________________________
Company _________________________
Address __________________________
Postcode _________________________
Telephone No. _____________________
Fax No. __________________________

Servicing solutions
TV fault finding
New Products
VCR clinic
Satellite TV
Equipment reviews
Readers’ letters
CD players casebook
Components
News and comment
And much more!

4 WAYS TO PAY

1. I enclose a cheque for £____ made payable to Reed Business Publishing

2. Please charge my:
 - Access
 - Visa
 - Diners Club
 - American Express

 Expiry Date _______________

3. Please invoice me/my company

 Order No. ___________________

4. Or alternatively just ring our credit card hot-line on 0622 721666 and quote reference RJ3

 Are you registered for VAT, Yes ☐ No ☐

 If yes, please supply your registration Number ___________________

 Please send a VAT receipt ☐

Signature ________________________ Date _____________________

Prices apply to UK, Isle of Man, and Channel Islands only.
APPLICATIONS

Fast 10-bit converter with power-down mode

In power-down mode, the 10-bit analogue-to-digital converter used in this battery-monitor for lap-top computers consumes only 20µW.

In a lap-top computer, battery parameters that need to be measured are positive and negative terminal voltages, average current drain and battery-case temperature. Once digitised, these parameters can be used by the keyboard microcontroller to control battery charging circuits. They also provide a means of indicating battery-charge status. Battery-case temperature rises rapidly when an NiCd or nickel-metal hydride cell reaches full charge. In this circuit, temperature is sensed by an LM34. Resistor R_3 provides a voltage representing battery current drain. To prevent false readings, this voltage is averaged by a low-power op-amp.

Communication with the keyboard microcontroller is serial via a four-wire link. Power-down mode is initiated by the controller via this link. Since battery parameters are only needed once a second, the converter spends most of its time powered down so battery drain is minimised.

Powering down the data converter also shuts down its 2.5 reference output. This in turn powers down the LP2951 voltage regulator, the temperature sensor and the LM4040 reference. Because the battery current reading is averaged, the LMC6062 cannot be shut down.

Conversion time of the ADC10734 is 5µs maximum. The design is from National Semiconductor's Leading Edge bulletin. Also outlined in the bulletin are circuits including a four-channel data acquisition system, a MIL specification analogue monitor, rail-to-rail op-amps, a shunt reference for portables and a high-performance modulator, demodulator and synthesizer. There is also a description of a low component count 3.3V switching IC, the LM2574M.

In a lap-top computer, precise battery monitoring is essential. This circuit provides the lap-top keyboard controller with full battery voltage information and cell-case temperature to indicate end of charge.
Pressure gauge with bar indicator

According to application note AN1322 from Motorola, interfacing pressure sensors to bar-graph display drivers, microcomputers and voltage monitors is straightforward. Called Applying Semiconductor Sensors to Bar Graph Pressure Gauges, the note outlines all three type of interface.

Temperature compensation is provided by the bar-graph pressure gauge shown but the note also contains a non-compensated option involving no additional op-amps. This simpler circuit uses a different sensor, an MPX5100.

Drive to the bar-graph IC is 0.5 to 4.5V, proportional with pressure. The op-amps provide gain and level-shifting. Reference input RLO of the bar-graph IC is held at 0.5V, the zero-pressure output voltage, by tying it to reference divider R3/R5. Full scale is set via potentiometer R8.

Full details of how the op-amp circuit works are given in the note. There is also a block diagram of the bar driver IC, a microcomputer bar pressure gauge circuit and a three-segment pressure indicator for at-a-glance OK, high and low display.

Motorola Ltd, European Literature Centre, 88 Tanners Drive, Blakelands, Milton Keynes MK14 5BP. Telephone 0628 585000.

Slotted ferrites for non-contact current measurement

On their own, Hall effect sensors are not usually sensitive enough for detecting current carried in a cable. It is however possible to obtain toroidal ferrites with a radial slot cut into them, although there are few sources. Passing the conductor through such a ferrite ring and placing the detector in the slot greatly increases the flux density available to the Hall effect sensor. Winding the conductor around the core increases effectiveness even further.

Neosid's note Slotted Ferrite Ring Cores for use with Hall Effect Devices in Current Sensing Applications describes how to design such non-contact current sensors. As the following example illustrates, there is enough detail in the booklet to allow engineers to choose the right ferrite – selecting the right ferrite is normally a complex procedure. Tabular data for a small number of appropriate cores however makes selection a relatively simple task.

In this example, maximum anticipated current in the cable is 12A. Space available is 40mm by 40mm and the conductor diameter is 1.5mm. For the Hall-effect device, maximum flux density is 30mT (300 gauss).

Best results are obtained when the gap is as small as possible. Some sensors currently available are 1.69mm thick, so a gap of 2mm is acceptable.

For the number of turns N of the conductor around the core there is a central equation,

\[N = \frac{B \cdot 10^3 \mu_0 I}{\phi_p \mu_2} \]

where \(\mu_0 \) is the permeability of free space \((4\pi \times 10^{-7}) \), \(B \) is maximum flux density in teslas, \(J \) is maximum trip current in amps, \(\phi_p \) is effective path length of the core in millimetres and \(\mu_2 \) is the effective permeability of the core.
For a 631 core the following holds good:

\[N = \frac{0.03}{47} \times 10^{-2} \times 12 \times 2.09 \times 10^{-3} \]

= 1989.44 \times 2.09 \times 10^{-3}.

This reduces to 4.16 turns.

To calculate \(A_c \), the number of square millimetres of copper winding area in the core,

\[A_c = \frac{\pi d^2 N}{4} \]

where \(d \) is the conductor diameter millimetres, i.e. 1.5mm. This equates to 7.07mm\(^2\), which is considerably lower than the figure for the winding area \(W_a \) at 81mm\(^2\).

Further information in the booklet describes how the effects of rounding off the number of turns can be calculated. The basis of the central equation is also explained.

Planar power inductors – lower profile and higher

Theoretically, the physical size of DC-to-DC converter and switch-mode power supply circuits decreases proportionally with switching frequency. In the past, transistor switching time usually limited the practical operating speed of power switching circuits. Now that power transistors capable of efficient switching at well above 100kHz are common, losses from inductive components become increasingly significant.

Higher operating frequencies increase the rate of flux change in the inductor. This in turn increases eddy and hysteresis losses in the inductor core. Winding losses due to proximity and skin effect increase too. Common solutions to these problems include twisted pair windings, Litz wire and other elaborate methods.

At powers to 250W and switching frequencies to 2MHz, planar magnetics could well offer an alternative solution, as suggested in Magdev's Planar Magnetics Technical Bulletin TB/001.

Planar transformers can have a very low profile since their windings are printed on double-sided PCB. Core material is chosen to combine high permeability with high flux density. Material for the winding PCB is selected for its dielectric permittivity to minimise high-frequency losses.

With planar technology, square-section winding geometry results in increased magnetic coupling and lower losses due to skin effect relative to conventional transformers. Leakage inductance is claimed to be low because of improved magnetic coupling and the ease of connecting windings in parallel.

Having a well defined construction, planar transformers are also said to offer consistent and easily determined inductance, interwinding capacitance, flux linkage and losses. The ability to increase operating frequency reduces winding resistance and subsequently copper losses. Being physically a low, flat block, planar transformers offer the opportunity for mounting in direct contact with the host circuit board. This improves their ability to...
GaAs tuner for VHF and UHF

This is a complete 95 to 550MHz tuner system using a single GaAs chip, the HA2I001. It is an evaluation circuit from Hitachi’s Ultra-High Frequency Devices data book. Specifications for the IC are given but apart from a few performance curves there are no further details on this particular circuit.

Hitachi Europe Ltd, Electronic Components Division, Whitebrook Park, Lower Cookham Road, Maidenhead, Berkshire SL6 8YA. Telephone 0628 585000.

efficiency?

...withstand physical shock relative to conventional PCB-mounting inductors and transformers, which usually need raising off the PCB.

In addition to an outline on planar transformer technology, the bulletin contains technical specifications for evaluation kits that allow designers to prototype 50, 125 or 250W inductors or transformers.

Magdev, Unit 26, Ketley Business Park, Ketley, Telford. Telephone 0952 243822.

Low-profile planar transformers and inductors can reduce SMPS losses at high SMPS switching frequencies. Ferrite and winding materials resulting in this graph were optimised for operating frequencies to 2MHz.

Being GaAs, this surface-mount tuner combines low noise and low distortion. Assuming an IF of 46MHz, its noise figure is 10dB from around 100MHz to 400MHz, falling to below 9dB from 500 to 900MHz.

September 1993 ELECTRONICS WORLD + WIRELESS WORLD
SUMMING IT UP: a guide to integration

Let's look at the relationship that exists between the curves of a function and its derivative. Take as an example: \(y = x^2 + 10 \). This is the upper curve in Fig. 1. Below it is the curve for its derivative: \(dy/dx = 2x \). The derivative is also a function and we call this function \(u \): \(dy/dx = u \). There is a region ADCD beneath the graph of \(u \), from \(x_1 = 3 \) to \(x_2 = 5 \). The aim is to calculate the area \(A \) of this region. If the graph is a straight line, as it is here, the area is easily calculated by using the formula for a trapezium:

\[
A = \frac{CD \times (AD + BC)}{2} = \frac{2 \times (6 + 10)}{2} = 16
\]

This gives us the result we are aiming for, but we need a more general method for finding \(A \), which works with a graph of any function. Think of the area as being divided into a large number of narrow vertical strips. In the diagram these are alternatively black and white to make them show up clearly. Given that the width of a strip is \(\Delta x \) (a very small distance in the \(x \) direction) and that its height is \(u \), the area of the strip is about \(u \Delta x \).

The total area of ABCD is the sum of the areas of all the strips. In maths this is written:

\[
A = \sum u \Delta x \quad (1)
\]

The symbol \(\sum \) means the sum of all terms similar to the following term. The \(x_1 \) and \(x_2 \) indicate that this is to be done for the area starting at \(x_1 \) and finishing at \(x_2 \).

Now we leave the strips for the moment and look at the line EF at the top left of the figure. This is divided into line segments, alternately black and white. The segments in order from E to F correspond with the strips in order from AD to BC. The figure shows the correspondence for one of the strips. Its width is projected up on to the function curve, and then across on to EF to give the length of the segment. The length of the segment is \(\Delta y \), a very small distance in the \(y \) direction. Since they correspond with the segments of varying widths and since the curve is not straight, the segments are not necessarily of equal length.

The total length of the line EF is the sum of the lengths of all the segments. This is written:

\[
EF = \sum \Delta y \quad (2)
\]

At this stage there are two equations, (1) for the total area ABCD and (2) for the total length EF. The final step is to link these together. Figure 2 shows how this is done. This is an enlargement of the part of the curve circled in Fig. 1.

The gradient of the curve is approximately that of the straight line NL and equals \(LM/NM = \Delta y/\Delta x \). But the gradient of the curve is also given by the value of the derivative, \(u \):

\[
\frac{\Delta y}{\Delta x} = u \quad \Rightarrow \quad \Delta y = u \Delta x
\]

Summing both sides of this equation for all segments and strips:

\[
\sum u \Delta x = \sum \Delta y
\]

Looking back at the summing equations (1) and (2), we see that this equation means that the length of EF is equal to the area of ABCD. This is an extremely important result. To show that it works in this case, for an area from \(x_1 = 3 \) to \(x_2 = 5 \), we use the function \(y = x^2 + 10 \) to calculate the corresponding values of \(y_1 = 19 \) and \(y_2 = 35 \). The length of EF is \(y_2 - y_1 = 35 - 19 = 16 \). This is equal to the result calculated from the trapezium formula.

Tidying up

Two approximations were made in the above discussion. First, the area of the strips was calculated as if they were rectangular, but they are not. Secondly, the gradient of the curve in Fig. 2 was calculated as if it is the same as the straight line LN, which it is not.

These approximations gradually disappear as \(\Delta x \) and \(\Delta y \) are made smaller and smaller. As the strips become narrower they become less and less different from rectangles. The line LN becomes less and less different from the curve. Taking the calculations to the limit, as \(\Delta x \) and \(\Delta y \) approach zero, removes the errors due to the approximation. When working at the limit,
with \(\Delta x \) and \(\Delta y \) infinitely small, the Greek letter \(\Sigma \), or sigma, which stands for sum, is replaced by the long \(\Sigma \), \(\int \). Equation (2) becomes:

\[
A = \int \limits_{v_1}^{v_2} dy
\]

The \(\Delta y \) is replaced by \(dy \), as in differentiation, to indicate that limiting values are involved. Another word meaning almost the same as summation is integration. This is done to individual components when an integrated circuit is made. We have done it here, putting the strips together to make a whole area, or putting the segments together to make a whole line. The expression above is called an integral. It is the integral with respect to \(y \) between the limits \(y_1 \) and \(y_2 \). Here the term limit is used to mean the lower and upper values of \(y \).

Working in reverse

The result of this can be expressed as follows: Given the curves of the two functions, one of which is the derivative of the other, the area under the curve of the derivative from \(v_1 \) to \(v_2 \) is given by the difference of the \(y \) coordinates \((y_2 - y_1) \) of the other curve.

In practice, this is usually looked at from another viewpoint. We are given a function and want to know the area under part of its curve. The function we are given is the derivative. Before we can calculate \(y_2 \) and \(y_1 \) we have to find a function with this derivative. In other words we have to differentiate in reverse. Integration is sometimes called anti-differentiation.

On the other hand, anti-differentiation implies that the process is one based on the reverse of differentiation. The box shows how to integrate a simple expression of the form \(ax^n \).

If the function to be integrated has a constant as a multiplier or divisor, that constant applies to every one of the strips that are being integrated. It therefore applies to the whole area and so may be written in front of the integral sign. For example:

\[
\int \frac{x^3}{2} \, dx = \frac{1}{2} \int x^3 \, dx
\]

The rules for integration are simply the inverse of the rules for differentiation with the extra condition that we have to add a constant \(c \), the constant of integration. Given a polynomial with a constant term not involving \(x \), we lose that term when differentiating. For example, the following terms all differentiate to \(dy/\Delta x = 4x + 3; y = 2x^2 + 3x; y = 2x^2 + 3x + 4; y = 2x^2 + 3x + 7; \) and \(y = 2x^2 + 3x + 99 \).

The constant makes no difference to the value of the derivative. When reverse differentiating \(4x + 3 \) there is no way of knowing whether the constant in the original function was 4, 7, 99, or any other value, or if there was a constant at all. We just call it \(c \) with the possibility that \(c = 0 \). Here are some examples of using the rules for integration:

<table>
<thead>
<tr>
<th>Function</th>
<th>Integral</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2x)</td>
<td>(x^2 + c)</td>
</tr>
<tr>
<td>(4x^2)</td>
<td>((4x^3)/3 + c)</td>
</tr>
<tr>
<td>(6x^2 + 7x)</td>
<td>(2x^3 + (7x^2/2) + c)</td>
</tr>
<tr>
<td>(5/x^2)</td>
<td>(-5x^{-3} + c)</td>
</tr>
<tr>
<td>(2x^{-4})</td>
<td>(-2/3x^3 + c)</td>
</tr>
<tr>
<td>(3x^{-3})</td>
<td>(2x^{-2} + c)</td>
</tr>
</tbody>
</table>

These examples can be checked by differentiating the functions in the right column to yield the functions in the left column. Fractional and negative indices follow the rules, the only exception being the index -1, in a term such as \(x^{-1} \). Applying the rules, the new index is 0, and the term has to be divided by zero, giving an indeterminate result. The function which has \(1/x \) as its derivative is \(\ln x \). Therefore the integral of \(1/x \) is \(\ln x + c \).

Standard integrals

The box lists common functions and their integrals. When integrating a function, examine it to see if it is a standard integral. The examples above are all variations of the standard form. The terms of a polynomial are integrated individually, as in an examples above. If an expression (or integrand, as we call a function that is to be integrated) is not standard, it may be possible to make it standard before integrating it. For example, take \(\int (2x - 6) \, dx \). The integrand is the product of the two functions. If the expression is multiplied out, we obtain a polynomial, the terms of which can be integrated individually as standard integrals:

\[
\int (2x - 6) \, dx = \int (2x - 6) \, dx = \frac{2x^2}{3} - 3x + c
\]
The integral of a quotient may sometimes be found by first dividing out the integrand: \[\int \frac{x^2 + 1}{x^3} \, dx = \int \left(x + \frac{1}{x^2} \right) \, dx = \frac{x^2}{2} - \frac{1}{x} + c \]

Not all integrals lend themselves to this approach. Other methods are described later.

Integrating with time

A constant current \(I \) flows into a capacitor, capacitance \(C \), for a time \(t \). Assuming that the capacitor has no charge when timing begins, the charge \(q \) stored in the capacitor is given by \(q = I t \).

In words, the charge is the product of the current and the length of time for which it has been flowing. We can represent this as a graph (Fig. 3a) in which charge, being the product of current and time, is represented by the area beneath the curve. This idea can be extended to a varying current \(i \) since, for any short instant of time \(\Delta t \), the accumulating charge \(\Delta q \) equals \(i \Delta t \) (Fig. 3b); compare with the strips of \(\Delta t \) shown in Fig. 1.

Suppose that we pass a current which varies according to a given function in which \(t \) is the independent variable. The area under the current-time graph represents the accumulated charge. This area is found by evaluating the definite integral of the function for the period of time concerned.

For example, a capacitor begins uncharged, but is then charged by a current \(i \) for which \(i = \sin 20t \). How much charge accumulates on the capacitor in a period of 1.2s? Integrate the function \(i \) with respect to \(t \) from \(t_1 = 0 \) to \(t_2 = 1.2 \) (4dp):

\[\int_{t_1}^{t_2} i(t) \, dt = \int_{0}^{1.2} \sin 20t \, dt = -\cos 20t \bigg|_{0}^{1.2} = -\cos 2400 + \cos 0 = 0.999 \]

The charge is 0.0288C. Note that the angle 20t varying current (bottom).

The total charge is 0.0288C after 1.2s is 24rad. This is 24/27E = 3.82 cycles.

The charge is 0.0288C. Note that the angle 20t is the new integral is to be tried when an integrand is not standard, and can’t be simplified or multiplied out to make it standard. The idea is to put everything in terms of a different variable, to make it easier. For example finding \(\int \ln x \, dx \). This could be integrated by expanding it and then integrating the terms individually, but we will use substitution instead.

The variable of the new integral is to be \(u \). First we replace the integrand by \(u \), by making:

\[u = 4x + 3 \]

Note that \(c \) appears in both brackets and so cancels out. Consequently, when we are evaluating definite integrals, the constant of integration can be ignored.

When integrating \(\frac{1}{x} \), the constant of integration can be expressed differently. Normally we would write \(\int \frac{1}{x} \, dx = \ln x + c \). Using an alternative expression, we write \(\ln k \). The constant, now called \(k \), is included in the logarithm. Addition of logarithms is equivalent to the multiplication of ordinary numbers: \(\ln k \cdot \ln x = \ln (kx) \). Differentiating:

\[\frac{d}{dx} \ln k = \frac{1}{k} \]

The integral of \(\frac{1}{x} \) can be considered to be \(\ln k \). This is useful in differential equations.

Integrating ratios

If the integrand is in the form of a quotient, it may be possible to integrate it after dividing out the quotient. For example, find:

The integral of \(\frac{x}{x^2 + 5} \) dx

Divide \((2x + 3) \) by \((x + 2) \):

\[\frac{2x + 3}{x + 2} = 2 - \frac{1}{x + 2} \]

\[\int \left(2 - \frac{1}{x + 2} \right) \, dx = 2x - \ln(x + 2) + c \]

Note that the logarithm of a negative number is indeterminate. If the expression \((x + 2) \) has a negative value, the logarithm cannot be found. For this reason it is the absolute value of the expression which must be used when evaluating the logarithm. The result of the integration should be written: \(2x - \ln |x + 2| + c \).

Integration by substitution

Substitution should be used when an integrand is not standard, and can’t be simplified or multiplied out to make it standard. The idea is to put everything in terms of a different variable, to make it easier. For example finding \(\int \ln x \, dx \). This could be integrated by expanding it and then integrating the terms individually, but we will use substitution instead.

The variable of the new integral is to be \(u \). First we replace the integrand by \(u \), by making:

\[u = 4x - 3 \]
The choice of what to make \(u \) is straightforward in this example, though it is not always as easy. Usually it is best to try substituting for the most complicated part of the integrand and, if this fails to give a solution, to try other parts. The original integral also has \(dx \) in it, so we must find a substitute for this in terms of \(u \). Differentiating equation (3) gives \(du/dx = 4 \).

Although \(dx/dv \) (or \(du/dv \) in this case) is a symbol expressing limiting rates of change, implying that it must always be written as a whole, we find in practice that we can separate the \(dx \) from the \(du \) treating them as individual quantities. This is why we can change the subject of the equation to give \(dv = du/4 \). Now we are ready to assemble the new integral by substituting the equivalents of \((4x - 3)^3\) and \(dx \):

\[
(4x - 3)^3 dx = \int \left(\frac{u^3}{4} - \frac{u}{4} \right) du = \frac{u^4}{16} + c
\]

This gives the integral in terms of \(u \) but we need it in terms of the original variable \(v \). Use equation (3) to replace \(a \) by \((4x - 3)\):

\[
\int (4x - 3)^3 dx = \frac{(4x - 3)^4 + c}{16}
\]

This integral has the form of \(ax + b \), with \(a = 4 \) and \(b = -3 \). The box shows a general rule which the result above confirms. This rule applies to any of the standard forms. Examples are:

\[
\begin{align*}
\int \sin(3x + 2) dx &= \frac{1}{3} \cos(3x + 2) + c \\
\int e^{x^2} dx &= \frac{1}{2} e^{x^2} + c \\
\int \frac{1}{6x^2 + 2} dx &= \frac{1}{6} \ln|x + 2| + c
\end{align*}
\]

More examples of substitution

The next example is slightly different and involves finding \(\int (2x + 3)^4 dx \). We have two functions in the integrand, \(x \) and \((2x + 3)^4\). As stated above, the best approach is to try putting \(u \) equal to the more complicated function:

\[
u = 2x + 3
\]

Find a substitute for \(dx \): \(du/dx = 2 \), which gives \(dx = du/2 \). In this example we also need a substitute for the first function of the integrand, the \(x \). This can be done by changing the subject of equation (4) to give \(x = (a - 3)/2 \). Now assemble the new integrand by substituting the equivalents of \((2x + 3)^4 \), and \(dx \):

\[
\int x(2x + 3)^4 dx = \int \left(\frac{u - 3}{2} \right) \frac{du}{2} = \frac{1}{4} \int (u - 3)u du
\]

Multiplying out:

\[
= \frac{1}{4} \left(\frac{u^2}{2} - 3u \right) du = \frac{1}{4} \left(\frac{u^2}{6} - \frac{3u}{5} \right) + c
\]

Replacing terms in \(u \) with their equivalents in \(x \):

\[
= \frac{(2x + 3)^5}{24} - \frac{3(2x + 3)^4}{20} + c
\]

Now it is a matter of simplifying the expression, starting by taking out \((2x + 3)^4\):

\[
= (2x + 3)^4 \left(\frac{2x + 3}{24} - \frac{3}{20} \right) + c
\]

Add the fractions, over the HCF of their denominators, \(120 \):

\[
= (2x + 3)^4 \left(\frac{2(2x + 3) - 18}{120} \right) + c = \frac{2x + 3)^4(10x - 3)}{120} + c
\]

Integrating by parts

This is another technique to be tried when the integrand is not standard. The technique is based on the rule for differentiating a product. Under this rule, if the function to be differentiated is the product of \(u \) and \(v \), both of which are functions of \(x \), then:

\[
\frac{d}{dx}(uv) = \left(\frac{du}{dx} \right)v + \left(\frac{dv}{dx} \right)u
\]

Reversing the order of the factors on the right makes no difference to the values of the terms:

\[
\frac{d}{dx}(uv) = \left(v \times \frac{du}{dx} \right) + \left(u \times \frac{dv}{dx} \right)
\]
If you have followed our series on the use of the C programming language, then you will recognise its value to the practising engineer.

But, rather than turning up old issues of the journal to check your design for a digital filter, why not have all the articles collected together in one book, Interfacing with C?

The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, Fourier and many other applications, with not a soldering iron in sight.

To complement the published series, Howard Hutchings has written additional chapters on D-to-A and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a “getting started” introduction to the running of the many programs scattered throughout the book.

This is a practical guide to real-time programming, the programs provided having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.

Source code listings for the programs described in the book are available on disk.
Changing the subject:
\[u \frac{dv}{dx} = \frac{d}{dx}(uv) - v \frac{du}{dx} \]

Integrating both sides:
\[\int \frac{d(uv)}{dx} dx = \int \left(\frac{d}{dx}(uv) - v \frac{du}{dx}\right) dx \]

But:
\[\frac{d(uv)}{dx} = uv + c \]

So:
\[\int \frac{d(uv)}{dx} dx = uv - \int v \frac{du}{dx} dx \]

Where is c, the constant of integration obtained when we integrate \(u \)? This is amalgamated
with the c which we will obtain when integrating v. We have to consider the integral as
being made up of two parts, one corresponding to u and the other to \(dv/dx \). For example, let
us find \(\int \cos x \, dx \). The integrand has two parts, x and \(\cos x \). Make x equal to u, and \(\cos x \) equal
to \(dv/dx \). As well as u and \(dv/dx \), the equation contains \(du/dx \) and v, which we must calculate.
If u equals x, then \(dv/dx \) equals 1. If \(dv/dx \) equals \(\cos x \), then v equals \(\sin x \) (integrating or anti-

differentiating with respect to x). Now substitute these values in the equation:
\[\int \cos x \, dx = \int uv \, dv - v \, du + c \]

Another example is to find \(\int x^2 \ln x \, dx \). If u equals \(x^2 \), then \(dv/dx \) equals 2x. If \(dv/dx \) equals ln x,
there are problems; this is not a standard form which can be integrated easily. Trying the
alternative approach, if u equals ln x, then \(du/dx \) equals 1/x. If \(dv/dx \) equals \(x^2 \), then v equals
\(x^3/3 \) (a standard integral). Substituting:
\[\int x^2 \ln x \, dx = \int uv \, dv - v \, du + c \]

A third example is to find \(\int (1/L) \ln e^{it} \, dt \), where L, m, and R are constants. First bring m
before the integral sign, then integrate by parts with u equal to t, \(du/dt \) equal to 1, \(dv/dt \) equal
to \(e^{it} \), and v equal to \((1/L)e^{it} \). Substituting:
\[\int (1/L) \ln e^{it} \, dt = \int uv \, dv - v \, du + c \]

Integration and averages
Currents and voltages often vary with time. The voltage v in
Fig. 4a falls steadily with time. At \(t_1 \) the voltage is \(v_1 \) and at \(t_2 \) it is \(v_2 \). Since v is falling at an average rate we can say that the
average voltage \(v_{av} \) is \((v_1 + v_2)/2 \). The area under the graph of Fig. 4a from \(t_1 \) to \(t_2 \) is the
same as the area of ABDC of Fig. 4b; the shaded areas above and below AB being exactly
equal. The area of a rectangle is its height multiplied by its base. In the case of ABDC this
area equals \(v_{av}(t_2 - t_1) \). Changing the subject gives \(v_{av} \), equal to the area divided by \((t_2 - t_1) \).
To average a varying voltage we have to find the area under the graph and divide by the
length of the base. In Fig. 4, finding the area is a matter of geometry but, if the line is more
complex, we can use integration. The curve in Fig. 5, from its shape, must represent a
complicated function. Without saying precisely what the function is, we can say that v is a
function of time, or \(v = f(t) \). It is possible to draw a rectangle having the same area as the area under
the graph between \(t_1 \) and \(t_2 \). It is easy to calculate \((t_2 - t_1) \), so the main problem in
calculating \(v_{av} \) is finding the area. The area is the definite integral of v = \(f(t) \) from \(t_1 \) to \(t_2 \):
\[\text{area} = \int_{t_1}^{t_2} v \, dt \]

Putting this into the equation above we arrive at an equation for \(v_{av} \):
\[v_{av} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} v \, dt \]

For example, given the function \(v = t^2 - 5 \), calculate the mean value of v over the range \(t_1 = 3 \)
to \(t_2 = 5 \). Figure 6 shows the curve and the area beneath it. From the equation above:
\[v_{av} = \frac{1}{5-3} \int_{3}^{5} [t^2 - 5] \, dt = \frac{1}{2} \left[\frac{75}{3} - 5(5) \right] = 11.33 \text{ (4sf)} \]

Fig. 4. Graphs showing voltage varying with time.

Fig. 5. Curve of a complicated function.

Fig. 6. Curve for \(v = t^2 - 5 \).
The mean can be taken over part of the curve where \(v \) is negative. For example, integrating from \(t_1 = 0 \) to \(t_2 = 5 \) gives \(v_{av} \) equal to \((1/5)(50/3) = 3.33 \) (3 sf). Although the range of \(t \) is greater than before, \(v_{av} \) is less because it includes values of \(v \) which are negative. In terms of area, the area below the \(x \) axis is negative area.

Integrating sine waves

The equation for the average value of \(v \) can be applied when \(v \) is a trig function. The simplest case is \(v = \sin t \). This is the equation for a sine wave in which amplitude \(A = 1 \) and angular velocity \(\omega = 1 \). The period of one cycle is \(P = 2\pi/\omega = 2\pi \). This corresponds to a frequency of \(1/2\pi = 0.16 \) Hz. We will find the average value of \(v \) during one cycle. Applying the equation:

\[
v_{av} = \frac{1}{2\pi} \int_{0}^{2\pi} \sin t \, dt = \frac{1}{2\pi} \left[-\cos t \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[-\cos 2\pi + \cos 0 \right] = 0
\]

The average value is zero because the positive values of \(v \) from 0 to \(\pi \) are exactly cancelled out by the negative values of \(v \) from \(\pi \) to \(2\pi \). This is the same situation as we mentioned in connection with the curve of Fig. 6.

For comparison, calculate the value of \(v \) for a half cycle, from \(t_1 = 0 \) to \(t_2 = \pi \). Incidentally, all the examples we have looked at relate to varying voltage but they could equally well deal with varying current and its average \(i_{av} \). For a sine wave voltage during a half cycle:

\[
v_{av} = \frac{1}{\pi} \int_{0}^{\pi} \sin t \, dt = \frac{1}{\pi} \left[-\cos t \right]_{0}^{\pi} = \frac{1}{\pi} \left[-0 + 1 \right] = \frac{1}{\pi}
\]

The result applies when amplitude \(A = 1 \). If we include \(A \) in the equation, it becomes \(v = A \sin t \). Integrating this from 0 to \(\pi \) gives \(v_{av} = 2A/\pi \). We can adapt the equation further to cover other frequencies, when \(\omega \neq 1 \). The function then becomes \(v = A \sin \omega t \). Integrating:

\[
v_{av} = \frac{1}{\omega} \left[-\cos \omega t \right]_{0}^{\pi} = \frac{1}{\omega} \left[-\cos \omega \pi + \cos 0 \right] = \frac{1}{\omega} \left[1 + 1 \right] = \frac{2}{\omega}
\]

The result shows, if the voltage is switched on when \(\theta = 0 \), the average is \(2/\omega \), as found previously. If \(\theta \) is increased gradually from 0 to \(\pi \), the average value gradually falls to zero.

Root mean square (rms) values

The root mean square of an alternating voltage or current is the square root of the mean of the squares of the instantaneous value of the voltage or current. Because it is equal to the steady DC voltage or current that dissipates the same power in a resistance, it is an important quantity in electronics. The definition sounds involved but the calculation is similar to the calculation of the average value given above, except that we square the function before we integrate it, then take the square root of the result. In symbols:

\[
v_{rms} = \sqrt{\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} v^2 \, dt}
\]

Compare this with the equation given earlier for \(v_{av} \). In this expression, \(v \) is any function of \(t \), but most practical calculations are concerned with sine waves. For a sine wave of amplitude \(A \) and angular frequency \(\omega \), \(v = A \sin \omega t \). To obtain an rms value we have to integrate \(v^2 \), but \(v^2 = A^2 \sin^2 \omega t \). This means we have to integrate \(\sin^2 \omega t \) using the trig identity

\[
2\sin^2 \omega t = 1 - \cos 2\omega t
\]

Without going into details, the integration yields this result:

\[
v_{rms} = \frac{A}{\sqrt{2}} \int_{t_2 - t_1}^{t_2 - t_1} \left[1 - \cos 2\omega t \right] = \frac{A}{\sqrt{2}} \int_{t_2 - t_1}^{t_2 - t_1} \left(1 - \cos 2\omega t \right)
\]

Over a whole cycle, from \(t_1 = 0 \) to \(t_2 = 2\pi \), we find:

\[
v_{rms} = \frac{A}{\sqrt{2}} \int_{2\pi - 0}^{2\pi} \left[1 - \cos 2\omega t \right] = \frac{A}{\sqrt{2}} \int_{0}^{2\pi} \left(1 - \cos 2\omega t \right)
\]

This is often expressed to 3sf in the equivalent form \(v_{rms} = 0.707 A \). By integrating over part of the cycle, equation (5) is used for finding \(v_{rms} \) for waveforms such as those of Fig. 7.
C O O K E I N T E R N A T I O N A L
SUPPLIER OF QUALITY USED
TEST INSTRUMENTS

ANALYSERS, BRIDGES, CALIBRATORS,
VOLTMENTS, GENERATORS, OSCILLOSCOPES,
POWER METERS, ETC.
ALWAYS AVAILABLE

ORIGINAL SERVICE MANUALS FOR SALE
COPY SERVICE ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME.
SEND S.A.E. FOR LISTS OF EQUIPMENT AND
MANUALS.
ALL PRICES EXCLUDE VAT AND CARRIAGE
DISCOUNT FOR BULK ORDERS. SHIPPING ARRANGED

OPEN MONDAY--FRIDAY 9AM--5PM

COOKE INTERNATIONAL
ELECTRONIC TEST & MEASURING INSTRUMENTS
Unit Four, Fordingbridge Site, Main Road, Barnham,
Bognor Regis, West Sussex, PO22 0EB
Tel: (+44) 0243 545111/2 Fax: (+44) 0243 542457
* HIGH END TEST & COMMUNICATIONS EQUIPMENT PURCHASED *

TURN YOUR SURPLUS
TRANSISTORS, IC'S ETC., INTO CASH
Immediate settlement.
We also welcome the opportunity to quote for complete factory clearances.
Contact
COLES HARDING & CO. 103 South Brink
Wisbech, Cambs PE14 0RJ
ESTABLISHED OVER 15 YEARS
Buyers of Surplus Inventory
Tel: 0945 584188 Fax: 0945 475216

BIG BUYERS' BARGAINS
1 1/2" 50 Ohm Speakers..........................£5
1 1/4" 50 Ohm Speakers..........................£8
FM Board Radio Mikes..................................£6
6/7" Button Speaker....................................75p
1 1/2" Mini Stripper Motor......................75p
Pilgrim Laser..£3.50
2 1/2" A Power Supply..........................£18

VERY MANY MORE. LIST AVAILABLE
Minimum order £200, but can be mixed
& N Factors
Pilgrim Works, Stainbridge Lane,
Bognor Regis, PO21 5DS
Tel or Fax (0444) 881965

LOUDSPEAKER DESIGN ENGINEER

The applicant should have several years' experience in the design of drive units and complete loudspeaker systems. He or she should be prepared to work in an environment to be able to work in a design and development part of a small team.

The PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY
Lae
Department of Electrical and Communications Engineering

PRINCIPAL TECHNICAL OFFICER (VIDEO AND TELEVISION SPECIALIST)

Applications are invited for this challenging position which will complement the other specialists in this highly regarded unit. The unit primarily provides electronics workshop repair facilities to all University departments. It also makes its expertise and services (which are almost unique within the country) available commercially to many outside organisations. Consequently the range of equipment supported is very broad indeed.

Duties will include the bench repair of a wide range of video equipment comprised of professional and domestic VCRs, Monitors, Cameras and Televisions; and the supervision and training of Technical Officers both at the bench and through the provision of "in-house short courses". Applicants should be qualified to HN level or equivalent, have sound theoretical knowledge and substantial experience in the repair of the equipment listed above. It is essential that the applicant be versatile and able to pass on his/her knowledge.

Base Salary IMA (International Market Allowance)
K11,430 plus K13,750 = K25,185 per annum
K10,330 plus K13,900 = K24,230 per annum
K9,350 plus K14,200 = K23,550 per annum

(Level of appointment will depend upon qualifications and experience.)

Initial contract period is normally for three years but shorter periods can be negotiated. Other benefits include a gratuity of 30% in the 1st year, 35% in the 2nd year and 40% in the 3rd year taxed at 28%, support for approved research, appointment and repatriation fares, leave fares for staff member and family after 18 months of service, settling-in and settling-out allowances, six weeks' paid leave per year, education fares and assistance towards school fees; free housing, salary protection plan and medical benefit schemes are available. Staff members are also permitted to earn from consultancy up to 50% of earnings annually.

Detailed applications (two copies) with curriculum vitae and the names and addresses of three referees including telephone numbers and indication of earliest availability to take up appointment should be received by: The Registrar, PNG University of Technology, Private Mail Bag, LAF, Papua New Guinea by 13 September 1993.

Applicants resident in the United Kingdom should also send one copy to Appointments (A1985), Association of Commonwealth Universities, 36 Gordon Square, London WC1H 0PF (tel 071 387 8572 ext. 206; fax 071 383 0368) from whom further information may be obtained.

LOUDSPEAKER JUNIOR DESIGN ENGINEER

The applicant should hold a recognised qualification in a relevant subject and have at least one year's practical experience in the design of loudspeaker or drive units and complete systems. This is an exciting opportunity for the man or woman who wants to make a career in the audio industry.

Applicants should send their CV and current salary details to:
Mrs Anne Oliver
Wharfedale Loudspeakers Limited, Sandles Way, Crossthwaite, LEEDS LS15 8AL

ADVERTISERS PLEASE NOTE
For all your future enquiries on advertising rates, please contact Pat Bunce on:
Tel: 081-652 8339 Fax: 081-652 8931

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY
Lae
Department of Electrical and Communications Engineering

ELECTRONIC SERVICE UNIT

APPOINTMENTS
ARTICLES WANTED

WE WANT TO BUY!!

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE.

WE PAY TOP PRICES AND COLLECT.

R. HENSON LTD.
21 Lodge Lane, N. Finchley, London N12 8JG.

5 MINS, FROM TALLY HO CORNER.

TELEPHONE 081-445-2713/0749
FAX 081-445-5702.

WANTED

High-end Test Equipment, only brand names as Hewlett-Packard, Tektronix, Rhode & Schwarz, Marconi etc. Top prices paid.

Please send or fax your offer to:

HTB ELEKTRONIK
Alter Apeler Weg 5, 2858 Schiffdorf, West Germany

TEL: 01049 4706 7044
FAX: 01049 4706 7049

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash.

M & B RADIO
86 Bishoppage Street, Leeds LS1 4BB
Tel: 0532 435649
Fax: 0532 426881

TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS, etc. ANY QUANTITY

WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic, Scrap, Boxes, PCBs, Plugs and Sockets, Computers, Edge Connectors.

TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT

A.R. Sinclair, Electronics, Stockholders, 2 Normans Lane, Raby Heath, Welwyn, Herts AL6 7TQ. Telephone: 0438 812 193.
Mobile: 0880 214302. Fax: 0438 812 387

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash.

M & B RADIO
86 Bishoppage Street, Leeds LS1 4BB
Tel: 0532 435649
Fax: 0532 426881

TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS, etc. ANY QUANTITY

ARTICLES WANTED

WANTED

ARTICLES FOR SALE

PURCHASE FOR CASH

SURPLUS - OBSOLETE - REDUNDANT

EXCESS Stocks of electronic, electrical components/accessories, part processed and/or finished products. Please submit preliminary information or lists for immediate response to:

K.B. COMPONENTS
21 Playle Chase, Gr. Totham, Maldon, Essex CM9 8UT

Telephone: 0621 893204
Facsimile: 0621 893180

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash.

M & B RADIO
86 Bishoppage Street, Leeds LS1 4BB
Tel: 0532 435649
Fax: 0532 426881

TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS, etc. ANY QUANTITY

WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic, Scrap, Boxes, PCBs, Plugs and Sockets, Computers, Edge Connectors.

TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT

A.R. Sinclair, Electronics, Stockholders, 2 Normans Lane, Raby Heath, Welwyn, Herts AL6 7TQ. Telephone: 0438 812 193.
Mobile: 0880 214302. Fax: 0438 812 387

CELLULAR TELEPHONE MODIFICATION HANDBOOK

How are hackers making cellular phone calls for free?
• How to have two phones with the same number
• Techniques for decoding & changing cellular phones’ NAMS
• Descriptions of cellular phone’s vulnerabilities!
• Cellular phone manufacturers ESN codes

Complete Manual only £ 50

SPY Supply, 108 New Bond Street
London W1Y 9AA
(US) 617-327-7272

Sold for educational purposes only

SERVICES

REPRINTS

A READY MADE SALES AID

If you are interested in a particular article or advertisement, you should take advantage of our reprint service. We offer an excellent, reasonably priced service. For further details and quotation (minimum no. 250) contact:

Jan Crowther, Room 1006,
Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Telephone: 081-652 8229
Fax: 081-652 4278
ELECTRONIC UPDATE

Contact Pat Bunce on
081-652 8339

The system 2000 is an ideal programmer for the production environment. Fast programming results in high throughput and rigorous verification leads to improved quality control. Single key functions and checks against misoperation facilitates its use by unskilled staff.

MQP ELECTRONICS LTD.
Tel: 0666 825146
Fax: 0666 825141

IR Group, Europe's leading supplier of used instrumentation, has published the latest update of models available. With a range from power supplies to network analysers, most items are available on short delivery and come with a 12 month parts and labour warranty. For a detailed quotation call 0753 670000.

VARIBTO

CIRKIT have just published the 2nd Edition of the Toko RF Catalogue, featuring details of Tokos' extensive range of RF coils, inductors, filters and comms ICs. The 128 page catalogue includes many new products such as: Surface mount high current inductors, surface mount multilayer inductors, helical filters at 2.5GHz and a new section of push button and tact switches.

CIRKIT DISTRIBUTION LTD, Park Lane, Broxbourne, Herts, EN10 7NQ
Tel: (0992) 441306
CIRCLE NO. 148 ON REPLY CARD

ELECTRONIC UPDATE is
Electronic World and Wireless World's section for advertisers to market their product information. From catalogues to newsletters, Data Update is designed to present your product information in a clear and attractive manner, whilst our colour coded enquiry numbers help readers to obtain the information they need fast.

CIRCLE NO. 147 ON REPLY CARD

FREE VXI BROCHURE
The National Instruments VXI brochure describes the company's embedded PC and GPIB controllers, MXIBus interface kits for multiple platforms, and NI-VXI, LabWindows, and LabVIEW software for developing and controlling VXI instrumentation systems.
NATIONAL INSTRUMENTS
Tel: 0800 289877
CIRCLE NO. 146 ON REPLY CARD

DATAUPDATE is Electronics Weekly's section for advertisers to market their product information. From catalogues to newsletters Data Update is designed to present your product information in a clear and attractive manner, whilst our colour coded enquiry numbers help readers to obtain the information they need fast.
CIRCLE NO. 145 ON REPLY CARD

ELECTRONICS WORLD
WIRELESS WORLD

High Speed EPROM & FLASH Programming from your PC
- Programs EPROMs to 4 Mbits/32-pins
- Superfast 8, 16 & 32-bit programming
- Approved algorithms
- Menu driven software included
- Sophisticated editor functions
- Easy file management
- FREE demo disk available

Stag Programmers Limited
Martinfield Welwyn Garden City, Herfordshire, AL7 1JF UK
Tel: (0707) 332148
Fax: (0707) 371503
CIRCLE NO. 149 ON REPLY CARD
INDEX TO ADVERTISERS

Alternative Distribution (UK) Ltd	743
Antrim Transformers Ltd	737
Bull Electrical	712
Citadel Products Ltd	IFC
Dataman Programmers Ltd	751
Display Electronics Ltd	771
GH Systems Ltd	771
Halcyon Electronics Ltd	759
Invotrol Ltd	778
IPK Broadcast Systems	778
Johns Radio	748
JEP Electronics	759
Keytronics	722
Labcentre	711
Langrex Supplies Ltd	728
M & B Electrical Supplies Ltd	757

M&B Radio (Leeds)	726
MQP Electronics	743
Number One Systems Ltd	740
Pico Technology Ltd	743
Powerware	732
Ralfe Electronics	792
Research Communications	728
Seetras Ltd	759
Seeward Elect	706
Sherwood	729
Smart Communications	737
SMC Ltd	726
Spectrum Communications	746
Steward of Reading	746
Surrey Electronics Ltd	726
Telnet	737
Tsien Ltd	724
Ultimate Technology	758

SPECFICATIONS

TF2914A TV insertion signal analyser	£1750
TF2910/4 non-linear distortion (video) analyser	£2500
TF2304 automatic modulation meter	£1500
89313 audio power meter	£1500
6912 power sensor 30kHz-4.2GHz for above series	£1500
67008 sweep oscillator 8-12.4GHz & 12.4-18GHz	£1500
6600A sweep generator 26.5-40GHz	£1500
8140 GPIB adapter	£1500
6059A signal source 12.18GHz	£1500
2956 NMT cellular adapter, latest issue software	£1500
2830 multiplex tester	£1500
2828N2823 digital simulator/analyser	£1500
2955A/2960 (TACS BAND III opts) mobile radio test set	£1500
2017 signal generator	£1500
TEKTRONIX 496P	£1500

OVERSEAS ADVERTISEMENT AGENTS

| France and Belgium: Pierro Moutard, 18-20 Place de la Madeleine, Paris 75008. |
| United States of America: Jay Ferman, Reed Business Ltd., 205 East 42nd Street, New York, N.Y. 10017 - Telephone (212) 887-2030 - Telex 258827. |
FROM CONCEPT TO ARTWORK IN 1 DAY

Your design ideas are quickly captured using the ULTicap schematic design tool. ULTicap uses REAL-TIME checks to prevent logic errors. Schematic editing is painless; simply click your start and end points and ULTicap automatically wires them for you. ULTicap's auto snap to pin and auto junction features ensure your netlist is complete, thereby relieving you of tedious netlist checking.

ULTItoboard, the integrated user interface, makes sure all your design information is transferred correctly from ULTicap to ULTItoboard. Good manual placement tools are vital to the progress of your design, therefore ULTItoboard gives you a powerful suite of REAL-TIME functions such as, FORCE VECTORS, RATS NEST RECONNECT and DENSITY HISTOGRAMS. Pin and gate swapping allows you to further optimise your layout.

ULTItoboard's autorouter allows you to control which parts of your board are autorouted, either selected nets, or a component, or a window of the board, or the whole board. ULTItoboard's intelligent router uses copper sharing techniques to minimise route lengths. Automatic via minimisation reduces the number of vias to decrease production costs. The autorouter will handle up to 32 layers, as well as single sided routing.

ULTItoboard's backannotation automatically updates your ULTicap schematic with any pin and gate swaps or component renumbering. Finally, your design is post processed to generate pen/photo plots, dot matrix/laser or postscript prints and custom drill files.

NOW YOU CAN QUICKLY ROUTE YOUR CRITICAL TRACKS. ULTItoboard's REAL-TIME DESIGN RULE CHECK will not allow you to make illegal connections or violate your design rules. ULTItoboard's powerful TRACE SHOVE, and ROUTE-WHILE-MOVE algorithms guarantee that any manual track editing is flawless. Blind and buried via, and surface mount designs are fully supported.

ULTItoboard/ULTIcap evaluation system:
• all features of the bigger versions
• full set of manuals
• design capacity 350 pins

Price incl. S & H, excl. VAT: £75

Purchase price is 100% credited when upgrading to a bigger version. • Also suitable for study & hobby

ULTItoboard ULTIcap schematic design systems are available in low-cost DOS versions, fully compatible with and upgradable to the 16 and 32 bit DOS-extended and UNIX versions, featuring unlimited design capacity.

ULTImate Technology UK Ltd. • 2 Bacchus House, Calleva Park, Aldermaston Berkshire RG7 4QW • Fax: 0734 - 815323 • Phone: 0734 - 812030

CIRCLE NO. 101 ON REPLY CARD
The smallest, most powerful personal programmer you can buy!

Owning the worlds best selling portable programmer/emulator is just a phone call away. From engine management to Antarctic survey teams, the powerful and versatile S4 goes where others get left behind.

A 32 pin ZIF socket programs a huge library of EPROMs, EEPROMs and FLASH devices up to 8Mbit. And our unique user loadable Library means that new parts can be added quickly, and at no cost. All software upgrades are free and available for 24hr download from our high speed bulletin boards.

Emulation
See your code running before committing yourself to an EPROM. With S4's powerful and easy-to-use internal emulation system, download your code to S4, press 'EMULATE', and your target system runs in real time as if an EPROM was plugged in to the socket. Use S4's 'EDIT' command to make minor alterations to your code and see the changes happen immediately — just one reason why S4 is used by the world's car manufacturers to develop advanced engine management systems in real time! With S4 emulation there's no need for trailing cables or external power sources; earth loop problems are a thing of the past. S4 even emulates RAM.

Remote Control
As well as being totally stand alone and self contained, S4 can be operated remotely via it's serial port at speeds up to 115,200 Baud. We supply you with a FREE disk containing custom terminal software and a pop-up TSR communications utility.

The Company
If you are looking for a supplier with longevity and stability, then you'll be pleased to learn that Dataman has been designing and selling innovative programmers world-wide for over 15 years. As well as having sales and support offices in both the UK and the USA, we supply the world demand for our products via a network of approved dealers stretching from Norway to Australia.

The Package
S4 comes fully charged and configured for immediate use. You get a mains charger, emulation lead, write lead, personal organiser instruction manual, MS-DOS communications software, spare Library ROM and a 3 year guarantee. Optional modules available for serial EPROMs, 40 pin EPROMs and microcontrollers.

Availability
S4 is always in stock. Phone through your credit card details to ensure next working day delivery. Full 30 day no-risk refund.

Credit card hotline: 0300 320719 for same-day dispatch

Dataman Programmers Ltd
Station Road, Maiden Newton, Dorset DT2 0AE, UK. Telephone: 0300 320719; Fax: 0300 321012; Telex: 418442; BBS: 0300 321091 24hr; Modem: V32bis/16.8K HST
22 Lake Beauty Drive, Suite 101, Orlando, FL 32806, U.S.A. Telephone: (407) 649-3335; Fax: (407) 649-3310; BBS: (407) 649-3159 24hr; Modem: V32bis/16.8K HST

CIRCLE NO. 101 ON REPLY CARD