Wreatessintio

Switched-mode power supply
Mult-standard digital terminal

Australia
Demmark Gemmark Germany
Holland
Holly
Ital

Now! Tek quality and expertadvice are just a free phone callaway...

Our National Order Desk line gets you fast delivery of the industry's leading value/ performance portables...and technical advice from experts!

The 60MHz 2213A, 2215A and the 100 MHz 2235 and 2236 offer unprecedented reliability and affordability, plus the industry's first 3 year warranty on labour and parts, CRT included

All 2200 series scopes have the bandwidth for digital circuits and sensitivity for low signal analogue measurement The sweep speeds for fast logic families, and delayed sweep for fast, accurate timing measurement. The top of the range 2236 combines a counter/timer/DMM with the scope to provide fast, easy measurements for voltage, resistance and temperature

talk toPete

Dial 100 and ask for Freefone Tek-scope
Tektronix UK Ltd
Fourth Avenue, Globe Park,
Marlow. Bucks SL7 1 YD
Tei: (06284) 6000
Telex: 847277 \& 847378

The Company reserves the right to modify designs, specrications and change prices without notice.

Tektronix

October 1985
Volume 91 number 1596
FEATURES

Multistandard digital terminal unit

by J. Walker

Implementing a digital filter with a microprocessor leads to simple hardware for this programmable modem.

The tale of the long-tail pair - part 2

by F.J. Lidgey
Further applications ranging from analogue
log/exp circuits, multipliers and dividers, to fast logic gates.

Half-megabyte memory for SC84
 by J.H. Adams

'Silicon disc' with 256 k or 512 k of dynamic memory uses novel refresh technique.

The future - what it could hold

by R.E. Young
Where Britain's hidden strengths exist, where they are being suppressed, and how they could be brought to the surface.

68000 evaluation kit
 by R.F. Coates

The $£ 100$ Kaycomp is Bob Coates 68000 board for engineers, students, and enthusiasts.

21 Case study in interface design
 by A. Ray

How the Syscon 6 interface was developed
for using Commodore peripherals with a BBC computer.

Switched-mode power supply

by K.L. Smith
Last part of the instructional series on power supplies is a practical design for a
13A, 14V switcher.

Call cost calculator

by S.A. Cameron
How the software works and how to reprogram the instrument.

Digital polyphonic keyboard - 2

by D.G. Greaves
Digipoly's t.t.l. processor circuit and microcode program.

REGULARS

News commentary 4	Feedback	Ticiasinilic
Swings and swings 4	Electromagnetic paradox 18	
Molecular beam epitaxy	Energy transfer	
Spark hazards	Optical communication	taseo computer
News in brief	Valve preamplifier Relatively interesting	
	Relatively interesting	
	Circuit ideas Humidity control	
commentary 9	Add-on current dumping	
British research	RS232 to Centronics	
Interference agro Amateur radio	Frequency meter Preventing reverse charging Five-decade op-amp oscillator NSC800 runs Z80 software	
Report Television at Montreux; Satellite broadcasting, high definition and the future of terrestrial tv	New products $\quad 81$934 MHz c.b. transceiverMultitasking 6809 withATE busAutomatic i.c. testerControl expansion forBBC Micro	Phil Brooker's cover shows Bob Coates' 68000 board which links to hundreds of peripheral cards in the outside world through its G64 interiace.

01-661 8638
Projects Editor
RICHARD LAMBLEY
01-661 3039 OR 8637
News Editor
DAVID SCOBIE 01-661 8632
Drawing Office ROGER GOODMAN
01-661 8690
BETTY PALMER
Advertisement Manager
BOB NIBBS, A.C.I.I.
01-6613130
MICHAEL DOWNING
01-661 8640
ASHLEY WALLIS
01-6618641
Northern and Midland Sales
BASIL McGOWAN
021-356 4838
Group Classified Manager
BRIAN DURRANT
01-661 3033
Assistant Classified Manager
MIKE RATCLIFFE
01-6618161

Classified Supervisor

IAN FAUX
01-6613033
Production
BRIAN BANNISTER
(Make-up and copy)
01-6618648
Current issue price 85 p, back issues (if available) $£ 1.06$, at Retail and Trade Counter. Units $1 \& 2$, Bankside Industrial Centre, Hopton Street, London SE1. Available on microfilm; please contact editor.
By post, current issue $£ 1.30$, back issues (if available) $£ 1.40$, order and payments to EEP Sundry Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tel.: 01-661 3378.
Editorial \& Advertising offices: Quadrant House, The Quadrant, Sutton, Quarrey SM2 5AD.
Surrey SM2 5AD.
Telephones: Editorial 01-661 3614.
Advertising 01-661 3130.
Telex: 892084 BISPRS G (EEP)
Facsimile: 01-661 2071 (Groups II \& III)
Beeline (300 baud): 01-661 8978
(Type EWW to start, NNNN to end).
Subscription rates: 1 year $£ 15$ UK and
£19 outside UK.
Student rates: 1 year $£ 10$ UK and $£ 12.70$ outside UK.
Distribution: Quadrant House, The
Quadrant, Sutton, Surrey SM2 5AS.
Telephone 01-661 3248.
Subscriptions: Oakfield House,
Perrymount Road, Haywards Heath,
Sussex RH 16 3DH. telephone: 04444
59188. Please notify a change of address. USA: \$49.40 surface mail, S102.60 airmail. Business Press International (USA). Subscriptions Office, 205 E. 42 nd Street, NY 10017.
USA mailing agents: Expediters of the Printed World Lid, 527 Madison Avenue, Suite 1217, New York, NY 10022, 2nd class postage paid at New York.
© Business Press International Ltd 1985. ISBN 00436062.

Trio, quality PMR equipment.

TK801S

Now from TRIO, the eagerly awatted range of high quality. purpose designed, VHF and UHF mobile radio transcewers
Buit with uncompromising quality in mind, these fully synthesisaed transceivers use a
 heid in PROM and frequency changes or additions can be carried out without delay to the customer
mand and current requency allocations including UHF community repeater channel
wiring necessary
CTCAS Encoder/decoder units are available with 37 tone DIP switch programining, or PROA programming when you wisn to altocate different tones on different channels. If you deal in radotelephones. the TR10 range is designed for you. Remove your instatation and service headaches by contacting the sole distibutor fight now for furthef details You will not be disapponted.

AOR, monitoring E8 surveillance.

The NIW AR2002 fom AOR combines the well known performance of the AR2001 with improved operating features. mpfovements are an easiet 10 use press buttom key board, the addition of a signal stiength meter, upldown frequency slepping by knot as well as push button. a headphones jack on the front panel and a sockel for remote control on the ear panel. An additional frequency ange from 800 to 1300 MHz has also been included - General olf air monitoring - Spot frequency monitoring/measurement - Selective mult fiequency analysis - Spectrum suveillance Detection of unwanted transmis shons • EBug hunting • ... and much more!
Frequency coverage is continuous from 25 to 550 MHz and from 800 to 1300 MHz . in selectable increments of $5,12.5$, or 25 kHz , and modes of AM, FM (wide). of FM (narow) Any mode can be used at any frequency or channel spacing A further facility is the atility o search between two user programmed limits with high to tow or low to high searching wenty memory channels are provided, with easy keyboard entry and recafl. Each memory channel stores fiequency and mode intormation without any restrictions. The memo ries can be recalled manualiy, or may be automatically scanned in sequence for unat

LOW世 FLFCTRONICS LIMITED

Chesterfield Road, Matlock, Derbyshire DE4 5LE
Telephone: 0629 2817, 2430. 4057, 4995 Telex: 377482

o ${ }^{\circ} \mathrm{c}$ FOR S100 USERS FULCRUM

(EUROPE) LTD
Distribute \& technically support over 160 different S 100 products. Select from manutacturers like:

MACROTECH INT. - ADVANCED DIGITAL CORP. ACKERMAN DIGITAL SYSTEMS • INNER ACCESS CORP - LOMAS DATA PRODUCTS • COMPUPRO - CALIFORNIA COMPUTER SYSTEMS - DUAL SYSTEMS - TELETEK • INTERCONTINENTAL MICRO - SYSTEMS SYSTEMS • DUAL SYS IEM - HIGH TECH. ELEC. LTD • I/O TECH. INC. - SD SYSTEMS SOLID STATE MUSIC • KONAN CORPORATION - JADE COMPUTER PRODUCTS - MULLEN COMPUTER PRODUCTS INC • DATA SYSTEMS CONSULTANTS • ILLUM. TECH. INC. ZENITH DATA SYSTEMS - BICC-VERO

CALL US ON (0621) 828763
VALLEY HOUSE, PURLEIGH, ESSEX CM3 6QH ENGLAND TELEX 946240 C WEASY G - Easylink I.D. 19010455

REPRINTS

 a ready made sales aid

If you are interested in a particular article or advertisement in this publication why not take advantage of our reprint service. We offer an excellent, reasonably priced service. For further details and a quotation
Ring Michael Rogers on 01-661 3457

LEVELL COUNTERS MET100/600/1000 £99/126/175 8 digit $0.5^{\prime \prime}$ LED display. 5 Hz to $100 / 600 / 1000 \mathrm{MHz}$. Resolves 0.1 Hz . Sensitivity 5 mV up to 10 MHz . Low pass filter. Mains/rechargeable battery powered.

LEVELL FUNCTION GENERATORS TG302/3 £156/236 $0.02 \mathrm{~Hz}-2 \mathrm{MHz}$ in 7 ranges. Sine, square, triangle, pulse and ramp 20 mV to 20 Vpp from 50Ω. DC offset $\mathrm{OH}+10 \mathrm{~V}$. TL output. TG303 also has a CMOS output and 6 digit 10 MHz counter with INT/EXT switch.

LEVELL RC OSCILLATORS TG152D/DM $£ 95 / 120$ $3 \mathrm{~Hz}-300 \mathrm{kHz}$. 5 ranges, acc $2 \%+0.1 \mathrm{~Hz}$ up to 100 kHz , 3% at 300 kHz . Sine or square $<20 q u \mathrm{~V}$ to 2.5 Vms . Distn. $<0.2 \% 50 \mathrm{~Hz}-50 \mathrm{kHz}$. DM has an output meter,

LEVELL RC OSCILLATORS TG200D/DMP
£130/165 $1 \mathrm{~Hz}-1 \mathrm{MHz} .12$ ranges, acc $1.5 \%+0,01 \mathrm{~Hz}$ to 100 kHz , 2% at 1 MHz . Sine or square outputs $<20 Q \mathrm{~V}-7 \mathrm{~V} \mathrm{~ms}$. Distortion $<0.05 \% 50 \mathrm{~Hz}-15 \mathrm{kHz}$. Sync output >1V. DMP has output meter and fine frequency control.
levell decade oscillator tg66a
£330 $6 \mathrm{~Hz}-100 \mathrm{kHz}$ Sine ourput < $3 \mathrm{Q}=5 \mathrm{Vms}$. $2 \mathrm{cc} 0.3 \%$ and V scales. Distn. $<0.15 \% 15 \mathrm{~Hz}-150 \mathrm{kHz}$. Mains/battery.

ANALOGUE METERS

LEVELL AC MICROVOLTMETERS TM3A/B £150/170 16 ranges $15 \mu \mathrm{Vfs} / 500 \mathrm{~V} f \mathrm{~s}$, accuracy $1 \%+1 \% \mathrm{fs}+1 \mu \mathrm{~V}$. $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ scale. $\pm 3 \mathrm{~dB} 1 \mathrm{~Hz}-3 \mathrm{MHz}$. 150 mV fs output TM3A: 83 mm scale. TM3B: 123 mm scale and LF filter LEVELL BROADBAND VOLTMETERS TM6A/B
£235/265 16 LF ranges as $\mathrm{TM} 3 \mathrm{~A} / \mathrm{B}+8 \mathrm{HF}$ ranges $1 \mathrm{mVfs} / 3 \mathrm{Vfs}$, accuracy $4 \%+1 \%$ fs at $30 \mathrm{MHz} . \pm 3 \mathrm{~dB} 300 \mathrm{kHz}-400 \mathrm{MHz}$.

LEVELL DC MICROVOLTMETER TM8
23 linear ranges $\pm 3 \mu \mathrm{~V} \pm 300 \mathrm{~V}$ and $\pm 3 \mathrm{pA} \pm 300 \mathrm{nA}$ plus 2
LEVELL DC MICROVOLTMETER TM8
23 linear ranges $\pm 3 \mu \mathrm{~V} / \pm 300 \mathrm{~V}$ and $\pm 3 \mathrm{pA} \pm 300 \mathrm{nA}$ plus 2 23 linear ranges $\pm 3 \mathrm{~V} V \pm 300 \mathrm{~V}$ and $\pm 3 \mathrm{pA} 430$.

LEVELL DC MULTIMETERS TM9ABP
f 199/235
18 voltage ranges $3 \mu \mathrm{~V} / 1 \mathrm{kVfs}$. Current ranges 3 pA to 1 A (TM9A 1 mA). Linear R ranges 3Ω to $1 \mathrm{G} \Omega$

LEVELL MULTTESTER TM11
$5 q_{\mu} / 500 \mathrm{Vfs}$ ac, $50 \mathrm{pA} / 500 \mathrm{mAfs}$ ac, $15 \mathrm{q} \mathrm{V} / 500 \mathrm{Vfs} \mathrm{dc}$, $150 \mathrm{pA} / 500 \mathrm{mAfs}$ dc, 0.2Ω to $100 \mathrm{G} \Omega$, lin/log null. Diode/LED test. Optional RF, HV and Temperature.

LEVELL TRANSISTOR TESTER TM12
£195
Transistor, diode and zener leakage to 0.5 nA at $2 \mathrm{~V}-150 \mathrm{~V}$ Breakdown to 100 V at $10 \mathrm{MA}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}$. Gain at $1 \mu \mathrm{~A}-100 \mathrm{~mA}$. $V_{\text {sat }}$ and V be at $1 \mathrm{~mA}-100 \mathrm{~mA}$.
LEVELL INSULATION TESTER TM14
$£ 210$
Log scale covers 6 decades $10 \mathrm{MQ} \cdot 10 \mathrm{TS}$) at 250 V , $500 \mathrm{~V}, 750 \mathrm{~V}, 1 \mathrm{kV} ; 1 \mathrm{M}-1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}-100 \mathrm{~V} ; 100 \mathrm{k}-100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V}-10 \mathrm{~V}: 10 \mathrm{k} \cdot 10 \mathrm{G} \Omega$ at 1 V . Current $100 \mathrm{pA}-10 \mathrm{qu} \mathrm{A}$.

DIGITAL METERS

LEVELL DIGITAL THERMOMETER DT1K £44 $-120^{\circ} \mathrm{C} /+820^{\circ} \mathrm{C}$, acc $0.2 \% \pm 1^{\circ} \mathrm{C} .3$ digit 8.5 mm LCD. A standard Type K themocouple socket is fitted. Bead couple is supplied. Battery life >3000 hrs.
THURLBY DIGITAL CAPACITANCE METER CM200£89 1 pF to 250 q F , acc $0.2 \%, 4 \frac{1}{2}$ digit 9 mm LCD. Fast settling. 3 readings per second. Mains/battery.

THURLBY DMMs 1503/1503HA/1504 £169/185/199 $43 / 4$ digit LCD. Up to $1.2 \mathrm{kVdc}, 750 \mathrm{Vac}, 10 \mathrm{~A}, 32 \mathrm{M}$ 4 MHz . Resoln. $1 q u \mathrm{~V}, 10 \mathrm{nA}, 10 \mathrm{~m} \Omega$. Mains battery. 1503: dcV 0.05\%. $1503 \mathrm{HA}: 0.03 \%$. 1504: Trıe ms ac.

THURLBY INTELLIGENT MULTIMETER 1905a £349 $51 / 2$ digit LED. Up to $1.1 \mathrm{kVdc}, 750 \mathrm{Vac}, 5 \mathrm{~A}, 21 \mathrm{M} \Omega$. Resoln. $1 \mu \mathrm{~V}, 1 \cap \mathrm{~A}, 1 \mathrm{~m} \Omega$. dcV 0.015%. Computing and storage functions. RS232/IEEE interface options.

for INSTRUMENTS

LOGIC ANALYSERS

THURLBY LOGIC ANALYSERS LA 160A/B £395/495 16 data channels. Clock DC. $10 \mathrm{MHz}(20 \mathrm{MHz}$ for B). Binary, octal, decimal, or hex formats. 2 K word acquisition memory. Non volatile ref. memory

BENCH POWER SUPPLIES

THURLBY SINGLES PL154/310/320 £ 159/125/155 LED digital displays with resolution $10 \mathrm{mV}, 1 \mathrm{~mA} .<0.01 \%$ change for 50% load change. Remote sense. 154: 0-15V 0-4A. 310: 0-30V 0.1A. 320: 0.30V 0-2A.
THURLBY DUALS PL3100MD/3200MD £269/339 Two 0-30V 0-1A (2A on 320) with isolated, series tracking, series or parallel modes of operation.

THURLBY TRIPLES PL310K/320K
£275/345
$310 \mathrm{~K}: 030 \mathrm{~V}$ at $0-1 \mathrm{~A}, 0-30 \mathrm{~V}$ at $1 / 2 \mathrm{~A} \& 4 \mathrm{~V}-6 \mathrm{~V}$ at $31 / 2 \mathrm{~A}$ $320 \mathrm{~K}: 0-30 \mathrm{~V}$ at $0-2 \mathrm{~A}, 0.30 \mathrm{~V}$ at $1 \mathrm{~A} \& 4 \mathrm{~V}-6 \mathrm{~V}$ at $/ \mathrm{A}$.

FREE DELIVERY IN UK. VAT EXTRA. QUANTITY DISCOUNTS AVAILABLE

LEVELL ELECTRONICS LTD. Moxon Street, Barnet, Herts, EN5 5SD, England Telephone:01-440 8686 \& 01-449 5028
CIRCLE 14 FOR FURTHER DETAILS.

Swings and swings

It's ironic that the electronics industry, which has contributed so much to advanced control technology - giving us such things as automatic blind landing of aircraft and multivariable process control using microprocessor-can do so little to control its own business. Companies in this field have recently experienced the whole gamut of instability, from uncomfortable fluctuation in profitability to complete bankcruptcy. And the semiconductor manufacturing sector is notoriously vulnerable to fluctuations in trading.

Yet the basic parameters of business stability are few, traditional and well understood. If you can optimize profit, operating costs and cash flow, you are a business-man, my son. Unfortunately, the big unpredictable parameter, the highly independent variable in the control system equation, is the external one of market demand. Here, electronics is perhaps more vulnerable than many industries. Relying as it does on 'high' or 'leading-edge' technology, it is converting
knowledge about Nature, some of it very new, into industrial and domestic products at an extremly fast rate. And because the gently dozing public is inevitably unaware of the new possibilities offered by these products it has to be woken up be advertising and promotion.

There is nothing wrong with advertising as a means of letting people know what is available on the market. But when it over-persuades a public which necessarily has no criteria to judge the usefulness or otherwise of entirely new kinds of products, it is doing a bad service to everyone. The hyperbole even goes to the heads of the manufacturers themselves. But hubris is followed by nemesis. We saw it with the over-selling of mainframe computers in the 1960s, the over-selling of pocket calculators in the late 1970s and we see it in the over-production of home computers now. At the worst the public feels it has been conned. At the best it signals by passive resistance that the rate at which it can consume and digest the new
kinds of products is strictly limited.

If all this only resulted in a few financiers, shareholders and company directors getting their fingers burnt it wouldn't matter very much. But the worst effect is social. The flight of capital, whether in reduction of manufacturing capacity or complete shut-down of a plant, brings social havoc in its wake. According to an American study, the resulting unemployment brings"... psychosomatic illness, anxiety, worry, tension, impaired interpersonal relationships and an increased sense of powerlessness... As selfesteem decreases problems of alcoholism, child and spouse abuse, and aggression increase." Europeans know this too.
Capital mobility is regarded as a technical necessity for a free-market economy. The alternative is often stated to be the rigid bureaucracy and lack of enterprise of a centrally planned economy, as in certain communist countries. But this is not so.

All electronics engineers know that the answer to instability in a closed-loop control system is damping. It slows down the response of an over-reactive chain of cause and effect. Precise control is achieved by a careful combination of proportional, integral and differential (PID) terms in the control system equation. If one could apply this analogy to an economic system it would mean making adjustments to achieve equilibrium rather than growth. We already have enough evidence before our eyes to show that the drive for perpetual economic growth is potentially disastrous, socially and ecologically. It cannot be sustained and is as unrealistic as perpetual motion. It will either result in some kind of breakdown in civilisation or, perhaps more likely, in an unrelievedly painful self-limiting condition.
An economic system is not a 'natural' order or God-given. It is man-made, like a servomechanism. It is therefore capable of being stabilized

Molecular beam epitaxy

Gallium arenside semiconductor materials are produced, like silicon, by the growth of cylindrical crystals sliced into thin wafers. Unlike silicon, though, GaAs devices are not made directly from these wafers; they are used as a substrate for the growth of very thin layers of gallium arsenide or related alloys. The orientation of the layers is determined by that of the substrate, a phenomenon known as epitaxy
Molecular beam epitaxy, just emerging from the research stage, may be used to grow layers with the depth of one atom. Molecular beams of the constituent elements, produced from effusion cells, impinge on the surface of the heated substrate to produce the required epitaxial layer

The growth rate and composition of the layer can be controlled by the intensity of the beam, which is dependant
on the temperature of the cells. The beams can be turned on an off by the use of shutters and the whole system can be automated with computer control of the cell temperatures and the shutter operation. Abrupt changes in the composition of a layer are
possible and multilayer devices can be made. Thickness and composition of the layer can be closely monitored by observing the diffraction patterns produced by a high-energy electron beam directed at a grazing angle across the surface of the layer
One of the first practical products to be produced this way has been the short-

An ultra-high vacuum chamber is needed in this machine for gallium arsenide molecular beam epitaxy. Philips Research Labs, Redhill.
wavelength semiconductor laser used in optical recording and playback systems. Philips Research Laboratories at Redhill have produced lasers that can operate at wavelengths as short as 707 nm , using interband layers as thin as 13 nm . The chief advantage is that these lasers give visible light whereas normal GaAs lasers operate in the infra-red. The advantage of GaAs over silicon is the higher mobility of electrons, enabling the production of much faster devices. This has been increased even further, using molecular beam techniques, by the growth of a layer of AIGaAs onto the surface of a high-purity crystal of GaAs. At the intersection of the materials, a two-dimensional cloud of electrons is found in the gallium arsenide. This has even greater mobility than in normally doped GaAs, and could lead to the production of transistor structures able to operate at extremely high frequencies, up to 100 GHz .

Canon's new T80 autofocusing camera brings the 'point and shoot' photography of compact cameras to single-lens reflex (SLR) cameras, with the benefit of being able to use interchangeable lenses. Its liquid crystal 'picture selector system' allows press-button selection if an appropriate program for exposure, sharpness detection and autofocusing. The camera has over 28,000 active elements in its i.c. complement, including a c-mos 8 bit microcomputer, and costs $£ 395$.

Eftpos comes to the High Street

Credit or charge-card sales can now be processed on-line in just a couple of seconds using Britain's first Eftpos system. Eftpos stands for 'electronic funds transfer at the point of sale', and a system is now available from Cresta Communications and British Telecom, initially in the London area.

The shopkeeper keys in brief details of each transaction on a small data terminal and wipes the customer's card through a built-in magnetic reader. The information is immediately transferred to a British Telecom computer which checks it against data supplied by the card companies and authorizes the purchase (or not) on the spot. A receipt is automatically

In brief...

Freefone numbers have only been available by asking exchange operators for the number. Now, direct dialling is introduced by the use of dialling codes 0800 and 0345 . The difference between the two is that 0800 numbers are free to the caller; 0345 numbers charge the cost of a local call from anywhere in the UK. BT, who seem to have an inexhaustible supply of catchy names have called this service LinkLine. It is most likely to be used by those service companies who gain much of their business from incoming calls, such as catalogue companies, travel agents, vehicle hirers, hotels, repair and maintenance companies and parts suppliers.

Professor Carsberg of Oftel is taking seriously the report in the Daily Mail that out of 200 public telephone kiosks visited, 120 of them were out of order. He commissioned a survey from NOP which found that 50% of call box users had difficulty in finding one that worked last time they tried and is having another to see how long specific boxes are out of action. He points out that BT's licence
includes provision for a "reasonable public telephone service", and if necessary he could issue an order to enforce $B T$ to meet its obligations.

The Director-General of Telecommunications has also been called in to arbitrate on the proposed switch from System X (GEC and Plessey) to System Y (Thorn Ericsson) digital telephone exchanges. Taking into account the possible loss of jobs at GEC and Plessey, and the possible gain in employment at Thorn Ericsson in Scunthorpe (where about 70% of the System Y exchanges will be made); and looking at the possible harm to the export prospects of System X , Carsberg has come to the conclusion that any further shifts of orders from X to Y should be gradual, over a period of three years, and give system X manufacturers the chance to meet reasonable cost and delivery requirements in the meantime.

The Monopolies and Mergers Commission has been asked by the Office of Fair Trading to investigate the possibility of a monopoly in the supply in the UK of marine radio navigation receivers compatible with he

Decca Navigator system. Anyone with an interest in the investigation is invited to give their views or information to he the Commission, at 48 Carey Street, London WC2.

Although the technical papers are an important part of Montreux, (our report starts on page 14) the exhibition floor is where visitors spend most of their time.
The emphasis in the exhibition was firmly on the production and programme side of television. Of the over 200 exhibitors only about a dozen or so were showing broadcast transmitters.
Digital techniques are playing an ever increasing role in programme production. The French programme company SFP showed a four-minute tv clip which was the world's first demonstration of tv material in which the production and postproduction were done entirely by digital means.

Although exhibitors and visitors regularly complain about the cramped facilities at Montreux, the picturesque lakeside location of the TV Symposium and Exhibition will continue to ensure that one of the world's most important tv events remains where it has been for the last 20 years!
printed out by the terminal.
Cresta's Teletran terminal makes use of voice-over-data. techniques to exchange sigitials over the merchant's existing telephone line. Ordinary use of the line is unrestricted, but it remains available continuously for direct communication with the central computer and so avoids the need for timeconsuming dialling. The data does not reach the local telephone exchange and is therefore presumably hackerproof: a high degree of security is essential where money is concerned.
Cost to the retailer is $£ 72$ per month to rent the terminal, plus 2 p per transaction. Cresta, who have licensed the system to BT, see a potential market of a quarter of a million terminals; a figure which they expext to increase with the growing use of plastic money. By next year the service is due to be available nationally.

Spark hazards

Dr Peter Excell, whose work on hazards associated with radio induced explosions is wellknown, is one of two academic staff members (the other is Dr Alfred Keller) of the University of Bradford who have received a $£ 33,572$ grant from SERC to investigate the possibilty that explosions on oil rigs and other major chemical installations could be accidentally triggered by radio waves. Although safety standards already exist they tend to be unduly restrictive they assume a number of conditions existing simultaneously, including a spark gap in the presence of a concentrated flammable mixture. They believe that probability factors could safely be taken into account to free radio systems from unnecessary restrictions.
The study will extend to related hazards, such as the likelihood of radio signals from low power tranismitters setting off electro-explosive detonators or, interfering with aircraft guidance systems.

THE SOURCE OFALI GOOD USED TEST EQUIPMENT

SATE upto 50\%

Mluoscopis	
Hewlett Packard	
$182 T$ Scope Mainframe	¢1850
1332 A Display (As new)	$¢ 950$
1741A Storage Scope	¢3750
1809 A 4 channel p / in for 180	$¢ 1250$
1821A Timebase p /in for 180	
212 Portable Scope 500KHz	¢650
4658/DM44 Scope 100MHz	$¢ 2400$
475 Scope	¢2750
485 Scope 350MHz	$¢ 5950$
634/1/20 Monitor (As New)	$¢ 950$
465 B Scope 100 MHz	¢1650
466 Storage Scope 100 MHz	¢3500
43425 MHz Storage Scope	from $£ 1950$
5223 Scope Mainframe	$¢ 3600$
403/D41 Scope Mainframe	¢1950
Scope vainrame	
R7603 Scope M/F (Mint)	83750
7633 Storage Scope M/F	87850
7704A Scope Mainframe	¢3200
7904 Scope M/F 500MHz	¢ 6950
$7 \mathrm{Cl1}$ FETP/In	¢1600
7A18 DTAmp	¢800
7A19 600MHz Amp	$£ 1600$
$7 \mathrm{CL4}$ DTP/In	£1950
7A己6 DTP/In	£1650
7850A Timebase	¢575
7B53A Timebase	85-¢985
7 B 55 Timebase	¢925
7 787 Timebase	¢1435
7 D 11 Digital Delay	¢1400
70145 5 5 MHz Dítigal Counter	c850
7M11 Delay Line	¢750
7 S11 Sampling Plug In	¢1850
7S14 TDRSampler	¢4500
7 711 Sampling Timebase	¢4000
S1 Sampling Head	¢950
S54 Pulse Generator Head	£600
AMALYEERE	
Hewlett Packard	
332 A Distortion Analyser	£850
1615 A Logic Analyser	$¢ 2500$
Marconi Spectrum Analyser Plug-in 885	
TFF3000 A Modulation Meter	8795
TF2330A Wave Analyser	$¢ 1095$
TF2331 Distortion Factor Meter	$¢ 695$
Tektronix	
308/01 Data Analyser	
308 Data Analyser	¢2250
7001/DF2 Logic Analyser	¢3500
TR502 ${ }^{\text {TR50a }}$ Tracking Generator	¢4250
7002 opt 01 Logic Analyser	£3000
PM102 Personality Module	5500
PM108 Personality Module	$¢ 850$
EHLabs Puse Generator 50MHz 10	
1398 Pulse Generator 50 MHz 10 V	C750

Farnell		¢1500		
Hewlett Packard				
214A	Pulse Generator 100	8750		
6124	UHF Generator 450-1230MHz	c950		
80114	Pulse Generator	+1650		
		¢1950		
8015A	Pulse Generator Dual 50 MHz	£2000		
8601A	Sweep Generator	$£ 1950$		
8600A	Digital Marker	c950		
8616A	Signal Generator 1.8-4.5GHz	$¢ 4000$		
Marconi	AM/FM Signal Generator	50		
TF20028	AM/FM Signal Generator	$¢ 950$		
20164 +	AM/FM Signal Generator			
TF2173	Synchroniser 120MHz	£1350		
AFSOURCES				
Hewlett Packard ${ }^{\text {H204A Decade Osc (New) }}$				
Marconi	Signal Source 20Hz-20KHz	¢450		
Wavetek Semo				
185	$\begin{array}{lr}\text { Sweep Generator } & \text { ¢650 } \\ \text { Sweep/Function Generator } 5 \mathrm{MHz} \\ \text { Pulse/Function Generator } 50 \mathrm{MHz} \\ \text { ¢ } 750\end{array}$			
184 166				
\M501	Op Amp	C300		
OC508A	Counter 1.3 GHz	¢995		
-C509	Counter/Timer 135 MHz	$¢ 995$		
D0501	Digital Delay	550		
DM 501/02	DMM	¢200		
FG501	1 MHz Function Generator	¢325		
FG502	11 MHz Function Generator	£565		
FG503	3 MHz Function Generator	¢395		
FG504	4 MMHz Function Generator	$£ 1650$		
MR501	X-Y Display	¢200		
PG501	Pulse Generator	¢330		
PG502	Pulse Generator	¢1650		
PG505	Pulse Generator	$¢ 450$		
PG506	Calibration Generator	£1950		
PG508	Pulse Generator	£1250		
RG501	Ramp Generator	¢250		
SC501	Scope	E500		
SC502	Scope	¢900		
SG502	Signal Generator	¢525		
SG504	Signal Generator $245-1050 \mathrm{MHz}$	£2100		
TG101	Time Mark Generator	£1750		
TM501	Mainframe	¢275		
TM504	Mainframe	¢375		
TM515	Mainframe	¢400		
MoWNIERS C TMEAE				
$\begin{aligned} & \text { Fluke } \\ & 7220 \mathrm{~A} \end{aligned}$				
	(Quantities available)	$¢ 595$		
1900A Pacteunter Pomiz				
53058	Counter 1.3 GHz	¢650		

Electronic Brokers are Europe's largest specialists in quality second user test equipment. Established 17 years ago, we have pioneered the second user concept in Britain, and many overseas territories. To support our growth we have a skilled team. This includes trained sales staff, whose role is not only to sell, but provide a helpful information service to our many customers. Backing this team is our own service laboratory where technicians monitor each item of equipment we sell. Dur maxim is service, and those who have dealt with us will know that we endeavour to always live up to our reputation.

Electronic Brokers Guarantee

Unless otherwise stated, all test equipment sold by us carries a 12 month warranty. When you buy from Electronic Brokers you know the equipment is in 'top notch' condition. It is refurbished in our own service laboratories and checked to meet the original manufacturer's sales specifications. And it's serviced by our own highly qualified technicians.

All prices exclusive of VAT. Carriage and packing charges extra on all items unless otherwise stated.

A copy of our trading conditions is available on request.

] 140-146 Camden Street London NW1 9PB Electronic Brokers :Telephone 01-267 7070 Telex 298694

Imhof-Express gives you a 24 -hour delivery of the most comprehensive range of small diecast boxes available anywhere.

They are ideal for the hobbyist who wants strong metal boxes with good screening properties

To order you simply phone your Access or Visa card number and the goods will be despatched within 24 hours.

For details on these and all our many other products. ask for our latest catalogue.

Imhof Express
Riverside Way. Uxbridge Middlesex UB8 2 YX

- SALE

Due to redevelopment and moving to other premises we shall be selling certain electronic equipment. This sale is forcallers only and will include Masts, Scopes, Ariels, Transformers, Meters, Plugs, Sockets, Headsets, Speakers, Signal generators, Test equipment, Pye equipment, Valves, 4 CX 250 B etc. 4 CX 250 B bases, Waveguide, Racal recievers, Rechargable batteries etc. This SALE will start around the end of September/beginning October. Please Telephone for further details.

A.H.THACKER \& SONS LTD
 HIGH STREET, CHESLYN HAY, WALSALL, STAFFS. TELEPHONE: CHESLYN HAY 413300

CIRCLE 37 FOR FURTHER DETAILS.

LOW COST UNIVERSAL PROGRAMMER EPROMS EEPROMS MICROS

- Completely self contained unit
- No personality modules required.
- Controlled via AS232 serial interface
- Supports Intel, Motorola and Ascii
hex data formats
- Easily controlled by most computers.
- Fast and standard programming modes.
- Low and high byte programming for 16 bit data - Byte, block and chip erase for Eeproms.

Price uncased $£ 295$ plus VAT
Micro Concepts

- Eproms

2508/16/32/64
2758
2716/32/32A/64/64A/128.
128A/256/512/513
27C16/32/64/128/\&56/512 68732/64/66

- Eeproms: 2816A/64A 52B13/23/33 48Z02
$8748 / 48 \mathrm{H} / 49 / 49 \mathrm{H}$

Tel: 0242510525
2 St. Stevens Road • Cheltenham • Glos • GL51 5AA

DON"T GO DOWN WITH YOUR SCOPE! It never was designed to float

The Waugh Instruments Isolation Amplifier enables you to keep your scope earthed and still make measurements up to 1500 V from earth, this together with over 100 dB rejection at 50 Hz means that you can now observe small signals superimposed on 350 V sine waves so often encountered in switch mode power supplies, thyristor and triac firing circuits. For details of this and other oscilloscopes accessories contact Peter Waugh at Waugh Instruments, Camhelyg Isas, Glyn Ceiriog, Llangollen, Clwyd LL20 7PB. (069172) 597.

[^0]
FULL COLOUR 40/80 COLUMN VIDEO TERMINAL CARD

- Full colour 40/80 column Teletext video display
- Serial interface RS422-423
- Centronics printer interface
- User definable characters - double height, width
- Hardware scroll capability
- Optional Genlock to external video signal
- Supports - underline, flashing, reverse video
- Enhanced teletext character set
- Stroke set - Pixel graphics
- Full colour - foreground/background and pallet

Occupies only 32 Bytes of system memory

- 8 K Video memory expandable to 16 K
- Software drivers written in PL9
- Onboard VIA Input/Output Port

CIRCLE 21 FOR FURTHER DETAILS.
Instant results-No messing
Time was when oscilloscope trace recording was a science in itself.
The new Shackman 7007 with AutoFilm back* removes the mystery and hands you the results.

Perfectly and instantly. No messing.
The Shackman 7007 cameras are quality recording systerns with a high resolution four element glass lens. Available with either manual or electric shutter they allow aperture settings from 14.5 to 116 . Event triggering is standard on all models and there's a range of film options that will catch even the fastest transients,

There's also a vast range of instrument adapters to match all types of scope.

And because all Shackman 7007 cameras have a factory set image-to-object ratio, there's no fiddling around with focusing.

Now all you do to record that trace is swing the 7007 in front of the screen set the shutter speed and activate the trigger.

Hey presto! The Polaroid AutoFilm back ejects the finished print Perfect.
With so many features to read about, you'll need the new colour brochure. Send for your copy now.

CIRCLE 22 FOR FURTHER DETAILS,

British URSI research topics

The 1985 one-day "National Radio Science (URSI) Colloquium" held in London under the auspices of The Royal Society provided an opportunity to catch up with the many university, Rutherford Appleton Laboratory and British Antarctic Survey studies in the subjects covered by nine URSI commissions: electromagnetic metrology; fields and waves; signals and systems; electronic and optical devices and applications; electromagnetic noise and interference; remote sensing and wave propagation; ionospheric radio and propagation; waves in plasmas; and radio astronomy.

The presentations included wide-ranging surveys, plus informal talks by young scientists on particular projects, including a lively presentation by Dr Lorna Robertson of Glasgow University on the sofar unseccussful attempt to detect gravitational waves which may, if ever detected, finally prove or disprove Einstein's theories to the chagrin of so many writers of letters to the editor of this journal!
P. Wells (RSRE) described military work on compact, transportable satellite terminals for digital slow-scan tv. Dr P. Cudd (Sheffield University) described efforts to direct microwave energy further into the body to permit the use of hyperthermia techniques for deeper-seated malignant tumours with the aifd of phased arrays.

Dr Peter Bradley (RAL) reviewed the many research projects in the field of ionospheric propagation, though it is clear that the $\$ 64,000$ question of predicting the time and shape of future sun-spot cycles remains essentially unsolved.

Prof. E.D.R. Shearman and Dr Lucy Watt of Birmingham University reported on the work on h.f. sea-state radar. This has now abandoned the use of pulsed emissions at 1.9 MHz in favour of f.m. - c.w. emissions between 6.7 and 40 MHz that do not spread over more than about 20 kHz of spectrum. Although this project is presented as a tool for
studying oceanography it is difficult to dispel the suspicion that the objective could be to locate submarines from the disturbances they create at the surface.

The idea of these URSI symposia seems excellent, but they do tend to highlight the tendency of British universities and establishments to ignore work carried on elsewhere in the world - the old "not invented here" syndrome. This is markedly different from the intense Japanese interest in what is happening in Europe and the USA. This has now led to American industry seeking more engineers versed in the Japanese language in order better to monitor Japanese science and engineering publications of which only about a fifth are currently translated into English.

Flying tape

The recent IEE 50th anniverssary of radar seminar was only one aspect of the increasingly serious interest in the history of electronics technology. The 25th anniversary (May 15, 1985) of the first demonstration at Hughes Research Laboratories, Malibu, Califormia by T.H. Maiman of a workirg laser did not go unnoticed, although what was once "a solution awaiting a problem" is now increasingly regarded as ac solution to military rather than civilian problems.
A detailed paper by Claud Powell in the IERE Journal (June 1985) traces the early history, from its conception in 1937, of the Decca Navigator system based on the work of William O'Brien and Harvey Schwarz. They had great difficulties in getting the system adopted in the USA. This led to its important but largely unrecorded role (as "QM") in the Normandy landings of June 1944, following secret trials between Anglesey and the Isle of Man.

An SMPTE historical paper by William Lafferty "The use of steel tape magnetic recording media in broadcasting" similarly shows that while the Blattnerphone and MarconiStille machines, both stemming from the work of Curt Stille, were widely used in Europe throughout the nineteen-thirties and early nineteen-forties,

American broadcasters depended on direct-disc recording.

There are broadcast engineers still working who recall using the Marconi-Stille machines with large spools containing up to 2700 metres of special Swedish steel tape that sped by the heads at $1.5 \mathrm{~m} / \mathrm{sec}$.

Lafferty points out: "Editing the recorded tapes could be accomplished through the tedious and cumberous process of cutting the tape with tin shears, then soldering or spotwelding the tapes together. Edited tapes could be dangerous, since if a splice broke during transmission the operator risked being slashed by the flying steel tape as it spun."
The BBC adopted the bulky Blattnerphone machines at the start of the Empire Service in 1932 when "time-shift" became essential. Blattner's company went into liquidation in 1933 after their failure to interest the film industry. The later Marconi-Stille machines were smaller, more reliable and provided better quality.

The BBC also adopted the Philips-Miller film system of sound recording, mechanically cutting away an opaque coating on the film, later using a photoelectric cell for high-quality reproduction. However both steel tape and film recorders were expensive to operate so that use was also made of direct-disc recorders, including the portable machines used by the war reporters. German work on plastics-backed tape, leading to the modern tape recorder, came about to avoid having to import the special Swedish steel.

Interference aggro

The decision of the Department of Trade and Industry to discontinue its free service to viewers who complain of radio and television reception problems, and instead to concentrate its diminished resources of the Radio Investigation Service on "pirate" operation and spectrum abuse, it a logical, though in some ways regrettable, move. It was made essential because of the many members of RIS who were unwilling to accept the relatively poor terms of
employment offered by the DTI when the service was transferred from British Telecom. Even after some fresh recruitment the present staff is only about 240 compared with 340 under BT.

There is little doubt that domestic interference investigation has been difficult to justify in terms of costbenefit. A high proportion of all complaints have been due to ineffective aerials, receiver faults, or so infrequent that the investigation teams have been unable to observe, let alone trace, the interference. The introduction of c .b. into the UK significantly increased the number of viewer complaints, though in practice such interference, when involving "legal" c.b. operation, reflected the poor immunity of many television sets, and could usually be cured by a simple filter fitted to the receiver. It could be claimed that the existence of the free-services provided by RIS encouraged set-makers to pay little heed to immunity. Retailers have tended to leave it to the specialist skills of the RIS teams or simply to tell customers that interference problems are the fault of the transmitter or appliance. British regulations are also very lax in regard to spectrum pollution by industrial equipment, home computers and the like.

The DTI are, in effect, now copying the FCC approach in the provision of a detailed free booklet providing good explanatory advice to viewers/ listeners together with technical guidance for dealers (it is questionable whether these fit well into a single booklet).

The DTI also intend to incorporate BS905, Part 2 of which provides recommended minimum immunity standards for television sets, into legallybinding regulations. This is good news for amateurs, c.b.ers and anyone operating transmitters in residential areas. Unfortunately, BS905 Part 2 currently stipulates immunity tests to be carried out only on signals between 26 30 MHz , though it is to be hoped that a set which shows good immunity to such signals will be reasonably immune to signals on other frequencies (though not necessarily for 144 MHz and above). A real

Electronic Brokers Test \& Measurement Instrument Distribution Disvision

AUTHORISED DISTRIBUTOR 3 TP For the Leading Brands of Electronic

 Test \& Measurement Equipment
From Philips, Minke, Hameg, ICL, Thandar,
 Thurlhy, ©P Industrial, Clande Lyons, Coline, Compact Instruments

OSCILLOSCOPES

Philips PM 3206 senstivity, auto and TV triggering, variable time

Philips PM 2519/01保 graph, auto/manual ranging.

Philips PM 2518X/11 E199 4 digit. LCD with electroluminescent display, auto/manual ranging, true to 20A. PM $25185 / 01$ without illumination E145
Fluke 8010A
$3^{1 / 2}$ digit. LCD, 10A current range sen functions include conductancange, seven RMS. OC accuracy 0 1\% 8010 Ni-Cd battery Fluke 8060A 4 Ma digit. LCD, ten functions include frequency, true RMS. DC accuracy $00 .{ }^{\circ}$
Fluke B062A
Fluke B062A
4^{11} digit. LCD. seven functions include diode test and continulty, relative reference, DC
accuracy 0.05%, true RMS, self diagnosis test. Fluke 8024B 3 1/2 digtt, LCD, eleven functions include peak hold on voltage and current. audible and visual logic
level detection. 0 a acuracy
1%

[^1]

Fuke JF 27

5216 $3^{11 / 2}$ digtt: LCD with bar graph, ruggedized construction, auto ranging, DC accuracy 0 . iq .
touch-hold facility, min-max and relative mode operation.
Thandar TM 351
3122 digit. LCD. 29 ranges of measurement. OC accuracy 01 1\%, diode test. battery life tyontcally accuracy
4000 hours. complete with batteries and test

Thandar TM 451
4^{1} a digit, LCD display with function legends. auto/manual ranging. DC accuracy 0.03%. sample/hold facility on all ranges. audible
Thandar TM 355
3112 digtt, 0.5 bright LED 29 ens measurement. OC accuracy 0.25% battery or mans
leads.

ANALOGUE MULTIMETERS

Philips PM 2505 \qquad ᄃ165 be measuring ranges. 10Mninput impedance. automatic polarity indication. low power.
I.C.E. 680 R
 accuracy 1% ranges, sensitivity $20 \mathrm{~K} \cap / \mathrm{V}$. DC accuracy $1 \%, 12 \mathrm{~cm}$ mirror scale, overload accuraction.

CIRCLE 43 FOR FURTHER DETAILS
 Pattern generator, 5 test patterns for mono and Output V VHF and UHF range, 9 kHz tone for output in UHF and UHF range, 1 kHz tone Thandar TG 101
Function generator O 02 Hz to $200 \mathrm{kHz} \mathrm{E110}$ Function generle, raiable DC offset. TTL
square, triangle, yat, external sweep. 10 V pp output into variable 600n.
Thandar TG 102 £160 Function generator 0.2 Hz to 2 MHz , Sine. square, triangle, TL output. variable OC off set, Thandar TG 105 Pulse generator 5 Hz to 5 MHz , 10 nS amplitude
 triggered moddes. TL. outtout. pulse width
variable 100 nS to 100 ms .
Thander TG 501
Function generator 0.005 Hz to 5 MHz £295
square, triangle, ramp pulse TTI wzi, sine, rariative variale start/stop phase. 2OVppinto

COUNTERS G
COUNTER/TIMER

Thandar TF 200 £175 Counter, 10 Hz to 200 MHz .8 digit LCD , batter totaize and reset. TP 600 pre-scaler, 20 MHz to 600 MHz available at $£ 45$.
Thandar PFM 200A
Counter, 20 Hz to $200 \mathrm{MHz}, 8$ digit bright $£ 76$ attery powered. 10 mV sensitivity right LED, . 1 Hz , selectable gate times, mains adaptor and

POWER SUPPLIES

Thurlby PL 154
-
to $15 V$. 0 to 4A. bench power supply, twin stability and resolution, remote sense facility

0 to 30V. O to 2A, bench power supply, constan current or constant voltage, precise current limit -1 mV . Thurlby PL 310

Thandar TH 302

519
Thurlby OM 358 C179 Thurlby multuplexer expands any oscilloscope to
8 channels, displays analogue or digital signals. triggering from any channel, band width 35 MHz . precision calibrated attenuator.

Thurlby CM 200
Thurlby diggtal capacitance meter, $41 / 2$ digit LCD Thurlby digital capacitance mater, $41 / 2$ digit LCD,
10 F to $2500 \mu \mathrm{~F}$ range, accuracy $\mathrm{D} .2 \%$, tast settling, battery or mains operation.

Visitors are welcome to our showrooms where all products are on display and demonstration. For customers wishing to order by phone, we ffer a 24 hour answering service.
All prices are exclusive of VAT and correct at time of going to press.
Carriage and packing charges extra on all items unless otherwise stated. A copy of our trading conditions is available on request.

Electronic Brokers Ltd

140-146 Camden Street London NW1 9PB Telephone 01-267 7070 Telex 298694
*problem, however, will continue to exist in the case of wideband r.f. amplifiers that are fitted to devices intended for use in countries with both v.h.f. and u.h.f. television and particularly susceptible to strong local amateur signals on 70,144 and 430 MHz or broadcast signals on 95 MHz .

The real loss both to amateurs and broadcasters is that of the diplomacy of the RIS teams in settling fairly the disputes and social problemis that arise. While the new booklet does emphasise that it is usually the receiving installation that is at fault it is often virtually impossible for an amateur or c.b. operator to convince an irate neighbour that this is the case. It could prove an expensive business for a viewer to call in a dealer to trace and cure some of the more intractable interference problems, and pressure will be put on the amateurs and c.b. operators to close down.

$\mathrm{C}^{4} \mathrm{I}$ - Costly CCCI

The Americans, over the past two decades, have spent billions of dollars on strategic command, control, communications and information ($\mathrm{C}^{3} \mathrm{I}$) systems designed to provide instant and secure access to military commanders throughout the world. Yet today, it is increasingly recognized that many of the projects have turned sour primarily because of the pursuit of ideal rather than practical systems. The crucial world-wide military command and control system (WWMCS) comprises more than 60 different communications systems linking 27 command centres under the control of 20 million lines of Cobol software and 35 ageing Honeywell Series 6000 computers. American journals suggest that the system suffers extensively from down-time and has failed badly on several occasions, including the putting out of a nuclear attack alert when a war-games program got into the main Colarado neclear warning centre, and a record of dismal failures during real crises in the 1960s and 1970s. Currently three main up-grading projects are under way for WWMCCS, for the slightly less ambitious "minimum essential emergency
communications network" and for the new "Milstar" network which is intended to be proof against neclear electromagnetic pulses (NEMP) and on which the US is spending some $\$ 400-$ million per year. Even EMPprotection however will not necessarily prevent disruption of communications over an extended period in the event of a nuclear attack or the use of anti-satellite weaponry.

Amateur Radio

SSB on 10.1MHz?

As a morse enthusiast initially, I welcomed the idea of keeping the narrow 10.1 to 10.15 MHz band free not only of contest operation but also of s.s.b. This form of bandplanning to which the RSGB became committed at an early stage, was later endorsed by the IARU Region 1 Bureau but depends on voluntary restraint as, at least in Europe, it is not written into the licence regulations.

There has, however, always been a valid case for using a small segment of this band, which has interesting "chordal hop" propagation along the twilight "grey-line" paths as a result of ionospheric tilts as the F1 and F2 layers combine at dawn and dusk. The belief that c.w./r.t.t.y. operation with its high average power duty cycle causes less interference to commercial point-to-point communications is hardly a tenable theory. The s.s.b. enthusiasts claim that telephony, with good operating discipline, enables experimental data to be obtained rapidly. It is also the case that the absence of s.s.b. has tended to keep amateur activity on the band low.

There are signs that the IARU restriction is breaking down in several countries, including the UK - although the s.s.b. operators are subject to abuse. Is it not time that this subject should be reconsidered with a view to providing an s.s.b. segment? The alternative may prove to be a loss of confidence in the concept of "voluntary" band plans drawn up by largely self-perpetuating committees. Voluntary band-
planning is too valuable an asset to be lost, yet is an area where manifestly it must be seen to be fair to all.

RAE attacked

Richard Harris, G3ZWH, head of physics at Harrogate College, has delivered a strong attack on the Radio Amateurs' Examination run by City \& Guilds of London Institute. He complains in particular of the refusal of CGLl to allow actual examination papers to be published or even taken out of the examination room and the unsuitability of many of the questions which often concentrate on basic theory rather than the principles and practice of amateur radio. He suggests that the RAE should recognize that fewer candidates have prior experience as shortwave listeners and need to ben encouraged to learn more about the practical aspects of two-way radio communication. He objects to the absence of a fixed "pass mark" and strongly believes that "the present situation must not be allowed to continue" - reflecting comments that have been made over several years in $E \& W W$.

In brief

Good two-way voice contacts were made from the UK with Dr Tony England, WOORE on board the August Challenger space-shuttle flight. It has also been claimed that the RSGB headquarters station at Potters Bar was the first amateur station in Europe to receive frames of slow-scan television pictures from the shuttle.

October 27 marks the 50th anniversary of the day in 1935 when Nell Corry, G2YL made radio history by working all six continents on 28 MHz in a single day. Transatlantic contacts on this band had been made in 1928-29 but the declining sunspot cycle then resulted in several years when virtually no long-distance stations were contacted, until sun-spot activity began to increase again. At 9 a.m. she contacted VU2LJ, Assam; 10.30 a.m. VK4BB Queensland, Australia; 11 a.m. CX1CG Uruguay; followed by Europe, Africa and the USA all before $3.30 \mathrm{p} . \mathrm{m}$.
Less than half of American "novice" licence holders renew or upgrade their licences and
many never reach the stage of coming on air. It is uncertain whether this is due to the cost of equipment, restriction to morse only, or the crowded state of the novice segments of h.f. bands. American amateurs holding higher grades of licence are being urged to do more to provide encouragement and guidance to the "novices".

An RSGB "National HF Convention" is being held on Sunday, September 29 at the Belfry Hotel, Milton Common, Oxford with a crowded programme of lectures, demonstrations, talk-in stations, "car boot sale" etc. It will also be possible to take, by prior appointment, the official morse test. . . RSGB president for 1986 is to be W.J.
McClintock, G3VPK. . . Welsh Amateur Radio Convention is on October 6 at Oakdale Community College, Blackwood, Gwent. . . The second Yeovil QRP (Low Power) convention is on October 13 at The Preston Centre, Monks Dale, Yeovil. A large numer of RAE courses began in September at adult education centres.
The Radio Amateur Old Timers Association (RAOTA) and the Dutch Old Timers Club are holding activity mornings (0830 to 1130 GMT) on October 6 and 7 on 3.5 and 7 MHz (initial contacts on 3600 kHz). . . The worldwide Jamboree-on-the-Air takes place on October 19 and 20. . The Royal Navy Amateur Radio Society celebrates its 25 th anniversary and will operate GB4KRN throughout October from Tonbridge, Kent . . . The RSGB Midlands VHF Convention is at Madeley Court, Centre, Telford, on October 12.
In a letter to The Lancet, J. Seager of the Arrowe Park Hospital, Upton, Wirral has commented on the leukaemia risks that have been linked with non-ionizing electromagnetic radiation in such occupational groups as electronic assemblers, television repairmen and radio amateurs. He points to the need for more precise analysis of the apparent risk factors and their relation to the fluuxes and tin/lead alloy used in soldering or the fumes given off during soldering by the overheating of synthetic materials.

PAT HAWKER, G3VA
01-208 1177 Technomatic Lid 01-208 1177

BBC Micro Computer System BBC Computer \& Econet Referral Centre BBC Computers:
Model B: £299 (a) B+DFS: £346 (a)
Model B+Econet: $£ 335$ (a) B+Econet+DFS $£ 399$ (a) BBC B Plus (available from stock) $£ 409$ (a) ACORN 2nd Processors: 6502: £175 (a) Z80: $£ 348$ (a) TORCH UNICORN: Z80 Card: £299 (a) Z80 Disc Pack: £550 (a) TORCH Graduate G800/2 £869 (a) 20 Mbyte Hard Disc+400K Floppy: £1950 (a)
We stock the full range of ACORN hardware and firmware and a very wide range of other peripherals and firmware for the BBC. For detailed specifications and pricing please send for our leaflet.

DISC DRIVES
TECHNOMATIC drives are fitted with high quality simmine Mitsubishi mechanisms and are available with or without integral mains power supply. The dual drive power supplies are switch mode type and are generously rated. All drives with integral power supply are fitted with a mains mode type
All drives are supplied with all the necessary cables, manual and a formatting disc. All drives are capable of operating in single or double density modes Single Drives
$1 \times 100 \mathrm{~K} 40 \mathrm{~T}$ SS: TS 100
$£ 85(b)$
$£ 125(b)$
With integral psu.
PS100
£120(b)
$\times 400 \mathrm{~K} 80 / 40 \mathrm{~T}$ DS: TS400
PS100
PS400
Plinth Versions
PD200P
£215(a)
Stacked Version:
Stackedversion
D200 $2 \times 100 \mathrm{~K}$ 40T SS
£190(a)
£265(a)
PD800 P
£289(a)
Note: We can supply drives with Shugart mechanisms al considerably lower prices. Please phone for detall.
3.5" Drives. TS35 $1 \times 400 \mathrm{~K} 80 \mathrm{~T}$ DS £99(b)

TD $352 \times 400 \mathrm{~K} 80 \mathrm{~T}$ DS $£ 175$ (b)
The mechanisms are 80 track double sided and are capable of both single and double denstity operation

PRINTERS

EPSON: RX80T+£210 (a); RX100+£345 (a);
FX80+£315 (a); FX100+£430 (a);JX80 Full Colour Printer £499 (a)
EPSON LX80 £219 (a); Optional Tractor Feed £20 (c)
KAGA TAXAN: KP810 £235 (a); KP910 £339 (a)
BROTHER: HR15 £310 (a); JUKI $6100 £ 299$ (a).
BUFFALO 32K Buffer for Epson Printers $£ 75$

ACCESSORIES

EPSON. FX80 plus sheet feeder $£ 129$ (b)
Paper Roll Holer £17(d) FX80 Tractor Attachment £37(c).
Interfaces: 8143 RS232 £28(c); 8148 RS232 +2 K £57(c); 8132 Apple II £60(c); 8165 IEEE + Cable E65 (c).
Serial \& Parallel Interfaces with larger buffers avaitable
Ribbons: RX/FX/MX80 £5.00(d); RX/FX/MX 100 £10(d); LX80 £6(d);
FX80 Dustcover £4.50(d); LX80 Tractor Unit £20(c); Spare pens for HI80 £7.50/set(d)
KAGA TAXAN: RS232 Interface + 2K bufter £78(c); p Ribbon KP810/910 £6(d)
JUKI: RS232 Interface £65(c); Spare Daisy Wheel $£ 14$ (d); Ribbon $£ 2.50$ (d); Sheet Feeder
£182(a) Tractor Feed Attach £129(a)
BROTHER HR15: Sheet Feeder $£ 189(\mathrm{a})$ Ribbons Carbon or Nylon $£ 4.50(\mathrm{~d})$
Tractor Feed £99(a)
BBC Printer Lead: Parallel (42") £7(d); Serial £7(d)
Printer Leads can be supplied to any other length.
Plain Fanfold Paper with extra fine perforation (Clean Edge):
2000 sheets $95^{*} \times 11^{n} £ 13(b) 2000$ sheets $14.5^{\prime \prime} \times 11^{\prime \prime} £ 18.50(b)$
Labels per 1000s: Single Row $3_{2}^{1 / \times} \times 17 / 16^{\prime \prime} £ 5.25$ (d) Triple Row $2-7 / 16^{n} \times 17 / 16^{\prime \prime} £ 5.00$ (d)

BT Approved Modems

MIRACLE WS2000
The ultimate world standard BT approved modem covering all common BEL.L and CCITT standards up to 1200 Baud. Allows communication with virtually any computer system in the world. The optionai AUTO DIAL and AUTO ANSWER boards enhance the considerable facilities already provided on the modern. Mains powered £129 (c) Auto Dial Board/ Auto Answer Board $£ 30$ (d) each (awaiting BABT approval). Software lead £4.50
BUZZBOX
This pocket sized modem complies with V21 300/300 Baud and provides an ideal solution for communications between users, with main frame computers and bulletin boards at a very economic cost. Battery or mains operated. C 62 (c) Mains Adaptor $£ 8$ (d) BBC to Modem data lead $\mathbf{~} 7$

SOFTY II
This low cost intelligent eprom programmer can program 2716. 2516, 2532, 2732, and with an adaptor, 2564 and 2764 Displays 512 byte page on TV - has a serial and parallel $1 / 0$ routines. Can be allel as routines. Can be sette interface. sefte interface.
Softyil 195.00 (b) Adaptor for 2764/ Adapt
2564.
5.00(b) £25.00

Authorised Disiributor
Data Recording Products
3M FLOPPY DISCS
industry Standard floppy discs with a lifetime guarantee Discs in packs of 10
40 Track SS DD
£13(c)
40 Track DS DD
E18 (c)
80 Track SS DD
£22 (c)
80 Track DS DD
£24 (c)

FLOPPICLENE DRIVEHEAD CLEANING KIT

FLOPPICLENE Disc Head Cleaning Kit with 28 disposable cleaning discs ensures continued

 optimum performance of the drives. $£ 14.50$ (b)DRIVE ACCESSORIES
Single Disc Cable $£ 6$ (d) Dual Disc Cable $£ 8.50$ (d)
10 Disc Library Case $£ 1.80$ (d) 30 Disc Storage Box £6 (c) 30/40 Disc Lockable Box £14 (c) 100 Disc Lockable Box £16 (c)

MONITORS

MICROVITEC $14 \mathrm{in} . \& 20 \mathrm{in}$ RGB
431 Std Res $£ 185$ (a); 1431 Ap std Res PAL/Audio $£ 205$ (a)
1451 Med Res $£ 240$ (a); 1451 AP Med Res $£ 280$ (a); 1441 HiRes $£ 389$ (a);
Swivel Base for Plastic 14° Microvitecs $£ 20$ (c)
2030 CS Std Red $£ 380$ (a); 2040 CS Hi Res $£ 685$ (a)
Plinth for 14 in Monitors $\mathbf{£ 8 . 5 0}$.
Microvitec Monitors with TTL/Linear Inputs also available. SANYO CD 3125 NB 14 in . RGB Std Res $£ 159$ (a) KAGATAXAN 12in. RGB Vision II Hi Res £225 (a); New Vision III plus £360 (a)
Green Screens; KAGA 12G £99 (a); SANYO DM811 12CX $£ 95$ (a);
Swivel Stand or Kaga Green $\varepsilon 21$ (c)
BBC Leads: KAGA RGB £5 Microvitec £3.50; Monochrome $£ 3.50$ (d)

UVERASERS

UVIT Eraser with built-in timer and mains indicator Built-in safety interlock to avoid accidental exposure lo the harmfu: UV rays.
It can handle up to 5 eproms at a time with an average erasing time of about 20 mins $£ 59+\Sigma 2$ p\&p. UVI as above but without the timer $£ 47+\Sigma 2 p \& p$ For Industrial Users, we ofter UV140 \& UV141 erasers with handling capacily of 14 eptoms. UV 141 has a built in timer Both offer full built in safety features UV140 £61, UV141 £79, p\&p £2.50.

PRINTER BUFFER

This printer sharer/buffer provides a simple way to upgrade a multipie computer system by providing greatef utlisation of available resources. The buter can be loaded into the buffer which will continue accepting data until it is full. The buffer will automatically switch from one computer to next as soon as that computer has dumped all its data. The computer then is available for other uses LED bargraph indicates memory usage. Simple push button contro provides REPEAT, PAUSE and RESET functions Integral power supply. £205 (a)

CONNECTOR SYSTEMS

Alt prices in this double page advertisment are

subject to change without nolice
ALL PRICES EXCLUDE VAT
Please add carriage 50p unless indicaled as follows:
(a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1: 00$ ACORN IEEE INTERFACE
A full implementation of the IEEE-488 standard, providing computer control of compatible scientific \& technical equipment, at a lower price than other systems. Typical applications are in experimental work in academic and industrial laboratores. The interface can support a network of up to 14 other compatible devices, and would typically link several items of test equipment allowing them to run with the optimum of efficiency. The IEEE Filing System ROM is supplied £282

INDUSTRIAL PROGRAMMER

EP8000.

This CPU controlled Emulator Programmer is a powerful tool for both Eprom programming and development work. EP8000 can emulate and program all eproms up to $8 \mathrm{~K} \times 8$ bytes, can be used as stand alone unit for editing and duplicating EPROMS, as a slave programmer or as an eprom emulator E 695 (a)

EDGE CONNECTORS

TEXTOOL ZIF

		AMPHENOL CONNECTORS 36 way plug Centronics (solder 500 p (IDC) 475 p 36 way skt Centronics (solder) 550 p (IDC) 500 p 24 way plug IEEE (solder) 475 p (IDC) $475 p$ 24 way Skl IEEE (solder) 500 p (IDC) 500 p PCB Mtg Skt Ang Pin 24 way 700 p 36 way 750p		4-way pl 6-way plug 6-way 1 It Flexible 4-way 6-way	TELEP ONNE ug ang.skt cable	ONE TORS	$\begin{aligned} & 110 \mathrm{p} \\ & 180 \mathrm{p} \\ & 160 \mathrm{p} \\ & 0 \mathrm{p} / \mathrm{m} \\ & 2 \mathrm{p} / \mathrm{m} \end{aligned}$
					BO	CAB	
					$40 p$ 609 650 1200	$\begin{aligned} & 34-\text {-wa } \\ & 40 \text { way } \\ & 50-\text { wa } \\ & 64 \text {-way } \end{aligned}$	160 p 180 p 1800 200p
EURO CONNECTORS		Male to Male Male to Female Female to Female	$\begin{aligned} & \text { £10 } \\ & \mathfrak{\varepsilon} 10 \\ & \mathfrak{E} 10 \end{aligned}$	DIL HEADERS			
DIN 41612 2×32 way Si Pin 2×32 way Ang Pın 3×32 way St Pin 3×32 way Ang Pin IDC SkI A + B IDC Skt A + C		RS 232 JUMPERS		14 pin			p
				18 pin			
	275p 320p	24 Single end Ma		20 pin			
	260p 300p	24. Single end Fem		24 pin			150 p
	375p 400p	${ }_{24}{ }^{24}$ - Mamale Male	E9.50	28 pin			200p
	400 p	24" Male Male	6950 $¢ 950$	40 pin			25p
For 2×32 way please specity spacing $(A+B, A+C)$.		DIL SWITCHES 4-way $90 p$ 6 -way $105 p$ 8 -way $120 p$ 10 way 150 p		MISC CONNS 21 pin Scar1 Connector 200p 8 pin Video Connector 200p			

D CONNECTORS

$$
\begin{array}{lrrrr|}
\text { MALE: } & & & & \\
\text { Ang Pins } & 120 & 180 & 230 & 350 \\
\text { Solder } & 60 & 85 & 125 & 170 \\
\text { IDC } & 175 & 275 & 325 & -
\end{array}
$$

We also stock

 a wide range of Transistors, Diodes, Triacs Plastic, Bridge Rectifiers, Thyristors and Zeners.Please phone for details.

COMPUTER COMPONENTS

LOW PROFILE SOCKETS BY TI - WRE WRAP SOCKETS EY TI

16 pin 35
18 pin 40

Television at Montreux

Satellite broadcasting, high-definition and the future of terrestrial television discussed at biennial symposium

This year's Montreux TV Symposium, the 14th in the series, brought together over 200 exhibitors from 16 countries. There was an international programme of 67 presented and 35 supporting papers covering both tv broadcast and c.a.tv topics. On the transmission side, d.b.s. and h.d.tv were front-line topics.

Chinese DBS

China Broadcast Satellite Corporation president, Mr Hsu Chung-ming, outlined the necessity for establishing d.b.s. as the key to the realization of national tv and radio coverage for the whole of China. He announced that some important technical decisions for China's new satellite tv services had been taken.

China plans to have two colocated satellites in orbit operating in Ku-band. Reasons given for the selection of Ku -
band (11-14GHz) as opposed to C-band ($4-6 \mathrm{GHz}$) included the protection of microwave links, the eventual requirement for provincial beams, and C-band orbit congestion, which, with two-degree orbital spacing limits the use of small receiving antennas.

East satellite will have " 5 -for2 " transposer redundancy. The transposer power will be 230250 W at the orbital position of 92 degrees East, which is one of the three $\left(62^{\circ} \mathrm{E}, 80^{\circ} \mathrm{E}\right.$ and $92^{\circ} \mathrm{E}$) WARC- 77 positions allocated to China. The earliest eclipse time at this position is at 01.09 Beijing Time: tv transmissions will not take place because of the power requirements of the transponders.

One satellite will act as a spare, but it will operate on a different pair of channels to the main, so that in-orbit-testing of the spare can be made without interfering with the main satellite. If necessary, all four channels could be switched on
already use PAL, according to . Hsu Chung-ming, there is no significent reason to go for a MAC transmission system through China's d.b.s. satellite.
Terrestial rebroadcast stations will take the signal from the satellite receiver and retransmit it over the local area. China's d.b.s. satellite will thus be used as a direct feed for a large number of rebroadcast transmitters. Tv coverage will be provided for remote mountainous regions which could not be economically serviced by a terrestial transmitter network alone.

Arabsat

In a supporting paper, Ḿr Shaweesh from Jordan outlined the speed with which developments have taken place in the field of satellite communications during the past 20 years, with particular emphasis on the emergence of regional satellite systems such as the European ECS and Arabsat.

The Arabsat project dates back to a meeting of Arab Ministers of Information in Tunisia in 1967, when it was decided to initiate a study for developing communications in the Arab world including the development and interchange of tv and radio braodcasting services.

Mr Shaweesh explained that Arabsat offered the only facility for real-time broadcast coverage of major events in the Arab world. Arabsat is seen as an important broadcast tool both for use within the Arabsat world as well as for the exchange of material with the non-Arab world.
Shaweesh touched on the problems of d.b.s. and how technological advances since 1977 had outdated the provisions of WARC-77. In particular, improvements in satellite receiver front end performance have meant that d.b.s. can be achieved with lower transmitted power from the satellite for a given antenna size or altematively that smaller receive antenna dishes become practical for a given radiated power. Mr Shaweesh concluded that "we are in a period of extraordinary change in a field that was considered settled in 1977".
at the same time.
China's current terrestrial tv transmission network consists of 455 main transmitter stations and over 9,000 repeaters with powers below 1 kW . The present network covers just 64.7% of the 1 billion population. DBS is the key to providing high-quality radio and tv services for the whole population of China.

A single beam will cover the whole of China, and the proposed beam-shaping will permit densely populated areas to use 1.5 m dishes for 'grade 4 ' community reception, or about 1.0 m dishes for 'grade 3.5' individual reception. Under clear sky conditions, a 0.75 m dish is expected to provide 'grade 3.5 ' performance in these areas. In the sparsely populated areas of northwestern China, 2 m dishes will be used for community reception.

PAL will be used for transmission. Since studio equipment and rebroadcast transmitter equipment in China

Terrestrial tv lives on

Even though there is much heated discussion around satellites and how they are going to revolutionise tv transmission, terrestrial tv transmitters are likely to remain the major carriers for much of the world well into the next century.
Rudi Gressmann, EBU, in a lecture on the history of the development of terrestial tv transmission in Europe, told delegates that within the EBU area there are currently some 9,000 transmitters and repeaters in v.h.f. Bands I and III and over 20,000 in u.h.f. Bands IV/V.
Gressmann questioned whether the present plan, as based on the Stockholm conferences of 1952 (v.h.f.) and 1961 (u.h.f.), provided the optimum use of the frequency spectrum.

The first problem that the European tv frequency plan comes up against is the one of multiple channel bandwidths. In 1961 there were no less than four separate channel bandwidths in operation in the v.h.f. tv bands. The UK's 405 line b / w services used 5 MHz channels, whereas the French 819 line system used 14 MHz channels. There were also the 7 and 8 MHz channel bandwidths of the 625 line services. Since then the 5 and 14 MHz channel services have been closed down, but even today there is still disparity between 7 and 8 MHz channel bandwidths at v.h.f. Carrier frequencies (sound and vision) at v.h.f. are different all across Europe.

At u.h.f., even though there is a uniform channel spacing of 8 MHz , there are differences in the sound-vision carrier spacing $(5.5,6.0$ or 6.5 MHz), which add to pan-European spectral discord.

There is little spectral harmony of tv transmitters within Europe. Gressmann reminded delegates that the OIRT countries of Eastern Europe still use much of Band II for tv transmissions rather than f.m. as is the case in Western Europe.

The average viewing choice provided by terrestrial tv broadcasting is approximately one programme per location on v.h.f. and about two or three on u.h.f. Although one major

exception to this is the UK, where there are now no longer programmes at v.h.f. but where there are (in most places) four programme channels at u.h.f.
The programme carrying capacity of the terrestrial tv transmitter network in Europe is not likely to increase above the present numbers. There are already pressures from powerful mobile radio lobbies to take over more frequencies from broadcasters. The shared usage of Band III between tv broadcasters and land mobile services in France as well as the wholescale closure of Band I and III in the UK are indicative of this trend. Gressmann commented however that pressure on tv frequencies from other non-broadcast services in Europe was possibly less now than it has been in previous years, but that nevertheless broadcaster's must make optimum use of the spectrum available.

If terrestrial tv transmission is not to become the "joor relation" of other media including d.b.s., cable, videocassettes and videodiscs, then studies should be intensified now. Gressmann warned that the mere fact that such a large investment had been made in the terrestial tv transmitter network is in itself no guarantee of the network's survival against the onslaught of new transmission media.
Terrestrial tv transmission can only survive, argued

Gressmann, if it keeps pace with modern technology. "This is only possible through standardization and harmonization".
John Curley, RET, told delegates that agreements that had recently been reached in some countries between broadcasters and land mobile radio users (e.g. the UK and France) for the sharing of a common frequency band by different services (l.m.r. and tv) precludes any hopt of standardised terrestrial tv transmission system across Europe on v.h.f.

High definition

The "Extended/j.d.tv" session promised to be a lively affair. It certainly was! George Watson of RTE, session chairman, described e.d./h.d.tv as being the most important subject at this year's Montreux.

Speakers differed by a factor of ten-to-one in their estimates of how many years it will take for h.d.tv to become reality. Tom Robson, IBA, positioned himself at the far end of the range with an estimate of 20 years. According to Robson, it is the realization of a practical h.d.tv home display unit that is crucial to the introduction of h.d.tv, and as he saw it, suitable flat screen products would not be available before the end of the century.

Robson advocated that the opportunity for a true worldwide standard would come with the next generation of systems and not the present. The next generation of tv standards would be digital and free from the present constraints of $50 / 60 \mathrm{~Hz}$ compatibility. Such a standard could then be the standard for the next fifty years or so.
Robson said that today's talkk of a standard was not a real world standard. Robson's opening remarks were later to be fiercely contested by several speakers.
Joe Flaherty, CBS, said that the weakness on Robson's argument was his belief that broadcasters have the power to control the living rooms of the future. "But, this is not true!" Cable, v.t.rs and video discs may have more effect than broadcasters in doing this!
In direct reply to Robson's argument that a home display unit suitable for h.d.tv would not be available for 20 years, Mr Sugimoto, NHK, said that a large flat screen display suitable for h.d.tv with a target price of $\$ 2,000$ would be on show at the next Montreux in two years time.
Prof Messerschmid of the German radio and tv research institute (IRT) strongly disagreed with Robson's opening remarks: "Broadcasters cannot just sit back for 20 years".
Henry Yushkiavitshus, USSR, threw into the discussion the comment that the USSR was looking at a possible system using 50 Hz in the studio and 75 Hz field rates for transmission.
There is no disagreement that the world does need an h.d.tv studio production standard, but the question is when. The problem with choosing an h.d.tv production standard too early is that even though individual parameters (numbers of lines, field rates, interlacing and aspect ratios) have been discussed, only one fully operational standard has been proposed. The NHK proposed standard being based on 60 Hz presents a conversion problem for the large number of countries using 50 Hz .
The Montreux h.d.tv debate highlighted the amount of basic disagreement that still exists in this area.

Keihleys 130 A\& 136

Ready and willing to give you the accuracy and flexibility you've come to expect from all handheld DMM's.

On the one hand, the new 133A has the design and performance of our most papuar 130 model but with greater basic DVC accuracy -025% and the need to calibrate only once every twoysears - all this at no increase in price.

On the other, there is the new unbeatable value 136, a high performance full autorarging $41 / 2$ digit DMM permitting precise measurements in 22 ranges of $A C / D C$ voltage, resistance AC/DC curnent including 10A capability.

If you could use an extra pair of hands, or would just like to find out about our complete range of DMM's - phone 0734861287 or contact a Keithley distributornow. Prices start at $£ 69.00$

Keithley instruments Limited 1 Boutron Road Reading Berkshire RG2 ONL Telex 847047

Berkshire	(0734)861287	Glasgow	(02367) 28170
Essex	(0279) 29522	London	(01)6390155
Gwent	(0633) 280565	Cleveland	(0287) 32397
Eire	(0001)984147	Fertiordshire	(07073) 38623

CIRCLE 20 FOR FURTHER DETAILS.

NEW

R5635 CCIIT V. 22 bis, full-duplex Switched-Capacitor Filter I.C. with MLXes
R5636 Bell 201/CCITT V. 26 combo filter I.C.
R5637 Bell 208/CCITT V. 27 combo fiter I.C
R5638 Bell 209/CCITT V. 29 combo filter I.C.
R5630 Bell 103 , full-duplex fiter I.C. with MUXes
R5631 CCITT V.21, full-duplex filter I.C. with MUXes
R5632 Industry Standard, Bell 212 Q CCITT V. 22 full-duplex combo filter I.C.
R5633 Selectable filter array I.C. for 103 , V.21, DTMF and Videotex applica-jons. R5626 Mask programmable to your specification.

Contact: EG \& G RETICON

 34/35 Market Place, Wokingham, Berks RG11 2PP. Telephone: 0734788666. Telex: 847510 EGGUK.

CIRCLE 70 FOR FURTHER DETAILS.

A PC/XT COMPATIBLE THAT WON'T GO BY THE BOARD
 Prices exclusive of VAT

OUR COSTAR 2000 fully IBM PC/XT compatible single board computer and peripherals is most advanced highly integrated and cost efficient system available.

ADVANCED DESIGN

The CS-2000 Mother Board is a highly integrated state of the art design, with a unique software controlled dual processor speed system. Enabling all PC software to be run uninterrupted at high processing speeds.
When used with the CS-2000 Multi Function Card, you get a very advanced, compact system, with all the facilities of a fully expanded PC/XT
COSTARS rationalisation of board numbers has resulted in cost saving, reliability and reduced installation time benefits.

CS 2000 PLUS. A complete IBM PC/XT compatible computer in a kit. Requiring only a slotted screw driver and 1-2 hours to assemble and run. Price and compare our system with others and you will find most other systems' options are standard on ours.

COSTAR 2000

STANDARD FEATURES

* 8088 - CPU, 7 MHZ 4.77 MHZ

Software Toggle control

* 8087 Co-processor optional
* 8 K custom BIOS in ROM
* 6 EPROM SOCKETS
- 8 expansion SLOTS
* Hardware Reset
* PC/XT Form, Fit \& Functions
* 256K RAM, 640K max

NO RISK TRIAL OFFER

If, after purchasing one of our boards, you are not satisfied, we will refund your money (minus post and packing), provided the board is returned, intact, within 15 days of shipment.
TO ORDER
Please include your remittance with your order. Access, Visa and Amex welcome Credit Card purchases may be telephoned. Dealer and O.E.M. enquiries welcome.

* PCDOS version 2.X
* 256K parity checked RAM expandable to IM
* 8088 CPU
* Custom 8 K bios w/hard disk drivers
* Tape back-up interface (option)
* IBM compatible keyboard w/function keys
* $12^{\prime \prime}$ high resolution monitor green/

18 MONTH WARRANTY

Our stringent production quality controls and the high reliability of our boards, has enabled us to give an 18 month warranty and a 6 month exchange program for defective units.

MULTI FUNCTION 2000
STANDARD FEATURES

* Floppy Disk Controller
* Real Time Clock, with battery backup
* Dual Serial Port, one optional
* CENTRONICS parallel printer port
* RAMDISK
* Printer SPOOL

CO-STAR LIMITED

ELECTROMAGNETIC PARADOX

Whereas relativity provides a wealth of paradoxical issues that have from time to time engaged your readers' interest, there is a seldom-discussed paradox of more direct significance to anyone concerned about the electromagnetic field.

Maxwell's equations demand that, when waves propagate through the vacuum, magnetic fields are set up which imply that there is an oscillatory electric displacement in free space. Yet, it is well established that electric displacement produced by the motion of an isolated electron in no way moderates the primary magnetic action of the electron in the immediate locality of the electron. Rosser, for example, writing at p. 285 of his 1968 book 'Classical
Electromagnetism via Relativity' published by Butterworths, has endorsed Fitzgerald's opinion that displacement currents in the field between the plates of an excited capacitor do not produce a magnetic field. This is consistent with the experimental finding by Graham and Lahoz (Nature, 285, 154 (1980)) that, when an externally applied magnetic field acts on the displacement current and a return conductor current set in parallel, the net force acting on the apparatus is that applicable to the conductor current. Since displacement current does not produce a magnetic field it cannot respond in setting up a force when subject to a magnetic field.
Surely, it is paradoxical that waves only propagate because displacemeni current in the field sets up magnetic fields but yet we know that in our bench experiments the displacement currents do not set up magnetic fields. I wonder if your readers can provide the answer to this problem.

Pending a better proposal, my suggestion is that the paradox can be put in context by noting that for any local action there has to be a local reaction and this applies whether we look at apparatus on our laboratory bench or at a region of remote space. In the bench experiment the primary motion of electrons in the
current circuit produces a magnetic field and the reaction is merely the manifestation of this field. Local displacement currents are an embodiment of this reaction and so can hardly set up their own magnetic fields as well. In the free space situation, with the propagating wave, there has to be something locally in space that has an active field-producing role and something that has a reactive and secondary role. Thus, just as we argue that there is a displacement current between the plates of an excited capacitor, we must argue that in free space there are two 'somethings', only one of which is the reactive displacement. Both must be capable of relative motion with respect to the applicable frame of reference, the inertial frame or electromagnetic reference frame. Hence, our understanding of wave propagation is incomplete unless it caters for the physical existence of two displacements.

This argument lends support to the views expressed in my article in Wireless World (October 1982, p.37) where I argued that the ability of the vacuum to propagate electomagnetic waves without dispersion was direct evidence of dual or reciprocal displacement characteristic. Since writing that article, a further advance has shown that the progressive attenuation of one displacement in relation to the other can cause a wave to lose frequency slowly in transit and Hubble's constant has been deduced theoretically (Lett.
Nuovo Cimento, 41, 252 (1984)).
H. Aspden

Department of Electrical
Engineering
The University
Southampton

RELATIVELY INTERESTING

In the July 1985 issue, H. Morgan suggests that Wireles, World "stem the flow of letters and articles on [Einsteinian] relativity."

But who then would publish the fierce debate between Einsteinian relativity and Newtonian-Galilean relativity? Several years ago, WW published an important article
by Louis Essen, the great English acientist who designed and built the first caesium clock. Essen showed that Einsteinian relativity cannot be squared with the facts of nature. Who else would have published his critique? I do not know of another journal in all the world that allows criticism of Einstein's paradoxicalindeed, anomalous - beliefs.
The late Herbert Dingle, professor in the University of London, wrote a whole book, Science at the Crossroads, on his own experience with suppression, and attempted suppression, of the debate.

For the editors of $W W$, a fervent "Bravo!"
Lee Coe
Berkeley
California
USA

I have followed the articles and letters on relativity and the rest of the "modern physics" circus since the article by L. Essen in October 1978, which so impressed me that I started buying Wireless World instead of reading it in the library.

I would like to see more of the subjects which bore H.Morgan (Letters, July). You ask who is competent to decide who is right. I ask where else we can read open debate on these matters if you go back to being just another electronics magazine, printing inoffensive S-level "physics for electronics engineers" - in New Scientist?

If I was a professional physicist, I think I would be ashamed to admit it to a lay person whose idea of what I did might well have been formed from television programmes full of starry-eyed academics quoting from T.S.Elliot, and a background of loud, jarring music. Why do all the worst BBC science programmes have this? Is it to drown out the words? I might have claimed to be a psychologist and hoped to be taken for a tough behaviourist. Of course, the truth always comes out eventually. Where are the reputations of Freud, Cyril Burt and Lysenko now? Remember, all founded powerful, seemingly unchallengeable orthodoxies. Humpty Dumpty and a great fall..
Roderick Saunders
Birmingham

ENERGY TRANSFER

I fear it is not I that have misunderstood Ivor Catt (July Letters), rather the reverse.

In my June letter I pointed out that superposition of forces could not be expected to succeed when the forces in question were quadratic functions of current or voltage. I then proceeded to illustrate this claim by reference to a simple situation in electrostatics, and concluded with a derivation of the magnetic force from Special Relativity.
I fear these last two points detracted from my argument, and confused Mr Catt.
Mr Catt is upset that I choose to overturn his arguments (concerning forces between conductors guiding t.em waves) by discussing static currents and voltages, while he allows himself the privilege of building his arguments by reference to these same static forces.
However, I would assert that there is no difference between the static case (with suitably chosen values of current and voltage), and the momentarily quiescent state in the middle of a broad pulse. If Mr Catt thinks that there is a difference then he cannot use the static case to prove that the force between conductors carrying a pulse is zero.
N.C. Hawkes

Abingdon
Oxfordshire
I wonder if some of the conceptual difficulties with the transmission line stems from the assumption - and it is an assumption - that power density in an em wave is measured by Poynting's vector? (Do I hear cries of dissent? But who remembers what Poynting's theorem actually says?) In fact there are any number of vectors that would be equally valid.

One such is Slepian's vector.

$$
\mathbf{S}=\mathbf{E} \times \mathbf{H}+\operatorname{curl}(\mathbf{V H})
$$

where V is the electric potential. Poynting's vector tells us that the power flows through the space surrounding the wires, i.e. is carried by the em wave. Slepian's vector, on the other hand, tells us that all the power flows through the wires! It seems that either view
is "true, but not exhaustive" (Churchill's phrase).

As an engineer I welcome this. It means that I can adopt either point of view, whichever is more convenient for the problem in hand.

Interested readers should consult "The Electromagnetic Field in its Engineering Aspects" by G.W. Carter (Longmans, 1954) Professor Carter devotes the whole of Chapter 13 to the flow of energy in an electromagnetic field.
P.L. Taylor

Marple
Cheshire

OPICAL COMMUNICATIONS

Having read the most interesting article in the August 1985 issue of Electronics and Wireless World entitled "Optical Communications - 1935 style", your readers may be interested to know that there are a number of these optical systems on public display, still looking as good as the day that they were made.

Two locations with which I am familiar are the German Occupation section of the main museum within Castle Cornet on the island of Guernsey, and the excellent German Occupation Museum run by Richard Heaume, also on the island of Guernsey, at Forest near the airport.

If any readers are proposing to take their holidays on this most delightful of islands, a trip to these two museums, and in particular the latter, will be well worth while, and will afford the opportunity to study many other examples of contemporary German technology.
Alan G. Hobbs, G8GOJ
South Croydon
Surrey

RELATIVITY

P.H. Spratt uses the word 'pretext' in the first sentence of his August letter. This word is defined in my dictionary as 'a false explanation or motive to disguise the true one.' I assume Spratt has some experimental evidence to prove I am a liar
and a cheat. As a letter unanswered might be thought to be unanswerable, Spratt leaves me with no alternative but to reply. Before I do reply in some detail to his letter, would he please explain his evidence in very ordinary words even I can understand as soon as possible. This letter is an ultimatum.

I merely quoted measurements quoted by Eastwood who acknowledged the work of other scientists. Does Spratt realise he has libelled Eastwood and other scientists? He ought to look before he leaps.
M.G. Wellard

Kenley
Surrey

VALVE DISC PREAMPLIFIER

Mr Brice's valve disc preamplifier ($E W W$, June 85) is an interesting approach to a familiar design exercise, and I am with him in sentiment in his liking for valves for sound reproduction. However, I would take issue with him on two points:

Firstly, the RC coupling between the cascode stage and the next (cathode-follower) stage: Mr Brice's footnote on the circuit diagram states that the 10 n capacitor and the 1 M grid resistor puts the response at 20 Hz down by 3 dB . This woul be a fair statement if the cathode-follower input impedance was in fact the same, or nearly the same, as the resistor value. However the conventional wisdom of valve electronics is that the input impedance of a cathode follower is about 10 times the value of the grid resistor. (References: Langford Smith, Radio Designer's Handbook; Terman, Radio Engineers' Handbook). The mechanism is akin to that which raises the input impedance of a boot-strapped emitter follower in the world of solid state.

Assuming, then, that the input impedance of the stage under discussion is 10 M , the response at 20 Hz will be about -0.03 dB . To achieve a -3 dB figure at 20 Hz a capacitance of about 800 p would seem to be required.

Secondly, the coupling capacitor (1μ between the
volume-control slider and the grid of the output stage: this is a cathode-follower identical to the first one, with presumably the same input impedance. A $1 \mu \mathrm{~F}$ capacitance coupled to 10 M , or even to 1 M , looks a little like overcooking the bottom end response. And surely, (a minor quibble, this) the polarity of the capacitor, as drawn, is incorrect.

Finally, may I suggest a small but worthwhile refinement? If the preamplifier, in a warmedup condition, is suddenly connected to the input of a solid-state main amplifier (as when the selector switch is turned from say, 'tuner' to 'disc') the output couplingcapacitor charging current must flow through the input circuit of the main amplifier. In other words the first transistor base would see a positive pulse of around 150 to 180 volts. It would not like this. The remedy is to include a high resistance, say 4M7 or higher, permanently across the preamplifier output, and to ensure that the preamplifier is fully warmed up and its voltages at equilibrium before it is connected to the main amplifier.

Despite the foregoing, which some may see as nit-picking, I say more power to Mr Brice's thermionic elbow!
D. Bolton

Victoria
Australia
I thank Mr. Jones for his constructive comments concerning my valve disc preamplifier circuit (Feedback, $E W W$ July 1985). Your readers may be interested in two further suggestions regarding this design.
I mentioned in the original article that a smooth supply can be obtained with simple RC filtering, but it is better to use a regulated supply. Not only does this secure the best hum and noise performance but the regulator ensures that high offload voltages are not applied to the anodes of the valves and the power supply decoupling capacitors during valve warmup time. Several schemes were contemplated and tried. All the regulator circuits improved the sound quality: the final arrangement is shown in the Fig. 1. The OA2 and OB2 are two easily available voltagestabilizer tubes. Over a certain

range of current flowing through a cold-cathode glow-discharge tube the voltage across it remains nearly constant. The circuit operates like a zener shunt-regulated supply. Its great advantage for h.t. regulation is that it is selfprotecting, simple and cheap. Just as with zener diodes, the tubes may be used in series to provide voltages exceeding those of a single tube. The 1 M resistors are added to facilitate striking of each individual tube. The power supplies were built on a separate chassis and this method of construction is recommended on sound-quality grounds.
The ECC83 would be suitable as the first-stage cascode valve, except that it is less robust than the ECC82 and, consequently, more microphonic, hence the decision to use the latter. I have found there is no alternative but to select lownoise valves individually for this first stage and that the more expensive types available are no better, in this application, than the cheap ECC82 s available at about 65 pence each.
Richard Brice
Teddinton
Middlesex

Letters

Letters for publication are always welcome, but the shorter and pithier, the better. I try not to edit original letters, but sometimes they are far too long, and therefore cut, and the writers upset. Please keep your letters short.

TDS900
 FORTH COMPUTER

Build the TDS900 into products.
Programme it with a VDU and your forecasts

Triangle Digital Services Limited
el 01.5200442 Telex 26284

Disiribuled by: Semiconductor Specialists (UK)Ltd
Tel West Drayton (08954) 45522/46415
CIRCLE 144 FOR FURTHER DETAILS

FIELD ELECTRIC LTD

3 SHENLEY RD, BOREHAMWOOD, HERTS

 TELEPHONE 01-953-6009/OFFICIAL ORDERS/OVERSEAS ENQUIRIES WELCOME OPEN 6 DAY'S A WEEK $9.00 \mathrm{am} / 5.00 \mathrm{pm}$ THUR.9.00am/1.00pm

SIZE $31^{1} \times 17^{\circ} \times 20^{\prime}$

£ $350.00+15 \%$ VAT
$120 \times 120 \times 38 \mathrm{M} / \mathrm{M} .11$ VVAC FANS NEW EX-EQUIP C/P 50 p ${ }^{1} 1.75$ 12-0-12V 80AMP. TRANSFORMER 250V PAIM SIZE $6 / \div \times 5 / . \mathrm{C} / \mathrm{P} .500 \quad$ E16.95 AEDMOND 12 V.D.C. 60 WATT 3.000 RPM MOTORS SIZE $100 \times 75 \mathrm{M} / \mathrm{M} . \mathrm{C} / \mathrm{P} 2.00 . \int 10.50$ PARVALUX $230 V A C$ 1.PH CONT RATING GLESTINS 62RPM. GEARED MOTOAS $\frac{\text { SIZE. }}{\text { PARVAI UX 230VAC IPH CONT. RATING } 4 L B S / I N S ~} 44$ RPM GEARED MOTORS $150 \times 78 M M C$ CP 225 PARALUX $24 \vee \mathrm{~V}$
S.Diss C P 2.25
$\$ 14.95$

TH.P 1425 R PM 230 VAC IPH CONT RATING RESIL MOUTSIZ
${ }_{180 \times 140 \mathrm{M} / \mathrm{M} \mathrm{C/P} 400}$
PRINTED ARMATUAE O.C. SERVO MOTORS TYPE G16M4. 14003 IN 2350 APM
60 VDC RATEO 5.5 A WEIGHT 7.5 kg C/P 300 TYPE G9M4A $24 \mathrm{VD.C.C} 3700$ FPPM RATED 4.4. A WEIGHI 159kg POWER
OUTPUT $63 \mathrm{CW} \mathrm{C} / \mathrm{P} 300$
OWERTY KEYBOARD 58 KEY ASCII CODE NEW IN PLAS:C/P. 2.00
£10.00
$£ 10.00$T2V.D.C 100 WATT QUARTZ BULB'S. 30×10M/M INC C/P§10.00
2.00OLTHONIX B32-20 0-32 V.DC. 0-20 AMP ME TERED POWER SUPPLY 230
OLTHONX 88-7 0-10 V.D.C 7.7 AMPMETERED POWER SUPPLY. 230VAC
NPUT C'P 800 -050
MARCONI 2OMHZ O'SCOPE TFR204 D TRACE $\$ 65.00$
195.00
ONE MONTH ONLY. PM47
SUPPLY LINEAR C/P 250 $\$ 12.00$
CLAUDE LYONS AUTO VOL TAGE STAB CVR 360 INPUT 204 -252V O/PUT
$240 \cdot 03 \% 15$ AMP C 500
$£ 36.00$
$£ 36.00$
BERCOSIAT W WOUND 2Q 5 AMP REOSTAT C/P 500 5195
$100 \mathrm{M}+$ S MINATURE SCREENED CABLE. BICC C/P 1.00 £6.00
GOULD/FARNEL
$160 \times 105 \times 90 \mathrm{M} / \mathrm{M}$ $£ 3500$
C/MITED S $£ 12.95$
TEKTRONIX INC TYPE 568 OSCOPE. C/W
352 SAMPLING UNIT/53 SAMPLING HEAD'S $£ 350.00$

ALL PRICES INCLUDE VAT 15\% UNLESS STATED
PLEASE RING FOR C/P DETAILS NOT SHOWN. WE ALSO BUY EQUIPMENT SURPLUS TO REQUIREMENT SEND LIST OR PHONE

CIRCLE 33 FOR FURTHER DETAILS.

Multistandard terminal unit

Implementing a digital filter with a microprocessor leads to simple hardware for this programmable modem.

Recently I became interested in packet radio and soon realised that this mode of data communication would require a new tone standard, different to RTTY and simple ASCII, and that a new terminal unit (or modem) would be required. A consideration of the various tone standards soon showed that to obtain best performance for standard RTTY, Amtor and packet, both the tone standards and demodulator bandwidths must be changed to suit each case. The most common standards are summarised in Table 1. By using a minimumconfiguration microcomputer and digital filtering implemented in software, the only alteration to cater for a new tone standard is program addition instead of a hardware change. Although the techniques described in this article are quite complicated it should be realised that because of its digital implementation this terminal unit is easily built and does not require any setting up.

Figure 1 shows the block diagram of a conventional analogue terminal unit which could be used to demodulate RTTY or Amtor signals. The tones from the receiver are split into two channels tuned to the two frequencies representing 0 and 1 . The outputs of the two channel filters are rectified, low-pass filtered and then substracted. The sign of the subtraction indicates which channel contains the largest power at that instant and hence the most likely correct state of the output. The filtering operation can therefore be split into three operations, the two channel filters and the post detection filter. The power spectral density for the new tone system $(1275,1445 \mathrm{~Hz}$) used for RTTY is shown in Fig. 2).

The channel filter bandwidth is determined by the transmission
rate, which in the case of 50 baud and F_{e} is equivalent to a 25 Hz modulating frequency on an a.m. carrier of 1275 Hz . The channel filter bandwidth for F_{1} is from 1250 to 1300 Hz and for $\mathrm{F}_{\mathrm{h}}, 1420$ to 1470 Hz , this being the minimum channel bandwidth for minimum signal-to-noise ratio. After detection the bandwidth can be usefully reduced to $\mathrm{F}_{\mathrm{m}}(25 \mathrm{~Hz})$ with a post-detection filter. In practice, the filter bandwidths are normally made slightly wider so that the tuning is not too critical, and to compensate the bandwidth shrinkage between the channel and post-detection filters.

Implementation of filters using digital techniques
Digital filtering is based on sampling a signal at regular intervals and then summing previous inputs and filter outputs multiplied by appropriate constants. In analogue filter design, the appropriate transfer function is obtained by starting with a lowpass prototype and then applying a bandpass transform to get a bandpass transfer function. The exact details involved in realising Z transforms are outside the scope of this article (for a detailed exposition see ref. 1), except to say that by applying a similar process the transform given in equation 1 can be obtained.

$$
\begin{align*}
H(Z) & =A\left(\frac{1-Z^{-2}}{1-\mathrm{CZ}^{-1}+\mathrm{BZ}}\right) \\
& =\frac{\mathrm{g}}{\mathrm{f}} \tag{1}
\end{align*}
$$

where

$$
\mathrm{A}=\frac{1}{\mathrm{~b}+1}, \mathrm{~B}=\frac{\mathrm{b}-1}{\mathrm{~b}+1}, \mathrm{C}=\frac{2 \mathrm{ab}}{\mathrm{~b}+1}
$$

and $\mathrm{b}=\cot \pi \mathrm{T}\left(\mathrm{F}_{2}-\mathrm{F}_{1}\right)$,

$$
\begin{equation*}
\mathrm{a}=\cos 2 \pi \mathrm{~F}_{\mathrm{o}} \mathrm{~T} \tag{3}
\end{equation*}
$$

T is the sampling period F_{0} filter centre frequency F_{1} lower 3dB point of filter F_{2} upper 3dB point of filter $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{a}, \mathrm{b}$ are constants based on $\mathrm{F}_{0}, \mathrm{~F}_{1}, \mathrm{~F}_{2}, \mathrm{~T}$
g digital representation of sampled filter output
f digital representation of sampled filter input.
Equation 1 is the z transform for a digital bandpass filter and by rearranging this an expression in terms of previous inputs and outputs may be obtained as given by equation 4.

$$
\begin{align*}
\mathrm{g}= & \mathrm{f}_{1} \mathrm{~A}-\mathrm{f}_{2} \mathrm{AZ}^{-2}+ \\
& +\mathrm{Cg}_{1} Z^{-1}-\mathrm{Bg}_{2} Z^{-2} \tag{4}
\end{align*}
$$

The operator z^{-1} indicates a delay of one sample period, so $\mathrm{Bg}_{2}{ }^{-2}$ means the filter output at the time before last multiplied by the con-

by J.D. Walker
 B.Sc.(Hons)
 G6FYU

Following a period of amateur radio interest in digital communications John Walker joined the electronics industry in 1979 and developed a number of microcomputer systems using the Z80, 6502 and 6800/6809 microprocessors for both industrial and hobby applications. John, who is 23, graduated last year from the University College of North Wales in electronic engineering and has been subsequently employed in the designn and development of radar display equipment.

References

1. Digital filter design techniques, by J.T.R.S. Bradly. Wireless World May 1983. p.76-8.
2. Radio Communication August 1982.

A wide variety of f.s.k. tone standards have become established for modems in use on radio circuits. The accompanying software supports the established standards listed here.

Table 1. Commonly used tone standards for radio data transfer
RTTY (45, 50, 75 Baud)

Old tones $(\mathbf{H z})$	Mark $(\mathbf{H z})$	Space $(\mathbf{H z})$
170 shift	1445	1275
425 shift	1700	1275
850 shift	2125	1275
New tones (Hz)		
170 shift	2125	2295
425 shift	2125	2550
850 shift	2125	2975

Amtor

Tone standards as for RTTY except that the rate is 100 baud and the shift is always 170 Hz .

Ascii (300, 600, 1200, 2400 baud)
Kansas computer standard, mark 2400 space 1200 Hz
Other modem tone standards also exist

Packet

AX25 mark 2200 Hz space 1200 Hz .
Data rate 300/1200 baud.
$A \times 25$ is the approved packet standard for amateur radio applications of packet data system.

Fig. 1. Conventional configuration of a two-tone terminal unit depicted here can be entirely realised by mathematical operations performed on digital samples of the input signal.

Fig. 2. Power spectral density of the new tones standard for 170 Hz shift at 50 bits per second sending speed is accurately matched by the digital filter realisations acheived by the use of an inexpensive 8 bit
microprocessor using 16 bit arithmetic.
stant B. An alternative method of expressing equation 3 is with a block diagram, shown in Fig. 4. From equation 3 it may be seen that by making the sampling frequency equal to four times the centre frequency that the constant 'a' becomes zero and this makes C zero, simplifying the filter arithmetic. Also in the case of a system with two channels, providing the bandwidths are the same, the input (or non-recursive) part is the same for both channels and this yields the configuration in Fig. 4, using a common input section for both filters. So that the sampling frequency is used for one channel and the general form for the other channel. This further reduces the arithmetic - essential if a simple microprocessor is to be used to implement the processing.
The ideal values of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ for each tone standard may be calculated using equations 2 and 3 , but in practice close exact fractional constants may be used instead. Although this tends to widen the

Non recursive part
Recursive part

Fig. $3 \& 4$ General form of the mark and space filters is given, together with its practical realisation. Note that the non-recursive part is common to both mark and space channels which contributes to the economy of mathematical operations leading to an elegant solution of the filtering task.
filters by a small amount, this is of no consequence. The effect of the actual values can be compared with the ideal values either by back-calculation of graphically. By substitution of equation 5 into equation 1, the transfer function in z terms is transformed into the frequency variable f which upon taking the modulus of the expression reveals and amplitude response of the filter, plotted in Fig. 5.
$Z=e^{\mathrm{j}^{2 \pi \mathrm{FT}}}$

$$
\begin{equation*}
=\cos 2 \pi \mathrm{FT}+j \sin 2 \pi \mathrm{FT} \tag{5}
\end{equation*}
$$

The other filtering operation is the post-detection low-pass filttering and this can be expressed as equation 6
$D=\sum_{i=0}^{n-1} F_{i j} Z^{-1}-\sum_{i=0}^{n-1} F_{h i} Z^{-1}$
where F_{l} and F_{h} are the rectified outputs of the high and low tone filters respectively and n is the number of channel filter samples during a signal element. In the case of 50 baud and 1445 Hz the element time is 20 ms and the sampling period 172μ s, so $\mathrm{n}=$ 116.

Equation 6 may be expressed as a single sum:
$\mathrm{D}=\sum_{i=1}^{n-1}\left(\mathrm{~F}_{\mathrm{l}}-\mathrm{F}_{\mathrm{hi}}\right)^{-1}$
This is also a geometric series which can therefore by expressed as

$$
\begin{align*}
\mathrm{D}= & \mathrm{D} Z^{-1}+\left(\mathrm{F}_{10}-\mathrm{F}_{\mathrm{ho}}\right)- \\
& -\left(\mathrm{F}_{\mathrm{Ln}}-\mathrm{F}_{\mathrm{hn}}\right) Z^{-n} \tag{8}
\end{align*}
$$

the final digital output being the sign of D. By applying equations 5 to 8 the response may be plotted in a similar way to the bandpass filters and this is shown in Fig. 6. It is interesting to note the rapid cut-off, as expected, and the sharp null at twice the 3 dB frequency. This means that when working in the 50baud mode the unit will completely reject 100 baud signals. The ripples in the stop-band are not important as these frequencies will have been previously attenuated by the channel filters.

Practical realisation of the terminal

The circuit consists of an ana-logue-to-digital converter and a small microcomputer based on the 68B09 microprocessor, Fig.
7. A 68B21 parallel interface is used to input the samples from the a-to-d converter and to output the demodulated data to the computer. Because the microprocessor can only execute one task at a time the three filtering operations must be executed in sequence as shown in Fig. 8. The need to complete all these operations before it is time to take the next sample means that careful programming must be used and to cater for some of the higher frequency tone standards the microprocessor must be clocked at 2.25 MHz , about 12% faster than its rated maximum. However I found no problem at a clock rate of 2.25 MHz (using a 9 MHz crystal) using the standard 6809.
The filter operations are implemented using 16 bit arithmetic because the filtering operations involve summing eight-bit numbers which inevitably results in greater than 8bit answers. This means that the terminal unit uses the full eightbits of the converter, enabling the unit to operate with input signals from a few millivolts to a couple of volts (peak). The need to use 16 bit arithmetic makes the 68B09 an ideal microprocessor for this application because of its low cost compared to full 16 bit microprocessors.

The modes of operation (different tone standards and rates) are determined by selecting the appropriate program in the eprom. This could have been done with a switch on the front of the unit, but it was considered that in most cases a computer would be used with the unit and by using an RS232 interface (68B50), the mode could be directly controlled from the keyboard via a set of escape sequences. This is particularly attractive now that most computer programs used for RTTY also control the PTT line on the transceiver, so resulting in a system completely controllable from a keyboard. The digital terminal unit therefore interfaces with the transceiver and computer as shown in Fig. 9.

Because the unit is completely controlled by a control part, the unit also contains a front panel status display, shown in Fig. 10, which indicates the tone standard, data rate and output status currently in use. Figure 11 shows a suitable power supply for the digital terminal unit. In the case of f.s.k. signals careful turning of the receiver is necessary to demodulate the input signal. This can

Fig. 5. Actual response of bandpass filters for $\mathbf{1 7 0 H z}$ shift (50 bits per second) using the new tone standard as predicted by computer modelling.
be done either by ear, a Toni Tuna (tuning indicator described in reference 2) or via a tuning voltage available from the tones-out socket during receive. Clearly a vast number of tone combinations and data rates could be implemented, but in most cases
only a few of the combinations will be of use. The escape sequences given in Table 2 have therefore been allocated in the prototype although other combinations may be easily implemented if required when the eprom is programmed.

Because ESC 4 will demodulate any data rate less than 100baud the unit powers up in this mode, but in the case of marginal RTTY signals a further improvement can be obtained by selecting mode 3 (ESC 3). The AX25/Kansas mode selected by mode 7 being a high data-rate mode does not lend itself to the two-channel digital filter approach described because of the small number of cycles available per bit time. Although the terminal unit can be programmed to operate as a missing pulse detector, better performance can be obtained at higher rates by using the microprocessor to measure the time between zero crossings. This is achieved by using the a-to-d converter as a limiter sampling the input at 10μ s intervals. The time between transitions being used to decide if the output should be high or low. Because of the modular programming techniques used a section for $850 \mathrm{~Hz}, 50$ baud using digital filtering could easily be added by simply adding an extra section to the program with the appropriate constants in the filter algorithm.

Fig. 6. In addition to the digital realisation of the channel filters, further postdetector filtering tailored to the bit rate is also provided.

Fig. 7. Circuit of the minimum-configuration microcomputer used to perform the digital processing operations. The design uses readily available low-cost components throughout.

Fig. 8. Flowchart of the program used in the digital terminal unit showing how both channel filter response are determined from the same input data samples. The mark and space component energies are compared and the resulting differences subjected to a final filtering operation.

Fig. 9.How the d.t.u. interfaces with two transceiver and computer.

Table 2. Escape sequences used to control the d.t.u. via its RS232 port.

Sequence	Mode	Use
ESCC1	170 Hz shift new bones 50B	Amateur RTTY
ESC2	425 Hz Shift new bones 50B	Commercial RTTY
ESC3	170 Hz Shift old bones 50B	FSK position on new rigs
ESC4	170 Hz Shift old bones 100	AMTOR \& 75B RTTY
ESC5	Set normal	Resets normal mode to ESC6
ESC6	Set invert	Caters for invented signals
ESC7	AX25/Kansas up to 1200	Caters for new ASC11 modes.

DTU performance

After connecting the unit as in Fig. 9 and loading a suitable RTTY program into the computer, the digital terminal unit is used in a similar way to any other TU except that to change the mode of operation the appropriate escape sequences as shown in

Fig. 10. Circuit of the status indicator board used to display the tone standard currently in use.

Fig. 9 must be sent to the DTU via the control port from the computer.

The performance has been found to be about 10 dB better than theST-6 TU and the reasons are believed to be twofold: the channel bandwidths have been optimized together with the postdetection filter for the best s / n ratio, difficult to achieve with analogue components, and (2) the unit does not use a limiter. The DTU has also proved to be very effective in decoding both Kansas ($2400 / 1200 \mathrm{~Hz}$) and Bell $202(2200 / 1200 \mathrm{~Hz})$ tones at up to 1200baud and it therefore ideal for use with packet radio.

Although not described or implemented in the eprom the circuit given can also generate the tones required for transmission using a suitable sine table and digital-to-analogue converter. Finally, at a cost of $£ 80-100$ the unit clearly provides performance far beyond any other device for the price and is easily updated to cater for new tone standards which may become established in the future.
Eproms programmed for the escape sequences of Table 2 are available for $£ 10$ from the author, at 82A Grosvenor Road, Epsom Downs, Surrey.
In a subsequent article John Walker will discuss the basis of the Z transforms used for the bandpass and low-pass filters, together with the use of the digital terminal unit in other data applications.

Thylor rstrument represent outstanding value for money with a range of digital instrumerts built to our uncompromising standards to meet $B S$ requirements and spanninga complete range ff usage. From the compact, probe-style volt-ohm meter to the $31 / 2$ digit TD23.you'll find the Taylor range lives up to our reputation for simpl city and performance.
The choices: instruments are ours. The choice of them is yours.
 Contact Ls today
for further
detailed information.

THORN EMI Instruments Limited Archcliffe Road, Dover, Kent CT17 9EN Telephone: 0304 202620. Telex: 96283 CIRCLE 125 FOR FURTHER DETAILS.

Test with total confidence

The technology of television won't stand still: satellites, videotext systems, cable, video, equipment interfacing...Follow developments month by month in this unique magazine. Each issue includes in-depth servicing articles on TVs and VCRs. Other regular features include test reports, also vintage and DX TV. The magazine for all those interested in the technology of domestic TV and video.

Inside the October issue Out now

* Field timebase circuit survey * TV line selector unit * Philips G11 fault-finding chart TiELEUISTOM

ALL-TIME CP/M MICROCOMPUTER SYSTEM BARGAIN!

Fantastic bulk purchase of a major European manufacturer's entire stock of this top-quality machine enables us to retail it at far below its manufacturing cost. ALL FEATURES LISTED are INCLUDED as STANDARD:

- COMPLETE with EITHER single or double (as illustrated) TEAC half-height $51 / 4^{\prime \prime}$ double-sided, - Exceptionally high quality styled keyboard with
numeric keypad \& 6 function keys double-density floppy disc drives. Formatted -
capacity: 320 Kb per drive.
- 4 MHz Z80A CPU - Centronics parallel interface
- 64Kb RAM (in 4164 chips)
- 28 Kb EPROM containing monitor \& MICROSOFT BASIC
- CP/M Version 2.2
- RS232N24 serial interface selectable 300-9600 Baud
- UHF Modulator for TV \& composite video output
- ROM port. (A Word-Processor ROM is available at extra cost)
- 80×24 display with colour block-mode graphics

PRICES (monitor not included):
With DUAL floppy: $£ 347.00$ ($£ 399.05$ incl. VAT) Witt SINGLE floppy $£ 25000$ ($£ 287.50$ incl. VAT) Witt SINGLE floppy $£ 250.00$ (£287.50 incl. VAT)
Carriage: $\mathbf{£ 9 . 5 0 \text { (incl. VAT) Visa \& Access accepted }}$ Available ONLY from:COMPUTER APPRECIATION, 111 Northgate, Canterbury, Kent CT1 1BH. (0227) 470512 MATMOS Ltd., 1 Church Street, Cuckfield, W. Sussex RH17 5JZ. (0444) 414484454377 (0444) 73830 PLEASE NOTE: from 5th September Computer Appreciation's new address is 111 Northgate, Canterbury, Kent. Tel; (0227) 470512.

Toroidal Transformers

as manufacturers we are able to offer a range of quality Toroidal Transformers at highly competitive prices and fast delivery.

Mail Order Price List

15VA 6.92. 30VA 7.18. 50VA 8.86. 80VA 9.92. 120VA 10.59. 160VA 12.10. 22VA 13.69. 300VA 14.77. 500VA 19.20.625VA 22.09. 750VA 26.17. 1KVA 42.22. 1.2KVA 46.79. 1.5KVA 52.06. 2 KVA 68.95 . price inctudes $p+p \&$ val. Available from stock in the fnllowing voltages:-6-0-6,9-0-9,12-0-12,15-0-15 18-0-18,22-0-22. 25-0-25, 30-0-30,35-0-35,40-0-40,45-0-45,50-0$50,110,220,240(\max .10 \mathrm{amp})$. Primary 240 volt

Quantity Prices and delivery on request (we also manufacture conventional E1 type transformers) AIR LINK

Airlink Transformers.

Unit 6, The Maltings, Station Road,
Sawbridgeworth, Herts. Tel: 0279-724425

IN VIEW Of the extremely rapid change taking PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTIties of components become redundant. we are CASH PURCHASERS OF SUCH MATERIALS AND WOULD appreciate a telephone call or a list if available. WE PAY TOP PRICES AND COLLECT.
R. Henson Ltd.

21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho corner Telephone 01445 2713/0749

CIRCLE 91 FOR FURTHER DETAILS.

The tale of the longtail pair - part 2

Further applications ranging from analogue logarithm and exponential circuits, multipliers and dividers to fast logic gates.

High-precision, wide dynamicrange, analogue amplifiers rely on the use of linear resistive components to define accurately the negative feedback around a highgain open-loop amplifier. With this classical feedback-amplifier configuration, the exact gain and linearity of the open-loop amplifier is of little importance, provided the open-loop gain is much higher than the closed-loop gain. The net gain of the closed-loop amplifier is just about equal to the inverse transfer function of the negative-feedback network. Clearly, precise, wide dynamicrange, closed-loop, linear gain is only achieved if the feedback network exhibits precise wide dynamic-range linearity. Fortunately, resistors are remarkably linear and a simple resistive attenuator. together with a high open-loop op-amp, are all that is required to achieve a very good linear amplifier.

Logarithmic and exponential circuits

To produce an exponential (anti\log) or a logarithmic analogue amplifier, the feedback circuit must be formed from a circuit element that exhibits the inverse relationship. As for the linear amplifier, the quality of the net performance is critically dependent upon the accuracy of the exponential or logarithmmic cur-rent-to-voltage characteristic used in the feedback path.
Logarithmic circuits. First let us consider developing an analogue logarithmic converter. Clearly, since the log of zero is minus infinity we can only be talking about positive (unipolar) inputs. The circuit shown in Fig. 1 is a simple log-convertor which uses a bipolar transistor (b.j.t.) in the feedback path. Collector current is equal to $\mathrm{V}_{\text {IN }} / \mathrm{R}_{1}$ and the output of OA_{1} will be negative.

Using the well known exponential relation between base-emitter voltage and collector current we can obtain an expredsion for the output voltage V_{o},

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{EB}}=-\mathrm{V}_{\mathrm{T}} \log _{\mathrm{e}}\left(\mathrm{I}_{\mathrm{e}} / \mathrm{I}_{\mathrm{s}}\right) \\
& \mathrm{V}_{\mathrm{n}}=-\mathrm{V}_{\mathrm{T}} \log _{\mathrm{e}}\left(\mathrm{~V}_{\mathrm{IN}} \mathrm{Z} / \mathrm{I}_{\mathrm{S}} \mathrm{R}\right)
\end{aligned}
$$

The b.j.t. yields a better exponential voltage-to-current relationship than a simple diode, due mainly to that fact that a b.j.t. behaves as a very short diode, there being essentially no minority carriers at the edge of the collector-base junction. It is an advantage that the collector-to-base potential is held to zero by the action of negative feedback, in that no base-width modulation effects occur. However, recalling the problems identified
in the last article about the strong temperature dependence of the b.j.t. parameter I_{s}, the circuit is not particularly good in practice.
A modified version based on the long-tail pair structure is shown in Fig. 2. The output is essentially proportional to the difference in the two transistor base to emitter potentials, which is not dependent upon I_{s}, provided that the two b.j.ts are very well matched and at the same temperature (i.e. $\mathrm{T}_{1} \equiv \mathrm{~T}_{2}$).
Though the circuit is rather unusual in its topology, both OA_{1} and OA_{2} are provided with negative feedback, so that both inverting inputs are effectively held at zero potential and hence,

$$
\begin{aligned}
& \mathrm{I}_{1}=\mathrm{V}_{\mathrm{IN}} / \mathrm{R}_{1} \\
& \mathrm{I}_{2}=\mathrm{V}_{\mathrm{REF}} / \mathrm{R}_{2}
\end{aligned}
$$

Fig. 1. Simple logarithmic circuit.

Fig. 2. High-quality logarithmic circuit.

Fig. 3. Simple antilog. circuit.

Fig. 4. High-quality exponential circuit.

Resistors R_{3} and R_{4} are chosen so that the base current into Tr_{2} does not load the potential dividing action of these resistors on the output of OA_{1} and hence the base to ground potential of Tr_{2}, $V_{B 2}$, is
$=\frac{R_{4}}{\left(R_{3}+R_{4}\right)} \cdot V_{0}=V_{\text {BE2 }}-V_{\text {BE }}$
As shown in the first article, since $\mathrm{T}_{1} \equiv \mathrm{~T}_{2}$, then
$\mathrm{V}_{\mathrm{BE} 2}-\mathrm{V}_{\mathrm{BE} 1}=\mathrm{V}_{\mathrm{T}} \log _{\mathrm{e}}\left(\mathrm{I}_{2} / \mathrm{I}_{1}\right)$

$$
V_{\mathrm{BE} 2}-V_{\mathrm{BE} 1}=v_{\mathrm{T}} \log _{\mathrm{e}}\left(\mathrm{I}_{2} / \Lambda_{1}\right)
$$

Fig. 5. High-quality singlequadrant multiplier/divider.
and so combining equations 1 and 2 we get the expression

$$
\begin{equation*}
\mathrm{V}_{\mathrm{o}}=\mathrm{K}_{1} \log _{\mathrm{e}}\left(\mathrm{~V}_{\mathrm{IN}} / \mathrm{K}_{2}\right) \tag{3}
\end{equation*}
$$

where $K_{1}=-V_{T}\left(R_{3}+R_{4}\right) / R_{4}$ and $\mathrm{K}_{2}=\mathrm{V}_{\mathrm{REF}} . \mathrm{R}_{1} / \mathrm{R}_{2}$.
In comparison with the circuit of Fig. 1 there is no I_{s} dependence in the output voltage expression, since this has been cancelled due to the output being directly proportional to the difference in base-to-emitter potentials of the two transistors. This represents a vast improvement of perform- ${ }^{\circ}$. ${ }^{\text {IN }}$ are both expressed in volts. The choice of K_{1} and K_{2} is determined by the scaling required on the signal and the value against which the input is being normalised.

Referring back to equation 3 the circuit can be used to obtain $\log _{10}$ of the ratio of two positive voltages if $V_{\text {REF }}$ is replaced by a second positive input. This is a particularly useful in several applications, such as an analogue automatic transfer function plotter.

So far, R_{5} has not featured in the analysis. The purpose of R_{5} is merely to provide some current limit in case excessive current is drawn through $\mathrm{Tr}_{1}, \mathrm{Tr}_{2}$ and OA_{2}. If OA_{2} is current-limited internally and the transistors can separately handle this peak current, then R_{5} may be replaced with a direct link.
Exponential circuits. To achieve the opposite transfeer function to the circuit of Fig. 1, namely an exponential circuit, the resistor and b.j.t. are swapped over as shown in Fig. 3. A p-n-p transistor is required for positive inputs, the output being given by the equation
$\mathrm{V}_{\mathrm{o}}=-\mathrm{I}_{\mathrm{c}} \cdot \mathrm{R}=-\mathrm{I}_{\mathrm{s}} \cdot \operatorname{Re}^{\mathrm{V}_{\mathrm{m}} / \mathrm{V}_{\mathrm{t}}}$
Again, as was the case for Fig. 1, the circuit has practical limitations due to the temperature dependence of I_{s}. Adopting a similar approach, a long-tail pair is employed as shown in Fig. 4 to achieve a superior exponential circuit.

Following a similar analysis to that for a log-circuit of Fig. 2, the output expression obtained is

$$
\begin{equation*}
V_{0}=K_{4} \cdot \mathrm{e}^{\mathrm{K}_{3} \cdot V_{13}} \tag{4}
\end{equation*}
$$

where $\mathrm{K}_{3}=\mathrm{R}_{4} / \mathrm{V}_{\mathrm{T}}\left(\mathrm{R}_{3}+\mathrm{R}_{4}^{\prime}\right)$ and $\mathrm{K}_{4}=\mathrm{V}_{\text {REF }}^{\prime} . \mathrm{R}_{2} / \mathrm{R}_{1}^{\prime}$

Having employed the well matched long-tail pair configuration, the I_{s} parameter is absent in the final expression. As for the circuit of Fig. 2, the R_{4} potential divider is chosen so that the input is simply divided down, the base current demand from Tr_{2} being a negligible load. Resistor R_{5}^{\prime} acts in the same current limiting role as R_{5} in the previous circuit. The only remaining temperaturedependent parameter V_{T} in K_{3} may be effectively removed by compensation with a potential divider $\mathrm{R}_{3}, \mathrm{R}_{4}$ which exhibits the same temperature coefficient.

Multipliers and dividers using log and antilog circuits
Multipliers and dividers are classified in terms of the number of quadrants over which they operate. For example, if the circuit will only operate with inputs of the same sign, both positive or both negative, the circuit is referred to as single-quadrant. A multiplier/divider circuit capable of operating with bipolar inputs is referred to as a four-quadrant multiplier/divider.
Single-quadrant multiplier divider. Having established relatively simple and accurate log. and anti-log. circuits described earlier, it is quite plausible to assemble a multiplier simply using two log. circuits of the type shown in Fig. 2, together with a conventional summing amplifier, the output of which is then fed to an exponential circuit such as that shown in Fig. 3. Mathematically, we are adopting the following strategy for obtaining the product of two input voltages: input 1 is V_{1}; input 2 is V_{2} then $V_{0}=V_{1} . V_{2}$ $=\exp \left(\log _{\mathrm{e}} \mathrm{V}_{1}+\log _{\mathrm{e}} \mathrm{V}_{2}\right)$.

Clearly, a divider is created if we subtract $\log _{e} \mathrm{~V}_{1}$ from $\log _{e}\left(\mathrm{~V}_{2}\right)$ using a differencing circuit. Although quite feasible, such a multiplier is complex, using in total seven op-amps and three well matched transistor pairs. A very elegant solution can be achieved more directly using the circuit of Fig. 5.

A careful inspection of the circuit reveals that it is the combination of the high-quality log. and exponential circuits described
earlier with the potential dividers $\mathrm{R}_{3}, \mathrm{R}_{4}$ and $\mathrm{R}_{3}, \mathrm{R}_{4}$ removed. Using the analysis developed for the output of the log. circuit, namely equation 3 , the expression for $V_{B 2}$ is

$$
\begin{aligned}
\mathrm{V}_{\mathrm{B} 2} & =\mathrm{V}_{\mathrm{B} 2}^{\prime} \\
& =-\mathrm{V}_{\mathrm{T}} \log _{e}\left(\mathrm{~V}_{\mathrm{Z}} / \mathrm{V}_{\mathrm{Y}}\right) \\
& =\mathrm{V}_{\mathrm{T}} \log _{e}\left(\mathrm{~V}_{\mathrm{Y}} / \mathrm{V}_{\mathrm{Z}}\right)
\end{aligned}
$$

Since $V_{B 2}^{\prime}$ is the effective input to an exponential circuit with V_{x} replacing the potential, $\mathrm{V}_{\mathrm{REF}}$, then the output of the entire circuit is obtained by modifying equation 4 slightly, that is

$$
V_{o}=V_{x} e^{V_{k i} / V_{1}}
$$

Substituting for $V_{B 2}$ we obtain the final expression

$$
V_{o}=V_{x} \cdot V_{y} / V_{z}
$$

It is important to note that the temperature of both pairs of b.j.ts should be identical and, as before, the transistor pairs should be very well matched. These requirements are relatively easily met if the four transistors are all on the same chip. Also, it should be stressed that the circuit is only single-quadrant. In practice should the product of two inputs be required, then V_{z} should be chosen appropriately as a fixed d.c. reference, providing a useful scaling factor. Alternatively, if the ratio of two inputs are required, then either V_{x} or V_{y} should be a fixed d.c. reference, this reference providing a scaling factor to the ratio of the two inputs.
Converting to a four-quadrant multiplier. It is possible to use a single-quadrant multiplier together with some additional circuitry to create a full four-quadrant multiplier. Two precision full-wave rectifiers are needed to process the two inputs, so that the circuit of Fig. 5 only "sees" positive voltages and then the output is effectively

$$
V_{0}=\left[V_{1}\right] .\left[V_{2}\right] / V_{\mathrm{REF}}
$$

where the inputs are V_{1}, V_{2} and V_{2} has been replaced by a d.c. reference, $\mathrm{V}_{\text {REF }}$. In addition, some logic is needed to provide the sign-bit information. This could be done simply by testing the input signs using the sort of circuit shown in Fig. 6.

Linear differential transconductance amplier
The transconductance (current output - voltage input) performance of the long-tail pair was investigated in my first article and it was shown that the circuit was linear over a range of about \pm 25 mV or so (see Fig. 2 of the September 1985 article). The simplest way of increasing the linear range and increasing the input impedance is to add emitter resistance as shown in Fig. 7. Two matched long-tail current sinks are used in preference to one since such a structure can be realised on a single chip with two pin-outs provided to allow the emitter coupling resistor, R , to be inserted by the designer.
Calling the differential input voltage V_{IN} and neglecting base currents compared with collector currents, then we can solve Kirchhoff's voltage law for V_{IN} as

$$
\begin{aligned}
\mathrm{V}_{\mathrm{m}}= & V_{1}-V_{2}=V_{\text {BE } 1}-V_{\text {BE } 2} \\
& +\left(I_{1}-I_{\mathrm{o}} / 2\right) \mathrm{R} \\
\mathrm{~V}_{\mathrm{in}}= & V_{\mathrm{T}} \log _{e}\left(\mathrm{I}_{1} /\left(\mathrm{I}_{\mathrm{o}}-\mathrm{I}_{1}\right)\right)+ \\
& \left(\mathrm{I}_{1}-I_{v} / 2\right) \mathrm{R}
\end{aligned}
$$

Normalizing this equation we obtain the following expressions relating V_{IN} to I_{1} and I_{2}.

$$
\begin{gathered}
\mathrm{V}_{\mathrm{IN}} / \mathrm{V}_{\mathrm{T}}=\log _{\mathrm{e}}\left(\left(\mathrm{I}_{1} / \mathrm{I}_{\mathrm{o}}\right) /\left(1-\left(\mathrm{I}_{1} / \mathrm{I}_{\mathrm{o}}\right)\right)\right. \\
+\left(\left(\mathrm{I}_{1} / \mathrm{I}_{\mathrm{o}}\right)-1 / 2\right) \mathrm{I}_{0} \mathrm{R} / \mathrm{V}_{\mathrm{T}} \\
\mathrm{I}_{2} / \mathrm{I}_{\mathrm{o}}=1-\left(\mathrm{I}_{1} / \mathrm{I}_{\mathrm{o}}\right) \\
5 \mathrm{a} \\
5 \mathrm{~b}
\end{gathered}
$$

Fig. 7. Linearized long-tail pair.

Fig. 8. Linearized long-tail pair transfer characteristic.

Equation 5 a cannot be turned into a straightforward transfer function equation, so the best way of visualising the equation is to plot $\mathrm{y}=\mathrm{I}_{1} / \mathrm{I}_{0}$ against $\mathrm{x}=\mathrm{V}_{\mathrm{IN}} / \mathrm{V}_{\mathrm{T}}$. Figure 8 shows the plot for different values of $A=I_{0} R / V_{T}$. Notice $\mathrm{A}=0$ corresponds to $\mathrm{R}=0$ and the transfer current of Fig. 8 is identical to that of Fig. 2 in the first article of this series. As R is increased so the total transconductance becomes less but more linear. This is to be expected, since the effect of increasing R is to increase the negative feedback to the circuit with the usual result of stabilising and hence linearizing the transconductance at the expense of a loss of closed-loop gain. If we are operating the stage with a limited input and a high A value then equation 5 a reduces to

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{IN}}=\left(\left(\mathrm{I}_{1} / \mathrm{I}_{0}\right)-1 / 2\right) \cdot \mathrm{RI}_{\mathrm{o}} \\
& \text { or } \mathrm{I}_{1} / \mathrm{I}_{\mathrm{o}}=1 / 2+\mathrm{V}_{\mathrm{LS}} /\left(\mathrm{R.I}_{0}\right) \\
& \text { and } \mathrm{I}_{2} / \mathrm{I}_{\mathrm{o}}=1 / 2-\mathrm{V}_{\mathrm{IN}} /\left(\mathrm{R}_{\mathrm{o}}\right)
\end{aligned}
$$

The differential output conductance is now linearly related to the differential input voltage by

$$
\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right) / \mathrm{I}_{\mathrm{u}}=2 \mathrm{~V}_{\mathrm{IN}} /\left(\mathrm{R} \cdot \mathrm{I}_{0}\right)
$$

and the differential transconductance is therefore

$$
g_{m d}=2 / R
$$

and the differential input impedance, R_{IN}, is approximately

$$
\mathrm{R}_{[\mathrm{N}} \simeq \beta . \mathrm{R}
$$

where β is the small-signal cur-
rent gain of Tr_{1} and Tr_{2}.
The final expressions are really quite simple in form, but it is necessary to look at the detailed behaviour in order to assess the maximum differential input voltage that may be applied to keep the maximum non-linearity within specified bounds. It is left to the reader to look closely at equation 5 a to establish the limits for a particular application.

Monolithic four-quadrant multipliers

An elegant wide dynamic range four-quadrant multiplier is shown in Fig. 9. The monolithic circuit uses four interconnected longtail pairs, two of which operate in a non-linear mode. In practice, the two diodes would be transistors connected as diodes with the collector shorted to the base terminal in each.

The circuit is relatively easy to analyse, as each section has already been examined earlier. To simplify the analysis I shall assume that the β of each transistor is high enough for the collector currents to be negligibly different from the emitter currents and also I shall assume that all the b.j.ts, including the diode-connected transistors D_{1} and D_{2}, are well matched and at the same temperature.

The emitter resistors R_{x} and R_{5} provide linear converssion to the input voltages to the differential currents I_{x} and I_{y} shown on the circuit diagram.

$$
I_{x}=V_{x} / R_{x}
$$

$$
\begin{equation*}
\mathrm{I}_{\mathrm{y}}=\mathrm{V}_{\mathrm{y}} / \mathrm{R}_{\mathrm{y}} \tag{6b}
\end{equation*}
$$

Referring to the last section above, the condition needed here is

$$
\mathrm{R}_{\mathrm{x}} \gg \mathrm{~V}_{\mathrm{T}} / \mathrm{I}_{1} \text { and } \mathrm{R}_{\mathrm{y}} \gg \mathrm{~V}_{\mathrm{T}} / \mathrm{I}_{2}
$$

The resistor R_{1} is in the circuit merely to ensure that the base bias potentials on the $\mathrm{Tr}_{5} / \mathrm{Tr}_{6}$ and $\mathrm{Tr}_{7} / \mathrm{Tr}_{8}$ are sufficient to keep these transistors in the forward active region.

Now potential V_{1} shown in Fig. 9 is

$$
\begin{gather*}
\mathrm{V}_{1}=\mathrm{V}_{\mathrm{D} 2}-\mathrm{V}_{\mathrm{D} 1}=\mathrm{V}_{\mathrm{T}} \log _{\mathrm{e}} \\
\left(\mathrm{I}_{1}-\mathrm{I}_{\mathrm{x}}\right) /\left(\mathrm{I}_{1}+\mathrm{I}_{\mathrm{x}}\right) \tag{7}
\end{gather*}
$$

This potential now drives the two non-linear (ordinary) long-tail pairs $\mathrm{Tr}_{5} / \mathrm{Tr}_{6}$ and $\mathrm{Tr}_{7} / \mathrm{Tr}_{8}$.
In the first article in this series the characteristic of the long-tail pair was established and, in terms of the present circuit, the collector currents I_{5} to I_{8} can be written simply as

$$
\begin{aligned}
& \mathrm{I}_{5}=\mathrm{I}_{3} /\left(1+\mathrm{e}^{-\mathrm{v}_{1} / V_{1}}\right) \\
& \mathrm{I}_{6}=\mathrm{I}_{3} /\left(1+\mathrm{e}^{+\mathrm{v}_{1} / V_{1}}\right) \\
& \mathrm{I}_{7}=\mathrm{I}_{4} /\left(1+\mathrm{e}^{+\mathrm{v}_{1} / \mathrm{V}_{1}}\right) \\
& \mathrm{I}_{8}=\mathrm{I}_{4} /\left(1+\mathrm{e}^{-\mathrm{v}_{1} / v_{1}}\right)
\end{aligned}
$$

with the substitution from 7 for V_{1} equations simplifies to

$$
\left.\begin{array}{rl}
\mathrm{I}_{5} & =\mathrm{I}_{3}\left(\mathrm{I}_{1}-\mathrm{I}_{\mathrm{x}}\right) / 2 \mathrm{I}_{1} \\
\mathrm{I}_{6} & =\mathrm{I}_{3}\left(\mathrm{I}_{1}+\mathrm{I}_{\mathrm{x}}\right) / 2 \mathrm{I}_{1} \\
\mathrm{I}_{7} & =\mathrm{I}_{4}\left(\mathrm{I}_{1}+\mathrm{I}_{\mathrm{x}}\right) / 2 \mathrm{I}_{1} \\
\mathrm{I}_{8} & =\mathrm{I}_{4}\left(\mathrm{I}_{1}-\mathrm{I}_{\mathrm{x}}\right) / 2 \mathrm{I}_{1}
\end{array}\right\} \quad 8
$$

The differential output voltage is

$$
\mathrm{V}_{0}=\mathrm{R}_{2}\left(\left(\mathrm{I}_{6}+\mathrm{I}_{8}\right)-\left(\mathrm{I}_{5}+\mathrm{I}_{7}\right)\right)
$$

and substituting from equations 7 and 8 , then

$$
\mathrm{V}_{\mathrm{o}}=\mathrm{R}_{2}\left(\mathrm{I}_{3} \cdot \mathrm{I}_{\mathrm{x}}-\mathrm{I}_{4} \cdot \mathrm{I}_{\mathrm{x}}\right) / \mathrm{I}_{\mathrm{l}}
$$

Since $I_{3}=I_{2}+I_{v}$ and $I_{4}=I_{2}-I_{y}$ then $V_{0}=2 R_{2}\left(I_{x} I_{y}\right) / I_{1}$ and using equations 6 we obtain the final expression that

$$
\mathrm{V}_{\mathrm{o}}=\mathrm{K}_{\mathrm{m}, 1} \mathrm{~V}_{\mathrm{x}} \cdot \mathrm{~V}_{\mathrm{y}}
$$

where $\mathrm{K}_{\mathrm{t}, \mathrm{n}}$ is the multiplier's scaling factor and is given by $K_{m}=$ $2 R_{2} /\left(R_{x} \cdot R_{2} \cdot I_{1}\right)$. Generally K_{m} is chosen to be 0.1 for convenience and compatibility with other

types of multiplier. Should a single-ended output voltage be required, then the circuit can be modified by adding a differential amplifier to the output terminals of Fig. 9.

The four-quadrant multiplier described here is an excellent example of the ingenious use of the accurate exponential relationship between emitter-base voltage and collector current of b.j.ts and the close matching and thermal tracking that can be achieved in a single chip circuit.

Emitter-coupled logic

So far, the long-tail pair applications discussed have been for analogue signal processing. Even in digital electronics the long-tail pair has some special features. The basic emitter-coupled logic gate is a simple long-tail pair used with a siingle-ended input, a typical circuit of which is shown in Fig. 10. The long-tail is resistive rather than an active current-sink to ensure high speed switching.
A single common-emitter can be used as a logic switch. Turning "on" the b.j.t. results in a for-
ward bias on collector-base junction which results in a high minority carrier population inn the base region. To change state from "on" to "off" is relatively slow as the base region minority carriers must be removed before the collector current can be reduced to 'zero'. The e.c.l. gate is extremely fast primarily because the "on" state is associated with current saturation due to the long-tail current sink limit on the collector current; neither b.j.t. ever entering forward bias V_{CB} type saturation. A typical propagation delay is 2 ns for one e.c.l. gate.
The penalty associated with this very rapid performance is a high power dissipation per gate which represents a fundamental limitation on the number of gates per unit chip area. A further disadvantage of e.c. logic is the poor noise margin, typically 50 mV . This is offset somewhat by the fact that since the power supply current demand is almost constant, power supply spike due to $\mathrm{LdI} / \mathrm{dt}$ effects on changing state are much less of a problem with e.c.1. than other b.j.t. based logic. E.c.l. does have a place in

Fig. 9. Monolithic fourquadrant multiplier.
specialized, high-speed applications.

Tail-piece

The long-tail pair is a very powerful circuit element with a wide range of applications. Some of the applications are dependent upon the precise exponential I-V characteristic of the b.j.t. and some are dependent on the use of a matched differential-pair configuration with a current-sink bias. I have only discussed b.j.t. longtail pair circuits in these two articles but clearly fets may also be used in the same configuration though the \log /antilog and full four-quadrant multiplier circuits will only work with b.j.ts.

Fig. 10. E.c.l. logic gate.

Creative Animation and Graphics on the BBC Micro by Mike James: Collins, 212 pages, soft covers, $£ 7.95$, ISBN 000 383007 1. Covers animation, sprites, two-dimensional technical graphics (though not graphs and charts), three-dimensional graphics and painting. Examples are in BBC Basic. Many useful tips.

Colour and Mono Television: volume 2, display tubes, timebases, synchronising and power supply circuits, by K.J. Bohlman. Dickson Price Publishers Ltd., 235 pages, soft covers, £8.95, ISBN 085380155 X. Textbook for tv receiver technicians. Many of the circuit examples relate to older sets, perhaps inevitably: there is little enough to see inside the latest ones. For those who collect spellings of 'Schmitt' (as in trigger), there is a novel one here. Schmidtt. Volume 1 deals with the tuner, i.f., video and audio stages; volume 3 , to follow, will describe colour decoders and digital circuitry.

The Commodore 64 Roms

 Revealed by Nick Hampshire with Richard Franklin and Carl Graham: Collins, 215 pages, £8.95, ISBN 000383087 X. The bulk of the book consists of a reconstructed source-code listing of the Commodore roms, with extensive explanatory notes. Other chapters describe memory usage and list main entry points. Essential for the serious programmer.Commodore 64 Wargaming by Owen Bishop and Audrey Bishop: Collins, 252 pages, soft covers, £8.95, ISBN 0003830101 . Programming techniques and listings for war games in a variety of settings from ancient times to the distant future, and how to adapt and extend them.

CP/M Techniques by Ken
Barbier: Prentice-Hall
International, 224 pages, soft covers, £19.35, ISBN 013 1878573 (PBK). For the programmer with some knowledge of assembly language. Covers programming techniques, i / o, tricks with discs (both floppy and hard) and customizing your Bios. Good clear explanations.

Fault Tolerant Hardware

Design by Parag K. Lala:
Prentice-Hall International, 263 pages, hard covers, $£ 24.95$, ISBN 013308248 2. Chapters cover basic concepts of reliability, types of faults in digital circuits and how to model them, test generation, fault-tolerant design of 1.s.i. and v.l.s.i. chips, self-checking and fail-safe logic and design for testability.

B. BAMBER ELECTRONICS

> RADIOTELEPHONE EOUIPM E
> Pye Base Station Type F30 AM High Band \& Low Band
> Pye Base Sitation Type F401 AN High Band
Pye Base Siation Type F4001 AM High Band
> Pye Europa Type MF5FM Migh Band
> Pye 0lympic Type M201 AM High Band
> Pye Wesiminster Type Wisam High Band \& Band
> Pye M294 FM High Band
> Pye Base Station Type fgu UHF
Pye Base Station Type Fgam hign Band
> Pye Base Station Type F17fM High Ban
> base Stat on Type fatr UHF
> Fye Pocketfone Type PF2FM High Band \& Law Band
> ye Pockettong Type PF2AM Migh Band \& Low Band
> Pye Pocketfone Type PF5 UHF

ektronix Oscilloscope Type $567 \mathrm{c} / \mathrm{w} 3576$ \& 3 I77 Plug-Ins
$〔 250$
5450
Tektronix Oscilloscope Type $661 \mathrm{c} / \mathrm{w} 4 \mathrm{S3}$ Plug-1)
Tektramx Oscilloscope Type $585 \mathrm{c} / \mathrm{w}$ Type 86 Plug-4
Tekitronı Oscilloscope Type 454
Tektronix Oscilloscone
Yype 5154
Ektronix Oscilloscope Type 515
Eabs Oscilloscope Type Sm it Dual Trace 18 MH
elequipment Oscill oscope Type S5
elequipment Oscill liscope ype $\$ 51$
Telequipment Oscil oscope Type $\$ 43$
Tektronix Time Mark Generator Type 180 A
Marcon Valve Vollmeter Type If 10418
Marcon Power Meter Type Tf 893 A
Marcon/ RF Attenuator Type IF 1073A
Marcon RF Power Mety Typ Tf 10204
Marcon RF Power Meter Type Tf 1020
Marconi Unwersal Bridge Type 8688
Narcanı Universal Brage Type 868A
Marconi Delay Generator Type TF 1415
Marconi Signal Generator Type TF 8010/8S $10 \mathrm{mHz}_{\mathrm{z}}$ to 485 mHz
Marconi Sigral Generator Type if $144 \mathrm{H} / 410 \mathrm{kH} / 21072 \mathrm{mH}$ \&180

Marconi Signal Generator yype if $144 \mathrm{H} / 410 \mathrm{kHz} 1072 \mathrm{mHz}$
Hewlett Packard Therma Petinter Type 5150A Hewlett Packard Power Unir 5 volt a 48 amp Type 62005E Hewleft Packard Power Unil 5 volt a 60 amp Type 62605L Electronic instruments Twenty Million Megohmmeter Model 29 a Multicore Model S Soiderability Test Machine Mark 2. Avo Meters Model 7
Avo Meters Model 7 £40 Avo Meters Model 8
General Radio VHF Oscillator Type $136356-500 \mathrm{Mh}$
Wayne Kerr A.F. Signal Generator $10 \mathrm{~Hz}-120 \mathrm{Khz}$
General Radio Audio Oscillator Type $1311 \mathrm{~A} 50 \mathrm{~Hz}+\mathrm{H}^{10 \mathrm{Khz}}$
Alrmec Oscillator Type $85830 \mathrm{Kiz}-30 \mathrm{Mhz}$
En Pulse Generator Model 139L.B
Aurmec Occole Genimator Mocel GO 1101

Arrmec Modulation Meter Type 210A
Bruel 8 K/oer Microphone Amplifier Type 2604
Dawe Phase Meter Type 632A
Ferrograph Series 7 Mono Tape Recorders
60 amp. Alternalor \& Generator Noise Filters.
Tekfronix Oscilloscope Probes
Muliaro Vari-cap Tuners Type ElC2003 Ex Brand New Equip
Pye Cambridge/Vanguard 18 Way Controt Leads
BNC Plugs 75 ohm
Circulators $590-720 \mathrm{Mnz}$ 'N sockets
Transtormers 30 volt is 1 mp
Transtormers 36 valt we 15 amp
10.7 Mhz SS8 Xtal filters (2.4 khz Bancw idth) 10 .
unwanted sideband rejection min -40dt (needs $10.69835 \& 10.70165 \mathrm{xtais}$ tot USB/LSB not supplied) Size approx $2 \mathrm{in} \times 1 \mathrm{in} \times$
"OIGITALKER"
Speech Synthesiser Unit Based on The National Semiconductors - Dightalker Systern Chip Se: The Unit is Marns Powered and included are a 700 Hz an 200 Hz Filler. Power Amp Loudspeaker and NASBUS/RS232C Interlace

PYE POCKETFONE PF1 UHF RECEIVER
$440-470 \mathrm{MHz}$, Single Channel, int speaker and aerial. Supplied complete
with rechargeabie battery and service with rechargeabie battery and service
manual. $£ 6$ each plus $£ 1$ p.p. plus V.A.T.

BREAKING TEK 545A SCOPES FOR SPARES
CRT type T543 P2 $£ 18$ each. Mains Transformers T601 £15. High Voltage Transformer T801 with valves £25. Also Switches, Knobs, Fans,

21

METEOROLOGICAL BALLOON

RADIOSONDE RS21

TRANSMITTER

with Water Activated Battery, contains
all-weather sensors, fully solid state, $£ 5$ all-weather sensors, fully so
each plus $£ 1$ p.p. plus V.A.T P. \& P. or Carriage and V.A.T. at
15% on total must be added to all must be
orders.
Callers very welcome, strictly between $9 \mathrm{a} . \mathrm{m}$. and $1 \mathrm{p} . \mathrm{m}$ and 2 and 5 p.m. Monday to Friday inc.
Barclaycard and Access taken
Official orders welcome ww?

that there is a real difference at Crick/ewood Electronics That's why you should never be without the FREE CRICKLEWOOD ELECTRONICS COMPONENTS CATALOGUE, for sheer variety, compertive prices and service from the UK. 's number one 100% component shop. No gimmicks, no gadgets or computers. just components, millions of them, all easily avalable by mail order calling or credit card telephone orders Just pick up the phone lor a peni to get your FREE copy now (no SAE required). You have nothing to lose.

CRICKLEWOOD ELECTRONICS LIMITED

 40 Cricklewood Broadway, London NW2 3ETTel: 01-450 0995/01.4520161

Telex: 914977
F

Happy Memories

Part type	1 off	25-99	100 up
4116 200ns	. 1.25	1.15	1.10
4164 150ns Not Texas	99	89	84
4256 150ns	3.65	3.35	3.10
2114 200ns Low Power	1.75	1.60	1.55
6116 150ns	1.99	1.80	1.65
6264 150ns Low power	5.00	4.45	4.00
2716 450ns 5 volt	. 3.85	3.45	3.30
2732 450ns Intel type	4.75	4.25	4.10
2532 450ns Texas type	. 3.85	3.45	3.30
2764 300ns Suit BBC	2.95	2.65	2.50
27128 300ns Suit BBC.	. 3.95	3.55	3.35
27256 250ns	. 7.55	6.95	6.50

Low profile IC sockets:
Pins 814161820242840 Pence 1213141618242738
Available now - The ROAM BOARD for the BBC Micro. Reads
Roms via a Low Insertion Force Socket and saves their contents as files, then reloads a file into its sideways Ram as required. Full details on request

74LS series TTL, wide stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50 p post $\&$ packing to orders under $£ 15$ and VAT to total:
Access orders by 'phone or mail welcome.
Non-Military Government \& Educational orders welcome., $£ 15$ minimum.

HAPPY MEMORIES (WW), Newchurch, Kington, Herefordshire HR5 3QR.

Tel: (054 422) 618
CIRCLE 41 FOR FURTHER DETAILS.

TELESCOPIC MASTS

Pneumatically cperated telesicopic masts. 25 Standard models, ranging from 5 metres to 30 metres.

Hilomast Ltd
THE STREET HEYBRIDGE - MALDON ESSEX CM9 7NB ENGLAND
Tel. MALDON (0621) 56480
Telex No. 995855

กплcom-2

Still the most outstanding, single board computer with thousands of satisfied users in industry and the home. Full range of extensions and add-ons also available.
'Phone or write for further details now!

Lucas Control Systems

Lucas Control Systems Limited
Welton Road. Wedgnock Industrial Estate, Warwick CV34 5PZ Telephone: 0926497733 . Telex: 312333.
CIRCLE 107 FOR FURTHER DETAILS.

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days' delivery. Other Ranges and special scales can be made to order.
Full Information from:
HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD. W.C. 1
Phone: 01-837 7937
Telex: 892301
CIRCLE 112 FOR FURTHER DETAILS.

173MHz FM TELEMETRY RADIO LINK

Sange up to 100 metres
荤 Modular, Wall Mounting Transmitter + Receiver
B Direct Baseband Inputs + Outputs (3 kHz B/W)

- Operates to MPT1309

E Each Module $86 \times 104 \times 45 \mathrm{~mm}+$ requires only 30 mA dc at 7.2 V

- Selective Baseband signalling by 'add on' modules available shortly.

ADENMORE LTD

27 Longshot Estate, Bracknell, Berks. RG12 1RL Tel: 034452023

Hali-megabyte memory for SC84

'Silicon disc' using 256K dynamic memory chips has novel refresh system.

I use a microcomputer primarily as a means of developing software and of writing long documents, such as this article. My SC84 computer gives better performance than many other computers but the discs don't go round any faster than anyone else's. When working back and forth between the ends of large files with Wordstar or when performing a major assembly, disc operations take a lot of time.
The reason for this is clear when one watches the process. In both cases the computer is operating with more than one file. In word processing, the computer memory acts as a 'window' into the file. As this window moves up and dowr a file larger than the free memory available in the computer, temporary files are created to store the data ahead of and behind the window.

In program development, assembly means getting data from the source file and sending data into object and listing files. Switching between the files takes time as the drive head has to traverse the disc surface many times. There's wear and tear on the drive and the computer operator, both of which can be eliminated by the use of what has become known as a 'silicon disc'.
Silicon disc is a large memory used either as a buffer into which the working disc's contents are loaded or, as in this case, treated as a pseudo disc. The system described consists of a 512 Kbyte memory, accessed as one of 256 2 Kbyte 'pages'.
Pages are selected by writing an 8 bit value into a register on the silicon disc unit. This is rather like writing to the track-number register of a floppy disc controller. Once selected, the page may be accessed directly or by 'mapping'. In mapping, a block of memory can be made to substi-
tute itself for an equivalent block of system memory. SC84, as with any other good computer design, has a mapping facility. The advantage of mapping is that areas of system memory are not permanently committed to transient facilities (the v.d.u. in SC84 is a good example of this). One must choose the mapping area carefully though as it is obviously not possible for code executing in the area of system memory to be mapped out to access the mapped area. For this reason, switches allow the unit to be permanently allocated or to be mapped to any 2 Kbyte block within an 18 bit address range. The silicon disc is seen as an adjunct to the disc operating system and so, for SC84, the mapping is over the section of memory even more fundamental than Scidos itself, the resident operating system Mcos.

The half-megabyte memory is in the form of 16256 Kbit dynamic memories, although the unit can be built with only half of this capacity. Thought has been given to making the silicon disc as versatile as possible. As such it relies on only two system signals; one indicates that a memory cycle is taking place and the other that a read operation is occuring. In a Z80 system these would be MREQ and RD; in an 8086 system they would be a combination of ALE and IO/M and the RD signal.

Note that no reference is made to external refreshing. The RFSH input shown on the circuit diagram is offered as a means of reducing unnecessary power consumption in $Z 80$ systems. Refreshing of the memory is achieved by a combination of some rather clever facilities provided in the memories specified and the way in which the silicon disc is used.

An explanation of the design philosophy behind multiplexedaddress dynamic memory was given in my recent series on the SC84 computer*. Suffice to say that in addressing dynamic memories, the address of the locations to be accessed is latched into the memory in two parts - a row address and a column address. This saves pins and thus cost on a 256Kbit device which otherwise would need 18 address pins. It also allows refreshing of the entire memory by regular access-
by J.H. Adams, M.Sc.

* SC84 is a $4 / 6 \mathrm{MHz} 280$-based computer running the Scidos operating system for CP/M software, described in the May, June, July, September and October 1984 issues. The three-Eurocard circuit board set for this project is still available.

Specification and performance

Memory capacity is 512 Kbyte organised as 256 'tracks' of 2 Kbyte each and power requirement is +5 V at up to 0.5 A , depending on the system cycle rate.

To test the performance of the 'silicon disc' compared with a conventional system, I used Wordstar to edit a 120 Kbyte source file. The procedure was to perform a global alteration through the file, to save the file using $\mathfrak{\dagger K S}$ to move to the end of the file using tQC and then to move back to the start using $\uparrow \mathrm{QR}$.

Timings for these operations on SC84 with and without the silcon disc and for a DEC Rainbow are shown in the table. As shown over extra time taken depends very much on the distance moved by the drive head during the magnetic disc tests, the SC84 and DEC tests were carried out under optimum conditions, i.e. with only the source file on the disc.

The fourth column in the table indicates how long a computer would take with a typically full disc. During the alteration, screen update was suppressed by pressing ESC as otherwise the test would have reflected the speed of screen update rather than of disc access - a factor which would have considerably increased the DEC timing.

The final test was to assemble a 20Kbyte $Z 80$ source file to produce an intermediate file which would result in approximately 2 Kbyte of object code, and a listing file. The assembler used was M80.

These tests are reasonably representative of typical uses of the silicon disc. Other advantages, particularly noticeable when using Wordstar, are that messages and overlays load and present themselves instantly and noiselessly.

Half-megabyte memory expansion circuit. Pins 15 of the three LS 158 multiplexers are connected to ground.

Kits and p.c.bs

Memory board kits excluding p.c.b. are $£ 92$ inclusive from John Adams at 5 The Close, Radlett, Hertfordshire WD7 8 HA . This price is $£ 93$ for readers in other parts of Europe and $£ 94.50$ for those outside.
Plated-through-hole p.c.bs for this project are $£ 16$ including UK or overseas postage from Combe Martin Electronics, Kings Street, Combe Martin, North Devon EX34 OAD.
ing of all rows.
The Z80 has an inbuilt refresh generator consisting of a control line and a seven-bit counter which is regularly incremented and output during a period when the Z 80 doesn't need the external bus. While memories were addressed seven bits by seven bits (16Kbits) this was acceptable. When 64 Kbit devices appeared, most were made to be actually seven bits by nine internally, although addressed as eight bits followed by another eight. This meant that a $Z 80$ could still refresh these devices but it did make the i.cs more difficult to fabricate.
Some device manufacturers attempted to make their 64 Kbit chips more versatile by building an equivalent of the $Z 80$ refresh
generator, but with 8 bits, into their dynamic memories and providing a pin to implement the refreshing process. This was a good idea as it allowed other refreshing techniques such as standby refreshing to be implemented but it took away a much needed pin. When 256 Kbit i.cs were designed, this pin went to provide the ninth address line but in certain devices the internal refreshing mechanism has survived.
As mentioned, the address is latched into the memory in two parts by means of a negative transition on one of two control lines, row-address strobe RAS and column-address strobe CAS. The standard operating sequence for a dynamic memory of this type would be as follows. Begin with

rest	Silicon disc	SC84	DEC rainbow SC84 typical	
Alteration	43	170	179	182
KS	2	18	17	22
QR	12	47	62	160
Assembly	22	110	102	115

both RAS and CAS high, apply the row address, switch RAS low, apply the column address, switch CAS low. After this a read, write, or read-then-write operation may take place on the addressed bit, depending upon the WR control line. Strobe RAS may be taken high again a short period after CAS has gone low and, as a variation, CAS may then be repeatedly pulsed to latch in the addresses of, and therefore access, other bits within the same row.

What never happens in a conventional addressing situation, and what is exploited in the devices under review, is that RAS should go low while CAS is low. My words are carefully chosen as the data sheets for most 64 Kbit devices do show a mode called 'hidden refresh', where after CAS has gone low and data is being accessed (RAS goes high), the address of a row to be refreshed is applied and RAS goes low, forcing a form of refresh. The differContinued on page 93

- INFORMATION •

A NEW SERVICE FOR READERS OF
 ELECTRONICS
 \& WIRELESS WORLD

This information service is a quick and simple method of obtaining the very latest literature.

We know you're going to find it useful!

ELECTROPLAN

CIRCLE 94
FOR FURTHER DETAIIS.
You will almusi cerlanly he aware in Filectroplan sstanding in the field of electronic measurement for we are the I it sleading terhnical distrihutor of test and meacuring inst nomentalion to usen l.ess well known perhaps are commuter-hased insirumentation - a rela ively new. hut now

 L"Set her with a wide range of compatible ha d wate and suft ware.
enahhinge custromised measurement systems to he configured to The needs of specific user anplicalitn
This hrochure attempts to desconhe our carabilily, and the isems listed helow provide sime indication of nur immensie
 measurement and cont rol problems.
Hewlett-packard Miconcomnuters

- Sotware for tlewlett-1 Parkird and IBM Cimputers Scientific Compuler Inlertices and Accessories - Ipagrammahie Instrumentation - Data Acquisition - Computer tided Design
We can supply complete interrated measurement sviems We can sufply complete, interrated, messurement svsiems.
logethel with dedicated sofluare, wrilten in house 1o provide a
 "I you reuure any further inisumation, please civcle the number nthe Free Proxduct Intormation send.

$$
-10-2
$$

Humidity control

Normally, the extractor fan in this humidity control circuit is started when the bathroom light is turned on and the motor stops around 20 minutes after the light is turned off. If relative humidity exceeds about 80% however, the motor runs for about 20 minutes or until humidity falls below 80%.
Domestic induction-motor fans of up to 1.5 A can be switched. For safety, check
that the motor is impedance and overtemperature-protected; most modern fans include these features. Transients produced by switching are damped by a v.d.r. over the triac but as the circuit switches at or near zero voltage this is not a major problem.

Network $\mathrm{R}_{5} \mathrm{C}_{1}$ sets the 20 minute delay. A 10 V regulated supply is derived using C_{3}, R_{1}, D^{1-3} and a smoothing capacitor; full-wave rectification must be used to stop C_{3} charging to
peak mains voltage
The sensor* requires an alternating signal of less than 1V. An 11 V squarewave at the $\mathrm{D}_{1,2}$ junction is used for this. Sensor resistance falls as air moisture increases and eventually the signal passing through the sensor triggers the timer. A potentiometer sets the timer trigger level. While the light switch is on, the timer i.c. is triggered through C_{2}.

Wiring around the highimpedance areas of the circuit,
including the sensor, should be short and well screened by track areas at mains neutral potential. The sensor should be away from the triac and its wiring and it must, of course, have access to room air. Bear in mind that the whole circuit is connected directly to the mains. M.R. Hadley

Lyndhurst
Hampshire
*Available from Norbain Electro-Optics Ltd, Norbain House, Baulton Road, Reading, Berkshire R62 0LT.

Add-on current dumping

Recently, several 'nonswitching' class-B amplifier circuits have been published. Some of these are complex, some have thermal runaway problems and some require careful matching of devices. This circuit is so simple that it can be implemented in any class- B amplifier, yet it is effective enough to cure all of the problems that traditionally result in crossover distortion.

The idea is to make sure that the output device is always turned on, by configuring it as a constant-current source when it would normally be turned off. The principle is not new, but the realization is.

Transistor Tr_{2} is forced into constant-current mode by collector current of Tr_{4}. This transistor senses the fall in Tr_{2} collector current as $I_{2} R_{c}$ falls, so $\mathrm{I}_{4} \mathrm{R}_{\mathrm{B4}}$ directly compensates $\mathrm{i}_{0} \mathrm{R}_{\mathrm{E}}$,
negative feedback through Tr_{2} being the regulating currentderived negative feedback prevents thermal runaway without the need for special thermal feedback.
Take care selecting base resistor values $\mathrm{R}_{\mathrm{B} 3, \mathrm{B4}}$. Lower values of around 2000 are preferred to prevent creation of an additional pole within the desired bandwidth.
Drive current I_{D} needs to be set at about twice the value of $\mathrm{Tr}_{3} / \mathrm{Tr}_{4}$ maximum collector current to allow the drivers to work in class-A throughout the full voltage swing. Quiescent current is set by I_{3} and R_{B} / R_{E}. Making R_{C} equal to R_{E} simplifies calculations.

Generating bias voltage with diodes allows a simple output current limiter to be added in the form of $D_{3,4}$.
Erik Margan
Ljubljana
Yugoslavia

Easy charactergenerator timing adjustment

Display circuits using 6845 or similar c.r.t. controllers usually have a system of gates and inverters to extract strobe pulses from the dct-clock divider. These strobe pulses are for shift register lcading and data latch enabling.

If this gating is replaced by a 3 -to- 8 -line decoder, the outputs available cater for most timing requirements in systems with up to eight dots/character horizontally and beyond eight dots if strobes are not required in the additional space.
The advantage of this circuit is that timing charges are easily made after construction without the need to rewire or patch. This permits substitution of character generatcr roms and v.d.u. rams of various speeds and changes of parameters such as dot-clock frequency or number of dots pe character.
In the general application, top left, each 138 decoder output goes active low once per character during the

corresponding dot time. A switch selects output activity during either the high or low pulse of the dot clock.
Alternative qualifying signals may be applied to the enable inputs.

Falling edge o : the shift register LD pulse should coincide with the rising edge of the shift clock, which is the dot
clock in this case. If the 138 is switched to give outputs during the clock low phase, this should be inverted before being used to drive the shift register.
The special application uses a 12 MHz source to provide a 1 MHz CCK signal, a 6 MHz dot clock for six dots per character and a 4 MHz output for a 6802 microprocessor. In the timing
diagram for this application the 138 outputs are shown without qualification. I would suggest divider B output for 138 enabling, E , and a 6 MHz dot clock to either E or $\overline{\mathrm{E}}$.
J.B. Bell

Grimsby
Humberside

RS232-toCentronics interface

Serial RS232 data is converted to a form suitable for driving a printer with a Centronics parallel interface using this circuit. On the AY-3-1015 uart, for converting the asynchronous serial stream to strobed parallel output, the busy line is used to implement a CTS handshake.
Data rate and number of stop bits are link or switch selectable; clock frequency is 16 times the desired data rate. Whether one or two stop bits are used depends on the printer type. The three leds PE, FE and OR indicate parity, framing and overrun errors respectively.
D.J. Virden

Cheltenham
Gloucestershire

Digital-offset frequency meter

Conventionally, the method of displaying receiver input frequency is to take the first local oscillator frequency and mix it with a signal equal to the i.f. Mixer output contains both the sum and difference of the two signals, so filtering must be used to provide a signal suitable for a conventional counter.
My circuit uses an all digital method to subtract the two frequencies and is therefore more accurate than the conventional method. Output from the first local oscillator feeds a decade counter which should be a 74 HC or HCT type as frequency here can be up to 40.7 MHz for a receiver input of 30 MHz and an i.f. of 10.7 MHz .
Decade-counter output is further divided and used to address a 2716 , 2 Kbyte eprom. Data in the eprom determines

the count to be recognized which in turn controls a gate between the incoming signal and the frequency counter. For example, if an offset of 10.7 MHz is required then all locations from 0 to 106 are filled with zeros and remaining locations are left at FF.

Using an eight-bit eprom, it
is possible to program eight different i.f. offsets simultaneously, and to provide a true frequency indication by disabling the eprom through its chip-select input.
George Cavarra
Bristol

8085/NSC800 microprocessor replacement

Prompted by the increasing amount of Z80-oriented CP/M software and Braunschmid's circuit idea on page 51 of the November 1984 issue, I substituted an NSC800N-4 processor for the original 8085 device in an Explorer microcomputer. In doing so I noticed some further differences between the two processors.
Comparing the timing cycles, the first obvious difference is the NSC800 refresh facility. Although this appears to be transparent on the 8085 system, generation of an ALE address-latching signal may have hardware implications on some computers. On the explorer it affected the system boot cycle. The remedy is to gate ALE with refresh signal RFSH using say a 74LS08 in the adaptor.
A more subtle difference is that the NSC800 clock output is 180° phase shifted with respect to ALE and read strobe RD. Again this may have hardware implications. On the Explorer, which supports an S100 bus, ALE and CK signals are gated together and so the phase shift has to be removed. Using the original adaptor, the clock signal can be passed through a spare inverter on the LS240 i.c.
There is a yet more subtle difference in the length of write strobe WR. On the 8085 this lasts for three T states whereas on the NCS800 it only lasts for two. It was necessary to introduce a wait state on the

Explorer to ensure sufficient time for memory write operations. This was simply a matter of closing a link, but it may not be so easy on other computers. Having overcome
these problems, my computer is now satisfactorily running Z80 software.
T. Sumner

Orpington
Kent

NiCd battery charging

Rod Cooper's articles in the May and June issues showed ${ }^{\text {¹ }}$ the problems of reverse charging in sealed NiCd batteries. This circuit is designed to reduce these problems in a cheap and effective manner.

In a battery, the cells are grouped in pairs as shown. Normally the combined cell voltage keeps Tr_{2} switched on. If voltage falls below 1.3 V which is equal to two diode voltage drops and one cell voltage - then Tr_{2} turns off. The voltage across one cell cannot become negative. Optional diode D_{1} allows other cells in the battery to function when this cell pair has cut out.

About 0.1 to 0.3 V is lost in the circuit due to $\mathrm{VCE}_{\text {sal }}$ in Tr_{2}. In addition, current passes through R_{1} even when the battery is not in use. Values shown give about 12A leakage current and 100 mA load current.
Michael Robertson
Oxford

Five-decade oscillator uses one op-amp
A chopper-stabilized op-amp, the ICL7650, replaces two opamps in a previously described circuit* to provide a simple fivedecade oscillator, whose frequency is set using only one potentiometer. Output of the circuit is a squarewave.
The i.c's internal oscillator squares output of a variable frequency range ramp generator consisting of C_{1}, and a variable
current source. Sawtooth output at pin 10 of the op-amp is directed to the internal oscillator input at pin 13 and a pulse-train output is taken from pin 12.
Kamil Kraus
Rokycany
Czechoslovakia
*Siegel, A.M., Single control adjusts variable oscillator over four decade range, Electronic Design, vol. 32 no. 24 Nov. 1984, p281.

Comparison of HOTOL with the US Space Shuttle is inevitable and major differences in basic technological philosophy can be seen as a result.

The first of these fundamental differences lies in the mode of take-off of the vehicle itself and the propulsion system associated with it. Taking the HOTOL case, with its horizontal take-off (and landing) it may be regarded as being a 'conventional' aircraft, which in many respects it is. Its configuration, not least of that of the wings which are used, owes much to Concorde; and it is stated that the runways from which it would operate are of standard Concorde length.

After the War Britain was 3rd largest steel producer. Now it is 10th. (Engineering Council, see panel)

For propulsion, a new departure is being made, with thrust being provided by a combination of air breathing and rocket engines to take the vehicle into Low Earth Orbit (LEO). This arrangement enables advantage to be taken of the free oxygen through which it is flying during its passage through the earth's atmosphere, and correspondingly to reduce the amount of liquid oxygen which would have to be carried for pure rocket (liquid hydrogen/liquid oxygen) propulsion. This forms one element in the design considerations which make vertical take-off unnecessary, an aspect which, know-how and background generally. This will be returned to later; but in addition to quoting Rolls-Royce on propulsion, British Aerospace gives three examples of major rocket projects for which the Group has had responsibility, together with two rocket engines - Spectre and Stantor. The vehicles ranged from Skylark, a small 'sounding' rocket, developed originally by RAE, Farmborough, through Black Knight, a 10 tonne-thrust liquidfuelled rocket, to the Blue Streak heavy launcher. As the first stage
in a multi-stage European satellite' launcher, Blue Streak "performed faultlessly in eleven firings". This project was abandoned in the late 1960s.

In turn, this specific statement of experience, extending over some twenty years for launch vehicles, leads to the systems work being undertaken in the interlacking fields of remote control, communication and data handling as required for unmanned working. The capability of the British Aerospace organization, with the Rolls Royce contribution, is best illustrated by a straight quotation from the list given by the former in this connection: "Automatic and remote piloting control systems are already capable of handling ascent, in-orbit manoeuvring, payload deployment, re-entry and landing." It may be added that HOTOL is shown as being fitted with radar; and it does appear that the nose cone configuration would be basically the same as for Concorde.

It will be realised that any comparison of HOTOL with the Space Shuttle is bound to finish up with the question, "What advantage has the unmanned vehicle over the manned Space Shuttle, with its inherent capacity to stay in orbit for a period of some days and to act as a miniature space station?" The main substance of this question can be put in another way - "What is the justification for preceeding with a project which has reached the end of its design development studies when no immediate application for it can be seen?."

Clearly, there are two mutually dependent main issues, technical and economic, which have to be examined in the light of the unknowns that lie ahead. Even from the outline descriptions it becomes evident that by virtue of this background of experience and know-how, combined with the innovative ability shown in the project studies, these problems will be found to have been anticipated in great measure as an integral part of the essentially forward-looking project work. Consequently there are good reasons for assuming that, with this anticipation, the long and damaging delays which can take place in the early stages of engineering development would be greatly reduced, if not virtually eliminated in many areas of the work. Thus in view of the extent of the effort (both in human and material terms) which has to be

In 1900 Britain made 60\% of the world's shipping. Today it makes 3\%. (Engineering Council, see panel)
deployed at this stage in such a programme, it can be assumed that a more than significant saving in cost would be achieved.

HOTOL has been called a lowcost spacecraft launcher by British Aerospace; and this can be seen as a key phrase extending over the entire project. Thus going on from the $R \& D$ end of the studies just quoted, one looks at the engineering economics of the whole project, beginning with the advantages exhibited by unmanned, as opposed to manned, operation.

First of all, the space occupied by the human crew, and particularly by their 'life support' equipment, can be devoted to payload, and their individual weight penalties removed. This gain in payload capacity will be offset to a certain extent by the corresponding demands of the replacement remote-control equipment; but it would appear that these demands would be much less for the unmanned condition.

Although not strictly comparable, similar considerations apply to the economies effected by the use of combined air breathing and rocket propulsion in conjunction with a winged vehicle configuration to permit horizontal take-off and - of equal significance - to make single-stage-to-orbit possible. These techniques, as discussed earlier, take full advantage of existing practice; and, as in the case of Concorde ${ }^{1}$, this applies with particular force to the electronically based systems engineering required.
Thus, with this background it is possible to give a two-part answer to the first question related to the Space Shuttle: a) On the economic side, the development costs of HOTOL, eventually fed into the operating costs, should be much less than for the Shuttle: while with the comparative lack of complexity in HOTOL both its initial (capital) and operating costs should be

Britain once exported motor
bikes to over 100 countries. Now it imports almost every machine. (Engineering Council, see panel)

Britain's hidden

Most critics agree that the British are still a nation of inventors but that their record for bringing their new ideas to fruition is increasingly open to question. The range of the criticism is wide and is far from baseless; but this series set out to show that a very different picture emerges when unique technological strengths built up over the years are taken into account. If 'built up over the years' seems frightening in the context of invention and amid the clamour for University-based Science Parks, it is in the 'total engineering' power of the British that the unique capability to exploit the new ideas exists.

Opposition to this view is strongly expressed, in extreme cases amounting almost to a counsel of despair. This is seen, for example, in the recent Engineering Council advertisment where a group of pictures of a
'bowled-out' cricketer - reproduced in this article - and their captions carry a story of decline in varied UK industries.
These articles counter this with powerful examples, taken from the build-up of the aerospace industry, the full range of medical electronics, and - one of the most telling examples - in computer-based process and control applications (July article). With the example of the CEGB's National Grid control complex, that article highlights the thrust of the series - that the British have the power to develop their new ideas, and more significantly, to set up organisations which give complete flexibility to individual teams to work on their own projects.
Another major aspect dealt with is that of continuity which brings with it a climate of confid-
much less.
b) Bearing in mind the low-cost aspect, HOTOL offers a means of staying in space in a controlled orbit at an operating height of some 300 km and for a (typical) duration of 50 hours. While in orbit, satellites with a total mass up to 7 tonnes can be launched; and it is inferred that observational data can be acquired for real-time onward transmission or brought back to earth in recorded form. All this is done without highly trained specialists having to be exposed to the rigorous conditions encountered in space; and without massive ground (rocketrange type) preparation and operational facilities being required.
Thus, the final conclusion can be reached that, because of all these low cost features, "Several HOTOLS could be provided for the price of one Shuttle"; and that this means that the number of vehicles available for a given programme expenditure would be greatly increased so that, for example, quick follow-up action could be taken to gain immediate checks on suspect data. This is in contrast to the more widely separated 'appearances' of the Shuttle, with the factors contributing to this including a much more lengthy turnround time in addition to the comparatively large cost of setting up a single mission.
Comparative figures for the two types of operation are a reduction in cost by a factor of five for sending HOTOL into low earth orbit; while even for geo-

Before the War almost every car on Britain's roads, was British. Now well over half are foreign. (Engineering Council, see panel)
synchronous launches a reduction of 50% is claimed for the unmanned operation. In this connection it is also claimed that HOTOL would be able to compete realistically for some three quarters of commercial market demands as predicted for the year 2000 onwards.
This reference to the year 2000 serves to introduce the concept of HOTOL becoming a manned aero-
space plane for the 21st century; information on these studies having been issued at the end of May 1985. (The comparative figures quoted above are taken from this source, and are obviously based on up-to-date - confirmed surveys.)
The salient features of this striking project for a 'Transatmospheric Skyliner' are:

- The installation of a capsuletype passenger compartment in the payload bay with conventional airline seating for about 30 .
- Retention of all elements of the basic HOTOL design as described for unmanned operation. Provision was made for both manned and unmanned operation right from the outset as part of the original concept.
- Forward looking plans for ultra-high-speed passenger service with the main section of the flight consisting of a ballistic trajectory outside the earth's atmosphere, with a powered climb to this path reaching a maximum of Mach 5 , and with a corresponding descent path to landing after re-entry. The possibilities offered for the future by this flight pattern are spectacularly illustrated by the proposal for a one-hour service from London to Sydney (overhead to overhead in 45 minutes).

With this background, and reverting to the original composite question, it can be said that, as compared with the Shuttle,

HOTOL would appear to offer a more flexible and a lower cost service for launching satellites and for similar tasks. On the other hand, at the present time the Shuttle stands alone in providing its re-usable Space Station faclity; and the importance of this and the pioneering work that went into it cannot be overemphasized.

These innovative studies are of special interest to all R \& D engineerss with management of a project where more than one branch of technology and several separate interests are involved. The HOTOL studies, with their comprehensive documentation, and with their interlinking with Concorde in particular, give an inside picture of the way in which advances are made, and consolidated, in a large, multi-team, high-technology project. A similar picture has been built up for other comparable UK projects,

notably for the CEGB in Big-system automation and telemetry (Article 5); and the work of that authority enters into the next section - on continuity
However, there are two aspects of the aerospace total study which have made it uniquely suitable for this article, both strongly related to the future.
The first is that, although conducted as a pure research exercise, its content has been predominantly practical, outstandingly with regard to 'spin-off'. Spin-off, in its widest sense, and contributing to a number of major technologies within the aerospace context, represents what is perhaps the greatest strength of this multi-team project. It certainly justifies the approach which has been adopted and which has resulted in the informed and coordinated builtup of background of mutual benefit to, for example, the aerospace and electronics/control

Britain discovered the wireless.
It now imports $\mathbf{9 6 \%}$ of its portable radios. (Engineering Council, see panel)
engineers concerned. This does, of course, correspond with the interchange and spin-off shown with radar and television (Article 2) which developed in Great Britain even before World War II.

For this comparison, it should be pointed out that the spread of technologies is much greater for the aerospace concept - both radar and television are essentially electronic in character. Consequently, spin-off and mutual support extend over a much larger number of fields in the aerospace case. In turn, this means that shutting-down an individual project of this nature will affect any others which are being supplied with information or with results from it on which they may well be utterly dependent. There is no need to stress the seriousness of such knock-on consequences, quite apart from the loss in national terms which comes from the break-up of an
developed, recognised by academics as original and far-reaching: human behaviour under cri-sis-control stress, immediate presentation of information for unimpeded operational use, and hyper-autism, which together with the concept of data marshailing' have all recently featured in these pages. Of these, hyper-autism is particularly significant in that individuals have been brought together to form an R \& D organisation similar to that described for the private venture of the August article but working entirely on a voluntary basis. September's article describes their advances.

This present article, the last in the series, brings together these ideas to show where Britain's hidden strengths exist, where they are being suppressed, and how they could be brought to the surface again in the future.
established team:
These considerations are sufficient in themselves to justify the retention of a project which has reached the end of its design/ development studies when its ramifications extend even over a fraction of those as quoted. In other words, on these grounds alone one can answer the original question, with the statement that the losses incurred by shutting down a project which has reached the early stages of engineering development (as distinct from studies), are so great that retention is justified on economic grounds alone.

It is, however, in terms of the future that complete justification may be found; and it is with this specific aerospace project under review that the full extent of the arguments in favour can be seen. Quite simply, such projects

Britain made the first practical computer. It now has only 5\% of the Information Technology market. (Engineering Council, see panel)
should be carried on because of the crucial base they provide in whole areas of technology.

Continuity

The whole question of continuity has been brought in at relevant points throughout this series; especially in relation to the climate of confidence which can be associated with it. Two kinds of climate of confidence, closely interlinked, exist here. The first, technical, has already been given considerable emphasis, particularly with regard to the transfer of know-how from one branch of technology to another.

The other kind of climate of confidence, assurance of the future, is more than the impossible ideal which it appears to represent, certainly if taken literally.

However, there are two elements which do involve the future and some degree of assurance. The first of these, which comes under the technical heading, is
concerned with the dual issue of spin-off and sub-invention. This obviously cannot be taken into the long-term; but clearly it is vital for a reasonable time to be seen to be available for the "sideissue' developments to be undertaken which produce spin-off. In this connection, it should be pointed out that, in terms of R \& D management, one cannot justify expenditure of effort and resources on 'off-stream' work unless adequate time is available for it: it must not be scamped.

On the other hand, success even with a minor, but nevertheless new, development, can have an effect far beyond the immediate use to which it is put, particularly with regard to the personal side. That some widening of the base of the programme has taken place, and that effort has been devoted to the (effectively) separate work, indicates that the project has been made larger with a potential for interlinking with other R \& D areas; and this can offer a wider view of the future.

If successful, there are, of course, economicc advantages which accrue from such an approach. One of these illustrates the principle given in Article (1), that methods and techniques developed for a specific part of a project do not have to be rediscovered and can be applied in the future, provided continuity is maintained over the whole series of programmes.
Two main issues covered by continuity come in here. The first is the straightforward use of the word for describing the coordinating and other processes, and the policy behind then, which keep even the largest projects flowing smoothly and successfully. A number of examples of such successful UK operations have already been given one of the most outstanding in the present context being that of the CEGB's far-reaching development programme for the control complex for the National Grid ${ }^{3}$. Extending over a considerable number of years and, if anything, being accelerated at the present time, this 'total' project has continuity literally as its key feature.
The second of these issues may be linked with the continuity which lies behind the proven capability of the British to show complete flexibility in approach when dealing with the new and untried, or of responding quickly to new phases in the work. The statement of this capability is in most respects the statement of the per-

Britain once made all the textile machinery in the world. It now makes 8\%. (Engineering Council, see panel)
sonal qualities required to undertake wide-ranging project work and advanced engineering which is demanded for the technological ventures already described. The acquisition of these qualities is by no means automatic; although it has been submitted in this series that, in a sense, they are almost a national characteristic. However, in practical terms, the process of acquisition takes time, whatever the inherent capabilities of the individual may be; and expressed as a period of education (which in many ways it is) should be recognized as being inseparahble from R \& D work. Therefore, there is an implied commitment for continuity to be maintained for the individual to work effectively and smoothly without worrying about interruptions to his specific programme.

The macro-project

Throughout this series it has been possible to show that there is an enormous fund of technological knowledge and experience which can be found in Great Britain at the present time and at all engineering levels. Moreover it has been possible to show that the British retain the power to set up organizations capable of handling the largest projects right from initial development to full exploitation of the original idea or group of ideas on which the project has been based.
However, it is felt that, although these examples have given a representative picture of the way in which these projects are run and of the British expertise in such fields, this capability should be examined in relation to a project which is very much in the future.

The 'macro-project' which has been selected for this purpose is entirely hypothetical; but the circumstances which surround it are far from hypothetical. They are the conditions of drought and
consequent famine which are affecting much of the continent of Africa, and have proved of more than passing concern to the rest of the world. Expressed in utterly basic terms, the proposal is that this problem should be tackled at source with the primary task to provide water on a huge scale, first for human consumption and then for irrigation. Assuming breeder-reactor power would be available, the water would be obtained by evaporating sea water using nuclear power, and distributed by pipeline, perhaps initially by tanker. Each section of this plan would represent a development programme of unprecendented magnitude; but, on the other hand, need not be regarded as insuperable.
Power generation would probably have safety precautions as its biggest project engineering committment; but there is no reason to believe that this and all the other steps into new design and development areas would be beyond the capacity of the UK, bearing in mind the record and achievements of the supply industry and that of the manufacturing side both at home and internationally. It is perhaps not out of place to refer to a visit to a geothermal station in the North Island of New Zealand where it was clear that a new technological world had not been found to present insoluble problems.
In the same way, pipeline 'transmission' of water over long distances can be seen in South Australia and in the west of the island continent where temperatures can reach values not dissimilar to those encountered in Africa.
Continued on page 64

Last year Britain even imported 65% of its sports equipment. How's that! (Engineering

Council, see panel)

Application other than Cable T.V. includes C.C.T.V. (up to 26 Channels 8 MHz wide on V.H.F. Repeaters, and up to 65 Channels 8 MHz wide on U.H.F./ V.H.F. Repeaters). Suitable for outdoor mounting.

trye	frequency RANGE MHz	GANN dB AOJUSTABLE	MAXIMWHA DATPUT dRmv	$\substack{\text { FREO RESPONSE } \\ \text { FLATNESS }}$ 5		NTERNAL SLOFE ADUUSTMENT	POWER GEQUIREMENT
trscasob	40.300	10.30	$60 \times 181000 \mathrm{mvi}$			5 CB	27.92 V 10VA -
TSC3060SM	40.300	10.30	Gode (rooemv)	+ 0- 5080		508	2Sasi NA -
TSC3660	$\begin{aligned} & 40-300 \\ & 470.060 \end{aligned}$	$\begin{aligned} & 10.30 \mathrm{MHF} \\ & 16.36 \mathrm{UHF} \end{aligned}$	60 de (1000 mv)	- O- 5 - ${ }^{\text {a }}$		$\begin{aligned} & \text { sode vif } \\ & \text { UHF } \end{aligned}$	27.47 V 18 Va -
TSC3660SM	$\begin{array}{r} 44,300 \\ 470.060 \end{array}$	$\begin{aligned} & 10.300 \mathrm{MFF} \\ & 16.36 \mathrm{UHF} \end{aligned}$		+ $0+508$			25-45V 13VA
TSC3665	$\begin{aligned} & 40-3000 \\ & 470800 \end{aligned}$	10.300 MF 16.36 UHF	$60 \mathrm{~d} \cdot(1000 \mathrm{mv}) \mathrm{VHF}$ 6508 (1800 18 W)UHF	$+0^{r}-506$			2447234VA
TSCatessm	$\begin{aligned} & 40-30050 \\ & 470 \end{aligned}$	$\begin{aligned} & 1030 \mathrm{NHF} \\ & 16.36 \mathrm{UHF} \end{aligned}$	6008 (1)000mvi VhF 65 d (11800 mw) UHF	- ar-5at		$\begin{aligned} & 5018 \mathrm{VHF} \\ & -\quad \text { UHF } \end{aligned}$	25.45 V g gVA
Variaions of the abowe mere wailable on request ie 240 V mans powered; $54-84 \mathrm{~V}$ line powered, irunk distibution ampifier with one trunk line and one disinturion line ouf							
- INTERNAL PLUG IN EOUALISERS IORTONALI							
TYPE	FRE OUFNCY RANGE MHz_{2}	$\begin{aligned} & \text { ATTENUATKN } \\ & \text { MOMAHZ } \end{aligned}$	attenuaton 300 MHz	TYPE	frequency fANGE MHz		ATTENUATON BGOMAHI
ETV6	40300	6 CB	$1{ }^{10}$	Ezu6	470960	sdib	1 d8
ETv9	40.300	908	1 dB	EZU9	470.050	9 OH	'dB
EZV12	40300	12 dB	108	EZU12	470-860	12 dB	1 dB

CIRCLE 132 FOR FURTHER DETAILS

COUNTER TIMERS

From $£ 239$ (+ VAT)

The latest products in the Black Star range of quality test and measurement instruments.

Designed and
manufactured in Britain

Colour leaflet with full specifications and prices available from BLACK STAR LTD, 4 STEPHENSON ROAD, ST. IVES, HUNTINGDON, CAMBS. PE17 4WJ, ENGLAND.
Tel: (0480) 62440 Telex: 32762

FREQUENCY TO 100 MHz TIME INTERVAL
SINGLE PERIOD
AVERAGE PERIOD
TOTALISE
RATIO
STOP WATCH RPM

- frequency multiplier - low PASS FILTER - TRIGGER LEVEL CONTROL - SLOPE CONTROL - INPUT attenuators

Blacknstar

CIRCLE 8 FOR FURTHER DETAILS.

	NEWFAD INSTRUMENT CASES LTD Unit 19, Industrial Estate, Gore Road New Milion, Hants BH25 6SJ Te: New Mition 0425621195		
	HEIGHT	DEPTH	PRICE
	1 U	250	£18.84
	1 U	300	21.35
	2 U	250	22.05
	2 U	300	24.69
	3U	250	25.22
19 inch Rack Mounting enclosures	S 3 U	30	27.99
complete with chassis and top and bottom covers. Front, Side and Rear panels			
are aluminium and flat for easy machin-	4 U heights and depths of 400 mm are available in minimum quantities of 10 .		
ing. These panels are located with heavy duty aluminium extrusions			
Front and Rear panels are satin anodised. Covers are finished in cream.	prices are ex	USIVE OF VAT	. P\&P §2.50.

WRONG TIME?

MSF CLOCK is EXACT

8 DIGIT display of Date, Hours, Minutes and Seconds
SELF SETTING at switch-on, never gains or loses, automatic GMT/ BST and leap year, and leap seconds
EXPANDABLE to Years, Months, Weekday and Millieseconds, and use as a STOPCLOCK to show when an event happened COMPUTER or ALARM output also, paralleI BCD (including Weekday) and audio to record and show time on playback.
DECODES Rugby 60 KHz atomic time signals, superhet reciever (available separately), built-in antenna, 1000 Km range
LOW COST, fun-to-build kit (ready-made to order) with receiver ONLY $£ 89.80$ includes ALL parts, $5 \times 8 \times 15 \mathrm{~cm}$ case, pcb. by-return postage and list of other kits. TIME RIGHT.

It＇s a whole new board game．．．．．．．with our 7000 Series

Many operations and tasks are now possible through BASIC which

 could previously ONLY be accomplished in ASSEMBLER．Based on the Intel 8052 （romable version of the industry－standard 8051） single－component Microcontroller，the CPU comes complete with BASIC Interpreter，Serial I／O and full support specifically for Industrial Control applications．Many unique features are incorporated and the system allows very fast interactive development of user software for super easy deployment in the target system．

Static MOS RAM boards（to 128 k ）．Power down control boards，Decoder boards providing further address line decoding，watchdog，Real－time clock／calendar，plus additional output flags and 1／0．Mass storage devices．Backplanes．PSU and battery packs．Drive boards offering power output，pulse generation，or externally gated outputs．Multi－channel expandable ADC，Remote switch units for power，sound or V．I．S．of vision

For Industrial Control or Data Acquisition at board，sub－system or turn－key level we

BASIC CONTROLLER
 DISTRIBUTOR ENQUIRIES WELCOME

Sowter Transformers
 With over 45 years＇experience in the design and manufacture of several hundred thousand transformers we can supply：
 AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAME IT！WE MAKE IT！ OUR RANGE INCLUDES
 Microphone transformers（all types？），Microphone Splitter／Combiner transformers．

 Input and Output transformers，Direct Injection transformers for Guitars，Multi－Secon－ dary output transformers，Bridging transformers，Line transformers，Line transformers 10 B．T．Isolating Test Specification，Tapped impedance matching transformers，Gramo－ phone Pickup transformers，Audio Mixing Desk transformers（all types），Miniature transformers，Microminiature transformers for PCB mounting，Experimental transfor mers，Ultra low frequency transformers，Ulitra linear and other transformers for Tran sistor and Valve Amplifiers up to 500 watts，Inductive Loop Transformers，Smoothing Chokes，Filter，Inductors，Amplifier to 100 volt line transformers（from a few watts up to 1,000 watts）， 100 volt line transformers to speakers，Speaker matching transformers （all powers），Column Loudspeaker transformers up to 300 watts or more．We can design for RECORDING QUALITY，STUDIO QUALITY，HI－FI QUALITY OR P．A QUALITY．OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS．Many standard types are in stock and normal dispatch times are short and sensible．
OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES，MIXING DESK MANUFACTURERS，RECORDING STUDIOS，HI－FI ENTHUSIASTS，BAND DESK MANUFACTURERS，RECORDING STUDIOS，HI－FI ENTHUSIASTS，BAND
GROUPS，AND PUBLIC ADDRESS FIRMS．Export is a speciality and we have overseas GROUPS，AND PUBLIC ADDRESS FIRMS．Export is a speciality and we have overseas
clients in the COMMONWEALTH，E．E．C．，USA，MIDDLE EAST，etc．Send for our ques－ tionnaire which，when completed，enables us to post quotations by return

E．A．Sowter Ltd．
 Manufacturers and Designers

E．A．SOWTER LTD．（Established 1941）：Reg．No．England 303990 The Boat Yard，Cullingham Road，Ipswich IP1 2EG，Suffolk

P．O．Box 36，Ipswich，IP1 2EL，England
Phone： 047352794 and 0473219390
Telex 987703G Sowter

TEST EQUIPMENT

Hewlett Packard 131A Mainframe with 1415A TDR plug－in Hewlett Packard 1410A \＆1425A Sampling Plug－ins（pair） Hewlett Packard 6521A 1000v 200 mA Variable Power Supply Hewlett Packard Microwave Link Analysers 3701／3702 Hewlett Packard 3707 RF Unit Maınframe Hewlett Packard 214A Pulse Generators Hewlett Packard 1600A Logic Analyser with pods Hewlett Packard 1610A Logic Analyser with pods Hewlett Packard 1615A Logic Analyser with pods Hewlett Packard 16408 Serıal Data Analyser
Hewlett Packard 141T／8552B Spectrum Analyser System Hewlett Packard 141T／8552B／8555A Spectrum Analyser System Hewlett Packard 86230A 2－4GHz Sweeper Plug－in Systron Donner 6244A 4．5GHz Frequency Counter Tektronix 46375 MHz Oscilloscope． Tektronix 184 Time Mark Generator Tektronix 191 Constant Amplıtude Generator Tektronix 106 Pulse Generator
Tektronıx TM504 Mainframe with DC503／PS503A／FG502／DM502 Tektronix 568 Sampling Oscilloscope with 3T5 \＆3S1 Plug－ins Sorensen 300v 3A Metered Power Supply Unit ．
Sorensen 300v 1．5A Metered Power Supply Unit Sorensen 600v．75A Metered Power Supply Unit Philips 150 V 3 A Metered Power Supplies Coutant 24 v 10A Power Supplies． Coutant 24 v 2 A Power Supplies Lyons PG2－E Pulse Generator． Systron Donner Pulse Generator 100A． Telequipment D75 50MHz Oscilloscope Wayne Kerr B641 Autobalance Digital Bridge Biomation K100D Logic Analyser with pods． Biomation X－Y Display
Narda 61A1B Attenuator Calibrator Philips PM 5770100 MHz Pulse Generator Tektronix Amplitude Calibrator Electrohome $19^{*} X-Y$ Montors（ $B \& W$ ）

All equipment working and calibrated． VAT and carriage extra
TIMEBASE（n）工P家風 VISA－ 94 ALFRISTON GARDENS SHOLING，SOUTHAMPTON SO2 8FU TELEPHONE：（0703） 431323 Callers welcome．Access／Barclaycard：Telephone your order

68000 hoard

by R.F. Coates

The $£ 100$ Kaycomp - Bob Coates, 68000 computer board for engineers, students and enthusiasts - is developed using a terminal and takes a G64 bus interface.

Kaycomp is a low cost computer board using a Motorola 68000 microprocessor with 16 -bit data bus. It is designed for use either as an evaluation/educational tool or as the processor board of a larger system, connecting to a wide range of readily available peripheral cards through its G64 interface bus.

Programs can be entered using a terminal to gain access to Kaycomp's 23 function monitor program Kaybug. There's also an optional line-by-line assembler available to speed up program development. Alternatively, the board also links to a host computer with assembler/compiler facilities. Communication software is included in the monitor program.

The 68000 microprocessor has a 32 -bit internal structure. Eight data and seven address generalpurpose registers are available to the programmer, all 32 bits wide. Its external address bus is 24 bits which gives a linear address range of 16 megabytes, Fig. 1.

Motorola evaluation kits for the original eight-bit 68000 i.c. were available for around $£ 150$. There is a similar kit for the 6809 microprocessor but it was not introduced in the UK. For the 68000 microprocessor, Motorola produce a design module costing £1500 - a tenfold increase over the price of a 68000 evaluation kit.

Of course the 68000 design module is a far more complicated product than its older equivalents and designed to allow evaluation on a wide scale. In many applications though this complexity is not necessary and there is certainly a need for a low cost evaluation system.

I designed Kaycomp so that it could be built in its basic form for under $£ 100$. In this form it has two RS232 serial interfaces and general-purpose i/o lines provided by a 68681 i.c., a monitor eprom, a small ram and a full 16bit 68000 i.c. When expanded,
the board has 128 Kbyte ram, 64 Kbyte eprom, two serial interfaces, a 68230 peripheral i/o device and a bus interface which allows connection to standard peripheral cards.

Large systems nowadays can have many processors and direct memory access controllers working together on the same bus to multiply processing speed. I considered that this feature was not essential to learning about and evaluating the processor and leaving it out saved a lot of peripheral logic. If you are interested in the type of work that requires multiprocessing, $\mathcal{L} 1500$ won't normally be a problem.

An external bus interface probably isn't essential for training and evaluation either, but 1 included one to increase the usefulness and versatility of the board. VME bus is the obvious choice for a 68000 processor board but the cost of implementing it is very high. To illustrate, one manufacturer produces a single Eurocard wire-wrap board for prototyping containing just VME interface chips for $£ 600$.

My choice was the European G64 bus designed for Motorola eight-bit processors. The interface circuit consists of just three t.t.l. devices. G64 is probably the best supported eight-bit Eurocard bus, with over 200 different cards available from many different manufacturers, but it is not well known in the UK yet. The main UK manufacturer is Syntel of Huddersfield which produces a wide range of processor and peripheral cards, back planes, racking systems, etc.

Kaycomp overview

Figure two illustrates the system. Kaycomp in kit form is dou-ble-Eurocard sized, measuring 234 by 160 mm , and its p.c.b. is double-sided but to keep costs down, it is not plated through as a
board of this complexity normally would be. Layout is however for a plated-through p.c. board which means that some soldering on the top side of the board is necessary. Sockets for i.cs must allow soldering on the component side too.
In order to keep costs down, some systems use a reduced-bus version of the 68000 , the 68008 , which although internally the same as the 68000 only has an eight-bit data bus and a 20 -bit address bus. I decided against using this version. The board accepts either the 68000 or an enhanced version, the 68010, running at up to 10 MHz . The 68010 is a virtual memory version of the 68000 . This feature cannot be used with Kaycomp, but the 68010 also executes some instructions faster and has some extra ones too.
Memory consists of two eprom and two ram sockets. Two of each byte-wide memory are required to give a 16 -bit data width. Links allow eproms with standard

Fig.1. The 68000 has a 24bit external address bus giving an address range of 16Mbyte.

Fig. 2. Kaycomp uses a full 68000 processor and two peripheral i.cs from the same family. Using these instead of more common 6800 peripherals means higher performance and increases the board's value as an evaluation tool.

Fig. 3. Kaycomp can be used by simply connecting a dumb terminal but in this configuration, it is effectively connected in the terminal line from the host computer. In this way, software developed using 68000 assemblers and compilers on the host can be fed directly into the board.

JEDEC pin configurations from 2732 to 27512 to be fitted, giving a range from 8 to 128 Kbyte . Note that not all larger eproms conform to the standard pinout, notably those from Mostek.

Ram sockets currently accept either 2 or 8 Kbyte static rams, i.e. either 6116 or 6264 , to give either 4 or 16 Kbytes . The board is laid out though to accept 16 and 32 Kbyte devices for when monolithic i.cs become available, which will give up to 64 Kbytes of ram. Hybrid 16 and 32 K devices are available now but they tend to be expensive. Reasonably priced hybrid 32 Kbyte rams consisting of four small-outline 6264 i.cs on a ceramic substrate are produced by Digital Memory Systems, the DMS8832-15PC, and by Hybrid Memory Products, the HMS 62832.

To allow programs to be developed and written on the board, there's a monitor program which fits into two 2732 eproms. This monitor, Kaybug, requires connection of a separate RS232 terminal. If a terminal is not available, many home computers such as the BBC microcomputer have an RS232 port and can be made to act as a dumb terminal. With this in mind, the monitor program can easily be set to produce either a 40 or 80 -column display by a keyboard command.
A second RS232 serial port on

52

Kaycomp can be used to connect the board to a host development system or mini/microcomputer. Buth RS232 ports come from a 68000 peripheral i.c., the 68681 dual asynchronous receiver/ transmitter or duart. The 68681 internal oscillator requires only a 3.6864 MHz crystal. A cheaper 3.579545 MHz American colour tv crystal will suffice; data rates will be a little out but still within the required tolerance.

For full-speed operation, the processor requires a separate 8 MHz crystal clock but if speed is not important, the duart 3.6 MHz clock may be used. If you need to used the serial ports in an application, there's another version of the monitor program available which allows you to develop programs through an external G64 dual serial port card.

Parallel input/output is provided by another 68000 -family i.c., the 68230 peripheral interface/timer. This optional i.c. is not used by the monitor and all of its facilities are available for user applications and evaluation.

Finally, there's the optional G64 bus interface which consists of three t.t.l. bus-interface i.cs. There are two sections in the G64 bus memory map, one for memory addresses and the other for peripheral addresses. The peripheral area consists of a 1 Kbyte block somewhere in the memory map which is decoded on the processor board. Valid peripheral addresses are denoted by assertion of the VPA signal, which is not to be confused with the 68000 signal of the same name.

On Kaycomp, the G64 bus is provided solely for the addition of peripherals. The on-board memory is potentially quite large and capable of operating at much higher speeds than would be possible with memory operating through the interface bus.

Monitor software

Kaycomp's monitor program Kaybug allows you to enter and debug programs and exercise all the facilities on the board. Commands allow you to display/alter memory, set break points and run or single-step trace through programs. Registers can also be altered. Kaybug contains all of the usual monitor features.
At a basic level, Kaybug allows programs to be hand written and typed into memory from a simple terminal using the 'memory open' command. There is an optional line-by-line assembler to simplify this job. If a home computer is used source code can be written, edited and stored using the computer's facilities. When ready, the source code can be sent for processing by the Kaycomp line assembler. Object code is then produced and loaded into ram as each line is entered.

If you have a development system or development facilities on a micro or minicomputer, the second serial port allows program transfer. Kaycomp is then effectively connected in the terminal line from the host computer as shown in Fig. 3.
One Kaycomp command allows the board to become 'transparent', i.e., the terminal communicates directly with the host computer as if the board did not exist. Programs can then be written and assembled or compiled in a high-levet language according to the 68000 program development software available on the host computer. Another monitor command allows resulting object code to be loaded into Kaycomp's memory in Motorola S -format ready for running. The procedure may vary slightly depending on the host system used but this is a common way of developing programs.
Alternatively, a computer with 68000 'cross-software' can be made to act as both a terminal and development system, Fig.4. A monitor command allows object code to be loaded through the terminal port; the host port is not used.

Before you can understand the
circuit, you need to know a little about the 68000 processor, Fig.5. More detailed descriptions are given in the Motorola Data Manual and the MC68000 Microprocessor User's Manual.

About the circuit

Clock drive. The clock input is a t.t.l. compatible signal which is internally buffered for development of the processor internal clocks. There are 68000 processor versions with clock speeds from 4 to 16 MHz faster versions are expected.
Address/data buses. These two buses are fairly straightforward. There are 16 data lines and 23 address lines but there is not an external A_{0} address line. Addresses are considered as being byte sizes, i.e. eight bits, and although A_{0} is used internally, the address bus is only capable of generating even-number addresses.
Asynchronous bus control. Bus control is a little different to that of previous eight-bit processors in that bus transfers between the processor and memory/peripherals are asynchronous.
On the 68000 for instance bus transfers are controlled by a synchronous timing signal E . This is an equal mark/space ratio signal upon which all bus timings are based. In the case of writing to memory the processor sets up the address bus and read/write signal in the first (low) half of the bus cycle and sets up data to be written in the second half. At the end of the cycle, the E signal returns low and data is latched into the memory.
When reading, the processor presents memory with the address and expects it to have data ready on the bus by the time that the E signal falls to latch the data bus into the processor. This means that the system designer must make sure that memory or peripherals used are capable of operating at the speed required by the processor or, more likely, that the processor clock speed is slow enough to suit the slowest device in the system.
In the 68000, this problem is overcome by using asynchronous bus transfers. The processor sets up the bus in the same way, but it then asserts an address signal called AS and holds the bus until it receives a data transfer acknowledge signal, DTACK, back from the memory or peripheral. DTACK signals from the various
system elements are wire-or'd together before entering the processor. This ensures that each part operates at is highest speed.

Peripheral i.cs in the 68000 family produce the DTACK signal but extra circuits are required for this if peripheral devices from other families are used.
Accessing bytes. No A_{0} address line is available so some means of implementing byte read/write operations is required. Two signals handle this, upper data strobe UDS for even byte locations and lower data strobe LDS for odd locations. For a normal 16bit word transfer, both signals are asserted.

Figures six and seven summarize the various bus transfers. Figure six shows a read and then a write cycle with no wait states inserted. After setting up the address bus the processor asserts AS, UDS and LDS and then waits for DTACK which it responds to by releasing the three signals. At that point, the addressed device must also release DTACK. If a slow device is addressed, it can be seen that wait states are inserted by the processor after S 4 until DTACK is received. Figure 7 shows the action of UDS and LDS when addressing bytes.
68000 peripheral i.c. accesses. Asynchronous bus accesses work fine with 68000 peripheral i.cs but not with the wide range of 68000 peripherals which do not generate DTACK. There are three control pins on the 68000 especially for 68000 peripherals.
If the address decoding circuit asserts valid peripheral address signal VPA instead of DTACK, it indicates to the processor that the device or region addressed is a 68000 family device. The processor then executes the rest of the bus cycle synchronized to a 6800 type E signal as described earlier. It acknowledges this fact by asserting low the valid memory address output, VMA, which is gated with the device's chipselect signal.

The 68000 E signal, with a 40:60 mark/space ratio rather than 50:50, is at one tenth of the clock signal so a processor operating at 10 MHz can access 1 MHz 6800 peripherals. A synchronous bus access results in a somewhat slower cycle than is possible with asynchronous transfer.
Interrupt control Seven levels of interrupt can be provided for, which ideally would mean seven

interrupt pins. To save on pins though, the seven interrupt levels are turned into three-bit binary, the eighth value, all pins high, indicating no interrupt. Normally, these three pins are fed directly from the three possible interrupt sources. Hence only three interrupt levels can be used, one, two and four.

When servicing an interrupt, the 68000 fetches an address from a vector and continues processing from that address. There are two types of interrupt vectoring though, 'auto-vectored' which is similar to that of the 6800 , and vectored, where the interrupting device provides a vector number on the data bus in response to the processor executing an interrupt acknowledge

Fig.4. A computer can be used as both a terminal and host for developing Kaycomp.

Fig. 5. Input/output signals on the $\mathbf{6 8 0 0 0}$ processor, top, and Fig. 6, read-then-write bus transfer with no wait states.

Fig. 7. Action of upper and lower data strobes UDS and LDS used when addressing bytes. These strobes are needed because the 68000 has no address-line zero.

Fig. 8. Function codes indicating the state and cycle type currently executing.
These outputs are valid whenever the address strobe is active (low).
cycle. This allows different interrupting devices on the same interrupt level to be serviced by different service routines without polling, which saves time.
Processor status. When processing an interrupt the processor places a unique code on status lines $\mathrm{FCO} / 1 / 2$ of all ones, which is used by Kaycomp to generate an interrupt acknowledge signal, IACK. This signal lets the rest of the board know what is happening. Other states are indicated by the status outputs, Fig.8, but only interrupt acknowledge is used on Kaycomp.
System control. Three signals constitute the system control section, bus error, reset and halt. Bus error, BERR, is not used on Kaycomp. It has two main functions. First, I mentioned earlier that bus cycles are terminated with DTACK. If the circuit does not send this signal, if for example access to non-existent memory location is attempted, the processor stops. A way around this is to have a hardware timeout circuit which generates a buserror signal if DTACK is not asserted within a given period. A bus-error signal causes exception processing to allow an orderly recovery - hopefully.

Function code output			
FC_{2}	FC_{1}	FC_{0}	Cycle type
Low	Low	Low	(Undefined, reserved)
Low	Low	High	User data
Low	High	Low	User program
Low	High	High	(Undefined, reserved)
High	Low	Low	(Undefined, reserved)
High	Low	High	Supervisor data
High	High	Low	Supervisor prograni
High	High	High	Interrupt acknowledge

Components and Support

Individual components complete kits including doublesided p.c.b. and data packs are available from Magenta Electronics, 135 Hunter Street, Burton-on-Trent, Staffordshire DE14 2ST. A kit for the minimum system described is available for $£ 99$.

G64 card suppliers include Syntel Microsystems, Queens Mill Road, Huddersfield, HD1 3PG and Thomson Semiconducteur whose UK distributors include Pronto Electronic Systems, 466 Cranbrook Road, Gants Hill, Ilford, IG2 6LE. G64 bus backplanes are available from these and also from BICC-Vero.

The second use of BERR is in conjunction with HALT. If both are asserted together the processor will attempt to rerun a previous, failed, bus cycle in the hope that it will work the second time. This can be significant in terms of reliability if the processor is controlling say a large plant, but omission of this feature on Kaycomp will probably go unnoticed. If you attempt to access a nonexistent location, you'll have to press the reset button.

The HALT pin is bidirectional and the processor can drive it low to indicate a double bus error. Bidirectionality also applies to the reset pin. A reset instruction executed in software causes the reset pin to be driven low for 124 clock periods. All peripheral devices connected to the RESET

Cross-software for various host computers is available from a number of sources, for instance, Microtec Research, Frances Road, Basingstoke, supply 68000 crossassemblers, Pascal and ' C ' crosscompilers for DEC, Data General and IBM PC computers.
Bob Coates will program your pair of eproms (any type) with the Kaybug monitor software for $£ 7$ sent to 57 Dalebrook Road, Burton-onTrent, DE15 OAB. Machinecode listings can be obtained by sending a large s.a.e. marked Kaycomp to our editorial offices.
line are reset.
Taking RESET low externally will have the same effect on peripherals but it will not affect the processor. To reset the processor fully, at power-up for instance, both RESET and HALT must be taken low together externally. If the HALT line is taken low on its own, the processor is held in its current state until the line is released.
Bus arbitration conrol. Three pins, bus request, bus grant and bus grant acknowledge (BR, BG and BGACK) make up this section. These deal with multi-processor/d.m.a. functions which are not available on Kaycomp.

Bob Coates gives a more detailed description of the circuits in his next article.

The kit p.c.b. is not a plated-through type; this saves money but requires use of turned-pin i.c. sockets.

- AMMEE

MORE THAN JUST ONE STEP UP

HM208 $£ 1300$.
Dual Trace, Digital Storage $2 m V-20 \mathrm{~V} / \mathrm{cm}$
20 MHz Bandwidth Algebraic Add, Invert $\mathrm{X}-\mathrm{Y}, 4 \times \mathrm{lk}$ Stores, 20 MHz Clock,
Roll, Refresh, Pre-trigger
HM605 $£ 515$.
Dual Trace $1 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$
60 MHz Bandwidth Algebraic Add, Invert
$X-Y$; Single Shot Delay Sweep,
Var Hold-off Component Tester, 14 kV CRT
HM204-2 £365.
Dual Trace $1 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$
20 MHz Bandwidth Algebraic Add, Invert
$X-Y$; Single Shot Delay Sweep,
Var Hold-off Component Tester
HM203-5 E270.
Dual Trace $2 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$
20 MHz Bandwidth Algebraic Add, Invert
$X-Y$ Component Tester
2 Year Warranty
Prices U.K. list ex. VAT

HAMEE

FOR THOSE WHO COMPARE
74-78 Collingdon St. Luton, Beds, LU1 1RX Tel: (0582) 413174 Telex 825484

CIRCLE 134 FOR FURTHER DETAILS.

IQD-
 The world shrinkers

IQD's state-of-the-art DTMF signalling techno ogy now brings you Smartpatch 5700, which allows you to dial direct into the telephone network while you a e on the move, and to accept incoming calls regardless of your location

Smartpatch 5700 is the only intelligen: telecommunications interconnect system with British Telecom approval.

Smartpatch 5700 complemients IQD's extensive range of DTMF products, which includes the Codepad, Micropad and Selcall devices
IQD keeps you in touch.

IQD Limited North Street, Crewkerne Somerset TA187AR England
Telephone: (0460) 74433
Telex: 46283

P. M. COMPONENTS LTD SELECTRON HOUSE, SPRINCHEAD ENTERPAISE PARK SFininchead ri, gravesend, kent dail Bho

A SELECTION FROM OUR STOCK OF BRANDED VALVES

384	7.00	$68 C 8$	1.00	$6 J U B$	2.50
387	4.50	6804	1.50	6656 C	2.95
38824	10.50	6806	2.50	6.776	4.15

by Andrew Ray B.Sc., Intelligent Interfaces Ltd

Fig.1. Software sections of the interface for controlling Commodore peripherals using a BBC computer.

Case study in interface design

Development of the Syscon 6 interface for using Commodore peripherals with a BBC computer illustrates the sometimes overlooked ratio between software and hardware design effort.

It is a popular misconception that microcomputer interfaces are a complex plug and socket and that their design time is equal to the time taken to make the necessary electrical connections.
The Oxford dictionary describes an interface as an area of interaction between two systems. This wider definition becomes more applicable as systems grow in complexity, particularly when distributed processing is involved. As the area of interaction grows, emphasis moves from interface hardware to interface software; this description of the design of Syscon 6 is an illustration of this trend.

Syscon 6 allows Commodore disc drives and printers, now often found collecting dust in educational establishments, to be used with the BBC microcom-

Abstract

puter. Firmware makes sure that the user does not notice any difference between using the Commodore peripherals and the discdrives and printers normally used with the BBC computer. The resulting interface software gives increased data storage capacity, data security and flexibility.

There are two separate interfaces in Syscon 6; both can function concurrently as data is transferred to and from the disc in blocks and to the printer a line at a time. Firmware for the printer interface allows Commodore printers to print a normal upper and lower case character set.

Commodore disc-unit design

To appreciate the design of the disc interface, CDISK, one needs to understand both the Commodore disc unit and the BBC computer disc filing system, the d.f.s.

Over the years, Commodore has produced a variety of disc units, all designed as intelligent subsystems with two microprocessors. One processor unit, described as the file-interface controller, handles communication with the host computer through the IEEE488 interface. The second processor acts as a disc controller. The processors communicate through 4 Kbyte of shared memory used for data data buffering and operating-system work space.
The Commodore disc operating system, or dos, is in the disc unit. All versions support primitive direct-access commands such as those for reading or writing a block of data, and later versions support a relative-record
filing system. However, randomaccess filing systems have always had to be supported by application programs running on the host computer.
Discs are formatted such that outer tracks have more sectors than those closer to the centre. Tracks are reserved for a directory of files and a block-allocation map, or bam. The dos includes error-checking, e.g., read-afterwrite verification.
Disc operating system commands are sent by the computer to the disc unit as strings of Ascii characters. When a dos command has been executed an error-status message, also a string of Ascii characters, can be read by the computer.

BBC computer d.f.s. design
The BBC-computer disc filing system is totally integrated into the main computer. An 8271 disc controller is used with software in a 'paged' rom. This simple but effective design results in rapid data storage and retrieval. Discs are formatted with ten sectors per track which gives 100 Kbyte per side for a 40 -track drive or twice that for an 80 -track one.
There are two distinct areas of interaction between the BBC computer operating system and the d.f.s. The obvious one is the command-line interpreter. After the d.f.s. has been selected by *DISC, other commands such as *BACKUP, *COPY, etc., are passed by the operating system to the filing system for interpretation and execution.
The less obvious interface is used by languages and application programs written in assem-
bly-language. These make use of seven specific operating-system calls for reading/writing data bytes, filing information etc., and 'OSWORD' calls.
Data in a disc file is always stored contiguously. To retrieve a file, the only information required is the file start sector and length. Disadvantages of this storage method are that disc surface faults cannot be tolerated and that frequent file writing and deletion can cause empty gaps between files. To fill the gaps, a
*COMPACT command has to be used.
The first two sectors on the disc's first track hold d.f.s. catalogue information. Only having two sectors limits the number of files per disc side to 31 and file names to seven characters, which can be irritating. All files are treated by the d.f.s. as a sequence of bytes. Extremely fast random access filing is achieved by using a pointer.

CDISK interface design

After studying the Commodore dos and Acorn d.f.s. it was possible to draw up the Syscon 6 CDISK filing-system specification. CDISK would have to have all the facilities of the Acorn d.f.s. and, to be of use in educational establishments, it would have to be capable of transferring programs written on a BBC computer with the Acomid.f.s. to a computer with CDFS without modification.
Commodore dos only fully supports sequential files, so most of the design effort went into a ran-dom-access capability for CDFS. Following aspects of the disc unit design were carefully considered.
Data transfer speed between the host computer and disc unit is limited for two reasons; the disc unit uses software for IEEE488 source and acceptor handshakes, and disc commands are sent as Ascii character strings rather than as a sequence of binary bytes. However, as the disc unit is an intelligent subsystem, the number of commands needed is reduced. Some operations, such as formatting a disc and searching for named files require only a single command.
We considered that the effects of limited data transfer rate on data storage/retrieval time could be reduced by efficient communication. This was achieved by buffering in the host computer and
transferring data to the disc unit in blocks.
Efficient filing system operation depends on how data storage is organized on the disc. After considerable thought, we chose the following method. CDFS catalogue information, load address, execution address, etc., is stored in a dos sequential file.
These sequential catalogue files are referred to by an extended file name which CDFS pads to 14 characters using spaces. The file name is preceded by the CDFS directory character and followed by a space if the file is unlocked or an ' L ' if the file is locked. Each catalogue file contains up to eight two-byte track/ sector pointers to blocks which can, in turn, contain up to 128 two-byte track/sector pointers to the data blocks. Thus the maximum size of a CDFS file is 8×128 blocks or 256 Kbytes , provided that the drive can hold that amount.
During operation, CDFS maintains a pointer for each open file which points to the next byte to be read from or written to. CDFS determines the data track/sector list block, the data block and the position of a byte in the data block from the pointer.
Commodore dos sequential filing system commands and facilities are used to locate and update the catalogue file while directaccess commands are used to read and write data track/sector list blocks and the data blocks themselves. The dos block-allocation map, bam, is automatically updated during sequential file operation. By using the dos block-allocate and block-free commands during read and write operations, CDFS ensures that the allocation map is kept up to date, avoiding conflict between sequential and direct-access operation.
General catalogue information is stored by CIFF in a sequential filing system.
The drive type is used to avoid dos directory tracks and determine data-block size. CDFS formats a disc using the dos NEW command and then writes the system files to it. Backup is carried out by formatting the disc in the destination drive and then copying each file in turn from source to destination.
DOS read-after-write verification identifies a bad block and CDFS then excludes it from further use, allocates the next free block and repeats the write
operation. The interface system is flexible in operation as the sequential catalogue files, data track/sector list blocks and data blocks can be stored anywhere on the disc, allowing a file to be extended at any time. Optimal use of disc space is made as blocks are only allocated as required and freed when not.
The maximum number of files on the disc is limited only by the dos directory capacity and ranges from 151 to 224, depending on the disc-unit model.

CDFS operation

This is how a file is created and written to using CDFS
Opening the channel. This is done in response to an OSFIND call normally resulting from use of a Basic OPENOUT function. CDFS first checks availability of an open channel, checks file name validity and checks that there is no previously opened channel to a file of the same name. It then reads the system file if there are no channels already open to the same disc. During this operation, the disc is initialized if necessary and the write-protection state is determined. Next, CDFS determines whether the file exists, and if so, checks that it is unlocked and deletes it. Lastly, it writes the default catalogue file on disc to reserve space.
Reading and writing data. To increase speed, CDFS maintains two buffers for each open file in the computer memory. The first contains a section of the data track/sector pointer block and the second a data block. Whenever the pointer crosses a databuffer boundary, the data block is written to disc. In the same way, whenever the pointer crosses the boundary of a data track/sector, the data track/sector pointer block is written to disc. The leastsignificant pointer bits specify the next position in the data buffer to be written to. After each write
operation, the pointer is updated. Closing the file channel. Here, the CDFS writes any valid data and data track/sector buffer to disc then erases the default catalogue file and writes the current catalogue file. Lastly, it erases then writes the current system file if no other disc write channels are open.

Having decided how data was to be organized on the disc and determined filing-system operation, the soft ware design could be completed. The software sections are clearly defined. There are two interfaces to the BBC computer machine operating system (mos). First is the pagedrom interface which handles auto-start and auto-boot operations, OSWORD calls and commands not recognized by the mos, such as *CDISK and *CPRINTER.
The second interface handles the seven filing-system calls, OSFIND, OSBPUT, OSBGET, OSGBPG, OSFILE, OSARGS and OSFSC. Most of the commands used by CDISK are similar to those provided by the Acom d.f.s., but some offer addtional features and there are some extra commands like *BLOCK.

Conclusion

For the sake of brevity, I have not included a detailed description of the software. Nevertheless, 1 hope that you have gained some appreciation of the ratio of software to hardware design time, which in this case was around 100:1.
In any interface design, this ratio is a function of the mismatch between the interfacing systems. In this case, the mismatch was considerable. Although this is only an interface between a single-user microcomputer operating system and an intelligent disc-subsystem capable of undertaking one task at a time, the area of interaction between the two systems is large.

Table 1. CDFS catalogue file format. Catalogue information, load address, execution address, etc., is stored in a dos sequential file.

byte	contents
$\& 00-803$	load address, I.s. byte first
$\& 04-807$	execution address l.s. byte first
$\& 08-\& 0 \mathrm{~B}$	extent I.s. byte first
$\& 0 \mathrm{C}-\& 0 \mathrm{~F}$	attributes
$\& 10-\& 1 \mathrm{~F}$	track/sector list block

CIRCLE 119 FOR FURTHER DETAILS

NEW EQUIPMENT made by PYE.

SSB TRANSCEIVERS $130 \mathrm{M}, 2$ Channel $4-8 \mathrm{Mc} / \mathrm{s}$ SSB TRANSCEIVERS 130 M , 4 Channel $4-15 \mathrm{Mc} / \mathrm{s}$ PSU for above 12 V DC/230V AC.
Remote control for above sets.
SPARE PARTS FOR
Linear Amplifier A200, Olympic M202, 100T SSB, Tx Type T100 FM VHF, W15 FM, Rx Type R17/R18 VHF FM, SSB 130 M \& F

DECCA KW 2000 CAT SSB RADIO TELEPHONE

 $2-12 \mathrm{MHz}$ with PSU 230 V AC with Messenger (Mobile) DTR 2002, 2-18 MHz supply direct from 12 V batteryVEHICLE MOUNTING ($3-18 \mathrm{MHz}$) Flexible glass fibre protected rods Type HFA (Separate rod and base assembly available).

POWER SUPPLY UNITS 230 V AC input, $750 \mathrm{~V}-100 \mathrm{~V}+$ $12 \mathrm{~V}, \mathrm{~A} 300 \mathrm{~V}$ output is obtained from a centre tab of the 750 V .

CHARGING SETS 300 watts, 15 V made by BSA

IN STOCK ALSO

Large quantities of Switchboards 'F \& F' Magneto 10 line, Telephone Type ' J ', ' L ' and ' F ', Field Telephone cable D10, MARCONI signal Generator TF 144 H.

COLOMOR (ELECTRONICS LTD.) 170 Goldhawk Rd, London W12 Tel. 01-743 0899 or 01-7493934. Open Monday to Friday 9 a.m. -5.30 p.m. CIRCLE 7 FOR FURTHER DETAILS.

OSCILLOSCOPES	Professional g" green screen monitors made by KGM tor REUTERS
KTRONIX 465 Dual Trace 100 MHZ Delay	Gives quaity 80 column $\times 24$ line display
Sweep $£ 1000$	Composite Video In. Cased Good Condition. ONLY
HEWLETT PACKARD 1707B Dual Trace 75 MHZ	£40 each.
Delay Sweep. Mains/Battery $£ 750$	NEW EQUIPMENT
Sweep	HAMEG OSCiLLOSCOPE 605 Dual Trace 60 MHZ
COSS0R CDU150 Dual Trace 35MHZ Delay	Delay Sweep Component Tester 5515
Sweep $\quad \mathbf{£ 2 0 0}$	HAMEG OSCILLOSCOPE 203.5 Dual Trace 20MHZ
S. E. LABS SM111 Dual Trace 18MHZAC or external	Component Tester $£ 270$
	BLACK STAR FREQUENCY COUNTERS. P\&P ¢4
	Meteor 100-100 MHZ ${ }_{\text {M }}$
TELEQUIPMENT D 43 Dual Trace 15MHZ §100	Meteor $600-600 \mathrm{MHZ}$ ($\mathrm{E126}^{\text {a }}$
TELEQUIPMENT S43. Single Trace 25MHZ §75	Meteor 1000-1GHZ $£ 175$
SIGNAL GENERATORS	BLACK STAR JUPITOR 500 FUNCTION GENERATOR Sine/Square/Triangle 0.1 HZ
HEWLETT PACKARD 6168.1.8-4.2GHZ ¢350	$500 \mathrm{KHZ.P} \mathrm{\& P¢4...............}$.
MARCONITF2008 AM/FM 10MHZ-510MHZ £1200	HUNG CHANG DMM 6010. 32 digit. Hand heid 28
MARCONI TF1066B/1 AM/FM 10MHZ-	ranges including $10 \mathrm{Amp} \mathrm{AC/DC}$. Complete with
470 MHZ ¢375	batteries \& leads P\&P£4 £ £33.50
NITF995A/2 AM/FM 1.5-220MHZ £200	OSCILLOSCOPES PROBES S witched $\times 1 \times 10 . \mathrm{P}$ \& P
ADVANCE typeSG63AM/FM $7.5-230 \mathrm{MHZ}$ ¢75	
ADVANCEtype SG62BAM 150KHZ - 220MHZ ¢70	
ADVANCE type 62 AM 150KHZ - 220MHZ £35	1600S - 32 bits, £450
Fannell Modular Puise Generator System 1HZ-	(Consisting of HP1600A and HP1607A - can be sold separately) Specification on reques
${ }^{10 \mathrm{MHZ}}$ MULTMMETERS $¢ 50$	MARCONI RF MILLIVOLTMETER TF2603 50KHZ
AVO 8 Mk IV and AVO 9 Mk IV.	MARCONI ELECTRONIC VOLTMETER TE2604
Complete with batteries and leads for only£65	MA
AVO TEST SET No 1 ($\mathrm{Simimiar}^{\text {do AVO } 8 \mathrm{Mk} 3 \text {), }}$	20 HZ .1500 MHZ AC/DC/OHMS 300 mV -
Complete with Batteries leads \& carrymg case £80	MARCONI VALVE VOLTMETER TF2600 10HZ
AVO Model 73. Pocket Multimeter (Analogue) 30	$10 \mathrm{MHZ}: 1 \mathrm{inV}$-300V. FSD
ranges. Complete with batteries \& eads. Cl	AVO TRANSISTDR ANALYSER CTA
with Batteries \& Leads18	Suitcase style - battery operated.
PHILIPS DIGITAL MULTIMETERS	ies
	With information only $£ 20$ each
batteries and leads (P\&P £5)	AVO TRANSISTOR TESTER TT169
TypePM 2517 E (L.E.D.) . $¢ 75$	Handheld. GO/NO GO for In-situ Testing
Type PM 2517X (L.C D.) ¢95	Complete with batteries. leads \& instructions.
5 $1_{4}{ }^{\text {n }}$ FLOPPY DISK DRIVES	Now Only $£ 12 \mathrm{p}$ \& p £3
TANDON Height Brand New	CHERRY KEYBOARD - SERIAL/ASCII. STANDARD
SingleSided Double Density \quad ¢60	QUERTY WITH NUMERIC PAD NEW CASED. WITH
Double Sided Double Density $\quad \mathbb{1 0 0}$	CIRCUIT (P\&P£4) £15
MPI Type 92 . Double Sided Double Density. 80 Track Un-used $£ 100$	This IS A VERY SMALL SAMPLE OF STOCK, SAE Or
DISK DRIVE PSU 240 V In 5V1 $6 \mathrm{~A}+12 \mathrm{~V} 15$ AOUt	Telephone for LISTS
Size W125mm. +75 mm ; D180mm. CASED. Un-	Please check avalability before orde
used ONLY £15each p\&p \%	Carriage all unts $£ 12$
$\mathrm{P}_{\&} \mathbf{P}$ ail drives $\mathfrak{5} 5$.	VAT to be anded 10 Total of Goods \& Carriage

STEWART OF READING Telephone: 073468041 110 WYKEHAM ROAD, READING, BERKS RGG 1PL
 Callers welcome 9 a.m. to $5.30 \mathrm{p} . \mathrm{m}$. Monday to Saturday inclusive

CIRCLE 18 FOR FURTHER DETAILS.

Switched-mode power supply

Last part of the instructional series on d.c. supplies is a practical description of a switcher to provide 13.8 V at 13 A .

In this, the last part of the Power Supplies series, I describe a flyback switcher - again to show how the theory is applied and to see if it works. There should be enough detail to enable anyone interested to gain some hands-on experience and perhaps embark on a design of their own.
I have deliberately chosen cheap, easily obtainable components. You can find the switch (a BU126) for less than a pound and the control chip (TDA2640) for a couple of pounds or so, in the advertising pages. The technology is therefore a straightforward application of the ideas to produce the following specification:

- power output 180 watts (13.8 V at 13A)
- flyback mode, double-wound choke
- switching frequency, 16 kHz .

I chose a flyback-mode circuit to introduce the slightly more complex detail necessary for its design: a forward converter should be simpler, should you with to experiment with one, although a storage choke is required, so there is probably not a lot of simplification in it.

Establishing parameters

The two important formulae required are quoted:
$V A=\left(\frac{A_{w} F_{w} P_{w}}{\rho_{c} \mathrm{ml}_{w} F_{R}}\right) \cdot \frac{\sqrt{2}}{\left(1+\frac{\eta^{2}}{3}\right)^{\frac{1}{2}}}$

$$
\begin{equation*}
\cdot \frac{\eta}{(1+\eta)} \cdot \hat{\mathrm{BA}_{\text {core }} \mathrm{f}} \tag{10A}
\end{equation*}
$$

and
$\frac{\mathrm{V}}{\text { Turn }}=\frac{2 \eta}{1+\eta} \cdot \frac{\Phi_{\text {max }} \mathrm{f}}{\delta_{\text {min }}}$

Fig. 2. Circuit diagram of power supply.
the voltage level to enable the feedback system to control the output stability. The flyback choke factor η was chosen to be 0.4: thus, full control is maintained down to a power output of a little less than half the 180 watts. At that point the current in the choke winding falls to the critical zero value and the control circuit detects this and drastically alters the factor to keep the output fairly level. But much stability is lost, and the output smoothing is liable to worsen. Also, the mode of control changes, and an audible whine may arise - from the magnetostriction in the ferrite core.

There is a large d.c. component in the windings of the power

Table 1. Design parameters and quantities for 180 watt flyback switcher

switching frequency	16 kHz
resitivity of copper at $20^{\circ} \mathrm{C}$	$1.7 \times 10^{-8} \Omega \mathrm{~m}$
resistivity increase with temperature, (ref. $20^{\circ} \mathrm{C}$)	$1.3 \mathrm{a} 20 \rightarrow 100^{\circ} \mathrm{C}$
A.c resistance: d.c. resistance of windings	
(extra factor in 10A)	1.4
cross-sectional winding area (not window area)	$180 \times 10^{-6} \mathrm{~m}^{2}$
winding copper factor	0.5
mean turn length	$125 \times 10^{-3} \mathrm{~m}$
absolute maximum peak flux density	300 mT
magnetic core area	$420 \mathrm{~mm}^{2}$
duty factor (mains high)	0.36
duty factor (mains low)	0.47
duty factor (normal)	0.38
minimum to maximum P_{0} chosen to be. ..	0.4

0.38

16 kHz

 $1.7 \times 10^{-8} \Omega \mathrm{~m}$
1.4

0.5
$125 \times 10^{-3} \mathrm{~m}$
300 mT
$420 \mathrm{~mm}^{2}$
0.36
0.4
choke. The optimization of the a.c. performance (i.e. the inductance) therefore requires a gap in the magnetic circuit. As I mentioned in earlier articles, Hanna curves are usually employed to estimate this. My approach was "experience tempered with experiment", in other words, I slid the cores apart very carefully under power - and watched the slope on the current wave being monitoring with an oscilloscope until it showed the shallowest decline. (This was difficult, as there was considerable magnetic pull.) I then inserted paxolin shims of the required thickness.

Operation

The full practical circuit is shown in Fig. 2, with the printed circuit layout in Fig.3. The TDAA2640 s.m.p.s. control chip I chose is being replaced by later types, such as the TDA1060, in up-todate designs. Briefly the 2640 operates as follows (see Fig. 4), ${ }^{1}$.
A voltage of +12 V is required on pin 1. Iderived this via a Zener diode $\left(\mathrm{I}_{5}\right)$ from the main d.c. line. If the voltage falls below +8 V on pin 1 then the protection circuits inside will switch off the supply. Pins 3,4 and 5 are the
oscillatorcontrol component connections. $\mathrm{C}_{11}, \mathrm{~K}_{5}$ and K_{6} produce a switch rate of 16 kHz here. The pulse width modulated output appears at pin 6, feeding the base of the drive transistor, Tr_{1}. $\operatorname{Pin} 7$ is a connection for "low feedback protection". Resistor R_{11} connected to pin 13 reduces the duty cycle to a small value if there is a loss of voltage on pin 10.

It is important to detect overvoltage. A sample is taken to pin 8 via a rectifier network from the sensing winding on the choke. The potential on pin 8 is compared with the reference voltage on pin 9 from the 6.2 V Zener $\left(\mathrm{D}_{6}\right)$ and if the level is exceeded, the

lation control system operates via pin 10. Again, the reference is the voltage on pin 9 and the pulsewidth modulator varies the drive waveform; i.e. the factor δ to maintain level output. If you look at the circuit in the feedback loop, a number of actions can be seen: $\mathrm{R}_{13}, \mathrm{R}_{8}$ and R_{30} supply the sample. The present $R V_{1}$ sets the level of output voltage. The combination C_{15} and R_{12} improves the transient performance: C_{13} and R_{10} is a feedforward network taking a sample of mains hum from the main d.c. feed to enable the modulator to compensate for it. Finally there is a shunt network, $C_{1!} R_{9}$, which sets the gain of the loop and obviates possible instability.

Pins 11 and 12 sense any overcurrent through the switch and turn off the circuit to protect it. The sample is taken across the 1 ohm resistor, R_{27}. The threshold is set by R_{31}.

The components C_{12} and K_{4} from pin 13 to the common line form a slow-start circuit. When switching on, the drive to the switch is gradually increased, reaching full drive after a couple of seconds. Thus, inrush surges are avoided.

Finally, the chip incorporates a fault-condition counter. The number of restarts counted before the circuit is turned off permanently is set by C_{10} on pin 15: after the final trip, the whole supply must be turned off, then on again to restart. Pin 14 is a remote-control point, left floating here.

R_{1}	2R7 8 W	D_{1}	
R_{2}	22k 5 W	D_{2}	2 A
R_{3}	5k6	D_{3}	Mains Bridge
R_{4}	390k	D_{4}	
R_{5}	39k	D_{5}	12 V zener
R_{6}	10k	D_{6}	6 V 2 zener
R_{7}	5k6 2\%	D_{7}	1N4004
R_{8}	4k7	D_{8}	75 V zener
R_{9}	1k	D_{9}	BY206
R_{10}	6M8	D_{10}	BY210
R_{11}	82k	D_{11}	BY210
R_{12}	10k	D_{12}	a,b BYV32
R_{13}	27k		
R_{14}	470R	Tr,	BSX21
R_{15}	27k 2\%	Tr_{2}	BU126
R_{16}	150k	IC_{1}	TDA2640
R_{17}	1k		
R_{18}	3k3	T	mains filter
R_{19}	22k 5 W	T	see text
R_{20}	3k3	T_{3}	see text
R_{21}	5R6		
R_{22}	470R	L	$10 \mu \mathrm{H}$
R_{23}	33R		
R_{24}	10k 9 W	F_{1}	2 A slow
R_{25}	100R	F_{2}	1 A

Fig. 4. TDA2640 contains advanced control and monitoring circuitry, as outlined here.

Driving the switch

The variable-width voltage pulse from pin 6 of the control chip requires converting into the appropriate current-drive waveform to operate the BU126. I discussed the reasons, and how the fast turn-on and reverse basecurrent turn-off waveform was produced, in part 5.

The driver transistor Tr_{1} is a BSX21 and stores energy in the

Fig. 3. Component side of the printed circuit board.

Fig. 5. The maker's data regarding base current requirement, given graphically.

References

1. TIM2640 Control IC for Switched-mode Power Supplies Mullard Technical Information No. 19.
2. Television Switched-mode Power Supply Using the TINA2640 White, L.M. Mullard Technical Communications, July 1975.
driver transformer $\left(\mathrm{T}_{2}\right)$ while the main switch is off. When the BSX21 goes off, the energy stored in T_{2} turns on the BU126. The base drive current must therefore decline as the field collapses in T_{2}. The secondary inductance must be large enough to support the drive right to the end of the on time - the worst case is when the duty cycle is long and there is a minimum V . Output current of the BU126 rises over this time. Lowest forward base-current $\mathrm{I}_{\text {BIEN! } 1}$ must still keep the power switch into saturation up to the trailing edge. From the maker's data, the basecurrent requirement for the BU126 is shown in Fig. 5. If the quantities are known, the required inductance can be calculated from

$$
\mathrm{L}_{\mathrm{s}}=\frac{\left(\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{BE}}-\mathrm{I}_{\mathrm{B}} \mathrm{R}_{21}\right) \delta \mathrm{T}}{\Delta \mathrm{I}_{\mathrm{B}}}
$$

where V_{1}, is the drive voltage, and ΔI_{B} is the current droop. Other

From page 48

However, as experience indicates, the difficulties do not end when the technological problems are solved and water becomes available for cultivation of food crops. It has to be anticipated that all soil will be completely infertile, without even a trace of humus being present; but again a possible solution can be seen in work done overseas on agricultural technology. At the beginning of the century, a British project was conducted in India on the production of compost, and in which, incidentally, bullock carts were used to crush tough, woody material before composting. In this instance the significance of composting lies in the fact that a
symbols self-explanatory. At a very rough level, with V_{1} around 6 volts, $\triangle \mathrm{I}_{13}, 100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{B}}$ one volt and $\delta \mathrm{T}, 22 \mu \mathrm{~s}, \mathrm{~L}_{\mathrm{s}}$ works out at about 1 mH . This agrees with maker's figures ${ }^{2}$.

At turn off, the base current must decline, then reverse. The energy for the reverse base current is supplied by the leakage inductance of T_{2}.

Other components in the driver stage include C_{22} and R_{20} which underdamp T_{2} as Tr_{1} goes off. This speeds up the rise and produces a slight overshoot on the base drive waveform to the BU126. Components C_{18} and C_{21} increase the reverse base current at turn off and D_{8} clamps the top of T_{2} primary winding to prevents spurious turn-on pulses from reaching the output switch.

Driver transiormer

The construction of T_{2} is based upon a pair of $\mathrm{FX} 3605^{-2} \mathrm{U}$ ' cores (Fig. 1(b)). Its secondary was wound to have 0.8 mH inductance, found from
$\mathrm{L}_{\mathrm{s}}=\frac{\mu_{\mathrm{o}} \mu_{\mathrm{e}} \mathrm{N}_{\mathrm{s}}^{2}}{\mathrm{C}_{1}}, \therefore \mathrm{~N}_{\mathrm{s}}=26$ turns
where μ_{a} is the amplitude permeability C_{1} is the core factor for a pair of FX3605s. From maker's data, $\mu_{a}=1000$ and $C_{1}=$ $1.2 \mathrm{~mm}^{-1}$. These 26 turns were wound outside the primary with 36 s.w.g. enamelled wire. The primary supported some 75 to 80 volts during the pulse, which was stepped down to a secondary level of 5 to 6 volts, giving a turns ratio of about $14: 1$. It was wound with 380 turns of 42 s.w.g. enamelled wire.

Snubber

The power transistor has to be protected from voltage pusles arising mainly from the leakage inductance of T_{3}. This is true especially for this circuit which has no energy-recovery winding on the choke. Components C_{23}, $\mathrm{R}_{24}, \mathrm{D}_{10}$ and C_{26} with diode D_{11} perform this function - called in the USA "snubbing" circuits. Resistors R_{24} and R_{26} dissipate a large power and must be heavy duty types (9 W wire-wound).

Final output

The last operation is to rectify and smooth the available pulses of energy at the output winding of T_{3} : fast diode pair BYV32 is designed for this service. The total average current it can handle is 20 A , which is plenty for this application. Output smoothing is achieved by C_{28} assisted by C_{29}, which are $1000 \mu \mathrm{~F}$ low-seriesresistance types. The small (≈ 10 $\mu \mathrm{H}$) choke L_{1} reduces the high frequency "edges" likely in the output of a flyback s.m.p.s.: it was added empirically, not reaily designed into the circuit for optimum performance. Components C_{26} and R_{28} also help to damp transient edges at the output winding.
Finally, T_{1}, C_{1}, C_{2} and the small capacitors around the diode bridge help to suppress interference flowing back into the mains. In a tightly controlled professional design, the level of mainsborne and directly radiated interference would have to meet the standards laid down, as I mentioned in part 1 of this series.

Yet again, the problems are more than formidable, but the solutions are not beyond the bounds of possibility. Briefly, from the production engineer's point of view, composting is a long process (full conversion, even with accelerators, takes 6-9 months or more.) As seen by the farmer, however, this is a normal sort of time scale; and with the proposed scheme it might be possible to make use of the farmer's experience and yet evolve something more like continuous production by taking serially from groups of heaps graded according to age.
Also from the production engineer's point of view, handling poses a number of problems; but
it would appear that advantage could be taken of existing agricultural practice and of the slowmoving nature of the process. Export to other countries by sea might well be done by means of converted oil tankers with the compost treated to make it more fluid, thus enabling existing pipe. line delivery techniques to be used.

References

1. Young, R.E.: 'Managing research and development', Wireless World, June 1985 2. Hooker, S.G.: 'Not much of an Engineer, Air Life Publishing Limited, Shrewsbury, England, 1984
2. Young, R.E.: 'Big-System automation and telemetry', Wireless World, July 1985
variety of organic materials, particularly vegetable matter, into a form of fertile soil, with a high humus content, sometimes known as a compound manure, and strongly reminiscent of the Black Land (alluvial soil) of the English Fens.

Composting, described as lowcost biotechnology ${ }^{1}$, depends for its action on bacterio-chemical conversion processes; and, as carried out in the UK on a domestic scale, using mainly kitchen waste, is virtually cost-free. It is therefore possible to envisage a large-scale operation being set up, initially in the UK, to produce compost for replacement of eroded soil in regions denuded of trees and vegetation generally.

CIRCLE 103FOR FURTHER DETAILS.

E.M.S. POWER SYSTEMS

Solve all your Power Problems by contacting E.M.S.
E.M.S. specialise in systems to eliminate your power problems.
Products range from 35VA switched square wave Power Packs to 1KVA fully uninterruptible sine wave systems.
E.M.S. also manufacture chargers which range up to 60 amps .

For further details please contact:

E.M.S. Manufacturing Limited Chairborough Road High Wycombe Bucks Tel: (0494) 448484

CIRCLE 133 FOR FURTHER DETAILS

CENERATORS

TG501 FUNCTION GENERATOR
005 Hz to 5 MHz . sine, square, triangle, ramp, pulse and haverwave waveforms; free-run, triggered or gated modes; varıable start/stop phase, 19:1 symmetry range, variable DC offset; variable 50Ω output; TTL output; external sweep mode
TG502 SWEEP/FUNCTION GENERATOR £495+VAT
Main generator features as TG501 plus internal sweep generator; 1000:1 linear or 10.000:1 log sweep range, precise dial-and-enter setting of sweep limits; marker with variable duration and out-of-range indicator; variable sweep rate; single sweep mode: sweep reset and hoid: sweep and pen-lift outputs
TG503 PULSE/FUNCTION GENERATOR £495+VAT Main generator features as TG501 plus normal, double and delayed pulse modes; pulse width variable from 50 ns to 50 ms : detay variable from 100 ns to $50 \mathrm{~ms} ; 10 \mathrm{MHz}$ capability in double pulse mode: complement mode; symmetrical positive-going or negative-going outputs with adjustable baseline.
For further information contact
Thandar Electronics Ltd,
London Road, St Ives, Huntingdon, Cambridgeshıre PE17 4HJ Telephone: (0480) 64646 Telex 32250

CIRCLE 110 FOR FURTHER DETAILS.

Matrices - VDA's • Modulators • Cross Wire Generators - Time/Date Generators Split Screen Generators - Comprehensive Design and

Manufacture of Customer 'Specials'

[^2]

SurTel

UHF RADIO TELEMETRY

HOME OFFICE APPROVAL TO MPT 1309

* RANGE LINE OF SIGHT
* TRANSMISSION RATE 1200 BAUD
* SERIAL INPUT/OUTPUT
* ROBUST WEATHERPROOF HOUSINGS (IP65)
* OPERATES FROM 12 VOLT D.C.
* LOW POWER DRAIN 250 mA
* OPTIONAL BASE INTERFACE UNITS
- LINK COMPUTER/COMPUTER/PERIPHERAL/INSTRUMENTATION COST EFFECTIVE UHF RADIO MODEM -

MICROMAKE ELECTRONICS
1 THE HOLT, HARE HATCH, UPPER WARGRAVE, BERKS RG10 9 TG TEL. 0735223255 TLX 849462 TELFAC G FAX 062874928

CIRCLE 144 FOR FURTHER DETAIIS.

TOROIDALS

The toroidal transformer is now accepted as the standard in industry overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, I ower radiated field and, thanks to I. L.P., PRICE
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototvpe service within 14 DAYS together with a short lead time on quantity orders which can be programmed to vour requirements with no price penalty.

Prices ncluating P \& P and Vat

$\begin{gathered} 120 \mathrm{VA} \\ 90 \times 40 \mathrm{~mm} \\ \text { Regutation } 1 \% \% \end{gathered}$		
4×010	6.6	${ }^{10} 00$
4*011	9.9	666
4×012	12+12	500
4×013	$15+15$	400
4×0.4	$18+18$	333
4×015	$22+22$	272
4×016	$25+25$	240
4×017	30.30	200
4×018	35.35	171
4×028	110	109
4×029	220	054
4×030	240	050
$\begin{gathered} 110 \times 40 \mathrm{~mm} \\ \text { Regulation } 8 \% \end{gathered}$		
5×011	9+9	889
5×012	$12+12$	666
5×013	$15+15$	533
5×014	-8+18	4.4 .3
5×015	$22+22$	363
5×016	25.25	320
5×017	$30 \cdot 30$	266
5×018	$35+35$	228
5×026	40.40	200
5×028	110	145
5×029	220	072
5×030	240	066

CIRCLE 105 FOR FURTHER DETAILS.

BRITAINS FOREMOST QUALITY COMPONENT SUPPLIERS CIRCLE 126 FOR FURTHER DETAILS.
ELECTRONICS \& WIRELESS WORLD OCTOBER 1985

Call cost calculator

To conclude this series, a description of the software and the reprogramming procedure.

The call costing procedure must take account of the many permutations of distance, connection charge and tariff.

For calls on the British Telecom system, inland and international, there are 13 distance zones, three charge rates and three modes. In all there are 117 combinations, but because of repetition they can be stored in only 80 data blocks. Each block consists of six bytes specifying cost and time; it may hold data for the initial call unit or for subsequent units.
If every call category had unique data for both initial and subsequent units, then 234 blocks would be needed. Fortunately, direct-dialled calls normally carry the same charge for initial and subsequent units and so the storage requirement is greatly reduced.

Consider now the calculator's 2 Kbytes of ram. The combination look-up table occupies 0.5 K and the data block area takes 1 K , giving up to 256 two-byte combinations and 174 six-byte data blocks.
The look-up table reference consists of two bytes. One points to the address of the block specifying the initial charge unit, the other points to the block for subsequent units.
The system is sufficiently flexible to allow any combination of distance, rate and mode; for example there could be 16 Dists, four Rates and four Modes or 28 Dists, three Rates and three Modes and so on.

Now, how do we refer to the initial and subsequent units through the look-up table?

Each Dist, Rate and Mode has a binary number allocated to it (Fig. 1). Each of these factors has a limit - Lmdist, Lmrate and Lmmode - which is the number of possible distances, rates and modes: in our case, $0 \mathrm{D}_{16}, 3_{16}$ and 3_{16} respectively.

The address of the initial data block reference in the look-up table is given by the formula
(Start of look-up table) +
$2 \times(($ Dist \times Lmrate \times Lmmode $)$ $+($ Rate \times Lmmode $)+$ Mode $)$

Incrementing this address will give the block address reference for the subsequent unit.

The start address of the initial data block in the data block area can be expressed as
(Start of data block area) $+6 \times$ (look-up block reference)

Consider an example. An oper-ator-controlled call (normal charge) at peak rate over 35 miles costs 114 p for the first three minutes and one-third of that for every succeeding minute. Accordingly, the bytes containing the initial unit information will be

Cost
Time
011400
030000
and those for subsequent units

$$
\begin{array}{cc}
\text { Cost } & \text { Time } \\
003800 & 010000
\end{array}
$$

These groups can be stored anywhere in the call data block area. If we decide to make the initial unit block the first block in the area (that is, starting at $20 \mathrm{FO}_{16}$), then its reference will be 00_{16}. The subsequent unit block will be the second block, with a start address at $20 \mathrm{~F}_{16}$ and the reference 01_{16}.

Now we must place the references 00 and 01 in the look-up table. But where?
The value of Dist (for a call of over 35 miles) is 02_{16} and the Rate and Mode are also 02_{16}. We have the same Lmdist, Lmrate and Lmmode as before and so plugging into the formula gives
$2000_{16}+2 \times((2 \times 3 \times 3)+$ $(2 \times 3)+2)=2058_{16}$
as the address where the initial data block reference 00 is placed. The address reference for subsequent units, 01_{16}, is stored at location 2059_{16}.

Reprogramming

To reprogram for yourself, write down all the block information for initial and subsequent call units. Allocate a unique hexadecimal number to each unique block and put them in numerical order into the call data block area starting with block 00 . Then using the formulas above, go through each combination and locate the lookup address for the unique data block references.

System parameters

System parameter bytes can be altered by the user to control the operation of the system. Parame-ters beginning with Sc (see Table 3) are the addresses to which the program will jump from the scrolling message procedure when the appropriate keys are pressed. This arrangement allows jumps to user-supplied routines within the ram space. It also allows expansion software to be accessed. The Adjump address is the jump location used on pressing Reset after a telephone call has been made. These locations are filled with default addresses on bootstrap loading.

Stsps and Cadast are the start address of the data areas. By default they are 2600_{16} and $20 \mathrm{~F} 0_{16}$ respectively. Initad is the start address used by the reprogramming routine: by default it

Stephen Cameron, who is 23 , is reading for a B.Sc. in electrical and electronic engineering at Brunel University, Uxbridge. An industry-sponsored student, he has worked for the past four years on broadcast equipment, radio and line development and computing systems.

He qualified as an instructor in Cadet Force signals while at the Duke of York's Royal Military School, Dover. Spare-time interests include music, tennis and writing poetry. He is publicity manager of the Brunel University Industrial Society.

26 CO	Sc jumpl	Scrall message jump store for Dist key (binary)
26C2	Scjump2	- for' Rate key (m.s.b./l.s.b.)
26 C 4	Sc jump 3	for Mode key
$26 \mathrm{C6}$	Sc jump4	- for Start/stop key
26 CB	Adjump	On addition jump location
26CA	Stsps	Start of Sps data
26CA	Cadast	Call data start address
26CE	Initad	Initial address for reprogramming
26D0	Bootcnt	Bootstrap control (bit)
26D 1	State	State control
26D2		spare
26D3	Plaprd	Flash period (binary)
26D4	Buzprd	Buzcer period for software monostable
26D5	Mkliml	Marker limit, secorsts (b.c.d.)
26D6	Mklim2	- hundredths of seconds
26D7	Lmdist	Limit for distances etc. (binary)
26D8	Lmrate	e.9. Lmdist=1016 if there are
26D9	Lamode	16 distances to be considered
26DA	Lmsps	
26DB	Totcos 1-4	Total cost store, m.s.b.-l.s.b. (b.c.d.)
26DF	Lstdist	Last distance store (binary)
26E0	Totuni 1-2	Total ynits store, m.s.b.-l.s.b. (b.c.d.)
26E2	Scmask	Keyboard scan mask (bit)
26E3	Prthold	Port hold control
26E4	Cobuch	Cost base unit character, e.g. P for pence
26E5	Chxstr	Checksum store (binary)
26 E 6		spare
26EF		spare

Table 3: System parameters. Address are in hexadecimal form. Data format is shown in brackets.
ingly be subdivided into pounds and pence.
The special service (Sps) data is separate from the normal costing as it represents a distance-plus-service element which can be treated as a connection charge - a one-off additional cost to the call.

Each Sps cost occupies two bytes of memory at the base unit level. For British Telecom this gives a cost range of 0 to 9999 p. Should the Sps costs be far more than this, State bit 7 can be set, multiplying costs by 100 to give a range of 0 to 999900 p in 100 p steps.
If no Sps service is required the facility can be disabled by setting State bit 5 .
The data storage format follows the pattern used previously. A look-up table the length of Lmdist, accessed by the Dist parameter, has address references pointing to the start of Sps data blocks twice the length of the number of services available.

Each Sps binary number is the offset in this data block. It points to two bytes giving the cost of that service at that distance. The data blocks appear immediately after the look-up table.

Programming procedure

Before switching on, remove the top panel of the instrument and link program pin D_{7}, to $\mathrm{V}+$. Switch on. The display immediately shows the Initad address and data at that location in hexadecimal format. From here you can gain access to any point in the memory map. If the system crashes, this routine will always work so that corrections can be made.
The flashing digit can be incre-

All the electronic components are mounted on two printed circuit boards which fit into a standard plastics box.

The instrument, based on a $\mathrm{Z80}$ processor with 2 K of ram, uses low-cost components thhroughout. The same hardware could be used to implement a general i/o controller, for example in a security installatioon or central heatiing system.
digit to the next.
The Start/stop key toggles between address and data control. Changes made by the user are not transferred to the displayed address until Start/stop is pressed to switch to address control. Addresses are incremented and read automatically during data loading with the Start/stop key.

The Reset key returns the data at the current address to its old value. If Reset is held down then the address is reset to the Initad address.

When programming is complete the user should ensure that the control byte Bootent 26D0 ${ }_{16}$ is set to AA_{16}. This will disable the bootstrap loader from overwriting the altered data on subsequent switch-ons.

The unit may now be switched off and the D_{7} link removed

The introductory message (which can be up to 64 characters long) may be changed by writing to. ram locations 2680_{16} to $26 \mathrm{BF}_{16}$. The purpose of this message is to show the user whether the system still contains the updated cost and time data. It is therefore wise to include in it an issue date.

The byte Chxstr ($26 \mathrm{E} 5{ }_{16}$) contains a checksum of all the bytes from ram locations 2000_{16} to 2630_{16}. It is updated automati-

Table 4: System control. The status byte $27 \mathrm{~F} 3_{16}$ is used for intercommunication between the interrupt routine and the main pro gram.

Bit description	set (1)	clear (0)
0	Key pressed	new key

Table 5: Cost data and display formats are controlled by the State byte at address 26D1.

Bit description	set (1)	clear (0)	
0	Decimal point pos'n bit 0	see cost format table	
1	Decimal point pos'n bit 1	see cost format table	
2	Hundreds selection	No hundreds	hundreds
3	Decimal point	left-hand	right-hand
4	Total cost/total unit	enable	disable
5	Sps selection	disable	enable
6	Buzzer	disable	enable
7	Sps multiplier	1	loo

cally on switch-on.
An indication of the total units used is displayed when the Start/ stop button is pressed during total cost display. Reprogramming of these displays can be disabled by State bit 4

Display byte

The display character byte follows the standard bit-segment format. Bits D_{0} to D_{7} correspond to segments a to h (as shown in the display board circuit diagram in the August issue). Setting any bit causes it segment to light. State bit 3 indicates to the software whether the decimal points in use are right-hand or left-hand.

Assembler listing

An assembler list of the software is available for $£ 3$ from the author at 7 Donnington Court, Worthy Road, Winchester, Hampshire SO23 7BJ. The listing is in the form of a 48 -page $A 5$-size booklet and includes detailed notes and comments.

Component kits for this design are available from the sources given in the July and August articles.

The calculator displays elapsed time and cost of calls in progress and stores running totals in memory.

The Archer Z80 8BC

The SDS ARCHER - The Z80 based single board computer chosen by professionals and OEM users.

* High quality double sided plated through PCB
* 4 Bytewide memory sockets - upto 64 k
\star Power-fail and watchdog timer circuits
$\star 2$ Serial ports with full flow control
* 4 Parallel ports with handshaking
\star Bus expansion connector
\star CMOS battery back-up
\star Counter-timer chip
$\star 4 \mathrm{MHz} . \mathrm{Z} 80 \mathrm{~A}$
OPTIONS:
\star SDS BASIC with ROMable autostarting user code
* The powerful 8 k byte SDS DEBUG MONITOR
* On board 120 / 240 volt MAINS POWER SUPPLY
\star Attractive INSTRUMENT CASE - see photo.
$\star 64 \mathrm{k} / 128 \mathrm{k}$ byte DYNAMIC RAM card
* 4 socket RAM - ROM EXPANSION card
* DISC INTERFACE card

Sherwood Data Systems Ltd

Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX.Tel. 02814-5067
CIRCLE 138 FOR FURTHER DETAILS.

NALVEB			*SPECIAL QUALITY	Prices are as at going to press but may fluctuate. please phone for firm quotation. V.A.T. included					
A10	1.40	EF91 1.60	PL36	143	1.4	38W6	6.20	${ }^{676 G}$	0.90
A2293	8.80	EF92 2.90	PLB1 0.85	1 L 4	0.80	68W	1.80	674	0.70
A2900	13.75	EF95 0.95	Pt82 0.70	1 R 5	0.80	6 C 4	0.70	724	1.90
AR8	0.75	EF96 0.60	PL83 0.60	154	0.65	6C6	1.20	906	2.90
ARP	0.70	EF183 0.80	PL84 0.95	155	0.65	6CH6	8.20	11 E 2	19.50
ATP4	0.60	EF184 0.80	PL504 1.00	174	0.65	6CL6	2.75	12 A 6	1.00
B12H	3.90	EF812 0.75	PL508 2.40	144	0.80	6CW4	8.50	12AT6	0.70
CY31	1.40	EFL200 1.85	PL509 5.85	1×28	1.40	${ }_{6} 6 \times 8$	4.60	$12 \mathrm{AT7}$	0.85
DAF96	1.25	EH90 0.85	PL519 5.85	$2 \times 2 \mathrm{~A}$	2.50	6 CY	1.15	12 A U	0.60
DET22	28.50	EL32 $\quad 1.10$	PL802 (SE)2.95	3 A 4	0.70	606	1.50	$12 \mathrm{AU6}$	0.95
DF92	0.80	EL34 1.80	PY80 0.70	3AT2	3.40	656	1.60	$12 \mathrm{AX7}$	0.65
DF96	0.70	$4.55{ }^{\circ}$	PY81/800 0.85	3 B 28	12.00	$6 \mathrm{F6}$	1.10	$12 \mathrm{Ba6}$	0.90
DH76	0.75	EL37 5.20	PY82 0.65		$19.50{ }^{\circ}$		2.80	12856	1.25
DL92	0.60	ELB2 0.70	PY88 0.60	$3 \mathrm{D6}$	0.60	6F8G	0.85	$128 \mathrm{H}^{7}$	$3.00 *$
DY86/87	0.65	EL84 0.80	PY500A 2.10	3E29	19.00	6F12	1.50	12 E 1	18.95
DY802	0.70	EL86 0.95	Qov03/105.95	3 S 4	0.70	6F14	1.15	12J5GT	0.55
E92C	2.80	EL90 $\quad 1.00$	10.00	4 B 32	18.25	6515	1.30	$12 \mathrm{K7GT}$	0.70
E180C	8.25	EL91 6.50	Qov03 20a	5 FLGY	2.20	6 F 17	3.20	12 KPGT	0.80
EA76	2.25	EL95 0.80	27.5	5 UAG	1.40	6F23	0.75	1207 GT	0.60
EABC8	0.80	EL504 2.70	QOV03-25A	5 V 4 G	0.75	6 624	1.75	$12 \mathrm{SC7}$	0.65
E891	0.60	EL509 5.85	36.5	5 Y 3 G	0.95	6 F33	10.50	$12 \mathrm{SH7}$	0.65
EBC33	1.15	E1519 $\quad 6.90$	QOVO6/40A	523	2.80	6FH8	17.80	$12 \mathrm{SJ7}$	0.70
E8C90	0.90	E1821 8.20	28.50/49.50	5246	1.25	6GA8	1.95	$12 \mathrm{SO7}$. 45
E8F80	0.60	E1822 9.95	Qv03-12 5.75	5Z4GT	1.45	6GH8	1.95	1257 GT	0.85
E8F	0.60	ELL80(SE)2.80	SP61 9	6/30L2	0.90	6 H 6	1.60	12 V 4	0.70
E8F89	0.80	EM80 0.85	TT21 32.20	6 6AB7	0.70	6JU6	5.85	1303	2.80
EC52	0.65	EM87 2.50	T22 29.50	6AC7	1.15	$6 . J 4$	1.35	13 D 5	0.90
EC91	4.40	EY51 0.95	UABCB0 0.75	6AG5	0.60	6 J 4 W	2.00	19 AO	0.85
EC92	1.85	EY81 0.65	UAF42 140	6AH6	1.15	$6 J 5$	2.30	19 G 3	11.50
ECC8)	0.95	EY86/87 0.60	UBFBO 0.70	6AK5	0.65	6 J 5 C	0.90	$9 \mathrm{G6}$	8.50
ECCB2	0.60	EY88 0.65	UBF89 0.70	6AK8	0.60	6 J 6	0.85	19 H 5	39.55
ECC83	0.65	EZ80 0.70	UCC84 0.85	6AL5	0.60	6.J6W	2.80	20 D 1	0.80
ECC84	0.60	E81 0.70	UCC85 0.70	6AL5W	0.85	${ }^{6 J E 6 C}$	5.50	20 E 1	1.30
ECC85	0.60	GM4 $\quad 5.90$	UCF80 $\quad 1.30$	6AM5	4.20	6JS6	5.90	20 P 1	0.65
ECC88	0.80	GY501 $\quad 1.30$	UCH42 1.65	6AM6	1.50	6 K 7	1.45	25L6GT	1.60
ECC189	0.95	GZ32 1.05	UCH81 0.75	6ANBA	2.50	6 KDg	5.50	2524 G	0.75
ECC804	0.90	GZ33 $\quad 4.20$	UCL82 0.95	$6 \mathrm{AO4}$	4.40	$6 \mathrm{KD6}$	4.60	35W4	0.80
ECFB0	0.85	GZ34 2.75	UF41 $\quad 1.35$	6 AO 5	1.30	6L6M	4.60	95A21.	2.2.5**
ECF82	0.85	GZ37 $\quad 3.95$	UF80 0.95	6AO5W	2.20	$6 \mathrm{L6GC}$	3.70	80716	2.40*
ECF801	1.05	KT66 14.50	UF85 0.95	6AS6	1.15	${ }^{6 L 6 G}$	1.95	812 A	21.80
ECH	2.25	KT81 7.00	UL84 0.95	6AS7C	4.95	6 L 18	0.70	813	
ECH42	1.20	KT88 23.00	UM80 0.90	6AT6	0.90	6LD20	0.70	28.50 /	$68.50{ }^{*}$
ECH81	0.70	ML4 $\quad 2.80$	UM84 0.70	6AU6	1.25	6 6,06	5.90	8298	24.00
ECH	0.80	ML6 $\quad 2.80$	UY82 0.70	6AV6	1.25	607G	1.30	832 A	8.90
ECL80	0.70	N78 9.90	UY85 0.85	6AX4GT	1.30	6SA7	1.80	866A	5.05
ECL82	0.75	OA2 0.70	VR105/30 1.25	$6 \mathrm{AX5GT}$	1.30	6SG7	1.80	866 E	9.80
ECL85	0.80	OB2 0.80	VR150/30 1.35	6BA60		6SJ7	1 . 80	931 A	19.80
ECLB6	0.90	PCL82 0.95	$\times 66 \quad 1.80$	$0.70 /$	/1.207	6SK7	1.40	954	1.20
EF37A	2.15	PCL84 0.90	X61M 1.70	6849	3.45	6SL.7GT	0.85	955	1.20
EF39	1.50	PCL86 0.75	$2759 \quad 19.00$	6BE6		6SN7G	1.60	956	1.20
EF80	0.65	PCL86 0.75	$2749 \quad 0.75$	0.65	5/120**	6S07	0.95	5763	5.75
EFB3	3.10	PCLE $805 / 850.95$	280003.45	${ }_{68 G 6 G}$	1.60	6 6R7 7	4.60	6060	1.95
EF85	0.60	PD500/5104.30	Z801U 3.75	${ }_{68 \mathrm{~B}}^{66}$	1.30 0.85		1.50	${ }_{6}^{6080}$	5.30 5 50
	1.25 1.60	PFL200 $\begin{aligned} & \left.\begin{array}{l}1.10 \\ 2.80^{*}\end{array}\right]\end{aligned}$	$\begin{array}{lr}\text { z803U } & 16.00 \\ \text { Z900 } & 2.45\end{array}$		0.85 4.80	$\begin{aligned} & 6 \mathrm{~V} 6 \mathrm{C} \\ & 6 \times 4 \end{aligned}$	1.30 1.50	62016	5.20 10.35
COLOMOR (ELECTRONICS LTD.) 170 Goldhawk Rd, LondonW12 Tel. 01-743 0899 or 01-749 3934. Open Monday to Friday 9 a.m.-5.30 p.m.									

VIDEO TERMINAL BOARD

Requires ASClI encoded keyboard and monitor to make fully configurable intelligent terminal. Uses 6802 micro and 6845 controller. Program and character generator (7×9 matrix with descenders) in two 2716 EPROMs. Full scrolling at 9600 baud with 8 switch selectable rates. RS232 interface.
Bare board with 2 EPROMS and program listing $£ 48$ plus VAT. Assembled and tested - $£ 118$ Send for details or CWO to:

A M Electronics
Wood Farm, Leiston, Suffolk IP16 4HT Tel: 0728831131
CIRCLE 11 FOR FURTHER DETAILS

Andelos 68000 SBC

* Ideal for students, or as a target board for development
* Currently in use in Universities, Technical colleges, and Government departments
* $4 \mathrm{~K} / 16 \mathrm{~K} / 32 \mathrm{~K} / 64 \mathrm{~K}$ RAM, up to 32 K EPROM, on board
* 24 paralle $1 / 0$ lines, RS232 serial interface
* Expansion interface
* Low cost EPROM Programmer - simply plugs in
* True 16 bit, 10 MHz , for high speed processing
* Comprehensive monitor (optionally with
assembler) in 2764 EPROM
* Assemblers and cross assemblers available for 68000 and Z 80 hosts
10 MHz 68000 SBC with 4 K RAM, Monitor in 16 K EPROM
£295 + VAT
10 MHz 68000 SBC with 16 K RAM, Monitor in 16K EPROM 10 MHz 68000 SBC with 32K RAM, Monitor in 16K EPROM 10 MHz 68000 SBC with 64 K RAM, Monitor in 16 K EPROM EPROM programmer card, plug in
£305 + VAT

Assembler/Disassembler in EPROM. plug in, includes monitor
Cross assembler for 280 hosts/Assembler for 68000 hosts
phone

- $32 \mathrm{~K} / 64 \mathrm{~K}$ prices subject to alteration - hopefully downwards!

Andelos Systems
Telephone: (0635) 201150
Solina, Bucklebury Alley, Cold Ash, Newbury, Berkshire RG16 9NN
CIRCLE 31 FOR FURTHER DETAILS.
ELECTRONICS \& WIRELESS WORLD OCTOBER 1985

Polyphonic keyboard - 2

Digipoly's t.t.l. processor circuit and microcode program.

by D.J. Greaves B.A.

The instrument has two processors - an 8088 microprocessor for control functions and a t.t.l. processor for note generation. There are 18 instructions in Digipoly's microcode program, List 1, which execute sequentially and then start again. The final instruction, INCV, causes the program to be run on each sound channel in turn.

Frequency of the master clock is divided by the length of the program and by the number of voices to give the sample rate at the audio output d-to-a converter. With a 5 MHz master clock rate this is $5000000 /(18 \times 8)=35 \mathrm{kHz}$.

An assembler written for the microcode language in BCPL produced the code in List 1, but microcode can easily be manually
assembled using the instruction set described last month.

The first three instructions of the microcode increment the Pregister low-order section and the next three the high-order section. At address six, the wave from the waveform table is sampled and this is multiplied by the VOL, V register in the ramaining instructions. At address 16, the computed result is sent to the output d-to-a converter.
Each channel sends its output to the same converter and the value is latched there until the next channel sends a value.
This gives a discontinuous waveform. Summation of the eight channels into a single continuous audio wave is performed by the integrating behaviour of the analogue low-pass filter following the converter.

List 1 Microcode of t.t.l. processor is only eighteen bytes long.

Features and software availability

Digipoly is an eight-note polyphonic digital musical instrument with a five-octave keyboard transposable over a nine octave useful range. It includes

- Comprehensive envelope generator controls
- Vibrato and tremolo control
- Midi interface
- Hundreds of front-panel selectable waveforms
- Battery-maintained memory for 16 user-defined voices
- Rotary control for adjustment of many parameters

Note frequencies are not rigidly locked as in divider type organs. A detune facility introduces a variable amount of scale error.

Digipoly can be built for around $£ 175$ excluding case. Software is available in various forms from the author at 5 Grovely Way, Crampmoor, Romsey, Hampshire SO5 9AX. A fifty-page listing of the 8088 source program is $£ 3$ and a 40 track disc for the BBC microcomputer, holding source, object and related files, is $£ 4$ (single density). Programmed $27 € 4$ eproms containing the 8088 object code and a bipolar prom containing the t.t.l. processor code are $£ 6.50$ and $£ 4.00$ respectively. Please include $£ 1$ for UK postage and make cheques payable to D.J. Greaves. Brave readers can obtain a copy of the hexadecimal listing by sending a large stamped addressed envelope and a cheque for $£ 1.35$ to our editorial offices. Please make this cheque payable to Business Press International.

The large circuit has left little space for text in this issue. We hope to find room for more description in the next article which includes details on the Midi bus.

ELECTRONICS \& WIRELESS WORLD OCTOBER 1985

PC/XT - PERIPHERALS

Mainboard B-1034 Layer PC/	EPROM WRITER CARD up to
XT.............................. £294	128K. £149
MEGA Mainboard PC/XT £249	MODEM CARD V21/V23 CCITT AA/
SUPER Mainboard PC/XT £249	AD £169
256 M/FUNCT.	FLOPPY DRIVE CONTROLLER (4
1par,1ser,cl,cal,OK £169	DRIVES) £75
384k M/FUNCT. 6-WAY (SEE RL),	TEAC FD-55B half ht 320K floppy
OK............................. £289	dr................................ £135
512 RAM EXPAND (2 DIP	RS232 SERIAL I/Face, 1port 50-
SWITCH),OK £95	9600 £49
Parallel printer card £39	SERIAL Async Rs232C, 2port 50-
Parallel card with 64K buffer	$9600 \ldots . ~ £ 69 ~$
(OK) £109	GAMES ADAPTER £39
Monochrome (text) display card . £119	AD/DA 12bit 16ch-A/D, 1ch-D/A £139
PC Express/Intelligent Research	83K Cherry Style KEYBOARD . . . £129
512K............................ $£ 798$	TRANS-NET NETWORKING
Titan Accelerator 128K £609	BOARD £450
Titan Accelerator 512K £729	NetMail Software £550
	NetSPOOL Software £250
COLOUR/GRAPHICS	NetDISK Disk Server Software ... £150
Card (2 layer)	NetDMS Data Management
Card (2 layer)	Software NET BOOT ROM for floppyless
COMPOSTTE COLOUR/rgb	
Monitors £149	NET STARTER KIT £975
SUPER COLOUR/GRAPHICS Card (4 layer) PC PCXT PCAT	(NOTE: We can supply most
COMPATLABLE. £399	of the above as
MONOCHROME GRAPHIC CARD	UNPOPULATED boards for
VERSION II single parallel port	OEMS.)
MULTI I/O CARD - 5 WAY!!! Dual	DISKETTE SALE
floppy controller interface	
Asynchronous RS232 serial comms	NASH
port Parallel printer port, games	UNBRANDED DS/DD 96 TPI. £14. bo
adapter Clock/Cal with battery	of ten
backup............................ £249	DX45 lockable 100pc DISKETTE
EPROM WRITER CARD up to 128 K	DX50 lockable 50pc DSKETIE BOX

384 MULTIFICATION CARD - SIX WAY!!!

-64K to 384K RAM Memory

- RS232C Serial Port
- Real Time Clock/Calendar with Battery Backup
- RAMDISK \& PSPOOL Software
- Optional games port
- Built \& Tested £195.00

4-LAYER PC/XT MAINBOARD

-64K to 1MB ON BOARD

- 8 Fully Compatible Slots Built \& Tested £295.00

RAM CHIP SALE!!!

- 4164 64K DRAMS 150 ns £1.49 each (upgrade PC/XT and compatibles)
- 41256 256K RAMS 150ns $£ 5.49$ each (upgrade OLIVETTI M24, COMPAQ DESKPRO etc)
- 4128 (Piggyback) Upgrade IBM PC/ XT.
$£ 5.99$ each
- CO-PROCESSOR INTEL $8087-2 /$ -
$£ 139.00$

EPROM WRITER CARD up to
28K. AD
OPPY DRIVE CONTROLLER (4
TEAC FD-55B half ht 320K floppy dr S232 SERIAL I/Face, 1port 50-
SERIAL Async Rs 232 C , 2port 50600.

AMES ADAPTER
AD/DA 12bit 16ch-AD 1ch-D/A £139
83K Cherry Style KEYBOARD . . . £129
TRANS-NET NETWORKING
550
NetSPOOL Software £250
NetDISK Disk Server Software ... £150
Management
NET BOOT ROM for floppyless
$£ 50$
(NOTE: We can supply most
of the above as
UNPOPULATED boards for OEMS.)

DISKETTE SALE

NASHUA DS/DD £14. box of ten of ten
DX45 lockable 100pc DISKETTE
DX50 lockable 50pc DISKETTE
$£ 15$.
PC/XT CASE
8 - Slot

- Hinged lid
- Includes hardware
£ 95.00

PC to XT CONVERSION KITS

FOR IBM AND COMPATIBLES

- NEW FAST CONTROLLER!!!

WESTERN DIGITAL 1002 SWX-2
SEGATE ST-506 STANDARD. $£ 199.00$

- 10 MEGABYTE MR-521 $1 / 4^{\prime \prime}$

WINCHESTER HARD DRIVE, 2
HEADS AVERAGE ACCESS
85 ms
$£ 375.00$

- 20 MEGABYTE MR522 5 1/4*

WINCHESTER HARD DRIVE 4-
HEADS AVERAGE ACCESS
85 ms
$£ 550.00$

- HARD DRIVE CABLE SET ... $£ 25.00$
- UPGRADE 130WATT POWER SUPPLY
£135.00

Prices exclude VAT and DELIVERY terms on application.

Business Systems Ltd.
Unit M, Charlwoods Business Centre, Charlwoods Road, East Grinstead, West Sussex, RH19 2HH (0342) 24631 tlx: 957547

TRANSFORMERS EX-STOCK

H.P. EQUIPMENT

2 - HP8690B SWEEPER MAINFRAME £550.00
6 - HP8693B PLUG IN 4-8 GHZ
650.00

4 - HOI8692B PLUG IN $1.7-4.2 \mathrm{GHZ}$
650.00

9 - HP8491A ATTENUATOR 20DB (NEW)
15 - HP 3420 NULL VOLTMETER (6 DECADE)
17 - HP8746B S-PARAMETER TEST SET 50.00
2500.00

55 - HP7221B PLOTTER (RS232)
57 - HP86242A SWEEPER PLUG IN 5.9 -9-0 GHZ 1250.00
59 HP7040A X Y RECORDER A3
950.00

TEKTRONIX TEST EOUIPMENT

1 - 491 SPECTRUM ANALYSER C/WITH ALL ACC'S 10 MHZ - 40 GHZ 3500.00 12 - 604 XYZ MONITOR HIGH RESOLUTION 24 - 1485R T.V. WAVEFORM MONITOR PAL NTSC ETC. 2950.00 44 - GMA 102 C.A.D. STORAGE SCREEN MONITOR (NEW) $26^{*} \quad 950.00$ 48 - GMA 103 C.A.D. STORAGE SCREEN MONITOR (NEW) 26* 1100.00
$60-77044$ SLOT 250 MHZ MAINFRAME 2250.00

PHILIPS TEST EQUIPMENT

55 - PM3181 XY RECORDER (A3) 50 UV SENS (IEE448 1/F) 950.00
22 - PM5532 G/07 PAL SYNC GENERATOR P.O.A
23 - PM5539 T.V. COLOUR ANALYSER 1200.00

OTHER EQUIPMENT

41 - PERKIN ELMER 5900 LASER GAGE TO 0.8 UM RESOLUTION, MAX RANGE 45 METERS TEMP + PRESS CONPENSATION. TROLLEY MOUNTED, DIGIT DISPLAY - PRINTER BCD O/P ETC. FOR CALIBRATING N.C. MACHINES, LINEAR TRANSDUCERS ETC
4950.00

```
33 - B+K 2209 SOUND LEVEL METER 650.00
```

34 - B+K 1613 OCTAVE FILTER SET $\quad 150.00$
32 - RFL INDS 3265 GAUSS METER $\quad 200.00$

27 - VERSATEC V-80 HI-RES PRINTER - PLOTTER	200.00
950.00	

$\begin{array}{ll}27 \text { - VERSATEC V-80 HI-RES PRINTER - PLOTTER } & 3950.00 \\ 52 \text { - SMS } 30008 \times 300 \text { DEVELOPMENT SYSTEM } & 1500.00\end{array}$
$\begin{array}{ll}52 \text { - SMS } 300088300 \text { DEVELOPMENT SYSTEM } & 1500.00 \\ 21 \text { - ZILOG 2DS-U Z80 DEVELOPMENT SYSTEM } & 1500.00\end{array}$
16 - INTEL MDS-1 (INCOMPLET) TO CLEAR $\quad 1295.00$
7 - WANDEL + GOTERMAN TFPM 42 TFPM 43 TRANSMISSION TEST SET ASNEW CONDITION

10 - MARCONI TF801 AM SIGNAL GENERATOR 10-470 MHZ, EXCEL CONDITION
63 - GOULD ADVANCE MG520 5U 20A MINITURE SWITCHING P.S.U. 22.50
PHONE 022368990 FOR FURTHER INFFO OR APPOINTMENT

Electronic mailhox

Construction tips and line interface circuits complete the description of a self-contained electronic message system.

A plated-through printed circuit and the three roms are available to constructors. The printed circuit is designed to fit into an RS cabinet type 509-620. This board, the mains transformer, and the line-isolation transformer are all attached to the front panel, leaving only the backup battery fixed to the base of the cabinet. Other components fixed to the panel are the three leds indicating 'power', 'on-line' and 'attention', two push buttons to manually open and close connections if required, and a switch for the battery backup supply.
The relays are RS type 346-851 and the switch for the clock is RS type 336-674. The only components not mentioned in the circuit diagram are numerous 100 n decoupling capacitors which should be monolithic ceramic types. They are shown in the layout drawing which will be supplied with the printed circuit.
The 64 K rams can be any type except the Texas variety which
has different refresh requirements; the slowest available devices will be suitable for the application. This also applies to the roms and the interface chips. To reduce dynamic consumption, the system runs at a relaxed clock speed but this does not limit its operation in any way. The 1 nF capacitor in the receiver monostable should be polystyrene; other capacitors are not critical.
The mailbox can be connected directly in parallel with a telephone by using a dual-outlet adaptor. There is no need for the line to the telephone to be switched as in a normal modem, because any sounds picked up by the handset cannot cause data errors.

There are only two adjustments to be made in the modem circuit. Inject a sine wave of 10 mV peak-to-peak at 1700 Hz across the line side of the transformer, and monitor test point one. Adjust the offset potentiometer to obtain a symmetrical
square wave, and confirm that the shape does not change when the input level is raised to 1 V . Monitor test point two and adjust the timing potentiometer so that the logic level is on the point of changing states.
The clock is set by use of a special command and an internal switch which protects it from being changed inadvertently. The command format is
t0000،units mins ©tens mins, cunits hrs»tens hrs»cunits days »tens days» day of wk»units months atens months deap status) 10 (magic switch on' (cr) 'magic switch off, ccr)
where leap status is eight for leap year, four for leap year +1 , two for leap year +2 and one for leap year +3 . For example, to set the clock to 23:57 GMT on 9 December 1984, the string would be t0000753290021810. The trimmer on the clock crystal should be adjusted at intervals of a few

by Martin Allard B.Sc.(Hons)

Martin Allard has an honours degree in computing science from Essex University. Over the years he has worked in psychology research, gas pipeline instrumentation, operating systems design and digital video, including the single-handed design of a digital PAL-NTSC standards converter, all done from his cottage in Devon.

He recently left that business, convinced that it is the road to madness, and is now an independent broadcasting and communications consultant. One of his current projects is the construction of solarpowered community f.m. radio stations in Nepal and Sri Lanka, in conjunction with UNESCO and Arthur C. Clarke. Martin still owns the working automatic telephone exchange which he designed at the age of 11.

Principles of the electronic mail system were discussed in the August issue and hardware in the September issue.

Analogue signal paths. On the receive side, the limiter is followed by an exclusive-or gate generating pulses on both edges of the waveform. These pulses are integrated and sliced after passing through a monostable i.c. Data for transmission is buffered after passing through a simple filter.
days, and the clock should be reset until it is found to be running accurately.

Uses of the system

Computing appears to many people to be a solitary pastime, but when the power of modern data communications is added it becomes an interesting social activity.
This system is intended to provide a mail service and a remote terminal service which are sufficiently reliable and easy to use that one can concentrate on the message being sent, and forget about the way that it is being delivered. Because the writing and reading of mail is all performed off-line at no cost in communication time, messages tend to be much longer and more leisurely in style than conventional electronic mail. There are no arguments about whether or not the message was received - the sender always knows the answer. One doesn't know whether it has
been taken notice of however.
The control wire called DCD is in fact a far more reliable form of remote control than anything provided by a simple modem, and it is being used to switch computers on and off when an incoming call is received. As with all other aspects of the system considerable attention has been paid to making it fail-safe.
Fundamentally, the mailbox provides a cheaper, faster and more reliable way of getting messages to a specific destination than centralized systems such as Prestel, Telecom Gold, Easylink, and the hobbyist bulletin boards. It does have the social disadvantage that one cannot spend one's telephone bill idly browsing through other people's correspondence. However it is a general purpose real-time communications system as well as a way of delivering private mail, and as such is well suited as a means of accessing a common database. I am considering setting up a bulletin board specifically for users
of this design if interest justifies it, and would therefore like to hear from prospective users. The firmware rom has plenty of space for enhanced facilities in it, and one use of the board would be to arrange for firmware upgrades. It is my belief that the underlying standard is sufficiently sound to remain compatible with potential future versions possessing many more features.
A double-sided plated-through printed circuit for this design is available from Combe Martin Electronics, King Street, Combe Martin, North Devon EX34 0AD, for $£ 23$ including UK/overseas postage and v.a.t.
A set of three programmed roms is available from Mallard Concepts Ltd, 13 Southdown Avenue, Brixham, Devon TQ5 0 AP for $£ 34.50$ including v.a.t. and postage. A guide giving more detailed information on the use of the system is also available free of charge from the same address on receipt of a large s.a.e.

TRACER - A new Robotic Teaching System from LJ

The new LJTRACER Robot provides a costeffective introduction to the world of Robotics.
This ruggedly constructed $X Y Z$ robot features both stepper motor and closed-loop servo motor drive. The TRACER can be driven by any microcomputer with a suitable TTL level I/O facility.
The TRACER is supplied with a pcb
Assembly Task Kit (as
shown) and a 3 colour pen-plot kit.

For full details of this and other LJ products send for our catalogue

LJ Electronics Ltd
Francis Way Bowthorpe Industrial Estate Norwich, NR5 9JA. England

Tel: (0603) 748001
Telex: 975504

CIRCLE 100 FOR FURTHER DETAILS.

SMALL SELECTION ONLY LISTED RING US FOR YOUR REQUIREMENTS WHICH MAY BE in STOCK

Portable Battery or Mains Oscilloscope. SE LaboratoPertable Battery or Mains Oscilloscope. SE Lahorato-
ries 111 Oscllioscope - Solid State - General pur pose - Bandwidth DC to $18 / 20 \mathrm{MC} / \mathrm{S}$ at $20 \mathrm{MV} / \mathrm{CM}$ Dual Channel
Rise time 19 NS - Calibrated Sweep - Calibrator -
Display 10 CNS 88 CMS - Power Display $10 \mathrm{CMS} \times 8 \mathrm{CMS}$ - Power $A C-95$ Volts to 100 -
190 Volts to 260 or 24 Volt DC Dattery - Size 190 Volts to 260 or 24 Volt DC battery - Size
W. $25.5 \mathrm{CM}-\mathrm{H} 25.5 \mathrm{CCMS}-56 \mathrm{CMS}$ Deep WT11.4KGS - Carrying handle - Tested in fair condition with operating instructions $£ 120.00$.

Lalesl Bulk Government Release - Cossor Oscilloscope COU150 (CT531/3) \& 150 only: Solld state general purpose bandwldth DC to 35 MHz al $5 \mathrm{MV} / \mathrm{CM}$ - Oual Channel - High brightness display ($8 \times 10 \mathrm{~cm}$) Full delayed time base with galed mode - Risetime 10NS 1 KHz squaremave - Power $100-120 \mathrm{~V}$ - $200 \mathrm{~V}-250$ volts AC - Size W 26 CM - 41 CM deep - WT 12.5 K.G. carrying handle - colour blue - protection cover front containing polarized viewer and camera adaptor plale - probe (1) - Malns Iead. Tested In Falr condition with operating instructions - $\mathbf{\$ 1 5 0 . 0 0}$

Communication Recievers. Racal $500 \mathrm{KC} / \mathrm{S}$ to $30 \mathrm{mC} / \mathrm{S}$ in 30 bands 1MC/SWIDE - RA17 MK1I \&125. RA17L 150. RAN All receivers are air teslod and calibes our workshop - suppiied with dust cover - operallon instructions - clecuit - in tair used condition. Raca Synthesisers (Decade frequency generators) MA350B
Solid State lor use with - MA7

Etc $£ 100$ to $£ 150$. MA250 - $1.6 \mathrm{MC} / \mathrm{S}$ to $31.6 \mathrm{MC} / \mathrm{S}$ £100. MA1350 for use will RA17 receiver $£ 100$ MA259G Precision trequency standard 5MC/S 1MC/S - 100 KHz \& 100 to $£ 500$. Panoramic Adaptor 10 to $980 \mathrm{KC} / \mathrm{S}$. RA2 18 Rde SSB-ISM Covertor 550 . RA12 SSS-ISB EC964/7K Solid slate - single channel - SBE mains or battory - 1.6 to $27.5 \mathrm{MC} / \mathrm{S}$ and 400 to 535 KHz $\$ 100$ with manual Plessey PR 55 G Solid State $60 \mathrm{KC} / \mathrm{S}$ - $30 \mathrm{MC/S} \mathrm{~s} 400$. Greed 75 Teeperinters - Fitted tape suppty - in original transport tray sealed In polythene - lik new £15EA. Redifon TTT Audio Teleprinter convertor receiver solid state - supply 110 or 240 AC Made for use wilh above Ieleprinter enabiling print-out of messages recieved from aurlo Input of communication recelver $£ 15$ with circuitt te sted. Rediton $\mathrm{T} T 10$ Con-
vertor as above but includes transmil tacilties $£ 20$. Oscilloscopes - stocks always changing textronlx 465 - 100MC/S £750. FM Racorder Sanghmd Sabre
 AF11R- 5 level Baudot Code -up to 300 Bauds - for
print out on plain teleprinter paper $£ 50$ to 100 Transprintount
Tol AH11R-AS above butalsc 8 Ievel ASC11 (CCITTN 2 and CCIT No.5) Like ne $£ 100$. Army tield telephone sets. Type $F-L$ and J - Large quantity in stock £6 to £15 depending on type and quantity P.O.R Don 10 Tolephone Cable - hatt mile canvas containers
$£ 20$. Night viewing intra-red AFV periscopes - Twin Eyepiece -24 vol de supply 1100 ea . Original cosit to government over $£ 11,000 \mathrm{Ca}$ Static invertors - 12 or 24 volt input -240 voit AC sinewave output-various wattages P $0 . R$. XY Ploters a ad pen recorders various

- P.O.R. Ferrograph series 7 Tape recorders mono $£ 100$. stereo $£ 150$. Signal Generators various TF995/A3 660 . TF8010/8s - $10 \mathrm{MC} / \mathrm{S}$ 10 485MC/S $£ 90$ TF14H/A4 £90. TF $1060 / 2$ £60. HP606A - $£ 90 £ 140$ HP608 £50 HP614A £ 100 HP6 188 £ 100 MP620A £ 100. TF893A Power meler $£ 50$ Aurlal mast assembly 3011 high complete with 16 ft whif aerial to mount on top guypopes - in sulators - Base and Spikes etc., in heavy duty carrying bag - new $£ 30$ Racal trequoncy counter Type $836 £ 50$ Textronix plugs ins- 1 A1 $£ 50,1$ A2 $£ 40$.
A4 $£ 100$ M $£ 50$ All tems aft bought direct from H.M. Government being surplus equipment' Price is Ex works. S.A.E. for enquiries. Phone for appointment for demonstration of any itens. Also availability or price change. V.A.I and carriage extra

EXPORT TRADE AND QUANTITY DISCOUNTS GIVEN JOHNS RADIO (0274) 684007 WHITEHALL WORKS,
84 WHITEHALL ROAD
EAST BIRKENSHAW, BRADFORD BD11 2ER

WANTED; REDUNDANT TEST EQUIPMENT
RECEIVING AND TRANSNUTTING EQUMPMENT RECEILES - PLUGS - SDCKETS SYNCHROS

pantechnic

design manufacture and supply
POWER AMPLIFIERS HIGH POWER ASSEMBLIES CONTROL CIRCUITRY
. for application in
INDUSTRY PUBLIC ADDRESS
$\mathrm{HI}-\mathrm{Fl}$
available
OFF THE SHELF CUSTOMISED
CADDESIGNED

	8" SHUAART DISC DRIVES
	GENUINE SHUGART MODEL SA800 Solt-sectored single sided industry standard 8 loppy disc drives 800kB storage Supplied in excellent condition, little-used. Removed Irom Pully functional equipment Price including VAT carriage and Zerox of handbook - §95
	WAYNE KERRAulobalence Universal bridge Model 8641. $£ 250$ + SULLIVAN inductance bridge Model R4000 Measures L to 11.11 l with discrimination of 002 uh
	* INSTRUMENT COOLING FANS*
	All fans avalable ex-stock and GUARANTEED 230 V 10W 5 - Blade $3 \frac{1}{2} \times 3 \div \times 1^{\circ}$ NEW 115 V 13W 5 - B ade $3 \times 3 \times 1^{*}$ NEW $115 \mathrm{~V} 4 \times \times \mathrm{Fl} \times 11^{\circ} 5$-Blade NEW 115 V 7 W if 3 -Blade WHISPER 230V 40W Papst $350 \mathrm{M} / \mathrm{Hr}$. Ex-equip. All prices include VAT ($\rho \mathrm{p} \boldsymbol{+}$-50p)

CIRCLE 48 FOR FURTHER DETAILS

PINEAPPLE SOFTWARE

Programs for the BBC model 'B' with disc drive with FREE updating service on all software

DIAGRAM

- A program which allows you to store very large dagrams - up to 39 mode 0 screens - and view or edit them by SCROLLING the computer screenaround over any part of the diagram

FEATURES

- Draw diagrams, schemarics, plansetc in any aspect ratio, eg. $10 \cdot 3,2 \cdot 12$
- Access any part of the diagram rapidly by entering an index name eg TR6, RS etc. to display a specific section of the diagram, and then scroll around to any other part of the dagram using the - Up to 128 icons may be predefined for each dagram, eg. Transistors, resistors etc. in full mode a definition, up
pixels horizontally by 24 vertically.
28.75 - Hard copy printouts in varying print sizes up toi8mode 0

all inclusive

- Many other features incluaing, selectable display colouis disc $40 \mathrm{~T} / 80 \mathrm{~T}$
compatible
All orders sent by return program one of which will work from a 16 k sideways RAM of post. - Comprehensive instruction manual

PINEAPPLE SOFTWARE, 39 Brownlea Gdns. Seven Kings, Ilford, Essex IG3 9NL 01-599 1476.

CIRCLE 40 FOR FURTHER DETAILS

Z80 © CONTROL $\quad 280$

CARDMASTER CPU

- 4 MHz 280 CPU
- CP/M compatible
- User transparent multi-tasking
- Up to 38 K EPROM \& 16 K RAM
- Watchdog crash protection
- RS232 \& RS422 Comms
- 2* 280a PIO (one uncommitted)
- On board bus buffering
- Power-on jump hard ware
- Euro-card constuction

MONITORIDEBUG - An enhanced version of the NCV monitors. Commands incluce Singie-Step and Break-point settin MIRROR - MIRROR connects the CPU card to your C/PM computer. va the link, in such a way as to give the illusion of
PM running on the CARDMASTER CPU card MIRROR Itself is a two part prograin which etiectively gives CAROMASTER PM running on the CARDMASTER CPU card MIRROR itself
direct access to your disk drive (DISCS WITHOUT OISCSI)
Only $£ 178.00$ built and tested inclut ing the sottware subsystem
CUB MICROCONTROLLER

- 280 CPU
- 4×280 a PIO's (64 I/O lines
- 280a CTC
- 4K Battery backed RAM 2K sup.)
- 4K EPROM (2K MCV2.0 sup.
- Powertul monitor (MCV2.0)
- Eurocard construction

The very popular CUB mictocontroller is the ideal solution where a stand aione controller is requred. The CUB fulty support ne powentil 280 mode 2 interrupt siricture. Single-step \& breakpoint commands in MCV2.0 provide excellent desugging lools The CUB is avallable duilt \& tested or as a bare PCB PRICES: Bull \& Tested $£ 104.95$ Manual anly $£ 450$

CMR16 MICROCONTROLLER
Z80A CPU

- $4 \times 280 \mathrm{a}$ PIO's ($64 \mathrm{I} / 0$ lines)
- 280A CTC
-64K Dynamic RAM
- 8K EPROM
- 4 Channel AD converte
- Real time clock
- MCV1.0 Multitasking monitor

The CMR16 is a very powertul multitasking conirol system. featuring all the taciltues of the CUS (excepl B/日acked RAM)
addition he CMR10 has RS232 and a massive 64 k RAM. Oata aquisition is simple with the 4 channel 10 bit A/O Converter PRICES: Built \& Tested $\mathbf{\$ 2 1 9 . 7 5}$ Bare PCB $\mathbf{\$ 4 0 . 0 0}$ Manual only $\mathbf{£ 5 . 5 0}$

Prices inctude carriage - Piease add VAT 15\% 15%
GNC ELECTRONICS Little Lodge. Hopton Road, Theinetham, Diss, NorfolkIP22 1JN Telephone: Diss (0379) 898313

Ram-rom input/ output controller

A combination of 'sideways' ram and rom-based software expands the capabilities of the BBC Micro into control applications. The Spider adds a number of commands to BBC Basic to allow easy access to external devices and has uses in laboratories or in industry for real-time control. Applications include measurement and recording systems, burglar alarms, aids for the disabled and energy optimizing systems for industry and the home.
The device is provided on a butterfly board which plugs into the 6522 user v.i.a. socket

Parallel processing is possible, which is why it is called the Spider: if an event is caught in the 'web' it is acted upon, another event triggers the system and its presence noted. The first event has its data fully secured and the processor is then free to deal with the second or subsequent events. Different versions are available from the simplest, Spider-B at £65, which communicates through the user and printer ports to Spider-X at $£ 115$, working through the 1 MHz bus. Spider-E, also $£ 115$, interfaces with the Control Universal range of Eurocard control and monitoring devices. Paul Fray Ltd, Willocroft, Histon Road, Cambridge CB4 3JD. EWW201

Modular workstation

A choice of central processing units, displays, application software, programming languages and peripherals are a feature of the Hewlett-Packard series 300 . The modular approach enables the user to start on an entry-level system at relatively low cost and upgrade as and when required by the addition of a faster c.p.u. or a higher-resolution display. All of the software, and the peripherals, remain compatible. The c.p.u. is either a 10 MHz Motorola 6810 or a 32 -bit 16.6 MHz 6820 . A megabyte of ram is standard with either processor and may
be expanded to 7.5 M bytes Four bit-mapped v.d.us are available medium or high resolution, monochrome or colour.
Like most of the $\mathrm{H}-\mathrm{P}$ range, these computers are particularly designed for control and measurement applications and a number of analogue and/or digital interfaces are available along with the appropriate software. Series 300 will run most of the series 200 applications software and an integrated word processor/ spread-sheet/database package is available as well as electrical and mechanical engineering programs. Peripheral devices include digitizer tablets, mice, mass storage, printers and plotters. The workstations can
be networked together and can communicate with $\mathrm{H}-\mathrm{P}$ series 200 and 500 systems over a 10Mbit/s lan. Two IEEE 802.3 Standard cabling options may be used: The first can link up to 30 systems over a distance of 185 m , the second can provide connections to 100 computers at distances of 500 m .
A typical entry-level system will cost about $£ 5164$ while the top of the range costs ten times as much; lower than the Series 200 which are superseded by these computers offering better performance. Measurement Design and Manufacturing Systems, Hewlett-Packard Ltd, Miller House, The Ring, Bracknell, Berks RG12 1XN EWW206

Frequency spotting laser

Instantaneous measurement and analysis of any number of incoming r.f. signals is possible with the use of the Bragg cell developed by Marconi Research labs at Great Baddow and available through GEC Research. The Bragg cell uses acoustic energy generated by the incoming signal to deflect or modulate a laser beam passing through a lithium niobiate crystal. The angle of deflection of the beam is proportional to the frequency of the signal and thus it is a simple process to determine that frequency

The cells are said to have much potential in optical signal processing and spectrum analysis. It could also be used to unscramble the signals from a frequency hopping radar or radio, or to follow the frequencies in order to jam them. The cells are available in various versions with bandwidths from 60 to 2000 MHz and centre frequencies from 0.16 to 2.9 GHz . GEC Research Ltd, East Lane, Wembley, Middlesex HA9 7PP. EWW211

Digital i.c. tester

Many i.c. testers need 'personality' modules to tell the instrument which i.c. it is testing, but an instrument from ABI Electronics includes test algorithms for a wide variety of i.cs which are held in memory and can give instant results on all the 74 series of t.t.l. devices, the 4000 range of c mos devices and a number of memory and interface chips. The instrument can identify the device and test it, thus enabling the identification of unmarked devices. It can also test itself. Any new device or custom chip can be accomodated as ABI will supply the appropriate software.
The i.c. tester emulates in-
circuit conditions and provides the correct supply and input voltage levels. The test may be repeated indefinately to simulate soak testing and for the detection of intermittent faults. The makers claim that it is possible to test 1000 devices in a hour on the instrument and is therefore ideal for 'goods inward' testing, while the price (£573), the makers say, is within the means of many educational establishments who may wish to test a 'job-lot' of i.cs purchased for students' designs.

The makers also manufacture a low-cost 16 -channel logic analyser (£299). ABI Electronics Ltd, Unit 21, Aldham Ind. Estate, Wombwell, Barnsley, S. Yorks 573 8HA. EWW209

Data from space

Automatic satellite telemetry receiver and information decoder is represented by the acronym Astrid and describes the functions of Astrid - a complete satellite receiving system with built-in decoder, enabling signals to be received and data displayed on a home computer.

In operation, it receives all the data transmitted by the Uosat satellites and automatically records it on a standard tape recorder. The recorded signals are then fed back into Astrid to be decoded into ASCII format which may be read through the RS232 serial input on a computer. Signals may also be decoded 'live'.

Information transmitted from the satellites include news bulletins, satellite status data, experimental data, messages on an electronic mailbox, and orbit information. There is an
experimental speech digitizer giving telemetry information on board Amsat 2 and c.c.d. tv camera signals.
Using suitable software, which is available from Amsat UK, the data can be decoded to allow the graphic display of satellite tracks over maps, error detection of received data, disc storage of data for computer analysis and data presentation of particular telemetry channels. The software also allows the inclusion of the latest orbit information to enable the accurate prediction of satellite positions
Astrid comes complete with an aerial and feeder, power supply unit, test tape, manual, and connecting leads. It costs £149 from MM Microwave Ltd, Thornton Road Ind. Estate, Pickering, N. Yorks YO18 7JB. EWW207

Amsat UK is at 94 Herongate Road, London E12 5EQ.

Lithium-backed memory

Over 10 years is the quoted retention of these memory modules when c -mos static ram is used in the DS1213 'smart' socket. The socket incorporates a lithium cell and a control circuit. The socket may be used
with 2 Kbyte and 8 Kbyte static rams and may upgrade existing boards for memory retention without any change in the design. Manufactured by Dallas Semiconductors, the DS1213 sockets are available from Joseph Electronics, Westminster House, 188 Shirley Road, Solihull, W. Midlands B90 3AQ. EWW203

Miniature v.h.f. amplifier
Working over a range from 5 to 250 MHz , the Watkins-Johnson EA51 can provide a typical gain of 17 dB with less than 3 dB noise. 'The v.s.w.r. output is 1.2:1 and the direct current
required at 5 V is 12.5 mA . The amplifier is housed in a TO- 12 package and will work as specified over a temperature range of from -54 to $+85^{\circ} \mathrm{C}$. Watkins-Johnson International, Dedworth Road, Oakley Green, Windsor, Berks SL4 4LH. EWW202

A superb range of innovative loading and duplicating technology

- Worldwide •

4 the leaders

Tape Automation Ltd, Unit 2, River Way, Harlow, Essex CM20 2DN Telephone (0279) 442946, Telex 265871 MONREF G quoting Ref: 84 : AUL 001

EUROPE • USA • JAPAN • UK • INDIA

Completer tobbitces stucatom and trathing package IVAX is the SCARA SSelective Compliance Assembly Robot Arm) with the Powertran pedigree. With fully integrated software and coursework, NAX is the perfect tool for robotics education and training.
 loop systern to simulate virtually any industral application. 4 axes and an independent gripper are operated by a programmable controller, either as a seifcontaired unit or under the control of a hast microcomputer.

Custom-tailored accessories enable IVAX to be incorporated into a comprehensive work cell environment. $321 / 0$ lines can control auxiliary units and monitor sensors. Rugged, rellable and exceptionally accurate, NAX is suitable for light industral use as well as for educational purposes.

THE THERMOMETERS

HAZ40

Differential
0.5\% accuracy
$-30^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
$0.1^{\circ} \mathrm{C}$ resolution
£63.50

HAZ30
0.2\% accuracy
$-120^{\circ} \mathrm{C}$ to $+820^{\circ} \mathrm{C}$
$1^{\circ} \mathrm{C}$ resolution
£45.50

HAZ20
0.1\% accuracy $-100^{\circ} \mathrm{C}$ to $+1370^{\circ} \mathrm{C}$ $0.1 \% 1^{\circ}$ resolution Autoranging Min and Max hold RS232 and Centronics Output option $£ 95.50$

Types K, T and J available Low battery indication 2000 hour min battery life 3 year Guarantee

HAZ SERIES

Sealed tactile keyboard Automatic segment test Splashproof design

HYTECHETD.
HYT
17 Amberley Road,
Bostal Heath,
London SE2 OSG.
$01-3104233$

Socket for the leadless

A low-profile socket, type IC75, is only 7 mm high and 33 mm square and may be used for any Jedec A or B68-way leadless chip carrier. The contact design and cantilever-action lid ensure good electrical performance we
are told: the contacts are rated at 1 A with a maximum resistance of 30 mohm at 10 mA All 68 contacts are accessible from the sides of the socket to enable testing under loaded conditions. The socket may be used at up to $150^{\circ} \mathrm{C}$. Radiatron Components Ltd, Crown Road, Twickenham. Middlesex.
EWW210

CB at 934 MHz

934 MHz never caught on as rapidly as the 27 MHz band for CB , paitly because at this wavelength the equipment needs to be more precise and therefore more expensive. It is seen by many to be the more discerning band, free from the many 'cowboy' operators who dominate the 27 MHz band. A CB transceiver, the Cybernet Delta 1, offers 20 channels at this frequency. It has an
automatic search facility with a memory for the positions of 8 specific channels as well as manual selection of any channel. The receiver is claimed to be highly sensitive with 20 dB quieting sensitivity of less than $0.7 \mu \mathrm{~V}$ and a signal noise ratio better than 40 dB . made by Kyocera in Japan for Mike Devereux Music Ltd, it is distributed at $£ 355$ by Telecomms, 189 London Road, Portsmouth, Hants PO2 9AE. EWW220

Commodore upgrades

The Commodore C16 computer can be augmented to a 64 K machine by the addition of a ram bcard from MCT of Norwich. The board plugs into the computer internally, leaving the cartridge part free, and enables the extended memory to be used with Commodore C15 and Plus-4 programs (but not those for the CBM64). At $£ 59.95$ inclusive, MCT claim the 64 K machine represented
the best value for money of any home computer.

The same company has also produced their own extended Basic, MCT Basic, for the CBM64 which incorporates the commands found in the much improved Basic of the C16. The product is available on cassette for $£ 10.95$ and on disc for $£ 14.95$; a rom version will be available "in the not too distant future." Micro Component Trading Co. Group House Fishers Lane, Norwich, Norfolk NR2 1ET. EWW217

Multi-tasking OS9 board

A development board, the SC09 from Arcom, brings together the STE bus with the 6809 processor and the OS9 operating system. The single Eurocard includes four memory sockets, three 16 -bit programmable timers an a.c.i.a for RS232C communications, and an STE- bus arbiter

The OS9 is a multi-tasking system which can access a disc controller through the bus or communicate with a target rombased system; it can be replaced with a machine-code monitor. The memory sockets take two 24 -pin and two 28 -pin devices and may be used with any combination of rom and ram. Ram may have power

back-up from the STE bus standby power line

The STE bus has access to 64 pages of 56 Kbyte ram and 1 K of input/output locations any of which may be accessed by the 6809. The i/o is memory mapped and code running in any of the STE pages may have access to peripheral devices
Interrupts are accepted from any two of the bus's attention request lines. The processor acts as a 'master' on the bus, using its arbiter to grant access to one or two other temporary masters. The control system includes facilities for the processor to scan the bus and deduce the amount of memory available and identify the connected modules on start-up. Arcom Control Systems Ltd,
Unit 8, Clifton Road,
Cambridge CB1 4BW. EWW204

Heat-sensitive paint

A three-bottle kit of liquid crystal thermographic paint provides temperature coverage from 58 to $117^{\circ} \mathrm{C}$ to nondestructive thermography Spectratherm may be applied to any dark and preferably nonreflective surface.
Semiconductor packages in shiny finishes may be darkened with a black felt pen before
applying the liquid crystal paint, thus allowing the colour change to show more clearly. The right combination of liquids to give the required temperature colour-change can be applied on a test piece and assessed against a printed calibration spectrum provided.
Temperature can be resolved to within $0.5^{\circ} \mathrm{C}$ under laboratory conditions. The kit costs $£ 25.30$ from Redpoint Ltd, Cheyney Manor, Swindon, Wilts SN2 2PS. EWW219

Count up to 100 MHz

Capable of measuring frequency, period, frequency ratio of input channels, time intervals and unit count, the Circuitmate UC10, may be used in audio and computer servicing, cordless telephone repair and for calibrating function generators. With a frequency range of 5 Hz to 100 MHz , the instrument is also provided with four time-gate selections from 0.01 to 10 s . A
built-in 10:1 ratio attenuator reduces h.f. noise components to prevent false counting. Input sensitivity is 20 mV up to 100 MHz . The period function averages periods for three cycles before displaying a value. A self-check function test the internal timebase generators and counters. $\mathfrak{L} 216$ from Beckman Industrial Ltd, Electronic Technologies Division, Mylen House, 11 Wagon Lane, Sheldon, Birmingham B26 3DU. EWW215

Current tracer

Unskilled operators can trace faults in complex circuits with the Polar Toneohm 580. Such is the claim for this instrument which has a sensitive magneticfield probe that can detect small currents such as the flow through an i.c. substrate or within the layers of a multilayer p.c.b.

The instrument also has an internal power supply that
provides a test current of about 0.55 V at 50 kHz which can then be traced with the probe
Shorts and partial shorts can be traced by following the current path around the circuit. It gives an audible tone so the operator can concentrate on the circuit under test without needing to look at the instrument. £176 from Antron Electronics Ltd, Hamilton House, 39 Kings Road, Haslemere, Surrey GU27 2QA. EWW212

Give it a tweek

A liquid that is claimed to cut down or eliminate problems caused by poor contacts is called Tweek. It is not a cleaner, says the distributor, but a non-conductive fluid that works by filling in the surface imperfections and improving the metal-to-metal contact and
'dramatically' reducing the contact resistance. It is claimed to offer improved reliability in any electrical or electronic equipment. It comes in a 7 ml dispenser for $£ 15$ and, as it needs to be used sparingly to give of its best, 7 ml should go a long way. Fulcrum (Europe) Ltd, Valley House, Purleigh, Essex CM3 6QH. EWW208

Digitizing tablet

Initially designed for Siemens as a high-quality, low-resolution input device, the Videograph 1 is now available in the UK. The working area is 320 mm square with a resolution of 0.1 mm . The output can be binary or ASCII, serial or parallel, up to 19200baud, point, stream or
switched stream, at 1 to 200 coordinate pairs per second. A single 12 V supply is taken in through the RS232 connector. Typical configuration of tablet, stylus and RS232 interface costs $£ 499$. Dicoll Datasystems Ltd, Bond Close, Kingsland Estate, Basingstoke, Hants RG24 0QB. EWW216

This month we feature some tantastic This month we feature some tantastic
bargains. Our standard range of
professinglaugityits and cassette profession al quality kits and cas sette
decks is still expanding, aliong with new lines in Video heads and power
supplies. Our FAEE list gives details of these and many other lines.
all bargain items include vat \& post

MODEM OPTICAL ISOLATOR UNIT Sperry Univac M4000 optical isolator unit, designed to provide excellent electrical isolation between data terminals employing
highvoltages and modems. Full isolation up to 2.2 V with a max line
 and weighs $5^{1 / 2 l}$ bs. Power supply is 240 v 50 hz at 20 watts Fitted with
25 way
OUR connectors for RS232C ONLY 24 input and output LIQUD CRYSTAL DISPLAY WATCH MODULE With LCD display. 2 pieces of Polarising material, backlight difiuser micro lamp, precision crystal, trimmet, batery contacts and open
microcircut. Untested.
for

PLESSEY MAINS INTERFERENCE SUPPRESSORS Filter unit for mains borne interference. Max current I SA Our Price.
brand new. Sameltem. Store soiled

Mullard LP1173 AOW POWER AMPLIFIER MODULE Natts into 4 ohm speaker. Size $112 \times 70 \times 29 \mathrm{~mm}$. Completere with hes 10
Sink sink Only £2.40 complete with Data

ALPS FF3ITU FM FRONT END
Beautiful, precision made High Qualty variable capacitor tuned FM FIont End with Dual-gate MosFel. Covers full FM range of 87 to 109 MHz
ONLY $£ 5.15$ Circut if equired 35 .

CAR RADIO FM IF AND STEREO DECODER
Minlature PCB with 10.7 MHz ceramic t fiters, 2 -transtormer ratio
detector, $\mathrm{A} \times 010$ noise suppression C and TCA4500 advanced stare decoder IC. Only needs front end 10 make FM tuner or car radio

Deck type 811C. As above but with Dolby noise reduction. Fully wire with twin VU meter, level controls, pilot lights and DIN socket. $\underset{\substack{\text { wired } \\ \text { E44.73 }}}{ }$ Deck type 828A. Deck mechanism only as used in both above. produced
by one of Japan's lop manufacturers. Fitted high qually stereo R/P head bndFerrite erase. $12 v D C$ electronically governed motor $\ldots \Sigma \Sigma 11,27$
and Cassette Doort tif any above. Dock type 1110. Complete module wth record and play electronics. $3-$
digt counter, AC drive motor and cassette door
£21.73

COMPLETE STEREO TUNER MODULE

 3Band. LW/MW/FM Stereo Tuner tully assembled on PCB $165 \times 85 \mathrm{~mm}$.

CLOCK/TIMER/FREQUENCY METER PARTS Special oHter of the fabulous MSM5524 ciock. tumer and frequency
meter chip. MSL 2318 prescaler chip and 6 L TO9 5-Digit fluoreseent display. These are the 3 primary components tor a complete imming and frequency display system covering the long. medium. short and FM wavebands. Total cost of these parts is normally over $\mathbb{2} 25$. OUR SPECIAL OFFR PRIIEE ONLY $£ 13.68$
INF 230 Data on MSM55 NF260 Application Circuit and MSL2318 . 70p Crystal 3276.8 KHz . ¢2. $18{ }^{20 \mathrm{p}}$ SLIMLINE AXIAL FANS

20.01

Do your tapes lack treble? A worn head could be the problem Fitting one of our replacement heads cauld restore perrormance our TC1 Test Cassette helps you set the arimuth spot-on. We are the actual importers which means you get the benefit of lower prices for prime parts. Compare us with other suppliers and seel
The following is a list of our most popular heads, all are suitable for use on Dolby machines and are ex-stock. HC20 Permalloy Stereo Head. This is the standard head fitted as
f5.11
orignal equipment on mos! decks HMiso High Beta Permalloy Head, A hard-wearing, higher per HS16 Sendust Alloy Super Head. the best head we can find Longer life than Permalloy, higher output than Ferrite, fantastic
frequency response. HO55T 4-Track Head for auto-reverse or quadrophonic use. Full Please consult our list for tectnical data on these and otner Special Purpose Heads.
MA481 Latest version Double Mono (2/2) Record/Play head. Replaces R484
SM166 Standard Mounting 2/2 Erase head. Compatible with above or HO551 4 Track head. ciency H561 Metal Tape Erase Head. Full doubie gap

HART TRIPLE-PURPOSE TEST

 CASSETTE TC1One inexpensive test cassette enables vou to set up VU level
head azimuth and tape speed Invaluable when fitting now heads. Oniy $£ 4.66$ plus VAT and 50 p postage
Tape Head De-magnetiser. Handy size mains operated unit
 Curved Pole Type for inaccess ble heads
Send for your free copy of our LISTS Overseas please send 2
RCs to cover surface Post or 5 IRCs for Armail RCs to cover surface Post or 5 /RCs for Aurmail.
inland
OVERSEAS
Orders up to f10-50p
Orders $\mathrm{£10}$ to $£ 49-£ € 1$
Orders over $£ 50-£ 1.50$ Surface ord Aurf Post as

Personal callers are always very welcome but piease note that we are closed all day Saturday

24hr SALES LINE
(0691) 652894

ALL PRICES EXCLUDE VAT UNLESS STATED

CIRKWIK is a lightpen or trackerball driven CAD package orientated to the production of schematic drawings, such as circuit diagrams, flow charts, power systems, pipework diagrams and many similar professional and engineering applications.
Using this on screen menu driven program you can turn your BBC micro into a powerful CAD system capable of producing high quality drawings easily and quickly. An ordinary 80 column dot-matrix printer is all that is required for output and a unique graphics routine allows a multiple screen drawing to be printed in one pass.
Drawings up to 2 screens high by 4 screen wide may be produced and new symbolic shapes may be created on an enlarged scale even while the drawing is in progress. Up to 640 different symbols may be used at any time. The drawings are in high resolution mode 4 with no restrictions on position and symbols and text may be joined, overlaid, rotated and inverted at will. Block move and copy commands, logical erase and self straightening lines are some of the useful features included with this program. Parts lists of symbols used may be generated and printouts can be obtained of the unlimited symbol libraries.
3 versions available; Datapen lightpen, trackerball and Grafpad, the latter two also include the lightpen version. The drawings produced on any version are completely interchangeable and the difference between versions is one of speed of drawing. Please send your cheque/P.O. to:

Lightpen version
£19.95 Trackerball/lightpen version 24.95 Grafpad/lightpen version ..£24.95 Datapen lightpen
£25.00

Marconi Tracker ball with

Micro-Draw program...... $\mathbf{f 5 9 . 5 0}$ ICON drawing program. $\mathbf{£ 6 0 . 5 0}$ ATARI Trak-Ball with BBC interface.
£ 33.00

All prices include VAT \& postage. S.A.E. FOR FURTHER DETAILS.

CIRCLE 30 FOR FURTHER DETAILS.

CIRCLE 90 FOR FURTHER DETAILS.

the highest quality
 from 2299 the most competitive prices + VAT

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, with a newly-extended 14 model range that represents the hest value for money available anywhere.
V-212/222 20 MHz Dual Trace V-650 60MHz Dual Timebaxe V-223 20 MHz Sweep Delay $\quad V-1050 \quad 100 \mathrm{MHz}$ Quad Itace - 1070 foom Mz four Channe V-209 $20 \mathrm{MH}_{2}$ Mini-Portable V-1100 100 MHz DMM/Counter V-422 40 MH, Duat Trace V $13 \mathrm{t} \quad 10 \mathrm{MHz}$ Tube Storage $V-423 \quad 40 \mathrm{MHz}$ Sweep Delay VC-6015 10 MHz Digital Storage V-509 50MH, Mini-Portable VC-6(1)41 40 MHz Digital Storage
Prices start at $£ 29)$ plus vat (20 MHz dual trace) including a 2 yr . warranty. We hold the range in stock for immediate delivery

For colour brochure giving specifications and prices ring (0480) 63570 Thurlby-Reltech, 46 High Street, Solihull, W. Midlands. 13913 T13.
CIRCL.E 122 FOR FURTHER DETAILS

The world's most advanced low-cost bench multimeter!

A complete high performance bench DMM

- $51 / 2$ digits; 0.015% acc; $1 \mu \mathrm{~V}, 1 \mathrm{~m} \Omega, 1 \mathrm{nA}$.
- Full ac and current functions as standard

A sophisticated computing and logging DMM

- Linear scaling with offset; null/relative
. Percentage deviation; running average
* dBV, dBm general logarithmic calculations
- Limits comparison; min and max storage
- 100 reading timed data logging
- RS232 and IEEE-488 interface options

Thurlby Electronics Ltd
New Road, St.Ives, Cambs. PE17 4BG
\|Thurlby
Tel: (0480) 63570
designed and built in Britain
CIRCLE 123 FOR FURTHER DETAILS.

An essential instrument
An oscilloscope and logic probe are not enough to unravel the complexities of today's eiectronic equipment. A logic analyser has become the essential tool for both hardware and software engineers. Indeed a logic analyser is as important for the observation of logic signals as an oscilloscope is for the observation of analogue signals.

Unfortunately the high cost has made logic analysers unavailable to many who could benefit from them, but now the Thurlby LA-160 puts a sophisticated and versatile logic analyser within the reach of everyone.
the Thurlby LA-160
from

- 16 data channels, expandable to 32
- Clock rates up to 20 MHz
- 2,000 word data acquisition memory
- Non-volatile reference memory
- Data state and logic timing displays
- Binary, octal, decimal or hex formats
- Powerful search and compare facilin
- Widsany data prin - asemblers!
processor disant microprocessors - unrers standard mnemonics used $6502, Z 80$ and 6800 presently available
- Simple connection to the microprocessor
* Full capture using 32 data channels
- All memory/stack operations are shown
- Branch addresses are calculated
- Extra uncomitted channels available

Now, with the launch of uP disassemblers, a complete 32 channel logic analyser system with disassembler software and personality module is available for $£ 658$.
Contact us now for full technical data and prices.

designed and built in Britain

Thurlby Electronics Ltd New Road, St.Ives, Huntingdon, Cambs. PE17 4BG, England. Tel: (0480) 63570

Its easy to complain about advertisements. But which ones?

Every week millions of advertisements appear in print, on posters or in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice.

But some of them break the rules and warrant your complaints.

If youre not sure about which ones they are. however. drop us a line and we'll send you an abridged copy of the Advertising Code.

Then. if an advertisement bothers you, you'll be justified in bothering us.

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right. ASA Ltd. Dept 2 Brook House. Tornington Place. London WCIE 7HN

The Wings Appeal Fundhelps to maintain the RAF Association Home forDisabled and Chronic Sick. Care is essential for those who have served their country and who are in need. Soplease help by giving all you can for an emblem in WINGS WEEK in September orsenda donation to show that you care.

To Royal Air Forces Association Appeals Dept., (DS) Portland Ra Malvem. Worcs. WR142TA.
lenclose adonation of forthe Wings Appeal fund.
Name.
Address

Please tick if receipt required or information on RAFA Membership \square

Give as they Gave

ERS - PRINTERS - PRINTERS - PRINTERS

SUPER DEAL? NO - SUPER STEAL THE FABULOUS 25 CPS "TEC STARWRITER"

quality Micro-process
DIABLO/QUME
ETC. Many other featur
Ell. Madth 381 mm paperes include bi-directional printing, switchable 10 Or 12 pit rollers for single sheet or continuous paper, internal buffer. standard RS232 serial interface with handshake. Supplied absolutely BRAND NEW with 90 day guarantee and FREE daisy wheel and dust cover. Order NOW or contact sales office for more informatıon. Optional extras RS232 data cable £10.00. Tech manual £7.50. Tract
Feed £140.00. Spare daisy wheel £3.50. Carriage \& Ins. (UK Mainland) £10.00.

SUMMER OFFER ONLY £399.99!!

DIY PRINTER MECH

Brand New surplus of this professional printer chassis gives an outstanding opportunity for the Student, Hobbyist or Robotics constructor to build a printer - plotter - digitiser etc, entirely to their own specification. The printer mechanism is supplied ready built aligned and pre tested but WITHOUT electronics. Many features include all metal chassis, phosphor bronze bearings, 132 character optical shaft position encoder, NINE needle head, $2 \times$ two phase 12 V stepper motors for carriage and paper control, 9.5" Paper platten etc. stc. Even a manufacturer's print sample to show the unit's capabilities etc. Even a manufacturer's print sample to
Overall dimensions $40 \mathrm{~cm} \times 12 \mathrm{~cm} \times 21 \mathrm{~cm}$. Sold BRAND NEW at a FRACTION of cost ONLY £49.50 + pp £4.50.

TELETYPE ASR33 DATA I/O TERMINALS

Industry standard, combined ASCII 110 baud printer, keyboard and 8 hole paper tape punch and reader Standard RS232 serial interface Ideal as cheap hard copy unit or tape prep. for CNC and NC machines. TESTED and in good condition. Only £235.00 floor stand £10.00. Carr \& Ins. £15.00

EX NEWS SERVICE PRINTERS

Compact ultra reliable quality built unit made by the USA EXTEL Corporation Often seen in major Hotels printing up to the minute News and Financial information, the unit operates on 5 UNIT RS232 or TLL serial interface. May be RS232 or TTL serial interface. May be
connected to your micro as a low cost connected to your micro as a low cost to any communications receiver to
enable printing of worldwide NEWS. TELEX and RTTY services.
Supplied TESTED in second hand condition complete with DATA, 50 and 75 baud x tals and large paper roll. TYPE AE11
50 Column ONLYE49. 95 $\begin{array}{ll}\text { Spare paper roll for AE } 11 & \varepsilon 4.50\end{array}$ TYPE AF11R 72 Col. + Ribbon
TYPE £65.00 TYPE AH11R 80 Col .

ASCII/BAUDOT
£185.00

20,000 FEET OF ELECTRONIC AND COMPUTER GOODIES

 ENGLAND'S LARGEST SURPLUS STORE - SEEING IS BELIEVING!!
DEC CORNER

PDP 1140 System comprising of CPU, 124 k memory \& MMU 15 line RS232 interiace RP02 40 MB hard disk drive.
TU10 9 track 800 BP! Mag tape drive, dual track system. VTS2 VDU. etc. etc. Tested and
 DH11-AD $16^{\prime \prime} \times R S 232 D^{\prime} M A$ interface
DLV11-J4 \times EIA intertace
£1,900.00 DLV11-E Serial Modem support $\quad \varepsilon 350.00$ DUP11 Synch. Serial data $1 / 0 \quad £ 650.00$ OZ200 Dilog-mult RK controlier $£ 495.00$ KDF11-B M8189 PDP 1123 board $£ 650.00$ PLUS
£1,100.00
LA30 Printer and Keyboard
LA36 Decwriter EIA or
MS11-JP Unibus 32 kb Ram MS11-LB Unibus 128 kb Ram MSI1-LDUnibus 256 kb Ram PDP11/05 Cpu Ram, $1 / 0$ etc RT11 ver 3B documentation RKO5.J 2.5 Mb disk drives KL8 JA PDP 8 async i/o
M18E PDP 8 Bootstrap VT50 VDU and Keyboard
VT52 VDU and RS232 interface £80.00 £270.00 880.00 $£ 450.00$ £850.00 E450.00 1.850 .00 E70.00
¢ 650.00 £175.00 $\varepsilon 75.00$ £175.00

[^3] Brand New VT100 Keyboards .. 1000's of EX STOCK spares for
DEC PDP8, PDP8A PDP1 1 systems $\&$ Deripherals Call for detals All whems Computer equipment and spares wanted PROMPT CASH PAYMENT

MAG TAPE DRIVES

Many EX STOCK computer tape drives and spares by PERTEC, CIPHER, WANGO, DIGIDATA, KENNEDY etc. Special offer this month on DEI Cartridge tape drives ONLY £450.00 each.

CALL FOR DETAILS

COMPUTER/SYSTEM CABINET \& PSU

switched qualty computer cabinet with integra cooling. Originally made tor the famous DEC PDP8 computer system costing thousands of pounds.
 Made to run 24 hours per day the psu is fully creened and will deliver a massive +5 v DC at $17 \mathrm{amps},+15 \mathrm{v}$ DC at amp and -15 v DC at 5 amps . The complete unit is fully enclosed with removable top lid, filtering, trip switch, power and run leds mounted on ali front panel, rear cable entries, etc etc. Units are in good but used condition - supplied for $240 v$ operation complete with ull circuit and tech man. Give your system that professional finish for only $£ 49.95$ + carr. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high. Useable area $16^{\prime \prime}$ w $10.5^{\prime \prime} h 11.5^{\prime \prime} \mathrm{d}$.
Also available less psu, with fans etc. Internal dim. $19^{\prime \prime} \mathrm{w}, 16 \mathrm{~m}^{\prime \mathrm{d}}, 10.5^{\prime \prime} \mathrm{h}$ £19.95. Carriage £8.75

ELECTRONIC EQUIPMENT

Due to our massive bulk purchasing programme. which enables us to bring you the best possible bargains, we have thousands of ICs, Transistors. Relays. Caps, PCB
Sut-assembles, Switches etc. etc surnlus to OUR , equirements Because we don Sub-assemblies, switches etc. etc. surplus to OUR ,equirements. Because we don items into the BARGAIN OF A LIFETIME Thousands of components at giveawa perhaps one of the most consistently useful items you will every buy!! Sold by weight.

GE TERMIPRINTER
 printer terminals enables us to offer you
these quality 30 or 120 cps printers these quality 30 or 120 cps printers at a SUPER LOW PRICE against thei original cost of over comprises of full QWERTY electronic keyboard and printer mech with prin face similar to correspondence quality typewriter. Variable
column paper. upper - lower case standard RS232 serial intertace, interna vertical and horizontal tab settings standard ribbon, adjustable baud rates, quiet operation plus many other features. Supplied complete with manual GE1200 $120 \mathrm{cps} £ 175.00$
Untested GE30 £65.00 Option

SEMICONDUCTOR 'GRAB BAGS'

Mixed Semis amazing value contents

 inclacs. diodes. bridge recs. etc. etc. Al dev guaranteed brand new full guaranteed.guaranteed
$50+£ 2.95100+£ 5.15$
TL 74 Series. A gigantic purchase of an "across the board" range of 74 TTL series
IC's enables us to offer $100+$ mixed "mostly TTL" grab bags at a price which normally cost to buy. Fully guaranteed all IC's full spec. $100+\varepsilon 6.90$
$200+\varepsilon 12.30,300+\varepsilon 19.50$

CENTRONICS 710 PRINTERS

Ex RENTAL Heavy duty full width carriage printer up to 132 columns on
17 fan fold sprocket fed paper. 60 cps $17^{"}$ fan fold sprocket fed paper. 60 cps
print speed with standard RS232 or 20 mA loop intertace. Supplied in TESTED used condition with data ONLY £85.00 carriage and insurance $£ 10.00$

MAINS FILTERS

CURE those unnerving hang ups and data glitches caused by mains interference with box size up to 1000 watt 240 V box size Up to 1000 watt 240 V
Load ONLY $£ 5.95$. L12127 compact completely cased unit with 3 pin fitted

EPROM COPIERS

The amazing SOFTY 2 The "Complete Tooikit for copying, writing, moditying and
listing EPROMS of the 2516,2716 . 2532, 2732 fang
include integra keyboard. Cassette inter-
face serial and parallel i/o UHF modulator ONLY £195.00 + pp £2.50
"GANG OF EIGHT" intelligent $Z 80$ controlled 8 gang programmer for ALL
single $5 v$ rail EPROMS up to 27128 . Will copy 827128 in ONL Y 3 MINUTES Internal LCD display and checkıng routines for
IDIOT PROOF operation. Only $£ 395.00+$
"pp £3.00.
above but with additional RS232 serial interface for down line loading data from
computer etc. ONLY $£ 445.00+p p £ 3.00$ Data sheets on reques

SOOT PU MFR WARBH:OUSG
 THE "ALLADINS' CAVE OF COMPUTER AND ELECTRONIC EQUiPMENT

EX-STOCK INTEGRATED CIRCUITS

4164200 ns D RAMS 8 for $£ 14.954116300 \mathrm{~ns} £ 1.50$ $\begin{array}{lllll}2112 & £ 10.00 & 2114 & £ 2.50 & 2102 \\ \text { E2.00 } & 6116 & £ 2.50 \\ \text { EPROMS } & 2716 & £ 4.50 & 2732 & £ 3.00 \\ 2764 & £ 4.95\end{array}$
 $\begin{array}{llll}6809 & £ 10.00 \\ 8085 & £ 5.50 \\ 87086 & £ 15.008251 & 87.00\end{array}$ 8748 £ 15.00

RECHARGEABLE BATTERIES

 Dry FIt MAINTENANCE FREE by Sonnenschein \& YuasaA300 $0719131512 v 3$ an as RS $591-770$ NEW $£ 13.95$ A300 07191312 Vv Bah as RS $591-360$ NEW $£ 9.95$ | A300 |
| :--- |
| $\mathbf{\varepsilon 5 . 9 9}$ |

DISK DRIVES

Japanese Half height, 80 track double side

 disk drives by TEAC, TOSHIBA etc. Sold asNEW with 90 day guarantee ONLY 125.00 . NEW with 90 day guarantee ONLY 125.00
SUGARY SA400 SS RH 35 IRK 55.00 SIEMANS FDD100 SS FF 40 TRY $\mathbf{E 7 5 . 0 0}$ carriage on $51 /{ }^{\prime \prime}$ drives $£ 5.50$ rand NEW metal cases with internal PSUetc DSKC 1 for 2 HH or $1 \mathrm{FH} 5 \%^{\prime \prime}$ drive $£ 39.95$ $+\mathrm{pp} £ 4.50$ DSKC2
$£ 29.95+\mathrm{pp} £ 4.50$
SUGAR 801 SS $£ 175.00+$ pp $£ 8.50$ SUGAR 851 OS $£ 250.00+\mathrm{pp} £ 8.50$
 complete with PSU etc £595.00
$8^{\prime \prime}$ DAVE PSU for 2 drive units $£ 45.00$ Hard Disk Drives
DRED DIABLO Series 302.5 Mb front load ME 3029 PSU for above £95.00 DIABLO 44/DRE4000A, B5+5 Mb from EDE HAWK $5+5 \mathrm{Mb} £ 795.00$ CDC 976280 Mb RM03 etc $£ 2500.00$ PERTEC D3422 $5+5 \mathrm{Mb}$ £ 495.00 RODIME 10 MB ST506 Winchester NEW BASE 6 E199.00
Carriage on other drives $£ 10.00$ Unless stated all drives are refurbished with spares in stock-call sales office for details.

MODEMS

super range of DATA MODEMS, prices and
specifications to suit all applications and budgets
BRAND NEW State of the art products
DACOM DSL2123 Multi standard 300.300 120075 Auto answer etc. DACDM DSL2123AD Auto dial Smart
modem with multi standard AUTO SPEED etc
DACOM DSL2123GT The CREAM of the
 DUPLEX sync or async. optional auto dial. baud
RS232 full duplex, originate
only,
E49.00 Ex BRITISH TELECOM full Spec CCITT ruggedise, bargain offers Sold TESTED with
data Will work on any MICRO or system with RS232 interface
PATEL $2 B 300$ Baud Modem see SPECIAL MODEM $13 A 300$ baud unit only $2^{\prime \prime}$ high fits MODEM 20-1. 7 5-1200 baud. Compact unit for use ss subscriber end to PRESTEL
TELECOM GOLD, MICRONET Etc. $£ 39.95$ ${ }^{+}$MODEM $20-21200-75$ baud. Same as $20-1$ but PATEL 412 Made by SE labs for BT this two
DAT part unit is for synchronlous data links at 1200
or
on
baud
using or 2400 baud using $2780 / 3780$
protocol etc. Many features include 2 or 4 wire Working, self test, auto answer etc
COST OVER $£ 800$ Our price ONLY $£ 199$ +P DE8.00
PATEL 4800 RACAL MPS4800 baud
modem, EX Bt good working order, ONLY modem, $E X B$ gt good working order, ONLY
E295.00 MODEM TE SUMMER OFFER
M EXT, UP 101200 baud. full
dude over 4 wire or haling ilex over 2 wire line duplex over 4 wire or half duplex over 2 wire line
ONLY $£ 85.00$ PER PAIR + po $£ 10.00$

DEFEAT

 ELETRAntrs E39.95 Ready toSocket
PRESTE

HOT LINE DATA BASE

The ORIGINAL FREE OF CHARGE dial up data - base. Buy, browse or place YOUR OWN AD for: goods or services to sell. 1000's of stock items,
spares and one off bargains. Updated daily. spares and one off bargains. Updated daily.
ON LINE NOW. CCIT ON LINE NOW. CCITT, 8 bit word, no parity. or 300 baud modems call 01-679 1888

PRINTER / TERMINAL SCOOP A MASSIVE the US GENERAL ELECTRIC CORPORATION the GE MODEL 30 features a standard OWERTY 80 key
electronic keyboard coupled to a quality built matrix
capable of continuous duty printing,
ASCII data at 110,150 or 300 baud interface to 120 data la ta ar Terminals, Data loggers, local label printing, or just as a printer! Sold TESTED with data ONLY £95.00 Also available with preparation etc £150.00 Carriage $£ 10.00$.

COOLING FANS

Kep YOur of COOLING FANS OUT range of ETRI 126LF21 240 V 5 blade equipment fan

 Dim $80 \times 80 \times 38 \mathrm{~mm}$ E9.95ETRI $88 \times \cup O 1$ Dim. $92 \times 92 \times 2$
guard NEW $\mathrm{E}^{2} 95$
GOULD NEW E.E9.95
very quiet running $24 a^{2} \times 1 \times 2.5^{\circ} \mathrm{compac}$
BUTLER 69 .
reversible fan $1.228-16 \mathrm{v}$ DC micro miniature extremely high air flow also silent running and
guaranteed $0,000 \mathrm{hr}$ life. Measures $62 \times 22 \mathrm{~mm}$ Current cost £ 3200 OUR PRICE ONLY E12.95 complete with data
fans $110 \vee O R 240 \cup \mathrm{~N} E \mathrm{~W}$ at $£ 10.50$ or tested 1000's of other fans Ex Sta

QWERTY KEYBOARDS

Manufacturer's BRAND NEW surplus. ALPHAMERIC $7204 / 60$ Full travel ASCII
60 key with parallel output and strobe
DEC LA34 Uncoded keyboard with 67 quality gold plated switches on X-Y AMKEY MPNK-114 Superb word p
chassis keyboard or single PCB chassis keyboard or single PCB
keys. Many features such as Micro, Single 5 v rail, full ASCII board Numeric keypad, cursor pad and 9600 baud SERIAL TIL ASCII OUTPUT!! OWL

plessey vutel

, iata
Tine ticumive Haiti

Keypad and electro

pics to
Terminal MeSTEL etc. Many other features include data storage, Picture expand Standard
Millard LUEY chip set, Integral $5^{\prime \prime}$ JVC crt

EXECUTIVE A O Over §600!! But fro

SPECIAL 300 BAUD MODEM OFFER

NEW or little used 2 B data modems allows US to make the FINAL REDUCTION. and for YOU to join the exciting world of data communications ai an UNHEARD OF PRICE OF ONLY £29.95 Made the highest POST OFFICE APPROVED spec at a cost of hundreds of pounds each, the 2B has all the standard requirements for data base. REDUCTION. and for YOU to join the exciting world of data
communications at an UNHEARD OF PRICE OF ONLY £29

COLOUR AND MONOCHROME MONITOR SPECIALS

SYSTEM ALPHA' $14^{\prime \prime}$ COLOUR MULTI INPUT MONITOR

computer system this monitor has all the features to suit your immediate and allow direct connection to the BBC and most other makes of micro computer and VCR's. An internal speaker and audio amplifier may be connected to you
systems output or direct to a VCR machine, giving superior sound quality Man systems output or direct to a VCR machine. giving superior sound quality. Many
other features included PIL tube, Matching BBC case colour, Major controls on front panel, Separate Contrast and Brightness- even in RGB mode. Two types o audio input, separate cor and audio control This Must be ONE OF THE YEAR'S BEST BUYS
Supplied BRAND NEW and BOXED. Complete with DATA and 90 day guarantee DECCA $8016^{\prime \prime}$ COLOUR monitor. RGB input
converted DECCA RGB Colour Video TV Monitor at a super low price of only m99.00, a price for a colour monitor as yet unheard of!! Our own interface, safety tested DECCA 80 quality found only on monitors costing 3 TIMES OUR PRICE has to be seen to be believed. Supplied complete and ready to plug direct to a
BBC MICRO computer or any other system with a TL RGB output. Other Attractive TEAK CASE compact dimensions only $52 \mathrm{~cm} W \times 34 \mathrm{H} \times 24 \mathrm{D}$ guarantee Although used units are supplied in EXCELLENT condition. ONLY DECCA 80,
model 80 COLOUR monitor. Composite video input Same as above REDIFFUSIO VISUAL use ONLY $£ 99.00$ + Carr for shops, schools, clubs and other AUDIO VISUAL applications. Supplied in AS BUDGET RANGE EX EQUIPMENT MONOCHROME video monitors.
All units are fully cased and set for 240 v standard working with composite video when MINOR screen burns exist - normal data displays are unaffected信 S2 GKEEN SCREEN version of KGM 320-1 Only $£ 39.95$ 9" HITACHIVM-96E/K Black and White very en $£ 49.95$

D.C. POWER SUPPLY SPECIALS

GOULD G6-40A 5V 40 an
pto TESTED ex equipment. Only £24.95 STEM AC -DC Linear PSU for DISK drive and SYSTEM applications Constructed on a rugged
ALLOY chassis to cont inuously supply fully requited DC outputs of +5 V @ 3 amps -5 V ALLOY chassis to cont inuousiy supply full regulated

VDU TERMINALS

 prices! OVT108. Current product. state of the art terminal with detachable keyboard, 12 " greenScreen, 2 page RAM. TVI 925 emulation. 25×80, Clock Swivel and tilt base, Printer port Function
Keys etc BRAND NE and BOXED AT ALMOST HALF PRICE Only E425.00
AJ510 -EX RENTAL
 addressing, printer port etc very void condition
TESTED complete with manual only 22500 ADDS 520 -Dumb terminal used 12 " bow scree
RS232 interface and printer port. TESTED. RS232 interface and
ONLY £125.00
Carriage on terminals $£ 1000$

[^4]
Communications receivers

Some additions to last month's survey

Philips have launched two multiband synthesized portables, each covering $150 \mathrm{kHz}-30 \mathrm{MHz}$ plus the f.m. broadcast band.

The D2935 ($£ 170$), styled as a portable, is a double-superhet with a liquid-crystal display, keypad frequency selection giving storage for up to nine stations, a b.f.o. for s.s.b. or c.w. reception and an r.f. gain control. It can run on mains or battery power and it weighs 2.45 kg .
Among the additional features offered by the D2999 ($£ 300$) are three-speed electronic tuning using a knob as an alternative to the keypad, a digital fieldstrength meter, seven more memories, a search-tuning facility and a switchable dual loudspeaker system. This model, which is described as a transportable, weighs 4.11 kg .

The Danish manufacturer Eska is returning to the market after a reorganization, and among the h.f. products announced by the company is the RX99PL transportable receiver.

Frequency coverage is 15 kHz to 29.999 MHz plus a.v.h.f. range of $144-176 \mathrm{MHz}$ and an unusually wide f.m. broadcast band of $60-$
109.9 MHz . Modes available are s.s.b., f.m. (broad and narrowband), radio-teleprinter, a.m. and phase-locked a.m., with true passband tuning. This versatile set has a two-line, 20 -character alpha-numeric l.c.d. read-out, 99 memory channels, scanning, four independently-selectable a.g.c. time constants and nine
receiver bandwidths ranging from 500 Hz to 240 kHz . Remote control and data transfer are possible via a passive 20 mA current loop. Also from Eska is a modification kit for the JRC NRD-515 receiver pictured last month. The kit includes extra filters to improve the set's selectivity and is claimed to increase the signal-to-noise ratio by 10 dB . It also provides a phase-locked a.m. detector for distortion-free reception of a.m. stations even during severe fading and interference. Eska Communications Systems A/S, Frederikssundsvej 274D, DK2700 Bronshøj, Denmark.

The D2935 from Philips

Eska's RX99 PL receiver

From page 36

ence here is that in the newer devices there is no onus on the system to provide the refresh address.

This 'CAS-before-RAS' signal mechanism - just one of the advances being made in dynamic memory development requires the slightly more complex RAS signal.

To keep the system simple, no code is executed within the silicon disc memory; it is purely a store into which and from which data is transferred. This means that access to it will always be interleaved with access to other areas of memory.

The timing controller generating RAS and CAS for the silicon disc produces conventional memory cycles when the disc is actually being accessed. It generates CAS-before-RAS cycles whenever accesses at other addresses occur or when the silicon disc is mapped out of the system. Thus refreshing is guaranteed while the microprocessor runs and yet minimal control signals are required.

Component IC_{1} buffers the data bus to and from the host system. It is permanently active and normally faces off the system bus toward the silicon disc. Page
selecting latch IC_{2} is treated as an i/o port clocked by an external signal which, in the case of the SC84, comes from the i/o board through pin c 25 . The lower seven bits stored in this latch combine with the lower 11 bus address lines to form inputs to a nine channel two - input multiplexer, IC_{3-5}, providing row and column addresses to the dynamic memory array.

It doesn't matter which address lines are paired up, or which multiplexer outputs go to which dynamic memory address inputs. Upper system address lines A_{11} to A_{17} go into an eight-bit comparator formed from $\mathrm{IC}_{6, i}$ which gives an active output when the address matches the switch settings and the SDSEL line is active. This line is the signal which maps the silicon disc into memory and may be selected to be active high or low by switch S_{8}. Output of the comparator is used to gate the inverted RD signal into the dynamic memory W pins.

In SC84 an inverted read signal rather than the conventional write one was used as the write strobe to the memories. The advantage of this is that an 'early write' is always generated. This type of write cycle is particularly useful in that the write operation
for these dynamic memories can take two forms, dependent on the state of the W line when CAS goes low.

Most microprocessors still have their write signals high at the point when CAS goes low, so a conventional cycle is generated where the memory outputs the present state of the bit, i.e. the cycle begins as a read one. By setting W low before CAS goes low an 'early write' cycle occurs in which the output pin of the memory stays in a high impedance state throughout the cycle. This allows the data input and output pins on the memory to be connected together without any fears of bus contention - an arrangement which suits the bidirectional system data bus.

The main control signal indicating a memory cycle passes through buffering and a series of time delays to produce a slightly delayed version for the RAS signal. A further delayed version switches the address-line multiplexer and a yet further delayed one acts as the conventional CAS. Note that these signals are all gated with the original one so that all signals go to their inactive state promptly at the end of the memory cycle.

The memory control signal
also feeds forward, bypassing the delay chain. This is the early version of CAS, made available for the 'CAS-before-RAS' refresh cycles mentioned earlier. Selection of the CAS type takes place in a dual 4-to-1-line multiplexer, IC_{8}. Here the comparator output and the higher order bit from the page register combine to select which type of CAS, early or conventional, is passed to which 256Kbyte memory block.
In using a silicon disc, one rule must be adhered to. Remember that the 'disc' is silicon and not magnetic and so should the power fail you will lose all of the data. The rule is to regularly make back-up copies of any master files on magnetic disc.
A version of the SC84 operating system, version 2.1D, is available which treats the silicon disc as drive E. For readers patching their own CP/M Bios, a DPB exists. The DPB sets the number of sectors per track as 16 (sixteen 128 byte sectors yields the 2 Kbyte of page/track) and zero offset, i.e. no tracks reserved for system use as you would never boot the system from a silicon disc! Other parameters are by choice, although the system uses a block and 16 checked directory entries.

ADVANCED LOW COST SPECTRUM ANALYSER

THE IFR A-7550 SPECTRUM ANALYSER
The A-7550 spectrum Analyser is the most advanced, low cost portable spectrum analyser on the market today. Two powerful microprocessors, menu driven display modes and single function keyboard entry aid the user in the operation of all analyser functions. To further enhance the operational simplicity of the A-7550, the microprocessor system automatically selects and optimises the analyser's bandwidth. sweep rate, centre frequency display resolution and the rate of the frequency slewing keys. An operator over ride is also provided when non-standard settings are required.
TO LEARN MORE ABOUT THE A-7550'S IMPRESSIVE RANGE OF FEATURES, CONTACT US TODAY.

Fieldtech

Heathrow
Fieldtech Heathrow Limited
Huntavia House, 420, Bath Road ongford, Middlesex, UB7 OLL England Telephone: 01.8976446 Hanting

Wredessumitd EDITORIAL FEATURES 1985/86
ISSUE
DATE

Nov. 1985 Oct. 16th
Modems
Jan. 1986 Dec. 19th
Mar. 1985 Feb. 20th Computer Aided
A D \& D to A Converters

Design
Equipment
May 1986 April 17th Fibre Optics

For more details regarding advertising Contact Bob Nibbs 01-661 3130

CIRCLE 13 FOR FURTHER DETAILS.

It's easy to complain about an advertisement. Once you know how.

One of the ways we keep a check on the advertising that appears in the press, on posters and in the cinema is by responding to consumers' complaints.

Any complaint sent to us is considered carefully and, if there's a case to answer, a full investigation is made.

If you think you ve got good reason to complain about an advertisement. send off for a copy of our free leaflet.

It will tell you all you need to know to help us process your complaint as quickly as possible.

The Advertising Standards Authority.

 If an advertisement is wrong, were here to put it right.
Appointments

Advertisements accepted up to 12 noon October 1 for November issue

DISPLAYED APPOINTMENTS VACANT: $£ 21$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 4.50$ per line, minimum $£ 30$ (prepayable) BOX NUMBERS: $£ 7$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant. Sutton, Surrey SM2 4AS). PHONE: IAN FAUX, 016613033 (DIRECT LINE)

15\% VALUE ADDED TAX NOT INCLUDED
Cheques and Postal Orders payable to BUSINESS PRESSINTERNATIONAL LTD. and crossed.

£7,000-£30,000 + CAR

\star Where does your interest lie: Graphics; CAD; Robotics: Simulation Image and Signal Processing; Medical; Automation; Avionics; Acoustics; Weapons; Comms: Radar; Opto and Laser?
\star Experienced in: VLSI; Microprocessor Hardware or Software: Digital and Analogue circuitry; RF and Microwave techniques?
\star There are hundreds of opportunities in: Design; Test; Sales and Service for Engineers and Managers

* For free protessional guidance: Call: 0638742244 (till 8pm most evenings) or write (no stamp needed) to
ELECTRONIC COMPUTER AND MAMAGEMENT APPOIMTMEMTS LIMITED FREEPOST, The Maltings, Burwell, Cambridge, CB5 8BR.

Appointments

CUT THIS OUT!

Clip this advert and you can stop hunting for your next appointment. We have a wide selection of the best appointments in Digital, Analogue, RF, Microwave, Microprocessor, Computer, Data Comms and Medical Electronics, and we're here to serve your interests.
Call us now for posts in Design, Test, Sales or Field Service, at all levels from $£ 6,000-£ 18,000$.

(1) Technomark

11 Westbourne Grove, London W2. Tel: 01-229 9239.

Telecommunications Engineering Technicians

OpeningsinServicing and Maintenance
Up to $£ 9,317$
Our business is to install and maintain the communications equipment used by the Police and Fire Brigades in England and Wales - some of the latest you will find in operation anywhere.

We have a number of vacancies at our Service Centres in various parts of the country for Telecommunications Engineering Technicians with practical skills in locating and diagnosing faults in a wide range of equipment from computer-based data transmission to FM and AM radio systems.

The work provides excellent opportunities for extending your technical expertise, with specialised courses and training to keep you up to date on developments and new equipment. There are also opportunities for day release to gain higher qualifications

Applicants, male or female, must be qualified to at least City \& Guilds Intermediate Telecommunications standard and possess a current driving licence.

Some travelling will normally be involved. Registered disabled persons can of course apply.

The Home Office is an equal opportunities employer.

Salary will be on a scale $£ 6,810$ to $£ 9,317$ a year with generous leave allowance and pension scheme.

Good prospects for promotion.
If you are interested in working with us, please write for further details and application forms quoting reference WW/9to: Miss M Andrews, Home Office, Directorate of Telecommunications, Horseferry House, Dean Ryle Street,
London SW1P 2AW.

Directorate of
 Telecommunications

QUALIFIED to HNC/HNC to perform varied tasks in a friendly and challenging environment. ILR2 salary plus shift allowance.
Apply:- Chiel Engineer,
Piecadilly Radio,
P.O. Box 261,

Manchester.
M60 100.
PICCAOILLY RAOIO

An Equal Opportunities Employer

OMMPUS CAMERAS

require Technicians

Olympus Optical $\mathrm{Co}(\mathrm{UK}) \mathrm{Ltd}$, the UK's largest distributor of 35 mm
cameras, requires additional techmicians for their rapidly expanding microdigital product range

The ideal applicant should be self motivated and capable of working under pressure with the ability to pre pare training courses.

Benefits are all that would be expected of a large multinational Com pany: good salary, non-contributory pension scheme, lite assurance and BL PA

Please telephonc Mrs Jane Rockel for an application form and further information on
01-2530513 OLYMPU $\mathbf{S}_{(54)}^{5}$

Electronic EngineersWhat you want, where you want!

Abstract

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $\mathbf{£ 6 0 0 0}-\mathbf{£ 2 0 , 0 0 0}$.

If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES,
12 Mount Ephraim, Tunbridge Wells, Kent. TN4 8 AS.

Tel: 089239388

Please send me a TJB Appointments Registration form.

Name
Address
(24 Hour Answering Service)

THE OPEN UNIVERSITY
in collaboration with BRITISH TELECOM Faculty of Technology

RESEARCH FELLOW

COMPUTER AIDED FILTER DESIGN

[^5]
Appointments

Brighton Health Authority.

Chailey Heritage Hospital.

 Rehabilitation Engineering Unit. Medical Physics TechnicianGrade III or II. with a background in electronic
and mechanical engineering to join an enthusiastic research team on a Spastics Society funded research project concerned with the development and duplication of special switches and interfaces for electronic aids and microcomputers for the severely disabled. This is a new post, initially for three years.
Salary according to age, qualifications and experience on a scale £6408-£9627

Closing date for return of application forms is 31 st October. Further information and application forms from:
Dr C.E.E. Thornett, Senior Research Scientist, or: Mr R.L. Nelham, Technical Director, Rehabilitation Engineering Unit, Chailey Heritage Hospital, North Chailey, Lewes, Sussex, BN8 4EF. Tel. 082-572-2112 Ext 99.

VIDEO SERVICE ENGINEER FOR INDUSTRIAL VIDEO EQUIPMENT FARNHAM, SURREY.

E.S. Video have a vacancy for an engineer with service experience on low band 'U'Matic equipment, Industrial V.H.S., single and three tube cameras.
Attractive negotiable salery with car allowence and Free BUPA.
Write with full details to:-
Mr R N Woodward, E.S. Video, 5 Mead Lane, Farnham, Surrey. GU9 7DY

THE START 0 F SOMETHING NEW

If you are leaving College and planning a career in modern communications or if your present job lacks interest and challenge why not join us in GCHQ? We are recruiting

RADIO OFFICERS

who are after initial training will become members of an organisation that is in the forefront of communications technology. Government Communications Headquarters can offer you a satisfying and rewarding career in the wide field of communications. Training involves a 32 week course (38 weeks if you come straight from Nautical College) which will fit you for appointment to RADIO OFFICER.

Not only will you find the work as an R O extremely interesting but there are also good prospects for promotion opportunities for overseas travel and a good salary. Add to this the security of working for an important Government Department and you could really have the start of something new.
The basic requirement for the job is 2 years radio operating experience or hold a PMG, MPT or MRGC or be about to obtain a MRGC. Registered disabled people are welcome to apply.
Salaries start at $£ 4,988$ at age 19 to $£ 6,028$ at age 25 and over during training and then $\mathbf{f 6 , 8 3 2}$ at 19 to $\mathbf{£ 8 , 9 1 5}$ at 25 and over as a Radio Officer. Increments then follow annually to $\mathbf{£ 1 2 , 3 2 8}$ inclusive of shift and weekend working allowances.

For full details and application form phone 0242 32912/3
or write to

The Recruitment Office A/1108 Priors Road
CHELTENHAM
Glos GL52 5AJ
pleasant, the sumoundings are attractive, and the career prospects are excellent.

I deally were looking for men and women who have studied electronics or electronics related subjectsto degree level or equivalent and have had some experience of design, whether obtained at work or through hobby activities. Appointments will be made as Higher Scientific
 ex, 153) according to qualifications and experience.

For further details please write to the address given below. It would be particularly helpful if an outline of your personal interests and practical experience could beincluded.
 Buchinghanshire MK197BIJ.

TO FINISH

SERVICE ENGINEER IN-HOUSE ELECTRONICS

Harpenden, Herts

Tektronix is at the forefront of innovative technology in electronics with an extensive product range unequalled in the industry. We have an opening for a Service Engineer to work in-house in our Harpenden office. Working as part of a highly skilled team this represents an excellent opportunity to develop your knowledge of electronics, and apply it to our most sophisticated in-house range of test and measurement equipment.
You should have a good practical knowledge of analogue techniques and circuit theory, plus the ability to fault-find down to component level. If you can also bring some knowledge of digital techniques so much the better but this is not essential.
We offer a competitive salary, enhanced by a profit share scheme and fringe benefits. Excellent product and skills training is offered and there is good opportunity to advance within the company as we continue to grow and diversify.
For more information and an application form, please contact Sue James, Human Resources Department, Tektronix (UK) Ltd, Fourth Avenue, Globe Park, Marlow, Bucks.
Telephone: Marlow (06284) 6000.

CHIVEDEN

TEST ENGINEERS
For full systems test on datacommunications networks £8,000 + Wokingham
FIELD SERVICE ENGINEERS
USA training on ATE systems. Suit experienced repair technician. $\mathbf{\varepsilon 1 0 , 0 0 0}+$ car Woking TECHNICIAN ENGINEER To maintain VAX PDP11 \& flight simulation systems. to $£ 11,000$ Middlesex TEST ENGINEER Fault-find data-proocessing equipment to componant level Some systems involvement c£10,500 Herts.
SERVICE ENGINEER Mobile radiocommunications equipment
c8,000 + car Hants. \& Central London
FIELD SERVICE ENGINEER
Digital/fibre optic communications network. Full training provided $\mathbf{E 1 2 , 0 0 0 ~ + ~ c a r ~ S . E . L o n d o n ~}$

Phone/write/call Roger Howard C.Eng MIEE, Cliveden Technical Recruitment Consultants, 92 The Broadway Bracknell, Berks RG12 1AR. Tel: Bracknell (0344) 489489 (six lines)
(2598)

V I D E O ENGINEERING CO•OPERATIVE

Seeks 3rd full time engineer for interesting and varied work in the independent and commercial sectors.
S.A.E. for further details
to: VET Ltd. c/o S.C.D.A.
135 Rye Lane, London SE15
(59)

ROYAL HOLLOWAY AND

BEDFORD NEW COLLEGE Egham Hill, Egham, Surrey. TW20 0EX DEPARTMENT OF PHYSICS
2 Grade 5 Technicians required for this recently expanded department. One to assist with the research into nuclear and microwave physices or crystallography and solid state spectroscopy.

One to assist in the running of the large undergraduate laboratories in the modern Tolansky building. Applicants should be qualified in physics, applied physics or electronics and have some laboratory or workshop experience. Applicants without experience would be appointed at a lower grade and be instructed in laboratory techniques.
Salary on the scale £7101 - £8204 inclusive of London allowance. Please apply in writing stating age, qualifications and experience together with the names and addresses of two referees to:- the Personnel Officer.

UNIVERSITY OF SUSSEX

electronics techniclan (m/F)

In the Psychology Laboratory in the Arts and Social Studies Area. In the first instance this will be a temporary appointment with a possibility of being made permanent. Duties will include maintenance and repair of computer terminalsand printers, installation and checking of wiring, installation of computers, ordering and keeping stock of spare parts. An interest in computing is desirable.

Salary within Grade $4-£ 6,106$ to $£ 7$, 024 per annum (pay award pendiing). according to age and experience.

Application form from:
Personnel Office, Sussex House,
University of Sussex, Falmer,
Brighton BN1 9RH.
Closing date 18 October 1985.

PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY DEPARTMENT OF ELECTRICAL AND COMMUNICATION ENGINEERING SENIOR TECHNICAL INSTRUCTOR

Applications are invited for the post of Senior Technical Instructor, which will be available from January 1986. Candidates should have a higher certificate/ diploma/degree qualification and relevant industrial experience.
Preference will be given to candidates with teaching experience/ qualifications and experience in communications systems or broadcasting.
SALERY: Senior Technical Instuctor I K17,555 per annum, Senior Technical Instructor II K19,405 per annum ($\mathrm{K} 1=$ Stg. 0.7215 approx), level of appointment depending on qualifications and experience.

The initial contract period is for three years. Other benefits include a gratuity of 24% taxed at 2%. Appointment and repatriation fares for the staff member and family after 18 months of service, settling-1n and settling. out allowances, six weeks paid leave per year, education fares and assistance benefit schemes are avallable.

Detailed applications (two copies) with curriculum vitae together with the names and addresses of three referees, and indicating earliest availability to take up appointment, should be recelved by: THE REGISTRAR, PAPUA NEW GUINEA UNIVERSITY of TECHNOLOGY, Private Mail Bag, Lae, Papua new Guinea, by 11 October 1985 Applicants resident in the United Kingdom should also send one copy to the Association of Commonwealth Universities (Appts.), 36 Gordon Square, London WC1H OPF, from whom further general information may be obtained.

Services Sound and Vision Corporation Assistant Chief Engineer (UK \& Overseas)

Based at Chalfont Grove and reporting to the Chief Engineer (UK and Overseas) the main duties will include:
Assisting in the day-to-day general and technical administration of UK non broadcast engineering staff.
Recruitment and training of non broadcast engineers.
Administration and supervision of the general office for engineering department UK.
Co-ordination and liaison with equipment manufacturers regarding Post Design Services activity and equipment assessment.
Deputise for the Chief Engineer (UK and Overseas) in his absence.
This is a managerial position and in addition to a competitive salary a corporation car is provided which is available for personal use. Five weeks and two days annual leave. Good pension scheme and life assurance. Group BUPA scheme available.
Applications are invited from suitably qualified personnel with at least 5 years experience of technical support for electronics or electromechanical equipment at least 2 years of which should be in a supervisory or managerial capacity.
Please apply to Mrs. D.B. Trigg, Personnel Manager,
The Services Sound and Vision Corporation, Chalfont Grove, Gerrards Cross, Bucks SL9 8TN. Telephone: Chalfont St. Giles 4461.
(49)

- WANTED

RESILIENT BROADCAST ENGINEER

To operate 20 Kw AM \& FM Transmitters for "The Voice of Peace" aboard the Peace ship in the Mediterranean.

Applications, including C.V. to: The voice of Peace, P.O. Box 4399, Tel Aviv, Israel Or call Israel (010 972) 03245560.

SERVICES SOUND AND VISION CORPORATION VIDEO TECHNICIAN FOR WESTERN EUROPE

An experienced and suitably qualified Video Technician is required to work in and around Dusseldorf, West Germany. Responsibilities will include the service and repair of video equipment (predominantly domestic) in our workshop in Dusseldorf along with some on-site visits to areas in West Dusseldorf.
A car is provided with this appointment.

VIDEO ENGINEER FOR WESTERN EUROPE

An experienced and suitably qualified Video Engineer is required for work in our workshop in Minden, West Germany. Responsibilities will include the repair and service of video equipment both domestic and industrial with some on-site service calls.
The successful applicant should possess a good working knowledge of U'matic V.C.R's and 3 tube colour cameras.
Good salaries paid to right applicants. Please write or telephone for an application form to:
Mrs. A.R. Sive, Personnel Officer,
The Services Sound and Vision Corporations,
Chalfont Grove, Gerrards Cross, Bucks SL9 8TN.
Tel: Chalfont St. Giles 4461 Ext. 221.

Product Development Engineers

Dolby Laboratories, famous for its audio noise reduction systems, was founded by an engineer. A company that believes in engineers and engineering, we are small enough for individual contributions to be recognised yet well established with the resources to implement and capitalize on innovations
We are looking for Senior and Junior Engineers, who are probably electronics graduates, to staff a new Product Development Section in the UK Reporting to the Managing Director, the group will be responsible for translating agreed product 'outlines' into manufacturable units. The emphasis is on creative engineering and design. Salaries will be competitive.
For more information contact.
Gary Holt, Dolby Laboratories Inc., 346 Clapham Road, London SW9 9AP 01-720 1111
(45)

DODolby

ELECTRONIC DESIGN ENGINEER

Pearpoint Ltd is emerging as one of the country's leaders in solid state areaimaging techniques.
To complement our ever expanding committment to new product development we are seeking to recruit a first class electronics design engineer. A thorough knowledge of the design and implementation of the latest digital electronics techniques, coupled with an ability to understand the analogue aspects of the work would be a requirement of this post.
It is considered that candidates should possess the minimum of a 2nd Class Honours Degree in Electronic Engineering or a similar discipline. Renumeration will be by way of a first class salary and other fringe benefits.
The company will shortly be moving to a greenfield development site in Alton, Hampshire and would consider relocating a suitable applicant to the area.

Please apply in the first instance to: Mr. A.K. Sefton
Pearpoint Ltd
32 Woolmer Trading Estate
Bordon
Hants GU35 9QF

RED ROSE RADIO P.L.C.

The independent Local Radio Station for Lancashire has a vancancy for an Engineer, Grade ILR2.

The successful applicant will enjoy a wide variety of work including project design and development, technical maintenance and Studio and Outside Broadcast operations.

Applicants should be qualified to Degree/HND level in Electronics and have experience in broadcasting or a related field. A clean driving licence is essential.

Salary is in accordance with current ACTI rates. Apply in writing, including a full C.V. to:- Dave Cockram, Chief Engineer Red Rose Radio PLC., P.O. Box 301, St. Paul's Square, Preston. PR1 1YE. (38)

FOR YOUR CLASSIFIED ADVERTS PHONE 016613033 (IAN FAUX)

Rare opportunities to join our progressive research team developing high-end audio products.

SENIOR PROJECT ENGINEER

Candidates should have a good degree and at least five years R\&D experience in high quality drivers and loudspeaker systems, and be capable of original thinking as well as following projects through to conclusion.

AUDIO ENGINEER

To work with Project Engineers in developing high quality drivers and systems. Some previous experience is desirable, but graduates will be considered depending on ability and initiative. Working conditions are extemely pleasent, complete with computer and laser interferometry facilities.
BUPA membership, canteen and other fringe benefits. Salary commensurate with ability/ experience. We are looking for dedication and ambition recognising success with a bonus scheme. Proase apply initially in writing to the Managing Director
B\&W LOUDSPEAKERS LTD Elm Grove Lane, Steyning, West Sussex bn4 3SA

PAPUA NEW GUINEA

PAPUA NEW GUINEA DEPARTMENT OF CIVIL AVIATION GROUND FACILITIES DIVISION

REQUIRES-

CHIEF ENGINEER
Ret No. VIS/CA53
SENIOR ENGINEERS
RADIO AND ELECTRICAL
Ref.No. VIS/CA/54
TELECOMMUNICATIONS AND ELECTRICAL TECHNICIANS
Ref.No. VIS/CA/55

TECHNICAL INSTRUCTERS
 RADIO AND ELECTRICAL
 Ref.No. VIS/CA/56
 DRAFTSMEN ELECTRONIC AND ELECTRICAL
 Ref.No. VIS/CA/57

SALARY PACKAGE

Engineers C£23000 - $£ 24200$
Technicians, Instructers and Draftsmen C£18000 - £22000

BENEFITS

Three year contract with possiblity of renewal.
Free MARRIED/SINGLE accommodation.
Six weeks annual leave.
Return leave fare once per contract.

EXPERIENCE

Extensive background in Aviation Ground Facilities preferred. May consider those from allied areas if they have proven staff management and training experience particularly in a developing country.

QUALIFICATIONS

Degree, HNC/ONC or equivalant.
Closing date for applications 20th September 1985
For full details and application forms please write or telephone the Recruitment Dept. Papua New Guinea High Commission, 14 Waterloo Place, London SW1R 4AR. Telephone:01-930 0922 Telex:Kundu 25827

Inner London Education Authority LEARNING RESOURCES BRANCH, Production Division, Television and Publishing Centre, Thackeray Road, London SW8 3TB

TELEVISION ENGINEER

for Master Control Section (ST1/2)
This post is involved with the bulk production of colour videocassettes from 1" Ampex submasters. The successful candidate will be expected to operate the 1" machine, cassette machines (VHS, Betamax and U-matic) and label and check copies. He/she will have a good working knowledge of colour television principles and suitable experience and/or technical background
Salary within the scale $£ 6222$ to $£ 9327+£ 1494$ London Weighting Allowance.
Further details, including full job description and application forms from EO/Estab 1B, Room 366, The County Hall, London SE1 7PB. (Please enclose S.A.E.) The closing date for completed application forms is $30 \cdot 9 \cdot 85$.
This post is suitable for Job-share.
This is a re-advertisement.
ILEA IS AN EQUAL OPPORTUNITIES EMPLOYER.

Light bearn modulation - mirror microgalvos res freq. 1625 £29.data $£ 2$. Marconı TF. 1041 B £69. Valves $3022 \quad$ \{10, $5 B 254 \mathrm{M}$ §5. EH
capacitors $6 \mathrm{Kv}, 680 \mathrm{pt} 75 \mathrm{p}$ ea, LCR Bridges. 0 \% capacitors 6 Kv , 680 pt 75 pea . LCR Brioges. 0 \%
or wide-range 598 . Tape speed stroboscope or wide-range ieg. Tape speed stroboscope
$£ 7.50$. Radio frequency adaptor with probe for Avo-8 £15: Marcont Tf 890 £65. Siemens electrontc fault locator, multi-channel $£ 45$. Micro. spot welding heads $£ 55$. Kent Chromalog 2 §75. Beckman Hydrogen lamp PDWER SUPPLY $£ 50$ Tektronix Time-mark Calibrator £79. Hoffman Dynamic Balence Machıne electronic \& mectianical units $£ 85$. Low pressure regulators 0
$-100 \mathrm{mBar} £ 15$. Ouanily Ferrograph spares $£ 75$. - $100 \mathrm{mBar} £ 15$. Quantity Ferrograph spares $£ 75$. Sweep generators, FM/AM generator Puise
generator Marconi Test Modulator HO 72 £59. generator Marconi rest Modulator hestance/capactance boxes Variable standard capacitors. Centsifuge Marcon: Noise Recelver TF 1225 A $£ 65$. ph. Temperature \& Fluoride-ion electrodes Very large stepper motors sultable for power robotics etc. §45 ea. Quantity o chemicals, reagents metals. eiectroplating etc Mazda Sodium Lamp £5. VHF Frequency Standard £45. Three new automobile products, electronic, mechanical and chemical. prototype stage easy \& cheap to manulacture. eic eic

040-376236 (2016)
WAVEGUIDE, Flanges and dishes. All standard sizes and alloys (new material only) from stock. Special sizes to order. Earth Stations, 01-22

LINSLEY HOOD DESIGNS

- Amplifiers - Signal Generators
- THD Analyser - Millivoltmeter Details from:
TELERADIO ELECTRONICS
325 Fore Street, Edmonton, London. N.9. OPE.

LITESOLD SOLIDERMATIC wave soldering machine - model 800), with 90 Ky of solder. Complete wath sturdy purpose made berich. Tel: $(05036$) 2013 .
(53)

QU:ARTZ (CRISTALS OSCHLATORS AND FILTERS of all lypes. Large stochs of standard nems. Specarts supphed of order persomel and OEA support thru:- design advice. prototype quantules. preduction scladedies Golledge Electronics. Merriott. Somerser TA1ti

TO MANUFACTURERS, WHOLESALERS

 BULK BUYERS. ETC.
LARGE QUANTITIES OF RADIO. TV AND

 ELECTRONIC COMPONENTS FOR DISPOSALSEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS,
DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc. CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC

CERAMICS, PLATE CERAMICS, etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES,
SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE

TELEPHONE: 445 0749/445 2713 R. HENSON LTD.

21 Lodge Lane, North Finchley, London, N. 12
5 minutes from Tally Ho Corner)
G.U.M. RADIO LTD. 40/42 Portland Ruad, Worthing, Sussex. Tel: 0903 34897. Marcon Atalanta Communcation Recevers £25. Suitable
spares or re-build. Buyer collects A V O \& wuth spares or re-build. Buyer collects. A.V.O. 8 with
case and leads $£ 70$ inc. A. 5 (). 7 no case $₹ 35$ me. Advance Signal Generator J-1A $15 \mathrm{c} / \mathrm{s}-50 \mathrm{Kc} / \mathrm{s}$ 425 ine. Wayne Kern 'mversal Brdge TypeCT492 L'Rit inc. p+p. Alt prices melude VAT. Satisfactum suaranteed.

VARIOISP.C.B's Chassls disk drives and cables Tor data general Nowa 820 family of computers.
Tel-328 7987 .
BRIDGES waveform/transistor analys ers. Calibrators, Standards. Millivoltme ters. Dynamometers. KW meters. Oscillo scopes. Recorders. Signal generators sweep, low distortion, true RMS, audio, RM, deviation. Tel. 040376236 . (2616)

More Hi-Tech Jobs

£8000-£20,000

As a leading recruitment consultancy we have a wide selection of opportunities for high calibre Design. Development Systems and supporting staff throughout the UK
If you have experience in any of the following then you should be talking to us for your next career move

- ARTIFICIAL INTELLIGENCE - IMAGE PROCESSING
- MICRO HARDWARE \& SOFTWARE - GUIDED WEAPONS
- OPERATIONAL RESEARCH - RF \& MICROWAVE - OPTICS
- MATHEMATICAL MODELLING•SIMULATION• C3
- HIGH LEVEL PROGRAMMING - SYSTEMS ENGINEERING
- ACOUSTICS \& SONAR • FLUID DYNAMICS • RADAR
- SATELLITES • AVIONICS • CONTROL • ANTENNA

Opportunities exist with National, International and
consultancy companies offering excellent salaries and career advancement
For Free and Contidential career guidance call John Spencer
 or send a detalled C V Please quote reference WW/3
Skyquip Technical Services
85 High Street, Winchester, Hampshire SO23 9AP Tel: Winchester (0962) 69478 (24 hours) (2579)

WOUND COMPONENTS

Complete custom built service for

 air core, self bonded, miniatureferrite wound components for transformers, inductors, chokes etc. Write or phone

Tayside Audio (Scotland) Ltd Unit 1, Dunsinane Ave Dundee DD2 3QN
Tel (0382) 819997 TIx 76137

(56)

GRINDIG COMMUNICATION RECEIVER Satellite $£ 600$ prot Hardly used Superb Global Reception. Latest model 1984 \&280.00 Ring Carlos Oims 01-499 1673 atter 6p.m. or

TEKTRONIX DAS 9109

LOGIC ANALYSER OPTION A2, 01, 02
with 91P16 Pattern Generator,
91 A32 Acquisition and all probes.
£15,000 0no
Phone: 0993898282 ext 155
(51)

FM \& MW BROADCAST EQUIPMENT
A special range of high quality transmitters, power amplifiers, stereo encoders, UHF repeater links, compressors, antennas. Powers 10 w to 1 kw .
Built to high specifications at an economic price. Meets IBA \& Home Office specifications.
Full catalogue available.
Cyberscan International, 3 Eastcote View, Pinner, Middx HA5 1AT.
Tel: 01-866 3300
(33)

OPPORTUNITIES IN THE SOUTH EAST

Sales Executives

10.6k basic + 6k OTE + car. Selt Telecom

Test Engineers

c9.5k
All rounder with Anolog Digitol and some Microwave experience. Working inthouse.

Service Engineer
c8k.
Expertence on Micro Processor Equipment to component level working In -house ond in the field.
In-house repoir ond systems support voconcles. Solory Neg. Working for leoding Dolo Comms Compony
Field Service Engineer
c8k + car.
service ond repair Micro Computers in the hield.
Technical Support
10k plus.
Supplying Technicol Support la customers on Digitol Hordware
Plus wide ronge of other Design Servicing ond Tech Support voconcies.
c.v.'s to:

Ian Darch,
Garnet Protessional Services (AGY)
10 Queen Victoria Street, Reading ar Tel: Reading (0734) 588685

* MICROCOMPUTERS * PERIPHERALS
* INSTRUMENTATION

For fastest, best CASH offer, phone. COMPUTER APPRECIATION Oxford (0865) 55163 Telex 838750

(2492)

When replying to classified advertisements, readers are recommended to take steps to protect their interests before sending money
(2519)

E C COMPONENTS

We buy large and small parcels of surplus I/C, transistors, capacitors and related electronic stock. Immediate settlement.

Tel: 01-208 0766
Telex: 8814998
(2491)

STEWART OF READING

110 WYKEHAM ROAD
READING RG6 1PL
TEL NO: 073468041
TOP PRICES PAID FOR
ALL TYPES OF SURPLUS TEST EQUIPMENT COMPUTER EOUIPMENT, COMPONENTS etc. ANY QUANTITY

TURN YOUR SURPLUS i.cs transistors etc. into cash, immediate settlement. We also welcome the opportunity to quote for complete factory clearance. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945 584188 (9509)

WANTED

SURPLUS ELECTRONIC COMPONENTS AND EQUIPMENT
We also welcome the opportunity to quote for complete factory clearance
B. BAMBER ELECTRONICS 5 STATION ROAO, LITTLEPORI, CAMBS.

Phone: Ely (0353) 860185
(2483)

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO
 86 Bishopsgate Street
 Leeds LS1 4BB
 0532435649

SERVICES

DESIGN, DEVELOPMENT AND PROTOTYPES. Digital and microprocessor based equipment our speciality. Prototypes and small batch production under taken to the highest quality and with fas turnaround. For details of our hardware and software services please contact: IB Electronics, 11 Broomshaw Road, Maidstone, Kent. (2635)

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE

Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, O.A. Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service
Quality workmans hip by professionals at economic prices. Please telephone $01-6465686$ for advice or further details.

TAMWORTH MANOR
302-310 COMMONSIDE EAST, MITCHAM

SMALL BATCH PCBs, produced from your artwork, also DIALS, PANELS, LABELS. Camera work undertaken. FAST TURNAROUND. Details: Orbitechnic Circuits, 38 Torquay Gardens, Redbridge, Essex. IG4 5PT. Tel: 01-550 3610

DESIGN AND MANUFACTURE. ANALOGUE, DIGITAL, RF AND MICROWAVE CIRCUIT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype/small batch production. Adenmore Limited, 27 Longshot Estate, Bracknell, Berks. Tel: Bracknell (0344) 52023.

HAVING DESIGN PROBLEMS?
then contact our solutions dept ANALOGUE \& DIGITAL DESIGN - C.A.D. PHONE

OR
tel-021-773-0913
Unit A. N.E.W. 272 Montgomery St, Sparkbrook, Birmingham B11 1DS (2627)

- Rate £4.50 PER LINE. Average six words per line. Minimum £30 (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus $£ 7$
- Cheques, etc., payable to "Business Press international Ltd." and cross "\& Co." 15% VAT to be added

Whrelésswơrid INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 95-103

PAGE
AdenmoreLtd .34
Advertising Standards Authonty $94 / 89$
Airlink Transformers . 26
AM Electronics .72
Andelos Systems Insideback 72
Antex Electronics Inside back cover
Armon Electronics Ltd . .38
Aspen Electronics Ltd .87

Bamber, B. Electronics . 32
Barrie Electronics Ltd
Beckenham Peripherals 87
Black Star Ltd. .49

Cambridge Kits
Cambridge MicroprocessorSystems . 8
Carston Electronics Loose insert
Cavendish Automation
Colomor (Electronics) Ltd
.60/72
Computer Appreciation .26
CostarLtd
Cricklewood Electronics Ltd .32
Crotech Instruments Ltd 84
Cybemetic Applications65
Dataman Design 67
Datapen Microtechnology 87
Display Electronics 90,91
Electo-MetricLtd 92
Electronic Brokers $6 / 10$

Electroplan Ltd .37
Electrovalue .68
EMS MfgLtd .65
Essex Electronics Centre 60
E \& WW Edit. Feature List 94
Field Electric Ltd 20
Fieldtech Heathrow Ltd 94
Gemini ComputerSystems Ltd Outsideback
cover
Gould Electronics Ltd 44
GNCElectronics 80
Hameg 55
Happy Memories 32
Harrison Bros 65
Hart Electronic Kits Ltd 87
Henry's Audio Electronics 104
Henson R. Ltd 26
Hilomast Ltd 34
ILP Electronics Ltd 68
Imhof - Bedco77
nstrument Rentals
nstrument Rentals 55
DR Sheet Metals 38
Johns Radio $.76 / 79$
Keithley Instruments Ltd 16
Langrex Supplies Ltd 33
Levell Electronics 3
LJ Electronics Ltd 79
Lucas Control Systems Ltd 34
Micro Concepts 7
Microlease PLC 37
MicromakeElectronics 66
Mowlem Microsystem 37
Newrad Instrument Cases 49
Number One System 38
Olson Electronics Ltd Reader reply card

PAGE
Pantechnic 79
Paxton Instrument 89
PineappleSoftware 80
PM Components 56,57
Powertran Cybernetics 83
Protek 20137
RadiocodeClocksLtd 38
Radio Component Specialist 2
Raedek Electronics 39
Ralfe Electronics 80
Reprints $.2 \frac{2}{.}$
Shackman Instruments 8
Sherwood Data Systems 72
Sowter, E.A 50
SpectraStrip 60
Surrey Electronics Ltd 65
Tape Automation 83
Taylor Bros. (Oldham) Ltd 49
Technomatric Ltd 12,13
Tektronix UKLtd Inside front cover
Telefusion-Dicon 66
Television 26
Thacker, A.H. \& Sons66
Thom EMIInstruments $\begin{array}{r}.65 \\ . . \\ \hline\end{array}$
Thurlby Electronic Ltd. 25
. .88
Timebase 50 68
20
TKElectronics
TKElectronics
Triangle Digital Services
Vesco 76
Vixen Hytech Ltd 84
Waugh Instruments7
Wings Appeal

OVERSEAS ADVERTISEMENT AGENTS	Japan: Mr inatsukı, Trade Media - IBPA (Japan). B. 212 Azabu	Jack Mante, The Farley Co., Sute 650, Ranna Bulding,
France and Belgium: Pierre Mussard, 18-20 Place de la	Heights, 1,5.10 Roppongi, Minato-ku 106.	Cleveland, Ohio 4415 - Telephone (216) 6211919
Madelaine, Paris 75008.	Telephone: (03) 5850581.	Ray Rickles, Ray Rickles \& Co., P.O. Box 2028, Miami Beach. Fiorida 33140 - Telephone (305) 5327301.
Hungary: Ms Edit, Bajusz, Hungexpo Adverısing Agency,	United States of America: Jay Feinnan, Business Press	Tim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E., Allanta,
Budapest XIV, Varosliget.	International Ltd, 205 East 42nd Street, New York, NY 10017 -	Georgia 30305. Telephone (404) 2377432
Telephone: 225008 -- Telex: Budapest 22-4525	Telephone (212) 867-2080-Telex: 23827.	Mike Loughlin Business Press International, 15055, memorial
INTFOIRE	Jack Farley Jnr., The Farley Coi. Suite 1584, 35 East Walker	Ste 119, Houston. Texas - Telephone (713) 7838673
	Drive, Chicago, lllonois 60601 - Telephone (312) 63074.	Canada: Colin H. MacCulloch, International Advertising
Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero, Via	Victor A Jauch, Elmatex International, P.O Box 34607, Los	Consultants Lid., 915 Carlton Tower, 2 Cartion Street, Toronto 2
Mantegna 6, 20154 Misan.	Angeles, Calif. 90034, USA - Telephone (213) 821-8581-	- Telephone (416) 3642269
Telephone: 347051 - Telex: 37342 Kompass.	Telex 18-1059.	- Also subscription agents.

[^6]

ScIDEMUGKI
Fine thew To Sachertheakiot and peat of soleder

Tomorrows Soldering Technology Today.

ANTEX has a worldwide rep rtation for quality \& service \& for many years has been one of the best known \& most popular names in soldering. Always at the forefrent of technology ANTEX is continually researching new and better ways 3 f achieving more accurate, reliable, and cost effective soldering. O7 ANIEX Soldering lrons, the advanced design of the interface between the element \& the bit allows more efficient heat transfer to the bit and impreved stability of the temperature at the point of contact with the work. Indeed, experiments have shown that an XS25 watt iron can be used for tasts where a 40 wattiron would normally have been required.
ANTEX So dering lrons ethibit excemt onally low leakage currents \& hence are suitable for use on Staticsensitive Bevices. Sophisticated temperature controlsd soldering units have recently been added to the ANTEX range.

Temperature-Controlled Soldering Unit

Model C

-15 Watts. Available for $250,220,115,100,50$ or 24 volts.

Model XS

- 25 Watts. Available for $240,220,115,100,50,24$ or 12 volts.

Model XS-BP

-25 Watts. 240 volts, fitted with British Plug.
ST4 Stand - To suit all irons

SK5 Soldering Kit. Contains model CS 240 v lran, an ST4 Stand and solder.
SK6 Soldering Kit. Contains model XS240v iron, an ST4 Stand and solder

SK5-BP and SK6-BP

 Soldering Kits as above with British Plug. Model CS- 17 Watts. Available for $240,220,115,100,50,24$ or 12 volts.

Model CS-BP

-17 Watts. 240 volts, fitted with British Plug.

TCSU

- Very robust temperature controlled Soldering Unit, with a choice of 30 Watt (CSTC) or 40 Watt (XSTC) miniature irons.
Range $65^{\circ} \mathrm{C}$ to $420^{\circ} \mathrm{C}$ Accuracy 2\%

CSUR

Elegaint Temperature Controlled Soldering Unit with 50 W Iron (XSD) and built around FERRANT custon-made ULA. Range Ambient to $450^{\circ} \mathrm{C}$. Accuracy $\pm 5^{\circ} \mathrm{C}$. Zero crossing switching / Detachable
sponge tray

CIRCLE 2 FOR FURTHER INFORMATION

GM811 $\mathbf{Z 8 0}$ CPU board with serial and parallel I/O
GM813 280 CPU board with 64K dynamic RAM, serial and parallel I/O
EV814 IEEE 488 interface board
GM816 Multiple parallel I/O board
GM824 8 bit A-D board
IO828 High resolution colour graphics board
GM832 Video controller board
GM833 512K RAM-DISK board
GM836 RS422 network interface
GM837 Medium resolution colour graphics board
GM839 Prototyping board
GM841 Extender board
GM842 Trackerball interface

GM844 8-way Backplane assembly GM845 6-way Backplane assembly GM846 3-way Backplane assembly GM848 Multiple serial I/O board GM849 Floppy disk controller/SCSI board GM853 Bytewide Eprom board GM862 256K dynamic RAM board GM863 Static RAM board GM870 Modem board GM888 8088 co-processor board

OG Gemini Computer Systems Limited

[^0]: CIRCLE 35 FOR FURTHER DETAILS.

[^1]: Electronic Brokers are leading suppliers of electronic test \& measure ment equipment. Our Distribution Division handles the major names in the industry and all product's are stocked in depth in our spacious new premises at Camden Town, ready for prompt despatch to all parts of the country. Electronic Brokers offer full technical support and expert advice on all aspects of electronic test and measuring.

[^2]: DICON ELECTRONICS LIMTED (A wholly owned subsidiary of Telefusion Pic)
 Unit 8, Barrs Fold Close, Wingate Industria! Park, Westhoughton, Lancs. BL5 3XH. Tel: 0942 811717, Telex: DICON ' \mathbf{C} ' 677493.
 CIRCLE 102 FOR FURTHER DETAILS.

[^3]: - Give your VT100 a Birthdayll

[^4]: All prices quoted are for U.K. Ma
 Minimum Credit Card order 10.00
 established companies $£ 20.00$ Th

 2

[^5]: Applications are invited for the three year post of Research Fellow, to work in the Electronics Discipline at the Open University on a SERC Collaborative Research Programme with British Telecom Research Laboratories entitled 'A comprehensive Computer Aided Filter Design System'. The System will be based on a DEC Vax Station Computer, together with a wide range of input/output devices.
 We are seeking applicants with a PhD in Electronics, Computer Science or a related area, and a background or interest in one or more of the areas of Computer Aided Circuit Design, Electronic Filter Design, Numerical Methods, Software (C,Fortran under Unix), and ManMachine Interfaces.
 An appointment will be made on the Research Fellow IA scale, currently $£ 7520$ to $£ 12150$; with an initial starting salary of up to $£ 8920$. The post is available from Ist October 1985.
 Further particulars and an application form can be obtained from:
 Miss M. Fordham (4867/2), Faculty of Technology
 The Open University, Walton Hall, Milton Keynes, MK7 6AA,
 or Telephone Milton Keynes (0908) 653941 :
 There is a 24 hour answering service on 653868.
 Closing date for applications: 7 October 1985

[^6]: Business 'ress Intemational 1985. Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch Lud. INDIA: A.H. Wheeier \& Co. CANADA: The Wm. Daw son Subscription Service Lid

