# NirelessWorld January 1970 Three Shillings 

lectronic ignition system icrocircuit rationalization

## 

IT'SRelays in all shapes and sizes to cover the whole industrial electrical/ electronic field-that's the measure of the Keyswitch product range KTSM/ C - which includes the whole set of Omron miniatures. All Keyswitch Relays are winners beWINNING cause they each combine competitive price and high quality. When you go for Keyswitch quality and economy Q - AN O you'll get speedy service too-Keyswitch will produce a prototype relay in 24 hours, deliver a large 레 = order of standards in under a week and any specialist order within a month. So whatever type of relays you need, when Q ${ }^{\text {Pll }}$ you want quality, good prices and prompt delivery, contact Keyswitch Relays Limited, Cricklewood Lane, London NW2; telephone 01-452 3344; telex 262754.

KEYSWITCH RELAYS - WHERE THE ACTION IS



Get your own Multimeter today (complete with plastic case, leads, instruction booklet and a full year's guarantee) from your local supplier, or ask for details direct from Avo.

Avo Limited
Avocet House, Dover, Kent
Telephone: Dover 2626
Telex: 96283


## TRIO's New JR-310 SSB Professional Perfection for Amateur Enjoyment

## JR-310

## SSB COMMUNICATIONS RECEIVER

* High-stability VFO of 2 FET's and 2 transistors and easily handles QSO's for hours. * Precision double gear dial-a TRIO innovation -with linear frequency variable capacitor. Possible to get finer reading 1 KHz . One dial rotation covers 25 KHz , makes $S S B$ demodulation easier. * Frequency range covers entire amateur band from 3.5 MHz to 29.7 MHz . One-touch selection system switches bands. WWV reception of 15 MHz possible. $* \mathrm{MHz}$ band circuit structure patterned on Collins type double conversion system so first oscillation is by crystal control, second local oscillation by VFO.

SPECIFICATIONS OF JR-310

* FREQUENCY RANGE: $3.5-29.7 \mathrm{MHz}$ (7 Bands)
* SENSITIVITY: $1 \mu V$ (at 10 dB S/N)
* IMAGE RATIO: More than 50 dB
* FREQUENCY STABILITY: $\pm 2 \mathrm{KHz}$ in $1-60 \mathrm{~min}$. after switching on, subsequently within 100 Hz per 30 min .
* Dimensions: $13^{\prime \prime}(W), 7 \cdot 3 / 32^{\prime \prime}(H), 12 \cdot 3 / 16^{\prime \prime}(\mathrm{D})$.

* Communications Speaker which has been designed for use with the 9R-59DE.
* Dimensions: 3-9/16"(W), 7-1/8"(H), 5-3/16"(D).

* A mechanical filter enabling superb selectivity with ordinary if trans formers. * Frequency Range: 550 KHz to 30 MHz (4 Bands) * Sensitivity: $2 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 10 MHz ) $*$ Selectivity: $\pm 5 \mathrm{KHz}$ at $-60 \mathrm{~dB}( \pm 1.3 \mathrm{KHz}$ at $-6 \mathrm{~dB})$. When using the Mechanical Filter * Dimensions: Width $15^{\prime \prime}$, Height $7^{\prime \prime}$, Depth $10^{\prime \prime}$

TO: B.H. Morris \& Co., (Radio) Ltd.
WW
Send me information on TRIO COMMUNICATION RECEIVERS \& name of nearest TRIO retailep

NAME
AGE
ADDRESS

TRIO-KENWOOD ELECTRONICS S.A. 160 Ave., Brugmann, Bruxalles 6. Belgium
Sole Agent for the U.K. B. H. MORRIS \& CO., (RADIO) LTD. 84/88, Nelson Street. Tower Hamlets, London E. 1, Phone: 01-790 4824

# If you need power tetrodes at the right price look at this EEV range 

| Forced-air Cooled |  | Anode dissipation max. (kW) | Output power (kW) | Anode voltage max. (kv) | Frequency <br> (MHz) | Filament ratings |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | type |  |  |  |  | (V) | (A) |
| $\begin{aligned} & \text { 4C×1000A } \\ & 4 \mathrm{C} \times 1000 \mathrm{~K} \\ & \hline \end{aligned}$ | - | 1.0 | 3.2 | 3.0 | 110 | 6.0 | 9.0 |
| 4CX1500B | - | 1.5 | 2.7 | 3.0 | 30 | 6.0 | 9.0 |
| 4CX5000 A | CV8295 | 5.0 | 16.0 | 7.5 | 30/110 | 7.5 | 75 |
| 4CX10,000D | CV6184 | 10.0 | 16.0 | 7.5 | 30/110 | 7.5 | 75 |
| 4CX35,000C | - | 35.0 | 82.0 | 20.0 | 30 | 10 | 300 |
| CR192A (6166A) | CV8244 | 10.0 | 9.0 | 6.9 | 60/220 | 5.0 | 175 |
| Vapour Cooled <br> Type | Anode dissipation max. (kW) | Output power (kW) | Anode voltage max. (kv) | Frequency (MHz) | Filament ratings |  | Boiler unit |
|  |  |  |  |  | (V) | (A) |  |
| CY1170J | 60 | 82 | 15 | 30 | 10 | 300 | Integral |
| CY1172 (RS 2002V) | 150 | 220 | 15 | 30 | 21 | 350 | CY4120 |
|  |  |  |  |  |  |  |  |
| $4 \mathrm{CX1000K}$ | 0000 | 4C×35,000C |  | CY1170J |  | Y117 |  |
| For audio or linear single sideband amplifiers. $4 \mathrm{CX1000K}$ has a solid disc screen contact to permit | io, linear. ideband n ted r.f. rs. | For audio am r.f. linear amp or Class C amp or oscillators. | plifiers. plifiers plifiers | For audio am Class C ampl have a coaxia A range of gla available. | plifiers, r.f. li ifiers or oscill al metal-cera ass envelope | near amp ators mic en types | rs or ypes | contact to permit use up to 400 MHz .

English Electric Valve Co Ltd Chelmsford Essex England Telephone:61777 Telex : 99103 Grams: Enelectico Chelmsford


Please send me full data on your range of forced-air cooled and vapour cooled tetrodes.
I am also looking for a power tetrode with the following parameters.
Output
power (kW)

| Anode voltage | Frequency |
| :--- | :--- |
| $\max (\mathrm{kV})$ | $(\mathrm{MHz})$ |

NAME POSITION

COMPANY

ADDRESS

# QUAD 50 is a single channel 50 Watt amplifier designed for Broadcast, Recording and other applications in the Audio industry, completely proof against misuse and giving the highest quality of reproduction. 



INPUTS - 0.5 Vrms unbalanced with provision for an optional plug-in transformer for bridging 600 ohms lines.
OUTPUTS - isolated providing 50 watts into almost any impedance from 4 to 200 ohms. DIMENSIONS $-12 \frac{3^{\prime \prime}}{4} \times 6 \frac{1}{4}^{\prime \prime} \times 4 \frac{1}{2}{ }^{\prime \prime}$

Complete the coupon and post today.

QUAD
for the
closest approach to the
original sound

| Please send me full details of the QUAD 50 Amplifier |  |
| :---: | :---: |
| NAME |  |
| POSITION |  |
| COMPANY |  |
| ADDRESS |  |
| (BLOCK CAPITALS) |  |
| ACOUSTICAL MANUFACTURING CO. LTD., |  |
| HUNTINGDON. Telephone: Huntingdon (0480) 2561/2 | ww |



Send for full details of the complete range of $E E V$ amplifier klystrons.


EEV make amplifier klystrons for UHF TV at power levels $5,7,10,25$ and 40 kW into the aerial. Their reliability is established, their operating efficiency is good and their design provides a high degree of operational flexibility. A 40 kW tube can, for example, be operated at the same efficiency at any power level between 20 kW and 40 kW . When operated at 40 kW the tube needs only 135 kW d.c. input.

English Electric Valve Co Ltd
Chelmsford Essex England Telephone : 61777 Telex: 99103 Grams: Enelectico Chelmsford


Please send me full details of your range of UHF TV amplifier klystrons.
I am interested in a klystron with the following parameters:
Frequency Range
Bandwidth


# ideal for development.. cheaper for production 

PVC coated materials $=$ No outside paint to be scratched, PVC easy to clean, surface is scuff resistant.

## PVC/aluminium for $=$ Easy cutting with rigidity.

front and back panels
PVC/steel for sides, top and bottom
3 heights of case, 4 widths, 2 depths

Low cost
Modern design

Good delivery Easy ordering by code letter
Economy of size, 24
sizes, 48 shapes
Genuine modular design
Stainless steel screws used throughout
6 chassis sizes and many chassis positions on $\frac{1}{2}^{\prime \prime}$ centres

For other West Hyde products please see previous advertisements


Rigidity, low cost and ease of
assembly. assembly.
$=24$ cases with screws on top and 24 cases with screws on side, that's $4 B$ cases.
$=$ Prices include chassis.
$=$ Metal work on front and back and chassis is made easier by aluminium, with PVC steel cladding for strength.
$=$ Believed to be the first off the shelf range of all PVC coated material cases. Return of post service.
$=70$ cubic inches to 2200 cubic inches for convenient sizing or layout. no wasted space.
$=$ Cases may be mounted together as height includes feet.
$=$ Modern Pozidrive screws for good appearance and ease of use. Screwdriver cannot slip.
$=$ Easier planning and 1 to 4 or more chassis can easily be used.

|  | X | Y | z | COST 1 off | 5 off | 10 off | P. \& P. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 4.5 | 3 | 6.5 | 29/6 | 29/- | 28/9 | 3/- |
| B | 4.5 | 7 | 6.5 | 36/6 | 35/6 | 34/6 | 4/6 |
| C | 4.5 | 10 | 6.5 | 46/6 | 45/6 | 44/6 | 4/6 |
| D | 9 | 3 | 6.5 | 46/6 | 45/6 | 44/6 | 4/6 |
| E | 9 | 7 | 6.5 | 49/6 | 48/6 | 47/6 | 4/6 |
| F | 9 | 10 | 6.5 | 58/6 | 57/6 | 56/6 | 4/6 |
| G | 13 | 3 | 6.5 | 49/6 | 48/6 | 47/6 | 4/6 |
| H. | 13 | 7 | 6.5 | 58/6 | 57/6 | 56/6 | 4/6 |
| 1 | 13 | 10 | 6.5 | 69/6 | 68/6 | 67/6 | 6/- |
| $J$ | 18 | 3 | 6.5 | 58/6 | 57/6 | 56/6 | 4/6 |
| K | 18 | 7 | 6.5 | 79/6 | 77/6 | 76/6 | 6/- |
| L | 18 | 10 | 6.5 | 106/- | 104/- | 103/- | 6/- |
| M | 4.5 | 3 | 13 | 36/6 | 35/6 | 34/6 | 4/6 |
| N | 4.5 | 7 | 13 | 49/6 | 48/6 | 47/6 | 4/6 |
| 0 | 4.5 | 10 | 13 | 69/6 | 68/6 | 67/6 | $6 /$ |
| P | 9 | 3 | 13 | 49/6 | 48/6 | 47/6 | 4/6 |
| 0 | 9 | - 7 | 13 | 69/6 | 68/6 | 67/6 | 6/- |
| R | 9 | 10 | 13 | 79/6 | 77/6 | 76/6 | 6/- |
| S | 13 | 3 | 13 | 58/6 | 57/6 | 56/6 | 6/- |
| T | 13 | 7 | 13 | 79/6 | 77/6 | 76/6 | 6/- |
| U | 13 | 10 | 13 | 99/6 | 98/- | 97/- | 7/6 |
| v | 18 | 3 | 13 | 79/6 | 77/6 | 76/6 | 6/- |
| W | 18 | 7 | 13 | 106/- | 104/- | 103/- | 7/6 |
| X | 18 | 10 | 13 | 129/6 | 127/6 | 126/- | 7/6 |
| Sizes in inches |  |  |  | Ex-stock. Refum of post |  |  |  |

LOW COST-FROM 29/6d. TO 129/6d. Laminated PVC Aluminium and PVC Steel.
Printed circuit chassis will fit into $H, I, K, L, T, U, W, X$.

WEST HYDEDEVELOPMENTS LTD. 30 HIGH STREET NORTHWOOD MIDDX. Telephone: Northwood 2494I

## Heathkit tor rustrumentaion



The Heathkit range of scientific and electronic test instruments including the latest advances in solid state instrumentation has been especially prepared for the industrial and scientific laboratory instrument user. Whatever your requirements, be they Potentiometric Chart Recorders, Monochromators, Universal Digital Instruments as well as VVMs and general test instruments, substantial savings against similar specifications of other manufacturers can be made by using Heathkit instrumentation.

## THE LATEST SOLID-STATE 'VVM' PLUS AC AND DC CURRENT, Model JM-25 is typical of the Heathkit ultra-functional instrumentation styling.

- 9 AC and 9 DC voltage ranges from 150 millivolts to 1500 volts full scale.
- 7 resistance ranges, 10 ohms centre scale with multipliers $\times 1, \times 10, \times 100, \times 1 \mathrm{~K}, \times 10 \mathrm{~K}, \times 100 \mathrm{~K}$, and $\times 1$ Meg measures from 1 ohm to 1000 M ohms.
- 11 current ranges from $15 \mu \mathrm{~A}$ full scale to 1.5 A full scale.
- 11 M ohm input impedance on DC.

Kit K/IM-25 £36.16.0 Carr. 11/.

- 10 Megohm input impedance on A.C.
- A.C. response to 100 kHz .
- 6 in . $200 \mu \mathrm{~A}$ meter with zero-centre for positive and negative voltage measurements without switching.
- Internal battery power for $120 / 240$ volt A.C. 50 Hz .
- Circuit board construction for extra rugged durability. Ready to Use A/IM-25 £47.6.0 Carr. 11/-



## NEW RESTYLED TEST, SERVICE AND WORKSHOP INSTRUMENTS

The Heathkit range of instrumentation can adequately provide engineers with quality instruments at lowest cost, whatever your requirements, be they VVMs, Generators, Oscilloscopes, Transistor Testers or Power Supplies.

## FOR THE HOME WORKSHOP

The householder and hobbyist can, by purchasing easy-to-build Heathkits, obtain low cost models for testing household appliances, automobile circuitry, electrical/electronic models.


## SEND FOR THE 1970

FREE HEATHKIT CATALOGUE
and see for yourself the wide range of instruments,
$\mathrm{Hi}-\mathrm{Fi}$. Amateur and Leisure products

DAYSTROM LTD, Gloucester GL2 6EE, England. Tel: Glos 29451. Telex: 43216


WW-012 FOR FURTHER DETAILS


Don't read on unless you're feeling really strong. This book will start you on a mad, crazy spending spree.
It's got everything, but everything for the do-it-yourself radio and hi-fi man.
Everything from a vast range of electronic components available to the home electronics constructor, to a
complete range of equipment for the radio "ham".
What's the book?
The Electroniques Constructor's Catalogue.
Only the most exciting, mouth-watering items are there. Carefully placed in 6 sections for easy reference. And backed by truly efficient sales service.
So if you order any of the vast selection of goods, you're sure to get it pretty soon.

All you have to pay for this great big hunk of temptation is $13 /$ - (including packaging and postage)

## So fill in the coupon now. If youdare.




Hall Electric Limited
Haltron House, Anglers Lane
London, N.W. 5 .
Telephone: 01-485 8531 (10 lines) Telex: 2-2573
Cables: Hallectric, London, N.W.5.


## Our valves' statistics are vital!

We worry about the vital statistics of our special quality valves. Vital? The screen grid wire in Mullard industrial receiving valves is the thickness of a human hair ( 9.2 microns)-not much room for error. To ensure this standard of accuracy, we set up a special measurements department-one of the finest in Britain-making measurements down to one millionth of an inch. That's the sort of accuracy that ensures Mullard valves' built-in reliability.
The time we spend on measurement control cuts your equipment down-time-another reason it pays to ask your supplier for Mullard

## Mullard

Mullard Limited, Industrial Electronics Division, Mullard House, Torrington Place, London WCI. OI-580 6633

New Buyers' Guide
There's a new wallchart on Mullard special quality receiving valves It gives comprehensive equivalents information, and it's free from any Mullard Industrial Distributor, or just use the reader enquiry service.


## Tektronix Type 556 DC-to-50 MHz, dual-beam, sweep-delay oscilloscope

The Type 556 and rack-mount Type R556 use any
combination of Tektronix letter or 1 -series plug-ins

The UPPER BEAM can display a signal from either laft or right plug-in; with either Time Base A, Time Base B, or external signals; triggered from a composite vertical signal, plug-in single channel signal (with 1 A1 or 1A2), external, or line.

Independent Vertical Systems use Type 1 A1 or 1 A2 Plug-in Units for 50 MHz operation ; also accept any other 1 -series or letter-series plug-in units.
Independent Sweep Systems provide 24 calibrated steps from $0.1 \mu \mathrm{~s} / \mathrm{cm}$ to $5 \mathrm{~s} / \mathrm{cm}$; the X10 Magnifier extends the fastest sweep rates to $10 \mathrm{~ns} / \mathrm{cm}$.
Calibrated Sweep Delay extends continuously from 0.1 microsecond to 50 seconds.
Signal-Sweep Operation enables oneshot displays of normal or delayed sweeps.
Independent Triggering Systems provide

The LOWER BEAM can display a signal from the right plug-in; with either Time Base B or external signals ; triggered from a composite vertical signal, plug-in single channel signal (with 1 A 1 or 1A2), external, or line.
stable displays to beyond 50 MHz . Either input signal can be used to trigger either or both time-bases.
New Dual-Beam CRT (with illuminated internal graticule) provides "zero-parallax" viewing of small spot size and uniform focus over the 8 cm by 10 cm display area. Each beam has 6 cm vertical scan, with overlap scan of 4 cm by 10 cm . EMI (RFI) Suppression - meets interference specifications of MIL-I-6181D over these frequency ranges: 150 kHz to 1 GHz - Radiated (with CRT mesh filter installed), and 150 kHz to 25 MHz - Conducted (power line).



Simultaneous Single-shot Displays. Current versus voltage display of a 0.75 ampere, fast-blow fuse during destructive overload. Both beams are driven by $B$ Time-Base at $50 \mu \mathrm{~s} / \mathrm{cm}$ which is delayed by pre-triggered A Time-Base to provide base reference lines before and after the event. The upper beam shows the current waveform at $30 \mathrm{~A} / \mathrm{cm}$ while the lower beam shows the corresponding voltage across the fuse at $100 \mathrm{~V} / \mathrm{cm}$.


Single-input Dual-beam Displays. Upper beam shows bursts of 2.5 MHz pulses on Time Base $A$ with time variation between bursts. This shows up as increasing time-jitter between the first and successive bursts. The lower beam shows B Sweep ( $0.1 \mu \mathrm{~s} / \mathrm{cm}$ ) delayed by A Sweep and triggered on the second pulse of the last burst to provide a jitter-free expanded display of the A Sweep intensified zone. The use of only one probe and one plug-in input simplifies signal connection and provides minimum loading on the source. Plug-in units shown
Type 1 A1 Dual-trace Unit
(Dual-Trace- $50 \mathrm{mV} / \mathrm{cm}$ at DC-10-50 $\mathrm{MHz}, 5 \mathrm{mV} / \mathrm{cm}$ at DC-to-28 MHz. Sin-gle-Trace- $500 \mu \mathrm{~V} / \mathrm{cm}$ at $2 \mathrm{~Hz}-10-15$ MHz .5 Display Modes-Channel 1. Channel 2, Alternate, Chopped, Added Algebraically. Front-panel signal out put.) Type W Differential

Comparator Unit
(Conventional Preamplifier- $50 \mathrm{mV} / \mathrm{cm}$ at DC-to- 23 MHz to $1 \mathrm{mV} / \mathrm{cm}$ at DC-to8 MHz . Decade Input Attenuator to X1000. Differential Input PreamplifierCMRR of 20,000 to 1 . DC-to- 20 kHz . Max Peak Input of $\pm 15 \mathrm{~V}$, X| Attenuation. Calibrated Differential Comparator $-V c$ Supply of 0 to $\pm 11 \mathrm{~V}$. Accuracy of $\pm 0.15 \%$ of output $\pm 0.05 \%$ FS.)
Price without plug-in units- $£ 1.560$

For detailed information on any of our products, please fill in reader reply card or write, telephone or telex.

Beaverton House - P.O. Box 69 - Harpenden - Herts Telephone: Harpenden 61251 - Telex: 25559

## For overseas enquiries:

Australia: Tektronix Australia Piy. Ltd., 4-14, Foster Street. Sydney. N.S.W. Canada: Tektronix Canada Ltd., Montreal. Toronto \& Vancouver. France: Relations Techniques Intercontinentales. S.A.. 91. Orsay, Z.I. Courtaboeuf. Route de Villejust (Boite Postale 13). Switzerland: Tektronix International A.G., P.O. Box 57. Zug. Switzerland. Rest of Europe and the Middle East: Tektronix Ltd., P.O. Box 36. St. Peter Port, Guernsey. C.I. All other territories: Tektronix Inc., P.O. Box 500, Beaverton, Oregon, U.S.A.

# Valluable new handoook Fhe EMGINEERS 

## Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

## On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations, and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

## WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electroric Eng. Gen. Electronic Eng. - Applied Electronics - Practical Electronics - Radar Tech. Frequency Modulation Transistors.

ELECTRICAL ENG.
Advanced Electrical Eng. Gen. Electrical Eng. - Installations - Draughtsmanship lations - Iluminating Eng. - Refrig-- Illuminating Eng. - Refrigeration - Elem. Electrical Science - Electrical Science Electrical Supply - Mining Electrical Eng.

CIVIL ENG.
Advanced Civil Eng. - Gen. Civil Eng.-Municipal Eng.Structural Eng. - Sanitary Eng. - Road Eng. - Hy dratlics - Mining - Water Supply - Petrol Tech.

## RADIO ENG.

Advanced Radio - Gen. Radio Radio \& TV Servicing TV Eng. - Telecommunications - Sound Recording Automation - Practical Radio -Radio Amateurs' Exam.
MECHANICAL ENG.
Advanced Mechanical Eng. Gen. Mechanical Eng. Men. Mechanical Eng. Diesel Eng. - Press Tool Design Sheet Metal Work - Welding Sheet Metal ork Mattern Making -Inspection-DraughtsmanshipEMetallurgy - Production Eng.
AUTOMOBILE ENG.
Advanced Automobile Eng, Gen. Automobile Eng. - Automobile Maintenance - Repair - Automobile Diesel Maintenance - Automobile Electrical Equipment - Garage Management.

We have a wide range of courses in other subjects inCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your earning power? Which qualification would increase your earning powert A.M.I.M.I. A.R.I.B.A. A.I.O.B., R.M.G., A., R.I.C.S. M.R.S.H.̈ A.M.I.E.D. A.M.I.Mun.E., C.ENG.. CITY \& GUILDS,

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
446A ALDERMÁATON COURT, ALDERMASTON, BERKSHIRE


You are bound to benefit from reading "ENGINEERING OPPORTUNITIES." Send for your copy now-FREE and without obligation.


## POST COUPON NOW!

TO B.I.E.T., 446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

## NAME

ADDRESS

WRITE IF YOU PREFER NOT TO CUT THIS PAGE


None of this "see if you can squeeze it up to 100 watts".
"Well it gets there at 2.875 KHz - anyway this is P.A., not HiFi - so who cares what the distortion is so long as it is not more than 6 or 7 per cent." The S.N.S. CD. 100 amplifier gives a pure, fully transistorised power output of 100 watts
at 1 KHz with distortion less than 1 per cent. You are probably saying "I've heard it all before". So have we! That is why we have built an amplifier which will set new standards in craftsmanship and performance.
To prove it we will loan you one for a seven day free trial.

The CD. 100 illustrated is a single input unit giving 100 watts RMS output for 25 mV input at 1 KHz so it can be driven by any tuner or tape machine or, of course, the output of a mixer. 50/100 volt line output (0-50-0-50) *Distortion less than 1 per cent at 1 KHz . *Full short circuit protection with the exclusive S.N.S. Current Lok circuit. "Ample thermal capacity to ensure the transistors run within their limits at 100 watts continuous Sine Wave. All these plus points, and many more, make the CD. 100 yet another S.N.S. success.

## S.N.S. COMMUNICATIONS LTD.

## 851 RINGWOOD ROAD - WEST HOWE - BOURNEMOUTH - HANTS - ENGLAND

Telephone Northbourne 4845/2663. Telegrams: Flexicall Bournemouth - Telex: 41224
Manufacturers of: Transistor Amplifiers, Crystal AM and FM Tuners, Radiomicrophones, Cabinet and Line Source Loudspeakers, Loudspeaking Intercom Systems, Hotel Radio and Intercom Systems.


## This new "'4th generation" I-C plug-in counter/timer outperforms all others... including from d.c. to $\mathbf{3 ~ G H z}$ with only one plug-in...

Why compromise for less? The Model 1500A has a main frame counting range from dc to 125 MHz (to 3 GHz with a single plug-in). This instrument is fully programmable, has provision for external time base up to 10 MHz , and many other significant features, including the well recognised advantages of Monsanto's " 4 th generation" $90 \%$ integrated circuit design. The Model 1104B frequency converter unit covers the range dc to 3 GHz with only one plug-in. Also available: Model 1100A uncommitted plug-in ; Model 1101A 500 MHz prescale plug-in; Model 1102A 6-digit preset plug-in ; Model 1103A 500 MHz frequency converter plug-in: Model 1107A time interval plug-in; Model 1201A DVM plug-in.
Unparalleled performance plus award-winning design make the Model 1500A the ultimate counter for the no-compromise engineer.
Most engineers take Monsanto's reliability for granted because of our 2-year warranty.


That's our Jo*. . We gave her seven words and a daisy; and the wall came tumbling down.
The wall of silence. Distinct among the major suppliers of hybrid IC's and passive networks, we at Erie soft-pedalled our publicity. We had to. Because keen commercial minds in UK and Continental companies snapped at the fact that Erie hybrids give complete circuit functions in less time, at less cost, than if you select, buy and assemble your own discrete components . . . and give you a hefty bonus in increased reliability. So our order books were
full. And stayed full., even with output rates of 2.5 million units a year.
But now we are coming to you with all this experience. Because now we can give you the only kind of service our reputation will permit. Prompt, personal service. With teams of physicists, chemists, microelectronics specialists, waiting to tackle your problem. With an advanced manufacturing capability that will lift output to the multi-million level, raise reljability even higher, make prices even more competitive. A capability backed by a Quality Assurance laboratory approved
to BS 9000, and all of Erie's world-wide experience
Send for Publication No. 1. It gives you all the facts. Better still, send for an Erie sales

## ERIE

## ELECTRONICS

LIMITED

engineer. He will understand your problem.

* Short for Joshua??

ERIE ELECTRONICS LTD.,
Great Yarmouth, Norfolk.
Tel: 04934911.
Telex: 97421

## Three good ideas ansel shelved by JJ <br> Accuracy $\pm 1 \%$ alternatively $\pm \frac{1}{2} \%$. <br> 3 Depcade - Cat. Ref. C3-100 pf. to Instruments

## Decade Capacitors

500 volts d.c. working. 0.111 mfd . in 100 pf. steps

4 Decade - Cat. Ref. C4-100 pf. to 1.111 mfd . in 100 pf steps
4 Decade plus Air Spaced Capacitor - Cat. Ref. VC5 - 50 pf. to 1.1115 mfd . infinitely variable. 3 Decade - Cat. Ref. C3-100 pf. to 1.111 mfd . in 100 pf. steps. 3 Decade plus Air Spaced Capacitor - Cat. Ref. VC4 50 pf . to 0.1115 mfd . infinitely variable.

## Switched Capacitor Boxes

Accuracy $\pm 5 \%$ or alternately $\pm 1 \%$.
Cat. Ref. C. $60 \quad 0$ to 61 mfd . in 0.1 mfd . steps.
C. $100 \quad 0$ to 100 mfd . in 1 mfd . steps. C. $140 \quad 0$ to 140 mfd . in 1 mfd . steps. All instruments calibrated in absolute units so that no correction has to be made for strays.

## Decade Resistance

Average Accuracy $0.1 \%$. Residual resistance: 4 Decade - 12 milliohms, 5 Decade - 15 milliohms.

Precision Metal film decade resistance box suitable for use both on d.c. and at high frequencies. Accuracy actually improves with actually improves with
use and age



## Air Cored Decade

Inductor Accuracy $\pm 5 \%$
3 decade model Cat. Ref. L1 1 mH to 1 Henry 2 decade model Cat. Ref. L2 1 mH to 100 mH 2 decade model Cat. Ref. L3 10 mH to 1 Henry Also available precision Air Spaced Capacitors. Conductance Boxes. Loading Resistors, standard Resistors and Capachors. Potentiometers. Resistance Bridges and Solid State d.c. Null Detectors.
All Instruments Available from Stock

5 Decade Cat. Ref. R7 1,111,100 $\Omega$ by $10 \Omega$ steps Cat. Ref. R9 111,110 by 1 niteps Cat. Ref. R10 $11.111 \Omega$ by $0.1 \Omega$ steps
4 Decade Cat. Ref. R5 111.100 by $10 \Omega$ steps Cat. Ref. R4 11.110 by $1 \Omega$ steps Cat. Ref. R3 1,111 by $0.1 \Omega$ steps

And Our
Sales Engineers always carry a wide range


## D.D. Moyd Insíruments Limited

Brook Avenue, Warsash, Southampton S036HP Tel: Locks Heath 84221


SPECIFICATIONS

|  | TYPE TA401 | TYPE TA601 | TYPE TA605 |
| :---: | :---: | :---: | :---: |
| GAIN | $40 \mathrm{~dB} \pm 0.1 \mathrm{~dB}$ | $60 \mathrm{~dB} \pm 0.1 \mathrm{~dB}$ | 20,30,40,50 and $60 \mathrm{~dB} \pm 0.2 \mathrm{~dB}$. |
| BANDWIDTH $\pm 3 \mathrm{~dB}$ | $1 \mathrm{~Hz}-3 \mathrm{MHz}$ | $3 \mathrm{~Hz}_{2}-1.2 \mathrm{MHz}$ | ```20-40dB, 1Hz-3MHz; 50dB, 2Hz-2MHz: 60dB, 4Hz-1.5MHz``` |
| BANDWIDTH $\pm 0.3 \mathrm{~dB}$ | $4 \mathrm{~Hz} \cdot 1 \mathrm{MHz}$ | $10 \mathrm{~Hz}-300 \mathrm{kHz}$ | $20-40 \mathrm{~dB}, 4 \mathrm{~Hz}-1 \mathrm{MHz} ; 60 \mathrm{~dB}, 10 \mathrm{~Hz}-300 \mathrm{kHz}$. |
| INPUT IMPEDANCE | $>5 \mathrm{M} \Omega .<40 \mathrm{pF}$ from 100 Hz to 1 MHz | $\begin{aligned} & \quad>\mathrm{IM} \Omega .<50 \mathrm{pF} \\ & \text { from } 100 \mathrm{~Hz} \text { to } 300 \mathrm{kHz} \end{aligned}$ | $>5 \mathrm{M} \Omega,<40 \mathrm{pF}$ <br> from 100 Hz to 300 kHz . |
| INPUT NOISE | $\begin{aligned} & <15 \mu \vee \text {, zero source: } \\ & <50 \mu \vee .100 k \Omega \text { source } \end{aligned}$ | $<15 \mu \mathrm{~V}$. zero source: <40 $\mu \mathrm{V} .100 \mathrm{k} \Omega$ source | As TA401 and TA601 at 40 dB and 60 dB . |
| POWER SUPPLY | PP3 battery, li | ife 100 hours | - PP9 battery, life 1.000 hours. or A.C. Power Unit. |
| AVAILABLE OUTPUT | IV up to 1 MHz .300 mV $100 \mathrm{k} \Omega$ and 50 pF | at 3 MHz , into load of | 1.5 V up to 2 MHz . IV at 3 MHz . into $100 \mathrm{k} \Omega$ and 50 pF . |
| OUTPUTIMPEDANCE |  | $100 \Omega$ in se | ries with $6.4 \mu \mathrm{~F}$ |
| SIZE AND WEIGHT | $3^{\prime \prime} \times 1 \frac{3}{4 \prime} \times$ | $11^{\prime \prime} 7 \mathrm{oz}$. | $2 \frac{1}{2}{ }^{\prime \prime} \times 4^{\prime \prime} \times 5 \frac{1}{\frac{1}{2}}{ }^{\prime \prime} 2 \frac{1}{2} \mathrm{lb}$. |
| PRICE with Battery and input lead | £17.0.0 | £17.0.0 | (Optional A.C. Power Unit $£ 7.10 .0$ extra). |

STETOMIKE is the new revolutionary Stethoscope type headset fitted with a Boom-arm Microphone.

STETOMIKE is practically weightless (approx $1 \frac{1}{2}$ oz) compared with the usual conventional cumbersome heavy headphones (with Boom-arm Microphone) at present being used.

STETOMIKE is ideal for children and adults, and due to its lightness can be worn for long periods without discomfort and numbness.

STETOMIKE is constructed of pale grey high tensile plastic parts of advanced design. It uses the latest Danavox sensitive balanced armature microphone capsule and magnetic earphones.

STETOMIKE employs a simple unit construction and in the event of unavoidable damage, all items are quickly replaceable on the spot. by the readity available Danavox spare parts service.

STETOMIKE is competitively priced and is directly available to manufacturers and relevant wholesalers.

STETOMIKE is ideal for many projects including speech trainers. telecommunications, walkie-talkies, centralised dictation systems, educational and industrial training equipment, audio equipment and with C.C.T.V. cameras.


## OTHER DANAVOX PRODUCTS

Stetoclip Headsets, Dictating Machine Headsets, Hospital Patients' Headsets. Headphones. Industrial and Hearing Aid type Earphones and Cords, Earhangers, Pillow Speakers, Foot Switches, Throat Microphones, Microphone Capsules. Jack Plugs and Sockets, micro-miniature switches etc.


## Produced by experts for Engineers,Students and Enthusiasts

This is the book you've been waiting for! Over 200 information-packed pages. Circuits for audio amplifiers, record players, tape recorders, f.m. tuners and portable radio receivers up to hi-fi standards, all designed and proven in Mullard laboratories.
Mullard publications are renowned for the technical authority of their contents and the clarity and style of their presentation.
'Transistor Audio and Radio Circuits' is another outstanding example - there's bound to be a big demand.

It's handy sized and strongly bound. Tremendous value at $30 /$ Get your copy from your local radio retailer, bookshop or direct from Mullard (cash with order) $32 /$ - per copy including postage and packing.

## Mullard

Mullard Limited, Distributor Sales Division, Mullard House, Torrington Place, London W.C.1.


BERKELEY
A WIDE CHOICE OF SPEAKER SYSTEMS


DAYSTROM LTD, GLOUCESTER, GL2-6EE.
Tel: G los 29451. Telex 43216.

Are you a do-it-yourself man? Would you like to own a first-class Hi-fi outfit at a do-it-yourself price? The wide range of world-famous Heathkit products offers something for everyone.

## STEREO 'COMPACTS'

The newest additions to the Heathkit range are two "stereo compacts". The AD-27, pictured left includes a turntable unit with a Shure magnetic cartridge, an FM stereo tuner and a 30 watt stereo amplifier. The whole is built into an attractive compact teak or walnut veneered cabinet - all for a kit price of only $£ 82$ ! The AD-17 compact is similar but does not have the $F M$ radio facility and uses a simpler but still attractive cabinet. This kit only costs £54

## STEREOTUNER AMPLIFIERS

If you need a Tuner-Amplifier, we can offer models to suit any pocket. Pictured on the left is the very popular Heathkit AR-14. This is a solid-state stereo Tuner-Amplifier with a sensitive FM tuner, a built-in stereo decoder and a 30 watt stereo amplifier ( 15 watts I.H.F.M. per channel). It is wonderful value at a kit price of $£ 54$.

## STEREO 'SEPARATES'

If your preference is "separates", or perhaps you want just a stereo amplifier without a tuner, again Heathkit offers a selection. Typical is the TSA-12 stereo amplifier. illustrated. This is a solid state stereo amplifier ( 15 watts I.H.F.M. per channel) at a kit price of only $£ 32160$. We have radio tuners to match either for $F M$ reception only, or for FM and Long and Medium wave. The Stereo Tuner, model TFM-15 costs only £28 140 in kit form.

## LOUDSPEAKER SYSTEMS

All the units described above can be used with any good hi-fi loudspeakers. To cover this need. the Heathkit range includes several hi-fi loudspeaker kits. The Berkeley kit features a 12 in . bass loudspeaker and a 4 in . highfrequency unit, a ready finished teak or walnut veneered cabinet, and the kit price is only $£ 2140$. The 'Avon' mini kit is only $£ 1380$.

See the complete range in the FREE CATALOGUE!

## च $\square \square \mathrm{C}$ PORTABLE D.J. CONSOLE



Meets the ever growing demand for well presented music and speech at private and public functions-dances. receptions, parties etc. where there is no permanent sound installation. The Audio Portable D.J. Console incorporates the A. 25 silicon transistorised power amplifier with three input channels each with separate volume control. The two Garrard SP. 25 single play turntable units each have continuously variable fader controls. Monitor loudspeaker, socket for headset and dynamic cardioid microphone completes the equipment which is attractively housed in solid afromosia cabinet with detachable legs.

# - HIGH QUALITY REPRODUCTION <br> - READILY PORTABLE <br> - QUICKLY SET UP <br> - SIMPLE TO OPERATE <br> - STYLISH PRESENTATION 

Full information available on request-ask for details of Audio Sound Control Consoles, Integrated Mixer Amplifiers and Complete Sound Systems.

# You're on the right trackwith Goldring 800 magnetic cartridges 

Goldring 8oo magnetic cartridges track unerringly. Because that's the way we make them. They're designed to translate even the most delicate information stored in the groove back into an identical electrical signal. We call it the sound of true transduction.

Hear it for yourself. You'll know you're on the right track.

Goldring 800/H ... the $800 / \mathrm{H}$ is designed for inexpensive changers to track between $2 \frac{1}{2}-3 \frac{1}{2}$ grams and has a high output of at least 8 mV . £10.13.6 tax paid. Goldring 800 ... the 800 is designed for standard arms and changers where the requirements of high fidelity and robustness usually conflict. £13.0.0 tax paid.

Goldring 800 E... is designed for transcription arms and a micro-elliptical diamond is fitted to a finer cantilever, end damped against natural tube resonance $£ 18.17 .1$ tax paid. Goldring 800 Super E . . the 800

Super $E$ is for those to whom perfection is barely good enough. Extraordinarily low mechanical impedanceforsuperbtracking capabilities. Each cartridge is supplied with its individual curve and calibration certificate. \&26.0.0 tax paid.

Send for details and complete range of Goldring Hi-Fi equipment
Goldring Manufacturing Co. (Great Britain) Ltd.
486-488 High Road, Leytonstone, London, E.11. Tel: C1-539 8343.


We can't, and don't, disregard current advancements in sophisticated electronics

We can, and do,
cater to an undiminishing requirement for, replacement valves from all quarters of Industry, Education and Research.
This requirement has been built up over many years past. So has Pinnacle


Pinnacle Electronics Limited Achilles Street, New Cross, London, S.E. 14. Phone : All departments 01-692 7285 Direct orders: 01-692 7714


Telcon Mumetal used in' a large bushing current transformer, manufactured by Smith Hobson Ltd., which was one of several for the Niagara Falls Generating Station.


TELCON METALS LTD., Manor Royal. Crawley. Sussex.
Telephone: Crawley 28800 Member of the BICC Gioup of Companies.

From laboratory to full industrial duties-

## COVERED!

## THE GENEVAC KINNEY RANGE

Exceptionally compact, oil sealed rotary piston high vacuum pumps providing pressures of 1 torr or below


GKT. GKC SERIES INDUSTRIAL TYPE Four single-stage pumps with speeds up to $500 \mathrm{ft}^{3} / \mathrm{min}$. Special patented balancing techniques eliminate harmful vibration - so you needn't bolt them down if you don't want to. Which makes this series ideal for both static and mobile applications.

GHS, GHD SERIES DUAL PURPOSE
For laboratory or industrial use. Capable of achieving ultimate pressures down to $5 \times 10^{-4}$ And giving a $50 \%$ increase in pumping speed over previous models.

NRD - NRS SERIES -
LABORATORY TYPE
Provide a high vacuum testing facility down to $5 \times 10^{-4}$ ultimate pressures, plus the ability to remove water vapour and gases from test environments.

All pumps are
vibration-free, with low noise levels and full gas ballast facilities. Cost is low. design is compact and construction robust. Efficiency rating is very high and reliability is absolute.
Write for the Genevac Kinney publications . . .
Vacuum Products Division,
GENERAL ENGINEERING CO. (RADCLIFFE) LTD.
Station Works, Bury Road, Radcliffe, Manchester.
Telephone 061-723 3271/3041 Telex 66200 Generalrad Manchester.

Pye Telecommunications is the world's largest exporter of radiotelephone equipment. Pye Radiotelephones are used all over the world to ensure instant contact. Pye research development and quality control really do keep in touch with tomorrow.

## rely on




Pye 'Packetlone' Personal Radiotelephone
New battery economy circult. En-
tremely Hoht-weight and compact
Pecentlon tremely Hont-weight and compact
Recepllon Tow from nolse and inter-
ference. Mintmum of conntrols ference Mintmum of controls
Transmit bution automatically Transmlt buttion automatically en-
tends antenna. Hearlag ato socket. tends antenna. Hearing atc
Ensily accessible batteries.


Pye 'Westminster'
Front Mounted Radiotelephone
 sutate switehing. Sultable for all
slimates. Meets all relevant soecl. climates.



Pye VHF Radiotelephone Fired Station
Solld-state receiver and tranamilter
10.15 W Soltostate receiver and tranamilier
10-5W R.F. output Fleld-eltect
Iransistors used in receiver. Suitable Iransistors used in receiver. Suitabi
for alt cllmates. Electrontc squelch Desloned to meet all retevant apaci-
IIcations.


Pye 'Pioneer
Radlotelephone
Fully iransistorised. For use with automatic. C8 manual, or magnelo
exchanges. Weatherproof cablinet
 perlods Facility for fiting-privacy
equipment- Opllonal single antenna oderation.


Pye UHF Radiotelephone fixed Station
Solld state receiver and transmilter 8-10W R.F. output Very hlgh Re.F.
selectivity using fleld-effect tran. selectivity using lleld-effect tran
sistors very fow nolse factor Elstors
Eletronic squetch. A . C. or 2 VV d. Enectronic squetch. A. Co or 2 SV d.c.
operationte for all cllmates
Destened to Dissigned to meet alt relevant speci-
fications.



Pye 5-Circult UHF
Radiotelephone
Compact 5-circult nadio terminal Fully - Transiatorlsed channelling
equlpment-Frequency-shift signalling Continuous - Frequency-shiftsignalling all parts of the world. Twelve
standard plans for terminals and repeaters.


Pye 'Westminster'
Remote Mounted Radiotelephone Completely solid state - $5-8 \mathrm{~W}$ R.F. output t-to channels with solld state cator Sultable for all channel IndiMeets all retevant sDecifications.

## PYE

equipment gives you instant-contact with mobility

PYE TELECOMMUNICATIONS LTD. Cambridge England Telephone : Cambridge (0223) 61222 Telegrams : Pyetelecom Cambridge Telex: 81166

## Citesuld

NEW

## Litestat

## TEMPERATURE

## CONTROLLED

 SOLDERING INSTRUMENTS- Control within $\pm 2 \frac{1}{2}^{\circ} \mathrm{C}$
- Temperature infinitely adjustable while running
- Available for all voltages
- Built-in indicator lamp
- Cool, comfortable, unbreakable Nylon handle
- Range of bit sizes, Copper or Philips ironcoated

Please ask for leaflet LT. 5

## LICHT SOLDERNG DEVELIPMENTS LTD.

28 Sydenham Road, Croydon, CR9 2LL
Telephone: 01-688 8589 and 4559


## CHASSIS and CASES

Type N


## CASES

ALUMINIUM, SILVER HAMMERED FINISH

| Typ | Size | Price | Type | Size | Price |
| :---: | :---: | :---: | :---: | :---: | :---: |
| N | $8 \times 6 \times 2{ }^{\text {* }}$ | 18/- | W 1 | $12 \times 7 \times{ }^{\text {* }}$ 。 | 37/6 |
| N | $6 \times 6 \times 3$ | 17/6 | W 15 | $15 \times 9 \times 8$ | 48/6 |
| N | $4 \times 4 \times 2$ | 11/- | $Y$ Y 8 | $8 \times 6 \times 6$ | 29 |
| U | $4 \times 4 \times 4$ | 11/- |  | $12 \times 7 \times 7$ | 45 |
| U | $5 \frac{1}{2} \times 4 \frac{1}{2} \times 4 \frac{1}{2}$ | 17/- | $Y$ | $13 \times 7 \times 9$ 159 | 50 |
| U | $8 \times 6 \times 6$ | 23/- | $z 1$ | $17 \times 10^{\times} \times$ | $72 / 6$ |
| U | $9 \frac{1}{4} \times 7 \frac{1}{2} \times 3 \frac{1}{2}$ | 24/- | Z 19 | $19 \times 10 \times 8 \frac{1}{2}$ | 78 |
| U | $15 \times 9 \times 9$ | 49/- |  | Height |  |
| W | $8 \times 6 \times 6$ | 23/- |  | Plus post and |  |

Type N has a removable bottom, Type U removable bottom or back, Type $W$ removable front, Type $Y$ all-screwed construc tlon, Type $Z$ removable back and front.

BLANK CHASSIS
FOUR-SIDED 16 SWG ALUMINIUM

| Size | Price | Base | Size | Price | Base |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $6 \times 4 \times 2$ " | 6/3 | 2/11 | $10 \times 8 \times 2 \frac{1}{2 \prime}^{\prime \prime}$ | 12/- | 5/6 |
| $7 \times 4 \times 12^{\prime \prime}$ | 6/- | 3/2 | $12 \times 7 \times 2 \frac{1}{2}^{\prime \prime}$ | 12/- | 5/11 |
| $7 \times 5 \times 2{ }^{\text {" }}$ | 7/6 | 3/5 | $12 \times 9 \times 22^{\prime \prime}$ | 13/9 | $7 /$ |
| $8 \times 4 \times 2$ " | 7/- | 3/4 | $13 \times 8 \times 2 \frac{1}{2 \prime}$ | 13/9 | 6/11 |
| $8 \frac{1}{2} \times 5 \frac{1}{2} \times 2^{\prime \prime}$ | 8/- | 3/9 | $14 \times 7 \times 3^{\prime \prime}$ | 14/6 | 6/6 |
| $9 \times 7 \times 2^{\prime \prime}$ | 9/3 | 4/10 | $14 \times 10 \times 2 \frac{1}{2}^{\prime \prime}$ | 16/- | 8/7 |
| $10 \times 4 \times 22^{\prime \prime}$ | 9/- | 3/9 | $15 \times 10 \times 2{ }^{17}$ | 16/6 | $9 / 1$ |
| $12 \times 4 \times 22^{\prime \prime}$ | 10\% | 4/3 | $17 \times 10 \times 3^{\prime \prime}$ | 19/6 | 10/1 |
| $12 \times 5 \times 3$ " | 12/- | 4/9 |  |  |  |

## TO FIT OUR CASES

| Size | Price | Base | Size | Price | Base |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $7 \times 5 \times 1 \frac{1}{17}$ | $7 /$ | 3/9 | $12 \times 6{ }^{\circ} \times 2^{\prime \prime}$ | 10/9 | 5/11 |
| $7 \times 54 \times 2^{\prime \prime}$ | 7/9 | 3/9 | $14 \times 83 \times 2$ " | 13/6 | 7/11 |
| $11 \times 6 \frac{1}{3} \times 1 \frac{1}{2}$ | 10/- | 5/6 | $159 \times 9{ }^{1} \times 2 \frac{1}{\prime \prime}^{\prime \prime}$ | 17/- | 9/6 |
| $11 \times 61 \times 2^{\prime \prime}$ | 10\% | 5/6 | $17 \frac{3}{4} \times 9{ }^{3} \times 2{ }^{10}$ | 18/6 | 10/6 |
| WHTM BASES |  |  |  |  |  |
| Size |  | Price | Size |  | Price |
| $5 \times 4 \times 2 \frac{1}{2 \prime}^{\prime \prime}$ |  | 9/3 | $3 t \times 3 t \times 2 t^{\prime \prime}$ |  | 6/6 |
| $4 \times 24 \times 14^{\prime \prime}$ |  | 6/- | $3 \times 2 \times 1$ " |  | 5/6 |
| $3 \frac{1}{2} \times 3 \frac{1}{2} \times 2 t^{\prime \prime}$ |  | 7/3 | $6 \frac{7}{8} \times 2 \frac{1}{16} \times 1 \frac{15}{16}$ | (I8SW | ) $8 / 3$ |

Plus post \& packing.
PANELS: Any size up to 3 ft . at 6/- sq. ft. 16 s.w.g. ( 18 s.w.g. 5/3). Plus post and packing.

## H. L. SMITH \& CO. LTD. Electronic Components • Audio Equipment

 2871289 EDGWARE ROAD, LONDON, W. 2 Tel: 01-723 5891We shall be pleased to quote for all your component requirements.

## World Travellers pose for their passports

The Teonex family is big - 2,000 odd members, exclusive of semi-conductor relatives! Like every family, they come in many shapes and sizes. Slim or fat, tall or squat, bigger cr smaller, and in many ages: very young to very old. But there are two common characteristics. They are very reliable and they all have to travel. Nearly 60 countries now welcome Teonex, on Government and private contract. The family album is as comprehensive as you can get and most members are available from stock.
For technical specifications and price lists please write to Teonex Limited 2a Westbourne Grove Mews • London W. 11 • England Cables: Tosuply London W. 11


## peak sound



NEW DESIGN FROM PEAK SOUND

## Proved-performance high fidelity with specification guarantee

The Peak Sound Englefield is a new system which assembles from laboratory designed modules to provide a cost-performance ratio which has never been bettered in high fidelity. Here is top-flight circuitry housed in a cabinet of elegantly original design which is both beautiful and completely practical back and front. By assembling these Peak Sound units, you can own one of the best high fidelity instruments you have ever heard or seen and all for a cost of about $£ 38$. The assembly is supplied complete down to the necessary connecting wires supplied colour coded, cut to length and stripped at the ends for soldering. You can use the Englefield Cabinet design to house either the $12+12$ system as published in Practical Wireless. or the $25+25$ watt system as approved for the Hi-Fi News Twin Twenty by Reg Williamson. Go to your stockist and ask to see and hear Peak Sound equipment now.
Matching F.M. Tuners will be available very shortly.
and this is the Peak Sound Specification Guarantee

Peak Sound guarantee that their equipment meets all specifications as published by them and that these are written in the same terms as are used in equipment reviews appearing in this and other leading high fidelity journals. Audio output powers are quoted at continuous sine wave power in terms of Root Mean Square values (R.M.S.) into stated loads at stated frequencies.

## THE SPECIFICATION

Using two Peak Sound PA.12-15"s driven simultane ously at 1 KHz from 240 V . malns supply.
Output per channel: 11 watts into $15 \Omega$ : 14 watts into $8 \Omega$. (see spec. guarantee).
Frequency bandwidth: 10 Hz to 45 KHz for 1 dB at 1 watt.
Total Harmonic Distortion at 1 KHz at 10 watt into $15 \Omega-0.1 \%$.
Input senslifithies: Mag. PU. 3.5 mV imp. R.I.A.A. equalized Into $68 \mathrm{~K} \Omega$ : Tape. 100 mV linear into $100 \mathrm{~K} \Omega$ : Radio. 100 mV linear into $100 \mathrm{~K} \Omega$.
Overload factor: 29 dB on all input channels.
Signal/noise ratio: -65 dB on all inputs. Vol. control
Controls: Volume, Treble, Bass. Low-pass Filter.
Mono/Stereo: On/off: Balance.
Using two PA.25-15 amplifiers, output is then 25 watts into 15 ! $\%$ or $8 \Omega$ per channel at i KHz
Power bandwidth for -1 dB at 20 watts R.M.S. Into
$15 \Omega$ at less than $0.25 \%$ distortion is 20 Hz to 20 KHz

## THE MODULES



Using two PA.25-15 modules at
E11/15/- each and PS/68S Srabilized
Power Supply Unlt at $£ 13 / 10 /-$, total price for complete system comes to $\mathbf{5 5 8} 150$

Go to your Stockist. Peak Sound producis are alreedy avallable from dealers in many parts. If your own local stockist is not yet ready with the Peak Sound items you require. please send direct togethe with your supil equtrements will be deals with without delay.

## TRADE ENQUIRIES INVITED.

 PEAK SOUND (HARROW) LTD., 32 St. Jude's Road, Englefleld Green, Egham, SurreyTo Peak Sound, 32 St. Jude's Rd., Englefield Green, Egham, Surrey.
Detalls of Englefield systems. please and

Name
Address

Write your stockists name and address in margin below and cut out with coupon if necessary

## Some notes on Bridge Measurement by WAYNE KERR

## Number 6

## Radio-Frequency Bridges

The first five issues in this series of notes have described some of the basic principles of low frequency bridges and also their application to the measurement of components using two, three and four terminal techniques.

Transformer Ratio Arm bridges can be designed to operate at radio frequencies up to about 250 M Hz where other forms of bridge based on transmission lines become practicable.

The design of a bridge required to operate at high frequencies demands careful attention to every aspect of the layout, and in particular to the series inductance introduced by connections between component parts of the bridge. Short lengths of conductor which are insignificant at low frequencies can resonate and introduce immense errors as the frequency is increased.

However, the neutral connection which is available from transformer ratio arms can be used to effectively cancel the series inductance of conductors in the following manner. If two strip connections are made to, say, a bridge standard, these are placed side by side and mounted above a plate connected to neutral. The loop current flowing in the strips will induce, in the plate, an equal and opposite current which cancels the magnetic field, thus reducing the loop inductance.

Figure 1 illustrates a practical circuit for a bridge capable of operating at frequencies up to 100 MHz .


The transformers are formed by winding thin silver tapes on to ferrite or ferrous dust ring cores which are mounted inside individual screening cans.

The unknown impedance is connected to the blocks shown in the diagram which represent a shunt capacitance on the unknown side of the bridge. This capacitance is balanced by the standard variable capacitor and its value is so chosen that the capacitor is half engaged when the dials are at zero. An unknown reactance can therefore be balanced either by increasing the setting of the capacitor or decreasing it in the case of an inductive reactance. This feature is of particular value when transmission lines or aerial arrays are being evaluated.

Drums of low inductance resistors forming fixed conductance standards are arranged to engage with spring contacts. A variable conductance for interpolation is formed by means of a resistor R which is fed with a voltage derived from a resistive potential divider $P$.

Recently, a continuously variable potential divider has been developed which enables voltage division to be effected with great precison. This device is based on the magnetic field in a single turn loop and is illustrated in Figure 2.


The loop is connected to a winding which forms part of the left hand transformer shown in Figure 1. An autotransformer is connected across the loop and several taps are connected to give a predetermined voltage distribution round the loop. Separate loops can be used to drive resistive and reactive standards and one interesting feature of the arrangement is its ability to create a continuously variable inductance standard. In this case an air cored toroid can be employed whose external field is so small that the presence of metal objects near the coil has no measurable effect.

Radio-frequency bridge measurements require that considerable care should be taken in setting-up the apparatus. Any leakage of power from the source to the detector which by-passes the bridge network will give errors. Furthermore, if an aerial assembly is being measured, radiation from the aerial may be picked up by a badly screened detector and subsequently cancelled by a voltage of opposite phase in the operation of the bridge which will now balance at a false point on its scales. However, with a well screened detector and with soundly constructed connecting cables coupling the source and detector to the bridge, highly accurate measurements can be performed on both active and passive assemblies.

## NKT <br> FOR <br> BS 9000 ASSURED RELABILITY

```
BRITISH STANDARDS INSTITUTION
```



```
        Z PARK STREET, LONDON WIY 4
    Nemaarbet Transistors Lld.,
    Ening Rood,
    Neumarket,
    For the attention of Mr. R.G.Maclaggn,
    Managing Director.
```

    bear sirs,
    British Stamiards Irstitution Approvai of Harufacturer urler kis. 9000

Exning Road,
Neumarket
surfolk
are approved by the British Standards Insulution as salusfying the meruirement of ES. 8000

The inspection arrangenents are
Chef Inspector, Mr. Riw. Aushmore
This approvai covers the following:
Mamfacture of electronic parts of assessed quality to the
ES. 9000 serles of specifications as follows:
Generic Specification Bs. 8300
(L) Transistorsiexcluding FETs

The British Standards irotitution Approval Nimber aliocated to your Worlics
1dentinced above is:-
BS. 9000 approval $1014 / \mathrm{N}$
and this should be quoted on all relevart dociments.
The RS. 8000 Hanufacturer's Factory Identi fication Code letters allocated
to your wortis identified above are:-

## $\infty$

You are herety authorised to use only the following reference to approval an letter headings, advice notes imvolces etc.

BS. 9000 Approwal 1014/s
This approval, which 15 subject to the conditions of Es. go00, may be suspented or withdram by British Stamiards listitution in accordance with those conditions which until further notice will be:f

```
                Electrical Quality Assurance Directorate,
```

                Components Deppar tment
                sinistry of Tecrnology,
                Aquila,
                Kromiey,
    ```
Will you please achnowledge recelpt of this letter (with a copy to the
```

Supervising Inspectorate) on the enclosed form
Yours faithrully,


## Push Button Switches

Switches with a diverse range of contact configurations. Any combination of complex latching and interlocking function in single, and between twin bank assemblies. Available with illuminated buttons and choice of five colours, individual legends can be engraved. These, with rotary, slide and lever switches are available from IMPECTRON LIMITED, wite or phone for illustrated literature to 23-31, King Street, London. W.3., Telephone: 01-992 5388.

## WORLD FAMOUS naticioniosivo VARIABLE VOLTAGE CONTROLS



## VARIABLE TRANSFORMERS

- Output 0-260V
- Input 230V 50/60CPS
* Shrouded for Bench or Panel mounting

Inset shows latest pattern Brush gear ensuring smooth continuous adjustment


CONSTANT VOLTAGE TRANSFORMER.


UNIVERSAL



20 AMP LT SUPPLY UNIT



SOLID STATE VARIABLE VOLTAGE CONTROL

10 amp C/O PUSH-BUTTON MICRO-SWITCH
panel mounting.
Buttons in Red, Green. White \& Black
Type SS-1. 4/8 each per 1.000


* Dutput $25-240 \mathrm{~V}$
* Input 240 V 50 CPS
* $5 \mathrm{amp} \& 10 \mathrm{mp}$ modals
- Completely sealed

5 amp model
£8.7.6
10 amp model
£13.15.0


- SYNCHRONOUS MOTOR \& CLUTCH
- 10 MILLION DPERATIDNS
- Instantaneous \& Timad out 3 AMP contacts
- Repeat Accuracy $\pm \frac{1}{2} \%$
- Dial ranges $0-10$ secs up to 0.28 hrs. May also be used as impuise start


SYS TIMER


- FULLY AOJUSTABLE UPTO $2 D O$ SECONDS FITTEO WITH GAMP S.P.D.T. SWITCH.
- ONE MOOEL PROVIOES DELAY AFTER ENERGISE or oflay after oe-energise


## £11

dependent
on quantity
on quantity


PNEUMATIC TIMER TYPE ATS

SYNCHRONOUS MOTOR \& CIUTCH Matchbox size frontal area
Automatie re-sel

- plUg-IN DCTAL BASE
- instantanedus ANO TIMED OUT
2 AMP CONTACTS - RANGES: 0-10SECSTO 0-36 MINS

£5
ongendent

STP TIMER

PROXIMITY SWITCHES, LIMIT SWITCHES AND LIQUID LEVEL CONTROLS MANUFACTURERS AND IMPORTERS FOR MINISTRY OF DEFENCE, G.P.O.


I have recently been going through eight of your books and they have been a feast of information. I have been like a dog with eight tasty dishes, not knowing which one to tackle first but nipping about and sampling each one.

Somerset, Sept., 1969

Having read the majority of your 'Bibles on Hi FI,' of such a remarkably 'hi' standard, I eagerly await a copy of your Cablnet Handbook.

London N22, November, 1969

Please send orders and enquiries to

> RANK WHARFEDALE BOOK DEPT. B.W.S. 13 WELLS ROAD ILKLEY YORKS

Telephone: ILKLEY 4246

YOU WANT PARTS URGENTLY -almost immediately!

## So what do you do?

You reach for the 'phone and dial ONO 239 8072, if it is anything made by the United-Carr Group. You will be surprised how soon you'll get what you want.

Your immediate needs are our business
We exist to supply the small user quickly with standard parts made by these Companies and carry large stocks of their fasteners and clips and a wide range of Radio, Electronic and Electrical components. We're geared to speedy handling and dispatch.
But you will need our latest catalogue
For quick and accurate ordering you should keep our comprehensive catalogue by you. This useful reference book gives full details of the wide range of parts we stock-nearly everything of the kind that you are likely to require. Even though not ordering anything immediately, you should write now for this useful publication and so be ready to handle rush jobs whenever they arise.

United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Nottingham. Sandiacre 8072 STD ONO 2398072


Not everybody's dial is all it should be, so we at Anders specialise in changing our customers' faces to order. Our experienced team of Dial Printers is ready to perform the most complex Face Change with promptness and efficiency. As well as holding the largest stock of off-the-
shelf meters and associated accessories in the United Kingdom, Anders offer a really fast service for supplying non-standard range instruments with special readings. Let's face it, if you have problems with your dial it pays to let Anders face it.

## Anders means meters

## AnDers electronics limited

48/56 Bayham Place, Bayham Street, London, N.W. 1 Telephone 01-3879092.

Manufacturers and distributors of Electrical Measuring Instruments and Electronic Equipment. Sole U.K. distributors of FRAHM
Resonant Reed Frequency meters and Tachometers


## M. R. SUPPLIES (London) LTD.,

(Established 1935)

Universally recognised as euppllern of UP-TO-DATE. MATERIAL, which does the Job properly Inatant delivery. Satinfaction assured. Prices matr.
ROOM THERMOSTATs. Danfons wnill-mounted Thermontats, to deg. F. 80 deg. P., 380 ₹. A.C., sinpe: 24 C . 6 amps. Our nell price £1/12/6 (des. 2/-).
MINLATURE RUNNING TIME METERS (Sangamo). We have great demande for this remarkable
 industrial and domestic applications to indicato the running time of any electrical apparatus, eany to install, $83 /$ - (den, $1 / 6$ ).
 accurate preset switching operntions. Sangamo s.25t, providias up to 3 on-on operstions per 24 hours at any choeen times, with day-omiting derice (use optlonal). Capactly 20 ataps. Coms pactly housed then dia., 3f in. deepr 2014/6 (des. do
ELECTRIC FAFS (Papst), for extracting or blowing. The most exceptlonal offer we have yet
 SMALL GEFRED MOTORS. In addlition to our well-known range (Lait GM.169), we offer amall
 projection ewch slife
Only $75 /-($ des. $8 / \%$.
MINIATURE COOLIMG FANS. $200 / 250 \mathrm{v}$. A.C. With open type induction motor (no interference),
 ghe duty extractors, etc., 4tul only $31 / 6$ (des. $5 /$ ).
AIR BLOWERS. Highly effictent unile fitted induction totalls enchosed motor 230/260 \%. 50 c .



SYNCHRONNOS ELECTRIC CLOCX MOVEMEFTS (an mentioned and recommended in many huthonal Journans). $200 / 250 \mathrm{~V}$. 50 c . Sell-ptariting. Fitted spindlen tor hours, minuten sid central back duit cover, $39 / 6$ (den. 2/-). set of three brass hands in good pisin style. For $5 / 7 \mathrm{in}$. dia. 2/6 For $8 / 10$ dia. $3 / 6$ get.

 (des, $2 /-\mathrm{s}$ ). SMITES TIMER MOTORS. Bynch
4 8.p.m. onls Only $25 / \mathrm{j}$ (des. $2 /$ ).
MINIATURE D.C. MOTORS. $6 / 12$ volts'D.C. Ideal model makern. 4,000/9,000 r.p.m. bo load.

EXTRACTOR FANS. Ring mounted afl metal conatraction. T/E tiduetlon motor, ellent opera
 Immediati delivery of Start Centrifugal Pumps, including stainless steel (most models) OFFIOIAL 8TOCKIST: "PPARPALUX" Eleotrlo Motori (LiAt G.M. 189)
M. R. SIPPLIES (LONDON) LTD., 68 New Oxford Street, London, W.C. 1
(Telephone: 01.636 2958)
$\qquad$ M $\qquad$ w $\qquad$ Mn

## 4- D DC to AC

Carry out your field tests using standard AC equipment A VALRADIO TRANSVERTOR will enable you to use all types of test instruments in the field or in motor vehicles.
Standard models are available for loads of 20W to 1000 W for battery inputs of $12 \mathrm{~V} \& \mathbf{2 4 V}$ and equally important to you most types are available from stock
Prices range from 65 to $\mathbb{K} 70$.
The range is covered by three basic groups, having distinct characteristics.
T series-Square wave, frequency tolerance $\pm 3 \mathrm{~Hz}$ $Q$ series-Square wave, frequency tolerance $\pm \mathrm{Hz}$ $S$ series-Sine wave, frequency tolerance $\pm \pm \mathrm{Hz}$
Typical model B12/200S input 12 V output $115-230 \mathrm{~V} 200 \mathrm{~W}$. Price 667 -12-0
Send for full Information and technical details:
VALRADIO LTD., Dept. W.C. Browell's Lane, Feltham, Middlesex, England. Tel.:01-890 4242 ~N $\qquad$ WM W $\qquad$ von


Which means delivery and quality of this low cost thyristor are guaranteed.

## Features

- All voltage grade available, from 50 to 600 V
- Three grades of maximum gate sensitivity $200 \mu \mathrm{~A} \quad 1 \mathrm{~mA} \quad 10 \mathrm{~mA}$, allow selection to give the best performance for every application
- Meets BS9300 Quality Assurance Requirements
$\square$ Fully diffused


## Write for full details to:

AEI Semiconductors Ltd, Carholme Road. Lincoln. Telephone: Lincoln 26435



## SIMPLY SUPERB!

the new brenell... MODEL ST STEREO
Probably the most important new recorder of the year!
The new ST400/200 recorders are different from all previous Brenelis. All transistorized electronics ; shelf-mounting cabinet; simplified controls.
Sound quality is even better than ever-as gocd as you can hear. Three-motor deck performance and reliability; quality components throughout. All usual facilities are available.
ST400/200 recorders are designed to give you exactly what you expect from a Brenell today.
Only the price is less than you may expect . . £ 145 recommended. You pay no import duties . . no high selling costs . . . only for a top-quality recorder, well made. It's a fine formula !

- Mono or stereo operation - 3 tape speeds
- Choice of 2 or 4 -track $\quad 2$ recording level meters models
- Full input/output and control facilities
- 3 outer-rotor motors


BRENELL ENGINEERING COMPANY LTD. 231/5 Liverpool Road, London, N.1. Telephone:01-607 8271

WW- 048 FOR FURTHER DETAILS

## DUAL-CHANNEL POWER AMPLIFIER


$\star$ DC-Coupled throughout!
$\star$ Short Circuit proof!
$\star 500$ Watts RMS Mono.

Prequency Response
Phase Response
Power Response
Power at Clip Point
Total Output ( HH )
I.M. Distortion ( $60-7 \mathrm{KHz} 4: 1$ )
Damping Factor
Hum and Noise ( $20-20 \mathrm{KHz}$ )

Slewing Rate
Dimensions
Weight
Finish
$\pm 0.1 \mathrm{db}$ Zero 20 K Hz at 1 watt into 8 oh ms, $\pm 0.6 \mathrm{db}$ Zero- $100 \mathrm{KH}_{2}$.
Less than $5^{\circ}, 0-10 \mathrm{KHz}$.
$\pm 1 \mathrm{db}$ Zero- 20 KHz at 150 watts RMS into 8 ohms.
Typically 190 watts RMS into 8 ohms, 340 watts RMS into 4 ahms per channel.
Typically 420 watts RMS into 8 obrts, 800 watts RMS imto 4 ohms.
Less than $0.1 \%$ from 0.01 watt to 150 watts RMS into 8 ohms, typically below $0.05 \%$. (max 0.05\%.

Greater than 200 (Zero to 1 KHz ints 8 ohms at 150 watts RMS)
100db below 150 watts RMS output (unweighted, typical 110db).

8 volts per micro-second. S-R is the maximum value of the first derivative of the output signal. 19in. standard rack mount (W.E. hole spacing), 7 in , height, 9 , in . deep (from mounting surface). 40 pounds net weight
Bright-anodized br ushed-aluminium front-panel with black-anodized front extrusion, access door, and chassis.
$\star 70$ Volt Balanced line out!
$\star$ Only $£ 320$ inc. duty!

## NAGBA <br> The world's best portable professional audio tape recorder



MODEL IVA Automatic, single speed

MODEL IVB Manual, single speed
$\geqslant$


MODEL IVL Neopilot, three speeds, Automatic/Manual

[^0]clarity of illustration


These models plus eight variants give the professional user a choice of twelve basic Nagra IV tape recorders Modular plug-in electronic circuit boards, available for each machine, allow unique flexibility in the choice of recording functions.

Study the Nagra IV brochure and see how you can select precisely the facilities you need. built in to one compact machine of outstanding performance and reliability.

Write or telephone for technical information.
HAYDEN LABORATORIES LIMITED,
East House, Chiltern Avenue, Amersham, Bucks., England
Tel: 024035511 Telex: 83251 Cables: Haylab Amersham

## 30 YEARS EXPERIENCE

IN THE DESIGN AND MANUFACTURE OF SOUND SYSTEMS WHY NOT LET US SERVE YOU


## 

MODULE TEST AND INSPECTION BAY


All types of Public Address equipment from 10-2.000 watts. Custom built mixers. Transformers and chokes.

## ASSOCIATED ELECTRONIC ENGINEERS LTD. <br> DALSTON GARDENS, STANMORE, MIDDLESEX. HA7-IBL TELEPHONE 01-204 21254 LINES.

WW- 051 FOR FURTHER DETALLS


WW- 052 FOR FURTHER DETAILS


Maralios.jpares.

For
electronic components fast...

DIOTESTOR IN-CIRCUIT TRANSISTOR TESTER


BRITEC LIMITED, 17 Charing Cross Road, London, W.C. 2 Tel: 01-930-3070


Edmundsons Electronics Lid. 60-74, Market Parade, Rye Lane, Peckhan, London, S.E: 15 Tel: (010-639 973:

Hawnt \& Co. Lid.
112.114, Pritchett Street

Birming ${ }^{\text {amm, }} 6$
Tel: (021)-359 43C1
South Wales Wireless Installation Co Ltd.
121, Cite Road, Cardiff. Tel: (0232)-23636

Smith \& Cookson Ltd.
49.57. Eidgewater Street,

Liverpod 1.
Tel: (051)- 7093154
The Needham
Engineering Ca. Ltd.
P.O.B. 23, Townhead Street.

Sheffield S1 1 YB
Tel: (0742)-27161
J. Gledson \& Co. Ltd. Newbigg $n$ Lane, Westerhope Newcastle Upon Tyne, NE5 1PM Tel: (0632)-860955

## Sooner or loter you'l need both these devices!

At some time, every user of closed circuit t.v. needs a replacement vidicon tube. That's when you need a service organisation tha: can really perform. Just p ck up the phore and contact your nearest EMI distributor. EMI research has produced a range of tubes with reliability, good resolution and hizh sensitivity. Our distribution organisaticn has jeen expanded and streaml red. This ensures that everyone using closed circuit t.v. has access to the zest professicnal adyice and a fast replacement service.
For furt $\mathfrak{F r}$ de-ai s of the EVI vidicon range contact your distributor cr:-

## EMI

EMI Electen cs, Ltd, tayes, M ddlesex. Tel. 01 - 573 3888. Ext. 2078 -alex. 22417 Cables EMIDATA London.


* $15-0-15 \mathrm{~V}$ at 100 mA
* Employs operational amplifiers
* Overload protection
* Available as card or sub-unit


The A. 15 is intended for driving operational amplifiers and the twin output, nominally 15 V , can be varied between 12-17V or connected in series to provide $24-34 \mathrm{~V}$. Both ganged control and independent adjustment of one output enable precise setting of output voltages.
DIMENSIONS:

## Card

Height 38.1 mm (1.5")
Width $64 \mathrm{~mm}\left(2.52^{\prime \prime}\right)$
Depth 130 mm (5.12")
Complete Sub-Unit
Height 47 mm (1.85")
(including feet)
Width $67.5 \mathrm{~mm}\left(2.66^{\prime \prime}\right)$
Depth 153 mm (6.02")
(including terminals)
Price:
f18. 0. 0. - card
£20. 0. 0. - modular sub-unit
(cover, mains lead and terminals)


FARNELL INSTRUMENTS LIMITED,
Sandbeck Way,
Wetherby, LS22 4DH.
Telephone: 0937-3541/6.
London Office:
Telephone: 01 802/5359


REPAIR SERVICE 7-14 DAY8

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89 .
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments
LEDON INSTRUMENTS LTD
76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.

WW-061 FOR FURTHER DETALLS
METER PROBLEMS?


A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:

```
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937
```


## You could be doing things on a much bigger scale



## EEI <br> s.e.

Right now the Selectest Mk2 multirange test meter meets the requirements of all recent and immediately foreseeable developments in the electric and electronics industries. Accuracy and sensitivity are maximal and these major characteristics are complemented by the extra robustness that withstands modern working conditions and gives longer life. The case is modularly constructed in wipe-clean, tough but lightweight -melamine. The terminals accept 4 mm push-in-plugs and are arranged on the front panel so
that the Selectest Mk2 can be used vertically or horizontally. The scale is $25 \%$ longer than that on any comparable meter and incorporates an inset mirror and knife thin pointer. Range selection permits continuous rotation. The ultimate are S.E.I. high voltage probes which extend the Selectest's range to 25 or 30 kV d.c. for the testing of equipment where the source of impedence is high. These probes can be used with any reputable meter of the required
sensitivity but only a Selectest will last as long as the probes. We manufacture a wide range of portable instruments... write today for full information selectest $\overline{\text { MARK } 2}$ multi-range test meter

SALFORD ELECTRICAL INSTRUMENTS LIMITED
Peel Works. Barton Lane. Eccles. Manchester M30 OHL Telephone: 061.789 5081 Telex: 66711 A Member Company of G.E.C. Electrical Components Lid.

WW-063 FOR FURTHER DETAILS

## NORMATEST



The newest small Multirange Meter obtainable with a specification compareble to standard-size multirange meters.

* Sensitivity of
* Accuracy of
20.000 Ohms/volt D.C.
2.5\% D.C.
$4,000 \mathrm{Ohms} /$ volt A.C.
$3.5 \%$ A.C. to $500 \mathrm{c} / \mathrm{s}$

[^1]CROYDON PRECISION INSTRUMENT COMPANY
hampion rdai : croyoon : SURrer : Telephone: Thornton heath $4025 \& 4094$

## F.A.L.'PHASEIOO'

Public Address Amplifier

instrumental groups and General Public Address use
$\star 70$ Watts RMS Output
Recommended Retail price
$\star$ Output matching for speakers from 3-30 ohms

- 4 separately controlled inputs plus master * Separate Bass and Treble Controls $\star$ Frequency Response 20 c.p.s. to 30 Kcs. AVAILABLE FROM YOUR LOCAL DEALER Wholesale and Retail enquiries to Manufacturers $\qquad$ | SEND S.A.E. |
| :---: |
| FOR FULLY |
| DESCRIPTIVE |
| LEAFLET |

FUTURISTIC AIDS LTD., 103 Henconner Lane, Leeds 13

## 16 los of high quality performance for only £62

The S51B is the answer for a low cost, easy to use single-beam oscilloscope.

Here are some of the reasons why:

- Small size-light weight $8^{\prime \prime} \times 7^{\prime \prime} \times 15^{\prime \prime} .16 \mathrm{lb}$.
- 5" flat-faced P.D.A. tube.
- Bandwidth DC-3MHz.
- Auto sync and trigger level control.
- Proven performance of over 20,000

S51's in use throughout the world.

- Send for full specification now !!!


# Wireless World 

Electronics, Television, Radio, Audio

Fify-ninth year of publication


The macrophotograph on this month's cover shows wires being bonded on to integrated circuits at the Mullard Southampton works. On page 6 the future of linear i.cs is discussed.

## OUR NEXT ISSUE

Loudspeaker performance: Paul Klipsch, originator of the Klipsch horn, compares horns and direct radiators
Ceramic pickups and transistor pre-amplifiers: are they incompatible? Matching: what is meant by this term?

January 1970
Volume 77 Number 1411

## Contents

Editorial Comment<br>Capacitor-discharge Ignition System by R. M. Marston<br>The Future of Linear I.Cs by R. Hirst<br>News of the Month<br>Letters to the Editor<br>Circuit Ideas<br>Amorphous Semiconductors by 7. E. Carroll<br>Application Notes<br>Magnetoresistance by B. E. Jones<br>Announcements<br>Low-distortion Bias and Erase Oscillator by D. Griffiths<br>Industrial Telemetry by R. E. Young<br>Active Filters-6 by F. E. f. Girling and E. F. Good<br>Personalities<br>Progress in Tape-recording Techniques by S. Feldman<br>World of Amateur Radio<br>Electronic Metronome by D. T. Smith<br>A Digital Christmas Tree<br>D.C. Bias in Push-pull Power Amplifiers by R. A. Smith<br>1970 U.K. Conferences \& Exhibitions<br>New Products<br>Meetings<br>Test Your Knowledge questions and answers devised by L. Ibbotson<br>Literature Received<br>H.F. Predictions<br>Real \& Imaginary by "Vector"<br>STrUATIONS vacant<br>A114 INDEX TO ADVERTISERS

[^2][^3]
## ibpa



Open the BRIMAR Industrial Cathode Ray Tube catalogue and you will find just about the widest range of tubes in the business, one of which is likely to be a 'perfect fit' for your requirement. But, if you have something unusual in mind, talk it over with us. BRIMAR can provide the tube you need, either 'made to measure' or 'off the peg', whether it be for measuring instruments, picture monitors, radar, alphanumeric or graphical displays.
Through the unparalleled BRIMAR capability in chemistry, election optics and vacuum physics the widest design diversity is offered, backed by a personalised customer service.
This service, provided by engineers with extensive
experience of the electronics industry covers advice on tube characteristics, operating conditions and associated components.
Tailored packaging and reliable delivery to meet production schedules are also part of the BRIMAR Service.
Want to know more about the BRIMAR range of Industrial Cathode Ray Tubes? - send for our latest catalogue.


7 Soho Square, London, W1V 6DN.
Telephone: 01-4375233

## "Explosion in communications"

Editor-in-chief:
W. T. COCKING, F.I.E.E.

## Editor:

H. W. BARNARD

## Technical Editor:

T. E. IVALL

## Assistant Editors:

B. S. CRANK
J. H. WEADEN

## Editorial Assistant:

J. GREENBANK, B.A.

## Drawing Office:

H. J. COOKE

## Production:

D. R. BRAY

## Advertisements:

G. BENTON ROWELLL (Manager)
J. R. EYTON-JONES
R. PARSONS (Classified Advertisement Manager)

Telephone: 01-928 3333 Ext. 538

This was the expression used by Mr. Stonehouse, Minister of Posts and Telecommunications, when he announced in the House of Commons that he was considering setting up an independent enquiry into the long-term future of broadcasting in the U.K. He referred to the need to examine the implications of new technologies, e.g. the possibility of 100 or more communication channels going into every home in Britain via a single wire or microwave link, "which would bring about an explosion in telecommunications".

One's immediate reaction to the proposed broadcasting enquiry is "what, another one!" It will be recalled that very few of the recommendations in the Pilkington report of 1962 were implemented and over the years there have been many proposals made by the various committees of enquiry or commissions which, maybe because they were too sweeping, have been turned down. It would, however, appear from the Minister's latest statement that if the proposed committee is set up it will be asked to look at the long-term future of internal telecommunications generally and not just broadcasting. If so, this is going to be a gargantuan task calling for technological forecasting. Incidentally, Professor W. H. G. Armytage, of the University of Sheffield, speaking recently to members of the Institution of Mechanical Engineers, said it now seems that "technological forecasting is, like weather forecasting, very respectable". He pointed out, however, that technological forecasting must not be confused with "the inspired doodling that has characterized science and engineering through its history . . . nor the intuitive forecasts that enabled writers like . . . Hugo Gernsback to predict radar or Arthur C. Clarke to predict the earth satellite". Professor Armytage defined it as "the application of scientific method-or objective, almost clinical method-to the analysis and forecasting of technological change".

Bearing this in mind the proposed committee could produce a really far-seeing forecast of telecommunications into the '80s and beyond; but the members will need to be supermen or they will find themselves bogged down by tradition and vested interests.

What are the prospects? The idea of a super telecommunications grid covering the whole country has frequently been suggested and with the growing use of telemetry and control systems, as evidenced by a contribution in this issue, it is fast becoming a necessity.

Such a super grid will be an amalgam of radio and cable techniques. Despite our title we are not so bigoted as to be blind to the potentialities of cable for distribution networks. It is, however, worth recalling that in the early days of this journal there was a fierce war waged between cable and wireless (apocryphal stories are told of the sabotage of cable systems in order to show that wireless was inviolable!) but a marriage was arranged. It is, of course, true to say that without radio devices (amplifiers, repeaters, and the like) the present cable networks could not have materialized.

We do not intend to gaze into our crystal ball, engage in inspired doodling or make intuitive forecasts, but the future for the electronics and radio engineers is certainly exciting.

# Capacitor-discharge Ignition System 

# An electronic ignition system, suitable for any car, which offers a large number of advantages over conventional ignition 

by R. M. Marston

When this unit is wired up to a car's existing ignition system it greatly improves the shape of the ignition voltage waveforms, and enables a more stable flame-front to be generated in the engine's cylinders. Better combustion is thus obtained, and engine performance is considerably improved.

The unit, which is known as a capacitor-discharge ignition system, confers an impressive list of benefits in terms of engine performance. It gives easy starting, even under sub-zero conditions, and also gives immunity to performance deterioration due to contact-breaker bounce. In addition it gives quicker engine warm-up, improved acceleration, better high-speed performance, and improved fuel economy ( $2-5 \%$ ). Even more important, it virtually eliminates contact-breaker point burning and wear, gives greatly improved spark-plug life (typically 3 to 5 times longer than in conventional ignition systems), and overcomes the need to adjust contact-breaker and spark-plug gaps with precision.

The ignition unit can be added to any car fitted with a conventional $12-\mathrm{V}$ coil ignition system irrespective of the number of engine cylinders.

Fig. 1 shows the circuit of a conventional, or inductivedischarge ignition system. The contact-breaker (c.b.) points are opened and closed by an engine-driven cam. When the points are closed, current from the battery builds up in the coil primary, to a maximum value of about 4.5 A exponentially, with a time constant of $L / R$ seconds, typical time constants are between 2 and 10 ms . As the current builds up, it stores an energy 'packet' of (L.I' $) / 2$ joules, or wattseconds, in the coil primary.

When the points open, the primary current collapses rapidly via $C_{1}$, and induces a peak potential of about 300 V across the coil primary; this voltage is increased to about 30 kV at the secondary winding, and this energy is transferred to the spark-plugs by the vehicles distributor. $C_{1}$ and the coil form a resonant circuit when the points are open, and the secondary voltage takes about $125 \mu$ s to build up to its peak value.

Fig. 2 shows typical inductive discharge ignition performance characteristics and ignition requirements at different engine speeds; the early part of the graph, up to about 100 r.p.m., indicates typical sub-zero starting conditions, when battery voltage falls to about 10 V , compared to a normal value of 13.5 V when under dynamo charge. Note that the system operates with very little safety margin under coldstart conditions, and that the available secondary energy becomes inadequate when engine speeds reach 5,900 r.p.m., so that misfiring starts to occur above this speed.

Finally, the relatively long secondary voltage rise times of the inductive system (typically about $125 \mu \mathrm{~s}$ ) make the ignition system very vulnerable to high energy losses due to
fouling of the spark-plug gaps by carbon and oil deposits. These deposits act as a resistance (typically about $2 \mathrm{M} \Omega$ in cases of bad fouling) across the points. These deposits inevitably absorb some of the applied energy (power-time), and total energy absorption increases in proportion to voltage rise time and fouling resistance.

Capacitor-discharge ignition systems, on the other hand, suffer from hardly any of the snags outlined above. Fig. 3 shows the block diagram of the particular ignition system described here. A self-regulating voltage converter is used to charge storage capacitor $C_{1}$ to 400 V , almost irrespective of actual battery potential. When fully charged, this capacitor stores 0.08 joule.

When the c.b. is closed, zero input is applied to the pulse shaper, and the thyristor is off; a standing current of about 250 mA is passed through the c.b. via $R_{1}$ under this condition, to keep the points 'clean'. The converter is operating, and charges $C_{1}$ to 400 V ; the capacitor has a charging time constant of about 1.6 ms .


Fig. 1. Circuit of a conventional inductive discharge ignition system.


Fig. 2. Typical performance of the circuit of Fig. 1 together with engine energy requirements. The curves assume that battery voltage is normally 13.5 V falling to 10 V at cold start.

When the c.b. points first open, the pulse shaper operates and turns the thyristor on in about $2 \mu \mathrm{~s}$. This short circuits the output of the converter, and turns it off. Simultaneously, one side of $C_{1}$ is connected to ground and discharges rapidly into the primary of the coil; the coil steps the resulting primary voltage up to about 40 kV , and the stored energy of $C_{1}$ is transferred to the spark-plugs. The secondary voltage has a rise time of only a few microseconds. $C_{1}$ and the coil form a resonant circuit when the thyristor is on, and have a typical resonant frequency of 1600 Hz , giving a period of roughly $600 \mu \mathrm{~s}$. At the instant the thyristor fires, the coil's primary voltage rises (in about $2 \mu \mathrm{~s}$ ) to 400 V , but $300 \mu$ s later the voltage falls to zero as the circuit oscillates and the thyristor turns off, preventing further oscillation. Once this happens the voltage converter re-starts and begins to re-charge $C_{1}$, even though the c.b. points may still be open. The process is repeated when the c.b. opens initially again. Note that the primary coil voltage is isolated from the vehicle's c.b. terminals, which are thus subjected only to the moderately low voltages and currents.

Fig. 4 (a) shows the actual spark voltage performance of


Fig. 3. Block diagram of the capacitive discharge ignition system described in the article.

(a)

(b)

Fig. 4. Curves showing the measure performance of the capacitive discharge ignition system with the same battery voltage conditions as Fig. 2.
the prototype system at different engine speeds, when fitted to different types of engine, together with worst-case ignition voltage requirements, and Fig. 4 (b) shows the system's energy generating performance. Note that both the available voltage and energy are well in excess of engine needs under all operating conditions.

The full circuit of the negative ground version of the ignition system is shown in Fig. 5. $C_{1} a$ and $C, b$ form the $1 \mu \mathrm{~F}$ energy storage capacitor. $\operatorname{Tr}_{1}-\operatorname{Tr}_{2}, T_{1}$ and the $D_{3}-D_{6}$ bridge form the self-regulating voltage converter. $\mathrm{Tr}_{3}$ and its associated network form the bounce-suppressing pulse shaper, which fires the thyristor via $C_{3}$.

The voltage converter section operates as follows: $\operatorname{Tr}_{1}$, and $T r_{2}$ are an astable multivibrator which uses the halves of the centre-tapped primary of $T_{1}$ as collector loads and which generates a series of 24 V (approximately) square waves at each collector, at a frequency of roughly 50 Hz . The inductive nature of $T_{1}$ causes the early part of each square wave to shoot above the normal flat top; $R_{11}-R_{12}$ and zener diodes $Z D_{1}$ and $Z D_{2}$ are used to limit this overshoot to 28 V peak. $T_{1}$ steps the square waves up to 400 V peak at the secondary winding. This voltage is then converted to d.c. via the $D_{3}-D_{6}$ bridge rectifier, and used to charge $C_{1}$. It is this overshoot regulation that gives the ignition system its good cold-starting characteristics. $R_{6}$ gives the circuit a degree of protection in the event of the battery voltage (under dynamo charge) rising above 15 V , and at the same time reduces the $C_{1}$ voltage at high engine speeds.

It should be noted that, although the converter oscillates at a natural frequency of only 50 Hz , it is in fact capable of giving good spark generation at c.b. frequencies in excess of 660 Hz , i.e., above 20,000 r.p.m. in a four-cylinder, and above 10,000 r.p.m. in an eight-cylinder engine.

At the moment that the c.b. points first open in each ignition cycle the thyristor is triggered, so $\operatorname{Tr}_{1}$ and $\operatorname{Tr}_{2}$ stop oscillating; $300 \mu$ s later, the thyristor then turns off, so the multivibrator starts oscillating again. The start of the first half cycle of each converter operation is thus synchronized by the c.b. At c.b. frequencies above about 100 Hz , therefore, the converter starts into a half cycle each time the thyristor turns off, but the half cycle is ended prematurely when the thyristor goes on again as the c.b. opens.

The operating frequency of the converter thus synchronizes automatically to half that of the c.b. under this condition. Only a fraction of one natural half cycle is needed to charge $C_{1}$ to a useful value, so good sparks are generated up to very high engine speeds.

The c.b. bounce-suppressing and pulse shaping section of the unit operates as follows: When the c.b. points are closed, a standing current of about 250 mA is passed through

## COMPONENTS LIST

| Resistors |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| In the list below the prefix $R$ and the suffix ? have been omitted for clarity. |  |  |  |  |
| 1 - $50^{\circ}$ | 4-470 |  | 7-2701 | 10-220 |
| 2-68k | $5-3.3 \mathrm{M}$ |  | 8-2701 | 11-100 |
| 3-1k | 6-1 ${ }^{\text {- }}$ |  | 9-220 | 12-100 |
| ' 5 -watt wire-wound |  |  |  |  |
| t2-watt |  |  |  |  |
| Capacitors |  |  |  |  |
| $C, a$ and $C, b-0.5 \mu \mathrm{~F}, 600 \mathrm{~V}$ working. paper or Mylar. |  |  |  |  |
| $C_{2}-0.02$ IF. 50 V working. Mylar. |  |  |  |  |
| $\mathrm{C}_{3}-0.22 \mu \mathrm{~F}$. 50 V working, Mylar. |  |  |  |  |
| Semi-conductors |  |  |  |  |
|  |  | positi | ve earth | negative |
| Tr ${ }_{1}$ | - | 2N30 |  | 2N3055 |
| $7 r_{2}$ | - | 2N30 |  | 2N3055 |
| $7 \mathrm{Tr}_{3}$ | - | 2N37 |  | 2N3704 |
| $0_{1}$ | - | 1 N 40 |  | 1 N4001 |
| $\mathrm{D}_{2}$ | - | 1 N40 |  | - |
| $D_{3}-D_{6}$ | - | 1 N 40 |  | 1 N4005 |
| D, | - | 2N35 |  | 2N3525 |
| $2 D_{1}-2 D_{2}$ | - | 27 V . 5 | \%. 400 ml |  |
| Transformer $T_{1}$ |  |  |  |  |
| Modified 17V secon | or battery charger transf dary. 2A tranformer is sultabl | ormer <br> when | rated at modified | $240 \mathrm{~V} \text { pri }$ |




Two views of the prototype positive earth version.
the points via $R_{1}$; the $R_{1}-D_{1}-C_{2}$ junction is at ground, and the $R_{2}-C_{2}$ junction is grounded via $\mathrm{Tr}_{3}$ base-emitter junction. Assume that $C_{2}$ and $C_{3}$ are fully discharged.

At the instant that the c.b. points open, 12 V appear across the points, and $C_{3}$ charges rapidly via $R_{1}-D_{1}$ and the thyristor gate which turns on. Simultaneously, $C_{2}$ charges rapidly via $R_{1}$ and $T r_{3}$ base so that $T r_{3}$ turns on.

At the instant that the points close again, the $R_{1}-D_{1}-C_{2}$ junction once more drops to ground volts; $C_{3}$ is still fully charged, however, and remains so, since $D_{1}$ is reverse biased under this condition; $C_{2}$ is also fully charged, but, since its $R_{1}-D_{1}$ side has been pulled down to ground volts, it drives
$\mathrm{Tr}_{3}$ base sharply negative, so $\mathrm{Tr}_{3}$ is cut off. $C_{3}$ thus has no discharge path at this stage, and retains full charge. Consequently, should the points bounce open again at this stage (point bounce only occurs within the first two or three hundred micro-seconds of initial point closure), the thyristor will not be triggered back on again. Now, as soon as the points close, the $C_{2}$ charge starts to leak away via $R_{2}$, and eventually, after about $600 \mu \mathrm{~s}$, the charge falls to near-zero and $T r_{3}$ is biased on via $R_{2}$. Once it is turned on, $T r_{3}$ provides a discharge path for $C_{3}$ via its collector and $R_{3}$ and $R_{4}$; $C_{3}$ then discharges rapidly, with a time constant of about $35 \mu \mathrm{~s}$. At the end of this period, $C_{2}$ and $C_{3}$ are once more fully discharged, and the thyristor is ready to be triggered on again.

Thus, the thyristor is triggered on as soon as the points open, but can not be operated again until the points open again after being fully closed for at least $600 \mu \mathrm{~s}$. The thyristor is thus immune to false triggering by c.b. point bounce.

The positive ground version of the ignition system is shown in Fig. 6. This is similar to that described above, except that a few circuit polarities are changed and the thyristor is triggered on with a negative pulse applied to its cathode via $D_{2}$.

The only problem involved in the construction of the unit is that of finding transformer $T_{1}$. This is an iron-cored unit with a turns ratio of $15: 1$ at a power rating of 30VA or greater, and with a centre-tapped low-voltage winding. The easiest way to obtain this unit is to re-wind an existing l.t. or battery-charger transformer. The winding procedure is very simple, and the following is an account of that used on the prototype:-

The transformer is required, before modification, to have a basic turns ratio of $15: 1$ or less. Any 1.t. or batterycharger transformer that meets this and the 30VA power requirement can thus be used. The prototype unit started life as a $240 \mathrm{~V}: 17 \mathrm{~V}, 2 \mathrm{~A}$ battery-charger transformer, and thus satisfied the above specification. Once selected, the lowvoltage winding of the unit must be re-wound and centretapped to give an exact $15: 1$ ratio, i.e., a ratio of $240 \mathrm{~V}: 16 \mathrm{~V}$

in this particular case.
To rewind the transformer, remove its securing clamp and dismantle its iron core laminations (making note of their method of assembly), and then remove the coil bobbin. Next, unwind the entire low-voltage winding (which is invariably the outer winding on the bobbin), and carefully note the total number of turns used; now divide the number of turns by the original value of l.t. voltage, to give the transformers basic turns-per-volt value. On the prototype, total turns were 134, and the original voltage was 17 , giving a turns-per-volt value of 7.9. Now calculate the l.t. voltage needed to satisfy the $15: 1$ final turns ratio of the transformer ( 16 V in this case) and multiply by the turns-per-volt value (7.9) to give the total number of turns to be rewound (128); now re-wind this number of turns on the bobbin to form the primary of the ignition unit transformer, taking care to make a tap at the half way mark. Finally, re-assemble the core laminations and re-fit the transformer clamp; the transformer is then complete and ready for use. The original mains primary is now of course the secondary of the new transformer.
Construction of the rest of the unit should present no problems, and it can be wired-up direct from the circuit diagram. The prototype positive ground version of the unit (see photographs) is mounted in an $8 \times 6 \times 2 \frac{1}{2}$-in metal box; the two power transistors ( $\operatorname{Tr}_{1}$ and $T r_{2}$ ) and the thyristor are mounted, via insulating washers, to the box surface (which acts as a heat sink); most of the remaining components are mounted on a piece of Veroboard Panel; external connections to the unit are made via a 4 -way terminal block.

When construction is complete, give the unit a simple functional check by connecting terminal (2) to chassis and terminal (1) to the 'hot' side of the car's battery; a "humming" noise should now come from the unit, indicating that the converter section is operating, and total current consumption should be roughly 800 mA ; approximately 400 V should be available between the anode and cathode of the thyristor when tested with a $20,000 \mathrm{o} /$ volt meter. If this test is satisfactory, the unit can now be fitted to the car.


Fig. 7. Plug and socket connections required for fitting the unit to a vehicle. Unplugging the plug (c) and inserting the plug (b) into socket (a) changes from conventional to capacitive discharge ignition system.
b
The complete unit can be either mounted in the glove compartment (as in the case of the prototype), or can be fixed to the rear fire-wall of the engine compartment (but not close to the exhaust system). The unit can be either wired directly to the existing coil and c.b. assembly, or, preferably, can be wired to these components via a 5-way plug and sockets (Fig. 7), in which case the driver can change from conventional to capacitor discharge ignition by simply fitting an alternative plug into the socket.

Once wiring is complete, turn on the ignition, operate the starter, and check that the system functions well under actual driving conditions; there is no need to re-adjust c.b. or spark-plug gaps, etc.

Results vary from one car to another, but improvements are particularly evident in cars that have covered a considerable mileage since their last tune-up.

Finally, once the unit has been found to perform satisfactorily over a reasonable mileage, it is recommended that the entire circuit be covered with an electrically insulating coat of water-proof paint or varnish, to exclude the harmful effects of moisture. The unit can then be expected to operate correctly for the life of the vehicle.

# A few simple integrated circuits, with guaranteed long-term availability, could meet nearly all the needs of the industrial manufacturer 

by R. Hirst*

Linear integrated circuit packages have been available for a relatively short period in Britain. By virtue of the techniques employed and the expense incurred in developing and manufacturing monolithic circuitry reasonably large production quantities are required to make the selling price compatible with circuits manufactured from discrete components. This fact in itself restricts the market to which the initial product may be tendered as the industrial design engineer, with a relatively small piece-part requirement, is unable to incorporate devices that are essentially made for the domestic sphere. While the majority of linear integrated circuits will meet industrial requirements, it is the fear of an abrupt cessation in supply at the end of two or three years, due to the biennial change in the requirements of the mass radio and television market, that causes the main concern to the long-term industrial user.

Linear integrated circuit manufacturers seem unable to grasp this situation and continue to pour into the market complex, incompatible and noninterchangeable units mounted in a mulutude of mechanical assemblies as can be seen from Table 1.

Based upon a simple survey it would seem reasonable to maintain production of one or two devices that at the present time have more than paid for their tooling costs by virtue of large-scale distribution. It would be necessary to inform the industrial equipment manufacturer which devices would be available for a relatively long time. The consumption, based upon this type of selling, could be surprisingly large and the risk to semiconductor manufacturers spread over a much greater number of customers.

To show how simple linear integrated sircuitry could be, the following excursionary appraisal of the requirements of a substantial portion of the industrial consumer has been presented. There would appear to be four main areas in which integrated circuitry could be used to great advantage, these are: switching, 1.f. amplification, h.f. amplification, frequency conversion.
Switching: This appears to have been adequately covered by the majority of

TABLE 1
Characteristics of some i.c. amplifiers

| type | response at $-3 d 8$ | gain <br> (dB) | supply volts | pack |
| :---: | :---: | :---: | :---: | :---: |
| SN777 | d.c. -100 kHz | 70 | 4.5 | * |
| SN7510 | d.c. -40 MHz | 42 | + 8 \& - 8 | * |
| SN7510L | d.c. -40 MHz | 42 | +8\&-8 | T0-99 |
| TAA111 | d.c. -150 kHz | 62 | 7 | T0.76 |
| TAA121 | d.c. -150 kHz | 74 | 7 | T0.76 |
| TAA 131 | d.c. -20 kHz | 56 | 5 | * |
| TAA141 | d.c. -20 kHz | 56 | 5 | T0-76 |
| TAA 300 | d.c. -25 kHz | 50 | 9 | TO.74 |
| TAA310 | d.c. -15 kHz | 100 | 7 | T0.74 |
| TAA293 | d.c. -600 kHz | 80 | 6 | TO-74 |
| TAA263 | d.c. -600 kHz | 77 | 8 | T0-72 |
| TAA350 | d.c. -12 MHz | 80 | 6 | TO-74 |
| TAA231 | d.c. -30 MHz | 20 | 12 | T0.78 |
| F104A | d.c. -35 MHz | 20 | 20 | 10.74 |
| F104B | d.c. -45 MHz | 20 | 20 | TO. 74 |
| CA3011 | $0.1-20 \mathrm{MHz}$ | 60 | 10 | TO-74 |
| CA3020 | d.c. -6 MHz | 58 | 9 | TO-74 |
| CA3021 | d.c. -2.4 MHz | 56 | +18\&-6 | TO-74 |
| CA3023 | d.c. -16 MHz | 53 | +18\&-6 | TO-74 |
| * Flatpack |  |  |  |  |

semiconductor manufacturers and it is possible to obtain devices from different manufacturers that are directly interchangeable. The presentation has stabilized in the shape of fourteen-lead dual-in-line packages, usually epoxy encapsulated. The cost of the pack approaches or improves upon the cost that may be achieved by discrete techniques and the only aspect that now remains is to have more standardization and interchangeability.
L.F. amplification: As the majority of integrated circuits are d.c.-coupled, it would seem reasonable to lump together the l.f. and h.f. requirements thus reducing the consideration of linear amplification to a single unit. This device is described under the heading of h.f. amplification.
H.F. amplification: There is an integrated circuit available on the market with a flat frequency response up to 45 MHz which is entirely d.c.-coupled. This device is being used in large quantities in the manufacture of domestic radio and television. It is a Mullard unit type F104B and is mounted in a 12 -pin TO-5 can. The internal circuit of this device is shown at the left-hand-side of Fig. 1 and it can be seen to be very simple in design but nevertheless adequate in performance. A variety of response curves may be obtained by changing the value of


Fig. 1. The Mullard F104A/B is shown on the left which can fulfil nearly all the industrial manufacturers needs for l.f. and h.f. amplification. The shaded area contains an emitterfollower circuit which can be added so that the circuit can be made to drive long coaxial lines.
$C_{1}$ as shown in the graph of Fig. 2. The circuit in the shaded portion of Fig. 1 is a directly coupled emitter-follower which can be used to reduce the output impedance so that the unit may be terminated in a coaxial lead to feed a further unit which could be some distance from the amplifier.

This circuit has been used in a number of assemblies operating from 100 Hz to 30 MHz and it was found that by substantially increasing the value of $C_{1}$ that the gain at 100 kHz could be
increased from 20 dB to 30 dB if some increase in harmonic distortion could be tolerated. From the curves in Fig. 2 it is obvious that, if the amplifier is used in a relatively narrow band, the value of $C_{1}$ may be altered to accurately provide a given level of gain. For instance with $C_{1}$ in the order of 25 pF the gain at 50 MHz would be approximately 26 dB . However, if the value of $C_{1}$ was reduced to 12 pF the gain would have decreased to something in the order of 19 dB . As $C_{1}$ is an external component it is an easy task to use a ceramic trimmer adjustable from 5 pF to 25 pF to take up the gain spreads of the integrated circuit.

Obviously this package does not deliver a great deal of power but it may be terminated in one or more stages to give the required output level. It may also be preceded by an emitter-follower in order to increase the input impedance should the need arise. At frequencies below 10 MHz the small value of $C_{1}$ is unlikely to promote sufficient change in gain to enable the variable capacitor to take up the spreads from circuit to circuit and it is probable that if a considerable gain change is required at the lower frequencies it will be necessary to alter the value of the series input resistor. However, as previously indicated, if $C_{1}$ is replaced by a fixed large value of capacitor the gain can be adjusted over a considerable range, but it then becomes necessary to change a capacitor physically, rather than make a simple adjustment. This amplifier has now been produced by Newmarket Transistors Ltd, under the title MC 809 and is a thick film device mounted in a dual-in-line package.

Frequency conversion: Fig. 3 shows a simple ring modulator circuit using four diodes and two transformers. This unit may be manufactured from discrete components but the degree of balance required for industrial applications, over a wide temperature range, cannot be easily achieved unless the diodes are carefully matched and mounted in a common heat-simulating device. With the aid of standard monolithic techniques this type of modulator may be readily presented on one chip thus ensuring that the elements have a similar temperature coefficient and are mounted in close proximity.

At the present time transistor monolithic ring modulators are available on the market as standard units but unfortunately the frequency range is very limited and cannot be considered for highfrequency work.

The circuit of Fig. 3 is not the only method of obtaining balanced frequency conversion but it is a simple device that can have a very wide and flat frequency response providing that the transformers are designed correctly. A unit of this nature has a considerable field of application throughout the military and industrial manufacturing industry.

Conclusion: Little has been done to establish the needs of industrial manufacturers as far as integrated circuits are


Fig. 2. Frequency response of the F 104 B with different values for $C_{1}$.

Fig. 3. Basic ring modulator circuit.

concerned. If just one or two of the more simple integrated circuits, at present available to the domestic consumer, were to be classified as devices with long-term availability, the military and industrial manufacturer would undoubtedly respond by including such units in future designs.

During some recent observations into designs promoted by just one industrial manufacturing company it was noted that during the past three years, sixteen totally different amplifiers had been designed to achieve a small signal gain of between 20 and 30 dB at 100 kHz . Each one of these amplifiers could easily have been replaced by the circuit indicated in Fig. 2 without any detriment to the performance. Some startling but accurate conclusions were reached when cost estimates were prepared for the development and manufacturing cost of the discrete assembly on one hand, and the integrated assembly, on the other.

In the instance of the sixteen amplifiers designed around discrete components, it was ascertained that a total of 2 manyears were involved in the engineering, drawing and planning. The total annual consumption of the final amplifiers was small in the order of 500 units, costing approximately $£ 5$ each. The total cost over a manufacturing period of five years was as follows: development- $£ 8,000$; 2,500 units- $£ 12,500$; giving a total expenditure of $£ 20,500$.

Replacing these sixteen different designs with a common integrated circuit the development period could be reduced to one half man-year costing about $£ 2,000$ leaving a total of $£ 18,500$ to be spread over 2,500 integrated units giving a unit price of $£ 78 \mathrm{~s}$ for a simple threestage device. There is no reason why a semiconductor manufacturer could not make a substantial profit at such an elevated unit price. The advantage to be gained by the industrial manufacturer at such a price would not be directly financial but a reflection in the substantial
period of time that a skilled engineer would now have to devote to the more elaborate task of system design.

The modern circuit engineer is now likely to find that his services are more and more in demand in the laboratory of the semiconductor manufacturer where, chemistry, physics and electronics come close together. There is a vast shortage of skilled engineers in every country and it has to come that the majority of skills available will be employed in the design of systems using integrated circuitry as the basic building blocks. This does not detract from the skill of the circuit engineer but to the contrary indicates that a much higher degree of skill must be used in planning the minimum number of configurations to be used over a very wide and varied market.

[^4]
## Corrections

J. Dinsdale, author of "A Design in Retrospect" in the November issue, writes: "There is an unfortunate ambiguity in Fig. 5 which does, not make it clear whether the mk 1 or mk II design is being discussed. It is important that the earphone-loading network (shown in the dotted box) is connected in place of the loudspeaker in whichever design is being used. On no account should there be a direct d.c. path from the collector of $\mathrm{Tr}_{6}$ to ground, as Fig. 5 could imply." Also for May read April in ref. 9.

The values of two resistors in the Wien Bridge Oscillator on page 575, December issue, were incorrect in the diagram. For 68 k and 33 k , read 6.8 k and 3.3 k .
See also page 11 for addendum to last month's "Letters".

## News of the Month

## American radio and <br> TV production

It would appear from the latest figures issued by the U.S. Electronic Industries Association that there is a grave decline in the indigenous radio industry. Not that the sales of domestic receivers have declined but that there has been a growing influx of imported sets while the number of home-produced models has decreased.

The total sales of domestic a.m. and fm . receivers produced in the U.S. during the first nine months of 1969 was 3.58 M compared with 4.15 M during the same period in 1968. Imports, however, rose by about 5 M to 24.6 M of which some 4 M eventually bore U.S. company labels. The picture in car radio is very different. Of a total of 8.87 M units (a slight increase on the 1968 figure for the same period) just over 1.2 M were imported.

Of a total of 9.85 M television receivers sold during January-September 1969 (of which over 4.6 M were colour) 1.23 M imported sets bore U.S. labels and a further 1.58 M carried foreign labels. Incidentally, about $13 \%$ of the colour receivers sold in the U.S.A. during the first nine months of 1969 were imported.

Figures for the disposal of receivers in the U.K. (supplied by the British Radio Equipment Manufacturers' Assoc.) do not show imported equipment. Disposals of domestic radio receivers declined from 762,000 for the first nine months of 1968 to 547,000 for the same period in 1969. Car radio sets dropped from 309,000 to 262,000 . Monochrome television receiver deliveries declined from $1,220,000$ in 1968 to $1,172,000$ in 1969 and colour sets from 89,000 to 77,000 .

## German satellite earth station

Germany's earth station at Raisting, near Munich, now has a second paraboloid aerial. This, like its counterpart at the U.K. Goonhilly station, will enable communication to be maintained via satellites in both the eastern and western hemispheres.

The main physical difference between Raisting's aerials I and II is that the designers have dispensed with the use of

Raisting's second paraboloid. In the background is the radome of the first aerial

the radome cover in the latest installation. Although this gave protection from the weather it also created a problem-a film of water or ice on the radome caused background noise. Aerial II is fitted with 5000 infra-red radiators to prevent icing. The dish is 28.5 m in diameter and the gain 60 dB which corresponds to a power gain of one million as compared with an isotropic radiator operating at 4 GHz . Maser pre-amplifiers with a $25-\mathrm{MHz}$ bandwidth were originally used in the receiving section of the earth station, but parametric amplifiers with a $500-\mathrm{MHz}$ bandwidth and a gain of 10,000 have now been installed by Siemens who undertook the refurbishing of the station.

## Information service for engineers

INSPEC the Institution of Electrical Engineer's information service in physics, electrotechnology and control, is to launch a selective dissemination of information (SDI) service in electronics in January. It will be available on an individual or group subscription basis in the United Kingdom only. Periodical articles on all aspects of electronics, published in English or English translation, will form the basis of the service. The institution plans to start a comprehensive SDI service covering all languages and the complete subject range of INSPEC in 1971. This service is part of the overall plan for the development of a comprehensive information service, which is being supported by the Office for Scientific \& Technical Information of the Department of Education \& Science. For the past year the SDI service in electronics has been limited to some 600
research workers as part of a governmentsupported information research project. Further information and details may be obtained from the manager, INSPEC SDI Investigation, I.E.E. 26 Park Place, Stevenage, Herts.

## Cranfield Institute of Technology

Cranfield College of Aeronautics, which was founded at Cranfield, Bedford, in 1947, has been granted a Royal Charter to become the Cranfield Institute of Technology with power to award its own higher degrees. As its original title implies it has been concerned principally with aeronautics but in future its object will be "to advance, disseminate and apply learning and knowledge in the disciplines of the sciences, engineering, technology and management". The Institute will also pay particular attention to "the educational needs of industry, commerce and the public services".

## Laser space communication

The first laser communications system to be used in a satellite is to be developed by Aerojet-General Corp., of Azusa, Calif., under contract to NASA. The equipment is to be used aboard the Applications Technology Satellite-F (ATS) which is scheduled for launching from Cape Kennedy into a synchronous orbit in 1972. The contractors will develop both the spacecraft equipment and the associated ground equipment. When ATS-G is launched in 1974 the laser
communications experiment may be extended to include spacecraft-to-spacecraft links.

## Conferences on tape

"Cassette Colloquia" is the name of a programme begun by the Institute of Electrical and Electronics Engineers to keep its members technically up to date. Cassette recordings of special seminars, workshops, sessions etc, conducted by the I.E.E.E. will be available to members and non-members. The recording technique for the cassettes involves speech compression without pitch change. This, in conjunction with editing, allows $2 \frac{1}{2}$ hours of material to be converted to 75 minutes in the cassette of a recent meeting. A cassette containing this length of recording costs $\$ 10$.

## V.H.F. complaints

The B.B.C. has completed an analysis of reports of unsatisfactory v.h.f. reception (during 1968/69) which shows that more than $50 \%$ of the complaints were due to the use of inadequate aerials or to faulty or maladjusted receivers. A great deal of dissatisfaction could be avoided, it is said, if dealers would advise when an external aerial is necessary and would also make sure that customers know how to tune their receivers.

## Full colour spectrum from infra-red

New phosphors, employing rare earth elements in crystals, have been found by workers at Bell Telephone Laboratories to convert infra-red radiation into any colour of the rainbow. The source of infra-red energy is a gallium arsenide diode. The initial use of the combination of GaAs diodes and infra-red-to-visible phosphors was reported by General Electric. The phosphors can be painted on the diodes-green or red light is produced by certain crystals containing erbium or holmium, and blue light using thulium. With one of the phosphors, colours gradually change from green through yellow, off-white, and orange, and finally to red, as power is increased. The red light so produced is as bright as that emitted directly by other solid-state lamps.

## WWV standard frequency transmissions

The National Bureau of Standards (U.S. Department of Commerce) in Boulder, Colo., is responsible for the operation of four radio stations (WWV, WWVB and WWVL at Fort Collins, Colo., and WWVH, Hawaii) that transmit accurate time and frequency information. The formats of two of these stations, WWV and WWVH, are being reviewed for possible changes and modification. A questionnaire has been sent to many known users of the broadcast services and
any other users (government, military, industrial, scientific or private individuals) who wish to receive the questionnaire are asked to write to WWV 1969, National Bureau of Standards, Boulder, Colo. 80302.

For the record, station WWV has been transmitting standard radio frequencies on a regularly announced schedule since March 1923 and WWVH began supplementing the broadcast services of WWV from a site on Maui, Hawaii, in 1948. Both stations broadcast the same services on high-frequency carrier waves. Stations WWVB and WWVL at Fort Collins transmit on l.f. and v.l.f. The services of all four stations are described in publication 236, NBS Frequency and Time Broadcast Services, available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402, for 25 cents.

## TV camera for low-light levels

A television camera, type GINV-1 capable of producing pictures from scenes illuminated at light levels equivalent to starlight, has been introduced by STC. Minimum sceneillumination requirement for the camera, is about $2 \times 10^{-5} \mathrm{ft}$. candles so that it can respond to scenes that are invisible to the human eye. A vidicon tube is used in conjunction with a three-stage image intensifier having a very high overall gain. Typical brightness magnification is 35,000 times. No especially contrived illumination such as infra-red beams, or reliance on self-emitted infra-red is necessary. For use underwater, where there is very little light, a clearer picture is obtained by using the natural light available rather than an artificial source, the light from which tends to be scattered back to the camera and so degrading the picture.


The STC low-light television camera with cover removed

## W.W. Diary

The larger-page size 1970 Wireless World Diary ( $5 \times 3$ inches) has enabled a more readable type to be used for the information section which includes those features found to be most acceptable to users. They include formulae, circuits, aerial data, colour television and sterco broadcasting characteristics, transistor data, trequency allocations, addresses of organizations and many other facts and figures.

The Diary, which has a week-at-an-opening, costs 10 s (leather) or 7 s (rexine).

## American incentive licensing allocations

Although the U.S. Federal Communications Commission recently suspended the application of proposals for increasing the sub-allocations of h.f. bands available only to amateurs holding Extra Class licences, there remain substantial portions of the bands available only to those holding Extra Class and Advanced Class licences, as part of the policy of encouraging American amateurs to study for the more advanced licence examinations, in a scheme introduced in November 1969. The first 25 kHz of the $3.5,7,14$ and $21-\mathrm{MHz}$ bands are available only to Extra Class telegraphy; the frequencies 3.8 to $3.9,7.2$ to $7.25,14.2$ to 14.275 and 21.25 to 21.35 MHz are now all subject to reservations for either Extra Class only or for Extra Class and Advanced Class telephony. Our correspondent Pat Hawker says British amateurs have expressed opposition to an A.R.R.L. proposal that American telephony operation should be authorized in the band 14.1 to 14.2 MHz .

## Mysterious generation of u.h.f. exploited

An unexplained phenomenon, discovered at RCA Laboratories in 1967, has been harnessed by RCA to produce the most powerful pulses of radio energy in the u.h.f. range yet achieved by a solid-state device. The effect occurs in avalanche diodes, when they are placed in a circuit tuned to oscillate at frequencies lower than those at which the diodes are supposed to be able to oscillate. For reasons that are still not fully understood, when electrical pulses are now applied to the diodes, they abruptly enter an "anomalous mode" of operation and begin to produce microwave oscillations with powers and efficiencies substantially higher than normal. It is reported that by combining five such devices in a single tiny package and operating them in the anomalous mode, microwave pulses with peak powers above $1,200 \mathrm{~W}$ have been produced with efficiencies above $25 \%$.

## Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

## Transistor Distortion

## Characteristics

Mr. Linsley Hood's results (given in his November article) are rather unexpected, in one respect. A perfect transistor would exhibit a voltage gain independent of $h_{f e}$, and, in his particular test circuits, independent of the load resistance as well. Yet the reported figures, even allowing for the imperfections of the transistors, are at variance with this expectation. They are also at variance with my own measurements.

In a practical circuit, the voltage gain is very nearly $g_{m} \cdot R_{L}$, for a planar transistor with low "extrinsic base resistance". Now $g_{m}$ is a function of the collector current, not the current amplification factor. It is about $40 / \mathrm{C}$. Thus a transistor operating at $I_{C}=1 \mathrm{~mA}$ has a $g_{m}$ of about $40 \mathrm{~mA} / \mathrm{V}$.

The voltage gain is therefore $40 . I c \cdot R_{L}$. In Mr. Hood's tests, $I_{C} \cdot R_{L}$ was kept constant, so one would have expected the voltage gain to be constant, to a first approximation, irrespective of the variations in $h_{f e}, I_{C}$, and $R_{L}$. In circuit A, for example, $I_{C} \cdot R_{L}$ was fixed at 5 , so the expected voltage gain is 200 , not $40-140$ as reported.

My own quick tests on a silicon planar transistor ( $\mathrm{BFY}_{5} \mathrm{I}$ ) produced the expected results: the voltage gain with 5 V dropped across the load was 185-210 for loads of $\mathrm{I}-8 \cdot 2 \mathrm{k} \Omega$; i.e., and 8 to I variation in collector current. There is clearly something wrong somewhere.

In the case of alloy transistors, the extrinsic base resistance is comparatively high, and changes the performance appreciably. At the higher collecto: currents and lower values of $h_{f e}$, this resistance (perhaps a few hundred ohms) is comparable with the "true" input resistance $25 \cdot h_{f e} / I_{E}$. Its effect is to reduce the apparent $g_{m}$ and also to make the transistor operate, not as a purely voltage-driven stage, but in a mode between voltage drive and current drive. This latter effect improves the linearity It follows that the linearity of any voltage amplifier stage can be improved by inserting base resistance. The price you pay is in reduced gain and increased
noise. (Much the same effects are obtained by the use of an unbypassed emitter resistance.)

If large output voltage swings are taken, distortion due to Early Effect may become important. (This was reported by Dr. Bailey in connection with one of his power amplifiers, where the driver stage had to deliver large swings.) It may well be that a low- $h_{f e}$ transistor shows less of this distortion than a high$h_{f e}$ one, though correct selection of types is perhaps better than selecting for low $h_{f e}$.

## G. W. Short, South Croydon, Surrey.

## The author replies

I was pleased to read Mr. Short's letter, and I note with interest, his argument that a transistor should, ideally, always give an identical stage gain, as a voltage amplifier. However, this is not the situation one finds in practice, nor is it the conclusion one draws from gain calculations made using the classical formula, ${ }^{1}$ using the conventional $h$ parameters, for a common emitter configuration.

$$
\boldsymbol{M}=\frac{1}{h_{\mathrm{re}}-\frac{h_{i e}}{Z_{L}}\left(\frac{1+h_{o e} Z_{L}}{h_{f e}}\right)}
$$

assuming $Z_{g e n}=0$.
Taking the transistor type which he quotes, and obtaining the typical values for the $h$ parameters, $h_{i e}, h_{o e}, h_{r e}$ and $h_{f e}$ from the Mullard data sheets, the calculated stage gains for a BFYSI, under ideal conditions of zero source and emitter impedance, vary from 210 to 319 over the range of collector loads I to rok $\Omega$.
However, there is a less complex formula quoted by Manasse ${ }^{2}$, using the concept of the " $h$ determinant" $\Delta_{h}$, ( $\Delta_{h e}$ is equal to $\left.h_{i e} . h_{o e}-h_{f e} . h_{r e}\right)$,

$$
M=\frac{h_{f e} \cdot R_{L}}{R_{L} \cdot \Delta_{h e}+h_{i e}} .
$$

Since over the range of loads in question with a BFY ${ }_{51}, \Delta_{h e}$ is very small, this
approximates to-

$$
M \approx \frac{h_{f e} \cdot R_{L}}{h_{i e}}
$$

So, if the input impedance of the transistor increases linearly with the product $h_{f e}, R_{L}$ (and $h_{f e}$ may remain nearly constant), the theoretical condition could be met. Normal device shortcomings, such as doping inhomogeneity, carrier trapping and the base-emitter spreading resistance presumably give rise to the failure of the theoretical model.

However, with regard to the gain figures I quoted for the devices I examined, it had not been my intention that these values for gain should be taken as the voltage gain of such devices under ideal voltage amplifier conditions. Alas, low-distortion signal generators do not have zero output impedance. My intention was, rather, to establish a form of "figure of merit" for such devices, and to determine the comparative performance, say, of germanium versus silicon and $n-p-n$ versus $p-n-p$. In this context the fact that the signal generator had not a zero impedance output was not of importance.

In fact, the apparatus used was a Solartron VF252 precision millivoltmeter, a Radiometer $\mathrm{BKF}_{5} \mathrm{H}$ distortion meter and a Marconi TFiroi low-distortion oscillator, with IkHz output filter. (The modulus of the output impedance of the Marconi oscillator is 660 ohms, which accounts for the actual stage gain being lower than the calculated zero input impedance value.) It was remiss of me not to mention in the article the source impedance used, but, surely, if one really wanted to know what the typical stage gain of a particular device would be under zero input and zero emitter resistance conditions, one would calculate it from the formulae, rather than try to measure it with a possibly very untypical component.

With regard to the point raised by Mr. Engstrom in his letter in the December issue, may I say that the points he raises are agreed. The treatment of transistor voltage amplifier non-linearities on the basis of variation in the input admittance is, indeed, the classical approach. However, I quote Mr. P. J. Baxandall's observation that in transistor circuit design it is much more fruitful to consider the devices as voltage amplifiers; and treat their non-linearities on that basis, rather than to endeavour to swamp the input impedance changes by the inclusion of massive input or emitter circuit impedance.

## J. L. Linsley Hood

## References

r. "Transistor Circuit Design", Walston and Miller, pp. 98-99.
2. "Modern Transistor Electronics, Analysis and Design", Manasse et al, (Prentice Hall), pp. 46-49.

## Stereo gramophone pickups

The most interesting and timely article by Mr. Stanley Kelly on stereo gramophone pickups in the December issue prompts me to raise two points. First, although in reviewing the dynamics of the transducer-stylus-groove system, Mr. Kelly does assume a compliance for the disc material of $3 \times 10^{-8} \mathrm{~cm} /$ dyne, neither he, nor any other authority that I am aware of, tells us very much about the behaviour of disc material. What, for example is the effect of temperature upon it and are there significant differences between various record manufacturers' products in this respect. I have long felt that the characteristics of record máterial and, above all, resonances which occur within the disc and the effect that different modes of bedding records on the turntable have upon this, are worthy of close examination.

Secondly, Mr. Kelly's reference to novel principles for pickups (straingauge and photo-electric) recalls another possibility which must be of particular appeal to readers of Wireless World, because its life-force is h.f. The mono version of this type of pickup uses a conventional stylus flexibly anchored at the rear end carrying, instead of coils or magnets, a simple vane of quite negligible mass. The movements of the stylus due to the groove modulation causes relative movement between the vane and a fixed plate or electrode which is continuously energized to emit a constant high frequency e.m.f. The stylus-driven vane is connected to a tiny "receiver"-merely a tuned miniature pot-core inductance, and semiconductor diode. The amount of h.f. energy reaching this receiver at any instant depends upon the instantancous position-hence impedance - which the vanc forms with the fixed plate or pole; in short the h.f. energy input is amplitude modulated by the movements of the vane. The diode delivers an audio-frequency product to a load resistance of $100 \mathrm{k} \Omega$, or so, and this is conducted away to the input of the record player amplifier.
The system is readily adapted to stereo by the employment of two vanes at right angles. The same h.f. pole is easily adapted to energize both vanes; the receiver and diode are, of course, duplicated-one for each vane; and the a.f. currents from them are the two inputs to the stereo channels. Unaffected by d.c. or 50 -cycle a.c. fields-magnetic or electrostatic - and potentially capable of outputs normally met with in crystal pickups, the advantages are evident and more than overcome the need for the oscillator necessary to energize the "pole". Such an oscillator can easily be housed within the pickup arm if need be. Indeed, why should we not go the whole way to achieve the ideal completely conductorless pickup arm-no filamentary wires, no mercury baths-just two oscillators in the pickup head, frequency-modulated by
the same two moving vanes and one common fixed plate; two transmitters, in fact, transmitting over a few inches to two miniature f.m. receivers strategically placed at the side of the turntable.
H. J. N. Riddle,

Sherborne,
Dorset.

The author replies
With reference to Mr. H. J. N. Riddle's letter, the values quoted for disc material were obtained by direct measurement by myself, and are indicative of present day vinyl products. For any given record material the absolute value of compliance is a function not only of the record material, but also of stylus radius, stylus pressure, the mechanical impedance with reference to the stylus tip, and temperature; it not only varies between record manufacturers but to a second order from batch to batch of record material.

Additionally, a given record does tend to harden with time and over a period of years the effective compliance decreases. Although one tacitly assumes that the impedance of the record as seen by the stylus tip is a pure compliance, this is more of a pious hope than fact. There are the inevitable loss components and the variation of impedance with frequency suggests a more complex structure than a simple $R C$ combination.

I agree with Mr. Riddle that the characteristics of the disc material are taken too much for granted and although at various times I have investigated particular facets of this interesting problem, the finances of a private laboratory cannot unfortunately accommodate the detailed investigation that this subject requires.

With reference to the stereo capacitor type of pickup, one such unit has been produced in Japan and during the past few years I have received samples of this device. Unfortunately, the first was damaged in transit, and the second

sumably due to frequency variation of the h.f. oscillators. Additionally, the setting up of the two transmitters and receivers was critical if audible beat noises between the two systems were to be eliminated. The mechanical characteristics of the moving vane are not simple, acceptable signal-to-noise ratio controls the minimum change of capacitance and this in turn determines the vane's dimensions, which are larger than would have been expected.

I agree that on paper at least the variable capacitance type of pickup is very attractive, expecially if one can fit the complete transmitter within the pickup head shell. My own thoughts on the matter are to use a single r.f. transmitter phase modulated by each channel with suitable decoding systems. Stanley Kelly

## Stereo decoder adaptor

We regret that the circuit was omitted from the letter under the above heading on p. 565 in the December issue. To avoid ambiguity we are reprinting the letter with the diagram.
Having seen the circuit for a stereo decoder adaptor in "Circuit Ideas" in the September issue I am prompted to send you a much simpler circuit which I have been using for several months.
'Instead of having a variable gain amplifier on each channel a 0.5 attenuator is placed before the decoding matrix when a mono programme is being received. With a mono signal $T r$, saturates and earths one end of the attenuator chain formed by the two $10 \mathrm{k} \Omega$ resistors. Thus only half the mono sign is applied to the matrix. On stereo $T r_{9}$ is off and the full signal is applied to the matrix. The $100 \mathrm{k} \Omega$ resistor ensures that the $1 \mu \mathrm{~F}$ capacitor does not have to change its charge when going from mono ta stereo.
A. Royston,

University of Warwick,

## Circuit Ideas

## Constant current generator

Dual transistors are used to ensure cancellation of thermally variant transistor parameters in the simple constant current generator shown.

By suitably proportioning the resistor values the drift of the constant current due to variation of transistor base-toemitter junction voltage, collector-tobase leakage current, and current gain are cancelled out.

For cancellation of base-to-emitter voltages the necessary circuit relationship is:

$$
R_{3}=R_{4} .
$$

To assist stable operation with change of leakage current and gain the remaining resistors are proportioned to satisfy the equality:

$$
R_{5}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

The output current is given, with good accuracy, by:

$$
I_{c c}=\frac{V_{c c}}{R_{5}}\left(1-\frac{R_{2}}{R_{1}+R_{2}}\right)
$$

The transistors should be operated with equal emitter currents to ensure tracking of the two base-to-mitter voltages with temperature.

The resistors should be wire-wound types with low temperature coefficients. The differential temperature coefficient of the resistor pairs $R_{1}, R_{2}$ and $R_{3}, R_{4}$ is more important than the absolute temperature coefficient.


The measured temperature coefficient of $I_{c c}$ is typically $0.0015 \% /{ }^{\circ} \mathrm{C}$ over the temperature range 0 to $100^{\circ} \mathrm{C}$.

As shown the constant current is directly proportional to the supply voltage. To make the constant current independent of the supply, resistor $R_{1}$ may be replaced by a temperaturecompensated zener diode. An additional resistor $\left(R_{b}\right)$ is then required in series with the base of transistor $T r_{1}$, such that $R_{b}=R_{5}$.
M. Cadwallader,

London N.W. 3

## A M.O.S.T. frequencydoubler chain

The high impedance of m.o.s. transistors allows tuned frequency doublers to be cascaded without requiring impedance transformation. The use of enhancement devices eliminates the need for a separate bias supply. The arrangement is shown in the diagram. The potentiometer is adjusted to provide the required bias

for maximum efficiency. Since $C_{i s s}$ is not highly dependent on the applied gate voltage, adjustment of $V R$, does not detune the preceding circuit. Doublers are not prone to feedback and interaction problems so that dual m.o.s. devices such as the Marconi-Elliott E6029 could be used. The circuit will operate up to 150 MHz with the high $g_{m}$ devices of the E6019, E6029 series.

> J. A. Roberts, University College, Swansea.

## Negative resistance of transistor junction

If the emitter-base junction of a silicon planar transistor is reverse biased, it behaves as a zener diode, with a typical breakdown voltage of $7-10 \mathrm{~V}$. If the base is left open-circuit and connection is made to the collector instead, the "zener diode" has a negative resistance characteristic. The effect is exhibited by most


Fig. 1. Test circuit giving ramp waveform.
Fig. 2. Thyristor firing circuit.

$\mathrm{n}-\mathrm{p}-\mathrm{n}$ silicon planar transistors, but by few $\mathrm{p}-\mathrm{n}-\mathrm{p}$ types. The relaxation oscillator in Fig. 1 can be used as a test circuit,

The device is also useful for firing thyristors. Fig. 2 shows a simple halfwave lamp-dimming circuit which can be controlled manually, by $V R_{1}$, or by a d.c. input 0 and 10 V at (a) or an a.c. input 0 to 10 V peal-to-peak at (b).
J. A. H. Edwards,

Leicester.

## Low-distortion $30 \mathrm{~Hz}-20 \mathrm{kHz}$ oscillator

The circuit is a Wien bridge oscillator employing an f.e.t. to reduce damping on the bridge and allow the use of a $500 \mathrm{k} \Omega$ twin potentiometer. Harmonic distortion of the prototype was reduced to less than $0.05 \%$ over the whole band with the aid of the $22 \mathrm{k} \Omega$ preset resistor. C. A. PYE,

Exhall,
Warwickshire.


Wien bridge oscillator covering audio range with no capacitor switching.
(C. A. Pye)

# An electronic engineer's view after a recent conference at Cambridge 

by J. E. Carroll. Ph.D.

About 350 pure and applied physicists with a sprinkling of electronic engineers were in the Cavendish Laboratory, Cambridge, from September 24th to 27th, ${ }^{\circ}$ to discuss the amorphous and liquid state. Amorphous materials with their lack of obvious structure have for a long time posed fundamental problems of description to the pure physicist, but the applied physicist and engineer are not attracted to a field unless they have a whiff of a practical application. Although negative resistance and switching effects have been reported as long ago as $1962^{1}$,this whiff of practical utility was not scented by the technical hounds until 1968 when Ovshinsky $^{2}$ published a letter entitled 'Reversible electrical phenomena in disordered structures'. The title appears harmless but the contents suggested the use of amorphous semiconductor material in the application of switches with a high ratio of 'on' to 'off impedance and also in the application of memory devices. Applications to the communications industry and logic functions in computers are then obvious if the device is a success. At first sight there appear to be several useful technological features: apparent lack of sensitivity of the material to small amounts of impurity, the devices can be used in thin film form that would be compatible with modern integrated circuit technology, no power consumption to maintain the memory, to name a few of the more obvious advantages. This then accounts for a small technical explosion of interest in this field. This article attempts to give a simple account of these amorphous semiconductors and their associated potential devices in the light of the recent Cambridge conference.

## The amorphous state

First, let us ask the question, what is an amorphous material? An initial definition would be a material that exhibited no structure or order. So no matter where we looked, we should see a random spacing of atoms in the material.

[^5]Although partially true, this is too naive. The solid material has to be bound together by some cohesive force. This cohesive force can then impose constraints on the extent of the disorder. It is well known that the outermost electrons (valence electrons) of any atom determine the chemical properties of the atom, or in other words determine how one atom binds itself to any other. One type of binding together of atoms is called covalent binding. The valence electrons are shared between pairs of neighbouring atoms, lowering the potential energy of the pair and so binding them together. This binding can extend throughout the crystal. Fig. 1 (a) indicates such a scheme for say crystalline germanium. Each atom shares four electrons with neighbouring atoms and this completes a relatively stable configuration. In Fig. 1 (b) the same scheme is shown in a disordered array but to preserve the binding the bonds are still linked. The technical jargon says that the co-ordination number of each atom is preserved. This imposes constraints on the short-range order (say over a couple or so of atoms spacing). To appreciate
this fully one needs to go to quantum theory of electron orbitals, but this is not necessary here. However, over larger distances disorder prevails and the atom spacing and positioning become quite random. A slightly more realistic model is obtained by allowing for several of the valence bonds to be broken, or dangling as they are often referred to. This is shown schematically in Fig. 1(c). It is such covalent amorphous materials, but with more complex structures, that have been causing most interest since in many ways they behave like intrinsic conventional semiconductors. There are, of course, other amorphous materials such as amorphous metals. In this latter case the atoms are bound together by a sea or jellium of almost free electrons shared between a large number of atoms. The binding imposes no long- or shortrange order and the conduction is not significantly changed between the crystaline and amorphous states. At present these latter materials are not of interest.

Returning to the covalent amorphous semiconductors, we find further evidence for the short-range order in the absorption of certain wavelengths of light. If a

(a)

(b)

(c)

Fig. 1. Covalent binding (schematic) (a) crystalline state (b) amorphous state (c) amorphous state indicating dangling bonds.

Fig. 2. Absorption edge (schematic). Absorption of light by a crystal against light frequency.


photon of light has sufficient energy to break a valence electron bond in a semiconductor then it can become strongly absorbed by the material. Thus if the absorption of light shows a marked edge to it as the wavelength of light is changed (Fig. 2) then this is evidence of a uniform binding energy throughout the body of the crystal. Qualitatively similar optical effects are found in amorphous and crystalline material, though often with different magnitudes. From the existence of these effects it can be inferred that there is considerable uniformity of the electronic structure close to each atom. In other words there is indeed a shortrange order in the amorphous material. Now as one of the speakers at the conference asked 'what is a forbidden gap but the binding energy of the valence electrons?' The absorption edge energy is indeed one of the ways of measuring the gap between the valence and conduction band energies in conventional semiconductors. Thus we still expect to find a similar gap in amorphous semiconductors. However, although all gaps are forbidden, some are more forbidden than others! In amorphous material there are lots of broken valence bonds. Although annealing the material can reduce their number, their density is still very high. It is so high in fact that any 'free' electrons, introduced by impurities (on the classical semiconductor basis of creating electrons) become trapped in these dangling bonds. As a consequence the conductivity of the material is not altered even by an appreciable amount of impurity in the material. This is in complete contrast to conventional semiconductors. These traps have a continuum of energies and can in some cases fill up the conventional energy gap. Thus the density of electron states available to electrons with different energies can be drawn schematically as in Fig. 3(a). There is a continuum of states as found in conventional semiconductors but also a high density of localized states forming tails to the continuum. These localized states are in effect the broken valence bonds discussed above. To the electrical engineer who uses frequency filters these tails (or tales) appear most plausible! If one randomly alters the inductances and capacitances of the periodic chain
(Left). Fig. 3. Density of electron states in amorphous semiconductor (a) nonoverlapping localized states (b) overlapping localized states.
(Below). Fig. 4. Electron mobility against energy.

of these elements that form a frequency filter, then one finds that the cut-off frequencies become diffuse and propagation is possible for regions extending into the formal stop band of the filter. Thus changing the periodic structure of the crystal in a random way would be expected to allow a certain amount of propagation of the quantum electron waves outside their normal permitted range of frequencies or energies. The farther away from the formal permitted energies the more likely are the states to be localized (in the filter analogy the states are a result of local resonances in the filter structure). These tails of localized states extend both from the band of valence electron energies and the conduction band energies. In some materials these tails can overlap (Fig. 3(b)) so that the whole gap is filled with traps. This latter picture is believed to be the relevant one for the glasses that exhibit switching and memory ${ }^{3}$.

Conduction can occur as in a conventional semiconductor. The electron moves in an electric field and gains energy, thus moving to a higher energy state. This is readily possible for electrons in the conduction band where there is a continuum of empty states above the electrons' particular state. It is also possible in the valence band provided that there are vacancies, or holes as they are called, in the occupation of the upper electron states in that band. These holes then permit the electrons to gain energy in an electric field and so allow conduction. An important difference between the amorphous and crystalline state is the magnitude of the mobility. The increase in disorder implies that the electrons have many more collisions as they move. For a given field the electrons' drift velocity is a good order of magnitude lower than in the useful crystalline semiconductors. The mobility is then around $100 \mathrm{cmV} / \mathrm{s}^{2}$ for these amorphous materials. There is a second mechanism that is called 'hopping'. In the high density of localized electron states in the gap, electrons can hop from one state to another under the action of an electric field. However, this hopping process results in a negligible mobility. We therefore arrive at the picture of a 'mobility gap'. Although there may be a high
density of electron states throughout the energy 'gap' in amorphous materials, none the less the mobility of any electrons filling those states can probably be ignored. The idea is shown schematically in Fig. 4.

Since any free electrons become trapped by the unfilled valence bonds one is not surprised to find that these semiconductors only exhibit what is termed an intrinsic conduction. Conduction only occurs in proportion to the amount that the thermal agitation can free electrons from their bonds. The addition of impurities makes little effect on this process. The classical behaviour of an intrinsic semiconductor's conductivity is given by $\sigma=\sigma_{0} \exp .-(\Delta E / 2 k T)$ where $\Delta E$ is the band gap energy, or close to this value. This result is also found for amorphous semiconductors of the covalent type. An important consequence of this intrinsic behaviour is that the resistance of any specimen decreases as the temperature increases (more electrons produced to conduct electricity by more bonds breaking). This leads to thermal runaway under some conditions and in turn can lead to negative resistance and switching.

## Practical devices

Let us now describe two types of device that were being demonstrated in experimental form by Energy Conversion Devices at the Cambridge conference. They both use films (circa 1 micrometre thick) of an amorphous semiconductor known as a chalcogenide glass. The first type of device is the Ovonic Threshold Switch, or O.T.S., named after Ovshinsky who first reported it in 1968. The threshold voltage is around ten volts and the off resistance can be as high as tens of megohms. As the threshold voltage is reached so the current rises to a few microamps and then switches to many milliamps. The switching time can be extraordinarily fast and this leads to problems in surge currents through the device that can degrade the performance if they are not limited. In the 'on' state the device impedance drops to around 100 ohms (all these figures depend on geometry and so must only be taken as indicating orders of magnitude). The device then remains in the on state provided that the current is above a minimum sustaining value of around 10 mA , or equally the device voltage does not fall below about a volt. If the current does fall below this sustaining level then the device reverts to its high resistance state. Provided that surge currents are limited it is claimed that these switches can be recycled almost indefinitely. The characteristics for the O.T.S. are shown schematically in Fig. $5(\mathrm{a})$. It should be pointed out that there is evidence against the existence of a closely defined threshold voltage since some workers find that this varies statistically from one switching operation to another ${ }^{6}$. This point was hardly made at the Conference.

Closely allied to the O.T.S. is the O.M.S. or Ovonic Memory Switch. Energy Conversion Devices were exhibit-
ing an experimental thin film array of these devices. In this type of device the conducting state of the glass is permanently, although reversibly, changed by the application of the switching voltage, which must be maintained for a time measured in milliseconds. The switch will then move to its low resistance state and remain in this state even though the current and voltage are removed. The device can then form part of a memory store. The low resistance state may be changed back by applying a current of around an ampere for about 100 microseconds. This then restores the device to its high impedance state. Fig. S(b) indicates schematically the action of this device. To read the state of the memory one applies a voltage from a source with a medium impedance. In the low impedance state the fraction of the voltage dropped across the switch is negligible and so a voltage sensor across the switch can register zero. In the off state the full voltage appears across the switch so the voltage sensor indicates a unity value. This 'read' process can be made extremely rapid so that at present the memory could find applications in a 'read mostly' or 'read only' type of memory store. Ovshinsky used a material with a composition of $\mathrm{Te}_{48} \mathrm{As}_{30} \mathrm{Si}_{12} \mathrm{Ge}_{10}$ for his switches and reduced the arsenic content to around $5 \%$ for the memory devices. However. it is not known or, at least, reported what determines whether a device will be a memory, a threshold switch, both or neither!

The chalcogenide glasses used for these devices are covalent amorphous semiconductors and so exhibit a negative temperature coefficient for their resistivity. It is natural to think of the switching as possibly being caused by thermal runaway. Indeed at the Cambridge conference evidence was presented that showed the thermal runaway model fitted several experimental facts. It may, at first sight, be thought that such a mechanism could not account for switching in the subnanosecond speeds that are observed with these devices. However, although the speed of switching is fast, there is a delay of the order of a microsecond before the actual switching occurs. Moreover, it is known that a device with a negative temperature coefficient of resistivity will form a current-controlled negative resistance and in these types of negative resistances the current tends to flow in filaments. This bit of physics can be qualitatively understood by considering a set of parallel and equal negative value resistors. If one resistor takes slightly more than its fair share of current then its resistance falls and it will take more current and so on until all the current is going into the one resistor. Filament formation can imply that the heat required for increasing the conductivity in the filament need only be very small. However, although the thermal runaway theory fits many facts, Professor H. Fritzshe maintained that even with filament formation there was not enough heat for the filament to reach the
required temperature to explain its low resistance, as measured experimentally. It may be that heat causes some slight reversible structural change so that the conduction is no longer intrinsic. Professor H. K. Henisch in another paper suggested that electrical charge effects of the carriers could account for the switching with the current maintaining a plasma in the switch when in the on state. The neutral plasma of charge carriers could imply a high current but low voltage while recombination of the holes and electrons would imply that a minimum sustaining current was required for the plasma. Elsewhere Professor Sir Nevill Mott ${ }^{4,5}$ has suggested that tunnelling of charge carriers through Schottky barriers set up at the electrodes could result in switching. It is safe to say that at present there is no definitive theory on the switching effects in these glasses and indeed it may be a combination of effects is required to explain the facts.

The memory type of device is almost certainly connected with a structural change of the amorphous material caused by heating in a filament. A very beautiful bit of evidence for this theory was given by Dr. C. Sie of Energy Conversion Devices in a film shown to the conference delegates. In a particular material ( $\mathrm{As}_{39} \mathrm{Te}_{39} \mathrm{Ge}_{10}$ ) the switching time is very slow and Dr. Sie filmed the device under a microscope and showed the filament growing from the anode. On first applying the voltage, in excess of the switching threshold, the surface of the semiconductor changed its reflectivity slightly accompanied by a current rise. But then one saw (Fig. 6) a filament growing slowly from the anode towards the cathode contact of the device. As the filament moved towards the cathode the threshold voltage for current switching decreased until, when the filament had fully formed, the threshold voltage was zero and the device was perfectly ohmic in a low resistance state. A microprobe analysis of the composition of the filament showed that it had changed its composition from $\mathrm{As}_{55} \mathrm{Te}_{35}$ $\mathrm{Ge}_{10}$ to $\mathrm{As}_{38} \mathrm{Te}_{58} \mathrm{Ge}_{4}$. Temperature analysis with a micro-radiometer showed that the material heated as the current initially started but that as the filament passed under the radiometer the temperature dropped. The velocity of propagation of these filaments could vary depending on material. Rough orders of magnitude suggested the variation was between $100 \mathrm{~cm} / \mathrm{sec}$ to $10^{-2} \mathrm{~cm} / \mathrm{sec}$.

## Conclusions

It is clear that much technical, technological, and theoretical work remains to be done with many elegant experiments along the way. Some elementary ideas are clear for the amorphous semiconductors but the rigorous theory on which to base quantitative work is lacking. For the practical devices the mechanisms by which they work are only just emerging. The memory device is almost certainly made possible by a change of phase along


Fig. 5. Ovonic switches (a) the ovonic threshold switch: O.T.S. (b) the ovonic memory switch: O.M.S.


Fig. 6. Schematic of flament formation in memory device. When the voltage exceeds the threshold the current increases (switches on) but the filament takes time to form travelling from the anode. When fully formed the device resistance is lowest. This is termed locked on.
a filament; this change being induced by heating. The switching device is possibly tied up with a number of effects such as space charge, heating and contact conditions. But as one speaker at the conference said 'although we look through a glass, we look through a glass darkly'. This leaves lots of fascinating questions to be answered. Indeed switching and memory devices may not be the only uses that more knowledge about these materials could bring. It may be possible to develop specific glasses to absorb
harmful wavelengths of radiation or indeed respond electrically to other wavelengths of light that existing technology does not permit. The biggest question for the industrialist is perhaps whether it will be worth the cost. The Cambridge conference probably ensured that firms with a current programme will maintain a holding programme of work. Then at least they have a hand in the field to pluck the flowers if they suddenly bloom in the spring. The lack of technological knowhow is unlikely to encourage many new firms to undertake their own research.

## Acknowledgements

The author is indebted to Professor Sir Nevill Mott for allowing him to attend the conference at the last moment in spite of a full house.

## References

1. A. D. Pearson, J. F. Dewald, W. R. Northover and W. F. Peck Jr. "Advances in Glass Technology" (Plenuum Press Inc., New York) 1962, p. 357.
2. S. R. Ovshinsky, "Reversible electrical phenomena in disordered structures", Phys. Rev. Letters, Vol. 21, pp.1450-53, 1968.
3. M. H. Cohen, H. Fritzshe, and S. R. Ovshinsky, "A simple band model for amorphous semiconducting allows", Phys. Rev. Letters, Vol. 22, pp.1065-1068, 1969.
4. N. F. Mott, "Charge transport in noncrystalline semiconductors", Festkorperprobleme, Vol. 9, pp.22-45, 1969.
5. N. F. Mott, "Conduction and switching in non-crystalline materials," Contemp. Phys., Vol. 10, pp.125-138, 1969.
6. C. F. Drake, I. F. Scanlan and A. Engle, "Electrical switching phenomena in transition metal glasses under the influence of high fields", Phys. Stat. Sol. Vol. 32, pp.193-208, 1969.

## Amateur h.f. band

For many years, amateurs in Europe and Africa have been encouraged by the I.A.R.U. Region 1 Bureau to observe voluntarily an international "band plan" on the h.f. bands in order to reduce mutual interference between amateurs using different modes. While, at times, infringements of the plan can be heard (particularly the intrusion of 'phone operation into the c.w. segments), the plan has undoubtedly played a major role in maintaining orderly operation. The band plan was modified slightly at the Brussels I.A.R.U. Conference a few months ago, and is now as follows: 3.5 to 3.6 MHz c.w. only; 3.6 to 3.8 c.w. and 'phone; 7.0 to 7.04 c.w. only; 7.04 to 7.1 c.w. and 'phone; 14.0 to 14.1 c.w. only; 14.1 to 14.35 c.w. and 'phone; 21.0 to $21.15 \mathrm{c} . \mathrm{w}$. only; 21.15 to 21.45 c.w. and 'phone; 28.0 to 28.2 c.w. only; and 28.2 to 29.7 c.w. and 'phone. Radio teleprinter operation is recommended around 14.09 MHz .

# Application Notes 

Circuitry selected from device manufacturers’ literature

## Square-wave generator

The circuit given below operates over the following five frequency ranges: $2-20 \mathrm{~Hz}, \quad 20-200 \mathrm{~Hz}$, $200 \mathrm{~Hz}-2 \mathrm{kHz}, 2-20 \mathrm{kHz}$, and $>20 \mathrm{kHz}$. $P_{2}$ is a coarse frequency control and $P_{1}$ is a fine frequericy control

which operates by varying the hysteresis cycle. Extracted from "The Application of Linear Microcircuits", Vol.1, SGS Ltd.

## General-Purpose Amplifier

The gain of this amplifier is set by the resistor $R_{f} 10, R_{f}=9 \mathrm{k} \Omega$, $\times 20, R_{f}=19 \mathrm{k} \Omega \times 50, R_{f}=$

$50 \mathrm{k} \Omega, \times 100, R_{f}=101 \mathrm{k} \Omega$ Typical drift is quoted as $15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Extracted from Plessey Technical Communication No. 7.

## D.C. microammeter

Below is the circuit of a low voltage-drop microammeter which will give an accuracy of $1 \%$ at ambient temperature if a good quality meter and accurate resistor values are used. Variation

of accuracy with temperature is given as $0.2 \%^{\circ} \mathrm{C}$. Extracted from: "The Application of Linear Microcircuits", Vol.1, SGS Ltd.

# Magnetoresistance and its Application 

# Mean-square ammeter and d.c. transformer 

by B. E. Jones*, M.Sc., Ph.D.

The magnetoresistance effect and the related Hall effect displayed by a semiconductor under a magnetic field have become of interest in recent years with the advent of extremely high-mobility materials. ${ }^{1,2}$ Both effects arise from the action of the externallyapplied magnetic field in producing a sideways deflection of the mobile carriers taking part in the conduction process.
The magnetoresistance effect is a phenomenon in which the resistivity of a semiconductor material is considerably increased by a magnetic field whenever the carrier mobility has a large value, for example in indium antimonide or indium arsenide intermetallic compound semiconductors. It has been shown that the total resistance of a rectangular specimen of such a semiconductor shows a square-law increase at small magnetic fields (up to about $0.3 \mathrm{~T} \dagger$ ) and a linear increase at high magnetic fields (Fig. I and Table I). The magnitude and characteristics of the effect depend largely on the geometry as well as the material itself. ${ }^{3}$ For suitably designed components the typical dependence of $R_{B} / R_{0}$ on magnetic flux density $B$ applies to frequencies well into the gigahertz range. Wafer-shaped configurations exhibit their greatest sensitivity with the field perpendicular to the plane surface.

The electrical properties of a semiconductor are usually sensitive to temperature, and the magnetoresistance effect is no exception. Resistivity usually decreases with temperature and the larger the semiconductor surface area, the smaller the temperature coefficient In Table I, one device has a temperature coefficient of $-\mathrm{I} \cdot 8 \% /{ }^{\circ} \mathrm{C}$, while a slightly bigger and less sensitive device has a smaller temperature coefficient of $-0.12 \% /{ }^{\circ} \mathrm{C}$, both figures at $B=0$, and temperature $25^{\circ} \mathrm{C}$ (these coefficients increase with $B$ ).

The linear magnetoresistance effect at relatively high magnetic fields has been used to produce a multiplying action, particularly for power measurement from direct current to microwaves. ${ }^{3}$ A transducer for displacement measurement based on the effect gave a large output of 5 V d.c. at $500 \mu \mathrm{~m}$ displacement, without using electronic amplifiers, over a working temperature range $-320^{\circ} \mathrm{F}$ to $+200^{\circ}$ F. ${ }^{2}$ A magnetoresistance can obviously be used for mag-netic-field measurement, particularly weak fields, and has been employed as a modulator of d.c. currents and voltages, as a contactless variable resistor and been applied to a brushless d.c. motor. ${ }^{1}$

Two further application of magnetoresistances are described below. In the first case use is made of the square-law characteristic at low values of magnetic-flux density, to produce a simple clip-on mean-square ammeter ( $0-25 \mathrm{~A}$ ) of very low input impedance suitable for measuring practically any current waveform. In the
${ }^{\circ}$ Electrical Engineering Laboratory of Manchester University
$\dagger T$ is the symbol of the tesla, the SI unit for magnetic flux density ( $\equiv 10^{\prime}$ gauss)
Table 1
Characteristics of Magnetoresistance Elements

| Type | $R_{\text {a }}$ at $25^{\circ} \mathrm{C}$ ( 1 ) | $\begin{gathered} R_{B} / R_{\mathrm{E}} \text { factor } \\ B= \pm 0.3 \mathrm{~T}, 25^{\circ} \mathrm{C} \end{gathered}$ | Temp. coeff. at $B=0,25^{\circ} \mathrm{C}\left(\% /^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { FP28D470 } \\ & \text { FP17L100 } \end{aligned}$ | $\begin{aligned} & 470 \\ & 100 \end{aligned}$ | $\begin{aligned} & 3 \\ & 1.9 \end{aligned}$ | $\begin{aligned} & -1.8 \\ & -0.12 \end{aligned}$ |

Note. The magnetoresistance elements are indium antimonide type made by Siemans \& Halske A.G. and are obtainable in the U.K. from R. H. Cole Electronics Ltd., 7-15 Lansdowne Road, Croydon, CR9 2HB.


Fig. 1. Magnetoresistance relation $R_{B} / R_{0}$ as a function of the magnetic flux density $B$ for two commercial devices.
second case, magnetoresistance is used as a magnetic-flux error detector in a feedback circuit to provide a simple d.c. transformer (0-1 A) for clip-on purposes.

## Mean-square ammeter

The circuit used to test the mean-square ammeter scheme employing magnetoresistance is shown in Fig. 2. A gap is cut in one half of the small ferrite ring sufficient to take magnetoresistance $R_{1}$ mounted with silicon grease on a thin copper plate (the airgap also linearises the relation between magnetic flux and cable current; actually flux density in the ring

$$
B=\frac{1.26 /}{\left(l_{1} / \mu+l_{g}\right)} \mu T .
$$

where $I$ is cable current, $l_{i}$ and $l_{g}$ are mean length of magnetic circuit and airgap width respectively in metres, and $\mu$ is the ferrite magnetic relative permeability). To allow temperature compensation a second magnetoresistance $R_{2}$ is similarly mounted on the plate, but situated outside the magnetic circuit. To provide a meter deflection linearly related to change in $R_{1}$ caused by flux changes, both $R_{1}$ and $R_{2}$ are connected in a bridge circuit whose other two arms are current sources and the choice of out-ofbalance detector (resistance $R_{d}$ ) depends on accuracy and ruggedness required. The current sources are provided by two silicon transistors in a long-tailed pair arrangement with a well-defined voltage on the bases. With flux at zero ( $I=0$ ), potentiometer $P_{1}$ can be adjusted to balance the bridge.

For low flux densities $R_{1}=R_{0}+K I^{2}$, and for the case $I=i$ $\sin \omega t$, it has been shown ${ }^{4}$ that, considering only first-order terms, the mean detector current is given by the expression

$$
I_{d} \approx \frac{K I_{1}}{R_{d}+R_{2}+R_{0}} \cdot \frac{i^{2}}{2}\left[1-\frac{3 K}{2} \cdot \frac{i^{2}}{2} /\left(R_{d}+R_{2}+R_{0}\right)\right]
$$

assuming $I_{1}=I_{2} R_{2} / R_{0}$, where $I_{1}$ and $I_{2}$ are the collector currents of transistors $T_{r_{1}}$ and $T_{r_{2}}$ respectively. It is evident that the detector current is proportional to the mean-square current $i^{2} / 2$ in the


Fig. 2. Mean-square ammeter circuit. $F_{1}=$ type $A_{1}$ manganese zinc ferrite (Ferroxcube toroid FX 1322) (i.d. $=6.35 \mathrm{~mm}, l_{i}=2.76 \mathrm{~cm}, l_{g}=0.59 \mathrm{~mm}, \mu_{\text {min }}=100$ ). $T_{r_{1}}, T_{r_{2}}=$ type C444 transistors (SGS Fairchild). $R_{1}, R_{2}=$ type FP28D470 magnetoresistances (see Fig. I and Table I).


Fig. 3. Bridge containing compensating resistor $\boldsymbol{R}_{\boldsymbol{k}}$.
cable, provided the term after the minus sign in the expression for $I_{d}$ is small. With $R_{2} \simeq R_{0} \simeq 470 \Omega, K \simeq 0.04 \Omega / \mathrm{A}^{2}$, so that for $2 \%$ accuracy when $i^{2} / 2=25 \mathrm{~A}, R_{d}$ should have a value of about $900 \Omega$ and $I_{d} \simeq 15 \mu \mathrm{~A}$ if $I_{1} \simeq 1 \mathrm{~mA}$ (this value for $I_{1}$ restricts magnetoresistance dissipation to about $1 / 2 \mathrm{~mW}$ ).
To check accuracy and linearity of the magnetic circuit a high impedance d.c. galvanometer ( $R_{d}=12 \mathrm{k} \Omega, 2 \mu \mathrm{~A}$ f.s.d.) was used as detector in the circuit of Fig. 2. There was less than $1 \%$ inaccuracy in the overall square-law characteristic for full-scale deflection when $I_{\text {r.m.s. }}=25 \mathrm{~A}$ at 50 Hz (the maximum flux density was only 0.07 T ). The impedance of the ammeter is inductive, given by that of a single-turn on the magnetic core. With the core of Fig. 2, at $50 \mathrm{~Hz}, X_{m} \simeq 6 \mu \Omega$.

## Alternative arrangement

If it was desired to use a cheap standard rugged moving-coil meter as indicator at some distance from the point of measurement, the arrangement of Fig. 3 could be used. In this, $R_{k}$ is a fixed compensating resistor in the branch of the bridge which contains the active element $R_{1} ; R_{k}$ is also connected to the output circuit of the d.c. amplifier. The input of this amplifier is connected to the output of the bridge and the amplifier output current $i_{m}$ passes through $R_{k}$.

When a cable current ( $I$ ) is present, the bridge is unbalanced, a voltage $e$ is produced at the amplifier input and generates the current $i_{m}$. This current causes a compensating voltage at the terminals of $R_{k}$ which is opposed to the error voltage generated by the change of resistance $R_{1}$. The current $i_{m}$ increases until these two voltages balance. It has been shown ${ }^{4}$ that

$$
i_{m}=V K I^{2} / 2 R_{k}\left(R_{k}+R_{0}\right)
$$

provided

$$
\left[2\left(R_{k}+R_{0}\right)+K I^{2}\right] / A \ll R_{k}\left(R_{k}+R_{0}\right)
$$

$R_{1}=R_{0}+K I^{2}, V$ is the battery voltage across the bridge and $A=i_{m} / e$ is the amplifier gain. Thus $i_{m}$ is independent of $A$ and linearly related to $I^{2}$ so that a milliameter $M$ will indicate the meansquare of the cable current. It is clear that $R_{k}$ can be used as a range change control.

## D.C. transformer

The alternating current transformer employs a large number of turns to keep small the magnetizing current required to produce the magnetic flux that opposes the flux produced by the current to be
measured. Thus overall the current ratio of the transformer is accurately defined in terms of the turns ratio of the windings. The principle of minimum flux change has the advantage of operating the magnetic core material in a small fixed region of its magnetic characteristic, so that nonlinearity in this characteristic has negligible effect on performance. The principle has been used for direct-current measurement by employing magnetoresistance to measure d.c. flux.

The basic circuit employed to test the idea is shown in Fig. 4. A square ferromagnetic circuit containing an airgap and winding surrounds the insulated cable whose direct current is to be measured. Two magnetoresistances ( $R_{e}^{\prime}$ and $R_{e}$ ) are attached with silicon grease to a thin copper plate to equalize their temperatures. They are connected in series and driven by a diode low-voltage source $\left(V_{d}\right)$ to restrict dissipation. The active resistance $R_{e}{ }^{\prime}$ is in the airgap, while the temperature compensating resistance $R_{e}$ remains outside the gap. Because of the square-law characteristic of $R_{e}{ }^{\prime}$ it is necessary to operate it at a constant bias flux density $\left(B_{k}\right)$, and this is produced by a stable fixed current $\left(I_{k}\right)$ in the feedback winding (W).

If a direct current ( $I$ ) occurs in the cable, a change of flux will occur in the magnetic circuit, $R_{e}{ }^{\prime}$ resistance will change, as will the voltage $(V)$ at the connecting point of $R_{e}{ }^{\prime}$ and $R_{e}$. This voltage on being amplified by $A$ and applied to resistance $R_{m}$, will produce a current $\left(I_{f}\right)$ in the feedback winding $(W)$ so as to produce a flux in the magnetic circuit to oppose the original flux produced by $I$. If the gain in the flux detector circuit and the voltage gain $(A)$ are high, then the resultant flux change in the magnetic circuit will be very small, and $I$ and $I_{f}$ will be simply connected by the expression $I=N I_{f}$, where $N$ is the number of turns of the feedback winding. The current $I_{f}$ can be measured by means of a d.c. ammeter in series with the output of the amplifier.

The integrated amplifier has high gain (about 45,000 ) and produces a noise voltage of about $0.5 \mu \mathrm{~V}$ referred to its input, so it is necessary to use a $0.50 \mu \mathrm{~A}$ meter in a low-pass filter circuit. When $I=0$, zero meter deflection is obtained by adjustment of a stable offset current $I_{0}$.

It has been shown ${ }^{4}$ that $I$ and $I_{f}$ are in fact related by the expression

$$
\frac{I_{f}}{I}=\frac{1}{N} \frac{1}{[1+1 / K]}
$$

where

$$
K=\frac{N A R_{e} P B_{k}}{V_{d} R_{m} R_{e}^{\prime}\left(l_{i} / \mu+l_{g}\right) \times 397}
$$

the open-loop gain, $P$ is the dissipation in $R_{e}{ }^{\prime}, l_{i}$ and $l_{g}$ are mean magnetic-circuit length and airgap width respectively, and $\mu$ is the ferrite magnetic relative permeability. With values $N=500$, $A \simeq 45,000, R_{e} \simeq R_{e}^{\prime} \simeq 100 \Omega, P \simeq \mathrm{I} \mathrm{mW}, B_{k} \simeq 0.06 \mathrm{~T}$, $V_{d} \simeq 0.7 \mathrm{~V}, R_{m} \simeq 500 \Omega, l_{i}=18.7 \mathrm{~cm}, l_{g}=0.89 \mathrm{~mm}$ and $\mu \simeq 1,000, K$ has a value of about 10 .

The amplifier gain fall-off is arranged to start at about 20 Hz


The magnetic circuits for the mean-square ammeter (left) and the d.c. transformer (right) are shown here. The magnetoresistances are also visible, but in operation one would be in the air gap.




Fig. 4. Direct-current transformer. The basic circuit diagram (a) has $R_{e}{ }^{\prime}, R_{e}=$ type FPi7LIoo magnetoresistances (see Fig. I and Table I). All diodes $=$ silicon, type $Z S 72$ (Ferranti).
$F=$ manganese-zinc ferrite, grade $A 5\left(l_{g}=0.89 \mathrm{~mm}\right.$,
$l_{i}=I 8.7 \mathrm{~cm}, \mu=1,000$ (Ferroxcube U-cores FXI795).
$W=500 \mathrm{rurn}(N)$ winding of 24 s.w.g. $A=45,000 \pm 50 \%$
(MCI709CP integrated amplifier, Motorola).
to reduce noise and avoid instability problems. With full-scale deflection on the meter when $I=1 \mathrm{~A}$, linearity is much better than $I \%$ above $I=0.2 \mathrm{~A}$; below this value amplifier nonlinearity at low signal levels has some effect. Wide variation in the cable diameter and position of cables in the magnetic circuit has no noticeable effect on readings. The input impedance of the transformer is very low by virtue of the effective high reluctance of the magnetic circuit. The current indicator could be at a considerable distance from the rest of the circuits.

## Temperature effects

In both the experimental circuits utilizing magnetoresistances described above, the limit to current sensitivity and measurement accuracy is primarily fixed by drift, due to amplifier drift and magnetoresistance temperature dependence. Low temperature coefficient magnetoresistances, operated with minimum selfheating in compensating balanced arrangements should be used, and if necessary further temperature compensation can be achieved by a series thermistor or a parallel metal resistor. Amplifier drift can be reduced by using a d.c. chopper amplifier arrangement.

The experimental circuits described indicate two further useful applications of magnetoresistances. Both circuits are relatively simple and are useful for measuring currents in insulated cables by clipping a measuring head on to the cable. The mean-square ammeter is suitable for measuring practically any current waveform, while the direct-current transformer will measure low-frequency currents (for example, less than 10 Hz ) where ordinary current transformers are inadequate.

## REFERENCES

${ }^{3}$ Weiss, H.; "Die feldplatte-cin neues magnetisch steuerbares halbleiterbauelement", Solid State Electromics', 1966, Vol. 9, pp. 443-45 I.
${ }^{2}$ Yuan, L. T. ; "Magnetoresistive transducer", Solid State Electronics, 1966, Vol. 9, pp. 497-502.
${ }^{3}$ Kataoka, $S^{\dagger}$.; "Multiplying action of the magnetoresistance effect in semiconductors and its application to power measurements", Proc. I.E.E., 1964, Vol. III, No. I I, pp. 1937-1947.
4 Jones, B. Eı; Ph.D. thesis, Manchester University, 1969.
"U.H.F./S.H.F. Techniques" is the title of a course of six evening lectures to be held at Norwood Technical College, Knight's Hill, London S.E.27, commencing February 3rd. Fee 15 s .
M.E.C.-Electrosil Merger. Miniature Electronic Components Ltd, of Woking, has been merged with the Electrosil Group and all future enquiries and orders should be placed with Electrosil Lid, P.O. Box 37, Pallion, Sunderland, Co. Durham.
Compat Telecommunications, a wholly owned subsidiary of Compat Corporation of New York, has established offices in Woolmead House, Woolmead, Farnham, Surrey, to handle all of the business of its parent company outside the U.S.A. Compat are manufacturers of computer-controlled data communications equipment.
Radiatron Components Ltd has been formed to operate in association with Radiatron L.td and to deal with a wide range of components. It will handle the Elma range of collet knobs, stud switches, Elmaset instrument cases and readout counters. Both companies will operate from 76 Crown Road, Twickenham, Middx.
Racal Electronics and Kelvin Hughes have agreed to work in partnership on a range of h.f., s.s.b. marine radiotelephones. Racal have a contract from Kelvin Hughes for the design and manufacture; Kelvin Hughes the world-wide marketing of the products.
Industrial Control Systems Ltd have moved to 78-90 Clarke Road, Northampton. (Tel: Northampton 32417).

The Crawley offices and laboratories of Pye Unicam
Ltd have been transferred to the company's head office at York Street, Cambridge, CB1 2PX.
Microwave \& Electronic Systems Ltd, of Midlothian, Scotland, has moved its sales office to 66 Tilehurst Road, Reading, Berks. (Tel: Reading 58.1937 /8.)
G. A. Stanley Palmer Letd have been appointed sole U.K. agents for the range of miniature electrolytic aluminium capacitors manufactured by the International Electronics Corporation of Long Island, N.Y.
Hayden Laboratories Lid, East House, Chiltern Avenue, Amersham, Bucks, have been appointed exclusive U.K. agents for Spinner GmbH, of Munich, W. Germany, manufacturers of radio frequency connectors, directional couplers and other specialized items associated with radio-frequency cables and waveguides.
Nobel Electronics, of Welling, Kent has signed a three-year agreement as sole U.K. and European agents for Plastic Capacitors Ltd, Maydown, Co. Londonderry, N. Ireland.
Montclair Electronics Inc, of New York, have appointed G. A. Stanley Palmer Lid as sole U.K. agents for a range of magnetic reed relays and switches from the General Reed Company.

# Low-distortion Bias and Erase Oscillator 

# Evolving a current switching design to give a predictable and stable output level and with no trimming requirement for low distortion 

by D. Griffiths, Ph.D.

The design of a good bias and erase oscillator for a tape recorder is not easy. For stable biasing a constant output voltage is required, yet any limiting action in the oscillator must not be allowed to distort the sine-wave drive since this would increase the background tape noise. The circuit should be efficient so that the least expensive semiconductors can be used and, ideally, it ought to be designed to work straight off without any complex setting-up procedures, especially those required to minimize the distortion.

The oscillator was required to operate a Ferrograph Series 6 tape deck but using the procedure outlined below it should be possible to alter the component values to make it suit almost any other recorder.

## Specification

The Ferrograph handbook gives the inductance of the two-track FEI6 erase head as 1.5 mH (per track), requiring 80 mA at $27-30 \mathrm{~V}$ and 68 kHz ; the record head only requires about 5 mA at 15 V . The power required from the drive circuit is fortunately not $0.08 \times 30=2.4$ watt but depends only on the losses in the heads; a perfect inductor can not have a net dissipation of energy. Since the erase head has a mu-metal core it is only useful to measure its loss under actual working conditions, for it is quite hopeless to try to extrapolate data on iron-cored inductors.

In the absence of a suitable measuring bridge the losses in this head were assessed by observing their damping effect on a tuned circuit resonating at 68 kHz with 30 V across it.

The inductance of this test circuit should be less than, say, one fifth of that of the tape head so that the resonant frequency is not too greatly changed by the extra head inductance, but the waveform need only be roughly sinusoidal.

It was found that each winding of the FEI6 head introduced the same damping effect on the test circuit as did a $3 \cdot 3 \mathrm{k} \Omega$ resistor. Under operating conditions in a parallel resonant circuit the head could thus be thought of as a perfect 1.5 mH inductor in parallel with a $3 \cdot 3 \mathrm{k} \Omega$
resistor, resulting in power dissipation of about 0.25 watt.

At this point one has to face firmly the problem of ensuring a constant output voltage. The necessary limiting action can use the "curvature of the characteristics" of the active circuit elements but designability is sacrificed and well stabilized power supplies are required to maintain operation in the critical region. Some form of a.g.c. could be employed but amplitude overshoot at switch on must be avoided. This is also a problem with thermistor stabilization. The alternative scheme chosen here is to send constant current pulses of a suitable shape through a tuned circuit coupled to the tape heads and rely on a reasonable $Q$ value to reduce the harmonics sufficiently. This filtering is more effective than one might imagine since the harmonic amplitudes decrease with increasing order, while the attenuation of the tuned circuit also rapidly increases with rising frequency. With transistors or valves it is a simple matter to generate well enough regulated driving pulses for this application but the feasibility of the scheme depends entirely on maintaining a good $Q$ in the filter despite the loading of the losses in the tape heads.

## Current switching

Ideally the reader should now turn up Wireless World for November and December 1962 to an article by R. C. Foss and M. F. Sizmur which gives an admirably lucid account of current


Fig. I. Principle of a current switched LC oscillator.
switching sine wave oscillators. Their first diagram is reproduced here as Fig. I and is a good starting point. When the current generator is first connected to the tuned circuit the voltage at point (A) will swing below $+E$ with a period governed by the resonant frequency. The size of this swing depends on the losses in the $L C$ circuit, as well as the magnitude of the drive current. Eventually the voltage at (A) swings back up towards $+E$, even with the constant current generator still connected. When the voltage across the resonant circuit is zero (i.e. when the point (A) is at $+E$ again) we choose to switch the current supply into a bypass resistor $R_{b p}$. The point (A) then continues its upward voltage swing and but for the losses this would take it as far positive above $+E$ as it had been below $+E$ half a cycle earlier; the current generator has infinite output impedance and cannot load the $L C$ circuit. When the voltage at (A) eventually falls to $+E$ again we reconnect the current supply to the tuned circuit and the cycle repeats.
As a step to a practical realization Fig. 2 shows the next stage of complication and is also from Foss \& Sizmur's article. Here the tail current $I_{\ell}$ is alternately switched between the transistor and the diode by the action of the voltage induced in the base winding $N_{b}$ which is coupled to the tuned circuit. As indicated, a phase reversing connection is necessary so that when the point (A) is below $+E$ the base end of $N_{b}$ is positive with respect to ground and the transistor conducts as required. But for this base winding voltage and


Hig. 2. Iall current is switched between the transistor and the diode.
$V_{b e}$, the tail current driving the $L C$ resonator would be $E / R_{t}$. The tuned circuit is only lightly damped by the transistor as the collector is a high impedance point.
In Fig. 3 the diode is replaced by another transistor with its collector connected to a similar $L C R$ circuit as that on the left hand side. Except for the brief instant of current changeover, the tail current flows only through either $T r_{1}$ or $T r_{2}$. Whichever transistor is off will have its collector above $+E$ while the other collector is equally below $+E$. That is, the voltages at (A) and (B) seesaw about the positive supply rail.

It is now only a small step to the final arrangement shown in Fig. 4. A single tuning capacitor is employed across a centre tapped inductor which has an additional winding to provide the required bias and erase voltages. As only a positive supply rail was available, the bottom of the tail resistor is connected to ground and the centre tap of the base winding supplied with a suitable potential stabilized with a zener diode: A pair of plastic encapsulated transistors is used for each switch to give the collector dissipation required when both erase heads are simultaneously connected in two channel operation. The $15 \Omega$ emitter resistors help to equalize the current in each pair and are useful inspection points at which to observe the individual current waveforms. The $2.2 \mathrm{k} \Omega$ base resistors are a personal whim to reduce possible excessive base currents when trying out the prototype.

We choose to make the reference voltage defining the tail current about 2.5 V above common. There are two reasons for using such a small value. First, that the collector voltages can have a large excursion which will entail a lower stepup ratio to achieve the desired output volts and hence a lower reflected loss from the heads, giving a better $Q$ factor in the filter. The second reason is connected with reducing the output distortion, as discussed later.
To see if the negative going excursions are bottoming the transistors one does not check the voltage waveform at the collectors (!) since the flywheel effect of the high $Q$ tuned circuit dominates the response; it is more useful to examine the tail voltage across $R_{t}$ as shown in Fig. 5 and look for the 'dents' indicated. It must be remembered that during the off half cycle the transistor experiences a maximum collector voltage equal to the supply plus the amplitude of the downward swing. 12 V r.m.s. is about the maximum reasonable collector excursion with the circuit values shown in Fig. 4. The maximum collector voltage is thus about $22+(12 \times 14) \mathrm{V}$. Even allowing for a peak emitter voltage of 3 V (see Fig. 5), this uncomfortably exceeds the maximum recommended $V_{c e}=30 \mathrm{~V}$ of the $2 \mathrm{~N}_{3704}$ transistors used in the prototype.

If the tail current is assumed to be constant during each cycle, the collector dissipation can be easily calculated once
the mean collector-emitter voltage is known over the conducting half cycle. Since the average value of a halfsinewave is 0.64 times its peak value and if the collector peak swing is $12 \times \sqrt{ } 2$ volts, then the collectors are on average $12 \times \sqrt{ } 2 \times 0.64=1 I V$ below 22 V when conducting, i.e. IIV. When operating, an Avo indicated 2.6 V d.c. across the tail resistor, giving a tail current of 52 mA . On average, $V_{c e}=11-2.6=8.4 \mathrm{~V}$ and if the current is equally shared between each pair of transistors, the mean collector dissipation is $8.4 \times 0.052 \times 0.5 \times 0.5 \approx$ 110 mW , with the second factor of 0.5 arising from the on-off time ratio.
If the two erase tracks are in use together, the extra drive can be achieved by suitably reducing the tail resistor and there is still a reasonable margin of collector dissipation in hand. This circuit is not very efficient in terms of power consumption; the four transistors dissipate $\approx 450 \mathrm{~mW}$ to overcome a head loss of 250 mW .
Although a good $L / C$ ratio is needed to minimize losses in the tuned circuit primary, the maximum allowable primary inductance is set by the $Q$ value which has to be maintained in spite of the damping effect of the tape head losses. With a I:2 step-up ratio between primary and secondary the equivalent loss resistance of $3.3 \mathrm{k} \Omega$ looks like $820 \Omega$ across the primary circuit. If the circuit
shows a $Q$ value of $Q_{f}$ at resonant frequency $\omega_{f}$, the dynamic resistance of the circuit is $Q_{f} \omega_{f} L$. Clearly, in this case, we need $Q_{f} \omega_{f} L \leqslant 820 \Omega$.

Now how much $Q_{f}$ is needed? Foss and Sizmur show that with square current pulses the ratio of the $n^{\text {th }}$ harmonic voltage $V_{n}$ to the fundamental $V_{1}$ is given by:

$$
\frac{V_{n}}{V_{1}}=\frac{1}{\left(n^{2}-1\right) \cdot Q_{f}}
$$

As a square wave can only generate odd harmonics, the third order one will be the principal component and with $Q=10$ its amplitude will be $1.25 \%$ of the fundamental. Since it is planned to use something a little less brutal than square driving pulses, this $Q$ value should suffice. For operation at 68 kHz this fixes $L$ at 0.25 mH . A 30 mm diameter ferrite pot core, Mullard LA 2202, was used (with a permeability of 63 ) giving ImH for 60 turns. The primary was wound in bifilar fashion to give 30 turns centre-tapped, with 60 turns on the secondary. 28 s.w.g. enamelled copper wire was used for both windings. The working flux density in this application is in the region of $50-100$ gauss.
The tuning capacitor has to be larger than the value required to tune the 0.25 mH primary inductance to 68 kHz since the inductance of the tape head is reflected into the resonant circuit with a magnitude reduced by the square of the


Fig. 3. Diode of Fig. 2 replaced by second transistor.


Fig. 4. Practical oscillator circuit.
step-down turns ratio; the total inductance is thus lowered since "inductors in parallel add like resistors in parallel". The secondary winding itself does not behave as a separate inductor since the induction in it is solely determined by that needed to balance the primary applied voltage. If the a.c. voltage across a coil does not depend on the rate of current change through it, then it does not have inductive properties.
Although Ferrograph quote a nominal erase inductance of 1.5 mH , their suggested operating point of 80 mA and 30 V r.m.s. indicates a working inductance more like 0.9 mH . As the Vinkor pot core was used without an adjuster, its inductance would be about $10 \%$ below nominal. Together with the slight contribution from the recording head, the total effective inductance would thus require about $51,000 \mathrm{pF}$ to tune it to 68 kHz ; in practice $10 \%$ tolerance $47,000 \mathrm{pF}$ and $10,000 \mathrm{pF}$ capacitors were used in parallel. If tuned filters are used as bias rejectors in the recording amplifiers, it will be important to keep the same bias frequency on single and two track operation. The extra inductance of the second head would lower the frequency further and a suitable extra tuning capacitor would have to be switched in.

It must be confessed that there is a little bit more complication in Fig. 4 than was admitted in earlier paragraphs and this concerns the shape of the current pulses. A square pulse with its sharp edges is obviously a rather poor approximation to the required output waveform and something a little more sinewave-like would ease the filtering problem. Now one cannot go to the limit and use an exactly sinewave current drive derived from the output waveform as there is then no limiting action, other than unintentional clipping and bottoming, etc. As a compromise we use a current pulse which is "partly square and partly sine". This is illustrated in Fig. 5 which shows the alternating voltage waveform across the $50 \Omega$ resistor, superimposed on the calculated d.c. level which could not be observed with the a.c. coupled scope available.

The squarewave part of the current waveform is developed by the long tail switching action; the sinewave part has a similar amplitude and is derived from the filtered output. This is achieved by giving the base windings a suitable number of turns so as to inject an appropriate amount of sinewave signal in series with the steady d.c. reference level. However, one must be careful in selecting the amplitude of this a.c. component otherwise the maximum reverse bias rating of the emitter-base junctions will be exceeded and extra protective diodes will be needed; the reverse emitter-base rating for the 2 N 3704 is given as 5 volts. It is important to recognize that the 'off' base junction sees both base windings in series generating the reverse voltage.


Fig. 5. Waveform across tail resistor.
'Dents' in the peaks indicate that the collectors are bottoming.


Fig. 7. Twin-T filter for 68 kHz .

Fig. 6 shows the base of $T r_{2}+V_{b}$ above $V_{\text {ref }}$ derived from the zener diode. But for the $V_{b e}$ of this 'on' transistor and the voltage drop across its $15 \Omega$ emitter resistor the top of the tail resistor would also be $+V_{b}$ above its d.c. level, taking the emitter of $T r_{1}$ with it (in the positive going direction). Meanwhile the voltage $-V_{b}$ on the left hand base winding is holding the base of this transistor down $-V_{b}$ below $V_{\text {ref. }}$.

The 1.55 V d.c. level in Fig. 5 assumes a $V_{b e}$ of 0.7 V and allows for the two $15 \Omega$ resistors in parallel. The mean level of the a.c. component is $1.8 \times 0.64=1.15 \mathrm{~V}$ and thus an Avo on a d.c. range across the tail resistor should register $(1.55+1 \cdot 15)=2.7 \mathrm{~V}$. This agrees well with the $2 \cdot 6 \mathrm{~V}$ observed. Evidently the steady current component is 32 mA and the r.m.s. a.c. contribution is 25 mA . In a Fourier representation of a square wave, the first harmonic has an amplitude of $4 / \pi$ times the amplitude of the square wave. Adding these two contributions to the voltage developed across the dynamic resistance seen in the primary circuit, one can estimate the loss resistance at $570 \Omega$, corresponding to a working $Q$ of 6 -which is rather below the design figure.

The $500 \mu \mathrm{~F}$ reservoir capacitor in Fig. 4 ensures that the oscillations decay smoothly when the circuit is switched off, thus helping to keep the tape heads demagnetized. The decay time is $0 \cdot 5-1 \mathrm{~s}$. Switch $\mathrm{S}_{3}$ is controlled by the deck selector knob and operates via the series $2 \mathrm{~N}_{3704}$ to minimize peak current through the switch contacts. The $22 \Omega$ resistor ensures that the initial charging current of the $500 \mu \mathrm{~F}$ capacitor does not greatly exceed the maximum transistor current rating of 800 mA .

## Performance

After all that story, how does it do its job? The amplitude of the output


Fig. o. How base-winding voltages add to build up reverse emitter-base voltage.


Fig. 8. Residual waveform at the base winding after passing through the twin-T filter.
slowly increases by 2-3\% during the first half minute or so after switch on and this is probably due to heating of the transistors. A $40^{\circ} \mathrm{C}$ rise in junction temperature would lower $V_{b e}$ by about 90 mV and thus increase the standing tail current enough to account for this observed rise in output. This effect could be reduced by increasing the tail voltage, remembering to add diodes to protect the baseemitter junctions from excessive reverse voltages arising from the necessary accompanying increase in sine wave drive. It is doubtful if the present small change in biasing could possibly be detected by its effect on the recorded signal. Changes in the supply voltage only slightly affect the oscillator output as might be expected; a $10 \%$ reduction in supply potential reduced a 28 V output by just under $1.5 \%$.

In the absence of a wave analyser, a simple passive twin-T rejector was used to filter out the fundamental to see what was left. Fig. 7 shows the filter circuit, and Fig. 8 shows a sketch of the residual signal from the 16 V bias at a recording head on single channel operation. The amplitude of this residual is $0.06 \%$ of the input level and appears to be largely 3 rd harmonic as expected. A sine wave input of $3 \times 68 \mathrm{kHz}$ to the filter was attenuated by about 7 dB as seen on the voltmeter, so it seems likely that these distortion products do not have an amplitude exceeding, say, $0.2 \%$ of the fundamental. This seems quite satisfactory and shows that the idea of using current pulses with the "edges rounded off" does indeed greatly reduce the output distortion while still retaining an adequate stability of output level. With a working $Q$ of 6 , square drive pulses would have given a 3 rd harmonic component an order of magnitude greater at $2 \%$ of full output. Judged audibly, the tape hiss is very low and BASF double play tape on the Ferrograph appears to give a peak signal-to-hiss ratio in the upper fifties of decibels.

# Industrial Telemetry 

# Some recent supervisory and control schemes 

by R.E. Young

The early 1960s saw major developments take place in industrial telemetry', largely as the result of the wide introduction of solid-state equipment and digital techniques. Rapid expansion then followed in step with the accelerating demand for these forms of automation backed by the extremely high reliability that they had been shown to give.
Much of this expansion occurred in the public utility field, authorities being strongly influenced in their policy by the almost overwhelming growth of "service" distribution networks, e.g. for electricity and water, and the increasing cost of manning them in the conventional way.
In general, the economy shown by the adoption of supervisory telemetry methods increases with the size and complexity of the project. Furthermore, the most favourable conditions for setting up such remote control systems are usually found with high concentrations of population and industry.

Thus in a large scale installation for electricity supply in the Far East control is exercised over the distribution network for the urban area of Kuala Lumpur ${ }^{2}$, three bulk supply stations and a total of fifteen substations being covered by the first phase of the scheme.

Recently commissioned, this is a classical digital supervisory system with time-division multiplexed telemetering and telecontrol, and employing the interrogation/reply, or responder, techniques which are used almost exclusively for this work ${ }^{3}$. With time-division operation, each information source is scanned in turn, and in these systems this is achieved by interrogating each source in terms of the unique (digital) address allocated to it.

Measurement or equivalent data points are grouped in blocks of addresses according to priority, so that the period which elapses between successive scans of a given point represents the "updating" time for its particular address block. With the exception of control functions, the various groups of addresses are interrogated in accordance with a pre-determined scan cycle, system programming being arranged to interlace these addresses within the overall scan period. Typically, an updating period of 11 seconds is realized for some 80


Control rodm at the Shell shore terminal at Bacton for their North Seas gas project.
measurement addresses; while alarm indication (e.g. for abnormal transformer oil temperature), carrying more urgency, is given a block updating time of 5 seconds.

Control instructions are also sent out by interlacing, but this is done by interrupting the routine scan cycle and thereby extending it for the additional time-sharing to take place. The same system word format is used for the control "way" addresses as for monitoring, and also in both cases the encoded replies sent back from the outstation follow the same pattern.

Obviously, measurements and monitoring information generally must be presented as far as is possible without any likelihood of there being any ambiguity or misinterpretation of the intelligence. It is of interest that the network electrical measurements, viz. voltage, power, reactive power and current, are displayed in analogue form on conventional d.c. moving-coil meters. This involves the use of an individual digital-analogue convertor for each meter as the incoming signals are handled digitally throughout the logic system. It may be taken that the factor of additional cost is considered
more than offset by the advantages accruing from working with a familiar form of display. Also it may be noted that the eight-bit binary number d.a.c.s which are employed, and are of the "successive approximation" type, act as information stores over the measurement updating period.
Communication between master and outstations is by "four-wire" working using special modems* developed to give maximum speed data transmission over nominal 3 kHz bandwidth circuits. These links are set up either in existing pilot cables where suitable spare cores are available or in the main communication cables run along the power network routes. Protection against extraneously induced high voltages is provided at all station line terminations by lightning arrestors and isolation transformers.

The other main area of application for supervisory telemetry systems is the monitoring and control of oil and natural gas pipe line schemes. Here inaccessibility of wellheads and pumping stations is a

[^6]

Helical aerial supplied by $C$ \& $S$ Antennas Lid for the North Sea gas radio links.
major driving force in the adoption of such schemes; these conditions, compared with those associated with most public utility networks, tend to impose more severe restrictions on the choices open to the telemetry system designer. Thus with projects such as the North Sea installations, the virtually inescapable use of radio links produces a "design constraint" which affects the whole system.

The same basic time-division digital techniques are employed, however, for these installations as for the public utility networks; and logic circuit blocks and address-reply methods are essentially the same. The telemetry installation for the B.P. group of wells in the West Sole field ${ }^{4}$ is typical of such practice for North Sea operations, the outstations on the project's three wellhead platforms-" "A", " $B$ " and " $E 1$ "-being under the supervisory control of the shore station at Easington, Yorks. As commissioned, the system capacity is 22 measurements, 120 monitor and alarm indications, together with 41 well control functions; the routine scan updating time is 25 seconds.

One of the main system operational requirements arising from its production control function is the calculation of mass flow for each of the eleven wellheads involved. These corrected values have to be obtained in terms of differential pressure type flow measurements and corresponding manifold pressures; and initially a study was made of using an individual analogue computer at each wellhead. However, it proved possible to centre this function on a single digital computer which is fed with the data in digitized form, and which gives flow rates as a 3 -digit numerical indication up to a maximum per wellhead of 59.9 million cu.ft./day.

In general, measurements are displayed on the mimic control panel with three-digit representation for temperature and four for pressure, a "scaling" facility being incorporated in the transfer from binary code input to the decimal reading output. Accompanying this implied degree of resolution, a 12 -bit format is used for both addresses and replies, each carrying three additional parity bits for error checking. With the system parameters obtaining in this case, the address/reply cycle time becomes 570 milliseconds. For transmission over the radio links, the address and reply pulse
trains are converted in a frequency shift keying modem to a "tone" input for the transmitter- $2.3 \mathrm{kH} /$ for binary ' 0 ' and 2.7 kHz for binary ' 1 '.

The u.h.f. radio link scheme adopted for this project operates in the $460-\mathrm{MHz}$ band and inevitably invites comparison with the offshore wellhead control scheme at Das Island in the Arabian Gulf (Umm Shaif oilfield). Described originally in 1964 , this employs a microwave, 3 cm (' X ' band) link based on a commercially available transmitter magnetron with a rated peak power output of 2.5 kW in the centre of the band. The main point of interest in the present context is that in this earlier scheme a single transmitter is used with radiation from a "cheese" reflector giving a half power beamwidth of about $40^{\circ}$ in azimuth to cover the fan-like sector in which the wellheads are grouped.

In contrast the North Sea u.h.f. system utilizes a two stage "hand-on" arrangement for signal transmission between wellhead platforms. The primary link is established between the Easington master and the outstation on platform A, working between this platform and both platforms $B$ and $E 1$ being on $a$ "broadcast" as distinct from a beamed mode. Thus the transmitters on B and E1 operate on a shared frequency, and, in order to avoid radiating together, "come on the air" only when their own plant addresses are received.

Helical aerials mounted on $200-\mathrm{ft}$ towers are used for transmission and reception on shore and at the platforms. The 11-tum helical elements, made by C \& $S$ Antennas Lid, have a rated beamwidth of $30^{\circ}$ to half power points with a v.s.w.r. of 1.5 over the operating bandwidth of $400-500 \mathrm{MHz}$.

The radio link equipment itself is solid-state throughout; Standard Telephones and Cables type HTR20 f.m. transmitter/receivers being employed with a nominal transmitter power output of 5 watts. This output is obtained from a varactor tuned to act as a trebler stage fed at $133.3-163.3 \mathrm{MHz}$ from two preceding trebler stages which have a modulated input at $14.8-17.8 \mathrm{MHz}$. This latter input is obtained from a two-stage phase modulator with crystal oscillator reference drive. Two stages of amplification are interposed between the modulator and the first set of treblers which is followed by three more stages of
amplification to give the input to the final varactor trebler. A tunable bandpass filter is placed in the output from this varactor stage to act as a harmonic suppressor.

In the double superheterodyne receiver the first mixer is preceded by a two section bandpass filter and two stages of r.f. amplification. The bandpass filter is largely responsible for the degree of r.f. selectivity and second channel rejection achieved. A single crystal oscillator feeds both mixer stages, the higher local oscillator frequency required for the first mixer being obtained by multiplication by six (doubler followed by trebler). This avoids the production of spurious beats which is possible with two separate oscillators, "spurious responses" being given as below -80 dB . Intermediate frequencies are 70 MHz and 10.7 MHz with an initial local oscillator frequency of $55-68 \mathrm{MHz}$, fed to the second mixer, and multiplied to $330-408 \mathrm{MHz}$ for the first mixer. The output of the second mixer, nominally at 10.7 MHz , is fed into a crystal filter to give selectivity at this frequency and thence to a wideband amplifier which provides the input to the limiter and discriminator stages. Both the wideband amplifier and these stages are constructed as linear integrated circuits. Performance criteria are based on a minimum acceptable signal /noise ratio of 20 dB ; while, for the individual radiation requirement of the broadcast mode, carrier "on" switching time is given as not more than 1 mS .

## "Telegrid" master programming control System

As already indicated for the two schemes described, system working speed (data handling speed) is kept relatively low, i.e. the equivalent of a narrow-band telephony channel is generally employed for communication in present generation supervisory telemetry projects. Nevertheless, these communication links must be highly "secure" and, equally important, economic in the full sense of the word; and with the ever growing demand for telecommunication channels, this latter condition is becoming increasingly difficult to meet. This difficulty is encountered whether line or radio working is adopted because of limited capacity scarcity of installed cables, particularly in built-up areas, and on the radio side, severely restricted channel allocations for such applications.

It is with this background that the Telegrid proposals were put forward as a means of "multiplying" the number of existing communication channels by what may be called supra-multiplexing under the control of a master programming source. The scheme, proposed by G. S. Kermack, managing director of Serck Controls, makes specific communication channels available to users, grouped on a network basis, in accordance with a time sharing schedule held in sequence by narrow band synchronizing signals. Planning of such a scheme would have to be on a national scale, although operation might be on a regional basis within the national framework.

In one suggested embodiment of the scheme (Figs. 1 and 2), four networks are time multiplexed under the control of broadcast synchronizing signals. Network allocation, as shown, would be electricity, gas and water for a distribution group, together with an emergency or stand-by network available to take over from any one of the other three. Alternatively, network 4 could be utilized to give a low speed data transmission facility over a large area in the event of, say, major floods occurring.

The programming of these networks is carried out by a combination of imposed synchronization and delay timing. For this the networks are grouped into two pairs, with the first member of the pait taking the external synchronizing signals, and the second becoming operative after a predetermined time delay following the commencement of the first network scanning cycle or sub-programme.

The main technical feature of the system is the form of coded signals used for programming the networks. These signals are built up from "pips", i.e. short bursts, of tone which can be broadcast from a low-frequency (say 300 kHz ) transmitter to cover a regional area. In addition to their task of time division synchronization, these master programming signals perform two other functions:-
(i) Designation and identification of the network to be activated;
(ii) "Start" the individual network scanning cycle after receipt of the correct combination of signals.

The latter provision is achieved by arranging that the five pips must have "been preceded by the six pips before the "five-pip" group is opened up, and conversely. If this sequence is not maintained owing to the absence of a signal or the presence of spurious signals, then the networks are not activated until the correct sequence is re-established, i.e. the system has been made to "fail-safe".
From the diagram it will be seen that guard spaces form part of the timing pattern. These take care of short-term variations and fault condition in individual sub-programmes.

Other developments employing these techniques can be envisaged, as, for example to arrange for each pip or burst of tone to contain a predetermined number of cycles, and, by counting at the


Fig. 1 "Telegrid" diagrammatic network arrangement.
receiving end, to obtain further complementary checking and possibly more precise synchronization.

One of the main advantages of the system is that with an accurately maintained pip (tone) frequency, say at 400 Hz , the signal extraction band-pass filters can be made extremely sharp and only a "crevasse" is required within the synchronizing channel transmission spectrum. Furthermore, with such band-pass filters (e.g. crystal or mechanical type) high rejection of spurious signals is obtained.

## Television Link on Low Bandwidth Cable

Television, as a time-division system, is part of the telemetry family; and in presenting visually inaccessible conventional gauges and similar instruments fulfils a specific telemetering function. One of the main attractions of such presentation is that effectively there is no updating delay, and-often of more importance-rapid changes in quantities can be seen on analogue displays via a television link, whereas they are beyond the capability of the comparatively slow scanning telemetry system.

To speed up these telemetry scanning


Fig. 2 Overall timing pattern of "Telegrid".
rates to give the equivalent of a television system, though theoretically possible, becomes prohibitive in cost. There are instances, therefore, when a television scheme provides the most economic way of tackling an unconventional instrumentation problem, this being much more marked when it can be used for other monitoring duties as well.
A variant of such a scheme is represented by the East Anglian Water Company's closed-circuit television installation at Lowestoft where the emphasis is on surveillance rather than instrument monitoring. The outstanding feature of this project is the video link. As far as is known, this is the first time that a link has provided operationally acceptable picture quality over a 5.2 mile $(8.35 \mathrm{~km})$ length of "telephone grade" cable without intermediate repeaters.

This link is of interest on two counts. The first is the potential offered by the equalization and allied techniques which have been developed and shown to be effective under these conditions for high-speed pulse transmission. This aspect bears directly on the problem of obtaining maximum data transmission speed on restricted bandwidth circuits, and also on the improvement in error rate produced by equalizer correction of signal distortion.
The second point is that compromise on picture standards had to be reached but that it proved possible to use a field rate of 50 per second instead of the much lower rate proposed at first in view of the "no-repeater" and other limitations. It was clear that a 405 -line interlaced structure was the absolute maximum that could be attempted in terms of frequency and this had the advantage that comparatively low-cost U.K. standard camera and monitor equipment could be employed.

The S.T.C. ten-pair cable installed by the water company between its intake and borehole station at Belaugh and the Horning master control for both


Telemetry and television supervisory control position at the Horning master station of the East Anglian Water Company showing monitor picture as received over the low bandwidth cable link.
telemetry and television signal transmission is of the polythene insulated type with outside steel tape armouring acting as a screen. Diameter overall is some 22 mm , individual conductors being of 0.9 mm diameter. Conductor resistance is given as 44.2 ohms per mile at $15^{\circ} \mathrm{C}$, with attenuation at audio frequencies of 1.20 $\mathrm{dB} /$ mile and crosstalk between pairs better than -80 dB measured on site. Attenuation reaches a value of some 80 dB down at 1.2 MHz with an unequalized frequency response approximating to the form $1 / \sqrt{\text { Irequency }}$

In the final solution, the video circuit was established as two conductor pairs diametrically opposite each other in the cable and connected in parallel. This was found marginally better than a single pair circuit; and at the output of the receiving end equalizing amplifier a uniform response within 2 dB is obtained up to 1 MHz . The overall response is about 6 dB down at 1.2 MHz with relatively sharp cut-off thereafter.

It should be noted that a contribution to improved high-frequency response is made by including pre-emphasis in the transmitting characteristic. This amounts to 10 dB with a 3 dB point at 200 kHz . The necessary phase equalization is carried out at the receiving end, some 0.5 microsec. correction being given at 1 MHz .

Finally a "crispener" is incorporated to sharpen up fast edges in the video waveform by speeding up their rise times in a non-linear network. The crispener unit embodies an input filter to extract the fast edges from the equalized video waveform for feeding to the non-linear system. This filter operates by signal subtraction referred to a wideband delay line to give a Gaussian type response. After leaving the non-linear network, the
artificially sharpened edges are recombined with the original video waveform, the delay time in the filter being compensated by introducing a corresponding delay in the main video path.

The results obtained in respect of signal/noise ratio, better than "dusk" camera input level ( 10 foot-candles), can be ascribed to the precautions taken, e.g. with regard to common mode rejection (receiving head amplifier rejection ratio of 70 dB ), and to the maintenance of electrical balance about earth at the appropriate points in the sytem. The picture reproduction gains considerably from the crispening technique, although quite acceptable without it; a rise time of less than 800 nanosec being obtained on a 10 kHz square wave as measured at the input to the crispener. The overall picture quality also benefits from the use of a monitor with a black level clamp.

Acknowledgement must be made to L . G. Davis, of Glenn Sound Services, who was responsible for the special television link equipment described, and to Serck Controls for supplying details of the two supervisory schemes covered in the first part of the article.

## REFERENCES

1. "First international telemetering conference"', Wireless World, Vol. 69, No. 11, November, 1963.
2. "The remote control and supervision of urban power Distribution in Kuala Lumpur", by P. J. White, to be published in Electrical Review.
3. "Telemetry engineering", by R. E. Young, lliffe Books Ltd., 1968.
4. "How a sophisticated telemetry system supervises North Sea gas production", by J. E. Gleave and R. I. Williams, Oil and Gas International, October, 1968.
5. "A technical description of the microwave telemetering control system for the Umm Shaif off-shore oilfield, Arabian Gulf', by C. Bedwell, B.P. Magazine 12 (1964).

## Reprints from W.W.

We regret the delay in the publication of the reprint of the articles covering the Bailey $30-\mathrm{W}$ and 20-W amplifiers and pre-amplifier. This is now available. For the convenience of new readers we give below the full list of $W . W$. reprints obtainable from the Trade Counter, Dorset House, Stamford Street, London S.E.1. Prices include postage and packing.
No. 1. High-fidelity Amplifiers by A. R. Bailey (Nov. and Dec. 1966, and May, June and Nov. 1968). Contains articles on 20- and 30-W amplifiers; a pre-amplifier; and an output transistor protection plus modifications and relevant correspondence. Price 5 s .
No. 2. Stereo Decoder and Simulator by D. E. O'N. Waddington (Jan. and Oct. 1967). Describes the construction of a stereo decoder for positive or negative power supplies and contains details of an instrument for producing a stereo multiplex signal. Price 3s.
No. 3. Portable 1-MHz Frequency Standard by L. Nelson-Jones (Feb. 1968). Presents a design for a frequency standard which is phase locked to the 200 kHz Light Programme transmissions. Price 3s.
No. 4. Wide-range General Purpose Signal Generator by L. Nelson-Jones (April 1968). Range 150 kHz to 120 MHz in five bands; output attenuator range 100 dB in 20 dB steps $( \pm 0.5 \mathrm{~dB})$; modulation depth 0 to $50 \%$ (can be set to within $\pm 5 \%$ of meter indication); max. output 100 mV (from 75 ). Price 3s.
No. 5. Low-cost High-quality Loudspeaker by P. J. Baxandall (Aug. and Sept. 1968). Can be built for a few pounds! Excellent performance above 100 Hz but is improved if used with a woofer for the low frequencies. Price 5 s .
No. 6. Wireless World Crosshatch and Dot Generator (Sept. 1968). A pocket sized instrument using digital integrated circuits. Price 3 s .
In addition, the following reprints from earlier issues are still available: Wireless World Oscilloscope: Main frame, X amplifier, E.H.T. unit (March, June, July and August 1963), price 5 s ; No. 1 (audio) Y amplifier (April 1963), price 2 s 6 d ; No. 1 (audio) Timebase Unit (May 1963), price 2s 6d; Calibration - Alternative E.H.T. Unit (Feb. and Oct. 1964), price 2s 6d; and Wide-band Amplifier (March and April 1964), price 2s 6 d . Wireless World Audio Signal Generator (Nov. and Dec. 1963). Price 3 s .


## Radio Leeds: Where a tape recorder must be good and reliable you’ll find a Ferrograph.

In a radio station, the tape recorder is in constant use. Technical performance is all-important; absolute dependability and splitsecond control are essential. So Radio Leeds uses the Ferrograph Series 7 tape recorder.

Ferrograph Series 7 recorders are British-made, available in Mono and Stereo, with and without end amplifiers, in two versions: in elegant hardwood case, or in grey vinyl case. All solid state, three speed, two inputs per channel with independent mixing, all incorporate a range of facilities
unparalleled in any other recorder. Retail prices are from $£ 175$ incl. P.T.

Follow the professionals; choose the recorder you know will serve you best at home or in your work: Ferrograph-it makes sound sense. See your nearest stockist or send the coupon for details and address of nearest Ferrograph specialist or ring 01-589 4485.

Ferrograph<br>A member of the Wilmot Breeden Group



# EMITTAPE Afinis low-noise recording tape 

quiet as a mousel


## don't buy any tape - buy EMITAAP區

THE RANGE OF EMITAPE AFONIC LOW-NOISE TAPE

## 99 <br> LONG PLAY

$50 \%$ longer recording time specially designed for multi-track recorders - pre-stretched polyester base film of super strength.

100
DOUBLE PLAY
Twice the recording time for a givon size of spool - the perfect film for low speed. multi-track recorders - superflex polyester base film.

## 300 <br> TRIPLE PLAY

## Active Filters

6. Lead-Lag network and positive gain

by F. E. J. Girling* and E. F. Good*

The well-known Sallen-and-Key low-pass and high-pass circuits provide two of the most useful building bricks for applications where only low or moderate values of $Q$ factor are needed. They are practical examples of the second type of active system analysed in Part 4, a lead-lag or lag-lead network and positive gain, with input connections changed to give low-pass or highpass response as the case may be.

A notch (or zero) in the stop band is easily obtained by adding a parallel path. This gives a section with a characteristic useful in the realisation of a high-order filter as a cascade (or product) of factors.

Adaptations which give "tunedcircuit" response are also described.

## The Sallen-and-Key circuit

The lead-lag network in a loop with positive gain, $K$, has been analysed in general terms in Part 4. This analysis can be applied to the Sallen-and-Key low-pass circuit, Fig. I(a), by reference to Fig. I(b), which shows the same circuit with the input $V_{1}$ shorted out and a floating generator $V_{2}$ introduced into the feedback path. If now the loop is supposed opened at X and the freed end of $V_{2}$ earthed, it can be seen that $\mu$ is given by the transfer function of the lead-lag network, equn. (19), Part 3, multiplied by $K$, i.e.

$$
\begin{equation*}
\mu=\frac{K p T_{2} / b}{1+p\left(T_{1}+T_{2} / b\right)+p^{2} T_{1} T_{2}} . \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& T_{1}=C_{1}\left(R_{1}+R_{2}\right) \\
& T_{2}=C_{2} R_{2} R_{1} /\left(R_{1}+R_{2}\right)
\end{aligned}
$$

With the loop closed, therefore, since $\beta=\mathrm{I}$,

$$
\frac{V_{\text {out }}}{V_{2}}=\frac{\mu}{1-\mu}=
$$

$$
\begin{equation*}
\frac{K p T_{2} / b}{1+p\left\{T_{1}+(1-K) T_{2} / b\right\}+p^{2} T_{1} T_{2}} \tag{2}
\end{equation*}
$$

Now the argument used in Part 4 for
deriving equn. (39) from equn. (38) gives, if proper note is taken of the change of suffixes as between Fig. in(b), Part 4, and the present Fig. I,

$$
\begin{equation*}
\frac{V_{2}}{V_{1}}=\frac{1}{p C_{2} R_{2}}=\frac{b}{p T_{2}} . \tag{3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{1}}=\frac{K}{1+p T / q+p^{2} T^{2}}, \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
T^{2}=T_{1} T_{2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{q}=\left(\frac{T_{1}}{T_{2}}\right)^{\frac{1}{2}}+\frac{1-K}{b}\left(\frac{T_{2}}{T_{1}}\right)^{\frac{1}{2}} \tag{6}
\end{equation*}
$$

## Alternative analysis as a seriesfeedback system

The Sallen-and-Key circuits are commonly used with $K=1$ (nominally), obtained from an amplifier controlled by $100 \%$ series negative feedback. Such an amplifier is most simply represented by the cathode follower, as explained in Part I and as used again in the present Part in Fig. 4. Figs. 2(a) and (b) are a reminder of the identity between a cathode follower and a high-gain signinverting amplifier with $100 \%$ series feedback, and show that essentially the only difference is in the practical matter of where the circuits are earthed. To clarify the identity the output-current circuit in each case is completed by including $R_{L}$ and by drawing a short circuit through the h.t. batteries X and any other bias supplies, since it must be assumed that they show negligible impedance to signal frequencies. Ordinarily, of course, the cathode follower, Fig. 2(b), is drawn with the "earthed", or common, line at the bottom. Since

$$
\begin{equation*}
K=A /(A+1) \tag{7}
\end{equation*}
$$

$K \rightarrow \mathrm{I}$ only as $A \rightarrow \infty$.
By using the enhanced emitter follower, Fig. 3(a), values of $A$ of several
hundreds are readily obtained; and it may sometimes be useful to extend this type of connection to triples, etc. If an operational amplifier is to be used, one with differential input and which can take $100 \%$ feedback is needed, Fig. 3(b). An operational amplifier should give the low voltage drift obtainable from a long-tailed-pair input stage, which would be useful in an I.p. filter required to pass zero-frequency (d.c.) signals.
In the ideal case, $K=1$, equn. (6) reduces to $q=\left(T_{2} / T_{1}\right)^{1}$, and hence $T_{2}=q T$ and $T_{1}=T / q$. For finite $A$, substitution from equn. (7) into equn. (6) gives

$$
\begin{equation*}
\frac{1}{q}=\left(\frac{T_{1}}{T_{2}}\right)^{\frac{1}{2}}+\frac{1}{b(A+1)}\left(\frac{T_{2}}{T_{1}}\right)^{\frac{1}{2}} \tag{8}
\end{equation*}
$$

This is the same as equn. (39) of Part 5, and is algebraic proof of the identity of


Fig. r. (a) Sallen-and-Key low-pass filter; (b) the same with $V_{1}$ short-circuited and a new source $V_{2}$ introduced to facilitate analysis as a lead-lag loop with positive gain.

(b)

Fig. 2. Exampie of an active device-a valve: (a) in common-cathode connection, i.e. as a high-gain amplifier, $V_{0} / V_{1}=-A ;(b)$ in common-anode (cathode-follower) connection, i.e. with $100 \%$ series negative feedback, $V_{0} / V_{2}=A /(A+1)$.
the Sallen-and-Key circuit and the lag-and-integrator loop with series feedback (Fig. 15 of Part 5), which was mentioned in Part 1. The identity may also be demonstrated graphically as shown in Fig. 4. This is an application of the identity shown in Fig. 2. The only difference between the two circuits is that in (a) terminal 2 of the output is shown earthed, and in (b) terminal 1 . But since in neither-in so far as the diagrams tell the whole truth about the circuits-does any current flow in the earth lead, the change makes no essential difference and may be regarded as only a device for marking the node which is to be taken as the reference point of potential.

The triode valve in Fig. 4, as elsewhere, is intended as a universal symbol for a three-terminal amplifier. When more complex amplifiers are used, the identity may not be seen so clearly. A multistage amplifier used as a voltage follower will be wired up somewhat differently from when it is used as a high-gain sign-inverting amplifier, because of the practical requirement in each case for operation from an earthed power supply. Similarly if an operational amplifier with differential input is used, the internal workings are somewhat different in the two connections. But as all are close approximations to an ideal three-terminal amplifier the essential identity remains. The two separate drawings of Fig. 4 are, moreover, not really needed. The change of earth point can be made by the disconnection marked X and the reconnection marked with an arrow head.

## Compensation for finite internal gain

If $A$ is finite and positive, application of $100 \%$ feedback gives $K<1$, since $K=A /(A+1)$. The theoretically best way of making $K \rightarrow 1$ very closely is to make $A \rightarrow \infty$. But in some situations it may be helpful to use an amplifier of moderate internal gain and reduce the feedback, Fig. 5(a), so that

$$
\begin{equation*}
K=\frac{A}{A+1} \cdot \frac{r_{2}+r_{1}}{r_{2}}=1, \tag{9}
\end{equation*}
$$

which is obtained when

$$
\begin{equation*}
r_{2}=r_{1} / A \tag{10}
\end{equation*}
$$

This artifice, which is easily applied when the amplifier is, for example, an enhanced emitter follower, Fig. 5(b), allows the use of the ideal design values. It is important to remember, however, that $K$ (and consequently $q$ ) is just as sensitive to changes in $A$ as before. Caution is needed, therefore, if this method is used to obtain values of $q$ much beyond the reach of the same amplifier without compensation. There is no complete substitute for high internal gain.
In the alternative analysis (or synthesis) (i.e., as a lag and an integrator in a

(b)

Fig. 3. Possible amplifier configurations for $K \rightarrow I$.
negative-feedback loop) the parallel argument is that finite gain, $A$, in the integrating amplifier can be compensated by applying positive feedback (feedback fraction $\mathrm{I} / A$ ) to the amplifier to make its gain apparently infinite, and further that the adjustment is no more critical in the one case than in the other.

In both methods of analysis over compensation produces a regenerative term (negative damping) which subtracts from the positive damping designed into the circuit, and $q$ is higher than intended; but only if the magnitude of the negative term exceeds the positive will the system oscillate, although, of course this is no criterion of satisfactory performance.

It follows also that working the Sallen-and-Key circuit with $K>\mathbf{I}$ is equivalent to working the integrating amplifier in the lag-and-integrator circuit with $A>\infty$ (if mathematicians will allow the statement), meaning that the amplifier gain at zero frequency, $-A$, has gone positive, since $A=K(\mathbf{I}-K)$, and that the circuit is working in the region above the diagonal in Fig. 9, Part 5. This further emphasises the regenerative nature of the situation when $K>1$.

## Use of Sallen-and-Key circuit with K $>\mathbf{I}$

When $K=1, T_{2} / T_{1}=q^{2}$. Hence when $R_{1}=R_{2}, C_{2} / C_{1}=4 q^{2}$. This may give an inconveniently large value for $C_{2}$. By using $K>1$ a lower value for the ratio $T_{2} / T_{1}$, and hence of $C_{2} / C_{1}$, is needed for a given $q$.

Let $C_{1}=C / x$, and $C_{2}=x C$. Then $T_{1}=C R / x, \quad T_{2}=x b(1-b) C R, \quad$ and substitution in equn. (6) gives

$$
\begin{align*}
\frac{1}{q}= & \frac{1}{x}\left(\frac{1}{b(1-b)}\right)^{\frac{1}{2}}+ \\
& x(1-K)\left(\frac{1-b}{b}\right)^{\frac{1}{2}} \tag{11}
\end{align*}
$$

which can be rearranged to give $K$ in terms of $x, q$, and $b$. Thus, for example, the circuit may be designed for $C_{2}=C_{1}$, but at the cost of providing components (both $C \mathrm{~s}$ and $R \mathrm{~s}$ ) of sufficient accuracy in initial selection and in long-term stability to meet the increased sensitivity to errors in component values (Fig. 9,


Fig. 4. By changing only the earth point, a Sallen-and-Key l.p. filter is shown to be a lag-and-integrator loop. Also, as the alternative input, $V_{2}$, has one side earthed, the circuit is now suitable for use as a Ist-order band-pass filter.


Fig. 5. Feedback less than $100 \%$.
Part 4), which can be interpreted as the result of balancing negative and positive resistance.

## Lead-lag network with resistive loading

The network in the feedback path (Fig. 1) is as shown in Part 3, Table I, diagram (a). As the ratio $C_{2} / C_{1}$ is increased, $k \rightarrow 1$. Hence, when $K=1$, the loop gain at $\omega_{c}$ also tends to unity, (i.e., $k K \rightarrow \mathrm{I}$ ), and $q \rightarrow \infty$ (theoretically without limit) as shown by the diagonal straight line in Fig. 9 of Part $5, q$ being proportional to $\sqrt{ }\left(C_{2} / C_{1}\right)$.* Up to this limit the active circuit behaves like a passive circuit: no matter what the component values the circuit cannot become unstable (oscillate), and errors in component valués are not magnified.
When the network is loaded by resistance $R_{3}$ as shown in Fig. 6, $k>R_{3} /\left(R_{3}+R_{1}\right)$, and the limiting case

[^7]is therefore reached when $K=$ $\left(R_{3}+R_{1}\right) / R_{3}$. This may then be considered as a practical maximum value for $K$, since in general magnification of errors is to be avoided. The presence of $R_{3}$ also alters $\omega_{c}$, and design equations are given in the appendix. This compensation for resistance loading by increasing $K$ will be most useful when the resistances are effectively accurate and stable, and the ratio $k$ is therefore accurately known. If $R_{3}$ is the input resistance of the amplifier, it may be subject to considerable uncertainty. It is then desirable that $R_{3} \gg R_{1}$ (and $\gg R_{2}$ ), so that if compensation is attempted $K$ will be only slightly $>1$ (Fig. 7).

## High-pass filters

Any low-pass filter can in principle be transformed into a high-pass filter by substituting $1 / p T$ for $p T$; which means changing a lag into a lead, an integrator into a differentiator, and so on. Operating thus on equn. (4) of Part 5 gives

$$
\begin{equation*}
\mu=\frac{p T / q}{1+p T / q} \cdot p q T \tag{12}
\end{equation*}
$$

and the schematic shown in Fig. 8. The transformation does not necessarily yield a practical filter however. Fig. 9 is formally the h.-p. counterpart of Fig. 13, Part 5, and if checked by conventional linear circuit analysis gives the expected h.-p. transfer function. As it stands, however, it is unlikely to give a satisfactory performance. At high frequencies it is a shunt feedback system with ratio arms $C_{1}$ and $C_{1}{ }^{\prime}$. As the impedances of these fall indefinitely with increasing frequency, and as the response is required to remain level, indefinitely increasing current is called for. An upper limit to these currents can be set by padding out $C_{1}$ and $C_{1}{ }^{\prime}$ with $r$ and $r^{\prime}$ inserted at the points X , making $C_{1}{ }^{\prime} r^{\prime}=C_{1} r$. The presence of these resistors must however to some extent reduce both loop gain and loop phase shift in the region of $\omega_{c}$, and the circuit is now ituer treated as a two-lead loop, time constants $C_{1} r$ and $C_{2} R_{2}$, with negative gain ( $R_{1} / r$ if $A \rightarrow \infty$ ), to which the formulae for two lags and negative gain derived in Part 4 can easily be adapted.

The theoretical schematic of Fig. 8 does not show the same difficulty. At high frequencies (well above $\omega_{c}$ ) $V_{\text {ont }} \rightarrow V_{i n}$, and the "error" $\left(V_{\text {in }}-V_{\text {out }}\right) \rightarrow 0$. There is therefore no call for indefinitely increasing current through $C_{1}$ with increasing $\omega$; and the same is true for the series-feedback arrangements shown in Fig. 10. Fig. $10(a)$ shows the functional schematic of a straight-forward circuit with no buffer between the lead and the differentiator; c.f. Fig. 15, Part 5. The design values given are for the ideal case $A \rightarrow \infty$. Reversing the procedure shown in Fig. 4, we redraw the circuit with change of earth point and obtain the Sallen-andKey high-pass circuit shown in Fig. Io(b). The only serious doubt the


$$
\begin{array}{ll}
T_{2}=\frac{C_{2} R_{2} R_{1}}{R_{1}+R_{2}}, & T_{1}^{*}=k_{1} C_{1}\left(R_{1}+R_{2}\right) \\
k_{2}=\frac{R_{3}}{R_{1}+R_{3}}, & k_{1}=\frac{R_{3}}{R_{1}+R_{2}+R_{3}}
\end{array}
$$

Fig. 6. $C R$ network with resistance loading.
designer should have about these circuits is that in theory the amplifier should have a level response up to infinite frequency. As, however, it can be of the voltage-follower type, and as high internal gain is of importance only in the vicinity of $\omega_{c}$, it will generally not be difficult to give the amplifier a satisfactory performance up to the highest intended signal frequency. It may, indeed, be thought desirable in these and other active high-pass systems, especially when the internal gain is high, to define the final high-frequency cutoff (with added components) rather than leave it to the chance values of stray capacitances.

For finite values of $A$
$\frac{1}{q}=\left(\frac{T_{2}{ }^{\prime}}{T_{1}{ }^{\prime}}\right)^{\frac{1}{2}}+\frac{1}{b(A+1)}\left(\frac{T_{1}{ }^{\prime}}{T_{2}^{\prime}}\right)^{\frac{1}{2}}$
The notation is in conformity with Part 3, Fig. 8 and equns. (28) to (31), and the primes serve to draw attention to the inversion of the positions of the suffixes compared with the low-pass case, equn. (8). For $K>1$ the appropriate substitutions can be made in the lowpass results.

## Input impedance

For low $q$ (say ₹ 1 ) the input impedance of a Sallen-and-Key filter is not very different from that of the network when passive. At higher values of $q$, because $T_{2} / T_{1}$ or $T_{1}{ }^{\prime} / T_{2}^{\prime}$ become $\gg \mathrm{I}$, at the resonant frequency the voltage across the element behind the input terminal is equal to $q$ times the input voltage approximately, and it is necessary to take account of the relatively heavy current that will flow if the filter itself and the preceding circuit are to operate satisfactorily.

## Notch factors

A notch filter with a symmetrical amplitude vs. frequency response may be used to reject a particular frequency, or be combined with others to form a broader band-stop filter. One with an asymmetrical response may be used as a section of a higher-order filter (e.g., Fig. I of Part I) to give a sharper transition from pass band to stop band. In either case the notch is associated with a quadratic factor with a numerator zero.
Passive $C R$ notch networks, with and without buffer amplifiers, have been


Fig. 7. Resistance-loaded network in active filter.


$$
T_{2}^{\prime}=C_{2} R_{2}=\frac{T}{q}, \quad T_{1}^{\prime}=C_{1} R_{1}=q T
$$

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{p^{2} T_{1}^{\prime} T_{2}^{\prime}}{1+F T_{2}^{\prime}+p^{2} T_{1}^{\prime} T_{2}^{\prime}} \quad(A=\infty)
$$

Fig. 8. Lead-and-differentiator loop as h.p. filter.


Fig. 9. Practical difficulty in high-pass circuit obtained by direct transformation of low-pass circuit (Part 5, Fig. 13).
described in Part 3. For such networks $q \ngtr \frac{1}{2}$; and Fig. II(a) shows an example which gives a symmetrical notch,

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1+p^{2} T_{1} T_{2}}{1+p\left(T_{1}+T_{2} / b\right)+p^{2} T_{1} T_{2}}, \tag{14}
\end{equation*}
$$

with a zero at $\omega_{\infty}=\mathbf{I} /\left(T_{1} T_{2}\right)^{\text {i }}$, if the necessary equal-time-constant condition is met, $T_{3}=T_{2}$; i.e.,

$$
\begin{equation*}
C_{3} R_{3}=C_{2} R_{1} R_{2} /\left(R_{1}+R_{2}\right) \tag{15}
\end{equation*}
$$

For $q>\frac{1}{2}$ the circuit can be made active (i.e., feedback can be applied) as shown in Fig. II(b). The part of the circuit above and to the right of the dotted line through $\mathrm{X}_{1}$ is the standard Sallen-and-Key l.p. circuit (Fig. I), if the assumption is made that the output impedance of the buffer amplifier ( $\mathbf{I}$ ) is negligible; while the circuit to the left of the dotted line through $\mathrm{X}_{2}$ is the circuit of Fig. II(a), unaltered if the assumption is made that the output impedance of the amplifier ( $K$ ) is also effectively zero. There must therefore be zero transmission at the same frequency as for equn. (14); while signals once injected into the upper part of the circuit, whether through $R_{2}$ or through $C_{1}$, are subjected to the $q$ of this active part of the circuit. The complete transfer function is, therefore,

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1+p^{2} T^{2}}{1+p T / q+p^{2} T^{2}} \tag{16}
\end{equation*}
$$

where $T^{2}=T_{1} T_{2}$, and $q$ is given by equn. (6). Preferably the amplifier $K$ is a high-gain amplifier with $100 \%$ feedback. Then, as before, $K=A /(A+1)$, and $q$ is given by equn. (8).
For an asymmetrical notch, low-pass type, the numerator becomes $\left(\mathrm{I}+a^{\prime} p^{2} T^{2}\right)$, where $a^{\prime}<\mathrm{I}$, and

$$
\begin{equation*}
\omega_{\infty}=1 / \sqrt{ }\left(a^{\prime} T^{2}\right)=\omega_{0} / \sqrt{ } a^{\prime} \tag{17}
\end{equation*}
$$

( $\omega_{\infty}$ is the frequency of the notch, $\omega_{0}$ the undamped natural frequency of the system.) The required attenuation in the high-pass path is easily added by connecting the buffer amplifier I to a tap on $R_{3}$; i.e., the network in box $\mathrm{B}_{1}$ is replaced by the network shown in Fig. II(d), which has the transfer function $\quad a^{\prime} p C_{3} R_{3} /\left(\mathbf{1}+p C_{3} R_{3}\right)$. $T_{3}=C_{3} R_{3}$ must of course still $=T_{2}$, equn. (15). For an asymmetrical notch of high-pass type, attenuation can be introduced into the low-pass path as in Fig. 19 of Part 3, so that, as for the passive network,

$$
\begin{equation*}
\omega_{\infty}=\sqrt{ } a / T=\omega_{0} \sqrt{ } a \tag{18}
\end{equation*}
$$

Fig. II(b) is the standard Sallen-andKey l.p. filter with an added h.p. path. A notch can just as easily be obtained by taking a standard Sallen-and-Key h.p. filter and adding a 1.p. path, in other words by starting from Fig. 15 of Part 3, and turning the lower tee into an active filter. The result is shown in Fig. II (c). As (theoretically) the gains at zero frequency and at infinite frequency are equal, the response is a symmetrical notch. Fig. II(e) shows attenuation added into box $B_{2}$ of Fig. II(c) (i.e., into the low-pass path) to give asymmetrical notch response, high-pass type. This arrangement may be slightly preferable to that described in the previous paragraph, as high-frequency signals need to pass through only one amplifier.

It is not essential to have a buffer amplifier in the added parallel path. The networks of Fig. 22 of Part 3 can be turned into active filters (e.g., Fig. 12) and 'the transfer functions are easily derived by making use of those for the passive networks. It is found, however, that for $K=\mathbf{I}, q=b^{\prime}\left(T_{2} / T_{1}\right)^{2}$ or $q=b\left(T_{1} / T_{2}\right)^{1}$. This results in a greater spread of component values, since $b^{\prime}$ and $b$ are $<\mathrm{I}$ (often $\frac{1}{2}$ ). Also $q_{\text {max }}$ is smaller for a given internal gain $A$ when $K=1$ nominally. It seems likely, therefore, that the circuits with the buffer amplifiers will usually be preferred.

In the filters with a buffer amplifier, $q$ is a function of the active part of the circuit only, and, as in the simple l.p. and h.p. filters, depends on the ratio of two time constants ( $T_{1}$ and $T_{2}$ ) and on the amplifier gain $K . T_{3}$ is isolated from the active part of the circuit, and so errors in $T_{3}$ do not affect $q$, although they do affect the accuracy of the required match ( $T_{3}=T_{2}$ ) and hence the depth of the notch. If the gain of the buffer amplifier ( $\mathbf{1}$ ) is appreciably $>$ or $<1, \omega_{\infty}$ is moved accordingly, equns. (17)

(a)

(b)

$$
\begin{array}{ll}
T_{2}^{\prime}=\left(C_{1}+C_{2}\right) R_{2}, & T_{1}^{\prime}=\frac{C_{1} C_{2} R_{1}}{C_{1}+C_{2}} \\
T_{2}^{\prime}=\frac{T}{q} & T_{1}^{\prime}=q T \text { if } A \rightarrow \infty
\end{array}
$$

Fig. 10. (a) Lead-and-differentiator loop with series feedback; (b) the same converted by change of earth point to Sallen-and-Key h.p. filter.
and (18), but its gain affects neither $q$ nor the depth of the notch (as long as its output impedance is effectively zero). So in this sense its internal gain is not a critical factor. And in the notch filters without a buffer amplifier, although $T_{3}$ cannot vary independently, still $q$ does not depend critically on the balance of components or of time constants, at least for $K \geqslant 1$. This contrasts with the behaviour of some rather similar-looking circuits based on the $C R$ parallel-tee network, which can give higher values of $q$ for a given value of the internal gain, $A$, when $K=1$ nominally, and which will be the subject of a later article.

## Simple bandpaśs (tuned-circuit) response

As shown at the beginning of this article, Fig. I(b) and equn. (I), the standard Sallen-and-Key l.p. filter can be arranged to give tuned-circuit (ist-order bandpass) response by injecting the signal voltage in series with $C_{2}$; and, as shown in Fig. 4, for the case $K=A /(A+1)$, (i.e., $K \gtrless I$ ), by moving the earth point a more convenient arrangement with one side of $V_{2}$ earthed is obtained. Similarly the h.p. filter, Fig. 10, is converted to band-pass by injecting the input at the point $X$. The strange appearance of the circuits is partly remedied by a change of layout as shown in Figs. 13(a) and 14(a), which show the circuits as having feedback networks of familiar form (e.g., Fig. 3, Part 1), only the input connections being unusual.

Because of the limitation

$$
q_{\max }=\frac{1}{2} \sqrt{b(A+1)} \text { or } \frac{1}{2} \sqrt{b^{\prime}(A+1)}
$$

the circuits are likely to be of limited application; for band-pass filters usually require higher $Q$ factors than low-pass or


Fig. 11. Modifications for obtaining a notch (or zero) : (a) Effectively passive symmetrical notch filter with buffer amplifier in h.p. path; (b) the same made active; (c) similar circuit with buffer in the l.p. path; (d) a method of putting attenuation in the h.p. path of (b); (e) in the l.p. path of (c).


Fig. 12. Notch filter without buffer.
high-pass. For values of $q$ well below $q_{\text {max }}$, however, the circuits are interesting in being fully "designable" while using the minimum possible number of components, one amplifier, two capacitors, and two resistors. This very economy, however, makes the circuits unaccommodating; e.g. the gain at resonance which for $K=1$ is equal to $q^{2} / b$ or $q^{2} / b^{\prime}$ (i.e., $2 q^{2}$ when $b$ and $b^{\prime}=\frac{1}{2}$ ) cannot be varied independently of $q$;
and to overcome this inflexibility additional components must be added.

An ab initio analysis of the circuits, for $A=\infty, K=1$, could be made as follows: (a) write down the current flow caused by $V_{2}$, assuming both the input of the amplifier (the virtual earth) and the output are shorted to ground; (b) write down the current flow caused by $V_{\text {out }}$, assuming that both the virtual earth and $V_{2}$ are shorted to ground; (c) set the sum of the currents converging on the virtual earth to zero.

The useful part of the current flow (a), i.e. the equivalent exciting current, is the current through $R_{1}$ (in Fig. 13) and through $C_{1}$ (in Fig. 14), i.e.

$$
\begin{align*}
I_{\text {equiv }} & =\frac{V_{2} p T_{2}}{R_{1}\left(1+p T_{2}\right)}  \tag{19}\\
\text { and } \quad I_{\text {equiv }} & =\frac{V_{2} p_{1} C_{1}}{1+p T_{2}^{\prime}} \tag{20}
\end{align*}
$$

where $T_{2}$ is the time constant given by $C_{2}$ in combination with $R_{1}$ and $R_{2}$ in parallel (Fig. 13), and $T_{2}^{\prime}$ the time constant given by $R_{2}$ in combination with $C_{1}$ and $C_{2}$ in parallel (Fig. 14).

These equations, as could be forseen, represent the current a voltage source would drive through a series $C R$ branch; and so the same response will be obtained if the source $V_{2}$ is replaced by the source $V_{2^{\prime \prime}}$ feeding in through a branch $C_{3}$, $R_{3}$, of time constant as specified, Figs. 13(c), 14(c). For the magnitude (gain) to be the same, $R_{3}$ should equal $R_{1}$, or $C_{3}$ should equal $C_{1}$, for the two cases respectively. But the advantage of having the added branch is that now the gain can be varied independently by varying the impedance of the branch while keeping the product $C_{3} R_{3}$ constant.

Alternatively the response to an input $V_{2}^{\prime}$ may be calculated. Thus, for Fig. 13,
$\frac{V_{\text {out }}}{V_{2}^{\prime}}=-\frac{R_{1}+R_{2}}{R_{3}} \cdot \frac{1+q p T}{1+p T / q+p^{2} T^{2}} ;$
whence by equating currents the response to $V_{2}$ " can be obtained,
$\frac{V_{\text {out }}}{V_{2}^{\prime \prime}}=-\frac{R_{1}+R_{2}}{R_{3}} \cdot \frac{q p T}{1+p T / q+p^{2} T^{2}}$
if $C_{3} R_{3}=q T=T_{2}=C_{2} R_{1} R_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$.
By the same type of argument it is easily shown, Fig. 13(d), that low-pass response may be obtained by feeding in a signal $V_{2}^{\prime \prime}$ through a low-pass (simplelag) tee network, again of the same time constant, $T_{2}=\boldsymbol{q} T$.

From the other circuit similar derivations can be made as indicated in Fig. 14. Here it is found that
$\frac{V_{\text {out }}}{V_{2}^{\prime}}=-\frac{R_{1}}{R_{3}} \cdot \frac{1+p T / q}{1+p T / q+p^{2} T^{2}}$
and consequently that $C_{3} R_{3}$ should now equal $T / q=T_{2}^{\prime}=\left(C_{1}+C_{2}\right) R_{2}$.

Although all these derived circuits are extravagent in the number of components used, they can be a convenient practical choice. The extra components cause some reduction in $q_{\text {max }}$, but usually the effect is slight. Component values for $C_{3} R_{3}$ are not critical, since the input branch is effectively isolated from the resonant feedback loop by the virtual earth and has almost no effect on $q$.

## Appendix

The transfer function giving $V_{\text {out }} / V_{2}$ for Fig. 6 is readily obtained from equn. (I) by substituting the impedance of the parallel combination of $R_{3}$ and $C_{1}$, i.e. $R_{3} /\left(1+p C_{1} R_{3}\right)$, for $1 / p C_{1} ;$ and by making the following convenient substitutions:

$$
\begin{aligned}
k_{1} & =R_{3} /\left(R_{1}+R_{2}+R_{3}\right) \\
k_{2} & =R_{3} /\left(R_{1}+R_{3}\right) \\
T_{1}^{*} & =k_{1} T_{1}
\end{aligned}
$$

i.e., $T_{1}{ }^{*}$ is the $C R$ product formed from $C_{1}$ and ( $R_{1}+R_{2}$ ) in parallel with $R_{3}$. [Note: $\left.k_{1} / k_{2}=k_{1}(\mathrm{I}-b)+b\right]$. Thus it is found that
$\frac{V_{\text {out }}}{V_{2}}=\frac{k_{1} p T_{2} / b}{1+p\left(T_{1}{ }^{*}+\frac{T_{2} k_{1}}{b k_{2}}\right)+p^{2} T_{1}{ }^{*} T_{2}}$

From this, proceeding as before, equns. (I) to (4), the l.p. transfer functon for the active circuit, Fig. 7, is obtained as
$\frac{V_{\text {out }}}{V_{1}}=\frac{k_{1} K}{1+p T / q+p^{2} T^{2}}$,
where

$$
\begin{align*}
T^{2}= & T_{1}^{*} T_{2} \\
1 / q= & \left(T_{1}^{*} / T_{2}\right)^{!}+ \\
& \quad\left(k_{1} / k_{2}\right)\left(1-k_{2} K\right)\left(T_{2} / T_{1}^{*}\right)^{4} \tag{27}
\end{align*}
$$

In the special case $K=1 / k_{2}$, $\mathbf{1} / \boldsymbol{q}=\left(T_{1}{ }^{*} / T_{2}\right)!\quad$ and $\quad T_{1}{ }^{*}=T / q$, $T_{2}=q T$, which have the ideal form of the corresponding equations for a simple $L C R$ passive prototype. Thus the sensitivity to errors in capacitor values is the same as that of the circuit with an unloaded network, although, since $K>1$, there is additional sensitivity to errors in the values of the resistors that determine $K$ and $k_{2}$.

## Corrections to Parts 3 and 4

In Part 3, October issue, in the caption to Fig. $16 C T_{2}$ was printed instead of $C R_{2}$. In Part 4, November issue, the following have been noticed. In Fig. 2, in the box representing the passive network, only the denominator of the transfer function appears. This should read $I /($ the expression printed). In Fig. $5(\mathrm{a}), \mathrm{I}+$ has been omitted from the


Fig. 13. Derivation of band-pass filter and an alternative form of low-pass filter from the standard l.p. filter (Fig. 4).


Fig. 14. Similar derivations froin the standard h.p. filter (Fig. 10).
denominator of the transfer function in the box representing the passive network; and in the last full column (p. 525) references to Figs. 10(a) and $10(b)$ should read II(a) and II(b) respectively.

## Personalities

Professor C. W. Oatley, O.B.E., F.R.S., professor of electrical engineering in the University of Cambridge, has been awarded one of the Royal Society's three Royal Medals for 1969/70 "for his distinguished work in the wartime development of radar and latterly for the design and development of a highly successful scanning electron microscope." Professor Oatley has occupied the chair of electrical engineering at Cambridge since 1960 . He was in charge of basic work on radar transmitters and receivers at the Government Radar Research \& Development Establishment during the war and from 1945 until receiving his professorship was lecturer in electrical engineering at the University.

The University of Edinburgh has appointed P. L. Kirby, D.Sc., F.Inst.P., who is research director of Welwyn Electric Lid, of Bedlington, Northumberland, as its second visiting industrial professor in the newly established Microelectronics Liaison Unit within the School of Engineering Science. Dr. Kirby graduated from Durham University during the war and after two years working on radar systems at T.R.E., Malvern, returned to the North East where he worked on the physical properties of glasses. During this period in industry he took the further degrees of M.Sc., and D.Sc. from Durham and then in 1956 moved to Welwyn Electric Ltd. Professor Kirby has maintained a personal interest in the measurement and interpretation of noise and non-linearity effects in resistive materials.

Peggy Lilian Hodges, head of Guided Weapon Simulation and System Analysis at the Stanmore Laboratories of GEC-AEI (Electronics), has been elected to the Fellowship of the Royal Aeronautical Society in recognition of the contribution she has made to avionic and guided weapon technology. Miss Hodges was born in 1921 and educated at Westcliff High School, Essex, and Girton College, Cambridge. She joined GEC-AEI (Electronics) in 1950,
and her work at Stanmore has been centred largely on the performance of guided weapons. She has worked on many projects, notably Seaslug and Sea Dart, with a particular interest in weapon simulation techniques. Miss Hodges is a senior vice-president of the Women's Engineering Society.

Charles Kao, B.Sc. (Eng.), Ph.D., M.I.E.E., has been appointed an honorary senior research fellow at Queen Mary College, University of London. This is the second such appointment from Standard Telecommunication Laboratories in recent months with a view to bringing industrial experience to University affairs. From time to time Dr. Kao will lecture on his specialist subjects including topics in optical communications, coherent wave optics, and electromagnetic problems. Dr. Kao, who is 36, has been with S.T.L. since 1961, where latterly he has been mainly concerned with problems associated with the transmission of coherent light down optical waveguides for future telecommunication systems.

Alan Hall has joined Oxley Developments Company, of Ulverston, Lancs, as promotional sales manager. He was until recently in the electronic component division of Johnson Matthey, prior to which he was with Muirhead. Mr. Hall operates an amateur radio station with the call G3UWA.


Alan Hall

John L. Carroll, who joined Data Recognition Lid in 1966 as general manager and has been responsible for the development of their current range of optical document readers, has been appointed technical director. Prior to joining Data Recognition, Mr. Carroll was with English Electric Compurers where he was responsible for the development of document handling peripheral equipment; and before that he worked for Solartron on the development of character recognition equipment.
G. Ross Watson appointed by the Video Systems Division of Bell \& Howell as international marketing manager, was until recently sales engineer responsible for marketing television camera tubes with the English Electric Valve Company. For three years from 1958 Mr . Watson, who is 44 , was manager of a mobile television unit frequently used to demonstrate the value of closed-circuit colour TV at surgical operations.

Peter Smitham who joined ITT Electronic Services, Harlow, Essex, in July 1967 has been appointed manager. He was previously materials manager. He studied at University College Swansea and spent a postgraduate year at Salford University.

William J. Charnley, appointed deputy controller of guided weapons in the Ministry of Technology, was educated at Oulton High School, Liverpool, and at Liverpool University where he obtained a first class honours degree in engineering. Mr. Charnley, who is 47 , joined the Civil Service in 1943 at the Royal Aircraft Establishment, Farnborough. He was appointed superintendent of the Blind Landing Experimental Unit in 1955. Six years ago he became head of the Instruments and Electrical Engineering Department at R.A.E. and two years later was appointed head of the Weapons Department. Since 1968 he has been head of the Establishment's Research Planning Division where he is succeeded by Harold G. Robinson, O.B.E., who has been head of the Avionics Department since 1965. Mr. Robinson, who is 45, was educated at H.M. Dockyard School, Portsmouth, where he was awarded a Whitworth Scholarship to Imperial College, London University. He obtained a 1 st class honours degree in electrical engineering, and after joining the Civil Service at the R.A.E. in 1948 continued his post-graduate studies during 1951-52 at the Californian Institute of Technology. In 1955 he took charge of the Black Knight research rocket project. From 1960 until 1965 he was in charge of the satellite launcher division at Farnborough.

Tudor Jones, M.I.E.E., aged 42, has joined Cambion Electronic Products Ltd, manufacturers of electronic components, as sales manager. He joins Cambion from the English Electric Co., Stafford, where he was manager of the Production Systems Department.
Peter L. Mothersole, F.I.E.R.E., M.I.E.E., has joined Pye T.V.T. Lid, Weybridge, as engineering manager of the Audio \& Vision Division. Mr. Mothersole, who is 40 , has been with the Mullard


## Petar Mothersole

Research Laboratories since 1953, where he was for some time leader of the television receiver group. During his National Service he was a radar theory instructor at R.A.F. Yatesbury and then spent a year with E. K. Cole Lid at Malmesbury as a design engineer on airborne radar equipment.

Paul Spring, who joined Grundig (Great Britain) Ltd on its formation in 1952, has been appointed managing director. Mr. Spring has successively been chief engineer, general works manager and, since 1964 , technical director.
Geoffrey E. Beck, B.Sc., F.I.E.E., for the past two years chief engineer of Marconi's Electronics Group is appointed technical manager of its Aeronautical Division, based at Basildon, Essex. Mr. Beck, who is 53, graduated at Birmingham University in 1938 and joined the Marconi Research Division, where he worked on the design of naval radar equipment thoughout the war. In 1949, Mr. Beck began his long association with the pioneering work into the development of Doppler navigation equipment, which provides pilots with continuous positional information without the use of ground-based aids. In 1962, Geoffrey Beck and Mervyn Morgan, who were jointly responsible for this work, were awarded the Johnston Memorial Trophy by the Guild of Air Pilots and Air Navigators in recognition of their service to aerial navigation. From 1965 to 67, Mr. Beck was manager of the group responsible for the development of the television guidance system for the Martel guided missile. He is vice-president of the Institute of Navigation.

## Progress in

# Tape-recording Techniques 

by Sidney Feldman

Exhibits at the Audio Engineering Society's 37th Convention, held in New York City in October, were predominantly of interest to recording studio engineers. Several 8 -track one-inch and 16 -track two-inch studio recorders were on operational display. Two machines (Gauss and Magnetic Recording Systems) employed d.c. capstan-drive systems, with the motor-speed controlled precisely by a magnetic tachometer referred to a high stability oscillator. Thus the recorder is not affected by power line frequency variations. The Magnetic Recording machine has a switch-selected speed-range of 32 to 1 , permitting operation from $1 \frac{7}{8}$ i.p.s. to 60 i.p.s., and also allows any intermediate speed to be obtained using an external variable-frequency source. Fig. 1 shows the basic servo-system employed.
In the Gauss recorder, external synchronization is possible for variable-speed operation, with possible pitch changes of $\pm 75 \%$. This tape machine utilizes the "focused gap" system of recording, which was marketed, under licence, by Fairchild Recording several years ago, in a series of tape recorders. The bias frequency is approximately 1 MHz , and specifications call for a signal-to-noise ratio of 70 dB , record input to reproduced output, measured with ASA curve A; peak record level set for $1 \%$ distortion on 3 M Company 201 tape, at 15 i.p.s.

Of the high-speed tape duplication equipment, Gauss utilizes an endlessloop tape bin, "focused-gap" head, and a bias frequency of 10 MHz . Duplication lakes place at speeds to 240 i.p.s. Running from a 1200 ft master tape at the highest speed, this system can produce 55 copies/ hour/slave, utilizing the "stagger loading" system at the slaves. These copies would be at $1 \frac{7}{8}$ i.p.s. The tape would then have to be loaded into the appropriate cassette or cartridge. Console designers are now using, mainly, operational amplifiers in their modules. The modules are completely wired by the manufacturer, saving labour and inter-wiring when a system is built-up. These console "building-blocks" are usually strips 1.5 in wide and about 14 in long, and they provide functions of equalization, reverberation level control, main-channel level control, input attenuator, and microphone /
line input switching. A typical module will accept microphone level at the input and provide up to +24 dBm output with less than $0.5 \%$ t.h.d. from 20 Hz to 20 kHz .

The large recording consoles in use today with loss-less mixing, are only possible using operational amplifiers. A typical mixing circuit, as shown by Melcor (Fig. 2), provides 114 dB of isolation between inputs at 20 kHZ , rising to 134 dB at 1 kHz . Distortion is $0.25 \%$ from

20 Hz to 20 kHz , at full output of +20 dBm . Gain can be adjusted to a maximum of 10 dB .
Most tape recorders for the professional market are using transistors for switching functions, and the Quad-Eight Company even have a logic system for track switching on their large console designs. This logic switching can also be interlocked with the tape recorder and the monitoring system, so that operating one button will switch all functions simultaneously.

## Distortion analyser

Crown International have developed an i.m. distortion analyser to test, on a production basis, the Crown DC- 300 dualchannel amplifier. Typical im. distortion, per channel, $(60 \mathrm{~Hz}-7 \mathrm{kHz}$, mixed $4: 1)$ is below $0.05 \%$ from 0.01 watt to 150 watts r.m.s. into $\varepsilon \Omega$. The analyser permits rapid measurements of i.m. distortion over a wide range of input levels and power ratings. Active Butterworth filters replace conventional hum-sensitive LC filters. The residual distortion in the analyser itself is typically $0.003 \%$. Ganged input and output controls are employed to facilitate production line testing of amplifiers and other equipment.


Fig. 1. Speed control system employing magnetic tachometer.


Fig. 2. Mixer using operational amplifier.

## World of Amateur Radio

## Licences and '"pirates"

Of every five new British amateur licences now being issued, rather more than three are for Class B operation on v.h.f. telephony only. The licence statistics to the end of October show that in the previous six months there was an increase of 311 Class B licences to a total of 1841, compared with an increase of 198 Class A licences (permitting h.f. operation and requiring the passing of a Morse test) to a total of 13,373 . Taking into account the 180 amateur television licences British amateurs now total nearly 15,400 .

That there is still an appreciable number of people who attempt to operate in the amateur bands without the formality of a licence is shown by the fact that, in the first nine months of 1969, the Post Office successfully prosecuted more than 70 persons and warned 50 others for offences involving wireless transmitting apparatus being used contrary to Section 1 of the Wireless Telegraphy Act. The fines imposed on these "pirate" stations ranged up to about $£ 100$ and the penalties often included forfeiture of the apparatus. The Post Office has indicated that some of the illicit transmissions are regarded as representing a potential hazard to safety of life; they are equally unpopular with licensed amateurs who have sometimes been subjected to deliberate interference and embarrassed by such tricks as the tape recording of genuine amateur "contacts" which are then replayed on transmissions outside the limits of the amateur bands. The Post Office welcomes information which would help in tracing and apprehending the pirates.

## Good tropospheric "openings"

During the spell of pronounced tropospheric propagation in mid-October-conditions which brought many complaints of co-channel interference to broadcasting organizationslarge numbers of amateur v.h.f. contacts were made between stations in the U.K. and many countries of Western Europe. The contacts extended from Sweden and Finland to Austria and Switzerland as well as the almost routine links with France, Holland and West

Germany. While most of the contacts were made in the $144-\mathrm{MHz}$ (two-metre) band, the conditions extended also to the $432-\mathrm{MHz}(70 \mathrm{~cm})$ band; many of the contacts exceeded 1000 miles. Some amateurs believe that the "tropo" conditions of the 1969 Indian summer were among the most pronounced yet recorded. Peter Blair, G3LTF, of Chelmsford, has raised his total of countries worked on 144 MHz to 28 and on 432 MHz to 19. From January 1st the new voluntary divisions of the $144-\mathrm{MHz}$ band are: 144.0-144.5 telegraphy only; 144.15144.5 south-west region; 144.5-145.1 south-east region; 145.1 - 145.5 midlands; 145.5-145.95 north, Scotland and Northern Ireland; and 145.95-146 beacon transmissions.

## R.S.G.B. president for 1970

Dr. John Saxton, director of the Science Research Council's Radio and Space Research Station (Slough) and this year's chairman of the I.E.E. Electronics Division, is to be installed as the 36th president of the Radio Society of Great Britain during the course of a social evening at the Bonnington Hotel, London, on Friday, January 16th. Dr. Saxton, although not himself the holder of an amateur licence, has a keen interest in the relationship between meteorology and radio propagation, and for a number of years has attended many amateur v.h.f. functions.

It is clear from the latest Society accounts that the 1970 Council, despite
the recruitment in recent years of several thousands of additional members, faces problems of the type which are seriously affecting many national and local societies. In each of the past four yars expenditure has exceeded income: to a total in the four years of some $£ 8500$. Fortunately, the Society has substantial reserves but nevertheless it faces acutely the paradox that even with the present record membership, costs are still rising faster than revenue.

In Brief: There has been a good response from British amateurs to a proposal -"Project Trident"-to design and build in the U.K. an amateur radio communications satellite capable of receiving on the $144-\mathrm{MHz}$ band and retransmitting the signals on the $432-\mathrm{MHz}$ band; it is recognized that such a project will take a considerable time to complete . . . It is now hoped that the Australian-built amateur satellite "Aus-tralis-Oscar 5" will be launched during December or early January on the Thor-Delta rocket used to put a Tiros weather satellite into orbit; Australis is expected to radiate on 144.050 MHz and 29.450 MHz for a number of weeks . . . The R.S.G.B. 1.8 MHz Affiliated Societies' Contest is due to be held on January 10th and 11th between 18.00 and 22.00 G.M.T. each day . . . This season's 1.8 MHz "Transatantic Tests" will be continued between 05.00 and 07.30 G.M.T. on December 28th, January 11th and February 1st and 15th . . A Boy Scouts station on the Caribbean Island of Anguilla, with the callsign VP2EQ, is being operated in the $14-\mathrm{MHz}$ band . . . Indian stations have recently been using the special prefix VU0 instead of VU2 as part of the Ghandi centenary celebrations . . . Mike Matthews, G3JFF, is operating as a maritime mobile station on board the Far East flagship H.M.S. London and is expected to visit many Far East and Pacific areas during the next 15 months. . . . The Royal Naval Amateur Radio Society, with the callsign G3BZU, transmits a monthly Morse proficiency test at 19.00 G.M.T. on the first Tuesday of each month on 1.875 MHz for practice runs and 3.520 MHz for speed proficiency tests.

Pat Hawker, G3VA

Since the war, amateur radio in Japan has developed greatly. Station of Yoshio Sameshima, JA2CLI, has many 1.8 MHz ("Top Band") achievements to its credit; contacts include the U.S., Hawaii,

Canada and Australia (photo. courtesy of Stewart Perry W1BB).


## Electronic Metronome

# An efficient circuit giving a speed range of 30 to 240 beats per minute 

by D. T. Smith

The timing pulses are generated by a complementary-pair form of multuibrator $T r_{1}, T r_{2}$. Both transistors conduct or are cut off together and the conduction time can be made a very small part of each cycle. The conduction time (about 10 ms ) is used to generate the "tick" and the off time ( 0.25 to 2 s ) the interval

As this form of multivibrator may be unfamiliar to some readers, its operating cycle is described. During the conduction period the base of $\operatorname{Tr}_{1}$ is forward biased and therefore held near zero volts, while $T r_{2}$ is conducting hard and charging $C_{2}$ via $R_{4}$ towards +4.5 V . The conduction period of $\mathrm{Tr}_{2}$ is limited by the time $C_{1}$ can

between ticks. This form of multivibrator is useful in many applications where short pulses, relative to their separation, are required. Low frequencies can be obtained with relatively low capacitor values, and a good range of frequencies obtained by varying a single resistor.
supply enough base current to drive $\operatorname{Tr}_{2}$. This time is set primarily by $C_{1}$ and $R_{3}$. When $T r_{2}$ is cut off $R_{6}$ and $R_{2}$ pull the collector of $\mathrm{Tr}_{2}$ down to zero so that the charge on $C_{2}$ gives a negative voltage on the base of $\operatorname{Tr}_{1} . \operatorname{Tr}_{1}$ is thus cut off, and no base current flows. The off time is that


# D.C. Bias in Push-Pull Power Amplifiers A feedback amplifier controls the working point of a directly coupled driver and output pair 

by R. A. Smith

A bias circuit, conventional to many amplifiers, and consisting of d.c. feedback from the collector to the base of the driver transistor, is shown in Fig. I. A rypical practical arrangement is given in Fig. 2. However, the circuit is very sensitive to changes in the current gain of the driver transistor, and hence $R_{f}$ must be adjusted for the particular driver transistor used.

Since the prices of suitable transistors are now very low, extra low-current transistors in a circuit present no problem. Hence a transistor can be used whose sole purpose is to stabilize the d.c. level of the output. The requirements of this transistor are:-
(i) High output impedance, so as not to shunt the a.c. signal at the base of the driver transistor.
(ii) A positive current gain to ensure that the dic. feedback is negative. (The driver transistor changes the sign of the signal).

Its input impedance is not important since it is to be driven through a filter from the low-impedance output of the voltage amplifier, which is capable of supplying large currents; i.e., its loading effect on the amplifier output will be negligible even if the extra transistor has a low input impedance.

In order to satisfy (i), the collector of the stabilizer transistor must be connected to the driver's base; in order to satisfy (ii) a common base circuit must be used. For such a transistor to conduct at all, it must be of opposite polarity to the driver transistor. Also, the a.c. level of the output must be filtered from the d.c. to prevent excessive a.c. feedback Using a simple $R C$ circuit for this, we obrain the arrangement shown in Fig. 3.
$R_{2}$ must be chosen so that the potential across it is small compared with the supply voltage. The current passing through this resistor is approximately the base current of the driver transistor, i.e. $1 / \beta$ multiplied by driver transistor collector current which is approximately $V / 2 R_{L} \beta$.

Thus $V \gg V_{R_{2}}=i R_{2}=R_{2} V / 2 R_{L} \beta$
$2 R_{L} \beta / R_{2}>1$ and $R_{2} \ll 2 R_{L} \beta_{m t n}$ in the worst case.

With $R_{L}$ as $2 \mathrm{k} \Omega, \beta_{m i n}=20$ and a factor 20 for " $\ll$ ", this gives $R_{2}=4 \mathrm{k} \Omega$.

The $R_{2} C$ time constant must be long compared with the lowest frequencies being used.

Fig. 4 shows a circuit used as an a.f. power amplifier. The values given are for a $3 \Omega$ speaker and $25-\mathrm{V}$ power supply.


Fig. r. Arrangement where driver stage $T r_{1}$ controls d.c. level of output pair.

## High output impedance amplifier

With high output impedance amplifiers we are trying to drive a current in a load irrespective of the potential across it. In an inductive load, for example, the porential may vary considerably depending on the waveform of the input. For the output to be at high impedance, the drive should be from the collectors of the


Fig. 2. Typical low-to-medium power output stage.


Fig. 3. Use of common-base stage to control d.c. level of amplifier output.



Fig. 5. High output impedance power stage. (a) Actual configuration, (b) Convenient bisection for analysis.

Fig. 6. Application of bias transistor to circuit of Fig. 5.
transistors, since the currents in these are the least sensitive to variations of potentials across them.

To apply feedback, the current in the load is passed through a resistor in series with the load, as shown in Figs. 5(a) and 5 (b), and hence converted into a voltage which is compared with the input voltage to the amplifier at the emitterbase junctions of one of the driver transistors, depending upon which half of the circuit is conducting.

As will be seen from Fig. $5(\mathrm{~b})$ each part, upper and lower, is an emitter follower across $R_{f}$; however, the largest part of the current in $R_{f}$ comes from the collector of the output transistors (high impedance). There is also a small current in $R_{f}$ which flows in the emitter of whichever driver transistor is conducting and this current is approximately the same as the collector current, i.e. I/ $\beta$ times the current through the load in series with $R_{f}$.
$R_{f}$ should be chosen so that the maximum current in the load (and hence also in $R_{f}$ ) produces a voltage across $R_{f}$ of, say, a tenth of the power supply voltage. In this case, there is a maximum potential swing of approximately $\pm 0.4$ of the supply voltage across the load, and the back e.m.f. of an inductive load must not exceed this value if the amplifier is to work in its linear region.

The bias circuit described above can


Fig. 7. Modification of the previous circuit to limit standing current in the output stage.
be incorporated in the circuit as shown in Fig. 6.

In a practical circuit, the standing current in the output transistors can become intolerably large if bias resistors are not included as shown in Fig. 7. Resistors $R_{A}$ reduce the quiescent current of the driver transistors and resistors $R_{B}$ bleed much of the remaining driver transistors' current to the supply rails rather than through the bases of the power transistors. Values shown are for an amplifier driving 0.25 A into an inductive load; it was for driving the scan coils of a magnetically deflected c.r.o.

## More Announcements

(see also p.19)

Hewlett-Packard I.td have installed a $£ 20,000$ patient monitoring system at Walsgrave General Hospital, Coventry. The system includes a cardiac catheterization unit, bedside monitors for coronary care, defibrillator trolleys and two nurse's central stations.

Pye Telecommunications Ltd, has received contracts worth $£ 575,000$ for radio telephone equipment to be supplied to Government departments. The orders include u.h.f. fixed and mobile f.m. equipment for airports, v.h.f. motorcycle and personal transmitter/receivers, and v.h.f., h.f. and m.f. marine transmitter/receivers.

STC Mobile Radio Telephones Lid has been awarded a contract valued at approximately $£ 700,000$ by the Home Office for the supply of several thousand mobile a.m. radio telephones for police use.

Plessey Electronics Group has received an order from the North of Scotland Hydro-Electric Board for the supply of radio relay equipment. Operating in the 1500 MHz band, the equipment will link the Board's head office in Edinburgh with its main control room at Port-na-Craig, Pitlochry, and communications centres at Burghmuir, Perth and Tealing near Dundee.

A telecommunications project. A contract worth 61.4 M has been awarded to S.T.C. by the Ministry of Posts, Telegraphs and Telephones of Kuwait for the provision of a number of broadband microwave and coaxial cable links from Basra, Iraq, into the telecommunications centre at Kuwait City.

Microwave Associates Ltd, have announced an agreement whereby they will provide a complete marketing service for the products of Microwave Semiconductor Corporation, Somerset, New Jersey, U.S.A.

Electron microscopes worth more than $\$ \frac{1}{3} \mathrm{M}$ have been ordered from AEI Scientific Apparatus Lid for the United States and Canada. These orders have been placed by Picker Nuclear, the company's associates in the United States.

## 1970 U.K. Conferences and Exhibitions

## Further details are obtainable from the addresses in parentheses

## LONDON

Jan. 19-23
Bloomsbury Centre Hotel
American Data Communications
Equipment
(U.S. Embassy, Grosvenor Sq., London W1A 1AE)
Mar. 2-5
Alexandra Palace
Physics Exhibition
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

Mar. 10-12 ${ }^{\text {Sound }} 70$ International
(Association of Public Address Engineers,
394 Northolt Rd., South Harrow, Middx.)
Mar. 17-19
Savoy Place
Electrical Methods of Machining,
Forming and Goating
(I.E.E., Savoy Pl., London W.C.2)

Apr. 8-15
Earls Court
Electrex ' 70
(Electrical Engineers A.S.E.E. Exhibition,
Muscum St., Iondon W.C.1)
Apr. 13-16
University College
Atomic and Molecular Physics
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

## Apr. 23-26

Skyway Hotel
High Fidelity Exhibition
(Federation of British Audio, 49 Russell Sq.,
London W'.C.1)
Apr. $28 \& 29$
Royal Garden Hotel
Microelectronics Conference
(Business Conferences \& Exhibitions,
Mercury House, Waterloo Rd., London S.E.1)
May 4-7
Royal Festival Hall
London Enginecring Congress (LECO 70)
(Council of Engineering Institutions,
2 Little Smith St., London S.W.1)
May 5-15
Mechanical Handling Exhibition
(Diffe Exhibitions, Dorset House, Stamford St., London S.E.1)
May 11-13 Middlesex Hosp. Med. School Television Measuring Techniques
(I.E.R.E., 8-9 Bedford Sq., London W.C.I)

May 11-16
Olympia
Instruments, Electronics \&
Automation Show
(Industrial Exhibitions, 9 Argyll St.,
London W.1)
May 19-21
Savoy Place
Signal Processing Methods for
Radio Telephony
(I.E.E., Savoy Pl., London W.C. 2

June 9-11
Savoy Place
Electrical Interference in Instrumentation
(I.E.E., Savoy PI., London W.C.2)

July $\begin{aligned} & 13-17 \\ & \text { Ships' Gear International Show }\end{aligned}$
Ships' Gear International Show
(Brintex Exhibitions, 3 Clements Inn,
(Brintex Exhibit
London W.C.2).
Sept. 7-11
Grosvenor House
International Broadcasting Convention
(International Broadcasting Convention,
Savoy PI., London W.C.2)
Sept. 15-18
Olympia
Bio-Medical Engineering Exhibition
(U.T.P. Exhibitions, 36-37 Furnival St.,

London E.C.4)
Olympia
Sept. 29-Ocr 2
Savoy Place
Trunk Telecommunications by
Guided Waves
(I.E.E., Savoy PI., London W'.C.2)

Oct. 15-21
Olympia
Audio Festival \& Fair
(International Audio Festivals and Fairs,
42 Manchester St., London W'.1)

## BANGOR

July 6-10 University College
Microwave Spectroscopy
(1.P.P.S., 47 Belgrave Sq., London S.W.1)

## BIRMINGHAM

Apr. 14-16
The University
Automatic Test Systems
(I.E.R.E., 8-9 Bedford Sq., London W.C.1)

## BRIGHTON

Mar. 2-6
Exhibition Halls
Engineering Design Show
(Business Conferences \& Exhibitions,
Mercury House, Waterloo Rd., London S.E.1)

## CAMBRIDGE

Mar. 19-22
Churchill College
Television Tomorrou
(Royal Television Society, 166 Shaftesbury Ave., London W.C.2)

## CRANFIELD

Mar. 23-26
College of Aeronautics
Aerospace Instrumentation Symposium
(N. O. Mathews, Dept. of Flight, College of

Aeronautics, Cranfield, Beds.)

## EDINBURGH

Mar. 17-20
The University
Management and Economics in the
Electronics Industry
(D. J. T. Williams, Ferranti Lid., Ferry Rd., Edinburgh 5)

## HARWELL

Apr. 2-3
A.E.R.E.

High Voltage Electron Microscopy
(1.P.P.S., 47 Belgrave Sq., London S.W:1)

## MANCHESTER

Jan. 6-8
The IIniversity
Solid State Physics
(1.P.P.S., 47 Belgrave Sq., London S.W.1)

Feb. 23-27
Belle Vue
Labex Northern
(U.T.P. Exhibitions, 36-37 Furnival St., London E.C.4)
May 19-22 Belle Vue
Industrial Training Exhibition \&
Symposium
(John Clarke (P.R.) Lid., St. James House,
44 Brazennose St., Manchester 2)

## OXFORD

Apr. 6-11
The University
Biological Engineering Conference
(J. Gasking, Dept. of Pharmacology,

St. Bartholomews Hospital Medical School,
Charterhouse Sq., London E.C.1)

Sept. 14-16
The University
Photo-electron Spectroscopy
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

## READING

Apr. 6-8
The University
Thin Films Conference
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

Apr. 15-17
Defects in Semiconductors
(I.P.P.S., 47 Belgrave Sq., London S. W. 1 )
TEDDINGTON
Feb. 25-26
N.P.L.

Trends in Diffusion Conference
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

## UXBRIDGE

Apr. 14-16 Brunel University
Computer Graphics International
Symposium
(R. Elliot Green, Brunel University,

Uxbridge, Middx.)

## Overseas

JANL ARY-APRIL
Jan. 14-16
Honolulu
System Sciences Conference
(Dr. R. H. Jones, 2565 The Mall, University
of Hawaii, Honolulu, Hawaii 96822)
Jan. 20 \& 21
Chicago
Soldering Technology Seminar
(W. R. Dunbar, Grover M. Hermann Hall,

Illinois Inst. of Technology, 3241 S. Federal St.,
Chicago, Illinois 60616)
Feb. 6-11

## Paris

Audiovisual Techniques, Electroacoustics
\& Electronics Show
(Fed. Nat. des Ind. Electroniques,
16 rue de Presles, Paris 15 )
Feb. 16-19
Tampa Fla.
Computer-Aided Circuit Optimization
Dr. G. W. Zobrist, Dept. of Elect. Eng.,
University of South Florida, Tampa,
Florida 33620)
Feb. 18 -20 Philadelphia
Solid-State Circuits Conference
(I.E.E.E., 345 E. 47 th St., New York,
N.Y. 10017

Feb. 24-Mar. 5 Tampa, Fla
Applied Communication Systems Analysis
(Dr. G. W. Zobrist, Dept. of Elect. Eng.,
University of S. Florida, Tampa, Fla. 33620 )
Mar. 5-10
Paris
Audio Festival
(Fed. Nat. des Ind. Electroniques,
16 rue de Presles, Paris 15)
Mar. 11-13
Washington
Scintillation and Semiconductor
Counter Symposium
(Louis Costrell, Radiation Physics Inst. Section,
N.B.S., Washington, D.C. 20234)

Mar. 18-21
Nairobi
Electro 70 Show
(Electronics Institution of East Africa,
P.O. Box 9690 , Nairobi, Kenya)

Apr. $\begin{gathered}\text { Electronic Components Show }\end{gathered}$
(Fed. Nat. des Ind. Electroniques,
16 rue de Presles, Paris 15)
Apr. 6-10 Paris
Advanced Microclectronics Conference
(Fed. Nat. des Ind. Electroniques,
16 rue de Presles, Paris 15)
Apr. 14-17
Washington
Geoscience Electronics Symposium
(I.E.E.E., 345 East 47th St., New York,
N.Y. 10017)

Apr. 21-24 Budapest
Microwave Communication Colloquium
(Microcoll-Technica Háza Budapest,
V. Szabadsag tér 17, Hungary)

Apr. 27-29
Atlantic City
Frequency Control Symposium
(Electronic Components Lab., U.S. Army Electronics Command, Fort Monmouth, New Jersey 07703)

These electronic Stereo Mixers range from $2+2$ to $5+5$ input channels, with left and right outputs at 500 millivolts into 20 K ohms up to infinity.
Separate control knobs are provided for L \& R signals on each stereo channel so that a Mono/ Stereo changeover switch provided can give from four to ten channels for monaural operation, in which state the L \& R outputs provide identical signals.
A single knob ganged Master Volume control is fitted, plus a pilot indicator.
The units are mains powered and have the same overall dimensions as monaural mixers.

## STEREO MIXERS



## Also available Monaural Electronic Mixers:-

4 Way Monaural Mixers<br>6 Way Monaural Mixers<br>8 Way Monaural Mixers<br>10 Way Monaural Mixers

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4 WAY MIXER USING F.E.T.'s. This is a high fidelity amplifier ( $0.3 \%$ intermodulation distortion) using the circuit of our $100 \%$ reliable 100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $3-30 / 60 \Omega$ balanced line microphones, and a high impedance line or gram. input followed by bass and treble controls. Since the unit is completely free from the input rectification distortion of ordinary transistors, this unit gives that clean high quality that has tended to be lost with most solid state amplifiers. 100 uV on $30 / 60$ ohm mic. input. 100 mV to 100 volts on gram/auxiliary input $100 \mathrm{~K} \Omega$.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted. Models available with 1 gram and 2 low mic. inputs. 1 gram and 3 low mic. inputs or 4 low mic. inputs.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms and 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 v on 100 K ohms.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db}$. Less than $0.2 \%$ distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 m W 600 ohms. Output $100-120 \mathrm{v}$ or $200-240 \mathrm{v}$. Additional matching transformers for other impedances are available.


## Scope for Going Places

The EM102 offers you a portable oscilloscope with an ideal performance at a realistic price. Just check its specification (10kV, 20nS/cm. writing speed plus sweep delay). It's designed for laboratory applications but fulfills the role of a completely self-contained unit for servicing purposes. Take it anywhere - it's mains or battery powered with a built-in battery option.

Plug-in units are available with bandwidths from $\mathrm{d}, \mathrm{c}$, to 30 MHz , voltage sensitivity down to $1 \mathrm{mV} / \mathrm{cm}$. If you have an application for an Oscilloscope for use in the laboratory, in the field, or in any unusual environment, write or ring today for information, details or an immediate demonstration.

From $£ 315$.

SE Laboratories (Engineering) Limited. North Feltham Trading Estate, Feltham, Middlesex. Telephone:01-890.1166\&5246(sales):01.890-5876(works). Telegrams: Selab, Feltham. Telex: 23995. Northern Sales Office. Bessell Lane. Stapleford. Nottingham. Telephone: Sandiacre 3255.

## General Purpose Audio Amplifier

The Elcom GPA general purpose amplifier module-available in two different supply voltage versions - is a low-power highquality amplifier intended for rack mounting and capable of driving a speaker to 4 W mean power. Output is unbalanced, but an external transformer is available for balanced loads. Power supplies required are 50 V for the GPA50 and 24 V for the GPA24. The a.c. coupled outpur has an impedance of 7.5 (G1PA24) and 15 , (GPASO). The transformer coupled output has an impedance of $3!, 7.5!$ and $15!$ for both voltage versions. At 4 W output, sensitivity is quoted as 20 dBm maximum, noise level 100 dB , and distortion $0.3 \%$ (GPA24) and $0.1 \%$ (GPAS0). Frequency response from 30 Hz to 20 kHz is within $\pm 1 \mathrm{~dB}$, and the amplifier is provided with remote or local gain control facilities. Elcom (Northampton) Ltd, Weedon Road Industrial Estate, Northampton.
WW 310 for further details.

## Auto-range Digital Voltmeter

The SM 212/C digital volumeter from S.E. Laboratories is designed specifically for data logging and the automatic testing of equipment systems. Selecting "auto" on

the front panel gives complete automatic continuous monitoring over the full range of the instrument (from $10 / \mathbb{N}$ to 1 kV ). The instrument up-ranges at a reading of 9,000 and down-ranges at a reading of 800 . All control switches are front-mounted push-buttons. As well as having automatic selection, the instrument's ranges can be selected manually by five push-buttons, and remote ranging for external programming via the B.C.D. output socket. Maximum resolution is $10 \mu \mathrm{~V}$, input impedance $>1000 \mathrm{M} \Omega$ on direct ranges, and accuracy
$\pm 0.01 \%$. Reading rate is 25 per sec. synchronized to mains frequency. Seriesmode rejection is $>60 \mathrm{~dB}$ without filter, and common-mode rejection $>140 \mathrm{~dB}$. S.E. Laboratories (Engineering) Lid, North Feltham Trading Estate, Feltham, Middx. WW 315 for further details.

## Turns-counting Dial

R. C. Knight Lid introduce a range of turnscounting dials for use with multi-turn potentiometers. The model 33-30 illustrated can be used on 10 -, 20 -, or 30 -turn potentiometers. Mating with the potentiometer shaft is accom-

plished using a tapered collet arrangement. Small quantities of up to 100 off are available from stock and prices range from 41 s 9 d to 47 s 3d each, depending on the quantity ordered. R. C. Knight Ltd, 20 Solent Àvenue, Lymington, Hants.
WW 336 for further details

## Constant-current Power Sources

Direct currents as small as $1 / \mathrm{A}$ and as large as 500 mA are supplied with extreme accuracy by two constant-current power sources-models 6177B and 6181Bfrom Hewlett-Packard. Current regulation is such that the output current changes less than 25 p.p.m. ( $\pm 5$ p.p.m. of range setting) with a load change that swings the output voltage from zero to maximum. Current-setting and voltage-limiting controls are independent and can be preset before the load is connected. Maximum output for Model 6177 B is 500 mA , with voltage limiting continuously adjustable between 0 and 50V. Model 6181B has a maximum output of 250 mA with $0-100 \mathrm{~V}$ limiting. Current output is selected with high resolution ( $0.2 \%$ of range) by a $10-$ turn control and 3 -position $\times 10$ range switch. Either of the floating output terminals may

be grounded to provide current of either polarity. For systems use, these instruments can be programmed by either external voltage or resistance changes. Extremely high output impedance is maintained without use of reactive elements, resulting in fast programming speed: 500 s from 0 to $99 \%$ of programmed output. Hewlett-Packard Lid, 224 Bath Road, Slough, Bucks.
WW 316 for further details

## Light-emitting Diode

The MV50 from Monsanio, is a diffused planar gallium arsenide phosphide lightemitting diode which peaks at $6,500 \AA$. It can be used in place of incandescent lamps as small as the T3/4 size. The life-time of the unit is said to approach 100 years. Light output is 750 ft lamberts with a forward current of only 20 mA . Turnon time is 1ns. The MVSO is available in the U.K. from Semiconductor Specialists Inc, Airpark House, 127 Station Road, West Drayton, Middx.
WW 330 for further details

## Electromyograph

Isleworth Electronics have developed an electromyograph suitable for use in clinical medicine practice. The type 7 Electromyograph is a solid-state design, with plug-in units. Four plug-in positions are provided: two amplifiers, a timebase and a stimulator. Two types of amplifier are available-a single channel and double channel. With various combinations, between two and four signals may be displayed simultaneously on the cathode-ray tube. Each channel carries its own built-in calibration signal. Comprehensive camera recording facilities are

provided by a second cathode-ray tube at the rear of the instrument. The remote cable-operated camera shutter is synchronized electrically with the machine. Five modes of operation are possible: single sweep, continuous, superimpose, scan, and autograph. All modes are electrically interlocked to prevent overlapping exposure. Film wind-on after each exposure is automatic. Outputs are provided for data recorder, external loudspeaker (to supplement the unit's own internal sound channel), and trigger pulses to synchronize peripheral equipment. Isleworth Electronics, Frederick Street, Waddesdon, Bucks.
WW 320 for further details.

## Binary Ladder Networks

Morganite Resistors have produced two binary ladder networks. Model 215 is an eight-bit high-speed ladder with a standard resistance of $10 \mathrm{k} \Omega$ in the binary $\mathrm{R}-2 \mathrm{R}$ configuration. Settling time is less than 100 ns with a maximum output voltage ratio error of +0.25 bit over the temperature range -55 to $+125^{\circ} \mathrm{C}$. Three application resistors, ratioed to the ladder, are also included for bipolar operation and ampli-

fier summation. Model 213 is a 10 -bit binary resistor array designed to be compatible with the Fairchild $\mu \mathrm{A} 722$ current source for $\mathrm{D} / \mathrm{A}$ and $\mathrm{A} / \mathrm{D}$ applications. Resistance values correspond directly with those specified on the A 722 data sheet. The resistance temperature coefficient is 0 to $-200 \mathrm{p} . \mathrm{p} . \mathrm{m} /{ }^{\circ} \mathrm{C}$ with resistance tolerance of $\pm 2 \%$ over the temperature range -20 to $+85^{\circ} \mathrm{C}$. Morganite Resistors Lid, Bede Industrial Estate, Jarrow, Co. Durham.
WW 334 for further details.

## Analogue Computer Teaching System

Analogikit is a system which combines digital and analogue techniques and is intended for the designer, technician and university graduate. The equipment includes operational amplifiers, feedback, summing, scaling and initial condition elements. An introductory handbook explains
the arithmetical aspects of summing, scaling and integration with simple illustrative experiments leading to the construction of differential equations with practical examples of simulated systems. An advanced book deals with the mathematical aspects for degree course students. A complete teaching kit for analogue work, including a mounting deck with power supplies, costs $£ 165$ in the U.K. Feedback Ltd, Park Road, Crowborough, Sussex.
WW $\mathbf{3 0 8}$ for further details.

## Automatic Counter

All models in the Dana series 8100 automatic counters measure frequencies from 0.05 Hz to 50 MHz (d.c. coupled) and 5 Hz to 50 MHz (a.c. coupled), but models 8120, 8130, 8124 and 8134 have an additional a.c. coupled range from 10 MHz to 500 MHz . Models $8110,8130,8114$, 8134 have a facility for time interval measurement in the range 0.1 s to 10 s (up to 100 s as an option). When using one of these automatic counters, all that is necessary is to connect the input signal, and set an input voltage range switch to PRESET. The remainder of the measurement process is then controlled by computer logic. Automatic resolution during the reading time is effected, and decimal points and units are automatically indicated. In one second, reading accuracy approaches $\pm 2 \times 10^{-7}$. It is claimed the accuracy of the 8100 is better without operator adjustment than that of a manually controlled counter which requires function selection and period-to-frequency calculation. Dana Electronics Ltd, Bilton Way, Dallow Road, Luton, Bedfordshire.
WW $\mathbf{3 0 5}$ for further details.

## 32-MHz Counter

The GR 1192 counter measures time intervals, frequency and period from d.c. to 32 MHz to a resolution of $0.1 \mu \mathrm{~s}$, and frequency ratio. If the $1157-\mathrm{B}$ scaler is used, the frequency range can be extended to


500 MHz . Models are available with 5,6 or 7 digit presentation. When measuring frequency from d.c. to 32 MHz , the counting gate times are $100 \mu \mathrm{~s}$ to 10 s , and $\mathrm{Hz}, \mathrm{kHz}$ and MHz can be displayed with positioned

decimal point. Accuracy is $\pm 1$ count $\pm$ time base accuracy. The stability of the 10 MHz time base is less than $\pm 2$ parts in $10^{-6}$ per month. Measurement of period is limited by the digit presentation and is up to 100 s, 10 s and 1 is in the $7-, 6$ and 5 -digit models, respectively. Single and multiple periods up to $10^{5}$ are covered, and time periods can be displayed in $\mathrm{ms}, \mu \mathrm{s}$ and ns with positioned decimal point. The ratio of two frequencies, $A$ and $B$, can be measured from 1 to $10^{3}$. Frequency A from d.c. to 32 MHz is measured over 1 to $10^{3}$ periods of frequency $\mathrm{B}, 50 \mathrm{~Hz}$ to 10 MHz . Trigger error in time measurements is defined at $\pm 0.3 \%$ of one period divided by the number of periods averaged for a 40 dB input signal-to-noise ratio, and assumes no noise internal to the counter. For input signals of extremely high signal-to-noise ratio, the trigger error in $\mu \mathrm{s}$ is less than 0.0003 divided by the signal slope in $\mathrm{V} / \mu \mathrm{s}$. Price of the three models is $\{326$ ( 5 digit); f382 (6 digit) and $£ 437$ ( 7 digit). General Radio Company (U.K.) Ltd, Bourne End, Buckinghamshire.
WW $\mathbf{3 0 3}$ for further details.

## 3mm Jack Receptacle

Sealectro have developed a 3 mm s.r.m. series jack receptacle which prevents r.f. radiation. Designated part number


50-645-4520-31, the receptacle is constructed of gold plated stainless steel, Teflon, and gold-plated beryllium copper. It meets all requirements of MIL-C-39012 regarding contact and dielectric torque and captivation. R. F. Components Division, Sealectro Led, Walton Road, Farlington, Portsmouth, PO6 1TB.
WW 317 for further details.

## DC/DC Converters

A range of d.c./d.c. converters for changing an available low d.c. voltage (between six and sixty volts in multiples of six volts) to a much higher d.c. voltage is available from Plessey. General use of the component is in transistor instruments incorporating a cathode-ray tube for display purposes. Normal voltages up to 8 kV with power up to 0.5 W are gvailable in the unit size of $12.7 \times 5.1 \times 3.8 \mathrm{~cm}$, and ranging up 10 10 kV and 2 W in a unit measuring $13.4 \times 5.9 \times 4.5 \mathrm{~cm}$. Plessey Wound Components Division, Titchfield, Hants.
WW 321 for further details.

## Portable Instrumentation Recorder

A portable instrumentation magnetic tape recorder, especially designed for use by nonskilled personnel, has been introduced by Bell \& Howell. Suitable for a wide range of industrial and research applications, the VR-3200 is available in both 4-track and 6-track versions with speed ranges of $1 \frac{7}{8}$ to 15 i.p.s. and $3 \frac{3}{4}$ to 30 i.p.s. respec-

tively. Both versions use $\frac{1}{4}$ in tape on a $10 \frac{1}{2}$ in diameter standard N.A.B. spool. F.M. circuitry gives a frequency response of d.c. -10 kHz at 30 i.p.s. with a signalnoise ratio of 44 dB . Recording and playback are possible at any speed, the correct centre frequency and filter being automatically selected from the tape transport speed selection switch. Peak detection monitor meters are fitted which enable the correct modulation to be adapted for any input signal level in the range 100 mV to 30 V . A test facility is incorporated to allow setting up without running tape. Operation is from 230 V a.c. $(50 \mathrm{~Hz})$. A remote control unit is available as an optional extra. Price from £1,456. Bell \& Howell Ltd, Consolidated Electrodynamics Division, Lennox Road, Basingstoke, Hants.
WW 325 for further details.

## Marine Communications Receiver

Marine general-purpose/s.s.b. communications receiver type R551, from Redifon, is designed to meet the British P'ost Office specification and international requirements for a ship's main and s.s.b. receiver. All-solidstate it provides unbroken frequency coverage from 60 kHz to 30 MHz . It incorporates a frequency synthesizer as well as continuously variable of "free" tuning.


Frequency of the basic receiver is set on three in-line direct-reading decade dials which select the digits for MHz tens, MHz units and kHz hundreds (e.g. 27.2 MHz ). The tuning process is then completed by a continuously variable control which sweeps a range 100 kHz wide. This control is geared to a counter in the same line as the decade dials to give a direct read-out of frequency down to 100 Hz (e.g. 27.2796 MHz , or $27,279.6 \mathrm{kHz}$ ). Complete frequency sunthesis, using the ARU11, provides the additional decades to enable operators to select precisely the digits for kHz tens, kHz units, and Hz hundreds. This permits immediate direct setting of known frequencies down to increments of 0.1 kHz , with instant
switch selection of free tuning or of complete synthesis. Another feature is a dynamic range of over 120 dB . This accommodates a correspondingly wide variation in levels of input signals. The use of two inter-coupled a.g.c. systems enables the R551 to receive wanted signals at sensibly constant level despite adjacent unwanted signals. A high degree of front-end protection, independent of whether the receiver is switched on or off, permits the R551 to be installed and operated in close proximity to high-power transmitters. Redifon Ltd, Broomhill Road, London S.W. 18
WW 312 for further details.

## S.S.B. Manpack

The TRA. 6929 Minical s.s.b. manpack from Racal-BCC has a power output of IW p.e.p. and six operating channels covering frequencies from 2 to 7 MHz or 2.6 to 9 MHz . Complete with batteries, handset, aerial and haversack, the manpack measures $190 \times 76 \times 210 \mathrm{~mm}$ and weighs 3.6 kg .


Intended for military use, Minical has been specifically designed for simplicity of operation with a minimum number of controls. Changing channel takes only a few seconds, and it is claimed that unskilled operators are able to use it after a few minutes instruction. Tuning is effected with the aid of an internal noise generator. By this means, the possibility of radiation during tuning is avoided. The manpack operates from either U2/D type dry cells or rechargeable NiCad cells. If required, a vehicle 12 V supply can be used to power the manpack or for recharging the NiCad cells. Racal-BCC Lid, Western Road, Bracknell, Berkshire.
WW301 for further details

## R.F./U.H.F. Millivoltmeters

Millivac r.f. millivolımeters types MV-828A and MV-928A are solid-state instruments with full-scale ranges from 1 mV to 3 V , extended to 300 V by a capacitative divider. Frequency range is 10 kHz to $1,200 \mathrm{MHz}$. Both instruments operate on $115 / 230 \mathrm{~V}$, $50-450 \mathrm{~Hz}$ supplies, whilst the MV-928A also operates on internal nickel-cadmium batteries and has a built-in battery charger. Features of the instruments include tem-perature-compensated probe with replacement diode cartridge and recorder output. Avail-

able through Millivac's U.K. agents, Lyons Instruments Ltd, Hoddesdon, Herts, the MV-828A is priced at $\{33710$ s and the MV-928A at f387 10s. (Duty free).
WW 326 for further details.

## Integral-cycle Zero-voltage Switch

The CA3059 integral-cycle zero-voltage switch is contained within a 14 -lead dual in-line plastic package and operates direct from the a.c. line. This RCA device is capable of driving triac gates directly, and by providing a triac gating signal at zerovoltage crossings minimizes r.f. interference. A fail-safe circuit is incorporated to guard against an accidentally opened or shorted sensor, and an optional output control is available. Electrical characteristics include; d.c. gate-trigger current of 40 mA for $V_{G T}$ of 3 V and $R_{G T}$ of $70 \Omega$ gate-trigger pulse width of 80 us before and after ' $O$ ' for $C_{X}=0$; a gate-trigger pulse width of $20 u$ s before ' O ' and $170 \mu \mathrm{~s}$ after ' O ' for $C \mathrm{x}$ of $0.015_{\mu} F_{\text {, an on-oft accuracy of } 1 \% \text { and } 3 \% ~}^{\text {an }}$ for sensors of $5 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$, respectively. RCA Ltd, Sunbury-on-Thames, Middlesex.
WW $\mathbf{3 0 9}$ for further details.

## Dual-trace ${ }^{10-M H z}$ Oscilloscope

The D54 is a solid-state-circuit oscilloscope. Intended for general purpose laboratory and production line testing applications the Telequipment D54 solid-state oscilloscope has a vertical amplifier bandwidth of d.c. to $10 \cdot \mathrm{MHz}$ within -3 dB when d.c. coupled,

and 2 Hz to 10 MHz within -3 dB when a.c. coupled. A 12 -position frequency compensated input attenuator calibrated direct in $\mathrm{V} / \mathrm{cm}$ can be set for sensitivities of $10 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$ in a $1-2-5$ sequence. The range of timebase sweep speeds is $200 \mathrm{~ns} / \mathrm{cm}$ to $2 \mathrm{~s} / \mathrm{cm}$ covered in 22 calibrated steps. A variable uncalibrated control provides continuous overlap between steps and reduces slowest sweep speed to approximately $5 \mathrm{~s} / \mathrm{cm}$. The D54 can be operated in the following four modes: channel 1 only; channel 2 only; alternate during which the input to the vertical output amplifier is synchronously switched between channel 1 and channel 2 during flyback; and chopped during which the input to the vertical output amplifier is continuously switched between channel 1 and channel 2 at approximately 100 kHz . Telequipment Ltd, 313 Chase Road, Southgate, London N. 14.
WW 302 for further details.

## Over-voltage <br> Protection Unit

New from ITT is an over-voltage protection unit designed to give semiconductor devices protection against voltage surges of $1 \mu \mathrm{~s}$ or greater duration. The unit employs a reference amplifier and variable potential divider to sense applied voltage. The trip point is continuously variable between 4.5 and 60 V , with resolution better than 0.1 V . An excess voltage triggers a crowbar

s.c.r. across the supply. In the event of a fault the unit will handle 500A peak250A mean half cycle. Provision is made for limiting the surge current to lower values if desired. Connected across the two supply terminals, the unit takes less than 10 mA drain at all voltages. The unit is compact approximately $65 \times 40 \times 50 \mathrm{~mm}$. Access to the voltage adjustment potentiometer is through a hole adjacent to the terminals. The unit will operate in an ambient temperature range from $-40^{\circ}$ to $+65^{\circ} \mathrm{C}$. ITT Components Group Europe, Rectifier Product Division, Edinburgh Way, Harlow, Essex.
WW 319 for further details.

## Colour Monitor Calibrator

The Grafikon calibrator is a hand-held opucal instrument that enables the white point of a colour monitor or receiver to be visually set. The instrument is offered up to the tube face and the monitor controls are adjusted to make the colour picture match the instrument's reference colour. The comparison between the monitor and the reference is seen in a Lummer Brodhun photometer cube. The reference colour is obtained from a tungsten halogen lamp and glass filter and is diffused to form a very even reference field. The lamp current is electronically stabilized to ensure that its col-

our is the same each time it is switched on while the tungsten halogen cycle in the lamp maintains its long-term colour stability. A mechanical iris is incorporated to adjust the brightness of the reference field to any grey scale step. This ensures that the reference colour remains the same for all values of brightness. Grafikon Engineers Ltd, 75 South Western Road, Twickenham, Middx.
WW 331 for further details.

## Transportable Insulation Tester

Miles Hivolt offer a transportable insulation test set for measuring leakage currents down to 0.01 A at up to 30 kV d.c. It can be driven from the mains or from rechargeable 24 V batteries which give four hours' use at full load, the equivalent of many days' normal use. Mains input is $100-125 \mathrm{~V}$ or $200-250 \mathrm{~V}$ at $45-66 \mathrm{~Hz}$. The output voltage is available in two ranges $0.5-5 \mathrm{kV}$ and $3-30 \mathrm{kV}$. The output voltage is measured at two ranges 5 kV and 30 kV with full-scale deflections. Maximum output current is 200 A at full voltage with higher currents at lower voltages. The equipment weighs 11.5 kg with either battery or mains power unit fitted. Miles Hivolt Lid, Riverbank Works, Old Shoreham Road, Shoreham-bySea, Sussex.
WW 313 for further details.

## $40-\mathrm{MHz}$ Counter/Timer

A solid-state $40-\mathrm{MHz}$ counter/timer, the TF2414A, with 10 mV sensitivity is available from Marconi Instruments. Advantages include time interval measurement down to $1 \mu \mathrm{~s}$, period and multi-period measurement, $1 M$ ' input impedance and display memory. Direct frequency measurement is provided up to 40 MHz . A special version TF $2414 \mathrm{~A} / 2 \mathrm{M}$ is designed for use with the M.I. frequency converters (TF2400 series) which extend the frequency range up to 500 MHz . Another version, TF2414A/1 provides a printer output facility supplying a $1-2-4-8$ b.c.d. output code for each digit displayed. Stability and accuracy are determined by an oven-controlled crystal oscillator. Circuits incorporate discrete and integrated silicon semiconductors on plug-in printed boards. The display memory maintains the readout while the count is in progress, thus giving a continuous coherent readout. The crystal oscillator has stability of typically $1 \times 10^{-6}$ over three months and temperature co-efficient of $\pm 5 \times 10^{-2}$ per ${ }^{\circ} \mathrm{C}$. A standard frequency output is available from the internal reference

oscillator through a front panel socket over a range from 0.1 Hz to 1 MHz (selected by the range switch). Price \{298 f.o.b. U.K. Marconi Instruments L.d, Longacres, St. Albans, Herts.
WW 311 for further details.

## Add-on Transmitter Amplifier

A wideband untuned solid-state linear transmitting amplifier covering the frequency range $2-30 \mathrm{MHz}$, intended as an add-on unit to a low-power transmitter/receiver such as a packset, has been developed by The M.E.L. Equipment Company Ltd. It has an output of 100 W p.e.p. and is designed for a transmitter, the

output of which is not less than 5 W p.e.p. It operates from d.c. supplies of $10-30 \mathrm{~V}$ without need for voltage adjustment. The power supply is self-contained, and provides a supplementary output of 20 W at 24 V d.c. for the associated packset. It is sealed, operable at ambient temperatures from $-15^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}$ and meets the durability requirements of DEF 133 (L3). Designated type BA.1013/01 the amplifier measures 310 mm wide by 300 mm deep by 116 mm high. The M.E.L. Equipment Company Ltd, Manor Royal, Crawley, Sussex.
WW 335 for further details.

## Educational oscilloscope

An oscilloscope, Mitre type EA0699-1, intended for use in schools, in service workshops and in other equipment as a built-in monitor, has a $Y$ bandwidth of dc.

to 100 kHz . The instrument costs $\AA_{24} 240 \mathrm{~s}$. (discount for schools) and features a $Y$ sensitivity of approximately $100 \mathrm{mV} / \mathrm{cm}$ at maximum gain with full Y shift. The timebase range covers approximately $100 \mathrm{~ms} / \mathrm{cm}$ to $10 \mu \mathrm{~s} / \mathrm{cm}$ and is automatically synchronized. The $X$ input required is $1 V / \mathrm{cm}$ with full $X$ shift when the timebase is switched off. Flyback suppression and access to Y plates
are also featured. Power supply required is 25 W at 200 to $250 \mathrm{~V}, 50$ to 60 Hz . Mitre Electronic Products, 22 Powis Terrace, London W. 11.
WW 304 for further details.

## Broad-band Travelling-wave Amplifier

The TWS23 travelling-wave amplifier from the M-O Valve Company has an output of greater than 10W flat to better than 3 dB and at a gain of at least 26 dB in the frequency range 2.0 to 4.0 GHz , whilst, by adjusting helix voltages, it is possible to

obtain power outputs of over 20 watts at spot frequencies. The tube is packed in a permanent magnet focusing mount, and r.f. coupling is by means of a type N 50 connector. Cooling may be by either conduction or convection, according to specification. The M-O Valve Co. L.d, Brook Green Works, London W.6. WW 322 for further details.

## F.E.T-input Op. Amp.

Advance Industrial Electronics have available a low-cost general purpose Zeltex operational amplifier, Model 134D which can be used in differential, inverting and non-inverting circuits. Typical voltage drift is $50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Typical input bias current is 50 pA . Initial offset voltage can be adjusted to zero with an external potentiometer. The unit is short-circuit proof to ground The amplifier housed in a

plastic /epoxy case can be mounted directly on a p.c. board or plugged into a mating connector. Specification includes an output of $\pm \mathrm{V}$ at 4 mA , a d.c. gain of 50,000 , and a gain/ bandwidth product of 1.3 MHz . Frequency at full output is 100 kHz . The slew rate is $6 \mathrm{~V} / \mathrm{s}$ and operating temperature -25 to $+85^{\circ} \mathrm{C}$. Price is $\mathrm{f}^{8} 5 \mathrm{~s}$. Advance Institute Electronics, Raynham Road, Bishops Stortford, Herts.
WW 333 for further details

## V.L.F. Third-octave <br> Analyser

AIM Electronics have announced a thirdoctave frequency analyser (TOF 260A) with a frequency range extending from 0.5 Hz up to 100 kHz and covering any eight octaves in this frequency range. The octaves
covered are pre-set to customer requirements. The unit consists of twenty-four filters, each covering one-third of an octave, designed in accordance with BS2475:1964 (which recommends centre frequencies and equivalent bandwidth of the filter elements). Each filter may be attenuated by $0-100 \%$ by adjustment of a ten-turn calibrated potentiometer. The outputs from all the filters are combined at the output socket. Thus any combination of filters may be selected by adjustment of the attenuators. Typical applications include extraction of third-octave information from unknown waveforms and simulating the characteristic noise of any low-frequency excitation (e.g. vibrations) by selective filtering of white noise. Price $\{600$. AIM Electronics Ltd, Bar Hill, Cambridge, CB3 8EZ.
WW 323 for further details.

## Transistor Amplifier for $\mathbf{1 - 2} \mathbf{~ G H z}$

Electro/Data Inc. have developed a broadband transistor amplifier for the range 1 to 2 GHz . The new amplifier, designated Model A-12, has a 15 dB gain response from 1 to 2 GHz with greater than 10 dB of gain from 700 MHz to 2.2 GHz . The

amplifier's noise figure is 6 dB typical with a maximum value of 8 dB . It has miniature 50 '? input and output connectors and a shielded d.c. bias input. A single, negative $12 \mathrm{~V}, 14 \mathrm{~mA}$ source is required for biasing. Two or more units can be cascaded to provide increased gain, with minor changes in passband ripple and bandwidth. The amplifier has linear gain for output signals up to -10 dBm . Electro/Data Inc., 1621 Jupiter Road, Garland, Texas 75040, U.S.A.

WW 314 for further details.

## Modulation Meter

Type 785 modulation meter from Dymar is a solid-state instrument for the measurement of the depth of modulation in a.m. transmitters or the frequency deviation in the case of f.m. transmitters. It is specifically designed for narrow deviation transmitters in mobile and portable v.h.f. radiotelephones, the most sensitive deviation range being 3 kHz f.s.d. The frequency range covered is $30-480 \mathrm{MHz}$ and the sensitivity over the whole of this range is better than 2.5 mV in $50(-40 \mathrm{dBm})$ which permits loose coupling to the transmitter under test. The residual f.m. noise of the local oscillator is typically -44 dB below 3 kHz deviation with

the a.f. "voice" filter switched in. Auxiliary outputs are provided at the i.f. $(500 \mathrm{kHz})$ and the demodulation audio frequency. This permits viewing of the modulation waveforms on an oscilloscope or applying it to distortion analyzers. Price 2240 . Dymar Electronics Ltd, Colonial Way, Radlett Road, Watford, Herts.
WW 327 for further details.

## Analogue Switches

A range of m.o.s.a.i.c. analogue switches, the ML150 series, has been introduced by Plessey. The switches, with full gate-control isolation and gate-oxide protection, are available in 6-way multiplexer, dual sample/hold and 3-bit digital-to-analogue configurations. The MP130 series provide matching drive circuits for ML150. The large negative output voltage swings of these circuits (30V) are particularly suited to driving m.o.s. analogue switches. Plessey Microelectronics, Cheney Manor, Swindon, Wilts.
WW 324 for further details.

## Continuous Transport System

Tape-

A continuous magnetic tape-transport sys-tem-MTD 10500 -is announced by Recording Designs Lid. The system comprises three basic models, write only, read only and write/read. Each has variants to suit a range of requirements. The same tape-transport technique is used for each with modular electronics to give particular system characteristics. Seven- and nine-track versions are available each with bi-directional transport speeds from 4 to 37.5 i.p.s. as standard, and an optional speed-range of between 1 and 75 i.p.s., if required. Slew-mode speed (for highspeed inter-block gap detection) is 120 i.p.s. Start and stop speed times are less than 20 ms in the standard speed range. Recording densities of 200,556 and 800 b.p.i. are available. Recording Designs Lid, Blackwater Station Estate, Camberley, Surrey.
WW $\mathbf{3 3 2}$ for futher details.

## Low-pass Active Filters

Lionmount are manufacturing low-pass active filters which can be varied continuously throughout the passband. Two types are available; one of which covers the range 1 to 10 kHz in one band; the other covering the frequency range $1 \mathrm{~Hz}-10 \mathrm{kHz}$ in four switched bands. The designs are based on


9th order Butterworth or Chebychev configuration and can realize $80 \mathrm{~dB} /$ decade attenuation at cut off. The filters will accept an input voltage of $\pm 10 \mathrm{~V}$ peak and may be loaded with a minimum of 2,000 ? Lionmount \& Co. Ltd, Bellevue Road, New Southgate, London N. 11.
WW 318 for further details.

## January Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned

## LONDON

6th. I.E.E. "Marketing and the component engineer" by R. H. W. Burkett at 17.30 at Savoy Pl., W.C.2.

6th. I.E.R.E.-Discussion on "The Haslegrave report on technician courses and examinations" at 18.00 at the London School of Hygiene and Tropical Medicine, Keppel St., W.C. 1.

7th. R. Soc--Juvenile lecture "Television at school" by Dr. R. C. G. Williams at 14.30 at John Adam St., W.C. 2.

7th. I.E.R.E.-"Positional transducers and precision electronic measurements" by P, C. F. Wolfendale at 18.00 at 9 Redford Sq., W.C.1

9th. I.E.E. "Tellegen's Theorem: an unusual theorem of wide circuit application" by Dr. R. Spence at 17.30 at Savoy IPI., W.C.2.

12th. I.E.E.-"Phasor diagrams". Discussion led by M. G. Scroggie at 17.30 at Savoy I'1., W.C.2.

13th. I.E.E.-Discussion on "Prospects for ultra-high-frequency f.e.ts" at 17.30 at Savoy P1., w.C. 2.

13th. I.E.R.E./IE.E.-"Physiology for engineers -control of circulation" by Dr. 1. Gabe at 18.00 at St. Bartholomew's Hospital Medical Coll., E.C.1.

14th. I.E.E.-"Changing relations between science and technology and their effect on international co-operation" by Dr. A. P. Speiser at 17.30 at Savoy PI., W.C. 2 .

14th. I.E.R.E.-"U.HF. television transposer equipment" by W. 1.. Gregory at 18.00 at 9 Bedford Sq., W.C.I.

20th. I.E.E.-"The British Calibration Service" by H. E. Barnett at 17.30 at Savoy PI., W.C.2

20th. 1. Electronics.-"Power semiconductor electronics" by R. G. Dancy at 18.30 at the London School of Hygiene, Keppel St., W'C. 1.

21 st. S.E.R.T. -"The new I.V.C. colour vided tape recorder" by R. A. Calaz at 19.00 at London School of Hygiene, Keppel St., W.C. 1

22nd. I.E.E.-"Devices using tunnelling super-currents" by Dr. B. I). Josephson at 17.30 at Savoy PI., W.C. 2 .

23 rd. Brit. Acous. Soc.-Symposium on "Electroacoustics in air and water" at 10.00 at 1 Birdcage Walk, S.W. 1.

26th. I.E.E.-"Satellite television distribution" by A. K. Jeffris, D. G. Pope and P. C. Gilber at 17.30 at Savoy, P1., W.C.2.

28th. 1.E.R.E.-Colloquium on "Systems engineering and its educational impact" at 18.00 at 9 Bedford Sq., W.C. 1 .

30th. I.E.E.-"Radar ecnoes from clear air in relation to refracting-index variations in the troposphere" by J. A. Lane at 17.30 at Savoy Pl., W.C. 2 .

## BELFAST

2lst. I.E.R.E.-"Air traffic control" by David Evans at 18.30 at Ashby Institute, Queens University, Stranmillìs Road.

## BIRMINGHAM

26th. I.E.E./I.P.O.E.-"Operational experience with p.c.m. systems" by D. Cleobury at 18.00 at M.E.B., Summer Lane.

## BOLTON

12th. I.E.E.T.E.-"The origins of electrical communications" by J. Dalton at 19.30 at Institute of Technology, Deane Rd.

## BRISTOL

1Sth. I.E.R.E./R.Ae.S./I.E.E.-"B.A.C. satelites" by G. Crowder at 19.00 at Filton House Conference Room, Filton.

## CAMBRIDGE

29th. I.E.R.E./I.E.E.-"Tuning of gunn effect oscillators" by P. W. Crane at 18.30 at University Engineering Laboratories, Trumpington Street.

## CARDIFF

14th. I.E.R.E-"Electronics for process control instrumentation" by J. Seers at 18.30 at University of Wales Institute of Science and Technology

16th. S.E.R.T.- "Educational use of C.C.IV" by T. Evans at 19.30 at College of Further Education, Cyncoed.
22 nd. R.T.S.-"relevision transmission equipment in education" by W. D. Kemp at 19.00 at B.B.C., Llandaff.

## CHATHAM

15th. IE.R.E.-"The engineer in management" by F. Oakes at 19.00 at Medway College of Technology.

## CHELMSFORD

19th. I.E.R.E./I.E.E.-"Radar ornithology" by Dr. E. Eastwood at 18.30 at the Civic Centre, Duke Street.

## EDINBURGH

7th, I.E.R.E.-"Pulse code modulation for point-to-point music transmission" by E. Kout at 19.00 at Napier College of Science and Technology, Colinton Road.

20th. 1.E.E.-"The electronics industry in Scotland-past, present \& future" by 1. MacDonald at 18.00 at the Carlion Hotel.

## FARNBOROUGH

22nd. I.E.E./I.E.R.E.-"Speech and vocoders" by 1. C. Kelly at 19.00 at the Technical College.

## GLASGOW

8th. I.E.R.E.-"Pulse code modulation for point-to-point music transmission" by E. Rout at 19.00 at the Institution of Engincers and Shipbuilders, 183 Bath St., C.2.

## LEEDS

6th. 1.E.E.-"The automatic landing of aircraft" by S. A. W. Jolliffe at 18.30 at the University.

## LEICESTER

20th. IE.R.E.-"Static inverters and their applications" by E. W. Porter and R. J. Green at 18.30 at the University.

29th. I.E.E.-"The latest techniques in computer-aided electronic design" by $\mathbb{E}$. Wolfendale at 18.30 at the City Polytechnic.

## LIVERPOOL

5th. 1.E.E.-"Communications for people at work and at play" by D. G. Holloway at 18.30 at the University.

7th. I.E.E. (Grads.)--"Low and medium frequency noise in transistors" by Dr. K. F. Knott at 18.30 at M.A.N.W.E.B. Elec. Indus. Development Centre.

19th. 1.E.E. "Electronics in automobiles" by W. G. Hill at 18.30 at the University.

22nd. I.E.E. (Grads.)-"Developments in radio control" by J. R. Francis and R. T. King at 18.30 at M.AN.W.E.B. Elec. Indus. Development Centre.

29th. I.E.E.-Faraday Lecture "People, communications and engineering" by J. H. H. Merriman at 10.15 and 14.30 (students) and 18.45 (public) at the Philharmonic Hall.

## MANCHESTER

7th. I.E.E./.E.R.E.-"On the future of world communications" by Prof. C. Cherry at 18.15 at U.M.I.S.T.
28th. I.E.E. (Grads.)-"Radio interference from high-voltage transmission line conductors" by M. G. Faulkner at 18.45 at U.M.I.S.T.

## NEWCASTLE-UPON-TYNE

7th. S.E.R.T.-"Tandberg audio" by A. W. Dakin at 19.30 at Charles Trevelyan Technical College, Maple Terrace.

14th. I.E.R.E.-"Electronic telephone exchanges" by V. E. Mann at 18.00 at Dept. of Physics and Physical Electronics, Rutherford Coll., Ellison P1.

14th. I.E.E.T.E.-"Decea navigational system" by A. Brooker-Carey at 19.30 at Rutherford College of Technology, Ellison Place.
26th. I.E.E. -"The application of electronic engineering to road safety" by D. G. W. Mace and S. Penoyre at 18.30 at the Polytechnic.

## NEWPORT

21st. I.E.E.T.E.-"Change to metric" by G. Esplin at 19.30 at College of Technology, Alt-Yr-Yn Avenue.

## NOTTINGHAM

13th. I.E.E.-Faraday Lecture "people, communciations and engineering" by J. H. H Merriman at 14.30 (students) and 19.15 (public) at Albert Hall

## OXFORD

14th. I.E.E.-"Tomorrow's world-use of satellites for communication" by W. J. Bray at 19.00 at College of Technology, Headington.

## PRESTON

14th. I.E.E.-"Metrication" by T. C. Campbell at 19.30 at Yorella Restaurant.

## READING

22nd. I.E.R.E.-"M.O.S. devices in I.s.i." by G. E. Stevenson at 19,30 at J. J. Thomson Physical Laboratory, the University, Whiteknights lark.

## RUGBY

20th. I.E.E. (Grads.)-"Brain cell to microcircuit (pattern recognition)" by Dr. I. Aleksander at 18.15 at the College of Engineering Technology.

## SOUTHAMPTON

27th. S.E.R.T.--"Field effect transistors" by G. A. allcock at 19.30 at the College of Technology, East Park Terrace.

28th. I.E.R.E.-"Electronic character recognition" by R. H. Britt at 18.30 at the Lanchester Theatre, University.

## STEVENAGE

12th. I.E.E.-"Current electronic developments in the deep sea fishing industry" by P. J. Hearn at 19.30 at the College of Further Education.

## STOKE-ON-TRENT

15th. I.E.E.-Faraday Lecture "People, communications and engineering" by J. H. H. Merriman at 14.30 (students) and 19.30 (public) at Victoria Hall, Hanley.

## SUNDERLAND

22nd. I.E.E. (Grads.)-"Pulse code modulation" by J. Hutton at 18.30 at the Polyrechnic.

## WEYMOUTH

29th. I.E.E.-"Applications of integrated circuits" at 18.30 at South dorset Technical College.

## WOLVERHAMPTON

7th. I.Prod.E./L.Mech.E.-"C.E.I. as a professional union" by K. M. Platt at 19.15 at Stafford College of Technology, Beacon Side.

# Test Your Knowledge 

Series devised by L. Ibbotson*, B.Sc., A.Inst.P., M.I.E.E.,

M.I.E.R.E.

## 20. Colour

In all the questions it is assumed that the viewer has normal colour vision.

1. Select from the colours quoted below the one which does not appear in the spectrum of white light:
(a) orange
(b) yellow
(c) purple
(d) violet.
2. From the spectral colours below select the one which is associated with the highest frequency of radiation:
(a) red
(b) blue
(c) green
(d) blue-green.
3. Three light sources of the same area give monochromatic radiation of colours red, green and blue respectively, and have equal luminosity (appear equally bright). The intensity of radiation:
(a) is the same for all three
(b) is least for the red
(c) is least for the green
(d) is least for the blue.
4. Evidence suggests that the human brain distinguishes between different colours by the relative stimulation of optical receptors having different frequency responses, in the eye. The theory is that:
(a) each "cone" in the retina has a frequency response curve which is slightly different from all the others
(b) a separate type of receptor responds to each spectral colour
(c) only three distinct frequencyresponse characteristics are involved
(d) only two distinct frequencyresponse characteristics are involved
5. Monochromatic light of wavelength $580 \mathrm{~m} \mu$ is seen as yellow. It therefore follows that any light entering the eye which appears to have the same hue:
(a) must consist of monochromatic light of wavelength $580 \mathrm{~m} \mu$
(b) may contain many frequencies, but must have maximum energy flux at $580 \mathrm{~m} / 4$

[^8](c) must contain some energy at wavelength $580 \mathrm{~m} \mu$, but not necessarily have maximum energy flux at this wavelength
(d) need not contain any energy at $580 \mathrm{~m} u$ wavelength
6. True white light is:
(a) light with equal energy at all frequencies in the visible range
(b) light with a spectral distribution the same as that emitted by the sun
(c) the light emitted by a "black body" at a temperature of $5200^{\circ} \mathrm{K}$
(d) an inexact concept which is defined differently in different circumstances.
7. A single monochromatic light can be rendered colourless (giving the sensation of white) by the addition of a suitable quantity of another monochromatic light:
(a) whatever the colour of the original light
(b) unless the original light is in the red region of the spectrum
(c) unless the original light is in the green region of the spectrum
(d) unless the original light is in the blue region of the spectrum.
8. White light falls on an object which absorbs in the blue, but reflects other frequencies. The colour of the object will be seen to be:
(a) yellow
(b) green
(c) red
(d) purple.
9. Monochromatic yellow light from a sodium lamp falls on an orange (fruit). The colour of the orange when viewed in this light will be:
(a) very pale orange
(b) low intensity orange
(c) yellow
(d) black.
10. If white light is added to light of any given colour the result is:
(a) a change in hue, but no change in saturation of the colour
(b) a change in saturation, but no change in hue
(c) a change in both hue and saturation
(d) if the original light was monochromatic a change of saturation only, otherwise a change of both hue and saturation.
11. A particular green light has a radiant flux density of 1 watt per square metre. To this light is now added 1 watt per square meter of pure violet light. The effect will be:
(a) a considerable change in colour, but little change in luminance
(b) a large increase in luminance, but little change in colour
(c) little change in either colour or luminance
(d) a large change in both colour and luminance.
12. Discounting luminance information, the colour of a light can be specified entirely using:
(a) one variable
(b) two variables
(c) three variables
(d) seven variables.
13. If three colours are located on the chromaticity diagram, then mixtures of varying (positive) quantities of light of these three colours will produce only:
(a) all colours within the spectral locus (all realisable colours)
(b) all colours inside the triangle having the given three colours at the corners
(c) all colours outside the triangle having the given three colours at the corners
(d) all colours on straight lines joining the three given colours.
14. By mixing, in appropriate quantities, fully saturated red, green and blue light it is possible to produce light:
(a) of all colours (all hues and saturations)
(b) of every hue, but not all saturations
(c) over a restricted range of hues, but with all saturations in that range
(d) over a restricted range of both hues and saturations.
15. If ideal phosphors could be developed which produced monochromatic red $(700 \mathrm{mu})$, green ( $520 \mathrm{~m} \mu$ ) and blue ( $450 \mathrm{~m} \mu$ ) light, these could be used, with advantage, at the output of a colour television system. The camera filters at the input of the system would require:
(a) to pass bands of frequencies, as narrow as possible, at the quoted wavelengths
(b) to have broad overlapping frequency transmission characteristics with maximum transmissions at the quoted wavelength values
(c) to have pass-bands which met but did not overlap, so as to divide the visible spectrum into three bands centred on the three quoted wavelengths
(d) to have pass-bands between the quoted wavelength values.

## Literature Received

## ACTIVE DEVICES

"The use of Coaxial-Package Transistors in Microstripline Circuits" is the title of Application Note AN-402S which has been published by RCA Electronic Components, Harrison, New Jersey 07029, U.S.A. ......WW401

Dickson Electronic Corp's field-effect and bipolar transistors in li.d. chip assemblies are described in a 19 -page brochure which may be obtained from Dage (Great Britain) Lid, 1 Penn Place, Rickmansworth, Herts.

WW403
"Semiconductor Summary $1969 / 70$ " is the title of a short-form catalogue available from ITT Elecıronic Services, Standard Telephones and Cables Lid, Edinburgh Way, Harlow, Essex.

WW404
Ferranti Lid., Gem Mill, Chadderion, Oldham, Lancs, have produced some additions for their Microspot c.r.t. manual. This includes a contents sheet and provisional data on the types $1 \mathrm{~B} / 97,12 \mathrm{H} / 40,14 / 08$, 16A/19, 16A/40, 21B/10 cathode-ray tubes, the DY605 electronic display equipment and the PD5002 solid-state light source. ......WW405

The semiconductor products of SGS (UK) Lid, Planar House, Walton Street, Aylesbury, Bucks, are listed in two catalogues which are available price 21s each.
Consumer devices. Professional discrete devices

## PASSIVE COMPONENTS

Airpax Electronics, of Cambridge, Maryland 21613, U.S.A., have produced the following two leaflets.
"The Choice of Protection" discusses the use of mechanical methods of protecting electrical and electronic circuits from the effects of short circuits

WW411
A catalogue listing semiconductor fuses
WW412
A new edition of the Amphenol catalogue describing miniature circular connectors has just been released. It is available from Amphenol Lid, Thanet Way, Whitstable, Kent

WW413
Programming systems produced by Oxley Developments Co., Priory Park, Ulverston, Lancs, are the subject of a new catalogue

WW414
"Professional Communications Antenna Systems" is the title of a catalogue available from Antenna Specialists UK Lid, 1 Euston Road, London N.W. 1

WW415
Full details of a range of edge connectors are given in the well illustrated catalogue "Metal Plate Connector Guide", available from Elco Corporation, Willow Grove, Pa. 19090, U.S.A. $\qquad$ WW416

An article entitled "Understanding Thermocouples" that originally appeared in our sister journal Instrument and Control Engineering has now been reprinted and is available from IPC Business I'ress (Sundry Sales Department), 161-166 Fleet Street, London E.C.4. Price 6s 9d, including postage.

## EQUIPMENT

An effects generator which can be used to produce sound effects for radio and TV programme inserts, and public address announcements is described in a leaflet from the manufacturers Mellotronics Lid, 28-30 Market Place, London W. 1

WW433
"Gramophone-record reproduction: development, performance and potential of the stereophonic pickup" is the title of an article reprinted from Proceedings I.E.E., Vol. 116, No. 8, August 1969, which is available from Shure Electronics Ltd, 84 Blackfriars Road, London S.E. 1

WW434
Photain Controls Ltd, Radalls Road, Leatherhead, Surrey, have produced a leaflet which describes their range of photocell lamp modules intended for use in automatic gain control circuits, stepless speed control for motors and modulation circuits, etc

WW435
The eight digital electronic counters in the Dana series 8100 range of automatic counters are described in a brochure from Dana Electronics Lid, Bilton W'ay, Dallow Road, Luton, Bedfordshire

WW436
The new 7000-series of oscilloscopes from Tektronix, which includes two oscilloscope main-frames with a choice of six vertical amplifiers, four timebase units and three sampling units, are described in a booklet which may be obtained from Tektronix UK Lid, Beaverton House, Harpenden, Herts

WW437
We have received the following publications from Marconi Instruments Ltd, Longacres, St. Albans, Herts.

Catalogue 1969-70. A very large catalogue which lists a vast range of electronic measuring equipment ...............................WW438
"MI Bargain Buys". This month's special offers WW439

## H.F. Predictions-January



Winter season conditions will continue with a large differential between day and night frequencies except on some routes which show a secondary peak a few hours before dawn. At sunrise and sunset, therefore, the rate of change of MUF is at its greatest and it becomes difficult to maintain satisfactory communication over these periods. On shorter routes, generally less than 2000 km , the daytime MUFs in winter may be lower than in summer when propagation is via the $\mathbf{E}$ layer.

The LUFs shown were calculated by Cable and Wireless Ltd for reception in the United Kingdom of point-to-point telegraph services. For other services the curves would be displaced vertically, the exact amount depending on service and equipment parameters.

# Answers to "Test Your Knowledge" 

## Questions on page 45

1. (c) No single monochromatic radiation produces the sensation purple; it requires a mixture from the two ends of the spectrum. If monochromatic red light of wavelength $700 \mathrm{~m} \mu$ and monochromatic violet of wavelength $400 \mathrm{~m} \mathrm{\mu}$ (the normally accepted ends of the spectrum) are mixed in various proportions, then the range of "pure" purples is produced.
2. (b)
3. (c) Since the eye is most sensitive to light in the green part of the spectrum, far less energy-flux density is required to produce a given luminance of green light than is required for the same luminance of red or blue. Note that the term "monochromatic" is used to describe radiation of one single wavelength (or, in practice, since this is impossible, over a very narrow band) even though in the present context it may seem inappropriate
4. (c) The details of the mechanism are still not known.
5. (d) Suitable quantities of light of othef wavelengths can produce a similar stimulus in the colour receptors. If spectral green and red are used the result will have the same saturation as well as the same hue.
6. (d) The lights described in (a), (b) and (c) are all forms of white light, although their spectral energy distributions are somewhat different. The standard of white used in television is the colour of a light produced by a particular combination of a tungsten lamp and a filter, known as "standard illuminant C".
7. (c) The complementary of green is purple, which is non-spectral
8. (a) Yellow is the complementary of blue, so that removing blue from white leaves yellow.
9. (c) The orange, like most natural coloured objects, reflects light over a range of wavelengths, so that its colour, when illuminated by white light, is determined by the total effect of these on the eye. Since the orange is here illuminated with pure yellow it can only reflect yellow.
10. (b) This, and most other properties of colour, are well illustrated by the chromaticity diagram.
11. (a) Although wavelengths at the blue end of the spectrum contribute very little to the brightness of a light they have a very significant effect on its colour.
12. (b) These can be dominant wavelength and purity, or chromaticity co-ordinates (as in the chromaticity diagram). This is why colour information in colour television can be carried by two signals.
13. (b)
14. (b) Reference to the chromaticity diagram shows that no triangle with its comers on realisable colours, even on the spectral locus, can include the whole diagram.
15. (b) The total transmission characteristics for each of the three colour channels in the camera would require to be such that any incident radiation would produce relative responses in the three channels equal to the relative outputs from the three phosphors at the receiver required to produce its colour as nearly as possible.

## THE CHOICE

 IN NEW ESSENTIAL COMPONENTSThe Bulgin policy of continued research and development has resulted in the introduction of many unique new Electronic Components during the past year A few are illustrated here. B, 16, 17. 18 three-panel mounting Battery Holders accepting 1. 2, or 3 U2-sized cells respectively. SM. $257 / 2+$ K. 515. Semi-rotary shaft operated D.P.C.O. moulded body switch rated 2A. at 250V A.C. D/S. 941/1 and /2. Illuminated Switch with a normally biased push action which can be locked in the depressed position. L.E.S. lamps, single (/1) or twin (/2) S.P.C.O. switch unit. SM. 301/2/PD moulded body. D.P.C.O. 8-contact switch for double-pole alternative circuit switching. Rated $3 A$ at 250 V A.C. P. 537/Chrome or /Gold. Three pole side entry. BS, 666, jack plugs. K. 556/Legend. Collet fixing knob, dial and escutcheon unit which can have dial legending to customers' requirements.

P. 537/Chrome or/Gold

SM. 301/2/PD.

$$
\text { D/S. } 941 / 1 \& / 2
$$

$$
\text { D. } 941 / 1 \& / 2
$$



D/S. 890/SA. 2419

K. 556/Legend


SM. 257/2 $+K .515$ Knob


D/S. 890/SA. 2419 Switched Legended Indicator. L.E.S Lamps, with a choice of five lens colours which can be legended. Switching is D.P.C.O. push-push succes sional action rated 2 A .250 V A.C. Other models have different switching arrangements. D. 965, 966 New L.E.S. Signal Lamps for direct connection to printed circuit boards with choice of five lens colours. transparent or translucent. F. $316 / \mathrm{S}$ Panel mounting fuseholder for $1^{\prime \prime} \times \frac{1}{4}^{\prime \prime}$ of fuses 15 A . rating.
F. 296/S Miniature panel mounting fuseholder for $5 \times 20 \mathrm{~mm}$. fuses, 5A. rating. SM. 324/2 Key operated D.P.C.O. moulded switch 2A.
250 V A.C. rating. P. 550 unique 7 pole + earth inlet/outlet connector rated 6 A .250 V A.C. F. 317,318 Flush-fitting panel mounting fuseholder 5A rating. F. $3171^{\prime \prime} \times 4^{\prime \prime}$. F. $318.1 \frac{1}{4}^{\prime \prime} \times \frac{1}{4}^{\prime \prime}$ fuses. Edge Legending. All transparent knobs. K. 436-7 and 472-4 can have legending around the edges as well as on top surface.

FOR DETAILS OF THE COMPLETE RANGE SEND FOR BROCHURES REF. W.W./1.

[^9]| ADMIRALTY | ministay of works | s.b.c. |
| :---: | :---: | :---: |
| WAR OFFICE | ministar of ayiation | g.p.o. |
| AIR MINISTRY | MINISTAY OF TEGHNOLOGY | IA |
| HOME OFFICE | Reseancm establismments | M.P.L. |
| CROWN AGENTS | U.KAEA. | o.s. |

# Real \& Imaginary 

by Vector

## "Yellow, and black, and pale and hectic red,"

As I write, the persuaders have just begun their honeyed blandishments in the Press, on sound radio and on television.

Like those purposeful citizens who make a crust by robbing strongrooms, the colour vendors use an oblique approach. Just as cracksmen traditionally begin operations in the cellars of the house next door to the bank, so do our persuaders tunnel into your private strongroom at your weakest point, namely the Little Woman and to some extent the kids, because these, as a generalization, look at the box a lot more than you do.

At present several of the channels are hard at it, backed by powerful newspaper and magazine campaigns- 'it' in this case being the task of making you feel a second-class citizen if you are still viewing in unnatural monochrome.

Every day now, and far into the night, the B.B.C. and I.T.A. are firing continual salvoes extolling the merits of colour. What does astonish me is that, at the time of writing, I haven't seen any advertisment emanating from a radio manufacturer on any of the channels.

Should any reader be reaching for his pen to remind me that the I.T.A. is the only organization permitted to carry advertising, stay your hand. While it is true that the B.B.C. does not lend itself to the sordid business of raking in money in return for advertising time, there are other, and more gentlemanly, ways of going about it, as any press relations officer worth his salt could tell you.

One such is for the would-be advertiser to latch on to some national sport or cult. One of your first acts is to present a handsome trophy which has the name of your product indissolubly attached to it; all you have to do then is to sit back and wait for the event to be televised.

Another method is to plaster the railings of the more dynamic association football clubs with advertisements of your product. Try as he may, the cameraman will have to have the railings in the picture for a good deal of the time and so, given a litue luck, you have a free plug both on B.B.C. and I.T.A. for about nine months in any given year.

I see the B.B.C. is making a platform of 'natural television'. They did something similar some years ago in a drive to popularize the v.h.f. sound service. 'High
quality' was the torch carried then, but this was soon extinguished by the radio manufacturers, who shoved cheese-pared circuits into a small box, together with a tinpot loudspeaker, and tried to sell it as hi-fi.

And what is natural television, pray? If the term means anything it signifies that, colour-wise, the picture on the home screen is identical with the scene in the studio. That being so, I must say that I'm surprised that the B.B.C's technical boys have allowed their advertising colleagues to get away with it. For, given an additive system with all its registration problems, the inclusion of band-saving techniques, and colour filters with transmission characteristics which only approximate to those of the home receiver's phosphors, then even the best colour monitors will not stand comparison with the actual scene.

It's a pity to have selected such a sales story because it looks as if the experience of v.h.f. sound is going to be repeated with colour television, if the criminally maladjusted receivers to be seen all too often in dealers' showrooms are anything to go by.

The public will swallow it of course for the same reason that, in 1922, it subscribed to the belief that an unbiased three-valve receiver feeding a 'sugar-loaf' horn loudspeaker was giving perfect quality. They believed it because the only standard of comparison was the acoustic gramophone and the quality of the 'wireless' was, in its day, marginally better than that. By the same token, today's standard of comparison with a colour set is the monochrome receiver and therefore any colour, however unreal, is better than no colour at all. Provided that the sky is some shade of blue and the grass approximates to green, who cares about fidelity? Electronics engineers, certainly, and artists, perhaps, but precious few else. So there was really no need for the B.B.C. to oversell on fidelity.

Sticking my neck into the prophet's noose, my guess is that colour television will take several years to become the norm in the average home and that not a few manufacturers will catch colds in the process.

What, I wonder, would happen if
someone came up with a colour system that was miles ahead of PAL? If there is any such lone inventor reading this, I would advise him that he is most unlikely to see his brain-child come into general use. For, with about $£ 150 \mathrm{M}$ already invested in the present system, nobody is going to look kindly upon an invention that sets everyone back to square one.

What are the prospects of such a happening? Who knows? What would it be like, this super system? This also is anybody's guess. Almost certainly, I would think, it would embody a subtractive colour system. It would also employ a translating interface which is much more in accord with the human eye-brain complex than is today's television camera.

Our present system is a hangover from Clerk Maxwell, who was the first to show that three black-and-white transparencies can, under certain conditions, provide a picture in full colour. This is an application of the Young-Helmholtz trichromatic theory which is generally believed to form the basis of human colour vision in spite of some anomalies which cannot easily be explained away. No one, for instance, has positively identified three types of cone structure in the eye, one red-detecting, one green and one blue; all the cones seem pretty much the same. Then, a few years ago Dr. Edwin ("Polaroid") Land demonstrated that two colours, or even one red light and one white, can interact to provide a gamut of colour. Even two monochromatic light sources will produce a wide variety of diluted colours. (This in fact was no new discovery; colour film processes, using two colours only, have been patented since the turn of the century.)

There is a growing awareness of the extreme complexity of the human eye and it is possible that further discoveries in this area may provide the electronics industry with important new thinking about television. We are moving away from comfortable concepts where, for instance, $500 \mathrm{~m} \mu \mathrm{l}$ always equates with green light to quicksands where a body radiating at $500 \mathrm{~m} \mu$ appears to the eye as brilliant red. (Yes, I know it sounds daft but it can be done by interfering with the signals which trigger the brain into registering colour.) These coded signals are the core of the matter; if only the code could be broken, all sorts of possibilities exist. It might even be feasible to dispense with conventional displays and, instead, feed signals to the area behind the retina.

This sounds crackpot until we come to terms with the thought that colour sensations needn't derive from incident light-frequency radiation. The coded signals to the brain can be affected in various ways; by mechanical vibration; by the application of external voltages or currents or by hallucinatory drugs. In the last-mentioned case manifestations occur which have every semblance of three-dimensional reality. Given an exact control of the input signals, what might not be possible? Even a degree of sight to the blind seems to be feasible.

## SINCLAIR IC-10

## MONOLITHIC INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP



A 13 transistor circuit measuring only one twentieth of an inch square by one hundredth of an inch thick!

## the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M.S. output ( 10 w . peak). It contains 13 transistors (including two power types). 2 diodes, 1 zenor diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout), etc. Once proven, the circuits can be produced with complete uniformity which enables us to give a 5 -year guarantee on each IC-10, knowing that every unit will work as perfectly as the original and do so for a lifetime.

## SPECIFICATIONS

10 Watts peak. 5 Watts R.M.S. continuous Frequency response:

5 Hz to $100 \mathrm{KHz}+1 \mathrm{~dB}$ Total harmonic distortion

Less than $1 \%$ at full output. Load impedance:
Power gain:
Supply voltage: Size:
Sensitivity:
$10 \mathrm{~dB}(100,000,000.000$ times) total.
8 to 18 volts.
$1 \times 0.4 \times 0.2$ inches.
Input impedance: Adjustable externally up to 2.5 M ohms.

## CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

## APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies. oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

## sIMCLAR <br> IC-10

with IC-10 manual and 5 -year guarantee Post free.


## Project 60 an exciting alternative

The buyer of an amplifier today has a remarkably wide variety to choose from. It is unlikely that a purchaser would have real difficulty in finding a unit that met all his requirements, although the price might not be as low as could be wished. The only snags are that one's needs can change and that the technically correct amplifier may be physically inconvenient. If you are confident that there is an amplifier available, of the right size and price, which will meet all your needs for the forseeable future, then that is your best buy. If not, however, we can offer you another possibility which we believe to be an exciting alternative approach. That alternative is Project 60.
Project 60 is a range of modules which connect together simply to form a complete stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare with it in overall performance.
The modules are: 1. The Z-30 high gain power amplifier, which is an immensely flexible unit in its own right. 2. The Stereo 60 preamplifier and control unit. 3. The PZ. 5 and PZ. 6 power supplies. A complete system comprises two Z-30's, one Stereo-60 and a PZ-5 or $\mathrm{PZ}-6$. The power supplies differ in that the $\mathrm{PZ}-6$ is stabilised whilst the PZ-5 is not. This means that the former should be used where the highest possible
continuous sine wave rating is required. In a normal domestic application there will not be a significant difference between using either power unit unless loudspeakers of very low efficiency are being used.
All you need to assemble your system is a screwdriver and a soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly.
Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future. We shall shortly be introducing additional modules which will include a comprehensive fllter unit, a stereo F.M. tuner and an even more powerful amplifier for very large systems. These and all other modules we introduce will be compatible with those shown here and may be added to your system at any time.
Project 60 modules have been carefully designed to fit into virtually every known type of plinth or cabinet and templates provided enable you to position them. Only holes have to be drilled into the wood of the plinth and any slight slips here will be covered completely by the aluminium front panel of the Stereo 60 . The Project 60 manual gives all the instructions you can possibly want clearly and concisely.

# z-30 <br> <br> TWENTY WATT R.M.S. (40 WATT PEAK) <br> <br> TWENTY WATT R.M.S. (40 WATT PEAK) POWER AMPLIFIER 

 POWER AMPLIFIER}

The Z-30 is a complete power amplifier of very advanced design employing 9 silicon epitaxial planar transistors. Total harmonic distortion is incredibly low being only $0.02 \%$ at full output and all lower outputs. As far as we know, no other high fidelity amplifier made can match this specification, no matter what the price. Thus you can be utterly certain that your Project 60 system will do full justice to your other equipment however good it may be. The $\mathrm{Z}-30$ is unique in that it will operate perfectly, without adjustment, from any power supply from 8 to 35 volts. It also has sufficient gain to operate directly from a crystal pickup. So in addition to its use in a high fidelity system you can use a Z-30 to advantage in your car or a battery operated gramophone for your children, for example. These, and many other applications of the $\mathbf{Z}-30$, are covered in the Project 60 manual.

## SPECIFICATIONS

Power output-15 watts R.M.S. ( 30 watts peak) into 8 ohms using a 35 volt supply: 20 watts R.M.S. ( 40 watts peak) into 3 ohms using a 30 volt supply. Output-Class AB.

## APPLICATIONS

High fidelity amplifier: car radio amplifier: record player fed direct from pick-up: intercom; electronic music and instruments; P.A., laboratory work. etc. Full detalis of these and many other applications are given in the manual supplied with your Z.30.


Slgnal to noise ratio: 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
Signal to noise ratio. better than 700 B Unweighted.
Dlstortion:
$0.02 \%$ total harmonic
Z. 30

Ready built, tested and guaranteod, with 2.30 manual.

89/6
$\begin{array}{ll}\text { Input sensltivity: } & 250 \mathrm{mV} \text { into } 100 \text { Kohms. }\end{array}$
Damping Factor
Loudspeaker impedances 3 to 15 ohms
Power requirements: 8 to 35 V. d.c.

## STEREO SIXTY

PREAMPLIFIER AND CONTROL UNIT
The Stereo 60 is a stereo preamplifier and control unit designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout and great attention has been paid to achieving a really high signal-to-noise ratio and excellent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. The tone controls are also very carefully designed and tested.

## SPECIFICATIONS

- Input sensitivlties-Radio-up to 3 mV Magnetic Pickup- 3 mV Correct within $\pm$ 1 dB on R.I.A.A. curve. Ceramic Pickup -up to 3 mV : Auxillary-up to 3 mV . - Output-1 volt.
- Signal-to-holse ratio-better than 70dB.
- Channel matching within 1 dB .
- Tone Controls-TREBLE +15 to - 15 dB . at $10 \mathrm{KHz}: B A S S+15$ to -15 dB at 100 Hz .
- Power consumption 5 mA
- Power requirement-PZ. 5 or PZ. 6
- Finish-brushed aluminium front panel with black knobs.
- Mounting-on cabinet front by spindle bushes and adjustable brackets.



## STEREO SIXTY



## SINCLAIR POWER SUPPLY UNITS



PZ-5
30 volts unstabilised-sufficient to drivé two Z-30's and a Stereo 60 for the majority of domestic applications.

Price: $\mathbf{f 4}$. 19s. 6d.
35 volts stabilised-ideal for driving two Z-30's and a Stereo 60 when very low efficiency speakers are employed.

Price: $\mathbf{f 7} 19 \mathrm{~s} .6 \mathrm{~d}$.

## GUARANTEE

If at any time within 3 months of purchasing Project 60 modules from us, you are dissatisfied with them, we will refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for service thereafter.

## 'WATTS' THE NAME FOR RECORD MAINTENANCE


 Gramophone Record Maintenance and Stylus Cleaning Kit Designed for use on NEW records or records in new condition which are to be played with pick-ups requiring very low tracking pressures. The 30,000 finely pointed tips of the $\mathrm{Hi}-\mathrm{Fi}$ Parastat Brush pasitively explore every detail in the record groove to provide the high degree of record cleanliness necessary when

| STYLUS |  |
| :--- | :--- |
| CLEANER |  |
| Available |  |
| separately |  |
| complete |  |
| w it h |  |
| instruc- |  |
| tions. |  |
| Price | less. The cover pad in the lid of the case is provided for the <br> purpose of cleaning and activating the brush which when <br> enclosed within the case is kept at the correct level of <br> humidity required to control allstatic at the working surface. <br> Perfectly clean records must be played with a perfectly clean <br> stylus and an integral part of the kit is the new Watts Siylus <br> Cleaner which provides a safe and efficient method of <br> cleaning the stylus. <br> Supplied complete with instructions, 1 oz. New Formula <br> dispenser, Distilled Water dispenser, spare pad cover and <br> ribbons. Price $42 / 6$ plus $1 / 3$ P.T. <br> Replacements: 1 oz. New Formula dispenser $4 / 6$ Distilled <br> Water Dispenser $4 /-$ Pad Cover and Ribbons1/9. |

## 'PARASTAT'Reo Mk:IIA

## The original

A dual purpose record maintenance device. Keeps new records in perfect condition. Restores fidelity to older discs. Complete with 1 oz. New Formula dispenser and instructions. Price 45/-.
Replacements: Pad Covers 2/-each. Brush 12/6. Sponge Cover Pad $1 /-$. Brush 12/6. Sponge Cover Pad 1/
9 oz. New Formula Dispenser 4/6. HUMID MOP. Recommended for use in conjunction with the Manual Parastat and Preener. Cleans and conditions the bristles and velvet pads. Ensures correct degree of humidity at the time of use, Complete with spare sponges and instructions. Price 4/6.
Replaceménts. Set of Sponges 2/6.
'PARASTATIK'
DISC PREENER
(Pateni No. 982599)
Keeps new records like new. Expressiy designed for use with records which have not had previous antistatic treatment. Complete with instructions. Price 6/9. Replacements: Packet of Price $6 / 9$.
4 wicks $2 /-$.

All obtainable from your local specialist or direct: Dispenser 2/6.
 OUST BU C'Regd,
(Patent No. 877598) Automatic Record Cleaner. Easily fitted to any transcription type turntable. Provides a simple and effective method of removing static and dust while the record is being played. Surface noise and record and stylus wear is reduced, resulting in cleaner reproduction. Complete with \$ oz. New Formula Dispenser and instructions. Price $18 / 9$ plus $4 / 5$ P.T. Replacements: Nyion Bristle and Plush Pad 1/9. oz. New Formula

A GUIDE TO THE BETTER CARE OF L.P. AND STERED RECORDS

Completely revised. 48 pages, fully illustrated, providing all necessary information on Record Care. 2/6 Post Free.
TO CECIL E. WATTS LTD. DARBY HSE, SUNBURY ON THAMES, MIDDX. Please send (Post Free U.K. and Commonwealth)
Disc Preeners@6/9......Hi-Fi Parastats@42/6 plus 1/3 P.T. Dust Bugs @ $18 / 9$ plus 4/5 P.T................... 48 page Booklets @ $2 / 6 \quad$ Stylus Cleaners @ $5 /-$ plus $1 / 3$ P.T. | Replacement Parts:
| I enclose cheque/P.O.value f..................... (Do not send postage stamps)
Name
Address

## THANSFORMEHS

designed to customer's Own specifications for ALL APPLICATIONS UP TO 100 KVA. "C"' CORE, PULSE, 3 PHASE, TOROIDS, HIGH TEMPERATURE, ETC.

This month we are adding two new types of Transformers to our existing standard ranges.

1. THE 1200 SERIES

This series covers ISOVA Transformers and gives a voleage range up so 110 volts at various loads.
2. THE DB SERIES

These Transformers have a high VA density (approximately 2.5 VA per cu . inch) and cover a VA range up to 40VA.
Please write for further details.
Samples from our standard praduction ranges
*Low Voltage
$30-0-30 \mathrm{~V}$. 4A.
3126
28 V . IA., 28V. IA., 28 V . IA., 28V. IA., $30 \mathrm{~V}, 250 \mathrm{~mA} . \quad . \quad . \quad . \quad . \quad 4150$

* Primaries 10-0-200-220-240V.

20W Transistor Amplifier (W.W. Nov. 1966)
Driver
146 Mains
L.P. Filter, Chassis Mounting

156
70V \& 100V Line Matching
Fitted with terminal panel, taps at 0.5, 2, 4 and 8 W . into 15 ohms $9 /=$ each in 100 Lots Flying leads, taps at $\frac{1}{\frac{1}{2}} \frac{1}{2}, 1,2$ and $4 W$. into 3 ohms .. $7 / 3$ each in 100 Lots

Prices inclusive of postage and packing, each. for small quantities, cash with order, please.

HOWELLS RADIO LIMITED
CARLTON ST., MANCHESTER, M14 4GT 061-226 3411
WW-075 FOR FURTHER DETAILS


## 'TRI-BOARD'



The ideal "Breadboard" material for rapid construction of electronic circuits at the design and prototype stages of development programmes.
TRI-BOARD is supplied in Fibreglass which is suitable for cold punching or cutting. Board size is $7 \frac{1}{2}^{\prime \prime} \times 5 \frac{3}{8}^{\prime \prime} \times \frac{1}{16}^{\prime \prime}$ thick with 1 oz. copper A roller tinned finish is standard.
PRICE 15/- net per board.
Quantity discounts apply:
TRIO INSTRUMENTS LTD.,
BURNHAM ROAD.
DARTFORD, KENT.
Telephone: Famingham 2082


WW-078 FOR FURTHER DETALLS

WW- 077 FOR FURTHER DETALLS


## JES AUDIO INSTRUMENTATION

## Illustrated the Si453 Audio Oscillator

## SPECIAL FEATURES:

* very low distortion content-less than . $05 \%$
* an output conforming to RIAA recording characteristic
* battery operation for no ripple or hum loop
* square wave output of fast rise time
£35.0.0
also available
Si452 Distortion Measuring Unit
Si451 Millivoltmeter
* 20 ranges also with variable control permitting easy reading of relative frequency response
J. E. SUGDEN \& CO. LTD., BRADFORD ROAD, CLECKHEATON, YORKS. Tel: Cleekkeaton (0wr62) 2501


USED THROUGHOUT THE WORLD.
SANWAS
ACCURACY. EXPERIENCE OF 30 YEARS ENSURES ACCURACY
RELIABILITY. VERSATILITY. UNSURPASSED TESTER PERFORMANCE COMES WITH EVERY SANWA 6 Months" Guarantee. Excellent Repair Service

| Model P.IB |  | 6 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Model JP 50 | 510 | 0 | Model I-307HD | $f 12$ | 0 |
| Madel $\mathrm{U}-500$ | 73 | 0 | Madel $380 . \mathrm{CD}$ | 113 | 0 |
| Model 380 -vtr | 617 | 6 | Modelf-80TRO | C13 | 0 |
| Medela-303TRO | C10 ${ }^{10}$ | 0 | Model 430 ES | $t 19$ | 0 |
| Mode ATJ. | 111 | 6 | Madel Em. 700 | 651 |  |

pLease write for illustrated leaflets of these sanwa meters

## ENCAPSULATION -

low tool cost method for cylindrical coils and potting. Enquiries also for-

> REED RELAYS SOLENOIDS
> COIL WINDING TRANSFORMERS to 8 K.V.A. "MS" range

Knapps Lane, Bristol 5. 0272657228


## OXLEY INDUCTORS

Illustrated above are a variety of high quality examples of our work in this field.

The inductor coils are uniquely designed and feature a silver conductor fired to a low expansion glass.

The coils:-

$$
\star \text { resist shock }
$$

* resist temperature cycling
* have a minimum temperature coefficient
* have negligible frequency drift
* have low self-capacitance

If a unique, perfectly designed, characteristically perfect inductance coil is what you require why not contact our Sales Department.

## Enquiries to:

OXLEY DEVELOPMENTS COMPANY LTD.
Priory Park, ULVERSTON, N. Lancs.
Tel. ULVERSTON 2621 Telex. 6541
$O X L E Y^{\circ}$ ©

WW-082 FOR FURTHER DETAILS

W.H.M.

WOW AND FLUTTER METER
(R.M.S)

MODEL III

SYDNEY HOUSE, 35 VILLIERS ROAD, WATFORD WDI-4AL



WW-083 FOR FURTHER DETAILS

## TRANSFORMERS

COILS
CHOKES
LARGE OR SMALL QUANTITIES

SPECIALISTS IN

## FINE WIRE WINDINGS

MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS, ETC.
Vacuum impregnation to approved standards

## ELECTRO-WINDS LTD.

CONTRACTORS TO G.P.O., A.W.R.E., L.E.B., B.B.C., ETC.
123 PARCHMORE ROAD. THORNTON HEATH, SURREY
$01-6532261$
CR4.8LZ
EST. 1933

WW-0...........................................

## better baluns <br> Hatfield Baluns provide a simple and effective solution to the problem

 of matching unbalanced to balanced impedances of different values. Illustrated are two examples from the Hatfield range of RF Power Transformers, which includes $100 \mathrm{~W} .500 \mathrm{~W}, 1 \mathrm{~kW}$ and 3 kW types, all available on short delivery. These units are weatherproof, capable of being pressurised where required and completely resistant to corrosion. A wide range of impedance ratings is also available.The range is comprehensive and is backed by many years experience in the design and manufacture of RF Power Transformers and incorporates the newest developments for high efficiency and low inertion loss.

Ask for Folder B4/4 and for the latest edition of the Hatfield Short Form Catalogue.


Dept. WW, HATFIELD INSTRUMENTS LTD., Burrington Way, Plymouth, Devon Telephone: Plymouth 72773/5. Telex: 45592 Cables: Sigjen Plymouth SOUTH-EAST AS $\mid$ A-for prompt service and deliveries contact HATFIELD INSTRUMENTS (NZ) LTD., P.O. Box 561, Napier, New Zealand.


## CALAN TRACE SHIFTER C50ID

$\star$ A TRACE ( 9.600 MILLIMETRES LONG ON A 5 INCH TUBE!)

* A THREE DIMENSIONAL DISPLAY!
$\star$ VERTICAL COMPARISON OF SUCCESSIVE SCANS!
Add these facilities to your oscilloscope. They will help you to examine the functional waveforms of heart or combustion engine or for that matter any other long waveform phenomena.
Price $£ 68$ Export and Agency Enquiries Invited


# Calan Electronics Limited, 

6 Croft Street, Dalkeith, Scotland Tel. 031-663-2344

WW-087 FOR FURTHER DETALLS

## SPECIALIST SWITCHES

## are again giving

 the fastest switch service in the worldFROM THEIR NEW AND LARGER PREMISES IN CHARD, SOMERSET

Specialist Switches make Rotary and Lever switches, types H, DH, HC, and LO, to specification. There is one limitation (standard 2 in. long spindles), but this is not important when you are getting the fastest switch service in the world.

Delivery of 1-20 switches: 24 hours.
Up to 50 or so: 72 hours.
If you want around 250 or so: 7-10 days.

## Please note our address: <br> SPECIALIST SWITCHES P.O. Box 3, <br> CHARD, SOMERSET

Write for design charts and prices or TELEPHONE-CHARD 3439
AHUJA P. A. SYSTEM are manufactured in India's largest and most well equipped Plant. These are highly popular in over 25 countries on account of high quality and rugged construction and most competitive international prices.

> EFIUJA RADIOS, 13 - DARYA GANJ DELHI-6. (INDIAI

> Issued by Engineering Export Promotion Council Calcutta (India)


KONTAKT "Cold Spray 75"
For rapid and effective fault location
Non-toxic, non-inflammable, Cold Spray 75 is a chemically inert coolant capable of producing temperatures of down to - 42 centigrade. It can also be used to prevent heat damage during soldering processes, for the rapid freezing of small articles for biological and technical purposes and the prompt location of hairline cracks and other faults in temperature dependent components.

Other Kontakt products:
Kontake 60 and Kontake 61 for relay contact cleaning. Plastic Spray 70, transparent protective lacquer. insulating Spray 72.
Kontake WL. Spray Wash.
Antistatic Spray 100. Antistatic agent for plastics. Politur 80. Polish and cleaner. Fluid 101. Dehydrating Fluid.

Details from UK distributors.

## SPECIAL PRODUCTS DISTRIBUTORS LTD.

81 Piccadilly, London, W. 1
Tel: 01-629 9556
WW- 090 FOR FURTHER DETAILS


6 mm tubular midget
flange $\mathrm{S} 6 / 8 \mathrm{cap}$
over-all length 14.5 mm .

It is one of the many Vitality Instrument and Indicator Lamps that are made in an unusually large number of types, ratings and sizes. It may be just what you need for an existing or new project. If not, another from the hundreds of types and ratings detailed in the Vitality Catalogue may well be.
*Many a product owes its success to the intelligent addition of an indicator light.

## VITALITY BULBS

VITALITY BULBS LTD MINIATURE AND SUB-MINIATURE LAMP SPECIALISTS BEETONS WAY, BURY ST.EDMUNDS, SUFFOLK. TEL. BURY 2071.S.T.D. 02842071 A member of the General Instrument Group WW-092 FOR FURTHER DETALS


JOHN SMITH LTD.
209 SPON LANE - WEST BROMWICH - STAFFS. TEL. 021-553 2516 (3 LINES) WOODS LANE•CRADLEY HEATH - WARLEY - WORCS. TEL. CR 69283 (3 LINES)

WW-091 FOR FURTHER DETAILS


## Ballistics

Computers by Westinghouse. Nine servo amplifiers with associated motors. Brand new in sealed containers. £95, delivered.

punches, readers, yerifiers and teleprinters AT REALISTIC PRICES TO EDUCATIONISTS. MOBILE SHOWROOM CALLS OM REQUEST.

Automatic
Numbering
Machine by
Western
Union.
Four
Uniselectors and 30 neons. Ideal amateur computer. Application leaflet. £12.10s. post free.

CONVERTOR/BATTERY CHARGER. Input 240 F 50 c/s, output 12 v 5 amp DC. Input 12 V DC, output 240 v
AC. 170 watt max. With fuse and indicator lamps Slze AC. 170 watt max. With fuse and indlcator lamps. Stze
$9+\times 10 \times 4$ tin. Weight 191 b. An extremely compact unit that will give many years reliable gerifice. Supplied with plug and lead. Only \&4/10/-. P. \& $P$. $15 /$ /- extra.
As above-fully serviceable-perfect interlor but solled As above-fully serviceable-perfect interlor but solled exterior cases. ©3. P. de P. 15/-.
C.M. TUBES. Brand new. G24/G38/G80 at $27 / 6$ ea. G53/1, brass cased. 66 ea.
PHOTOMULTIPLIERS. EMI 6007 X at $\mathbf{t 8 / 1 0 / - ~ e a . ~}$
TRANSISTOR OSCILLATOR. Variable frequency $40 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{kc} / \mathrm{s} .5$ volt square wave o/p, for 6 to $12 v$ new. Boxed. II/6 ea.
TIMER UNIT. Standard primary tranaformer giving 18V 4 amp., G.E.C. bridge rectifier in bench or wall mounting case $10 \times 10 \times 51 \mathrm{n}$. Complete with internal
one second timer sub-chassis. Checked sind tested $£ 2 / 15 / 0$. one second the
COUNTENAY TIMER sub-chaswis with 2-12AU7. transistor. relay etc. Requiring 12V. A.C. or D.C. to operate $22 / 6$.
50 Watt A UDIO AMPLIFIERS by GHEC-4KT 60\% $4 / 8$ or high impedance inputs 15 ohm out. Standard mains in: meteren output etc. No electrolytics. Absolute reliability 220 onty. Carr. 30/*:
AMPLIFIERS. Compact unit by Parmeko rated 17 watts. capable of double. $2-\mathrm{KTB} / 2 \mathrm{B254M}$; ECC81;
2-EF86: 5 U 4 , matching to 15 ohme. IILg impedance
 carriage.
Omron/Schrack octal belays blug-in relays. 2 pole c/o SA. 6 F only, Brand new. Boxed. $12 / 6$ ea.
G.E.C. 4 pole c/o $6 / 12 \mathrm{v}$ oneration 180 ohms. Platinum contacts, Brand new. Boxed $12 / 6 \mathrm{ea}$.
Min. VARLEY type VP4. 4 jole c/o 430 ohm or 15 K/ohm. Brand new 6/6 еа.
Min. SIEMENS. 4 pole c/o. 24 V operation. Brand new 8/- ea.
8.T.C. sealed 2 pole c/o 48 V . $2.500 \mathrm{ohm} 48 \mathrm{v} .3 / 6$ ea. 12 V
CARPENTERS polarised Single pole c/o 20 and 65 ohm coll as new, complete with base $7 / 6$ ea. Single pole 10 680, 1,110 and 1.570 ohm coll, As new $6 / 6 \mathrm{ea}$.

COLVERN BOTENTIOMETERS $100: 250: 500$ ohms: $1: 2.5: 5 ; 10: 25 ; 50 \mathrm{k}$ all at $2 / 6$ ea. Npecial Brand new MORGANITE 250 K 1 in . sealed. Normal price INSTR UMENT
INSTRUMENT $3^{\circ}$ Colvern. 5: 25: 50: 100 olmms:
2.5: 25 K . All at $7 /-$ ea. .5: 23 K . All at $7 /$ ea
TRIM POTS. Palgnton-solider lugs 5,10 \& 25 K at
T/6 eat. Plug. $10: 20: 50 ; 100 ; 200 ; 250 ; 500$ ohms: $2.5 ;$ $7 / 6$ ea. Plne $10: 20: 50 ; 100 ; 200 ; 250 ; 500$ ohms: $2.5 ;$
25 and 50 K at $15 /-$ ea.
DARSTAN-preset-sealed t $^{*}$ din. I high. 1 : 2 and 5K 2/HIGH RESOLUTION 25K 80 turns. Complete with knob 6/6
 GENERAL CONTROLS, 100 K Ten turn. Brand new.
ALMA precislon realstors 100 K ; 400 K ; and $008 \mathrm{~K}-0.1 \%$ /6 ea: $3.25 \mathrm{~K}-0.1 \% 4 /-$ ea
DALE heat sink reslstors, non-inductive 50 watt. Brand
new. 15 ohma- $6 / 6$ ea. $; 9.2 \mathrm{~K}-5 /-$. Excellent dummy load

## CAPACITORS

ERIE feed througlı ceramicons 100 pf 9d. ea. Concentric TRIMMER $3 / 30$ jf. Brand new I/6 en.
DUBILIER Electrolytic. 32 mfd 350 v D.C. Brand new 1/9 ea.
EHT 1000 pf 20 KV working, ideal transmitter blocking capacitors $8 / 6$ ea.
VISCONOL EHT. Brand new $0.00215 \mathrm{kV} 8 / 6$ ea:
E.H.T. $7 . \mathrm{BkV}^{\text {working }} 0.25 \mathrm{mfd} 8 / 6$ ea.; Brand new 5 kV 0.25 mr i $10 / 6$ ea.: lokV 0.05 nif 76 en

GEARED MOTORS 240v 50 c/s synchronous. Geared
down to 60 rpin. Brand new $37 / 6$ eit. $\mathbf{P}$. \& $\mathbf{P}$. $7 / 6$. DIODES 1N914. Brand new I/3 ea.: $12 /-$ doz.: $44-100$ : 625-1.000
PHOTOCELL equivalent OCP $712 / 6 \mathrm{ca}$.
BURGESS Micro Swleches Vs 5030. Brand new 2/6 ea. BULGIN panel mounting Lamp holders. Red. Brand new $2 / 3$ ea.
PLUGS \& SOCKETS. New \& ex. eq. Plessey ; Paignton Cannon: Electromethods; Belling \& Lee; Bulgin etc. etc.
MINIATURE SPEAKERS 15 ohm 100 MW 2in. dia-
meter. Brand new $10 / 6$ ea. meter. Brand new 10/6 ea
TRANSISTOAS BC 114; BC 116. Ex brand new equipment. Guaranteed jerfect. Good lead length 2/- ea. Also RT Microlokic L 9814 I.C. 8 lead TO-5 can, Fan out
16 duput nand nor gate, capable of $\mathrm{F} / \mathrm{F}$ action at $20 \mathrm{mc} / \mathrm{s}$ or non inverting gate or gate + invert. Good lensth leads. Guaranteed perfect $7 / 6$ ea,
CASH WITH ORDER

## TEST GEAR

| E.M.I. | $1 / 1$ |
| :---: | :---: |
| E.M.I. | WM $2 \mathrm{DC}-13 \mathrm{mc} / \mathrm{s} \mathrm{E35}$ |
| E.M.I. |  |
| N | N |
| N |  |
| N | N |
| N |  |
| SOLARTRON |  |
|  |  |
|  |  |
| All carefully checked and tested. Carriage 30/- extra. |  |
| TF 956 Audio Frequency Watmeter $\mathbf{f} 15$ Carr, 10/ TF 888 Magnification Meter 645 Cart. $£ 1$ TF 7 A2C UHF Generator 640 Carr. \& 1 |  |
| M | M Generator $1.5-200 \mathrm{mc} / \mathrm{s}$ E 120 |
| TF 369 N 5 S Impe | pedance Bridge $\mathbf{6 5}$ Carr. 30/. 1 (ienerator, Serviceable. Clean Excentional condition 630 Carr. |
|  |  |
|  |  |
|  |  |
|  |  |
| TF ${ }^{\text {T2888/2 }}$ |  |
| TF 781 B Carrier Deviation Meter 645 Carr. |  |
| Pulse generator POS $100 \mathrm{C} 50 \mathrm{c} / \mathrm{s}-1 \mathrm{mc} / \mathrm{g}$ © 25 Carr. $£ 1$ Taboratory amplifer AW851A $15 \mathrm{c} /-350 \mathrm{kc} / \mathrm{s}$ \& 35 |  |
|  |  |
| Stabilised P.U. SRS 151A 620 Carr. 30/- <br> Stabilised P.U. SRS 152 E15 Carr. 30/- <br> Stabilised P.U. AS 516 \& AS 517 C3. and E6 Carr. 10/ |  |
|  |  |
|  |  |
|  |  |
| Generator CT 3682-225 me/s $\mathbf{E 5 0}$ Carr. 15/- <br> Generstor $50 \mathrm{kc} / \mathrm{s}-80 \mathrm{mc} / \mathrm{s}$ \& 16 Carr. $15 /-$ <br> Testmeter No. 1 f 14 Carr. 15/- <br> Electronic Testmeter CT 38. Complete 118 Carr. \&1 |  |
|  |  |
|  |  |
| SPECIAL. Mulkimeter Cr471A. Battery opera. ted, fuily transistorised. sensitivity 100 M ohin/V. measures a.c./d.c. voltage $(12 \mathrm{mV}$ - 1200 V жrales. |  |
|  |  |
| $3 \% /+$ - $2 \%$ f.s.d. $)$ a.c./A.c. current ( 12 microA- |  |
| 2 oun-120M ohm |  |
|  |  |
| 0 MHz ; $40 \mathrm{mV}-4 \mathrm{~V}$ up to 1000 MHz ). Brand rew |  |
| 471 B , as above by G. \& E. Bradley E 75 Carr. 3 |  |
|  |  |
|  |  |
| Transistorised Nucleonic Scalers with adjustable |  |
| diseriminator. 6 ineters display $0-9$ giving count of 10 to the 5. In a new condition $E 30$ Carr. $15 \%$ Wide Range Capactor Bridge 625 Carr $13 /$ |  |
|  |  |
| e and Pulse Generator type 1873 ¢ 25 Carr |  |
| Valve Millvoltmeter type 264, 3MV-1V $\mathbf{6 2 0}$ Carr. $\mathrm{f1}$ Counter type 865. 6 decades. Bright Vertcal display. Klystron Power Supply 698 B £ 25 Carr. $£ 1$ |  |
|  |  |
|  |  |
|  |  |
|  |  |

SIGNAL GENERATOR/WAVEMETER type B1. 00 to $160 \mathrm{me} /$ s. Bultt in crystal niarkerg. Standarti mains
input. Excellent condition $£ 12 / 10 /$. Carr. 30/. input. Excellent condilion $\mathbf{6} 12 / 10 /$.. Carr. 30/.
SIGNAL GENERATOR Lype CT 478 by W. H. sanders. Fren. range $1.3 \mathrm{kme} / \mathrm{s}$ to $4.2 \mathrm{kmc} / \mathrm{B}$. Output
power calibrated dbb. New E 40 . Carr. $£ 2 / 10 /$. AM/FM OSCILLATOR TYye 1 CT $212.85 \mathrm{ke} / \mathrm{s}$ to

HEINZ GUNTHER AM/FM Generator $9-200 \mathrm{mc} / \mathrm{s}$. SIGNAL Generator CT 53. Complete with leads. Good condition. $£ 10$ Carr. 15/
FREQUENCY Meter BC 221. $617 / 10 / 0$; with built-ln stab. P.U. $\mathbb{E 2 2 / 1 0 / 0}$ Carr. $15 /$. With Charts.
DIGITAL VOLTMETER type BIE 2114. 1 mV to
MIC-O-VAC type 22 (CT54) Volts: Current: Ohms. D Cos $200 \mathrm{mc} / \mathrm{m}_{\text {with }}$ prole leads etc. As new $£ 8 / 10 / 0$ P. \&i P. 10/- Plus in MAINS PACK for Mic-ovac type

VIBRATING REED ELECTROMETER IYDE N 572 by ECKO. Ranke 10 to the -14. Max sensitivity FSD for 1 of 0.03 Micro-microampis. 25 en. Carr. £.
RACAL FREQUENCY COUNTERS
8 BA 204 decades $100 \mathrm{kc} / \mathrm{s} £ 20$ ea.
SA 216 decades 10 me/s $£ 45$
SA 28 as SA
$30 \mathrm{me} / \mathrm{s}$ f 65 ea.
21
GRAUMONT.KALEE Flutter meter type $504 £ 35$

GENERAL RADIO Precislon Capacitor type 722. 50 Df to 290 pf . 2 S Model 222 F ates
Ministure SCOPE type 1200B. Ideal TV servicing etc. Checked and tested 610 P. \& P. \&1
ADVANCE Stanal Generator type D1. $2 \mathrm{mc} / \mathrm{s}$ to 190 $\mathrm{mc/a}$. Slne and square mod. With original charts. Ercellent condition $£ 12 / 10 / 0$ P. \& P. \&
SERVOMEX. Stablized D.C. Power supplies trbe DCs. 0.30 Volts, $0-7$ amps. Separate voltage and current meters. $£ 35$. Type 38 , bench mounting, $0-15$ Volts,
$0-2.5$ amps. Separate voltaze and current meters $£ 25$ TRANSISTOR Stabilised Power Unit. $48 \mathrm{Br}_{\text {, }} 4 \mathrm{amp}$. Manufactured by E.M.I. Open chassls. Brand new Highest quality. Size 10 ) $\times 3$ $\times 6$ fin. his. 66 ea
RACAL stablizizer unit 24V. raw DC in 20 volts lamp stab and $12 V .5$ MA Zener stab out. Brand new conditlon.
Size $5 \times 3 \times 6 \mathrm{in}$. Complete with circuit diagram. $35 /-$ ea. MAINS FREQUENCY METERS with large 270 deg. Dial callbrated 45 to 65 cycles $4 / n$, diameter. In original

19in. Rack Mounting CABINETS 8ft. hish aft. deep. Side and rear doors. Fuly tapped, complete with base
and wheels. $£ 12 / 10 / 0$ (arriase at cost. V.H.F. RECEIVER TYPE 7IS by BCC Complete.
testerl and working (Less crystai). 12v DC Input. Ideal
conversion 2 snd 4 metres. In goorl condition. Supplied conversion 2 and 4 metres. In goorl condition. Supplie
with conversion data. Only $\in 3 / 10 / 0$ P, \& P. $7 / 8$ ea. MULLARD Transistorised Analogue to DLital Con-
vertor Model I, 281 . As new. E20 Carr. 15/vertor Model I. 281 . As new. E20 Carr. $15 /-$
SUNVIC DC chopper Amplifler type DCA 1. Superb condition. E22/10/0 ea. Carr, 20/
SEQUENCHAL TIMERS 8 individual timer circuits proceases, etc. Standard mains invut E 25 Carr 25/.
Ex- SOUTHERN ITV CAMERA with image orthicon tube and single lens. Mounted on tripod. Sold as seen. $£ 40$ ISOLATING TRANSFORMERS 240V in 240 V 7 KVA out. as new. 225 eb. Carr. ع2/10
DESK Telephones. Current type. 3 wire red. green, white. deal extensions etc. An new 43 ea.
MODERN Transistorised 10 line automatic desk ton exchange. Complete with 10 A.E.I. Telephones, standard
G.P.O. type dlailing to call any other lime. Exchange size G.P.O. type dialling to call any other line. Exchange size $16 \times 5 \times 6 \mathrm{ho}$
Complete set. 655

## METERS

ELLIOTT Portable Reflecting Voltmeter. $8^{\circ}$ dlal scaled 0 to 12.5 Ranges $12.5-25-37.5$ Frequency range $D C$ to $2.5 \mathrm{kc} / \mathrm{s}$. Accuracy 0.5 fed. Adjustable feet, bullt In wood case. 220 P. de P, 15/.
EHT ELECTROSTATIC Emest Turner etc. 0.750 V C2 ea.: 0-3.5 KV ¢2/15/0 en.; 0.5 KV ¢3/10/0 ea.; 0-7.5

TAYLOR 100-0-100 Micro amp scaled size $4 \times 2^{\circ}$ with internal lamp scaled 6-0.6 $1 / 10 / 0$ ea.
GRIFFIN \& GEORGE $3^{\circ}$ round in sloped open ended crase with terminnls 3 types $0 / 20 ; 0 / 100$ and $0 / 250$. Al
$50 \mathrm{c} / \mathrm{B}$. 1 ea.

TRANSFORMERS. All standard inputs.
amp and $12 v$ i amp. Sep. Windiugs, $18 / 6$ ea.
$18 v 6 \mathrm{amp}$ and 12 v i amp. Sep. Windings, $18 / 6 \mathrm{ea}$.
 $350-0-35075 \mathrm{~mA}, 5 \vee 2$ amps $\times 2,21 /$ ea.
Gardners $6.3 \mathrm{v} 2 \mathrm{~A} ; 6.3 \mathrm{v} 1.5 \mathrm{~A} ; 6.3 \mathrm{v} 0.1 \mathrm{~A}$. Size $3 \times 1 \frac{1}{8} \times 4 \mathrm{jin}$. As new. 14/- ea.
Gardners. Potter. Multi $6 \cdot 3^{\circ}$ combine to give 48 v at
4 nings or 6.3 at 45 A . With $350-0-350$ at 50 mA . E2/10/ eal
Parmeko/Gardners. Potted. $475-60-0-60-475$ at 160 mA ; Parmeko/Gardners. Potted. $475-60-0-60-475$ at 160 mA ;
geparate winding $215-0215$ at $45 \mathrm{~mA}: 6.3 \mathrm{v}$ 5A: 0.3 v $0.75 \mathrm{~A}: 5 \mathrm{v}$ 3A. As new, $£ 3$ ea.
Gardners 400.350.0-350-400 at 250MCA: 0/4/6.3v $4 \mathrm{amp} \times$ 2: 0/4/6.3 2 amp; $0 / 4 / 53.5 A$. In origimal boxes. $64 / 10 /-$
tinc. post. Gardiners 2 kV 10 MA . As new, $£ 3$ incl. postage. Gardiners 2 kV 10 MA and 4 volta $\times 2.54 / 10 /$ eatage. postase.
Parmeko 6.3y at 2 amp $\times 4.22 / 6$ ea.
Parmeko b5v 1 amp. Separate $0-18-24 v$ at 0.5 amp. 30/- ea. Gard/Parm/Part. $450 \cdot \mathbf{4 0 0 - 0 . 4 0 0 - 4 5 0 . ~} 180 \mathrm{MA}$. $2 \times 0.3 \mathrm{v}$. 3 ea.
E.H.T. Brand new 5kV 5MA with rectifer heater wind
ing. Size $3 \times 3 \times 3$ inn. 27/6 ea. ADVANCE Constant Voltage Trans. 6 volta 50 watt
 Gardners 4 V 80 amp. Brand new $£ 1 / 10 / 0 \mathrm{incl}$. postage
3 for $£ 3 / 10$ incl. postake. Gardners 5 v 30amp. Brand new $\mathbf{6 2}$ ea. Incl. postage CHOKES. $5 \mathrm{H} ; 10 \mathrm{H} ; 15 \mathrm{H}$ : up to 120 mi . $8 / 6 \mathrm{ea}$. Uf
 requirements, please. 3/6 ea, DPDT twice. brand new $6 / \%$ heavy duty DPST brand new $6 /-$ en.
PRECISION continually rotarable stud switches.
Single pole. 80 way, can le stacked if required. $£ 3$ ea. PRECISION rotary stud switches 2 pole 12 W size $2^{\prime \prime}$ sq., $t^{\prime \prime}$ shaft. $E 2 / 10 / 0$ ea.
Min. SEALED 4 mole 3 way and 3 mole 4 way rotary
switches. $t^{\prime \prime}$ shaft if dla. $\times y^{\prime \prime} 10 /=$ eb.

FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

22 SUN STREET • READING • BERKS
Off Cumberland Road (Cemetery Junction)
Tel. No. Reading 65916 (9 a.m. to 10 p.m.)

## ELECTRONIC EROKERS

MEASURING INSTRUMENTS AND RECORDERS

| © NEW Evont Recornter, 6 in. Chart width. Avall. able in wide range of chart ppeeds. Rack mounted £78/10/0. Case to sult extra. |
| :---: |
|  |  |

NEW AMERICAN




DER SP 20 Series Oeneral Purpose Single Pen potentlometric in-
etrument for continuetrument for contlnu-
ous recording for any Laput signal from 0 forav D.D.C Buitable photometer and other labormiory Inatru
B. $4 \mathrm{~cm} / \mathrm{mln}$. Linearity mente. Chart apeed 0.5 to $8.4 \mathrm{~cm} / \mathrm{min}$. Linearity
$\pm 0.25 \%$. Fully tranaintorised. Chart width 200 mm . Iuput lmpedance 10K ohrus max. Avallable 8.P. 20 Plain Linear, S.P. 21 Fiat Bed. B.P. 22 Linear/hag From \&135 each. P.


Portable 1,2 and 4 channel pen recordere by Kelvin
Eughes. General purpose recorders providing clear instantabeous and permanent. recorde of phenomena
with comparatively bigh rates of chatige. The With comparatively high rater of chatge. The
tornon-strip suapenslon of the moving-coll rendern
the instrument tmenune to the effects of vibration the instrument mmune to the effects of vibration
and accllerstlon.
Bix
 to $100 \mathrm{c} / \mathrm{e}$. Single pen with amplifter £88: ${ }^{2}$ pen
recorder fis. 4 pen with ampliter 2149. Alao


## ULTRA VIOLET RECORDER 12 Ch annel

 NEP 1050 with 6 galvanometers $£ 280$.ULTRA VIOLET PHOTOGRAPHIC RECORDER 12 Channel mirror Galvanometer Honeywell 1000 mith 6 galvon £280. 24 Channel Silemmic Recorde
menta $£ 325$. Carriage extra.

E H T INSULATION TESTER From 1 . 5 KV AC. and D.C. Complete with probes.
New equipment. Price $\mathrm{C} 5 / 10 / 0$. Carr. $2 / 10 / 0$.


Specitication. Type: Morlng Coll, D.C. Range
0-5 amp. D. . Chart Width:




POWER SUPPLIES
AIRMEC 698B KLYSTRON POWER SUPPL
Rack mounted (19 in.) Rack trounted
volts from 1.0 to 2.4 li. Mains operated. Cathode





ADVANCE TRANSISTORISED DC POWER UNITS


## METERS

Ln. dia. mounting A.C. voltmeter 0-300 \% 4 . 81.15.0. Carriage 6/-. Ein. Wilo Voltmeter in woode precision A.C. Carriage D.
 INDICATING MEASURING
AMPLIFIER PR 7410
Sultable for ribration and frequency analyais
Prequency
respones $10-1,000 ~ H z$.
©45
BRAND NEW S.E. LABORATORIES TRANSDUCER complete with encapwulated mpliner/demodulato requency D.C. -60 e.p.a.
Available in the following rant
BE. 50 . 8 E 50 or 8 E 165 A .




COMPUTER AND PERIPHERAL EQUIPMENT
 Ferrite core memory planes with
 ing exhibit in the demonstration of ${ }^{2}$
computer. Mounted on plastion computer. Mounted ${ }^{\text {on }}$ platio
material. frame $5 \times 8$ in Conalating of matices $40 \times 22 \times 4 \times$ conces each
one individually one indirydualy a addressable sid Renge and Inhlibl wires. E8.10.0.

## MULLARD MATRIX

CORE STORE STACKS
A.W. 5105 ylaneas $8 \times 18$ cores/per
$£ 12 / 10$ £12/10
A.W. 53420 plantes $04 \times 0$

- planes 32 $888 / 10$
 $\begin{array}{ll}\text { Plugle plane } 40 \times 25 \times 4 & \mathbf{8} 8 / 10\end{array}$ Plexi-writer 7 hole punch and key-.
ह198/10
MEMORY STORE M. M. 1044 complote with logio cirn-
cuita mounted in Imhor cabinet $£ 400$ COMPUTERS Burroughs E 201

with 1 K store, in full working order Complete with pper tapp punchere, card-periphery:
granmiles
avallable
Numeroun
fictuding $\underset{\substack{\text { pro- } \\ \text { tent }}}{ }$ prirrammee, Full supporting literan
fure. PRICE ON APPLCATION


## SYNCHRONOUS

MOTORS




9 TRACK 1 is. Record/replay heads with aprocket drive, driven byiminating aligroment problems. This can be fitted to any suitabie type of transport system. Price e8.10.0. Carriage 13/-

7 TRACK DIGITAL MAGNETIC TAPE STORAGE DECK
These machines originally expcomputer, are mult-track
recording unith. Ideal for data storase. Record and Replay beads encased li one common unit. Low resithance heals
 copplete with vecuum Assembis. Finithed in in bush aluminiuum and matt-black. Size 27 in. $\times 26$ in. $\times 8$ in. Weight 90 ib
Price £72.10.0. Carriage extra.
MODEL 72 MAGNETIC TAPE DATA
 8 channel reade write heads.
Can be used ro reonrd aniy
6 bit code. Data can be read ward direction plus giving ing and storing lnstruction nignals. Recording denslty
250 characters per inch. Tape speed 100 in. per
second, price $\mathbf{~} 180$. Excel. lent cobdthion.

1 17 TRACK
head complete with replay Little uned. Price \&12.10.0

BRAND NEW Greahatil Lion 1 in. track record/replay hemin. quality. Cont $£ 100$ plus inent. $30 /$-. P. \& P. $3 /$-.

TAPE PUNCH MODÉL 257 HOLE A multiwire tape punch designed for general application involving the conversion of parallel wire electrical tinpulses
into punched papertape at 33 charactera per Becond. Unit completely sell-contalined
digral auppliea. Price $£ 45$.

HOLE NON PARITY TAPE PUNCH New condition $£ 45$.

LOW SPEED 7 HOLE TAPE PUNCH 80 characters per econd by well-knowa manufacturer, Price $\mathbf{2 4 5}$.

TELETYPE 8 HOLE PAPER PUNCH MU27 PRICE 475
Also svallable 5 hole punch BRPE2 an sbove. This model
interchangeable heads. Complete with spooler. Price $£ 35$.
HIGH SPEED 5/7 HOLE OPTICAL READER 20 charactera per aecond. £19.10.

## CARD READERS

$\left.\begin{array}{|c}80 \text { column } 1500 / 80 \text { model, punch } \\ 80 \text { column } 1400 / 80 \\ \text { model }\end{array}\right\} £ 325$
Excellent condition.
HOLLERITH 80 COLUMN CARD PUNCH TYPE HO29 \& VERIFIER H129 6225.

DECODER 4 DIGIT READOUT
Can be uned in constructing frequency counter or Digital
Io NOR gates £19.10.0. Circuits supplied with Decoder.

TRANSFER CASE


For sending data by personal carrier. GPO poat, paanenger train, etc. ideal.
sultable for deapatchling tape $20 /-$.
P it EICHNER 8 Hole Punch E49/10/0.
EICHNER 8 Hole Reader 629/10/0.

CANCELLED EXPORT
ORDER 90 Column eard sorter and punch
type $425 / 0$ price on sppllication. SPOOLERS $1^{\circ}$ and $1^{\circ}$ Both hand and motor drisea a vailable
at 83.0 .0 and $£ 5.0 .0$ respectively

## BRAND N SPOOLER

Subtable for 1 ln ., : in a and $\frac{\ln \text {. tape }}{}$

5" TAPE PUNCH
Sultable for muchlne control complete
with 50 reels of tape $£ 35$ (1)


## LOW COST ELECTRONIC AND SCIENTIFIC EQUIPMENT AND COMPONENTS

CONTINUOUS TAPE CASSETTE
 Buitable for sleep-learn-
ling, teachlıg programmen. iprogranming programmén, telephone insuwering eto.
Coraplete with replay/recond Complete with replas/rocord bent. $\frac{1}{}^{8}$ tape $t$ in in track. Speed $31^{-}$per sec. Length of
tape 88 feet. but will hold tape 88 feet, but will hold
three times thla Amount.
230 V . 50 Hz supply.

802D DIGITAL DESK COMPUTER Complete with puaches and reader. Compatible
for 80 columps punch card sytem. Storage magnetic core 1,020 . word of 33 binary bits each
plus 4 wordn or 6 ordera. \&ultable for all types of work. Price on appllcation

VEEDER ROOT DIGIT COUNTER
Suitable for counting all
kinds of production runn kinds of production runn,
bualiness machineoperation. Mechanleaily driven Type
KA1337. Reset KAlancaly Reset manual
knob. Ex-equipment but knob. Ex-equipment but
new condition. Bpecial price 25/- plun $5 / .{ }^{\text {spectal }}$ p. $\&$ p.


MINIATURE
SOUARE COUNTER SDIGIT by Veeder Root. Rotary
ratchet type, addy 1 count
for euch $36^{\circ}$ nhat $9 / 6+2 / 6 \mathrm{p}$. of p .

HI-SPEED QUICK RESET ELECTRO MAGNETIC COUNTERS
Puah button reaet 6
digits. 48 v. D.C. 3.5
wata. 20 counts per
secoud. Bie $3.875 \times$
2.625 in. Pauel mount-
ing. Lint
pr. Our


6 DIGIT ELECTRICAL IMPULSE COUNTER With electrical and mechanleal resot.
Counter driven by,
110v D.C. 4.400 ohme 110v D.C. 4.400 ohms

 other to give vertica


REPEAT CYCLE TIMERS
Thene timers repeat a set cycle of switching opern-
tlona via a cam and micro awitch, for us long
wh the raotor is energised. un the rootor is emergised.





## UNISELECTOR

8 and 4 Banka, 25 contact per hank, 2 setn of wipers
2 in . radus. Complete wleh surge capmeltor. $25 /-$ and $45 /$ - reapectively.

## MINIATURE DIGITAL DISPLAY

operntes o rear projection
6.3 pilot lamp.
The lamp pro
jects the correa
end pondlage divitrea- on the condensing

on to the viewing screen at the front of the undt. 3i ox. Character sire in. bikh, 0.9 with 8 right
hand decimal poiat and degree. Avalable to apecial
order, wordsand ather order, words and other chaructern or colour, st cost of
artwork or plates. Liat price 6 gns. Our price $49 / 6$

LOW OHM SAFETY METER
12 malli-amps 6 ohma, nultable for caling circuis

## MOTORS

HYSTERESIS REVERSIBLE MOTOR Incorporaning two colla. Each coll when energlied


HIGH TORQUE INDUCTION MOTOR. $3-30$ oz fioch. Available in the following


LOW TORQUE HYSTERESIS
MOTOR MAZ



HYSTERESIS CLUTCH MOTOR With tanegral elutch allowiug the rotor to drop
out of enfagement with the gear trin, thereby




high precision mains motor

 EA.10.0 enck. EL.s.0 postage and packing.
OSCILLOSCOPES

camer res. ges








1200 C stroboscope for meanintag rotational
apeed
 CARBLAGE: $30 /$

## UNUSED MINIATURE MILLION MAGNETIC

ype N.S. 138916 write and 16 read heads 256 trach maknetic torage drum. Each track at 600 r.D.m. Holds 1024 bits ( 32 words of 32 bits . Total storage 250,000 bita. Suitable for many data storage problema. $8^{\circ}$ high, $10^{\circ}$ dis., $21^{\circ}$ base. £280, cart. extra.
A.F. GENERATOR TYPE H MODEL I. High impedance, output from 20V. R.M.8. to 200 High impedance, ourpat Rome $15 \mathrm{c} / \mathrm{m}$ to sokc/a.
malero votio. Frequency Range
Distortion lean than $1 \%$. Bquare wave output 800 PULSE AMPLITUDE ANALYSER E105

ALL ORDERS ACCEPTED SUBJECT TO OUR TRADING CONDITIONS A COPY OF WHICH MAY BE INSPECTED AT OUR PREMISES DURING TRADING HOURS OR WILL BE SENT ON APPLICATION THROUGH


GENERATORS
SIGNAL GENERATOR
 Output Voltage (maximum), 200 milli-volts $\pm$ 2db. Output imperiance 75 ohms. Mark/apmee Ratio $80 / 50$ on square
Price e120. Packing and carriago SIGNAL GENERATOR T.F. S17Fh Sine Wive, Bquare Wiave
Generalor. Prequency Range: $120-300$ M. C/s. Auxiliary 18-58 MaR. e/n. Output
Voltage 0.2 Voits. Output impedance 75 Ohne. 0.2 Voils. Output impedance MARCONI T.F. $144 G$ Cequency Range 8 A k.ce/s. $25 \mathrm{Mc} / \mathrm{m}$. Output impedance 1 microtroft. 100 milli.
volt, 10 ohma. 100 milli-vole to 1 volt. PULSE CENERATORS
PULSE GENERATORS
Modei 101 Repetition rate $10 \mathrm{~Hz} \cdot 10 \mathrm{MHz}$. Model 101 Repetition rate $10 \mathrm{~Hz} \cdot 10 \mathrm{MHz}$.
Doloy $30 \mathrm{n}-10 \mathrm{mb}$ neck. Out put 10 V . Into 50 ohma. 295.
SQUARE WAVE
GENERATOR Load inupedince 75 ohms.
0.19 rolts into 2000 ohmma.
Rise time from 30.50 Mill micro seconds at 1 meg. Cycle. 865 .
MARCONI VALVE VOLTMETER TF 428 B// $10 \mathrm{Kc} / \mathrm{s} / 3$ Frequency response on probe $10 \mathrm{Kc} / \mathrm{J} / 3-$
100Me/s. Five separate Voltage Ranges.
Overload Protection 100-250 A.C.I.P. Input im o Acc. $\pm 2 \%$ or 00.2 V . Size
$10 \times 16 \ddagger \times 8 \mathrm{~m}=151 \mathrm{~b}$. $85 / 19 / 6$.

THREE TURN $780^{\circ}$ ROTATION

FIFTEEN TURN $5400^{\circ}$ ROTATION
 TWENTY TURN $7200^{\circ}$ ROTATION 250 ohms. . General Controls. . PX M130
1 Meg......Geseral Controls. .PXM130.
 156 TURN 56, $160^{\circ}$ ROTATION 460 ohmi.... Kevin Hughea......KTP070
 SINE COSINE

PRECISION BECKMAN 40 TURN $14,400^{\circ}$ ROTATION
Wirewound Precision Potentiometer. 8E $107 \mathrm{~A} \cdot 20$ watta
at $40^{\circ} \mathrm{C} .3 \mathrm{~A}$. Dianeter. Servo Mounting. 200 K . Brand at $40^{\circ} \mathrm{C} .3$. $\mathrm{t}^{\circ}$ Diameter. Servo Mounting. 200 K . Brand
New $\mathrm{E} 12.2 \mathrm{O}^{\mathrm{s}}$. Lhat Price E 30 .

Advance
VOLSTAT
CFN 500 A . Input $190-260 \mathrm{v}, 50 \mathrm{~Hz}$



 Output 230x. 50 wathe f12/10/0

## OSCILLATORS

MUIRHEAD O729 PHASE MUIRHEAD OT29 PHASE.
METERAND POWER SUPPL METERANOPOWER SUPPLY Aliven direct hilication of phase angio
$0^{\circ}-360^{\circ}$ and difference in level between two sinuspand volt aros (tranater function) over
the frequency range 2 cycles per sec. to Digital Foltmeters 2003 A.C./D.C. D.C.
 Out put BCD or decimal. $£ 260$. 20064 Digit D.C. tange 10 microV. $-1 \mathbb{1 K}$
1mojated output. Parallel BCD $£ 285$ OAWE 4HAC AUTOMATIC L.F. SWEEP OSCILLATOR (NEW) Amplitude $0 \cdot 10 \mathrm{~V}$. Frequency Range $5 \mathrm{~Hz}_{2}$ -
$5 \mathrm{KBz} \pm 2 \% \pm 0.5 \mathrm{~Hz}$. 18 Bweep Rates
 0.5 dB . $£ 89.10 .0$. Carriage ontris.

BRAND NEW LABORATORYTEST EQUIPMENT AT LESS THAN HALF PRICE

$$
\begin{aligned}
& \text { HIGH VALUE RESISTANCE } \\
& \text { BOX TYPE R. } 7003
\end{aligned}
$$



Specification. Range: $0.01-111$ Meg. in 0.01 megohm divishona. Accuracy: $0.05 \%$. Maximum
power rating: 0.1 W per step. Cose: Hammer finished atove onamel Liat price 260. Our price 222/10/PORTABLE WHEATSTONE MUTUAL INDUCTANCE BOX TYPE R. 7005
8peclfication Rage: $0 \cdot 11.100 \mathrm{mH}$ in 0.002 mH divisiona. Accuracy: $\pm\left(0.3 \times \frac{0.012}{M}\right) \%$ where M -value of mutual inductance in mH get on
the bor. Prequency range: $0-2.5 \mathrm{~K} / \mathrm{ce}$ for all decader except $\mathrm{X} 1=0.15 \mathrm{~K} / \mathrm{ca}$. Maximurn
current: $0.5 A$ for decedes (both primary and aecondary iA for variometer
bRIDGE


Specification, Type: Moving
 ohms. 4. 50 to 5,000 ohrms. 5.500 to 50,000 ohms.
8calem: 8 witched. Blikiewire: 0.5 to 50 . Galvanometer: Beale: 10-0-10. Case: Moulded plastic. Intermal Bource: 4 V . Dry batiery. Dimenalons:
$200 \times 110 \times 65 \mathrm{~mm}$. Weisht $200 \times 110 \times 65 \mathrm{~mm}$. Weight: 0.9 k
Lat price ges . Our price $29 / 18 / 6$.

Pollshed teak. List price $\mathbf{2 8 5}$. Our price $£ 28.10$.


MUTUAL INDUCT. R. 7006

Specificathon. Value: 0.001
 Kc/s, $10 \mathrm{Ke} / \mathrm{s}$. Maximum
current: A . 3 A . Besistance of colla: of ohn, 1 ohm, Cane: Moulded Plastic. List
price 8 gran. Our price $50 /-$

## rurn Hirlolinex




GARRARD RECORD DECKS


Alt the bitest models BRANO NEW
2025 STEREO
2025 STEREO
2O200 TC OAMONO. STAH.C
.SP 35 MK. .11




Sill
SL 75
SL 95
SL 95
GL 75 GOLORING
GL 55
ALSO IN STOCK - THORENS - LENCO Cariage inaurace $7 / 6$ exrra on my mocel.
WBA EASES E3. 19.6 . PE FSPEX COVERS
-Spocial offer base und cover analayita for these
models ot Ea. 15.0. Cur rime 5 /.
Comolete ronge of Cantideesplintiv/covers
SENO FOR 8 PAGE BROCHURE $16 / 17$ TOOA


MULLARD 1 WATT AMPLIFIER Bomy Alams. Tete phone.
Rocord Piavers or Guitar Practice.
9 voit 5 transistors with volume conrme.
 PRICE 45/-. p.p. $2 / 6$
OTHER ITEMS. Suitable $7 \times 4$ Inch.
3 thm seaker $17 / 6 \mathrm{feq} 1 / 6$.



Now printed circuit desion with full powe oulput. Fully tuneable on both mw/w bands 7 Mullard transimors, Fitted 5 speaker, Room filling Power. Easy to build with terrific results. All local and continental stations. Complete detalled instuctions
TOTAL COST E6.19.6. p.p. 4/6.
A* for Leatlet No.
TRANSISTORS DIODES RECTIFIERS WE HAVE THE MOST COMPREHENSIVE stock in great britain.
NEW 1969 LIST OF 1000 TYPES
SEND FOR FREE COPY TOPAY I I IST 361
Wherthe pou reauire one or 1000 , devices we
con them sock?


HENELEC 5-5 STEREO AMPLIFIER


Usual price £47.0.0. OUR PRICE £39.10.0. p.p. 20\% ASK FOR вमоснure. 13


## BUILD THIS VHF FM TUNER

5 MULLARD TRANSISTORS, 300 kE/S BANOWIDTH
PRINTED CIRCUIT. HIGH FIDELITY REPRODUCTION MONO \& STEREO. A popular VHF FM TUner tor quality PARTS TOTAL COST E6.19.6. OECOOER £5.19.6. ASK FOR LEAFLET NO 3. (FOR STEREO)

HENRY'S RADIO Fully Illustroted CATALOGUES


COMPREHENSIVE - CLEAR - CONCISE
CATALOGUES A Over 300 pages fully detailed and illustrated with more than 6,000 stock items. Eve thing for amateur and professional use. Complete with 5 vouchers $10 /$ value, for use with purchases
order as catalogue a
PRICE 7/6.
B New audio and hiff fidelity catalogue. 120 pages containing indeas and equipment for every application. Special
dil leading makes. Plus $12 / 6$ extra discount voucher WHY NOT SEND . AWAY
order as catalogue b.
PRICE 7/6 TODAY!

## AUDIO EQUIPMENT

Mono or Stereo Audio equipment developed
from Dinsdale Min. 11 - each unit or system will compare favourably with other profes sional equipment selling at much higher rices.
£11.12.6. to $£ 38.17 .6$. (all units available separately).
THE FINEST VALUE IN LOW COST HIGH FIDELITY-CHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE YOURSELF POUNDS.

## SEND FOR BROCHURES No. $12 / 14$ and 21 TGDAYI

## HT-FI equipment to suit EVERYPOCKET


 DISCOUNTS - $1 T$ WILL PAY YOU TO PAY USA VISIT. AUOIO SYSTEMS $£ 40$ - $\subset 300$ TO SUIT
EVERY POCKET. DEFERAED TERMS AVAILABLE. TWO OEMDNSTRATION ROOMS
SEND FOR ILLUSTRATED BROCHURE 16/17.

## ELECTRONIC ORGANS

STAA FEATURES
ALL TRANSISTOR PAINTEO CIRCUIT DESIGNS BSTRUCTESIGN. STEP BY STEP DETAILED INSTRUCTIONS "GAVES UP TO $50 \%$ ON COMME RCIAL
EOUIVALENT. EVEAYTHING SUPPLIED DOWN TOTHE LAST ITEM. •FULL AFTER SALES SERVICE \& ADVICE. CREOIT SALE \& IM.P. TERMS AVAILABLE.
Wa ere plemed to offer the choice of FOUR Britith dosigns from esinglo manual portstio on ¢99 THE MAYFAIR for light or ciessical music -
to - two menuel five octive deluxa model with
OAK CONSOLE from $f 285$ tor the wrious muscian
These kits are the result of years of research and design and offer the best that is essential to good orgen destons, coupled with excellent velue ar within the reach ol most pock ets. No technicel will or knowiedge is required in construction, with the add of the STEP BY STEP illustrated manuas will produce an instrument that will be a delight to own and use and will give vears of trouble tree enter. tainment for the whol family.
SEND FOR ILLUSTRATEO BROChURES 9/10/1 TODAYI When in LONDON CALL IN-SEE. HEAR play for yourself.
Organ Oemonsiration Room ist Floor.


RACTICAL ELECTRONICS ORGAN ORGAN COMPONENTS
We are atie to supply all items for this series. detaits on request. Bual models awalable from $\mathbf{f 1 2 4 .}$

## HR QUALITY COMPONENTS AND EQUIPMENT <br> HR QUALITY COMPONENTS AND EQUIPMENT <br> NEW RANGES FOR THE AMATEUR AND PROFESSIONAL USER <br> * $50,000 \mathrm{OH}$ MULTIMETER Recommended qualit .  100 Mn . Meter movem reversing witct. Comp leads ind ins insuctions.  AFl05 Price $\begin{array}{r}\text { L8.10.0 p.p. } \\ \text { Leather case } 28 / 6\end{array}$ <br> ORC 27 A Price $£ 28100_{\text {pd. } 10 \% \text { - }}$ <br> *Vacuum tube voltmeter     MODEL TE65 E 17.10 .0 p.p. $7 / 6$ R.F. Probe $42 / 6$ <br> Model 200H (Leather case, Price 15 ) <br> * $\mathbf{2 0 , 0 0 0}$ ohms per volt MULTIMETER <br>  <br>  <br>  <br>  <br>  $77 / 6$ pp. $2 /$ <br> * PORTABL <br> | Featur |
| :---: |
| to |
| Huse | to use controlis and tood stablicy Eandmidn     A.C. Supptit <br> TO3 Price 135 p.p. 10/- <br> $\qquad$ <br> * transistor power amplifiers     <br> $\begin{array}{ll} & \begin{array}{l}\text { Negligibe ripple. } \\ \text { Regulation } 1 \%\end{array} \\ \text { SE101A } & \text { Price E8 } 150\end{array}$ <br> * FIELD STRENGTH METER 5. Ranges $1-250 \mathrm{mc} / \mathrm{s}$. Firted 200 A A meter. Earphone output. Cal ibrated   <br>   <br> * SIGNAL INJECTOR <br>  <br>  <br>  <br> Suppliers of quality components and equipment for over 25 years <br> AUDIO <br> HIGH FIDELITY Complete range in HIFl and Public Address requirements. COMPONENTS UK's largest supplier of components. EVERYTHING YOU NEED SEE CATALOGUE ON FACINGPAGE <br> *TRANSISTOR CHECKER Complete capaciey Tor checking an and tran pond for alpha. beca and German. Also alodes complete diodes <br> 65.19.6, p.p. 3/6. <br> EXPERIMENTER'S MODULE <br>  <br>  $9-12 \mathrm{~V}$ Supolied $\begin{gathered}\text { j-1s recters. } \\ \text { operate } \\ \text { comolere }\end{gathered}$ with suggested usas circuies. STC Module price 3 IS/-. <br> 9 \& 12V 100 mA STABILISED SUPPLY <br>  <br> $9 \vee 45 /-p p .2 / 6$ 12V 47/6pp.2/6 <br> Transistors Huge quantities instock for Indusirial usors - Write for Industrial Price List. Includez all Types of Semicon ductor Dovice. <br>  <br> $\qquad$ <br> <br> \section*{} <br> <br> \section*{} <br>  <br>  <br>  <br>  <br>  <br>  <br> <br> PORTABLE <br> <br> PORTABLE GEIGER COUNTERS <br> DOSIMETER POCKET-TYPE 0.50r 12/6 <br> STEREO HEADPHONES featuring soit Padded Head- sets wide frequencr repeonse. Adiuste Head bands. Fited dack plugs. Jack plugs. <br> SE28 Built in Twoecers and Volume Controls KE28 Buile in  <br> CALL FPOR DEMONSTRATION Mona Switched 8116 ol Stereo Hondphone Amplifiore <br> * SWR ALIGNMENT METER <br>  <br> *MULTIMETER   and capacitance scalas size Sin de  Thics and inatruction. 33 . Leather case Price 22/6 <br> The Oatector Unit cons sists <br> * all items offered are brand new stock - always in stock * <br> 303 \& 309 Edgware Rd, London W2 <br> '309' Test Gear/High Fidelity etc. 01-723 6963 <br> ALL MAIL ORDERS TO ${ }^{3} 33^{\circ}$ <br> SHOP HOURS 9 a.m.-6 p.m. <br> open all dar saturday



(Burndept B.E.352) 60 watt model. Supplied Brand New complete whith stainless steel tank $9 \frac{7}{4} \times 6 \frac{1}{2} \times 4 \frac{1}{2} \mathrm{In}$.
f60. Cart, $20 \%$.
2. FAST NEUTRON MONITORS (Bufndept 1407C) for measuring neutrons in the energy range 0.15-15 meV . 100.
3. Radlatlon Monitors (Burndept BN 110 MK. V) $0-5 / 50 / 500 / 5 \mathrm{k}$. c.p.s. Brand new. £100. Alpha and Beta Gamma probes available at extra cost.
4. PORTABLE RADIATION MONITORS (BuIndept BN 132) $0-5 / 50 / 500 / 5 \mathrm{k}$ c.p.s. With built-in cartying harness.
S.A.E. for Ilterature. 10\% discount for Educational Authoritios

SPEAKER SYSTEM $(20 \times 10 \times 10 \mathrm{in}$.). Made to spec from $\frac{z}{}$ in. board. Finished in black leathercloth. $13 \times 8$ in. speaker with twin iweeters co
$50 \mathrm{c} / \mathrm{s}-20 \mathrm{k} / \mathrm{C}$.
£7.10. P.P. 10/-.
SPEAKER CABINET KIT. Above mentioned cabinet only. In kit form which you may assemble and cover to your own CPEAKER BARGAIN
SPEAKER BARGAINS. E.M.I. $13 \times 8 \mathrm{in}$. wlth double

## EXTRACTOR/BLOWER FANS (Papst)

100 c.f.m. $4 \frac{1}{2} \times 4 \frac{1}{2} \times 2$ in 2800 r.p.m. Wonderful buy at $50 /$ - ea. 240 v. A.C.

CYLINDRICALFANS (Solarton). Overall size $16 \times 5 \frac{1}{4} \times$ $3 \frac{1}{2}$ in., air outlet
P.P. $7 / 6$ (New).
LEVEL METERS ( $1 \frac{1}{\frac{1}{2}} \times \frac{1}{\mathrm{i}} \mathrm{in}$ ). 200 micio-amp. Made in Germany. $15 /-$ each
PHOTOMULTIPLIERS 6262 and 6262b. $\mathbf{f 1 5}$ ee
RELAYS H.D. 2 póle 3 way 40 amp. contacts. $12 \mathrm{v} . w . ~ 7 / 6$ ea. LIGHTWEIGHT RELAYS (with dusi-proof covers)

HIGHSPEED MAGNETIC COUNTERS ( $4 \times 1 \times 1$ in.) 4 digit. 8/12v. 24/48v. (state which). 6/6 өa. P.P. 1/-.

PYE OHMMETER TYPE 10B. 500 v . test. 3 meg. ohm20 k. meg. ohm. 200/250v. A.C. Brand new instrument £30. POT CORES TYPE LA 3. 10/- 68.
71 WAY PLUG \& SOCKET (Painton Series 159) Gold plated contacts with hood \& retalning clips. 30/-pair. 50 WAY PLUG \& SOCKET (U.C.L. miniature). Gold plated contacts 20/-pair. 34 way version $15 /$ - palr.
VALVE MILLIVOLTMETER (Marconi TFB99) 0-2V. complete with R.F. probe $\varepsilon 8 / 10 /-\mathrm{D}$ p. 10
LOQIC
P.P. $2 / 6$.
CO-AX RELAYS (magnetic devices) 1 change-over $12 \mathrm{v} . \mathrm{w}$ CO-AX
$20 /-8 \mathrm{E}$.
ELECTRONIC ORGAN BUILDERS. We now heve in stock P.C. boards built to computer standards. Each board is a complete 4 octave divlder ( $4 \frac{1}{2} \times 3 \mathrm{ln}$.). All connection data ع16.
DIODE LOGIC BOARDS contalns 10 diode gating circuits which convert any one of 10 inputs into an equivalent
binary code, $10 /-$ each.

## TRANSFORMERS

E.H.T. TRANSFORMER $2100-0-2100 \mathrm{v}$. $40 \mathrm{~m} / \mathrm{a}$. $75 /$
E.H.T. TRANSFORMER (ParmekO "Neplune') $3,000 \mathrm{v}$. 280 m.a. £ $12 / 10 / 0$. P.P. $50 /$ -
L.T. TRANSFORMER 60v. 8 amp. ©5. P.P. 15/-
L.T. TRANSFORMER 20v. 1.5 amp . 15/-. P.P. $2 / 6$. L.T. TRANSFORMERS Prim. 200/250v. Sec. $0-1 / 0-1$.
$3 / 0-9 / 0-27 v .30$ amp. 77.10 .15 amp L.T. TRANSFORMER Pilm. 200/250v. Sec. $0 / 25 / 35 v$. L.T. TRANSFORMER Pilm. 200/250v. Sec. $0 / 25 / 35 v$
STEPR E7.10. P.P. 20/-.
STEPWN TRANSFORMERS Prim. 200/250v. Sec $115 \mathrm{v} .1 .25 \mathrm{amDs}, 25 /-$ - 日a. P.P. 5/-
L.T. TRANSFORMERS Prim. 240 v . Sec. $8 / 12 / 20 / 25 \mathrm{v}$. 3.5 amp models $20 /-; 5 \mathrm{amp}$ model $25 /-$. P.P. $5 / 6$.
L.T. TRANSFORMERS Prim. 240v. Sec $14 \mathrm{v} .1 \mathrm{amp} 10 /$. ea. P.P. 2/6.
ELECTRIC SLOTMETERS ( $1 /-$ ) 25 amp . L.R. 240 v . A.C. 85/- өa. P.P. 5/
QUARTERLY ELECTRIC CHECK METERS, 40 amp
240 v . A.C., 20/-

COPper laminate printed circuit board


## BULK COMPONENT OFFERS

100 Capacitors (latest types) 50 pF to $.5 \mu \mathrm{~F}$.
250 Resistors t and it watt.
250 Resistors $\frac{1}{2}$ and 1 watt.
150 HI-Stab Resistors, $\frac{1}{2}, \frac{1}{4}$ and 1 watt
25 Vitreous W/W Resistors, 5\%.
12 Precision Resistors . $1 \%$ (several standards Included).
12 Precision
12 Precision Capacitors 1 and $2 \%$ (several standards 12 Electrolvt

Electrolytics (miniature and standard sizes)

## TELEPHONE DIALS (New) 20/- ea.

RELAYS (G.P.O. '3000'). All types. Brand new from $7 / 6$ each. 10 up quotations only EXTENSION TELEPHONE (TYDE 706) Black of 2 tone Grey. 65/-. P.P. 5/-
UNISELECTORS (Brand new) 25-way 75 ohm. 8 bank ; wipe $65 /-10$ bank

## REED RELAYS 4 make 9/12v. (1,000 ohm.) $12 / 6$ ea.

 e日. E1 per doz.SUB-MINIATURE REED RELAYS ( $1 \mathrm{in} \times 1 \mathrm{in}$ ), Weigh $\frac{1}{1} \mathrm{oz}$. Type 1. 960 ohm, 3/9v. 1 make, 12/6 өa. Type 2. 1800 ohm, $3 / 12 \mathrm{v}$. 1 make. 15 /- ea.

PRECISION CAPACITANCE JIQS. Beautifully made with Moore \& Wright Micrometer Gauge. Trpe
1220 pf . 10 ea. Type 2. $9.5 \mathrm{pf}-11.5 \mathrm{pf}$. £ E ea
STC CRYSTAL LOCKED OSCILLATOR (Synthesiser). Precision ciyst Output 0 dbm. 80 db att. in 1 db steps Separate locked oscillator from $0-100 \mathrm{~K} / \mathrm{c}$. £150 in excellen condition.


## BLANKET SWITCH

 Double pole with weon let into side no lurntionus in dirk, theal lor dark roorn light or for une withwiterpmont element-new plastic case, $5 / 6$ eneh, 3 heat model $7 / 6$.

## BLANKET SIMMERSTAT

 Although lraking like, and thed an, an ordinaryhlanket nwitch, thio is in in tact a device for swiching the blaiket on fur varying time periods, thus giving a
 uning up to 1 amp. listed at $27 / 8$ each, we ofter
these while our atocks last at only $12 / 6$ each.

## $\longrightarrow$ REED SWITCHES

Glang encaned, miluchen apernted by extertual magriet-gold
 make and break up to $\$ \mathrm{~A}$ up to 300 volts. Price $8 / 8$ each.
24. dozer.
 $18 /$ per dozen.

 8maill ceramle mage.

$$
\begin{aligned}
& 3 \text { each. 12' dozen. } \\
& \text { HIGH CAPACITY ELECTROLYTICS }
\end{aligned}
$$

## 



 $\underset{\text { AERIAL }}{\text { TELESCOPIC }}$

For portable, car radio or six nections extends from 71 to 47 in . GGLE SWITCH 3 amp 250 v . with tixing ring. BO OHM BALANCED Usuble a: microphout or loudnpeaker. 4/6
MINIATURE EAR PIECE As uned Mith inpor

## ISOLATION SWITCH

 20 Amp D.P. 250 Voles. Idenl wo controWater Healer or any other applance. Neat fodicutor show when current is on, 4/6

## FLEX BARGAINS

Screeped 3 Core Flex. Wach core $14 / 0076$ Copper PVC theulated and coloured, the 3 cores haid ogether and metal braided overall. Price $£ 3.15 .0$ per 100 yds. coll
15 A 3 Core Non-kink Fles. $70 / 0076$ insulated 15A a core Non-zink Flex. ${ }^{\text {col }}$ bralded with white tracer. A normai domestic fleck an fitted cut to your lenchi $2 /$ per yard.
10 A 3 Core Non-kink Flex. As above but cores are 28/0076 Copper. Nornal price $2 / 6$ per yd. 100 yd. coll 27.10 .0 . or cut to your length $1 / 9$ yd.
BA 2 Core Flex. As above, but 2 cores each $23 / 0076$ ra used
for Vacuum Clieanera, Electric Blankete, etc. $39 / 6100$ gd.coll. Ropryppong

15/20 AMP CONNECTORS

13 AMP FUSED SWITCH
Marle by O.E.C. Por connecting water
heater etc., into 13 amp ring main. Flumht heater etc., into 13 amp ring main. Flunh
type $3 / 6$ each $30 /-$ doz. Metal boxes for
C SWITME mount
5 amp . changeover contacte. $1 / 9$ ench $18 /=$ doz.
18 s .
SUPPRESSOR
CONDENSER TCC
.1 rafd . 250 v . A.c. working metal cas
HEAT \& LIGHT LAMP
275W. Internally mirrored bulb, with b.c. end for plugging TUBULAR TYPE BY PHILLIPS
750 MICRO AMP MOVING COIL METER 24 in . thash mountigg, ex.W.D. 15/- each plus $3 / 6$ post and infurauce for auy quabriley

DIGITAL CLOCK
An imponing instrument Idesl for modern reception
centre or for Manging Director's office-definitely a showpiece to crate intereat and efficiency-mainn requency enntrolled so nlways keeps right thme withou up. tested and guaranteed-offered for only the co
componenth $\mathbf{~} 29.10 .0$. posit and limurance 10 .



SOLDER GUN



MINIATURE EXTRACTOR FAN

 897 (anes yourn
minept coroilinn
P. $\alpha$ p. $2 / \theta$.


HORSTMANN ‘TIME \& SET' SWITCH
(A so Amp 8 witch). Juat the thing if you want to come home to a warni houne without it conleng you a orune. You can deisy from Rettling time or you can une the switch to give a boost on period
of up to 3 hours. Equally sultable to control procesaing. Regular price prokably around 25. Special onitp price 29/6. Pust and price pro
ins. $4 / 6$.
DISTRIBUTION PANELS
sucketw In metal box to take standaril is amp funed



24 HOUR TIME SWITCH
Maina operated. Adjustable Contacts give on/off per 24 hours. Con-
tacta rated 20 amps, repenting mechanium an Ideal for ahop window tactan rated 20 amps. repenting mechanikm so ldeal for nhop windo
control, or to switch hall lights (ant-burgiar precantion) while you are on holidas. Made by the fumous Smitha Company. This month
only $38 / 6$ complete with perspex cover, new and unused. plus $3 / 6$

## DOUBLE ENDED MAINS MOTOR

On feet with holes for screw-down fiving. To drive models, oven, blower henter,
6 or more poot tree.

## DIAMOND H OVEN THERMOSTAT

Type 20 TH with capllliary tube and seasor, 20 amp A.C. type
an atted to many cookery adjuatable by control knob (mot

## BATTERY OPERATED TAPE DECK

 With Capatan control. Thle unlt in extremely well made and mexsure approx. heary duty type intended for operation of i/s rolta, suppliedcomplete with 2 spoole ready to install. Record Replayheal a the nemitive M4 type Intended for une with transisto

PROTECT VALUABL
DEVICES
From thermal runway or overheating. Thryintork, rectiters Cected: nimply. mhike the contact thermostat part of the
 adequately protected by hoving thernostats in etrategic ppots on the casirg. Our contact thermoshat has a cali-
breted diat for settlig between $90^{\circ}-1 ; 0^{\circ}$. or with a dlal
removed range setting la between $80^{\circ}$. $800^{\circ}$. ${ }^{\circ}$. Price $10 /-$.


A Fluorencent lighting unit made by the Antrous Atlan company, with super sileat
polyester tilled choke and radlo sup. preased starter. The tube apring in and
out and the whole unit is beautululy
name and thalehed white enamel. Aruas magle and thalinhed white enamel. Amas.
Ingly economlcal. 18 left on all the time



I WATT AMPLIFIER \& PRE-AMP
tranaintorn-higaly efficient maile for une with tapehead tat but equally auitable for microphone or pick up.
Lismited quantity 29/6. Full circuit diag. also showe ape coutrole $5 /-$


## VARYLITE

Will dim Incandescent lighting up to 600 watt trom full brillingee to out.
Fitted on $\mathrm{X}, \mathrm{K}$, flush piate, same ize and fixing an atandard wall switch so Fitted on M.K. flush plate, rame ize and fixing an ataidard wall awitch no may be fitted in place of thla, or mount
plastle box with control knob $£ 3.18 .6$.

HI FI BARGAIN
FULL F1 12 INCH LOUDSPEAKER. This In undoobtedly one of
 public addresm. 11,000 gauss-Total Flux 44,000 Maxwella-Power


 $7 / 6 \mathrm{p}$. K p. Dosit minn this offer. $15 \mathrm{im}, 30$ watt $£ 7.19 .6$.

## TAGENTIAL HEATER UNIT



Winter In coming but act toder ad soun dinmay. Tha heater unit sis he very tateat type, front blower, hemtera cotimn 1 is. Ind mored in hoover and
only. Comprisea motor, Lmpeller, 2 k W. element

 Into any metal hine cane or cablet. Only need on/od
switch. 78/6. Pootage and hasurance $6 / 6$. Doont
nisa this.

MINIATURE WAFER SWITCHES

pole, 2 way-f pole, 2 wity- 9 pole, 3 way pole. 3 way- 2 pole, 4 way- 3 pole, 4 way $3 / 6$ pole, 6 way-l pole, 12 was. al.
ench. $36 /$ doten, your asartment.

| WATERPROOF REATUG |
| :---: |
| ELEMENT |
| 26 yarda leug 70 F . Self-regulating |
| temperature control. 10/- poot free. |

## INSTRUMENT MOTOR

 WITH GEARBOXMatle by Pamous Smiths Company. Very
powerful, allhough only quite smanl. Overail powertul, although only quite amall. Overail
dimensions approx. 1 tin. deep by 2 in. dia
Avaliable with the foliowing apedis. Revas. per day 2 - 8 - 12
Revs. per hour 1, 2, 4, 6, 12, 20, 30 .
Revs. per hour 1, 2, 4, 6, 12, 20, 30.
Reve, per matoule 1, 2, 3, 4, 6, 8, 15, 30, 60. 17/8 each.


ELECTRIC CLOC 25 AMP SWITCH
Made by Bmith's, these units are ntted to many top qualty cookers to
control the oven. The efock is control the oven. The elock 18 maini
driven sind frequency econtrolled so it is ertremely accurate. The two smat dials enable ewitch on and oft times to be accurately set. Ideal for awitchinid
on tupe reoprders. Offered at only on trape recorders. Ofered at onlys s, lenathan the value of the clock alone-post and linsurance $2 / 9$.

## THERMAL CUTOUT

A ministure device f in. dis. on one ecrew fixing mountcan be used for motor overlond protection- Are alarm-
soldertag 1 ron switch off, etc.. etc. 15 amp contacts open with finme radiant or conducted heat. 1/8 each, 15/-

COPPER CLAD ELEMEN
head hat: head heater-just mount reflector above. 12/8 each, plus

### 0.0005 mFd TUNING

CONDENSER
Proved desigh. Ideal for str
circult $8 / 6$ each. $24 / \%$ doz


Battery Recerd Pleyer. Made by Collaro. This is made up oa it untit plate with speed selector and pick-up. The turn table is a heavy one and measures approximatery gin.
Pick-up in fited with the fanous. "Studo" catridge.
 miteling teat conditions 6 A at $300 \mathrm{k} / \mathrm{c}$. Bakelite caae. $18 / 8$ each.
 tube terminated with beaded leail 12 in . Jong, Norian
matins voltage. Price $5 /$ each or $54 /$ per dos.
Press to Meke Press to Make Sicitch. Double pole, $s$ sum contacts or
can be uned as sinkle pole, 10 smp, contacts 250 volt working. Alngle hole fixing. $2 / 8$ ench, $24 /$ - doz.
Door Switeh. Comucts open when plunger In depronem Prevents lights being left on. 15 amp contacts, 230 vole Working. Made by Arrow. $3 / 6$ each, $36 /-$ per doz.
Rotary Applinnce 8 witch. 16 amp , 230 voll on moulded Rotary Appliance 8 firith. 16 amp. 230 volk on moulided
ceramile hane. Operated by pointer knob (not mupplied). 2/- each. 18/- per doz. Me. Prench (Cammor) Company. This is an excellent totally enchused motor, powerful
 $2 i \times 3 y$ in. dia. with 1 in . of tina apindle, Price 18/6 plue Borghar Alarm Kit. Protect your home and family by
frightening away the intruder. With our circuit a ruaing frightening away the intruder. With our circuth a runing
operated bell rligg loudly directly the door or window in opened. KIt comprises 12 reed switchen, 12 nugneta, relay.
manina iramatormer and bell wits circuit. Price $49 / 6$. THERMOSTATS
Trpe "A" 15 mmp , for controlling room beatera, green-
hounee, uring cupboard. Han pindie for pointer knobs. Quickly adjustable from $30-80^{\circ}{ }^{\circ}$. $8 / 6$ plus $1 /-$ gont. Buit-
 Interual were atters the setting, wo thin could be adjustable
 Type "D". We call this The In D". We call as this
treesinge point. $2 / 3$ ampe
In and out at around rreczing point. $2 / 3 \mathrm{smph}$.
Hae many usea one of which would bo to keep the
 adjustmenta cover normal relrigerator temperature. 7/6, Type "F". Ohans encased for controlling the temp. of liquid jarticularly those in glann tanke, vath or minks - thermoinat
is heid (hait submerged) by rubber nucker or wire clip-


Where postage is not stated then orders
over $£ 3$ are post free. Below 63 add $2 / 9$.
S


ELECTRONICS (CROYDON) LTD
Dept. WW, 266 London Road, Croydon CRO-2TH Also 102/3 Tamworth Road, Croydon


Solve your communication problems with this new 4-8tation Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to 8ubs and Subs to Master. Operates on one $9 \mathbf{v}$. battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factury, Workshop, Warehouse, Hospital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. 7/6 in U.K.


OUR PRICE
ONLY 3 gns .

Same as 4-Station Intercom for two-way instant conversation from MASTER to SUB and SUB to MASTER. Ideal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire. Battery 2/6. P. \& P. 4/6.

## 7-STATION INTERCOM

(I MASTER \& 6 SUB-STATIONS) in strong metal cabinets. Fully transistorised. $3 \frac{1}{2} \mathrm{in}$. Speakers. Call on Master identified by tone and Pilot lamp. Ideally suitable for Office, Hotel, Hospital and Factory Price 27 gns. P. \& P. 14/6 in U.K.

Trasta TEIEPHONEAMPITIER


Why not increase efficiency of Office, Shop and Warehouse with this incredible De.Luxe Pcrtable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v . battery which lasts for months. Ready to operate. P. \& P. 3/6 in U.K. Add $2 / 6$ for Battery.
Full price refunded if returned in 7 days.
WEST LONDON DIRECT SUPPLIES (W.W.);
169 Kensington High Street, London, W. 8

## NEW PRICES ON NEW COMPONENTS

RESISTORS
Monding.
Dlmensions (mm.): Body: $t W$ : $8 \times 2.8$ Leads: ${ }^{1} \mathbf{~ W ~}$
$10 \%$ ranges; 10 Ohms to 10 Megohms (E12 Renard Series). 5\% ranges; 4.7 Ohms to 1 Megohm (E24 Renard Serjes). Prices-per Ohmic value.

|  |  | each | 10 off | 25 off | 100 off |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\pm W$ | 10\% | 2 d | 1/6 | 3/3 | $10 / 4$ |
| tW | 5\% | 2 d d. | 1/9 | 3/8 | 11/8 |
| tW | 10\% | 2 id . | 1/9 | 3/8 | 11/7 |
| +W | 5\% | 3 d , | 2-- | 4/- | 12/10 |

CAPACITORS
Subminiature Polyester film, Modular for P.C. mounting. Hard epoxy resin encapsulaLion, Radial leads.
$\pm 10 \%$ tolerance. 100 Volt working
Prices-per Capacitance value ( $\mu \mathrm{F}$ )
$0.001,0.002,0.005,0.01,0.02 \ldots$ each 0.05
0.1
$\begin{array}{lllllllll}0 \cdot 2 & \cdots & \cdots & \cdots & \because & 1 / 2 & 10 \mathrm{~d} . & 1 / 1 & 15 / 6 \\ 01 /- & 20 / 10 & 68 / 6\end{array}$ 60 Volt Working
Price--jer Capacitance value ( $\mu \mu \mathrm{F}$ )
10. 12. 15, 18. 22, 27, 33, 39, 47. each

56, 88, 82, 100, 120, 180, 220.
270, 330, 390
$470,560,680,820,1,000,1.500$ $470,560,680,820,1,000,1.500$
$2,200,3,300,4,700,5,600$. 6,800, $8,200,10,000,15,000$ 5d
6 d.
7 d. 8,800. 8,200. 10.000, 15,00 … 8d. POTENTIOMETERS (Carbon)
Superior grade enclosed controls. Iow rotational nolse. Body dia, 1 in . Spindle. $2 \mathrm{in}, x \pm \mathrm{in}$. Tolerance. $20 \%$. Linear: 1 K to 2 M . (i W at $40^{\circ} \mathrm{C}$ ). Logarithmic: 5 K to 2 M . ( $\frac{1}{} \mathrm{~W}$ at $40^{\circ} \mathrm{C}$ ).

| Prices per ohmic value | each 10 off 25 off | 100 off |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $2 /-$ | $18 / 4$ | $41 / 8$ | $150 /=$ | GANGED STEREO POTENTIOMETERS (Carbon) W at $70^{\circ} \mathrm{C}$. Long Spindle.

Logsithmic and Linear: $5 \mathrm{k}+5 \mathrm{k}$ to $1 \mathrm{M}+1 \mathrm{M}$.
Prices der ohmle value $\quad$ each 10 off $\quad 25$ off $\quad 100$ off SKELETON PRE-SET POTENTIOMETERS (Carbon)
High quality pre-sets suitable for printed circuit boards of $0 \cdot 1$ in. P.C.M. 100 ohms to 5 Megohms (Linear only). Miniature: 0.3 W at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $\ddagger \mathrm{M}$. $\pm 30 \%$ above 1 M . Horizontal ( $0.7 \mathrm{in}+0 \cdot 4 \mathrm{in}$. P.C.M.) or Vertical ( $0.4 \mathrm{in} \times 0 \cdot 2 \mathrm{in}$. P.C.M.). Subminiature 0.1 W at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $2 \cdot 5 \mathrm{M} . \pm 30 \%$ above.

| Prices-per ohmic value |  |  |  | each |  |  | 25 of |  | 100 off |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Miniature ( 0.3 W ) |  |  |  | 1/- |  |  | 18/9 |  | 66/8 |
| Subminiature ( 0.1 W ) |  |  |  | 10d. |  |  | 14/7 |  | 46/8 |
| ELECTROLYTIC CAPACITORS (Mullard.) $-10 \%$ to $+50 \%$. Subminiature (all values in $\mu \mathrm{F}$ ) |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 400 |
| 6.4 V | . | 6-4 |  | 25 | 50 | 100 |  | 200 | 320 |
| 10 V | . | .. 4 |  | 18 | 32 | 84 |  | 125 | 200 |
| 10 V | . | $2 \cdot 5$ |  | 10 | 20 | 40 |  | 80 | 125 |
| 25 V | - | 1.6 |  | 6.4 | $12 \cdot 5$ | 25 |  | 50 | 80 |
| 40 V | . | 1 |  | 4 | 8 | 16 |  | 32 | 50 |
| 64 V | . | .. 0.64 |  | $2 \cdot 5$ | 5 | 10 |  | 20 | 32 |
| Price | . | $\therefore 1 / 4$ |  | 1/3 | 1/2 | 1/- |  | $1 / 1$ | 1/2 |
| Small (all values in $\mu \mathrm{F}$ ) ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |
| 4V . ${ }^{\text {V }}$ | .. | . | 800 |  | 1,250 |  | 2.000 |  | 3.200 |
| 6.4 V | . | . | 640 |  | 1.000 |  | 1,800 |  | 2.500 |
| 10 V | . | .. | 400 |  | 640 |  | 1,000 |  | 1,600 |
| 16 V | . | . | 250 |  | 400 |  | 640 |  | 1,000 |
| 25 V | . | . | 160 |  | 250 |  | 400 |  | 640 |
| 40 V | . | $\cdots$ | 100 |  | 160 |  | 250 |  | 400 |
| 64 V | $\cdots$ | $\cdots$ | 64 |  | 100 |  | 160 |  | 250 |
| Price |  | . | $1 / 6$ |  | 2/- |  | 2/6 |  | 3/- |

Tubular $10 \%, 160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d}, 0.068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d}$ $0.15 \mu \mathrm{~F}, 11 \mathrm{~d}$. $0.22 \mu \mathrm{~F}, 1 / \mathrm{F} .0 .33 \mu \mathrm{~F}, 1 / 3,0.47 \mu \mathrm{~F}, 1 / 6,0.68 \mu \mathrm{~F}, 2 / 3,1 \mu \mathrm{~F}, 2 / 8$, $400 \mathrm{~V}: 1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d} .6,800 \mathrm{pF}, 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$,
$0.038 \mu \mathrm{~F}, 8 \mathrm{~d}, ~$
$0.047 \mu \mathrm{~F}, 9 \mathrm{~d}, 0.068,0.1 \mu \mathrm{~F}, 11 \mathrm{~d}, 0.15 \mu \mathrm{~F}, 1 / 2,0.22 \mu \mathrm{~F}, 1 / 6,0.33 \mu \mathrm{~F}$ $0.038 \mu \mathrm{~F}, 8 \mathrm{~d}, 0.047 \mu \mathrm{~F}, 9 \mathrm{~d}, 0.068,0.1 \mu \mathrm{~F}, 11 \mathrm{~d}, 0.15 \mu \mathrm{~F}, 1 / 2,0.22 \mu \mathrm{~F}, 1 / 6,0.33 \mu \mathrm{~F}$ 2/3. $0.477^{\mu \mathrm{F}, 2 / 8 .}$
SEMICONOUCTORS: OA5, OA81, 1/9. OC44, OC45, OC71, OC81, OC81D, OC82D. $2 /-, 0 \mathrm{C} 70, \mathrm{OC72}, 2 / 3$. AC107, OC75, OC170, OC171, 2/6. AF115, AF116, AF117 ACY19, ACY21, 3/3. OC1 40, 4/3. OC200, 5/-. OC139, 5/3. OC25, 7/-. OC35, 8/SILICON REC
1.250 P.I.V., 3/9. 1.500 P.I.V., 4/-. (0A): 200 P.I. 400 P.I.V.: 3/-. 800 P.I.V.0 $3 / 3$ $5 /-.800$ P.I.V.. $6 /-\mathrm{F}$
PRINTED CIRCUIT BOARD (Vero).



SEND S.A.E. FOR 1969 CATALOGUE

## DUXFPRD ELECTRONICS 97/97A MILL ROAD, CAMBRIDGE

Telephone: CAMBRIDCE (0223) 63687
(Visit us at our new Mail Order, Wholesale and Retail Premises) MINIMUM ORDER VALUE 5/- C.W.O. Post and Packing 1/6

## MrOPPTDELEETRONICS FPOM PROOPS $\bigcap \Omega \Omega N$ New Science Projects combine fascination of Optics with Electronics.

## INFRA-RED TRANSMITTERS \& RECEIVERS

## INFRA-RED PHOTO RECEIVER - MSP3

utra sensitive detector/amplifier for infra-ted (Gallium Arsenide) or visible light optical links reception. Spectral response 9500 A . Robust, Cylindrical package is coaxial with incident light to facilitate optical allgnment and heat sinking.

85/-


MAX RATINGS
Total dissipstion (in free air. $T_{a m b}=25^{\circ} \mathrm{C}$.) $\quad 100 \mathrm{~mW}$. Derating Factor.......... $2 \mathrm{~mW} / /^{\circ} \mathrm{C}$. Output Current Intensity....... 100 mA . Voltage.......25v. Operating Temperature................ Cl Supplied complete with suitable lenses, full Technical Data and Application Sheets, including Line of Sight Speech Link.

## PHOTOCONDUCTIVE CELLS

CADMIUM SULPHIDE CELLS (Cds)
Inexpensive light sensitive resistors which require only simple circuitry to work as light triggering units in a wide range of devices, such as: flashing or breakdown
lights, exposure meters, brightness controls, automatic porch lights, atc. Not polarity consclous - use with A.C. or D.C. Spectral response covers whole visible light range.


MKY101-C
Epoxy sealed. Iin. diam. $x \frac{1}{\text { i }}$ In. thick. Resistance at 100 Lux-500 to 2.000 ohms. Maximum voltage 150 A.C. or D.C. Maximum curren

## MKY71

Glass sealed with M.E.S. base, Glass envelope $\frac{2}{10}$ in. diam.. overall length 1 in. Resistance at 100 Lux -50 Kohms to 150 Kohms. Maximum valtage 150 A.C. or D.C. Maximum current $76 \mathrm{~mW} .8 / 6$ post free

## PHOTOGENERATIVE CELLS

Selenlum cells in which ilght energy is converted into electricity directly measurable on microammeter or used with amplifier as llght trigger for alarm and counting devices, luminous fluxme
covers vislble light range.

Type 1 - $1 \frac{1}{2} \times 1 \frac{3}{16} \mathrm{in}$. Output 1 mA at 0.6 volts at 1.000

Type 3- $100 \times 50 \mathrm{~mm}$. Qutput 4 mA at 0.6 volt at 1,000
22/6 post free


## REED SWITCH COILS \& CAPSULES



Compact assemblies of seed switches and operating coils that permit the design of an infinite variety of multiple switch circults in an extremely small space. They ellminate the bulk and open contact disbdvantage of electro-mechanical relays; hermetically sealed contact isolation ensures longlife switching matrices, binary khs, control systems, etc. These were removed intact from highly expensive computer mechanisms and are guaranteed to be in perfect working order. Each capsule conslsts of a rare-metal screened, 24 volt DC operating coil on a nylon former with one detachable end for the removal and replacement of reed switches.
Trpes avallable:
R/C2 Tworeed switches, contacts normally open. Size overall: $1 \mathrm{f} \times \mathrm{i} \times \mathrm{i}$ in. 5 - post free R/C4 Four reed swithes, contacts normally open. Size overall: $1 \downarrow \times \frac{i}{}$ in 10 -post free R/C6 Six reed switches, a contacts normally open, 2 normatly closed. |Size overall: $1 \frac{1}{\mathrm{t}} \times 1$ t $\mathrm{x} \boldsymbol{1}$ in.

15/-lpost free

Unique devices in a brand new electronic field that can be exploited in a wide range of applications. Miniaturized construction and solid state circuit design is combined with outstanding modulation and switching capabities to providels a possibio. les as short distance speech and data links, remote relay control burglar alarms, batch counters, level detectors, etc, etc

GALLIUM ARSENIDE LIGHT SOURCE-MGA 100 Filamentless, infra-red emitter in a robust, sealed cylinder coaxial with beam to facilitate optical alignment and heat sinking.


35/- postree
max ratings Forward current! ax. D.C. 400 mA . Forward peak current If max max. Power dissipation $1-\mathrm{OV}$. When mounted on an aluminium heat $\operatorname{sink} 1 \mathrm{in} . x \frac{1}{2} \mathrm{in}$. $x \frac{1}{1} \mathrm{in}$. Supplied complete with suitable tenses. full Technical Data and Application Sheets, including Line of.Sight Speech Link.

## FIBRE OPTICS

Mighly flexible light guides that transmit fight to inaccessible places as easily as electricity is conducted by copper wires. Fibre optics make it possible to control. miniaturize, split, reflect or transfer light from one source to many places at once and to operate photo devices, logic circults, or illuminate in ways never before pos
sible. Proops offer both glass fibre optics or inexpensive Crofon plastic fibres for hundreds of experiments or serious applications in a fascinating new science.


KIT 1 £16 Postirice
Contains: $1.5 \mathrm{~mm} . \times 24 \mathrm{in} ., 3 \mathrm{~mm} . \times 18 \mathrm{in}$., and $6 \mathrm{~mm} . \times 12 \mathrm{in}$. light guides, plus 24 in . long x 2 exit component for punched card or coding applications. Also battery operated light separation, and $3 \mathrm{~mm} / 3 \mathrm{~mm}$. and 3 mm , 1.5 mm , connectors.

- Special offer of IMAGE FIBRESCOPES \&5 postFree

Between 50.000 and 60.000 coherently arranged, 15 micron glass fibres that provide (with appropriate optlcs) perfect visual inspection into otherwise inaccessible areas. at E 72 each, these have slight, superficially use in industrial and medical fibrescopes at E72 each. these have slight, superficially imperceptible faults and are assembled in transparent, lay-flat tubing instead of opaque. flexible conduit, as usual. Ends are Technical Colleges and for many other applications that require highly sophisticated means of access to enclosed, difficult to at places. Length overall: 3 ft Cross: sectional area: $3 \times 3 \mathrm{~mm}$. Resolution: $10 \mathrm{LP} / \mathrm{mm}$. to $20 \mathrm{LP} / \mathrm{mm}$. Cross LOW COST CROFON FLEXIBLE LIGHT GUIDES

RANK TAYLOR-HOBSON ENGINEERS KITS
Basic fibre optic components that demonstrate now ways of emploving light in serious applications. Two kits are available : each contains
high-grade glass. fibre light guides consisting of thousands of fibres tightly bundled in flexibiesheaths with ferruled, opticatly polished ends. together with connecting and light source components. Each is supplied complete with card walfets containing technical and application data.
KIT 2 £28 post Free Contains: $3 \mathrm{~mm} \times 18 \mathrm{in} ., 6 \mathrm{~mm} \times 12 \mathrm{in}$. light guides: 1.5 mm , 'Y' guide with two 12 in . Iong
talis: 24 in. long 12 exit componen: Ior coding or punched card applications, 24 in . lengths of Crofon 64 filament and monofilament plastic light guide. Also, coherent solids consisting of 25 mm . diam. field tlattening lens. $6 \mathrm{~mm} \times$ 12 in . image conduit with polished ends. $4 \mathrm{~mm} \times 25 \mathrm{~mm}$. image invertor. Complete with 2 -way adaptor, fibre optic torch and batteries,
$3 \mathrm{~mm} . / 3 \mathrm{~mm}$. and $3 \mathrm{~mm} . / 1.5 \mathrm{~mm}$. connectors,

Newly developed plastic light transmitting media by
Dupont, which can be used for both serious projects and Dupont, which can be used for both serious projects and
inexpensive prototype work. Ends can be ground flat, dyed or capped whith epoxy sesin. Temperature range: $-40^{\circ}$ to $+170^{\circ} \mathrm{F}$. No loss of light through bending. 12 page Data and Applications booklet supplied free with each order. Types avallable:

Multi-strand- 64 special plastic fiberes tightly bundled together in a tough. flexible conduit. $8 / 6$ per foot. Minimum order


## RCA TRIAC - CA40432

Monofilament-single $0.040^{\circ}$ plastic fibre which is specially useful for light indication in confined spaces. 4/- per foot. Minimum Suitable for light dimming and motor control circuits Gate-controlled, full-wave, A.C. silicon switch with integral trigger that blocks or conducts instantly by applying reverse polarity voltage. Suitable for A.C.
operation up to 250 volts; controls curfents up to 1440 watts. Size only if in. diam. $\times \frac{\sqrt[3]{6}}{\sqrt{6}} \mathrm{in}$. high. Complete with heat sink, data and applications information.

| SUPER PAKS new bi-pak untested |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Situstaction OUARANTEED in Every Pak, or money ha |  |  |  |  |
|  |  |  |  |  |
| O1 120 Ohass Sub-min. Ceneril Purpose Gernanium Diodes.. |  |  |  |  |
| U2 60 Mixed Gernamium |  |  |  |  |
| U3 75 Gerruantum Gold Bonded Dio |  |  |  |  |
| Ut to Germanium Transitiora like O | ${ }_{500}^{+00} 170 / 8$ | d |  | 10 |
| Us | $6600-401$ |  |  |  |
| - ${ }^{\text {U7 }}$ | SIL. RECTS TESTED |  |  |  |
| $\mathrm{U7}$ 16 8llicon Rectifers Top-Hat 750 m <br> $\mathrm{U8}$ 50 gll. Planar Diodes $250 \mathrm{~mA} \mathrm{OA} / 2$ | $\mathrm{PlV}^{750 \mathrm{~mA}} 3 \mathrm{~A}$ 10A 30A | (therefore ellminute rallo |  |  |
| U8 20 Mixed Volus 1 watt Zener Diodet |  |  |  |  |
| Ull 30 PNP Silicon Planar Transistori TO.5 sim. 2 N1132. |  |  |  |  |
| O12 12 silicon Rectinera EPOXY BY126/127 |  |  | ak monolithic |  |
| U13 30 PNP.NPN SII. Transistors OC200 \& 28104 |  | A sillicon Planar, mono- |  | ${ }^{5} \mathrm{GEF}$ |
| U14 150 Mixed sillon and Germanium Diodes |  |  |  |  |
| U18 30 NPN Slucon |  |  |  |  |
|  | 1200 B/6 $11 / 6$ |  |  | TN916 Su. Dloded 75 PIV 75mA... 10 - |
|  |  | gate and eathode. Full |  |  |
| 30 gllicon NPN Transia |  |  |  |  |
| U20 12 1.3-amp silicon Rectiners Top-rit up |  |  |  |  |
| U21 30 A.P. Oernanium allor Transiat |  |  |  | ${ }_{\text {ACl } 28 / 128}$ |
|  |  |  |  | ${ }_{3}{ }^{2} \mathrm{AN1307}$ PN |
| U23 30 Madtrs like MAT Berlea PNP Tranaistors.......... 10 |  |  |  | ${ }_{3}^{7}$ COB2H ${ }^{\text {Cli }}$ Germ. ${ }^{\text {Type }}$ |
| con $T$ |  |  |  | ${ }^{1} 1212$ |
| Fast 8witching sllicon Diodes lite IN916 Miero-min. |  | One 10/- Pack of your own choice free with |  | 4 Sul |
| , Pip-Fiope Registen |  | orders valued E4 or | FATR ${ }^{\text {RTOL }}$ MICRO |  |
| St, Fhip-Flops, Registers, etc., 8 Assorted Pleces.... 20 |  |  | integrated circuits |  |
| U30 18 Plasulc $8 / 1$ icon Planar trand, NPN 2N2924-2 |  | PLEASE NOTE. To avoid | . | 5 2N2926 SII. Epoxy |
| U31 20 Sill Planar NPN trans. low noise Amp 2 N3 | $2{ }^{203}$ | Rayturher inc | ULP00, Burer, 10/6 |  |
| प32 25 2ener diodes 400 mW W D 07 cane mixed Yolice, $3-18$. | T6 820344 A OC44 | ${ }^{\text {and }} \mathbf{B}$, enable Retur |  |  |
| U33 ${ }^{15}$ Plastic cabe 1 amp Sulicon rectifers 1 N 4000 geries. | ${ }_{7}^{77}{ }^{8} 820343 \mathrm{~A}$ | which 1 | CL923 J-K-alp-flop, 14/- | BC |
|  |  | have reorranized nitearalined our Desp |  |  |
| U35 $\quad 25$ Sll. Planar trans. PNP TO-188 2N2000.............. 10 | T10 820417 AF117 |  |  |  |
|  | All $10 /$-escl PAK |  |  |  |
| SU. alloy trans, 80.2 PNP, OC200 28372............ $10 /-$ |  | your ord |  |  |
|  | TRANS. CODE DIG9 TEXA8. Our price 5/- es | yot | $\begin{aligned} & \text { GPARD I.C. } \end{aligned}$ |  |
| O40 10 Dual trans. 6 lead T0-5 2N2060.................... 10 | 120 VCb nixie |  | OL4B | $\begin{array}{ll}6 \\ 1 & \text { 2Nener Dl } \\ \text { 2N }\end{array}$ |
| 30 RF Germ. trans. T0-1 OC4 ${ }^{\text {a }}$ NKT72.............. 10/- | TRANSISTOR. Sim. B8X 21 | EEMICONDUCTORS, DES- | Taxis3. Linenf AF smpa- |  |
| Germ. PNP trans. T0.1 NKT667 Aprif. | ${ }^{2 N 1883}$ PU COD |  |  |  |
|  | ND120. $1 \cdot 24 \quad 3 / 6$ eneh. <br> To-5 N.P.N. 25 up $3 /=$ ea. | nd packing atili $1 /$ per rder, Manimum order 10\%. |  |  |
|  |  | E STISHAPTIDNA | M-1 0 , |  marked, New |

[^10]
## SERVICE TRADING CO

LIGHT SENSITIVE SWITCHES
Kit of parts including ORP. 12 Cadmium Sulphide Photocell. Relay Transistor and High Speed Relay for 6 or 12 volt oper ations. Price $25 /-$, plus $2 / 6 \mathrm{P}$. \& P 20/240 A.C. MAINS MODEL


LARGE DIGIT 12-18v.D.C MAGNETIC COUNTER
 concacts operated by drum cam. The
unics which can be used in muletiples are units which can be used in muleiples are
ideally suited for bateh or lap recording or for the many purposes where asily read numerals are required.






VEEDER ROOT COUNTER 230 v. A.C. 50 cycle 5 figure counter 230 v. A.C. 50 cycle 5 figure counter
(non resetable). $18 / 6$, P. \& P. V/6.


PRECISION INTERVAL TIMER From 0-30 seconds (repetitive). Jewelled malanced 230 ement. 5 Lever re-set.
Operates 230 .A.C. 5 amp. c/o micro
witch. Ex. equipment; tested. $17 / 6$, plus
A.C. CONTACTOR

2 make and 2 break (or $2 \mathrm{c} / \mathrm{o}$ ) 15 amp . contacts. 230/240
Brand new. 22/6 plus $1 / / \mathrm{P}$. \& P. .

## MORSE KEY

adjustments, precision speed adjustable w.p.m. to as an

## DRY REED SWITCHES

$2 \times$ lamp Dry Reeds (makes contacts) mounted in 870 $8 / 6$ per pair. Post Pize 3 ,
6 of the above mentioned unies ( 12 Reeds, 6 colls) fitied in metal box. Size 4in. $\times 3$ fin. $\times$ Ilin. Mig. by Elliott Bros New 45/-each. Post Paid. Telephone Dlals (New) 14'6d. Post Pald. 34R SILICON SOLAR CELL $4 \times .5$ volt unit series connected, output up to 2 v .
ar 20 mA . in sunlight,
30 30 times the efficiency of
selenium. As used in power Earth Satellites, $45 /$-. P. \& P. $1 / 6 \mathrm{~d}$.
AUTO TRANSFORMERS. Step up. step down. $110-200-220-240 \mathrm{v}$. Fully shrouded. New. 300 watt P. \& P. $6 / 6.1,000$ wact type $£ 5 / 15 /-$ each, $P$. \& $P_{0} 7 / 6$.

## RING TRANSFORMER


large centre aperture, can be used wound current Transformer,
 Eng the required number of surns through the centre opening to tive $B V$. () $121 \mathrm{a} ., 4 \mathrm{~V}$. Model the output could be wound

## demons tration transformer

 (STENZYL TYPE) Two removable coils aretapped at $0,110,220$ volte, and 6. 12, 36 voles respecatus designed for class demonstration. Electro magnetic induction, jumping ring,
induction lamp, relationship betweeo field intensity and ampere turns, induction
 modified model. C14/10
L.T. TRANSFORMERS All primaries $220-240$ volts
Type No.

|  | Pe No. Sec. T2ps | Price |  | Car |
| :---: | :---: | :---: | :---: | :---: |
|  | 30, 32, 34, 36 r . at 5 mmps . | $\varepsilon 4$ | 0 | 61 |
| 2 | 30, 40, 50 v . at 5 amps. | 665 | 0 | 6/6 |
| 3 | $10,17,18$ v.at 10 amps. | E4 10 | 0 | $4 / 6$ |
| 4 | $6,12 \mathrm{v}$. at 20 amps . | 4517 | 6 | 6/6 |
| 5 | 17. 18,20 v. at 20 amps . | 1612 | 6 | $6 / 6$ |
| 6 | 6, 12, 20 v . at 20 amps . | 475 | 0 | $7 / 6$ |
| 7 | 24 v . at 10 amps. | 1415 | 0 | $5 / 6$ |
| 8 | 4. 6, 24, 32 v . at 12 amp | 4610 | 0 | 616 |

$2,500 \mathrm{mfd} .100$
$10,000 \mathrm{mfd} .35$
$\begin{array}{lllll} \\ & 15 /- & 4,000 & \text { mfd. } & 50 \\ * & 10\end{array}$

## ROW = RHEOSTATS

(NEW) Ceramic constr
(NEW) Ceramle construction, wind-
ing embedded in Vitreous
brush assembly designed

## 



BODINE TYPE N.C. 1

## GEARED MOTOR

(Type 1) 71 r.p.m. torque 10 lb , in.
Reversible $1 / 70 \mathrm{th} \mathrm{h} . \mathrm{p} .50$ cycle .38 amp. Reversible l/th 28 r.p.m. torque 20 lb . in
(Type 2) 28 rach.
 reversible $1 / 80$ th h.p. 50 cycle .28 amp. The above two precision made U.S.A. motors ar offered in 'as new' condition. Input voltage of motor $115 v$ A.C. Supplled complete with eransformer for $230 / 240 v$ A.C. input
Price, either type $\mathbf{\$ 2 . 1 7 . 6}$ plus 6/6 P. \& P. or less transformer E 2.2 .6 plus $4 / 6$. P. \& $P$.
curtains, display stands, vending rotating aerials, drawing
230 v. GEARED MOTOR (as illustrated)



MINIATURE UNISELECTOR 3 banks of It positions, plus homing bank. 40 ohm coil. 24-36 v. D.C. operation. Carefully removed from equipment and
tested. $22 / 6$, plus $2 / 6$ P. \& $P$.

UNISELECTOR SWITCHES NEW 4 BANK 25 WAY FULL WIPER 25 ohm coil, 24 v . D.C. operation.
6 BANK 25 WAY FULL WIPER 25 ohm coil, 24 v . D.C. operation
66.10.0, olus $2 / 6$ P. \& P. 8-BANK 25-WAY FULL WIPER
24 v. D.C. operation, 67/12/6, plus $4 /-$ P. \& P.

## RELAYS

BULK PURCHASE ENABLES US TO OFEER THE MINIATURE RELAYS ATEAEHIGHLY COMPE PRITIVE

| COIL | WORKING |  |  |
| :---: | :---: | :---: | :---: |
| 0 | D.C. VOLT | CONTACTS | PRICE |
| 170 | 9-12 | $4 \mathrm{c} / \mathrm{OH.D}$. | 14/6 |
| 170 | 9-12 | $3 \mathrm{c} / \mathrm{o}+1 \mathrm{H.D}$ c/o | 12/6 |
| 280 | 6-12 | 2 clo incl. base | 14/6 |
| 700 | $12-24$ | $2 \mathrm{c} / 0 \mathrm{incl}$, base | 12/6 |
| 700 | 16-24 | $4 \mathrm{c} / \mathrm{o}$ incl. base | 15/6 |
| 700 | 16-24 | 4M 2B incl. base | 12/6 |
| 1250 | 20-40 | $2 \mathrm{~s} / \mathrm{o}$ H.D. incl. base | 12/6 |
| 9000 | $40-70$ | $2 \mathrm{c} / \mathrm{o}$ incl. base | 10\% |

MINIATURE RELAYS

- 12 volt D.C. operation. $2 \mathrm{c} / \mathrm{o} 500 \mathrm{M} . \mathrm{A}$. contacts. Size only lin. $x$ © $X$ in. Price 11/6 Post paid.
$30-36$ y. D.C. operation. $2 \mathrm{c} / 0500 \mathrm{M} . \mathrm{A}$. contacts.


## 230 VOLT AC RELAYS

 230 volt AC Coil. Three c/o 5 amp contacts, $17 / 6$ Post Paid. (illuLONDEX four c/o 3 amp
LONDEX four c/o 3 amp
contacts. $18 / 6$, incl. base. Post Paid.
A.C. AMMETERS $0-1,0-5,0-10,0-15,0-20$ amp. F.R. 2 in. dia. Allat $21 / \mathrm{C}$ each.
A.C. VOLTMETERS 0-25 v., 0-50 v., 0-150 v. M.
and all at $21 /$ each. P. \& P. extra.

 TECTION. Ranges: D.C. voles: 100 mv ..
$0.5 \mathrm{v} .5 \mathrm{v} ., 250 \mathrm{v} .01,000 \mathrm{v}$. A.C. voles. $2.5 \mathrm{v}, 10 \mathrm{v.}$,50 v., 250 v., 1,000 v. D.C. Current: $5 \mu \mathrm{~A}$.
$0.5 \mathrm{~mA} ., 5 \mathrm{~mA} ., 50 \mathrm{~mA}, 250 \mathrm{~mA}$. Size: $5 t \times 3 \frac{1}{4} \times 1 \frac{1}{2} \mathrm{in}$. Complete with batteries
and test prods. and test prods.
'AVO' MODEL 48A
Ex-Admiralty in gosd condition with instruc-
cions. leads, plus D.C. Shunts for 120 Amp and 480 Amp. A.C. Transformer for 60 Amp. and 240 Amp . Multiplier for 3600 volt. Comple

## SANGAMO WESTON

ExW.D.
Dual range voltmeter, $0-5$ and $0-100 \mathrm{~V}$.

$$
\begin{aligned}
& \text { D.C. FSD } I \text { mA. In carrying case with } \\
& \text { tests prods and leads. } 32 / 6 \text {. P. \& P. } 3 / 6 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& 250 \text { v. A.C. SOLENOID Heavy duty type. Approx. } \\
& 31 \mathrm{~b} \text {, pull. } 17 / 6 \text { plus } 2 / 6 \text { P, \& P. } 12 \text { v. D.C. SOLENOID. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Approx. IIb. SUll. 10/6, P. \& P.I/6. } \\
& 50 \mathrm{v} \text { D.C. SOLENOID. Approx. } \\
& \text { llb. pull. IO/6, P. } \mathrm{I} \text { P. I/6. Approx. } \\
& 50 \mathrm{v.} \mathrm{D.C.} \mathrm{SOLENOID.} \mathrm{Approx.}
\end{aligned}
$$

## NEW MODEL <br> HIGH FREQUENCY

 TRANSISTORISED MORSE OSCILLATOR Adjustable tone control. Fitted with moving coil speaker lso earpiece for personal monltoring. Complete with
## NICKEL CADMIUM BATTERY

## 1.2 v. 35 AH. Size 81 high $\times 3 \times 1 \frac{1}{3} .30 /-$ each, plus $4 /-$

 width 2 in. $X I \frac{1}{1} 1 \mathrm{ln}$. Weight: approx. 13 ozs. Ex.R.A.F. Tested 12/6. P. \& P. 2/6
R.C. A. plastic eriae 400 PIV 8 amp. Price B/6. R.C.A.
Diac for above, price $6 /-$, price includes dato Diac for above, price 6/-. Price includes dato sheet ond circuit.
G.E. P.U.T., DI3. T1. $12 /$ Texas F.E.T. 2N3819, 7/6. Now plastic Thyristor 400 PIV 8 amp. $18 / 6$ incl. data sheet.
All above prices plus $1 / 6 \mathrm{P}$. \& P.

## 

| AAl19 | 2/- | BC | 8/6 | 8YY2S 3191 | NKT2I | $5 / 6$ | OC26 | 12/- | 1N4001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AAYII | 211 | ${ }^{8 C 138}$ | $121-$ | BYY142 3/9 | NKT222 | $6 / 1 /$ | OC28 OC 29 | 121- | in 4007 |
| AAz12 | $17 / 16$ | ${ }_{8 C 143}$ | $151-$ | Byz ${ }^{\text {By }} 12$ - | NKT223A | $3 / 6$ | OC35 | 9/6 | 2C302 |
| AC107 | $14 / 6$ | ${ }_{8 C 147}$ | 1517 | 8YZ13 | NKT224 | $1 / 6$ | OC36 | 13 /- | 2G339A |
| ${ }_{\text {AC }}{ }^{\text {A }} 127$ | 6 - | ${ }_{8 C 148}$ | 3/3 | C106FI 9 | NKT22S | 1/6 | OC4 | $3 / 6$ |  |
| AC1272 | $8 / 6$ | BC149 | $4 / 7$ | Clll 18,- | NKT226 | 10:- | OC42 | 4, | 26381 |
| ACi28 | 4,- | BC154 | 121= | Cllie 12/ | NK T227 | 516 | $\bigcirc \mathrm{OC}_{4}$ |  | 2637 |
| ACIS 1 | 878 | BCY10 | 776 | $\mathrm{C}^{400}$ | NK1228 |  | $\mathrm{OCP}^{\text {O-4 }}$ |  |  |
| ${ }^{\text {ACl }} 176$ | 716 | $\mathrm{BCYH}^{\text {che }}$ | 716 | C426 | NKT270 | 3.8 | - 0 | 3/- | 2N301 |
| ${ }^{\text {ACl }} 187$ | 12- | BCY30 | 712 | CG6E A- | NKT271 |  | OC7I |  | N109 |
|  | 5 | ${ }^{\text {BCCY31 }}$ | 20.5 | CG63 2/- | NKT272 |  |  | $4 / 6$ |  |
| ACrit | 316 | ${ }_{8}{ }^{\text {BCY }}$ | $4 / 11$ | CRSI/40AF $12 / 6$ | NKT273 | 4/- | 0 C 73 | 3/- | 2N352 |
| ACrl ${ }^{\text {A }}$ | $4 / 5$ | BCY34 | 6/8 | DI3TI 10 | NKT274 | 5/- | - 775 |  | 2 N |
| ${ }_{\text {ACr }}{ }^{\text {ACr }}$ | $3 / 7$ | BCY 38 | 8:- | EA403 3/6 | NKT2 |  |  | 216 | 2N384 |
| ACY21 | 4,- | BCY | 28 | EC401 | NK 7276 | 316 | $\bigcirc \mathrm{Cl7}$ | $9 / 3$ | 2N385A |
| ${ }_{\text {ACr }}$ | $2 / 11$ | BCY40 | 161- | EC402 48 | NKT279A | 216 | OC8IO |  |  |
| ACY30 | 9 9- | BCY42 | 4.- | E8383 38 | NKT281 | 51- | $\bigcirc$ | 16 | ${ }_{2}{ }^{2} \mathrm{~N} 404$ |
| ADI40 | 15: | BCY43 | $4-$ | CET102 | NKT302 | $11 / 2$ | OC820 | $3 /-$ | 2N410 |
| AD149 | 1/8 | BCY54 | 174 | GET103 4, | NKT303 | 102 |  |  |  |
| ADI61 | $6 /-$ | BCY70 | ${ }_{8 / 8} 1 / 8$ | GET105 B/- | NKT304 | $9 / 8$ | OC84 | 4 | 2N458A |
| ADI62 | 126 | BCY72 | $4 / 8$ | GETII | NKT3 |  | - $\mathrm{Cl}^{23}$ | 71- | 2NSIIA |
| Afloz | 18. | BCY87 | $86 / 9$ | GET975 6- | NKT352 | 76 | OC1 | 1 - | 2NS13A |
| Afliob | $7 / 8$ | BCZ11 | 1088 | CETS73 716 | NKT 402 | 24. | OC140 | 121- | ${ }^{2} \mathrm{NS} 148$ |
| AFII 14 | 4/4 | BDI19 | 15- | CMO290 13/3 | NKT 403 | $16-$ | -C169 | 4 - |  |
| AFIIS | $4 / 4$ | ${ }_{8012}$ | 1816 | GEX 4511 | NKT404 | 138 | OC171 |  | 2N657 |
| AFIIG | 414 | 80123 | 23/6 | MAEASIOO | NKT 005 | 15/- | OC200 | 6/1 | 2N696 |
| AFII ${ }^{\text {a }}$ | $4 / 4$ | 8D124 | 15/- | $\begin{array}{ll} \text { MATIOO } \\ \text { MATIOI } \\ \text { S/6 } \end{array}$ | NKT451 | 17/8 | OC201 | $101-$ | 2N697 |
| AFIIS | 18/6 | BF152 | 3/6 | Matizo 5- | NKT452 | 11/4 | -C202 |  |  |
| AFI21 | 4/- | BFF154 | $9 /-$ | MAT121 5/6 | NKT453 | 12 | -C202 |  |  |
| AFI24 | $81-$ | BFF159 | 15/- | MEsf103 6/ | NK T674 |  |  | 1 |  |
| AFI 126 | $3 / 9$ | BFI | 9 ,- | MJE520 15- | T675 |  | OC204 |  | 2N706A |

## PRICES FOR QUANTITIES IN EXCESS OF 100 APPLICATION


mu COMPONENTS - It
RESISTORS 1 or Wart $5 \%$ LOW NOISE CARBON
FILM. $10,12,15,18,22,27,33,39,47,56,68,82$ decades $(\times 10 \times 1000 \times 1000 \times 10,000)$ । Mes erc to $B 2$ Megohms ( $10 \%$ tolerance). PRICES: 1-25 4d, 26-99 3d, $100+2 d$ (your selection and or 1 Watt mixed).
SKELETON PRESET POTS. 20\% Tol. Linear. Low tal or vertical $100,250,500$, $1 \mathrm{k}, 2.5 \mathrm{k}, 5 \mathrm{k}$. 10 k . $25 \mathrm{k}, 50 \mathrm{k}$, $100 \mathrm{k}, 250 \mathrm{k}, 50 \mathrm{k}, 1 \mathrm{Meg}, 2.5 \mathrm{Meg}, 5 \mathrm{Meg}$. NEW PRICE: ELECTR to $+50 \%$ col. subminiature (all values in $\mu \mathrm{F}$ ). 4 V
6.4 V
10 V 16 V
25 V
40 V
64 V
Price

$\begin{array}{cc}1 / 1 & 1 / 2 \\ \text { inned circuic } \\ \text { each; } \\ 0.033\end{array}$ type 250 Vde working. $0.01,0.0150$ 0.022. 7d each; 0.033 . VEROBOARD 0.15. Matrix FLUX COATED | 21 |  |
| :--- | :--- |
| 34 |  |
| 3 | $31^{\circ}, 3 / 3$. |
| 18 | 21 | good size pieces only lo/-pack.

VEROBOARD $0.1^{\circ}$ Matrix, $31 \times 2$
VEROPINS for $0.15^{\circ}, 36$ pieces $3 /=$,
VEROCUTTER $9 /$ - (including free sample pieces)
ypes not listed please enclose a STAMPED ADDRESSED Envelope

| AF127 | 4/- | BF167 | 6/6 | MPF 102 |
| :---: | :---: | :---: | :---: | :---: |
| AFI39 | $8{ }^{8}-$ | BFF173 | 612 | MPFi03 |
| AFIbi | 12. | BFI78 | 141/- | MPFIO4 |
| AF186 | $11 /$ | BF179 | 121- | MPFFlos |
| AF239 | 12- | 8F180 | $6-$ | MP53638 |
| AFEII | 141- | BF\|81 | 1/- | MJ480 |
| AFZ12 | $11 / 9$ | ${ }^{\text {ef }} 184$ | $7 / 6$ | MJ4 |
| Asp26 | 4/5 | 曆×13 | $4 / 10$ | M1491 |
| AsY27 | 6 | 8F×29 | 8 - | NKT |
| ASY28 | 4/5 | BFX44 | $6 / 5$ | NKT122 |
| AsY29 | 6/- | 8F×87 | 6- | NKT123 |
| Asz21 | $11 /-$ | BfYS0 | $4 / 6$ | NKT124 |
| ATZ10 | 401- | BFYSI | 319 | NKTI25 |
| Aurio | 19.6 | 8FY52 |  | NKT127 |
| AFYIS | 16/10 | BFY53 | 312 | NKT128 |
| 8Allo | 6 /- | BS $\times 20$ | 3/4 | NKT129 |
| BA111 | 61- | B5x21 | 8- | NKT141 |
| 8A112 | 18/- | ${ }^{85 \times 27}$ | 4- | NKT142 |
| BAlIS | 2 288 | 85Y95a | 3/4 | NKT143 |
| BA130 | 1- | BTX39 |  | NKT144 |
| BAYJ! | 216 | 600R | 120/- | NKT152 |
| BAY38 | 3 - | BTX40 |  | NKT161 |
| BC107 | 29 | ${ }^{600}$ | 1201 | NKT162 |
| BC108 | 219 | BTY87/ |  | NKT163 |
| BC109 | $2{ }^{2}$ | 150R | 31- | NKT164 |
| BC113 | 5/- | 8 Y 100 | 3/- | NKT165 |
| BC114 | 1/5 | BYI2S | 3/6 | NKT211 |
| 8C115 | 711 | BY×10 | 3/- | NKT12 |
| $\mathrm{BC}^{\text {B }} 16$ | 91- | BYX $36 / 150$ | 2\% | NK1213 |
| ${ }^{8 C 118}$ | 5, - | EY $\times 161300$ | 2110 | KNT214 |
| 8 BC 125 | $121-$ | BYX 361600 | 3/8 | NKT215 |
|  | $51 /$ | BYYzI | 25/- | NKT217 |
| BCi36 | 711 | BYY23 | 26/3 | NKT218 |





 "2-DeC" kit contains two "DeCs" componens eray acces-
sories, instruction book, all
packed
in atractive plastic
box

BOOKS FROM STOCK
and circuits $29 / 6$ NEW! RCA MANUAL, 657 pagess SCR's, Transistors,
Diodes and Circuits. Still 29/- plus P. \& P . Diodes and Circuits. Still 28/-plus P. \& P P. Excellent data
Designers' Guide to British Transistors. Designers lists over 1,000 common eypes plus Compuere:
belected substizuzion chart selected subrstiturion chart $^{\text {(ADO } 2 / 6 \text { POST } \& \text { PACKING FOR ALL BOOKS }}{ }^{25}$ NEONS
Signal neons for many sypes of circuir, type "N"
HEATSINKS. Suitable for $2 \times$ OC35, erc. As used in
commercial equipment. Type 10 D commercial equipment. Type 10D ALUMINIUM CHASSIS
$6 \times 4 \times 21^{\circ}$ with reinforced corners $6 / 9$ each ( $P$ \& $P 1 / 6$ ). Ally panel to fit $1 / 6$. Paxolin panel to fit 21-. Many other
sizes in stock up to $12 \times 8 \times 2 \xi^{\text {a }}$ (see catalogue). ZENER DIODES. $400 \mathrm{~mW} 10 \%$ Tolerance. Complete
range preferred values 3 vole so 30 vole, each $\quad 3 / 6$ range preferred values 3 vole to 30 vole, each SOLAR CELLS
 SIM $0.3-0.4$ volts $\begin{array}{ll}\text { en } \\ \text { S4 } & 10-16 \mathrm{~mA} \text { Silicon }\end{array}$ 1916
$19 / 2$
$33 / 6$
 $25+6 / 9100+5 / 9$

2 N4871 Mrioro
6/9
$25+5 / 9100+4 / 9$

$25+13^{\prime} \cdot 100+11^{\prime}-$

56CAY gallium Arsenide
Inira-Red emitter
29/6 each. (Incl. data)
BC107/8/9
Planars
2'9
SL403


## BY121

MULLARD 800 DIV
MULLARD 800 PIV 1 AM
PLASTIC RECTIFIER


BF180 mullard Uhf AMPLIFIER 6\%. $25+4 / 11 \quad 100+4 / 3$

## 2N2614 RCA

 LOW NOISE AUDIO $4 / 9$$25+4^{\prime}-\quad 100+3^{\prime}-$

## ADI61|2

NPN/PNP PAIR complementary pairs

2N2926 LOW COST NPN PLANAR 2'. $25+1^{\prime \prime} 8 \quad 100+1^{\prime} 6$


## THYRISTORS-SCRS

|  |  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: |
| PIV | $1 A$ | $3 A$ | 10 A | 30 A | 100 A |
| 50 | $7 / 6$ | $9 /-$ | $7 / 6$ | $25 /-$ | $20 /-$ |
| 100 | - | $10 /-$ | $10 /-$ | $30 /-$ | $22 /-$ |
| 200 | $8 / 6$ | - | $12 / 6$ | $42 /-$ | $35 /-$ |
| 300 | - | $11 /-$ | - | $51 /-$ | - |
| 400 | $9 / 6$ | $12 / 6$ | $15 /-$ | $60 /-$ | $45 /-$ |
| 600 | - | - | $20 /-$ | $84 /-$ | $120 /-$ |
| 800 | - | - | - | - | - |

## NEW SPECIAL ITEMS!!

40602 - Dual Gate MOS-FET 9/- each L14B- Photo-Darlington Amplifier 26/6 MGA100-Gallium Arsenide Infra Red Light 31 F2- Infra Red Detector Diode $\quad 28^{\prime 6} 6$ 3N84- Silicon Controlled Switch $29^{\prime 6}$ TAA320-Monolithic IC With Mranstor $13^{\prime} 6$ lollowed by Bi-polar transistor itms
s $\%$-on request-free with above items.

ULTRASONIC TRANSDUCERS


Post \& Packing $1 /-$ Der order (FIRST CLASS).
MAIL ORDER DEPT. \& RETAIL SHOP:-
LST, 7 Coptfold Road, Brentwood, Essex Telephone: 22647011 (Sales Department) EXPORT ENQUIRIES PARTICULARLY WELCOME


##  EXCLUSNE

## These tro new metier lats by TMK ofter the prolassional, electronics notbvisi and sludent the unigue opportonity of buiding - really first class precision multimeler at a wortimhisie saving in cost The Impact tesisslant bakelita catinets are sasppifed with the

 metee scale and movement mounted in position: the model 200 also has the rorary came selection in position the highest

## MODEL 200

full scale accuracy. DCV and current: $\pm 2 \% \mathrm{ACV}+3 \%$. resistance $+3 \%$ Spetial 0 6y 2 inc. metei, transistor circuit measurements

## SPECIFICATION

- OCV:O-0.6 8.30-120.800-1.200\% al ZONOW

OC Current: $0.0006 .6 .60 \cdot 600 \mathrm{~mA}$
hesistance: $0.10 \mathrm{~K} \quad 100 \mathrm{~K} 1 \mathrm{M} 10 \mathrm{Mibhms}(58 \cdot 580-5.8 \mathrm{~K} \cdot 58 \mathrm{~K}$ al mid-scale).
Capacitance. 000202 uf ! AE: tiv rangel.
Decibels-20to G3use.

LASKY'S KIT PRICE 85/-

A highly refiable instument using an antively new range selection mecthanism maich permins the use of a really large meler in a more
 your eyes ham the mefer. High spsed rotary range selection knob: also
movement with oveload protection circuit. Special $A$ and mA measurement fanges SPECIFICATION

- DCV: 0.0.25-2.5.10
500V af 50NOPV.

25KDOPV 0-0.125-1.25-5.0-25-125
OC: $\mu \mathrm{A}: 0-25-\frac{10}{} \mu \mathrm{~A}$ at $125 \mathrm{~mA} ; 0.50 \mu \mathrm{~A}$ at 250 mA
0 CmA : D-2 $5.25-250 \mathrm{~mA}$ a $1125 \mathrm{mV}, 0.5 \cdot 50-500 \mathrm{~mA} \mathrm{a}+250 \mathrm{mV}$.
OC Amps: D- 5 AA al $125 \mathrm{mV}: 0-10 \mathrm{~A}$ al 1250 mV .

Outpul Capacito 10.1 aff. 400 Vwl it senes
Decibels -20 10. $815+18$ in 10 ranges
Operates on wovo 1.5 S (U.7 Iype batieries). Black bakelite cabinel. sive $5 \frac{1}{2} \times 61$
2 in. Sirony tesilient plastic handle Complete with lest leads

LASKY'S KIT PRICE £10.10.0

also avallable readr.gult and tested el2.10.0. post 5 ".


```
post 3/6
```

$\square$

## TMK Model PL-436

FULLY BUILT AND TESTED 20.000 O.P.V. Multi-tester for the amataur or professional. Features mirror scale and wood grain finish front panel. SPEC. : DCN ranges 600V at $8 \mathrm{~K} / \mathrm{O} . \mathrm{PV}$ V. DC current $50 \mu \mathrm{~A} .0 .6 .60,600 \mathrm{~mA}$. Resist 120. 600 V at $8 \mathrm{~K} / \mathrm{O} . \mathrm{P} . \mathrm{V}$. DC current: $50 \mu \mathrm{~A} .0 .6$. $60,600 \mathrm{~mA}$. Resistance. ohms centre scale). Oecibels: -20 to +57 dB in four rances ohms centre sale). Decibels: -20 to
Operates on $2 \times 1.5 \mathrm{~V}$ U7 type batts. Size:
Operates on $2 \times 1.5 \mathrm{~V}$ U7 ivpe batts. Size:
$5 \mathrm{f} \times 4 \times 2 \mathrm{dm}$ Complete with batteries and operating inatructions.

## $\underset{\text { Laskr's }}{\text { palce }}$ \&6.19.6

GET YOUR LASKY'S AUDIO-TRONICS PICTORIAL FREE


11 valve blagh
grade comi-
munalontlon
recelver aut-
able for tropt-
 CW/FM opera.
Hon. Incoopore
ates preciston veraler drecisive.
d apeaker and
 tested and checked.
TYPE I3A DOUBLE BEAM
MARCONI CT 44
TFOS6 AF

PLESSEY 5L 403A
tegrated ampuiler
$49 / 8$ port paid.
CLASS D. WAVEMETERS

| -10 |
| :--- |
| $? ~$ |

A erystal controlled lietero-
dyne frequency meter cover-
ling 1.7 .8 Mc/s. Operatlon on
6 v. D.C. Ideal for amateur
use. Available in good uned
use. Available in good uned
condition \&5.19.8 Carr. $7 / 6$.
Or brand new rith accessories
Ur brand new. with accessories
\&7.18.6 Carr. $7 / 6$.
CLASS D WAVEMETERS No. 2
 Excellent condition $\varepsilon 18 / 10 / 0$. Carr. $30 /$ 770R. 19.165 Mc/s. 8150 .

LELAND MODEL 27 BEAT FREQUENCY OSCILLATORS
 Carriage $10 /$

RACAL MA.I68
TRANSISTORISED
DIVERSITY SWITC
Brand new condmion £15. Cartiage 10/
TO- 2 PORTABLE
OSCILLOSCOPE
OSCILLOSCOPE
A general purpose low co
conommy osillowcope for every
day une. Y
day ue. Y map. Bandwldth
2 CPB-1 MHZ. In put tmp
$2 \mathrm{CPB}-1 \mathrm{MHD}$. Input tap.
2 meg 0.25 PF . Uluminated

TO. 3 PORTABLE OSCILLOSCOPE. $3^{\prime \prime}$ TUBE



 KRZ. Input trap. 2 meg 0
20 PP . Time base. 8 range
 ehmonizathon Internal/ex-
ternal. Ihluminated acale. $140 \times 215 \times 330 \mathrm{~mm}$. Welght $151 \mathrm{lbs} .220 / 20 / 20 \mathrm{~F}$. £35/-/-. Carr. 10/-. SOLARTRON MONITOR
OSCILLOSCOPE TYPE 101 An oxtremely high quality osellloncope with time
base of $10 \mu / \mathrm{sec} .1020 \mathrm{~m} / \mathrm{sec}$. Internal Y auplitiler. Separate mains power supply, 2001850 V. Supplied In excellent condition with cables, probe, etc., at
received from Ministry. $28 / 18 / 6$. Carr. $30 /$.

FIELD TELEPHONES TYPE L. Generatorringing. metal easea. Operate on 2 1.5 \%. batherles (not
uupplied.) Ercellent condition. $\mathbf{8 4 . 1 0 . 0}$ per pair. aupplied, ${ }^{\text {( }}$ Excellent condition. $\& 4.10 .0$ per pair.
Carr. $10 \%$.


## LAFAYETTE SOLID STATE HA600 <br> RECEIVER

5 BAND AM/CW/SSB AMATEUR AND SHORT WAVE
 detector. . Varimble Bro Noiselimiter Pronaci




RCA COMMUNICATIONS RECEIVERS AR88D

 Incorporating cryatal filter, noise limiter, varinble BFO
variable ielectivlt, etc. Price $£ 87.10 .0$. Carr. $\mathbf{L 2}$.


Type MR.38P. 1 21/32in. square fronts.


LAFAYETTE STEREO AMPLIFIER MODEL STEREO 10


Completely transistorbsed 5 wath per channel I. H.P. musle power. Inputa for gram and tuner. Separate volume controls size, big performance stereo smpllfer ideal for limited space ayntema, Beautirulls finithed in grey and alurainiun Bize 71 処. $\times 2$ 1010

Price K11.19.6

## POWER RHEOSTATS

Figh quality ceramic construction. Windinga embedded in vitreous enamel.
Heivy duty bruah wiper. Contlinuous ratigg. Wide range available ox-stock.



spare movementa for Model 8 or 9 . (Fltted with odel 9 machle) or basia for any multimeler.
Brand Now and Boxed $69 / 6$ P. \& P. 3,6 AVO 48A
enfect order with - ket of shunta and resixtances
E12.10.0. P. \& P. $7 / 6$.
HIGH T.E. 40 HIGH SENSITIVITY
A.C. VOLTMETER 10 meg. Input 10 ranges:
$.01 / .03 / 1 / .31 / 3 / 10 / 30100300$
v. R.M.8. V. R.M.8. 4 cps.-1.2 Mo/ 18
Decthele -40 to +50 dB Decthele - 40 to + 50 dB.
Aupplied brand new complete ith leadi and inatructione E17/10/-. Carr. $5 /$..


COSSOR 1049 DOUBLE BEAM C. OSCILLOSCOPES p.C. coupled. Band width $1 \mathrm{Kc} / \mathrm{s}$. Perfect order.
£25. Carr. $30 /-$.


GENERATORS
Onciliator Teat
No. 2. Aigh Quility prechion
Instrument mad for the Mlust
by Alrmec. by Alrmec. Pro-
quency coverage
$20-80 \mathrm{Mc}$. AM
OW/FM. Incor-
por pratea prectalo dind, le vel meter. preclalon atten uator $1 \mu \mathrm{~V}-100 \mathrm{M}$ :
Operation from 12 volt D.O. or $0 / 110 / 200 / 250 \mathrm{v}$. A.C. Size 12 x $8 \frac{1}{}$ gin. Suppilitin brand new
condition complete with all connectora, fully Q GEARED MAINS MOTOR Paralux type RD19 Rible. 30 r.p.m. 40 lb . in
Complete with capacito
Excelleat condition. 99/6. Carr. 10/-.

TE.IGA TRANSISTORISED
TEIGNAL GENERATOR


TRANSISTORISED L.C.R. A.C MEASURING BRIDGE
A new portabl cellent rango axd accuracy at low post.
$\qquad$

 $\pm$ 2\%. TURNB RATIO 1:1/1000-1:11100
 £20. P. \& P. $5 / \%$ TRANSFORMERS

 500 W. $\varepsilon 4 / 10 / 0$, P. \& P. $6 / 6$
1,000 W. \& 81010. P. \& P. 76
1,500 W. $£ 7119 / 6$, P. $\$$ P. $8 / 6$


# ELECTROALUE 

## EVERYTHING BRAND NEW AND TO SPECIFICATION • LARGE STOCKS

## BARGAINS IN NEW TRANSISTORS

ALL POWER TYPES SUPPLIED WITH FREE INSULATING SETS

| 2N696 | 5/6 | 2N3707 | 4/- | BA102 | 9/- |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 N697 | 5/6 | 2N3708 | 2/9 | 8C107 | 2/9 |
| 2N706 | 2/9 | 2N3709 | 3/- | BC108 | 2/6 |
| 2 N 1312 | $9 / 9$ | 2N3710 | 3/3 | BCl09 | $2 / 9$ |
| 2N1302 | 4/- | 2N3711 | 3/11 | BC147 | 4/3 |
| 2 N 1303 | 4/- | 2N3904 | $7 / 6$ | BCl 48 | 3/3 |
| 2NI304 | 4/6 | 2N3906 | 7/6 | BCI49 | 4/3 |
| 2NI305 | 4/6 | 2N3731 | 23/- | BC153 | 101- |
| 2N1306 | 6/9 | 2N3820 | 25/6 | BC154 | 11/- |
| 2N1307 | 6/9 | 2N3325 | $10 / 6$ | BC157 | 3/9 |
| 2NI308 | $8 / 9$ | 2N3794 | 3/3 | BC158 | 3/6 |
| 2N1309 | $8 / 9$ | 2N4286 | 3/3 | BC159 | 3/9 |
| 2 N 1613 | 6/- | 2N4289 | 3/3 | BC167 | 2/6 |
| 2N1711 | 7/- | 2N4291 | 3/3 | BC168 | 2/3 |
| 2N2218 | 9/3 | 2N4292 | 3/3 | BC169 | 2/6 |
| 2 N 2147 | 18/9 | 2 N 4410 | 4/9 | BC177 | 6/3 |
| 2N2369A | 6/9 | 2NS192 | 25/- | BC178 | 5/8 |
| 2N2646 | 10/9 | 2NS195 | 29/3 | BCI79 | 6/- |
| 2N2924 | 4/3 | 40406 | 16/3 | BDI2I | 18/- |
| 2N2925 | 5/3 | 40408 | 14/6 | BDI23 | 24/3 |
| 2N2926R | 2/3 | ACI 26 | $6 / 6$ | BFI78 | 10/6 |
| 2N29260 | 2/3 | AC127 | 6/- | BFX29 | 10/9 |
| 2N2926Y | 2/3 | ACl28 | 6/- | BF×85 | 8/3 |
| 2N2926G | 2/6 | AC176 | 11/- | BFX88 | 7/9 |
| $2 N 3053$ | 5/6 | ACY22 | 3/9 | BFY50 | 4/6 |
| 2N3054 | 14/3 | ACY40 | 4/- | BFY51 | 4/3 |
| 2N3055 | 16/6 | ADI40 | 191- | BSX20 | 3/9 |
| 2N3391A | 5/6 | ADI49 | 17/6 | MJ480 | 21/- |
| 2N3702 | 3/6 | AD161 |  | MJ481 | 27/- |
| 2N3703 | 3/3 | AD162 3 | 16-pr. | MJ491 | 30/- |
| 2N3704 | 3/9 | AF118 | 10/6 | P346A | 5/9 |
| 2 N 3705 | 3/5 | AF124 | 7/6 | $\checkmark 405 \mathrm{~A}$ | 7/9 |
| 2N3706 | 3/3 | AFI27 | 7/- |  |  |

## RESISTORS

| Code | Power | Tolerance | Range | Values available | 1209 | 108099 | 100 up |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | 1/20W | 5\% | $100 \Omega-220 \mathrm{~K} \Omega$ | E12 | 18 | 16 | 15 |
| c | 1/8W | 5\% | 4.7日-1M | E24 | $2 \cdot 5$ | 2 | 1.75 |
| c | 1/1W | 10\% | 4.7810M | E12 | $2 \cdot 5$ | 1.75 | 1.5 |
| C | 1/2W | 5\% | $4 \cdot 7 \Omega-10 \mathrm{M} \Omega$ | E24 | 3 | 2.25 | 2 |
| MO | 1/2W | 2\% | $10 \Omega-1 \mathrm{M} \Omega$ | E24 | 9 | 8 | 7 |
| C | IW | 10\% | $4.7 \Omega-10 \mathrm{M} \Omega$ | E12 | 4 | 3.25 | 3 |
| WW | IW | $10 \% \pm 1 / 20 \Omega$ | $0.22 \Omega-3.3 \Omega$ | E12 |  | 15d. all quan |  |
| WW | 3W | 5\% | $12 \Omega-10 \mathrm{~K} \Omega$ | E12 |  | 15d. all quan |  |
| WW | 7W | 5\% | $12 \Omega-10 \mathrm{~K} \Omega$ | El2 |  | 15d. all quan |  |

Codes: $C$ carbon film, high stability, low noise. Prices are in pence each for each ohmic MO = metal oxide, Electrosil TR5, ultra low noise. value and power rating. (Ignorefractions $W W=$ wire wound, Plessey.
Values:
E12 denotes series: $1.1 \cdot 2,1 \cdot 5,1 \cdot 8,2 \cdot 2,2 \cdot 7,3 \cdot 3$, $3.9,4.7,5.6,6.8,8.2$ and their decades
524 denotes series: as E12 plus $1 \cdot 1,1 \cdot 3,1 \cdot 6,2$, $24,3,3 \cdot 6,4 \cdot 3,5 \cdot 1,6 \cdot 2,7 \cdot 5,9 \cdot 1$ and their decades.
NEW PLESSEY INTEGRATED CIRCUIT POWER AMPLIFIER TYPE SL403A. Only $57 /-$ each. Operates with 18 V power supply. Supplied complete with application Data on orders Supplied compl
for 2 or more.
PE NOV. 69 STEREO AMPLIFIER KIT
less metalwork .. Ell/18/- NET complete
CAREON SKELETON PRE-SETS
Small high quallty, type PR: Linear only: $100 \Omega$, 100K, 220 K , 470 K , M , 2 M 2 , 5 M , 10 MO , vertical or horizontal mounting $\quad . \quad$ I/- each

S-DeCs PUT AN END TO "BIRDS NESTING''. Components just plug in.
Saves valuable time. Use components again and
Sagain.
Only 30/6 post f́ree
Compact T-DeC, increased capacity, may be
semperature-cycled.
T-DeC .. .. .. only 51/- post free
WAVECHANGE SWITCHES
IP I2W; 2P6W; 3P 4W; 4P 3W-long spindles
SLIDER SWITCHES
4/9 each
Double pole, double throw

## ELECTROVALUE

 MULLARD SUB-MIN ELECTROLYTICS C426 RANGE Vin $\quad$ Price $1 / 3$ each $\begin{array}{lll}\text { Axial leads. Values ( } \mu \mathrm{F} / \mathrm{V} \text { ): } 0.64 / 64 ; \quad 1 / 40 \text {; } \\ 1.6 / 25 ; & 2.5 / 16 ; & 2.5 / 64 ;\end{array}$ $6-4 / 25 ; 8 / 4 ; 8 / 40 ; 10 / 2.5 ; 10 / 16$ : $10 / 64 ; 12-5 / 25$ : $16 / 40 ; 20 / 16$; $20 / 64$; $25 / 6$-4; 25/25, 32/4. 32/10: 32/40; 32/64; 40/16; 40/2.5; $50 / 6 \cdot 4 ; 50 / 25 ; ~ 50 / 40 ;$ $64 / 4 ; 64 / 10 ; 80 / 2 \cdot 5 ; 80 / 16 ; 80 / 25 ; 100 / 6 \cdot 4 ; 125 / 4$; 125/10; 125/16; 160/2.5; 200/6-4; 200/10; 250/4; $320 / 2 \cdot 5 ; 320 / 6 \cdot 4 ; 400 / 4 ; 500 / 2 \cdot 5$.LARGE CAPACITORS. ALL NEW STOCK High ripple current types: $2000 \mu \mathrm{~F}$ 25V 7/4; $50 \mathrm{~V} 2 \mathrm{ll} 1.100 \mathrm{MF} 100 \mathrm{~V} 16 / 3$. $2000 \mathrm{\mu F} 100 \mathrm{~V} 28 / 9$. $5000 \mu \mathrm{~F} 70 \mathrm{~V} 36 /-5000 \mathrm{LF}$ IOOV $58 / 3$. 1000 HF $50 \mathrm{~V} 8 / 2 ; 2500 \mu \mathrm{~F} \quad 64 \mathrm{~V} \quad 15 / 5 ; 2500 \mu \mathrm{~F} 70 \mathrm{~V} 19 / 6$.
MEDIUM RANGE ELECTROLYTICS Axial leads. Values ( $\mu \mathrm{F} / \mathrm{V}$ ): $50 / 50$ 2/-: $100 / 25$ 3/9; $1000 / 10$ 3/-: $500 / 506 /-; 1000 / 25$ 4/-: $1000 / 50$ 7/-; 2000/25 6/\%.

## SMALL ELECTROLYTICS

Axial leads: $5 / 10,10 / 10,25 / 10,50 / 10 \quad$ 1/- each $25 / 25,47 / 25,100 / 10,220 / 10 \ldots . .1 / 3$ each COMPONENT DISCOUNTS
$10 \%$ on orders for components for C 5 or more. 5\% on orders for components for $\mathcal{C} 15$ or more. (No discount on net items)

## POSTAGE AND PACKING

Free on orders over 12
Please add $1 / 6$ if orcier is under $\mathrm{C2}$.
Overseas orders welcome: carriage charged at
cose.

## PEAK SOUND AMPLIFIER KITS

The new Englefield Kits


Brilliant new styling and available in two forms: STEREO 15 WATTS PER CHANNEL
Supplied in kit form with complete amplifier and pre-amplifier modules and power supply components. Output per channel into $15 \Omega$ - 13 watts R.M.S.

Price 838.4 .0 Net
STEREO 25 WATTS PER CHANNEL
Supplied in kit form with complete amplifier, pre-amplifier and regulated power supply modules. Output per channel into $15 \Omega$ -28 watts R.M.S. Price $\mathbf{2 8 . 1 5 . 0}$ Net Specifications on these amplifiers in accordance with the Specifications in Guarantee published in Peak Sound advertisements.
Inputs:
Magnetlc, RIAA 3.5 mV
$\begin{array}{ll}\text { Ceramic } & 35 \mathrm{mV} \\ \text { Tape } & 100 \mathrm{mV}\end{array}$
Radio 100 mV
Signal to noise ratios: Better than 60 dB all inputs. ENGLEFIELD CABINET to house either above assemblies (as Illustrated) $\mathbf{1 6 . 0 . 0}$.
Other Peak Sound Products as advertised. Mainline Kits as advertised.

COLVERN 3 WATT WIRE-WOUND POTENTIOMETERS: $10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 150 \Omega, 250 \Omega, 500 \Omega$, $1 \mathrm{~K} \Omega, 1.5 \mathrm{~K} \Omega, 2.5 \mathrm{~K} \Omega, 5 \mathrm{~K} \Omega, 10 \mathrm{~K} \Omega, 15 \mathrm{~K} \Omega, 25 \mathrm{~K} \Omega, 50 \mathrm{~K} \Omega$. CARBON TRACK POTENTIOMETERS
Double wiper ensures minimum noise level. Long plastic spindles. Single gang linear .. $220 \Omega, 470 \Omega, 1 \mathrm{~K}$, etc. to $2.2 \mathrm{M} \Omega \quad 2 / 6$ Single gang log. .. $4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}$, ete, to $2 \cdot 2 \mathrm{M} \Omega$.. $2 / 6$ Dual gang linear .. $4 K 7,10 \mathrm{~K}, 22 \mathrm{~K}$, etc. to $1 \mathrm{M} \Omega$.. $8 / 6$ Dual gang log. .. $4 K 7,10 K, 22 K$, etc, to $2 M 2 \Omega$.. $8 / 6$ Log/Anti-log. $\quad$.. lOK, $47 \mathrm{~K}, \mathrm{IM} \Omega$ only Dual anti-log .. IOK only
Any type with $\frac{1}{2} \mathrm{amp}$ double pole mains switch
FETS n-channel
Low cost general purpose $2 \mathrm{~N} 5163,25$ volt .. only 5/- each Audio/r.f. Texas 2N3819 9/- each Motorola 2N5459 (MPF105)

30 WATT BAILEY AMPLIFIER COMPONENTS: Transistors for one channel ET/5/6 list, with 10\% discount

Capacitors and resistors for one channel, list $\mathbf{\varrho 2}$.
Printed circuit board free with each transistor set
Complete unregulated power supply kit $44 / 17 / 6$ mono or stereo, subject to discount.

## Further details on application

MAIN LINE AMPLIFIER KITS AS ADVERTISED PRICES NET
SINCLAIR IC. 10 INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMPLIFIER
This remarkable monolithic integrated circuit amplifier and pre-amplifier is now available for despatch from stock. It is the equivalent of transistor/is resistor circuit plus 3 diodes and an unusually wide range of uses all of which are detailed in the manual provided with le.
Sinclair $1 C .10$ as advertised, post free
59/6 NET


9 \& 10 CHAPEL ST., LONDON, N.W.I 01-723-7851 01-262-5125

## BY FAMOUS MAKERS. NEW. GUARANTEED

 $20 \mathrm{H}, 200 \mathrm{~m} / \mathrm{a} .30 / \mathrm{m}$. P. \& P. 7/6. $20 \mathrm{H} .180 \mathrm{~m} / \mathrm{a}, 27 / 6$. P. \& P. 7/6. $15 \mathrm{H} .180 \mathrm{~m} / \mathrm{a} .25 / \mathrm{c} . \mathrm{P} . \&$ P. 7/6. $12 \mathrm{H} .200 \mathrm{~m} / \mathrm{a} 25 / \mathrm{m} . \mathrm{P}$ \& P. $7 / 6.10 \mathrm{H} .180 \mathrm{~m} / \mathrm{a} .22 / 6 . \mathrm{P}$. \& P. $7 / 6.5 \mathrm{H} .300 \mathrm{~m} / \mathrm{s} .15 \%$ P. \& P. 6/6. $30 \mathrm{H} .50 \mathrm{~m} / \mathrm{a} .25 / \mathrm{P}$ P. \& P. $7 / 6.10 \mathrm{H} .75 \mathrm{~m} / \mathrm{a} .10 / \mathrm{s}$. P. \& P. $2 / 6.50 \mathrm{H} .25 \mathrm{~m} / \mathrm{a} .8 / \mathrm{s} . \mathrm{P} . \&$ \& P. $2 / \mathrm{z} .10 \mathrm{H} .120 \mathrm{~m} / \mathrm{a} .12 / 6$.P. \& P. $3 / 6.15 \mathrm{H} .75 \mathrm{~m} / \mathrm{a} .12 / 6$. P. \& P. $3 / 6.5 \mathrm{H} .100 \mathrm{~m} / \mathrm{a}$. $\begin{aligned} & \text { P. \& P. } 3 / 6.15 \text { H. } 75 \mathrm{~m} / \mathrm{a} \text {. } 12 / 6 \text {. P. \& P. } 3 / 6.5 \mathrm{H} .100 \\ & 6 / 6 . \text { P. \& P. } 2 / \mathrm{l} .0 .75 \mathrm{H} . ~\end{aligned} 50 \mathrm{~m} / \mathrm{a}$. $15 / \mathrm{C}$. P. \& P. $4 / 6$.

PARMEKO NEPTUNE SERIES EHT TRANSFORMERS
Pri Tapped $200-250 \mathrm{v} . \mathrm{Sec}, 3 \mathrm{kV} 58 \mathrm{~m} / \mathrm{a} .4 \mathrm{v}$.
r.m.s. test and $4 \mathrm{v}, 0.5 \mathrm{~A} .75 / \mathrm{m}, \mathrm{P} . \& \mathrm{P} .10 /-$.
GRESHAM POTTED TRANSFORMERS
Pri Tapped $200-250 \mathrm{v}$. Sec. $475-0-475 \mathrm{v} .160 \mathrm{~m} / \mathrm{a} .215-0-215 \mathrm{v}$. Pri Tapped $200-250 \mathrm{v} .5 \mathrm{ec}, 475-0-475 \mathrm{v} .160 \mathrm{~m} / \mathrm{a} .215-0-215 \mathrm{v}$.
$60 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .8 .2 \mathrm{~A} .6 .3 \mathrm{v} .5 \mathrm{~A} .6 .3 \mathrm{v}, 0.75 \mathrm{~A}, 5 \mathrm{v}, 3 \mathrm{~A} .85 /-$ $60 \mathrm{~m} / \mathrm{a} .6 .3$
P. \& P. 10
Pri Tapped 200-250v. Sec. $415-0-415 \mathrm{v}$. $160 \mathrm{~m} / \mathrm{a}$. 165 v . 155 $\mathrm{m} / \mathrm{a}$. $6.3 \mathrm{v} .3 \mathrm{~A} .6 .3 \mathrm{v} .1 .6 \mathrm{~A} .6 \cdot 3 \mathrm{v}$. $1.6 \mathrm{~A} .5 \mathrm{v} .2 \cdot 8 \mathrm{~A} .75 / \mathrm{M}$. P. \& P. $10 /$.

Pri Tapped 200-250v. Sec. 6.3v. 2.5 A. iwice, 6.3v. 1.5 A . $6.3 v, 1$ A. $6.3 \mathrm{v}, 0.5 \mathrm{~A}$. $17 / 6$. P. \& P. . $4 / 6$.
Pri Tapped $200-250 \mathrm{v}$, Sec. 27.0-27v, 0.3
Pri Tapped $200-250 \mathrm{v}$. Sec. 27-0-27v. 0.3 A. 28-27-26-0-26-$27-28 \mathrm{v}: 0.3$ A. 6.3 v . I A. $6.3 \mathrm{v}, 0.3$ A. 6.3 v .0 .6 A. $30 /-$ P. \& P. 4/6.

Pri Tapped 200-250v. Sce. 350-0-350v. $25 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v}$. I A. 15/- P. \& P. 4/.
Pri Tapped $205-245 \mathrm{v}$. $5 \mathrm{ec}, 300 \mathrm{v} .37 \mathrm{~m} / \mathrm{a}$. twice. 4 v . I A. 4 v . Pri Tapped 200. 250 V
P/
$10 /-$. P. \& P. 3/-
Pri Tapped $200-245 \mathrm{v}$. Sec. $300-0-300 \mathrm{v} .66 \mathrm{~m} / \mathrm{a} .6 \cdot 3 \mathrm{v}$. 4 A .
17/6. P. \& P. 5/-.
Pri Tapped Sec. $125 \mathrm{v} .265 \mathrm{~m} / \mathrm{a}$. twice. $35 / \mathrm{-}$. P. \& P. $5 / \mathrm{c}$. Pri Tapped $200-250 \mathrm{v}$. Sec. 130 v . $185 \mathrm{~m} / \mathrm{z}$. twice. 200 v . 350 $\mathrm{m} / \mathrm{a}$. ewice. $57 / \mathrm{6}$. P. \& P. $8 / 6$.
Pri Tapped $200-240 \mathrm{v}$. 5 cc . 130 y.
Pri Tapped $200-240 \mathrm{v} .5 \mathrm{ec}$. $130 \mathrm{v} .450 \mathrm{~m} / \mathrm{a}$. three times. $79 / 6$. P. \& P. 10/6.
 P. \& P. 4/6.

Pri Tapped 200-240v. Sec. Tapped 760-700-40-20v. $50 \mathrm{~m} / \mathrm{a}$. 6.3v. 1.5 A. 25/-P. \& \& P. 5/h.

ONE ONLY DAVENSET TRANSFORMER
Pri 400-415-440v. Sec. 270 v. 1,500 watts. $12 / 10 /$., Carr. 15

SMIT'HS SYNCHRONOUS MOTORS
A.C. 200-240v. 4 r.p.m. 3in. dia. Lensth of spindle iin. 22/6. P. \& P. 2/6. As above, I r.p.m. 22/6. P. \& P. 2/6.

AMERICAN SYNCHRONOUS MOTORS A.C. $230 \mathrm{v}, 50$ cycles, 6 r.p.h. 2 tin . dia. cog spindle. $12 / 6$ P. \& P. 2/6.

VENNER SYNCHRONOUS MOTOR
A.C. 240 v . 50 cycles, 40 r.p.m. 2 i in. dia. Length of spindle in. 12/6. P \& P. 2/6.

## BERCO SLIDING RESISTORS

1004 ohms 1 amp . Single Tube Slider. Length $18 i n s .45 / \mathrm{F}$ P. \& P. $7 / 6.30$ ohms $1.25 \mathrm{amps} 5 . \mathrm{T}$. Right angle geared drive. 19/6. P. \& P. 5/6. $45+12$ ohms $6.5 / 4 \mathrm{amps}$ Single Tube Fixed Length 22ins. 25/.. P. \& P. 7/6.
G.P.O. 3000 TYPE RELAY (New and Boxed) 20.000 ohms Heavy Duty Contacts. 2CO. $2 \mathrm{M} .15 / \ldots$. P. \& P. $2 /-$ 75 ohms Normal Contaces. 3M, IB, ICO. $6 /$, P. \& P. $2 /-$ 150 ohms Heavy Duty Contacts. 2M. 6/-, P, \& P. 2/.

SUNVIC TANK THERMOSTATS
Type TQP. 250 v .15 amps NC. 5 amps NO. $190-70 \mathrm{deg}$. F. Length of stem 10 tins. $25 /-$. P. \& P. 5/-.

AC 220-240v. SHADED POLE MOTORS $1.500 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Double spindle. Length 0.9 in , and 0.6 in . Overall size $3 \times 3\} \times 2$ ins. New and Boxed. $10 / 6$. P. \& P. $3 / 6$.

BURGESS MICRO SWITCHES
Type MK 3BR/74. Norm closed or Norm open. $\frac{1}{2}$ in. raised Press Button. $8 / 6$ for threc. P. \& P. $2 / 6$.

SIEMENS MINIATURE RELAY BASES
Type T.STV 24 C. 6 Contact pin. 4 Coil pins. Cartons of 20, inc. spring clips. is/\%. P. \& P. 2/-

PULLEN SHUNT WOUND 24v. DC REVERSIBLE
MOTORS
Type 610 H.P. $1 / 75$ r.p.m. 3,500 Cont/R. New and boxed. Type 610 H.P. $1 / 75$ r.p.m. 3,500 Cont/R. New and boxed
$15 /-$ P. \& P. 3/6.

MAINS ISOLATION TRANSFORMERS
Pri capped $240-220-110 \mathrm{v}$. Sec. 240 v . 1200 watts. Built into metal case with twin 13 amp Socket outlet, on/off switch. nean indicator and carry handle, $\mathbf{6 1 6 . 1 0 . 6 . \text { Carr. 15/- }}$

GARDNER'S POTTED TRANSFORMERS Pri Tapped $200-240 \mathrm{v}$. Sec. $35 \mathrm{v} .7-2 \mathrm{amps}$. conservatively rated. Pri Tapped $200-2$
$57 / 6$. Carr. 6/6.

## LATEST RELEASE OF

RCA COMMUNICATION RECEIVERS AR88


BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance 2.5-600 ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price $£ 87 / 10 /-$ each, carr. £2.
Same model as above in secondhand cond. (guaranteed working order), from $£ 45$ to $£ 60$, carr. $£ 2$.
-SET OF VALVES: new, £3/10/- a set, post 7/6; SPEAKERS: new, $£ 3$ each, post $10 /-$ *HEADPHONES: new, $£ 1 / 5 /-$ a pair, 600 ohms impedance. Post $5 /$ -
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price $10 /$ - each, post $2 / 6$. RF Coils 13 \& 14 ; $17 \& 18 ; 23 \& 24$; and 27 and 28 . Price $12 / 6$ each. $2 / 6$ post. By-pass Capacitor K.98034-1, $3 \times 0.05 \mathrm{mfd}$. and M.980344, $3 \times 0.01$ mfd., 3 for $10 /-$, post $2 / 6$. Trimmers $95534-502,2-20$ p.f. Box of 3, $10 /$, post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd}$., 600 v ., ${ }_{82}$ each,' $4 /$ - post. Output transformers $901666-50127 / 6$ each, 4/- post.
Available with Receiver only
S.A.E. for all enquiries. If wishing to call at

Stores, please telephon for appointment.

Phone: Tottenham 9213


#### Abstract

HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for CW, and MCW, reception crystal filter, with phasing control. AVC and signal strength meter. Complete HRO 5T SET (Receiver  COMMAND RECEIVERS; Model $6-9 \mathrm{Mc} / \mathrm{s}$., as new, price $£ 5 / 10 /-$ each, post 5/- COMMAND TRANSMITTERS, BC-458: 5.3-7 Mc/s., approx. 25 W output, directly calibrated. Valves $2 \times 1625$ PA; $1 \times 1626$ osc. $1 \times 1 \times 1629$ Tuning Indicator; Crystal $6,200 \mathrm{Kc} / \mathrm{s}$. New condition- $83 / 10 \%$ each, $10 /$

Conversion as per "Surplus Radio Conversion Manual, Vol. No. 2," by R. C. Evenson and O. R. Beach.)

AIRCRAFT RECEIVER ARR. 2: Valve line-up $7 \times 9001 ; 3 \times 6$ AK5; and $1 \times 12 \mathrm{~A} 6$. Switch tuned $234-258 \mathrm{Mc} / \mathrm{s}$. Rec. only $\mathrm{E} 3 \mathrm{each}, 7 / 6$ post; or Rec 

RECEIVERS: Type BC-348, operates from 24 v D.C., freq. range 200-500 Kc/s, 1.5-18 Mc/s. (New) £35.0.0 each; (second hand) £20.0.0 each, good condition, carr. 15/- both types. MARCONI RECEIVER 1475 type 88: $1.5-20 \mathrm{Mc} / \mathrm{s}$, second-hand condition £10.0.0 each. New condition £25.0.0 each; carr. 15/- RACAL EQUIPMENT: Frequency Meter type SA20: $\mathbf{e}^{35}$ cach, carr. $£ 1$ Frequency Counter type SA21: £65 each, carr. 30/-. Diversity Switching Uni SA. 80 (for use with the SA .20 ): $25 \mathrm{Mc} / \mathrm{s}-160 \mathrm{Mc} / \mathrm{s}$, £ 40 each, carr. £1.


ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps , $400 \mathrm{c} / \mathrm{s} 3$ phase, $£ 6 / 10 /-$ each, $8 /=$ post. 24 v D.C. input, 175 v D.C. @ 40 mA output, 25 /- each, post $2 /-$.
CONDENSERS: $150 \mathrm{mfd}, 300$ v A.C., $£ 7 / 10 /-$ each, carr, $15 /-40 \mathrm{mfd}, 440 \mathrm{v}$ A.C. wkg., $£ 5$ each, $10 /-$ post. $30 \mathrm{mfd}, 600 \mathrm{v}$ wkg. D.C., $£ 3 / 10 /-$ each, post $10 /-$ $10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6$ each, post $5 / \mathrm{F} .8 \mathrm{mid}, 1200 \mathrm{v}, 12 / 6 \mathrm{each}$, post $3 /-8 \mathrm{mfd}, 600 \mathrm{v}$ $8 / 6$ each, post $2 / 6.4 \mathrm{mid}, 3000 \mathrm{v}$ wkg., E 3 each , post $7 / 6$. $2 \mathrm{mfd}, 3000 \mathrm{v} \mathrm{wkg}$, each, post $7 / 6.0 .25 \mathrm{mfd}, 2 \mathrm{Kv}, 4 /-$ each, $1 / 6$ post. 0.01 mfd . M1CA 2.5 Kv . Price £1 for 5 . Post $2 / 6$. Capacitor: $0.125 \mathrm{mfd}, 27,000 \mathrm{v}$ wkg. $£ 3.15 .0 \mathrm{each}, 10 /$ post.
AVO MULTIRANGE No. 1 ELECTRONIC TEST SET: $£ 25$ each, carr. £1.
OSCILLOSCOPE Type 13A, 100/250 v. A.C. Time base $2 \mathrm{c} / \mathrm{s} .-750 \mathrm{Kc} / \mathrm{s}$. Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers $100 \mathrm{Kc} / \mathrm{s}$. and $1 \mathrm{Mc} / \mathrm{s}$. Double Beam tube. Reliable general purpose scope, $£ 22 / 10 /-$ each, $30 /$ - carr.
COSSOR 1035 OSCILLOSCOPE, $£ 30$ each, $30 /$ - carr
COSSOR 1049 Mk . 111 , $\mathbf{~} 45 \mathrm{each}$, $30 /-\mathrm{carr}$.
RELAYS: GPO Type 600, 10 relays @ 300 ohms with 2 M and 10 relays @ 50 ohms with 1 M., $£ 2$ each, $6 /-$ post.
12 Small American Relays, mixed types £2, post 4/-
Many types of American Relays available, i.e., Sigma; Allied Controls; Leach; etc. Prices and further details on request 6 d .

GEARED MOTORS : 24 y. D.C., current 150 mA , output 1 r.p.m., 30/-cach, 4/- post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., $£ 2$ each, $5 /-$ post.
Actuator Type SR-43: 28 v. D.C. 2,000 r.p.m., output 26 watts, 5 inch screw thrust, reversible, torque approx, 25 lbs ., rating intermittent, price £3 cach, post $5 / \mathrm{F}$.

SYNCHROS: and other special purpose motors available. British and American ex stock. List available 6d.

TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price $25 / \mathrm{H}$, post $5 /$-.

AUTOMATIC PILOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many other items, price $£ 7 / 10 /-$, $£ 1$ carriage.

> FOR EXPORT ONLY: B.44 Trans-ceiver Mk. III. . Crystal control, $60-$ $95 \mathrm{Mc} / \mathrm{s}$. AMERICAN EQULPMENT: BC-640 Transmitter, $100-156$ $\mathrm{Mc} / \mathrm{s}$., 50 watt output. For 110 or 230 y . operatior. ARC 27 urans-ceivers, 28 v. D.C. input. Also have associated equipment. BC-375 Transmitter. BC-778 Dinghy transmitter. SCR-522 trans-ceiver. Power supply, PP893/ $\begin{aligned} & \text { GRC } 32 A \text {; Filter D.C. Power Supply F-170/GRC 32A: Cabinet Electrical } \\ & \text { CY } 1288 / \text { GRC } 32 \mathrm{~A} \text {; Antenna Box Base and Cables CY 728/GRC; Mast }\end{aligned}$ Erectiorr Kits, 1186/GRC; Directional Antenna CRD.6; Comparator Unit, EMent Directional Control CRD.6, 567/CRD and 568/CRD; Azimuth Control Units, 260/CRD. Test Set URM.44, complete with Signal Generator TS.622/U.

SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, £2/10/- each post 6/-

CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps, £ $£ / 10 /$ each, carr. $12 / 6$. AUTO TRANSFORMER: $230-115 \mathrm{v}$. ; $1,000 \mathrm{w}$. \&5 each, carr. 12/6. 230-115 v.; 300VA, f3 each, carr. 10/-.
OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{\mathrm{~d}}{\mathrm{a}} \mathrm{amps}$; or 2.6 ohms at 4 amps . Price (either type) £2 each, $4 / 6$ post each.

POWER SUPPLY UNIT PN-12B: 230 v. A.C. input, 395-0-395 v. output (a) 300 mA . Complete with two $\times 9 H$ chokes and 10 mfd . oil filled capacitors Mounted in 19 in . panel, £6/10/-each, £1 carr.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24 \mathrm{~s}$; complete with filament transformer 230 v . A.C. Mounted in 19 in . panel, c. $4 / 10 /-\mathrm{cach}, 15 /-\mathrm{carr}$

POWER UNIT: 110 v . or 230 v . input switched; 28 v . @ 45 amps . D.C. output Wt. approx. $100 \mathrm{lbs.}$, £17/10/-each, $30 /$-carr. SMOOTHING UNITS suitable for above $£ 7 / 10 /$ - each, 15/- carr.
DE-ICER CONTROLLER MK. III: Contains 10 relays D.P. changeover heavy duty contacts, 1 relay 4 P, C/O. ( 235 ohms coil). Stud switch 30 -way relay operated one five-way ditto, D.C. timing motor with Chronometric governor $20-30 \mathrm{v}$. relay etc., sealed in steel case ( $4 \times 5 \times 7$ ins.) $\& 3$ each, post $7 / 6$
MODULATOR UNIT: 50 watt, part of BC-640, complete with $2 \times 811$ valves, microphone and modulator transformers etc. $87 / 10 /$ - each, $15 /$ - carr.

```
ADVANCE TEST EQUIPMENT: TTIS Transistor Tester (CT472) £37/10/-each; VM77C Valve Voltmeter \(\mathbf{£ 4 0}\) each. Carr. 10/- extra per item.
```

NIFE BATTERIES: 4 v .160 amps , new, in cases, $£ 20$ each, $£ 110 /$ carr
FUEL. INDICATOR Type 113R: 24 v . complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in a 3 in . diameter case. Price
$30 /-$ each, postage $5 /$.

UNISELECTORS (ex equipment): 5 Bank, 50 Way, 75 ohm Coil, alternate wipe 22/5/- each, post 4/-

FREQUENCY METERS: BC-221, meter only $\mathbf{2 3 0}$ each, BC-221 complete with stabilised power supply £35 each, carr. 15/-. LM13, 125-20,000 Kc/s, £25 each carr. $15 / \mathrm{l}$. TS. $175 / \mathrm{U}, ~ £ 75$ each, carr. £1. TS323/UR, $20-450 \mathrm{Mc} / \mathrm{s}$., £75 each, carr 15/-. FR-67/U: This instrument is direct reading and the results are presented directly in digital form. Counting rate: 20-100,000 events per sec. Time Base Crystal
Freq.: $100 \mathrm{Kc} / \mathrm{s}$. per sec. Power supply: 115 v ., $50 / 60 \mathrm{c} / \mathrm{s}$., £100 each, carr. £1.
CT. 49 ABSORPTION AUDIO FREQUENCY METER : freq, range $450 \mathrm{c} / \mathrm{s}$ $22 \mathrm{Kc} / \mathrm{s}$. , directly calibrated. Power supply $1.5 \mathrm{v} .-22 \mathrm{v} . \mathrm{D} . \mathrm{C} . \mathrm{£} 12 / 10 /$ - each, carr 22 K
$15 /-$.

CATHODE RAY TUBE UNIT: With 3 in. tube, colour green, medium persistence complete with nu-metal screen, $£ 3 / 10 /-$ each, post $7 / 6$.

APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$., com plete with all valves 28 v. D.C. 3 relays, 11 valves, price 83 each, carr. $10 /$ -


CANADIAN C52 TRANS/REC.: Freq. $1.75-16 \mathrm{Mc} / \mathrm{s}$ on 3 bands. R.T. M.C.W. and C.W. Crystal calibrator etc, power input 12 V. D.C., new cond., complete set £50. Used condition working order £25. Carr. on both types $£ 2 / 10 /-$ Used power units in working order £2/5/-. Carr 10/-
AVOMETERS: Model 47A, £10 each, 10/- post. Excellent secondhand cond. (meters only).

DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\pm 1 \%$ £3 each, $5 /$ - post. 90 ohms per step. 10 positions, total value 900 ohms. 3 Gang. Tolerance $\pm 1 \% ~ £ 3 / 10 /-$ each, $5 /-$ post.

TELESCOPIC ANTENNA: In 4 sections, adiustable to any height up to 20 ft Closed measures 6 ft . Diameter 2 in . tapering to 1 in . $£ 5$ each $+10 /=$ carr. Or $\mathbf{\varepsilon 9}$ for two $+£ 1$ carr. (brand new condition)

COAXIAL TEST EQUIPMENT: COAXWITCH—Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type "N" female connectors fitted to receive UG-21/U series plugs. New in ctns., £6/10/- each,
post $7 / 6$. CO-AXIALSWITCH-Mnftrs. Transco Products Inc., Type post 7/6. CO-AXIAL SWITCH-Mnits. Transco Products Inc., Type M1460-22, 2 pole, 2 throw. (New) £6/10/-each
Type M1460-4. (New) £6/10/- each, $4 / 6$ post.

PRD Electronic Inc. Equipment: FREQUENCY METER: Type 587-A 0.250-1.0 KMC/SEC. (New) £75 each, post 12/6. FIXED ATTENUATOR Type $130 \mathrm{c}, 2.0-10.0 \mathrm{KMC} / \mathrm{SEC}$. (New) 5 cach , post 4/-. FIXED ATTENU Type 130c, $2.0-10.0 \mathrm{KMC/SEC}$. (New) e5 cach
ATOR: Type $1157 \mathrm{~S}-1$, (new) $\mathbf{~} 6$ each, post $5 /-$

3-B TRULOCK ROAD, TOTTENHAM, N.IT
Phone: Tottenham 9213


The serious amateur should never be without this comprehensive price list and guide to semiconductors and electronic components from RCA, IR, SGS, Emihus,Semitron,Keyswitch, Plessey, Morganite, Litesold and others (together with manufacturers' application data) which you can buy direct from us at manufacturers' prices e.g. IN9141/3d. $\square$ IN916 1/11d. $\square 2 N 697$ 4/5d. $\square 2 N 106$ 2/3d. $\square$ 2N706A 2/9d. $\square$ 2N929 5/8d, $\square 2 N 1613$ 4/8d. $\square 2 N 3011$ 9/1d. $\square 2 N 3053$ 6/2d. $\square$ 2N3055 15/9d. $\square$ 3N140 15/3d. $\square$ BFY50 4/8d. $\square$ BFY51 3/9d. $\square$ BSY27 18/- $\square$ BSY95A 3/3d. $\square$ C401 4/6d. $\square$ CA3012 18/3d. $\square$ СА3014 25/6d. $\square$ СА3020 25/9d. $\square$ OA200 1/9d. $\square$ OA202 1/11d.

## Build the NEW Mainline Audio Amplifier kits - UP TO 70 WATTS

The result of the combined resources of SGS
12A
$\mathbf{2 5 A}$
$\mathbf{4 0 \AA}$
$\mathbf{7 0 A}$
Any two will make an outstanding stereo
equipment.
and RCA, these quasi circuits set new standards in quality and performance. Each kit is complete with circuit diagram, all semiconductors, resistors, capacitors and printed circuit board.

12A
. 0. 0
-
70A equipment.


To: Mainline Electronics Limited, Thames Avenue, Windsor, Berkshire I enclose 4/-. Please send me your price list and guide $\quad \square$
I am interested in ......... Amp Mainline Audio Amplifier Kits. Please send me full data I am interested in receiving data on preamplifier \& power supply kits $\quad \square$

NAME
ADDRESS $\qquad$

## SUPER-BARGAIN STOCKTAKING SALE!!

Use form below for your order. CONDENSERS MUST BE ORDERED BY STOCK NUMBER ONLY. If any sale item is 'sold-out' when order received we shall substitute items of equal value.

ELECTROLYTIC CAPACITORS

| Stock No. | ${ }^{\text {cufacity }}$ | Voltage | Price <br> s. d. | No. <br> Required | \& s. d. | Stock No. 42 | Capacity | Voltage | Price <br> s. d. | No. Required |  | s. d. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 4 uf | 25 | 4 |  |  | 42 | 16 uf | 50 REV | $\begin{array}{ll}2 & 0 \\ 2\end{array}$ |  |  |  |
| 3 | 4 uf | 4 | 4 |  |  | 4 | $16 / 16$ | 275 | 20 1 |  |  |  |
| 4 | 6 uf | 6 | 4 |  |  | 45 | 350 | 12 | - 9 |  |  |  |
| 5 | 3 uf | 25 | 4 |  |  | 46 | 20/4 | 275 | 10 |  |  |  |
| 6 | 64 uf | 9 | 4 |  |  | 47 | 250 | 50 | 20 |  |  |  |
| 7 | 20 uf | 6 | 4 |  |  | 48 | 500 | 25 | 16 |  |  |  |
| 9 | 30 uf | 15 | 6 |  |  | 49 | 400 | 15 | 10 |  |  |  |
| 10 | 8 uf | 12 | 4 |  |  | 50 | 400 | 2.5 | - 3 |  |  |  |
| 11 | 8 uf | 6 | 4 |  |  | 51 | 64 | 275 | 19 |  |  |  |
| 12 | 1 uf | 350 | ${ }^{6}$ |  |  | 52 | 32/32 | 350 | 26 |  |  |  |
| 13 | 8/8/8 | 350 | 10 |  |  | 53 | 8/8/8 | 275 | 19 |  |  |  |
| 14 | 50 uf | ${ }^{6}$ | 4 |  |  | 54 | 500 | 6 | - 6 |  |  |  |
| 16 | 32 | 150 | 9 3 |  |  | 55 | 64 | 275 | 13 |  |  |  |
| 18 | 100/200/200/50 | 275 |  |  |  | 56 | 25 | 6 | 3 |  |  |  |
| 19 | 50/80 | 300 | 30 |  |  | 57 58 | 100 400 | 9 50 | 26 |  |  |  |
| 21 | 24 | 275 | 10 |  |  | 59 | 400 | 30 | 120 |  |  |  |
| 22 | 10 | 25. | 3 |  |  | 60 | 500 | 4 | 13 |  |  |  |
| 23 | 125 | 2.5 | 3 |  |  | 61 | 150 | 30 | 16 |  |  |  |
| 24 | ${ }^{2} 16$ | 150 |  |  |  | 62 | 64/32/8 | 275 |  |  |  |  |
| 25 | - $16 / 32$ | 350 |  |  |  | 64 | 40 | 6.4 | 3 |  |  |  |
| 26 | 32/75/75/75 | 275 | 16 |  |  | 65 | 50 | 25 | 6 |  |  |  |
| 30 | 12.50 | 150 | $\begin{array}{r}16 \\ \\ \\ \hline\end{array}$ |  |  | 66 | 250 | 50 | 19 |  |  |  |
| 31 | 640 | 2.5 | 3 |  |  | 67 68 | 30 $100 / 100 / 50$ | ${ }^{6}$ | $5 \quad 3$ |  |  |  |
| 32 | 3,000 | 35 | 76 |  |  | 69 | 50/50/50 | 350 | 40 |  |  |  |
| 33 | 3,000 | 15 |  |  |  | 70 | 40/40/20 | 275 | 20 |  |  |  |
| 34 | 3,000 | 30 | 70 |  |  | 71 | 400 | 6.4 | 2 |  |  |  |
| 35 | 250 | 70 | 20 |  |  | 72 | 320 | 10 | 3 |  |  |  |
| 36 38 | 2,500 750 | 12 | $\begin{array}{ll}2 & 0 \\ 1 & 9\end{array}$ |  |  | 73 | $32 / 32$ $+\quad 25$ | 275 |  |  |  |  |
| 39 | 100 uf | 275 | 1 2 |  |  |  | +25 | 25 | 26 |  |  |  |
| 40 | 30 uf | 10 | 3 |  |  |  |  |  |  |  |  |  |

RESISTORS. 5\% EXCELLENT QUALITY.
7/6d. per 100 of any one value.
$2 /-$ per dozen of any one value.

10 k ohm
16 kohm
18 kohm
22 kohm
24 k ohm
27 kohm
30 k ohm

| 39 kohm | 91 kohm |
| :--- | ---: |
| 43 kohm | 130 kohm |
| 47 kohm | 360 kohm |
| 51 kohm | 430 kohm |
| 62 kohm | 470 kohm |
| 75 kohm | 560 kohm |
| 82 kohm | 620 kohm |

1.2 meg ohm 8.2 meg ohm
9.1 meg ohm $\begin{array}{ll}22 \mathrm{ohms} & 750 \mathrm{ohms} \\ 36 & 7 \mathrm{ohms}\end{array}$ $47 \mathrm{ohms} \quad 1 \mathrm{kohm}$ $\begin{array}{llll}91 \text { ohms } & 1.8 \mathrm{k} \text { ohm } & 5.6 \mathrm{kohm} & 24 \mathrm{k} \mathrm{ohm} \\ 220 \text { ohms } & 2.2 \mathrm{k} \mathrm{ohm} & 6.8 \mathrm{kohm} & 27 \mathrm{kohm}\end{array}$

SILVER MICA/CERAMIC/POLYSTYRENE CONDENSERS
10/= per 100 of any one value.
3/- per dozen of any one value.

| 2 pf | 5 pf | 12 pf | 25 pf | 50 pf | 80 pf | 135 pf | 180 pf | 250 pf | 680 pf | 1,000 | 2,500 pf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.9 pf | 6 pf | 15 pf | 27 pf | 58 pf | 82 pf | 140 pf | 190 pf | 330 pf | 8800 pf | 1,100 pf | 2,700 pf |
| 4 pf | 8 pf | 18 pf | 30 pf | 62 pf | 100 pf | 158 pf | 200 pf | 420 pf | 820 pf | 1,500 pf | 3,000 pf |
| 4.7 pf | 10 pf | 22 pf | 39 pf | 72 pf | 125 pf | 170 pf | 240 pf | 600 pf | 900 pf | 2,200 pf | 6,200 pf |
|  |  |  |  |  |  |  |  |  | Total: |  |  |

## COMPARE THESE PRICES!!

MULLARD POLYESTER CONDENSERS

$\mathbf{5 5 \%}$ discount lots of 100 per type.
$50 \%$ discount lots of 1,000 per type.
TRANSISTOR BARGAIN! THEY CAN'T GET ANY CHEAPER! ! ! ! !
P.N.P. Audio. Untested, unmarked. MAINLY O.K... $10 /-$ per 100 N.P.N. Silicon. R.F. types unmarked ALL USEABLE ".. 10/-per 50 POWER OUTP SHORTS. Gain of $20 / 506 \mathrm{~d}$. each, $50 / 1009 \mathrm{~d}$. each, $100 / 200 \mathrm{l} / \mathrm{m}$ each. Transistors similar to OCP 71 (Light sensitive) $2 /-$ each.
RECTIFIERS. 400 volt BTY 79 7/6d. each. SCR 51 ( 10 amp ) El 1 each. type 1N4006. $2 / 6$ each, $24 /$ - dozen, $\mathbf{£ 7 / 1 0 / - 1 0 0 . S . T . C . ~} 3 / 4$ ( 400 volt) $2 / 6$ each, $24 /-$ dozen, £7/10/-100. BYZ 13 or 19 ( 6 amp ) $2 / 6$ each, $24 /-$ dozen, \&7/10/ 100 .
RECORDING TAPE GIVE-AWAY!
ALL BRITISH MADE, BEST QUALITY, $5^{\prime \prime} 600^{\prime} 7 / 3 \mathrm{~d} .53^{\prime \prime} 900^{\circ} 9 / \mathrm{c}$, $7^{\prime \prime} 1,200^{\prime} 12-3^{\prime \prime}$ odd
minimum $150^{\circ}-2 / 3 \mathrm{~d}$.
MAINS DROPPER TYPE RESISTORS, Hundreds of rypes from 7 ohm upwards. I watt to 50 watts. A large percentage of these are Multi-tapped droppers for radio/television. Owing to the huge variety these can only be offered "assorted". 10/- per dozen.
GIANT SELENIUM SOLAR CELLS. Last few to clear at half price! Circular, 67 mm . diameter $5 /-$ cach. $50 \mathrm{~mm} . \times 37 \mathrm{~mm} .3$ for $10 /-$.

GANGED STEREO POTS. 250K 2/6d. each. SKELETON PRESETS. Mixed, 6/- dozen.
VOLUME CONTROLS, $\mid$ meg. 1 meg, with D.P. switch. $2 /-$ each.
TELEVISION REMOTE CONTROLS. Philips. Contain 11' 7-way cable, 1 double pot., 5 resistors, two condensers, 10/- each. (Cost $£ 3 / 3 /-$.)
THIN CONNECTING WIRE. $10 \mathrm{yds} 1 / \mathrm{s}, 100 \mathrm{yds} 7 / 6 \mathrm{~d} ., 1,000 \mathrm{yds} .50 / \mathrm{m}$ CO-AXIAL CABLE. Black. 6d. yard, $£ 150$ yds. CRYSTAL MIKES. 10 - each.

RECORD PLAYER CARTRIDGES
ACOS GP67/2 15/- (Mono) ACOS GP93/1 25/- (Steteo) ACOS GP93/1 with diamond needle $32 / 6 \mathrm{~d}$.

TRANSISTORISED FLUORESCENT LIGHTS. 12 VOLT
8 watt $12^{\prime \prime}$ tube, Reflectot type $59 / 6 \quad 15$ watt $18{ }^{\prime \prime}$ tube, Batten type $\quad$ 79/6
TRANSISTORISED SIGNAI. INJECTOR KIT . . .. .. 10/=
TRANSISTORISED SIGNAI. TRACER KIT ... .. .. 10/
TRANSISTORISED REV. COUNTER KIT (CAR) .. .. 10/m
VERO-BOARD


Spot Face Cutter 7/6d. Pin Insert Tool 9/6d. Terminal Pins 3/6d. for 36.
Spot. Face Cutter and $522^{\circ} \times 1^{\prime \prime}$ boards $9 / 9 \mathrm{~d}$. Spot. Face Cutter and $522^{\prime \prime} \times 1^{\prime \prime}$ boards 9/9d.

These prices cannot be repeated. Order now. Don't forget to add your name and address! Please include suitable amount to cover post and packing. Minimum $2^{\prime \prime}$-.
G. F. MILWARD, DRA YTON BASSETT, near TAMWORTH, STAFFS. Phone: TAMWORTH 2321

## D E B B BARGAINS SERVICE FROM T.R.S.

## Amplifier Kits

Styled and klited by T.R.S., using quality componente, including valves or Styled and kitted by T.R.S., using quation Backed by T.R.S. ©ervice.
MULLARD S-10. Mono. Bassic kit (requires pre-amp as below or passive controls Ez MULLARD 5-10. Mono. Basic kic (requires pre-amp as below, Output 10 watts R.M.S. as 3 or 15 ohms. KIT E10.10.0; B UILT $E 13.0 .0$ (Corr. either, 7/6).
MULLARD 2-VALVE PREAM'P with switching for 5 inputs; bass/treble/volume controls, etc. Sensicivity as input B UILT C9.10.0 (Carr. either. S/6).
MULLARD $10-10$ STEREO AMPLIFIER. Input sensitivity- 210 mV per ch.: Response $12 \mathrm{~Hz}-35 \mathrm{KHz}+3 \mathrm{~dB}: 10$ water R.M.S. output per channel into 3 or 15 ohms. Kit As above, less controls and panel. Kit $\mathbf{\& 1 7 . 0 . 0}$; Built $\mathbf{~} 21.0 .0$ ( $2+2$ pre-amp. essential). controls and balance. BUILT E13.19.6 (Carr. 7/6).
T.R.S. $4+4$ STEREO AMP

Low cost transistor ampllier based on Mullard modules. $4+4$ wates ourput. For $\mathrm{B}-$ 15 ohms speake s. ind preate with frone panel and knobs. 2850 mbly . Amp and pre-amp wided cabinet ©l.17.6 (Corr. 2/6) ; 24V. Power pack $\mathbf{C 2 . 5 . 0}$ (Corr. $2 / 6$ ); Complete kit Inc. DIN plugs and sockets $\mathbf{6} 12.10 .0$ (Corr. $7 / 6$ ).
THE NEW T.R.S.
P.W. 12-12
T.R.S. have produced their own kit version of this outstandingly good combined coreo amp and pre-2mp. Is tical Wireless's excellent circuit but is seyled for a flatter, more conventional cafinet which will be shoraly available. Kit includes twozone front panel and control knobs.
Inputs-Mag. P.U. (R.I.A.A.) 2.5 mV into 68 Kohms; Ceramic-Radio: Response
20 Hz to $30 \mathrm{KHz}+1 \mathrm{~dB}$. Out-put- 12 wates per ch. R.M.S. into 15 ohms. Power/Amp/Pre-

$\underset{\substack{\text { Complete kit of parts } \\ \text { less cablinet (can. } \\ \text { lib) }}}{\mathbf{2}} \mathbf{2 4 . 1 0}$
72 separately.

VINAIR-Larest IC.I Cabines and Speaker covering. Moriled Light-Grey. q. fe. Multiples of 6 in . cut. $27 / 6$ per yd Maximum width 48 in. BONDACOUST-Speaker Cabinet Acoussie Wadding (as wsed by leading
Hi-Fi Speaker mirs.), 18 ins. wide. Any Hi-fi Speaker mirs., 8 is, wher Ahy ENEth CUTLLED COPPER 216 WIR
 $14 \mathrm{~g}-20 \mathrm{~g} .3 /-\mathrm{i} \quad 22 \mathrm{~g}-28 \mathrm{~g}, 30 \mathrm{~g}, 5 / \mathrm{s}$, Other gauges guoted for
TINNED COPPER
16/-22. Professional quality full frequency Mylar Tape by famous m/ir Atractively presented in coloured simulated leather
 $\begin{array}{llll}7 \mathrm{lin} . & 1200 \mathrm{ft} .17 / 6 & 7 \\ \text { in. } 1800 \mathrm{fe} .22 / 6 \\ \text { Post ond pocking } & 1 / 6 \text { per reel, plus } 6 \mathrm{~d} \text {. }\end{array}$ Post ond packing $1 / 6$ per reel, plus 60. VEROBOARD-All standard sizes
 Accessories-Term Pins, 1/- doz.., 3) ple. Face Cutter, 7/3. Pin inserting tool
"/6. ${ }^{\text {Cim-KIT"-Adhesive copper strip }}$ "/6. ${ }^{\text {"R-kIT"-Adhesive copper strip }}$
5 2/-

PLUGS AND SOCRETS Phono plugs, $1 /-\mathrm{s}$ sockets, $1 /-$ etwin. $1 / \mathrm{s}$ DIN 5 -pin plugs, $3 /-5$-pin sockers $1 / 176$
3 -pin plugs, $3 / 3 ; 3$-pin sockets, $1 / 6$. VOLUME CONTROLS All in. dia. Long Spindles. Famous make. All values 5000 ohms -2 Megohms. Log or Linear tracks.
dirto Centre Tapped $/$ Mesohm Los. dirto Centre Tapped I/Mesohm Log. IMegohm Twin Ganged seereo controls 11 in. dia. Long Spindles. ditto 100 K eo 2 Merohms. Each 10/6 STEREO BALANCE CONTROLS Log/Anti-Los 5K, 10K, Meg. Each Meg. $9 / 6$ RESISTORS
Futi Range
10 0 ohms- 10 Megohms. Full Range 10 ohms-10 Minget type, modern racings.)
(Mid Midget type, modern ratin
$10 \%$ tw, $4 w, 4 d . ; \mathrm{f}^{2}, 6 \mathrm{~d}$.
20\% Iw, Bd.; $2 w_{1}$ it.
$5 \%$ Hi Scab (Cracked Carbon) all pref. 10 ohms-1 Mag. Iw, od.; $1 w^{2}$ od.
diteo $\quad \begin{aligned} & 1 \mathrm{M}, \mathrm{Meg}-10 \mathrm{Meg} . \\ & 10 \% \mathrm{~m}\end{aligned}$
 SKELETON PREESETS for P/circuit

## GRAMO UNITS, PLINTHS, ETC.

GARRARD SP. 25 Mk. II
101 in . die-cast t/table, cueing device and counterbalance. Less cartridge. In maker's carton $\mathbf{4 1 2 . 7 . 6}$ (Carr. 7/6)

GARRARD LM. 2025
With latest stereo cartidge and lift control $\mathbf{4} 10.19 .6$ (Corr. 7/6)

PLINTHS
Garrard WB.I 63.7 .6 (Carr. 5/-)
SINCLAIR PRODU
Also T.R.S. G-yalve AM/FM Tuner Transistor Tuner, parta cis.15.0 Transintor
(Carf. 7/6.)

Garrard Clearview Cover SCP.I 63.5 .0 (Corr. 4/6) Garrard Scandinavian type plith and cover E5.5.0 (Carr. 5/-)
CARTRIDGES
When boughe together with playing units. Decca Deram, E5.5.0; BSR TC8/H (Stereo compatible), 25/-;
BSR Stereo $T C .85,28 / 6$; Sonotone 9SR Stereo with diamond $60 /-$; Acos GP.93-1, 30/-.
T.R.S. FOR TRANSFORMERS. Mains and outpuz supplled to spec. for single or short prodice in replacement line O/P Eransformers. Enquiries invired. S.A.E. from private individuals



## teghicha training in radio television and electronics

Whether you are a newcomer to radio and electronics. or are engaged in the industry and wish to prepare for a recognized examination. ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to mave up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

## NEW self-build radio courses

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meterall under expert tuition. Transistor Portable available as separate course.

## POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 222, Intertext House, Stewarts Road, London, S.W. 8
Please send me the ICS prospectus-free and without obligation.
(state Subject or Exam.)

NAME
ADDRESS

R.S.T. Valve mail order co.<br>BLACKWOOD HALL, 16A WELLFIELD ROAD STREATHAM, S.W. 16


$\begin{array}{ll}\text { ECLB3 } & 10: 8 \\ \text { ECL } & 86 \\ 9\end{array}$

 $\begin{array}{ll}1509 & 37 / 8 \\ \mathrm{LR} 82 & 18 / 8 \\ \mathrm{TIS} & 15 /- \\ \mathrm{X} 4 & 14 /- \\ \mathrm{X} 23 & 14 /-\end{array}$ $\left\lvert\, \begin{array}{ll}\mathrm{XR} & \mathrm{R} 13 / 200 \\ 766 & 120 /-\end{array}\right.$

batance control.

specification
Sensitivies for 10 wart output at 1 KHz into $\mathbf{3}$ ohms. Tape Head: 3 mV (at 3 li.p.s.l. Mag. P.U.: 2 mV . Cer. P.U.: 80 mV . Tuner: 100 mV . Aux. 100 mV . Tape/Rec. Output: Equalisation for each



Solid State
General Purpose Amplife in teak-finished case
f6 16 s .
7/6p. \&

MAINS INPUT: 220/250 volis.
SIZE: $10+\times 4{ }^{-1} \times 2$
MIKE TO SUIT ICAYSTAL): $12 / 6 \mathrm{~d} .1 / 6 \mathrm{~d} . \mathrm{p} . \& \mathrm{p}$
$8^{\prime \prime} \times 5^{\prime \prime}$ speaker $14 / 61 .+3 /-$ p. \& $p$.
Mk. 1 E5 15s. $+7 / 6$ d. D. \& p. less Teak-finished cas


ELEGANT SEVEN MK. III
( 350 mW Output)
£4.9.6
plus $7 / 6 \mathrm{p}$. P .
Circuit $2 / 6$. FREE WITH PARTS
MAINS POWER PACK
MAINS POW
KIT : $9 / 6$ extra.
7.transistor fully tunabie M.W.-L.W. superher portable. Set of parts. Complete with all components. including ready etched and drilled printed circuit board-back printed for foolproot construction.

## STEREO PRE-AMPLIFIER

Inpuls- 6 posstion rotary switch $(3$ position mana. 3 posstion steteo). Tunel 150 mV into B80k Magnetic pict up fully equalised and suitable for magnetic Cartridges with minimising oulput of $4 \mathrm{mV} / \mathrm{cm}$ sec LOad 47 k Ceramic prackup 150 mV into 680 k Sensituines tak hor
 $23 \cdot 30 \mathrm{~N}$ DC a1 5 mA Sure $124^{\circ} \times 31^{\prime \prime}=21^{\circ}$. In teak finished case complete with front panel and knobs Buili and tested $\mathbf{f 7 . 7 . 0}$ plus $5 /-\beta \&$.

THE DORSET
1600 mW Output)
£5.5.0
Plus 7/6 D \& op. MAINS POWER PACK KIT: MAINS PO
$9 / 6$ oxtra.

7-transistor fully tunabie m.W. L.W. suparhet portabla with baby alarm facility. Set of parts. The latest modulized and proaflignment techniques makes this simple to build.

## NEW COMPLETE HI-FI STEREO SYSTEM <br> £39

comprising SP25 Garrard MkII with diamond stereo



OUTPUT 10 wats into 3 ons. INPUTS: (1) for mike (10 mas) Ingut m.v.I indivdual bass and treble control


Yk: Woment INTEGRATED HIGH FIDELITY TRANSISTOR STERED AMPLIFIER $\mathbf{f 1 4 5 s .}+7 / 6$ p. \& p .

SIZE: $\left.12 \frac{1}{2} \times 6^{\prime \prime} \times 2\right\}^{\prime \prime}$ in teak-finished case Built and tested. specification
OUTPUT: 10 walts per channel into 3 to 4 ohms speakers ( 20 watts) monora)
NPUT: 6-position rotary selector switch (3 pos. mono and 3 pos. stereo). P.U. Tuner. Tape and Tape Rec. out Sensitivities: All Inputs 100 mV into, 8 M ohm. FREQUENCY RESPONSE: $40 \mathrm{~Hz}-20 \mathrm{KHz} \pm 2 \mathrm{DB}$
TONE CONTROLS: Separate bass and treble controls. TREBLE 13 dB lift and cut (at 15 KHz ) VOUME CONTPOLS S parte ior

Saparate for aach channel. AC MAINS INPUT: $200-240 \mathrm{v}, 50-60 \mathrm{~Hz}$
Viacount Mark II for use with magnetic pick ups specification as above. Fully equalised for magnatic pick uns. Suitable for carridges with minimum output of $4 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$ at 1 kc . Input Impedance $47 \mathrm{k}, £ 1515$ s plus $7 / 6$ p. \&

X101 10w. SOLID-STATE HI-FI AMP
 With Integral Pre-amp. Speacitistions: Power Outpon finto 3 ohm speose 10 wath Sensibitir (tion mited outrout): 1 mV into 3 K 5 wits 0.355 : At inted outratit 1.54 Frequencer Response: Mirus 3 dB poims $20 \mathrm{~Hz}_{\mathrm{H}}$ and to 40 KHL Speaker: 3 -4 ohms $13-15$ ohms mat be usall. Supp vothag: 24 y aC. at $800 \mathrm{~mA}(16-24 \mathrm{y}$ may be ustad)
69/6 pus 26 p. 8 o
 2 Treble: Price 5.3. Comprathensive benss mid troble Price 10/. The sbove 3 roms can be purchased for use minh he $x$ lof. Wen


50 WATT AMPLIFIER


An extremely reliable general purpose vaive Amplifierwith six electronically mixed inputs. Suitable for use with. | $\begin{array}{lll}\text { mics. guitars. Gram. tuner. organ. etc. Separate bass and } \\ \text { treble controls. Output impedance } & \text { 3. } & 8 \text { and } 15 \text { ohme }\end{array}$ |
| :--- | :--- | :--- | :--- |

## SPECIAL OFFER

Complete stereo systems comprising BALFOUR 4 speed auto player with stereo head 2 OUO speaker systems size $12 \times 6 \frac{1}{x}$
54 . Plinth (less cover) and the DUETO stereo amplifier All above items
All above items

AMATRONIX LTD (WW) TRANSISTORS-MINT NO SECONDS, NO RE-MARKS. GUARANTEED TO SPEC. AD161/162 12/- BFY51 4/- 2 N 3055 16/6 $\begin{array}{llllll}\text { AF239 10/- 1S44 } & \text { 1/4 2N3707 4/- }\end{array}$ $\begin{array}{lllllll}\text { B-5000の } & 11 / 3 & 18557 & 3 /- & 2 N 3794 & 3 /-\end{array}$ $\begin{array}{llllll}\text { BD121 18/- MC140 } & \text { 4/- } 2 N 3983 ~ 5 / 8 ~\end{array}$ BC107B 3/- MEM564C16/- 2N4058 4/6 $\begin{array}{llllll}\text { BC168B } & 2 / 3 & \text { 8F115 } & 3 /-\quad 2 N 4285 & 3 /\end{array}$ $\begin{array}{llllll}\text { BC169C } & 2 / 6 & \text { T1407 } & 5 / 8 & 2 N 4289 & 3 /\end{array}$ $\begin{array}{llllll}\text { BF167 } & 5 / 3 & \text { TIS60M } & 4 / 8 & \text { 2N4291 } & 3 /\end{array}$ $\begin{array}{llllll}\text { BF178 } & 9 /- & \text { TIS61M 4/11 } & \text { 2N4292 } & 3 /- \\ \text { BF224 } & 4 /- & \text { 2N706 } & 2 / 7 & 2 S B 187 & 2 /-\end{array}$ $\begin{array}{llllllllll}\text { BF225 4/- } & \text { 2N2926a } & 2 / 6 & \text { 40468A } & 7 / 6\end{array}$

CERAMIC J.F. RESONATORS. Tallormake 455 kHz i.f. selectivity to your own requirements. New Brush Clevite Identical Resonators need only the addition of fixed capacitors of standard values to create superb fiters with a wide range of bandwidth options. Makers data gives capachor values for ilters flter -8 dB @ 1.9 kHz off tune: ${ }^{40 \mathrm{r}} \mathrm{60dB} \mathrm{~B}$ ${ }_{10 \mathrm{kHz}}$ filter, Resonators Type TF04-442, 10 each, 4 for $30 /-$

INTEGRATED CIRCUITS-PA234, new dual-in-line 1 W audio amp, with data, 24/-; CA3020, TO-5 push-pull amp., usable to 6MHz, $28 /-$;

AMPLIFIER PACKAQES - Component kits for efficient transformerless class B power amps. Low shandby current, simple circultry, no adjustments. 12/6; AX $390 \mathrm{~V}, 800 \mathrm{~mW}$ in 8 ohms, 20 mV in 20 K input, $22 / 6$; A $\times 424 \mathrm{~V}, \mathrm{SW}$ in 8 ohms, 4 W Im 15 ohms, nput 100 mV in 40 K . Operable 18 V with 12 mA standby current and $2-3 \mathrm{~W}$ output. Uses AD161/2 output pair with silicon low-level sta
Still only $30 /-. A \times 5,12 \mathrm{~V}, 3 \mathrm{~W}$ in 3 ohms, $35 /-$.
MINI MAINS TRANSFORMERS $-1^{*} \times 1^{\circ} \times 11^{*}$ Osmor MT9, $9-0-9 \mathrm{~V}$ 80mA, $12 / 6$. MT6, $6-0.0 \mathrm{VV}$. 100 mA,
Mail order only, Cash with order, List bd, free Mail order only. Cash with order. List 6d., free
with orders. U.K. post free on orders over 10 . 396 Selsdon Road, South Croydon, Surrey, CR2 ODE

## BAILEY PRE-AMPLIFIER

High quality pre-amplifier circuit described by Dr. A. R. Bailey in the December, 1966, "Wireless World". This is a low distortion circuir of great versatility with a maximum outpur or 30 W Amplifiers suitable for driving Bailey 20W and 30 amplifiers, Linsley Hood Class A Amplifier and many others. Al Incorporated. A new Printed Circuit Board contalning latest modifications 7 in . by 3 zin. features edge connector mounting, roller tinned finish and silk screened component locatlons. This board is available in S.R.B.P. material or fibreglass and the complete Kit for the
unit contains gain graded BC .109 transistors, polyester unit contains gain graded BC. 109 sransistors, polyester
capacitors and meal oxide resistors where specffied.

## BAILEY 3OW AMPLIFIER

All parts are now available for the 60 -vole single supply rall version of this unit. We have also designed mounting. This has she component locations marked and is roller tinned for ease of assembly. Size is also smaller at $4 \pm i n$. by 2 Zin . Price in SRBP material $11 / 6 d$ in Fibreglass $14 / 6 \mathrm{~d}$,

BAILEY 2OW AMPLIFIER
All parts in stock for this Ampllfier including specially designed Printed Circuis Boards for pre-amp and power amp. Mains Transformer for mono or stereo primary for use with CZ6 Thermistor, 35/6d., poss
5/\%.
Trifilar wound Driver Transí
Power Amp $12 / 6 \mathrm{~d}$, pose 9 d .
Reprint of "Wireless World " articles, 5/6d, pose free,
DINSDALE IOW AMPLIFIER
All parts still available for this design
Reprine of articles $5 / 6 \mathrm{~d}$., pose free.
LINSLEY HOOD CLASS A AMPLIFIER
Parts now available for this unit including special mats components.

## PLEASE SEND S.A.E. FOR ALL LISTS

## HART ELECTRONICS,

321 Great Western St., Manchester 14
The firm for quality.
Personal callers welcome but please note we are
closed all day Saturday

## OSMABET LTD.

WE MAKE TRANBFOBMERS AMONGST OTEER THINGS




 280 Ma,
$250-0-250$

 INBTRUMENT TRANSFORMERS. Prim $200 / 250$ v s.c., OMT $4 /$
1 Lapped sec., $5-20-30-40-60$ wi, giving $5-10-13-20-25 \cdot 30-35-40-1$

 $20-0-20,30-0-30,100-0-40,50-0-50$ w.c. 1 amp. 80/-

 MIDOET MAINS TRANSFORMERS. FW recuftication, sixe

 50 watt (KT88 etc.) $1125 /-100$ watt $225 /=$ : auto matchlag
transformer 10 watt. $3-7.5-15$ ohm, up or down $11 / 8$. CHOKEs. Inductance 10 H. क5 Ma 12/~; 85 Ma 15/ $\because 150$ Ma
> W.W, COLOUR TELEVISION RECEIVER
> ranuformers and choke an specifled.
> Choke Ll 80/•; Tranaformer T1 57/6: Field 0/P

```
Carriage extra on all transformert 4/6 minimum.
```

BULK TAPE ERASERS. 20/250 V a.c.. immedinte and complete
 FLUORESCENT HaHting. 127 LT , complete fitings, 12 ins. 8 watt Tranalsior balliast 12 vatt for single 40 watt or twita 20 watt

 $107 /-; 35$ watt $130 /=: 50$ watt $320 /-$. etc., etc., ull at discounts
While stock lastr, Ulustrated 11 ate. P. A P. $6 /$.

S.A.E. ALL ENQUIRIES PLEASE

## MAIL ORDER ONLY

46 KENILWORTH ROAD, EDGWARE, MIDDX. HAB 8YG.

WW-095 FOR FURTHER DETAILS

| $\begin{array}{lll}\text { EQUIPMENT WIRE, } 7 / .0076, & 1 / .024 ; & 14 / .0048 \\ \text { P.V.C. type } 1 \text { and } 2 \text { various colours } 80 / \text { per } 1,000 \text { yards. }\end{array}$ 14/.0076 type 11 colours only Red and Natural available 615 per 1,000 yards |
| :---: |

MINIATURE SILVER ZINC ACCUMULATOR. 1.5 volt, 1.5 ampere. Size $2 \times 1.13 \times 0.63 \mathrm{in}$. Weight 1 if oz
ideal for model work, $12 / 6$ each. $120 /$ doz., post $1 / 6$. STROBOSCOPE FORK. 125 cycles. P.O. No. 5, 30/ Each, pOST 2/6.

 CERAMIC AND PAXOLIN WAFER SWITCHES available from stock at keen prices. send for lise. 24 way
Double pole Pax Wafer Swfiches $12 / 6$ each, post $2 / 6$. P.O. STANDARD RACKS 6fe. U channel sides drilled for isin. panels heavy angle ba
Unirs for Racks $30 /$ /. cge $7 / 6$.
MINIATURE BUZZERS. 12 v , with tone adiuster. $7 / 6$. PLASTIC-FILM CONOENSERS TMC S125017L.M
$0.9+0.1 \mathrm{mfd} .500 \%$ also 1 mfd. $1 \%$. 150 V . TCC $20 \%$ each. AlR BLOWERS. 200/250 volt. A.C. cylindrical Tin.$1 / 15 \mathrm{sh} h . \mathrm{p}$. $111 . \mathrm{I} / 10 \mathrm{th}$ h.p. E 14.
ELCOM STUD SWITCHES. 12 pole 2 way or 3 way
types on 3 Banks, break before make action, 50 /- each. GEARED MOTORS. 1 r.p.m. or 3 r.p.m. 4 watts very powerful, reversible 24 v . A.C. $35 /$ - post $2 / 6$, can be ope
ated from 230 v . wish our $20 /$ Transformer. Post $5 / \mathrm{l}$. VACUUM GAUGES. 2in. scaled. $0 / 30$ inches of mercury, 20/- each, post $2 / 6$.


STANDARD LEVER
KEYS 3 POSIT1ON
4C lock/4C lock $17 / 6$ each


ONE HOLE FIXING. Srop/4 C.O. non-lockine 2
position $10 / 6.6 \mathrm{C} . \mathrm{O}$. lock/2 C.O. lock 3 position $17 / 6$. TRANSFORMER. 200/240v., tapped 6.3v. 8.3 v

LAMP HOUSES with pair of bin. lenses mounte
gin. Square case. Ideal spotlight 70 /, each. poss 10 BATTERY CHARGERS a
inghouse, worth C35. Input

amps D.C with ammeter lusesi 250 V . A.C. output By . 15 MINIA sliding resistance. OUR PRICE 170/-. CBe. 15/| MINIATURE DIGITAL DISPLAY SERIES 681 |
| :--- |
| Counting Inses. Lsd., an assembly of five yunits each |
| displaying II messages In numbers with decimal poine. |
| and letters 625 complete, send for details. |

## HIGH SPEED

 COUNTERS

SUB-MINIATURE

## yoe II SMI TN

22/6 pose free.
screw-on cover, $2 / 6$, post 9 d .
PO 201 on headohone cord $3 /$, post $1 / 6$.
 H/6. Tiveromer PLUG-IN RELAYS. Londex 4 change-over HD con
$28 v$. D.C. or $240 v . A . C$. with base and cover, $35 /-$ each. RELAYS, 24 vols D.C., 4 make, 4 break heavy duey contacts with dust cover, $12 / 6$ each, quantities available.
MINIATURE BUZZERS. 12 vol
MIRROR GALVANOMETER BB 3000.
N.E.P. FOCal length 20 cm . 15 each.
ROOM THERMOSTAT. Adiustable between 45 and
75 deg. Far., 250 v . 10 amp . A.C. ideal for greenhouses, $35 / \mathrm{F}$
 Per 1,000. (As illustrated.) type construction, with 1 tin. square hole fixing top with
actual push below the level of a lin. bakelite circle to prevent it being used accidentally. MAGNETIC COUNTERS, Veeder Root with zero reses.
MOO COUnts per minute, counting to 999999 . I 10 or 125 volts 800 counts per minute, counting to $999,999.110$ or
A.C. On 110 volts D.C. $65 /$, each, post $3 /-12 \mathrm{KV}, 27 / 6$, post $3 /-$ -
VACUUM CONDENSERS, 25 pf., 32 KV,

 Microamps $0 / 50021 \mathrm{in}$. M
Mlllamps $0 / 5021 \mathrm{in}$. MC Milliamps $0 / 5003 \mathrm{lim}$. Amps $50-0-502 i n . M C$ Amps $0 / 52 \mathrm{in}$. MC. Volts $0 / 202 \mathrm{in}$. MC. Voles $0-402 \mathrm{in} . \mathrm{MC}$.
Scaled in Rontgens 2 MCR...70/ PORTABLE VOLTMETERS 0/250 Moving Iron A.C./D.C.
ONE HOLE FIXING SWITCHES DOUBLE POLE ON/OFF

 making and breaking zwice per second in sound proof case thermostar controlled heating. 12 or 24 V . $18 / 6$, post $6 /-\mathrm{i}$
VISCONOL-CATHODRAY., CONDESS. 001 mid. $10 \mathrm{kV}, 5 \mathrm{ki} .002 \mathrm{mfd}$. 15 kV , $9 / \mathrm{i} .02 \mathrm{mid} 10 \mathrm{kV}, 10 / \mathrm{F}$
$\qquad$
eondensers, quantifies ex-stock at low prices.
BRIDGE MEGGER serles T. Wlth resistance box
1,000 volss, range $0 / 100$ megohms-infinity, usual price
E/B9 our price 660 .
eondensers, quankities ex-stock atlow prices.
BRIDGE MEGGER series I. With resistance box
1,000 volts, range O/ 100 megohms-infinity, usual price
E/B9, our price 660 .

## L. WILKTNEON (CROYDON) LTD LONGLEY HOUSE LONGLEY RD. CROYDON SURREY



## SPECLAL MONEY SAWIMG DSCCOUTTS on the Best Hi-Fidelity Equipment on the Market Today



[^11]THERE ARE GEMS IN IRELAND

This is one


THIS is another

if you want a real gem contact


```
AFTER ALL, WE'RE IN THE EMERALD ISLE
```


## SUREDS BRTCilins



Caft. AERIAL MASTS. Peven 2 in . dia. hectiong. Interlock Rin. Complete wit
Hase, Ny lon Guys. E 12.10 .0 . Carr. $50 /-$

A.J.THOMPSON (Dept. W ) aling Lodge," Codicote, Bitchin, Herts. Phone: Cod

BRAND NEW


SIUCON RECTIFIERS

 -5AMP only. 1 AMP TYPES

| dodes |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1N461 | $1 / 6$ $1 / 6$ | AAl19 | 2/- | ${ }_{\text {BY }}^{\text {BY }}$ | 7/6 | OA73 | 21. |
| N916 | 1/6 | AAZIS | 216 |  | $3 / 6$ | OA79 | 1/9 |
| iN4007 | $4 / 6$ | AAZ17 | 2/6 | BYx10 | $5 / 6$ | OABI | 1/6 |
| 15010 | 31. | BA100 | 2. | BYx 10 | 9. | OABS | $1 / 6$ |
| 15021 | 41. | 8 Ba 102 | 4/- | BYZ | 76 | OABS | 16 |
|  | 5/- | BA115 | 1/6 | BYZ12 | 616 | OA90 | $1 / 6$ |
| 15113 |  | ${ }^{\text {Bax }} 13$ | 2.6 | ${ }^{\text {BYZ }}$ |  | OA91 | $1 / 6$ |
| 15120 | $2 / 6$ | BAX16 | $2 / 16$ | ${ }_{\text {csis }}$ | 6 | OA95 | 1/6 |
| \$5121 | $2 / 6$ | ${ }_{\text {BAY }}{ }^{\text {BAY }} 18$ | $3 / 6$ $1 / 6$ |  | $2 / 6$ | OAI8 | - |
| Is | ${ }_{3}^{2 / 6}$ | ${ }_{\text {BAY }}{ }_{\text {BAY }}$ | 216 | OAS | 21. |  | 2/- |
| 15131 15132 | 2/6 | BAY ${ }^{\text {BYO }}$ | 2/60 | OA47 | ${ }_{1 / 6}$ | OA202 | $2 /$. |
| INTEGRATED CIRCUITS |  |  |  |  |  |  |  |
| CA3005 |  | 30/- CA | 3021 | 42/6 |  |  | 25/6 |
| Ca3011 |  | 20\% CA |  |  |  |  |  |
| CA3012 |  | 251- CA | 323 | $32 / 6$ |  |  | 3351. |
| CA3013 |  | 30. CA |  | 27.6 |  |  | $32 / 6$ |
| $\mathrm{CA}^{3} \mathrm{O} / 4$ |  | 30. |  |  | CA |  | 16 |
| CA3018 |  | 25:- CA | 30288 | 35. |  |  | 25. |
| CA3019 |  | $351-{ }^{\text {2 }}$ | 3035 |  |  |  | 25\% |
| Data and application shects 2/- per type. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| PLESS |  |  |  |  |  |  |  |
| ${ }^{\text {SL4 }}$ |  | . |  |  |  |  | 54 |
| Data \& | plica | cion Sheet |  |  |  |  |  |
| FAIRCHILD <br> L900 Buffer |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| L914 Dual |  |  |  | MC7 |  |  | $19 / 6$ |
| ${ }^{\text {L702C }}$ L93 JKlip 40\% MC790p Dual JK |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | - |
| L709 Flo Amp |  | 14/0 12/6 1119 27/6 23/. 21/. |  | $\begin{aligned} & \text { HC70 } \\ & \text { MC7999 } \\ & \text { MC79 } \end{aligned}$ |  |  | $29 / 6$ |

Quantity Prices on Application
MULLARD I.C's
FCH 211 Hexruple DTL Inverter Ga
FCH 22I Triple 3 Input DTL Line.
$\begin{array}{ll}\text { FCH } 221 & \text { Triple } 3 \text { Input DTL Line } \\ \text { FCI } 101 & \text { Input JK Flip Flop } \\ \text { FAA } & 41 \\ \text { Operational Amplifier } \\ \text { TAA } 243 & \text { Operational Amplifier }\end{array}$
$\begin{array}{ll}\text { TAA } 243 & \text { Operational Amplifier } \\ \text { TAA } 263 & \text { Linear A.F. Amplifier } \\ \text { TAA } 320 & \text { Most L.F. Pre Amplifier }\end{array}$
GENERAL ELECTRIC
PA230 Low Level Amplifier
$\begin{array}{ll}\text { PA237 } & 2 \text { Watt Audio Amplifier } \\ \text { PA246 } & 5 \text { Watt Audio Amplifier }\end{array}$


Vero Pins (Bag of 36 )

## RESISTORS

t watr $10 \%$
wate
2 watt
wat
Wire Wound 2.5 watt $5 \%$ (Up to 270 hms onlr)
5 watr $5 \%$ (U) to 8.2 k ohms only)
CAPACITORS. Polyester, ceramics, Polystyrene, silver mica. tantalum, trimmers etc.

| MFD. | $\checkmark$. |  |  | $v$. |  | MFD, | v. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }_{40}$ | $1 / 9$ | MF. | so | $1 / 6$ | $320^{\circ}$ | 10 | 1/6 |
| 1.6 | 25 | 1/6 | 32 | 40 | $1 / 6$ | 400 | 16 | $2 / 9$ |
| 2 | 350 | 2/- | 32 | 450 | 3/9 | 500 | 6 | 2/6 |
| 2.5 | 16 | 19 | 40 | 6.4 | 1/6 | 500 | 25 | $3 / 9$ |
| 4 | 10 | 16 | 10 | 16 | 1/6 | 500 | 50 | $4 / 8$ |
| 4 | $4{ }^{40}$ | 4/9 | 50 |  |  |  |  | 3/6 |
| 4 | 350 18 | 2/3 | 50 50 | 25 | $1 / 6$ | 640 | 25 | $5 \%$ |
| 5 | 50 | 1/6 | 50 | 50 | $21-$ | 1000 | 16 | $5 /-$ |
| 6.4 | 6.4 | $1 / 9$ | 64 | 25 | 1/6 | 1000 | 25 |  |
| 8 | 40 | 1/6 | 80 | 16 | $1 / 6$ | 1000 | 50 | 716 |
|  | 450 | 3/0 | 80 | 25 | 1/6 | 2000 | 25 | 8/6 |
| 10 | 12 | $1 / 6$ |  | 6.4 | 1/6 | 2000 | 50 | 12/6 |
| 10 | 25 | $1 / 6$ | 100 |  | 1/6 | 2500 | 25 | 916 |
| 12.5 | 25 | 19 | 100 | 25 | $1 / 9$ | 2500 | 50 | 13/6 |
| 16 | 10 15 | 176 $1 / 6$ | 100 | 50 | 216 | 3000 | 25 | 10/6 |
| 16 | 450 | 3/3 | 125 | 10 | 1/6 | 5000 | 25 | $12 / 6$ |
| 25 | 6.4 | 1/6 | 200 | 10 | $1 / 6$ | 5000 | 50 | $19 / 6$ |
| 25 | 10 | 1/6 | 250 | 25 | 219 | $16+16$ | 450 | 716 |
| 25 | 25 | 1/6 | 250 | 50 | 3/9 | $32+32$ | 450 | 716 |


|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VAl005 | $3 / 8$ | VAl034 | $2 / 6$ | VAl053 |  | VAl091 |  |
| 10 | $2 / 6$ | VAl037 | 216 | VA1066 | $3 / 9$ | VAl096 | /- |
|  | $3 / 9$ | VAl038 | $2 / 6$ | VA1074 |  | VAl097 |  |
| VAl026 | $2 / 6$ | VAl039 | 2/8 | VA | 4/. | VAlo |  |

## SPECIAL OFFER

(limited to last 5aturday in January)
To encourage personnel callers we are happy to offer a discount of $5 \%$ to all our customers on Saturdays only. We are happy to quoteforquantity supplies to manufacturers etc. Post and Pa
(Air) $13 /=$.

Telephone: $01-4520161 / 2 / 3$

High grade of stability of electric parameters Resistance and durability Long operational life

## Polish

electronic tubes for radio receiver sets electronic tubes for TV receiver sets and electronic components

are offered by



Foreign Trade Enterprise
Warszawa, Al. Jerozolimskie 44, Poland P.O. Box Warszawa 1 No. 370.

Telex No. 81437
To persons interested we forward detailed information, catalogues and tenders.

WW-096 FOR FURTHER DETAILS



RADIO EXCHANGE CO. LTD. Dept WW. 61 High Street, Bedford. 'Phone 023452367
-Opme 1a.1. 2.30-4.30. Sale 9-12


ECONOMICAL! ACCURATE! RELIABLE!

Private enquiries, please send two 50
 stamps for brochure.

THE QUARTZ CRYSTAL CO. LTD. a.c.C. Works. Wellington Crescent.

New Malden, Surrey $\quad$ ( $1.1 .9420334 \& 2988$ ) WW-097 FOR FUK'THER DETAILS

## Bll-PRE-PAK LIMITED

FULLY TESTED AND MARKED

| AC107 | 3/- | OC170 | 3/- |
| :---: | :---: | :---: | :---: |
| AC126 | 2/6 | OC171 | 4/- |
| AC127 | 2/6 | OC200 | 3/6 |
| AC128 | 2/6 | OC201 | 7/- |
| AC 176 | 6/- | $2 \mathrm{G3O} 1$ | 2/6 |
| ACY17 | 3/- | $2 \mathrm{G3O} 3$ | 2/6 |
| AF114 | 4/- | 2N711 | 10\%- |
| AF115 | 3/6 | 2N1302-3 | 4/- |
| AF116 | 3/6 | 2N1304-5 | 5/- |
| AF117 | 3/6 | 2N1306-7 | 6/- |
| AF239 | 12/6 | 2N1308-9 | 8/- |
| AF186 | 10/- | 2N3819F.E.T. | 9/- |
| AF139 | 10/- | Power |  |
| BFY50 | 4/- | Transistors |  |
| BSY25 | 7/6 | 0 C 20 | 10/- |
| BSY26 | 3/- | 0 O 23 | 10/- |
| 85Y27 | 3/- | OC25 | 8/- |
| BSY28 | 3/- | OC26 | 5/- |
| BSY29 | 3/- | OC28 | 7/6 |
| BSY95A | 3/- | 0 C 35 | 5/- |
| OC41 | 2/6 | OC36 | 7/6 |
| $0 \mathrm{C44}$ | 2/6 | AD149 | 10/- |
| OC45 | 2/6 | 2 N 2287 | 20/- |
| OC71 | 2/6 | 2 N3055 | 15/- |
| OC72 | 2/6 | Diodes |  |
| 0 C 73 | 3/6 | AAY42 | 2/- |
| OC81 | 2/6 | OA95 | 2/- |
| OC810 | 2/6 | OA70 | 1/9 |
| OC83 | 4/- | OA79 | 1/9 |
| OC139 | .2/6 | OA81 | 1/9 |
| OC140 | 3/6 | IN914 | 1/6 |

PACKS OF YOUR OWN CHOICE UP TO the value of 10/- With orders OVER 24

## TRY OUR X PACKS FOR UNEQUALLED VALUE

XA PAK
Germanium PNP typetransistors, equivalents to a large part of the OC range, i.e. 44, 45,71,72.
81, ete.
PRICE 5 PER 1000
POST \& PACKING 4/6 U.K.
XE PAK
silicon TO.18 CAN type transistors NPN/PNP mixed lots, with equivalents co OC200-1, 2N706a, BSY27/29, BSY95A

PRICE £4-5 PER 500
PRICE £8 PER 1000
POST \& PACKING 2/6 U.K

## XC PAK

silicon diodes miniature glass types, finished black with: polarity marked, equivalents to OA200, OA202, BAY3l-39 and DKIO, etc.

PRICE f4-10 PER 1000
POST \& PACKING $2 / 6$ U.K.
ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75\% OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK.

## LOOK! TRANSISTORS ONLY 1/- EACH

TYPE A
PNP SILICON ALLOY TO-5 CAN
Spec:-
ICER AT VCE $=20 v$ 1 mA MAX. HFE. 15-100
These are of the 25300 type which
is direc; equivelent to the
0 C 200 ?n5

TYPE B
PNP SILICON
pLASTIC ENCAPSULATION
Spec:- ICER AT VCE $=10 \mathrm{v}$ 1 mA MAX. HFE, 10-200
These are of
2N4059/62 range

TYPE C NPN SILICON TO-18 CAN
Spec:-
ICER AT VCE $=20 \mathrm{~V}$ 1 mA MAX. HFE. 50-900
These are similer to the BC108/109 types.


| NEW U B78 12 | MARKED UNTESTED P integrated circuits. data \& CIRCUITS OF TYPES SUPPLIED WITH ORDERS |  |
| :---: | :---: | :---: |
| 8 | DUAL TRANS, MATCHED O/P PAIRS NPL-SIL. INTO- 5 CAN | 10/- |
|  | OC45 OCBID ${ }^{\text {O O O }}$ O1 TRANS |  |
| 0 | 200 TRANSISTORS. MAKERS REJECTS. NPN-PNP. SIL \& GERM. | 10/ |
| 100 | SILLCOIN DIDOES DO-7 Glu |  |
|  | HIGH CUALIT GERM |  |
| 866 150 | DIODES MIN. GLASS TYP |  |
| 88650 |  | 10/- |
| 100 | GERM. PNP TRANS. EO TO OC44 OC45 OC81. |  |
|  | SILTRANS. NPN. PNP. EQUIV. |  |
| в88 50 | TO OC200~. 2 N 706 A . BSY95A. ETC | 10/- |
| 86010 | 7 WATT ZENER DIODES. MIXED VOLTAGES | 10/- |
| н5 16 | 1 AMP. PLASTIC DIODES 50-1000 VOLTS | 10/- |
| н6 40 | 250 mW . ZENER DIODES DO.7 MIN. GLASS TYPE |  |

FREE: A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

## -A amero servigs 1 to <br> 

## INTEGRATED CIRCUIT AMPLIFIERS

CA3005 RP Amplifier with Jonme/s bandwldth. Max. diesipation 26 mW . Mor use an RP amplifer, balanced miser, product detector ca3012 Wide Band Amplifler (up to $20 \mathrm{mc} / \mathrm{s}$ ), suitable as IF Amplither for VHF/FM receiver ra. $\qquad$ 22/-
CA3020 General Purpose Audio Amplifier of 550 mW output. 30/CA3038 Buffer Amplitier consisting of two "super-alphs" pair of The above four L.C- are in TOS encapsulation.
Pazz2 Audio Amplifier providing a ruax. output of 1.2 watta. $65 /-$ PA234 Audio Amplither prording a max. output of 1 watt. 27/6 PA237 2 watts Audio Ampllfer.
The above three L.C's are ic epoxy moulded double four-in-line package.
mC1709CO General Purpone operational amplifer in TO-99 case.
TAA263 3-stage direct coupled amplifior for use from DC to
600kc/s; 70 mW dissipation. Output 10 mW into $150 \Omega$ loas. $15 /-$ TAAass 3-stage amplifer with connection brought out to the
indirdual leads. Bandwldth $600 \mathrm{kc} / \mathrm{y}$. 160 mW dissipation. Output 10mW inco 150 g load. $20 /-$ TAA320 m0st input stage followed by a bi-polar tranistor stage. 200ma Wissipution.
TADIOO All active componente required for an A.M. Receiver, ytages. To bulk complete receiver only colls, capacitora and resistorare required and output stage for which one of the above
deacribed I.C.s can be used. Dual seven.ln-line package. Data sheet avallable for all the above I.C.a.

NEW OSCILLOSCOPE FROM RUSSIA CI. 5 SYNCHROSCOPE
 Bandwidth $10 \mathrm{mc} / \mathrm{s}$. Triggered and freerunning time base. Pulses from 1 to 3,000 microseconds can be observed. Max. overshoot of 1 microsec. pulse 5\%. Bnilt-in time base calibrator and amplitude calibrator. Sen sitivity from 3 to 25 Vrms/mm. Telescopic vlewing hood.
NOW AT NEW REDUCED PRICE OF 439 Full servicing facilities available

WESTINGHOUSE EPOXY ENCAPSULATED WIRE ENDED MINIATURE RECTIFIERS



25\% DISCOUNT FOR QUANTITIES OF 20 OR OVER
SILICON 'LOCKFIT' TRANSISTORS BC 147
BF 194

4/6 $\mathrm{BCl}^{\mathrm{BCl}} 48$
${ }_{4 / 8}^{4 / 8}$
SPECIAL INTRODUCTORY OFFER:
12 TRANSISTORS OF ANY OP THE ABOVE TYPES
£2.5.0 POST PATD

PLESSEY SL403A INTEGRATED CIRCUIT AUDIO AMPLIFIER Dual-in-line 10 -lead flat package with beat sink atrip. Maximum presumplifer followed by a main manplifer. Distortion $0.3 \%$ at watt increasing to $0.3 \%$ at full output. Prequency response cut-out. Price, complete whb application sheet $49 / 6$

SILICON MATCHED DIODE PAIRS
IN4951 Two diodes in common TO92 epoxy case. Separate anode leads and Joint oathode. Dlodes are natically and
dynamicully balanced. Max. reverse voltage 20v. Max dis. shation 2oom W. Sultuble for TV horizontal phase diseriminatora and similar ap.

## MULTIMETERS TYPE 108-1T

4-range precision portable meter. $\quad 5,000$ o.p.r. iD.C. Voll
$2.5-10-50-250-500-2500 \mathrm{~V}$. A.C. Volt : $10-50-100-250-500-2500$ 2.5-10-50-250-500-2500V. A.C. Volte: 10-50-100-230-500-2500 V D.C. ourrent $0.5-5-50-500 \mathrm{~mA}$. Reaistance: $2.000-20,000$ ohmm- 2 , $-20 / \mathrm{meghms}$. Power output callbration for 600 ohms line,

## TYPE MFI6

D.C. Voltage range $0-0.5-10-50-250-500 \mathrm{~V}$ D.C. current ranges: $500 \mu \mathrm{~A}-10-100 \mathrm{~m}$. Reaistance ranges: $100 \mathrm{MQ}-1 \mathrm{MQ}$. The meter 1 s also calibrsted for capanity and output level measurements. Senaitivity 2010 gV .


WHEN ORDERING BY POST PLEASE ADD $2 / 6$ IN $\angle$ FOR HANDLING AND POSTAGE.

NO C.O.D. ORDERS ACCEPTED
ALL MAIL ORDERS MUST BE SENT TO HEAD OFFICE AND NOT TO RETAIL SHOP.

## Head Office:

44a WESTBOURNE GROVE, LONDON, W. 2
Cables: ZAERO LONDON
Retail branch (personal callers only)
85 TOTTENHAM COURT RD.
LONDON W.2. Tel: LANgham 8403
W.2. Tel:LANgham8
A.R.B. Approved for inspection and klystrons, etc.

## WE WANT TO BUY:

$723 \mathrm{~A} / \mathrm{B} ; 2 \mathrm{~K} 25 ; 4 \mathrm{C} 35-50 /-$ paid subject to test. Please offer us your special valves and cube surplus to requirements.

OUR NEW 1969/1970 CATALOGUE IS NOW READY.
PLEASE SEND QUARTO S.A.E. FOR YOUR FREE COPY
 FULLY
GUARANTEED
$\qquad$ 121958





Zank
FIRST QUALITY VALVES





0000000

## APPOINTMENTS VACANT

DISPLAYED SITUATIONS VACANT AND WANTED: $£ 7$ per single col. inch.<br>LINE advertisements (run-on): 8/• per line (approx. 7 words), minimum two lines.<br>Where an advertisement includes a box number (count as 2 words) there is an additional charge of $1 /$-. SERIES DISCOUNT: $15 \%$ is allowed on orders for twelve monthly insertions provided a contract

Advertisements accepted up to THURSDAY, 12 p.m., Bth JAN. for the FEB. issue, subject to space being avallable.

## Senior TestEngineer <br> H.N.C. or equivalent knowledge of

 electronics. Responsibility will be to the O.C. Manager for the supervision of the Test Room. Good knowledge of Transistor Pulse and Linear Circuitry Test procedures are essential. His main technical responsibility will be the commissioning of complete equipment and assisting in the assessment of new equipment.
## TEST ENGINEERS

Required for the above Test Room. Please apply:
PANAX EQUIPMENT LIMITED Holmethorpe Industrial Estate. Redhill, Surrey Tel: 63511

## UNIVERSITY OF CAMBRIDGE

ELECTRONICS TECHNICIAN
required. Opportunity to gain experience of a wide range of instrumentation and to continue training on a day-release basis, if required. Candidates should have either ONC and be studying for HNC or have substantial servicing experience not necessarily in the field of chemical instrumentation.

Salary in the range of $£ 924-£ 1,266$.
Apply to the Superintendent, University Chemical Laboratory, Cam-
bridge CB2 1 EW.
2755

## COUNTY BOROUGH OF LUTON <br> Telecommunications Technician

For the Borough Architect's Department for servicing ground-to-air equipment at Luton Airport. The duties will involve the servicing of Decca 424 Radar, Marconi AD 210C Direction Finder, Mufax facsimile reproduction equipment and I.L.S. equipment.

Applicants should be in possession of City and Guilds Telecommunications Full Technological Certificate or Finals, but holders of Intermediate who are still studying will be considered.

Duties will involve shift working. Commencing salary within Technician Grades T.4/5/6 ( $£ 1,095-£ 1,775$ per annum) according to qualifications and experience. Housing accommodation considered. Reasonable removal expenses paid.

Forms of application may be obtained from the Chief Executive Officer and Town Clerk, Town Hall, Luton, Beds., to whom completed applications should be returned as soon as possible.

## (1) COMMUNICATIONS ENGINEER

British Petroleum has a vacancy for a Communications Engineer for Das Island in the Arabian Gulf. This is a bachelor posting only. but with generous home leave allowances. The successful candidate will be required to work on the installation. maintenance and supervision of anfshore oil producing, modern telecommunications, telemetry and control network.

Candidates should possess a minimum of HNC or equivalent and have several years experience in telecommunications/electronics.

Apply giving details and quoting reference R 11106/9WW to P.J. Montanjees, External Recruitment, The British Petroleum Company Limited, Britannic House, Moor Lane, London E.C.2.

## Radio Operators Your chance of a shore job with good pay from the start!

If you hold a 1st Class Certificate of Competence in Radiotelegraphy issued by the Postmaster General or the Ministry of Posts and Telecommunications, or an equivalent certificate issued by a Commonwealth administration or the Irish Republic, the Post Office can now offer you a starting salary of £917-£1149 or, after 1st January, 1970, £965-£1215 (depending on your age). Annual rises will take you to $£ 1650$ and there are good prospects of promotion to more responsible and better paid posts.
If you are over 21, write for more details to:
The Inspector of Wireless Telegraphy, External Telecommunications Services, Wireless Telegraphy Section, (ww) Union House, St. Martins-le-Grand, LONDON E.C.1.

## ELECTRONIC SYSTEMS SERVICE ENGINEERS

## THE JOB

Systems Service Engineering on Advanced Training Aids for Aircraft, Radar Networks, Nuclear Reactors and Submarines.

## THE MAN

Electronic Engineer preferably with O.N.C. or H.N.C. having had practical experience of electronic devices with a keen desire to learn new techniques and applications.

## THE AWARDS

Salary offered will be up to $£ 1700$. High job interest. Opportunity to work on complex systems incorporating digital and analogue computers, associated peripherals, colour television systems and servo systems, as a member of a team. Opportunity to fly and operate simulated aircraft and other equipments. High quality training will also be given.

## OTHER BENEFITS

Our terms and conditions of employment are good and include contributory pension scheme, free life assurance, etc. We are not merely offering posts which will afford candidates opportunities of attaining a good job. Selected candidates will be offered long-term careers. Opportunities for travel at home and overseas.
There are vacancies at both Aylesbury and Crawley locations. Applications should be made in the first place to
H. C. Hall, Personnel Manager REDIFON LIMITED
Flight Simulator Division
Gatwick Road, Crawley, Sussex Tel: Crawley 28811

## RACAL INSTRUMENTS LIMITED AIRMEC DIVISION SEATON, DEVON <br> REQUIRE

## TEST ENGINEERS

To work on a wide range of analogue and digital measuring instruments employing the latest techniques.

Entrants may be graded as Test Engineers Grade I, Grade II or Project Leaders according to qualifications and experience.

Salaries up to $£ 1,600$ per annum.
These positions offer permanent and progressive employment in a seaside area of great natural beauty. Both private and local authority housing will be available.
Apply :
Personnel Department,
Racal Instruments Limited, Airmec Division, Seaton, Devon. Or telephone Mr. G. Hatt, Chief of Test. Seaton 1100/1.

## SENIOR ELECTRONICS INSPECTOR

Due to expansion a vacancy for inspector has been created. Applicant will preferably have several years of inspection experience and be familiar with defence specifications and B.S. 9,000 procedure. A knowledge of high precision electrical and coactual connectors would be advantageous, but a sound basic knowledge of electronic equipment may in itself be sufficient.

Attractive conditions of employment and commencing salary would be offered with good prospects of promotion for the right man.

Please apply in writing to:
Technical Manager,
PRECISION CONNECTORS LIMITED, 56-58 GREEN STREET,
FOREST GATE,
LONDON, E.7.
Tel.: 01-552 3405

## APPOINTMENTS

# Government of UGANDA REQUIRES 

## BROADCASTING ENGINEERS

To serve on contract for one tour of 21-27 months in the first instance. Salary according to experience in scale Uganda Shg. 21,120-27,780 (£Stg. $1,232-1,620$ ) a year, plus an Inducement Allowance, normally tax free, of ${ }_{6}$ Stg. 778-886 a year, padid direct into a Uganda bank account nominated by the officer. Gratuity $25 \%$ of total emoluments drawn. Liberal paid leave. Accommodation provided at reasonable rental. Outfit and education allowances. Free passages. Contribufory pension scheme available in certain circumstances.
Candidates must possess the City and Guilds Final Certificate in Telecommunications (with Radio) or an equivalent qualification and have wide practical experi-
ence of technical broadcasting equipment including transmitting and studio control equipment.
The officer will be required to undertake senior operational duties including the maintenance of broadcasting equipment in transmitting stations and studios; outside broadcasts and recordings in remote districts; and to give assistance with the training of junior engineering staff.
Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.I., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference $\mathbf{M 2 K}_{2}$ /690995/WF.

## TECHNICIAN required for ELECTRONICS WORKSHOP

Applicanes should have a minimum of ewo years' experience of construction and/or servicing of electronic equipment using servicing of electronic equipment using transistors and integrated knowledge of digital and pulse techniques. Qualifications to ONC or intermediate City and Guilds technicians level. Opportunities for day release. Salary according to age, qualifications and experience.
Apply to the Administrative Secretary, Medical Research Council's Laboratory of Molecular Biology, Hills Road, Cambridge.

2731

## NORTH-EAST, ESSEX TECHNICAL COLLEGE

Sheepen Road, Colchester department of electrical engineering

Rank Strand Electric Limited, who are leaders in their field of theatre and television studio equipment, require two

## electronics commissioning engineers

around $£ 1,500$ p.a.
To test and commission sophisticated lighting control systems into theatres and television studios at home and abroad.

Based with the Research and Development Unit at Brentford, Middlesex. they will initially complete a thres-month training course before commencing operations. in the field.

Applicants must have sound knowledge and experience of electronics. Ability to communicate effectively with customers important. Knowledge of theatre and television an advantage

Must be willing to travel extensively and work irregular hours.

## LECTURER GRADE II

is required to teach TELECOMMUNICATION SUBJECTS up to first degree standard. Applicants must have a University degree in Electrical Engineering or Physics with suitable teaching and/or industrial experience. Salary: Lecturer Grade II- ©1,827-£2,417 p.a. Assistance with removal expenses may be considered.
Application forms are available from the Principal at the College, to whom they should be returned within fourteen days of the appearance of this advertisement. Please state ref. WW.

Please apply for application form: The Personnel Officer, Rank Strand Electric Limited, 29 King Street, Covem Garden. London. W.C.2. 8364444 ext. 147/148



## and work at the nerve centres of civil aviation

The National Air Traffic Control Service of the Board of Trade needs Radio Technicians 10 install and maintain the very latest electronic aids at Civill Airports, Air Traffic Control Centres, Radar Stations and specialist establishments. Vacancies exist in various parts of the United Kingdom.
This is responsible demanding work (for which you will get familiarisation training) involving communications. computers, radar and data extraction, automatic landing systems, and closed-circuit television. It offers excellent prospects with ample opportunities to study for higher qualifications in this fast-expanding field
If you are 19 or over, with at least one year's practical experience in telecommunications, fill in the coupon now. Preference will be given to those having ONC or qualifications.in Telecommunications.
Salary: $£ 985$ (at 19 ) to $£ 1.295$ (at 25 or over); scale maximum $£ 1,500$ (higher rates at Heathrow). Some posts attract shift-duty payments. The annual leave allowance is good and there is a non-contributory pension scheme for established staff.

Complete this coupon for full details and application form:
To: A. J. Edwards, C. Eng., M.I.E.E., M.I.E.R.E., Room 705, The Adelphi. John Adam Street. London WC2, marking your envelope 'Recruitment'

Name

Address

## INTERTEL COLOUR TELEVISION

## requires

## ENGINEERS

in their Vision and Video Tape Departments to be based at their Dean Street, London, Studio. Applicants should have a good working knowledge of Colour Television Practice.

Applications to:
CHIEF ENGINEER
INTERTEL COLOUR TELEVISION WYCOMBE ROAD, WEMBLEY

MIDDLESEX


NCR requires additional ELECTRONIC, ELECTRO MECHANICALENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.

Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.

Starting salary will be in the range of $£ 900 / £ 1.250$ per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.

Excellent holiday, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer
NCR, 1,000 North Circular Road,
London. NW2
quoting publication and month of issue.
Plan your future with $\mathbf{N} \subset \mathbf{R}$

EXETER AND MID-DEVON hOSPITALS MANAGEMENT COMMITTEE gROUP WORKS DEPARTMENT
Technician-Medical Physics Grade II,
for maintenance of dialysis machines and electronic equipment.
Salary $\{1,313 \times(8)$ to $\{1,671$.
Qualifications required-H.N.C. or H.N.D. in Electrical Engineering or equivalent.
Applications together with names of three referees to reach the Group Engineer, 26 Queen Street, Exeter, Devon, within 10 days.

## COMPUTER STAFF

Vacancies exist in our Computer Services Dept. for EQUIPMENT CONTROLLERS to be responsible for the installation and performance monitoring of three IBM360/50 Computers used for real-time data processing. Applicants should have some knowledge of digital computers and may at present be employed as commissioning engineers or in a similar post. Knowledge of teleprocessing, Datel services and computer terminal equipment would be an advantage though it is not essential as full training will be given.
Salary up to $£ 2000$ according to experience and ability. Assistance with house purchase is available.

Please apply in writing giving full particulars to: P. Jordan. Computer Services Manager, CENTREFILE LTD... Park House, 16 Finsbury Circus, London, E.C.2. 2763

## HiP-Maremidertrmits

## Technicians and Engineers for St. Albans and Luton

## qualified or not!

## Vacancies in all grades

- VACANCIES exist for work on testing and calibrating valve and solid-state electronic measuring equipments embracing all frequencies up to u.h.f. in Production. Service and Calibration departments.
- APPLICATIONS are invited from people of all ages with experience or formal training in electronics and from ex-Armed Services technicians.
- SALARIES up to $£ 1,600$ negotiable and backed by valuable fringe benefits.
- RE-LOCATION EXPENSES available in many instances.
- CONDITIONS excellent: free life assurance, pension schemes, canteen social club.
- 37 $\frac{1}{2}$-hour, 5-day, office-hours week
- WRITE or 'phone Personnel Department stating age. details of previous employment, training, qualifications, approximate salary required.

Marconi Instruments Limited


# Product Test Technicians 

## Career Opportunities with IBM Manufacturing

We need high calibre men to fill vacancies created by promotion and programme expansion.

## The job

Is to commission the latest IBM products and systems in production at the Scottish plant, near Greenock, and requires an intimate knowledge of the equipment under test, which can include computers, punched card and tape peripherals, magnetic disk and tape storage, high and low speed printers, visual display units, multiplexors, Teleprocessing and optical character recognition equipment. The products have to be tested thoroughly, and all faults traced and rectified. The work is interesting and absorbing, and the prospects for the right man are good.

## Training

Will be a mixture of formal and "on the job" instruction. We will teach you all you need to know about IBM equipment - providing your basic knowledge is to the required level.

## Pay and conditions

## Starting salaries will be excellent.

Benefits include a non-contributory pension, immediate free life assurance and full sickness pay for up to 26 weeks in any 12 months. The 254,000 square fest plant is modern and situated in a pleasant rural valley. There is a subsidised restaurant.

Working conditions are excellent and there are good recreational facilities in the area. IBM will assist with removal expenses where applicable.

## The man

Will be at least 18 and probably less than 30 and have a strong electronic background, with experience in, for example, the testing of electronic products, mainterance of radio, radar or TV or similar work in the armed forces.

He will probably have, or be near to attaining, a qualification such as HNC, ONC, first class PMG, final RTEB, or final City and Guilds (Course Nos. 47, 48, 49, 57, 300). A knowledge of transistor circuitry and the use of oscilloscopes will be a distinct advantage.

If you have what we need, and are keen to join a vigorous, expanding and up-to-the-minute industry, please write, giving details of your age, experience and qualifications, and quoting ref. No. PT2/WW/I69
to: Manager, Personnel Selection,
IBM United Kingdom Limited, P.O. Box 30 , Spango Valley, Greenock.

# ASSISTANT ENGINEERS (INSTRUMENTS) 

for

TRAWSFYNYDD NUCLEAR POWER STATION
Trawsfynydd, Merionethshire, North Wales.

The work involves the diagnosing of system faults. carrying out special investigations, originating. modifications and designing special test equipment. The successful applicant will also be expected to assist in the training of Maintenance Craftsmen. Some experience within this field would be an advantage.
Applicants must possess academic qualifications leading to Graduate Membership of the I.E.E. or I.E.R.E.
Salary is within the range $£ 1.500-£ 1.880$ per annum. Superannuable.

Conditlons of service are in accordance with the National Joint Board Agreement for the Electricity Supply Industry.
Applications in writing stating age. experience etc.. to
Regional Personnel Manager, 825 Wilmslow Road, East
Didsbury, Manchester M20 8RU to arrive not later than
30th December 1969. Please quote Vacancy No. E.566/567W.

## University of London Audio-Visual Centre requires

 TELEVISION ENGINEERS and JUNIOR TELEVISION ENGINEERSto work on maintenance and operational duties with Its studio and mobile equipment, under the supervision of the Chief Engineer, R. H. Bradley, MBE.
Applicants for the post of Television Engineer should have technical experience in broadcast or educational television. A broad knowledge of other audio-visual equipment would be an advantage.
Applicants for the Junior posts should be 18.20 years old, with a basic knowledge of electronic equipment and some experience in its use. Formal technical or educational qualifications would be an advantage.

## Salaries:

TV Engineer. Starting at $£ 1600-£ 2000$ according to qualifications and experience. University Pension Scheme. Junior TV Engineer. Starting salary $£ 800-£ 1000$ according to qualifications.

Applications to the Director: University of London Audio-Visual Centre 11 Bedford Square, London, WC1

# EAST ARRICAN COMMUNITY 

Meteorological Department requires

## Sectional Engineer Grade II (Telecomms.)

To serve on contract for one tour of 21-27 months in the first instance. Salary in scale EA.Shg. 24300-27780 (approx. £S.1417-1620 p.a.) plus an Inducement Allowance normally tax free, of $£$ S.822-886 p.a. paid direct into officer's bank in U.K. Gratuity $25 \%$ of total emoluments. Generous paid leave. Education Allowances. Furnished accommodation at reasonable rental. Free passages. Contributory pension scheme available in certain circumstances.

Candidates, up to age 45, must possess O.N.C. or City and Guilds Final Certificate (Telecomms) plus 7 years relevant experience in telecomms. engineering. Equivalent experience in one of the armed services is acceptable. Candidates must have a good theoretical and practical knowledge of FSK, ISB and SSB receivers and trans-
mitters and of Mufax and facsimile transmitters and recorders. A good working knowledge of radar systems is essential.

The officer will be responsible to the Chief Sectional Engineer for the operation and maintenance of the Department's radio telecommunications, radio-sounding and radar equipment. He will be liable for service anywhere in East Africa but will probably be stationed at Entebbe, Dar es Salaam or Nairobi.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.i., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2K/690413/WF

## TECHNICIAN

required for calibration and servicing of flow meter instruments. Electronic experience required in television servicing or pulse techniques. Transistor experience essential. Digital experience an advantage. Good commencing salary and prospects. Permanent pensionable position.
Apply: B. RHODES 8 SON LTD.,
Danes Road, Off Crow Lane, Romford, Esssex.
Telephone Romford 62333/4/5.
2774

## ELECTRONICS TECHNICIANS

SENIOR TECHNICIAN prototype wireman required for research contract. TECHNICIAN for interesting project and development work in research and teaching laboratories. Day release available.
Incremental salary ranges $£ 868-£ 1252$. £1151-£1486 depending on age, experience and qualifications. $37 \frac{1}{2}$ hour week. good working conditions and holidays.
Apply in writing to Mr. E. Thompson, Royal School of Mines, Mining \& Mineral Technology Department, Prince Consort Road, London SW7

## Electronics Engineer <br> Professional Audio, Video and Instrumentation Equipment.

3M Company, one of the world's foremost names in magnetic recording, is expanding distribution of its "Mincom" range of equipment in the audio, video and instrumentation fields in the United Kingdom.

An interesting opportunity is available for a young man aged 23-26 to join us as an Electronics Engineer. He must possess a good electronics background, possibly obtained in the radio communications field. Ideally he should be qualified to $C$ \& $G$ or ONC/HNC standard but lesser qualifications may be acceptable in the case of an
applicant with exceptional practical experience.
The position will be London based but ultimately the successful applicant will be required to undertake some travelling working on his own initiative on field assignments.
This is a progressive position in a fast growing field. The starting salary will be attractive and there are first class employee benefits. Please write in confidence with concise details, age, qualifications and experience to:
Mr. D. J. Stuckey (Ref. MT)
3M Company Ltd.,

## 3M House,

Wigmore Street,
London W1A IET.
3m

## TECHNICAL AUTHORS

We are one of the World's leading manufacturers of Flight Simulators which incorporate both analogue and digital computers. We réquire Technical Authors with a sound knowledge of electronics who preferably have some knowledge of basic digital computer operation. Authors will produce operating and maintenance manuals, and must be able to write literature in a clear and concise style. Formal qualifications are desirable, but not essential. There will be ample opportunity to employ a measure of creative expression. Simulation is based on novel applications of known techniques. This work is certainly not of a monotonous nature.

## INSTRUCTORS

are required to lecture to customers and engineers on digital and analogue computing techniques at basic, intermediate and advanced levels. Students are required to maintain and programme highly sophisticated flight simulators. Applicants should preferably be qualified to at least H.N.C. level or equivalent. Preference will be given to those with practical analogue or digital computing experience, but applications from men with several years industrial experience and/or who have a flair for and a genuine interest in lecturing will certainly be welcome. Training in the Company's advanced computing techniques will be given.

This Company offers good working conditions, welfare benefits. There is a contributory pension scheme coupled with free life assurance.

Apply to: H. C. Hall, Personnel Manager, REDIFON LIMITED
Flight Simulator Division, Gatwick Road, Crawley, Sussex Telephone: Crawley 28811

## REDIFON

## ST. JOHN'S COLLEGE OF EDUCATION • YORK

## Dept. of Closed Circuit Television

Applications are invited for the post of SENIOR TECHNICIAN, to join a team making television programmes for this and five associated colleges.
Duties will include the maintenance of cameras and videotape recording equipment. Opportunities for operational and production work will occur. A mobile recording van is in regular use and ability to drive would be an advantage.
Salary: Local Government Scales: Technical Grade 6 (at present $£ 1,540-£ 1,775$ ): the post is superannuated and good holidays are given.
Applications (no special form), should be made in writing to the Principal, stating qualifications, experience and the names of two referees. Closing date 31 st December, 1969. 2762

## SOUTH AFRICA

FULLY QUALIFIED

## RADIO \& TELEVISION TECHNICIAN

Applicants should be capable of supervising a workshop from which the installation and repairs to all types of radios and television are undertaken.
Applications with full details of experience etc., should be sent in the first instance to Mr. E. B. UNWIN.

CONTINUOUS EMPANSSIOI wave and Line Division based at Basildon are growing fast. In order to keep pace with this consistent growth rate we require

## Installation Engineers

 Technicians \& Testers Ref. 25720To test and commission Multiplex. Co-axial Line and Microwave Radio'Systems.

Ideal candidates will be less than 45 years of age with practical experience on some of the above equipment. These challenging posts call for drive, initiative and common sense. It is necessary for applicants to be prepared to work anywhere in the U.K.

Applications should be addressed to
The Personnel Officer. STC Chester Hall Lane. Basildon, Essex.


## Test Technicians

Ref. 27221
The diversity of products manufactured at the Basildon Plant demands experienced testing staff for work on complex transmission systems.
Candidates should hold an ONC in electrical engineering and be able to offer considerable practical experience in the Field of testing and fault clearing all types of land-unit, pcm and microwave equipment.

## TECHNICIAN

required In APPLIED ACOUSTICS RESEARCH LABORATORIES situated near Fulham Broadway, S.W.6. Varied work, but a knowledge of electronk construction and design an advantage. Day release facilities for further study.
 experience and qualifications.

Application forms and further information from the Superintendent of Laboratorles (T.A.), Department of Physics and Electronics, Chelsea College, Manresa Road, London, S.w.3.

2735

## EAST SUFFOLK COUNTY COUNCIL

Lowestoft College of Further Education Principal A. E. Boddy, B.Sc. (Econ.), F.R.G.S.

## LECTURER GRADE 1

required for City and Guilds Radio and, Television Servieing Mechanics' and Technicians' Courses, including colour television.

Applicants should have appropriate technical quallications, cogether with suitable Industrial and qualifations, together with suitable industrial and similar courses would be an advantage.

The appointment is vacant as from the lst April, 1970, but an earller commencing date may be negotiated.
Salary in accordance with the Burnham Scale for Lecturers Grade J, $\subset 1,110$ to $\mathbb{C 1 , 9 5 5 \text { , plus increments }}$ for approved qualifications and training. Searting point within the scale determial and Teaching experlence.

Applications should be sent as soon as possible to The Principal of the College, on application forms available from the Secretary, Lowestoft College of Further Education, St. Peter's Street, Lowestoft, Suffolk.

2768


## SENIOR LABORATORY TECHNICIAN

A SENIOR ASSISTANT with a good understanding of electronics is needed to join a small team providing physics support to the Isotope Production Unit at Harwell. The team is mainly concerned with making accurate measurements of a wide variety of radiation sources and with the development and maintenance of the necessary measurement system. The post is tenable at Harwell.

## QUALIFICATIONS \& EXPERIENCE:-

The minimum age for appointment is 27 and the minimum qualifications necessary are four ' O ' levels including English Language and Mathematics or a Science subject. Electronics experience is essential and experience in the measurement of radiation sources would be advantageous.
SALARY: $£ 1,350$ rising to $£ 1,755$
APPLY TO: The Personnel Officer


Turnover doubled since 1962-now growing faster in the decimalization rush. Burroughs dominate the U.K. market in the new terminal computers and accounting machines. A wide variety of machines, an expanding market and a policy of promotion from within-all mean exciting opportunities, for trained electronics engineers, to develop their skills into the computer field or into the supervisory grades and beyond. Join the Burroughs boom -and grow with us.
If you are between 20 and 30 , with an electronics qualification and want to train as a computer engineer-then there's a job for you with us. With Burroughs, you can find the free-

dom to develop your talents, open fresh horizons, learn new skills -on the largest third-generation systems in the World -these are the exciting prospects at Burroughs. In return, we're offering you 3 weeks' paid holiday, free life assurance and a contributory pension scheme.

Take a big step now into one of today's development indus-tries-fill in the coupon and send off for one of our application forms. The address is
Bob Timms, Personnel Officer,
Burroughs Machines Limited (Z), Heathrow House, Cranford, Hounslow, Middlesex.

NAME
ADDRESS

## Hampstead High Fidelity

## SERVICE ENGINEER

He must be conversant with the repair and service of quality High Fidelity equipment, a useful asset would be experience with CCTV and Colour TV. The man we are seeking must be very conscientious, adaptable and prepared to undertake occasional field work. He will be expected to see up and organise a complectely new service department and control a small staff.
Applications are invited in writing giving full details of qualifications, experience, etc., and marked for she atcention of P. A. Rispoli, Essq., Hampstead High Fidelity, 91 Heath Screet, London, N.W.3. 2746

UNIVERSITY OF ESSEX DEPARTMENT OF PHYSICS SENIOR TECHNICIAN
required for maintenance of electronic equipment, supervision of equipment in a teaching laboratory and assistance to research groups. Candidates should preferably have H.N.C. or equivalent qualification in electronics and experience with modern electronic circuitry and equipment. Salary range $£ 1,056-£ 1,311$ with additional allowance for approved higher qualifications.

Applications to the Registrar, University of Essex, Wivenhoe Park, Colchester, Essex.

## V.H.F. TEEEVSION RELAY \& COMMWNAL AERAL SSTTEMS

## We are planning a considerable the following vacancies: I. A SENIOR ENGINEER

to have control of all aspects of systems design, planning, estimating, installation and commissioning.

## II. ENGINEERS

capable of undertaking either:
(a) System planning and estimating.
(b) control of installation work.
or (c) test and commissioning duties.
Candidates for these appointments must have a good background of practical experience in this field of work, and an up-to-date knowledge of techniques and equipment.
Applications, which will be treated in strict confidence, should be sent to:

BRITISH/RELAY
The General Manager,
Special Services Division, British Relay House,
41, Streatham High Road, S.W. 16

## REDIFFUSION Television Service Management

Applications are invited for vacancies in the North East Region from mature T．V．Service Managers who are experienced in the operation of a large scale rental service organisation．
Applicants must be technically competent and have a strong flair for the solution of organisational．administrative and personnel problems．
An attractive salary will be offered and a car provided
Applications please to：

> The Chief Engineer,
> Rediffusion (North East) Ltd.
> Rediffusion House.
> Forth Banks.
> Newcastle upon Tyne.
> NE1 3RX.

## BRISTOL POLYTECHNIC FACULTY OF APPLIED SCIENCE

## SENIOR TECHNICIAN IN PHYSICS

（Grade T．3）－Ref．No．T698／66／2
take charge of Nuclear Physics／Radiochemistry Laboratory
Applicanes should be over 21 and have qualifications to at least O．N．C．or C．\＆G．Ordinary Technician standard and previous laboratory experience． 38 －hour， 5 －day week with generous holiday and sick pay schemes． Opportunities for evening work with additional pay．Permanent posts with superannuation under Local Govern－ ment conditions of service．
Salary Scalc： $6930-61,095$ ．Starting salary dependent upon age，qualifications and experience．An additional 650 or $\$ 30$ per Further particulars and application forms（to be returned within fourteen days of this advertisement）from Chief Administrative Officer，Bristol Polytechnic，Ashley Down，Bristol BS7 9BU．
Please quote Ref．No．T698／66／2 in all communications．

## 々 『ロ <br> LING ALTEC

## Customer Services Department

 Service EngineersThese appointments will be of interest to electronic engineers who have attained High National Certificate standard．

The Department is responsible for the installation and maintenance of high－power electronic and mechanical equipment，mainly on cuistomer premises，both in the U．K． and abroad．

These monthly staff appointments offer an attractive salary and，in addition，the full use of a Company car．

The Company operates a generous contributory pension scheme，with a holiday entitlement of three weeks per year．

Applications should be made by letter or telephone
to the Customer Services Manager．
LTV Ling Altec Limited，
Heath Works，Baldock Road，Royston，Herts． Tel：Royston 2424

R ADIO SCHOOL IN PANAMA：Radio Technician R required to operate radio school in Santiago de Veraguas．The school provides an elementary adion for lack of a technictan to take charge．Challenging opportunity to fill a vital need in the development of rural areas．Volunteer terms：board，lodging，pocket money，fares，allowances．Write CIIR／OV $38 \underset{[2770}{\text { King }}$
Street，London，w．C．2．
$R$ EDIFON LTD．require fully experienced TELE． R COMMUNICATIONS TEST ENGINEERS and ELECTRONICS INSPECTORS．Good Commencing salarles．We would particularly welcorne enquiries from ex－Service personnel or personnel about to leave The Personnel Manager，Redifon Lid．．Broomhtll Road， Wandsworth，S．W．18．
SENIOR ELECTRONICS TECHNICIANS are required N by the Department of Applled Psychology to support Opportunities available for enterprising Technicians to gain experience in any of the following flelds：Electro－ physiological recording，magnetic tape systems，analogue computing，disital circuiting and bullding special peri pherals for the departmental on－line PDP 9 computer Experience and interest in building or maintainin tial．Salary on the scale $£ 1,026$ to $£ 1,280$ per annum with supplementary payment up to $£ 80$ per annum if approved qualifications held．Five day week．Pension Scheme．Application Forms from the Staff Officer．Th University of Aston in Birmingham，Gosta Green，
Birmingham 4 ，quoting reference L／5i5／W．W．
［2739

UNIVERSITY OF SHEFFIELD：CHIEF TECHNICIAN required in Department of Chemistry to take charge of Electronics Workshop，concerned with development and construction of new electronic equipment for re－ search and teaching，and mament．Experience neces－ sary，quallfications preferable．Salary £1，385－£1，578 p．a． Write，stating age，qualfications and expertence，to the Bursar（Ref，B．390）．The University，Sheffield S10 2TN．

We have vacanctes for Four Experlenced Test Engineers In our Production Test Department． Applicants are preferred who have Experience of Faut Finding and Testing of Moblle VHF and UHF Moblle Equipment．Excellent Opportunities for promotion due to Expansion Programme．Please apply to Personnel Works Halg Road，Cambridge．Tel．Cambridge 51351， Extn． 327.

## ARTICLESFOR SALE

A R88 mains transformers，$£ 2.10 .0 ; 12 / 24 \mathrm{~V}$ carbon plle A voltage regulator units， $30 /-40$ amp． 4 －way terminal blocks． $5 /-$ Rotax $\quad$ potary $1.8 \mathrm{amps} ., £ 7.10 .0$ ； 200 amp ．terminals，insulated heads．8／6．Carriage and packing extra．Also，high voltage capacitors and in－ sulators in stock．Westover Eleotronic Man．Co．， Braldley House．St．Paul＇s Lane．Bournemouth．Tel． 23944.

BRAND NEW ELECTROLYTICS， $15 / 16$ volt． 0.5 ， 1 ． $B_{2}, 5,8,10,20,30,40,50,100,200 \mathrm{mlds}$ ．8d．Carbon Film Resistors i watt $5 \%$ E12 Serles 10 ohms to 1 Megohm $1 / 6$ dozen，minimum order $7 / 6$ ，postage $1 /-$ ． The C．R．Supply Co．． 127 Chesterfield Rd．，Sheffield S．8．${ }_{[2747}$
$B_{2}$ UILD IT in a DEWBOX quallty plastics cablnet． $B 2$ in．$\times 21$ in．$\times$ any length．D．E．W．Ltd．（W）． RIngwood Rd．FERNDOWN，Dorset．S．A．E．for leaflet．
Write now－Right now．
CLOSED CIRCUIT TV Moblle Control Room for sale． CPurchased January 1969 and built hy Ampex．The unit Includes 3 Vidicon Cameras by Marcont and fult sound and communication facilities．There is also a board，both built by Ampex．Offers should be made to Television Factities，Queens Hall，Leeds 1. Loan Finance avallable．
${ }_{[2738}$
COPIES of＂Wireless World＂trom 1954 to 1968；offers Cplease．－Grant．The Bungalow， 93 London Road，
［2743 DISC RECORDING UNIT complete with Leak st amplifier，mod．meters，console，motorised swart suction unit．spare blank．sapphires，etc．，etc．Sood condition．Best offer over $£$ so．John King（Films）Limlted，Film House， 71 East Street． Brighton，BN1 1 NZ．
Ferranti．AF3．AF5，B1，OP2，OPM1（2），OPM5， OPM6，OPM1c，X17，\＆5 o．n．o．CARRMGE PAID．－
Norwood，May Hill，Ramsey，i．o．M．

## FOR SALE BY TENDER 170，000 Valves

The Commissioners of CUSTOMS AND EXCISE are offering for sale by competi－ tive tender approx． 170,000 valves in lots of approx．1，000．

For further particulars，apply in writing to：
The Officer，Customs and Excise， Queen＇s Warehouse，Custom House， Lower Thames St．，London，E．C．3， before January 2nd， 1970.

How to Use Ex－Govt．Lenses and prisms．Booklets． ENGLISH，${ }^{169}{ }^{2}{ }^{2}$ RAYLEIGH RD．，HUTTON，BRENT WOOD．ESSEX

## ELECTRONIC TECHNICIANS

Ampex Quality Control Department now has vacancies for technicians to be responsible for fault finding and testing a wide range of Professional Audio and C.C.T.V. Magnetic Recording Equipment.

Experience gained in the electronic industry, radio or television servicing would be an advantage or a qualification of O.N.C. standard.

Excellent salaries, three weeks annual holiday, canteen, life assurance, pension and sickness benefit schemes in operation.

Please write or telephone the Personnel Officer, Ampex Electronics Limited, Acre Road, Reading, Berkshire.

Telephone Reading 84411.

## PRODUCTION TEST ENGINEER

With experience of valve and transistor audio equipments, wanted to join our senior staff. 40 hour week. Salary $£ 1,200$ per annum. ASSOCIATED ELECTRONIC ENGINEERS LTD., Dalston Gardens, Stanmore, Middlesex. Tel.: 01-2042125 2729


## RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE

This private College provides efficient theoretical and practical training in the above subiects. One-year day courses are available for beginners and shortened courses for men who have had previous training.
Write for details to: The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. Tel.: 01-373 8721.

## Bath University of Technology

## A TECHNICIAN

is required in the School of Mathematics to assist mainly in servicing and developing ANALOGUE AND DIGITAL COMPUTING devices.
Candidates should have experience in electronics, should possess a basic qualification and be competent in elementary workshop skills.
Salary in the range of $£ 773-$ $£ 1,077$ per annum, according to age, experience and qualifications.
Further details and application form from Registrar (S), The University, Bath, BA2 7 AY, quoting ref. $69 / 83$.

2754

## TRANSFORMERS

## Working Foreman

for small shop producing transformers, 20vA-10KvA. Must be fully experienced, all stages of production. Commencing salary about $£ 1,200$.

## Also Young Assistant with testing experience

## S.S. Electronics Limited, Severalls Avenue, Chesham, Bucks. Phone: Chesham 4774

## RADIO OPERATORS

There will be a number of vacancies in the Composite Signals Organisation for experienced Radio Operators in 1970 and in subsequent years.

Specialist training courses lasting approximately nine months, according to the trainee's progress, are held at intervals. Applications are now invited for the course starting in September 1970.

During training a salary will be paid on the following scale:

| Age 21 | $£ 800$ per annum |  |
| ---: | :--- | :--- |
| " 22 | $£ 855$ | ." |
| ". 23 | $£ 890$ | ". |
| ". 24 | $£ 925$ | .$"$ |
| ". 25 and over | $£ 965$ | ." |

Free accommodation will be provided at the Training School.
After successful completion of the course, operators will be paid on the Grade 1 scale:

| Age 21 | $£ 965$ per annum |  |
| :---: | :---: | :---: |
| " 22 | $£ 1025$ | " |
| " 23 | $£ 1085$ | " |
| " 24 | $£ 1145$ | " |
| " | 25 (highest age point) | $£ 1215$ |

then by six annual increases to a maximum of $£ 1,650$ per annum.
Excellent conditions and good prospects of promotion. Opportunities for service abroad.
Applicants must normally be under 30 years of age at start of training course and must have at least two years' operating experience. Preference given to those who also have GCE or PMG qualifications.

Interviews will be arranged throughout 1970.
Application forms and further particulars from :
Recruitment Officer, Government Communications Headquarters, Oakley, Priors Road, CHELTENHAM, Glos., GL52 5AJ.

Telephone No. Cheltenham 21491 Ext. 2270.

## INTERNATIONAL AERADIO LTD TELECOMMUNICATIONS INSTRUCTOR

Applicants should possess a recognised qualification in telecommunications. e.g. City \& Guilds. ONC. HNC with electronics. These are desirable qualifications but personnel with a sound basic and applied radio theory capability would be considered.
Ex-Services/Civilian personnel who have completed an instructional technique course and have had instructional experiences in the field of telecommunications would be preferred.
A liking and aptitude for this work is essential together with general experience of UHF. VHF and HF communications equipment providing fixed and mobile services. Applicants should also be familiar with Radio Navigational Aid equipment as installed at airports for use by aircraft and ATC personnel. It is inherent that applicants will have a knowledge of solid state techniques.
This is a permanent and pensionable position at our Radio Training School outside Southall which address is in easy access of surrounding areas. The post offers good career prospects. Starting salary will be in the region of $£ 1500$. Benefits also include mambership of an excellent contributory pension and life assurance scheme and substantial rebates on holiday air fares. after a year's service.

To apply for this position write to

IAL
Personnel Officer (Recruitment)
INTERNATIONAL AERADIO LIMITED, HAYES RDAO, SOUTHALL, MIDOLESEX. Tel: 5742411

## THE HANNAH DAIRY RESEARCH INSTITUTE AYR ELECTRONICS TECHNCIIAN

ASSISTANT EXPERIMENTAL/EXPERIMENTAL OFFICER required for duties in the Department of Physiology, including servicing of electronic and electrical equipment, construction of special instruments, devising and construction of electrophysiological apparatus. Previous experience in a physiological laboratory desirable, but not essential.

Qualifications: a degree, H.N.C.s N.H.C., Grad. I.E.E.E. or equivalent in electronics engineering, applied science or applied physics.

Salary: A.E.O. up to $£ 1,208$ in a scale to $£ 1,454$;
E.O. in a scale $£ 1,190$ to $£ 2,006$.

Further particulars may be obtained from the Secretary of the Institute, to whom applications, with the names of two referees, should be submitted by 17th January, 1970.

## WE OFFER A YOUNG ENGINEER

the opportunity of working in an up-to-date tape recorder service department on Uher recording equipment.

The applicant should be familiar with the latest transistorised circuitry as well as being able to carry out mechanical work on such equipment.

We offer a good salary, non-contributory pension scheme, subsidised canteen facilities and some local transport.

If you are interested, please write giving brief details about your qualifications and experience to:

> The Personnel Manager, BOSCH LIMITED, Rhodes Way, Watford, Herts.

NEW FULL SPECIFICATION DEVICES. Integrated Circults complete with data: GE PA230 Audlo Preamplifier $18 / 6$ each; GE PA234 1 W Audio Amplifer
 quallty low cost plastic transistors: GE 2 N5172 NPN 200 mW Transistor $1 / 9$ each; ME 0412 PNP 200 mW Transistor $3 / 9$ each; Westinghouse guaranteed plastic rectifer: IN 4820 I. 5 A 400 V Si Rectifler $2 / 6$ each.
OI W005 IA 50 V Full Wave Bridge St Rectiper $7 / 6$ each C.W.O. P. P $1 /$ - Der order JEF ELECTRONICS. York House. 12 York Drive, Grappenhall, Warrington,
Lancs. Mail Order Only. Lancs. Mail Order Only.

## PYE <br> VHF RADIO TELEPHONE

comprising one Base Station F27AM 25 watts output, and two 'CAMBRIDGE' mobile units type AM10D. Latest transistorised de-sign-as new and in perfect order. Cost over $£ 500$.
Offered at $£ 320$ the lot.
H.P. terms available.

For demonstration call Mr. K. M. V. Crump, Baldock,

Herts. Tel. 3196.
2752
UHF KITS and T.V SERVICE SPARES, Suitable for Colour: Leading British Makers dual $405 / 625$ six
position push button transistorlsed tuners 25 ss . Od., $\begin{array}{ll}\text { position } & \text { push button transistorised tuners } \\ 405 / 625 & \text { transistorised. sound \& } \& \text { vision IF panels }\end{array}$ I2 15 s . Od. incl, circuits and data, P/P 4/6. Basic dual purpose $405 / 625$ transistorlsed tuners incl. circuit $\mathrm{E}^{2} 10 \mathrm{~s}$. Od. P/P $4 / 6$, UEF Hst avallable on request. OHF tuners. PLESSEY incl valves 55/-, P/P $4 / 6$. EKCO/FERRANTI 4 position push button type. incl,
valves, leads, knois e5 10 s . $0 \mathrm{~d} ., \mathrm{P} / \mathrm{P}$ 4/6, SOBELL/ valves leads, knois \& 5 ins. Od., P/P 4/6, SOBELL/ motion drive assy. leads. nttings, knobs, Instructions £ 5 18s, 6d., P/P $4 / 6$. SOBELL/GEC $405 / 625$ IF \& output chassls incl, circult 32/6. P/P $1 / 6$. Dlera 625 IF amplifier plus $405 / 625$ switch assy incl. elreuit 25/-;
P/P 4/6. New VHF tuners, Cyldon C $20 /-$ Ekco 283 / 330 range $25 /$., Pye CTM 13 ch . incremental $25 /-\mathrm{P} / \mathrm{P}$ 4/6. Many others available incl. large selection channel colls. Fireball tuners. used good cond. $30 /-$ Push button tuners RGD $612 / 619$ type used good cond. 30/-, P/P $4 / 6$ LOPTs, Scan colls, Frame output trans-
formers. Malns droppers etc., available for most popuformers. Malns droppers etc., available for most popular makes. TV signal boosters transistorised
Labgear Bi/B3, or UHF battery operated $75 /$. UHF malns operated 97/6, UHF masthead $85 /-$, post iree. Enquirles invited, COD despach avaliable. MANOR SUPPLIES, 64 GOLDERS MANOR DRIVE, LONDON, N.W.11. CALLERS 589B, HIGR ROAD, N. FINCHLEY,
N.12 (mear GRANVILLE RD.). Tel. 0i-445 9118. [60

BUSINESS OPPORTUNITIES

## PROTOTYPE DEVELOPMENT

I seek a firm or individual of proven competence to design and produce prototype important invention (provisional pat.) involving op.-to-electronics, R.F., logic, control circuits and small high speed electro-magnetic mechanism (from specialists) Box No. 2635.

## TEST EQUIPMENT - SURPLUS ANDSECONDHAND

Signal generators, oscllioscopes, output meters, wave voitmeters, frequency meters, multi-range meters, etc., etc., in stock.-R. T. \& I. Electronics, Ltd., AshStereo Generators: 1 Ohmatsu LSG/230, $£ 25$ $S_{1}$ Heathkit, £35; 14 volumes "Radio and TV Servicing' until 1962 . Offers considered.-H. F Servicing until ${ }^{1962}$ Wilowbers Consing, Sunbury-on-Thames. Middlesex. Telephone $83232 . \quad$ [2756 (1) Mullard Double Beam Oscllloscope, L. 101. 1 Excellent general condition but may possibly need
recalibrating. \&80. (2) Marcon BFO, type TF195L. recalibrating \&80. (2) Marcon BFO, type TF193L.
\& 30 . (3) Avo model $7, ~ \& 15$, (4) Evershed Bridgo £ 30. (3) Avo model 7, \& 15 , (4) Evershed Bridge
Meger 500 volt, \& 20 .-Burgess Lane \& Co, Ltd. Megger 500 volt, \& 20.-Burgess Lane \& Co. Ltd.
Thornton Ave, Chiswlck, London W.4.
RECEIVERS AND AMPLIFIERS-
SURPLUS AND SECONDHAND
$H^{R O} R \times 5 s$, etc., AR88, CR100, BRT400, G209, S640, Hetc., etc., in stock.-R. T. \& I. Electronles, Ltd., Ashylle Old Hall, Ashville Rd., London, E.11. Ley,

NEW GRAM AND SOUND
EQUIPMENT
CONBULT frst our 76-page Hlustrated equipment terms to membérs. Membership $7 / 6$ p.a.-Audio Supply Assoctation, 18 Blenheim Road, London, W.4. 01-995 1661.
GLASGOW.-Recorders bought, sold, exchanged; $\mathrm{O}_{\text {cameras, }}^{\text {atc., exchanged for recorders or vice- }}$

[^12]
## VALVES

Valve cartons by return at keen prices; send $1 /=$ tor all samples and list.-J. \& A. Boxmakers, 75a
[10
Godwin St., Bradford. 1. Valves. To clear Large quantity ex Admiralty CV2127. CV455, CV4055, CV4024. 3/- each, 6 for 12/-. Post pald.-GREENE, Fleldings, Poulner, Ring-
wood, Hants.

## FOR HIRE

For hire cCTV equipment including cameras, -Detalls from Zoom Television, Amersham 5001. [75

## ARTICLES WANTED

EAK Dynamic Moving Coil Plck-up for L.P. Fecords,
Parts acceptable,-S.B., 167 South Avenue, Southend on-Sea, (274
Wanted, all types of communicatlons recelvers Electronics, Lest equipment.-Detalls to R. T, \& I don, E.11. Ley, 4986.
Wanted: Bruel \& Kjaer automatic frequency Wesponse recorder type $3308(2305 / 1022) 20 \mathrm{~Hz}$ 20 KHz (or earlier model). Detalls please to Mr C. Heinlein, CTH ELECTRONICS, Hoddesdon, Herts.
Phone Hoddesdon 64798. WANTED, televisions, tape recorders, radlograms new Valves, transistors, etc.-Stan Willetts, ${ }^{37}$
High St. West Bromwlch. Stafls. Tel. Wes. 0186 . [72 Wanted: Wireless World 1938 Communication Wireless World.

## VALVES WANTED

We buy new valves, transistors and clean new comquotation by return.-Walton's Wireless Stores, 55 quotation by return.-Walton's
SCRAP R.F. Heating and Transmitting Vaives wanted S TY5-500, TY6-800, TY7-600, ESA 1500, BR 1126. May be Interested in other types. Good price paid for valves still under vacuum. Electronic Heat Co. 01-654 7172

## CAPACITYAVAILABLE

A IRTRONICB, Ltd., tor coll winding, assembly and A witing of electronic equipment, transistorised sub S.E.13. Tel. 01-852 1706. ${ }^{\text {unit }}$ Sheet materand Rd., London ELECTRONiC and Electrical Manufacture and East Midlands Instrument Co. Ltd., Summergangs Lane, Galnsborough, Lincs. Tel. 3260. [88 $\mathrm{M}^{\text {eTALWORK, }}$ eto your own specification, capacity avallable for small muling and capstan work up to 1 in bar. PHILPOTT'S METALWORKS, Ltd., Chapman St. Loughborough.
SKILLED WIREMAN, own workshop, seeks out-work W. estimating, your price accepted/refused. Box
W.W. 2758 Wireless World.

## TECHNICALTRAINING

$\mathrm{B}^{\text {ECOME "Techntcally Qualitled" in your spare time }}$ $\mathrm{B}_{\text {guaranteed diploma and exam. home-study courses }}^{\text {ECOM }}$ in radio. TV, servicting and maintenance. R.T.E.B., City \& Gullds. etc., highly informative $120-p a g e$ Gulde-free. Chambers College (Dept. 837K). College House, 29-31 Wrights Lane, Kensington, London. W.8. [1 CITY \& GUILDS (Electrical, etc.), on "Satisfaction For Refund of Fee" terms. Thousands of passes. For detalls of modern courses in all branches of electrical engineering, electronics, radio, T.V., automation (Dept. 152 K ). Aldermaston Court. Aldermaston, Berks.
$\mathbf{R}^{\text {ADIO ompers see the world. Sea-golng and shore }}$ R appointments. Trainee vacancles during 1970. Grants avallable. Day and boarding students. Stamp for prospectus. Wireless College, Colwyn Bay. [80
TECHNICAL TRAINING IN Radio, TV and Electronics TECHNICAL TRAINING IN Radio, TV and Electronics House, Stewarts Road. London, S.W. 8
TV and radio A.M.I.E.R.E., Clty \& Gullds, R.T.E.B. thousand. etc., on satlsfaction or refund of tee terms tratning of passes; for full detalls of exams and home branches courses (including practical equipment) in all branches of radio, TV, electronics, etc., write for 132 page handtook-iree; please state subject.-British Adermaston Court. Aldermaston, Berks. (Dept. 150k)

ENGINEERS.-A Technlcal Certificate or qualifica Etion will bring you security and much better pay Elem. and adv. private postal courses for C.Eng. A.M.I.E.R.E., A.M.S.E. (Mech. \& Elec.), City \& Gullds, A.M.I.M.I., A.I.O.B., and G.C.E. Exams. Diploma courses in all branches of Engineering-
Mech. Elec. Auto, Electronles, Radio, Computers, Draughts, Bullding, etc.-For full detalls write for FREE 132-page gulde: British Institute of Engineering Technology (Dept. 151K), Aldermaston Court Aldermaston, Berks.
KINGSTON-UPON-HULL Education Committee F. College of Technology. Principal: E. Jones, M.Sc. F.R.I.C. Radar Maintenance certificate-Information from College of Technology, Queen's Gardens, Kingston-upon-
Hull.

BOOKS, INSTRUCTIONS, ETC.
MANOALS, circults of all British eI-W.D. $1939-45$ M wireless equipment and instruments from origina R.E.M.E. Instructions; s.a.e. for list, over 70 types.Surrey, CR4-8PZ R EQUIRED 1937 Jones Radto Handbook. Lither shise.

## REDIFFUSION

## COLOUR TELEVISION FAULTFINDERS \& TESTERS

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits.
Applications to:
Works Manager,
Rediffusion Vision Service Ltd.,
Fullers Way South, Chessington, Surrey (near Ace of Spades).

Phone: 01-397 541I

## AIR FORCE DEPARTMENT RADIO TECHNICIANS

Starting pay according to age, up to $£ 1,189$ p.a. (at age 25 ) rising to $£ 1,500$ p.a. with prospects of promotion.

Vacanies at RAF Sealand, Near Chester and RAF Henlow, Bedfordshire

Interesting and vital work on RAF radar and radio equipment.

Minimum qualification, 3 years' training and practical experience in electronics.
5-day week-good holidays-help with further studies-opportunities for pensionable employment.
Write for further details to:
Ministry of Defence, CE3h (Air),
Sentinel House,
Southampton Row,
London, W.C.I.
Applicants must be UK residents.
2685

## FOR <br> ANNECY (FRANCE)

Winter sports town 50 Kms . from Geneve
International firm for Electronic Measurements is seeking

## Electrical Technical Editor

Knowledge of French for use in measurement apparatus.
Monthly salary £135. Annual holidays, 4 weeks. Housing facilities.
Reply: METRIX B.P. ${ }^{\circ} 30$ - ANNECY 74 - France


COMPUTER PANELS $2 \mathrm{in} . \times 4 \mathrm{ln}$. 10 for $10 /-+1 / 6$ p. \& p. Min. 35 85 transistors: 100 for $65 /-$ - D. \& p. $6 / 6$. min . 350 transistors: 1.000 for $E 30$ + carr.
GIANT PANELS $51^{\circ} \times 4^{\circ} \mathrm{min}$
30 transistors $9 \times 58 \mu \mathrm{H}$. Inductors. rexistors. capacitors etc. 3 for $\mathrm{fl}+$ 2/- $\mathbf{D}$. \&
As above. only 21 transistors, 70 dilodes, 62 min . $1 / 10 \mathrm{th} \mathrm{W}$ resistors.


QUANTITIES AVAILABLE EXTRACTOR/BLOWER FANS
100 c.f.mi. 4$\} \times 4 \dagger \times 2$ in. 2800 r.p.m.m 240v. A.C. Precision made in West Germany by Papat. These Fans are the best avallable. Genuine bargain at $50 /$ - each. List price.
0.22 MTFD 250 V POLYESTERS $5 /-$ doz 2.2 MFD 50V TANTALUM Jo/ doz.

NEW PLESSEY CAPS
$1^{\circ} \times 3^{\circ} 2000 \mu \mathrm{~F} 25 \mathrm{~V}$ d.c. $6 /$ each.
$2^{\circ} \times 41^{\circ} 1,500 \mathrm{LF} 150 \mathrm{~V}$ d.c. wkg. $8 /$ - each.
250 Resistors \& and \& watt. 12/6 150 HI-StabResistors. t. \& and 1 watt $12 / 6$

## DIODES EX EQPT SILICO

150 PIV 10Amp 4 for 10
KEYTRONICS,
52 Earls Court Rd., London, W. 8 Tel. 01-478 8499
MAIL ORDER ONLY. Retall and Trade supplied. Export enquirles partic


All over the 5 continents and the 7 seas Bantex Berials are helping to maintain reliable communications. Day in and day out.

Bantex aerials are selected because of their established reputation for reliability, A reputation earned over many years.

Bantex manufacture all types of marine aerials and for land use they have a range of mobile and base station aerials which operate through all bands and are used by the armed forces. police, taxi networks and industry.

Although Bantex is best known for glass-fibre aerials with a unique process for high strength. designs for metallic aerials have also been developed.

The photograph shows two boats of the Ford team in the 1969 Round Britain Power Boat Race. Both used Bantexae rials.

## B8! EK LO. 186 WALMER ROAD, LONDON W. 11 <br> Telephone 727 3432/3 <br> Telex 82310

## Thear for Inten rated Rireuits

LINEAR INTEGRATED CIRCUITS FOR ALL YOUR REQUIREMENTS

Plessey SL403A 3 Watt Audio Amplifier
G.E. type PA230 Low Level Amplifer
G.E. type PA234 I Watt Audio Amplifie G.E. type PA237 2 Watt Audio Amplifier G.E. type PA2465 Watt Audio Amplifier

RCA Iype CA3000 D.C. Amplifier
RCA type CA3011 Wide Band Amplifier
RCA type CA3020 $\ddagger$ Watt Wide Band Amplifier
RCA type CA3028A Differential/C ascode Amp (120 MH
RCA type CA3029 Operational Amplifier -
RCA rype CA 3035 Ulur High Gain Amplifier
Mullerd Tyoe TAA263 A F Amelifier
Mullard Tyve TAA263 A.F. Amplifier
Mullard Tyoe TAA293 General Purpose Amplifier
Mullard Type TAA293 General Purpose Amplifier
Mullard TVoe TAA320 MOS L.E. Amplifier
G.E. type 2N5306 Darlington Pai

A.E.

ADD 1/- each to the above l.c.s. for data sheets if required. Data sheets may be purchased separately at $1 / 6 \mathrm{~d}$. each post free. Issued free with SL403A only.




## 马ONOON CENHEAB Raplo STDRTE

ELECTRICITY SLOT METER ( $1 /-\ln$ alot) for A.C. mains. Flaed tarift to your requirements. Sultable for hotels, eto. 200/260 7 . avaitable. Reconditloned as new, 2 years' guarantee. WIRELESS SET No. 38 A.F.V. Freq. range 7.3 to 9.0 Mo/a. WorkIng range it to 2 milles. size $101 \times 4 \times$ 6jlin. Weight bilb, Includea powar supply 8ib.-and apare valven and vibrator alm
tank aerial with lowe. $£ 8$ per paip or $£ 4$ single. P.P. $25 /-$. YODERN DESK PBONES, Tel Ber or srey op bleck. with internal bell and handeet with 0.1 dia 24/10/- P.P. 7/6. ite care whal 20-WAY PRESS-BUTTON IMTER-COM TELEPHONES LI Bake ile case with junction box. Thoroughly overbauled. Guaran eed. £7/15/- per unit
TELEPHONE COLLED HAND SET LEADS, 3 core, 5/6. P.P. 1/m QUARTERLT ELECTRIC CHECK METERS. Heendilioned
an new. $200 / 250 \mathrm{v}, 10 \mathrm{~A} .42 / 6 ; 15$ A. $52 / 6 ; 20$ A. $57 / 6$. Other
 s-bANK UNISELECTOR SWITCHES. -1pling £2/15/-; 8 bank half wipe $£ 2 / 15 /-; 6$ bauk had wipe 25 contacts 47/6. P.P. $3 / 6$.
FINAL END SELECTORS. Relapk, various callern, also 18
23 LISLE ST. (GER 2969) LONDON W.C. 2
Closed Thursday 1 p.m. Open all day Saturday


## FANTASTIC SPEAKER BARGAIN

 Famous Engisth. 12- high flux. hasavy cono, 1 15 ohms. 12-month guarantee $\quad 39 / 6$ 2 for 70 - ( $\mathrm{P}, \mathrm{B} 1.6 / 9$ ) NEW RELEASE HI-FI COLUMN SPEAKER CABINET

##  



LATEST RELEASE! Wickel Cadmium

$\sin 25^{-}$monh $18^{-6} d$
29/6
18/-
39/6
RECHARGEABLE CELLS

4-TRANSISTOR


AUDIO AMPLIFIER
27/6
$31^{\prime \prime} \times 2 \mathrm{t}^{2} \times 11_{\mathrm{d}}$
Outpul 8 at 18 ohms

tape spucer EOTTO $19 / 6$

ELECTRAMA opt ww8z. 15 Hiph SL Halibam Suser

## VACUUM

OVENS, Pumps, PLANT, GAUGES, FURNACES, ETC., GENERAL SCIENTIFIC EQUIPMENT EX-STOCK, RECORDERS, PYROMETERS, OVENS, R. F. Heaters. free catalogue.
V. N, BARRETT \& CO. LTD.

MAYO ROAD, CROYDON
CRO 2QP. 01-684 9917-8-9

## WANTED-

Redundant or Surplus stocks of Transformer Rederials (Laminations, C. cores, Copper wire, etc.), Electronic Componenis P.V.C. Wires and Cables, Bakelite sheet, etc., etc. Good prices paid
J. BLACK

44 Green Lane, Hendon, N.W. 4
Tel. $01-2031855$ and 3033

EXCLUSIVE OFFER
AMPEX
MODEL FR-100 A
DATA TAPE

## RECORDER-REPRODUCERS

COMPLETELY FITTED IN 6 it. TOTALLY ENCLOSED CABINETS with recording and reproducing Amplifiers,
 tinterchangeable * ${ }^{-1}$ TAPE. 5 TRACKS. CAPACTY.
太 DC-FM-PCM-NEZ
$\star$ DC to 30,000 oreles.
-UP TO 10,000 Pulse Rate $\star$ DRIFT FREE WITHIN $1 \%$ BERVO CONTROL to 0.75 $\star$ TRACK Timina $5 \mu / \mathrm{h}$. accuracy $10{ }^{2}$ per week ( ELECTRONICSIN


TO ALL PABTS.
$\star$ POWER INPUT 105/185v 48 to 500 No
\# Made in U.S.A. these tine onits cost the Ameriona
Full details on appliention.

| 40-pake liat of over 1.000 different thams in atock avallable-keep one by jou. |  |
| :---: | :---: |
| *Collins R-380 Communieations Receivers 2385 |  |
| $\star$ Hotiman CV-157 18B SSB Convert | $\underline{230}$ |
| Mackay 128 A Y L.F. Roceivers 16/600 K | ¢40 |
| WM. Li. Tape Eeccrders BTR-1 | 175 |
| .E. 8 Telepbon | 8 10 |
| Whartdale SFB-3 Loudspenkers | 0 |
| .C.A. 6 ft . Enclosed $10^{\circ}$ Cabinets o |  |
| with door. K . 6 in. Enclosed |  |
| open front with door. | ¢15 |
| otorols 5 f . ditto recesied $18^{\prime \prime}$ mounts and |  |
| 2 doors. |  |
| andertiol |  |
| .C.A. 5820 Imaye Orthicona | C55 |
| attice lughtwelmat steel triaugular Aerial |  |
| masts 22 to 16 mek sides ap to 200 n . wixk |  |
|  |  |
| WANTED VIDEO TAPE |  |
| d price p |  |


| * Vieavor 20 |  |
| :---: | :---: |
| I.C. Teatert with plup b |  |
| Tilliamson Amplitiert |  |
| E.M.I. WM-3 Messaring 0 |  |
| Marconi TF-1055 Noise Measuriag Sel |  |
| Stinch. dia. Meteorolondeal Balloons |  |
| Mierometer Wavemeteri General Electrie |  |
| $900 / 1530$ and $1530 / 4000 \mathrm{~m} / \mathrm{cs}$. . . . . esech |  |
| 5 \#/ca Mechaniasi Band Pass Fil |  |
| Now Magnetic Recording Tape made by E.M.I. (08A) 3600 ft on S.A.B. Spools. |  |
| Used ditto "Sootch" Brand $8800 \mathrm{Kh} . . . .$. |  |
| asuring Mioroscopes $.001 \mathrm{~m} / \mathrm{m}$.. |  |
| * Coliaro trasectiphan |  |
| tCollins $\mathbf{5 0 0}$ w. Redio Telephone Trangmittert Autotune 2 to $18 \mathrm{~m} / \mathrm{cs} 230 \mathrm{y}$. input new |  |
| * 8 Track Dasa Eigh Speed Tape Reade | 840 |
| \% Mason Illaminated Drawinx Tables $50^{\circ} \times 388^{\circ}$ | ¢17 |
| t Steima Tolegraph Diatortion Moaito | ¢25 |
| ¢Teletype Model 14 Tape Punches | ¢29 |
| *TS-497/URR Sifed Generators $\mathrm{R} / 400 \mathrm{~m} / \mathrm{cs}$ | 85 |
| * Surah Trana/Receivers and Aerial | £3 |
| reiz Airport "Weather Man" Ma |  |
| $\star 75$ foot bish Latice Triangular Wind up Masts | £285 |
| * Oniselectors 10 bank 25 way full wipe ex. nem |  |
| Precision Maina Filt |  |
| coal ER. 22 SSB Receivers 2/32 | 275 |
|  |  |
|  |  |

Carriake extra at cost on all a bove.

We have a larke quantity of "bits and pleces" We cannot list-please sead us your requirements
wo can probably help-all eaquiries naswered.
P. HARRIS

ORGANFORD - DORSET
BHIG GER
Westbourne 65051

## TECHNICAL TRAINING by ICS $\begin{aligned} & \text { IN RADIO, TELEVISION AND } \\ & \text { ELECTRONIC ENGINERRING }\end{aligned}$

First-class opportunities in Radio and Electronics await the IC S trained man. Let I CS train YOU for a well-paid post in this expanding field.
IC S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training, so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for: * C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.

* C. \& G.ELECTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
* RADIOAMATEURS' EXAMINATION
* P.M.G.CERTIFICATESIN RADIOTELEGRAPHY

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator, multi-meter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how I C S can help YOU in your career. Full details of I C S courses in Radio. Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

## intienational

## CORRESPONDENCE

schools
A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

International Correspondénce Schools
(Dept. 230). Intertext House. Stewarts Road. London. S.W. 8.

NAME
Block Capitals Please
ADDRESS

## LAWSON BRAND NEW TELEVISION TUBES

## 12* Types £4.10.0

 $14^{\circ}$ Types $£ 4.19 .0$ $17^{\prime \prime}$ Types 85.19 .0 $19^{\prime \prime}$ Types E6.19.0 $21^{*}$ Types 67.15 .0 $23^{*}$ Types $£ 9.10 .0$ $19^{\circ}$ Ралогаma 88.10 .0 23" Ралоrama $£ 11.10 .0$ 19" Twin Panel E9.17.6 $23^{\circ}$ Twin Panel $£ 12.10 .0$Corriage and insurance $12^{\prime \prime}-19^{\prime \prime}-1216$ $21^{\prime}-23^{\circ}-15 / 0$

The continually increasing demand for tubes of the very highest performance and reliability is now being met by the new Lawson "Century 99" range of C.R.T.s. "Century 99 " are absolutely brand nerp tubes throughout manufactured by Britain's largest C.R.T. throughout manufactured by Britain's largest C.R.T.
manufacturers. They are guaranteed to give absolucely manufacturers. They are guaranteed to give absolutely superb performance with needle sharp aefinition screens of the very latest type giving maximum Contrast and Light output; together voith high reliability and very long life.
"Century 99 " are a complete range of tubes in all sizes for all British sets manufactured 1947-1968.
Completefittins instructions are supplied with every tube.

2 YEARS FULL REPLACEMENT GUARANTEE
WW-100 FOR FURTHER DETAILS

$$
1 .
$$



LAWSON TUBES
18 ChURCHDOWN ROAD MALVERN, WORCS. Tel. MAL 2100

## BAILEY 30 WATT AMPLIFIER

10 Tr's as spec'd and Fibreglass Pcb $\mathrm{BCl} 25 / 126 / 403 \mathrm{~d}$ and 2 Fibreglass Pcb's $\quad$ \& 12.10 .0 $\begin{array}{lllll}\text { MJ481 } & 25 / 6 & \text { MPFl03 } 8 / 6 & 40362 & 15 / 6 \\ \text { MJ491 } & 28 /-\end{array}$ RI-R27 (5\% low noise) \& P. $10 / 6$ CI-C6 (Mullard) $7 / 6$ Mullard C $4312500 \mathrm{mFd} / 64 \mathrm{vw}$ with clip

## LINSLEY HOOD CLASS A AMP

## Set 10 C.F. R's 5/-

Set 5 Capacitors 22/6 MJ480 (Matched for <0.1\% T.H.D.) per pair $42 / 6$ $\begin{array}{cc}\text { MJ481 (Matched for <0.1\% T.H.D.) per pair } 52 / 6 \\ \text { 2N3906/2N4058/2N697/2N1613 6/6 } & \text { BC109 } 3 / 6\end{array}$ 2N3906/2N4058/2N697/2N/613 $6 / 6 \times 8 \mathrm{in}$. Lektrokit Pinboard $4 \times 4 \frac{3}{2}$ in.. pins \& Layout $\begin{array}{lll}\text { Lektrokit Pinboard } 4 \times 4 / \operatorname{lin} \text {.. pins \& Layout } & 5 / 6 \\ \text { MJ480 16/6 Hunts KA } 12 \mathrm{BT} & 2500 \mathrm{mFd} / 50 \mathrm{vw} & 12 / 6\end{array}$ $1250 \mathrm{mFd} / 40 \mathrm{vw} 9 /-250 \mathrm{mFd} / 50 \mathrm{vw} 3 / \mathrm{F} 50 \mathrm{mFd} / 50 \mathrm{vw} 5 / 9$ A.İ FACTORS. 72 BLAKE ROAD,STAPLEFORD,NOTTS.

## WE BUY

any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12

RING 4452713
4450749
9587624

SURPLUS HANDBOOKS
19 net Clrcuit and Notea
1155 set Cireult and Noten

M. R. Tet Ceconital Ind Notruestiont

38 ee Technteal Instruetions 48 bet Working Instructions
88
88
set Techntal 1 natructions BC.221 Crreuti and Notes Waremeter Claeo D Tech.
18 set Cracult and Noted
BC. 1000 (31 set) Crircult and Noteo
R. 107 Circoult and Noted

AR.B8D Inatruction Manua

 BC. 348 si . BC. 348 8. 82 oet Bender and Recelver circulta 7.
Colour Code Indicator $2 / 6$. $/$ /p 6 .
S.A.E. With all onquiried please. ater apply to UE E . Mall opder only lo:
INSTRUCTIONAL HANDBOOK SUPPLIES Dept. W.W. Talbot House, 28 Talbot Gardens, LEEDS 8

## WE PURCHASE

COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS, MOTORS, TRANSISTORS, RESISTORS, CAPACITORS, POTENTIO. METERS, RELAYS TRANSFORMERS, ETC,
ELECTRONIC BROKERS LTD.
49 Pancras Road, London, N.W.1. 01-837 7781

## GEARED MOTORS

Microswitches, Timers, Meters, Potentiometers, Capacitors, all new 6d. stamp for catalogue.
F. HOLFORD © CO.

6 IMPERIAL SQUARE, CHELTENHAM

FOR YOUR...

## SYNCHRO \& SERVO

REQUIREMENTS!
SERVO \& ELECTRONIC SALES LTD.
43 HIGH ST., ORPINGTON, KENT. Tel: 31066,33976 Also at CROYDON. Tel: 01.688 1512 and LYDD, KENT. Tel: LYDD 252

## AMERICAN

TEST ANO COMMUNICATIONS EQUIPMENT
$\star$ GENERAL CATALOGUE AN/104 1/6 *
Manuals offered for most U.S. equipments

## SUTTON ELEGTRONICS <br> Salthouse. Nr. Holt. Norfolk. Cley 289



Techmation Limited 58 Edgware Way Edgware Middx Tel 01-9585636

R \& R RADIO<br>5I Burnley Road, Rawtenstall<br>Rossendale, Lancs<br>Tel.: Rossendale 3152

VALVES BOXED, TESTED \& GUARANTEED

| EBF80 | 31- | EBC41 | 4/6 | PY8I | 3/6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| EBF89 | 3/6 | PCC84 | 3/- | PY800 | 3/6 |
| ECC82 | 3/- | PCF80 | 3/- | PY82 | 3/- |
| ECL80 | 3/- | PCF82 | $3 / 6$ | U191 | 4/6 |
| EF80 | 1/6 | PCL82 | 4/- | 6 F23 | 5/- |
| EF85 | 3/- | PCL83 | 4/- | 30F5 | 2/6 |
| EF183 | $3 / 6$ | PCL84 | 5/- | 30 L 15 | 5/- |
| EFI84 | 3/6 | PL36 | 5/- | 30 P 12 | 4/6 |
| EY86 | 4/- | PL81 | 4/- | 30 Cl 5 | 5/- |
| EL41 | 5/- | PL83 | 4/- | 30 PLI 3 | 5/6 |
| EZ40 | 4/6 | PY33 | 5/- | 30PL14 | 5/6 |
|  | $\text { T. } 0$ | $\begin{aligned} & \text { ALVE } \\ & \text { R SIX } \end{aligned}$ | $i 5 T \mathrm{P}$ | $051 x$ |  |

BAKER MAJOR £8

$30-14,500$ c.p.s., Hi-fi double cone woofer and tweeter cone together with BAKER ceramic magnet
assembly having a flux density of 14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance 45 c.p.s. Rated 20 watts. Voice coils available 3 or 8 or 15 ohms. Price 68 , or Module kit, $30-17,000$ c.p.s. with iweeter, crossover, baffle and
Instructions. LOUDSPEAKER CABINET WADDING 18 in . wide, $2 / 6 \mathrm{ft}$.


ELECTRIC MOTORS (120v. or 240v. A.C.) Clockwise I,200 R.P.M. off laad Heávy duty 4 pole 50 mA . Spindie $\frac{1}{} \times 3 / 20 \mathrm{in}$. diameter. Size $2 \frac{1}{2} \times 2 \frac{1}{2} \times 1 \frac{1}{2} . i n$.
BARGAIN $17 / 6 \quad$ Post $\begin{array}{lll}\text { BARGAIN } & 17 / 6 & \text { Post } \\ \text { PRICE } & 1 / 6\end{array}$
TRANSISTOR AMPLIFIER WITH LOUDSPEAKER A sinf-contained portable mini p.antained portable syitem. Many
uses-Parties, Baby Alarm, usee-Partios, Baby Alarm,
Intercom Telephone or Record flayer Amplifior. Attractive rexine covered
cabinet size $12 \times 9 \times 4$ in., $\begin{array}{ll}\text { cabinet size } 12 \times 9 \times 4 & \text { in. } \\ \text { with powerful } \\ 7\end{array}$ speaker and four transistior One watt power amplifier. Uses in Ma battery. Brand
 the instant bulk tape ERASER AND RECORDING HEAD DEMAGNETISER 200/250 A.C. $42 / 6$ Post

EXTENSION SPEAKER Smart plastic cabinet speaker with 20 ft . lead for transistor radio, intercom, mains

 RETURN OF POST DESPATCH - CALLERS WELCOME HI-FI STOCKISTS-SALES - SERVICE-SPARES RADIO COMPONENT SPECIALISTS 337 Whitehorse road, choydon. Tel: 01-684 1665

Thanks to a bulk purchase we can offer

## BRAND NEW

P.V.C. POLYESTER \& MYLAR RECORDING TAPES

Manufactured by the world-famous reputable British tape firm, our tapés are boxed in polythene and have fitted leaders, etc. Their quality is as good as any other on the market, in no why art the tapes faulty and are not to be confused with imported, used or sub-standard tapes. 24-hour despatch service.
Should goods not meet with full approval, purchase price and postage will be refunded.
S.P. $\left\{\begin{array}{llllll}3 \mathrm{in} . & 160 \mathrm{ft} . & 2 /- & 5 \mathrm{in} . & 600 \mathrm{ft} & 6 / \mathrm{s} \\ 5 \mathrm{in} . & 900 \mathrm{f} . & 8 /- & 7 \mathrm{in} . & 1,200 \mathrm{ft} . & 9 / \mathrm{s}\end{array}\right.$ L.P. $\left\{\begin{array}{llllll}3 \mathrm{in}, & 225 \mathrm{ft} . & 2 / 6 & 5 \mathrm{in} . & 500 \mathrm{ft} . & 8 / 6 \\ 5 \mathrm{in} & 10 & 200 \mathrm{f} & 10 / \mathrm{Fin} & 800 \mathrm{t} . & 13 / .\end{array}\right.$ D.P. $\left\{\begin{array}{l}3 \mathrm{in} .350 \mathrm{ft} \text {. } 4 / 6 \text { 5in. } 1,200 \mathrm{ft} \text {. } 12 / \mathrm{F}, ~\end{array}\right.$ 16/- 7in 2,400tt. 20/. Postage on alt orders 1/6

COMPACT TAPE CASETTES AT HALF PRICE
60, 90 , and 120 minutes playing time, in original plastic library boxes.
MC $609 /$ - each. MC 90 12/6 each. MC $12018 / 3$ each

## STARMAN TAPES

28 LINKSCROFT AVENUE ASHFORD, MIDDX.

Ashford 53020

## Would IC's eat into YOUR pocket?



These IC's are completely compatible with other manufacturers DTL and TTL, and meet the full electronic spec for 930 series devices.
e.g.
gates:- 25 ns propagation delay typ
flip flops:- $\quad 4.5 \mathrm{MHz}$ toggle rate typ
Power Dissipation:- 40 mW per package typ
Temperature Range:- 0 to $+75^{\circ} \mathrm{C}$
Fan Out:
8
min
*Dual in line Packages.

* Linear Devices also available.
* Data Sheets for S.A.E.
*Quotations for Quantities available on request.
include $1 / 6$ postage $\&$ packing per order below $£ 5$

GRAMPIAN REPRODUCERS LTD
Hanworth Trading Estate, Feltham, Middlesex

TRANSFORMER LAMINATIONS Enormous range in Radiometal, Mumetal and H.C.R., also "C' \& "E" cores. Case and Frame assemblies.
CONNECTING WIRES
Large selection of stranded single p.v.c. covered Wire $7 / 0048$, 7/0076, 14/0076 etc. P.T.F.E. covered Wire, and Silicon rubber covered wire, etc.

## J. Black

OFFICE: 44 GREEN LANE, HENDON, N.W. 4 Tel: 01-203 1855. 01-203 3033 STORES: 30 BARRETTS GROVE, N. 16 Tel: 01-254 1991

## 240 <br> ELECTRRCCIT ANYWHERE

BEST EVER 200/240 VOLT "MAINS" SUPPLY FROM 12 VOLT CAR BATTERY. Exclusive World Scoop Purchase. The fabulous Mk.2D American Heavy Duty Dynamotor Unit with a massive 220 wall output and giving the most for Television, Orills, Power Tools, Malis Ughting, AC Fluorescens Uighting and all 200/240 volt Universa/ AC/DC mains equi hent Made at by Delco Pomy This magnificent machine is uncbuinable by Delco-Remy. This magnificent machine is unobtainable etsewhere. Brand Now and Fully Tested only E4.19.6 t 10/6 postage. C.O.D. with pleasure. Money back if not details. Doot. W.W. STANFORD ELECTRONICS, Rear Derby Ra North Promenade Bleckpoit Lenceshire

## INDEX TO ADVERTISERS

## Appointments Vacant Advertisements appear on pages 95-109

Al Factorspagb112Acoustical Mfg. Co. Lid
Adcola Products Ltd. ..... Cover iii
Adler, B. \& Sons (Radio) Ltd ..... 38
AEI Semiconductors Lid ..... 39
Ahuja Radios
88
Amtronix ..... 37, 44
A.P.A. Publishing (Catalogues) Ltd. ..... 23
Associated Electronic Eng. Ltd ..... 42
Audix B. B., Ltd. ..... 24
Avo Ltd.
110
Bantex Lid ..... 22
Barnet Factors, Lid ..... 22
Barrett, V. N.
44
44
BentleBentley, K. JB.I.E.T68
9213
Bi-Pak Semiconductors
93
93
Bi-Pre-Pak, Ltd ..... 1,114
Bradley, G. \& E., Monsanto ..... 15
Brenell Eng. Co., Ltd.
42
Britec, Ltd ..... Edit. 47
Calan Electronics Lid. ..... 61
Carston Electronics Ltd. ..... 40Chiltmead Lid.63
Computer Training Products ..... 47
Danavox (Gt. Britain) Ltd ..... 19
Daystrom, Ltd. ..... 7,21
Diotran, Ltd. .21
92
Drake Transformers Lid ..... 33
Duxford Electronics ..... 84
E.B. Instruments ..... 113
Electrama ..... 111
Electronic Brokers ..... $64,65,112$
Electronics (Croydon), Ltd. ..... 69
Electrovalue ..... 89
Electro-Tech Sales.. ..... 60
E.M.I. Electron Tube-Vidicons ..... 45
E.M.I. Tape Ltd
3, 5
3, 5
Erie Electronics, Itd ..... 16
Farnell Instruments, Lid. ..... 46
Ferrograph, The, Co. Ltd ..... 51
Futuristic Aids Ltd. ..... 47
Garage Gifts Ltd. ..... 111
General Eng. Co. Ltd. ..... 26
Goldring Manufacturing Co. Ltd. ..... 24
Grampian Reproducers, Led ..... 114
Hall Electric Itd
page
Harris Electronics (London), Ltd. ..... 46
Harris, P. ..... 88
111Harversons Surplus Co
Hatfield Instruments, Lid. ..... 60
Hayden Laboratonie ..... 41
Henry's Radio, Ltd. ..... , 11
Henson ..... 112
Hi-Fi Year Book/Radio Year Bo ..... 112
Howells Radio, Lid. ..... 58
I.C.S., Ltd ..... 86,112
I.M.O. (Electronics), Ltd. ..... 35
Impectron Lid. ..... 32
ndustrial Instrumens, ..... 112
Keyswitch Relays Ltd. ..... Cover ii
Keytronics ..... 110
Kinver Electronics, Lid ..... 110
Lasky's Radio, Ltd. ..... 75
Lawson Tubes ..... 112
Ledon Instruments, Ltd. ..... 46
Levell Electronics, Lid ..... 18
Light Soldering Developments, Lid. ..... 28 ..... 70
Livingston Hire Lid.
Livingston Hire Lid.
Lloyd, J. J., Instruments Lid ..... 17
London Central Radio Stores ..... 111
Mainline Electronics, Lid. ..... 82
Marshall, A., \& Son (London), Ltd. ..... 91
Mills, $W$ ..... 80, 81
Milward G. F ..... 83
M.R. Supplies, Led. ..... 11,20
Mullard Lid. ..... Cover iv
Myall, W. H. ..... 60
Newmarket Transistors Lid. ..... 32
Nombrex Ltd. ..... 42
Omron Precision Controls ..... 35
Osmabet Ltd. ..... 88
Oxley Developments Co., Ltd. ..... 60
Patrick \& Kinnie ..... 68
P.C. Radio, Ltd. ..... 68
85
Peak Sound (Harrow) Ltd. ..... 30
Pinnacle Electronics Ltd. ..... 71
Proops Telecommunications, Lid. ..... 27
Quality Electronics Ltd.59
Quarndon Electronics Ltd ..... 43
Radio \& TV Components, Led
AGB ..... 87
Radio Components Specialists
Radio Exchange Co. ..... 113 ..... 113
Radiospares, Lid. ..... 42
Rank Wharfedale Lid ..... 36Rendar Instruments.
Reslo Mikes.
44Roband Electronics Ltd
R.R. Radio ..... 12
R.S.C. Hi-Fi Centres, Led ..... 79
R.S.T. Valves ..... 86
Salford Electrical Inst. Ltd ..... 47
Samsons (Electronics), Led. ..... 80
S.E. Laboratories (Eng.) Ltd ..... 54
Service Trading Co
112
112
ervo \& Electronic Sales, Lid. ..... 113
Sinclair Raylor a Co. ..... $55,56,57$
S.M.E. Ltd. ..... 10
Smith, G. W., (Radio), Ltd. ..... 76, 77
Smith, H. L., Co. Ltd. ..... 62
Smith, J., Ltd. ..... 90
Smiths Radio Services (W'ton) Ltd. ..... 14
pecial Pinmuncations Lt ..... 62
Specialist Switches, Ltd


For increased efficiency find out more about our extensive range of ADCOLA Soldering Equipment-and we provide:
$\star$ THREE DAY REPAIR SERVICE $\star$ INTERCHANGEABLE BITS—STOCK ITEMS $\star$ SPECIAL TEMPERATURES AVAILABLE AT NO EXTRA COST.

ADCOLA TOOLS have been designed in cooperation with industry and developed to serve a wide range of applications. There is an ADCOLA Tool to meet your specific requirement. Find out more about our extensive range of efficient, robust soldering equipment.

No. 107. GENERAL ASSEMBLY TYPE

Fill in the coupon to get your copy of our latest brochure:

## ADCOLA PRODUCTS LTD

Adcola House • Gauden Road • London • SW4 Tel. 01-622 0291/3 Grams: Soljoint, London SW4


Please rush me a copy of your latest brochure:
name
COMPANY
ADDRESS

The main assembly function of most electronics companies is the manufacture of soldered joints. Mass-Soldering is not an art. When Multicore Soldering Chemicals, liquid Fluxes and EXTRUSOL High Purity Solder alloy are used in combination, mass-soldering becomes a logical application of a Multicore technical process, achieving the highest standard of production.


## XTRUSOL High Purity Extruded Solder <br> provides the mos

 economical soldering. Its high purity and freedom from oxides, sulphides and other undesirable elements result in the following advantages:-- Less dross on initial melting.
- More soldered joints per pound of solder purchased.
- Less re ect joints
- Improved wetting of electronic components \& printed rircuit boards.
- More uniform results All Extrusol is completely protected by plastic film packaging from the moment of manufacture until it is used. Available in bars and pellets. Can be released under AID authority and supplied to USA QQ-S-571d.


## PC. 2 MULTICORE

 TARNISH REMOVER removes tarnishes and inorganic residues as the second half of a precleaning process before soldering. It leaves the copper unaffected
## PC. 90 MULTICORE

 Peeloff Solder RESISTis a temporary solder resist which can be peeled off with tweezers after soldering, leaving the original cleansurface It can be used for masking gold plated edge connections and holes to which heat sensitive or other components must be added later.
PC. 41 MULTICORE ANTI-OXIDANT SOLDER COVER
which forms a liquid cover on the solder bath either side of the solder wave, largely preventing the formation of dross.

## PC. 80 MULTICORE

 SOLVENT CLEANER removes organic contaminants such as grease, perspiration and residues of organic solutions from prior processes, as a precleaning process before soldering. It is also very efficient in removing rosin-based flux residues after soldering.PC. 10 M MULTICORE ACTIVATED

## SURFACE

PRESERVATIVE
is a pre-soldering coating for preserving the clean surfaces established by the PC. 80 Multicore Solvent Cleaner and PC. 2 Multicore Tarnish Remover. PC.10A does not need to be removed before soldering and in fact contributes to the efficiency of the soldering process. PC.10A should be used whenever there is a delay between cleaning and soldering.


Gallon Containers Alliquid chemicals and nuxes suppled in gallon polythene easy pouring containers, with

SEVEN STANDARD MULTICORE LIOUID FLUXES
are now available, five of which are new PC. 21 A Multicore NonCorrosive Liquid Flux is normally recommended for wave. dip, brush. spray and roller flux application methods. PC. 25 Multicore Rosin Foam Flux is designed for foam fluxing and exhibits an unusually stable foam with a fine bubble size.

A typical Printed Circuit Soldering Process
might contain some or all of these stages:

$\sqrt{\text { ancrice }}$ C. 21 A, PC. 25 and PC. 52 vailable in 16 or aerosol sprays.

PC. 52 MULTICORE PROTECTIVE
COATING
is a lacquer which should be applied after soldering for protecting printed circuits from deterioration or failure in service. It can easily be soldered through if modifications or repairs are necessary at a later date


[^0]:    Lids of transparent,

[^1]:    - Robust Taut

    Suspended Meter Movement

[^2]:    PUBLISHED MONTHLY (3rd Monday of preceding month). Teléphone: 01-928 3333 ( 70 lines). Telegrams/Telex: Wiworld Iliffepres 25137 London. Cables: "Ethaworid, London, S.E.1." Annual Subscriptions: Home; $\mathbb{Z}_{2} 15 \mathrm{~s}$ od. Overseas; 1 year $\left\{^{2} 15 \mathrm{~s}\right.$ Od. (Canada and U.S.A.; 56.75 ). 3 years $\ell^{7}$ Os 0 d . (Canada and U.S.A.; 17.50 ). Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 202, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11 , Elmdale Road, Clifton, 8. Telephone: OBR2 21204/5. GLASGOW: 2-3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: Statham House, Talbot Road, Stretford, M32 OEP. Telephone: 061-872 4211. NEW YORK OFFICE U.S.A.: 205 East 42nd Street, New York 10017. Telephone: 867-3900.

[^3]:    I.P.C. Electrical-Electronic Press Ltd Managing Director: Kenneth Tett Editorial Director: George H. Mansell Advertisement Director: George Fowkes Dorset House, Stamford Street, London, SE1 C I.P.C. Business Press Ltd, 1969
    Brief extracts or comments are allowed provided acknowledgement to the journal is given.

[^4]:    - Communication Division, S.T.C. Ltd.

[^5]:    - International Conference on Amorphous and Liquid Semiconductors, sponsored by the Royal Society. The proceedings to be published in a special volume of the fournal of Non-crystalline Solids, published by North-Holland Publishing Company, Amsterdam.

[^6]:    modularor-demodulator (unit), "four-vire" working demands two conductor pairs, one for "go", one for "return".

[^7]:    * It is interesting to notice that increasing $C_{2} / C_{1}$ reduces $q_{0}$, the $Q$ factor of the passive network. However, over the useful working region (i.e., to the left of the points of maximum $Q$ ) and always when $K>1$, the increase in $k$ dominates.

[^8]:    *West Ham College of Technology, London E. 15.

[^9]:    A. F. BULGIN \& CO. LTD. Bye Pass Rd., Barking, Bssex. Tel: O1-594 5588 (12 lines)

[^10]:    NO EXCUSES! NO DELAYS! FROM STOCK! tarlable voltage transforwizn
    

    50 AMPS
    

    INPUT 230 V. A.C. 50/60 OUTPUT VARIABLE O/260 v. A.C. BRAND NEW. Keenest prices in from $\$$ to 50 amp . avaliable from stock. $0-260 \mathrm{v}$. at I amp. $0-260 \mathrm{v}$. at 2.5 amps. $0-260 \mathrm{v}$. at 5 amps . $0-260 \mathrm{v}$. at 8 amps. $0-260 \mathrm{v}$. at 10 amps .
    $0-260 \mathrm{v}$ at 12 amps. $0-260 \mathrm{v}$. at 15 amps . $0-260 \mathrm{v}$. at 20 amps . $0-260 \mathrm{v}$. at 37.5 amps . $0-260 \mathrm{v}$. at 50 amps . . 20 DIFFERENT TYPES AV

    ## INSULATION TESTERS (NEW)

    

    500 VOLTS, 500 megohm Price $£ 28$ carriage paid. 1,000 VOLTS, 1,000 megohms, £ 34 carrlage paid.

    5Amp.AC/DC VARIABLE VOLTAGE OUTPUT UNIT Input $230{ }^{2}$ Output
    0.260
    Output
    0.240
    v. A.C.C. Fitted large scale am meter and voltmeter
    Neon indicator, full fused. Strong attrac tive metal case $15 \mathrm{in} . \times$
    8tin. $\times 6$ in. Weight 24 8 tin. $\times 6$ in. Weight 24
    lb. Infinitely variable, Ib. Infinitely variable,
    smoothstepless voltage yariacion over range.
    
    

[^11]:    All goods are in manufacturer's sealed cartons and are insured against loss of damage in transit.
    Guaranteed "by return" service. Add $7 / 6$ to all orders for p. \& p. Send cash/cheque with
    order. Personal Callers Welcome - Business Hours
    SMITH'S RADIO SERVICE (Wolverhampton) LTD.
    Mail Order Department, 26 Victoria Street, Wolverhampton, Staffs.

[^12]:    TAPE RECORDINE ETC.
    F quality, durability matter, consult Britain's oldest Itransfer service. Quality records from your sultable tapes. (Excellent tax-free fund ralsers for schools, churches.) Modern studio facilities with Stelnway 01-995 1661. TAPE to disc transfer, using latest feedback disc 1 cutters; EPs from 22/-: s.a.a. leaflet.-Deroy,
    High Bank, Eawk St., Carnforth, Lancs.

