HOW TO BUILD THE BROWNING-DRAKE RECEIVER

A non-radiating four-tube set with radio frequency amplification.

Using die-castings to speed up production and reduce costs.

Assembly of the Melco Supreme tuned R. F. construction kit.

Special equipment for the rapid testing of telephone jacks.
EVEREADY
Radio Batteries
—they last longer

EVEREADY RADIO BATTERIES FOR EVERY RADIO USE

Each one supremely economical and efficient for the use for which it is designed—each one made under the supervision of the world’s greatest electro-chemical battery laboratory

Eveready “B” Batteries
There are Eveready Batteries for portable sets where small size and light weight are more important than long life. There are Eveready medium size batteries that come between the small and the large sizes. There are Eveready large size “B” Batteries that afford maximum economy and reliability of service when used with average one, two, three or four tube sets. And now there is a newer Eveready heavy duty, extra large size “B” Battery that gives similar economy to owners of multi-tube heavy drain receiving sets and power amplifiers.

For maximum “B” Battery economy, buy Eveready, choosing the large sizes (Nos. 766, 767, 772) for average home sets, and the heavy duty, extra large (No. 770) for multi-tube heavy drain receiving sets and power amplifiers. For portable sets choose the Eveready No. 764 medium size, unless space is very limited, in which case choose the Eveready No. 763 small size “B” Battery.

Eveready “C” Battery
Eveready makes a long-lasting “C” Battery with terminals at 1½, 3 and 4½ volts. May also be used as an “A” Battery in portable sets.

Eveready “A” Batteries
Eveready offers you “A” Batteries for all tubes, both storage and dry cell. For storage battery tubes, use the Eveready Storage “A.” For dry cell tubes, use the Eveready Dry Cell Radio “A” Battery, especially built for radio use.

Manu and guaranteed by NATIONAL CARBON CO., INC.
Headquarters for Radio Battery Information
New York San Francisco
Canadian National Carbon Co., Limited, Toronto, Ontario

BUY THEM FROM YOUR DEALER
It's Easy to Build

a five tube radio frequency receiver when you use the Freshman Masterpiece Kit

Self Balanced Low Loss Tuned Radio Frequency Kit

WILL NOT OSCILLATE

FULLY GUARANTEED

PROVIDED THIS NO.
IS NOT REMOVED
SEE SERIAL
NUMBER AND EVERY CO.

3 Masterpiece Tuned Radio Frequency Units $17.50

Each and every Freshman Masterpiece Coil bears a serial number and Trademark—our guarantee of electrical and mechanical perfection. Every genuine Freshman Coil is made of specially treated wire to prevent short-circuiting, so often caused by inferior coils. For your protection demand only the genuine.

No Neutralizing or Balancing Condensers Required

when you build with this kit to produce a radio frequency receiver that will bring in even the most distant stations with the volume and clarity of locals. So selective that stations can be brought in day after day at the same dial settings. A set that will be the equal, if not the superior, to any 5 tube receiver on the market, and what's more, it's the easiest set in the world to operate.

Kit consists of 3 Masterpiece Tuned Radio Frequency Units carefully matched and balanced. Complete with wiring diagram and instructions for building any 5 tube tuned radio frequency receiver and also drilling template for proper mounting

$17.50

At your dealers, otherwise send purchase price
and you will be supplied without further charge.

CHAS. FRESHMAN CO., INC., 106 Seventh Ave., New York
HOW MANY TUBES HAVE YOU?

Every tube is a reason why you need a KANT-BLO protector, to prevent burning out tubes from accidental short circuits. Absolutely protects one to ten tubes, of any type. One tube burned out costs at least four dollars. You can get a KANT-BLO free! With each year's subscription to Radio Engineering, new, extension, or renewal, a KANT-BLO signal tube protector is sent free, immediately. Send $2.00, check or money order; your subscription will be entered or extended for one year and your KANT-BLO mailed at once. Address Tube Insurance Department.

M. B. SLEEPER, Inc.
Technical Publisher

A-52 VANDERBILT AVENUE, NEW YORK CITY
Modulation Plus Regeneration
In the New Ultradyne

To the "Modulation System" of radio reception, R. E. Lacault has successfully applied the use of regeneration in the new Model L-2 ULTRADYNE. The result is ultra-sensitivity never before thought possible. The use of regeneration produces tremendous amplification which is more noticeable when receiving weak signals.

The Radio Section of the U. S. Bureau of Standards has proven by actual measurement that regeneration becomes more effective as the received signal diminishes in strength. Regeneration applied to the "Modulation System" allows the ULTRADYNE to respond to an extremely small amount of energy. This energy is further amplified thousands of times by the intermediate frequency amplifier before it is detected and made audible. This amplifier is designed for maximum efficiency without decreasing the tone or quality of music and speech.

The reception of distant stations is only limited by atmospheric conditions and causes beyond the control of Model L-2 ULTRADYNE.

Loud Speaker Reception Using Loop Aerial

Efficient loud speaker reception using loop aerial is possible with the Model L-2 ULTRADYNE. Ordinary loop reception is considerably less efficient than an outside aerial. However, the application of regeneration to the "Modulation System" reduces the resistance of the loop circuit, thereby allowing the loop to pick up infinately weak signals.

The use of the loop also increases selectivity and decreases static and other interference.

How to Build the New Model L-2 Ultradyne

This 32 page illustrated book gives latest authentic information on drilling, wiring, assembling and tuning the new Model L-2 Ultradyne. This book explains the "Modulation System" in detail and also deals with the application of regeneration to this new system of radio reception.

By R. E. Lacault, inventor of the Ultradyne Receiver. Price $1.00.

Model L-2 Ultradyne Kit is Reported

This is the new Type L-2 Ultradyne Kit which contains: one low loss tuning coil, one low loss Oscillator Coil, one special low loss Coupler, one type "A" Ultraformer, three type "B" Ultraformers, four matched fixed Condensers. The Ultraformers are new improved low wave radio frequency transformers, especially designed by R. E. Lacault, inventor of the Ultradyne. As a precaution against substitution, R. E. Lacault's personal monogram seal (R.E.L.) is placed on all genuine Ultraformers. All Ultraformers are guaranteed as long as this seal remains unbroken.—Adv.

Selectivity!
a dominating Ultradyne Feature

AN ULTRADYNE receiver operating in New York City easily tunes out the powerful broadcasting of WOR, Newark, N. J.—405 meters and brings in WDAR, Philadelphia—395 meters; PWX, Havana, Cuba—400 meters; WDAF, Kansas City—411 meters.

Regardless of close similarity in wave-length, the Ultradyne selects any station within range—brings in broadcasting clearly, distinctly, faithfully.

In addition to this Ultra-selectivity, the Ultradyne is the most sensitive receiver known. It employs the "Modulation System" of radio reception, the achievement of Mr. R. E. Lacault, E.E., A.M.I.R.E., Consulting Engineer of this company and formerly Radio Research Engineer with the French Signal Corps Research Laboratories.

The "Modulation System" responds to weaker signals than the conventional method of detection—because it provides greater rectification. Weakest signals are made to operate the loud speaker.

Ultradyne performance is the envy of the radio industry.

Write for descriptive circular

PHENIX RADIO CORPORATION
7 Beekman Street
New York
The Micadon is the standard fixed condenser of radio! Extremely accurate because only the very best materials are used and because Dubilier condenser craftsmen assemble and inspect them. Simple to install because equipped with extension tabs for soldering and eyelets for set-screw assembly. Different capacities for different requirements. More than 90% of all sets made—by manufacturers and amateurs—use Dubilier Micadons.

★ Sold by all good Dealers

Dubilier
CONDENSER AND RADIO CORPORATION

326
THE Browning-Drake receiver illustrated in the accompanying photographs and drawings, is not only interesting and unusual in its design and operation but almost unique in the method by which the circuit and the constants were worked out. Messrs. G. H. Browning and F. H. Drake, who are responsible for this outfit, undertook to develop at Harvard University a receiver equivalent to the super-heterodyne in selectivity and sensitivity, operating on not more than four tubes.

Comparisons are so dangerous to make that comparisons with the super-heterodyne would be left to those who built this set. It is certainly true that the outfit is unusually sensitive and selective, simple to operate and construct, and an all-round good receiver which will be appreciated equally by experimenters and broadcast listeners.

In the special notes which appear farther on, a more detailed account of the development of the circuit is given. At this point it is sufficient to say that the possible amplification from a tuned radio frequency transformer was determined mathematically, and curves plotted to take into account the value of the primary inductance in the R. F. transformer and the coupling between the primary and secondary coils. The curves showed that maximum amplification was obtained when a particular relation existed between the primary inductance and the coupler.

On the basis of the data thus obtained, a transformer was assembled and tested under actual operating conditions. In practice, the calculations did not seem to hold good for the amplification was far below that indicated by the curves. It was only after several months of experimenting and testing that the source of the difficulty was located—the capacity between the primary and secondary coils, which is responsible for the rather low amplification obtained from R. F. transformers, was introducing losses. Accordingly, the construction of the transformer was changed as indicated by the sketch in Fig. 6. Thereupon an actual amplification equal to 90 per cent of the theoretical value was obtained.

A very interesting fact was brought out in this experimental work. It was found that the UV-199 tube was equivalent to the UV-201-A as an R. F. amplifier, which accounts for its use in this receiving set.

Subsequent development work showed that the high R. F. amplification obtained could be increased three or four times by using a regenerative detector, altering the constants of the circuits to take account of the decrease in resistance of the secondary as a result of the feedback action.

For neatness and simplicity of design, the arrangement of the type 6600 Browning-Drake Receiver is hard to improve upon. To be sure, this is largely a matter of good luck, for some types of circuits come out in such a way that it is practically impossible to work out an orderly design and to get the leads as short as they should be while keeping them properly spaced apart.

There are several excellent features in this outfit. The National condensers are equipped with angle brackets so that the condenser can be set up on a table or base board. These are employed to support the tube panel at one end, while a mounting pillar holds the panel in place at the other extremity. The new Benjamin sockets are used for this outfit, as you will see from the illustrations. They are exceedingly well
Designed, both electrically and mechanically, and have the advantage of a spring mounting to absorb vibrations without making the construction clumsy. General Instrument rheostats, with their fixed moulded dials, improve the appearance of the controls on the front panel. Their action is particularly smooth and the design of the shaft lock makes them easy to install. Another feature is the vernier dials. In appearance, they are exactly like solid bakelite dials. By means of a very clever reducing arrangement under the knob, a reduction of 6 to 1 is obtained.

The panels for this set are of mahogany celeron. This is a perfect reproduction of mahogany grain, for the outer sheets of paper of which the panels are formed are printed with the real grain, obtained by photographing a mahogany board. As a matter of fact, it is difficult to tell without examining the edges of the panel, whether the material is wood or celeron.

On the front of the panel there are five adjustments, two condenser dials, two rheostats, and a Walbert filament lock switch. With the lock switch at the middle position, which lights the filaments, the detector and A. F. amplifier rheostats are adjusted properly. No control is needed for the UV-199 as that is regulated automatically by an Amperite.

Then the two dials are set at about 30 divisions and the tickler coil rotated until a slight roaring sound is heard in the phones. To bring in a station, tuning is done roughly with the R. F. condenser, although the secondary condenser should be kept at about the same setting as the other dial. As soon as a station is heard, the R. F. condenser should be left alone and the secondary condenser adjusted for maximum signal strength. Then the R. F. dial is set accurately and, if necessary, the tickler coupling increased slightly.

When the set is tuned in this way, it does not oscillate or radiate. Consequently, there are no objectionable squeals in the loud speaker nor is any interference caused with other receiving sets in the neighborhood. There is very little tendency to put the set into oscillation by using too much tickler fee-back, as is the case with ordinary regenerative receivers, because, just before the tickler is turned enough to make the set oscillate the signals become fainter. Turning the tickler farther makes the signals strong again but badly distorted. The exact way to handle the tickler control is easily understood when the set is in actual operation.

You will notice that, while the adjustment of the secondary condenser seems rather broad while a transmitting station is being located with the R. F. dial, when the R. F. dial is set exactly, the secondary control becomes very sharp. This is a little trick in the operation of the outfit that helps greatly in tuning in one station after another.

Following is a list of the parts actually used in this set. While other things equally good can be substituted, it is not advisable to change the mechanical design of this set for the reason that, as the original model was actually built, it is self-neutralizing. If any change is made in the parts or layout, it may be necessary to use a neutralizing condenser, as shown in Fig. 4, the schematic wiring diagram.

Two panels are required, of mahogany celeron if you prefer this finish or of Formica or Bakelite if you favor the black color. The front panel measures 7 by 24 ins., and the tube panel, 3 1/2 by 23 ins. It is well to get the base panel 24 1/2 ins. long so that the two strips for mounting the binding posts can be cut from it. The longer strip measures 3 1/2 by 3/4 in. and the other 1 3/4 by 3/4 in. All are 3/16 in. thick.

Fig. 1. One reason for the high efficiency of this set is that the parts are arranged in the exact sequence that they come into the circuit, making possible the use of short leads well separated.
The key instruments are the National secondary condenser and coupling unit, and the R. F. condenser and transformer unit. These condensers are supplied with vernier dials 4 ins. in diameter. The other parts required are three Benjamin sockets for standard-base tubes, one Benjamin UV199 socket, an UV-199 Amperite, one Amertran of the 1 to 5 ratio, one 1 to 3½ ratio, a 30-ohm General Instrument rheostat, and another of 10 ohms, an Electrad variometer, a B. M. S. Tri-jack, a Walbert filament lock switch, one New York Coil condenser of 0.0005 mfd., and another of 0.00025 mfd. with gridleak clips, a Turn-it variable gridleak and seven binding posts of the Eby or Marshall-Gerken type. Since there is not enough room on the binding post mounting strips for engraving the terminal markings, it is well to use engraved posts.

For hardware, four panel support pillars, 3-3/8 ins. long by 3/8 in. diameter, threaded 6-32 at each end, are needed, one coil mounting pillar, 11/16 in. long threaded 6-32, and one angle bracket.

Because of the space required to show one-half scale drawings of the panels, the usual layouts are not given, altho a set of full size panel pattern blue prints* can be obtained by those who want to follow the exact arrangement. The blue prints can be put directly on the panels and the centers for the holes marked through with an automatic center punch. All sizes for the holes are shown on the prints.

The mahogany celeron is furnished with a high-polish. If, however, you prefer to have it dull, the polish can be taken off by rubbing the panels with No. O sandpaper. Be very careful not to rub too hard for you will go through the outer layers on which the grain is printed. After sandpapering, a little oil will make the grain show up again. If the set is to be used in a mahogany cabinet, it is well to finish the panel to match the finish of the cabinet.

Engraving adds greatly to the appearance of the set. It is not expensive, and the cost is well worth the professional touch that it gives to the panel. If you are going to send the panel out to be engraved, drill your holes first, and send with the panel the full size blue prints on which the engraving is already shown. In this way you will pro-

*Set of six full-size blue prints for the Browning-Drake set, $1.50. Order from Blue Print Dept., M. B. Sleeper, Inc., A-52 Vanderbilt Ave., New York City.
Fig. 3. Picture wiring diagram, showing the connections as they are actually made.

1. Mount the four sockets on the tube panel, putting the terminals in the positions shown in the picture wiring diagram. Use ½-in. 6-32 R. H. screws and nuts. Mount the Amperite next to the 199 socket, fastening it with a ½-in. 6-32 R. H. screw and nut.
2. Connect 1 to 2, 3 to 4, and 5 to 6. Keep this wire on the level with the upper surface of the tube panel and about 1/8-in. away from the edge. Connect 7 to 8, and 9 to 10.

3. Mount the secondary and R. F. transformer condensers, with their respective coils, on the front panel. It is necessary to remove the dials from the condensers. First loosen the set screw which holds the knob to the shaft. Then take out the three R. H. screws which fasten the dial to the gear box, remove the four screws which hold the gear box to the condenser mounting posts, and undo the set screw on the collar which fits over the condenser shaft. You will find three washers on each condenser mounting post. Take off all but one from each post. Put the condenser behind the panel and put in the screws which go through the gear box and thread into the mounting pillars, put back the three screws holding the dial to the gear box, and, finally, fasten the knob in place by tightening the set screw in it. Turn the condenser plates so that they are totally interleaved, loosen the set screw on the collar over the condenser shaft, set the dial so that the 100 division line coincides...
with the line on the panel and tighten the
set screw again.
4. Connect 11 to 12. 11 is a lug on the
screw fastening the condenser end plate to
the post. Connect 13 to 14. 13 is a
lug on the screw which holds the condenser
end plate to the post.
5. Turn the mounting feet on the vari-
able condensers so that the feet point to the
rear. Fasten these feet to the tube panel
with 1/2-in. 6-32 R. H. screws and nuts.
6. Connect 15 to 16. 15 is the binding
post of the fixed plates and 16 the grid
contact on the socket. Connect this wire
also to 17, the bottom binding post on the
coil. Connect 18 to 19. It is well to in-
sulate this wire with M-R varnished tubing
so that it will not accidentally touch one of
the filament circuit leads.
7. Remove one of the Fahnestock bind-
ing posts on the fixed condenser, and put
the condenser terminal over binding post
20.
8. Connect 21 to 22, and connect this
wire at 23 to 24, the binding post on the
fixed plates. Solder wire 25 to 26 to the
mounting feet of the R. F. condenser at
25 and 26. Put a lug under the screw
holding the left hand forward leg of the
secondary condenser and connect 27 to 28.
9. Fasten the two rheostats to the front
panel.
10. Connect 29 to 30, 31 to 3, and 32
to 33.
11. Mount the filament lock switch.
12. Connect 34 to 35, and 36 to 37.
13. Mount the 1-5 A. F. transformer
using 1/2-in. 6-32 R. H. screws. Have the
secondary terminals to the left, looking at
the set from the rear.
14. Connect 38 to 39. 38 is the P post
on the transformer. Connect 40 to 41. 40
is the G post on the transformer and 41 the
G post on the socket.
15. Turn the terminals of the 0.0005
mfd. condenser to the side and bend them
around so that they can be slipped over the
P and B+ binding post of the transformer.
Mount the 1 to 31/2 ratio transformer.
16. Connect 42 to 43, and 44 to 45.
44 is the P post on the transformer and 45
the P post on the socket. Connect 46 to
47. 47 is the F post on the 1 to 5 ratio
transformer.
17. Mount the three inside binding
posts on the longer terminal strip, putting
lugs on each binding post. Thread
the shanks of the two outer binding posts
into the ends of panel support pillars.
Fasten the pillars to the tube panel with
1/2-in. 6-32 R. H. screws, putting two lugs
under each one of these screws.
18. At terminal 50 you will see that a
screw is put through the tube panel, held
in place with a nut, with a lug above and
below the panel. This is to support the
next wire.
19. Connect 48 to 49, soldering this
wire at 50 to hold it in place. 49 is one
of the lugs under the tube panel on the
terminal support pillar. Connect 51 to 52.
This wire is run from the other lug on the
support pillar underneath the tube panel
and up through a hole to the B+ binding
post on the transformer. Connect 53 to
54. This wire is run from the lug on the
binding post down through a hole in the
tube panel and up through another hole to
the lock switch. Connect 55 to 47.
Connect 56 to 57, and 58 to 30. This wire
should be insulated with M-R varnished
tubing where it passes along the underside
of the tube panel. Connect 59 to 60, and
61 to 62.
20. Fasten the angle bracket to the tube
panel, and fasten the angle bracket to the
front panel by means of a coil support pil-
ar. 1/2-in. 6-32 screws should be used.
Mount the tri-jack on the front panel with
the binding posts in the positions shown.

Fig. 5. Looking down on the top of the set. Check your assembly against the illustrations as you put the parts together and make the connections.
21. Connect 63 to 64, and 65 to 66, a connection made to the wire running from 51 to 52. Connect 70 to 71. 70 is the other lug on the panel support pillar.

22. If you use a Balcon for neutralizing, mount it directly behind the UV-199 socket and connect 67 to 16, and 68 to 69, a lug put on a screw passing through the small loop in the secondary winding. This completes the wiring of the set.

The picture wiring diagram shows the connections for the batteries. Looking at the set from the rear, the left-hand binding post is for the + terminal of a 90 volt B battery, while the next binding post to the right is for the — terminal. This same terminal takes the — post of a 22½ volt battery with the + going to the next to the last binding post to the right. With a UV-199 Amperite, 6 volts can be put on the filament of the R. F. amplifier tube. Therefore a 6 volt storage battery should be used, connected on the — side to the right-hand binding post and on the + side of the first binding post to the right. The C battery is connected from the right-hand to the center binding post, the positive terminal going to the right. With this combination of A and B batteries, two 4½-volt Eveready 3’s are required. This not only reduces the plate current to a minimum but prevents distortion. For the detector and A, F. amplifier tubes UV 201A’s, DV 2’s, or C 301A tubes can be used. In tests made on this outfit, excellent results were obtained with 3 DV 3’s for the detector and A, F. amplifier stages, but the ¼ ampere tubes made the volume.

You will note that an Audiohm is connected across the secondary terminals of the first A, F. transformer. It is advisable to use this control to cut down the volume on powerful stations. During the tests made at the Darien laboratory, the tubes were overloaded, in spite of the fact that 9 volts of C battery were used, on the New York stations, Springfield, and the new Grebe station, WAHG. However, the Audiohm used had a tendency to reduce the strength of weak signals even when it was set for maximum resistance. Therefore the spring connection was not fastened securely on the transformer binding post but merely hooked around it so it could be disconnected easily. The resistance of the grid leak is important. For that reason, a Turn-it is suggested, although some experimenters prefer to try different values of fixed grid leaks. The grid leak is exceedingly important in this set. If you hear disturbing noises, test the grid leak at once, for it exercises a very important control. A faulty grid leak will entirely spoil the results.

If, for any reason, signals do not come in properly, test the coils for open circuits,

Notes

About neutralizing this receiving for. Neutralizing as is often the case, the peculiar arrangement causes the circuit to neutralize itself. If, however, you find that the set is radiating, as indicated by whistles at various points, when the secondary condenser dial is rotated, a neutralizing condenser can be mounted on the set and adjusted in the following manner:

Turn the tickler to a point where placing a moistened finger on the grid side of the condenser C₂ gives a pluck in the phones. Of course, the antenna and ground must be connected, as well as A and B batteries, and the tubes lighted at their proper brilliancy. Turn back the tickler until this pluck just disappears. Then rotate condenser C_b and if, at any setting of C_b touch-
ing, the grid side of C₂ should give a pluck, the set is not neutralized. Change the capacity of the neutralizing condenser until this test is satisfactory. If no value of capacity is found, reverse the leads to coil L₁ and repeat the test.

For those who are technically inclined, it is thought advisable to give some of the mathematics of the radio frequency transformer. A paper has already been presented before the Northeastern District Convention of Electrical Engineers, in which the theory and experimental data have been completely taken up, so that this is merely a summary of that paper.

Referring to Fig. 7, the radio frequency voltage impressed on the grid of the amplifier tube is e₁ while the radio voltage impressed on the detector tube is e₂. Therefore, as we desire to find the amplification of the system we must solve the circuit for e₁/e₂ with these abbreviations:

- L₀: inductance of the primary.
- L₂: inductance of the secondary.
- W = 2πf where f is impressed frequency.
- iₚ: current in secondary circuit.
- M: mutual inductance between L₁ and L₂.
- Rₚ: plate resistance of the tube.
- Cₐ: capacity of condenser.
- µ: Amplification of the tube.

Mathematics of the Tuned R. F. Transformer

The equation for the amplification of the system is:

Equation 1:

$$\frac{e'_1}{e_2} = \frac{\mu R_p}{L_1} \frac{\sqrt{L_2}}{L_2} \frac{1}{\sqrt{L_1 L_2}}$$

When C₂ is tuned for maximum signal, equation 1 becomes:

Equation 2:

$$\frac{e'_1}{e_2} = \frac{\mu R_p}{L_1} \frac{\sqrt{L_2}}{L_2} \frac{1}{\sqrt{L_1 L_2}} \frac{\sqrt{\gamma + 1}}{\gamma (\gamma^2 + 1) + \gamma^2 \gamma^2}$$

It is seen that equation 2 has a maximum with respect to t. This maximum occurs when

![Graph](image)

Fig. 8. A most unusual set of curves, showing at A the theoretical amplification, at C, the actual amplification first obtained by applying the mathematics to practice, and at B, the amplification obtained after the kinks had been ironed out.
Equation 3: \[t = \eta \left(\frac{\eta^2 + 1}{\eta} \right) \]

With equation 3 substituted in 2, we obtain:

\[\frac{C_4'}{C_3} = \frac{\mu_1}{2|\gamma_1|} \]

This at once shows that \(L_1 \) should be made as large as possible consistent with tuning to the lowest wave length desired. Therefore, \(L_1 \) was at first made a .4 millihenry, but later reduced to .3 millihenry, in order to bring in lower wave length with great volume.

An experimental curve was taken to find what value of \(\eta \) could be easily obtained, and the average value to be .008. \(R \) of the UV 199 tube was found to be about 20,000 ohms so that with \(\eta = .52 \) which was a value which could be obtained, \(L_1 \) must be .13 millihenry. With these constants, and the form of winding shown in Fig. 6, the theoretical curve, A, shown in Fig. 8, was plotted and the measured curve shown at B was taken.

With regeneration \(\eta \), was found to be reduced by one-third and consequently the other constants of the transformer were changed accordingly.

In the original papers, the tendency of the input tuning system to break into oscillation, when the transformer was tuned, was taken up and several interesting facts brought out which will not be considered here.

The reader may see that this equipment was not made up by a cut and dry proposition, but was carefully designed on the basis of theoretical and experimental data which was collected during a year's work.

Wavelength Calibration for the R. F. Tuning Condenser Dial

<table>
<thead>
<tr>
<th>Wavelength in Meters</th>
<th>R. F. Condenser Divisions</th>
<th>Wavelength in Meters</th>
<th>R. F. Condenser Divisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>230</td>
<td>10.0</td>
<td>440</td>
<td>47.5</td>
</tr>
<tr>
<td>240</td>
<td>11.5</td>
<td>460</td>
<td>52.25</td>
</tr>
<tr>
<td>280</td>
<td>17.25</td>
<td>480</td>
<td>57.5</td>
</tr>
<tr>
<td>300</td>
<td>20.5</td>
<td>500</td>
<td>62.5</td>
</tr>
<tr>
<td>320</td>
<td>24.0</td>
<td>520</td>
<td>67.5</td>
</tr>
<tr>
<td>350</td>
<td>38.5</td>
<td>540</td>
<td>73.5</td>
</tr>
<tr>
<td>370</td>
<td>29.0</td>
<td>560</td>
<td>80.0</td>
</tr>
<tr>
<td>400</td>
<td>32.7</td>
<td>580</td>
<td>85.6</td>
</tr>
<tr>
<td>420</td>
<td>43.0</td>
<td>600</td>
<td>92.0</td>
</tr>
</tbody>
</table>

Fig. 9. Resonance curve, indicating the sharpness of tuning at 400 meters.

Fig. 10. Showing the wiring under the tube panel.
Notes on the Super Circuit

An understandable explanation of the super-heterodyne system and the intermediate frequency amplifier

How the mind a few of the essential points concerning the operation of a super-heterodyne circuit you will be able to proceed much more intelligently with the work of building this type of set. The circuit consists of a simple tuning arrangement connected to a detector, then to an intermediate frequency amplifier, to another detector, and finally to a regular audio frequency amplifier. In addition, there is an auxiliary circuit which sets up oscillations and is coupled to the tuning circuit of the receiver.

Since the advent of the super-heterodyne we have three types of amplifiers, the radio frequency or R. F. type operating on 500,000 to 1,500,000 cycles, the intermediate frequency or I. F. type for 30 to 50,000 cycles, and the audio or A. F. amplifier for 60 to 10,000 cycles. Each type of transformer is designed for one of these frequency ranges, and only allows the amplification of frequencies which come within its range.

The tuning circuit of a super-heterodyne set, whether it operates on a loop or an antenna and ground, is designed to cover a wavelength of 200 to 600 meters, corresponding to a frequency of 1,500,000 to 500,000 cycles. Following the tuning circuit in which oscillations of these very high frequencies are taking place is an intermediate frequency amplifier of three or four steps. It is obvious that something must be done to these high frequencies in order to alter them so that they will pass through an amplifier designed for 30 to 50,000 cycles. It is at this point that the auxiliary oscillator circuit must be employed.

If a circuit carrying a frequency of 1,000,000 cycles has coupled to it a circuit carrying 1,050,000 cycles the actual frequency in the circuit is neither 1,000,000 cycles or 1,050,000 cycles but a frequency which is the difference of the two, in this case, 50,000 cycles.

The oscillator used in conjunction with the super-heterodyne set is designed so that its wavelength or frequency can be varied over the same range that the tuning circuit is designed to cover. In order to get a resultant or beat frequency of 50,000 cycles to pass through the intermediate amplifier the oscillator must be set to a frequency which differs by 50,000 cycles from the frequency of the incoming signals.

It is not necessary to calibrate the oscillator, however, for when the signals come through the set with the greatest volume it is obvious that the oscillator must be at the correct difference in frequency from the frequency of the incoming signals.

Altho it is hard to picture it in your mind, the high frequency oscillations of 500,000 to 1,500,000 cycles are broken up into little groups which occur at audio frequencies and, even tho the high frequency or carrier wave is altered by the oscillator.

(Concluded on page 380)
HE fall months bring with them the series of radio shows, one after another, from New York to San Francisco. At every show you will find subscription representatives of the various magazines. These men, working far from the home office, sometimes become overzealous in their claims and promises. Frequently emergency men are taken on who are positively dishonest, keeping money paid them and destroying the names of the subscribers.

Consequently, you must carefully consider the reputation of the publisher when you subscribe to magazines thru representatives. Radio Engineering knows the character of its men because they have been in the employ of the Company for four years. They are not permitted to take on emergency men. The publishers, consequently, stand behind every subscription receipt issued. If, thru a slip, your name or address is not recorded correctly, the Magazine will not reach you. However, when this does happen, tho it is rare, the subscription is re-entered correctly and any missing numbers forwarded as soon as the receipt and the right address is sent in. Moreover, as a protection to readers and advertisers, if anyone finds that Radio Engineering is not of sufficient value to be well worth the price paid, the full amount will be refunded upon request.

You will see that, starting with this issue, the scale drawings of instrument panels are omitted. The reason is just this: The construction articles are of value to many readers who do not actually build the sets described, or who make various changes of their own when they construct the out-
Use of Die-Castings in Radio Manufacturing

Some suggestions for the use of die-castings to speed up production and to improve the quality and finish of special parts

Two problems which all manufacturers have in common, and which are being solved with more or less success, are the reduction of manufacturing costs and the improvement in appearance and quality of the products. The experience of some of the leading manufacturers of high grade parts has shown that in many cases it is possible to go a long way toward overcoming production difficulties at one stroke by the use of die-castings. Others have found that the improvement in appearance alone, secured by this method, has enabled them to command higher prices for their products. Of course, it is not always practicable to use castings for in many cases, where sheet metal stampings or screw-machine parts can be used, the die-casting process cannot compete commercially. Its largest field is where costly assembling operations are done away with by its use, where it eliminates machining operations, or produces a part which meets the requirements demanded of it better than if it were made some other way.

The term die-casting, as defined by the Doehler Die-Casting Company, the largest manufacturer of die-castings in the United States, applies to metal castings made by forcing molten metal, under pressure, into a metallic mold or die. The mould must be properly designed and constructed so as to be capable of receiving the molten metal under pressure. The metal must be a suitable alloy that will form a casting meeting exact specifications as to physical dimensions, and free from imperfections.

It is easy to make die-castings very accurate in size. The exact limits vary with the composition of the alloy used, but for most of the zinc base alloys employed for castings in radio work, the limits are approximately plus or minus .002 in. per inch. The surface is very smooth so that practically no grinding is necessary. The metals which can die-cast successfully are the various zinc base alloys, aluminum base alloys, tin base alloys, lead base alloys, and some copper base alloys.

Another advantage of the die-casting process is that wall thicknesses as small as 0.10 in. on ordinary sized castings, and 1/16 in. on small castings, can be obtained. This accounts for the growing popularity of this system for producing variable condenser plates, since they can be made as integral units.

The quality or adaptability of a die-cast part is very often improved by the use of inserts of some other metal. They are very often used to provide greater strength or hardness at certain points in the casting. In general, any material which has a higher melting point than that of the alloy can be used for inserts. They may be used also to provide material of better anti-friction qualities at localized points in the casting. The outer surfaces of inserts are usually

www.americanradiohistory.com
cross-knurled, so that they are held more firmly in place.

Since all-steel cores are used in the moulds for die-casting, holes of very small diameter, approximately 0.031 in. minimum, can be cast. External threads up to about 24 per inch can be cast, but internal threads are usually cut by machine.

An important property of die-castings which makes them particularly suitable for radio work is the absence of imperfections and blow-holes. This not only improves the appearance considerably but means that the waste, due to defective castings, is reduced to below 2%.

The question of whether die-castings are cheaper than molded Bakelite has often been asked. Taking everything into consideration, die-castings are slightly more expensive than the other but in many cases the question of breakage and strength, or electrical conductivity makes die-castings more desirable. By enameling the part, an appearance similar to that of Bakelite can be obtained. The molds for die-casting cost about the same as those for Bakelite.

The cost of die-castings is controlled by a number of things. It depends on the alloy to be used, the accuracy required, the surface finish, the quantity required, and the size and shape of the part. The quantity is a very important factor as it determines the number of cavities in the die. If a small quantity of castings is called for, the expense of making the die is generally the predominating element of cost. Where the quantity is large, the die cost is widely distributed, and the number of parts produced per operation is increased by having a greater number of cavities.

The success and the ultimate cost of die-castings depends to a large degree on how well the molds have been designed. One fundamental difference between the die-casting process and foundry practice is that in the latter, a core of any conceivable shape can be formed in sand, and when the casting has been made, the core can be broken out of the finished casting. In die-casting practice, since all-steel cores are used, means must be provided for removing the cores. This makes it very important that undercuts be avoided. Corners should be rounded and fillets or webs used. Inserts should be applied where special qualities are required. The proper alloy, having properties in accordance with the specifications of the work must be selected.

A few of the many applications of die-castings in the radio industry are shown in the accompanying illustrations. Among these are head-phone cases, loud-speaker ferrules and bases, vernier gears, condenser counterweights, panel support brackets, and condenser end plates, rotors, and stators.

It is predicted that many new applications of die-castings will be seen in the radio industry this season. The present struggle for the elimination of losses in variable condensers has already been aided by die-castings. Condensers with all of the stator plates in one integral piece, and all of the rotor plates cast as a separate piece have been the answer to the problem of eliminating resistance losses due to poor electrical joints between the plates. Condensers built in this way have brass shafts and steel bearings inserted in the castings to reduce friction to a minimum. The die-cast condenser is a good illustration of a case where both low cost and efficiency are secured by this interesting method, for the elaborate operation of assembling the many plates in the ordinary condenser is eliminated.
The Melco Inductance-Tuned R. F. Receiver

In this set the secondary and the two R. F. amplifying circuits are tuned by varying the inductances, while the condensers remain fixed.

One of the most interesting developments resulting from the vast amount of research work carried on in the field of tuned radio frequency amplification, is the Telemonic tuned R. F. receiver, shown in the accompanying illustrations. This set represents a distinct departure from the usual methods of obtaining tuned R. F. amplification in that the R. F. stages are controlled throughout by varying the inductances instead of condensers.

The set employs flat D coils for the inductance units. By winding the coils in this form, the magnetic field is confined to each unit and interstage inductive coupling, with its consequent feedback of energy, is eliminated. The antenna is tuned by a variometer, indicated as A in Fig. 2, which is shunted by a small fixed capacity. The radio frequency amplifying transformer or variotransformer, is a combination of fixed primary inductance and variable secondary inductance. With this arrangement, when the inductance of the secondary is changed, the primary to secondary coupling is also varied. This makes it possible to reduce coupling and inductance at short wave lengths so as to maintain a uniform amplification and selectivity over the whole range without introducing a capacity effect which will cause the set to oscillate.

The capacity feedback, caused by the capacity between the elements in the tubes, is eliminated by means of the compensating condensers connected across the grid and filament of the first and second tubes as shown in the wiring diagram. These condensers have three plates, the third plate performing an important function. As the compensating condenser is varied to increase its capacity and eliminate the feedback which causes oscillation, the change in its capacity would upset the tuning of the secondary, without the third plate. This, however, adds capacity to the tuning circuit in accordance with the capacity decrease in the plate circuit, so that the tuning adjustments are not affected by neutralizing the capacity. A 0.5 mfd. fixed condenser is used to by-pass the radio frequency currents around the A and B batteries.

Fig. 1. It might seem as if this would be a difficult outfit to adjust, but, actually, only the three large knobs are used once the others have been set.
This set provides two stages of tuned R. F. amplification, detector, and two stages of A. F. amplification using five tubes.

Design Details of the Set Fig. 1 shows a front view of the set when placed in the cabinet. The three large dials provide the wavelength control, the two small graduated dials are for setting the compensating condensers, and the three knobs below are for rheostats. One rheostat controls the two R. F. amplifying tubes, one is provided for detector tube, while the other controls the two A. F. amplifying tubes. Three jacks permit plugging in on the detector, first A. F. stage, or for full volume on the second A. F. stage.

A Formica panel 7 by 22 ins., 3/16 in. thick, supports the variometer and variotransformers, compensating condensers, jacks, rheostats, and the filament control switch. A baseboard 8 by 20 1/4 ins., 1/2-in. thick is fastened to the front panel and has mounted on it the sockets, A. F. transformers, grid condenser and gridleak, and binding posts.

Standard Parts Required for this outfit are: A Telos variometer, two variotransformers, two compensating condensers, a filament switch, three jacks, three rheostats, five standard base sockets, one 1 to 5 Amertran A. F. transformer, one United Manufacturing Company A. F. transformer, a 2-megohm gridleak and 0.00025 mfd. condenser, one 0.5 mfd. Federal by-pass condenser, seven binding posts and one 0.0005 mfd. New York Coil fixed condenser.

Assembly Fig. 3 shows a picture wiring diagram of the set, in which the connections have been drawn exactly as they were arranged in the original receiver. The set can be put together without soldered connections by making loops or eyes in the wires, or by soldering the wires to lugs. Fill the lug with solder before putting it on the instrument. This will prevent damage to the parts from over-heating when the soldering iron is applied. Use either Kester rosin core solder or plain soft solder with Nokorode paste, put on sparingly. Have the iron thoroughly clean and hot enough to make the solder flow freely.

The following instructions have been prepared in the proper sequence to make the wiring as simple as possible. Read through each step before as it may save time and extra work later on.
1. Mount the five tube sockets on the base board, with the terminals in the positions shown. The picture wiring diagram, Fig. 5, is exactly one-fourth scale. By measuring on the drawing and multiplying by 4, the location of the sockets and other parts can be determined accurately. Mount the binding post strip on the baseboard. Mount the grid condenser and leak mounting on the baseboard. Put lugs on the terminals as you proceed. Have them point in the directions shown by the short heavy lines in the picture wiring diagram.

2. Connect 1 to 2, keeping the wire down near the baseboard but not touching it. Terminal 1 is the front F post on the middle socket. Connect 3 to 4. Terminal 4 is the G terminal on the left hand socket. Connect 5 to 6, to 7, to 8, to 9 using a single long piece of wire and soldering it to the lug at each connection. Put the 0.5 mfd. condenser in place so that it rests on the baseboard. Connect its lower terminal 10 to the A+ binding post 11 and to 12, which is on the wire from 7 to 8.

3. Fasten the lug on one end of the 0.00008 mfd. fixed condenser to the antenna binding post 13. Fasten two lugs on the other end with a short 6-32 screw and nut. Connect 14 to 15. 14 is one lug on the 0.00008 mfd. condenser.

4. Mount the three rheostats on the front panel, using the screws and nuts provided. Adjust the arms on the rheostats so they make firm contact with the wire all the way around. Fasten the knobs so that the arrows appear on the left when the arms are turned all the way round to the left. Mount the filament switch, keeping the two binding posts in a horizontal line. Mount the three jacks in the positions shown in Fig. 9. The jack with the four lugs is mounted on the right hand side of the panel, looking at the set from the rear. Next mount the two compensating condensers and put the dials on so that the fifty division marks on the dials coincide with the lines engraved on the panel when they are turned all the way to the left. Finally, mount the Telos variometer on the right hand side, looking at the set from the rear, and the two vario-transformers on the left, in the positions shown in Fig. 5.

5. Connect 16 to 17, and 5 to 18. 16 is the remaining terminal on the grid leak mounting, and 5, the lower right hand terminal on the socket on the extreme left. Connect 19 to 20. 19 is the G terminal on the middle socket. Connect 21 to 22. 21 is the P terminal on the second socket from the right. Connect 24 to 25 keeping the wire down near the baseboard. 24 is the P terminal on the middle socket. Connect 26 to 27, the left hand terminal of the rheostat on the extreme left. Connect 28 to 29, the two inside terminals on the rheostats. Connect 30 to 31. 31 is the front right hand terminal on the second socket from the left. Connect 32, the lower terminal on the left hand compensating con-

(Continued on page 364)
Novembev, 1924 Inductance-Tuned Receiver

Fig. 5. A picture wiring diagram of the connections as they were made in the original model. Check the wiring against the photographs as you proceed.
Various tool manufacturers have caught the radio idea and have designed some very clever and popular priced tools for the convenience of men who build their own equipment, and for production work in radio factories. Using the right tool for every job makes the building of the most intricate set a comparatively easy matter, making it possible to do a better job in less time than when makeshift equipment is employed.

The photograph above on the left, shows an insulation-stripper in action. The tool consists of two main parts, a sort of vise on the right hand side, which holds the wire, and a stripper on the left, which strips off the insulation without injuring the wire. When the two handles are pressed together, the jaws of the vise clamp the wire and the stripper moves out along the wire, cutting thru the insulation and pushing it off the wire. The tool has a gunmetal finish. Different holes in the stripper allow the choice of the right size to fit the wire, eliminating the possibility of cutting into the wire.

The photograph on the right shows a pair of Rance combination pliers in operation. These pliers perform the double duty of forming loops on wires and serving as cutting pliers. The cutting jaws are made of hardened steel to withstand rough usage. Each jaw carries a round steel pin on its end. For making loops, the end of the wire is held firmly between the pins and is then wrapped around one of them. One pin is for forming loops to fit over No. 6 machine screws and the other for No. 8 screws. The operation is so simple that anyone can make a perfect loop at the first attempt. The pliers are made by Kraeut-ter for the Rance Company.

Fig. 1 shows a special set of tools from the Smith and Hemenway Company. The first tool on the left is a radio screw-driver. This screw-driver is so constructed that the handle can not come loose from the blade. The tip is made thin enough to fit in the slots of very small screws; the shank is long enough to make it very easy to get at the out-of-the-way corners in a radio set. A ribbed handle is provided to give a good grip.

The next tool shown is a pair of round nose pliers, made with long jaws tapered down to close perfectly. Cutting jaws add to the usefulness of this tool. The handles are slightly knurled.

Then there is the pair of cutting pliers. These are made strong and husky to handle the heaviest work, with a close fitting box joint to keep the jaws in exact alignment.

On the right is a pair of adjustable pliers which can be used for removing or tightening nuts. They can be changed to take different sized nuts by merely sliding the bottom jaw so that the pin moves along the slot. The jaws are flattened so that they may be worked in tight corners.

In Fig. 2 at the left, is a Pawwood adjustable circle cutter. This is a tool which has long been sought for in radio work as it provides a simple means for cutting circles of any size in panels, without the
necessity of having a drill press. It is held in the ordinary brace and turned just like a drill. The drill makes a hole first and serves as a centering device or anchor while the cutting blade is in operation. One blade is for plain holes, the other for putting a bead around the hole.

The Nestor Bendright is a combination device for bending wires at any angle, and is used in the ordinary hand brace. A 3/16 in. hole must first be drilled in the panel for centering. The cutter is made in three sizes, 3/4-in. for peep holes, and 1-in. and 1 1/2-in. for socket holes and bezels.

One of the most important tools in a radio factory or workshop is the soldering iron. A great many different types have been brought out during the last year, many of which, particularly the low priced ones, are not suitable for this class of work. Because of the delicate nature of set wiring, the iron must, first of all, be so designed as to maintain the correct heat over a reasonable variation in line voltage. Cheaply built irons do not have this self-

shaping eyelets in them. It has provisions for bending eyelets for No. 6 or No. 8 screws. The operation is very simple—the wire is held between a catch on the plate and one on the bending handle. As the handle is turned, the wire is bent around the pin to the angle desired.

The Nestor Bendright is a combination device for bending wires at any angle, and is used in the ordinary hand brace. A 3/16 in. hole must first be drilled in the panel for centering. The cutter is made in three sizes, 3/4-in. for peep holes, and 1-in. and 1 1/2-in. for socket holes and bezels.

One of the most important tools in a radio factory or workshop is the soldering iron. A great many different types have been brought out during the last year, many of which, particularly the low priced ones, are not suitable for this class of work. Because of the delicate nature of set wiring, the iron must, first of all, be so designed as to maintain the correct heat over a reasonable variation in line voltage. Cheaply built irons do not have this self-

shaping eyelets in them. It has provisions for bending eyelets for No. 6 or No. 8 screws. The operation is very simple—the wire is held between a catch on the plate and one on the bending handle. As the handle is turned, the wire is bent around the pin to the angle desired.

The Nestor Bendright is a combination device for bending wires at any angle, and is used in the ordinary hand brace. A 3/16 in. hole must first be drilled in the panel for centering. The cutter is made in three sizes, 3/4-in. for peep holes, and 1-in. and 1 1/2-in. for socket holes and bezels.

One of the most important tools in a radio factory or workshop is the soldering iron. A great many different types have been brought out during the last year, many of which, particularly the low priced ones, are not suitable for this class of work. Because of the delicate nature of set wiring, the iron must, first of all, be so designed as to maintain the correct heat over a reasonable variation in line voltage. Cheaply built irons do not have this self-

shaping eyelets in them. It has provisions for bending eyelets for No. 6 or No. 8 screws. The operation is very simple—the wire is held between a catch on the plate and one on the bending handle. As the handle is turned, the wire is bent around the pin to the angle desired.

The Nestor Bendright is a combination device for bending wires at any angle, and is used in the ordinary hand brace. A 3/16 in. hole must first be drilled in the panel for centering. The cutter is made in three sizes, 3/4-in. for peep holes, and 1-in. and 1 1/2-in. for socket holes and bezels.

One of the most important tools in a radio factory or workshop is the soldering iron. A great many different types have been brought out during the last year, many of which, particularly the low priced ones, are not suitable for this class of work. Because of the delicate nature of set wiring, the iron must, first of all, be so designed as to maintain the correct heat over a reasonable variation in line voltage. Cheaply built irons do not have this self-
The Crosley Trirdyn 3R3
A Popular Three-Tube Set Employing Tuned
R. F. Amplification, Regeneration, and Reflex

The new Crosley Trirdyn represents a type of receiver which is fast becoming popular, combining as it does, one stage of tuned radio frequency amplification, regenerative detector of the non-radiating type, one stage of reflexed audio frequency on the R.F. tube, and one additional stage of straight audio on the third tube—all accomplished with only two controls. The set may be used either with an indoor or outdoor antenna, and is very selective.

Both the assembled set and an interior view are shown in the photographs. The controls on the front panel are grouped symmetrically. The two large dials are for tuning. The center top knob is for adjusting the tickler. The lower center knob is for the filament switch and the other two are for the rheostats. Jacks are provided for plugging in at medium and full volume. The set is constructed ruggedly and is interesting as an example of what can be done toward simplicity of wiring by proper arrangement of parts.

All of the inductances are of spiderweb design. A unique method is employed for supporting the sockets, antenna inductance coil, and binding posts. Mounting the two A.F. transformers on the front panel makes it possible to employ a very narrow mounting strip for the tube sockets. Each socket is fastened to the strip by two screws, this making assembling simple. This leaves an open space between the tube panel and the front panel, so it is easy to get at the instruments on the front panel for wiring.

The antenna circuit is of the aperiodic or untuned type and makes simplified tuning possible. Taps 1 and 2 are provided on the antenna coil so that different degrees of sharpness of tuning can be obtained. For general tuning the antenna is connected to post No. 2. This puts the full primary in the circuit and gives maximum signal strength. For sharp tuning it is connected to post No. 1. For still greater selectivity, a tapped loading coil is provided. This can be connected either to post No. 1 or post No. 2, on the antenna coil, depending on the selectivity desired. The first stage of radio frequency amplification is tuned by the condenser on the left of the panel. Regeneration is accomplished by means of a tickler coil which is pushed in and out by the upper knob between the condenser dials, thus changing its coupling with the grid coil. A feature of this set, which is
important in these days of howling sets and interference, is the fact that it does not radiate when receiving. The antenna is very loosely coupled to the secondary circuit, and a non-oscillating radio frequency amplifier is employed before the regenerative detector as a barrier to prevent oscillations generated by the detector from feeding back to the antenna. The condenser at the right tunes the grid circuit of the detector tube.

The jack arrangement employed, though not entirely new, has many points in its favor. A jack is provided in the first A.F. stage, for plugging in the phones when tuning. The loud speaker is permanently connected to the output terminals of the second A.F. tube at the rear of the set. With this arrangement, when the station has been tuned in and the phone plug removed, the loud speaker is automatically connected in on the second stage. This eliminates one plugging operation and makes the use of only one plug necessary.

The filament control switch near the (Concluded on page 362)
A High Speed Method for Inspecting Telephone Jacks

The accuracy of the testing and inspecting is greatly increased by using lamps to give visual indication of open circuits for faulty insulation.

How are my jacks? Are the contacts clean? Do the springs function properly? Are there any short circuits between the parts? These are the questions every set builder must answer for himself before the set he builds will operate satisfactorily. A jack is a small thing but it can cause a lot of trouble in a set if it is defective.

Manufacturers are beginning to realize that the experimenters who buy parts, and the manufacturers of complete sets which use standard parts, demand that every unit purchased be absolutely dependable. No matter how thorough the shop supervision may be, there are always some defective parts which manage to slip thru, yet it is just as unfair to expect the purchaser of a radio part to test it before using it as it is to expect the purchaser of a new automobile to spend extra time and money to test a car for mechanical defects. When a man pays money for something closed up in a box he takes it for granted that the contents of the box has been tested and is in perfect working condition. He cannot rightfully be expected to think otherwise.

Mr. Wright, of the Pacent Electric Company, has devised a very ingenious testing machine, which answers all of the above questions for every jack before it leaves the factory. This is an example of the growing tendency among radio manufacturers toward rigorous inspection and testing in the factories to insure the production of products which are uniform in quality. In fact, this is a phase of the development of the industry to be expected as a result of real quantity production on staple designs.

One of the machines in which Pacent jacks are tested for correct functioning of the springs is shown above. It consists of two steel guide blocks between which the jack is inserted in the position shown. Back of these blocks are springs which make contact with the individual lugs on the jack when it is pushed up against them. These springs are connected with the small incandescent lamps, and a 6-volt source of current in such a way that the exact operation of the jack when used in a radio set is duplicated, and the results made visible by the lamps. The tester at the right of the photograph, wired according to the diagram in Fig. 1, is designed for testing filament control jacks.

The testing operation is as follows: The
jack is slid in between the guide blocks and pushed back so that the lugs on the jack make contact with their respective springs on the tester. This lights white lamps 1, 2, and 3, as may be seen from the wiring diagram, indicating that the contacts are properly closed. Then a plug made of a solid piece of steel is inserted in the jack. White lamps 1, 2, and 3 now go out, and red lamp 4 lights up if the top contact is all right. This completes tests on the machine connections.

Following out this scheme, testers for any type of jacks may be easily constructed by arranging the contact springs and the connections. In actual practice a separate machine is used for testing each type of jack.

If the jack has passed the first test satisfactorily, it is next tested for insulation between springs and frame on 110 volts. This is performed in the machine shown at the left of the photograph. This one machine tests all types of jacks. It is made up of a vertical steel guide block which makes contact with the frame of the jack, a cup of mercury into which all the lugs of the jack dip, an insulated plunger to hold the jack in position, signal lamp, and foot switch, shown in Fig. 2. The right-hand side of the machine is used for testing jacks which have no lug connected to the frame. The left-hand side is used for testing jacks which have a lug connected to the frame. The mercury cup is so constructed on this side, that the frame lug does not dip into the mercury but fits into a pocket in the fibre back of the mercury, thus prevent contact between the mercury and this lug.

The testing operations are as follows: The jack is placed with its frame resting against and making contact with the guide block, the lugs dipping into the mercury.

Then the plunger is pressed down to hold the jack firmly in position. The foot switch is then closed and the signal lamp watched. If the lamp lights it shows that there is a short circuit between the frame and springs of the jack or insulation weak enough to break down on 110 volts. The foot switch is used so that the current is put on only after the jack has been finally clamped into place. This protects the operator from getting a shock by putting his hand across 110 volts while inserting or removing the jack from the machine.

These machines are built ruggedly with nothing to get out of order, and the testing operations are simple and rapid. It is very encouraging to see manufacturers devising tests like these to insure uniform quality of their products, for, after all, the place for tests on radio parts whether they be jacks, condensers, or transformers, is in the manufacturer's own plant, before the material is shipped out, and it is only thru such procedure that the products of any manufacture can be uniformly right.
Data Sheet No. 3

18. Veldar Vernier Condenser: This condenser is made in two capacities, 0.00025 mfd. and 0.0005 mfd. Dimensions are given for the parts which do not change in the different sizes. The dimension purposely omitted in the drawing, i.e., the distance from the rear of the panel when mounted, to the rear face of the rear end plate, is 2\(\frac{1}{4}\) ins. for the 0.00025 mfd., and 2\(\frac{1}{2}\) ins. for the 0.0005 mfd.

19. Acme A.F. Transformer: This drawing shows the overall dimensions and arrangement of the terminals and mounting holes for the Acme A-2 A.F. transformer. The turn ratio is 4.25 to 1. This transformer is not shielded.

20. Electrad Audiohm: The audiohm is made with a leg which is to be fastened directly to one of the secondary binding posts of the A.F. transformer, on which it is used. The spring is connected to the other terminal. This construction taking care of the difference in size and design of A.F. transformers now on the market.

21. Amsco Rheostat: These rheostats are made in sizes of 2, 6, 8, 10, 12, 15, 20, 30, and 50 ohms. The dimensions given are the same for all types. Two mounting screws are provided.

22. Toroidal Coils: These coils are made for antenna coupling and for radio frequency units. The dimensions given apply to all types. The coils are doughnut shaped and have flexible leads for connection.

23. Saturn Battery Switch: This item comprises a battery switch made in jack form for panel mounting. The parts showing at the front of the panel are finished in polished nickel.

24. Rusonite Fixed Crystal Detector: The crystal and contact are sealed in a tube. Fahnestock clips are provided for connection and the entire unit is mounted on a hard rubber base.

25. Cico Jack: The jack springs are enclosed by a bakelite frame to keep out dust. The overall dimensions are quite small. Binding posts are provided for connection. Silver contacts are used on the springs.

26. Gotham Gridleak: These gridleaks are made in the usual resistance rating. The glass cartridges in which they are enclosed are all of the same size.

27. Walbert Filament Lock Switch: This is a compact filament switch provided with a key which may be removed when the set is not in operation. Only one hole is needed for mounting and the parts showing on the panel are nicked and polished. Soldering tabs are provided for connection.

NOTE: The drawings on the opposite page are of exactly one-half scale so that dimensions not given can be readily scaled off.

Each month there will be described on these pages new products of particular merit and standard items which are very widely used in various kinds of equipment. With this data available, experimenters and designers can determine without delay whether or not parts they want to use will fit into equipment which they are planning, without waiting to actually buy the parts and take off the dimensions.

This information will be found of great value and it is suggested that the data sheets be torn out from the magazine or the issues kept so that the working data will be available at all times.

Full size blue prints of the drawings can be obtained from the blue print department of Radio Engineering at a price of twenty-five cents each. It may be more convenient to work directly from the full size drawings rather than from those made at one-half scale. Moreover, the blue prints can be filed away for ready reference.
Eight-Tube Super-Heterodyne

Special oscillator and filter units are employed in this outfit, the appearance of which is particularly attractive in arrangement and design.

While super-heterodyne sets are necessarily similar in general plan they vary as much in the carrying of details as they do in the results produced. Therefore, each outfit or different outfits made from the same plans depend for the results produced upon careful and intelligent planning and construction.

This receiver, using audio and intermediate frequency transformers, filter, and oscillator unit from the Radio Receptor Company, is designed for operation on a loop altho jacks can be used in the detector and first A. F. amplifier to cut down the volume if the set is connected to an antenna and ground.

In addition to the Radio Receptor equipment already mentioned, a Formica panel 36 by 8 ins., 3/16-in. thick, a terminal panel of the same thickness 8 1/2 by 11 1/2 ins., low-loss variable condensers of 0.001 and 0.0005 mfd., such as the Hammarlund, Malone-Lemmon, or General Instrument types, 8 Na-Ald sockets, three 10-ohm Amsco rheostats, two 6-ohm rheostats, and one 400 potentiometer, five 0.00025 Micadons, one 0.002 mfd., one 0.006 mfd., and two 1.0 mfd. by-pass condensers, Eveready 3 biasing battery, Pacent open circuit jack, Connecticut filament control switch, eight Eby binding posts, and two 1-megohm Daven gridleaks, complete the list of parts required.

In appearance, the oscillator coupling unit is very interesting. It consists of a bracket supporting a shaft on which two cross-wound coils are mounted. The strength of the oscillations is controlled by moving the smaller coil toward or away from the other. A similar arrangement is made for the tuned filter or input transformer. These coils, however, are wound with thread so as to bind them together solidly. Provision is made for mounting fixed condensers, across the primary and secondary, on the frame which supports the coils. Both intermediate and audio frequency transformers are similar in outward appearance, mounted in a shielded metal case with a top of insulating material which carries the binding posts. The terminals are marked with the same symbols that are given in the wiring diagram.

Suggestions for Assembly

Always plan carefully for the assembly of a set, for much trouble can be avoided by knowing just what you are going to do before you start doing it. The most satisfactory way, of course, is to make full-scale drawings of the front and base panels. That not only gives an accurate picture showing whether or not the parts will fit together but it can be used as a panel pattern by laying the drawing on the panel and marking through the paper with a center punch.

The wiring can be simplified considerably by mounting all the parts on the base panel and wiring them, making sure that nothing is put where it will be interfered with by the parts mounted on the front panel. The front panel should then be assembled and as much wiring done as possible. This much accomplished, the panels can be fastened together and the balance of the wiring done.

Of the various kinds of soldering paste in use Nokorode is generally accepted as being most satisfactory provided it is properly used. Any kind of flux spatters considerably when the heat is applied. Consequently the tiniest amount possible should be put on a joint and any excess removed after the soldering has been done by means of a fairly stiff brush dipped in alcohol.

Where soldering lugs are used, clamp five or six at a time in a hand vise and fill each lug with solder before you put it in place. That makes the work much easier when the wiring is put on and the joints can be made quickly so that very little heat is transmitted to the instruments themselves.

Rosin core solder is more satisfactory electrically, but unskilled workers do not get good results with it because they do not apply sufficient heat to let the solder flow on the joint. Using tinned wire and filling the lugs before they are put on to the instruments helps greatly. Care must be taken to avoid rosin joints, that is, connections where the rosin runs over the wire but the solder does not take hold because the connection has not been sufficiently heated. To those who have had experience with rosin core solder the Kester or Belden brands are recommended.

In the wiring diagram 0.00025 mfd. con-
Wiring diagram for a super-heterodyne set using Radio Receptor construction parts.
densers are shown across the primary and secondary of the filter or input coupler. Altho satisfactory results can be obtained with fixed condensers the use of two Grid-densers is strongly recommended because they permit the adjustment of the filter to exactly the most efficient frequency of the intermediate amplifying transformers. The Grid-densers can be placed on the rear of the front panel or on the base panel, mounted so that they can be reached easily when the preliminary adjustments are made at the time the set is first put in operation. It is not necessary to have the control knobs at the front since they need not be changed once they have been properly set.

You must watch out for the polarity of the windings on the oscillator coil unit. The wiring diagram shows the three coils, A the moveable coupling coil, B the inside coil, and C the outside coil. The terminals are marked I for the inside or start of the windings, and O for the outside or end. If by any chance, you find that signals come in faintly but are not affected by the oscillator condenser, reverse the terminals of coil C. If the leads to the coils are wrong, the circuit will not oscillate and, in consequence, the outfit will not function correctly.

The loop tuning condenser for this set is of 0.0005 mfd., a standard value, with which most commercial loops are designed to operate. If you make your own loop it will be necessary to experiment somewhat in order to determine the correct number of turns. The best way is to wind the loop first on a rough frame if it is of the box type, or on a piece of wall board, if it is of flat design. Then, when the set is in operation, you can take off turns until the settings for the broadcast wavelength range are equally distributed around the dial.

Some experimenters combine the use of a loop and an antenna and ground by winding three or four turns around the loop and connecting them to a short antenna and a water-pipe. If the antenna coil is of not more than three or four turns and the antenna less than 50 ft. long the tuning will not be made objectionably broad. At the same time the signals will be greatly increased in volume. Some of the directional effect of the loop is lost, of course, but that is not so important except in congested areas where interference cannot be cut out by adjusting the variable condensers alone.

Because of the unusual efficiency of the super-heterodyne this type of receiver is frequently used for portable work or reception on small boats. Bear in mind when you construct a super-heterodyne for portable use that not only must the assembly be carried out in such a way as to assure the permanence of the mountings and connections, but the set must be adequately protected from moisture and dampness by a cabinet made as tight as possible. Equipment of this sort manufactured for use by the army and air service is frequently put in wooden boxes covered on the outside with canvas fastened to the wood with glue and well varnished on the outside. The same protection is necessary for the B batteries because the collection of moisture on the top of the batteries provides a leakage path through which current flows constantly, thus, decreasing the life of the batteries considerably. Precautions against this effect are particularly necessary when the installation is on or near the salt water.

A particularly convenient feature of the super-heterodyne type of receiver is that
Yesterday—an experiment

Today—an accepted fact

ONLY yesterday it seems radio broadcasting was an experiment. Today it is an accepted fact, yet still a world’s wonder.

Although radio as it is known and used today is only a few years old, it dates back to the invention of the 3-electrode vacuum tube by Dr. Lee De Forest. In 1906 that pioneer genius made modern radio broadcasting possible with his tube. This tube established his great reputation and must now be worthy to the full of the name it bears. And it is. Its unusual power to give the full depth and beauty of delicate sound is backed up by an ability to give continuously good, long service.

De Forest tubes are rigidly and regularly subjected, one by one, to three progressive inspections. Each is burned for many hours before leaving the factory. This regulation ensures the uniformly good condition of De Forest tubes, which great radio engineers have endorsed with enthusiasm. For experimental purposes there is not a better tube.

There are two types, illustrated here—the DV-3 for dry batteries and the DV-2 for storage batteries. The DV-3 has an average mutual conductance of 460 micromhos; average amplification constant (or Mu) 6; plate impedance 13,000 ohms; a good radio and audio frequency amplifier and a good detector in standard regenerative circuits. It is remarkably non-microphonic. The DV-2 for storage batteries is made particularly for power amplifier work and is developed for all usual circuits. Conductance 720 micromhos; amplification constant (or Mu) 7.2; plate impedance 15,000 ohms.

These tubes are sold by authorized dealers only and are made by the makers of the De Forest D-12 Radiophone, Loud Speaker and all Radio parts. De Forest Radio Company, Jersey City, N. J.

De FOREST TUBES

The “Magic Lamp” of Radio

355
the controls can be calibrated for the different broadcasting stations. It must be remembered, however, that a change in the loop will alter the settings of the loop tuning condenser although the oscillator condenser will not be affected.

This outfit is equipped with five rheostats so that separate adjustment can be obtained on the oscillator tube, each detector tube, the I. F. amplifiers, and the A. F. amplifiers. You must be careful in adjusting the filaments to go over each rheostat to make sure that the current is reduced as low as possible without affecting the strength of the signals. In this way the life of both A and B batteries can be greatly lengthened or shortened, according to the care or lack of care given to these controls.

It will be found that loop direction and loop tuning are not very critical, except for very distant stations, and are a help, rather than a difficulty in tuning.

After the loop has been adjusted to a station, it can be received at a number of points on the main condenser.

Obviously enough there is one pair of points, at the station's frequency, plus and minus the filter frequency, respectively, but the other pairs of points are due to harmonics of the station and the oscillator.

One of the points is usually strongest, and is selected for reception.

It seems to be best practice to reach all the points at which the longest wave stations are received, but a recent experimenter has obtained fine results using only a 23-plate condenser across the oscillator, working on the lower or intermediate harmonic points, receiving KYW, 536 meters, splendidly, in the city of New York, on a loop through the usual city dim of interference.

Selecting the best point or pair of points for a station, the loop adjustments being perfected, the station should be plotted on cross section paper.

If the wave lengths of a few stations are known, others may be pulled in with fair certainty, and the old ones always repeated easily by using cross section sheets plotting each station, such as is supplied for notebooks, as follows:

At the wavelength of the station being received, count up and also down from zero, draw light horizontal lines with a fine pointed hard pencil.

At the best loop condenser setting draw a vertical line downward. These two will give a point showing the loop tuning for this station at any time.

At all the points on the oscillator condenser, at which you get the station, erect perpendiculars to get points on the upper line.

Repeat this for a few stations and it will soon be seen that the points run in pairs and are also on curves, which with a "straight line" condenser are almost straight, but usually are curved slightly.

It will usually be found that the lower pair of receiving points for a station will fit the curve at just half the wavelength, being due to the "second harmonic," and this will help in drawing the curves.

When the curves are fairly well pointed up, a new station is received as follows:

1. Look up his wavelength and his operating time—reduced to your time.
2. Point the loop toward him and set the loop condenser as nearly as you can to his wavelength from the loop condenser curve.
3. Run the potentiometer back and forth close to the oscillating point, and move the oscillator condenser very slowly, by means of the gear, past one of the points where the station should come in according to its wavelength and the main condenser curve.

In New York, under very unfavorable conditions, with a small and imperfect loop, it is possible to tune into such stations as KFKX, Hastings, Nebraska, WOC, Davenport, and KDAF, Kansas City, without even having the set oscillate to find them. KFI is reported from Philadelphia using a one foot loop, and West Coast stations from a favorable part of New York City with a loop only.
THINK OF DURRANT AS YOUR NEW YORK STOCK ROOM, FROM WHICH YOU CAN DRAW AND ORDER THE SUPPLIES YOU NEED FOR YOUR WORK.

REMEMBER, IF YOU WANT YOUR STOCK CLERK TO FILL YOUR ORDERS ACCURATELY, THAT YOU MUST WRITE OUT YOUR ORDER CAREFULLY, GIVING TYPE NUMBERS, NAMES, AND PRICES.

REMEMBER THAT YOUR NEW YORK STOCK ROOM CARRIES ONLY SUPPLIES CALLED FOR IN THE STANDARD PARTS LISTS IN THIS MAGAZINE. COILS ARE NOT WOUND, NOR ARE PANELS DRILLED OR ENGRAVED.

PRINT YOUR NAME AND ADDRESS CLEARLY. IF POSSIBLE, REMIT BY MONEY ORDER. AN EXCHANGE CHARGE OF TEN CENTS MUST BE ADDED TO OUT-OF-TOWN CHECKS. ADD TEN CENTS FOR INSURANCE.

C. O. D. ORDERS MUST BE ACCOMPANIED BY A REMITTANCE OF ONE-FOURTH THE AMOUNT.

Get-It-to-Me Quickly Mail Service

And remember that DURRANT can send you your supplies more quickly than the manufacturer who makes them, for DURRANT carries in stock at all times the supplies called for in the Standard Parts Lists in Radio Engineering. If you are in New York, call at the DURRANT office

DURRANT
AS NEAR AS YOUR MAIL BOX
C-52 Vanderbilt Avenue New York City
A NEW book has been published by
the Phenix Radio Corporation de-
scribing their type L-2 ultradyne re-
ceiver. The latest system represents a
considerable improvement over the original
model.

An attractive feature of the new line of
rheostats brought out by the General In-
strument Corporation is a stationary dial
of molded bakelite, into which the control-
ing knobs fit so as to give the appearance
of a solid knob and dial. Smooth action
between the knob and dial are secured by
using the same screws to hold the dial that
keep the rheostat itself in place. Adjust-
ment for any thickness of panel is obtained
by holding the shaft to the switch arm with
a simple collar and split bearing.

The Walbert Manufacturing Company
now has a special type of Uni-vernier made
particularly for use by manufacturers of
complete radio sets. The construction is
extra sturdy and the finish particularly at-
ttractive.

The Cabot circuit set, on the develop-
ment of which the Acme Apparatus Com-
pany has been working for many months,
is now ready for production. There are se-
veral interesting operating features, aside
from its high efficiency, which will appeal
both to experimenters and to broadcast
listeners who are only concerned with the
actual use of the set.

Several new items have been added to
the Erla line, including a phone plug, semi-
fixed detector, variable condenser,
and a series of rheostats and potenti-
ometers.

A newcomer in the panel field is the
B. F. Goodrich Rubber Company. They
have published a booklet “Rubber for
More Perfect Radio Reception” which can
be obtained by addressing this concern at
Akron, Ohio.

Another contender for panel business is
the Fibroc Insulation Company, one of the
Bakelite licensees, which, although it has
been manufacturing Fibroc-Bakelite for
several years, has not actively solicited
radio concerns.

It was interesting to discover recently
that the General Radio Company, the first
concern to specialize in the manufacture of
condensers with soldered plates, employs
Nokorode paste as a soldering flux for
this work. The excess paste is removed,
after the plates have been soldered, by
dipping in boiling water.

After selling Amplion loud speakers
through an American agent for the last few
years, the Amplion Corporation of Amer-
ica has been formed to handle this pro-
duct, originated by Edward Alfred Gra-
ham, an English inventor and scientist.

The Rauland Manufacturing Company
is now distributing a very interesting book
on radio set construction, in which the
use of their various products is illustrated.

Although we have not had an oppor-
tunity to test them, it is in order to re-
mark that the design of the Marshall-stat,
made by the Marshall Electric Company,
is most interesting in appearance, just the
sort of instrument to fit into small places
where large rheostats are not convenient
to use.

No one can very well make mistakes if
he follows the Richardson “self-evident”
wiring diagrams furnished with their 9-
tube super-heterodyne kit. The prints are
pasted on the back of the front panel and
the instruments assembled right over their
pictures.

Stranded enameled antenna wire is now
being made by the Belden Manufacturing
Company. There may be some question
as to the actual increase in efficiency
through the use of enameled wire but the
enamel does protect the copper against
corrosion which inevitably starts as soon
as the antenna is erected.

The set shown at the top of this page
is a special 1,000 to 3,000-meter outfit de-
veloped by the Freed-Eismann Corporation
for the Signal Corps. It is for communi-
cation between Washington and the Army
posts.
Why is Formica the leading radio insulation?

The demand for Formica for radio insulation has forced the building of the largest plant in the world for the production of laminated bakelite—and the only plant in the world devoted exclusively to this one product. This year 60,000 feet of floor space have been added to assure everyone prompt service.

This volume has been built up because Formica production under close laboratory control has provided the most uniform, best looking, and most easily worked material. It is used by 125 leading radio manufacturers who have tested all materials and know that Formica is best!

There are four beautiful finishes: Gloss black, dull black, walnut and mahogany. Formica will not sag under the weight of condensers and other instruments; it will not cold flow under the pressure of screws and binding posts; its insulating strength gets better with age.

It is being used by many manufacturers for front panels; base panels; terminal strips; transformer cases; condenser ends; for jack, head phone and loud speaker insulation.

Dealers: Formica advertising and sales promotion will be greater this year than before. No other product is so well known for quality.

THE FORMICA INSULATION COMPANY
4653 Spring Grove Avenue, Cincinnati, Ohio

Sales Offices

50 Church St., New York, N. Y.
422 First Ave., Pittsburgh, Pa.
1142 Granite Bldg., Rochester, N. Y.
419 Ohio Bldg., Toledo, Ohio
1310 Arch St., Philadelphia, Pa.
1026 Second Ave., S. Minneapolis, Minn.

585 Mission St., San Francisco, California
Whitney Central Bldg., New Orleans, La.
316 Caxton Bldg., Cleveland, Ohio
9 S. Clinton St., Chicago, Ill.
708 Title Bldg., Baltimore, Md.
47 King St., Toronto, Ontario

FORMICA
Made from Anhydrous Bakelite Resins
SHEETS TUBES RODS
Standardized Parts List

The materials used to make up the set described in this issue were supplied by the following companies. The manufacturers whose names appear below will be glad to send you bulletins describing other products which they make. Please mention RADIO ENGINEERING when you write them.

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF-7</td>
<td>1-1/3 rati A. F. transformer</td>
<td>$7.00</td>
</tr>
<tr>
<td></td>
<td>Benjamin Electric Company, Chicago, III.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-UV 199 socket</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>3-standard base sockets</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>Brooklyn Metal Stamping Company, 718 Atlantic Ave., Brooklyn, N. Y.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-Trijack phone jack</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>Diamond Steel Fibre Co.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A-423 Broome St., New York City</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-Mahogany Celeron Panel, 7 x 24 x 3-16 in.</td>
<td>3.94</td>
</tr>
<tr>
<td></td>
<td>1-Mahogany Celeron panel, 3/1 x 23 x 3-16 in.</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td>Ensign 7-Ensign binding posts</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>Electrod, Inc., F-428 Broadway, New York, N. Y.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-Audiom Control</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>General Instrument Corporation, 423-Q Broome St., New York, N. Y.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1-20-ohm rheostat with dial</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1-30-ohm rheostat with dial</td>
</tr>
<tr>
<td></td>
<td>James Goldmark Company, E-83 Warren St., New York, N. Y.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>1-100 ft. coil of Wirit</td>
</tr>
<tr>
<td></td>
<td>Mitchell-Rand Mfg. Company, 18 F-Vesey St., New York, N. Y.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1-Length special No. 7 tubing</td>
</tr>
</tbody>
</table>

1-Antenna coil and condenser with vernier dial	$8.50
1-R. The., transformer and condenser with vernier dial	11.75
Mounting hardware for above	1.00

New York Coil Co., 338 Pearl St., New York,
| 1-0.003 mfd. fixed condenser | .40 |
| 1-0.0025 mfd. condenser with leak mounting | .45 |

| 1-Bal-con neutralizing condenser | .35 |

Radall Company,
RE-320 W. 42nd St., New York, N. Y.	
UV-199 1-Amperite for UV-199	1.10
Turn it Radio Sales, Inc., 36 Church St., New York, N. Y.	
1-Turn-it adjustable grid-leak	1.00

| 1-Filament lock switch | .50 |

MISCELLANEOUS PARTS
58 4-Pkgs. of 25 soldering lugs	.80
185 1-Left hand nickeled angle bracket	.10
14 1-Nickeled coil mounting pillar	.08
151 4-Nickeled panel supports	1.20
62.1-Pkgs. of 10/2-in. 6-32 F. H. nickeled screws	.12
63 4-Pkgs. of 10/2-in. 6-32 R. H. nickeled screws	.48
49 3-Pkgs. of 10 6-32 nickeled nuts	.24

Complete set of parts | $53.11 |

Back Issues of Radio Engineering

If you have missed any issues of RADIO and MODEL ENGINEERING for this year, check over the following list and order those that you did not get so as to make your file complete.

January—Tuska Superdyne, 4-tube Monotrol, oscillating wavemeter ... 10c.

February—7-tube super-heterodyne set, Cockaday Receiver.

March—April—Portable tuned R. F. set using UV-199 tubes, Harkness circuit for Diode or crystal detector.

May—Improved Rasla reflex, the most successful 1-tube receiver ever built, 100-meter Sodion receiver.

June—Sodion reflex set using UV-201—A amplifier, the Bestone V-60, tuning filter for cutting out interference.

July—Resistance coupled amplifier, Tools for the radio model shop, Crystals that oscillate.

August—Construction of 4-tube No-Loss regenerative receiver, Description of the Boonton light four receiver, The R-A-R receiving circuit.

September—R-D-X maximum modulation 1-tube regenerative reflex receiver, Assembly of the Haynes tuner, Ware type T neutrodyne, Freshman Masterpiece receiver, Ultradyne type super-heterodyne receiver.

The price of these issues is 20 cents each. They will be sent promptly upon receipt of a check, money order, or stamps to cover the cost. Postage is prepaid.

www.americanradiohistory.com
It is now possible for the amateur to get results formerly reserved to laboratories.

The experimenter who requires every micro watt of energy to bring in heretofore inaudible signals must turn to General Instrument NOLOSS Variable Air Condensers.

They are constructed with laboratory methods, and insulated with laboratory insulations—Pyrex or Isolantite. Products worthy of your purchase.

General Instrument apparatus costs a little more but is worth infinitely more.
THE CROSLEY TRIDYN

(Continued from page 347)

lower edge of the panel at the center, is used to turn the tubes on and off and enables the operator to keep the filament rheostats set at the best operation position. There is one rheostat for the detector tube and one for the two amplifier tubes. The arrows on the rheostat knobs enable one to tell at a glance whether the rheostats are on or off without turning them to find out. The rheostats themselves present a departure from ordinary practice. The set is designed for use with either standard or dry-cell tubes and the rheostats are of the universal type known as Multistats. These permit operation on either type of tube. The contact arms of the rheostats are not of the usual blade type but consist of a cylindrical rod with a spring plunger which makes contact with the inside face of the resistance wire.

The binding posts in this set are not all grouped in one place as is the case on most other sets, but are separated and located in the positions which lend to simplified wiring and elimination of long leads. A 22½ volt B battery post is provided for supplying the best operating voltage to the plate of the detector tube, so that it is worked at its most efficient plate voltage.

STATEMENT OF THE OWNERSHIP, MANAGEMENT, CIRCULATION, ETC., REQUIRED BY ACT OF CONGRESS OF AUGUST 24, 1912, OF RADIO ENGINEERING.

Published monthly at New York, N. Y., for October 1, 1921.

State of New York

County of New York

Before me, a Notary in and for the State and county aforesaid, personally appeared Francis A. Skelton, who, having been duly sworn according to law, depose and say that he is the Business Manager of RADIO ENGINEERING, and that the following is, to the best of his knowledge and belief, a true statement of the ownership, management, etc., of the aforesaid publication for the date shown in the above caption, required by the Act of August 24th, 1912, embodied in section 443, Postal Laws and Regulations, to wit:

1. That the names and addresses of the publisher, editor, managing editor, and business manager are: Publisher, M. B. Sleeper, Inc., 52 Vanderbilt Avenue, New York; Editor, M. B. Sleeper, Darien, Conn.; Managing Editor, Francis A. Skelton, 52 Vanderbilt Avenue, New York; Business Manager, Francis A. Skelton, 52 Vanderbilt Avenue, New York.

2. That the owner is M. B. Sleeper, Inc., whose stockholders are: Annie F. Sleeper, Darien, Connecticut, and Mae G. Murray, Hastings Ave., Harrison, N. Y. 3. That the known bondholders, mortgagees, and other security holders owning or holding 1% or more of the total amount of bonds, mortgages, or other securities are: None. 4. That the two paragraphs above giving the names of the owners, stockholders, and security holders, if any, contain not only the list of stockholders and security holders as they appear upon the books of the company but also, in cases where a stockholder or security holder appears upon the books of the company as trustee or in any other fiduciary relation, the name of the person or corporation for whom such trustee is acting, is given; also that the said two paragraphs contain statements embracing the affiant’s full knowledge and belief as to the circumstances and conditions under which stockholders and security holders who do not appear upon the books of the company as trustees, hold stock and securities in capacity other than that of a bona fide owner; and this affiant has no reason to believe that any other person, association, or corporation has any interest direct or indirect in the said stock, bonds, or other securities than as stated by him.

(Signed) Francis A. Skelton, Business Manager

Sworn to and subscribed before me this 31st day of October, 1921.

(Sign.) F. N. BUNGER, Notary Public

Westchester County

New York Co. Clerk’s No. 852 A.
New York Co. Register’s No. 9631.
Commission expires March 30th, 1926.
Blueprints for Radio Set Builders

One-Tube Sets

3 Circuit Regenerative Receiver, the famous X-1900 type, sharply tuned and very sensitive. 150 to 600 meters. Type X-1900, 3 sheets $0.75.

Reinartz Receiver, one of the most popular models ever described in Radio Engineering. A splendid set for all around broadcast work. Type 3300, 4 sheets $1.00

One-Tube Reflex Receiver, using an Acme R-2 transformer and a crystal detector. Type 4200, 3 sheets $0.75.

TC Circuit Set, a 2-control regenerative receiver exceptionally sharp and sensitive. Particularly adapted for indoor antennas. Type X-4000, 3 sheets $0.75.

Improved Rasla Reflex, unusually attractive in design as well as in the results produced. This set is also intended for a small antenna. Type 5900, 3 sheets $0.75.

Haynes Tuner, known as the “One Thousand Miled for Fifteen Dollars” set. 2 sheets $0.50.

R-D-X Reflex, brings in local stations on a loud speaker and distant stations with surprising volume. Type 6400, 3 sheets $0.75.

Two-Tube Sets

Tuned Radio Reflex, using fixed couplers tuned by variable condensers for maximum amplification. Type 5100, 3 sheets $0.75.

No-Loss Regenerative Receiver, with condenser control for feedback. Equipped with 1-step AF amplifier. Type 6300, 3 sheets $0.75.

Four-Tube Sets

DX Receiver, because of its high efficiency, owing to the use of tuned RF, this is one of the most popular sets ever described in Radio Engineering. Type 5300, 6 sheets $1.50

Portable Tuned RF Receiver, similar in design to the Type 5300 set, but very compact and built for UV-199 tubes. Type 5800, 3 sheets $0.75.

4-Tube Reflex, with the standard Acme circuit in an improved design. Can be used with the Run-A-Radio battery substitute. Type 6500, 5 sheets $1.25

Amplifiers

2-Step AF Amplifier, designed for use with any type of receiving set where additional amplification is required. Type 3100, 3 sheets $0.75.

4-Tube Amplifier, with one stage of transformer coupling and three stages of resistance coupling. Gives tremendous undistorted amplification. Type 6200, 3 sheets $0.75.

Haynes Amplifier, two stages AF. Can be used with any set, although it is designed particularly for the Haynes tuner, 2 sheets $0.50.

Dependable Designs for Radio Sets

M. B. Sleeper, Inc.

A-52 Vanderbilt Avenue

New York City
THE MELCO READER

(Continued from page 342)

denser, to 33, and 34, the left hand screw, to 28.

6. Mount the Amertran A. F. transformer with the terminals in the positions shown. Connect 35, the lug on the G terminal of this transformer, to 36. Connect 37 the B+ terminal, to 38, the lower lug on the detector jack. Connect 39, the P terminal, to 40, the middle lug on this jack. Connect 41, the P terminal on the left hand socket, to 42, the upper lug on the detector jack.

7. Spread out the soldering tabs on the 0.005 mfd. condenser and solder the tip of one of them to 29, and the tip of the other to the wire running from 42 to 41. 42 is the upper lug on the detector jack and 29 is the left hand terminal of the rheostat on the right. Connect 37, the B+ terminal of the transformer, to 43, the right hand B+ binding post. Connect 44 to 45. 44 is the lower lug on the upper or audio amplifier jack. Connect 46 to 47. 46 is the upper lug on this jack and 47 is the P terminal of the second socket from the left. Connect 48, the F terminal on the transformer to 49. 49 is on the wire from 34 to 28. In making this connection, put a small loop in the end of wire 48 to 49, so that it can be hooked around wire 34 to 28 to give a good strong joint. All connections of this kind should be made in that way. Connect 50 to 51. 51 is on wire 48 to 49 and 50 is the upper right hand nut on variotransformer T-3.

8. Connect 52 to 53. 52 and 53 are the upper ears on the frames of the compensating condensers. Connect 54, a point on this wire, to 55. Connect 56, the right hand screw on the compensator, to 57. Connect 58 to 59. 58 is the right hand terminal on variotransformer T-2, and 59 is the lower lug on the compensator. Connect 60 to 61. 60 is the left hand terminal on the rheostat and 61 is a connection to wire 1 to 2. Connect 53, the upper ear on the frame of compensator No. 1 to 62, the right hand binding post on the filament switch. Connect 63, the left hand post to 64 on the variometer. Connect the other lug on 64 to the grid binding post 65. Connect 66 to 67. These are terminals on variotransformer T-2 and the variometer. Connect 68 to 69. 68 is a connection on wire 30 to 31, and 69 is the second lug from the right on the vol. jack. Make a bend in the wire where it crosses wire 54 to 55 so as to clear it. Connect 70, the right hand lug on the jack, to 71, the F terminal on the right hand socket. Connect 72 to 73. 72 is the second lug from the left on the jack.

(Continued on page 366)
A “Knock-out” Amplifier

Audio Frequency and Resistance Coupled Amplification combined in one ideal circuit

Here at last is a real amplifier providing absolutely distortionless loud speaker reproduction.

One stage of audio frequency for volume and two stages of resistance coupled amplification to eliminate the last trace of distortion.

The new “Knock-out” Amplifier makes your loud speaker a real musical instrument. Piano music sounds like a piano — every note played by a symphony orchestra is distinguishable.

Radio fans everywhere are demanding quality of tone reproduction above all else. Here is the final answer to the most troublesome problem in radio.

New Radio Publication ABSOLUTELY FREE

“Radio Dispatch” is a radical departure from all other radio catalogs because it is always up to the minute.

Every thirty days an entirely new issue of “Radio Dispatch” brings you details of the newest radio developments — what they are, why they are better, what they cost, and how to obtain them as quickly as though you lived next door to the largest radio stores.

“Radio Dispatch” is sent free every month to everyone interested in radio. No subscription, no obligation. Mail the coupon now to our nearest store.

HAYNES-GRiffin RADIO SERVICE, Inc.
250 W. 49th Street, N. Y. City
111 S. Clark Street, Chicago

Put my name on your mailing list for Radio Dispatch.

Send me a copy of Mr. Haynes’ booklet on the “Knock-Out” Amplifier.
The Concentrated Cream of Three Years’ Research!

For three full years the Telomonic principle of tuned R. F. has remained basically unchanged. It has thoroughly proven its efficiency, and experienced users call it “the most sensitive, and most perfectly stabilized set on the market.”

But while its basic goodness is still the same, developments and refinements have been added of vital interest to every true radio fan.

For now Telos gives you 3 stages of tuned R. F.—perfectly and automatically stabilized— with resistance-coupled A. F., super-imposed on the R. F. tubes. You can use 5, 6 or 7 tubes in countless variations—and run the whole thing on dry cells. And all the essential parts now come in the new Telos Kit!

But it’s impossible to tell here one-tenth of the good things you can do with Telos. Use the coupon below for your copy of “The Kit of a thousand Possibilities.”

Telos Radio

Danziger-Jones, Inc.
25 Waverly Place, Dept. R.,
New York, N. Y.

Send me at once your profusely illustrated folder—“The Kit of a Thousand Possibilities”—free!

Name ..
Address ..

THE MELCO RECEIVER

(Continued from page 364)

and 73 is the P terminal on this same socket.

9. Mount the second A. F. transformer on the right hand side of the baseboard with the terminals arranged in the position shown.

10. Connect 74 to 75. 74 is the grid terminal on the transformer and 75 is the G terminal on the right hand socket. Connect 44 to 76. 44 is the lower lug on the audio amplifier jack where one wire has already been connected. 76 is the lug which points down, on the B+ terminal of the A. F. transformer. Connect 77 to 78. 77 is the middle lug on this same jack and 78 is the P terminal on the A. F. transformer. Connect 79 to 80, also soldering this wire to 81. 79 is the left hand terminal on variotransformer T-2, 80 is the left hand B+ binding post, and 81 is a point on wire 44 to 76. Connect 82 to 83. 82 is the upper lug of the 0.5 mfd. condenser and 83 is a point on wire 80 to 81. Connect 62 to 84. 62 is the right hand binding post on the filament switch and 84 is the F— terminal on the A. F. transformer. Connect 85 to 86, 85 is on wire 66 to 67 and 86 is on wire 62 to 84. Connect 87 to 88. 87 is the left hand lug on the vol. jack and 88 is the lug which is turned upward on the B+ terminal of the A. F. transformer.

11. Connect 14 to 23. 14 is one lug on the 0.00008 mfd. condenser and 23 is one of the lugs on the upper terminal of the variometer. Connect the flexible lead on compensator No. 1 to the other lug at 23. Connect the flexible lead on compensator No. 2 to the remaining lug at 20 on variotransformer T-2.

This completes the wiring of the set.

Testing When the set has been wired and go over each connection, operating checking it against the picture wiring diagram. Connect a 6-volt A battery across the A+ and A— binding posts. The A+ terminal on a storage battery is usually painted red. Insert the two tubes in the sockets, pull out the knob on the filament switch, and turn the rheostat knob marked FIL 1-2 part way to the right. This should light the second and third tubes from the right, looking at the set from the rear. Repeating this with the rheostat knob marked FIL 3 should light the left hand tube. Turning the rheostat marked FIL 4 should light the two remaining tubes when the loud speaker is plugged in on the jack marked volume. Disconnect the A battery.

(Continued on page 368)
Music is Immortal

The earliest history of man was told to the strumming of primitive melody. His wars, defeats and triumphs are written in our symphonies today.

Music will outlive our present system of radio a hundred—a thousand years from now. But, until then, the Resistance Coupled Amplifier—the only system that does justice to the qualities that make music live—will be first among fans of discrimination.

Amplification truly without distortion—reproduction that is audibly perfect—is the distinctive achievement of the Daven Super Amplifier illustrated below.

Resistance Coupled Amplifier Kits

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without sockets and condensers</td>
<td></td>
</tr>
<tr>
<td>3-Stage</td>
<td>$8.00</td>
</tr>
<tr>
<td>4-Stage</td>
<td>10.50</td>
</tr>
<tr>
<td>Complete with sockets and condensers</td>
<td></td>
</tr>
<tr>
<td>3-Stage</td>
<td>$12.50</td>
</tr>
<tr>
<td>4-Stage</td>
<td>16.00</td>
</tr>
</tbody>
</table>

DAVEN RADIO CORPORATION

"Resistor Specialists"

Newark, New Jersey.

Read the Daven "Resistor Manual" by Zel Bonck. This manual contains the how-to-make-it data on Resistance Coupled Amplification. Sold everywhere.

Price 25 cents
THE MELCO RECEIVER

(Continued from page 366)

Now, to test the B battery circuit, leave the rheostat and filament switches in the last position and connect the positive terminal of the A battery to either of the B+ binding posts, keeping the small jumper between the two posts closed, and connect the negative terminal to the B—binding post. If the set is wired correctly, none of the tubes should light.

To put the set into operation connect the aerial to the ANT post and the ground to the GRD post. Connect the positive terminal of the A battery to the A+ post and the negative terminal to the A—post. Connect the negative terminal of the B battery to the B—post. If the same voltage is to be used on both the detector and amplifier plates, close the jumper between the two B+ posts and connect the B+ terminal of the 90-volt B battery to either of the posts. If different plate voltages are to be used on the detector and amplifier tubes, open the pivoted jumper and connect the +90V terminal of the B battery to the left hand B+ post, and the +45V tap on to the right hand B+ post.

Pull out the knob of the filament switch, turn rheostats FIL 1-2 and FIL 3, three-fourths to the right and plug the phones into the jack marked DET. The loud speaker may be plugged into the jack marked AUDIO AMP at the same time and it can be operated by merely removing the phone plug from the DET jack, provided rheostat FIL-4 is turned on. Adjust dials C-1 and C-2 until oscillations as evidenced by a whistling sound, disappear. Set dials T-1 and T-2, as indicated on the dial setting card accompanying the kit, for any particular wavelength. For example, if you are using UV-201-A tubes for R. F. amplifier and detector and wish to receive 360 meters, dials T-2 and T-3 should be set at 40. Tune with T-1 until the desired signal is received. Now, re-adjust T-2 and T-3. If the signal is too loud, turn the rheostats FIL-1-2 and FIL-4 back a little bit while finding the last settings for T-2 and T-3. If a local oscillation appears when increasing FIL-1-2, re-adjust C-1 and C-2 a few degrees in either direction. Re-adjust the rheostats for best tone and volume, burning the tubes as low as is consistent with good reception. For occasions where great volume is desired, plug the loud speaker into the jack marked VOLUME. This cuts in all five tubes.

Tests which have been made on vacuum tubes show that, for every increase of 5½ in the filament current above the rated value, the life of the filament is cut in half. This indicates the importance of burning the tubes low.
HOW DO YOU KNOW?

How do you know that this coil has lower losses than another?—That this condenser has its rated capacity?—That your set covers the full wavelength range, or that it is more efficient than another set?

The equipment for a complete radio testing laboratory is so expensive that many manufacturers find that their use of such apparatus is too intermittent to justify the investment required. Until now, the Bureau of Standards has been the only laboratory available to the general public, but, because of the enormous amount of scientific investigation which the Bureau is called upon to handle, their service has been too slow for practical requirements.

The new and enlarged Radio Testing Laboratories maintained by RADIO ENGINEERING, heretofore used exclusively for the development of instruments and sets to be described in the Magazine, are now opened to the general public, so that manufacturers and experimenters can have coils and condensers measured, sets tested, and wavemeters calibrated—and they can have this work done quickly at a small cost. Following is a schedule of charges:

RADIO TESTING LABORATORIES

The Radio Testing Laboratories are for the personal information of manufacturers and experimenters. Reports will be made direct to clients, and all data kept confidential. None of the information will be published or used in Radio Engineering Magazine. In cases where special data is required which cannot be handled by the Radio Testing Laboratories, the client will be so informed, and the remittance refunded. All checks and money orders should be made payable to M. B. Sleeper, Inc., and forwarded to A-52 Vanderbilt Avenue, New York City, N. Y.

SPECIAL INFORMATION AND TESTS

The Radio Testing Laboratories are equipped to handle special testing and development work. Correspondence concerning this class of work is solicited.

FIXED CONDENSERS: Capacities of 0.00005 to 1.0 mfd., tested at 1,000 cycles......................... $.50

VARIABLE CONDENSERS: Capacities of 0.00005 to 0.002 mfd., tested at 1,000 K.C. per point... .50

VARIOMETERS: Inductance measured at 1,000 K.C., per point.. .50

FIXED INDUCTANCES: Inductance measured at radio frequencies .. .75

DISTRIBUTED CAPACITY: Inductances measured at radio frequencies .. 1.00

R. F. RESISTANCE: Of Inductances at radio frequencies, per setting.. .75

D. C. RESISTANCE: Of coils or resistance elements .. .50

WAVEMETERS: Calibration per point................. .50

EFFICIENCY: Overall efficiency of receiving sets, output to input voltage.................................. 5.00

NOTE: This is one of the most important and interesting tests which shows the receiving ability of the set.

PACKING: All instruments to be tested must be securely packed and insured, for we can assume no liability for safe transportation. The name and address of the sender must be marked plainly, and a letter containing full instructions and a remittance to cover the testing charges sent separately.

RADIO TESTING LABORATORIES

(Manufacturers’ and Experimenters’ Service Division)

M. B. SLEEPER, Inc.

A-52 VANDERBILT AVENUE, NEW YORK CITY

369
EASTERN LOW LOSS COUPLER

3 CIRCUIT TUNER

$600

Designed by M. B. Sleeper

NEW—DISTINCTIVE.

Different from any other tuning device—maximum of inductance attained by ELIMINATION OF ALL TUBING AND WINDING IN PICKLE BOTTLE FORM.

Acclaimed a NEW STANDARD. Perfection in Low Loss Tuners achieved at last.

Incomparable for VOLUME, SELECTIVITY and DISTANCE

WRITE FOR HOOKUPS AND LITERATURE

At your dealers, or sent postpaid.
Jobbers and Dealers, write

EASTERN COIL CORP.
22 WARREN ST.
N.Y. CITY

Just what I wanted!

Spintite WRENCHES

Why not have a gift that you want and really need in your radio work! Ask "the folks" to include Spintites in your Christmas list this year. Or, if you have a friend who is a fan, surprise him with a set of these handy little wrenches that make the hardest hook-ups easy.

Clumsy pliers simply can't do the work of Spintites. Their slip; Spintites grip. Yes, even in the closest quarters Spintites reach right down and take hold of the smallest nuts, enabling you to spin them on as tight as if soldered, in less time than it takes to tell it. Tight joints, as you know, put an end to losses and noises due to leaky connections.

Spintites are appreciated as Christmas gifts because they are real tools, drop forged in one piece for long wear and quicker action. No separate parts to get lost. The other Stevens "Speed-Up" Tools for radio fans also make ideal holiday gifts. Write for Booklet 23 describing all the tools.

If your dealer can't supply Spintites, order from us direct. Don't take a substitute.

Stevens & Co.
375 Broadway, N. Y.

Set of 3 Spintites in most popular Sizes (round or hex, 1 is desired.)

$100

www.americanradiohistory.com
Mr. M. B. Sleeper says "The first and only device which absolutely eliminates all noises and humming . . . should be more satisfactory than batteries. Several replacement devices have been offered before . . . but in no case has any arrangement been worked out to be of practical value . . . This is the first one which really does what is intended."

Professor J. H. Morecroft of Columbia says "... exactly as represented ... works astonishingly well ... most ingenious and useful ... glad to recommend it to anyone making inquiry."

There has to be one leader in every field. Send for full information regarding RUN-A-RADIO if you want to know why the day of the radio battery is past.

RADER APPLIANCE CO., INC.
Department R-E No. 1
4912 Hudson Blvd., Corner 13th St.
WEST NEW YORK NEW JERSEY
371

Run Your Radio Direct from the Light Socket

Get All A B & C Power From

The Whole Story of Run-a-Radio In Ten Questions

1. Q. Does Run-a-Radio take the place of all batteries?
A. Yes. With Run-a-Radio you need no A, B or C batteries whatever, to operate your radio set.

2. Q. Will it work with either dry cell or storage battery tubes?
A. Yes. More volume is obtained, of course, with storage battery tubes.

3. Q. How does it work?
A. You simply connect Run-a-Radio to your set, and plug it into the light socket. Turn on your radio as you turn on your light. There are models for both A and C current.

4. Q. How much does Run-a-Radio cost to run?
A. About as much as one electric light.

5. Q. Is it cheaper than batteries?
A. Its cost is a little more than regular battery equipment at the start, and it saves you about fifty dollars a year thereafter.

6. Q. Suppose I only want to take the place of B batteries?
A. Use Run-a-Radio B, (a separate B battery substitute.)

7. Q. Will my radio work just the same?
A. Probably better. Run-a-Radio makes it sound always just as it did when your batteries were new— and in first-class condition. There is no hum or crackle as from depleted batteries. Distance as great or greater.

8. Q. Will it work on any radio set?
A. Yes. Regenerative, neutrodyne, reflex, superhet—Run-a-Radio runs them all. Guaranteed for one year.

9. Q. Can I carry it from room to room?
A. Easily. It is about the size of a starch box and weighs only 40 pounds. Finished in rich mahogany or Brewster Green, crackle finish.

10. Q. Doesn't Run-a-Radio run all batteries in radio?
A. Of course. It is the obvious last step in radio convenience. Soon no radio set will be considered modern without Run-a-Radio.
A Signal Achievement in Variable Condensers!

Losses negligible even at minimum capacity—grounded rotor—electrically and mechanically perfect.

SOLD WITH UNCONDITIONAL GUARANTEE

SEE DECEMBER ISSUE

RADIO DEVELOPMENT & MFG. CO.
New York

M. B. SLEEPER

Recommends—

222 Radio Circuit Designs, a splendid book of hook-ups, 252 pages, 284 illustrations

Radio Engineering Principles, most useful of text books, for the student and Exponenter

How to Retail Radio, an idea book for the radio dealer who is planning ahead for his fall business

ABC of Vacuum Tubes, an understandable explanation of the audion, filled with diagrams and pictures

Radio Telephony for Amateurs, Bellentine's book, by an amateur and for them

These books are selected particularly for spare time reading. They will be sent promptly, postpaid, well packed.

M. B. SLEEPER, Inc.
Technical Publisher
A-52 Vanderbilt Avenue, New York.

IT'S HERE!

New R. F. Transformer That Brings 'Em In!

A radio frequency transformer of the aperiodic type suitable for all sets with which tuned radio frequency is desired. Also used for one stage of audio frequency amplification ahead of regenerative sets to prevent re-radiation.

Consider these points of superiority—
No dope to hold windings in place.
Soldered connections.
Mounting bracket holds coil at correct angle.
Minimum rubber used in form.
Lowest possible loss.
Works with any .0005 condenser.
Secondary arranged with suitable taps for biasing features.

This transformer makes the construction of a radio frequency set an easy matter, assuring best possible reception with widely varying types of circuits, including reflex.

Built and guaranteed by Kellogg Switchboard and Supply Company.
No. 602 Transformer at your dealers for $2.35 each.

Kellogg Switchboard & Supply Co.
1066 W. Adams St.

Chicago, Ill.
B. M. S. JACKS have an exclusive feature which will instantly appeal to every set builder. The lugs are *cupp*ed for easy soldering and *fanned* for accessibility.

B. M. S. JACKS are made in closed and open circuit types with and without filament control.

All good dealers sell them as well as B. M. S. TRI-JACK, TRI-COIL, TRI-PLUG, HET-TRI-FORMERS.

BROOKLYN METAL STAMPING Corp.
718 Atlantic Avenue, Brooklyn N.Y.

3 ESSENTIALS for BETTER RECEPTION

General Instrument

NOLOSS

Condenser

56A .0003 mfd. $5.00

56D .0005 5.50

ROLLER-SMITH

Voltmeter

For A and B Battery

Flush Type $7.00

SUPER-DUCON

ELIMINATES THE "B" BATTERIES

Always at the Peak of Performance

Steady, noiseless flow of current

The SUPER-DUCON pays for itself in a short time and is always just right

$47.50

SENT PREPAID IN U.S.A.

NALPAK RADIO CO. 25 DEY ST. NEW YORK
"The Knobs Can't Come Off"

15c each

New Improved Model

"Read'em" Binding Posts

Samples of this quality terminal sent to manufacturers upon request.

The Marshall-Gerken Co.
184 Ontario St., Dept. 184, Toledo, O.

Turn-It
ADJUSTABLE
GRID LEAK

Changes the Range of Resistance to Suit the Strength of Reception.

Constructed along entirely new lines which avoid all use of graphite or carbon and the microphonic noises generally attending the use of these materials. Turn-It greatly increases the volume, secures greater distance and reduces noises in your set.

A Turn-It gives constant and undiminished satisfaction. There is nothing to wear out.

Absolutely guaranteed.

Turn-It Grid Leak is Only $1
At Your Dealers or Direct from Us
TURN-IT RADIO SALES, Inc.
30 Church St., N.Y.

GENERAL RADIO PARTS GIVE SUPER-RECEPTION

ASK YOUR DEALER OR WRITE FOR NEW CATALOGUE

Rusonite Products

- **Rusonite Blowouts, Short-Circuit Blowout Preventer**
 - Price: 50c
 - Prevents tube wire damage, excessive voltage risks, and short-circuit risks. Indestructible.

- **Rusonite Fixed Detector**
 - Price: $1.00
 - The test of detector value. Results.
 - Try the Rusonite in your reflex and experimental work.

- **Rusonite Fixed Mica Condenser**
 - Price: 50c up

Rusonite Products Corp.
15 Park Row
New York, N.Y.

Poster's Perfect Panels

The Recognized Standard

Engraving-Machining

Bakelite Radio Panels

Poster Panels are used by M. B. Sleeper in his experiments. The construction article which has appeared in each issue of Radio Engineering for the last six months shows a Panel built by Poster.

This recognition of Poster Quality and Service by Mr. Sleeper is additional confirmation of the dominant position of Poster Panels in the Radio Industry.

We would appreciate the opportunity of quoting prices on your requirements.

Immediate deliveries of panels for the Browning-Drake Receiver.

Poster & Co. Inc.
26-28 Barclay St., N.Y. Tel. CORT. 4965-6
(Wholesale Only)

The New Ackerman Aristocrat

The SUPER-HET of Loud Speakers

Model 25

An improved Loud Speaker made by loud speaker specialists.

Will operate on any set of three tube capacity up to the eight tube super heterodyne.

Guaranteed to reproduce voice and music in perfect mellow tone, with plenty of volume.

No extra batteries required.

25" high. 11" bell.

Three finishes: Black, Olive, Green or Brown Crystalline.

With gold plated ferrule connecting fibre horn with base.

Price Complete Ready for Immediate Use

$20.00

If your Dealer cannot supply you, send us cash with order or we will be glad to ship same to you C. O. D. and you can pay postman on delivery. In ordering specify finish.

Ackerman Brothers Company, Incorporated

Department RE-10

301 West 4th Street
New York

Order an "Ackerman Aristocrat" and get the best that's in your set.

www.americanradiohistory.com
Amplify the MODERN way!

The audio transformers will make or break your set insofar as real radio enjoyment is concerned. Remember that when you build—and insist upon MODERNS!

Insist upon MODERN Transformers. They are made in three types—the Ten to One, the Push-Pull, and the Four to One.

Send for the Book of MODERN Hook-ups.
We will gladly mail it to you FREE!

B.L. SALES CO.
218 Fulton St.
New York
Now You Can Build the MELCO-SUPREME

The Melco Supreme Kit is ready for you! Just follow the blueprints and instructions and you will have the super-sensitive Melco Supreme Tuned Radio Frequency Receiver at much less than regular cost. You will be amazed at its performance.

Just ask your dealer or write for complete information.

AMSCO PRODUCTS, INC.
416 BROOME ST. NEW YORK

Reflex With RASLA Always!

Write for the Rasla Reflex Construction Bulletins with full size layouts. They're FREE!

RASLA has become synonymous with reflex because RASLA Transformers and RASLA Fixed Detectors are made by reflex experts. Whenever you want real reflex results, insist upon RASLA!

The RASLA Fixed Detector is a permanently fixed, super-sensitive crystal detector that will give splendid results in reflex and other circuits. Everyone is a good one.

DAVIDSON RADIO CORP.
222 Fulton St., New York
Cardwell is the original Low Loss, rotor grounded condenser. It is a significant fact that all the various kinds of radio apparatus on the market today the CARDWELL CONDENSER is the ONLY unit which is recognized by engineers and technical editors of National prominence as the ONE best.

A Postcard brings you an Education on Condensers.

Allen D. Cardwell Mfg. Corp.
81 Prospect St. Brooklyn, N.Y.

No Soldering Necessary
When You Use a
CICO Bakelite JACK

Something Entirely New

An improved new principle. Moulded completely from bakelite. No metal in frame construction. Short springs of special phosphor bronze which is non-corrosive. Sterling silver contact points assure perfect contacts. Scientifically perfect in every detail. Unusual in design and value. Something well worth all the pride you will take in it.

CONSOLIDATED INSTRUMENT CO. OF AMERICA
41 East 42nd St., New York

ALL CICO RADIO PRODUCTS ARE UNQUALIFIEDLY GUARANTEED
Cico Bakelite Rheostat, plain, $1.35; Vernier, $1.50
Cico 2-Way Plug, 40c.
Cico Automatic Plug, 75c.
“Just be sure it’s a Hammarlund”

1. Clock spring pig-tail
2. Ball bearing rotor shaft
3. Cut back plates for easy tuning on low waves
4. Strongest construction
5. Losses too small to measure
6. Soldered brass plates
7. Micrometer vernier
8. Takes any size dial

HAMMARLUND
VERNIER VARIABLE CONDENSER
Increases Your Range and Volume
ELIMINATES INTERFERENCE
Write for New and Interesting Folder
HAMMARLUND MFG. CO., 424-438 West 33rd Street, NEW YORK

When it is marked “PACENT” you can build with real confidence

Built into every Pacent Radio Essential is the experience of over 18 years in radio

When you purchase Pacent Radio Essentials, not only do you buy the utmost in engineering skill and precision, but you are following the judgment of the engineers of over 30 of the leading radio set manufacturers.

Being one of the pioneer manufacturers in the radio industry, the Pacent Electric Company has long recognized that quality and precision were the outstanding requirements of parts for complete satisfaction in set operation. Every Radio Essential bearing the Pacent trade mark was built up to a standard and not down to a price.

Ask for Pacent Radio Essentials and build with confidence. Your favorite dealer carries them or will get them for you. Write for complete catalog.

PACENT ELECTRIC CO., Inc., 22 Park Place, New York City
Washington Minneapolis Boston San Francisco Jacksonville Chicago
Birmingham Philadelphia St. Louis

Pacent
RADIO ESSENTIALS

[Addenda: Patented Model “C”]

PACENT
Radio Essentials
of known quality
Adapters
Improved Audioformers
Autoplug
Balcon
Coil Plug
Coil Plug Receptacle
Condensers
Detector Stand
Duojack
Duoplug
Duo Lateral Coils
Headsets, Everyone
Jacks
Jackset
Loops
Loop Plug
Loop Jack
Multijack
Plugs
Potentiometers
Rheostats
Resistances, Cartridge
Sockets
Twindapter, etc., etc.

379

www.americanradiohistory.com
REASONS not arguments have popularized National VELVET VERNIER Condensers and Dials

EFFICIENT
Sets using Nationals have received signals between Buenos Aires, S. A., and Hartford, Conn., 5200 miles.

DURABLE
Two National Condensers and Velvet Vernier Dials ran 324,000 Revolutions during the recent Radio World's Fair without showing the least sign of wear.

DEPENDABLE
Used in Marine and Radio Compass Work. Write for Bulletin 104.

The National Regenaformer for the Browning-Drake Receiver
The Performance of this set will surprise you.

The National Regenaformer Kit Consisting of Regenaformer, Coil, Condensers and Dials, ready to hook up $22.00
Regenaformer and Coil, only 7.50

Write for Bulletin 105
Manufactured by National Co., Inc.
110 Brookline St., Cambridge, Mass.

(Continued from page 336)

to a beat note of 50,000 cycles the identity of the audio frequency groups is still maintained. Of course, 50,000 cycles from the intermediate amplifier is too high a frequency for the ear to recognize. Therefore, it must be passed through a detector before it becomes audible. That is the function of the second detector employed in the super-heterodyne amplifier outfit. After the detector an audio frequency amplifier of one or two steps can be added to give greater volume.

It seems, offhand, that this is a long process to go through, and that the oscillator, the extra detector, and the intermediate frequency ought to be unnecessary. Actually, they serve a purpose sufficiently useful to justify their connection with the receiving set.

We use radio frequency amplifiers to increase the receiving range of an outfit and to amplify the signals without amplifying the audio frequency static disturbances. In practice, unfortunately, there are definite limitations to the results that can be obtained from the ordinary R. F. amplifier. In the first place an R. F. amplifier is not nearly as efficient as an A. F. amplifier. In other words, the increase or amplification per step is lower. It is difficult to control R. F. amplifiers if very many stages are used and, when they are of the untuned type, the wavelength range is somewhat limited. On the other hand, a tuned R. F. amplifier, although efficient at all wavelengths does amplify static considerably and adds another very sharp tuning control for each step.

Again, there are limits as to the usefulness of the A. F. amplifier because it not only amplifies the signals but, in addition, it increases the volume of static disturbances and noises which may come from the tubes themselves, leaks in the insulation, and from irregularities in the filament current supply or the plate voltage supply.

Therefore, the most satisfactory amplification must be done at a frequency above audibility so as not to amplify static or local noises, and at a frequency sufficiently low that the amplification be done efficiently. Hence the choice of the intermediate frequency of 30,000 to 50,000 cycles.

As has been explained, the oscillator is necessary to set up with the incoming frequency an I. F. beat note. While in most sets only three or four steps of intermediate frequency are employed the number can be increased if there is any necessity for doing it and the connections made to additional stages in the same manner employed for the others. Usually, however, sufficient volume and distance can be obtained with the smaller number of steps.
AMERICAN BRAND CONDENSERS
with the
~100 to 1~
Worm Drive Vernier
Finest Condenser Made
and the
Greatest Radio Value
Offered the Public
23 PLATE, only $5.00 In Canada 7.00
AMERICAN BRAND CORPORATION
NEWARK, N. J.

Make Your Radio Joy
A Sure Thing

YOU are going to give a "radio party," or you are going on a hunt for "DX." You get yourself set for a "large" evening. Then some little unavoidable thing happens and you blow all your tubes. Money, fun and everything is lost.

The quickest way to spend $20 is to accidentally drop a screw-driver in a five-tube set. Zip, and your money is gone as well as your fun—until the radio store opens. Either style of KANT-BLO means protection against blowing out tubes.

A NECESSITY—
NOT AN ACCESSORY
The KANT-BLO is not an extra accessory to your set. It is designed as a B battery Binding Post or as an A battery filament switch. Post Style and Switch Style—are at all the best radio stores. If your dealer is out of stock send us $2 for a KANT-BLO Binding Post Style, or $3 for the Switch Style, and we will ship any number of KANT-BLOS direct to you, charges prepaid.

Kant-Blo
SIGNAL
"Lights on any Short Circuit"

Manufactured by
GANIO-KRAMER CO., Inc., New York

Sole Distributors
APEX RADIO CO., Inc., 503 Fifth Ave.
New York

WWW.AMERICANRADIOHISTORY.COM
BAKELITE

Mahogany Panels

Bakelite Radio Panels are produced in a fine Mahogany finish that enhances the appearance of a radio set and harmonizes with the most luxurious surroundings.

In addition to their beauty, Bakelite Panels are permanent. They provide strong, stable insulation which does not deteriorate with age and use.

Improve the appearance of your own set by means of a Bakelite Mahogany Panel.

Send for our Booklet "I".

Send for our Radio Map
The Bakelite Radio Map lists the call letters, wave length and location of every broadcasting station in the world. Enclose 10 cents to cover the cost and we will send you this map. Address Map Department.

BAKELITE CORPORATION
247 Park Avenue, New York, N. Y.
Chicago Office: 636 West 22d Street

THE MATERIAL OF A THOUSAND USES

SILVER SUPER SPECIALS

They lead the field for Quality, Perfection and Maximum Efficiency. They are constructed under the supervision of McMurdo Silver, Assoc. L. R. E., and are backed by the unconditional guarantee. That guarantee covers the Types here illustrated as well as the:

Type 401 Silver Transformer Unit, 50 Kilocycle. The ORIGINAL—Employs two interstage and 1 filter transformer. 1/2 to 3/4 times the amplification of similar types on the market—Provides unrifled speech modulation over narrow wavelength band at approximately 50 kilocycles. Used with standard tubes in any Super-Heterodyne or other circuit requiring a sharply-tuned, long wave amplifier. Tested, matched and sealed in metal container. Price $14.00.

Type 501 Silver Low Loss Condenser. Capacity .000003 to .0005. Practically inmeasurable hysteresis. Oator plates grounded to frame—stator plates mounted within frame and supported by highest grade insulating material—sturdily constructed—embodies latest developments in condenser design. Price $4.50.

Silver-Marshall, inc.

105 S. WABASH AVE., Dept. J.
CHICAGO.

Eastern Distributor—Twentieth Century Radio Corp., 102 Flatbush Ave., Brooklyn, N. Y.
Browning-Drake Parts: $52.00

Do you want a better set? — The best four-tube outfit you can make, not only in results produced but in ease of operation and the attractiveness of its appearance.

The parts included in this construction kit are exactly those in the Standardized Parts List, making up every item, exclusive of tubes, phones, and batteries, which is needed to build the new Browning-Drake set.

Remember that this set, altho it employs regeneration, does not radiate, or interfere in any way with other receiving stations.

Vulcawood Mahogany Cabinets

An entirely new idea in radio cabinets—Vulcawood is made of fibre veneered on both sides with mahogany celeron. The finish is equal to the finest polished wood, yet these cabinets are indestructible. Vulcawood cabinets come neatly packed, thoroughly protected from shipping. Note that the prices are lower than for good wooden cabinets.

<table>
<thead>
<tr>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 x 10 in</td>
<td>$7.95</td>
</tr>
<tr>
<td>7 x 12 in</td>
<td>8.10</td>
</tr>
<tr>
<td>7 x 14 in</td>
<td>8.10</td>
</tr>
<tr>
<td>7 x 18 in</td>
<td>9.40</td>
</tr>
<tr>
<td>7 x 21 in</td>
<td>$10.40</td>
</tr>
<tr>
<td>7 x 24 in</td>
<td>10.40</td>
</tr>
<tr>
<td>7 x 26 in</td>
<td>10.55</td>
</tr>
<tr>
<td>7 x 30 in</td>
<td>11.15</td>
</tr>
</tbody>
</table>

All Vulcawood cabinets measure 7 ins. in depth inside.

DURRANT RADIO, Ltd.
AS NEAR AS YOUR MAIL BOX
A-52 Vanderbilt Avenue New York City
Eliminate Soldering with this new RADIO TOOL

GET away from the mess of soldering. Use the Rance Radio Pliers with its specially designed pins. This new feature forms wire ends into perfect loops that fit accurately over standard binding posts, and make cleaner, better connections. Sets wired in this efficient way look neater and work better. Electrical and radio experimenters find these pliers indispensable in their workshops.

The Rance Combination Pliers made to our specifications by KRAEUTER, maker of fine tools, Nickel dreadnought steel. For a lifetime of hard use. Price $2.50.

Descriptive Folder R 6 gladly sent free on request. Or send us $2.50 for your pair of the Rance Combination Pliers. Complete instructions with each pair.

Dealers and distributors will be interested in our sales plan

RANCE CORPORATION
41 E. 42nd Street New York

INSTALLATION MEN and MANUFACTURERS

How many hours do you lose each month looking for a mislaid tool? How many times has the absence of some particular tool from your bag caused an extra trip to complete an installation or repair job.

The “Gnome Brand” Radio Tool Kits contain everything you need in the most compact and portable form. They are becoming recognized as an essential part of the well equipped laboratory, shop or service station.

“GNOME BRAND” TOOL KITS

Just what you need to build the type of hookup mentioned in editorial and all other sets and equipment

Every tool guaranteed perfect in material and workmanship

RADIO KIT No. 1—22 Tools $16.00 each (as illustrated)
RADIO KIT No. 3—16 Tools $8.00 each
Tools may be purchased individually if desired. Also Carpenters' Tools in sets for home and general use.

Send for circular No. 287

HAMMACHER, SCHLEMMER & CO., Inc.
New York, since 1848 4th Ave. & 13th St.

KESTER Radio SOLDER

Here's the solder that contains the flux recommended by radio engineers! The pure rosin core inside of Kester Radio Solder is a natural flux and can have no harmful chemical or electrical action on delicate parts or joints. It requires only heat.

In developing radio frequency, it was found that all fluxes, except rosin, spatter, fume and run over delicate parts and joints. This causes leakage and makes the best insulation as poor as a grid leak!

Solder with Kester Radio Solder. You will have no need to go over and wipe away surplus flux. Leave what rosin may remain — it is a good insulator!

There you have it: Kester Radio Solder is a safe and simple solder with which your set can be quickly, neatly, safely and substantially soldered. Get a handy can of Kester from your dealer.

CHICAGO SOLDER COMPANY
4224 Wrightwood Ave.
Chicago—U. S. A.
A REGISTRY OF RADIO INSTALLATION and MAINTENANCE SERVICE MEN WHO INSTALL, MAINTAIN, and REPAIR RADIO EQUIPMENT

The men whose names are listed below are prepared to handle all emergency work, take care of batteries, and replace tubes. Their charge is $1.50 per hour, not including travelling time except to unusual distances.

The charge for listing in this section is 50c. for one month, $2.00 for six months, $3.00 for twelve months, payable in advance. The * indicates that we have received letters from six set owners stating that the man after whose name the * appears has handled their work satisfactorily.

Conn., South Norwalk—A. GHIRARDI
White Bridge. Tel. Nor. 2724

Ill., Oak Park—F. H. LESTER
1155 Wisconsin Ave. Park 975

Me., Bangor—JOHN FOX
120 Essex St. Tel. Ban. 7591

Md., Baltimore—OTTO U. JAHELKA
3710 No. Rd., Walbrook. Tel. Liberty 1202

Mass., Boston—H. A. NICKERSON
201 Devonshire St. Tel. Cong. 5156

Mich., Detroit—R. J. McLEOD
7725 Kellogg Ave. Tel. Bal. 9525

Mich., Detroit—WM. MILLIGAN
6543 Woodward Ave. Tel. Northway 5691 W

Minn., Minneapolis—GEO. A. BECKER
4709 Wentworth Ave. Tel. Locust 6291

Mo., Kansas City—J. K. O'BRIEN
2116 Penn St. Tel. Okl. 9533

N. J., Newark—J. DUNN
13 Freeman St. Tel. New 3128

Neb., Omaha—W. J. F. SACKRIEDE
2622 Jaynes St. Tel. Kenwood 5628

N. J., Trenton—F. C. SCOBEEY
478 Suyvessant Ave. Tel. Web. 7254

N. Y., New York—PAUL FRANCK
317 West 119th St. Tel. Morningside 9140

N. Y., Gloversville—H. E. HOTALING
14 Gold St. Tel. Glov. 2725

N. Y., Buffalo—L. A. JEWELL
69 Leslie St. Tel. Lan. 9234

N. Y., New York—J. ROEMISCH
841 Lexington Ave. Tel. Lex. 4420

Pa., Scranton—J. J. MAHON
730 Capouse Ave. Tel. Bry. 2944

Pa., Lewistown—S. T. ROBINSON
123 S. Main St. Tel. Lew. 723

Pa., Pittsburgh—L. E. SIEGFRIED
1513 Tyndall St. Tel. Can. 8913

Tex., Fort Worth—C. L. FARRIS
500 Taylor St. Tel. Wor. 3927

Little Wonder! ! !

SOLDERLESS LUG

Holds Bus Wire Like Clip! Connect or Disconnect Wires Without Disturbing Terminals! Price 10 for 5c. Ask your dealer.

Distributors Wanted

Manufactured by

PAUL GLAMZO
203 Lafayette Street New York
New! tripled my log!
of stations "heard" on the second day
thru using the

WALBERT
UNIVERNIER
Micro-Selective Tuning Control

THAT is what the UNIVERNIER did for A. H. Klingbeil of Ashtabula, O. Tripled his entire log in a single night! "Last night," writes Bishop Francis of Chicago, "I put 3 UNIVER-NIERS on my Neutrodyne and got 20 stations I never heard before!"

You can do the same. Tune-in those hard-to-get distant stations quickly, easily, clear and loud. Don't have to alter your set. Simply replace each of your dials with a UNIVERNIER, the original 12-to-1 ratio micro-selective tuning dial.

WHY A 12-to-1 RATIO IS BEST

Careful tests prove that a lower ratio is inefficient, a higher unnecessary. With higher-ratio dials the actual "searching" for stations is done with the coarse adjustment. The operator finds the vernier adjustment too slow and uses it only for "clearing-up" a station after it has been detected with the coarse adjustment. Many stations are missed entirely with the latter. With the Univernier both "searching" and the final "clearing-up" are done easily and efficiently with the vernier adjustment. And a large knob helps do it!

COSTS NO MORE THAN A GOOD DIAL—
rigid with shaft. A slight necessary amount of play in the knob prevents involuntary disturbance of vernier adjustments when the hand is removed.

Jobbers and Dealers: Write for Discounts

THE WALBERT MANUFACTURING COMPANY
931 Wrightwood Avenue
Chicago, Illinois

WALBERT
Parts with a Purpose

ALL WALBERT PARTS PROTECTED BY PATS. OR PATS. PEND., U. S. AND FOREIGN
Give your loudspeaker a chance!

ACME A-2
for volume

NO MATTER what loudspeaker you have it can’t give you loud clear reproduction unless you have proper audio amplifying transformers.

If your audio transformers don’t deliver clear, strong, undistorted energy, you can’t expect your loudspeaker to correct the faults for which your audio transformers are responsible.

The thing to do is to put ACME Audio Transformers in your set and then listen to your loudspeaker. ACME Audio Transformers will give your loudspeaker a chance to entertain you with all the thrills and enjoyment you expected and which you are entitled to.

Send 10 cents for 36-page book, “Amplification without Distortion,” containing many practical wiring diagrams and many hints for getting the best out of your set.

ACME APPARATUS COMPANY
Transformer and Radio Engineers and Manufacturers
"The Best That Money Can Buy"

"DEVEAU GOLD SEAL" HEAD SETS

2200 Ohms
$6.00

3200 Ohms
$8.00

"DEVEAU GOLD SEAL" HEAD SETS are electrically and mechanically, as well as from a radio standpoint, as perfect as the highest-priced Head Set on the market, and yet, with all their perfection, they retail at only $6.00 for 2200 Ohm and $8.00 for 3200 Ohm.

The trade mark "DEVEAU" has stood for the highest quality in telephone apparatus for thirty years,— a guarantee that every known advantage in design and manufacturing has been taken into careful consideration.

Magnets are extra-heavy one-piece units; caps are of aluminum to keep down the weight but unlike other Head Sets, every exposed metal part of the set is finished in genuine 24-karat gold,— under a protective lacquer so that the finish will last for years; the terminals of each unit are concealed,— no contact possible with user's hands.

"DEVEAU GOLD SEAL" HEAD SETS are like a piece of fine jewelry in appearance, but with all the radio niceties that the most advanced radio enthusiast can desire. DEVEAU Units exactly match each other in tone,— each has maximum sensitivity and perfection of tone quality.

The patent design of headgear is far ahead of any Head Set on the Market,— affording as it does, instant fitting to ears and head without "re-harnessing" and without binding or pressure,— the latter an admitted nuisance with all other makes of Head Sets.

Caps are of genuine Bakelite,— of scientific design, and comfortable to the ear; the Bakelite never loses its jet-black lustre or highly polished surface.

"DEVEAU GOLD SEAL" HEAD SETS are never found in the cut-rate market— they are only sold to jobbers who appreciate their value.

"DEVEAU GOLD SEAL" HEAD SETS are guaranteed to be electrically and mechanically perfect— our Guarantee protects every purchaser.

Order through your regular jobber or write direct for the names of authorized Distributors throughout the country.

STANLEY & PATTERSON
27 WARREN STREET
NEW YORK CITY, U. S. A.

www.americanradiohistory.com