Practical Wireless
amateur radio & more!

HRH
KING HUSSEIN
OF JORDAN JY1
An Appreciation

THE ALINCO
DR-M06TH

MFJ’S 945E
MOBILE ATU

TAKE A TRIP
DOWN MEMORY LANE

April 1999 £2.50
At W&S you get Much More

There are some dealers that would have you believe they offer the lowest prices. Others claim to give the best deals and after-sales service. But only at Waters & Stanton PLC do you get all these PLUS Much Much more.

- Public Limited Company
- ISO-9002
- Lowest UK Prices
- Price Match
- Only Genuine UK Stock
- 10 Day Approval
- 4 Service Engineers
- Friendly After-Sales Assistance

Financially Sound
- Guaranteed Standards
- No Need to Shop Around
- Nobody Beats Our Deals
- Full Manufacturers’ Warranty
- No Risk to You
- Gives You Fast Service
- We don’t Just Shift Boxes!

+ + FREE 2-Year Warranty on all items purchased up until the end of March, 1999

ICOM IC-706 1.8 - 146MHz

Includes DSP & CTCSS Encode

£799

Yes, it's your final chance to purchase this great transceiver. Offering you outputs on all bands from 1.8MHz to 54MHz plus 20 Watts on 144MHz.

Weather Station
- Radio Controlled Clock
- Date, Day Month
- Cable Free Remote Sensor
- Inside / Outside temperature
- Air Pressure
- Weather Forecast

£69.95

Don't miss out on all our Terrific Bargains
240 Pages!

Our Latest 1999 Colour Catalogue is available with DISCOUNT Vouchers

HORA C-150

20 Memories
- 5 Watts (13 dB)
- Digital Display
- Keypad Entry
- 1750Hz Tone
- 130 - 174MHz Rx
- AA-Cell Operation
- Programmable Features

£99.95

ICOM IC-766 Dual Band Handy

Dual Band Performance
- 2m & 70cms Handheld

£199

Includes
- Wideband Receive
- AM Airband
- 5W from 12V
- Full Duplex
- Alphanumeric Display
- 100 Memories
- CTCSS & 1/60Hz Timer
- Ni-cads & Charger

AR-146 2M 50W Mobile

Includes Full CTCSS
- Complete with Microphone and mobile mount

£199

C-408 70cms Handheld

Over 1000pcs Sold
Must be Good Value!

£89

Amazing Value
- 20 Memories, CTCSS
- 350mW Output
- Wideband Receive
- Ideal for the travelling Ham
YAESU FT-847 HF - VHF UHF £1599

Phone for "Near Trade" Price

Includes 70MHz Transceiver

YAESU FT-920 1.8 - 54MHz £1229

Phone for "Near Trade" Price

* 1.8 - 54MHz 100W * DSP Filter * MOSFET PA * Internal ATU * Auto Notch * Two VFOs * Auto glw display * Shuttle jog * Digital voice memory * "Electronic keyer" * RS-232 converter * Quick memory bank * etc more phone or e-mail for colour leaflet

NEW YAESU FT-100 1.8 - 430MHz All modes - All Bands - One Box £1199

It's been a long time coming - first shown at Dayton 9 months ago - we really are promised it for March. As usual we will have the first stocks and the best prices.

YAESU FT-840 1.8 - 30MHz £649

Phone for "Near Trade" Price

The IC-745 has proved to be one of the best value base station transceivers around. All bands from 1.8 - 144MHz and a straight 100W makes this great value. Give us a call for the latest brochure and the best price around!

ICOM IC-746 1.8 - 144MHz £1299

Phone for "Near Trade" Price

Model HF Transceivers

<table>
<thead>
<tr>
<th>Model</th>
<th>Normal</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS-870S</td>
<td>£199</td>
<td>£1495</td>
</tr>
<tr>
<td>TS-570</td>
<td>£999</td>
<td>£849</td>
</tr>
<tr>
<td>TS-790</td>
<td>£1959</td>
<td>£1295</td>
</tr>
</tbody>
</table>

Unbeatable Prices

VHF Transceivers

<table>
<thead>
<tr>
<th>Model</th>
<th>0 - 20 Watts SSB and CW with break-in</th>
<th>20 - 50W 30Mhz Transmitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM-255E</td>
<td>£1059</td>
<td>£449</td>
</tr>
<tr>
<td>TM-742</td>
<td>£879</td>
<td>£549</td>
</tr>
<tr>
<td>TM-V7E</td>
<td>£569</td>
<td>£479</td>
</tr>
<tr>
<td>TMG-707</td>
<td>£349</td>
<td>£295</td>
</tr>
<tr>
<td>THG-71E</td>
<td>£279</td>
<td>£235</td>
</tr>
</tbody>
</table>

IC-207H 2ml70cm Mobile £299.95

Phone for "Near Trade" Price

YAESU's top selling dual band mobile transceiver, everything you could wish for including wideband receiver.

ICOM New IC-2100 2M Mobile £225

Phone for "Near Trade" Price

YAESU IC-706 Mk IIIC £1899

In Stock Now!
1.8 - 440MHz 100W HF + 6m 50W 2m 20W 70cms

IC-706 Mk IIIC looks like being another great rig from the Icom stable. To have a complete HF and VHF/PHF station in one box that fits in the car or in the draw of the shack desk is amazing - but Icom have done it. What is more, the track record of the two earlier versions is such that you should have no worries about reliability. Give us a call and we'll let you have the latest information.

ICOM FT-8100 Dual Bander Mobile £399.95

Phone for "Near Trade" Price

YAESU FT-1000 MPDC (AC £2199) £1899

Phone for "Near Trade" Price

Features:
* 1.8 - 30Mhz 100W * SSB - CW - FM - AM * Re/00fXfz - 30MHz * Message memory * Dual T-be band rx * EDSP filter * RF pre-amp * "Electronic keyer" * IF shift width * Collins Marks * on preamplifier system * RS-232 interface and more - send for details

KENWOOD New TH-D7E Dual bander VHF / UHF Built-in TNC Data Display

Price Match

Model Unbeatable Prices

<table>
<thead>
<tr>
<th>Model</th>
<th>6m 2m 70cms</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT-50R</td>
<td>£235</td>
</tr>
<tr>
<td>TMG-707</td>
<td>£479</td>
</tr>
<tr>
<td>TS-870S</td>
<td>£549</td>
</tr>
<tr>
<td>TS-570</td>
<td>£549</td>
</tr>
<tr>
<td>TS-790</td>
<td>£295</td>
</tr>
</tbody>
</table>

FT-50R 2m/70cms Handy

* Wideband Rx (AM Airband) * FM Broadcast receive * CTCSS & 1750Hz * 128 Alphanumeric Memories * Dual Watch - Military rated * 5W from 12V DC input * Ni-cads and AC Charger

This is a very solid rig that is proving one of the most popular dual band handi

ICOM Dual Bander 6m 2m 70cms £319

New IC-Q7E 2m & 70cms FM & AM Rx

In Stock NOW

This pocket handheld provides 300mW of FM on 2m & 70cms plus wideband receive FM AM WFM from 30Mhz - 1300MHz - no gaps. Runs from 2 x AA cells.

UK's largest Catalogue £3.95 inc. post
NiMH High Capacity Battery Kits

Twice the capacity of Ni-Cads
No Memory Effect
Very High Current Capability
Up to 500 Charges
Ideal for Digital cameras GPS & Transceivers

Equipment Cabinets

WM-308 Base Microphone
Adjustable Boom Mic

WEP-501 Adjustable Boom Mic

This new boom microphone with single earphone is ideal for use with handhelds outside mobile. Supplied with a locking PTT switch, you can talk hands-free. There are models for Yaesu and Kenwood.

WEP-501
- ¥24,95
- For Yaesu
- For Kenwood
- For Motorola

Hands Free Mobile With Handhelds

WEP-501
- ¥24,95
- Wired for your rig

WEP-501
- ¥24,95
- Wired for your rig

Equipment Cabinets

Great for construction projects. These boxes have internal side cheeks for mounting PC boards. The cabinets have louvred vents and are finished in a cream coloured plastic paint. Front and rear panels are plain alvy ready for drilling and finishing.

Em-01
- 160w x 120d x 75h mm
- ¥10,95

Em-02
- 210w x 150d x 85h mm
- ¥12,95

Em-03
- 200w x 170d x 110h mm
- ¥15,96

WM-308 Base Microphone

Ideal for all base station applications, this high quality unit has electronic PTT / lighting, plus pre-amp and SSB / FM response switch. Matches impedances from 500 to 50k Ohms. Supplied with open-ended lead and 8-pin plug plus wiring diagram.

_
- ¥59,95
- Wired for your rig

HF Headset at a Great Price

This headset has been designed by Watson to match the modern HF transceiver. Dual earphone and an adjustable boom microphone mount onto a lightweight assembly. Supplied with mono audio plug and open-ended mic lead. We can also supply PTT box if required.

W-184
- ¥39,95
- Wired for your rig

W-184PTT
- ¥49,95
- 5-pin PTT wired for your radio

Speaker Mics.

These are a great alternative to the official factory models and far cheaper - yet with superb performance. There are models for most of the current handsets - if in doubt phone for confirmation when ordering.

QSO-110
- For Yaesu
- ¥16,95

QSO-110K
- For Kenwood
- ¥16,95

WNN-227
- For Motorola
- ¥19,95

Antenna Analystre

This professional quality unit covers 1.5 - 170MHz. The BR-200 measures VSWR and impedance from 1.25 - 300 Ohms. Dual gate times and excellent slow motion dial make accurate tuning. Requires 6 x AA or 12V DC.

BR-200
- 1.5 - 170MHz £329

BR-400
- 100 - 500MHz £399

Watson VSWR / Power Meters

A really accurate range of VSWR Meters - 5 / 20 /200W

BR-220
- 1.8 - 200MHz
- ¥49,95

BR-420
- 118 - 530MHz
- ¥49,95

BR-620
- 180 - 530MHz
- ¥39,95

Waters & Stanton PLC

22, Main Road, Hockley, Essex. SS5 4QS

Tel. (01702) 206835 / 204965 Fax. 205843

Trade Enquiries 01702 203353

Free-Phone Orders 0500 73 73 88

e-mail: sales@wsplc.demon.co.uk

web: www.waters-and-stanton.co.uk
APRIL 1999 CONTENTS

16 WHAT IS A ...? This month Ian Poole G3XYX answers the question: "What are Diacs and Triacs?"

20 A SIMPLE DEVIATION METER James Brett G0FFP explains how he constructed a "simple", "practical" and "economical" deviation meter to check the deviation of an F.M. transmitter.

22 THE ALINCO DR-M06TH 50MHz MOBILE TRANSCEIVER Richard Newton G0RNS takes a long, hard look at the Alinco DR-M06TH 50MHz Mobile Transceiver and pits it against other rigs in order to give you a fair opinion of this transceiver.

28 RADIO BASICS Rob Mannion G3XFD explains how to get the best results from your receiver whether it's a commercial model or 'home-brewed' along with some ideas for "add on projects" to improve reception and ease of operating.

30 REMINISCENCES OF THE MACROELECTRONICS ERA Brian Dance recalls his childhood memories, mainly of radio, at a time when electronics was easily carried out without a microscope and there were few applications other than radio!

31 LISLE STREET - RADIO'S 'MEMORY LANE' Peter Hymns GW4OZU has very special memories of Lisle Street and for good reason too - his father ran one of the famous radio shops! So, why not take a stroll down memory lane with him?

34 SPEAKERS AND HEADPHONES Gordon King G4YTV, author of our new regular series 'Looking At ...' and well-known technical journalist, describes the various principles which any Radio Amateur should know about speakers and headphones in order to "optimise on audio quality".

38 A PRACTICAL BEAM - FROM BITS! Derek Holmes GW3ISV describes how he recycled a pair of receiver headphones in order to "optimise on audio quality".

40 WIND ... DOES IT AFFECT FREQUENCY? Trevor Newstead G0LXQ explains why he thinks the wind may affect frequency. A controversial idea! Read on and judge for yourself.

46 THE NI9-95E MOBILE ANTENNA TUNER Rob Mannion G3XFD describes his continuing success and enjoyment working 'portable' from his car using a variety of antennas and what seems to be a very useful antenna tuning unit from W4J in the USA.

48 CARRYING ON THE PRACTICAL WAY Join Rev. George Dobbs G3KRV this month as he provides a blow-by-blow account of building a double balanced mixer.

50 ANTENNA WORKSHOP Dick Pascoe G0BPS describes how you can make a 1/4 vertical for the 1.8MHz band - it's easier than you think!

57 ELECTRONICS-IN-ACTION In this month's Electronic-in-Action, Tex Swann G1TEX discusses, amongst other things, a small amplifier from Lake Electronics and he reviews the UpTek LP-310 digital multi-meter (d.m.m.) from Vann Draper Electronics.

REGULARS

7 KEYLINES
8 LETTERS
10 NEWS
14 RADIO DIARY
54 SUBS
50 BARGAIN BASEMENT
62 BOOK STORE
76 COMING NEXT MONTH
83

Copyright © PW PUBLISHING LTD 1999. Copyright of all drawings, photographs, and articles published in Practical Wireless is fully protected and reproduction in whole or part is expressly forbidden. All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given in our articles are reliable. We cannot however guarantee that these cannot occur and we disclaim any liability for loss & damage arising from the use of this publication. Published on the second Thursday of each month by PW Publishing Ltd., Arrowsmith Court, Station Approach, Broadstone, Dorset BH18 8PW. Tel: (01202) 659910. Fax: (01202) 659950. (POSTED IN ENGLAND BY SOUTHERNMAIL OFFICE LTD. Distributed by Seymour, 39 Newman Street, London, W1P 3LJ. Tel: (01) 409 9000. Fax: (0171) 384 1031. Web: http://www.pwpublishing.co.uk) Subscriptions: Subscriptions WILL BE DEBITED FROM YOUR ACCOUNT UPON SUBSCRIPTION. No responsibility is accepted for loss or damage to any correspondence or advertising matter whilst in transit and we cannot accept any liability for material due to non-delivery through circumstances beyond our control. Practical Wireless is independently audited for circulation by an independent auditing agency. Practical Wireless is a member of the Multi-Media Association. Printed in Great Britain by Leader Printers Ltd., Ayshford, Sevenoaks, Kent. Standard Rate Postage: GPO Postal Service Rates as for All Magazines. 2nd Class Post: Postage paid at South Westhead. Send USA addresses changes to Risky Mail International, Columbus International, 32500 Poole Road, Dorchester, Dorset, BH21 7JF, or 31-04-89. 3rd Class Post: Postage paid at South Westhead. Send USA addresses changes to Risky Mail International, Columbus International, 32500 Poole Road, Dorchester, Dorset, BH21 7JF. British Broadcasting Corporation, 101 Blackfriars Road, London SE1, in accordance with the agreed rates and published rates. Practical Wireless, April 1999
Last month we told you that we would offer a special prize to the person who spent the most during January.

We are pleased to announce the winner was Bob Carpenter G4BAH

Have a good holiday Bob

SMC INTRODUCE A NEW RANGE OF ANTENNAS

We have found some extremely well made VHF Yagis made from Dural Aluminium. These antennas are all individually tested to 1kW. The gamma matching ensures a very good VSWR and the square section heavy duty aluminium ensures that they will last.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Gain dBi</th>
<th>VSWR</th>
<th>Power Watts</th>
<th>Radiation Angle</th>
<th>Horizontal Angle</th>
<th>Height ft (m)</th>
<th>Mast Size ins</th>
<th>Wind Load ft² (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2m 5 ele</td>
<td>9.0 dbd</td>
<td>1.2:1</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>19 (5.6)</td>
<td>1.5 - 1.75</td>
<td>1.5 (0.14)</td>
</tr>
<tr>
<td>2m 8 ele</td>
<td>11.0 dbd</td>
<td>1.2:1</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>19 (5.6)</td>
<td>1.5 - 1.75</td>
<td>1.5 (0.14)</td>
</tr>
<tr>
<td>2m 11 ele</td>
<td>12.7 dbd</td>
<td>1.2:1</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>19 (5.6)</td>
<td>1.5 - 1.75</td>
<td>1.5 (0.14)</td>
</tr>
<tr>
<td>6m 3 ele</td>
<td>7.0 dbd</td>
<td>1.2:1</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>19 (5.6)</td>
<td>1.5 - 1.75</td>
<td>1.5 (0.14)</td>
</tr>
<tr>
<td>6m 5 ele</td>
<td>9.0 dbd</td>
<td>1.2:1</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>19 (5.6)</td>
<td>1.5 - 1.75</td>
<td>1.5 (0.14)</td>
</tr>
</tbody>
</table>

We also have a new range of vertical antennas for 2m / 70cms and 6m / 2m / 70cms

- X50N 144/430 4.5/7.2dB 1.7m height £46.95 £35.00
- X200N 144/430 6.0/8.0dB 2.5m height £75.95 £45.00
- V2000 50/144/430 2.15/6.2/8.4dB 2.5m height £64.95 £58.00

New Mobile aerials? - of course

- SG7000 144/430 2.15/3.8dB 100W £14.95
- SG7200 144/430 3.20/5.7dB 150W £17.95
- SG7900 144/430 5.0/7.6dB 150W £28.95

SMC BARGAIN OFFERS

NEW to Shortwave Listening? Why not try the AKD HF-3S

SPECIAL PRICE THIS MONTH £139

Phone Rodney at Axminster

We have a quantity of SPECIAL PRICE - FT-920's and IC-PCR1000's

Phone NOW for a great deal

HQ. S.M. House School Close. Chandlers Ford Ind Est, Eastleigh, Hants. SO53 4BY

Reg Ward & Co. 1 Westminster House, West Street, Axminster, Devon EX13 5NX
deal from SMC

ICOM

NEW LOW PRICE
IC-821H
Call Rodney at Axminster
Just a couple left

ICOM

The New IC706 MK11G
remember we will accept just
a £10 deposit to secure you an
early delivery of this transceiver
CALL FOR AN UNBEATABLE PRICE

YAESU

The New FT-847
All Modes, All Bands in one very well
gineered package
CALL FOR AN UNBEATABLE PRICE

YAESU

The New FT100
remember we will accept just
a £10 deposit to secure you an
early delivery of this transceiver
CALL FOR AN UNBEATABLE PRICE

KENWOOD

The New THD-7E
Dual Band Handy
with built in TNC

and

The New VC-H1
handheld SSTV
communicator

Call NOW for a great package
deal on both items

KENWOOD

The TMG707E
Probably the best selling mobile dual bander
at an unbeatable price complete with a dual
band mobile aerial (mount not included)

SOUTHAMPTON

TEL: 01703 246222
FAX: 01703 246206
EMAIL: amateur@smc-comms.com

AXMINSTER

TEL: 01297 34918
FAX: 01297 34949
EMAIL: regward@smc-comms.com

IC-R2

Probably the best value scanner around

Coming soon

VX-5R
Triple band Handy
with a host of innovative features
CALL NOW for details

FINANCE AVAILABLE
PLEASE CALL FOR A COMPTETITIVE QUOTE
Antenna Range from MOONRAKER

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>Antenna Type</th>
<th>Description</th>
<th>Price (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70/120</td>
<td>Magnetic Mounts</td>
<td>Complete with Full or Rubber Base please specify</td>
<td>£15.99</td>
</tr>
<tr>
<td>120/230</td>
<td>Vertical Fibre Glass (GRP) Base Antennas</td>
<td>2/3 m Dual-Boader (30°) (Length 60°)</td>
<td>£39.99</td>
</tr>
<tr>
<td>120/170</td>
<td></td>
<td>2/3 m Dual-Boader (30°) (Length 90°)</td>
<td>£39.99</td>
</tr>
<tr>
<td>120/200</td>
<td></td>
<td>2/3 m Dual-Boader (30°) (Length 120°)</td>
<td>£69.99</td>
</tr>
<tr>
<td>120/250</td>
<td></td>
<td>2/3 m Dual-Boader (30°) (Length 150°)</td>
<td>£99.99</td>
</tr>
<tr>
<td>120/300</td>
<td></td>
<td>2/3 m Dual-Boader (30°) (Length 180°)</td>
<td>£129.99</td>
</tr>
<tr>
<td>120/400</td>
<td></td>
<td>2/3 m Dual-Boader (30°) (Length 240°)</td>
<td>£249.99</td>
</tr>
<tr>
<td>120/500</td>
<td></td>
<td>2/3 m Dual-Boader (30°) (Length 300°)</td>
<td>£449.99</td>
</tr>
<tr>
<td>120/600</td>
<td></td>
<td>2/3 m Dual-Boader (30°) (Length 360°)</td>
<td>£649.99</td>
</tr>
</tbody>
</table>

MOONRAKER (UK) LTD. UNIT 12, CRANFIELD ROAD UNITS, CRANFIELD ROAD, WOBURN SANDS, BUCKS MK17 8UR. TEL. (01908) 281705, FAX (01908) 281706.

The 'Spotlight!' Is On Again

It's time to turn the 'Club Spotlight' again as we invite you to enter your club magazines into the 1999 Practical Wireless & Kenwood Club Spotlight Magazine Competition. Local clubs entering will be competing for the magnificent original trophy kindly donated by Kenwood and 'national' clubs will be competing for the 'Bert's Bell' award, which was instituted in 1997 in tribute to the late Bert Newman G2F1X.

Entry to the competition is open now and all entries should be at the PW offices in Broadstone no later than Thursday 1st July 1999. This is because the presentations are to be made at the Leicester Show in September (the new venue of course) and members of the judging panel live in places as far apart as Cornwall, East Anglia and Greater London, so it will not be possible to consider late entries!

So, make sure your club's entry reaches us in good time by sending it to Jo Williams, Club Spotlight Magazine Competition, Practical Wireless, Arrowsmith Court, Station Approach, Broadstone, Dorset BH18 8PW.

The Editor's decision (as head of the adjudication panel) is final and no correspondence will be entered into. Good luck and we look forward to reading YOUR magazine!

Rob Mannion G3XFD

Practical Wireless, April 1999
Since the untimely death of His Royal Highness King Hussein of Jordan, I have been left wondering why it takes the passing of such an esteemed and respected person involved in our hobby - to provide the media with a thin and temporary veneer of acceptance for what is usually considered by them to be a pastime undertaken by 'eccentrics'.

Although 'Keylines' is not the place in PW for me to present my appreciation, which will be somewhat inadequate bearing in mind the achievements of the late King's life, I feel I must take this opportunity to comment on the variety of articles and media 'snippets' that have appeared since his death. (A full personal appreciation of JY1 appears as the lead on the News pages).

Public Face

Although brought up to think of myself as being 'British' rather than English, nowadays it's important to be seen to be 'politically correct'. So I don't presume to be writing on behalf of the Scottish, Welsh and Irish cultures when I say that 'here' (in the 'English' part of the Islands) Amateur Radio continues to have a rather odd public face.

However, I've acknowledged the fact that the other countries sharing the largest island of our group have separate identities - I know from experience that our hobby is seen in the same way throughout the 'British Isles' - and it's one of the very few things I wish we didn't have to share!

I have mentioned the 'public face' topic many times and to justify my comments this time, it seems a good idea to mention an interesting and generally well researched article from The Guardian newspaper which appeared during the week following JY1's funeral. Other articles appeared in the 'quality' and 'tabloid' press - but that from The Guardians made particularly interesting reading.

Within the article, the author made it clear that when researching the details - the 'tawf' on personalities was thorough. All the famous names many of us know are Radio Amateurs were there - plus me that I didn't know (the widow of the late Elvis Presley!) being mentioned.

The list was comprehensive in detailing famous living Radio Amateurs, together with those that have passed on. In common with so many media mentions of the hobby it was obvious that the author had no real understanding of what we do and could not distinguish the Amateur Radio telecommunications hobby from that of broadcasting itself because the word 'broadcast' was firmly linked to our activities.

Personally, I think our hobby is unlikely ever to be properly understood by the media in general. After all - give the average journalist anything more complicated than the 13A mains plug and they're immediately lost aren't they? And from the aspect of an uninformed listener/viewer or reader - how often must we ourselves be misled by uninformed media sources on subjects new to us?

As an avid reader myself, particularly on scientific, medical and technical matters I rely on informed journalists and writers. On the many occasions where I know nothing or little about a particular specialist subject - it's highly likely that I'm being misled too.

As I write this there's much publicity about genetically modified food and, even though I've just finished a five year external degree course on genetics (an up-date was really needed if my work as a medical and scientific writer and journalist was to be fully informed) ... I think I'll have to be treating all the media information on the subject very carefully indeed!

However, and despite my pessimism, there's still hope for good specialist subject presentation within the media (including Amateur Radio), in particular via the BBC's Radio 4 service. I can say this even though keen supporters of Radio 4's much lamented 'Medicine Now and 'Science Now' still regret their passing - the BBC recently transmitted a series of 15 minute programmes on what is new seen to be a precursor of the 'Internet' - the old telegraphy system which in its day revolutionized communications and the spread of information.

So, in rounding off this topic, I can honestly say that I think that Radio Amateurs were, and still are, pioneers in communications despite the fact that the media in general looks on us as being 'old fashioned'. Yes there are old fashioned aspects of our hobby, but there's also true state of the art' aspects too. There can't be many hobbies available to such a widespread section of the community (us!) with such a variety of specialities can there?

The Internet is nothing new in reality - the only difference is that it's available to all (at a price) via the telephone which we have our own various communication nodes. There's much more to science and learning than just sitting in front of a keyboard as we know!

I'm continually amazed at the number of people entering our hobby backwards! They've enjoyed the 'Internet' and computers and then discover they want to learn just what is behind those specialised communications and then join our hobby. We must welcome them with open arms. So, we've just got to keep reminding everyone that we're still here, intend to remain and to take our ever expanding subject into its second century.

Irish Holiday

I need a holiday this year and I'm first heading for Tipperary (It's not so far you know!) to visit friends at the Tipperary Club. I'll be in EI and GI from Friday April 23rd to Saturday 1st of May.

From Tipperary I'll be travelling up to visit John EI8CB and other friends in Donegal (and also visiting sites of the County Donegal narrow gauge railways of course). I hope to work as many friends on the air as possible using EI6GSD and G3XFD on 80, 20 and 7MHz - so I'll be pleased to work you on the bands too!

The holiday rounds off (hopefully) with another trip to the hidden jewel of Ireland - the Transport Museum, at the Ulster Folk Museum at Cultra near Bangor in County Down. I was introduced to this wonderful place (it reflects transport from all over Ireland) by Terry Barnes G13USS and his son several years ago. So, I'm looking forward to another visit during the holiday. See you there perhaps?

Silent Bark

My work often brings the sad task of writing obituaries for Amateur Radio friends, under the title 'Silent Key' but this time it's not a key that's silent - it's the friendly bark from my Labrador Mandy who died on Tuesday 9th February.

Many people met Mandy as she accompanied me to clubs and shows throughout the UK and Ireland. Indeed, many clubs provided biscuits and a welcome far her. However, although at 14 and a half years old she'd had a good life, it was a sad time for myself and my family when she died, very suddenly and quickly in my arms before breakfast on the 9th of February.

Mandy was a much loved friend and companion and I thought it best to mention her passing because readers expect to see her with me. In life we were rarely apart for long, but even her death can't remove the happy memories of our love and friendship. It's good to have friends, whether they have two or four legs, isn't it?

Rob G3XFD

WATCH OUT IRELAND - ROB'S COMING OVER FOR HIS HOLIDAY AT THE END OF APRIL!
Kenwood Modification
Dear Sir
I am sure that those of your readers who purchased Kenwood TS-570s and experienced a very short lithium battery life will be pleased to know that there is a Kenwood modification which should ensure the next battery life lasts the normal five years.

I am also told by Lowe Electronics of Matlock that they can upgrade the earlier TS-570D to a DG, thereby giving the advantages of the later model.

I am very pleased to see Kenwood care enough for their customers to make this possible and for Lowes co-operation in doing the modifications.

K G Evans MOAQQ
Nr St. Helens

Editor's comment: Fascinating memories Jack and I wonder how many of your batteries are still in store waiting to be discovered! Any more of the same sort of memories readers?

Battle Batteries
Dear Sir
The article in the January issue of PW by Ben Nock G4BXD on the ‘Wireless Set No. 60 brought back some memories. Since I was working in 1944 on the production and testing of batteries for these sets, they were, by the way, type 1623, not 1633 as mentioned and I believe they were also used for tank transceivers. They were of very high quality designed to perform satisfactorily in a wide range of environments.

- Down to -40°C (which is the same in Centigrade and Fahrenheit) for Arctic warfare,
- 40°C and 98% relative humidity for jungles and up to 50°C for tanks, closed up for desert battle.

The care taken over the sealing of both the cells and the outer case was considerable. The 106 penlight cells, then known as 'L' cells, now 'AA', were protected against corrosion and perforation of the zinc cans by dipping in a styrene/benzene solution plasticised with tri-cresyl phosphate - 'TCP' (not to be confused with the disinfectant) and coloured with a red dye since the solution was colourless and detection of a missed cell would otherwise not have been easy.

After assembly and connection, using only resin cored solder, (the use of corrosive flux as in civilian 120V h.t. batteries was absolutely taboo) and housed in a same sort of memories readers?

The upper 3V h.t. assembly consisted of two series connected groups of four paralleled 'cycle lamp' 'K' cells, now apparently extinct. These cells were not styrene dipped since their zinc cases were much more substantial.

The shallow waxed card tray containing the h.t. section fitted directly over the lead to insulate the tags, which were quite close together since the five-pin contacts were spaced almost equally on a 5/8in pitch circle. These sleeves were fitted before the solder and resin flux had fully cooled so that they were held securely in position.

The whole battery was about brick sized and the lid, which came right down to the bottom of the box, was sealed with a hot and sticky solution of resin dissolved in engine oil. This may sound a bit odd, but was extremely effective sealing and waterproofing, easily withstandng prolonged total water immersion tests. The socket was sealed with adhesive tape which was cut open when the battery was required for use. I have no idea what these batteries cost, but they were made on a £500 000 contract ... and in 1944, that was a lot of money.

Jack Davidson
Fife

Editor's comment: Fascinating memories Jack and I wonder how many of your batteries are still in store waiting to be discovered! Any more of the same sort of memories readers?

The Debate continues...
Dear Sir
On the much debated subject of Morse code - "shall we shant we" - I write another letter in favour of keeping the
Final two-penny worth... (this month)

Dear Sir
Here's my two-penny-worth on Morse! I have been licensed for 16 years, 15 of which were spent as a G6, eagerly awaiting a painless solution to allow me access to the h.f. bands. As none appeared, I eventually 'bit the bullet'.

After many years of regarding Morse as an unnecessary, insurmountable obstacle, I was very surprised to progress from absolute scratch to 100% at 16 w.p.m. and a pass slip, in just ten weeks. On the way, my attitude to the code changed from loafing to delight, not only from personal achievement, but also the simplicity and effectiveness of Morse as a mode of communication.

I'm sure that there must be as many different opinions on the code as there are Radio Amateurs. There's an obvious validity in all the different arguments, both for and against. Personally, I feel that the Morse requirement should be dropped. I do not believe that this will significantly boost the numbers of new Radio Amateurs, but it will certainly greatly enhance the pleasure and enjoyment of a great many fellow amateurs, currently confined to v.h.f. or above. If, as has been suggested, knowledge of Morse is now no longer essential for safe operation on shared h.f. bands, then there should be only one class of Radio Amateur, with access to all bands.

However, I would suggest to any of the 'soon-to-be' new operators on h.f., just take a trip to the bottom (c.w. end) of 7MHz and listen to the 'music'. Take a moment to think, would the skill of Morse code be useful and valuable? Sometimes, a liking for the code does not come until you have progressed quite a distance into its study. If you do not try it you will never know. All it costs is your time and effort and it is said that once learnt, never forgotten. Few things in life are that cheap and durable.

Steve M0BQT
Nottingham

code. There has got to be something that puts satellites are in continued threat from solar flares, meteorites, etc., putting them out of action.

So, therefore, it would seem to me that this decline is a little premature and the need for the requirement to learn Morse is still there. And I think it will remain until a better form of communication is developed that does not solely rely on the use of satellites to communicate around the world, because ever since Samuel Morse developed it in the 1800s, it has been reliable even in today's world when (and if) all else fails.

R J Reynolds
Surrey

ongoing saga...

Dear Sir
Unfortunately I missed Mr. Walmsley's letter in the November issue of PW regarding the ongoing Morse test saga. However, fortunately, I didn't miss the communication published in the February issue penned by G6DAY.

With respect to G6DAY's contention that a change in requirement for access to the h.f. bands for unsupervised Amateur Radio operation was "made necessary by the declining official use of Morse", this view, regrettable prevalent today amongst many Radio Amateurs whether they hold callsigns or not, is nothing more (or less) than a convenient excuse to widen the goaldposts to entry to the h.f. bands by stealth.

Those persons who continue to propagate the nonsense of Amateur Radio without a Morse test are doing so out of self-serving interests not, as they would have us believe, to promote the continuance of our common hobby - Amateur Radio! In fact, their agenda is to rip out the requirement for a Morse test for an 'A' class licence has been so successful, that even the RSGB has been hoodwinked into accepting their proposal. It doesn't matter one iota whether professional radio operators or 'marine band' (Dave Beedan, same issue) operators have dropped Morse code or not. This fact is merely a ruse used by the advocates of no Morse test for access to h.f. bands. Trouble is, far too many people who should know better have fallen feet-first into their trap. Official and emergency communications as noted by G6DAY are professional users. We are 'amateurs'. That's a big difference. If some Radio Amateurs insist on wanting to talk to other amateurs thousands of miles away, use the amateur satellites - no knowledge of Morse required.

Lastly, those who also advocate idiotic 'incentive-licensing', do they realise that it almost killed Amateur Radio in the USA? Probably not - and what price 'superiority' then within the hobby (if it ever became reality) I wonder?

Ray Howes
Weymouth

and continuing....

Dear Sir
Over the past year I have read a lot about the decline in the use of Morse and the decline in the training of people to use Morse for communication. I have also read that this decline is all down to the, so-called, reliable use of satellites and yet I have also read that these same satellites are in continued threat from solar flares, meteorites, etc., putting

A LETTER PUBLISHED IN PM MINS YOU A VOUCHER TO SPEND ON ANY PM SERVICE

Letters Received Via The 'Internet'

A great deal of correspondence intended for 'letters' now arrives via the 'Internet'. And although there's no problem in general with E-Mail, many correspondents are forgetting to provide their postal address. I have to remind readers that although we will not publish a full postal address (unless we are asked to do so), we require it if the letter is to be considered. So, please don't forget to include your full postal address and callsign along with your E-mail hieroglyphics! All letters intended for publication on this page must be clearly marked "For Publication". Editor

Practical Wireless, April 1999
COMPILED BY JO WILLIAMS

Headline News

His Royal Highness
King Hussein of Jordan

- An Appreciation

Rob Mannion G3XFD offers his personal appreciation following the untimely death of HRH King Hussein - better known to the Amateur Radio fraternity around the World as JY1.

...in the week as I write this short, personalised and somewhat inadequate appreciation of JY1, there's been an enormous amount of public tributes to the late King, his statesmanship, his diplomacy and his well-known activities in Amateur Radio. However, behind that statesman there was also a kind and caring man few knew about and I count myself fortunate in having experienced his kindness and generosity of spirit to the full.

I'm able to write personally because my wife, Carol, was Governess to King Hussein's twin daughters before we were married 25 years ago. However, despite the time lapse the late King found time to keep in touch with my wife and we always had a greeting from them every New Year.

When Charlotte, our eldest daughter, was born in 1977 she became extremely ill before her first birthday and we couldn't attend the King's eldest daughter's wedding in Jordan. King Hussein was quick to enquire about the progress of our (now a fit and healthy mother of two herself) daughter. He was a kind and caring man.

Islam is seen by many in the West as a threat to our culture and we're now used to seeing many news items showing fundamentalists in action here in the UK and abroad. Such reporting does not take into account the kind and caring actions of the silent majority and when I find myself disturbed at what I see on TV, I remind myself that King Hussein personally funded the education of many children and young people - both followers of Islam and Christians in Jordan itself and abroad.

My wife and I had personal experience of King Hussein's generous and humane work in supporting a Jordanian Christian child because for five years we acted as the British 'mum and dad' for one such young man who was financially supported by the King. He completed his education here in the UK and has gone on to make a career in TV abroad, all thanks to King Hussein JY1.

Such a man was the late King, and I was very proud indeed that he immediately agreed to my request to write a personal message to our readers when PW was re-launched in January 1990 with myself as Editor.

No greater tribute can be given to someone than to be loved for their care, kindness and actions and I'm proud to have had some slight connection with this great man. May God bless and keep you, your Majesty - we are all proud to have been associated with you in some small way by sharing the same hobby, Amateur Radio, the pastime that knows no frontiers. G3XFD

Club Visits Schedule

Our much travelled Editor is well into his annual 'Club Visit' schedule now and Thursday 28 of January found him in 'Aspidistra' country visiting The Crowborough & District Amateur Radio Society (C&DARS) in East Sussex. The Club made Rob very welcome indeed and he even found time to pay a quick visit to the (still secure) site of (now famous but then very secret) extremely high powered 'Aspidistra' Second World War 'black propaganda' transmitter site, hidden away in the Ashdown Forest.

Rob's visit to the C&DARS provided an interesting 'follow up' for the club because they're the current holders of the PW 'Club Spotlight' Trophy for their extremely high quality winning entry in the 1999 competition, sponsored by PW and Kenwood Electronics (UK) Ltd (see p.6 for more details on this year's Club Spotlight Competition). In fact, Rob reports that he sat alongside the gleaming trophy throughout the evening - which incidentally was greatly enjoyed by all. He was on his best behaviour and resisted all

Timestep's New "PROsat for Windows 'i/

Timestep, weather satellite equipment manufacturers, have been in touch with the PW News desk to inform us of their latest weather software: PROsat for Windows 'i'. They claim that it's their "...most powerful APT/WEFAX weather satellite reception Interface and software...".

The new 'i' interface can take up to three different receivers and, Timestep say, it connects to the computer serial port and can be used with a notebook or desk top. All switching is computer controlled and system monitoring and status is shown by 11 I.e.d.s on the front panel.

On top of all the features of earlier Windows versions which it retains, this new 'i' software also includes: multispectral colour NOAA APT images; cubic interpolation for smoother display at higher zoom levels; zoom in and out while receiving; quick 'auto limits' contrast setting; multiple windows for the same image (e.g. to view NOAA IR/visible simultaneously); continuous polar autosave with auto schedule to receive all passes with no user intervention and, finally, colour animation.

Dave Cawley of Timestep says "We have been designing weather satellite systems since 1984 and this latest software exploits APT imagery to a level previously unthought of". The new PROsat for Windows Interfaces and 'i' software are priced from £120. Upgrades for existing Timestep PROsat for Windows users start at about £60.

For more information on all Timestep weather satellite equipment and current prices you can contact them on Tel: (01440) 820040, FAX: (01440) 820181 or write to them at PO Box 2001, Newmarket CB8 6XZ. Alternatively, you could visit their Web site at http://www.Time-step.com or send an E-mail to Sales@Time-step.com.
tongue to watch the trains entering the tunnel almost immediately along the Hotel on the outskirts of Crowborough where the meeting took place!

Soon after the visit to Crowborough Rob received a cheque for £50 from them to send on to the Radio Amateur Invalid and Blind Club. the charity which Rob supports via the "PW Talks". His reaction? "Well done Crowborough, a marvellous turn-out and a lovely evening amongst many friends. Thank you all."

Now all Rob’s waiting for is a return visit to see round the 'Aspidistra' site (named, so we’re led to believe after Gracie Field’s song 'The Biggest Aspidistra In The World') which housed what was once the world’s most powerful medium wave transmitter!

Trowbridge Visit

Very few of G3XFD’s ‘club visits’ can be considered as ‘local’, mainly because the "PW office is so far south! So, when the invitation came from The Trowbridge District Amateur Radio Club (T&DARC) to visit them - it made a nice change as it's less than an hour to Trowbridge from our part of Dorset.

Despite a Whist Drive taking place in another part of the substantial Village Hall, at Southwick on the outskirts of Trowbridge, the club made sure Rob had somewhere to park. Visitors from other clubs joined in for the busy evening and after the talk 'PW Past, Present and Future' the very enjoyable event was rounded off by a 'Question & Answer' session - during which G3XFD was asked by the audience where he thought 'Amateur Radio was heading in the future?"

In reply Rob provided a few of his ideas 'off the cuff' and also announced that a special series of articles 'Counting Up From The Millennium' are due to appear in PW from the July issue taking a (purely) imaginative look into our future. "So", he said "watch this space, as PW prepares to do something rather different. Others are 'counting down' to the new century while PW is 'counting up' from the Millennium!"

On receiving a very welcome cheque for £23 for the RAIBC on behalf of the T&DARC Rob thanked them all for the warm welcome and says he's "looking forward to seeing them at the nearby Longleat Rally as usual", later in the year. Hope you can make it too!

Icom’s New Quad-Band Hand-Held

Icom (UK) have announced their return to the 1296MHz band by introducing the launch of its latest hand-held transceiver: the IC-T81E. - the "first ever quad-band hand-held". Icom state that the IC-T81E is "extremely powerful, ultra compact" and "sets to have a strong impact on the UK Amateur market."

The IC-T81E gives full transmit coverage on 50, 144, 430MHz and 1.2GHz and has a multi-band receiver which, Icom say, operates in a.m., f.m. and w.f.m. modes. "Packed" with useful features, the IC-T81E has narrow band f.m. (n.b.f.m.) capability on 144MHz and 430MHz. It also comes with an automatic squelch system which is able to “… adjust the squelch threshold to help receive weaker signals". Icom go on to say that r.i.t. and VXO functions are also available for operation on 1296MHz which, they state, is “… to compensate for other operators' frequency errors."

The IC-T81E incorporates a new ‘joystick’ style multi-control which they claim was designed to make operation simpler. With 100 memories, ten scan-edge pairs and one call channel for each band, this new quad-band hand-held makes frequency management simple, Icom say and "for added convenience a six-character name can also be programmed into each memory through the keypad or optional PC programming software."

The IC-T81E will be available from February and will cost £399.99 including VAT. For more information on this, or any other Icom products, you can contact them on Tel: (01227) 714174. FAX: (01227) 714174, Sea Street, Herne Bay, Kent CT6 8LD. Alternatively, you can visit their Web site: http://www.icomuk.co.uk

New NEXcells

Peter Waters G30JV of Waters & Stanton (W&S) have written to tell PW that they have been appointed distributors for the new range of NEXcell Ni-MH rechargeable batteries. They come available in AA size (1.35A capacity) and AAA size (0.6A capacity). According to W&S, they are cadmium free and also comply with EEC standards. Waters & Stanton claim that these rechargeable batteries have a much higher capacity than Ni-Cads and have no memory problems. Peter goes on to state that they are also capable of large current discharges and are therefore “… ideal for use in handheld radios and those hungry digital cameras!" - W&S also state that they will soon be introducing a dedicated charging unit for the Ni-MH at a very competitive price. The NEXcells will cost £9.95 for a pack of four (AA or AAA) but, as a special introductory price, they will be offering the first 100 applicants a pack of four cells for just £8!

For more information about these, or any other W&S products, you can contact them on Tel: (01702) 206835, FAX: (01702) 205843, Spa House, 22 Main Rd, Hockley. Essex SS5 4Q8. Alternatively, you can visit their Web site: http://www.waters-and-stanton.co.uk

Faster Communication Card?

Brain Boxes have released the fastest PCI RS232/485 serial communications card. They claim that some of its features include increased speed, deeper FIFOs and WIN 98 support. They go on to say that the PCI RS232/485 also has the addition of autogating on the board which, they say, allows low level, low cost. RS485 half duplex (two

Nevada’s New Patcomm Product

Mike Devereux of Nevada has been in contact with PW concerning the new Patcomm PC-16000 h.f. transceiver which they are promoting at the moment. He tells us that the “... PC-16000 has a 'breathing' receiver with Collins mechanical filter and advanced d.p.s. facilities, ideally suited for the serious DXer. Uniquely, it has built-in c.w. and RTTY encode and decode facilities with computer keyboard supplied as standard”.

According to the literature on the Patcom PC-16000, some of the "advanced features" include a power output which is adjustable from 1-100W (1.8MHz through to 28MHz), g.c. dual conversion receiver (a.b.h.a.b.c.w./RTTY and a.m.), built-in digital powermeter w.z. meter, built-in iambic keyer (5-75 w.p.m.), 100 memories plus scratchpad and much, much more.

Mike tells us that the Patcom PC-16000 h.f. transceiver will sell for £1595 and their first shipment will arrive sometime in February (and PW plans to review one as soon as they're available!). For more information on this, or any other Nevada products, you can contact them on Tel: (01785) 862145. FAX: (01785) 690026, 189 London Rd. North End, Portsmouth, Hants PO2 9AE. Alternatively, you can visit their Web site: http://www.nevada.co.uk
 NEWS

COMPiled by JO WILLIAMS

wire) control but without the need for special drivers - "... thus permitting multitasking operating systems such as Windows 95, Windows NT, Windows 98, OS/2 and SCADA packages to see the card as if it was an RS232 interface". The transfer rate, according to Brain Boxes, is "... typically eight times faster and the FIFO is four times deeper than competing cards ...". This increased data rate, coupled with the deep FIFO and the automatic RTS gating, guarantees fast data transfer without the risk of data loss. For more information on this product, you can contact Ian Brew at Brain Boxes on Tel: 0151-220 2500, FAX: 0151-232 0446, Unit 3F, Wavertree Boulevard South, Wavertree Technology Park, Liverpool L7 9PF. Alternatively, you can look on their Web site: www.brainboxes.com

New Web Site
For Kenwood

Kenwood Communications have E-mailed PW to tell us about their new Web site which can be found at http://www.kenwood.net

The new site, Kenwood tell us, uses the "latest design and development tricks and tools" to provide the best site to the maximum audience. They promise us that many new features will continue to be added to the Kenwood Web site and we've had a look at it and it's definitely worth a glance if you want to keep up-to-date with what's new at Kenwood.

Museum For
The Radio Amateur?

The News desk here at Practical Wireless received an interesting letter from Dick Rollema PAOSE from the Netherlands in the post this month. He wrote to tell us all about the official opening of the Museum For The Radio Amateur - "Jan Corver" at Budel, near Eindhoven, in The Netherlands. On January 17 1999, Mrs J. M. de Vries - State Secretary for Transport, Public Works and Water Management in The Netherlands - opened the museum by operating the Morse key of a spark transmitter as used by Marconi in 1896. The State Secretary's signal was answered by a shot from a gun - echoing what happened back in 1896 when Marconi's signal was also answered by the firing of a shotgun.

The museum, Dick PAUSE tells us, was named after Jan Corver who is, apparently, the most popular writer on Amateur Radio in The Netherlands before the Second World War. He was Editor of Radio Express and also the author of many books on the subject of Amateur Radio.

The museum houses a collection of Amateur Radio equipment dating from the 1950s onwards. Jan Corver is open on the first and third Saturday of the month from 1000-1700 - but on request, it will open on other days and times. The museum can be found at Broekkant 1, 6021 CR Budel, The Netherlands. Tel: (00) 31 495 430331.

Historical QSL Card

Practical Wireless received news from the Yeovil ARC about their new QSL card. As you can see from the picture, it shows the south of England with the circuit of the transistor transmitter used by Yeovil ARC way back in 1954.

The history behind this transistor transmitter is written up on the back of the QSL card and, apparently, on February 21 1954 Yeovil ARC made "... the first long
distance radio contact to be made using a transistor transmitter". For more information, you'll just have to get your hands on the QSL card for yourself - Good Luck!

A Charitable Event
John Hampson G0VXH
Secretary of the Hambleton ARS, has written to tell PW all about Hambleton ARS Special Event which will be taking place on April 24 in aid of Motor Neurone Disease Awareness Week and will be working in association with the North Yorkshire branch of the Motor Neurone Disease Association.

Their Special Event Station, GB2MND, will operate on all bands from the Bock Inn in the village of Thornton Watlass in North Yorkshire and would really like sponsorship from anyone interested in helping out a really worthy cause!

More details are available from John G0VXH on 01845 537547, or you could send him an E-mail: jonham@breathemail.net

On The Air With Determination!
Practical Wireless received a letter from Alan Taylor M0AVR about his wife, Norma M0ECEQ. He writes to tell us of her determination in becoming M0ECEQ - despite the fact that she is both blind and disabled.

Norma M0ECEQ began her Amateur Radio career by obtaining the callsign: 2E1FW but she didn't stop there! She then went on to learn Morse with the help of her husband, Alan M0AVR, and on-air help from Frank G6FLJ and Charles G0VAE with their QRS net.

Alan tells us that by practising every day (as well as taking the e.w. equipment on holiday with them!), she passed the 12 w.p.m. Morse test first time and became 2E0ASK. Still determined to keep going,

"Windmills On The Air"
York Radio Club (A Special Events Group have written to PW to tell us all about their first Special Event which will be taking place on the May 8 and 9 1999. Held at Skidby Windmill near Beverley - North Humberside, the Special Event will mark the "Windmills On Air" weekend and they tell us that the East Riding of Yorkshire Council have given York ARC permission to use Skidby Windmill which is a rare working mill.

The usual entry fee of £1.50 will be waived to all visitors to the mill/museum and the mill will be operating throughout the weekend, and they will have full colour QSL cards. QSL via RSGB bureau or by G0YYS QTHR.

Dover ARC
Celebrate Centenary
The Dover ARC's Special Events Co-ordinator, Hugh Burton G0WWQ, has been in touch with PW and told us all about their plans to celebrate the centenary of Guglielmo Marconi's first cross-channel radio transmission of March 21 1899.

On March 27, there are plans to operate a Special Event Station at the South Foreland Lighthouse to celebrate this centenary using the Special Event Callsign: GB100SFL. They say that this is subsequent to the events in December of last year involving members of the Barry ARS. Between April 22 and 25, the Dover ARC will be responding to a request from the Wimereux ARC to celebrate the centenary of both the original Wimereux to South Foreland radio transmission (March 27 1899) and the original Dover (town) to Wimereux radio transmission (September 1899).

Transmissions to Wimereux will be made from both the South Foreland Lighthouse using the Special Callsign GB100SFL and from the White Cliffs Experience venue will house the Dover ARC will be responding to a request from the Wimereux ARC to celebrate the centenary of both the original Wimereux to South Foreland radio transmission (March 27 1899) and the original Dover (town) to Wimereux radio transmission (September 1899).

There will also be a photographic competition (on windmills and watermills) over the weekend.

For more information on this event you can contact Hugh G0WWQ by E-mail: hughburt@clara.net or write to him at 379 Markland Road, Dover, Kent CT17 9NL.

Special Event Supports 'SET99'
The Brickfields ARS, with support from the British Association for the Advancement of Science (BAAS), have received permission from the Radiocommunications Agency (RA) to operate a Special Event Station from 1-28 of March in support of the national celebration of Science, Engineering and Technology week, 'SET99'.

They tell PW that they have chosen to mark the achievements of Sir John Ambrose Fleming, the English engineer, as the foundation for their event and will be using the callsign GB150SJF.

The letter we received from the Brickfields ARS states: "The original application for the GB150SJF was 20th October 1998. At the time of writing (2 February) I am still awaiting the formal Letter of Variation of Licence from the RSGB. This letter is the result of the letter received direct from the Radiocommunications Agency who have advised they will notify the RSGB accordingly, so assume that this callsign isn't finalised yet.

Practical Wireless, April 1999
March 7: The Wythall Radio Club are holding their 14th Annual Radio & Computer Rally at Wythall Park, Silver Street, Wythall, near Birmingham on the A438, just two miles from junction 3 of the M42. Doors open from 1000 to 1600 and admission is £1.50. There will be the usual traders in three halls and a large marquee, Bring & Buy, bar and refreshment facilities are also on site. Talk-on in S22. There will also be a unique park and ride for easy and comfortable parking. Contact Chris GoEYO on 0121-246 7267 evenings and weekends for more details. FAX on 0121-246 7268 or E-mail: gley@compuserve.com.

March 13: The 6th West Wales Amateur Radio & Computer Rally will be held at Penparcau School, Aberystwyth. Doors open 1030 till 1600 with disabled access from 1000. Admission is £1 per person. There are good parking facilities, with easy access for disabled and traders to all stalls. There will be an internet area and catering facilities. Features also include Amateur Radio, Bring & Buy, computers (software and hardware), electronics, hams at work on the air, and much more. Katy GW6EFO on 01545 580675.

March 20: The Lagan Valley Amateur Radio Society (Northern Ireland) will hold its annual rally at the Lagan Valley Hospital conference centre. Doors open 1200. Further details from Reid M10HOT on (01232) 528603. E-mail: g4fty@qsl.net or check out the Web site at: www.qsl.net/g4fty.

March 21: The Tiverton South West Amateur Radio Club will be sponsoring and running their rally in the Tiverton Pannier Market Centre. Doors open at 1000. There will be a wide selection of traders, catering for all aspects of the hobby. There will be the usual excellent food and catering facilities around and in the Pannier Market. More information from Alan Sedgbeer G/MAS on: 01884 232539.

March 21: The Bournemouth Radio Society are holding their 12th Annual Sale at Kinson Community Centre, Pelhams Park, Millhouses Road, Kinson, Bournemouth. Doors open at 1030 and close at 1630. Talk-on from G1BRS on 2m (14.144MHz) S22. There will be Amateur Radio and Computer Traders, clubs and specialist groups, excellent refreshments and a Bring & Buy. Admission is just £1. More details from Olive or Frank Goodger, 66 Selkirk Close, Marley, Wimborne, Dorset BH21 1TP or telephone on (01202) 887721.

March 21: The North-east Amateur Radio, Computing & Electronics Exhibition is being held in the North-east Castle Hotel, Queen's Promenade, Blackpool, Lancashire. Doors open 1100 (with disabled access at 1045). There will be over 100 trade stands, club stands, Bring & Buy stand, RSGB stand and booth stall, amateur computer stands, construction competition, free car parking at a hotel, a bus from an extra car park and wheelchair access to all the exhibits. Admission is £2. Daily £1 and under 14's go free. Peter Denton G4CGF on 0151-430 5790.

March 28: The 10th Magnum Radio & Computer Club will be held at the Magnum Leisure Centre, Harhourside, Irvine, Scotland. Doors open 1100. This rally is organized by the Ccommunicome & DARC. More information from William Gebble on (01560) 221099.

April 18: The Lough Erne Amateur Radio Club will be holding their 18th Annual Rally at Pannier Market, Tavistock, Devon. This new location has much more space for traders and visitors, with access for disabled too. There is plenty of free public car parking within five minutes walking distance. There will be trade stands, Bring & Buy, and refreshments, etc. Doors open 1030, with a talk-on in S22. There are beautiful views over Dartmoor, ideal for picnics, so why not take the family. Ron G7LLG on 01822 852505.

April 18: The Drayton Manor Radio & Computer Rally is to be held at Drayton Manor Park, Tamworth, Staffs on the A4081. The main traders will be in four marquees with a large outside traders tea market. There will also be a Bring & Buy stall, local clubs and special interest stands. Open from 1000 onwards. Trader information from Norman on 0121-423 9187, other information from Peter G1/MB on 0121-423 1189 evenings please.

May 16: The Ripon & DARS are pleased to announce that the Northern Mobile Radio Rally will take place at the Great Yorkshire Showground. There will be all the usual stalls, talk-in, Bring & Buy, free car park, disabled access, etc. Details on (01765) 840229 or E-mail: gerald@bronco.co.uk.

May 23: The Three Counties Radio & Computer Rally is to take place at the Perwvwle Leisure Centre, Bifford Road, Worcester. Full restaurant services from 0700, licensed bar from 1100. All traders in two adjoining halls, easy access to the halls (ground level) and convenient parking for traders. There will be free parking for 900 cars and coaches. Being close to the City Centre, wives and children can spend a pleasant day in historic Worcester shopping, etc. William E. Cottee G4OVL on (01905) 772181, for FAX please ring first.

May 30: The Plymouth Amateur Radio Society are holding their rally at the usual venue, which is at the Plymouth College of Further Education, Kings Road, Devonport, Plymouth. Doors open 1030 till 1630 and admission is just £1. There will be the usual traders, plus Morse testing on demand. The venue is large and spacious with ample free car parking. The display halls have plenty of room for visitors to mingle and browse. There is also a large cine screen serving freshly cooked light meals and snacks at reasonable prices. Plymouth City Centre, the Hoe and many major attractions are close by for the family. Signposting will be from the Manadon Junction on the A38 Devon Expressway, and there will also be a talk-in on S22. More information on (01752) 662651 during office hours.

June 13: The Elvaston Castle National Mobile Radio Rally are holding their rally at Elvaston Country Park, on the A5010, five miles south east of Derby. Further details from Brian on (01332) 751412 or contact Stuart for trader enquiries on (01332) 537778.

March 7: The Wythall Radio Club are holding their 14th Annual Radio & Computer Rally at Wythall Park, Silver Street, Wythall, near Birmingham on the A438, just two miles from junction 3 of the M42. Doors open from 1000 to 1600 and admission is £1.50. There will be the usual traders in three halls and a large marquee, Bring & Buy, bar and refreshment facilities are also on site. Talk-on in S22. There will also be a unique park and ride for easy and comfortable parking. Contact Chris GoEYO on 0121-246 7267 evenings and weekends for more details. FAX on 0121-246 7268 or E-mail: gley@compuserve.com.
SRP TRADING
1686 Bristol Road South, Rednal, Birmingham B45 9TZ

FREE Wideband Preamplifier worth £49.99 with most handheld scanners

YUPITERU
MVT-7100 £199.95 + P&P
BEARCAT
UBC-220XLT £149.95 + P&P
AOR
AR-8200 £349.95 + P&P
YUPITERU
MVT-9000 £319.95 + P&P
COMMTEL
COM-214 £129.95 + P&P
TRIDENT
TR-2000 £149.95 + P&P
ICOM
IC-R2 £139.00 + P&P
BEARCAT
UBC-3000XLT £189.95 + P&P
AOR
AR-8000 £269.95 + P&P

BASE STATION SPECTACULAR

DX-394 Shortwave Communications Receiver
150kHz to 30MHz AM, USB, LSB, CW digital receiver with 160 memories
£199.99 £99.99 + P&P

PRO-2045 Base Scanner
200 channel AM/FM (switchable) scanner. Covers 66 to 1000MHz (with gaps)
£199.99 £129.99 + P&P

PRO-2042 Base Scanner
1000 channel AM/FM/WFM (switchable) scanner. Covers 25 to 520MHz and 760 to 1300MHz
£299.99 £149.99 + P&P

Opening times: Mon-Sat 9.30am to 5.15pm. We are Kenwood, Yaesu, Icom, & Ailinco dealers.
Call Rod (G8SUP), Richard (G6ORA) or Mary (MOBMH) on
TEL: 0121-460 1581, 0121-457 7788 FAX: 0121-457 9009
Ian Poole G3YWX answers the questions: "What are Diacs and Triacs?"

In the last ‘What is A ..., we looked at the thyristor or silicon controlled rectifier and saw how it could be used as a switch in various circuits. However, whilst the thyristor is widely used in many applications it's not particularly suited to a.c.

Basically, the thyristor is a d.c. device, conducting only in one direction! This means that it is used in an application where there is a.c., it will only conduct over half the cycle. For example, when used in the ubiquitous light dimmer it will only be able to conduct over half the cycle at maximum and this will cut the maximum light output available.

What's required, is for a bi-directional version of a thyristor to be available. However, before we get to that point, there are a couple of devices to look at on the way.

Breakover Diode

The first we come across on the journey is known as the 'breakover diode'. This is sometimes known as the Shockley diode and consists of four layers in a p-n-p-n structure as shown in Fig. 1. It's effectively a two terminal version of the thyristor having only the anode and cathode connections, i.e. there is no gate connection.

It's found that when the voltage across the diode reaches a certain level it breaks down as shown in Fig. 2. It can be used as a trigger for another SCR or thyristor. In this application, it is connected to the gate of the thyristor and gives a far sharper gate trigger pulse. This results in a more timely turn on and it is very useful where the timing is of importance.

The Diac

The word 'diac' stands for Diode a.c. switch. It's a bilateral switch that's capable of being turned on in both directions. There are two forms of diac and the first is a three-layer n-p-n or p-n-p device. In this form of the device, switching occurs when the reverse biased junction experiences avalanche breakdown. When the avalanche breakdown occurs, the transistor action in the device means that the voltage drop across the whole device falls and the device can be considered to be switched on. In the case of the three-layer device the switch does not 'latch' and as the voltage is slowly reduced the device will return to its normal state.

The second variant is a five layer device and its operation is slightly different. It can be considered as two breakover diodes back-to-back. This device is the more commonly used and once triggered it remains in that state until the voltage is completely removed.

Triac Device

The triac is basically a bi-directional version of the SCR or thyristor. The thyristor would only conduct in one direction, whereas the triac conducts in both directions. In other words, it may be thought of as a bi-directional thyristor. It has forward and reverse characteristics that are identical as shown in Fig. 6 (a & b). In this way it can either block or conduct current from an alternating waveform over all or part of the waveform. In other words, it can be thought of rather like two thyristors that are connected in inverse direction but parallel (anti-parallel).

As far as the construction of the device is concerned, it consists of a diac with the addition of a gate to enable the switching to be controlled. As shown in Fig. 6, it can be seen that the gate contact is made to the p-type material close to anode 2. This is done using an n-type diffusion layer onto which the gate connection is made. Operation is slightly different for negative and positive potentials. For positive gate potentials the gate acts in the same way as that of a thyristor. For negative potentials the n-type gate pocket injects electrons into the central n-type region and this triggers the device.

Applications

The triac is widely used for switching in a.c. power applications. It's possibly best known in home electronics circles for its use in light dimmers, however it is more widely used in industry for controlling electrical loads of all descriptions that require an alternating current.

Next time I will be taking a look at the field effect transistor (f.e.t.). This is a device that has had a major impact on the electronics industry and not least in the field of r.f. technology.

There's a section explaining semiconductor terminology on Ian Poole's Radio and Electronics Web Site at: http://website. lineone. net/~ian_poole

Practical Wireless, April 1999
Q-TEK ANTENNAS

SEND SAE FOR Q-TEK REVIEW

Q-TEK ACCESSORIES

Q-TEK PENETRATOR

"We've sold 100's in Europe"

- **1.8 - 60MHz HF vertical**
- **5 foot high**
- **No ATU or ground radials required**
- **(30W PEP, only 1.5 m long)**

DELUXE G5RV

Multistranded plastic coated heavy duty antenna wire. All parts reusable. Stainless steel and galvanised fittings. Full size - 102ft.

NEW Q-TEK INDUCTORS

88mtr inductors. Add them to your ¼ size G5RV and convert it to a full size. **£22.95 P&E £2**

COPPER ANTENNA WIRE (half size)

- Enamelled **£12.95 P&E £5**
- Hard drawn **£13.95 P&E £5**
- Multi-Stranded (Grey PVC) **£19.95 P&E £5**
- Extra H.D. (Clear coated) **£22.95 P&E £5**
- Flexweave (H/duty) **£30.00 P&E £5**
- Flexweave H/duty (20 mtrs) **£35.95 P&E £5**
- Flexweave PVC coated (20 mtrs) **£38.95 P&E £5**
- Flexweave PVC coated (50 mtrs) **£69.95 P&E £5**

Q-TEK BALUNS & TRAPS

Traps are wound on ferrite rod and encased into a dipole centre with a 90° plastic ferrite trap. Brass terminals form the balun output and stainless steel screw eyes offer an anchor point for the ends of the antenna. Rain power rating is 1800 watts.

- 11th (F) Trap **£14.95 P&E £5**

Q-TEK YAGIS FOR 2/4/6 + 70cm

- 2m (boom 45°/90dB) **£9.95**
- 2m (boom 60°/110dB) **£9.95**
- 2m (boom 126°/70dB) **£9.95**
- 40cm (boom 28°/90dB) **£9.95**
- 50cm (boom 21°/80dB) **£9.95**

Phasing harness for 2 x 2m yagis "N" types

NEW HF MOBILE WHIPS (PL-259)

Easy to mount 11 ft storable whip. Ready to go with PL-259 fitting.

- **F-Antenna** **£149.95**
- **F-Antenna** **£149.95**
- **F-Antenna** **£149.95**
- **F-Antenna** **£149.95**

END FED HALF WAVES

- **Ground plate free**
- **Length 96" (243cm) **

LONDON SHOWROOM

137 High St, Edgware
Middle Rd 7EL
Tel: 0181-951 5781/2
Fax: 0181-951 5762
Open Mon-Fri 9.30-5.30pm. Sat 9.30-2pm

FIBRE GLASS MASTS

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>11th (D)</td>
<td>£8.50 (per metre)</td>
</tr>
<tr>
<td>7th (D)</td>
<td>£10.50 (per metre)</td>
</tr>
<tr>
<td>5th (D)</td>
<td>£12.50 (per metre)</td>
</tr>
</tbody>
</table>

Q-TEK INTRAPID

PRE-MATCHED END-FED HALF WAVES.

DELUXE SINGLE BAND WIRE ANTENNAS. NO ATU REQUIRED.

- **FT-20**: 80m version (20m) **£89.95**
- **FT-20**: 80m version (60m) **£129.95**
- **FT-50**: 50m version (10m) **£19.95**

DESK MICS + HEADSETS

OUR BEST SELLING MICS!

D-308B BLACK DELUXE

Desk Mic (with up/down)

Super quality. Supplied with 8 pin pre-sired Varus lead)

£49.95 P&E £9.95

OPTIONAL LEADS (P&E £10.50)

- **8 pin "Alcino" lead** **£9.95**
- **8 pin "Kenwood" lead** **£9.95**
- **8 pin "Icom" lead** **£9.95**
- **Modular phone "Alcino"** **£9.95**
- **Modular phone "Kenwood"** **£9.95**
- **Modular phone "Icom"** **£9.95**

U-120 headset

A high quality headset that will fit most hard portable and most HF & VHF/ UHF revs via optional interface.

£24.95 P&E £3.50

Supplied with two pin molded plug will fit Alcino/Varus. Standard (ADU, Icom head bands).

TELESCOPIC MASTS

A section telescopic mast. Starting at 11 in diameter and finishing with a top section of 1.1" diameter we offer a 8 metre mast and a 12 metre version. Each mast is supplied with guy rings and stainless steel pins for locking the sections when erected. The closed height of the 8 metre mast is just 5 feet and the 12 metre version at 10 feet. All sections are extruded aluminium tube with a 15 gauze wall thickness.

- **8 mtrs £79.95**
- **12 mtrs £99.95**

FREE STANDING TREFPOD FOR ABOVE MASTS

E-26 £48 Carrieage £4.80

GUY WIRE KITS

Standard kits (complete with wire). **£34.95**

Heavy duty kits (complete with wire). **£46.95**

MAST HEAD PULLEY

Easy to fit pulley with mast clamp (up to 2") **£12.95 P&E £1.50**

SECTIONAL MASTS

Carriage £9.00

4 x 5 foot aluminium sections each swaged at one end.

- **11th dia** **£22.95**
- **15th dia** **£34.95**
- **11th dia** **£29.95**
- **2" dia** **£46.95**

WALL BRACKETS + MAST BASE PLATES

- **2"** **£8.95 P&E £5**
- **5"** **£14.95 P&E £5**
- **10"** **£24.95 P&E £5**
- **16"** **£39.95 P&E £5**
- **22"** **£99.95 P&E £5**

T&S BRACKETS

Carriage £20.00

W. MIDLANDS SHOWROOM

Unit 1, Canal View Ind. Est., Borthw., Worcestershire, WR4 7QD

Open Mon-Fri 9.30-5.00 pm Sat 9.30-2pm

Please mention Practical Wireless when replying to advertisements
<table>
<thead>
<tr>
<th>HF RECEIVERS</th>
<th>VHF/ UHF RECEIVERS</th>
<th>COMMUNICATION RECEIVERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>KENWOOD TS-870</td>
<td>ALINCO DJ-G5E</td>
<td>AOR AR5000</td>
</tr>
<tr>
<td>YAESU FT-847</td>
<td>ICOM IC-Q7E</td>
<td>Next generation worldwide communication receiver covers 0.1-2GHz (all modes).</td>
</tr>
<tr>
<td>KENWOOD TS-570G MkII</td>
<td>ICOM IC-746</td>
<td>ONE PIECE ONLY</td>
</tr>
<tr>
<td>PSI-200</td>
<td>YAESU FT-8100R</td>
<td>PRICE £1169.95</td>
</tr>
<tr>
<td>CTCSS 6 CW filter (100W all bands)</td>
<td>ALINCO DJ-70TH</td>
<td>PCR-1000</td>
</tr>
<tr>
<td>NEW MODEL</td>
<td>P-2512 'M'</td>
<td>Computer receiver. 100kHz-1500MHz (all modes).</td>
</tr>
<tr>
<td>SGC-230 Superb ATU will work with any HF transceiver.</td>
<td>FINANCE EXAMPLE</td>
<td>£249.00</td>
</tr>
<tr>
<td>SALE PRICE</td>
<td>SGC-231 HF + 6m Smart unit</td>
<td>WHILST STOCKS LAST</td>
</tr>
<tr>
<td>SGC-230 Superb ATU</td>
<td>SGC-231 HF + 6m Smart unit</td>
<td>UBC-9000XLT</td>
</tr>
<tr>
<td>SALE PRICE</td>
<td>Stainless</td>
<td>Desktop scanner</td>
</tr>
<tr>
<td>WATSON W-25</td>
<td>600MHz (all bands)</td>
<td>£629.00</td>
</tr>
<tr>
<td>SALE PRICE</td>
<td>P-2512 'M'</td>
<td></td>
</tr>
</tbody>
</table>

NEW MODEL

- KENWOOD TS-870: best "IF-DSP" DX transceiver available!
- KENWOOD TS-570G MkII: New upgraded version to replace the popular TS-571D.
- ALINCO DJ-G5E: Superb ATE' will work with high performance SW receiver.
- YAESU FT-8100R: True dual-band handheld transceiver with optional wide-band receive.
- ICOM IC-746: Looking for a rig to satisfy all your base station needs?
- ICOM IC-706 MkII G - Quad bandtransceiver.
- ALINCO DJ-70TH: HF + 6m transceiver.
- P-2512 'M': 55-58 MHz power supply with variable volts (3-15). Dual meters (Volts + Amps). The UK’s best selling power supply. RRP £48.95.

COMMUNICATION RECEIVERS

- AOR AR5000: Next generation worldwide communication receiver covers 0.1-2GHz (all modes).
- PCR-1000: Computer receiver. 100kHz-1500MHz (all modes).
- AR3000A: Wide-band receiver covers 100kHz-2GHz (all modes).
- AR7030: Anniversary Special with free notch filter & noise blanker & telescopic antenna.
- Yaesu FRG-100: Award winning SW receiver.
- ICOM IC-R2: Miniature wideband handheld scanner covers 0.5-1500MHz (AM, FM, WFM).
- AR8200: The latest all mode innovation in handhelds. There's too many features to list.
- MVT-7100: Wideband handheld scanner 0.5-1650MHz (all modes).

LONDON SHOWROOM

- Unit 1, Canal View Ind. Est., Brestle Lane, Bletchley Hill, W. Midlands. DT5 3LQ
- Open Mon-Fri 9.30-5pm, Sat 9.30-2pm
- **Censored**

W. MIDLANDS SHOWROOM

- Unit 1, Canal View Ind. Est., Brestle Lane, Bletchley Hill, W. Midlands. DT5 3LQ
- Open Mon-Fri 9.30-5pm, Sat 9.30-2pm
- **Censored**

MVT-7100

- Wideband handheld scanner 0.5-1650MHz (all modes).
- SALE PRICE: MVT-7100 **£199.00**
- Soft case for MVT-7100 **£50.00**

AR8200

- The latest all mode innovation in handhelds.
- There's too many features to list.
- OUR PRICE: AR8200 **£299.00**
- Soft case for AR8200 **£50.00**

FINANCE EXAMPLE

- MVT-7100: Deposit £99.00, 36 x £18.14 p/m. APR 19.9%.
ONE OF THE ONLY INDEPENDENT COMPANIES STILL AROUND TODAY THAT IS STILL GROWING

WATCH THIS SPACE FOR MORE INFO.

STAR BUY
A 36v six section 2" dia aircraft grade aluminium swaged set.
A very lightweight but extremely strong mast set.
ONLY £35.00
P&P £10

NISSEI METERS

SALE NOW ON

RS-502 1.8525MHz (200v) £99.95...NOW £79.95 + P&P £5
RS-102 1.8150MHz (200v) £59.95...£49.95 + P&P £5
RS-402 125-255MHz (200v) £29.95...£19.95 + P&P £5
RS-101 1.6-60MHz (30v) £79.95...£59.95 + P&P £5
RS-40 144-430MHz Pocket PORTABLE SW
Meter (200v) (SO239) £34.95 + P&P £1
RS-40N As above with N-type £39.95 + P&P £1

ROSS * Dummy load * DC-500MHz * 60W max
* PL-259 fitting £16.99 + P&P £1

SALE PRICE

1.5kW sersa tuna
300W ATU + dummy load. 4 ONLY

2 x AA pack £1.69
Counter, resistance meter.

OPTOELECTRONS

PRODUCTS

Tecta micro current meter our price £89.95
TNQ-100 Optional antenna our price £6.99
Opto Cub our price £99.95
Opto Meter our price £99.95
Opto Xplore our price £79.95
Opto Lynx computer interface our price £59.95
Micro DTMF decoder our price £69.95
New Mint Scout our price £169.00
Opto Tkacher our price £189.00

MFJ PRODUCTS

MFJ-259 MKII
HF digital SWR analyser > 1.8-170MHz

ONLY £169.95 + P&P £5

MFJ-919 500W ATU + dummy load £115.95
MFJ-960 6m ATU £119.95
MFJ-9620 1.5W versa tuned £29.95
MFJ-764B DSP filter £76.95
MFJ-118 CW meter £58.95

CUSHCRAFT SALE

R-6000 6x20 meters £110.00
R-7000 7x50 meters £119.00
X-7 10, 15, 20 meters 7 ell yag £149.00
X-9 10, 15, 20 meters 9 ell yag £169.00
A-58 10, 15, 20 meters 3 ell yag £229.00

SP-350V

It protected this summer! In-line lightning surge protector.
(Gas discharge type)

INTRO PRICE £19.99
P&P £1

COAX SWITCHES
(P&P £5.00)

CX-401 4 way (SO-239) £49.95
CX-401 'N' 4 way (N TYPE) £54.95
CX-201 2 way (SO-239) £18.95
CX-301 'N' 2 way (N-type) £24.95

GARMIN

GPS-III
Latest UK version complete with moving map of UK & Europe, £429.00

SALT PRICE £279.95

GPS-12 Navigator £129.95
Clean power lead £29.90
Active mount antenna £35.95

NEW LOW PRICE

Nissei EP-320
Hanging type earphone with boom mic & PTT. Fits Kenwood, Alinco, Yaesu or Icom.
£24.95 P&P £1

Nissei EP-300T
Over the ear earpiece with lapel mic & PTT. Fits Kenwood, Alinco, Yaesu or Icom.
£16.95 P&P £1

This ear/neck comes with an "over the ear" earpiece as EP-300

VECTRONICS

VC-300DLP
with built-in dummy load.
SPECIAL OFFER £99.95

RECHARGEABLE ALKALINE CELLS

Starter kit includes charger & 4 x AA cells.
£13.99 + £2 P&P.

Extra cells available at £1.69
Rechargeable Alkaline, No memory effects. 1.5V cells. 5 x capacity of nicads.
NO QUEBBLE WARRANTY

INTERFERENCE - STOP IT!

Rectangular snap-fitting ferrite cores suitable for Radio coax, TV mains, telephone, PC & data cables.
Plastic teeth prevent it from sliding on cable. Simply snap close onto cable and job is done! (Will fit large coax).

SLATE PURCHASE here
(P&P £2.50). HURRY - LIMITED STOCK
FREE.COZ versions 2 for £5 P&P £2.50

HAND HELD ACCESSORIES

POLICE STYLE

HOLSTER HHC-2
Matches all hand helds. Can be worn on the belt or attached to the quick release body holder.
£19.95 + P&P £1

Waterproof case for handhelds £19.95 P&P £1

MA-339
Mobile holder for handhelds
15 PIECES ONLY £4.99 + P&P £2

QS-298
Air vent holder £3.99 P&P £1

USC-300

A fully adjustable desk top stand for use with all handhelds. Fitted coiled ft. (FMA) with BNC & SO239 connectors.
ONLY £19.99 P&P £3

EP-300

Deluxe over the ear earpiece.
100 PIECES ONLY £9.99 + P&P £1

Please mention Practical Wireless when replying to advertisements
A Simple Deviation Meter

James Brett G0TFP explains how he constructed a "simple", "practical" and "economical" deviation meter to check the deviation of an f.m. transmitter. Read on and discover just how easy it is.

The object in the design of this deviation meter was to build a self-contained piece of test gear which didn't require special calibration or additional test equipment. Construction was to be simple and practical and the cost was to be kept to a minimum hence the 'local oscillator' required is another transmitter on the same band.

The principle is to use two transmitters - the first one to be tested and a second one to be used as a local oscillator. This second transmitter doesn't have to be f.m. since it only has to produce a carrier at the same frequency as the signal on test.

By modulating the test transmitter with an audio tone and mixing the two transmitter outputs, a signal results which is purely the frequency deviation. This deviation is converted to a voltage proportional to the highest frequency and thus indicates the peak deviation occurring at the peak amplitude of the audio modulation.

Calibration is easily carried out by having both transmitters on c.w. and setting one to a different known frequency.

The Circuit

The circuit is straightforward and signals from the transmitter to be tested and the transmitter which is to act as the local oscillator are fed into the two banks of load resistors R1 to R6. The circuit is shown in Fig. 1. As IC2 is a low power audio amplifier it's able to drive a dual range voltmeter circuit M1, R18 and R19.

Both transmitters are set to the same frequency and with one of them modulated, one of the outputs from the mixer is the deviation frequency caused by the audio modulation.

Resistors R7 to R9 and the capacitors C1-C3 form a low pass filter which, at a few kilohertz gives negligible attenuation, but at v.h.f. virtually eliminates all the carrier and sum frequencies. This low frequency signal is passed to the base of '15.1 and is large enough to give a comparatively square wave output on its collector. This square wave is fed by ('5 on its collector. This square wave is fed by (IC2) and through the attenuation of R123 and R24. The resulting effect is a quick response to an increasing frequency but a slow decay following a reduction of input frequency.

An audio tone of approximately 400Hz for the transmitter is generated by IC2 which is a conventional Wien bridge oscillator. With C9 equal to C9, R21 equal to R22 the frequency is determined by the formula:

\[f = \frac{1}{2 \pi C R} \]

For sinusoidal output, the circuit must not become over
driven and needs to have a loop gain of three. This is set by the feedback circuit R23 and the lamp. As the output starts to rise, more voltage appears across the lamp and the filament gets hotter, increasing its resistance. This increases the proportion of the output fed back and reduces the overall loop gain, thereby keeping the output constant.

The relationship between the input frequency and the output voltage on pin 10 is set by the combination of C6 and the total resistance of R15 plus that set on R17. Capacitor C7 is made comparatively large and since the circuit works on the charge 'pump' principle, it provides integration of the signal to be fed to the output. The resulting effect is a quick response to an increasing frequency but a slow decay following a reduction of input frequency.

Since the transmitter under test is being modulated with an audio sine wave, the output of the circuit will respond quickly to the positive peak of the deviation and will not fall before the next positive peak of deviation.

The output circuit of IC1 is a buffering amplifier and setting it to unity gain by linking pin 10 to 5, it is able to drive the dual range voltmeter circuit M1, R18 and R19.

The circuit being used and biased as described in the manufacturers instructions.

The output circuit of IC1 is a buffering amplifier and setting it to unity gain by linking pin 10 to 5, it is able to drive the dual range voltmeter circuit M1, R18 and R19.

An audio tone of approximately 400Hz for the transmitter is generated by IC2 which is a conventional Wien bridge oscillator. With C9 equal to C9, R21 equal to R22 the frequency is determined by the formula:

\[f = \frac{1}{2 \pi C R} \]

For sinusoidal output, the circuit must not become over

Fig. 1: Full circuit diagram of James G0TFP's "simple" Deviation Meter.

Fig. 2: The author's prototype Deviation Meter (see text).
suitable for direct connection to the transmitter microphone input. The level in either case is set by R24.

Choice Of Meter
The choice of meter, M1, is not critical, any value of moving coil ammeter between 50µA and 5mA will do. For ease of remariking, a scale of 5 or 2.5 main divisions would be best.

Also, to give an accurate range between 5kHz and 25kHz, R18 should be four times the total resistance of R18 plus the resistance of the meter coil. The total resistance of the full combination of R18, R19 and the meter coil resistance should be chosen using Ohms law to give approximately 450V across the network for full scale deflection current of the meter.

(Full scale voltage of this circuit is not critical since the calibration is made in terms of deviation frequency using R17 as will be described later).

Suggested Layout
Suggested layouts are shown in Fig. 4 and Fig. 5 and the wiring of the panel components is taken from the full circuit diagram in Fig. 1.

The two banks of load resistors, R1 to R6, are mounted directly onto the coaxial plugs and the earth tabs keeping the leads as short as possible. One resistor in each bank is wound with three turns of plastic covered wire leaving long ends to be twisted and brought through the grommeted holes to the mixer board.

Each resistor bank is screened using a thin aluminium sheet which is cut carefully to make a tight fit with the lid and bottom of the box. If a box with circuit board guides is used only with the joint between the dividing piece and the main screen needs to be fixed with nuts and bolts, the mixer board is wired and mounted on short pillars in the box.

The rest of the circuit and components are mounted on the lid and wired to the suggested layout in Fig. 5 to avoid the screened load compartments. The battery is fitted into a 25mm Terry type tool clip and held into place by an elastic band across the open ends of the clip.

If the speaker has no mounting lugs it can be held in place using three countersunk headed screws round the outer edge of the speaker and the edge of the speaker frame trapped by using large plain washers under the nuts (a mark of having been drilled to let the sound out).

Since in use, the microphone of the transmitter under test will be placed directly over the speaker - a piece of thin foam should be placed over the matrix of holes or a ring of soft rubber glued round the circumference of holes. This is needed to prevent unwanted vibration or other hand induced noise affecting the transmitted sound and giving inaccurate results.

Once the components are all mounted and the interconnections between the components wired as far as possible a careful wire check should be made. Finally, the main circuit board is wired in with wire long enough to allow access to both sides of the circuit board and the panel components, the probable best position over the meter and speaker.

Careful Inspection
After a final (careful) inspection and wire check, the battery is connected. Set R17 and R24 fully anticlockwise.

Construtional lay-out using Veroboard
Readers wishing to build their own Deviation Meter using Veroboard rather than designing their own printed circuit board lay-out can obtain (free of charge) the photocopied layout of the matrix board lay-out used by the author. To receive the photocopies please send an A5 self-addressed stamped (26p) envelope to the Editorial offices marked as Deviation Meter Details.

S3 open (25kHz position), S2 to mid position (i.e. off) and switch on S1. The i.d. should light up, showing that the power is on.

Set S2 to the LS position and advance R24. An audio note of approximately 400Hz should be heard. For the musically minded, this is approximately 'G' in the middle of the music scale.

The output of IC2 should be between 2 and 3V peak-to-peak. If an oscilloscope is set to hand, the level can be measured using a multi-range meter set to a.c. volts. Since this will read r.m.s., a reading between 0.7 and 1V should be indicated. If the level is outside these limits, increase the value of R23 to reduce the amplitude or vice-versa.

Set S2 back to 'off' and connect two transmitters to the two coaxial inputs. Set S3 to the 5kHz position and both transmitters to the same frequency and output powers of a watt or so. Switch on both transmitters and, although there may be a very slight meter movement, it should be basically at zero. Adjust one of the transmitters up or down 25kHz. The meter should now read and by adjusting R17 the meter can be made to read full scale of 25kHz.

If one of the transmitters can be set to smaller step changes, make the change and check that the meter now reads the set difference in frequency between the two. If a difference of 5kHz can be set, put S3 into the 5kHz position and check that the meter again reads full scale. This is now tested and calibrated for deviation measurements to be made.

Application
The transmitter to be tested and the one to act as the local oscillator are connected and switched on at power levels of a watt or so. Calibration at 5 or 25kHz may be carried out as described above.

Set both transmitters to the same frequency and place the microphone, of the transmitter on test, over the loud speaker. With S2 in the LS position adjust R24 to give a sound level equivalent to speaking into a microphone. The meter will indicate the maximum deviation from the centre frequency of the transmitter. If the automatic gain of the audio amplifier in the transmitter is working correctly, quite substantial adjustment of R24 will only produce a small change in meter reading.

If it's not practical to apply the microphone directly to the loud speaker, a lead can be made up with a connector to mate up with the transmitter microphone socket. A switch will probably have to be included connected to the microphone connector to replace the p.t.t. switch.

As a typical guide, an amateur transmitter on narrow band f.m. (n.b.f.m.) should give a deviation as measured of 25kHz. The deviation meter can also prove useful in comparing differences in transmitter output frequencies or such things as v.f.o. calibration, etc. PW

Component List

Resistors Fixed
1W 1% Carbon Film 150Ω R1-R6
0.25W 1% Carbon Film 1Ω R7, R8, R9
1Ω R10, R11, R12
1.5Ω R13, R14, R15
10Ω R16, R17
220Ω R18, R19
1K R20
2K R21, R22
3K R23
10K R24
22K R25
100K R26
220K R27

Capacitors 18V d.c. or greater
220µF Ceramic 01%, C1, C2, C3
270µF Ceramic 01%
0.1µF Poly 01%, C4, C5
0.22µF C6
1µF C7
1µF Electrolytic C8
470µF Electrolytic C9

Semiconductors
BAR28
1N5181/1N4148 B1
BC108 B2
LM2911N B3
LM386 B4

Miscellaneous
1.8V/55mA lamp (Tandy 272-1139). meter (see text), loud speaker - miniature 8Ω, two coaxial panel connectors with earth tags, mono jack socket, panel i.e., two SPST switches, DPDT centre off switch, 9V PP battery andmap connector, two metal box 110x190x25mm (approx) aluminium sheets for screen, knobs for variable resistors, wire, two small gummettes, pillars, nuts and bolts.

Practical Wireless, April 1999
Richard Newton G0RSN takes a long, hard look at the Alinco DR-M06TH 50MHz Mobile Transceiver and pits it against other rigs in order to give you a fair opinion of this "refreshingly easy to use" transceiver.

The 50MHz allocation is a band that I have seen grow in popularity since I was first licensed nearly ten years ago. More and more we see dedicated equipment come onto the market and it would seem most h.f. mobiles now have a 50MHz capability. But, if you do not hold an h.f. licence, then it's a little extravagant to purchase an h.f. mobile just to have access to 50MHz. Dedicated 50MHz multimode transceivers are still few and far between and the most inexpensive option still seems to be a transverter.

However, should you want f.m. only operation, then there are a few options open to you, one of which is the Alinco DR-M06TH. This is a dedicated 50MHz f.m. mobile transceiver, offering coverage from 50.000MHz to 54.000MHz. It gives you the choice between 2W and 20W r.f. output. The radio is pleasing to the eye and is finished in black metal and dark grey plastics. It appears to be well made and is supplied with a fairly comprehensive handbook, which wasn't the most comprehensive or easy-to-read manual I've ever seen, but it was functional.

The DR-M06TH Features

The DR-M06TH has most features of a modern mobile radio. The radio has 100 memories, CTCSS encode for repeater access (however CTCSS decode for coded squelch is an optional extra). It will scan the v.f.o. range and it will also scan memories.

The transceiver also has a priority channel monitoring. It can be set in either memory or v.f.o. and will keep a listening watch on either the last selected memory or the last selected v.f.o. frequency. (I used this to monitor the local chat frequency and the Calling frequency at the same time).

All the controls for the DR-M06TH are on the front panel. A bright orange button controls the radio power "On/Off" and two well-proportioned rotary knobs control Squelch and volume. A larger rotary knob controls the tuning through memories and v.f.o. range - this is also used when setting up options such as the variable tuning steps and repeater offset. Push buttons then control the other functions.

Sensibly Laid Out

The controls are well labelled and sensibly laid out. However, speaking as a mobile operator, I found that the priority given to some controls were not as I would have expected. Most controls have two functions, a primary use and a secondary use. On the DR-M06TH, the 'F' key is the key that one depresses to gain access to a button's secondary use.

Most control keys were all right, for example, the 'Reverse' key was given priority, the secondary function on this key being the 'Priority Monitor' function. However, the 'Tone Squelch' and 'Lock' facility shared a control button - in this case, the 'Lock' got secondary place.

My personal preference is that an operator should be able to 'Lock' and 'Unlock' a mobile radio with the ease of one button operation. The CTCSS tones would be mostly used for repeater access, this could easily and most conveniently be placed in memory in any case and should have been given the secondary place.

Another example of what I considered to be incorrect prioritising of controls on the DR-M06TH...
was the 'Time out Timer' being given primary status over the 'Shift' facility on a button. The only other one that perplexed me was that 'High' and 'Low' power selection took second place to MHz tuning. (However, I accept that these criticisms amount to personal preference and not everyone may agree with me).

The DR-M06TH was refreshingly easy to use, the controls are kept to a minimum without losing the effectiveness of the radio. The memories were very easy to programme and due to the good labelling and ease of operation, the DR-M06TH was up and running and programmed with all the memories that I wanted within about half an hour of me unpacking it.

Out And About

Having programmed the DR-M06TH, I decided to give it a go 'out and about' on the air. It was a mobile radio, so the obvious place for me to put it was in my car.

Due to an ever-growing family - in size and not actual numbers - my wife, Diane and I 'invested' (Hmmm) in a newer and larger car recently. I only mention this in order to illustrate that I can now empathise with those owners of modern cars, who cry: "Where on earth do I put my mobile radio!?" The Alinco DR-M06TH is, as I have mentioned, a compact little unit - this helped in finding a spot.

The Alinco shows the standard type snap-in d.c. power connector found on most v.h.f. and u.h.f. mobiles. I managed to install it into my car quite easily, using existing wiring for my existing 144/433MHz mobile. This meant that the whole operation took about an hour. This did NOT include the considerable negotiation stage with Diane!

I connected the DR-M06TH up to my antenna and positioned it for 50MHz. I get an s.w.r of 1:3:1. I set all this up with Terry G7VJJ lending a hand. We did it, believe it or not on Christmas Day! What dedication!

On Boxing Day, we all set off to visit my Mum and Dad in Minehead, Somerset. On the first leg of the journey I had arranged to call Terry G7VJJ who was set up at home using a Trio 9000 144MHz multi-mode transverter into a W2000 tri-band antenna. Terry and I managed a contact on 50MHz.

Terry gave the radio a good audio report saying that it 'sounded very good'. However, we did lose contact after a relatively short distance, probably only about four to six kilometres.

On the journey, I was talking to my dad (John G8EAM) via the Wells repeater, GB3WR, on 145MHz. I mentioned that I was monitoring 50MHz, I gave the frequency I was monitoring and stated that I was in the Yeovil/Ilminster area. (HINT, HINT!). With that, a booming signal came in on the DR-M06. It was Dave, G4JXK who had monitored my conversation on GB3WR and had been kind enough to answer my plea for a contact.

I was just entering the Ilminster by-pass and Dave said he was in Barrington, some six kilometres north of the town. I would estimate we were about 12km away from each other. Dave was a wonderful signal and said I was 'a good strong signal' with him. The received audio on the DR-M06TH is really very good. We had a very pleasant contact. I eventually lost contact with him in a little village called Henlade, a distance of about 14km.

During my conversation with Dave, I mentioned that I had only managed a short haul with Terry earlier in the journey. Dave told me that this did not surprise him too much as 50MHz often did this. This seems to be where it differs from 144MHz. He told me that medium and long distance can be a lot easier on 50MHz. DX is also a lot more of a possibility given the right conditions. It has to be said that most intercontinental DX will be found on side band.

Later in my journey I was contacted by my brother, William G7GMZ, on 50MHz. William was operating my Dad’s set up in Minehead. The set up there is, again, a W2000 base station vertical antenna connected to an Icom IC-551D 50MHz multi-mode transceiver.

William and I tied up at a distance of about 27km. Dave’s wisdom was then confirmed as I heard him call...

Continued on page 25...
Universal Radio Communications trading as:

Unicom

112, Reculver Road, Beltinge, Herne Bay, Kent CT6 6PD

 MAIL ORDER HOTLINE ★

01227 749038

• All major credit cards accepted • Prompt Despatch •

FT-100

• HF - 6 - 2 - 70cm
• 100W HF & 6M
• DSP filters & equaliser
• SSB, CW, AM, FM, AFSK
• Packet (1200/9600) ready
• Built-in memory keyer
• CTCSS & DCS for FM
• 300 memories
• Dual VFOs
• Two antenna jacks

IC-706MkIIIG

• HF to 70cm band coverage
• DSP filters
• High stability transmitter
• 107 memory channels
• Tone squelch as standard
• Narrow FM capable
• Simple operation

DX-70TH

• HF & 6M coverage
• 100W HF & 6M
• SSB, CW, AM, FM, Speech processor
• Full break-in on CW
• CTCSS encoder
• 100 memories
• Narrow filters as standard
• Separate antenna jacks
• All mode squelch

PHONE

for latest prices

A Selection from our extensive range of pre-owned stock

<table>
<thead>
<tr>
<th>HF Transceivers</th>
<th>70cm</th>
<th>Receivers & Accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-725 FM</td>
<td>IC-471E M/mode base 12VDC</td>
<td>Kenwood R5000 Hf / VHF</td>
</tr>
<tr>
<td>IC-725</td>
<td>FT-780R M/mode mobile 10W</td>
<td>Yaesu FC700 Hf ATU</td>
</tr>
<tr>
<td>IC-725 100W 12V DC</td>
<td>FT-790R M/mode portable 1W</td>
<td>Tokyo HF-66V 6M linear 60W</td>
</tr>
<tr>
<td>IC-730 100W 12V DC</td>
<td>AT-48 Handheld, keypad</td>
<td>NR NB-30W 2M linear 30W</td>
</tr>
<tr>
<td>FT-290 Multi-mode inc Mutec f/e</td>
<td>IC-32AT 2M / 70cm handheld</td>
<td>Microset PT1012 12A PSU</td>
</tr>
<tr>
<td>IC-290</td>
<td>IC-471E Mutec</td>
<td></td>
</tr>
<tr>
<td>IC-370</td>
<td>TR-751E M/Mode mobile</td>
<td></td>
</tr>
<tr>
<td>IC-211E</td>
<td>TR-751E Mutec</td>
<td></td>
</tr>
</tbody>
</table>

For full list, please phone, fax or e-mail us or visit our web site: www.cqdx.co.uk/unicom

FOR ALL YOUR COMMUNICATION NEEDS

Practical Wireless, April 1999
...continued from page 23

in and speak to William, I could hear Dave but he could only just hear me down in the noise.

Experience & Journey?

My experience on the journey showed me that 50MHz was a lot different to 145MHz. I was still a little concerned about the way the DR-M06TH was behaving. I was not sure whether it was the radio, the antenna system or just the way 50MHz is.

So, in order to allay my fears I decided to do some comparisons. The only other radios I had access to with 50MHz was William's Icom IC-706 MKI and Dad's Icom IC-551D - a dedicated 50MHz multi-mode.

William and I went on an expedition to Selworthy Beacon, a high point overlooking the Bristol Channel. We used the same antenna and switched between IC-706 and the DR-M06TH. My Dad, John G8EAM, helped from base camp and gave several reports. It was difficult to get a true comparison on transmit because of different power outputs, however, the Alinco compared very favourably with the Icom IC-706 MKI on receive. The IC-706 MKI has three receive settings, Attenuated, normal and pre-amp. The Alinco DR-M06TH out-performed the '706 on receive on the first two settings, the received signal on the Alinco compared very favourably with the Icom IC-706 MKI on receive. The IC-706 MKI has three receive settings. Attenuated, normal and pre-amp. The Alinco DR-M06TH out-performed the '706 on receive.

As a last test of the radio on the air I went back to Dad's shack and connected it to the W2000 Tri-Band vertical for 50/144/433MHz. Using a coaxial switch we switched between his 551D and the Alinco DR-M06TH.

I tuned the band and put out some calls with little success. Eventually I heard a QSO in progress and politely called in. Dave G3ZXX/M and Jeff G7SSG welcomed me in. Dave was at the site of a proposed 50MHz repeater, GB3WX. He was doing some tests for coverage, so this became rather a mutual help session with reports flying to and fro.

Dave was in a car with a quarter wave antenna near to Wincanton. Jeff was a base station also in the Wincanton area, this was distance of about 80km. Both Dave and Jeff gave the DR-M06TH a very good report on signal strength and audio quality. This was a very pleasing and interesting contact to complete my on-air tests. Again, a comparison with the '551D on transmit was difficult because of too many variables. Direct comparison with the received signals showed that there was no discernible difference between the two radios.

With any fears I may have had completely allayed, I consider the Alinco DR-M06TH represents good value for money. I was very pleased with it in comparison with the other 50MHz radios I could find. The receiver seemed sensitive and the 20W output was a good solid output power that meant that I made contact with everyone I heard and called.

If you are happy with f.m. only, the Alinco DR-M06TH is a convenient and relatively inexpensive way of getting on a band that is gathering momentum. Repeaters are slowly appearing and over the last few reviews I have done on 50MHz equipment I have noticed more 'Nets' appearing. Sometimes these 'Nets' can cover quite a large area.

The DR-M06TH is a well made, easy to operate, smart looking unit. It seemed to work well as both a mobile and a base station and always got complementary reports on the transmitted audio.

My thanks go to Nevada, 189 London Road, North End, Portsmouth PO2 9AE, Tel: (01705) 662145, for the loan of the Alinco DR-M06TH for review. The price of the transceiver is £249.95 including VAT plus £8 for next day delivery.

Richard gave the Alinco DR-M06TH a reviewer's score of six out of ten!
Please mention Practical Wireless when replying to advertisements

RADIO WORLD

(WEST MIDLANDS)

37 COPPICE LANE
CHESLYN HAY, WALSALL
WEST MIDLANDS WS6 7HA

WE ARE 5 MINS AWAY FROM J11 M6

TELEPHONE SALES ON:
01 922 41 47 96

Ask for Dave (G1LBE)
Open 7 days per week till 7.00pm

WEB SITE
http://freespace.virgin.net/radio_world
E-mail
radio_world@virgin.net

There is NO CHARGE for using credit cards

WANTED
USED EQUIPMENT
PX WELCOME
BEST PRICES PAID!

Main dealers for Alinco, Icom, Yaesu & Kenwood
Manufacturers warranty on all new equipment

There is NO CHARGE for using credit cards

WE STOCK ALL ACCESSORIES FOR THE MAIN BRANDS DISCOUNTED BY 10%

PRICE MATCH
Up to 5% extra discount may be available on selected items.

Microphones - Icom
SM6 ohm, 8 pin, desk mic. £59
SM8 1.9/600 ohm selectable, 8 pin desk mic. £100
SM20 800/1600 ohm, 8 pin, deluxe desk mic. £100

Speakers - Icom
SP20 base station loudspeaker with audio filter. £125
SP21 base station loudspeaker. £125

Microphones - Kenwood
C-60A dual impedance desk mic internal pre-amp. £190

Yaesu FT-847 options
ATAS active tuning ant system £224
FC-20 automatic ant tuner £197
MD-100 40/50/80 4m Mechanical filter £169
YF-1150D 10/20/40/80 4m Collins Mechanical filter £169
We also stock all makes of antennas- Cushcraft, Diamond, Sirio, Watson, Pro-Am, etc.

FT-920AF
HF & 6m built-in tuner with FM & FREE AM/FM filter. £1199

FT-1000MP AC
Dual Receiver. Digital 100W Competition radio. £2499

FT-VX 1R
VHF/UHF Handle. Micro small. £199

IC-T8E
Triple bander. 5W output. Military spec. £299

IC-706G
HF 6m, 2m, 70cm £1099

IC-746
HF, 6m, 2m 100W, 100W, 100W with tuner built in. £1395

FT-847
The new mobile-base. DSP HF 2m-70cm 50MHz. £1499

IC-T22E
2m handle 5W, £185

FT-100
HF 6m/2m/70cm extra small mobile. Information to follow.

TM-G707
The new mobile package with features: High visibility display, 5-in-1 programme memory, memory name function, multiscan facility & built-in CTCSS. £299

IC-T22E
2m handle 5W, £185

DX-70TH
HF+6M £666

DR-M06
6M MOBILE 20W £215

DR-140
2M mobile 50W £220

DR-430
Mobile 70cm £220

DJ-G5
2M/70CM handle £237

FT-870D
Still the only true DSP radio with TX, Eq, N/R. £1699

ICOM

ICATION

YAESU

KENWOOD

ALINCO

DX-70TH
HF+6M £666

DR-M06
6M MOBILE 20W £215

DR-140
2M mobile 50W £220

DR-430
Mobile 70cm £220

DJ-G5
2M/70CM handle £237

TS-720
Still the only true DSP radio with TX, Eq, N/R. £1699

TS-870
Still the only true DSP radio with TX, Eq, N/R. £1699

TS-870D
Dedicated HF mobile-base DSP with built-in tuner. £899

TH-G71E
Full 5 Watts power. Wide band receive. £239

FT-920AF
HF & 6m built-in tuner with FM & FREE AM/FM filter. £1199

FT-1000MP AC
Dual Receiver. Digital 100W Competition radio. £2499

FT-VX 1R
VHF/UHF Handle. Micro small. £199

IC-T8E
Triple bander. 5W output. Military spec. £299

IC-706G
HF 6m, 2m, 70cm £1099

IC-746
HF, 6m, 2m 100W, 100W, 100W with tuner built in. £1395

FT-847
The new mobile-base. DSP HF 2m-70cm 50MHz. £1499

IC-T22E
2m handle 5W, £185

FT-100
HF 6m/2m/70cm extra small mobile. Information to follow.

PRICE MATCH
Up to 5% extra discount may be available on selected items.

We also stock all makes of antennas- Cushcraft, Diamond, Sirio, Watson, Pro-Am, etc.

Microphones - Kenwood
C-60A dual impedance desk mic internal pre-amp. £106
MC-85 electret desk mic with pre-comp. £125
MC-80 desk mic for DSP transceivers. £199
Speakers - Kenwood
SP-23 station loudspeaker for TS-400/600/770. £82
SP-31 station loudspeaker for TS-850/857. £1450
SP-900 station loudspeaker for TS-990DX. £96

FT-870D
Dedicated HF mobile-base DSP with built-in tuner. £899

TH-G71E
Full 5 Watts power. Wide band receive. £239

FT-920AF
HF & 6m built-in tuner with FM & FREE AM/FM filter. £1199

FT-1000MP AC
Dual Receiver. Digital 100W Competition radio. £2499

FT-VX 1R
VHF/UHF Handle. Micro small. £199

IC-T8E
Triple bander. 5W output. Military spec. £299

IC-706G
HF 6m, 2m, 70cm £1099

IC-746
HF, 6m, 2m 100W, 100W, 100W with tuner built in. £1395

FT-847
The new mobile-base. DSP HF 2m-70cm 50MHz. £1499

IC-T22E
2m handle 5W, £185

FT-100
HF 6m/2m/70cm extra small mobile. Information to follow.

PRICE MATCH
Up to 5% extra discount may be available on selected items.

Microphones - Icom
SM6 ohm, 8 pin, desk mic. £59
SM8 1.9/600 ohm selectable, 8 pin desk mic. £100
SM20 800/1600 ohm, 8 pin, deluxe desk mic. £100

Speakers - Icom
SP20 base station loudspeaker with audio filter. £125
SP21 base station loudspeaker. £125

Microphones - Kenwood
C-60A dual impedance desk mic internal pre-amp. £106
MC-80 electret desk mic with pre-comp. £125
MC-85 electret desk mic with pre-comp. £125
MC-80 desk mic for DSP transceivers. £199
Speakers - Kenwood
SP-23 station loudspeaker for TS-400/600/770. £82
SP-31 station loudspeaker for TS-850/857. £1450
SP-900 station loudspeaker for TS-990DX. £96

We also stock all makes of antennas- Cushcraft, Diamond, Sirio, Watson, Pro-Am, etc.

PRICE MATCH
Up to 5% extra discount may be available on selected items.

Microphones - Icom
SM6 ohm, 8 pin, desk mic. £59
SM8 1.9/600 ohm selectable, 8 pin desk mic. £100
SM20 800/1600 ohm, 8 pin, deluxe desk mic. £100

Speakers - Icom
SP20 base station loudspeaker with audio filter. £125
SP21 base station loudspeaker. £125

Microphones - Kenwood
C-60A dual impedance desk mic internal pre-amp. £106
MC-80 electret desk mic with pre-comp. £125
MC-85 electret desk mic with pre-comp. £125
MC-80 desk mic for DSP transceivers. £199
Speakers - Kenwood
SP-23 station loudspeaker for TS-400/600/770. £82
SP-31 station loudspeaker for TS-850/857. £1450
SP-900 station loudspeaker for TS-990DX. £96

We also stock all makes of antennas- Cushcraft, Diamond, Sirio, Watson, Pro-Am, etc.

PRICE MATCH
Up to 5% extra discount may be available on selected items.
Due to our success, we have now opened a Service Department to give our customers excellent after-sales service.

- All types of repairs undertaken and carried out by experienced staff
- Original manufacturers spares fitted
- Alignment and calibration using ‘state-of-the-art’ equipment
- All repairs guaranteed
- Modifications undertaken
- We aim to turn around repairs within 7 working days at very competitive rates

FINANCE NOW AVAILABLE. PHONE FOR DETAILS!

USED EQUIPMENT PRICE LIST

<table>
<thead>
<tr>
<th>MAKE</th>
<th>MODEL</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALINCO</td>
<td>DJ-G5</td>
<td>£200.00</td>
</tr>
<tr>
<td>AOR</td>
<td>7030 General Coverage Remote</td>
<td>£500.00</td>
</tr>
<tr>
<td>ICOM</td>
<td>IC 706 Mk1</td>
<td>£599.00</td>
</tr>
<tr>
<td>ICOM</td>
<td>IC 735 General Coverage</td>
<td>£425.00</td>
</tr>
<tr>
<td>ICOM</td>
<td>IC W32E Dual Band Handle</td>
<td>£200.00</td>
</tr>
<tr>
<td>ICOM</td>
<td>IC 680 Base Dual Bond</td>
<td>£675.00</td>
</tr>
<tr>
<td>ICOM</td>
<td>IC 271E MULTI/MODE</td>
<td>£590.00</td>
</tr>
<tr>
<td>ICOM</td>
<td>IC 781 TOP HF</td>
<td>£1,995.00</td>
</tr>
<tr>
<td>ICOM</td>
<td>IC 970H P/S WIDE RECEIVE 900M/Hz</td>
<td>£1,495.00</td>
</tr>
<tr>
<td>ICOM</td>
<td>SP-20</td>
<td>£80.00</td>
</tr>
<tr>
<td>ICOM</td>
<td>IC 706 MK 11</td>
<td>£650.00</td>
</tr>
<tr>
<td>ICOM</td>
<td>IC 575A 90Hz BASE</td>
<td>£575.00</td>
</tr>
<tr>
<td>ICOM</td>
<td>IC 271E MULTI-MODE 2M BASE</td>
<td>£395.00</td>
</tr>
<tr>
<td>ICOM</td>
<td>IC 751A</td>
<td>£495.00</td>
</tr>
<tr>
<td>ICOM</td>
<td>IC 756 HF + 6M</td>
<td>£1,195.00</td>
</tr>
<tr>
<td>ICOM</td>
<td>IC 970H TOP UHF/VHF BASE + 800M/Hz</td>
<td>£1,495.00</td>
</tr>
<tr>
<td>ICOM</td>
<td>IC 706 MK 1</td>
<td>£550.00</td>
</tr>
<tr>
<td>ICOM</td>
<td>IC 2710 TOP DUAL BANDER</td>
<td>£295.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>R5000 Receiver + Converter</td>
<td>£500.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>TS 770D DSP General Coverage</td>
<td>£750.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>TS 670 7-21-28-50MHz Base</td>
<td>£425.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>TS 930 SAT BOXED</td>
<td>£675.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>TS 1405 0-30 RX TX</td>
<td>£400.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>MC-90 DSP MIC</td>
<td>£100.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>SP-930 SPEAKER</td>
<td>£60.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>TH-70E DUAL BANDER</td>
<td>£195.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>MC-90A DESK MIC</td>
<td>£70.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>TS-440 SAT "MINT"</td>
<td>£595.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>TS-771i DUAL BAND HANDIE</td>
<td>£200.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>TS-870S</td>
<td>£1,395.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>TS-950 SD</td>
<td>£1,450.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>DSP-100 DSP UNIT</td>
<td>£295.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>TS-870 SAT 0-30 DSP</td>
<td>£1,200.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>TS-850 SAT 0-30</td>
<td>£895.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAKE</th>
<th>MODEL</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>KENWOOD</td>
<td>TL-922 HF AMP</td>
<td>£950.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>R-5000 RECEIVER WITH CONVERTER</td>
<td>£650.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>TS-450 SAT 0-30</td>
<td>£650.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>AT-300 OUTDOOR ATU</td>
<td>£260.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>TS-440 SAT</td>
<td>£500.00</td>
</tr>
<tr>
<td>MFJ</td>
<td>989C ANTENNA TUNER 3KW</td>
<td>£250.00</td>
</tr>
<tr>
<td>MFJ</td>
<td>986 ANTENNA TUNER</td>
<td>£180.00</td>
</tr>
<tr>
<td>SISKIN</td>
<td>TINY-11 PACKET CONTROLLER</td>
<td>£80.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>SAGRA 600 750WATT 2M AMP</td>
<td>£575.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT 8500 Dual Band</td>
<td>£325.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT 890 Hz Gen "as new"</td>
<td>£600.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT 840</td>
<td>£500.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT 290 2m Multi Mode</td>
<td>£195.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT 290 2m Multi Mode</td>
<td>£225.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT-1000 MP AC LATE SERIAL No. 8F DISPLAY</td>
<td>£1,695.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT-767 HF GEN COV + 2M + 6M</td>
<td>£750.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT-6100 DISPLAY</td>
<td>£295.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT-820</td>
<td>£975.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT-10 2M HANDIE</td>
<td>£125.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT-11 2M HANDIE</td>
<td>£140.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT-757G/11</td>
<td>£450.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT-620 FM "88"</td>
<td>£1,099.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT-738R 270/6</td>
<td>£950.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT-738R 270/61.2GHz</td>
<td>£1,099.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT-990AC</td>
<td>£895.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT-677 EX-DISPLAY</td>
<td>£1,275.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT-107M + PSU</td>
<td>£400.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT-8850 HOME BASE</td>
<td>£495.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>SP-102 SPEAKER</td>
<td>£50.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FRG-100 MINT CONDITION WITH PSU</td>
<td>£350.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT-790R MK11 10cm</td>
<td>£325.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FRG-8000 + CONVERTER</td>
<td>£325.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT-1000D 200Watt</td>
<td>£1,795.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT-920 DSP 0-30</td>
<td>£850.00</td>
</tr>
</tbody>
</table>

Practical Wireless, April 1999
Looking back over the years to the early 1960s I've got to admit that I always fancied a Perdio 'Town & Country' receiver. It covered 1.8MHz ('Top Band' and the old 'Trawler Band' up to about 6MHz, I believe). And it appears that quite a few readers have receivers of this type and version which require 'hotting up'.

The older British made receivers are joined by the huge number of Russian made Vega receivers (the types using the 'turret tuner and built like the proverbial tank') alongside the cheaper 'multi-band' receivers that are often seen advertised as 'special offers' in the national newspapers - particularly in the weekend supplements.

The Problems

Some of the problems the readers are finding with the type of receiver mentioned involved interference, overloading on external (longer) antennas and difficulty in tuning. Additionally, several have written to me saying that they've tried to use 'good quality' portable long and medium wave receivers in conjunction with the 'Radio Basics' 3.5MHz to 1MHz converter (with little success). Let's look at interference first. The most common source of interference is particularly for the h.f. broadcast band listener and those looking for weaker signals to get over the 'timebase' (the line which is generated by the cathode ray tube). Timebase signals can be heard throughout the broadcast bands right up to 30MHz in some cases. They can penetrate through walls and radiate signals strong enough for TV 'Detector' vans to receive up to 3km away from the TV set! So, if you're near to a TV (many flat dwellers have this problem from neighbour's TVs) and want to listen to long, medium or short waves what can you do?

The answer is first: run the receiver from a battery source if possible as much radiation comes through the mains. Secondly, place your receiver as far away from the TV set as possible. Thirdly, whenever possible use a receiver with a screened metal case in conjunction with an external (screened input lead) antenna. Additionally, although I know it's difficult for many people to persuade others in the house to switch off the TV - it's quite surprising just how many people have the TV on when they're not watching - try asking! I do the same myself sometimes.

Other forms of interference come from sources such as thermostat, central heating ignition systems, fluorescent lights, motors and other household appliances. Two of the problems that can be very difficult - especially if you have limited experience - the problems can be dramatically reduced by operating your receiver from a non-mains source. It's often the easiest and most economical way of reducing mains borne interference - especially if short-wave bands in the evenings. Fortunately for him, we were soon able to discover the cause and it was very easy to overcome. One of the first questions I asked the reader was 'Do you have fluorescent lights in your radio room?' The answer was very positive: 'No ... I won't have them in the house other than in the kitchen'.

Puzzled (mainly because the interference sounded so much like that from fluorescent tube) I asked some more questions. Finally we discovered the problem - the reader had fitted the relatively low powered so-called 'economy light units' which are mostly miniature (coiled tube) fluorescent lamps. Even the mere modern loudness of the kind the reader had can be a potent source of interference close up. However, those of European manufacture are much better. But don't be fooled - they are still fluorescent tubes in disguise and can still radiate interference. In my opinion you're better off with a standard incandescent (filament) type of bulb built in your radio room.

Overloading Antennas

One of the other troublesome problems is the overloading caused by smaller receivers by the connection of external antennas. Many 'Radio Basics' receivers have run into this annoying difficulty - especially after they've gone to the trouble of erecting what they consider to be a good outside antenna.

For example, of improved reception "everything went haywire" one reader wrote in to say (his letter joined many others on the same topic). He went on to explain that all he's done was to connect the new antenna directly into the 'external antenna' socket of his older receiver. "What was wrong in doing that?" he asked me.

In answer I had to tell him that the problem was caused by the receiver being overloaded by the tremendous increase in signal levels. In fact, the reader whose letter I'm quoting from said "I could even hear my local commercial medium wave station on top of everything else I was receiving".

Unfortunately, what the reader described in his letter was obviously overloading and what it
referred to as 'cross modulation'. The effect is - unfortunately - impossible to eradicate on simpler receivers, but you can easily modify the way you feed the signals into the radio, thus making a compromise between getting better reception and minimising the overloading and cross modulation.

The simpler receiver, Fig. 1, is available in many forms and from various manufacturers (I've got a very similar version marketed by Philips). It is in fact quite sensitive, but when connected to an external wire antenna of more than three metres long, can easily overload the receiver with strong signals from the band you're listening on together with transmissions from other bands. However, it's very easy to 'attenuate' the incoming signal somewhat, without losing all the advantages of the external antenna, by actually wrapping the external antenna's wire (I'm assuming you will use insulated wire for the external antenna) round the telescopic whip antenna for approximately four to six turns. This will make a remarkable difference - try it and see!

(If you want to be really clever (providing you have access to a good external earth connection you can then attach the previously un-connected end of the external antenna to earth. This will prove a crude 'transformer' action and will help reception further.)

Antenna tuning units (a.t.u.s) can help minimise strong 'out of band' signals but require a receiver fitted with 'external antenna and earth' connections. A suitable (receiving only) design which appears in 'Radio Basics' very soon as I realise that many of you will find it to be of great help improving reception.

Tuning Difficulties

Most readers using simpler receivers, particularly those with analogue tuning (the traditional tuning scale with mechanical drive and moving tuning scale indicator) report that they find that they have tuning difficulties. In other words - the tuning range is too high (fast, or 'coarse' are other common terms) for the narrow frequency segments needed to listen to Amateur Radio and even f.h. broadcasting transmissions.

The 'Steepletone' receiver, Fig. 2, has a much larger tuning range (i.e. a wider tuning scale) which is useful to provide some bandsplarding. Usually achieved by incorporating a small set of variable capacitors (connected in parallel) with or within the main tuning capacitors and operated by a concentric or separate control). However, because it is larger - it's not so portable as the radio in Fig. 1. You pay your money and take your choice!

Lack of 'bandsplarding' is always a problem on older/simpler receivers has always been a problem. In the old days (40 years or so ago) we often used to make larger tuning knobs (stick-on fibre or cardboard disks were popular) or even used 'Meccano' gearing! However, in all honesty I suggest that you don't modify existing receivers - it's not worth it in my mind and we've got an interesting project coming along soon to help in this area!

Resolving Signals

I was temporarily 'stuck' in choosing a heading for the next topic because it could also have been included under the heading of 'tuning difficulties'. However, on reflection I thought it best to address the queries under the chosen heading 'Resolving Signals'.

The signals to be resolved - or rather the signals that the listeners would like to resolve - are mainly Morse (c.w.) and single sideband suppressed carrier (normally referred to as s.s.b.) and narrow band frequency modulated (n.b.f.m.) signals. The first two (c.w. and s.s.b.) are relatively easy - provided your receiver is fitted with a beat frequency oscillator (to provide a 'local carrier' to create a 'beat note' to make an audible tone for the Morse signals or to 'artificially' reinsert the 'carrier' of the s.s.b. signals). See note below.

"(The s.s.b. signals we use nowadays are actually a specialised form of amplitude modulation. At the transmitter the a.m. signal is produced in the normal way, specially processed to remove (in practice, greatly) reduce the 'carrier' wave, and then - usually - the speech 'sidebands' (which are 'mirror images' of each other, just above and below the carrier frequency) are made available singly. This is because only one sideband (either the upper or lower sideband) is required for transmission and reception. This reduces the frequency bandwidth needed considerably and reduces the possibility of interference. The local 'carrier' (like the b.f.o.) then re-introduces the carrier so that the operator can resolve the speech into something resembling (very nearly) the original voice at the other end.

However, all is not lost if you don't have a b.f.o. fitted on your simpler receiver. Instead, you can use another radio or the 'Tunny Dipper' if you've built one for yourself to provide the b.f.o. signal quite easily!

All modern radio receivers contain a 'local oscillator' which is in effect a very low power transmitter. This can be demonstrated by switching on and tuning a receiver to the very top end of the medium waveband (preferably with a fairly weak transmission) and operate in this area."

Try it and see!

Fig. 2: There are many receivers - such as this 'Steepletone' - available in many forms and from various manufacturers. It has a much larger tuning range (i.e. a wider tuning scale) which is useful to provide some bandsplarding. Usually achieved by incorporating

station tuned in. Next, you should switch on and tune another receiver to the bottom of the medium waveband and slowly tune it up (higher in frequency, lower in wavelength) the scale until you hear a 'whistling' (beat) note on the first radio. What's happening is this: The first receiver is receiving the 'local oscillator' of the second receiver (operating approximately 456kHz above the incoming signal) and the two signals (that from the second receiver and that from the weakly received medium wave station) produce a 'beat note. It does require careful tuning - but will work very well provided the two radios are quite close and both have plastic cabinets, which as you now know, provide little screening and thus allows more of the local oscillator signals to 'escape' so we can use them to advantage.

Fortunately, you don't need two short wave receivers to get the 'external b.f.o.' effect. The local oscillators (this is usually a nuisance but is useful in this instance) radiate many harmonics and so it's possible to tune a receiver on the 3.5 or 7MHz band and gently tune the second medium wave receiver (placed close by of course) to produce a 'beat note' for Morse (c.w.) or to resolve s.s.b.

Resolving s.s.b. using the 'second set' method is not easy - but it is certainly easier than modifying a radio to incorporate a b.f.o. or making an external unit. Try it and see!

Finally, and briefly, I must mention another form of modulation is found on the CB radio bands just below the 28MHz band and also at the top end of the 28MHz band itself. Several readers wrote in and asked why - although they could tune the signal - there was so little audio, resulting in a very difficult-tohear transmission?

The reason behind the problem is that the detectors on your radio (unless equipped for n.b.f.m.) respond mostly to amplitude changes and not the frequency changes of n.b.f.m. With luck you can slightly 'tune' your receiver (switched to a.m.) and use what is called 'slope detection' to receive an audible audio signal.

Resolving n.b.f.m. on an a.m. receiver takes a bit more work - but it is doable - and older receivers usually get better results. Try this and see what happens - it's amazing what 'DX' signals you'll be able to hear on 28MHz. (I hope to describe a very simple 'Radio Basics' 28MHz a.m. receiver later on this year so watch this space!!)

Next Project

Next time I'm planning to describe an interesting project that will demonstrate excellent 'bandsplarding' for use on the narrow Amateur Radio bands, introduce a 'tunable' front end (fixed f.f. output) and a form of tuning which may be new to you - permeability tuning.

The project will provide good training and then I hope we'll be able to incorporate it into a simple receiver - to use on the band of your choice. Cheorio until then!
Brian Dance recalls his childhood memories, mainly of radio, at a time when electronics was easily carried out without a microscope and there were few applications other than radio!

"Boiling off the water to get the concentrated acid"

Our domestic home-built family receiver was a simple three valve battery receiver using valves with 2V filaments powered by a single cell lead-acid 'accumulator'. At that time, the mains supply was 230V d.c. I remember that when the supply in Birmingham was changed to 230V a.c. around 1938, the supply company had to provide a so-called 'eliminator' that produced a smoothed h.t. supply of about 100V.

A charger for 2V accumulators obviated the need to have two accumulators. This meant that one of them could be taken to a shop to be charged whilst the other was in use.

We also had a crystal receiver probably made in around 1920. I believe this was manufactured to a design approved by the General Post Office (GPO) to ensure that one could not receive any weak signals that the government did not wish anyone to hear! It had the usual 'cat's whisker', namely a small coil of springy wire with one free pointed end.

The free end of the whisker was made to press lightly on a crystal (which had a surface area of about 3 x 3mm) that was cemented in a metal holder. Both the 'cat's whisker' and the crystal mounting could be rotated and adjusted using the small insulated handles to which they were attached.

The handles were held by pillars about 20mm above an ebonite baseboard. Trial and error produced the most sensitive spot for rectification, but once this was found, family cooperation had to be sought so that no-one slammed a door!

Instead of the 'cat's whisker', two separate mounted coils were used. I found these crystals to be less sensitive and just as easily affected by vibration. Tuning was by a large multi-position switch connected to coil tappings beneath the baseboard together with a variable capacitor. Coupling could be increased by moving two large coils (each about 100mm high and about 2mm thick) so that their separation varied.

The whole receiver was fitted into a polished wooden box about 230 x 130 x 130mm with a deep lid. When opened, the baseboard was on top of the box and the lid had storage spaces for spare crystals.

Battery Version

A year or two before the Second World War, my father decided to construct the battery version of the 2TV00 receiver, the most advanced of John Scott-Taggart's well-known designs of that era. This was a t.r.f. receiver (tuned radio frequency) - meaning it was not a superheterodyne. The receiver employed valves with 2V filaments, mainly made by Hilvac and Mazda. A particularly inconvenient feature was the plug-in coils, two coils for each of the five wavebands (L.W., M.W. and three w. for about 8-30MHz reception).

Each coil was about 35mm in diameter and 90mm high. Wavebands were changed by opening the top lid, removing the two coils in use and replacing them with those for the wanted band. Unused coils were stored in a rack. The lower compartment contained a Stentorian speaker, accumulator and h.t. supply (eliminator or battery).

The antennas of this receiver fed directly into a 'triple extractor' (three adjustable tuned circuits designed to reduce the amplitude of any powerful signals). I remember my father often told us he could not get any sound when he switched on the receiver for the first time, but when he adjusted the triple extractor, the sound roared out.

Gain was low in frequencies in the 30MHz region (to be expected in a t.r.f. receiver, owing to the low r.f. antenna load), but the noise performance was good. Connections were by knurled screw terminals with no soldered joints.

We moved to a country cottage without mains power during the bombing of Birmingham in 1940. It was then that we had to obtain a very large 'triple capacity' h.t. battery for this receiver and had to resume taking accumulators to a garage to be charged until a mains supply was connected in about 1942.

Unfortunately, the 6-pin connectors at the base of the coils were not robust enough to withstand the rough handling I gave them when I was in my early teens, so my father replaced them with fixed coils for only L.W. use. He also fitted mains valves. I still have this receiver, but it's no longer used.

During my early teens, I spent much time experimenting in chemistry. I remember getting a large 2V accumulator filled with sulphuric acid (30% battery acid) and boiling off almost all the water to get my supply of the concentrated acid. I could not otherwise obtain this cheaply, as the shop was only allowed to sell it in an accumulator.

It cost ls 6d (about 7p) for about 15 litres. My parents doubtless found some relief when I changed to the cleaner, less smelly, hobby of electronics in 1949.

It was safer than chemistry - at least until I charged a 12pF capacitor to 3kV and nearly got my fingers across it! (When discharged with a screwdriver, the noise was like a gun).

Government Surplus

Large quantities of 'government surplus' parts were on sale from about 1948 in many shops in large cities. (Television came to the Midlands in about 1950 via the old 50MHz Band I v.h.f. service from Sutton Coldfield).

The school radio society made a receiver using government surplus parts with a VCR07 radar tube. This 6in round c.r.t. produced a small monochrome green picture - the room curtains...
had to be drawn for better viewing.

A friend made his own vision receiver, but did not have time to make a good sound receiver. In order to use it on the first night Sutton Coldfield transmitted, he quickly rigged up a super-regenerative receiver for sound and happily watched 'The Wireless Boy' on the first night.

The next day my friend heard that all radio shops in the area were inundated with complaints about television interference, so his super-regen was never used again. (I must be careful - he still reads PW.)

Audio Interest

My interests were more in the audio than in the television field when studying for Chemistry Degrees. So I made one of the famous Williamson amplifiers using separate large metal chassis for the power supply and for the amplifier itself. The amplifiers used two 6J5 triode valves in metal envelopes feeding a 6SN7 double triode phase-splitter stage. This fed a pair of 807 power output valves in push-pull. The metal 6J5s were later replaced with EF86 As low microphone valves with special heaters for minimum hum. The output end of the chassis was weighed down by a huge, heavy 'Savage' 28368 output transformer.

The mains transformer was a similarly heavy Admiralty surplus component rated at 525-0-525V, 550mA. Although far larger than needed, it was the only cheap one I could find at 17s 6d (87.5p).

I knew the transformer voltage was too high, but high power impressed me at that time. Nevertheless, I was surprised the 807 anodes glowed at a red heat before I modified the power supply!

I thoroughly tested the amplifier on square waves. It certainly performed well and I could watch music, especially Beethoven's symphonies, as variations in the blue glow of the mica insulators in the 807 valves under electron bombardment. (This was not a glow from between the electrodes which would have indicated a faulty tube.)

Radio Circuits

In the late 1950s, I spent much time experimenting with radio circuits, including variations of the Lamb noise silencer and started writing for PW and others, leading to my second career as a technical author. I then became involved with early germanium transistors in the early 1960s in my lecturing work.

Apart from their size and the lack of a heater, the main difference from valve circuitry was the far lower impedance. The control grid circuits of valves have impedances in the megohm range, whereas that of the early transistors were much lower.

An r.f. tuned circuit can be connected directly across the input to a valve. But almost all of the early germanium transistor receivers used coils with tappings. Another feature of transistors is that they normally fail catastrophically, whereas valves usually slowly deteriorate in performance as their emission falls. Obviously sudden failure may occur if stupid constructors allow the anodes to get hot!

I did considerable experimentation with tunnel diodes, but the two terminals of these devices offered no input-output isolation. So, there was a strong tendency to oscillate at various frequencies, but they were useful for my work in the nuclear field.

The availability of silicon planar transistors in volume from the 1960s followed by radio frequency i.c.s from the 1970s greatly simplified radio design. This was helped by high performance ceramic filters instead of conventional tuned circuits.

In spite of the high performance of modern highly miniaturised radio receivers, I have some regrets that you cannot experiment with them in the way you could in the 1950s and 1960s.

Whenever the subject of Tottenham Court Road, Edgware Road and Lisle Street are mentioned to Radio Amateurs over the age of 40 - the memories start flowing.

However, Peter Hyams GW4OZU has very special memories - his father ran one of the famous radio shops!
The RD500 - the new kind of radio receiver.

Now it is possible to have a receiver which not only holds your own station selections in memory, but has a complete knowledge of its spectrum. $4,700 station records can be stored and retrieved from the receiver itself, just type in a description, city, or the type of station you are looking for and the receiver finds the stations of interest to you.

The RD500 is a scanner and receiver, a versatile database system and a digital sound recorder/editor. It can tune in smooth 5Hz steps (or any step size), and has 9 scan bands, 8 scan modes, auto memory write, 99 skip frequencies, autotuning AFC, variable notch and peak filter, 60 level S-meter, F.E. noise blanker, cassette control, AVG, selectable AGC, pass band tuning, high selectivity, and sensitivity, world time clock/timer, tuning meter, variable stereo bandwidth (CV: Also includes 49 key alphanumeric remote, 12V PSU Harman Interface, and supports p.c. keyboards. Collins filters available.

Modes: AM/FM/USB/LB/WBFM/STEREO FM/Video TV sound/Sync AM/CW, and comips complete with Windows database editor and frequency list word processor software on CD.

What the magazines said: "Powerful, carefully arranged to be easy to use...How can I listen to CW again without stereo...A little more receiver...I enjoyed it immensely" JW (SWM). "Superb control facilities...Good selectivity" HRT.

Available direct or from major dealers. 2 Year Guarantee.

Price: £799 inc. postage

Web site http://www.fairhaven.demon.co.uk

Customer support: Tel: (01253) 302979

The RD500 is more than a scanner and more than just a receiver.

HF/VHF/UHF video/stereo/am/fm/ssb/cw sync modes 0 to 1750MHz. Built-in database. PC software. CD.

The RD500 - the new kind of radio receiver.

Now it is possible to have a receiver which not only holds your own station selections in memory, but has a complete knowledge of its spectrum. $4,700 station records can be stored and retrieved from the receiver itself, just type in a description, city, or the type of station you are looking for and the receiver finds the stations of interest to you.

The RD500 is a scanner and receiver, a versatile database system and a digital sound recorder/editor. It can tune in smooth 5Hz steps (or any step size), and has 9 scan bands, 8 scan modes, auto memory write, 99 skip frequencies, autotuning AFC, variable notch and peak filter, 60 level S-meter, F.E. noise blanker, cassette control, AVG, selectable AGC, pass band tuning, high selectivity, and sensitivity, world time clock/timer, tuning meter, variable stereo bandwidth (CV: Also includes 49 key alphanumeric remote, 12V PSU Harman Interface, and supports p.c. keyboards. Collins filters available.

Modes: AM/FM/USB/LB/WBFM/STEREO FM/Video TV sound/Sync AM/CW, and comips complete with Windows database editor and frequency list word processor software on CD.

What the magazines said: "Powerful, carefully arranged to be easy to use...How can I listen to CW again without stereo...A little more receiver...I enjoyed it immensely" JW (SWM). "Superb control facilities...Good selectivity" HRT.

Available direct or from major dealers. 2 Year Guarantee.

Price: £799 inc. postage

Web site http://www.fairhaven.demon.co.uk

Customer support: Tel: (01253) 302979

The RD500 is more than a scanner and more than just a receiver.

HF/VHF/UHF video/stereo/am/fm/ssb/cw sync modes 0 to 1750MHz. Built-in database. PC software. CD.

Scoop Purchase

For the digital satellite experimenter, not just a multiplier...

The RD500 is more than a scanner and more than just a receiver.

HF/VHF/UHF video/stereo/am/fm/ssb/cw sync modes 0 to 1750MHz. Built-in database. PC software. CD.

Scoop Purchase

For the digital satellite experimenter, not just a multiplier...

The RD500 is more than a scanner and more than just a receiver.

HF/VHF/UHF video/stereo/am/fm/ssb/cw sync modes 0 to 1750MHz. Built-in database. PC software. CD.
front of the windows and, on more than one occasion, I dropped one all over the pavement.

Because of its proximity to Wardor Street it was common to see famous film and TV personalities in the street and sometimes they would come into the shop. I can remember the magician, the late Tommy Cooper came in one day and was looking for six stands to hold eggs for a trick he was doing in the Royal Variety Performance at the weekend.

We scratched our heads for a while and came up with six valve screening cans of the type that were fitted to EF86s, etc. Tommy was delighted with our efforts and a sale was made. We all sat at home that weekend and watched for our screening cans on TV!

Thunderbirds & Dr. Who?

Film and TV companies used to come to the shop and buy quite a lot of items from time to time to use as props, in fact many of the knobs, switches, lamps, speaker grills, etc., were used in 'Thunderbirds' and some of the early 'Bond' films and 'Dr Who'. And of course the price 'went up a hie'!
How to optimise your audio quality

Speakers & Headphones

Gordon King G4VFV, author of our new regular series ‘Looking At...’ and well-known technical journalist, describes the various principles which any Radio Amateur should know about speakers and headphones in order to “optimise on audio quality”.

Having in mind their diminutive size, lack of acoustical loading and being crammed in with a load of electronics, it’s rather amazing that the speakers built into our transceivers sound as well as they do! Most audio output stages which drive these little speakers are capable of producing three or more watts of ‘music’ power (as distinct from continuous sinewave power) and in many cases, the output impedance is close to 8Ω. Inevitably, however, when the volume is well advanced things begin to rattle and the measured total harmonic distortion (THD) rises to 10% or more.

Of course, as Amateur Radio enthusiasts, we’re not into the territory of the hi-fi buff, but even so, it’s good to optimise on audio quality as far as possible and this applies whether we use a loudspeaker or a pair of headphones. It can also help if Morse code is our forte, as of recent times I have proved.

Moving Coil Principle

The operation of the loudspeaker unit is well known. It follows the basic moving coil principle where a coil is accurately wound at the apex of a cone and suspended in a strong magnetic field - See Fig. 1(a, b & c). When an electric current is caused to flow through the coil, a mechanical force is produced of a strength governed by the intensity of the current.

The cone is thus deflected either inwards or outwards depending on the direction of the current flow. When the current is alternating, as it would be from the audio output stages or our transceivers, then the cone is deflected or vibrated rapidly in and out according to the pattern of the audio information carried by the signal.

The air either side of the cone is thus alternately compressed and rarefied producing variations in the local air pressure, which in turn communicates with our ear drums. Our brains then decode the vibrations to what we hear as sound.

Moving Armature

Very early loudspeakers, although based on the electromagnetic principle, didn’t use a moving coil. Instead, they employed a ferrous metal armature coupled to a largish diaphragm, which was caused to vibrate when an audio signal was applied to a pair of coils wound on a ‘U’ shaped permanent magnet.

Back in the 1920s the diaphragm, which then formed the armature as well, was loaded acoustically to a horn. In the 1930s, the horn was replaced by a large fabric diaphragm treated with cellulose acetate and tightly stretched over a wooden frame.

Vibration resulted because the audio current through the coils caused a varying magnetic field which, on alternate half cycles, added to and subtracted from the field of the permanent magnet (Fig. 2). This principle was adopted in all early headphone sets (and telephone receivers) and headphones of this kind are still in use.

However, quality headphones these days are often based on the moving coil principle. In fact, in many earpiece units the elements look like miniature moving coil speakers. The lower frequency response is maintained, despite the small cone (diaphragm) size, because of the close coupling to the ear drums.

Rarely used in Amateur Radio (except perhaps in the form of a microphone) is the ribbon speaker where, instead of a moving coil, a thin piece of flexible metal ribbon is suspended within the magnetic lines of force of a powerful permanent magnet. When a strong audio current is passed through the ribbon,
applied across a pair of metal plates sandwiching a ceramic or (formerly) Rochelle salt crystal element.

The varying voltage causes the 'crystal' to change its shape slightly and hence vibrate in accordance with the analogue of the audio. The vibrations are coupled to a small cone or diaphragm. However, this kind of unit is unsuitable for low frequency sound because large amplitude vibrations cannot easily be accommodated by the 'crystal' without the danger of it fracturing.

Electrostatic Principle

For the sake of completeness, mention should be made of the electrostatic speaker (ELS) principle. Here, a thin conductive diaphragm is engineered to vibrate in parallel with, and close to, a fixed metal mesh. The diaphragm and mesh form the two plates of a capacitor across which a steady polarising voltage is applied through a 'hold-off' resistor, causing a slight inward deflection of the diaphragm. When the audio signal is applied in parallel with this voltage, the diaphragm vibrates linearly and in sympathy with the corresponding changes in the electrostatic force.

The principle is adopted in the hi-fi world, but based on a 'push-pull' technique to cancel residual distortion and it forms the basis, for example, of the acclaimed Quad Electrostatic Loudspeaker. Rarely used in speakers for Amateur Radio, the electrostatic principle can, however, be found at the other end of the audio chain - at the microphone. However, it's really the moving coil principle which is our primary practical concern in this article.

Current Drive

Because the moving coil has only relatively few turns of wire it has a low impedance and thus requires current drive. This is just the job for solid state or transistor audio output stages, which are current rather than voltage operated. Almost a direct audio coupling from the device to the speaker is thus feasible, but with valve output stages, which are essentially voltage operated, a step-down transformer needs to be used to match the high anode impedance of the valve to the low impedance of the speaker to obtain current drive.

Moving coil headphones are usually of higher impedance than speakers, sometimes around the 50Ω mark, but it's possible to connect them to the point where the loudspeaker is connected and still achieve adequate volume, depending on their sensitivity. In some transceivers the headphone jack also caters for an external loudspeaker, but the jack is often switched so that when the plug is inserted, the internal speaker is automatically disconnected.

However, where there's an external speaker socket as well as a headphones socket, the speaker should always be connected to the former. This is because a current limiting resistor might well be included in the headphones circuit to avoid overloading or ear damage.

Enhanced Readability

A case can certainly be made for the use of an external speaker, especially where the transceiver needs to be compacted into a small space along with other closely adjacent equipment, which could be adversely affecting the sound from its own speaker. The external speaker could then be mounted away from the main equipment on a wall or table.

The quality of sound will invariably be enhanced by this and the speaker can be orientated for the least 'overhang' which may be caused by room resonances and reflections. This will also improve readability, especially when sending or receiving fairly fast Morse, where element spacings are in milliseconds.

For basic communication purposes, a loudspeaker of the hi-fi kind is not necessary. In fact, such a speaker may detract from the requirement owing to its wide frequency response letting through QRM that might not be audible from a less exacting counterpart. Hi-fi speakers commonly have a frequency response from around 30Hz-20kHz, while for general speech communication, a much more limited response is adequate. (See Fig. 3.)

The extended bass response of hi-fi speakers is achieved by the nature of the acoustical loading of the main drive unit, while two or more additional units cater for the mid-range and upper treble. The different units are connected through a sort of filter circuit (crossover network) so that they are fed only with the range of frequencies for which they are designed.

However, all moving-coil speaker systems need to have a baffle or some sort of enclosure to prevent sound pressure waves from the rear of the cone cancelling out those from the front, which would otherwise result in a serious fall off in bass output.

In the hi-fi world, remarkably elaborate enclosures are often evolved to maintain a smooth output response and extended bass. Speakers for general communication, however, are usually contained in a small enclosure, often of metal.

Improved FM Audio

However, on narrow band f.m. (n.b.f.m.), it's surprising how remarkably good the audio quality can be from a well installed and adjusted transceiver and this applies to the fm. segments of the various v.h.f. and higher bands. It's good to be able to provide a realistic quality report to a station using frequency modulation, which is rarely possible using the squelchy little rig speaker.

I employ a couple of discarded hi-fi speakers in my shack, one connected to the hf. rig and the other to the 144MHz rig (Fig. 4). Happily, I'm able to tailor the response of my hf. rig to relate to the type of transmission I'm handling and this is where good audio filtering to provide the most suitable audio bandwidth required at the time can pay dividends, especially when an external speaker of the hi-fi kind is being used.

In full response mode, such speakers are able to detect not only possible shortfalls in the high frequency quality of a transmission, but they can also be extremely critical of the low frequency end, especially with regard to power supply smoothing and the like. Good transmissions will be completely hum or ripple free, but it's really surprising how many otherwise good quality transmissions are marred essentially by second or third-order ripple components generated by poorly designed or serviced power supply units (p.s.u.s.).

Since I have been investigating the application of external speakers I have been surprised by the relatively high incidence of 144MHz f.m. stations which are transmitting, presumably quite unwittingly, significant levels of 50, 100, and 150Hz and sometimes higher order power supply

Continued on page 41...
used equipment

- Used Equipment

-portable HF Transceiver

- ICOM IC-756

- KENWOOD VC-H1

- Send and receiver picture with any transceiver

- SGC 2020

- $599

- Pay by 6 Post Dated Cheques

- one-time payment over $100

- (See right hand page for details)

- Quotations on request.

- Offers subject to change.

- 6 months interest free.

- hotline: 01705 662145

- 01705 690626

- email: info@nevada.co.uk

- website: http://www.nevada.co.uk
USE YOUR CREDIT CARD FOR SAME DAY DESPATCH!

New Items

Selected Clearance Stock

Use Your Discount Cards for extra savings.

New Ex-Showroom Stock

Fully Guaranteed - Havepeace of Mind!

Do You Accept All Major Credit Cards?

We'll help you buy your rig with a Generous PX Offer!

IT'S EASY TO PAY!

- by three post dated cheques

- Simply divide the price into 3 equal payments.
- Write 3 cheques dated in consecutive months starting with today's date.
- Write your telephone number, cheque card No. & expiry date on the back of each cheque.
- Post them to us, enclosing your name & address & we will (subject to stocks) send your goods immediately.

Visa

MasterCard
Before building the antenna I'm about to describe, I'd managed with a 3/2 dipole for 18MHz and a 1/2 dipole for 24MHz. Prior to this, I'd loaded up my trusty doubleside, cut for 3.5MHz, to work the WARC bands. The antennas had been quite satisfactory, but with the declining sunspot numbers and the increasing number of stations, I decided it would be nice to have something with a bit more directivity and, possibly, a bit of a gain in the wanted direction.

As a result of reading an article by WB4OSN in DX Magazine (June 1989) my attention was drawn to a redundant Mosley TA32, residing in the loft over the garage. I began to formulate some ideas as to how this could perhaps be converted to provide a 2-element dual band beam for the two h.f. WARC bands.

I'm not exactly in love with traps and similar devices so, rather than a chore. With the analyser available I admitted that traps would be hard to reverse and also, in time, will do a lot of damage. You'll be setting in motion a potential corrosion point that will be hard to reverse and also, in time, will do a lot of damage. When dismantling the trap coils, you'll notice that the inner end of the winding is fixed by a screw recessed into the moulding of the coil former. This screw is about midway along the length of the coil.

You should temporarily assemble the trap coil and cover. You now have the following (six) items: Two sets of trap coils and two trap covers. You may find that some of the trap cover itself has eroded. This is not important, as there is plenty of metal to provide a new fixing. The standard Mosley trap coils are wound using tinned copper wire. Over a period of prolonged exposure, the trap formers can absorb a very small amount of moisture with its usual detrimental effects.

New Coils

To wind new coils: To do this, I obtained some 1.25mm (18s.w.g.) enamelled copper wire from a local factory that manufactures wound components for industry. Alternatively, a local electric motor rewind shop should be able to help. I would advise against using recycled wire for this job.

When dismantling the trap coils, you'll notice that the inner end of the winding is fixed by a screw recessed into the moulding of the coil former. This screw is about midway along the length of the coil. You will also notice that there is another recessed, but undrilled point, some 20mm inboard of this first fixing point. Drill this point out to accept the self tapping screw used to fix the end of the new coil.

I'm not exactly in love with traps and similar devices so, you don't have one, then I am sure that a small advert in the wanted section of 'Bargain Basement' will produce the goods.

Identify Elements

Once you have the start point antenna you must identify the driven and reflector elements. The driven element is easy to identify, as it comes in three parts - two half length tubes, a pair of trap assemblies and the centre support. But make sure you select the correct trap assemblies for the driven element (the driven element trap assemblies have a longer 'inboard' tube section than the reflector ones).

Having sorted out the correct traps, you will now need to dismantle each one. This is quite easily done with care and attention as follows: Cut off the trap cover end caps with a strong sharp knife. The caps are scrap and will be replaced with new ones.

You should have exposed the screws (see Fig. 1) which both fix the end of the coil to the trap cover and secure the trap cover to the coil formers.

You should now remove both pairs of screws and put them in a safe place. Remove the trap coils from the trap cover. You now have the following six items: Two sets of trap coils and two trap covers.

Then remove the coil windings from the 28MHz trap - it has 20 turns. The other coil - the 21MHz trap - has 40 turns. Now is a good time to clean up these items. If, like mine, the original assemblies are somewhat antique, there will be evidence of corrosion, particularly where the wire ends of the coil have been in contact with the aluminium of the trap cover.

You may find that some of the trap cover itself has eroded. This is not important, as there is plenty of metal to provide a new fixing. The standard Mosley trap coils are wound using tinned copper wire. Over a period of prolonged exposure, the trap formers can absorb a very small amount of moisture with its usual detrimental effects.

Identify Elements

Once you have the start point antenna you must identify the driven and reflector elements. The driven element is easy to identify, as it comes in three parts - two half length tubes, a pair of trap assemblies and the centre support. But make sure you select the correct trap assemblies for the driven element (the driven element trap assemblies have a longer 'inboard' tube section than the reflector ones).

Having sorted out the correct traps, you will now need to dismantle each one. This is quite easily done with care and attention as follows: Cut off the trap cover end caps with a strong sharp knife. The caps are scrap and will be replaced with new ones.

You should have exposed the screws (see Fig. 1) which both fix the end of the coil to the trap cover and secure the trap cover to the coil formers.

You should now remove both pairs of screws and put them in a safe place. Remove the trap coils from the trap cover. You now have the following six items: Two sets of trap coils and two trap covers.

Then remove the coil windings from the 28MHz trap - it has 20 turns. The other coil - the 21MHz trap - has 40 turns. Now is a good time to clean up these items. If, like mine, the original assemblies are somewhat antique, there will be evidence of corrosion, particularly where the wire ends of the coil have been in contact with the aluminium of the trap cover.

You may find that some of the trap cover itself has eroded. This is not important, as there is plenty of metal to provide a new fixing. The standard Mosley trap coils are wound using tinned copper wire. Over a period of prolonged exposure, the trap formers can absorb a very small amount of moisture with its usual detrimental effects.

New Coils

To wind new coils: To do this, I obtained some 1.25mm (18s.w.g.) enamelled copper wire from a local factory that manufactures wound components for industry. Alternatively, a local electric motor rewind shop should be able to help. I would advise against using recycled wire for this job.

When dismantling the trap coils, you'll notice that the inner end of the winding is fixed by a screw recessed into the moulding of the coil former. This screw is about midway along the length of the coil. You will also notice that there is another recessed, but undrilled point, some 20mm inboard of this first fixing point. Drill this point out to accept the self tapping screw used to fix the end of the new coil.

The new trap coil is going to provide a trap at 24.9MHz or thereabouts, so it will require a few more turns than the original. I started with 36 turns and found by trial and error during the setting up and tuning process, that I was able to prune this down to 33 turns for the final assembly.

When you are happy with the number of turns on the coil, make sure that you thoroughly tin the ends that will come into contact with the aluminium components. If not, you'll be setting in motion a potential corrosion point that will be hard to reverse and also, in time, will do a lot of damage.

Also with any corrosion points, you'll have created a very good non-linear device, which can cause all sorts of interference problems and will, in all probability, impair the receiving performance of the finished beam. The illustration of Fig. 2 shows the new trap in cross section, although the outer element must be removed for initial tuning up and checking.

Driven Element

I assembled the midsection of the driven element onto the element support and mounted it on my test range mast. This is perhaps a grandiose description of a length of mast, a little over three metres high, that I use out in the large field, away from all obstructions. It's lashed to a large wooden step ladder, which has a platform to put any test gear on.

You should temporarily assemble the trap coil and cover, using the un-wound coil former as the cover support for the outboard end of the assembly. This is where you need to beg, borrow, steal or, in the worst case, buy an MFJ-259 Antenna...
The 18MHz Sections

You can now start to add the 18MHz sections to the driven element. There's no need to wind a trap coil for this band. In fact, the original trap coil former (the outer one of the pair in each trap) is only required to provide mechanical support for the outer end of the trap cover and the outer element tube.

I carried out the various steps in the following order, and it's the order I suggest you follow too:

A: remove the trap assembly, that you have just set up, from the test rig;
B: remove the blank trap coil from the trap cover and drill through one of the trap cover fixing holes, right through into the outer element tube;
C: re-assemble the trap former as the trap cover and drill through one of the trap cover fixing holes, right through into the outer element tube;
D: insert this coil former assembly into the trap cover using a screw of sufficient length, screw the trap cover onto the former and the end rod, effectively shorting the cover to the outer section of the element, see Fig. 4.

The outer section elements, as they are, are too long to obtain a resonance on 18MHz. The overall length of a half wave dipole cut for 18MHz is \(\frac{2\lambda}{4} \) or 8.285m (27.1811).

The inductance of the 24MHz trap coil is going to provide a degree of loading at both frequencies of operation and the adjustment to obtain resonance on the 24MHz band will have reduced 'L' of Fig. 2 to less than 2.4m. Therefore, I decided as a starting point to reduce the length of the outer section to some 400mm protruding from the 'inside' face of the former.

Next, adjust dimension 'a' equally on both sides to bring the assembly into resonance in the 24MHz band. You should aim to get as near to 24.9MHz as possible with minimum s.w.r. indicated on the MFJ analyser.

Mark the position of the trap rods (the outer lengths of aluminium tube sliding into the centre sections) relative to the end of the centre section tube for future reference. You may find that a bit of trap coil pruning is required together with the readjustment of sections 'a' to bring the assembly to resonance, but I would leave this until you are adjusting for the 18MHz band.

The 18MHz Sections

You can now start to add the 18MHz sections to the driven element. There's no need to wind a trap coil for this band. In fact, the original trap coil former (the outer one of the pair in each trap) is only required to provide mechanical support for the outer end of the trap cover and the outer element tube.

I carried out the various steps in the following order, and it's the order I suggest you follow too:

A: remove the trap assembly, that you have just set up, from the test rig;
B: remove the blank trap coil from the trap cover and drill through one of the trap cover fixing holes, right through into the outer element tube;
C: re-assemble the trap former as the trap cover and drill through one of the trap cover fixing holes, right through into the outer element tube;
D: insert this coil former assembly into the trap cover using a screw of sufficient length, screw the trap cover onto the former and the end rod, effectively shorting the cover to the outer section of the element, see Fig. 4.

The outer section elements, as they are, are too long to obtain a resonance on 18MHz. The overall length of a half wave dipole cut for 18MHz is \(\frac{2\lambda}{4} \) or 8.285m (27.1811).

The inductance of the 24MHz trap coil is going to provide a degree of loading at both frequencies of operation and the adjustment to obtain resonance on the 24MHz band will have reduced 'L' of Fig. 2 to less than 2.4m. Therefore, I decided as a starting point to reduce the length of the outer section to some 400mm protruding from the outer face of the trap.

Re-Assembling & Fitting

You can now re-assemble the trap outer section and cover and fit the whole onto the dipole test pole. Clip your test lead as before and set up to the marks obtained when tuning for the 24MHz resonance. This is now your starting point.

Begin by re-establishing the resonance point for 24MHz by small adjustments of the length of the inner part of each element only. Avoid the temptation to add or remove trap coil turns at this stage. The aim is to get as close as the desired 24MHz resonant point as possible. Having achieved that, then start looking for resonance at 18MHz.

You may find that the 18MHz resonance will be most likely to be low, probably about 16MHz. Tuning for 18MHz resonance is achieved by removing short lengths - no more than 10mm at a time - from the outer section tube and check again. (I ended up with the dimensions for the driven element as given in Fig. 5, where I've shown all the dimensions of the antenna.)

The s.w.r. measured at approximately 3m above ground for this assembly as indicated on my MFJ-249 are shown in the two graphs of Fig. 6. The 24MHz band (actually nearer to 25MHz than to 24MHz) elements showed a reasonably even, if slightly high, s.w.r. over the whole band. But the 18MHz sections showed a rising s.w.r. over the 18.068 to 18.168MHz band.

Continued on page 54...
Occasionally PW is able to find space to publish controversial ideas and topics associated with radio communications. This month, Trevor Newstead G0LQX explains why he thinks that the wind may affect frequency.

In his article, Trevor Newstead G0LQX sets out to prove that wind can affect frequency.

Fig 1. Graph showing variations of Q with Frequency.

Meteorological Help
As our Amateur Radio stations are about 8km apart (roughly on a line SE/NW) and there is a meteorological station within 10km of both stations we decided to contact them and see if they could help. It was worth a try anyway.

When we discussed our problem with the Meteorologists they were very willing to help. We were told they continuously record such factors as atmospheric pressure, relative humidity, air temperature, wind speed and direction and general weather conditions, as these conditions can vary from minute to minute they would also give us a daily time check. It was decided that, rather than try to continuously monitor the frequency variations, each station would take three readings during the day. Station A (myself), at the SE end, would take readings at 0700, 1200 and 1800UTC, whilst Station B was to take readings at 0800, 1300 and 1900UTC each day. To keep contact we would use 144MHz n.f.m. utilising the tone burst as a marker pulse. Records were to be taken for a 28 day period.

Hours Of Studying
After the 28 day period, we had so much information it took many hours of studying our tabulations to find some sort of correlation. When it was found, it wasn't as we suspected related to atmospheric pressure, air
Temperature or relative humidity.

We began to wonder - was it possibly to do with the sun spec.com? However, a chance observation gave us the clue we were looking for. Surprisingly it seemed the variance in frequency was related in some way to wind speed!

To simplify things we decided only to use data when the wind direction was along the NW/SE line (i.e. along the line between the two stations). Luck was with us as the prevailing winds seem to be in these directions with 47 of the 94 readings taken being along this line (plus or minus 10°).

It worked out that the frequency change was directly proportional to the wind speed, as shown by the formulae:

\[
\text{Frequency Variation} = 0.542 \times \text{Wind Speed}
\]

Table 1 shows the tabulations of our records where:

<table>
<thead>
<tr>
<th>Date</th>
<th>Dir.</th>
<th>Vel.</th>
<th>Vp</th>
<th>Q</th>
<th>Dir.</th>
<th>Vel.</th>
<th>Vp</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>6700Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>NW</td>
<td>12.0</td>
<td>8.5</td>
<td>0.542</td>
<td>SE</td>
<td>10.0</td>
<td>5.4</td>
<td>0.540</td>
</tr>
<tr>
<td>2</td>
<td>SE</td>
<td>8.0</td>
<td>4.3</td>
<td>0.538</td>
<td>SE</td>
<td>10.0</td>
<td>5.4</td>
<td>0.540</td>
</tr>
<tr>
<td>3</td>
<td>SE</td>
<td>8.0</td>
<td>4.3</td>
<td>0.538</td>
<td>SE</td>
<td>15.0</td>
<td>8.1</td>
<td>0.540</td>
</tr>
<tr>
<td>4</td>
<td>SE</td>
<td>12.0</td>
<td>6.3</td>
<td>0.542</td>
<td>SE</td>
<td>15.0</td>
<td>8.1</td>
<td>0.540</td>
</tr>
<tr>
<td>5</td>
<td>SE</td>
<td>12.0</td>
<td>6.3</td>
<td>0.542</td>
<td>SE</td>
<td>15.0</td>
<td>8.1</td>
<td>0.540</td>
</tr>
<tr>
<td>6</td>
<td>SE</td>
<td>12.0</td>
<td>6.3</td>
<td>0.542</td>
<td>SE</td>
<td>15.0</td>
<td>8.1</td>
<td>0.540</td>
</tr>
<tr>
<td>7</td>
<td>SE</td>
<td>12.0</td>
<td>6.3</td>
<td>0.542</td>
<td>NW</td>
<td>19.0</td>
<td>10.3</td>
<td>0.543</td>
</tr>
<tr>
<td>8</td>
<td>SE</td>
<td>20.0</td>
<td>10.9</td>
<td>0.545</td>
<td>SE</td>
<td>23.0</td>
<td>12.5</td>
<td>0.543</td>
</tr>
<tr>
<td>9</td>
<td>NW</td>
<td>40.0</td>
<td>21.7</td>
<td>0.542</td>
<td>NW</td>
<td>48.0</td>
<td>26.1</td>
<td>0.544</td>
</tr>
<tr>
<td>10</td>
<td>NW</td>
<td>43.0</td>
<td>23.4</td>
<td>0.543</td>
<td>NW</td>
<td>47.0</td>
<td>25.5</td>
<td>0.543</td>
</tr>
<tr>
<td>11</td>
<td>NW</td>
<td>31.0</td>
<td>16.0</td>
<td>0.542</td>
<td>NW</td>
<td>34.0</td>
<td>18.5</td>
<td>0.544</td>
</tr>
<tr>
<td>12</td>
<td>SE</td>
<td>18.0</td>
<td>9.8</td>
<td>0.544</td>
<td>SE</td>
<td>18.0</td>
<td>9.8</td>
<td>0.544</td>
</tr>
<tr>
<td>13</td>
<td>SE</td>
<td>20.0</td>
<td>10.9</td>
<td>0.545</td>
<td>SE</td>
<td>22.0</td>
<td>11.9</td>
<td>0.541</td>
</tr>
<tr>
<td>14</td>
<td>SE</td>
<td>25.0</td>
<td>15.7</td>
<td>0.541</td>
<td>NW</td>
<td>32.0</td>
<td>17.4</td>
<td>0.544</td>
</tr>
<tr>
<td>15</td>
<td>NW</td>
<td>27.0</td>
<td>14.7</td>
<td>0.541</td>
<td>NW</td>
<td>10.0</td>
<td>5.4</td>
<td>0.540</td>
</tr>
<tr>
<td>16</td>
<td>NW</td>
<td>13.0</td>
<td>7.0</td>
<td>0.538</td>
<td>SE</td>
<td>11.0</td>
<td>6.0</td>
<td>0.545</td>
</tr>
<tr>
<td>17</td>
<td>SE</td>
<td>58.0</td>
<td>29.9</td>
<td>0.544</td>
<td>SE</td>
<td>50.0</td>
<td>27.2</td>
<td>0.544</td>
</tr>
<tr>
<td>18</td>
<td>SE</td>
<td>41.0</td>
<td>22.3</td>
<td>0.544</td>
<td>SE</td>
<td>39.0</td>
<td>21.2</td>
<td>0.544</td>
</tr>
<tr>
<td>19</td>
<td>SE</td>
<td>5.0</td>
<td>2.7</td>
<td>0.540</td>
<td>NW</td>
<td>7.0</td>
<td>3.8</td>
<td>0.543</td>
</tr>
<tr>
<td>20</td>
<td>SE</td>
<td>5.0</td>
<td>2.7</td>
<td>0.540</td>
<td>NW</td>
<td>7.0</td>
<td>3.8</td>
<td>0.543</td>
</tr>
</tbody>
</table>

We had found a relationship between wind speed and the audio frequency variations and could find no other factors to cause this effect. Hang on though! Why, if the audio frequency drifted, why didn’t the carrier frequency drift?

Further experimentation revealed that all frequencies varied to a more or lesser degree. The lower the frequency the greater the variation and Fig. 1 shows a graph of frequency against Q.

Findings Simplified

For the purposes of this article, our findings have been somewhat simplified. With the readings taken over a short distance the wind velocity has been taken as being of the same magnitude and direction over that distance.

What will happen over greater distances where the wind velocity and direction can vary many times, would be extremely difficult to calculate or predict in any way.

In order to calculate the effect of the wind velocity from other directions would take many years of collating measurements and carrying out calculations, but we’ll be leaving this up to others. It would prove a challenging area for research and we hope interest would not ‘drift away’ because the end results could prove both enlightening and entertaining.

...continued from page 35

components. This also applies to a few 144MHz repeaters, some being pretty bad, which could encourage a detailed low frequency spectrum check by their keepers.

Wide response speakers are also useful for listening for microphone aberrations and shortfalls in the audio input circuits of the transmitters themselves. It’s possible, for example, to tell whether a station has a ‘issy’ microphone or one with an intermittent noisy connection somewhere. R.f. getting into the microphone circuit may also be detectable by an edginess or h.f. audio ringing tendency. Tests like these are generally not possible when the rig’s internal speaker is used, though they can be aided by the use of reasonable quality pair of headphones.

Headphones

Headphones based on the kind of unit shown in Fig. 2 were extensively used up to and beyond the First World War. In fact, I wouldn’t be surprised to hear that many old timers are still using such devices. I know I have a pair or more hidden away in the archives somewhere!

With the two coils of each ear unit connected in series and the two units themselves also connected in series the overall impedance worked out to about 2kΩ, which was a desirable matching value for the crystal set and early valve era.

The headphones were remarkably sensitive and bearing in mind that all the audio power in the crystal set days (before the addition of an audio valve) was derived from the demodulated r.f. signal itself, such headphones were often operated as quasi-speakers by placing them in a large kitchen basin so that the family could gather round and all participate in the radio programme, albeit at ‘whisper’ volume. Audio quality was pretty grim and there were nasty ‘peaky’ resonances around the 1.5-3kHz region, but the term ‘hi-fi’ hadn’t yet been coined.

With the advent of the moving-coil headphones there was a remarkable advance in audio quality. The best ones now yield an output from as low as 30-35Hz and up to 10-20kHz, while the harmonic distortion and resonance effects are far less troublesome than those of the earlier headphones.

As already noted, moving-coil headphones have an impedance of around 50Ω, so they represent a reasonable match to most rigs without a circuit modification, but if hi-fi species are employed some degree of audio filtering could well be required to reduce the noise power bandwidth, at least, when operating on other than the v.h.f. (and higher) l.m. bands in F3E mode. The inclusion of a switched analogue or digital filter is highly desirable for the A1A and J3E modes.

Indeed, the audio aspects of Amateur Radio are quite interesting, from microphone to ear and it’s hoped that this article will, at least, reveal some of the factors involved at the loudspeaker/headphones end of the chain.
DISCOUNT AND FREE FINANCE

Kenwood TS-950SDX

The last of the 'Big Guns' 150W Flagship H.F.
D.S.P. Only two left remaining

RRP £3999, ML&S £2899
or £824.78 deposit & 60 x £55 p/m.

Icom IC-775DSPmkII

50/50 Interest Free Purchase Plan
PLUS FREE Icom PC-100 PC Receiver.

The only remaining 200W H.F. Base Station
available in the U.K. Our best seller.

Buy this month on our 50/50 purchase plan.
Pay 50% of the discounted price then pay the balance
over 12 months INTEREST FREE.

RRP £2999, ML&S £1499
or £499 deposit and 12 payments of £55.55
INTEREST FREE.

Accessories:

- MD-100 Desk Mic
- FP-105A Antenna 250W PUL. RRP £229
- ML&S £149
- FC-20 Auto Tuner £319
- ATAS-105 Fully automatic mobile antenna
- 7/1/21/25/50/144/412kHz (ATU NOT required) £239
- MMB-66 Mobile Bracket £29
- FV-1A Speech Board £38
- TY-1SC 500Hz Collins Filter £99
- INRAD MLS-706 2kHz SSB 45kHz Filter £119
- INRAD MLS-712 1kHz CW 45kHz Filter £119

Yaesu FT-847

Discounted and INTEREST FREE.

The very best (and only) D.C. to Blue Light
(Well almost) Shack in a box. If you are
presently looking at acres of equipment
taking up valuable space in this modern
'noise' world, then you have another look at the
amazing FT-847.

- 100W on H.F.
- 100W on VHF
- 15W on Four
- 50W on Two
- 30W on Seventy
- 300W on Seven
- All Mode, with D.S.P.

RRP £1699, ML&S £1499
or £499 deposit and 12 payments of £55.55
INTEREST FREE.

Icom IC-706mkII

50/50 purchase plan ZERO APR & FREE FILTERS!

Bryan Sheppard G4CUT seen here collecting his Yaesu FT-1000MP

The very bestlander.

After three and a half years you would think
that the sale of FT-1000MP's would slots
after three and a half years you would think
that the sale of FT-1000MP's would slots

Yaesu FT-1000MP

50/50 Interest FREE &
A FREE YAESU VX-1R Twin Band.

For all of you that are
using the
built-in
speaker
of your
Yaesu
rig.

Yaesu FT-847

Discounted and INTEREST FREE.

The very best (and only) D.C. to Blue Light
(Well almost) Shack in a box. If you are
presently looking at acres of equipment
taking up valuable space in this modern
'noise' world, then you have another look at the
amazing FT-847.

- 100W on H.F.
- 100W on 6m
- 50W on 2m
- 20W on 70cm
- D.S.P. fitted as standard
- Backlit main feature keys
- Free FL223 & FL100 Filters worth £120
- And much more!

RRP £1195 or buy on our 50/50 INTEREST FREE - £995 deposit and 12 payments of £50 ZERO APR and both the
SSB & CW Filters FREE!

Icom IC-706 'R'

Now the first and second deliveries of the IC-706G have been shipped, ML&S have a quantity of premium quality pre-owned

Refurbished units. All offered with a full 12 months warranty (parts & labour), we have a limited number from only £49 for a mkII to £1099 for a mkII. And they are available on interest free.

MkI 'R' at £549
£44 deposit & 12 payments of £41.75 p/m or
MkII 'R' at £699, £99 deposit & 12 payments of £50 p/m FREE FINANCE ZERO APR.

TS-50S

If you can function without having all bands
in one mobile size radio then the TS-50S is
for you. Small and compact, 100W on H.F.
all mode and excellent D.S.P. operation on
HF 11IF.

Icom IC-821H

Whilst the new range of H.F + V.H.F.
transceivers offer excellent value for money,
you can't beat a system designed and
dedicated to Two & Seventy. The IC-821H
base station offers unparalleled performance
for the two most popular V/U bands.

Kenwood TS-570DGE

FREE FINANCE & FREE CW or SSB FILTER

The TS-570DGE is one of the best H.F.
transceivers on the market not only for SSB
but CW operation. Its D.S.P. is actually easier
to use than many of the more expensive alternatives available.

RRP £999,99 or £99.99 deposit & 12 payments of £50 p/m ZERO APR.

Yaesu SP-5

For all of you that are
using the
built-in
speaker
of your

RRP £1999, ML&S £1699
or £99.99 deposit & 12 payments of £50 p/m ZERO APR.

Yaesu SP-5

The ultimate D.S.P. radio of the nineties. 100W
H.F. all mode and excellent D.S.P. operation on
receive and transmit.

Icom IC-821H

Whilst the new range of H.F + V.H.F.
transceivers offer excellent value for money,
you can't beat a system designed and
dedicated to Two & Seventy. The IC-821H
base station offers unparalleled performance
for the two most popular V/U bands.

Kenwood TS-570DGE

FREE FINANCE & FREE CW or SSB FILTER

The TS-570DGE is one of the best H.F.
transceivers on the market not only for SSB
but CW operation. Its D.S.P. is actually easier
to use than many of the more expensive alternatives available.

RRP £999,99 or £99.99 deposit & 12 payments of £50 p/m ZERO APR.

Yaesu SP-5

For all of you that are
using the
built-in
speaker
of your

RRP £1999, ML&S £1699
or £99.99 deposit & 12 payments of £50 p/m ZERO APR.

Yaesu SP-5

The ultimate D.S.P. radio of the nineties. 100W
H.F. all mode and excellent D.S.P. operation on
receive and transmit.

Icom IC-821H

Whilst the new range of H.F + V.H.F.
transceivers offer excellent value for money,
you can't beat a system designed and
dedicated to Two & Seventy. The IC-821H
base station offers unparalleled performance
for the two most popular V/U bands.

Kenwood TS-570DGE

FREE FINANCE & FREE CW or SSB FILTER

The TS-570DGE is one of the best H.F.
transceivers on the market not only for SSB
but CW operation. Its D.S.P. is actually easier
to use than many of the more expensive alternatives available.

RRP £999,99 or £99.99 deposit & 12 payments of £50 p/m ZERO APR.

Yaesu SP-5

For all of you that are
using the
built-in
speaker
of your

RRP £1999, ML&S £1699
or £99.99 deposit & 12 payments of £50 p/m ZERO APR.

Yaesu SP-5

The ultimate D.S.P. radio of the nineties. 100W
H.F. all mode and excellent D.S.P. operation on
receive and transmit.

Icom IC-821H

Whilst the new range of H.F + V.H.F.
transceivers offer excellent value for money,
Kenwood AT-230

You can purchase an Antenna Tuner Made From Junk or you can purchase one made to the exacting standards of Kenwood Electronics. You choose.

- Amateur hands 1.8-30MHz
- Input 50 Ohms
- Output Impedance 10-500 Ohms Unbalanced
- 200 Watts handling
- Less than 5dB at optimum match
- Built in Power & SWR meter
- 3 Antenna inputs, 2 S0239, 1 wire

RRP £269.95, ML&S £229.95

Icom PS-85

If space and weight is a premium and a good reliable PSU is the order of the day, then try a switch mode Icom PS-85 for size. Very small and compact and backed by Icom's famous two year warranty

RPP £245, ML&S £219.95

Yaesu FT-736

Again, the only base transceiver to offer full 12 months warranty: £995, or £67.17 deposit & £69 x 25 p/m 21.9% APR

AVAILABLE ON MOST PRODUCTS. PLEASE CHECK FIRST.

Alinco DJ-65

Excellent 2/70 dual band handle, £299 or £39/6 payment of £25 p/m

Alinco DX-707H

100W HF + 6
£29 or £27.36 deposit & 12 payments of £25 p/m

Yaesu VX-5R NEW!

The latest SW "out of the box" 2/6/70 Handle £329 or £29 deposit & 12 payments of £25 p/m INTEREST FREE

IC-TR1E NEW!

Dual Band Handle, 2/6/7/23. £399 or £99 deposit & 12 payments of £25 p/m INTEREST FREE

Yaesu FT-8100 Dual Band Mobile £399 or £99 deposit & £12 x 25 p/m INTEREST FREE

Yaesu FT-3000

70W 2N1 high power Mobile. £359 or £19 deposit & £12 x 25 p/m INTEREST FREE

Kenwood TH-D7E

Dual Band Handle with modem £319 or £19 deposit & £12 x 25 p/m INTEREST FREE

Kenwood YX-1R

The best, the smallest Handle 2/70+ Scgenre in the world £199 or 3 credit card payments of £70 p/m

Kenwood TM-G70E

Twin Band Mobile, remote head. £299 or 3 credit card payments of £100 p/m

AT £2000, the TS-590E 2/70 base is a little over priced. ML&S have several from our pre-owned stock that have been refurbished and offered with a twelve month warranty. Separate receive and with the option of a 23cm card, these highly engineered base stations are often the only choice for serious DX on the upper Ham Bands.

Refurbished fitted with 2/70, full 12 months warranty: £995, or £37.17 deposit & £60 x 25 p/m 21.9% APR

JOIN WAB NOW

The World Of British Awards Group offers a comprehensive programme of awards based on the Ordnance Survey maps of the UK. Awards are open to all licensed amateurs and short wave listeners. No DAB card required. For further details visit the WAB Website at http://www.users.zetnet.co.uk/grine/wab.htm Or contact Brian Morris G4KSO, QTH.

Alinco DJ-65 Excellent 2/70 dual band handle, £299 or £39/6 payment of £25 p/m

Alinco DX-707H 100W HF + 6 £29 or £27.36 deposit & 12 payments of £25 p/m

Yaesu VX-5R NEW! The latest SW "out of the box" 2/6/70 Handle £329 or £29 deposit & 12 payments of £25 p/m INTEREST FREE

IC-TR1E NEW! Dual Band Handle, 2/6/7/23. £399 or £99 deposit & 12 payments of £25 p/m INTEREST FREE

Yaesu FT-8100 Dual Band Mobile £399 or £99 deposit & £12 x 25 p/m INTEREST FREE

Yaesu FT-3000 70W 2N1 high power Mobile. £359 or £19 deposit & £12 x 25 p/m INTEREST FREE

Kenwood TH-D7E Dual Band Handle with modem £319 or £19 deposit & £12 x 25 p/m INTEREST FREE

Kenwood YX-1R The best, the smallest Handle 2/70+ Scanner in the world £199 or 3 credit card payments of £70 p/m

Kenwood TM-G70E Twin Band Mobile, remote head. £299 or 3 credit card payments of £100 p/m

SE-206 Speaker

Fed up with over priced tin boxes with a cheap looking loudspeaker? So are we! From the L.K. distributors of Shure comes a convenient speaker offering excellent distortion free audio to compliment your H.F. or VHF transceivers. Low cost and easy to install, the Phonic SE-206 has a maximum rating of 50 Watts, a 5.25" poly-carbon speaker cone and includes a 1" soft dome tweeter. We also have a heavy universal swivel mount (RK-1S) enabling the unit to be wall mounted.

ML&S £66.95 each or £99.95 per pair. RK-15 wall bracket £21.95

SHURE MICROPHONES

Next time you hear excellent transmit audio that sounds so much better than usual, odds are the operator will be using a Shure Microphone. Having just spent upwards of £1000 on your new H.F. transceiver, you owe it to yourself to use a decent commercial grade microphone.

SE-206 Speaker

Fed up with over priced tin boxes with a cheap looking loudspeaker? So are we! From the L.K. distributors of Shure comes a convenient speaker offering excellent distortion free audio to compliment your H.F. or VHF transceivers. Low cost and easy to install, the Phonic SE-206 has a maximum rating of 50 Watts, a 5.25" poly-carbon speaker cone and includes a 1" soft dome tweeter. We also have a heavy universal swivel mount (RK-1S) enabling the unit to be wall mounted.

ML&S £66.95 each or £99.95 per pair. RK-15 wall bracket £21.95

SE-206 Speaker

Fed up with over priced tin boxes with a cheap looking loudspeaker? So are we! From the L.K. distributors of Shure comes a convenient speaker offering excellent distortion free audio to complement your H.F. or VHF transceivers. Low cost and easy to install, the Phonic SE-206 has a maximum rating of 50 Watts, a 5.25" poly-carbon speaker cone and includes a 1" soft dome tweeter. We also have a heavy universal swivel mount (RK-1S) enabling the unit to be wall mounted.

ML&S £66.95 each or £99.95 per pair. RK-15 wall bracket £21.95

Shure SE-206 Speaker

Fed up with over priced tin boxes with a cheap looking loudspeaker? So are we! From the L.K. distributors of Shure comes a convenient speaker offering excellent distortion free audio to complement your H.F. or VHF transceivers. Low cost and easy to install, the Phonic SE-206 has a maximum rating of 50 Watts, a 5.25" poly-carbon speaker cone and includes a 1" soft dome tweeter. We also have a heavy universal swivel mount (RK-1S) enabling the unit to be wall mounted.

ML&S £66.95 each or £99.95 per pair. RK-15 wall bracket £21.95

SE-206 Speaker

Fed up with over priced tin boxes with a cheap looking loudspeaker? So are we! From the L.K. distributors of Shure comes a convenient speaker offering excellent distortion free audio to complement your H.F. or VHF transceivers. Low cost and easy to install, the Phonic SE-206 has a maximum rating of 50 Watts, a 5.25" poly-carbon speaker cone and includes a 1" soft dome tweeter. We also have a heavy universal swivel mount (RK-1S) enabling the unit to be wall mounted.

ML&S £66.95 each or £99.95 per pair. RK-15 wall bracket £21.95

SE-206 Speaker

Fed up with over priced tin boxes with a cheap looking loudspeaker? So are we! From the L.K. distributors of Shure comes a convenient speaker offering excellent distortion free audio to complement your H.F. or VHF transceivers. Low cost and easy to install, the Phonic SE-206 has a maximum rating of 50 Watts, a 5.25" poly-carbon speaker cone and includes a 1" soft dome tweeter. We also have a heavy universal swivel mount (RK-1S) enabling the unit to be wall mounted.

ML&S £66.95 each or £99.95 per pair. RK-15 wall bracket £21.95

SE-206 Speaker

Fed up with over priced tin boxes with a cheap looking loudspeaker? So are we! From the L.K. distributors of Shure comes a convenient speaker offering excellent distortion free audio to complement your H.F. or VHF transceivers. Low cost and easy to install, the Phonic SE-206 has a maximum rating of 50 Watts, a 5.25" poly-carbon speaker cone and includes a 1" soft dome tweeter. We also have a heavy universal swivel mount (RK-1S) enabling the unit to be wall mounted.

ML&S £66.95 each or £99.95 per pair. RK-15 wall bracket £21.95

SE-206 Speaker

Fed up with over priced tin boxes with a cheap looking loudspeaker? So are we! From the L.K. distributors of Shure comes a convenient speaker offering excellent distortion free audio to complement your H.F. or VHF transceivers. Low cost and easy to install, the Phonic SE-206 has a maximum rating of 50 Watts, a 5.25" poly-carbon speaker cone and includes a 1" soft dome tweeter. We also have a heavy universal swivel mount (RK-1S) enabling the unit to be wall mounted.

ML&S £66.95 each or £99.95 per pair. RK-15 wall bracket £21.95

HEIL SOUND Hearing is believing

The Pro Series Headsets are designed to meet the demands of top contesters and DX chasers. The light and comfortable headphone combines with a flexible boom which houses either a H.C or HCS mic, insert. The range has 3 models, the original "Proset" full sized headset, the "Pro 5" which only uses a single ear piece, and the "Pro Micro" lightweight unit. All 3 designs may be fitted with either of the "HC" inserts, and require an AD-1 adapter. To PTT the transceiver you can add a foot switch, or utilise either the VOX or MOX control on your transceiver. The H.C (DIX), and HCS (full articulation) microphone inserts are available separately.
Welcome to the shop! Find yourself a comfortable place to sit because this time I'll be looking at the story behind a couple of heroic failures in the world of thermionic devices. Note that I purposely don't say valves, because it's not certain whether our first examples were in fact valves in the usual sense. Going back to the heady days of Lee de Forest, when valve development was in its infancy, all sorts of ways were tried of modulating the flow of electrons from the cathode to the anode of a diode, and thus to make it amplify.

Included in the trials were 'external control electrodes', which were a dead loss. This, we are told by those who ought to know, was due to the fact that in the case of ordinary valve envelopes an external control electrode couldn't possibly influence the space charge around the cathode.

After a brief interval of about 30 years Telefunken cracked the problem, by which time the development of efficient 'real' valves had made the question largely academic. But what the hell, why waste 30 years hard work? Thus, in 1933 the wonderful 'Radio Rod' made its debut.

Contemporary Photographs

Contemporary photographs showed radio rods, known generically as 'Arcotrons', to be about five inches long and about an inch in diameter. They contained nothing more than a simple filament enclosed by a tubular anode, in this respect resembling very early Fleming diodes.

The rudimentary electrode assembly was mounted on stiff wires which passed out through the glass pinch at the bottom to form the same type of connecting pins as used in local and other all-glass valves.

The control electrode took the form of a metallic coating sprayed onto the envelope. Some rods were highly evacuated, others were gas-filled.

As to how they worked, we have to rely on a contemporary description penned by a certain Dr. Gradenwitz. However, at this stage it has to be said that it may have lost something in the translation!

British journalists, especially those writing for the so-called 'quality press' are capable of perpetrating some pretty diabolical elliptic sentences but the good Doctor's effusion contains the longest and most complicated example I have ever seen, and which I've had to render into English in an empirical manner. It doesn't help, either, to find occasional references to a non-existent 'control grid', which I've taken as a mis-print for control electrode.

"Radio rods," stated Dr. Gradenwitz, "are subject to operating conditions altogether different from those of conventional valves. It is impossible to record any statical [sic] characteristics ... the glass wall being charged with electrons whenever a positive voltage was applied to the control grid [sic], while the total voltage resulting from that of the control coating and the voltage on the charge on the inside of the wall is always nil". (If you think this is hard to understand, wait for the next bit.)

"No amount of positive grid bias has any effect. This is true also, more or less, of any negative voltage applied to the control coating. At the same time Telefunken rods will respond to alternating h.f. voltages, there being set up excess charges on the wall whenever the voltage on the outside coating is varied, so that the resulting voltage is no longer nil. These excess charges always take a certain time to be compensated across the insulation resistance of the glass wall."

I certainly don't intend to quarrel with the description provided by Dr. Gradenwitz, mainly because I don't understand a blind word of it. If any reader does know what it means, it might be better to keep quiet about it. (People might look at you strangely.)

However, to return to the good Doctor's dissertation: "Telefunken rods destined for purposes of amplification are designed as high vacuum valves, whereas those devised for detecting purpose are of the gas-filled type ... [they are] directly heated with alternating current. No directly-heated valves have so far been very successful as detectors, owing to the direct effect exerted by the filament on the grid and the influence of voltage variations on rectification". (This appears to be a long-winded way of saying that they would hum like mad.)

"However, gas-filled Telefunken rods, an account of their characteristic behaviour, as explained, are insensitive to low-frequency voltages. Any voltages applied from the outside are, so far as the negative half-wave is concerned, compensated by the ions of the residual gas, in fact, the lag between the electrons and ions is only felt as the frequency becomes more rapid, until the ions in the case of real high frequency are no longer able to follow.

"Only low-frequency oscillations are thus compensated by ions, resulting in a rectifying effect which is quite similar to the detecting effect of standard valves.

"The insensitiveness of the gas-filled radio rod to low frequency by no means affects the low-frequency modulation of the h.f. pulses. Oscillation on the grid being invariably of high frequency [sic] in turn modulated in accordance with the rhythm of the speech or music transmitted. Whereas a frequency of, say, 100 reaching the grid from the alternating current mains has practically no influence upon detector rods, a sound of the frequency of 100 arriving from the transmitter will readily be passed on". (Well, of course, what else?)

A circuit exists of what is claimed to be an actual tuned radio frequency (t.r.f.) receiver using radio rods. An h.f. transformer preceded the first rod, described as being an h.f. amplifier.

On the other hand, since there appears to be a conventional reaction coil in the anode circuit, it might really be a detector. Whatever signals appeared at its anode, whether r.f. or a.f., were directly coupled to the control electrode of the next rod, named as the detector but possibly an a.f. amplifier. The anode of this rod was resistance-capacity coupled to the grid of a conventional output valve for, as the good doctor explained just before the men in white coats came for him:

"You have seen why radio rods are not suitable for l.f. purposes and therefore will not be surprised to note that a three-electrode valve of the ordinary type is utilised for the output".

Frankly, by this time I wouldn't be surprised by anything mangling the radio rods except to learn that they ever entered gainful employment.

Enough of this frivolity, however, let's now turn to the
serious subject of the 'Sargrove Wonder Valve' which, apart from anything else, was British.

John Sargrove

John Sargrove was an electronics boffin who owned a small but go-ahead firm in Walton-on-Thames, just south of London. Mr. Sargrove's proposition was to make a single valve type that could be used in every stage of a radio receiver.

It's difficult to conceive of a single valve type capable of operating in such diverse roles as frequency-changer and high tension (h.t.) rectifier but that was exactly what Mr. Sargrove anticipated. He must have been able to put forward a pretty convincing case for his project because he managed to get the British Tungaram Valve Co. interested enough to put money into it.

As I mentioned some time ago, Philips NV had a substantial interest in British Tungaram, which provided it with a useful watching brief without being directly involved.

Because the project initially was kept secret it's not known exactly when work started on the 'universal' valve. But by the autumn of 1947 it reached fruition in the form of the extraordinary UA-55 double beam tetrode.

The two sections of the valve were disposed on either side of a central common cathode and, as will be seen in the diagrams, a screen in the form of two 'Es' face-to-face, was fitted around the cathode assembly with the top and bottom arms of each forming the beam-shaping plates.

The anodes were shaped rather like shallow straw hats with the crowns facing towards the two Es. Nine lead-out wires were needed, for which a new type of 9-pin all-glass base was developed, not unlike that of the B9A base that came into popular use a few years later. The heater was rated at 55V, 100mA, making it suitable for the a.c./d.c. operation on either 110/120V or 200/250V mains.

Astonishing Versatility

The stated explanation of how the astonishing versatility of the UA-55 was achieved says that it was "due to varying the way in which the electrodes were connected and to how much voltage was applied to them".

For instance, if you strapped the anode and screen grid of a single section you had the equivalent of a high-slope low impedance triode which could be used as a local oscillator in a superhet, with the other section acting as a mixer. In this application a conversion conductance of 700mA/V was claimed with an h.t. voltage of no more than 90V, which if true was commendable, being nearly twice that of the highly esteemed 6SK.

As regards r.f. or i.f. amplification, each or both tetrode sections strapped grid-to-grid, screen-to-screen and anode-to-anode, could take on the job but due to fairly high inter-electrode capacities neutralising or some other stabilising method was necessary to prevent self-oscillation. This would have represented a major step backwards of some 20 years to before the advent of the screen-grid valve.

To make up for this failing, a variable-mu effect could be obtained if the two grids and the two anodes were strapped and different voltages applied to each of the screen grids. Exactly how this voltage change could be related to a conventional automatic volume control (a.v.c.) system was not revealed to us, nor were we told how detection was to be achieved in a superhet.

Maybe Sargrove-Tungsram weren't too sure themselves? Maybe you had to strap the electrodes in each of the valve sections to make up a sort of double diode?

We're on firmer ground as regards a.f. amplification because the tetrode sections would work in much the same way as will most 'straight' r.f. pentodes if the screen grid volts were kept low, i.e., of the order of 15V. The slope obtained in this mode was 4.5mA/V, so a.f. sensitivity shouldn't have been a problem.

So to the output stage. With the electrodes of both sections strapped grid-to-grid, screen-to-screen and anode-to-anode, and with the latter two supplied with only about 300V h.t. a power output of around 1W could be obtained. This was considered acceptable for the kind of small receivers envisaged using as the UA-55. The slope in this application was high at 7mA/V, the grid bias low at -5V and the optimum load also low at 2.500Q.

The anode and screen grid currents were not stated but they must have been pretty low.

Evidence of this fact was provided by the description of how the UA-55 could be used as a rectifier.

By strapping both anodes directly and connecting these via limiting resistors to the strapped grids and screens, the valve would act as a half-wave rectifier capable of delivering up to 25mA with a small internal voltage drop. The manufacturers envisaged using for this lowly job valves that had been rejected on test as not up to standard for general use. (Shades of Lee de Forrest!)

It's an interesting thought that since every receiver would need a rectifier, the expected quality failure rate for the UA-55 must have been between about 20 and 30%.

Into Quantity Production?

Whether the valve did, in fact, go into quantity production is unclear, but if it did, precious little evidence survives of its appearance in actual receivers. In fact, the only example so far traceable is a two-valve r.f. unit that was reported as being exhibited at RadiOlympia in November of 1947.

The receiver in question had another claim to originality as it employed a very early form of "printed circuit" with many of the components "sprayed" on to the Paxolin circuit board. How many of these boards were made is another matter for speculation, but they may well have been counted in dozens.

If so, there's a very good chance of some of the boards being preserved in lofts or cellars, because at that time the British were well known for not wantonly throwing anything away, "in case it comes in useful!" Keep looking!

Fig. 3: Actual view of a Sargrove UA-55. Note the B9A type base.

Fig. 4: An early type of 'printed circuit' receiver using two Sargrove UA-55s.
Rob Mannion G3XFD describes his continuing success and enjoyment working 'portable' from his car using a variety of antennas and what seems to be a very useful antenna tuning unit from MFJ in the USA.

Since I have started to enjoy operating 'strobe portable' from my car again, using the versatile Alinco DX-70, I've used a variety of antennas. In the past I always opted for a simple 'long wire', tuned up with the a.t.u. from the main shack ... but having to continually take it from the house and into the car and back again got on my nerves. So, something else for tuning the antennas had to take its place!

My renewed interest in h.f. portable operations really accelerated in 1998 when in mid summer, I started using the triple magnetic mount (reviewed in the October 1998 PW as 'Out & About With Pro-AM Antennas & Magnetic Mount') in conjunction with the Pro-AM h.f. whip antennas.

I found the mag-mount and whip combination suited my portable operations on h.f. very well indeed. (Although I don't actually work 'mobile' for safety reasons - see the Pro-AM review).

The Pro-AM whips were easy to use, except that I had to continually re-adjust the whip section to work over the whole band. This was because the American-made antennas are optimised for work in their a.s.h. section of the various bands.

Using my main a.t.u. for portable operation as well as at home was a first class idea because I was able to tune the mobile whip over the whole of the European band plan sections. I then only had to get out of the car when I wished to change band altogether.

However, as I've mentioned, I quickly found it was a real nuisance to be continually taking the a.t.u. in and out of the house. And that's where the idea of trying out a small portable type of a.t.u. came about in the form of the MFJ-945E.

What's In The Box?

So, what's in the MFJ-945E's box? In fact, it's a remarkably compact a.t.u. - measuring 210mm (wide), 148mm (deep) and 60mm (high) and considering its size, the maximum (claimed) forward power rating of the 300W (High range) is generous with the lower range covering up to 30W. However, inside the unit is a very large inductor. An idea of the substantial antenna matching inductance and the tuning capacitors. The two meters providing 'forward and reflected' power levels are tucked up right in the front of the a.t.u. (See Fig. 1).

Apart from the antenna matching inductance, the unit is a straightforward a.t.u. with built-in v.s.w.r. measuring facilities. However, there's no 'average power' indication facility provided and so the meters continually flick up and down with speech or c.w. keying.

Using The MFJ-945E

When the MFJ-945E arrived at the PW office I quickly unpacked it and managed to use it for the first time on the way home! My favourite 'P' location is on high ground, not far from Wimborne from where I can just glimpse the sea, between the Needles on the Isle of Wight and Hengistbury Head, just to the east of Bournemouth.

From this location I've been able to work all around the world on h.f., using powers ranging from less than 5W to a massive 50W. However, my usual power level (on a.s.h.) is around the 25W level, with c.w. power rarely exceeding 5W, but even on 100W tests in damp conditions (February weather) the a.t.u. coped well with no 'flash-overs'.

Using my Pro-AM HF80 on 3.5MHz I now tend to use a long wire radial. With the long wire radial run out to its maximum of 30m the MFJ-945E enabled me to get minimum reflected power from the antenna resulting in excellent QSOs all over the UK on the 3.5MHz band.

In fact the a.t.u. proved delightfully easy to use with all my mobile antennas (3.5, 7, 14 and 18MHz).

In practice, I found that rotating the inductance control and then setting the transmitter control and then finally adjusting the antenna control - worked well. The small, neat meters proved very adequate for the job and the whole unit proved remarkably easy-to-use and an ideal size for use in the car.

In fact, the MFJ-945E sat very comfortably on top of my Alinco DX-70 and the two units together provided a very neat looking pair.

At home I found the a.t.u. could cope with everything I 'throw' at it - including a true 3.5MHz 'long wire', short wires and my old G-whips. It was truly versatile.

Quality & Finish

In past reviews I've commented on the poor quality of finish on some MFJ items. There have been many occasions when despite their innovative approach to Amateur Radio equipment this manufacturer's wide range of products has been let down by the sharp, unfinished edges on equipment cases, front panels and boxes.

However, I'm pleased to say that this problem does not occur on the a.t.u. under review because it has rather neat plastic end panels and soft resilient 'feet'. Well done MFJ!

Needless to say, I've actually been very impressed by the a.t.u. and apart from it not having 'peak hold' facilities on the meter (which I can live with!) I was happy to buy the review unit itself.

My thanks go to Waters & Stanton Electronics PLC of 22 Main Road, Hockley, Essex SS5 4QS, Tel: (01702) 206835, FAX: (01702) 205843, for the loan of the MFJ-945E which they can supply for £29 plus £5 P&P.
RMS

HEAVY DUTY PSU's

These top quality, stabilized, protected power supplies, are the most compact design available, measuring only 160 x 120 x 280mm.

They are both rated at 20/25A, and the HT1520 (pictured) also has Voltage & Current Meters, as well as a variable voltage control giving an output between 3.5 - 18v DC.

HT1420
- £159.95
- Voltage 13.8v DC
- Current Rating 20/25A

HT1520
- £179.95
- With Voltage & Current Meters, and Voltage Control
- Voltage 3.5-18v DC
- Current Rating 20/25A

HIGH PRECISION SWR/POWER METERS

Built to the highest standard, these highly visible cross-needle meters give a continuous reading of SWR and AVG/PEP Power. No switching is needed.

<table>
<thead>
<tr>
<th>Model</th>
<th>Voltage</th>
<th>Current Rating</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT1420</td>
<td>13.8v DC</td>
<td>20/25A</td>
<td>£159.95</td>
</tr>
<tr>
<td>HT1520</td>
<td>3.5-18v DC</td>
<td>20/25A</td>
<td>£179.95</td>
</tr>
</tbody>
</table>

Available only by mail order from our sole distributor:

EASTCOMM

Cavendish House, Happisburgh, Norfolk NR12 0RU
Frea UK mainland carriage! For full catalogue send £2 in stamps.

Sales order line

01692 650077

Fax: 01692 650925 Website: www.cqcqq.com
This month the Rev. George Dobbs G3RJV provides a blow-by-blow account of building a double balanced mixer, following immediately (of course!) after his usual appropriate quotation!

Carrying on the Practical Way!

In the last column, I offered the reader a Universal VXO (Variable Crystal Oscillator). It's a useful amateur bands variable frequency generator with a whole variety of possible applications. It prompted me to think that I ought to offer at least one practical application for the VXO.

Before we jump into something new, a couple of readers have asked me about the availability of amateur band crystals, something you will certainly need for the VXO. So, here we go!

Some of the QRP constructor suppliers stock amateur band crystals usually at the International QRP Calling Frequencies (3.560, 7.030, 10.116, 14060, 21.060 and 28.060MHz). And to help, I'm pleased to say that [Chris Rees G3FUX of The QRP Component Company](http://www.funkamateur.de) holds a stock of QRP crystals and some other amateur band frequencies.

Those readers blessed with (if that be the appropriate word) an Internet connection can also obtain a range of amateur band crystals from Funk Amateur magazine on their WebSite at www.funkamateur.de.

Obvious Application

An obvious application for the Universal VXO is to use it as the frequency source for a direct conversion receiver. The design has a disadvantage of offering plenty of r.f. output: up to about 2V peak-to-peak.

The r.f. output is more than adequate to drive a passive double balanced mixer, one of the better mixer options for a direct conversion receiver. The only problem here is that commercial double balanced mixers (although excellent in use) are rather expensive.

In the past I have had good results with home-brewed double balanced mixers (d.b.m.s) for receiver mixers and double balanced modulators.

I now share this knowledge with PW readers with my usual appropriate quotation!

"...and gives every power, a double power, above their functions"
William Shakespeare (from Love's Labour's Lost)

Making the DBM

The really critical part of building the DBM circuit is winding the transformers T1 and T2 and wiring them correctly into the circuit. Extra care at this stage will repay you with success!

The heading photograph shows the project with one transformer mounted on a home-brewed 'surface mount'.

Trifilar Winding

Transformers T1 and T2 provide 50Ω termination points and the trifilar winding presents the input, output and local oscillator ports to a balanced diode bridge, D1-4. Compact construction and a symmetrical layout help to maintain the balance of the circuit. I will describe the method that has worked for me in some detail. The completed DBM circuit board would be useful as a mixer or a balanced modulator.

Commercial DBMs usually include hot-carrier diodes but in this circuit, and in most of my other home-built DBMs, I have used commonly available high speed silicon diodes. There is advantage in matching the four diodes. They can be the cheap 1N914 or 1N4148 or similar types which are easy to match with the resistance ranges on a multimeter. The typical forward resistance of such diodes is in the 5 to 20 Ω range. Finding four diodes with closely matching forward resistance will produce a better mixer.

Simply measure the forward resistance of whatever diodes you have to hand and pick the four best matches. The 'back' resistance will probably be over 1MΩ and need to be checked.

The Circuit

The diagram, Fig. 1, shows the circuit of a double-balanced diode-ring mixer. Diodes offer good dynamic range (strong signal handling capability) in mixer circuits.

The problem is that the diodes have a conversion loss rather than the gain that comes from active mixer circuits. The losses may be in the order of 5-10dB, which may mean having to obtain more gain in other stages of a receiver.

For first mixers in a receiver - and especially when it's the only mixer in a direct conversion receiver - the better dynamic range more than makes up for the losses.

Excellent commercial d.b.m.s are available and the common SBLI is often used in amateur circuits and these are expensive components. Fortunately though, with some care, it's possible to make a d.b.m to give an equally good performance.

Trifilar Winding

Transformers T1 and T2 provide 50Ω termination points and the trifilar winding presents the input, output and local oscillator ports to a balanced diode bridge, D1-4. Compact construction and a symmetrical layout help to maintain the balance of the circuit. I will describe the method that has worked for me in some detail. The completed DBM circuit board would be useful as a mixer or a balanced modulator.

Commercial DBMs usually include hot-carrier diodes but in this circuit, and in most of my other home-built DBMs, I have used commonly available high speed silicon diodes. There is advantage in matching the four diodes. They can be the cheap 1N914 or 1N4148 or similar types which are easy to match with the resistance ranges on a multimeter. The typical forward resistance of such diodes is in the 5 to 20 Ω range. Finding four diodes with closely matching forward resistance will produce a better mixer.

Simply measure the forward resistance of whatever diodes you have to hand and pick the four best matches. The 'back' resistance will probably be over 1MΩ and need to be checked.

Making the DBM

The really critical part of building the DBM circuit is winding the transformers T1 and T2 and wiring them correctly into the circuit. Extra care at this stage will repay you with success!

The heading photograph shows the project with one transformer mounted on a home-brewed 'surface mount'.

The Circuit

The diagram, Fig. 1, shows the circuit of a double-balanced diode-ring mixer. Diodes offer good dynamic range (strong signal handling capability) in mixer circuits.

The problem is that the diodes have a conversion loss rather than the gain that comes from active mixer circuits. The losses may be in the order of 5-10dB, which may mean having to obtain more gain in other stages of a receiver.

For first mixers in a receiver - and especially when it's the only mixer in a direct conversion receiver - the better dynamic range more than makes up for the losses.

Excellent commercial d.b.m.s are available and the common SBLI is often used in amateur circuits and these are expensive components. Fortunately though, with some care, it's possible to make a d.b.m to give an equally good performance.

Trifilar Winding

Transformers T1 and T2 provide 50Ω termination points and the trifilar winding presents the input, output and local oscillator ports to a balanced diode bridge, D1-4. Compact construction and a symmetrical layout help to maintain the balance of the circuit. I will describe the method that has worked for me in some detail. The completed DBM circuit board would be useful as a mixer or a balanced modulator.

Commercial DBMs usually include hot-carrier diodes but in this circuit, and in most of my other home-built DBMs, I have used commonly available high speed silicon diodes. There is advantage in matching the four diodes. They can be the cheap 1N914 or 1N4148 or similar types which are easy to match with the resistance ranges on a multimeter. The typical forward resistance of such diodes is in the 5 to 20 Ω range. Finding four diodes with closely matching forward resistance will produce a better mixer.

Simply measure the forward resistance of whatever diodes you have to hand and pick the four best matches. The 'back' resistance will probably be over 1MΩ and need to be checked.

Making the DBM

The really critical part of building the DBM circuit is winding the transformers T1 and T2 and wiring them correctly into the circuit. Extra care at this stage will repay you with success!

The heading photograph shows the project with one transformer mounted on a home-brewed 'surface mount'.
This month's project - a miniature mixer!

board that I use for building a DBM. It's a piece of unetched printed circuit board some 40mm by 20mm divided into 12 soldering pads.

Drawing a saw blade across the copper-clad side of the board to make 12 'islands' produces these pads. The islands are then tinned with solder. I have numbered the pads, as shown in Fig. 2, to help the wiring layout.

The Transformer

Each trifilar transformer is wound with (three lots of) 15 turns on an FT37-43 ferrite toroidal core. This core has a 0.37 inch outer diameter and a permeability of 850.

In practice other ferrite toroidal cores of similar diameter would probably do the job well. I have often wound DBMs on surplus ferrite cores. But remember - the cores must be ferrite rather than powdered iron.

In a trifilar winding, three wires are wound through the core. This can be done with the wires lying side by side but it's more common to lightly twist the three wires so

can be identified using a resistance continuity checker.'

Now The Fun

Now it's time for the fun bit! Lay out the wires as shown in Fig. 3. Remove the enamel from the ends of the wires and tin the bare copper ends. (This is the point at which the wires can be identified using a resistance range on a multimeter, or any other continuity checker).

Next, you should position 1 and 5 and 2 and 4 out of either end of the toroid as shown in the centre toroid of Fig. 4. Wires 3 and 6 are taken under the toroid, twisted, then soldered together:

Make up T1 and T2 as a mirror image of each other as shown in Fig. 4. Leave them on the bench in this formation ready for adding to the matrix circuit board.

The two transformers are now added to the matrix board as shown in Fig. 5 (left and right in Fig. 4). This must be done correctly or the mixer may not work.

The order is: for T1 - lead 1 to pad 1, leads 3 and 6 to pad 5, lead 2 to pad 9, For T2 - lead 1 to pad 4, leads 3 and 6 to pad 8, lead 2 to pad 12, lead 5 to pad 3 and lead 4 to pad 11. The diodes may now be added to pads 2, 3, 10 and 11 (taking care to place them in their correct polarity).

The diode ends soldered to pads 2 and 3 must cross over without touching. Pads 5 and 9 are joined and pads 9 and 12 are connected to ground. (For a direct conversion receiver the signal input is at pad 1 the local oscillator input is at pad 4 and the output is from pad 8).

Phew! You've now built a double balanced mixer for a fraction of the price they cost to buy. Next time we will complete the other circuit items required to make the complete receiver. Cheers to that then - and I know you will be successful!
Antenna Workshop

In this visit to the Antenna Workshop, Dick Pascoe G0BPS raises the topic of 'Top Band' antennas for small spaces - or ways of getting a quart out of a pint pot!

During recent occupancy of the 'Antenna Workshop', I've discussed several types of antenna but missed out on those for 'Top Band'. After being taken to task about this by more than one reader, this is my earliest opportunity to remedy the matter!

When considering the space required for antennas it is always easier to check the tower for my 144MHz beams rather than the space needed for my h.f. antenna system. I have been planning to upgrade my 1.8MHz antenna for some time.

Then some six years ago we moved from a large three story Victorian house to a bungalow. The old house didn't have a large garden but the height helped a lot. My vertically mounted 3.5MHz full size loop, with some help, tuned up on 1.8MHz too.

However, moving to the bungalow made life a little more difficult, especially as we now have power lines on three sides of the garden. The biggest advantage of the new home is the size of the plot. Half an acre of space does make it much easier to erect decent antennas, in spite of the power lines.

The drawing of Fig. 1 shows the plan of my present house and the constraints. The doublet antenna with the feed at the top of the 20m tower works well - well mostly, but of course always could be better.

Legends

A few years ago, I was lucky enough to stay with the late Doug DeMaw W1FB, one of Amateur Radio's genuine legends. He took me for a walk us around his 'plot of land'. It had been a multi hundred -acre farm, left to return to nature.

The drawing of Fig. 1 shows the plan of my present house and the constraints. The doublet antenna with the feed at the top of the 20m tower works well - well mostly, but of course always could be better.

A 1/4 vertical antenna, radiates equally all around the antenna. So, we might make a 1/4 vertical antenna. Though on 1.8MHz, such an antenna would be 40m tall, which is still rather big so, again we will cheat a little.

Doug DeMaw has written many articles on antennas. One of his ideas was about loading up the antenna support tower. A tower with a height of 40m can easily be used as a 'Top Band' antenna.

Feeding such a vertical antenna, usually 'plugged' into the ground, provides us with our first problem, which there are several answers. The first and in many cases the easiest answer is a form of Gamma matching system.

A heavy wire or rod (the diameter is not that critical) is run vertically, alongside the tower and held firmly in place between 250mm and 1.5m away (this distance should not be less). The wire or rod is held in place by fixed insulated bars mounted on the tower.

In the illustrations of Fig. 2 you can see the inner of the coaxial cable feeding the 'gamma' rod via the air spaced capacitor, for matching and fine-tuning. The only electrical connection to the tower, is of the wire to the top of the tower as shown.

The antenna will need some fine-tuning. The diameter and type of shunt feeder will affect the tuning. The height of the tower, even the antennas on the tower will affect it. Like may other antennas in use, the time spent on getting it right will be of benefit in the end.

The bad news is that because of the limited height of the antenna (compared to the 'real' 1/4) the matched bandwidth will be quite narrow. The 'tuning' capacitor at the base could be motor driven to aid tuning. A good Antenna Tuner in the shack will also help.

A tip about raising long poles like this. Never let the feeder hang loose from the top. It puts a great extra additional strain on both the pole and the lifter. Tape the feeder to the pole all the way down to the base.

Cheat A Little!

There are other ways to get an antenna up vertically, cheat a little! Take one of those cheap fibreglass-fishing poles that are available, they range from 3m to over 15m long (some even longer), but try the longest that you can. Although a good ground is essential in this project.

The 'thin end' may have to be cut back until the centre hole is found. The antenna wire is fed through the middle of the fishing pole. If you are lucky enough to have two scaffold poles and a joiner we will get closer to our required 40m.

With two scaffold poles and the fishing pole at the top, we will have a total length...
that may be as long as 25m - or even more (Fig. 3). However, the final length is likely to be short so, a loading coil will be required. The best place to put this loading coil is right at the top, but is often impractical. The next best place for the coil, is to put it will be just above the joint of the fishing pole to the scaffold pole.

With some 20m of scaffolding and a five metre fishing pole, calculations show that a coil of about 144uH was needed. With the 35mm diameter pole I had this equated to about 100 close wound turns. Use this valued as a start point for your own.

Bolt one end of the wire to the end of the scaffold pole and after winding around the pole, the wire is passed through a small hole and up the middle of the fishing pole and out of the top. All joints should be taped to aid weather-proofing and to stop the pole collapsing in on itself.

The coaxial inner is connected to the bottom of the scaffold pole and the outer shield connect to your ground stake or, if you're lucky, to your earth mat. The scaffold pole should be guyed of course, but make sure that insulated materials are used.

Top Hat

Apart from loading verticals a form of 'Top hat' can be used, the model shown incorporates both of these techniques. The 15m of scaffold pole topped by a loading coil of 53uH is capped by just two wires which can also be used as guys. The 8.2m of wire provides the 'Top hat' effect in a limited way (Fig. 4).

With the dimensions mentioned the antenna should resonate about 1.8MHz. It is essential that the diameter of the pole used is over one inch as if, say 2mm wire was used the top legs would have to be increased to 10m each side and the loading reduced to 32uH. A 'Top hat' is shown on top of the 12m poles. In this case we again use a mixture of loading coil (165uH) and 'Top hat' (Fig. 5).

The 165uH loading is made up of 119 turns on a 35mm former. The hat can be made up of anything. I have used a loop of fencing wire hung on a fibreglass pole. The loop of wire was joined at short spacing to the centre, much like the spokes on a bicycle wheel. The 1.2m diameter will aid the resonating of this antenna on the band.

It must be remembered that each of the descriptions above, worked at my house! They probably won't work where you live. The changes in ground, the type of material used and even type of tower used will change things quite a lot.

What I can say is that if you are willing to experiment then a way forward will be found. The sizes and notes given here are intended to guide you towards achieving a good antenna for the band.

Many amateurs will rely on a simple s.w.r. bridge to resonate their antennas. There are many other variables involved that the simple bridge cannot cover. Yes, you may have a low s.w.r. but is the antenna efficient?

All Singing

On a recent trip I bought one of the MJF 'all singing' Antenna Analysers (MFJ-259), not their latest version but the one with the meter and frequency counter in it. This proved beyond doubt that you should not rely solely on the s.w.r. bridge.

Anyone doing antenna work should have an antenna analyser (club's should buy one to loan to members), they are excellent. Just knowing the resonant frequency of an antenna and the (approximate) impedance makes them worth the price.

For those wishing to get more ideas, there's a lot of good reading available in John Devoldere ON4UN's book Low Band DXing. The next best (in my opinion) is the ARRL Antenna Book, which has several chapters aimed at loop antennas and long wires.

We can't miss out either, Les Moxon G6XN's book, HF Antennas for all Locations. First published in 1982 and updated in 1993, this book still has lots of ideas in it. Others books include Orr & Cowan's Vertical Antennas and John Heys G3BDQ's Practical Wire Antennas or Peter Dodd G3LDO's Antenna Experimenters Guide. Any of these books will provide good basic information on making your own antenna.

I have about 18 books on antennas from around the world. From home-produced by a club to text books on antennas, they are all similar in many ways but there are also small nuances of approach that can be used in differing circumstances.

Personal Computers

In recent years the profusion of personal computers has brought forth a wonderful number of programs allowing 'modelling' of many electrical parameters. Without doubt one of the very best antenna modelling programs is EZNEC from Roy Lewallen W7EL.

Used by some of the very best contest groups, EZNEC allows you to input your 'thoughts' and actually see them in action on your screen. This highly recommended program is available from Roy direct or via email at W7ELOteleport.com.

To misquote our Prime Minister, The Right Honourable Tony Blair's 'famously saying' there are three important things for us to do, experiment, experiment, and to experiment. If we work at it and experiment we will get a 1.8MHz antenna that will produce the goods and just maybe work the world.

Happy building.
Dick GOBPS
Please mention Practical Wireless when replying to advertisements.

ICOM

- IC-706MKIII "DSP" £699
- IC-73 £299
- IC-921H £975
- IC-745 £1199
- IC-755 £1495

MULTICOMM 2000

Large Showroom Best Prices

ICOM

- IC-706MKIII £995

YAESU

Call for our latest Yaesu prices!

- FT-847
- VX-1R
- FT-920AF
- FT-8100

JRC

- JRC IS-245 $1799
- JRC ND-545 £1225

ALINCO

- DX-70T H £599
- DJ-305 £225
- DR-510 £425
- DR-150 £239
- DR-505 £345

KENWOOD

- TS-570DG £825
- TM-370 £299

HELIX

- HC-4 Insert DX £25
- HC-5 Insert HQ £25
- Foot switch £25
- Adapter leads £10

PRO SET £99

PRO-MICRO £79

UNIT 4, 17-E LITTLE END ROAD, EATON SOCON, CAMBS PE19 3JH

CALL FOR OUR LATEST YAESU PRICES!

Order your NEW FT-100 NOW!

Price slashed!

IF you order your NEW FT-100 NOW!

UNIT 4, 17-E LITTLE END ROAD, EATON SOCON, CAMBS PE19 3JH

Practical Wireless April 1999
SALES HOTLINE 01480 406770
NO DEPOSIT FINANCING AVAILABLE
USED EQUIPMENT URGENTLY WANTED

AMERITRON

AL-811
600 watts
£599

AL-811H
800 watts
£699

WE HAVE MOVED

SUPER SALE

MFJ

MFJ-989C
3kW HF
ATU
£245

MFJ-382D
1kW HF
ATU
£199

MFJ-969
300W HF
ATU
£129

MFJ-948B
300W HF
ATU
£89

MFJ-945
300W HF
ATU
£75

MFJ-995
300W HF
ATU
£89

MFJ-921
VHF
ATU
£55

MFJ-818
VHF
ATU
£55

MFJ-258B
Antenna
£159

MFJ-1278B
Multimode
TNC
£199

MFJ-901
HF ATU
£65

MFJ-966
HF ATU
£68

MFJ-931
Artificial
Ground
£65

MFJ-924
Ground
+ ATU
£149

MFJ-748B
DSP
unit
£169

MFJ-815
HF + SWR
SWR
£59

MFJ-816
HF + SWR
£55

1278B-DSPX
DSP
£299

SUPER SALE

USED EQUIPMENT WANTED

HF TRANCEIVERS

Alinco DX-70
Mint
£499

Icom IC-720
Cased as new
£549

Icom IC-720
Good condition
£399

Icom IC-720
As new
£179

Icom IC-720
HF + 6 meter new
£599

Icom IC-720
As new
£499

Icom IC-720
HF + 6 meter as new
£399

Icom IC-720
As new
£499

Icom IC-720
Great performer
£449

Icom IC-720
Busted as new
£179

Kenwood TS-570D
Busted as new
£625

Kenwood TS-575D
HF + 6 meter new
£179

Kenwood TS-505AT
As new
£599

Kenwood TS-505AT
Great conditio
£895

Ten-Tec Gemini 1150
£495

Yasui FT-700AD
As new
£495

Yasui FT-700AD
Excellent
£899

HF VHF/ UHF TRANCEIVERS

Alinco AL-230E
22W stereo
£169

Alinco DJ-100
Hand-held
£199

Alinco DJ-560
Dual band+
£179

Alinco DJ-560
Dual band+
£179

Icom IC-7000A
Dual band-
£295

Icom IC-7000A
Dual band
£295

Icom IC-7000A
Dual band+accessories
£995

Icom IC-7000A
Dual band
£995

Icom IC-7000A
Dual band+
£995

Kenwood TH-95AT
Two hand-held
£109

Kenwood TH-95AT
As new
£109

Kenwood TM-751
Multi mode
£999

Kenwood TM-751
Two hand-held
£999

Kenwood TM-751
As new
£999

Kenwood TM-751
Two multimode
£999

KENWOOD TR-7751
20m mobile
£149

Standard C-500
Dual band end
element
£995

Yaesu FT-250
Good condition
£149

Yaesu FT-700
2m + accessori
£199

Yaesu FT-890
2m multimode broad-signal
£999

Yaesu FT-890X
9999

Yaesu FT-727K
With 2/30 in seen
£299

Yaesu FT-727K
With 6/20 in seen
£699

ACCESSORIES

Alinco EXS-1
£199

Capo Loop
£999

Hammar
£699

Kenwood FT-882L
Translated
£999

Kenwood AT-250
Auto ATU
£175

Linear
£299

Migra B-816
20m 160W lin
£199

Magic 50 station
£199

K&N 70W power transistor
£69

Sgs
£199/1000 2mm 160W lin
£199

UNIT 4, 17 E, LITTLE END ROAD, EATON SOCON, CAMBS PE19 3JH

Website: http://www.multicom2000.com | E-mail: sales@multicom2000.com

FAX: 01480 356192

Practical Wireless, April 1999

53
Reflector Elements

Each of the reflector elements is treated in much the same way as the driven elements. The trap conversion is identical to that described previously. The only difference is in the final assembly by allowing for a 5'1 increase in dimension 'L' as given in Fig. 2. This gives the slightly inductive length of the inner elements of 5.575m making the overall length some 6.49m.

The driven element and reflector are mounted onto the original TA32 boom, which is 1.78m long. This gives an inter-element spacing of just over 0.11 for 18MHz and just under 0.151 for 24MHz. The forward gain of this new combination antenna is not super, but accords with what the ARRL Antenna Book leads me to expect from a two element beam antenna of this type, and that is about 3.5-4dBd.

The front-to-back ratio as measured on air using a steady carrier, (although not very scientific) gave a figure of about 25dB. The front-to-side ratio is amazingly good. I can null out 'EU' QRM by on air measured 45dB and more distant signals can be reduced to the noise level.

This is no TH7 antenna but it does a fine job for me and it cost only the price of some new trap covers. My rotator, a Diawa DR7600R rotator (Yaesu equivalent G6001, turns this antenna plus a stacked 3-element tribander - see heading photograph - is mounted on a 21m tower (though it's seldom above the 15m level). The assembly has survived five winter seasons of gales.

A Balun?

I made mention earlier of a balun. Many years ago an elderly Radio Amateur giving some sage advice to this (then!) stripling beginner regarding antennas, uttered the maxim "Balanced feed my boy, balanced feed". These words have always stuck with me, and invariably, when building antennas, I try to comply with that stricture.

The maxim was, of course, perfectly true in the days of open wire line and parallel tuned a.t.u.s. Since those times, we have come to accept 50Ω coaxial cable as the preferred method of feeding our antennas. However, I have tried various unbalanced to balanced devices and have come to dislike all of them for a variety of reasons.

However, the presence of r.f. appearing on the outer of the coaxial cable braid can cause complications. Therefore, in this installation, the coaxial cable is directly connected to the driven element and I've used the preferred current type balun. This consists of six turns of the coaxial cable (close up to the feed point) wound to a diameter of 150mm. With this arrangement, I have had no problems. I daresay that the 'experts' will be able to pull holes in this 'design' but the proof of the pudding is in the operating. So, if you want a beam for 18/24MHz, then this could be for you!

The measured s.w.r. of Derek's antenna over the two, relatively narrow, WARC bands.

A Beam Antenna From Bits

...continued from page 39

Refer you to WB4OSN's article in the June 1989 issue of the DX Magazine.

One good thing about the Mosley beam antennas is that most of the spares you'll require are available from Mosley UK, who will send you a price list upon application.

Unfortunately, Mosley cannot supply spare trap covers and coil formers. If you have an accident with these then you will have to improvise. Take a trip into your local aluminium grave yard and save yourself some money.
The receiver is fully synthesised employing a phase lock loop VCO to ensure stable and accurate signal reception.

- Frequency range 30kHz-30MHz
- Modes USB/AM/LSB
- 1kHz steps with clarifier
- Audio output 2 watts
- Headphone socket
- 10 memory facility
- Data output on the receiver & data lead for connection to your computer
- UK power supply & long wire aerial

£159.95 +£6 P&P

TRANSCEIVERS £193.74

HF TRANSCEIVERS

ICOM IC-706 Mk2 G

- Now in stock!

YAESU FT-8100R

- New RRP £369

YAESU FT-8100R

- New RRP £369

VHF/ UHF MOBILES

ICOM IC207H

- New on the market

KENWOOD TS-770D

- New updated version of the TS-570D

VHF/UHF HANDHELDs

NEW KENWOOD TH-D7E

- Dualbander from Kenwood a

BULK PURCHASE

ICOM IC-W32E AT THE KNOCK DOWN PRICE OF £299.00

- The IC-W32 is a high power, full function user-friendly dualband handle, that meets the demands of both the novice and experienced operator. Simple operation and advanced features make the IC-W32 a popular choice among enthusiasts.

PHONE FOR ARC PRICE

NEW KENWOOD TH-D7E

- Dualbander handle - TH-D7E

FREE PARKING

WEATHERFAX

- Both are included on the disc supplied.

SLOW SCAN TV

- Receive:
 - SLOW SCAN TV
 - WEATHERFAX
 - SYNOPTIC RTTY etc. etc.
 - Using JVFAX 7.1 freeware and
 - HamComm 3.1 shareware.

PHONE FOR ARC PRICE

MONTHLY SPECIALS

- KENWOOD TM-G707

- New RRP £395

- Tele for special price -

- **TEL FOR SPECIAL ARC PRICE**

- **NEW KENWOOD TH-D7E**

- Dualbander handle - TH-D7E

- **USE YOUR CREDIT CARD FOR SAME DAY DISPATCH**

- **PHONE NOW FOR OUR SPECIAL PRICE**

Amateur Radio Communications Ltd

38 Bridge Street, Earlestown, Newton-le-Willows, Merseyside WA12 9BA

We are the largest stockists of both new and secondhand amateur radio equipment in the north of England - fact not fiction! Our company boasts a full time service department authorised by all the major suppliers.

When you buy from us you have complete peace of mind!
Most lowpass filters are made from thin lightweight materials, assembled with pop rivets, and do not even have earth terminals! Their performance is, to say the least, poor. Delta Lowpass Filters are designed for performance not economy, giving a tough solid construction, with attenuation slopes which avalanche downward immediately above the transmitting frequency range. No other current filters compare favourably with these designs. Delta Lowpass Filters allow frequencies below the rated cut off point to pass with little or no attenuation, while those above the cut off frequency are harshly attenuated. These filters are heavily built deep notch Chebyshev designs, ideal for preventing interference from harmonic or spurious emissions - a must for good operating. Low power models use silver-mica capacitors and phenolic connectors. High power models use thick teflon TFE insulation sheet, brass or copper capacitor plates, and all connections are soldered. Filters are non-polarized and non-directional and should be mounted as close as possible to your station earth. They may be stacked for additional attenuation. Insertion Loss is 0.1dB - 0.4dB approaching cut off. Attenuation is 70-90dB.

Available only by mail order from our sole distributor:

EASTCOMM

Cavendish House, Happisburgh, Norfolk NR12 0RU

Free UK mainland carriage! For full catalogue send £2 in stamps.

Sales order line: 01692 650077

Fax: 01692 650925 Website: www.cqcqcq.com

Advertisements are expected to conform to rules and standards laid down by the Advertising Standards Authority. Most do. The few that don't we'd like you to write in about. And if you'd like a copy of these rules for press, poster and cinema advertisements, please send for our booklet. It's free.

RADIO ENGINEERS REQUIRED

Thought about earning a living from your hobby? Want a career not just a job? Have you a radio qualification?

Become a radio engineering consultant in the mobile phone industry.

Please send a CV with current salary details to:

Millennium Network Solutions

Personnel Dept.

Crown House

72 Hammersmith Road, London W14 8TH

or fax it to 0171-559 3401
Hello and Welcome to Electronics-in-Action (E-A) for April 1999. I've got so much to tell you about this month that I'll have to shorten my usual book descriptions. Rest assured though, we haven't forgotten books altogether. Elsewhere in this issue you will find profiles on several other books about test equipment and associated electronic subjects.

As I've seen the books that are described in the Profiles, I have to say that they are all well worth the space on your bookshelf. tossed aside, bat back to the Ix

I'd like to mention. it's worthy of a whole page to itself. The book, by Rudolph Graf and William Sheets, i'ttalleof Encyclopedia Of Electronic Circuits Volume 7, the latest in a series of circuit 'cook-books'.

As a book, Encyclopedia Of Electronic Circuits, is a real 'thumb-buster', at over 1100 pages it's almost 70mm thick.

Though I feel the book will spend little time sitting on the shelf, the Encyclopedia Of Electronic Circuits is too full of new circuits to spend much time alone. And with more than 100 sections to choose from, there's bound to be more than one section that appeals to you!

Encyclopedia Of Electronic Circuits is excellent value at £31.99 (plus P&P) and is available from our Book Service.

From Readers

Reader Peter Crabtree G7TOO thinks he's come up with a p.c.b. production tool that will consign messy etchant and resist-pens to the realms of history: Have a look at the photograph of Fig. 1 where I've shown the pad-cutting tool that Peter has designed. Similar to the familiar 'hole-cutter' but much smaller, the cutting tool leaves a small circular pad on p.r.h. material. Peter produced the circuit tit George Dobbs G3Risirs 'Mix OS a dereOfellji1011(li the technique, this is shown in Fig. 2, where you should just be able to see the cleared pads surrounded by 'ground-plane' material. Starting with a unetched piece of p.c.b. material, the 'islands' are cut out using the the inverted cup cutter, either 'freehand' or using a matrix guide made from some other material.

I like the method that Peter has developed. It's both unusual and easy to use. In fact, I found that I didn't need a drill of any type, a simple pin-vice, big enough to grip the cutter, was all that was needed for small projects. The miniature inverted cup cutter is available direct from Peter Crabtree G7TOO, at 106 Sagecroft Road, Thatcham, Berkshire RG18 3BF. Readers should contact him for price and availability, because I have no other details.

Amplifier Kit

Part of the Novice License course is to build, under supervision, a small audio amplifier. Alan Lake of Lake Electronics, has developed a suitable small amplifier that would be ideal for the prospective Novice or in fact for anyone needing a small self-contained amplifier of around 100mW of audio output. The contents of the 'kit-bag' are shown in Fig. 3, which lives up to Alan's boast of 'The kits with all the bits'.

In the kit are the semiconductors, resistors, capacitors, the volume control and a small speaker, a battery clip suitable for a PP3 9V battery and of course, the p.c.b. itself. The instructions accompanying the kit are on a single A4 double-sided piece of paper. Short but adequate for the task, each resistor component is identified by reference to the colour bands. All other components are shown in a simple overlay diagram, which aids putting them in the right place.

With only 12 components to solder in place, I took under an hour to complete the kit and I would imagine that a
Novice would take just a little longer than this - but not much more. I would suggest though, that having a magnifying glass to hand to positively identify the three transistors would be handy. My eyesight is not bad, but I found that reading the transistor type numbers just a "tad" on the difficult side. But this is not an adverse comment about the kit itself, which is shown completed in the photograph of Fig. 4.

The Novice Amplifier K3 has a companion Novice Receiver kit, shown in Fig. 5 and they cost £8 each with a £1 P&P charge (for one or more kits). I shall be describing building the receiver kit in the next issue of E-t-A, but if you're unable to wait, the kits are direct from Lake Electronics, at 7 Middleton Close, Nuthall, Nottingham NG16 1811. From Lake Electronics, at 7 Middleton Close, Nuthall, Nottingham NG16 1811. you're unable to wait, the kits are direct from Lake Electronics, at 7 Middleton Close, Nuthall, Nottingham NG16 1811. from Lake Electronics, at 7 Middleton Close, Nuthall, Nottingham NG16 1811.

Fig. 4 (left and lower): The neat - if spartan - layout of the Novice Amplifier.

Table 1: Pin connections for several output pentodes from the DLS97 series that will work with the two valve audio amplifier.

<table>
<thead>
<tr>
<th>Pin</th>
<th>DLS92</th>
<th>DLS93</th>
<th>DLS94</th>
<th>DLS96</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>f(1)</td>
<td>f(1)</td>
<td>f(1)</td>
<td>f(1)</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>3</td>
<td>g1</td>
<td>g2</td>
<td>g2</td>
<td>g2</td>
</tr>
<tr>
<td>4</td>
<td>g1</td>
<td>g1</td>
<td>g1</td>
<td>g1</td>
</tr>
<tr>
<td>5</td>
<td>fkap</td>
<td>fkap</td>
<td>fkap</td>
<td>fkap</td>
</tr>
<tr>
<td>6</td>
<td>f1</td>
<td>f1</td>
<td>f1</td>
<td>f1</td>
</tr>
<tr>
<td>7</td>
<td>f1</td>
<td>f1</td>
<td>f1</td>
<td>f1</td>
</tr>
</tbody>
</table>

Fig. 5: The Novice Receiver Kit, also from Lake Electronics, which will be described in more details in a future issue of E-t-A.

Valved Amplifier

In the February issue of E-t-A, I mentioned that I was developing a small valved audio amplifier using 'battery' valves and easily available components.

Solidly Constructed

In answer to that question I have to say I found the LP-310 a solidly constructed unit with a large (11mm high liquid crystal display (L.C.D.) that was particularly easy to read under most lighting conditions. The 3-way rotary measurement selection switch was very positive with little inclination to move, once set. The measurements are on a "three and a half" digit meter giving a range of 0-1999 on all ranges.

The decimal point is set in the relevant position. In each of the six current, five voltage, one resistance, one junction forward voltage, one capacitance, four frequency, and two logic level types settings. The transistor fβ setting has no decimal point setting. Both voltage and current ranges may be selected for either d.c. or a.c. values with the same range.

The circuit shown in Fig. 6, uses a 1T4 as a preamplifier stage (V1) with a voltage gain of about 10-12. This may seem to be an unusual application of a variable gain valve - but I had a lot of them to hand. The main amplifier, V2, may be any one of the DLS97 series of output pentodes. I've tried most of them.

Fig. 6: This audio amplifier, using battery valves may be built with easily available parts. Though pleasing in sound - don't expect real 'Hi-Fi' quality from it. (See text for more details).

Well, if you look at the circuit diagram of Fig. 6, you will see the results. I'm particularly fond of the small battery valves, they take me back to my first 'personal' radio many years ago, when I used to listen to radio Luxembourg with the characteristic 'rise-and-fall' of signal level that the a.c. circuits couldn't cope with very well.

The circuit shown in Fig. 6, uses a 1T4 as a preamplifier stage (V1) with a voltage gain of about 10-12. This may seem to be an unusual application of a variable gain valve - but I had a lot of them to hand. The main amplifier, V2, may be any one of the DLS97 series of output pentodes. I've tried most of them.

Measuring Vann Drapers

In the course of preparing this column for the magazine, I'm lucky, in that I get to 'play with' many pieces of equipment that I might not otherwise have the chance. This month, I've had the opportunity to try out a new digital multimeter (d.m.m.) from the test equipment suppliers Vann Draper.

The UpTek LP-310 d.m.m. Is a well specified multimeter. It is so well specified that it truly is worth calling a Multi-meter as it measures not only the usual voltage, current and ohms, but also capacitance, frequency, transistor gain and logic levels in computer circuits. All this in a unit measuring around 190x90x35mm and weighing around 320g!

The 320g weight is for the unit itself, there is a supplied protective 'holster' that, when used pushes the overall weight up to around 600g. This protective unit, formed from a dense soft plastic, doubles as either a belt mounted holster, into which the LP-310 d.m.m. may be clipped, or as an impact protection 'armour' when the unit is used on the bench.

I didn't try the armour out by dropping the UpTek, but it definitely gives the Impression that it will be more than adequate for the job. A moulded-in loop would allow the holster to be fitted on strong belts up to 30mm wide and up to around 5mm thick. But enough of the holster, what were my thoughts about the UpTek LP-310 itself you may ask?

Measuring transistor gain is particularly easy on the LP-310, and it makes choosing matched pairs a simple matter.

Two fuses, one for 2A and a larger one rated at 10A, provide for current ranges from overload.
Very useful!

In such a way that both npn and pnp push the leads of capacitors on test should be the leads of smaller value components. As the unit I had on loan was new, this problem might disappear with use. The thicker types of leads were no problem at all, pushing in quite positively giving a good contact with little evidence of 'noise' on the reading.

I chose to use a Zener diode to 'create' the grid bias as the most convenient way, being 'self-contained' with no battery or p.s.u. is needed.

Developing the grid bias this way does mean that there's only a nominal 85V available for the h.t. but it makes little difference that I noted in development. The underside of the prototype is shown in the photograph of Fig. 7. The variable resistor R5 allows the grid bias to be changed to accommodate other preamplifier values in VI's position.

The only other component that needs more explanation is the output transformer in the anode circuit of V2. I use a small 6V-1A mains transformer for availability and cheapness. The 40:1 ratio of the transformer suits the 8Ω loudspeaker to a nominal anode load impedance of around 12-1kΩ. A better match would have been a 7.5V-1A transformer, but I didn't have one!

Prototype Audio Amplifier

Fig. 7: The underside of the prototype two valve audio amplifier showing the temporary link up. The pre-amplifier valve V1 is the darker valve base on the right hand side.

In the circuit and they all work in the circuit shown without any real changes being necessary.

Looking in my valve data books I decided that using the parameters for the DL94 valve was a useful compromise and so the anode current is around 10mA with a negative bias of -4.9V. As the various valves in this series have slightly different pinouts I've included this detail in Table 1 so that you may use whichever you have to hand.

Zener Bias

I chose to use a Zener diode to "create" the grid bias as the most convenient way, being 'self-contained' with no battery or p.s.u. is needed.

Developing the grid bias this way does mean that there's only a nominal 85V available for the h.t. but it makes little difference that I noted in development. The underside of the prototype is shown in the photograph of Fig. 7. The variable resistor R5 allows the grid bias to be changed to accommodate other preamplifier values in VI's position.

The only other component that needs more explanation is the output transformer in the anode circuit of V2. I use a small 6V-1A mains transformer for availability and cheapness. The 40:1 ratio of the transformer suits the 8Ω loudspeaker to a nominal anode load impedance of around 12-1kΩ. A better match would have been a 7.5V-1A transformer, but I didn't have one!

And Finally

And finally this month, the answer to the Picture Conundrum that featured in the February 1999 issue of E-i-A. It is of course (as almost all of you pointed out) a valve pin straightener. It's shown 'in action' in Fig. 9. I haven't drawn a winner yet as several people sent in their answers via E-mail - and I've had an enormous computer crash which means I've lost their entries. Would those people who know their answers arrived (I told you what number you were in the list - no cheating) send another E-mail and I'll make the announcement of the winner in the next issue of E-A-I.

Well that's all I have space for this month so, I'll see you all again in the June issue.

STOP PRESS How's This For An Offer?

If you would like to save 30% off the price of the LP-310 Meter, Vann Draper have told me they're willing to offer the UpTek LP-310 d.m.m. and even submitting it to the rigours of the field days and garage use. With around 200 continuous hours of use from an alkaline 9V battery, it should always be available whenever you need the meter.

My thanks go to Vann Draper Ltd. of Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE18 2FL, Tel: 0116-277 1400, FAX: 0116-277 3945, who can supply the UpTek LP-310 d.m.m. for £69.33, which includes VAT and post and packaging. A real bargain at that price!
In 'Book Profiles' this month, the Practical Wireless Editorial team suggest that you take a closer look at some books about test equipment. Now that the novelty of the New Year has well and truly worn off (and Christmas is but a memory), why not take your mind off the winter blues and chills by testing our opinion of this selection of books?

TELEPHONE, FAX, E-MAIL OR USE THE ORDER FORM ON PAGE 82

Oscilloscopes - How To Use Them/How They Work - Fourth Edition

Ian Hickman

This book, published by Newnes, claims to be "... the standard reference which tells you not only what to look for, but how to get the most from your 'scope". Written by Ian Hickman - a pen-name used by a "... professional electronics engineer of many years experience ..." is also the author of numerous articles in the technical press and has a number of other books under his belt - Analog Electronics, Practical RF Handbook, EDN Designer's Companion and Analog Circuits Cookbook, so the book states.

In the Preface to the book, it states that the book is aimed at anyone interested in oscilloscopes, how to use them and how they work - just what the title of the book suggests. It does state, however, that it's not a textbook and "... particularly not a textbook on how to design oscilloscopes". So, don't buy this book if you want to design one!

However, the book does go into great detail on the types of oscilloscopes which exist and the contents range from 'The Basic Oscilloscope', 'Advanced Real-time Oscilloscopes', "Using Oscilloscopes" and 'Oscilloscopes For Special Purposes'. Some of the diagrams could be a little easier to read but otherwise, this book comes Recommended.

Hands-On Guide To Oscilloscopes

Barry Ross

This Hands-On Guide To Oscilloscopes claims to cover "... all aspects of oscilloscope use". Published by the McGraw-Hill Book Company, this book is aimed at the novice who wants to become familiar with oscilloscope circuitry and correct operation of the instrument in a range of operations and states that it only requires a minimum of previous knowledge. So, if you have ever wanted to learn more about oscilloscopes but didn't know the best place to start, then this could be the book for you.

The book states that the author, Barry Ross, "... has spent over 30 years in the oscilloscope industry, first as a design engineer and

Build Your Own Test Equipment

Homer L. Davidson

Would you like to be able to build instruments to help you with troubleshooting: TVs; stereos; computers; CD players; Amateur Radio equipment and much, much more? Then this could be the book for you!

Build Your Own Test Equipment claims that it will tell you all you need to know about constructing expensive, high-capacity trouble-shooting equipment for almost any purpose. The American author, Homer L. Davidson owned and operated a successful radio and TV repair business for 38 years before becoming a full-time writer of "how-to" electronics books.

It doesn't matter what level of electronics you're at, this book aims to be something for all levels.
A professional technician, it claims, will find this a useful book just as much as an ambitious hobbyist who wishes to save on instrument and repair costs.

The author takes a step by step approach to: finding and buying components; designing PC boards; substituting components; building and testing projects and putting your completed instruments to work.

With extremely clear pictures and diagrams, this book comes Highly Recommended.

Test Equipment Construction
R. A. Penfold

This compact little book is published by Babani Electronics Books and appears to be a handy reference source, it’s neat size is just right for storage and use in the shack.

The author, Robert Penfold, states in the Preface: "... in this book some simple and inexpensive pieces of test equipment are described. They have been designed to fill in the gaps covered by most multi-meters and to cover the checking of both linear and digital circuits". So, this book would probably be a good starting point for those of you who are new to test equipment design and construction.

The chapters take you through "Audio Test Gear" - the AF Generator, The Test Bench Amplifier and the Audio Millivoltmeter; "Meters" - the High Resistance Voltmeter, the Transistor Tester, the Capacitance Meter and the AF Frequency Meter. The last chapter covers 'Probing' - the Analogue Probe, the CMOS Probe and the TTL Probe.

Good clear diagrams and a casual, easy-to-follow approach by the author makes Test Equipment Construction a Highly Recommended title at a mere £3.99.

More Advanced Test Equipment Construction
R. A. Penfold

More Advanced Test Equipment Construction, as you may have noticed, is written by the same author as Test Equipment Construction - Robert Penfold - and follows the same format as the above title.

Obviously, this book covers the more advanced equipment and the author himself states: "... this book is not primarily aimed at beginners and near beginners at electronic project construction. A certain amount of practical experience and knowledge of electronics theory is assumed". So, be warned. He does go on to say that you do not need to be an expert in order to be able to build and use these designs and that "... anyone with a moderate amount of electronics experience should be able to tackle these projects".

A similar format to his first Test Equipment Construction, this offering from Babani Electronics Books also comes Highly Recommended to those more confident Radio Amateurs and it too is very reasonably priced at £3.50.

Test Equipment For The Radio Amateur
Third Edition
Clive Smith G4FZH

This book, published by the Radio Society of Great Britain (RSGB) and written by Clive Smith G4FZH claims to describe "... a range of test equipment and measurement methods which should satisfy the requirements of most Amateur Radio stations".

The text explains the theory and construction stages of a majority of the designs covered in the book with the emphasis on the simpler type of equipment in the hope that "... they will be easier or more affordable to the Radio Amateur".

This Third Edition has, apparently, been completely revised with many new designs: "... including digital instruments and p.c.b. patterns and layouts have been provided to make construction as easy as possible".

This book has many diagrams and comes Recommended.

The Editorial Team at PW put some Test Equipment books through the vigorous 'Book Profile' mill this month. From Oscilloscopes to the more advanced test equipment construction - we've 'tested' them all for you!
Radio Scene

VHF Report

Reports & Information by the Last Saturday of Each Month.

David Butler G4ASR
Yew Tree Cottage
Lower Maescoed
Herefordshire HR2 2PH
Tel: (01873) 860679
E-mail: g4asr@btinternet.com
Packet Radio @ GB7MAD
UK DX Cluster @ GB7DXC

This month David Butler G4ASR takes a look at your activity reports and makes a prediction of World-wide DX later this year.

Conditions on the v.h.f. and u.h.f. bands during the December-January period can best be described as 'rather quiet'. On the 50MHz band there were no winter sporadic-E (Sp-E) openings of any note and no ionograms were reported by any DX stations outside of Europe via other propagation modes during the period.

The Geminids meteor shower on December 13/14 and the Quadrantids shower on January 3/4 provided some activity, mainly on the 50MHz band. A few auroral backscatter openings were noted (December 11, 29, January 13, 14, 22) the best of these being on the evening of January 13. On the 144MHz band to occur on January 3 between 1230-1530UTC. Adding 365.25 days gave the 1999 peak as Sunday January 3 between 1830-2130UTC. As a rough check as to the validity of this method I made a note of when UK stations made meteor scatter 'spots' on the DX Cluster. The first 144MHz spot was made at 1819UTC and the last at 2045UTC with many occurring between 2000-2100UTC. It was difficult to analyse the 50MHz spots but most seemed to occur between 1900-2300UTC. I am therefore confident that this prediction method is reasonably accurate.

Further confirmation came from Dave Dibley G4RGK (K091) who reckoned that the shower peaked around 0530UTC on January 3. During the evening he heard some excellent reflections on 144.100MHz, many from stations greater than 1800km away. Dave mentions that he's now using software written by 9AG, to decode high speed cw signals. Called MSDSP, this program emulates a variable speed tape recorder by using a SoundBlasterPro compatible sound card.

However, unlike a modified tape recorder or the D7KF digital tape recorder (drt), the MSDSP software is not completely stable and may crash unexpectedly on occasions. However, despite these glitches, Dave reports that he is very impressed with the program. During the Quadrantids he received cw signals from the stations of EU6vS (K045), LY2MW (K024), LY2SA (K014) and RU1AA (K048).

AURORA

A reasonable wide-scale auroral opening occurred during the evening of January 13. On the 50MHz band stations throughout the UK were heard working on s.s.b. into Estonia (ES), Finland (OH), Sweden (SM). Up on the 144MHz band it was a similar state of affairs although there was much more c.w. activity in evidence.

Andy Cook G4PGC (JO01) missed the first hour of the event but did manage to get on the band around 1910UTC. Although it was getting towards the end of the first phase there were still a few strong c.w. signals to be heard. Among them was the station of YL12 (K016) but he couldn't attract his attention. Andy noted that he had to beam significantly towards the east to work some of the stations. For example, he worked PA4HHF on a beam heading (QTH) of 60'. The first phase of the opening faded out at his QTH around 2000UTC but reappeared suddenly at 2155UTC.

The beacon SK4MPL came up to 57A and GB3NGL, which Andy reckons is a useful indicator, was heard at 55A. (The 'A' at the end of the report indicating an auroral tone - a hissing sound when heard on c.w.) Andy then called CQ and worked a number of stations including SM3MXX (JP90) and SKA0O (JP60).

In his opinion, the second phase didn't seem all that stable with the auroral curtain moving around quite a lot. The beacon SK4MPL was extremely variable in strength and often not audible at all. However, Andy did work some good DX on the 144MHz band including DL1UJ (JO62) and LY3AG (K026) before finishing up with a number of DL stations (JO3O/Q031) on a QTT of around 60 degrees again. The event then faded out around 2305UTC with MM8BOJ being the last station heard. A very sudden end to a reasonably good auroral opening.

Solar Cycle

If you’ve been following this column recently, you'll know that we’re heading relentlessly towards the peak of Solar Cycle-23. What relevance does this have to v.h.f. propagation? I hear you ask. Well, quite a lot actually and especially so on the 50MHz band.

If you’re a newcomer to the 'magic band' then you've probably only experienced the summer Sp-E openings and maybe the occasional auroral opening. That will all change if you want to work around Europe (and very occasionally to North America), but what if you want to work worldwide? Well you can - and it will happen very soon.

Around the peak of the solar cycle (and for one or two years after the peak), the F2-layer can be sufficiently ionised to support world-wide communications on the 50MHz band and on very rare occasions even as high as the 70MHz band. One of the latest predictions places the maximum to occur around March 2000 (with limits between the middle of this year to middle-2001).

As any a.h.f. operator worth his salt will tell you, however, there are seasonal variations in the F2-layer intensity. Although the ionisation in the F2-layer is caused by solar radiation, the maximum electron density is found in regions 10-15' north and south of the magnetic equator. Although the position of the ionised regions are independent of the time of year they become unbalanced in intensity as the sun favours either one or other region.

However, during the period of the peak (September 23 and March 21), when the sun crosses the equator, the intensity of the two regions are at their greatest. This is because the length of day and night everywhere are of equal duration and therefore the ionisation effects are similarly balanced.

Although I’ve been very specific about the date when the sun crosses the equator, the F2 season on the 50MHz band is generally accepted to lie between September/November and February/April. During the
year of maximum solar activity the December/January gap may disappear completely allowing up to eight months of DX conditions. Some operators claim that when approaching the sunspot maximum, the autumnal equinox gives a higher m.u.f. while during the decline towards solar minimum the earlier spring equinox is better.

A similar mode to look out for is trans-equatorial propagation (t.e.p.) which utilises two F-layer ionised belts located north and south of the geomagnetic equator. During the autumn, and spring, equinox periods contacts can be established by stations located around 4000km each side of the geomagnetic equator. From the UK, this means that contacts can be made through Africa (ZS), Europe (I0), Asia (KI), South America (CX, LU, PY) are very possible. There is a very high likelihood of all these paths developing around October of this year.

STATION ACTIVITY

David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rocker". Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? Who else would deliberately choose to be tramping around in deep snow on a gale-blown day? David Dodds GM4WLL reckons he must be "off his rock
Although it had been heard at very good strengths on days previous.

BEACON NEWS

In a recent issue Tex Swann published a list of v.h.f. and u.h.f. beacons located throughout Europe. However, as you may realise, it's impossible to hear the majority of these from the UK. Therefore, I've provided a list of v.h.f. beacons that you should be able to hear from your QTH on the 50MHz, 70MHz, 144MHz and 430MHz bands. At the time of writing (January 1999) some of the beacons were off the air and I've indicated, where known, that these units are expected back.

DEADLINES

That's it again for another month. Please forward any news, views, comments or photographs to the address and by the date given at the top of the column.

THANKS FOR YOUR LETTERS AND GOOD LUCK WITH THE DX. SEE YOU AGAIN NEXT MONTH.

73 David GHASR

Fig. 1: List of beacons which you should be able to hear from your QTH on 50MHz.

50MHz beacons

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Callsign</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.062MHz</td>
<td>GB3NGI</td>
</tr>
<tr>
<td>50.050MHz</td>
<td>GB3NRQ</td>
</tr>
<tr>
<td>50.060MHz</td>
<td>GB3NSK</td>
</tr>
<tr>
<td>50.064MHz</td>
<td>GB3NGI</td>
</tr>
<tr>
<td>50.065MHz</td>
<td>GB3OJ</td>
</tr>
</tbody>
</table>

- Buxton 109J1F
- St Austell 107J1T
- Penrith 109J0D
- St Helier 108WE

Fig. 2: List of beacons which you should be able to hear from your QTH on 70MHz.

70MHz beacons

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Callsign</th>
</tr>
</thead>
<tbody>
<tr>
<td>70.000MHz</td>
<td>GB3BUX</td>
</tr>
<tr>
<td>70.010MHz</td>
<td>GB3RaB</td>
</tr>
<tr>
<td>70.020MHz</td>
<td>GB3ANG</td>
</tr>
<tr>
<td>70.025MHz</td>
<td>GB3MBC</td>
</tr>
</tbody>
</table>

- Buxton 109J1F
- Camberry 109J0H
- Dundee 1086MN
- St Austell 1070J0

Fig. 3: List of beacons which you should be able to hear from your QTH on 144MHz.

144MHz beacons

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Callsign</th>
</tr>
</thead>
<tbody>
<tr>
<td>144.400MHz</td>
<td>GB3YHF</td>
</tr>
<tr>
<td>144.450MHz</td>
<td>GB3LKR</td>
</tr>
<tr>
<td>144.455MHz</td>
<td>GB3MNC</td>
</tr>
<tr>
<td>144.460MHz</td>
<td>GB3MBC</td>
</tr>
<tr>
<td>144.482MHz</td>
<td>GB3NCI</td>
</tr>
</tbody>
</table>

- Wrotham 1001DH
- Liverick 1000DF
- Dundee 1086MN
- St Austell 1070J0
- Ballymena 1065VB

Fig. 4: List of beacons which you should be able to hear from your QTH on 430MHz.

430MHz beacons

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Callsign</th>
</tr>
</thead>
<tbody>
<tr>
<td>432.890MHz</td>
<td>GB3SUJ</td>
</tr>
<tr>
<td>432.910MHz</td>
<td>GB3LY</td>
</tr>
<tr>
<td>432.934MHz</td>
<td>GB3GLS</td>
</tr>
<tr>
<td>432.942MHz</td>
<td>GB3NGI</td>
</tr>
<tr>
<td>432.956MHz</td>
<td>GB3LKR</td>
</tr>
<tr>
<td>432.970MHz</td>
<td>GB3MNC</td>
</tr>
<tr>
<td>432.980MHz</td>
<td>GB3MNG</td>
</tr>
</tbody>
</table>

- Sutton Coldfield 1092CO
- Emley Moor 1093EO
- Bristol 1081QJ
- Ballymena 1065VB
- Liverick 1000DF
- St Austell 1070J0
- Dundee 1086MN

HF FAR & WIDE

LEIGHTON SMART GW9LRI

31 NANT GWYN

TRELEWIS

MID GLAMORGAN

WALES CF46 6DB

TEL: (01443) 411459

Conditions on the h.f. bands have been rather 'up and down' this month, with generally good conditions throughout the first couple of weeks of January. However, the latter half of the month definitely provided a downturn in propagation conditions.

Most of the h.f. bands have only been open during daylight hours this month, although they have been allowing long-distance work to take place regularly. But despite this recent 'dip' in conditions, things are steadily improving for the h.f. operator and as we approach the next sunspot maximum, we can expect even better propagation conditions, particularly on the bands at the higher end of the h.f. spectrum.

CLUB ON THE NET

News has come in from Dave Griffiths GW9BJU in Poynterfield (Mid Glamorgan) that the GW QRP Club - Cynddeithas QRP Cymru - is now on the Internet. The club was formed in 1994 to encourage on-air low power operating amongst Welsh Radio Amateurs and has around 40 members in Wales.

Their new Web pages include information on the club, QRP clubs around the world, as well as QRP articles written by its members. The address is: www.gwqrp.free-online.co.uk and messages can be sent to GW9BJU via: davegw9bu.free-online.co.uk

YOUR REPORTS

As space is limited this time around, I'll go straight into your reports, concentrating on the higher bands this month.

The 14MHz log from Don McLean G3NOF in Yeovil shows that he's been reaching out to all parts of the globe lately. Using s.s.b. at 100W, he hooked up with FR5HA (Reunion Island) at 1628, TLSA (Central African Republic) at 1800, ZL9CI (Auckland & Campbell Islands) at 0930, J3V8BF (Tunisia) at 1600, 9G1NS (Ghana) at 1659 and an unusual one in the shape of SP5EWM/aeronautical Mobile over Iceland at 1705UTC.

Next up comes Carl Mason GW9V5W of Skewen in West Glamorgan, who has been using low power this month. On the 14MHz band, using 4W of s.s.b. he worked CT3/LX1KQ (Madeira Island) at 1330, while 4W of c.w. brought in E9BQJ (Canary Islands) at 0122, HB0/DL188W (Liechtenstein) at 1500, as well as 5B9EM (Iran) at 1940UTC. (QSL via G3VPL).

Meanwhile, on the receiving side of the hobby is Gordon Hurrell BR9-970S on the Isle of Wright, who reports amongst others 1430MHz reception of TN7OT (Congo) at 0900, KX1OY/F (Franz Josef Land) at 0930, FG/W0ADX (Guadeloupe) at 1929, 388GF (Mauritius) at 1620, A47RS (Oman) at 1630 and using RTTYZD7SP (St. Helena Island) at 1740UTC.

THE 18 & 21MHz BANDS

Now over to the Isle of Shetland in Kent and Ted Trowell G2HKU, who thankfully managed to avoid the 'flu bug this year! An 'all-c.w.' man, Ted used 70W to hook up with 2Z1EO (Gibraltar) on the 18MHz band at 1600, while operating on 21MHz brought him contacts with VE1AR (Canada) and 2Z2CO/6 (west coast USA) both at around 1600UTC.

Down in Worcester Park, Surrey, Eric Masters G0KRT has been using both low and high power this month, hooking up with LZ2ZEV (Bulgaria) and IK4UCH (Italy) around 0900 with 5W of c.w., while high power s.s.b. brought in EW7EW (Belarus) at 0920, and US0HZ (Ukraine) at 0900UTC.

Don G3NOF had a go at the 18MHz band, and dug out TJ2BNYI (Venezuela) at 1237QSL via W3HNK, ZL9CI (Auckland & Campbell Islands) at 1936, VK2CBL (Australia) at 0914 and VP6CRB (Falkland Islands) at 1029UTC. (QSL via K4QG).

Sean Gilbert G4UCI in Milton Keynes bemoans the perennial problem of h.f. AMateur Radio - that of the 'idiot brigade' who continually call during 'pile-ups' on the bands, rather than believing like gentlemen (and gentlewomen!) and having courtesy for others. They lost him a contact with ZL9CI on the Auckland &...
THE 24 & 28MHz BANDS

In between job-hunting, Eric Masters G6KRT has been getting some time on the air. Eric's log shows c.w. contacts, on 24MHz with K1ZFE and N4ND (USA) at 1550, SM3WJU (Sweden) with Q5P c.w. at 1500, while low power s.s.b. brought in W4OIZ (USA) at 1451UTC.

On the 28MHz band Eric used SW of s.s.b. to hook up with a string of US stations, while a switch to 100W n.b.f.m. brought him contacts with OY2H (Faroe Islands) at 1400 on the 18MHz band, logging 736HVM (South Africa) at 1300, LW1DX (Argentina) at 1220, 615DL7VOG (Jamaica) at 1620, HK6KKK (Colombia) at 1642 and CO8LY (Cuba) at 1345UTC.

OPERATING ON 28MHz

Operating on the 28MHz band brought Sean contacts with VK4AX (Australia) at 1108, PJ9/PAGDV (Netherlands Antilles) at 1300 and last, but certainly not least, ZF2NT (Cayman Islands) at 1305UTC.

SIGNING OFF

Well, it certainly looks as though our reporters have had a good month on the h.f. bands and have proved themselves quite adept at digging out the DX. Being in the right band at the right time is what it's all about, so keep an eye on the clock and watch out for those big openings, whichever band you use!

That's it for this month, hope I managed to squeeze you all in! Cheerio for now and see you soon. Good DX!

THANKS TO ALL REPORTERS FOR THEIR TIME AND EFFORT IN MAKING THE COLUMN A SUCCESS. AS USUAL, REPORTS, INFORMATION AND PHOTOGRAPHY TO ME AT THE BEGINNING OF THE MONTH PLEASE.

Leighton Smart G6WLI

SCENE USA

PLEASE SEND ME REPORTS AND INFORMATION FOR THE JULY COLUMN BY APRIL 15.

ED TAYLOR NOED PO BOX 261304 DENVER COLORADO 80226 USA

E-MAIL: NOED@RadioLink.net

ED THINKS THAT ONE OF THE MOST INTERESTING PARTS OF THE WORLD IS HAWAII. THIS GROUP OF ISLANDS IS ALSO A USA STATE. IN THIS MONTH'S COLUMN, HE DESCRIBES A RECENT VISIT AND WHAT YOU MIGHT FIND ON THE RADIO IF YOU HAVE THE OPPORTUNITY TO GO. IN ADDITION, THERE'S GOOD NEWS ABOUT RECIPROCAL LICENSING AND THE UNITED STATES.

As Radio Amateurs we sometimes think we know a little bit more about the world than most other people. We know about geography, because we're always studying maps to find out how to work that latest DX. We know about politics, because we're aware of the changes in prefixes around the world as countries split up, merge and change their status. We perhaps know more than our neighbours about postage rates in sending QSL cards to exotic places. We know about flora and fauna are unusual and exotic places.

A desired DX is to work a British overseas territory. This month's column is about working the island of St Helena, a dependency of the United Kingdom.

The island is located halfway between the Equator and the South Pole, and is about 2000 miles south of the Cape of Good Hope. It is a small island, about 70 square miles in area, with a population of about 8000 people.

In 1815, Napoleon Bonaparte was exiled here for life, and it was the last stop on his journey to mystery and obscurity. The island is now a UN World Heritage Site and a UNESCO Biosphere Reserve.

The DX target for this month is to work the Island of St Helena, which is located about 2000 miles south of the Cape of Good Hope. You can contact the station on 15 and 20 meters, or even in 40 meters.

THANKS TO ALL REPORTERS FOR THEIR TIME AND EFFORT IN MAKING THE COLUMN A SUCCESS. AS USUAL, REPORTS, INFORMATION AND PHOTOGRAPHY TO ME AT THE BEGINNING OF THE MONTH PLEASE.

Leighton Smart G6WLI

This month, Ed Taylor NOED takes you through Amateur Radio in Hawaii.

Practical Wireless, April 1999
Islands and many smaller ones, stretching over about 7000km of ocean. (See Fig. 3). All the main islands have Amateur Radio Clubs, so I checked their meeting dates to see what could be fitted into my trip. Perhaps there might also be some radio facilities that a visiting 'ham' could use. A little research produced great results and gave me an insight to what it's like to go on the air in Hawaii. Not only that, the XYL and I had time to see some of Hawaii's amazing natural phenomena!

Imagine the ideal situation: a Radio Amateur runs a 'Red and Breakfast' and lets 'hams' have full use of his shack. The accommodation is reasonably priced and congenial and the station has modern equipment with a range of decent antennas. The location is close to the airport and the main town and within easy reach of tourist attractions. Does it exist? Yes – the island of Maui and to the home of Terry KH6SQ!

If you want to have complete information about Terry and Donna Clayton's QTH, 'Sea Q Maui', it's best to check their Web site: www.seaqmahu.com They offer great facilities overlooking a golf course and can't do enough to make visits as interesting as possible. There are plenty of things to do on the Island, so members of a party who are not so enamoured of radio will find lots of amusement.

'HAM' RADIO FROM HAWAII

So, what's it like to operate from Hawaii? The first thing to remember is that virtually everyone you hear is DX, in the sense of being a long way away. It wouldn't be a good idea to expect too much from the v.h.f. and u.h.f. bands! But what this means on h.f. is that the bands seem remarkably quiet. There's no real local QRM, because there are very few locals; your nearest 'ham' neighbour is likely to be 100km away on the next Island - not a problem! Another factor of importance is that your first 'hop' down from the ionosphere is likely to be over water, that is - the Pacific Ocean. We experience this phenomenon from the UK when working the Americas - it means that outgoing signal attenuation is often lower than incoming. As a result, signals from Hawaii can be stronger than expected.

On the downside, the proximity to the equator (20° north) means that static interference is higher on the lower bands, particularly 3.5 and 1.8MHz. Terry is happy for visiting 'hams' to experiment with antennas, so it might be interesting to try something new, such as a Beverage. (Actually, visitors have been responsible for several of the new antennas put up at Terry's QTH).

Just having 'KH6' in your call sign leads to piles-ups of greater or smaller degree. I suppose that there are always new amateurs around the world who would like this new country in their logs. Once you are in a conversation with someone, it's unlikely that people will interrupt - Hawaii is not THAT rare! But it's easy to work stations 'contest-style' on an open band and a lot of fun! Now that 28 and 21MHz are opening more frequently, I would guess that there will be pent-up demand for Hawaii on those bands, leading to high QSO rates.

To get an overall picture of the bands, I asked KH8SQ to compare operation from Hawaii with operation from other locations: "At the moment, 14 and 7MHz are both very good. It's easy to work Japan, Australia and New Zealand. The Pacific Islands are close and if there's anyone on, we'll work them. I've found 3.5MHz to be harder, using long wires and I might need to put up a better antenna. With an amplifier feeding a TH7 at 14m, we're spoiled here! Europe is easy to contact in the right conditions, although not on 1.8MHz. Don't forget 50MHz, which is great when open - we regularly hear the beacons from Australia and South America."

Without turning the column into a travelogue, let me briefly mention some of the non-radio activities which visitors to Maui can find. For example, KH6SQ's house is on the slopes of an inactive volcano and a drive to the summit leads to some breathtaking views - see Fig. 4. There's fabulous snorkelling and whales can be seen at a nearby bay. There are plenty of splendid hikes, with views around almost every bend. Naturally, there are lots of beaches and with a minimum daytime temperature of about 23°C, it is easy to get a tan. No wonder some visitors decide not to go home!

MAUI AMATEUR RADIO CLUB

While staying with KH6SQ, I went along to one of the monthly meetings of the Maui Amateur Radio Club in Kahului. As it happened, this was an open meeting, where members could air their views about the club's activities for the following year. I wondered how the concerns and interests of the locals would compare with those of 'hams' elsewhere. Perhaps I should not have been surprised that the topics of conversation were similar to those to be heard in almost any other club. There was to be an emphasis on learning about Amateur Radio. Who would like to run courses? Members were asked to think of ways in which newly licensed Amateurs could be retained in the hobby.
necessary, travel to other Islands in the Pacific. In the event of natural disaster.

RECI PROCAL LICENSING

I've mentioned before that the USA will be joining the CEPT scheme for reciprocal amateur licences. It finally looks as though the bureaucracy has been surmounted and the system is about to come into effect. What this means is that a UK licence will be valid for operation in the USA without the need to apply for a reciprocal licence and vice versa.

All you will need to operate in the USA is your home licence and the CEPT document (which should be attached to the licence itself) - no need to apply in advance for permission. The target date is April 1999, but please don't assume it's all cut and dried until officially announced. The best place for latest information is probably the ARRL Web site: www.arrl.org

MANY THANKS TO TERRY KH6SQ FOR THE FINE HOSPITALITY AND FOR THE USE OF HIS PHOTOGRAPHS. ALSO TO THE MAUI AMATEUR RADIO CLUB FOR MAKING ME WELCOME AT THEIR MEETING. IF YOU HAVE ANY COMMENTS, PLEASE LET ME KNOW.

73 Ed NoED

INTERNATIONAL MARCONI DAY (IMD)

International Marconi Day (IMD), on Saturday 24 April 1999, celebrates Guglielmo Marconi's birthday and the Amateur Radio on-air activity that's being planned will include Amateur Television (ATV).

The Kent Television Group (KMG), in collaboration with the British Amateur Television Club (BATC), will be responsible for the television contacts. Chris Gibbs G3GHM, Technical Coordinator for the KMG says: "South Foreland Lighthouse will be our main base and it is hoped to run a 10GHz ATV link from here to Wimereux in France. The public displays and another ATV stations linked to Wimereux, are planned from the White Cliffs Experience (WCE) building in Dover town. Actual hands and equipment requirements have not yet been finalised". Saturday 24 April and Sunday 25 April will be the main days of operation.

Chris continues: "From an r.f. propagation viewpoint, Dover lies in a big hole in the ground! But Cap Gris Nez on the French coast can be seen from the roof of the WCE. Direct ATV from the lighthouse to the White Cliffs Experience is not possible on any band, so a repeater link might be established if enough equipment is available - we have had the offer of some low-power 10GHz ATV gear but 23cm ATV will be used as well".

RALLY '99

The day following Marconi's birthday will see the BATC holding the first of its two big gatherings this year. Rally '99 is on Sunday 25 April at the usual venue, the Sports Connexion near Ryton, which is just outside Coventry. There will be all the familiar features of a BATC rally - specialist Amateur TV displays, ATV Repeaters Groups, ex-broadcast vehicles and many seriously high-quality ex-broadcast cameras! Doors will open at 10am (0930 for the disabled) and talk-in will be provided by G66AV on 144MHz (S22) and via the Coventry 430MHz voice repeater G83CV on R89.

SHUTTLEWORTH '99

The countdown has started to 'Shuttleworth '99', organised by the BATC to celebrate its 50th Anniversary. This major ATV event will be at Shuttleworth College on Sunday 8 August, the college is part of Cranfield University, near Bedford and the event will include lectures and demonstrations on all television-related topics. The day will conclude with the BATC's Biennial General Meeting to elect officers to the BATC committee for the next two years and the presentation of various awards for achievements in the hobby of ATV. Plans for the event are still unfolding but we hope to make this an occasion to remember. Further details in the next 'Focal Point'.

As a further mark of its 50th year, the BATC has changed the format of its quarterly magazine CQ-TV, Issue 185, dated February 1999, is the first ever A4 sized CQ-TV and in its Editorial, BATC Chairman Trevor Brown G8KIC explains why the move up from A5 was made: "We talked about it, we asked the membership what they wanted and we asked the printer what it would cost. The new larger page size enables us to produce more pages if needed and we have to think of our Editor, Ian Pawson. Ian had been wrestling with the software while in A5 - most packages are designed for A4 so all sorts of reductions were having to happen. We regard the move to A4 as inevitable as was the change from 486 line TV to 625 lines in the UK".

The North London Television Group (NLTG) are working at providing a 1.3GHz ATV repeater in the Enfield area and could have a repeater licence soon. Their application was submitted to the Repeater Management Committee on 25 September 1998 and forwarded onwards to the Radiocommunications Agency (RA) in November.

In the NLTG's December newsletter, secretary John Douglas G4DVG says "The RSGB Repeater Management Committee and Graham Shuttle G3CVN (BAC Committee) in particular have moved very quickly in the processing of the application and we thank them for their help". The Beacons Repeater Group, based in the West Midlands, began this year with an actual test of their planned 1270MHz ATV system for Birmingham. On Sunday 3 January I took myself up to the site for the proposed repeater to carry out some receiving tests and to put out a 1.25GHz transmission of test card ident and a New Year greeting, using my own callsign G8EMX/P.

The results of these receiving tests were interesting and informative. Leicester ATV repeater: GB3GV was received quite strongly, but the s.w.r. measurement on the transmit feeder and antenna gave a fairly high 2:1 readings. Several ATV stations in the West Midlands were available to participate and all of them could put a strong, high-quality P5 ATV picture into the receiving system at the site. Transmissions from the site were given varying reports, from a low of P2 in Stourbridge, a P3 from West Bromwich then up to P5 within Birmingham.

I was using 144MHz for talkback during the site testing and would have used the ATV calling channel of 144-750MHz for initial contacts. However, both stations seemed to be already using that frequency for an ongoing QSO, so my opening contacts had to be made away from the accepted channel. So, could I urge non-

Practical Wireless, April 1999
Please mention Practical Wireless when replying to advertisements

MULTICOMM 2000
LARGE SHOWROOM BEST PRICES

C W SPECIALISTS

MFJ-557
Practice oscillator
£25

MFJ-413
Morse tutor
£55

BENCHER, INC.

BY-1....................£62
BY-2....................£75
BY-4....................£120

WE HAVE MOVED

VIBROPLEX VIBROPLEX VIBROPLEX VIBROPLEX VIBROPLEX

ORIGINAL
DELUXE
£169

VIBROKEYER
DELUXE
£139

STRAIGHT KEY
STANDARD
£99

DOUBLE
DELUXE
£299

IAMBIC
STANDARD
£89

IAMBIC
DELUXE
£135

SQUARE BRASS
RACER
£99

ORIGINAL
DELUXE
£159

VIBROKEYER
STANDARD
£95

IAMBIC
DELUXE
£139

IAMBIC
BRASS RACER
£75

MFJ-452
Super CW Keyboard
£125

MFJ-492
Menu driven memory keyer
£90

MFJ-493
Deluxe menu driven keyer
£125

MFJ-499X
Deluxe CW keyboard
£149

MFJ-407
Deluxe electronic keyer
£66

MFJ-401
Econo-keyer MkII
£40

MFJ-447
Deluxe slimline electronic keyer
£69

MFJ-441
Slimline electronic keyer
£49

YAESU
MD-100
£110

HEIL
DESK MIC
£85

KENWWD D
MC-50A
£99

Practical Wireless, April 1999
SALES HOTLINE 01480 406770
NO DEPOSIT FINANCING AVAILABLE
USED EQUIPMENT URGENTLY WANTED!

ANTENNAS

MFJ-1796
6-band 40-2 vertical
£199

MFJ LOOPS
1786 10-30MHZ £295
1788 7-21MHZ £325

MFJ-1798
10-band 80-2 vertical
£225

FULL RANGE OF COMET ANTENNAS IN STOCK AT DISCOUNTED PRICES

FULL RANGE OF CUSHCRAFT ANTENNAS IN STOCK AT DISCOUNTED PRICES

BUTTERNUT ANTENNAS "ARRIVING SOON"!

WE HAVE MOVED

RECEIVERS

JRC NRD-395
Short wave receiver
£499

YAESU FRG-100
Short wave receiver
£389

DRAKE R-88
Short wave receiver
£929

JRC NRD-545
Short wave receiver
£1225

AOR 7030
Short wave receiver
£669

AOR AR5000
SW/VHF/UHF receiver
£1145

ICOM IC-R8500
SW/VHF/UHF receiver
£1225

FAIRHAVEN RD-500
SW/VHF/UHF receiver
£799

ICOM PCR-1600
SW/VHF/UHF receiver
£249

AOR AR5000
SW/VHF/UHF scanner
£349

AOR AR8000
SW/VHF/UHF scanner
£199

MVT-9000
SW/VHF/UHF scanner
£319

MVT-7200
SW/VHF/UHF scanner
£225

MVT-7100
SW/VHF/UHF scanner
£185

MVT-7000
SW/VHF/UHF scanner
£125

16-R10
SW/VHF/UHF scanner
£225

DJ-X10
SW/VHF/UHF scanner
£259

UNIT 4, 17-E, LITTLE END ROAD, EATON SOCON, CAMBS PE19 3JH
FAX: 01480 356192
SALES HOTLINE 01480 406770
WEBSITE: http://www.multicomm2000.com
EMAIL: Sales@multicomm2000.com

Please mention Practical Wireless when replying to advertisements
RadioScape

ATV stations to avoid 144.750MHz if at all possible and even ATV stations are asked to move away from the calling channel once a contact has been established!

COMPUTER CRASH
I have been unable to respond to some recent correspondence. An E-mail arrived, inviting me to give a Club talk on ATV but a date was not set. Then, horror on horror, my computer hard disc ‘crashed’ and all data was lost (no, that right, I had not made backups!) At least I now know what a ‘hard disc crash’ means - ha! Could the Radio Club that made the enquiry please E-mail again? I also received a (real) letter through the post. It was from a reader in Tel-Aviv, but unfortunately, was hand-written and the name, address and telephone number were not clear. If the writer still wants the information, please try again with printed details, or E-mail me (hard disks permitting).

THAT’S ALL FOR NOW, BEST 73 AND PS!
Graham Henkin G3EMX

DATA SCAPE
ROGER J. COOKE G3LDI
TEL: (01508) 570278
E-MAIL: rjcooke@FreeNet.co.uk
PACKET: G3LDI@GB7LDI.835.GBR.EU

THIS MONTH ROGER COOKE G3LDI EXPLAINS WHY HE’S YET TO BE CONVINCED THAT MORS (CW) IS DEAD, REPORTS BACK ON SHACKLOG’S NEW FACE-LIFT AND ALSO EXPLAINS THE INS AND OUTS OF THE NEWSGROUP.

In my opinion, CW is hardly dead, or even dying, if listening around the hill bands during the recent CQ WW contest is anything to go by! The bands were the best they have been for years, the 28MHz band was even packed with c.w. up as far as 28.120MHz.

The poor old C8 Intruders were having a real hard time on our band. Did I feel sorry for them? Did I look? If we could encourage this sort of activity with an excellent keying. Computers, the C9 stations would not last a day! It was impossible to find a clear spot anywhere. Even the RTTY sub-bands and data sub-bands were full of c.w. This was a little naughty! I thought, although in fairness, the data operators did steal part of the c.w. band in the first place!

Having said all this, it makes the 5 w.p.m. proposed c.w. test look a little silly! I suppose I’m prejudiced against it in that respect, but I totally disagree with making the amateur licence easy to obtain. Anything obtained with ease is treated with disrespect and not valued at all. I am, however, in favour of a tiered form of licensing, similar to that in the USA, so starting with a very limited licence at 5 w.p.m. would be fine.

But looking at it from another point of view, if you wish to become a member of the the High Speed Club (HSC), the criteria for that is as follows: you have to obtain sponsorship from another member and to have that, you must qualify with 30 minutes two-w.p.m. communication using no less than 25 w.p.m. Solid copy must be made, together with excellent keying. Computers, keyboards and decoders are banned, reception only by ear and only a basic electronic keyer may be used for sending! Similar rules apply for membership to the Very High Speed Club (VHSC), except the contact must be at no less than 40 w.p.m. Again, for the Super High Speed Club (SHSC), the speed must be no less than 50 w.p.m.

An interesting addition is the Extremely High Speed Club (EHSC). Here you must have two recommendations and, again, a 30 minute, faultless contact at 60 w.p.m. must be made. Applicants can send their paperwork with ten IRCs and a written and signed statement to the effect that no computers, etc., were used. Membership is for life.

If you wish to practice for entry into the exclusive EHSC club, I suggest you log onto the Web site shown in Fig. 1. There’s a very good program here called NUMORS and you can download it for free. The URL of the Web site is http://www.btinternet.com/~to tn/lycc

An interesting use of Morse took place earlier this year in the EME contest. One report came from a local station here in Norfolk. Roy G3ZIG made nearly 50 contacts via the moon, after spending the summer months re-building his huge 144MHz array. I spoke with Roy at the local club recently and he says that his new antenna is surpassing all expectations and he has now worked 120 new stations on c.w. via the Moon. Our original basic data mode is now serving a very niche section of our diversified hobby.

DCC WEB-SITE
The Digital Communications Committee (DCC) have their own Web site now and all matters relating to it can be found on this site, together with lots of other useful information. There’s a full list of members, together with E-mail addresses and telephone numbers, reports of meetings and links to other digital sites.

Those of you with Internet facilities should check out this site: www.rsgb-dcc.demon.co.uk It is shown in Fig. 2. This site will be kept updated as far as possible, so keep an eye on it for the latest DCC information, an addition for the address-book!

ADVERTS ON INTERNET
Paul Sargeant G4ONF recently wrote to me offering space on his Web site for anybody wanting to sell Amateur Radio equipment. If you are interested in trying this, the Web site to look at is: http://www.ncsl.co.uk/for sale.html Paul also manufactures Cavity WaveMeters. The full report on these waveMeters can be found at: http://www.ncsl.co.uk/cavity.html

Also available on Paul’s Web site is a data software program that could be interesting to somebody. Look on: http://www.ncsl.co.uk/ncsl.html The program is by Brian Cauchi 9H1HS and uses the sound card as the interface. The sound card is being used a lot these days for programs like this. It’s a DOS based program but will run under Windows.

Full documentation, program, manual, etc., is included in the self extracting file on Paul’s Web site. It can take up to six minutes to download but it’s worth it. It will receive WAFA, FAX, RTTY and c.w. Some modes will work, as well. Registration is £25 however.

SHACKLOG
The SHACKLOG program is probably the most popular UK written and UK supported logging software received its first major face-lift for nearly four years, adding functionality, which puts SHACKLOG up with the best logging software. New features include:

(1). s.w.l. mode, bringing all the features of SHACKLOG to the s.w.l. QSO data entry, reporting and QSL labelling functions are modified to suit s.w.l. use.

(2). Unique Packet Cluster SNOOP mode - see Packet Cluster spots, WWV and Announces without being connected. Great for the s.w.l. and those with an unreliable connection.

(3). Fully configurable Packet Cluster audio/video alarms (including individual tailor-made list of stations, prefixes, etc., that the user want alerting to).

(4). More data fields - QSL Manager, CQ and ITU Zone, Island (use for national island award references - this is additional to the existing IOTA field), second REMARK field and STATION WORKED in s.w.l. mode.

(5). Dual radio control - SHACKLOG 5 now supports control of two connected radios simultaneously.

(6). More radios - SHACKLOG 5 supports many of the new radios introduced in the last four years.

(7). Multiple COM ports are now supported.

(8). Multiple logs, SHACKLOG now allows the creation of separate logs for variations of your call, e.g. G3PMR,
GW3PMR, TK4GDP, etc.

(9) Radio Amateur Callbook
CDROM interface - print address labels directly from
SHACKLOG and optional
display name/QTH/locate when
logging US stations.

(10). Enhanced import
SHACKLOG 5 can import logs
from NA, TR, LOGCQG and tab
or comma delimited text files as
well as all those formats
supported by V4.x.

(11). Enhanced Contest Mode
with dupe checking.

(12). Completely re-written
simpler to understand User Guide
with dupe checking.

Availability and pricing, SHACKLOG 5 will be ready for
shipping from January 9th 1999. Pricing
SHACKLOG 5 will cost £32. IOTA Database
Edition: IOTA Awards Manager £5.
Set of 3: £42.50. Upgrades from
V4.x: SHACKLOG 5 (including user guide) £20.
IOTA Database
Edition: SAM-H2: Upgrades from
earlier versions are available -
please ask. Overseas pricing -
please ask. As regards support
and future development,
SHACKLOG will continue to be
supported, enhanced and
developed from the UK.

It's the policy of the author
that SHACKLOG will
continue to be
developed to keep
it amongst the
leading Amateur
Radio logging
software packages.

Review copies of
SHACKLOG 5 are
available from the
author to bona fide
Amateur Radio
magazines and
publications.

SHACKLOG 5 is
available from:
Alan
Jubb: G7PMR, 30
West Street, GI
Gransden, Sandy SG19 3AU
UK. Tel: (01767) 677 913. E-
mail: SHACKLOG@aol.com

NEWSGROUPS

A Newsgroup could be a
misnomer - gossip columns
more probably! There are about
13 000 of these and can provide
hours of endless - and mindless
- entertainment, if that sort of
thing is your bag! To read the
Newsgroups, you need to be
able to access a news server.

(These are the computers that
distribute messages sent to
newsgroups). Most major UK
service providers run news
servers and provide newsgroup
access as part of the Internet
access package.

The news servers are set up
to exchange information with
the nearest machine, so that a
new message gradually gets
passed across the Net, from
machine to machine. This
means that a message can take
several days to reach a distant
news server.

Your service provider
should even provide you with a
new-reader program, the
software you need to read and
send newsgroup messages. If
the software doesn’t come pre-
configured, you will need to tell
it the address of the news server
you are using, which will probably
be your service providers’
domain name (preceded by the word ‘news’). Some service providers restrict
access to their news server to
their own customers while others,
such as Demon, allow all and sundry to log on.

There are so many
newsgroups that you’re bound
to find something you’re
interested in and plenty that
you didn’t know you were interested in!
The groups are divided into
several main areas, identified by
the first few letters of the
newsgroup name.

To get involved in a
newsgroup discussion, you first
have to subscribe to the group
you are interested in. With most
new-readers you simply
highlight the name of the
newsgroup in the full group list
and select subscribe from the
menu. When you have
subscribed to a newsgroup,
your new-reader will download
all the messages that have been
sent since the last time you
logged on. Messages are usually
deleted after three days, so log
on regularly.

My local guru, Paddy
G7KEZ, has offered the
following advice to new
newsgroup readers using
Netscape: Every new user to
Usenet should read
news.announce.newusers There
are only 18 messages in there at
the moment so it’s not going to
take long to download. Also,
most ISPs provide a newsgroup
to inform their users what’s
going on with the service.

Search for Freeserve and see
what you find.

Start Netscape and go on
line, then click on

‘Communicator’ and choose
‘Messenger’. Click on ‘File’,
then ‘Subscribe’ in the
window that opens. Click
on ‘Add Server’
and type in the
name of your
news server
(probably news.
freeserve.co.uk),
then ‘OK’ It and
hopefully it will
start downloading
the list of News
groups. All this can take
anything between ten and 40
minutes and will slow down if
you start doing other things like
Browsing so best to sit back and
watch. It’s also better to do this
early on a weekend morning.

There is, of course, more
than one way to do all of this. In
the bottom right-hand corner of the
screen, there should be two
icons (five in version 4.5a).
Click on the one second from
right (third in 4.5a) and
‘Messenger’ will come up with
NetScape started, but off-line.
Click on ‘Edit’ and choose
‘Preferences’ and under ‘Mail &
News groups’ there should be
somewhere to add your News
Server.

SEARCH ENGINE

I was told about a new search
engine the other day:
www.google.com shown in Fig.
3. It really is superb, seems
much faster than Altavista (the
one I’d used up to now) and
very versatile. It also has a
‘feeling lucky’ tab you can click
on. If you are feeling confident
about the outcome of the
search, click on this tab and you
are directed straight into the
site. The alternative gives you
ten selections in order of
priority and then another ten
times ten selections to look
through. Try it, you’ll like it!

THAT’S ALL FOR
THIS MONTH. REMEMBER TO KEEP
ME INFORMED OF
ANYTHING WHICH YOU
WOULD LIKE TO SEE
COVERED IN THIS COLUMN.

Roger J. Cooke G3LDI
BROADCAST

REPORTS AND INFORMATION TO ME PLEASE.

PETER SHORE
C/O PW EDITORIAL OFFICES
ARROWSMITH COURT
STATION APPROACH
BROADSTONE
DORSET BH18 8PW

E-MAIL:
petershore@wpublishing.ltd.uk

THIS MONTH PETER SHORE
BRINGS NEWS OF A CUT IN
DEUTSCHE WELLE'S BUDGET,
RADIO YUGOSLAVIA'S
EXPANSION AND UPDATES ON
BAND INFORMATION FROM
MANY RADIO STATIONS AROUND
THE WORLD.

EXPANSION & REDUCTION

As we head into summer there's
bad news from one of the
world's largest international
broadcasters. Deutsche Welle
faces a budget cut of DM40m,
reducing the station's total
operating budget to DM596m
(around $192m). One
immediate effect was felt in
early February, when staff at
the Berlin studios of Deutsche
Welle were told that the facility
was likely to close.

The German press has
recently reported the planned
cuts extensively and have
suggested that the station's
austerity measures mean that some of
the 35 different language
services broadcast by Deutsche
Welle from its Cologne
studios may have to
shrink. Already the
new Ukrainian
service, due to
start in February,
has been
postponed and may
not start at
all, despite
arrangements being in
place for the Ukrainian
programmes to be broadcast in
Ukraine on m.w. and on f.m.

German newspapers have
also been following the long
running saga of the potential
closure of the BBC World
Service's German language
service. The decision on the
future of the service, which
marked its 60th anniversary
last September, was due in
November and then postponed when
the management at Bush House
changed. As this edition of PW
goes to press, the decision is
expected to be announced. Also
on the cutting block is the
Czech service.

At the other end of the
financial spectrum, Radio
Yugoslavia is benefiting from
expansion. Programmes in
English, French, Russian,
Spanish, German, Arabic,
Hungarian, Serbian and Greek
have all had their transmission
times expanded. Italian is a new
language service from Belgrade
too.

If you have access to the
Internet, check out Radio
Yugoslavia at
www.becograd.com/radioyu/

When I looked in mid-February,
the site had not been updated
with the expanded schedule. There
was, however, a series of
stories about the current
situation in the former
Yugoslavia, promoting a heavily
anti-Albanian viewpoint.

To listen to Radio
Yugoslavia, try the English
broadcasts at:

0000-0030UTC on 7.115MHz
0100-0130UTC on 7.13MHz
1330-1400UTC on 11.835MHz
1930-2000UTC on 6.10 and
9.72MHz
2200-2300UTC on 6.10 and
6.185MHz

OTHER STATION NEWS

Croatian Radio is becoming
the primary service on short
wave direct from Croatia and
via the Deutsche Telekom site at
18Gr. English news bulletins
form part of the output.
Frequencies vary during the day
and you can try these: 13.83,
9.86, 9.83, 7.525, 7.105, 7.185,
6.165 and 5.89MHz. As is
mostly the case with short
wave, the higher frequencies
are used during hours of
daylight and the lower ones
during the night time.

The international service
from Croatia is on the air with a
mix of Croatian and English at
0200-0600 on 6.13 and 0600-
1000 on 13.82MHz.

Radio Australia has been
testing 21MHz channels out of
Shepparton, the short
wave transmitting station in
Victoria. The frequency of
21.71MHz has been on the
air between 0900 and 1355UTC,
seemed to South East Asia with
likely reception in Europe.

The former Radio Australia
transmitting station at Darwin in
the far north of Australia may be
run by another major
broadcaster. It's reported that
Deutsche Welle and NHK Radio
Japan have been negotiating
with the Australian authorities
and a report on Media Network
on Radio Netherlands suggested
that Merin Communications
International, the former BBC
World Service transmission
company, is also exploring
taking over the site.

Radio
Thailand
has English
broadcasts via
its own
transmitters and
the high-
powered

Voice of
America
senders in the country. Try these
times and frequencies:
0000-0300UTC on 11.905,
9.68, 9.655MHz
0200-0100UTC on 13.695,
11.905, 9.655MHz
0300-0330UTC on 15.115,
11.905, 9.655MHz
2200-2300UTC on 13.815
9.72MHz
2300-0000UTC on 15.46.
6.52MHz
0000-0030UTC on 21.565MHz
0000-0030UTC on 13.455
7.58MHz
1200-1215 Sundays
1110-1215 Saturdays and
0000-0030UTC on 15.23,
13.65, 11.845MHz
13.35, 9.975, 9.65, 9.64,
3.56MHz
1300-1600UTC on
1.65, 11.735,
11.35, 9.975, 9.64, 3.56MHz
1800-1900UTC on
11.71, 9.355, 6.575, 4.405MHz
1900-2000UTC on 9.975,
9.6, 6.52MHz
2100-2200UTC on 13.76,
11.71, 9.355, 6.575, 4.405MHz
2300-0000UTC on 13.65,
13.76, 11.35, 4.405MHz

THAT'S ALL THIS
TIME AROUND. KEEP YOU EARS
ON THE HIGHER
FREQUENCIES AS WE ENTER
THE SUMMER PERIOD IN THE
NORTHERN HEMISPHERE
AND DROP ME A LINE BY
POST OR E-MAIL IF YOU
HEAR SOMETHING
UNUSUAL.

UNTIL NEXT MONTH, 73.

Peter Shore
Please mention Practical Wireless when replying to advertisements.

Spring Bank Holiday Sunday
at
MAIDSTONE (YMCA)
RADKO RALLY
30th May
10.30am

M20, junctions 4, 5, 6, or 7, then A229 to Loose Village

Entry £1.50 per adult

* SNACKS AVAILABLE *

Trade bookings:
Telephone (01622) 736636
(before 9.30pm)

QSX G3TRF
G8TRF (S22) G3YSC (SU22)

SIRIO VHF/UHF ANTENNAS
DELUXE HIGH STRENGTH MOBILE ANTENNAS
These high performance vehicle antennas are built from the best available materials to guarantee maximum strength and performance. The whips are very flexible 1/17 PH stainless steel, and incorporate a custom induction system allowing them to be tilted 90° without keys or tools. The UHF male antenna connector has a gold plated centre pin, Teflon Insulator and a silicone rubber gasket for perfect waterproofing.

2M MONO BAND MOBILE
HP2000
Length 1.23m
£39.70
5/8λ
2 x 2/3λ
HP2000C
Length 1.97m
£46.70
1/2 λ
70CM MONO BAND MOBILE
HP7000
Length 0.42m
£35.70
5/8λ
HP7000C
Length 0.73m
£42.70
2 x 5/8λ

2M/70CM DUAL BAND MOBILE
HP2070
Length 0.45m
£35.70
1/4 + 5/8λ
HP2070N
Length 1.05m
£45.70
1/2 + 2 x 5/8λ
HP2070R
Length 0.98m
£43.70
1/2 + 2 x 5/8λ

A range of suitable mobile mounts is available.

DELUXE HIGH STRENGTH BASE ANTENNAS
Made to last, from the highest quality materials. These are no "chinese copies". Sturdy, reliable and high performance. All have N socket base connectors, and will mount on a 35-54mm diameter mast. Mounting bracket included.

2M MONO BAND VERTICAL BASE
SA22N
Length 2.7m
£87.45
2 x 5/8λ

70CM MONO BAND VERTICAL BASE
SA703N
Length 1.8m
£67.45
3 x 5/8λ
SA705N
Length 2.8m
£87.45
5 x 5/8λ

2M/70CM DUAL BAND VERTICAL BASE
SA270N
Length 1.3m
£57.45
1/2λ + 2 x 5/8λ
SA270MN
Length 1.8m
£77.45
6/8λ + 3 x 5/8λ
SA270LN
Length 2.7m
£97.45
2 x 5/8λ/5 x 5/8λ

4M MONO BAND VERTICAL BASE
CX4-71
Length 2.9m
£67.45
3/4, J Pole 70-74MHz 2.15dB Gain
500W 50Ω Female Mast 35-42mm

6M MONO BAND VERTICAL BASE
GP49-70
Length 2.5m
£77.45
1/4, G Plane 48-70MHz 2.15dB Gain
500W 50Ω Female Mast 40mm

MULTIBAND TX/RX DELUXE DISCÔNE
Length 1.7m
RX Mult: 25-250, 215-1500, 2.15dB Gain
VHF 300W, UHF 200W

Available only by mail order from our sole distributor:

EASTCOMM
Cavendish House, Happisburgh, Norfolk NR12 0RU
Free UK mainland carriage! For full catalogue send £2 in stamps.

Sales order line
01692 650077
Fax: 01692 650925 Website: www.cqcq.com

Practical Wireless, April 1999
WATERS & STANTON
01702 206835

WATERS AND STANTON PLC SECONDHAND STOCK LIST AS AT 25TH FEBRUARY 1999.
PLEASE NOTE SECONDHAND ITEMS COME WITH FULL 3 MONTH PARTS & LABOUR
GUARANTEE

For more information phone Steve Davies on 01702 206835 or Fax 01702 208543

TRADE’S MARKET

KENWOOD TS-440SAT 100W HE TRANSCEIVER
KENWOOD TS 930S
AUNCO DR-1K6E 70CM WOMB 35W
VIFAINE RASE/MAJ TRANSCEIVER
AM/FM ATU
1C014(728 BASE TRANSCENER WITH GEN COY 12V
YAESU FT 810 2M FM HAND/HEID WITH WIDE RX
ALNCO 01-51301(2 214/70014 FM H/HEID
Air.00 03.560 2M/70C FM H/HEID
YAESU FT110 2M FM HAND/HEID WITH DC ADAPTER
YAESU FT 18 260/260 FM WIDE RX

CFM 50-200

YAESU FT 40 2M FM HAND/HEID
YAESU FT 600 2M FM HAND/HEID
YAESU FT 700 2M FM HAND/HEID
KENWOOD TM 252E 2M FM HAND/HEID

VECTRONICS VC300M ANTENNA TUNER

TWINBAND 50W MOBILE

SONY SWR55 SHORTWAVE RECEIVER
SANGEAN ATS 803A SWAVE RX

FREE SHIPPING ON ALL SECONDHAND ITEMS!

Please mention Practical Wireless when replying to advertisements

TRADE’S MARKET

Nevada

01705 662145

TRANSCIVERS HF

ICOM IC 755 HF 100W
0.6900
ICOM IC 7006 MK1 DSP VHF/URF TRANSCIVER
0.6900
KENWOOD TS 830 HF 100W
0.9700
KENWOOD TS 930S HF 100W
0.6900
KENWOOD TS 6805 100W HF + 10W SSB + CTCSS 0.5999
KENWOOD TS 440AT HF 100W
0.6900
TRIO TS 1205 100W HF MOBILE/BASE
0.2500
YAESU FT 750GX HF 10W TRAVEL
0.2250
YAESU FT 750GX TRANSCIVER
0.2250
YAESU FT 707 HF
0.3250

TRANSCIVERS VHF/UHF

ALNCO DR 40 65m 25W FM MOBILE 0.1899
ALNCO DR 30 65m 25W FM MOBILE 0.1299
ICOM IC 240 30W 10W FM MOBILE 0.9999
ICOM IC 229 2M 45W MOBILE 0.1850
ICOM IC 2350H DUAL BAND MOBILE 0.3399
KENWOOD TK 260 2M 169.
KENWOOD TK 270 E DUAL BAND MOBILE TRANSCIVER 0.3799
SHAKESPEAR S250S 25W MARINE TX 0.2299
STANDARD 870 70CM PORT + 10W AMP 0.1999
STANDARD 8200 TWINBAND 50W MOBILE 0.2999
STANDARD 8600 2M MOBILE 0.1850
TRIO TR 2100 MOBILE 0.7999

TRIO TR 2200 GX 30W FM MOBILE
0.7500
YAESU FT 790M 2M M/MODE 0.1899
YAESU FT 290 111 2M M/MODE 0.2750
YAESU FT 290 111 + PLL002 AMP 0.2500
YAESU FT 690111 + PLL002 AMP 0.3750
YAESU FT 790M + PLL002 AMP 0.3750
YAESU FT 714F 2M/70CM BASE RATE 0.5999
YAESU FT 5100 DOUBLE BAND MOBILE 0.2690
YAESU FT 8100R 2M/70CM MOBILE TRANSCIVER 0.7250

RECEIVERS

DIABLO - 88E HF RECEIVER 0.9999
ICOM IC 7000 70CM VHF/URF RECEIVER 0.9999
ICOM IC 740 70CM VHF/URF RECEIVER + CONVERTER 0.4999
LOWE 225 FM/AM + NICKEL PACK 0.3999
SANGEAN ATS 803A SWAVE RX 0.9999
SONY ICW55 SHORTWAVE RECEIVER 0.1450
YURIUS HT 8800 SHORTWAVE RECEIVER 0.1699

HANDHELD

ADA AD 18 2M HR H/HEID 0.9999
ALAN CA 14S 2M HR H/HEID 0.9999
ALAN CA 14S 2M HAND/HEID + EX DEMO 0.1299
ALAN DA 180 2M HR H/HEID + EDAC 0.1299
ALAN CS DUAL BAND MICRO EX DEMO 0.1499
ALAN DA 14S 2M HAND/HEID + EX DEMO 0.1499
ALAN IC HBT 2M/70CM EX DEMO 0.1599

ROBERTS B 184 PORTABLE 100W 2M/30HZ GM 2M FM STEREO 0.1499
SANGEAN ATS 818 PORTABLE RECEIVER WITH FM STEREO AND SSB 0.1115
SANGEAN FT 814 PORTABLE FM/STEREO RADIO 2 M 0.9999
SONY FT 854S PORTABLE FM/STEREO RECEIVER WITH FM STEREO AND SSB 0.1399
SONY FT 856S PORTABLE FM/STEREO RECEIVER WITH FM STEREO AND SSB 0.1399

SANGEAN ATS 818 PORTABLE RECEIVER WITH FM STEREO AND SSB 0.1115
SAGEAN FT 814 PORTABLE FM/STEREO RADIO 2 M 0.9999
SONY FT 854S PORTABLE FM/STEREO RECEIVER WITH FM STEREO AND SSB 0.1399

10W FM TRANSCEIVER WITH WM RX
YAESU FT 330 2M FM HAND/HEID 0.2750
YAESU FT 310 2M FM HAND/HEID 0.2750
YAESU FT 350 2M FM HAND/HEID 0.2750

YAESU FT 350 2M FM HAND/HEID 0.2750
YAESU FT 310 2M FM HAND/HEID 0.2750
YAESU FT 350 2M FM HAND/HEID 0.2750

SONY ICW55 SHORTWAVE RECEIVER 0.1450
YURIUS HT 8800 SHOR...
COMPUTERS

Unit 1, 161-163 Bispham Rd., Southport PR9 7BL

01704 507808

MAINBOARDS
- TX PRO II - £43.00
- Gigabyte GA5 - £64.00
- Chaintech Via - £66.00

CPU’s
- IBM P300MX - £43.00
- AMD K6-2 333 - £68.00
- AMD K6-2 350 - £78.00
- AMD K6-2 380 - £108.00

FAN/HEATSINKS
- Heavy duty BB - £3.50

MEMORY
- 32Mb SDRAM - £34.00
- 32Mb PC100 - £34.00
- 64Mb SDRAM - £67.00

DRIVES
- 3.5" floppy - £10.50

CPU’s
- IBM P300MX - £43.00
- AMD K6-2 333 - £68.00
- AMD K6-2 350 - £78.00
- AMD K6-2 380 - £108.00

FAN/HEATSINKS
- Heavy duty BB - £3.50

MEMORY
- 32Mb SDRAM - £34.00
- 32Mb PC100 - £34.00
- 64Mb SDRAM - £67.00

DRIVES
- 3.5" floppy - £10.50

KEYBOARDS
- Windows95 - £6.50
- Windows95 PS/2 - £7.50
- Infrared - £29.50

MONITORS
- (3yr Warranty)
 - 14" - £93.00
 - 15" - £105.00
 - 17" - £199.00

MODEMS
- 33.6 External - £30.00
- 56k Internal - £32.00

VIDEO CARDS
- 4Mb S3 PCI - £19.50
- 8Mb AGP - £26.00

CD-ROM DRIVES
- 36 speed - £32.50
- CD Re-writer - £192.00

SOUND CARDS
- 16-bit PCI - £11.00
- Soundblaster 16 - £18.00

OTHERS
- Floppy drive lock - £5.60

MONITOR PRICES
- 14" - £93.00
- 15" - £105.00
- 17" - £199.00

CDR Prices
- Single - £0.85
- Single - £6.50

CD-RW Prices
- Single - £5.50
- Single - £7.50

MEDIA
- Windows95 - £6.50
- Windows95 PS/2 - £7.50
- Infrared - £29.50

SPEAKERS
- 80 watt PMPO - £6.50

OTHERS
- Floppy drive lock - £5.60

PRESSIT Kit
- £18.00

LIMITED EDITION
- £2.50

All prices include V.A.T. but exclude delivery. This is only a small selection of our stock, please phone for prices of items not listed.

ON SALE NOW

Ham Radio Today April 1999

UK FIRST!

Review of Icom 706 MKIIG

WIN!

Icom IC-PCR 100 computer controlled receiver/scanner reviewed in last month’s Ham Radio Today

Optocom computer controlled receiver

All your favourite regular columns

UK Radios, Apr 1999

Credit card details

- **Name:**
- **Address:**
- **Town:**
- **Signature:**

Order Form

- **Ham Radio Today, RSGB Publications, Lambda House, Cranborne Road, Potters Bar, Herts EN6 3JE**

Switch Issue-No. Call Sign Name

Postcode

Switch Issue-No. Call Sign Name

Postcode
Unfortunately, I cannot provide a natural text representation of the document as it appears to be a scanned image with text that is not legible due to poor resolution or damage. The content is not translatable to plain text. If you have a more legible version of the document, please provide it, and I will be happy to help with any text-related tasks.
as one small plastic stand off is damaged. No manual included, ideal for RX or swap Pathak. Tel: Midlands 0121-
323 7097.

Trio TKC-0612. £15.50. TKC-Plus £5.50. TKC-Plus with smartwatch. £160. K. Net options for 9612. TKC Plus and TKC-Plus4, Plus 4510m 70MHz. 6 channels, mains 120-230v, 100W output. Tel: (01566) 722137.

Trape. Sandpiper 80m (PMH2). £12. Deacom 80m (2.5MHz). £12. (Never used). Tel: (0170) 619138.

Trio TR-2116. £145. 21MHz transceiver, fully equipped model rig. £25.50. DC supply, wideband remote control, flexible snake man neck mount, complete with original mobile, panel, bracket, manual, boxed, nice condition, £150 o.n.o. Tel: Harold Griffiths, 97 Norwood Road, Stretford, Manchester M32 8EU.

Trio TR-9130 v.h.f. and 144MHz, all models would do, even damaged. No power supply needed, ideal DX transceiver. Tel: Dave on Clacton -on-Sea .01255179426. or swap Pakrat Tel: Midlands 0121-223 012651.

Trio TR-209 (70cm) £39.50. Transceiver, remote. £25.50, 12V, dual receive. all filters, complete with original transit box. Tel: Jonathan 0181-542 2374, after

Trio TR-9130 v.h.f. £125. 144MHz, all models would do, even damaged. No power supply needed, ideal DX transceiver. Tel: Dave on Clacton -on-Sea .01255179426. or swap Pakrat Tel: Midlands 0121-223 012651.

Trio TR-2116. £145. 21MHz transceiver, fully equipped model rig. £25.50. DC supply, wideband remote control, flexible snake man neck mount, complete with original mobile, panel, bracket, manual, boxed, nice condition, £150 o.n.o. Tel: Harold Griffiths, 97 Norwood Road, Stretford, Manchester M32 8EU.

Trio TR-9130 v.h.f. and 144MHz, all models would do, even damaged. No power supply needed, ideal DX transceiver. Tel: Dave on Clacton -on-Sea .01255179426. or swap Pakrat Tel: Midlands 0121-223 012651.

Trio TR-2116. £145. 21MHz transceiver, fully equipped model rig. £25.50. DC supply, wideband remote control, flexible snake man neck mount, complete with original mobile, panel, bracket, manual, boxed, nice condition, £150 o.n.o. Tel: Harold Griffiths, 97 Norwood Road, Stretford, Manchester M32 8EU.

Trio TR-9130 v.h.f. and 144MHz, all models would do, even damaged. No power supply needed, ideal DX transceiver. Tel: Dave on Clacton -on-Sea .01255179426. or swap Pakrat Tel: Midlands 0121-223 012651.
Classified Ads

To advertise on this page see form book.

Valves

VALVES GALORE Most valves available from stock. Otherwise obtained quickly. Please send SAE stating requirements or telephone.

VALVE & ELECTRONIC SUPPLIES Chevet Books, 157 Dickson Road, Blackpool FY1 2EU.

Tel: (01253) 751858 or Fax: (01253) 302979.

VALVES: OVER 50000 STOCKED Hargreave Supplies Ltd, 28 Banks Ave., Golcar, Huddersfield, West Yorkshire HD7 4LZ.

Tel: 01484 654650. Fax: 01484 655699.

E-mail: wilsonvalves@surflink.co.uk Visa etc. Fast & personal service.

NEW KITS FOR
NOVICES!
Kits are just £8.00 each plus £1 postage for either one or both of them.

LAKE ELECTRONICS
Dept PW
7 Middleton Close, Nuthall, Nottingham NG16 1BX
* * Phone 0115-938 2509 *
E-mail: radlicitecompuserve.com
Send SSAE for a brochure of our complete range.

J. BIRKETT
SUPPLIERS OF ELECTRONIC COMPONENTS

3 months
Use only if a member of the RSGB and send me my free gift

C.M. HOWES KITS. Available by post and for callers.

Nothing compares with the satisfaction of making that rare DX contact, taking part in your weekly net, chasing those awards or settling down with the latest copy of RadCom. It's also reassuring to know that your equipment is fully covered with discounted insurance, and that specialist advice is only a call away.

We are here working on your behalf so that you can go on enjoying your hobby.

RSGB Membership and RadCom delivered to your door, plus more, for just £36 annually or £9 quarterly!

Please enrol me as a member of the RSGB and send me my free gift

Please send me a Direct Debit form

Complete Projects

TEN-TEC

2m and 6m FM mobile transmitters. 40m, 30m and 20m QRP CW transverters, Short wave receivers, Short wave transverters, SWR bridge and RF wattmeters. BA Broadband VHF transmatch tuning bridge. Electronic power supply, Universal BFO, active antenna, receive converter, speech processor.

PLUS! Repair service for all Ten-Tec kits

20 The Street
Bramber
West Sussex BN44 3WE

FUNDAMENTALS

£36 annually or £9 quarterly Direct Debit (£27 over 65 years of age: £22 students, £12 under 18).

RSGB Membership and RadCom delivered to your door, plus more, for just £8.00 each plus £1 postage for either one or both of them.

J. BIRKETT

SUPPLIERS OF ELECTRONIC COMPONENTS

RSGB Membership and RadCom delivered to your door, plus more, for just £36 annually or £9 quarterly Direct Debit (£27 over 65 years of age; £22 students; £12 under 18).

01707 659015 for a free copy of RadCom, or join today and receive a free gift.

Radio Society of Great Britain, Lambda House, Cranborne Road, Potters Bar, Herts EN6 3JE.
Cheques / Postal Order payable to Radio Society of Great Britain.

3 months
Use only if a member of the RSGB and send me my free gift

Please enrol me as a member of the RSGB and send me my free gift

Please send me a Direct Debit form

Name (in full, married, or dh) Callsign
Address
Town
Signature
Postcode
Date

Practical Wireless, April 1999 79
The books listed have been selected as being of special interest to our readers. They are supplied direct to your door. Many titles are overseas in origin.

Get yourself organised this year with our special binder offer.

This month, Practical Wireless are offering our readers the chance to purchase the perfect solution to that heap of PW magazines that just keep on growing on the coffee table! The solution is really quite simple - and it comes in the shape of a PW Binder!

These very special binders are produced in very heavy duty card, coloured in a smart navy blue with the PW logo printed in - no expense spared - gold lettering on both the front and on the spine. Each one comes complete with a set of year labels and binding bars and will comfortably hold a years' worth of your favourite Amateur Radio magazine.

If you order your binder now, you'll save money on the postage because we are offering them to our readers for a mere £5 including P&P (overseas orders plus £2 P&P). Offer open until 30th April 1999.

To order please either use the form on page 82 or call the Credit Card Hotline on (01202) 699390 and quote PW4.
Please mention Practical Wireless when replying to advertisements

Check out our Web Pages at:
http://www.pwpublishing.ltd.uk

SUBSCRIPTION RATES

SUBSCRIPTION CHARGES HELD AT THE OLD PRICES UNTIL MAY 31st 1999 AS A RESULT OF A RISE IN COVER PRICE.

Practical Wireless – 1 year.

- £25 (UK)
- £30 (Europe Airmail)
- £32 (Rest of World Airsaver)
- £37 (Rest of World Airmail)

Special joint subscription with Short Wave Magazine – 1 year.

- £50 (UK)
- £59 (Europe Airmail)
- £63 (Rest of World Airsaver)
- £74 (Rest of World Airmail)

Please mention Practical Wireless when replying to advertisements

Special Offer

Please send me Practical Wireless
Binders @ £5 including P&P (plus £2 P&P for overseas orders). Offer open until 30th April 1999.

Books Please send me the following books.

<table>
<thead>
<tr>
<th>Book</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Postal charges:

- £1 for one, £2 for two or more (UK)
- £2 per book or £10 for five books or more items (overseas surface)
- £2 per binder (overseas surface)

NEW FASTER NEXT DAY SERVICE (UK MAINLAND ONLY)

- £4.50 per parcel (orders must be placed by 12 noon)

GRAND TOTAL

- £

Thank you for using PW for your purchases.

PAYMENT DETAILS

CREDIT CARD ORDERS TAKEN ON (01202) 659930
between the hours of 9.00am - 5.00pm. Outside these hours your order will be recorded on an answering machine.

FAX ORDERS TAKEN ON (01202) 659950
or please fill in the details ticking the relevant boxes, a photocopy will be acceptable to save you cutting your beloved copy!

To: PW Publishing Ltd., FREEPOST, Arrowsmith Court, Station Approach, Broadstone, Dorset BH18 8PW

Name
Address
Telephone number
Postcode

Card number
Valid from... to...
Signature

Telephone number

I enclose cheque/PO Payable to PW Publishing Ltd.) £

Charge to my Access/Visa card the sum of £

Orders are normally despatched by return of post but please allow 28 days for delivery.

Please note:
ALL PAYMENTS MUST BE MADE IN STERLING, CASH NOT ACCEPTED WITH MAIL ORDER.

PAYMENT DETAILS

CREDIT CARD ORDERS TAKEN ON (01202) 659930
FAX ORDERS TAKEN ON (01202) 659950
Coming Next Month in

PRACTICAL WIRELESS

THE UK'S BEST SELLING INDEPENDENT AMATEUR RADIO MAGAZINE

Next Month in Practical Wireless, the magazine that brings you Amateur Radio & So Much More

- QRP Contest Special: Neill Taylor G4HLX, adjudicator of the Practical Wireless 144MHz QRP Contest, shares his knowledge and experience of v.h.f. contests and explains the essentials for "Getting Started" in v.h.f. competitions.

- Dave Hewitt G8ZRF describes how he became interested in the Practical Wireless QRP Contest in his article: 'Last To First - Almost!'

- The first in a two part series on Modern Microwaves is brought to you by Simon Lewis GM4PLM - Editor of the European Microwave Newsletter. This first part shows you how to become active on the microwave bands - "without being a plumber!"

- Nigel Booth M1DKN describes his High Gain 4-Element Quad For 144MHz which he says offers "a very high gain in a very compact space".

- One of our regular 'Valve & Vintage' authors, Phil Cadman, brings you an article on Sealed Lead-Acid Batteries this month.

- A rather special receiver 'front end' for 7MHz is the next project for Rob Mannion G3KFPD in the next in the series of Radio Basics. He introduces the permeability tuning unit concept, which provides excellent bandspread and a practical training exercise.

- Tex Swann G1TEX has some more antenna-related news and views for you in the next instalment of his bi-monthly column: Antennas-in-Action.

- Not forgetting the next in the series of Gordon King G4VFV's 'Looking At...' articles where he will be guiding you through 'The Mixer'.

PLUS ALL YOUR REGULAR FAVOURITES INCLUDING

- Bargain Basement,
- Carrying on the Practical Way,
- Keylines, News, Radio Scene, Valve & Vintage
- and much, much more!

* Contents subject to change

CAN YOU AFFORD TO MISS IT? - APRIL ISSUE ON SALE 8 APRIL 1999 PLACE YOUR ORDER TODAY!

Practical Wireless, April 1999
W. SUSSEX
Adur Communications
Belmont Buildings, The Street, Bramber, W. Sussex BN44 3WE.
Tel: (01903) 879526
Fax: (01903) 879524
E-mail: service@adurcomms.com
Repairs and alignment to all amateur and commercial radio equipment.

BIRMINGHAM
FREE CB RADIO CATALOGUE
PHONE
0121-457 7788

SRP RADIO CENTRE

SURREY
Chris Rees
The QRP Component Company
PO Box 81 Haslemere Surrey GU27 2RF
Tel: (01428) 610501
Fax: (01428) 610531
KITS, KEYS & QRP
MAIL ORDER - S.A.E (sent Sunday) SAE FOR LISTS AND LITERATURE

SCOTLAND
JAYCEE ELECTRONICS LTD
26 Woodside Way, Greenhill, Kirkintilloch, G66 1PH
Tel: (01925) 754821 (Day or Night)
Fax: (01925) 754811
New stock is now in store of Stuart Ponder’s, Mountain Tay, Kenwood, Icom & STOK Approved Dealers.
A good stock of new and used transceiver equipment always in stock.

KENT
KANGA QRP KITS
We stock a complete range of QRP kits for beginners or the more experienced. Prices start from just £5.95.
Send an SAE for our free catalogue or check out our web page: http://www.kanga.demon.co.uk
Kanga Products
Seaview House, Great Race East, Folkestone, Kent CT16 2LG
Tel/Fax: (01304) 891106

DORSET
THE SHORTWAVE SHOP
Novice/CB/Amateur/SWL Equipment, Full range aerial/antenna equipment always available.
18 Falmouth Road, Christchurch, Dorset BH23 2JL
Tel/Fax: (01202) 490099

WEST YORKSHIRE
HUDDERSFIELD ELECTRONICS
GANNI MINIBRAIN
10, 15, 20m.
S.A.E for details.
Suppliers of new & used transceiver SWL/CB equipment.
PXS welcome.
4A Cross Church Street
Huddersfield HD1 2PT
Tel/Fax: 01484 426771

DORSET
THE SHORTWAVE SHOP
Novice/CB/Amateur/SWL Equipment.
Full range aerial/antenna equipment always available.
18 Falmouth Road, Christchurch, Dorset BH23 2JL
Tel/Fax: (01202) 490099

SOUTH WEST
Reg Ward & Co
MAIN DEALER FOR: YAESU, KENWOOD, ICM, AOR, CUSHCRAFT & COMET
1 Westminster House
West Street, Axminster
Devon EX13 5NX
Tel: (01297) 349418 Fax: (01297) 34949

NORTHWEST
HAYDON COMMUNICATIONS
For all your amateur radio equipment.
NEW, SECONDHAND, EX-DEMO
132 High Street, Elgin, Morayshire HN2 7EL
Tel: 0181-951 5781/2
Fax: 0181-951 5782
Open Monday to Friday, Sat 9.30-1.00

QUARTSLAB MARKETING LTD
TEL: 0181-566 1120
FAX: 0181-566 1207

INDEX TO ADVERTISERS

Adur Communications........... 79
AKD.................. 55
ARC.................. 55
Birkett, J.................. 79
Castle Electronics............. 32
Chevet Supplies............. 32
Eastern Communications....... 47, 56, 73
Electro Value............. 73
Fairhaven............. 32
Haydon Communications....... 17, 18, 19
Ham Radio Today........... 75
Icom (UK) Ltd............. 184
Lake Electronics............. 79
Langrex Supplies........... 47
LAR Communication Centre.... 73
Leicester ARS............. 56
Maidstone YMCA........... 73
Martin Lynch & Son.......... 42, 43
Millennium Network Solutions... 56
Moonraker (UK) Ltd........ 6
Multicomm 2000........... 52, 53, 68, 69
Nevada.................. 36, 37
Practical Wireless........... 83
Radioworld............... 26, 27
Rainham AR................ 47
Ronal Computers Ltd......... 75
RSGB.................. 79
Short Wave Magazine......... 83
SMC.................. 4, 5
SRP Trading............... 15
Unicom.................. 24
Waters and Stanton........... IFC, 1, 2
Yaesu.................. 83

LONDON
HAYDON COMMUNICATIONS
For all your amateur radio equipment.
NEW, SECONDHAND, EX-DEMO
38 Bridge Street, Earlsfort, Newmarket, Suffolk
Merseyway WA13 9HA
Tel: 01925 229881
Fax: 01925 229882

MID GLAMORGAN
SANDPIPER COMMUNICATIONS
Unit 5, Enterprise House, Cwmcach Industrial Estate, Aberdare,
Mid Glamorgan CF44 5AE
Tel: (01443) 770425
Fax: (01443) 770424
A full range of transmitting & receiving antennas available for the amateur and commercial market.

LONDON
MARTIN LYNCH
& Son
For all your amateur radio needs
140-142 Northfield Avenue
Ealing London W 13 9SB
Tel: 0181-566 1120
Fax: 0181-566 1207

SOUTHAMPTON
SMC Ltd
Main Dealer for: Yaesu, Kenwood, Icom, AOR, Cushcraft & Comet.
SM House, School Close, Chandlers Ford Industrial Estate, Eastleigh.
Hampshire SO53 4BY
Tel: (01703) 246222
Fax: (01703) 246206

SCOTLAND
TENNAMAST SCOTLAND LTD
Masts from 35ft – 40ft
Adapt-A-Mast
01658 503824
81 Mains Road, Belsh, Ayrshire, KA15 2HT
E-mail: sbrown@tennamast.com
Web site: www.tennamast.com

Please mention Practical Wireless when replying to advertisements

Practical Wireless, April 1999

Index to Advertisers

"YOUR LOCAL DEALERS"
A first for mobile rigs

GET THE BIG PICTURE WITH THE NEW IC-2800H, ICOM'S LATEST DUAL-BAND, MOBILE TRANSCEIVER. THE IC-2800H'S UNIQUE LCD HAS USER-SELECTABLE DISPLAY MODES AND VIDEO CAPABILITIES. BUT IT'S NOT JUST PRETTY - IT'S GOT DURABLE CONSTRUCTION, INSTALLATION FLEXIBILITY, A BANDSCOPE FUNCTION, INDEPENDENT TUNING CONTROLS, CONVENIENT MEMORY EDITING AND MUCH MORE - ADVANCED FUNCTIONS, CONVENIENT FEATURES AND SUPERIOR PERFORMANCE - GOOD GRIEF!

3" COLOUR LCD!

- Unique colour LCD providing four different display modes and switch labels to help night-time viewing.
- Separate controller: The controller is separated from the main unit for installation flexibility. Install the controller on your vehicle's dashboard with the main unit under your seat.
- External video input: The IC-2800H's external video terminal can monitor TV broadcasting with a TV tuner, recorded pictures from a video/digital camera or display a GPS map via a car navigation system.
- Simple bandscope function: Easily find busy frequencies or unoccupied frequencies within a specified frequency bandwidth (up to ±500kHz; according to selected tuning step).
- Packet socket: The packet socket connects directly to a packet modem, 1200bps packet is also possible via this or the mic connector.
- Independent tuning controls: ICOM's independent tuning control system is employed with tuning dial, AF and squelch level controls and 4 function control switches for each band.
- Convenient memory editing: Current transceivers require you to transfer a memory to VFO, then reprogram it after doing any editing. Not so with the IC-2800H.
- Remote control capability: The HM-98 remote control microphone controls almost all functions remotely.
- FM narrow capability: To improve operation on narrow band VHF FM channels the IC-2800H is equipped with a dedicated narrow band FM mode.

Cloning capabilities:
- All memory channel contents and set mode contents are programmable from your PC with the optional CS-2800 cloning software and OPC-478 cloning cable.
- Convenient memories:
 - A total of 254 channels, 99 regular, 5 for log and repeater and 1 call Admit/
 - For each band, are available.

Easily find busy frequencies or unoccupied frequencies within a specified frequency bandwidth (up to ±500kHz; according to selected tuning step).

Count on us!
EARTH STATION FT-847
HF/50/144/430 MHz All Mode Transceiver

The FT-847 changes base station operation forever. Now, three radios in one—HF, VHF/UHF, satellite; technology in its finest application, from the world leader in amateur communication.

With its unequaled combination of features, like DSP filters-notch, NR and BPF, built-in 6-meter, voice monitor, separate sub-band dial, Shuttle Jog dial, Smart Search, and digital meter, the FT-847 is the only radio of its kind! Exclusively for satellite work, 19 memories exceed any other radio. For performance, power-up with 100W for HF/6-meter, and 50W for 2-meter and 430 MHz. Additional "must-haves" include cross-band full duplex, normal/reverse tracking, CTCSS and DCS encode/decode, and direct keypad frequency entry. Plus, the FT-847 is 1200/9600 bps packet-ready.

Take the next step in all-band performance and take home the FT-847 today!

Only one transceiver gives you all mode operations on HF/50/144/430 MHz with full Satellite capability.

NEW
Yaesu Patented Design
ATAS-100
Active Tuning Antenna System
Designed for the FT-847. Works on 7/14/21/28/50/144/430 MHz Amateur Bands for mobile operation.

Specifications subject to change without notice. Specifications guaranteed only within amateur bands. Some accessories and/or options are standard in certain areas. Check with your local Yaesu dealer for specific details.