THE UK'S BEST SELLING MAGAZINE FOR AMATEUR RADIO ENTHUSIASTS

practical Wireless

OCTOBER 1995 £1.90

THE ICOM IC-W31E & THE ICOM IC-Z1E

2 handy reviews

Featuring

DESIGN DILEMMAS

ELECTRONICS WORKBENCH REVIEW

It's a Classic

THE AR-88D

Build

THE PW DAVENTRY
7MHz Receiver

plus

ANTENNA WORKSHOP & ALL THE REGULAR FAVOURITES
Never before has Yaesu technology changed an industry so dramatically.

"With the Smart Controller Mic, all the radio functions are in your hand."

"And, look, the digital voltage display monitors my car battery voltage!"

"Spectra-Analyzer lets me check out channel activity in UHF, VHF and keep track of my favourite repeaters, too."

"Yaesu did it again!"

The FT-8500 and Smart Controller™ Microphone demonstrates Yaesu's world leadership position in 2-way radio communication again! With just four simple flicks of the Smart Controller™ Microphone "joystick"-type lever, you command over 50 separate functions from the palm of your hand!! The FT-8500 defines "high-tech" in mobile radio engineering.

isn't the only engineering advancement. Watch the unique Spectra-Analyzer™ exhibit station activity above and below your current operating channel, and the digital voltage readout monitor your car battery voltage big and bold in the Omni-Glow™ display. In V+V, U+U, V+U view frequencies and custom alpha-numeric messages at the same time. Other features include handy cloning, selectable 1200/9600 baud, and a rear-panel data jack for packet! All of this and more in the deluxe, compact FT-8500.

The extraordinary FT-8500 Dual Band Mobile is at your Yaesu dealer now! Find out how this dramatic change will affect mobile technology for you from this day forward.
EDITOR'S KEYLINES
The Editor raises topical amateur news and views.

COMPETITION CORNER
If you enter our Spot the Difference competition this month you could win a prize subscription.

RECEIVING YOU
Readers' letters.

NEWS '95
A round-up of the latest new products and radio related news.

CLUB SPOTLIGHT
The 75 year success of the Southend & District RS is "spotlighted".

SUBS CLUB
Become a PW Subscriber and save money on a copy of The Superhet Radio Handbook.

RADIO DIARY
Radio rally dates for your diary.

NOVICE NATTER
Elaine Richards CALFM has hints and tips for Radio Beginners of all ages.

REVIEW - THE ICOM IC-W31E DUAL-BAND HANDHELD
Richard Newton G9SN takes a look at a hand-held which he found could fight off computer interference easily.

THE ICOM IC-W31E REVIEW - ELECTRONICS WORKBENCH
Mike Rowe tests out an electronics simulation package to see if it will help him design his next PW project.

IT'S A CLASSIC - THE RCA AR88D RECEIVER
Ben Nock G4BXD says despite being large and heavy, the AR88D is a joy to operate.

THE PW DAVENTRY 7MHz RECEIVER PART 1
Dave Howes G4KOH shares his design for a superhet receiver to take the fear out of operating on "forty".

DESIGN DILEMMAS
Ian Poole G3WIX considers some of the practical design considerations and dilemmas in today's communications receivers.

EXTERNAL NOISE VS RECEIVER SENSITIVITY
Mike van der Westhulzen ZS6UP looks at the latest developments in the Computing in Radio world.

THE ICOM IC-56S REVIEW - ELECTRONICS WORKBENCH
Mike Richards G4WNC reports on the latest developments on the amateur television scene.

REVIEW - THE ICOM IC-Z1E DUAL-BAND HANDHELD
Kevin Rice G7ZC tries out a hand-held with a detachable front panel.

FOCAL POINT
Andy Emmerson G8PMT updates you on the latest developments in the amateur television scene.

BARGAIN BASEMENT
Readers buy, sell and exchange their radio equipment.

BOOK SERVICE
Please book a order over £25 this month, and you'll receive a free voucher entitling you to a discount on your PW subscription.

BROADCAST ROUND-UP
Leighton Smart GWOLBI invites you to join him on the h.f. bands.

SCENE USA
From across the pond Ed Taylor W7SU reports on American Field Days.

ENDNOTES
News of what's coming in the UK's best selling radio magazine next month.

ADVERTISER'S INDEX

68
THIS MONTH'S SPECIAL

Yaesu FT-900 ONLY £1069

Yaesu FT-900AT ONLY £1199

VHF/BOOK TRANSCIEVERS

KENWOOD

<table>
<thead>
<tr>
<th>Model</th>
<th>List Price</th>
<th>Our Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS-850S</td>
<td>£3995</td>
<td>£2495</td>
</tr>
<tr>
<td>TS-850S</td>
<td>£3899</td>
<td>£1950</td>
</tr>
<tr>
<td>TS-450S</td>
<td>£1799</td>
<td>£1279</td>
</tr>
<tr>
<td>TS-450S</td>
<td>£1664</td>
<td>£1144</td>
</tr>
<tr>
<td>TS-50S</td>
<td>£1059</td>
<td>£829</td>
</tr>
</tbody>
</table>

HI TRANSCEIVERS

ICOM

<table>
<thead>
<tr>
<th>Model</th>
<th>List Price</th>
<th>Our Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-220S</td>
<td>£1795</td>
<td>£1569</td>
</tr>
<tr>
<td>IC-275H</td>
<td>£1495</td>
<td>£1359</td>
</tr>
<tr>
<td>IC-281H</td>
<td>£449</td>
<td>£399</td>
</tr>
<tr>
<td>IC-2000H</td>
<td>£369</td>
<td>£339</td>
</tr>
<tr>
<td>IC-2340H</td>
<td>£689</td>
<td>£599</td>
</tr>
</tbody>
</table>

VHF/BOOK TRANSCIEVERS

Yaesu

<table>
<thead>
<tr>
<th>Model</th>
<th>List Price</th>
<th>Our Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT-11R</td>
<td>£324</td>
<td>£275</td>
</tr>
<tr>
<td>FT-41R</td>
<td>£369</td>
<td>£315</td>
</tr>
<tr>
<td>FT-51R</td>
<td>£529</td>
<td>£449</td>
</tr>
<tr>
<td>FT-416G</td>
<td>£389</td>
<td>£349</td>
</tr>
<tr>
<td>FT-290R2</td>
<td>£599</td>
<td>£509</td>
</tr>
<tr>
<td>FT-690R2</td>
<td>£549</td>
<td>£499</td>
</tr>
<tr>
<td>FT-790R2</td>
<td>£749</td>
<td>£625</td>
</tr>
</tbody>
</table>

KENWOOD

<table>
<thead>
<tr>
<th>Model</th>
<th>List Price</th>
<th>Our Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH-79E</td>
<td>£1995</td>
<td>£1699</td>
</tr>
<tr>
<td>TM-255E</td>
<td>£949</td>
<td>£829</td>
</tr>
<tr>
<td>TM-455E</td>
<td>£1059</td>
<td>£929</td>
</tr>
<tr>
<td>TM-733E</td>
<td>£739</td>
<td>£619</td>
</tr>
<tr>
<td>TM-251E</td>
<td>£419</td>
<td>£399</td>
</tr>
<tr>
<td>TM-702E</td>
<td>£579</td>
<td>£519</td>
</tr>
</tbody>
</table>

ICOM

<table>
<thead>
<tr>
<th>Model</th>
<th>List Price</th>
<th>Our Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-21E</td>
<td>£529</td>
<td>£459</td>
</tr>
<tr>
<td>IC-281S</td>
<td>£355</td>
<td>£315</td>
</tr>
<tr>
<td>IC-282S</td>
<td>£279</td>
<td>£229</td>
</tr>
<tr>
<td>IC-122E</td>
<td>£259</td>
<td>£229</td>
</tr>
<tr>
<td>IC-W31E</td>
<td>£469</td>
<td>£419</td>
</tr>
</tbody>
</table>

VHF/BOOK TRANSCEIVERS

Yaesu

<table>
<thead>
<tr>
<th>Model</th>
<th>List Price</th>
<th>Our Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT-736R</td>
<td>£1999</td>
<td>£1699</td>
</tr>
<tr>
<td>FT-8500</td>
<td>£749</td>
<td>£619</td>
</tr>
<tr>
<td>FT-5200</td>
<td>£279</td>
<td>£219</td>
</tr>
<tr>
<td>FT-7100</td>
<td>£679</td>
<td>£579</td>
</tr>
<tr>
<td>FT-2500M</td>
<td>£399</td>
<td>£339</td>
</tr>
<tr>
<td>FT-2200</td>
<td>£419</td>
<td>£355</td>
</tr>
</tbody>
</table>

KENWOOD

<table>
<thead>
<tr>
<th>Model</th>
<th>List Price</th>
<th>Our Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH-79E</td>
<td>£479</td>
<td>£419</td>
</tr>
<tr>
<td>TH-22E</td>
<td>£254</td>
<td>£219</td>
</tr>
<tr>
<td>TH-42E</td>
<td>£289</td>
<td>£249</td>
</tr>
<tr>
<td>TH-28E</td>
<td>£319</td>
<td>£279</td>
</tr>
<tr>
<td>TH-48E</td>
<td>£369</td>
<td>£319</td>
</tr>
</tbody>
</table>

SMC

<table>
<thead>
<tr>
<th>Model</th>
<th>List Price</th>
<th>Our Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-775DS</td>
<td>£3999</td>
<td>£2395</td>
</tr>
<tr>
<td>IC-735</td>
<td>£1996</td>
<td>£1719</td>
</tr>
<tr>
<td>IC-738</td>
<td>£1649</td>
<td>£1439</td>
</tr>
<tr>
<td>IC-729</td>
<td>£1325</td>
<td>£1175</td>
</tr>
<tr>
<td>IC-706</td>
<td>£1195</td>
<td>£889</td>
</tr>
<tr>
<td>IC-707</td>
<td>£889</td>
<td>£775</td>
</tr>
</tbody>
</table>

PHONE FOR THE LATEST INFORMATION

Two new "Ultra Compact" handies from Yaesu – offering a choice of four keypads and many new features.

BRAND NEW YAESU UHF COMMERCIAL TRANSCEIVERS SUITABLE FOR CONVERSION FOR PACKET

Single channel ONLY £79

SMC-545LIN/B

2 channel ONLY £89

SMC-1045L2(B)

Matching base station power supply £29. All sets supplied W/O mics. Mics are normally priced at £29. However, these are available for £10 if purchased with the transceiver. All sets supplied with conversion details XTAL specs.

All discounts are based on recommended retail prices.

CARR A = £2.50 CARR B = £5 (Handi's) CARR C = £9.50 (Mobiles) CARR D = £13.50 (Base Stations) CARR E = £16.50

Practical Wireless, October 1995
The Summer '95 edition has 280 pages packed with over 4000 products and now with news and features including a full construction project.

- The computer section is greatly increased with new ranges of equipment and accessories for PCs including:
 - Mother boards, CPUs and SIMMs
 - CD ROM drives and hard drives
 - Sound cards, I/O cards, disc drive cards and video cards
 - Mice, trackerballs and joysticks
 - Power supplies and cases
- Feature project for an EPROM programmer
- New 20MHz 'scope from Leader, training systems from Flight and an extended range of mobile phone batteries and accessories from Uniross
- Latest addition from Velleman kits including a video digitiser card
- 280 pages, 26 sections, over 4000 products from some of the worlds finest manufactures and suppliers
- Available at most large newsagents, from 13th April, or directly from Cirkit
- Send for your copy today!

Send for your copy today!
MIXED-MODE SIMULATION.
THE POWER OF VERSION 4.

Analog, Digital & Mixed Circuits
Electronics Workbench
Version 4 is a fully integrated
schematic capture, simulator
and graphical waveform
generator. It is simple to
mix analog and digital parts
in any combination.

Design and Verify
Circuits... Fast!
Electronics Workbench's
simple, direct interface
helps you build circuits
in a fraction of the time.
Try 'what if' scenarios and
fine tune your designs
painlessly.

Incredibly Powerful. Incredibly Affordable.

If you need mixed-mode power at a price you
can afford, take a look at this simulator and
graphical waveform generator that mixes analog
and digital with ease.

With over 20,000 users world-wide, Electronics
Workbench has already been tried, tested and accepted
as an invaluable tool to design and verify analog and
digital circuits. With Version 4 true mixed-mode
simulation is now a reality with incredible simplicity.

More Power
Simulate bigger and more complex circuits. Faster.
On average, Electronics Workbench Version 4 is
more than 5 times faster than Version 3.

More Parts
Multiple parts bins
contain over twice the
components of
Version 3.

More Models
Over 350 real world analog
and digital models are
included free with
Electronics Workbench.
And, if you need more, an
additional 2,000 models
are available.

True mixed-mode simulation: Simultaneous AM transmission,
digitization and pulse-code modulation of a signal.

Electronics Workbench™
The electronics lab in a computer™

Order Now! Just £199*
44-(0)1203-233-216

RR Robinson Marshall (Europe) Plc

Nadella Building, Progress Close,
Leofric Business Park,
Coventry, Warwickshire CV3 2TF
Fax: 44 (0)1203 233-210
E-mail: rme@cityscape.co.uk

* Shipping charges UK £5.99. All prices are plus VAT.
All trade marks are the property of their respective owners.

30 Day money-back guarantee.
THE BANDIT

SPECIAL SALE PRICES ON ALL KENWOOD

For Example...

<table>
<thead>
<tr>
<th>Model</th>
<th>RRP</th>
<th>Lowe price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT-1000</td>
<td>£3999</td>
<td>£2995</td>
</tr>
<tr>
<td>FT-840</td>
<td>£959</td>
<td>£725</td>
</tr>
<tr>
<td>FT-900</td>
<td>£1399</td>
<td>£1099</td>
</tr>
<tr>
<td>FT-990</td>
<td>£2399</td>
<td>£1895</td>
</tr>
<tr>
<td>FT-2500M</td>
<td>£399</td>
<td>£319</td>
</tr>
<tr>
<td>FT-736R</td>
<td>£1999</td>
<td>£1549</td>
</tr>
<tr>
<td>FT-11R</td>
<td>£324</td>
<td>£259</td>
</tr>
<tr>
<td>FT-51R</td>
<td>£529</td>
<td>£399</td>
</tr>
</tbody>
</table>

UNBELIEVABLE!

The Icom IC-706 exists.

RRP £1195

Lowe price £995

No deposits taken – we trust our customers!

We now have the superb ANC4 Automatic Noise Canceller from JPS back in stock. This is excellent at removing local computer and TV timbase hash. Must be heard to be believed!

only £189

Review available.

Plus...

<table>
<thead>
<tr>
<th>Model</th>
<th>RRP</th>
<th>Lowe price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS-850S</td>
<td>£1809</td>
<td>£1399</td>
</tr>
<tr>
<td>TS-690S</td>
<td>£1649</td>
<td>£1299</td>
</tr>
<tr>
<td>TS-50S</td>
<td>£1059</td>
<td>£829</td>
</tr>
<tr>
<td>TM-251E</td>
<td>£419</td>
<td>£329</td>
</tr>
<tr>
<td>TM-742E</td>
<td>£879</td>
<td>£679</td>
</tr>
<tr>
<td>TM-79E</td>
<td>£479</td>
<td>£379</td>
</tr>
</tbody>
</table>

Värgård Radio AB

Call us on (01629) 580800 and we will send you full details of the top quality v.h.f. antennas from Vargarda of Sweden.

ADI 2m and 70cm hand-helds

IN STOCK NOW

NEEDLESS TO SAY, ALL ITEMS ARE SOLD WITH THE FULL WARRANTY AND FAMOUS LOWE BACKUP. ALL PRICES INC VAT. NEXT DAY DELIVERY £10 EXTRA. VISA/MASTERCARD WELCOME. CASH EVEN WELCOMER! CHEQUES AS WELL.

BERKSHIRE

3 Weavers Walk
Northbrook Street
Newbury
Tel: (01635) 522122

NORTH EAST

Mitford House
Newcastle Int. Airport
Newcastle Upon Tyne
Tel: (01661) 860418

WALES & WEST

79/81 Gloucester Rd
Patchway
Bristol
Tel: 0117-931 5263

SOUTH EAST

High Street
Handcross
West Sussex
Tel: (01444) 400786

Who the heck, you may ask, is the Bandit? Just ask anybody who remembers vintage radios like the FT-101 and they will enlighten you!
KENWOOD AND YAESU TRANSCEIVERS

KENWOOD TS 870S
now available in stock.
Fully DSP - ring us for a colour brochure.
RRP £2399.95
Lowe price only £1999

TRIED & TESTED
The WEP300 is a really well styled clip-on earphone that goes round your ear - not in it!
ONLY £9.95.
Call us for a leaflet.

Lowe Electronics are sole UK distributor for Kantronics, the world leaders in packet equipment. See the Kantronics range on demo at your nearest Lowe shop.

SPECIAL OFFER
on Kantronics TNCs this month only!
KAM plus £399......................£349
KPC 9612 £275......................£249
KPC 3 £149......................£129

Looking for good h.f. all band results?
We have sold many hundreds of the Chelcom CAHFV1 since we launched it last year. £119.00 will bring you the best value in h.f. vertical antennas.

THE FAMOUS MANSON EP925 - BACK IN STOCK
Ring us for details.
* 3-15V d.c.
* 25A
* 30A peak
* Cooling fan
* Full metering
Buy the best - forget the rest!
All this for only £99.95

NEW LOWE BRANCH
We are pleased to announce the opening of our new branch in West Sussex. This is situated around 15 miles south of Gatwick Airport - just off the M23 in Handcross.

YORKSHIRE
12 Station Road
Crossgates
Leeds
Tel: 0113-232 8400

SOUTH WEST
117 Beaumont Road
St. Judes
Plymouth
Tel: (01752) 257224

EAST ANGLIA
152 High Street
Chesteron
Cambridge
Tel: (01223) 311230

Call at your local Lowe shop for Watson aerials

See us on the web!
orders@lowe.demon.co.uk
info@lowe.demon.co.uk
http://www.demon.co.uk/lowe/index.html
Don't despair . . . Repair!

The all new Electronics Service Manual shows you how to troubleshoot and repair electronic equipment successfully. It is suitable for the beginner and more experienced enthusiast, trainee or repairman.

You can become a repair expert
- Understand electricity and electronics.
- Confidently use test equipment to pinpoint problems.
- Become skilled at understanding flow charts, circuit diagrams and manufacturers data.
- Successfully identify components and understand their function.
- Learn how to skillfully remove and replace components.

One source for all your repair needs
The Electronics Service Manual will get you started, or help develop your skills, in repairing and servicing electronic equipment. Over 850 pages, loose leaf A4 format in a durable, sturdy ring binder all for just £39.95 plus £5.50 post and packing.

Continue to broaden your repair expertise
You'll receive regular Supplements (about five a year) with new technical notes and information to enable you to service and repair an increasingly wide range of equipment. Each Supplement contains around 160 pages all for only £23.50 plus £2.50 p&p. You can of course return any Supplement (within ten days) or cancel the Supplements at any time.

Guarantee
Our 30 day money back guarantee gives you complete peace of mind. If you are not entirely happy with the Manual, for whatever reason, simply return it to us in good condition within 30 days and we will make a full refund of your payment – no small print and no questions asked.
(Overseas buyers do have to pay the postage charge)

Please send me the Electronics Service Manual
I enclose payment of £45.45. I shall also receive the appropriate Supplements several times a year. These are billed separately and can be returned (within 10 days) or discontinued at any time. Should I decide not to keep the Manual I will return it to you within 30 days for a full refund.

Full Name ...
(Please Print)

Address ...

Postcode ...

Signature ...

☐ I enclose cheque/PO payable to Wimborne Publishing Ltd.
☐ Please charge my Visa/Mastercard (Access)

Card No. ...
Card Exp. Date ...

ORDER FORM
Simply complete and return the order form with your payment to the following address: Wimborne Publishing Ltd, Dept. F10 Allen House, East Borough, Wimborne, Dorset BH21 1PF
Tel: 01202 881749. Fax: 01202 841692.

Overseas Orders: All overseas orders must be prepaid and are supplied under a money-back guarantee of satisfaction. If you are not entirely happy with the Manual return it within a month for a refund of the purchase price (you do have to pay the overseas postage). Send £39.95 plus the postage shown below:

<table>
<thead>
<tr>
<th>Country</th>
<th>Surface Mail</th>
<th>Air Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eire</td>
<td>£20</td>
<td>£26</td>
</tr>
<tr>
<td>Europe (E.E.C.)</td>
<td>£20</td>
<td>£26</td>
</tr>
<tr>
<td>U.S.A. & Canada</td>
<td>£25</td>
<td>£32</td>
</tr>
<tr>
<td>Rest of World</td>
<td>£25</td>
<td>£44</td>
</tr>
</tbody>
</table>

Note surface mail can take over 10 weeks to some parts of the world. Each Manual weighs around 4kg when packed.
All payments must be made in £ sterling payable to Wimborne Publishing Ltd. We accept Mastercard [Access] and Visa credit cards.
As I'm writing this 'Keylines' in August, the rally season is at its height. The annual trip to the RSGB National Mobile Rally has come and gone, and last weekend (the 13th of August) I attended what must be one of the best regional rallies...the Flight Refuelling Club's Hamfest at Wimbome.

I hear many moans regarding rallies nowadays, especially regarding the ever-increasing amount of computer surplus on sale. Readers write and tell me that they think 'radio rallies' are turning into 'computer rallies'! I'm pleased to report that neither the Woburn event or the Wimborne Hamfest can be thought of as 'computer rallies'. And in fact, I feel that the Wimborne rally has a marvellous selection of amateur radio gear, collector's items, and an excellent cross section of everything to interest the radio enthusiast.

But this year, Woburn and Wimborne had something else in common. They both attracted vendors (in one case selling direct out of the back of the proverbial van) illicit 'pirate' decoder hardware to enable satellite TV viewers to decode encrypted broadcasts.

I sympathise with rally organisers regarding traders selling 'pirate' software. Very often, you don't know they're going to do it until they've arrived...and it's only when the traders start selling, that the rally organisers realise they have a problem.

However, the situation regarding 'pirated' software is so bad now that action is being taken by the Performing Rights Society. It was announced on the BBC Radio 4 7am news bulletin on Friday 18th August that in conjunction with Trading Standards Officers, the Performing Rights Society (who oversee this aspect of copyright) are to take concerted action throughout the UK.

I fervently hope that our hobby does not attract unwelcome publicity when 'pirate' software vendors are caught in action at rallies. And bearing in mind that some of the dealers openly promote the ability to receive so called 'Adult' channels...the possibility of attracting bad publicity is high. So, rally organisers everywhere (it is a nation-wide problem)....please be aware of the dangers and help us to get rid of these unwelcome 'hangers on'.

Illegal CB Transceivers

Readers may remember my efforts to convince the Department of Trade & Industry's Radiocommunications Agency to continue to allow radio amateurs to obtain (otherwise illegal) multi-mode 27MHz CB radio transceivers for conversion. The efforts came to nothing, but there are still hundreds of the illegal transceivers for sale.

All through the rally season this year I've seen at least a dozen or so multi-modes for sale at each rally I've attended. Some even appear on the 'Bring & Buy' stalls!

So, I think it's about time the DTI and RA admit that they don't have the staff to enforce the removal of multimode CB transceivers from circulation. They clearly don't have the staff, and I think their priorities are elsewhere.

In the meantime, there are many very reasonably priced transceivers 'going to waste'. They could (if only the DTI and RA would relent) be converted to the amateur bands, thus removing a problem for the authorities and helping radio amateurs at the same time. Hopefully, someone will take note and see sense in my suggestion!

COMPETITION CORNER

Our worthy cartoonist John Worthington GW3COI took his family out for a picnic in search of inspiration for this month's 'Receiving Special' issue. However, family Worthington don't seem to appreciate his efforts, and he's on the 'receiving end' in more ways than one! Never mind John, it still makes an interesting 'Spot The Difference' cartoon!

There are 12 differences to mark on the bottom version of the cartoon this month, good luck.

FIRST PRIZE: A year's subscription to Practical Wireless or a £20 book voucher.

SECOND PRIZE: A six month subscription to Practical Wireless or a £10 book voucher.

Send your entry (photocopies acceptable with corner flash) to: Spot The Difference Competition, October 1995, PW Publishing Ltd., Arrowsmith Court, Station Approach, Broadstone, Dorset BH18 8PW. Editor's decision on the winner is final and no correspondence will be entered into.

Name

Callsign

Address

Postcode

Send your entry (photocopies acceptable with corner flash) to: Wordsearch Competition, September 1995, PW Publishing Ltd., Arrowsmith Court, Station Approach, Broadstone, Dorset BH18 8PW. Editor's decision on the winner is final and no correspondence will be entered into.

SUBSCRIPTION ### VOUCHER

Entries to reach us by Friday 27 October 1995.
Hobby Memories

Dear Sir

One of the fascinating things about this hobby of ours, is the fund of memories (good, bad and indifferent!) that one accumulates as the years go by.

Looking at the 'innards' of one of the state-of-the-art rigs recently, I could not help comparing it with the highly illegal 18 sets that my friends and I acquired in the late 1940s. Five of us had these rigs and would chat happily about our school homework, or the girl next door!

One day, when I had just arrived home from school, a little man called at the house and told my father that he was the local Wireless Interference Officer. He told us that we had to cease, desist and otherwise stop using our contraptions, as they were illegal devices and were unlicensed.

I was none too pleased and pointed out, with all the arrogance of a 15 year old, that they were not radio sets and that we were not breaking any regulations. He replied that there was no direct connection between the two devices and that meant that they were 'wireless'! My parents accepted his peculiar logic and assured that the equipment would be destroyed.

It would have been cheaper and much less trouble just to have called to each other through open windows. Not as much fun though!

Looking at the 'innards' of one of the state-of-the-art rigs recently, I think it's more like Pandora's box. I wonder if any readers remember the Modulated Light Transmitter - in some ways, it might add! Have you any more memories like this readers?

Tony Tuite G5ONS

Key Project

Dear Sir

Greetings to 'Tex' and all at PW. I'm writing to say just a few lines to say about the 'Key Project' from the June 1995 PW. As G4BXD said, it was very simple to build and very cost effective. I etched a p.c.b., as for me there were too many links using the Veroboard layout. I've had some favourable reports (wish I could say the same about my sending!). But, overall for the cost of £1.30, I am very pleased with the results!

It would be nice if you could print this letter as it would make a change from seeing those of my ex-tutor G0NEE Mike being printed! But I would like to say thank you to Mike as I am now enjoying c.w. on 3.5/MHz, and to all stations worked.

Look forward to the next issue. Thank you all.

John ZEOAANJ
Newcastle Upon Tyne

Editor's reply: Many readers successfully built Ben Nock's G4BXD's 'Key Project' from the circuit diagram and others built it after making their own p.c.b. rather than the Veroboard. However, I'm sorry to say that there are errors on the Veroboard layout (updates to be published). But despite this, the PW team are delighted the project was so popular.

Editor: Sounds like there's an interesting article waiting to be written Peter, and we look forward to seeing it published in PW!

Peter Chadwick G3RZP
Wiltshire

Digital Disadvantage

Dear Sir

In Ian Poole's description of the Direct Digital Synthesiser (August PW), the major disadvantage of the DDS wasn't mentioned. This is that for small step sizes, the amount of memory needed in the ROM is enormous.

You can cut it down by only using the values 0 to 90° and cycling through the memory four times for each output cycle. But it still needs a lot of memory for small steps.

This means that the ROM size is deliberately reduced (truncated) in practical designs and the D-A converter is cut down to a size allowing reasonable accuracy and linearity, e.g. 8bits at 500MHz output. These truncations lead to the big problem of spurious output frequencies. It's usually reckoned that spurs produced just by the truncation of the size of the word in the DAC will be about 6n (dB) down, whereas n is the number of bit in the DAC. Also, at high frequencies, a 10bit DAC may be less accurate than an 8bit DAC, depending on settling time.

So, the DDS is by no means a simple answer that cures all ills - in some ways, it's more like Pandora's box. I guess the p.i.l. will be with us for some time to come.

Peter Chadwick G3RZP
Wiltshire

The Star Letter will receive a voucher worth £10 to spend on items from our Book or other services offered by Practical Wireless. All other letters will receive a £5 voucher.
Joining A QSO

Dear Sir

I wish to reply to the letter from Andrew Howlett G1HBE in 'Receiving You' (PW July).

While some might consider it bad manners not to say 'please', others might consider it bad manners to interrupt the conversation which is already underway for longer than absolutely necessary. Since both views are valid to some degree, how does a newcomer know what to say?

The best way is to listen, but then you might hear a 'G3' request to enter a conversation with just 'Break'. Also, since both views have merit and different radio amateurs may view this topic differently, can non-radio amateur parents reasonably be expected to know and teach their children this point?

I am, however, quite happy to accept that on the wider aspects of manners and etiquette on air that newcomers most commonly fall foul. It is inevitable since they are at the beginning of a learning curve. I'm sure that most, if not all newcomers, share my desire to follow all the rules, be they written or not, and that the inadequacies are due to lack of knowledge.

Perhaps Andrew Howlett would like to assist newcomers by writing an article explaining points about operating etiquette and manners on air?

Finally, I'm sure we are all aware of the valuable nature of frequency allocations. If it was not for the easy access to the bands which today's amateurs enjoy, the number of UK licensees would certainly be massively less. Would the bands then be more likely sold off to the highest commercial bidder?

To all newcomers, I wish you the best. Listen and learn from the veterans, then make the most of amateur radio.

Paul Hardcastle

G7SLP

Saudi Arabia

Resin & Hardener Remover

Dear Sir

My extensive research suggests that tubes of resin/hardener remover are no longer available. A manufacturer recommends:

Before epoxy has set, remove with nail polish remover (active ingredient: acetone). Should also work with cyanoacrylic 'superglue' adhesives.

"After hardening, polymer bonds (epoxy only) can be broken by Nitromors paint stripper" (active ingredient: methylene chloride).

Given time, skin will shrug off even stubborn adhesives, but washing with a solution of glycerine sometimes helps.

None of the above seem suitable for eye contamination. If in doubt, attend the nearest Accident & Emergency Dept. If you can find one that's still open after Virginia Bottomley has finished with them!

Dr. Godfrey Manning

Middlesex

Dear Sir

The August edition of PW dropped through the mailbox yesterday and on the front cover was the large caption 'Antenna Special'. As I have been trying to build a triband h.f. Yagi (with or without a QRO) for a very long time, I thought the article would be the answer, but so far luck as the main content was related to dipoles which are difficult to rotate!

If you have space to publish this letter, it would be greatly appreciated if any reader can assist me with dimensions for a tribander with a mid-band VSWR of 2:1. The method described in pages 22-26 as the mast was 5in round steel. The instructions are quite simple, ie. walk the mast up to 8 to 10 turns of rope wound around the mast above the centre point.

The 'gang' assembled for the big pull (it should be noted that all the team had previous experience). As we started to pull/lift there were 14 stones, with the exception of the XYL!) and we started to slide down the mast as the mast angle changed from the horizontal to the vertical.

After calling a halt at about 45°, it was decided to use the guy wires that had previously been attached to the top of the mast. It was with great ease that the mast continued upwards until vertical. Much has been said and written after safety over the years, so my recommendation is ask advice before starting a project like this, rather than assuming that what's written is safe!

Nigel R. Taylor

Z21KIR/G7URW

Zimbabwe

Editor's reply: Although I'm sending some material directly to Nigel (I've recommended a cubical quad array) if readers have any favourite designs or ideas using a Yagi, the Editorial team would be interested as it could make a very practical article.

Dear Sir

On reading the letters in the September issue, I was especially interested by two, one about antennas and another about budget rigs. I know it's different for v.h.f. op's. As a novice to get set-up, I bought a second-hand Howes TX/RX as the one I was building sort of went wrong.

The August edition of PW was the first column on page 31. My garden is 22 yards long and not being very technical or rich, I bought a roll of copper wire from an engineers shop and two ten foot wooden poles and rigged up the classic 'back leg of the dog' or 'a double S bend antenna' depending on which way I pulled the guy ropes.

So what, my latest page in my log states I have worked Ds, Fs, LAs, LY, YL in the past couple of weeks. The LY in palanger turned out to be Dave GOBZF said 'VY good signals considering my three watts 'he"he'. Did he think I was cheating? But three watts is all I have.

So, for me, budget and antennas are no problem! But where would I get with a proper antenna? If your antenna expert needs a test bed, he can always try my garden.

T. J. Stevens

Cambridge

Editor's reply: Godfrey's advice is very sound, and (from personal experience) I can warn readers to be very careful when handling synthetic hardeners and resins, they can damage the skin significantly. One reader wrote and suggested using the disposable gloves (the same type as dispensed at diesel pumps in caviages) when handling the chemicals. But, check before use that the resin/hardener will not 'melt' the plastic gloves on to your fingers!
Intelligent Kenwood Arrives

The Stafford Show, held over the weekend August 19 - 20th, saw the launch of Kenwood's new high performance TS-870S h.f. transceiver. The new transceiver includes many state-of-the-art facilities, including digital signal processing (DSP) and a feature which Kenwood call an "Intelligent Enhanced Communications System".

Kenwood also report that the new transceiver incorporates high speed PC control, a built-in automatic antenna tuner, and for the c.w. enthusiast the TS-870S comes complete with a K1 'LogiKey' with a variety of operator selectable operations.

General receive coverage on the TS-870S extends from 100kHz to 30MHz, with transmit only on the amateur bands. The transceiver is equipped with a quadruple-conversion receiver with h.f. DSP for post-i.f. signal processing. Kenwood claim that the receiver is capable of picking out a target signal which is 'buried' under the noise.

Production of the TS-870 started in August, with deliveries expected in the UK during September. Price of the new transceiver is expected to be in the region of £2399.95. More details can be obtained direct from Trio-Kenwood (UK) Ltd., Kenwood House, Dwight Road, Watford, Herts WD1 8EB. Tel: (01923) 816444 or any Kenwood approved dealer. Practical Wireless will be reviewing the TS-870S in the near future.

Amateur Lifeboat

Following the raising of £12500 by the Worked All Britain (WAB) Group and a cheque being presented to the Royal National Lifeboat Institution (as reported in "News '95" in PW August) a new D Class Lifeboat was officially launched at the RNLI's Open Day on Friday July 28.

The D Class Lifeboat D-483 was named C. John Morris DFM G3ABG after the founder of the WAB. The naming ceremony was carried out by Veda Morris, G3ABG's widow at the RNLI Headquarters in Poole, Dorset.

The D-483 is an inshore inflatable lifeboat of the type originally designed and built in 1963. It measures 4.72m overall in length by 1.93m wide.

This D Class lifeboat needs at least 18in of water to operate and is capable of maintaining a top speed of 20 knots from its 31hp engine. This latest addition to the RNLI fleet will be housed at the headquarters in Poole, as it is relief boat and will be despatched to inshore waters around the UK and Ireland as and when it is required.

Economy Wide Band Dipole

South Midlands Communications have recently designed and are currently manufacturing the TFDSE wide band h.f. dipole, which is based on the TFD range of terminated folded h.f. dipole antennas. It is an economy version of the TFD6B.

The TFDSE is constructed from lightweight, but heavy duty pvc covered copper wire and has a centre balun, which SMC say has been carefully designed tested to give minimum losses, excellent balance ratio and prolonged performance. Computer aided design and testing has enabled SMC to provide full efficiency figures, polar plots and technical back-up which is all backed by their ISO9001 design and manufacture quality system.

The frequency range covered by the TFDSE antenna is 2.5 - 30MHz with a p.e.p. rating of 125W. The antenna measures 30m overall and weighs in at 3kg. Optional coaxial cable assemblies of 10, 20 and 30m are also available.

South Midlands Communications are currently selling the TFDSE wide band dipole antenna for £99.95 including VAT. Further information is available from S.M. House, School Close, Chandlers Ford Industrial Estate, Eastleigh, Hampshire SO53 4BZ. Tel: (01703) 295111.
The 789 Low Cost antenna has recently been introduced by Kanga Products and is being used successfully by several amateur radio operators. The antenna is designed specifically for the 430-440MHz range and features excellent electronic tuning properties, providing a SWR of less than 1.15 on most bands. The antenna uses a Franklin handheld transceiver and can be matched easily with a price tag of just £24.95.

The 789 antenna uses a Franklin collinear which the manufacturers say ensures high efficiency with a low SWR and requires no matching. The frequency range of the 789 is 430 - 435MHz with a SWR of under 1:1.5 within the band.

A BNC connector is used to give good connections and the manufacturer claims that once installed the 789 antenna should give the operator a good service for many years. The 789 Low Cost antenna is available direct from Kanga Products, Seaview House, Crete Road, East, Folkestone CT18 7EG for £24.95 plus £4.50 P&P.

Dick Pascoe GOBPS has recently informed the “Newsdesk” of a new hand-made, individually tuned antenna, which he designed with the Novice in mind and which is specifically aimed at them with a price tag of just £24.95. The antenna uses a Franklin collinear and has been designed to have a SWR of less than 2:1 over the range of 430-440MHz. The antenna is specifically aimed at the “Newsdesk” of a leading Scottish station in the annual PW 144MHz QRP Contest. The Tennamast Trophy, sponsored by the Ayrshire - East, Folkestone CT18 7EG for £24.95 plus £4.50 P&P.

The FT-1000MP features enhanced digital signal processing, dual-band receiving with separate 5-meters, a built in Collins mechanical 45kHz/7kHz s.s.b. filter and an optional Collins 45kHz/500kHz c.w. mechanical filter. There is also an independent 2nd and 3rd i.f. filter selection together with wide receiver dynamic range. Also featured on the FT-1000MP is a transverter jack for v.h.f./u.h.f operation, selectable antenna jacks and a “Quick Memory Bank”. There’s also a built-in high speed automatic a.u.t. and electronic contest memory keyer.

The FT-10R/40R hand-held transceivers are said to be the first amateur hand-helds to carry the MIL-STD810 rating. The FT-10R is for 144MHz operation with the FT-40R covering the 430MHz band. Described by Yaesu as being ultra compact with their unique clamshell design and rear mounted batteries the FT-10R/40R offer the buyer a choice of four keypads. Other features include alphanumeric display, digital coded squelch, direct f.m. designed to improve packet performance and voice quality, dual-watch, high speed scanning and four output power levels.

Tennamast Trophy & Frank Hall GM8BZX

The Royal Mail have honoured the achievements of Guglielmo Marconi on two stamps in their latest ‘special’ set, which was issued on September 5. The stamps are part of a set on communications, which also feature Rowland Hill ‘inventor’ of the postage stamp. Marconi’s portrait is featured on the 41 and 60p stamps. The 41p stamp shows Marconi with some of his early wireless equipment and the 60p stamp depicts the importance of his work for marine safety and navigation. Rowland Hill is featured on the 19 and 25p stamps.

To get a set of these special stamps you should contact your nearest Royal Mail Post Office.

Dick Pascoe GOBPS has recently informed the ‘Newsdesk’ of a new hand-made, individually tuned antenna, which he designed with the Novice in mind and which is specifically aimed at them with a price tag of just £24.95. The antenna uses a Franklin collinear and has been designed to have a SWR of less than 2:1 over the range of 430-440MHz. The antenna is specifically aimed at the "Newsdesk" of a leading Scottish station in the annual PW 144MHz QRP Contest. The Tennamast Trophy, sponsored by the Ayrshire - East, Folkestone CT18 7EG for £24.95 plus £4.50 P&P.

The FT-1000MP features enhanced digital signal processing, dual-band receiving with separate 5-meters, a built in Collins mechanical 45kHz/7kHz s.s.b. filter and an optional Collins 45kHz/500kHz c.w. mechanical filter. There is also an independent 2nd and 3rd i.f. filter selection together with wide receiver dynamic range. Also featured on the FT-1000MP is a transverter jack for v.h.f./u.h.f operation, selectable antenna jacks and a "Quick Memory Bank". There’s also a built-in high speed automatic a.u.t. and electronic contest memory keyer.

The FT-10R/40R hand-held transceivers are said to be the first amateur hand-helds to carry the MIL-STD810 rating. The FT-10R is for 144MHz operation with the FT-40R covering the 430MHz band. Described by Yaesu as being ultra compact with their unique clamshell design and rear mounted batteries the FT-10R/40R offer the buyer a choice of four keypads. Other features include alphanumeric display, digital coded squelch, direct f.m. designed to improve packet performance and voice quality, dual-watch, high speed scanning and four output power levels.

Yaesu UK Ltd., Unit 2, Maple Grove Business Centre, Lawrence Road, Hounslow, Middlesex TW4 6DR. Tel: 0181-814 200 or any approved dealer can supply you with more information on the FT-1000MP, FT-10R and FT-40R together with prices and expected delivery dates.

Practical Wireless will be reviewing the FT-10R and the FT-8500 in the November issue - watch this space! Our review of the FT-1000MP will appear in the very near future too.

New From Yaesu

Following hot on the heels of the FT-8500 dual-band f.m. mobile transceiver which features the FS-10 Smart Controller microphone for the first time (all the radio functions are housed on the microphone), comes the FT-1000MP h.f. all-mode transceiver and the FT10R/40R hand-held transceivers. These new offerings from Yaesu were on display for the first time at Stafford Amateur Radio & Computer Show, held over the weekend of August 19 - 20th.

The FT-1000MP features enhanced digital signal processing, dual-band receive with separate 5-meters, a built-in Collins mechanical 45kHz/7kHz s.s.b. filter and an optional Collins 45kHz/500kHz c.w. mechanical filter. There is also an independent 2nd and 3rd i.f. filter selection together with wide receiver dynamic range. Also featured on the FT-1000MP is a transverter jack for v.h.f./u.h.f. operation, selectable antenna jacks and a "Quick Memory Bank". There’s also a built-in high speed automatic a.u.t. and electronic contest memory keyer.

The FT-10R/40R hand-held transceivers are said to be the first amateur hand-helds to carry the MIL-STD810 rating. The FT-10R is for 144MHz operation with the FT-40R covering the 430MHz band. Described by Yaesu as being ultra compact with their unique clamshell design and rear mounted batteries the FT-10R/40R offer the buyer a choice of four keypads. Other features include alphanumeric display, digital coded squelch, direct f.m. designed to improve packet performance and voice quality, dual-watch, high speed scanning and four output power levels.

Yaesu UK Ltd., Unit 2, Maple Grove Business Centre, Lawrence Road, Hounslow, Middlesex TW4 6DR. Tel: 0181-814 200 or any approved dealer can supply you with more information on the FT-1000MP, FT-10R and FT-40R together with prices and expected delivery dates.

Practical Wireless will be reviewing the FT-10R and the FT-8500 in the November issue - watch this space! Our review of the FT-1000MP will appear in the very near future too.

Communications Stamp

The FT-1000MP features enhanced digital signal processing, dual-band receive with separate 5-meters, a built-in Collins mechanical 45kHz/7kHz s.s.b. filter and an optional Collins 45kHz/500kHz c.w. mechanical filter. There is also an independent 2nd and 3rd i.f. filter selection together with wide receiver dynamic range. Also featured on the FT-1000MP is a transverter jack for v.h.f./u.h.f. operation, selectable antenna jacks and a "Quick Memory Bank". There’s also a built-in high speed automatic a.u.t. and electronic contest memory keyer.

The FT-10R/40R hand-held transceivers are said to be the first amateur hand-helds to carry the MIL-STD810 rating. The FT-10R is for 144MHz operation with the FT-40R covering the 430MHz band. Described by Yaesu as being ultra compact with their unique clamshell design and rear mounted batteries the FT-10R/40R offer the buyer a choice of four keypads. Other features include alphanumeric display, digital coded squelch, direct f.m. designed to improve packet performance and voice quality, dual-watch, high speed scanning and four output power levels.

Yaesu UK Ltd., Unit 2, Maple Grove Business Centre, Lawrence Road, Hounslow, Middlesex TW4 6DR. Tel: 0181-814 200 or any approved dealer can supply you with more information on the FT-1000MP, FT-10R and FT-40R together with prices and expected delivery dates.

Practical Wireless will be reviewing the FT-10R and the FT-8500 in the November issue - watch this space! Our review of the FT-1000MP will appear in the very near future too.

Tennamast Trophy & Frank Hall GM8BZX

The Tennamast Trophy, sponsored by the Ayrshire-based company, has been renamed in honour of the late Frank Hall GM8BZX (RSGB President in 1990) who died in April this year. The Tennamast Trophy, sponsored by the Ayrshire - East, Folkestone CT18 7EG for £24.95 plus £4.50 P&P.

The event took place on the same evening as the C&P’s successful ‘Radio Junk Sale’. And the grand total of £473 raised during the evening, has been donated to the Scottish Branch of the British Heart Foundation.

The Royal Mail have honoured the achievements of Guglielmo Marconi on two stamps in their latest ‘special’ set, which was issued on September 5. The stamps are part of a set on communications, which also feature Rowland Hill ‘inventor’ of the postage stamp. Marconi’s portrait is featured on the 41 and 60p stamps. The 41p stamp shows Marconi with some of his early wireless equipment and the 60p stamp depicts the importance of his work for marine safety and navigation. Rowland Hill is featured on the 19 and 25p stamps.

Tennamast Trophy & Frank Hall GM8BZX

The Tennamast Trophy, sponsored by the Ayrshire-based company, has been renamed in honour of the late Frank Hall GM8BZX (RSGB President in 1990) who died in April this year. The Tennamast Trophy, sponsored by the Ayrshire - East, Folkestone CT18 7EG for £24.95 plus £4.50 P&P.

The event took place on the same evening as the C&P’s successful ‘Radio Junk Sale’. And the grand total of £473 raised during the evening, has been donated to the Scottish Branch of the British Heart Foundation.

Beth Hall, widow of Frank Hall presenting the newly renamed “Tennamast Trophy In Memoriam To Frank Hall GM8BZX” to Colin Smith GM0CLN, while Sponsor Norrie Brown GM4VHz of Tennamast looks on. (The full results and details of the 1995 PW ORP Contest will appear as usual in the November issue of the magazine).
STOCKTAKing CLEA

NEW PRODUCTS

KENWOOD TS-870
- H.F. transceiver with full DSP architecture.
- **RRP £2399.**
- *Phone for lowest UK price.*

YAESU FT-1000MP
- Competition grade HF transceiver.
- **RRP £2599.**
- *If you would like to grace your shack with one of the above little beauties, then give us a call for the keenest part-ex or straight cash purchase.*

SECONdHAND EQUIPMENT

HF TRANSCEIVERS & RECEIVERS
- **IC-761**
 - As new...£1299.95
 - **VGC**...£899.95
- **FT-ONE**
 - As new...£999.95
 - **VGC**...£699.95
- **IC-735**
 - VGC...£749.95
- **FT-747GX11**
 - VGC...£569.95
- **FRG -100**
 - As new...£399.95
- **HF-150**
 - Ex-demo...£369.95

VHF/UHF TRANSCEIVERS
- **FT-290R11**
 - With linear...£469.95
- **FT-690R11**
 - VGC...£349.95
- **FT-211RH**
 - VGC...£269.95
- **IC-2000**
 - Ex-demo...£329.95
- **IC-2SR**
 - 2m Tx 25-1300 Rx...£279.95
- **IC-2E**
 - 2m handy...£129.95
- **TH-215E**
 - As new...£199.95
- **TH-27**
 - VGC...£199.95
- **FT-23R**
 - VGC...£189.95

MISCELLANEOUS
- **PK-232MBX**
 - As new...£249.95
- **AR-3000**
 - As new...£699.95
- **FRG-9600**
 - + H.F. converter...£349.95
- **MTN-7100**
 - H/ld scanner...£299.95
- **PRO-2035**
 - As new...£249.95
- **ICF-2001D**
 - VGC...£219.95
- **OPTO-Scout**
 - As new...£329.95
- **OPTO-3300**
 - As new...£319.95

PLUS MUCH MORE PHONE FOR DETAILS
Audio Filters
- Timewave DSP5 Plus: sale price £225
- Timewave DSP-59 Plus: sale price £279
- Datong FL-3: sale price £139.95
- MFJ-784B: sale price £239.95
- **VC-300DLP**: 300W A.T.U. with built-in dummy load
 - **New VC-300M, 300W A.T.U.**: £39.95

COAX Switches
- **CX-201N 2 WAY (N TYPE)**
- **CX-401N 4 WAY (S0239)**
- **CX-201 2 WAY (S0239)**

Mobile Antennas
- **TSA-6001**
- **TSA-6001N**
- **V-2000**
- **TSB-3001**
- **TSB-6003**

Base Antennas
- **TSA-6601**
- **B-P-150**
- **RS-402**
- **RS-102**
- **144/70 cms, 3/5.5dB (1.7m)**
- **144/70 cms, 3/5.5dB (1.1m)**
- **144kHz, 3 dB (2.1m)**
- **144kHz, 3 dB (1.4m)**
- **144MHz, 3 dB (1.4m)**

Accessories
- **Case for 8000/2700**
- **Skrin**

PRICES DOWN ON ALL ANTENNAS

WE STOCK THE LARGEST RANGE OF SCANNERS IN THE UK

AOR THE ULTIMATE RANGE AR-8000
- The most comprehensive handheld scanner on the market.
 - **AR-2700**
 - **AR-3000A**
 - **AR-3000A plus**
 - **SDU-5000**
 - **AR-3030**
 - Soft case for 8000/2700

NETSET PRO-44
- Listen to Aircraft, Ham, Marine and much more with this superb scanner.
 - **CABLES**
 - **MI CABLES**
 - **OP-50**

Realistic PRO-2036
- Wideband Desktop Scanner with rotary tuning and tone encoder.

YUPITERU MVT-7100
- **MVT-7000**
- **MVT-8000**

Prices Down on All Antennas

MA-339
- Mobile holder suitable for all handhelds
 - £9.95
 - + £2 P&P

TSA-6201
- Super quality ext speaker with volume control
 - £14.99
 - + £1 P&P

WATSON WEP-300
- High quality earphone with 5.5mm mono jack fitted
 - £9.95
 - + £1 P&P

TSA-6602
- VHF/UHF antenna matcher
 - £34.95
 - + £2 P&P

TOP QUALITY
- **MA-3001**
- **MA-3002**
- **MA-3003**

TOP QUALITY TRUNK MNT
- **MT-3301**
- **MT-3302**
- **MT-3303**

PRICES
- **DP 50.50 on the following**

DELIVERY (UK MAINLAND) 24HR £10 / 48hr £7.50
The Southend and District Radio Society was founded in 1920 and was known as The Wireless Society of Southend on Sea. The Society was formed by a group of keen enthusiasts who were determined to delve further into the fascinating and mysterious science of communication by wireless.

Historic Year

It was in that historic year of 1920 that two daily programme's were sent out over the air from the Marconi works at Chelmsford. The first being on February 23.

However, wireless communication had been going on for some time before that and had been carried out on long and medium waves. Short waves were, at the time, thought to be unreliable for distant communication, so these bands were given to the amateurs to experiment with.

Licence Granted

In 1923, the Society was renamed and became the Southend and District Radio and Scientific Society. During this year, the Post Master General granted the society its transmitting licence under the call SQK.

It was also during this year that the RSGB was founded, formerly known as the London Wireless Club since 1913.

In 1924, the Society formed an arrangement to purchase wireless radio to the general public and to raise funds for charity. The Society continued to flourish throughout the 1920s with meetings, outings, visits to other clubs and lots more.

Committee Meeting

In 1926, at a committee meeting, the purchase of an 'Anode Converter' was discussed. But at a cost of £15-10s-0d, (although a 15% discount was offered), the committee were not in the position to purchase the instrument, (in those days, average wages were about 30 shillings a week!).

Also discussed at the meeting was the Victoria Hospital, which was in need of an efficient wireless receiving system and an appeal was launched through the press to raise a minimum of £50 to carry out the work.

As a result, The Southend and District Radio Society took on the task of raising funds to equip the entire hospital with the aid of funds collected by them in 1926. Once completed, a silver plaque was put on the receiving set at Victoria Hospital.

Charitable Activities

Moving on through the years 1927-1932, the Society remained very active and in 1932, another hospital was equipped with wireless. This time, the charitable activities of the Society included the provision and upkeep of wireless equipment for the wards of Southend General Hospital, consisting of 135 pairs of headphones, 40 pillow phones, 20 loudspeakers and miles of wiring and further ancillary equipment.

All the installation was provided and serviced by the Society. The handing over ceremony took place on September 6 1932 at 8pm, and a plaque was erected by the hospital as a memorial to the Society.

Maintain Interest

In 1938, the Society's activities continued until the outbreak of war. During the war, meetings carried on in one or another homes, to maintain interest.

Mr J. Fitch was in the chair and he recalled that the Society had been in existence for 25 years. (Further detailed research proved that the society had in fact been in existence for 26 years). His Worship the Mayor was made Patron of the Society in 1946 and in the same year, the Society's call was re-issued with the prefix G added, so the call became G5OK.

Name Change

In 1937, the name of the Society was changed to The Southend & District Radio Society (SADRS) and has remained unchanged to the present day.

In 1949 Mr F. H. Garon was appointed Vice President and in 1950 Mr E. H. Bridges was appointed as Chairman of the Society. Also in 1950 a Hamfest was held in Southend and was attended by 66 members of the SADRS.

The year 1951 saw the first edition of the Amateur Radio Call Book, price 3/6d and it had 6000 entries, a far cry from the present book! In this year, the Society included the activities of the members were present. The Society continued with meetings, talks, field days, lectures, etc.

In 1955, Citizen Band radio was made legal and the public were able to communicate over limited distances on f.m.

Membership Increase

The insight into radio communication, although limited, gave those who were interested, a path to amateur radio having sat and passed the RAE.

This turned out to be a good thing for amateur radio, and certainly for the Society. For between 1981 and 1984, membership increased dramatically and in November 1984, membership was in excess of 100, and for a time, entry as a new member was restricted.

At the time, meetings were held every Friday at a room in the Rayleigh Civic Suite, a very nice venue, but because of fire regulations, which only allowed 60 persons, the Society had to find other accommodation.

Alternative Venue

After looking for alternative venues, the Rocheway Center at Rochford was chosen. It was not as nicely appointed as the previous venue, but it did have its advantages.

Firstly, an annual rally could be held, with use of the whole building, there was a playing field, an out building for a shack, plenty of scope for putting up antennas and a car parking area. Lastly, there was a licensed bar and tea bar, which would be popular with members.

The first rally was held at Rocheway in 1985, and was very successful. This was the start of the annual rallies at Rocheway.

However, with the continued use of the centre and when the fees increased considerably, the committee looked for an alternative venue. As a result, it was agreed to make a move in early January.

The first meeting took place on January 5 1995 at The Venture Scout Centre, 191 Eastern Avenue, Southend on Sea. Meetings now take place every Thursday evening at 8pm. Later this year is a very special occasion for the Southend and District Radio Society as it's their 75th anniversary!
September 17: Peterborough Radio & Electronics Society East of England Rally is to be held at the Outwood Grange School, junction 41 M1. Further details from 0113-253 64239/101384/896199.

September 18: Hurley Radio Club Rally is to be held at the Longmore Hall, Woburn Sands. Doors open at 10.30am for disabled visitors and 11am to 4.15pm for everyone else. Entrance fee is £2 for disabled, £840 holders and £2.50 for all other visitors (children under 14 accompanies by a parent free of charge). There will be many traders, club stands, lectures and demonstrations. Further information can be obtained from John GOREM on (01733) 664571, QTHR.

September 24: North Wakefield Radio Club Rally is to be held at the Granby Halls, Leicester. Doors open at 10.30am, 10am for disabled visitors and 11am to 4.15pm for everyone else. Further info. from Mike Shield. (01388) 766264.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.

October 1: Blackwood & DARS rally is to be held at the Outwood Grange School, Porvors Lane, Outwood, Wakefield, junction 41 M1. Further details from 0113-253 3067.
Multi-Band Bargain

I’m always on the look out for a bargain and I’ve come across details of a multi-band transceiver kit. The price was what really attracted me, £99 for the basic kit and then £14 for each extra band. This means you could get on the air quite cheaply if you are prepared to put the time and effort in. The kit is called the Taunton and is available from Walford Electronics.

The Taunton can be built as a transceiver and there is room inside for an extra plug-in card. Optional extras are like an automatic gain control (a.g.c.) card, an intermediate frequency (i.f.) amplifier, S-meter and receiver incremental tuning (r.i.t.).

The catalogue from Walford Electronics goes into the workings of the circuit, so if you are interested I suggest you contact them direct at Watford for each extra band. This means you could get on the air quite cheaply if you are prepared to put the time and effort in. The kit is called the Taunton and is available from Walford Electronics.

The Taunton could be a good club project too, as well as being suitable for the newcomer. If you are members of a Novice class or a radio club, you should have others around you to help if you get stuck at any stage of the construction.

Projects like the Taunton usually come with excellent documentation and detailed instructions. As long as you can solder well (and it’s worth practising a bit beforehand) you should be able to construct a kit of this type.

As I mentioned before, it’s worth getting help from more experienced hobbyists when you get to the difficult bits. Home construction can be very satisfying to those that enjoy that aspect of the hobby.

If that means you, why not send off for the catalogue. With the darker nights approaching this could keep you busy all winter long!

Different Societies

If you have read more than a couple of ‘Novice Natters’ you will have read about the Radio Society of Great Britain (RSGB), and my suggesting that you consider joining your local radio club (again, with me suggesting you join). But there are other groups that you may want to get involved with on a national level.

The other groups bring together people who have perhaps been in the same job, have the same interests or share a language. So, let’s go through a few of these specialist groups.

AMSAT-UK. This group has been around for about 15 years or so and they specialise in amateur satellite matters. If you join you get a regular newsletter filled with all kinds of amateur satellite matters, I’m sure they have regular Nets too.

The BARTG (British Amateur Radio Teledata Group) is a group for those interested in amateur satellite matters. If you join you get a regular newsletter filled with all kinds of amateur satellite matters, I’m sure they have regular Nets too.

The BYLARA (British Young Ladies Amateur Radio Association) was formed back in 1979 when it was very unusual to hear a female voice on the air. The latter who started it got together to further YL operation. The Civil Service ARS actually have regular meetings (this is unusual in a national group) in London. I think they also have an amateur station for members use. The G-ORP Club, this group is probably one of the most well-known clubs. The club specialises in low power operation. It’s founder, the Rev George Dobbs G3RJV, is a very well-known person in the world of amateur radio.

The International Police Association Radio Club is open to those serving or pensioned from the police service. They hold regular Nets on the air.

The Prudential Amateur Radio Society is open to all current, retired and pensioned civil servants of the Prudential Group of companies. Then there is RAOTA (Radio Amateurs Old Timers Association). This association is keeping alive the pioneer spirit of amateur radio in the past. Membership is open to anyone who has had an active interest in amateur radio for at least 25 years. This group publishes a newsletter and holds regular Nets.

Other Regions

Living on the south coast (well inland a bit), details of what goes on in the other regions of the UK can sometimes be a bit hazy. A fellow Royal Naval Amateur Radio Society (RNARS) member, Colin Topping, recently set me straight. In fact, he’s explained something I didn’t have a clue about.

In PW August in ‘First Steps’ about RAYNET I mentioned the St. John Ambulance with regards to the whole of the UK. Did you know that in Scotland they have the St. Andrews Ambulance? Well I didn’t, that’s why I didn’t mention them when I was talking about the First Aid Groups.

Thanks for putting the record straight Colin, I didn’t mean to miss out Scottish causes or their users. I hope to be able to bring you more information on RAYNET and their activities in the near future.
First Steps

Antenna Tuning Units

Now you all know why the antenna tuning unit (a.t.u.) is used, but do you know how to use one? If not, let me try and give you a few tips.

Let's start with a quick refresher on why you need an a.t.u. It's important to note that there are many technical reasons why you need an a.t.u. One of the most important is to match the impedance of the transmitter and antenna.

In many cases, they are right as any additional devices are bound to introduce unwanted losses. However, this approach is only really feasible when you're dealing with professional standard antenna systems where the antenna characteristics are both predictable and repeatable.

In the world of the amateur, home-built, antennas the a.t.u. serves a vital role in equalising the differences between the theoretical antenna and the practical result. It's most important role is to match the (usually) 50Ω output impedance of the transmitter to the often variable impedance of the antenna.

Once the, 50Ω match has been achieved you can be assured of maximum power transfer and the best radiated signal. But, there is another important advantage from the a.t.u. that's not normally covered as part of the Novice course - harmonic suppression.

The scourge of many amateurs operating within our densely populated shores is TV and radio interference. Whilst poor design in domestic appliances are often to blame, anything that can be done to reduce the harmonic content of your transmission is bound to be helpful.

Because the a.t.u. achieves its impedance matching using a tuned circuit, the side benefit is a filtering effect that reduces the harmonics from any transmitter. Whilst the reduction is not particularly great, it's still worth having.

How To Use It

So, now you understand why you should have the a.t.u., let's look at how to use it. Most a.t.u.s have three controls, two tuning capacitors and a switched inductor.

The markings will vary from unit to unit, but often the switched inductor will be marked in bands. So, to use the a.t.u., you set the inductor to the appropriate band, connect an a.w.r. meter between the transmitter and a.t.u., and adjust the controls for minimum s.w.r. Sounds easy, and it is, but there are a few important points to note.

The first is to start by disconnecting your antenna and connecting a suitable dummy load. This enables you to find the approximate settings without polluting the airwaves! Once this is done you can connect your antenna and complete the fine tuning, taking care to make sure you're operating on a clear frequency.

If you've never used an a.t.u. in anger, you must be sure to be very careful and move the controls quite slowly. The optimum setting can easily be missed, especially if your antenna is a long way adrift from the required 50Ω.

It's also important to note that the a.t.u. settings will probably need to be changed as you move around a band and every time you change bands. Once you've found the best setting for a particular band, it's well worth jotting it down so you can return to those settings on your return to that band. Be patient, and remember - practice makes perfect.

Radio Amateurs and Listeners) welcome all Christian radio amateurs and listeners regardless of denomination.

Finally, how about the British Esperanto Association. I haven't heard about them for a while, but I think they still operate. (Walter G3ESP, QTHR, can help, Editor.)

This list is a fairly large sample of the many organisations you could join. There's a lot to be said for meeting and or talking with like-minded people. Now, all the societies I mentioned have addresses to write to if you are interested in more information. If I include them here I shall be in big trouble over space!

If you would like a list of the most current addresses, then either look in the RSGB Call Book (the latest edition) or send a s.a.e. to the PW Editorial Offices and they'll post the list out to you.

Have you just passed your RA? If so you may have a list of questions on how to put everything into practice or maybe there are certain areas of the hobby that you're not sure about. And if that's the case why not drop me a line with your queries and I'll cover them in 'First Steps'.

That's all the ‘Natterings’ for this issue so until next month cheerio.

Elaine G4LFM

Practical Wireless, October 1995
cumbersome, nor too small to be difficult to handle. It’s actually quite smart. It’s not big enough to be a large unit, but it looks solid and well built. The charcoal grey metals and plastic give it a professional appearance.

First Impression

I was very excited when I got a call, well actually a post card, from Rob G3XFD at PW. He’d had a misprint on his ‘phone number, and the card asked whether I would review the new dual-band 144/433MHz hand-held from Icom, the Icom IC-W31E. Put it this way, he didn’t have to send me a post card twice!

The IC-W31E was an exciting prospect. I’m sure that Terry’s concerns are shared by many operators. The IC-W31E is not the only hand-held on the market that satisfies Terry’s criteria. However, I would certainly say that it was near to the top of the list.

Easy To Read

The display is easy to read and uncluttered. The main read-outs such as frequency and memory numbers are bold and I found that even the smaller function indicators were not a problem. The IC-W31E has all the controls you would expect to find on a modern hand-held. I will not list them all as there are too many to mention.

However, I will say that the various functions are controlled from the front panel keypad. The buttons are translucent and when the backlight is activated these illuminate splendidly.

My father-in-law, Terry G7VJJ, has just passed his RAE. He asked me if I could include some ideas on hand-held transceivers.

Terry’s greatest concerns were that, would he be able to read the display? Would he be able to use the controls without a magnifying glass and to be able to operate the radio without having to go on a six week course?

I’m sure that Terry’s concerns are shared by many amateurs. The IC-W31E is not the only hand-held on the market that satisfies Terry’s criteria. However, I would certainly say that it was near to the top of the list.

Back To Basics

The Icom IC-W31E seems to be a back to basics transceiver. It does include advanced features such as CTCSS encode (decode is an optional extra) and DTMF paging, however these I believe are now considered to be basics by many operators.

There are no gimmicky frills. I’m glad to say. Instead, Icom have included some rather useful little features and all the normal features that you would expect.

One particular feature that caught my eye was the battery voltage check. This will display exactly how much voltage there is in the battery, and this actually operates under load, so that you really do see just how well (or not) your battery is.

Icom have included a function called ‘repeater memory’. This is where the radio will automatically remember the last frequency you transmitted on using a shift of any kind.

On depressing the relevant button the unit will recall the information along with any other information, such as tone squelch settings. This applies for both bands.

So, ‘repeater memory’ provides you instant access to three frequencies. These include: the standard memory, the v.f.o. and the last used repeater, all at the touch of a single button.

The memory channels can be given names. These can be up to six characters in length and will only appear in ‘Name’ mode. (In this mode the operating frequency is replaced with a channel number).

Paging Facility

On many hand-held transceivers these days you will see a Paging facility using DTMF tones. This is also true of the IC-W31E.

Along with a small number of other hand-held radios the Icom IC-W31E has the advanced feature of Message Paging. This takes the Paging facility one step onwards. You can page someone, and as long as they own a transceiver with a similar facility, you can leave them a message.

Using the Icom IC-W31E these messages are quite straightforward. You can page someone, and as long as they own a transceiver with a similar facility, you can leave them a message.

The IC-W31E is a back to basics transceiver. It does include advanced features such as CTCSS encode (decode is an optional extra) and DTMF paging, however these I believe are now considered to be basics by many operators.

There are no gimmicky frills. I’m glad to say. Instead, Icom have included some rather useful little features and all the normal features that you would expect.

One particular feature that caught my eye was the battery voltage check. This will display exactly how much voltage there is in the battery, and this actually operates under load, so that you really do see just how well (or not) your battery is.

Icom have included a function called ‘repeater memory’. This is where the radio will automatically remember the last frequency you transmitted on using a shift of any kind.

On depressing the relevant button the unit will recall the information along with any other information, such as tone squelch settings. This applies for both bands.

So, ‘repeater memory’ provides you instant access to three frequencies. These include: the standard memory, the v.f.o. and the last used repeater, all at the touch of a single button.

The memory channels can be given names. These can be up to six characters in length and will only appear in ‘Name’ mode. (In this mode the operating frequency is replaced with a channel number).

Paging Facility

On many hand-held transceivers these days you will see a Paging facility using DTMF tones. This is also true of the IC-W31E.

Along with a small number of other hand-held radios the Icom IC-W31E has the advanced feature of Message Paging. This takes the Paging facility one step onwards. You can page someone, and as long as they own a transceiver with a similar facility, you can leave them a message.

Using the Icom IC-W31E these messages are quite straightforward. You can page someone, and as long as they own a transceiver with a similar facility, you can leave them a message.
can be up to six characters long.

However, memories are put aside for incoming and outgoing messages. Therefore you get a string of messages stored. For example, 'Terry...ringme...tonight...Rich...GORSN'.

You just toggle through the memories to read the full message.

I've owned a hand-held rig with message paging for sometime, but hardly ever used it in anger. Personally, I have always regarded it as a bit of fun and little else.

However, I can see some possible uses for message paging. One example could be on a RAYNET operation or perhaps a group of friends who live nearby to one another for message paging. One example could be paging for sometime, but hardly ever used it to read the full message.

You just toggle through the memories to incoming and outgoing messages. Therefore can be up to six characters long.

First Contact

My first contact using the Icom IC-W31E was under very difficult circumstances. The family and I were going across Bournemouth to visit Steve G1YNY and his wife Diane.

We were late, but no fear I thought, I'll call Steve on the radio. Unfortunately my mobile set was in the shack and not the car. That's when the Icom IC-W31E came to the rescue.

There was no time to put an antenna on the car. So off I went Icom in hand. And as we got to one of the most notoriously bad spots for GB3SC (the Bournemouth repeater), I put a call out for Steve.

To my utter surprise I got in to the repeater, 1.5W into a helical antenna in the car. I was impressed! Steve gave the transmitted audio a very favourable report, likewise the received audio was very good indeed.

On the subject of repeater working comes my only disappointment. The 1750Hz tone burst is sent by depressing the p.t.t. switch and the repeater memory off-set.

So enough of what it looks like, feels like and is supposed to do. So, how did it actually work?

At The Computer

When I eventually sat down at the computer, recording some notes and ideas for this review, I had the Icom IC-W31E next to me. This is when I've noticed that other radios I've reviewed have suffered somewhat with the usual awful interference from the computer and monitor.

However, the Icom IC-W31E did not suffer from interference at all. It didn't even react when I took the squelch off and placed it next to the monitor. Very impressive!

Well, the next contact was nearly as strange as the first. I had sat down at the computer to start the review and tuned on the Icom IC-W31E to check something. This was when I heard someone calling through the Bournemouth repeater (GB3SZ) on 433.375MHz. The unexpected call seemed highly unusual for the time in the morning I was listening.

However, as you may have gathered I enjoyed using the little radio and due to that fact, the battery was almost depleted. Despite this and the fact that the path to GB3SZ from my home is not great at the best of times, I returned the call.

I could not let the station who was calling, suffer any longer. He was getting no replies. So, to cut a long story short, I had a very interesting contact with David GBEMA. David, his son Simon 2E1BDJ and the rest of the family were camping near to Corfe Castle.

So, what was strange about the contact? To be able to hold the repeater I spend the whole contact standing on my office chair!
Mike Rowe G8JVE, has reviewed an electronics simulation package for PW.

Can he design his next project on Electronic Workbench Version 4?

When Rob Mannion G3XFD, "phoned me up and said "I've a little job for you, I want you to review some computer software", my immediate reaction was "Oh 'eck, is he out of his mind (off 'is trolleybus)? I'm no computer whizz-kid". (That's why we asked you Mike, Editor)

So, the very well presented Electronics Workbench package arrived. It had two splendid manuals, both very well written and easily understood, and two disks. Thumbing through the manuals to get a feel of the program before installing it - immediately gave me feeling that this was going to be a nice assignment after all.

The actual installation process was very straightforward, and following the on screen prompts it took about ten minutes. You select either ANSI (zigzag resistors, etc.) or DIN (box resistors) and type in the serial number. Later you type in a word from the text, as a security measure.

The main working screen of Electronics Workbench is divided into three main areas, the 'Work area', the 'Parts bin' and the 'Instrument shelf'. At the top right hand corner of the screen is an 'on/off' switch.

The Instrument shelf consists of seven instruments, a multimeter, an oscilloscope, a function generator, and a bode plotter (this is explained later, but it doesn't exist in real life!). There's a logic analyser, a binary word generator and logic converter.

Each of the instruments on the test bench can only be used once. However, in the parts bin there are voltmeters and ammeters which can be used in your circuit as many times as you wish.

Multimeter Functions
The multimeter has six functions, measuring voltage and current (both a.c. & d.c.), resistance and decibels. Voltages may be measured in the range of 0.001μ V to 999kV (all to three decimal places).

Current ranges are from 0.001μA to 999kA again to three decimal places. Ohmmeter ranges will measure circuit resistances from 0.001Ω to 999kΩ.

There's a true superb simulated 'oscilloscope' in Electronics Workbench, dual-beam with independent trace positioning, timebase speed 0.01ns to 0.5/div, input range 0.01mV to 5kV/div (a.c./d.c. coupling selectable). It has features such as automatic, A, B or external triggering with leading or trailing edge triggering.

The simulation even has variable trigger level! Oh for such an instrument in real life! The 'scope has two zoom levels within the program. The second level of which fills the screen and gives a magnificent display.

Function Generator
The function generator is used to generate signals for the circuit under test. It has variable waveform signals between 0.001Hz to 999GHz with output levels of 1μ V to 999kV. These ranges are all easily set using the mouse and the 'selection box' on the 'instrument panel'.

Bode Plotter
The Bode plotter (think of it as a cross between a spectrum analyser and oscilloscope) is not a 'real' instrument, it only exists within a computer simulation. It is however an extremely useful piece of equipment, invaluable in testing simulations of a.c. circuits, and really comes into its own on filters.

Within the program the Bode generator will diagnose a circuit giving the response curve from 0.001Hz to 10GHz. It can draw the response (either logarithmic or linear) curve in either amplitude or phase over the frequency band selected.

Logical Side
Let's now have a look at the logical side of the simulator and start with the Word Generator. In digital terms 16x8bit words may be generated and can be triggered internally or externally triggered on either the rising or falling edge.

The words are easily written using a mouse and can be stepped, cycled or applied in a single burst of sixteen words. The speed of the cycling or burst may be varied in Hz, kHz or MHz depending upon the setting applied.

A Logic Analyser will display up to eight channels with all the normal controls on the 'front panel'. This is a very useful function gives the hexadecimal value of the currently displayed word.

An inbuilt Logic Converter is a very useful tool for people like myself who are not 'too hot' on logic, it enables you to specify the output that you require given a set of up to eight input conditions. In practice it simplifies the Boolean algebra and will draw for you the gate sequence required.

At this point, I would also recommend that everyone who uses Electronics Workbench runs the tutorial files. By carrying out the simple but informative tests, you can familiarise yourself with the program. All of which may be analysed. (It's interesting to monitor the waveforms and voltages around the circuit before getting a printout of the screen).

Spare Bin
In the spares bin the operator has a good supply of components. There's a wide choice of passive components such as resistors, capacitors and inductors in both fixed and variable forms.

Resistors are available from 0.001Ω to 999MΩ, and inductors from μH to Henrys, capacitors from pF to Farads. All values are editable.
There's a selection of power sources for your circuit, including a 'Battery' where you nominate your terminal voltage (μV to kV). A similar range is available from an a.c. source. Both sources can be constant current sources.

Analogue active components are well catered for, there are diodes, opamps, i.c.s, transistors and f.e.t.s (junction and m.o.s. types) of both polarities. Unfortunately, at the moment there is no dual gate f.e.t.s such as the 3SK88 in the system.

For the digital designer, there's a choice of logic gates. There's also a selection of inverters, flip-flops, monostables, DACs, ADCs, etc. There's also a comprehensive range of the 74xxx series of ICs (TTL or HCMOS).

It's a pity that the 4000 range of i.c.s was limited to only the 4066 quad analogue switch. But it's possible to cross reference the types (7400 = 4011) and use the HC version instead. There are however, no Schmitt trigger i.c.s in the library, although they can be simulated with other components.

The program provides a range of control devices. These range from a simple on/off switch (keyboard controlled) through a time delayed switch, simple relay to a more comprehensive voltage or current operated switches.

Building A Circuit

So let's get going on 'building' a circuit. And to start (the use of a mouse is mandatory with Electronics Workbench) you simply drag the component you want from the 'Parts bin' and place it on the workbench.

When you're satisfied with the component's position, you can edit its value. Then you simply drag a wire from the end of one components to the end of the one that you wish to connect to. Electronics Workbench will automatically route the wire for you.

To make a connection to an existing wire, simply route to that wire until a small circle appears and let go of the wire, simply route to that wire until a small circle appears and let go of the wire. Electronics Workbench will automatically make a connection and a small black dot appears. The auto routing of the 'wire' can take a somewhat roundabout way, but don't worry all will be well.

Test instruments are connected in a similar fashion, you just drag a wire from the instrument to the point of test. The colour of the wiring may be changed to avoid confusion, and this colour is related to the traces on the oscilloscope and logic analysers.

I think it's a shame there's no crystal in the parts bin. Although one can be simulated, the mathematics involved are horrendous. Another failing appears to be the inability to simulate mutually coupled items like an i.f. transformer or an interstage r.f. transformer.

My Trials

Now to my trials. In trying out some simple circuits, I found that if you do something really stupid, Electronics Workbench checks and warns you if something is amiss. For example, if you put too much voltage on a bulb - it 'blows'!

However, if all is well, there is a timer window to the left of the on/off switch which shows the state of the circuit in real time.

Using the facilities of Electronic Workbench I designed a simple receiver. The project was a direct conversion data receiver with mark and space filters to improve selectivity. I was able to plot the response of both the r.f. input low pass filter and the mark and space audio filters.

When designing with inductors, it has to be remembered that the components are ideal inductors, with no resistance (this must be added). The result of omitting these resistances will give you some breathtaking but unobtainable results.

To provide a test on the logic front, I 'built' a keying circuit based upon several designs I have seen. On completion I found it was very easy to simulate the keying action and demonstrate the output.

You can also design your own 'Black Box' (rather like an i.c. where you don't really want to know what's inside) and store this for later use as a sub-circuit. Examples of this may be found in the sample circuits on the disk.

Despite its minor shortcomings, I found Electronics Workbench version 4 to be a very useful tool to have around in my workshop. I must admit, that when the time comes to 'Uninstall' the program and return it, I will miss it when doing designs for PW.

From an educational point of view, I have demonstrated some of its capabilities to a young Novice friend of mine. And I'm sure that he found it much easier to understand the operation of a circuit when watching it happen in real time on the screen.

I did have occasion to telephone the UK help line and found them very helpful. Any questions they could not answer, they contacted Canada and telephoned me back with the reply.

DEAR NEWSAGENT

Please reserve/deliver my monthly copy of Practical Wireless

Name

Address

Mail order next day delivery

or

Call (01202) 659930 for mail order next day delivery

or

Reserve a regular copy at your newsagent

or

Inform us of any availability problems

Distributed by Seymour
It’s A Classic...

The RCA AR88D

General Purpose Communications Receiver

Where to begin? That, as a famous bard once wrote, is the question! What can be said about the AR88D that truly conveys its standing in the field of communication receivers? This set, known to almost everyone who knows what a valve is, has been around since the early 1940s.

Used by the military and then by commercial users, amateurs and short wave enthusiasts the world over, the RCA AR88D receiver and the AR88LF version are a joy to operate. They both have large smooth tuning controls, variable selectivity, large, easy to operate knobs and a wonderful tone in audio output.

The AR88D set covers 535kHz to 32MHz in six bands and produces 2.5W of audio into 2.5 or 600Ω. It has a sensitivity down to 0.5μV (for 0.5W o/p) and a five position variable selectivity employing a crystal filter for the sharpest response.

The set operates on 100 to 260V a.c., external batteries or via an external vibrator power supply, the MI-8319. The set employs 14 valves in two r.f. stages, a mixer, three i.f. stages, local oscillator (l.o.) and b.f.o., noise limiter and audio output, rectifier and stabiliser.

The AR88D is large and this fact cannot be overlooked. At 19in wide by 11in high by 19in deep, and weighing in at 100lbs, this is a real piece of communication hardware, but you certainly get your money’s worth.

Antenna Input

The antenna input of the AR88D is designed to match a 50Ω transmission line on all but the lowest frequency band. A three terminal connector on the rear wall allows either balanced or end-fed wire to be used.

If an end-fed antenna is used, then a link from the ground to the centre terminal is required. A front panel mounted antenna trimmer is provided to peak the r.f. input tuned circuit.

Two stages of tuned r.f. amplification feed the mixer along with the output of the l.o., this running at 455kHz higher than the r.f. frequency. The l.o. is fed from the regulator valve h.t., which provides a stabilised supply under varying line variations.

The i.f. amplifiers contain 12 tuned circuits in the signal path along with a crystal, used to obtain the sharpest selectivity for c.w. reception. The third i.f. amplifier stage is not connected to the a.g.c. line to permit the b.f.o. injection to be coupled in and give a better s.s.b. reception.

Automatic gain control is obtained from a 6H6 valve, a variable delay gain dependent upon the r.f. gain control is provided for. The b.f.o. output voltage is just lower than the a.g.c. diode bias voltage so that it does not desense the receiver on s.s.b./c.w.

A variable noise limiter allows high, pulse type ignition noise to be greatly reduced. The noise limiter is switchable along with manual or a.g.c. controlled gain.

The audio output has provision for high impedance (20kΩ) headphones, 2.5Ω speaker and 600Ω line or speaker. The headphone jack on the front panel is special in that, if the jack is inserted to the first position then the ‘phones are in parallel with the 2.5Ω winding and both speaker and phones work.

With the jack pushed fully home into position, the ‘phones are connected to the phones winding and the 2.5Ω is cut off from the rear speaker terminals. If there is no speaker connected to the 2.5 or 600Ω tap then the phones should always be used in the second position. This is because a load resistor is shunted across the 2.5 tap to provide the correct loading.

Space on the front panel was provided so as to add a tuning meter at a later date. It’s usual to find this added by now although the correct meter has not always been installed. The meter is wired in the cathode circuit of the first i.f. amplifier and should be a 5mA type with zero on the right.

Mechanical Construction

The AR88D is usable either as a table-top set with its accompanying case or as a 19in
Even though the RCA AR88D receiver has been around since the early 1940s, Ben Knock G4BXD says the set is a joy to operate, despite being large and heavy.

rack mounted receiver, the front panel having standard mounting holes provided. The receiver was designed to be very rugged so as to stand up to the severe conditions imposed by military life.

All the components are secured by nuts and bolts rather than rivets to permit easy replacement. The tuning capacitor is rigidly mounted to the tuning unit yet flexible to the main chassis, this prevents any chassis distortion from having any appreciable effect on the oscillator stability.

Audio Quality

Using the AR88 is a joy in itself. The slow and easy tuning and the audio quality make this one of the best receivers I have ever played with to tune around the short wave bands.

The manual recommends a random wire of around 25 to 50 feet. But even with a short whip antenna on the back of the set, signals can be heard from around the world.

Using the main 130ft end-fed wire available in my shack the set did not overload at all. It coped extremely well on all frequencies.

The mechanical rigidity of the set is most welcome. There is none of that warbling whilst listening to s.s.b. stations that is caused by the oscillator drifting if you breathe on the front plate.

The large black knobs are easy to grip, again no fiddling with tiny little plastic things! The variable selectivity, wide open for a rich a.m. output, very narrow for c.w. reception, is most impressive. And the large central vernier with its logging scale allows speedy re-tuning to any previously noted frequency.

There are drawbacks to the AR88D of course. It’s large, heavy, and it is valued. I recently heard one amateur stating that valves are ‘no good’ as they start deteriorating right from day one.

This is true, but then it’s true of all components, they all start ageing from the second they are first used. You simply have to ask yourself ‘how many modern plastic-cased, c.p.u.-controlled wonders, will still be around and working in 50 years time?’

The AR88D, and its LF brother, are a superb example of receiver design, both in the electronics, circuitry and the ergonomic appearance of the front panel layout. It’s clear, easy to understand, easy to operate and the set produces superb results in use. Having seen the prime condition of many examples of this set it is quite conceivable that it will still be around in another 50 years time.

There were in fact the three versions. The AR88, the AR88D and the AR88LF. In RAF service they became the R1556, the R1556A and the R1556B respectively.

PNA

THE CHAP V4P10

ADVEKTI SE -me Agqg

NI THE PILACTs C L.. E SS .5#14t4AN4 BP(SENIEnIT

Practical Wireless, October 1995
A good receiver is a must for use on 7MHz. So, PW commissioned well known designer Dave Howes G4KQH to design an interesting superhet to take the ‘fear out of forty’, and he came up with the ‘Daventry’.

The PW Daventry receiver project sets out to provide a good level of performance that will transform the 7MHz band. It turns into a happy DX hunting ground for any reader who finds their current receiver provides little more than 'mush' on this band.

The 7MHz or '40 metres' is a great band with lots of DX, but only those with superior receivers know this! So, if the band seems nothing but grossly overcrowded and noisy on your present receiver, then it's time to get the soldering iron out and build the PW Daventry!

Extensive Filtering

The PW Daventry is a single up-conversion superhet, l.s.b. and c.w. receiver. The receiver employs extensive radio frequency (r.f.) filtering.

The design incorporates a good quality double balanced mixer and crystal intermediate frequency (i.f.) filter. It also uses a low noise discreet MOSFET i.f. amplifier strip.

An active audio frequency (a.f.) filter is fitted and there's provision for additional a.f. filtering within the automatic gain control (a.g.c.) loop. The prototype also has the benefit of digital frequency read-out using a commercial kit design (Howes DFD4).

My design objective was to try and keep all spurious responses over 90dB down as far as practical, without incurring too much expense. This is a considerably higher standard of technical performance than offered by many general coverage receivers on the amateur market.

Circuit Outline

So, let's now look at the circuit outline starting from the r.f. input. The signals from the antenna socket are taken to the r.f. attenuator switch where 15 or 30dB resistive attenuators can be switched into line.

The attenuators can be used to increase the basic dynamic range of signals handled (approx. 90dB spurious free range) up to 120dB. This should cope with almost anything, no matter how big your antenna! The signals then pass on to the main printed circuit board (p.c.b.).

The 7MHz band signals are separated from the rest of the r.f. spectrum by a bandpass filter. This filter's bandwidth is only just greater than the width of the 7MHz band.

So, the level of r.f. filtering used in this design is much higher than that encountered in most modern general coverage receivers (which have relatively wide open front ends). This is one of the circuit techniques that helps this receiver outperform many general coverage sets.

The r.f. filter also provides an impedance transformation. This helps match the 50Ω antenna input to the higher input impedance of the SL6440 double balanced mixer integrated circuit (IC1).

Balanced Mixer

Mixing on the Daventry is carried out by the SL6440 double balanced mixer. It provides much better strong signal handling than most types of mixer i.e. and also needs less local oscillator (l.o.) drive than diode type double balanced mixers.

The SL6440 is a good choice for this application where I was looking for good performance. I was also trying to keep things reasonably simple to build, and not too costly either!

The 7MHz input signal is mixed with the v.f.o. signal of 17.7MHz to give the i.f. of nominally 10.7MHz. It's at this frequency that most of the 'close in' selectivity is obtained by use of a crystal filter.

Quite a wide range of i.f. filters are available for the 10.7MHz i.f. frequency. So, you do not have to use the same device as the prototype receiver.

The filter I used in the prototype is an s.s.b. filter with a nominal bandwidth of 2.4kHz at the -6dB points. A c.w. bandwidth filter could be installed as an alternative, if you are only interested in this mode.

However, in the prototype receiver I have envisaged using an accessory audio filter kit (Howes CSL4) to give a narrow c.w. bandwidth.

Intermediate Frequency Amplifiers

After the i.f. crystal filter, the signal is passed on to the i.f. amplifiers. These stages have been designed to be much less susceptible to pick-up of stray signals that is usually the case.

Many superhet receivers are almost impossible to test and fault find with the p.c.b. exposed on the workbench. This is due to direct pick-up of signals by their i.f. stages.
The pick-up is not a problem for professional engineers who have r.f. screened rooms. But it can cause a lot of problems for the amateur constructor who does not wish to fully line the walls, floor and ceiling of their home with sheet metal!

The avoidance of any tuned i.f. stages helps with this low level of i.f. pick-up. It also helps by avoiding the associated alignment of any i.f. coils.

The penalty is that more stages are needed for a given amount of i.f. gain, but the cost of the extra transistors is largely offset by the saving in tuned circuits. I think the advantages of this approach certainly help to make alignment and testing much easier for the home constructor.

The gain of four of the i.f. stages is controlled automatically by a.g.c. The a.g.c. voltage can also be varied manually by the front panel mounted IF Gain control.

Product Detector

The i.f. signal is converted to audio by the product detector stage (Tr7). This mixes the incoming signal with one from the 10.7MHz crystal controlled beat frequency oscillator (b.f.o.), Tr6.

Lower sideband reception is needed for 7MHz. But, as the mixing process in this receiver inverts the signal frequencies, the b.f.o. needs to be set for upper sideband (u.s.b.).

A small series inductor (L6) is used to lower the resonant frequency of a standard 10.7MHz crystal (XL2), to avoid the expense of a custom made item. This inductor can be replaced by a wire link if you need the other sideband for any reason.

The resultant audio signal from the product detector is then filtered by an active audio frequency (a.f.) filter stage. This may strike an amateur as being slightly unusual as signal selectivity has already been provided by a crystal filter at the front-end of the i.f. system.

Professional Grade

However, in professional grade communications receivers, it's common practice to have an i.f. crystal filter at both ends of the i.f. system. This is not seen in amateur equipment due to the cost implications.

But in the interests of performance, I have taken a small step in the professional direction. I’ve done this by providing filtering immediately after the product detector (rather than just before as in professional designs).

My approach enables much cheaper a.f. filtering to be used, rather than expensive i.f. crystal filters. But it does give some of the benefits that a second i.f. filter bestows (removal of wide-band i.f. noise and extra.

PW Daventry Prototype Performance Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>10 to 15V d.c. (tests at 13.5V d.c.)</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>-107dBm (wide filter) for 12dB S+N/N:</td>
</tr>
<tr>
<td>Noise Floor (MDS)</td>
<td>-119dBm (Wide), -120dBm (ls.b.), -126dBm (c.w.).</td>
</tr>
<tr>
<td>Intermediate frequency Rejection</td>
<td>107dB.</td>
</tr>
<tr>
<td>Spurious responses 1 to 30MHz</td>
<td>Better than -90dB.</td>
</tr>
<tr>
<td>outside ±100kHz</td>
<td>(for -3dB desensing at 50kHz spacing): -10dBm.</td>
</tr>
<tr>
<td>Blocking level</td>
<td>(MDS to Blocking) 106dB.</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>(spurious free): 90dB.</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>approx. 110dB</td>
</tr>
<tr>
<td>Automatic gain control range</td>
<td>+12dBm.</td>
</tr>
<tr>
<td>Third Order</td>
<td>< than 1%.</td>
</tr>
<tr>
<td>Audio frequency distortion</td>
<td>Greater than 50dB.</td>
</tr>
<tr>
<td>Ultimate S/N Ratio</td>
<td>(10 sec to 10 mins): less than 400Hz</td>
</tr>
<tr>
<td>Switch on drift</td>
<td></td>
</tr>
</tbody>
</table>

Practical Wireless, October 1995

27
Dj-G5 2m / 70cms
Includes a host of exciting features. You get CTCSS built-in, 200 memories as standard and a wideband receiver covering 108-174 / 420-470 / 800-950MHz. You'll love its compact size and its electronic vol/squelch controls. Send today for full details of tomorrow's handheld.

Base Aerials 2m / 70cms
Fibre Glass - SO-239 - Tuned for UK Bands!

Mobile Aerials Low cost - high spec.
This new range of mobile aerals offering amazing value. Stainless steel whips foldover bases and perfect matching. These are the best performers we have ever stocked! Resonated for European band and designed to take the higher powered rigs.

W-285 2m 5/8th stainless steel whip PL-259 1.32m 3/4dB 200W £15.95
W-770HB 2m/70cm black whip PL-259 1.1m 3/5dB 200W £24.95

W-30 3/5dB gain 1.15m £39.95
W-50 4.5/7.2dB 1.8m £54.95
W-300 6.5/9dB 3.10m £69.95

Dr-Mo6 6m Transceiver
10 Watts 6m FM Wideband Receive 100 memories CTCSS £359.95

Dr-150 2m Transceiver
50 Watts 2 meters AM/FM Wideband Receive 100 memories CTCSS £389.95

Dr-610 2m / 70cms
50 Watts 2m 35 Watts 70cms AM/FM Wideband Receive 120 memories CTCSS £729.95

DX-70 HF + 6M Transceiver
100Watts HF 10 Watts 6m SSB - CW - FM - AM Narrow filters included £1095

Great Part Exchange Deals

Power Supply Discounts
W-3A 3Amp current/Volt protected £22.95
W-5A 5Amp current/Volt protected £29.95
W-10A 10Amp current/Volt protected £49.95
W-10AM 10A variable fully protected £59.95
Carriage £5 per unit

DisCounTs - A Great time to buy!
Model List Our Price Price Match
FT-1000 £3999 EPhone We will match our competitors' advertised prices on genuine new UK sourced stock.
FT-990AC £2299 EPhone We give a true"on our premises" service warranty.
FT-990DC £1999 EPhone
FT-900AT £1594 EPhone
FT-900 £1394 EPhone
FT-840 £899 EPhone
FT-750R £1789 EPhone
FT-51R £499 EPhone
FT-2500 £369 EPhone
FT-850 £700+ EPhone

Few Only!!

Dps-2012 22 Amp PSU
Fully variable Fully Protected £89.95
30 Amp model also available. Same design. £119.95

WATSON Hand-made keys
These keys are hand-made and finely crafted for the CW enthusiast. No plastic is used - only natural wood, brass and alloys. Once you have experienced the silky smooth movements and balanced response, you'll never use anything else.
Watson GM £49.95
Watson GMV Iambic £49.95
Watson GMC Straight £34.95

70cms Handys 2 Watts Out Keypad Entry
Brand new units with 1750Hz tone, 20 memories, direct 12V socket, 6 & 6 x AA cell boxes, carry strap, belt clip, antenna. Ni-cad packs £19.95. Chargers £9.95

Few Only!!

Watson GM £49.95
Watson GMV Iambic £49.95
Watson GMC Straight £34.95

PricE Crash

Great Deals on Kenwood Too!
VSWR Meter Bargain!

£69.95
125 - 525 MHz 6 / 20 / 200 Watts
Average & PEP Size: 185 x 105 x 80mm

"SCANNING SECRETS"
Exiting New Book!

£16.95
Available MAPUN Stores

Lack Space for 80 Metres?

WHF-80 Plus
66ft 50 Ohm end fed wire
Simple to erect. Can be squeezed into just 50ft of garden yet gives signal strengths similar to full size dipole! Send for data sheet. Total cost £45

New ICOM IC-775 DSP
Phone for a really super deal!

Price Match

We'll match or beat our competitors advertised prices on genuine new UK stock. Just give us a call and quote their current advert and magazine - it's that simple! We also now give FREE 24 months warranty on Yaesu! And nobody stocks more products than us. Get our catalogue and see for yourself. It's the best ham radio read in the business listing all the very latest products with specs.

Optoelectronics:

2810 10Hz-2.4GHz counter £199.95 £145.00
2600HA 1MHz-3GHz counter £259.95 £175.00

Adonics:-

AM708 Desk microphone £179.95 £136.00
AM608 Desk microphone £165.95 £125.00
AM308S Base station mic £95.95 £75.00
AM508S Base station mic £115.95 £89.00

FT736 - VHF & UHF
The "Classic"

Price Match

Superbe audio quality. You'll be amazed. Includes PTT box and suits all modern handsets. For Kenwood ask for "K" version.

£39.95

FT-1000MP DSP Rig

NEW

£39.95

Throat Microphones

Ear-Talker
This unit will fit all modern ALINCO, YAESU and ICOM handsets. Supplied with PTT micro switch with jacket clip and volume control. Please specify if Kenwood or Yaesu, Icom, Alinco model required.

£29.95

Diamond VSWR and Power Meters:

Diamond VSWR and Power Meters:

FT-736

1.8-600MHz £139.95 £109.00
FX 200 1.8-200MHz £94.95 £75.00
FX 400 1.8-525MHz £109.95 £89.00
FX 600 1.8-525MHz £178.95 £139.00
FX 1000 1.8-1200MHz £239.95 £189.00
FX 2000 Auto 1.8-200MHz £149.95 £115.00
FX 9000 1.8-160/430-1300MHz £279.95 £219.00

TS-450S New £1095 Save £400
TS-450SAT New £1195 Save £450

TS-450S

FT-736

1.6-60MHz £139.95 £109.00
SX 200 1.8-200MHz £94.95 £75.00
SX 400 1.8-525MHz £109.95 £89.00
SX 600 1.8-525MHz £178.95 £139.00
SX 1000 1.8-1200MHz £239.95 £189.00
SX 2000 Auto 1.8-200MHz £149.95 £115.00
SX 9000 1.8-160/430-1300MHz £279.95 £219.00

Big Savings

Shop and Mail Order; 22, Main Rd., Hockley, Essex. SS5 4QS Tel: (01702) 206835 Fax: 205843

VISA Branch Shop: 12, North Street, Hornchurch, Essex. RM11 1QX Tel: 01708 444765

MAIL ORDER To Hockley - 24 Hour Answerphone and Fax. Open 6 Days 9am - 5:30pm

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289

£339 289
skirt selectivity). Let's face it, 7MHz operators need the best performance that can be reasonably justified in a receiver!

Extra Filtering

After the 'on board' a.f. filtering, the signal is amplified further and fed to a terminal for connection of an optional outboard a.f. filter unit. It's here that you can connect a c.w. filter or any other additional selectivity that you fancy to enhance the performance a little more.

The outboard filter should have a nominal gain of around unity, with some adjustment to match the signal levels between bandwidth settings. For understandable reasons, I've used a Howes CSL4 dual bandwidth filter kit in the prototype receiver.

On this unit an additional 4.7kΩ resistor is fitted to the s.s.b. output to match the audio level to the Wide (no a.f. filter) switch setting. The c.w. filter audio level is adjusted by the preset resistor on the filter p.c.b. After the additional filtering, the signal is fed on to both the volume control and the a.g.c. amplifier.

The output of the volume control is fed to the LM380 a.f. output i.c. This provides plenty of drive for an 8Ω loudspeaker or headphones.

Automatic Gain Control

The automatic gain control circuit used in the PW Daventry is quite simple. I set myself a strict design limit of just three transistors for a.g.c. and S-meter drive!

It's all too easy, in the search for the perfect a.g.c. response and S-meter tracking to complicate matters. You can end up with more devices devoted to these functions than the rest of the receiver circuits put together!

The use of audio derived a.g.c. enables the audio filtering to be within the a.g.c. loop. This is an important advantage over i.f. derived a.g.c. for this application.

The a.g.c. range is over 100dB and the S-meter indication seems to work quite nicely too, with the meter capable of reading S9 for the standard input signal level of 50µV. This is more than can be said for many commercial designs!

The S-meter I used is a 400µA type. But the use of adjustable preset resistors to adjust the zero setting and meter drive currents enables meters with slightly different current ratings to be used, if you wish.

In Part 2 of the Daventry project I'll be describing the constructional and the assembly stages. In the meantime, perhaps it's time you got that antenna ready...to join in the action on 7MHz!

CONTINUED NEXT MONTH

BUILDING THE DAVENTRY RECEIVER

All the necessary p.c.b.s for the Daventry will be available from the PW PCB Service.

Dave Howes G4KQH, of C. M. Howes Communications, Eydon, Daventry, Northamptonshire NN11 3PT. Tel: (01327) 260178, is able to supply a kit of parts to build the p.c.b. module (including p.c.b. and i.f. filter) together with an (optional) hardware pack.
The idea of the superhet radio is well known, and most radio amateurs and listeners have a very good idea of the basic principles. However, to make a set which gives a good performance is not always as easy as it might seem. There are a lot of variables to consider if the best performance is to be achieved.

It is not always the most sensitive receiver which can give the best reception. In many cases the strong signal handling and other aspects are just as, if not more important.

Basic Idea

The basic idea behind the superhet radio is that it's possible to change the frequency of a signal by mixing it with another. It's found that if two signals are passed into a signal by mixing it with another. It's possible to change the frequency of the required incoming signal to a fixed intermediate frequency.

In the diagram, Fig. 1, you'll see that a signal on 2.5MHz is mixed with a local oscillator (l.o.) signal at 2MHz generated in the radio. The resultant signals generated are at 0.5 and 4.5MHz.

A typical intermediate frequency filter might be at a frequency around 0.5MHz. This would mean that the signal at 0.5MHz would pass through the filter and be amplified.

Different Frequencies

All seems fine, until you discover that signals on two different frequencies can mix with the l.o. to give an output at 0.5MHz. I've already mentioned that a signal at 2.5MHz mixed with the local oscillator gives a signal at 0.5MHz.

However, a signal at 1.5MHz also does the same! This is a problem because it means that two signals at totally different frequencies can be heard together. Fortunately, the difficulty can be overcome by having some tuning before the mixer as shown in Fig. 2a.

The tuned circuit at the input in Fig. 2a does not have to be as selective as any tuning in the intermediate frequency amplifier which needs to separate signals adjacent channels from one another. It only needs to accept the wanted signal entering the mixer and reject the unwanted one called the image. The general idea is shown in Fig. 2b. In fact if this tuning is made only proportional to the level of the input signal and the gain or loss of the circuit.

When two signals are mixed or multiplied together in this way new signals appear at the output. Apart from the two input signals, new ones appear at frequencies equal to the sum of the two original ones, and at the difference between them.

For example, two signals at 1 and 0.75MHz will create new signals at 1 - 0.75, i.e. 0.25MHz and also at 1.0 + 0.75, i.e. 1.75MHz. In the superhet radio this principle is used to change the frequency of the required incoming signal to a fixed intermediate frequency.

In the diagram, Fig. 1, you'll see that a signal on 2.5MHz is mixed with a local oscillator (l.o.) signal at 2MHz generated in the radio. The resultant signals generated are at 0.5 and 4.5MHz.

A typical intermediate frequency filter might be at a frequency around 0.5MHz. This would mean that the signal at 0.5MHz would pass through the filter and be amplified.

Different Stages

Any receiver will be made up of a number of different stages. Each has its own function, and should be designed to give the optimum performance.

However, receiver designers must look at the set as a whole to see how all the different aspects of the design inter-relate. Only when this has been done can a satisfactory design be implemented. But it's first necessary to look at the individual sections to see their own requirements.

Prime Considerations

While sensitivity is not the only important factor of the performance of a radio, it's still one of the prime considerations. A 'deaf' receiver can be very annoying!

The degree of amplification at the various stages in a set determines many of its other parameters. It's also found that an h.f. receiver does not need to be as sensitive as one used for v.h.f. or u.h.f. reception.

The reason for the lower sensitivity is that on frequencies below about 30MHz, the amount of noise picked up by the antenna will usually be much greater than that generated by the set itself. As a result, an h.f. receiver does not need to have a noise figure better than about 10 or 15dB.

On the other hand, v.h.f. receivers might be around 3dB or better, with preamplifiers on their own often quoted as having figures of 1dB and less.

To obtain the best noise figure it's necessary to have as much gain at the early stages in the receiver as possible. However, this can lead to its own problems.

![Figure 2b: Block diagram of a complete basic superhet. The inset diagram, Fig. 2b illustrates how the 'image' problem develops (see text).](image-url)
levels of i.o. drive. This is to ensure that they can withstand high signal levels before they overload. And in some receivers the levels may be as high as 100mW.

Active mixers can be used to good effect. They also have the advantage over the diode ring mixers that they usually give some gain.

A number of high performance i.c.s exist. One of these is the i.c. 1496, with a typical circuit shown in Fig. 4. This has been around for many years but still gives a good account of itself. In fact this particular i.c. is used in my Ten-Tec Argosy which I find gives very good performance.

Intermediate Frequency

Choice of the intermediate frequency (i.f.) depends upon a number of factors. It's a careful balance between some opposing requirements. For example, a low frequency i.f. will make it easier to obtain good filters.

But, on the other hand a high frequency will increase the difference between the wanted signal and the image signals. This will improve the image rejection, a factor which is very important with today's crowded band conditions.

Unfortunately it is not easy to come to a compromise over the factors mentioned. Accordingly many sets have two or more i.f. stages.

The first i.f. stage will be at a high frequency to give the good image rejection. The first i.f. signal will then be converted down in frequency where it's filtered. Sometimes in h.f. sets, the first conversion may even 'up-convert' the signal to a higher frequency. Around 40MHz is a popular area.

A 'first conversion' of 40MHz means that the image response will be 80MHz away from the wanted signal. This enables very high degrees of image rejection to be achieved without the need for excessive filtering.

Despite the high 'first conversion' it's still advisable to retain some filtering to reduce the occurrence of intermodulation products in the front end.

Filter Performance

Filter performance has improved drastically over the past few years. Modern filters are much smaller than they used to be and it's possible to have them made for higher frequencies.

Whereas 20 years ago the last i.f. had to be at 455kHz or possibly 1.6MHz, now many h.f. receivers use an i.f. of 9MHz. Modern v.h.f./u.h.f. receivers have i.f.s of 10.7MHz without the need for a further conversion if high grade filtering is required.

Discrete Crystals

Nowadays crystal filters are often made from discrete crystals in configurations like the half lattice filter shown in Fig. 5. Alternatively, monolithic crystal filters are becoming more widespread.

Monolithic filters use the same material and basic principles as normal crystals, but contain a filter on a single crystal element. This is done by placing two sets of electrodes at opposite sides of the crystal as shown in Fig. 6.

The monolithic filters generally give improved performance over filters made from discrete elements. However, they require specialised equipment for their manufacture, and are made by relatively few companies. Despite this they can be manufactured for operation at quite high frequencies, making higher frequency i.f.s a practical reality.

Ideal Location

The ideal location for a filter would be immediately after the first mixer. In this way only signals on the required channel would be amplified though the receiver.

Unfortunately, there are a number reasons why it's not normally possible to place the main filtering at the 'ideal' location.

The main reason is that the frequency of the first i.f. us usually quite high. Even with the advances in technology, high frequency filters are more expensive and may not be able to meet all the requirements placed on them.

A sharp filter will also have a significant loss. Placing it very early in the line-up will reduce the degrade the receiver's noise performance.

If the main filtering is placed much later in the receiver, this can cause it's own problems. It opens the early stages to the much greater possibility of large signals outside the final bandwidth causing overload in some of the stages, even with a...
overloaded, especially if the signal falls outside the filter bandwidth.

With the enormous range in level of signals which are picked up by any receiver, even the early stages of the set can be overloaded. This means that some means of reducing the gain must be employed. Often, manual r.f. gain controls are used. However, most people including myself tend to leave these controls at maximum unless the received signal is very strong. Accordingly, the gain control should be reduced when the other signals on the band are strong, so that the set does not become overloaded. And in fact it may not be the wanted signal which causes the problem, but one which is outside the main filter bandwidth.

Instead of using a manual control, it would be much better to use an automatic gain control. If it could detect the levels of the signals at an early stage in the receiver, then the information could be used to control the gain of the early stages and prevent them becoming overloaded.

If automatic control was accomplished in the way described, a further 'loop' would be needed. This would to adjust the gain of the later stages and ensure that the level of the signal being received did not overload any of the later stages in the traditional way. I've outlined a possible system in the diagram, Fig. 8. A more complicated a.g.c. system of this nature would have a few additional problems which I'll briefly mention.

Most of us use the 'S' meters on our sets, even though they are notoriously inaccurate. And in the case of the multi-loop a.g.c. system a little ingenuity would be needed to obtain a meaningful reading.

If, for example, the signal strength indication was generated from the first loop, the action of the first loop in reducing the front-end gain would affect it. Conversely the first loop takes account of signals outside the final filter bandwidth so this could not be used.

The solution lies in using a combination of the two loops. The reading of the second loop would need to be taken, but it should be modified by the voltage on the first so that any reduction in gain it causes can be taken into account.

Oscillator Performance

The local oscillator or oscillators' performance will govern many aspects of the receiver's operation. The main requirement is that it should be stable. If the oscillator drifts then it's particularly annoying and results in having to retune the set to keep the wanted station on tune.

Before the 1960s, a free running variable frequency oscillator was generally used. However, as single sideband (single sideband, suppressed carrier, usually referred to as s.s.b.) operation grew in popularity the need for stability became very important.

Receivers with crystal controlled first conversions, having a v.f.o. for a second conversion, as shown in Fig. 9, became popular. This meant that the inherently stable crystal oscillator was used for the first conversion. The variable frequency oscillator would remain unswitched and could be optimised for stability.

Nowadays, frequency synthesisers are generally used. They offer excellent stability because they use a crystal oscillator as a reference to generate all the other frequencies.

Frequency synthesisers also have the advantage of being easy to programme digitally. This fits in well with today's microprocessor controlled circuitry, and offers a vast number of advantages in terms of flexibility of operation.

The main disadvantage of phase locked loop (p.l.l.) synthesisers is that they can generate large amounts of phase noise. This is noise which spreads out either side of the signal, as shown in Fig. 10. Phase noise can mix with 'off channel' signals to generate noise within the receiver pass-band, thereby reducing the sensitivity. To overcome this the synthesiser must be very carefully designed, not always accepting the cheapest approach. In fact the new direct digital synthesisers have a lot to offer in this area and they are being introduced in many of today's sets.

Final Design

The final design of any receiver will be a carefully balanced compromise between a number of different requirements. However, care taken in the initial design will ensure that the best performance is obtained.

Best performance however, is not necessarily the best sensitivity (for example). It can be the optimum sensitivity under all conditions. This is a much harder requirement to meet!
REMEMBER THE SUPER MODELS — HIT THE COURTS — IN LEICESTER!

YAESU FT-1000MP

With the current FT1000 in its fifth year, Yaesu Musen have decided to continue with the model number - FT-1000, but up date its best HF Transceiver to date, from the ground up.

- Dual In Band Receive with separate 5 Meters.
- Collins 4064A2 Z.74Hz SSB mechanical filter - as standard! Collins CW filters as optional extras.
- Selected Cascaded Crystal & mechanical filtering, Independent 2nd & 3rd IF filter selection.
- New High Resolution DDS Tuning 0.625Hz tuning steps.
- Transverter jack for VHF/UHF operation (Display indicates actual VHF or UHF Frequencies).
- Selectable antenna jacks. Separate RX only jack also included.
- Custom Feature Configuration via new Menu System.
- Quick Memory Bank system to recall important memory channels.
- Built in high speed Auto Antenna Tunner.
- Built in Contest memory keyer.

Yaesu's exciting new Enhanced Digital Signal Processing system provides four random noise reduction settings, selectable bandwidths filtering with adjustable low and high cut responses, and transmitted audio enhancement with four voice response equalisation technique.

In addition, an automatic seeking EDSP notch filter will identify and eliminate Interfering Intermodulations and crosstalk should they appear in the passband. It's interesting to note the introduction of Collins mechanical filters in the new FT-1000MP. It's debut was actually at the Stafford Show in August and customers who visited the Yaesu stand commented on how the audio quality was in a different class, no doubt due to the DSP and more importantly the employment of Collins filtering. The price is in fact lower, (it's true!), than its as deposit, (even the current FT -1000), and can offer the balance on our trade price.

Retailing at only £2849 including a built in PSU and £2599 for the version without, that's a saving of over £1100 on the original. We will gladly take trade orders.

Verdict: Yaesu's FT-1000MP is as deposit in its class, (even the current FT-1000), and can offer the balance on our trade price. Despite it's size, a full feature 100W all mode HF transceiver has enabled us to offer them on a "SF" basis. Auto ATU and built in IF Shift and Doppler correction. The TS-870S is a 'Next Generation' HF all mode transceiver equipped with not one but two 24-Bit digital signal processors. This is an innovation that leads to such benefits as high efficiency digital filtering, powerful noise and interference reduction, equalisers and IF notch selection.

The "Next Generation" FT-1000MP with five years warranty is now available from only £2849.

CALL TODAY FOR YOUR TAILOR MADE QUOTATION.

Remember Saturday the Eighteenth of November
ANTENNAS

TONNA ANTENNAS

2 METRES

20805 9 ELE FIXED £56.45
20809 9 ELE PORTABLE £46.95
20810 9 ELE FIXED £40.49
20812 18 ELE CROSSED £72.28
20813 17 ELE FIXED £28.25
70CM

20805 9 ELE FIXED £39.55
20810 9 ELE FIXED £47.65
20818 18 ELE CROSSED £65.75
20821 71 FIXED £61.95
GM

20827 9 ELE FIXED £66.95
20829 23 ELE FIXED £43.50
20829 16 ELE FIXED £56.45

CUSHCRAFT ANTENNAS

1/4 WAVE £48.00
1/2 WAVE £90.95

to suit 3/4 loop £39.95

TS SERENSE ANTENNA BASE

The easiest Answer. Highest Quality

TTS-315 3/570 BASE 9/11/13 £195.95
TTS-384 3/705 BASE 6.8/9.6 £79.95
TTS-2035 3/705 BASE 3.6/5.6 £42.95
TTS-2035 3/705 BASE 4/4.9 £37.95
TTS-2035 3/570 BASE 4.9/5.6 £37.95

MOBILE

TTS-100 3M 18/13 2,4/3.2 £35.95
TTS-1200 3M 3/2.5 800 BASE £29.95
TSM-220 3/2.1 79/5 4MOBILE £37.95
TSM-1300 23/2.1 15/2 4MOBILE £42.95
TSM-1300 27/4 3/2 4MOBILE £42.95
TSM-1300 23/3 3/4 5 4MOBILE £42.95

PRO-AM ANTENNAS

PH-1000 Ennerich NA 150 Center Folded Whip. £59.95
PH-1002 Ennerich NA 250 Center Folded Whip. £59.95
PH-1003 Ennerich NA 350 Center Folded Whip. £59.95
PH-1004 The stubby 90cm. £27.95
PH-1005 The very 90cm. £27.95
PH-1015 The stubby 300m. £27.95
PH-1016 The stubby 400m. £27.95
PH-1017 The stubby 500m. £27.95
PH-1018 30m. with 88 fixed. £27.95
PH-1019 60m. with 38 fixed. £27.95
PH-1020 80m. with 28 fixed. £27.95
PH-1021 100m. with 18 fixed. £27.95

AA PRODUCTS

PK-12 Low cost budget VHF INC now with free software. £115.95
PK-85 The easy way to get on 960 band packet £179.95
PK-323MBX All mode data controller - the bench mark £295.95
PK-600 The best selling commercial price controller £435.95

THE IC-765

With the introduction of Icom's new flagship, we have a limited selection of it's predecessor, the brilliant IC-765 as "trade-ins".

Like the IC-775, the IC-765 has the same built in power supply, sports a very clever auto cover, but it also has one of the few best ergonomics ever fitted in a front panel lay-outs of a modern HF Transceiver. Taking of front panels, the IC-765 is a pure solid aluminum construction, (not plastic like on some of the new designs), and like the rest of the design - is built to last. Price? the last release from Icom was £2995.00. We have three only at a very healthy saving of £1450.00. Don't miss out of this final trade-in welcome. Phone the sales team today. 0181 566 1120

Both used, as new in original boxes, with all packing and full warranty of TWELVE MONTHS. FREE FINANCE IS ALSO AVAILABLE!
A ll listeners to the h.f. bands know that external noise can sometimes cause even strong signals to become unreadable. For this reason, many textbooks on h.f. receivers contain a sentence to the effect that, the sensitivity of h.f. receivers need not be very good. In spite of what the textbooks say, the signal to noise ratio sensitivity of modern receivers is becoming better and better. You only need to look at advertisements and reviews. Many amateurs must have asked themselves the question: When really is the sensitivity good enough and at what value is there no point in improving it anymore?

I found a few articles on this subject but none really gave me the answer, until I read the article by Gerald Stancey G3MCK (1).

This article addresses the point directly and is actually a very good one. My article is an extension and expansion of Gerald’s thoughts and an attempt to arrive at some sort of answer.

No Theory

I’m not going through all the theory of noise, sensitivity, noise figure, noise factor, etc. This is given in all textbooks and well condensed in Gerald’s article. I shall only give a few of his final formula here.

If the ‘noisiness’ Ny of a receiver is defined as: the signal to noise ratio at the output (So/No) divided by the signal to noise ratio at the input (Si/Ni) then

\[Ny = 1 + \frac{N_f}{N_i} \]

where

- \(Ny \) = noisiness of the receiver
- \(Ni \) = noise at input of receiver (external noise)
- \(Nr \) = noise added by receiver

If the lowest possible external noise is only the thermal noise at room temperature in a certain bandwidth, we can take this as standard (Nt). Then Ni = Nt. At this condition, the noisiness, \(Ny = N_{fa} \) (the well-known noise factor) or noise figure NFi if expressed in dB. The relationship between the two is: NFi = 10log(NFa).

Thus we can see that

\[N_{fa} = 1 + \frac{N_r}{N_f} \]

Let’s have an example. Say a receiver has a NFi = 16(dB), then NFa = 40. If on 21MHz the external noise is 20dB above the standard, eg. Ne = 100, then

\[Ny = 1 + \frac{39}{100} = 1.39 \]

So, if the minimum discernible signal (m.d.s.) is where So = No then Si = NyNi = 1.39Ni or, Si must be 1.43dB higher then Ni. If So/No must be 10dB then Si must be 14.3dB above Ni. Or if Si/Ni = 10dB, then So is only 8.57dB above No.

Calculations & Results

From the above theory we can now draw up a few tables and graphs to put the whole thing into perspective. In Table 1 the external h.f. spectrum noise data is summarised. This data can be found in virtually every radio handbook. The data in Table 1 is taken from the Radio Communications Handbook. In column 1 of the table are the different frequency bands. Column 2 is the different times of day conditions. Column 3 is the external noise Ni reaching the antenna in dBm (referred to one milliwatt).

Column 4 is the same data expressed in microvolts to give you a better feeling for the values. In modern transceivers S9 on the S-meter can represent anything between 20 to 50µV an the antenna. Column 5 in the table is the external noise Ne (in dB) above the standard (-141dBm in this article, which is the thermal noise at room temperature in a 2100Hz bandwidth).

A rough plot of Ne against frequency is shown in Fig. 1. You can see the noise levels on the 1.8, 3.5 and 7MHz bands in stormy conditions really are quite high - as you all well know.

Now we come to Table 2 where column one contains different values of Ne. Column two has four different values of receiver sensitivity noise figure (NFi) in every Ne group. Column three has the same values in V.

Columns 4 and 5 are calculated values of Si/No for m.d.s. (So = No), using the relevant values of Ne and NFi (converted to NFa). In columns 1, 2 and 6 are the value of So/No (in dB) to give an input value of Si/No = 10dB for the different Ne and NFi values.

If the above sounds complicated, it will be clearer after looking at Fig. 2, a plot of the figures in Table 2. The plot is column one against column six for the different values in column two. Putting the explanation in full: Fig. 2 is a plot of the external noise Ne against So/No (if Si/No = 10) for different values of receiver sensitivity NFi.

Another Example

As an example: Say on 7MHz during daytime the figure for Ne = 30 (from Fig. 1) and you have a receiver with a poor NFi = 34dB (1µV). You can see from Fig. 2 that you will get So/No = 4.4dB for an input of Si/No = 10dB. It is from Fig. 2 that we will try to answer the question posed at the start of the article.
Some Conclusions

To arrive at some conclusion we must move from radio science to human physiology, which differs from individual to individual. In physiology textbooks one reads that the smallest difference in sound (at say 1000 Hz) that the human ear can detect is 1 dB (23).

The figures quoted seemed very low in value so, in the interests of science, I did a few rough experiments with two of my children. Using an amplified audio signal generator, and an a.c. digital voltmeter, I let them hear pure tones through headphones. Sure enough, all the values were between 1 and 2 dB except at very low sound levels where it rose to 3 or 4 dB.

Returning to Fig. 2, if the perfect receiver gives So/No = 10dB for Si/Ni = 10dB and, if one can detect a 1 dB difference, then you should be able to detect a difference at So/No = 9dB and lower.

So, if we draw a vertical line at So/No = 9dB in Figure 2, then at all conditions left of this line we will be able to detect a deterioration in readability. Let's take a few examples.

(a) During daytime on 3.5 MHz, the $Ne = 10$ dB (from Fig. 1). Entering $Ne = 40$ in Fig. 2 we see that it cuts the vertical line where So/No = 9dB at NFi = 9dB (1 µV). So, any better sensitivity won't help you at 3.5 MHz.

(b) At 28 MHz it can be seen from Fig. 1 that Ne is about 15 dB. Entering $Ne = 15$ dB in Fig. 2, we see that it cuts the So/No = 9 dB line at a point between NFi = 20 and NFi = 7. But I estimate the value, to be probably at NFi = 9 dB. So, on 28 MHz it is worthwhile to have a receiver or pre-amp with this lower noise figure.

(c) Let's take everybody's favourite band (well it's mine anyway) 14 MHz. During day time $Ne = 25$ dB, giving an NFi of approximately 18 dB. During night time $Ne = 33$, which gives an NFi of approximately 24 dB. During stormy conditions, $Ne = 45$ giving a NFi of approximately 39 dB. All of the above interpolated at the So/No = 9 dB line.

(d) If you build small receivers at home, then design it for the NFi values in Table 3 for good readability, taken from daytime Ne values.

There is another question that can be asked. If you don't really need So/No = 10 or 9 dB to read a signal, what is the lowest value of So/No that is still readable. There are experienced c.w. operators can read a signal below the noise level. On s.s.b. mode if someone at the other end of the link is reading numbers slowly it can also be read just below the noise level.

Say, for arguments sake, the lowest that can be read is So/No = 0 dB, that is the m.d.s. level. Now we can determine the approximate least sensitivity which is needed on the different bands if Si/Ni = 10 dB.

From Fig. 1, again get the daytime Ne values for the different bands, enter this at the left hand side of Fig. 2 and read the approximate values of NFi at the So/No = 0 dB vertical line. We get the following:

1.8 MHz: NFi = 60 dB
3.5 MHz: NFi = 50 dB
7 MHz: NFi = 38 dB
14 MHz: NFi = 34 dB
21 MHz: NFi = 28 dB
28 MHz: NFi = 23 dB
56 MHz: NFi = 21 dB

The above values of NFi are for So/No = 0 dB if Si/Ni = 10 dB.

We can now determine NFi for many So/No values, or we can take a certain NFi value from Table 2 and determine what Si/Ni must be for So/No = 0 on every band. An interesting So/No case is where Si/Ni = 1 dB (Si/Ni = ratio 1.26). At this point So/No is 1 dB less than Si/Ni.

If we follow the arguments through we see that in this case the NFi values are the same as that given in Table 3. So, it seems as if the NFi values in Table 3 is the lowest that we must aim for on the different bands.

I must emphasise that my conclusions will differ from person to person. The human ear/brain is a remarkable instrument with surprising filtering properties. So much so, that it's nearly impossible to describe in exact terms.

Table 3: Suggested minimum receiver noise figures for the various frequency bands (see the text for more details).

<table>
<thead>
<tr>
<th>Band (MHz)</th>
<th>Ne (dB)</th>
<th>NFi (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>45</td>
<td>34</td>
</tr>
<tr>
<td>3.5</td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>21</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>28</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>56</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 2: External noise and signal to noise ratios for differing receiver sensitivities.

<table>
<thead>
<tr>
<th>External Noise above standard (dBm)</th>
<th>Receiver Sensitivity</th>
<th>S_i/N_i for m.d.s.</th>
<th>S_o/N_o for m.d.s.</th>
<th>S_i/N_i at 10dB</th>
<th>S_o/N_o at 10dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 dB</td>
<td>0.046</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>60 dB</td>
<td>0.046</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>40 dB</td>
<td>0.046</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>20 dB</td>
<td>0.046</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>15 dB</td>
<td>0.046</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>10 dB</td>
<td>0.046</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

References:
TV INTERFERENCE PROBLEMS?!!

Are you having trouble receiving a watchable picture on your TV? If so, the cause may be atmospheric interference. For many years AKD has manufactured a low cost range of in-line interference suppression filters that are easily inserted into the aerial system to help reduce interference from local taxi radio, CB, amateur radio, airport, etc.

Each filter is terminated in standard aerial co-ax plug and socket and requires no external power. Fitting could not be more simple. No technical knowledge is needed. There are 13 standard filters stocked in our range, but individual filters can be tuned to reject interference at specific frequencies if required. If you are not sure which filter type to order or have any questions regarding interference phone our helpline on 0438 351710 and ask for John who will be pleased to assist you in making the best choice of filter.

THE FILTER RANGE IS AS FOLLOWS:

FILTER TYPE RBF1
A range of filters designed to eliminate Radar Blip, especially noticeable on video recorders. Stocked on channel 36 and 38 MHz (in some areas) can be tuned at our factory from 400MHz to 890MHz.

FILTER TYPE THF2 (Suitable for UHF TV only)
A range of Tuned Notch filters stocked on generally useful frequencies used by Amateur Radio licensing requirements. Can also be used as field strength meter within its range. Requires PP3 battery (not supplied).

FILTER TYPE HPF1
Used in weaker reception areas for severe interference problems. Use with UHF TV, Video & Pre-Amps.

FILTER TYPE HPF2
Used in strong signal area for severe interference on UHF only.

FILTER TYPE BB1
A general purpose filter that can be used on its own or together with other filters in our range for severe interference problems. Ideal at the input of VCR and Pre-Amps.

FILTER TYPE RBF2
A range of filters designed to eliminate Radar Blip, especially noticeable on video recorders. Stocked on channel 36 and 38 MHz (in some areas) can be tuned at our factory from 400MHz to 890MHz.

FILTER TYPE THF3
A range of Tuned Notch filters stocked on generally useful frequencies used by Amateur Radio licensing requirements. Can also be used as field strength meter within its range. Requires PP3 battery (not supplied).

FILTER TYPE THF4
A range of filters designed to eliminate Radar Blip, especially noticeable on video recorders. Stocked on channel 36 and 38 MHz (in some areas) can be tuned at our factory from 400MHz to 890MHz.

FILTER TYPE BB1
A general purpose filter that can be used on its own or together with other filters in our range for severe interference problems. Ideal at the input of VCR and Pre-Amps.

FILTER TYPE RBF2
A range of filters designed to eliminate Radar Blip, especially noticeable on video recorders. Stocked on channel 36 and 38 MHz (in some areas) can be tuned at our factory from 400MHz to 890MHz.

FILTER TYPE THF3
A range of Tuned Notch filters stocked on generally useful frequencies used by Amateur Radio licensing requirements. Can also be used as field strength meter within its range. Requires PP3 battery (not supplied).

FILTER TYPE BB1
A general purpose filter that can be used on its own or together with other filters in our range for severe interference problems. Ideal at the input of VCR and Pre-Amps.

FILTER TYPE RBF2
A range of filters designed to eliminate Radar Blip, especially noticeable on video recorders. Stocked on channel 36 and 38 MHz (in some areas) can be tuned at our factory from 400MHz to 890MHz.

FILTER TYPE THF3
A range of Tuned Notch filters stocked on generally useful frequencies used by Amateur Radio licensing requirements. Can also be used as field strength meter within its range. Requires PP3 battery (not supplied).

FILTER TYPE BB1
A general purpose filter that can be used on its own or together with other filters in our range for severe interference problems. Ideal at the input of VCR and Pre-Amps.

FILTER TYPE RBF2
A range of filters designed to eliminate Radar Blip, especially noticeable on video recorders. Stocked on channel 36 and 38 MHz (in some areas) can be tuned at our factory from 400MHz to 890MHz.

FILTER TYPE THF3
A range of Tuned Notch filters stocked on generally useful frequencies used by Amateur Radio licensing requirements. Can also be used as field strength meter within its range. Requires PP3 battery (not supplied).

FILTER TYPE BB1
A general purpose filter that can be used on its own or together with other filters in our range for severe interference problems. Ideal at the input of VCR and Pre-Amps.

FILTER TYPE RBF2
A range of filters designed to eliminate Radar Blip, especially noticeable on video recorders. Stocked on channel 36 and 38 MHz (in some areas) can be tuned at our factory from 400MHz to 890MHz.

FILTER TYPE THF3
A range of Tuned Notch filters stocked on generally useful frequencies used by Amateur Radio licensing requirements. Can also be used as field strength meter within its range. Requires PP3 battery (not supplied).

FILTER TYPE BB1
A general purpose filter that can be used on its own or together with other filters in our range for severe interference problems. Ideal at the input of VCR and Pre-Amps.

FILTER TYPE RBF2
A range of filters designed to eliminate Radar Blip, especially noticeable on video recorders. Stocked on channel 36 and 38 MHz (in some areas) can be tuned at our factory from 400MHz to 890MHz.

FILTER TYPE THF3
A range of Tuned Notch filters stocked on generally useful frequencies used by Amateur Radio licensing requirements. Can also be used as field strength meter within its range. Requires PP3 battery (not supplied).

FILTER TYPE BB1
A general purpose filter that can be used on its own or together with other filters in our range for severe interference problems. Ideal at the input of VCR and Pre-Amps.

FILTER TYPE RBF2
A range of filters designed to eliminate Radar Blip, especially noticeable on video recorders. Stocked on channel 36 and 38 MHz (in some areas) can be tuned at our factory from 400MHz to 890MHz.

FILTER TYPE THF3
A range of Tuned Notch filters stocked on generally useful frequencies used by Amateur Radio licensing requirements. Can also be used as field strength meter within its range. Requires PP3 battery (not supplied).

FILTER TYPE BB1
A general purpose filter that can be used on its own or together with other filters in our range for severe interference problems. Ideal at the input of VCR and Pre-Amps.

FILTER TYPE RBF2
A range of filters designed to eliminate Radar Blip, especially noticeable on video recorders. Stocked on channel 36 and 38 MHz (in some areas) can be tuned at our factory from 400MHz to 890MHz.

FILTER TYPE THF3
A range of Tuned Notch filters stocked on generally useful frequencies used by Amateur Radio licensing requirements. Can also be used as field strength meter within its range. Requires PP3 battery (not supplied).

FILTER TYPE BB1
A general purpose filter that can be used on its own or together with other filters in our range for severe interference problems. Ideal at the input of VCR and Pre-Amps.

FILTER TYPE RBF2
A range of filters designed to eliminate Radar Blip, especially noticeable on video recorders. Stocked on channel 36 and 38 MHz (in some areas) can be tuned at our factory from 400MHz to 890MHz.

FILTER TYPE THF3
A range of Tuned Notch filters stocked on generally useful frequencies used by Amateur Radio licensing requirements. Can also be used as field strength meter within its range. Requires PP3 battery (not supplied).

FILTER TYPE BB1
A general purpose filter that can be used on its own or together with other filters in our range for severe interference problems. Ideal at the input of VCR and Pre-Amps.

FILTER TYPE RBF2
A range of filters designed to eliminate Radar Blip, especially noticeable on video recorders. Stocked on channel 36 and 38 MHz (in some areas) can be tuned at our factory from 400MHz to 890MHz.

FILTER TYPE THF3
A range of Tuned Notch filters stocked on generally useful frequencies used by Amateur Radio licensing requirements. Can also be used as field strength meter within its range. Requires PP3 battery (not supplied).

FILTER TYPE BB1
A general purpose filter that can be used on its own or together with other filters in our range for severe interference problems. Ideal at the input of VCR and Pre-Amps.

FILTER TYPE RBF2
A range of filters designed to eliminate Radar Blip, especially noticeable on video recorders. Stocked on channel 36 and 38 MHz (in some areas) can be tuned at our factory from 400MHz to 890MHz.

FILTER TYPE THF3
A range of Tuned Notch filters stocked on generally useful frequencies used by Amateur Radio licensing requirements. Can also be used as field strength meter within its range. Requires PP3 battery (not supplied).

FILTER TYPE BB1
A general purpose filter that can be used on its own or together with other filters in our range for severe interference problems. Ideal at the input of VCR and Pre-Amps.

FILTER TYPE RBF2
A range of filters designed to eliminate Radar Blip, especially noticeable on video recorders. Stocked on channel 36 and 38 MHz (in some areas) can be tuned at our factory from 400MHz to 890MHz.

FILTER TYPE THF3
A range of Tuned Notch filters stocked on generally useful frequencies used by Amateur Radio licensing requirements. Can also be used as field strength meter within its range. Requires PP3 battery (not supplied).

FILTER TYPE BB1
A general purpose filter that can be used on its own or together with other filters in our range for severe interference problems. Ideal at the input of VCR and Pre-Amps.

FILTER TYPE RBF2
A range of filters designed to eliminate Radar Blip, especially noticeable on video recorders. Stocked on channel 36 and 38 MHz (in some areas) can be tuned at our factory from 400MHz to 890MHz.
A Really Remote Radio

 unbiased objectivity, that’s what being a reviewer is all about. Well it is most of the time!

But I personally believe that if you are going to give the reader of any review something to get their teeth into you must have an opinion about the product that you’re writing about. If not, then why bother writing anything?

Personally I find that I either love or hate a piece of equipment. Sometimes though the odd piece of kit, be it a radio, computer, or car seems to defy the norm. Although I most often find this happens with music.

I can hear a tune, and really like it, then grow to loath it as I get over exposed to it. Conversely something I would initially switch off the radio to avoid, mysteriously 'grows on me' and it ends up being one of my all time favourites - life's strange isn’t it?

The IC-Z1E

You’re probably wondering where all this preamble is leading. Well when G3XFD asked me to review the IC-Z1E I was very pleased to get my hands on one.

I have to say that the only piece of Icom equipment that I’ve ever used is an air band hand-held transceiver. That was while I was undergoing micro-light pilot training.

During my flying training my only contact with the radio was via the in-helmet intercom. So I was looking forward to putting this radio - from the manufacturer with a not inconsiderable reputation - through its paces.

I can only say that my initial impressions of the IC-Z1E were extreme disappointment. I didn’t like the case, I didn’t like the buttons, and the removable display seemed like a crazy idea.

The battery latch mechanism didn’t feel right, I really didn’t like what I saw (and held). But before you read on, you must realise that this is a million miles away from the un-biased objectivity that I opened with.

Indeed, here in the opening paragraphs I’ve provided very emotive, critical views which were formed in seconds. And on reflection I was disappointed with myself just as much as with this transceiver, for jumping to the rash conclusions!

After some considerable time with the rig, my impressions changed. It’s worth bearing in mind that although mostly our first impressions are correct, you can get caught out! In the case of the IC-Z1E I most certainly did (well about most things) I still don’t see much point in having a display on the speaker/microphone.

Many Kinds

I’ve come to a conclusion after three decades of experience using electronic devices of many kinds.

My experience, plus a decade of being involved in specifying or writing guides for the use of such devices both simple and very complicated, that there is no substitute for making equipment simple to operate.

The main criteria - in my opinion - is that you should be able to use the apparatus, without consultation to a handbook. The controls should have responses that agree with what you might expect, especially if you’ve used something similar before. This is what I mean when I refer to controls being intuitive.

You may have to spend a little time working out the logic behind the way that controls achieve the desired effect. But once you have familiarised yourself, with a good design it then all falls into place and off you go.

Ultimate Test

The ultimate test, in my opinion, is can you use the transceiver without reading the manual? The IC-Z1E passed this test with flying colours.

It might interest you to know that I’m writing this part of the review after a week of using the IC-Z1E and so far I’ve only referred to the user guide once. This was to establish to charge time for the battery (some things you must not find by experimentation).

By now you are probably wondering what this hand-held is capable of. So, without further ado I’ll outline its capabilities.

The Icom IC-Z1E

Kevin Nice G7TZC, Assistant Editor of Short Wave Magazine, tries out a really different hand-held transceiver which has a detachable front control panel microphone to provide remote operating capabilities.
Dual-Band

The IC-Z1E is a v.h.f./u.h.f. dual-band hand-held transceiver. It features a removable display panel which can be connected via an umbilical cord to form an enhanced function speaker/microphone.

The radio has three switchable power levels. These, as you would expect with a modern hand-held, are dependent upon which battery pack is being used (there are, as seems to be standard these days, four options), or indeed whether the rig is connected to an external p.s.u.

Referring to the specification panel revealed only figures for a 13.5V d.c. external source. However, the standard battery supplied is the BP-171 which is a 4.8V 700mAh unit.

I carried out a quick check with a 'rough and ready' power meter and dummy load. This indicated that high power with a battery voltage of some 4.5V yielded about 1.5W in high power on v.h.f.

Unfortunately, I didn't have access to a meter that has reliable performance at 430MHz. Despite this it's reasonable to assume a similar level on this band.

The output level indicated by the tests was confirmed by my ability to access the local 144MHz repeater GB3SC, on the standard 'rubber duck' antenna. This would also indicate the good performance of the antenna, as with my own 144MHz transceiver - using 1W - I have to use a telescopic quarter wave rod antenna to gain access from my test location in the lounge.

I particularly liked the standard antenna, it has just the right balance of flexibility and robustness. Other manufacturers please note!

Very Good Radio

To be totally objective I think the IC-Z1E is a very good radio, it has no problem in getting the job done. Apart from the emotive stuff I've already dwelled on for too long, the only major criticism I have is that the volume and squelch controls should be swapped.

I think they have to be swapped because to operate the volume for either section of the radio you must first depress a button (which is too small) above the p.t.t. switch (which is recessed!). And this is located on the left-hand side of the set.

Once pressed, the display area below the frequency display indicates the current levels for either or both v.h.f. and u.h.f. sections depending what you've got selected.

To change the setting you either rotate the 'dial' knob - located on the top of the set - for the left or right section. Alternatively you can use the up or dn (up or down) controls on the top edge of display panel - buttons to change the level of the section which is highlighted as the Main band - i.e. the band for which transmit is enabled.

There are 17 discrete volume levels available on the IC-Z1E. The squelch on the other hand is operated simply by rotating the squelch knob for the appropriate section.

To further complicate or simplify - I'm not sure which - is the use of the volume control. The way in which the volume selection button operates is programmable. It has three different modes these are changed using the 'set mode' functions.

All of this idiosyncratic operation of course, revolves around the fact that the display - the home of the volume controls and not the squelch - is removable.

Therefore, I guess the theory is, that you need to use the volume control much more often than you need to set the squelch threshold.

For the record, the three volume modes that can be selected are as follows. At depression of the volume button causes the volume display to be activated for five seconds. It will remain for longer with dial activity, but it times out after five seconds of user inactivity.

The selection can be toggled off sooner by a second depression of the Vol button. B: The button must be held continuously whilst the volume is set. C: The volume setting display remains until toggled off by a second depression of the Vol button.

Although this sounds very complicated, it isn't really. I have to say that all the functions are very straightforward to operate.

There's really very little you can't do with the IC-Z1E. However, I do seem to keep returning to things which 'niggle'. But the overall petty nature of the 'niggles' does show what a good performer this transceiver is.

Monitor Channels

Like its peers, the IC-Z1E has the ability to monitor two channels at once. So it's possible to set the transceiver to v.h.f. and u.h.f., or v.h.f. and v.h.f., u.h.f. and u.h.f. or either v.h.f. or u.h.f. only.

It's also possible to operate full duplex same band or cross-band. Unfortunately though, I wasn't able to test this function.
fully as I couldn't find anyone else with this capability.

Repeater operation is well catered for, with selectable offsets offered. The ability to work reverse repeater at the touch of a button is not available, although it's possible to listen on the transmit frequency by depressing the Moni (monitor) button. This is actually much more sensible - lets face it who actually wants to transmit on the output of a repeater?

The CTCSS facility is an option with the IC-Z1E both for transmit and receive...but DTMF is standard. Odd for the European model!

A very useful feature fitted on the transceiver is the Repeater Memory function. This enables you to return to the last used offset (as apposed to duplex) channel used, simply by depressing the RPT-M button (this is the same button which requires pressing to activate the tone burst during transmit).

Functions Memory

As with any microprocessor controlled radio, there are comprehensive memory functions available on the IC-Z1E. These include six digit alpha tagging.

Those of you who have read any of my previous reviews will know that I like a radio, there are comprehensive memory options. These are: Full Scan which uses the currently selected step size to traverse the band to the edges looping back from one to the other, depending whether the scan direction is up or down.

Next there's Programmed Scan. This is much the same as previous but scan edges are programmable. Another feature is Memory Scan. In this, all the programmed memories are scanned in sequence of memory number.

As always, the space available for reviews precludes the detailed explanation of all of the capabilities of the IC-Z1E. But if you're tempted to find out more, then I'm sure that any of the Icom dealers will be happy to let you put one through its paces.

One brilliant idea, is the function provided in the IC-Z1E of the capability to automatically switch to extra low power when the set detects the imminent exhaustion of the battery. This clearly can avoid that total disappearance into thin air mid-QSO.

While on the subject of batteries, I cannot understand the logic of equipment manufacturers who provide chargers that cannot understand the logic of equipment manufacturers who provide chargers that take most of a day to provide full capacity. I really wish they would take a leaf out of the cellphone companies and provide rapid charge facilities as standard!

Convenient A7 folded ‘quick’ operating guide which is cross referenced to the instruction manual. Also included with the review model was a small errata sheet correcting three errors in the manual.

Manufacturer’s Specifications

<table>
<thead>
<tr>
<th>General</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range:</td>
<td>144 to 146MHz and 430 to 440MHz</td>
</tr>
<tr>
<td>Modulation type:</td>
<td>F3</td>
</tr>
<tr>
<td>Frequency stability:</td>
<td>±5p.p.m. (0° to +50°C)</td>
</tr>
<tr>
<td>Tuning steps:</td>
<td>5, 10, 12.5, 15, 20, 25, 30 or 50kHz</td>
</tr>
<tr>
<td>Antenna impedance:</td>
<td>50Ω (nominal)</td>
</tr>
<tr>
<td>External d.c. power:</td>
<td>4.5 - 16V (negative earth)</td>
</tr>
<tr>
<td>Current consumption at 13.5V</td>
<td>1.3A (High) 500mA (low)</td>
</tr>
<tr>
<td>Operating temperature range:</td>
<td>-10° to +60°C</td>
</tr>
<tr>
<td>Dimensions including (BP-171):</td>
<td>57x125x36mm</td>
</tr>
<tr>
<td>Weight (including BP-171 and antenna)</td>
<td>380g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receiver</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver type</td>
<td>Double conversion superhet</td>
</tr>
<tr>
<td>Intermediate frequencies:</td>
<td>1st 43.1MHz (v.h.f.) 35.8MHz (u.h.f.)</td>
</tr>
<tr>
<td>2nd 455kHz</td>
<td></td>
</tr>
<tr>
<td>Sensitivity* (12dB SINAD):</td>
<td><0.16µV</td>
</tr>
<tr>
<td>Squelch sensitivity</td>
<td><0.16µV (at threshold)</td>
</tr>
<tr>
<td>Selectivity:</td>
<td>>15kHz at -6dB <30kHz at -60dB</td>
</tr>
<tr>
<td>Spurious and image rejection ratio*:</td>
<td>>60dB</td>
</tr>
<tr>
<td>Audio output*:</td>
<td>>45dB at i.f.2</td>
</tr>
<tr>
<td>(at 13.5V)</td>
<td>>180mW</td>
</tr>
<tr>
<td>Audio output impedance:</td>
<td>8Ω</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmitter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Output power (at 13.5V)</td>
<td>5W</td>
</tr>
<tr>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>500mW</td>
</tr>
<tr>
<td>Extra low</td>
<td>15mW</td>
</tr>
<tr>
<td>Modulation method:</td>
<td>Reactance</td>
</tr>
<tr>
<td>Maximum deviation*:</td>
<td>±5kHz</td>
</tr>
<tr>
<td>Microphone impedance:</td>
<td>2kΩ</td>
</tr>
</tbody>
</table>

*Specifications guaranteed at a transceiver temperature of +25°C

As always, the space available for reviews precludes the detailed explanation of all of the capabilities of the IC-Z1E. But if you're tempted to find out more, then I'm sure that any of the Icom dealers will be happy to let you put one through it's paces.

At the £529 price tag the IC-Z1E is not a cheap transceiver. But if you need to have a removable display/speaker/microphone, you don't have much choice.

Would I buy one? I've already got a handset -I'm happy with thanks. I'm not biased though, because I would love an Icom IC-R7100 receiver.

For the loan of the review radio, my thanks go to !corn (UK) Ltd. Sea Street, Herne Bay, Kent CT6 8LD. Tel: (01227) 741741, FAX: (01227) 741742.
This month Charles Miller, the second of our new team of valve & vintage 'shopkeepers', takes his turn to 'man' the PW 'wireless shop', looking after the historical department.

As an inveterate vintage radio 'nut' I was delighted when the Editor asked me to become one of his rotating writers for the 'Valve and Vintage' column (so long as I can be at 78 r.p.m. of course).

Since the valve is virtually synonymous with vintage radio, it seemed a good idea to commence by delving into its history. What I found surprised me because it's not just an everyday story of scientific folk.

On the contrary, some of the goings-on could provide the basis of a TV series, embracing as they do questionable ethics, curious coincidences, shadowy go-betweens, dodgy businesses, industrial espionage and big courtroom dramas. Stay tuned!

The lamps had a fairly short life of about 40 hours and as they aged, they tended to go black inside. After a while Edison noticed that in most of them the blackening extended all round the envelope except for a single thin but distinct clear stripe.

The stripe was invariably down the glass opposite the filament support leg that had connected to the positive side of the supply. Edison figured that the negative leg must somehow be emitting carbon which was being drawn from the filament.

Carbon was being sent out in straight lines. And for some reason the positive leg was acting as a shield to produce a sort of shadow in reverse on the glass.

Filament Emission

To check his theory about the filament emission, Edison made up a special lamp. This was equipped with a small metal plate mounted vertically between the filament legs and connected to a separate lead-out wire.

With the lamp alight he connected a galvanometer between the plate and each leg of the filament in turn. The galvanometer registered a small current when taken to the positive leg but not when taken to the negative lead.

Edison also found that the galvanometer readings increased with the brightness of the filament. He might not have known the reason for all this, but the 'Wizard', as he was known, wasn't a man to waste anything if he could help it!

It struck him that one of these special lamps in conjunction with a calibrated galvanometer could be used to indicate when the filament was running at the correct brightness level. This in turn would show when the mains voltage was correct.

It's not clear what the advantage of the voltage indicator was supposed to be over a conventional voltmeter, but it's fortunate for radio that the indicator lamps took Edison's fancy! He applied for a patent on the idea and

soon they came into general use in the electric lighting plants which he was then installing in and around New York.

English Subsidiary

In 1882 Edison established an English subsidiary called the Edison Electric Lighting Company of London. This venture took on as its chief electrician a young man called John Ambrose (later Sir Ambrose) Fleming.

Fleming soon discovered for himself the blackening effect in carbon lamps and made his own experiments with Edison indicator lamps.

In one of the lamps he found that if he connected a battery with its positive to the metal plate and its negative to either filament leg, a
small current would flow through the lamp. But if the battery was reversed no current flowed.

Although he didn’t realise it at the time, this uni-directional effect meant that Fleming had accidentally discovered the principle of the valve rectifier. In another experiment on the same lines he found that exactly the same results were obtained if a.c. instead of d.c. was used to light the filament. Fleming wrote reports and presented various papers to learned societies on these experiments. But as they didn’t appear to have any practical use and eventually his interest fizzled out.

In the meantime, the indicator lamps had been put on show at an International Electrical Exhibition in Philadelphia towards the end of 1884. One of the visitors was an engineer with the British Post Office called William Preece. Preece too, was taken by the indicator lamps and managed to excavate them and connected one to a mirror galvanometer and a tuned circuit. He and his assistant worked for a while on the transmitters, then turned his attention to the receivers. His particular job was to find a better detector to replace the inefficient and unreliable magnetic or chemical detectors then in use.

By this time he was in his late 50s and suffering from deafness that was becoming progressively worse. Since keen hearing was needed for the faint, scratchy sounds produced in headphones by the receivers, it’s understandable that he should explore the possibility of replacing them by some kind of visual indicator. Fortunately, there was no problem about a sensitive display unit. This already existed in the form of the d’Arsonval mirror galvanometer. If you imagine a very sensitive moving-coil microammeter with its pointer replaced by a small mirror you have its principle.

A narrow beam of light is focussed on the mirror so that when it moves the light is reflected onto a translucent scale. The result is that the slightest movement of the mirror shows up as quite a big deflection on the scale.

The mirror galvanometer idea is fine. But the snag from the Fleming’s point of view was that the galvanometer would respond only to d.c. and the spark transmitters sent out high frequency a.c. Somehow this would have to be turned back into d.c. at the receiver.

Seated One Day

Seated one day in his workshop, weary and ill at ease, Fleming suddenly remembered his experiments with the Edison indicator lamps nearly 20 years earlier. If the lamp would pass current only when a positive d.c. voltage was applied to the plate what would happen if a.c. were applied?

On form, the lamp should block the negative swings and allow only the positive through. This would result in a positive voltage appearing at the filament.

Luckily, like so many of us (ask my wife!) Fleming was a hoarder and had kept those old Edison lamps in a store cupboard in the laboratory. He and his assistant excavated them and connected one up to a mirror galvanometer and a tuned circuit.

They cobbled together a makeshift spark transmitter from an old induction coil and another similar tuned circuit, then switched it on and held their breath. The galvanometer registered and in one bound the Edison voltage indicator lamp was transformed into the Fleming thermionic diode.

The tricky question now arose of who owned the rights on this makeshift detector. It after all might still technically have been the property of the Edison Electric Lighting Company. Fleming got round this by having new, purpose built diodes made for him.

Cleverly, Fleming ordered the diode from the Edison & Swan United Electric Company - a bit cheeky in the circumstances? - to be made to his own specification. They were to have a 4V filament, with the central plate replaced by a cylindrical anode made of platinum.

It would be interesting to know how much Ediswan charged Fleming. Presumably platinum was a great deal cheaper than it is now! They also received a new name.

Working on the analogy of a mechanical valve letting liquid through in one direction only, Fleming christened his diodes "oscillation valves". The name has persisted to this day.

Incidentally, when they carried out Fleming’s order, Ediswan gained the honour of being the world’s first valve manufacturer.

Provisional Patents

Fleming also discovered that if he applied a certain amount of voltage (we’d call it bias) to the anode of the valve with a separate battery he could get it to work more efficiently. More improvements followed as a result of experience gained in service. It also turned out that the valves would work with a lot less filament power than had been thought. So their voltage was reduced back to 4V.

Substituting tungsten for carbon threads improved the valve’s efficiency and also made them last much longer. Fleming duly took out patents on these developments as well.

With the valves established in service with MWT, it wasn’t long before examples were being shipped across the Atlantic to be used by its subsidiary, the Marconi Wireless Telegraph Company of America.

At this point the plot, as they say, thickens with the entry of Dr. Lee de Forest on the scene. Next time I’ll look at the early career of the man who is credited with giving the World the triode valve.

Filaments And Anodes

Even before his British patent had been granted Fleming had redesigned his valves to use 12V filaments and aluminium anodes. This type was used at Marconi’s wireless station at Poldhu, Cornwall.

Technical Adviser

In 1899 Fleming changed his job and became technical adviser to Marconi’s Wireless Telegraph Co., Ltd. (MWT). This was then getting ready for an attempt to send radio signals across the Atlantic.

Fleming worked for a while on the transmitters, then turned his attention to the receivers. His particular job was to find a better detector to replace the inefficient and unreliable magnetic or chemical detectors then in use.

By this time he was in his late 50s and suffering from deafness that was becoming progressively worse. Since keen hearing was needed for the faint, scratchy sounds produced in headphones by the receivers, it’s understandable that he should explore the possibility of replacing them by some kind of visual indicator.

Fortunately, there was no problem about a sensitive display unit. This already existed in the form of the d’Arsonval mirror galvanometer. If you imagine a very sensitive moving-coil microammeter with its pointer replaced by a small mirror you have its principle.

A narrow beam of light is focussed on the mirror so that when it moves the light is reflected onto a translucent scale. The result is that the slightest movement of the mirror shows up as quite a big deflection on the scale.

The mirror galvanometer idea is fine. But the snag from the Fleming’s point of view was that the galvanometer would respond only to d.c. and the spark transmitters sent out high frequency a.c. Somehow this would have to be turned back into d.c. at the receiver.

Seated One Day

Seated one day in his workshop, weary and ill at ease, Fleming suddenly remembered his experiments with the Edison indicator lamps nearly 20 years earlier. If the lamp would pass current only when a positive d.c. voltage was applied to the plate what would happen if a.c. were applied?

On form, the lamp should block the negative swings and allow only the positive through. This would result in a positive voltage appearing at the filament.

Luckily, like so many of us (ask my wife!) Fleming was a hoarder and had kept those old Edison lamps in a store cupboard in the laboratory. He and his assistant excavated them and connected one up to a mirror galvanometer and a tuned circuit.

They cobbled together a makeshift spark transmitter from an old induction coil and another similar tuned circuit, then switched it on and held their breath. The galvanometer registered and in one bound the Edison voltage indicator lamp was transformed into the Fleming thermionic diode.

The tricky question now arose of who owned the rights on this makeshift detector. It after all might still technically have been the property of the Edison Electric Lighting Company. Fleming got round this by having new, purpose built diodes made for him.

Cleverly, Fleming ordered the diode from the Edison & Swan United Electric Company - a bit cheeky in the circumstances? - to be made to his own specification. They were to have a 4V filament, with the central plate replaced by a cylindrical anode made of platinum.

It would be interesting to know how much Ediswan charged Fleming. Presumably platinum was a great deal cheaper than it is now! They also received a new name.

Working on the analogy of a mechanical valve letting liquid through in one direction only, Fleming christened his diodes "oscillation valves". The name has persisted to this day.

Incidentally, when they carried out Fleming’s order, Ediswan gained the honour of being the world’s first valve manufacturer.

Provisional Patents

Fleming also discovered that if he applied a certain amount of voltage (we’d call it bias) to the anode of the valve with a separate battery he could get it to work more efficiently. More improvements followed as a result of experience gained in service. It also turned out that the valves would work with a lot less filament power than had been thought. So their voltage was reduced back to 4V.

Substituting tungsten for carbon threads improved the valve’s efficiency and also made them last much longer. Fleming duly took out patents on these developments as well.

With the valves established in service with MWT, it wasn’t long before examples were being shipped across the Atlantic to be used by its subsidiary, the Marconi Wireless Telegraph Company of America.

At this point the plot, as they say, thickens with the entry of Dr. Lee de Forest on the scene. Next time I’ll look at the early career of the man who is credited with giving the World the triode valve.
From the USA to the UK...
Subscribe to Monitoring Times® and Satellite Times®

M onitoring Times is the most comprehensive monthly radio hobby magazine in the industry, covering all that's new in shortwave broadcasting, scanning equipment, amateur radio, news, computers and much much more.

Satellite Times is the newest star in space, covering commercial, military, scientific, governmental and personal communications. If you're interested in satellites, you'll love this bi-monthly magazine.

If it's on the Radio, it's in Monitoring Times.

Mail this subscription form to: PW Publishing Ltd., Freepost, Arrowsmith Ct. Station Approach, Broadstone, Dorset BH18 8PW.
Subscription Rates include speedy Air Mail Service!
• 1 year Monitoring Times £34 (12 issues)
• 1 year Satellite Times £28 (6 issues)
Name ________________________________
Address ________________________________
Telephone ____________________________
I enclose cheque/PO (Payable to PW Publishing Ltd.) £_________
Or Charge to my Access/Visa Card the amount of £_________
Card# ________________________
Valid from ______ Thru ______
Signature ________________________
Credit Card orders taken on (01202) 659930
FAX orders taken on (01202) 659950

If it's in Orbit
Satellite Times Covers It.

Mail Order to: Eydon, Daventry, Northants. NN11 3PT
01327 260178

GREAT PROJECTS TO BUILD!

CLEAN UP YOUR RECEPTION with this DUAL BANDWIDTH AF FILTER for £29.80!
• Reduce noise and interference! • Sharp SSB/Speech filter with faster roll-off than IF crystal filters! • 300Hz bandwidth CW filter !
DUAL BANDWIDTH AF FILTER for £29.80!
CLEAN UP YOUR RECEPTION with this

Read the review in the June issue of RadCom!

PROJECTS FOR EVERYONE WITH HOWES KITS!

Please send an SAE for a catalogue and specific product data sheets. Delivery is normally within seven days.

technical advice are available by phone during office hours. Please send an SAE for our free locations, full, clear instructions and all board mounted components. Sales, constructional and

HOWES KITS contain good quality printed circuit boards with screen printed part, contains case and all parts -op value general coverage receiving Antenna Tuning Unit.

signals by providing impedance matching, and at the same time reduces spurious signals and interference with "front end" selectivity for the receiver. Kit contains case and all parts. Top value general coverage receiving Antenna Tuning Unit. Reviewed in December Shortwave Magazine - "Recommended for all s.w.l.s"

Multi-Band SSB/CW RECEIVER KIT
The DXR20 covers 20, 40 & 80M bands plus any other HF frequency with optional plug-in modules. The photo shows the receiver built with DXR20 and DCS2 ("5 meter") kits and HA20R hardware pack (case etc.). Excellent performance and compatible with many of our transmitter and accessory kits. Optional bands include 160, 30, 15 & 10 Meters. Reviewed in the May issue of RadCom - "...dependable results, fine design...

Kit: £29.90... Fully assembled, ready to use: £49.90

Pleasenonceandforelececrionso residue for electronics only kits.

Top Value SWL ATU
The HOWES CTUS SWL ATU covers medium and shortwave bands (500kHz to 30MHz). Increases wanted signals by providing impedance matching, and at the same time reduces spurious signals and interference with "front end" selectivity for the receiver. Kit contains case and all parts. Top value general coverage receiving Antenna Tuning Unit. Reviewed in December Shortwave Magazine - "Recommended for all s.w.l.s"

Kit: £29.90... Fully assembled, ready to use: £49.90

PLEASE ADD £4.00 P&P, or £1.50 P&P for electronics only kits.

HOwES KITS contain good quality printed circuit boards with screen printed parts, locations, full, clear instructions, and all board mounted components. Sales, constructional and technical advice are available by phone during office hours. Please send an SAE for our free catalogue and specific product data sheets. Delivery is normally within seven days.

73 from Dave G4KQH, Technical Manager.

C.M.HOWES COMMUNICATIONS

PROJECTS FOR EVERYONE WITH HOWES KITS!

Please send an SAE for a catalogue and specific product data sheets. Delivery is normally within seven days.

technical advice are available by phone during office hours. Please send an SAE for our free locations, full, clear instructions and all board mounted components. Sales, constructional and

HOWES KITS contain good quality printed circuit boards with screen printed parts, locations, full, clear instructions, and all board mounted components. Sales, constructional and technical advice are available by phone during office hours. Please send an SAE for our free catalogue and specific product data sheets. Delivery is normally within seven days.

73 from Dave G4KQH, Technical Manager.

C.M.HOWES COMMUNICATIONS

PROJECTS FOR EVERYONE WITH HOWES KITS!

Please send an SAE for a catalogue and specific product data sheets. Delivery is normally within seven days.

technical advice are available by phone during office hours. Please send an SAE for our free locations, full, clear instructions and all board mounted components. Sales, constructional and

HOWES KITS contain good quality printed circuit boards with screen printed parts, locations, full, clear instructions, and all board mounted components. Sales, constructional and technical advice are available by phone during office hours. Please send an SAE for our free catalogue and specific product data sheets. Delivery is normally within seven days.

73 from Dave G4KQH, Technical Manager.

C.M.HOWES COMMUNICATIONS

PROJECTS FOR EVERYONE WITH HOWES KITS!

Please send an SAE for a catalogue and specific product data sheets. Delivery is normally within seven days.

technical advice are available by phone during office hours. Please send an SAE for our free locations, full, clear instructions and all board mounted components. Sales, constructional and

HOWES KITS contain good quality printed circuit boards with screen printed parts, locations, full, clear instructions, and all board mounted components. Sales, constructional and technical advice are available by phone during office hours. Please send an SAE for our free catalogue and specific product data sheets. Delivery is normally within seven days.

73 from Dave G4KQH, Technical Manager.

C.M.HOWES COMMUNICATIONS

PROJECTS FOR EVERYONE WITH HOWES KITS!

Please send an SAE for a catalogue and specific product data sheets. Delivery is normally within seven days.

technical advice are available by phone during office hours. Please send an SAE for our free locations, full, clear instructions and all board mounted components. Sales, constructional and

HOWES KITS contain good quality printed circuit boards with screen printed parts, locations, full, clear instructions, and all board mounted components. Sales, constructional and technical advice are available by phone during office hours. Please send an SAE for our free catalogue and specific product data sheets. Delivery is normally within seven days.

73 from Dave G4KQH, Technical Manager.
This month David Butler G4ASR looks at Sp-E propagation on the 144MHz band and theories about the recent transatlantic openings on the 50MHz band.

VHF REPORT

Last time I took a look at the many Sp-E openings that occurred on the 144MHz band during June. For those keeping records they occurred on June 2, 5, 6, 9, 12 and 25. (There was also one on May 20).

John Nixon G7MSA (IO63) has sent me a report concerning the opening on June 12. I've included it because I want to show you that you don't need lots of power and big antennas to work the DX.

At 1145UTC on June 12 while monitoring the f.m. calling frequency 145.500MHz, John heard a Spanish station calling CQ. Unfortunately he disappeared very quickly, but John continued to listen this time on and around 144.300MHz (the s.s.b. calling frequency).

At 1210UTC John was pleased to hear EA7AG (II68) who came back to his first call. This was John's first ever DX contact on the 144MHz band.

The distance was 1835km which was even further than he had worked on the 50MHz band. Six minutes later, at 1216UTC, he heard EA9IB (IM68) calling CQ. John managed to work him, first call, at 59 both ways over a path length of 2012km. His second DX QSO on the 144MHz band and it was to Africa!

What makes the DX even more remarkable was that John used only 25W and a 5-element Yagi in the loft space. On the same day he also heard 9A1CCY and 9A3VD. His station consists of an FT-290 Mk1, a Tokyo ML37V amplifier running 30W and a 7-element Yagi.

Alan reports that he is a bit incredulous about these contacts and wonders whether I had received similar reports.

Well, Alan, it really did happen. And if you listen to the 144MHz band again next June and you'll probably make some more DX contacts. Good luck!

Philip Lancaster G0ISW (IO64) runs 25W output from an FT-736 into a Create Log Periodic Yagi. He also reports catching the early morning event on 0925UTC. Philip managed to make s.s.b. contacts with O88EXX/8, S33RY, YU1WP and 9A3V. He also heard S57TTI, 9A1CCY and 9A2PT.

Second Event

The second event of the day was quite brief lasting from 1010-1020UTC. Stations in SS, YU, 9A were being worked from central and southern England.

A similar event occurred between 1040-1055UTC. Graham Taylor GTUJG (IO63) reports working YU7BW (JN68), BA1CCY and 9A1XDE, both in JN96. Interestingly Graham was running 25W into a 5/8 over 5/8 vertical antenna to make these contacts.

During the event stations located on the eastern side of England were able to make contacts with stations in Italy. The station of Silvio IW1AZJ (JN39) reports working GM4IPK, G5W3GJR, G5W3GTH, G5W6EOL, E9DDQ, E15SK and E15EJ.

Ken Osborne G4IGD (IO80) worked many stations during the morning events. His best contacts were with UT3WWY/P (KN19), UT5DE (KN18) and Y05C8X (KN27). Another opening, the fourth of the day, started around 1200UTC and lasted for about 30 minutes. By this time the propagation path had moved further south and contacts were being made into eastern and southern Spain.

Finally, between 1720-1920UTC the last event of the day occurred. This enabled operators participating in v.h.f. field day to really bump up their scores. Many 144MHz portable stations where heard contacting DX throughout I, IS, I9, TK, EA and EA6.

The band was also in good shape the next day July 2 with a good Sp-E opening to Spain and northern Africa. Typically, it commenced about 30 minutes after the field day contest had finished!

Steve Potter G1JHZ (IO82) reports working EA9IB at 1459UTC and EASQFB (IM98) a few minutes later. He runs a Trio TR-9130, 25W and a 7-element ZL-Special antenna.

What was probably the last and arguably the best Sp-E opening of the season took place on July 15. It started around 1630UTC and lasted well over three hours allowing UK operators to make contacts into I, IS, I9, LA, LZ, SV7, SV8, UT, YO and 9H.

Among the DX call signs noted on the 144MHz band were SV741N and SV7YVU (KN240), SV1LVJ8 (KM27), US7CO (KN99), UT1E (KN68), UT3JW (KN65) and UT4JX (KN64). What a way to end the season!

Mouth Watering

If all the DX on the 144MHz band sounds mouth-watering you should have heard what was happening on the 50MHz band! After a faltering start in early May the band really came alive and for over two months on an almost daily basis much DX could be worked.

What set this year's Sp-E openings apart from others were the many transatlantic openings to North America. Based on results from previous years, about four or five such openings are expected during the months of June and July.

This year however, the total was eighteen! For those that missed them they occurred on June 7, 12, 13, 16, 18, 19, 20, 21, 22, 27, July 2, 3, 4, 5, 6, 7, 8 and 10.

What I found remarkable was that most of the openings reappeared day-after-day. I've shown all the 50MHz transatlantic openings and the 144MHz Sp-E openings in Fig. 1. It also shows some of the recent auroral openings observed at my OTH.

So what caused the tremendous conditions on the 50MHz band and why was this year particularly good? Looking back for a possible answer, in previous issues I wrote that transatlantic openings have frequently occurred after a day of intense European Sp-E, especially if there had been openings on the 144MHz band.

The Chart

Interestingly the chart, Fig. 1, shows that only two 50MHz transatlantic openings occurred on days when the m.u.f. reached the 144MHz band. Jim Smith G60FE also makes the observation that there was a distinct lack of intense Sp-E within Europe prior to many of these openings.

Jim also noticed that on many occasions the m.u.f. was relatively low and didn't reach up to the 144MHz band. He suggests that the transatlantic propagation was created by a different kind of mechanism, more like E-layer propagation, rather than 'conventional' Sp-E.

Roger Horne G4HBA agrees with the comments made by G60FE. He also thinks that the E-layer becomes ionised, not in patchy clouds but rather in a large stable sheet. Roger notes that the transatlantic openings seem to coincide with a sudden drop in the geomagnetic A and K indices. He suggests that this type of propagation also appears on easterly paths but tends to be masked by active Sp-E within Europe at the same time.

Both G4HBA and G4IGD have been aware for some years of the E-layer propagation on the middle-eastern path to 4X, 5B and 9K. They both think that some of the old theories do not stand up to the...
Evidence now available and that text books will have to be re-written.

Radical Suggestion

Marty Lyn Vincent G3UkV makes an even more radical suggestion. He doesn't think double-hop Sp-E is the mechanism and Martyyn reckons it might actually be via the F1-layer. However, Emil Pocock W3EP says that F-layer propagation, especially F1, is definitely out of the question. Although he cannot give a definitive answer, Emil thinks that it is very unlikely to be anything other than E-layer propagation.

Emil suggests that some of the activity may be attributed to a large increase in European stations using monitoring and reporting systems. He does agree however, that there appears to have been far more openings this year than at similar low points of the solar cycle. Emil also says that there are indications that Sp-E is more frequent at solar minimum but it's certainly not an established fact.

Chris Deacon G4IFX reports that like everyone else he has been amazed by the amount of long distance propagation on the 50MHz band. He doesn't agree with the theories put forward by G0DFE, G4HGO and others regarding E-layer propagation.

In his view we are actually seeing what Sp-E should be like near sun spot minimum. (Expected to be true of single-hop Sp-E as well.)

Chris suggests that there is significant evidence that his observations are at least consistent with multiple Sp-E reflections. Finally, he makes the point that if a simple extension of a well established model can explain observations then there is no reason to invent another more complicated one. In his view the Sp-E theory works very well for long distance 50MHz propagation away from sun spot maximum.

I must say at this point that I totally agree with the views of G4IFX. But what do you think? I'll be very happy to open up a debate on this very interesting subject. Please send me your theories or ideas to the address given below.

Moonbounce Contest

Billy Lunt K1R, the ARRL Contest Manager, has confirmed the dates for this year's ARRL e.m.e. 'moonbounce' competition. It will be held during the weekends of October 7-8 and November 4-5.

Unfortunately, both weekends clash with major European v.h.f. and u.h.f. contests. The November weekend is a particularly bad choice as the Marconi Memorial 24-hour and RSGB six-hour c.w. events are running at the same time.

However, the ARRL contest is usually one of the best opportunities to work some of the larger e.m.e. stations around the world. If you can get about 100W c.w. into a single long Yagi then you stand a chance of making your first e.m.e. contact.

Satellite operators with elevation facilities will be even better placed to make a contact via the moon. One group that you may possibly hear is VE3ONT, the Toronto v.h.f. Society.

Once again, the VE3ONT group have received permission to use the 46m diameter radio telescope dish antenna belonging to the Institute for Space and Terrestrial Science. Situated in locator F05XW, the Toronto Society intend to be active on the 50, 144 and 1296MHz bands during the first leg of the contest in October.

Moonbounce operation on the 50MHz band is very difficult but it may be worth listening for VE3ONT as the 46m dish will have a useful amount of gain at this frequency. The VE3ONT group will be active on 50.100MHz between 2306UTC on October 7 to 1013 on October 8.

Link budget calculations indicate that 50MHz stations with an antenna gain of 10dBd and 1kW should be able to work VE3ONT. Smaller stations however are urged to try if signals can be heard. The operators at VE3ONT will be listening between 50.100-50.105MHz for replies.

Circular Polarisation

On the 144MHz band the VE3ONT dish will be configured to transmit and receive right-hand circular polarisation (r.h.p.). If you're using circular polarisation be very careful which mode you select.

Get the polarisation wrong and you won't hear anything at all! It's probably safest therefore to use linear polarisation. Either vertical or horizontal polarisation can be used, it doesn't matter which.

The Canadian group will be active between 1000-0900UTC on October 7, transmitting on 144.100MHz and listening for replies up to 10kHz higher. Operation on the 1.3GHz band will be conducted simultaneously with activity on the 50MHz band. They'll transmit on 1296.050MHz, again listening up to 10kHz higher for replies.

If you send me an s.a.e I'll provide you with a list of azimuth and elevation bearings for use during the e.m.e. contest. But don't forget to give me your full six figure locator! (I can also accept requests via packet radio).

Deadline Time

It's deadline time again. If you have any material for the column please send details (to reach me by the end of the month) to: Yew Tree Cottage, Lower Maescoed, Herefordshire, HR2 0HP. Alternatively via packet radio @G87MAD or the DX Cluster system. Or you can telephone me on (01873) 866679.
Our catalogue WAS £2.50
NOW FREE only the cost of a stamp or a phone call

LARGE RANGE OF COMPONENTS AND ACCESSORIES FROM THE FAR EAST TO THE WESTERN HEMISPHERE INCLUDING TRANSISTORS, SPEAKERS, TOOLS, TEST EQUIPMENT AND MUCH, MUCH MORE

THINK COMPONENTS - THINK CRICKLEWOOD

Please send me a copy of the 1995 Cricklewood Catalogue.

Name
Address

INCl. £30 WORTH OF VOUCHERS

Cricklewood Electronics Ltd, 40-42 Cricklewood Broadway, London NW2 3ET. Tel: 0181-450 0995 Fax: 0181-208 1441

THE VINTAGE WIRELESS LISTING
Published regularly, containing 100s of out of print, rare and collectible wireless and TV books and magazines, and now incorporating 'The Vintage Hardware List' that contains for sale - vintage domestic radios, communications receivers, audio equipment, valves, vintage components, etc. Send six 1st class stamps for current catalogue at £2.75 for the next four catalogues

NEW BOOKS

Bargain Offer - the last 50 copies of Jane's now reduced. Jane's Military Communications 1990-1995. A year review of 600 pages. Large format, wipe. Contains descriptions, photographs and basic details of the world's military communications equipment. Brand new. Published at C80. Special price £35.00 (inc £1.00 postage and packing)

Communications Receiver Type CR-100. Complete handbook, 60 pages, full circuit, layout and alignment notes. Large format. £65.95 inc. VAT.

Radar. P. R. Hall (ed.) An absorbing and informative study by authors from The Royal Military College of Science. Covers the origin and development and operation of military radar from Chain Home to Patriot, etc. Numerous photos and illustrations of equipment and its principles of operation. 175pp. Published by Brassey's Vignettes Technology series at C55. Our price £12.95 inc. p&p.

CHEVET SUPPLIES LIMITED
Dept PW, 157 Dickson Road, Blackpool FY1 3EU
Phone: 01253 751858 Fax: 01253 302979

THAMES VALLEY ELECTRONICS GALLERY
KEMPTON PARK RACE COURSE
SUNDAY 3rd DECEMBER, 1995
10.30am - 4.30pm 10am FREE ENTRY to the Bring and Buy Stand. Exhibitors invited. Manufacturers & retailers, accessory suppliers, antenna suppliers, computers & component retailers etc.

FREE CAR PARK. EVENT ON ONE PLAY LEVEL. REFRESHMENTS AND BAR AVAILABLE.

Adults £1.50. OAP's £1.00. Accompanied children up to 14 yrs FREE.

HD Promotions. Tel: 01494 450504

NEW BOOKS

IC-706 NOW IN STOCK
- 100W on HF + 100W on 6m
- 10W on 2m + Gen cov. Rx 30kHz-200MHz
This is going to be the top seller of 1995! It is the best value for money rig on the market. Don't miss out, phone now for details.
£1200 RRP Deposit £120 12 months @ £90

THE LATEST FLAGSHIPS FROM ICOM & KENWOOD

IC-775DSP HF Engineering at its best FREE FINANCE AVAILABLE.

THE ABOVE IS ONLY PART OF OUR STOCKS,

NEW BOOKS

IC-765 c/w SP-20 as new £1650
FT-990 in mint condition £1499
TS-680 + MC-60/AT-250/SP-430 £1650
MB-430 £1355
TS-611E VGC £525
TS-5305 + desk mic £475
FT-1075 £350
TS-520 good condition £325
TS-777 + FC-700/FP-700 £375
FT-747GX + FM excellent cond £525
FT-947 boxed £625
TS-620 + SP-200 £575
C-528 handle £275
TH-21E £49
DJ-560 dualband handle £225
AR-1500 £225
AOR-900 handheld scanner £135
AR-2500 scanner £299
AR-2002 scanner £280
ERA Microreader II £110
R-1000 receiver £275
FRG-7700 + FRT-7700/FA-7700 £425
AR-5500A boxed £650

WE ARE ONE MILE FROM J23 M6 & 4.5 MILES OFF J9, M62

ELECTRONICS RALLY

THE GRANDSTAND HALL
Sunbury on Thames, Middle 400 yards from Junction 1 of M3

SUNDAY 3rd DECEMBER, 1995
10.30am - 4.30pm 10am FREE ENTRY to the Bring and Buy Stand. Exhibitors invited. Manufacturers & retailers, accessory suppliers, antenna suppliers, computers & component retailers etc.

FREE CAR PARK. EVENT ON ONE PLAY LEVEL. REFRESHMENTS AND BAR AVAILABLE.

Adults £1.50. OAP's £1.00. Accompanied children up to 14 yrs FREE.

Phone now for details.

SECONDHAND CORNER

IC-765 c/w SP-20 as new £1650
FT-990 in mint condition £1499
TS-680 + MC-60/AT-250/SP-430 £1650
MB-430 £1355
TS-611E VGC £525
TS-5305 + desk mic £475
FT-1075 £350
TS-520 good condition £325
TS-777 + FC-700/FP-700 £375
FT-747GX + FM excellent cond £525
FT-947 boxed £625
TS-620 + SP-200 £575
C-528 handle £275
TH-21E £49
DJ-560 dualband handle £225
AR-1500 £225
AOR-900 handheld scanner £135
AR-2500 scanner £299
AR-2002 scanner £280
ERA Microreader II £110
R-1000 receiver £275
FRG-7700 + FRT-7700/FA-7700 £425
AR-5500A boxed £650

WE ARE ONE MILE FROM J23 M6 & 4.5 MILES OFF J9, M62

NEW BOOKS

THE LATEST FLAGSHIPS FROM ICOM & KENWOOD

IC-775DSP HF Engineering at its best FREE FINANCE AVAILABLE.

THE ABOVE IS ONLY PART OF OUR STOCKS,

NEW BOOKS

IC-765 c/w SP-20 as new £1650
FT-990 in mint condition £1499
TS-680 + MC-60/AT-250/SP-430 £1650
MB-430 £1355
TS-611E VGC £525
TS-5305 + desk mic £475
FT-1075 £350
TS-520 good condition £325
TS-777 + FC-700/FP-700 £375
FT-747GX + FM excellent cond £525
FT-947 boxed £625
TS-620 + SP-200 £575
C-528 handle £275
TH-21E £49
DJ-560 dualband handle £225
AR-1500 £225
AOR-900 handheld scanner £135
AR-2500 scanner £299
AR-2002 scanner £280
ERA Microreader II £110
R-1000 receiver £275
FRG-7700 + FRT-7700/FA-7700 £425
AR-5500A boxed £650

WE ARE ONE MILE FROM J23 M6 & 4.5 MILES OFF J9, M62

NEW BOOKS

IC-765 c/w SP-20 as new £1650
FT-990 in mint condition £1499
TS-680 + MC-60/AT-250/SP-430 £1650
MB-430 £1355
TS-611E VGC £525
TS-5305 + desk mic £475
FT-1075 £350
TS-520 good condition £325
TS-777 + FC-700/FP-700 £375
FT-747GX + FM excellent cond £525
FT-947 boxed £625
TS-620 + SP-200 £575
C-528 handle £275
TH-21E £49
DJ-560 dualband handle £225
AR-1500 £225
AOR-900 handheld scanner £135
AR-2500 scanner £299
AR-2002 scanner £280
ERA Microreader II £110
R-1000 receiver £275
FRG-7700 + FRT-7700/FA-7700 £425
AR-5500A boxed £650

WE ARE ONE MILE FROM J23 M6 & 4.5 MILES OFF J9, M62
Gerald Stancey G3MCK explains why transmission lines that seem to be ‘short’ or ‘open’ circuit actually have an impedance which is fixed.

We all know that feeders from transceivers to antenna come in various guises. For instance we may use coaxial cable, balanced twin or open wire feeder. And we casually refer to them by names such as 50Ω coaxial or 600Ω line.

However, if we take a length of any feeder and measure it with an Ohm-meter the only readings we get are infinity or zero Ohms (or a few milliohms). You never get readings such as 50, 75, 300Ω with which we are familiar with. So what are these ‘Ohms’ that don’t register on an Ohm-meter?

Like many puzzles, the ‘mystery Ohm’ version is not hard to solve once you look at it correctly. Radio enthusiasts are so used to relating the term Ohms to a definite object, like a 47Ω resistor, that we forget that the term Ohm is the ratio of the voltage across a circuit to the current flowing through the circuit. This definition is the key to understanding the enigma.

Balanced Line

For simplicity let us consider a balanced line. Diagrammatically this can be represented as a series of capacitors and inductors as shown in Fig. 1. If a voltage is applied across the line, current will start to flow through the first inductors into the first capacitor.

However, the flow of current into this first capacitor will be impeded by the inductive action of the first inductor. As soon as a voltage appears across the first capacitor, current will start to flow through the second inductor pair into the second capacitor.

The current flowing into the second capacitor will also be impeded by action of the second inductor pair. This composite action will carry on down the line with each set of inductors and capacitors.

If you have a line which is infinitely long you will arrive at a situation where the capacitors at the start of the line are fully charged and yet a constant current is still flowing through their associated inductors.

The reason for this constant current still flowing through the inductors is that the capacitors further down the line are still being charged up. As the line is considered to be of infinite length, there are always going to be capacitors that are being charged up.

The ratio of the voltage across the charged capacitors and the current flowing through their inductors is the impedance of the line. So, it’s not surprising to learn that impedance is measured in Ohms.

Let’s look at the infinitely long line a little more closely as shown in the drawing of Fig. 2. If you consider a section of the line some way from the generator, you can see that the voltage across the section is the same at the input and the output. Note also the same current flows into the section as flows out of it.

Because there is no voltage or current loss in the line, you can replace the rest of line to the right of the considered section by a resistor. This resistor you haven’t changed the way the line looks when viewed from the generator. What we have done is we have provided a load that is said to be matched to the line. The value of resistor that can replace a section of line without changing what the generator ‘sees’ is called the characteristic impedance, and is usually labelled Z_0.

Impedance Difference

Now I’ve explained what’s meant by line impedance and by a matched line, let’s see what happens when a line is terminated with a load which differs from the line’s impedance. First of all consider the simplest case of line with a load that differs from its characteristic impedance. Such a case is called a mismatched load.

The simplest mismatched load is when the line is not terminated at all. In other words the load is an open circuit. In the case of an open circuit, it is easy to see that none of the energy fed into the line can be dissipated in a load as there is no load to absorb it.

The energy fed down the line can’t just hang about in limbo. It’s being fed into the line and has to go somewhere. So, as it cannot go anywhere further it has to return from whence it came. In other words it is reflected back down the line.

When the line is terminated in a short circuit there is again no power consumed, as short circuits do not consume energy. So, once again the power is redirected whence it came, towards the generator. I’ve summarised the normal case of

Table 1

<table>
<thead>
<tr>
<th>Termination</th>
<th>Power Absorbed</th>
<th>Power Reflected</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R = \infty$</td>
<td>None</td>
<td>All</td>
</tr>
<tr>
<td>$R = Z_0$</td>
<td>All</td>
<td>None</td>
</tr>
<tr>
<td>$R = 0$</td>
<td>None</td>
<td>All</td>
</tr>
</tbody>
</table>

Table 1. This table shows whether power is reflected or absorbed by a load in three specialised cases.

Table 2

<table>
<thead>
<tr>
<th>Termination</th>
<th>Power Absorbed</th>
<th>Power Reflected</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R = \infty$</td>
<td>None</td>
<td>All</td>
</tr>
<tr>
<td>$R > Z_0$</td>
<td>Some</td>
<td>Some</td>
</tr>
<tr>
<td>$R = Z_0$</td>
<td>All</td>
<td>None</td>
</tr>
<tr>
<td>$R < Z_0$</td>
<td>Some</td>
<td>Some</td>
</tr>
<tr>
<td>$R = 0$</td>
<td>None</td>
<td>All</td>
</tr>
</tbody>
</table>

Table 2. This table shows whether power is reflected or absorbed by a load depending on the value of the terminating resistor.

Fig. 1: The theoretical circuit of a section from an infinite length of r.f. feeder. Each inductor is equivalent to the inductance of a short length of conductor. Each capacitor is the capacitance between the same length of both conductors. The effective, or characteristic, impedance (Z_0) can be calculated from the applied V and the current (i) flowing.

For simplicity let us consider a balanced line. Diagrammatically this can be represented as a series of capacitors and inductors as shown in Fig. 1. If a voltage is applied across the line, current will start to flow through the first inductors into the first capacitor.

However, the flow of current into this first capacitor will be impeded by the inductive action of the first inductor. As soon as a voltage appears across the first capacitor, current will start to flow through the second inductor pair into the second capacitor.

The current flowing into the second capacitor will also be impeded by action of the second inductor pair. This composite action will carry on down the line with each set of inductors and capacitors.

If you have a line which is infinitely long you will arrive at a situation where the capacitors at the start of the line are fully charged and yet a constant current is still flowing through their associated inductors.

The reason for this constant current still flowing through the inductors is that the capacitors further down the line are still being charged up. As the line is considered to be of infinite length, there are always going to be capacitors that are being charged up.

The ratio of the voltage across the charged capacitors and the current flowing through their inductors is the impedance of the line. So, it’s not surprising to learn that impedance is measured in Ohms.

Let’s look at the infinitely long line a little more closely as shown in the drawing of Fig. 2. If you consider a section of the line some way from the generator, you can see that the voltage across the section is the same at the input and the output. Note also the same current flows into the section as flows out of it.

Because there is no voltage or current loss in the line, you can replace the rest of line to the right of the considered section by a resistor. This resistor you haven’t changed the way the line looks when viewed from the generator. What we have done is we have provided a load that is said to be matched to the line. The value of resistor that can replace a section of line without changing what the generator ‘sees’ is called the characteristic impedance, and is usually labelled Z_0.

Impedance Difference

Now I’ve explained what’s meant by line impedance and by a matched line, let’s see what happens when a line is terminated with a load which differs from the line’s impedance. First of all consider the simplest case of line with a load that differs from its characteristic impedance. Such a case is called a mismatched load.

The simplest mismatched load is when the line is not terminated at all. In other words the load is an open circuit. In the case of an open circuit, it is easy to see that none of the energy fed into the line can be dissipated in a load as there is no load to absorb it.

The energy fed down the line can’t just hang about in limbo. It’s being fed into the line and has to go somewhere. So, as it cannot go anywhere further it has to return from whence it came. In other words it is reflected back down the line.

When the line is terminated in a short circuit there is again no power consumed, as short circuits do not consume energy. So, once again the power is redirected whence it came, towards the generator. I’ve summarised the normal case of...
correctly matched line, and the two special case of mismatched lines in Table 1.

Now consider the situation where the line terminates in a load which is greater than the line's impedance but is not an open circuit. Examining Table 1 suggests that some of the power will be absorbed in the load and some will be reflected back down the line.

Similar reasoning can be applied to the case where the load impedance is greater than zero but is less than the line characteristic impedance. When the line is loaded with a real impedance, you can expect the results to be as shown in Table 2. But I've included the two special cases of infinite and zero Ohms load for comparison.

The figures shown in Table 2 are very simplified, but show basically what happens. For each case of characteristic impedance and load, the reflected and absorbed portions can be proved by complex mathematics. However, I've obtained the same result by simply looking at the situation and applying a bit of common sense.

For simplicity this explanation has only considered purely resistive loads. If the load contains a reactive element it can also be shown that reflection occurs irrespective of the value of the reactive element of the load.

Funny Ohms

Now I've explained the meaning of these 'funny' Ohms that are associated with feeders. This leads us to the concept of a matched and an un-matched lines. I've explained that to get maximum power from the generator (transmitter) to the load (antenna) the load should have the same resistance as the characteristic impedance as the feeder line.

I've not said what happens to the power reflected from the load, because this introduces us to the concept of voltage standing wave ratio (v.s.w.r.) or standing wave ratio (s.w.r.). This is a more complex subject and I'll look at this aspect of feeders in another article.

Real Cables

For interest let's look at real cables and as coaxial cable is probably the most widely used I will only consider this type. The cross section of a coaxial cable is shown in Fig. 3. The centre conductor, which is either stranded or solid, is surrounded by a cylindrical outer conductor which is usually made of copper braid.

The whole cable is protected by a black plastic sheath to keep out the weather. The spacing between the inner conductor and the shield is maintained by filling the space with solid plastic material, and the most usual is made from polythene. Sometimes to reduce losses plastic foam or a spiral of plastic may be used.

The impedance of coaxial cable is given by the formula shown in the illustration Fig. 3. The factor E is the dielectric constant of the insulation material between the centre and the screen.

For polythene the dielectric coefficient figure is about 2.25, and this is the figure I'll base my calculations on.

In addition to the impedance of the cable two other characteristics need considering, namely power handling and velocity factor. However, in the UK with a limit of 400W, anyone using reasonably well matched coaxial cable, power handling limitations are unlikely to find a problem.

Due to the dielectric in a cable the speed at which the radio wave passes down the line is reduced. The effect of this is to make the electrical length of a cable longer than its physical length. The ratio of these lengths is the velocity factor of the line.

For solid coaxial cables the velocity factor is about 0.66. Usually this factor is only of interest when designing matching or phasing stubs.

Cable manufacturers supply more information on both the parameters I've mentioned. Their data sheets should be consulted if there appears to be a problem.

The impedance of an unknown piece of coaxial cable can be estimated by measuring the inside diameter of the braid or screen and the diameter of the inner conductor. This is best done using a vernier gauge. If you like to do some work then you'd can apply the formula (in Fig. 3) to the two dimensions. If the plastic between the braid and the centre conductor is solid assume $E=2.25$. If it is foam or semi-air spaced "guessimate" a value for E to be between 1.5 and 2.0.

You could however use the small graph shown in Fig. 4. To use the graph all you need is a small 150mm steel rule with millimetre marks. Your answer should be close enough to 50, 75, or 90Ω to enable you to decide which is correct.
Leighton Smart GWOLBI invites you to join him and his reporters as they explore the world of hf operations 'far and wide'.

The month of July has seen some patchy conditions on the hf bands. Reports vary a great deal, but our reporters, no less than 13 this month, have been digging out some juicy DX. They've been busy by listening at the right times and on the right bands. There seems to be a lesson here for many of us - that despite relatively poor propagation conditions, certain bands are very productive at certain times!

I hope you can listen in on our listening with frequencies, and report back to the pages of this column. Already, reports are coming in of our reporters being heard by other reporters. What I'd like to see now is a PW listening station in a far flung location; would any of our readers outside the UK like to volunteer?

Your Reports

So, it's on to your reports and I'm starting off with 1.8 and 3.5MHz this month. Eric Masters G0KRT in Surrey, using his 5watt ORP Plus rig plus a 26m end fed wire antenna has been busy.

Eric took advantage of the recent RSSB 1.8MHz contest to hook up with DA0HQ Germany, at 0106UTC, G3MPOI Oxeney, at 2246, and G4M6TP central Scotland at 2216, all on c.w. His 3.5MHz reports list contacts with ZE0AR in Cambridge, at 0720, and G0PEM/QR at 1405UTC.

The 7MHz Band

The 7MHz band seems to be attracting lots of attention recently, and yet again '40' proved itself to be an excellent DX band. Ted Trowell G2HUK in Kent, using a Ten Tec Omnil V transceiver at just 70W into G5RV and HF6 vertical antennas reports, all at around 0500UTC with W1CW (USA), E8/GB0DV Baleac Islands, OZ0DL/RN Israel, PJ6G0Y Barbados, ZL3APV New Zealand, and N2NU in the USA who was using a staggering 11.5kw into a 3-element beam at 43m!

Charlie Blake RS96034 in Milton Keynes, who uses a NRD 525 Receiver, and an 11m sloping wire antenna, says he found conditions noisy around his usual listening frequency of 7.061MHz. But he logged CO3RX Cuba, calling CO Europe (no replies) at 0420UTC. ZL4BO New Zealand, working G3DAM at 0510, VK7AZ Hobart Australia, working G0AWF at 0530, PP2BV Brazil, working G0KN at 0532 on 7.078MHz, and LA3HD Norway, working G4KHM at 0503UTC.

New reporter John Share G3OKA in Wirral, logged 3V8BB Tunisia, on this band, with 100W around midnight. He agreed to QSY to 3.5MHz to give John a new country there too!

The 10MHz Band

Up a bit now to the 10MHz band where Carl Mason G0WSSW, in Skeven, West Glamorgan has been working. Carl, using an Icom 737A 10W rig and a G5RV antenna reports working YO7UN Romana, at 1602UTC, HB6CRN Bern, Switzerland at 1316, and SW7UP in Lodz, Poland at 1415UTC.

On this band Eric G0KRT lists contacts with DJ8KEX Germany, at 0808, OH6LHY Finland, at 2012, and his best ORP DX so far, to NG30 USA at 2323UTC.

The 14MHz Band

As usual, the 14MHz band seems to see most of our reporters activity. Don Mclean G3N0F in Yevoll says in his monthly propagation report that the best time for this band has been from 1700 onwards to Africa and Asia, with the Americas coming in later evening.

Don has worked A09MM Bahrain at 2001UTC, C53HG Gabon, at 1846, K6F6C/KL7 Alaska, at 1734, R1FJZ Franz Josef Land, at 1536, and T12CC Costa Rica, at 2310UTC using his Kenwood TS-590 transceiver and a TET HB35SP 3-element beam with s.s.b.

Gordon Foote G7NCR in Bristol uses a Howes DC RX 14MHz receiver and a loft mounted receive antenna sent a massive 15-page log. He logged VE9MO Canada, working G4SAO at 1924UTC, DA0WCY Germany working G4PZG at around 1830, UV2AVG India, working F6LKH at 1640, YU7Y2 Serbia, working G3YCC at 1900, S21YE Bangladesh, working G4OJI at 1640, and YUSNR Serbia, working fellow reporter Steve GWSOGL at 1054UTC.

Another new reporter, Dave Griffiths GWOJJ in Pontypool reports contacts with his new TH3 beam antenna and a 10WTS-440 into JA3AA Japan, at 2037, 505JL Leslie, Sao Tome & Principe islands, at 1203, 9K02Z Kuwait City at 22.30, and V33AHY Canada at 1921UTC.

Another reporter, s.w.l. David Henry in Aberdeen sent a very long list. A small selection include Y00EB (Iraqi special call, at 1758, QSL via Box 55072, Baghdad), 7W5J Algerian special call at 2258, W61GU China at 1420, and K4I7C/G3 O'Hagan in the Golan Heights. Syria. David uses a Trio R1000 RX and a 20W long wire antenna for this band.

And now to new reporter David Ian Wright GWOVML in Wrexham, who, using 100W and a 20m inverted V dipole reports contacts with NIBL USA at 1158UTC, R1FJZ Franz Josef Land, at 0748, P39P Cyprus, at 1518, G30Q Azores Islands, at 0940, and RA3WJZ Russia, at 1503UTC.

The 18 & 21MHz Bands

I'll start the 18 and 21MHz band section with John Heys G3BDQ's report. John, based in Hastings, says conditions were very poor. He logged an s.s.b. contact at 300W with XX9GQ Italy, at 1358, plus 80W c.w. to Y19GC Iraq at 1402, and FR5D0 Reunion Island with a long wire at 1357UTC, while 21MHz gave him an s.s.b. contact with 2J2Z Zambia at 1342, (QSL via SP8DIP). Don G3N0F reports from a long list, contacts with A226W Botswana, at 1633, BV2KI Taiwan, at 1801, J3/35SY Grenada, at 2150, (QSL via KF4JH). 506C Nigeria at 1916UTC, VP2MR Montserrat Island at 2130, and F5SYF French Guiana at 1900UTC (QSL via F6EY2).

The 28MHz Band

A brief look at the 28MHz band this time. New reporter s.w.l. Dennis Sheppard in Earl Shilton using a KW2000 on receive and a 10m dipole at 5m reports various Europeans on the band.

However, Dennis also heard W1SEB USA, and PU2YBP Zimbabwe during the afternoon. These contacts would appear to indicate the presence of 'double hop' sporadic 'E' propagation on 28MHz. John G3BDQ agrees with this scenario - any other observations? That's it for this time, my grateful thanks to all of our reporters for the vast amounts of information you send me! As usual, reports, information, (and photos please!) to me please by the 15th of each month at the address below.

Leighton Smart GWOLBI, 33 Nant Gwn, Trelewis, Mid Glamorgan Wales CF46 6DB. Tel: (01443) 411459 (Please mark your envelope 'HF Far & Wide').

END
Join the Radio Society of Great Britain by Direct Debit and we will give you a **FREE** book!*

Just look at what you get from your membership:

- Radio Communication **every month**
- Use of the QSL Bureau
- Technical Information
- Planning Advice
- EMC Problem-solving
- Discount on books
- Access to RSGB Library and Museum
- Use of the HQ GB3RS Station

AND

A free RSGB book voucher to the value of £5 just by taking out a Direct Debit subscription.

* This offer only applies to those taking out a Direct Debit subscription. Send completed forms including the Direct Debit mandate to the address below, and we will send you a book voucher to the value of £5.

Send for a form TODAY from:

RSGB (Dept PW395)
Lambda House, Cranborne Road,
Potters Bar, Herts EN6 3JE

Hewlett Packard

HP71B

- As easy to use as a calculator but as powerful as a computer.
- Smart wand - Automatically recognises and decodes all major bar-code standards.
- A powerful set of basic functions, statements, and operators - over 230 in all - many larger computers don't have a set of basic instructions this complete.
- Advanced statistics functions enabling computations on up to 15 independent variables.
- Recursive subprograms and user defined functions.
- An advanced internal file system for storing programs and data - the HP71 has continuous memory - when you turn the computer off it retains programs and data.
- A keyboard that can be easily customised for your specific application.
- HP-IL interface pre-installed to create a system that can print, plot, store, retrieve and display information. Control or read instruments or speak to other computers.
- A keyboard that can be easily customised for your specific application.
- 50 (K) bytes/sec. Built in ROM includes 46 separate commands. Interface to HP-IL, HP-1B, RS232C, GPIO or series 40. Includes connection cables. These are second user systems ex NHS are fully tested and working but have no programming.

For products you can rely upon to give amazing results

For information on **Active Antennas, RF Amplifiers, Converters, Audio Filters, the Morse Tutor and Speech Processors** send or telephone for a free catalogue and selective data sheets as required.

Our products are designed and made in Britain. Orders can be despatched within 48 hours subject to availability.

FREE BOOK

Join the Radio Society of Great Britain by Direct Debit and we will give you a **FREE** book!*

Just look at what you get from your membership:

- Radio Communication **every month**
- Use of the QSL Bureau
- Technical Information
- Planning Advice
- EMC Problem-solving
- Discount on books
- Access to RSGB Library and Museum
- Use of the HQ GB3RS Station

AND

A free RSGB book voucher to the value of £5 just by taking out a Direct Debit subscription.

* This offer only applies to those taking out a Direct Debit subscription. Send completed forms including the Direct Debit mandate to the address below, and we will send you a book voucher to the value of £5.

Send for a form TODAY from:

RSGB (Dept PW395)
Lambda House, Cranborne Road,
Potters Bar, Herts EN6 3JE

Hewlett Packard HP71B

BARCODE READER

- As easy to use as a calculator but as powerful as a computer.
- Smart wand - Automatically recognises and decodes all major bar-code standards.

FREE BOOK

Join the Radio Society of Great Britain by Direct Debit and we will give you a **FREE** book!*

Just look at what you get from your membership:

- Radio Communication **every month**
- Use of the QSL Bureau
- Technical Information
- Planning Advice
- EMC Problem-solving
- Discount on books
- Access to RSGB Library and Museum
- Use of the HQ GB3RS Station

AND

A free RSGB book voucher to the value of £5 just by taking out a Direct Debit subscription.

* This offer only applies to those taking out a Direct Debit subscription. Send completed forms including the Direct Debit mandate to the address below, and we will send you a book voucher to the value of £5.

Send for a form TODAY from:

RSGB (Dept PW395)
Lambda House, Cranborne Road,
Potters Bar, Herts EN6 3JE

Hewlett Packard HP71B

BARCODE READER

- As easy to use as a calculator but as powerful as a computer.
- Smart wand - Automatically recognises and decodes all major bar-code standards.

FREE BOOK

Join the Radio Society of Great Britain by Direct Debit and we will give you a **FREE** book!*

Just look at what you get from your membership:

- Radio Communication **every month**
- Use of the QSL Bureau
- Technical Information
- Planning Advice
- EMC Problem-solving
- Discount on books
- Access to RSGB Library and Museum
- Use of the HQ GB3RS Station

AND

A free RSGB book voucher to the value of £5 just by taking out a Direct Debit subscription.

* This offer only applies to those taking out a Direct Debit subscription. Send completed forms including the Direct Debit mandate to the address below, and we will send you a book voucher to the value of £5.

Send for a form TODAY from:

RSGB (Dept PW395)
Lambda House, Cranborne Road,
Potters Bar, Herts EN6 3JE

Hewlett Packard HP71B

BARCODE READER

- As easy to use as a calculator but as powerful as a computer.
- Smart wand - Automatically recognises and decodes all major bar-code standards.

FREE BOOK

Join the Radio Society of Great Britain by Direct Debit and we will give you a **FREE** book!*

Just look at what you get from your membership:

- Radio Communication **every month**
- Use of the QSL Bureau
- Technical Information
- Planning Advice
- EMC Problem-solving
- Discount on books
- Access to RSGB Library and Museum
- Use of the HQ GB3RS Station

AND

A free RSGB book voucher to the value of £5 just by taking out a Direct Debit subscription.

* This offer only applies to those taking out a Direct Debit subscription. Send completed forms including the Direct Debit mandate to the address below, and we will send you a book voucher to the value of £5.

Send for a form TODAY from:

RSGB (Dept PW395)
Lambda House, Cranborne Road,
Potters Bar, Herts EN6 3JE

Hewlett Packard HP71B

BARCODE READER

- As easy to use as a calculator but as powerful as a computer.
- Smart wand - Automatically recognises and decodes all major bar-code standards.

FREE BOOK

Join the Radio Society of Great Britain by Direct Debit and we will give you a **FREE** book!*

Just look at what you get from your membership:

- Radio Communication **every month**
- Use of the QSL Bureau
- Technical Information
- Planning Advice
- EMC Problem-solving
- Discount on books
- Access to RSGB Library and Museum
- Use of the HQ GB3RS Station

AND

A free RSGB book voucher to the value of £5 just by taking out a Direct Debit subscription.

* This offer only applies to those taking out a Direct Debit subscription. Send completed forms including the Direct Debit mandate to the address below, and we will send you a book voucher to the value of £5.

Send for a form TODAY from:

RSGB (Dept PW395)
Lambda House, Cranborne Road,
Potters Bar, Herts EN6 3JE

Hewlett Packard HP71B

BARCODE READER

- As easy to use as a calculator but as powerful as a computer.
- Smart wand - Automatically recognises and decodes all major bar-code standards.

FREE BOOK

Join the Radio Society of Great Britain by Direct Debit and we will give you a **FREE** book!*

Just look at what you get from your membership:

- Radio Communication **every month**
- Use of the QSL Bureau
- Technical Information
- Planning Advice
- EMC Problem-solving
- Discount on books
- Access to RSGB Library and Museum
- Use of the HQ GB3RS Station

AND

A free RSGB book voucher to the value of £5 just by taking out a Direct Debit subscription.

* This offer only applies to those taking out a Direct Debit subscription. Send completed forms including the Direct Debit mandate to the address below, and we will send you a book voucher to the value of £5.

Send for a form TODAY from:

RSGB (Dept PW395)
Lambda House, Cranborne Road,
Potters Bar, Herts EN6 3JE
NEW! TU3 Antenna Tuner

- Ideal for receivers with a long wire antenna on the H.F. bands, 1-30MHz.
- Versatile! The touch of a switch gives any one of 3 different arrangements.
- Quality case - block with printed aluminium front & back facies. Measuring only 170-140-50mm.

• Kit complete with all components and hardware including pre-punched case and panels.

Price £44
Ready made £54

Send SAE for details of our full range of kits or call 0115 938 2509

LAKE ELECTRONICS
7 MIDDLETON CLOSE, HUTHALL, NOTTINGHAM NG16 1RX
(Calls by appointment only)

G6XBH G1RAS G8UUS
VISIT YOUR LOCAL EMPORIUM
Large selection of New/Used Equipment on Show

AGENTS FOR: YAESU • ICOM • KENWOOD • ALINCO
Accessories, Relays/Diamond range of 50W/6KW. A. Star, J.C. Ireland, Alinco Mics, Mutek products, Barecon equipment, MFJ products.

WE SPECIALISE IN ALL TYPES OF PLUGS, ADP, FTC, ETC.

• ERA Microreader & BFS4 Filter, SEM Products
• Full range of Scanning Receivers
• AERIALS, Torina, Marapco, plus full range of base/mobile antennas

BRING YOUR X/R EQUIPMENT IN FOR SALE
JUST GIVE US A RING

Radio Amateur Supplies
3 Farndon Green, Wollaton Park, Nottingham NG8 1DU
Off Ring Rd., between AS2 (Derby Road) & AK9 (Kirketon Road)
Monday: CLOSED, Tuesday to Friday 9.00am to 5.00pm. Saturday 9am to 4pm

G6XBH G1RAS G8UUS
Tel: 0115-928 0267

CALL M O N
Authorised National DEALERS
and
Authorised National SERVICE CENTRE
FOR THE BIG THREE!
The Midlands own main sales/service centre for

ICOM YAESU KENWOOD

LIMITED NUMBERS! SPECIAL OFFERS!
EG 1. FT900AT
List price 1599.00 *OFFER PRICE 1280.00* Plus Free DJ180
EG 2. IC275H
List price 1495.00 *OFFER PRICE 1196.00* Plus Free FT41R
EG 3. TS60
List price 999.95 *OFFER PRICE 799.99* Plus Free ADI AT48

Phone for latest price list!
TRADE UP! PART EXCHANGE YOUR PRESENT RIGS!
Call Castle on 01384 298616
or Flash us a fax on 01384 270224

Castle Electronics
Unit 3, Baird House, Dudley Innovation Centre
Pensnett Trading Estate, Kingswinford,
West Midlands, DY8 8YJ

Trade enquiries for servicing welcome

52

Practical Wireless, October 1995
Taiwan has been in the news recently as the People's Republic of China fired missiles, apparently as part of military tests, near the island's coast. Tension has been high and the United States has been brought in to the arena as China protested against the visit of the Taiwanese president to the US.

So, it might be worth keeping an ear to the Voice of Free China which broadcasts from Taipei. English can be heard at: 0200-0300 on 15.345, 11.825, 11.74, 9.68, 7.13 and 5.95; 0300-0400 on 15.435, 11.825, 11.74, 9.68 and 5.95; 0700-0800 on 5.95; 1200-1300 on 9.61 and 7.13 and 2200-2300 on 21.72 and 17.75MHz. The European transmission is at 2200UTC.

Also from Taiwan comes the Voice of Asia. It beams to the mainland and includes an English language programme at 1100 for an hour on 7.445MHz.

Meanwhile the mainland Chinese transmit several services towards Taiwan. One is the Voice of Puijung, believed to be based in Shanghai. It transmits at 0130 and 1400 on 7.115, 4.95 and 3.28MHz in Mandarin Chinese.

Staying in Asia for the time being with North Korea's Radio Pyongyang which transmits English at: 0000-0050 on 15.13, 13.76 and 11.335; 0400-0450 on 17.765 and 15.23 and 15.18; 0600-0650 on 15.23 and 15.18; 0700-0750 on 17.765 and 15.34; 0800-0850 on 15.23 and 15.18; 1100-1150 on 11.335, 9.977 and 6.576; 1300-1350 on 15.43; 15.23, 11.74, 9.64 and 9.345, 1500-1550 on 13.785; 9.977, 9.64 and 9.325; 1700-1750 on 13.785, 9.977, 9.64 and 9.325; 2000-2050 on 9.977, 9.64, 9.345 and 6.576 and 2300-2350 on 13.65 and 11.70MHz.

As a by-product of reaching Canadian troops in Bosnia, Radio Canada International (RCI) has increased its availability to listeners with the new Hot Bird One satellite - and the transponder at 11.265GHz. You'll find the RCI audio at 7.20MHz.

Radio Vljinus is now using a new frequency for its weekend English language broadcasts. You should tune to 7.36MHz at 2300 on Saturday and Sunday.

If you would like to listen to the music that beats across Central and West Africa, tune in to Africa No 1 from Gabon. This commercial station is partly owned by a French media group, and in addition to carrying its own programmes, the station hires out its 500kW short wave transmitters to other broadcasters.

All programmes are in French, and it opens at 0500 on 9.58, changing to 17.63 at 0800, 15.475 at 1600 and back to 9.58MHz at 1900 on which it remains until closedown at 2300UTC.

The Ecuadorian religious station, HCJB, has stopped its single sideband transmissions, and is reducing its English language service. The s.s.b. frequencies of 15.54 and 21.455MHz were taken off the air on September 1 although they had been well received in many parts of the world.

Budget cutbacks are to blame. In addition, the 49 metre band frequency of 6.08MHz, used for English from 1330 to 2100UTC, has been dropped.

The Voice of Armenia In Yerevan might be audible in the UK and Europe. Try tuning to English programmes on Sundays at 0830-0900 on 15.27 and 15.17 or Monday to Friday at 1745-1800 on 11.96, 9.675, 7.48 or 4.81, or daily at 2030-2100 on 11.92MHz.

Restricted Licence

World Radio Network (WRN) has gained a Restricted Service Licence for 28 days from 29 August 1995. This means that listeners in the London area will be able to tune to the rich mix of international radio stations that WRN carries.

There will also be explanations about international broadcasting, as well as competitions to tempt listeners. Try tuning in on 107.8MHz to hear WRN.

Netherlands On-Line

Radio Netherlands has improved its on-line Internet service, improving the design of the station's computerised information pages and speeding up the computer it's based on. There is also a new address: http://www.rnw.nl

If you have access to the Internet, you can skip the schedule details for Radio Netherlands's English service to Europe which is at 1030-1225 on 9.65 and 6.045 (both via DW sites) and 2030-2225 on 1.385MHz (via Russia). You can also try Astra 1C and the transponder at 10.936MHz, audio subcarriers at 7.74 and 7.92kHz.

Transmitter Guide

Belgian DXer Ludo Maes has sent me a copy of TDP SW-95, a new guide to the world's short wave transmitters. The TDP SW-95 is a review of which country owns which transmitter, with details of manufacturer, year of installation, and whether it is still in service.

There are 60 pages of data, with tables at the rear of the book including a league table of total transmitter power by country (for example the UK has 17181.5kW whilst Cambodia has 5kW) and a breakdown of the number of transmitters each major manufacturer has sold. In the country-by-country listing exact geographic co-ordinates are given for transmitter location including a large number of sites in the former Soviet Union.
Much interest has been shown following the various digital signal processing (d.s.p.) features in this column - and there's more to come! One such news item comes from Mike Kerry G4BMK of GrooveNet Software.

Mike's sent me a note to say that he's developed software routines for the Texas DSK so that it can be used with his BMK-Multy for Amtor, Pactor, RTTY and c.w. Mike also reports a few problems with the assembler supplied with the DSK.

The package has poor validation and can produce unpredictable results. By way of a solution Mike has written his own cross assembler for the Texas DSK so that it can be used with his BMK-Multy for Amtor, Pactor, RTTY and c.w.

The assembler supplied with the DSK recognises that this is a special number and automatically re-routes the call to one of the network supplier's modem sites at no extra charge to the customer. Another advantage of the system is that you should rarely suffer from busy tone as the system will automatically re-route you to the next free PoP.

The other development that goes hand-in-hand with this is British Telecom's (BT) revised pricing structure. Not only have the rates been reduced over recent months, but they've just changed to per second charging. This is particularly attractive for the Internet user, but you need to note that there is a 5p minimum charge for any call.

If you restrict your main Internet access times to the weekend you can also take advantage of BT's Weekend rate which gives you local calls at just 1p per minute. You can reduce your costs by a further 5% if you take advantage of BT's Friends and Family offer.

You can take this even further if you normally pay more than about £40 or so per quarter on call charges by taking-up BT's PremierLine. This could add an extra 15% savings making the total 20% so reducing the local call charge to just 0.6p per minute at weekends!

Internet Applications

I thought you might find it useful if I ran through what I have found to be the best applications that are available from the Internet. With the vast majority of people using Windows based PCs for Internet access I've concentrated on those applications for this.

Probable the first application that new users seek out is some form of E-mail program. The two main contenders in this area are Eudora (ver 1.44) and WinPmail (ver 2.0).

Both programs are equally competent and well tested but in my view WinPmail has the edge with a better range of facilities.

WinPmail is particularly powerful for attaching files to messages and automatically filtering messages to a folder. This is particularly handy if you subscribe to a specialist listserver where you can set-up the mail filter so that all messages from the listserver are automatically filed away in an appropriate folder without you having to wade through the new mail area.

Next on the list of goodies is a news reader. This lets you bulk download messages so you can browse at your leisure without having to stay logged-on to the Internet.

As far as I'm aware, the only shareware off-line reader is Forte FreeAgent (ver 1.0). This is a really excellent program with a top class interface and range of facilities.

If you want to impress your family and friends you really do need a World Wide Web browser. This provides an easy to use graphical interface to the Internet.

In my opinion by far the best available World Wide Web browser is Netscape Navigator which is currently at version 1.2 (beta2). For many of us, one of the great benefits of Internet access is the ability to find and retrieve a wide range of top quality software.

One of the main tools for doing this is a good File Transfer Protocol or FTP client. There are several of these available, but one of the best is WS-FTP (ver 95.04.27).

This provides all the important features including clear indication of transfer time, progress and data rate. Searching out the required information can be something of a black art but good Gopher and Archie clients make a good starting point.

The two I use are WSGopher (ver 1.2) and WSArchie (ver Alpha 0.6). Both are well tried and have a good interface with all the necessary features.

The home/UK sites for all the programs are listed in Table 1.

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netscape</td>
<td>World Wide Web browser</td>
</tr>
<tr>
<td>WinPmail</td>
<td>E-mail program</td>
</tr>
<tr>
<td>Eudora</td>
<td>E-mail program</td>
</tr>
<tr>
<td>WS-FTP</td>
<td>File Transfer Protocol client</td>
</tr>
<tr>
<td>WSGopher</td>
<td>FTP client</td>
</tr>
<tr>
<td>WSArchie</td>
<td>FTP client</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FAX With Slow PCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>One of the most common problems with JVFax comes from trying to run it on a slow, 286 based PC. Most of the difficulties stem from trying to use the slow processor interface with a slow 286 processor. In many cases the end result is either</td>
</tr>
</tbody>
</table>
garbage or a system crash as the processor just can't keep up with the demand. Thanks to some tips from readers there are a few things that can be done to minimise the problems.

The most important single change is to adjust the maximum interrupt frequency shown in the main configuration screen. Whilst the default setting is usually 7500Hz, this can be reduced to 3500Hz or less with a markedly lower demand on processor time. But even 368 processors are not trouble free.

The next important change is to limit the number of bits set against the comparator. Here the default setting is 8 but some experimentation should reveal a lower value that will give improved overall performance.

Serial Communications

One of the many problems facing PC users is getting the serial port to work reliably. This problem is particularly troublesome for amateurs as they often depend on the serial port for data signals or maybe to control the transceiver. Whatever the usage, you can bet the port will be asked to run at 9600baud or faster. As serial port operation is such a widespread problem, I thought I'd attempt to shed some light on the subject with a few tips.

Let's start with getting your serial port to be recognised by the computer. Plugging-in a serial card is just the start as you also need to let the computer know where to find it. There are two key items the computer needs to know - the base address and the interrupt number. The base address is the hexadecimal address where the computer will go to read and write the data signal. The Interrupt on the other hand is a communications line that the serial port uses to let the computer know that it needs attention. The good news is there are standard settings for both these parameters - you just have to choose the right ones!

If you've already taken a look at your computer's manual you will have noted that the serial ports are numbered from COM 1 through to a maximum of COM 4. However, most computers operate with just two serial ports and the standard settings for these are:

<table>
<thead>
<tr>
<th>IRQ</th>
<th>Base Addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 1</td>
<td>4</td>
</tr>
<tr>
<td>COM 2</td>
<td>3</td>
</tr>
</tbody>
</table>

When you fit your serial card you'll usually find some on-board jumper or switch settings to select the appropriate IRQ and Base address. Once this has been done, you still have to make sure your software package knows the address and interrupt number of your serial port.

If these changes don't resolve the problems, you may be experiencing a conflict with the extended memory manager. The precise reason for this conflict with the extended memory problems, you may be experiencing a conflict with the extended memory manager. The precise reason for this conflict may be the extended memory manager.

The most important single change is to adjust the maximum interrupt frequency shown in the main configuration screen. Whilst the default setting is usually 7500Hz, this can be reduced to 3500Hz or less with a markedly lower demand on processor time. But even 368 processors are not trouble free.

The next important change is to limit the number of bits set against the comparator. Here the default setting is 8 but some experimentation should reveal a lower value that will give improved overall performance.

If you've already taken a look at your computer's manual you will have noted that the serial ports are numbered from COM 1 through to a maximum of COM 4. However, most computers operate with just two serial ports and the standard settings for these are:

<table>
<thead>
<tr>
<th>IRQ</th>
<th>Base Addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 1</td>
<td>4</td>
</tr>
<tr>
<td>COM 2</td>
<td>3</td>
</tr>
</tbody>
</table>

When you fit your serial card you'll usually find some on-board jumper or switch settings to select the appropriate IRQ and Base address. Once this has been done, you still have to make sure your software package knows the address and interrupt number of your serial port.

If the processor doesn't perform this task quickly enough the data will be overwritten by the next data byte so causing a loss of data. It's this slow response from the processor that is responsible for the data loss that many people experience.

Now I'm sure you can see that the faster the serial data speed the more chance there is that data will be lost. The solution comes in the form of a more modern UART that has a 16 byte buffer built-in.

By using this buffer, the UART can continue to receive up to 16 more data bytes before any risk of data loss. Now to get down to details, the single buffer UARTs in common use are the 8250 and 16450 devices.

The replacement device is a 16550 UART but even here you need to be careful as not all 16550s are the same. The chip to go for is the National Semiconductor variant which has become the standard. The type number of this device is NS16550AFN - it's usually the most expensive, but it could well be worth spending the extra.

If your existing serial card has an 8250 or 16450 device you can change it yourself providing you are used to working on computer standard double sided circuit boards. However, you may well find that your board has a specialist multi-function chip so, the only answer is to change the board for a modern 16550 based unit.

These are widely available for around £50. If you're not sure whether or not you have the right chip most diagnostic programs will report the type of serial port. The most common diagnostic program is Microsoft's MSD which comes bundled with MSDOS.

That's all the computing news I have for you this month, cheerio for now, keep your letters coming to Mike Richards G4WNC, 'Bits & Bytes', PO Box 1863, Ringwood, Hants BH24 3DX. CompuServe: 180411, 3444; Internet: mike.richards@bbccn.org.uk
This quarter, Ed Taylor WT3U reports on Field Day. This is a popular institution both in Europe and across the Atlantic, but there are differences!

It's Field Day Again!

Think back to earlier this year, to the month of May. Consider the state of mind evident in the people who run your local radio club. Were they cool, calm, collected? Did they discuss matters rationally and make reasoned decisions? Not likely! They were probably in an increasing state of panic, seeking equipment and volunteers. Why? Because it was getting close to Field Day time.

A typical British group would be planning for one or more of these four weekends: National Field Day (c.w.), VHF Field Day, Low Power Field Day (c.w.) and SSB Field Day. The first three are single-mode and involve the h.f. bands. Participants are likely to include not just British stations, but also thousands set-up under in a similar way from all over Europe.

Most amateurs who have any connection with a club have been roped in to help during a Field Day. This is because the skills required are not just those of a good operator. You also need mechanics, cooks, drivers, labourers and general assistants. Anyone who owns a caravan will be very popular over certain weekends!

The idea of Field Day is that you trial to set-up a station (perhaps several, according to the rules) in 'emergency conditions'.

Starting with an empty field, a group is required to erect antennas and get the stations going without using mains power or any permanent structures. It's not just a question of getting on the bands and making a few contacts, the events last for 24 hours, so you have to arrange operating shifts, decide tactics for band usage and so on.

The point is this: the weekend is made interesting and worthwhile by requiring entrants to participate in a contest once they have got everything working.

Needless to say, many things can go wrong during a Field Day. The power supply (often a generator) can go wrong. At the Flight Refuelling club, near Bournemouth, Dorset, where I took part for many years, we had a spectacular diesel generator failure one year. A piston decided not to participate in the contest any more, and made an exit out of the side of the crankcase. This did not increase our score, and caused a couple of rude words (maybe more!).

The weather can make life very difficult. Antennas may be blown over, and rain can find its way into the crankcase. This did not increase our score, and caused a couple of rude words (maybe more!).

The point is: this is a weekend that an increase in interest from British clubs would be very good news!

A welcome feature is that the US has just one Field Day each year, and it incorporates most of the features of all of the British four. Unsurprisingly, the number of participants is huge.

As you might expect, everything is bigger here in the USA! It doesn't mean to say that everything is better, although most people would agree that an increase in interest from British clubs would be very good news!

The main difference is that the US just has one Field Day each year, and it incorporates most of the features of all of the British four. Unsurprisingly, the number of participants is huge.

Just to give you a few statistics, more than 2000 groups enter, involving over 36,000 people. About one and a half million QSOs are made, two thirds on s.s.b. and the rest mainly on c.w.

All bands can be used, apart from 10, 18, 24MHz and the higher u.h.f. bands. Contacts are also made by packet and satellite.

So, how does this compare with a British Field Day? It's hard to say, because of the different formats. However, the concentration of effort into one weekend seems to grab the attention of most clubs. Instead of deciding to enter one or two of the available Field Days (as most British clubs do), Americans can concentrate on just one, and put all their effort into that.

As the interests of radio amateurs become more diverse, it may be worth considering a single Field Day for Europe. Then a group can ask its members for help on a single weekend a year, without diluting their efforts in all the other activities they would like to take part in throughout the summer.

There have been unsuccessful efforts to coordinate dates in Europe and North America, so that portable stations would have the opportunity to contact each other across the Atlantic. This is an issue which might be worth bringing up again in a few years' time, as the sunset cycle brings better conditions.

Entry Categories

A nice feature of the US Field Day is that you can enter in any one of dozens of entry categories. Because the contest is oriented towards emergency operation, several categories call for different types of temporary power supplies.

The categories include generators and battery power. Then you get bonuses for 'natural' power sources, such as solar, wind or alcohol!

Unlike our own Field Days, antennas are not restricted in type or number, and maximum licensed power may be used. Bonuses are available for lower power levels down to 5W. Interestingly, there are categories which allow various numbers of simultaneous transmitters to be used.

A welcome feature is that Novice and Technician licensees are encouraged by the scoring system to enter, which is not a feature of our own events. Of course, the licence categories in the USA are different.

Fig. 1: A general view of some of the Field Day antennas at NOAUS, showing a 50MHz 6-element quad, a 4-element mono-bander for 14MHz and a 22-element array for 144MHz.
but it would be nice to have more encouragement for newcomers in the UK.

Local Group

I decided to find out how one of the local groups organised themselves here in Colorado. Several in the Denver area go out to various sites, with differing expectations of what they might achieve.

Some treat the weekend as another contest in their calendar, and try to get the best score in their state or perhaps nationwide. Some go for a weekend out in the countryside, operating whenever they can.

The group I visited were specifically set-up to provide emergency communications in the event of any sort of disaster. Like RAYNET groups in the UK, they practice throughout the year in exercises, during sporting events and so on. They rejoin in the unexciting (but accurate) name of Amateur Radio Emergency Service District 22, or ARES 22.

Under the leadership of Al Cooley, and using his callsign, N0AUS, ARES 22 operated from Daniels Park. This is a wooded area, located about 20 miles south of Denver.

It would be unusual for a UK station to use a place like this, which was so open and available to the public. Anyone could stop and wander around the campers and tents, which were in a small clearing at the side of the road.

Site Ideal

Al explained that they found the site ideal. Part of the group's aim is to educate and inform the general public about amateur radio, and particularly its role in emergency communication.

In fact, the rules of the contest give extra bonuses for encouraging access. There's even more points for such things as running an information booth, and for publicity in newspapers, radio and television. We are pretty bad in the UK at explaining our hobby to the world at large. Most people think that we have meaningless conversations and play with trivial topics with the folks down the road.

Of course, we do! But that's only a small part of it. Amateur radio has the potential to teach something about electronics, geography, international relations and many other subjects.

It's ideal for anyone to take up at any age, but particularly for youngsters. Why don't we say so whenever we can?

We could do much more by following the lead of our American friends. We could put up signs directing visitors to Field Days and other radio activities.

We could ensure that someone is always available to explain what's happening. We could make up a leaflet with some basic facts, showing how to get more information.

I feel strongly that Amateur Radio will gradually cease to exist, to everybody's detriment, if the public is indifferent because of ignorance.

We somehow need to boost our image, and find ways of informing the world about ourselves.

On The Air

Apart from the publicity aspect, the participation of ARES 22 in Field Day could be said to meet a combination of two goals: first, to use whatever means reasonably necessary to put their three stations on the air and secondly, to train newcomers in the setting up of an emergency station.

Thus it was fairly low key, and was by no stretch of the imagination an attempt to reach a high scoring position.

As you can see from Fig. 1, they use a selection of antennas. Because operation was limited to three simultaneous transmitters without amplifiers, the amount of co-interference was not great and it was unnecessary to achieve large station separation.

At the start of the 24 hours, operation was mainly on h.f., with s.s.b. and c.w. stations achieving good rates on 7 and 14 MHz. The relatively relaxed nature of the group's efforts was illustrated by the arrival of Luca VE2WKR (Fig. 2).

He was late because he had been skiing on Saturday, and found the snow conditions good (very unusual in June)!

Nobody was perturbed. Luca proceeded to set up satellite equipment, gaining bonus points for his contacts.

Different Bands And Modes

As time went by, different bands and modes were used. Use of 1.8 and 3.5 MHz (and, to some extent, 7 and even 14 MHz) is limited during the summer, because of the high static noise. A continuous S9 level is something we rarely encounter in the UK, but in North America it's common.

For a different reason, v.h.f and u.h.f do not feature heavily in less populated regions. There are just a limited number of amateurs to contact, and distances are generally too great.

The nearest large city to Denver is 600 km away, which means that you need an opening to build up large numbers of QSOs. However, contacts are allowed via packet relays, so this is a popular way of achieving greater distances.

By the end of Field Day, a respectable number of QSOs had been made (over 1000). The leaders in the entry category had probably made more than 5000, but nobody minded.

Al Cooley said he was very pleased with the way that ARES 22 had performed. He was particularly happy that the Novices had not only learnt a lot, but wanted to do more next year.

No disasters took place, but I had the feeling that problems were just calmly dealt with as they happened. Maybe I'll report next year on a club which really tries to win. It will be a different atmosphere, but there is much to be said for a laid-back approach!

Comments And Suggestions

Thank you to those who have written with comments and suggestions. For example Wyn G6EAWT has proposed showing questions from the RAE along with those set for various US licence exams, so that we can compare standards.

Perhaps I will go one stage further, and devote a whole column to the UK exams, with examples. There seems to be a lot of interest in this topic.

And John G4POF, asks when I will be on the h.f. bands to make contacts. In answer, I operate mainly 14 MHz c.w. and look for 5 stations at the weekends.

Conditions have not been good from here to Europe during the summer. But we can hope for improvement this winter.

I will certainly be on the air (along with thousands of others) for the two most popular contests in the world. The CW WW DX contests.

The contests are organised by the American magazine CW, and are taking place on October 28-29 (s.s.b.) and November 25-26 (c.w.). They are on 1.8, 3.5, 7, 14, 21 and 28 MHz.

That's all from me for this quarter, so until next time, 73 and keep writing with your news and views to me Ed Taylor: WT3U, PO Box 261304, Denver, Colorado 80225, USA.

Deadline time for the next edition of 'Scene USA' (January PW) is the middle of October.
This time Andy Emmerson G8PTH has an update on the future of ATV on 430MHz, together with Internet and repeater news.

It seems that it's not just in Europe that ATV operation on 430MHz is threatened. From the States, Henry Ruh KB9FD the publisher of ATV Quarterly magazine writes: “Also big trouble here. MAAC (Midwest Association of Co-ordinating Councils) have passed a resolution to eliminate ATV from 430MHz WB0CMC told us of this at Dayton. I have copy of their minutes, a pile of 'red tape' from stem to stern. Time to get on my political horse and burn these people!”

As I discussed last time, banning amateur television from 430MHz may actually not be a bad thing. One solution would be to transmit a very narrow band vestigial side band (v.s.b.) a.m. signal, with the advantage that a 1MHz-wide signal would get through the DX better than a wider band one.

But if this debate stimulates ATVers into going digital and adapting/adopting MPEG2 techniques, then we could possibly have ATV anywhere, anytime, anywhere as the slogan goes. It would raise the profile of ATV far above packet and all other modes. In fact I'd even go so far as to say that if the ATVers can't be bothered, they don't deserve to keep their ATV privileges. I don't expect many other amateurs would share my viewpoint but they must admit that playing around with the same techniques that amateurs in the States were using back in the 1940s is scarcely the cutting edge now, far less true ‘self training in the art of radio communication’.

Internet ATV

Want to view the ATV WWW Home Pages? An ATV group called LISATS based in Florida has one you can view by typing:

http://www.digital.net/Ham Radio
Tom O’Hara (TOMSMB@aoi.com) writes: “For the Internet Surfers among your ATV group, they might want to check out the ATV home pages on the World Wide Web. I expect that the number of active ATV groups who create and add their own home page will increase and might be interesting to put on the ATV repeaters. The address for the ATN group here in Southern California is:

http://www.realnet.net/~jpawluk/KB6MMF.html

The keeper of the page is John Pawluk KB6MMF and his Internet mail address is: jpawluk@realm.net if you wish to communicate.

This home page is also linked to other groups so you only need to call up one or the other. Atlanta ATV:

http://www.mindspring.com/~rwf/atv.htm or Houston ATV:

http://www.stevens.com

Tom continues: “Any additional ATV groups who create and add their own home page, please pass on the address to me so that I can spread the word. I think the Internet is a great way for ATV groups to exchange info rapidly. Also include the call and Internet address of your groups main contact. ‘I’ll keep a list for distribution’.

Many thanks for that report Tom.

ATN S. California, KB6MMF
ATC Columbus OH WA8RMC
HATS Houston TX N5JX0
BATC England G1PEF
Amateur Television Quarterly Magazine KB9FD

On The Air

Pressure from the Civil Aviation Authority (CAA) has caused some restrictions to 1270MHz amateur television activities, mainly because a couple of our repeaters were interfering with aeronautical radar systems which share our band. The GB3GV repeater (Markfield, near Leicester) is still off the air but GB3UD (near Stoke-on-Trent) is back on 1318MHz with the approval of the man at Clee Hill Radar. All other operational units are active except GB3VW in Weymouth which has been closed down by the operator due to lack of support (it was for sale at the BATC’s Coventry rally).

The Radio Society of Great Britain (RSGB) is trying to set up an unofficial meeting with the CAA to sort out the present log jam of licence applications affecting GB3VX, GB3AF and GB3AT. Clearly our priorities are not those of the CAA! The licence for GB3KT may also appear before long. Up at 10GHz the RSGB has received a note from the Radiocommunications Authority proposing the withdrawal of some spectrum in this band, in order that it may be re-allocated for ‘Radio Local Loop’ services. This would enable

Here’s a shot of the antenna system belonging to Ian Vincent G4MYL, secretary of the Kent Television Group. Top of the pole is a 44-element loop Yagi for 13cm; the receive converter is mounted here as well. Below are four 28-element loop yagis for 1296/1270MHz operation. All these are home-made, also the four-way power splitter. Closest to ground is the 13-element Tonna antenna for 144MHz. The whole system is mounted on a 28ft tall ex-Government mast and well guyed with 16 steel ropes.

newcomer telephone companies to provide service to homes without the need to lay wires.

The BATC has briefed the RSGB why this should be resisted; in practice the risk of interference would be quite small, given the directional antennas in use. The primary user of the lower 100Hz band is the Ministry of Defence and the Home Office (mainly police users). The prospect of increased commercial exploitation of the band may not suit these existing users either.

American Repeater

The Amateur Television Network (ATN) now covers all of the southwestern USA. It now directly supports seven repeaters, with another one affiliated. The land surface covered is large and thanks to full interlinking, contacts from Los Angeles, California to Las Vegas, Nevada (about 270 miles) are not uncommon.

An input to one repeater is automatically transmitted on the output of all eight repeaters (unless already occupied with local traffic). Input is on 434MHz at all sites, with output variously on 900 or 1200MHz.

The highest repeater is at 6,500 feet on Mount Posey. This particular site also has on the antenna tower a remote control television camera which can be panned round through 360°.

Already several forest fires have been spotted and notified in this way. Inter-site links are on 800MHz, 1.2GHz, 2.4 or 10GHz. The longest link path is 174 miles.

A user benefit is that all repeaters have a sound input on 146.43MHz, allowing viewers without ATV transmitters to join in round table discussions and comment on transmissions. To simplify maintenance, all transmitter and receiver modules, regardless of manufacturer, are fitted with DB9 sub-D miniature connectors for audio, video, control line and power. Pin assignments are fully standardised and in this way any module can be changed in seconds. Previously maintenance was a tedious procedure and valuable minutes could be wasted fiddling with wiring. Now, as ATN’s technical wizard Mike Collins W4SSV says, “You can plug and play without delay”.

That’s all for this month so, until next time keep those letters coming to Andy Emmerson G8PTH at 71 Falcott Way, Northampton NN2 8PH.

END
Write your advertisement clearly in BLOCK CAPITALS - up to a maximum of 30 words plus 12 words for your address - and send it together with your payment of £3.00 (cheques payable to P.W. Publishing Ltd.) or subscription payment to Zoe Shortland, P.W. Bargain Basement, Arrowsmith Court, Stadium Approach, Broadstone, Dorset BH18 8PW.

Subscribers must include the despatch label bearing their address and subscription number to qualify for their free advert.

Adverts published on a first-come, first-served basis, all queries to Zoe Shortland on (01202) 609016.

Advertisements from traders, for or equipment that is illegal to possess, use or which cannot be licensed in the UK, will not be accepted. No responsibility will be taken for errors.

For Sale

440S Trio, a.t.u. fitted with box instructions, £735. Must collect. 108F 440S Trio, a.t.u. fitted with box instructions, £300. W. Rigby, Lancs. Tel: (01524) 833506.

Calvin DPS-2012 22amp p.s.u., fully variable, fully protected, two meters, as new, £70. Buyer collects or pays carriage. Tel: Aberavon (01633) 831922.

Collection radios, reel and cassette tape recorders, record players, Collection radios, reel and cassette meters, as new, £70. Buyer collects or pays carriage. Tel: Surrey (01383) 391723.

Kenwood TR-751E 144MHz, £485. TH-76E 144/430MHz hand-held transceiver, speaker mic., £120. Jerry, Gloucestershire. Tel: (0117) 947520.

Kenwood TH-7000 automatic r.f. speech processor, £350. Prefer buyer collects. G3U5B, QTHR. Tel: (0118) 973679.

Three, two, yes two, Compaq XT/2 plus a wealth of spares and manuals. Sell for, £250 o.n.o. or exchange for CapCo 1.8/3.5MHz loop antenna. Tel: Stockport (0161) 6773023. Written/part exchange 1.8/3.5MHz loop offers considered. G0DX, QTHR.

Variable power output on 430s, no alterations necessary, £25 plus £2 P&P. Transmitter Zetagi 1000W, TM1000, £43. Kenwood MC50 mic., £50 o.n.o. J. Tarleton, Derbyshire. Tel: (01283) 218470.

Yaesu FRG-7700 general coverage receiver, 150kHz to 30MHz, FRT-7700 tuner. Vertical mobile antenna and dipole antenna with coax cable, price £300, £200 o.n.o. Ian, Hants. Tel: (01489) 571629 evenings.

Yaesu FT-77 mobile h.f. transceiver, 3.5-20MHz, £250 o.n.o. Alnico DJF1E h.f. f.m. hand-held TX 144-146, RX 108-174, £170 o.n.o. Tel: Cleveland (01287) 637902.

Wanted

Handbook and case for Trio 2300 plus any information, Mike, Gourneourm. Tel: (01202) 433775.

Help Has anyone got info on PC control for JRC NRDS in particular 25-way 'D' cable pin connections? All costs met. Thanks, Dave Jones, 50 New Dock Street, Laneli, Dyfed SA15 2MB.

High gain ferrite rod antennas, must be half inch in diameter, no more or less, must be six inches long or more. Peter Tankard, Sheffield. Tel: 0114-234 3603 anytime.

IC type T05 1047 for repair of car radio, have tried all trade outlets to no avail. So fellow readers, w.h.y.? Any expenses reimbursed. Tel: Essex (01295) 395698.

Microwave modules, 144-28MHz transverter, G4KIN, Liverpool. Tel: 051-531 1365.

No.19 set in any condition, working or not, also an ancillary equipment to mount the set in a wartime Willy Jeap. Tel: Newport (01363) 893570 after 6pm.

Octal base 1MHz crystal, part no. DC-9 for BC 228. Also 65J7 (this type has the yellow base). Quote price delivered to: E.F.C. Owen, 28 Chartfield Road, Reigate, Surrey RH2 3JE.

WSS2 set, complete or TX only, must be unmodified. Buyer will pay cash and collect. GWLVLS, Dyfed. Tel: (01267) 203231.

If you are selling equipment via 'Bargain Basement' it is in your interest to ensure cheques have been 'cleared' by the bank before parting with your equipment. If in doubt about cheque clearance times and bank fees for 'express cheque clearance, or for returning un-paid ('bounced') cheques, you are advised to consult your bank. When advertising equipment for sale, you should clearly state in your advert whether equipment is professionally built, 'home-brewed' or modified. You are also advised to insure equipment against damage during transit (details available from the Post Office or carrier of your choice).

The Publishers of Practical Wireless also wish to point out that it is the responsibility of the buyer to ascertain the suitability of goods offered for purchase.

Practical Wireless, October 1995
TOP PRICES PAID
for all your valves, tubes, semi-conductors and ICs.
Langrex Supplies Ltd.,
1 Mayo Road, Croydon,
Surrey CR0 2QP.

TOP PRICES PAID
for all your valves, tubes, semi-conductors and ICs.
Langrex Supplies Ltd.,
1 Mayo Road, Croydon,
Surrey CR0 2QP.

IS YOUR CLUB PLANNING OR HOLDING AN EVENT OR RALLY?
(01202) 659920
TO FIND OUT THE SPECIAL ADVERTISING RATES FOR CLUBS

Please mention [practical] Wireless when replying to advertisements

WANTED: SECONDOHAND GEAR
TOP CASH OFFERED
TEL: 01708 374043
Call Dave G3RCQ Mobile 0850 320134
G3RCQ Electronics

SUREDATA
PO Box 314, Edgware, Middx HA8 6ED
Tel/Fax 0181 905 7488 (24 hours)

Morse
TAKE THE STRAIN OUT OF LEARNING TO SEND AND RECEIVE MORSE. Works with any PC compatible. ONLY £8.99 from SHOESTRING SOFTWARE, 78 Carmarthen Road, Swansea SA1 1HS (FREE DEMO AND CATALOGUE AVAILABLE, 3.5" DISKS ONLY).

IS YOUR CLUB PLANNING OR HOLDING AN EVENT OR RALLY?
CI (01202) 659920 TO FIND OUT THE SPECIAL ADVERTISING RATES FOR CLUBS

Second User PCs

TOP CASH OFFERED
TEL: 01708 374043
Call Dave G3RCQ Mobile 0850 320134
G3RCQ Electronics

OFFER:
OLD USER PCs...

J. BIRKETT
SUPPLIERS OF ELECTRONIC COMPONENTS
25 The Strad,
Lincoln LN2 1JF
Tel: 0522767
Partners J.H.Birkett
J.L.Birkett

AFFORDABLE PACKET
COMMODORE 64/128...ATARI ST...IBM COMPATIBLE PC...SPECTRUM
It is now possible to use the above computers to run Packet Radio with an outlay of much less than £100!

COMMODORE, PC and Spectrum systems allow HF and VHF working, while the Atari system only offers VHF PMT facilities are available on the Commodore and the Spectrum if a microcassette is fitted. Digipeating facilities are offered on all versions. The Spectrum modem can also be supplied with a centronics printer port. We supply a fully tested modem, with a free copy of suitable software.

COMMODORE 64, Atari ST and PC MODEMS...

Spectrum Modem...

SPECTRUM MODEMS...

AFFORDABLE PACKET
COMMODORE 64/128...ATARI ST...IBM COMPATIBLE PC...SPECTRUM
It is now possible to use the above computers to run Packet Radio with an outlay of much less than £100!

COMMODORE, PC and Spectrum systems allow HF and VHF working, while the Atari system only offers VHF PMT facilities are available on the Commodore and the Spectrum if a microcassette is fitted. Digipeating facilities are offered on all versions. The Spectrum modem can also be supplied with a centronics printer port. We supply a fully tested modem, with a free copy of suitable software.

COMMODORE 64, Atari ST and PC MODEMS...

Spectrum Modem...

Baycom Agency

Specturm Modem...

Spectrum Modem with printer port...

S.A.E. for details.

J & P ELECTRONICS LTD.
Unit 45, Meadowmill Estate, Dixon Street,
Kidderminster DY10 1HH
Tel: (01562) 753893

ANTENNA SPECIAL
Reviewed:
Lowe HF-250 Receiver
Plus:
A Medium Wave Booster
Antenna Rigging
Ballock Monitoring
Station
Low Noise Vertical
Antenna Design
Modifed ATU
Opec 'Scout 40' and Reaction Tuning
The Rainbow Loop - Antenna Project

Coming Next Month:
*** A simple 2 Valve SW Radio - Part 2
*** International Air Tattoo '95 - SWM Stuff Report
*** Stand up the Real Listener
*** How The Maritime "Y" Stations Operated
*** International Short Wave Broadcasting
*** Mode: To Salisbury RT863
*** R1155 External PSU & Final AF Stage
*** Review - Sony Visual World Band Receiver CF7-421
*** The Easy Dipole

This Month: Antenna Special

Reviewed:
Lowe HF-250 Receiver
Plus:
A Medium Wave Booster
Antenna Rigging
Ballock Monitoring
Station
Low Noise Vertical
Antenna Design
Modifed ATU
Opec 'Scout 40' and Reaction Tuning
The Rainbow Loop - Antenna Project

Plus
Regular reports on every aspect of Short Wave Listening each Month

Practical Wireless, October 1995
ORDER FORM

FOR ALL MAIL ORDER PURCHASES IN PRACTICAL WIRELESS

<table>
<thead>
<tr>
<th>SUBSCRIPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRACTICAL WIRELESS - 1 YEAR</td>
</tr>
<tr>
<td>£22.00 (UK)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIAL JOINT SUBSCRIPTION WITH SHORT WAVE MAGAZINE (1 YEAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>£32.00 (UK)</td>
</tr>
</tbody>
</table>

* *Chiquitos* only please.

Please start my subscription with the __________ issue.

SUBS CLUB OFFER Page 17

- If I am a PW Subscriber please send me __________ copy(ies) of *The Superhet Radio Handbook* @ £4.95 Inc. P&P (UK, overseas).

BINDERS

- Please send me __________ PW Binder(s) @ £5.50 each.

Postal charges: £1 for one, £2 for two or more (UK & overseas surface).

BOOKS

- Please send me the following book(s),

 - Book 1: £
 - Book 2: £
 - Book 3: £

Postal charges:

- UK: £1 for one, £2 for two or more.
- Overseas: £1.75 for one, £3.50 for two or more.

NEW FASTER NEXT DAY SERVICE (UK)

(For orders received am.) £3.75

CREDIT CARD ORDERS TAKEN ON (01202) 659930 between the hours of 8.30 am - 4.30 pm. Outside these hours your order will be recorded on an answering machine.

PAYMENT DETAILS

Name

Address

Telephone No.

Postcode

I enclose cheque/PO (Payable to PW Publishing Ltd.) £

Or

Charge to my Access/Visa Card the amount of £

Card No.

Expiry date

Name last on credit card

Full Address

Postcode

Orders are normally despatched by return of post but please allow 28 days for delivery. Prices correct at time of going to press. Please note: all payments must be made in Sterling.

CARDCHARGE AUTHORITY (for subscriptions only)

To: PW Publishing Ltd., FREEPOST, Arrowsmith Court, Station Approach, Broadstone, Dorset BH18 8PW.

I authorise you, until further notice in writing, to charge my card unspecified amounts in respect of __________ (yearly magazine subscription) as and when they become due.

Visa/MasterCard account number

Expiry date

Name (as on credit card)

Merchant reference: 6940936

Signature

Date

This authority may be cancelled by writing to PW Publishing Ltd. at any time.

Use this part of the Order Form only if you want to use Cardcharge to pay for your subscription. If you want to take out a subscription or order other items and want to pay by conventional methods, please use the main part of the Order Form.
The books listed have been selected as being of special interest to our readers. They are supplied direct to your door. Many titles are overseas in origin.

TO ORDER: PLEASE USE THE ORDER FORM ON PAGE 62 OR TELEPHONE THE CREDIT CARD HOTLINE ON (01202) 659930 (24 HOURS)

LISTENING GUIDES

Airband

AIR BAND RADIO HANDBOOK 5th Edition

Clive Woodyear

Airband radio listening enables you to listen in on the conversations between aircraft and those on the ground who control them, and is an increasingly popular and fascinating hobby. A new chapter on military air band has been added. The author, an air traffic controller, explains more about this listening hobby.

190 pages. £9.99

AIR & METEO CODE MANUAL 14th Edition

Jorg Kringelhus

Extracts from the Meteorological Organisation Global Telecommunication System operating FAA and RTTY meteor stations, and its enormous format with decoding examples. Also detailed description of the Aeronautical Fixed Telecommunication network amongst others.

350 pages. £32.00

AIRWAYS 95

The Complete HF/VHF Aeronautical Frequency Directory

Compiles the radio frequencies made accessible in this volume, not only by services/activities listed, giving their frequencies, but also details of the services, for the first time in detail, the allocated, user can be found.

Almost sectors are listed as much more clearly than in the Supplements. The main transponder code groups are included. In fact, the book covers all the way from HF till VHF.

100 pages. £7.95

AIRWAYS EUROPE

This lavishly bound book is presented in a similar format to Airwaves 94 and contains a wealth of over 3000 military and 3000 civil callsigns are covered in detail.

450 pages. £52.50

CALLSIGN 95

Elton J. M. & S. Williams

Intended for the aircraft and radio enthusiast to use as a stand alone reference, or as a companion to Airwaves 94. Over 3000 military and 3000 civil callsigns are covered in detail.

260 pages. £12.95

HIGH IN THE SKY

Peter Shore

This book presents the complete HF/VHF airband directory for use as a reference book and to familiarise itself with the callsigns, communications, information about aircraft, weather conditions covering civil and military communication, and a brief look at civil/military frequencies taken up by each section. Each callsign is split into different sections (by antenna contact, by Sexall and by registration). The book is divided to Sector less used by executive jets. These are available. So far, only the minimum of mathematics is required. Includes a list of all the frequencies, but also describes how to extract the most from listening to it.

266 pages. £12.50

THE AIRBAND JARGON BOOK

Ron Sendwick

Designated for the newcomer to the world of airband listening to find quick details of a flight, they have included an aircraft's callsign, identifies the flight's altitude, airspeed, number and type of aircraft.

130 pages. £5.95

FLIGHT ROUTINGS 95

Compiled by T.T.S. S. Williams

This guide was produced with the sole aim of assisting anyone to quickly decode the most from listening to it. For the very first time a book has been published showing how to monitor British military communications. It contains a new world record set by朦胧 listeners. Radio signals are any kind of radio signal, from the smallest to the largest British military callsign ever to be published.

190 pages. £12.95

THE COMPLETE SHORT WAVE LISTENER'S HANDBOOK 4th Edition

Harold Skues, Clive Woodyear

This book is a satellite repair and installation engineer and the book covers satellite systems and their applications. It is divided into subsections covering each satellite, frequency bands, frequency listings for the aeronautical network, and frequencies for use with Internet services and Internet protocol stations. It includes FAX and RTTY listening. The book covers all aspects of radio listening, from the very first time a book has been published showing how to monitor British military communications.

190 pages. £12.95

PASSPORT TO WORLD BAND RADIO 1995

This book gives you the information to explore and enjoy the world of broadcast band listening. It includes features on different international radio stations, receives reviews and advice on the hours and language of broadcast. For the very first time a book has been published showing how to monitor British military communications. It contains a new world record set by朦胧 listeners. Radio signals are any kind of radio signal, from the smallest to the largest British military callsign ever to be published.

190 pages. £12.95

WORLD RADIO TV HANDBOOK 1995

Compiled by Geoff Halliday

This book was last updated in January '95 its 9th section is devoted to Satellites used by executive jets. These are included. As the author, he is looking for the any kind of radio signal, from the smallest to the largest British military callsign ever to be published.

190 pages. £12.95

SHORT WAVE COMUNICATIONS

Peter Raue C2128

Concerning anyone to the hobby of radio listening, international frequency listings for aviation, marine, military, space launches, search and rescue, etc. Contains special radio propagation, how to work your radio and what the controls do, antennas and band plans.

167 pages. £5.00

SATellite

AN INTRODUCTION TO AMATEUR COMMUNICATIONS SATELLITES

BPF106. A. Pickard

This book describes several currently available systems, their connection to any type of computer and how they can be operated with suitable software. The results of decoding signals containing such information as internet data and weather pictures are demonstrated.

102 pages. £3.95

AN INTRODUCTION TO SATELLITE COMMUNICATIONS

F. A. Wilson

As the author, he is looking for the any kind of radio signal, from the smallest to the largest British military callsign ever to be published.

190 pages. £3.95

ARRL SATELLITE ANTHOLOGY

This book contains a hardbound volume, printed on high quality paper. The author is a satellite repair and installation engineer and the book covers all stations in the world of broadcast band listening. It includes features on different international radio stations, receives reviews and advice on the hours and language of broadcast. For the very first time a book has been published showing how to monitor British military communications. It contains a new world record set by朦胧 listeners. Radio signals are any kind of radio signal, from the smallest to the largest British military callsign ever to be published.

190 pages. £3.95

NEWNES GUIDE TO SATELLITE TV

David Dichormson

This book is a hardbound volume, printed on high quality paper. The author is a satellite repair and installation engineer and the book covers all stations in the world of broadcast band listening. It includes features on different international radio stations, receives reviews and advice on the hours and language of broadcast. For the very first time a book has been published showing how to monitor British military communications. It contains a new world record set by朦胧 listeners. Radio signals are any kind of radio signal, from the smallest to the largest British military callsign ever to be published.

190 pages. £3.95
AN INTRODUCTION TO VHFAHF FOR RADIO AMATEURS BP261
U. D. Francis

An excellent book to go with the new Novice and full call, Nine chapters and an appendix deal with all aspects and frequencies from 30 to 300Mc. Topics include: propagation, descriptions of the bands, antennas, receivers, transmitters, and a special chapter on electronic devices and techniques. An excellent reference source. Approximately 1,010 pages, £10.50

ELECTRONIC EQUIPMENT FOR THE RADIO AMATEUR (BP225)
G. B. Jessop, G6JUP

The 5th edition of this most popular book gives the reader a complete picture of what is involved in the field of radio equipment for the beginner. It is a must for the serious experimenter. 235 pages, £14.50

HANDS-ON GUIDE TO OSCILLOSCOPES
B. A. Pentfold

Covers all aspects of oscilloscope use. This book is aimed at the novice and assumes a minimum of previous knowledge. An ideal book for students, scientists, and electronics enthusiasts alike. If you have an oscilloscope, this book is a must! 189 pages, £12.95

HOW TO USE OSCILLOSCOPES & OTHER TEST EQUIPMENT BP267
B. A. Pentfold

Here and ideal book on how to use the test equipment you have. It is written by an expert at test equipment, and assumes a minimum of previous knowledge and exp., so is ideal for use cover to cover, with an additional chapter on troubleshooting.

MORE ADVANCED TEST EQUIPMENT CONSTRUCTION BP268
B. A. Pentfold

A quick and easy book on the test equipment needed for the RF experimenter. It contains a lot of information on how to build your own equipment and includes many practical circuits. 104 pages, £5.95

PRACTICAL TRANSMITTERS FOR NOVICES
John Cope (GH4HM)

This excellent book is a quick and easy introduction to help build transmitters which are suitable for the UK Novice bands (including microwaves). Although the book is primarily aimed at Novices it should interest anyone who is building transmitters for the first time. It contains useful information on building, as well as construction details of practical transmitters.

TEST EQUIPMENT FOR THE RADIO AMATEUR
David Smith G4HR

This book covers the operation of test equipment, and many different practical setups for the radio amateur, using a wide variety of equipment and techniques. It includes antenna and transmission line measurements, frequencies, lines, and antennas and transmission lines. 170 pages, £9.95

VHF

ALL ABOUT VHF AMATEUR RADIO
W. L. Ormsby

Written in non-technical language, this book provides information covering VHF equipment and techniques, and tells you where you can find additional data. You have a scanner, you find a lot of interesting signals in the higher frequencies. 190 pages, £9.95

Propagation

AN INTRODUCTION TO RADIO WAVE PROPAGATION BP293
J. G. Lee

Now in its new edition, Propagation: the Propagation of radio waves which are the basis of our hobby? They affect the howlers, but different frequencies are treated in different ways. First part tells you what to expect in propagation, and then tells you when to expect it. An excellent book on propagation. 68 pages, £2.95

LOW PROFILE AMATEUR RADIO - OPERATING A HAM STATION FROM ALMOST ANYWHERE (RSGB)
Jim Kearrran, KRIS

This book covers all the techniques for being a hidden heart. There are chapters on complete equipment, operating techniques and antennas to build a new antenna. If you have a fascination for type radio operation or like the idea of having a complete station in a space traveling satellite, then this little Amateur book is for you! 170 pages, £9.95

SPACE RADIO HANDBOOK (RSGB)
John Shawege G4RNP

104 pages, £12.95

ORP

G-QRP CLUB CIRCUIT HANDBOOK
Edited by W. G. Deeds, G6JUP

This book is specially written for ORP enthusiasts. It includes a list of俱乐部 members, the ORP club rules, and information on various ORP equipment. A must for the serious experimenter. 140 pages, £12.95

ORP CLASSICS (ARRL)
Edited by Bob Schetgen

This book includes a collection of classics from various ORP organizations. The equipment is generally simple and easy to build, but often performs like more sophisticated commercial equipment. 300 pages, £12.95

SPACE RADIO HANDBOOK (RSGB)
John Shawege G4RNP

104 pages, £12.95

W1BY'S QRP NOTEBOOK (ARRL)
2nd Edition

This book offers a complete list of ORP circuits, methods, receivers and transmitters for ORP. This workshop style publication, which is packed with ideas for the keen ORP enthusiast, contains techniques, accessories and has a small technical reference section. 128 pages, £7.95

GETTING THE MOST FROM YOUR MULTIMETER BP239
B. A. Pentfold

This is a user-friendly book aimed at beginners. It covers both analog and digital multimeters and their respective terminology. All of the equipment is described in detail, with the emphasis on performance and quality.

HOW TO USE OSCILLOSCOPES & OTHER TEST EQUIPMENT BP267
B. A. Pentfold

Here and ideal book on how to use the test equipment you have. It is written by an expert at test equipment, and assumes a minimum of previous knowledge and exp., so is ideal for use cover to cover, with an additional chapter on troubleshooting.

MORE ADVANCED TEST EQUIPMENT CONSTRUCTION BP268
B. A. Pentfold

A quick and easy book on the test equipment needed for the RF experimenter. It contains a lot of information on how to build your own equipment and includes many practical circuits. 104 pages, £5.95

PRACTICAL TRANSMITTERS FOR NOVICES
John Cope (GH4HM)

This excellent book is a quick and easy introduction to help build transmitters which are suitable for the UK Novice bands (including microwaves). Although the book is primarily aimed at Novices it should interest anyone who is building transmitters for the first time. It contains useful information on building, as well as construction details of practical transmitters.

TEST EQUIPMENT FOR THE RADIO AMATEUR
David Smith G4HR

This book covers the operation of test equipment, and many different practical setups for the radio amateur, using a wide variety of equipment and techniques. It includes antenna and transmission line measurements, frequencies, lines, and antennas and transmission lines. 170 pages, £9.95

VHF

ALL ABOUT VHF AMATEUR RADIO
W. L. Ormsby

Written in non-technical language, this book provides information covering VHF equipment and techniques, and tells you where you can find additional data. You have a scanner, you find a lot of interesting signals in the higher frequencies. 190 pages, £9.95
The receiving side of the amateur radio hobby is not often the focus of attention in PW, so this month the Editorial team hope we’ve redressed that situation! In particular, I feel that Ian Poole’s article “Design Dilemmas” will go a long way in helping anyone thinking of designing their own receiver for the first time.

Dave Howes G4KQH has come up trumps with the PW Daventry receiver design. Anyone wishing to learn and apply the various techniques behind receiver development, can enjoy themselves and get on (to my favourite band!) 7MHz to good advantage with minimal outlay.

Regular readers of PW’s “Bargain Basement” section will also notice we’ve now included some more advice and requirements for intending advertisers. The notice is also aimed at helping everyone to get the best service out of a popular reader service. A large amount of amateur radio equipment ‘circulates’ within the hobby and this helps many a beginner. It also helps you to raise ready cash to re-invest! So, please take care in composing your advert and follow the guidelines to help us to provide the best reader service possible.

Next month, in our November issue we’ve got our ‘DX Special’ theme and there’s some fascinating tales waiting to be told! So, until then, good reading and good listening!

PW SERVICES

Queries:
Practical Wireless, PW Publishing Ltd., Arrowsmith Court, Station Approach, Broadstone, Dorset BH18 8PW.

We will always try to help readers having difficulties with Practical Wireless projects, but please note the following simple rules:

1. We cannot deal with technical queries over the telephone.
2. We cannot give advice on modifications either to our designs, to commercial radio, TV or electronic equipment.
3. All letters asking for advice must be accompanied by a stamped self-addressed envelope (or envelope plus IRCs for overseas readers).
4. Make sure you describe the problem adequately, with as much detail as you can possibly supply.
5. Only one problem per letter please.

Back Numbers
Limited stocks of many issues of PW for past years are available at £2.00 each including post and packing. If the issue you want is not available, we can photocopy a specific article at a cost of £1.50 per article or part of article.

Over the years, PW has reviewed many items of radio related equipment. A list of all the available reviews and their cost can be obtained from the Editorial Offices at Arrowsmith Court, Station Approach, Broadstone, Dorset BH18 8PW for a large stamped self-addressed envelope.

Binders
PW can provide a choice of binders for readers’ use. Plain blue binders are available, each holding 12 issues of any similar A4 format magazine. Alternatively, blue binders embossed with the PW logo in silver can be supplied. The price for either type of binder is £5.50 each (£2 P&P for one, £2 for two or more).

Send all orders to PW Publishing Ltd., FREEPOST, Arrowsmith Court, Station Approach, Broadstone, Dorset BH18 8PW.

Constructional Projects
Components for PW projects are usually readily available from component suppliers. For unusual or specialised components, a source or sources will be quoted.

Each constructional project is given a rating to guide readers as to the complexity.

- **Beginner**: A project that can be tackled by a beginner who is able to identify components and handle a soldering iron.
- **Intermediate**: A fair degree of experience of building radio or electronic projects is assumed, but only basic test equipment will be needed to complete any tests and adjustments.
- **Advanced**: A project likely to appeal to the experienced constructor. Access to workshop facilities and test equipment will often be required. Definitely not for the beginner to attempt without assistance.

Mail Order
All items from PW are available Mail Order, either by post or using the 24hr Mail Order Hotline 1012021 659930. Payment should be by cheque, postal order, money order or credit card (Mastercard and Visa only). All payments must be in sterling and overseas orders must be drawn on a London Clearing Bank.

DISTANCE IS NO OBJECT IN NOVEMBER’S PW!

‘DXpertise With Devereux’
Mike Devereux G3SBE takes time off from Nevada Communications to share his world-wide travels with the Camel Trophy DXpeditions.

Breaking The 100 Barrier
Join well known DXer Chris Page G4BVE as he describes how you break the 100 countries barrier and go on to the coveted ‘Honor Roll’ when you work 300 DX countries.

Build The ‘High Flyer’ Antenna
You too can work that DX when Victor Goom G4AMW describes his successful shortened dipole system.

Tex’s Tour
PW’s Tex Swann G1TEX has been on holiday with the FT-10R hand-held transceiver and describes his experiences while reviewing two interesting alternatives from Yaesu.

Smart Mobile!
Regular PW author Leighton Smart GWOLBI goes mobile in the Welsh Valleys with a friend to review the FT-8500 v.h.f./u.h.f. transceiver.

You won’t have to travel far to read the PW ‘DX Special’!
YOUR LOCAL DEALERS

SURREY
- **Chris Rees**
 - **G3TUX**
 - **The QRP Component Company**
 - PO Box 88, Haslemere, Surrey GU27 2RF
 - Tel: (01428) 641771
 - Fax: (01428) 661794
 - Stockists of:
 - Howes Kits
 - Jones Keys
 - Vargarda Aerials
 - Bits n' pieces!
 - Lists

MID GLAMORGAN
- **Sandpiper Communications**
 - Unit 5, Enterprise House, Cwmback Industrial Estate, Aberdare, Mid Glamorgan CF4 4AE
 - Tel: (01685) 870425
 - Fax: (01685) 876104
 - A full range of transmitting & receiving equipment available for the amateur commercial market.

YORKSHIRE
- **Alan Hooker**
 - **Radio Communications**
 - 42, Netherhall Road, Doncaster
 - Tel: (01302) 325690
 - Open Mon-Sat 10-5 pm
 - Closed Thursdays

KENT
- **WANTED**
 - We BUY and SELL all Amateur under one roof!
 - Send for free information Pack (UK readers SAE please) to -
 - RP Trading, Unit 12, Trade Ennor, FSM & A Comfree
 - 20 Woodside Way, Neasden, W3 6KJ
 - Tel: (01934) 512777
 - Fax: (01934) 512775
 - We are one of the largest stockists of valves etc, in the U.K.
 - We stock all makes or equipment for the Amateur and Listener.
 - Part Exchange Welcome

SCOTLAND
- **Tennamast**
 - Masts from 25ft - 100ft
 - Adapt-A-Mast
 - (01506) 503824
 - 8d Made Road, Duffter, Ayrshire, KA15 2RF

NORTHWEST
- **ARC Ltd.**
 - **Everything for the radio amateur under one roof!**
 - 36 Bridge Street, Earlestown, Newton-le-Willows, Merseyside WA12 9BA
 - Tel: 01925 229881
 - Fax: 01925 229882

AVON/SOMERSET
- **QSL Communications**
 - We stock all makes of equipment for the Amateur and Listener.
 - Part Exchange Welcome
 - Ltd & Wire Industrial Centre, Giger Road, Weston-Super-Mare BS22 OBX
 - Tel/Fax: (01934) 512757
 - Phone for a most courteous quotation
 - 081-743 0899
 - Fax: 081-749 3934

SOUTHAMPTON
- **ELECTRONICS VALVES & SEMICONDUCTORS**
 - We are one of the largest stockists of valves etc, in the U.K.
 - COLOMOR (ELECTRONICS) LTD.
 - 170 Goldhawk Road
 - London W12 8HU

Index to Advertisers

AH Supplies	52
AKD Ltd	38
ARC Ltd	47
Castle Electronics	52
Chevet Books	47
Cirkit	4
Coastal Comms	38
Colomer	68
Cricklewood Electronics	47
Datong Electronics	51
G3RCQ	61
Haydon Comms	14/15
Howes, CM	44
Icom UK	cover iii
Interconnections	51
J & P Electronics	61
J Birkett	61
Lake Electronics	52
Langrex Supplies	52
Lentini Comms	52
Lowe Electronics	67
Maplin Electronics	cover iv
Martin Lynch	34/35
Monitoring Times	44
RAS Nottingham	52
Remote Imaging Group	68
Robinson Marshall	5
RSGB	51
SGC Ltd	4
Short Wave Magazine	61
SMC Ltd	2/3
Suredata	61
Thames Valley Rally	47
Waters & Stanton	28/29
Wimborne Publishing	8
Yaesu UK	cover ii
The IC-W31E offers outstanding performance and features in a surprisingly compact package. On offer are: dual-band operation, numerous memories, alphanumeric display and much more. This handheld truly lives up to the phrase "good things come in small packages."

- Slim compact dimensions: unlike other bulky dual-band handhelds.
- Memories can be displayed by frequency or channel number with dependable EEPROM memory back-up.
- 2 dials give independent tuning of VHF and UHF bands.
- The alphanumeric display can also be used to create DTMF Tx or Rx messages up to 6 characters for simple paging.
- MOS-FET power module, voltage readout, multiple power-save.
- 3 levels of power output.
- V/V U/U or V/U main/sub band operation.
- Accepts 4.5 to 16 volts DC, external power supply.
- Full crossband duplex operation.
- 50 frequency CTCSS encode as standard.
- 6 DTMF memories with up to 30 digits each.
- Comes complete with operational accessories, antenna, charger etc.

ICOM manufacture a full range of base-stations, mobiles and handheld transceivers and receivers to cover all popular Ham-frequencies... and beyond. No matter what your requirements, ICOM have the radio for you.

For the full picture and details of your local authorised Icom dealer contact:
Icom (UK) Ltd. Sea Street Herne Bay Kent CT6 8LD.
With over 14,000 products the new Maplin Catalogue is now bigger than ever

THE EIFFEL TOWER
Built in 1889 by Alexandre Gustave Eiffel, the Eiffel Tower is 984 feet high and gives an unrivalled view of the whole of Paris.

THE NEW MAPLIN CATALOGUE
Built in 1995 by Maplin, the new catalogue is almost 1,200 pages long and gives an unrivalled view of the whole world of electronics. Now Only £2.95

Catalogue available at branches of WHSMITH, John Menzies and Maplin stores nationwide, or order direct NOW on 01702 554161

Catalogue Mail order Price £3.45 (inc p&p). Prices depicted are from the 1996 Maplin Catalogue and are inclusive of VAT. All items are subject to availability. E & OE. Maplin Electronics, P.O. Box 3, Rayleigh, Essex, England SS6 8LR.