<table>
<thead>
<tr>
<th>CHRONOGRAPH</th>
<th>SOLAR QUARTZ LCD 5 Function</th>
<th>QUARTZ LCD ALARM 7 Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>£18.65</td>
<td>£8.65</td>
<td>£12.65</td>
</tr>
<tr>
<td>Guaranteed same day dispatch.</td>
<td>Guaranteed same day dispatch.</td>
<td>Guaranteed same day dispatch.</td>
</tr>
<tr>
<td>Basic alarm.</td>
<td>Timer alarm with dual.</td>
<td>Hours, mins., secs., month, day,</td>
</tr>
<tr>
<td>8mm thick.</td>
<td>Split and lap modes.</td>
<td>6 digits, 11 functions.</td>
</tr>
<tr>
<td>Timer alarm</td>
<td>Stop-watch to 12 hours</td>
<td>Hours, mins., secs., 1/10th,</td>
</tr>
<tr>
<td>Only 6mm thick.</td>
<td>59.9 secs., in 1/10th steps.</td>
<td>1/100th, 1/100th, secs.,</td>
</tr>
<tr>
<td></td>
<td>Split and lap timing modes.</td>
<td>159X secs., in 1/100th steps.</td>
</tr>
<tr>
<td></td>
<td>Dual time zones.</td>
<td>Stop-watch to 12 hours</td>
</tr>
<tr>
<td></td>
<td>Only 8mm thick.</td>
<td>59.9 secs., in 1/100th steps.</td>
</tr>
<tr>
<td></td>
<td>Back-light.</td>
<td>steps.</td>
</tr>
<tr>
<td></td>
<td>Fully adjustable bracelet.</td>
<td>Dual time zones.</td>
</tr>
<tr>
<td></td>
<td>Back-light, Fully adjustable</td>
<td>Alarm, 8mm thick.</td>
</tr>
<tr>
<td></td>
<td>Adjustable bracelet.</td>
<td>Fully adjustable bracelet.</td>
</tr>
<tr>
<td></td>
<td>Stainless steel bracelet and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>back.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guaranteed same day dispatch.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MULTI ALARM 6 Digits 10 Functions</th>
<th>FRONT-BUTTON Alarm Chrono Dual Time</th>
<th>SOLAR QUARTZ LCD Chronograph with Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>£18.65</td>
<td>£22.65</td>
<td>£27.95</td>
</tr>
<tr>
<td>Guaranteed same day dispatch.</td>
<td>Guaranteed same day dispatch.</td>
<td>Guaranteed same day dispatch.</td>
</tr>
<tr>
<td>* Hours, mins., secs., date, day,</td>
<td>* AM/PM indicator, month, date.</td>
<td>* 9 digits, 5 flags.</td>
</tr>
<tr>
<td>* Memory date alarm.</td>
<td>Continuous display of hours and mins.</td>
<td>* Count-down alarm.</td>
</tr>
<tr>
<td>* Timer alarm with dual.</td>
<td>plus optional seconds or date display.</td>
<td>* 6 further time zones.</td>
</tr>
<tr>
<td>* Day and 10 country zones.</td>
<td>Stop-watch to 12 hours</td>
<td>* Count-down alarm.</td>
</tr>
<tr>
<td>* 8mm thick.</td>
<td>Dual time zones.</td>
<td>* Alarm.</td>
</tr>
<tr>
<td></td>
<td>Only 8mm thick.</td>
<td>* 9 mm thick.</td>
</tr>
<tr>
<td></td>
<td>Fully adjustable bracelet.</td>
<td>* Fully adjustable bracelet.</td>
</tr>
<tr>
<td></td>
<td>Adjustable bracelet.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stainless steel bracelet and back.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guaranteed same day dispatch.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEIKO Alarm Chrono</th>
<th>SEIKO MEMORY BANK</th>
<th>SEIKO-STYLE Dual time-alarm Chronograph</th>
</tr>
</thead>
<tbody>
<tr>
<td>£105.00</td>
<td>£79.50</td>
<td>£35.00</td>
</tr>
<tr>
<td>METAC Price</td>
<td>METAC Price</td>
<td>METAC Price</td>
</tr>
<tr>
<td>£12.65</td>
<td>£10.65</td>
<td>£29.65</td>
</tr>
<tr>
<td>Guaranteed same day dispatch.</td>
<td>Guaranteed same day dispatch.</td>
<td>Guaranteed same day dispatch.</td>
</tr>
<tr>
<td>LCD, hours, mins., secs., day, date, month, 24 hours Alarm, 12 hour chronograph, 1/100th sec., split and lap time, backlight, stainless steel, HADLEXY glass.</td>
<td>Calendar watch M384, hours, mins., secs., month, day, date in 12 or 24 hour format, all indicators continuously, Memory calendar display, month, year and all dates for any selected month over 80 year period, Memory back function, Any desired cases up to 11 can be stored in advanced, 2 year battery life, Water resistant.</td>
<td>Mineral glass face, Battery hatch for DIY battery replacement, Top quality finish with fully adjustable bracelet.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HANIMEX Electronic LED Alarm Clock</th>
<th>HANIMEX portable LCD clock radio</th>
<th>QUARTZ LCD Ladies 5 Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>£9.95</td>
<td>£17.95</td>
<td>£9.95</td>
</tr>
<tr>
<td>Guaranteed same day dispatch.</td>
<td>Guaranteed same day dispatch.</td>
<td>Guaranteed same day dispatch.</td>
</tr>
<tr>
<td>Features and Specification:</td>
<td>Features and Specification:</td>
<td>Features and Specification:</td>
</tr>
<tr>
<td>Hour, minute, second display.</td>
<td>Time set & alarm controls.</td>
<td>Dual Time. Local time always visible.</td>
</tr>
<tr>
<td>Alarm on.</td>
<td>Snooze & sleep controls.</td>
<td>You can set and recall any other time zone (such as GMT).</td>
</tr>
<tr>
<td>Alarm face.</td>
<td>Wake to music or alarm.</td>
<td>Also has a light for night viewing.</td>
</tr>
<tr>
<td>AM/PM indicator.</td>
<td>Battery operated.</td>
<td>Calendar functions include the date and day in each time zone.</td>
</tr>
<tr>
<td>No plug required.</td>
<td>Receives all standard AM radio broadcasts.</td>
<td>Chronograph/Stopwatch displays up to 12 hours, 59 minutes, and 59.9 seconds.</td>
</tr>
<tr>
<td>Drawsstring carrying case included.</td>
<td>Back-light.</td>
<td>On command, stopwatch display freezes to show intermediate (split/lap) time while stopwatch continues to run. Can also switch to and from timekeeping and stopwatch modes without affecting either's operation.</td>
</tr>
<tr>
<td>Batteries supplied free.</td>
<td>Quartz crystal controlled.</td>
<td>ALARM can be set to any time within a 24 hour period. At the designated time, a pleasant, but effective buzzer sounds to remind or awaken you.</td>
</tr>
<tr>
<td>Battery powered.</td>
<td></td>
<td>Guaranteed same day dispatch.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QUARTZ LCD</th>
<th>SEIKO MEMORY BANK</th>
<th>SEIKO-STYLE Dual time-alarm Chronograph</th>
</tr>
</thead>
<tbody>
<tr>
<td>£15.00</td>
<td>£79.50</td>
<td>£35.00</td>
</tr>
<tr>
<td>M10</td>
<td>M11</td>
<td>M12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QUARTZ LCD ALARM 7 Function</th>
<th>ALARM CHRONO with 9 world time zones</th>
<th>OUTSTANDING FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>£12.65</td>
<td>£10.65</td>
<td>DUAL TIME. Local time always visible.</td>
</tr>
<tr>
<td>Guaranteed same day dispatch.</td>
<td>Guaranteed same day dispatch.</td>
<td>You can set and recall any other time zone (such as GMT).</td>
</tr>
<tr>
<td>Hours, mins., secs., month, day, 6 digits, 11 flags plus continuous display of date and seconds.</td>
<td>Count-down alarm.</td>
<td>Also has a light for night viewing.</td>
</tr>
<tr>
<td>1/100th, 1/100th, secs., 10K secs., mins., Split and lap modes.</td>
<td>Split and timing modes.</td>
<td>Calendar functions include the date and day in each time zone.</td>
</tr>
<tr>
<td>Back-light, auto calendar. Only 8mm thick. Stainless steel bracelet and back.</td>
<td>Alarm.</td>
<td>Chronograph/Stopwatch displays up to 12 hours, 59 minutes, and 59.9 seconds.</td>
</tr>
<tr>
<td>Adjustable bracelet.</td>
<td>Battery hatch for DIY battery replacement.</td>
<td>On command, stopwatch display freezes to show intermediate (split/lap) time while stopwatch continues to run. Can also switch to and from timekeeping and stopwatch modes without affecting either's operation.</td>
</tr>
<tr>
<td>METAC Price</td>
<td>Top quality finish with fully adjustable bracelet.</td>
<td>ALARM can be set to any time within a 24 hour period. At the designated time, a pleasant, but effective buzzer sounds to remind or awaken you.</td>
</tr>
<tr>
<td>£12.65</td>
<td>£29.65</td>
<td>Guaranteed same day dispatch.</td>
</tr>
<tr>
<td>Guaranteed same day dispatch.</td>
<td>Guaranteed same day dispatch.</td>
<td></td>
</tr>
</tbody>
</table>

CALLERS WELCOME Shops open 9.30 - 6.00.

METAC ELECTRONICS & TIME CENTRES

North & Midlands
67 High Street, Daventry
Northamptonshire
Telephone: 03272 76545

South of England
327 Edgware Road
LONDON W.2
Telephone: (01) 723 4753
While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on commercial radio, TV or electronic equipment. Please address your letters to the Editor, Practical Wireless, at the above address, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.

Components for our projects are usually available from advertisers. A source will be suggested for difficult items.

Subscriptions are available to both home and overseas addresses at £10.60 per annum, from "Practical Wireless" Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH.

Limited stocks of some recent issues of PW are available at 85p each, including post and packing to addresses at home and overseas.

Binders are available (Price £4.10 to UK addresses and overseas, including post and packing) each accommodating one volume of PW. Please state the year and volume number for which the binder is required.

Send your orders to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 0PF.

All prices include VAT where appropriate. Please make cheques, postal orders, etc., payable to IPC Magazines Limited.

COPYRIGHT
© IPC Magazines Limited 1980. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden.

All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

Our April issue will be published on 7 March (for details see page 37)
ELECTROVALUE CATALOGUE 10
HAD YOURS YET?

Our computer has already selected thousands of our customers to whom our new catalogue has automatically been sent. If you would like a copy too, simply send us your name and address. It’s FREE

(You don’t even have to pay postage in U.K.)

IT’S A GOOD DEAL BETTER FROM ELECTROVALUE

- We give discounts on C.W.O. orders, except for a few items market Net or N in our price lists.
- 5% on orders, list value £10 or more
- 10% on orders list value £25 or more
- Not applicable on Access or Barclaycard purchase orders.
- We pay postage in U.K. on C.W.O. orders list value £5 or over. If under, add 30p handling charge.
- We stabilise prices by keeping to our printed price lists which appear but three or four times a year.
- We guarantee all products brand new, clean and maker’s spec. No seconds, no surplus.
- We appointed distributors for SIEMENS, VERO, ISKRA, NASCOM and many others.

OUR NEW CATALOGUE No 10

ELECTROVALUE LTD
HEAD OFFICE (Mail Orders)
28(A) St. Jude’s Road, Englefield Green, Egham, Surrey TW20 OHH. Phone: 33603 (London prefix 87). STD 0764 Telex 264475.
NORTHERN BRANCH (Personal Shoppers Only)
680 Burnage Lane, Burnage, Manchester M19 1NA Phone: (061) 432 4945.

CHORDGATE LTD. SWINDON
SILICON TRANSISTORS FULL SPEC.
TIP318 25p comp, TIP322 25p, 5 pairs £2.00 or 10 either type £2.00.
TIP337 gen. pur. NPN 10 for 50p, 2N5293 NPN 75V 4A TAB collector 20p 10 for £1.75. TIP344 PNP 60V 10A 40p 10 for £3. E1N914 25p 10 for £5.00, 2N3253 30p comp. BD526 3op useful up to 50MHZ. 5 pairs £2.50 10 either type £5.00.

FAIRCHILD FND10 7seg. displays 0.15″ red common cathode 60p.
Pye dynamics thick film 1MHZ clocking oscillator, 5 volt supply, driver 150MHz load 60p.
36S-640kHz XTAL PCB MTG HCU + 219= 400HZ 75p.
444-8kHz XTAL wire end £1.95.
Beehive trimmer 3-30PF 10 for 50p.
1-5-5PF mini trimmer 5mm x 5mm HOR MTG 12p 10 for £1.
Steetner 3-15PF CER trimmer 10mm dia. vert. MTG 15p 10 for £1.20.

Denco transistor 1FTs instertage IFT13 60p. IFT14 Det. output 60p 47KHz.
10 MFD 6-3V tantalum caps head type 7p. 10 for 60p.
1 MFD 15V tantalum mini caps 4mm x 1-5mm 8p. 10 for 70p.

As above 2-2 MFD 5mm x 1-5mm 8p. 10 for 70p.

Colvern 1 watt wire wound pots 25R.
100K, 1K, 2K, 2.5K, 10K, 40K, 100K, 220K.

Electrolytic caps single end tag 680 MFD 16V 60p.
4700 MFD 16V 60p.

As above 10-30PF 15p. 10 for 70p.

For all above supplies add 35p post and packing. Orders over £4.00 post and packing inclusive.

Printed circuits detailed below add 35p post and packing 1-3 boards. Larger quantities post and packing inclusive.

PCB contains 2 x 10W wafer switching transistors.
2 x 7440 ICs.
2 x 7490 ICs.
2 x 7429 ICs.
MORE BIG VALUE FROM YOUR TANDY STORE

1000 OHMS/VOLTS AC/DC
8 RANGES
Handy multimeter for home and work-shop. Easy to read two colour scale meter. pin picks for all 8 ranges. Reads AC and DC volts 0-15-150. 1000 DC current 0-150mA. Resistance 0-100,000 ohms. Accuracy ± 3% full scale for DC ranges. ± 4% on AC ranges. Complete battery. 22-027.
REG. PRICE £6.95

6-DIGIT FREQUENCY COUNTER
Counts frequencies from 100 Hz to over 45 MHz with 100 mS gate time. Accuracy ± 3 ppm at 25°C or less. ± 30 MHz on 10 MHz. Overload protected 1-reg. input. Sensitivity 30 mV up to 30 MHz. Reg. 9V battery. 22-351.
REG. PRICE £79.95

MULTITESTER
Dual FET input for accuracy and minimum loading. 11.5cm mirrored scale. DC volts, 0-13-100-300-1000. DC current 0-100 a. 0-3-30-300 mA. Resistance 0-30-300-3K-30IC-1 megohm. 0-100-1K-10LC-100K-3 megohms. Reg. 9V battery. 22-209.
REG. PRICE £29.95

TRANSISTORIZED SIGNAL TRACER
Spot circuit troubles and check RF, IF and audio signals from aerial to speaker on all audio equipment. With 9V battery. Instructions 22-D10.
REG. PRICE £9.95

DIGITAL IC LOGIC PROBE
Unique circuitry makes it a combined level detector, pulse detector and pulse stretcher. Hi-LED indicates logic “1”, Lo-LED is logic “0”. Pulse LED displays pulse transitions to 300 nanoseconds. Blinks at 3 Hz for high frequency signals (up to 1.5 MHz). Input impedance: 300K ohms. With 36” power cables. 22-300.
REG. PRICE £19.95

REALISTIC DX 300
General coverage receiver. Quartz-synthesised tuning, digital frequency readout. 3-step RF Attenuator. 6-range preset select with LED indicators. SSB and CW demodulation. Speaker. Code oscillator. Batteries (not included) or 12V DC. 20-204.
REG. PRICE £229.95

DIGITAL TRANSISTOR CHECKER
Shows current gain and electrode open and short circuit. Tests low, medium, or high power PNP or NPN types. GaNoGo test from 5-50 mA on power types. 22-024.
REG. PRICE £9.95

VARIABLE POWER SUPPLY
Power project boards. IC's, other low-voltage DC equipment. Load regulation less than 450mV at 1 amp at 24V DC. Ripple: less than 25mV. Maximum output current: 1.25 amps. Switchable colour-coded meter reads 0-25V DC and 0-1.25 amps. Three-way binding posts take wires, banana plugs or dual banana plugs with 0.75" centres. For 220-240V AC.
REG. PRICE £35.95

For RF, IF, AF circuits Maximum accuracy. Easy push button operation. Needs two “AA” batteries. 22-4033.
REG. PRICE £2.79

AC/DC CIRCUIT TESTER
REG. PRICE £1.99

Dynamic Transistor Checker
Shows current gain and electrode open and short circuit. Tests low, medium, or high power PNP or NPN types. GaNoGo test from 5-50 mA on power types. 22-024.
REG. PRICE £9.95

You save because we design, manufacture, sell and service. Tandy have over 7000 stores and dealerships worldwide. Over 2,500 products are made specifically for or by Tandy or 16 factories around the world. The quality of our products has been achieved by over 60 years of continuous technological advancement.

The largest electronics retailer in the world. Offers subject to availability. Instant credit available in most cases.
OVER 170 STORES AND DEALERSHIPS NATIONWIDE.

Practical Wireless, March 1980
Transistors

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Type</th>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N5060</td>
<td>115V</td>
<td>1W</td>
<td>100mA</td>
</tr>
<tr>
<td>7812</td>
<td>5V</td>
<td>78W</td>
<td>0.4A</td>
</tr>
<tr>
<td>4066</td>
<td>5.1V</td>
<td>2500mA</td>
<td>250mA</td>
</tr>
<tr>
<td>4069</td>
<td>5.1V</td>
<td>450mA</td>
<td>250mA</td>
</tr>
<tr>
<td>4070</td>
<td>5.1V</td>
<td>750mA</td>
<td>250mA</td>
</tr>
</tbody>
</table>

Veroboard Transformers

<table>
<thead>
<tr>
<th>Transformer</th>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>6V 250mA</td>
<td>110p</td>
<td></td>
</tr>
<tr>
<td>6-6 100mA</td>
<td>120p</td>
<td></td>
</tr>
<tr>
<td>6-6 150mA</td>
<td>120p</td>
<td></td>
</tr>
<tr>
<td>12V 130mA</td>
<td>75p</td>
<td></td>
</tr>
<tr>
<td>12V 1A</td>
<td>200p</td>
<td></td>
</tr>
<tr>
<td>12-0-12 300mA</td>
<td>140p</td>
<td></td>
</tr>
<tr>
<td>12V 300mA</td>
<td>140p</td>
<td></td>
</tr>
<tr>
<td>12V 200mA</td>
<td>280p</td>
<td></td>
</tr>
<tr>
<td>20-0-20 1A</td>
<td>250p</td>
<td></td>
</tr>
<tr>
<td>12V 6-1.7V</td>
<td>600p</td>
<td></td>
</tr>
</tbody>
</table>

Capacitors

<table>
<thead>
<tr>
<th>Capacitor</th>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10μF</td>
<td>150p</td>
<td></td>
</tr>
<tr>
<td>1μF</td>
<td>75p</td>
<td></td>
</tr>
</tbody>
</table>

Diodes

<table>
<thead>
<tr>
<th>Diode</th>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N4148</td>
<td>40V</td>
<td>4A</td>
</tr>
<tr>
<td>1N4149</td>
<td>40V</td>
<td>4A</td>
</tr>
<tr>
<td>1N4150</td>
<td>40V</td>
<td>4A</td>
</tr>
</tbody>
</table>

Resistors

<table>
<thead>
<tr>
<th>Resistor</th>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10kΩ</td>
<td>200p</td>
<td></td>
</tr>
<tr>
<td>22kΩ</td>
<td>300p</td>
<td></td>
</tr>
<tr>
<td>1MΩ</td>
<td>500p</td>
<td></td>
</tr>
</tbody>
</table>

Integrated Circuits

<table>
<thead>
<tr>
<th>IC</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HC14</td>
<td>50p</td>
<td></td>
</tr>
<tr>
<td>74HC15</td>
<td>50p</td>
<td></td>
</tr>
<tr>
<td>74HC16</td>
<td>50p</td>
<td></td>
</tr>
</tbody>
</table>

Resistor Boxes

<table>
<thead>
<tr>
<th>Box Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>150p</td>
</tr>
<tr>
<td>Medium</td>
<td>250p</td>
</tr>
</tbody>
</table>

Computer Grade

<table>
<thead>
<tr>
<th>Computer</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>6800</td>
<td>200p</td>
</tr>
<tr>
<td>6800B</td>
<td>300p</td>
</tr>
</tbody>
</table>

Service Aids and Connectors

<table>
<thead>
<tr>
<th>Service Aid</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch cleaner 702</td>
<td>80p</td>
</tr>
<tr>
<td>Electrode plus 2X</td>
<td>45p</td>
</tr>
<tr>
<td>Dolo etching pens</td>
<td>100p</td>
</tr>
<tr>
<td>Solder iron</td>
<td>60p</td>
</tr>
<tr>
<td>Antenna (702)</td>
<td>45p</td>
</tr>
<tr>
<td>5000 Ensign Multicore 60/40</td>
<td>600p</td>
</tr>
</tbody>
</table>

Special Purchases

<table>
<thead>
<tr>
<th>Special Purchase</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>D25 multivox connectors, brand new, with shells</td>
<td>£1 each</td>
</tr>
<tr>
<td>3x Verocom with guide and connector</td>
<td>£6 each</td>
</tr>
<tr>
<td>5x Verocom with guide and connectors</td>
<td>£15 each</td>
</tr>
</tbody>
</table>

All prices include VAT at 15%.
This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide, circuit description, installation details and operational instructions all well illustrated with numerous figures and diagrams.

- Handsome purpose built ABS cabinet
- Easy to build and install
- Uses Texas Instruments TMS1000 microcomputer
- Absolutely all parts supplied including IC socket
- Ready drilled and legended PCB included
- Comprehensive kit manual with full circuit details
- No previous microcomputer experience necessary
- All programming permanently retained on-chip ROM
- Can be built in about 3 hours!
- Runs off 2 PP3 type batteries
- Fully Guaranteed

+ Save pounds on normal retail price by building yourself.

ONLY £9.95

TMS 1000N

- MP0027A Micro-computer chip available separately if required. Full 24 tune spec device fully guaranteed.

This unique chip can be used not only for electronic door chimes but for other projects requiring musical output: New low price only

- Car Horns
- Musical Boxes
- Amusement Machines
- Alarms
- Public Address etc

£4.95 inc. p&p

Free applications manual and data supplied with device! (Or 30p separately.)

ALL CHROMATRONICS PRODUCTS SUPPLIED WITH MONEY BACK GUARANTEE

Please send me: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX.

TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX.

NAME ___________________________

ADDRESS _________________________

Signature _________________________

I enclose cheque/PO value £ __________ or debit my ACCESS/BARCLAYCARD account no. __________

Send SAE if brochure only requested.

Practical Wireless, March 1980
The pack contains all the electronic components to build the radio, you supply only the wire and solder as featured in the Practical Electronics March issue.

The P.E. Traveller features pre-set tuning with five push button options, black illuminated tuning scale, with matching rotary control knobs, one, combining on/off volume and tone-control, the other for manual tuning, each set on wood simulated fascia.

The P.E. Traveller has a 6 watts output, negative ground and incorporates an integrated circuit output stage, a Mullard IF module LPI181 ceramic filter type, pre-aligned and assembled and a Bird pre-aligned push button tuning unit. The P.E. Traveller fits easily in or under dashboards. Complete with instructions.

£10.50
£1.50
CONSTRUCTORS PACK 7A
Suitable stainless steel fully retractable locking aerial and speaker (approx 6" x 4") is available as a kit complete.

For the experienced constructor complete in every detail. Same facilities as Viscount IV, but with 30x30 output, 60/60 watts peak. For use with 40/45 ohms speaker. £31.50 £30.00

The pack contains all the electronic components to build the radio, you supply only the wire and solder as featured in the Practical Electronics March issue.

The P.E. Traveller features pre-set tuning with five push button options, black illuminated tuning scale, with matching rotary control knobs, one, combining on/off volume and tone-control, the other for manual tuning, each set on wood simulated fascia.

The P.E. Traveller has a 6 watts output, negative ground and incorporates an integrated circuit output stage, a Mullard IF module LPI181 ceramic filter type, pre-aligned and assembled and a Bird pre-aligned push button tuning unit. The P.E. Traveller fits easily in or under dashboards. Complete with instructions.

£10.50
£1.50
CONSTRUCTORS PACK 7A
Suitable stainless steel fully retractable locking aerial and speaker (approx 6" x 4") is available as a kit complete.

£1.95
Per Pack. p & p £1.00.

Pack 7A may only be purchased at the same time as Pack 7.

323 EDGWARE ROAD, LONDON W2. For Personal Shoppers Only.
218 HIGH STREET, ACTON W3 6NG. Mail Order Only. No Callers.
Eddystone

The Leaders in Short Wave

at SONIC SOUND AUDIO

BRITAIN'S No. 1 AUDIO STORE

Sole Retailers

DISTRIBUTORS FOR EDDYSTONE

SWANLEY ELECTRONICS

DEPT: PW, 32 Godalming Rd, Swanley, Kent BR8 8EZ

Callers by appointment only. Please add 30p to the total cost of your order for postage. Prices include VAT unless stated. Lists 240 posts free. Overseas customers deduct 13% Off. Official credit orders welcome.

Sonic Sound, the premier home entertainment store, have now added yet another big name in the field of short wave to further enhance their prestige in London's most fashionable and Hi-Fi field in Tottenham Court Road. Eddystone, at the top of the list since short wave began, have been appointed Sonic Sound Audio as sole retail distributors in the United Kingdom.

Anyone even contemplating purchasing short wave equipment, be they looking for the best possible available for their Embassy, press department or home use, should visit or contact Sonic where they will be able to view and listen to the most comprehensive range of the latest short wave equipment on the market today.

Listen and choose in comfort at Britain's most up-to-date and conditioned short wave equipment demonstrations. Full ranges of Hi-Fi, Video equipment, in-car and portables, etc., from all leading manufacturers: B & O, Sanyo, Sony, Hitachi, Pioneer, JVC.

MAIL ORDER DEPT.

CRESCENT RADIO LTD

1ST. MICHAELS TERRACE, WOOD GREEN,

LONDON N22 4SJ. 01-888 3206

3-KILOWATT PSEUDOELECTRIC LIGHT CONTROL

100-Watt switching channel max. A 3-channel sound to light unit housed in a robust metal case, with a sensitivity control for each channel i.e. Bass, middle and treble. Full instructions make this unit easy to connect to your present amplifier.

S.A.E. for free sheet.

Still only £20.00 + 15% VAT.

CR. 4110. DESOLDERING PUMP

5 x 5 spot. 15% VAT.

High suction pump with automatic sensing, channel, anti corrosive casing. Teflon nozzle.

CR. LV1. 12v DRILL

£12.00p.

15% VAT.

BRITISH MADE "Versadri", 12 volts DC.

Compact battery operated power tool. suitable for all operations associated with 240 volts. £2.00.

FOOTSWITCH C338

250v, 5amp.

15% VAT.

FLIP

PUSH BUTTON HEADS OR TAILS

32x269

555.9x762.8

A pocket game. Easy to build and great to play.

Complete kit and full instructions supplied.

KIT PRICE = £5.25 + 15% VAT. Post free.

For all outdoor P.A. Work. 50K On-Volt age Change. Regulated to supply exact powers.

Only £7 + 15% VAT.

240v AC input: Outputs: 3, 6, 7.5 and 9 volts. Switch: On-OFF. Polarity Reversing and Power Supply.

PS. STABILIZED POWER SUPPLY

240v AC input: Outputs: 3, 6, 7.5 and 9 volts DC at maximum 400 mA. Three switches: On-Off, Polarity Reversing and Voltage Change. Regulated to supply exact voltage and current. £10 each.

U.S.A. COAXIAL CONNECTOR

Stereo mini male plug.

FL269.

Price 50p + 15% VAT each.

PUBLICATIONS

Full instructions make this unit easy to connect to your present amplifier.

S.A.E. for free sheet.

Still only £20.00 + 15% VAT.

CR. 4110. DESOLDERING PUMP

5 x 5 spot. 15% VAT.

High suction pump with automatic sensing, channel, anti corrosive casing. Teflon nozzle.

CR. LV1. 12v DRILL

£12.00p.

15% VAT.

BRITISH MADE "Versadri", 12 volts DC.

Compact battery operated power tool. suitable for all operations associated with 240 volts. £2.00.

FOOTSWITCH C338

250v, 5amp.

15% VAT.

S-DECS and T-DECS

S-Dec £2.78. T-Dec £4.89. A-Dec £4.69.

BATTERY ELIMINATORS

PUSH BUTTON HEADS OR TAILS

32x269

555.9x762.8

A pocket game. Easy to build and great to play.

Complete kit and full instructions supplied.

KIT PRICE = £5.25 + 15% VAT. Post free.

For all outdoor P.A. Work. 50K On-Voltage Change. Regulated to supply exact powers.

Only £7 + 15% VAT.

240v AC input: Outputs: 3, 6, 7.5 and 9 volts. Switch: On-OFF. Polarity Reversing and Power Supply.

PS. STABILIZED POWER SUPPLY

240v AC input: Outputs: 3, 6, 7.5 and 9 volts DC at maximum 400 mA. Three switches: On-Off, Polarity Reversing and Voltage Change. Regulated to supply exact voltage and current. £10 each.

U.S.A. COAXIAL CONNECTOR

Stereo mini male plug.

FL269.

Price 50p + 15% VAT each.

PUBLICATIONS

Full instructions make this unit easy to connect to your present amplifier.

S.A.E. for free sheet.

Still only £20.00 + 15% VAT.

CR. 4110. DESOLDERING PUMP

5 x 5 spot. 15% VAT.

High suction pump with automatic sensing, channel, anti corrosive casing. Teflon nozzle.

CR. LV1. 12v DRILL

£12.00p.

15% VAT.

BRITISH MADE "Versadri", 12 volts DC.

Compact battery operated power tool. suitable for all operations associated with 240 volts. £2.00.

FOOTSWITCH C338

250v, 5amp.

15% VAT.

S-DECS and T-DECS

S-Dec £2.78. T-Dec £4.89. A-Dec £4.69.

BATTERY ELIMINATORS

PUSH BUTTON HEADS OR TAILS

32x269

555.9x762.8

A pocket game. Easy to build and great to play.

Complete kit and full instructions supplied.

KIT PRICE = £5.25 + 15% VAT. Post free.

For all outdoor P.A. Work. 50K On-Voltage Change. Regulated to supply exact powers.

Only £7 + 15% VAT.

240v AC input: Outputs: 3, 6, 7.5 and 9 volts. Switch: On-OFF. Polarity Reversing and Power Supply.

PS. STABILIZED POWER SUPPLY

240v AC input: Outputs: 3, 6, 7.5 and 9 volts DC at maximum 400 mA. Three switches: On-Off, Polarity Reversing and Voltage Change. Regulated to supply exact voltage and current. £10 each.

U.S.A. COAXIAL CONNECTOR

Stereo mini male plug.

FL269.

Price 50p + 15% VAT each.

PUBLICATIONS

Full instructions make this unit easy to connect to your present amplifier.

S.A.E. for free sheet.

Still only £20.00 + 15% VAT.

CR. 4110. DESOLDERING PUMP

5 x 5 spot. 15% VAT.

High suction pump with automatic sensing, channel, anti corrosive casing. Teflon nozzle.

CR. LV1. 12v DRILL

£12.00p.

15% VAT.

BRITISH MADE "Versadri", 12 volts DC.

Compact battery operated power tool. suitable for all operations associated with 240 volts. £2.00.

FOOTSWITCH C338

250v, 5amp.

15% VAT.
WAVEMETER Adm pattern LW wavemeter covers 10 to 30Kc in two ranges uses two plug in coils with direct calibration, absorption type with lamp ind. Also contains Tx 100gf tuning cond this can be rebuilt for other capacities and spacing, the two coils contain large amount of silk covered copper wire all contained in polished wood case size 12 x 7 x 9½ £10.50.

AMPLIFIER MODULE self contained plug in unit provides gain up to 500 DC coupled, contains mains trans providing stab +20 & -20v supplies, good selection of 1% res, trim pots, transistors etc standard 250v/5p £5.50.

U.H.F. RX ASS single chan crystal controlled with crystal for 243Mc/s dual conversion IFs 20.5 & 2Mc/s 11 min valves low Imp/O/H res 200v HT & 6.3v size 9 x 4 x 4¼ new cond £16.50.

POWER UNIT INVERTER special purpose unit for 115v I/P contains 6 pot cores FX2240/4/3 types, 2x HV TO-3 power trans, 4x 400v 3 amp diodes, 8x BC107, 2x BY52 (types vary) 2x Thyristors inc 4 amp type, 3x 20mm panel fuse holders, elec cond, res, swt & zener diodes etc all in screened case size 9 x 3½ x 3¼ with circ £4.50 or 2 for £9.

RECORDING TAPE 1¾" by Ampex 3600 ft on 10½" spools new £7.50.

RECEIVER UNIT small high performance Rx uses 7 min valves covers 2.5 to 20Mc/s in 3 bands as RF stage, BFO, Volt Stab Wth O/P for HR or Crystal phones direct lead cal with guarded drive size 5 x 3½ x 3¼ these req ext supplies of 190v DC HT 40Ma & 6.3v AC 1 amp supplied with circ & notes no extra cost £25.

TRANSMITTER ASS 2/8Mc/s low power contains 500uA meter, tuning cond, coils, swts, terminals etc complete in case with circ less valves £5.50.

MAINS TRANS 200/250v Pria Sec 340-250-0-250-340v at 210Ma LTS 2.5v at 5 amps size inc term £4 x 4 x 6" these will do 700v DC at 250Ma with no LT load new boxed £9.50.

RECEIVER UNIT small battery operated covers 2 to BMc/s in 2 band 4 valve superhet plus BFO in case direct freq cal O/P for low or high res phones with circ res 135v HT & 1.5v DC £13.50.

AUDIO TEST SET CT373 bench test set comprises AF Osc 17C/S to 170Kc, AF VTVM & Distortion meter new cond further spec on request £65.

CRYSTAL UNIT dual 1 Mc/s & 100Kc with suggested circ £2.80.

STANDARD CEC 3355 volts tested £5.75 H.F.RX R4187 & CONTROL BOX crystal controlled 24 chan Rx covers 2.8 to 18Mc/s intended for remote control dual conversion Rx with 2 RF stages, BFO, ML etc 15 miniature valves reqs ext supplies of 19 & 24v DC supplied with circs new £25.

TAPE RECORDER ex American services for 115v 50c/s supply 19" covers to 20Mc/s in 3 bands RF stage, BFO, ML etc 15 miniature valves reqs ext supplies of 19 & 24v DC supplied with circs new £25.

HELIPOT DIALS two types 10 tr to fit 5/8th bush £1.50 also 20 tr to fit 5/8th bush £2.20.

SWITCHES all types for HR or Crystal phones direct lead cal with guarded drive size 5 x 3½ x 3¼ these req ext supplies of 190v DC HT 40Ma & 6.3v AC 1 amp supplied with circ & notes no extra cost £25.

INSTRUMENTS all types for HR or Crystal phones direct lead cal with guarded drive size 5 x 3½ x 3¼ these req ext supplies of 190v DC HT 40Ma & 6.3v AC 1 amp supplied with circ & notes no extra cost £25.

SHEFFIELD 59 4AE

Practical Wireless, March 1980
BAMBER ELECTRONICS DEPT: P.W. 5 STATION ROAD LITTLEPORT CAMBS CB6 1QE

QUALITY REEL TO REEL & CASSETTE TAPE HEADS & MECHANICS

C2000
REMOTE OPERATION TRANSPORT MECHANISM FOR DIGITAL OR AUDIO.

THIS BRITISH MADE CASSETTE TRANSPORT HAS GIVEN INDUSTRY A GREAT COST SAVINGS OVER COMPAREABLE FOREIGN IMPORTS AND IS NOW BEING MADE GENERALLY AVAILABLE.

CAN BE SUPPLIED WITH TAPE FAIL/END DETECTION, SEARCH, AND FAST ERASE. SOLENOID CONTROL PROVIDES FULL REMOTE OPERATION.

WRITE NOW FOR FULL DETAILS

BASIC PRICE £30.00 INC. VAT.

POUPULAR UNIVERSAL CASSETTE TAPE HEADS

120-01 Horno Playback £1.95
120-02 Horno Record/Playback £2.95
EG 20-20 Stereo Playback £3.20
EG 20-20 Stereo Record/Play £5.05
EG 27-07 Stereo R/P (Deity Stereo) £8.93
EG 27-07 Demo R/P (Deity Stereo) £10.09
EG 27-07 Demo R/P (Deity Stereo) £12.86
EG 27-07 Demo R/P (Deity Stereo) £15.09
EG 27-07 Demo R/P (Deity Stereo) £17.95
EG 27-07 Demo R/P (Deity Stereo) £20.95

Send for full details on all heads in this range.

MONOLITH
THE MOLNITﺣ ELECTRONICS CO., LTD.
50 CHURCHST., CRICKERNE, SOMERSET, ENGLAND. (036) 93028

CASINO WATCHES THE NEXT STEP FORWARD IN TIME. NEW LITHIUM BATTERIES LASTING UP TO 5 YEARS

LATEST MODEL 830S-27B
Displays hours, minutes, seconds, date AM/PM or hrs. mins. secs. Alpha day date AM/PM with automatic 28-30 day calendar, 4 year battery, 1/10th sec chronograph to 12 hours with reset, lap and 2nd place times. 24 hour alarm, stainless steel bracelet, mineral glass, water resistant to 66 ft., optional hourly chime facility included.

ONLY £26.95

810S-33B as above with 5 year battery, plated case, water resistant to 66 ft., 1/100th second chronograph or 24 hour display. 24 hour alarm with chime facility.

£26.95

81CS-33B as above with 2 models with all stainless steel case. Water resistant to 66 ft., mineral glass, accuracy ± 10 seconds per month.

ONLY £33.95

OTHER MODELS FROM THE CASIO RANGE

FRC time in 6 digits hour. mins. secs. with date and day AM/PM display. Stop watch, 1/10th second read and top times. 1st. 2nd places with £19.85.
950320 hours, mins. secs. chron. £21.95
950331 hours, mins. secs. chron. £23.95

ALL OTHER CASIO WATCHES P.O.A.

SEIKO WATCHES CURRENT

824-07 Stereo RIP (Dolby Digital) £1.87
C44RPH0J Quad R/P £9.28

SEIKO WATCHES CURRENT

C42RPH20 Stereo SENDUST R/P £18.95

SEIKO WATCHES CURRENT

824-02 Stereo Record/Playback £18.95

SEIKO WATCHES CURRENT

C42RPH20 Stereo SENDUST R/P £18.95

CASIO POCKET AND CLOCK CALCULATORS

A2020 calculator with clock in hours, minutes, seconds, stop/switch, calendar alarm, also countdown alarm. 1 year battery life £23.95
MELODY 80 calculator with clock, hours, minutes, seconds, calendar, stopwatch alarm and musical alarm. 1 year battery life £22.95
C222 executive desk calculator, clock with multi function alarm. Battery life 1 year.

£18.95

FX80 scientific card 39 functions with 600 hours battery life £14.95
FX68 scientific card 39 functions with 500 hours battery life £16.95

FX6600D ultra slim scientific 6-7 LCD 43 functions, latest model, non-volatile memory £19.95
FX2200 ultra slim scientific 10 digit 43 functions, latest model, non-volatile memory £20.95
FX310 ultra slim scientific 8-2 LCD 50 functions, latest model, non-volatile memory £16.95

CASIO SCIENTIFIC PROGRAMMABLES

FX501P Worlds first LCD pocket sized complete programmable. Uses electronic computer language, has 128 steps with 11 memories. Optional FPA program adapter available. Permits programs to be recorded on standard type cassette recorder and stored for re-entry when required. FPA1 adaptor also contains a music switch which converts calculator into musical synthesizer. Keys 1-8 contain pre-programming for a full musical octave. Calculator has automatic power off after 14 minutes non-use. With program stored in 11 non-volatile registers. Complete with wallet

£52.95

FX502P as above with 256 steps and 22 memories

PRICES FX501P £52.95
FX502P £72.95
FA1 Adaptor £18.95

BUMPER 1980 CATALOGUE

A selection of items below from our 1980 catalogue. The products we stock are below.

EAGLE, WELLER, DRAPER, SPRIRALUX, KNAPX, SERVISOL, BARNARD & BARNABY, NEWNES, JAYBEAM, VERD AND MANY OTHERS

SEND £1.35 and you will receive our catalogue plus five bi-monthly shortform catalogues to keep you up to date with prices and special offers. A FREE PACK OF BLANK CARDS Comes With This MONTHLY ISSUE.

EAGLE MA100 electric fully automatic 5 section retractable car aerial with built-in voltage sensor. Remote control dials make fitting easier. Aerial length 1.000mm, below wing 200mm. Full length 2,000mm flexible drive link. 100W FM/AM.

EAGLE D722 panning microphone, impedance 600 ohm or 50 ohms. Frequency response 30-20000Hz. Built-in switch gives 3000 mm. extension. £38.95

EAGLE MULTIMETER EM50. 50000 DPV DC 0-1200 volts. AC 0-1200 volts, DC current 0-5A, resistance 0-10 meg ohms £17.95

DRAPER SUPER CHROME 14" drive socket set 38 piece 6A, hexagon, 7A, 8A, 10A, metric, 11mm hexagon sockets and 6 accessories £35.95

WELLER INSTANT HEAT GUNS model no 8000 £152.95 + VAT
WELLER CORDLESS model no WC100 £254.75 + VAT
SUNP electric switch cleaner £62.75 + VAT
MARCHPULL storage boxes SP2 combination pack contains 1 x 600mm, 1 x 200mm, 1 x 100mm inside storage box £62.75 + VAT

JAYBEAM 'Sta-Bead' 67 FH/FM antennas model no SM42 3dBi level cabled and retailed with universal mast clamp. Full range ex-stock £49.95 + VAT

TERMS OF BUSINESS: ORDER v/ BEST P.O. ORDER CARRIAGE CHARGES FOR ORDERS UNDER £50

CARRETON: PICKING AND CARRIAGE CHARGES FOR ORDERS UNDER £50

FOR BULK BUT NOT LESS THAN £200.00 £19.95

CARRIAGE PAID UP TO £500 ORDER OVER £500 CARRIAGE PAID

P.C.B.'S FOR PRACTICAL WIRELESS PROJECTS

April 79. South Cliff Convent R041 Price £18.95 & 20 pence p & p.
Aug. 79. V.W. Test Probe R049 Price £29.95 & 20 pence p & p.
Sept. 79. Call Follow up to PW Gillingham R051 Price £32.95 + VAT
Dec. 79. Logical 6's + X's R055 Price £39.95 + VAT

July 79. AAN/MF Frequency Readout R059 Price £5.95 + 20 pence p & p.

Send P.W. JUMBO CLOCK KIT £33.00 ALL PRICES INCLUDE VAT

C. BOWES & CO. LTD.
4, Wood Street, Cheadle, Cheshire SK6 1AQ.
Tel. 061-428-4497.

Please state type number and enclose cheque or postal order.

www.americanradiohistory.com
NEW FOR 1980
MAGNUM 100

ANOTHER DISCO WINNER FROM THE SPECIALISTS
RSC PROUDLY PRESENT THE MAGNUM 100
FEATURES GALORE AT A PRICE
YOU CAN AFFORD

• Full 100 watts output
• Dual Input with Separate Treble/ Bass
• Full Headphone Monitor Facilities
• Autofade
• Master Volume
• 11" Turntables with Independent Illuminated Mains Switches
• Twin Speaker Sockets
• Slave and Sound to Light Outputs

MORE PEOPLE ARE DEMANDING TITAN SPEAKERS!!
MORE POWER
MORE RELIABILITY
MORE VALUE FOR MONEY

Titan Group Disco Speakers
All Ratings RMS
Imp. 8-15 ohms Compare these prices with other makes
T12/50R 12" 50 Watts £16.95 Deposit £4.50 & 8 Monthly payments of £2.00 (Total Credit £55.35)
T15/70 15" 70 Watts £24.95 Deposit £5.95 & 8 Monthly payments of £3.00 (Total Credit £55.35)
T15/85 15" 85 Watts £28.95 Deposit £5.95 & 8 Monthly payments of £3.25 (Total Credit £55.35)
T18/100 18" 100 Watts £47.95 Deposit £8.95 & 8 Monthly payments of £4.00 (Total Credit £55.35)

FUZZ LICHTS ROOST 400S
£27.95 Each

ROOST 400S
£199.95
Deposit £40.00 & 18 monthly payments of £11.20 (Total £241.60) (Carriage Free).

Exclusive to R.S.C.
AS-1 FOLK ACOUSTIC GUITAR Just £17.95
(Carriage £1)

OR £5 DEPOSIT & 8 MONTHLY PAYMENTS OF £2 TOTAL CREDIT PRICE £21

RSC Phantom 50
Combo Amplifier

• Full 50 watts RMS
• 12" Heavy Duty Fane Speaker
• Separate Treble, Bass and Presence Controls
• 3 Separate Inputs
• Master Volume Control
• 12 Month Guarantee

Top Value at £99.95

MORE ADVICE

MUSICAL INSTRUMENTS & LEICESTER 32 High Street
LEICESTER 32 High Street
TEL 56420 (Closed Thurs)

T15/100A 18" 100 Watts £26.95 Deposit £6.95 & 8 Monthly payments of £3.12 (Total Credit £55.35)
T15/85 15" 85 Watts £28.95 Deposit £5.95 & 8 Monthly payments of £3.25 (Total Credit £55.35)
T15/100 15" 100 Watts £35.95 Deposit £8.95 & 8 Monthly payments of £4.00 (Total Credit £55.35)
T18/100 18" 100 Watts £47.95 Deposit £8.95 & 8 Monthly payments of £5.80 (Total Credit £55.35)

FUSC LICHTS ROOST 400S
£27.95 Each

ROOST 400S
£199.95
Deposit £40.00 & 18 monthly payments of £11.20 (Total £241.60) (Carriage Free).

SOUND ADVICE
NATIONWIDE
All Branches open all day Saturday

BRADFORD 10 North Parade
TEL 25349 (Closed Wed)

BIRMINGHAM 30/31 Great Western Arcade
TEL 021-236 1279 (Closed Wed)

CARLISLE 8 English Street
TEL 35744 (Closed Thurs)

COVENTRY 17 Shelton Square, The Precinct
Tel 25983 (Closed Thurs)

DERBY 97 St Peter’s Street
Tel 41861 (Closed Thurs)

DEWSBURY 9/11 Kingsway
Tel 466585 (Closed Thurs)

DONCASTER 3 Queen’s Gate, Waterdale Centre
Tel 63069 (Closed Thurs)

EDINBURGH 101 Lothian Road
Tel 229 9501 (Closed Thurs)

GLASGOW Unit 13, Anderson Shopping Precinct
TEL 041-248 4158 (Closed Thurs)

HULL 7 Whitefriargate
Tel 20505 (Closed Thurs)

LEICESTER 32 High Street
Tel 56420 (Closed Thurs)

LONDON 238 Edgeware Road W2
Tel 723-1269 (Closed Thurs)

LEEDS 16-18 County (Mecca) Arcade
Tel 48809 (Closed Thurs)

LIVERPOOL St John’s Precinct
Tel 236-2778 (Closed Thurs)

MIDDLESBROUGH 103 Linthorpe Road
Tel 247086 (Closed Thurs)

NEWCASTLE UPON TYNE 59 Grasling Gr
Tel 21496 (Closed Thurs)

NOTTINGHAM 19/19A Market Street
Tel 2026 (Closed Thurs)

SHEFFIELD 13 Exchange Street (Castle Mk1 Bids)
Tel 20785 (Closed Thurs)

WOLVERHAMPTON 6 Wulfurn Way
Tel 26612 (Closed Thurs)

SOUND ADVICE
NATIONWIDE

ALL BRANCHES IN STOCK AT THESE BRANCHES

MUSICAL INSTRUMENTS & ACCESSORIES in stock at these branches
S.A.E. for FREE illustrated brochures.
Please state main interests.
DEPT. GC AUDIO HOUSE, HENCONNER LANE, LEEDS 13
TEL: 0532 577631

* BARCLAYCARD, ACCESS & TRUSTCARD
* PHONE ORDERS QUOTING CARD NUMBER ACCEPTED
* MAIL ORDERS MUST NOT BE SENT TO SHOPS
* E & OE prices correct at 02-12-79

SOUND ADVICE NATIONWIDE
All Branches open all day Saturday

BRADFORD 10 North Parade
TEL 25349 (Closed Wed)

BIRMINGHAM 30/31 Great Western Arcade
TEL 021-236 1279 (Closed Wed)

CARLISLE 8 English Street
TEL 35744 (Closed Thurs)

COVENTRY 17 Shelton Square, The Precinct
Tel 25983 (Closed Thurs)

DERBY 97 St Peter’s Street
Tel 41861 (Closed Thurs)

DEWSBURY 9/11 Kingsway
Tel 466585 (Closed Thurs)

DONCASTER 3 Queen’s Gate, Waterdale Centre
Tel 63069 (Closed Thurs)

EDINBURGH 101 Lothian Road
Tel 229 9501 (Closed Thurs)

GLASGOW Unit 13, Anderson Shopping Precinct
TEL 041-248 4158 (Closed Thurs)

HULL 7 Whitefriargate
Tel 20505 (Closed Thurs)

LEICESTER 32 High Street
Tel 56420 (Closed Thurs)

LONDON 238 Edgeware Road W2
Tel 723-1269 (Closed Thurs)

LEEDS 16-18 County (Mecca) Arcade
Tel 48809 (Closed Thurs)

LIVERPOOL St John’s Precinct
Tel 236-2778 (Closed Thurs)

MIDDLESBROUGH 103 Linthorpe Road
Tel 247086 (Closed Thurs)

NEWCASTLE UPON TYNE 59 Grasling Gr
Tel 21496 (Closed Thurs)

NOTTINGHAM 19/19A Market Street
Tel 2026 (Closed Thurs)

SHEFFIELD 13 Exchange Street (Castle Mk1 Bids)
Tel 20785 (Closed Thurs)

WOLVERHAMPTON 6 Wulfurn Way
Tel 26612 (Closed Thurs)
UNBEATEN SIX BAND ANTENNA

THE JOYSTICK VFA

(Variable Freq. Antenna 0.5 – 30 MHz).
SUPER RESULTS – EVEN FROM A BASEMENT!

(From a user's report)

* Only 7' 6" long * 3 easily assembled sections * 0.5 – 30 MHz * no gaps * Matching Antenna Tuner * No harmonic resonances, highest efficiency power transfer from TX to ether. This ensures TVI and other spurious emissions are just not substantially present * Low angle radiation, operates as a ground plane on all bands, less skips, greater power deployment! * Gives your RX extra front selectivity, reduces cross-mod and out of band blocking * Tailor your installation to space available. Install VFA on mast or chimney or in roof space or long or short feeder – OR SIMPLY STAND IN THE SHACK * VK7FF used it in BASEMENT, excellent results (Reported World Radio, USA) * "If you are high enough the antenna will operate as well as the well-known 3-element beam on which you have looked, if tests were operational, not theoretical. We find that if we can hear them we can work them out!” (CQ Mag, USA) * In QRP contest scored unbeaten 1M Miles per watt.

JOYSTICK ANTENNA SYSTEMS
SYSTEM "A" 150 w.p.e.p. OR for the SWL £48.55
SYSTEM "I" 500 w.p.e.p. Improved "Q" receive. £54.00

PARTRIDGE SUPER PACKAGES
COMPLETE RADIO STATIONS FOR ANY LOCATION
All cables, matching cables, Communications Headphones, JOYSTICK SYSTEM "A" Ant.
ON THE AIR IN SECONDS! SAVE £13.50 il you ord er a JOYSTICK "I" at the same time.

FT-901D £570.00 (See PCF8015) 115 85 105 125 155 205 305 405
FT-902 £570.00 (See PCF8015) 115 85 105 125 155 205 305 405
FT-901DE £570.00 (See PCF8015) 115 85 105 125 155 205 305 405
FT-101Z £570.00 (See PCF8015) 115 85 105 125 155 205 305 405
FT-101ZD £570.00 (See PCF8015) 115 85 105 125 155 205 305 405
FT-102M £570.00 (See PCF8015) 115 85 105 125 155 205 305 405
FT-102M1 £570.00 (See PCF8015) 115 85 105 125 155 205 305 405
FT-225R £570.00 (See PCF8015) 115 85 105 125 155 205 305 405
FT-225RO £570.00 (See PCF8015) 115 85 105 125 155 205 305 405

NOW AVAILABLE ON A LARGER SCALE VIA US.

As an INTRODUCTORY OFFER FOR LIMITED PERIOD ONLY – the following REDUCTIONS.

VAT INCLUDED

FT-901D £447.90
FT-101Z £447.90
FT-101ZD £447.90
FT-102M £447.90
FT-102M1 £447.90
FT-225R £447.90
FT-225RO £447.90

UNBEATEN

JOYSTICK ANTENNA SYSTEMS

FREE DELIVERY Securicor on all orders over £100.

NOW AVAILABLE ON A LARGER SCALE VIA US.

As an INTRODUCTORY OFFER FOR LIMITED PERIOD ONLY – the following REDUCTIONS.

VAT INCLUDED

FT-901D £362.50
FT-101Z £362.50
FT-101ZD £362.50
FT-102M £362.50
FT-102M1 £362.50
FT-225R £362.50
FT-225RO £362.50

PARTRIDGE RADIO ELECTRONICS LTD
20 Portsmouth Rd, Horndean, Hants. Tel: Horndean (0705) 596020

Practical Wireless, March 1980

www.americanradiohistory.com
Be it career, hobby or interest, like it or not the Silicon Chip will revolutionise every human activity over the next ten years.

Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.

Learn the technology of the future today in your own home.

ELECTRONICS

Build your own oscilloscope.

Learn to draw and understand circuits.

Carry out over 40 experiments.

DIGITAL TECHNIQUES

From watches to sophisticated instrumentation, Digital Electronics adds scope to hobby or career.

FREE BROCHURES

No previous knowledge is necessary.

- Just clip the coupon for a brochure.
HAPPY BIRTHDAY

It is exactly one year since we launched the WINTON on an unsuspecting public, and in that year we seem to have caused something of a revolution in the attitudes of Hi-Fi buffs not only in the U.K. but World Wide. Our flabbers have become quite ghasted at response we have achieved from an amazing number of countries, and most gratifying of all is the number of very complimentary letters we have received from people who have built the WINTON and have been so delighted with the results that they have felt compelled to put pen to paper to tell us of their delight.

Our advertising over the last 12 months has at times been a little flippant, but what the hell? The World is a serious enough place at the best of times without having gloom thrust at you from adverts as well. But in all seriousness any Manufacturer (if he is honest!) will admit that most people only correspond when they have something to moan about, and it is this accepted fact of Manufacturing life that makes us so pleased to receive your letters.

So! To all our many customers over the past year we say a sincere Thank You for helping the WINTON to become runaway success it has, and to all of our prospective customers what the devil are you waiting for, another price rise? Send your order off NOW for the incomparable WINTON, and when you have built it we won't mind at all if you write to tell us how marvellous it is.

The Superlative WINTON is available for your convenience packed as follows:

- **Pack (A)** All Capacitors and Fixed Value Resistors, (Inc. 7 Amp ripple Res. Caps.) £21.93
- **Pack (B)** Switch Bank, Switches, Potentiometers, Pre-Sets & all Knobs £15.83
- **Pack (C)** Printed Circuit Board (Tinned, Drilled, & Overlay Printed) & Pins £8.28
- **Pack (D)** Hardware Pack, consisting of precision formed & punched Chassis, Black Epoxy finish Heat Sinks, Teak Veneered Cabinet, all screws, wire, fuseholders, etc., and a super Brushed Silver Aluminium Fascia Panel. £40.25
- **Pack (E)** All Semiconductors, (Including HITACHI POWER MOS-FETS) £31.21
- **Pack (F)** Special LOW HUM FIELD Toroidal Transformer £23.55

COMPLETE KIT, of all parts necessary to build the P.W. WINTON £133.50

Order with complete confidence (C.W.O. only please) from:

T. & T. ELECTRONICS

Green Hayes, Surlingham Lane, Rockland St. Mary, Norwich, NR14 7HH. Telephone 05088 632

ALL PRICES INCLUSIVE OF V.A.T. & CARRIAGE. Callers by appointment only.

STILL TOP VALUE and LIFETIME GUARANTEE

INTRODUCING THE 'CLASSIC 55' 12" 55 WATT MULTI-PURPOSE BASS – LEAD GUITAR – P.A. – DISCO

A HIGH PERFORMANCE SPEAKER AT A REMARKABLY LOW PRICE

FULL CLASSIC RANGE

- **Classic 45 12"** 45 Watts
- **Classic 55 12"** 55 Watts
- **Classic 80 12"** 80 Watts
- **Classic 85 15"** 85 Watts
- **Classic 150 15"** 150 Watts
- **Classic 125 18"** 125 Watts
- **Classic 175 18"** 175 Watts

Impedances 8 ohms or 15 ohms as required.

£19.94 Rec. Retail Price (inc. V.A.T.)

LOOK AT THESE TYPICAL PERFORMANCE FIGURES and it’s a BUDGET SPEAKER

Total distortion at rated output 3%
Sensitivity 98d.b.
Frequency range 50-5000Hz

Also Available

HIGH FREQUENCY HORN UNITS SPECIALIST RANGE SPEAKERS CRESCENDO ‘E’ SERIES SPEAKERS

BRITAIN'S LARGEST PRODUCERS OF HIGH POWER CHASSIS SPEAKERS

FANE ACOUSTICS LTD, HICK LANE, BATLEY, YORXS.

Telephone: (0924) 476431 Telex: 556498 FANE G

Available from YOUR LOCAL DEALER or if in difficulty post free direct from
ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics—now it can be your turn. Whether you are a newcomer to the field or are already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of many successful students: “Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed.”

City and Guilds Certificates
Excellent job prospects await those who hold one of these City and Guilds Certificates. ICS can coach you for:

- Qualified for a New Career
- Radio, TV Electronics Technicians
- Technical Communications
- Radio and TV Engineers
- Electrical Engineering, Installations and Contracting

Diploma Courses
- Colour TV Servicing
- Electronic Engineering and Maintenance
- Computer Engineering and Programming
- Radio, TV and Audio Engineering and Servicing
- Electrical Engineering, Installations and Contracting

Qualify for a New Career
Home study courses for leading professional examinatinons and diploma courses for business and technical subjects:—

- G.C.E.
- 60 subjects at “O” & “A” levels
- Accountancy
- Air Conditioning
- Engineering
- Farming
- Heating
- Industrial
- Management
- Mechanical

POST OR PHONE TODAY FOR FREE BOOKLET.

ICS
To: International Correspondence Schools
Since 1890
Dept. S276 Intertcxt House, London
SW8 4UJ or telephone 622 9911

Subject of Interest
Name
Address
Telephone Number

www.americanradiohistory.com
EXPERIMENTOR BREADBOARDS
No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build a breadboard of any size.

All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP 4B.

EXP 325 £1.60 The ideal breadboard for 1 chip circuits. Accepts 8, 14, 16 and up to 22 pin ICs. Has 130 contact points including two 10 point bus-bars.

EXP 360 £3.15 Specially designed for working up to 40 pin ICs perfect for 3.5 14 pin ICs. Has 270 contact points including two 20 point bus-bars.

EXP 300 £5.75 The most widely bought bread-board in the UK. With 950 contact points, two 40 point bus-bars, the EXP 300 will accept any size IC and up to 6 x 14 pin DIPS.

EXP 600 £6.30 Most MICROPROCESSOR projects in magazines and educational books are built on the EXP 600.

EXP 660 £8.60 Has 6"centre spacing so is perfect for MICROPROCESSOR applications.

EXP 4B £2.30 Four more bus-bars in a "snap-on" unit.

The above prices are exclusive of P&P and 15% VAT.

THE CSC 24 HOUR SERVICE TELEPHONE (0799) 21682

With your Access, American Express, Barclaycard number and your order will be in the post immediately.

CONTINENTAL SPECIALTIES CORPORATION

Available from selected stockists

ELECTRONICS BY NUMBERS
Projects No 4, No 5, No 6

RAIN ALARM
You need never be caught out by the weather again. The rain alarm will emit a warning sound whenever there's rain or moisture in the atmosphere. The current drawn from the battery is negligible so it can be left switched on for up to a year.

WOBBLY WIRE GAME
All the fun of the fair, in your own home! Test your skill at building and playing this version of the popular game, where a 'wand' has to be moved from one end of a wire to the other, without the loop at the end of the wand ever touching the wire.

HIGH QUALITY CONTINUITY TESTER
An invaluable piece of test gear for testing and fault finding circuits and wiring. Pure continuity checks can be carried out without being affected by adjoining circuitry.

Want to get started on building exciting projects but don't know how? Now using EXPERIMENTOR BREADBOARDS and following the instructions in our FREE "Electronics by Numbers" leaflets, ANYBODY can build electronic projects.

Look at the diagram, select R1, plug it in to the letter numbered holes on the EXPERIMENTOR BREADBOARD, do the same with the other components, connect to battery and ANYBODY can build a perfect working project.

YOU WILL NEED e.g. LED Bar Graph (a previous project) components EXP360 or EXP365 D1 to D15 - Silicon Diodes R1 to R6 Resistors LED 1 to LED 6 Light emitting diodes For the full detailed instructions, including "Electronics by Numbers" circuit diagrams, simply take the coupon to your nearest CSC stockist or send direct to us and you will receive "THREE FREE PROJECTS FROM CSC."

If you missed Free project No's 1, 2 and 3, please tick the appropriate box in the coupon.

PROTO-BOARDS
The ultimate in breadboards for the minimum of cost. Two easily assembled kits.

PB6 Kit, 630 contacts, four 5-way binding posts accepts up to six 14-pin Dips.

PB100 Kit complete with 760 contacts, four 5-way binding posts accepts up to ten 14-pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy.

IT'S EASY WITH C.S.C.
TO RECEIVE YOUR FREE COPY OF PROJECTS 4, 5 and 6.

Just clip the coupon
Give us your name and full postal address (in block capitals, enclosed cheques, postal order or credit card number and expiry date, indicating in the appropriate box(es) the breadboards you require).

For immediate action
The C.S.C. 24 hour, 5 day a week service. Telephone 0799 21682 and give us your Access, American Express or Barclaycard number and your order will be in the post immediately.

C.S.C. (UK)LTD. 60 Shire Hill Industrial Estate Units 1 and 2 Saffron Walden, Essex CB 11 3AQ

NAME _________________________ ADDRESS __________________________

I enclose Cheque/P.O. for £ ____________________ Debit my Barclaycard, Access, American Express card No ______ Expiry date ______

If you missed Free project No's 1, 2 and 3. Project 1: Two Transistor Radio. Project 2: Fish'n'Clicks. Project 3: Electro Wobble Wire. Project 4: PB6 Kit, 630 contacts, four 5-way binding posts accepts up to six 14-pin Dips.

PB100 Kit complete with 760 contacts, four 5-way binding posts accepts up to ten 14-pin DIps, with two binding posts and sturdy base. Large capacity with Kit economy.

To receive your copy of Projects 4, 5 and 6, clip the coupon below.

www.americanradiohistory.com
ILP's new generation of high

ILP's new generation of high.

PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

With ILP's performance standards and quality already so well established, any advances in ILP's design are bound to be of outstanding importance — and this is exactly what we have achieved in our new generation of modular units. ILP's professional design principles remain — the completely adequate heatsinks, protected sealed circuitry, rugged construction and excellent performance. These have stood the test of time far longer than normally expected from ordinary commercial modules. So we have concentrated on improvements whereby our products will meet even more stringent demands such, for example, as those revealed by vastly improved pick-ups, tuners, loudspeakers, etc., all of which can prove merciless to an indifferent amplifier system.

ILP's modules are for laboratory and other specialised applications too.

ILP's modular units comprise five power amplifiers, pre-amp which is compatible with the whole range, and the necessary power supply units. The amplifiers are housed and sealed within heatsinks all of which will stand up to prolonged working under maximum operating conditions.
and staying there

PERFORMANCE MODULAR UNITS

HY5 PRE-AMPLIFIER

VALUES OF COMPONENTS FOR CONNECTING TO HY5
Volume - 10K \(\log \)
Bass/Treble - 100K \(\log \), linear. Balance - 5K \(\log \), linear.

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack 50 x 40 x 15 mm. and provides multifunction equalisation for Magnetic/Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins. Active tone control circuits; 500 mV out. Distortion at 1KHz – 0.01%. Special strips are provided for connecting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions.

£4.64 + 74p VAT

THE POWER AMPLIFIERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Output Power R.M.S.</th>
<th>Distortion Typical at 1KHz</th>
<th>Minimum Signal/Noise Ratio</th>
<th>Power Supply Voltage</th>
<th>Size in mm</th>
<th>Weight in gms</th>
<th>Price £ + VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY30</td>
<td>15 W into 8 (\Omega)</td>
<td>0.02%</td>
<td>80dB</td>
<td>-20 -0 +20</td>
<td>105 x 50 x 25</td>
<td>155</td>
<td>£6.34 + 95p</td>
</tr>
<tr>
<td>HY50</td>
<td>30 W into 8 (\Omega)</td>
<td>0.02%</td>
<td>90dB</td>
<td>-25 -0 +25</td>
<td>105 x 50 x 25</td>
<td>155</td>
<td>£7.24 + 1.09</td>
</tr>
<tr>
<td>HY120</td>
<td>60 W into 8 (\Omega)</td>
<td>0.01%</td>
<td>100dB</td>
<td>-35 -0 +35</td>
<td>114 x 50 x 85</td>
<td>575</td>
<td>£15.20 + 2.28</td>
</tr>
<tr>
<td>HY200</td>
<td>120 W into 8 (\Omega)</td>
<td>0.01%</td>
<td>100dB</td>
<td>-45 -0 +45</td>
<td>114 x 50 x 85</td>
<td>575</td>
<td>£18.44 + 2.77</td>
</tr>
<tr>
<td>HY400</td>
<td>240 W into 8 (\Omega)</td>
<td>0.01%</td>
<td>100dB</td>
<td>-45 -0 +45</td>
<td>114 x 100 x 85</td>
<td>1.15Kg</td>
<td>£27.68 + 4.15</td>
</tr>
</tbody>
</table>

Load impedance – all models 4 - 16 \(\Omega \).
Input sensitivity – all models 500 mV
Input impedance – all models 100K \(\log \).
Frequency response – all models 10Hz - 45Hz - 3dB

THE POWER SUPPLY UNITS

I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms – one with circuit panel mounted on conventionally styled transformer, the other with toroidal transformer, having half the weight and height of conventional laminated types.

NO QUIBBLE 5 YEAR GUARANTEE
7-DAY DESPATCH ON ALL ORDERS
INTEGRAL HEATSINKS
BRITISH DESIGN AND MANUFACTURE
FREEPOST SERVICE – see below

Please supply

Total purchase price £

I enclose Cheque □ Postal Orders □ International Money Order □

Please debit my Account/Barclaycard Account No.

NAME

ADDRESS

Signature

\[\text{Practical Wireless, March 1980} \]
The 1979 Girl Technician Engineer of the Year

The 1979 Girl Technician Engineer of the Year is Mrs Anne Cox-Horton, age 26, an Electrical Contracts Engineer from Chertsey, Surrey. At a recent ceremony in London she was presented with the prize of £250 and an inscribed rose bowl by Sir Montague Finniston, FRS, Chairman of the Committee of Inquiry into the Engineering Profession.

The Runner-up, Mrs Barbara Needham, 27, a Senior Research Engineer from Harlow, Essex, received a special award of £150.

Sponsored by The Caroline Haslett Memorial Trust and the IEETE, this Award aims to focus attention on electrical and electronic engineering as a worthwhile professional career for women.

Ann Cox-Horton is a Contracts Engineer with T. Clarke & Co. Limited, a London firm of electrical contractors. She is responsible for contracts valued at up to £1½ million, including the work of up to 50 people. Ann served her apprenticeship on building sites, and was actually the first girl apprentice ever registered with the Joint Industry Board.

The Institution of Electrical and Electronics Technician Engineers, 2 Savoy Hill, London WC2R OBS. Tel: 01-836 3357.

Ron Ham in Video

During August 1979, BBC TV-South Today visited Chalk Pits Museum at Amberley, West Sussex.

The purpose of the visit was to record a programme commemorating the 40th anniversary of the outbreak of the second world war.

The programme centred around the Radio Workshop—a collection of antique and wartime radio equipment—run by none other than Ron Ham BRS15744, who writes the "VHF Bands" column in Practical Wireless.

Our photograph shows the BBC camera crew filming at the Radio Workshop, and Ron Ham can be seen at the extreme right of the picture. The 7½ minute programme was shown on 3 September 1979.

The museum re-opens on 2 April 1980, for information on opening times contact: Chalk Pits Museum, Houghton Bridge, Amberley, West Sussex. Tel: Bury (079 881) 370.
Versatile Chips

Plessey Semiconductors has won an order for over half a million remote control chips from Joustra, a leading French toy manufacturer.

The i.c.s have been designed into Joustra's latest remote controlled model car which is being sold in French toy shops now.

The remote control i.c.s are the SL490 transmitter and the ML928 receiver. Low current consumption on the transmitter chip ensures a long battery life. The car is controlled easily by a miniature steering wheel on the hand-held transmitter.

Although the Joustra car is radio controlled, the same chips are versatile enough to be used for ultrasonic, infrared or cable transmission systems.

Originally developed for TV applications, Plessey Semiconductors is currently designing these remote control chips into other systems such as moving toys, TV games and domestic appliances.

Plessey Semiconductors Ltd., Cheney Manor, Swindon, Wiltshire. Tel: (0793) 36251.

Teletext/Viewdata in Japan

Mullard Ltd. was one of four companies who took part in a two-day series of presentations of the British Teletext/Viewdata systems in Tokyo during December.

The other participants were General Instruments, Texas Instruments and VG Electronics. The Department of Industry and the Electronic Component Industry Federation were also represented.

The presentations were organised by the British Overseas Trade Board and were held at the British Export Marketing Centre. Audiences consisted of leading Japanese setmakers and broadcasting authorities.

The objective of the presentation was to underline the advantages of the Mullard Teletext/Viewdata systems, components and sub-assemblies to those Japanese setmakers who undertake—or plan to undertake—manufacture of suitably-adapted TV receivers in the UK or Europe.

Mullard Limited, Mullard House, Torrington Place, London WC1E 7HD. Tel: 01-580 6633.

SERT has moved

Since Monday, 12 November 1979, the Society of Electronic and Radio Technicians have been established in their new premises.

The new address is: 57-61 Newington Causeway, London SE1 6BL. Tel: 01-403 2351.

Ring Their B.E.L.

Barrie Electronics Ltd. inform us that they now stock the complete range of Vero Products. The products are on display at: 3 The Minories, London EC3N 1BJ. Tel: 01-488 3316/7/8.

SWLs & DXers get-together

A "get-together", supported by the European DX Council and organised by Northern DXers and short-wave listeners, is to take place on Saturday, 8 March 1980, starting at 2.00pm.

The venue will be the Conference Centre at the heart of the city of Durham.

Attendance is expected to be quite large and various receiver manufacturers have been invited, along with guest speakers who will give talks. The EDXC and the Handicapped Aid Programme UK will also be represented, as will certain international broadcasting stations.

A number of receivers will be on show (including the Trio R-1000) and programme schedules for the new frequency period will be available.

For further details, a "get-together" agenda and a map, contact: The Organiser, John Shaw, 10 Poplar Lea, Brandon, Durham, Co Durham. Tel: (0388) 780743.

Catalogues

Ace Mailtronix Ltd., the Wakefield based component supplier have recently published their latest catalogue. The catalogue costs £30 and is supplied with a 30p voucher which is redeemable with orders over £5.00.

Available from: Ace Mailtronix Ltd., Topaz Street, Wakefield, West Yorkshire WF1 5JR. Tel: (0924) 250375.

Sigma Technical Press publish their latest catalogue of books, which should be of particular interest to the personal and professional computer user.

Available from: Sigma Technical Press, 23 Dippons Mill Close, Tettenhall, Wolverhampton WV6 8HH. Tel: (0902) 763152.

Transam Components Ltd. have recently published a new computer products catalogue containing details of their products and specialist services offered to micro-computer users in the UK.

For further information contact: Transam Components Ltd., 12 Chapel Street, London NW1 5DH. Tel: 01-402 8137.

Practical Wireless, March 1980
BEGINNING THE

MIMIUS

Modular 2m Transceiver System

Michael TOOLEY BA G8CKT
&
David WHITFIELD BA MSc G8FTB

The 2 metre amateur band is popular with both class A and B licence holders and covers the frequency range from 144MHz to 146MHz. While many operators make use of high power f.m. and s.s.b. fixed station equipment in pursuit of long distance contacts, excellent results can be achieved using a low-power portable transceiver. For the energetic, operation from a mountain peak or other local "high spot" will bring considerable rewards; even under normal conditions contacts can readily be made over paths of more than 200km. The advent of 2 metre repeaters, of which there are currently a large number in service, has greatly improved the working range of portable and mobile equipment from many otherwise less than favourable sites.

The PW "Nimbus" has been developed to meet the need for a compact and versatile portable 2 metre f.m. transceiver. The basic circuit module comprises a single printed circuit board measuring only 160mm × 90mm. The single-sided board incorporates a high performance dual-conversion superhet receiver and a matching low-power transmitter. In order to allow the constructor the choice of a wide range of possible equipment configurations, the controls, changeover switching, modulator and power supplies are all external to the basic circuit module.

A range of add-on modules designed to extend the performance of the basic unit will be described in later articles. These will include an alternative speech processor/modulator, a 10W power amplifier, a mains power unit, battery charger, repeater tone-burst with timeout facility and an extended multi-channel facility. The "Nimbus" can thus form the basis of a comprehensive 2 metre station which can change and grow to adapt to the individual needs of the constructor.

The design underwent many changes in the course of its evolution from rather speculative beginnings (sketches on used envelopes, beer mats, etc.) to the first QSO on the air using the prototype. Between these two extremes are hidden long periods (often well into the small hours) of paper design and bench testing. The immense satisfaction to be derived from operating a piece of equipment which has been built entirely by one's own efforts is hard to describe.

Whilst it is realised that the diecast box into which the transceiver boards fit is rather larger, to say the least, than the normal hand-held size, the dimensions were thought appropriate for two reasons. Sufficient room has been left...
in the box for later additions and modifications of the basic circuitry, also the box used in the prototype is a readily obtainable item.

The constructor may, of course, feel free to use any convenient metal box provided it is rigid in construction, (no tobacco tins please!) and has sufficient internal space for the mounting of the units.

Design Philosophy

The basic transceiver module represents a compromise between cost and circuit complexity, while providing a standard of performance which should satisfy the demands of all but the most discerning amateur. The design is straightforward and conventional, using well-proven devices and techniques. It should, however, be clearly stated at the outset that this is not a project for the novice, nor is it suitable for the newcomer to r.f. constructional practice.

A great deal of consideration was given to the ultimate flexibility of the overall design. Indeed, from the outset it was envisaged that the basic circuit module would form the heart of a number of possible transceiver configurations. The transmitter and receiver circuits have consequently been kept entirely independent (permitting “full duplex” operation if required), and all controls and changeover switching may then be arranged to suit the particular application. The main aim was to produce a portable transceiver which could be built for about half the cost of a comparable ready-made unit. Even so, constructors should be wary of too much economy; “junk box” components should be avoided, and only new full specification devices should be used.

System Description

The basic system comprises a number of functional modules (transmitter, modulator, etc.) which may be connected in a variety of different configurations to suit particular applications. Figure 1 shows a simple arrangement of the three basic modules in the form of a portable transceiver. This particular arrangement produces a compact unit of good performance, yet which features a current consumption which is low enough to allow portable operation from a modest battery supply (e.g., 225mAh 12.5V NiCad pack measuring approximately 25mm diameter by 70mm long).

The three basic circuit modules are arranged physically as two single-sided p.c.b.s, the main board containing the transmitter and receiver modules. Although these are on the same board, they are totally isolated functionally, but for the use of a common earth plane. The second board contains the modulator and this arrangement will be seen in future articles as capable of providing the maximum flexibility without undue proliferation of boards.

A functional block diagram for the transmitter module is shown in Figure 2. A low frequency (18MHz) fundamental crystal oscillator is used to define the transmitter output frequency. The fundamental signal is then passed to the phase modulator circuit before being successively applied to three cascaded frequency doubler stages. The output from the final doubler is thus at eight times the fundamental frequency, and this is used to drive the output amplifier stage. The overall design features bandpass coupling throughout which achieves a low harmonic content in the output. The alignment procedure is simple with test points provided for each stage; the only test equipment necessary for alignment of the transmitter being a simple d.c. voltmeter.

The receiver module features a conventional high performance dual-conversion superhet arrangement as shown in Figure 3. The signal frequency is applied via the r.f. amplifier stage to the input of the first mixer. The local oscillator drive is derived, by way of a frequency tripler,

![Fig. 1: System block diagram for a portable v.h.f. f.m. transceiver](image)

![Fig. 2: Block schematic of the transmitter](image)

Practical Wireless, March 1980
from the first oscillator working at 45MHz. The 10-7MHz output from the first mixer is filtered to remove the unwanted mixer products, and then amplified before being applied to the second mixer. The output from the second mixer is at 455kHz and this signal is further amplified before being demodulated. The combined second i.f. amplifier and demodulator stage also provides the ‘S’ meter and audio squelch facilities. Final audio amplification is provided by an i.c. power amplifier. The use of high gain i.c. amplifiers, with their associated i.f. filters, ensures that the alignment of the receiver is a very straightforward task, with a minimum of preset adjustments.

The modulator is arranged as a separate unit to allow the user a choice of speech processing and other associated facilities (e.g., VOX, ALC, tone burst, etc.). The basic modulator features a variable gain microphone preamplifier to allow a variety of microphones to be used. After amplification, the signal is subject to peak limiting to prevent over-deviation on speech peaks, the output being adjusted in level to set the maximum transmitter deviation.

Transmitter

The transmitter is shown in Figure 4. Transistor Tr1 operates as a conventional Colpitts oscillator with frequency determining crystals and trimpots selected by S1b. The d.c. supply to the oscillator stage is stabilised against supply variations by means of a simple Zener diode regulator, D1. Phase modulation is provided by Tr2 which acts as a variable reactance element. Components L1/C9 and L2/C12 form a bandpass coupled tuned circuit at 18MHz. The coupling capacitor, C10, is kept small so as to ensure purity of the input to the first doubler stage, Tr3 output of which is similarly passed to a bandpass circuit with the selected frequency now being 36MHz. Again, the value of coupling capacitor, C17, is kept to a small value.

Transistor Tr4 is the second doubler with an output at 72MHz which is selected by L5/C21 and L6/C24, the final doubler, Tr5, providing an output on 144MHz. The collector of Tr5 is tapped into the tuned circuit, L7/C35, in order to ensure a good impedance match and also to maintain a relatively high ‘Q’ factor in the bandpass coupled circuit.

The final stage is a low-power amplifier operating with both input and output at 144MHz. The emitter of Tr6 is returned directly to the earth rail rather than via the resistor and capacitor arrangement associated with the earlier doubler stages; this helps to reduce the impedance of the emitter connection and facilitates heat sinking. The combination of L10/TC6/TC7 tunes to 144MHz. TC6/TC7 being adjustable in order to provide correct matching of the antenna load impedance. The r.f. output level is detected by D2 and a d.c. output is available at TP6 for alignment purposes and for continuous r.f. output indication where desired.

Alignment of the multiplier stages is facilitated by means of test points TP1 to TP4 where the emitter current of successive stages may be monitored and TP5, which allows for measurement of the collector current (either directly or by calculation involving the voltage drop across R22), and hence d.c. input power to the final stage.

Receiver

The receiver circuit is shown in Figures 5(a) and 5(b). The double superhet receiver necessitates the use of two mixers and crystal-controlled first and second oscillators. The high first intermediate frequency (10-7MHz) ensures good image channel rejection whilst the low second intermediate frequency (455kHz) permits the use of low cost ceramic filters in order to achieve the desired selectivity (approximately 12kHz at the –6dB points). Integrated circuits are used in both the 10-7MHz and 455kHz i.f. stages.

A low noise dual-gate f.e.t. (Tr100) is used for the first stage of r.f. amplification at 144MHz, giving about 20dB of gain coupled with excellent cross-modulation performance. A second dual-gate device is used for the first mixer stage with injection at approximately 135MHz. Transistor Tr102 is connected in the familiar Colpitts configuration with frequency determining crystals and their associated trimpots selected by S1a (this is ganged with the transmitter crystal switch S1b). Tuned circuit L102, C108 and associated stray capacitance tune the collector circuit of Tr102 to 45MHz. Transistor Tr103 operates in common base mode as a tripler with L103/TC106 tuned to 135MHz.

To improve efficiency, a small amount of forward bias is applied to the stage by means of the potential divider formed by R112 and R113. The 7-8V regulated supply for
specifications

GENERAL
- **Frequency range:** 144-146MHz
- **Number of channels:** 4
- **Modulation:** F3 (phase modulation)
- **Supply:** 12V nominal (8x U7 cells or equivalent)
- **Supply current:** 75mA (receive)
- **Battery life:** approx. 10 hrs (intermittent usage, 2:1 receive/transmit ratio)
- **Dimensions:** 220 x 145 x 55mm
- **Weight:** 1kg with batteries

TRANSMITTER
- **Input power:** 800mW (d.c. into final stage)
- **Output power:** 500mW (r.f.)
- **Output impedance:** 50Ω
- **Deviation sensitivity:** 4.5kHz for 150mV 1kHz test-tone (measured at final output)
- **Frequency stability:** ±0.001% or better
- **Spurious radiation:** less than 1μW or better than −50dB relative to 144MHz output
- **Crystal frequency:** 18MHz
- **Frequency multiplication:** ×8
- **Crystal trimming range:** ±10kHz (measured at final output)

RECEIVER
- **Intermediate frequencies:** 10.7MHz ±455kHz
- **Sensitivity:** 1.5μV for 20dB quieting
- **Selectivity:** ±6kHz (−6dB)
- **Audio output power:** 1W into 8Ω at 1kHz
- **Frequency stability:** ±0.002% or better
- **Crystal frequency:** 44MHz (overtone)
- **Crystal trimming range:** ±15kHz at 144MHz
- **Input impedance:** 50Ω

MODULATOR
- **Sensitivity:** 2mV r.m.s. at 1kHz for onset of clipping (mic. gain set to max.)
- **Input impedance:** 10kΩ
- **Frequency response:** 120Hz to 3-5kHz (−3dB)
- **Maximum output:** 400mV r.m.s. (for 11.5kHz frequency deviation at 144MHz)
- **Deviation:** 4.5kHz nominal (adjustable from 0 to 11.5kHz)

Practical Wireless, March 1980

![Fig. 4: Transmitter module circuit diagram](www.americanradiohistory.com)
components

Resistors

<table>
<thead>
<tr>
<th>Value</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Ω</td>
<td>1</td>
</tr>
<tr>
<td>22Ω</td>
<td>2</td>
</tr>
<tr>
<td>47Ω</td>
<td>3</td>
</tr>
<tr>
<td>100Ω</td>
<td>4</td>
</tr>
<tr>
<td>220Ω</td>
<td>1</td>
</tr>
<tr>
<td>470Ω</td>
<td>2</td>
</tr>
<tr>
<td>2.2kΩ</td>
<td>2</td>
</tr>
<tr>
<td>3.3kΩ</td>
<td>2</td>
</tr>
<tr>
<td>4.7kΩ</td>
<td>2</td>
</tr>
<tr>
<td>10kΩ</td>
<td>2</td>
</tr>
<tr>
<td>15kΩ</td>
<td>2</td>
</tr>
<tr>
<td>22kΩ</td>
<td>2</td>
</tr>
<tr>
<td>100kΩ</td>
<td>2</td>
</tr>
</tbody>
</table>

Capacitors

<table>
<thead>
<tr>
<th>Value</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1pF</td>
<td>1</td>
</tr>
<tr>
<td>1.8pF</td>
<td>1</td>
</tr>
<tr>
<td>2.2pF</td>
<td>2</td>
</tr>
<tr>
<td>4.7pF</td>
<td>1</td>
</tr>
<tr>
<td>10pF</td>
<td>1</td>
</tr>
<tr>
<td>18pF</td>
<td>2</td>
</tr>
<tr>
<td>22pF</td>
<td>4</td>
</tr>
<tr>
<td>33pF</td>
<td>2</td>
</tr>
<tr>
<td>47pF</td>
<td>1</td>
</tr>
<tr>
<td>220pF</td>
<td>2</td>
</tr>
<tr>
<td>1nF</td>
<td>7</td>
</tr>
<tr>
<td>10nF</td>
<td>11</td>
</tr>
<tr>
<td>100nF</td>
<td>1</td>
</tr>
</tbody>
</table>

Semiconductors

- **Transistors**
 - 2N2369A 4
 - 2N3819 1
 - 2N4427 1

- **Diodes**
 - BZY88C9V1 1
 - OA91 1

Miscellaneous

- 4.8mm coil formers Type 722 (8)
- Tuning slugs Type 4 (6)
- Anti-parasitic beads (3)
- HC25/U crystal sockets (4)
- RFC1 see text

Resistors

<table>
<thead>
<tr>
<th>Value</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>220Ω</td>
<td>1</td>
</tr>
<tr>
<td>1kΩ</td>
<td>1</td>
</tr>
<tr>
<td>3.3kΩ</td>
<td>2</td>
</tr>
<tr>
<td>10kΩ</td>
<td>3</td>
</tr>
<tr>
<td>22kΩ</td>
<td>2</td>
</tr>
</tbody>
</table>

Potentiometers

<table>
<thead>
<tr>
<th>Value</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>10kΩ lin.</td>
<td>1</td>
</tr>
<tr>
<td>1MΩ lin.</td>
<td>1</td>
</tr>
</tbody>
</table>

Capacitors

- **Ceramic**
 - 10nF 1
 - 47nF 1
 - 100nF 1

- **Electrolytic 16V**
 - 1μF 1
 - 2.2μF 1
 - 47μF 1

Semiconductors

- **Diodes**
 - 1N914 2

- **Integrated circuits**
 - 741 2

MODULATOR

Resistors

<table>
<thead>
<tr>
<th>Value</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>220Ω</td>
<td>1</td>
</tr>
<tr>
<td>1kΩ</td>
<td>1</td>
</tr>
<tr>
<td>3.3kΩ</td>
<td>2</td>
</tr>
<tr>
<td>10kΩ</td>
<td>3</td>
</tr>
<tr>
<td>22kΩ</td>
<td>2</td>
</tr>
</tbody>
</table>

Potentiometers

<table>
<thead>
<tr>
<th>Value</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>10kΩ lin.</td>
<td>1</td>
</tr>
<tr>
<td>1MΩ lin.</td>
<td>1</td>
</tr>
</tbody>
</table>

Capacitors

- **Ceramic**
 - 10nF 1
 - 47nF 1
 - 100nF 1

Electrolytic 16V

- 1μF 1
- 2.2μF 1
- 47μF 1

Semiconductors

- **Diodes**
 - 1N914 2

Integrated circuits

- 741 2

GENERAL ASSEMBLY

Resistors

<table>
<thead>
<tr>
<th>Value</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1kΩ</td>
<td>2</td>
</tr>
</tbody>
</table>

Potentiometers

<table>
<thead>
<tr>
<th>Value</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>47kΩ log.</td>
<td>1</td>
</tr>
</tbody>
</table>

Semiconductors

- **Light emitting diodes**
 - 0.2in red 1
 - 0.2in green 1

Switches

- Rotary 3p4v 1
- Min. s.p.s.t. 2

Sockets

- DIN 5 pin 1
- 270° SO239 u.h.f. 1

Relay

- 2p changeover 1

Miscellaneous

- HF7 cells (6)
- Battery holder, 4-cell, press stud connections (2)
- 10kΩ dynamic microphone with p.t.t. switch (1)
- 222 x 146 x 55mm diecast box (1)
- Transceiver p.c.b. (1)
- Modulator p.c.b. (1)
- Knobs (2)
RECEIVER

Resistors
\[\frac{1}{2} \text{W} 5\% \text{carbon} \]
- 47Ω 1 R124
- 100Ω 1 R114
- 220Ω 4 R100, 103, 109, 111
- 390Ω 1 R115
- 470Ω 3 R107, 121, 129
- 680Ω 1 R122
- 1kΩ 1 R106
- 1.5kΩ 1 R133
- 2.2kΩ 2 R117, 120
- 3.3kΩ 1 R116
- 4.7kΩ 3 R128, 131, 132
- 10kΩ 2 R113, 123
- 12kΩ 3 R125, 126, 127
- 47kΩ 4 R101, 102, 108, 130
- 100kΩ 5 R104, 105, 112, 118, 119

Potentiometers
- Miniature preset (vertical mounting) 0-1W
 - 10kΩ 1 VR101
 - 47kΩ 1 VR100

Capacitors
- Ceramic
 - 0.1µF 2 C108, 109
 - 0.2µF 1 C106
 - 0.47µF 4 C102, 107, 117, 141
 - 1µF 2 C118, 127
 - 2.2µF 1 C119
 - 6.8µF 1 C105, 137
 - 2.2nF 1 C136
 - 4.7nF 1 C133
 - 10nF 21 C100, 101, 103, 104, 110, 111, 112, 113, 114, 115, 116, 121, 122, 123, 124, 125, 126, 128, 131, 134, 138

- Electrolytic 16V
 - 2.2µF 1 C135
 - 2.2µF 1 C130
 - 10µF 2 C132, 139
 - 47µF 1 C129
 - 470µF 1 C140

- Ceramic trimmers, miniature
 - 5-30pF 8 TC100, 101, 102, 103, 104, 105, 106, 107

Semiconductors
- Transistors
 - 40673 2 T100, 101
 - 2N2369A 2 T102, 103
 - 2N3819 1 T104
 - BC458 1 T105

- Integrated circuits
 - µA753 1 IC100
 - CA3189E 1 IC101
 - LM380N 1 IC102

Crystal filters
- CFU455H or 1 FL102 (see text)
- CFU455F
- CFS10-7 2 FL100, 101
 (NB. These two items must be ordered together.)

Crystal
- 10-245MHz 1 X104
 - wire ended

Coils
- YRCS 11098 1 L105
- AC2 (Tokyo) RFC 100
 - see text

Miscellaneous
- 4-8mm coil formers Type 722/1 (3); coil former bases (2); tuning slugs Type 4 (2); screening cans Type 10 (2); anti-parasitic ferrite beads (3); HC25U crystal sockets (4); 8Ω loudspeaker (1); 500µA signal strength meter (for test purposes) (1).

The completed printed circuit board for the Nimbus transceiver
Fig. 5(a): Receiver module circuit diagram Section 1

Fig. 5(b): Receiver module circuit diagram Section 2

Fig. 6: Basic modulator circuit diagram

Practical Wireless, March 1980
As one of London’s leading retailers of amateur radio equipment, we know that YAESU offer about the finest range on the market. But as enthusiast retailers rather than importers or distributors, we are also able to recognise and recommend great products, whoever makes them.

So, when we saw and tried the new TRIO R-1000 receiver, we knew that we – and our customers – must have it. It’s good . . . every bit as good as TRIO say it is . . . so we bought in substantial stocks. That way we can offer it to you just a little cheaper!

If your budget is nearer £200 than £300, don’t worry, because at that price you can’t do better than the YAESU FRG-7. We like to summarise its specification and performance by saying that the FRG-7 hears things that other receivers don’t even know exist! So, come and try it, and see for yourself why it still represents the finest value-for-money in the communications receiver market today.

FRG-7 £210 inc. VAT and Heliscan Aerial

R-1000 £289 inc. VAT

. . . and this is the HELISCAN Wall-to-Wall Aerial

Only from us, a specially developed high-tensile receiving antenna giving superb results. Use it indoors or out – from wall-to-wall, from point-to-point, or from pillar-to-post!

INTRODUCTORY PRICE – JUST £15 inc. VAT

ALSO AVAILABLE
A MUST for the serious FRG-7 owner

External digital display giving accurate frequency readout while still retaining the analogue tuning facility.

FRG-7 £210 inc. VAT and Heliscan Aerial

PRICE £49 inc. VAT

AMATEUR RADIO EXCHANGE
Phone 01 579 5311
for details of current stocks, new and secondhand

Practical Wireless, March 1980
For the radio amateur or short wave listener, an attractive card incorporating a world map and the initials of your favourite radio magazine, printed in blue and green. Your callsign, name and address will be overprinted in black, at the top of the card. The reverse of the card will have the usual form for reception report, etc., and address space.

The cards measure 102 x 152mm (4 x 6in) and are available in the following quantities:

- 250 off—£6.25
- 500 off—£10.00
- 1000 off—£16.00

These prices include VAT and packing and postage to any United Kingdom address. Please send your order with a cheque or postal order for the appropriate amount to:

Practical Wireless, Westover House, West Quay Road, Poole, Dorset BH15 1JG, giving full details on the coupon provided, or on plain paper if you do not want to cut your copy of Practical Wireless. Please make your remittance payable to IPC Magazines Ltd.

Please supply:
250/500/1000* PW QSL CARDS
Information to be printed on card (please print):

Callsign: ..
NAME ...
ADDRESS ..
..
..
Post Code ..

I enclose remittance for £ .. made payable to
IPC MAGAZINES LTD.
* Please circle number required.

Readers who intend to operate the PW Nimbus should be in possession of the appropriate licence issued by the Home Office to those who have passed the City and Guilds Radio Amateurs' Examination. Details may be obtained from: The Home Office, Radio Regulatory Department, Amateur Licensing Section, Waterloo Bridge House, Waterloo Road, London SE1 8UA.

Modulator

Figure 6 shows the modulator circuit; the basic module employs two operational amplifier stages. The first amplifier, IC200, is a 741 used as a conventional voltage amplifier, the voltage gain being adjustable between 1 and 10 by the preset potentiometer, VR200. This allows a wide variety of different microphones to be used; that selected should have an output impedance of around 10kΩ, however.

The second amplifier, IC201, is another 741 used as a fixed gain stage, producing a gain of 2·2, with a limiting characteristic to remove peaks from the signal; diodes D200 and D201 serve to restrict the maximum amplitude of the signal at the output of IC201. Thus, it can be seen that VR201 provides adjustment of the frequency deviation of the transmitter by setting the proportion of the maximum output level (as determined by the action of IC201) which is applied to the phase modulator stage. Resistor R207 and C204 act as a low-pass filter network to provide the necessary wave-shaping after the clipping action of D200 and D201.

It is important that the action of the microphone gain control (VR200) prior to the limiting stage is not confused with the frequency deviation control (VR201). The adjustment of these two controls will be fully covered in Part 3, which will be mainly devoted to a description of the overall alignment procedure of the PW Nimbus.

Next Instalment

In Part 2, we will be dealing with the fabrication of the printed circuit board and the complete constructional details of the transceiver, including all coil winding information, etc.
Modules Rule-OK

The modular concept has been popular for some time in many areas of electronics. A major advantage, particularly in instrumentation, is that servicing is much easier; each module is tested until the "baddie" is found and subsequently unplugged and replaced. This approach seems to have been really taken to heart by a television manufacturer in Germany whose latest colour telly has been modularised throughout. To make the service engineer's job even easier, each module has its own private red and green i.e.d.s that inform immediately which module is working properly and which one isn't. Apart from easy servicing, the manufacturers have really gone for state of the art. Screen size of 27in which one isn't. Apart from easy servicing, the manufacturers have really gone for state of the art. Screen size of 27in is available and all peripheral items like Teletext and electronic games can be connected. This also extends to home computers, and TV cameras both colour and black-and-white. Phase-locked loop syntheisers are also included and the set has a memory that can store 30 station numbers and up to 100 different channel frequencies. A very gratifying advantage is the care given to screening which gives protection against r.f. sources such as electrical interference, and QRM from Radio Hams and Citizens' Band users.

Beer Meters

Most motorists work out the petrol consumption of their cherished chariots by filling the tank up, driving till it's almost empty, repeating this and then averaging things out over a period of time. While this method does work it is rather approximate. One possibility might be to use a new photosensor turbine that can be employed to give you, instantaneously, the vehicle's petrol flow-rate. This information, fed to the dashboard, could help a driver regulate his driving to ensure economical fuel consumption. Basically, the idea is simple. The unit is connected into the fuel supply line and comprises a turbine blade that rotates as fuel flows past it. Careful design ensures that turbulence is not set up in the sensor chamber. The turbine blades have a transparent housing and on either side of this is a light source and photo-transistor. As the tiny blades of the turbine rotate, the light is chopped forming a series of pulses. The faster the flow the faster the pulses. A small computer converts the pulse rate to the practical information needed for the dashboard display. Perhaps beer supplies to Rugby clubs might be monitored in this way, and the bill settled once every quarter when the man comes to read the beer meter?

Lipreading Spectacles

Perhaps the most impressive application of electronics this month is in lipreading. The device, just short of pure genius, uses a microprocessor and analyses spoken words. It then displays these as symbols on two dot matrices of light emitting diodes. Tests so far appear promising. The prototypes have improved the identification of syllables from the normal 25 per cent to around 75 per cent. Note too that a 25 per cent score was for a trained lipreader. The ultimate aim is to have the entire system in the frame of a pair of ordinary glasses. The symbol image would be caused by i.e.d.s in the bowed frame. Their illuminated symbols would then be directed into the lens of the glasses, and these would project an image so that it appeared to the user to be in focus some 1200mm away close to the lips of the speaker. It is thought that the new system could help improve comprehension up to 90 per cent in favourable conditions. The device is only just at the laboratory/experimental stage and is not likely to be available for some time.

Speech Synthesisers

Medical applications of electronics are always nice to report on because it means that circuit ingenuity is serving a very worthwhile purpose. One company has launched two i.s.i. chips to form a programmable digital processor that can be used in a speech synthesiser circuit. This is aimed at the manufacture of a text-to-speech system that should be able to offer blind people a vocabulary of some 200 English words.

Sonic Sinbad

The area of underwater electronics is fascinating. Clearly a field where, to get to the top one must go to the bottom! A French company has developed an underwater ultrasonic flaw detecting system that looks interesting. The system uses an array of transducers arranged as 32 elements in a row, with a total of 5 rows. By special programming of the phasing of coherent energy bursts fed to the transducers, some 32 different focal planes are achieved. The net result is an image in three dimensions with 5120 points. Individual welded joints can be inspected under water, quite a feat. The system is also inspecting the inside of metals at various depths in the metal itself. Could be worth thinking about if you're an underwater treasure hunter, a sort of sonic Sinbad.

Wow!

While home computing continues to boom the professionals are racing ahead to bigger and better—or maybe smaller and better things. In Germany, for example, there's a very interesting single board beastie that can perform 32 million operations in one second. It's quite a clever approach. The idea is to fill the board with microprocessors and memories (plus attendant bits and pieces). The result is a single board with the equivalent computing power of a large mainframe. Organisation of the tasks on the board work out well. Each little module on the board handles one part of a mathematical problem. It can also interact with the others giving up its answers that they need, and taking in their answers in order to continue with its own tasks in the computation. In the original, currently on test, some 128 "microcomputer" modules are employed. The designers believe that a ten times increase in capability is easily possible. Makes you think, doesn't it? But not at 32 million operations a second.

Ginsberg
OFFSET ANGLE (PICKUP)

When a gramophone record is being cut the cutter head follows a true radial path across the disc as shown by the full line in Fig. 21. However, when a record is played using a conventional pivoted arm the stylus follows a curved path as shown by the broken line. The difference between these two paths results in lateral tracking error.

The amount of error is a function of how much the angle between a line along the axis of the pickup cartridge and a line of disc radius deviates from 90 degrees. For example, in Fig. 22 at (a) the angle is exactly 90 degrees so there is no error. At (b), though, the angle is less than 90 degrees by the amount of the error angle (θ) as shown. It will be apparent that the accuracy at (a) is achieved by shifting the axis of the cartridge off the axis of the arm. This is called the offset angle, which is defined at (a). At (b) it is assumed that the axis of the cartridge lies along the axis of the arm. This is not the whole story, however (see below).

![Fig. 21: When a gramophone record is cut, the cutter head traverses a true radial path across the disc as shown by the full line. When played with the pivoted arm, however, the stylus traverses an arc as shown by the broken line. The deviation from the true radial path is a function of lateral tracking error](image)

OVERHANG (PICKUP)

While an offset angle can be arranged to eliminate lateral tracking error at one groove diameter, the error will start to show again at different groove diameters. This is countered by arranging for the stylus to overhang the turntable spindle by a calculated amount when a conventional pivoted arm is moved to the centre of the record. This is shown in Fig. 23, which also indicates that the least lateral tracking error obtains at all groove diameters when the overhang is carefully combined with the offset.

Overhang and offset are related to the length of the arm, and an alignment protractor of some kind is often used to establish the best value of overhang to use for the least lateral tracking error at the inner groove diameters, where the distortion can be highest owing to the reducing stylus/groove interface velocity and hence the reducing wavelengths of recorded signal.

Lateral tracking error can cause a significant rise in distortion (essentially even-order), particularly on high recorded velocities, so it is highly desirable to ensure the least error by careful adjustment to the cartridge in the headshell. With some arms the offset is provided by a carefully calculated geometric curve.

Other rather special arms are engineered for so-called parallel tracking, which means that the cartridge moves on a path which is exactly parallel to the recording radius. The artifices just described are not then required. Neither is side-thrust correction (see later).

![Fig. 22: Lateral tracking error is zero when the angle between a radial line and a line along the axis of the cartridge is 90 degrees, as shown at (a). At (b) is shown significant error since the required angle falls short of 90 degrees by the "error angle" θ (see text)](image)
HI-FIELDSS’S A\Rt

Pivoted arm line of travel at stylus

Fig. 23: In Fig. 22(a) the required angle is provided by the offset angle obtained by suitably angling the axis of the cartridge with respect to the effective axis of the arm. To help retain the required 90-degree angle at all groove diameters, the cartridge is positioned in the headshell so that the stylus overhangs the turntable spindle by a specified amount when the arm is brought to the centre of the record, which is usually established by an alignment protractor.

PHASING

With hi-fi this applies mostly to the correct phasing of the stereo signals through the left and right channels, all the way from source to the speakers. On a mono source applied simultaneously to the two channels the signals should remain in step over the entire audio spectrum to the two speakers so that their cones also move in and out together. If the signal in one of the channels somehow gets reversed in phase (e.g., the cone of one speaker moving inwards while that of the other is moving outwards on the same signal), then sounds of progressively decreasing frequency will tend towards cancellation, resulting in a bass output deficiency.

Moreover, on a stereo signal the stereo image will fail to resolve precisely; there will appear to be a spread of the sound stage either side of the two speakers and “diffused” stereo will result. Special test records are available to assist with phasing tests. If an out-of-phase condition is detected this is easily cured merely by reversing the connections to one of the speakers, it matters not which one. Another good test is to place the two stereo speakers side by side and to play a record rich in very low bass notes, such as a large organ rendering, with the amplifier switched to mono mode. With one of the speakers connected one way round the bass output will be very weak. That would be the out-of-phase incorrect condition. By reversing the connections of one speaker the bass will be reproduced far more dramatically. That would be the correct condition.

PHASING

This is the unit of loudness (see Part 4) which at 1kHz is equal in value to a dB scale; but the unit takes account of the variations in the sensitivity of the human ear at different frequencies and sound intensities.

PHONO PLUG

This type of plug is commonly used on hi-fi equipment to connect the programme sources to the amplifier, which is equipped with corresponding phono sockets. There is a centre connector which is connected to the “live” signal circuit and an outer connector surrounding it which is connected to the “earthy” side of the signal circuit and hence the outer braid of the signal lead.

PILOT TONE

This is the 19kHz part of the f.m. multiplex (MPX) stereo signal responsible for synchronously reclaiming or synchronising the 38kHz subcarrier generator in a stereo decoder, which is required for the re-constitution of the separate left and right channels. This signal, along with the residual subcarrier (most of the latter being suppressed at the transmitter), uses up ±7.5kHz of the total ±75kHz full modulation deviation, thereby leaving a deviation of ±67.5kHz available for the audio information.

The pilot tone is also used to activate the stereo decoder and to switch on the stereo indicator or “beacon” as it is sometimes called. Also see under Multiplex decoder in Part 4.

PINCH EFFECT

As the stylus of a pickup cartridge traces a recorded record groove it undergoes a vertical motion at twice the frequency of the lateral modulation owing to the groove walls becoming closer together with increasing modulation depth. This, of course, gives rise to 2nd-harmonic distortion, which can be regarded as a kind of tracing distortion. The effect is common to both mono and stereo recordings.

PLAYING WEIGHT (ALSO TRACKING WEIGHT)

The correct term is playing force since it refers to the downward force applied to the pickup stylus to yield optimum tracking within the capabilities of the cartridge at high amplitudes (low frequencies), and at high velocities and accelerations. The force is that effected by the pull of gravity on a mass and is commonly expressed in grams (e.g., the attraction of gravity on a mass of 1g effects a force of about 980 dynes at latitude 45 degrees and sea level). The SI unit of force is the newton (N), which is equivalent to 10^5 dynes. An approximate conversion is to multiply the gram value by ten and call the result millinew- tons (mN). Thus a playing weight of 1g becomes a playing force of 10mN. SI units are just beginning to percolate into the hi-fi literature!
High-flight cartridges in a suitable arm will track as low as 10mN, but it is best to track a shade higher than necessary than too low, for the resulting mistracking of the latter is not only subjectively disconcerting but more damaging to the record than the use of slightly more force. Side-thrust correction (see later) also helps to reduce the tracking force for a given tracking performance.

PRE-EMPHASIS

Pre-emphasis refers to the controlled “boosting” of high frequencies with respect to the lower frequencies when transmitting or recording, as shown by curve (a) in Fig. 24. Here the response is +3dB at just over 3kHz (actually 3184Hz) and the ultimate rate of rise close to 6dB/octave. This, in fact, corresponds to the UK and European pre-emphasis of f.m.

It is defined by a time-constant, which in the above example is 50μs. The frequency corresponding to the 3dB point is equal to

$$f = \frac{1}{50 \times 10^{-6} \times 6.28}$$

or 3184Hz. In American countries the f.m. time-constant is 75μs, corresponding to

$$f = \frac{1}{75 \times 10^{-6} \times 6.28}$$

or 2123Hz. With a simple time-constant like this the response ultimately reaches a rate of change of 6dB/octave (e.g., as per a single-pole filter).

To restore the response integrity it is necessary to apply the converse type of filtering at the receiver or in the replay amplifier. This is called de-emphasis, shown by curve (b).

The net result is then a “flat” response shown by curve (c).

What is the point of all this, one might ask? Well, it is one way of improving the signal/noise (S/N) ratio because a fair amount of noise is composed of high-frequency components which are attenuated when the response is equalised by the de-emphasis.

Pre-emphasis (a part of the RIAA recording characteristic—see under Equalisation in Part 3) is also used for disc recording, for low-speed reel-to-reel tape recording and for cassette recording. The time-constant is established by the specific recording characteristic, and in the case of the tape (see also under De-emphasis in Part 3).

Fig. 24: Pre-emphasis (a) is equalised by de-emphasis (b) to yield a “flat” response (c). Upper-frequency noise is reduced by the attenuation of the de-emphasis. The curves correspond to a time-constant of 50μs, which is the UK and European f.m. time-constant.

Fig. 25: Print-through characteristics of Maxell UDXLII cassette tape after 48 hours storage at 20°C.

(a) first play, and (b) showing how the average print-through ratio is increased by rewinding the tape before playing. The tape was recorded with 1s 1kHz pulses at a recording level corresponding to 200nWb/m with approximately 10s intervals between the pulses. Replay was through a 1kHz bandpass filter to the pen-chart recorder to decrease the swamping tape noise. The signal before the main pulse is pre-echo and that after the main pulse post-echo. The overall length of each recording is about 100 seconds.
PRINT-THROUGH

Owing to the intimacy of adjacent layers of spooled magnetic tape, information print-through can occur which, in severe cases, manifests as pre- and post-echo effects during replay, particularly related to heavily-recorded passages of music and high-amplitude transients.

Chromium dioxide (Cr) tape seems to be more prone to the effect than lower coercivity ferric (Fe) or modified Fe formulations. Measurements that I have made in my own lab also indicate that the metal particle tapes are less prone to the effect than Cr brands. However, environmental storage of a recorded spool of tape can have a marked effect on the print-through, which becomes worse as the storage temperature is increased. Humidity, too, would also appear to play a rôle.

It is also possible to reduce the print-through by rewinding a recorded tape before playing, as can be seen by comparing pen-chart recording (b) in Fig. 25 with that at (a). See caption for details. In general, I have not personally found cassette tape print-through particularly troublesome when the ratio is around 50dB or more. However, incorrect storage of Cr tape (in the rear window of a car, for example!) can lead to lower print-through ratios which are subjectively apparent.

QUIETING

With f.m. receivers, the level of background noise decreases as the aerial signal level increases. Starting at very low input signal level, the noise decrease is at first very swift, after which it slows down, ultimately reaching the mono noise floor with an input of 1 or 2mV, depending on the receiver's sensitivity. The amount in dB by which the noise falls when the receiver is fed with a v.h.f. signal of given voltage is the quieting. For a quieting of 50dB, the aerial input signal usually needs to be about ten times (20dB) stronger in stereo than mono mode.

RECORDING CHARACTERISTIC

This refers to the nature of signal boost or cut applied during recording, usually to an agreed standard (see under RIAA). When replaying, an inverse characteristic is used to achieve a "flat" frequency response (see also under Equalisation in Part 3).

Index of Partly Defined Jargon

- Coercivity
- De-emphasis
- Equalisation
- Lateral tracking error
- Loudness
- Multiplex decoder
- Noise floor
- Parallel tracking
- Phono socket
- Playing force
- Side-thrust correction
- Sound stage
- Tracing distortion

TO BE CONTINUED
Not very many years ago, digital measuring instruments came in 19 inch, rack-mounting, steel cases, and consumed considerable quantities of power. Since then, in common with calculators, they have got smaller, cheaper, more versatile and more reliable, and the day of the "personal" digital multimeter is with us.

The Fluke 8022A is such an instrument, pocket-sized and offering a comprehensive range of measurements at a standard of accuracy far surpassing that of an analogue multimeter. The shape and size, and the arrangement of the push-button range selectors, make possible one-handed operation of the instrument, even by someone with quite small hands. The case moulding is ribbed around the centre section to provide a firmer grip.

The display is a 3½-digit liquid crystal type with digits approximately 11 mm high and good contrast even in low light levels, though it is a pity that a non-reflective material could not have been used for the display window, to obviate irritating glare from overhead lighting when the instrument is used on the bench top. In this position, the display is tilted about 10° up from the horizontal. The glare problem can be largely overcome by using the tilt-bail built into the back of

specification

DC Volts:
- Ranges: 200mV, 2, 20, 200, 1000V
- Accuracy: ±(0-25% of reading + 1 digit)
- Input Impedance: 10MΩ
- Overload Protection: 1000V d.c. or peak a.c.

AC Volts:
- Ranges: 200mV, 2, 20, 200, 750V
- Frequency Range: 45–450Hz
- Accuracy: ±(1% of reading + 3 digits)
- Input Impedance: 10MΩ in parallel with <100pF
- Overload Protection: 750V r.m.s. or 1000V peak

DC Current:
- Ranges: 2, 20, 200, 2000mA
- Accuracy: ±(0-75% of reading + 1 digit)
- Burden Voltage: 250mV r.m.s. max (700mV r.m.s. on 200mA range)
- Overload Protection: 2A/250V

AC Current:
- Ranges: 2, 20, 200, 2000mA
- Frequency Range: 45–450Hz
- Accuracy: ±(2% of reading + 3 digits)
- Burden Voltage: 250mV r.m.s. max (700mV r.m.s. on 200mA range)

Resistance:
- Ranges: 200, 2k, 20k, 200k, 2000k, 20MΩ
- Accuracy: ±(0-2% of reading + 1 digit)
- ±0-3% of reading + 3 digits) on 200Ω range
- ±(2% of reading + 1 digit) on 20MΩ range
- Overload Protection: 500V d.c. or r.m.s. a.c.

Size: 1800 × 860 × 450mm

Weight: 0.37kg
Based on the ubiquitous Intersil 8038 waveform generator, this unit provides sine, square or triangular waves from 10Hz to 70kHz, with an output of up to 4V peak-to-peak.

Stereo Automatic Fader

Add automatic "ducking" to your disco or tape recording system. This handy gadget fades the music down when you speak, and restores normal volume when the announcement or commentary is over.
Although a standard servo mechanism such as that described last month can be used to operate a variable resistance motor controller this is very wasteful both of a servo and also of power.

A simple electronic speed and direction controller can be built using a Signetics NE544 servo amplifier chip which will give good speed control with forward and reverse direction as well.

The unit described in this article is suitable for use in electric boats and cars and gives excellent control over the speed of the model from full ahead to full astern with a distinct centre-off position.

The block diagram of the speed controller is shown in Figure 1 and this shows it to be essentially the standard servo system with the mechanical part of the feedback loop broken and extra output drive capability added to cope with the high motor currents encountered in electric boats and cars.

The internal pulse width is set up to be 1.5ms wide as long as the input signal pulses are also 1.5ms wide. In this condition there is no output from the circuit hence the voltage across the motor is zero.

As the input signal is increased in length the resultant error signal is amplified by the pulse stretcher and the resulting pulses applied to the output stage.

The gain of the pulse stretcher is such that when the error pulse is 1ms wide the output is continuous in nature and the motor is driven as hard as possible.

For input signals with a width of less than 1.5ms the output signals are in the opposite phase and the motor direction is reversed.

A licence is required to operate radio control equipment. This costs £2.80 for five years. Application forms are available from: The Home Office, Radio Regulatory Dept., Waterloo Bridge House, Waterloo Road, London SE1 8UA

Circuit

Figure 2 shows the circuit of the speed controller. Component values around the NE544 have been altered from the standard servo circuit to give the correct pulse stretcher gain and a definite off position. The output drive is provided by two TDA 1490 quasi-complementary dual darlington devices, as it is beyond the capability of the NE544 to sink these sort of currents. The power supply is adequately decoupled by the 100μF capacitors (C9, 10) and the output of the TDA 1490 devices decoupled to 0V by the 47nF capacitors (C11, 12). The NE544 receives its power from the receiver NiCad batteries keeping the high current motor supply separate.

Output currents larger than 5A can be accommodated by using output bridges built from discrete transistors, but this requires the use of special low saturation voltage devices and as these are rather expensive no details of this sort of output bridge are provided here.

One potential trouble with this sort of controller is the production of r.f.i. noise, but this has been kept under control by the inclusion of a special π filter across the motor.
Construction and testing

The p.c.b. and component overlay are shown in Figure 3. Construction is straightforward and simple. The TDA1490 ICs must be insulated from the metal heatsink.

The toroidal choke (L1, L2) consists of 40 turns bifilar wound on a Micrometals toroid, and should be located,
The finished speed controller showing the aluminium heat sink covering the components. The output transistors must be insulated from the heat sink.

The component side of the finished p.c.b. without the heat sink. Compare this with the photographs of the prototype unit shown on the previous page.

The radio frequency interference (r.f.i.) filter showing the bifilar wound toroidal inductors and the way in which the unit can be built on a small piece of Veroboard.

Components

<table>
<thead>
<tr>
<th>Resistors</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2W 5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150Ω</td>
<td>1</td>
<td>R4</td>
</tr>
<tr>
<td>270Ω</td>
<td>1</td>
<td>R5</td>
</tr>
<tr>
<td>1-2kΩ</td>
<td>2</td>
<td>R6,7</td>
</tr>
<tr>
<td>15kΩ</td>
<td>1</td>
<td>R3</td>
</tr>
<tr>
<td>220kΩ</td>
<td>2</td>
<td>R1,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentiometers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cermet trimmers top adjusting</td>
</tr>
<tr>
<td>10kΩ</td>
</tr>
<tr>
<td>100kΩ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tantalum</td>
</tr>
<tr>
<td>1μF 25V</td>
</tr>
<tr>
<td>2-2μF 35V</td>
</tr>
<tr>
<td>4-7μF 35V</td>
</tr>
<tr>
<td>100μF 10V</td>
</tr>
<tr>
<td>Ceramic</td>
</tr>
<tr>
<td>10nF</td>
</tr>
<tr>
<td>47nF</td>
</tr>
<tr>
<td>Polyester</td>
</tr>
<tr>
<td>0-1μF</td>
</tr>
<tr>
<td>0-47μF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Circuits</td>
</tr>
<tr>
<td>NE544</td>
</tr>
<tr>
<td>TDA1490</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1, L2, 40T bifilar wound on Micrometals toroid type T68-40.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printed circuit board; 22 s.w.g. aluminium 40 x 80mm for heat sink; power transistor mounting kit (2).</td>
</tr>
</tbody>
</table>

Together with two 47nF capacitors (which must be disc ceramic types) as close as possible to the motor and not on the main p.c.b. A heatsink for the output devices is easily made from thin sheet aluminium folded so as to cover the p.c.b. Two small holes will need to be drilled in the heat sink to allow VR1 and VR2 to be adjusted.

Setting up

The only setting up needed is of the set centre (VR1) and set full power (VR2) preset. With the transmitter joystick at the centre of its travel adjust the set centre potentiometer so that the motor is stationary. Now move the joystick fully one way at which point the motor should start to revolve. The set full power preset should now be adjusted until the point at which the motor speed no longer increases is reached.

Next month we will cover the installation of the FM-80 system in different types of models including aircraft, boats and electric cars.
The Australian Scene

Sir: I thought your readers might be interested in the licensing requirements for radio amateurs in this country, since I understand that the UK does not have a "Novice" amateur certificate of proficiency.

Amateur radio here in Australia has seen a tremendous boost since the advent of CB (Citizens' Band) radio, which uses a slot between 27-015 and 27-225MHz. Most amateur operators licensed within the last two years have experienced CB radio—indeed it was probably CB which gave them their first experience of two-way communications. I was involved for around a year in CB, which taught me a few basic principles about antennae, propagation of radio waves, V.S.W.R., and so on. So, the next logical step for me was the Novice certificate.

The Novice certificate of proficiency entails three exams, these being: 1. THEORY—a basic test of transmitting and receiving principles; valves; transistors and their operation; propagation and antennae. 2. REGULATIONS—a written (multiple choice) test on current rules and regulations governing the safe and legal operation of an amateur radio station. 3. MORSE CODE (CW)—the candidate must satisfy the examiner that he/she is proficient in the sending and receiving of numerals and plain language at a speed of five words per minute.

On passing these exams, the candidate is then given a callsign with the prefix VK (Australia) followed by a number which signifies the State of residence:

VK1—Australian Capital Territory (Canberra)
VK2—New South Wales
VK3—Victoria
VK4—Queensland
VK5—South Australia
VK6—West Australia

My callsign is VK3NAY. The "N" signifies a Novice station, "VK3" signifies that I reside and operate in the State of Victoria, in the Melbourne area. If your short-wave listeners or amateurs have heard calls having a suffix starting with "V", e.g., VK3VAA, these are also Novice stations, it's just that we've run out of "N- -" suffixes. The series will be VAA-VZZ, but what will be used next I do not know. YAA-YZZ and ZAA-ZZZ are Limited licence holders, limited to 6 metres and above.

Our full licence holders, who must achieve 10 w.p.m. c.w. proficiency and pass a much stiffer theory exam, have suffixes AA-ZZ, AAA-AZZ, BAA-BZZ and DAA-DZZ. We're about halfway through the "D" calls at present. A "VK-C- -" callsign indicates a station that moves around Australia a lot, and uses the area or State number with his call.

Bands, modes and powers for the various classes of operator are as follows:

Novice: Phone — 10W mean a.m., 30W p.e.p. s.s.b.
CW — 10W
3-525-3-625MHz, 21-125-21-200MHz,
28-100-28-600MHz.

Limited: RTTY, SSTV, ATV, f.s.k., f.m., a.m., p.m. s.s.b.
150W mean, 400W p.e.p.
No c.w.
52-54MHz, 144-148MHz, 1215-1300MHz,
2300-2450MHz, 3300-3500MHz, 5650-5850MHz,
10000-10500MHz, 24000-24250MHz.

Full: As for Limited, plus c.w. and the following bands:
1800-1860kHz, 3-500-3-700MHz, 7-000-7-150MHz,
14-000-14-350MHz, 21-000-21-450MHz,
28-000-29-700MHz.

I have had the good fortune to work 3 "G" stations on 15m, one contact lasting 30 minutes. The rig used was a TS120V, feeding simple dipoles only eight feet above ground level, and without baluns.

We now have a second CB service which uses 40 channels in the 50cm band, 476-477MHz with F3 (f.m.) modulation. If the UK ever looks to a CB service, this is where to put it. There is no DX QRM, but contacts up to 200 miles have been achieved with 5W into a vertical gain antenna.

Phil Perry VK3NAY,
Wantirna South,
Victoria,
Australia

Bind it

It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold approximately 12 issues and is attractively bound and blocked with the PRACTICAL WIRELESS logo. Gold Letter-set supplied for self blocking of volume numbers and years.

Price £4.10 including postage, packing and VAT. Why not place your order now and send the completed coupon below with remittance to: IPC Magazines Ltd., Post Sales Dept., Lavington House, 25 Lavington Street, London SE 1 OPF.

Order form PRACTICAL WIRELESS

I enclose P.O./cheque value for __________ binders

Years required __________

(Block Letters Please)

Name ____________________________

Address ____________________________

Date ____________________________

Practical Wireless, March 1980
Construction

The unit is mounted in a standard Bazelli case. Drilling details can be taken from the front panel markings as detailed in Fig. 8. Four holes are also needed in the base of the box for the stand-offs which support the p.c.b. These can be marked through using the board as a template, remembering that the rear of the finished board should fit 4.5mm forward from the back of the case to clear the grommets. If fitted too far forward, the p.c.b. will foul the front panel controls, see photographs. Three grommets are fitted in the rear panel, 3mm higher than the p.c.b. and placed to take the three flying leads, i.e., the coaxial output lead to the Purbeck Y input, the lead from the EXT TRIG socket and the lead from the ALT GATE socket. The 180° 5 pin DIN supplies socket is also mounted on the back panel, but higher up, clear of the p.c.b. The exact position is not important. Note that one pin is not used, and ensure that the metal shell of the socket makes good contact to the metal case. A short jumper lead with a 180° 5-way DIN plug at each end connects the Dual Trace Unit to the Purbeck.

Although only four pins are used (the Dual Trace Unit does not use the +150V STAB supply), all five should be wired to match the socket on the Purbeck front panel.

A sixth wire connects the metal shells of the two plugs together and should on no account be omitted.

Having completed all the drilling and prepared the metalwork generally, check that the controls, p.c.b. and power sockets all fit; much better find out now if they don’t, rather than later on! All being well, it is time to load the p.c.b. Before fitting any components, fit the board pins, of which there are 28. As in the Purbeck, the 733 video amplifier chips must mount direct on the board to keep lead lengths to a minimum. The four c.m.o.s. chips however can be accommodated in i.c. sockets; on balance this is well worth doing, even though the sockets cost nearly as much as some of the i.c.s! As the design does include c.m.o.s. devices, make sure before you start that you have a soldering iron with a three core mains lead and that the earth lead is in good order and properly earthed. The small amount of point to point wiring should be completed after all the components have been fitted.

With the p.c.b. complete and carefully checked, it is time to turn to the attenuators. The two input attenuator switches S501 and S502 are constructed similarly to that of the Purbeck, but with one less position. The Y2 channel attenuator S502 is mounted rotated 180° relative to S501, to bring the trimmers to the right hand side where they can be easily reached for adjustment. With the attenuators complete and visually checked, the loading of the front panel components can begin. A transparent film overlay is available for this unit marked in a matching style to the Purbeck.

Fit the p.c.b. stand-offs in the base of the case and the grommets in the rear panel. Then fit all front panel controls and sockets except the four rotary switches. The two 400V working 0-1µF capacitors C501, 502 should now be mounted on the a.c./d.c. coupling switches S501, 502. Also wire R501, 502 between these switches and the input sockets.

Fit the printed circuit board onto the four stand-offs, feed the coaxial lead through the grommets and connect them to the appropriate board pins. Wire the Variable gain controls R517, 518 and the SHIFT controls R519, 520 to the appropriate pins on the p.c.b. as in Fig. 11 noting carefully which wires cross over.

Next fit the front panel rotary switches, having pre-wired them as far as possible—e.g., R523 and C522 ready mounted on S505, using spare contacts as anchoring points for the other ends of these components. C522 is grounded to the p.c.b. ground plane via the outer of the short length of coaxial cable whose inner connects R523 to R648 and C621. R521 and 522 mount between the board and S505a as in the photographs. Wiring up the mode switch S506, the two input attenuators, and the supplies from the rear panel socket to the p.c.b., concludes the constructional work. Do not fit the cover at this stage, but carefully centre all the pre-set potentiometers.
Resistors

<table>
<thead>
<tr>
<th>Value</th>
<th>Qty</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10Ω</td>
<td>4</td>
<td>R607,608,611,612</td>
</tr>
<tr>
<td>47Ω</td>
<td>3</td>
<td>R633,644,648</td>
</tr>
<tr>
<td>68Ω</td>
<td>2</td>
<td>R501,502</td>
</tr>
<tr>
<td>330Ω</td>
<td>4</td>
<td>R605,606,609,610</td>
</tr>
<tr>
<td>510Ω</td>
<td>1</td>
<td>R642</td>
</tr>
<tr>
<td>680Ω</td>
<td>1</td>
<td>R662</td>
</tr>
<tr>
<td>1kΩ</td>
<td>10</td>
<td>R515*,516*,603,604,619,620</td>
</tr>
<tr>
<td>1.2kΩ</td>
<td>4</td>
<td>R623,624,625,626</td>
</tr>
<tr>
<td>1.3kΩ</td>
<td>1</td>
<td>R643</td>
</tr>
<tr>
<td>1.8kΩ</td>
<td>5</td>
<td>R613,614,615,616,617</td>
</tr>
<tr>
<td>2kΩ</td>
<td>1</td>
<td>R647</td>
</tr>
<tr>
<td>2.2kΩ</td>
<td>3</td>
<td>R521,522,523</td>
</tr>
<tr>
<td>2.4kΩ</td>
<td>1</td>
<td>R655</td>
</tr>
<tr>
<td>2.7kΩ</td>
<td>4</td>
<td>R645,657,663,665</td>
</tr>
<tr>
<td>3.6kΩ</td>
<td>1</td>
<td>R652</td>
</tr>
<tr>
<td>3.9kΩ</td>
<td>1</td>
<td>R638</td>
</tr>
<tr>
<td>4.7kΩ</td>
<td>1</td>
<td>R666</td>
</tr>
<tr>
<td>5.6kΩ</td>
<td>1</td>
<td>R646</td>
</tr>
<tr>
<td>7.5kΩ</td>
<td>1</td>
<td>R680</td>
</tr>
<tr>
<td>8.2kΩ</td>
<td>1</td>
<td>R653</td>
</tr>
<tr>
<td>10kΩ</td>
<td>4</td>
<td>R511*,512*,627,628</td>
</tr>
<tr>
<td>15kΩ</td>
<td>1</td>
<td>R636</td>
</tr>
<tr>
<td>18kΩ</td>
<td>1</td>
<td>R651</td>
</tr>
<tr>
<td>22kΩ</td>
<td>4</td>
<td>R631,632,650,657</td>
</tr>
<tr>
<td>27kΩ</td>
<td>1</td>
<td>R649 (select on test)</td>
</tr>
<tr>
<td>47kΩ</td>
<td>2</td>
<td>R635,644</td>
</tr>
<tr>
<td>100kΩ</td>
<td>5</td>
<td>R507*,508*,509*,510*,513*,514*</td>
</tr>
<tr>
<td>470kΩ</td>
<td>2</td>
<td>R601,602</td>
</tr>
<tr>
<td>910kΩ</td>
<td>2</td>
<td>R505*,506*</td>
</tr>
<tr>
<td>1MΩ</td>
<td>6</td>
<td>R503,504*,509*,510*,513*,514*</td>
</tr>
</tbody>
</table>

*1% tolerance

Capacitors

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic</td>
<td>47pF</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>330pF</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>470pF</td>
<td>2</td>
</tr>
<tr>
<td>1nF</td>
<td>1</td>
<td>C630</td>
</tr>
<tr>
<td>Ceramic Disc</td>
<td>10nF</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0.1μF</td>
<td>10</td>
</tr>
<tr>
<td>Polyester</td>
<td>4.7nF</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0.1μF (400V)</td>
<td>3</td>
</tr>
<tr>
<td>Tantalum</td>
<td>4.7μF (10V)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>17μF (16V)</td>
<td>12</td>
</tr>
<tr>
<td>Min. Trimmer</td>
<td>22pF</td>
<td>14</td>
</tr>
</tbody>
</table>

Semiconductors

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transistors</td>
<td></td>
</tr>
<tr>
<td>E421</td>
<td>2</td>
</tr>
<tr>
<td>BC107</td>
<td>4</td>
</tr>
<tr>
<td>BSV81</td>
<td>4</td>
</tr>
<tr>
<td>Integrated Circuits</td>
<td></td>
</tr>
<tr>
<td>CD4001</td>
<td>1</td>
</tr>
<tr>
<td>CD4047</td>
<td>1</td>
</tr>
<tr>
<td>CD4052</td>
<td>1</td>
</tr>
<tr>
<td>CD4081</td>
<td>1</td>
</tr>
<tr>
<td>CA3018</td>
<td>1</td>
</tr>
<tr>
<td>LM733</td>
<td>1</td>
</tr>
</tbody>
</table>

Switches

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. s.p.s.t. toggle</td>
<td>2</td>
</tr>
<tr>
<td>Rotary 2p4w</td>
<td>1</td>
</tr>
<tr>
<td>Rotary 3p4w</td>
<td>1</td>
</tr>
<tr>
<td>Rotary 2p4w</td>
<td>2</td>
</tr>
</tbody>
</table>

Miscellaneous

Case, Bazelli B16; Printed Circuit Board; 50Ω b.n.c. sockets UG1094/U(2); 5 pin 180° DIN socket (1); 5 pin 180° DIN plug (2); Sifam collet knobs with nut covers, 15mm wing (4), 15mm plain (4); p.c.b. mounts (4); 50Ω b.n.c. plug (1); Min. coaxial cable 50Ω (300mm); Front panel overlay (1). Sockets 14 pin d.i.l. (3), 16 pin d.i.l. (1).

Purbeck modifications

Whilst construction of the Dual Trace Unit is now complete, there are some necessary modifications to be performed on the Purbeck itself. These are shown in Fig. 10. The reason for changing S6's circuitry lies in the nature of the signal in the 'scope's Y amplifier when the Dual Trace Unit is in the Chopped mode. The Y signal switches rapidly between the two traces displayed, at approximately a 100kHz rate. The two traces may be displaying no waveform at all—just two straight lines—but the Y signal in the Purbeck is still a 100kHz square-wave with a peak-to-peak amplitude equal to the separation between the traces, which could be up to full screen. With the original/single pole INT/EXT trigger select switch, the fast edges of this square-wave are partially coupled via the small capacitance of the open contacts into the trigger circuit. Although much attenuated, they are still sufficient to...
upset the trigger signal fed in via the external trigger socket from the Dual Trace Unit, tending to make the trace synchronise to the chopping frequency. The modified arrangement with the double pole switch entirely avoids this problem. In fact, it is a worthwhile modification for any Purbeck owner who has experienced problems when using external trigger, even if they have no intention of building the Dual Trace Unit. Note also the changed components associated with the external trigger input sockets.

Fig. 8: The front panel of the Dual Trace Unit shown full size

Fig. 9: The double-sided printed circuit board is used for the Dual Trace Unit shown full size above with the track pattern
Grounding

Check with a multimeter that the shell of the 5 pin DIN socket and the p.c.b. ground plane are both connected to the metalwork (ground) and that none of the supply pins of the DIN socket is short-circuit to ground. The unit should now be connected to the Purbeck oscilloscope, which should be set to 100mV/div, x1, a.c. coupled, and the scope switched on. Check straight away that the +12V, +5V, -6V and -12V supplies at the pins of the Dual Trace Unit's supplies socket are present and correct. (If not, switch off immediately and investigate.) Set the trigger selector S505 and the mode switch S506 to Y1, the Y1 input attenuator S503 to 100mV/div and the Y1 gain control to maximum, i.e., fully clockwise. The Y1 shift control should be centred, and the d.c. conditions set up as follows.

1. Centre the trace on the screen of the Purbeck, then switch the Purbeck's input to d.c. coupled.
2. The trace will almost certainly move off centre and possibly off screen. If this happens set the Purbeck to 1V/div. Using the Y1 shift control of the Dual Trace Unit R519, re-centre the trace, switching back to 100mV/div to enable this to be completed exactly. If the trace cannot be completely centred leave the Y1 shift control at the end of its travel where the trace is nearest centred and complete centring with SET ZERO control R637 on the board.
3. Y1 balance control is now set up as follows: Rotate the gain control RV1, and it will, almost certainly, be found that the trace moves up and down. Adjusting R617 one way or the other will increase or decrease the amount of movement and R617 should be carefully set so that rotating the gain control over its whole travel results in no vertical movement of the trace. Note that the setting of R617 to achieve this will of course result in the trace not being centred.
4. Having set R617 the Y1 balance control, the SET ZERO control R637 should now be set such that the Y1 shift control R519 produces, at the extremes of its travel, an equal shift in the upwards and downwards directions relative to the centre of the screen. R629, the pre-set SHIFT CAL control should then be adjusted so that the full range of the front panel shift control just shifts the trace from the top to the bottom of the graticule.
5. Set the mode switch to select Y2 only and set up the Y2 balance pre-set R618 so that varying the Y2 gain control R518 does not change the vertical position of the trace. This is carried out as in 3 (above). Also adjust the Y2 pre-set SHIFT CAL control R630 to set the range of the Y2 front panel shift control R520 to eight vertical divisions. This range may not be centred equally above and below the graticule centre line; this is due to differing offsets in

Testing

www.americanradiohistory.com
Fig. 11: The component placement diagram for the Dual Trace Unit. Note that the components are fitted to the ground plane side of the p.c.b. taking great care to ensure that connections are only made to the ground plane where indicated. The components are numbered odd for Channel 1 and even for Channel 2.

Fig. 12: These links must be made using insulated wire, on the opposite side of the p.c.b. to the components.

Practical Wireless, March 1980
the 733 video amplifiers IC601 and 602. Any off-centring of the Y2 shift range can be halved by slightly re-adjusting the SET ZERO pre-set control R627. This splits the difference between the Y1 and Y2 shift controls. It also completes the setting up of the d.c. conditions.

Input attenuators

The next step is to set up the input attenuators for correct frequency response, and this requires a square-wave generator at say 5kHz, with adjustable output. The calibrator described in “Passive 10:1 divider probe for the PW Purbeck” in the June 1979 issue is very suitable, but arrangements will need to be made to “tee” it into the +12V STAB supply as you can’t plug both it and the Dual Trace Unit into the Purbeck’s accessory power socket at once!

It is assumed in the following that the 10:1 divider probe, which is currently used with the Purbeck, is correctly set up for use with that instrument, and that it will also be used with the Dual Trace Unit. This being so, it would clearly be inconvenient to have to re-adjust the probe every time it is changed over from the scope to the Dual Trace Unit and vice-versa, and the following procedure is designed to avoid this.

Probes

Check using the calibrator that the 10:1 divider probe really is correctly set up for use with the Purbeck. Now unplug the probe from the latter and connect up with the Dual Trace Unit.

Always switch the scope off whilst plugging in or disconnecting anything from the accessory power socket.

Connect the probe to the Y1 input of the Dual Trace Unit which should be set to Y1 only, Y1 trigger source. Set the Y1 VAR GAIN control to maximum, the Y1 input attenuator to 10mV/div, and the calibrator to 20mV output.

The resultant square-wave on the screen will probably not have square leading edges (see Fig. 3 of the June 1979 article on the 10:1 passive probe). Adjust C503 to obtain the correctly compensated waveform of Fig. 3a.

Now remove the probe and with the square-wave generator connected directly to the Y1 input set up C507, 513 and 519 in turn at the 100mV/div, 1V/div and 10V/div settings of S503, using an appropriate output from the calibrator and setting of Y1 VAR GAIN for each range. Now re-connect the 10:1 probe between the calibrator and the Y1 input socket and adjust C505, 511 and 517 in turn similarly.

This completes the setting up of the Y1 input attenuator, and the whole procedure should now be repeated to set up the Y2 input attenuator. With the Y1 gain control at maximum (counter clockwise) set the gain by adjusting GAIN CAL preset R621. Similarly set the Y2 gain with R622, and mark the x0-5, x1 and x2 settings on the panel. This finally completes the setting up of the unit, which is now ready for use.

The front panel overlay is available to fit the case recommended. This overlay can be obtained from the editorial offices, price £1.60 including postage. It is understood that Watford Electronics will be supplying ready punched and printed cases for this project.
New Bench/Portable d.m.m.

Microprocessor techniques have allowed Fluke to incorporate some very useful features in their latest low cost 4½ digit 8050A d.m.m. For, apart from being a very compact and highly accurate bench/portable model with 39 measurement ranges and nine functions, the 8050A also provides unique dB computing and offset modes in addition to a high performance true r.m.s. capability.

In the dB mode, the 8050A d.m.m. allows the user to call up any of the 16 reference impedance levels from 8 to 1200 ohms and to display the readings directly in dBs.

Additionally, a reference/offset mode allows any input signals to be stored either as a reference value for relative dB readings or as an offset against any reading. In offset mode, the user can zero-out any lead resistances for really high resolution impedance measurements or set up a reference offset and display only the variance from that reading.

These absolute and relative dB modes with offset greatly simplify measurements in audio, amplifiers and telecommunications circuits as well as in production testing where only the variance from the stored value may be required. The offset facility is available on all functions such as a.c./d.c. Volts or Amps, Resistance or Conductance.

The high resolution 4½ digit l.c.d. display is matched by a basic d.c. accuracy of 0.03% specified over a full year. Measurements can be made down to 10μV, 1μV, 10mΩ with Fluke’s true r.m.s. hybrid circuit providing excellent spectral response on a.c. In addition to its comprehensive volts, ohms and amp ranges, the 8050A also has two conductance ranges for really high impedance measurements to 100,000MO, as well as low power ranges for in-circuit measuring of diodes and resistors.

An additional safety feature is an h.v. display whenever a dangerous voltage over 40V is present on the probes. This is especially useful in the dB or relative modes where the displayed reading does not show the actual input value. Further safeguards protect against overloads or misuse and the instrument is conservatively rated to withstand transients to 6kV.

A wide range of accessories such as high voltage probes, current transformers, shunts, temperature and r.f. probes, remote hold probe, battery pack, and safety leads make the 8050A a complete measurement system for the bench or field.

The 8050A is available as a mains only version costing £199 plus VAT and a mains/battery version which incorporates a built-in rechargeable battery pack and costs £239 plus VAT.

New Radio I.C.s

Two new circuits which will considerably increase the level of integration possible in professional radio equipment have been introduced by Plessey Semiconductors. Both products, the SL6270 and SL6310, are additions to the recently introduced SL6000 series of radio linear circuits.

The SL6270 is a microphone amplifier with integral gain control. The circuit provides a constant output level, whether the speech into the microphone is very loud or soft and therefore applications are anticipated in the tape recording and public address systems fields.

One of the limitations of battery life in hand-portable receivers is the high quiescent power consumption of the audio amplifier. The SL6310 is designed to avoid this excessive consumption by means of a novel feature which allows the circuit to be switched off in weak or noisy signal conditions by application of a ‘mute’ signal. Even when operating normally, the standby current is only 5mA, half that of comparable products, but the SL6310 is still capable of 500mW output power.

Plessey Semiconductors Ltd., Cheney Manor, Swindon, Wiltshire.
Tel: (0793) 36251.

Look in

Augmenting their existing Bim 2000 range of Bimboxes, Boss Industrial Mouldings Limited have now introduced a new, 2 part, deep profile version, available with base and lid colours in black, grey, orange, or blue plus the added attraction of optional clear lid.

Manufactured in ABS with optional clear lid in SAN, as with all Bimboxes, 5-08mm spaced slots are incorporated on all sides of the base section capable of supporting 1·5mm thick p.c.b.s.

Both the coloured and the transparent versions of the lid are secured by 4 screws running into base corner bosses, and, with the lid incorporating a small flange which sits recessed into the base, these boxes exhibit excellent water repellent properties.

Ideal for use in a wide variety of timer/control type applications, the transparent lid version in particular of this 150 x 80 x 76mm deep Bimbox is eminently suitable where viewing of, but not necessarily access to, internal components is required.

Boss Industrial Mouldings Ltd., 2 Herne Hill Road, London SE24 0AU. Tel: 01-737 2383.

Power Supply/Charger

The PS1200 is a power supply designed primarily for use with Trio TR2200G, TR2200GX, TR3200, TR2300 and Icom IC-202S and IC402 transceivers. The unit provides a 13-8V regulated d.c. output at 750mA and also a constant current charging supply (45mA) for the optional battery pack.

This enables the operator to use the transceiver as a base station whilst at the same time charging the transceiver battery pack for portable use.

Powered by the a.c. mains supply, the unit is protected by inbuilt circuitry against short-circuit and thermal overload. The antisurge fuse is rated at 1 amp.

The PS1200 is housed in an attractive metal case which measures 150 x 75 x 97mm deep, and weighs 1·35kg.

Obtainable either direct or through dealers, the VAT inclusive price is £29.50, postage and packing £1.25.

LAR Modules Ltd., 27 Cookridge Street, Leeds LS2 3AG. Tel: (0532) 452657.

Sommerskamp 2m Transceiver

The Sommerskamp TS280 FM 2-metre VHF mobile transceiver is probably the world’s most compact 80 channel 50 watt 2-metre FM transceiver. The high output power (quoted in the manufacturer’s literature as 75 watt input) is achieved by adding the high power amplifier section at the back of the transceiver unit, thereby achieving a total depth of 290mm excluding controls, enabling the unit to be fitted under dash in most vehicles.

Of course, the high power capability means that the unit provides an excellent base station when used with a good high current regulated supply. The high power transistor output switch is fully protected against adverse load conditions, the p.a. shutting down immediately in the case of excessive s.w.r., etc.

80 channels at 25kHz spacing from 144-146MHz are achieved by using a pull switch on the squelch control to select lower end of the band. Repeater selection is automatic thereby making this unit extremely easy to operate in mobile conditions. The bright green digital display directly reads the channel in use with the exception that RO reads as 40.

The receiver sensitivity is quoted 0·4μV for 12dB sinad with a squelch threshold less than 0·1μV. The total current drain of the unit on full power transmit is 8 amps at 13-8V d.c.

Also available for the TS280 is a variety of microphone options such as telephone handset with p.t.t. switch, a selective tone calling microphone, a loudspeaker microphone and a mobile hand microphone with built-in volume control.

Attractively finished in metallic blue with a dark green front panel, the transceiver is economically priced at £203.55 including VAT and delivery charge.

The TS280 is available from: Arrow Electronics Ltd., Leader House, Coptfold Road, Brentwood, Essex CM14 4BN. Tel: (0277) 219435 and 226470.
For the domestic radio receiver, the ‘30s stand out as the vintage years. When the decade opened, the “wireless” was still emerging from the mahogany and ebonite cabinet plus separate horn loudspeaker stage; when it closed, very sophisticated sets with such features as motor-driven tuning, a.f.c., variable-selectivity i.f. amplifiers and high quality push-pull output stages were widely available. They were housed in cabinets with plastic and chrome fittings which emphasised the upsurge in the new technology.

This article examines the general development of receivers and the circumstances which helped to bring it about.

Evolution

The evolution of the radio receiver was phenomenally rapid. To draw a parallel, it’s rather as if the sixty year interval between the World War One biplane and the Concorde had been compressed into less than a fifth of that time! That it should have been accomplished at a time of chronic economic recession makes it all the more astonishing. But in spite of, or perhaps because of, the Depression there was a huge demand for the latest form of home entertainment and hundreds of firms sprang up to fulfil it.

Many of these early manufacturers are still household names today (although they have been swallowed up by large groups and exist only by virtue of “badge engineering”), but in the early ‘30s there were only two major examples of this practice—the “His Master’s Voice” and “Marconiphone” trademarks of the giant EMI concern. Later, Philips marketed an almost identical range, both under their own name and under that of Mullard. But the rest of the multitude of brand names were largely independent and individualistic. Some were offshoots of firms long-established in the electrical or entertainment fields (such as GEC, Ferranti and Decca) while others were set up by pioneers like Frank Murphy, E. K. Cole and Leslie McMichael.

This vast array of firms, large and small, were served by appropriately extensive component and valve industries. In this favourable climate, competition flourished and bore fruit: one of the first advances was that the town-dweller, at least, was freed from the drudgery of carrying accumulators to be charged as the new range of all-mains sets appeared. For the country folk, who as yet had no electricity supply, it was common for similar battery-operated versions to be supplied; these had the virtue of looking as modern, even if they didn’t perform as well! Indeed, it was not unusual for three variants of a basic chassis to be produced as the mains types had to be further sub-divided to suit either a.c. or d.c. supplies. The development of the universal a.c./d.c. sets came somewhat later.

Superhets

Another early advance was the widespread adoption of the superheterodyne receiver. True, some t.r.f.s continued in production (notably by A. C. Cossor, with their loftily-named “Super-Ferrodynes”), but the superiority of the superhet was soon clearly established—particularly as the number of radio stations and the power radiated by them increased. Good selectivity became an essential selling point.

For a number of years, the favoured i.f. lay in the 110–130kHz band and the amplification possible at these comparatively low frequencies with even the earliest h.f. pentodes and tetrodes can be an eye-opener to anyone lucky enough to be able to find a working set of the period. With this increased gain, however, came the need for some form of automatic gain control, then termed “automatic volume control”. It didn’t take long for simple a.v.c. to develop into delayed and squelch versions.

Sometimes, the two would be combined and the characteristic could be adjusted according to the listener’s requirements. The Ekco “Silent Tuning” models, for example, had a small knob which could be set for either “all stations” (minimum delay), through to a point where only the strongest signals would be received; in between, there would be complete silence in place of the usual jumble of music and speech.

*The “Melody Maker”, from A. C. Cossor Ltd., was a popular domestic receiver in the ’30s and was available ready-assembled or in kit form, powered either from the mains or batteries. Our heading is reproduced from an advertisement in the “Practical Wireless” of 3rd December, 1932. “Volume is enormous, quality is excellent,” wrote one Yorkshire user—his aerial consisted of 25ft of wire tastefully arranged around the picture rail!
Selectivity Problems

Improved selectivity brought with it extra problems for the designers, one of which was the need for accurate tuning if the harsh reception resulting from working on the edge of the acceptance band was to be avoided. Improved dials were a partial answer and, from having simple markings of 0–100, they advanced to having wavelengths and station names displayed; still something more was needed, however. Thus, tuning indicators were introduced which sensed the drop in h.t. current drawn by the i.f. amplifier valves when the correct tuning point, and therefore the point of maximum a.v.c. bias was attained. The indicator might take the form of a small meter or, more commonly, a long neon lamp mounted beside the dial. In due course, that famous gimmick the “magic eye” (a miniature c.r.t.) displaced both types.

Another line of thought was that it would be better to take the tuning out of the hands of the listener altogether and make it entirely automatic. There were three main approaches to this proposition: (a) electrical; (b) mechanical; and (c), a combination of both. Bush and EMI preferred method (a) and used a bank of push switches to select one of a number of pre-tuned groups of tuning coils. If the system was not to become too elaborate, however, it had to be restricted to “simple” superhets which did not possess r.f. amplifiers.

This was quite a drawback at a time when this feature was popular and did not apply to the mechanical method (b) favoured by, amongst others, GEC and Decca. Here, the push-buttons operated on cams which turned the gang capacitor to the correct position thus requiring no extra sets of coils; a small clutch meant that manual tuning could be instantly selected if desired. It must have been a good design, because it survives 40 years later in many of today’s car radios!

Ekco and Plessey went for method (c)—the electromechanical solution. These two concerns (who made the “Defiant” range for the Co-op) came up with what is perhaps the ultimate method using light-action push switches to control a small electric motor which did the actual work of turning the capacitor. To ensure accuracy, an a.f.c. system was incorporated and, once again, the basic design is still in use today.

Another problem was the attenuation of the upper audio frequencies caused by the narrow-bandwidth i.f. amplifiers. To alleviate this, some high quality designs (such as the RGD, for example) had a switch which broadened the i.f. response curve when reception conditions allowed. RGD (Radiogram Development Company) and EMI were probably the market leaders in this field, with concerns producing massive multi-valve sets with ponderous auto-change record-players which gave the impression of having been built in a shipyard!

Wide Range

Nevertheless, not all radios in the '30s were on such a large scale. As the decade drew to its close a wide range of types was available, right down to semi-miniature sets which, having regard to the big valves that they used, were masterpieces of design.

Portable sets were, at last, becoming really portable thanks to the advent of 1-4V filament valves; before this, there was little difference in size and weight between a “portable” and a normal domestic model!

Thus, in 1939, there was an enormous range of radios on offer to the public and every taste and pocket was catered for. There were, however, two clouds on the horizon—one small, the other very large. The small cloud was television, by now well out of the experimental stage but still very much the poor relation of sound broadcasting—the second cloud was, of course, the prospect of war. With the outbreak of the Second World War the British radio industry was reduced to making just two standardised domestic models; one for mains use and the other powered by batteries.

Thus, the vintage years of radio came to an end, in the words of T. S. Eliot, “not with a bang, but a whimper".
LOGIC LAMP DIMMER

This circuit is for adding a dimming facility to "sound-to-light" disco lighting systems. With coloured lamps of a given wattage, yellow and red usually seem to be brighter than blue and green, but conventional triac light dimmers cannot be readily interfaced with disco lighting equipment.

The circuit shown in Fig. 1 is that of a logic lamp dimmer which can be included in the final stage of many of the recently published lighting circuits.

The quadruple NAND gate IC1 is fed at one input with a full-wave rectified signal of 5V amplitude (see Fig. 2(a)) and the disco lighting control signal is fed to the other input. The full-wave signal (unsmoothed) may be taken from a suitable point in the lighting system p.s.u. When enabled by the control signal, the output of the gate gives a series of short positive pulses synchronised to the 50Hz mains. These pulses are integrated by the RC network (R1 VR1 and C1), resulting in a waveform having some resemblance to a sawtooth. This signal is then converted into a square-wave via the Schmitt trigger IC2. As VR1 is varied the slope of the sawtooth waveform is altered, and consequently the point in the cycle at which the Schmitt trigger will operate; thus the pulse width at the output is increased or reduced.

Up to four channels can be simultaneously controlled simply by using all four NAND gates of IC1, and the time-constants of the RC networks can be varied until the desired effect is achieved. With the values shown, the output pulse width may be adjusted to have a duration of up to 8ms—it should never exceed 10ms however.

R. C. Baker, West Ewell, Surrey.

Fig. 1

Fig. 2

Some original circuit ideas provided by our readers. These designs have not been proved by us, and we cannot therefore guarantee their effectiveness. They should at least provide a basis for experimentation.

Why not send us your idea? If it is published, you will receive payment according to its merits. Articles submitted should follow the usual style of PW in circuit diagrams and the use of abbreviations. Diagrams should be clearly drawn on separate sheets, not included in the text.

Each idea should be accompanied by a declaration that it is the original work of the person submitting it, and that it has not been accepted for publication elsewhere.
The NEW Marshall's 79/80 catalogue is just full of components

and that's not all . . .

... our new catalogue is bigger and better than ever. Within its 60 pages are details and prices of the complete range of components and accessories available from Marshall's. These include Audio Amps, Connectors, Boxes, Cases, Bridge Rectifiers, Cables, Capacitors, Crystals, Diacs, Diodes, Displays, Heatsinks, I.Cs, Knobs, LEDs, Multimeters, Plugs, Sockets, Pots, Publications, Relays, Resistors, Soldering Equipment, Thyristors, Transistors, Transformers, Voltage Regulators, etc., etc.

Plus details of the NEW Marshall's 'budget' Credit Card. We are the first UK component retailer to offer our customers our own credit card facility.

Plus — Twin postage paid order forms to facilitate speedy ordering.

Plus — Many new products and data.

Plus 100s of prices cut on our popular lines including I.Cs, Transistors, Resistors and many more.

If you need components you need the new Marshall's Catalogue.

Available by post 65p post paid from Marshall's, Kingsgate House, Kingsgate Place, London NW6 4TA. Also available from any branch to callers 50p.

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

STEREO PRE-AMPLIFIER POWER AMPLIFIER

MC I

CPR I

CPR 1—THE ADVANCED PRE-AMPLIFIER

The best pre-amp in the U.K. The superiority of the CPR 1 is probably in the disc steps. The overload margin is a superb 40dB, this together with the high slew rate ensures clean too, even with high output cartridges tracking heavily modulated records. Common mode distortion is eliminated by an unusual design. R.I.A.A. is accurate to 1mm; signal to noise ratio is 70dB relative to 1mV; distortion < 0.005% at 50dB overload 20kHz.

Following this stage is the flat gain/balance stage to bring tape, tuner, etc. up to power amp signal levels. Signal to noise ratio 85dB; slew-rate 3V/us.

There is no provision for tone controls. CPR 1 size is 138 × 80 × 25mm. Supply to be ±15 volts.

MC I — PRE-AMPLIFIER

Suitable for nearly all moving coil cartridges. Send for details.

XO2 : XO3 — ACTIVE CROSSOVERS

XO2 — two way, XO3 — three way. Siae 24/V/m. Crossover points set to order within 10%.

REG 1 — POWER SUPPLY

The regulator module, REG 1 provides 15-6515v to power the CPR 1 and MC 1. It can be used with any of our power amp supplies or our small transformer TR 6. The power amp kit will accommodate it.

POWER AMPLIFIERS

It would be pointless to list in so small a space the number of recording studios, educational and government establishments, etc., who have been using CRIMSON amps satisfactorily for quite some time. We have a reputation for the highest quality at the lowest prices. The power amp is available in five types, they all have the same specification: T.H.D. typically 0.01% any power 1kHz & 8 ohms; T.H.D. (unsat) less than 1%; signal to noise ratio 70dB; frequency response 10Hz-20kHz (±1dB). All prices include VAT and post.

ACTIVE CROSSOVERS

XO2 : £30.16 X03 : £33.97

POWER AMPLIFIER KITS

MCI .. £21.28 MCI .. £33.17

These are available in two versions—one uses standard components, and the other (the 'S') uses MC 1 resistors, where necessary and tantalum capacitors.

MC1 .. £21.28 CPR 1 .. £34.02

PRE-AMPS

MC 1 .. £33.17

PRE-AMPS

These are available in two versions—one uses standard components, and the other (the 'S') uses MC 1 resistors, where necessary and tantalum capacitors.

XO2 .. £23.02 X03 .. £31.85

DISTRIBUTORS:

BADGER SOUND SERVICES LTD.
46 WOOD STREET,
LYTHAM ST. ANNES,
LANCS FY5 1UG.

MINIC TELEPRODUKTER
BOX 1283 /
S-750 12
UPSALA, SWEDEN.

Practical Wireless, March 1980
This simple signal injector can be used to test radios, amplifiers, loudspeakers, etc. Capacitor C1 charges up through R1 until the uni-junction transistor conducts; the capacitor is immediately discharged and, of course, the cycle starts again.

This results in a series of positive-going spikes at the output, possessing energy at both a.f. and r.f. The components can be mounted to correspond with the layout of the circuit diagram—capacitor C2 may be fairly bulky as it is a non-electrolytic type, but this is to isolate the circuit from high bias voltages which may be present on the equipment under test.

If a 220Ω resistor is connected between the test-leads, and the resulting wire loop is held near a working radio, the tone should easily be heard (not on f.m.).

A. P. Cooper, Wimborne, Dorset.

This circuit consists of a 555 timer connected as a variable duty cycle oscillator. Capacitor C1 charges via R1, D1, and the l.d.r., and subsequently discharges through IC1 pin 7 via R2. As the ambient light level increases, the resistance of the l.d.r. falls and thus the length of the charge cycle decreases. Since the output of the i.c. at pin 3 is positive during the charge cycle, the display is switched on for a proportionately longer part of the charge-discharge cycle as the ambient light level increases. Similarly, the display dims as the light fades.

To drive common anode displays, replace R2 with the l.d.r. and a diode connected in series, and increase the value of R1 to 1M. The anode of the new diode should be connected to C1.

The supply voltage can range between 5 and 15V, and the output of the i.c. can drive 200mA. The l.d.r. should be positioned adjacent to the clock display.

D. A. Akerman, Dagenham, Essex.
It is useful to be able to adjust the level fed to the tweeter unit of a home-built loudspeaker system without affecting the main driver units. Some expensive commercial systems have a switched attenuator network to control the tweeter level; the unit described here allows the home constructor to add such an attenuator to his speakers.

No constructional details are given as this will obviously depend on the design of the speakers themselves.

Table 1

<table>
<thead>
<tr>
<th>1-5dB steps</th>
<th>3dB steps</th>
<th>5dB steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>4Ω 8Ω 16Ω</td>
<td>4Ω 8Ω 16Ω</td>
<td>4Ω 8Ω 16Ω</td>
</tr>
<tr>
<td>R1 1.5 3.3 6.8</td>
<td>6.8 12 27</td>
<td>33 68 120</td>
</tr>
<tr>
<td>R2 1.2 2.7 4.7</td>
<td>4.7 10 18</td>
<td>18 33 68</td>
</tr>
<tr>
<td>R3 1.0 2.2 3.9</td>
<td>3.9 6.8 12</td>
<td>10 18 39</td>
</tr>
<tr>
<td>R4 1.0 1.8 3.3</td>
<td>2.2 4.7 10</td>
<td>5.6 10 22</td>
</tr>
<tr>
<td>R5 1.0 1.5 3.3</td>
<td>1.5 3.3 6.8</td>
<td>3.3 6.8 12</td>
</tr>
</tbody>
</table>

All values in ohms
R1 to R5 are 2.5W wirewound resistors

Alternative Steps

The resistor values shown on the circuit diagram are for 3dB steps with an 8Ω speaker system but alternative values for other steps are given in Table 1.

Many cross-over networks have a resistor in series with the tweeter. If this is reduced in value, or removed, boost as well as cut is produced.

Resistors R1–R5 may be fixed to the rear of the switch. If this is mounted on a recessed plate (such as is normally used for a jack) and fitted with a matching knob, a neat finish suitable for baffle mounting is obtained.

Components

<table>
<thead>
<tr>
<th>Resistors</th>
<th>2.5W wirewound</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3Ω</td>
<td>1 R5</td>
</tr>
<tr>
<td>4.7Ω</td>
<td>1 R4</td>
</tr>
<tr>
<td>6.8Ω</td>
<td>1 R3</td>
</tr>
<tr>
<td>10Ω</td>
<td>1 R2</td>
</tr>
<tr>
<td>12Ω</td>
<td>1 R1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switches</th>
<th>1p5w rotary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S1</td>
</tr>
</tbody>
</table>

Please mention Practical Wireless when replying to advertisements
The Yaesu Musen Company of Japan introduced a mobile rig some years ago—the FT-75. Limited in its applications in fixed station use, it has been replaced by similarly sized, all-solid-state transceivers—first the FT-7 with ten watts output, and now the FT-7B, rated at 100 watts d.c. input. Although designed primarily for mobile use, the addition of c.w. facilities suggests that some thought was given in the design to possible portable use. The transceiver runs off a nominal 12 volt d.c. supply, and, as is usual with h.f. solid-state p.a. stages, is a wideband device. The only front panel tuning control is for the preselector, marked on the front panel as TUNE.

The bands covered are 80–10 metres, and provision is made for the coverage of the whole of the 10m band, although the crystal provided is for the 28.5–29.0MHz segment. Modes of operation are u.s.b., l.s.b. and a.m. on telephony, and c.w. A noise blanker is fitted, and provision is made for crystal controlled operation. A 100kHz crystal marker is provided, as is an aerial attenuator, and a clarifier, or independent receiver tuning control.

Construction of the equipment is very compact. Most of the circuitry is contained on "daughter" boards, which plug in to a "mother" p.c.b. There are two of these mother boards, and maintenance is almost impossible without a suitable set of extender cards. Although the average amateur has probably not got sufficient test equipment to be able to maintain the transceiver, nevertheless, reducing the maintainability to almost zero by the lack of extender cards is not a particularly good feature.

Generally, the standard of construction is reasonably good—slightly better than the usual middle quality range domestic equipment, except for the p.a. stage. This was very poorly built, and comments from professional radio designers on it were surprising—the writer didn’t realise that some of his colleagues knew words like that!! Especially poor here was the method of thermal coupling between the p.a. transistors and the temperature compensating diodes in the bias network. These diodes are attached to the p.c.b. over the transistors in such a way as to get some sort of thermal coupling, and suitably coated in heatsink "goo" to help. During measurements of the transmitter, it was noticed that the power setting tended to drift slightly, which is probably caused by this poor thermal coupling. The wiring to the p.a. stage was very poorly done, with several of the connecting leads suffering from soldering iron burns. Certainly the standard was not that which the writer would expect of prototype equipment, let alone production.

Technical Description

The transceiver is of the single conversion type, using a 9MHz intermediate frequency. The injection to the main mixer is derived from a pre-mixer system, in which the v.f.o. is mixed with a crystal oscillator, and the desired output is filtered and fed to the signal mixer, via a wide-band amplifier. The v.f.o. covers 5.0–5.5MHz, and so no mixing occurs on 80 metres.

The signal input is fed via the switchable r.f. attenuator unit to a tuned circuit, controlled by the front panel TUNE control. A dual-gate mosfet amplifier acts as the r.f. amplifier, and this is followed by a coupled pair of tuned circuits. This coupled pair acts as a bandpass filter, and requires no tuning by the operator. An emitter follower provides a step down in impedance to drive a diode ring mixer using Schottky diodes, followed by a monolithic crystal filter, which provides some narrowing of the bandwidth and also delays impulse interference, allowing the noise blanker time to act. The monolithic filter is followed by an f.e.t. amplifier, a single diode as the noise gate, and an f.e.t. source follower driving the main crystal filter, which is a 6-pole filter. This is followed by the i.f. stages and detectors, all of which are built from discrete transistors—mainly mosfets. The noise
blanker is fed from the output of the Schottky mixer, and consists of an amplifier—mixer—amplifier—detector—d.c. amplifier chain, all of which, excluding the detector, use dual-gate MOSFETS. An a.g.c. loop is built into the amplifier chain, and the mixer converts the 9MHz input to 455kHz. The output from the detectors in the main signal path is fed to the audio stages, one of which is an active filter on c.w., with a bandwidth of some 80Hz. The a.f. output stage uses an i.c.—one of the relatively few in the set.

The transmitter is conventional, with an i.c. microphone amplifier feeding either a MOSFET a.m. modulator, or a diode balanced modulator for s.s.b. The signal is then amplified and filtered to produce s.s.b., amplified, mixed in the Schottky mixer with the local injection, and then via the bandpass pair referred to in the receiver description, fed to the pre-driver stage. This stage has a tuned circuit controlled from the front panel TUNE control to select the required signal, which is then amplified in various stages up to the 50 watt output level. Quite complex a.l.c. and s.w.r protection is provided, and a set of low-pass filters reduces the harmonic output of the p.a. stage.

Capability is provided for crystal controlled operation, with a different crystal for each band. The rest of the circuitry is concerned with power distribution, regulation, and switching, except for the crystal calibrator. This uses a 12-8MHz crystal, and a divide-by-128 cmos divider. Automatic switching between transmit and receive, with a delay circuit, is used on c.w. transmission, but VOX is not provided. Fig. 1 is the block diagram from the handbook.

Measurement Techniques

Measurements can be split into two basic groups—transmitter and receiver. Receiver measurements are made with the system set up as in Fig. 2, while transmitter measurements are made as in Fig. 3. A somewhat sobering thought arises when it is realised that the cost of the test equipment to make these measurements to the accuracy desired is about £35 000! Even then, the answers obtained on the air were required to complete the picture.

The transmitter measurements were fairly straightforward, and in general have been based on the applicable clauses and methods used for marine radio transmitters, which are probably the nearest thing commercially to the amateur equipment. Two audio frequency tones were fed into the microphone socket, and the output from the transmitter fed via the attenuator to the spectrum analyser. The following were then measured: power output; 3rd order intermodulation products; 5th order i.p.s; harmonics, and spurious. This was done for each band, and the results are in Table 1. The transmitter was then set up on 14·2MHz, and carrier suppression, hum and noise measured. As usual, there was a change in the level of carrier suppression with sideband, being -73·9dB on l.s.b. and -76·4dB on u.s.b, and also a slight change with power level. Hum and noise were better than -55dB. Application of a single tone 6dB down from p.e.p allowed measurement of transmitter passband, and the unwanted l sideband suppression, while the final test is based upon the commercial tests aimed at limiting adjacent channel interference.

In general, it seems that the higher order sidebands in a solid-state transmitter tend to be slightly worse than those in a valve linear, and certainly at full output, the sidebands extend some way from the signal. The test for this is to apply two audio tones to the transmitter of such frequencies that the intermodulation products fall (for u.s.b) above +3·1kHz and below -200Hz relative to the suppressed carrier. The marine specification requires that products between +2·7 and +6·2kHz, and between -200Hz and +3·4kHz be at -31dB or lower relative to peak envelope power. From +6·2 to +9·4kHz, and from -3·4 to -6·6kHz, the requirement is -38dB, and beyond these limits it is 43dB, without exceeding 50mW. It is a particularly valid specification limit (reproduced graphically in Fig. 4) with transmitters that have appreciable higher order products; for Sunday mornings on 80m, however, a more stringent one could be considered.

Fig. 1: Block diagram of the FT-7B

Practical Wireless, March 1980
necessary if anti-social emissions are to be avoided!

The final transmitter tests are of the c.w. keying. Again, the marine specifications are taken as a guide, and the transmitter is keyed by a 50% duty cycle signal derived from a pulse generator. The spectrum resulting, and the envelope distortion were measured with an oscilloscope and the spectrum analyser. The marine limits are for 30 baud keying (about 40 w.p.m.), and the bandwidth is limited to -24dB at ±100Hz, -37dB at ±200Hz, and -47dB beyond ±400Hz. Again, this is not a particularly tight specification, but does put limits on the anti-social behaviour of the transmitter (see Fig. 5).

Receiver Measurements

Receiver measurements are a much more lengthy process. To start with, it is necessary to ensure the method of coupling the signal generators to the equipment under test is satisfactory on the following points:

(a) Isolation of the generators from each other. This requires a suitable combining network, and a good matched load for the combiner, so an attenuator is used. Since the loss in the combiner is 6dB, it is convenient to use a 14dB attenuator after the combiner, thus giving a total loss of 20dB.

(b) Limiting the external attenuation of the signal to the practicable minimum thus reducing the amount of cable carrying high level signals and restricting the effects of leakage.

(c) Keeping the cable length from the final attenuator as short as possible to prevent inaccuracy caused by any s.w.r. on the cable—this s.w.r. of course, being caused by the receiver input not being exactly 50 ohms.

The measurements fall into three categories, viz:

Sensitivity-based checks. These include signal-to-noise, S meter sensitivity, signal to noise improvement, ultimate signal to noise, a.g.c., and audio power output.

Two Signal Tests. These cover intermodulation, cross modulation, blocking and reciprocal mixing.

Spurious Responses. These cover internal whistles, and external spurious responses.

The sensitivity series of tests are easy to carry out. They measure the ability of the receiver to distinguish weak signals, and its ability to apply gain control correctly. Obviously, an attenuator in front of the receiver would give gain control by making all signals equally weak, but would also cause the signals to have an equally poor signal-to-noise ratio. The SINAD measurement measures distortion as well—SINAD stands for the ratio of Signal plus Noise plus Distortion to Noise plus Distortion only. For mobile use, an

Table 1. Output Power, Intermodulation and Spurious Outputs

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Output Power (rel, p.e.p.)</th>
<th>3rd IMP (rel, p.e.p.)</th>
<th>5th IMP (rel, p.e.p.)</th>
<th>Spurious (rel, p.e.p.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.72MHz</td>
<td>45W</td>
<td>-31dB</td>
<td>-40dB</td>
<td>1-45MHz</td>
</tr>
<tr>
<td></td>
<td>2-06MHz</td>
<td>-64-7dB</td>
<td>-40-5dB</td>
<td>5-32MHz</td>
</tr>
<tr>
<td></td>
<td>5-65MHz</td>
<td>-74-6dB</td>
<td>-66-5dB</td>
<td>7-44MHz</td>
</tr>
<tr>
<td></td>
<td>11-16MHz</td>
<td>-75-5dB</td>
<td>-86-6dB</td>
<td>14-88MHz</td>
</tr>
<tr>
<td>7-20MHz</td>
<td>68W</td>
<td>-30-5dB</td>
<td>-43-7dB</td>
<td>5-4MHz</td>
</tr>
<tr>
<td></td>
<td>7-92MHz</td>
<td>-65-6dB</td>
<td>-87-0dB</td>
<td>9-0MHz</td>
</tr>
<tr>
<td></td>
<td>10-6MHz</td>
<td>-74-6dB</td>
<td>-86-6dB</td>
<td>14-4MHz</td>
</tr>
<tr>
<td></td>
<td>21-6MHz</td>
<td>-62-5dB</td>
<td>-72-5dB</td>
<td>21-2MHz</td>
</tr>
<tr>
<td>14-2MHz</td>
<td>45W</td>
<td>-29-6dB</td>
<td>-38-6dB</td>
<td>28-4MHz</td>
</tr>
<tr>
<td></td>
<td>42-6MHz</td>
<td>-62-5dB</td>
<td>-38-6dB</td>
<td>28-7MHz</td>
</tr>
<tr>
<td>21-2MHz</td>
<td>45W</td>
<td>-29-1dB</td>
<td>-40-8dB</td>
<td>30-3MHz</td>
</tr>
<tr>
<td></td>
<td>42-4MHz</td>
<td>-69-4dB</td>
<td>-38-8dB</td>
<td>30-1MHz</td>
</tr>
<tr>
<td>28-7MHz</td>
<td>42W</td>
<td>-30-3dB</td>
<td>-41-8dB</td>
<td>19-83MHz</td>
</tr>
<tr>
<td></td>
<td>23-4MHz</td>
<td>-51-1dB</td>
<td>-51-1dB</td>
<td>38-3MHz</td>
</tr>
<tr>
<td></td>
<td>30-1MHz</td>
<td>-63-2dB</td>
<td>-59-1dB</td>
<td>27-1MHz</td>
</tr>
<tr>
<td></td>
<td>32-4MHz</td>
<td>-63-5dB</td>
<td>-63-5dB</td>
<td>30-1MHz</td>
</tr>
<tr>
<td></td>
<td>34-1MHz</td>
<td>-65-5dB</td>
<td>-65-5dB</td>
<td>34-1MHz</td>
</tr>
<tr>
<td></td>
<td>57-4MHz</td>
<td>-58-9dB</td>
<td>-58-9dB</td>
<td>57-4MHz</td>
</tr>
<tr>
<td></td>
<td>86-1MHz</td>
<td>-50-3dB</td>
<td>-50-3dB</td>
<td>86-1MHz</td>
</tr>
</tbody>
</table>

Table 2. Modulation—Frequency Characteristics

<table>
<thead>
<tr>
<th>Tone Frequency</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1000</td>
<td>below -70dB</td>
</tr>
<tr>
<td>-700</td>
<td>below -70dB</td>
</tr>
<tr>
<td>-400</td>
<td>below -65dB</td>
</tr>
<tr>
<td>-300</td>
<td>below -65dB</td>
</tr>
<tr>
<td>-300</td>
<td>below -65dB</td>
</tr>
<tr>
<td>300</td>
<td>below -65dB</td>
</tr>
<tr>
<td>400</td>
<td>below -65dB</td>
</tr>
<tr>
<td>700</td>
<td>below -65dB</td>
</tr>
<tr>
<td>1000</td>
<td>below -65dB</td>
</tr>
<tr>
<td>1300</td>
<td>below -65dB</td>
</tr>
<tr>
<td>1900</td>
<td>below -65dB</td>
</tr>
<tr>
<td>2400</td>
<td>below -65dB</td>
</tr>
<tr>
<td>2700</td>
<td>below -65dB</td>
</tr>
<tr>
<td>3200</td>
<td>below -65dB</td>
</tr>
<tr>
<td>3500</td>
<td>below -65dB</td>
</tr>
<tr>
<td>4000</td>
<td>below -65dB</td>
</tr>
<tr>
<td>8000</td>
<td>below -65dB</td>
</tr>
<tr>
<td>10000</td>
<td>below -65dB</td>
</tr>
</tbody>
</table>

Table 3. Out of Channel Radiation

Measured at 14.2MHz at 45W p.e.p. modulated by tones of 700 and 2400Hz.

<table>
<thead>
<tr>
<th>Frequency relative to carrier frequency</th>
<th>Level relative p.e.p.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7-75kHz</td>
<td>-42-9dB</td>
</tr>
<tr>
<td>-6-15kHz</td>
<td>-44-8dB</td>
</tr>
<tr>
<td>-4-4kHz</td>
<td>-38-2dB</td>
</tr>
<tr>
<td>-2-7kHz</td>
<td>-42-6dB</td>
</tr>
<tr>
<td>-1-05kHz</td>
<td>29-3dB</td>
</tr>
<tr>
<td>4-1kHz</td>
<td>-26-4dB</td>
</tr>
<tr>
<td>5-85kHz</td>
<td>-45-1dB</td>
</tr>
<tr>
<td>7-45kHz</td>
<td>-38-6dB</td>
</tr>
<tr>
<td>9-20kHz</td>
<td>-48-9dB</td>
</tr>
<tr>
<td>10-95kHz</td>
<td>44-3dB</td>
</tr>
</tbody>
</table>
Lee Electronics Ltd

LONDON'S LEADING STOCKISTS OF YAESU • ICOM • STANDARD
• SWAN • ATLAS • LUNAR • MICROWAVE MODULES • HI-MOUND • SST
• JAYBEAM • ASP • SHURE • LEADER • CDE • HY-GAIN • ETC

Now under new management. Come in and see NORMAN G8 THJ.

SWR25: This ever-popular twin SWR and Power meter covers 3·5-150MHz at £10.50 plus VAT. P&P 50p.

T-435: VHF/UHF swr and power meter with 2/20/120 watt through line power measurement £29.95 plus VAT. P&P 50p.

CT-2 Coax Toggle 2, S0239's 1 PL259 £5.95 plus VAT. P&P 25p.

OSKER BLOCK RANGE

SWR200B swr/power meter covering 3-200MHz 50/75 Ohm power range 3-30MHz, 20/200/2kW, VHF 2/20/2020W £34.95 plus VAT. P&P 50p.

SWR300 swr/power meter 3-30MHz (2m and 70cm with adaptors) power range 20/200/2kW with SPC-2B 2/20/200W at 2m with SPC027A 2/20/20 at 70cm. Respective prices £39.95, £14.95, £16.95 plus VAT. P&P 50p.

SWRVVV meter body only, covers 144/432MHz with adaptors SPC-2B and SPC027A £19.95 plus VAT. P&P 50p. Adaptors as SWR300.

SWR3000 swr/power meter 3-30MHz (2m and 70cm with adaptors) power range 20/200/2kW with SPC-2B 2/20/200W at 2m with SPC027A 2/20/20 at 70cm. Respective prices £39.95, £14.95, £16.95 plus VAT. P&P 50p.

PX402 13.8V DC 3amp continuous 4amp max fully stabilized power supply with overload protection £18.95 plus VAT. P&P 50p.

JVL MK2 Base VHF/UHF antennas. These antennas are made to very high standards from the finest quality anodised aluminium; collapsible and ideal for portable or fixed use. Power handling 350W.

JVL144 6dB gain 2m colinear £32.00 plus VAT. P&P £1.50.

JVL433 6dB gain 70cm colinear £32.00 plus VAT. P&P £1.50.

The C7800 is one of the most advanced mobile 70cm transceivers available, covering 430-439-975MHz in 25kHz steps. Tuning is accomplished either by the main tuning control or with the up/down control on the mic. A MHz button is provided to step the frequency up by 1 MHz at a time to save hours of knob twiddling. SU 2D is available at the touch of a button; two repeater offsets are supplied -1.6MHz and 4.6MHz for European use.

£239.50 + VAT, carriage free. (C8800 2m FM Mobile version also available).

The C8800 is the matching unit, with the same features, covering the 2m band in 5kHz or 25kHz steps. £219.00

HIND KEYERS

HX707 Straight Up/Down keyer £8.75

BK100 Semi auto mechanical bug £15.50

HX702 Up/Down keyer on marble base £19.50

MK704 Squeeze paddle £12.90

MK705 Squeeze paddle on marble base PLUS VAT. P&P 30p.

HI-MOULD KEYERS

HI-MOULD PX702 Straight Up/Down keyer producing dots and dashes in the precise ratio required for perfect code. The speed is adjustable from 0-60wpm. Power inputs 110/240VAC or 9-14VDC. £65 plus VAT.

HI-MOULD MK1S Base VHF/UHF antennas. These antennas are made to very high standards from the finest quality anodised aluminium; collapsible and ideal for portable or fixed use. Power handling 350W.

JVL144 6dB gain 2m colinear £32.00 plus VAT. P&P £1.50.

JVL433 6dB gain 70cm colinear £32.00 plus VAT. P&P £1.50.

£239.50 + VAT, carriage free. (C8800 2m FM Mobile version also available).

The C8800 is the matching unit, with the same features, covering the 2m band in 5kHz or 25kHz steps. £219.00

ELECTRONIC KEYERS

EK-150 A semi- or fully-automatic squeeze keyer producing dots and dashes in the precise ratio required for perfect code. The speed is adjustable from 0-60wpm. Power inputs 110/240VAC or 9-14VDC. £65 plus VAT.

-150 but with four memories each capable of storing 256 bits making a total of 1024 bits. This can be recalled separately or in sequence for one long message. £117.50 plus VAT.

MK-1024 As EK-150 but with four memories each capable of storing 256 bits making a total of 1024 bits. This can be recalled separately or in sequence for one long message. £117.50 plus VAT.

POCKET MONITOR

This small receiver has 12 xtal-controlled channels. Fitted with 9-SO, S20, S22, S23, S24, R4, R5, R6 and R7, and comes complete with ni-cads, charger and carry case, etc.

£57.95 + 15% VAT

Extra channels available at £2.50 + VAT.

ART3000C

This rotator delivers the highest performance that can be expected of the standard size rotator. The unit has disc brakes to ensure excellent stopping and handles maximum load of 250kg/550lbs. £79.95 + 15% VAT.

ART3000C

This rotator delivers the highest performance that can be expected of the standard size rotator. The unit has disc brakes to ensure excellent stopping and handles maximum load of 250kg/550lbs. £79.95 + 15% VAT.

Lee Electronics Ltd

400 Edgware Road, London W2
Tel: 01-723 5521. Telex: 298765

Nearest Tube: Edgware Road or Paddington main line. HP • art exchanges welcome

Practical Wireless, March 1980

59
NEW! TRIO R1000
UNBEATABLE PERFORMANCE
AT AN UNBEATABLE PRICE

£298 24 hour delivery available
"It beats anything under £1000!"

LOWE SRX 30
COMMUNICATIONS RECEIVER
£178 inc. vat.

FRG7
24 hour delivery
£214 inc. vat.

WHY BUY FROM US?
It's pretty well known amongst short wave listeners around the World that we specialise in communications receivers. Our workshops are staffed by enthusiasts and licensed radio amateurs, and each receiver is given a thorough pre-delivery check before despatch (yes a few do fail). Once we are satisfied, your receiver is carefully packed and despatched by Securicor for direct delivery to your door the following day. Mail order customers need simply quote us their Barclaycard or Access numbers or alternatively send us a cheque or postal order.

WATERS & STANTON ELECTRONICS
18-20 MAIN ROAD, HOCKLEY ESSEX
Tel: HOCKLEY (03704) 6835.
Callers welcome Mon-Sat 9-5.30 E.C. Wed. 1pm.
important point is audio power output, and this is measured at the same time. The results of these tests are shown in Table 4.

The idea of a.g.c. is to keep the audio output of the receiver constant with changing input signal, and the results of this test are given in Table 5. The measurements were made on 3.7 and 28.7 MHz.

The remainder of the receiver measurements will be described next month, together with comments on the measurement results and on tests “on the air”.

Fig. 3: The transmitter measuring system

Fig. 4: Out-of-band radiation on s.s.b., compared with the UK Marine Transmitter Specification limit

Fig. 5: Out-of-band radiation on c.w., compared with the UK Marine Transmitter Specification limit

Practical Wireless, March 1980
“Old Timers” will remember the “Eliminator” from the good old battery-valve days. With the ever increasing cost of dry batteries coupled with a seemingly ever shortening life of the things, it seems that now is the right time to build a modern version of the “Eliminator”.

The unit described in this article was evolved as a project for a group of secondary school teachers attending a basic electronics course at Brunel Technical College. During this course the elements of components, circuitry, colour-coding, and the Safety at Work Act as it affects school workrooms were made known.

The cuts in spending on educational matters made it imperative to “count the pennies” and make each part of the project cost effective.

Almost every project needs a battery or similar power supply, and the PP9 variety is one of the more popular types. The case of the PP9 makes a convenient cabinet for the “Eliminator”, after the old spent cells have been removed.

The circuit of the “Eliminator” is shown in Figure 1 and consists of a simple half-wave rectifier circuit coupled to a Zener diode stabiliser. The transistor Tr1 serves to amplify the current handling capability of the stabiliser.

Continued on page 65

★ Components

<table>
<thead>
<tr>
<th>Resistors</th>
<th>1/2W 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>470Ω</td>
<td>1 R1</td>
</tr>
</tbody>
</table>

| Capacitors | 1000μF 16V | 1 C1 |
| | | |

<table>
<thead>
<tr>
<th>Semiconductors</th>
<th>Diodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BZY88C9V1</td>
</tr>
<tr>
<td></td>
<td>1N4001 or BY126</td>
</tr>
</tbody>
</table>

| Transistors | BFY50 or 2N696 | 1 Tr1 |
| | | |

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th>Transformer 9V 6VA, PP9 battery (spent), PP3 connector, 6V 0.3A lamp, 6BA nuts and bolts.</th>
</tr>
</thead>
</table>
Voltage regulator integrated circuits are commonplace nowadays (indeed, the TL497 from Texas Instruments was the subject of this series in December’s PW) but the TL496 is unique, for it contains two separate regulator circuits within a compact 8-pin DIL package. One circuit is a switching regulator accepting an input from either one or two NiCad rechargeable cells which it then converts into a regulated output of 7–9V at a maximum current of 80mA. The other circuit, which is a series regulator, provides an output of 8.6–10V when a mains supply is available—thus both regulator and charging circuit are conveniently accommodated within a single i.c.

Calculators and battery-powered toys for which one requires a 9V supply without going to the expense of seven or eight rechargeable cells, are just two obvious applications for the TL496. It is naturally much cheaper to employ one or two cells and to convert the voltage upwards to 9V, than it is to connect NiCads in series until the same e.m.f. is achieved. The TL496 can also be used to “step up” the output voltage of conventional “dry” (Leclanche) or alkaline cells; both of these types are not, of course, rechargeable.

The device could also be used to power a small radio receiver from one or two cells. Remember, however, that the small maximum output current (voltage up = current down!) means that there is insufficient power to drive the radio unless the volume is kept low. Any attempt to gain a high audio output will merely result in distortion. Despite this, the device certainly has interesting applications for small receivers of the hand-held variety.

Internal Circuit

The internal circuit of the TL496 and the external pin connections are shown in Fig. 1. It should be noted that although pins 5 and 7 are connected internally, both must be connected to the zero voltage line in order to ensure correct operation. If only one cell is to be used, it should be connected with its positive side to pin 3 and its negative side to ground, while pins 2 and 3 should be connected together in order to short-circuit the internal diode (Fig. 3). Similarly, pins 1 and 8 should also be connected together for the same reason; when used with a single cell, note that the cell used should provide an e.m.f. of 1.1–1.5V.

When used in the two-cell configuration (Fig. 3), the total input voltage should be 2.3–3V; note that the internal diodes should not be short-circuited for two cell operation.

The circuits are simple but do involve the use of an inductor; optimum efficiency (power output divided by power input) is achieved when this inductor has a value of 40–50μH. The Fig. 2 circuit provides a maximum output of 40mA at 7.2V, and 80mA at 8.6V can be obtained from the Fig. 3 circuit.

Decoupling

The importance of adequate decoupling cannot be over-emphasised. The author, for example, tried fairly long leads to the cells and found that the circuit would simply not operate when the decoupling capacitor between pin 2 and ground was removed. Both capacitor negative returns (pins 5 and 7) should be connected together with quite short lengths of wire.

As the switching frequency is approximately 10kHz and peak currents of about 1A occur, the filter capacitors should be of reasonable quality and should not have an unusually high equivalent series resistance; this comment applies equally to all of the circuits to be discussed.

Battery Operation

The circuits shown in Figs. 2 and 3 operate purely as a boost circuit switching regulator. The cycle commences when the potential at pin 1 falls below a certain threshold value, namely about 7.2V. In the circuit of Fig. 2, this will occur when the output is about 7.2V but, in the Fig. 3 circuit, the cycle will begin when the output is greater than
this by the voltage developed across the two internal forward-biased diodes shown in Fig. 1. Thus the threshold for “turn on” in the Fig. 3 circuit is about 6·8V.

As the output voltage falls below one of these values, the output transistor is turned off and the energy stored in the inductor is delivered to the output reservoir capacitor.

The output transistor remains in the non-conducting state until the output voltage sensed by the feedback input (pin 1) again falls below the threshold value for the circuit concerned.

As the output voltage falls below one of these values, the output transistor is turned off and the stored in the inductor is delivered to the output reservoir capacitor. The output transistor remains in the non-conducting state until the output voltage sensed by the feedback input (pin 1) again falls below the threshold value for the circuit concerned.

Performance

The TL496 has not been designed for applications which require the highest possible voltage stability. There is some change of output voltage as the swap from battery to mains operation occurs (an increase of approximately 1·4V), but this is unimportant in the type of application for which this device has been designed.

Care should be taken to ensure that the absolute maximum voltage ratings of 3·5V at pin 2 and 2·5V at pin 3 are not exceeded, and that the switching current at pins 6 and 8 does not exceed 1·2A. The TL496 is designed for use at temperatures in the range 0–70°C.

A noteworthy feature of this device is the low supply current drawn during stand-by operation—typically 125μA. In most circuits, this allows the battery to be

Mains Operation

The circuits of Figs. 4 and 5 show how a small transformer with its input connected to the mains supply can be used to power the TL496, and charge the cells connected in the circuit. If the mains fails or the equipment is disconnected from the mains, the cell or cells will automatically and instantly maintain the output voltage without even a momentary interruption of the power output.

The series regulator of the TL496 device accepts its power input from the mains transformer during the half cycle when the lower end of the transformer secondary winding (as it appears in the circuit diagrams) is positive with respect to the upper end. The output voltage from the series regulator circuit is slightly higher than that from the switching circuit; thus, when mains voltage is present, the output voltage always exceeds the threshold level at pin 1, and the output transistor is kept in a non-conducting state. When mains power is being used, the output voltage is typically 10V for the two-cell circuit of Fig. 5 and about 8·6V for the one-cell circuit of Fig. 4.

During the succeeding half cycle of the mains input, the series regulator will not operate because the applied polarity is such that no current can pass through the internal diode connected in the pin 4 circuit (Fig. 1). However, diode D1 clamps the negative-going side of the transfor-
connected at all times as, at this rate of discharge, the estimated period between charges is 60 days for the single-cell configuration and 166 days for the two-cell arrangement!

When an output current is drawn, the input current in the case of battery operation must obviously exceed the output current since the output voltage exceeds the input voltage—a, after all, cannot create energy from nothing! The typical efficiency for battery-powered operation is 66% in all cases. With a 120Ω load connected across the output, the current drawn from a single cell is approximately 525mA, and that from two cells approximately 405mA.

Table 1. Performance of TL496 circuit used by the author. In all cases the input voltage was 2-5V

<table>
<thead>
<tr>
<th>V<sub>out</sub></th>
<th>Load (Ω)</th>
<th>I<sub>i</sub> (mA)</th>
<th>I<sub>f</sub> (mA)</th>
<th>Power I/P (mW)</th>
<th>Power O/P (mW)</th>
<th>Efficiency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-72</td>
<td>—</td>
<td>0-17</td>
<td>—</td>
<td>0-426</td>
<td>—</td>
<td>5-8</td>
</tr>
<tr>
<td>9-72</td>
<td>2-2M</td>
<td>0-27</td>
<td>0-004</td>
<td>0-675</td>
<td>0-039</td>
<td>28-9</td>
</tr>
<tr>
<td>9-72</td>
<td>100k</td>
<td>1-3</td>
<td>0-097</td>
<td>3-25</td>
<td>0-94</td>
<td>29-0</td>
</tr>
<tr>
<td>9-71</td>
<td>39k</td>
<td>3-05</td>
<td>0-248</td>
<td>7-62</td>
<td>2-41</td>
<td>31-6</td>
</tr>
<tr>
<td>9-70</td>
<td>10k</td>
<td>10-2</td>
<td>0-97</td>
<td>25-5</td>
<td>9-41</td>
<td>36-8</td>
</tr>
<tr>
<td>9-65</td>
<td>2-2k</td>
<td>31</td>
<td>4-93</td>
<td>77-5</td>
<td>42-3</td>
<td>54-6</td>
</tr>
<tr>
<td>9-52</td>
<td>1-0k</td>
<td>75</td>
<td>9-52</td>
<td>187-5</td>
<td>90-6</td>
<td>48-3</td>
</tr>
<tr>
<td>9-0</td>
<td>200</td>
<td>370</td>
<td>45</td>
<td>92.5</td>
<td>405</td>
<td>43-8</td>
</tr>
</tbody>
</table>

The Inductor

Unlike other passive components, inductors can be difficult to wind to a definite specification as one has to consider not only the value of inductance but several other factors as well: the resistance and thickness of the wire to be used; the core material; Q factor and its variation with change in frequency, etc. No particular inductor is stipulated by Texas, but it is recommended that the resistance of the inductor winding should not exceed 0-15Ω for high efficiency in the battery-operated mode.

The author chose a Mullard RM6 ferrite core which has an inductance factor (known as A_Q) of 250nH/(turns)²—a single turn of wire on this type of core therefore has an inductance of 250nH. Because the inductance increases as the square of the number of turns, it is easy to calculate that 13 ½ turns of wire are required in order to achieve the required value of about 45µH. The part number of the RM6 ferrite core is LA4146; you will also require a DT2467 coil former and two DT2398 retaining clips RM6 ferrite core is LA4146; you will also require a tag may be used). The copper wire used must, of course, be an enameled variety.

The tables in the Mullard Technical Handbook (Book 3, Part 4) indicate that 13 ½ turns of 0.85mm diameter wire could be accommodated on this former, but 0.36mm diameter (24 s.w.g.) was used in practice. The coil former was supported during the winding operation; it was then necessary only to mount the ferrite parts onto the former and fix the retaining clips in order to complete the inductor.

The performance that resulted from using two cells and this inductor is shown in Table 1.

Availability

The TL496 and the above-specified inductor components are available from Arrow Electronics Ltd., Leader House, Copthold Road, Brentwood, Essex CM14 4BN.

Practical Wireless, March 1980
I get rather het up, as they say, when I hear from a reader who has bought an XYZ receiver on which to listen to the amateur bands and, please, what do I think of it? Generally it is a cheap and almost nasty contraption that performs moderately well on the medium- and long-wave bands with its ferrite rod aerial but is a bit of a failure on the s.w. bands with only its telescopic aerial.

I get angry not because it's a lousy receiver but because the writer has not bothered to get some advice before spending his money. At the very least the receiver should have been tried out before buying.

One of the advantages of belonging to a radio club is the vast amount of practical knowledge that exists there waiting to pour forth at the slightest pretext, and all for free.

The newcomer may very well be able to get a suitable receiver from a member of the club, secondhand, and maybe even valved although that is by no means a disadvantage, especially when one considers the performance of some of the solid-state sets of today. What is more, advice on operating the set will be forthcoming and should it go wrong the answers will readily available, which is more than one can say about some suppliers of receivers.

The lone buyer of a s.w. receiver does have to rely to some extent upon the blurb in the ads but it shouldn't take much common sense to realise that a cheap set that professes to cover all bands from v.h.f. to the long-wave band must be something of a compromise as far as performance is concerned. None of the ads tell us outright lies these days but the copywriters certainly have a vivid imagination in some cases! If you just want the amateur bands don't go for a set that promises the trawler, police and air bands (as well as all the s.w. broadcast bands), because, for one thing, it is illegal to listen to them and they rapidly become rather boring, which the amateur bands never do.

Having been lumbered with a poor set a writer will often ask how he can improve it and how does he go about connecting up an outside aerial to make reception better. Firstly, its almost impossible to do anything to the set to make matters better and the cost of the necessary parts to do it would be prohibitive considering the price of the set in the first place. Give it away to some small friend! Adding an aerial just compounds the problems by causing severe cross-modulation on any strong signal because of the cheap and poor transistors being used and the fact that there is certainly no r.f. stage fitted.

So, what to do? Look at the ads and see what the more popular receivers are, compare the prices although these won't vary much between reputable suppliers. Make every effort to locate someone already using the set you fancy and ask them for their views on it. Ask a supplier for the address of someone in your area who has bought that particular set and arrange to visit them after dropping them a line.

As a last resort there are always nutcases like myself willing to stick their necks out and give advice!

In General

By the time that this appears in print there may be some definite news of the three new bands which are to be allocated to the amateur service, according to two very reputable sources. However, don't let's get all excited because by the time any such allocation has been ratified by all the countries concerned and existing occupants have moved out, presuming the allocations are exclusive, it could be a matter of three years or so.

It's good luck and good DX to Bill Kerr of Aldershot, Hants, who has become G8UNV, at least until he has taken the code exam. For the time being Bill is using a Storno valve rig with seven channels, run from a car battery. It's a start, anyway. In West Wickham, Kent, John Dainty is busy sorting for the RAE which he hopes to take this year, so he has not been listening around too much. He did shorten his aerial to around 130ft which enabled his a.t.u. to work properly and give better results.

An appeal from Chris Mousley of 6 Queens Road, Aldershot, Hants, for any info on a power supply for the R1155B that he has recently acquired, or even a manual if anyone can help. A more specialised appeal from Alex McLennan, 6 Christie Street, Dunfermline, Fife, for a wavechange switch for his Hallicrafters S38 receiver.

Using an SRX-30 in Leeds, Basil Woodcock is only just finding the amateur bands but he has made up an a.t.u. for the couple of aerials so far erected. He's on a hill 400ft a.s.l. so the DX outlook is good. Another listener to write in for the first time is Arthur White living in Grantham, Lincs, who sports an Edystone 888 receiver with a 66ft wire and a.t.u., with an inverted "V" aerial for the 40m band where he found ZL4BO after a lot of patience. Dick Barker (Canterbury, Kent) has a "warm glow of confidence" after taking the RAE and hopes the examiner is in a good mood when marking the paper. Well, let's hope the multiple choice system will eliminate any such bias in the
FRG7

- **0.5-30MHz Coverage with 10kHz Readout**

The FRG7 is a precision-built all-purpose communications receiver, featuring solid state construction for long life and high performance. It utilizes a Wadley Loop drift cancellation system, in conjunction with a triple conversion superheterodyne circuit, for high sensitivity, image rejection and excellent stability.

FRG7 £212.00 Ex-stock (including VAT)
TWO YEAR GUARANTEE AND FREE SECURICOR DELIVERY

FRG7D Fitted SMC Digital Readout £304.00 inc.

- Versatility: listen to shortwave broadcasts, commercial mediumwave stations, amateur radio, CB operators, and a variety of other communications services.
- High-performance engineering: the Wadley Loop System, (triple conversion superheterodyne) provides high sensitivity with stability. Set the dial to your favourite programme, and start up your tape recorder—confident that your FRG7 will stay on frequency.
- 10kHz Direct Dial Readout: The extremely stable VFO is equipped with a precision held mechanism.

FRG7000 • 0.25-30MHz Coverage with 1kHz Readout

Computer technology and convenience features are combined in the FRG7000, a digital-display general coverage receiver for the discriminating SWL. Improved SSB selectivity, ease of operation, and rugged construction, plus a digital clock-timer controlled by a CPU chip, that reads local and GMT, and controls peripheral station equipment such as a tape recorder.

FRG7000 £375.00 Ex-stock (including VAT)
TWO YEAR GUARANTEE AND FREE SECURICOR DELIVERY

YH55 Deluxe padded headphones £10.00 inc.

- An FET front end provides excellent sensitivity, and the "Wadley Loop" heterodyne oscillator yields rock-solid stability. Separate SSB and AM filters allow selection of the optimum selectivity for your application.
- The built-in AC power supply allows operation from 100/110/117/200/220/234 volts AC, 50/60Hz. The front panel lamps and digital display may be turned off, for energy conservation. A 12V DC supply is an option.
- Ease of operation is ensured by careful selection and positions of controls and switches.
H.F. RECEIVERS

- **Lowr SRX 30** £178.00
- **Yaesu FRG 7** £212.00
- **Trio R 1000** £299.00
- **Yaesu FRG 7000** £372.00
- **Trio R 820** £790.00

MARINE VHF RECEIVERS

- **Search 9** £59.00
- **FDK TM56B - scan** £106.00

AIR BAND RECEIVERS

- **Lowr AP 12** £120.00
- **SCE R 157** £50.00
- **Walitham W144** £29.95

POPULAR ACCESSORIES

- **Jaybeam Antennas** P.O.A.
- **ASP Mobile Antenna** P.O.A.
- **Hygain H.F. Antenna** P.O.A.
- **G. Whip Mobile H.F. Antenna** P.O.A.
- **Microwave Modules** P.O.A.

SPECIAL OFFER

- 12v 3A cont. power supply: £19.50
- 12v 750mA cont.: £11.90

H.F. TRANSCIEVERS

- **Denon HF 700A** £399.00
- **Trio TS 1300** £243.00
- **Yaesu FT 101** £485.00
- **Trio TS 1205** £495.00
- **Trio TS 5025E** £485.00
- **Yaesu FT 1010E** £574.00
- **Trio TS 180S** £626.00
- **Trio TS 820S** £832.00

2 METRE FM RECEIVERS

- **Search 9** £59.00
- **FDK TM568 - scan** £106.00

CONSIDER US FOR YOUR CRYSTAL REQUIREMENTS

- **P.W. “NIMBUS” CRYSTALS FROM STOCK**

 - R0 to R7, S0, S8, S18, to S24 & S32 @ £4.91 per pair
 - 10, 245 MHz second I.F. crystal @ £2.66
 - HC25/U crystal sockets for above crystals @ 20p each or £1.50 for 10

- **Crystals for other channels can be made to order @ £4.53 each**

 - We hold stocks of crystals for most of the popular amateur equipments.

 - Crystals can be supplied to most commercial specifications for marine, PMR etc. and for industrial applications e.g. microprocessor control.

 - **ALL PRICES INCLUDE VAT & P&P**

QUARTS LAB

- **Practical Wireless, March 1980**

CONSULT US FOR YOUR CRYSTAL REQUIREMENTS

- **P.W. “NIMBUS” CRYSTALS FROM STOCK**

 - R0 to R7, S0, S8, S18, to S24 & S32 @ £4.91 per pair
 - 10, 245 MHz second I.F. crystal @ £2.66
 - HC25/U crystal sockets for above crystals @ 20p each or £1.50 for 10

- **Crystals for other channels can be made to order @ £4.53 each**

 - We hold stocks of crystals for most of the popular amateur equipments.

 - Crystals can be supplied to most commercial specifications for marine, PMR etc. and for industrial applications e.g. microprocessor control.

 - **ALL PRICES INCLUDE VAT & P&P**

P. M. ELECTRONIC SERVICES

- **2B, ALEXANDER DRIVE, HESWALL, WIRRAL, MERSEYIDE, L61 6XT**
- **Telex: 627371 (PMES G)**
future! Space for aerials is Dick’s problem, without even enough for a 10m dipole but I doubt if it is really as bad as that! Even a wire round the room will be effective on several bands given an a.t.u. to bring it to resonance.

DXers’ Corner

Dave Coggins (Knutsford, Cheshire) keeps going strong on his DX160, covering all the h.f. bands on s.s.b., although the set seems to be suffering from modulation hum on the 10m band. He comments: “I reckon listening is one half of the hobby, and building gear the other half” and how true that is! The satisfaction of building a bit of equipment and then going on the air with it takes a lot of beating. The 10m band provided FK8CK, FR7BE, HM00O, TA2AS, XT2AW with AP2KS, VP2VFO (Tortola, QSL AA6RX) and YBOADW. 40m came up with HZ2BM for quite a rare country, VK7BC, SNOAS while 160m meant UA3ACE.

Collecting books and manuals for the RxE is keeping Bill Rendell of Truro, Cornwall, busy at the moment and he has mentioned the May RAE as his target. The lure of the VK/ZL gang has been too much for Bill and he continues to collect them daily; for nearly 200 days now. His noted AR3 plus lots of gadgets found CM1RH, VK3XJ and ZL4BO on 7MHz with 14MHz supplying CMABK, FG7TD, FK8DH, M1D, VP2SX, VP6SI on Argentinian Is., and XT2AU. Also heard were ZL1, 2, 3 and 4 in a space of 20 minutes, 8Z4A (also found on the 15m band) with HK3LT on c.w., a change of mode for Bill.

Dennis Sheppard (Sheerness, Kent) is getting famous! He got a letter from another reader sent to just that address, which shows the power of PW! Dennis has prepared some notes on getting started on RTTY which I’ll be covering next month. A new receiver in the shape of a FG7TD, FKSDH, MID, VP2SAX, VPSSI on Argentine Is., and HK3LT on c.w., a change of mode for Bill.

A long letter from **Graham Mutton** of Tasmania, Australia, editor of DX Panorama, a bulletin of the Australian Radio DX Club, comments on the popularity of the Yaesu FRG-7 receiver there as well as the Pen- sonic DR49 with its digital readout. He has a laugh at the Y18 and H44 type of DX which we get excited over, being fairly commonplace in VK land. Some DX news includes P29JS going to C21 (Nauru) shortly and VKOKH replacing VK0PK on Macquarie Is., by the time this appears in print. Mellish Reef could also be activated again by VK2BUL, while Heard Is. may also be back with us this coming summer. Thanks Graham and let’s hope they all come off. Among DX logged by Graham was T3KC on Kiribati, YJ8NGR, both on 10m, with FK8BT, FK8DE, LU3ZY (South Sandwich Is.), P29BS, P29DJ, S79NLB, S79RD, VR3AR on Christmas Is., VK9CGR on the Cocos Is., ZK2VE, 3C0AB (Annonob), 8Z4A and 9N1MM.

Allan Stevens also comments from Crowthorne, Berks, on the strength of VK3MO on 20m who was still 57 when a short whip aerial was substituted for the long wire. Allan went on to log all VK areas except VK0 with others including H11JE and TR8DX (QSL F6E9H + 3 IUCs). On 10m South Americans LU6DZG and HR3JR came up, with 15m revealing 3B8CF, 5Z4CW and 8Z4A.

Another letter from John Dainty shows how 80m is now brightening up with logging of KP4A0O, VS2DPE, WA21JO, YA2CDO and YV3AZC. An unusual one on 20m was HK6KX. From Stourbridge, W. Midlands. Peter Hawkes has done a good job on all bands from 10 to 80m s.s.b., his main listening period being around 0330 onwards on early shift. Anyway he found VS6BF, VP2AZG, and C6ACY on 10m QSL to K4ZGB. Goodies on 21MHz included YB0ADW, 8Z4A, U22TF 8P6K6, and 298KK in Port Moresby. On 14MHz it was HP3JAT, 8Z4A again, ZD8AI (QSL N3WM) and 3C1AC. CM1RH dropped up again on 7MHz as did G2ACK/VP2 on Montserrat, with 80m coming good with 5B4I (QSL via OE8HFL), HZ2V a nice rarity, F7MWS and H1J8LB. All this on a 55ft wire plus DX160 and a.t.u.

Clubbing

David G2FKS had sent me info on the Cambridge & District ARC only to tell me in a later letter that the club had lost access to its meeting spot. So no more meetings until something in the area turns up.

Events in February for the West Kent ARS include G4BOO comparing receiver performances on the 15th and Terry Sadler talking on modern radio control equipment on the 29th, both at the Adult Education Centre, Monson Road, Tunbridge Wells. Informal meetings take place at the Drill Hall, Victoria Road on alternate Tuesdays throughout the year. Contact: Brian Castle G4DFY, 6 Pinewood Avenue, Sevenoaks or try 0732 56708.

Stevenage & District ARS meets first and third Thursdays in Senior Staff Canteen, British Aerospace Site B, Gunnels Wood Road. Stevenage, Herts at 8.15pm or call on the net Mondays 1930 on 144-550MHz. Otherwise Peter Byrne G8MCV will be glad to answer your questions at 21 High Plash, Stevenage, alternatively ring 0438 64624.

February looks like being a busy month for the Liverpool & District ARS according to Hon. Sec Al Neilson G4CVZ of 78 Ackers Hall Avenue, Liverpool. February 5 has E. Birch G8HLO giving forth on antique telephones (ideal s.s.b. communications quality?) while on the 12th there is an RSGB tape/slide lecture, with E. Grossmith discussing on parabolic aerials on the 19th. Finally, on February 26 the secretary himself will talk on the annals of Liverpool’s history. All this activity at Spm, Conservative Rooms, Church Road, Wavertree, but it doesn’t matter really what colour flag you wave! Just go along.

West of Scotland ARS every Friday evening at 22 Robertson, Glasgow with GM4AGG on v.h.f. and h.f. bands. Programmes of talks and the like alternate with chat-nights. More info from: Sec Ian McGarvie, 3 Kelso Avenue, Paisley. If you can get to the Bradshaw Tavern, Bradshaw, Halifax on a Wednesday at 8pm you’ll find the Northern Heights ARS in session. On February 13 there is a demonstration of gear by Northern Communications/G3UGF while the 27th sees Jonathan Stockwell perform his dual fade slide show. The year’s construction competition will be judged on March 12 next, so even if you are a newcomer there is time to make an entry. See is Marcus Topham G8NUC, 1200 Great Horton Road, Bradford or ring 73721.

The club room at 119 Green Lane, Derby sees the Derby & District ARS having a jolly “bring and buy” sale on February 6 with the 13th devoted to a night on the air with stations G3ERD, G2DJ and G8DBY! Back to normal on the 20th with a visit to the PO sorting office and, finally, a talk by a member of the Derbyshire Royal Infirmary “Flying Squad” on February 27. Incidentally, light
refresments are available at all meetings so no need to go home first for your tea and crumpet. Hon Sec is Jenny Shardlow G4EYM on Derby 56875.

Visitors and potential members of the **Torbay ARS** are welcome to meetings at Bath Lane, rear of 94 Belgrave Road, Torquay, especially on February 23 when Peter Wakeham talks on Dartmoor, and you might as well know the annual dinner is on March 8 which is as good a place as any to meet all the gang. However, the editor of **Tars Talk**, the society's magazine, can tell you more at 2 Lower Coombe Road, Blindwell Park, Kingsteignton, Newton Abbot, Devon and the name is F. Bolton G3VTQ.

Brief details of the **Lincoln SW Club** meetings at the Corporation Social Club, Waterside South at 8pm second and fourth Wednesdays. More info from: Sec Mike Wells G8PNU, 4 Horner Close, Brant Road, Lincoln or 0522 721277. North Londoners ought to be interested in the old-established **Edgware & District RS**, meeting second and fourth Thursdays at the Watling Community Centre, 145 Orange Hill Road, Burnt Oak, Edgware at 2000. Local net Mondays 2150 on 1875kHz. Write to: Hon Sec Dennis Lisney G3MNO, 119 Draycott Avenue, Kenton, Middx or try 01-907 1237.

The newsletter of the **Irish Radio Transmitters Society** is an immensely interesting journal and very well produced and full of information for the EI fraternity and others. Readers in Eire might like to contact the Society at PO Box 462, Dublin. One snippet is that our DM friends will be using calls in the series Y2 to Y9 in future.

One last note: if anyone else wants a copy of the G31MI notes on the replacement filter for the FRG-7 then please send a decent sized envelope; there are three A4 sheets and you should have seen me trying to get them into 4 x 3in envelopes sent by some readers!

Late News

The World Administrative Radio Conference has agreed to amateur bands at 10·10 to 10·115MHz, 18·068 to 18·168MHz and 24·890 to 24·990MHz, the first being a secondary allocation, the other two exclusive amateur allocations.

Bands 3·5 to 28MHz remain the same with 3·5MHz now being a shared primary service. On Top Band 1·810 to 1·850 will be exclusive amateur with national administrations able to allocate another 200kHz if they so wish.

It has also been agreed that the requirement for a c.w. qualification will apply only to bands above 30MHz. This would apply to the 70MHz band if it is re-allocated by the UK, and to a proposed 50MHz allocation.

MEDIUM WAVE DX

by Charles Molloy G8BUS

When I referred to the Piccadilly Radio transmitter at Ashton-under-Lyne in the November issue I little realised that we had a reader living only a few hundred yards away from it. He is **Roy Haynes**, who is struggling away trying to DX under really adverse conditions. The problem is that the strong signal from the IBA transmitter overloads the early stages in the receiver causing spurious responses to be generated, and Piccadilly Radio to appear at a number of points on the dial.

Normally I would say, use a loop with the null pointing towards the offending signal. Unfortunately this is not possible as the receiver is a Realistic DX300 which has an internal aerial for the medium waves. Consequently a loop cannot be used with it, so for m.w. DXing Roy has to use a long wire.

Another solution is to fit an attenuator between the aerial and receiver. A simple attenuator can be made with a 1k Ω potentiometer, as described in this column in the December *PW*. The trouble with attenuators is that they attenuate everything, DX and QRM but they can be of value none-the-less.

Wavetraps

A better solution is to use a frequency-selective attenuator such as a wavetrap. The trap is simply a parallel tuned circuit which has a high impedance at its resonant frequency and a low impedance at other frequencies. You connect the wavetrap between the aerial and the receiver aerial socket, preferably fitting it into a small box. The lead from the trap to the receiver should be as short as possible otherwise it may act as an aerial and pick up the station you are trying to suppress. If there is room inside then fit the trap behind the aerial socket.

The circuit of a parallel tuned wavetrap is shown in Fig. 1. Any medium-wave tuning coil will do, for example the Denco Maxi Q range 2 Blue. Ignore the coupling winding as it is not required. The tuning capacitor should have the value specified by the coil manufacturer and it can consist of a trimmer and fixed capacitor in parallel if you do not want to use a variable capacitor. The Denco coil requires a 350pF variable to cover the medium waves. Connect the tuning capacitor across the main winding, e.g. with the Denco, tag 2 goes to one side of the capacitor and tag 3 to the other.

It is very easy to use the trap. Rotate the tuning capacitor until the spurii disappear. The wavetrap is now set and should not be adjusted any more.

If you have trouble from two strong stations then two wavetraps can be used in series (Fig. 2). One is tuned to one of the offending stations and the second trap to the other. Wavetraps were in general use in the early days of radio as they were of value with the unselective receivers of the day, but they can still be of service to the DXer who has trouble with strong local QRM.

Fig. 1. Circuit arrangement of a wavetrap

Fig. 2. Cascading wavetraps

Practical Wireless, March 1980

www.americanradiohistory.com
Despite the increase in Bank Rate we’re still able to save you a bomb – Still able to offer you a short sharp H.P. deal costing you no more than the cash price . . . Want to buy a FT 1012Z? Try borrowing £670 from your bank and work out your charges . . . PAINFUL? Try the average finance company – EVEN MORE PAINFUL! Well above 20% per annum no less! ENOUGH TO MAKE YOU CRY isn’t it? . . . Right – get your hankie out, wipe away those tears and focus your eyes down page to the deals we have listed – ENOUGH TO MAKE YOU SMILE isn’t it? . . . You’ve probably noticed the down payment is higher than last month – not our fault – the Chancellor again! ENOUGH TO MAKE YOU CRY isn’t it? . . . Never mind we’ve balanced this out by making your monthly repayments quite a bit lower – Go on work it out for yourself. ENOUGH TO MAKE YOU SMILE isn’t it . . . Of course if you’re really clever you’ll very quickly work out how to save even more money buying the AMCOMM WAY! If you can’t see it – call us, we’ll explain it! . . . If this lot hasn’t wiped the tears from your face we have one more thing that will. With the deals listed below and for a short period only we’ll offer ABSOLUTELY FREE one only pure Irish linen hankie! TEE!

Incidently, we’re happy to consider trade-ins (regret no free hankie) and still offer our absolutely no quibble guarantee. “Any goods purchased from this company which do not meet the manufacturer’s published specification will be immediately replaced or replaced”.

THE SMALL PRINT STILL MAKES GOOD READING

BURNS ELECTRONICS

NEW EQUIPMENT FOR 1980

CRYSTAL CALIBRATOR CC-11

A battery operated, crystal controlled, portable instrument, the CC-11 uses CMOS and CMOS integrated circuits with low power consumption and high harmonic output. Frequency stability is better than ±2ppm over –20 to +80°C. Designed to meet the UK amateur radio licence requirements, the CC-11 generates 1MHz, 500, 100, 50, 25, 12.5, 10 and 5MHz with harmonics to above 600MHz for receiver and transmitter frequency measurements. Modulation facility to identify output spectrum. Sampling bridge for heterodyne meter function to above 500MHz.

Supplied with battery and manual. Carriage free in UK.

Price: £55.00 + VAT

FM DETECTOR MODULE FMD-7 *(Reviewed in July 1979 Practical Wireless)*

Designed for use with the Yaesu FRG-7/7000, Low... [content cut-off]
A. S. Cooper
RADIO REPAIRS
15, Sandhurst Road, Kingsholm, Gloucester GL1 2FE
Tel: Glouce 27223

“We stock the full range of Vero products”

1. 19" CARD FRAME/CASE inc. Guides £27.93 inc. VAT
2. NEW V-Q DIP BOARD £1.35 inc. VAT
3. S100 SYSTEM £268.18 inc. VAT
4. "G" RANGE CASES LARGE £12.57 inc. VAT

We also stock Philips audio and components products.

Radios, Cassettes, Music Centres, Hi-Fi, Car Radios, Accessories inc. the new 890 Car Radio Cassette with Digital LED Frequency Display. LW-MW-FM Stereo £214-57 inc. VAT

MAIL ORDERS AND TELEPHONE ORDERS WELCOME

P&P Orders up to £5.00 add 30p
Orders over £5.00 add 70p
Orders over £10.00 add 50p
Orders over £20.00 add 70p
Orders over £50.00 post free
UK. ONLY. Overseas P&P will be quoted with order
S/AE with ALL ENQUIRIES PLEASE

STEPHENS-JAMES LIMITED
COMMUNICATION ENGINEERS
47 WARRINGTON ROAD, LEIGH WN7 3EA
ENGLAND
Telephone (0942) 676790

Everything for the Short Wave Listener.

We stock receivers and listening aids by most of the world’s leading manufacturers.

Full range of VHF receivers—transceivers. Mobile equipment pre-selectors—filters—antennas. Stabilised power supplies from 2 to 20 Amp.

Send for full specifications of our full range of receivers covering from 200KHz to 200MHz. Our secondhand equipment changes daily.

Send SAE for our full list of dealers. Part exchange welcome. Good clean Equipment bought for cash.

LOWE AP1-2 Digital Clock Mains Operated £75.93

T.T.L. CMOS Logic Levels and Oscilloscope Outputs are provided. Dimensions (84x304x210).

We supply these units with single or double current loops for connection to teleprinter. To Order.

NEW - TRIPLE-T RECEIVER. available early March. A more advanced receiver which gives outstanding value, and will give you hours of interest and entertainment.

"H.A.C." well known by amateur constructors for its Short Wave receivers, now offers a complete range of kits and accessories which have been selected to suit the novice and the expert. £12.99 INCLUSIVE—the ever popular and easy to construct DX receiver Mark III; containing all genuine short wave components, drilled chassis, valve, accessories and full instructions.

T.T.L. CMOS Logic Levels and Oscilloscope Outputs are provided. Dimensions (84x304x210).

We stock receivers and listening aids by most of the world’s leading manufacturers.

Full range of VHF receivers—transceivers. Mobile equipment pre-selectors—filters—antennas. Stabilised power supplies from 2 to 20 Amp.

Send for full specifications of our full range of receivers covering from 200KHz to 200MHz. Our secondhand equipment changes daily.

Send SAE for our full list of dealers. Part exchange welcome. Good clean Equipment bought for cash.

LOWE TRIO R820 £148.00

Designed and manufactured by ourselves. Frequency coverage 500KHz to 30MHz. Will match any antenna over 5m in length to practically all receivers in production for over four years and now used in over 85 countries.

Multifilter MK2

This unit incorporates Peak and Notch filters, and Band Pass filters. No internal connections to your receiver. Essential for users of FRG7, SX30, SX21 etc.

Send for details including our Preselector and Crystal Calibrator.

H.A.C.

SHORT-WAVE KITS
WORLD-WIDE RECEPTION

FIT A DIGITAL DISPLAY TO YOUR FRG7 OR SX30.

This unit incorporates Peak and Notch filters, and Band Pass filters. No internal connections to your receiver. Essential for users of FRG7, SX30, SX21 etc.

Send for details including our Preselector and Crystal Calibrator.

LOWE TRIO R820 £148.00

Designed and manufactured by ourselves. Frequency coverage 500KHz to 30MHz. Will match any antenna over 5m in length to practically all receivers in production for over four years and now used in over 85 countries.

Multifilter MK2

This unit incorporates Peak and Notch filters, and Band Pass filters. No internal connections to your receiver. Essential for users of FRG7, SX30, SX21 etc.

Send for details including our Preselector and Crystal Calibrator.

H.A.C.

SHORT-WAVE KITS
WORLD-WIDE RECEPTION

FIT A DIGITAL DISPLAY TO YOUR FRG7 OR SX30.

This unit incorporates Peak and Notch filters, and Band Pass filters. No internal connections to your receiver. Essential for users of FRG7, SX30, SX21 etc.

Send for details including our Preselector and Crystal Calibrator.

LOWE TRIO R820 £148.00

Designed and manufactured by ourselves. Frequency coverage 500KHz to 30MHz. Will match any antenna over 5m in length to practically all receivers in production for over four years and now used in over 85 countries.

Multifilter MK2

This unit incorporates Peak and Notch filters, and Band Pass filters. No internal connections to your receiver. Essential for users of FRG7, SX30, SX21 etc.

Send for details including our Preselector and Crystal Calibrator.

H.A.C.

SHORT-WAVE KITS
WORLD-WIDE RECEPTION

FIT A DIGITAL DISPLAY TO YOUR FRG7 OR SX30.

This unit incorporates Peak and Notch filters, and Band Pass filters. No internal connections to your receiver. Essential for users of FRG7, SX30, SX21 etc.

Send for details including our Preselector and Crystal Calibrator.

LOWE TRIO R820 £148.00

Designed and manufactured by ourselves. Frequency coverage 500KHz to 30MHz. Will match any antenna over 5m in length to practically all receivers in production for over four years and now used in over 85 countries.

Multifilter MK2

This unit incorporates Peak and Notch filters, and Band Pass filters. No internal connections to your receiver. Essential for users of FRG7, SX30, SX21 etc.

Send for details including our Preselector and Crystal Calibrator.

H.A.C.

SHORT-WAVE KITS
WORLD-WIDE RECEPTION

FIT A DIGITAL DISPLAY TO YOUR FRG7 OR SX30.

This unit incorporates Peak and Notch filters, and Band Pass filters. No internal connections to your receiver. Essential for users of FRG7, SX30, SX21 etc.

Send for details including our Preselector and Crystal Calibrator.

LOWE TRIO R820 £148.00

Designed and manufactured by ourselves. Frequency coverage 500KHz to 30MHz. Will match any antenna over 5m in length to practically all receivers in production for over four years and now used in over 85 countries.

Multifilter MK2

This unit incorporates Peak and Notch filters, and Band Pass filters. No internal connections to your receiver. Essential for users of FRG7, SX30, SX21 etc.

Send for details including our Preselector and Crystal Calibrator.

H.A.C.

SHORT-WAVE KITS
WORLD-WIDE RECEPTION

FIT A DIGITAL DISPLAY TO YOUR FRG7 OR SX30.
Beginners’ Corner

The 1000kW transmitter on 1323kHz at Nauen in East Germany usually goes off the air just before 2300. If you stay on the channel for a few minutes until the carrier is switched off you should be able to hear the BBC World Service in English. The programme comes from the BBC Eastern Mediterranean Relay at Zygi in Cyprus and continues until 2315 when the station gives its identification and signs off. If you want a QSL, no need to write to Cyprus, just send your report to BBC External Services, Bush House, London WC2B 4PH.

When Cyprus has gone off, tune down slightly to 1320kHz and if you are lucky you may hear CKEC which is in New Glasgow, Nova Scotia on the western seaboard of Canada. At this time of year as the days are lengthening it may be a little late in appearing so if you are unsuccessful at 2315 then try again at midnight but remember, reception of North American DX is variable and what you hear one night may be inaudible the next. CKEC does QSL and reports should go to Box 519, New Glasgow, Nova Scotia on the western seaboard of Canada.

North American DX

In spite of the expected sunspot maximum, North American DX was quite good during the autumn with some interesting DX reported during September and October. John Faulkner writes from Mansfield to say that among his best catches during October were: KMOX St Louis on 1120kHz at 0140, WOAI San Antonio Texas on 1200 at 0210, WERE (5kW) in Cleveland at 0048, WCSC Charleston South Carolina on 1390 at 0021 and CFCY Charlottetown, Prince Edward Island on 630 at 0138. Details of receiver and aerial were not given.

“What is the sunspot minimum like, as I have only been DXing since 1978?” asks David Hyams who has just succeeded in hearing his first two North Americans: CJYQ on 930 and WINS on 1010. They were logged on a Realistic DX160 and m.w. loop. Since David’s version of the DX160 has an internal aerial for the medium waves, the loop was placed close to the receiver so that the signal could be transferred by induction. You can boost a signal this way but the loop’s null will be masked by the receiver’s aerial and you will not be able to null-out QRM, which is the main purpose of using a loop.

At sunspot minimum, North American DXing is a lot easier, some signals being conspicuous on the band nearly every night and a few being strong enough to be picked up occasionally on a portable with internal aerial. At the moment, reception of NA can really be classed as DX and it requires a good receiver, persistence and some luck to pull in your first transatlantic station. The situation will gradually improve though, as we pull away from the sunspot maximum and solar activity declines. I hope this answers Bradley Wilson who is a Canadian living in Bristol.

Long Waves

“I have been experimenting with L.w. loops and have found that 500pF and 25 turns work well”, writes David Hyams from Finchley who is referring to the “40 inch” box loop. When used with a Realistic DX160 it pulled in ten long wave stations including Tipaza in Algeria. The date was November 14 and the time 1320 which prompted David to ask if reception could have been by ground wave.

Long wave signals do travel a long way as the ground wave is not attenuated as much as medium-wave signals. The range of the ground wave is inversely proportional to frequency and you can observe the effect by tuning across the medium waves during daylight, starting at the low end. As you progress across the band, stations become fewer and fewer, and by the time you pass 1200kHz only locals will be heard.

During the winter, the D layer of the ionosphere, which absorbs both medium- and long-wave signals, does not always re-form completely at sunrise and, when this occurs semi night-time conditions can persist for most of the day. North American DX has been heard as late as 1000 in mid-winter. The short answer to David’s question is that there was probably a mixture of ground and sky wave when listening to Algeria.

Vertical Aerials

One hears occasionally of a wire with a weight on the end being lowered from a window, or of a vertical wire suspended between insulators fixed to the eaves and some point near the ground, but these are not the type of verticals I have in mind. They do not meet the criteria mentioned above, though they are probably a shade better than an indoor aerial.

A mast, fixed to but insulated from the roof would be ideal, a whip with insulated base, fixed to a chimney or to a window ledge if access to the roof is not available, is what will be used in practice. The construction of a homemade vertical rod antenna some 3 to 4m long is shown in some detail.

Practical Wireless, March 1980
the Aerial Data Chart presented with the November 1979 issue of PW.

It is essential to use screened feeder such as coaxial cable to connect the whip to the receiver, as an unscreened lead will act as an aerial and pick up interference on the way down. Earth the feeder screen at the receiver end; i.e. join it to the receiver earth socket which should be connected to earth. Connect the inner conductor to the whip and to the receiver aerial socket. An a.t.u. between the coaxial cable and receiver may be found useful, see the Aerial Data Chart for details.

TV Aerials

If you have an outdoor TV aerial then you have a ready-made vertical. The directional effect of the aerial is only apparent at TV frequencies, and in the h.f. part of the spectrum it will act as a short vertical. All you have to do is to unplug the lead from the TV and connect it to the receiver or a.t.u.

It is a lot more convenient to use a switch so that the TV aerial can be switched for DXing or TV reception. The Antiference Aerial Switch will do; I use one to connect an aerial to either of two receivers. There is a coaxial socket at the top of the switch and the aerial is plugged in there. At the bottom of the switch there are a couple of holes leading to a saddle and two screw terminals. The new leads to the receiver and the TV come in at these points. The saddle secures and connects together the two screens each of the inner wires goes to a screw terminal. You will need another coaxial plug to join up to the TV and whatever plugs are required at the receiver or a.t.u. Do not get the cables crossed and join the TV to receiver—never will like it!

A short vertical will not pick up as much signal as a long wire, especially on the lower frequencies, but signal pick-up is not everything. Signal-to-noise ratio is what matters, and this will be better for a whip with screened feeder than for an indoor aerial. A weak signal with a quiet background can be boosted with a preselector, but there is little that can be done with a weak signal and a noisy background.

DX Programme

This is the title of a weekly programme for DXers, broadcast from Madrid by the Spanish Foreign Radio. It starts with the interval signal of a broadcasting station and you are given to the end of the programme to identify it. In the meantime you will hear a talk on a wide range of subjects of interest to DXers, or excerpts from club magazines plus up-to-date tips on the state of the bands.

I have become a regular listener to DX Programme as I find it both refreshing and informative. It is compiled by Ambrosio Wang and is on the air every Sunday at 2100 on 7105, 9685 and 11 840kHz with a repeat at 2150. The station QSLs with a colourful pennant.

DX

Reports of Japan in the late evening come from several readers. George Smith (Liverpool) has an FRG-7 and 70ft long wire and he logged NHK on 15 270 at 2345 while K. H. Smith (Ross-on-Wye) picked it up at 2200 in the 25m band with a very strong signal. The Rev A. E. Whyatt (Walsham) was kind enough to send me an up-to-date schedule which shows 15 195kHz with programming in English in the Asian Service from 2200–2230 and 2300–2400. There is also a simultaneous broadcast to Europe on 9585kHz in the 31m band. A. Dodsworth (Liverpool) reports reception of Japan on 21 610kHz at the more normal time of 0800 using a Vega 206 and a short length of wire wound round the picture rail.

There have been a number of requests for help with countries that are not conspicuous on the international bands. At the time of writing, Argentina can be heard on 11 710kHz during the evenings and there is a programme in English at 2300 Mondays to Fridays. Brazil can be heard on 15 265 around 2100. Try for Sri Lanka on 15 120, for R Uganda on 15 250, and for Bangladesh on 11 765 or 15 285, all between 1900 and 1900. Has anyone logged Saudi Arabia, Kenya, Zambia, Rhodesia, Libya, recently on the international bands?

A report of Africa No. 1 which is currently testing on a number of frequencies, comes from P. N. Kirkup of Bury. The address for reception reports is Radio Africa No. 1, BP1, Libreville, Gabon. Reader H. L. Nyman refers to the report in the October PW of the simultaneous reception on the 16m band of the English and Hebrew transmissions from Israel. IBA broadcasts in Hebrew all day on 17 630kHz and in English on 17 685 at midday and on 17 645 at 2000 hours all of which are near to each other.

Readers’ Letters

"Is it possible to use the umbrella-type clothes line as an aerial and what type of cable is used," asks A. B. Cooper of Plumstead. Use coaxial cable just as you would with a whip and make sure the metal parts are insulated from the

Reports on the various bands are welcome and should be sent direct, by the 15th of the month, to:

AMATEUR BANDS Eric Dowdeswell G4AR, Silver Firs, Leatherhead Road, Ashtead, Surrey KT21 2TW. Logs by bands, each in alphabetical order.

MEDIUM and SW BANDS Charles Molloy G8BUS, 132 Segars Lane, Southport PR8 3JG. Reports for both bands must be kept separate.

VHF BANDS Ron Ham BRS15744, Faraday, Greifriars, Storrington, Sussex RH20 4HE.
In reply to Mick Ballamy, the transmissions you heard on 8MHz are commercial stations not intended for reception by the general public.

Sixteen-year-old Mark Godden is looking for spares for his ex-WDR 107 communications receiver and he wonders if anyone has a scrap R107 for stripping down. He would also like to contact anyone of his own age in his area with an interest in radio. Replies to: 27 Southwell, Portland, Dorset DT5 2DP. Joseph Pritchard, who is a student at UMIST (Manchester), is constructing a 5-transistor t.r.f. for use on the tropical bands. Hope to have a log from you soon. In the meantime he is using his ITT CD108 and telescopic aerial and he mentions hearing Australia on 11800 at 1849 and Pakistan on 11672 with this rig.

Fourteen-year-old Richard Everitt has started DXing with a Vega 206, which he considers excellent value for money, but when he uses a 40ft long wire he finds that performance is only improved on the lower frequencies. Try a small capacitor between the aerial and receiver. Richard would like to contact other DXers in his area or to join a local DX club. Replies to: 15 St Mary’s Road, Bluntisham, Huntingdon, Cambs PE17 3XA.

by Ron Ham BRS15744

In the world above 30MHz, we become familiar with the various disturbances which increase the range of signals and provide the DX, which, after all, is the thrill of the exercise. Periodically, however, up comes the big one, as it did in late November, and the enthusiasts are faced with relatively super DX on all bands from 3m to 3cm.

Tropospheric

The atmospheric pressure, measured in Sussex, rose from 30·1in on November 26 to a peak of 30·35in during the afternoon of the 28th and was back to 30·15in by midday on the 30th. Fig. 3. True to form, the real peak of the exceptional tropospheric opening, on November 28 and 29, came as the high pressure began to fall. I first noticed a lift at 1400 on the 27th when signals from the Bristol Channel GB3BC, R6 and the Kent GB3KR, R4, repeaters were opening the squeal on my TM 56B receiver and pictures were appearing from the IBA transmitter at Lichfield on channel 8, 1899MHz.

As both these receivers are fed with dipole aerials the strength of the signals, from east, west and the Midlands, suggested that an extensive opening was being brewed up and by midday on the 28th, the big lift had begun. At 1319, I heard G5SD in nearby Littlehampton, work G8HTY, Weston-super-Mare, via the Bristol Channel repeater, pictures from Lichfield were very strong and about 12 f.m. broadcast stations (predominantly French), mixed with the BBC transmissions in Band II. Around this time, co-channel interference was beginning to affect Band V television and I received a 549 signal from the 70cm beacon at Emley Moor GB3EM. During the evening I heard several Northern-G stations, including my old friend Jack Hum G5UM, working continental stations on 70cm and another old friend, Harry Gratton G6GN, Bristol, working into London.

My aerial for 70cm is a north/south horizontal dipole and to show how good u.h.f. conditions were, I heard a QSO between ON4HU and a G station in Devon, though both stations were well off direction for this tiny aerial. Conditions like this continued throughout the 29th and although some bands were beginning to clear before midnight, the last DX I heard was at 0059 on the 30th when DD3LN worked a PAO via GB3KR, and at 0105 DC5QH/A worked a PEI through the London repeater GB3LO, R7.

Band II

While, during the evening of the 28th, Ken Smith BRS20001, Horsham, Sussex, was receiving full stereo from Dutch and German f.m. stations, Adrian Corbett, Bookham, Surrey, heard French and German stations taking turns to blot out LBC and Guy Stanbury, Chelmsford, received very strong signals from Belgian, Dutch and French stations, many from West Germany and said that all stereo programmes were of excellent quality with little or no noise. Harold Brodribb, St. Leonards-on-Sea, Sussex, using a Bush VHF 80 and a loft aerial heard one Dutch, 21 French, and BBC stations from many parts of the UK. At 0122 on the 29th Ian Rennison, Horsham, logged about eight Dutch and German stations in stereo, some of which he heard again during the evening.

Fig. 3: Atmospheric pressure recorded by the author, 27–30 November 1979
DXTV

At 1800 on the 28th, Tony Skitt, Heslington, Yorks, heard a BBC weather man say that the high pressure was causing TV reception problems in the south east and, indeed, many of my local viewers were complaining bitterly as the co-channel interference built up and ruined their pictures. Very soon both the BBC and IBA were warning people about the disturbance, which was no surprise to Ken Smith because at 1800 he was watching a weather report and commercials from a French TV station around channel 21. Arthur White, Aisby, Grantham, writes: “I watched part of a John Wayne film in German, a news broadcast from Austria, and the film Rebecca apparently with Dutch subtitles.”

At 0045 on the 29th, Ian Rennison watched pictures from ZDF (Zweites Deutsches Fernsehen) on channel 45, his first u.h.f. TVDX and using only a set-top loop aerial. Around 0120, I received a test card from Ostvleteren, Belgium (RTB, network-2) on channel 55 and the end of the news, clock and test card from ZDF on channel 21. Between 0800 and 1000 I saw test cards from East Germany, DDR-F1, followed by a sports programme on European channel 11, Holland on channels E5 v.h.f. and 29 u.h.f., Fig. 4(a) and (b), and Dortmund on channel 25.

By 1313 the word Dortmund on the test card was changed to ZDF and the Netherlands test cards (also seen by Tony Skitt using a Labgear wide-band u.h.f. set-top aerial) were replaced by an Open University type of programme. The v.h.f. transmissions from Holland were received on my National Panasonic 5001G and the u.h.f. signal on my JVC 3060, both sets being fed from vertical dipole aerials. Periodically the Dutch educational programme was interrupted with a fixed caption and at 1313, PAOZE was seen. Guy Stanbury reported: “Very clear pictures obtained from all of the north European stations” and Adrian Corbett, using a Waltham W 154, with his aerial on an outside window-sill, did some home DXing and received pictures varying in strength from the BBC at Wenvoe, the IBA at Sutton Coldfield, and erratic signals on other channels, not easily identified. Parmjit Singh, Leicester, hopes to start TV DXing; good idea Parmjit, it is openings like this that make all the routine monitoring, that a DXer must do, worth while. Tony Skitt also picked up a strong test card marked (RTBF Tele 2 Liege Canal 45) and both BBC and IBA pictures from southern England.

At 0105 on the 29th, I watched the end of the ATV programme Telespots on channel 61, advertising for the Coventry and Nottingham areas followed by the station close-down announcement given by Mike Prince. Andy Martin G3UDR, was duty transmission controller during the evening of the 28th and said: “I have not experienced so much of a problem with co- and adjacent-channel interference before. The link from London on This Is Your Life and London Night Out actually faded out on us.” Although this tropospheric disturbance was the hot news, my readers have been keeping an eye on channel R1, 49-75MHz, for television pictures via the F2 layer of the ionosphere. A mixture of pictures were received on this channel during the early mornings of November 19, 20, 21, 23, 24, 27 and December 2, 3, 4, 8, 9, 11, 12 and 13, and although individual pictures are difficult to identify, I did make out a group of dancers or skaters at 0850 on December 2. John Branegan saw a blurred announcer on October 22, Fig. 5, and I received strong bursts of test card from TV1-Sverige at midday on November 23. This mixture of pictures on R1 was exceptionally strong on December 11: at 0900 a clock appeared but there were too many images to tell the time. This was also the case with a test card which followed.

The 2m and 70cm Bands

During the big tropo event, John Cleaton G4GHA, Wareham, Dorset, made his first LX contact on 2m and filled over four sides of his log book with DX, among which he heard stations in EI, GI, HB and OZ, worked stations in D, EA, F, GJ, GU, GW, LX, ON and PA, and said that EA2HX, on the 28th, was 40dB over S9. George Grzebieniak RS41733, London, said: “Conditions were fantastic” and is very pleased because he heard G6GN, Bristol; G8DJW, Dorset; six PEs and DK30L on 70cm
and has now heard a greater distance on 70cm than on 2m. Arthur White, Grantham, Lincs, heard many Dutch, French and German stations on 2m using only the telescopic aerial attached to his set.

Between 1800 and 2100 on the 28th, Mike Rowe G81VE, near Littlehampton, Sussex, worked nine Ds, 20 Fs, one HB, one LX, one ON and three PAs on 2m s.s.b. and Alan Baker G4GNX, Newhaven, Sussex, worked one EA and one F on 2m c.w. and one DB and two PEs on s.s.b. Like others, Alan said that all repeater channels, R0-9 were full of signals and some were three and four deep.

DJs were among the DX working through the Brighton repeater GB3SR, R3, and at one time Alan worked a GW, near Swansea, who was getting in to SR with only 1 watt. Keith Leggett G8MLT, also worked an EA on 2m and at 0104 on the 29th, Alan worked DK8SG from home on 2m s.s.b. and while mobile, at 1100, he had a QSO with DC1BN via the Belgium repeater, ON0WR, R2. Between 1600 and 1640 he contacted stations in D, EA, F and PE via the French repeater FZ3VHF, R7 and while he worked DC5CW/M at 1745 via GB3SR, Roy Bannister G4GPX, in nearby Lancing, heard the German station direct on the repeater’s input frequency. Alan said: “Early on the 29th it was difficult to decide which 2m channel or system to use because everything was packed with DX and the Leicester repeater GB3CF, R0, was heard and worked from the Sussex coast throughout the day.” Ron Autenhead, G8DPP, London, worked six Dutch and 16 German stations on 2m s.s.b. between 2300 on the 28th and 0202 on the 30th. David Rennison, Horsham, using his NR56 receiver and ground-plane aerial, heard numerous PAs on the 29th and at 1742 he heard DC5CW/M through the Brighton repeater and from 2045 received signals from DC2BE, FICUO, ONIOW, and G3JKB via unidentified French repeaters.

Between 1055 and 1240 on the 29th, Jack Brooker G3JMB, Hassocks, Sussex, worked DF, DK, F, G, ON and PA0, from his car, while stationary on Ditshing Beacon, a high spot near Brighton. During the afternoon he worked DF8JM and DG4EH, from home, via the Leicester repeater giving Jack his first German QSO from the home QTH. During the early hours of the 29th, Andy Martin G3UDR, Evesham, worked a PA0 direct, on 2m, while travelling home. Andy is also a member of the ATV Network Ltd Amateur Radio Club, Fig. 6, and says that they have many members among the presentation and engineering staffs.

Another, but far less intense, tropospheric opening occurred on December 4 and 5 when I received strong signals from the Bristol Channel, Birmingham GB3BM, R5, and Kent repeaters. Watchable pictures were received from Lichfield on channel 8 and several foreign stations were predominant in Band II. G4GNX heard many repeater signals and worked a mobile station in Birmingham, via GB3BC, while he was driving through Uckfield in Sussex.

The 10m Band

Signals, averaging 539, were heard daily between November 19 and December 13 from the International Beacon Project stations A9XC, DKOTE, DL0I1, and from 3B4CY and VP9BA around midday on most of the days. Although conditions were generally good throughout the period, with strong signals from Canada, Japan, Russia and the USA, I noted an echo on two DJ signals at 0915 on November 21, on some Russian signals at 0851 on December 5, on DL0I1 at 0815 on the 8th and on G4AYW as he worked SM4DNK around 0930 on the 13th.

News Items

I hope to hear more in the future from Jonathan Rose, Ashtead, Surrey, a newcomer to amateur radio who is at present repairing a CR100 receiver and intends joining the RSGB.

Congratulations to five Sussex amateurs; G8MM, G8OUK, G8TMX, G8TTT and Charles Ormerod, who, on November 30, all passed their Morse tests at North Foreland and will soon be sporting those G4 calls.

RSGB Council member Robin Bellerby G3ZYH, has been elected president of the Brighton and District Radio Society for 1980, and Nigel Hewitt was given the Bill Pitfield Memorial Award by the BDRS, for outstanding services to amateur radio, especially for teaching the RAE.
A complete personal computer for a third of the price of a bare board.

Also available ready assembled for £99.95

The Sinclair ZX80.

Until now, building your own computer could easily cost around £300 - and still leave you with only a bare board for your trouble.

The Sinclair ZX80 changes all that. For just £79.95 you get everything you need to build a personal computer at home... PCB, with IC sockets for all ICs; case; leads for direct connection to your own cassette recorder and television: everything!

And yet the ZX80 really is a complete, powerful, full-facility computer, matching or surpassing other personal computers on the market at several times the price. The ZX80 is programmed in BASIC, and you could use it to do quite literally anything from playing chess to running a power station.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. Once assembled, it immediately proves what a good job you've done. Connect it to your TV set... link it to an appropriate power source ... and you're ready to go.

Your ZX80 kit contains...

- Printed circuit board, with IC sockets for all ICs.
- Complete components set, including all ICs - all manufactured by selected world-leading suppliers.
- New rugged Sinclair keyboard, touch-sensitive, wipe-clean.
- Ready-moulded case.
- Leads and plugs for connection to any portable cassette recorder (to store programs) and domestic TV (to act as VDU).
- FREE course in BASIC programming and user manual.

Optional extras

- Mains adaptor of 600 mA at 9 V DC nominal unregulated (available separately - see coupon).
- Additional memory expansion board plugs in to take up to 3K bytes extra RAM chips. (Chips also available - see coupon.)

Two unique and valuable components of the Sinclair ZX80.

- Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you run them.
- Excellent string-handling capability - takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The ZX80 also has string input-to-request a line of text when necessary. Strings do not need to be dimensioned.
- Up to 26 single dimension arrays.
- FOR/NEXT loops nested up 26.
- Integer names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomise function: useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PEEK and POKE enable entry of machine code instructions. USR causes jump to a user's machine language sub-routine.
- High-resolution graphics with 22 standard graphic symbols.
- All characters printable in reverse under program control.

...and the Sinclair teach-yourself BASIC manual.

If the features of the Sinclair interpreter listed alongside mean little to you - don't worry. They're all explained in the specially-written 96-page book with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC programming - from first principles to complex programs. (Available separately - purchase price refunded if you buy a ZX80 later.)

780-1 microprocessor - new, faster version of the famous Z-80 microprocessor chip, widely recognised as the best ever made.

RAM chips.

Rugged, flush, Sinclair keyboard.

Super ROM.

Clock.

UHF TV modulator.

Sockets for TV, cassette recorder, power supply.
Fewer chips, compact design, volume production – more power per pound!

The ZX80 owes its remarkable low price to its remarkable design: the whole system is packed onto fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC interpreter, the character set, operating system, and monitor. And the ZX80’s 1K byte RAM is roughly equivalent to 4K bytes in a conventional computer, because the ZX80’s brilliant design packs the RAM so much more tightly. (Key words, for instance, occupy just a single byte.)

To all that, add volume production – and you’ve that rare thing: a price breakthrough that really is a breakthrough.

The ZX80 kit costs a mere £79.95. Can’t wait to have a ZX80 up and running? No problem! It’s also available, ready assembled, for only £99.95.

Whether you choose the kit or the ready-made, you can be sure of world-famous Sinclair technology – and years of satisfying use. (Science of Cambridge Ltd is one of the Sinclair companies owned and run by Clive Sinclair.)

To order, complete the coupon, and post to Science of Cambridge for delivery within 28 days. Return as received within 14 days for full money refund if not completely satisfied.

Order Form
To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN.
Remember: all prices shown include VAT, postage and packing. No hidden extras.
Please send me:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Item price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sinclair ZX80 Personal Computer kit(s). Price includes ZX80 BASIC manual, excludes mains adaptor.</td>
<td>79.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ready-assembled Sinclair ZX80 Personal Computer(s). Price includes ZX80 BASIC manual, excludes mains adaptor.</td>
<td>99.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mains Adaptor(s) (600 mA at 9 V DC nominal unregulated)</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Memory Expansion Board(s) (takes up to 3K bytes)</td>
<td>12.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RAM Memory chips - standard 1K bytes capacity</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sinclair ZX80 Manual(s) (manual free with every ZX80 kit or ready-made computer)</td>
<td>5.00</td>
<td></td>
</tr>
</tbody>
</table>

N.B. Your Sinclair ZX80 may qualify as a business expense.

I enclose a cheque/postal order payable to Science of Cambridge Ltd, for £

Please print
Name: Mr/Mrs/Miss
Address

TOTAL £

Science of Cambridge Ltd
6 Kings Parade, Cambridge, Cambs., CB2 1SN.
Tel: 0223 21488.

Practical Wireless, March 1980
IT'S HAPPENED AGAIN!

THE PART THREE CATALOGUE IS PUBLISHED & WE HAVE MOVED TO BIGGER PREMISES.

Yes, it’s here at last - the all new Part Three Catalogue. Fun for all the family, and the usual update on all that is new, worthwhile and exciting in the world of Radio and Communications. A big section on frequency synthesis techniques giving broadcast tuners, to communication quality tuners, to new products for 455Kc fm, crystal filters, for 455Kc and more, the new range of TOKO CFSH low temperature coefficient types for 10.7MHz. Details on new radio ICs, including the new HA11225, the CA3180L lookalike with 84dB signal to noise, and adjustable tuning threshold. Radio control ICs - and an updated version of the RMME 8 channel FM receiver now with an Ambient designed screen front end, with 27MHz ceramic bandpass filter. LCD parts - the newest and best LCD panel DYM yet (only £19.45 each + VAT), the new 5 decade resolution DFM3 for LW/FM/VHF with LCD readout. The DFM6 with fluorescent display to 10kHz resolution on VHF. 1 kHz on SW. A 1kHz HF sync driver with five RX - the list is endless. Get your copies of the catalogue now. Post publication price is 60p inc. PP etc. The previous two sections are also required for a complete picture. Parts 1 & 2 (the pair, all £3.50).

And don’t miss spot gib holes too, together with a quick to see if you can spot the differences between a feed line and a waveguiding pipe drawing and a circuit diagram of one of our competitor’s tuners.

FM radio control RX kit

-8 channel IC receiver (FM)
-Single IC RF/FM/Detector
-Single IC decoder
-27MHz ceramic filter input
-FET RF stage with double tuned bandpass filter
-Dual ceramic filter IF
-Best quality SLM servo connector 180ohm
-ONLY £11.10 inc VAT (kit)
(includes new SLM card)

DOES YOUR ONE GLOW GREEN IN THE DARK??

Our DFM6 does, since it uses a vacuum fluorescent display for direct readout of all LW/FM. Basically the same as the DFM2 LCD Version). 24.45 kit inc VAT.
Transformer with all necessary windings for DFM4 £2.50 inc VAT.

New series of radio modules in fully screened case:

-UM181 VHF band 2 VARICAP TUNERHEAD
-CD4066 seven CMOS, TTL/LS/TTL, standard and 15 pin PLCC
-Preamp with few components
-Preamp with only 6 components

There is a danger - when advertising in some magazines that because we do not find space to list everything we sell in every ad., that some readers forget about half the ranges we stock. So to summarize the general ranges.

TOKO - Chokes, ferrite beads and ferrite rods.

Polyvaricon - ICs for radio, clock, radio control, decoder, etc.

Mictomats - electronic controls for EMI filters.

Hitech - Radio audio and digital ICs.

And the following groups of products from a broad range of sources.

Semiconductor - specializing in radio devices, Pickey SL1600, EUROPE’s best selection of AM/FM and communications devices. Power MOSFETs, WORLD’S LOWEST NOISE AUDIO small signal transistors, BARR graph, LED drivers linear and discrete.

FREQUENCY READOUT LSI from OKL, with a one-chip digital to analog frequency

display needs (and various modules).

There are a number of manufacturers, ferrite rods and ferrite beads.

Our LATEST MOVING EXPERIENCE:

At last, we have moved to the address below. There is earlier in 1975, an extension of North Road, Brentwood, Essex and we will be installing a much expanded sales counter in the fullness of time.

New Telephone number (0277) 205090, Telex number (no before) 99579/1 AIMBT G. See you there !
SMALL ADS

The prepaid rate for classified advertisements is 24 pence per word (minimum 12 words), box number 60 extra. Semi-daily rate £8.00 per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyd's Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance should be sent to The Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser for current prices and availability of goods before ordering from non-current issues of the magazine.

VALVES
Radio - T.V. - Industrial - Transmitting
Projector Lamps and Semiconduciters
We dispatch Valve galls to all parts of the world by return of post. Air or Sea mail. 4000 types in stock, 1900 to 1976. Telephone a speciality. List 60p. Copies free on application.

COX RADIO (SUJUSEX) LTD.
Dept. P. W. Printed Envelope, Tunbridge Wells, Sujusex PO20 1BN
West Wittering 2023 (STD Code 02438)

ELECTRONIC COMPONENTS. Quick delivery, wide range from stock catalogue on request. J. R. Hartley Elec·
tronics Components, 78B High Street, Bridgnorth, Salop

TUNBRIDGE WELLS COMPONENTS, BALLARD'S.
Lists or Phone for current prices. Counter or Mail Order. NO
Tel: 01440 8641 for current prices & availability, all popular
valves stocked. NO CALLERS, SAE lists. Cash with order.

G2DYM ANTI-T.V. TRAP DIPOLES:
Indoor and invisible aerials for SW.L's £3.50.
Lists 1 Ox 8in SAE. Aerial Guide 50p .

VALEDICTORIUM 1934 / 5
Series (1934 Recording Machine!

Semi-display setting £8.00 per single column centimetre
per word (minimum 12 words). box number 60 extra.

NOTICE TO READERS

WHilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser for current prices and availability of goods before ordering from non-current issues of the magazine.

TUNBRIDGE WELLS COMPONENTS, BALLARD'S.
Lists or Phone for current prices. Counter or Mail Order. NO
Tel: 01440 8641 for current prices & availability, all popular
valves stocked. NO CALLERS, SAE lists. Cash with order.

EDUCATIONAL

COLOUR TV SERVICING
Learn the finer points of servicing colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. S277 Intext House, London, SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

TECHNICAL TRAINING
Get the training you need to move up into a higher paid job. Take the first step now—write or phone

City & Guilds, P.O. Box 9, London, SW19 4DS.
Tel. 01-946 1102 (24 hour Recordacall).

Get the training you need to move up into a higher
paid job. Take the first step now—write or phone

City & Guilds, P.O. Box 9, London, SW19 4DS.
Tel. 01-946 1102 (24 hour Recordacall).

TECHNICAL TRAINING
Get the training you need to move up into a higher paid job. Take the first step now—write or phone

City & Guilds, P.O. Box 9, London, SW19 4DS.
Tel. 01-946 1102 (24 hour Recordacall).

TECHNICAL TRAINING
Get the training you need to move up into a higher paid job. Take the first step now—write or phone

City & Guilds, P.O. Box 9, London, SW19 4DS.
Tel. 01-946 1102 (24 hour Recordacall).
WANTED

ELECTRONIC COMPONENTS PURCHASED. All Types Considered - Must be new. Send detailed list - offer by return. - WALTONS, 75A Worcester Street, Wolverhampton.

WANTED. Information on Lafayette H/E-80 receiver, to buy or copy. Tel: Rochdale 50690.

Books and Publications

Build your own
P.A., GROUP & DISCO SPEAKERS

Save money with this practical guide. Plans for 17 different designs, with copious reference material, for 8-18 drive units. £3.95 post free (58 overseas).

THE INFRA-LOW SPEAKER

(see new detailed constructions using 15", 12" and 10" drive units.) £2.95 post free (56 overseas).

THE DALESFORD SPEAKER BOOK

This book is a must for the home constructor, latest DIY designs, plans, spec., design tips, etc. £4.95 post free (65 overseas).

VAN KAREN PUBLISHING
5 SWAIN STREET, WILMOS, CHESHIRE

FULL REPAIR data any named T.V., £3.50, with circuits, layouts, etc. £1. (AUSW) 76 Church Street, Larkhall, Lanarks 5L 1HE.

Radio Book Service

WORLD RADIO TV HANDBOOK 1980 Edition . . £9 - 25
POPULAR ELECTRONIC PROJECTS . . £1.95
PRICES
Radio Antenna Handbook
full constructional details for versions using 15", 12" and 10" drive units.) £2.95 post free (56 overseas).

VAN KAREN PUBLISHING
5 SWAN STREET, WILMSLOW, CHESHIRE

WHY NOT START YOUR OWN BUSINESS

REWRITING ELECTRIC MOTORS. A genuine opportunity to succeed. LARGE PROFITS. You can't help but make money if you follow the easy step, step instructions in our fully illustrated manual showing how to rewind Electric Motors, Armatures and Field coils as used in Vacuum Cleaners. Electric Drills and Power Tools. No previous knowledge is required, as the manual contains 12 chapters, where to obtain all the work you need, materials required, all instructions, rewind charts and how to take data etc. A gold mine of information. How to set up your own workshop and how to cost each job to your customer. £4.50 inclusive of P & P. UK. CWO.

TO INDUSTRIAL SUPPLIES, 102 S. Paramus. Willowton, Manchester 10. DEPT. PW.

Record Accessories

STYLI. Cartridges For MUSIC CENTRES, etc. FREE LIST No. 29. For detailed info., includes 8, 10, and 12. Inf. and prices: PESCO, FELSTEAD ELECTRONICS, (PW), Longley Lane, Wolverhampton.

G.T.

THE TECHNICAL INFORMATION SERVICE
76 CHURCH ST., LARKHALL, LANARKSHIR 5L 1HE

Any single service sheet for £1 and large S.A.E.

1000's of different service sheets, service manuals and repair manuals always kept in stock for immediate dispatch. S.A.E. brings newsletter, pricelist, bargain offers such as service sheets under 40p; quotations for any requested service sheets/manuals without obligation.

Save time and money - 2 giant catalogues listing thousands of service sheets/manuals plus £4 worth of vouchers free - send £2 + large S.A.E.

SUBERB INSTRUMENT CASES by Bazelli, manufactured by P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast catalogue. Competitive prices start at a low £1.50 for small chassis punching facilities at very competitive prices. 400 models to choose from. Suppliers only to Industry and the Trade.

BAZELLI. (Dept No. 25) S. Whiffield, Foundery Lane, Halton, Lancs. L29 2JQ.

GUPTA/P. MUSIC AMPLIFIERS

100 watt superb quality/price, overdriving 12 month guarantee. Unbreakable (e.g. £40 with £33, £55, £60 etc). £0 watt channel set, tweed/basso per channel £69, £60 watt £60, £80 watt £80, £80 watt basso per channel £75, £80 watt £92, £100 watt £92; £200 watt £15, £300 watt £200, £400 watt £300, £500 watt £400, £600 watt £500. Also top of the range upgrading kit with tube and bass boosters £18, 100 watt complete surround system, £99.95, all 50 watt,twin channel £90; bass combo £105, amplifiers, £150, £150, £150, £150, £150, £150, £150. (Must be pre-paid). Price includes VAT, 7%.

WILLIAMS AMPLIFICATION 52 Thorncliffe Avenue, Dukidfield, Cheshire or 081-308 2084.

YOU SIMPLY cannot buy a more sophisticated introdmarkering system for under £45 + £15 for complete systems. Details from KRAM ELECTRONICS, 30 Harleigh Road, Anstey, Leicester.

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME

FULL RANGE AVAILABLE, S.A.E. FOR LISTS. £1.25 for Booklet "Nickle Cadmium Power" plus catalogue. Write or call. Sanders, Flecknoe, Peterborough, Ukraine心愿: SUTTON COLDFIELD, WEST MIDLANDS. 021 354 3704 or see them at T.L. 22 Craven Street, Charing Cross, London WC2.

MORSE CODE TuITION AIDS

Consulns A: 1-12 p.m. for amateur radio exam. Instruction A: 8-4 p.m. for professional examination preparation. Each Consultation £3 for Morse Key and buzzer unit for sending practice. Price includes 4-5 copies (including booklets 46-75). Morse Key and buzzer £4-75.

RECHARGEABLE BATTERIES. Postage etc. Overseas £1-10 extra.

M. R. ELECTRONICS, 12 Longshore Way, Minton, Portsmouth PO4 8LS.

PRACTICAL WIRELESS CIRCUIT BOARDS. December 78 Quarterly £2.90, January 79 Quarterly £2.90. September 79 Sandhills Disc Jockey £2.90. February Hythe Receiver £4.60. March Hythe P.S.U. £2.40. Soundfield Converter £4-60. April F.M. Multistore £1.70. July V.M.O. TX £3.20. August Tidwell Receiver £0.60. September £0.30. October MSF Clock £0.50. December V.M.O. TX £3.20. Radio Receiver WR046 £1.50. January 1980 Radio Control Encoder £2. Transmitter Board £1.50. Speecch Processor £1.00. All boards of top quality glass shot in and drilled and mulled to BS 6984. Prices include postage etc. We also supply P.C.B’s and Panels to your design. S.A.E. for full details and complete list of P.C.B’s. H.T. Electronics, Dept. PW 200 Military Airports, Longworth, Oxford OX7 3HL.

NICKEL CADMIUM BATTERIES

Rechargeable batteries suitable for last charge HP7 (AA) £1.06. Sub C £1.35, HP (C) £1.38, HP (D) £1.02, PP £2.79. PP £3.79.

All the above nickel cadmium batteries are brand new and are guaranteed for one year. Please note: all cells are supplied complete with solder tags except PP 20.

Brand new full spec. RECHARGEABLE SEAL LEAD ACID Maintenance Free Batteries supplied by F.M. etc. 1.2 amp/hr. £6.45 £6.25 per p.'r. £6.50. £6.25. Quantity orders over £50 post free. Data and changing circuits fees on request with orders over £10. Otherwise 30p post free. Orders over £50 post free. Price includes VAT at 15%.

SOLID STATE SECURITY DEPT. (PW). 10 Bradleys Lane, Paston, Lincoln. Tel: 022576 4729.
<table>
<thead>
<tr>
<th>SWG</th>
<th>1a</th>
<th>2a</th>
<th>3a</th>
<th>4a</th>
<th>2oz</th>
<th>4oz</th>
<th>8oz</th>
<th>16oz</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-24</td>
<td>0.50</td>
<td>1.00</td>
<td>1.50</td>
<td>2.00</td>
<td>3.00</td>
<td>4.00</td>
<td>5.00</td>
<td>6.00</td>
</tr>
<tr>
<td>20-25</td>
<td>0.60</td>
<td>1.20</td>
<td>1.80</td>
<td>2.40</td>
<td>3.60</td>
<td>4.80</td>
<td>6.00</td>
<td>7.20</td>
</tr>
<tr>
<td>25-30</td>
<td>0.70</td>
<td>1.40</td>
<td>2.10</td>
<td>2.80</td>
<td>4.20</td>
<td>5.60</td>
<td>7.00</td>
<td>8.40</td>
</tr>
</tbody>
</table>

Silver Plated Copper Wire

<table>
<thead>
<tr>
<th>SWG</th>
<th>1a</th>
<th>2a</th>
<th>3a</th>
<th>4a</th>
<th>2oz</th>
<th>4oz</th>
<th>8oz</th>
<th>16oz</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-24</td>
<td>0.30</td>
<td>0.60</td>
<td>0.90</td>
<td>1.20</td>
<td>1.80</td>
<td>3.00</td>
<td>4.50</td>
<td>6.00</td>
</tr>
<tr>
<td>20-25</td>
<td>0.40</td>
<td>0.80</td>
<td>1.20</td>
<td>1.60</td>
<td>2.40</td>
<td>3.60</td>
<td>5.40</td>
<td>7.20</td>
</tr>
<tr>
<td>25-30</td>
<td>0.50</td>
<td>1.00</td>
<td>1.50</td>
<td>2.00</td>
<td>3.00</td>
<td>4.50</td>
<td>6.00</td>
<td>8.00</td>
</tr>
</tbody>
</table>

Silver Plated Copper Wire

<table>
<thead>
<tr>
<th>SWG</th>
<th>1a</th>
<th>2a</th>
<th>3a</th>
<th>4a</th>
<th>2oz</th>
<th>4oz</th>
<th>8oz</th>
<th>16oz</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-24</td>
<td>0.20</td>
<td>0.40</td>
<td>0.60</td>
<td>0.80</td>
<td>1.20</td>
<td>2.40</td>
<td>3.60</td>
<td>4.80</td>
</tr>
<tr>
<td>20-25</td>
<td>0.30</td>
<td>0.60</td>
<td>0.90</td>
<td>1.20</td>
<td>1.80</td>
<td>3.00</td>
<td>4.50</td>
<td>6.00</td>
</tr>
<tr>
<td>25-30</td>
<td>0.40</td>
<td>0.80</td>
<td>1.20</td>
<td>1.60</td>
<td>2.40</td>
<td>3.60</td>
<td>5.40</td>
<td>7.20</td>
</tr>
</tbody>
</table>

Silver Plated Copper Wire

<table>
<thead>
<tr>
<th>SWG</th>
<th>1a</th>
<th>2a</th>
<th>3a</th>
<th>4a</th>
<th>2oz</th>
<th>4oz</th>
<th>8oz</th>
<th>16oz</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-24</td>
<td>0.10</td>
<td>0.20</td>
<td>0.30</td>
<td>0.40</td>
<td>0.60</td>
<td>1.20</td>
<td>1.80</td>
<td>2.40</td>
</tr>
<tr>
<td>20-25</td>
<td>0.15</td>
<td>0.30</td>
<td>0.45</td>
<td>0.60</td>
<td>1.20</td>
<td>1.80</td>
<td>2.40</td>
<td>3.00</td>
</tr>
<tr>
<td>25-30</td>
<td>0.20</td>
<td>0.40</td>
<td>0.60</td>
<td>0.80</td>
<td>1.20</td>
<td>1.80</td>
<td>2.40</td>
<td>3.00</td>
</tr>
</tbody>
</table>
PLEASE MENTION PRACTICAL WIRELESS WHEN REPLYING TO ADVERTISEMENTS

BURGLAR ALARMS
WE HAVE STOCKS OF EVERYTHING YOU NEED. CALLERS WELCOME. OPEN 6 DAYS EXPRESS POSTAL SERVICE. FREE CATALOGUE SEND S.A.E.

MAGIX
14 SWG steel plastic coated ball box with FREE ADE sticker
£5.00 Inc. VAT and postage

A. D. E. (SECURITY) CO., 217 WARREBOOK ROAD, LIVERPOOL, TEL: 051-525-3440

STOP PRESS! Trade Price List Available Applications on Official Stationary only

VOLTAGES AVAILABLE
3.0V 4.5V 6.8V 9V 10.5V 220/240V

Mains Isolators (Screened)
PM 120/240V 110/230V

Voltage available
50V RANGE
SEMICONDUCTORS

Electronic Construction Kit

BARRIE ELECTRONICS LTD., 3, THE MINORIES, LONDON EC3N 1BJ
TELEPHONE: 01-488 3317/8

NEAREST TUBE STATIONS: ALDGATE 1/2 LIVERPOOL STREET 2/3

SOME THINGS YOU CAN DO WITHOUT... but the HOME RADIO CATALOGUE is Top Priority for every constructor

- About 2,500 items clearly listed and indexed.
- Profusely illustrated throughout.
- 128 A4 size pages, bound in full-cover colour.
- Bargain list of unrepeatable offers included free.
- Catalogue contains details of simple Credit Scheme.

HOME RADIO (Components) LTD., Dept. PW, 234-240 London Road, Mitcham, Surrey, CR4 3HD
Phone 01-648 8422
THE "INSTANT" BULK TAPE ERASER
Suitable for cassette, and all sizes of tape reels. Available 6 or 7, 5 or 9 or 12V d.c., up to 100mA or less.

POWER PACK KITS
Post £4.85
Baker £65

DRILL SPEED CONTROLLER/ LIGHT DIMMER KIT. Easy to build. Kits up to 480v A.C. mains.
Printed circuit and components
STEREO PRE-AMP KIT. All parts included. 3 inputs for high medium or low gain per channel, with volume control and P.C.S. Built-in fuse. Can be used as receiver or pre-amplifier. £29.50

R.C.S. LOW VOLTAGE STABILISED
Size 3 x 2 x 1+ in. Please state voltage required.

R.C.S. SOUND TO LIGHT DISPLAY MK II
Complete kit of parts with R.C.S. printed circuit. Three channels. Up to five words will slate from 2000v to 200v with signal source. Suitable for heater hi-fi and all Disco Amplifiers. Cabinet extra £10. Post £4.85

AUTO TRANSFORMERS
100w signal source. Suitable for home Hi-Fi £18
240V (120V available), Blue wording on black cabinet.
Hi medium or low gain per channel, with volume control and P.C.S. Will operate from 200MV to 200 Watt Rear Reflecting White Light Bulbs. Ideal for Disco and all Disco Amplifiers. Cabinet £4.50. Post 45p

Complete kit of parts with R.C.S. printed circuit. Three channels. Up to five words will slate from 2000v to 200v with signal source. Suitable for heater hi-fi and all Disco Amplifiers. Cabinet extra £10. Post £4.85

HEATER TRANSFORMER, 6-3V 1amp £2-03 $-03 mm £3-23
GENERAL PURPOSE LOW VOLTAGE, Tap outputs available:
1 lamp 1.5, 3.5, 15, 15, 25 and 30W £6-00
1 amp 6.3, 10.15, 16, 20, 20, 30, 40, 40, 45, 45, 50, 50, 60, 60, 12, 12, £8-00
2 lamp 1.5, 15, 15, 25, 25, 30, 30, 40, 40, 45, 45, 50, 50, 60, 60, 12, 12, £10-00
3 lamp 1.5, 20, 20, 30, 30, 40, 40, 45, 45, 50, 50, 60, 60, 12, 12, £12-00
4 lamp 1.5, 30, 30, 40, 40, 50, 50, 60, 60, 12, 12, £14-00
5 lamp 1.5, 45, 45, 60, 60, 12, 12, £16-00
6 lamp 1.5, 60, 60, 12, 12, £18-00
7 lamp 1.5, 80, 80, £20-00
8 lamp 1.5, 100, £22-00
9 lamp 1.5, 120, £24-00
10 lamp 1.5, £26-00
15 lamp £30-00
25 lamp £40-00
50 lamp £80-00

RAIDO COMPONENT SPECIALISTS
337 WHITEHORSE ROAD, CROUDON Tel. 01-684 1665
Cash price include VAT. Minimum post 30p. List 20p. Phone Access Barclay VISA. Open 9-6 Sat. 9-5 (Closed all day Wednesday)

INDEX TO ADVERTISERS

A. D. Security Systems
A. H. Supplies
Amateur Radio Exchange
Ambit International
Amoco Supplies
Antex
Arrow Electronics
Bambo Electronics
Barrie Electronics
Bearman, Phillip
Bi-Pak Limited
Bingley
Blore Barton
Bowes, C.
Bredhurst
British National Radio & Electronics School
Brooks, B.
Burns Electronics
Caranna, C.
Cambridge Kits
Catronics Ltd.
Chordgate
Chromasonics Electronics
Chromatics
Codespeed
Colormor
Cooper, A. S.
Corporate Specialities
Cox Radio (Sussex) Ltd.
Crimson Electrik
C.R. Supply Company
C.T. Electronics

Electronic Design Associates
Electro Mail Order Ltd.
Electrovalue
Fane Acoustics
Fidelity Fastenings
Flairline
Gollandez Electronics, P.R.
G.T. Integration Services
G.25ZM Aerials
HAC Shortwave
Harrison Bros.
Harvons Supers Co
Havant Instruments
Home Radio
I.L.P. Electronics
Intertek I.C.S.
Leeds Amateur Radio
Lee Electronics
Love Electronics
Maplin Electronics Supplies
Metac
Mael Electronics
Monolith Electronics Co. Ltd.

240V, 3amp £2.95
240V, 6amp £4.95
240V, 12amp £10.95
240V, 16amp £16.95
240V, 20amp £22.95
240V, 24amp £28.95
240V, 30amp £35.95
240V, 36amp £42.95
240V, 40amp £49.95
240V, 48amp £56.95
240V, 60amp £72.95
240V, 72amp £89.95
240V, 80amp £106.95
240V, 96amp £123.95
240V, 120amp £165.95
240V, 144amp £207.95
240V, 168amp £249.95
240V, 192amp £291.95
240V, 216amp £333.95
240V, 240amp £375.95

Partridge Electronics
Progressive Radio
Quartslab
Radio Book Services
Radio Component Specialists
R.S.C. (Realistic Sound Centres Ltd.)
R. & T.V. Components
Sandwell Plant Ltd.
Science of Cambridge
Scientific Wire Company
Solid State Security
Sonietic News
South Midlands Communications Ltd
Spectrum Communications
Stephan-James Ltd.
Swanley Electronics
Tandy Corporation Ltd.
Technomatic Ltd.
Telestar
Thetani Electronics
T.T. Electronics
TUAC
Van Karen Publishing
Waters & Stanton Electronics
Watford Electronics
Westlake, W. H.
Western Electronics
Williamson Amplification

45p
50p
50p

www.americanradiohistory.com
GIVE US SPACE

YES WE'VE DONE IT AGAIN—ANOTHER HUGE PURCHASE OF COMPONENTS HAS ARRIVED AND OUR STORES ARE OVERFLOWING WITH BARGAINS. SO HERE'S YOUR CHANCE—

CUT OUT WHOLE COUPON—ADD MONEY, MARK NUMBER OF PACKS REQUIRED IN BOX

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. TELEVISION GAMES CHIP (colour) AY3-8600 by General Instruments—ball & paddle, tennis, hockey, soccor, squash, princef, grid ball, basket ball, includes data.</td>
<td>£1.00</td>
</tr>
<tr>
<td>2. TELEVISION GAMES CHIP (colour) AY3-8553 ball & paddle. tennis, soccor, squash, includes data.</td>
<td>£1.00</td>
</tr>
<tr>
<td>3. ZENER DIODE PACK—15 assorted high & low wattage zeners—mixed voltages.</td>
<td>£1.00</td>
</tr>
<tr>
<td>4. 20 ASSORTED TRANSISTORS—no junk—all working branded—plastic and metal cans.</td>
<td>£1.00</td>
</tr>
<tr>
<td>5. DIODES—20 assorted. May include signal, planer germannium rectifiers.</td>
<td>£1.00</td>
</tr>
<tr>
<td>6. RESISTORS—our giant pack, minimum quarter kilo, of assorted resistors—all types.</td>
<td>£1.00</td>
</tr>
<tr>
<td>7. TERRIFIC VALUE—our capacitor packs (100 approx) may include disc, mylar, electrolytic, polyester.</td>
<td>£1.00</td>
</tr>
<tr>
<td>8. 6 ASSORTED POTENTIOMETERS AND PRESETS—carbon, wire wound, rectilinear, etc.</td>
<td>£1.00</td>
</tr>
<tr>
<td>9. 25 WIRE WOUND RESISTORS 2 x 10 watt, many useful values.</td>
<td>£1.00</td>
</tr>
<tr>
<td>10. 70 WATT AMPLIFIER KITS by famous maker, includes PCB heating—all components, instruction sheet, fraction of original price.</td>
<td>£6.50</td>
</tr>
<tr>
<td>11. MULTIMETER BARGAIN—essential to every experimenter.</td>
<td>£9.95-14.95</td>
</tr>
</tbody>
</table>

FREE All orders over £10 get a free junk box filler pack. Lots of useful bits. (Any orders over £10)

ARROW ELECTRONICS LTD

LEADER HOUSE, COPTFOLD ROAD, BRENTWOOD, ESSEX CM14 4BN

Please print clearly and give your postcode and post with cheque, postal order or cash to:

ARROW ELECTRONICS LTD

LEADER HOUSE, COPTFOLD ROAD, BRENTWOOD, ESSEX CM14 4BN

OR you may collect at our shop (open 9-5 Mon-Sat, Closed P.M. Thursday)

Please note that the above prices include V.A.T. for orders of £25 or over. To: (Your name and address)

Mail orders or export orders must be accompanied by payment in full. Orders over £20 must be paid in full at the time of ordering. All prices quoted are inclusive of V.A.T.

Sonic Hi-Fi Discount Centres disappoints SPARKLE, 25-30 SOMP. LEEDS LS13 4LQ
Micro-precision soldering

ANTEX TCSU1 with CTC

... its the perfect kit

Model TCSU1 Micro-Soldering Station Model CX 17 watts - 230 volts Model X25 25 watts 230 volts

Accurate pinpoint temperature control between 65° and 400°C. Heating element and sensor built in tip of the iron for fast response. Interchangeable slide-on bits from 4.7mm (3/16”) down to 0.5mm. Zero voltage switching, no spikes. No magnetic field, no leakage. Supplied with miniature CTC (35-40 watt) iron or XTC (50 watt). TCSU1 soldering station with XTC or CTC iron £36 (6.44). Nett to industry.

Model CTC - 24 volts Priced at £9.75 (1.87)

A miniature iron with the element enclosed first in a ceramic shaft, then in stainless steel. Virtually leak-free. Only 7.1” long. Fitted with a 3/32” bit £4.20 (0.96). Range of 5 other bits available from 1/16” down to 3/64”. Also available for 24 volts.

Spare element Model CX230E

Model XTC - 24 volts Priced at £9.75 (1.87)

A general purpose iron also with a ceramic and steel shaft to give you toughness combined with near-perfect insulation. Fitted with 1/8” bit and priced at £4.20 (0.96). Range of 4 other bits available. Also available in 24 volts.

Model SK3 Kit Model SK4 Kit Model SK1 Model MLX 12 volts ST3 Stand.

Contains both the model CX230 soldering iron and the stand ST3. Priced at £5.70 (1.49). It makes an excellent present for the radio amateur or hobbyist.

With the model X25/240 general purpose iron and the ST3 stand, this kit is a must for every toolkit in the home. Priced at £5.70 (1.49).

This kit contains a 30 watt miniature soldering iron, complete with 2 spare bits, a coil of solder, a heat sink and a booklet. How to Solder. Priced at £5.95 (1.53).

The soldering iron in this kit can be operated from any ordinary car battery. It is fitted with 15 feet flexible cable and battery clips. Packed in a strong plastic envelope it can be left in a car, a boat or a caravan ready for soldering in the field. Price £4.85 (1.14).

A strong chromium plated steel spring screwed into a plastic base of high-grade insulating material provides a safe and handy receptacle for all ANTEX models. Soldering irons. Priced at £1.50 (0.57).

Please send me the Antex colour brochure. I enclose cheque/P.O./Giro No. Please send the following. Name. Address. Antex Ltd., Freeport, Plymouth PL1 1BR Tel. 0752 673777.

VAT + P&P as shown in brackets ().

Stocked by many wholesalers and retailers or direct from us if you are desperate.

www.americanradiohistory.com
Resistors

1. Value: 56000 ohms ±2%
2. Value: 39000 ohms ±20%
3. Value: 68 ohms ±2%
4. Value: 4700 ohms ±5%
5. Value: 3300 ohms ±5%

Capacitors

6. Value: 240pF ±2%
7. Temp. Coeff. 2412

<table>
<thead>
<tr>
<th>Multiplier</th>
<th>Voltage</th>
<th>Multiplier</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>×1μF</td>
<td>10</td>
<td>Blue</td>
</tr>
<tr>
<td>Brown</td>
<td>×10μF</td>
<td>0.1</td>
<td>Violet</td>
</tr>
<tr>
<td>Red</td>
<td>×100μF</td>
<td>0.01</td>
<td>Grey</td>
</tr>
<tr>
<td>Yellow</td>
<td>16</td>
<td>0.001</td>
<td>White</td>
</tr>
<tr>
<td>Green</td>
<td>63</td>
<td>0.1μF</td>
<td>Pink</td>
</tr>
</tbody>
</table>

To assist in identification the resistor outline drawings are actual size.

TABLE 'A'

<table>
<thead>
<tr>
<th>Colour</th>
<th>More than 10pF</th>
<th>Less than 10pF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>+20%</td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>+1%</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>+2%</td>
<td>±0.1pF</td>
</tr>
<tr>
<td>Green</td>
<td>+5%</td>
<td>±0.25pF</td>
</tr>
<tr>
<td>White</td>
<td>-10%</td>
<td>±1pF</td>
</tr>
</tbody>
</table>
RESISTORS cont.

The colour code, given here at the sides of the card, represents the numbers 0 to 9 which can be used to mark a resistor (or capacitor) to indicate its value, plus such information as its temperature coefficient, tolerance and working voltage. In addition it may be used to identify the component on a printed circuit or in a sub-assembly where space for marking is limited.

Older style resistors were marked with their nominal value by colours, on the body, at the tip and a coloured dot on the body. Sometimes a fourth coloured dot was used to indicate the tolerance on the marked value, Fig. 1. Where there is no apparent colour dot on the body of the resistor the dot is taken to be of the same colour as the body, Fig. 2.

READING THE VALUE

The body colour of a resistor gives the first figure, the tip colour the second figure and the dot colour the multiplier, or number of zeros after the first two significant figures. In Fig. 1 the body is green (5), the tip is blue (6) and the spot is orange (3) hence the value in ohms is 56 plus 600 or 56000 ohms, generally written as 56kΩ. (k=10^3 ohms).

In Fig. 2 the spot is the same colour as the body so it is decoded as orange (3), white (9) and dot orange (3) or 39000 ohms or 39kΩ.

Remember: If the multiplier dot is black (0) then there are no zeros after the first two figures, see Fig. 3. For low value resistors multipliers of gold (X0.1) and silver (X0.01) are sometimes encountered.

TOLERANCE

A fourth colour, usually a dot towards the end away from the tip colour, is frequently used to show the manufacturing tolerance on the marked value of a resistor. This means that a resistor marked 100kΩ±5% may have any value between 95000–5000 ohms or 105000 ohms and 100500–5000 ohms or 90500 ohms.

Brown=+1% Red=±2% Gold=±5% Silver=±10% None=±20%

Today many resistors are marked with the value by means of coloured bands, rather than by dots, on a neutral coloured body, Fig. 4. The same code applies in deciphering the value etc. of a resistor.

Other resistors may be marked with a number/letter code to indicate their value and tolerance, instead of the colour code, Fig. 5. Here the letter represents both the multiplier and the position of the decimal point in the number on the resistor.

EXAMPLES

- **Multiplier** 10R (10c) 470R (47c)
- **Multiplier** 1000 2K2 (2.2c) 33K (33c)
- **Multiplier** 1000000 6M8 (6.8c) 2M4 (2.4c)

The tolerances on this style of resistor is shown by a further letter, following the value, Fig. 5.

F=±1% G=±2% J=±5% K=±10% M=±20%

EXAMPLES

- 10RK indicates a value of 10c ±10%
- 2K2G = 2.2kΩ ±2%
- 6M8J = 6.8MΩ ±5%
- 33KF = ±1%
- 470RM = ±20%

PREFERRED VALUES

Resistors are generally marked with values taken from the Preferred Numbers Series, the most popular ranges being the E12 and E24. Resistors in the E6, E12 and E24 ranges have identical values in each range. Each range is also available in a fractioned form, E12 and E24 subdivisions are also available. Sub-multiples and multiples (decimal) of each number give a very wide range of values.

EXAMPLE

27 is the Preferred Number for resistors of 2.7Ω, 27Ω, 270Ω, 2.7kΩ, 27Ω, 270kΩ and 2.7MΩ.

Moulded carbon composition resistors are the commonest type in use but they can change in value considerably if affected by heat or age. Carbon film resistors have better stability but they are not so reliable as composition types. Metal oxide resistors have excellent stability and reliability. Carbon film and metal oxide resistors can have appreciable self-inductance so care should be taken in using them at VHF or UHF.

An E12 number represents a 20% increment on the previous number in the series while in the E24 range the increment is 10%. If a ±10% tolerance is calculated for the 12 values in the E12 range the result is as shown in the table from which it will be seen that the possible range of values is almost continuous implying that a precise value can be chosen from a range of cheap, low-tolerance resistors.

<table>
<thead>
<tr>
<th>Value</th>
<th>10</th>
<th>9.0 to 11.0</th>
<th>12</th>
<th>10.8 to 13.2</th>
<th>15</th>
<th>13.5 to 16.5</th>
<th>18</th>
<th>16.2 to 19.8</th>
<th>22</th>
<th>19.8 to 24.2</th>
<th>27</th>
<th>24.3 to 29.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>29.7 to 36.3</td>
<td>39</td>
<td>35.1 to 42.9</td>
<td>47</td>
<td>42.3 to 51.7</td>
<td>56</td>
<td>50.4 to 61.6</td>
<td>68</td>
<td>61.2 to 74.8</td>
<td>72</td>
<td>73.8 to 90.2</td>
<td></td>
</tr>
</tbody>
</table>

CAPACITORS cont.

The colour code for resistors is also used on some capacitors, mainly ceramic types, to indicate value in PICOFARADS, and the tolerance, Fig. 6. Occasionally the working voltage may be added, Fig. 7. The tolerance decoding for small capacitors is shown in the table. For other types of capacitor see the appropriate Table A.

The working voltage, when indicated, is the value of the colour spot/band multiplied by 100. A red spot would indicate 200V although in the Mullard C280 range of capacitors red is used for 250V. A white multiplier spot/band is used to indicate a working voltage of 1000V.

The Preferred Values used for capacitors are also employed for capacitors except for very high values of capacitor.

Where letters/numbers are used for marking capacitors then the multipliers are p=10⁻¹² n=10⁻⁹ µ=10⁻⁶ and the value is in FARADS. In practice this means that 1×10⁻⁶ F=1 microfarad (1μF), 1×10⁻⁹ F=1 nanofarad (1nF) and 1×10⁻¹² F=1 picofarad (1pF).

As with resistors the multiplier is used as a decimal point in marking capacitors.

EXAMPLES

- **Multiplier** x1 1pF=1F 330pF=330pF 0.1μF=100nF
- **Multiplier** x100 2nF=2000pF 4nF=4700pF
- **Multiplier** x10000 5μF=5000pF 3μF=3300pF

CHARACTERISTICS OF CAPACITORS

Aluminium Electrolytics Available in polarised and non-polarised forms. Values from less than 1μF to 50000μF. Working voltages from 3 to about 500V. General decoupling in AF circuits and mains power supply units. Wide tolerance on values typically ±20% to ±50%. Polarity is high leakage with the electronic circuit and should be aligned by the applied voltage. Applied voltage should be of the same order as rated working voltage.

Ceramic Good for AF and RF up to VHF. Low natural inductance. Temperature coefficient generally not good but where known can be used to compensate for frequency changes in tuned circuits.

Paper Low frequency operation only, in mains power supplies and AF applications. High insulation resistance.

Polycarbonate As polyester. Tolerances to ±1%.

Polystyrene High stability, good for RF and AF applications in tuned circuits, decoupling etc. High insulation resistance. Available to close tolerances, typically ±2%.

Polyester AF circuits. Reasonably high insulation resistance. Frequently of self-healing type.

Silver Mica As polystyrene. Tolerances to ±1%. Can be suitable for operation in pulse circuits.

Tantalum Bead General AF and LF use in decoupling and filtering. High capacity for size. Low working voltages only, typically between 3 and 35V. Polarity.

© Copyright IPC Magazines 1980
A 63-key ASCII keyboard with 625-line TV interface, 4-page memory and microprocessor interface. Details in our catalogue.

Mobile amateur radio, TV and FM aerials plus lots of accessories are described in our catalogue.

Our catalogue even includes some popular car accessories at marvellous prices.

A 10-channel stereo graphic equaliser with a quality specification at an unbeatable price when you build it yourself. Full specification in our catalogue.

A digitally controlled stereo synthesiser the 5600S with more facilities than almost anything up to £3,000. Build it yourself for less than £750. Full specification in our catalogue.

A superb range of microphones and accessories at really low prices. Take a look in our catalogue – send the coupon now!

These are just some of the metal cases we stock. There are dozens of plastic ones to choose from as well. See pages 52 to 57 of our catalogue.

A massive new catalogue from Maplin that's even bigger and better than before. If you ever buy electronic components, this is the one catalogue you must not be without. Over 290 pages – some in full colour – it's a comprehensive guide to electronic components with hundreds of photographs and illustrations and page after page of invaluable data.

An attractive mains alarm clock with radio switching function and battery backup! Complete kit with case only £18.38 (incl. VAT & p & p) MA1023 module only £8.42 (incl. VAT).

A superb technical bookshop in your home! All you need is our catalogue. Post the coupon now!

Add-on bass pedal unit for organs. Has excellent bass guitar stop for guitarist's accompaniment. Specification in our catalogue.

Post this coupon now for your copy of our 1979-80 catalogue price 70p. Please send me a copy of your 280 page catalogue. I enclose 70p (plus 37p p&p).

If I am not completely satisfied I may return the catalogue to you and have my money refunded. If you live outside the U.K. send £1.35 or ten International Reply Coupons. I enclose £1.07.

NAME
ADDRESS

P.O. Box 3, Rayleigh, Essex SS6 8LR.
Telephone: Southend (0702) 554155.
Shop: 284 London Road, Westcliff-on-Sea, Essex.
(Closed on Monday).
Telephone: Southend (0702) 554000.