FREE

PRACTICAL AERIAL DATA CHART

AERIAL SPECIAL

ALSO:
AERIALS FOR 160m
MW/LW LOOP AERIALS

AND:
HI-FI GLOSSARY
Continuing
QUARTZ LCD
5 Function
Hours, mins., secs., month, date, auto calendar, back-light, quality metal bracelet.
£6.65
Guaranteed same day dispatch.

SOLAR QUARTZ LCD
5 Function
Genuine solar panel with battery back-up. Hours, mins., secs., day, date. Fully adjustable bracelet. Back-light. Only 7mm thick.
£8.65
Guaranteed same day dispatch.

QUARTZ LCD
11 Function
6 right, 11 functions. Hours, mins., secs., day, date, week of year. 1/100th, 1/10ths, 10X secs., mins, Split and lap modes. Back-light, auto calendar. Only 8mm thick. Stainless steel bracelet and back. Adjustable bracelet. Metac Price
£10.65
Thousands sold! Guaranteed same day dispatch.

MULTI ALARM
6 Digits 10 Functions
£18.65

SOLAR QUARTZ LCD Chronograph
Powered from solar panel with battery back-up. 6 digits, 11 functions, hours, mins., secs., day, month, date, day of week, 1/100th, 1/10ths, 10X secs., mins. Split and lap modes. Back-light, auto calendar. Only 8mm thick. Stainless steel bracelet and back. Adjustable bracelet. Metac Price
£12.65
Guaranteed same day dispatch.

HANIMEX
Electronic LED Alarm Clock
6 digits, 11 functions. Hour, minute, second, day, week, month, calendar, auto calendar, back-light, quality metal bracelet.
£9.65
Thousands sold! Mains operated.

QUARTZ LCD ALARM 7 Function
Hours, mins., secs., month, date, day. 8 digits, 3 flags, minute, land, date. 1/100th, 1/10ths, 10X secs., mins, Split and lap modes. Back-light, auto calendar. Only 8mm thick. Stainless steel bracelet and back. Adjustable bracelet. Metac Price
£12.65
Guaranteed same day dispatch.

SEIKO Alarm Chrono
LCD, hours, mins., secs., day of week, month, day and date, 24 hour Alarm, 12 hour chronograph, 1/100th, 6th, 1/200th, 1/5th and lap time. Back-light, stainless steel. HARSLEX glass. List Price £130.00 METAC PRICE
£105.00

SEIKO MEMORY BANK
Calendar watches M354. Hours, mins., secs., month, day, date in 12 or 24 hour format. Month and day and all alarms for any selected months over 50 year period. Memory bank facilities. Any desired dates up to 11 can be stored in advanced. 2 year battery life. Water resistant. List Price £130.00 Metac Price
£79.50

SEIKO STYLE
Dual time-alarm Chronograph
Mineral glass face. Battery nut-on for DIY battery replacement. Top quality finish with fully adjustable bracelet.
£35.00

HANIMEX portable LCD clock radio
25 x 20mm and 6mm thick. 5 function. Hours, mins., secs., day, date and back light and auto calendar. Elegant metal bracelet in silver or gold. State preference.
£9.95
Guaranteed same day dispatch.

How TO ORDER
Payment can be made by sending cheque, postal order, Barncy, Access or American Express card numbers. Write your name, address and the order details clearly, enclose £30 for post and packing or the request will be refused. We do not want to keep your cheque before sending the goods so that we will not delay dispatch. All products carry 1 year manufacture and full money back 10 day reapplication. Battery fitting service is available at our shops. All goods include VAT.

To order: Send a complete list of goods - minimum order value £30. Telephone Orders: Credit card customers can telephone orders direct to Devantny or Edgware Rd., 24 hour phone service of both shops. 01-723 4123 03272 76545

CALLERS WELCOME Shops open 9.30 - 6.00.
Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

QUERIES
While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on commercial radio, TV or electronic equipment. Please address your letters to the Editor, Practical Wireless, at the above address, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.

Components are usually available from advertisers. A source will be suggested for difficult items.

SUBSCRIPTIONS
Subscriptions are available to both home and overseas addresses at £10.60 per annum, from "Practical Wireless" Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH.

BACK NUMBERS AND BINDERS
Limited stocks of some recent issues of PW are available at 80p each, including post and packing to addresses at home and overseas.

Binders are available (Price £3.75 to UK addresses and overseas, including post and packing) each accommodating one volume of PW. Please state the year and volume number for which the binder is required.

Send your orders to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 0PF.

All prices include VAT where appropriate. Please make cheques, postal orders, etc., payable to IPC Magazines Limited.

COPYRIGHT
© IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden.

All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

NEWS & VIEWS
20 Editorial The Penalty of Progress
20 PW Personality Fred Judd
24 News...News...News...
30 PW QSL Cards Announcement
31, 54 Production Lines Alan Martin
Information on the latest products
32 New Books Comments on the latest books in radio and electronics
33 Special Product Report Micron PL-7D Model Radio Control Kit Ginsberg
Recent developments in electronics
48 Hotlines
54 RAE Reprint Announcement
58 Radio Special Product Report Yaesu Musen FRG-7000 Communications Receiver

FOR OUR CONSTRUCTORS
38 Aerials for 160 Metres—1 J. R. Green
49 MW/LW Loop Aerials Charles Molloy
Constructing and using loop aerials for DX reception
55 Editing Home-Recorded Cassettes—2 B. Barnard
Make the most of your own recordings

GENERAL INTEREST
21 Speech Processing in Amateur Transmitters A. J. Nailer
Principles of a.f. and r.f. processors
26 IC of the Month Brian Dance
The TDB0791 power op. amp.
28 Sheer Simplicity Margaret McDonagh
Progress in fibre-optics in the telephone system
40 Hi-Fi Glossary—2 Gordon J. King
Explaining the jargon of audio
44 The Sun’s Influence Ron Ham
The effect of solar conditions on radio communications
62 IC of the Month Brian Dance
An extra to make up for the ones we've missed out over the past couple of months! The TDA 1062 f.m. front-end
65 On the Air Eric Dowdeswell
Amateur Bands
Medium Wave DX Charles Molloy
Short Wave Broadcasts
VHF Bands Ron Ham

FREE THIS MONTH
PW Aerial Data Chart—Double-sided and packed with useful info

We regret that Burglar Alarms Part 3 has had to be held over

Our December issue will be published in early November
(for details see page 37)
THE NEW

EUROSOLDSUCKER

This 195mm long, all metal, high suction, desoldering tool with replaceable Teflon tip enables removal of molten solder from all sizes of pcb pads. Primed and released by thumb, it incorporates an anti-recoil system and built in safety guard. Only £7.25 inc. VAT & P.P.

THE UNIQUE

EUROBREADBOARD

Logically laid out to accept both 0.3" and 0.6" pitch DIL packages as well as Capacitors, Resistors, LED's, Transistors and components with leads up to .85mm dia.

500 individual connections in the central breadboarding area, spaced to accept all sizes of DIL package without running out of connection points, plus 4 Integral Power Bus Strips around all edges for maximum inter-connection lengths.

All connection rows and columns are now numbered or lettered enabling exact location indexing.

Double-sided nickel silver contacts for long life (10K insertions) and low contact resistance (< 10m. ohms)

Easily removable, non-slip rubber backing allows damaged contacts to be rapidly replaced.

No other breadboard has as many individual contacts, offers all these features and costs only £6.20 each or £11.70 for 2 – inclusive of VAT and P.P.

Snip out and Post

David George Sales, r/o 74 Crayford High St., Crayford, Kent DA1 4EF

David George Sales
r/o 74 Crayford High Street,
Crayford, Kent, DA1 4EF.

Please send me
1 EuroSolderSucker @ £7.25 □
1 EuroBreadBoard @ £6.20 □
2 EuroBreadBoards @ £11.70 □

(Please note that all prices are applicable from July 1st, 1979 and include VAT & P.P., but add 15% for overseas orders).

Name
Address
Tel.

Please make cheque/P.O.'s payable to David George Sales

Practical Wireless, November 1979
New master kit EMK mark II

A completely Solderless construction kit, with Ready Drilled Bakelite Panels, Nuts, Bolts, Wood Screws, etc. Also in the Kit, Transistors, Capacitors, Resistors, Silicon and Germanium Diodes, Integrated Circuit and LED, Potentiometer, Switch, Tuning Capacitor, Wire Winding, Knobs, Dials, Loudspeaker and Speaker Case, Crystal Earpiece. Ready wound Medium Wave and Long Wave Ferite Rod Aerial. A range of Circuits with Pictorial Diagrams and Instructions are supplied with the Kit. Covering Medium Wave and Long Wave Radio Receivers with Earpiece and Loudspeaker Output Stages, Amplifiers, Test Equipment, Metronome and Noise Generators, Morse Code Practice Oscillator with Key and Circuits using the IC and LED supplied. Everything necessary to build and operate the Projects supplied in the Kit. Battery used PP9 volt (not supplied).
Size 19" x 9 1/2" x 1 1/2".

With special Power Output Module to construct.

£17.95 + P & P

Painted Bakelite Finish

Fill in the coupon and send to:
RADIO EXCHANGE LTD.
61 A High Street, Bedford MK40 1SA Tel: 0234 52367

£18.95 + P & P

E.V.6 Plus One
Build this exciting new design. New with 2 Transistors and 4 diodes.
MW/LW. Powered by 9V battery. Ferite Rod aerial, tuning condenser, volume control, and 28" loudspeaker. Attractive case with speaker grille. Size 9" x 9 1/2" x 2 3/4" approx. All parts including Case and Plans. Total Building Cost.

£8.20 + P & P

NAME__________________________
ADDRESS_____________________

I enclose £____ for____

NAME__________________________
ADDRESS_____________________

All prices include VAT.

WWW.AMERICANRADIOHISTORY.COM
Resistors from \textdollar{\frac{1}{p}}
Capacitors from \textdollar{1p}
Neons, knobs, zeners from \textdollar{5p}
Switches from \textdollar{10p}
Slider pots from \textdollar{20p}
Plastic boxes \textdollar{25p}
8 \Omega earpieces 5 for \textdollar{25p}
8 track heads \textdollar{25p}
Books from \textdollar{25p}
Microphone inserts \textdollar{40p}
Shop soiled & damaged multimeters from \textdollar{\textbf{4.00...YES 4.00}}
Piezo tweeters – perfects \textdollar{\textbf{\textdollar{4.99}}}
Microphones, microphone mixers, loudspeakers, cabinets, aerials, cartridges, etc., etc., etc.

All sale items sold as seen – Personal callers only.
All prices include VAT.
Deptford Broadway, London, SE8 Tel. 01-692-4412.

GARLANDS

Watch Out For The Fireworks At Garlands--------
Our Guy Fawkes Sale Starts On November 5th.
There Won't Be Another Like It!

Transformers \textdollar{50p}
Motors \textdollar{50p}
Car aerials \textdollar{75p}
Wooden plinths \textdollar{99p}
Car speaker & grille \textdollar{\textbf{1.25}}
Clock movements \textdollar{\textbf{2.50}}
Soldering irons \textdollar{\textbf{2.75}}
8" loudspeakers \textdollar{\textbf{2.95}}
Headphones from \textdollar{\textbf{3.00}}
Intercoms (tatty) \textdollar{\textbf{3.99}}

Attn.

CATRONICS LTD., COMMUNICATIONS HOUSE,
(Dept. 9811) 20 WALTINGTON SQUARE,
WALLINGTON, SURRY SM6 8RG.
Tel. 01-699 6742 (Mon. – Fri. 9 a.m. to 5.30 p.m. Sat. 1 p.m.)

Practical Wireless, November 1979

VOICE CHESS CHALLENGER

"THE FIRST THINKING CHESS GAME THAT SPEAKS TO YOU"

LEVEL

Average Response Time
1. Beginner
2. Intermediate
3. Experienced
4. Advanced
5. Superior
6. Tournament Practice
7. Tournament Teacher
8. Excellent
9. Expert
10. Infante

£229.95 inc. VAT

The Strongest Chess Program ever placed in a microcomputer. Approximately twice as fast as its previous models, this is the FIRST Thinking Device that after thinking speaks out and tells you it is smart, or it speaks English, German, French or Spanish by special order.

1. Large repertoire or chess book openings.
 A. 40 book opening variations randomly selected
 B. Special feature allows you to select a book opening of your choice
 C. Approximately 1,200 book openings moves. Book openings selective whether computer plays black or white
 D. Computer teaches book openings by displaying next move to be entered.
 E. All book moves are instant response regardless of level of play.

2. The Chess Teacher
 A. On levels 2, 5, 7, 9, and H he computer will display best suggested move for you to enter.
 B. Plays against itself with white usually the winner.
 C. Never makes an illegal move.
 D. Teaches end game solutions.
 E. Book openings teach opening game.
 F. Announces mate-in-two for you to solve.
 G. Problem mode permits setting up of all chess book positions.

3. Your Friendly Speaking opponent
 A. Tells you all of its moves.
 B. Repeats all of your moves.
 C. Can be used by the blind, as the game will audibly tell you every move and capture.
 D. Will repeat board position on demand.
 E. Voice feature allows you to take record game play.
 F. It even suggests your moves.

4. An Advanced Computer
 A. 128,000 to 160,000 bits of Read only Memory
 B. Has over 8,000 bits of Random Access Memory.
 C. At the conclusion of the game when it loses, the computer displays the number of moves played.
 D. Can be a strong chess player.
 E. It even suggests your moves.

5. Encompasses all of our other renowned features, including a solid hardwood case, 13 1/4 x 5 7/8 x 1 1/2 inches, deluxe playing surface with raised keyboard. 1 1/4 inch LED Display and Staunton design magnified Chess Pieces. 100% solid oak.

We will match any lower price. If competitor has goods in stock. Chess Challenger available at £295. See for brochure. BRITISH & BRIITISH Diplomat available.

KRAMER & Co., Dept. PWB.
9 OCTOBER PLACE, HOLDERS HILL ROAD, LONDON NW4 1EJ
Tel. 01-202 2472. Telex 888941. ATTN. KRAMER K7

Mail order only. Callers by appointment. Barclay & Access by arrangement.

The above is only part of the extensive range of VERO products we stock which includes other boards, pins, 'O' range cases, lift heads, flip top boxes, standoffs, decals and the 15" Card Frame system. ask for details.

All prices include VAT. Please note our minimum U.K. post and packing charge is 30p.

EXPRESS ORDERS welcome.
DISCO MODULES
Make your own console
CONTROL UNIT (mains powered)

Vol. (left) Vol. (Right)
Tape input and volume control. Bass, Treble. ON/OFF switch for each table.

£25.00
Carr. £1

MONITOR UNIT
With H/Phone Socket and Vol. Control Carr. Free.
£7.95

FADER UNIT Carr. Free
£7.95

100w OUTPUT UNIT
Mains powered Carr. £1 50
£29.95

TITAN GROUP DISCO SPEAKERS

Rating RMS
Imp 8-15 ohms

S.R.P. RSC Price
T12/45R 12" 45w £19.95 £13.95
T12/60R 12" 60w £23.95 £15.95
T12/100 12" 100w £37.95 £23.95
T15/70 15" 70w £29.95 £20.95
T15/100 15" 100w £42.95 £29.95
T18/100 18" 100w £53.95 £41.95
Carr. 12" £1.00
15" £1.50
18" £2.00

MACINTOSH TURNTABLES, CUEING DEVICE AND FULL MONITORING FACILITIES
1 PAIR 50W TITAN LOUDSPEAKERS T12/100 INC. 12" UNIT AND HF HORN

TERMS FOR SYSTEM
DEPOSIT £39.50
38 WEEKLY PAYMENTS OF £5.95 (TOTAL £265.60)

SOLD SEPARATELY
DISCOMASTER MK II £169.95 (Carriage £5)
50W LOUDSPEAKERS MODEL T12/100 £54.95 each
(Carriage £2 each)

PULSAR SOUNDLITE

PULSAR ZERO 300 THE MOST VERSATILE SOUNDLITE CONTROL UNIT IN ITS CLASS

ONLY £95.95
DEPOSIT £20.00
12 MONTHLY PAYMENTS OF £7.66. (TOTAL £111.92)

MICROPHONES

SHURE 515 SA MICROPHONE R.S.C. PRICE £29.95.
ALTAIN DUAL IMPEDANCE MICROPHONE
R.S.C. PRICE £9.95.

SCOOP PURCHASE

COLLARO RECORD DECKS
* Auto or Manual
* 11" Turntable
* Suit Disco Operation
Excellent Value £15.95 or Pair for £30
(Carriage £1 each)

Realistic Sound Centres

OPEN ALL DAY SATURDAY

BRADFORD 10 North Parade (Closed Wed.)
Tel. 25340

BIRMINGHAM 30 31 Great Western Arcade (Closed Wed.)
Tel. 0223 1279

CARLISLE 8 English Street (Closed Thurs.)
Tel. 38744

COVENTRY 17 Shelby Square, The Precinct
(Closed Thurs.) Tel. 25983

DERBY 57 St. Peter's Street (Closed Wed.)
Tel. 41681

DEWSBURY 9 11 King'sway (Closed Tues.)
Tel. 460258

DONCASTER 4 Gaudenagate, Waterdale Centre
(Closed Thurs.) Tel. 63089

EDINBURGH 101 Lothian Road (Closed Wed.)
Tel. 229 9530

GLASGOW 403 Sauchiehall St (Closed Tues.)
Tel. 041 332 0700

HULL 7 Whitefriargate (Closed Thurs.)
Tel. 20599

LEICESTER 32 High Street (Closed Thurs.)
Tel. 56420

LONDON 238 Edgeware Road, W.2
(Closed Thurs.) Tel. 723 1629

MANCHESTER 60A Oldham Street (Closed Wed.)
Tel. 236 2779

NEWCASTLE UPON TYNE 59 Granger St.
(Closed Wed.) Tel. 247096

NOTTINGHAM 19-19A Market Street
(Closed Thurs.) Tel. 48900

SHEFFIELD 13 Exchange Street (Castle Mkt. Bids)
(Closed Thurs.) Tel. 20716

WOLVERHAMPTON 6 Wolfrun Way (Closed Thurs.)
Tel. 26612

* MUSICAL INSTRUMENTS & ACCESSORIES in stock at these branches

ALL PRICES INC VAT

Mail Orders and Export Enquiries to:
AUDIO HOUSE, HENCONNER LANE, LEEDS 13.
Tel. 0532 577631

Please supply the following:
(please mark quantity required in box)
100W Disco System Package
Model TSOH Speakers £164.95 each
Discomaster MK II
Disco Module Control Unit
Disco Modules Monitor Unit
Disco Modules Fader Unit
Disco Modules 100w Output Unit
Titan Group/Disco Speakers Type
Collaro Record Deck £15.95 each
GR £30 each
Pulsar Soundlite Zero 3000
Shure 515 SA Microphone
Altair Dual Impedance Microphone
E & O E. prices correct £9.79.

I enclose PO/ Cheque for £

Name
Address

MAIL ORDERS MUST NOT BE SENT TO SHOPS
NEW FROM TUAC
ULTRA QUALITY HIGH POWER
New D.C. Coupled Design
AMPLIFIERS

PREFACTORING
Electronic Short Circuit & Thermal Overload Protection.

INPUT SENSITIVITY 50mV r.m.s. at 8 Ohms
Frequency Response 20 Hz to 20KHz
Hum & Noise - 100uV/100uA full time output.

T.H.D. at full power 0.15%
T.O. 500 300W into 4 Ohms
440W into 4 Ohms
100W into 8 Ohms

Power Supply F.S. 300
T.O. 150 150W into 4 Ohms
100W into 8 Ohms
Power supply F.S. 150
T.O. 150, 60 Version 60W into 8 Ohms
45W into 15 Ohms.

Power supply F.S. 80
Note F.S. 200 will drive 2 T.O. 150 amplifiers.

ALL OUTPUT RATINGs are R.M.S. continuous sine wave output.

FOUR CHANNEL SOUND TO LIGHT
SEQUENCE CHASER
4LSMI

- Full wave control
- RCA 8A Triacs
- 1000W per channel
- Fully suppresset and fused
- Switched master control for sound operation from 5W to 120W
- Stand control for fixed rate sequence from 8 per minute to 10 per second
- Full logic integrated circuitry with optical isolation for amplifier protection

£22.95
£14.95

Model 901 500W per channel as above without sound control.

STEREO DISCO MIXER
With touch sensitive switching and auto fade

INPUTS: Four identical stereo inputs available with any equalization. Two magnetic and two flat supplied as standard.
High quality stereo centre on each channel. Volume, treble and bass controls for each pair of speakers.
OUTPUT: Up to 3 watts x 2dB available. Amplitude control for TUAC Power Modules. Rotary master and balance controls. Range 15Hz to 24kHz - 6dB
Miscellaneous Facilities: Two illuminated dimmers on all switch. Master illuminated on all switches. Master power fed with integral igniter and back up. Complete with full instruction book. Ever $25/bag + 6g high - 3m deep.

£55.50
£189.00

ADDITIONAL SEQUENCE CHASING - DIMMING EFFECTS FOR TUAC 3 CHANNEL LIGHT MODULATOR

- R.C.A 8A Triacs
- 1000W per channel
- Each channel fully suppressed and fused
- Master control to operate from 1W to 125W
- Full wave control

£39.95

POWER SUPPLIES

Vacuum varnished impregnated. Transformers with supply board incorporating pre-ampli supply:

PS250 for supplying 2 T125s £31.95
PS200 for supplying to T100s £31.95
PS60/60 for supplying 2 T60s £31.95
PS125 ± 45 volts for T125 £21.00
PS100 ± 43 volts for T100 £19.50
PS80 ± 38 volts for T60 £16.50
PS60 ± 25 volts for T50 £12.75
PSU 2 for supplying disco mixer £8.00

ADD SEQUENCE CHASING - DIMMING EFFECTS FOR
TUAC 3 CHANNEL LIGHT MODULATOR

- Speed control 3 per min. to 10 per sec.
- Full logic integrated circuitry
- Dimmer control to each channel

£31.95

STOCKISTS - CALLERS ONLY

RCA MARGATE, 21, Oxford Street, Manchester (Tel. 061-236 0400)
Gates Nineteen, 41 Haddington, London SW11 5RL
LodgFuse, 43 Sculpture Rd., Middlesbrough (Tel. 01-322 4493)
Wellington, 32 Lincoln St., London W1, 01-322 4479
White Star, 119, Kentish Town, London NW1 6BL
Cranford, 47, Oxford St., West End, London W1 (Tel. 01-493 2232)
Electric Centre, 88, Northumberland, 55, Wellington St., London W1 (Tel. 01-322 4479)
Mansfield Rd., Middlesbrough (Tel. 01-322 4493)
Etcetera Centre, 51, Lancaster House, Preston (Tel. 01-493 2232)
TRADE & EXPORT ENQUIRIES 01-493 2232

£17.50

SUPPLIERS TO H.M. GOVT. DEPTS. MANUFACTURED AND ASSEMBLED IN ENGLAND FULLY TESTED AND GUARANTEED
SEND NOW FOR FREE 28 PAGE ILLUSTRATED CATALOGUE. SEND STAMP PLEASE

 Practical Wireless, November 1979
Summer has gone, the rain has faded, and the chilly Autumn evenings are a sharp reminder that the long dark nights of Winter draw rapidly nearer, but don't view the prospect with dread, why not turn them to your advantage?

NOW is the time to unravel the soldering iron, and make a positive move towards the Hi-Fi upgrade you've been promising yourself for years.

Where better to start than with the WINTON?, the Amplifier par excellence that has been the success story of 1979, with a specification and performance that is totally unprecedented in this price range, as well as several above it. The great bonus of course, (beside keeping you out of the wife's way) is that you will have sufficient money left to pursue the upgrade even further, a new cartridge perhaps, or a really good pair of speakers, and you are ¿ of the way towards a system that can take on all comers, – and win.

You will find it an extremely interesting and absorbing project, we have known cases where a customer has not been seen in his local pub for nearly a week, thereby giving rise to some very ugly rumours, but as a start, act NOW, send us a 10p stamp and we'll send you a 'spec sheet that will make you sit quietly for a while reflecting upon how ordinary some Amps really are, or get involved at once, send us your cheque for the Extraordinary Amplifier, Power MosFet's

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pack (A) All Capacitors and Fixed Value Resistors, etc.</td>
<td>£21.93</td>
</tr>
<tr>
<td>Pack (B) Switch Bank, Switches, Potentiometers, Pre-Sets & all knobs</td>
<td>£13.57</td>
</tr>
<tr>
<td>Pack (C) Printed Circuit Board (Tinned, Drilled, & Overlay Printed) & Pins</td>
<td>£6.25</td>
</tr>
<tr>
<td>Pack (D) Hardware Pack, consisting of precision formed & punched Chassis, Black Epoxy finish Heat Sinks, Tank Connectors, etc., and a BUS Brushed Silver Aluminium Fascia Panel</td>
<td>£40.25</td>
</tr>
<tr>
<td>Pack (E) Special LOW HUM FIELD Toroidal Transformer</td>
<td>£31.21</td>
</tr>
<tr>
<td>Pack (F)</td>
<td>£17.61</td>
</tr>
</tbody>
</table>

COMPLETE KIT, of all parts necessary to build the P.W. WINTON

Order with complete confidence (C.W.O. only please) from:

T. & T. ELECTRONICS
Green Hayes, Burlingham Lane, Rockland St. Mary, Norwich, NR14 7HY.

Please allow 28 days for delivery.

ALL PRICES INCLUSIVE OF VAT & CARRIAGE

What's new from Heathkit?

IM 2212 — Auto Ranging DMM

IO 4105 — Single Beam 5 MHz Oscilloscope

IM 5217 — Portable Multimeter

Plus
- **GD 1290 — VLF Metal Locator**
- **HX 1601 — CW Transmitter**
- **IR 5201 — XY Recorder**
- **CI 1925 — Car Temperature Indicator**

These brand new self-assembly kits are designed to the highest specification. The step-by-step instructions make them easy to build at your leisure in your own home. And first class quality makes them excellent value for money. Details of the full Heathkit range are available in the Heathkit catalogue. Send for your copy now.

There are Heathkit Electronics Centres at 233 Tottenham Court Road, London (01-636 7349) and at Bristol Road, Gloucester (0452 29451).

To: Heath (Gloucester) Limited, Dept. (PW1 179), Bristol Road, Gloucester, GL2 6EE.

Please send a copy of the Heathkit catalogue. Enclose 20p in stamps.

Name:

Address:

N.B. If you are already on the Heathkit mailing list you will automatically receive a copy of the latest Heathkit catalogue without having to use this coupon.

When you receive your catalogue you will get details of this free offer.
COMPREHENSIVE C.T. CATALOGUE
ready soon lists vast range of items
regularly stocked
Free to callers
or send large SAE

CONNECTORS
Cable connectors:
5a 8 way barrier strips 16p
10a 8 way barrier strips 24p
10a 10 way barrier strips 48p
10a 12 way Barrier strips 68p
24 12 way choc strip 30p
5a 12 way choc strip 30p
12 way backfit chocs 26p
Multicore Connectors:
Centre DIN series 15 way used pari m² 125p
25 way used pari m² 250p
37 way used pari m² 275p
Blue Max 25 way ribbon cable connectors, gold 300p
RF Connectors:
BNC plugs 50p
BNC sockets (round) 40p
S0255 sockets 48p
PET 50 plugs 16p
N series connectors, from 0.1 inch:-
12 way s/s 10p
78 way s/s 16p
2 x 40 way d/s 200p
0.15 inch:-
12 way s/s 40p
78 way s/s 50p
32 way s/s 50p
Add: all usual DIN, jack and audio connectors always
in stock, best prices.

SWITCHES
at Banks, switch banks our speciality, sample from range:
3 pole 4 way 16p
4 x 2PCO 12p
5 x 2PCO with 2 x 4PCO 40p
6 x 2PCO 18p
Liton Illuminated 1 amp 250v contacts, choice of 5 color lenses
2PCO Switching 150p
2PCO momentary 180p
Plain indicators 60p
h Other types
SPST Ilum, rockers only 25p
V3 style microswitches BP1000 lever switches 4 and 8PCO latch or
more 60p
8PCO 10 amp key switches 300p

Many varieties of rotary switches in stock e.g.
3 pole 4 way 36p
4 pole 3 way 60p
4 pole 9 way 20p
2 pole 11 way Elma 75p
Large range of miniature toggle switches in very
reasonable prices, also sliders, push button, rockers,
microswitches, etc. etc.
Relays
12 volt 2PCO continental 85p
12 volt 4PCO continental 100p
24 volt 2PCO coil 200p
24 volt 4PCO 3 pin 200p
Base continental 26p
12 volt 12 pin 35p
11 pin 50p

SEMI CONDUCTORS

<table>
<thead>
<tr>
<th>Diodes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1N4002/3</td>
<td>8p</td>
</tr>
<tr>
<td>1N4040</td>
<td>8p</td>
</tr>
<tr>
<td>IN5404</td>
<td>8p</td>
</tr>
<tr>
<td>1N5401/4/4-8</td>
<td>8p</td>
</tr>
<tr>
<td>BY122</td>
<td>10p</td>
</tr>
<tr>
<td>BY126</td>
<td>12p</td>
</tr>
<tr>
<td>1TT2002</td>
<td>10p</td>
</tr>
<tr>
<td>400W(8) Zenner</td>
<td>15p</td>
</tr>
</tbody>
</table>

Always a selection of 50/100 amp items in stock.

Transistors

<table>
<thead>
<tr>
<th>Transistors</th>
<th>2N</th>
<th>3N</th>
<th>Int. Circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N2222</td>
<td>400p</td>
<td>400p</td>
<td></td>
</tr>
<tr>
<td>2N2222</td>
<td>300p</td>
<td>300p</td>
<td></td>
</tr>
<tr>
<td>2N2222</td>
<td>200p</td>
<td>200p</td>
<td></td>
</tr>
<tr>
<td>2N2222</td>
<td>100p</td>
<td>100p</td>
<td></td>
</tr>
<tr>
<td>2N2222</td>
<td>50p</td>
<td>50p</td>
<td></td>
</tr>
<tr>
<td>2N2222</td>
<td>25p</td>
<td>25p</td>
<td></td>
</tr>
<tr>
<td>2N2222</td>
<td>10p</td>
<td>10p</td>
<td></td>
</tr>
<tr>
<td>2N2222</td>
<td>5p</td>
<td>5p</td>
<td></td>
</tr>
<tr>
<td>2N2222</td>
<td>2p</td>
<td>2p</td>
<td></td>
</tr>
<tr>
<td>2N2222</td>
<td>1p</td>
<td>1p</td>
<td></td>
</tr>
<tr>
<td>2N2222</td>
<td>0.5p</td>
<td>0.5p</td>
<td></td>
</tr>
<tr>
<td>2N2222</td>
<td>0.25p</td>
<td>0.25p</td>
<td></td>
</tr>
<tr>
<td>2N2222</td>
<td>0.2p</td>
<td>0.2p</td>
<td></td>
</tr>
<tr>
<td>2N2222</td>
<td>0.1p</td>
<td>0.1p</td>
<td></td>
</tr>
<tr>
<td>2N2222</td>
<td>0.05p</td>
<td>0.05p</td>
<td></td>
</tr>
<tr>
<td>2N2222</td>
<td>0.025p</td>
<td>0.025p</td>
<td></td>
</tr>
<tr>
<td>2N2222</td>
<td>0.0125p</td>
<td>0.0125p</td>
<td></td>
</tr>
<tr>
<td>2N2222</td>
<td>0.00625p</td>
<td>0.00625p</td>
<td></td>
</tr>
</tbody>
</table>

CAPACITORS

Electrolytes, Full range carried axial/ radial/can from
0.033 to 4.7uF, most voltages.
High Voltage Smoothing
8 plus 6uF 500v 500p
32 plus 16uf 350v 50p
8 plus 32uf 250v 50p
32 plus 32uf 250v 50p
400uF 350v 50p
600uF 300v 50p

Computer Grade High Ripple Mullard 2200uF
100v 50p
Gould 4700uF 75v 120p

All sizes - Add VAT at 15%
FREE

This 44-page free book shows how!

CHOICE A BRAND NEW FUTURE HERE

Tick or state subject of interest. Post to address below.

Electrical & Electronics
Practical Radio & Electronics
Electrical Engineering Certificate
C. & G. Elect. Installations
Elect. Install. & Air Work
C. & G. Elect. Technicians
Radio & Telecom engineer

--- POST NOW ---

Mains

Aldermaston College
Dept. TPW 24, Reading RG7 4PF
also at our London Advisory Office, 4 Fore Street Avenue, London EC1Y 9DT. Tel. 638 3721.

NAME (Block Capitals)
ADDRESS

Other subjects of interest

Accredited by C.A.C.C. Member of A.B.C.C.

G.C.E.
-58 O' & 'A' Level Subjects
-over 10,000 Group Passes!

AUDIO TEST SET services pattern bench test comprises in one case Audio Osc 17c/s to 170Kc in 4 ranges direct calibration, 0/P varies up to 10v into 25 ohms, 0.25 to 500 ohm, Voltmeter 100MiliV to 100v in 5 ranges direct response to 170Kc this can be used to read O/P from osc or ext I/P. Distortion Meter with amp & tuned filter var 20c/s to 20Kc with direct cal as 3 ranges of dist 10, 30 & 100% FSD read on VTM meter. Contained in metal case size 14 x 17 x 21" for use on 200/250v mains with connecting leads in new condition £85.

RECEIVER UNIT. small high performance receiver uses 7 min. plug-in valves covers 2.5 to 20M/c in 3 bands as RF stage, B.F.O. volt stab, provides O/P for high res or crystal earphones, direct freg cal with geared drive, size 5 x 3 1/2 x 3" these req ext supplies of 150v 40mA DC & 6.3v AC 2a. Supplied tested with circ. no ext case. £35.00.

SELECTIVE CALLING UNITS contain telephone dial small 500uA meter, low volt stb power unit, 9 circ brds, lamps, relays, swts etc thought to generate dialling tones that can be selected on front panel, 200/250v I/P transis units new cond £18.

Mains TRANSP Pria 200/250v sec 340-250-0-250-340v at 210Ma plus 6.5 at 5 amps twice 6v & 5v at 5 amps size 5 x 5 x 6" we have tested these a 700v DC at 250ma using full sec with no L.T. load, will also give 17-6v at 5 new boxed £38.50.

RADIO MIKES. for use with FM radios can be set to any freq 85/95Mc/s as int cond mike range over about 50 mts in open uses two pen cell not supplied, hand held unit with short flex. As new made in Japan. £8.50.

INDICATOR UNIT with 3" CRT type 3WP1 (more modern than 3BP1) plus 13 miniature valves in case size 10 x 8 x 2" containing 400c.s 5uc, P.U. with circ £23.00.

PANEL METERS mixed mostly 2 & 3" dia types 4 different for £4.

TRANSMITTER ASS. Small low power 15/25w 2.5 to 20M/c Tx unit crystal controlled solid for breakdown contains 2x 175PI Tun cond, miniature 500uA meter, morse key, coils, swts, RF chokes, knobs etc. Supplied less valves, contains most parts for Rx or Lp Tx AT with circ. £8.50.

TRANSIS INVERTOR 12v DC I/P 0/ps 425v DC at 120ma or 180v DV Ma also 6-3v DC at 2-5 amps in case size 5 1/2 x 4 x 3" tested with circ. £10.50.

Mains TRANSP Pria 200/250v sec 225-135-0-135-225 at 70ma 6 2/3a & 6-3 700ma. £4 matching choke £1.50 also C core trans sec 250v 60ma & 6-3v 3amps £3.

Motor for use on 115v AC rated 1/18th HP int at 5000 RPM brush type size 5" by 2/3" dia with pinion 3/8th by 1/2" fitted govner req ext 220 ohm 25 watt res & Luf cond. new American spares okay for PCB Drills. £8.50.

VARIABLE STABILISED P.U. Solartron bench type 200/250v I/P I/P var from 0 to 500v DC at up to 150Ma floating O/P also 6-3v 5s fitted Volt/ma meter overload protection on 10" panel size 9" high 13" deep no ext case £35. We have a few table cases intended to take two of these units at £12.

GRID DIP OSC. American Services pattern PRM-10 covers 2 to 400Mc/s cond uses 2-5 slug coils with direct calibration as 4 functions Grid Dip, Osc. Det, Absorbtion W.M. & Sig Gen for use on 115v 50/60 25 watts, the head unit with indic meter can be removed from carrying case which contains P.U. and function selector swts, the head unit measures 7 x 4 x 3 exc coll, meter 100 Us-5 valves inc rect. All contained in carrying case size 11 x 9 x 6" with circ. £85 new cond or £45 good S/Hand cond.

HELIPOTS & DIALS standard 10 dr to dial to fit 3/8th bush £1.50 or with 100K helipot £2.

ROTARY SWTS large inst type 2p 23w & 8p 12w both with 1 60v U.H.F. TV tuner transis manual tuned type new with circ £2.50.' HEADPHONE LEAD ext cord type with stereo jack 1/4" approx 30" ext new £1.

DIODES S1pwr diodes stud type rated 10 amps ea 100 PIV 4 for 1£60 1000 PIV 4 for £2.50 new unused.

CRYSTALS 10X & 10XJ types two pin in range 5 to 7.5Mc/s 20 mixed for £2.20.

Above prices include Carr & Vat goods ex equipment unless stated new. SAE for list 22/1 or enquiry.

A. H. SUPPLIES.
122, Handsworth Rd. SHEFFIELD. S9 4AE.
Telephone 444278 (0742).
Vega value is convincingly demonstrated in the superb short-wave coverage of the 206, Spidola and Selena models: no less than six short-wave bands on the 206 and Spidola, five (including "trawler" bands) on the Selena. Engineered in the USSR to the highest electronic standards, these powerful portables - and the other models in the range - give you top performance (for complete "home" listening too) and reliable service at competitive prices.

Vega Selena 210/2 MB
Superhet portable receiving VHF/FM, long, medium and 5 short-wave bands: 25.8-24.8m (15.1-15.5MHz); 25.8-24.8m (11.7-12.1MHz); 31.6-30.7m (9.5-9.7MHz); 50-41.9m (9.5-7.3MHz). Intermediate frequency: 465kHz. Rated Output: 900mW (max. 150mW) semi-conductor circuitry. Independent bass and treble tone controls. Automatic frequency control. Built-in mains convertor. Sockets for: line aerial, earth, tape-recorder, earphone or extension speaker. Inbuilt ferrite rod aerial for long and medium waves. 8-section telescopic swivelling antenna for VHF/FM and short waves. Battery condition/tuning meter. Dimensions: 210x250x115mm. Weight: 2.7kg (6lb) without batteries. Price: £39.34 inc VAT.

Vega Spidola 250
Superhet portable receiving VHF/FM, long, medium and 6 short-wave bands: 150-60m (2.0-5.0MHz); 60-0.5m (5.0-7.4MHz); 31.6-30.7m (9.5-9.7MHz); 25.8-24.8m (11.7-12.1MHz); 19.85-16.75m (15.1-17.9MHz); 14-13.8m (21.45-21.75MHz). Intermediate frequency: 465kHz. Rated Output: 900mW. Circuitry includes 23 semi-conductors, independent bass and treble tone controls, automatic frequency control. Battery condition/tuning meter. Inbuilt ferrite rod aerial for long and medium waves. 8-section telescopic swivelling antenna for VHF/FM and short waves. Sockets for: line aerial. 9v DC external power source, tape-recorder, earphone or extension speaker. Dimensions: 250x365x105mm. Weight: 3.4kg (7.5lb) without batteries. Price: £34.79 inc VAT.

Note: prices shown are rec retail. You may find lower prices locally.

See these and the other fine Vega radios right away. Ask us to send you the Vega Radios colour brochure.

Vega 206
Superhet portable receiving long and medium waves plus 6 short-wave bands: 150-60m (2.5MHz); 80-40m (5.75MHz); 32.35-24.8m (9.3-12.1MHz); 19.85-19.4m (15.1-15.5MHz); 16.95-16.75m (17.7-17.9MHz); 14-13.8m (21.45-21.75MHz). Intermediate frequency: 465kHz. Rated Output: 150mW. Circuitry comprises 12 semi-conductors including voltage stabilising diode, plus turret waveband selector, treble control, inbuilt ferrite rod aerial for med and long waves, 7-section telescopic antenna for short waves. Sockets for: line aerial. 9v DC external power source, tape-recorder, earphone or extension loudspeaker. Dimensions: 229x297x105mm. Weight: 2.7kg (6lb) without batteries. Price: £24.15 inc VAT.

Vega programmed for value

Practical Wireless, November 1979

www.americanradiohistory.com
TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

STereo PRE-AMplifier POWER AMPLIFIER

CPR 1 – THE ADVANCED PRE-AMPLIFIER

The best pre-amp in the U.K. The superiority of the CPR 1 is probably in the disc stage. The overload margin is a superb 60dB, this together with the high slew rate ensures clean top, even with high output cartridges tracking heavily modulated records. Common-mode distortion is eliminated by an unusual design. R.I.A.A. is accurate to ±1dB; signal to noise ratio is 70dB relative to 3mW, distortion <0.5% at 30dB overload 20kHz.

Following this stage is the flat gain/balance stage to bring tape, tuner, etc., up to power amp signal levels. Signal to noise ratio: 96dB; signal-noise ratio: 31dB; T.H.D. 20Hz—20kHz <0.01% at any level, F.E.T. muting. No controls are fitted. There is no provision for tone controls. CPR 1 size is 180 x 80 x 20mm. Supply to be ±18 volts.

MC 1 – PRE-PRE-AMPLIFIER

Suitable for nearly all moving-coil cartridges. Send for details.

MC 02 – MC 03 – ACTIVE CROSSOVERS

MC 02 – two way, MC 03 – three way. Slope 2dB/octave. Crossover points set to order within 10%.

REG 1 – POWER SUPPLY

The regulator module, REG 1 provides 15-6-1v to power the CPR 1 and MC 1. It can be used with any of our power amp supplies or our smaller transformer TR 1. The power amp kit will accommodate it.

POWER AMPLIFIERS

High performance in a small, space efficient cabinet, for the highest quality at the lowest prices. The power amp is available in five types, they all have the same specification. T.H.D. typically <0.01% any power 140W/8 ohms; T.I.D. <0.01%. Power levels: 1500W, 8 ohms 170W; 145V, 1704W; 100W, 1708W; 45V, 170W; 15V, 170W; 60W, 170W.

ACTIVE CROSSOVERS

X02 – £31.60
X03 – £33.70

POWER AMP MODULES

C00 – £19.90
C01 – £22.90
C02 – £25.90
C03 – £28.90
C04 – £31.90
C05 – £34.90
C06 – £37.90
C07 – £40.90

T00 – £19.80
T01 – £22.80
T02 – £25.80
T03 – £28.80
T04 – £31.80
T05 – £34.80
T06 – £37.80
T07 – £40.80

T08 – £18.80
T09 – £21.80
T10 – £24.80
T11 – £27.80
T12 – £30.80
T13 – £33.80
T14 – £36.80

TR0 – £19.75
TR1 – £22.75
TR2 – £25.75
TR3 – £28.75
TR4 – £31.75
TR5 – £34.75
TR6 – £37.75

TR7 – £30.70
TR8 – £33.70
TR9 – £36.70

THERMAL CUT-OFF, 10°C – £1.90
THERMAL CUT-OFF, 15°C – £1.95
THERMAL CUT-OFF, 20°C – £1.99

PRE-AMP KIT

£35.03

PRE-AMPS:

These are available in two versions. One uses standard components, and the other (the CPR) uses MOS transistors where necessary. (The CPR gives the same specifications as the CPR 1.)

CPR: £31.85
CPB: £32.07
CB: £33.19
MC3: £34.31
MC4: £35.43
MC5: £36.55
MC6: £37.67
MC7: £38.79
MC8: £39.91

Distributors:

BADGER SOUND SERVICES LTD.
46 WOOD STREET, LYTHAM ST. ANNES, LANCs FY5 1BG
"MINIC TELEFONODUKTER"
BOX 1502, S-780 12 UPPSALA, SWEDEN

Electronics
Make a job-or hobby-of it.....

The opportunities in electronics, today, and for the future are limitless - throughout the world - jobs for qualified people are available everywhere at very high salaries. Running your own business, also, in electronics - especially for the servicing of radio, T.V. and all associated equipment - can make for a varied, interesting and highly remunerative career. There will never be enough people to cope with the ever increasing amount of electronic equipment coming on the world market.

We give modern training courses in all fields of electronics - practical D.I.Y. courses - courses for City and Guild exams, the Radio Amateur Licence and also training for the new Computer Technology. We specialize only in electronics and have over 40 years of experience in the subject. - Details sent without any obligation from

British National Radio & Electronic School
P.O. Box 156, Jersey, Channel Islands

Brochure without obligation to:

NAME - ADDRESS - TELEPHONE - E.M.P.

WB1179

Practical Wireless, November 1979
Top value test equipment from TANDY

LCD DIGITAL MULTIMETER.
Low-cost hand held digital multimeter with a full 3½ digit LCD display. 0.5% basic accuracy, auto polarity operation. 10 Mohm DC input impedance.

Reading to 1999.

LOW-COST LCD MULTIMETER
A portable, compact sized multimeter with a full 3½ digit LCD display. Auto polarity operation, low battery indicator. 10 Mohm input impedance.

COMPONENTS AND PARTS

<table>
<thead>
<tr>
<th>CAT. No.</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>276-032</td>
<td>LED</td>
<td>4 for</td>
</tr>
<tr>
<td>276-033</td>
<td>LED</td>
<td>2 for</td>
</tr>
<tr>
<td>276-034</td>
<td>LED</td>
<td>2 for</td>
</tr>
<tr>
<td>276-142</td>
<td>Infra-Red Emitter Detector Pair</td>
<td>£1.37</td>
</tr>
<tr>
<td>277-1003</td>
<td>12V DC Automotive Digital Clock Module</td>
<td>£17.52</td>
</tr>
<tr>
<td>276-9110</td>
<td>6-pin edge connector for 277-1003</td>
<td>40p</td>
</tr>
<tr>
<td>276-1373</td>
<td>Power Transistor Mounting Hardware</td>
<td>50p</td>
</tr>
<tr>
<td>276-1363</td>
<td>TO-220 Heat Sink</td>
<td>60p</td>
</tr>
<tr>
<td>276-1364</td>
<td>TO-3 Heat Sink</td>
<td>81p</td>
</tr>
</tbody>
</table>

AC/DC 8 MHz OSCILLOSCOPE
A new approved 8 MHz version of last year's winner! The advance design features of this oscilloscope make it an absolute essential for industrial uses on production lines, in laboratories and schools. Ideal for radio and TV servicing, audio testing, etc.

Specifications:
- Horizontal axis: Deflection sensitivity better than 250mDIV. Vertical axis: Deflection sensitivity better than 10mDIV. 10kHz - 10MHz. Bandwidth: 0.5kHz. Input impedance: 10Mohm parallel capacitance 33pF. Time base: Sweep range: 0kHz - 10MHz (4 ranges). Synchronization: Internal (6) Size: 200 x 155 x 300 mm. Supply: 24V/240-1000 Hz. 22 - 950V.

You save because we design, manufacture, sell and service. Tandy have over 7,000 stores and dealerships worldwide. Over 2,500 products are made specifically for or by Tandy at 16 factories around the world. The quality of our products has been achieved by over 60 years of continuous technological advancement.

TANDY DEALER
Most items also available at Tandy Dealers. Look for this sign in your area.

YOU WORTHWHILE
Access, Barclaycard and Trustcard welcome.

The largest electronics retailer in the world. Offers subject to availability. Instant credit available in most cases.

OVER 170 STORES AND DEALERSHIPS NATIONWIDE.
CHORDGATE LTD. SWINDON
SILICON TRANSISTORS FULL SPEC.
TIP31B 25p comp. TIP32B 25p, 5 pairs £2.00 or 10 either type £2.00. BFY51 15p 10 for £1.20. 2N3707 gen. pur. NPN 10 for 50p. 2N3933 NPN 75V 4A TAB collector 20p 10 for £1.75. TIP34A PNP 60V 10A 40p 10 for £1.19. 25p 10 for 60p. BD525 30p comp. BD526 30p useful up to 50MHz. 5 pairs £2.50 10 either type £2.50.
Fairchild FND10 7 seg. displays 0-15° red common cathode. Pye dynamics thick film 1MHz clocking oscillator, 5 volt supply, drives 1 TTL load 60p.
368-640kHz XTL PCB MTG HCU 0-2W - 360HZ 75p.
448-9kHz XTL wire end £1.95.
Beehive trimmer 3-30PF 10 for 50p.
1-5-2.5PF min trim 5mm x 5mm HOR MTG £2.90.
Stntett 3-15PF CER trimmer 10mm dia. vert. MTG £15 10 for £1.20.
Denco transistor 1FTs interstage 1FT13 60p. Det. output 60p 470kHz.
10 MFD 6-3' tantalum caps 12p. 10 for 60p.
As above 10 MFD 16V 8p. 10 for 70p.
1 MFD 15V tantalum min caps 4mm x 1-5mm 8p. 10 for 70p.
As above 2-2 MFD 5mm x 1-5mm 10p. 10 for 70p.
6F10 stud rect. 100V P.I.V. 6A 25p. 4F for 80p.
LA4245 audio core 15p.
Mullard pot cores. All supplied with data sheet. LA1 60p. LA2 60p. LA4 70p. LA7 80p.
Waveform generator kit. PCB and all components to build 20Hz-20kHz generator with sine square and triangle outputs. 10-30V supply, complete with data sheet £9.95.
For all above supplies add 35p post and packing. Orders over £4.00 post and packing inclusive.
Printed circuits detailed below add 35p post and packing 1-3 boards. Larger quantities post and packing inclusive.
PCB contains 2 IP 10W wafer switches. 2 x 7440 I/C 2 x 7441 I/C. Various logic I/Cs IN1418s and over 50 components 70p.
PCB with GEC G424 triac control I/C 2 G2S transistors. Three 9W WW resistors and 12 other components supplied now with G424 data and application sheet £1.00.
PCB with 4 x 0-1 MFD 1000V caps 2 pre sets. 1 bridge rect. 4 IN4007 9 resistors 70p.
PCB with 2 x 741, 2N4921 and over 40 other components and multturn 20mm pot 70p.
PCB with 8 x BC107 8 x BCY70 4 pre-set pots and over 70 other comp.
Special bargain 10 Kilo inclusive of packing parcel of PCBs, resistors, capacitors, etc. etc. and items not listed above £5.50.
Avo in circuit transistor tester type TT169 complete in case with instructions for testing transistors diodes and SCRs £17.50. Excellent condition fully tested.
(Dapt B) 194 A DROVE ROAD, SWINDON, WILTS.
ALL OUR PRICES INCLUDE VAT
COMPKIT UK101 LOW COST SUPERBOARD IN KIT FORM

SOLD ONLY £10.00 DEPOSIT TO RESERVE ONE

An extended monitor on cassette will be supplied free of charge with each kit.

Simple Soldering through clear and concise instructions compiled by Dr. T. Berk, BSc Phd

NO EXTRAS NEEDED JUST HIT 'RETURN' AND GO.

Build, understand, and program your own computer for only a small outlay.

SINCLAIR PRODUCTS PFM002 £52.99

COMPENET PRODUCTS EXP601 £2.64. 120 transistor, line expansion interface socket

BATTERY ELIMINATOR Kit 100ma 48V 12-12V in a kit. Microcomputers.

ELENCO - 3 digit D.V.M. as nationally advertised.

ONLY £55 + V.A.T. + DEL

including RF Modulator & Power supply. Absolutely no extras.

ORDER FROM:-

Contour Electronics
23 HIGH STREET
STANSTEAD ABBOTTS,
WARE, HERTFORDSHIRE

MAIL ORDER DEPT.
CRESCENT RADIO LTD
1 ST. MICHAELS TERRACE, WOOD GREEN,
LONDON N22 4SJ. 01-888 3206

The Compukit UK101 has everything a one board 'desk top' computer should have.

* Uses ultra-powerful 6502 microprocessor.
* 50Hz Frame refresh for steady clear picture (U.S.A. products with 60Hz frame refresh also restorable in jitter displays).
* 48 hours by 15 lines - 1 key mapped video providing high speed access to screen display for animated games and programs.
* Extensive 256 character set which includes full upper and lower case alphanumeric and Greek symbols for mathematical constants and numerous graphic characters enabling you to form almost any shape you desire anywhere on the screen.
* BK full Microsoft Basic in ROM compatible with PET, APPLE SORCERER hence taking the headache out of programming by using simple English statements. Much faster than currently available personal computers.
* Professional 52 key keyboard in 3 colours - allowing full polled timing that all de-bugging and key decoding done in software.

Video output and UHF Highgrade modulator (BMX Bandwidth) which connects direct to the aerial socket of your T.V. Channel 36

* Standard KANSAS city tape interface providing high reliability program storage - use on any standard tape drive or cassette recorder.

* Fully stabilised 5V power supply including transformer on board.

* Standard KANSAS city tape interface providing high reliability program storage - use on any standard tape drive or cassette recorder.

* Fully stabilised 5V power supply including transformer on board.

* Professional 52 key keyboard in 3 colours - allowing full polled timing that all de-bugging and key decoding done in software.

Video output and UHF Highgrade modulator (BMX Bandwidth) which connects direct to the aerial socket of your T.V. Channel 36

* Standard KANSAS city tape interface providing high reliability program storage - use on any standard tape drive or cassette recorder.

* Fully stabilised 5V power supply including transformer on board.
SEMICONDUCTORS

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4057</td>
<td>3.95</td>
</tr>
<tr>
<td>4067</td>
<td>3.75</td>
</tr>
<tr>
<td>4077</td>
<td>3.50</td>
</tr>
<tr>
<td>4087</td>
<td>3.25</td>
</tr>
</tbody>
</table>

VALVES

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4097</td>
<td>3.00</td>
</tr>
<tr>
<td>4107</td>
<td>2.75</td>
</tr>
<tr>
<td>4117</td>
<td>2.50</td>
</tr>
<tr>
<td>4127</td>
<td>2.25</td>
</tr>
</tbody>
</table>

INTEGRATED CIRCUITS

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4137</td>
<td>2.00</td>
</tr>
<tr>
<td>4147</td>
<td>1.75</td>
</tr>
<tr>
<td>4157</td>
<td>1.50</td>
</tr>
<tr>
<td>4167</td>
<td>1.25</td>
</tr>
</tbody>
</table>

BASES CR'TS

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4177</td>
<td>1.00</td>
</tr>
<tr>
<td>4187</td>
<td>0.75</td>
</tr>
<tr>
<td>4197</td>
<td>0.50</td>
</tr>
<tr>
<td>4207</td>
<td>0.25</td>
</tr>
</tbody>
</table>

REFERENCE BOOKS

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4217</td>
<td>0.00</td>
</tr>
<tr>
<td>4227</td>
<td>0.00</td>
</tr>
<tr>
<td>4237</td>
<td>0.00</td>
</tr>
<tr>
<td>4247</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Terms of business: CWO, postage and packaging valves and semiconductors 30p per order. CR'TS £1.00. Price ruling at time of printing. All prices are subject to movement. No cash or cheques accepted. Minimum order value is 30p. No cash or credit orders. Over 10,000 types of valves, tubes and semiconductors in stock.

OPEN TO CALLERS MONDAY-FRIDAY 9am-5pm. CLOSED SATURDAY. PRICE CORRECT WHEN GOING TO PRESS.
Quality audio modules and accessories for

S450 STEREO FM TUNER
Fitted with phase lock-loop

£26.73 + 6sp p&p

Stereo 30 COMPLETE AUDIO CANAL 25 Watts RMS

£22.06 + 6sp p&p

The Stereo 30 comprises a complete stereo pre-amplifier, power amplifiers and power supply. This, with only the addition of a transformer or oil-pump will produce a high quality audio unit suitable for use with a wide range of inputs such as hi-fi, satellite, tape deck etc. Simple to install, capable of reproducing really first class results, this unit is supplied with full instructions, black front panel, knobs, main switch, fuse and fuse holder and universal mounting brackets.

AL60 25W POWER AMPLIFIER MODULE

25 Watts RMS

£5.39 + 3sp p&p

AL80 35W POWER AMPLIFIER MODULE

35 Watts RMS

£8.54 + 3sp p&p

The AL80 is similar in design to the AL60 above and is of the same high quality but provides output powers up to 35w with distortion levels below 0.1%

AL250 125W R.M.S. POWER AMPLIFIER MODULE

125 Watts RMS continuous

£20.49 + 7sp p&p

This unit, designated AL250, is a power amplifier providing an output of up to 125w RMS, into a 4 ohm load.

AL30A 10W POWER AMPLIFIER MODULE

10 Watts RMS

£4.36 + 3sp p&p

SPM80 STABILISED POWER SUPPLY

£5.06 + 3sp p&p

Designed to power two AL60s at 15 Watts per channel simultaneously. Critical Techniques include full short circuit protection.

PA100 STEREO PRE-AMPLIFIER

£18.46 + 4sp p&p

A top quality stereo pre-amplifier and tone control unit, the PA100 provides a comprehensive solution to the front end requirements of stereo amplifiers or audio units. The six push button selector switch gives a choice of inputs together with two filters for high and low frequencies.

MPA30 MAGNETIC CARTRIDGE PRE-AMPLIFIER

£3.43 + 3sp p&p

PA12 STEREO PRE-AMPLIFIER

£8.95 + 3sp p&p

The PA12 is a high quality pre-amplifier designed and recommended for use with the AL-30, AM-30, PA-30 etc. Features include volume control, bass and treble controls, complete with tape output.

PS12 POWER SUPPLY MODULE

Power supply for AL20A-30A, AL30, PS12-30 etc.

£5.13 + 3sp p&p

BP124 SIREN ALARM MODULE

American police siren, powered from any 12 volt supply into 4 or 8 ohm speaker.

£1.73 + 3sp p&p

STA15 STEREO AMPLIFIER KIT

Build your own top quality power amplifier. Has all you need to hook up and build your own stereo amplifier. 15 Watts RMS, 2 channels, no expensive parts. No soldering, no power supply, no transformers. £4.05 + 3sp p&p.

STA15 ACCESSORY KIT

A beautifully designed genuine TAKI WOOD veneer cabinet to put the professional touches to your home built amplifier. Full set of parts incl. Front & Back Panels, Knobs, Switches, Sockets, Noen etc. Ideal for the MA60. Size: 625mm x 260mm x 90mm.

£12.95 + 8sp p&p. Order No. 3921.
ADAPTORS

AC-DC enables a range of battery powered radios, recorders, calculators, etc. to run off the mains. Switches between AC, Switches for 3-9V. DC-DC for use in all cars, boats etc., with or without regulation. For nearly all recorders etc. o/n 128, £3.32, p.35p.

CROSSOVER NETWORKS

3-WAY for 8 ohm speakers up to 30 watts. Frequency: 3KHz, £0.16, P.316, p.55p.

MICROPHONES

DYNAMIC CASSETTE For use with all types of microphones. A high-output, low-noise dynamo microphone. £0.46, P.316, o/n 1901, £4.80.

OMNIDIRECTIONAL CARDIOID Supplied with a high-quality plastic capsule, for use with all types of microphones. £0.78, P.317, o/n 1908, £4.80.

UNIDIRECTIONAL CARDIOID For use with all types of microphones. £0.78, P.317, o/n 1908, £4.80.

STANDS

GOOSENECK CHROME FLEXIBLE HOLDERS Length 220mm, £0.23, P.35p. Length 460mm, £0.25, P.35p. Length 600mm, £0.27, P.35p.

FLOOR STAND Heavy chrome. £0.88, P.35p.

WINDSHIELD COVERS

o/n 1331, Medium, per pair £1.38, P.35p. o/n 1332, Large per pair £1.50, P.35p.

AUDIO LEADS

0F.08, P.23. 90° connectors for home recording, stereo equipment, etc. £0.08, P.23.

HEADPHONES

A high-quality headphone with balanced volume controls. Stereo or Mono switch. Sensitivity, 80 mV at 20.000Hz. £0.08, P.20.

HI-FI ACCESSORIES

HÖRER KLEIN The very latest in automatic record cleaning. £0.08, P.20.

GROOV STAT The 8th Grade Statistician reduces the static charge on records and other plastic surfaces. £0.08, P.20.

Cassette Tape Editing Kit Enables cassette records to be edited and copied easily, quickly, economically. £0.08, P.20.

METERS

Miniature Balance & Tuning Meter

<table>
<thead>
<tr>
<th>Dimension</th>
<th>£1.38</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 x 24 x 36mm</td>
<td>o/n 1319, £2.30, p.35p</td>
</tr>
</tbody>
</table>

METERS

Balance and Tuning Meter

<table>
<thead>
<tr>
<th>Dimension</th>
<th>£1.38</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 x 2 x 24mm</td>
<td>o/n 1319, £2.30, p.35p</td>
</tr>
</tbody>
</table>

MINIATURE LEVEL METER

<table>
<thead>
<tr>
<th>Dimension</th>
<th>£1.38</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 x 22 x 36mm</td>
<td>o/n 1319, £2.30, p.35p</td>
</tr>
</tbody>
</table>

ADAPTORS

DC-DC for use in all cars, boats etc., with or without regulation. For nearly all recorders etc. o/n 128, £3.32, p.35p.

CROSSOVER NETWORKS

3-WAY for 8 ohm speakers up to 30 watts. Frequency: 3KHz, £0.16, P.316, p.55p.

MICROPHONES

DYNAMIC CASSETTE For use with all types of microphones. A high-output, low-noise dynamo microphone. £0.46, P.316, o/n 1901, £4.80.

OMNIDIRECTIONAL CARDIOID Supplied with a high-quality plastic capsule, for use with all types of microphones. £0.78, P.317, o/n 1908, £4.80.

UNIDIRECTIONAL CARDIOID For use with all types of microphones. £0.78, P.317, o/n 1908, £4.80.

STANDS

GOOSENECK CHROME FLEXIBLE HOLDERS Length 220mm, £0.23, P.35p. Length 460mm, £0.25, P.35p. Length 600mm, £0.27, P.35p.

FLOOR STAND Heavy chrome. £0.88, P.35p.

WINDSHIELD COVERS

o/n 1331, Medium, per pair £1.38, P.35p. o/n 1332, Large per pair £1.50, P.35p.

AUDIO LEADS

0F.08, P.23. 90° connectors for home recording, stereo equipment, etc. £0.08, P.23.

HEADPHONES

A high-quality headphone with balanced volume controls. Stereo or Mono switch. Sensitivity, 80 mV at 20.000Hz. £0.08, P.20.

HI-FI ACCESSORIES

HÖRER KLEIN The very latest in automatic record cleaning. £0.08, P.20.

GROOV STAT The 8th Grade Statistician reduces the static charge on records and other plastic surfaces. £0.08, P.20.

Cassette Tape Editing Kit Enables cassette records to be edited and copied easily, quickly, economically. £0.08, P.20.

METERS

Miniature Balance & Tuning Meter

<table>
<thead>
<tr>
<th>Dimension</th>
<th>£1.38</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 x 24 x 36mm</td>
<td>o/n 1319, £2.30, p.35p</td>
</tr>
</tbody>
</table>

METERS

Balance and Tuning Meter

<table>
<thead>
<tr>
<th>Dimension</th>
<th>£1.38</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 x 2 x 24mm</td>
<td>o/n 1319, £2.30, p.35p</td>
</tr>
</tbody>
</table>

MINIATURE LEVEL METER

<table>
<thead>
<tr>
<th>Dimension</th>
<th>£1.38</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 x 22 x 36mm</td>
<td>o/n 1319, £2.30, p.35p</td>
</tr>
</tbody>
</table>
The Penalty of Progress

With any fast-moving, technologically-based subject, progress will always leave a trail of obsolescence. Wireless and electronics, are no exceptions. How often have you decided to build a project described in one of the magazines, only to find that the following month another magazine comes out with a similar project but using the latest technology and having a performance several times better than the one you are building.

Often authors will submit project designs which are accepted for publication several months into the future. In spite of all our efforts to ensure that supplies of the components used will be available for the foreseeable future, it often happens that manufacturers of a key component decide to withdraw the device from sale, leaving the poor home constructor high and dry.

In most instances, it is possible to find an alternative device to replace the obsolete one, hopefully without any major changes to the circuits, but this is not always so. In any case, often the first hint of trouble we get is a string of letters from irate constructors demanding to know where they can obtain the offending item.

In the course of a year we receive many letters from readers who have decided to build projects featured in Practical Wireless many years ago and then find that they can no longer obtain a key component. Just what makes readers decide on out-of-date designs is a mystery. Perhaps they have some of the parts already in their junk box. The fact remains, however, that with the changing techniques used in our hobby, the life-span of a design such as a hi-fi amplifier or a tuner can be measured in months rather than years. Look at the output stages of amplifiers. Not so long ago they used interstage and output transformers and every component stockist worth his salt kept a large stock of suitable transformers. Now no designer would dream of using a transformer in the audio path and hence, with no demand for them, dealers no longer stock them and manufacturers no longer make them.

Already many transistors have fallen by the wayside and have become difficult to obtain, and recently integrated circuits such as the LM373 have been declared obsolete by the only manufacturer.

The message should by now be clear—if you must look through old issues, and are tempted by any projects in them, please check first that you can obtain all the components. Especially check for the use of audio frequency transformers or germanium transistors, as these are likely to be your downfall.

Do not, however, be put off building the latest super project featured in your favourite magazines just because next month may see it rendered obsolete by an even more state-of-the art design. If we all did that, then progress would surely cease.

Fred Judd—PW Contributor

A regular contributor to Practical Wireless for nearly 20 years F. C. (Fred) Judd has spent a lifetime in radio and electronics. Was in the RAF 60 Group (Radar) during the war and for many years after in marine radar research and development followed by some 25 years as a technical journalist. He is retired now and lives in Norfolk but for the past 7 years was Technical Editor to Practical Hi-Fi magazine (an IPC publication).

He has written numerous books concerned with radio, audio and electronics and thousands of articles published in the UK and many other countries. As a radio amateur first licensed in 1934 (A.A. call 2BCX) and Class A licensed since 1946 as G2BCX, the major interest has been transmitting aerials which has resulted in a number of original designs for the h.f. bands as well as the now popular "Slim Jim" and others for v.h.f. and u.h.f. operation. His latest book, on aerials for 2m, is soon to be published by Newnes-Butterworths.
There are two forms of speech processing, frequency and amplitude. The frequency limits are already established, with the audio bandwidth covering 300–2700Hz. Any further reduction in bandwidth would tend to reduce quality, and would make the transmitter respond better to one voice rather than another. Nevertheless, bandwidth limitation to 2400Hz benefits all modes of transmission, and should be incorporated in at least a simple form.

FREQUENCY PROCESSING

Combinations of high-pass and low-pass filters should be used to restrict the audio bandwidth, to improve the audio signal-noise ratio by reduction of the background noise. The transmitter will also be concentrating more of its power into information-carrying sidebands, so improving its "talk power" and communications effectiveness.

Audio bandwidth limitation of s.s.b. transmissions is not so necessary, due to the passband characteristics of the sideband filter. Hence, frequency response shaping is mainly applicable to amplitude-modulated, double-sideband full carrier or suppressed carrier, and frequency-modulated systems.

Frequency processing was rarely used on the old amplitude-modulated transmitters, but most frequency-modulated transmitters built today incorporate it. The a.m. signals would have benefited if some form of audio bandwidth tailoring had been included.

AMPLITUDE PROCESSING

Audio Clipping

Amplitude limiting of audio dynamic range for f.m. transmitters is required in order to limit the overall deviation. This restricts the bandwidth of the transmitted signal and ensures that the receive discriminator does not run into distortion. No increase in output power occurs due to the use of this clipping on f.m.

In an f.m. system, the frequency of the carrier is changed in proportion to the amplitude of the modulating signal, with the positive half-cycle of audio producing a corresponding increase in carrier frequency and vice-versa. If the audio wave is larger at one frequency rather than another, a greater deviation is produced, regardless of the frequency of the modulating frequency. Now if the audio is clipped, then the rate of change of carrier frequency is dependent mainly on the rate of change of audio frequency. This then is the most common form of speech processing.

Amplitude limiting by the use of clipping diodes produces a number of audio in-band harmonics. These waste transmitter output power in unwanted sideband signals but don't detract from the apparent quality of the received signal, and the clipping does provide a measure of linearity in the relationship between carrier deviation and modulating frequency. One important factor of this form of limiting is that it allows a reasonable amount of deviation for high audio frequencies which carry much of the intelligibility.

If we look at the spectrum of normal speech, we find that the largest amplitude signals occur between 100 and 800Hz. Tests have been done on reduced-bandwidth audio, and have found that most intelligence is carried in the band between 800 and 1200Hz. The graph Fig. 1 shows that the amplitude of speech components in this region may be as little as one third (−10dB) related to the lower frequency audio. The difference in amplitude is known as the dynamic range and any reduction in this will increase the "talk power" and hence the communication effectiveness. This is why most f.m. transmissions above the noise appear so easy to copy, though in fact the spectral purity of the speech is not very good.

The modulator section of most commercial f.m. transmitters contains an amplifier, followed by back-to-back clipping diodes, and then a low-pass filter network to limit the speech and intermodulation products to about 3kHz. The intermodulation products are formed in the clipper by the mixture of individual speech tones, as well as harmonics of these and the original tones. For example, assume we

*Proprietor, Spectrum Communications

Practical Wireless, November 1979

Fig. 1: Spectrum of normal speech, showing greatest amplitude in the range 100 to 800Hz
generate two tones such as 700Hz and 1200Hz. Now the clipper will produce harmonics of these at 1400Hz, 2100Hz, 2800Hz, etc., and at 2400Hz, 3600Hz, etc., also the sum and difference of the original tones, and harmonics of these, viz:

\[
1200 - 700 = 500 \quad \text{First order i.p.} \\
1000 \quad \text{2nd order} \\
1500 \quad \text{3rd order} \\
2000 \quad \text{4th order} \\
2500 \quad \text{5th order}
\]

and sum \(1200 + 700 = 1900\), plus \(2 \times 1900\), etc.

If we now compare the original audio spectrum with the one following clipping we get a nasty looking result, as shown in Fig. 2. All the above signals occur within the required audio passband and cannot now be removed. The transmitted signal will divide its power proportionately between all of these in the form of sidebands. Power put into multiple sidebands does not produce as effective a signal as one where power is concentrated into few sidebands. These intermodulation products within the voice passband are changing in time with the main speech tones, and hence help to give the speech a fuller sound at the receiver, but only where the received signal is well above the noise and fully limiting.

Phase modulation systems rely on both the frequency and amplitude of the modulating signal, so after clipping we now modify the amplitude proportional to audio frequency in a manner which makes the receiver resolve the signal the same as normal f.m. This amplitude tailoring is de-emphasis and can be produced by a resistor and capacitor after the low-pass filter to give \(6\)dB/octave roll-off above 700Hz. We have now covered all the requirements for a good-quality phase modulator as used in many of the popular 2m f.m. transceivers. The system schematic is shown in Fig. 3.

Frequency-modulated transmitters may be fitted with a pre-emphasis network with a rising characteristic from 1kHz up to the roll-off at 3kHz. This pre-emphasis produces a much brighter sounding audio from a receiver fitted with the corresponding de-emphasis network. A modulator of this type would also improve the intelligibility of a conventional a.m. transmitter over short, strong-signal paths, and there may be an advantage in maintaining a high percentage of modulation, although the extra in-band spuri would waste much power and would drastically reduce the range of the transmission.

Audio Compression

In order to overcome the audio in-band problem which occurs when clipping is used, a self-adjusting gain-controlled audio amplifier can be used to compress the dynamic range of the speech. Such a system can be used on its own to raise the average percentage of modulation for a.m. transmitters, and can be used to precede the clipper in an f.m. transmitter so that a constant clipping level is maintained. The basic system requires an amplifier followed by a rectifier, and a voltage-controlled attenuator such as an f.e.t. across the input of the amplifier, see Fig. 4.

To reduce the dynamic range of the speech without distortion, the control loop in a compressor must act quickly enough to adjust the gain continuously over each syllable. The majority of compressor circuits are designed with fairly long time-constants and can only react fast enough to adjust the level at word rate. This is useful to ensure that overmodulation doesn’t occur, and that a fairly constant peak amplitude is maintained regardless of distance from the microphone.

Fig. 4: Using a field-effect transistor as a voltage controlled attenuator in an audio compressor

Fig. 5: An audio compressor system with dual a.g.c. time constants, using Plessey SL600 series devices

Practical Wireless, November 1979
Ideally then, a compressor unit should have a dual a.g.c. system, so that the average level is set with a long time-constant loop and the speech amplitude adjusted with a short time-constant loop. Basic response times are fast attack, slow decay on the slow loop, say 200ms attack and 1 second decay, and 5–20ms attack with 200ms decay for the fast response. The easiest method of achieving such a system is to use the Plessey SL630 and SL620, and a suitable practical circuit is shown in Fig. 5. This arrangement can be used to improve the communications effectiveness of all modes of speech transmissions.

A graphical comparison of clipped and compressed speech is shown in Fig. 6, and apart from the in-band spurii generated by clipping, constant amplitude audio is still as recognisable and as easy to read as unprocessed speech.

The old amplitude-modulated systems suffered much because 100 per cent modulation occurred only sporadically, and the average level of modulation was about 30 per cent. Most long-haul contacts usually existed only by the operator shouting into the microphone, to raise the average level of modulation sufficiently to give solid copy at the other end. This also had the effect of splattering the signal all over the band locally, so that neighbouring amateurs couldn’t hear the distant stations. A good compressor would have given the solid copy without the

*continued on page 47

Fig. 6: A graphical comparison of Normal (unprocessed), Clipped and Compressed speech

Fig. 7 (above): Block diagram of the Radio Liberty r.f. speech clipper

Fig. 8 (left): Part of the circuit diagram of the K6JYO r.f. speech clipper, designed for use with the Collins S-Line transmitter

Fig. 9: Block diagram of the author’s transmitter incorporating r.f. speech processing

Practical Wireless, November 1979
RAE Reprint

A reprint of the complete PW series—So You Want to Pass the RAE?—including details of the new examination format introduced in 1979, is now available.

Please note that the prices for the RSGB publications mentioned in the reprint have recently been changed. You should check with the RSGB for the latest information.

Order your copy by completing and returning the coupon on page 54.

RAE Courses

We have details of two RAE courses whose enrolment dates will be passed by the time this issue is published. However, it may be possible for readers living in the area, to join the course after it has started.

The courses are: Bradford, West Yorkshire, RAE course, tutor Douglas Parker G4DUZ and Morse code course, tutor David Redman G4IDR, to be held at the Joseph Priestly Institute of Further Education.

Manchester, RAE and Morse code, tutor A. B. Langfield G3IOA, to be held at Openshaw Technical College, Whitworth Street, Openshaw, Manchester 11.

Exhibitions

"Internecon UK 1979", to be held between 16 and 18 October at The Metropole, Brighton, Sussex.

"International Business Show", to be held between 23 October and 1 November at The National Exhibition Centre, Birmingham.

Swansea Goes Stereo

The full stereo programme service of Radio 1/2 and Radio 3 from the BBC's new v.h.f. transmitters at Kilvey Hill, Swansea, started on Friday, 27 July. These programmes will be available to about 90 000 listeners in an area which includes: Swansea, Neath, Port Talbot, Porthcawl, Clydach, Pontardawe, Pontardulais, Gorseinon, Llanelli and Burry Port.

Slant polarisation is being used, to benefit those with v.h.f. portable or v.h.f. car radios. It is recommended, however, that permanent domestic aerials should be fitted with the rods horizontal. Aerials already used to receive Radio Cymru (which has been transmitted from Kilvey Hill since May 1978) should be suitable for receiving the new service also.

Radio 1/2 will be on 89-5MHz with Radio 3 on 91-7MHz and Radio Cymru on 93-9MHz, in the v.h.f. (f.m.) band.

Listeners needing technical advice or information about the new service are invited to contact: Peter Fear, Engineering Information Officer, BBC, Broadcasting House, Llandaff, Cardiff CP5 2YQ. Tel: (0222) 564888.

ME Centre

The National Microprocessor and Electronics Centre, which opened on Tuesday, September 25, featured oscilloscopes as its first three-day "mini-exhibition".

Visitors to the centre will be able to see a wide selection of oscilloscopes—all of which are available within the UK market—collect relevant data, talk to the makers and see the centre's permanent electronic products exhibition.

The ME Centre, as it is known, is situated within the London World Trade Centre, close to the Tower of London. It will be open five days per week throughout the year and, at this stage, it is expected that a three-day "mini-exhibition" will be held every other week. Admission to the centre will be free.

Alongside the permanent and "mini" displays is to be a data bank which will contain details and data on electronic products available within the UK. As this library expands to become fully comprehensive it will be committed to microfilm and visitors will then be able to take away with them Xerox copies of manufacturers' data in a given product area.

The Government, through the Department of Industry, has offered its full support and it is intended that the DoI will encourage overseas buyers and interested trade delegations to call first at the centre to assess the industry at large before selecting companies to contact or visit.

For more information contact: National Microprocessor and Electronics Centre, London World Trade Centre, London E1 9AA. Tel: 01-488 2400.

IBA Sales Service

The Independent Broadcasting Authority have appointed Conrath Consultant Services Ltd. as exclusive engineering marketing consultants and advisers from 1 August 1979.

The firm will be responsible for the negotiation of marketing and know-how agreements covering those broadcast equipment designs, design rights and prototypes which the IBA is willing to sell or licence.

Practical Wireless, November 1979
Club News

A new electronics club for young people has recently been started at Margate, Kent, and is called "Thanet Electronics Club".

The organiser, Dr Ken Smith of the University of Kent at Canterbury, views the club as an ideal way of introducing boys and girls to electronics.

A welcome is extended to any young people who may be interested in joining and to more experienced readers who may be able to offer assistance in some capacity.

Thanet Electronics Club meets at 7.30pm on Thursday evenings, at The Quarter Deck, Margate, Kent.

Mullard Data Book

Readers may be interested to know that the 1979/1980 edition of the Mullard Data Book is now available.

As usual, it contains fully-updated abridged data on the company's range of valves, TV picture tubes, semiconductor, integrated circuits, capacitors, resistors, modules, assemblies and loudspeakers used in the consumer electronics industry.

Each product section is separated from the others and is printed on different coloured paper for quick reference. Additional sections cover lists of Mullard technical publications and names and addresses of component stockists.

The book is available at £1 (cash with order, please) from: The Technical Press Ltd., Freeland, Oxford OX7 2AP.

Technical Data

RCA Solid State has produced a new technical manual, No. CMS 272, covering characteristics and applications of the company's range of COS/MOS integrated circuits. Included in the manual are characteristics of B-Series COS/MOS circuits, information on designing with COS/MOS circuitry, useful circuits and applications, details on custom large-scale integrated circuits, and an introduction to the RCA COSMAC microprocessor and how it interfaces with memory and input/output circuitry.

Cost of the RCA COS/MOS technical manual in the UK is £2.80 plus VAT and is available from: RCA Solid State—Europe, Sunbury-on-Thames, Middlesex TW16 7HW. Tel: (09327) 85511.

Currently available from Mullard Ltd. is a wallchart entitled "Mullard Multi-text".

Measuring 59 x 84cm this new multi-coloured chart gives comprehensive information on the company's wide range of integrated circuits for television text display systems.

Requests for copies should be addressed to: Department CIH, Mullard Ltd., Mullard House, Torrington Place, London WC1E 7HD.

Business News

Continental Specialities Corporation (UK) Ltd. has appointed UK instrument distributor Electroplan Ltd. as a master distributor for selected items from the CSC ranges of prototyping aids and low-cost logic test equipment.

The latest CSC catalogue is now available free, from: CSC (UK) Ltd., Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. Tel: (0799) 21682.

Swift-Sasco, the recently formed electronic component distribution organisation, has signed an agreement with Sprague, one of the world's largest manufacturers of electronic components, to stock and distribute an extensive range of Sprague capacitors. Products covered by the agreement include solid and wet tantalum capacitor types (including ranges which meet BS9000 specifications), aluminium electrolytic capacitors, and multilayer ceramic devices. For the wet-tantalum devices, Swift-Sasco is the sole UK stockist.

A catalogue is available, for details contact: Swift-Sasco Ltd., P.O. Box 2000, Gatwick Road, Crawley, Sussex, RH10 2RU. Tel: (0293) 28700.

New IEEETE President

Mr J. M. Ferguson, CBE, FEng, FIEE, FIEEE, FITE, has succeeded Mr J. H. Merriman, CBE, as President of the Institution of Electrical and Electronics Technicians (IEETE).

Formerly, Director of Engineering, GEC Power Engineering Ltd., Mr Ferguson is now an Engineering Consultant; he is a past President of the Institution of Electrical Engineers.

IEETE, 2 Savoy Hill, London WC2R OBS. Tel: 01-836 3357.
The conventional integrated circuit operational amplifier is an extremely versatile electronic component, but one of its limitations is that the maximum current it can deliver is typically limited to little more than 10mA. The Thomson-CSF TDB0791 device is rather similar to the well-known 741, except that it can deliver output currents of up to 1-25A peak, 1A mean. It provides a high output-power capability, and is intended for such applications as audio power amplifiers, servo amplifiers and regulated power supplies.

The TDB0791 is thermally and short-circuit protected. If the device is operated in such a way that the internal silicon chip becomes too hot for safety, the output current is automatically reduced so that the power dissipation is kept to a safe value. However, it is never wise to operate a thermally-protected device in such a way that the chip becomes so hot that the thermal protection circuit operates for more than a short time, as the high temperature tends to cause premature failure. The internal short-circuit protection will limit the maximum output current from the device to a safe value and provides protection if the output is accidentally shorted.

The Case

The TDB0791 is available in various packages. The TDB0791-SP is encapsulated in the rather unusual type of case shown in Fig. 1. This is an 11-pin single-in-line case, since there are 11 pins in a straight line. (Dual-in-line devices are much more common.) The device is fastened to a metal bracket which can be bolted to a metal heat sink so as to keep the temperature of the chip sufficiently low.

The size of the heat sink required depends on the amount of power being dissipated in the device, but will increase with the output current and the applied voltage. The maximum internal dissipation is 15W and the maximum operating voltage ±15V; damage may occur at applied potentials exceeding ±18V.

Connections

The connections of the TDB0791-SP are shown in Fig. 1 and a circuit in Fig. 2. It can be seen that the device has the normal non-inverting and inverting inputs; an optional potentiometer may be used for adjusting the mean output voltage so that it is exactly half-way between the +15V and −15V supplies. The power supply decoupling capacitors and the frequency compensation capacitors must have short leads and must be connected close to the device pins.

No negative feedback is shown in the Fig. 2 circuit, but normally negative feedback will be used to control the gain and response. The required value of the compensation capacitor Cc decreases with higher gain as shown in Fig. 2. The resistor Rs is the current sensing resistor, which determines the current which can flow before the current limiting action occurs. If Rs is 0.6 ohm, a current of 1A will produce a voltage drop of 0.6V across this resistor. This is adequate to start an internal transistor conducting so that the output current is limited. As shown in Fig. 2, the output current is limited at lower values as the value of Rs is increased. Thus the value of Rs may be chosen so that the required maximum output current is obtained, but it should not be less than 0.6 ohm, since the device cannot reliably deliver over 1A. The short-circuit current falls with increasing case temperature.

Practical Wireless, November 1979

www.americanradiohistory.com
Characteristics

The input resistance of the TDB0791 is typically 1 megohm (minimum value 300 kilohm). The gain without feedback is about 20000 at zero frequency, but falls with frequency to about 150 at 10kHz when C_c is 5pF. The variation of the gain with frequency when negative feedback is applied is shown in Fig. 3. It can be seen that a voltage gain of 20dB (10 times) can be obtained with a fairly level frequency response up to more than 100kHz, whereas with a gain of 40dB (100 times) the gain commences to fall at frequencies below 100kHz. A gain of 60dB (1000 times) results in a constant gain only up to about 3kHz. The increase of the output resistance with frequency is shown in Fig. 4 for the case where the output current is greater than zero and for the case where it is less than zero (that is, the current flows into the output pin).

The maximum output voltage swing which can be obtained at various output currents with different values of R_{sc} is shown in Fig. 5. It can be seen that at small output currents a swing of $\pm 14V$ (a total of 28V) can be obtained. The quiescent supply current does not exceed 25mA at 25°C.

continued on page 39
Optical fibre transmission is in its comparative infancy—yet its future within the telecommunications system of tomorrow seems assured. The conception of optical fibres is only fifteen years old—and the Post Office's Research and Development Department were quick to seize on the idea that transmission systems using glass fibres to transmit short pulses of light with little distortion and attenuation over long, long distances was feasible.

While most exchange equipment is costly, the largest single expense in any telephone system is the miles of telephone cable. The backbone of today's telephone system and its trunk routes is the coaxial cable, which first came into general use in 1936. While this type of cable has given good service it has two disadvantages—it consumes valuable metallic resources and is relatively "lossy", so that signals need to be boosted by regularly spaced repeaters. This prompted Post Office researchers to look for new and cheaper ways of sending messages, very much in the way it researched satellite communications. One solution lies in optical fibres—hair-thin strands of glass which can carry conversations in the form of light and are light-weight, easy to install, hardwearing, and have so little loss that very few, if any, repeaters are required.

Already it is possible for a single pair of glass fibres to carry 4000 telephone conversations. At present ten or twenty such fibres are being included in a cable that measures only 7mm diameter. Many more fibres could be incorporated if required, without substantially increasing the cable size, so that 100,000 two-way speech circuits could be carried in a cable the thickness of a finger. The same cable could equally well transmit 200 television channels.

Using Optical Fibres

Fibre optics work like this. At either end of a long hair-thin fibre are connected two terminals, one a transmitter, the other a receiver. The role of the transmitter is to convert electrical signals—that is normal telephone calls—into pulses of light. This light then travels through the glass fibre and into the receiving terminal.

Each fibre consists of a very fine glass rod contained within a glass tube and fused together, with the centre core made of slightly denser glass than the outer. The inner core acts as a light pipe. By shooting a beam of light along this central core the light is trapped by the outer cladding and rebounded back to a point further along the central core—a process known as total internal reflection. This causes a travelling pulse of light to zig-zag down the optic fibre at high speed, until it feeds into the receiving terminal. At the receiving terminal the light is then converted back into conventional electrical signals, capable of being absorbed into the telephone network.
Britain’s Best Breadboard
Buy at Breadboard ‘79

All over Britain, hobbyists are
discovering Britain’s Best
Breadboard Buys. At the
London Breadboard exhibition
‘79 on Stand Nos. F1, F2 and
G1, G2, CSC will be exhibiting
their full range of breadboards.

Here is your chance to obtain
a special ticket for Breadboard ‘79
worth £1.00 absolutely FREE.

Cut out the coupon below and take it
along to one of our listed dealers, and make
a purchase of any of our breadboards and
receive your special FREE ticket — see you at
Breadboard ‘79.

Take the coupon to any of these main dealers:

LONDON
Rasta Electronics Ltd., 279-281 King Street, Hammersmith,
London W6
Cubeane Ltd., Audio Electronics, 301 Edgware Road,
London W2 1BN
Techromatic Ltd., 17 Burnley Road, London NW10 1ED
Precision Instrument Labs., Instrument House,
727 Old Kent Road, London SE16
MANCHESTER
Shuken Supply Co., 53 Shudhill, Manchester M4 4AW
BUCKINGHAMSHIRE
West Hyde Development, Unit 9, Park Street Industrial Estate,
Aylesbury, Bucks HP12 1ET
Best Electronics (Slough) Ltd., Unit 4 Farnburn Ave., Slough,
Bucks SL1 4KU
KENT
Lawtronics, 13a High Street, Edenbridge, Kent TN8 5AX
NEWCASTLE
Aiken Bros., 35 High Bridge, Newcastle upon Tyne
SCOTLAND
Marshall, 88 West Regent Street, Glasgow G2
F Brown & Co., 46 George IV Bridge, Edinburgh EH1 1ES
LEEDS
Leeds Amateur Radio Club, Cookridge Street, Leeds 1
HERTFORDSHIRE
B. R. PAK, 3 Baldock Street, Ware, Herts.

CONTINENTAL SPECIALITIES CORPORATION

EUROPE, AFRICA, MID-EAST: CSC UK LTD.
Shire Hill Industrial Estate Units 1 and 2
Saffron Walden, Essex CB11 3AQ
Telephone: SAFFRON WALDEN 607951 21682
TLX B17477

FREE ENTRY TICKET
WORTH £1.00
WITH EVERY PURCHASE

The Experimentor System
4 ways to order Experimentor Systems
1. EXP 300PC which includes one item. A matchboard pre-drilled PCB — £1.32
2. EXP 302 which includes three items. Three 50-sheet scratchboard workpads — £1.66
3. EXP 303 which includes three items. Two matchboards and an EXP 300 solderless
broadboard — £2.60
4. EXP 304 which includes four items. Two matchboards and EXP 300 breadboard and a
scratchboard workpad — £3.30

The above prices do not include GB and 15% VAT

This coupon entitles the holder to a free ticket worth £1.00 to Breadboard ‘79, with the purchase of any
listed breadboards

<table>
<thead>
<tr>
<th>EXP 325</th>
<th>Only Req'd.</th>
<th>EXP 360</th>
<th>Only Req'd.</th>
<th>EXP 4B</th>
<th>Only Req'd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>£1.60</td>
<td></td>
<td>£3.15</td>
<td></td>
<td>£1.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXP 300</th>
<th>Only Req'd.</th>
<th>EXP 302</th>
<th>Only Req'd.</th>
<th>EXP 303</th>
<th>Only Req'd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>£1.72</td>
<td></td>
<td>£3.30</td>
<td></td>
<td>£1.18</td>
<td></td>
</tr>
</tbody>
</table>

If no dealer in your area contact CSC direct.
Continental Specialties Corporation, (U.K.) Limited. Dept 6cc.,
Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex

Practical Wireless, November 1979
For the radio amateur or short wave listener, an attractive card incorporating a world map and the initials of your favourite radio magazine, printed in blue and green.

Your callsign, name and address will be overprinted in black, at the top of the card. The reverse of the card will have the usual form for reception report, etc., and address space.

The cards measure 102 x 152mm (4 x 6in) and are available in the following quantities:

- 250 off—£6.25
- 500 off—£10.00
- 1000 off—£16.00

These prices include VAT and packing and postage to any United Kingdom address. Please send your order with a cheque or postal order for the appropriate amount: Practical Wireless, Westover House, West Quay Road, Poole, Dorset BH15 1JG, giving full details on the coupon provided, or on plain paper if you do not want to cut your copy of Practical Wireless. Please make your remittance payable to IPC Magazines Ltd.

QSL CARDS

YOUR CALL SIGN, NAME & ADDRESS PRINTED HERE

PRACTICAL WIRELESS

Britain's leading radio magazine. Read all over the world.

(Sample sent on receipt of s.a.e.)

SHEER SIMPLICITY

Optical Fibre Communications

Post Office researcher, David Heatley shows how the principle of optical fibre communication works. A beam of light zig-zags down the central core of a hair-thin glass rod

Photo courtesy the Post Office

The Material

In preparing a fibre, great care has to be taken to ensure that the glass is of the purest quality. If it is not, then the light beams pulsing through it will be deflected by alien particles. So pure must the glass in the fibre be, that if formed into a window one kilometre thick, it would be as transparent as a few millimetres of ordinary glass. And it only takes ten grams of pure glass to make one kilometre of fibre.

The breakthrough in optical fibre communication came in 1966 with a paper published by two researchers at Standard Telecommunications Laboratories Ltd. Then, the optical fibres theory was simply that—a theory. It had to be presumed that the chemical purity of glass could be improved by a factor of about one thousand times. And it had to be presumed that solid state lasers, light emitting diodes and optical detecting devices could be developed and that simple fibre termination would be feasible.

At this time, transmission losses in optical fibres were around the 2000dB per kilometre region, and calculations indicated that losses must be reduced to nearer 20dB per kilometre if transmission systems were to be viable. Not only has this target been achieved—it has been exceeded by a considerable margin. Fibre losses well below 1dB/km have already been recorded. With the success of feasibility trials that have been under way since 1977, the Post Office is now ready to go ahead with the world's most comprehensive optical fibre network.

The Future

Estimated to cost about £8m it will involve 15 routes in England, Scotland and Wales, will use 3500km of fibre, and will start carrying telephone calls in September 1980. The network will give the Post Office experience of optical fibre systems at all stages of installation, commissioning and operation—and will bring communications of the twenty-first century one step nearer reality.

Practical Wireless, November 1979
New Cases

Perancea Ltd. announce a new range of instrument cases. The “Pack-Flat” cases, as their name implies, arrive in flat packs for easy storage and can be assembled in seconds. A major feature is the separate aluminium chassis on which the components can be mounted, avoiding unsightly fastenings on the exterior of the case.

Made from “Colorcoat”, a textured p.v.c. coated steel, they are supplied in a black glazed finish with a white front and rear panels. Available in eight stock sizes from 180 x 152 x 80mm up to 307 x 152 x 156mm.

For details of availability in your area, write to: Perancea Ltd., 131 First Avenue, Bush Hill Park, Enfield, Middlesex.

Transistor Tester

Litesold are introducing a new, low priced transistor tester.

The neat and compactly designed instrument will identify and test the condition of the pn junctions of most semiconductor devices, the exceptions being f.e.t.s or germanium transistors with a Vbe less than 2V, and uses two separate and self-identifying probes.

The coloured l.e.d.s indicate which probe is applied to the cathode side of any pn junction and whether the junction is operational, open-circuit or short-circuit. The tester, therefore, indicates whether the transistors are of pnp or npn type and identifies the leads.

The transistor tester measures approximately 120 x 60 x 20mm and is powered by an internal PP3 battery.

Priced at £23.90 which includes P&P and VAT, the tester is available from: Light Soldering Developments Ltd., 97–99 Gloucester Road, Croydon, Surrey. Tel: 01-689 0574.

Antennae

Panorama, the London-based antenna specialists have recently introduced two new ranges of antennae for the amateur.

The new PVX series of helical antennae for portables, offer modern styling and economic pricing without sacrificing any of the features of flexibility, ruggedness and performance. The PVX has a parallel copper-plated helical element sealed into a smooth sided flexible covering by moulding over the termination with nylon and by bonding on the top cap after the antenna has been trimmed to length. Any resonant frequency within the range 27–5000MHz can be supplied and a large variety of terminations are available. The PVX has a nominal impedance of 50 ohms and a typical bandwidth of 10% with a power rating of 25 watts.

Panorama have also introduced a new modular series to their extensive range of vehicle whips and mounting bases for v.h.f. and u.h.f. radio communications. The seven modular units consist of quarter-wave whip, u.h.f. gain whip, v.h.f. high band gain whip, hinge joint, quick-fit boot mount, general purpose mounting and low-profile mounting for v.h.f. use. The whips are stainless steel with moulded-on tip. Exposed metal parts are chrome-plated brass and all mouldings are in dark grey nylon. Coils are moulded over to give mechanical strength, weather protection and a smart appearance.

For literature and details of availability and price contact: Panorama Antennas Ltd., 73 Wadham Road, London SW15 2LS. Tel: 01-874 5300 and 01-870 5192.
TELEVISION INTERFERENCE MANUAL (2nd Edition) by B. Priestley
Published by the Radio Society of Great Britain
80 pages, 210 x 148mm. Price £1.60 including p&p
A readable and illuminating introduction to solving both the social and technical aspects of this most challenging problem for radio amateurs. The book includes a wealth of reference material.

LEARNABOUT . . . MAKING A TRANSISTOR RADIO by G. C. Dobbs
Published by Ladybird Books
52 pages, 172 x 114mm. Price 30p
Though this particular book has been around for a few years now, we mention it here in response to requests from our readers for a book describing the most basic of constructional projects for a radio receiver. A crystal set, followed by sets using one, two and three transistors are included.

INTEGRATED CIRCUITS—How to Make them Work by R. H. Warring
Published by Lutterworth Press
133 pages, 215 x 132mm. Price £3.95 (hard-backed)
This book provides an introduction to integrated circuits and how to use them in practical circuits. The types of i.c.s covered are: Arrays; Op. Amps; Audio Amplifiers; Complete Radio Circuits; Multivibrators; Voltage Regulators; Electric Motor Speed Controllers; Active Filters; Digital Circuits; Electronic Organs; Miscellaneous. A total of 84 different working circuits are given, providing the experimenter with much food for thought.

LEARNABOUT . . . SIMPLE ELECTRONICS by Rev George C. Dobbs
Published by Ladybird Books
52 pages, 172 x 114mm. Price 30p
Just the book for a youngster who is always worrying you to build electronic gadgets for him or her, or for one that you want to get interested in such items. Circuits that will flash lights, or make noises, or play tunes are presented in a practical and straightforward fashion, culminating in a simple electronic organ with vibrato.

TELECOMMUNICATIONS SYSTEMS FOR TECHNICIANS—1
by G. L. Danielleon and R. S. Walker
Published by Newnes-Butterworths
103 pages, 246 x 184mm. Price £2.95
This volume is intended for use by students at their first level of TEC (Technician Education Council) studies in telecommunications and electronics, and is therefore written with the needs of the beginner in mind. As such it provides an excellent introduction to a wide range of subjects, as can be seen from the list of chapter headings: Transmission of Information; Modulation and Demodulation; Radio Waves and their Uses; The Cathode Ray Tube; Television; Radar; Radio Navigation; Telephony and Telegraphy; Routing a Signal (Telephone Exchange Systems); Transmission of Speech by Landline; Data Communication (including Computers). It should be stressed however that this is a systems book, and does not go into the detail of circuits required to achieve the various functions.

continued on page 75

Practical Wireless, November 1979

RADIO REPAIR
by Les Lawry-Johns
Published by Newnes Technical Books
87 pages, 166 x 112mm. Price £1.55
The author gives readers the benefit of his long experience in radio servicing in this very readable little volume. A question-and-answer approach is used to cover receivers stage by stage, and there are special sections on car radios, unit audio equipment, valved radios, curing noisy operation, plus general notes on fault finding, and recommended tools and spares kits.

MASTER HI-FI LOUDSPEAKERS AND ENCLOSURES
by Dave Berriman
Published by Newnes Technical Books
126 pages, 216 x 132mm. Price £2.95
This book is for the reader who wishes to know more about loudspeakers and enclosures—how they work, why they are made as they are, how to choose and how to use the best loudspeaker. Technical knowledge is not necessary, as fundamental theory essential to understanding is explained in a non-mathematical descriptive manner. Crossover networks, room acoustics and fundamentals of sound and hearing are also covered.

ELECTRONIC DESIGNER'S HANDBOOK
(3rd Edition) by K. Hemingway
Published by Business Books
348 pages, 215 x 134mm. Price £12.50 (hard-backed)
The book's sub-title: A Practical Guide to Transistor Circuit Design, really sums up its aim. Covering only analogue circuits, it is intended to help a recently qualified electronics engineer or physicist who lacks experience in practical design. Its treatment is therefore at a fairly advanced level, but it is written in a very readable way.

BEGINNER'S GUIDE TO TAPE RECORDING
by I. R. Sinclair
Published by Newnes Technical Books
167 pages, 186 x 120mm. Price £2.95
This book presents the principles and techniques of tape recording in a simple, non-mathematical way. Advice on using tape recorders covers microphones, recording from disc or radio or another tape, plus more advanced techniques such as editing, mixing, multiple tracking, slide synchronisation, movie sound and nature recording. No detailed knowledge of electronics is necessary to make good use of the information provided.
Radio control of models has become an expensive hobby over the last few years. There are several reasons for this. The radio systems themselves have become very sophisticated, with fully proportional control of several different functions being commonplace. Also, with the increase in illegal Citizens’ Band transmissions causing havoc in some areas, the designers of r.c. systems have had to turn to either f.m. techniques, or move into the only other permitted frequency band, at 459MHz.

In the early days of r.c. models the majority of operators built their own radio equipment as well as the model, but lately this has not been the case and it is even possible to get a model aircraft into the air without having to actually build anything yourself.

However, there are several kits produced to enable anyone who has the ability to build a model, to assemble a complete r.c. system. With the ever increasing problems of interference on the 27MHz radio control band any r.c. system should really use f.m techniques and have as tight a bandwidth as possible.

With this in mind Micron Radio Control have produced a kit for a 27MHz f.m. system. Micron actually make a wide range of kits including both a.m. and f.m. systems together with servos and accessories to match.

We tested the PL-7D f.m. transmitter kit together with the dual bandwidth f.m. receiver and Micron’s servo kit.

The components came packed in a plain, stout cardboard box and were sealed in individual polythene bags, one bag for each part of the kit.

The instructions supplied with the kit were in the form of a set of drawings, obviously drawn with the intention of putting the modeller at ease. Two sheets dealt with the transmitter, one each the receiver and servos. A set of notes covered general constructional points and gave some very useful hints, while a separate sheet dealt with setting up procedure. Unfortunately this covered all of the Micron systems and proved to be a little bit confusing.

The drawings appeared rather strange to someone used to the more conventional electronic constructional ones such as appear in PW, but, after a few minutes study, proved to be easily followed. Anyone who has ever built a model would have little or no trouble in following the drawings.

As it seemed to be the key unit in the system, and also looked the most impressive part of the kit, I decided to build the transmitter first. The case was supplied ready bent, but in sections which had to be screwed together using self-tapping screws and two plastic end cheeks. A ‘dry’ run without screws showed that the bottom pressing, supplied with the nameplate already stuck in place, was about 1mm too high at the front. This was easily remedied by marking off the 1mm strip with a sharp modelling knife and then carefully cutting the strip away using scissors. This then allowed the metal parts to fit snugly into the plastic sides and stick panel. Micron say that this has now been corrected and no trouble should be encountered. Pilot holes were drilled in the plastic sides to take the self-tapping screws and the case assembled. The two open gimbal control sticks were screwed into place together with the meter, on-off switch and the loop for a neck-strap.

The open gimbal sticks, which are made by SLM, come ready assembled and just need screwing to the plastics moulded front panel, making sure that the dust excluding foam sheet is properly positioned before tightening the fixing screws fully.

With the case assembled attention was turned to the electronics. The transmitter has the r.f. section on one p.c.b. with the encoder on a separate, larger board. This could be very useful if, as some people foresee, the authorities allocate another frequency band somewhere around 35MHz to r.c. modellers.

The p.c.b.s supplied were of good quality and proved easy to solder to. The components were also first rate and I particularly liked the very comprehensive way in which the capacitors were identified. Capacitors are probably the most difficult components to identify, different makers having their own ideas on coding. Micron have countered this by providing a sheet giving drawings of each type of capacitor used showing particularly the markings. No problems were
encountered in assembling the r.f. board. Take care that the correct pins are removed from the Toko can and that the insulating enamel is removed from the two coils. I found it easier to fit the heat sink fins onto the BSX61 output transistor before soldering it in place. The two wound coils are fitted with ferrite dust cores which proved impossible to move when it came to setting up. It might be better to remove the cores before assembly, leaving them out until you are ready to tune the transmitter. I found that the only way to move the cores was to apply a clean, hot soldering iron to the core while gently turning it with a small screwdriver. The heat loosens the core allowing it to be unscrewed. The latest kits have these cores specially treated to prevent them sticking in the formers.

The encoder board was very simple, the c.m.o.s. integrated circuit being fitted into a socket when the board is finished. The instruction sheet suggests that you use a stainless steel draining board, if you have one, as an earthed assembly bench when inserting c.m.o.s. devices. This seems a very good idea which should go a long way to eliminating problems of static. The advice given on handling c.m.o.s. devices was sound and clearly put over, and could even be followed by those who think that they are well versed in such matters.

The p.c.b.s fitted neatly into the case, with the two NiCad batteries carried in the bottom of the case in a pair of simple nylon cable clips. The aerial, which is centre loaded and telescopic, screws easily into a plastics mount fitted on top of the case. A socket is mounted in the bottom of the case to take a charger socket.

The f.m. receiver and decoder was tackled next. The version supplied was the 20kHz bandwidth which Micron reckon is satisfactory for sport or club flying. A Murata CFK455 filter can be fitted to the same board to reduce the bandwidth to 10kHz allowing up to 32 frequency spots to be used when operated with only f.m. sets alongside. This filter can be fitted at a later date if required, without modifying the p.c.b. and only removing one capacitor. Again, like the transmitter, all the components are easily identified and only the coil and i.f. cans need careful modifying by cutting off certain pins as shown on the plans. One leg of the quad-in-line i.c. has to be removed and the i.c. soldered directly into the board. So long as a hot iron is used with a clean bit no trouble should occur. As with any form of soldering, cleanliness, a hot iron and good quality cored solder is all that is needed, along with the right frame of mind. Remember, he who hesitates is lost!

The decoder is on a matching p.c.b. which comes with a 7-way SLM gold plated connector block already soldered in place. However, the p.c.b. itself was not pre-tinned like the other boards although no trouble was encountered. The decoder i.c. used is a c.m.o.s. device and is soldered directly onto the p.c.b. without a socket. Obviously care must be taken to prevent static electricity building up and killing the device, but otherwise no problems should be met. Care is needed when soldering the interconnecting wires to the

Above left is the completed Micron f.m. receiver. Two p.c.b.s are used and the crystal can be changed simply. The photo above shows the inside of the completed transmitter without the batteries fitted. The two p.c.b.s which together make up the Tx are shown on the left with the r.f. board above the encoder.

Practical Wireless, November 1979

www.americanradiohistory.com
NEW LOWER PRICES

Casio 95QCB-31B chronograph £29.95

MELODY 80

Now only £23.95

ISN'T IT WORTH PAYING A LITTLE MORE FOR QUALITY AND RELIABILITY?

Fifty guaranteed for 12 months.

Most CASIO products available from stock. Send 25p for illustrated brochures and membership of our Christmas Club EXTRa DISCOUNTs on many items.

Price includes VAT and P & P. Send your Company order, cheque, P.O. or phone your ACCESS or BARCLAYCARD number to:

TEMPUS
Dept.PW, Beaumont Centre, 164-167 East Rd.,
Cambridge CB1 1DB Tel: 0223 312866

Practical Wireless, November 1979
tracks of the two p.c.b.s to avoid melting the insulation where the wires pass through holes in the boards. The two boards fit into the plastics case with a piece of foam sandwiched between them.

The smallest unit is the servo amplifier. Based on the Signetics NE544 i.c. this is built onto a small p.c.b. measuring 20 x 21mm and is unusual in using a d.i.l. socket to carry the i.c. instead of mounting it directly on the board. Although this adds extra weight it does allow for possible servicing of the amplifier unit and also allows all components to be mounted on the one side of the board, unlike some other designs. Construction is simple as, although the board is small the component count is also low, and the p.c.b. pads are large in area. The servo mechanics supplied were very good, the output shaft running in ball bearings and fitted with metal gears. The case is split so as to allow all the parts, including motor and amplifier to be mounted before the case is closed, the amplifier p.c.b. being held in place with a small piece of self-adhesive foam rubber. A gold-plated SLM connector is supplied to match the socket fitted to the receiver.

Setting Up

The transmitter actually worked first time with no trouble. Tuning proved simple once the two dust cores had been moved. A simple r.f. field strength meter was used for tuning purposes, the two cores being adjusted to give maximum indication on the meter. Micron sell a kit for making a tuning indicator using a multimeter if you have not got a field strength meter. The screened Toko coil has to be adjusted with the r.f. board removed from the case as it is not possible to reach the core through the access hole for the crystal. The Tx tuned very easily and as a check on the functioning of the encoder the output waveform was displayed on an oscilloscope. This checked out all right so the receiver was tuned next.

The instructions were followed and a multimeter hooked up to two 4.7kΩ resistors as shown in the appropriate sketches. Switching on the Rx gave a deflection on the multimeter but, when the Tx was switched on nothing happened. A check on the Rx board showed that I had fitted a transistor the wrong way round so this was removed and checked on the multimeter. It still proved to be a transistor in spite of its ordeal so it was inserted the correct way round and the Rx switched on again. Success, the meter performed in the manner described in the instructions and the Rx was tuned. The only real difficulty was in placing the Tx far enough away from the Rx without taking it outside the workshop.

With the Tx and Rx both tuned correctly the servos were plugged into the appropriate sockets and checked for control movement. This was correct and the system was now reckoned to be set up.

Although the complete system has yet to be installed in a model, it works very well on the bench. The Micron servo is very smooth and quiet in operation with power to spare, while the control sticks are pleasant to use. The Tx is easily converted to a 7-channel version by the addition of a small auxiliary p.c.b. to the encoder unit, no changes being needed to the Rx.

The overall appearance of the various parts of the system is on a par with professionally produced systems—in some instances the Micron system is better looking—no hint being given of home construction when finished.

Micron also provide a servicing and alignment service if needed, either at their specially set up service centre at Barrow-in-Furness or by one of their twenty or so specially appointed specialists listed in the instructions.

Building your own r.c. gear is not only very satisfying, but can also save you a lot of money. The price of a ready built Micron f.m. system is about £40 more than the kit. With four evenings work needed to build the kit this works out at £10 per night, well worth the effort.

Dick Ganderton.

Prices

PL-7D f.m. 4-channel kit £111.75 inc. VAT.
Rechargeable batteries (three) £18.36.
Micron charger kit £3.58.
Transmitter tune pack £0.92.
Full technical details, circuit diagrams etc. £2.00.
The PL-7D f.m. kit was kindly supplied by Micron Radio Control, Hayworth Road, Sandiacre, Nottingham. Tel: 0602 396418.
practical WIRELESS

extra RADIO DATA supplement

A mine of reference information on building and using radio equipment, for the amateur or broadcast bands enthusiast

Radio control of model aircraft, boats and cars is a popular pastime. Our proportional system caters for the needs of most enthusiasts and uses the latest f.m. techniques to achieve superb performance while remaining simple to build. Don't build any other design until you have seen ours

An ideal gift for the radio enthusiast, combining multiple time-zone watch, calendar, stopwatch, timer and alarm. With liquid crystal display

Practical Wireless, November 1979
A number of readers considering building the VMOS Top Band Transmitter, which appeared in the July issue of PW, have requested further details of suitable aerial systems for use on the 160 metre band.

The problem on this band is, of course, the very long length of wire required to produce a true quarter-wave length aerial system, something in the region of 39 metres, or 128 feet. Shorter aerial systems can be tuned to resonance by means of a loading coil, but there will inevitably be some loss of power in the inductor used, and the shorter the aerial, the greater the loss.

Long-Wire Aerials

Some may have gardens long enough for 128 feet of wire, strung to a convenient tree, or a pole at the end of the garden. However, height is important, and for field days and the like, a kite or (slightly more predictable in behaviour) a balloon may usefully be pressed into service as a practical alternative to a skyhook!

A suggested system is shown in Fig. 1. This may be connected directly to the output socket of the transmitter, or via the shortest practicable length of 50Ω coaxial cable.

A Tree Aerial

By using an eighth-wavelength aerial, with a loading coil, use can be made of a 60ft tree, as shown in Fig. 2. The aerial should be connected to the tap on the coil which gives the maximum reading on the ammeter.

Using a catapult to erect an aerial can be a hazardous business, and the following procedure should be followed to minimise the risks. (See Fig. 3)

1. Spool out the wire as shown.
2. Make sure that the wire from the weight exits at the top of the catapult pouch.
3. Hold the catapult well away from yourself, and sideways.
4. Turn your head away before firing.
5. Always wear a glove—a thick one!
6. Make sure that there are no people, animals, or property around that could be injured or damaged by a foul shot.

Remember—catapults are dangerous.
IC OF THE MONTH
Thomson-CSF TDB0791

>>>continued from page 27

Typical Applications
A d.c. servo amplifier for driving a motor is shown in Fig. 6. The feedback resistor values are chosen to provide a gain of about 10 times. An input of 1V will therefore produce about 10V across the motor at a current of up to 1A, the current again being set by the value of the output resistor. The input voltage can thus be used to control the motor speed.

![Circuit Diagram]

The circuit of Fig. 7 employs a pair of TDB0791 operational amplifiers to drive an a.c. motor, the two amplifiers operating in push-pull. The circuit gain is again about 10 times so that a small input signal can be used to produce a much larger voltage across the motor.

In both of the circuits of Figs. 6 and 7, the input current can be quite small compared with the motor current. A steady input voltage is required for the operation of the Fig. 6 circuit, whereas an alternating input voltage is fed to the Fig. 7 circuit. The value of the input capacitor C in this circuit depends on the alternating frequency of the input voltage and should not have too high an impedance at the frequency concerned.

Availability
The TDB0791-SP is available from Watford Electronics, price £3.50 each plus 30p postage and packing, plus VAT.

Mobile Whip Aerial
For mobile use, the aerial will be very much less than a quarter wavelength long. A whip aerial, such as shown in Fig. 4, must be accurately tuned to resonance by means of the loading coil at its base, or centre. In other words, its impedance must be real.

The real impedance plus losses should be less than 50Ω, and a step-down matching transformer will be required, with a turns ratio N1:N2 of 2:1 or 3:1. This transformer can be similar to that used for T1 in the VMOS Transmitter, taking the form shown in Fig. 5.

NEXT MONTH—TOP-LOADED VERTICALS

Practical Wireless, November 1979
As apparent from last month's instalment, although we are running through the alphabet there are bound to occur related items which are not in alphabetical order. These are indexed, as in Part 1, at the conclusion of this instalment.

CANTILEVER

This is the part of a pickup cartridge which couples the stylus to the transducer, which is usually based on the electromagnetic or piezoelectric principle. Although fixed at the far end, the stylus end of the cantilever is free to vibrate to follow the modulation pattern in the recorded groove of a gramophone record. These vibrations are coupled through the cantilever to the transducer, which changes them into an equivalent electrical output for coupling to the amplifier.

Top-flight cartridges are designed so that the intrinsic resonances of the cantilever are well tamed. Sadly, resonance modes can and do occur, and they are partly responsible for "coloration" and the different quality sounds that different pickup cartridges produce. For example, certain resonance modes can encourage peaks or troughs (sometimes referred to as "suck-outs") along the frequency response. The resonance modes can be vertical, lateral or torsional. A great deal of the craft of hi-fi pickup cartridge design lies in minimising these and other resonances. One or two cartridges, notably the Decca magnetic series, avoid the use of the normal type of cantilever (or stylus arm) by arranging for the stylus assembly to pass directly through the magnetic circuit.

CAPSTAN

In essence, this is a very accurately turned spindle which, aided by a pinch wheel, transports the magnetic tape of a reel-to-reel or cassette tape machine past the recording/replay and erase heads at a constant speed. Both long- and short-term speed constancy is absolutely essential to avoid wow and flutter aberrations. Thus, both the accuracy of the spindle and its speed of rotation are of paramount importance. A large mechanical "flywheel" often forms a part of the capstan spindle to help "iron out" speed irregularities by virtue of its inertia. Some of the more recent (and expensive) machines adopt the electronic equivalent to mechanical inertia, which is basically servo-control on the motor, such that more power is turned on when the load increases and less when the load decreases. Another scheme is based on a phase-lock loop circuit, which compares the angular phase of the capstan against a reference signal, a correction signal then being produced when there is an error which serves to correct the capstan drive motor.

CAPTURE EFFECT

This refers to f.m. reception. Because the information carried by the carrier-wave causes not the amplitude of the wave to vary, but instead its instantaneous frequency (at a rate depending on the frequency of the information (e.g., sound modulation) and by an amount (deviation) depending on the intensity (i.e., depth of modulation)), any f.m. receiver can be designed so that it is not at all sensitive to amplitude variations of the carrier-wave (a.m.).

This is achieved by the nature of the f.m. detector (a ratio detector, for example, is particularly insensitive to a.m.) and by the application of amplitude limiting in the receiver's intermediate-frequency (i.f.) stages.

Now, when an f.m. receiver is presented with two or more signals of very close frequency, there is a tendency for an a.m. component to be resolved, but because the receiver is essentially insensitive to a.m. there is very little or no interference. What happens is that the strongest signal "captures" the receiver, and it is this which is heard. The others are pushed well down in the background and are essentially inaudible. This is called the capture effect.

CAPTURE RATIO

The degree of rejection of weaker co-channel signals depends on the design of the f.m. detector and amplitude limiting. Some residual f.m. does occur owing to the presence of more than one signal, but this is small, especially when the f.m. detector has a sufficiently wide bandwidth (up to 1 MHz is not uncommon). The efficiency of the capture effect is measured in terms of the capture ratio, which is a dB value indicating how much stronger the wanted signal needs to be than the unwanted one for the interference to be 30 dB below full modulation output.

State-of-art f.m. tuners and receivers have a capture ratio of a mere 1 dB. To achieve similar rejection at a.m. the wanted signal would need to be many more dB stronger than the unwanted one. The capture effect is one of the biggest attributes of the f.m. system of broadcasting. It also works with respect to the components of noise (which is responsible for background "hiss"). Thus, as soon as the aerial signal is greater than the effective input value of the noise signal, the receiver is captured by the signal and the noise is pushed right into the background, ultimately resulting in a signal/noise (S/N) ratio of 70 dB or more, weighted.

CCIR

This is short for International Radio Consultative Committee and refers to specified standards of tape equalisation, noise weighting, etc.
CLASSES OF AMPLIFIER

In hi-fi parlance (and elsewhere) the nature of the power amplifier is defined as a particular class, and the four in use are:

Class A

Where the valves or transistors operate on the linear parts of their transfer (input/output) characteristics. The devices thus draw a “constant” current from the supply regardless of the amplitude of the signal. This mode of amplification is relatively inefficient and large heat sinks are essential when transistors are used in the power stages.

Class AB

Basically, this type of power amplifier is biased so that low-amplitude signals are handled by the linear parts of the transfer characteristic, while higher level signals are handled on the positive half-cycles by one of the push-pull output pair and on the negative half-cycles by the other of the pair of valves or transistors. Above a certain signal amplitude, therefore, the current drawn by the amplifier increases with increasing signal amplitude, which makes it a little more efficient than class A.

Class B

The standing bias of this class of push-pull power amplifier is such that at zero signal the current drawn is theoretically zero. When signal drive is applied, the positive and negative half-cycles are split so that one half of the push-pull stage is driven on positive half-cycles and the other half on negative half-cycles, the signal being reformed as a whole at the loudspeaker. Pure class B implies that the standing or quiescent current is zero.

In practice, the push-pull stage is always biased for a small quiescent current (bringing it more towards class AB) to avoid the discontinuity effect on the transfer characteristic at low signal levels. Unless this is done, a disturbance called crossover distortion mars the reproduction (see under Crossover Distortion).

Class D

This is a “digital” type of amplification which is based on pulse width modulation. The analogue signal is first converted to a digital or pulse format, whose mark/space ratio corresponds to the analogue information. The pulses are then caused to switch on and off the power transistors, and because the average current of the pulse chain passed to the loudspeaker corresponds to the encoded analogue information, it is the original analogue signal which operates the loudspeaker after low-pass filtering required for integration and for riddling the output of the high-frequency pulses.

Because the output transistors are either fully on (bottomed) or fully off (cut-off), the efficiency of this class of power amplification is significantly above that of the other classes.

COMPLIANCES

This term relates to the yielding quality of a material and in hi-fi is commonly used to express the “elasticity” of the suspension of a pickup stylus or loudspeaker cone.

Prior to the system of SI units (Le Systeme International d'Unites, or International System of Units), it was expressed in cm deflection per dyne of force. Indeed, it is expressed still in this way in many pickup cartridge specifications. A so-called “compliance unit” is equal to 10^-10 cm/dyne, which means that for each dyne of applied force a stylus suspension of that compliance value would yield an-millionth of a centimetre. This may seem an incredibly small deflection, but it must be remembered that a dyne force is approximately equivalent to the pull of gravity on one-thousandth of a gram at 45 degrees latitude and sea level!

Many hi-fi cartridges have a compliance of 35cu or more (e.g., 35 x 10^-10 cm/dyne) and would thus deflect that number of times more than the above example. Compliance, then, is the reciprocal of stiffness—the higher the compliance value, the softer the suspension.

In SI units the deflection is given in metres and the force in newton (m/N), and as a newton is equal to 10^2 dyne and a metre to 10^6 cm, a “compliance unit” in SI units resolves to 10^-8 m/N. Some cartridge specifications have now started to use this expression.

A cartridge stylus, of course, cannot be rigid. It must be free to move to follow the groove modulation “wriggles” without applying too much stress to the groove or calling for a large tracking force. A side issue is the low-frequency resonance of the pickup system which (in Hz) is equal to

\[\frac{1}{2 \pi \sqrt{MC}} \]

where C is the compliance of the cartridge in m/N and M the effective mass of the pickup arm in kg. The plan is to arrange these two quantities so that the resonance falls around 10–15Hz. A resonance of lower frequency is in danger of being excited by disc warps and ripples, with a consequent impairment to the tracking. This demands either an arm of very low effective mass or a cartridge of low or moderate compliance.

CLIPPING

This term is often used to describe a particularly irritating brand of distortion resulting from the peaks of the audio signal being clipped as shown in Fig. 7. This can happen when a low-level or power amplifier is over-driven. That is, when no more output can be obtained by increasing the amplitude of the input signal.

Clipping generates a host of disconcerting harmonic and intermodulation distortion which puts a nasty edge on the reproduction. The trouble often arises when a relatively small power amplifier is driving hard into loudspeakers of low efficiency in an endeavour to raise the in-room sound intensity. The only solution to the problem is to use a more powerful amplifier or loudspeakers of higher efficiency.

CROSSOVER DISTORTION

This type of distortion results from the discontinuity at the crossing point of the transfer characteristics of a push-pull class B power amplifier when there is zero or inadequate quiescent current. Fig. 8 shows the discontinuity and an approximation of the type of distortion.
Fig. 7: Examples of peak clipping. (a) Peaks of sine-wave are here clipping at the level indicated while the superimposed noise signal of lower amplitude is free of clipping. (b) Very short-duration transient pulse of output amplitude in excess of the output capacity of a power amplifier, showing peak clipping. (c) Clipping in the pickup preamplifier as the output is increased. The two lower amplitude waves correspond to inputs of 75 and 100mV and are free of clipping, while the two higher amplitude waves correspond to levels of 125 and 150mV showing the onset of serious clipping. Clipping of this nature in the pickup preamplifier cannot usually be cleared by retarding the volume control. The only solution lies in attenuating the input signal if the pickup output is too high for the preamplifier.

Fig. 8: Transfer characteristic discontinuity which is responsible for crossover distortion of the nature shown.
Distortion from this cause is far more apparent at low rather than high reproducing levels. If you feel that your hi-fi is giving this trouble, listen close to the loudspeaker at very low output for a "grating" type of roughness, which diminishes as the volume is advanced. This can often be cleared by turning on more quiescent current by the internal preset(s) provided for this adjustment. Excessive quiescent current, however, will cause over-heating of the heat sinks and may destroy the output transistors. Transistor portable receivers are particularly prone to the trouble as the battery runs down.

CROSSTALK

The breakthrough of signal from one channel or circuit to another is known as crosstalk. For example, if a hi-fi receiver is switched to tape monitor and in the background can be heard the radio programme, then this is crosstalk between the radio and tape monitor circuits. Similarly, the effect of breakthrough from one stereo channel to the other (left-to-right and right-to-left) is also crosstalk, though in hi-fi parlance the term stereo separation is more commonplace.

Crosstalk is expressed as the dB ratio between the output signal level in the speaking channel and that in the inactive or non-speaking channel. Stereo separation is also expressed in this manner. Crosstalk between circuits in a hi-fi receiver or amplifier should be 50dB or more, maybe falling a little with increasing frequency, while that between stereo channels (stereo separation) should not be much less than 30dB at middle frequencies. Fig. 9 shows the crosstalk over the frequency spectrum between the left and right f.m. stereo channels.

DAMPING FACTOR

Owing to the negative feedback applied to hi-fi power amplifiers to keep the distortion at a very low value, the output source impedance of the amplifier is of a very low value, sometimes less than 0.1 ohm. The damping factor is the ratio of the impedance of the loudspeaker to that of the amplifier source. Hence with a source impedance of 0.1 ohm and a loudspeaker impedance of 8 ohms, the damping factor would be 80.

The connected loudspeaker thus "sees" the low source impedance which tends by electromagnetic means to damp overshoot of the cones following a sharp, short transient. One of the major overshoot problems is with the cone of the bass unit (woofer) since its natural low-frequency resonance (a function of the suspension compliance and cone mass—see under Compliance) tends to excite overshoot around the 30 to 60Hz mark. For this reason, therefore, the damping factor should hold at a high ratio at very low frequencies as well as at middle and high frequencies.
Although our sun has little importance among the millions of stars in the Milky Way galaxy, it is very important to us here on earth, because it provides our light, heat and natural energy. The majority of stars, and our sun is no exception, are nuclear furnaces radiating waves, in varying degrees, across the electromagnetic spectrum. With the advent of the optical telescope in the 15th century, astronomers learnt much more about the stars, our sun and the planets which make up our own solar system.

Radio Astronomy

During 1931, American radio engineer Kari Jansky, using specialised apparatus, detected radio noise around 21 MHz, coming from the Sagittarius arm of the Milky Way. At first, few people realised the significance of Jansky's discovery. After all, astronomical observations for at least the previous 300 years had been made with an optical telescope. To suggest that invisible waves coming from the stars could be recorded on a paper chart took a fair bit of understanding.

The fact that stars had been emitting radio waves for untold millions of years remained unknown until the art of making radio receivers was about 35 years old. It is generally accepted that radio waves travel at the speed of light, 186,000 miles per second, in other words almost 6 million, million miles in one year, or in astronomical terms, a light-year. For example, radio waves from the Crab nebula, in the constellation of Taurus, take some 3300 years to reach us, whereas radio waves from our sun, a mere 93 million miles away, are received on earth just 8.3 minutes after they are generated.

Radio Telescope

The work of a visual astronomer is limited to the hours of darkness and then the skies must be clear and, unless he is studying the moon, free of moonlight. A radio telescope, however, can record celestial radio waves at any time, unaffected by overcast skies, but its results are sometimes troubled with static from electrical storms and a variety of man-made interferences. Briefly, a simple radio telescope comprises a high-gain directional aerial, securely mounted and pointed toward the source being observed. In some cases an aerial head amplifier is used before the incoming signal is fed to the main receiver, usually a purpose-built superheterodyne, with a d.c. amplifier connected to its detector circuit to drive a pen recorder.

Although certain frequencies are set aside internationally for astronomical observations, a radio astronomer can use any part of the radio frequency spectrum providing that...
it suits his observational requirements and is free of terrestrial transmissions. For an amateur to make a useful contribution in the field of radio astronomy, he would need a very large aerial system with precise settings both in altitude and azimuth, a low-noise, high-gain receiver, and access to a computer, to extract any meaningful information from the data gathered during his observations. The high installation and running costs of a radio observatory prevent the majority of amateurs setting up such a project.

Radio Noise

The noise collected by a radio telescope is very similar to that which is generated within the wiring and components which make up the telescope’s receiver. Therefore, it is important that this internal noise level is measured before the aerial is connected, so that the incoming waves are positively identified. When thermionic valves were used, a great deal of noise came from the valve itself and the high electrical currents flowing through its associated components. Much of this problem was overcome when transistors replaced valves, because they are far less noisy and require only a fraction of the current to drive them.

Short-wave Communications

From its birth toward the end of the 19th century, the story of radio has been a fascinating one. Very soon enthusiasts were building receivers, and transmitters, which allowed them to listen to signals travelling around the world, and enabled people from the ends of the earth to converse with each other. We owe a great deal today to those early radio amateurs who pioneered the signal paths around the earth, often when contemporary thinking said it was impossible.

Between the two world wars, great strides were made in opening up the short-wave bands for both communications and broadcasting. This work was exciting because there was much to learn about echoing and rough signals, fading, sudden ionospheric disturbances and sometimes complete and extensive radio blackouts. Scientists were aware then that the complex rays from the sun caused changes in the ionosphere which, of course, explained why short-wave signal paths via the ionosphere varied between day and night.

The Research and Experimental Section

The Radio Society of Great Britain, founded in 1913, has always encouraged its members to send reports of their findings to the Society for publication, and in the 1930s they set up a Research and Experimental Section, Fig. 1, which had separate groups and its own columns in the RSGB’s monthly journal, the T & R Bulletin.

In January 1936, Miss Nell Corry G2YL, became author of the “28 Mc/s Group” report, which she compiled each month from her own 10m work and from information she received from amateurs and short-wave listeners around the world.

Fortunately for posterity, Nell was a very methodical individual and kept daily records of the 28MHz information she received, until early 1940, in a set of four diaries which have survived the passage of time and are now in the author’s collection. Analysis of these diaries revealed that over the 4-year period 1936-1939, aurora was reported on 53 days, echoing on signals on 26 days, fadeouts on 140 days and a “hissing” noise on 107 days.

Solar Radio Noise

It was this “hissing” noise that was the important revelation, and further investigation by the author showed that during 1935, Denis Heightman G6DH, a member of the Research and Experimental Section, heard this strange “hissing” sound above the background noise of his 10m receiver. Denis, an experienced wireless operator, consistently noted that the “hissing” occurred only during daylight hours, and usually preceded a radio disturbance. Very soon he rightly concluded that the “hissing” noise was...
coming from the sun, and in 1936 he reported his findings to the Editor of Wireless World and Professor (later Sir) Edward Appleton. Later, he outlined his observations in a comprehensive article published in the RSGB’s T & R Bulletin, Fig. 3.

From Nell Corry’s diaries and her journal reports, the author found that some 24 other radio amateurs and short wave listeners had heard the “hissing” noise and furthermore it was not limited to 28MHz, because, at midday on 31 July, 1938. Miss Barbara Dunn G6YL heard the hissing noise in the 5m band, confirmed by 2BIL, and Denis Heightman heard it again at 56MHz on 25 June, 1939.

Although amateur radio activity was suspended at the outbreak of war on 3 September, 1939, a few carried on listening, and the “hissing” was heard again during February, March and November, 1940 and March, June and July, 1941. The next known report about solar noise came in February 1942 when British radar receivers, working between 60 and 80MHz, suffered severe interference which contemporary scientists attributed to a large group of sunspots. Also in 1942, American scientists discovered radio noise in the microwave part of the spectrum coming from what is called the “quiet” sun.

Since the war, many radio observatories have studied the sun at a variety of radio frequencies, and it is now known that when sunspots are present (Fig. 4) the sun is said to be “active”. Then, depending on the type of activity, solar radio noise will be heard, at varying degrees, between 30 and 300MHz with a peak in the 130-170MHz range.

Practical Observation

During the mid-1930s, several astronomers gave the 28MHz propagation group information about the sun, derived from their visual observations. With the discovery of the “hissing” noise in 1935, group members showed that they could observe the sun by radio, which was unaffected by overcast skies. The pre-war journals described Heightman’s discovery as “The ‘Hissing’ phenomenon”, which we often hear today in the 2m band when the sun is “active”.

Through years of concentrated effort by both optical and radio astronomers, we now know that when great eruptions occur on the sun, vast amounts of nuclear waste are ejected, along with streams of particles. These may strike the earth’s atmosphere some 20-40 hours later, disturbing the ionosphere and h.f. communications, or causing an aura to manifest, with consequent risk of disruption to our v.h.f. signals. Radio provides an early warning of these events, because, when a solar eruption takes place, it emits radio waves which arrive here in 8-3 minutes, sounding like a “whoooooosh”, or hissing, above the receiver background noise.

The Spectrohelioscope

Some years ago, Cmdr Henry Hatfield, Sevenoaks, built a complex optical instrument called a spectrohelioscope, Fig. 5 (see page 934, PW April 1978), to study the sun’s surface. Henry uses this instrument, when the skies are clear, in conjunction with his 136 and 1296MHz radio telescopes and can often see the active area, such as a flare or filament, within a sunspot group (see page 65, PW May, 1978), which is causing the prevailing radio noise.

Some Spectacular Events

In July 1974, I had an 8-element Yagi directed towards the sun and feeding a 136MHz receiver, another system with a 3-element beam facing north-east on 70MHz, a vertical dipole connected to a set monitoring the R1 TV channel, 49-75MHz, and a long wire aerial feeding the 10m beacon monitor. Suddenly, one morning, a massive solar flare occurred and I heard the noise sweep across the frequencies and get stronger. Being inquisitive, I used the h.f. receiver to follow the noise, and found that it overpowered all signals down to 8MHz for about six minutes and then gradually faded away back up to 136MHz.

Early in August 1972, the static discharges from a local thunderstorm were frequently causing large spikes to be drawn on the chart of my radio telescope. Then, suddenly, a large burst of radio noise from the sun, 93 million miles...
away, overpowered the local static from 90 to 200MHz, for some eight minutes. This massive burst was the forerunner of a very big solar storm which occurred two days later, upsetting the ionosphere and creating one of the most extensive auroras for many years, visible as far south as Spain. The effect on v.h.f. was amazing; one amateur told me: "It was like an umbrella, Tone-A signals were coming from all directions."

Although sunspots (Fig. 6) are stationary, they appear to travel across the sun's disc due to its 27-day rotational period. This makes it possible for a very large sunspot group to reappear for a second and third time, and it's not uncommon for a sunspot to be active when it appears on the east limb and remain so until it turns the corner on the western limb, some 13 days later. A typical example of this was the solar event which began with a few small bursts of radio noise on 6 September, 1974, developed into a severe radio noise storm lasting several days, and ended on the 19th. During the event there were many individual bursts lasting from 1 to 16 minutes, covering from 50-150MHz. All this resulted in an extensive aurora on the 15th and frequent reports by the BBC World Service about ionospheric disturbances affecting their long-distance signal paths.

The Unexpected

Patience is a dominating factor in solar observation. Many days, and sometimes weeks, can pass by with nothing more than a receiver noise trace on the recording chart. Then, suddenly, there it is—solar noise, and you have the first warning of an aurora or ionospheric disturbance which means DX by Tone-A for the v.h.f. enthusiast, and (most likely) dead bands for the h.f. operator.

Whatever happens, it is important that we amateurs record our observations for posterity just as methodically as our predecessors did, more than forty years ago.

Speech Processing in Amateur Transmitters

splitter and might have reduced the television interference potential of the transmitter.

RF Clipping

In 1970, at the International Broadcasting Convention, Messrs Herrick and Fallis of Radio Liberty described a speech clipper for broadcast use based on the principle of clipping at r.f. rather than a.f. The signal was then converted back to audio and fed to the modulator of the broadcast transmitter in the normal manner. The block diagram of the Radio Liberty clipper is shown in Fig. 7.

The operating principle is that the signal is first frequency tailored to the required speech bandwidth and amplified before being converted to r.f. in a balanced modulator. The resultant double-sideband signal is then passed through an upper-sideband filter and into an r.f. clipper. A low-pass filter is used to remove r.f. harmonics before re-converting the signal to audio again in a balanced modulator. Another a.f. filter is then used and the signal further amplified to increase the signal-to-noise ratio before going into the main transmitter. Clipping levels up to 12dB were used with an overall distortion of less than one percent.

This type of system has the merit that it can be used with any transmission mode, and is ideal for the user of commercial equipment as no modifications are necessary to the transmitter, because the unit plugs directly into the microphone socket. It must be pointed out though, that amplitude limiting raises the mean power level of a.m. and sideband transmitters, and this puts extra requirements on the power amplifier h.t. supply, and additional supply smoothing might be needed. Commercial r.f. speech processors of this type are available to us, with the Comdel CSP11 and Datong types as classic examples.

K6JYO Clipper

A circuit diagram by K6JYO appears in *Amateur Radio Techniques* as an add-on unit for the Collins S-Line transmitter. Only part of the full circuit is shown here (Fig. 8), but the r.f. clipper can be seen to be straightforward and has the advantage that the clipping level can be adjusted for operator needs. This circuit follows the sideband filter, and feeds into a second sideband filter to remove harmonics before conversion to the required amateur band in the normal manner.

Full Speech-Processed Sideband Generator

For optimum r.f. clipping, it is best if the audio dynamic range has already been reduced so that the r.f. clipping level is never excessive. An arrangement which gives the required result is the SL630/SL620 compressor feeding a balanced modulator and sideband filter. This is then followed by an r.f. clipper and second filter. The resultant signal can be converted direct to the required band with a double-balanced mixer and local oscillator. The transmitted signal will be at an almost constant amplitude, and will maintain readability at very low received signal strength.

A block diagram of the transmitter is shown in Fig. 9 and will be the subject of a constructional article in due course.
Solid Valves
Remember valves? How about tetrodes? Well a German company has launched a solid state m.o.s. tetrode and although it looks like many other semiconductors it can work efficiently up to 1000MHz. The market is seen as a replacement/substitute for bipolar devices in u.h.f. tuners. It is claimed to offer improved large-signal characteristics compared to the bipolar transistor, an advantage which reduces cross-modulation problems. The magic number to look for is BF960. It has an 18dB power gain, while noise at 800MHz is typically 2-8dB. Doubtless some of the v.h.f./u.h.f. Ham fraternity will be interested; seems a pity to waste such an excellent device on TV tuners!

NeutrinoComms
Talking of Hams leads me to think of Citizens’ Bands and radio communications generally. It also leads me to a morsel of fascinating news. How about a radio communications system that is unstoppable? Like you can’t jam it, or interfere with it, nor do anything at all to it. Perfect reception in any conditions, day or night and in spite of what those damn sunspots are up to. Gather round children, there is just such a system. The only way to prevent communications using this new method is to demolish the transmitter or the receiver.

The difference about this system is that it doesn’t send its signals around the earth’s surface by reflection from layers in the upper atmosphere. Nor from dishes, microwave links or anything like that. This system simply fires its signals straight through the earth itself, from one side (transmitter) to the other side (wherever the receiver is). It’s all made possible by little beasties called neutrinos.

The neutrino is reckoned to be an electrically neutral sub-atomic particle which, say the boffins, has zero mass at rest. Apparently the laws of momentum and energy conservation wouldn’t work out properly in theory. So someone “invented” or postulated the neutrino and so the theory was satisfied. Then someone found one of the damned things. The idea in communications is to fire these poor neutrinos at such enormous velocities that they simply whizz straight through the earth itself and out the other side where they are detected. To use them for communications, one modulates the neutrino beam. Before any Hams who have already secured two or three £1000 stations and are looking to buy something different, I should add that the sort of equipment needed to get neutrinos going at the speeds required are things like atom smashing machines, proton accelerators, etc. Need I add that it is the Military who are examining the scheme so far. One use is for super-reliable contact with submarines no matter where they are. You cannot “receive” neutrinos, you can only detect them when they strike neutrons or protons in water. The latest information is that the experts reckon to try an atom smashing machine that has a 400 billion electronvolt capability. I suppose if they kept shoving that sort of power through the same piece of the earth, they might eventually bore a hole. Then they could poke a long telephone wire through and have a direct line.

Displays
Light-emitting diodes, bargraphs and 5 x 7 arrays have been with us for some time now, but I was pleased to see that one company has an old product but in a very new package, and this could prove quite useful. They’ve made a range of 5 x 7 I.e.d. arrays and these are available in red, yellow, orange or green. The nice thing about them is that they are so packaged that you can butt up the arrays in both horizontal and vertical directions to form larger and larger arrays. While the length/breadth construction allows this, underneath, the devices have a "standard" 0-1in pitch d.i.l. spacing of the connecting pins and so they can be plugged in directly to d.i.l. sockets or p.c.b.s without any problems. Some 2mA will drive the I.e.d.s although they are rather dim, and 10mA is a more normal drive current. One might envisage stacking these units together to form a large, flat cathode ray tube to give rough patterns for certain types of measurements. Or for displays in newscaster type readouts. Before you reach for your purse to get some (as I did) the company is mumbling things about only being $5-75 in lots of 1000.

Sunshine
It seems that some companies in the US have really taken the energy crisis seriously. I hear of one such outfit that’s making solar cells and disguising them as roofing shingles. A batch of 52 were made up and sent to the Jet Propulsion Laboratory in Pasadena for testing. A spokesman is on record as claiming that just 19 silicon solar cells were carefully bonded to each of the 52 “shingles”. The results to date indicate a power of 98 watts per square metre. One or two nice figures have also been bandied about in connection with this exercise. One is that, hopefully, the solar power costs will sink to about $1 per watt by the year 1985—not too long ahead. Less than 2000 of these “shingles” would, in theory, supply the average South Western US home with 90 per cent of its electricity—free. Definitely a shining example in conservation, but there’s more to come.

Bubbles
I’ve actually seen one; well, a photograph, anyway. Your actual bubble memory—and very impressive it is, too. This harmless looking device is housed in a 20-pin dual-in-line package and seems to be a rather broad i.e. the package size is just 30 x 30mm and it’s a 0-25 million bit memory. This is important because a strong possibility for bubble memories, if they can achieve a large enough storage capacity, is to replace disks in computer memory systems. The bubble memory has the enormous advantage that there are no moving parts. Rumours continue to circulate that the mighty IBM is currently developing a 4 million bit bubble memory device. Taking things a stage further, perhaps plug-in bubble memories will be used instead of cassette sets for things like audio and/or video recording.
It has been said that more broadcasting takes place on the medium waves than on all of the short wave bands put together. There are literally thousands of stations throughout the world operating on frequencies between 535kHz and 1605kHz. The latest counts reveal over 4000 in the United States alone! Inevitably this means frequency sharing, with many simultaneous broadcasts on a single channel, and the problem confronting the m.w. DXer is: how do I deal with co-channel interference?

The receiver cannot do it. Selectivity is the ability to select stations that are on different frequencies, so the problem does seem insoluble. Often it is. If, however, two stations on the same frequency lie in different directions from the DXer's QTH, it ought to be possible to separate them with a directional aerial. The internal ferrite rod aerial used in portable receivers is directional. Tune round the medium waves after dark until you come across two stations jumbled up together. Rotate the receiver about its vertical axis and you may find that you can listen to one station on its own with the receiver in one position and to the other station alone, with the receiver in another position. It is quite a fascinating exercise: anyone interested in "local radio" DXing should try it.

A ferrite rod aerial does not pick up enough signal to satisfy the m.w. DXer, so the m.w. loop has been developed (Fig. 1). It has a pick-up somewhere between that of a long wire and a ferrite rod aerial.

How does it Work?

Imagine a single-turn loop placed vertically so that its plane is broadside-on to an incoming signal. The wavefront will strike both vertical wires simultaneously, and equal, in-phase voltages will be induced in them, i.e. when the top of one vertical wire is positive then the top of the other will also be positive (Fig. 2). These two voltages are in opposition! Trace the path round the loop and you will find $- + - +$, so the net voltage applied to a receiver would be zero. This is the position of minimum pick-up, the null.

Now turn the loop through 90 degrees, so that the two vertical wires are in-line with the transmitter. The wavefront will strike the nearer of the two verticals before it reaches the second. There will be a phase difference; unequal voltages (at any instant) will appear across the two verticals and the difference between them is signal available to be applied to the receiver. This is the position of maximum pick-up.

Fig. 1: Constructional details of the standard "40 inch" box loop for medium wave use, with corresponding theoretical circuit

A loop follows a cosine law: $V = V_{\text{max}} \cos \theta$ where θ = the angle between the direction of maximum pick-up and the direction the loop is actually pointing. V equals the signal pick-up from that direction. It is easy to plot a curve called a figure-of-eight (Fig. 3) using this formula. The loop is at the centre of the figure-of-eight and the distance from it to the curve is proportional to the signal pick-up in that direction.
To reduce static the loop until you get the best results. A loop station. Peak the loop onto the desired station and rotate the loop until the splatter is reduced. Overloading in the early stages of a receiver is often prevented when a loop is used, giving rise to the unlikely but accurate claim that a loop will sometimes improve audio quality.

Problems with Loops

A number of PW readers have highlighted problems encountered while building or using a loop. The most usual is that the loop will not tune across the entire band. For example, it may only cover 540kHz to 1450kHz. If so, then you will have to reduce the number of turns, so remove one complete turn. If you remove only part of a turn you will affect the null. The loop, which now has six turns, may cover 600kHz to 1650kHz. You need more capacitance. Try a 220pF fixed capacitor in parallel with the tuning capacitor, but you will have to fit a switch and cover the band in two steps Fig. 4. The number of turns affects the h.f. end of the range. If the loop tunes too high then more turns are needed. If it does not tune high enough in frequency then fewer turns are needed. The capacitance affects the l.f. end. Too low a frequency, too much capacitance. Not too low, too little. Adjust the h.f. end first and then the l.f. end.

It is not always possible to obtain a 500pF variable capacitor so use the nearest value you can get hold of. A twin-gang 330pF (per section) with the two sections in parallel i.e. both sets of moving vanes joined together and also the two sets of fixed joined to each other, gives a total of 660pF which should cover the band easily. Similarly, a 330pF variable with a 220pF fixed in parallel via a switch, will cover the band in two steps.

From this figure-of-eight polar diagram, two important features of a loop emerge:

a) The null is sharp while the maximum is broad. A loop is used to null-out QRM. It is the null that matters, not the maximum.
b) There are two nulls spaced 180 degrees apart. The loop will not null-out QRM coming from the opposite direction to the DX. It will null-out both of them together, which is not very helpful.

The Standard "40 inch" Loop

DXers in the UK have, after a lot of experimenting, produced the "40 inch" box loop shown in Fig. 1. It is a compromise between convenience and electrical performance. There are two windings. The main winding consists of seven turns, the two ends going to the tuning capacitor to form a tuned circuit. The second winding, which is a single turn, is wound next to the centre turn of the main winding and it picks up signal from the main winding by induction. This signal is then fed off to the receiver.

The wire used for both windings is 22 s.w.g. single-conductor, plastic-covered copper wire known as hook-up or connecting wire and approximately 34m of it is required. It is desirable to use balanced feeder to connect the coupling winding to the receiver. My preference is for 300 ohm flat twin feeder, but plastic-covered lighting flex will do instead. The feeder is connected to the dipole (A, A1) terminals at the receiver, or to the Aerial and Earth sockets if there is no dipole input. The feeder goes direct to the receiver and NOT via an aerial tuning unit (a.t.u.).

A loop is easy to use. Tune the receiver to the wanted station. Peak it up with the loop tuning control. Rotate the loop until you get the best results. A loop can be used to reduce static (atmospherics) if it is coming from a single direction e.g. from the south during the summer. Rotate the loop until the static is reduced or it disappears. Similarly with sideband splatter. Peak the loop onto the desired station and rotate the loop until the splatter is reduced. Overloading in the early stages of a receiver is often prevented when a loop is used, giving rise to the unlikely but accurate claim that a loop will sometimes improve audio quality.
What Type of Wire?

The type of wire for the windings is determined mainly by its mechanical properties. If the wire is too thin then it will break easily. If it is stranded then it may not be rigid enough. Too thick and a lot of force is needed to tension it. If it is made of steel it will be too springy (I have tried it with plastic-covered garden wire). Use the wire specified if you can get it. If not, use what is available.

Feeder

Some DXers use coaxial cable to join the loop to the receiver, which is a pity. You do not want the feeder to act as an aerial and pick up the station that is being nulled out by the loop. With balanced feeder the signal picked up by each of the two wires will be equal in value and will pass through the receiver in opposite directions (from A to A1 and from A1 to A). Since they are equal they will cancel out and the nett pick-up will be zero. When using coaxial cable, which is unbalanced, the screen will pick up more than the inner wire because the latter is screened. This may not matter too much if the receiver does not have a balanced input, but where dipole terminals are available, use balanced feeder.

Size

One of the most frequent questions is: “Can I use a different size loop?”

Yes you can. The pick-up of a loop depends on two factors: the number of turns and the area enclosed by them. As the turns are in series, the voltage developed across each will add up, so clearly the more turns the greater the pick up. You can compare two loops by using the formula At (A times t). The “40 inch” loop with 7 turns gives A = 1.04m² and t = 7 so At = 7.28. A “20 inch” loop with 13 turns gives A = 0.26m² and t = 13 so in this case At = 3.38. The “40 inch” has more than double the pick-up of the “20 inch”; 7.28 ÷ 3.38 = 2.15 times, to be exact.

You will find that large loops pick up more but are clumsy to use. Small loops are more convenient but they deliver a lot less. The “40 inch” is a good compromise, but if it is too large then try a “20 inch”. Reader Bob Bell has developed a “20 inch” box loop with 13 turns for the main winding and a single turn for the coupler. It is tuned in two ranges with a total capacitance of 750pF.

Shape

Any shape that is symmetrical will do—round, rectangular, diamond or even triangular. A triangle with a short base and a high apex is used by some DXers in the United States, where it is known as the Wedge or Delta loop. The diamond is used by a few enthusiasts and where the main winding has all the turns in the same plane it is known as the Spiral Loop, which is the type I use (Fig. 5). Each turn is of a different size of course. In theory you will get a better null if the turns are all in the same plane, compared with the box winding used in the standard loop. In fact, the effect is very small with the standard loop, but it can be significant with loops that have a large number of turns.

It is very easy to knock up a spiral loop. Two pieces of wood, some tacks to hold the windings in place, 31m of wire, a tuning capacitor and there you are. It is a lot more difficult to make a good job of a spiral loop and I would hesitate before making another one.

Long Wave Loop

You can get a m.w. loop to work on the long waves by inserting a loading inductor in series with the main winding. I use a Repanco High Q Choke type CHI which has an inductance of 2.5mH but any value between 2.5mH and 5mH will do. Unsolder one of the loop wires from the tuning capacitor and join it to one side of the inductor. Join the other side of the inductor to the vacated tag on the tuning capacitor.

Alternatively, you can extend the range of a loop by adding parallel fixed capacitance across the tuning capacitor, but the values required are so large (2200pF to reach 300kHz and 7000pF for 150kHz) that the tuning capacitor no longer functions. This will not matter, though, if you only want to listen to a single station, and this method is employed by Arthur Tate in the Shetlands, who endeavours to get better reception on 200kHz this way.

If you want to wind a special long wave loop then approx. 3½ times the number of turns (25–28 for a “40 inch”) are needed, but this loop will pick up 3½ times the signal of a m.w. loop with loading coil, which may justify the effort in building it.

Tilting

This is not a medieval past-time! It is a method of increasing the depth of the null when the wavefront is twisted or rotated. It is popular with DXers in the United States, who have a lot of locally-produced QRK to deal with. When a station is being nulled out, the loop will be broadside-on to the incoming signal. If you pick up the loop and tilt it towards, or away from the station, at the same time holding the null position, you may get a deeper null.

Fig. 5: Arrangement of a spiral loop
null. You can modify a normal loop so that there is no need to lift it off the floor. One method of doing this is shown in Fig. 6.

Coupling Winding

The single turn on the standard "40 inch" loop is called the coupling winding and its existence has puzzled quite a few readers. This winding is not joined in any way to the main winding. It is quite separate since the transfer of signal from the main winding is by induction. Why use a coupling winding? If you joined the main winding direct to the receiver then the loop would be damped and detuned by it. The two are in effect a 7:1 step down transformer which provides a better match.

Portable Receivers

Many DXers try to use a loop with a portable, forgetting that the receiver already has an aerial of its own. No null, is the result. If the loop nulls out a station then that station is still picked up by the internal aerial. You could of course rotate the portable as well as the loop and null out the QRM with both aerials, but in practice this would be very difficult to do. The solution of course, is to mount the receiver on a shelf near the centre of the loop so that the two nulls co-incide and loop and receiver can be rotated together. This arrangement really does work. There is no need to connect the loop to the receiver, as inductive coupling will take place between loop and internal ferrite rod aerial. In fact if you build a loop solely for use with a portable you need not bother with a coupling winding at all. It is easy to check if the receiver has an internal aerial. If it can pick up stations on the medium waves without an external aerial, then obviously there must be an internal one.

The better type of portable receiver performs really well on the short waves but the pick up via the internal aerial is not great enough for serious DXing on the medium waves. This method of using a loop with a portable is really the only way that such a receiver will "deliver the goods" on the medium waves. DXers seriously interested in the medium waves should turn away from portables, even those with the title "communications" and look for a receiver such as the DX160, SRX-30, FRG-7, Trio 9R59-D/E, CR100 or AR88 which really are communications receivers. Be careful with the DX160. Some versions have a ferrite rod aerial attached externally to the rear which must be disconnected before a m.w. loop can be used.

Bind it

It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold approximately 12 issues and is attractively bound and blocked with the PRACTICAL WIRELESS logo. Gold Letra-set supplied for self blocking of volume numbers and years.

Price £3.75 including postage, packing and VAT. Why not place your order now and send the completed coupon below with remittance to: IPC Magazines Ltd., Post Sales Dept., Lavington House, 25 Lavington Street, London SE1 0PF.

Order form PRACTICAL WIRELESS

<table>
<thead>
<tr>
<th>I enclose P.O./cheque value for</th>
<th>binders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years required</td>
<td>(BLOCK LETTERS PLEASE)</td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
</tr>
</tbody>
</table>

Portable Wireless, November 1979
Beat VAT with VAO (Value added offers) from G3CED

Although we have had to increase our VAT (15%) and carriage paid (and insured) inclusive prices, we come up with Valued Added deals on both existing lines and on the larger range of equipment we can supply.

TRANSCIEVERS RECEIVERS
(with or without World Record beating Partridge VFA antenna)

ATTENTION!
Here's our short list of transceiver equipment now available—prices on request.

ATLAS RX 110. £372.60
ATLAS TX 110L. £409.00
FT901 DM. £399.90
FT901 DE. £519.95
FT101Z. £494.90
FT202R. £429.90
FT7B. £399.90
LINEAR FL 2100B. £204.40
QTR 24. £197.90
SWAN ASTRO 150. £223.90
FT225R. £223.90
FT225RD. £255.90
FT227RB. £329.90

VALUE ADDED OFFER/2
Include a Joystick (5-30 MHz) 500w.p.e.p. Antenna System “J”, as part of your transceiver order—system will only cost £40.60 inclusive! SAVING £15.40!!!

RECEIVERS – PACKAGE DEALS
VALUE ADDED OFFER/3
VAT is up but we’ve increased savings on packages from £14.10 to £21.45!
Complete Radio Stations, all cables, headphones, Joystick System A antenna—ON THE AIR IN SECONDS!

SUPER PACKAGE R.1.
Features FRG7 RX 500w £240.80
SUPER PACKAGE R.2.
Features the “ROLLS” FRG 7000 500w £409.00
RECEIVERS ONLY
FRG7 £204.40
FRG 7000 £372.60

JOYSTICK ANTENNA SYSTEMS
SYSTEM “A” 150w p.e.p. or for the SWL £48.55
SYSTEM “J” 500w p.e.p. Improved “Q” on receive £54.00

Just telephone your card number — 0843 62535 (exit 5) or 62839 (after office hours) or write for details as described in the Value Added Offers or for general literature. Prices correct as at the press.

5 Partridge House, Prospect Road, Broadstairs, CT10 1LD (callers by appointment).

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics——now it can be your turn. Whether you are a newcomer to the field or are already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: “Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed.”

City and Guilds Certificates
Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
- Telecommunications Technicians
- Radio, TV Electronics Technicians
- Technical Communications
- Radio Servicing Theory
- Radio Amateurs
- Electrical Installation Work
- Also MPT Radio Communications Certificate

Diploma Courses
- Colour TV Servicing
- Electronic Engineering and Maintenance
- Computer Engineering and Programming
- Radio, TV and Audio, Engineering and Servicing
- Electrical Engineering, Installations and Contracting

Qualify for a New Career
Home study courses for leading professional examinations and diploma courses for business and technical subjects;
- G.C.E. Engineering
- Purchasing
- 60 subjects at “O” & “A” levels
- Farming
- Heating
- Industrial
- Accountancy
- Management
- Air Conditioning
- Mechanical
- Building

To: International Correspondence Schools
Dept. N276 Interext House, London
SW8 4U or telephone 622 9911

Subject of Interest
Name
Address
Telephone Number

POST OR PHONE TODAY FOR FREE BOOKLET.
DFM module

In response to requests for received frequency displays for portable operation, Ambit have introduced the DFM3. This incorporates a 5-digit l.c.d., giving direct frequency display over the following ranges: l.w./m.w., with 100Hz resolution for the marine d.f. channels; l.w./s.w., with 1kHz resolution for up to 39-999MHz; v.h.f., with 10kHz resolution up to 200MHz typically (limited by prescaler-theoretical maximum is 399-99MHz): direct reading the above range without i.f. offset. The i.f. offsets include all standards around 450-470kHz for a.m., plus 2MHz and 10-7MHz for s.w. in addition to the 450-470kHz ranges, v.h.f. offsets are based around 10-7MHz.

The unit is supplied for panel mounting as a double deck system, with the rear section being devoted to input shaping and prescaler operations. The front section carrying the main i.c. and display, can be used independently in the a.m. mode only, providing facilities for portable d.f. receivers where the low current drain of 4mA is essential.

When used for s.w. and v.h.f., the prescaler drain increases the supply current to approximately 60mA—but a unique feature enables the display to be frozen, and the prescaler supply automatically removed, so that even when displaying v.h.f. and s.w. frequencies, the current drain is 6mA approximately. The display freeze may be derived from a touch-sensitive switch connected to the set tuning control, such that the display change is only enabled as the tuning is being altered.

The display is static, thus creating no strobing interference, and enabling the last digit state to be incorporated in a simple frequency stabiliser system.

The DFM3 is made in England by Ambit, and the one-off ready-made price is £44.90 plus VAT. Available from: Ambit International, 2 Gresham Road, Brentwood, Essex. Tel: (0277) 227050.

PRACTICAL WIRELESS—Radio Amateur Examination Reprint

Please send your order and remittance to:

IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 0PF

Please send me... copies at 85p each to include postage and packing

I enclose P.O./Cheque No. Value...

Remittance must be crossed postal order or cheque (name and address on back please) and made payable to IPC MAGAZINES LTD

NAME

(BLOCK LETTERS)

ADDRESS

(BLOCK LETTERS)

Post Code

Remittances with overseas orders must be sufficient to cover despatch by sea or air mail as required. Payable by International Money Order only

Company registered in England. Regd. No. 53626
A subsidiary of Reed International Limited

Cut round dotted line

54 Practical Wireless, November 1979
Experience of the d.c. editing desk which I described in a previous article indicates that it is an ideal tool with only one serious limitation for dealing with home recordings off radio: the inevitable noise imparted to the tape where we have to reduce the signal to zero. How serious this is must be a matter for individual opinion and the purpose for which the tapes are made. By keeping the gaps between musical items short (say, 2–3 seconds) and restricting the d.c. to the minimum necessary to obtain complete erasure, we can minimise the effect and for tapes made for background music or parties I believe the finished result is completely acceptable.

The man who takes his music seriously, however, may well disagree and for him the use of a.c. in the erase head is the only way. This means that a fairly powerful oscillator must be constructed and a modification to the domestic recorder made to allow the erase head to be isolated from the rest of the circuit while editing is taking place.

There is no great difficulty about this and the photograph on page 56 shows the fader unit which I have constructed in use with a Leak 2002 Cassette unit. None-the-less, it is no light matter to modify an expensive cassette recorder and, if the machine is under guarantee, it must be assumed that any modification would invalidate it. Safety is one of the highest importance and we must be sure that any modification does not impair the electrical safety of the instrument as presented by the manufacturer.

The a.c. fader has an oscillator capable of giving about 400mW of a.c. at a frequency of about 107kHz. The amplitude of the output will be variable by control of the d.c. input and this will vary the effect of the erase head on the recorded material on the tapes so that we can fade or cut, in or out, at will. This type of erasure is identical with that used in the recorder itself so our blank tape will be just as silent as that provided by the recorder.

A difficulty may arise in matching the head to the oscillator output: I believe the majority of erase heads—mine is one—are low impedance (indicated by a d.c. resistance of about 0.5 ohms) and are connected to the internal bias/erase oscillator collectors direct through a capacitor of about 0.1µF. If your erase head has a higher resistance than this, it may indicate that some matching arrangement is necessary and I will deal with this later on. It is very helpful to have the circuit diagram of your recorder as this will immediately indicate if there is a problem of this kind. If, for instance, the erase head is fed from a separate winding on the output transformer then we shall have to make similar provision in the fader unit.

The circuit of the Fader Unit is shown in Figure 1. Apart from the oscillator which I shall describe separately, there are few components: the major one is the fader control itself which is a 250 ohms wirewound, 3 watt, potentiometer. This controls the d.c. input to the oscillator and thus the amplitude of the output.

The i.e.d. is just as essential as it was in the d.c. version and must give a clear red warning light when the fader is on to avoid the danger of accidentally spoiling perfectly good recordings.

The two capacitors, 33µF and 1000µF, are concerned with making the control track perfectly silent in operation. A very important point since noisy fades are worse than no fades at all and, whilst on this point, I think it is a good idea to take the back off the wirewound variable resistor and apply a thin smear of Vaseline to the track. These precautions ensure dead silent operation.

The supply voltage is 15 volts d.c. The current consumption of the unit precludes the use of batteries and a mains power unit is essential. It seems rather extravagant to give it its own power unit considering it will only be used intermittently and I find it very convenient, as I mentioned in the previous article, to use the stabilised power unit described in PW December 1975 connected to the two terminals marked ‘Power Supply’ on the top deck of the unit.

The construction is, I think, clear from the photograph but if you decide to make it, you will have your own ideas on layout—there is nothing critical about it. The output of the oscillator is taken to a two-way terminal block screwed to the back of the wooden case.

The Oscillator

The oscillator circuit is shown in Figure 2. It is fairly typical of bias/erase oscillators used in good quality domestic cassette recorders, with two BFY51 transistors connected in a current switched multivibrator circuit. The amplitude of oscillation depends on the voltage at the supply terminals marked and the frequency is decided by the effective L and C of the transformer T1 together with the 0.1µF capacitor across the primary winding and the 100pF across the secondary. All the components including the transformer fit comfortably on a piece of Veroboard, 0.15 pitch, 127 x 95mm.

An oscilloscope is really essential if construction is to be free from problems. For instance, it clears all sorts of doubts out of the way if the 'scope is first connected across
the erase head and the recorder put in the 'Record' mode: the amplitude and frequency of the internal oscillator may then be carefully noted from the display, the attenuators and the horizontal timebase. When our new oscillator is working, we can then adjust it to give an output that matches these settings reasonably closely.

Transformer

The transformer is wound on a bobbin having a centre hole 10mm diameter, cheeks 32mm across and the distance between cheeks is 22mm. A piece of ferrite rod of circular section about 30mm long which fits snugly into the centre hole is also required.

The two primary windings should be put on first: they consist of 6 turns, each of 26 s.w.g. enamelled wire, bifilar wound and the end of the first winding is connected to the start of the second and this junction point is the centre tap to which the positive supply is connected. These two windings should occupy all the space between the cheeks. Cover the primary with one layer of Sellotape and then commence winding the secondary.

The secondary requires some patience and care: 450 turns of 34 or 36 s.w.g. enamel covered wire are required. Wind them as neatly as possible and in such a way that they occupy all the space laterally between the cheeks. At this point note that if you have a matching problem, this winding should be tapped at 100 turns and 200 turns; one of these is almost certain to give a good enough match.

When the secondary winding is complete, give it a protective covering of Sellotape and wire it into the circuit. Check the oscillator with the 'scope; if you have wound the transformer with reasonable care there should be no problems as far as amplitude is concerned when 15 volts is applied to the power input sockets. However, the frequency may need some adjustment. As previously mentioned, it should be about 100kHz. The frequency of the bias/erase oscillator in the recorder is precisely set—usually 107kHz—but this is due mainly to considerations of the bias function and, for erase only, such precision is not necessary. Aim therefore for between 100 and 110kHz by trying different values of C1 and C2. In my case these turned out to be 0.1μF and 100pF as shown in the circuit diagram.

For those who prefer not to get involved in winding the transformer, there is another way. From the recorder circuit diagram it is quite easy to construct a duplicate circuit of the manufacturer's design and to obtain the transformer as a spare part. In this way, winding coils and testing with a 'scope is avoided.

Modifying the Recorder

The next problem is to modify the domestic recorder so that we can inject the 100kHz energy from the fader unit into the erase head when the recorder is in the 'Play' mode: to do this we must break the two wires from the internal oscillator to the erase head and substitute them with the leads from the fader unit whenever we wish to use the machine for editing. This has to be done with the least possible disturbance—to remove the chassis every time would be too much—and in such a way that the electrical safety of the instrument is not impaired.

Obviously details will vary between different types of recorders but I believe that the following guidelines which are based on the work I have done on the Leak 2002 will apply in most cases. Two small (2 amp) type terminal blocks are interposed in the erase head leads; for reasons of safety, these must be mounted inside the instrument as we must not bring any of the wiring outside the cabinet. The most likely place and where they will be reasonably accessible is on the inside of the detachable base of the instrument. These blocks are quite small—95mm high—and can be fixed to the inside of the recorder base with small countersunk bolts—the bolt head inside and the

The author's a.c. editing system is seen here to the left of his Leak 2002 cassette recorder. The layout of components in the editor is not critical.

Fig. 1: The fader connections to the oscillator of the a.c. system

Fig. 2: The erase oscillator circuit diagram

Practical Wireless, November 1979
protruding thread and nut fastened from the outside. The situation of the blocks must coincide with gaps in the chassis work so that they cannot touch or foul any of the electrical or mechanical parts. There are usually several such places and one should try and find one near the edge of the cabinet so that the base will ‘hinge’ on the leads whenever it has to be removed. Another consideration is the length and the dressing of the erase leads: they will most likely be found to follow one of the cableforms that link the various p.c.b.s in the recorder and they should be left in this position as far as possible and only dropped out when they reach a point near to the terminal blocks. To some extent, these requirements may be conflicting and a sensible compromise has to be made.

One terminal block is connected to the internal oscillator leads (now removed from the erase head) and the two leads from the erase head go to the other block. For normal operating the two blocks are linked with short pieces of wire and the erase head will perform its normal function in the ‘Record’ mode; for editing, we will lift the base, take out the link wires and connect the fader leads to the block carrying the erase head leads. Reverse the procedure when the editing session is over. The fader leads are fed to the block through two 5mm holes drilled in the base.

If for any reason the construction of the machine makes the foregoing impossible, there is another way of achieving the same objective. The fader output can be introduced to the erase head by way of the cassette playing box and the connections made direct to the head. Head connections are not accessible, however, when the instrument is in its cabinet so it is necessary to remove the recorder from its cabinet and a pair of stiff insulated wires are carefully soldered to the head terminals; these wires are bent through 180 degrees so that they protrude into the visible area just short of the line of the head faces. When the cabinet is back in place these wire ends are accessible and the erase head leads are soldered to them for normal operation: for editing, these leads must be desoldered and tucked carefully out of the way (they are not live in the ‘play’ mode) and the fader leads substituted by soldering or by the use of two very small crocodile clips. The greatest care must be taken that the two extension leads cannot touch the cassette or any of the mechanical parts and the same applies to the wires detached for editing.

The Perspex dustcover over the playing box may be a minor problem: in many models the dustcover can be lifted independently of the cassette holder— the Leak 2002 is a case in point—so editing is done with this lifted. Others I have seen have the dustcover screwed to the carrier. The screws can easily be removed for an editing session.

Using the Fader

As we shall be editing on the domestic recorder in the ‘Play’ mode, we cannot see the tape as it travels and cannot therefore use visual cues: we have to rely on the tape counter. Tape counters on all the machines I have examined are too crude for this purpose. The unit drum revolves continuously and there are no marks on the drum to indicate units—let alone fractions of units. Added to this is the lack of a cursor in the window so that precise readings are impossible. There is a very simple modification which very largely overcomes these shortcomings and for fine editing it is essential. On the right-hand side of the units drum and just visible through the window are the plastic teeth that drive the drum: it is a simple matter to cover the extreme ends of these teeth with white model paint so they become readily visible; they are so disposed that they give a precise mark for each unit and one in between each unit. If we now fix inside the window a short length of white cotton centrally and along the length of the window, we have a cursor against which we can make quite precise readings. Starch the cotton first and fix with small spots of Bostik at each end.

As with the d.c. editing desk, recording with the a.c. fader in mind is greatly simplified. The modification we made for the erase circuit is wired for normal operation and the recorder set in the ‘Record’ mode in the ordinary way. Record level controls are adjusted and left in that position for the entire recording session. Only the ‘Pause’ control will be used: we wait for a musical item to end and record the disc jockey’s chatter for a period of time which will be the approximate spacing of items after editing. With a.c. we have no noise problem during silent passages so we can make this anything we like: I usually allow five seconds. Press the ‘Pause’ button until the next item is announced: release the button and resume recording—if the talking spills into the new music, it doesn’t matter, we will cut it out and fade the music in when we edit.

As far as the fader is concerned, I think most of its functions are obvious; as the controlling resistance has a linear track, the fading action really ‘bites’ over the last ninety degrees of its travel which makes rapid, smooth movement easy and avoids uncomfortable wrist twisting. The fader scale should show the points of “maximum signal” and “zero signal” and lines are drawn indicating where fading begins and where it is complete; these markings are most useful when using the device. Editing is monitored continuously in the headphones as it takes place.

![Fig. 3: Details of the Compact Cassette](image)

Fade-outs

For a fade-out of music, erasure of talking and cut or fade-in of the new item, three cues are required. The first is the point where erasure is complete but the item must be brought in: this is identified by playing the tape—probably several times—and listening on the phones. When it is accurately identified, press the ‘Stop’ button and set the counter to zero. The editing point is now opposite the play head and we have to compensate for this. Remove the cassette carefully so that the tape does not move and, using the bevelled stick and felt pen in the way described in the previous article, put a very small black dot on the extreme lower edge of the tape in the left-hand small “window”. Now, by hand, rewind the tape until this dot is exactly in the centre of the right-hand small “window”. The distance between these two small “windows” is the same as that between the play and erase heads, so our zero

continued on page 61 ▶️▶️▶️

Practical Wireless, November 1979
In the July 1979 issue of Practical Wireless we took a good look at the Yaesu FRG-7 general coverage receiver, fitted with an optional digital frequency readout. In this report we will look equally as hard at its more expensive and exotic brother receiver, the FRG-7000.

The FRG-7000 covers the medium and short wave bands starting at 250kHz and going up to 29.9MHz. The most notable features of this receiver are the full digital display and the rather complicated clock and timer facility, again digital in nature. Like the FRG-7 and most other commercial receivers of this type the FRG-7000 uses a synthesised heterodyne system, otherwise known as the Wadley Loop. The operation of the Wadley Loop was covered in detail in the FRG-7 report and will not be repeated here. However it offers stable performance.

The digital clock and timer facility has already been noted, but in use it is not the boon it could be. The mode of operation of the timer is extremely irritating. Once set, and the timer switch operated, the timer changes the state of the on-off switch at the first set time, and then changes it back again at the second. So that if, for instance, the set is switched off, then at the first set time the receiver will be switched on and then off again at the next set point. However, if the operator switches the power switch to on before the timer has performed the first change then the set will be switched off at the first set time, causing some consternation. In use we found it better to totally ignore the timer. The associated digital clock was useful as it could be switched to display either GMT or local time. Using the clock did mean, however, that the mains supply to the set had to be left on continuously if the chore of resetting the clock each time was to be avoided. The mains supply could be left on without power being applied to the receiver, the switch marked POWER being in fact only for the receiver side and not for the clock. If one manages to master the oddities of the timer then it can be used to switch remote equipment such as a recorder.

Controls

The controls are all mounted on the front panel and in general very clearly labelled and well positioned. The exception is the fine tune control. This is just a shade too coarse and positioned too close to the main tuning knob so that it is too easy to alter the setting of the main tuning control when trying to use the fine tune control. This is the same problem as occurred on the FRG-7, so perhaps the Yaesu designers have smaller hands than others. The main tuning control is very smooth, almost too smooth, but it can be stiffened up by screwing the knob further on to the spindle so increasing the friction between the knob and a felt washer.

The digital display shows both the MHz and kHz portions of the frequency tuned, and to indicate when the MHz portion is correctly tuned a light on the front panel, labelled UNLOCK, is extinguished.

The Preselector control is simpler to use than the FRG-7's as the drum is colour coded and also has a wider window. It is still rather fiddly in use and it proved easier to tune the preselector for maximum signal or noise strength.
FRG 7000

Deluxe Communications Receiver
See review in this issue

FRG 7000 £375 ex-stock (inc. VAT)
Remember from the main importers you get a two year guarantee and Free Securicor Delivery
(YH55 deluxe padded headphones £10.00 inc.)

FRG7(D)

Unequalled value for money.
See review in July issue

FRG7 £215 ex-stock (inc. VAT)
Remember from the main importers you get a two year guarantee and Free Securicor Delivery
(SMCC7 Digital Readout for FRG 7 £57.50 inc.)

SOUTH MIDLANDS COMMUNICATIONS LIMITED
S.M. HOUSE, OSBORNE ROAD, TOTTEN, SOUTHAMPTON, SO4 4DN, ENGLAND.
Tel: Totton (0703) 867333, Telex: 477351 SMCOMM G, Telegram: “Aerial” Southampton.
THE CHOICE IS YOURS!

YAESU MUSEN

General Coverage
Communications Receiver FRG-7

£182.75 PLUS VAT

- 0.5-29.9MHz Coverage with 10kHz Readout
- The FRG-7 is a precision-built all-purpose communications receiver, featuring all solid state construction for long life and high performance. Utilizing the Wadley Loop drift cancellation system, in conjunction with a triple conversion superheterodyne circuit, the FRG-7 boasts high sensitivity along with excellent stability. It provides broadcast listeners with such features as a 3-position tone selector, an RF attenuator, and an automatic noise suppression circuit. For many years of satisfying reception, the FRG-7 is the receiver for you.

YAESU MUSEN

Digital Display Communications Receiver with CPU Digital Clock & Timer FRG-7000

£327 PLUS VAT

- 0.25 Thru 29.9MHz Coverage with 1kHz Readout
- Computer technology and convenience features are brought together in the FRG-7000, a digital-display general coverage receiver for the discriminating SWL. The digital clock and timer, controlled by a CPU (Central Processing Unit) chip, will read out both local and GMT time, and will control peripheral station equipment such as a tape recorder. Improved SSB selectivity, ease of operation, and rugged construction are yours with the new FRG-7000 from YAESU.

FULL DETAILS OF THESE EXCITING RECEIVERS FROM THE NUMBER ONE IMPORTER – PLUS EX-STOCK FREE SECURICOR DELIVERY!

(36 pence in stamps brings Illustrated Brochure and our Credit Voucher value £3.60)— A 10 to 1 Winning Offer!

AMATEUR ELECTRONICS UK

508-514 ALUM ROCK ROAD

BIRMINGHAM 8

Tel: 021 321 1637/6313
Telex: 337045

NEW! ONLY FROM US

The HELISCAN Wall-to-Wall Aerial

A specially developed high-tensile receiving antenna giving superb results.
Use it indoors or out — from wall-to-wall, from point-to-point, or even from pillar-to-post!

INTRODUCTORY PRICE — JUST £15.00 INC. VAT

AMATEUR RADIO EXCHANGE

Phone 01 579 5311
for details of current stocks, new and secondhand
The mode in use is selected by a clearly labelled switch with positions for i.s.b./c.w., u.s.b., a.m. and a.m. with automatic noise limiter.

Selectivity is good with a separate filter for s.s.b. and c.w. which helps to make the set pleasant to operate. A two-position aerial attenuator is fitted to cope with a wide range of signal strengths.

The audio side of the receiver is adequate, a tone control being fitted to try to improve the quality. An external speaker can be used to improve the audio quality.

External connections are provided for headphones, recorder, remote control by the timer, external mute control, u.h.f. (SO239) socket for h.f. coaxial input and terminals for h.f. random wire and m.f. random wire aerials and earth. A full set of plugs for all the external connections is provided together with spare fuses and two lengths of aerial wire.

The handbook provided with the receiver is good with a general circuit description, together with installation and operating instructions. Details are also provided of maintenance and alignment procedures together with module and major component listings and identification. The circuit diagram shows all the receiver with the exception of the m.p.u.-controlled time and frequency display module. A world time conversion chart is provided at the back of the book to help with setting the clock.

Construction of the FRG-7000 is of a high standard with most of the components mounted on printed circuit boards.

It is inevitable that the FRG-7000 will be compared with the FRG-7 and its extra cost questioned. If you want a receiver which has a full digital display together with a clock and timer, all controlled by a microprocessor, then obviously you will go for the more expensive FRG-7000. The price difference between the two receivers is around £150 when the basic sets are considered, but this is reduced to under £100 if a digital readout and filters for s.s.b. are added to the FRG-7. The choice is up to you.

Price

FRG-7000 receiver £375.00 inc. VAT.

The FRG-7000 receiver reviewed was kindly loaned by South Midlands Communications Company Ltd., Osborne Road, Totton, Southampton SO4 4DN. Tel: 0703 86 7333, and we would like to thank them for their invaluable assistance in this respect.

Editing home-recorded cassettes

Counter reading now relates to the erase head and is correct. The same process must be applied to all tape counter cues. After editing, these ink dots must be removed using cotton wool with methylated spirit; place the dot in the capstan “window” for this as there is more room and it is easier to get the tape really clean.

After establishing the first cue, rewind the tape in the machine for a short distance, play it and fix the second cue—the point just before the talking starts: note the counter reading.

The third cue is the point at which the fade-out must commence. This can be long or short and is established by rewinding the correct amount of tape for the time chosen; this, in turn, is found by checking the movement of the counter for specified times—my counter moves from zero to 2 in exactly five seconds.

Cuts

Very abrupt cuts are best done by using the power switch. But the fader should be used wherever possible as it gives a smoother transition from music to silence.

All that remains now is to start the tape playing and action the fader correctly as each cue comes up on the counter; it takes a little time to become expert and practice is essential. Record a cassette consisting of music ends, chatter and music beginnings and practice with it—in half an hour or so it will become easy.

The fine editing of tape is a challenging extension of the audio hobby; it requires skill and imagination and offers a very satisfying end product. I have described both d.c. and a.c. systems and explained their respective advantages and disadvantages—so the question arises why not combine the two and get the best of both? The oscillator and its controls can be mounted on the Editing Desk but it would be necessary either to replace the d.c. erase head with an a.c. type and mechanical difficulties of mounting and aligning the new head may then arise, or to fit a complete a.c. type tape transport. This would be quite simple but rather costly.

Kindly Note!

PW “Trent”, June and August 1979

For driving this linear amplifier from transmitters of up to 10W output, strap 4W resistors between base and emitter of each power transistor Tr1 and Tr2. These can be 100 ohm 10 watts drive, with lower powers requiring higher values.

There has recently been a big reduction in the price of the PT 3784A output transistors. These are now available at £2.88 per matched pair, including postage and packing VAT, from R. B. Knight at the address given in the components list.

PW “Sandbanks” Follow-Up—2, August 1979

Capacitor Cy (to be mounted on the reverse side of the p.c.b.) should be connected between the base of Tr6 and pin 7 of IC8 and not pin 2 as stated. The circuit diagram (Fig. 1) should also be corrected.

Practical Wireless, November 1979
Linear integrated circuits are now widely employed in all types of radio and television equipment, but very few of the types currently available can be used at frequencies in the order of 100MHz or more. Commercially available f.m. front-end modules therefore tend to use discrete components for such applications, although integrated circuits are commonly used in the 10-7MHz i.f. amplifiers of v.h.f. receivers.

One of the first integrated circuits suitable for v.h.f. receiver front-ends, the Signetics SD6000, was reviewed earlier in this series (February, 1976). It has a very high performance, but contains only two m.o.s. transistors with their protective gate diodes and requires an external oscillator.

The TDA1062

The new AEG-Telefunken TDA1062 is an f.m. front-end device capable of operating at frequencies of up to about 200MHz and incorporating a much higher degree of integration than the SD6000. Particularly, it provides a unique opportunity for the constructor to make a v.h.f. front-end fairly easily.

The block diagram of Fig. 1 shows the functions incorporated into the TDA1062 chip with a few details of the external circuit. The signal from the v.h.f. aerial is fed through a signal frequency tuned circuit into pin 10 and hence to the radio frequency amplifier stage which has been designed so that it can handle quite a large input. The output from this stage (pin 8) is fed through another signal frequency, tuned circuit to the mixer input (pins 3 and 4). The mixer output at the 10-7MHz intermediate frequency is fed through a low-pass filter to pins 13 and 14, from where it passes into a 10-7MHz tuned circuit and hence to the intermediate frequency output.

It can be seen that the TDA1062 device incorporates an internal voltage regulator circuit which provides a stable voltage for the oscillator, the mixer and the oscillator amplifier/buffer stages. The use of this regulator enables excellent oscillator stability to be obtained.

An automatic gain control (a.g.c.) amplifier is included on the chip, but the circuit requires an external p.i.n. diode. (As its name implies, a p.i.n. diode has an intrinsic or i layer of high resistivity, almost pure semiconductor material between the p and n type materials of the semiconductor junction.)
A particular advantage of the TDA1062 is the use of a double-balanced mixer circuit which enables the oscillator frequency voltages at the mixer input and output to be kept very small and which reduces the amplification of the signal frequency itself by the mixer.

The oscillator circuit has been specially designed so that it can operate at low power levels. One of the resulting advantages is very low radiation from the oscillator reducing the possibility of interference with other parts of the circuit. The low power level of the oscillator also facilitates the use of varicap (varactor) diode tuning. If a large oscillator voltage is applied to a varicap diode, some conduction may occur at low tuning voltages and can result in the production of interfering harmonics, etc.

The low-pass filter in the mixer output circuit reduces oscillator harmonics and the mixing of harmonics to produce spurious frequencies.

Practical Circuit

A typical circuit for a v.h.f. front-end using a TDA1062 device is shown in Fig. 2. The supply voltage for the TDA1062, V^+, should be within the recommended range of 9V to 15V, the typical supply current being 30mA and the maximum permissible dissipation 400mW.

The circuit is tuned by four varicap back-to-back diodes type BB104. The diodes D3 tune the oscillator circuit, whilst D4 tunes the aerial circuit and D1 and D2 the

Fig. 2: A circuit for a v.h.f. receiver front-end using the TDA1062

Coil data for Fig. 2

<table>
<thead>
<tr>
<th>Coil</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>83 turns; 4mm diameter bobbin; 0.8mm diameter wire</td>
</tr>
<tr>
<td>L2</td>
<td>2½ turns on earthy end of L1; 0.4mm diameter wire</td>
</tr>
<tr>
<td>L3</td>
<td>5½ turns; 4mm diameter bobbin; 0.8mm diameter wire</td>
</tr>
<tr>
<td>L4</td>
<td>4½ turns on earthy end of L3; 0.4mm diameter wire</td>
</tr>
<tr>
<td>L5</td>
<td>3½ turns; 4mm diameter bobbin; 0.8mm diameter wire</td>
</tr>
<tr>
<td>L6</td>
<td>3½ turns interwound with L5; 0.4mm diameter wire</td>
</tr>
<tr>
<td>L7</td>
<td>19 turns; 3.5mm diameter air-core; 0.15mm diameter wire</td>
</tr>
<tr>
<td>L8</td>
<td>2 x 15 turns bifilar wound; 0.15mm diameter wire</td>
</tr>
<tr>
<td>L9</td>
<td>2 turns; 0.2mm diameter wire on L3</td>
</tr>
<tr>
<td>L10</td>
<td>6 turns; 4mm diameter bobbin; 0.8mm diameter wire</td>
</tr>
<tr>
<td>L11</td>
<td>1 turn at earthy end of L10; 0.4mm diameter wire</td>
</tr>
</tbody>
</table>

Practical Wireless, November 1979
intermediate radio frequency circuits. The circuit requires regulated voltages for tuning the diodes of $V_{T\text{max}}$ and $V_{T\text{min}}$. The tuning control, VR5 may be a ten-turn helical potentiometer or a long slider potentiometer which enables the tuning to be set accurately; it taps off a voltage of any value between $V_{T\text{max}}$ and $V_{T\text{min}}$ which is applied to the tuning diodes through the alignment preset trimming resistors VR1 to VR4 inclusive.

The simple circuit of Fig. 3 can be employed to provide the two regulated voltages required for tuning the circuit of Fig. 2. The 7.5-V Zener diode sets the value of $V_{T\text{max}}$ to 7.5-V, whilst the potential divider in the base circuit of the BC238 transistor and the base-emitter voltage of this transistor set the value of $V_{T\text{min}}$ to approximately 2V. This relatively small variation of the tuning voltage from 2 to 7.5-V enables the complete tuning range from 88MHz to about 108MHz to be covered. (In most varicap front-ends, a much higher tuning voltage is required for the complete coverage of this frequency band.) If a tuning voltage above 7.5-V is available, one can search for any signals at higher frequencies.

![Fig. 3: A voltage regulator circuit which can provide the two stabilised tuning voltages for Fig. 2](image)

Alignment

The alignment of the Fig. 2 circuit is relatively simple. The core of L5/L6 should be adjusted so that the low frequency end of the band is set to about 88MHz when the VR5 slider is at $V_{T\text{max}}$. The preset resistor VR1 should be set at the high frequency end of the band so that the maximum frequency of 108MHz is received when the slider of VR5 is set to $V_{T\text{min}}$.

The other inductors are aligned at the low frequency end of the band and VR2, VR3 and VR4 at the high frequency end for maximum signal. Repeated adjustments at each end of the band should not be required in order to obtain correct alignment with this circuit.

The output tuned circuit, L8 resonates at 10-7MHz and the coupling coil, L9 provides a 50Ω output to the succeeding i.f. circuit. The bandwidth at the output is about 500kHz.

The a.g.c. circuit in Fig. 2 is shown by dotted lines, D7 being the S262D diode. The a.g.c. starts to become effective at an input signal level of about 30dBm.

Performance

The typical power gain of the Fig. 2 circuit is 30dB and the noise figure is quoted as 5-5dB typical. These figures compare well with those of commercial front-end v.h.f. modules. The three signal frequency tuned circuits together with the design of the internal circuitry enable excellent rejection of spurious signals to be obtained. The quoted values for the image rejection, i.f. rejection and the spurious response rejection 5.5MHz from the centre frequency are 80dB (typical), 100dB (minimum) and 90dB (minimum) respectively.

The gain of the circuit is constant to within 1.5dB over the complete tuning range. The input and output impedances of 50Ω each match coaxial cable, but other impedances can be obtained by modifying the number of turns on L11 for the aerial input impedance or on L9 for the output impedance.

Readers may wish to compare the performance figures quoted for the TDA1062 circuit with those of various commercially produced v.h.f. front-ends on page 273 of our August, 1977 issue.

Conclusions

The TDA1062 is the first device to be made available which incorporates most of the circuitry required for a v.h.f. front-end in a single chip. The home constructor should find it much easier to use than to construct a front-end using only discrete devices, but never-the-less considerable care is required with the construction of circuits operating at such high frequencies. Many of the problems of obtaining a suitable component layout can be solved by the use of a commercially produced printed circuit board.

The TDA1062 should also be suitable for use in the 144MHz (2 metre) amateur band. It is available from Ambit International at £1.95 plus VAT together with a suitable diode and the necessary coils.

Kindly Note!

VMOS Top Band Transmitter, July 1979

A few readers have experienced problems in obtaining some of the components used for this project. The following notes may be of assistance:

1. Capacitors C4 and 8 were incorrectly listed as ceramic disc. They should be polyester or polycarbonate types, but are not critical.
2. As an alternative to 350V polystyrene, capacitors C9, 10, 11 and 12 can be 350V d.c. working silvered mica types C9 and 12 can be 1-5nF.
3. The oscillator i.e. Tr1 is fairly critical in its bias levels. Of those types tested by the author, only the TIS88A was found to be completely satisfactory.
4. Transistor Tr6 is not critical, and can be virtually any small-signal npn type.
5. The barrel of a discarded ball-point pen provides an inexpensive source of 8mm diameter formers for L1, 2 and 3 in the low-pass filter.
6. Mullard FX2249 ferrite blocks are available from C. Bowes & Co. Ltd., (see advertisers' index). The winding arrangements are similar to those shown in Fig. 5 of "Aerials for 160m" in this issue, except that primary and secondary are transposed to provide a step-up.
7. As an alternative to a 10W speaker matching transformer, a mains transformer may be used, though this will be physically larger, and will not give such good results. The secondary winding should be 12-0-12V or 0-12-24V, and be capable of carrying 1A d.c. without saturating. Probably a minimum of 2A rating will be necessary. The mains primary is not used.

When setting up the modulator bias level, VR2 slider should be turned fully clockwise before applying power to the transmitter.
by Eric Dowdeswell G4AR

There seems to be a complaint prevalent among some readers who have the older valved receivers, namely “sensitivityitis”. The symptoms are a degree of jealousy for the modern receivers that claim a “sensitivity of 0.5µV”, whatever that might mean, and an inability to find the DX logged by other readers.

There are even those who spend pounds on a new set of valves, a waste of money in most cases. Now for the cure to this strange malady. First of all, if the set is getting stations at all on the amateur bands then there are three matters that can be actioned, any or all of which can prove effective.

First, spend a few more months just listening, to gain more experience in picking out the weak DX from under the general bedlam, choosing the right band(s) for the time of day. In other words don’t look for DX on 80m in the middle of the day. Secondly, if you feel the set isn’t quite up to scratch and that you are competent to wield a signal generator and trimming tools then try aligning the r.f. and i.f. stages of your set, but leave the first oscillator trimmers alone if the calibration is reasonably good. Thirdly, try improving the aerial system.

The order in which the cures are carried out will depend upon individual circumstances. If one is experienced on the bands with a fair receiver then the aerial ought to come in for attention first, looking for improvements in height, length and distance from houses, trees, etc., not forgetting the absolutely essential aerial tuning unit.

Do try to get more than one aerial up and preferably of different types to give a choice of directivity and angle of reception. In this connection always check on the direction(s) of optimum reception of any aerial erected, looking at the polar diagrams in an aerial handbook if you are not already conversant with them. Don’t forget that the polar diagram for a wire will vary greatly from band to band, a null on one band becoming a point of best reception on another.

When studying an aerial’s characteristics do use a proper Great Circle map based on the UK, usually London, and not maps from a school atlas! Mercator may have been a great navigator but his maps are useless for our purposes. As an example, if you want to put up a half-wave dipole for VK and ZL then the wire must run NW/SE as the Great Circle route is to the NE/SW and not to the NW/SE as you always thought! Great Circle maps are obtainable from HMSO, the RSGB and Short Wave Magazine.

If r.f./i.f. alignment is the order of the day do get a manual for your set and follow instructions. Use a proper signal generator and not some wobbly DX station as the signal source. Normally only the trimmers at the highfrequency end of the range will need touching as these are very susceptible to vibration, shock, etc. Go over the i.f. alignment several times as the settings on each i.f. stage are inter-dependent. If a crystal filter is fitted, switch it in and tune the signal generator for maximum on the output meter and not to precisely 465kHz or whatever it is supposed to be.

Don’t touch the oscillator trimmers unless you have an adequate crystal calibrator or frequency meter, and never use a signal generator as a frequency meter because they are not meant to be accurate in terms of frequency.

Re-valving a receiver at random is most unwise as almost certainly it will then want re-aligning because of the changes in valve inter-electrode capacitance which form part of the r.f. and i.f. circuitry. Finally, if you have an old receiver don’t expect the same degree of accuracy of dial calibration that can be obtained with a digital frequency readout or with a receiver using the Barlow-Wadley system, such as the FRG-7 and SRX-30. You can get along quite well with a crystal controlled marker generator feeding into the aerial socket of the set.

Here and There

An interesting letter from Cyril Pratt BRS42386 living in Steventon, Oxon, reveals that he and his YXL are both invalids, without transport, yet Cyril, although an OAP, finds time goes far too quickly for him. He’s become a very keen listener to the amateur bands and has a 100ft wire up plus a 28MHz rotary dipole fashioned from aluminium tubing. Present project is a 144MHz converter to be followed by a suitable Yagi beam. Makes all my aches and pains seem as nothing! Must remember to stop grumbling at the odd twinge!

In Paignton, Devon, lives Tom Hillier of 23 Palace Avenue, and he’d like to hear of other users of the CR100 with a view to getting more out of his set, if indeed it is lacking at all. So if you’ve played around with one why not contact Tom? An interesting note from Brian Burke G4HY on the matter of phonetics. A CQ call on 20m, using the proper phonetic alphabet, raised a KL7 who mistook the call and thought it was a GS4! Others thought it was a new country and Brian worked several new countries himself before he was able to get it over that he was just another G4! He, too, would like the proper names changed in the present ITU phonetic alphabet.

Practical Wireless, November 1979
On the same subject G4FLK who was in RAF and civil telecomms from 1927 to 1965 quotes the phonetic alphabet used by Imperial Airways in the 30's and asks: "why the hell did they have to alter that?" Well, there was one before that, that started with "Ack", "Beer", etc., so now there were grumbles when that was changed! Unfortunately there are always people around who do these daft things just to justify themselves in their job, not to make it easier for all concerned.

A brand new FRG-7 is the pride and joy of Paul Bown BRS40740 of Reading, Berks, fed from an aerial in the loft which I trust Paul will do his best to convert to an outside wire which his new acquisition deserves, plus an a.t.u. of course!

DXing

After trying baluns and other d-blosers in his aerial circuit Pete Lucas (Newport, Salop) has thrown them out and taken his vertical into his AR88 via an a.t.u. He very sensibly built a crystal calibrator and drew up some calibration graphs for the set, on the amateur bands at least. Pete logged OJ0MA on Market Reef for a new one, as it was for the many who logged and worked him. This was on 10m while on 15m it was VQ9s DS, JJ and TR for a useful trio. For those who copied SV1DC/A on Mount Athos, Pete says the QSL QTH is Box 161, Athens. Suppose I could take my HW32A on my annual visit to SV land and do ditto!

As the sole Upholder of the ST call for a number of years I'm glad to read in the IARU Region 1 News that there is now a club in Omdurman 6T1YF and several active members such as 6U2AA, ST2FF, 6T2NI (YL-Nadia), ST2MM and ST21D. Needless to say those new prefixes will be very welcome for the WPX chasers. Club QTH and QSL address is: PO Box 80, El Morada, Omdurman, Sudan. The same news source mentions the changes to the Nigerian prefixes which now run from 5N0 for the Lagos area through 5N1 to 5N9 for other areas. Until recently the only licensed stations were 5N0AAJ, 5N1AAE, 5N2AAV, 5N0AAM and 5N0NAS so all others should be treated with a pinch of salt. In Greece changes have been made, although SV1 remains Athens and district, but Crete now becomes SV9 rather than SV0 which is reserved for reciprocal licences. Past SV0s were reciprocal anyway.

After rather poor results with his PW Direct Conversion Receiver, Allan Stevens of Crowthorne, Berks, tried the aerial downlead of his TV set, and was pleasantly surprised with things like C5ABM in the Gambia, CM8DK, VP8HA and SL2BS in Liberia, so imagine what a good aerial would do! However Allan reckons the PW job an excellent effort for the £10 it cost him to make it.

Still our lone RTTY exponent Dennis Sheppard in Sheerness, Kent, gets copy on the three top h.f. bands with stuff like HK2ECH, PZ1AC and LU2DGO on 20m, 5Z4RT, 9G1JX and WBOKFB on 15m and PY5PW on ten. Regular Bernard Hughes of Worcester has progressed through many receivers from an Eagle SX40 to his present Drake R4C and is casting envious eyes on the so-called "ultimate receiver" the RS20! Bernard has 306 countries confirmed out of 308 heard which is pretty remarkable. I am still trying to persuade him to go for his RAe as obviously there is nothing lacking on the receiving side. Recent catches include OA4CRR, VP8NO, XE1ABC on 80m, all after midnight, AP2P, CO3VR and TF3TF on 40m with CO2CI, HS1ABD, KB6FM, VR3AR, VK2AGT/LH (Lord Howe Is) on 20m. On 15m it was HKOBXX, P29NML, 5U7AF and 5NODOG with 10m providing C31YM, H44CT, TU2FH and XT2AT, all on s.s.b. using 10/15/20m dipoles and a 66ft long wire.

David Palmer (Stowmarket, Suffolk) was mislead into thinking he was doing well with indoor dipoles, getting the Europeans loud and clear, until he fixed up a long wire outside and started to find the real DX on his Trio JR310. On 20m it was HS1CB, HZ1TA, J7DAU (Dominica), VP2ML and VS6HG with 15m coming up with A35WL, FK8CR, HM15XW, TR8RG, VP9JB, VQ9JW, XT2AW, 6W8AE and 9X5PP. Solcatch of note on 10m was Y80ADW.

When not playing about with his transmitter Mike Stollov of Blackley, Manchester, heard C5ABK on 20m, CT3AF, HP1CY, HS1ABD, VP2ML on 15m with only 5T5CI on 10m so it looks like this is ten down in the doldrums at the moment in spite of a slowly rising sunspot count. Mike uses an FRG-7 and 66ft wire plus a.t.u. Peter Hawkes (Stourbridge, W. Midlands) is starting to study for his RAe, and being an electrician by trade ought not to find it too hard. His DX160 and long wire found ZL1BI on 7MHz, VQ9JJ, OJ0MA, HC1LS on 14MHz and CT3AR, 3D2BM, HS1WR and 9N1MM on 21MHz with nothing to report on ten.

The trouble with Bill Rendell of Fecock, near Truro, in Cornwall, is that all the DX he quotes is good stuff and I don't know what to leave out! His Heathkit AR3 with preselector and 115ft aerial heard C31SR, M1C, VP2MFE, VP8HA, VK8LD (that's a rare one indeed!), all 20m s.s.b. with 15m providing C6ANU, C31SO, HC2HX, HM1QD, VP2VJ, VP8SO on Signy Is, XT2AW, YB0WR, ZD8WT, and 386CD on Chagos, also not heard all that often.

Bill comments on the odd effects that dust in the tuning capacitor of a receiver can have, especially on s.s.b., causing uneven tracking of the sections. He tried a vacuum cleaner with amazing results and recommends the idea to readers.

Allan Stevens, mentioned earlier, put his new Trio 9R9QDS to good use with YB0WR on ten, VP9JW on Chagos on fifteen and VP2MAI, YS9EA and ZF1JIU in the Cayman Is. Unusual logging of UM8MAI on 160m c.w. from Ian Marquis (Leigh-on-Sea, Essex) as was XT2AW on 40m c.w., and in the same mode H44CF on 15. Finds on s.s.b. included F0CH/FC, OJ0MA and 9K2DR on 80m, FK8CR, FM7AV, FR7ZM, J0TOLAJ (that's a nice one), SV1IWA/A on Mount Athos and ZK1CQ (QSL to ZL1AMO), all with an FRG-7, dipoles and 120ft wire.

Last for this month is Dave Coggins from Knutsford, Cheshire, who drummed up something on 10m using a two-element quad to his DX160, like C5AP, VP2MAV, XT2AW, Z53BT and 9J2LL, which goes to show what something more than a wire can do. At the other end, on 80m, Dave logged CN8AK, F0CH/FC, HC1BI and YV1TO on his 60ft wire, with V5P5X, Y93RVE, PJ3AS

Reports on the various bands are welcome and should be sent direct, by the 15th of the month, to:

AMATEUR BANDS Eric Dowdswell G4AR, Silver Firs, Leatherhead Road, Ashtead, Surrey KT21 2TW.

MEDIUM and SW BANDS Charles Molloy G8BUS, 132 Segars Lane, Southport PR8 3JG. Reports for both bands must be kept separate.

VHF BANDS Ron Ham BRS15744, Faraday, Greyfriars, Storrington, Sussex RH20 4HE.

Practical Wireless, November 1979
MAIL FROM BREDHURST ELECTRONICS

H.F. RECEIVERS
- Lowe SRX 30 £179.00
- Yaesu FRG 3 £215.00
- Yaesu FRG 7000 £372.00
- Trio R 820 £790.00

2 METRE FM RECEIVERS
- Search 9 £59.00
- FDK TM56B + scan £106.00
- Belcom AMR 217B + scan £120.00
- HF 12 Pocket £79.95

MARINE VHF RECEIVERS
- Search 9 £59.00
- FDK TM56B + scan £115.00
- Belcom AMR 217B + scan £120.00
- HF 12 Pocket £79.95
- SR 11 + scan £87.00

AIR BAND RECEIVERS
- Lowe AP 12 £120.00
- Walenth W144 £28.95

POPULAR ACCESSORIES
- Jaybeam Antennas P.O.A.
- ASP Mobile Antenna P.O.A.
- Highgain H.F. Antenna P.O.A.
- G Whip Mobile H.F. Antenna P.O.A.
- Microwaves Modules P.O.A.

SPECIAL OFFERS
- 12v 3A cont. power supply £19.50
- 5Ah surge fully protected £5.75

ACCESS � BARCLAYCARD ● INSTANT H.P.
All prices include carriage and VAT.

TRIO EQUIPMENT

SRX30 SWL RECEIVER £181.75

This superb general coverage communications receiver offers high stability, high sensitivity and a general performance which has caused it to become the 'STANDARD’ receiver for amateur and short wave enthusiasts.

Powered by 240v A.C. or 12v d.c. and excellent control layout make this receiver versatile and easy to use.

Supplied fully tested and guaranteed, complete with comprehensive handbook and accessories it represents excellent value for money at only £215.

To order your SRX7 please send cheque or phone your credit card number to the above address.

H.F. TRANSCEIVERS
- Denton HF 200A £408.00
- Trio TS 120 £408.00
- Yaesu FT 7B £430.00
- Trio TS 120S £489.00
- Trio TS 520S £542.00
- Yaesu FT 101Z £574.00
- Yaesu FT 101 2D £601.00
- Trio TS 180S £712.00
- Trio TS 820S £832.00

2 METRE F.M. MOBILES
- ICOM IC 240E £450.00
- FDK Mult 700E £229.00
- Trio TR 7500 £240.00
- Yaesu FT 227R £244.00
- FDK Mult 800D £289.00
- Yaesu FT 227 BRS £295.00

2 METRE F.M. HANDHELD
- ICOM IC 211E £549.00
- Yaesu FT 225R £515.00

2 METRE SSB
- Mizuho 88 2M £165.00
- Trio TR 7010 £193.00
- ICOM IC 202S £199.00

IF YOU ARE INTERESTED IN AMATEUR RADIO
AND LIVE IN OR NEAR KENT
WHY NOT COME AND VISIT US
(or Phone us for a copy of our Catalogue)

WE STOCK
- TRANSCEIVERS
- POCKET RECEIVERS
- BOOKS
- RECEIVERS
- POWER SUPPLIES
- ROTATORS
- AERIALS

FOR
AMATEUR, MARINE & PRIVATE MOBILE RADIO

THANET ELECTRONICS
143 RECULVER ROAD, HERNE BAY, KENT
Tel: (02273) 63869
Telex: 965179

Lowest Prices Ever

www.americanradiohistory.com
Don’t buy an FRG7000 . . . before you read this.

YAESU FRG7000 DELUXE GENERAL COVERAGE RECEIVER.

The FRG7000 is based on the successful FRG7 design with a host of features that make it a deluxe receiver for the really serious short wave listener. Digital readout, electronic clock and timer, superb selectivity all go to make up the receiver that everyone aspires to own. Frequency coverage is 0.2 MHz to 30 MHz and the clear digital readout makes it one of the easiest receivers to use.

£375 inc. VAT & free Securicor delivery:
Reviewed this issue.

Regular readers of Practical Wireless will know from recent issues that we are one of the country’s leading specialists in amateur radio and short wave receivers. Our business has been built up by giving sound, honest advice to customers, whether they are buying a £700 receiver or an aerial insulator. Because we are staffed by enthusiasts, we are a pretty fussy bunch of chaps when it comes to selecting and selling communications equipment. That’s why you will only find models on our shelves that have passed our critical test procedure as representing good performance and value for money. If we don’t like a model we won’t stock it . . . which means it’s either over priced or it’s a poor performer! The FRG7000 is definitely neither of these. If you can stretch to its price of £379, you’ll be the owner of one of the finest receivers in the World, costing below £1,000. Now £379 is a lot of money to most people and we would not be honest if we didn’t admit that we do occasionally get a faulty FRG7000. By fault we don’t necessarily mean it fails to work but rather that it does not meet the manufacturer’s published performance figures. Almost always this is due to its long journey halfway round the World from Japan. That’s why we run our own quality control tests on all receivers prior to despatching them. We check for both electrical and mechanical faults and above all check it for sensitivity — i.e. its ability to resolve the weakest of signals. Only when we are satisfied that it is in perfect order, do we release it. If you order by mail order or telephone your credit card number, then we’ll have it speeding on its way to you via Securicor, who normally deliver within 24 hours. Retail callers will be made welcome at our ground floor showrooms, where equipment can be demonstrated.

Therefore, when you buy from us you won’t receive an unopened box and spend the next 12 months wondering whether conditions are poor or your receiver is not up to specification! You’ll also be assured that in the unlikely event of your receiver developing a fault our technical team will be there to assist you promptly and efficiently.

WATERS & STANTON ELECTRONICS
Warren House, 18/20 Main Road, Hockley, Essex.
Tel: Hockley (03704) 6835.
(NEW ADDRESS).
Opening hours: Mon-Sat 9.00-5.30.
E.C. Wed 1.00 p.m.

General Coverage Communications Receiver
FRG-7

- 0.5-29.9MHz Coverage with 10kHz Readout

The FRG-7 is a precision-built all-purpose communications receiver featuring all solid state construction for long life and high performance. Utilising the Wedley Loop drift cancellation system, in conjunction with a triple conversion super-heterodyne circuit, the FRG-7 boasts high sensitivity along with excellent stability. It provides broadcast listeners with such features as a 3-position tone selector, an RF attenuator, and an automatic noise suppression circuit. For many years of satisfying reception the FRG-7 is the receiver for you.

WIDE RANGE OF NEW AND USED RECEIVERS AND TRANSCEIVERS
AMCOMM SERVICES
194A Northolt Road, South Harrow, Middx.
01-864 1166
01-422 9585

STEPHENS-JAMES LIMITED
COMMUNICATION ENGINEERS
47 WARRINGTON ROAD, LEIGH WN7 3EA
ENGLAND
Telephone (0942) 676790

Everything for the Shortwave Listener.
We stock receivers and listening aids by most of the world’s leading manufacturers. Full range of VHF receivers — transceivers. Mobile equipment pre-selectors — filters — antennas. Stabilised power supplies from 2 to 20 Amp. Antenna switches — RF converters. Aluminium masts — clamps. Antenna rotators.

Tube
FRG7-FRG7000

 Drake
SSR-11 SPMF + F4C *

Secondhand Equipment
Our secondhand equipment stock changes daily. Send S.A.E. for latest price list. Part exchanges welcome.
Access Barclaycard and H.P. facilities.

TRIO
R-300-R820S

Leaves GX120 Receiver
Antenna Multipliers
Designed and manufactured by ourselves. Over 1500 sold in over 50 countries.
$25-50

PRACTICAL WIRELESS T.V. SOUND TUNER
(Dec. 18 article by A. C. Ainslie)
Copy of original article supplied on request
IF Sub-Assembly (G8) £7-82. P&P 85p.
3-way Station Control Unit £1-38. P&P 30p.
6-way Station Control Unit (Special Offer) £1-15. P&P 35p.
P&P all items 55p.
(Price of goods and P&P includes 15% VAT)
Callers welcome at shop premises.

MANOR SUPPLIES
172 WEST END LANE, LONDON NW6
(Near W. Hampstead Tube Stn.) Tel. 01-794 9751

Practical Wireless, November 1979
and VP2ML on 40m. On 20m it was TO8DO (Tahiti), VP8HZ, VR6TC (Pitcairn Is) and 5W1BP on W. Samoa. Finally on 15m it was YC6HS in Indonesia, ZF1HJ, 3D2BM (Box 590, Suva, Fiji), 6W8AR, FO8DT, H44CF, T2AAA on Tavalu and VK7GK.

Club Info

October 12 sees Ron Ham of PW VHF Column fame talking to the West Kent ARS on Man on the Moon at the Adult Education Centre, Monson Road, Tunbridge Wells at 8pm, with Bredhurst Electronics expounding on commercial gear on the 26th. Informal meetings at the Drill Hall, Victoria Road, on the alternate Tuesdays. Write to: Brian Castle G4DYF, 6 Pinewood Avenue, Sevenoaks, Kent, for more info.

For the latest news on meetings of the Northern Heights ARS contact: Geoff Theasby G8BMI, 12 Southfield Avenue, Riddlesden, Keighley, or ring 62859. NHARS News is good reading and the meetings are held every Wednesday at the Bradshaw Tavern, Bradshaw, Halifax. In Bury the ARS meets every Tuesday night at Mosses Centre, Cecil Street, and on Oct 9 a construction competition will be judged and there will be a film show. New faces are very welcome to the club which boasts an FT101 and up-to-date library. Write: M. Bainbridge G4G5Y, 7 Rothbury Close, Ainsworth Road, Bury.

How about contacting Mary Palmer G8RZR about meetings of the Mid-Warwicks ARS held on the first and third Mondays at 8pm at 61 Emscote Road, Warwick. She resides at 12 Edmonds Close, Woodloes Park, Warwick. Several club meetings are being devoted to “Getting Started” in amateur radio, to help prospective RAE candidates with some practical work. A brief note from Stuart Hardy reveals that the Nottingham AR Club meets in the Sherwood Community Centre, Thursdays at 7.30pm, newcomers welcome of course.

Recently re-formed Pontefract RS has call G3FYQ with fortnightly meetings at Knottingley Town Hall 7.30pm with SSTV being the subject on Oct 18, courtesy G4IBN and G4FBA, and a film show on the night of Nov 1. Details from: Phil Butterfield G4AAQ, 43 Lynwood Crescent, Pontefract, W. Yorks, or ring 71071. Now to the Edgware and District RS, second and fourth Thursdays, 8pm, Waltham Community Centre, 145 Orange Hill Road, Burnt Oak, Edgware. Oct 11 sees G3GC expounding on choosing a site for v.h.f. and Oct 25 means Barry Haines on using a personal computer. Club puts out RSGB slow Morse under call G3ASR so send for details to: Howard Drury G4HMD, 39 Wembley Road, Stanmore, Middx or try 01-952 6462.

Please aim to get your logs and letters to me by the fifteenth of the month.

MEDIUM WAVE DX

by Charles Molloy G8BUS

Local Radio has crept into the m.w. band in the UK unobtrusively during the past ten years or so, and there are currently some 40 stations operating with powers of between 100 watts and 50kW, with a few more to come. They can be split into two groups, those run by the BBC and those belonging to the Independent Broadcasting Authority (IBA), the latter being commercial stations which carry advertising.

The BBC is to be found on 13 different frequencies which are: 756kHz (397m), 774 (388m), 835 (351m), 999 (300m), 1035 (290m), 1116 (269m), 1359 (221m), 1458 (260m), 1485 (202m), 1503 (200m), 1521 (197m), 1548 (194m), 1584 (189m). The majority of BBC outlets use the name of the town or city as part of their identification with, exceptionally, Radio Solent on 999kHz which is in Southampton, Radio Merseyside 1485 in Liverpool and Radio Humberside also on 1485 which is in Hull.

The IBA stations, which are on 999kHz (303m), 999 (300m), 1026 (292m), 1152 (260m), 1170 (256m), 1278 (235m), 1431 (210m), 1548 (194m), are more difficult to identify since most of them do not use place names. Beacon Radio on 990 is in Wolverhampton; Radio Trent 999 is in Nottingham; Downtown Radio 1026 in Newtownards in Northern Ireland; Radio Clyde in Glasgow, Metro Radio in Newcastle upon Tyne and Piccadilly Radio in Manchester are on 1152; Radio Tees in Stockton-on-Tees, Radio Victory in Portsmouth and Radio Orwell in Ipswich are all on 1170; Pennine Radio in Bradford is on 1276 with only 100 watts; Radio 210 Thames Valley on 1431 is in Reading while 1548 is shared between Capital Radio (London), Radio Hallam (Sheffield), Radio City (Liverpool) and Radio Forth (Edinburgh).

Manx Radio in the Isle of Man is in a category of its own. It was the first commercial radio station in the UK when it came on the air in 1964 and it is currently on 1368kHz (219m) with a power of 4kW.

DXing Local Radio

Although m.w. DXing is normally concerned with the reception of distant stations, a number of DXers have found that local radio too, can present a challenge. An ordinary transistor portable is ideal for this type of DXing owing to the directional properties of the internal aerial. Tune in a station on the medium waves then rotate the portable and two positions, 180 degrees apart, will be found where the station either disappears or its strength is reduced to a low value. These are the nulls and they are very useful for winking out DX. Tune onto one of the shared frequencies such as 1152kHz, rotate the portable and, depending on your location, you may be able to separate one or more of the broadcasters on the channel. Of course a communications receiver and loop can also be used for local radio DXing.

At night-time, broadcasts from more distant stations will be heard while at twilight, when stations are fading...
in and out, some of the best catches are to be made. Twilight reception conditions may persist all day in mid-winter.

Be prepared for surprises. **Stewart Kinsley** writes from Coventry to say that he is puzzled by reception on 1548kHz. "From distances and powers I’d expect to pick up Capital Radio. The actual situation is that in the evenings I hear Radio Forth with Radio Bristol in the background, while in the mornings I hear R. Bristol". Reception was with a Drake SSR1 and 20ft non-directional aerial. You would do better with a m.w. loop Stewart.

Directional aerials are in use at some transmitters, which may account for the non-appearance of the London station. It is possible to make a call by using two or more masts joined together in a special way. There is an example beside the main railway line between Manchester and Leeds at Stalybridge where three masts, belonging (I believe) to Piccadilly, should produce a directional pattern to “protect” Birmingham on the same channel. Such arrangements are commonplace in the United States where more than 4000 stations operate on the broadcast band (medium waves).

QSLs

Local radio stations are good verifiers but do send them an accurate report and enclose return postage. A full list of stations plus addresses is to be found in the *World Radio and TV Handbook*, while the Twickenham DX Club, 13 Tennyson Avenue, Twickenham TW1 4QX in the UK will supply non-members with a copy of Broadcasting Stations of Great Britain, which contains addresses, for three 7p stamps (UK) or two IRCs (abroad).

If you are stuck, then use the station’s identification plus the name of the town. For example, BBC Radio Merseyside, Liverpool will surely be delivered by the Post Office though they would prefer Commerce House, 13–17 Sir Thomas Street, Liverpool L1 5BS, which is the full address. It is also a good idea to give some details of yourself and your hobby. The station may acknowledge your report over the air and who knows, you may even win a prize for being the most distant listener.

Geneva Plan

It is almost a year since the introduction of the Geneva Plan for the medium waves and it might be useful now to have a look at what the plan has done for (or to) m.w. DXing. It was feared that a common plan for Europe, Asia, Africa and Australasia would make DXing between these areas more difficult and to some degree this has happened. A note from **Arthur Cushman** of Invercargill, New Zealand, mentions that “with the 9kHz separation, European signals are not so numerous”. New Zealand and Australia were previously using 10kHz separation which did not line up with Europe.

What was not expected though, was the non-observance of the new plan by many countries outside Western Europe. In particular a number of Middle East countries are still using pre-Geneva channels, at any rate for their lower power stations. Portugal is another offender where the higher power outlets have moved to 666, 756 and 1593, while the Radio Commercial programme is to be found on the old 692, 782, 1034 and 1562kHz.

In reply to Stewart Kinsley, the station on 1414kHz is Algiers 3 which should be on 1422. Malta is on 988kHz. Omdurman Sudan on 764, Nouakchott in Mauritania on 1349 and Amalias Greece on 1562, all pre-Geneva. It is still worth searching between the official channels for DX. Among the high power stations to be found, there is Iraq with 300kW on 755kHz, Sudan with 200kW on 960, Shiraz Iran on 985 with 400kW and Dubai on 1480 with 600kW.

Readers’ Letters

John Rose who is Chairman of the Handicapped Aid Programme (UK) has asked me to mention that he has moved, and asks that all mail should be sent c/o EDXC, PO Box 4, St Ives, Huntingdon, Cambs PE17 4FE. The address given in the August issue of *PW* is now out of date.

Fred Pilkington (G31AG), who alternates between Newmarket and Torremolinos, mentions that he sent the BBC a tape of Radio 2 on 909 and 693 made while he was in Spain. He won an album of Top Tunes for the best DX listener to the Saturday night programme. It does seem to pay to send in a little more than a bare reception report.

ST

Older readers will pause for a moment to mark the passing, at the age of 82, of Wing Commander John Scott Taggart. He was a Barrister-at-Law, writer, publisher and designer of the famous ST series of receivers which appeared in the early 1930s. During the first world war he was a wireless instructor in the army and during the second he was associated with radar, but it will be for his efforts to introduce the man in the street to the hobby of Wireless that ST will be remembered.

SHORT-WAVE BROADCASTS

by Charles Molloy G8BUS

When asked by potential recruits to the hobby for advice on the purchase of a receiver I usually answer: “What do you want to listen to?” Confusion is often the result, caused no doubt by the large choice of receivers of various types and prices that are on offer in the shops.

Practical Wireless, November 1979
Receivers for BC Band Listening

The advice I normally offer for broadcast band listening only, is to get hold of a portable receiver with one or more short-wave bands and a telescopic aerial. With it you will be able to listen to short-wave broadcasts from all over the world. It need not be an expensive set, almost any receiver with short-wave coverage will do. If you decide after a while that the short waves are not for you, then the receiver can still be used for listening to Terry Wogan at breakfast time and nothing is lost. Many never progress beyond this stage of being a listener to short-wave broadcasts and who should say they are wrong!

Receivers for DXing

If your interest in radio is deeper, then you would soon find the limitations of this type of receiver. You will not be able to listen to the Tropical Bands, or to Radio Amateurs. Medium wave DXing and the reception of difficult short-wave stations such as Radio New Zealand, will also be out. In order to pick up radio amateurs you must have a receiver capable of resolving single sideband (s.s.b.) and Morse (c.w.). For serious m.w. DXing you need to be able to use a loop aerial which almost precludes portable receivers which have an internal aerial of their own, so both purposes a communications receiver, such as the FRG-7, SRX-30, AR88, etc., is indicated. For short-wave and tropical band DXing the better type of portable receiver such as the Grundig Satellit and others, is an alternative to the communications receiver and many experienced successful DXers operate with this type of equipment. Some of these portables are quite sophisticated and may even have a dozen or more bands, digital readout and two degrees of selectivity. Remember though, they should be capable of receiving s.s.b. and c.w. if you are interested in amateurs, and there should not be an internal ferrite rod aerial for the medium waves if you are interested in serious m.w. DXing.

As I said at the beginning, it all depends on what you want to listen to. It is worth remembering though, that a communications receiver is usually a good investment and it is possible to realise on one or to trade it in for something better, without too much difficulty. There is quite a trade in secondhand gear amongst radio amateurs.

B40 Receiver

According to Peter le Queine of Dunedin in New Zealand, the Ministry of Defence, OS (NPS), Building 25A, Royal Arsenal West, London SE18 6TJ, UK, will supply manuals for the B40 and B41 receivers as well as manuals for modifications to them. They should be ordered as follows:

B40 Receiver. Handbook for AP57140 Series Receivers BR1617.

B40 Modifications. Handbook for AP57140 Series Receivers Modification BR1617 (Mods).

B41 Receiver. Handbook for AP57141 Series Receivers BR1618.

B41 Modifications. Handbook for AP75141 Series Receivers Modification BR1618 (Mods).

Peter concludes by saying that the B40 is certainly a fine receiver, in spite of the weight and size, and he understands that they are still in current use with the RNZ Navy. There are not many of them available on the surplus market in NZ, where the B40 fetches about NZ$100.00 and the B41 $40.00.

11 Metre Band

The current position at the time of writing appears as follows:

<table>
<thead>
<tr>
<th>kHz</th>
<th>Station</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>25605</td>
<td>IBA Jerusalem</td>
<td>Afternoon and evening</td>
</tr>
<tr>
<td>25620</td>
<td>Voice of America, Dixon</td>
<td>Early morning to Far East</td>
</tr>
<tr>
<td>25630</td>
<td>Paris</td>
<td>Evenings</td>
</tr>
<tr>
<td>25640</td>
<td>IBA Jerusalem</td>
<td>Afternoon and evening</td>
</tr>
<tr>
<td>25650</td>
<td>R. Nederland, Malagasy</td>
<td>Mornings</td>
</tr>
<tr>
<td>25650</td>
<td>BBC, UK</td>
<td>All day</td>
</tr>
<tr>
<td>25690</td>
<td>Radio Liberty (Portugal)</td>
<td>All day</td>
</tr>
<tr>
<td>25705</td>
<td>IBA Jerusalem</td>
<td>?</td>
</tr>
<tr>
<td>25790</td>
<td>Radio RSA</td>
<td>All day</td>
</tr>
<tr>
<td>25820</td>
<td>Paris</td>
<td>All day</td>
</tr>
<tr>
<td>25880</td>
<td>VOA Bethany</td>
<td>Evenings</td>
</tr>
<tr>
<td>25900</td>
<td>Paris Parallel</td>
<td>25820</td>
</tr>
<tr>
<td>25990</td>
<td>VOA Delano</td>
<td>All day</td>
</tr>
<tr>
<td>26040</td>
<td>VOA Greenville</td>
<td>Early morning to Far East</td>
</tr>
<tr>
<td>26095</td>
<td>VOA Dixon</td>
<td>Late evening</td>
</tr>
</tbody>
</table>

Radio New Zealand

In reply to my request in the May issue for up-to-date information on Radio New Zealand, Mr. R. G. Haggett who is Manager Overseas Programmes at RNZ, has sent me the latest short-wave and frequency schedule, with times in GMT, which is valid until 28 October 1979.

Pacific Service

- 11-835MHz 25m 1800 to 2105
- 17-860MHz 16m 2115 to 0815
- 15-345MHz 19m 1800 to 0625
- 6-105MHz 49m 0640 to 1030

Australia and NW Pacific

- 11-945MHz 25m 0830 to 1215
- 6-105MHz 49m 1045 to 1215

The short-wave service operates two 7.5kW transmitters at Titahi Bay 15 miles north of the capital city, Wellington, and the aerials are orientated in such a manner that the main coverage areas are the Pacific and Australia.

Thanks also to reader G. Watson, of Awamutu NZ, who supplied similar information and who points out that the interval signal is the well-known bell bird. If you haven’t heard Radio NZ then you can hear a recording of the bell bird in Mitch Murray’s record Long Live Short-Wave.

Practical Wireless, November 1979

71

www.americanradiohistory.com
YAESU FRG-7000

The New Performance Standard in Communications receivers!
A high quality general coverage receiver for the discerning SWL and a worthwhile addition as a second receiver for the transmitting amateur. How often have you wanted a true general coverage receiver of this calibre but been put off by the price. The FRG-7000 is a cost-effective answer to your prayers.

Full and continuous coverage 200kHz to 29.999MHz
Operation on SSB/AM/CW
Switched power sensitivity and first zero crossover for maximum efficiency on SSB, covering all amateur bands from 160 through 10 meters, even as well as several short wave broadcast bands, broadcast AM and medium wave frequencies, watch filter, LF, shift, variable bandwidth, tuning, sharp IF, square, noise blanker, switched IF, automatic gain control, selectivity, VFO, extended SSB, 25 kHz subcarrier, and many other features providing the FRG-7000 with a wealth of features that will make it the subject of your next dream. Price £355 including VAT. Carriage £20.

Send Large SAE for further details of this and other equipment – or use our Answerphone after hours.

Western Electronics (UK) Ltd
HEAD OFFICE (All Mail/Enquiries)
FAIRFIELD ESTATE
LOUTH, LINCS, LN11 0JH
Tel: Louth (0607) 504895/8/7

R20
The ultimate in receiver design. Tidy R20.
With more features than ever before available in a bare band receiver. Nine-tube conversion (6L6, 6UK and 567B, 12AU7, IF 6BY4, 6AS7, final 6L6). See the receiver in use. Price £199-99 including VAT. Carriage £25.

FS10
The FSIO VHF FM stereo receiver is a high performance unit with a small size. It is designed for use as a walkie-talkie. The receiver is available in two versions, to operate on 25MHz or 22.5MHz and is therefore suitable for all amateur bands. The FSIO is supplied complete with speaker and a special earphone. Price £199-99 including VAT. Carriage £11-50.

FS12
The FSIO 12MHz FM stereo receiver is a high performance unit with a small size. It is designed for use as a walkie-talkie. The receiver is available in two versions, to operate on 12MHz or 13.7MHz and is therefore suitable for all amateur bands. The FSIO is supplied complete with speaker and a special earphone. Price £199-99 including VAT. Carriage £11-50.

AP12
The AP12 is a 12 channel crystal controlled shortwave receiver covering 100 kHz to 150 MHz which utilises a micro-computer which allows the crystals to be programmed automatically to your choice of channels. It is designed for use as a walkie-talkie. The AP12 is supplied complete with speaker and a special earphone. Price £40 including VAT. Carriage £4-99.
Mr Haggett goes on to say that NZ time is normally GMT +12hrs but between the last Sunday in October and the first Sunday in March they are on Summer Time which is GMT +13. He goes on to say "a note for your readers, should they be fortunate to hear us, the usual 10-15 minutes of programme details will get a QSL card. We do like to receive (two) IRCs to enable us to airmail the card back with New Zealand stamps rather than franked. We would also like to hear a little about the person and his home so we may possibly give him a call on our Mailbox programme". Mailbox is on the air on the third Sunday of each month at 2215 NZ time. The address is: PO Box 2092, Wellington.

120 Metre Band

The first report of this column of DX on 120 metres comes from 15-year-old Dave Wyatt of Oswestry, who heard an unidentified station in Portuguese on several occasions on approx 2470kHz between 0115 and 0407. The rig is a BC348 and 90ft long wire. I logged what appears to be the same station on 2480kHz (measured with a frequency counter) at 2230 SI0222 with pops and Portuguese.

Harmonics from the medium waves have to be watched for on 120m, but nothing has been heard to account for this broadcast which for the moment must remain unidentified. There is DX to be heard during the afternoon in winter on 120. Look for China on 2340, 2360 and 2490kHz, Gwelo Rhodesia on 2336 and 2425 and possibly Tananarive in Madagascar on 2495kHz.

Reader’s Letter

A TCS12 Rx plus a 90ft long wire are in use at Romsey by Paul Fry (BRS 42483) who is looking for information about the Mauritian Broadcasting Corporation. His wife comes from that country and would like to hear their broadcasts. Has anyone logged MBC recently? It is usually heard on 4850kHz in the 60m band, but it is scheduled to be on 9710 from 0200 to 1300. Any information received will be passed on to Paul.

Fig. 1: A 10 minute section of the writer’s recording chart showing the peak of the long solar burst at midday on August 14 on 146MHz. Cmdr Hatfield also recorded this at both 136 and 1296MHz. The lower black line indicates the normal receiver noise level.

within a group of sunspots just past the c.m.p. and later, at 1542, while he was watching a new group of sunspots coming around the eastern solar limb, a flare with a bright spray, followed by an eruptive prominence, occurred also emitting a big burst of radio noise at 136MHz, and in six minutes it was over. Solar noise was also very strong in the 10m band at midday on the 14th. Several small bursts and some general increase in the noise level were recorded from the sun on August 15, 16, 17, 18 and 20 and an individual burst at midday on the 19th. Henry recorded another big burst between 0915 and 0930 on the 20th.

Sudden Ionospheric Disturbance

Henry Hatfield’s pen recorder was sent off scale between 1411 and 1421 on August 18 when a massive burst of radio noise came from the sun. Later, Charlie Newton G2FKZ, London, told me that the biggest s.i.d. for a long time coincided with the solar burst and immediately blacked out the short-wave bands from about 3 to 30MHz, which, over the following few hours gradually returned to normal.

Aurora

No doubt the solar activity on the 13th was responsible for the patchy auroral event which manifested in two, approximately 45 minute, phases around 1800 and 2100, enabling amateurs in London to work stations on 2m in Scotland and Sweden.

The 10 Metre Band

“I’ve been an amateur astronomer for many years working mostly on variable stars, but interested, of course, in sunspots and in terrestrial effects”, writes Ted Waring of Bristol, who has built a two-transistor receiver so that he can monitor the International Beacon Project stations on the 10m band. Ted heard signals from the Cyprus 5B4CY, 28-220MHz and German DLOIGI, 28-205MHz, beacons on August 7, 9, 10, 11 and 12 while Gordon Goodyer BRS37345, Petworth, Sussex, heard 5B4CY on the 6th and 10th and signals from the beacons at Bahrain A9XC, 28-245MHz and Mauritius 3B8MS, 28-210MHz.

A gigantic solar burst blacks out the short-wave bands; BBC f.m. signals heard in Norway; Russian and Scandinavian television seen in the UK. These are the latest highlights from my readers' reports.

Solar

The sun was quiet from July 25 to August 13 when Cmdr Henry Hatfield, Sevenoaks, and I, recorded a few tiny bursts of radio noise at 136 and 146MHz respectively. At midday on the 14th (Fig. 1), I recorded a large burst of noise at 146MHz and Henry recorded it at both 136 and 1296MHz. During the morning of the 14th, Henry, using his spectrohelioscope, observed a plage by Ron Ham BRS15744

A gigantic solar burst blacks out the short-wave bands; BBC f.m. signals heard in Norway; Russian and Scandinavian television seen in the UK. These are the latest highlights from my readers' reports.

Solar

The sun was quiet from July 25 to August 13 when Cmdr Henry Hatfield, Sevenoaks, and I, recorded a few tiny bursts of radio noise at 136 and 146MHz respectively. At midday on the 14th (Fig. 1), I recorded a large burst of noise at 146MHz and Henry recorded it at both 136 and 1296MHz. During the morning of the 14th, Henry, using his spectrohelioscope, observed a plage by Ron Ham BRS15744

A gigantic solar burst blacks out the short-wave bands; BBC f.m. signals heard in Norway; Russian and Scandinavian television seen in the UK. These are the latest highlights from my readers' reports.

Solar

The sun was quiet from July 25 to August 13 when Cmdr Henry Hatfield, Sevenoaks, and I, recorded a few tiny bursts of radio noise at 136 and 146MHz respectively. At midday on the 14th (Fig. 1), I recorded a large burst of noise at 146MHz and Henry recorded it at both 136 and 1296MHz. During the morning of the 14th, Henry, using his spectrohelioscope, observed a plage by Ron Ham BRS15744

A gigantic solar burst blacks out the short-wave bands; BBC f.m. signals heard in Norway; Russian and Scandinavian television seen in the UK. These are the latest highlights from my readers' reports.
mainly in the afternoons on several days. I received signals from DL0I GI on eleven of the days between August 1 and 19, mainly due to sporadic-E disturbances.

Although the band was generally "quiet" between July 24 and August 20 there were some openings. In fact, George Grzebielski RS41733, London, heard a short-skip event with lots of DFs, DMs, Gs, LAs and SMs and both Gordon Goodyer and R. F. Nugent G2FTS, Polegate, Sussex, reported periodic signals from VK and ZL.

EDXC

The European DX Council have established a new headquarters in the UK and are looking for service manuals or instruction books for communications receivers, ex-govt or domestic, to assist their members. Any offers to: Jonathan Marks, EDXC, PO Box 4, St Ives, Huntingdon, Cambs PE17 4FE.

Satellites

"Oscar 7B still going well," writes John Branegan GM41HJ, Saline, Fife. "I worked W5UCY near New Orleans at 4300 miles and GM8BKE worked Brazil, and with 14 transatlantic QSOs through 8J in a month, I cannot complain." Signals through Oscar 8A have been giving John some good c.w. practice with OX5AF and UA6MA as a couple of rare ones.

Sporadic-E

Strong signals from several east-European f.m. broadcast stations came pounding into the UK between 65 and 73MHz, due to sporadic-E disturbances around 1830 on July 27, midday on August 2 and the early mornings of August 1, 14 and 17. On each of these days I heard a variety of Continental radio-telephone signals between 40 and 50MHz along with random RTTY and beacon signals not normally received in the UK.

DX TV

Between 0740 and 0820 on July 24, a sporadic-E disturbance, affecting the narrow bandwidth of 47 to 57MHz, caused television signals, identified by their test cards, from Norway Melhus and Steigen, Poland and Sweden to be received in the UK. Very often, along with a travel film, these test cards were mixing together or changing places with each other on the screen.

At 0840, what looked like a news programme, was introduced by the word HOBOCTON flashing around a tower (any ideas?), and at 0849, a clock labelled CCCP appeared showing the local time of 1149 which places the transmitter a long distance away. Soon after, test cards from Finland and Russia were fighting for predominance on my c.r.t. During the morning, Sam Faulkner, Burton-on-Trent, Staffs, received a test card from Norway Hemnes, John Branegan saw Norway Steigen and I received signals from Poland. Sam also received test cards from Spain and Portugal on August 3 and Poland on the 6th. John Branegan received signals from Norway and Sweden during the early evening of the 29th, a test card from Spain around 1120 on the 31st and Grunten, on E2, which was displacing pictures on R1 at 1420 on August 2nd and again between 1550 and 1645 on the 3rd.

It is always interesting to watch a mix up (Fig. 2), when strong signals are coming in on both E2, 48-25MHz and R1, 49-75MHz as they did at midday on August 2 and the evening of the 6th. At 0756 on July 31, I received a test card, +PTT SRG1, from Switzerland; at 0848, a strong Russian test card, and at 1729, pictures on R1. Strong pictures were received from Finland on August 3, Budapest at 0915 on the 7th, Poland at 0840 on the 8th, Russia at 1243 on the 9th and 0900 on the 14th, Poland at 0740 on the 15th and Russia at 0827 on the 17th and 1707 on the 18th.

Tropospheric

During the v.h.f. opening which accompanied the falling atmospheric pressure on July 27 and 28, the u.h.f. television channels were disturbed and around 2130 on the 27th, Alan Baker G4GNX, Newhaven, Sussex and John Cooper G8NGO, Cowfold, Sussex, heard EA8AK, on 2m, calling from the Canary Islands for about 30 minutes, but they could not raise him. Alan had to be satisfied with working F6DVY through the French repeater in Bologne FZ2VHF, R5 and GJ3YHU on s.s.b.

On July 30, Bob Smith, Mo i Rana, Norway, some 27km south of the Arctic Circle, writes: "I picked up Radio 3 from 2338 to 2341 BST and from 2343 to 2350 on 90.4 and 89.7MHz respectively (July 26/27) and then Radio 2, 90-05MHz, from 0002 to 0007. The signals were in full stereo for about 30 seconds with good hi-fi quality but with slight background hiss fading to mono for about 5 seconds and then disappearing altogether for about 10 seconds." Bob is using a Pioneer SX550 with an indoor dipole some 6ft above floor level, his QTH is only 30 metres a.s.l. and, a most interesting point, about 8km away from Bob's home an 800-metre-high mountain stands between him and the UK.

While these good conditions were declining on the 28th, Alan Baker worked F1CYB on 2m s.s.b. and, along with John Cooper, heard G5UMNX on the Scilly Isles. Throughout the event I frequently heard strong signals from stations working through the Bristol Channel GB3BC, R3 and the Kent GB3KR, R4, repeaters and G8DJW, near Dorset, was heard working through the Brighton repeater GB3SR, R3. The pressure remained below 30-in from July 29 to midnight on August 3 then it rose sharply on the 4th to 30-2in and slowly declined through the 5th, 6th and 7th. During the change, Alan Baker worked G4IDO in Bedford on 2m c.w. and G8GXE in Slough on s.s.b. and the normal range of most repeaters increased considerably.

George Grzebielski is looking for good tropospheric conditions in the future to try out his home-brew, G3JVL.
A GUIDE TO AMATEUR RADIO
by Pat Hawker G3VA
Published by Newnes-Butterworths
128 pages, 246 x 186mm. Price £5.40 (hard-backed)
This is the 17th edition of the Guide, and has been completely
reset, with much new material. It is intended to help the
newcomer to amateur radio to learn about the hobby,
covering receivers, transmitters and aerials for fixed, mobile
and portable use, plus test gear. The new conditions for the
UK amateur licences and the revised syllabus for the new
format Radio Amateurs’ Examination are incorporated, and
a chapter of sample exam questions has been added, though
these seem to be somewhat simpler than those used in the
first of the new RAEs in May 1979.

RADIO AMATEURS’ EXAMINATION MANUAL
by G. L. Benbow G3HB
Published by the Radio Society of Great Britain
114 pages, 244 x 180mm. Price £2.22 including p&p
The introduction of the multiple-choice question examination
format for the RAE, plus the associated changes in the
syllabus, have necessitated the complete rewriting of several
chapters and extensive revision of the remainder in this,
the eighth edition of the Manual. This book is intended to
provide sufficient information to enable readers to pass the
Radio Amateurs’ Examination, this being necessary for all
applicants for an amateur transmitting licence.

23cm aerial and his new 23cm converter and, as seen in
Fig. 3, his QSL cards are ready printed.

VHF NFD

Like John Cleaton G4GHA, Wareham, Dorset, George
took part in the 2m section of the RSWG’s VHF National
Field Day on July 7 and 8 and while John was working
into EI, F, GI, GW, GU and ON, George, situated on
Prevale Hill, London, logged 23 Gs, 1 GW and 4
Frenchmen and his best DX was G4OWM/A in Durham.

Fig. 3: The simple, but effective QSL card of
v.h.f./u.h.f. listener, George Grzebieniak

IF YOU WANT PERFORMANCE –
IT’S GOT TO BE LUNAR

Lunar Electronics, based in San Diego, California, are undoubtedly the leading
manufacturers of 144MHz and 432Mhz Linear Amplifiers and Preampifiers. But
don’t take our word for it, ask a LUNAR user. TAKE A LOOK AT THE RANGE.

U.K. Distributors for

DAVIS ELECTRONICS FREQUENCY COUNTERS
NEW! 600MHz Mini Counter £145 + VAT

"Check the features we have that some other low cost counters don’t have"
● All metal Cabinet ● Sensitivity 10 MV at 150 MHz ● Completely Auto Decimal
Point ● 8 Digit 4.5 LED Display ● 240V or 12V Operation ● Selectable Gate Times (1 Sec & -1 Sec) ● Push Button
Controls ● Built in Preamp ● 12V Input Jack ● Gate Light ● Crystal Time Base (1 ppm).
S.A.E. for full set of Data Sheets, or see our stand at most of the coming Rallies & Exhibitions, Trade & Export enquiries welcome.

SOTA COMMUNICATIONS SYSTEMS LTD.
26, CHILDWALL LANE, BOWRING PARK, LIVERPOOL, L14 6TX ENGLAND
Tel: 051-480 7900, Fax: 051-283702 SOTAG
Hours: 9.00 a.m. to 6.00 p.m., Monday to Saturday.
Simply ahead ..

ILP'S NEW GENERATION OF HIGH

With I.L.P. performance standards and quality already so well established, any advances in I.L.P. design are bound to be of outstanding importance — and this is exactly what we have achieved in our new generation of modular units. I.L.P. professional design principles remain — the completely adequate heatsinks, protected sealed circuitry, rugged construction and excellent performance. These have stood the test of time far longer than normally expected from ordinary commercial modules. So we have concentrated on improvements whereby our products will meet even more stringent demands such, for example, as those revealed by vastly improved pick-ups, tuners, loudspeakers, etc., all of which can prove merciless to an indifferent amplifier system.

I.L.P. modules are for laboratory and other specialised applications too.

PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

I.L.P. modular units comprise five power amplifiers, pre-amp which is compatible with the whole range, and the necessary power supply units. The amplifiers are housed and sealed within heatsinks all of which will stand up to prolonged working under maximum operating conditions.
and staying there

PERFORMANCE MODULAR UNITS

HY5 PRE-AMPLIFIER

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack 50 x 40 x 15 mm, and provides multi-function equalisation for Magnetic/Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins. Active tone control circuits; 500 mV out. Distortion at 1KHz—0.01%. Special strips are provided for connecting external pots and switching systems as required. Two HY5’s connect easily in stereo. With easy to follow instructions.

THE POWER AMPLIFIERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Output Power R.M.S.</th>
<th>Distortion Typical at 1KHz</th>
<th>Minimum Signal/Noise Ratio</th>
<th>Power Supply Voltage</th>
<th>Size in mm</th>
<th>Weight in gms</th>
<th>Price + VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY30</td>
<td>15 W into 8 Ω</td>
<td>0.02%</td>
<td>80dB</td>
<td>-20 -0 +20</td>
<td>105x50x25</td>
<td>155</td>
<td>£6.34 + 95p</td>
</tr>
<tr>
<td>HY50</td>
<td>30 W into 8 Ω</td>
<td>0.02%</td>
<td>90dB</td>
<td>-25 -0 +25</td>
<td>105x50x25</td>
<td>155</td>
<td>£7.24 + 105p</td>
</tr>
<tr>
<td>HY120</td>
<td>60 W into 8 Ω</td>
<td>0.01%</td>
<td>100dB</td>
<td>-35 -0 +35</td>
<td>114x50x85</td>
<td>575</td>
<td>£15.20 + 225p</td>
</tr>
<tr>
<td>HY200</td>
<td>120 W into 8 Ω</td>
<td>0.01%</td>
<td>100dB</td>
<td>-45 -0 +45</td>
<td>114x50x85</td>
<td>575</td>
<td>£18.44 + 275p</td>
</tr>
<tr>
<td>HY400</td>
<td>240 W into 4 Ω</td>
<td>0.01%</td>
<td>100dB</td>
<td>-45 -0 +45</td>
<td>114x100x85</td>
<td>1.15Kg</td>
<td>£27.68 + 425p</td>
</tr>
</tbody>
</table>

Load impedance – all models 4 - 16 Ω
Input sensitivity – all models 500 mV
Input impedance – all models 100 K
Frequency response – all models 10Hz-45KHz-3dB

THE POWER SUPPLY UNITS

I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms – one with circuit panel mounted on conventionally styled transformer to halve weight and height.

NO QUIBBLE

5 YEAR GUARANTEE
7-DAY DESPATCH ON ALL ORDERS
BUILT-IN PROTECTIVE CIRCUITRY
BRITISH DESIGN AND MANUFACTURE
FREEPOST SERVICE – see below

HOW TO ORDER, USING FREEPOST SYSTEM

Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope – we pay postage on all letters sent to us by readers of this journal.

P.L. ELECTRONICS LTD.
FREEPOST 1 Graham Bell House, Roper Close, Canterbury, Kent CT2 7FP,
Telephone (0227) 54778 Telex 905780

Please supply

Total purchase price £

I enclose Cheque □ Postal Orders □ International Money Order □

Please debit my Account/Barclaycard Account No.

NAME

ADDRESS

Signature

Practical Wireless, November 1979

77
The opportunities in electronics, today, and for the future are limitless — throughout the world. Jobs for qualified people are available everywhere at very high salaries. Running your own business, also, in electronics — especially for the servicing of radio, TV and all associated equipment — can make for a varied, interesting and highly remunerative career. There will never be enough specialists to cope with the ever increasing amount of electronic equipment coming on to the world market.

We give modern training courses in all fields of electronics — practical D.I.Y. courses — courses for City & Guilds exams, the Radio Amateur licence and also training for the new Computer Technology. We specialise only in electronics and have over 40 years experience in the subject. All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write at any time for advice or help during your work.

COURSES AVAILABLE

- CITY & GUILDS CERTIFICATES IN TELECOMMUNICATIONS AND ELECTRONICS.
- RADIO AMATEUR LICENCE.
- COMPUTER TECHNOLOGY WITH HOME TRAINING COMPUTER.
- DIGITAL ELECTRONICS.
- BEGINNERS PRACTICAL COURSE.
- RADIO AND TELEVISION SERVICE.
- AND MANY OTHERS.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

We are an international school specialising in electronics training only and have over 40 years experience in this subject.

Post now, without obligation, to:
BRITISH NATIONAL RADIO and ELECTRONICS SCHOOL
P.O. Box 156, Jersey, Channel Islands
P.C.B.'S FOR
PRACTICAL WIRELESS PROJECTS
Nov. 78. S.T.O. Charge Timer AD212 Price £3.00 & 20 pence p & p.
Nov. 78. Digital Light Timer AD222 Price £3.03 & 12 pence p & p.
Nov. 78. Battery Indicator AD225 Price £0.83 &12 pence p & p.
March 79. Wide Band Noise Source RD36 Price £0.74 & 12 pence p & p.
April 79. FM Multistate WR040 Price £3.05 & 15 pence p & p.
May 79. Car Test Probe WR042 Price £0.96 & 15 pence p & p.
May 79. PW Imp WR043 Price £1.52 & 15 pence p & p.
June 79. Jumbo Clock WR048/7/8/9 Price £2.84 & 30 pence p & p.
Sound Switched Switch WK056/8 Price £3.74 & 20 pence p & p.
August 79. Automatic Intercom WR043 Price £0.60 & 20 pence p & p.
Send All prices include VAT.

C. BOWES & CO. LTD.,
4, Wood Street, Cheadle, Cheshire SK8 1AQ.
Tel. 061-428-4487.
Please state type number and enclose cheque or postal order.

PLEASE ENQUIRE FOR NEW DATA AND PRICES.
(Prices subject to change without notice)

PHILIP H. BEARMAN
S.A.E WITH ENQUIRIES PLEASE.

NEW MONO TUBES, USUALLY 2 YEAR GUARANTEE.
A31/120; A31/300; A31/410W. £18.90 incl VAT
A34/100; CME 1420 (M6828 FZP) £20.50 incl VAT
A38/160; CME 1520, Thom. £20.50 incl VAT
A31/510W £19.00 incl VAT
A34/510W £20.50 incl VAT
A47/11W; A47.28WR, Mullard, few only. £18.00 incl VAT
A47/11C; CME 1900, Thom. (Limited Stocks) £15.00 incl VAT
A50/120W; CME 2013, Vega, (Mullard Extra) £18.90 incl VAT
A59/15W (4W59.91), Mullard. £11.55 incl VAT
A61/120WR (CME2413) Vega (Mullard Extra) £22.05 incl VAT

VARIOUS OTHERS (subject to availability) — NO 50 PORTABLE TYPES OR 316/346 PRELIX TYPES.
CARRIAGE MAINLAND £2.75 each, ENQUIRIES S.A.E. (310, 346 SERIES).

Model 146
VERY LOW DISTORTION (0.015%)
AUDIO SIG. GENERATOR
Based on J. Linsley Hood design (W.W.) £36.00

(Kit. £31.00) - tax 15%

Low cost version, AG0113 (-0.02% dist.) £27.50 (Kit. £23). Other instruments include Millivoltmeter, Tachometer, Noise level meter, Distortion Analyser, F.M. Sig. Gen. Crystal Frequency Standard, KEP Speaker Units. Send S.A.E. for lists VAT extra 15%. Post/Ph. £1.75.

TELERADIO ELECTRONICS
235 Fore Street, Edmonton N.9. 01-807 3719
Closed all day Thursday

Practical Wireless, November 1979
SMALL ADS

The prepaid rate for classified advertisements is 22 pence per word (minimum 12 words), box number 80p extra. Semi-display rate is £7.50 for single column centimetre (minimum 2-5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Limited. Trustee account should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St, London, SE1 9LS. (Telephone 01-261 5846)

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(a) That you have clearly stated your requirements.
(b) That you have enclosed the right remittance.
(c) The name and address is written in block capitals, and
(d) Your letter is correctly addressed to the advertiser.

This will assist advertisers in processing and dispatching orders with the minimum of delay.

receivers and components

ELECTRONIC COMPONENTS. Quick delivery, wide range from stock, catalogue on request. J. B. Hartley Elec- tronic Components, 78B High Street, Bridgnorth, Shrop.

BRAND NEW COMPONENTS BY RETURN Electrolytic Capacitors 16V, 25V, 50V. 0.1, 0.1 µF (1N); 0.010, 0.015, 0.02µF (1000µF). 1000V 10-15µF. 1000V 0.1µF. 272, 172, 152 among others. Murti Miniature Ceramic E12 Series 63V 2% 10µF 22µF. 22µF 10µF. 10µF 22µF. Vertical Mounting Ceramic Plate Caps 50V. E12 22µF 10µF 1µF 0.1µF. E12 63V. Hor. Mounting 10µF 0.1µF 0.01µF 0.001µF. E4 Capacitor 250V, 100µF. 10µF 1µF. 0.1µF 0.01µF. E4 63V. 1µF 0.1µF 0.01µF. 0.001µF. E4 152µF 1µF 0.1µF. Polyester E12 Series 63V. Hor. Mounting 1µF 0.1µF 0.01µF 0.001µF. Polyester E4 Series 63V. Hor. Mounting 0.1µF 0.01µF 0.001µF. MINIATURE RESISTORS HIGHGAL You can't help but make money if you follow the easy, step-by-step instructions in our fully illustrated manual showing how to rewind Electric Motors, Armatures and Field Coils as used in Vacuum Cleaners, Electric Drills and Power Tools. NO ELECTRONIC KNOWLEDGE IS REQUIRED, as the manual covers in 13 chapters, where to obtain all the work you need, materials required, all instructions, detailed charts and how to take data. A gold mine of Information. How to set up your home workshop and how to cost each job to your customers. £4.00 plus 30p P & P. UK, CWG, VARIOUS 100, Pittswood Rd., Wiltshire, Manchester 30, Dept. P.W. Build your own P.A., GROUP & DISCO SPEAKERS by l. R. C. English. See page 13 this practical guide. Pans for 17 different designs. Also Figures and Retail prices, for 8'-18' drive units. £3.99 post free (30 Overseas).

VALVES

Radio TV - Industrial - Transistoring

Tunbridge Wells, 127, Chesterfield Road, Sheffield 58 ORN

AM/GW/SSE COMMUNICATION RECEIVER and preamplifier modules. The cheapest way to good amateur and SW DX. CRYSTALS Brand new high-prediction. You benefit from very close staking. 100,000,000,000 frequencies. All normal frequencies. £6.50 (20 sets). Also all major modules inc. £16.00 (10 sets). 25kHz. £24.00 (10 sets).

FILTRERS Your basic source for D and S pole and other equipment for AM, SW, WW, FM, on 455 kHz. 15 kHz, 17 kHz, 27 MHz. Any freq made to order in 6 weeks. £18.00-£4.95.

P. R. GOLLEDGE ELECTRONICS G3EOW, Merriott, Somerset, TA16 5NS. Tel: 046073719

100 MIXED COMPONENTS £7.50. Sole Electronics, 37 Stanley Street, Ottershaw, Lacs. L39 2DHH.

V C W C S

THE DALESPEAKER BOOK BY R. F. C. Stocilina This book is a must for anyone interested in speaker design. Latest technology in design. Plans for LB, and Reflex reflexes with 15-100 watts. Also Electro (Tapes) system. £2.95 post free (Overseas).

VAN KAREN PRINTING 5 SWAN STREET, WILMSLOW, CHEMEREH

Record Accessories

STYLI Cartridges For MUSIC CENTRES, etc. Free Leaf No. 29, £3.00. E.P. etc. Leaks, Mains, Photos etc. ERSFLEET ELECTRONICS, (PW), Longley Lane, Guiseley, Leeds, Chis., SK3 4EE.

For Sale

NEW BACK ISSUES of "PRACTICAL WIRELESS" available 70p each, post free. Open P.O. Cheque returned if not in stock - BELL'S TELEVISION SERVICE, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55858.

FAIR of used Facsimile Telecpies £200 cond. 01-366 7101 evenings.

COMMUNICATIONS READER Lowre SRCXO 7 months old practically new cost £160, asking £90. H. Bird, 47 Compton Ave., Luton, Beds. Telephone Luton 596127.

ELECTRONIC ignition (Capacitor Discharge) manufacturers surplus P.C. Boards. Tested list £2.75 each. (01) 643-6111 after 6 p.m.

WANTED ELECTRONIC COMPONENTS PURCHASED. All Types Considered - Must be new. Send detailed list - Offer by return - W. WALTONS, 55A Worcester Street, Wolverhampton.

WANTED Multigro photos Balloons second hand or new. 4 No. As soon as possible. Telephone 0622 43839.

AERIALS

AERIAL BOOSTERS Improves weak VHF Radio and Television reception.

ELECTRONIC MAILORDER LTD., 62 Bridge Street, Ramabottom, Rugby, Lacs., BLO 9AG.

KILL THAT INTERFERENCE T.V.; G2DYM; AM/FM; T.V.; TRAP CIRCUITS. S.W.L. indoor models £11.50 & £19.50. S.W.L. Outdoor models £23.05 & £34.50. Teal model £23.85, £34.50. Lists 10x8s SAE, Aerial Guide 50p. Indoor and invariable surly for S.W.L.'s £3.50. G2DYM, Uplowman, Tiverton, Devon.

Educational

GO TO SEA as a Radio Officer. Write: Principal, Nautical College, Broadwater, Fleetwood, FY7 9Z2.

www.americanradiohistory.com
SERVICE SHEETS from 50p and S.A.E. Catalogue 25p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

LARGE SUPPLIER OF SERVICE SHEETS
and Colour Manuals, TV Mono Radios, Tuners, Tape Recorders, Record Players, Transistors, Stereograms, all at 75% each + S.A.E. - Fee £1 + large S.A.E. except colour TV and Car Radios. Stana if Circuit will do, it sheets are not in stock. All TV Sheets are full length 24 x 12 ins. in Bits & Pieces. Free Fault Finding Chart or TV Catalogue with order. All crossed PO's returned if service sheets not in stock.

C. CARANNA
71, Beaufort Park, London, NW1 8BX
01-468 4882 (Mail Order).

Courses

COURSES-RADIO AMATEURS EXAMINATION.
City & Gd. Pass. This important examination and obtain your G8 licence, with an RRC Home Study Course. For details of this, and other courses (GCE, professional examinations etc) write or phone — THE RAPID RESULTS COLLEGE, DEPT IX 1, Tuition House, London SW19 4DS. Tel: 01-947 7272 (Careers Advisory Service) or for prospectus request ring 01-946 1102 (4ahr Recordacall).

ORDER FORM

PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Wireless for ...insertions...

I enclose Cheque/P.O. for £..........................

(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Wireless).

NAME...
ADDRESS...

Send to: Classified Advertisement Manager
PRACTICAL WIRELESS, GMS, Classified Advertisement Dept., Rm. 2337, King's Reach Tower, Stamford Street, London SE1 9LS

Telephone 01-264 5846
Rate £2.20 per word, minimum 12 words. Box No. 60p extra.
THE SCIENTIFIC WIRE COMPANY
PO Box 30, London E 4
Reg. Office 22 Coningsby Gardens

ENAMELLED COPPER WIRE
SWG 1 lb 8 oz 4 oz 2 oz
10 to 19 2.65 1.65 .75 .65
10 to 28 2.65 1.65 .90 .70
30 to 34 3.05 1.75 1.00 .75
38 to 40 3.40 1.95 1.15 .84
41 to 43 3.85 2.35 1.55 1.30
44 to 46 4.00 2.65 2.15 1.70
47 5.00 3.00 1.50 .80
48 6.00 4.00 3.00

SILVER PLATED COPPER WIRE
14, 16, 18 4.50 2.25 1.44 .90
20 & 22 5.00 2.85 1.74 1.06
24 & 26 6.70 3.86 2.52 1.52
28 & 30 6.67 3.86 2.65 1.44
Prices Include P & P & VAT
SAE brings list of colour & resistance wires
Dealer Enquiries Invited

BETTS & SIRENS
CARTERS, SHEN, £3.95 INDUSTRIAL SIX INCH
BELL £8.95 PRICES INCLUSIVE
SEND CHEQUE, P.O. TO:
CWAS ALARM
11 Deacons Walk,
6 to 12 V.D.C.
Bradford BD4 0QS £12 V.D.C.
SAE For full price list of Professional Burglar Alarm Equipment

RARE DX
UNDER GRM? (G) Is it OUT from tiring vehicles and ow
and a Fold-Active Audio Noise Filter, between your
receiver and speaker, £4.50 each, £8.00.
OFF FREQUENCY? (G) Is the RARE DX with a Crystal
Calibrator, between your antenna and receiver, 10Mhz,
100-250 kHz markers to v.h.f, £15.00.
V.F. X-EXPLORE 10-150 KHz, receiver only £10.70.
ANTENNA FAULT? How poor? (G) Measure resonant
and radiation resistance FAST with an Antenna Noise
Detector, 1-100 MHz, £8.00.
LONG WAVE DX 100-600 KHz, Calibrator, built-in anten-
na tuner, 4.1-14.65 MHz output for FRG7 etc, £12.00.
Each fun-to-build kit includes all parts, printed circuit,
passage etc, money back guarantee, so SEND NOW.
CAMBRIDGE KITS, 45 (PY), Old
School Lane, Milton, Cambridge.

POST THIS COUPON
with cheque or P.O. for £1.30

Please write your name and address in block capitals
NAME
ADDRESS

HOME RADIO (Components) LTD
Dept. PW, 234-240 London Road, Mitcham, Surrey CR4 3HD
Reg. No. 912986 London

THE SCIENTIFIC WIRE COMPANY
PO Box 30, London E 4
Reg. Office 22 Coningsby Gardens

ENAMELLED COPPER WIRE

MORSE CODE TUITION AIDS
Catalogue A: 1-12 w.p.m. for amateur radio examination.
Catalogue B: 12-24 w.p.m. for professional examination.
Each catalogue is type CBO.
Morse Key and Buzzer Unit for warming practice.
Price each catalogue (including booklets) £4.75. Morse Key
and Buzzer £5.50.
Prices include postage etc. Overseas Airmail £1.50 extra.
MHEL ELECTRONICS (Dept. P.W.), 12 Longborough Way,
Wilton, Porton Downs, Salisbury.

SOLAR CELLS, Batteries, Panels, Thermoelectric
Generators, Heat pipes, Books etc. Details: Edensombe
Ltd., 34 Nathans Road, N. Wembley, Middlesex.

NOTICE TO READERS

Whilst prices of goods shown in advertisements are correct at the time of closing for press, readers are advised to
check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

FIRST
and STILL BEST!
We've been producing our Electronics Components
catalogue for over 20 years. During that time we've learned
a lot, not only in the art of catalogue production but in
building a business that serves the needs of constructors.
Little wonder that we have a reputation second to none for
our catalogue—and for the service that backs it up. Ex-
perience both for yourself. Just send £1.30 with the coupon
and a catalogue will be posted by return of post.

- About 2,500 items clearly listed and indexed.
- Profusely illustrated throughout.
- 128 A4 size pages, bound in full-cover.
- Bargain list of unrepeatable offers included free.
- Catalogue contains details of simple Credit Scheme.

HOME RADIO (Components) LTD.
Dept. PW., 234-240 London Road, Mitcham, Surrey CR4 3HD

PRE-AMPLIFIER
CP-P1
Shown here mounted with its associated components
and the CP-TM1 Peak Programme Monitor on the
CP-MPC1 interconnection board; the CP-P1 is a complete
cat stereo pre-amplifier and tone control module. Per-
formance features >70 dB S/N ratio and >30 db
overload margin (both ref. 3 mV) and distortion of
0.02%. The internal R.I.A.A. feedback compensation
around the low-level pre-amp may be replaced with ex-
ternal networks and the tone control circuits can be
programmed to give different turnover frequencies if re-
quired (including separate bass and treble 'defeat'
facilities).

CP-P1 £14.95 incl. (U.K.) £16.95 incl. (Export)
Also Available: Power Amplifiers, Filters, Stereo Image
Width Control, Compressor/Expander, Active
Crossovers, Power Supplies plus all pots, switches, etc.

MAGNUM AUDIO LTD.
DEPT PW7, 13 HAZELBURY CRESCENT
LUTON, BEDS. LU1 1DF
TEL: 0582 28887
SEND LARGE S.A.E. FOR DETAILS

Practical Wireless, November 1979
INDEX TO ADVERTISERS

A.H. Supplies Limited ... 10
Advance Design .. 14
A.J.H. Electronics ... 85
A.J.P. Electronics .. 87
Amateur Electronics ... 60
Amateur Radio Exchange 15
Ammit Services ... 63
Astra-Pak .. 6
Barrie Electronics .. 80
Benjamin, P.H. ... 10
Beatle ... 18
Bif-Pack Limited .. 19
Birch J. .. 81
Bowes C. .. 64
British National Radio & Electronics School ... 12,79
Bretting .. 74
Brooks B. ... 72
Burne ... 84
Cambridge Kits .. 34
Caramba ... 81
Cartronics ... 4
Chadgate ... 16
Contour Electronics ... 81
Cox Radio (Sussex) Limited 16
Crescent Radio Limited .. 16
Crimson Elektrik .. 12
C.R. Supply Co ... 88
C.T. ... 9
C.W.A.S Alarm ... 84
Electronic Design Associates 5
Electronic Mail Order Limited 6
Electrovalue .. 6
Electrovalue .. 6
Fidelity Fastenings ... 16
Fridley Supplies ... 8
Garland Bros .. 4
George, David Sales ... 5
Godin Electronics P.R. .. 82
G.T. Information Services 82
G2 DYM .. 82
H.A. Shortwave... 84
Healthkit ... 8
Home Radio ... 84
H.T. ... 83
I.L.P. Electronics ... 76
Intertex I.C.S. .. 53
Kramer & Co ... 4
Leeds Amateur Radio ... 52
Low Electronics .. 72
Manor Supplies ... 68
Maplin Electronic Supplies 68
Metalic Limited ... 36
Micron .. 36
Mini-Craft ... 36
Monarch Electronic Limited 14
Noble Electronics ... 14
Osmabat ... 88
Partridge Electronics .. 53
Probyn Radio ... 82
Radio Book Service .. 82
Radio Exchange Limited 3
Radio & TV Components 3
R.C.E ... 72
R.C.E (Realistic Sound Centres Limited) 5
R.S.T. Valve Mail Order Co 17
Sandwell Plant Limited .. 83
Scientific Wire Company 84
Sonic Discount ... 76
Sota Communications .. 76
South Midlands Communications Limited 59
Southern Valve Co .. 82
Squires, Roger .. 68
Stephen-James Limited .. 68
Sweeney Electronics ... 16
Tandy Corporation Limited 11
Television .. 66
Tefco ... 81
Tempus .. 35
Thomast Electronics .. 67
Thi Electron .. 80
T.T.E Electronics .. 80
TUAC ... 7
Van Karen Publishing .. 82
Water P .. 88
Waters & Stanton Electronics 88
Wattrof Electronics .. 68
Western Electronics ... 83
Williamson Amplification 83
Z & I Aeronautical .. 88

24 DURE CHIMES

DOOR TUNES $16.44 + VAT

Wkład, dekoracji, plakatów, kalendarzy, kalendarzy reklamowych, i listów zakończone reklamowe

PROGRAMMABLE £25.35 + VAT

COLOUR CARTRIDGE T.V. GAME

The TV game can be set up on the screen and played in any desired position or orientation by the user. It is a novel introduction to the world of programmed games. The game is played on the screen and controlled by the user using a series of buttons. The game is designed to be played in a linear fashion, with each move leading to the next. The game is suitable for a wide range of ages and abilities, and can be played for a limited time or until the user decides to stop playing. The game is suitable for both educational and recreational purposes, and can be played in a group or individually. The game is available in a variety of versions, each with different levels of difficulty.

T.V. GAMES

ROAD RACE £87 + VAT

GRAND PRIX £249 + VAT

SUPER WIPERPLUS £117 + VAT

10 different games of racing simulation on a screen.

STUNT RACER £123 + VAT

Motorcycle speed trials, jump chases, aiming bonuses. Down to top 25 miles/hr.

NOS-PERFORMANCE T.V. GAMES

5 Game £117.50 + VAT

10 Game COLOUR SPORTSWORLD £22.50 + VAT

CHESS COMPUTERS

STAR CHESS £59.09 + VAT

PLAY CHESS AGAINST YOUR PARTNER.

using your own TV to display the board and pieces. Star Chess is a new standing game for two players, which is played on your television. The game can be played by one or two people, using the TV screen as the playing board. The computer's programme is responsible for simulating the actual movement of the chess pieces on the board. The player is then able to make moves by selecting the appropriate piece and clicking on the desired square.

CHESS CHALLENGER £8.65 + VAT

PLAY CHESS AGAINST THE COMPUTER.

The computer's programme is designed to simulate the thinking ability of a human chess player. It is capable of playing at a high level of skill, and can be set to play at different levels of difficulty. The player can choose to play against the computer's programme, or against another player.

CHESS CHAMPION 4-LEVELS £21.97 + VAT

CHESS CHALLENGER 10 LEVELS £14.00 + VAT

BONUS MULTI-LEVEL TALKING DISPLAY £16.29 + VAT

ELECTRONIC CHESS BOARD TUTOR £19.75 inc VAT

A special bulk purchase of these amazing chess teaching machines is available at a savings of up to 25% off the list price. The electronic chess tutor is a portable teaching machine that can be easily taken anywhere. It is ideal for use at home, school, or on the go.

DRAUGHTS COMPUTERS

CHECKER CHALLENGER 2 LEVELS £34.98 + VAT

4 LEVELS £46.98 + VAT

The Draughts computer enables you to sharpen your skills, improve your game, and play against anyone. It is designed to be used by both beginners and experienced players. The computer incorporates advanced algorithms, allowing it to play at a high level of skill. The player can choose to play against the computer's programme, or against another player.

FOR FREE BROCHURES – SEND S.A.E

For free illustrated brochures and information on TV and audio equipment, please send stamped addressed envelopes, and we will be pleased to send you our latest catalogue and information.

Address: American Radio History, 200 West 118th Street, New York, NY 10026

Orders accepted by telephone, or through our mail order service. For faster service, please call our toll-free number: 1-800-555-9999

AJD DIRECT SUPPLIES LIMITED

102 Bingley Road, Wokingham, Berkshire, RG11 8TD

Postage and Packing Free.
Mullard AUDIO MODULES IN BARGAIN PACKS
CURRENT CATALOGUE PRICE £25 AT OVER 25 PER PACK
SEE OUR PRICES

1. PACK 1 x (LP1173.10W) RMS output power audio amp module + 1 x 120/22 Stereo pre amp for ceramic and auxiliary inputs.
 Our price £1.00
 £5.00
 Available also to purchasers of 10 x 10 AMP PACKS

2. PACK 2 x (LP1173.10W) RMS output power audio amp module + 1 x 120/22 Stereo pre amp for magnetic, ceramic and auxiliary inputs.
 £7.65

10 + 10 AMP KIT
An opportunity is here to buy a 10 x 10W pair of ceramic modules amplifier kit which is suitable to use with a ceramic cartridge. The amplifier kits are suitable for Mullard modules and is available at a very competitive price. The amplifier kits are complete with instructions and includes a Mullard LP1183 stereo preamplifier module, + 1 x 120/22 power amplifiers with integral heatsinks, a power supply, Zobel network, front and back mounting panels, a finished wooden case and all the necessary parts for build, volume and balance, tweeters, input, output and headphones, sockets, wire, and an easily assembled wrap around cabinet to house it all finished up. Also includes:
- **£12.25** per kit pair
- **£6.00** per kit pair

EMI SPEAKER BARGAIN
A speaker is available for £57.00 + p+p £6.00.

BSR P200 Belt drive chassis tunable unit semi-automatic, cueing device.
- **£25.00** p+p £6.00
- **£7.95**

BARGAINS FOR PERSONAL SHOPPERS ONLY
Atone UA4 Stereo System
- **£36.75**

BARGAINS FOR PERSONAL SHOPPERS ONLY
Stereo Radiogram Cabinet
- **£10.95**

PERSONAL SHOPPERS EDITION
232 EDGWARE ROAD, LONDON W2 21B HIGH STREET, ACTON W3 6NG
ACTON: Mail Order only. No callers.
For personal orders, call 01-723 8432. 9.30am-5.30pm. Closed all day Thursday.
ACTON: Mail Order only. No callers.

FOR PERSONAL SHOPPERS ONLY
Stereo Radiogram Cabinet
Finished in a natural teak veneer with opening top. Easily modified to accommodate stereo equipment of your choice.
Price **£10.95**

Size approximately 47" x 15 1/2" x 15"
This superb organ - build the first working section for just over £100. Full specification in our catalogue.

Touch operated rhythm generator, the 'Drumsette'. Construction details 25p. Specification in our catalogue.

Multimeters, analogue and digital, frequency counter, oscilloscopes, and lots, lots more at excellent prices. See cat. pages 106 and 183 to 188 for details.

61-note touch-sensitive piano to build yourself. Full specification in our catalogue.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one ready-made with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

A wide range of disco accessories at marvellous prices. Our catalogue has all the details.

A very high quality 40W per channel stereo amplifier with a superb specification and lots of extras. Full construction details in our catalogue.

A genuine 150W per channel stereo disco to build yourself. Full specification in our catalogue.

A massive new catalogue from Maplin that's even bigger and better than before. If you ever buy electronic components, this is the one catalogue you must not be without. Over 280 pages - some in full colour - it's a comprehensive guide to electronic components with hundreds of photographs and illustrations and page after page of invaluable data.

Our bi-monthly newsletter contains guaranteed prices, special offers and all the latest news from Maplin.

All mail to: P.O. Box 3, Rayleigh, Essex SS6 8LR.
Telephone: Southend (0702) 554155.
Shop: 284 London Road, Westdick-on-Sea, Essex. (Closed on Monday)
Telephone: Southend (0702) 554000.