Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics—now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: “Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed.”

City and Guilds Certificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:

Telecommunication Technicians
Radio, TV Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV and Audio, Engineering and Servicing
Electrical Engineering, Installations and Contracting

Qualify for a New Career

Home study courses for leading professional examinations and diploma courses for business and technical subjects:

<table>
<thead>
<tr>
<th>G.C.E.</th>
<th>Engineering</th>
<th>Purchasing</th>
<th>Sales</th>
<th>Accounting</th>
<th>Mechanical</th>
<th>Air Conditioning</th>
<th>Building</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 subjects</td>
<td>“O” & “A” levels</td>
<td>“A” levels</td>
<td>Industrial</td>
<td>Management</td>
<td>Work Study</td>
<td>Sales</td>
<td>Accounting</td>
</tr>
</tbody>
</table>

POST OR PHONE TODAY FOR FREE BOOKLET.

To: International Correspondence Schools
Dept H277 Interest House, London
SW4 6UQ or telephone 625 9911

Subject of Interest

Name

Address

Telephone Number

J. BIRKETT
Radio Component Suppliers
25 The Straat, Lincoln LN2 1JF. Tel: 20767

BF 679 STRIPLINE 1000 MHz PNP TRANSISTORS £25p.
BF 362 STRIPLINE 800 MHz NPN TRANSISTORS £25p.
X BAND QUINN DIODES CTX 1 A £3 each.
X BAND BANDSTATE DIODES 0.5 W, 1256 £25 to 1 200 £25p.
STRIPLINE FET with data 2N 442 £5.20 each.
100 CBZ CAPACITORS assorted for £75.
200 j ± 1% RESISTORS assorted values £75.
50 2% ZENERS assorted untested £85p.
TOKO 10.7 MHz FILTER 105.9 £75.
UMA 700 10-7MHz FILTER 2F 50 or £30. £75.
VEE INTEGRATOR 514-7MHz FILTER £50 or 3 £.£.
STC CRYSTAL FILTER £5.50 to £56.
4560 MHz CRYSTAL FILTER £5.50 to £54.

Radio TELEPHONE MIKE INSERTS £95 or 10 £.
UA 722 ZERO CROSSING AC TRIGGER TRIG 500 with data £25p.
FX 1115 FERITE BEADS 15p each.
2/100 FILTER FORMERS with cores £5 to £25p.
BA 160 SILICON DIODES 50 for £75p.
20 PHOTO TRANSISTORS AND DARLINGTONS assorted untested £1.

6400 VOLTS VOLT 1 AMP DIODE ASSEMBLY £1 each.
DAU TRIMMERS 2 to 60p £75p to 1 25p £60p.
BULK CAPACITORS C 281p Type £1 to 200v or 200v.
CRISTAL PACKS 20 UK 100 £1.10 to 100v, 20, FT 245 £1.10, 25.
50p Times £1 to 25p.
50 AC 132 TRANSISTORS Branding but untested for 75p.
50 VARI-CAP DIODES LIKE BA 102 untested £75p.
50 1 AMP THYRISTORS TOG Case untested for £1.
50 AMP MOUNTED THYRISTORS assorted untested for £75.
Photo TRANSISTORS AND DARLINGTONS assorted untested £1.
50 BC 107-5 TRANSISTORS assorted untested for 75p.
10 MULTI-TRIP PRE-SSET POTentiometers assorted £60p.
UNJUNCTION TRANSISTORS 2N 4871 23p, 2N 4009, 283, 2N 4929, 283.
PET 9 J 310 250v, £2.80 to 8.25, £2.25, 12 v, £2.80 to 8.25, £2.25.
STUD MOUNTING DIODES 100 PIV 10 amp £1, 100 PIV 25 amp £1.
1 AMP TRIMMERS TOG 4000 £400 25p each.
RF J 5.1, C, R, CA 301 12p with data £50p.
MULLARD TRANSISTORS DC 549 10p, 6 for 50p, BC 549 10p, 6 for 50p.
TRANSFORMERS 240 volt AC Input Type 1, 24 volt Tapped at £1.95 £1.30.
100F £1.75, £1.75, 25p, £2.50.

SAE lists.

PHILIP H. BEARMAN
6 POTTERS Rd, NEW BARNET HERTS.
Tel: 01-449-1934/5.

LARGE RANGE OF B&V QUALITY VALVES. WRITE FOR PRICE LISTS.

NEW MONO TUBES, USUALLY 2 YEAR GUARANTEE.

A31/120, A31/300, A31/410W.
A34/100; CME 1420, M6529 FPZ.
A38/160; CME1520, Thr.
A38/120; CME 713, Thr.
A47/91; CME 1903, A47, 14W.
A47/11W; A47, 26W, Mullard.
A47/13W; CME 1906, Thr.
A50/120W; CME 2013, Vega.
A59/15W (AV59, 91), Mullard.
A61/23WR (A59, 11W, Mullard.
A61/120WR (CME 2413) Vega.

£15, £15, £15, £15, £15, £15, £15, £15, £15, £15.

VARIOUS OTHERS — NO 80 PORTABLE TYPES.

CARRIAGE MAINLAND £2 EACH, ENQUIRIES PLEASE.

SPECIAL OFFER SEMICONDUCTORS

TSB900 50p, £20 600p, J41 9p each £1.00, NE555 25p, £1.25 10v, NE555 25p, £1.25 10v.
Miniature toggle switches, SPST 6x5-7.5rpm £8p, DPDT 8x7-7.5rpm £8p.
DPDT centre off £12.1x1.85mm 70p. HEAVY DUTY TOGGLE DPDT 240v 10 amps 35p.
MINIATURE SOLID STATE BUZZERS. 33x17.5x10mm white plastic rectangular case, output at 3 feet 3000, Low consumption only 15mA, 4 voltage types available: 6-9 or 24v, DC £1.40 each. LOUD BUZZER. 50mm diameter £9 or 12 volts or 60 amp. GPO ADJUSTABLE BUZZER. 6-12v DC 25p.
DE-SOLDERING TOOL, Good suction. Teflon nozzle. £4.75.
MOTORS. Miniature model motors 1.8-6V DC 30s, 12V 5 pole motors 25s, 8 track replacement motors 12V DC £5p. £6-9 rpm. Induction motor 115v AC 3 phase 25p. Smiths Clock Motor Synch. 240v £1.40 per rev. per hour £.75p.
SIMILAR BOARDS. No. 1 and 2 have standard relay relays, 12V £1.25 each.
No. 2 has 110V 5 amp relays, one relay and various transistors including LM358 £1.25.
No. 2 has car radio RF/IF boards 3 transistors, LM358 £3 maximum IF £60p.
No. 2 has car radio RF/IF boards 3 transistors, LM358 £3 maximum IF £60p.

PHONE PICK UP COIL. Suction type and lead plug 55p.
Terms — Cash or usual (or official orders from schools etc) Postage 35p.

PROGRESSIVE RADIO

93 Dale Street,
Liverpool L2 2DY.

Progressive Wireless, July 1979

www.americanradiohistory.com
Electronics. Make a job of it....

Enrol in the BNR & E School and you'll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P. M. G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television: Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure without obligation to:

British National Radio & Electronic School

P.O. Box 156, Jersey, Channel Islands.

NAME

ADDRESS

Catronics

Exceptional Value in the complete Range of VERO CABINETS

A few examples:

ALL PLASTIC RANGE

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Size (mm)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-2514F</td>
<td>100 x 50 x 25</td>
<td>£1.70</td>
</tr>
<tr>
<td>65-2516G</td>
<td>100 x 50 x 40</td>
<td>£1.85</td>
</tr>
<tr>
<td>65-2518H</td>
<td>120 x 65 x 40</td>
<td>£2.15</td>
</tr>
<tr>
<td>65-2520J</td>
<td>150 x 80 x 60</td>
<td>£2.45</td>
</tr>
<tr>
<td>65-2522K</td>
<td>180 x 110 x 60</td>
<td>£3.25</td>
</tr>
</tbody>
</table>

METAL FRONTED RANGE

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Size (mm)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-1237J</td>
<td>85 x 40 x 154</td>
<td>£2.80</td>
</tr>
<tr>
<td>75-1238D</td>
<td>85 x 60 x 164</td>
<td>£3.00</td>
</tr>
<tr>
<td>75-1239K</td>
<td>85 x 80 x 164</td>
<td>£3.65</td>
</tr>
<tr>
<td>75-1411D</td>
<td>205 x 140 x 75</td>
<td>£4.26</td>
</tr>
<tr>
<td>75-1412K</td>
<td>205 x 140 x 110</td>
<td>£5.53</td>
</tr>
<tr>
<td>75-1410J</td>
<td>205 x 140 x 40</td>
<td>£3.80</td>
</tr>
</tbody>
</table>

Aluminium top panel 65-3851A (120 x 65 x 40) £3.31

Sloping front panel 75-1788K (171 x 121 x 75/37/5) £4.52

19" CARD FRAME/CASE SYSTEM

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>71-3341-L</td>
<td>£2.45</td>
</tr>
<tr>
<td>71-3343-F</td>
<td>£1.15</td>
</tr>
<tr>
<td>71-3343-A</td>
<td>£1.00</td>
</tr>
<tr>
<td>71-3344-G</td>
<td>£1.30</td>
</tr>
<tr>
<td>71-3345-H</td>
<td>£1.35</td>
</tr>
<tr>
<td>71-3346-M</td>
<td>£1.75</td>
</tr>
<tr>
<td>71-3344-B</td>
<td>£2.37</td>
</tr>
<tr>
<td>71-3345-E</td>
<td>£2.65</td>
</tr>
<tr>
<td>71-3346-L</td>
<td>£2.45</td>
</tr>
</tbody>
</table>

All prices INCLUDE VAT, at current rates. Please note our minimum U.K. post & packing charge, except where indicated, is 30p.

Catronics Ltd., Communications House, (Dept. 987) 20 Wallington Square, Wallington, Surrey SM6 8RG.

Tel. 01-669 6700 (9 a.m. to 5.30 p.m. Sat. 1 p.m.)
Opinion

ALTHOUGH we have, over the years, reviewed quite a number of kits, for items ranging from intruder alarms to ignition systems, it has long been editorial policy that reviews of ready-built equipment were confined to pieces of test equipment which were likely to appeal to the electronics or radio enthusiast. This was considered to be the right approach for a magazine which was aimed principally at constructors.

We have recently been receiving a growing stream of letters from readers, asking for advice and comment on currently-available communications receivers and other radio equipment for the short-wave listener and amateur, and it is to meet this demand that we are now embarking on a series of reviews. You may rest assured, however, that this change in policy does not mean that we shall be devoting less attention to designs for home-constructed equipment.

It is not our intention to carry out any Which-style comparative tests, nor to suggest a "Best Buy". Neither shall we be carrying out full-scale specification testing, in the way that the hi-fi magazines do on tuners, amplifiers and the like. We shall simply try to convey the feel of the equipment as gained from user tests, to give an idea of how good the instruction manual, etc. is, and to say what accessories or options may be available.

In choosing items for review, we have selected what seem to be the most popular, plus any others available within roughly the same price bracket. This month it is the turn of the Yaesu FRG-7 receiver—future plans include several more receivers, transmitters, transceivers, aerials and various pieces of ancillary equipment. We also hope to comment on some professional receivers now available on the second-hand market. We hope that you will find the reviews interesting and useful, and would be glad to receive suggestions for items to include in the future.

Charles Molloy G8BUS—"On the Air" Contributor

Trained as a telecommunications engineer, Charles worked abroad for several years and became an associate member of the IEE. He is now a technical author in electronics.

Interest in the medium waves began when a schoolboy in the mid-1930s, after constructing a receiver for domestic use. He later turned to the short waves after building a one-valve receiver from a design by F. J. Camm in Practical Wireless, and became a regular SWL while living in the Middle East.

Although a holder of a class B amateur licence, appearances on 70cm and 2m are infrequent as the main interest in radio these days is in broadcast band DXing.

Charles collects books on the early days of radio, and enjoys messing about in boats. Other interests include classical music, opera and attending ballet with wife Mary, who is a devotee. He is looking forward to retirement and the opportunity to catch up with a number of outstanding radio projects.
Fig. 1: Complete circuit diagram of the a.m./f.m. frequency readout based on the OKI MSM5526 i.c.

<table>
<thead>
<tr>
<th>LCD 3½ Digit</th>
<th>PIN</th>
<th>LCD 4 Digit</th>
<th>PIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN</td>
<td>PIN</td>
<td>PIN</td>
<td>PIN</td>
</tr>
<tr>
<td>1</td>
<td>Back Plane</td>
<td>40</td>
<td>Back Plane</td>
</tr>
<tr>
<td>2</td>
<td>Bar</td>
<td>39</td>
<td>nc</td>
</tr>
<tr>
<td>3</td>
<td>39</td>
<td>38</td>
<td>Over Range</td>
</tr>
<tr>
<td>4</td>
<td>nc</td>
<td>37</td>
<td>nc</td>
</tr>
<tr>
<td>5</td>
<td>nc</td>
<td>36</td>
<td>nc</td>
</tr>
<tr>
<td>6</td>
<td>nc</td>
<td>35</td>
<td>nc</td>
</tr>
<tr>
<td>7</td>
<td>nc</td>
<td>34</td>
<td>nc</td>
</tr>
<tr>
<td>8</td>
<td>DP3</td>
<td>33</td>
<td>nc</td>
</tr>
<tr>
<td>9</td>
<td>e3</td>
<td>32</td>
<td>g3</td>
</tr>
<tr>
<td>10</td>
<td>d3</td>
<td>31</td>
<td>f3</td>
</tr>
<tr>
<td>11</td>
<td>c3</td>
<td>30</td>
<td>a3</td>
</tr>
<tr>
<td>12</td>
<td>DP2</td>
<td>29</td>
<td>b3</td>
</tr>
<tr>
<td>13</td>
<td>e2</td>
<td>28</td>
<td>DP4 (colon)</td>
</tr>
<tr>
<td>14</td>
<td>d2</td>
<td>27</td>
<td>g2</td>
</tr>
<tr>
<td>15</td>
<td>c2</td>
<td>26</td>
<td>f2</td>
</tr>
<tr>
<td>16</td>
<td>DP1</td>
<td>25</td>
<td>a2</td>
</tr>
<tr>
<td>17</td>
<td>e1</td>
<td>24</td>
<td>b2</td>
</tr>
<tr>
<td>18</td>
<td>d1</td>
<td>23</td>
<td>g1</td>
</tr>
<tr>
<td>19</td>
<td>c1</td>
<td>22</td>
<td>f1</td>
</tr>
<tr>
<td>20</td>
<td>b1</td>
<td>21</td>
<td>a1</td>
</tr>
</tbody>
</table>

Practical Wireless, July 1979
Fig. 2 (above): Full-size track layout of the p.c.b.

Fig. 3 (above right): Component layout and details of external connections to the p.c.b. The switch will normally be part of the wave-change switch of the associated receiver. When using a 3½-digit l.c.d., two “U”-links of insulated wire should be soldered to the track side of the p.c.b., linking pins 2 and 5/6, and pins 3 and 7 of the display.

Fig. 4: Pin-outs of the SP8629 (below) and the MSM5526 (right)

- Segment identification
- Vcc
- Output
- (TTL) Vcc
- Zener diode
- Input
- Earth (0V)
- +9V to 18V
- Fm. input
- I.F. output
- FM out
- AM out
- Segment out
- Reset
- Pin
- XT
- SS
- Com
- FM out
- Segment out
- Segment out
If you are involved in digital electronics it is essential that you have some means of detecting pulses and logic states. Without this necessary equipment you will be totally in the dark when trying to find out why your latest creation does not work.

There are many logic probes on the market but for the amateur they tend to come a touch on the pricey side. Continental Specialties Corporation, who also make a range of logic probes, have recently introduced a kit for a probe which will detect and display logic levels, pulses and voltage transients.

The kit is complete down to the last piece of wire and even includes a length of solder. All the components appeared to be of good quality and fitted the holes drilled in the glass fibre printed circuit board without any problems.

The instruction manual is very comprehensive and covers not only the building of the probe but also notes on how to use it.

★ specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input impedance</td>
<td>300kΩ</td>
</tr>
<tr>
<td>Threshold</td>
<td>Logic 1 (Hi-l.e.d.) 70% Vcc</td>
</tr>
<tr>
<td></td>
<td>Logic 0 (Lo-l.e.d.) 30% Vcc</td>
</tr>
<tr>
<td>Detectable pulse width</td>
<td>300 nanoseconds min.</td>
</tr>
<tr>
<td>Input signal frequency</td>
<td>1.5MHz max.</td>
</tr>
<tr>
<td>Pulse detector</td>
<td>High-speed pulse train or single events</td>
</tr>
<tr>
<td></td>
<td>(positive or negative transitions), active</td>
</tr>
<tr>
<td></td>
<td>0-1 second pulse stretcher</td>
</tr>
<tr>
<td>Input voltage</td>
<td>± 50V continuous, 120V a.c. for less than</td>
</tr>
<tr>
<td></td>
<td>15 seconds</td>
</tr>
<tr>
<td>Power requirements</td>
<td>5 volt Vcc at 30mA</td>
</tr>
<tr>
<td></td>
<td>15 volt Vcc at 40mA</td>
</tr>
<tr>
<td></td>
<td>25 Volts max., with power lead reversal</td>
</tr>
<tr>
<td>Physical size</td>
<td>147 x 25.4 x 17.8mm</td>
</tr>
<tr>
<td>Weight</td>
<td>85 grams</td>
</tr>
</tbody>
</table>

Construction proved to be very simple and straightforward, the step-by-step assembly instructions proving easy to follow. Unlike traditional British component placement drawings however this one did not show the copper track pattern of the p.c.b. and no holes are shown so that it is very important to check twice that the components are correctly placed.

No problems were encountered and the probe worked first time, but if you are unfortunate a page is devoted to trouble-shooting and two pages to testing the probe following construction.

The plastics case, which is available separately and has been used for the PW Car Test Probe, is very neat and the two labels supplied with the kit are self-adhesive giving the finished probe a professional look.

The probe is simple to use, requiring the power leads to be clipped to suitable voltage rails on the circuit under test and the probe tip to be held against the test point.

Indication of the status of the point is by a combination of three l.e.d.s which light, or pulse, depending upon the logic state being investigated.

As a simple means of determining logic states this kit is very good value for money.

Dick Ganderton

SEE NEXT MONTH’S ISSUE OF PRACTICAL WIRELESS FOR DETAILS OF A SPECIAL INTRODUCTORY OFFER FEATURING THIS KIT

Practical Wireless, July 1979
Hey, Good Looking!

Beautiful innit?, but a swish exterior can often be an eye catching cover for some very ordinary "guts", so what's so different about the WINTON?

Well, for a start we have discarded Bi-Polar output devices in favour of the far superior performance of the Hitachi Power MOS-FETS, which until now have only been available in some of the most expensive Hi-Fi Amplifiers around, (and we consider £700 to be expensive with a capital E!). Secondly, our extremely low distortion figures are obtained at FULL RATED OUTPUT with both channels driven, across the entire audio spectrum.

Further, at these power levels 2nd and 3rd order intermodulation components are typically less than 0.005% (See the March issue of P.W. for the full spec' and a few shots from the Spectrum Analysery.) Whilst we freely admit that ownership of a Winton will not prevent your hair from falling out, nor warts from growing on your nose, you will feel a nice sense of achievement when the job is complete, and you will own an Amplifier that will make your mates positively green with envy, until that is they see the light and obtain one of their own.

The WINTON Kit is available in the following form:-

- Pack (A) Capacitors & Fixed Value Resistors: £21.45
- Pack (B) Switches, Potentiometers, Pre-sets & Knobs: £13.26
- Pack (C) Printed Circuit Board, and Terminal Pins: £8.10
- Pack (D) Hardware Pack, consisting of Chassis, Heat Sinks, Cabinet, Screws, Wire, Fuses, Holders etc., and a Brushed Aluminium Fascia Front Panel: £32.99
- Pack (E) Semiconductors (including HITACHI MOS Power Fets): £30.53
- Pack (F) Toroidal Mains Transformer: £17.22
- Complete Kit of all parts necessary to build the WINTON: £120.00

ORDER WITH COMPLETE CONFIDENCE (Cash with order please) FROM:-
T. & T. ELECTRONICS, GREEN HAYES, SURLINGHAM LANE, ROCKLAND ST. MARY, NORWICH, NORFOLK, NR14 7HH.
PLEASE ALLOW 28 DAYS FOR DELIVERY.

New Heathkit electronic test equipment course.
Section 1. Analogue and digital meters.
Section 2. Oscilloscopes.
Section 3. Frequency generation and measurement.
Section 4. Special measuring instruments.

New Heathkit car electrical systems course.
Section 1. Electrical principles of the car.
Section 2. Starting system fundamentals.
Section 3. Car charging systems.
Section 4. Accessories and body electrical.

Two new self-instruction courses from Heathkit. Based on step-by-step programmed instructions, they let you learn at your own pace in your own home.

Each course is complete and contains audio/visual material, text, and parts for 'hands on' experiments with the optional Heathkit experimenter trainer. So all you need is a cassette player and the will to learn.

Full details of Heathkit courses are available in the Heathkit catalogue, together with hundreds of kits you can build for yourself - computers, oscilloscopes, transceivers etc. Send for your copy now.

There are Heathkit Electronics Centres at: 233 Tottenham Court Road, London W1, 0-330 7349, and at Bristol Road, Gloucester, GL2 6EE. Registered in England, No. 606177.
The aim of this design was to produce an educational toy capable of teaching rapid number recognition to children of 2½ years and upwards. The absolute minimum of instruction should be necessary, the idea being that the child learns as he plays, without external influence. The toy should thus be interesting to play with.

To a young child this means: (a) visual stimulation—things should be seen to happen; (b) touch stimulation—the instrument should respond to touch, to pressure—there should be something to turn, something to switch.

This simple unit has all these facilities and can hold a child’s attention for remarkably long periods. It can also double as a single die for use with other games.

General Features

Fig. 1 shows the basic design blocks. A swept-frequency clock generator feeds the first decade counter, the digit outputs of which are used to drive ten light-emitting diodes (l.e.d.s) arranged in a circle. A second decade counter, fed from the same clock source, drives a single 7-segment l.e.d. numeric display. As the clock frequency rises from zero, the circular l.e.d. display assumes a rotating motion with a visible acceleration. As the clock frequency then falls to zero, the “flywheel” effects slows and stops at a random position.

The l.e.d.s are labelled 0 to 9, as are the positions on the manual number selector, which is a rotary switch. Provided that both decade counters are reset to zero initially, they will always remain synchronised, i.e., if the flywheel stops at position “4”, then the 7-segment outputs will correspond to the figure 4 also.

The number selector is wired such that the 7-segment display is only illuminated when this switch is turned to the same number at which the flywheel has stopped. The normal fixed-frequency clock is used when the device is employed as a die.

Some simple logic is included to make the toy more interactive with the child, and will be described in the appropriate sections.

The Swept-frequency Clock Generator

For this particular application, a manually-initiated frequency sweep was required from zero up to about 100Hz and back again to zero. The circuit is shown in Fig. 2.

The clock is designed around the ubiquitous NE555V integrated circuit connected in the astable mode.

If the circuit to the left of the dashed line is studied, the timing components R1 and C1 are easily recognised. C1 is charged up through R1, and IC1 will discharge C1 when the voltage at point A reaches 0.67Vdd. The negative-going edge corresponding to the discharge of C1 triggers the cycle and the system becomes astable, the frequency of oscillation being given by:

\[f = \frac{1}{44RC} \text{Hz} \]

In the circuit to the right of the dashed line Tr1 and Tr2 are connected as a Darlington pair controlled by the touch plate connected to the base of Tr2. The quiescent-state voltage at point A is controlled by resistors R1, R2, and R3, the two transistors being effectively open-circuit. A simple Ohm’s Law calculation shows that point A is held at 0.65Vdd and, because IC1 will not discharge C1 until point A reaches 0.67Vdd, the clock oscillator is biased off, its output being a logic “1” in this condition.

When a finger is applied to the touch plate, charge flows into the electrolytic capacitor, C2. As this charges up, the potential at point B rises. With C2 fully charged (after about one second), both transistors are turned fully on and point B is taken almost to Vdd. Thus the Darlington pair may be regarded as a variable resistance, Rr, between point B and Vdd, this resistance varying from infinity to near zero. As soon as Rr becomes finite, point A is lifted above the threshold value of 0.67Vdd and oscillation begins.

![Fig. 1: The basic block diagram of the numbers toy](image-url)
The frequency of oscillation is still given by the above equation, except that R1 must be replaced by the effective instantaneous value of R1, R2 and Rt. In the limit, with Tr1 and Tr2 turned fully on, R1 and R2 are virtually in parallel between Vdd and point A, and have an effective resistance of 24.8kΩ. This gives a theoretical upper frequency limit of:

\[f = \frac{1.44}{2.48 \times 10^4 \times 3.3 \times 10^{-7}} = 176\text{Hz} \]

This figure is not attained in practice because Rt never falls completely to zero.

When the finger is removed from the touch plate, C2 discharges slowly through Tr1 and R3, and Rt increases correspondingly. The frequency of oscillation falls and finally reaches zero when point A falls again below its threshold value. This decay time is of the order of 10 to 15 seconds.

Switching R4 into the biasing network by closing S1 holds point A just above threshold and a constant-frequency output of about 15Hz is produced. The use of this clock frequency is described in a later section.

The touch plate is very sensitive in its action, and this encourages the child to experiment as he watches the effects of his finger's pressure illustrated on the flywheel display.

The Decade Counters

Apart from the NE555V oscillator, this instrument employs c.m.o.s. devices which are relatively cheap and are ideal for this purpose. Fig. 3 shows the circuit diagram of the first decade counter and the transistor drivers for the 10-l.e.d. flywheel display. The 4017 decade counter is fed from the clock generator described above. In order to drive the flywheel l.e.d.s at 20mA, ten transistors operating as emitter followers are used. As only one l.e.d. is illuminated at any instant, only one current limiting resistor, R10, is necessary. It will be noted from Fig. 3 and Fig. 4 that the "reset" and "clock inhibit" functions are made common to both decade counters. This is to ensure complete synchronism of the two counters at all times. The combination of C3 and R5 resets both counters to zero when power is first applied.

![Fig. 2: Circuit diagram of the swept-frequency clock generator](image)

![Fig. 3: The first decade counter and transistor drivers](image)
The mains transformer is a 12-0-12V type designed to supply up to 100mA d.c. from a full-wave rectifier. Most of the current is drawn by the relay (60-80mA) with the rest taking less than 20mA. Thus if a relay is used which draws more than 80mA a larger transformer will be needed. A 100mA fuse is shown connected to the primary of the transformer and this is necessary for safety. If it is found that the fuse blows on switch-on an anti-surge fuse can be fitted. The other fuse supplying the appliance being controlled should be rated according to the relay contacts and mains cable used.

A suitable case for the unit can be made from a plastics Bimbox. When fitting components into the case, it is important to keep all the high voltage components (relay, transformer and fuse holders) well away from the other components so that there is no chance of any live connections touching any other part of the circuit. Holes are drilled in the case for the microphone, the l.e.d. and the gain control VR1. The circuit boards should be positioned within the case such that the presets VR2-VR4 can easily be reached to be adjusted. The boards are held in place using self-adhesive pads. When wiring up between the
Using the Switch

Adjust VR1 so that the LED will not flash from background noise in the room, but will reliably respond to a hand clap. The LED will be found very useful for indicating whether the unit has “heard” a sound or not, when setting the sensitivity.

Although originally intended purely as a gimmick, the device has been found to be extremely reliable and may well have more practical uses. The prototype was left in an average sitting room for a week without triggering spuriously, but would immediately respond on hearing the correct sound sequence.

There could be practical uses where it is necessary to operate equipment remotely, possibly by a disabled person, or in other cases where it is not possible to operate a switch directly.

Fault-finding

Once the design had been finalised, it was found that the units could be relied upon to work correctly immediately they had been assembled and adjusted. Most faults are likely to be caused by wire links in the wrong places and diodes or transistors the wrong way round. Remember that the circuit uses both npn and pnp transistors. A puzzling intermittent fault in one unit was traced to C6 being open-circuit. This resulted in the supply rails...
For details and coupon see page 30

Carrying unsmoothed a.c. and played havoc with the logic functions.

Provided that the l.e.d. flashes in response to sounds then faults are best traced by first checking the outputs of the monostables (pins 4, 10, 11 of IC2) and then following the voltage levels through the rest of the circuit. Remember that the monostables give an inverse output, i.e. "1" in the quiescent state and "0" when active, and remember also that the circuit takes 5 seconds to complete its cycle and if it receives an input before GI has reset it will ignore it.

If the l.e.d. does not light up then first check IC1. The voltage on pin 6 (output) should equal that on the wiper of VR2, except at extreme settings of VR2. The Schmitt trigger, Tr1. Tr2 should turn on when the voltage on Tr1 base exceeds about 3V, turning on the l.e.d. via Tr3-Tr5, and should turn off sharply as the voltage is lowered. These functions can easily be checked with a multimeter and should show up the location of any fault. However, provided the unit is constructed carefully, there is no reason why it should not work first time.

Practical Wireless, July 1979
For the prototypes, the PCBs were made by the rather laborious drilling-painting-etching-cleaning techniques, which are more difficult than etching. However, constructors who wish to purchase ready-made boards will find them available from advertisers. Components used in the output filter should be exactly as specified—i.e., abnormally high voltage capacitors to take high circulating currents and air-cored inductors to avoid the saturation which would occur with the smaller type of ferrite cores. Remember that the filter is passing 6-7 watts of R.F. energy and retaining 1-2 watts of harmonic energy. Loss of harmonic power and the bottoming resistance of the power FETs are the principal causes of efficiency loss in this transmitter. The filter values may be "scaled" for other frequencies.

Practical Wireless, July 1979

Fig. 1: Circuit diagram
Fig. 2: The copper track side of the p.c.b. is shown full size at the top with the copper ground plane on the component side below it.
RF POWER METERS
JD 110 10 & 100w £11.88
Rowe UN 14 432/144 £13.28
Harston 202/200w 150MHz £26.50
Leader UPM 885 200000w 1kw £28.50
SWR 22 TWIN 3.5/1500MHz £71.90
Leader LPM 880 absorption watt meter 5/100 18w £56.00

YAESU PRICE LIST (inclusive VAT & Carriage)

<table>
<thead>
<tr>
<th>HF Equipment</th>
<th>FL 110</th>
<th>£144.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT901DM</td>
<td>£995.00</td>
<td></td>
</tr>
<tr>
<td>FT901D</td>
<td>£825.00</td>
<td></td>
</tr>
<tr>
<td>FY901D</td>
<td>£240.00</td>
<td></td>
</tr>
<tr>
<td>SY901</td>
<td>£250.00</td>
<td></td>
</tr>
<tr>
<td>SY901 2M</td>
<td>£562.00</td>
<td></td>
</tr>
<tr>
<td>FT101E</td>
<td>£586.00</td>
<td></td>
</tr>
<tr>
<td>FT101B</td>
<td>£396.00</td>
<td></td>
</tr>
<tr>
<td>SP 101</td>
<td>£21.00</td>
<td>Memory</td>
</tr>
<tr>
<td>FL 2100</td>
<td>£345.00</td>
<td></td>
</tr>
<tr>
<td>YQ 101</td>
<td>£130.00</td>
<td></td>
</tr>
<tr>
<td>FT 301</td>
<td>£755.00</td>
<td></td>
</tr>
<tr>
<td>FC 301</td>
<td>£586.00</td>
<td></td>
</tr>
<tr>
<td>FC 301 2M</td>
<td>£120.00</td>
<td></td>
</tr>
<tr>
<td>FT 301 2M</td>
<td>£109.00</td>
<td></td>
</tr>
</tbody>
</table>

VHF Equipment £396.00

JUST TELEPHONE YOUR CARD NUMBER OR SEND YOUR CHEQUE WITH ORDER
01-864 1166 01-422 9585

MICROWAVE MODULES

MMT 144/Any IF	£38.00
MMT 432/Any IF	£109.00
MMT 432/28/85	£113.80
MMT 432/144	£149.60
MMT 432/444	£189.80
MMV 1152/Triple Var	£34.80
MMV 1296/23cm Trimmer	£33.70
MMW C60/500 DFM to 800MHz	£195.00
MMC 144/Any	£20.25
MMC 144/28/LO	£20.25
MMC 70/Any	£20.25
MIA 144 Preamp	£14.60
MML 144/100 Linamp	£13.50
MMC 28/144	£20.25
MMC 28 Preamp	£14.63

Inc. VAT & Post

JAYBEAM

2m Antenna	5W/2M 5 el vgl	£3.96
8W/2M 8 el vgl	£13.25	
10W/2M 10 el vgl	£26.13	
PIM 10/2M panelb	£36.78	
PSM 14/2M panelb	£37.55	
8X/2M 5 el x dug	£13.50	
8X/2M 8 el x dug	£24.10	
10X/2M 10 el x dug	£31.76	
PNM 12/5 triangle harness	£9.15	
O4/2M 4 el quad	£20.14	
O5/2M 6 el quad	£28.70	
D5/2M el slot	£17.00	
D8/2M el slot	£22.30	
UG30/2M ground plane	£5.98	
SWM3/2M vertical slot	£3.30	
HX2/2M halo head	£4.20	
HX2/2M halo mast	£4.98	
PHI/2M 2-way harness	£10.10	
PHI/4M 4-way harness	£12.95	
70cm Antenna	PIM 18/70cm Panelb	£22.53
MIBV95/70cm Multib	£26.46	
MIBB80/70cm Multib	£34.85	
12X70cm 12 el x dug	£38.52	
PHV3/70cm harness	£5.93	
PHV4/70cm harness	£14.35	
CB/70cm 8bpf collarm	£48.03	

ICOM

IC 701	£810.00
IC 701PS	£136.00
IC 211E	£389.00
IC 245E	£289.00
IC 240	£189.00
IC 205S	£205.00
IC 215	£199.00
IC 402 UHF	£270.00
IC 623	£34.00
IC 525	£24.50

Incl. VAT & Delivery

FM COMMUNICATIONS RECEIVER

FRG-7

• 0.5-29.9MHz Coverage with 10kHz Readout

The FRG-7 is a precision-built all-purpose communications receiver featuring all solid-state construction for long life and high performance. Utilizing the Wadley Loop drift cancellation system, in conjunction with a triple conversion superheterodyne circuit, the FRG-7 boasts high sensitivity along with excellent stability. It provides broadcast listeners with such features as a 3-position tone selector, an RF attenuator, and an automatic noise suppression circuit. For many years of satisfying reception, the FRG-7 is the receiver for you.

Supplied with SM module and free Securicor delivery £210.

General Coverage Communications Receiver

QM 70

<table>
<thead>
<tr>
<th>Post & tax paid everywhere</th>
</tr>
</thead>
<tbody>
<tr>
<td>70/2BCRC 4m-10m conv.</td>
</tr>
<tr>
<td>144/2BCRC 2m-10m conv.</td>
</tr>
<tr>
<td>432/2BCRC 70m-15m conv.</td>
</tr>
<tr>
<td>323/2RC 60m-12m conv.</td>
</tr>
<tr>
<td>1442/443/26 two band 70m-10m conv.</td>
</tr>
<tr>
<td>144PA4/10P10W in 40W out linear amp with preamp</td>
</tr>
<tr>
<td>144PA4/28 2W in 45W out FM Amp with preamp</td>
</tr>
</tbody>
</table>

SECURICOR - HIRE PURCHASE - ALL EQUIPMENTS SERVICED

ANTENNA TUNING UNITS

<table>
<thead>
<tr>
<th>Antenna Tuning Units</th>
<th>£37.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST 1 Random Wire</td>
<td>£24.40</td>
</tr>
<tr>
<td>1.8-30MHz</td>
<td>£33.50</td>
</tr>
<tr>
<td>SST 3 Utra Tuner</td>
<td>£14.90</td>
</tr>
<tr>
<td>1.5-30MHz</td>
<td>£49.50</td>
</tr>
<tr>
<td>SST 3 Mobile Match</td>
<td>£14.90</td>
</tr>
<tr>
<td>1.8-30MHz 30w</td>
<td>£14.90</td>
</tr>
<tr>
<td>Demco MT9000</td>
<td>£36.60</td>
</tr>
<tr>
<td>10-160MHz 30w</td>
<td>£102.00</td>
</tr>
<tr>
<td>Leader LAC 890 500w</td>
<td>£36.60</td>
</tr>
<tr>
<td>SWR/PM/ATU</td>
<td></td>
</tr>
</tbody>
</table>

Full range in Stock

XTAL FILTERS

<table>
<thead>
<tr>
<th>XTAL FILTERS</th>
<th>£13.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>YF 90H12</td>
<td>£13.90</td>
</tr>
<tr>
<td>YF 30H30</td>
<td>£13.90</td>
</tr>
<tr>
<td>YF 90H12</td>
<td>£13.90</td>
</tr>
</tbody>
</table>
FRG7 Communications Receivers
Ours are Better...

...Why?
£210 Inc. VAT*
and Securicor delivery
PLUS
FREE: HEADPHONES
SHORT WAVE AERIAL
SAE FOR COLOUR BROCHURE

We’ve been selling this receiver now for more than two years and, as value for money, it’s pretty difficult to beat. It’s been our pleasure to introduce many hundreds of customers to the fascinating hobby of short wave listening and as the first step to obtaining their amateur radio transmitting licence. So why are our FRG7’s better? Well, as enthusiasts as well as retailers, we’re pretty fussy on the receiver performance and with mass production, limited factory alignment time and a journey of 6,000 or so miles, the untested, boxed item may not be giving its best performance.

That’s why every unit we sell is first checked in our well equipped service department for stability, sensitivity and mechanical soundness. In fact, the test equipment we employ for this task alone costs over £2,000! Once we are satisfied that the receiver performs to specification, we despatch it to you via Securicor for safety and speed. Maybe we are a little more particular than most retailers, but that way we tend to get more satisfied customers.

For those of you with Barclay or Access cards you need simply telephone us, quoting your number and address, and your receiver will be despatched by return.

The Complete Ham Radio Centre:
WATERS & STANTON ELECTRONICS
31, SPA ROAD, HOCKLEY, ESSEX. TEL. 03-704 8835
Opening hours Mon-Sat. 9 a.m.-5.30 p.m. Exc. Wed. 1 p.m.

Practical Wireless, July 1979
Can YOUR Antenna do all this?

A small selection from our huge file of testimonial letters on the Joystick variable frequency antenna (5—30MHz).

G4OJY’s copy log shows 6B North Americans worked in the ARRL W8 contest.

W7EY worked W6CY/JR over hundreds of miles on 40m. using the Joystick VFA and Microwatts’ equivalent to 1,000,000 miles per watt—‘a world record—we can supply conclusive evidence!

“I have used Rhombics, 4 x 3 waves in phase, centre fed dipoles, etc., but the success I have had with the V.F.A. has been amazing... only 20ft. high... in front of my mobile home, I NEVER RECEIVE LESS THAN R7 AND MOSTLY R8 ON CW/DX WORKING—Bob Green, SU3KG/G3APH, W.B.E., W.A.C. Phone and CW.

W7EO, U.S.A. Government Electronics Engr. (retired) claims “VFA 5ft. below ground, same as dipole, elevated 15ft., one ‘S’ point UP on dipole.”

In use by amateur transmitting and SWL stations worldwide and in government communication.

JOYSTICK ANTENNAS

SYSTEM “A” £41.00
200 w. p.e.p. OR for the SWL

SYSTEM “J” £47.95
500 w. p.e.p.
(Improved “Q” on receive)

“PACKAGE DEALS”
COMPLETE RADIO STATIONS FOR ANY LOCATION

All packages include the Joystick VFA (System “A”/18th feeder, all necessary cables, matching communication headphones. Delivery services our risk. ASSEMBLED IN SECONDS. You SAVE £14.15 on each PACKAGE DEAL!

PACKAGE No. 1. Features R300 Rx. £222.00
PACKAGE No. 2. Features FRG7 Rx. £237.45
PACKAGE No. 3. Features SRX30 Rx. £212.45
PACKAGE No. 4. Our “Rolls”—Rx. FRG7000. £402.00

RECEIVERS ONLY

R.300 £184.50 FRG7 £199.95
SRX 30 £174.95 FRG 7000 £364.50

All prices are correct at time of going to press and include VAT at 12½% and carriage.

Practical Wireless, July 1979
Every month is the right frequency

When you're building a major project from a PW design, you want to be sure of getting every issue in sequence! Use this order form for a year's supply to be posted to you.

ANNUAL SUBSCRIPTION RATES (including postage and packing) U.K. £10.60. Overseas £10.60.

practical WIRELESS SUBSCRIPTION ORDER FORM

Please send me Practical Wireless each month for one year. I enclose a Sterling cheque/international money order for............................(amount).

PLEASE USE BLOCK LETTERS

NAME Mr/Mrs/Miss

ADDRESS

POSTCODE

Make your crossed cheque/MO payable to IPC Magazines Ltd., and post to: Practical Wireless, Room 2613, King's Reach Tower, Stamford Street, London SE1 9LS.

NUMBERS WITHOUT TEARS

Continued from page 37

should not be taken to Vss via any wire connecting the c.m.o.s. to Vss. When Tr21 is switching a full 140mA, some very strange arithmetic may be evident from the counters if some of the wiring to Vss is common! Anyone contemplating a p.c.b. design is especially warned of this point.

In order to make the touch plate as mechanically simple as possible, a 6BA cheeseheaded bolt was mounted on (but insulated from) the metal front panel and recessed so that the head was flush with the panel. The entire box was earthed and connected to the mains transformer screen, and connected to Vdd via R26 (see Fig. 6).

In this way, a finger placed on the head of the bolt must also touch some of the surrounding painted panel, and this provides sufficient base current to operate the Darlington pair, Tr1 and Tr2. The instrument is thus electrically safe while providing 100 per cent reliable touch operation of the swept-frequency clock.

Fault-finding

It may be found that, on closing S1, the clock does not run. Decreasing R4 to 82kΩ will solve the problem. Similarly, in the swept-frequency mode, it may be found that the clock is still "ticking over" even when C2 is discharged. Increasing R1 to 47kΩ should stop the clock.

These problems arise because of the 5% tolerance resistors used to derive quite a precise voltage at point A (Fig. 2). The author has not found this to be a problem, but theory shows that it is quite possible.

The mains switch, S5, is a d.p.d.t. slider switch mounted on the side of the box adjacent to the top of the front panel. It is thus normally out of sight, reducing the temptation to tamper with it.

Summary

This instrument is designed to appeal to children of 2½ years upwards. The visual effects produced by it are pleasant and interesting. There are switches to use, buttons to press, a knob to turn, and a touch-controlled flywheel display. It aids in the teaching of rapid number recognition and matching, without obviously being a "teaching" toy.

It can also be used as a die for other board games when the numbers themselves have become of secondary importance.

With a little judicious help, the child will soon grasp the cyclic nature of counting in the decimal system—the progression from single-digit numbers to dual-digit numbers, the second (tens) digit being the number of complete revolutions of the flywheel, the first (units) digit being the number at which the flywheel stops.
Most multi-range meters offer a rather mediocre performance on the a.c. voltage ranges. The Avo 8 MkIV, which has long been one of the writer’s favourite test instruments, exhibits an internal resistance of only 250 ohms on the most sensitive (2.5V) a.c. range. This is clearly very unsatisfactory regarding sensitivity and circuit loading when measurements are to be made on today’s electronic circuits. The instrument described was therefore developed as a replacement for the Avo on the a.c. voltage ranges and it offers the advantages of a 1MΩ constant input impedance on all ranges and a frequency response which is substantially flat from 10Hz to well over 100kHz. Six voltage ranges are provided, with a maximum sensitivity of 100mV r.m.s.

The unit uses low cost readily available components and can be built for an outlay of around £10. Battery consumption is minimal and a small 9V battery will provide for many hours of operation.

Circuit Operation

The a.c. voltage to be measured is applied to a switched potential divider, R1 to R6. The range is selected by S1 and capacitor C1 is used to remove any d.c. level present on the input voltage. R7 provides a measure of protection for the field effect transistor, Tr1, and C2 provides a degree of high frequency compensation. Tr1 operates as a source follower and exhibits an extremely high input impedance (greater than 100MΩ) thus minimising the loading effect on the potential divider. Tr1 provides a voltage gain of slightly less than unity, the output voltage being developed across R8.

Silicon transistors, Tr2 and Tr3, form a two-stage high-gain amplifier. Both transistors are operated in the common emitter mode. The amplifier incorporates three feedback loops which help to ensure unconditional stability, a wide operating bandwidth and a high degree of linearity. Stabilisation of the transistor bias is provided by means of direct current feedback from the emitter of Tr3 to the base of Tr2 using R9. C4 provides negative feedback in the second stage of the amplifier. This helps reduce any tendency to oscillation at high frequencies and also ensures that the frequency response “rolls-off” beyond a few hundred kilohertz. VR1, the emitter resistor of Tr2, is used to set the overall voltage gain by controlling the amount of negative feedback present.

Germanium diodes, D1 and D2, from a voltage doubler rectifier arrangement. The arrangement of C6 and C7 provides a means of reducing the surge current through the meter movement during switch-on. Silicon diodes, D3 and D4, provide a “last ditch” protection for the meter movement by offering a shunt path to current when a 600mV voltage drop of either polarity appears at the meter terminals; this corresponds to an eight times overload.

Fig. 1: Circuit diagram of the a.f. electronic voltmeter

M.TOOLEY BA G8CKT

Practical Wireless, July 1979
Fig. 2: (above left) The component overlay for the p.c.b. version of the a.f. voltmeter

Fig. 3: (above right) The copper track layout of the p.c.b. shown here full size

Fig. 4: (below) The wiring and layout of the front panel. The resistors on S1 are soldered directly to S1 tags and the end of R6 is soldered directly to the body of the switch
The problem of identifying correctly an amateur callsign can present a problem to anyone unaccustomed to listening on the amateur bands. It often seems to be a jargon incapable of being decoded! The answer is not always obvious even if the station is in the clear, but if it is being clobbered with QRM then there really is a problem.

Although there is an ITU phonetic alphabet, given below, it is seldom adhered to by amateur operators who seem to use part of this alphabet and part of their own invention. In a perfect phonetic code the word used to represent a letter, such as “alpha” for A and “bravo” for B, must be neutral, one without any particular connotation and generally understood world-wide.

The approved code starts off all right but then uses “Charlie” for C, although personal and place names ought to be avoided since these can be misleading, especially in amateur use, where station locations and operator’s names are constantly being exchanged.

A: Alfa J: Juliet S: Sierra
B: Bravo K: Kilo T: Tango
C: Charlie L: Lima U: Uniform
D: Delta M: Mike V: Victor
E: Echo N: November W: Whiskey
F: Fox trot O: Oscar X: X-Ray
G: Golf P: Papa Y: Yankee
H: Hotel Q: Quebec Z: Zulu
I: India R: Romeo

There are several words in the phonetics list which I do not agree with personally, but the problem is to find suitable alternatives.

What causes most confusion however is the amateur’s own version of the phonetic code, especially the use of “George” for the G in UK callsigns, particularly where the operator is called “Fred”! Might not matter too much among lads and nets on 2m or u.h.f., but used on the DX bands can only make identification of a callsign all that more difficult.

On numbers, the recommended procedure is to use the word “figure” before any number, to indicate that a figure is to follow, thus “Golf, figure four, alfa romeo”. This can only help but it is seldom employed by amateurs unless they have been trained on a military or commercial network of some kind. The use of phrases like “Red Hot Momma” for RHM in the suffix of a call may be amusing to some but meaningless to the amateur with little or no knowledge of the English language.

I appreciate that this little homily will have no effect whatsoever, but I hope it will serve to demonstrate to the innocent listener to the amateur bands that there is little or no “system” with amateur phonetics. Initially, it is better to write down in full what is heard and then the callsign ought to become apparent, aided by a good list of prefixes, but, as ever, experience will prove the best teacher.

Here and There

Well known to this column for his SSTV reports in the past, Paul Barker of Sunderland is now busy on c.w. and s.s.b. with his new callsign G4HPS, having started off with G80VD. Paul’s first s.s.b. QSO was with FG7AS/FS7 on 10m, which is enough to make anyone’s mouth water! He uses a TS520S transceiver to an 18AVT multiband vertical, plus an FT221R on 2m to an indoor 4-element quad. Paul managed to get QSLs from all six continents for SSTV reports before getting his ticket.

In Southport, Peter Hawks has got going with a DX160 but, like others, found the manual’s calibration chart did not match up to reality. He’s talking about a digital readout unit but I think he would be better off initially with a crystal calibrator. Philip Charlsworth (Southport) has got going with an outside aerial which he finds “staggering” after his indoor one. As he lives on the only hill in Southport he will find the advantage of much greater importance when he gets his ticket in due course. Philip mentions the PA0AA transmissions on 3750kHz for amateurs, followed by slow Morse transmissions. Details of the latest schedules would be appreciated.

Peter Lucas of Newport, Salop, has dumped his R207 and settled for an AR88 but needs to rewire a lot of it. A circuit or manual would be appreciated at 3 Queen’s Drive if anyone can help. Pete’s been hearing plenty on 10m of late with only a 16ft vertical. In Chiswick, London, George Gizebieniak BRS 41733 has bought an old SX24 receiver for £20 and found it worked fine on the 10m band, with converters for 2m and 70cm.

An appeal from Jim Timoney ZS1TK for a spare for his KW2000 transceiver, having had any success with the descendants of KW in this country. He wants the 3-gang tuning capacitor on the pre-selector, part number C40 on the circuit diagram. Any offers of help to me direct please. Another reader in need of help is M. David of 46 Pentathlon Way, Cheltenham, Glos, who has got hold of a Star SR550 for just a £1! It works fine but he’d like a manual for copying and return. He’s heard an HK on the 10m band and threatens to send in some logs in future.
Come to the Great British Electronics Bazaar

FREE!

(AND WAIT UNTIL YOU SEE OUR SEMINAR PROGRAMME)

The Great Big 'Bazaar' for the hobbyist, amateur, and small buyer.

There's never been an event like this before.

First, the very scale of the exhibition is huge. Virtually all the companies you're used to hearing about (and buying from) will be there. Companies like Fluke and Gould showing off their low cost multimeters; smaller but important manufacturers like Lektrokit and Chromasonics; and even the R.S.G.B. who will have a station 'on the air' throughout the 'Bazaar.'

Then there are the suppliers of low-cost components and equipment. Plus almost all the journals in the business. Plus, oh, so many more interesting people catering for your needs (including computer kits!).

And you get in FREE if you send an s.a.e. (see alongside).

Our Symbol.
We think it tells you just what the Bazaar is all about.

The Seminars.
If you would like to hear just what the experts have to tell you, a season ticket for three whole days can be yours for only £1.50.

Send an s.a.e. and we'll give you all the information (just use the coupon).

Our home for three days – Alexandra Palace, where it all began. (Our seminars are sited alongside the organ – for those who know this unique hall.)

SEMINAR TICKETS
£1.50.

I'd like to sit in at your seminars. (And I'd like a free ticket to the exhibition.) Send me full details, please, and I enclose a large-ish s.a.e.

Name: ..
Address:

Post to: 'The Bazaar,' 34/36 High Street, Saffron Walden, Essex.

When?
Between Thursday to Saturday 28th – 30th June.

You'll come?
Eyes down for the appropriate coupon.

ADMISSION FREE
(or 50p on the door).

I'd like to see 'The Bazaar' FREE. I enclose a large-ish s.a.e. and will receive by return a ticket and full information.

Name: ..
Address:

Post to: 'The Bazaar,' 34-36 High Street, Saffron Walden, Essex. If you'd rather just pay 50p, go to Wood Green Tube Station and take a bus (every 3 minutes) to Alexandra Palace. We're open 10 am-6 pm daily, Thursday to Saturday, 28th-30th June.

Practical Wireless. July 1979
TRANSMITTER RECEIVER MK. 123 very compact Army unit for use in range 2-5 to 20 Mc/s receiver section 7 valves incl RF stage & BFO provides O/P for 4 K phones 3 bands with direct cal 2.5 to 5, 5 to 10 & 10 to 20Mc/s. Tx section 2.5 to 20Mc/s in 3 ranges O/P 15/25 watts over range C.W. only as crystal osc & RB254a P.A. will match into the following loads 25, 100, 500 & 1500 ohm as int tune up meter, reqs crystals type FT2543 in range 2.5 to 10 as int morser key with plug for ext key as int mains P.U. for 110/200/250v overhaul size 30x8x14cm weight 4kg also supplied with inverter unit for use on 12v DC. Supplied in clean condition with 80 page handbook inc circ etc. Price £54.

CABLE FAULT LOCATORS standard mains operated unit contains CTR type DG7-5 16 valves plus 2 Rect, slow motion dial, large number of misc parts in transit container £25.

CONTROL BOX aircraft radio set box contains 4 min 1p c/o & 3 2p c/o miniature toggle swts, 2 small amp units etc £2.30 ea or 2 for £4.

AERIALS special purpose bladed aerials precision made with BNC sk at base, length 6" or 10" from top of base £1.75 either type.

AERIALS dipole with ceramic moulded fairing 2½" dia with BNC sk on these contain int loading transformers were used on 20/50Mc/s or if this is removed can be used on nom 125Mc/s £2 ea or 2 for £3.50.

BLOWERS heavy duty single ended for use on 230/250v AC outlet 2½" x 3½" in flange 5" sq, Ac new boxed £10 80.

VARICAPS units for use on 180 x 500v dual gang rated 15 amps per section these can be used on 50c/s if the I/P voltage is limited to 50, these can be used to provide var O/P from L.V. trans or across 200/250v taps of H.D. trans to provide var O/P good cond with knob £13.

HELIPOT DIALS standard 10tr type to fit 3/8th bush approx 1½" dia £1.50 ea or 10 for £12.50 with 100K kelipot £2.30.

SLOW MOTION DRIVES 9-1 with 1½" shaft with knob & skirt also 2½ or 25K 360° pot ex new equip £2.30.

PANEL METER edgewise type FSD 100-0-100 Us scale 100-100 size from 2½ x 5½ 3½" deep new £2 75.

U.H.F. T.V. tuners manual tuned type transis with circ new £2.50.

PHOTO TRANSIS type FPT120 end viewing high sensitivity with data new 60p ea 2 for £1.

PANEL METERS assorted types mostly 3½" dia types all moving coil new 4 different for £4.

TEST SET DEVIATION freq 65 to 75Mc/s with int crystal check at 20Mc/s, as 1 Ma meter, slow motion dial ass, atten etc no details thought to be part of Microwave Link test equip 200/250v I/P good cond £17.

DYNAMOTORS small American pattern I/P 24v DC o/c 250v at 60Mc/s suit command sets good cond £3.50.

RECTIFIER UNITS 2½" dia 3½" deep new 2½" dia o/c dual DC O/Ps of 12v at 3 amps can be connected for 12v 9a or 24v 3a will do 4 amps okay for battery chargers in steel case good cond with circ £10 80.

AUDIBLE WARNING DEVEZE 1½" dia will work on 6/12v DC solid state gate types about 800µs takes 100Ma at 12v new £1 22 for 1 £1.70 or 10 for £7 50.

FILM RECORDERS special aircraft 16mm film recorders for use on 24v DC with cassette good cond in transit container £18.

FANS extractor type fans for 230v 50c/s Adm Patt cont rated mounting flange 7½" with front guard 7½" deep. new boxed £7.50.

TEST SET contains meter 0-0-5 Us scale linear 0-0-5 3½" dia complete in neat carrying case size 10x8½x7¾" good cond meter tested £8.50.

DOME BELLS 11¾" dia 6" deep chrome with red base American made these are spring powered with solenoid control were used for supply failure warning, will adapt to most control voltages will ring when supply removed, new some blisters due to storage £25.

METER UNIT 0 to 40 amps DC with shunt 2½" dia m/c. flush mt new £3.

MANUALS & CIRCUIT DIAGRAMS we can supply these for ex M.O.D. equipments, test gear etc.

Above prices include Carriage & VAT.

Goods ex equipment unless stated new.

S.A.E. for List 22 or enquiry.

A. H. SUPPLIES
122, HANDSWORTH RD. SHEFFIELD S9 4AE
Phone: 444278 (0742)

THE NEW
EUROSOLDERSUCKER

This 195mm long, all metal, high suction, desoldering tool with replaceable Teflon tip enables removal of molten solder from all sizes of pcb pads. Primed and released by thumb, it incorporates an anti-recoil system and is built in safety guard. Only £6.80 inc. VAT & P.P.

THE UNIQUE
EUROBREADBOARD

Logically laid out to accept both 0.3" and 0.6" pitch DIL packages as well as Capacitors, Resistors, LED's, Transistors and components with leads up to .85mm dia.

500 individual connections in the central breadboarding area, spaced to accept all sizes of DIL package without running out of connection points, plus 4 Integral Power Bus Strips around all edges for minimum inter-connection lengths.

All connection rows and columns are now numbered or lettered enabling exact location indexing.

Double-sided nickel silver contacts for long life (10K Insertions) and low contact resistance (<10m. ohms).

Easily removable, non slip rubber backing allows damaged contacts to be rapidly replaced.

No other breadboard has as many individual contacts, offers all these features and costs only £5.80 each or £11.00 for 2 – inclusive of VAT and P.P.

Snip out and Post
David George Sales, r/o 74 Crayford High St., Crayford, Kent DA1 4EF

David George Sales
r/o 74 Crayford High Street,
Crayford, Kent, DA1 4EF.

Please send me 1 EuroSolderSucker @ £6.80 0 Please or 1 EuroBreadBoard @ £5.80 0 Tick or 2 EuroBreadBoards @ £11.00 0

(All prices include VAT and P.P., but add 15% for overseas orders).

Name.

Company.

Address.

Tel. No.

Please make cheque/P.O.'s payable to David George Sales

Practical Wireless, July 1979

77

www.americanradiohistory.com
Mail Order Protection Scheme

The Publishers of *Practical Wireless* are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.

In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with *Practical Wireless* within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence.

For the purpose of this scheme, mail order advertising is defined as:

'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered'. Classified and catalogue mail order advertising are excluded.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of *Practical Wireless* for ... insertions.

I enclose Cheque/P.O. for £ ...

(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to *Practical Wireless*).

NAME..

ADDRESS..

Send to Classified Advertisement Manager

PRACTICAL WIRELESS,

GMG, Classified Advertisement Dept., Rm. 2337,

King's Reach Tower, Stamford Street,

London SE1 9LS

Telephone 01-261 8846

Rate

22p per word, minimum 12 words. Box No. 60p extra.

Practical Wireless, July 1979