practical WIRELESS

"WIMBORNE" Music Centre
Part 1

also:
SIMPLE HIGH-RESISTANCE VOLTMETER
and ELECTRONIC FISH-FEEDER

SEPT 1978

www.americanradiohistory.com
TTL OFFERS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74H40</td>
<td>Tri-State Buffer</td>
<td>100</td>
<td>£1.40</td>
</tr>
<tr>
<td>74HC138</td>
<td>4-Line to 1-Line Decoder</td>
<td>100</td>
<td>£2.60</td>
</tr>
<tr>
<td>74HC14</td>
<td>2-Line to 4-Line Decoder</td>
<td>100</td>
<td>£2.60</td>
</tr>
<tr>
<td>74HC4050</td>
<td>Quad 2-Input NOR Gate</td>
<td>100</td>
<td>£2.60</td>
</tr>
<tr>
<td>74HC4066</td>
<td>Quad 2-Input AND Gate</td>
<td>100</td>
<td>£2.60</td>
</tr>
</tbody>
</table>

SPECIAL QUANTITY PRICES

<table>
<thead>
<tr>
<th>Component Type</th>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transistors</td>
<td>BC108</td>
<td>1000</td>
<td>£0.75</td>
</tr>
<tr>
<td></td>
<td>BC109</td>
<td>1000</td>
<td>£0.75</td>
</tr>
<tr>
<td></td>
<td>2N2222</td>
<td>1000</td>
<td>£0.75</td>
</tr>
<tr>
<td></td>
<td>2N2223</td>
<td>1000</td>
<td>£0.75</td>
</tr>
<tr>
<td></td>
<td>2N2224</td>
<td>1000</td>
<td>£0.75</td>
</tr>
</tbody>
</table>

ENAMEL COVERED COPPER WIRE

<table>
<thead>
<tr>
<th>Diameter (mm)</th>
<th>Description</th>
<th>Price per meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>Copper Wire</td>
<td>£1.50</td>
</tr>
<tr>
<td>0.10</td>
<td>Copper Wire</td>
<td>£2.00</td>
</tr>
<tr>
<td>0.15</td>
<td>Copper Wire</td>
<td>£2.50</td>
</tr>
<tr>
<td>0.20</td>
<td>Copper Wire</td>
<td>£3.00</td>
</tr>
<tr>
<td>0.30</td>
<td>Copper Wire</td>
<td>£4.00</td>
</tr>
</tbody>
</table>

OPTO ELECTRONIC CORNER

- **Special Scoop Offer**
 - 5% OFF on all TTL, 7400, 74AC, 74HC, 74AHC, 74ACT devices
 - 10% OFF on all 74LS series devices

POWER SUPPLY CAPACITORS

<table>
<thead>
<tr>
<th>Value</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7uF</td>
<td>250V</td>
<td>£0.75</td>
</tr>
<tr>
<td>10uF</td>
<td>250V</td>
<td>£1.00</td>
</tr>
<tr>
<td>220uF</td>
<td>150V</td>
<td>£1.50</td>
</tr>
<tr>
<td>33uF</td>
<td>100V</td>
<td>£0.50</td>
</tr>
<tr>
<td>1000uF</td>
<td>10V</td>
<td>£0.30</td>
</tr>
</tbody>
</table>

SPECIALITY TEXAS INSTRUMENTS

- **Texas TIS 88A**
 - F.E.T. 10 for £2.30
 - 555 Timer 10 for £2.10

TANTALUM BEADS

<table>
<thead>
<tr>
<th>Value</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10pF</td>
<td>100pF</td>
<td>£0.50</td>
</tr>
<tr>
<td>220pF</td>
<td>1000pF</td>
<td>£1.50</td>
</tr>
<tr>
<td>1μF</td>
<td>10μF</td>
<td>£2.00</td>
</tr>
<tr>
<td>10μF</td>
<td>100μF</td>
<td>£4.00</td>
</tr>
<tr>
<td>100μF</td>
<td>1000μF</td>
<td>£8.00</td>
</tr>
</tbody>
</table>

ENAMEL COVERED COPPER WIRE

- **28 SWG**
 - £2.50 per meter
- **30 SWG**
 - £3.00 per meter
- **32 SWG**
 - £3.50 per meter
- **34 SWG**
 - £4.00 per meter
- **36 SWG**
 - £4.50 per meter
- **38 SWG**
 - £5.00 per meter
- **40 SWG**
 - £5.50 per meter

ROTARY SWITCHES BY LORLINC

- 1 Pole IS WAY, 2 POLE 3 WAY, 3 POLE 4 WAY 5 POLE WAY
 - All at £10 each

DECODER BOARD CONTAINING

- **XTAL MIC Insert 76p each**
 - 5° Scaleметр 50uH (for 1000uH coil 70p each)
 - Bias Recept 30-100kHz 70p each

HOPPERS

- **Electronic Components for Transmitter 12-30p each**
 - **Transistor 12-30p each**
 - **MOSFET 12-30p each**

ALL PRICES INCLUDE POST AND VAT

T. POWELL

360 ST PAULS ROAD HIGBOROUGH CORNER
LONDON N1 01-226 1489
Some back issues, mostly those published during the last two years, are available from our Post Sales Department (address above) at 80p each, including postage and packing to both home and overseas destinations. Remittances should be made payable to IPC Magazines Limited. Commencing with Volume 52, the Index is included in Number 1 of the following Volume.

BACK NUMBERS

Some back issues, mostly those published during the last two years, are available from our Post Sales Department (address above) at 80p each, including postage and packing to both home and overseas destinations. Remittances should be made payable to IPC Magazines Limited.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at £10.60 per annum, from "Practical Wireless" Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Remittances should be made payable to IPC Services Limited.

QUERIES

We do not operate a Technical Query Service except on matters concerning constructional articles published in PW. We cannot offer advice on modifications to our published designs, nor comment on alternative ways of using them. We do not supply service sheets or information on commercial radios, TVs or electronic equipment.

All queries must be accompanied by a stamped self-addressed envelope, otherwise a reply cannot be guaranteed. We cannot answer technical queries over the telephone.

COPYRIGHT

© IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Practical Wireless", King's Reach Tower, Stamford Street, London SE1 9LS. All other correspondence should be addressed to the Editor, "Practical Wireless", Westover House, West Quay Road, Poole, Dorset BH15 1JG.

BINDERS AND INDEXES

Binders (£2.85) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 0PF. Both prices include postage and VAT. Overseas orders for binders should include 60p to cover additional postage. All remittances should be made payable to IPC Magazines Limited. Commencing with Volume 52, the Index is included in Number 1 of the following Volume.

BACK NUMBERS

Some back issues, mostly those published during the last two years, are available from our Post Sales Department (address above) at 80p each, including postage and packing to both home and overseas destinations. Remittances should be made payable to IPC Magazines Limited.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at £10.60 per annum, from "Practical Wireless" Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Remittances should be made payable to IPC Services Limited.

QUERIES

We do not operate a Technical Query Service except on matters concerning constructional articles published in PW. We cannot offer advice on modifications to our published designs, nor comment on alternative ways of using them. We do not supply service sheets or information on commercial radios, TVs or electronic equipment.

All queries must be accompanied by a stamped self-addressed envelope, otherwise a reply cannot be guaranteed. We cannot answer technical queries over the telephone.

COPYRIGHT

© IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Practical Wireless", King's Reach Tower, Stamford Street, London SE1 9LS. All other correspondence should be addressed to the Editor, "Practical Wireless", Westover House, West Quay Road, Poole, Dorset BH15 1JG.
The latest kit innovation!
from Sparkrite

Sparkrite was featured by Alan Taylor in 'DRIVE IN'

the quickest fitting CLIP ON capacitive discharge electronic ignition in KIT FORM

- Smoother running
- Instant all-weather starting
- Continual peak performance
- Longer coil/battery/plug life
- Improved acceleration/top speeds
- Optimum fuel consumption

Sparkrite X4 is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven, idealable and complete. It can be assembled in two or three hours and fitted in 1/2 mins.

Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no motion due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the wire firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about 1/50th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breaker for recharging the system.

Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock out and, therefore, eliminates the possibility of blowing the transistors or the SCR. Most capacitive discharge ignitions are not completely foolproof in this respect. The circuit incorporates a voltage regulated output for greatly improved cold starting. The circuit includes built in static timing light or/and 50th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breaker for recharging the system.

Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock out and, therefore, eliminates the possibility of blowing the transistors or the SCR. Most capacitive discharge ignitions are not completely foolproof in this respect. The circuit incorporates a voltage regulated output for greatly improved cold starting. The circuit includes built in static timing light or/and 50th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breaker for recharging the system.

THE KIT COMPRISSES EVERYTHING NEEDED

- Die cast epoxy coated case. Ready drilled, Aluminium extruded base and heat sink, coil mounting clips, and accessories. Transformer and components, cables, connectors, P.C.B., nuts, bolts and silicon grease. Full instructions to assemble kit neg. or pos. earth and fully illustrated installation instructions.

NOTE - Vehicles with current impulse tachometers (Smiths code on dial RV1) will require a tachometer pulse slave unit. Price £3.35 inc. VAT. post & packing.

Electronic Design Associates, 83 Bath Street, Walsall, WS1 3BE

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic Ignition</td>
<td>1</td>
<td>£14.95</td>
</tr>
<tr>
<td>Pulse Slave Unit</td>
<td>1</td>
<td>£3.35</td>
</tr>
</tbody>
</table>

Please state polarity pos. or neg. earth Access or Barclaycard No.

THE COMMUNICATIONS RECEIVER THAT HAS IT ALL...

FRG-7

The finest general-coverage synthesised communications receiver on the market

£200.00 inc. VAT

Also available from us with special 2m converter, all for just an extra £15.00

Phone for details of current stocks, both new and secondhand

AMATEUR RADIO EXCHANGE
Tel: 01-579 5311

Easy terms up to 3 years Credit Card Sales by Telephone Closed all day Wednesday

Practical Wireless, September 1978
Below are our special selected-branded products offered at much reduced prices to P.W. Readers. Items offered will vary monthly.

WATCH BATTERIES ALWAYS AVAILABLE—ANY TYPE 49p each

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GLC044 L.C.D. WATCH</td>
<td>£9.50</td>
</tr>
<tr>
<td>B</td>
<td>GLC045 L.C.D. CHRONOGRAPH WATCH</td>
<td>£11.88+50p</td>
</tr>
<tr>
<td>C</td>
<td>GLC051 L.C.D. SQUARE WATCH</td>
<td>£9.50+50p</td>
</tr>
<tr>
<td>D</td>
<td>LD350 LADIES L.C.D. WATCH</td>
<td>£8.75+50p</td>
</tr>
<tr>
<td>E</td>
<td>LADIES L.C.D. WATCH</td>
<td>£9.50+50p</td>
</tr>
<tr>
<td>F</td>
<td>LED/41 SHUGAR L.E.D. COCKTAIL</td>
<td>£9.50+50p</td>
</tr>
</tbody>
</table>

ALARM CLOCK OFFERS AT TRADE PRICES

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>TR/CA2/ L.E.D. ALARM/CLOCK RADIO</td>
<td>£8.75+50p</td>
</tr>
<tr>
<td>I</td>
<td>RAI. 8 Waveband AM/FM SW</td>
<td>£9.50+50p</td>
</tr>
</tbody>
</table>

WATCH THIS PAGE FOR OUR FUTURE OFFERS AT TRADE PRICES

ALL ITEMS FULLY GUARANTEED 12 MONTHS. ALSO MONEY BACK WITHIN 7 DAYS IF NOT ENTIRELY SATISFIED.
RADIO EXCHANGE LTD.

NEW ELECTRONIC MASTER KIT

WITH SPECIAL V.H.F. TUNER MODULE TO CONSTRUCT. A completely Solderless Electronic Construction Kit, with pull rolled and Silicate Panels, Nuts, Bolts, Wood Screws etc. Also in the kit: Transistors, Capacitors, Resistors, Pots, Switches, Wire, Screws, Volume Knobs, Diodes, 5" x 3" Loudspeaker and Speaker Case, Crystal Earpiece, etc. Also ready wound Coils and Ferrite Rod Aerial. These are the Projects you can build with the components supplied with the kit, together with comprehensive Instruction Manual and Circuit Diagrams.

★ One Transistor Home Broadcaster.

NEW ROAMER TEN MODEL R.K.3

MULTIBAND V.H.F. AND A.M. RECEIVER.

13 TRANSISTORS AND SIX DIODES. QUALITY 4" ROUND LOUDSPEAKER.

Complete kit of parts including carrying strap. Building Instructions and operating Manuals.

NEW MODEL

R.K.1

£8.99 + P & P 90p

ALL PRICES INCLUDE VAT

RADIO CONSTRUCTION KIT Q7

A compact small radio kit covering Medium Wave and Long Wave bands. Rugged Midnite construction and simple square design allows for easy carrying and positioning. Ideal for the Garage, Workroom, Kitchen, etc., has seven Transistors and Four Diodes, quality Loudspeaker, ready wound Ferrite Rod Aerial and Carrying Strap. Size 4¾" x 4¾" x 4¾".

£6.25 + P & P and Ins. 70p

Complete kit of parts including construction plans Total building costs £9.99 + P & P and Ins. 70p

V.H.F. AIR CONVERTER KIT

Build this converter kit and receive the aircraft band by plugging it by the side of a radio tuned to medium wave or the VHF carrying operating as shown in the instructions supplied with all parts. Use a retractable chrome plated telescopic aerial, gain control, V.H.F. tuning capacitor, transmitter, etc. Kit and parts including case and plans £4.95 + P & P and Ins. 60p

To: RADIO EXCHANGE LTD.
61A High Street, Bedford MK40 1SA
Tel: 0234 52367
REG: NO. 788372

Callers side entrance "Lavells" Shop.

Open 9-1, 2-6.30 Mon. & Fri. 9-12 Sat.

1. I enclose £... for...
2. Name...
3. Address...
4. A.M.
5. P.V.78

Practical Wireless, September 1978
Marconi could have used a Joystick Antenna

—to very good effect, if only G3CED had been around to invent it! The Master himself was a dab hand at tuning up antennae of various sizes and configurations but he might have got his ‘S’ another ‘point’ (sorry) in Newfoundland with the Joystick VFA (Variable Frequency Antenna, 5–30 MHz).

But his loss is the gain of today’s radio receiving and transmitting enthusiasts who can use one of our systems in even the most confined of spaces with enviable results (enthusiastic world-wide testimonial on our files).

IN USE BY AMATEUR TRANSMITTING AND SWL STATIONS WORLD-WIDE IN GOVERNMENT COMMUNICATION

SYSTEM “A” £36.00
250 w. p.e.p. OR for the SWL.

SYSTEM “J” £42.60
500 w. p.e.p. (improved ‘Q’ on receive).

PARTRIDGE SUPER PACKAGES

COMPLETE RADIO STATIONS FOR ANY LOCATION
All Packages feature the World Record Joystick Aerial (System “A”), with 85ft. feeder, all necessary matching communication headgear, etc. Deliv. Securicor our risk. ASSEMBLED IN SECONDS! BIG CASH SAVINGS!

PACKAGE No. 1 As above with R.300 RX. SAVE £17.28!
£210.55

PACKAGE No. 2 Is offered with the FRG7 RX. SAVE £12.21!
£222.00

PACKAGE No. 3 More in a lower-price, high-quality package featuring the LOWE SRX30, with all the Partridge extras. SAVE £12.21!
£191.00

RECEIVERS ONLY, inclusive delivery, etc.
R.300 £184.50 FRG7 £189.00 SRX30 £158.00

All prices are correct at time of going to press and include VAT at 12½% and carriage.

Just telephone your card number
Phone 0629 2430 (ext. 5) or 52839 after office hours

or write for details, send 9p stamp

G3CED G3VFA
5 Partridge House, Prospect Road, Broadstairs CT10-1LD (Callers by appointment).

OPEN UP THE EXCITING WORLD OF SHORT WAVE LISTENING

SRX-30
For the advanced, keen short wave listener, the choice of receiver has usually been between cheap and nasty or very good but very expensive equipment. We think that the SRX-30 will provide that listener with excellent performance at a reasonable cost and is the answer to this eternal problem.

The SRX-30 provides AM, CW, USB and LSB reception on all frequencies from 500 kHz to 30 MHz. All right, so does your Super Blooper Mk 3 but you can’t set the Super Bloopers dial to the frequency you want and be sure that it’s correct. The SRX-30 tuning system is so simple to operate. You have a dial readable in MHz from 0-29 and a main tuning dial reading 0-4000 kHz. So—if you know that Radio Slovakia is broadcasting on 10.295 MHz, you set the MHz dial to 10, the kHz dial to 295 and there you are. The MHz dial setting is not critical, as stability is guaranteed by a triple mixing drift cancelling system, thereby overcoming another potential problem in your Radio Blooper Mk 3.

A further drawback to cheap receivers is massive image interference on the higher frequencies due to the use of a low IF, typically 455 kHz. The cure for this problem is the use of a high IF and the SRX-30 employs a first IF of around 40 MHz—so immune to first IF images. You could of course find the same solution in the Super RA7 series receivers; after all, the SRX-30 has copied the basic idea from this very receiver. The bit drawback to the RA7 apart from the price is that unless you have a pair of the right filter, lifting the RA7 may send you for a holiday at Henley Bay (staying at the Truss House?)

To summarise, the SRX-30 covers 500 kHz to 30 MHz with excellent dial readout and scale accuracy; it has all mode (AM, CW, SSB) reception and is equally at home in broadcast or amateur bands; it has all the facilities of a top class communication receiver, RF gain, fine tuning, selectable bandwidths, built in loudspeaker, operation from mains or 12V DC, rated construction and super styling and all at an attractive price—£156 inc. VAT. Carr £3.

See it soon at your nearest dealer, you will be pleasantly surprised.

For all that’s good in Amateur Radio, contact:
LOWE ELECTRONICS LTD., 119 Cavendish Road, Matlock, Derbyshire. Tel: 0629 2430 or 2817.

For full catalogue, simply send 45p in stamps and request catalogue CPW.
Practical Wireless, September, 1979

FANTASTIC SPEAKER OFFER
TWIN 12" SPEAKER CABINET PLUS PAIR 12" SPEAKERS
of Rebutant vibration-proof construction. Fitted with protective corner pieces. Removable vinyl cover front. Silver effect trim. Sunken jack sockets with matched terminations. Pair 12" 20w speakers for wiring in series and from. While stocks last, available at a 40% advantage over normal plus a lead guitar pick.

50 WATT AMPLIFIER SACRIFICE
Limited stocks of TITAN TA50A to be cleared. To make way for a highly styled model. Solid state, high output, 50w plus master control. Bass, treble and presence controls. Vinyl covered 4 piece cover. £60. Terms: Debit. £7.95 & 8 monthly payments £4.72. (Total £47-72. Pay £72. Credit. £47.50)

FANTASTIC SPEAKERS AT A FANTASTIC LOW PRICE
Consisting of:

(1) TWIN T.TABLE CONSOLE with PRE-AMP. and POWER OUTPUT

(2) & (3) PAIR 100 WATT LOUDSPEAKERS including 12" UNITS.

Car. £2-90

£39-95

ALL RSC PRICES INCLUDE VAT

TDI DISCO CONSOLE
Incorporating twin BSR type turntables and Sonoramic or Accutique. Separate Vol. controls for each turntable in separate monitoring. FULL HEADPHONE MONITORING FACILITIES, plus Treble and Bass Controls, Separate Input for "mix" with vol. control.

£199-95 & Debit. £20. 10 monthly payments £19.55 (Total £219-55) Car. £35.00

RSC
NEW BRANCHES AT

LEEDS, and

WOLVERHAMPTON

Prices correct at 26.7.79 E & O.E. All items subject to availability.

BAYLIS & ARROWS LTD

BARCLAYCARD & VISA

PRICES INCLUDE ALL PRICES

PHONE ORDERS: 01-569 7092

CABRIDGE, LONDON, W1

MAIL ORDERS MUST BE SENT TO SHOPS

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.

BACON & WOODWANCE LTD

BARCLAYCARD & VISA

MAIL ORDERS TO: CARNABY STREET, TEL. 01-240 7000

TERMS BWR. or C.O.D. No. 14% VAT. Please ask for FREE CATALOGUE.
STEREO DECODER

An advanced solid state general purpose mono amplifier suitable for Public Address system. Disc, Guitar, Grom, etc. Features include individually controlled inputs (each input has a separate 2 stage pre-amp), Input 1, Input 2, for test. 47K input, 47K for test, suitable for use with mic. or guitar etc., Input 3 - 200mV into 1 kohm, switchable for gain of 2 or 10. Full size has full range bass & treble controls. All hi-fi plug into standard jack sockets on front panel. Output socket on rear of chassis for an 8 ohm or 16 ohm speaker. Output in excess of 2 watts R.M.S. Very attractively finished purpose built cabinet made from black vinyl covered steel, with a brushed anodised aluminium front escutcheon. For an all operation 200/240V. Size approx. 12" w. x 5" h. x 7 1/2" d. Special introductory Price £28.00 + £2.50 P. & P. 25p.

POLY PLANAR WAFER, WIDE RANGE ELECTRO-DYNAMIC SPEAKER

Size 12" x 12 1/2" x 5/8". Deep Weight 90 oz. Power Handling 80 watts RMS. At 8 ohms only. Response 40Hz-20kHz. Can be mounted on plasterboard walls, doors, staircases, etc., and used with or without baffles. Send S.A.E. for full details. Only £44.00 each - £1.40 P. & P. Now available in either 6" round version or 4" x 8". 10 watts 8-ohm 60Hz-20kHz £25 - £1.40 P. & P. (one 65p, two 75p).

SPECIAL OFFER: 6" lpt turni throw, roll suspension, ceramic 15mm into 8-ohm 10 watts 8-ohm 60Hz-20kHz £25 - £1.40 P. & P. 2" PLASTIC CONE HEF TWEETER 4 ohm, £5.00 P. & P. & 25p.

All prices and specifications correct at time of press and subject to alteration without notice.

You'll learn a lot from the Heathkit catalogue.

The Heathkit catalogue is packed with scores of top quality electronic kits. Educational, practical and fascinating items which you can build yourself.

Send for the catalogue now.

To Heath (Gloucester) Limited, Department P/W98, Bristol Road, Gloucester, GL2 6EE. (Registered number 606177)

Name

Address

Please tick the literature you want and enclose the appropriate amount in postage stamps.

Heathkit catalogue only (enclose 20p).

16 page computer brochure only (enclose 20p).

N.B. If you already have on the Heathkit mailing list you will automatically receive a copy of the latest catalogue without having to use this coupon.

When you receive your catalogue, you'll get details of this free offer worth approximately £4.75.

Soldering iron offer FREE

There are Heathkit Electronics Centres at 233 Tottenham Court Road, London (01-636 7349) and at Bristol Road, Gloucester (Gloucester 29451).

Practical Wireless, September 1978
LOOK! Here’s how you master electronics.

...the practical way.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a self-employed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1. Build an oscilloscope.

 As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course’s practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2. Read, draw and understand circuit diagrams.

 In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices, and their servicing procedures.

3. Carry out over 40 experiments on basic circuits.

 We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing, and maintaining all types of electronic equipment, radio, TV etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.

British National Radio & Electronic School
P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

Block caps please

Practical Wireless, September 1978
MILITARY CODES

IC A4 BOOKLET

SUPPLIED FREE WITH ORDERS OF ANY ICs WORTH £5.00 OR MORE, CONTAINS CIRCUITS, PIN CONNECTIONS AND DATA (35p + SAE IF SOLD ALONE).

PRACTICAL WIRELESS T.V. SOUND TUNER

IF Sub-Assembly (G8) £6.80, P & P 75p.
Mullard ELC1043 V'cap UHF Tuner £5.50, P & P 35p.
3-way Station Control Unit £1.20, P & P 25p.
6-way Station Control Unit (Special Offer) £1.00.
Power Supply Ptd Circuit Board £1.00, P & P 30p.
Res, Caps, Semiconds, etc. for above £5.80.
Mains Transformer for above £2.50, P & P 30p.
Add 12½% VAT to price of goods. P & P all items 65p.

Callers welcome at shop premises.

MANOR SUPPLIES

172 WEST END LANE, LONDON NW6
(Near W. Hampstead Tube Stn.) Tel. 01-794 8751

SOUTHERN VALVE CO.

SECONDS, I POTTERS ROAD, NEW BARNET, HERTS

MAIL ORDER ONLY. MINIMUM ORDER 10p.

Game leading makes available. VAT Implied unless on request.

All New and Unused. Guaranteed 3 months. B.V.A. etc. (Tunbridge, etc.) 4% allowed in most cases. Already deducted from our Prices!!

NOTE: PLEASE VERIFY CURRENCIES. Correct only at time of going to press.

We offer return of part exchanges. CWG ONLY. No C.O.D. Many Others.

Post free over £20. £2 to £29.99 (max. 10 per order).

ENQUIRIES WELCOME. From TRADE and RETAIL (same prices).

-40p INCLUSIVE P& P.

www.americanradiohistory.com
Mainline

a tremendous range from Mainline, a division of one of the largest industrial electronic component distribution groups in the business.
The enormous resources, buying power and organisation guarantees fast reliable service and top quality components at the right price.

Learn all about MICROPROCESSORS with the MOTOROLA Microprocessor Evaluation Design Kit M6800.
featuring:-
• 24 Key Keyboard
• 7 Segment Display
• Cassette Interface
• EROM Expandable
• RAM Expandable
• Wire Wrap Capability
• Parallel and Serial Interface Capability
• Single 5 Volt Supply Required
• Layout on Boards
• Documentation

Please send for detailed descriptive leaflet & prices.

Mainline
380 Bath Road, Slough, Berks.
Tel: 06286 (Burnham) 63616
Manufacturers and trade enquiries invited for larger quantities.

Motorola Semiconductors.
We are pleased to announce that in conjunction with our parent company we can offer the complete range of Motorola semiconductors including zener diodes, diodes, transistors, SCR’s, Triacs, digital and linear integrated circuits etc. As the available range is far too large to be listed please ask for your specific requirements.

TO: MAINLINE, 380 BATH ROAD, SLOUGH, BERKS.
Tel: 06286 (Burnham) 63616
PW 9/78
Please send me your latest FREE catalogue
I enclose cheque/P.O. £__________
Please send me the following devices

Name
Address
Tel.

The following are the more popular types of 2N TRANSISTORS by well known manufacturers such as Motorola, SGS, RCA, Fairchild. They are brand new and should not be confused with surplus offers often being advertised!
Also we stock, or can obtain, other 2N transistor types not listed below. So please write and let us know what you are looking for.
Please add 8% VAT to your 2N transistor orders, plus 25p per order for postage and packing.

<table>
<thead>
<tr>
<th>Type</th>
<th>price</th>
<th>Type</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N697</td>
<td>0.36</td>
<td>2N3442</td>
<td>1.63</td>
</tr>
<tr>
<td>2N706</td>
<td>0.37</td>
<td>2N3768</td>
<td>0.86</td>
</tr>
<tr>
<td>2N706A</td>
<td>0.24</td>
<td>2N3668</td>
<td>1.05</td>
</tr>
<tr>
<td>2N708</td>
<td>0.30</td>
<td>2N4033</td>
<td>0.80</td>
</tr>
<tr>
<td>2N718</td>
<td>0.41</td>
<td>2N4125</td>
<td>1.94</td>
</tr>
<tr>
<td>2N914</td>
<td>0.32</td>
<td>2N4125</td>
<td>0.20</td>
</tr>
<tr>
<td>2N918</td>
<td>0.96</td>
<td>2N4400</td>
<td>0.15</td>
</tr>
<tr>
<td>2N918</td>
<td>0.38</td>
<td>2N4401</td>
<td>0.18</td>
</tr>
<tr>
<td>2N929</td>
<td>0.24</td>
<td>2N4402</td>
<td>0.21</td>
</tr>
<tr>
<td>2N936</td>
<td>0.24</td>
<td>2N4403</td>
<td>0.23</td>
</tr>
<tr>
<td>2N936A</td>
<td>0.25</td>
<td>2N4441</td>
<td>1.06</td>
</tr>
<tr>
<td>2N1132</td>
<td>0.85</td>
<td>2N4442</td>
<td>1.30</td>
</tr>
<tr>
<td>2N1613</td>
<td>1.27</td>
<td>2N4443</td>
<td>1.43</td>
</tr>
<tr>
<td>2N1711</td>
<td>0.32</td>
<td>2N4444</td>
<td>1.88</td>
</tr>
<tr>
<td>2N1890</td>
<td>0.77</td>
<td>2N4470</td>
<td>0.78</td>
</tr>
<tr>
<td>2N1893</td>
<td>0.30</td>
<td>2N4471</td>
<td>0.74</td>
</tr>
<tr>
<td>2N2102</td>
<td>0.93</td>
<td>2N4918</td>
<td>0.67</td>
</tr>
<tr>
<td>2N218</td>
<td>0.29</td>
<td>2N4919</td>
<td>0.70</td>
</tr>
<tr>
<td>2N218A</td>
<td>0.32</td>
<td>2N4920</td>
<td>0.74</td>
</tr>
<tr>
<td>2N219</td>
<td>0.30</td>
<td>2N4921</td>
<td>0.63</td>
</tr>
<tr>
<td>2N219A</td>
<td>0.31</td>
<td>2N4922</td>
<td>0.67</td>
</tr>
<tr>
<td>2N222</td>
<td>0.23</td>
<td>2N4923</td>
<td>0.70</td>
</tr>
<tr>
<td>2N222A</td>
<td>0.26</td>
<td>2N5000</td>
<td>0.42</td>
</tr>
<tr>
<td>2N222B</td>
<td>0.16</td>
<td>2N5001</td>
<td>0.43</td>
</tr>
<tr>
<td>2N222C</td>
<td>0.21</td>
<td>2N5002</td>
<td>0.49</td>
</tr>
<tr>
<td>2N2369</td>
<td>0.21</td>
<td>2N5063</td>
<td>0.52</td>
</tr>
<tr>
<td>2N2389A</td>
<td>0.23</td>
<td>2N5064</td>
<td>0.55</td>
</tr>
<tr>
<td>2N2636</td>
<td>0.56</td>
<td>2N5068</td>
<td>0.21</td>
</tr>
<tr>
<td>2N2904</td>
<td>0.30</td>
<td>2N5108</td>
<td>4.03</td>
</tr>
<tr>
<td>2N2904A</td>
<td>0.31</td>
<td>2N5190</td>
<td>0.69</td>
</tr>
<tr>
<td>2N2905</td>
<td>0.38</td>
<td>2N5191</td>
<td>0.74</td>
</tr>
<tr>
<td>2N2906</td>
<td>0.23</td>
<td>2N5193</td>
<td>0.75</td>
</tr>
<tr>
<td>2N2906A</td>
<td>0.23</td>
<td>2N5194</td>
<td>0.80</td>
</tr>
<tr>
<td>2N2907</td>
<td>0.23</td>
<td>2N5195</td>
<td>0.85</td>
</tr>
<tr>
<td>2N2907A</td>
<td>0.23</td>
<td>2N5400</td>
<td>0.27</td>
</tr>
<tr>
<td>2N3053</td>
<td>0.35</td>
<td>2N5401</td>
<td>0.28</td>
</tr>
<tr>
<td>2N3054A</td>
<td>0.84</td>
<td>2N5415</td>
<td>0.81</td>
</tr>
<tr>
<td>2N3055</td>
<td>0.89</td>
<td>2N5416</td>
<td>1.11</td>
</tr>
<tr>
<td>2N3055H</td>
<td>1.08</td>
<td>2N6027</td>
<td>0.62</td>
</tr>
<tr>
<td>2N3439</td>
<td>1.09</td>
<td>2N6028</td>
<td>0.79</td>
</tr>
<tr>
<td>2N3440</td>
<td>0.83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special quotations for quantities of 25 or more of one type.

Practical Wireless, September 1978
DIODE SCOOP!!!

We have been fortunate to obtain a large quantity of new and unusual, unstocked, unmarked glass silicon diodes. Testing a sample batch reveals that almost all of the devices are usable. Silicon diodes can be used in any circuit as normal diodes. This kit can be used to repair many circuits.

WG46 Open circuit mains relay, 3 sets 10A c/o contacts £1.20. Send 50p for our relay list. We also have a large range of other components. ENJOY THE EXPERIENCE.

SPECIAL DISCER AMPLIFIER

CHASSIS £30

Complete and ready-built. Controls: Bass, treble, volume, mute, balance. 8-ohm SPINNOR circuit gives 2 watts per output. Just need transformer and speakers for low cost hi-fi amp. Suitable for metal cases (W37A £0.30) or bus the amp, case and transformer for £1.00 and get DIN speaker pockets and knobs free!

SPECIAL TRANSITOR OFFERS

PN101 (BC108) 18 for £1
PN102 (BC109) 16 for £1
PN103 (BC107) 14 for £1
PN104 (BC106) 12 for £1
PN272 (BC107) 18 for £1
MP5 (PN107) 120 for £1

HEAT SINK OPPER OFFER

 Copper only. 7mm dia. £0.25, 10 for £1.95; 100 for £16.50. SEND 45P FOR OUR 1978 S.C.A.T. CATALOGUE CONTAINS 50 DISCOUNT VOUCHERS. AMENDMENT SHEET DETAILS OF OVER 100 ITEMS SLASHED 50%!!!

(Send SAE if you’ve already got cat.) (Our Best Bargain Sheet FREE. Send SAE for your copy.

ON SPECIAL COMPONENT PACKS

250 miniature resistors, 1-1, 1W £0.01
1000 miniature resistors, 1, 1, 1W £0.01
250 poly, mica, ceramic capacitors 0-1µF £0.50
250 electrolytics, but many unmarked £0.15
100 Mullard C2308 polyesters, 0.01µF £0.01
150 wired-wound resistors 1-20W £0.60
250 PC mounting resistors, £0.80 1W £0.60
200 transistor sockets, £0.40 1W £0.30
200 transistors, mostly unmarked, inc. 1N4101 £0.20

LOW COST PLASTIC BOXES

Made of impact ABS. The lids are retained by 4 screws into brass inserts. In addition to box has PCB guide rails (except V219).

V219: 80 x 62 x 40mm black 50p
V213: 100 x 75 x 40mm black 72p
V214: 100 x 100 x 45mm black 86p
V219: 120 x 100 x 45mm white 86p

SPECIAL SUMMER OFFERS AUDIO IC’s

7601/3N £1.40 7601/3N £1.00
7601/3N £1.00 7601/3N £1.00
LM380 65p
KC076 65p etc.

7401 (BD11) 15p BD111 24p
555 25p BD121 25p
1458 45p NPN319

CAPACITOR BARGAINS

80µF 300V 76x38mm £0.30 20µF 600µF 500V 75x38mm £0.05 10µF
50µF 400µF 500V 75x38mm £0.05 1µF
20µF 400µF 500V 75x38mm £0.05 1µF
25µF 400µF 500V 75x38mm £0.05 1µF
1µF 400µF 500V 75x38mm £0.05 5µF
50µF 400µF 500V 75x38mm £0.05 1µF
5µF 400µF 500V 75x38mm £0.05 1µF
1µF 400µF 500V 75x38mm £0.05 1µF

SPEAKER BARGAINS

Standard size 75w 80w 8ohm £2.50 75w 10w 8ohm £2.50

WEATHERPROOF BOXES

2-10pc £0.50 2-10pc £0.50

VEROCASES

Plastic top and bottom alloy panels £2.50 2-10pc £2.50
Plastic top and base aluminum £2.50 2-10pc £2.50

VERO PLASTIC BOXES

Quality post-1974 polyethylene with five holes for transistors or modules on PCB boards.

2518 150 x 65 x 50 £2.17
2520 150 x 80 x 50 £2.45
2525 205 x 80 x 50 £2.75
2535 205 x 80 x 50 £2.75
2531 220 x 100 x 50 £3.00
2532 220 x 100 x 50 £3.00

TWO NEW SUPERMODULERS: 170W INTO 4 OR 8 OHMS

By popular demand we have designed higher powered versions of our well known modules. The CE 1104 which gives 150W into 4 ohms and the CE 1108 which gives 170W into 4 ohms is physically identical. All the original parts and has the same combination of performance features that makes CRIMSON amplification authority superior to the competition. All parts are available by mail order. We have also designed suitable power supplies which again use our superb TORIVAL TRANSFORMERS, only high power, with a high quality primary and simple biasing.

Write or phone for more information and trade prices.

CRIMSON ELEKTRIK

Please note our new address and Telephone Number: 1A ST ANDREW STREET, LEICESTER LE1 6BY

www.americanradiohistory.com
MULLARD AUDIO AMPLIFIERS

All in module form, each ready built complete with heat sinks and connection tags, data supplied. Model 1130 500W 602-96, £26.00.

Model 1172 1W, power output £2.85.

EP700 4 watt power output £2.95.

6E3-86, 6E3-90, 6E3-92, 6E3-100 channel or stereo preamp, £2.95.

SHORTWAVE CRYSTAL SET

Until it uses no battery it gives really amazing results. You can have anything from 10 to 30% improvement over the old designs.

VERSATILE PERFORMER

60 useful for other timed applications, "Rzr" brand Luminous Rocker Switch. Double pole, double throw SPDT switch, "Rzr" brand. £2.95.

DOUBLE WOUND CAPACITORS

For use with multi-turn trimmers, 3000pf, 1000pf, 500pf, 100pf, 50pf, 10pf. Price each £1.42.

Mains-operated Transformer, 20 amp transformer, £3.36.

RELAY PARCEL

4x4x1", 20 on board. Double pole, single throw SPST switch. £3.36.

LUMINOUS TUBE INVERTER

Car rearing. This inverter is designed for use with "Rzr" brand fluorescent lamp. Price £3.95.

EXTRACTOR FAN

As complete with Woods & Poole Colchester. Ideal for fitting through the window of a garage. £3.95 each.

HONEYWELL P.B. MICRO SWITCH

Designed for use with range of honeywell microswitches. Prices from 10p.

LATCHING RELAY

By Guardian Electric, mains operated. It is in fact two relays mounted on a single base. Price £1.75 each.

SWITCH TRIGGER MATS

Cup, Spade, Reel, complete for supply house protection. "Keep Those Rubbers Away!"

J. BULL (ELECTRICAL) LTD

(Dept. P. W.), 103 TAMWORTH RD., CROYDON CR9 15G

Terms: Prices include Post & VAT. But orders under £6.95 please add 50p to cover packing costs.

Phone for Generous Discounts 688 1833.
NEW FROM CASIO

THE INCREDIBLE FX9800
43 Scientific functions, 1.168 sec. Stepwise Answer, Five Alarm-Timers, Memory, Date, Day, Week, Standard deviation, Fraction, Powers, Reciprocals, LCD 1300h. £29.95

MINICLOCK
Two 25CS-14B ALARM WATCHES.
F.A.P. Model 80 Dual Cone, £1.75
F.A.P. Model 83 Dual Cone, £1.75
F.A.P. 805T Dual Cone, £1.75
£29.95

SCIENTIFIC CALCULATORS

SEIKO ALARM/CHRONO (£110) £19.95
RADIO- Controlled, with one push button to set date, day and time. £12.95

NEW CALCULATING ALARM
CLOCK MINI CARD. Available Aug/Sept. Similar to Casio FX-48. £19.95

MORE POWERFUL LCD SCIENTIFIC CALCULATORS Available Aug/Sept. FX-2500 £19.95 FX-3010 £25.95

CASIO QUALITY AND VALUE
31QR-17B Left. 9.4mm £29.95
31QS-12B £39.95
Stitchwit, Dual Time, Water Resistant. All 60 day 31QR-158 (Round face—illustrated). £29.95

SPORTS WATCHES.
F-100 Left. 9.4mm Thick £24.95
31QS-148 £9.95
31QS-138 £9.95

38CS-14B Chronograph £49.95

ALARM WATCHES. 20 CR-168 (round) £49.95 31QS-148 (square) £29.95

WORLD TIME WATCH. 20CS-110 £65.95
SEIKO ALARM/CHRONO (£110) £19.95

MEN'S DIGITAL ALARM WATCHES
F265R £199.95
L265R £219.95

CASIO WATCHES
ST-1, Stitchwit, (four way) £24.95
LC-160 £169.95
LC-79 £169.95
ALC-1000, Clock, Alarm, Stopwatch £29.95

CASIO SCIENTIFIC
DIGITRON FX-105 £19.95
FX-80 £15.95
FX-80 £15.95
FX-360 £49.95

Send 25p for our illustrated catalogue. Include a S.A.E.

H.A.C. SHORT-WAVE KITS
WORLD-WIDE RECEPTION

"H.A.C." well known by amateur constructors for its Short Wave kits, now offers a complete range of kits and accessories to suit the novice and expert. £10.30 INCL. (UK mainland only). Hard Copy + £2.00 (overseas)

"H.A.C." SHORT-WAVE PRODUCTS
H.A.C. SHORT WAVE PRODUCTS
P.O. Box No. 16, 10 Windmill Lane Lewes Road, East Grinstead, West Sussex RH19 5ZD

Sonic
HI-FI DISCOUNT CENTRES

DISCOUNT SPEAKERS

HI-FI TYPES
5 FANE POP 15" £12.95

GROUP/DISCO TYPES
2 TITAN S12/6 £75.00
2 TITAN S12/6 £75.00

DISCO CONSOLES, AMPS, AMPS, AMPS, AMPS, AMPS, AMPS, AMPS, AMPS

STATION TRANSISTOR INTERCOM FOR $20.00

HORN UNITS
15" TITAN S12/6 £75.00
15" TITAN S12/6 £75.00
15" TITAN S12/6 £75.00

ADD-ON HIGH FREQUENCY UNITS
P.A. Add-on £5.00
TITAN S12/6 £75.00
15" TITAN S12/6 £75.00
TITAN S12/6 £75.00

EXTRA SPECIAL MAIL ORDER OFFER TITAN S10A/50W Amplifier

Horn units
P.A. Add-on £5.00
TITAN S12/6 £75.00
15" TITAN S12/6 £75.00
15" TITAN S12/6 £75.00

SEND 25P FOR OUR ILLUSTRATED CATALOGUE

FIENDS, NO CATALOGUES WITHOUT S.A.E.

H.A.C. SHORT-WAVE PRODUCTS
P.O. Box No. 16, 10 Windmill Lane Lewes Road, East Grinstead, West Sussex RH19 5ZD

Sonic
HI-FI DISCOUNT CENTRES

DISCOUNT SPEAKERS

HI-FI TYPES
5 FANE POP 15" £12.95

GROUP/DISCO TYPES
2 TITAN S12/6 £75.00
2 TITAN S12/6 £75.00

DISCO CONSOLES, AMPS, AMPS, AMPS, AMPS, AMPS, AMPS, AMPS, AMPS

STATION TRANSISTOR INTERCOM FOR $20.00

HORN UNITS
15" TITAN S12/6 £75.00
15" TITAN S12/6 £75.00
15" TITAN S12/6 £75.00

ADD-ON HIGH FREQUENCY UNITS
P.A. Add-on £5.00
TITAN S12/6 £75.00
15" TITAN S12/6 £75.00
15" TITAN S12/6 £75.00

EXTRA SPECIAL MAIL ORDER OFFER TITAN S10A/50W Amplifier

Horn units
P.A. Add-on £5.00
TITAN S12/6 £75.00
15" TITAN S12/6 £75.00
15" TITAN S12/6 £75.00

SEND 25P FOR OUR ILLUSTRATED CATALOGUE

FIENDS, NO CATALOGUES WITHOUT S.A.E.

H.A.C. SHORT-WAVE PRODUCTS
P.O. Box No. 16, 10 Windmill Lane Lewes Road, East Grinstead, West Sussex RH19 5ZD
WIRE WRAPPING CENTRE

HOBBY WRAP
Model BW 630

WIRE-WRAPPING TOOL
For 0.25" (0.63mm) square, post "MODIFIED" wrap, positive indexing, anti-overwrapping device.

A For AWG 30 BW-630
B For AWG 26-28 BW-2628
C Bit for AWG 30 BT-30
D Bit for AWG 26-28 BT-2628

3 IN 1 WIRE DISPENSER
New wire dispenser cuts and strips three different colours of wire. Quick and easy to use, pocket size. Wire sizes 30 AWG, 50ft Red, Blue & White. Kyntar insulated. £3.77

TERMINAL AND DISTRIBUTION STRIPS
Bread boarding building blocks with universal contacts of solderless plug-in type. Facilitate quick, solderless circuit build-up and check-out on universal .1" x .1" matrix.

- Are offered in ten configurations.
- Accept all components with leads up to .032" diameter.
- Require no special patch cords.
- Includes integral non-shorting instant mounting backing.

DIP/IC INSERTION TOOL WITH PIN STRAIGHTENER

DIP/IC EXTRACTOR TOOL
The EX-1 Extractor Tool is ideally suited for hobby enthusiasts or lab engineers. Featuring one piece spring steel construction, it will extract all LSI, MSI and SSI devices of from 8 to 24 pins. Extractor Tool EX-1 £1.10

OK PLIERS AND CUTTERS
UNIVERSAL CUTTER

Just one of the range of high quality pliers, cutters, tweezers and screwdrivers.

3136 £3.20

WIRE-WRAPPING KIT
Contains: Hobby Wrap Tool WSU-30 M, Wire Dispenser WD-30B, (2) 14 DIP's, (2) 16 DIP's, Hobby Board H-PCB-1, DIP/IC Insertion Tool INS-1416 and DIP/IC Extractor Tool EX-1.

- Wire-Wrapping Kit WKB-4B (Blue) £17.80

IC TEST CLIPS
FOR DUAL-IN-LINE PACKAGES
- Provide full access to integrated circuit DIP leads.
- Remove DIP's damage free.
- Available in sizes to accommodate all DIP's: TC-14 fits 14-pin DIP's etc.

- £2.75

DIP SOCKET
Dual-in-line package, 3 level wire-wrapping, phosphor bronze contact, gold plated pins, .025 (0.63mm) sq., .001 (2.54mm) centrematrix spacing.

- From 14p

RIBBON CABLE ASSEMBLY
FROM £2.70

- With 14 Pin Dip Plug £1.42
- With 14 Pin Dip Plug £1.44
- With 16 Pin Dip Plug £1.48
- With 16 Pin Dip Plug £1.54
- With 16 Pin Dip Plug £1.60

DISTRIBUTORS WANTED***

OK Machine & Tool U.K. Limited
48a The Avenue Southampton SO12 SY
Telephone Southampton (0703) 38966/7 Telex 477222 Cablegram OKMAC

Practical Wireless, September 1978
Electronics. Make a job of it...

Enrol in the BNR & E School and you'll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the C & G and GCE EXAMS (Technicians' Certificate); the Grad. Brev., I.E.R., Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificate; etc. Also courses in Television, Transistors, Radar, Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

BARGAIN PARCELS SAVE POUNDS

Huge quantities of electronic components must be cleared as space required. 1000's of resistors, capacitors, transformers, Etc. equipment panels etc. valued in valuable components. No time to sort. Must sell by weight. 7 lbs £4.95; 14 lbs £7.95; 21 lbs £12.95; 30 lbs £18.95.

- **Handy Pads**
 - 4 aluminum foil bases 160 x 4 x 36 mm ideal for light duties, etc.
 - 1 per box.

- **Miniature Edgewise Panel Meters**
 - £2.45.

- **Components**
 - £3.40.

- **Huge Striptease**
 - 2000 resistors, 1000 capacitors, 500 transformers, etc.

- **Circuit Etching**
 - £1.25.

- **Miniature Instruction Planes**
 - £0.90.

- **Dale pen only £1.25.**

- **Circuit Etching Glass Printed**
 - £2.90.

- **Miniature Phillips Screwdriver**
 - £0.95.

- **Circuit Tracing**
 - £2.90.

- **Miniature Circuit Board**
 - £2.50.

- **Circuit Etching Glass Printed**
 - £1.95.

- **Miniature Vaporizer**
 - £2.90.

- **Circuit Tracing**
 - £2.90.

- **Miniature Imprint Panel**
 - £2.90.

- **Circuit Etching Glass Printed**
 - £1.95.

- **Miniature Lamp Holder**
 - £2.90.

- **Circuit Tracing**
 - £2.90.

- **Miniature Power Supply**
 - £2.90.

- **Circuit Etching Glass Printed**
 - £1.95.

IT CAN SAVE YOU POUNDS!

- **Modules**
 - £3 to 100 watts

- **R.M.S. power supplies**
 - £3.95

- **Control Units, etc.**
 - £2.95

- **Electronic Ignition**
 - £2.95

- **P.A. - bargain disco assemblies**
 - £2.95

Stirling

For all your electronic needs, visit our showroom at 1048 Weeley Road, Southend.

The better catalogue

- **Modules**
 - £3 to 100 watts

- **R.M.S. power supplies**
 - £3.95

- **Control Units, etc.**
 - £2.95

- **Electronic Ignition**
 - £2.95

- **P.A. - bargain disco assemblies**
 - £2.95

Stirling Electronics

- **Modules**
 - £3 to 100 watts

- **R.M.S. power supplies**
 - £3.95

- **Control Units, etc.**
 - £2.95

- **Electronic Ignition**
 - £2.95

- **P.A. - bargain disco assemblies**
 - £2.95

Practical Wireless, September 1978

www.americanradiohistory.com
SEMICONDUCTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Model</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA115</td>
<td>ASY35</td>
<td>0.45</td>
</tr>
</tbody>
</table>

VALVES

<table>
<thead>
<tr>
<th>Type</th>
<th>Model</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A263</td>
<td>ECC801</td>
<td>0.50</td>
</tr>
</tbody>
</table>

INTEGRATED CIRCUITS

<table>
<thead>
<tr>
<th>Type</th>
<th>Model</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7454</td>
<td>0.20</td>
<td>0.20</td>
</tr>
</tbody>
</table>

BASES

<table>
<thead>
<tr>
<th>Type</th>
<th>Model</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG1 unskilled</td>
<td>0-15</td>
<td>1CPN</td>
</tr>
<tr>
<td>BG1 skilled</td>
<td>0-15</td>
<td>2AP1</td>
</tr>
<tr>
<td>BGA unskilled</td>
<td>0-15</td>
<td>2AP1</td>
</tr>
<tr>
<td>BGA skilled</td>
<td>0-15</td>
<td>2AP1</td>
</tr>
<tr>
<td>Novalon base</td>
<td>0-15</td>
<td>3EG1</td>
</tr>
<tr>
<td>Flanged</td>
<td>0-15</td>
<td>3EG1</td>
</tr>
<tr>
<td>Split</td>
<td>0-15</td>
<td>3EG1</td>
</tr>
<tr>
<td>Valved</td>
<td>0-15</td>
<td>3EG1</td>
</tr>
<tr>
<td>8 pin DIL</td>
<td>0-15</td>
<td>3SP1</td>
</tr>
<tr>
<td>16 pin DIL</td>
<td>0-15</td>
<td>3SP1</td>
</tr>
<tr>
<td>16 pin header</td>
<td>0-15</td>
<td>3SP1</td>
</tr>
</tbody>
</table>

3BP1 TUBE AVAILABLE

FROM STOCK

SUITABLE FOR P.W. PROJECT

£8.00 each. Base 75p. Postage 75p

VAT 8%

Telephone 01-677 2424
Telex 946708 E & O.E.
MINI CONSOLES
Ideal for small deck control panels and consoles. Moulded in orange, blue, black and grey ABS. Incorporates slots for holding 15mm thick pole's. Aluminium panel strips reseated into front of console and held by screws running into integral brass bushing.
MC 181 x 96 x 59mm £2.15 (10) (includes VAT)
MC 215 x 130 x 75mm £2.84 (10) (includes VAT)
(Prices include VAT & P.P.)

ECONOMY DUALITY LED's
£0 for only £5 - 100 for only £9
Mixed bags, all sizes, various colours
120" 16" 36" 25" time
Full specification LED's also available
Red (specify size) 70p per pack
Green, Yellow, Orange (specify size) £1.20 per pack
Packs contain 5 LED's, mounting clips and data

TYPE A & NEON INDICATORS
Supplied with resistor for 240V volts operation
Helps in 6mm hole by plastic bezel
150mm wire leads
Red, Amber, Clear, Opal
Green
12 VOLTS MINI HAND DRILL
Ideal for drilling job, shirts etc. as well as model making.
Supplied with 2 collets that accepts tools and drills with
3/32" and 0.50" dia. shanks.
£7.56 (includes VAT & P.P.)

Stop wasting time soldering
The NEW MW BREADBOARDS
Accept Transistors, LED's/DIodes, Resistors, Capacitors
and DIL packages with 5 to 60 pins
Includes slot-in Component Support Bracket and has
470 individual sockets, plus Voz and Ground Bus Strips
(Prices include VAT & P.P.)

TYPE MP NEON INDICATOR
Supplied with resistor for 240V volts operation
150mm leads, held in 6.4mm hole by nut
Red, Amber, Clear, Opal
20p each

SEVEN SEGMENT DISPLAYS
Economy quality Red, yellow and green
Only 45p each
Common Anode - 0.3"-Left Decimal
Full specification displays also available as above
Red 2.90 each
Green and Yellow @ £1.35 each
Data supplied with full spec. displays only.

Quantity quotations on request
P.P. Note Unless included in price add 25p Post & Packing
for orders totalling under £10. All prices include VAT and
are valid in UK only for 2 months from journal issue date

Michael Williams Electronics
47 Vicerage Av. Cheddle Haltme, Cheshin SK6 7JP

TECHNICAL TRAINING IN
ELECTRONICS TELEVISION
AND RADIO SERVICING

ICS can provide the technical knowledge that is so essential
to your success, knowledge that will enable you to take advantage
of the many opportunities open to the trained person. You
study in your own home, in your own time and at your own
pace and if you are studying for an examination ICS guarantee
coaching until you are successful.

City & Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate

Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV, Audio Engineering and Servicing
Electrical Engineering, Installation and Contracting

POST OR PHONE TODAY FOR FREE BOOKLET.

ICS
To: International Correspondence Schools
Dept. No. 2747, Intercont House, LONDON
SW8 4UJ or telephone 622 9911

Subject of interest
Name
Address
Tel:

HAVE YOU DONE IT LATELY!

Fit a new tape head and transform the performance of your tape recorder

EVERYBODY’S DOING IT!

Doing what? Sending for the latest Home Radio Catalogue. It’s the most
comprehensive components catalogue you can get. 128 pages, about
2,500 items listed, and profusely illustrated. Now only £1-00, with a free
garage list. Send your cheque or postal order now.

Home Radio Components Ltd.
Dept. P.W., 24 London Road, Mitcham, Surrey
CR4 3HD

Practical Wireless, September 1978

www.americanradiohistory.com
It's SUMMER SALE time again!

TRANSDISTORS

<table>
<thead>
<tr>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC198 14p</td>
<td>BC179 12p</td>
<td>BF886 4p</td>
<td>BF647 4p</td>
<td>BF175 2p</td>
<td>TIP3A1 2p</td>
</tr>
<tr>
<td>CD169 10p</td>
<td>CD170 12p</td>
<td>CD171 12p</td>
<td>CD172 12p</td>
<td>CD173 7p</td>
<td>CD174 2p</td>
</tr>
</tbody>
</table>

DIODES

<table>
<thead>
<tr>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>A118 5p</td>
<td>BA110 5p</td>
<td>BY253 2p</td>
<td>CI402 1p</td>
<td>CD175 2p</td>
</tr>
<tr>
<td>E149 4p</td>
<td>E150 5p</td>
<td>E151 5p</td>
<td>E152 5p</td>
<td>E153 5p</td>
</tr>
<tr>
<td>E154 4p</td>
<td>F157 10p</td>
<td>F158 10p</td>
<td>F159 10p</td>
<td>F160 10p</td>
</tr>
<tr>
<td>F161 5p</td>
<td>F162 5p</td>
<td>F163 5p</td>
<td>F164 5p</td>
<td>F165 5p</td>
</tr>
</tbody>
</table>

NEW CONSIGNMENT ZN 414 RADIO CHIP 75p*

OPTOELECTRONICS

<table>
<thead>
<tr>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>UA704 10p</td>
<td>UA711C 10p</td>
<td>UA724 10p</td>
<td>UA725 10p</td>
</tr>
<tr>
<td>TO92 713C</td>
<td>TO92 713C</td>
<td>2SC776 15p</td>
<td>2SC776 15p</td>
</tr>
</tbody>
</table>

NEW CONSIGNMENT ZN 414 RADIO CHIP 75p*

CARBON TYPES

<table>
<thead>
<tr>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST41 150p</td>
<td>ST41 150p</td>
<td>ST41 150p</td>
<td>ST41 150p</td>
</tr>
<tr>
<td>ST42 150p</td>
<td>ST42 150p</td>
<td>ST42 150p</td>
<td>ST42 150p</td>
</tr>
<tr>
<td>ST43 150p</td>
<td>ST43 150p</td>
<td>ST43 150p</td>
<td>ST43 150p</td>
</tr>
</tbody>
</table>

NEW CONSIGNMENT ZN 414 RADIO CHIP 75p*

VOLTAGE REGULATORS

<table>
<thead>
<tr>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>78L05 10p</td>
<td>78L05 10p</td>
<td>78L05 10p</td>
<td>78L05 10p</td>
</tr>
<tr>
<td>78L05 10p</td>
<td>78L05 10p</td>
<td>78L05 10p</td>
<td>78L05 10p</td>
</tr>
</tbody>
</table>

NEW CONSIGNMENT ZN 414 RADIO CHIP 75p*

MULTI-TURN PRE-SETS

<table>
<thead>
<tr>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>534 3 x 150K LIN ONLY 65p*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NEW CONSIGNMENT ZN 414 RADIO CHIP 75p*

UNJUNCTION TRANSISTORS

<table>
<thead>
<tr>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>U74 74LS00</td>
<td>U74 74LS00</td>
<td>U74 74LS00</td>
<td>U74 74LS00</td>
</tr>
<tr>
<td>74154B 12p</td>
<td>74154B 12p</td>
<td>74154B 12p</td>
<td>74154B 12p</td>
</tr>
</tbody>
</table>

NEW CONSIGNMENT ZN 414 RADIO CHIP 75p*

AUDIO PLUGS & SOCKET PAKETS

<table>
<thead>
<tr>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 x 5.5 x 3.5 Plastic Jack Plug 40p*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 x 5.5 x 3.5 Plastic Jack Plug 40p*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NEW CONSIGNMENT ZN 414 RADIO CHIP 75p*

POWER SUPPLIES

<table>
<thead>
<tr>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x 6V for 6p High 90p*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 x 6V for 6p High 90p*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NEW CONSIGNMENT ZN 414 RADIO CHIP 75p*

VOLTAGE REGULATORS

<table>
<thead>
<tr>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>78L05 10p</td>
<td>78L05 10p</td>
<td>78L05 10p</td>
<td>78L05 10p</td>
</tr>
<tr>
<td>78L05 10p</td>
<td>78L05 10p</td>
<td>78L05 10p</td>
<td>78L05 10p</td>
</tr>
</tbody>
</table>

NEW CONSIGNMENT ZN 414 RADIO CHIP 75p*

PRE-ASSORTED Socket PAKETS

<table>
<thead>
<tr>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 x 100Ω SMD Resistors 10p*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 x 100Ω SMD Resistors 10p*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NEW CONSIGNMENT ZN 414 RADIO CHIP 75p*

Batteries

<table>
<thead>
<tr>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x 27M4 D Batteries 1.5V 10p each</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 x 27M4 D Batteries 1.5V 10p each</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NEW CONSIGNMENT ZN 414 RADIO CHIP 75p*

EX G.P.O. MICROSWITCHES

<table>
<thead>
<tr>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 5111 4 for 15p</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NEW CONSIGNMENT ZN 414 RADIO CHIP 75p*

CABLE CLIPS

<table>
<thead>
<tr>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>545-90 2.5mm round single pin fitting 35p</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NEW CONSIGNMENT ZN 414 RADIO CHIP 75p*

ORDERING

Please order exactly as printed including the part number and pack unless otherwise stated. Add 3p to each order of 5 or more and 85p to others. No allowance will be made. These are zero.

NEW CONSIGNMENT ZN 414 RADIO CHIP 75p*

LITHOTRANSISTORS

<table>
<thead>
<tr>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 x 2026 8W Power Supply for AL30A/AL31A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 x 2026 8W Power Supply for AL30A/AL31A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NEW CONSIGNMENT ZN 414 RADIO CHIP 75p*

Audiobacks

<table>
<thead>
<tr>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
<th>Type Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Audio Chassis TW-7W RMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete Audio Chassis TW-7W RMS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NEW CONSIGNMENT ZN 414 RADIO CHIP 75p*

DEPT. PW10 P.O. BOX 6, WARE, HERTS
SHOP 18 BALKDOW ST., WARE, HERTS
AT OPEN 9 to 5.30 MON-SAT

Practical Wireless, September 1978 19
A Professional Finish

From comments made by readers we know that one of the features which they seek in any constructional project is the means of achieving a presentable appearance to the finished item of equipment. Whether it be a piece of test gear, a radio transmitter or receiver, or a hi-fi unit, to be able to answer "Yes, and I built it myself" to a friend's praise of its appearance, is very good for the ego!

The availability to the home constructor of a wide range of cases, both metal and plastics, has made the task much simpler, and the traditional "metal-bashing", whereby complete cases were produced from aluminium sheet in the home workshop, is tending to become a thing of the past. There are those who still practise it—several readers have written urgently requesting fully dimensioned drawings of the metalwork for the "Purbeck" oscilloscope, even though this is available in finished form from one of our advertisers.

For hi-fi equipment, an attractive cabinet presents more difficulty, since instrument cases and boxes do not blend well with the decor of most lounges. Veneered chipboard can help the competent handyman, but there are still various items of trim required. For the PW "Wimborne" Music Centre, which begins in this issue, we have arranged with an advertiser for the supply of purpose-made cabinet parts. These should allow you to produce a unit whose appearance will rival that of a ready-built commercial music centre. For the "Wimborne", we are giving details of the cabinet first, since it forms a box into which the various modules are later assembled. I hope we will not receive too many complaints that we should have published the electronics first!

Reverting to constructional projects in general, a neatly lettered front panel is undoubtedly the most important factor in achieving that professional finish. We have recently introduced on a trial basis, film front panel overlays for some of our projects. Clamping the overlay between the front panel and a thin Perspex sheet, secured by the control fixing nuts, produces a fully marked panel which is very durable indeed. We are presently working on a number of other ideas in similar vein, and hope to present these in PW later in the year.

Geoffrey C. Arnold T. Eng. (CEI) FSERT (ex G3GSR)—Editor

Like many others in electronics, Geoff began his career as a seagoing Radio Officer, first with Marconi Marine, then with the P & O shipping company. Transferring to P & O shore staff, he was engaged in installation and repair of all types of ship-borne radio, electronic and sound equipment. A spell with Redifon Marine, working on the design of special systems, brought a deep involvement with handbook writing, which inspired his transfer to technical journalism.

Spare-time interests include music (more or less anything except modern classical), d.i.y., and studying for a degree with the Open University. Geoff is married, with a son reading Electrical and Electronic Engineering at University of Surrey, and two daughters still at school.
RAE courses

Three courses for radio amateur's are being offered by North Trafford College of Further Education. Course ERA1 will cover RAE theory and ERA2 the morse code, both these courses will be on one evening each week between 19.30 and 21.00 hours. Enrolment will be on 11th, 12th and 13th September. Another advanced course is available for amateurs who have passed the RAE and would like to broaden their expertise. The lecturer will be J. T. Beaumont G3NGD, North Trafford College of Further Education, Talbot Road, Stretford. Tel: 061-872 3731.

A similar course is also offered at Hucknall Adult Education Centre. The course starts on Monday 18th September 1978, and enrolment is on Monday 11th, Tuesday 12th September 1978, from 2pm until 8pm. Hucknall Adult Education Centre, Portland Road, Hucknall, Nottingham. Tel: (06075) 2798.

All being well Blackburn Technical College will again be running an RAE course, commencing on Wednesday evenings at the end of September. Enrolment will be at the College on 6th, 7th and 8th September 1978. For further details telephone G3LLL on Blackburn 4762 in the evening and Blackburn 5065/6 during the day. Blackburn Technical College, Feilden Street, Blackburn.

Moving south to the London area, we are notified of two courses, the first at Amberly Road Adult Education Centre, on Mondays and Thursdays with Morse, starting 18th September 1978. Enrolment will be on 7th, 8th, 11th and 13th September. We understand this is the nearest RAE course to the centre of London. The second will be held at Hatch End High School, Hatch End, Middlesex, on Wednesdays, with Morse starting 27th September 1978. Enrolment will be on 16th and 17th September at Nower Hill School. Both courses will be conducted by D. T. Busby, G3ELB, 46 St. Kilda's Road, Harrow, Middlesex.

And last but not least, an RAE course will start on Thursday 21st September 1978, beginning at 7.30 pm. There will also be a Morse Proficiency Course beginning on Monday 18th September 1978 at 7.30 pm. For further information contact J. Brett, Principal, North and West Farnborough Further Education Centre, Cove School, St. John's Road, Farnborough, Hants.

The British Vintage Wireless Society

The second annual meeting of the society, was held on Sunday 21st May 1978, at St. Albans, with a grand turn-out of over 60 members, their friends and guests. It was decided that in the future, meetings would be held every six months.

After the official business was concluded, a grand bartering session was held.

The aim of the BVWS, formed in 1976, is to promote the study of wireless history, to record existing sources of information on all aspects of early wireless, and to encourage the preservation of early wireless equipment.

The society currently has a membership of over 80, including several overseas. It publishes a quarterly bulletin, containing articles on collecting, restoring, members exchanges and wants, vintage circuit diagrams, etc., and will extend a warm welcome to any new members. Further details can be obtained from the Hon. Membership Secretary BVWS, Mr. Jon Hill, 14 Victoria Court, Kingsbridge Avenue, London W3.

Science and Security

An international conference on the application of science to security techniques and equipment will be held in conjunction with the 1st International Science and Security Exhibition at the Metropole Hotel, Brighton. The conference is organised by the Institute of Physics, in collaboration with the Electrical Research Association.

It is anticipated that the three day conference will be in six sessions, each with one or two keynote speakers and several contributed papers. Topics to be covered will include: Protection of data and communication; Intruder detection and alarm systems; Access control systems; Identification of persons and documents; Sensing techniques; Security strategy; Industrial and commercial applications.

The conference will be held in a hall immediately adjacent to the associated exhibition. Residential accommodation will be available in the Metropole Hotel and the University of Sussex. Further details from: The Institute of Physics, 47 Belgrave Square, London SW1X 8QX. Tel: 01-235 6111.

Mobile Rally

Preston Amateur Radio Society Mobile Rally, is to be held on Sunday 20th August 1978 at Walton-le-Dale County High School, Bamber Bridge, Preston, Lancs., which is situated one mile from the M6, junction 29.

There is to be a talk in on S22 and the usual attractions including a bring and buy stand. Plenty of free parking and the rally starts at 11.00am. Details from: G8KTM, QTHR.

Summer sale

We are informed by Chromasonic Electronics that they are currently holding a summer sale of, integrated circuits, seven segment displays etc. A list of the offers can be obtained by applying, enclosing a s.a.e.

Also available is their popular IC Booklet, priced 35p. Chromasonic Electronics, 55 Fortis Green Road, Muswell Hill, London N10 3HN. Tel: 01-833 3705.

On the move

A. Marshall (London) Ltd. inform us that from 20th June, they are moving their Offices, Industrial Sales Department, Mail Order Department and Central Stores to new premises at Kingsgate House, Kingsgate Place, London NW6. Tel: 01-694 8005/6/7/8.

The new premises are considerably larger than their existing ones, and it is hoped in quite a short time to achieve a very high service level, and eliminate the difficulties they have been experiencing recently due to lack of space.

Their existing premises at 40 Cricklewood Broadway are being refitted as a new branch, and will be trading as and from 28th June.

Can I help you?

Are you the secretary, organiser or general dog's body of your local radio club or any other group whose functions may interest readers of PW. If so, let me know and I will endeavour to publicise your rally, get-together, whatever, through this column. Remember though, we compile the magazine some time ahead of publication day (e.g. this note was written in mid-June), so, the earlier I can have details, the better. Alan Martin
Often it is required that a known degree of attenuation be introduced between a source and a matched load, for example, between a signal generator output and the input of a receiver when carrying out sensitivity measurements. The unit described provides accurate 1dB steps of attenuation from 0dB to 20dB. The attenuator is designed for a 50Ω system but details are also given on how to calculate suitable component values for alternative impedances. The frequency response of the attenuator is sufficient to allow for operation up to and beyond 150MHz. The attenuator can be built for an extremely modest outlay and is a valuable addition to the test gear owned by any serious radio experimenter.

Attenuators

Attenuation is usually expressed on the decibel scale. Both power and voltage ratios are normally expressed in decibels (dB) where:

\[N \text{ (dB)} = 10 \log_{10} \left(\frac{P_2}{P_1} \right) \]

where \(P_1 \) and \(P_2 \) are the powers being compared. If both the source output and load input impedances are the same, then the corresponding voltage ratios may be used, in which case:

\[N \text{ (dB)} = 20 \log_{10} \left(\frac{V_2}{V_1} \right) \]

In the case of attenuators, \(V_s \) would be the output of the signal generator when it is feeding a matched load and \(V_i \) would be the voltage developed across the load. In this case \(N \) (in decibels) would be the attenuation of the signal between the source and the load which is imposed by the attenuator network. In order for the relation to be true, however, the attenuator must present a matched load to the source and it must of course attenuate the voltage applied by the desired amount.

General Points

For the purpose of analysis and design it is possible to reduce any active circuit, however complicated, to a single voltage generator together with a series impedance. This is known as the Thevenin equivalent circuit. It can be shown that, for maximum power transfer to an external load, the impedance of the load should be equal to the series impedance in the equivalent circuit (the so called "output impedance") Fig. 1. It is common practice to adopt a convenient value for this impedance and to design accordingly. In audio work a value of 600Ω is often chosen, whereas in radio work 300Ω, 75Ω, and 50Ω are common values. Having adopted a value for the

Fig. 1: Equivalent circuit showing a source coupled to a load

Fig. 2: Attenuator connected between the source and load

Fig. 3: Simple potential divider type attenuator

Fig. 4: Essentials of "\(\pi \)" and "\(T \)" type unbalanced attenuators

Practical Wireless, September 1978
impedance, it is possible to design individual units with common input and output impedances in the knowledge that, when connected together, there will be a maximum transfer of signal power between the units. Fig. 2 shows how an attenuator is inserted between a source and load. Due to the fact that the source and load impedances are equal, the attenuator networks in common use are usually symmetrical in design unlike the simple potential divider arrangement which is shown in Fig. 3. Hence attenuators may be used either way round, and if the networks are all matched to the same impedance, they may also be connected in series to provide an attenuation in decibels which is the sum of the individual attenuations, also in decibels.

Basic Forms

The two commonest forms for attenuator networks to take are the "S" and "T" types shown in Fig. 4. They perform exactly the same function and use the same number of components, but the component values may be more convenient using one form rather than the other for a given amount of attenuation. It is, of course, quite permissible to mix the two types of attenuator when several attenuators are to be connected in tandem. The use of a binary sequence of 1, 2, 4, 8, ..., dB in switching will give the maximum attenuation range for a given number of switches, but the authors chose to use a more convenient sequence of 1, 2, 2.5, and 10dB. This arrangement permits the selection of any degree of attenuation from 1dB to 20dB in 1dB steps. If a greater degree of attenuation is required, then it is simply a matter of constructing another attenuator and placing it in series with the first. Two identical 20dB switched attenuators will provide a maximum of 40dB when they are connected in series.

The use of low capacitance switches enables a wide bandwidth to be achieved. The maximum power input will be determined by the rating of the component resistors used. These should be carbon film types using short connecting leads.

Circuit Description

The circuit diagram of the attenuator is shown in Fig. 5. It is desirable to use the standard range of carbon film resistors available in the construction of the attenuator and thus the attenuator type, "S" or "T", has been chosen with this in mind. After performing the calculations it appears that, for a 50Ω system, 1dB and 5dB are more accurately achieved using the "S" circuit and that 2dB and 10dB are more accurately achieved by the "T" circuit. Miniature toggle switches are used to select, or bypass, each individual attenuator circuit.

Construction

Construction is straightforward and should closely follow the layout shown in Fig. 6. Note that all resistor leads should be kept as short as possible in order to ensure good high frequency performance, and resistor values quoted are for a 50Ω system; for alternative impedances, multiply each resistor value by a factor of Z/50, where Z is the impedance for the system. BNC or 259 (u.h.f.) type connectors may of course be used in place of the coaxial type used on the prototype. The use of a diecast box is strongly recommended since adequate screening is vital if the maximum value of attenuation is to be achieved. To facilitate a very low resistance common earth connection, a small piece of copper laminate is used to line the underside of the front panel of the instrument. This, of course, also helps minimise the length of the resistor leads. The calibration of the instrument should only be checked against another known attenuator. Reliance should not be placed on the calibration scales of signal strength meters normally fitted to receivers!

components

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>2% carbon film</td>
<td>19 10 4 2 1 5 9</td>
</tr>
<tr>
<td>L1 L2 L3 R1.1 R1.2</td>
<td>D1 D2</td>
</tr>
<tr>
<td>2200, 1200, 880</td>
<td>R1</td>
</tr>
<tr>
<td>1800</td>
<td>R1</td>
</tr>
<tr>
<td>1800 8</td>
<td>R1</td>
</tr>
<tr>
<td>910</td>
<td>R1</td>
</tr>
</tbody>
</table>

* Practical Wireless, September 1978

www.americanradiohistory.com
The TBA 120 Series of I.F. Devices

The TBA 120 series consists of devices designed for use as 10-7 MHz i.f. amplifier-limiter and demodulator circuits in f.m. receivers. They are also suitable for performing the same functions in the 5.5 MHz inter-carrier sound channels of television receivers. The devices incorporate an electronic volume control circuit which enables long leads to be used to the volume control potentiometer without the danger of hum pick up, since only a direct current passes through these leads.

Types

The TBA 120 device is encapsulated in a 14 pin dual-in-line package with the connections shown in Fig. 1. The TBA 120A is an electrically identical device which is encapsulated in a 14 pin quad-in-line package with the same connections (alternate pins on each side of a quad-in-line device are bent so that they are at different distances from the body of the device). The TBA 120S is a more sensitive device with similar connections; it employs an 8 stage amplifier/limiter instead of the 6 stage internal circuit used in the TBA 120. Each of the three devices contains a separate internal transistor which is suitable for use as an audio frequency preamplifier or as a switching transistor for treble cut using a resistance-capacitance network. The TBA 120AS (Siemens) and the TBA 120SQ (National Semiconductor) are quad-in-line versions of the TBA 120S. Constructors intending to use a socket are advised to purchase the dual-in-line devices, since quad-in-line sockets are not very readily available.

The other two devices in the series are the TBA 120T and the TBA 120U; these have a sensitivity similar to the TBA 120S, but have an internal audio amplifier rather than the separate internal transistor. The TBA 120T has an internal 820 ohm resistor connected across its i.f. input (between pins 13 and 14) so that no matching resistor is required when the device is fed from a 5.5 MHz ceramic i.f. filter of this impedance. This extra resistor is not present in the TBA 120U; this latter device is mainly intended for use with tuned circuits rather than ceramic filters and has a much higher input impedance (about 40 kilohms in parallel with 5 pF).

The TBA 120T and TBA 120U are more conveniently used with a video tape recorder than the other types, since they have two audio outputs, the output from pin 12 being unaffected by the setting of the volume control.

This series of devices is produced by various manufacturers including AEG-Telefunken, ITT Semiconductors, National Semiconductor, Plessey, Thomson-CSF, etc., but not all of these manufacturers offer every type. Most of the types are readily available from various advertisers in this magazine. It is wise to study the data sheet issued by the particular manufacturer concerned before using any device, since minor differences can occur between the products of different manufacturers.

Circuits

A typical f.m. i.f. circuit for use with the TBA 120 and the TBA 120A is shown in Fig. 2. A similar circuit can be used with the TBA 120S, but the connections to pins 6 and 10 and the capacitors C7 and C8 can then be omitted, since the signals are conveyed by suitable internal connections in the TBA 120S.

Component values for the circuit of Fig. 2 are shown in Table 1 for monaural and stereo 10-7 MHz f.m. radio operation and also for 5.5 MHz television use.

The internal transistor and Zener diode are not used in the circuit of Fig. 2. The pins associated with these components are therefore connected to ground. A +12V power supply line is usually convenient, but the device will operate satisfactorily with a supply of only +6V; the maximum permissible supply is about +18V.
Fig. 2: A TBA 120 i.f. amplifier circuit with volume control and de-emphasis

<table>
<thead>
<tr>
<th></th>
<th>FM Monaural</th>
<th>FM stereo</th>
<th>Television inter-carrier sound</th>
</tr>
</thead>
<tbody>
<tr>
<td>C9</td>
<td>470pF</td>
<td>330pF</td>
<td>1.5nF</td>
</tr>
<tr>
<td>C5</td>
<td>22nF</td>
<td>470pF</td>
<td>22nF</td>
</tr>
<tr>
<td>L2</td>
<td>8 turns</td>
<td>12 turns</td>
<td>8 turns</td>
</tr>
<tr>
<td>R3</td>
<td>Omit</td>
<td>1 kilohm</td>
<td></td>
</tr>
</tbody>
</table>

(L1 and C2 may be similar to L2 and C9.)

Table 1. Component values recommended for the Siemens TBA 120 device in the circuit of Fig. 2.

The typical current consumption of the Fig. 2 circuit is 14mA. The internal Zener diode is connected from pin 12 to ground, so if one wishes to use this component to provide a stabilised supply for the operation of the device itself or for the operation of any other circuit, one merely connects pin 12 via a suitable resistor to a positive supply line of not less than about 15V. The resistor must limit the Zener current to not more than 15mA. The emitter of the separate internal transistor is connected to ground, but the base and collector are each brought out to separate pins.

The tuned circuit L1/C2 is shown in the input of Fig. 2, but a ceramic filter may be used instead of this tuned circuit. A ceramic filter has the advantage that no alignment is necessary, but the use of such a filter makes it necessary to connect a resistor between pins 13 and 14 to provide a path for the bias voltage to reach pin 14. This resistor should have a value which is approximately equal to the characteristic impedance of the filter used. In the circuit shown, L1 provides the required bias path.

A quadrature demodulator coil tuned to the i.f. frequency is connected between pins 7 and 9. As shown in Table 1, the component values used in this tuned circuit may be slightly different in an f.m. stereo radio receiver (where bandwidth is important) than in an f.m. monaural receiver (where one requires optimum results in a narrower bandwidth circuit).

However, these suggested values are not at all critical. The resistor R5 provides some damping on the tuned circuit and therefore an increased bandwidth, but is required only in stereo systems.

The capacitor C5 may have a value of 22nF in monaural systems where it provides the required de-emphasis. In a stereo circuit, however, the much smaller value of 470pF is recommended to attenuate the i.f. signal in the audio output; there will be two separate de-emphasis capacitors following the stereo decoder circuit.

Gain

The i.f. gain of the TBA 120 is about 60dB and that of the TBA 120S about 68dB. The amplifier-limiter provides i.f. outputs at pins 6 and 10 which have an almost constant amplitude irrespective of the i.f. input voltage provided that the latter exceeds about 70µV in the case of the TBA 120 and about 50µV in the case of the TBA 120S. The input impedance is about 40 kilohm in parallel with 5pF.

The volume is controlled by the setting of VR1, a range of about 70dB being typical. As the value of VR1 is reduced, the output falls, the control characteristic being approximately logarithmic.

The performance of the circuit is somewhat dependent on the quality factor (Q value) of the inductances used, and a.m. rejection is of the order of 40dB at an input of 1mV, but increases with the input voltage. The audio output voltage is of the order of 1V, but increases with the Q of L2 and with the supply voltage.

Fig. 3: A circuit using the TBA 120T or TBA 120U for 5-5MHz television inter-carrier sound

TBA 120T and TBA 120U

A circuit using a TBA 120T or TBA 120U device is shown in Fig. 3 for intercarrier 5-5MHz television sound use. A similar circuit can be used with a 10-7MHz f.m. radio input, but the appropriate filters must be used. The resistor shown dotted in the input circuit is required only in the case of the TBA 120U, since it is included in the internal circuit of the TBA 120T.

Practical Wireless, September 1978
In the TBA 120T and TBA 120U devices a voltage stabilising circuit is connected from pin 11 to ground (unlike the TBA 120). A resistor must therefore always be included between pin 11 and the positive supply line. If the decoupling capacitor C5 is omitted, the volume control range is altered. The circuit of Fig. 4 may be used for coupling a TBA 120T or TBA 120U to a video tape recorder. A switching voltage of +12V should be applied to pin 1 at playback, but this pin should be left open-circuited during recording. When the switching voltage is applied, the BC238 emitter follower is switched off, whilst the BC308 buffer is switched on. In addition, the switching voltage is applied via the BA127 diode and the 47 kilohm resistor to pin 13 of the device so as to put the i.f. amplifier out of action.

Ultrasonic circuit

The TBA 120S, like many other f.m. i.f. devices, can be employed to amplify the signals from an ultrasonic transducer. The circuit shown in Fig. 5 has been used by the writer to detect 40kHz ultrasonic waves falling on a SE05B 40R transducer (available from Hall Electronics, 48 Avondale Road, London E17 8JG). The 40kHz signal from this transducer is applied to the amplifier-limiter at pin 14, the resistor R1 being used to convey the bias from pin 13 to pin 14. The amplified 40kHz signal is taken from either pin 6 or pin 10 and is fed to the base of the internal transistor at pin 4 together with an appropriate bias current obtained using R3. The further amplified signal appears across the collector load resistor R4, C5 being used to assist stability. The output signal is connected via C6 to the diode pump circuit which causes the meter to be deflected whenever the waves fall on the transducer.
A whole library of easy to assemble cartridge games for you and all the family to enjoy - all in full colour - works OK on Black and White TV - will save you pounds in the long run.

Our INTRODUCTORY OFFER consists of a bargain that cannot be snuffed at - a Kit consisting of a Professional Finished Inject Moulded Box - Joystick Hand Controls - one cartridge on which consists of 10 games - Football, Tennis, Solo Squash (1 & 2 players), Hockey, Basketball (1 & 2 players), Shoot etc. Mains Adaptor. All holes are pre-drilled - No Special equipment required. You'll be surprised how easy it is to assemble this superbly enjoyable kit!

Every 3 months a NEW game will become available to you and those already under production include Submarines, Space War, Wipe Out and many more. The price of these will vary from £12 to £19 depending upon the complexity of the game.

Additional Cartridges NOW available include:

- Stunt Cycle - 4 games - Cartridge and Hand Controls - £18.90
- Tank Battle - Cartridge and Hand Controls - £14.90
- Race - 2 games - Cartridge - Controls already with basic kit - £12.90

Watch this page each month for new cartridges, as they become available.

Electrical knowledge is not a necessity to assemble this project - just simple soldering.

Cheques and Postal Orders to be made payable to TELEPLAY: send your order (No Stamp Needed) to TELEPLAY, Freepost, Barnet, EN5 2BR or telephone your order quoting your Barclaycard or Access number. Queries and Technical Advice offered either by phone or by calling at our shop.

SHOP OPEN - 10am to 7pm - Monday to Saturday
CLOSE TO NEW BARNET BR STATION - MOORGATE LINE

All parts fully guaranteed,
EUROPE'S LARGEST STOCKIST OF TV GAME COMPONENTS.

W e o f f e r a l l t h i s t o y o u f o r O N L Y
£28.90 inc. VAT and P&P.
Fully Assembled Add £7.00

Fully Assembled Add £3.00

Cartridges come complete with printed case and easy to follow assembly instructions.
One of the attractive features of the Avon is the digital display giving the frequency on which the transmitter is working. This display is not an essential part of the design and can be left out if the constructor so wishes, although in this case he will have to annotate the frequency select switch accordingly on the front panel.

The display is very simple, being merely a static display which is switched, via a diode matrix, to show the frequency selected.

Construction is straightforward and is based on the display bezel recently introduced by RS Components. This assembly accepts six of their 0.3 inch seven segment displays and only requires a simple rectangular cut-out in the front panel which is covered by the bezel itself. This enables the amateur to achieve a professional finish without the need for exotic tools.

The sockets fitted to the bezel are intended for use with a wire wrapping technique although wires may be soldered to the pins if so desired. In this case the pins should be carefully shortened and rubber sleeves must be used to cover the soldered joints.

The prototype display used a construction for the diode matrix which proved to be fiddly to assemble. The diodes were sandwiched between two pieces of Veroboard with the copper tracks running at right angles to each other.

Fig. 1: Circuit diagram of the display
A much neater and simpler design has been evolved and is shown in Fig. 2. The two pieces of Veroboard are assembled back to back, again with the tracks at right angles, using double sided adhesive tape and ensuring that the holes are in alignment. Alternate copper tracks are carefully removed from the board with them running lengthwise. To make this easier a hot soldering iron is laid on the track until the copper starts to bubble. This loosens the adhesive and allows the copper to be peeled off easily.

Before the diodes can be positioned the six frequencies, for which crystals have been fitted, must be noted and the segments to be lit up worked out. This is somewhat simplified by the fact that the first three digits will always read 145. And it follows that these can therefore be permanently wired leaving the only last three digits to be switched. (If you happen to pick one of the few frequencies starting with 144. You will need to add an extra section to the matrix to accommodate the third digit as well.)

I used a wire wrapping tool to hardwire the display sockets on the prototype so suitable pins were soldered into the Veroboard holes used to take connections to and from the matrix. The wire wrapping system used was a recently introduced system known as “Slit’n’Wrap” distributed by Rhopoint Ltd. This is a novel tool which enables you to wrap perfect joints, by hand, using the special wire held on a reel fitted to the tool.
I found this a very easy and convenient method of wiring the display bezel. Wire wrapping is not generally considered by the amateur as it is limited in applications to his projects and the basic equipment tends to be expensive.

However with the advent of hand wrapping tools such as the Slit'n'Wrap, it should be within the reach of the home constructor, and used in the appropriate place will prove very useful.

The display is driven from a 5V regulator i.c. which is bolted to the chassis to act as a heat sink. An extra wafer is added to the frequency select switch and used to switch the display as required.

The diode matrix board can be fitted either to the back of the display bezel, utilising the bezel fixing screws, or placed anywhere in the chassis.

A final check should be made to ensure that all the diodes are the correct way round, before switching on and running through each switch position to see that the correct frequency is displayed.

The display is driven from a 5V regulator i.c. which is bolted to the chassis to act as a heat sink. An extra wafer is added to the frequency select switch and used to switch the display as required.

The diode matrix board can be fitted either to the back of the display bezel, utilising the bezel fixing screws, or placed anywhere in the chassis.

A final check should be made to ensure that all the diodes are the correct way round, before switching on and running through each switch position to see that the correct frequency is displayed.

POWER SUPPLY

N. FOOT G8MCQ

The circuit shown in Fig. 1 provides a regulated output of 24 volts d.c., with overload and short-circuit protection, and will easily power the Avon transmitter.

Low current demands flow through resistor R1 and the 7824 regulator until 200mA is reached and the voltage drop across the resistor becomes 0.6V. At this point Tr2 turns on to carry a proportion of the current being drawn, until the pre-determined maximum of 2.5A is attained. Here the majority of output current is being passed through the transistor and the resistor R2; the voltage drop across the resistor causes Tr2 to turn on, and the unit shuts down.

Note the capacitors C4 and C5, which prevent the possibility of problems arising from r.f. entering the output.

Fig. 1: Circuit diagram of the power supply unit.
The power supply described was housed in a Foxall instrument case type T.7058 which matches the Avon in appearance. In addition to an output socket at the rear, two terminals were fitted on the front panel to facilitate the use of the unit as a separate piece of test equipment.

A 4°C/W heatsink fits conveniently on the back panel, and the regulator and transistors can be fitted to the underside if a little care is taken with the construction.

The d.c. output on the prototype was via a Cannon type XLR 3-31 socket, and XLR 3-12C mating line plug, but barrier strip would be somewhat less expensive and still quite serviceable.

The following amendments should be noted. Components list: L2, 4, 6, 8, 10. Delete ‘on 1MΩ carbon resistor’ and insert ‘6.3mm diameter’.

In Fig. 9, please alter the component references as follows: C8 to C6, C9 to C7, C12 to C8, C11 to C9, R4 to R3.
So far in this series we have explored the various types of logic gate. We can now go on to look at a second major group of logic elements, called flip-flops. Although they are, in fact, built up from groups of gates the flip-flops exhibit their own special characteristics and are generally treated as logic elements in their own right.

Set-Reset Flip-Flop

Suppose we take a pair of 2-input NAND gates and cross connect them as shown in Fig. 27. Let us assume that input 1 is set at 0 and that input 2 is at 1. Gate G1 will be closed by the 0 at its input and hence its output will go to the 1 level. Gate G2 now has both of its inputs at 1 and is therefore open so that its output will be at 0. Since the 0 output from gate G2 is fed back to the second input of G1 it will hold G1 closed even if the 0 state is removed from input 1. We now have a stable condition where output 1 is at 1 and output 2 is at 0.

If we now apply a 0 signal to input 2 whilst input 1 is at 1 then gate G2 will be forced to close and in its turn will cause G1 to open so that the circuit will switch states. If this input is removed we have a second stable state with output 1 at 0 and output 2 at 1.

When a 0 level pulse is applied to input 1 of the circuit it will “flip” into the state with output 1 at 1 and output 2 at 0. Applying a 0 pulse to input 2 will cause the circuit to “flip” back into its original state. This “flip-flop” action gives the circuit its name.

If output 1 is at the 1 level the flip-flop is said to be in the “set” state, whilst the condition where output 1 is at 0 is called the “reset” state. The two inputs, 1 and 2, of the circuit are called the Set and Reset inputs respectively. Sometimes these two signals may be called Preset and Clear but their functions are the same.

Generally the output of flip-flop devices will be labelled Q and Q'. The Q output will be at 1 when the flip-flop is in the Set condition.

Logic Symbol

In most cases no special symbol is used to denote a flip-flop. The device is shown simply as a square box as in Fig. 28. Occasionally the symbol shown in Fig. 29 may be used instead.

A flip-flop can be built up using NOR gates as shown in Fig. 30. Here a 1 level pulse is needed to trigger either the Set or Reset inputs and make the flip-flop switch states.

If the input pulse needed to trigger the flip-flop goes to 0 when it switches the circuit, as in the case of a NAND flip-flop, this may be shown by drawing a small circle on the input point as shown in Fig. 31. The two inputs would then be labelled R and S to indicate that the logic action is inverted.

D-Type Flip-Flop

Although S-R flip-flops are sometimes used in logic systems they have the disadvantage that they need a pair of separate input trigger signals to switch them from state to state.

By employing a more complex arrangement of gates to form the flip-flop circuit, we can arrange that a single “clock” pulse will trigger the circuit.
Moreover we can have a second input called the D (data) input which will determine the state that the flip-flop will take up after the clock pulse has been applied.

With this type of flip-flop, when the D input is set at 1 a clock pulse applied to the flip-flop will cause the Q output to go to 1. If the Q output is already at 1 when the clock pulse occurs, there will be no change in the state of the circuit. When D is at 0 whilst a clock pulse is applied, the Q output will be changed to 0 unless it is already in that state.

This type of circuit is called a D-type flip-flop but may sometimes be referred to as a D-type latch. Practical D-type flip-flops usually have direct Set and Reset inputs as well as the Clock and D inputs. These Set and Reset inputs work independently of the clock and will have the same functions as an S-R flip-flop.

Truth Table

We can draw up a truth table to summarise the action of a D-type flip-flop and this will be as shown in Table 7.

<table>
<thead>
<tr>
<th>Input at (t_n)</th>
<th>Outputs at (t_{n+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D)</td>
<td>(Q)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Here we see the state of the D input before the clock pulse occurs (time \(t_n \)) and the resultant states of the outputs after the clock pulse (time \(t_{n+1} \)).

Typical D Flip-Flops

In the 74 series logic, the most familiar D-type flip-flop is the 7474 which actually contains two D flip-flops. Its pin layout and logic functions are shown in Fig. 32. The 7474 is an edge-triggered device where the circuit responds to its clock only when the clock line (CK) makes a transition from the 0 to 1 level. In the 7474 the Preset and Clear inputs need to be driven to the 0 level to switch the state of the flip-flop.

Another common TTL D-type flip-flop is the 7475. It contains four separate D flip-flops. Unlike the 7474 this device does not use an edge-triggered clock action. If the Clock of a 7475 flip-flop is set at 1 the Q output simply follows the state of the D input. When the clock line drops to the 0 level the Q output freezes at the state it is in at the moment. The clock inputs to the flip-flops are paired together since there aren’t enough pins to bring out all four clock lines separately. The pin layout and logic of the 7475 are shown in Fig. 33.

In CMOS the equivalent to the 7474 is the 4013 dual D flip-flop which is shown in Fig. 34. The Set and Reset inputs of a 4013, unlike the 7474, respond to pulses at the J level.

J-K Flip-Flop

By using a logic arrangement which is slightly more complex than that of a D flip-flop we can produce another rather more versatile type of flip-flop. Here the D input is replaced by two separate inputs labelled J and K. Now when a clock pulse is applied to the flip-flop the action which is produced will depend upon the combination of states present at the J and K inputs. For this type of flip-flop the truth table is as shown in Table 8.

<table>
<thead>
<tr>
<th>Inputs at (t_n)</th>
<th>Outputs at (t_{n+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J)</td>
<td>(K)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Here we see that if both J and K are at 0 the clock pulse has no effect upon the state of the outputs. With J at 1 and K at 0 the clock pulse causes the flip-flop to “set” with Q at 1. Having J at 0 and K at 1 produces a clocked “reset” action where Q goes to the 0 level. When both J and K are at 1 however a rather interesting action occurs. Now the application of a clock pulse simply causes the flip-flop to change state. We shall see later that this can be a very useful action.

If we connect an inverter between the J and K inputs as shown in Fig. 35 we should effectively produce a D-type flip-flop. Some J-K flip-flop circuits do have an inverted K input line so that they can readily be used as D flip-flops if desired.

Practical Wireless, September 1978
J-K flip-flops are generally used where the action required of the circuit is dependent upon the states of two or more logic signals. Although D flip-flops might equally be used in such systems they would generally need more external logic gates to achieve the required action, so that a J-K type will simplify the logic system.

Typical of the J-K flip-flops is the 7470 in TTL which has three J inputs and three K inputs for extra flexibility. In CMOS the 4027 contains two separate J-K flip-flops with direct Set and Reset capability.

Using Simple Flip-Flops

How is a flip-flop used in practical logic systems? One typical application is to use the flip-flop as a "flag" indicating that an event has taken place. As an example suppose that you are leaving home for a shopping trip and wish to know if any visitors called whilst you were away. A Set-Reset flip-flop could be wired to the doorbell so that operating the bell will set the flip-flop. The flip-flop is reset before you leave on your trip and if there have been any visitors whilst you were away the flip-flop will be "set" when you return and may be used to light an indicator lamp to show that visitors have called. This is a particularly useful technique in electronic systems if you need to know whether a pulse has appeared on a logic signal line during a particular period of time.

Another application of the single flip-flop is to use it as a latch circuit. In our coffee making machine we could set a flip-flop as soon as one of the ordering buttons has been activated. Now the flip-flop can be used to latch out the button circuits until the coffee has been delivered. A pulse from the delivery mechanism will reset the flip-flop when the operation is complete and the button circuits will then be released ready for the next customer. This type of circuit is often used to stop false triggering caused by "contact bounce" in a push-button switch.

Parallel Registers

A frequent requirement in logic systems which deal with digital data signals is that of "freezing" the states of a number of varying logic signals at a particular point in time. To do this we might use the circuit of Fig. 36. Here the four flip-flops are clocked simultaneously and they will take up and hold the current states of the input signals at the instant the clock pulse was applied. This logic arrangement is called a parallel data register.

![Fig. 36: A parallel data register](image)

The Shift Register

Let us now consider another method of connecting a group of flip-flops together. Here the Q output from one flip-flop is fed to the D input of the next flip-flop so that they form a chain as shown in Fig. 37. Once again all of the flip-flops are clocked simultaneously. When a clock pulse is applied each stage takes up the previous state of the preceding stage in the chain.

Suppose there is a 1 in the first stage of the chain and 0 in all of the others. We'll also assume that the D input of the first stage in the chain is held at 0. After the first clock pulse has been applied the 1 state will move to the second stage in the chain and the first stage will change to 0. Each succeeding clock pulse will move the 1 along the chain by one stage until eventually it is moved out of the last stage in the chain to leave all of the flip-flops at the 0 state.

This technique of moving a single 1 state through a shift register chain can be used to control a sequence of events. As a very simple example we might connect the lamps on a Christmas tree to a shift register so that each lamp is controlled by one stage of the shift register. Now as clock pulses are fed to the register and the 1 state moves through it each lamp will light in turn. If we connect the output of the last stage to the D input of the first the action will go on continuously since as the 1 state leaves the end of the chain it will be fed back again at the beginning.

Instead of a single 1 we can have a pattern of 1s and 0s in the register and this time when clock pulses are applied the whole pattern will shift along the register by one stage for each clock pulse.

Parallel-Serial Conversion

Now let's see another way in which we might use a shift register. Suppose we wanted to generate Morse code signals using a logic system. Morse symbols are made up from groups of dots and dashes. The dashes are usually three times as long as the dots and each dot or dash is spaced from the other by a period equal to the length of a dot. We can let the dots and dashes be 1 states and the spaces between them be 0 states.

To send the letter A we need a dot followed by a dash. If we can generate a clock pulse at the rate of one pulse for each dot period then we can use a shift register to generate the Morse symbol. In Fig. 38 we have a shift register loaded with a pattern of 1s and 0s to produce the A symbol. The 1 corresponding to the "dot" is set up in the last stage of the register so that it will be the first to appear at the output. If clock pulses are now applied to the shift register the pattern will move to the right and produce the required voltage outputs to produce the dot-dash of the A symbol. To accommodate all of the Morse code symbols we would need a longer shift register since the numeric codes may require up to five dashes and four spaces to make up the symbol pattern.

So far we have assumed that by some magic or other the required pattern has appeared in the shift
register ready to be clocked out. Practical shift registers often have additional logic to allow the individual stages to be loaded in parallel via a series of D input lines. In some cases there may be two clock signals, one being used to parallel load the register with the desired pattern and the other being used to shift the pattern along the register. An alternative scheme used on some devices is to have a common clock drive and use a control line to determine whether the register is being loaded or shifted.

This technique of converting signals from a parallel pattern of 1s and 0s into a serial stream of pulses is regularly used in data communication since only one line is now needed to carry the patterns of signals. Of course here we have simplified the technique to show the principle involved and in practical systems the logic used may well be more complex.

Serial-Parallel Conversion

To convert our received Morse symbol back into a parallel logic signal we can simply clock the received signal pattern through a shift register using the same clock speed as at the transmission end. As the pattern moves through the shift register the parallel pattern corresponding to the transmitted symbol will appear at the outputs of the individual stages of the shift register.

Here we run into a problem of synchronisation. In order to recover the received symbol pattern we need to know when it is properly positioned in the shift register. In radioteletype (RTTY) codes every symbol consists of the same number of 1s and 0s so that the pattern will be of a known length. In addition an extra bit called the start bit is added at the beginning of each symbol code and this is always a 0, whilst a stop bit is added at the end of each code and this is always a 1. Any spaces between symbol codes are always at 1. Now if we detect when the first start bit of a message gets to the end of the receiving shift register then the rest of the bits for that symbol will be set up in reverse order in the other stages of the register. At this point the pattern can be transferred in parallel into a parallel data register and held there whilst the next symbol pattern is being moved into the shift register. Since each symbol contains the same number of bits of data we can simply count off the clock pulses to find out when the next symbol pattern is set up in the shift register. The logic arrangement for a serial-parallel conversion system is shown in Fig. 39.

![Fig. 39: Serial-parallel conversion](image)

Typical Shift Registers

Usually shift registers are not built up from the separate flip-flop devices but come already packaged as shift registers. Typical of these is the 7495 shown in Fig. 40(a). This has four stages which can be loaded in parallel and uses two separate clocks one for shifting and one for parallel loading. The 74165 shown in Fig. 40(b) has eight stages and is designed for parallel-serial conversion. It has eight parallel inputs and a load/shift control line and uses a common clock signal for shifting or loading. The 74164 shown in Fig. 40(c) also has eight stages but is arranged for serial-parallel conversion use. Some shift registers, such as the Signetics 2533 may have 1024 stages in one package.

Timing Problems

So far in this series we have assumed that the logic states change instantaneously when a gate or flip-flop is made to switch. In practice this is not so. There is some delay between the application of the input signal and the change in state at the output. This delay is called the "propagation delay" of the circuit. It also takes some time for a signal to change from the 0 level to the 1 level and this is called the "rise time". Similarly there is a "fall time" when a signal goes from 1 to 0.

These time delays are quite short but may be very important if the logic system is to work properly. In a typical TTL gate or flip-flop, propagation delays will be of the order of tens of nanoseconds, whilst for CMOS circuits delays of perhaps a hundred or so nanoseconds might well be found. Rise and fall times are often of the same order.

Continued on page 39
Electronic Fish Feeder

This article describes a device which can be fixed to the side of an aquarium to dispense small amounts of fish food at regular intervals of time. The quantity of food supplied can be adjusted to allow for the size and the number of fish to be fed. The fish feeder is battery powered and uses a low power CMOS i.c. and will run for many months on four HP7 batteries.

The fish feeder is easy to build and should be well within the scope of most constructors. No special mechanical tools are required: a small file, a hacksaw and a hand drill will suffice.

Fish Food Dispenser

The dispenser itself is constructed from Perspex, and is driven by a model railway point motor.

It uses a novel method devised after experimenting with various other arrangements. The granulated fish food is held inside a Perspex tube by a laminate (e.g. Formica) disc with a serrated edge. To dispense fish food, the serrated disc is pulled upwards by the solenoid and then allowed to drop again. This small movement is sufficient to shake a small amount of food past the serrated edges of the disc and out of the dispenser.

Solenoid

The solenoid used is a modified Peco SL-70 point motor obtainable from railway model shops.

The motor has two coils, one of which should be removed. This can be done, quite easily, by snipping the connecting wires and untwisting the retaining lugs, The s.r.b.f. supports can then be cut and filed as in Fig. 1, and the metal fixing lugs sawn off. The steel armature is easily modified as shown. A small plastic band was cut from the outer cover of a 5A cable and positioned on the core to avoid all possibility of the armature sticking in the solenoid. To fix the serrated disc to the armature a plastic nut (to save weight) is secured to the end of the armature with epoxy adhesive. A small screw passes through the serrated disc and into the nut thus securing the disc.

Mechanical Construction

The body of the dispenser is made from a Perspex tube with an outside diameter of 36mm and an inside diameter of 32mm. It should be possible to obtain this inexpensively from most Perspex merchants. A few off-cuts of 2.5mm sheet and a piece of thin laminate are also needed, and obviously, the dimensions of the dispenser could be changed to suit locally available materials.

Fig. 1: Constructional details
Cut a 38mm length of tube and drill the holes for the support bracket components which are cut from Perspex sheet (Fig. 1). The fixing screws passes through a Perspex block made by glueing three small rectangular pieces of Perspex to the support bracket. There is no need to tap a thread for the screw; Perspex is a soft material and a steel bolt will tap its own thread through a suitably sized hole. The support bracket lugs should be carefully filed so that they fit snugly into the holes in the Perspex tube.

Cut two 32mm diameter discs from the Perspex sheet and drill as shown in Fig. 1. Make a disc from the laminate and file the serrated edge as shown in Fig. 1. There should be approximately 30 serrations, each about 1.5mm deep, and the disc should fit easily into the tube.

The dispenser can now be assembled from its component parts. The application of a little glue will help to hold the parts together, but it should be used sparingly until the dispenser has been thoroughly tested and the constructor is convinced that no adjustments will be needed.

The wire from the solenoid passes through the hole in the Perspex tube and is secured using the holes in the support bracket.

Mechanical Testing

Before proceeding with the electronics it is well worthwhile spending a few minutes testing the dispenser.

Place four HP7 batteries in the battery holder to produce a nominal 6V Supply. The feeder should be left empty and mounted vertically.

Momentarily connect the supply to the solenoid wires. The laminate disc should rise and fall. After repeating the test a few times, unscrew the serrated disc and fill the feeder with fish food (taking care not to overfill). Again, momentarily, connect the supply. This time a small amount of fish food should be dispensed. Five minutes of experimentation should convince the builder that his device will operate reliably. If the dispenser does jam, then it is a simple matter to file the offending part until the operation becomes free and reliable.

Operation

The fish feeder has only two controls. These are mounted in a plastic case together with the associated circuitry. The 'Hours' control is a potentiometer which allows the time between feeds to be varied from two and a half hours up to thirty-two hours. Obviously, the setting required will depend on the number of fish to be fed and their size. The re-set control, is used to initialise the circuitry and to provide manual operation when required.
Circuit Operation

The complete circuit diagram is shown in Fig. 2. The heart of the device is a CMOS, 4521, 24 stage, frequency divider. A block diagram of this is shown in Fig. 3. Gate A is a straightforward digital buffer, whilst gate B is an inverting buffer. Stages 1 to 24 are simply flipflops connected to form a 24 bit counter.

In operation, gates A and B are connected, as shown in Fig. 4, to form an RC oscillator whose frequency, f, is given by:

$$\frac{1}{2 \cdot 3R_c C}$$

The oscillator drives stages 1 to 24. The outputs from the last 7 of these stages are available from pins: 1, 10, 11, 13, 14 and 15 of the i.c. as shown in Fig. 6. After $2^7 = 131072$ cycles from the RC oscillator, pin 10 goes from digital low to digital high; after $2^8 = 262144$ cycles, pin 11 goes from low to high; and so on. For the fish feeder circuit, the output of pin 1 has been used. Pin 1 goes high after $2^9 = 524288$ cycles of the RC oscillator. The output of pin 1 is then used to drive the solenoid and also (after a delay) to cause a reset.

In Fig. 2, R2, VR1, C2 and R3 form the RC network of the RC oscillator. The frequency can be adjusted between 70Hz and 1kHz; depending on the setting of VR1. After the relevant amount of time (between 2-4 and 32-1 hours, depending on VR1), pin 1 goes high. This has two effects. First, Tr1 and Tr2, connected as a Darlington pair, can draw base current via R4 and hence current dows through the solenoid coil, L1, to drive the dispenser. Secondly, after a delay of about 100ms., determined by R1 and C1, a reset pulse is applied to pin 2. This causes counting to re-start and drives pin 1 low, switching off the drive to the solenoid coil.

Fig. 3: Block diagram of the CMOS 4521

Fig. 2: Complete circuit diagram

Fig. 4: Gates A and B form an RC oscillator

The dispenser can be manually operated using the reset button, and this will also re-start the counting.

A collector resistor is not used with the Darlington pair as it was found that the internal resistance of the four HP7 batteries was sufficient to limit the current. However, anyone considering using other power supplies would be well advised to include some form of current limiting. C3 was included to maintain the power for the 4521 when the batteries were effectively short circuited by the solenoid coil was found not to be needed because of its very low inductance.

The measured power consumption of the prototype varied from 60mA at the lowest frequency of operation to 67mA at the highest. The batteries should last for many months—even years on the lowest frequency setting.

The layout of the components is not critical and Fig. 5 shows a suggested layout on a piece of Vero-board.

Fig. 5: Suggested component layout

Practical Wireless, September 1978
Testing

Before proceeding, the wiring should be carefully checked. The i.c. should then be removed from its protective covering and placed in its socket. The battery holder and Veroboard can now be mounted in the case.

Connect the batteries, making sure that the polarity is correct. If a micro-ammeter is available, the supply current can be monitored and should be between 8mA and 67mA depending on the setting of VR1. If an oscilloscope is available, pin 4 of the i.c. can be monitored. There should be a square wave signal whose frequency is variable between 70Hz and 1kHz.

Pressing the re-set button should cause the dispenser to operate.

For further testing of the timing, it is possible to increase the frequency of operation by a factor of 64 by disconnecting the anode of D1 from pin 1 of the i.c. and linking it to pin 10 instead. At the fastest setting of VR1, the feeder should then operate.

Finally, the front panel of the plastic case can be appropriately labelled.

INTRODUCTION TO LOGIC
continued from page 35

If we have a very long shift register, especially where the clock is distributed to groups of stages via separate lines, we can have the state of affairs where the stage being clocked does not operate until after the stage driving it has already changed state. Now the wrong data may be set up and passed along the register because of the delayed response of one stage. This can be a major problem in systems where the output from the end of a long shift register is "recirculated" back to its input.

Master-Slave Flip-Flops

The problems with timing on a long shift register can be overcome by using a pair of flip-flops for each stage of the register. This is known as a "master-slave" combination and is shown in Fig. 41. Here the master and slave flip-flops are actuated by opposite edges of the clock pulse. As the clock pulse changes from 0 to 1 the master flip-flop takes up the state of the D input but the slave is unaffected. When the clock level falls from 1 to 0 the data from the master is transferred to the slave but the master is unaffected. Now in a long shift register using master-slave flip-flops there can be no problems with timing delays because when the masters are being clocked the slave stages feeding them with data are static and vice versa.

![Fig. 41: Master-slave flip-flop](image)

In the 74 series TTL there is a range of J-K master-slave flip-flops, such as the 7472 which is a single flip-flop or the 7473 and 7476 which are dual J-K master-slave flip-flops. Some long shift registers make use of two separate clocks to drive the master and slave stages. This gives what is referred to as a two-phase clock input and the clock signals are often labelled 01 and 02.

Letters

The Editor,
PRACTICAL WIRELESS,
Westover House,
West Quay Road, Poole,
Dorset BH15 1JG

Sir: On looking through some very old QSL cards, I came across a Membership Certificate of The British Long Distance Listeners' Club, and I wondered how many of these members are still around in an active capacity. The date of the certificate is August 31st, 1939, it was "signed" by "Thermion" who was a regular columnist of that era, adding humour to his technical dissertations. Another thing I came across was a set of BA spanners given as a "Free Gift" many years ago. It may be of interest to say that these were carried by me during my Army Service with REME as a Radio Mechanic, and very useful they proved too. Also taken, was a series of cuttings from Practical and Amateur Wireless which were later published as a Radio Engineers Pocket Book. It is now well worn and somewhat dogecared, but still used.

I ought to add that the number of the Certificate mentioned above is 6508. All this was well before the days of transistor and integrated circuits, when "Ham Radio" was really amateur equipment, very often built on the kitchen table, with improvised and homemade "bits and pieces". We sure had fun and most of all, we achieved something to be proud of!

A. C. H. Waters, G2DMT
Knowle Park
Bristol
So you want to pass the R.A.E. (Radio Amateurs’ Examination)?

John Thornton Lawrence GW3JGA & Ken McCoy GW8CMY

After the 1978 examinations, the form of the Radio Amateurs’ Examination will be changed from the old traditional script answer type to the new multiple choice “Objective Testing” type known as the “‘765, Radio Amateurs’ Examination (New Scheme)’.

Objective Testing

An Objective Test is defined as a series of questions each of which has only one pre-determined correct answer, so that subjective judgement in marking is eliminated. The RAE will be carried out using a four-option multiple choice type of objective question. In this type, a question is asked or implied, followed by four possible answers or options, only one of which is correct. The candidate is required to select the correct answer.

The questions are normally chosen to test the candidate’s “factual recall”, “comprehension” and “application”. In general, the “factual recall” question tests the candidate’s ability to remember the facts which he has been taught, and a “comprehension” question tests his understanding of what he has been taught. An “application” question, while requiring him to both know and understand what he has been taught, asks him to go further and apply his knowledge and understanding to a given problem.

An example of a “factual recall” question is given below.

Class A3J amplitude modulation uses:
a. only the upper sideband with a bandwidth of about 4kHz
b. either one of the sidebands with the carrier suppressed
c. morse telegraphy using either sideband
d. one telephony sideband with reduced carrier.

In a pre-test conducted to see how candidates would answer the question, the results were as follows:
a. 6%
b. 64% (correct answer)
c. 8%
d. 19%
O. 3% (no answer attempted)

The number of candidates choosing a particular answer is shown as a percentage of the total number of candidates.

The next example is of a “comprehension” question.

In a series-resonant circuit, to halve the resonant frequency the LC product must be:
a. halved
b. doubled
c. quadrupled
d. tripled

In a pre-test conducted with this question, the results came out rather differently.
a. 17%
b. 55%
c. 23% (correct answer)
d. 0%
O. 5%

As you can see, the majority chose answer “b”, which was unfortunately incorrect.

Since \[f = \frac{1}{2\pi\sqrt{L \times C}} \], halving the frequency would mean doubling \(\sqrt{L \times C} \) and doubling the square root of the LC product would require quadrupling the LC product itself (answer c).

Finally, an example of an “application” question dealing with Ohms law.

Fig. 1 shows the relationship between \(V \) and I in a d.c. circuit. The resistance of the circuit is:
a. 8Ω
d. 2Ω
c. 0.5Ω
d. 0.2Ω

The results of a pre-test conducted with this fairly easy question are as might be expected.
a. 8%
b. 6%
c. 83% (correct answer)
d. 2%
O. 1%

Advantages and Disadvantages

From the examiners’ point of view, there are several advantages in Objective Testing. Because it is possible to have a greater number of questions, the paper can include questions on all areas of the syllabus, whereas traditionally only a limited number of topics can be covered. Also no “choice” questions are included, so all candidates answer the same questions.

The preparation of the question paper can be more systematic in covering the syllabus and “pre-tests” can be held to estimate the degree of difficulty of each question before it is included in an examination paper. Marking is completely objective and eliminates the possible variations due to points awarded by different markers or by the same marker on different occasions.

From the candidate’s point of view, there is less emphasis on his ability to express himself in his own words, his performance depends primarily on his technical knowledge and understanding. He is not hampered by time as adequate time is available. All things being equal his paper will be marked more
accurately and impartially, and the results should be available to him sooner.

There are a number of common objections to Objective Testing, the most common being the view that someone with no knowledge can, by guessing the answers, obtain adequate marks. However, experience has shown that a rational elimination of one or more of the incorrect options is also likely and that applying a correction factor for guessing does not have a significant effect on the rank order of candidates. The policy of the City and Guilds of London Institute is, therefore, not to apply a correction for guessing.

Another objection is that candidates should be tested on their ability to express themselves in writing. In the case of the RAE this ability is not one of the essential factors, whereas knowledge and understanding are. Objective Testing is, therefore, considered suitable for this examination.

Some candidates like to see previous question papers in order to know the general standard of the questions that will be asked. At this stage it is the policy of the CGLI not to issue copies of a question paper for security reasons, although sets of sample items are available.

Of course, the setting of questions for Objective Testing requires considerable expertise. Subject experts submit questions to the Institute and these are considered by an editing panel.

If the questions are accepted they are put forward for pre-testing. The results of the pre-test are analysed and reviewed before the question is considered acceptable to be placed in the Question Bank. By the time a question is placed in the Question Bank a considerable amount of information is known about its suitability and effectiveness for a particular examination.

Objective Testing, from the Candidates point of view

The candidate will answer his multiple choice examination paper on special answer sheets using a pencil. He should attempt all questions and should find little difficulty in completing the answers in the time allotted. If he has difficulty in expressing himself but knows and understands the items in the syllabus, then this form of examination will be to his advantage. If he does not know the subject then it is highly unlikely that guessing will help him to gain marks. If he knows all the items in the syllabus reasonably well the overall result is likely to be better than knowing some items very well and some not at all, as all parts of the syllabus will be tested. There are no “choice” questions or “likely subjects”.

A personal impression of the new Objective Testing Radio Amateurs’ Examination, formed from the information available, is that the questions may be more searching but the marking will be more reliable than the conventional examination method.

New Examination Pattern

In comparing the old and new schemes, the Syllabus remains broadly the same. The old Radio Amateurs’ Examination was of three hours’ duration and the paper consisted of two sections. The new examination will consist of two separate papers, a 1-hour paper containing 35 Multiple Choice questions on Licensing Conditions and Transmitter Interference and a 1½-hour paper containing 60 Multiple Choice questions on Operating Practices, Procedures and Theory. Details are given below.

765-I-01 LICENSING CONDITIONS AND TRANSMITTER INTERFERENCE (1 HOUR) SYLLABUS QUESTIONS

- 1 Licensing conditions 25
- 2 Transmitter Interference 12
- — 35

There will be a break of 15 minutes between the two papers.

765-I-02 OPERATING PRACTICES, PROCEDURES AND THEORY (1½ HOURS) SYLLABUS QUESTIONS

- 1 Operating Practices 5
- 2 Electrical Theory 11
- 3 Semiconductors 7
- 4 Radio Receivers 9
- 5 Transmitters 8
- 6 Propagation and Aerials 14
- 7 Measurement 6
- — 60

New Syllabus

Full details of the new syllabus are given in the Institute’s booklet *765 Radio Amateurs’ Examination (Old and New Schemes)*. In addition, the booklet contains details of “Examination Objectives” which describes the nature of the examination questions. In all, the new scheme is much more specific in stating what the candidate is required to know in the various sections.

A notable new addition is the “Operating Practices and Procedures” which includes methods of accessing repeaters, use of satellites, etc., and sections on safety in the Amateur Station.

Information on operating procedures, etc., is given in the Home Office publication *How to become a Radio Amateur*, it can also be found in *A Guide to Amateur Radio* and the *Radio Communication Handbook* both published by the RSGB.

Acknowledgements

We would like to express our grateful thanks to the City and Guilds of London Institute for permission to publish various extracts from their broadsheet and sample tests relating to the Radio Amateurs’ Examination.

Our personal thanks go to Mrs Jackie Richards of the Testing Services Department of the CGLI for her helpful comments during the preparation of this article.

Further Information

Full information on the new examination is available in the booklet *765 Radio Amateurs’ Examination (Old and New Schemes)*, price 40p from the City and Guilds of London Institute, Sales Section, 76 Portland Place, London W1N 4AA. A complete set of “sample items” (questions) is also available, price 40p.

A broadsheet entitled *City and Guilds Objective Testing* is available to teachers and other interested parties, free of charge, from the above address. For teachers requiring more detailed information, a booklet *Objective Testing* is available, price 50p.
A lot of readers probably use the kitchen table as the basis of their "workshop", despite the comments from the lady of the house. Whilst this may have the advantage of convenience and nearness to the rest of the family it becomes a nuisance when mealtimes approach and one is evicted from the "bench". In fact the thought of all the aggro which is likely to come might well put you off from even starting a project.

Home Radio have produced their answer to this problem in the Electronic Workshop which they are offering in either kit form or ready built.

The basic idea is not new but this one has several novel features.

As can be seen from the photograph the basis of the Workshop is a sturdily built base equipped with four rubber feet, to prevent damage to the wife's best table, and a rubber mat on the top to provide a suitable working surface. A carrying handle, attached to the underside of the base, provides a positive stop to prevent the Workshop walking all over the table. The sides have various holes drilled in them to hold different tools such as pliers and screwdrivers.

The biggest innovation is the provision of a simple power supply and a small loudspeaker in the back panel together with a lockable storage cupboard to hold tools and components. Each end of the back panel is fitted with a 13A mains socket while the mains lead is detachable from the back.

Also contained inside the rear panel structure are three reels intended to be fitted with flexible wire and solder, with the wire being easily pulled out through holes.

The Workshop has been thoroughly tested by PW staff and found to be useful. There are several points, however, which could detract from the usefulness of the Workshop and which the average reader should be able to do something about.

Although one of the main attractions of this unit would appear to be its ability to allow the constructor to pack up quickly this tends to be nullified by the awkwardness and small capacity of the lockable storage cupboard. It would probably be of greater use if this space was used to house a simple and cheap multimeter, using a separate "toolbox" to hold and transport tools and components.

The 20V d.c. power supply is not stabilised or calibrated, so that its usefulness is rather limited. However the addition of a simple stabiliser should not prove too difficult for the user to do. In fact one could think of several additions and improvements which could be made to the Workshop such as an audio oscillator and a simple a.f. amplifier but they would all add to the overall cost of the unit, and each of us would have different opinions of what is needed.

At a price of £39 for the unwired version and £46 for the ready-to-use Workshop (+£2.06 VAT and £2.50 carriage) the Electronic Workshop provides a useful basis for a kitchen table worker, and should help to overcome any domestic objections.

Home Radio (Components) Ltd, 240 London Road, Mitcham, Surrey CR4 3HD. Tel: 01-648 8422.

Dick Ganderton
Practical Wireless, September 1978
Do you have difficulty mounting your transistors onto p.c.b.s? These mounting pads will help you to achieve that professional look to your work and help with the reliability of your finished projects.

S.W. RECEIVER FREQUENCY READOUT

The Pw 'Gillingham'

This one-chip design will enable you to keep an accurate track of the frequency your short wave receiver is tuned to regardless of the accuracy of its dial. Simple to build, it can also cover the medium wave broadcast band. The display works with any receiver having an i.f. of 460kHz or 455kHz (I.e. high) and is accurate to within 5kHz up to 29.999MHz.

Also:

2m Mosfet Converter

A high performance module, having a noise figure of 3.5dB and a gain of 26dB from the 2m input to the 10m output. A compact, well-designed unit, which is easily aligned.
The PW “Wimborne” is a complete audio system designed to combine a high standard of performance with good mechanical and electrical reliability. This integrated system comprises:
1. Stereo record/playback cassette deck with radio to tape, phono to tape, and auxiliary to tape, record facility.
2. A long wave/medium wave/f.m. stereo radio ready for all the new BBC domestic radio channels.
3. A three-speed turntable with a choice of manual or auto change types and with the option of either magnetic or ceramic cartridges.
4. A stereo amplifier capable of delivering 8 watts r.m.s. per channel into 8 ohms or 11 watts r.m.s. into 4 ohms with full treble and bass boost.
5. A professional-style cabinet featuring a wooden baseboard, pre-drilled aluminium extrusions and silk screened perspex front with matching knobs and push buttons and trim.
6. A choice of speaker enclosures.

Design Philosophy

The major consideration in the design of the PW “Wimborne” was to give the home constructor the opportunity to produce a really professional piece of equipment. The level of performance would have to equal or excel currently available mid-range music centres, while providing circuitry which could be added to at a later date to bring it into the true high fidelity class. Extensive use of readily available and well proven integrated circuits was made! Another object was to use components well below their maximum ratings to ensure reliability and a long trouble-free life.

The tuner and amplifier modules were fitted with quick-release connectors to facilitate final testing and fault finding. Flying leads were kept to a minimum to reduce a common source of failure through soldered joints being put under tension. Because the power amplifier, pre-amplifier tone controls and power supply are mounted on a common board, construction is greatly speeded up and good results are guaranteed. The alignment of the r.f. module has been reduced to a bare minimum using basic test equipment. The radio module, amplifier module and

specification

AMPLIFIER SECTION

<table>
<thead>
<tr>
<th>POWER OUTPUT: (r.m.s.)</th>
<th>2 x 8W into 8 ohms, 2 x 11W into 4 ohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL HARMONIC DISTORTION:</td>
<td>0.5% at 5W into 8 ohms</td>
</tr>
<tr>
<td>FREQUENCY RESPONSE:</td>
<td>20Hz—20kHz, —3dB</td>
</tr>
<tr>
<td>SIGNAL TO NOISE RATIO:</td>
<td>55dB</td>
</tr>
<tr>
<td>TONE CONTROLS:</td>
<td>±12dB at 100Hz; ±12dB at 10kHz</td>
</tr>
<tr>
<td>INPUT SENSITIVITY AND IMPEDANCE:</td>
<td>60mV, 470kΩ</td>
</tr>
</tbody>
</table>

TUNER SECTION

<table>
<thead>
<tr>
<th>FREQUENCY RANGES:</th>
<th>F.M. 87.5–108MHz; M.W. 530–1605kHz; L.W. 150–380kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERMEDIATE FREQUENCY:</td>
<td>F.M. 10.7MHz; A.M. 470kHz</td>
</tr>
<tr>
<td>USEABLE SENSITIVITY:</td>
<td>F.M. 2-2µV (for 26dB S/N); M.W. 350µV/m; L.W. 600µV/m (for 20dB S/N)</td>
</tr>
<tr>
<td>STEREO SEPARATION:</td>
<td>more than 35dB at 1kHz</td>
</tr>
<tr>
<td>F.M. SIGNAL TO NOISE RATIO:</td>
<td>70dB</td>
</tr>
<tr>
<td>F.M. CAPTURE RATIO:</td>
<td>4dB</td>
</tr>
<tr>
<td>F.M. FREQUENCY RESPONSE:</td>
<td>40Hz–15kHz</td>
</tr>
<tr>
<td>SELECTIVITY:</td>
<td>F.M. 26dB (400kHz) M.W. 24dB (9kHz)</td>
</tr>
</tbody>
</table>
Construction

Constructional details of the cabinet will be described this month. As can be seen from the exploded drawing, Fig. 1 and the internal photograph, Fig. 2, the cabinet is formed of two parts. The first part consists of the base board, on which are mounted the front panel and the control mounting panel, the amplifier/power supply module and mains transformer, and the tuner module and ferrite rod aerial.

Front Panel Assembly

The front panel is an aluminium extrusion, with jacks for stereo microphone inputs to the tape deck, and for stereo headphones. Control identities are silk-screened onto the panel and the perspex trim strip which is secured by means of double-sided adhesive tape.

A second aluminium extrusion, the control mounting panel, is bolted to the base board immediately behind the front panel. The four potentiometers mounted on the amplifier/power supply module are secured to the control mounting panel by their mounting bushes and nuts, thus anchoring the front end of the p.c.b. Also mounted on this panel are the perspex tuning scale with its associated pointer and drive arrangements, and lamps for scale illumination and indication of power on, plus a stereo beacon. Details of the base board are given in Fig. 3.

Cabinet Top Section

The second part of the cabinet comprises most of the woodwork. The turntable mounting board, with cut-outs suitable for gramophone turntable and cassette mechanism (see Fig. 4), is surrounded on three sides by the two side boards and the back board. These should be of veneered chipboard, suitably
Fig. 1: Exploded view of the cabinet assembly
Fig. 2: Inside view of the PW "Wimborne", with all units identified

Practical Wireless, September 1978
Fig. 3: Baseboard details, with a view of the control mounting panel and tuning drive assembly

Fig. 4: Turntable mounting board details
grooved on the inside faces to house the turntable mounting board and the three battens to which the base board will be screwed.

A black plastic moulding is available to cover the turntable mounting board. This moulding is suitable for a range of BSR single-play and autochange turntable units (deck size 303 x 286mm), but so far as the cassette mechanism is concerned only that listed in the specification will fit.

Should a constructor wish to use a different mechanism or turntable then the turntable mounting board should be veneered chipboard, instead of plain, or covered with black rexine. The cassette mechanism would need to be a drop-in, top mounting design, or some special arrangements made for a finishing trim by the constructor. The cut-outs in the board may need to be changed in these circumstances. Warning—Check that the under-board parts of any alternative units which you may wish to use will clear the other modules. There is a fair bit of room, but some designs could present problems. It might also prove necessary to move the mains transformer slightly to reduce hum pick-up.

The turntable mounting board, side and back boards and battens are all glued together. The plastic moulding is secured by using double-sided tape.

External Connections

The back board carries a small panel on which are mounted sockets for loudspeakers, a.m. and f.m. aerials, and auxiliary inputs and outputs. A securing clamp for the mains lead is also fitted. Details of the side and back boards are shown in Fig. 5, while information on the battens is inset into Fig. 3.

Loudspeakers

Constructional details of suitable loudspeaker enclosures will be given in a later article.

Cabinet Parts

The aluminium extrusions for the front panel and control mounting panel, the perspex trim strip, the plastic moulding to cover the turntable mounting board and a smoked acrylic dust cover for the whole unit (as shown in the heading photograph) will be available from Reed Hampton Ltd., 19 Church Lane, Wallington, Surrey. See their advertisement for further details.

NEXT MONTH

FULL CIRCUIT AND CONSTRUCTIONAL DETAILS OF THE AMPLIFIER AND POWER SUPPLY
Multimeter

The new light robust Pantec Minor comes complete in tough plastic case with test leads, and offers 33 separate ranges, reliable fuse protection, a.c. current to 12.5A, a.c./d.c. volts to 1.5kV and resistance to 20MΩ. Sensitivity is 20kΩ/V and the meter has a 92mm scale length with an anti-parallax mirror. Range selection is by one rotary switch with a slide switch selecting a.c., d.c. or resistance. An optional high voltage probe is available, to extend the voltage range to 30kV d.c. Priced at £28.00 plus 8% VAT the Pantec Minor is available from, Precision Instrument Laboratories, Instrument House, 212 Iderton Road, London SE16 1NT. Tel: 01-639 0155.

Cheap Cheap

Three economy priced amplifier packages can be obtained from Radio and Television Components Ltd., utilising proven Mullard modules which show savings of up to 75% in comparison with listed prices.

Package 1 consists of two LP1173 audio modules and an LP1182/2 stereo pre-amp module. Price £4.95 (normally £25.50).

Package 2 features two LP1173 modules plus an LP1184/2 pre-amp with integral magnetic pre-amp. Price £6.95 (normally £27.50).

Package 3 includes two LP1173 modules, LP1182/2 stereo pre-amp, LP1179 f.m. tuner and a 1165 A.M./F.M. i.f. strip. Price £9.95 (normally £37.00).

Check mate

A new and more versatile version of Chess Challenger, has now been introduced by Spectrum Marketing.

Comprising a chessboard and built-in keyboard, with windows to display move codes, the new Master version of Chess Challenger looks like the original version but offers many more features. Advantages for the chess buff include three levels of play: for beginners, average and better players, the board also allows the player to select offence or defence — i.e. white or black pieces.

A microprocessor 'mini-computer' is the brain of the three level Master game. At level one, the board will display its best counter move almost immediately. At level two the computer

Sipping solder

Recently introduced by BOSS Industrial Moldings Ltd. are two new desoldering tools specifically designed for removal of molten solder from both large and small p.c.b. pad areas.

Measuring only 150mm and 180mm, and having all metal bodies, both these Minor and Major BIMPUMPS develop high suction power with an anti-recoil system for efficient solder removal and have screw-in Teflon tips for long life and easy replacement.

Both BIMPUMPS are operated by priming the main plunger, and when the solder to be removed is molten, press the release button, the solder is then sucked into the Teflon tip. The unwanted slug of solder is ejected when the plunger is next primed. The Minor is priced £5.95 plus 8% VAT and the Major £6.95 plus 8% VAT. Available from, Boss Industrial Mouldings Ltd., Higgs Industrial Estate, 2 Herne Hill Road, London SE24 0AU. Tel: 01-737 2383.
examines the player's move in greater depth and responds in 11-16 seconds, while at level three it thinks even more deeply and responds in up to 34 seconds.

Other features include the ability to set up move problems and end games and, the computer never forgets a move. It can verify the position of every piece left on the board at the touch of a key at any stage during the game.

Chess Challenger is available from many different shops and stores throughout the country at £139.95 which includes V.A.T. However, if no local stockist is available, the company will supply direct by post. Spectrum Marketing, 12 The Shrubberies, George Lane, South Woodford, London E18 Tel: 01-989 2235.

KINDLY NOTE!

Active Tone Control, March 1978 page 814
The value of R13, Collector Load for Tr2, should be 10kΩ.

A.M. Receivers, August 1978: Some of the pin connections to the LM380 are incorrect. Pin 3 should read pin 6 (inverting input), pin 4 should read pin 7 (ground), pin 6 should read pin 14 (vcc), and pin 5 should read pin 8 (v out).

PW “Jubilee” Electronic Organ, September 1977
Owing to an error in the General Instruments Microelectronics data book for the year 1976 we have now been officially advised that the power supply connections to pins 8 and 14 of ICs 5 to 6 in the Jubilee organ have been reversed. Fortunately it is unlikely that any damage will have been sustained. In fact very few readers will have experienced any problem because of this transposition, but this is more as a result of luck than for any other reason. It is possible that some readers might have experienced “break up” of one or two notes because of faulty division.

Although your system may appear to be working quite satisfactorily it is not recommended that you permit this fault to go unremedied as no one can be sure what the long term effects might be on the i.c.s involved. Correction is very simple and should be carried out as follows:
1. Break the copper conductor on the underside of the board at the point marked in Fig. 1 and use a piece of tinned copper wire to make a bridge connection to the adjacent copper land.
2. On the upper side of the board remove, or cut through, link wire as shown, and using a short length of insulated wire run a connection from the hole adjacent to pin 8 of IC3 to the board pin nearest C44 of the three that are to the right of IC2.

Bovington Tank Battle Game, June 1978
It is possible that problems may be experienced with the 4MHz clock pulse oscillator. If you have difficulty in obtaining a stable picture or obtain multiple pictures of the battleground on the TV screen then the operation of the 4MHz oscillator is probably suspect. If an oscilloscope is available then the output of the oscillator can be checked at pin 4 of IC4. Gently touch the top of IC4 and observe the waveform at Pin 4. If the oscillator stops or the output changes then solder a capacitor of between 27pF and 47pF across the pins of L1. This should cure the problem enabling a stable picture to be obtained.

![Fig. 1: The area of the p.c.b. to be amended](image-url)
The CA 3130 op.amp. i.c. provides, for around £1, a performance for which one would have paid ten times as much only a few years ago.

Its high input impedance (typically 1,500,000 MΩ) and low input currents (a few tens of picoamps) make it very attractive as a buffer amplifier to a simple voltmeter, giving it a very high input impedance.

Fig. 1 shows how this can be done with the op.amp. shown connected to give a voltage gain of 1. This preserves the original calibration of the voltmeter.

However, if we want to make a self-contained instrument, rather than an add-on buffer for an existing meter, we have a slight problem. Microammeters are more readily obtainable than voltmeters. Of course we could convert the microammeter into a voltmeter by adding a series resistor. For example, to convert a 100μA meter into a voltmeter with an f.s.d. of 1V we would need a total resistance including the meter of 10kΩ.

From this we have to deduct the meter resistance. if we know it, or use a variable resistance to set the f.s.d. of the voltmeter.

Fig. 2 shows how we can define the current flowing through the microammeter. The circuit is similar to Fig. 1. The high gain of the op.amp. forces the two inputs to be at the same potential. The input voltage appears across R and the current through R is \(\frac{V_{in}}{R} \).

If we insert the microammeter at Point X, then the current through the meter will be the same as the current through R (we can neglect the op.amp. input current since it is only a few picoamps.)

If we make R 10kΩ and apply 1V to the input we get 10μA flowing through Point X and this will hold for any meter resistance.

Figs. 1 and 2 (left) Showing, respectively, an op.amp. configuration providing an overall gain of 1, and a method to quantify the microammeter current in a similar circuit; also Fig. 3: (below) The dividing arrangement and the series-connected resistors which form the attenuator

Practical Wireless, September 1978
This is the basis for a multi-range d.c. voltmeter. For a 1V range R will be 10kΩ. If R is 1kΩ f.s.d. is 0.1V. When we come to the 10V and 100V ranges we cannot just increase R to 100kΩ and hence apply 10V to the op.amp. input, as the supply rails are only ±6V and the op.amp. cannot cope with inputs greater than the supply rails. So the input must be divided by 10 or 100 as appropriate and Fig. 3a shows how this is done. The resistor values are rather inconvenient and Fig. 3b shows how the input attenuator can be built using available resistors.

components

<table>
<thead>
<tr>
<th>Resistors</th>
<th>1W 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>47kΩ</td>
<td>2 R5, R6</td>
</tr>
<tr>
<td>100kΩ</td>
<td>1 R4</td>
</tr>
<tr>
<td>1kΩ</td>
<td>1 R8</td>
</tr>
<tr>
<td>10kΩ</td>
<td>1 R7</td>
</tr>
<tr>
<td>100kΩ</td>
<td>1 R9</td>
</tr>
<tr>
<td>100kΩ</td>
<td>1 R10</td>
</tr>
<tr>
<td>100kΩ</td>
<td>1 R11</td>
</tr>
<tr>
<td>9.1kΩ</td>
<td>1 R12</td>
</tr>
<tr>
<td>9.1kΩ</td>
<td>1 R13</td>
</tr>
</tbody>
</table>

| **Potentiometers** | 50kΩ, lin. |
|--------------------| 1 VR1 |

| **Capacitors** | Ceramic 12V |
|----------------| 47pF 1 |

| **Semiconductors** | CA3130 1 |
|--------------------| IC1 |

Miscellaneous	Text 100µA 100mV (1)
-------------------	10µA switch (2)
	VS2 1
	CA3130 1 IC1
	S2a 1
	S2b 1
	Meter socket 1 Peter
	Input socket 1 Peter

Fig. 4: The main circuit diagram of the voltmeter. Note the polarity of the (dual) battery supply rails

The complete circuit is shown in Fig. 4. C1 is a compensation capacitor to prevent instability. VR1 provides the means to set the meter current to zero with no input while R4 provides protection against excessive input currents which would flow if a high voltage was applied to the input with the op.amp. supplies turned off.

Fig. 5: The practical layout on Veroboard; “break track” points are clearly shown, as are lead-outs to meter and switching points

Construction

The main components are mounted on a piece of Veroboard as shown in Fig. 5. This can be either fitted to the back of the meter or into the case. The meter, VR1, both switches and the input sockets are mounted on the front panel of the case, which can be any suitable sized plastic or metal one. The two sets of HP7 batteries are fitted into the case and the instrument is ready for use.

Finally, it is as well to point out that R1 is constructed from three 3kΩ resistors wired in series and mounted on S1. These are specialised types from Radio Resistor, but any adequate combination of close tolerance resistors would suffice.

Practical Wireless, September 1978
Part 6 (conclusion)

IN THE PRECEDING PARTS, EACH BOARD HAS BEEN TAKEN THROUGH TO THE POINT AT WHICH IT IS BASICALLY WORKING, BUT WE STILL HAVE TO PERFORM SETTING UP AND CALIBRATION.

UNTIL THIS IS DONE, THE INSTRUMENT IS NO MORE THAN A "LOOK-SEE BOX", WHEREAS WHEN CALIBRATED, THE AMPLITUDE AND PERIOD (HENCE FREQUENCY) OF REPETITIVE WAVEFORMS CAN BE READ OFF DIRECTLY FROM THE GRATICULE.

BEFORE STARTING THE SETTING UP, FINISH OFF ANY TIDYING UP STILL REMAINING, E.G. CONNECT UP THE ON/OFF SWITCH IF THIS WAS LEFT EARLIER AS SUGGESTED IN PART 2.

ALSO, PREPARE THE GRATICULE AND BEZEL IF YOU ARE MAKING THESE ITEMS YOURSELF. THE GRATICULE IS ALREADY PRINTED ACCURATELY ON THE SPECIAL FRONT PANEL OVERLAY AVAILABLE FROM THE PW EDITORIAL OFFICES.

THIS OVERLAY CAN BE USED TO PROVIDE THE LEGENDS ETC ON THE FRONT PANEL IF YOU ARE MAKING YOUR OWN CASework. IF YOU ARE USING THE READY MADE CASE BY BAZELI THEN THE ANNOTATIONS WILL BE SILK SCREENED DIRECTLY ONTO THE FRONT PANEL AND A BEZEL AND GRATICULE SUPPLIED READY MADE. THE BEZEL MAY BE FABRICATED FROM 12.5MM ALUMINIUM ANGLE, THE FOUR SIDES BEING STUCK TOGETHER AT THE CORNERS WITH AN EPOXY ADHESIVE SUCH AS ARAldite, WORKING ON A SHEET OF GRAPH PAPER TO ENSURE A SQUARE ASSEMBLY. A RUBBER BAND HOLDS IT TOGETHER WHilst THE EPOXY IS SETTING AND THEN, HAVING DRILLED THE FIXING HOLES, IT CAN BE SPRAYED MATT BLACK WITH AN AEROSOL SPRAY CAN (FROM ANY MOTOR ACCESSORY SHOP).

IN ADDITION TO THE SUPPORT FOR THE FRONT END OF THE CRT SHOWN IN FIG. 3 (THE SCREWS WHICH FIX THIS TO THE FRONT PANEL ALSO secure THE GRATICULE AND BEZEL), THE TUBE AND MUMetal SCREEN are SECURED TO THE CASE TOP MEMBER WITH HEAVY GRADE P.V.C. TAPE.

A PACKING PIECE OF SOFT WOOD AND HARDBOARD is EPOXYED TO THE CASE TOP MEMBER. THE MUMetal SCREEN IS A SIMPLE ROLLED TUBE WHICH COVERS THE NECK OF THE TUBE.

WITH THIS SIMPLE INEXPENSIVE SCREEN THERE IS ONLY A VERY SMALL AMOUNT OF TRACE DEFLECTION DUE TO THE FIELD OF THE SPECIFIED MAINS TRANSFORMER AND IT IS ONLY NOTICEABLE WHEN DISPLAYING LOW FREQUENCY WAVEFORMS WITH FREQUENCIES WHICH ARE A MULTIPLE OF 50Hz.

THE CASE DETAILS ARE SHOWN IN FIGS 1 AND 2. ENOUGH DETAILS AND DIMENSIONS ARE GIVEN TO ENABLE THOSE WHO WANT TO MAKE THEIR OWN CASework.

ONCE ALL THE MECHANICAL WORK IS COMPLETE, SETTING UP AND CALIBRATION CAN BEGIN. PLUG IN AND MAKE SURE THE TRACE IS HORIZONTAL, AS DESCRIBED IN PART 5. NEXT, ADJUST THE BALANCE CONTROL VR301 ON THE Y AMPLIFIER BOARD.

THIS CONTROL COMPENSATES FOR THE OFFSETS IN TR301, IC301 AND CIRCUIT TOLERANCES. IT IS ADJUSTED SO THAT THERE IS NO VERTICAL MOVEMENT OF THE TRACE AS THE "VARIABLE" GAIN CONTROL VR302 IS ADJUSTED (VOLTS/DIV MULTIPLIER S301 IN POSITION 4). NOW, C7-10 OF THE...
Fig. 1: Front panel drilling diagram. Hole sizes are: A 9.5mm, B 3mm, C 8.3mm, D 6mm, E 15mm, F 5mm, G 7.3mm, H 6.5mm. A transparent overlay is available from the PW Editorial Offices to fit this layout and includes an accurate photographically produced graticule. The overlay is designed to be used with the Sifam 15mm collet knobs specified in the collated parts list.

Volts/Div switch S3B (input attenuator) should be set up as follows.

Set S3 to position 2 and connect a squarewave generator, set to 10kHz, to the Y input SKT 1. Adjust C7 for a square leading edge to the waveform, without either a spike or a slow risetime. Adjust C8, 9 and 10 similarly increasing the amplitude of the input squarewave as necessary.

With a 5V-pk to pk squarewave it should prove possible to set up C10 if “Variable” gain control VR302 is set for maximum gain.

For now, C3 to 6 should be set to mid-travel; their setting up is carried out in conjunction with a 10 to 1 divider passive probe which will be described in a future article.

Next, apply a 10kHz sinewave to the input and set the controls for about 4 divisions of vertical deflection and about 5 complete cycles across the screen. Adjust VR201 (Astigmatism), and VR6 (Focus), alternately until the trace is finely focused both at the tips of the sinewave and on its flanks. As the oscilloscope supplies are fully stabilised, once VR201 has been set up it should not need adjusting again.

To set up the timebase, proceed as follows. Set S4 (Timebase), to position 4; VR3 (TB Variable), fully clockwise (Cal.) and S401 (TB Multiplier), to position

Practical Wireless, September 1978
Fig. 2: The basic case construction of the Purbeck. The production cases by Bazelli are made from steel sheet with the front panel markings silk screened.

Fig. 3: The method of fitting the c.r.t. to the front panel. The tube retaining ring is made from a suitable fruit tin cut down with two strips of tinplate soldered across as shown. The four 4BA screws pass through the bezel, graticule, front panel and the tube retainer with the nuts and washers behind the retainer strips.

Fig. 4: The various mounting brackets and spacers used to hold the p.c.b.s to the case. Two brackets type (c) are required one on each of Board 3 and 4 to hold the controls. Board 1 mounts onto the case bottom and the transformer using brackets type (a) and (d). The two p.c.b. edge connectors are mounted using a pillar at the top and a type (b) bracket at the bottom.
1. Set RV407 (X Gain), fully anti-clockwise (Cal.), and adjust VR408 so that the trace length is exactly 10 divisions. Set timebase to position 2 and connect the Cal. Output (Socket 3) to Y Input (Socket 1). Set RV408 so that exactly five complete cycles of 50Hz Cal. squarewave appear on the screen. (The Cal. waveform is not exactly square, the top and bottom being slightly arched.) At position 2 of S401 set RV405 so that exactly 2/3 cycles are displayed. 1 cycle at position 3 (RV404) and 1/2 of a cycle at position 4 (RV403).

Now connect the square wave generator to the Y input instead of the Cal. waveform. Set S401 to position 2 and adjust the frequency of the square wave to show exactly 10 cycles on the screen. Set S401 to position 5 and adjust RV402 to display exactly one cycle. If 1% capacitors have been used for C12-15, the other ranges will be correct, but 1% capacitors are both bulky and expensive. So alternatively, given enough to sort through, capacitors can be selected out from 5% or even 10% types.

In this case, having set up the 1 ms/Div. range (position 2 of S4) proceed as follows. With S401, (TB Multiplier), at position 4 (×1) set the square wave generator to give ten complete cycles on the display. Now set S4 to position 3 and check that the display shows exactly one cycle. If the display shows part of a second cycle as well, C15 is too large and another capacitor should be tried. If slightly less than one cycle is displayed, a small capacitor can be fitted in parallel as required.

WARNING

If you intend to use the Purbeck to service television sets it is imperative that you use a 1:1 mains isolating transformer to power the TV, you should not be tempted to remove the earth from the case of the Purbeck under any circumstances. To attempt to use any oscilloscope on a TV chassis, without an earth, could prove fatal as you could end up with the case of the scope being at mains potential.

Having got the 100 µs Div range correct, set the square wave generator to display ten cycles, switch S4 to position 4 and proceed as before.

In this way, all the timebase ranges can be set up, provided your squarewave generator goes up to 1MHz. If it only goes to 100kHz, the 100 ns Div range can be set thus: set S4 to position 5 (1ns/Div) and S401 to position 4 (×1). Set the square wave frequency to display exactly one cycle. Now set S4 to position 6 (100 ns/Div) and S401 to position 1 (×10), which gives the same timebase speed. Set C16 to display exactly one cycle.

The only remaining setting up is the adjustment of C309, which is set to provide the maximum bandwidth when the vertical deflection amplitude is one division.

The easiest method is to use a squarewave input and adjust for the fastest risetime which does not result in excessive overshoot—2 to 4% is normally regarded as acceptable.

However, the rise and fall times of the squarewave need to be substantially shorter than those of the oscilloscope and this is in itself a fairly tall order.

A suitable squarewave circuit is shown in Fig. 5 and this can be driven from a sine wave oscillator or signal generator at frequencies up to 10MHz, 1 V rms being a suitable drive level.

The output should be connected to the Y input of the oscilloscope by very short leads to avoid ringing. With a 3MHz squarewave applied, adjust C309 for fastest rise and fall times consistent with minimal overshoot.

This completes the setting up and calibrating of the instrument, but there are still some facilities to test. The Cal. waveform at SKT 3 has already been mentioned and now we must check sockets 4-9. First, connect a 1kHz sinewave to 3V peak to peak to SKT 4 (X Input). Set S4 to position 1 (Ext. Input) and check that a horizontal trace is obtained. (VR4, X Shift may be used to centre it). If SKT 4 is also strapped to the Y input, a sloping trace should appear, but note that VR1 (Trig Level) should be turned to one or other end of its travel to prevent the timebase circuit firing. This will prevent TR403 applying blanking pulses to the c.r.t. grid.

Alternatively the Int. Ext. Trig. switch S6 can be set to Ext. when using an external X input. The external trigger facility is in fact the next item to test. With
Fig. 5: A suitable squarewave generator used to set up the scope

S6 at Ext., connect a 1kHz sinewave of about 500 mV peak to peak to SKT 5, also to the Y input (SKT 1). Check that the display triggers normally, but that it free-runs when the sine wave is connected only to the Y input. Check also that when SKT 6 is used instead of SKT 5, triggering is also correct provided 50V peak to peak is applied. Next connect the Y input to SKT 7, the sweep output and with S6 at Ext. trigger, a sloping line should be seen on the screen. With the Y input connected to SKT 9, (Alternate Gate output), two horizontal traces appear, the distance between them corresponding to about 5·7V as the output switches from “0” to “1” on alternate sweeps.

The Gate output at SKT 8 is more difficult to check, as it sits at logical 0 during the scan and at 1 only during flyback. However, by switching to the fastest time base speed, it should be possible to see, at the left hand end of the trace, the output falling to logic 0, accompanied by some ringing.

Apart from the adjustment of C3-6 in conjunction with a probe, mentioned earlier, the oscilloscope really is now complete as far as construction, setting up and calibration are concerned.

However, before screwing it all up tight, just place the cover in position without any fixing screws and give the instrument a 2 hour soak test; it can conveniently be left displaying its own Cal waveform.

At the end of two hours, unplug from the mains, remove the cover and feel all the Stabiliser board heat sinks. They should not be too hot to touch comfortably.

If you are already used to using an oscilloscope, you will have observed that the performance of the one you now possess is very creditable by any standards. If not, you will find the PW Oscilloscope very easy to use, particularly on account of its stable triggering.

The trigger point can be set so precisely, right up to either tip of the waveform on either the positive or the negative going edge that, although line and frame sync. separator circuits are not built in, it should be simple to trigger from the line sync. pulses in a composite video waveform.

A point worth noting is that with any oscilloscope, there will be certain Y input signal frequencies for which the trigger gate opens just at the same time as the next trigger pulse arrives. The timebase may then fire on that pulse or on the next, possibly resulting in slight jitter of the trace.

If this should be experienced, it is easily prevented by slightly adjusting VR3, TB Speed Variable.

Another point worth noting is the purpose of S2, Beam Finder. When looking for very small a.c. signals riding on a much larger d.c. voltage, e.g. ripple

WARNING

Extra care must be taken when working on any part of this instrument while power is switched on. 1100 volts can kill. When delving into the insides of the scope for any reason with power on keep one hand in your pocket.
on a power supply output, it is necessary to use a.c. coupling and a sensitive setting of the Input Range switch. This results in the trace being driven off screen by the large d.c. input and owing to the 0.1 second time constant of the a.c. coupling, many seconds can elapse before the trace reappears.

In these circumstances, pushing the press-button S2 will momentarily ground the "downstream" side of CI, causing it to charge rapidly and restoring the trace to mid-screen.

These and other aspects of driving an oscilloscope are best appreciated by actually using the instrument. Once you are used to using your own 'scope you will wonder how anybody ever manages without one.

Trying to track down a malfunction in even the simplest circuit can be disheartening and downright impossible without a 'scope—it is like fumbling in the dark.

In particular, circuits can suffer from parasitic oscillations, after all even the general purpose BC 107/108/109 family of transistors universally used in a.f. circuits have an fT of 500 MHz. It only needs an unfortunate wiring run of several inches to turn an a.f. amplifier into an r.f. oscillator! The stage may still work as an a.f. amplifier, but with increased distortion. It is with problems like these, which cannot be diagnosed with an AVO, that an oscilloscope comes into its own.

Several readers have enquired about the possibilities of using alternative tubes for Purbeck. We cannot advise anyone as to the suitability of components other than those specified. Not only will the mechanical construction need alteration, but revised amplifiers and e.h.t. supplies will also be required.

This concludes the series on constructing the PW Purbeck oscilloscope. However it is intended to produce several accessories for use with this instrument and these will appear in future issues.

It is also hoped to publish an article in the next few months which will be based on readers' experiences in building the scope and also articles on using it.

As a final note, please take notice of the various warnings published with the series, they will save you a lot of heartache, money and possibly your life.

Corrections

The X and Y plate connections to the c.r.t. are as follows: X1 pin 10, X2 pin 11, Y1 pin 8, Y2 pin 7.

In Part 5 (August) Fig. 1 IC404 pins 12 and 13 should be interchanged. The wiring diagram Fig. 4 is correct.

The stabilised +150V supply should not be run off-load as R205 will overheat. Changing R205 to a 4W wire-wound type of the same value (10kΩ) will prevent possible failure if the supply is unloaded for any reason.

The transparent front panel overlay is available from the PW Editorial Offices, Westover House, West Quay Road, Poole, Dorset. Price £2.25 including p&p.

PRINTED CIRCUIT BOARDS SERVICE FOR PW PROJECTS

It has now been decided, commencing with our issue dated September 1978, to enlarge the facilities for the supply of p.c.b.s to readers by authorising additional suppliers. It is hoped that readers may benefit from being able to purchase boards as part of component kits, thereby reducing the number of separate orders for a project.

For some time, most p.c.b.s published in Practical Wireless have been available exclusively from Reader's PCB Services Ltd., P.O. Box 11, Worksop, Notts, who will continue to be a supplier and to whom we would wish to say thank you for helping us to get the service started.

Applications for permission to reproduce boards for resale must be made to the editor in writing.
It sometimes happens that an existing valved receiver has reached the end of its useful life, but it is desired to update its performance without changing the external appearance. Perhaps it may be a radiogram which is a cherished piece of furniture, or, as considered here, a specialised receiver for which it is difficult to find a replacement.

The London Sailing Project had an old valved receiver which covered the long, medium and trawler (1.6 to 3MHz) bands, operating from the boat’s 24 volt d.c. supply by means of a rotary converter. It was decided that the set should be modernised during the winter refit and I undertook to do it. It is hoped that some of the techniques may benefit others.

The original circuit was quite conventional, KTW61 r.f. stage, X65 mixer, two KTW61 i.f. amplifiers, DH63 detector and a.f., 6V6 output and 12AT7 b.f.o., the latter being a plug-in unit with an octal socket in the set to accommodate it. There did not seem any point in disturbing the coil pack and tuning arrangements, which would be necessary if bipolar transistors were to be used, so f.e.t.s were considered. The dual-gate m.o.s.f.e.t. is so very similar to a valve in its peripheral requirements that it looked like the obvious choice, and the first step was to replace the r.f. valve by an RCA 40673, retaining for the moment all the original beyond the r.f. stage. This was not an unqualified success, the stage was unstable on the long wave band; damping the coil concerned cured it, not elegant but a quick solution. Another 40673 was used to replace the hexode part of the mixer, and a 2N3819 replaced the triode oscillator. Fig. 1 shows the circuit, whose only real difference from the original was the change from 250 volts h.t. to 20, even the a.g.c. was compatible, though it was finally removed. The mixer caused no problems and so the next step was to rebuild the i.f. and a.f. stages completely, on printed circuit boards.

The IF and AF Stages

Starting from scratch, or almost so gives a wide choice of possible configurations. The first i.f. transformer was left (Fig. 2) and naturally was designed for high impedance, calling for the f.e.t. again, but only 2N3819 were available, all the dual-gate ones available being used up. Some Transfilters were also on hand and I wanted to use them since they need no tuning and do not drift. By using top-end capacitive coupling I found I could get text-book type coupled circuit response with two of them, but the 2N3819 has too much feedback capacity to allow driving the Transfilter directly, so the cascode was tried, using a BF195 as the upper element. Some a.g.c. was applied by using a common emitter BC107 as the bias element, normally in saturation. When gain is to be reduced, the BC107 is taken out of saturation, which increases the bias on the 2N3819 and applies current feedback at the same time. This allows a wide dynamic range, and the feedback reduces the likelihood of intermodulation as the gain is reduced.

The Transfilters are followed by the conventional bipolar stages with single tuned coupling, to remove the spurious responses. Only the first stage has reverse a.g.c. applied, the last i.f. stage is without a.g.c. since it has to feed the detector with a constant level signal regardless of the overall gain of the system. The two tuned circuits have a high unloaded Q, but operate at a Q of the order of 50, and are stagger-tuned to give a flat overall bandpass of ±3kHz with steep sides.
A transistor detector was tried, but the overload performance was not satisfactory, and a simple biased germanium diode with series noise limiter proved the best. Reverse a.g.c. is derived from the diode, amplified by a common base BC107 and emitter follower.

The b.f.o. injection takes place at the base of the last i.f. transistor, at a level below the a.g.c. threshold. The b.f.o. uses another Transfilter and BF195, built into an old octal valve base, and plugged into the original socket.

The a.f. output stage uses a complementary pair of germanium transistors in a conventional circuit. Volume control is by a series resistor at the input to the a.f. amplifier; this prevents reduction to zero volume, a feature required by the users of this receiver.

Muting

The set is used to keep watch on either 2182kHz (calling and distress) or one of the inter-ship channels, for long periods, and it is distracting to have to listen to noise. The co-fitted v.h.f. equipment has muting which cuts off the loudspeaker unless a signal sufficiently far above noise is coming in, and a similar facility was wanted on the m.f. receiver. On v.h.f. f.m., muting presents little problem owing to the reduction in supersonic noise when a signal is being received, but a.m. does not possess this property, and also the noise is due to unwanted external signals rather than thermal noise. The set is designed to receive a.m., not s.s.b., and there is one effect that can be exploited.

The bandwidth of the receiver is 6kHz overall, and in the absence of a carrier, post-detector noise will occupy all this. When a carrier is tuned in to the centre of the pass-band, the noise will increase (assuming no a.g.c. action yet) but it will be due to the carrier beating with 3kHz components and so be only 3kHz wide. This is the phenomenon which allows an operator to tune his set on a carrier only, by the sound of the noise.

The muting switch (Fig. 3) receives four inputs, a.g.c. voltage, detector voltage, rectified 5kHz noise and bistable voltage. The first two act to unmute the receiver, both before and after the a.g.c. threshold is reached, the third mutes the receiver when present, and the last provides a degree of backlash so that the receiver does not pop in and out as the muting threshold is reached. The fraction of a.g.c. voltage fed in determines the threshold. On trial the circuit reliably unmutes to a signal which is too noisy to read at the low threshold end of its range, so there is no possibility of missing a weak signal unintentionally, though of course it can be set to unmute at any wanted level above this.

Power Stabiliser

The boat's supply comes from twelve lead-acid cells, which are charged either from an alternator on the main engine, or by an auxiliary petrol electric set. The input voltage can vary between 22 and 30V according to whether the battery is exhausted or on charge. Since the total consumption of the modified receiver is so low, it is a practical possibility to stabilise the entire supply to it, with the exception of the dial lights (whose consumption exceeds the quiescent current of the remainder).

Two stabilised voltages are required, 20 and 12V, and operation down to 22 volts is expected, which allows little to be wasted in the higher voltage stabiliser. An unusual configuration is adopted to

Practical Wireless, September 1978
permit this, and also to reduce the ripple caused by charging from an alternator.

The series pass transistor is operated in the common emitter mode rather than the more usual emitter follower, and the reference voltage is derived from the stabilised output instead of the raw input. The dilemma of not starting until there is a reference, and not having a reference until the stabiliser has started is solved by feeding the pass transistor base from the negative line through an f.e.t. and a pnp emitter follower.

A junction f.e.t is, by definition, operating in the depletion mode and needs bias to turn it off; which bias is developed only when the fraction of the output at the base of Tr4 exceeds the reference voltage. Starting current reaches the base of Tr1 from the negative line through the 330 ohm resistor and Tr2 which is itself biased on by the current through the lower 47kΩ resistor and Tr3. Since Tr4 is not yet on there will be no current through the upper 47kΩ resistor and Tr3 will have its gate and source at the same potential. Under these conditions Tr3 conducts, although there is not yet any output voltage. However, since Tr1 is on, output voltage will be rapidly built up, until Tr4 is biased on, when negative bias will be applied between Tr3 gate and source, reducing the current through it and ultimately Tr1, until equilibrium is reached.

The 330 ohm resistor is there to limit the current through Tr2 if the output is prevented from reaching the demanded level, say by excessive load current. If it were not there, under these conditions a forward biased diode (Tr1 base-emitter diode) and a saturated transistor would be in series across the input, and this combination will pass a large indeterminate current. This resistor gives current limiting, at a

Fig. 3: Circuit diagram of the muting switch

Fig. 4: The dual stabilised power supply

Continued on page 64
P.W. WIMBOURNE
Reed Hampton Ltd. is pleased to offer the complete kit of parts for the P.W. Wimbourne Music Centre. These parts have been broken down into groups so as to build this exciting project in easy stages.

BASIC STARTER KIT
PW 1 Anodised aluminium front extrusion, ready cut and drilled and printed—£2.95.
PW 2 Rear control mounting extrusion for tuning drive, pots, and 7 way switch—£1.25.
PW 3 Template for cabinet construction—send 50p & SAE.
PW 4 Vacuum formed top moulding cut for BSR deck and cassette mechanism—£1.95.
PW 5 Complete set of sockets consists of 2 x DIN LS, 1 five pin, 1 AM aerial, 1 coaxial 75 ohm, 2 x 3.5 mm jack sockets, 6 pole stereo headphone socket and mounting bracket—£1.25.
PW 6 Tuning drive system consists of 1 pointer, drive drum, drive cord, shaft spindles, pulleys plus calibrated MW LW FM tuning scale—£1.45.
PW 7 Complete set of 5 knobs and 7 push buttons—£1.25.

Prices are inclusive of VAT add 30p postage and packing per item or total postage and packing £1 for more than one item. For complete starter kit total price only £10.95 postage included.

Send S.A.E. & 15p for complete details.

REED HAMPTON LTD.
19 CHURCH LANE, WALLINGTON, SURREY
Tel: (01) 647 0851

GIVE AWAY PRICES
MANUFACTURERS SURPLUS EQUIPMENT
STEREO POWER AMPLIFIER
25 Watts RMS per channel
£7.50
★ Class AB Operation
★ 16 Transistor Circuit
★ Unstabilised supply required
★ Tip 34A + Tip 33A Output
★ Supply Voltage 50V DC nominal
★ 30 Hz-18KHz @—1dB
★ Output 8 ohm
★ Input 50 Kohm

This power amplifier which features an advanced designed design with complementary pair of transistors in class AB push pull. Will comfortably deliver 25 watts per channel. And comes complete with heat sink.

H-Fi Preamp Special
The PR 020 is a low noise preampifier with full bass and treble cut and boost. It has four rotary controls and four specially selected transistors. It is designed to match most high quality power amplifiers.
£5.99

RF BOARD AM/FM/MULTIPLEX
3 x ICs 3089E MC 1310 3123
3 ceramic filters, meter drive
FET FRONT 3 stage FM tuning
2 Stage AM/MW - LW
LOW PASS AUDIO FILTER - BUILT IN STABILISER
Complete with 4 way switch & ferrite rod assembly
£9.99

CASH WITH ORDER
ELECTRONIC SURPLUS EQUIPMENT
1 RAILWAY HOUSE, HARDHAM CROSSING, PULBOROUGH, SUSSEX.
£1.00 Postage and packing. Order in excess of £20.00 total packing free.

Practical Wireless, September 1978
Whether it was the counter-attraction of Derby Day or the World Cup which caused the poor attendance at the recent seminar "Considerations for High Fidelity Reproduction" organised by the Society of Electronic and Radio Technicians, is debatable. What is certain is that those who did go along enjoyed a very informative and entertaining time. In fact, several said they could happily have spent the whole day listening to any one of the speakers.

James Moir, in his paper "Loudspeakers" considered that the best of today's designs are sufficiently good to make it very difficult to improve on them, though opinions differ on the most desirable sound distribution pattern. He outlined some of the problems experienced in testing loudspeakers, for instance in differentiating between inter-modulation and distortion due to Doppler effect.

Some of the relative merits of valves and transistors when used in audio amplifiers were explored by John Linsley-Hood. He commented upon the apparent preference of listeners for reproduced sound including a controlled amount of distortion, and the fact that this was more easily obtained from valved amplifiers, or from those using the "power MOSFET" devices. Considerable work remained to be done on improving feedback stability margins, as a means of enhancing an amplifier's transient performance.

John Borwick reviewed the various problems involved in obtaining faithful reproduction from the gramophone record, still the most popular medium for home enjoyment of recorded music.

In a paper on Tuners by Angus McKenzie, lavishly illustrated by tape recordings of tests on a number of commercial designs, various shortcomings in performance were explored in depth. Little comfort could be drawn from the fact that the only model which seemed capable of what could be termed good all-round performance was one currently retailing at around £600!

The final paper, on the Technology of Magnetic Tape, by Basil Lane, left us in little doubt that the tape recording field is in a mess, with the proliferation of tape types generally resulting in poorer performance (because of incompatibility between tape and machine) instead of the improvement claimed by manufacturers.

MODERNISING A VALVED RECEIVER

continued from page 62

value set by the h_{fe} of Tr1; a better limiter would be an emitter resistor for Tr1 and a base bypass diode in the conventional circuit. This was not used because it would need a higher differential between input and output voltages than permissible.

The 12 volt stabiliser uses a difference amplifier (Tr5, Tr6) and emitter follower (Tr7), with resistive current limiting, to prevent loss of transistors due to accidental short circuits.

Trials

At this point the set was tried in harbour and showed two faults; insufficient a.g.c. range to cope with transmissions from an adjacent ship, and near instability of the r.f. stage. The dual-gate transistor was at the bottom of both these troubles and it was replaced by the same cascode that was used in the

The replacement circuitry was assembled on small p.c.b.s, each fitted in place of one of the removed valve-holders

Transfilter i.f. stage, but with reduced a.g.c. voltage applied to make the r.f. stage the last to lose its gain as the signal increased. This circuit is shown in Fig. 1 in place of the dual gate. The early experiments were done with the components soldered to the pins of the octal valveholders, but p.c.b.s were later fitted as shown in the photograph.

Now the stage became completely stable without the damping resistors, the dynamic range allowed communication with adjacent ships and so modernisation ended with the set being used on the first trip of the following season.

GCA

Practical Wireless, September 1978
Silent microphone
Tape recorder buffs are doubtless aware of the problems of noise when a microphone is built into the recorder itself. This popular trend commonly employs electret microphones and the real problem is the noise generated by the recorder itself things like motor noise and vibrations.

A Japanese company believes it has the answer and is to use a new type of noise-cancelling microphone in its new models, probably starting in the Autumn of this year. Once in-house demands have been met, the microphones will probably be made available to other users.

Many cassette recorders use electret microphones whose diaphragms are some 20–25µm thick and because of this thickness noise, particularly low frequency noise, can be a great problem. Like most problems, the solution has been a compromise often achieved by keeping the amplifier turned down i.e. less sensitive and therefore not so prone to pick up the noise. However, a certain lower sensitivity limit is reached before the practical performance of the unit is degraded. This also has the effect of making the tape noisy on playback.

Using the new noise-cancelling microphone, the Japanese engineers (usually scrupulously accurate in recording details—especially technical ones!) claim that below 500Hz their new microphone has a noise reduction of at least 30dB better than the electret. The secret is the use of a new material which is extremely thin. Two 'pieces' of this are set either side of the microphone. When the low frequency noise enters the microphone housing it hits both very thin diaphragms and induces in them two equal but opposite voltages—and these, of course, cancel. The construction of the complete microphone unit (I dare not start to explain the theory and thinking behind the acoustic design) is such that the low-frequency response is extremely good. A key factor here is the capacitance of the microphone which is some sixty times larger than that of the electret. Sounds a good product.

Magnetic Liquidity
Careful, your loudspeaker's leaking. Not true at the moment but it could be so if the new units from Germany are any indication. The range includes both tweeters and woofers and all stations to Acton etc. The secret is a thing called "Magnetofluid". It is claimed that the magnetic conductivity of the space in which a loudspeaker coil vibrates can be increased by 100-times if one uses this magic jollup. The fluid itself consists of a liquid which has iron oxide particles suspended in it. Higher notes have a greater brilliance than with "ordinary" conventional speakers, according to reports. Ideal for listening to Handel's water music, no doubt.

Power station
Now that lamp dimmers have become everyday items with circuitry appearing regularly in the pages of constructional journals, it's refreshing to know that the manufacturers of things like triacs are not just standing still. The latest device of this type to hit the market should cater for almost anything. It's a silicon-controlled rectifier (s.c.r.) which can handle 3MW (three million watts); up to 2,400V at up to 2,500 amps. A right little glow worm dimmer! I was amused to read the line at the very end of the literature describing this device which gave the price per unit "...in lots of ten". Housed in a hermetically-sealed garage, no doubt.

Super 555
For the power miser's among us, keep an eye open for a new i.c. from Exar. It's named the XR-L555 and it is pin-compatible with the popular 555 timer i.c. The difference is that the new i.c. draws only one fifteenth of the power of the older chips. Another useful fact is its ability to keep timing accuracy even when the voltage applied is reduced to a mean 2–7V.

Talking chips
Using electronics to synthesise or generate plain language is something being played with in almost every corner of the world. Simple systems have started to appear but the newest one is quite something—it's a simple p.c.b. with a couple of innocent-looking i.c.s and about half-a-dozen discrete components.

The startling thing about it is that it has a 24-word vocabulary; in four languages—Arabic, English, French and German. The little module requires only two supplies (–5V and –15V), audio filter, amplifier and loudspeaker to make it operate. And the price is only around 150 American dollars.

I can visualise the harrowing scene in years to come of all these sophisticated computers, programmed for every language in the world, having a late evening chat—as they idly roast another human for supper.

Shrinking trimmers
I was interested to see the launch recently of a thing called a "Multi-function Trimmer". This is a 16-pin dual in-line i.c.-size package which houses four separate and fully adjustable potentiometers. Adjustment of exact ohmic values is done using a small-bladed screwdriver and the four adjusting slots are easily accessible from the top of the d.l.i. package.

It occurs to me that this would probably be the ideal way for electronic musical instrument enthusiasts (organs come to mind immediately) to adjust the pitch of individual notes. Four of these modules could cover the 13 notes of the scale leaving the remaining three pots for other adjustments. They could also be useful in RC circuits for things like frequency response, or timing circuits, and would take up very little space indeed. Not available on the Amateur market at the time of writing.

Ginsberg
Frank Shaw is near Penrith in Cumbria and has been a PW fan for 30 years but has only now got around to joining the RSGB, as BRS3864S, and to start listening on the amateur bands. A war-time op, Frank is not too impressed with the code of some of the lads, mainly due, in my humble opinion, to the lack of courtesy of some ops of not adjusting their sending speed to suit the other fellow, always a mark of a good op. Frank has completed a Heathkit SB305 and has a number of half-wave aerials for different bands. He expects to take the RAE next December so here's wishing you well OM.

From Godalming, Surrey, David Parker blames the column for setting him on the slippery slope to amateur radio but at the moment “A” level exams are taking up the time. Receiver is an HQ120X with a homebrew a.t.u. and 40ft of wire. David is another hoping to get a ticket following the next RAE, with enthusiasm whetted by joining his local club.

Round the Bands

John Whiting (Fareham, Hants) mentions a good find, VR6TC on Pitcairn, on 20m s.s.b., one country I sought for many years but never worked. J. Hodgson (Morpeth, Northumberland) must have been pleased with JT1AN, also 20m s.s.b., while KZ5DK on the same band is a country not heard that often. Likewise KG4FW in Guantanamo Bay on 15m s.s.b. In Herne Bay, Kent, D. Waddell is one of the few readers reporting c.w. loggings these days. For his pains he found goodie JT1KA in Mongolia, KM6BI on Midway Is. and ZK2AV in Nue Is. in the Pacific, all on 15m. A knowledge of the code gives any op a decided advantage over the s.s.b.-only types so get down to it and let us have some c.w. logs for a change! Anyone can copy s.s.b.!

Ten metres claimed the attention of Brian Harrison in Hastings, Sussex, where he logged J3AAG in Grenada, KV4KV in the Virgin Is. and 7Q7LV in Malawi, all with his AR88 and long wire. Martin Leizers of Newport is mothballing his DX160 and 250ft wire for a while, concentrating on his exams. In a last fling he copied CX5TU, HI5MAG, and ZP5EF on 40m s.s.b., J3AH Grenada, KM6FC plus W9FFC/VQ9 on Chagos Is. on 20m. Nepal in the shape of 9N1MM was collected on the 10m band.

A 2m converter has been added to the FRG-7 of J. Goodier who operates in Marple, near Stockport so hopefully some 2m logs will follow soon. In the meantime his s.s.b. log shows J3AH and the elusive VR6TC on Pitcairn. Dick Smith found 5SJO, ostensibly from Bhutan, from his shack in Porthcawl, Glam., which is indeed a rare one for the records.

As the time for the 1979 World Administrative Radio Conference in Geneva approaches there is bound to be an increasing amount of rumour and speculation on the likely outcome of the conference as far as the amateurs are concerned.

Already I have had letters on the matter, mostly quoting second or third-hand information heard on the bands, but which, if repeated often enough, starts to become “authoritative”. As with previous conferences of this nature the only sensible approach is to ignore all stories and rumours.

Most national telecommunication authorities will be submitting their own proposals to the conference and some of these may not favour amateur radio. Some will ask for additional bands and facilities on the principle that there is no harm in asking. It is important to remember that the amateur bands are only one comparatively small part of the frequency spectrum to be considered by the conference.

As long ago as October 1976 the International Amateur Radio Union (formed of virtually every national amateur radio society in the world) circulated agreed proposals for the conference to every member society. As these proposals included additional allocations at 10-1, 18-1 and 24MHz, plus another from 160 to 200kHz in Regions 2 and 3, these may well have been the reason for the speculation encountered on the air.

Let us leave it to our own RSGB to keep us in touch with events and subsequent decisions, mainly through GB2RS and Radio Communication.

Newcomers to the Column

Regular reader John Williams of Braintree, Essex has at last made himself known to us. He took the RAE in May and is all a treble waiting for postman with that lovely bit of paper that says “pass!” He intends to go ahead with the code test for his G4 ticket after a period with his G8. For the time being he is the lucky owner of a 75A1 receiver, with a short wire aerial.

Practical Wireless, September 1978
U.K. RETURN OF POST MAIL-ORDER SERVICE ALSO WORLD WIDE EXPORT SERVICE
R.C.S. 100 watt MIXER/AMPLIFIER ALL VALVE
Post £11.00

R.C.S. 100 watt MIXER/AMPLIFIER ALL VALVE
Post £11.00

R.C.S. MINI MODULE KIT
15x8x14"3-way Loudspeaker System EM11, Bass, Middle & Tweeter Units with 3-way Crossover & Ready Cut Baffle. Full assembly instructions supplied. Respond 60 to 20 000 C.P.S. 12 watt RMS. 8 ohm. £10.95 per kit. Two kits £20. Postage 75p.

TEAK VENEER HI-FI SPEAKER CABINETS
MODEL "A" 8 x 13 x 18. For 12in. 8 ohm. £4.50 Post £1.95
MODEL "B" 50W BOOK 8 x 13 x 18. For 2 x 8 ohm. £8.50 Post £4.50
MODEL "C" BOOKSHELF 12in. 8 x 13 x 18. £11.50 Post £6.50
LOUDSPEAKER CABINET WADDINGTON 14in. 8 x 13 x 20. £9.75

GOODMANS CONE TWEETER
1/2 in. dia. 10,000 ohms £2.50
12 x 90w GOODMANS woefer 4 ohm £1.95
KLAF TWEETER 4 ohm £2.50

SABIAN 3 CHANNEL TRANSFORMER MIXER JUST ARRIVED
Multi-function mixing unit will mix Microphone, records, tape and turntable output to 3 separate output channels. 230/12v. £6.75

TWO CHANNEL STEREO VERISON OF ABOVE £3.50

BASSWOOD CABINETS
2 ohm. 7 x 19 x 12. £9.95
2 ohm. 8 x 19 x 12. £10.95
18 ohm. 7 x 19 x 12. £8.95
18 ohm. 8 x 19 x 12. £9.95
MATERIALS 3-5-5. £5.50

THE "EXPAT" BULK TAPE TAPEER & HEAD CLEANER
Includes plastic handle. £4.50

A.C. ELECTRIC MACHINES
2 Poles, 50V, 250V, 6.5 x 1.5 x 12. £6.50
2 Poles, 50V, 250V, 7.5 x 1.5 x 12. £7.50
3 Poles, 50V, 250V, 6.5 x 1.5 x 12. £8.50
3 Poles, 50V, 250V, 7.5 x 1.5 x 12. £9.50

BLAKE ALUMINIUM SPEAKER 15 x 8 x 3.1/2 in. £3.60
6 in. £4.60
8 in. £5.60
10 in. £6.60
12 in. £7.60
14 in. £8.60
15 in. £8.95
18 in. £10.95
20 in. £12.95

ALUMINIUM PANELS 12 x 12 x 1.5 in. £2.50
12 x 12 x 2 in. £3.50
12 x 12 x 3 in. £5.50
12 x 12 x 4 in. £6.50
12 x 12 x 5 in. £7.50
12 x 12 x 6 in. £8.50
12 x 12 x 7 in. £9.50
12 x 12 x 8 in. £11.50
12 x 12 x 9 in. £13.50
12 x 12 x 10 in. £15.50

ALUMINIUM BOXES MANY SIZES IN STOCK
4 x 2 x 2 in. 36p
6 x 3 x 2 in. 60p
6 x 3 x 3 in. 90p
6 x 3 x 4 in. 1.20
6 x 3 x 5 in. 1.50
6 x 3 x 6 in. 1.80

DE LUXE BSR HI-FI AUTOCHANGER
Play 12in. 10in. or 7in. records Auto or Manual. A high quality unit made to exacting standards. Will play 10 inch records. A.C. or D.C. £50.00
Above motor driven. £40.00

WITH MAGNETIC STEREO CARTRIDGE
Cordless Device, Bias Compensator, Broadband Arm. All Post 70p

NEW DEVICES
BBS MF50/100 with Goldring 800 0.003 magnetic cartridge. £3.50
BBS Dutch Autochanger with cartridge. £4.50
Gardner AP8. Spherical arm. Line follow. £2.25
Pilz Bel drive Turntable, £1.25
Garrett S500 Cartridge, £2.00
Garrett Music changer. Plays all sizes records. £2.50

R.C.S. TEAK BOOKSHELF SPEAKERS
12 x 10 x 4 in. 60, 100 and 1400 watt models £19.00
15 x 10 x 4 in. £23.75

R.C.S. TALK BROADCAST SPEAKERS
12 x 10 x 4 in. £45.00
357 WHITEHORSE ROAD, CROYDON
Open 9-6 Wed.-Sat. 9-5. (Closed for lunch 1.15-2.30) H.P. available. Phone your order Tel: 01-484 1645

RADIO COMPONENT SPECIALISTS

Baker Major 12" £16.98
50-14,000. £9.50. 200 watt mono, tweeter and power transformer. With a BAKER 150 watt mono. £25.95. $100 power transformers having a flux density of 16,000 gauss at a total flux of 300,000 in the core. Use these flux density do's not rated watts. Note: 4 or 8 or 16 ohm must be stated.

Major Module Kit 20-17,000 c/s with tweeter, crossover. 8 in. x 10 in. Please state 4 or 8 or 16 ohm. £21.38

Baker Discoh Speakers
High Quality—British Made
2 x 12" CABINETS
80W.R.M.S. £56
With one horn £66
With two horns £74

100 WATTS R.M.S. £60
With one horn £90
With two horns £106

100 WATTS R.M.S. £75
With one horn £109
With two horns £125

SINGLE 12inch CABS COMPLETE
30 WATTS R.M.S. £32. WITH HORN £40.
40 WATTS R.M.S. £47, WITH HORN £58.
60 WATTS R.M.S. £61. WITH HORN £69.

CASS £3 EA.

"SUPERB HI-FI"

12in. 25 watts
A high quality loudspeaker, its remarkable low cone resonance maximizes the reproduction of the deepest bass. Fitted with a special copper drive and concentric tweeter cone resulting in full range response, with remarkable resonance efficiency in the upper registers.

Bass Resonance 30-17,000 CPS. £24.75
12in. 35 watts
A full range performer for high power. Ideal for Hi-Fi and Discotheques. Electric Guitar applications, multi-speaker systems, electric organs.

Bass Resonance 40-17,000 CpS. £23.60
15in. 45 watts
A high wattage loudspeaker of exceptional quality with a level response to above 8,000 Cps. Ideal for Public Address, Discotheques, Electronic instruments and the home HIFI. £29.25

£29.25

"AUDITORIUM"
15in. 45 watts
A high wattage loudspeaker of exceptional quality with a level response to above 8,000 Cps. Ideal for Public Address, Discotheques, Electronic instruments and the home HIFI. £29.25

£29.25

E.M.I. 13½-8in SPEAKER SALE!
With tweeter. And crossover. £7.95
11W. State 2 or 8 ohm. £9.95

15W model £10.50
8 ohm £7.95

GOODMANS 20W Woofer
18 in. 1000 watts. £9.95
Radiator surround. £9.95

www.americanradiohistory.com
Let's hope he turns out to be OK but don't be disappointed Dick if he doesn’t! The FRG-7 of Bernard Hughes BR25901 must have jumped up and down when he caught VR6O on Tavalu in the Ellis Is. plus another rarity PY00D in Fernando De Noronha off the coast of Brazil, on 20m s.s.b. After a long wait QSLs from P29FV, 7J1RL and VP8JV have arrived for Bernard.

FG0GD/FS7 and FH6CY (Comoros Is.) were found on c.w. by Ian Marquis A9140 in Leigh-on-Sea, Essex, while pottering around 10m, while PY0CA on St. Paul Rock on 50m s.s.b. is no mean catch. Bill Rendell of Truro, Cornwall has been concentrating on island stations on the theory that if the island is pretty small there can't be too many amateurs there! His valved Heathkit AR5 and pre-selector found J3AH on Grenada, KC4AAC Anvers Is. in the Antarctic, VK9YL on Coco-Kee-ling Is. and VP2VJ on Tortilla, all on 15m s.s.b., to name but a few.

General Notes

Bob Bell in Blyth, Northumberland, is one of a number of readers who comment on the fixed i.f. bandwidth of the FRG-7 and wonders if he can do anything about it. Well, I certainly would not dive inside and start fiddling about with it. Other than selling it and getting something else the only answer is to fit a selective audio filter of some kind between the set and the phones, for use on c.w. This leaves a compromise between s.s.b. and a.m. and, if I had to, I'd fit a good crystal or mechanical filter in the first i.f. stage and let a.m. take care of itself.

Long time reader of F.W. Len Adlard, 24 Clemants Avenue, Leigh-on-Sea, Essex, appeals for any info or manual on the ex-R.A.F. receiver 1392/D. Any costs will be willingly reimbursed and material returned immediately. A reader in Reading, Berks, has an old R1155 receiver he'd like to give to a young listener who could tidy it up a bit. Drop me a line only if you can collect. S. M. Turner BR57620 of Wilmslow in Cheshire has wound himself a helix aerial on a 2in cardboard tube about 24in long. There is 25ft of wire in each half, the centres being taken to an a.t.u. It stands by itself and he compares it favourably with his wire aerials. I suggest that is because it is vertical and provides better pick-up of low angle DX signals.

Brian Smith writes from Barry, Glam. with an interesting experience. He works for British Rail and on boarding one of the engines in the yard noticed that the driver had a copy of Short Wave Magazine in his bag! He turned out to be GW3HDH. Brian has since joined the BR ARS and wonders if there are any other BR types that would like to have info on the Society. If so, write to Brian at 15 Courtenay Road, Barry, Glam. A BR net operates on Sundays, 1000hrs on 3730kHz.

Around the Clubs

Newbury and District ARS meet on second Tuesday of the month at the College of Further Education so be there at 1900hrs. Further info from Alan Wood G4EEE, 9 Hillcrest, Tadley, Basingstoke or ring him on Newbury 45301.

Don't forget the Derby and District ARS Annual Mobile Rally on Aug 13th from noon onwards at the Lower Bemrose School, Littleover, with talk-in on 2m and 70cm. Normal meetings every Wednesday at 1930hrs at 119 Green Lane, Derby. Hon. Sec. is now Jenny Shardlow G4EYM, 19 Portread Drive, Darley Abbey, Derby and I'm sure you'll be only too happy to drop her a line for further info.

The Wessex AR Group hope to run GB3WKF to demonstrate amateur radio at the Wirrminske Hobbies Fair on Saturday August 5th to the Monday inc. Hopefully, RTTY will be on show as well as v.h.f. and h.f. stations. Details from Sec. Geoff Cole G4EMN, 6 St. Anthonys Road, Bournemouth.

Cheltenham AR Assoc. include Morse instruction and a TVI clinic among their multifarious activities. The latter must be a Godsend and could well be copied by other societies. Info on the club's activities from Garth Martin, 88 Tenenon Road, Cheltenham.

Log Extracts

B. Smith:—80m PY2XRA ZL4KF 20m H18CAR TJ1BB 10m LU4MAO ZE6JS
S. Turner:—20m KG6JHU WA4YVG/VQ9 (Chagos Is.)

W. Rendell:—20m FG7TD FM7AQ VE8RCS VK7AE YA2JV 15m C5ABK CP6HI FY7BC HH2PW HK0JW I1PSI J3AH KC4AAC TR6ACQ VK9YL VP2MAD VP2VJ YA1AJD D. Greenhalgh:—20m C5AA AR3BX FR7BU VP2CDF VR8EH 15m CT2HA PJ2AAX I. Marquis:—20m D4CBS (Cape Verde Is.) HB0XXA PJ2AAX PY0CA (St. Paul Rocks) 40m HH2T PJ2AAX 8P6GO 20m FR7BE KM6FC VK9YS (Cocos Keeling) WA4YVG/VQ9 (Chagos) YI1BGG 15m KG4AG VS5UX ZD7JV ZK1DR 10m C6ANX FG0GD/FS7 FI68C YF8MC

B. Hughes:—20m HH2A TR8LE VP2LFF VP2SQ VR8O PY00D (Fernando De Noronha) 15m CP8CB HC2HX ZK1DR 10m HK4CCX J3AH TR8MC VP8PC YB0GP ZK1DR R. B. Smith:—CT3AB LU2VE 20m A5JO CO2FRC ZF1MA J. Goodier:—20m HK1WL J3AH YB5BBH 15m FY7YF HH5XX 10m FY6SL VP6HA M. Liezers:—40m CX7TU HI5MAG ZP5EF 20m ATXAH (Qatar) FG7TD HL9UD J3AH K6HFC TA1MB VP2SQ WD9FCC/VQ9 15m FR7BE 9N1MM L. R. Harrison:—20m C31MK VP2KT 15m P29NPZ (New Guinea) YB3AE 10m EA8QY J3AH KV4KV 7Q7LW (G3SU)

D. Waddell:—15m C5AA RP7GM J3AH JT1KAA KH6DL KM6BI K8SJY ZK1DR ZK2AV K7BF1/5W1 6W8FA 8RJ 10m FG0GD/FS7 LI1CA J. Hodgson:—40m CO2DC 20m JT1AN KZ5DK YS2RVE 15m KG4FW 8R1Q J. Whiting:—20m VP2KT VR6TC 15m JR6RC 6W8GT VP2KT FP6AEZ D. Parker:—20m VK9KE VK8AE All s.s.b. except those in bold which are c.w.
Why not cover some Long Wave DX asks Peter Sommer (London) who goes on to say that Cambridge Kits do a converter that allows you to use 3.5 to 4.0MHz as a tuneable i.f. and that the results when used with an FRG-7 are pretty good. Well, the long waves are covered in this column and occasionally logs of DX on this band are received from readers. The snag of course is that many receivers, other than domestic types, do not cover the band. Incidentally, the current Cambridge converter, as advertised in PW converts the range 100 to 600kHz into 4.1 to 4.6MHz.

Loops

Can a loop be any shape, is a question often asked and the answer is yes, provided that it is symmetrical. The original ship-borne loop was, and still is circular which is not easy for the DXer to construct. A diamond shape is convenient when winding a spiral loop where each turn is smaller than the previous one and two pieces of wood, one vertical and the other horizontal can be used as a support. A triangle has been tried to save space but the usual shape is a square or rectangle. An irregular figure such as the trapezoid, often quoted in school textbooks (I knew that information would be of value some day!) will not do, as there will be a residual signal when there should be a null. (In fact the very first ship-borne loops were triangles of wire, with the apex hung from a stay—Ed.).

Peter Sommer asks for my reaction to f.e.t. loop amplifiers. These are intended to isolate the loop from the receiver rather than to provide additional gain. The coupling between the main and link windings must be tight in order to transfer the maximum amount of signal. This means that the input impedance of the receiver can be reflected into the loop and consequently affect the tuning range and the directional pattern of the loop. The latter would affect the accuracy of any bearings taken with the loop should the DXer want to use his loop for this purpose. The loading of an f.e.t. pre-amp is negligible and as a result it can be connected directly to the main winding and the coupling winding can then be removed or ignored. I have a balanced f.e.t. pre-amp, though I seldom use it as I find the ordinary loop performs satisfactorily when used with receivers such as the CR100, Marconi Mercury and BR7400.

So far as I know, no experimenting has been done by DXers with differing degrees of coupling on the standard loop and this might be an interesting field for the experimenter. The standard 40in loop has a single turn coupler wound beside the 4th turn of the main winding. To increase coupling, try winding 2 or 3 turns instead of a single turn. To decrease coupling either wind the coupler on a separate frame and vary the spacing between the two or, wind a smaller single turn concentric with the main ones.

Ramadan

This year Ramadan starts on August 5th and finishes on September 4th. Its relevance to DXing is that during this period many Arabic-speaking stations are on extended schedule. Some indeed remain on the air all night. Normally, as a result of differing time zones to the east, Middle East stations sign off between 2000 and 2100 which is too early to benefit from the reduction in European QRM that occurs around 2300. Consequently the DXer has to try to catch this type of DX at signing-on time which occurs in the early hours from 0300 onwards. During Ramadan the position is changed and the easier stations from this part of the world, such as Morocco, Algeria, Tunisia, Libya and Egypt will become prominent. Much of the real DX though will now become a bit easier or even possible such as Afghanistan with Kabul on 1280kHz; Iraq with Baghdad on 760 and Babylon on 1055; Jordan with Amman on 800; Lebanon with Beirut on 836; Saudi Arabia with Riyadh 587 and Syria with Homs on 586. This is only a selection and DXers should consult the World Radio and TV Handbook for further possible DX.

Practical Wireless, September 1978
Receivers

A cry for help from W. G. Rooks of Tredegar who has recently purchased a CR100 and wants a copy of the service manual, highlights a problem encountered by many DXers who presumably want to do their own repairs should the occasion arise. It is not a good idea, as pointed out recently by Eric Dowdeswell, to tamper with a receiver that is under guarantee, nor is it sensible to poke around in a mains receiver without some knowledge of how it works. Many DXers though are able to do their own repairs or even to carry out "improvements", and with the older type of ex-WD receiver this may be the only feasible way of getting it to work. A stamped addressed envelope to Brooks, 5 Farrant House, Winstanley Road, London SW11 2EJ will bring a list of reprints of the manuals of many receivers including most ex-WD types.

Logs and News

An Astrad receiver and long wire antenna launched John Cook into medium wave DXing when after reading PW he managed to pick up WINS on 1010kHz. Since then he has changed to a Grundig Satellit 2000 and m.w. loop. His best catches to date are WOR on 710 and WCBS on 880 both in New York, CJCH Halifax on 920, CFRB Toronto on 1010 and CHUM also in Toronto on 1050. A QSL card from CHUM is on the front cover of last month's PW. All were heard between midnight and 0200. Although the winter season is still some distance away it is possible to hear all of these stations at this time of year between 0200 and sunrise. Radio Sweden is currently using 1178kHz between 1530 and midnight daily to relay its international service and this is expected to continue until the end of September. Programmes in English are at 1600, 1830, 2100 and 2300.

SHORT WAVE BROADCASTS

by Charles Molloy G8BUS

The recent comments in this column concerning the SINFO and SIO reporting codes prompted Bill Iball, who lives near Wigan, to reply. Bill thinks that the SIO code is useful to give yourself some indication of reception conditions but the full SINFO code ought to be used when reporting to a station and he refers to the old amateur maxim that a report should be as comprehensive as possible.

Reporting to Broadcast Stations

It is really a question of tailoring the report to the particular circumstances, since the type that would be welcomed by a radio amateur could well be inappropriate when writing to some broadcasting stations.

A low power local station on the tropical bands may well be interested in learning that his signal has been picked up far outside the service area but this information is unlikely to be of any value to him. What the DXer has to do here is to convince the station that he really did hear it and to do so he must give a comprehensive report on the programme rather than on reception conditions.

International Broadcasters know that they can be heard in their target area. What they require is a continuous picture of reception so that they can change to different frequencies or bands as required, and many of them ask DXers to become reception monitors and to supply regular reports on reception. To finish off a very interesting letter Bill says that much of the fun in DXing is when reception is poor, a sentiment that I fully endorse.

Bandspreading

Some receivers are fitted with bandspread, the two types in use being electrical and mechanical bandspread. The Realistic DX160 for example has electrical bandspread. There are two tuning scales and pointers. The pointer on the main scale is set to a marker point and the bandspread scale then presents a blown-up or magnified portion of the main scale. Tuning is then done by the bandspread control, when it is as easy to tune round say the 49m band as it is to tune round the medium waves on the main scale. Accuracy depends on setting the main pointer correctly, which can be done with the aid of a calibrator or alternatively the bandspread pointer can be set on a known station which is then tuned in by the main scale control which will then be set accurately.

Mechanical Bandspread

I prefer mechanical bandspread, as used on my BRT400 and Eddystone EC10. The main dial on the BRT400 has a scale marked 0 to 30. In addition there is a small window with a scale marked 0 to 100. The pointer on the main scale moves from 0 to 1 as the other scale completes one revolution from 0 to 100. By this means any band is divided into 3000 scale points. To be accurate the bandspread scale must be linked to the spindle of the tuning capacitor without backlash. I keep a logbook which has a "bandspread reading" column. If I want to listen to Radio Australia on 21570kHz I set the bandspread to 1269 (from the logbook), switch on the receiver and if reception is favourable, the station is there. With the aid of my crystal calibrator I have made up a table of bandspread readings against frequency at 50kHz intervals for the main s.w. bands. Using this table I can set the receiver accurately on 50kHz points up to 26MHz on the 11m band. In between these 50kHz points, frequencies can be estimated using bandspread readings as an aid, or by using the calibrator set to 10kHz markers.

Mechanical bandspread can be fitted to most receivers provided that backlash is not serious. Paste a strip of paper onto the glass cover of the main dial, clear of other marks behind it. Cut an annular strip of paper and stick it to the receiver around the main tuning knob. Start with the pointer at the low frequency end of the main scale and mark this 0 on the paper strip. Put a spot of paint on the rim of the tuning knob and mark another 0 this time on the annular scale opposite the paint spot. Rotate the knob and put
marks on the annular scale at equal intervals so that it is marked from 0 to 9. When the knob reaches 0 again, mark a 1 on the paper scale in line with the pointer and carry on across the entire scale. If it takes 7 turns of the knob to cover the scale then you will have 70 calibration points and it should be possible to increase this number by marking additional points on the annular scale. This may seem a very makeshift method but it does work. It is interesting to note that some versions of the famous wartime R1155 receiver had a bandspread system which worked on the same principle.

Some years ago I had the pleasure of meeting Arthur T. Cushen, the well-known blind DXer from New Zealand. I asked Arthur how he managed to find his way around the short wave bands and he explained that he used medium wave stations as reference points where the pointer covered a m.w. station and one of the short wave bands at the same time. It was then a matter of bandswitching and the appropriate band could be found in a matter of seconds. By counting the number of turns and fractions of a turn of the tuning knob and consulting a list of stations in Braille, Arthur could then find his way around that band without difficulty! Those of us who are not so physically handicapped have very little excuse for not doing at least as well. Arthur is a regular broadcaster and he can be heard over Radio Nederland on the first Thursday of each month in the DX Juke Box programme.

11 Metre Band

The current situation on this band, gleaned from a number of sources is:— 25605kHz IBA Jerusalem; 25630 RFI Paris; 25690 Radio Liberty; 25720 BBC (carrier heard); 25790 Radio RSA (testing); 26040 Voice of America. Harold Brodribb of St Leonards-on-Sea supplied the information on Radio Liberty, which comes in at my QTH in the early afternoon at good strength with programming in Russian.

Logs and News

Ron Proudfoot (Newcastle-on-Tyne), who is a regular reader of PW, purchased an FRG-7 about a year ago which he has been using with a 30ft vertical aerial. Best DX to date is Voice of Kenya on 4804kHz between 1850 and sign-off at 2006, Kampala Uganda on 5026 at 1900, Radio Reloj Continentale Caracas Venezuela on 5030kHz at 0500 (sign-off at 0500) and KGEI San Francisco on 9615 at 0630 until it was swamped by UN Radio at 0635. Roy mentions hearing American style news in s.s.b. on 5230kHz which may be a point-to-point transmission, probably a feed to be retransmitted on a broadcast channel. Chris Howles (Lichfield) used a Vega 206 and 75ft long wire to pull in ELWA Liberia on 4770 at 2000, Radio Senegal 4890 in French at 0600, Radio N'djamena Chad on 4904-5 at 0430, Radio Colosal Colombia 4945 at 0630, Radio Rumbos Venezuela 4970 at 0600 and the CBC Northern Service 9605 at 2300. Steve Price (Doncaster) does not regard himself as a DXer as he only possesses a domestic portable but he enjoys listening to overseas stations and to DX programmes. He mentions the Voice of Turkey DX Corner on 9515kHz in the 31m band which can be heard every night. You don’t need an expensive receiver to be a DXer Steve — keep tuning.

Practical Wireless, September 1978

by Ron Ham BRS15744

I never expected to use the famous name of Muhammed Ali in my v.h.f. column, but there he was, full of life, on Ch.R1 on my DXTV monitor, at 1824 on June 13th, during his visit to Moscow. This is just one of the many interesting events which occurred in the early part of the 1978 sporadic-E season.

Sporadic-E

“The sporadic-E season has arrived with a vengeance” says Frank Luman, Glasgow, who, like myself, has been watching European and Russian television on several occasions. The frequencies most influenced by sporadic-E are 40-80MHz, which is why very strong signals are received in the UK from a host of east-European broadcast stations between 65-75MHz, often rendering the 4m amateur band unusable while the event lasts.

Sporadic-E disturbances occurred on 15 days between May 26th and June 19th, mainly during the afternoons and early evenings but sometimes around 0830. The most intense disturbance occurred on June 3rd and 4th, when signals were affected up to 146MHz. At 1640 on the 3rd, I counted dozens of Continental broadcast, radio-telephone and TV stations between 40 and 75MHz.

“June 3rd was a real sporadic-E event in GM” writes John Branegan, GM8OXQ, Saline, Fife, “I heard French and east-European f.m. up to 105MHz at 1702, and one GM had a QSO with an Italian on 2m”. The range 40-75MHz was still disturbed at 2145, very late for sporadic-E, and at 0600 on the 4th, frequent bursts of sync pulses were heard on Ch.R1, 49-75MHz. Later, at 1700, Roy Bannister, G4FX, Lanc, Yorke, worked YU2CCY on 15m and learnt that UK TV pictures were being received in Yugoslavia on v.h.f. At 1800 Roy heard strong signals from Bulgaria and Yugoslavia on 2m.

Around this time a multitude of f.m. broadcast signals were pounding in between 65-75MHz and, like Frank Luman, I received pictures on Ch.R1 from Poland. At 1720, Frank, using his S36-A, received the Russian, Ch.R3 sync pulses, 77-25MHz, and the sound channel, 83-75MHz and realising that the disturbance was moving higher, he tried his stereo receiver and found Russian Ch.R5 sync, 95-25MHz, and the sound on 99-75MHz. Barry Knight, also in Glasgow, was already receiving this signal using a Pioneer SX450 with only a ribbon dipole. Frank heard a station from Yugoslavia on 98-9MHz followed by Italians on 97-1, 96, and 99-5MHz between 1920 and 1955. Band II went “dead” from 2100 until 2250 then 18 stations from Norway and Sweden were heard”. The crowning glory for Frank came at 2300 when he watched a fishing programme on Ch.E4 from Iceland.

A typical example of the deep QSB, a feature of sporadic-E, came at 1320 on June 7th when strong pictures from Czechoslovakia CST-1, Hungary, MTV-1
Budapest, and Austria ORF-FS1 were changing places with each other on Ch.R1 every few minutes. At 0844 on the 14th I received a strong picture from NRK, Norway and at 1644 on the 16th a good picture from RTVE, Cadena, Spain. All with a vertical dipole feeding my JVC 3060 MK-II receiver.

Introduction to V.H.F.

For some time Ian Rennison, Horsham, Sussex, has been a Medium Wave DXer and a contributor to Charles Molloy's column so, imagine Ian's surprise when at 1120 on June 8th he was tuning around his newly acquired Aiwa AF5080A stereo v.h.f. receiver when he heard "Stereo 96", an AFRTS station on 96·9MHz in southern Spain. Between 1030 and noon, with only a temporary ribbon aerial, Ian heard 14 Spanish speaking stations, including "Radio Popular Almeria" on 97·2MHz. The American voice on the AFRTS station was also heard by Peter Penfold, West Chiltoning, Sussex.

Solar Activity

A period of solar activity began on May 26th with a few small bursts of radio noise at 136MHz and a mild noise storm which turned severe on the 27th. Both Cmdr Henry Hatfield, Sevenoaks, and myself recorded several small bursts of noise on the 28th, 29th and 30th, the largest being a 4 minute duration burst at 1511 on the 28th. The period ended on the 31st with a very large burst, associated with a flare, which began at 1145 and lasted for several hours. Solar noise storms were also recorded on May 18th and June 2nd and a few individual bursts on June 3rd, 4th, and 9th.

The 10 Metre Band

John Branegan, Harold Goble, G4FDQ, Lancing, Alan Baker, G4GNX, Newhaven, Sussex, and myself noted that 10m has been "flat" compared with previous months. Harold, using a KW2000A into a 66ft end-fed aerial with a KW EZEE Match a.t.u. observed short skip conditions on June 4th and 7th and 13th when he worked DK, HB9O, an exhibition station, IO OE, ON, OZ, PA0 and ZS5. On May 21st he was in contact with G4FE in nearby Worthing when, at 1900, they were called by ZD7PV and had, like locals, a three-way QSO. On June 3rd, Harold had a "quickie" with G4AGZ in Cornwall who is studying 10m propagation and would appreciate reports. QTHR.

I heard the beacons 5B4CY and ZE2JV on only 9 days between May 19th and June 19th. The strongest was at 1603 on the 10th when the Cyprus beacon was 599, the Tessa beacon 559 and the Bermuda beacon, VP9BA, 579 which has been quite rare. An h.f. blackout followed the solar flare on May 31st and John Branegan reported weak aurora on May 21st-25rd.

The big surprise came between 2200 on June 18th and 0100 on the 17th when fantastically strong signals from 424, K1, VE, and Ws were working into CT, DK, EA, G, and OZ. One Canadian said it was an "exciting opening", so did Alan Baker when he worked VE1BNN, at 2255, his first Canadian on 10m. At 2307, Alan contacted W2ZWH, New Jersey who was running five watts, and at 0003 he worked N3GB in Maryland. Almost throughout this rare late night opening the Bermuda, VP9BA and Florida, N4RD, beacons were averaging 539/559 and strong signals from CB stations on the north American Continent were pounding into Europe. On both the amateur and citizen's bands local QSOs in Canada and the USA were easily heard in the UK. At 0042, Barry Ainsworth, G4GWP, Sompting, Sussex, contacted WB2QYZ and at 0053 K2BU. For a very brief period Alan Baker and myself heard a ZL calling, which was later confirmed by a VE.

Tropospheric Openings

Most of us in Sussex are getting a good signal from the new 70cm beacon, GB3WHA situated at Crowborough. G4BOO, QTHR, is the beacon keeper and would welcome reports. Alan Baker received a 559 signal from the Emley Moor 70cm beacon, GB3EM, at 2317 on May 25th and I heard it at 579 at 0734 on the 26th and 589 at 0717 on the 30th. The Sutton Coldfield beacon, GB3SUT, was audible in the south around 0750 on the last five days in May and on June 5th, 12th and 13th. Andrew "Jim" Lyon, G8LPY, Worthing, Sussex, can now work through the Portsmouth repeater, GB3PH, on 70cm using his Multi U11 into a 46-element multibeam, and at 1846 on June 16th he worked G4GUX through the Berkshire repeater, GB3AW, RB10.

Strong signals were received in the south from the 2m repeaters, GB5BC, KB, and PO during the v.h.f. opening from May 26th to 28st. At 0746 on the 26th, PA0JO worked G stations through GB3LO and at 0026 on the 27th, OZs and other PA0s were working through the London repeater, which, at 0727 carried signals between ON6BK, Ostend, and G8OUA in Nottingham was who was using a "Slim Jim" aerial. During the same period Band II was affected and Guy Stanford, Chelmsford heard, several Continental stations, mainly in the mornings, between 88-104 MHz. Early on the 28th, I heard signals through the Yorkshire repeater, GB3NA and received pictures from the Lichfield transmitter of the IBA on 189MHz. During a mild opening from June 10th to 13th, John Cooper, G8NGO, Haywards Heath, Sussex, heard signals on 2m from GD and GU and at 1915 on the 11th, G4GNX, worked DK0EN/P on both c.w. and s.s.b. Later, at 2110, Derrmot Cronin, G4GRO/E19DC, at the Royal Sovereign in the English Channel worked DK0EN/P and GDS8EXI and at 2130 he received a strong signal from GI4GVS, but could not hook up with him.

During the early morning of the 17th, Erle Arnold, G8OUK, Hove, Sussex, heard the Paris repeater on R6 and "Jim" Lyon worked GW3PNH, Newport through the Bristol Channel repeater.

Microwaves

Ern Downer, G6GKV, Worthing, reports that G8BDJ, G8FMP and himself were portable on Chancetonbury Ring, 779ft a.s.l., on May 21st for the first of the five one-day cumulative contests on 10GHz. Despite the bad weather they exchanged 59 signals with GI3JVL, South Hayling, Hants, G8BCO/P, Hogs Back, Surrey, G3KSU/P, St Catherines, I.O.W., and G3IFF/P Portsdown Hill, Hants.

OSCAR-8

"I am managing to get across to USA regularly now on OSCAR-8," writes John Branegan and on May 25th he worked his first Spaniard, EA1TA, via the satellite. At 2310 on the 26th, John had a QSO with
From the World's leading radio innovation source:
On this side of the page, we offer you the leading products from the world of wireless. We are continually reviewing and adding to our range, and this month we feature some of the more significant additions to our range. All available in depth, and usually ex-stock too!

Moving Coil Meters
Amalt offers a very wide range of low cost meters to those with the unique 'Atoll' made scale system for professional grade scale everlasting:

Adequate area illumination costs:
900 14x43mm internal 1200 25p
920 30x50mm from behind 27p
530 35x40mm from behind 20p
490 twin 35x40mm from behind 300
990 50x40mm from behind 300
Stock movement 200A/10400. The 930 series
530 to 71A/5400 at 74A/5000. They feature
12 and many offers available. scale 'S.A.'
for full scale details please. (Not in stock.)

Audio; Radio; Comms ICs:
Only the very best and only types we
back in our own lab testing:

Low frequency - masts 100kHz
TDA1503S 2S0.6A/800m high audio in one IC
H14T520M 0.6W/500m high audio in one IC
H14T540M 0.6W/10kHz high audio in one IC

Amalt makes a reputation for the transistor.

VOLTAGE REGS

NEW LOW PRICES

7800 series UC TDA200 package age 1A all $5p
7812 series UC TDA200 package age 1A all $5p
78LUX series TDA200 package age 1A all $5p
L200 up to 3A/adjustable V.A 1.95p
78L20GT2 (trim adjustable volts 17p
78L20GT2 (trim adjustable volts 17p

MAIN FILTERS FOR NOISE/RF IN/OUT:

Gain 50000 50000 50000

12V in 'line' in case £3.87

8000 73p

LINEARS - non-consumables

ICL7106CP-110p

-µA 100 5p

BIMOS LM324N 75p

NL4004 1.25 5p

MOSFET RF, by TOKO 14.95

CA3140E 68p

AM/FM/SB FILTERS

BIFILT5/ST Series 2x5kHz/8kHz

AM/FM/SB FILTERS £18

TUNERS: 2.5kHz/8kHz

Radio Frequency

Tuner Modules

FROM THE BIGGEST AND RENT...

It's...
GSILD in Darlington, Mode J, when the satellite was south of Greenland, but they did not attract any Ws. Having had 5 QSOs with W2BXA, New Jersey, 2 with W9KDR/W1 in Connecticut, 2 with W1CBZ in Maine and 1 with K4EYG in Virginia, John is getting beyond 90% of OSCAR-8A’s designed maximum range.

Club News

The Brighton and District Radio Society held their annual meeting on Brighton Race Course on June 7th. Among the 40 or so people present were representatives from the Haywards Heath, Mid-Sussex, and Worthing radio clubs, the Sussex Coast Repeater Group and the Sussex wing of the Air Training Corps. Both 2m talk-in stations, G4QQR and G8OMR were kept busy.

Despite the heat, lack of sleep, and a herd of cattle the Haywards Heath Amateur Radio Club made 265 contacts during the 144MHz Portable contest on May 27/28th and were delighted with their first efforts.

Members of the Sussex Coast Repeater Group displayed pictures of GB3BR at the Mid-Sussex Amateur Radio Society’s annual meeting at the Jack and Jill Windmills, Clayton, Sussex, 700ft a.s.l. Among the 30 or so present were Mick Senior, G4EFO, who accessed several 70cm repeaters from the site, Louis Varney, G5RV, the Club President, and representatives from the Brighton and Worthing Clubs. Garry Hibbert, G8HXB/P was active on 2m f.m. during the event.

From Down Under

Anthony Mann, Applecross, Australia heard from K. Ushigome of Tokyo that Australian, Ch.0 and New Zealand Ch.1 television has been received by v.h.f. TV DXers in Japan. Anthony has also been in touch with George Francis, F29HY, Papua, New Guinea, who recently logged Band I TV DX from South Korea, Philippines, Hawaii, Samoa, and New Zealand in addition to Japanese Band II television around 108MHz, all by transequatorial propagation.

Anthony also enclosed a copy of the Amateur Radio page of the May Electronics Australia, where it is reported that on January 11th a contact took place on 70cm between VK6KX/P near Albany, West Australia, and VK3ZBJ in Frankston, Victoria, a distance of 2456km.

On February 17th a two-way contact was established on 15cm (2304MHz) between VK6WG in Albany and VK5QR in Enfield, South Australia, a distance of 1866km. Both of these achievements may well be world records, let’s hope so—they certainly deserve it.

Thanks again for your letters and reports and covering such a wide range of subjects.

Both Roger Bunney, Long Distance Television columnist for our sister magazine Television and myself get regular reports about v.h.f. DX from Anthony Mann, a 22-year-old research student from Applecross, Western Australia. His letters contain detailed information about super DX, covering thousands of miles, and a valuable first-hand account of propagation in the southern hemisphere.

Anthony’s interest in radio began in 1968 when he listened to the general short wave bands on a simple regenerative receiver. In 1970 he became an active broadcast DXer using a Trio 9R59DS. His interest in v.h.f. radio and television was suddenly fired in November 1971, by the appearance of a 2000 mile signal on the family TV set.

His equipment, pictured here, is neatly laid out in a space 3m by 2m, and comprises 3 TV receivers, a Trio 9R59DS, 200MHz digital frequency meter and a combination of converters which allows him to tune from 10kHz, to satisfy his interest in v.l.f., to 220MHz. Anthony’s best DX to date is, Band I, 5000 miles (Ch.R1 Vladivostok), Band II, 2200 miles (ABDQ3 86-92MHz), and Band III, 1200 miles (Adelaide’s 3 Band III TV stations). The TV receivers are fed by individual Yagis for Bands I, II and III, vertical wire aerials are used for v.h.f. and long wire antennae for general purpose listening.

With sunspot activity on the increase, Anthony looks forward to more super DX and in particular to receiving UK TV sound, Ch.B1 down under.

Anthony Mann

by RON HAM

Practical Wireless, September 1978
The computer is entering every aspect of modern life and will continue to do so on an ever increasing scale... Do you understand the basic principles behind its operation? We can show you in a practical and interesting way...

A new home study course on digital electronics and the basics of modern computer technology. Full experimental programme of PRACTICAL WORK on demonstration panel.

Easy, fast and exciting!
No previous knowledge needed.

FOR FREE DETAILS with no obligation
Post to:- British National Electronics School,
P.O. Box 156, Jersey, Channel Islands.

NAME..
ADDRESS.......................................

Speed up your precision work with MINIATURE POWER EQUIPMENT

NEW! The P2 Mk2 DRILL
With detachable head £18.00 pp 88p
In storage case, room for transformer £19.00 pp 88p
In case with variable transformer £20.00 pp 88p
S2 Drill stand (holds both drills) £18.50 pp 106p
S2 DRILL STAND A robust, all metal stand with ample throat dimensions. Will take both P1 and P2 Drills. £18.50 pp 106p.
P1 DRILL £9.67 pp 38p
S1 DRILL STAND £5.13 pp 38p
FLEXIBLE DRIVE SHAFT £5.94 pp 34p

HAVE YOU TRIED SPADE DRILLS for printed circuit boards and other soft materials? No clogging - cooler - cleaner holes - there's a range of sizes, 0.1 to 5.5mm.

PRECISION PETITE LTD
17a HIGH STREET
TEDDINGTON MIDDLESEX TW11 8HG
Tel. 01-977 2878

BRAND NEW SURPLUS MODULES AND OTHER ITEMS
2 STAGE STEREO PRE-AMP on 6" x 7¼" P.C.B. 4 push buttons, gram, tape in/out, aux. on/off, 4 slider controls, vol., bal., bass., treble., input approx. 100mV for 300mW out with knobs.
Now only £6.00
STEREO POWER AMP to match on 6½" x 5½" P.C.B. 10W = 10W out for 60mV in. Includes rect., smoothing and supply for pre-amp.
Bargain at only £4.90
Build your own music centre SPECIAL OFFER
PRE-AMP & POWER AMP Pair only £18.00
TRANSFORMER to suit 240°-220° 1½" 1½" 1½" 1½".......................... £1.70
ELAC SPEAKERS 4½" 1½" with tweeter cone pair £8.50
STEREO GRAM AMP on 12" x 1½" P.C.B. 3W = 3W for 100mV in. In controls, vol., bal., treble, bass, requires 16V DC for 80 L.S. or 25V DC for 150 L.S.
£8.90
Suitable for transformer and rect. ordered with gram amp .. £2.90

EW & LW RECEIVER on 9½" x 1½" P.C.B. complete with drive and motor, ferrite aerial & knobs. Good sensitivity and volume. Needs only 9v or 12v. £15.00

MV & LW RECEIVER on 9½" x 1½" P.C.B. complete with drive and motor, ferrite aerial & knobs. Good sensitivity and volume. Needs only 9v or 12v. £15.00

POWER TRANSFORMER 240° in, 30° out 2½A continuous plus 2×2½A with 18v tap will power suitable 35W + 35W amp. drop through type. Impregnated.
Quantity available. Exceptional value at £4.90 weight 4lbs - hence £3.90 to callers.

ELECTRONICAL SUPPLIES CROYDON
40, Lower Addiscombe Rd., Croydon, CRO 6AA.
Tel: 01-688-2950.

Cash with order. Prices incl. P & P and V.A.T.
15 240 Watts!

HY5 Preamplifier
The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (tape, cartridge, tuner, etc.) are catered for internally. The desired function is achieved either by a multi-way switch or direct connection to the appropriate pins. The internal stages and tone circuits merely require connecting to external components (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each preamplifier.

FEATURES: Complete pre-amplifier in single pack—Multi-function equalization—Low noise—Low distortion—High overload—Two simply combined for stereo.

APPLICATIONS: Hi-Fi—Mains—Disco—Guitar—Organ—Public address

SPECIFICATIONS:
- INPUTS: Magnetic Pickup 3mV, Ceramic Pickup 30mV, Tuner 160mV, Microphone 10mV, Auxiliary 200mV, Input Impedance 47kΩ at 1kHz
- OUTPUTS: Tape 100mV, Main output 500mV R.M.S.
- ACTIVE TONE CONTROLS, Treble ±12dB at 10kHz, Bass ±12dB at 100Hz
- DISTORTION: 1% at 8kHz, Signal/Noise Ratio 86dB
- OVERLOAD: 36dB on Magnetic Pick-up, SUPPLY VOLTAGE ±10-30V
- Price £25.5 + 7½% VAT P&P free.

HY30 15 Watts into 8Ω
The HY30 is an exciting new kit from I.L.P. It features a virtually indistinguishable I.C. with short circuit and thermal protection. The kit consists of I.C., heatsinks, P.C. board, 4 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date technology available.

FEATURES: Complete Kit—Low Distortion—Shunt, Open and Thermal Protection—Easy to Build.

APPLICATIONS: Upgrading audio equipment—Guitar practice amplifier—Test amplifier—audio educator.

SPECIFICATIONS:
- OUTPUT POWER: 15W R.M.S. into 8Ω, DISTORTION: 0.15% at 1.5W.
- INPUT SENSITIVITY: 400mV, FREQUENCY RESPONSE 10Hz-16kHz—3dB
- SUPPLY VOLTAGE: ±15V
- Price £25.5 + 7½% VAT P&P free.

HY50 25 Watts into 8Ω
The HY50 is a L.P.'s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust Hi-Fi fidelity modules in the World.

FEATURES: Low Distortion—Integral Heatsinks—Only five connections—I amp output transistors—No external components

APPLICATIONS: Medium Power Hi-Fi systems—Low power disco—Guitar amplifier

SPECIFICATIONS: INPUT SENSITIVITY: 200mV
- OUTPUT POWER: 50W RMS into 8Ω, LOAD IMPEDANCE 0.04Ω at 5MHz
- SIGNAL/NOISE RATIO: 100dB FREQUENCY RESPONSE 10Hz-45kHz—3dB
- SUPPLY VOLTAGE: ±15V SIZE 90 x 90 x 25mm
- Price £8.18 + £1.02 VAT P&P free.

HY120 60 Watts into 8Ω
The HY120 is the baby of L.P.'s new high power range. Designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design.

FEATURES: Very low distortion—Integral heatsink—Load line protection—Thermal protection—No external components

APPLICATIONS: Hi-Fi—High-quality disco—Public address—Monitor amplifier—Guitar and more

SPECIFICATIONS: INPUT SENSITIVITY: 200mV
- OUTPUT POWER: 120W RMS into 8Ω, LOAD IMPEDANCE 0.04Ω at 5MHz
- SIGNAL/NOISE RATIO: 100dB FREQUENCY RESPONSE 10Hz-45kHz—3dB
- SUPPLY VOLTAGE: ±15V
- SIZE 114 x 90 x 25mm
- Price £48.91 + £1.12 VAT P&P free.

HY200 120 Watts into 8Ω
The HY200 now improved to give an output of 120 Watts has been designed to stand the most rigorous conditions such as disco or group while still retaining true Hi-Fi performance.

FEATURES: Thermal shutdown—Very low distortion—Load line protection—Integral heatsink—No external components

APPLICATIONS: Hi-Fi—Disco—Monitor—Power slave—Industrial—Public Address

SPECIFICATIONS: INPUT SENSITIVITY: 200mV
- OUTPUT POWER: 200W RMS into 8Ω, LOAD IMPEDANCE 0.04Ω at 5MHz
- SIGNAL/NOISE RATIO: 85dB FREQUENCY RESPONSE 10Hz-45kHz—3dB
- SUPPLY VOLTAGE: ±15V
- SIZE 114 x 90 x 25mm
- Price £72.99 + £2.24 VAT P&P free.

HY400 240 Watts into 8Ω
The HY400 is L.P.'s "Big Daddy" of the range producing 240W into 4Ω. It has been designed for the most rigorous of Public address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the features of the rest of the family to make it a suitable as a true high power Hi-Fi fidelity power module.

FEATURES: Thermal shutdown—Very low distortion—Load line protection—No external components

APPLICATIONS: Public address—Disco—Power slave—Industrial

SPECIFICATIONS: INPUT SENSITIVITY: 200mV
- OUTPUT POWER: 400W RMS into 4Ω, LOAD IMPEDANCE 0.1Ω at 5MHz
- SIGNAL/NOISE RATIO: 65dB FREQUENCY RESPONSE 10Hz-45kHz—3dB
- SUPPLY VOLTAGE: ±15V
- SIZE 114 x 110 x 85mm
- Price £438.91 + £13.99 VAT P&P free.

POWER SUPPLIES

PS200 suitable for HY30's £28.44 plus 8½% VAT P&P free.
PS400 suitable for two HY30's £57.88 plus 8½% VAT P&P free.
PS1000 suitable for two HY400's £181.99 plus 8½% VAT P&P free.
PS10000 suitable for HY120-19 plus £17 VAT P&P free.
PS100000 suitable for HY200-19 plus £17 VAT P&P free.

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

I.L.P. ELECTRONICS LTD., CROSSLAND HOUSE, NACKINGTON CANTERBURY, KENT, CT4 7AD.

I.L.P. ELECTRONICS LTD.,
CROSSLAND HOUSE, NACKINGTON,
CANTERBURY, KENT, CT4 7AD.

Tel: (0227) 64723.

Please supply

Total Purchase Price

Enclose Cheque Postal Orders Money Order

Please debit my Access account/Barclaycard account

Account number

Name and Address

Signature

Practical Wireless, September 1978

77
SHORT WAVE KITS

FREQUENCY COVER: Model BQ-8 now available in kit form. This new design will display FREQUENCY, PERIOD, and WAVELENGTH up to 8 days accuracy over a guaranteed range of up to 10MHz. Mains isolation 500V, 1000V sensitivity. Manual operated. Can be coupled to the local oscillator of your FM to give a digital display. Kit absolutely complete at rock bottom price. Send Now only £4.00 + 5% VAT.

SHORT WAVE RECEIVER. Ideal kit for beginners, very sensitive £144 front end and carbon controlled transistors and IC audio stage. We guarantee WORLD-WIDE RECEPTION, kit absolutely complete with c-type and full instructions including our live guide. Model BQ-8 kit £10.80 + 5% VAT.

CRYSTAL CALIBRATOR. Model BQ-1. This is an original design which gives a perfect CW or amplitude modulated harmonics of IMAX, 500KHz, 1MHz. Kit at unbreakable price £12.70 + 5% VAT.

For details call ROQUAINE ELECTRONICS, Aldenham, Wembley, NW9 7RN. Tel. 01-831-5245.

FREQUENCIES: Model BQ-4 kit £4.00 + 5% VAT.

Prices correct at July 1978. All prices include VAT, 5% on.

SHORT WAVE KITS

FREQUENCY COVER: Model BQ-8 now available in kit form. This new design will display FREQUENCY, PERIOD, and WAVELENGTH up to 8 days accuracy over a guaranteed range of up to 10MHz. Mains isolation 500V, 1000V sensitivity. Manual operated. Can be coupled to the local oscillator of your FM to give a digital display. Kit absolutely complete at rock bottom price. Send Now only £4.00 + 5% VAT.

SHORT WAVE RECEIVER. Ideal kit for beginners, very sensitive £144 front end and carbon controlled transistors and IC audio stage. We guarantee WORLD-WIDE RECEPTION, kit absolutely complete with c-type and full instructions including our live guide. Model BQ-8 kit £10.80 + 5% VAT.

CRYSTAL CALIBRATOR. Model BQ-1. This is an original design which gives a perfect CW or amplitude modulated harmonics of IMAX, 500KHz, 1MHz. Kit at unbreakable price £12.70 + 5% VAT.

For details call ROQUAINE ELECTRONICS, Aldenham, Wembley, NW9 7RN. Tel. 01-831-5245.
The amazing, automatic Logic Monitor LM-1.

Just clip it over your IC.

It instantly and accurately shows both static and dynamic logic states, on a bright, 16-LED display.

It finds its own power.

It cuts out guesswork, saves time, and eliminates the risk of short-circuits.

LM-1 is suitable for all dual-in-line logic ICs; DTL, TTL, HTL, CMOS; up to 16 pins.

LED on = logic state 1 (high), LED off = logic state 0 (low), and each LED is clearly numbered 1 to 16 in the conventional IC pattern.

Try the LM-1 and you won't know how you ever managed without it!

Applications

Design, breadboarding, testing and checking new logic systems.
Direct real-time monitoring of logic function in operating equipment.
Long-term testing of individual ICs. Identification of unused elements, to find room for an extra gate, clock etc.
Observing relationships between ICs on different boards of multiple board systems (you need more than one LM-1 to observe simultaneously, of course).
Plus dozens of other uses. You'll find them.

It's Easy to Order

Ring us (01-890 0782) with your Access, Barclaycard or American Express number and your order will be in the post that night. Alternatively, send a cheque, or postal order (don't send credit cards!) and it still only takes a few days. Otherwise ask for our complete catalogue.

CONTINENTAL SPECIALTIES CORPORATION (UK) LTD., SPUR ROAD, NORTH FELTHAM TRADING ESTATE, FELTHAM, MIDDLESEX TW14 0JT. TELEPHONE: 01-890 0782. REG IN LONDON: 1303780 VAT NO 224 8074 71 TRADE MARK APPLIED FOR - CSC (UK) LTD 1977. DEALER ENQUIRIES WELCOME. TELEX: 8813669 CSCLTD.

ONLY £28.70

CONTINENTAL SPECIALTIES CORPORATION (UK) LTD., SPUR ROAD, NORTH FELTHAM TRADING ESTATE, FELTHAM, MIDDLESEX TW14 0JT. TELEPHONE: 01-890 0782. REG IN LONDON: 1303780 VAT NO 224 8074 71 TRADE MARK APPLIED FOR - CSC (UK) LTD 1977. DEALER ENQUIRIES WELCOME. TELEX: 8813669 CSCLTD.
SCOPORTIC LTD

J. BIRKETT
Radio Component Suppliers

25 The Strait, Lincoln LN2 1JF

TEL: 20761

FM FRONT END 88 to 100 MHz with conversion details to 2 metres for £3.

IET RADIO F.M. TUNING F.ETS W/ SWITCH - £3 for £1.

COMPRESSION TRIMMERS 200pps 100MHz 10Amp £10.80.

Mains TRANSFORMERS 240 Volt Input Type 1, 55v, 10 Amp £15.00.

DIODES for various Volts.

T.H. 0V / 0V NPN TRANSISTORS £9.75.

SCHOTTKY Barrier Diodes £1.50.

J. BIRKETT

Radio Component Suppliers

25 The Strait, Lincoln LN2 1JF

TEL: 20761

FM FRONT END 88 to 100 MHz with conversion details to 2 metres for £3.

IET RADIO F.M. TUNING F.ETS W/ SWITCH - £3 for £1.

COMPRESSION TRIMMERS 200pps 100MHz 10Amp £10.80.

Mains TRANSFORMERS 240 Volt Input Type 1, 55v, 10 Amp £15.00.

DIODES for various Volts.

T.H. 0V / 0V NPN TRANSISTORS £9.75.

SCHOTTKY Barrier Diodes £1.50.

We are sole distributors of the

‘APOLLO LOGIC PROBE’

No serious Hobbyist, Service Engineer, or Technician can afford to be without one.

Clear, Unambiguous Indication of Logic State. Powered from Circuit Under Test.

Suitable for-

D.T.L.

T.T.L.

CMOS

and all Logic Systems using 5 Volt Power Supplies.

Please add 25p VAT and VAT at appropriate rates.

Government, Colleges, etc. orders accepted.

Callers welcome by appointment

Price Including V.A.T. and Postage £11.75

S.R.B. Miniature 16/18 Watt Soldering Irons £3.75

R.F. Equipment Spares Limited
3 Lacy Close, Wimborne, Dorset.

Please note that our stores at Poole Road Works are open to personal shoppers on Fridays 2.15pm-8.00pm and Saturdays 9.30am to 6.00pm.

VAT RATES. All items at 8%; EXCEPT marked * which are at 12%

J. BIRKETT
Radio Component Suppliers

25 The Strait, Lincoln LN2 1JF

TEL: 20761

FM FRONT END 88 to 100 MHz with conversion details to 2 metres for £3.

IET RADIO F.M. TUNING F.ETS W/ SWITCH - £3 for £1.

COMPRESSION TRIMMERS 200pps 100MHz 10Amp £10.80.

Mains TRANSFORMERS 240 Volt Input Type 1, 55v, 10 Amp £15.00.

DIODES for various Volts.

T.H. 0V / 0V NPN TRANSISTORS £9.75.

SCHOTTKY Barrier Diodes £1.50.

We are sole distributors of the

‘APOLLO LOGIC PROBE’

No serious Hobbyist, Service Engineer, or Technician can afford to be without one.

Clear, Unambiguous Indication of Logic State. Powered from Circuit Under Test.

Suitable for-

D.T.L.

T.T.L.

CMOS

and all Logic Systems using 5 Volt Power Supplies.

Please add 25p VAT and VAT at appropriate rates.

Government, Colleges, etc. orders accepted.

Callers welcome by appointment

Price Including V.A.T. and Postage £11.75

S.R.B. Miniature 16/18 Watt Soldering Irons £3.75

R.F. Equipment Spares Limited
3 Lacy Close, Wimborne, Dorset.

Please note that our stores at Poole Road Works are open to personal shoppers on Fridays 2.15pm-8.00pm and Saturdays 9.30am to 6.00pm.

VAT RATES. All items at 8%; EXCEPT marked * which are at 12%
EASY BUILD SPEAKER DIY KITS

Practical

Tape-heads.

SPEAKERS AVAILABLE WITHOUT CABINETS

If the kits which we supply with the enclosures illustrated.

PANELS & CARTRIDGES

Stereo cartridge

SPECIAL

8ohm.

SPEAKERS

-amp

Frequency Response

-5000kHz +3.0 dB.

-AMP TUNER AMPLIFIER CHASSIS COMPLETE

Ready built. Designed in a slim form for compact, modern installations.

20W STEREO AMPLIFIER

Superb Sound Quality at Low Cost.

-amp.

-amp.

STEREO CASSSETTE TAPE DECK KIT

For the experienced constructor.

ADD ON STEREO CASSSETTE TAPE DECK KIT

Designed for the enthusiast D.I.Y. man. This kit comprises of a tape transport mechanism ready built and tested record replay electronics with twin V.U. meters and level control for setting and matching with mechanism.

ADD ON STEREO CASSSETTE TAPE DECK KIT

Includes single D.I.Y. man. This kit comprises of a tape transport mechanism ready built and tested record replay electronics with twin V.U. meters and level control for setting and matching with mechanism.

STEREO CASSSETTE TAPE DECK KIT

Microcomputer controlled.

PORTABLE DISCO CONSOLE

with built-in pre-amp

£19.95

STEREO CASSETTE TAPE DECK KIT

Microcomputer controlled.

STEREO CASSETTE TAPE DECK KIT

Microcomputer controlled.

STereo cassette player deck

Tape transport mechanism ready built and tested record replay electronics with twin V.U. meters and level control for setting and matching with mechanism.

Specifications:

- sensitivity

- Output

- Frequency Response

- Input sockets, plus fuse.

- Includes microphone and auxiliary input sockets.

- Suitable power supply transformer, rectifier, smoothing stage and output capacitors.

- Complete all the units which are needed to complete the project.

- Suitable power supply transformer, rectifier, smoothing stage and output capacitors.

- Complete all the units which are needed to complete the project.

- Suitable power supply transformer, rectifier, smoothing stage and output capacitors.

- Complete all the units which are needed to complete the project.

- Suitable power supply transformer, rectifier, smoothing stage and output capacitors.

- Complete all the units which are needed to complete the project.

- Suitable power supply transformer, rectifier, smoothing stage and output capacitors.

- Complete all the units which are needed to complete the project.
SMALL ADS

The prepared rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60p extra. Semi-display setting £6-80 per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyd's Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisements Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

Conditions of Acceptance of Classified Advertisements

1. Advertisements are accepted subject to the conditions prevailing on the current advertisement rate card and on the express understanding that the Advertiser warrants that the advertisement does not contravene any Act of Parliament or any regulations of the British Code of Advertising Practice.

2. The publishers reserve the right to refuse or withdraw any advertisement.

3. Although every care is taken, the Publishers shall not be liable for clerical or printers' errors or their consequences.

receivers and components

SOWTHER TYPE 5757 MULTITAP MICROPHONE TRANSFORMER

Primary windings for 600 ohm, 10k ohm and 68 ohm with Secondary loadings from 2k ohm to 10k ohm. Frequency response 30Hz - 16,000Hz. Contained in well finished Muntal composite, 35mm diameter by 22mm high, with plastic screw-down base. Low distortion. Delivery (small quantities) EX STOCK. HIGHLY COMPETITIVE PRICE. FULL DETAILS ON REQUEST.

E. A. SOWTHER LTD., P.O. Box 31, Ipswich IP1 2EJ. Tel: 01394 3274 & 3276.

Rechargeable batteries

extended range

HP1 (size = D) £2.85, HP1 (size = C) £2.95. Sub C £1.84. Performance type. Can be used in all PP batteries from 9 volt to 25 volt. 1 vol HP4 £1.66, 9 volt PP5 £1.14, 14 volt PP6 £1.36. All chargers £4.97 except for PPC 25 £2.92 and a special PP £4.96. 6 volt AA/550 sealed lead acid £11.88, New child's, 2-4 mile range.

Electric Car

Soltency low price semiconductors and new coded and guaranteed

Soltency

9, Rodney Gardens, Braintree, Essex.

TIBRO ELECTROS

The mail order division of BITRA ELECTROS. TIBRO offers a wide range of components for the amateur enthusiast. Large S.A.E or 20p brings list. Orionnel, Place, Maidenhead, BERKS SL6 1HL.

Valves

Radio - T.V. - Industrial - Transmitter

Producer Lamps and Semiconductors. We Dispatch Valves to all parts of the world by return of post, Air or Sea mail. 4000 Types in stock, 1930 to 1976. Obsolete types a specialty. List 30p. Quotation S.A.E. Open to callers Tuesday to Saturday 9.30 to 5.00 closed Wednesday 1.00. We wish to purchase all types of new and boxed Valves, Projector Lamps and Semiconductors.

COX RADIO (SUSSEX) LTD.

Dept. P.W. The Parade, East Wittering, Sussex PO20 1SN

West Wittering 2023 (STD Code 024344)

PROJECT SUPERSERVE WITH CODESPEED

Full Spec Devices

PACK 1 - 1.000 meter peak meter. With full instructions on how to build a versatile set of analogue meters. £12-25.

PACK 2 - Back by popular demand. A 5-25 Volt DC meter. £4.25.

PACK 3 - S.A.E. Double 7-25 Volt LED Display. £2.25.

PACK 4 - 0-1200 microamp LR meter with Milliamp display, £2.95.

PACK 5 - £4.25 and a special 5-25 Volt LED Display. £2.95.

PACK 6 - S.A.E. 120-1500 microamp LR meter with Milliamp display, £2.95.

CRYSALIS - brand-new, 0.02% precision HCl/U wire leads, £2.95 each. UK Post, no VAT

PACK 1 - 1.000 meter peak meter. With full instructions on how to build a versatile set of analogue meters. £12-25.

PACK 2 - Back by popular demand. A 5-25 Volt DC meter. £4.25.

PACK 3 - S.A.E. Double 7-25 Volt LED Display. £2.25.

PACK 4 - 0-1200 microamp LR meter with Milliamp display, £2.95.

PACK 5 - £4.25 and a special 5-25 Volt LED Display. £2.95.

PACK 6 - S.A.E. 120-1500 microamp LR meter with Milliamp display, £2.95.

CRYSTALS - brand-new, 0.02% precision HCl/U wire leads, £2.95 each. UK Post, no VAT.

PACK 1 - 1.000 meter peak meter. With full instructions on how to build a versatile set of analogue meters. £12-25.

PACK 2 - Back by popular demand. A 5-25 Volt DC meter. £4.25.

PACK 3 - S.A.E. Double 7-25 Volt LED Display. £2.25.

PACK 4 - 0-1200 microamp LR meter with Milliamp display, £2.95.

PACK 5 - £4.25 and a special 5-25 Volt LED Display. £2.95.

PACK 6 - S.A.E. 120-1500 microamp LR meter with Milliamp display, £2.95.

C.R. Supply Co.

127, Chesterton Road, Sheffield S6 ORN

COMPONENTS FOR P.W. PROJECTS. Components lists with prices available for P.W. projects from October 1977 onwards. Send S.A.E stating project and month of publication (maximum 4 project requests per S.A.E.). Lists sent by return together with ACE order form/catalogue, ACE MAILTRONIX, Tootal Street, Wakefield, W. Yorkshire WF1 3JB.

Aerials

GOT T.V.?

kill it dead. tuning or sw-lng

Models: S.W.L., £29 11s. 500 watts or S.W.L., £41-06, complete inc. insulators, 75f heater, VAT and P & P. Aerial mounting units 3.5W £1.25/600 watts 10-150 metres inc. shipping and B.C. £25-00, inc. VAT and P & P. 7.5" 130p S.A.E. and 3" 9p stamps for full details, serial numbers etc.

GIDY, LAMDA, WHITEBALL, WELLINGTON, SOMERSET

Ladders

ladders

Varnished 20ft finish, £92-79, carr. £2-70. Leaflets. Also alloy ext. up to 25ft 6in. Ladder Centre (WLS2), Balesfield (1) Telford. Tel: 06864. Callers welcome.

Practical Wireless, September 1978
SERVICE SHEETS - COLOUR TV SERVICE MANUALS

SERVICE SHEETS for Mono TV, Radios, Record Players and Tape Recorders 76p. Please send large stamped addressed envelope.

Large technical manuals for many makes of portable Radios. By order.

Let us quote you. Please send a stamped addressed envelope for a quote reply. Also comprehensive TV, repair manuals by J. M. Cough. 5/- post free for details.

G.T. TECHNICAL INFORMATION SERVICE
10 DRYDEN CHAMBERS, 119 OXFORD ST., LONDON W1 IP A

LARGE SUPPLIER OF SERVICE SHEETS
All models at 75p PO/Cheques plus s.a.e. Except Colour and Car Radios. Free TV fault finding chart or TV list. Strictly bono.

C. CARANNA
71 Beaufort Park, London NW11 6BX 01-458 4882

SERVICE SHEETS, Radio, TV etc, 10,000 models, 250 S.A.E. orders, enquiries. Tetley, 154 Brook Street, Preston PR1 7HP.

Books and Publications

THE DALESFORD SPEAKER BOOK
by R. F. C. Stephens.
This book is intended to help the amateur constructor. Latest technology DIY speaker design. Contains full plans for infinite baffle and reflex designs for 50-50 watts, also unusual centre-bass system. £4.95 (472 pp packed. Size: 215 x 275 mm)

VAN KAREN PUBLISHING
5 SWAN STREET
WOMBLE, CHESHIRE

YOU CAN'T HELP BUT MAKE MONEY
If you follow the planned and detailed information on how to start your own business rewinding Armatures, set up in the new manual which includes a profusely illustrated and comprehensive exposition of the stages of fault diagnosis, taking data, test procedures, locating and fixing new windings, where to obtain work, how to cost jobs etc. NOW! PREVIOUS - ELECTRICAL KNOWLEDGE REQUIRED. Completes instruction manual. £3.50 plus 50p P&O. C.P. Copper Sugden. 215 Lodge 24p, plus SAE for orders, enquiries. Tetley, 154 Brook Street, Preston PR1 7HP.

SIMPLIFIED TV REPAIRS. Full repair instructions individual British Standards 1969-70 at 50p 9/-, request free circuit diagram. Stamp brings details unique. TV Publications (Asse EY), 76 Church Street, Larkhall, Lanarkshire.

Radio Receivers

AMATEUR BAND RECEIVER
Heer Ltd Amateur and All-Band Transmissions Loud and Clear. Radio coverage 100-160 MHz VHF and SW. Ideal for Amateurs. Integrated circuit stereo receiver. £139. Free for details.

MULHALL ELECTRONICS
Angpass, Co. Down. U.K. BST/75F. Tel: 0232 664 656

POCKET SETS
MW/VHF AIR (96-152 MHz) . £9.95
MW/VHF AIR (96-152 MHz) . £9.95
MW/LW . £9.95
MW only . £9.95
Faulty MW Set for parts . £1.45

SMALL PORTABLES
MW/SW (3-2-12 MHz) . £9.95
MW/LW/VHF AIR (96-152 MHz) SW (4-12 MHz) . £29.95
MW/VHF AIR (96-152 MHz) SW (4-12 MHz) . £29.95

MANS-BATTERY PORTABLES
MW/LW/VHF AIR (96-152 MHz) . £39.95

NO OTHER PRODUCTS
Headphones to suit AMBER . £10.95
Cassette Recorder, Maina/Beatt . £10.95
TV Game - Large Set . £10.95
TV Games - Colour version . £10.95
Laser Beams . £9.95
LDC 60 bit IFN Chuck 1 . £14.95
Two-way Intercoms (P.O.V., V.A.T., Batteries, Guaranteed and Accepted at £29.95)

NOBLE ELECTRONICS
29 Liberty Street, London. Tel: 01-845 4848

FREE RARE DX
FROM ORM, best tired whistles and a tuneable Aircraft Noise Filter, only £4.95.
NEED THE TIME? MSF 60 kHz. Receiver, internal tuning, time out, 2:1 kHz range. £9.95 (net clear, post for UK -50 to 150 lbs) for serial YEAR, MONTH, DATE, GATHER HOURS, MINUTES, SECONDS display. £29.95
NO LONG WAVE 7 100-000 kHz. Converter, your S.A.E. 1.4-5.2 kHz receiver, only £9.95.
WHERE'S THE RARE DX? 7 kHz, or 100 kHz Crystal Calibrator, markes to VHF, £13.95.
PROGRAM YOUR OWN names with this MUSICAL DOORBELL, new jingle every day, just needs bell transformer and speaker, £29.95.

SIG. GEN. 10 Hz to 100 kHz/bitlevel/square. £99.99.
Each easy-assemble kit includes all parts, printed circuit, case, instruction etc, everything so SEND NOW OF ORDER.

CAMBRIDGE KITS
45 (P) Old School Lane, Milton, Cambridge.

ENAMELLED COPPER WIRE
wire 1 1/2 1/8 1/16 1/32 32
14-19 2 3 4 5 6 7 8 9
10-13 3 4 5 6 7 8 9 10
11-13 4 5 6 7 8 9 10 11
13-15 5 6 7 8 9 10 11 12
16-18 6 7 8 9 10 11 12 13
37
Inclusive of plug and VAT.

THE SCIENTIFIC WIRE COMPANY

FREE SAMPLE
Send stamped envelope for FREE SAMPLE to CASSETTES in Plastic & CASSETTES in carton.
All prices include VAT.
Quantities:
For 10 units 5% OFF
For 50 units 10% OFF
For 100 units 15% OFF

Electrical

STILI - illustrated equivalents (List 28) also cardboards, leads, etc. Superb quality and service at lowest prices. Fully guaranteed. Free for SAE from Felstead Electronics (PW), Longlea Lane, Gatley, Chaddes, Cheshire SK6 4EE.

For Sale

NEW BACK ISSUES OF "PRACTICAL WIRELESS" available complete at post free. Open P.O./Cheque returned if not stock.

SEEN WHISTONS CAT? 5000 odd and ends. Mechanical/Electrical Cat free.

WHISTON (Dept. PW), New Mills, Stockport.
TRAINEE COMPUTER ENGINEERS

Q/A LEVELS ON CITY AND GUILDS OR TV ENGINEERING?

The UK Training Division of Control Data who manufacture the world's most powerful computers believes that the age of 21-35 is the ideal age to train as computer engineers with a view to subsequent employment at various locations. This is an opportunity to be trained in computer skills by a leading computer manufacturer for an occupation which offers excellent progression, salaries, interesting work and excellent career prospects.

Spend an evening with us and investigate our training entry scheme in detail. Find out whether you would qualify for support under TOPS*.

FOR LONDON INTERVIEWS CALL 01-637 2171 AND ASK OUR RECEPTIONIST TO CONNECT YOU TO PROGRAM 2E.

For outer London interviews please call either:

BIRMINGHAM OFFICE 021 622 7383
MANCHESTER OFFICE 061 832 3114
LEEDS OFFICE 0532 450145
SOUTHAMPTON OFFICE 0703 38644

*TOPS—The NATIONAL TRAINING OPPORTUNITIES SCHEME under which training costs and personal subsistence are paid to suitable candidates whilst undergoing training which is designed to lead to employment.

For further information to:

TELERADIO ELECTRONICS
335, Fore Street, Edmonton, London, N.9. Telephone: 01-807-3719

HIGH QUALITY Very Low Distortion Audio Signal Generator

For Hi-Fi testing.
Mail Order Protection Scheme

The Publishers of Practical Wristwatch which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not extend to any failure to supply goods advertised in a catalogue or in a direct mail solicitation. In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Wristwatch within three months of the date of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. All goods are sold subject to the following conditions, namely that it shall not, without the written consent of the Publisher be resold, let, lent, hired out or otherwise disposed of by way of transfer to more than the recommended selling price shown on the cover, extending Eire where the selling price is subject to VAT and that it shall not, resold or let, lent, hired out or otherwise disposed of in a spoiled condition or in any manifest order made by way of transfer or affect to or as part of any publication or advertising, literary or pictorial matter whatsoever.

Mail Order Protection Scheme

The Publishers of Practical Wristwatch which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not extend to any failure to supply goods advertised in a catalogue or in a direct mail solicitation. In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Wristwatch within three months of the date of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. All goods are sold subject to the following conditions, namely that it shall not, without the written consent of the Publisher be resold, let, lent, hired out or otherwise disposed of by way of transfer to more than the recommended selling price shown on the cover, extending Eire where the selling price is subject to VAT and that it shall not, resold or let, lent, hired out or otherwise disposed of in a spoiled condition or in any manifest order made by way of transfer or affect to or as part of any publication or advertising, literary or pictorial matter whatsoever.

Mail Order Protection Scheme

The Publishers of Practical Wristwatch which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not extend to any failure to supply goods advertised in a catalogue or in a direct mail solicitation. In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Wristwatch within three months of the date of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. All goods are sold subject to the following conditions, namely that it shall not, without the written consent of the Publisher be resold, let, lent, hired out or otherwise disposed of by way of transfer to more than the recommended selling price shown on the cover, extending Eire where the selling price is subject to VAT and that it shall not, resold or let, lent, hired out or otherwise disposed of in a spoiled condition or in any manifest order made by way of transfer or affect to or as part of any publication or advertising, literary or pictorial matter whatsoever.

Mail Order Protection Scheme

The Publishers of Practical Wristwatch which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not extend to any failure to supply goods advertised in a catalogue or in a direct mail solicitation. In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Wristwatch within three months of the date of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. All goods are sold subject to the following conditions, namely that it shall not, without the written consent of the Publisher be resold, let, lent, hired out or otherwise disposed of by way of transfer to more than the recommended selling price shown on the cover, extending Eire where the selling price is subject to VAT and that it shall not, resold or let, lent, hired out or otherwise disposed of in a spoiled condition or in any manifest order made by way of transfer or affect to or as part of any publication or advertising, literary or pictorial matter whatsoever.

Mail Order Protection Scheme

The Publishers of Practical Wristwatch which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not extend to any failure to supply goods advertised in a catalogue or in a direct mail solicitation. In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Wristwatch within three months of the date of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. All goods are sold subject to the following conditions, namely that it shall not, without the written consent of the Publisher be resold, let, lent, hired out or otherwise disposed of by way of transfer to more than the recommended selling price shown on the cover, extending Eire where the selling price is subject to VAT and that it shall not, resold or let, lent, hired out or otherwise disposed of in a spoiled condition or in any manifest order made by way of transfer or affect to or as part of any publication or advertising, literary or pictorial matter whatsoever.

Mail Order Protection Scheme

The Publishers of Practical Wristwatch which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not extend to any failure to supply goods advertised in a catalogue or in a direct mail solicitation. In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Wristwatch within three months of the date of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. All goods are sold subject to the following conditions, namely that it shall not, without the written consent of the Publisher be resold, let, lent, hired out or otherwise disposed of by way of transfer to more than the recommended selling price shown on the cover, extending Eire where the selling price is subject to VAT and that it shall not, resold or let, lent, hired out or otherwise disposed of in a spoiled condition or in any manifest order made by way of transfer or affect to or as part of any publication or advertising, literary or pictorial matter whatsoever.

Mail Order Protection Scheme

The Publishers of Practical Wristwatch which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not extend to any failure to supply goods advertised in a catalogue or in a direct mail solicitation. In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Wristwatch within three months of the date of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. All goods are sold subject to the following conditions, namely that it shall not, without the written consent of the Publisher be resold, let, lent, hired out or otherwise disposed of by way of transfer to more than the recommended selling price shown on the cover, extending Eire where the selling price is subject to VAT and that it shall not, resold or let, lent, hired out or otherwise disposed of in a spoiled condition or in any manifest order made by way of transfer or affect to or as part of any publication or advertising, literary or pictorial matter whatsoever.

Mail Order Protection Scheme

The Publishers of Practical Wristwatch which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not extend to any failure to supply goods advertised in a catalogue or in a direct mail solicitation. In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Wristwatch within three months of the date of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. All goods are sold subject to the following conditions, namely that it shall not, without the written consent of the Publisher be resold, let, lent, hired out or otherwise disposed of by way of transfer to more than the recommended selling price shown on the cover, extending Eire where the selling price is subject to VAT and that it shall not, resold or let, lent, hired out or otherwise disposed of in a spoiled condition or in any manifest order made by way of transfer or affect to or as part of any publication or advertising, literary or pictorial matter whatsoever.

Mail Order Protection Scheme

The Publishers of Practical Wristwatch which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not extend to any failure to supply goods advertised in a catalogue or in a direct mail solicitation. In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Wristwatch within three months of the date of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. All goods are sold subject to the following conditions, namely that it shall not, without the written consent of the Publisher be resold, let, lent, hired out or otherwise disposed of by way of transfer to more than the recommended selling price shown on the cover, extending Eire where the selling price is subject to VAT and that it shall not, resold or let, lent, hired out or otherwise disposed of in a spoiled condition or in any manifest order made by way of transfer or affect to or as part of any publication or advertising, literary or pictorial matter whatsoever.

Mail Order Protection Scheme

The Publishers of Practical Wristwatch which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not extend to any failure to supply goods advertised in a catalogue or in a direct mail solicitation. In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Wristwatch within three months of the date of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. All goods are sold subject to the following conditions, namely that it shall not, without the written consent of the Publisher be resold, let, lent, hired out or otherwise disposed of by way of transfer to more than the recommended selling price shown on the cover, extending Eire where the selling price is subject to VAT and that it shall not, resold or let, lent, hired out or otherwise disposed of in a spoiled condition or in any manifest order made by way of transfer or affect to or as part of any publication or advertising, literary or pictorial matter whatsoever.
The new Doram Electronic Hobbies Catalogue is packed full of new exciting merchandise including MICROPROCESSOR BASED KITS, ELECTRONIC KITS FOR ALL THE FAMILY, ELECTRONIC TOOLS AND BOOKS, AUDIO & CAR ACCESSORIES ETC.

For your Nights of Delight. Send for your copy now.

Overseas customers (except for N. Ireland)—60p including despatch by Air (or a1-up post).

Doram Electronics Ltd.
PO Box TR8
Wellington Road Estate
Wellington Bridge
Leeds LS12 2UF

Doram Electronics Ltd.,
PO Box TR8,
Wellington Road Estate,
Wellington Bridge,
Leeds LS12 2UF
IT'S A FANTASTIC BESTSELLER!

216 big (11” x 8½”) pages! Over a thousand illustrations! Over 30 pages of complete projects to build! Thousands and thousands of useful components described and illustrated!

No wonder it's a bestseller!

DON'T MISS OUT! SEND 60p NOW!

MAPLIN ELECTRONIC SUPPLIES
P.O. BOX 3 RAYLEIGH ESSEX SS6 6LR
Telephone Southend (0702) 715155

10 CHANNEL STEREO GRAPHIC EQUALISER

A new design with no difficult coils to wind, but a specification that puts it in the top-flight hi-fi class. All this for around £70 including fully punched and printed metalwork and woodwork. Send for our component schedule now. Full construction details price 23p. (All prices include V.A.T. and p & p.)

INTEGRATED CIRCUITS

Over 35 pages in our catalogue devoted to hundreds of useful ICs. All with data, pin connections and many with applications circuits and projects to build. Post the coupon now!

100W RMS STEREO DISCO

A genuine 100W RMS per channel (both channels driven) stereo disco with auto fade on microphone, VU meters, full monitoring and cueing facilities and a very high quality light show. Complete construction booklet M541 price £2.50. Cabinet comes complete with lid and carry handles.

VERY LOW-DISTORTION AUDIO OSCILLATOR

The very low distortion sine wave (-0.001%), output is suitable for testing very high quality hi-fi audio equipment. Also includes square wave output. Range 0.1Hz to 20kHz. Output 0.1V in three continuously variable sizes. Total cost around £4. Full construction details in our catalogue. Send the coupon below, now! (All prices include V.A.T. and p & p.)

PEDAL UNIT

A completely self-contained pedal unit, 13-note, 2-Octave range. 4 organ stops. It can be added to any organ. A really unusual extra is the bass guitar stop which uses four envelope shapers to give a real bass guitar sound. A must for the solo guitarist. Full construction details in our catalogue—post the coupon below, now!

SYNTHESISER

The International 4600 Synthesiser. A very comprehensive unit. Over 400 sold. We stock all the parts costing less than £500 including fully punched and printed metalwork and a smart teak cabinet. Far less than half what you'd pay for a ready-made synthesiser of equal quality. Specification on request. Full construction details in our construction book £1-30. (All prices include V.A.T. and p & p.)

SWITCHES

We stock a wide range of switches including a really low-priced high quality interlocking push-button switch system which is extremely versatile. We've got toggle switches, slide switches, push switches, rotary switches—there are dozens to choose from, but it's only a tiny part of our fantastic range.

‘PE’ STRING ENSEMBLE

Unbeatable prices and finest quality components only when you buy from Maplin. All parts available to build this fascinating project. Component schedule available shortly (s.a.e. appreciated). Demonstration model in our shop soon. Phone now and compare our prices.

POST THIS COUPON NOW FOR YOUR COPY OF OUR CATALOGUE PRICE 60p

Please rush me a copy of your 216 page catalogue. I enclose 60p, but understand that if I am not completely satisfied I may return the catalogue to you within 14 days and have my 60p refunded immediately.

NAME:

ADDRESS:

www.americanradiohistory.com