

BRITANS LEAOING JOURNAL FOR THE RAOIO \& ELECTRONC CONSTRUCTOR

Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

## COPYRIGHT

© IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

## CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Practical Wireless", King's Reach Tower, Stamford Street, London SE1 9LS. All other correspondence should be addressed to the Editor, "Practical Wireless", Westover House, West Quay Road, Poole, Dorset BH15 1JG. BINDERS AND INDEXES
Binders (£2•85) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Both prices include postage and VAT, Overseas orders for binders should include 60p to cover despatch and postage. All remittances should be made payable to IPC Magazines Limited. Commencing with Volume 52, the Index is included in Number 1 of the following Volume.

## BACK NUMBERS

Some back issues, mostly those published during the last two years, are available from our Post Sales Department (address above) at 65 p each, including postage and packing to both home and overseas destinations. Remittances should be made payable to IPC Magazines Limited.

## SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 10 \cdot 60$ per annum, from "Practical Wireless" Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Remittances should be made payable to IPC Services Limited.

## QUERIES

We do not operate a Technical Query Service except on matters concerning constructional articles published in PW. We cannot offer advice on modifications to our published designs, nor comment on alternative ways of using them. We do not supply service sheets nor information on commercial radios, TVs or electronic equipment.
All queries must be accompanied by a stamped self-addressed envelope, otherwise a reply cannot be guaranteed. We cannot answer technical queries over the telephone.

## NEWS \& VIEWS

18 Editorial
Chicken \& Egg
News. . . News . . . News . . .
Paris Show Report
David Gibson
PW Reader's PCB Service
Prices and details of the PCBs available
Hotlines
Ginsberg
Recent developments in electronics
Production Lines
Alan Martin
Information on the latest products
Kindly Note
Portable PA Amplifier, December 1977
Letters
Comments from PW readers
On the Air
Amateur Bands
Eric Dowdeswell G4AR
MW Broadcast Bands
SW Broadcast Bands
Charles Molloy G8BUS
VHF Bands
Charles Molloy G8BUS
Ron Ham BRS15744

## FOR OUR CONSTRUCTORS

## GENERAL INTEREST

Introduction to Logic-2
S. A. Money

NAND, OR and NOR gates
AM Receivers-Devices \& Circuits-1
M. J. Darby

Integrated circuits for t.r.f. receivers
QSL
Charles Molloy
Collecting broadcast band QSL cards
Experimental Broadcast Satellite for Japan
Extending broadcast TV service areas
Our September issue will be published on August 4th
(for details see page 39)
 from Sparikrite
$\left\{\begin{array}{l}\text { is featured } \\ \text { in DRIV }\end{array}\right.$
the quickest fitting
CLIP ON
capacitive discharge electronic ignition in KIT FORM


Smoother running Instant all-weather starting Continual peak performance
Longer coil/battery/plug life Improved acceleration/top speeds Optimum fuel consumption

Sparkrite X 4 is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven. reliable and complete. It can be assembled in two or three hours and fitted in $1 / 3 \mathrm{mins}$
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breake burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old, or even badly pitted points and is not
dependent upon the dwell time of the contact breakers for recharging the system Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and. therefore, eliminates the possibility of blowing th foolproot in this respect). The circuit incorporates a voliage regulated output for greatly improved cold starting. The circuit includes built in static timing light, systems function light. and security changeover switch. All kits fit vehicles with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Die pressed epaxy coated case. Ready drilled, aluminium extruded base and heat sink, coil mounting clips, and accessories. Top quality 5 year guaranteed transformer and components, cables, connectors, P.C.B., nuts, bolts and silicon grease. Full instructions to assemble kit neg. or pos. earth and fully illurtrated NOTE - Vehicles with
will require a Electronic Design Associates, 82 Bath Street, Walsall, WSI 30E

Electronics Design Associates, Dept. PW8 82 Bath Street, Walsall, WS1 3DE. Phone: (9) 61479

## Name

Address

Phone your order with Access or Barclaycard

| Inc. V.A.T. and P.P. | QUANITTY REQ'D. | Send SAE if brochure onty requised. |
| :---: | :---: | :---: |
| X4 KIT $£ 14.95$ |  | I enclose chequelPO's for |
| Tachs Pulse slave unit £ 3.35 |  |  |

FANE NEW "POP" RANGE SPEAKERS Improved appearance - higher sensitivity

Rec. Price


12" 'POP' $40{ }^{\text {Dual }} 45 \mathrm{w}$ Rec. E . 4.95 12" ‘POP’ 50H 50w £16.99 12" ‘POP’ 75 75w £22.95 15" ‘POP' 65 70w $£ 25.95$ 15" ‘POP’ 80 80w £29.95 18" 'POP' 100 l00w $£ 49.95$ 18" 'POP' 150 150w $£ 55.00$
SPECIALIST RANGE Rec. Price

Each designed to produce the individual sound requirement for ce the individual $12^{\prime \prime}$ GUITAR/80L 80w $\begin{gathered}\text { For Lead } \\ \text { Guitar } \\ £ 27.95\end{gathered}$ its purpose. Robust 12" GUITAR/80B ," Prs rec for | Bass Guitar |
| :--- |
| 28.95 | Cast Aluminium 12" PA/80 80w Dual Cone. For $\mathbf{6 2 7 . 9 5}$

 - Linen Cone surround. 15" BASS/100 100w Guitar £42.00

HIGH FREQUENCY HORNS $J 44_{\text {Range: }}$ $2.5 \mathrm{KHz}=15 \mathrm{KHz}$ Power: 50 F
HPX2R
30w with HPXIR
Imp: 8 ohms $£ 7.95$
Size approx
$3 \frac{1^{\prime \prime}}{1^{\prime \prime}} \times 3 \frac{1}{2}^{\prime \prime} \times 3^{\prime \prime}$
J73 Ranze: $2 \cdot 5 \mathrm{kHz}-20 \mathrm{kHz}$ Power: 50w with HPX IR Simp: 8 ohms $7 \frac{1}{n}^{n} \times 3^{n} \times 6 \frac{1}{2}^{\prime \prime}$ $2^{\text {s }}$ DISCO/80 80w Fitted large $£ 29.95$ 100w Tweeter 5" B/ ${ }^{\prime}$ (8S 80 general purpose P.A. 427.9

J $104_{\text {Range }}$ $2 \mathrm{KHz}-15 \mathrm{KHz}$ Power: 50wat with HPXIR 70 watt with
$H P X 2 R$
HPX: 8 ohms


Imp: 8 ohms
€ 16.95

 HIGH POWER "CROSS-OVERS" $\begin{array}{ll}\mathrm{HPXIR} & (3.5 \mathrm{KHz}) \\ \mathrm{HP} \times 3.25 \\ (5 \mathrm{KHz}\end{array}$ Impedance or total impedance of Bass Drivers not to exceed $\mathbf{B \Omega} \Omega$. Otherwise use series Horns or attenuation prouse series Horns or attenuation

SPEAKERS-SUPPLIED TO MOST LEADING U.K. MANUFACTURERS OF GROUP \& DISCO EQUIPMENT years guarantee on sperakers \& Horns Rec. Reices. Frices Nretube 18 A LINEAR PRODUCTS LTD, ELECTRON WORKS, ARMLEY, LEEDS Manufacturers \& Export enquiries to:FANE ACOUSTICS LTD, HICK LANE, BATLEY, YORKSHIRE

## the MIGHTY MIDGETS <br> 

MINIATURE SOLDERING BDS AND
ACCESSORIES

 18 WATT IRON inc. No. 20 BIT | each | E3. 78 | $22 p$ |
| :---: | :---: | :---: |

| SPARE BITS | $44 p$ | - |
| :--- | :---: | :---: |
| STANDS | $£ 3 \cdot 25$ | $65 p$ |


| SOLDER: SAVBIT 20' | $52 p$ | $9 p$ |
| :---: | :---: | :---: |
| $" 10^{\prime}$ | $26 p$ | $4 p$ |


| LOWMELT 10' | 65p | $9 p$ |
| :---: | :---: | :---: |
| 1.C. DESOLDERING BIT | $88 p$ | $9 p$ |

BIT SIZES:
No. $19(1.5 \mathrm{~mm})$
No. $21(4.5 \mathrm{~mm})$
No. $20(3 \mathrm{~mm})$
No. 22 ( 6 mm )
From your Local Dealer or Direct from Manufacturers
S4R.BREMSTAR
86-88 Union St - Plymouth PL13HG
Tel: 0752 650II TRADE ENQUIRIES WELCOME

# LOOK! Here's how you master electronics. 

....the practical way.


This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.


## Buildan oscilloscope.

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.


## Read,draw and understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, under stand the very fundamentals of television, radio, computors and countless other electronic devices and their servicing procedures,


## 3Carry out over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v etc.


All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronîc practice.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.
British National Radio \& Electronic School
P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

## ERSIN



## SAVBIT

handy solder dispenser

Contains 2.3 metres approx of 1.22 mm Ersin Multicore Savbit Solder. Savbit increases life of copper bits by 10 times.
Size $5 \quad 58 p$

## For soldering fine joints

 -Two more dispensers to simplify those smaller jobs. PC 115 provides 6.4 metres approx. of 0.71 mm solder for fine wires, small components and printed circuits. PC115 69pOr size 19A for kit wiring or radio and TV repairs.
2.1 metres approx. of 1.22 mm solder. Size 19A 63p

## Handy size Reels \& Dispensers

 OF THE WORLD'S FINEST CORED SOLDER TO DO A PROFESSIONAL JOB AT HOMEErsin Multicore Solder contains 5 cores of non-corrosive flux that instantly cleans heavily oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required.
 containing clear instructions to make every job easy.

| Ref. | Alloy | Diam. mm | Length metres approx | Use | Price |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Size } \\ 3 \end{gathered}$ | $\begin{gathered} \text { 40/60 } \\ \text { Tin/Lead } \end{gathered}$ | 1.6 | 10.0 | For economical general purpose repairs and electrical joints. | £2.16 |
| $\underset{4}{\text { Size }}$ | ALU-SOL | 1.6 | 8.5 | For aluminium repairs. Also solders aluminium to copper, brass etc. | £2.46 |
| $\begin{gathered} \text { Size } \\ 10 \end{gathered}$ | 60/40 Tin/Lead | 0.7 | 39.6 | For fine wires, small components and printed circuits. | £2.38 |
| $\begin{gathered} \text { Size } \\ 12 \end{gathered}$ | SAVBIT | 1.2 | 13.7 | For radio, TV and similar work. Increases copper-bit life tenfold. | $£ 2.29$ |

## SOLDER WICK

Absorbs solde instantly from tags, printed
tted with unique 8 -gauge selector and handle locking device. Sprung for automatic opening. Strips flex and cable in seconds. Model 8B 97p circuits etc. Only needs 40-50 Watt soldering iron. Quick and easy touse. Non-corrosive. Size AB10 97p

Sole U.K. Sales Concessionaires:
Bib Hi-Fi Accessories Limited,
Kelsey House, Wood Lane End; Hemel Hempstead, Herts. HP2 4RQ

Prices shown are recommended retail, inc. V.A.T. From Electrical and Hardware Shops. In difficulty send direct, plus 20p P\&P Prices and specifications subject to change without notice

## OPEN UP THE EXCITING WORLD OF SHORT WAVE LISTENING



SRX-30
Fror the advanced, keen short wave listener, the cholce of receiver has usualiy been For the advanced, keen sty $\begin{aligned} & \text { or wery good but very expensive equipment. We think } \\ & \text { betweap and nasty }\end{aligned}$ berween cheap and hasty or that listener with excellent performance at a reasonable cost and is the answer to this eternal problem.
The SRX- 30 provides AM. CW. USB and LSB reception on all frequencies from 500 kHz to 30 MHz . All right, so does your Sooper Blooper Mk. 3 but you can't set the Sooper Blooper dial to the frequency you want and be sure that it's correct! The SRX -30 tuning system is so simple to operate. You have a dial reading in MHz from $0-29$ and a main tuning dial reading $0-1000 \mathrm{kHz}$. So-if you know that Radio Slobovia is broadcasting or The $\mathbf{M H z}$ dial setting is not critical, as stability kHz dial to 295 and is guaran another problem in your Sooper Blooper Mk. 3: drift.
A further drawback to cheap receivers is massive image interference on the higher A further drawback to cheap receivers is massically 455 kHz . The cure for this frequencies due to the use of a low IF, SRican employs a first IF of around $40: \mathrm{MHz}-\mathrm{so}$ goodbye to first IF images. You could of course find the same system as this in the Racal RA17 series receivers; after all, the SRX-30 has sopied the basic idea from this very receiver. The big drawback to the RA17 (apart from the price !!) is that unless you have the muscles of a prize fighter, lifting the RA17 may send you for a holiday at Hernia Bay (staying at the Truss House?).
To summarize, the SRX- 30 covers 500 kHz to 30 MHz with excellent dial readout and reset accuracy; it has all mode (AM, CW, SSB) reception and is equally at home in broadcast or amateur bands; it has all the facilities of a top class communications receiver, RF gain, ane tuning, secectable sidebands, built in loud styling and all at an attractive price- $£ 158$ inc. VAT. Carr $£ 3$.
See it soon at your nearest stockist, you will be agreeably impressed.
For all that's good in Amateur Radio, contact:
LOWE ELECTRONICS LTD., 119 Cavendish Road, Matlock, Derbyshire. Tel: 06292430 or 2817 .
For full catalogue, simply send 45 p in stamps and request catalogue CPW.

## FANTASTIG HALF PRICE OFFER

 TANKBATTLE
T.V.GAME

AVAILABLE NOW
TANK BATTLE AY-3-87 10 I.C.
(Normal Price) $£ 21$ 50 OUR PRICE $610 \cdot 90$
TANK BATTLE PRINTED CIRCUIT BOAAD
Application and assembly notes $\quad 24.90$ OUR PRICE 62.90
TANK BATTLE BASIC KIT
(just add i. pushbutions and cases) $\quad$ £27.90 OUR PRICE £19.90
TANK BATYLE CASES $\qquad$ OUR PRICE $\mathbf{E 4 . 9 5}$ SOUND AND VISION MODULATORS
Built, Tested, Gyaranteed

* Hide behind barricades and avoid being tr

 trajectory $\star$ sound direct from the TV $\star$ realistic batele sounds derived
from a symthesiser
 All Components Guaranteed PRICES INCLUDE VAT and Post Packing
Make all cheques or postal orders payable to Teleplay
ACCESS * phone your order BARCLAY

Retail Shop and Demonstrations-
14 Station Road, New Barnet, Herts.
For further Details and Technical Help-mphone 01.441 2922
For extro speed phone your order on Barclay or Acess Cards



# NEW FROM BI-KITS! ALI20 AUDIO AMPLIFIER 

(WITH INTEGRAL HEAT SINK) BETTER THAN 50w RMS!

Out Power THD 1\%<br>Operating voltage range<br>Load<br>Frequency Response $\pm 1 \mathrm{db}$ Sensitivity for 50 watts into 8 ohms lnput lmpedance levels up to clipping /Nratio<br>Max. ambient operational temp. s/C Complement Size oxerall<br>50 watts min.<br>70 volts $50-70$<br>$50-70$ $8-16$<br>$8-960 \mathrm{hms}$ $25 \mathrm{~Hz}-20 \mathrm{kHz}$<br>2500 mV 50<br>$35 k$ ohms<br>$.05 \%$ max typically $\cdot 02 \%$<br>100 dBs $45 \mathrm{deg} . \mathrm{C}$<br>15 deg. C<br>$192 \times 89 \times 40 \mathrm{~mm}$<br>240gms FOR ONLY

## ALSO SPM 120 Stabilised Power Supply

AVAILABLE IN 3 ALTERNATIVE VOLTAGES-45, 55, 65 volts TO POWER THE FOLLOWING BI-PAK AMPLIFIERS:

SPM 120/45 Two AL60's up to 25 w per channel simultaneously $\mathbf{£ 4 . 9 5}+\mathbf{1 2 \frac { 1 } { 2 } \%}$ V.A.T.
SPM 120:55 Two AL80's up to,35w per channel simultaneously $£ 4 \cdot 95+12 \frac{1}{\%} \%$ V.A.T.
SPM 120/65 Two AL120's up to 50 w per channel simultaneously $\mathbf{£ 5} \cdot 95+12 \frac{1}{2} \%$ V.A.T. SPM 120/65 One AL. 250 up to $125 \mathrm{w} £ 5 \cdot 95+12 \frac{1}{2} \%$ V.A.T. Please add 25 p P \& P. to all orders

AC INPUT:


USE YOUR SPM 120 WITH ANY OF THESE!
AL 60. 25w (RMS) A MPLIFIER $£ 4.55+12 \frac{1}{2} \%$ V.A.T. 25 p. P \& P.
AL 80. 35w (RMS) AMPLIFIER $£ 7 \cdot 15+8 \%$ V.A.T. 25 p. $P$ \& P.
AL 250. 125w (RMS) AMPLIFIER £17.25 + 8\% V.A.T. 40p. P \& P.
PA 200. Pre-amplifier for use with all the above modules $£ 16 \cdot 30+12 \frac{1}{2} \%$ V.A.T. 40 p. P \& P.

DEPT. PW8, PO Box 6, Ware, Herts. COMPONENTS SHOP: 18 BALDOCK STREET, WARE, HERTS.

## ELEGTROVILIUE

All the many types of components we supply are BRAND NEW and guaranteed and onfliers. (No surplus, no seconds)

| I.C.smTTL 7400 Series |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7400 | 14p | 7410 | 14p | 7447 | 70p | 7474 | ${ }^{23} \mathrm{p}$ | 7491 | 71 p | 74121 | 27p |
| 7401 | 14p | 7413 | 22p | 7450 | 14p | 7475 | 45p | 7492 | $46 p$ | 74123 | 518 |
| 7402 | 14p | 7414 | 60 p | 7451 | 14p | 7476 | 32 p | 7493 | 40 p | 74141 | 54p |
| 7403 | 14p | 7420 | 140 | 7453 | 14p | 7480 | 41 p | 7494 | 66 p | 74151 | 60p |
| 7404 | 180 | 7430 | 14p | 7454 | 14p | 7482 | ${ }_{58 \mathrm{c}}^{61 \mathrm{p}}$ | 7495 | 57 p 63 p | 74154 | S0 |
| 7405 | 14p | 7440 | 14p | 7460 7470 | 14 p | 7483 | 74p | 7496 74100 | 63p | 74190 | 94p |
| 7407 | ${ }^{22 p}$ | 7442 7443 | 54p | 747 | 24p | 7486 | ${ }^{27}$ | 74104 | $4 \mathrm{4Op}$ | 74191 | 948 |
| 7408 7409 | 18 p | 7444 | 60p | 7473 | 23p | 7490 | 40p | 74107 | 27p | 74192 | 94p |
| U | COMPUTER |  |  | KES | GOOD |  | CARE | OF YOUR |  | ORDERS |  |

SIEMENS CAPACITORS*
World-famous for quality and depend-Word-famous for ally large stocks held. PCB TYPES 7.5 mm PCM 0.001 to PCB TYPES-7.5mm PCM 0.001 to P.015p each: 0.15
$0.068,0.17 p$ each

CERAMIC- 2.5 mm PCM 0.01, 0.022
CERAMIC- 2.5 mm PCM 0.01, 0.022
$4 \mathrm{p}: 0.033,0.047 \mathrm{pp}$ each: $0.068 \quad 6 \mathrm{p}$ 4p: $0.033,0.047$ 5p each:
5 mm PCM $0.17 \mathrm{p}: 0.22$ 10p.
5 mm PCM 0.1 7p: 0.22 10p.
ELECTROLYTICS-1/100, 10/25, ELECTROLYTICS-I
$10 / 63,100 / 25$, ete, etc. $10 / 63,100 / 25$, ete, etc. For full range see our current lists. RESISTORS
$\frac{1}{3}, \frac{1}{2}, \frac{3}{4}$ watts- $2 p$ each*: metal film, metal oxide and 1 watt carbon 5 p each*: Good quantity discounts. Magnetic field dependent from $\& 1 \cdot 50$. Hall effect from $£ 1 \cdot 23$.

SIEMENS TRANSISTORS
Sificon npn and pip from $8 p$ each: LEDs, red 19p: yellow or green 23p LEDs, red 19p: yellow or green 23p
(3 or 5 mm ): Photo transistors from ( 3 or 5 mm ): Photo transistors from 76 p

## DISCOUNTS

$5 \%$ if list value of order over $£ 10$
$\mathbf{1 0 \%}$ if list value of order over $£ 25$ Discounts available where cash, P.O. or cheque is sent with order.
V.A.T,-Add $8 \%$ to value of order V.A.T.-Add $8 \%$ to value of ord $12 \frac{1}{2} \%$ with items marked*. or $12 \frac{1}{2} \%$ with items marked. (No V.A.T. on overseas orders). Goods sent post free on C.W.O. If under, add 27 p per order

For all round sacisfaction-be safe-buy it from ELECTROVALUE


Dept PW8, 28 St Judes Rd, Englefield Green, Egham, Surrey TW20 0HB.
Phone Egham 3603: Telex 264475
Northern Branch (Personal shoppers only) 680 Burnage Lane, Burnage, Manchester M19 INA. Phone (06I) 4324945.

## Jones Supplies



Prices. Please add $8 \%$ VAT. P. \& P. $10 p$, except where shown Retail \& Mail order.

Open 7.30p.m. M. Th. Fri. Sat.

## Jones Supplies

588, Ashton Rd., Hathershaw, Oldham, Lancs. 061-652-9879

## BADO EXCHINGE LTD.



## NEW ELECTRONIC MASTER KIT

WITH SPECIAL V.H.F. TUNER MODULE TO CONSTRUCT. A completely Solderless Electronic Construction Kit, with ready drilled Baketite Panels, Nuts, Bolts, Wood Screws etc. Also in the kit: Transistors, Capacitors, Resistors, Pots, Switches, Wire, Sleeving, Knobs, Dials, $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker and Speaker Case, Crystal Earpiece, etc. Also ready wound Coils and Ferrise Rod Aerial. These are the Projects ou can build with the components supplied with the kit, together with comprehensive Instruction Manual Pictorial and Circuit Diagrams.
PROJECTS: V.H F. Tuner Module * A.M. Tuner Module \& M.W. L.W. Diode Radio * Six Transistor V.H.F. Earpiece Radio $t$ One Transistor M.W. L.W. Radio $t$ Two Transistor Metronome with variable V.H.F. Earplece Rado K beat control t. Three Transistor and Diode Radio M. W. L. W. Kilaror traffy MultiTester $\&$ Four Transistor Transistor V.H.F. Loudspeaker Receiver * Variable A.F. F Five Transistor Push Pull Amplifier $\rightarrow$ Sensitive and Diade M.W. L. W. Radio $\&$ A.F. R.F. Signal njector $\star$ Five Transior Push Pull Ampliger A Sensive Hearing Aid Ampifier $A$ Three Transistor and Dish Pull Amplifier $t$ One Transistor Class A Output Stage to drive Loudspeaker $*$ Sensitive Tranistor Push Pull Amplor Pre Amp MW Pre-Amp K ransistor Tester * Sensitive Mree Transiscor Regeneran Regenerative Radio t Five Mransistor VHF Tuner \& Three Transistor Code Practice Oscillaror \& Five Transistor Regenerative Short Wave Radio $t$ Four Transistor and two Diodes M.W. L.W. Loudspeaker Radio * Seven Transistor M.W. L.W. Radio with Loud́speaker Push Pulloutput $\mathbf{L 1 4 - 9 9}+\mathrm{P}$ \& P \&I•IO * One Transistor Home Broadcaster.


MULTIBAND Y.H.F. AND A.M. RECEIVER.
I3 TRANSISTORS AND SIX DIODES. QUALITY 4" ROUND LOUDSPEAKER.
WITH Multiband V.H.F, section covering Mobiles, Aircraft, T,Y, Sound, Public Service Band, Local V.H.F. Stations, etc. and Multiband A.M. section with Airspaced Tuning Capacitor for easier and accurate euning, covering M.W.I, M.W.2, L.W. Three Short Wave Bands S.W.I, S.W.2, S.W. 3 and Trawler Band. Bunitt-in Ferrite Rod Aerial for Medium Wave, Long Wave and Trawler Band, etc., Chrome Plated 7 section Telescopic Aerial, angled and rotatable for peak Short Wave and V.H.F. reception. Push-Pull output section 600 mW Transistors. Gain, Wave-Change and Tone Controls. Plus two Slider Switches.
using Powered by P.P. $9-9$ volt Battery.
Complete kit of parts including carrying strap. $\mathbf{E 1 4 . 7 9}$ p \& P El-10
Building instructions and operating Manuals.

NEW
MODEL
R.K.I

MultiBand A.M. Re-
ceiver. M. W. L. W. Trawler Band and Three Short Wave Bands. Seven Transistors and Four Diodes. Push Pull Output stage. $\mathbf{5}^{\prime \prime} \times \mathbf{3}^{\prime \prime}$ Loudspeaker. Internal Ferrite Rod Aerial. Kit includes all parts to build it up including Carrying Strap, Rubber Feet and ready-drilled Panels. Comprehensive Instruction Manual for stage by stage construction. Uses P.P. 9 Nine Volt Battery.

## ELECTRONIC

 CONSTRUCTION KITE.C.K. 2 Self Contained Multi-Band 8 transistors and 3 diodes Push pull output. 3in. loudspeaker, gain control, 7 section chrome plated telescopic aerial V.H.F. tuning capacitor, resistors, capacitors, transistors etc. Will receive T.V. sound, public service band, aircraft, V.H.F. local stations, etc. Operates from a 9 volt P.P. 7 battery (not supplied with kit)

Complete kit of parts £7.95 + $P \& P$ and $\operatorname{lns} .90 p$




## RADIO CONSTRUCTION KIT Q7

A compact small radio kit covering Medium Wave and Long Wave bands. Rugged Micanite construction and simple square design allows for easy carrying design allows for easy carrying
and positioning. Ideal for the and positioning. Ideal for the Garage, Workroom, Kitchen, etc., has seven Transistors and Four Diodes, quality Loudspeaker, ready wound Ferrite Rod Aerial and Carrying Strap. Size $4 \frac{3 n^{\prime \prime}}{} \times 4 \frac{3^{\prime \prime}}{} \times \frac{43^{\prime \prime}}{}$.

All parts and plans excluding 9v PP7 Battery.



Total Building Costs $\mathbf{6 6 \cdot 9 5}+\mathrm{P} \& \mathrm{P}$ and ins. 90 p
ALL PRICES INCLUDE VAT

V.H.F. AIR CONVERTER KIT

Build this converter kit and receive the aircraft band by placing it by the side of a radio tuned so medium wave or the VHF band and operating as shown in the instructions supplied free with all parts. Uses a retractable chrome plated telescopic aerial, gain control, V.H.F. tuning capacitor, transistor, etc.
All parts including case and plans
$\{4.95+P$ \& $P$ and
ins. 60p

To: RADIO EXCHANGE LTD 6IA High Street, Bedford MK40 ISA Tel.: 023452367 REG NO. 788372 - Callers side entrance "Lavells" Shop. Open 10-I, 2.30-4.30 Mon.-Fri. 9-12 Sat.
$\square$
$\|^{*}$


1

1
1 1

## FANTASTIC SPEAKER OFFER

TWIN 12 " SPEAKER CABINET PLUS PAIR 12" SPEAKERS
of Robust vibration-proof construction. Fitted protective corner pieces, Resilver effect trim. Sunken jack socket with escutcheon at the rear.
Pair $12^{\prime \prime} 20 \mathrm{w}$ speakers for wiring in series and front While stocks last mounting in above Whe stocks Three items supplied to complete the 40 wat unit for lead guitar e5 (f)



50 WATT AMPLIFIER SAGRIFICE Limited
stocks of stocks of TITAN
TA/S0A TA/50A to make way for a re-
styled model. Solid state, 3 sep. controlled inputs plus Master control. Bass, Treble \& Presence Controls. Vynide covered cab \& 8 monthly payments $£ 4 \cdot 72$ (Total $\& 8$ monthly payments $£ 4 \cdot 72$ (Total
$£ 45 \cdot 71$ ). Matching Cabinets $1 \times 12^{*}$


TITAN GROUP/DISCO SPKRS T12/45R 12* $45 \mathrm{w} \quad \begin{aligned} & \text { Value RSC Price } \\ & £ 15.80 \quad £ 11.95\end{aligned}$ $\begin{array}{llll}\text { T12/60R } & 12.60 \mathrm{w} & £ 22.50 & £ 13.95\end{array}$ T12/100 12" 100 w £36.00 £25.95 T15/60 15" $60 \mathrm{w} \quad £ 26.00$. £17.95 $\begin{array}{llll}\text { T15/70 } 15^{\prime \prime} 70 \mathrm{w} & £ 28.00 & £ 19.95 & \text { Rating KMS } \\ \text { T15/100 } 15^{\prime \prime} 100 \mathrm{w} & £ 41.00 & £ 29.95 & \text { Imp } 815\end{array}$ $\begin{array}{llll}\text { T1S/100 15 100w } & £ 41.00 & £ 29.95 & \text { mpp } 8 * 15 \\ \text { T18/100 } 18^{\prime} 100 \mathrm{w} & £ 47.00 & £ 36.95 & \text { ohms }\end{array}$ $18 / 10018 \cdot 100 w$, under $£ 18$, over this add 6 p per $£ 1$ CABINETS FOR ABOVE Heavy duty, finished in black Vynide with Vynalr fronts, protective corner pieces, various sizes cut-outs. TE1 $1 \times 12^{\prime \prime}$ £11.95 pieces, various sizes cut-outs. TE1


UD 150 Rec. Micicid

with system only
$\star$ DISCOMAJOR
with integral Power Amplifier.
$\star$ TWIN FULL SIZE GARRARD

* CARTRIDGES with Diamond Styli.
* 3 SEPARATE VOLUMECONTROLS
for each turntable and Mic.
FULL HEADPHONE
MONITORING FACILITIES
CONSOLE COMPLETE WITH LID R OUT LOUDSPEAKERS including $12^{\prime \prime}$ UNITS


## ALL RSC PRICES INCLUDE VAT

TDI DISCO CONSOLE
Incorporating twin BSR type turntables and Sonotone or Acos Cartridges with diamond styli. Separate Vol. controls for each FACILITIES, plus Treble and Bass Controls, Separate Innut Black Vynide covered $\mathbf{4} 19.95$ Cabinet with lid
Os Dep $\& 16.49$ \& 18 f 'ntity pymts. £6.75 (Total £137.99) Carr. £3.50. TD2S STEREO
$\subset 125.00$ VERSION


Barcleyeard \& Access
PEDNE ORDERS quoting
CARD NUMBER accepted ${ }^{\text {qugs }}$ quoting
 New Branches at LEEDS, HANLEY and WOLVERHAMPTON
 MA11 053257831. TERMS C.W.O. OR C.O.D. Fo. ...D.D. WDder BE POSTAGE GOp PER

OPEN ALL DAY SATS (5 Day Waek.)
BRADFORD 10 North Parade (Closed Wed.). Tel. 25349 BRAMINGHAM 30/31 Great Western Arcade.
(Closed Wed.) ${ }^{\text {Elel. }}$. 021-236 1279 CARLISLEB English Street (Closed Thurs.). Tel. 33744 COVENTRY 17 Shelton Sq., The Precinct.

 DONCASTER 3 Queens gate, Waterdale Centre. EDINBUREH 101 Lothian Rd. (Closed Wed.) Tel. 2295950 ELLASGOW 326 Argyle St. (Closed Tues.). Tet. $041-2484458$

HANLEY E. \& O.E. All items subject to availability HANLEY Stoke-on-Trent, 44 Piccadilly Tel. 267764 HULL 7 Whitefriargate (Closed Thurs.). $\quad$ Tel 20505 $\star$ LEEDS $16-18$ County (Mecca) Arcade, Brigga LIVERPOOL TEMPORARILY (Cliosed Wed.) Tel. 449609 LIVERPOOL TEMPORARILY INOPERATIVE due to
LONDON 238 Edgware Road, W. 2 (Closed Thurs.). 7 .i. 7231629 *MANCHESTER

60A Oidham Street (Closed Wed.). Tel. 2362778

MIDDLESBROUGH 103 Linthorpe Rd. (Ct. Wed.) Tet. 247096 MIDDLESBROUGH 103 Linthorpe Rd, (C. We
NEWCASTLE UPON TYNE 59 Grainger St. NOTTINGHAM 19/19A Market (Closed Wed.). Tel. 21469 (CHEN SHEFFIELD 13 Exchange Street (Castie Mkt. Blds.) WOLVERHAMPTON $\begin{gathered}6 \text { Wulfrun Way } \\ \text { (Closed Thurs.). Tel. } 26612\end{gathered}$大MUSICAL INSTRUMENTS \& ACCESSORIES in stock at these branches


## SINCLAIR PRODUCTS

Microvision TV now in stock $£ 200$. PDM35 digital multimeter £25-95. Mains adaptor
$£ 3 \cdot 24$. De-luxe padded case £3.25. 30 kV probe £18-36. New DM235 digital meter P.O.A. Cambridge programmable calculator $£ 13.15$. Prog. library $£ 4-65$. Mains adaptor $\mathrm{E} 3 \cdot 20$.
S-DECS AND T.DECS*
 £4.52. $\mu \cdot \mathrm{DeCB}$ E6.73. 16 d
adaptors with sockets $£ 2 \cdot 14$.
TV GAMES KITS
TV GAMES KITS Send sae for free data. Tank batile chip
AY-3-8710 plus economy kit $£ 17-95$.
Stunt mor chale chip AY-3-8760.1 AY-3-8710 por cycle chip AY-3-8760. 1
Stunt motor
plus economy kit $£ 7$. 95 . to game paddie plus economy kit $£ 17 \cdot 95$. To game paddie
2 chip AY-3-8600 plus economy kit $£ 14 \cdot 70$. 2 chip AY-3-8600 plus economy kit $£ 14 \cdot 70$.
AY- $3-8500$ chlp plus economy kit $£ 8.95$. AY-3-8500 chlp plus economy kit $£ 8 \cdot 95$.
Modified shoot kif s4.96. Riflo kit $£ 4.85$.
 controls $£ 1 \cdot 70.4 \cdot 43 \mathrm{MHz}$ pal
ASSEMBLED TV GAMES
Attractively cased. Tank battle game
$£ 39 \cdot 95$. Stunt motor cycle game $£ 39 \cdot 95$. £39.95. Stunt motor cycle gatie $£ 39 \cdot 95$.
4 game models (tennis, football, squash and pelota):- black and white £11-95.
Colour £14:50. TV games mains adaptor Colour
£ $3 \cdot 10$.
MAINS TRANSFORMERS
 $\approx 2 \cdot 60.12-0-12 \mathrm{~V} 50 \mathrm{~mA} 79 \mathrm{p}, 100 \mathrm{~mA} 90 \mathrm{p}, 1 \mathrm{~A}$

JC12, JC20 AND JC40 AMPLIFIERS
A range of integrated circuit audio amp A range of integrated circuit audio ampltcircults. JC12 6 watts $£ 1$ - 60 . JC20 10 watts 22-95. JC40 20 watts $£ 4 \cdot 20$. Send sae for free data on our range of matching power and pre-amp kits.
FERRANTI 2N414
IC radio chip $£ 1 \cdot 05$. Extra parts and pcb for radio £3.85. Case £1. Send sae for free data.
PRINTED CIRCUIT MATERIALS PC etcing kits:- economy £1 70 , stan-
dard $£ 3.82$. 50 sq ins pcb 40 p .1 lb FeC1 e1 05. Etch resist pens:- economy 45 p , dalo 73p. Small drill bit 20p. Etching dish 68p. Laminate cutter 75p.
BATTERY ELIMINATOR BARGAINS
TV games power unit stabilized $7 \cdot 7 \mathrm{~V}$

100mA £3.10. 3-way models with switched output and 4 -way mult-lack:- $30.3 / 4 \frac{1}{2} / 6 \mathrm{~mA}$ radio modeis same size as PP9 battery. With press stud connectors. $9 \mathrm{~V} £ 2.85$.
 recorder mains unit $71 V 100 \mathrm{~mA}$ with 5 pin din plug $£ 2.85$. Car convertors 12 V dc input. Output $9 V 300 \mathrm{~mA} £ 1-50$. Output $7 \frac{1}{3}$ V $300 \mathrm{~mA} £ 1 \cdot 50$. Output $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ 3-way swltched
BATTERY ELIMINATOR KITS
Send sae for free leafiet on range. 100 mA radio types with press stud connectors
$4 \frac{1}{2} \mathrm{~V} £ 1 \cdot 80.6 \mathrm{~V}$ £1-80. $9 \mathrm{~V} £ 1 \cdot 80.4 \frac{4}{2}+4 \frac{1}{2} \mathrm{~V}$
 sette type 7 l V i 100 mA with din plug $£ 1-80$. Heavy-duty 13 way types $4 \frac{1}{1 / 6 / 7 / 7 / 81 / 111 / 13}$ $14 / 17 / 21 / 25 / 28 / 34 / 42 \mathrm{~V}$. 1 A A $£ \cdot 65$. 2 AA £7.25.
Transistor stabilized 8 -way types for
 £3.20. 1 A £ $6^{2} 40$. Car convertor kit
input 12 V d. Output $6 / 7 \frac{1}{2} / 8 \mathrm{~V} 1 \mathrm{~A}$ stabilized input 12
£1. 95.
BULK BLY OFFERS
Minimum purchase $£ 10$ any mix. 12 W
resistors $5 \%$ E12 1 ohm to 10 M 0.9 p . 7418 dil 20p. NÉS5S 8 dif 32p. Dalo pens $59 p$ Plastic equivs of 8C108/BC109 3.8/4.4p 1N41481.9p. BC107 7p. BC109 7p. BC212
 0.33 mf 2.5p. Zener diodes 400 mW E24 $2 \vee 7$ to 35 V 5.5 p .
BI-PAK AUDIO MODULES
Send sae for data. S450 tuner £23.55. AL60 £4.86. PA100 $£ 16 \cdot 71$. SPM $80 £ 4 \cdot 47$ BMT80 £5'95. MK60 £38-74. Stereo 30 compo
COMPONENTS
Resistors $5 \%$ carbon E 1210 to 10 M . TW ip 1W 2p. Polyester capacitors 250 V E6 - 01 to $0668 \mathrm{mf} 3 \frac{15}{\mathrm{p}} .0 \cdot 1 \mathrm{mf} 2 \mathrm{p}$. $\cdot 15 \mathrm{mf} 5 \mathrm{p} \cdot 22 \mathrm{mf} 4 \mathrm{p}$. $-33,47 \mathrm{mf} 6 \mathrm{p}$. Polystyrene capacitors capacitors 50 V E12 22 pf to $1000 \mathrm{pt} 2 \frac{1}{21} \mathrm{p}$ E6 1500 pf to 47000 pf $2 \frac{1}{2} p$. Myiar capacitors $100 \mathrm{~V} \cdot 001 \cdot 002,005 \mathrm{mf} 4 \mathrm{p} \cdot 01,02 \mathrm{mf} 4 \frac{1}{2} \mathrm{p}$.
 2 mf 5 p .25 V 5 mf 5 p . 10 mf 4 p . 16 V 22 mf 5 p .
 7 $\frac{1}{2} \mathrm{p}$. Presets pots sub-minlature 0.1 W $7 \frac{1}{2}$ p. Presets pots 400 to $4 \mathrm{M} 78 \frac{1}{2} \mathrm{p}$. Potentio. meters $\frac{t}{4}-4 \mathrm{K7}$ to $2 \mathrm{M} 2 \log$ or lin. Single
$\mathbf{2 8 p}$. Dual 76 p .

## SWANLEY ELECTRONICS

DEPT, PW, 32 Goldisel Rd., Swanley, Kent BR8 8EZ
Mall order only. Please add 30 p to the total cost of order for postage. Prices include VAT. Overseas customers deduct $7 \%$ on items marked * and $11 \%$ on others. Official credit orders welcome.

## GLOUCESTER INDUSTRIAL SALES AND AUCTIONS LTD

Eastington Trading Estate, Nr. Stonehouse Gloucester

Tel: STONEHOUSE 4118
(M.5. MOTORWAY-EXIT No. 13)

We hold regular monthly Auction Sales of mostly New Electronic and Electrical Goods consisting of Transistors, Triacs, Integrated Circuits, Diodes, Capacitors and Resistors, together with Fractional Motors, Transformers, Power Packs, etc. etc. Phone or write to be put on our Auction Mailing List.
Why not get in touch with our Mr. Jack Bailey and enquire about our terms for the disposal of your surplus stocks etc. through our Auctions.

## Only £49.50 <br> INCLUSIVE OF VAT \& P\&P



Electronics Ltd. 9, Radwinter Road Saffron Walden,
Essex CB113HU
Tel: (0799) 21918.

443 Millbrook Road Southampton SD1 OHX Tel:CO703) 772501

All prices quoted include VAT. Add 25p UKBFFPO postage. Most orders des patched on day of receipt, SAE with
enquiries please. MINIMUM ORDER VALUE \&1. Oficial orders accepted
from schools, etc. (Minimum invoice charge e5) Export Wholesale enquiries welcome. Wholesale list now available ponents always wanted.

## DIODE SCOOP!!!

We have been fortunate to obtain a large quantity of untested, mostly unmarked glass silicon diodes. Testing
a sample batch revealed about $70 \%$ a sample batch revealed about high voltage rects and zeners may all be included. These are being offered at
the incredibly low price of $£ 1 \cdot 25 / 1000$ or a bag of 2500 for $£ 2 \cdot 25$. Bag of 10,000 £8. Box of $25,000 £ 17 \cdot 50$. Box of 100,000 £60.

## DISC CERAMIC PACK

Amazing varlety of values and voltages from a few pF to $2 \cdot 2 \mathrm{uF!} 3 \mathrm{~V}$ to 3 kV !
$200 £ 1500 £ 2 \cdot 251000 £ 4 \cdot 00$.

## TIL PANEL

52 logic IC's including $32 \times 74161$ ( 4 bit binary counter) +16 tant bead caps, R's, C's, etc. Over $£ 30$ worth of TTL'
alone!! ONLY $\mathbf{~} 3.00$.

## PC ETCHING KIT MK III

Now contains 200 sq. ins. copper clad board, 1 lb . Ferric Chloride, DALO etchresist pen, abrasive cleaner, two miniature drill bits, etching dish and instruc-
tions.

## VEROBOARD

Our packs of vero offcuts are one of our biggest sellers-and no wonder, they are amazing value!! Each pack contains 7 or 8 pieces to make up a totai area of price. \&i-30 each and are available as follows:
Pack A all $0.1^{\prime \prime}$ pitch
Pack B all $0.15^{\prime \prime}$ pitch
Pack B all $0 \cdot 15^{\prime \prime}$ pitch
Pack C mixed $0.1 \& 0.15^{\prime \prime}$
Pack D all $0.1^{\prime \prime}$ plain
Also available by weight 4 lb E 3.95 10lbs
£ 3.59 E32. 50
Regular size vero
$17 \times 3^{\frac{3}{2} \times 0.1 "} £ 2.00,10$ strips $£ 15$ $17 \times 3 \frac{3}{\frac{3}{2}} \times 0.15^{\prime \prime} £ 1 \cdot 76 ; 0$-1" plain $£ 1-63$ DIP Breadboard size $6,15 \times 4.5^{\prime \prime}$, can accommodate $20 \times 14$ pin lCs $£ 2 \cdot 35$
VQ Board, size $148 \times 75 \mathrm{~mm} 0.1^{\prime \prime}$ pitch. construction with IC's. Layout sheet provided 85 p

## EDGE CONNECTORS

Special purchase of these $0.1^{\prime \prime}$ pitch double-sided gold-plated connectors enables us to offer them at less than one-third their original list price!
18 way $41 \mathrm{p} ; 21$ way $47 \mathrm{p} ; 32$ way 72 p ; 40 way 90 p .

## SOLDERING IRONS

Antex model C-15W gen. purpose iron. Our bestseller at $£ 3 \cdot 50$
Antex model CCN-15W element with ceramic shaft. Very low leakage. £3.90 Antex MLX12. This is a 12 V iron, ideal for car and boat use. 25 W rating. Comes complete with large crocodile clips
fitted+booklet "How to solder" and strong PVC carrying case $£ 4.29$

## COMING SOON

Look out for details of the GREENWELD 100 W amplifier kit
and an IC amplifler kit . .
and some incredible component bargains!!

## SPECIAL TRANSISTOR

 OFFERSPN108 (BC108)
PN108 (BC108)
PN109 (BC109)
PN70 (BCY70)
PN71 (BCY71)
PN72(BCY72)
PN72 (BCY72)
MSPS 1218(2N3702)
18 for $£ 1$

CLOCK CHIPS
MK50253N $£ 3.95$.

SEND 45 p FOR OUR $1977 / 8$ CATALOGUE. CONTAINS 50p DISCOUNT No. 2 GIVES DETAILS OF OVER 100 ITEMS SLASHED 50\%!!
(Send SAE if you've aiready got cat.) Our latest Bargain Sheet is FREE, send SAE for your copy

## COMPONENT PACKS

200 minlature resistors, $\frac{1}{8}, \frac{7}{4}, \frac{7}{2} \mathrm{~W}$ £1.00 400 assorted resistors, $\frac{1}{4}, \frac{1}{2}$, 1 W £ $1 \cdot 30$ 200 poly, mica, ceramic capacitors $£ 1-20$ 200 electrolytics, but many unmarked 100 Mullard C280 polyesters, $0.01-1 u F$. $100 \cdot \mathrm{M}$
$\mathrm{E} 1 \cdot 00$
150 wirewaund resistors $2-10 \mathrm{~W}$ £1-60 200 PC resistors, $\frac{1}{4}$ and $\frac{1}{2} \mathrm{~W} 60 \mathrm{p}$ 20 asstd pots, inc. stiders $58 \cdot 70$
200 transistors, mostly power devices. About $75 \%$ usable £t 35

## LOW COST PLASTIC BOXES

Made of high impact ABS. The lids are Interior of box has PCB guide slots (except $V 219$ )
V 210
$80 \times 62 \times 40 \mathrm{~mm}$ black $\quad 58 \mathrm{p}$ $\begin{array}{lll}\mathrm{V} 210 & 80 \times 62 \times 40 \mathrm{~mm} \text { black } & \text { 58p } \\ \mathrm{V} 213 & 100 \times 75 \times 40 \mathrm{~mm} \text { black } & \mathbf{7 2 p}\end{array}$ $\begin{array}{lll}\mathbf{V} 216 & 120 \times 100 \times 45 \mathrm{~mm} \text { black } & \mathbf{8 6 p} \\ \mathbf{V} 219 & 120 \times 100 \times 45 \mathrm{~mm} \text { white } & \mathbf{8 6 p}\end{array}$

## SPECIAL SUMMER OFFERS

## AUDIO IC's

76003N $£ 1 \cdot 40$. 76013N £1-00.
76023N $£ 1-00$. 76033 N £1-40. LM380 80p
LINEAR IC's etc.
741 (8DIL) 18p BD131 24p $\begin{array}{lrll}\text { 555 } & \text { 25p } & \text { BD132 } & \text { 25p } \\ \text { 1N4148 } & \text { 2p } & \text { 2N3819 } & \text { 13p }\end{array}$

## CAPACITOR BARGAINS

$800 \mathrm{mfd} 250 \mathrm{~V} 76 \times 38 \mathrm{~mm} 62 \mathrm{p} ; 400 \mathrm{mfd}$ $400 \mathrm{~V} 76 \times 38 \mathrm{~mm} 78 \mathrm{p} ; 1500 \mathrm{mfd} 40 \mathrm{~V}$ PC $38 \times 18 \mathrm{~mm} 10 \mathrm{~mm} 71000 \mathrm{pF} 200 \mathrm{mfd}$ $£ 1.05 \mathrm{mfd} 30 \mathrm{~V}$ discs 100 for $\mathrm{E}\{.68$ -1 mfd 20 V discs 100 for $£ 2.36$
$2 \cdot 2 \mathrm{mfd} 3 \mathrm{~V}$ discs 100 for £ $\mathbf{2} \cdot \mathbf{9 4}$
$4 \cdot 7 \mathrm{mfd} 100 \mathrm{~V}$ polyester 6 for $£ 1$

## POT BARGAINS

Sta ndard size pots-spindle is 12 mm long ${ }^{\text {In }}$ the following values only;
10 k lin; 4 k 7 semi -log; 680 R lini 2 k 7 lin . 10 for Ef any mix.

## VEROCASES

Plastic top and bottom ally panels fron and back

| and back | $154 \times 85 \times 40$ | $\mathbf{£ 2 . 5 3}$ |
| :--- | :--- | :--- |
| 1237 | $154 \times 85 \times 60$ | $\mathbf{£ 2} \cdot \mathbf{7 9}$ |
| 1238 | 159 |  |
| 1239 | $154 \times 85 \times 80$ | $£ 3.32$ |
| 3007 | $180 \times 120 \times 40$ | $£ 3.30$ |
| 3008 | $180 \times 120 \times 65$ | $£ 3.50$ |
| 3009 | $180 \times 120 \times 90$ | $£ 3 \cdot 74$ |
| 1410 | $205 \times 140 \times 40$ | $£ 3 \cdot 51$ |
| 1411 | $205 \times 140 \times 75$ | $£ 4.05$ |
| 1412 | $205 \times 140 \times 110$ | $£ 5 \cdot 12$ |

## VERO PLASTIC BOXES

Professional quality two tone grey polyPyrene with threaded inserts for mount ing PC boards
$\begin{array}{lll}2518 & 120 \times 65 \times 40 & £ 2.17 \\ 2520 & 150 \times 80 \times 50 & £ 2.45 \\ & 1822 & 188 \times 110 \times 60\end{array}$

## SLOPING FRONT BOXES

$\begin{array}{lll}1798 & 171 \times 121 \times 75 / 37.5 & £ 4 \cdot 19 \\ 2523 & 220 \times 174 \times 100 / 53 & £ 6.90\end{array}$
Potting box. $79 \times 49 \times 24 \mathrm{~mm}$ black or white $40 p$
Hand controller box $94 \times 61 \times 23 \mathrm{~mm}$ White 64p

We keep a very large range of VERO products, including their recently ntroduced G range II boxes. SAE for their catalogue.

OSMOR 10V REED RELAY COILS 1 k ohm
coif) to fit ${ }^{\text {th }}$ reeds (not supplied) 2 for 50 p . coil) to fit $t^{\prime \prime}$ reeds (not supplied) 2 for 50p.
HF CHOKK wound on $\dot{q}^{\prime \prime} \times 1^{\prime \prime}$ long ferrites. 4 for 50 CH .
VHF CHOKES

DUAL TO18 HEATSINKS 1
with screw-in clamps. 3 for 50 .
MAINS TESTER SCH2 MAINS TESTER SCREWDRIVERS to 500V. Standard size 56p. Large 70p.
RADIO PLIERS $5 \sum^{\prime \prime} £ 1 \cdot 80.6 \sum^{\prime \prime} £ 2 \cdot 00$.
DIAGONAL SIDE CUTTERS $5 \mathbf{t}^{\prime \prime} \mathbf{~ £ 2} 20$. sMALL SIDE CUTTERS LJ2. Standard E4.00. Lu7 (with wire holding device) EA. 50 . MINIATURE FILE SETS. Set of $6 £ 2 \mathbf{2 0}$. Set of 10 E3- GB (Round, flat, etc.)
TAP AND DIE SETS (18 piece) contain 1
each of $0.2 .4,6,8$, BA SIZES in Dies, Plug each of 0.2 .4 . 6,8, BA SIZES in Dies, Plug
 LARGE ELECTROLYTIC PACKS. CO LARGE ELECTROLYTIC PACKS. Conlow and high voltage types, over 40 pleces, £ $3 \cdot 00$ per pack ( $+12 \frac{1}{2} \%$ VAT).
Slider Switches. 2 pole make and break (or can be used as 1 pole change-over by linking can
the two centre plns), 4 for 50 p .
A NEW RANGE OF QUALITY BOXES 8 INSTRUMENT CASES.
Aluminium Boxes with lids

| A ${ }^{\text {B }} 10$ | $5 \frac{1}{4} \times 4 \times 1 \frac{1}{2}$ |  |  |  | \% 75 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AB13 |  | $\times 4$ | $\times 2$ |  |  |
| AB14 |  | $\times 5$ | $\times$ |  | 21-25 |
| AB15 | 6 | $\times 6$ | $\times 3$ |  | E1. 50 |
| AB16 |  | $\times 7$ | $\times 3$ |  | E1.75 |
| AB17 | 10 | $\times 4$ | + $\times 3$ |  | 赵1.50 |
| AB25 | 6 | $\times 4$ | + 3 |  | £4. 25 |

Vinyi Coated instrument Cases
Light Blue tops and plain lower
Vinyt Coated Instrument Cases
Light Blue tops and plain lower sections.
Very smart finish
 MAINS TRANSFORMERS. Type $15 / 300$ MAINS TRANSFORMERS. Type $45 / 100$, $240,220,110,0 \mathrm{~V}$ Input. 45 V at 100 mA output,
E 1.50 each.

## PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

 A NEW RANGE OF SPEAKERSCABINETS.
BRAND
AEW B B AT BARGAIN PRICES. CELESTIAN $8^{\prime \prime} \times \mathbf{5}^{\prime \prime}$ ELIPTICAL
SPEAKERS SPEAKERS, 20 ohm, 3 watts rated, $\mathrm{E1-50}$
 NETS. Smart woodgrain Formica type finish
with nylon grille. Overall height $23^{\prime \prime} \times 12^{\prime \prime}$
 wide. Contain three ${ }^{15}$ ohm bi"' $^{\prime \prime} \times 4^{4 /}$ Full
range speakers in paraliel +100 V line transtormer (easily disconnected for 5 ohm operation). $£ 7.50$ each (or 2 for $£ 14 \cdot 00$ ) +
TYPE MYO4 CEILING SPEAKERS. White piastic fascia $10^{\prime \prime}$ "s quare, for recess mounting into ceiling, with $8^{\prime \prime}$ dia. 15 ohm full range speaker EA:00 each +12 12 $\%$ VAT. NET. Smart woodgrain Formica type finish
 weep (tapering), Containing $10^{\prime \prime}$ wide $\times{ }^{\text {round, }} 15$ ohm full range speaker + 100V line trans former, 17 .00 each +121 VAT.
TYPE HTA HOTELSPEAKER CABINET, Wood veneered, $12^{\frac{7}{7}}$ wide $\times 5 \frac{1}{\prime \prime}^{\prime \prime}$ high $\times$ $3 \hat{a}^{\prime \prime}{ }^{\text {I }}$ deep, with alumindum grille + volume control and 4 way + off switch panels on front. Very smart. Contains 3 ohm $5^{\prime \prime} \times 3^{\prime \prime}$ eliptical speaker +100 V line transformer
 dia, 15 ohm, $\mathbf{5 5}$ 00 each (or 2 for $£ 9.00$ ) + SEMICONDUCTORS ESX20(VHFO Sc/Mull). 3 for 50 p .

 BFY51 Transistors. 4 tor 60 p . PNP audio type TO5 Transistors, 12 for 25p
 2 N 3819 Fet., 3 for 60 p . ${ }^{8 C 148}$ NPN SLLCON, 4 ior 50 p. BAY 31 Signal Diodes, 10 tor 35p. iN4148 (IN914) 10 tor 25 p . BC107 (Metal can) 4 for 50 p SCRs 400 V at 3 A . stud type, 2 for $\mathrm{E}_{1} \cdot 00$. $15 \mathrm{~A}, 90$ Watts, Flat pack $t y p e, 2$ for $£ 1.50$. GERNANIUM DIODES, approx 30 for 30 p . 741 CG Op amps by RCA, 4 for $£ 1$.

SPEAKER CABINET TYPE M321, White matt finish wood cabinet with white sprayed cloth grille, $9^{\prime \prime} \times 9^{\prime \prime} \times 41^{\prime \prime}$ deep, containing $6 \frac{11}{\prime \prime}$ dia, 15 ohm full range speaker, with 100 V ne transiormer. $\mathbf{£ 4} 50$ each or 2 for $£ 8.00$ 8-TRACKCARTRIDGE PLAYER UNITS with internal mains psu and 25 watt mono amplifier 100 V inne. To play standard -track cartiages. Al contained in a smart eneered wood $\times 11^{\prime \prime}$ deep supprox. 14 circuits. Brand new and boxed. SPECIAL OFFER £ $35 \cdot 00$ each. $+12 \frac{1}{2} \%$ VAT.
VIDICON SCAN COILS (Transistor type, ut no data) complete wilth vidicon base每 6.50 each. Brand New. 12V CONTINENTAL TYPE PLUG-IN Bases for above (only supplied with relays) GLAp each beAd FEEDTHROUGH INSU. LATORS. Solder-in type, overall dla. approx. 5 mm , Pack of approx. 50 for 50 p . DIE-CAST ALUMINIUM BOXES
Send for Latest Price List.
PLASTIC PROJECT BOXES with screw on Ilds (in black ABS) with brass inserts. Type NB1 approx $3 \ln \times 2 \neq \ln \times 1 \frac{1}{2} \ln 45 p$ each ype NB2 approx 3 In $\times 27 n \times 1 \ln 55 p$ eac TO3 transistor insulator sets, 10 for 50 p PLUGS AND SOCKETS
BNC Plugs, new 50 p each.
N-Type Plugs 50 ohm, 60 p each, 3 for $£ 1 \cdot 50$. N-Type Plugs 50 ohm, 60 each, 3 for £1-50.
PL259 Plugs (PTFE) brand new, packed with reducers, 75 p each
$\mathrm{SO239}$ Sockets (PTFE), brand new ( 4 -hole pxing type). 60 p each.
SOLDER SUCKERS (Plunger type). Stan-
dard Model. $55 \cdot 50$. Skirted Model E6. Spare dard Model, $55 \cdot 50$. Skirted Model E6. Spare
Nozzles 60p each. NEW MARKSMAN RANGE OF SOLDERINGIRONS.
S140D $40 \mathrm{~W} 240 \mathrm{~V} £ 4 \cdot 50$.
S1250K $25 \mathrm{~W} 240 \mathrm{~V}+$ bits etc., KIT $\mathbf{£ 5} \mathbf{3 0}$. S125DK 25 W 240V + blts etc., KIT £5.30.
BENCH STAND with spring and sponge for Marksman Irons $£ 2 \cdot 70$.
Spare bits MT9 (for 15 W ) 60 p , MT5 (tor 25W) 50 p MT10 (for 40 W$) 55 \mathrm{p}$.
AIL PRICES $+8 \%$ VAT.

## TCP2 TEMPERATURE CONTROLLED

 RONTemperature controlled Iron and PSU. $£ 30+$ SPARE TIPS
Type CC single flat. Type $K$ double fat fine tip, Type $P$, very fine tip $£ 1 \cdot 50$ each +VAT (8p). MOS'T SPARES AVAILABLE

## WELLER SOLDERING IRONS

EXPERT, Built-in-spotilght illuminates work. PIstol grip with fingertip trigger. High efficiency copper soldering tip
EXPERT SOLDER GUN 8100 D £12.00. EXPERT SOLDER GUN KIT (spare bits,
case, etc.) E15.00. Spare bits 40 po par, case, etc.) \&15-00. Spare bits 40 p palr MIXED COMPONENT PACKS. contain ing resistors, capacitors, pots, etc. All new. Hundreds of items. $£ 2$ per pack, while stocks ast.
QSRAUTOCHANGE RECORD PLAYER DECKS with cue device, $33-45-78 R P M$ for $7^{\prime \prime}, 10^{\prime \prime}, 12^{\prime \prime}$ records. Fitted with SC12N
Steron Ceramic cartridge and styli. Brand new £14-00 $+12 \frac{1}{2} \%$ VAT. GARRARD AUTOCHANGE RECORD PLAYER DECKS, Model 6.300, with cue
device, $33-45-78$ r.p.m. for $7^{\prime \prime}, 10^{\prime \prime}, 12^{\prime \prime}$ device, $33-45-78$ r.p.m. ${ }^{\text {for }} 7^{7^{\prime \prime}} 10^{\prime \prime}, 12^{\prime \prime}$
records. Fitted with KS418 Stereo Ceramic records. Fitted with KS418 Stereo Ceramic
cartridge and styli Brand new $\mathbf{E 1} \cdot \mathbf{0 0}+12 \frac{1}{2} \%$ cartridge and styli Brand new $81 \cdot 00 \underset{\text { PAT }}{+}$ Pleae note, record decks sent by Roadilne, allow 14 days for delivery.
FULL RANGE OF BERNARDS/BABANI ELA F.FORLIST VARICAP TUNERS Mullard type ELC1043 05. Brand New, $£ 5 \cdot 00+12 \downarrow \%$ VAT.

BARGAIN PACK OF LOW VOLTAGE ELECTROLYTIC CAPACITORS. Up to 50 V working. Seatronic Manufacture. A pprox
$100 . \mathrm{Ei}^{5} 50$ per pack $+12 \frac{1}{2} \%$ VAT.
Dubliler Electrolytics, $50 \mu \mathrm{FF} 450 \mathrm{~V}, 2$ for 50 p . Dubliler Electrolytics, $100 \mu \mathrm{~F}, 275 \mathrm{~V}, 2$ for 50 p Plessey Electrolytics, $470 \mu \mathrm{LF}, 63 \mathrm{~V}, 3$ for 50 p . TCC Electrolytics, $1000 \mu \mathrm{~F}, 30 \mathrm{~V}$, 3 , for 60 p . Dubilier Electrolytics, $5000 \mu \mathrm{~F}, 50 \mathrm{~V}, 60 \mathrm{p}$ each ITT Electrolytics, $6800 \mu \mathrm{~F}$, 25 V , high grade screw terminals, with mounting cifps, 50 p each.
PLEASE ADD $12 \frac{1}{2} \%$ VAT TO ALL

## Terms of Business: CASH WITH ORDER. MINIMUM ORDER \&2. ALL PRICES INCLUDE POST \& PACKING (UK ONLY) SAE with ALL ENQUIRIES

 Please please ado vat as Shown. AlL GOODS in STOCK despatched by feturn. Callefs welcome by appointment only
## J. BIRKETT

## Radio Component Suppliers

## 25 The Strait, Lincoln LN2 1JF

50 ACI28 TRANSISTORS. Branded but Unrested @ 57p. MAINS TRANSFORMERS 240 Volt input, 22-0-22v 500 mA @ $£ 1.60$. 2200 Mf
JACKSON TYPE 5pf VARIABLE CAPAC
100. C280 CAPACITORS Assorted or 57p.
ERIE RED SUB-MINIATURE Oluf $100 \mathrm{v} . \mathrm{w}$. CAPACITORS @ 5 pe ea. 502 WATT ZENERS Assorted Untested for 57 P .
MULLARD PRE-AMP I.C.TAA 435 with date @ 35p.
MULLARD PRE-AMP I.C. TAA 435 with date @ 35p.
400 mW UNMARKED GOOD ZENERS $3.6 \mathrm{v}, 6.8 \mathrm{v}, 10 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}$, $24 \mathrm{v}, 30 \mathrm{v}, 33 \mathrm{v}$, 36 v . All at 10 for 40 p .
ZTX $\mathbf{2 4 0 8}$ FERRRANTI TRANSISTORS at 7 for 50p.
MAINS TRANSFORMERS 240 Vole Input, 24 Volt Tapped 14 Vole I amp @ $\mathrm{fl} \cdot \mathbf{2 5}$ (P \& P 25p)
MAINSTRANSFORMERS 240 Volt Input, 55 Volt 10 Amp out @ $\mathbf{8 5 \cdot 5 0}$. AUDIO I.C.LM 380 with circuits @ 80p.
CAR RADIO IN LINE FUSEHOLDERS for 11"" Fuses @ 22p.
1 MHz Plus 100 KHz CRYSTAL with C-MOS Calibrator Circuit @ $\mathbf{£ 2}$. 20 PHOTO TRANSISTORS, DARLINGTONS Assorted Unrested
@ 50 YARICAP DIODES LIKE BA102 etc. Untested @ 57p.
10 HIGH CAPACITY VARICAP DIODES Untested 300pi for 57p.
TV WALL OUTLET BOXES at $15 p$ each.
S.C.R's 10 Amp Type. 100 PIV @ 25 p, 400 PIV @ 50p, 800 PIV @ 60p.
S.C.R'sinAmp Ype.

6 for 25 p.
2 GHz SRIPLINE NPN TRANSISTORS at $f 1$ each.
PHONO SOCKETS, Single @ 5p, Double @ 10p, Triple @ 15p, 4 way (a) 20p.

3/16"'COIL FORMERS with core @ $5 p$ each, 6 for 25 p.
SMALL R.T. TELESCOPIC AERIALS @ 60p each.
McMURDO8 8 Pin Plugs @ 20p, 8 Pin Sockets @ 20p, Covers@ 15p. 30 ASSORTED $10 \times A J$ CRYSTALS 5100 to 7900 KHz @ $£ 1 \cdot 10$
 IOOK TENTURN POTENTIOMETERS at $£ 1 \cdot 50$ each.
MULLARD ELECTROLYTICS 2240uf 40v.w. @ 40p, 4500uf 25v.w. @ 40p, 5000uf $10 \mathrm{v} . \mathrm{w}$ @ $15 \mathrm{p}, 6400 \mathrm{uf} 16 \mathrm{v} . \mathrm{w}$. @ 25p, 8000uf $10 \mathrm{v.w}$. @ 25p. DUAL GATE MOS FET LIKE 40673 @ 33p, 4 for $£ 1 \cdot 10$.

- Olur $125 \mathrm{v} . \mathrm{w}$. I\% CAPACITORS at 10p each. VARIABLE CAPACITORS $125+125 \mathrm{pf} @ 55 \mathrm{p}$, $100+200$
$250+250+20+20+20 \mathrm{pf} @ 75 \mathrm{p}, 500+500+25+25 \mathrm{pf}$ @ 5 p . $250+250+20+20+20 \mathrm{pf} @ 75 \mathrm{p}, 500+500+25+25 \mathrm{pf} @ 5 \mathrm{~S}^{2}$.
RCA VERSION OF BFY90 ( 2 N2857) TRANSISTORS @ 55 p.
- luf $100 \mathrm{v} . \mathrm{w}$. POLYESTER CAPACITORS 20p doz.

Please add 20 p for post and packing, unless otherwise stated, on U.K. orders under $£ 2$, Overseas orders at cost.


## Wilmslow

 Audio
## THE firm for speakers!

SEND 15P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICELIST.

## ATC AUDAX BAKER BOWERS \& WILKINS CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA EMI EAGLE ELAC FANE GAUSS GOODMANS HELME I.M.F. ISOPHON - JR JORDAN WATTS KEF LEAK LOWTHER MCKENZIE MONITOR AUDIO PEERLESS - RADFORD RAM RICHARD ALLAN SEAS TANNOY VIDEOTONE WHARFEDALE

## WILMSLOW AUDIO (Doper P.,.,

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF
Discount HiFi Etc. at 5 Swan Street and 10 Swan Street TEL: WILMSLOW 29599 FOR SPEAKERS WILMSLOW 26213 FOR HIFI

# The amazing, automatic automatic. Logic Monitor LM-1. <br> Just clip it over your IC. <br> It instantly and accurately shows both static and dynamic logic states, on a bright, 16-LED display. <br> It finds its own power. <br> It cuts out guesswork, saves time, and eliminates the risk of short-circuits. <br> LM-1 is suitable for all dual-inline logic ICs; DTL, TLL, HTL,CMOS; up to 16 pins. <br> LED on = logic state 1 (high), LED off = logic state 0 (low), and each LED is clearly numbered 1 to 16 in the conventional IC pattern. <br> <br> Try the LM-1 and <br> <br> Try the LM-1 and you won't know how you won't know how you ever managed you ever managed without it! without it! <br> <br> Brief specification <br> <br> Brief specification <br> <br> Applications 

 <br> <br> Applications}

|  | $2 \mathrm{~V} \pm 0.2$ volts. |
| :--- | :--- |
| Input Threshold | 100,000 Ohms |
| Input Impedance | 4 volts minimum 15 volts |
| Input Voltage Range | maximum across any two |
|  | or more input leads |
|  | $200 \mathrm{~mA} @ 10$ volts |
| Maximum Current Drain | $10,000 \mathrm{~Hz} 50 \%$ duty cycle |
| Maximum Input Frequency* |  |
| Operating Temperature Range | $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ |
| Weight | $30 u n c e s(85 \mathrm{grams})$ |
| Maximum Dimensions | $4.0 \times 2.0 \times 1.8^{\prime \prime}$ |
|  | $102 \times 51 \times 45 \mathrm{~mm}$ |
| \%M-I will respond to signals up to 0.1 MHz when the input |  |
| Lignal swing exceeds the threshold voltage by more than |  |
| O.5 volts. |  |

Design, breadboarding, testing and
checking new logic systems.
Direct real-time monitoring of logic function in operäting equipment. Long-term testing of individual ICs. Identification of unused eiements, to find room for an extra gate, clock etc. Observing relationships between ICs on different boards of multiple board systems (you need more than one LM-1 to observe simultaneously, of course).
Plus dozens of other uses. You'll find

## them.

Plus 8\%VAT, plus post and packaging, total $£ 32.35$, including box and instruction manual.

## It's Easy to Order

Ring us (01-890 0782) with your Access, Barclaycard or American Express number and your order will be in the post that night. Alternatively, send a cheque, or postal order (don't send credit cards!) and it still only takes a few days.
Otherwise ask for our complete catalogue.
CONINENIAL SPECIALTES CORPORAIION


CONTINENTAL SPECIALTIES CORPORATION (UK) LTD, SPURROAD, NORTH FELTHAM TRADING ESTATE,FELTHAM, MIDDLESEX TW1.1OTP. TELEPHONE: O1-8900782. REG IN LONDON: 1303780 VAT NO. 224807471 "TRADE MARK APPLIED FOR OCSC (UK) LTD 1977. DEALER ENQUIRIES WELCOME. IELEX: 8813669 CSCLTD.

##  <br> The I.C.E. range of multimeters provide an unrivalled combination of maximum performance within minimum dimensions, at a truly low cost. Plus, a complete range of add-on accessories for more ranges, more functions. <br> 

## Supertester 680R (illustrated)

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 1 \%$ fsd on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
* 80 Ranges - 10 Functions
* $140 \times 105 \times 55 \mathrm{~mm}$
$£ 32.00$ + VAT


## Supertester 680G

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
* 48 Ranges - 10 Functions
* $109 \times 113 \times 37 \mathrm{~mm}$
$\mathbf{£ 2 4 . 5 0}+\mathbf{V A T}$


## Microtest 80

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
* 40 Ranges - 8 Functions
* Complete with case only $93 \times 95 \times 23 \mathrm{~mm}$
$\boldsymbol{E 1 6 . 6 0}+\mathrm{VAT}$
(for Mail Order add 80p P\&P)

All I.C.E. multimeters are supplied complete with unbreakable plastic carrying case, test leads, etc. and a 50-plus page, fully detailed and illustrated Operating and Maintenance Manual. Now available from selected stockists. Write or phone for list, or for details of direct mail-order service.
Electronic Brokers Ltd.
49-53 Pancras Road, London NW1 2QB
Tel: 01-837 7781


# - @ VALVE MAIL ORDER CO. CLIMAX HOUSE, FALLSBROOK ROAD, LONDON SW16 6ED 

SPECIAL EXPRESS MAIL ORDER SERVIGE


# SEMICONDUCTORS POTS \& IRONS 

| SOCKETS |  |  |
| :---: | :---: | :---: |
| 1611 | 8 pin DIL | £0. 13 |
| 1642 | 14 pin DLL | ع0.14 |
| 1613 | 16 pin DIL | £0. 15 |
| 1614 | 24 pin DIL | ¢0.40 |
|  | 28 pin DIL | £0. 45 |
| 1616 | TO18 Transistor | £0. 12 |
| 1617 | Tus Transistor | ${ }^{\text {c0, }} 35$ |
| 16117 | TOS Transist | $\pm 0.12$ |
| VOLTAGE REGULATORS |  |  |
| Positive |  |  |
| MVR7 | 7805 v.a. 7805 TO220 | £1.00 |
| MVR2 | 7812 v.a. 7812 TO220 | E1-00 |
| MVR | 7815 v.a. 7815 TO220 | £1.00 |
| MVR | 7824 v.a. 7824 TO220 | £1.00 |
| Negative |  |  |
| MVR7 | 9905 v.a. 7905 TO220 | £1.40 |
| MVR | 7912 v.a. 7912 TO220 | ¢1.40 |
| MVR7 | 915 v.a. 7915 TO220 | £1.40 |
| MVR | 7924 v.a. 7924 TO220 | E1-40 |
| v.a. 72 | 23C ${ }^{\text {to99 }}$ | ${ }^{45 p}$ |
| 72723 | 14 pin DN | 45p |
| LM308 | к то3 | £1-50 |

## ZENER DIODES

 $400 \mathrm{mw} \mathrm{(Bzy88)} \mathrm{OOZ} \mathrm{Glass} \mathrm{encap}$. 400mw (Bzy88sulated range of voltages avapil-
able $1.3 v, 2 v$

 15v. 12v, 18vv. 20v, 22v, 24 v
$30 \mathrm{v}, 33 \mathrm{v}, 39 \mathrm{vo}$
No. 224 8p ea. 1w-1. 6 w Plastic and metal encap. available. 1.3v, $2.2 v, 2.7 v .3 .3 v$,



10w Metal stud tyoe sotn case.


 ${ }^{91 v, 100 v}$ No. Z10 35p ea.

| SILICON RECTIFIERS |  |
| :---: | :---: |
| 200 mA |  |
| 1592050 V | ¢0.06 |
| 15921 100v | 50.07 |
| 15922 150v | ${ }^{\text {E0 }}$ O 03 |
| [ $\$ 923$ 200v | E0. 09 |
| is924 300v | ¢0. 10 |
| 1 Amp |  |
| iN400150\% | ¢0.04 |
| ( N 4002 C 100v | E0.05 |
| in4003 200v | E0.06 |
| in4004 400 v | $\pm 0.07$ |
| in4005 600v | ${ }^{\text {c0 }}$-08 |
| IN4006 800v | ¢0.09 |
| IN4007 4000 V |  |
| 1.5 Amp |  |
| 1501550 V 15020100 v |  |
| 15027200 V | E0. 11 |
| 15023 4000 | ${ }^{\text {co }}$ |
| 15025600 V 15027 1500 v |  |
| (15027 $\begin{aligned} & \text { b00 } \\ & 15029 \\ & 1000 \mathrm{~V}\end{aligned}$ | E0. 20 |
| 150311200 y | ¢0. 25 |
| 3 Amp |  |
| IN5400 50w | £0.14 |
|  | c0. ${ }^{\text {co }}$ |
| iN5 502 200v | ¢0.16 |
| - N 404400 v |  |
|  | - 80.25 |
| IN5408 9000 V | ¢0.30 |
| Amp |  |
| 0/50 50v | £0. 19 |
| IS10/100 100v | - |
| istol 4000400 V | ¢0.35 |
| is10/600 600 | ¢0. 42 |
| 15101809800 V | E0. 51 |
| 1510/1000 1000v |  |
| 30 Amp |  |
| $1530 / 5050$ | ¢0.36 |
| IS301400 100 V | - 80.93 |
| is $30 / 400400 \mathrm{~V}$ | 81.25 |
| 1531/600 600\% | ¢1.76 |
| 153018008000 | 81.94 $\pm 2.31$ |
| ${ }^{\text {IS }} 30 / 100001000 \mathrm{v}$ | - |
| 1S30/1200 1200v | $\pm 2.88$ |
| 60 Amp |  |
| is70/50 50 v |  |
| IS70,200 200 | E1. 80 |
| IS70,400 400V | ${ }_{51} 17$ |
| 1570:600 600v | ${ }^{\text {c2 }}$ |
| 157088008000 | ${ }_{\text {c3 }}$ |
| IS70 10001000 v | ${ }_{\text {co }}$ |
|  | c0. 6 |
| BY $\times 38 / 300$ Rev 6A 300y | E0. 45 |
| BYX $38 / 600 \mathrm{ReV}$ 6A 600V | ¢0. 60 |

## POTENTIOMETERS

CARBON POTS (Linear Track) Single gang with wire end terminations 6 mm
supplied
with
50 mm
plake proof washer $\&$ nut. supplied with shake proot was
Tolerance $\pm 20 \%$ of resistance.


 1835 22kohms £0.26* 18401 Meg ${ }^{2} 0 \cdot 26^{\prime \prime}$

CARBON POTS (Log Track)
18424 kFhmms £0.26* 1846 100kohms $\mathrm{E0.26*}$ 1843 10kohms $£ 0.26^{*} 1847220 \mathrm{kahms} \mathrm{E0} \mathbf{2 6 ^ { * }}$



DUAL CAREON POTS (Lin Track) These high quality dual gang pots are fitted with wire end terminations and $6 \mathrm{~mm} \times$
50 mm plastic shaft 10 mm , bush ind sup50 mm plastic shaft 10 mm , bush ind sup-
plied with shake proof washer \& nut track Plifed with shake proot washer \& nut track
tolerance $\pm 20 \%$ but matched to within tolerance $\frac{1}{\frac{1}{2}}$
2 db of each other. VC3




DUAL CARBON POTS (Log Law)
1860 4k7ohms $£ 0 \cdot 7 \mathbf{F}^{*} 1884$ 100kohms $£ 0 \cdot 78 *$ 1861 10kohms $£ 0.78^{*} 1865$ 220kohms £0.78*
 1863 47kohms £0.78* 1867 Meg
$18682 \mathrm{M} 2 £ 0.78^{*}$

SINGLE GANG SWITCHED (Lin Law) These potentlometers are fitted with These pole on-of switches. The switch is
double pole
incorporated within the rotary action of the incorporated within the rotary action
pot $S_{\text {pecification of pot is as }}$ VCI.
Switch rating
1870 4k7ohms $\mathbf{~} \mathbf{6 0 - 6 0 * *} 1874$ 100kohms $\mathbf{£ 0 . 6 0 *}$ 1871 10kohms $£ 0.60^{*} 1875$ 220kohms £0.60*
1872 22kohms $£ 0.60^{*} 1876$ 470kohms $£ 0.60^{*}$



SWITCHED POT (Log Track)
Specification as VC2 but track having (log)




DUAL GANG LOG-ANTI-LOG POT 1888 Track specification as dual gang pots
VC3 as above, but tracks mounted to logVes as above, but tracks mounted to log-
SPECIAL VOLUME CONTROLS
A miniature 18 mm type replacement on-off switch. Resistance value 5 kohms . Tolerance $\pm 20 \%$ 1/8watt rating.
1889 E0-27* VC8
MINIATURE ROTARY VOL
Skohms log law wlth on/off switch. 20 mm
grooved spindle. Tag connections 17 mm dia. Supplied with fixing nut. Used mainly for replacement.
$1890 \quad$ E. $0.54^{*}$
VC9
WIRE WOUND POTS
A range of wire wound single gang pots with linear tracks of watt rating, fitted proof washer and nut.
1881 100hms $£ 0.818$. 1895 2200hms 50.80 1892 220hms $£ 0.801896470 \mathrm{ohms} 50.80$


PRESET POTS
HURIZONTAL MOUNTING
Miniature type for transistor circuits. The wiper of the preset is provided with a slot for screw diver adiustment. The tags of the preset will fit printed wiring boards
with apltch of 2.54 mm . All tracks are linear Vaw.
1801 1000hms £0.08* 1808 22kohms $£ 0.08^{*}$ 1802 2200hms £0.08* 1809 47kohms $£ 0.08 *$ $1803470 \mathrm{hms} £ 0.688^{*} 1810100 \mathrm{kohms} £ 0.08^{*}$

 4807 10kohms $£ 0.08^{*} 18142 \mathrm{M} 2 \mathrm{ohms}$ £ $0.08^{*}$

## PRE-SET POTS VERTICAL MOUNTING

Miniature type for transistor circuits. Wiper adjustment is made by a screw driver slot. Designed to fit 2.54 mm pitch board All tracks are linear law
$18761000 \mathrm{hms} £ 0.08^{*} 1823$ 22kohms $£ 0.08^{*}$ 1817 2200hms $£ 0.08^{*} 1824$ 47kohms $£ 0.08^{*}$ $898470 \mathrm{ohms} £ 0.08^{*} 1825100 \mathrm{kohms} \mathrm{EO} .08^{*}$ $18191 \mathrm{kohms} £ 0.08^{*} 1826$ 220kohms $£ 0.08^{\circ}$.
1820 2k20hms $£ 0.08^{*} 1827470 \mathrm{kohms} £ 008^{*}$
 1822 10kohms $£ 0.08^{*} 1829$ 2M2ohms $£ 0.08$ 18304 M 70 hms $£ 0.08 *$

## ANTEX IRONS

O/No. 1943. 15 watt high quality soldering iron totaily enclosed element in a ceramic shaft fitted with $3 / 32^{\prime \prime}$ bit

O/No. 1931. Highly popular $\Upsilon_{25} 25$ wat quality soldering iron ceramic shafts to provide near pertect insulation break-down
voltage of 1500 volts AC and a leakage current of only $3-5 \mathrm{uA}$ and another shaft of stainless steel to ensure strength. £3.46 O/No. 1935. Replacement element for 1931 ron.
O/No. 1932. Iron coated bit $1 / 8^{\prime \prime}$ for 1931
 iron. $0 /$ No. 1934. Iron coated bit $3 / 32^{\prime \prime}$ for 1931 O/No 1953 Sk1 soldering kit-this kit con tains 15 watt soldering iron fitted with a
$3 / 16^{\prime \prime}$ bit plus two spare bits, a reel of $3 / 16{ }^{\prime \prime}$ bit plus two spare bits, a reel of solder, heat-sink and a booklet 'how to
solder'. In presentation dtsplay box. £5-30 O/No. 1939. ST3 soldering iron stand. Stand made trom high grade bakelite spring, suitable for all models, includes accommodation for six spare bits and two sponges which serve to keep the soldering
iron bits clean. iron.
O/No. 1944. Iron coated bit $3 / 32^{\prime \prime}$ for 1943 iron. $\quad \mathbf{E 0 . 4 6}$ O/No. 1945. Iron coated bit $1 / 8^{\prime \prime}$ for 9.943
iron. 9.46 O/No. 1946. Iran coated bit $3 / 16^{\prime \prime}$ for 1943 iron. 18 wat OINo. 1948. General purpose 18 watt iron filted with iron coated bit.
O/No. 1952. Replac\#ment element for 1348 O/No. 1949. Iron coated bit $3 / 32^{\prime \prime}$ for 1948 iron. $\quad$ e0 46 O/No. 1950. Iron coated bit $1 / 8^{\prime \prime}$ for 1948
E0.46 O/No. 1951: Iron coated bit $3 / 16^{\prime \prime}$ for 1948
$\begin{array}{ccccc}\text { TR120 } & \text { TR101 } & \text { TR053 } & \text { TR203 } & \text { TR205 } \\ \mathbf{£ 1 ~} \mathbf{1 0} & \mathbf{£ 1} 10 & \mathbf{£ 1} 10 & \mathbf{£ 1 : 4 0} & \mathbf{£ 1 \cdot 1 0}\end{array}$

## PCB TRANSFERS

$\begin{array}{ll}\text { TR114. } & \text { TR312 } \\ \mathbf{£ 1} \cdot 65 & £ 1 \cdot 10\end{array}$


0800 000gese acasages 8808 0808080 80860808
Draw your own boards with the new BiPAK etch-resist transfers. Lay the symbols on the board, rub over with a soft pencit The transler will adhere to the board. Then complete the circuit with your BI-PAK
$\underset{\text { cif } 195}{\text { Tis }}$
0900000080at
etch-resist pen. 11 different paks civalidtuic each containing 100 transters as illustra-tion-approx. i size-Special introductory Set, t pak each of above $£ 12 \cdot \mathbf{0 0}$.

LEDS DISPLAYS AOPOS


A pack cf 10 standard sizes and colours which fail to perform amateurs who do specification, but which 0 no 10790 p

NUMERICAL INDICATORS
Cold cathode ITT 5087 ST Side viewing indicator tubes Displays 019 and decimal points. Wide viewing angle.
Operates from 180 y with 16 Kohms series anode resistor. Character height 16.5 mm . Pin connecters and supply details on pack.



ORDERING. Do not forget to state order number and your name and address.
V.A.T. Add $12 \frac{1}{2} \%$ to prices marked*. $8 \%$ to those unmarked. Items marked are zero rated;

P\&P 35p unless otherwise shown.

## 930 SERIES DTL

 $\begin{array}{llll}\text { BP930 } & £ 0 \cdot 30 & \text { BP948 } £ 0.50 \\ \text { BP932 } & £ 0.39 & \text { BP951 } & £ 0.65\end{array}$ $\begin{array}{llll}\mathrm{BP} 932 & £ 0.30 & \mathrm{BP} 951 & £ 0.65 \\ 8 P 933 & £ 0.30 & \mathrm{BP} 969 & £ 0.30\end{array}$ $\begin{array}{llll}\text { BP933 } & \text { £0. } 30 & \text { BP962 } £ 0.30 \\ \text { 日P935 } & £ 0.30 & \text { BP9093 } £ 0.42\end{array}$ $\begin{array}{llll}\text { EP935 } & £ 0.30 & \text { EP9093 } £ 0.42 \\ \text { BP936 } & £ 0.55 & \text { BP9094 } £ 0.42\end{array}$ $\begin{array}{llll}\text { BP936 } & \text { £O. } 55 & \text { BP9094 } £ 0.42 \\ \text { BP944 } & £ 0.30 & \text { BP9067 } £ 0.42\end{array}$ BP944 $£ 0.30$ BP9067 £0.42BP945 $£ 0.50$
BP946 $£ 0.30$
BP946 £0 30

## D.I.Y. P.C.B. ACCESSORIES

1609. Etch resistant pen 1609. Etch resistant pen
1610. Paks of etchant. complete with 80 p instructions
C26. 4 pleces 8 y $31^{\prime \prime}$ (approx.) boards.
Single-slded fibr glass
C27. 3 pieces $7 \times 33^{\prime \prime \prime}$ (approx.) boards. 00 p
Oouble-sided fibre glass
.

## $\square$

## SEMICONDUCTORS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{TRANSISTORS} \& \multicolumn{10}{|c|}{74 SEMESTME} \\
\hline Type \& Price \& Type \& Price \& Types \& Price \& Typ \& Price \& Type \& Price \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \({ }^{\text {A C }}\) C117 \& co \& \({ }^{8 C 125}\) \& \({ }^{\text {¢0，} 0.47}\) \& BD \& E0．68 \& 8S \& \({ }^{50} 18\) \& \(21 \times 107\) \& \(5 \cdot\) \& \[
\begin{aligned}
\& 2 N 2926 \mathrm{Y} \\
\& 2 \mathrm{~N} 28260
\end{aligned}
\] \&  \& \[
\begin{aligned}
\& 740 \mathrm{ype} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Pet } 0 . \\
\& 60
\end{aligned}
\] \& \[
\begin{aligned}
\& 74 p e \\
\& 7427
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Price } \\
\& \text { sol }
\end{aligned}
\] \& 7472 \& \[
\pm 0 \cdot 20
\] \& \[
\begin{aligned}
\& \text { Type } \\
\& 74105
\end{aligned}
\] \& \({ }_{\text {Pratice }}^{\text {ci }}\) \& \({ }_{7}^{7409}\) \&  \\
\hline \({ }^{\text {A Cl13 }}\) \& \begin{tabular}{c}
80.20 \\
£0．20 \\
\hline 0
\end{tabular} \& \({ }^{8 C 1} 126\) \& co． \& BD \& co．\({ }^{\text {cos }}\) \& \& co． \& 2TX108 \& \({ }_{\text {cose }}\) \& \({ }_{2}{ }^{\text {N2026R }}\) \&  \& \({ }^{7401}\) \& \& 7430 \& c0．
\(\pm 0.12\) \& 7473 \& ¢0． 25 \& 74107 \& \& \& \\
\hline AC117 \& \(\pm 0.30\) \& \({ }_{8 C 134}\) \& c0．98＊ \& BD \& E0．75 \& BSY29 \& E0．18 \& ZTX300 \& 20．42＊ \& 2N20288 \& ca 08 ＊ \& 7403 \& \({ }_{80}\) \& \& \& \& \& \& \& 74165 \& £0．85 \\
\hline AC117 \& 50.34 \& BC1 \& c0．15＊ \& BD \& 20．78 \& BSY38 \& E0．19 \& \& \& 2 N 3040 \& ¢0．65 \& 7404 \& E0 \& 7433 \& ¢0 30 \& 7476 \& \({ }_{50} 0.25\) \& 7418 \& 发 \& 74 \& 85 \\
\hline AC121 \& ¢0．20 \& BC \& \& BD190 \& \({ }^{\text {c0．}} 78\) \& 8 8YY \({ }^{\text {8 }}\) \& c0． 19 \& ZTX302 \& \(\pm 0\) \& 2N3011 \& co． 15 \& 7405 \& E0 11 \& 7437 \& c0． 23 \& 7480 \& £0． 44 \& 74119 \& ¢ 6.18 \& \({ }_{74175}\) \& \({ }^{6} 6\) \\
\hline AC122 \& \(\pm 0\) \& BC137 \& \& \& \& \& \& \({ }^{2 T \times 303}\) \& E0．96＊ \& \& \& \& co \& 7438 \& c0． 23 \& 7480 \& E6．85 \& 74121 \& \& \& \[
\begin{array}{r}
66 \\
-74
\end{array}
\] \\
\hline \({ }^{\text {ACl }}\) \& ¢0． 18 \& \({ }^{B C 139}\) \& \({ }_{50}\) \& \({ }^{80196}\) \& E0．90 \& 8SY51 \& \({ }_{80}\) \& zTx304 \& 20．20＊ \& 2N3055 \& \({ }_{\text {c }} \mathbf{2} 0.40\) \& 7408 \& co． 13 \& O \& c0． 12 \& 7482 \& ¢0．68 \& 74122 \& ¢0． 39 \& 74177 \& \({ }_{20} \mathbf{0} 75\) \\
\hline  \& \(c018\) \& BC140
BC 141 \& E0．30 \& 8D197
80898 \& c0．95 \& \({ }_{\text {BSY95 }}\) \& ＋\(\times 1.25\) \& \(27 \times 1330\) \& ¢0． 4 \& 2N3035 \& － 50.60 \& 7409 \& co＇13 \& 7441 \& te． 50 \& 7483 \& ¢0．70 \& 74123 \& \(\pm 0.46\) \& 74180 \& \({ }^{\text {c } 0.84}\) \\
\hline AC128 \& \& \& 59 \& \(8{ }^{80199}\) \& E0 \& BSY95A \& E0．13 \& 21 \(\times 500\) \& \({ }^{\text {E0．}} 12^{*}\) \& 2 N 339 \& c0． \(22^{*}\) \& 7410 \& C0．12 \& \& \& 7484
7885 \&  \& \({ }_{74141}^{741}\) \&  \& 741818
74182 \& \\
\hline 28 K \& \& \& \& \({ }^{8 D 200}\) \& E0．99 \& \& \& ZTX502 \& E0．46＊＊ \& \&  \& \& 20． 17 \& \& \& \({ }_{7886}\) \& － \& \({ }_{74145}\) \& ce． 62 \& 74182
74184 \& \({ }_{\text {co }} 1.18\) \\
\hline \& \& \& co． \& BD2 \& 20 \& BU105／02 \& E 21.95 \& \({ }_{7}{ }^{1} \times 50503\) \& \({ }_{\substack{\text { co } \\ E 0.122^{*}}}\) \&  \& cor \({ }^{20}\) \& 7413 \& c0． 24
c0， \& 3445 \& 20．65 \& 7489 \& 20． 32 \& 74150 \& ¢0．95 \& 74190 \& \({ }_{81} 1.00\) \\
\hline 析 \& co \& \& E0．03＊＊ \& 8D201／202 \& 202 51.70 \& BY209 \& E1．70 \& \({ }^{2} \mathrm{Z} \times \times 531\) \& \({ }_{\text {co }}\) \& 2 N 3395 \& \({ }^{\text {ct }}\)－22＊ \& 7414 \& \& \& 50.65 \& 7490 \& 知 64 \& 74151 \& E0． 58 \& \& \\
\hline \({ }^{\text {A C }} 14141 \mathrm{k}\) \& \({ }^{50}\) \& \& \& \({ }^{\text {BD203 }}\) \& E0．80 \& \({ }^{\text {BU }}\) B20 \& ¢1．70 \& ZTX550 \& \({ }_{\text {¢ } 0.16 * ~}^{\text {a }}\) \& \(2{ }^{2} 3402\) \& c0． \(21{ }^{1 *}\) \& 7446 \& ¢0． 26 \& 7448 \& 60.65
80 \& 7499 \& ¢0 \& \({ }_{74154}^{74153}\) \& cotis \& \({ }^{74192}\) \& ．05 \\
\hline \({ }_{\text {A }}{ }^{\text {A Cl42 }}\) \& \({ }_{50}{ }^{20}\) \& \({ }_{8 \mathrm{C} 151}\) \& \({ }_{\text {E }} 0.22^{*}\) \& BD203／ \& \& BU208／02 \& ． 95 \& \& \& 2 N 34
2 N 34 \&  \& 7420 \& E0． 12 \& 7450 \& E0． 56 \& 7483 \& E0． \& 74155 \& 20．60 \& 74194 \& ¢0．88 \\
\hline \({ }^{\text {A Cl4 }}\) \& \& \& E0．20＊ \& 80205 \& co． 80 \& \& \& 26301 \& c0． 22 \& \& E0－42＊ \& 7421 \& c0． 20 \& \& 20． 12 \& 7494 \& \(\mathrm{cfO}^{80} 80\) \& 7456 \& \& 74195 \& E0．82 \\
\hline \({ }_{\text {ACl }}{ }^{\text {ACL5 }}\) \& \& \&  \& 80206 \& \({ }_{61}\) \& E1222 \& \(50 \cdot 38\) \& \({ }_{2}^{2 G 3302}\) \& c0． 22 \& 2N3414 \&  \& 7422 \& cictis \& \({ }_{7454}^{7453}\) \& E0．
50
00
0 \& 95 \& \& \({ }_{74160}^{74157}\) \& \& \({ }_{74197}^{74198}\) \& \\
\hline AC153 \& 20.30 \& \({ }^{\text {BC15 }} 15\) \& 20．40 \& \({ }^{\text {BD }}\) \& \(E 1\) \& \& \& \({ }_{26304}\) \&  \& 2N3416 \& \({ }_{80.29}\) \& 7425 \& ¢0． 19 \& 7460 \& \& 74100 \& \& \& \({ }^{0} 0 \cdot 78\) \& \({ }^{74198}\) \& \\
\hline  \& 50.20 \& \({ }^{8 C 158}\) \& ¢0．90＊ \& \({ }^{80} 8229\) \& \％ 80.47 \& MAT100 \& \({ }_{80} \times 1.19\) \& 26305 \& 50.40 \& 2 N 3417 \& E0－29＊ \& 7426 \& \(\underline{5.23}\) \& 7470 \& \(5.0 \cdot 25\) \& 74104 \& 60．35 \& 74162 \& C0．78． \& 昭 \& \(\underline{41.45}\) \\
\hline  \& ¢0．20 \& \& \& \& \& MAT120 \& \({ }_{80}\) \& 26308 \& \({ }_{\text {cose }} \mathbf{E 0 . 3 6}\) \& \({ }^{2} \times 1314\) \& 51.00 \& \& \& \& \& \& \& \& \& \& \\
\hline AC167 \& \(\leq 0\) \& \({ }^{\text {BC }}\) \& E0．38 \& \({ }^{5}\) \& E0 \& MATi21 \& \({ }^{2} 0.20\) \& \& \& \({ }_{2}^{2} \mathbf{N} 3615\) \& \& \& \& \& \& \& \& \& \& \& \\
\hline \({ }_{\text {AC165 }}{ }_{\text {AC188 }}\) \& \& \({ }_{8 C}^{8 C}\) \&  \& 8D235 \& c0． 55 \& MJ488 \& \& \({ }_{26339}\) \& c0． 18 \& 2N3648 \& \({ }^{20} 0.00^{*}\) \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \({ }^{80} 8236\) \& \& M J480 \& \& \({ }_{26344}\) \& \({ }_{50} 80\) \& \({ }_{2}^{2 N 3702}\) \& \({ }_{\substack{\text { co } \\ \pm 0 \\ 0}}\) \& \& \& \& \& \& \& \& \& \& \\
\hline A \& \& B \& \(\pm 0\) \& \& \& M \& \& \& \& 2N3703 \& \& CD \& co \& CD \& 20 \& \& co \& \& \& \& \\
\hline Ac \& \& \& \& 要 \& \& \& \& \({ }_{263718}\) \& \& 2 N 3705 \& \(20.07^{*}\) \& CD4002 \& \({ }_{60}\) \& CD4 \& \(\pm 0\) \& CD4028 \& do \& C04 \& E1．40 \& \& 23 \\
\hline A \& \& EC172 \& ． 0 \& EDY \& \& MJ J371 \& E \& \({ }_{26}{ }^{\text {G73 }}\) \& 50.18 \& \({ }^{2}{ }^{\text {N3}}\) \& \(\mathrm{co}^{0}\) \& C \({ }^{\text {c }}\) \& E0．98 \& CD40 \& ¢ \& \& \({ }^{8} \mathrm{EA} .15\) \& \& \& \& 20 \\
\hline \(7{ }^{\text {7 }}\) \& \& BC173 \& \& \& \& MJ \({ }^{5} 520\) \& \& \({ }^{2} \mathbf{2} 6374\) \& \& \({ }_{2}^{2 N 37} 708\) \&  \& CD4008 \& E0．98 \& \({ }^{\text {COL }}\) \& c1． \& CD \& \& \& \& \& \\
\hline \({ }_{\text {AC178 }}{ }^{\text {AC179 }}\) \& \& \({ }^{8 C 174}\) \& ．80．35＊＊＊ \& 80x \& cise \& MJ \({ }^{\text {M }}\) L28295 \& \& \({ }_{26378}\) \& ¢） 18 \& 2N3708A \& E0．07＊ \& \& \& \& \& \& ¢ 1.30 \& CD4 \& \& 8． \& 60 \\
\hline AC180 \& \& \& E0． 16 \& 限115 \& \& M J E3055 \& co \& \({ }^{6} \mathbf{6 3 8}\) \& ciol 18 \& \& \& C \&  \& \& \& \& E0．95 \& \& \& \& 4 \\
\hline \({ }_{\text {ACl }}{ }^{\text {AC1 }}\) \& \({ }_{\text {co }}\) \& \({ }^{\text {BC178 }}\) \& \& \({ }_{8 F}\) \& \& MP813 \& \& G632 \& \& 2 N 3711 \& \({ }_{\text {E0 } 0.07 * ~}^{\text {\％}}\) \& C04012 \& E0． 20 \& \({ }^{\text {c }} \mathrm{C} 4024\) \& £0． 80 \& CD40 \& 50.32 \& 40 \& \& CD4 \& \({ }_{\text {¢1 }}{ }^{25}\) \\
\hline \({ }_{\text {ACli }}\)（K \& 20 \& BC180 \& \& \& \& \& \& 26401 \& co． \& \({ }_{2}^{2 N 37772}\) \& \({ }^{59} 960\) \& CD4013 \& E0 52： \& CD4025 \& E0． 20 \& CO40 \& \(2 \times 0.82\) \& P40 \& \& \& \\
\hline  \& \({ }^{\text {co．}} 18\) \& \({ }^{8 C 181}\) \& co \& \& \& \& \& 2 G 417 \& ． 26 \& 2 N \& \& \& \& \& \& \& \& \& \& \& \\
\hline AC188 \& E0． 18 \& \& \& 陫 \& \({ }^{\text {co }}\) \& MPSAOS \& \& \& \& 2 N 3820 \& 5 \& \& \& \& \& \& \& \& \& \& \\
\hline \({ }_{\text {A }}\) \& \({ }_{\text {co }}\) \& \& E0 \& \& E0 \& \& \& 2 N 338 \& c0． 38 \& 2N3829 \& \& \& \& \& \& \& \& \& \& \& \\
\hline A \& 20 \& \({ }_{8 C 18}\) \& E0 \& \({ }^{\text {BF }}\) \& E0 \& MPSA56 \& E0 28 \& 2N388A \& \& 2 N 3903 \& ce． \(15 \%\) \& Type \& \& \& \& \& Pric \& \& \& \& \\
\hline A \& \(\mathrm{c}_{0}\) \& \({ }^{\text {c }}\) C18 \& ¢0． \& \& ¢0．23＊ \& ND120 \& 20.1 \& \({ }^{2} \mathrm{~N} 404\) \& 0.20 \& \({ }_{2}^{2 N 3904}\) \&  \& CA3014 \& E1．70 \& M304 \& \& M \& \& \& co． 2 \& 76 \& \({ }^{0}\) \\
\hline A \& \({ }_{80}\) \& \({ }^{\text {BC186 }}\) \& \& \& \& \& \& 2N524 \& \％ 20.50 \& 2N3905 \&  \& CA30 \& co． \& \& \& \& \& \& \& 785 \& \\
\hline AC \& 20 \& BC297 \& ¢0．11＊ \& \& \& O \& E0 \& 2N588 \& E0． 40 \& 2N4058 \& co－12＊ \& CA302 \& E1． \& M3 \& E1 \& NE536 \& E3． 50 \& \& co． 3 \％ \& A \& \\
\hline ACr 27
A \({ }^{28} \times 2\) \& \& \(\mathrm{BC}^{208}\) \& E0． 1 \& \& \& \& c1 \& 2 N 599 \& c0． 46 \& \({ }^{2}{ }^{\text {N40559 }}\) \& \({ }^{50} 5\) \& ca30 \& E1．70 \& \& 12vE1． \& NE515 \& \& \& \& \& \(0 \cdot 35\) \\
\hline AC \& co \& 212 \& \& BFF60 \& \& \(\mathrm{O}^{\text {C23 }}\) \& 51.5 \& 2N696 \& \& \&  \& CA304 \& \& M \& E1 \& NE540 \& \& \& \& \& \\
\hline ACr30 \& \(\pm 0\) \& \({ }_{8}{ }_{8}\) \& co．4＊＊ \& 63 \& \& \({ }^{\circ} \mathrm{OC24}\) \& \& \({ }_{2}{ }^{2} 5888\) \& \({ }_{50}\) \& 2 N 466 \& \({ }_{\text {E0 }} 12{ }^{\text {2 }}\) \& СA3043 \& E1．85＊ \& м \({ }^{\text {aso }}\) \& 20． \& NE555 \& C0． \& A7410 \& E0．24 \& （1） \& \\
\hline \& E0 \& \& \({ }^{\text {E }}\) \& \({ }_{\text {BF164 }}\) \& \({ }_{\text {c0 }}{ }^{50} 50 \cdot\) \& \& \& \(2{ }^{\text {N699 }}\) \& E0．32 \& 2N4284 \& £0 \& \({ }^{\text {CA }}\) C 3046 \& ¢0．80＊ \& M38 \& \& NE5 \& \& \& \& \& \\
\hline \& E0 \& \({ }_{8}{ }^{8} 1214\) \& co．12＊ \& \& \& \& ¢0．\({ }^{\text {c }}\) \& \({ }_{\text {2N706 }}^{\text {2N706A }}\) \& co 10 \& 2N4286 \& \＆0．18＊ \& CA3054 \& \({ }_{\text {E1 }} \cdot 35\)＊ \& MC9303 \& Lع1．48＊ \& － \& \& A747C \& co \& \& \\
\hline \& \& \(\mathrm{BC} 214^{\text {a }}\) \& E0．12＊ \& \& \& \& \& 2N707 \& 80.48 \& 2 N \& \({ }^{\text {co }}\) \& ca30 \& \& MC130 \& \& NE5 \& \& \& E0． \& A \& \({ }^{0 *}\) \\
\hline Acr4i \& \({ }_{50}\) \& \({ }^{8} \mathrm{BC25}\) \& \& \& ¢0 \& Oc36 \& ¢0 \& 2N708 \& \& \& co． \& \({ }_{\text {ca3 }}\) \& 2. \& MC131 \& 1.90 \& NE585 \& \({ }_{\text {E }}\) \& \& co． \& A \& \\
\hline ACY \& \& \({ }_{\text {BC227 }}\) \& ¢0． \(16^{\text {ct }}\) \& 78 \& \％ \& \({ }^{\mathrm{OC41}} \mathrm{O}\) \& E0 \& 2N711 \& － EO 0.30 \& 2 N 42 \& co． \& сАз \& \& MC1330 \& \({ }^{1} 1.2\) \& A702 \& E0 \& \& \({ }^{0} 0.35 *\) \& A8 \& 80＊ \\
\hline \& \& － \& E0． \& BF179 \& E0．30 \& \(\mathrm{OC}_{44}\) \& \({ }_{50} 0.24\) \& \({ }_{2}{ }^{2} 718\) \& E0． 25 \& 2N4 \& co \& CA3 \& \& \({ }^{\mathrm{Cl} 13}\) \& \& \& E0 \& SN7601 \& \& \& ＊＊ \\
\hline AD 1 \& E0 \& BC251A \& \＆0．16＊＊ \& 8F180 \& \& C45 \& \({ }^{20} 0 \cdot 20\) \& 2N718A \& 50.50 \& \({ }^{2} \mathrm{~N} 4292\) \& E0．18＊ \& CA3140 \& \({ }_{20} \mathrm{Co}\) \& MC1352 \& E1 40 \& UA709 \& \({ }_{80}\) \& SN76C2 \& 61．75 \& \& 2．20＊＊ \\
\hline AD \& \& \& \& \({ }_{8 F}\) \& \& \({ }^{\circ} \mathrm{C} 70\) \& 50．\({ }_{5}\) \& 2N728
2N727 \& － 50.29 \& \({ }_{2}^{2 N 4921}\) \&  \& \& \& \& \& \& \& \& \& \& \\
\hline AD161 \& \({ }_{50} \cdot 4.4\) \& B0 \& \& \& \& 0 \& \& 2N743 \& E0． 20 \& \({ }_{2}{ }_{2}\) \& \({ }_{80}\) \& \& \& \& \& \& \& \& \& \& \\
\hline AD162 \& 50.42 \& \& \& \& \& \& \& 2N744 \& E0．20 \& \({ }^{2}{ }^{2} 15136\) \& ¢0． 10 \& \& \& \& \& \& \& \& \& \& \\
\hline AD \& co．85 \& \({ }^{86}\) \& E0 \& BF186 \& \(50.26^{*}\) \& OC76 \& \& － 2 2N918 \& ¢0．15 \& －\({ }_{\text {2N5138 }}\) \& \({ }_{\text {cose }}\) \& \& Price \& \& \& \& Price \& \& \& \& \\
\hline AFF14 \& E0．21 \& \({ }^{\text {BC328 }}\) \& co．\({ }^{\text {c }}\) \& 187 \& ． 26 \& \& \& \({ }_{2}{ }^{\text {N929 }}\) \& E0 20 \& \({ }_{2}\) \& \({ }_{\text {E0 }}{ }^{\text {c } 56}\) \& AA119 \& E0．0 \& BA173 \& 80 \& 30 \& \& \(8 \backslash 219\) \& \(\mathrm{EOP}^{0.36}\) \& OA200 \& \\
\hline AF11 \& E0 \& \& \({ }_{80.15 *}\) \& \& E0 10＊ \& \({ }_{C 81 \mathrm{D}}\) \& \& \(2 \mathrm{Nag}{ }^{\text {2 }}\) \& co \& \({ }^{2} \mathrm{NS} 545\) \& c0 40 \& \({ }^{\text {A A } 120}\) \& \({ }_{\text {c }}^{50.08}\) \& \({ }_{\text {BAX13 }}^{\text {B8104 }}\) \& \& \& \& OA5 \& \& OA202 \& \\
\hline \({ }_{\text {AFP11 }}\) \& \& BC440 \& \& \& co \& 82 \& \& \& \({ }_{\text {co }}\) \& \({ }_{2}^{2 N 5298}\) \& \& AAY30 \& 50.09 \& BAX16 \& E0．08 \& BY176 \& co \(75^{*}\) \& OAG7 \& \({ }^{50} 08\) \& SD10 \& ¢0．06 \\
\hline \& E0 \& \& \& \& \& \& \& （21132 \& E0． 18 \& \({ }_{2}{ }^{2} 5257\) \& ¢0 \& AAZ13 \& ¢0．25 \& 8 BY 100 \& E0．22 \& BY206 \& E0． \& OA70 \& \({ }^{\text {co }}\) O 08 \& IN34 \& \\
\hline A \& \& \& \& \& E0 \& O \& \& \({ }_{2}^{2 N 130}\) \& E0． 45 \& \({ }^{2} \mathrm{~N} 5458\) \& \({ }_{50} \mathbf{E} .32\) \& \({ }^{\text {A A A } 100}\) \& £0． 15
E0． 10 \& BY101 \&  \& BYZ \& \({ }_{\text {c0 }}^{50.45}\) \& OA79 \& cos \& IN34A \& E0．07 \\
\hline AF \& ¢0 \& \({ }^{\text {BC4 }}\) \& E0 \& B \& E0．14＊ \& \& \& 2N130 \& \({ }_{\text {co }}\) \& \(\xrightarrow{\text { 2N5459 }}\) \&  \& BA1 \& \({ }^{\text {E0 }} 32\) \& BY114 \& \({ }_{\text {E }} 0.22\) \& BYZ12 \& E0．45 \& \({ }_{0}{ }^{\text {a }}\) A 8 \& \({ }_{80} 0.13\) \& N914 \& E0．03 \\
\hline AF127 \& Co \& \({ }^{\text {BC4478 }}\) \& \& \& ¢0．903 \& \& \& 2 N 1305 \& \({ }_{50} 18\) \& \& £0．34 \& \({ }^{\text {BA }}\) BA48 \& co 15 \& \& co． \(22^{*}\) \& BY \& E0．40 \& A \& c0．07 \& \& \\
\hline \({ }^{\text {AF }} 1719\) \& \& \({ }^{\text {BC547 }}\) \& \({ }_{50}\) \& BF2 \& \& － \& z0 \& \({ }^{2}\) \& \& 2 N \& \& BA155 \& E0． 14 \& BY127 \& \({ }_{\text {c }}+16{ }^{*}\) \& BYZ17 \& E0－36 \& \& \& IS44 \& \\
\hline \({ }_{\text {AF }}\) \& \& B \& E0 \& \& \& \(\mathrm{OCl}^{\mathrm{Cl} 17}\) \& \& \(\stackrel{\text { 2N }}{2 \mathrm{~N}+306}\) \& co \& 2N61 \& 50.70 \& BA156 \& E0． \& BY128 \& ¢0． 86 \& BYZ18 \& \({ }_{\text {¢ } 036}\) \& OA182 \& \({ }_{\text {EO }}\) \& \& C0．06 \\
\hline AF180 \& \& 8C5 \& \& \& 8 \& \& \& \(2 \mathrm{N1309}\) \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& － \& \％ \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \({ }_{\text {BC557 }}\) \& \({ }_{50} 0 \cdot 13 *\) \& BF257 \& E0．30 \& OC23 \& E0．85 \& （2N1613 \& \({ }^{\text {co }}\) \& \& \({ }^{2} 0.43\) \& \& \& Cas \& \& \& A \& \& 048 \& \& \\
\hline ALI02 \& E1 \& \({ }^{\text {BC5588}}\) \& \({ }^{20} 0 \cdot 12^{*}\) \& BF \& \& OC234 \& ．90 \& 2Ni889 \& \({ }_{\text {ce }}\) \& 25302 A
25303 \& cife．43 \& 100 \& \& \& \& Price \& Volts \& \& No． \& \& \\
\hline ASY26 \& \({ }_{81}\) \& \({ }_{\text {BCY53 }}\) \&  \& BF \& ¢0 \& OC205 \& \(\pm 15\) \& \({ }_{2}^{2 N 1}\) \& \& \({ }_{2 S}^{2534}\) \& cit \& 200 \& \& 212a／200 \& \& － 51 \& 100 \& \& 10， 100 \& \& \\
\hline AsY27 \& \& \({ }_{\text {BCY31 }}\) \& \({ }^{20} 50.55\) \& 限 \& 20 \& \& \& \({ }_{2}^{2 N 1}\) \& \& 25305
23
2065 \& c0 \& 400 \& \& 12a／400 \& \& 071 \& \& \& a／400 \& \& \\
\hline AsY28 \& \& \({ }^{\text {BCY }} 3\) \& \(\pm 0\) \& Br \& \& \({ }^{397}\) \& ． 45 \& \({ }^{2} 12148\) \& E0 \& \({ }_{2}^{2 S 307}\) \& ¢0．80 \& \& \& \& \& \& \& \& \& \& \\
\hline AsY \& \& \({ }_{8 C}\) \& \({ }_{\text {cex }}\) \& BF272 \& \& \& \& 2 N 2150 \& \& \({ }^{25} 321\) \& 20 57 \& \& \&  \& \& \& \& P TO2 \& \& ttc \& \\
\hline SY54 \& EO \& c \& \(\pm 0\) \& （ \({ }_{\text {BF273 }}\) \& \({ }_{\text {cose }}^{\text {co．} 38^{*}}\) \& \({ }_{\text {R200008 }}\) \& E2．50 \& 2N2193 \& \& \({ }_{2 S}^{25322} 3\) \& 50.43
80.43 \& 100 \& \& No． \& \& 5 \& \& \& \& \& \\
\hline SY52 \& ¢0 \& BCY \&  \& \({ }^{\text {BF3 }}\)－\({ }^{\text {d }}\) \& \({ }_{\text {E0 }}\) \& \& E2．60 \& 2 N 2194 \& \& 25323 \& E0． 57 \& 200 \& \& 16a \& \& 1 \& \& \& \& \& \\
\hline S \& EO \& \& \& BF336 \& \(\mathrm{cos}^{0} 35\) \& \& \& 2，\({ }^{\text {22217 }}\) \& co \& \({ }^{25} 324\) \& E0 71 \& \& \& 6a／400 \& \& \& \& \& \& 232 10 \& \\
\hline ASY56 \& \({ }_{\text {c }}\) \& \({ }_{\text {BCz211 }}\) \& － \& BF \& \({ }^{20} 0{ }^{30}\) \& ST140 \& ¢0．45 \& \({ }_{2} \mathrm{~N}_{2} 21818\) \& \& 25325 \& c0． 71 \& \& \& \& \& \& \& \& \& \& \\
\hline As \& E0 \& BCZ12 \& ع 80.60 \& \({ }_{\text {Bras }}\) \& \& \& \& \(2{ }^{2} 22219\) \& co \& \({ }_{25}{ }^{237}\) \& \({ }_{20}{ }^{28}\) \& \& \& \& \& \& BI－PA \& AK \& ATA \& 06 \& \\
\hline AsY58 \& \({ }_{80}\) \& 8 B \& £0．50 \& BF4 \& \& TIC44 \& £0．29＊ \& 2N2219A \& \& \& \& Do not \& nd your \& state \&  \& \& NEW EDI \& ITION NOW \& OW AV \& A／LA \& \\
\hline AU104 \& E1． 40 \& \({ }^{\text {BDP121 }}\) \& E0．65 \& 88 \& \& TIC45 \& E0． \& 2 N 2221 \& \({ }_{\text {EOP }} \mathbf{2 0}\) \& 40311 \& \& ad \({ }^{\text {ad }}\) \& \& \& \& nd \& er your \& copy of \& our reva \& sed \& gue \\
\hline AU110 \& ¢1．40 \& \(8{ }^{8123}\) \& ¢0 \& BF596 \& \& \({ }_{\text {T1P } 298}\) \& E0．50 \& 2N2221A \& \(\pm 0\) \& 40313 \& 95 \& \& \& \& \& \& rice lis \& W \& con \& ns \& ges \\
\hline \& E1．40 \& 80124
80131 \&  \& BF \& \& TIP \& E0． 50 \& 2N2223 \& \(\pm 0\) \& \({ }_{40317}^{40316}\) \& \({ }_{40}\) \& \& \& \& \& \& with \& literal \& hund \& ds \& \\
\hline \& \& \(8 \mathrm{8D32}\) \& \({ }_{\text {co }} \times 10\) \& \& \& T1P30A \& c0．50 \& 2 N 236 \& E0 \& \({ }^{40326}\) \& \({ }_{\text {co }}\) \& Add 1 \& to \& s \& \& \& ctors， \& mpor \& ts a \& our \& ous \\
\hline \({ }^{C}\) \& \({ }_{\text {cose }} 50.08\) \& \({ }^{8013}\) \& \& \& \& \({ }_{1+1 P 308}\) \&  \& 2N2369 \& ¢0 \& 40327 \& \({ }_{5} \mathbf{8 0} 0.45\) \& marked \(\dagger\) \& 咗 \& Red \& \&  \& ot \& TS audi \& mod \& \& \\
\hline C1078 \& E0．08 \& \({ }_{80}{ }^{\text {P135 }}\) \&  \& BF× \({ }^{\text {Bra }}\) \& \({ }_{\text {co }}\) \& \({ }_{\text {TIP331 }}\) \& E0．45 \& \({ }^{2} 2{ }^{2} 2114\) \& \({ }_{\text {co }} 18\) \& 40347 \& cose \& \& \& \& \& \& \& \& \& \& \\
\hline C107
C108

c \& cote \& ${ }^{8 D 136}$ \& £0 \& BF \& ${ }^{0}$ \& ${ }_{T 19}$ \& \％ 50.49 \& 2N242 \& \＆0． \& ${ }^{40348}$ \& ${ }^{\text {E0 }}$ \& \& \& \& \& \& NLY \& \& \& \& <br>
\hline C108A \& ${ }_{\text {co }} \mathrm{CO}_{0} 08$ \& BD1 \& co \& BF \& ${ }^{\text {co }}$ \& 1 Tp \& E0． 49 \& ${ }_{2}^{2 N 2646}$ \& ${ }_{c}^{2} 0.22$ \& ${ }_{40361}^{40360}$ \& $\pm$ \& 35p un \& Ps othe \& wis \& \& \& NLY \& \& \& \& <br>
\hline \& 20 \& BD \& \& 8F×887 \& E0 \& \& ${ }^{\text {cos }}$ \& 2N271 \& E $0 \cdot 22$ \& 4 \&  \& \& \& \& \& \& \& \& \& \& <br>
\hline ${ }^{3 C 108}$ \& ${ }_{50} \mathbf{c} 0.08$ \& 3D140 \& ${ }^{0} 0$ \& BFX98 \& E0 22 \& ${ }_{19} \mathrm{TP}_{41}{ }^{\text {a }}$ \& － \& 2 N 2714 \& E0． 22 \& 40406 \& c0． 45 \& \& \& \& \& \& \& \& \& \& <br>
\hline ${ }^{3} \mathrm{C} 109$ \& coter \& BD139／1 \& E0．80 \& BFX ${ }^{\text {co }}$
BFY \& ${ }_{50} 50.53^{4}$ \& T1P4 \& E0． 51 \& 2n2904 \& c0． 18
c0． 21 \& ${ }_{40408}^{40407}$ \&  \& \& \& \& \& \& \& \& \& \& <br>
\hline ${ }^{\text {C109 }}$ \& E0．08 \& $8 \mathrm{BD175}$ \& ${ }_{00} 60$ \& \& $\pm$ \& ${ }_{\text {TP }}{ }_{\text {42 }}$ \& $c053$ \& 2 N 2905 \& c0． 88 \& ${ }_{40409}$ \& ${ }_{\text {E0 }} \mathbf{7 5}$ \& \& \& \& \& \& \& \& \& \& <br>
\hline ¢8113 \&  \& 801 \& ¢0 \& \& \& TP ${ }^{182}$ \& ${ }_{\text {e }}$ \& $\frac{2}{2} \frac{1}{2305}$ \& coter \& 4041 \& \& \& \& \& \& \& \& \& \& \& <br>
\hline ${ }_{8}{ }^{\text {c }} 115$ \& E0．19＊＊ \& 80178 \& co \& \&  \&  \& 20．50．5 \& ${ }_{2}{ }^{\text {N }}$ 230606A \&  \& 40417 \& \& \& \& \& \& \& \& \& \& \& <br>
\hline BC116 \& £0．19＊ \& 8D179 \& E0． \& B1P20 \& ${ }_{20}$ \& T1P3055 \& － \& ${ }^{2 N 2307}$ \& E0． 20 \& 40476 \& A \& \& \& \& \& \& \& \& \& \& <br>
\hline ${ }^{\text {BC136A }}$ \& ${ }_{\substack{c \\ 80.19}}$ \& 80180 \& co． \& B1P19／2 \& E1． \& TIS43 \&  \& －${ }_{\text {2N2907A }}$ \& E0．${ }_{\text {ct }}^{\text {ci }}$ \& 40494 \& c0．70 \& \& \& \& \& \& \& \& \& \& <br>
\hline B \& ${ }_{50} 11^{* *}$ \& $8{ }^{8182}$ \& E0．90 \& ${ }_{\text {BSX19 }}$ \& \& TIS90 \＆ \& co． 22 \& 2N2324 \& E0．15＊ \& ． 4059512 \& ${ }^{51} 1.35$ \& DEP \& T． \& W8， \& P \& B \& $\times 6$, \& A \& ， 1 \& R \& <br>
\hline 8C120 \& 60.25
80.40 \& 8D183 \&  \& BSx20 \& 20．18 \& \& 22 \& 2N2925

2N2926 \& co．${ }_{\text {cos }}$ \& \[
$$
\begin{aligned}
& 40594 \\
& 40636
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { f0.90 } \\
& 61.90
\end{aligned}
$$
\] \& \& \& \& \& \& \& \& \& \& <br>

\hline \& \& \& \& \& \& \& 20． 22 \& 2 N 26 \& ， \& \& \& \& SHOF \& \& $$
\begin{aligned}
& 18 \mathrm{~B} \\
& \text { OPE }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { ALDO } \\
& 49 \text { to }
\end{aligned}
$$
\] \& CK ST

$$
5.30 \mathrm{Mc}
$$ \& \[

$$
\begin{aligned}
& \text { r.t. } W \\
& 10 \mathrm{~N}-
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { RE }, ~ \\
& \text { AT. }
\end{aligned}
$$

\] \& \[

E R
\] \& <br>

\hline
\end{tabular}



EDITOR

Geoffrey C. Arnold

ASSISTANT EDITOR Dick Ganderton C. Eng., MIERE ART EDITOR

Peter Metalli
TECHNICAL EDITOR Ted Parratt, BA
NEWS \& PRODUCTION EDITOR
Alan Martin
TECHNICAL SUB-EDITOR
Peter Preston
TECHNICAL ARTIST
Rob Mackie

## LAYOUT ARTIST

Keith Woodruff
SECRETARIAL
Sylvia Barrett
Debble Chapman

## EDITORIAL OFFICES

Westover House, West Quay Road, POOLE, Dorset BH15 1JG
Telephone: Poole 71191

ADVERTISEMENT MANAGER
Telephone: 01-261 6671 Roy Smith

## REPRESENTATIVE

Telephone: 01-261 6636 Dennis Brough
CLASSIFIED ADVERTISEMENTS
Telephone: 01-261 5762 Colin R. Brown
MAKE UP \& COPY DEPARTMENT Telephone: 01-261 6570 Dave Kerindi
ADVERTISEMENT OFFICES
Kings Reach Tower, Stamford St., London, SE1 9LS
TELEX: 915748 MAGDIV-G

## Chicken \& Egg

NEW developments in electronics tend to fall broadly into two categories. Some appear to be the result of someone saying "Here's an idea or an i.c. that will do something that's never been possible before-what can we use it for? The results are often rather gimmicky and pointless and remind me of a course in "Design" which I attended a few years back. There, each project team was given a portable videotape recorder and camera and told to go out and find something to record. A definite case of a means looking for an application.
Other new pieces of equipment seem to announce that their designers have done a tremendous amount of research into what people need, and then proceeded to pack the maximum facilities possible into the product.

Happily there were several examples of the latter type among new items on display at the recent round of London radio and TV trade shows. Perhaps it is a little unfair to mention some without mentioning all, but two particularly took my fancy. From Ferguson somes a clock radio which they have nicknamed (with some justification) "The Great Little Time Machine". This has two time zone settings (BST and GMT?), two alarm time settings (husband and wife?), day and month calendar, forward and reverse setting facility (no more advancing $23 \frac{1}{2}$ hours to achieve a half-hour earlier call) and Long, Medium and v.h.f. bands, (ready for the new frequency plan in November). Add to this all the usual facilities and the bonus of auto-dimming of the clock display and you have a very handy item for the bedside table.

Those of you who have ever caught the end of a radio announcement and thought "That sounded as if it could be of interest, I wonder what it was", may find their salvation in a fascinating new system by Intermetall Semiconductors of the ITT group. Based on "bucket-brigade" i.c.s., this continuously stores the last 15 seconds or so of a sound transmission, which may be repeated at the press of a button. So that subsequent announcements are not missed, the recorded speech is compressed in time by removing pauses between words. This process continues until the replayed speech catches up with real time and then normal speech is resumed. Altogether very cunning, and a delightful example of someone recognising that a new technique could be adopted to solve an age-old problem!

Geoffrey C. Arnoid


## RAE

The Mid-Warwickshire College of Further Education notify us that they will be offering the City \& Guilds, RAE Course No. 765 in September 1978.
Enrolment will be on September 7th and 8 th. The course will be one evening each week for approximately 30 weeks and is intended to prepare students for examination No. 765-1-02. Mid-Warwickshire College of Further Education, Department of Engineering, Warwick New Road, Leamington Spa CV 32 5JE. Tel: (0926) 311711.

## Hello Thistle

North Sea oilmen in the Brent oilfield will soon be able to telephone each other thanks to new equipment now being installed by Marconi engineers.
Shell (UK) Ltd placed a contract worth over $£ 300,000$ with Marconi Communications Ltd, a GEC-Marconi Electronics company, for the instaliation of radio equipment that will establish a communications link between offshore stations, and also back to the mainland.

Phase one of the contract will be to link Dunlin and Brent A, B and D by line-of-sight radio equipment and also to connect Dunlin to BNOC's Thistle platform, Thistle having a troposcatter terminal relaying back to the new Post Office terminal in South Shetland. Phase two will connect Brent $C$ and Cormorant into the system and establish a line-of-sight microwave link between Cormorant and Thistle.

Finally, there will also be a troposcatter link from Cormorant to South Shetland and the line-of-sight microwave link between this platform and Thistle will complete the triangulation for alternate path operation.


## Computer Clubs

I am informed of the existence of two northern sub-groups of the Amateur Computer Club, whose object is to help anyone who has an interest in computers, microprocessors etc.

For details of joining the groups those in the North East should contact: Thomas Turnbull, $49 \times 9$ th Row, Ashington, Northumberland NE63 8JY, and those in the North West: David Wade, 26 Wolsey Close, Radcliffe, Manchester M26 0AG.

## Special Event

Yeovil Amateur Radio Club will be running a special event station for Air Day at RNAS Yeovilton, Somerset on Saturday 5th August. Call-sign GB3FAA. For further information contact: John Howard, 127 Goldcroft, Yeovil, Somerset BA21 4DD.

## Diary notes

The Telford Mobile Rally Group are organising a rally for radio amateurs at Town Centre Malls of Telford, New Town, Salop, on Sunday 10th September, 1978-starting at 11 am . There will be many trade stands and exhibits. Details from: Martyn Vincent G3UKV, 9 Sleapford, Long Lane, Telford, Salop.

The British Amateur Electronics Club are holding their Amateur Electronics Exhibition this year at the Centre of the Esplanade, Penarth, S. Glamorgan, between 15th and 22nd July 1978. As before all proceeds will be given to the Cancer Research Campaign. Further information from: Cyril Bogod, "Dickens", 26 Forrest Road', Penarth, Glam.

The British Amateur Radio Teleprinter Group is holding its annual convention at Harpenden Public Hall, Harpenden, Herts. on Saturday 15th July, 1978-starting at 11am. There will be trade stalls, demonstrations and lectures, including one on Microprocessors by G3PLX, which is expected to attract particular attention. Details from: J. P. G. Jones GW3/GG, Heywood, 40 Lower Quay Road, Hook, Haverfordwest, Dyfed SA62 4LR.

The 1978 Harrogate International Festival of Sound is to be held at The Harrogate Exhibition Centre, Harrogate. The public are invited on Saturday 19th and Sunday 20th August from 11.00am until 9.00 pm and admission will be free of charge. Trade days are Monday 21 st and Tuesday 22nd August, when admission will be by ticket, available from the organisers in a special dealer invitation pack. Further information from Stan Smith and Peter Hainsworth of: Exhibition and Conference Services Ltd., Claremont House, Victoria Avenue, Harrogate, North Yorkshire. Tel: (0423) 62677.

## Microprocessor terminal

Soon to be launched on the home market is the SR100 series Minitype computer terminal from Warren Logic Ltd.
Designed specifically as a low cost teletype or v.d.t. replacement, it is expected to cost less than $£ 300$.

A teletype compatible keyboard with full ASCII capabilities is used. The display section consists of fifteen alphanumeric sixteen segment l.e.d. elements which utilize a sixty-four character ASCII subset. The On-Line mode of operation is full duplex and a local facility is also provided. Both E.I.A. and 20 mA current loop operation are standard and any baud rate between 50 and 240 baud may be selected by an eight pin di.I. module.

For further details contact: Warren Logic Ltd., Hockley Road, Brosley, Salop, TF12 5HT. Tel: (0952) 883010.

## PW"Avon"

Those constructors of the "Avon" 2 m Transmitter, who intend purchasing transistor types 2N4427 and BLY83 from Watford Electronics should note that the prices quoted in their advertisement are wrong. The correct prices for these transistors are: 2N4427 90p plus $8 \%$ VAT and BLY83 £8.50 plus 8\% VAT.

# ; 'purbeck' 



## Part 5

This month's instalment deals with the trigger circuits, timebase generator and X output amplifier, all contained on board 4. Figs. 2 and 4 show the component and wiring side of the board and Fig. 1 gives the complete circuit diagram.

The trigger input (either from front panel SKT5 or 6 or from the trigger pick-off stage of the $Y$ amplifier board) is first buffered, amplified and squared up and then passed to a polarity selector gate IC403a which inverts it or not under control or front panel switch 85 .

So now we have a squared-up waveform at standard TTL logic levels applied to trigger gate IC402d.

Let's assume the time base hasn't been triggered for some time, so that flyback is complete. Then the output of the control bistable will be a logic 0 (about $+0 \cdot 2 \mathrm{~V}$ ) and the emitter of $\operatorname{Tr} 406$ will be negative by a few hundred millivolts.

As the current through its emitter resistor always exceeds the current supplied by the constant current generator Tr404, diode D404 will hold C12 at about 0 V and the inverting input of the end-of-flyback comparator IC406 will be slightly negative. IC406 will therefore apply a logic 1 (about $+3 \cdot 8 \mathrm{~V}$ ) to the trigger gate.
The control bistable IC404a is positive edge trig. gered. Therefore when the output from IC403a goes negative, causing the output of the 2 input nand gate IC402 to go positive, IC404a's Q output will go to a logic 1. D404 will therefore be cut off and the con-
stant current source will start to charge up C12 linearly.

Meanwhile, once triggered, further edges will have no effect on the control bistable and anyway, shortly after the start of the scan, the inverting input of IC406 will go positive, putting a logic 0 on IC402d. The latter's output will therefore sit at logic 1 until the end of retrace (flyback). When the scan reaches +3 V , the output of IC405 will change from a logic 1 to logic 0, resetting IC404a. The Q output will therefore fall to 0 V , cutting off $\operatorname{Tr} 406$, the whole of the current through R429 then being available to charge Cl2 back down negative.

As soon as the recharge commences, of course, the output of IC405 returns to a logic 1, removing the reset from IC404a.

However, not until the end of flyback will IC406 re-enable IC402d by applying a logic 1 to it, prevent ing early retriggering of the scan. It doesn't matter whether IC403a output is positive or negative when IC406 re-enables trigger gate IC402d, either way the first edge out of the latter will be negative going.

The control bistable will only be retriggered on a positive edge, i.e. on the first negative edge from IC403a following the appearance at IC402d of a logic 1 from end-of-flyback comparator IC406.

With a basic understanding of the circuit operation, we can now look in more detail at the complete circuit diagram. Emitter follower $\operatorname{Tr} 401$ drives the trigger amplifier IC401 via two $150 \Omega$ resistors in


Fig. 1: The circuit diagram of the trigger circuits, timebase generator and $X$ output amplifier, all on board 4
series, providing a low source impedance.
At their junction a current injected via R405 provides a variable offset voltage at pin 3, giving control of the trigger level. The gain and bandwidth of the 710 are so great that despite the low source impedance there is a possibility of oscillation as a low
frequency input is passing through the triggering point.

This would lead to false triggering and is prevented by applying a small amount of positive feedback via R406, thus introducing a small hysteresis. The output of IC401 drives IC402a, a two input nand Schmitt
trigger circuit used as a buffer. The 710 will only drive one standard TTL load and so cannot drive both IC402b and IC403a directly.
The sudden change in loading on the 710 when IC402a switches can cause the 710 to retrigger falsely. This is prevented by the retardation network R407, C404.
The brightline circuit IC402b to IC403b works as follows. If IC402a is producing a squared-up trigger waveform, the output of IC402b will be detected by D401 and 402, charging C406 up positive. Current through R409 will keep Tr 402 bottomed and the output of IC402c must therefore remain permanently high (logic 1). If the other input of exclusive or gate C403b is low, its output will be high. Under these conditions the output of IC403a will be an inverted version of its input. Converseiy, if pin 12 of IC403b is high, IC403a output will not be inverted. This provides trigger polarity selection.
If there is no trigger input to the board or RV1 is right at either end of its travel, IC402a output will sit permanently at either a logic 0 or a 1 . With no a.c. output from IC402b for the diodes to detect, after about a second, C406 will be discharged and Tr402 will turn off.
With pin 1 now high, IC402c will oscillate, since if its output is high, C407 will charge up via R410 until pin 2 reaches the trigger point and the output drops to a 0 and conversely. As IC403a and b are exclusiveor gates, the output must change whenever one of the inputs changes.
The square wave generated by IC402c will thus be passed to the trigger gate IC402d, operating the
timebase and providing a trace when there is no trigger available.

If the square wave produced by Tr402c were of a very low frequency, on the fast time-base setting a very rapid scan would be followed by a much longer pause before retriggering.
This would result in a very dim trace. IC402c therefore oscillates at a very high frequency, giving a nontriggered trace brightness independent of time-base speed setting.

Note that IC402c output could have been taken straight to pin 10 of IC403a and IC403b inserted between the latter and IC402d.

However, mixing the polarity control in with IC402c "off line" minimises the number of gate delays in the main trigger path. This in turn enables more of the leading edge of a wave form to be seen.

The basic operation of the ramp generator section has already been described, but there are several points of detail worth noting. The D input, pin 13 , of IC404a is tied to +5 V , i.e. logical. Therefore the " $Q$ " output, pin 9, will go high when a positive edge appears at pin 11 . IC403c is a non-inverting buffer and the pull-up resistor R415 takes its output right up to +5 V when high, taking the emitter of $\operatorname{Tr} 406$ to about $+4 \cdot 4 \mathrm{~V}$.
The end of trace comparator IC405 resets the control bistable when the ramp reaches +3 V , so there is no danger of D404 tending to turn on before the end of the ramp. VR401 is set so the end-of-flyback comparator only re-enables the trigger gate when the ramp voltage is within a per cent or so of the value at which it would rest if IC404a was never triggered.

## components




Fig. 3: The copper ground plane pattern of board 4
and 1 on alternate traces. IC403d also drives $\operatorname{Tr} 403$, which is cut off during the scan and bottomed during retrace. The collector wave-form is used to blank the c.r.t. during flyback.

Besides driving the comparators IC405 and 406, emitter follower Tr404 makes the ramp wave form available at SKT 7 (sweep output) via R416 and drives the $X$ deflection amplifier.

This is basically similar to the Y deflection amplifier, but driven unbalanced at $\operatorname{Tr} 408$ with the X shift voltage fed in at $\operatorname{Tr} 409$.

In view of the more limited frequency response

## WARNING

Extra care must be taken when working on any part of this instrument while power is switched on. 1100 volts can kill. When delving into the insides of the scope for any reason with power on keep one hand in your pocket.
which suffices for the X amplifier, a single frequency compensation capacitor C411 is used in the emitter circuit. The Calibrated position for VR407 is fully anticlockwise, corresponding to minimum gain. RV408 allows this value of gain to be set to the required value.

Owing to the larger deflection voltage required for the X plates, the collector resistors of TR410 and 411 are returned directly to +150 V .

With a higher supply voltage than the $Y$ amplifier, the current is reduced, about 10 mA in each transistor, to keep the dissipation of the BF336s the same.

Having completed the construction of Board 4 , check each power supply pin to 0 V with an ohmmeter to make sure none is short circuit and centre all preset potentiometers except VR401, which should be set with the wiper at the earthy end. Set VR407 fully anticlockwise.

Plug the board into the mainframe, remove the temporary $47 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ resistor chain and con-


Fig. 4: Back wiring of board 4 in relation to the components. This layout of the wiring should be followed to avoid any possibility of instability occurring
nect the X plates via R21 and R22 and sockets to pins X1 and X2 of the board.

Connect one lead of C18 to c.r.t. pin 3 (one of the tube base mounting holes-which are not used-can be fitted with a solder tag to support the lead) and the other via a socket to the blanking output of the board.

Set RV3 fully clockwise, S4 to position 2 and S401 to position 5 . Plug in briefly and check that all stabilised supply voltages are normal, indicating no shorts anywhere.

A trace should appear on the screen-the tube may need rotating a little if it is not horizontal, but the spigot should be somewhere near the top. It is safest to turn off first, remember there is -800 V around! Next, set S401 to position 2 and connect SKT3 to SKT1. With S3 and S301 both in position 3, two or
three cycles of the 50 Hz Cal. square wave should appear on the screen.
If the waveform is running through, adjusting RV1 should synchronise it, provided of course that $\mathrm{S6}$ is in the Internal position.
The trace should start with a positive or with a negative edge according to the position of $\$ 5$. Now set S401, Timebase Multiplier, to position 5 ( X 0.5 ). Rotate the wiper of RV401 away from the earthy end of its track until the trace stops running and then set it back just a few degrees beyond the point where the trace starts to run again.
These tests show that Board 4 is basically operational; setting up is covered in next month's instalment.
Next month we will deal with the case and other mechanical details.


This month's circuit uses the 741 op . amp. in a closed loop inverting mode to form a sensitive mains cable detector. A simple but very useful device it can save certain disaster when deciding where to bang nails, etc., into walls.

When a.c. mains current flows in a conductor there is a magnetic/electric field surrounding the conductor, albeit a very weak field. If this field comes within range of our search coil (L1) then the fluctuating 50 Hz field from the conductor will induce tiny voltages and currents in the coil L1. These can be quite clearly heard in the earpiece.

On test, the circuit shown could easily and positively detect the presence of a mains cable to a small Ni Cad battery charger laid on a bench at a distance of 12 inches. A simple, small bar magnet could also be 'heard' when passed within some 3 to 4 inches of the search coil.
The complete circuit of the mains cable detector is shown in Fig. 1, it can be built on a $\mu \mathrm{DeC}$ in less than 15 minutes and takes only 20 minutes to transfer to a piece of matching Blob Board. The inverting closed loop amplifier IC 1 has its output fed to C3. By connecting the earpiece recommended between the positive plate of C3 and the negative line the circuit will function well, although it would be wise to reverse the polarity of C3 if this circuit configuration is settled as permanent. In Fig. 1 an additional stage of amplification is afforded by the addition of only two components, R4 and Tr1.

The total measured current drawn by the circuit with 3 V applied was only 0.6 mA and battery life should be very long indeed if the device is used intermittently. A magnetic microphone was tried as a small loudspeaker in place of the earpiece. This worked well but increased the current drawn to 1.4 mA . The microphone had an impedance of $300 \Omega$. Note that a lower impedance should not be used and
that small $8 \Omega$ loudspeakers would be unsuitable in the circuit as shown.
The value of C 2 should be found by experiment for optimum results. This is extremely simple with the $\mu \mathrm{DeC}$ because one simply 'plugs in' different values of capacitor in turn. The capacitance shown will work well but various values from 10 pF to $0 \cdot 1 \mu \mathrm{~F}$ were tried. In general, the best value will lie between about 80 pF and 350 pF . The effect of adding this capacitor across the feedback resistor R3 is to make it frequency conscious and to attenuate the higher frequencies.
This is sensible for two reasons. Firstly we are only interested in 50 Hz , which is a very low frequency. Secondly, without this capacitor the circuit becomes a h.n.c. circuit (Horrible Noise Oscillator!). The values of the input and output capacitors Cl and C3 are not all critical. Low values were selected because they would present less resistance/impedance to the lower frequency of interest. However, even using $0 \cdot 1 \mu \mathrm{~F}$ in each case still gave excellent results.


Fig. 1: Circuit diagram of the cable detector


Fig. 2: Layout of the mains cable detector on a $\mu \mathrm{DeC}$. The same layout can be used to build the circuit permanently on a matching Blob Board

The search coil Ll was simply an old relay. The contacts connections were ignored. The one used was a midget $700 \Omega$ type, but almost any kind should work well. For the constructionally-minded a few hundred turns of, say, 30 s.w.g. enamelled copper wire wound higgledy-piggledy on a 2 inch piece of ferrite rod (any diameter) should also work.

The circuit might also be used as a telephone amplifier. This can be useful where you might require another person to listen to a conversation. One of the small telephone pick-up devices with a little rubber sucker may be plugged in directly in place of L1. The
inner wall of the case using a generous blob of Bostick to its plain side. You will also need an on/off switch-not shown in Fig. 1, the search coil should be mounted inside the case for protection and two small ( 3 mm ) holes drilled just above the coil and in both sides of the box.

When using the device, the wall is swept for maximum pick up. A long knitting needle is then pushed gently through both holes and the container drawn away up the knitting needle to reveal a locating point. This can then be marked lightly with a pencil and a further sweep made to trace the cable.

## components


telephone pick-up could also double as the search coil for the cable detector operation.

Sensitivity of the circuit can be damped by reducing the value of R3 to $820 \mathrm{k} \Omega$. Experimenters might like to insert a potentiometer in place of R3. Connect the outer tags on the potentiometer to $\mu \mathrm{DeC}$ holes L32 and 035 (i.e. in place of R3), and connect the middle tag to either of the others. It is suggested that a $1 \mathrm{M} \Omega$ potentiometer be used.

For best results, the earpiece should be an Acos red spot $1 \mathrm{k} \Omega$ type. All others tried were found to be inferior in terms of sensitivity. A crystal microphone was also tried in place of the earpiece and this worked tolerably well provided that a $560 \mathrm{k} \Omega$ resistor was wired in parallel with it to provide a d.c. path for the collector of Trl.

If (like the writer) a permanent circuit is required, the device could be transferred to a matching piece of Blob Board and the components then soldered into position. The Blob Board is then stuck directly to the


# Mnitrincilion (i) LOEIG~ロ 

Last month we started our exploration of digital logic by examining the characteristics of digital signals and the AND gate circuit. In a real logic system the AND type gate alone will not allow us to perform all of the operations that we might need. Obviously we shall need some other types of logic gate if we are to produce a logic system.

## The OR Gate

Let's go back to our simple electrical lamp and switch circuit. This time however, instead of having the two switches connected in series, we shall have them in parallel as shown in Fig. 9. Now we have produced a different type of logic gate function. Here the lamp will light if either of the switches is closed. In logical terms, the output is 1 when input A OR $B$ is at 1. As one might expect, this type of gate is called an OR gate.

We can of course make up an OR gate by using discrete diodes, using the circuit shown in Fig. 10. If we compare this with a diode AND gate, we see that it is in effect an AND gate which has been turned upside down whilst the diodes have had their polarity reversed

If input A goes to 1 diode Dl conducts and pulls the output up to 1 by driving current through resistor $R$. Input $B$ will have the same effect upon the output. Only if both $A$ and $B$ inputs are at 0 will both diodes turn off to leave the output at the 0 level.

We can now draw up a truth table to show the various logic states that can exist in a 2 -input OR gate (Table 3).

Table 3

| Input |  | Output |
| :---: | :---: | :---: |
| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{Y}$ |
| $\mathbf{0}$ | 0 | 0 |
| $\mathbf{1}$ | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 1 | 1 |

In fact the OR gate is effectively complementary to the AND gate. For an AND gate the output is 1 only when all of the inputs are at 1 , whilst for the OR gate the output is at 0 only when all of the inputs are at 0 . If we changed all of the 1 s for 0 s and vice versa in the OR-gate truth table, we should end up with the same set of logic conditions as we had in the AND-gate truth table. For an OR gate we can also say that if any one or more of the inputs is at 1 the output will be at 1 .


Fig. 9: Electrical OR gate


Fig. 10: Diode OR gate


Fig. 11: A typical CMOS OR gate


Fig. 12: A typical TTL OR gate
In CMOS logic devices, the OR gate arrangement looks similar to the CMOS AND gate except that it has effectively been turned upside down so that the $p$ transistors are now in series and the $n$ transistors are in parallel. A circuit for a typical CMOS 2 -input OR gate is shown in Fig. 11. If either of the inputs is at 1 , then either $\operatorname{Tr} 3$ or $\operatorname{Tr} 4$ will be turned on to bring point $X$ down to the 0 level. This produces a 1 level at the output because of the inverting action of the output stage itself.
In the case of the TTL type devices, the circuit of an OR gate is rather different from that of an AND gate and is shown in Fig. 12.

## OR Gate Symbol

Once again, because of the complex nature of the gate circuit, a special symbol is used to denote an OR gate. This one takes the shape of a shield, with the output line coming from the pointed end of the shield as shown in Fig. 13(a). For convenience in drawing an OR gate with a large number of inputs this symbol may be modified to that shown in Fig. 13(b). The symbols we shall use in this series are those of American MIL STD 806B. Alternative symbols are used in other standard systems.

Actual OR-gate integrated circuits come in a similar range of combinations to the AND-gate types. In the CMOS range we have the 4071 which is a quadruple 2 -input OR gate arrangement. Then there are the 4075 (triple 3 -input OR gate) and the 4072 which contains two separate 4 -input OR gates. These are shown together with their connections in Fig. 14.

In the TTL series, the OR gate is not very popular and only one variety is available. This is the 7432 which contains four separate 2 -input $O R$ gates as shown in Fig. 14(d).

When designing actual logic systems we shall, from time to time, want to use OR gates which have more inputs than those available as standard circuits. These larger OR gates can be built up by cascading several smaller OR gates as shown in Fig. 15. Here an 8input OR gate has been produced by using two 4 -input gates feeding a 2 -input gate. If any input of G1 goes to 1 then its output goes to 1 and hence the output of G3 will also go to 1 . Similarly a 1 applied to any of the inputs of G2 will produce a 1 at the output. Thus the combination will behave as if it is an 8 -input OR gate.

## Using OR Gates

How might we use OR gates in practice? Let us once again consider our automatic hot drinks machine, and see how it might be organised using logic. For a start we'll assume that some mechanical valves are used to control the flow of coffee, tea, milk etc. into the cup and that these valves are operated by solenoids driven from the logic.

When a 1 signal is applied to a solenoid the associated valve will deliver a metered amount of coffee, tea, etc. into the cup. If a 0 signal is applied to the solenoid the valve will remain closed.

Suppose we allow for six basic drink combinations, each of which is selected by a push button on the front of the machine. In this case these will give black or white coffee, which may be sweet or not as desired. Other options will be tea (with milk) which may be either with or without sugar. There are six inputs to our logic system and four outputs to control the valves for tea, coffee, milk and sugar. A suitable arrangement for the logic is shown in Fig. 16.

Let us start by looking at the coffee output line. This must go to 1 whenever any of the buttons calling for a coffee drink is pressed. We can produce the output required by feeding the signals from the four buttons selecting coffee combinations to a 4 -input OR gate (G1). The output from this gate drives the coffee control valve.

If we consider the milk output signal this must be set to $l$ when white coffee or tea has been selected. Again we have four inputs which are fed to an OR gate G2 to provide the drive for the milk control solenoid.


Fig. 13: OR gate symbols


Fig. 14: Some actual OR gates


Fig. 15: Cascading OR gates to provide more inputs


Fig. 16: Logic circuit for a hot drinks machine

For tea there are only two combinations which need a 1 output so here a 2 -input OR gate G4 is used for the tea control signal. Finally for sugar control we can OR together all of the inputs that require sugar and here we need a 3 -input OR gate G3 to produce the output.

This basic logic scheme could now be extended to allow for more combinations such as lemon tea, chocolate and maybe even cold drinks such as Coca Cola or lemonade by adding more inputs and more OR gates.

## The Inverter

Apart from the AND and OR type gates, we need one more basic logic function which is called the inverter. This produces a 1 output for 0 input and vice versa.

Suppose we have a 2 -input AND gate with signals $A$ and B applied to its inputs. Now assume that we want to achieve a 1 output when $A$ is at 1 but $B$ is at 0 . In a simple AND gate the output would be 0 . Now suppose we invert the B input so that a 1 is applied to the input of the gate when the actual $B$ input is 0 , then we shall get a 1 out of the gate if $A$ is 1 and B is 0 .

A logic inverter might be a simple transistor stage as shown in Fig. 17. When 0 is applied at the input the transistor is cut off and the output line will go to the 1 level. If a 1 input is applied, the transistor will turn on and its collector voltage will fall to zero to give a 0 output. Such an inverter stage might have been used with discrete diode logic in the days before integrated logic circuits appeared.

In TTL and CMOS logic an inverter usually consists of simply the output stages of a gate circuit which with most logic types gives a logical inversion.

The symbol used for an inverter is shown in Fig. 18. Here the triangle indicates an amplifier whilst the small circle on the output line indicates that the logic signal has been inverted.

Actual inverter devices usually come in groups of six to a package. In the TTL range the standard version is the 7404 which is shown in Fig. 19(a) whilst the CMOS equivalent is the 4049 shown in Fig. 19(b).

## Logic Equations

The theory of logic systems is by no means new. The ancient Greeks had already worked out many of the ideas but in the mid 19th century mathematicians, such as George Boole, developed logic as a branch of mathematics. Now a logic system could be reduced to mathematical equations and operated upon by special algebra called Boolean algebra. We shall not go into the theory of logic in a mathematical sense, but it is useful to understand the shorthand used to describe a logic system.
If we take a simple 2 -input AND gate we can write down its operation as the equation

$$
\mathrm{Y}=\mathrm{A} \cdot \mathrm{~B}
$$

Here the inputs have been named as A and B and the output is called $\mathbf{Y}$. In a logic system the signals may be denoted by letters such as A, B, etc. or they may be given names such as DATA, CLOCK etc. In the equation for the AND gate the full stop between A and $B$ signifies an AND function, so the equation can be translated as output $Y$ equals input A AND input $B$.
For the OR function a + sign is used, so that for a 2 -input OR gate the logic equation would become,

$$
\mathrm{Y}=\mathrm{A}+\mathrm{B}
$$

If there were three inputs to the OR gate the equation would then become,

$$
Y=A+B+C
$$



We can make up much more complex logic equations by mixing both OR and AND functions so that we might have,

$$
\mathrm{Y}=(\mathrm{A} . \mathrm{B})+(\mathrm{C} . \mathrm{D})
$$

Here brackets have been added to make it clear which of the logic operations go together. In this case if both A AND B go to $1,0 \mathrm{R}$, if both C AND D go to 1 , the output $Y$ will go to 1 . The logic arrangement which will produce this equation is shown in Fig. 20.

What happens if we put an inverter into the system? Any logic signal which has been inverted is denoted by a bar drawn over the name of the signal. So for a simple inverter the logic equation will be

$$
\mathrm{Y}=\overline{\mathrm{A}}
$$

Such an inverted signal might be referred to as BAR A or alternatively NOT A, where A is the name of the signal. Thus we might have,

$$
\mathbf{Y}=\overline{\mathbf{A}} . \mathbf{B}
$$

This means that output Y will go to 1 when input A is $0(\overline{\mathrm{~A}}=1)$ AND B is at 1 .

Now by using only these three types of logic unit, the AND gate, the OR gate and the INVERTER we can build up virtually any logic system.

Fig. 20: Combining gates to produce a more complex function

## The NAND Gate

If you look up a data book of TTL devices, the first one you are likely to meet is the 7400 which is described as a quadruple 2 -input NAND gate. So what is a NAND gate and why should we need one anyway? Basically the NAND gate is simply an AND gate followed by an inverter, built up as a single device. One advantage of this type of gate is that we can produce all of our logic systems by using just one type of gate rather than three.
In the NAND gate the function is similar to that of an AND gate except that the output is inverted so that the truth table becomes as shown in Table 4.

Table 4

| Input |  | Output |
| :---: | :---: | :---: |
| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{Y}$ |
| 0 | 0 | 1 |
| 1 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 1 | 0 |

The symbol used for a NAND gate is similar to that for the AND type except that it has a circle at its output to indicate logic inversion. This is shown in Fig. 21. The logic equation for a NAND gate will be,

$$
\mathrm{Y}=\overline{\mathrm{A} \cdot \mathrm{~B}}
$$

where the bar over the A.B indicates the inversion of the complete logic signal at the output of the gate.

If we take a NAND gate and join all of its inputs together in parallel it will become a simple inverter. If we feed the output of a NAND gate through an inverter it will perform the same function as an AND gate, since the extra inverter will cancel out the action of the one inside the NAND gate. By inverting each of the input signals to a NAND gate we can produce the OR function. Here if any of the inputs goes to 1 the actual signal applied to the NAND gate goes to 0 and hence the output of the NAND gate must go to 1 , thus producing the same result as an OR gate. You can check all of these actions by looking at the truth tables and working out the various states of the inputs and outputs of these combinations of NAND gates.

In TTL the NAND gates come in the same combinations as the AND types, giving four 2 -input gates (7400) three 3 -input gates (7410) and two 4 -input gates (7420). Each of these arrangements has the same pin layout as the AND counterpart. In NAND gates however we can also have an 8 -input gate (the 7430). For CMOS the 2, 3 and 4 -input gates are the 4011, 4023 and 4012 respectively, and they have the same pin configuration as the AND versions. There is an 8 -input gate in CMOS which has the number 4068.

## The NOR Gate

Having produced a NAND gate we might now consider the possibility of combining an OR gate with an inverter. This will in fact produce what is called a NOR gate. Like the NAND gate it has the advantage that you could build up any logic system by using just NOR gates instead of having AND, OR and INVERT functions.

In the NOR gate a 1 applied to any of its inputs will produce a 0 to the output. Conversely the output can only become 1 when both inputs are at 0 . This produces the truth table shown in Table 5.

Table 5

| Input |  | Output |
| :---: | :---: | :---: |
| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{Y}$ |
| 0 | 0 | 1 |
| 1 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 1 | 0 |



As we might expect, the symbol for a NOR gate is like that for OR but with a circle on the output line to show that the output is inverted. This is shown in Fig. 22. We can write down the action of a NOR gate as

$$
\mathrm{Y}=\overline{\mathrm{A}+\mathrm{B}}
$$

Practical devices are the 4001, 4025 and 4002 in CMOS, which are the NOR equivalents of the 4071, 4075 and 4072 respectively and have the same pin connections. In addition to these there is the 4078 which is an 8 -input NOR gate. In TTL there is also quite a range of NOR gates giving two inputs (7402), three inputs (7427) and four inputs (7425).

By inverting the output of a NOR gate we can get an OR gate and by inverting its inputs we can produce an AND gate, so the NOR gate alone can be used to build up almost any logic function.

## Changeover Gate

Let's see how we might use some of the gates that have been described. One frequently used function is to simulate a changeover switch. Here we want to pass either input A or input B through to the output according to the state of a control line C. Such a circuit can be built up from NAND gates as shown in Fig. 23, which also shows the equivalent switch circuit.

When control input C is a 0 , gate G3 is effectively closed and its output remains at 1 irrespective of the state of the B input. Gate G1 acts as an inverter and 32 is therefore held open and allows input A to pass through to the input of G4. Since the other input of G4 is at 1, signal A passes through to the output. The inversions in gates G2 and G4 cancel out to leave A uninverted at the output. When C goes to 1, G2 closes and G3 opens to let input B pass through to the output.


Fig. 23: Logic circuit of a changeover gate, and its electrical equivalent

This changeover gate function can of course be made up by using other combinations of gates and inverters and as an exercise you might like to work out some of these alternatives. Generally the circuit shown is convenient because it can be implemented by using a single 7400 .

## The Multiplexer

We can expand the idea of a changeover switch to produce a multiway switch similar to our old friend the rotary switch. Such an arrangement of logic is normally called a multiplexer.

In Fig. 24 we show the logic for a 4-way multiplex switch. The control signals Cl to C 4 are arranged so that only one of them can be at 1 at any time. If Cl were at 1 then signal A would pass through Gl and since G5 is an OR gate it will also pass through G5 to the output. Gates G2, G3 and G4 will be off because one of their inputs is at 0 and hence they will have no effect on the state of G5. The number of inputs can be expanded by adding more AND gates and having more inputs to the final OR gate. If desired, multibank switches can be produced by having a series of parallel multiplexer circuits with the control inputs connected in parallel across the banks.
Because multiplexers are often used, special logic devices are ayailable such as the 74151 which is an 8 -input single-bank multiplexer in one package.


Fig. 24: Logic circuit of a multiplexer, and its electrical equivalent


Fig. 25: A logic circuit for an EXCLUSIVE OR gate


Fig. 26: EXCLUSIVE OR gate symbol

## The EXCLUSIVE OR Gate

There is one further special gate function which it is worthwhile to investigate. When we looked at the OR gate you will remember that the output went to 1 when either input $A$ or input $B$ or both went to 1 . There are occasions however when we would like the output to go to 1 if A or B was at 1 but to remain at 0 if both of the inputs went to 1 . A gate that performs this action is called the EXCLUSIVE OR gate.

Such a gate arrangement can be built up as shown in Fig. 25. Here the two AND gates are detecting the input conditions $\mathrm{A}=1, \mathrm{~B}=0$ and $\mathrm{A}=0, \mathrm{~B}=1$ and these are the only states where there will be a 1 at the output.

The EXCLUSIVE OR gate has its own special symbol as shown in Fig. 26. In logic equations too it uses a special symbol which is a + enclosed in a circle so that for a 2 -input gate we get the equation, $Y=A \oplus B$
The truth table for this type of gate is shown in Table 6.

Table 6

| Input |  | Output |
| :---: | :---: | :---: |
| $\mathbf{A}$ | $\mathbf{B}$ | Y |
| 0 | 0 | 0 |
| 1 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 1 | 0 |

Normally, EXCLUSIVE OR gates are produced with only two inputs and the standard package is to have four separate 2 -input gates in one device. In TTL this is the 7486, and in CMOS it is the 4070.

We shall see later that the EXCLUSIVE OR gate is useful when comparing patterns of bits, and can also be used as a switched inverter device which will allow us to invert a signal on command from another signal.

At this point we have looked at most of the useful types of gate, although there are of course many other combinations in both TTL and CMOS which can sometimes be useful, but whose functions can be reproduced by a mixture of the gates we have looked at already.

Next month we shall go on to look at the other major group of logic devices, namely the flip-flops.

## PLEASE MENTION

 PRACTICAL WIRELESSWHEN REPLYING TO
ADVERTISEMENTS

## PART

## M.J. DARBY

The construction of an amplitude modulation (a.m.) receiver can be considerably simplified by the use of one of the semiconductor devices which have been especially developed for this particular application. This and future articles will review the various types of device available and include a selection of typical circuits which the reader can construct and with which he can experiment.

Practical constructional details will not be included, since a variety of circuits are covered and constructional details for specific receivers are regularly included in our pages. Audio amplifier sections will not be included since the audio output from any of the receiver circuits can be fed into a standard audio amplifier. Integrated circuits will be used throughout, since this reduces the number of components used compared with discrete (separate) transistor designs.

## Amplitude Modulation

The amplitude of an a.m. signal varies at the frequency of the audio signal concerned. For example, one may consider a 1 MHz radio frequency carrier wave (which is far above the level of human hearing) and which varies in amplitude at an audio frequency of 1 kHz . When a receiver is tuned to this signal, the 1 kHz frequency will be heard from the loudspeaker.

Amplitude modulation is used on long, medium and short wave transmissions. Frequency modulation can be used at much higher frequencies (e.g. f.m. sound at about 90 MHz ) for high quality reception, but cannot be used with advantage at relatively low frequencies.
A.M. receivers are usually simpler than f.m. receivers and it is therefore sensible for a beginner to commence with a.m. circuits. Signals at the high f.m. frequencies cannot be received from distant transmitters, so if you wish to receive a signal from a station more than about 50 to 100 miles away, it will be an a.m. signal you will select. However, the fact that distant a.m. signals can reach your aerial inevitably means that one is much more likely to experience interference from unwanted signals than with f.m. reception.

## T.R.F. or Superhet?

There are two main types of a.m. receiver, the socalled "t.r.f." (tuned radio frequency) and the superheterodyne or "superhet". The t.r.f. type is far simpler than the superhet, so the beginner who wishes to experiment is strongly advised to commence with a t.r.f. circuit.
In a t.r.f. receiver the incoming signal is amplified, detected or demodulated in a stage which converts
the radio frequency wave into an audio signal and the audio signal is then amplified so that it can feed a loudspeaker or an earphone.

In a superhet the incoming signal is changed in frequency to another radio frequency signal known as the intermediate frequency. It is convenient to obtain most of the selectivity (or ability to reject interference from adjacent signals) at this intermediate frequency before the signal is demodulated and fed to an audio amplifier and hence to a loudspeaker.

A t.r.f. receiver can give good audio quality provided there are no interfering signals, thus if you require a simple bed-side or kitchen receiver for local programmes, a t.r.f. circuit will be satisfactory.

If, however, you wish to receive stations from Europe on medium waves or even from other continents on short waves, one will normally obtain much better results using a superheterodyne receiver.

## T.R.F. Circuits

The remainder of this article will be devoted to t.r.f. circuits mainly for the purpose of helping the beginner. Numerous t.r.f. circuits have been published using discrete transistors, but a unique integrated circuit was released some years ago which has been designed especially for use in t.r.f. receivers.
This device is the Ferranti ZN414 which is ideal for use by the home constructor and is readily available. It requires only a low voltage power supply and provides a very high gain when used in a simple circuit.

The ZN414 is encapsulated in a simple transistor metal envelope, and the pin connections are shown in Fig. 1. There are only three leads, these being input, earth, and a common lead for output and the positive voltage supply.


Fig. 1: Pin connections of the ZN414

## ZN414 basic.circuit

A basic t.r.f. receiver circuit using the ZN414 device is shown in Fig. 2. The inductance L1 is a winding on a ferrite rod or slab aerial which will be described in detail later. This inductance must

# Radio and <br> Television <br>  

Editor R. N. Wainwright, T.Eng. (CEI) F.S.E.R.T.

# Circuit Analysis of Colour Television Designs 

Reference Charts for Pye, Ekco, Ferranti, Invicta, Dynatron Models and I.T.T. Ltd. Adjustment Procedures Unusual Fault Symptoms Receiver Alignment

This latest volume in the Radio and Television Servicing series reflects the servicing data produced during the year prior to publication or relating to domestic entertainment equipment currently available.
The information contained within this volume continues to provide a valuable tool to both amateur and professional service department alike in ensuring a high and safe standard of repair and maintenance. An essential reference book for all service engineers.

## £10.50

Special Price for six volume set £45.00.
Consisting of vols. 72/73,73/74,74/75,75/76,76/77,77/78
From booksellers or, in case of difficulty, please use the form below:
To: The Sales Manager, Macdonald and Jane's Publishers, 8 Shepherdess Walk, London N.1.
From: Name $\qquad$
Address.
Please send me $\qquad$ copy(ies) of Radio and Television Servicing 1977-78 Models. lenclose cheque/PO made out to Macdonald and Jane's for $\qquad$
GIRO A/C NO 205/4221 Macdonald and Jane's.


It is normally preferable to employ at least a single transistor amplifier stage (such as that shown in Fig. 5) so that the requirements of the earpiece are far less critical and a cheaper earpiece is satisfactory. A volume control is also incorporated in the Fig. 5 circuit, whilst the two forward biased diodes limit the voltage across the ZN414; the Ferranti BAW 37A double diode may be used here.

## Loudspeaker circuits

The audio output from a ZN414 circuit can be fed to almost any audio amplifier which can drive a loudspeaker. Audio amplifiers using discrete transistors have been published for use with the ZN414, but simpler circuits can be made using an integrated circuit audio amplifier.

A small loudspeaker radio receiver circuit is shown in Fig. 6. In this circuit the ZN414 device is fed from a simple single transistor voltage stabiliser circuit so that the gain is almost independent of the power supply voltage used. If no stabiliser circuit is used, the gain will fall considerably as the battery ages. The supply voltage to the ZN414, and therefore the gain, can be set by means of VR2. The audio signal passes through the d.c. blocking capacitor C3 to the input of an integrated circuit audio amplifier. C4 helps to remove any radio frequencies from the audio signal and prevents spurious noise.

The LM380 was selected for this circuit partly because an extremely simple circuit can be employed, but also because it contains protection circuits. If the output of this device is shorted to ground accidentally, the output current will be limited to a safe value so that the device is not destroyed. In addition, if the device becomes so hot that it is in danger of failing, the output current is automatically reduced until it cools to a safer temperature.

## Diode stabilisers

An alternative to the transistor voltage stabiliser of Fig. 6 involves the use of two series connected forward biased silicon diodes in the circuit of Fig. 6(a). The larger the value of $R$, the greater the gain

Fig. 6: A small loudspeaker radio receiver circuit, using a single transistor voltage stabiliser circuit


Fig. 6(a): An alternative voltage stabiliser using two silicon diodes
of the ZN414. The voltage drop across this resistor is added to the voltage drop of about 1.3 V across the two forward biased diodes.

It is also possible to employ a small light emitting diode instead of the two silicon diodes of Fig. 6(a), but the current required to enable the light emitting diode to provide a reasonable light output will be greater than that required by the Fig. 6(a) circuit. In other words, the value of $R$ must be reduced.

## Frequencies

The variation of the ZN414 gain with frequency is typically similar to that shown in Fig. 7. The peak gain is at about 1 MHz , but the device can be used with a reasonable gain from about 100 kHz up to about 3 MHz . However, one should remember that the gain is much reduced near these limiting frequencies. The lowest frequency for reasonable gain is set by the values of the internal coupling capacitors shown in Fig. 2, whilst the maximum practicable frequency is determined by the properties of the internal transistors in the device.


Fig. 7: Frequency response of the ZN414
It can be seen from Fig. 7 that there is a considerable difference in the output voltage as the input rises from 1 mV up to 3 mV , but any further increase in the input voltage produces a relatively small change in the audio output level owing to the a.g.c. action.

## Aerial

The aerial may consist of a ferrite rod about 12 cm in length with 55 to 65 turns of 28 gauge wire wound as a single layer for medium wave. The long wave coil may consist of some 250 turns of 38 gauge single silk covered wire wound in a random way with turns on top of one another, as indicated in Fig. 8. The exact number of turns will depend on the value of the tuning capacitor placed in parallel with the coil (typically 200 pF).


Fig. 8: The ferrite rod aerial with I.w. and m.w. coils
Only one aerial coil has been shown in the circuits of Figs. 2, 4, 5 and 6. If both medium and long wave coils are required, the switched circuit of Fig. 9 may be used with any of these circuits. It is important that the aerial coil should have a high $Q$ (magnification) so that reasonable selectivity is obtained.

If one requires an extremely small receiver (possibly using the circuit of Fig. 4), there will not be


Fig. 9: Switching circuit for l.w. and m.w. coils
enough space for a reasonably long ferrite rod aerial in the case. One can employ a ferrite slab with only a medium wave coil wound on it in such receivers; the slab should not be less than about 3 cm in length unless one intends to use the receiver only fairly close to a transmitter. A longer ferrite slab will produce a greater signal voltage.


Fig. 10: A double tuned circuit for greater selectivity
If greater selectivity is required, a double tuned circuit can be used before the ZN414 as shown in Fig. 10, but this requires careful alignment for optimum performance. The $Q$ factors of the two tuned circuits should be similar. If the two tuned circuits are not correctly matched, each station may be received at two points in the band. This type of double tuned circuilt is especially useful when one has a larger external aerial coupled to the ferrite rod. The lead from the external aerial should be connected to a few turns of wire around the ferrite rod, the other end of the winding preferably being connected to earth.


Fig. 11: A six position switching circuit
The circuit of Fig. 11 shows how four pre-selected stations may be selected by the push buttons Sl to S4. The buttons S5 and S6 enable the normal medium and long wave bands respectively to be tuned by means of the variable capacitor C5.
Next month we will consider superheterodyne receivers for a.m. reception.



This attractive unit incorporates three-speed turntable with choice of magnetic or ceramic cartridge, stereo cassette deck, and long-wave, medium-wave and f.m. stereo tuner with automatic frequency control.

The high-quality amplifier provides an output of 11 watts per channel into 4 ohms.

Cabinet parts will be available, to let you build a music̣ centre fit to grace your lounge.

## US

## SIMPLE HIGH~RESISTANCE VOLTMETER



An economical design based on the CA3130 operational amplifier, with ranges of $100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}$ and 100 V d.c. full scale. Input impedance is $10 \mathrm{M} \Omega$ on all ranges.

Abbreviation

## Question

## QSK

## QSL

QSM

Can you hear me between your signals and if so can I break in on your transmission?

## Can you acknowledge receipt?

Shall I repeat the last telegram which I sent you (or some previous telegram)?

I can hear you between my signals. break in on my transmission.

## I am acknowledging receipt.

Repeat the last telegram which you sent me (or telegram(s) number(s) . . 1

## CHARLES MOLLOY

In official lists of the " $Q$ " codes-the comprehensive system of abbreviations used by professional telegraphy operators to speed the exchange of traffic -the meaning of each code is clearly defined.
Many of these codes have been adopted by other services, such as broadcasting, and by the amateur radio fraternity. For each class of user, the same abbreviation can have a quite significantly different shade of meaning.


To the transmitting amateur, a QSL is an acknowledgment of a successful' two-way radio contact established with another amateur, and normally takes the form of a specially printed card. To this are added a note of the date, time and frequency of the contact, and brief technical details of the equipment used.


For the broadcast band listener, the radio contact is, of course, strictly one way, and the situation therefore differs again.

## Broadcast Band QSLs

What is a QSL? is a question sometimes asked by newcomers to the hobby. According to the March 1978 bulletin of the International Short Wave Club, "a QSL is an acknowledgement". International broadcasters like to hear from their listeners, many of whom are not DXers and in reply these stations issue QSL cards which are really mementos of the occasion. The cards themselves are often colourful. On one side there may be a photograph, a design of some sort or even the station's callsign, while on the other side there will be the acknowledgement and perhaps some information that would confirm that the listener did in fact hear the broadcast.


It is the last factor that causes difficulty for some DXers. Though many will be content to have a card that can be shown to others and perhaps kept in a photograph album, the serious DXer who is interested in obtaining a diploma from a DX club, or who simply wants to be able to prove his reception, will be disappointed. As the ISWC puts it, "To prove reception the document that one receives from the station should be plainly endorsed with the date, time and frequency". Such a reply is called a verification (verie for short) and this is what the majority of DXers hope to receive in return for a reception report.


The current QSL card from Radio Australia is an example of a pleasant QSL that is also a verie. It is a card with a colour photo on one side and the sort of details that the serious DXer would want, on the other side. Even here, the purist might complain that it should have stated my address. The card came inside an envelope!


DX clubs consider QSLs and Veries to be a major part of their activities. The Twickenham DX Club for example, recently produced a 16 -page QSL Survey which summarises verification details submitted to their "QSL Report". Broadcasting stations are listed by country. The frequency band verified, number of verifications received from 1974-76 and 1976 to March 1978, the type of verification (card, letter, folder), whether return postage is recommended and the time taken to receive a reply, are all listed in this comprehensive survey. Copies can be obtained from the TDXC, 13 Tennyson Avenue, Twickenham, TW1 4QX for four 7 p stamps in the UK or for 3IRCs surface mail or 5IRCs airmail to any other part of the world.


A final word on QSLs comes trom Peter Gatenouse of Buckingham, who refers to a recent communication from Radio Canada International which says that to receive a QSL card from Radio Canada International one has to be on the mailing list! Programme schedules will be sent free but QSLs will not be sent to people not on the mailing list. Write to RCI Publicity and Audience Relations, PO Box 6000, Montreal, Canada H3C 3A8. Clearly, this type of QSL is intended for listeners rather than DXers.


## Medium Wave

The medium wave DXer invariably resides outside the service area of his DX and this should be kept in mind when writing to a station. The reception report is unlikely to be of any value to the station and one is depending on goodwill for a reply. So, always include return postage, either an International Reply Coupon, currently 25p at main Post Offices, or as unused postage stamps of the country concerned. These are obtainable from stamp dealers (philatelist shops).


Send the reception report to the Chief Engineer, if possible in the language of the country, as there will not be an international department to deal with listeners' letters. Many radio clubs supply report forms in a number of languages, Spanish and Portuguese being the most useful. Try to convince the station that you really did hear them as they may be surprised to hear from you. Station announcements, slogans, weather report details, time checks, news items are the sort of material to mention and these can be heard at programme changes which usually occur on the hour or half hour.

# model railway 

# PDITMOTUROMPN 

## R.A.GANDERTON

## Introduction to the Problem

Many model railways use the solenoid type of point motor to operate the point blades from a central control panel. Although the manufacturers claim that these units will operate at a supply of 12 to 20 volts they rarely do so reliably and it is generally better to operate them at around 30 volts. This ensures that they throw properly and overcomes any resistance due to mechanical deficiencies inherent in the design. A typical point motor is shown in the photograph, along with the unit which forms the subject of this article.

The coils forming the solenoids have a d.c. resistance of around $2 \Omega$ each and it does not take much imagination to see what happens when 30 volts is applied to the motor. If the armature sticks or the operator leaves the switch on for any length of time then some 15 amps will flow (assuming that the power supply is capable of delivering this current) and 450 W will be generated as heat. The end result is that the solenoid coil burns out.

## Solution and Circuit Description

The situation can be avoided by using a capacitor discharge system to provide enough energy to ensure that the armature is thrown over but not enough to burn out the coils if the operating switch is left on.

The circuit shown in Fig. 1 uses a transistor to switch off the charging current to the operating capacitor C2 whenever the output is connected to the 0 V line by a low resistance such as a motor coil.


Fig. 1 The complete circuit diagram
When the load is removed from the output the base of $\operatorname{Tr} 1$ is unclamped and $\operatorname{Tr} 1$ is turned on allowing current to flow through R2 to charge C2. The low value resistor R 2 is used to limit the maximum charging current and its value is not critical. R1 limits the current which flows when the load is left applied and C2 has fully discharged. When C2 is fully charged and there is no load on the output, Trl is turned off via D6. Any small loss of charge due to leakage is made up automatically. Diode D5 provides reverse voltage protection for C 2 , preventing back e.m.f. damage due to the transients produced when the current in the solenoid coil changes rapidly.

## Power Supply and Switching

The power supply is a conventional bridge rectifier circuit with a large reservoir capacitor Cl . The input

Fig. 2: The component layout. (Note; The two unmarked holes are for alternatively mounting C1 remote from the p.c.b.)



With a record attendance by nearly 82,000 visitors, the Salon International des Composants Electroniques 1978 chalked up yet another international success. This giant electronics exhibition, held each year in Paris, attracted over 1345 registered exhibitors from 30 countries and spread itself over an area of $60,900 \mathrm{~m}^{2}$.

Exhibits ranged from Ham radio equipment and accessories to laser trimming equipment, from single components to highly complex instrumentation and, of course, microprocessors.
In this latter area it was interesting to see a microprocessor timer kit. This offered a choice of 21 programmes plus a digital readout of time. The unit has many applications but suggested text included ideas like, automatically waking you up in the morning (you can programme in different times for different mornings), switching on your egg and boiling it to perfection, switching the heating on and off plus putting lights on an off during the evenings to deter burglars. The input keyboard (supplied with the kit) has buttons for each day of the week, a one to nine set of tabs, plus an am/pm button although the digital clock can be switched to read either 12 hours or 24 hours.
Readers wanting to conduct underwater experiments in the bath (?) or elsewhere will be pleased to hear of a special transducer shown by a French company. An electret (an electrostatic transducer) for underwater applications has been developed. The air gap which is commonly present in such transducers has been replaced by a compressible, very high resistivity
material which is held in intimate contact (lovely wording those French use!) with the electret. This design suppresses the drawbacks which result from the presence of air in such trans-ducers-variation of sensitivity as a function of immersion depth for example. The advantages claimed for the new device are a sensivity higher than $30 \mu \mathrm{~V} / \mu \mathrm{Bar} \quad(-90 \mathrm{~dB}$ relative to $1 \mathrm{~V} /$ $\mu \mathrm{Bar})$, broad bandwidth, and an acoustic impedance close to that of water. The company is understood to be making some experiments with an array/antenna of electrets which could prove interesting for listening underwater.

One device causing raised eyebrows was the "Snapistor". This is a thick


Signs of things to come. A complete data terminal in an attache case. It comprises a full keyboard, all necessary electronics, and a small collapsible television screen which folds down. The station may be used over a standard telephone via a modem, and can chat to computers and data terminals anywhere in the world
film resistor network on a ceramic substrate. Pre-scribed lines on the back of the substrate divide it into ten parts. Each part can be snapped off, one by one, and each snap increases the remaining resistance by $20 \%$. This gives a five-fold increase in resistance when all nine parts have been broken off. Applications suggested are; to set the gain of a transistor stage, or to set up the voltage of a voltage regulator. Here, one could use one Snapistor for coarse adjustment, and another for fine setting. Various ranges of resistance values were offered. These inincluded; $100 \Omega$ to $520 \Omega, 10 \mathrm{k} \Omega$ to $52 \mathrm{k} \Omega$, $33 \mathrm{k} \Omega$ to $520 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$ to $520 \mathrm{k} \Omega$. The resistance values are $+20 \%$, TCR +100 p.p.m. $/^{\circ} \mathrm{C}$ and operating temperature range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Power handling capability depends on how much snapping you've done. If they are unsnapped (i.e. all sections are in circuit) then the power capability is 250 mW ; with just a lonely one segment, power is 50 mW . Maximum voltage is 100 V .

Trends were not hard to spot. Many people offered microprocessors either a single chip, or with a complementary keyboard, or as a complete kit of parts with a manual.

Motorised rotation of f.m. antennas featured strongly. These came complete with a nicely styled box. The box shows you which way your aerial is pointing and the whole array is controllable from your living room. Many companies showed results, including a BBC2 test card which had superb definition.

One dealer displayed an impressive array of Yaesu Ham equipment. Inter-
esting to see the FT-301D solid state transceiver. It has a digital readout and uses no valves at all, not even those ubiquitous 6146's in the final. The unit runs from 12 V direct-ideal for mobile work, although a separate mains p.s.u. is available which includes a digital clock and an automatic callsign sender for the c.w. enthusiast. Price was horrendous and interest high!

French giant Thomson-CSF took a huge number of stands, indeed their particular alleyway was signposted "Avenue de Thomson-CSF". Along this Avenue was found an "Easy-touse Super-Noticon". This turned out to be Thomson's latest addition to its range of low-level TV camera tubes. The Super-Noticon really is super, too. It can view a scene without trouble even on a cloudy and moonless night. The French boffins mumbled something about sensitivity down to $10^{-5}$ lux.

Also on the Thomson stand were a number of quartz resonators which achieve 300 MHz in fundamental mode. Close by were a number of devices described as piezoelectric but using Lithium Tantalate and not quartz. These synthetic single crystal devices have inherent properties suited to the production of wideband filters in the 0.08 to 35 MHz band. A stand spokesman hinted at possibilities that this frequency could be raised to 400 MHz in the not-too-distant future.

Surface wave filters were a feature on the Siemens stand. The company has succeeded in laying these down on a lithium nobate substrate. The technique is to lay down tiny fingers of conducting pattern which intermesh (but do not touch) rather like the teeth of a comb. The result is that the signal can be made to pass along these closely coupled subminiature antennas which are frequency sensitive and thus have a filtering action. Although other materials made the surface wave filter a reality, high cost and low consistency were deterrents. Lithium Nobate is claimed to overcome these problems The filter has the great advantage that it has no coils or capacitors. First applications are in the i.f. strips of TV sets. Siemens has already manufactured filters to suit British standards and markets. The standard package size on the stand was $19 \times 16 \times 5 \mathrm{~mm}$ with five terminals brought out at one side.

The French Amateur Radio Associ-ation-Reseau des Emetteurs Français -had a real live repeater satellite on show. Unlike other repeater stations which are fired aloft from places like Cape Canaveral, the French decided to try a much cheaper method. They attached their 144 MHz repeater station to a balloon and let it loose. The


The French Ham v.h.f. radio repeater Anjou 009, which was sent up by balloon on September 25th 1977 and returned to earth via parachute. It is one of a series which have been launched by French Amateur Radio enthusiasts.
highest one of these repeaters (there have been about nine) has reached is 31,400 metres. The "flight" can be up to 24 hours long, then the balloon bursts and the repeater parachutes back to earth. The REF has around 12,000 members in France in some 250 Ham radio clubs. Annual subscription is 120 French Francs.

One normally associates Sprague with capacitors, but visitors to the stand in Paris found quite a number of useful i.c.s on display. A good one to watch for is the ULN-2283B. This is a little audio chip which offers 1 W output with 12 V applied. It will function from $-40^{\circ} \mathrm{C}$ right up to a very hot $+85^{\circ} \mathrm{C}$. Gain is claimed to be 43 dB and the i.c. will function at voltages down to only 3 V . The circuit shown on the Sprague stand gave an idea of the simplicity when using the ULN-2283B. Apart from the chip and loudspeaker, only two capacitors plus a volume control are required.
The new Philips personal bleeper system looked a good idea. The tiny pocket receiver, besides have a bleep "you're wanted" facility, also boasts an alphanumeric readout. Speech facilities can be added, too, if required. By using a standard code, say from
one to nine, a message can be sent very easily. Thus a number 3 displayed would mean outside telphone call; number 6 might mean return to the office etc.

At more official levels, the exhibition literature had some intriguing headings. How about "Universal elastic banana plug"? Upon my breathless arrival I was shown a banana plug whose spring arrangement assures good electrical contact with any diameter socket from 3.9 mm to 4.5 mm in diameter. After 100,000 pluggings in and out (no, I didn't) the plug still has a contact resistance between it and its socket of only 0.8 milliohms. Maximum current is 15 A .

A fascinating device was one which varied the inductance of a coil-useful in tuning up aerials no doubt. The main coil has its windings composed of silver-plated tape-like metal. One end of this is fixed, but the other goes across to another former, which is motor driven. When power is applied to the motor, it simply unwinds turns off the coil onto the secondary former and thus the original coil has its inductance decreased. By deriving the motor power drive command from a signal fed back from an s.w.r. bridge, aerials may be loaded automatically from transmitters even when the frequency is changed by quite a large amount.

Solar cell enthusiasts will be pleased to hear that production of professional industrial components is driving the prices down and they could well make an appearance on the Amateur market before very long. One French company is talking of 500,000 cells of 57 mm diameter for 1978, and the production has already dropped the price by $30 \%$ at the beginning of this year.

Still in terms of economical power, Lithium batteries were commonly offered. One of these would give $300 \mu \mathrm{~A}$ for 100,000 hours. Couple this with a CMOS circuit and your battery replacement problems could be over. Carrying this capacity to the 30 mA mark would give 1,000 hours of operation. The operating temperature range of these batteries is impressive; from $-65^{\circ} \mathrm{C}$ up to $+160^{\circ} \mathrm{C}$.

Smallest radar l've seen was on the Jay Electronique stand. It measures $126 \mathrm{~mm} \times 60 \mathrm{~mm} \times 70 \mathrm{~mm}$. It's called a guarding radar because its power dissipation is 22 mA at 12 V , and it is undisturbed by small things, such as passing birds, insects etc. Its range is fully adjustable from 0 to 15 metres.

In the heavier machinery part of the exhibition was a machine for winding wire onto toroids. It does this at the rate of 2,000 turns/minute. Have you ever thought-how do you automatically wind onto a ring or toroid?

# Experimental Broadcasting Satellite 

A new high-power experimental broadcast satellite was launched from Cape Canaveral in April for the National Space Development Agency (NASDA) of Japan. It will doubtless be the forerunner of many new satellites designed to provide high-quality experimental colour television reception in regions of the world where the terrain makes it difficult or impossible to receive high-quality signals from normal earthbound television transmitters. The spacecraft was constructed for NASDA by the Space Division of the US General Electric Company of Valley Forge, Pennsylvania under contract to the Tokyo Shibaura Electric Company (Toshiba).

This BSE (Broadcast Satellite Experimental) craft weighs 678 kg and was sent into orbit by a Delta 2194 rocket. Onboard propulsion jets propelled the satellite into a geosynchronous orbital position at longitude $110^{\circ} \mathrm{E}$, and the control system will be able to maintain its position to $\pm 0.1^{\circ}$ in latitude and longtitude.

Television and voice signals will be sent from the Japanese mainland to the satellite using frequencies in the 14.0 to 14.5 GHz band, and the satellite will then relay these signals back to ground using frequencies in the $11 \cdot 7$ to $12 \cdot 2 \mathrm{GHz}$ band. It will provide two high-quality colour television channels and also voice communication circuits over the whole of the Japanese mainland and over many remote islands and mountainous regions. About two per cent of the Japanese population are outside the area where reception from existing transmitters is satisfactory. Japan has many islands spread over a wide area and it is thought that a high-power relay satellite will provide an economic and effective means of sending television signals to such regions.

## Receiving stations

If a satellite relay system is to be an economical proposition, it is essential that the cost of each of the numerous small receiving stations shall be minimised. This implies that the power transmitted by the satellite must be quite high-especially if the power is beamed to cover a relatively wide area of a country.

The experimental broadcast satellite has been designed with this particular objective in mind. Many satellites use a cylindrical array of solar cells which are spinning in space so that the spacecraft is stabilised. However, such spin-stabilised craft have the disadvantage that only a small proportion of the solar cells are receiving the maximum amount of energy from the sun at any one time. The experimental broadcast satellite therefore employs three-axis stabilisation with its solar cells on arrays of extended arms; all of the solar cells in such a satellite can be directed towards the sun at all times (except during eclipses of the satellite by the earth) and therefore maximum power is available. The solar cells of the satellite provide a minimum power of at least 780 W .

The Japanese BSE satellite. The aerial reflector can be seen in the centre and the solar cells on each side.


The receiving stations will employ parabolic antennae, but owing to the high power level transmitted by the satellite and the fact that only Japan will be included in the transmitted beam, the parabolic reflectors of the receiving aerials can be as small as 1 m in diameter. (This may be contrasted with the huge 30 m diameter aerials used for international satellite communications which provide about 900 times the gain of a lm aerial). In many cases, a single receiving station will be able to feed the received signals to a whole district, but cheap receivers will be able to be used in individual homes in remote districts. The satellite has an expected life of three years and many signal strength measurements will be made at various points in the reception area so that this experimental satellite can be used as a model for future craft.

Command and control signals will be transmitted to the satellite from ground stations in Japan in the S and Ku microwave bands. It is interesting to note the tendency to use higher and higher frequencies for satellite communications with earth stations in order to obtain more bandwidth and hence a greater information carrying capacity.

## Future developments

The basic design of this satellite can be readily adapted to provide both expanded telephone, data and television services and in addition to incorporate educational and health care transmissions to the developing countries in future satellites. Some satellites of the future will be operated by one nation, whereas others will be jointly operated by a group of small nations. All are situated in a geostationary orbit some $36,000 \mathrm{~km}$ above the equator where they remain at the same position above the earth's surface. They are expected to have a very great impact on health and medical care in many of the developing countries.

## SPECIAL ANNOUNCEMENT

## PRINTED CIRCUIT BOARDS SERVICE FOR PW PROJECTS

It has now been decided, commencing with our issue dated September 1978, to enlarge the facilities for the supply of p.c.b.s to readers by authorising additional suppliers. It is hoped that readers may benefit from being able to purchase boards as part of component kits, thereby reducing the number of separate orders for a project.

For some time, most p.c.b.s published in Practical Wireless have been available exclusively from Reader's PCB Services Ltd., P.O. Box 11, Worksop, Notts, who will continue to be a supplier and to whom we would wish to say thank you for helping us to get the service started.

Applications for permission to reproduce boards for resale purposes must be made to the editor.
 م

## To:- READERS PCB SERVICES LTD, PO BOX 11, WORKSOP, NOTTS

[^0]

Aug 78 Point Motor C.D. Supply D005 $1 \cdot 25+15 \quad \square$
Post and packing is for one board or set of boards. Prices include VAT. Remittances with overseas orders must be sufficient to cover VAT. Remittances with overseas orders m
despatch by sea or air mail as required.
I enclose Postal Order/Cheque ACCESS welcome.
Send card number only.
No.........................
for f............ made payable to READERS PCB SERVICES LTD
$\qquad$
ADDRESS
$\qquad$
$\qquad$
Any correspondence concerning this service must be addressed to READERS PCB SERVICES and not to the Editorial offices.

A REVIEW OF RECENT DEVELOPMENTS
In general, the author does not have any more information on products than appears in the article.

## Go West

If inflation is hitting you and/or you are intending to take a job in electronics, think about the USA. The IEEE (Institution of Electronic and Electrical Engineers) out there reckons that its members' salaries have kept well ahead of inflation over the past two difficult years-and they're still well ahead. Average annual salary is put at around 27,500 dollars, and some members have confessed to raking in 70,000 dollars.

No, I don't have any membership forms!

## Watch what you say

Microprocessors seem to be creeping into practically everything these days. There's even one lurking in a new system under development which will recognise continuous speech. The basic unit has a 16 word vocabulary. Each word is converted/translated into a pattern generated by a spectrum analyser. This pattern, representing the word, is then stored in a memory bank.
When the system hears words, it nips along to its memory bank and rummages around comparing the words it's hearing with the words it's "learned". If it finds a match you get a response.
One particular version of the system was hooked up for a demonstration and arranged to respond to single word commands. The whole affair was coupled to the telephone network via a suitable interface. When the system was instructed to hunt through the files of the New York Times Information Bank (which was hundreds of miles away) it did just that. It took less than a minute to display, on a video terminal, abstracts of the particular topic selected.

## Intelligent to credit cards

And that's not the end of the micro-processor-yet. They're doing things with them in France, too. Like one company that is actually putting one (albeit a mighty thin one) into a bank credit card. When you think that the familiar 14 or 16 -pin in-line package contains only a very tiny, thin chip, then if one can do away with all that bulky
packaging a very thin circuit indeed can be had. The exact method of fabrication is still under wraps but the future looks extremely promising. Unlike many credit type cards which can only "store" a very limited amount of information on magnetic stripe, these microprocessor beasties will be able to store lots of things, like the balance in the account which would be easily updated at every transaction. Perhaps they might even put a radio receiver chip in there somewhere: dol recognise someone saying "Hear hear"?

## High Power

Hams (radio Amateurs) will remember their first experiments with transistors, particularly using them to generate r.f. Some of the early Ginsberg experiments on 1.8 MHz with these three-wire fuses were, to put it kindly, expensively disastrous! One watt was, in the early days, quite something. This contrasts with the new power field effect transistors just out which will happily give 100 W of c.w. at 175 MHz . Certain advantages are claimed by the manufacturers. For example they tell that the devices draw very little input current and things like biasing and modulating are simpler than with bipolar devices. They also tolerate load mismatches and in terms of distortion they are ahead of bipolars. Third order distortion is reckoned to be about the same as a similar size bipolar component, but because the f.e.t. devices have a square law characteristic the higher order distortion is between 5 and 10dB less.

## Spot your Tank

So there you are, peering at your video screen, looking for the enemy. But its difficult. Tanks, for example, can be camouflaged quite cunningly. One answer is to employ a computer with built-in edge detection routines. These things take the data from the sensor and tell the computer to enhance all the straight lines. This crafty dodge has the effect of outlining man-made objects quite dramatically. But we have a problem-the process involves using things called algorithms and these can take some 10 seconds. By that time, our unfriendly
tank crew could have done some very nasty things to both you and your algorithm.
However, tank spotters among you can now rest easy because a solution is at hand. The answer has been to use a charge-coupled device which acts extremely fast-almost in real time to all intents and purposes. If you want to be more precise, the manufacturers say it works up to 1,000 times faster than a general purpose computer. The technique employed is subject to a patent and is quite ingenious.
The chip receives the image signal from the electronic camera (another c.c.d. used for the sensor) and gives it to three separate parallel shift registers. Each register takes just one line at a time and so at any instant these registers hold three contiguous lines of the image. Backing these are 20 edgedetection algorithms which are so arranged that they are able to treat the three lines held by the registers as a $3 \times 3$ array of nine separate little picture elements.

The straight edge components of the signal are located simultaneously in 2D i.e. in both vertical and horizontal planes. This is achieved by part of the chip continuously calculating the difference in picture signal between the separate picture elements in the little $3 \times 3$ array.

And to think I was impressed by the first op amp.

## Micropot

If I mention the word "potentiometer" you will probably have a mental picture of a pot about 25 mm diameter with a spindle which is always too long and has to be hacked off! But what about the latest potentiometers which are so small you can get a dozen or so on your fingernail? These truly minute pots are only 0.172 in . in diameter and $0 \cdot 1 \mathrm{in}$. high. Presumably a magnifying glass and micro-screwdriver come with each.

Cimberz


## Board 3-Power Amplifier (Fig. 7)

If a greater power output is required, then Board 3 may be fully constructed as shown and will be found to deliver around 10 watts r.f. output with a 25 volt supply to the final two stages. It is also quite feasible to construct just one amplifier, or two, or three, etc., depending on requirements.
Merely using the single Trl on this board will produce about ${ }^{1}{ }_{4}$-watt, whereas including $\operatorname{Tr} 2$ will increase this to about 1 watt. In each case, the aerial filter will connect adjacent to the appropriate tuning capacitors and the remainder of the circuit is omitted.
Do not apply more than 15 volts to $\operatorname{Tr} 1$ and $\operatorname{Tr} 2$ as in this configuration $\operatorname{Tr} 2$ especially is running near to its maximum rating.

In the completed power amplifier, the two BLY83 transistors are bolted direct to the metal case and holes are drilled in the board for the transistor body to sit in ensuring good heat transfer. Push-on heat sinks are fitted to $\operatorname{Tr} 1$ and $\operatorname{Tr} 2$, which are wired to the board conventionally.

Readers who intend to operate the Avon Transmitter should be in possession of the appropriate licence issued by the Home Office to those who have passed the City and Guilds Radio Amateurs' Examination. Details may be obtained from: The Home Office, Radio Regulatory Department, Amateur Licensing Section, Water. loo Bridge House, Waterloo Road, London SEI 8UA.

The board layout for etching is shown in Fig. 8 and Fig. 9 illustrates the component positions.

The aerial filter consists of a parallel-tuned circuit offering low attenuation to the 2 m signal, but is effective in reducing harmonic and spurious emissions to an acceptable level.

## components




Two small inductors either side of the tuned element resonate at the second and third harmonics respectively and further reduce the possibility of radiation at these frequencies.

A small, separate board supports the filter and is mounted close to the chosen output stage.

The low level r.f. input from Board 2 is coupled to Trl base via a short length of miniature $50 \Omega$ co-axial cable. Inductor Ll provides a match into the base/ emitter junction of the transistor with L3, L5 and L7 of the following stages.

Each stage is in class C and there is therefore no d.c. bias required. Each positive half-cycle of the r.f. sinewave input turns the transistors on and the flywheel effect of the collector tuned circuits modifies this pulsed signal to a sinewave again.

To allow a d.c. path from base to emitter, small ferrite-cored r.f. chokes are used from base to ground. These are marked "r.f.c." on the diagrams and they are all wound in a smiliar manner, including the three used in the supply line decoupling.

The inductors RFC1 and RFC2 are wound on $1_{2}$ watt $1 \mathrm{M} \Omega$ resistors, their leads being used to anchor the windings.

All remaining r.f. chokes are air-spaced types and pictorial details are given in Fig. 12.

Note that the high-power output and driver are fed directly from the 25 volt d.c. supply whilst the remainder of the transmitter, with the exception of the display, is fed from an integrated circuit regulator type 7815. This device has short-circuit and overtemperature protection, and delivers a constant 15 volts at up to 1 amp .

Its inclusion is not necessary if a reasonably stable d.c. supply is available, and of course the entire transmitter can be operated from 12 volts at reduced output.

## Relay Switching (Fig. 10)

The incoming 25 volt supply has a diode D1 (BY127) inserted in series with its positive line as protection against polarity reversals. Relay RLA is the keying relay, and is operated by the microphone pressel switch or by the "send" toggle on the facia of the transmitter. The co-axial relay CO is the aerial changeover, and operates through contact RLA3 of the keying relay.

On operating the microphone pressel switch, RLA operates, RLA1 completes the circuit to the 15 volt regulator, RLA2 illuminates the status l.e.d. "send", RLA3 energises the co-axial changeover relay CO and RLA4 applies the 25 V to the BLY83 final amplifiers.

The "send" switch S3, located on the front of the transmitter merely overrides the microphone switch and provides a latching facility, enabling the transmitter to be permanently keyed.

Switch Sl "cal" enables the transmitter to be keyed at very low power by removing the 25 volts to the power amplifiers. Contacts Sla close, completing the RLA coil circuit; RLA1 closes, RLA2 changes over but the "send" l.e.d. is prevented from operating by Slc. The CO relay circuit is completed by RLA3, RLA4 closes but the 25 volts is prevented from reaching the power amplifiers by S1b, which is open.
The "tune" facility S2a again energises RLA; S2b disables the 25 volt supply to the power amplifiers and operates the "net" l.e.d., whilst S2e prevents the aerial changeover relay CO from operating.

An additional contact set on RLA can be used to provide a loop make or break facility for receiver muting and sufficient contacts on the d.c. input plug have been provided for this option.

## Tuning

Each transistor collector is series-tuned to give a low impedance feed to the following stage and ultimately to the aerial. The trimmer furthest from
the board edge in each section-i.e. TCl-tunes the coil, and the other-TC2-is adjusted for maximum drive into the next stage.
This arrangement has proved to be both reliable and stable in operation. Tests with the prototype indicated that however badly out of alignment the board was, negligible stray oscillations or spurious signals were produced. Should the board be well off tune, there will be no output.



Fig. 10: Circuit diagram of the switch and relay wiring

## Decoupling

Notice on the circuit diagram the extensive use of capacitive decoupling on the power supply lines. Various values are used to give broadened effectiveness and the specified types are particularly important here.

A characteristic of the r.f. power transistor is that generally speaking it will not withstand high switching transients, such as those produced by relays. Filters are therefore included from the supply rail to ground thus reducing the charging effects on the line as the voltage is applied and removed.

## components



## Hardware Notes

The prototype was constructed in a Foxall T4108 instrument case on a Foxall T2004 chassis specifically made for this enclosure (see Fig. 11).
The boards are bolted directly to the chassis, with the exception of the oscillator (Board 1), which is supported by small insulated pillars and secured by 6BA PK screws. Construction is not too critical, provided clearance for the switches etc on the front panel is allowed and sufficient room is made available for the relays, co-axial sockets and power jack.

Three different types of $50 \Omega$ co-axial connector were used to avoid confusion or the accidental insertion of wrong cables. The aerial input is an SO239, the aerial output (to receiver) a BNC and the v.f.o. input a miniature BNC: power is applied via a 4 -way McMurdo connector.

## Tuning (Boards 1 and 2)

After checking for correct values and component positioning, power can be applied to Boards 1 and 2 having first made the necessary r.f. connections with miniature $50 \Omega$ co-axial cable. Temporarily solder a $60-80 \Omega \mathrm{I}_{2}$ watt resistor across the output and ground, i.e. across TC7. Set all trimmers mid-way and the slugs in Ll (Board 1) and L1 (Board 2) to the centres of their respective coils. Do not connect Board 3 at this stage.

With a diode probe connected to a suitable meter (f.s.d. $50-150 \mathrm{~mA}$ ) and with power applied to both boards, check the oscillator output and tune TCl on board 2 for maximum signal at the base of $\operatorname{Tr} 2$. Loosely couple LI to a receiver tuned to 24 MHz and a strong signal should be detected. Establish that TCl tunes this frequency by turning it through $360^{\circ}$, when a rise and fall in output should be produced.

Place the probe on the base of $\operatorname{Tr} 3$ and adjust TC2 or maximum. Now transfer it across TC7, adjust TC4 and TC5 for maximum level, peaking TC6 and TC7. Repeat all tuning until no further improvement can be obtained.

Signs of erratic tuning indicates either an incorrect crystal harmonic from L1 or some other source of instability.


Fig. 11 : Suggested chassis layout and details of transistor connections


Fig. 12: Pictorial details of inductors
quite hot, as they are designed for temperatures of $150^{\circ} \mathrm{C}$. The section of chassis around the power output transistors will become warm after a few minutes operation.

Remove the power from the transmitter and the link across the aerial filter. Re-apply voltage and adjust TC9 for maximum output: a sharp point should occur where maximum power is reached.

Remove the dummy load and couple an aerial via an s.w.r. bridge to the transmitter. Key the unit and re-adjust TC7, TC8, TC9 for maximum forward reading. The setting will most likely differ from that used when tuning into the dummy load, due to a variation of impedances.

## Channel Frequencies

As previously discussed, a number of crystals covering several frequencies within the 2 -metre band can be utilised. Each crystal will have an associated trimmer and capacitor, the precise frequency being set by means of a counter or calibrated receiver.
NOTE: In compiling the components lists for part 1 , a few inconsistencies occurred. The following values are correct:
Board 1. R5-15k $\Omega, \mathrm{R} 6-8 \cdot 2 \mathrm{k} \Omega, \mathrm{R} 11-68 \mathrm{k} \Omega, \mathrm{R} 15-10 \mathrm{k} \Omega$ Board 2. R4-10k $\Omega$, R13-56 , C3-0. $1 \mu \mathrm{~F}$
Also on Fig. 3 page 46; C18 should be shown in parallel with R15.


Next month we will consider the digital display and power supplies for the Avon.

## Battery Power Supply for The PW <br> ECOMONY STROBE

If, like myself, you live on the top floor of a highrise block of flats then you will appreciate the problems involved in using the PW Economy Timing Strobe featured last February.
The need to use the mains supply to power the strobe tube seriously limits its use to those who have easy access to a suitable mains socket.

If the strobe could be made to operate from the car battery then its usefulness would be improved immensely.
The power supply described here is both simple to build, cheap and can be fitted into the case used for the original version.
The inverter shown in the circuit diagram produces around 400 V and is a conventional inverter circuit using one transistor to convert the d.c. supply to a.c. ready for transforming up to 400 V at the secondary of the transformer.

As the circuit is so simple and uses few components the construction can take any convenient form such as Veroboard or a small tag strip.
The transformer bobbin is wound with about 150 turns of 29 s.w.g. enamelled copper wire which is covered with a layer of insulating tape. This winding, which is the secondary, should almost fill the bobbin leaving just enough room for the primary and feedback windings ( 8 turns and 4 turns respectively).

Take care to note the start and finish of the primary and feedback windings as this is important to ensure that the inverter oscillates.

The two ferrite pot cores can then be bolted together with the bobbin inside and the finished transformer secured by the central bolt to a convenient place in the box.

The small piece of Veroboard or tag strip can be bolted using the same bolt as shown in the drawing.

A standard line fuse should ibe inserted in the cable which is to be attached to the live terminal of the car battery to give protection against short circuits and other disasters which might possibly occur during use.

The basic circuit of the inverter can be used to power a standard 2 foot long fluorescent tube as an emergency lighting unit. In this case D1 and C1 should be omitted and R1 changed to $220 \Omega$. The unit can then be run from a 6 V lantern battery.

The method of connecting the strobe unit to the Number 1 plug lead suggested in the original article and the subsequent Extra Data published in the April issue may prove difficult to use on some engines and a modification is to use a length of Bowden cable outer sleeving to provide a flexible take-off point instead of the rigid 4BA stud. The 4BA stud should of course be fitted to the end of the flexible cable.


Circuit diagram and layout for battery-powered strobe

resist coated epoxy glass laminate sheets, developing and etching trays, label and panel materials, high-speed drill, and all the requisite developers.
The Photolab Kit has been designed for use by both the amateur constructor and the professional engineer. It has been introduced to fill the gap between commonly used '1-off' prototype p.c.b. production methods and the facilities offered by the existing, larger kits currently available. However, with its pricing at only $£ 49 \cdot 50$,

## Telephone Charge Clock

Trying to calculate the cost of a telephone call while you are actually making it is an almost impossible mental exercise. An attractive new unit by Monitel now makes the process simplicity itself. All that is required of the caller is to select the appropriate charge band, as listed in the Post Office dialling code book, and start the clock at the appropriate moment. The microprocessor-based circuitry does the rest, displayed the accumulating charge continuously on an l.e.d. display, and taking account of the time of day, and the day of the week. The unit is programmed by means of a punched card, and in the event of a change in charge rates, can be reprogrammed by inserting a new card supplied by the makers.

When not in use; the display functions as a conventional digital clock. Produced in similar style and colours to Post Office telephones, the Monitel Telephone Charge Clock is available in a UK version, retailing at about £29, and an International version at about £ 39 . The latter also copes with a selection of the charge bands for overseas calls.
Further details are available from Monitel Limited, Berechurch Road, Colchester CO2 7QH.



## Light work

Mega Electronics Ltd. have introduced a comprehensive kit which enables the preparation of artwork for, and the production of, both printed circuit boards and front panels or labels.

Known as the Photolab Kit, it consists of an ultraviolet exposure unit, draughting aids and film, positive

## Tele-View Module

Texas Instruments have recently announced the production in quantity of their VDP11 combined Viewdata/ Teletext decoder module. It uses a microprocessor system based on the familiar TMS 9980, which performs Viewdata decoding, and if used with a remote control system, a codeconverting PROM on the input lines enables the codes to be chosen by each customer. An internal TV sync. generator is included, and this is automatically switched in when Viewdata is selected. Auto-dialler telephone numbers are controlled by a fourpole DIL switch, and the unit also features terminal identification.

The complete p.c.b. module ( $300 \times$ 165 mm ) is available from Texas Instruments Ltd., Manton Lane, Bedford, priced at approximately $\mathbf{£ 2 5 0}$, depend-
complete, and its ability to handle p.c. boards and labels of up to $228 \times$ 152 mm , it is anticipated that the kit will have wide ranging appeal in both sectors of the market.
Available from: Mega Electronics, Ltd., 9 Radwinter Road, Saffron Walden, Essex CB11 3HU. Tel: (7099) 21918.
ing upon options selected; a version of the VDP11 with expanded memory in the microprocessor system, suitable for editing terminals, is expected to be available shortly.

## PCB aids

A comparatively new product is available which will be of great benefit to engineers and amateurs who need to make their own printed circuit boards.

The Alfac Electro range of dry transfers contains almost 100 different patterns for making printed circuit layouts, quickly and accurately. As the symbols are etch resistant, they can be used for making 'one-off' printed circuits by direct application on to copper clad boards.

They are simple to use, and need no
special 'fixing' since the double action adhesive used, prevents the patterns from moving once they are laid down. The quality of the ink used avoids any cracking enabling users to obtain a very fine detailed finish.

They are available in a range of patterns and sizes and give correct spacing for integrated circuits and transistors. Also available are a range of lines and rounded corners etc., thus enabling a highly professional standard of finish to be achieved.

Alfac Electro transfers are economical in price and are available in handy blister packs which are ideal for storage. They do not deteriorate with age and if left on their backing sheets can be used after months of storage. Each blister pack contains 5 sheets of patterns and costs £1-30.

Further details and catalogue can be obtained by writing to the sole UK agents for Alfac; Pelltech Ltd., Alfac Electro Division, 6 Church Green, Witney, Nr. Oxford.


A selection of some of the patterns
available

## LETTERS

## Pen-Pal

Sir: I am a Ghanaian boy of seventeen years old. I am a first year apprentice in radio and TV servicing. I plan to start a course in radio and TV servicing, and I would be happy if you can help me to correspond with any beginner or experienced radio and TV technician from anywhere and of any age.

Francis K. Acquaye c/o Mr. K. Agyei

Box 756
Takoradi
GHANA

## CQ-CQ

Sir: It seems a long time since I saw a "CQ" column in $P W$, and I wondered whether any reader could loan me for no more than just a few hours, the assembly instructions, or even just the circuit-diagram only, of the Tandy's "ArcharKit" Timing-light Kit, Cat. No. 28-4061.

This kit is discontinued, and the instructions were missing. In spite of exhaustive enquiries, Tandy have been unable to turn a replacement set up.

Jim Robson
47 Rosewood Crescent
Newcastle upon Tyne
NE6 4PR

## HInow noite

Portable PA Amplifier, December 1977
1n Fig. 3; three additional breaks are required in the Veroboard tracks, as follows:-
1Between t ve end of $C 4$ and bottom end of M.
2. Between top end of $C 3$ and top end of $C 5$.
3. Between bottom end of C5 and bottom end (-ve) of C12

## Band II FM

Sir: I would like to hear from any of your readers who are interested in long-distance Band II v.h.f. (f.m.) reception. I have made contact with several people in the immediate locality, and feel sure that there are others who find the possibility of alternative goodquality programmes (both mono and stereo) interesting.

Some years ago a series of articles on Band II topics, written by Mr. Austin H. Uden, appeared in Hi-Fi News. If any reader knows of an address where Mr. Uden can be contacted, I would be grateful if they could send me details.

G. P. Stanbury 275 Meadgate Avenue<br>Great Baddow Chelmsford<br>Essex CM2 7NJ

## Mains Plugs

Sir: I read with interest your editorial about plugs and fuses (PW, May, p 18).

It may be of interest to compare the situation here with that in America. Over there, there is only one kind of plug configuration, so all appliances come with the plug already fitted. However, there are no fuses in plugs, nor switches on outlets. Most appliances have two-pin plugs, with no earth pin, though all outlets accept three-pin plugs.

Perhaps this country could combine the advantages of the two systems by standardising on a single type of plug. Then manufacturers could supply equipment with plugs and fuses already in place.
M. A. Covington
Cambridge

The proposed 16A "International" plug and socket has most of the features of the American plug described in this letter. Ed.

Sir: The recent comments in $P W$ about $13 A$ plugs have been most interesting.

May I point out that it is good practice to wire such a plug so that there is more slack in the earth lead than in the other two. Then, if the cable is wrenched from the plug, the earth lead is the last to part company, maintaining the safety of the equipment.

Plugs like those mentioned in May's PW, which accommodate equal length leads, do not encourage this practice. They should have the earth connection point even nearer the cable grip.

E. F. Chase<br>Titchfield, Hants

#  FIITER <br> R.A.PENFOLD 

## Image Rejection Filter

Use of the superheterodyne principle enables highly efficient communications receivers to be produced, but these sets are not totally free from flaws. The main drawback experienced with most s.w. superhet receivers is what is termed the "image response." This is a secondary response of the set which at high frequencies is often nearly equal to the main response, or "primary" signal.

The image response is produced because there are actually two possible difference frequencies for eack oscillator frequency. One is equal to the oscillator frequency minus the i.f., and this is conventionally the main response. The other is equal to the oscillator frequency plus the i.f. Thus in order to convert a 1 MHz signal to an i.f. of 455 kHz , the oscillator would operate at 1.455 MHz , and the image response would be at $1.91 \mathrm{MHz}(1.455 \mathrm{MHz}+0.455 \mathrm{MHz})$.

## Reducing the Image Response

Usually the image response is attenuated by using one or more parallel tuned circuits ahead of the mixer in the basic manner shown in Fig. 1(a). Theoretically, a parallel tuned circuit has a very high impedance


Fig. 1(a) Parallel-tuned, parallel-connected tuned circuit, and Fig.1(b) parallel-tuned, series-connected tuned circuit
at its resonant frequency and a low impedance at other frequencies. By tuning the circuit to the desired input frequency the input signal should pass unhindered and the image signal should be largely shunted to earth.

A practical tuned circuit does not achieve anything like perfection, and there will be some attenuation of the desired signal and perhaps only modest attenuation of the image signal. Several factors determine just how much attenuation of the image signal can be obtained, and one of the most important is the ratio of the input signal frequency to i.f.

In our example of an image response at 1.91 MHz , produced by a 455 kHz i.f. this response is at virtually double the original. Even a single tuned circuit would be sufficient to greatly attenuate the image response. If the same receiver were to be tuned to a frequency of 10 MHz the image response would be at 10.91 MHz , which is less than $10 \%$ higher than the primary signal. Therefore, the image rejection of a receiver falls away with increasing frequency, and on many sets it falls to a surprisingly low level. For example, a typical s.w. receiver might have two tuned circuits ahead of the mixer, an i.f. of 455 kHz , and an image rejection of about 20 dB at 14 MHz , which means that the set is only ten times more sensitive on the primary frequency than it is on the image frequency. At higher frequencies the image rejection would be further reduced.

## Problem Area

In practice it tends to be on the 20 metre amateur band that a lack of image rejection becomes most troublesome. This is because the image response overlaps the 19 metre broadcast band, and strong signals from that band can often largely obliterate the h.f. end of the 20 metre band. This only occurs with receivers having an i.f. in the 455 to 470 kHz range, but unfortunately this probably includes the majority of communications receivers in amateur hands. The author experienced this difficulty with his Tric QR666 receiver, and it was this that prompted the construction of the simple filter which forms the subject of this article.

## Rejection Filter

Probably the most obvious way of increasing the image rejection of a set is to insert an extra parallel tuned circuit in the r.f. signal path, as in Fig. 2.


Fig. 2: The circuit of the rejection filter-a paralleltuned, series-connected tuned circuit, modified to make its response variable

Here the tuned circuit responds to the image frequency rather than the primary signal. As mentioned earlier, a parallel tuned circuit has a very high impedance at resonance, and so this should result in almost total suppression of the image signal and the wanted signal can pass with virtually zero losses.

The practical circuit of Fig. 3 clearly does not achieve perfection, but can provide a high degree of image rejection. A signal breaking through at about S9 or so can be reduced to less than S1, and the wanted signal is only very slightly attenuated.

The circuit is very straightforward with VCl and L1 forming a variable tuned circuit which can be adjusted over the range 12 MHz to 30 MHz approximately. S1 enables the tuned circuit to be shorted out when the filter is not required.


Fig. 3: A photograph of the practical layout, which is simple enough to construct from the theoretical circuit details

## components

> VC1 Approx 300 pF to 400 pF air spaced variable.
> L1 See text
> SI. . S. S.STT toggle type.
> SK1 Red wander socket.
> SK2.. Black wander socke..
> SK3 Flush mounting coax socket:
> Metal case
> Control knob.

## Construction

L1 consists of $6^{1}{ }_{2}$ turns of 0.9 mm diameter enamelled copper wire wound around the botiom part of a Denco ${ }^{3}{ }_{8}$ in ( $9 \cdot 5 \mathrm{~mm}$ ) coil former. This is fitted with an iron dust core which is adjusted so that the threaded part of the core is flush with the top of the coil. If preferred, a ready made coil can be used. Suitable types are Denco Range 5 blue aerial or yellow r.f. coils. Use the winding between pins 1 and 6 , and ignore any others. The tuning capacitor can be any good quality air spaced type having a maximum value in the range 300 to 400 pF .

## Using the Filter

The filter is coupled to the receiver via a short length of coaxial cable. When an interfering signal is noted, it is merely necessary to switch the filter in and adjust VC1 to null this signal.
 N10 3HN. TELEPHONE: 01-883 3705
OUR LATEST CATALOGUE
CONTAINS FREE 45 pence WORTH OF VOUCHERS


CONTAINS MICROPROCESSORS + BOARDS, MEMORIES, TTL, CMOS, ICs, PASSIVES, ETC., ETC.

## SUPERSERIES

| ALL FULL SPEC DEVICES BY TEXAS |  |  |
| :---: | :---: | :---: |
| TEXAS | TIMER | RED LED |
| 741 | 555 | TIL209 |
|  |  | (INC CLIP) |
| 5 for | 4 for | 10 for |
| £1-00 | f1.00 | £1 |

IC A4 BOOKLET
SUPPLIED FREE WITH ORDERS OF ANY ICs WORTH £5.00 OR MORE, CONTAINS CIRCUITS, PIN CONNECTIONS AND DATA ( $35 p+$ SAE IF SOLD ALONE).

> TECHNICAL TRAINING IN ELECTRONICS TELEVISION AND RADIO SERVICING

ICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained person. You study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful.
City \& Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing
Electrical Engineering, Installation
and Contracting
POST OR PHONE TODAY FOR FREE BOOKLET.
1H To: Intermational Cormespomdence
Schools
Dept. No. 276X, Intertext House, LONDON
SW8 4UI or telephone 6229911
Subject of interest ....
Name
Address

## Don't keep a good Antenna down!

. . . . put it up instead! And put a really good one up, in your shack, in the loft, on the roof or (dare we say it) up the pole. Put up the Joystick VFA and note the difference. Six bands for the price of one antenna (not forgetting to mention that it tunes continuously from $.5-30 \mathrm{MHz}$ ) and other benefits include the fact that it acts as a ground-plane on all bands, substantially reduces TVI and other spurious emissions including harmonic supression. SWL's shouldn't be without one -transmitting amateurs will prove that "to work them you have to hear them"

SYSTEM "A"
£36.00
250 w. p.e.p. OR for the SWL.

£42.60
500 w. p.e.p. (improved ' $Q$ ' on receive).

## PARTRIDGE SUPER PACKAGES

COMPLETE RADIO STATIONS FOR ANY LOCATION
All Packages feature the World Record Joystick Aerial (System 'A'), with ${ }_{8 f t}$, feeder, all necessary cables, matching communication headphones. Deliv. Securicor our risk. ASSEMBLED IN SECONDS! BIG CASH SAVINGS:
pACKAGE No. I
£210.55
As above with R. 300 RX. SAVE $£ 17 \cdot 28$ !
£222.00
PACKAGE No. 2

## PACKAGE No. 3

Here is a lower-price, high-quality Package

£191.00
RECEIVERS ONLY, inclusive delivery, etc.
R. $300 £ 184.50 \quad$ FRG7 $£ 189.00 \quad$ SRX $\mathbf{3 0} £ 158.00$

All prices are correct at time of going to press and include VAT at $12 \frac{1}{2} \%$ and carriage.

## BARCLAYCARD <br> VIT <br> vand

Just telephone your card number Phone 0843 62535(ext.5) (or 62839 after office hours)

or write for details, send 9p stamp

## Binct <br>  <br> GOVFA

5, Partridge House, Prospect Road, Broadstairs, CTIO-ILD. (Callers by appointment).

Famous name turntable slashed to near half price. Complete with plinth, cover and leads. Accepts any standard cartridge (not included) FULL 12 MONTH GUARANTEE OUR PRICE $\pm 26.95$

SAVE
OVER £24

## Build your own GOLDRING CK2 <br> 

## Belt Drive Turntable

Beautifully engineered unit from
the famous Goldring company,
comes complete with instructions and all necessary parts. Ready to incorporate into your design plinth and cover. The pleasure of assembling your own deck.
(Plinth, cover and cartridge not included).
Usually sold for $\mathbf{£ 5 4 . 9 5}$ with plinth and cover.
Call in or send cheque, P.O, M.O, Access,
INC. VAT
Earclaycard, Diners Club or American Express Number.

## Bonimbonntifution <br> 248/25D TOTTENHAM COURT ROAD, LONDON W1. TEL: 01-637 1908

## MAIL ORDER DEPT:-

CRESCENT RADIO LTD
I ST. MICHAELS TERRACE, WOOD GREEN, LONDON, N22 4SJ. 01-888 4474



by Eric Dowdeswell G4AR

As promised last month I should like to discuss the question of what makes a callsign or prefix "rare". It arises with those listeners who start to keep a $\log$ of stations heard in the amateur bands.

The newcomer who has just heard his first American amateur, probably on 20 m s.s.b., is a little put out when more experienced listeners do not share his initial excitement. In fact, thousands of such stations can be heard, as our beginner will soon appreciate!

He'll go on to log calls from around the world and tick them off against a prefix list. He'll notice that some countries, like the US, are divided into call areas comprising groups of states. On the other hand G2, G3, G4, G5, G6, G8 and several other derivatives could all be in the same block of flats, in England!

Some of the prefixes are hard to find but periods spent listening during the wee small hours will always produce a few more. Certain countries do not appear to have any amateurs at all, frequently due to political reasons. Some "countries" are no more than reefs or small islands that are uninhabited until a group of amateurs form themselves into a DXpedition in order to put a new country in the $\log$ of thousands of amateurs.

It is very important to note that distance does not come into the question as to whether a call is rare or not. Due to skip it might be next to impossible to log a station in GU (Guernsey) on 20 m , while capturing all the VK areas without difficulty. The purpose of the log extracts each month is to alert readers to the comparatively few rare calls that have appeared recently.

Details of time and precise frequency are not required because of the time that the information takes to get into print. The date and band and mode is sufficient. An excellent prefix list with much other useful information costs just 40p from Geoff Watts, 62 Belmore Road, Norwich NR7 0PU. No amateur can afford to be without it.

Talking about sunspot curves, a plot of rainfall against letters received here would be very interesting! Lousy weather so plenty of mail this month!

## Newcomers

Having read this column for the last three years Paul Bown at 2 Sunnyside, Theale, Reading, Berks has at last acquired a receiver. Unfortunately it seems to need a bit of attention, not doing much above 20 MHz , and Paul is very keen to get on 10 and 15 m . So, can anyone help with a manual for the Skywood CX203? Replies direct to Paul, please.

Four months on the bands with an FRG7, and a good log, hardly qualifies J. S. Goodier of Marple, Cheshire as a newcomer. He is now keen enough to start studying for the RAE! He thinks he may have to go it alone but I hope my advice to contact his local radio club and technical college may avoid that.

## Round the Shacks

Dave Greenhalgh BRS39965 in Poynton, Cheshire found two goodies in VK9NGE on Norfolk Is. and VR1AR in the Gilbert Is. on 10 m . I hope Bill Rendell down in Truro, Cornwall won't mind if I mention him in this section. He has been lapsed for seven years but is hard at it again with a 1981 Heathkit AR3 fourvalve set plus preselector and a very short wire in the attic. Naturally, selectivity is a problem and I fear that something a bit better may be the only answer. Bill reckons the lads and lasses would do a better job communicating if they stuck to the proper phonetic alphabet instead of the "homebrew" variety.

An AR88 and 120ft of wire brought in strings of Japs on 10 m for Brian Harrison in Hastings, Sussex while in Tetbury, Glos. Jim Rowland is putting the finishing touches to a Heathkit HR1680. He finds the components a bit "fiddly" compared to those of the '20s! Dick Smith reckons he is the only SWL in Porthcawl, Mid-Glamorgan but I doubt it very much! He has a Codar MC3 t.r.f. set with pre-selector, a.t.u., 100 ft of wire and an "artificial earth" whatever that is! Could be a collection of quarter wave wires all joined to the set's chassis. A CR100 will, hopefully, be added to the strength in the holidays.
Army type Sgt. Anderson, Dennis, also BRS36591, reports back to the column after wandering around Jamaica and the Sudan. Wonder if he saw my old tribander still up there in Khartoum? Dennis now has a Venus SS2 for SSTV and getting good results, with RAE studies going on apace aided by G8LVB. John Whiting, Fareham, Hants, has done well in the Pacific area with a sort of vee beam with 90 ft legs, with the feed from one end.
G. M. Davies of Rhyl, N. Wales has been SWLing for 25 years and has reached the FRG7 stage, but wishes the Fine Tune were a lot finer and doesn't
and two rather sharp nulls. It is the nulls that are of use to the DXer. A loop is used to null out QRM. It is not used to peak up DX.

## How to use the Loop

A loop is very easy to use. For example, with the loop pointing in any direction, tune the receiver to 782 kHz and peak up the mixture of stations heard, using the loop's tuning control. East Germany and Portugal are on 782. Now rotate the loop slowly around its vertical axis. In one position East Germany should be heard reasonably clear of QRM while in another position Portugal will appear. Similarly on 989 kHz where from this QTH Madrid can be heard clear of the jamming that is normally on this channel. Similar results can be obtained with a transistor portable that has an internal aerial. The whole receiver must be rotated and the two nulls on most models will be along the length of the receiver parallel to the tuning scale.

When DXing with a loop, rotate it for optimum results. North American DX often suffers from QRM from Latin America and the two are easily separated. The loop may not always null out QRM. North American DX sometimes has European QRM coming from the opposite direction from the DXer and the loop cannot help on this occasion. On the other hand European QRM can nearly always be nulled out when listening to South America.

## Advantages and Disadvantages of Loops

The only disadvantage the loop has is its low pickup compared with a long wire. My 40 inch loop has a pick-up somewhere between that of my 90 ft longwire and a ferrite rod aerial. It is claimed that the standard 40 inch loop has' a pick-up equivalent to a 30 ft longwire 10 ft above the ground and although I have not done comparative tests I think this value is about right.
The loop has a number of advantages in addition to its ability to reduce QRM. It is an indoor aerial and can be used in locations where a long wire could not be erected. Some excellent DX comes from readers who live in multi-storey flats. A loop will nearly always improve the signal-to-noise ratio and if static is coming from one direction, perhaps from tropical thunderstorms in the south in summer, then the static can be eliminated when listening to North America to the west. DXers claim that a "cleaner" signal is sometimes obtained when using a loop and surprisingly, this is true. Overloading, sideband splatter, crossmodulation, when reduced can leave a much cleaner DX signal on some receivers. Loops are not made commercially in the UK so you will have to make your own. This is not a disadvantage. A lot of satisfaction is to be had from quite a simple device that you can easily make yourself and that will on occasion produce quite startling results.

## Problems with Loops

Reader John Cook of Southend-on-Sea has constructed the loop described in the 1976 edition of the World Radio and TV Handbook. The tuning capacitor is a 365 pF variable an the loop works well between 525 kHz and 1250 kHz , but on higher frequencies John
has to switch out the tuning capacitor. Try reducing the number of turns. You should then be able to tune to 1605 kHz but you may then not be able to tune as low as 525 kHz . If so, switch in additional capacitance ( 220 pF should do) whenever you want to reach the l.f. end of the band. The general rule is; if you cannot tune to the h.f. end, remove turns and if you cannot reach the l.f. end, increase the tuning capacitance.

As a rough guide, 100 ft of wire will be found to be the correct length to wind most loops irrespective of size. On this basis a loop of 4 ft size would have six turns, though it might be possible to squeeze in another turn or two if the self capacitance of the winding and the minimum value of the tuning capacitor are low.

A number of readers, including John, ask for details of a suitable pre-amplifier for use with a loop. My advice is, do not use a pre-amp, at least until you have some experience handling a loop. Even then a pre-amp is of limited value. The same applies to the use of a preselector on the medium waves. DX on this band is often quite strong and it is interference, some 80 megawatts in Europe, that is the problem. High selectivity, not high gain, is what is required and a loop pre-amp or preselector may easily overload the receiver.


## SHORT WAVE BROADCASTS

## by Charles Molloy G8BUS

During the early days of wireless, Saturday was aerial cleaning day when enthusiasts used to scrub their aerials with steel wool to remove corrosion and hopefully, bring about improved reception. While it is not suggested that this practice should be resurrected it is a fact that outdoor aerials do require maintenance now and again and summertime, when the days are long and the weather is kind, is the time to do it. Several years ago I discovered with horror that my long wire was no more than a 10 ft lead-in, as the joint between lead and aerial had corroded away!

It can be rather annoying if an aerial comes down during the winter when the weather makes repair work difficult and even hazardous. I take down my long wire every summer to examine it for mechanical weakness or breakage. It is only the active part of the aerial between the insulators, that needs to be copper wire. The parts between insulators and supports can be of stronger material such as steel wire or nylon rope. Leakage is not a great problem when an aerial is used with a modern receiver but if the aerial is down then it only takes a moment or two to clean the insulators and it might just make a difference when you are chasing weak DX. Dirty insulators and bad connections can also cause crackles.

Summer is also the time to experiment with aerials. If you have a long wire then why not try a vertical or a whip? An ounce of practice is worth a ton of theory. If you have the space, try making your aerial longer to see if it makes any difference. Height is usually

# 0 <br> STSOne 5tap Terhnology <br> $$
\begin{tabular}{|c|c|c|} \hline \multicolumn{3}{|l|}{} \\ \hline \multicolumn{3}{|l|}{\begin{tabular}{l}  \\  \end{tabular}
$$

 <br>\hline W N \&  \&  <br>

\hline \multicolumn{3}{|l|}{|  |
| :--- |
|  |
|  |} <br>

\hline \multicolumn{3}{|l|}{} <br>
\hline  \& \% \% $_{8}^{\square}$ \&  <br>
\hline \multicolumn{3}{|l|}{ फल} <br>
\hline \multicolumn{3}{|l|}{} <br>

\hline $$
\begin{aligned}
& \text { NNN } \\
& \text { NOON } \\
& 0
\end{aligned}
$$ \& \[

$$
\begin{array}{ll}
0 & \text { Nै } \\
0 & \Delta
\end{array}
$$
\] \&  <br>

\hline  \&  \& |  |
| :--- |
|  |
|  |
|  | <br>

\hline
\end{tabular} new trambit ammane




All prime, all guaranteed

| All prime, all guaranteed |  |  |  |  | BIMOS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17p | 4059 | 563p | 4501 | 99p | CA3130E 84p | NE531T 120p |
|  |  | 1150 | 4502 | 120p | CA3130T 90p | NE531N 105p |
| 17 p | 4060 | 179p | 4503 | 69p | CA3140E 35p | NE550A 73p |
| 17 p | 4063 | 109p 53p | 4503 | 69p | CA3140T 720 | Misc functions |
| 109p | 4066 | 53p | 4506 4507 | 51p | CA3160E 90p |  |
| 18p | 4067 | 400p | 4507 | 548p | CA3160 T 99p | NE555 35p |
| $80 p$ | 4068 | 25p | 4508 | 248p |  | NE556 70p |
| 58 p | 4069 | 20p | 4510 | 99p | Op amps 670 | LM3909N 72 p |
| 58p | 4070 | 20 p | 4511 | 149p | LM301AR 67p | MPU . 6800 |
| 17p | 4071 | 20 p | 4512 | 98p | LM301AN 30p | MC6800P $£ 13$ |
| 17p | 4072 | 20p | 4513 | 206p | LM3081f 121p | MC6820P £6 |
| 55p | 4073 | 20p | 4514 | 260p | LM308N 97p | MC6850P 675p |
| 52p | 4075 | 20p | 4515 | 300 p | LM318N 279 p | MC6810AP 400p |
| 80p | 4076 | 90p | 4516 | 125p | LM318N 224p | MC6850P f8 |
| 80 p | 4077 | 20 p | 4517 | 382p | LM324N 71p | MC6852 f15 |
| 60 p | 4078 | 20p | 4518 | 103p |  | MEMORIES |
| $93 p$ | 4081 | 20p | 4519 4520 | 57p | $\begin{array}{ll}\text { LM348N } & 186 p \\ \text { LM3900N } 60 \mathrm{p}\end{array}$ | 2102.1 170p |
| $82 p$ | 4082 | 20p | 4520 | 109p | 709HC to 564 p | 2112 340p |
| 90p | 4085 | 82p | 4521 | 236p 149 p | 709 PC to 564 p <br> 709 PC dil <br>  <br> 6 p | 2513 754p |
| 17 p | 4086 | $82 p$ $150 p$ | 4522 | 149p | 710 HC to 565 p | 4027 578p |
| 76 | 4089 | 150 p 500 | 4528 | 157p | 710 PC dil 59 p | 2114 ¢10 |
| $17 p$ | 4093 | 50p 190 p | 4529 | 141p | 723 CN dit 65 p | $2708 \quad 1055 \mathrm{p}$ |
| 180p | 4094 | 190p 105 p | 4530 | 90p | 741 CH to5 66p | 8080 - CPUs |
| 55p | 4096 | $105 p$ 372 p | 4531 | 141p |  |  |
| 72p | 4097 | $372 p$ | 4531 | $141 p$ $125 p$ | 747 CN 8il 70 p | 8080ACE £16 |
| 100p | 4098 | 110 p | 4532 | 614p | 747 CN 748 CN | Full range of |
| 58p | 4099 | 122p | 4534 | 614p | 748 CN 36p | support kits OA |
| 250p | 4160 | 90p | 4536 | 380p |  | for 8080/6800 |
| 100 p | 4161 | 90p | 4538 | 1100 |  |  |
| 145p | 4162 | 90p | 4539 | 1141 p | - |  |
| 200p | 4163 | 90p | 4541 | 1410 |  |  |
| 120p | 4174 | 104p | 4543 | 174p |  |  |
| 250p | 4175 | 95p | 45.49 | 499p |  |  |
| 100p | 4194 | 95p | 4553 | 440p | PC DRAFTIN | AIDS: |
| 105p | 4501 | 23p | 4554 | 153 p | You may now | also obtain all |
| 250p | 4502 | $91 p$ | 4556 | 77p | Chartpak PC | ting aids from |
| 83p | 4503 | 76p | 4557 | 386p |  |  |
| 90 p | 4507 | 60p | 4558 | 117p | AMBIT. Price | 隹 |
| 85p | 4510 | 128p | 4559 | 388p | request. Also | tails of our |
| $85 p$ | 4511 | 163p | 4560 | 218p | low cost fast | ototyping |
| 80p | 4512 | 116p | 4561 | 650p | rvice for P |  |
| 150p | 4514 | 325p | 4562 | 530p | ver Smith |  |
| 130p | 4515 | 325p | 4566 | 159p | paper, Smith | agrams etc. |
| 99p | 4516 | 128p | 4568 | $281 p$ |  |  |
| 60p | 4517 | 403p | 4569 | 303 p | ABRIDGED IN | ORMATION |
| 55p | 4518 | $119 p$ | 4572 | $25 p$ $600 p$ |  |  |
| $55 p$ | 4519 | 58p | 4580 | 600p | Postcode CM1 | 4HN. Tel. 216029. |
| 65p | 4520 | 120p | 4581 | 319 p 164 p | VAT extra at | .5\% except * $=8 \%$ |
| $65 p$ | 4528 | 122p | 4582 4583 | $164 p$ $84 p$ | Catalogue 45p | c. Postage 25p. |
| 65p 120 p | 4553 | $440 \rho$ | 4584 | 63p | Admin open | Fri 8am-5pm, |
| 135p |  |  | 4585 | 100p | Sales/technical | am-8pm inc Sat. |

\section*{$T$

t
f
A

id}

Return of post service whenever humanly possible - and sometimes even when it isn't! All our goods are manufacturers first quality, so you may build in complete confidence, backed with our own investment in lab facilities, for the complete Tecknowledgey service.


The EF5400, the first VHF tunerhead with one IC. It includes PIN diode agc loop. anced osc/mixer, RF stage Tunes $88-108$ with only
$2.8 \mathrm{v} D \mathrm{C}$ bias, and is $2.8 \mathrm{~V} D C$ bias, and is £9. 75 built/tested Special frequency special onesuency

The Reference series of FM tuner modules
71302 or 36 pole linear phase if filters The CA3189E IC
agc'd MOSFET IF preamps and all features. $0.07 \%$ thd $30 \% \mathrm{mod}$, 91196 B The HA1196 stereo decoder in an optimum application, with two LM380N monitor 2W PA stages built in
EF5803 The Latest EF series from Ambit. 3 MOSFET circuit, with extra loose inter-stage coupling and amplified LO op
£16.45 £19.75 $\begin{array}{lll}\text { EF5801 The original } 6 \text { varicap (doublet) FM tunerhead with LO op } & £ 17.45 \\ \text { EF5600 TOKO's } 5 \text { cct varicap FM tunerhead. MOS input stage } & £ 14.95\end{array}$ EC3302 TOKO's budget 3 cet FM varicap tunerhead JFET RF $£ 14.95$
$£ 8.25$ 7252 Larsholt's MOS frontend/CA3089E IF system HiFi complete varicap tunerset for $88-108$. Mute, AFC, AGC etc $£ 26.50$
7253 Larsholt's FET frontend/CA3089E/MC1310 stereo tunerset with varicap tuning. Like 7252, signal level/tuning meter drives $£ 26.50$

Linear ICs for audio and radio applications. Old ones, new ones etc. CA3089E/KB4402 classic FM IF system. Includes mute, afc, agc, metering $£ 1.94$ $\begin{array}{ll}\text { HA1137W/KB4420A as CA3089E, with improved deviat ion mutıng and } S / \mathrm{N} \text { £2.20 } \\ \text { CA3189E } & \text { Update, though not replacement for } 3089 \text { inc af gain }\end{array}$ $\begin{array}{llll}\text { CA3189E } & \text { Update, though not replacement for 3089. inc af gan } & £ 2.75 \\ \text { TBA120A/SN76660N } & \text { Limiting DC coupled IF amp plus batanced detector } & £ 0.75\end{array}$ | TBA120S | Hi gain version of TBA120A | $£ 1.00$ |
| :--- | :--- | :--- | UA720DC/CA3123E AM radio IC, useful gain controlled RF/IF gain block $\begin{array}{ll}\text { TBA651 } & \text { tow voltage, hi gain AM radio cum linear RF/IF gain } \\ \text { HA1197 } & \text { Complete HiFi am raio inc detector wide age range }\end{array}$ HA1 197

MC1350 MC1330
LM1496/SG1496 LM374N
MC1495 MC1495
TDA1062NEW YDA 1083 NEW
TDA 1090 NEW
KB4400 NEW $\begin{array}{ll}\text { KB4412 } & \text { NEW } \\ \text { KB4413 } & \text { NEW }\end{array}$
KB4417 NEW KB4417
SD6000 types eg. 1.8 GHz PNP only 0.86 p . $2 \mathrm{~N} 4427^{*}$
f 1.30 , BF900 latest generation MOS $0.80^{*}$ As usual you get the latest information and ideas from AMBIT
DAZZLING OPTO BARGAINS .
 yeflow $20 p$ 16p $2 p$

The Ambit you all know and love for its unique service to wireless, now brings you the One Stop Technology Shop. A complete range of logic devices, including CMOS, TTL and the increasingly favoured Low Power Schottky versions. Plus all the usual voltage regulators \& linears. Combine this with our unique capability in wireless devices, ranging from coils to the latest semiconductors, the uniquely information packed 'Tecknowledgey' catalogue (45p), and you need look no further for your semiconductors- and most other types of modern components. We still want to maintain a separate identity for the unique wireless service of Ambit - so please keep orders for the OSTS (left hand side of this page) and AMBIT (right hand side) seaparetly totalled - although one pp and one combined payment is sufficient - made out to Ambit International, please. Postage is 25 p per order, VAT to be added at the rate indicated ( $*=8 \%$ ).

Solar noise was frequently heard at 28 and 50 MHz with normal communications receivers and dipole aerials on May 3rd, 5th, and 7th and large bursts were recorded at 136 MHz at 1201 ( 8 mins ) on the 6 th and 1213 ( 37 mins ) on the 8th. Noise storms were recorded on May 1st, 4th, and 18th. On April 30th, Henry, using his spectrohelioscope, counted 5 large sunspots, 6 small ones, 3 bright plages and on May 3rd he saw a baby flare. Another look on the 17th revealed 10 spots in 5 separate groups.

## Aurora

After that April 28th burst, and with more solar activity on May 1st and 3rd, it was not surprising that auroral events began during the afternoon of April $30 t h$ and rolled around, with varying intensity until the small hours of May 4th. Between 1555 and 1720 on April 30th, John Branegan, GM80XQ, Saline, Fife, heard tone-A, c.w., signals from G, GI, GM, PA0, SM and beacon signals from GB3ANG, GI, LER, and VHF on 2 m . John found it impossible to access OSCAR-8 during the aurora while the satellite was to the north of his QTH. Alan Baker heard GMs on the 30th and around midnight on May 1st/2nd, Barry Ainsworth had s.s.b. contacts with GM4COX and GM80DN and a c.w. contact with GM4CXM. At 2354 on May 2nd, Alan worked GI5SJ, at 0013 on the 3rd he worked GM4BYF and heard GI4GVS and GM8FFX.

Around 2215 on May 1st, Neil Clarke heard tone-A beacon signals from GB3CTC, GB3GI, DLOPR and SK7VHF and auroral s.s.b. from $7 \mathrm{Gs}, 5 \mathrm{GMs}$, 1 GI, 1 GW, 1 ON, 1 PA 0 and 3 DCs. At the same time John Branegan heard several of his GM colleagues "piling up the Continentals on both c.w. and s.s.b., with Gs in the London area very prominent". Between 1645 and 1850 on May 3rd John heard tone-A c.w. from Russian and Swedish amateurs, meanwhile I heard auroral signals from G8LIC, Middlesbrough, G8AZA, Scarborough, 11 east-European f.m. broadcast stations ( 67.73 MHz ), Meldrum TV sound $(58.25 \mathrm{MHz}$ ), GI4GVK and Mike Rowe, G8JVE, some 10 miles south of me at East Preston, Sussex. Mike also heard GI4GVK and GI4GVS, while at nearby Lancing, Roy Bannister worked GW2HIY and GM4EYF on c.w., and further east in Newhaven, Alan Baker heard 4 Gs, 1 GI, 1 GM and a GW.

Around 0249 on the 4th Alan had auroral QSOs with a couple of GMs and a GW, and agreed with Barry, Roy and myself that GM4COK was the most consistent auroral signal in southern England. Having weighed all this up, Charlie Newton, G2FKZ, London, RSGB auroral co-ordinator, is studying the relationship between large individual solar bursts and aurora and would appreciate any information you can give him. Between 1534 and 1738 on May 9th John Branegan worked G8LIC and G8MJG via aurora and heard strong c.w. signals from G, GI, GW, LA, and beacons DLOPR, GB3GI, LER, and VHF.

## 10 m Band

Harold Brodribb, St. Leonards-On-Sea, Sussex and Alan Baker reported that the 10 m band was dead on April 20th and, periodically, on other days ionospheric disturbances menaced the BBC's World Service transmissions on the h.f. bands. On most days between April 20th and May 18th, John Branegan, Gordon Goodyer, BRS37345, Petworth, Sussex, Neil Clarke, and myself received strong signals from the Cyprus
beacon, 5B4CY, project TESSA beacon ZE2JV, and occasionally A9XC, Bahrain, and DLOIGI when sporadic-E was present. Neil reports that on April 29th and May 3rd, 10m was open from 0800 until 2000 with signals from South Africa, South America, Israel and Russia. Gordon logged a host of Ws around 1840 on May 6th and Middle East stations during the afternoon of the 7th, while on the 14th he received s.s.b. signals from 30 countries from Japan to South America and Russia to South Africa.

## Sporadic-E

The 1978 Sporadic-E season (northern-Hemisphere) began at 0800 on April 26th when I received both sound ( $56 \cdot 25 \mathrm{MHz}$ ) and picture ( $49 \cdot 75 \mathrm{MHz}$ ) on the RI television channel with only dipole aerials feeding my R216 v.h.f. receiver and JVC 3060 television receiver. At the same time I heard strong f.m. signals from seven east-European broadcast stations (6672 MHz ) and during the morning of May 1st, I watched part of Russia's May Day parade on R1. A most intense Es disturbance occurred between 0900 1100 on May 13th when I received very strong signals from 33 broadcast stations ( $65-73 \mathrm{MHz}$ ), European radiotelephone signals in Band I and on Ch.Rl I watched an ice hockey match. There are many transmitters on the R1 system and periodically (typically sporadic-E) one picture would fade out and another take its place. At 1241 on the 15th, a test card appeared on R1, and reference to Roger Bunney's book, Long Distance Television, revealed that the station was Televidnie Sovietskogo Soiuza (USSR) using test card pattern 0249.

## Tropospheric

Conditions on v.h.f. improved greatly between May 6th and 18th, during which time the atmospheric pressure fluctuated from $30 \cdot 0$ in to $30 \cdot 5$ in and down again. On the 6 th, Mike Rowe worked $3 \mathrm{Ds}, 8 \mathrm{Fs}, 5 \mathrm{ONs}$, and 6 PA0s on 2 m s.s.b. and during the afternoon of the 7th he had a 59 QSO with DK8VRA. Mike runs a TS700G, with a home-brew 50 watt linear to an 8 element crossed Yagi. At 2240 on the 9th, Neil Clarke heard a PA0 calling through his local 2 m repeater, GBJNA, R3, and on s.s.b. he heard 17 PA0s and 7 DCs working UK stations from Kent to Wales and north to Scotland.
During the afternoon of the 7th G4GNX had 2m s.s.b. QSOs with PA0WRL/P, F1ENH/P and DC9DZA, and on the 10th both Andrew "Jim" Lyon, G8LPY, Worthing, and G4GNX heard signals through the French repeater, FZ3THF, R4. On the 11th, Jim worked Roy Bannister, holidaying in Yorkshire, via GB3PI, R6. Like Mike Rowe, Jim uses a TS700G to an 8 -element crossed Yagi and they are both now equipped for 70 cm operation. In a c.w. contact on the 10th PAODOG told G4GNX that PA0MI had worked into Russia via the aurora on May 1st, and at 2028 on the 15 th G4GNX had a 2 m c.w. QSO with F6BCK.

## Band II FM DX

Guy Stanbury, Chelmsford and Bob Dewick, Southminster, Essex, are keenly interested in Band II DX. Guy uses a home-brew receiver built from Ambit International modules and Bob has a Trio KT7001. Both stations use two Fuba Uka Stereo ' 8 's aerials stacked vertically and rotatable. Guy sent a detailed

# 15-240 Watts! 

HY5
Preamplifier

The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartridge, tuner, etc) are catered for internaliy. The desired function is achleved either by a multi-way switch or direct connectlon to the appropriate plns. The internal volume and tone circuits merely require connecting to external potentiometers (not Included). The HY5 s compatible with all i.L.P. power amplifiers and power supplies. To ease construction and保 FEAT disS: Complete pre-ampifier in single pack-Mult--runction
APPLICATIONS: Hi-Fi-Mixers-Disco-Guitar and Organ-Public address
SPECIFICATIONS:
INPUTS. Magnetic Pick-up 3mV; Ceramic Pick-up 30 mV ; Tuner 100 mV ; Microphone 10 mV ; Auxiliary $3-100 \mathrm{mV}$ input impedance $4.7 \mathrm{k} \Omega$ at 1 kHz ,
OUTPUTS. Tape 100 mV ; Main output 500 mV R.M.S.
OUTPUTS. Tape 100 mV i Main output 500 mV R.M.S.
 Price £5-22 + $5 \mathbf{5 p}$ VAT P\&P free.


The HY30 is an exclting New kit from I.L.P. It features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of I.C., heatsink, P.C. board. 4 resisters, 6
capacltors, mounting kit, together with easy to follow construction and operating instructions This amplifler Is ideally sulted to the beginner in audio who wishes to use the most up-to-date technology avallable.
FEATURES: Complete KIt-Low Distortion-Short, Open and Thermal Protection-Easy to Build.
APPLICATIONS: Updating audio equipment-Guitar practice amplifler-Test amplifieraudio oscillator.
OUECIFICATIONS: $\mathbf{W}$ R.M.S. into 82 : DISTORTION $0.1 \%$ at 1.5 W .
INPUT SENSITIVITY 500 mV . FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$.
Price £5 22 + 65p VAT P\&P free.
HY50
25 Watts into $8 \Omega$

The HY50 leads I.L.P.'s total integration approach to power amplifier design. The amplifler features an integrai heatsink together with the simplicity of no external components. During the past three years the amplifier has been reflined to the extent that it must be one of the most rellable and robust High Fidelity modules In the World.
FEATURES: Low Distortion-Integral Heatsink-Only five connections-7 amp output tran-istors-No external components
APPLICATIONS: Medium Power Hi-Fi systems-Low power disco-Guitar amplifier
SPECIFICATIONS: INPUT SENSITIVITY 500mV
at 1 kHz IGNAL/NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$.
SUPPLY VOLTAGE $\pm 25 \mathrm{~V}$ SIZE 1055025 mm
Price $\mathbf{1 6} \mathbf{8 2}+\mathbf{8 5 p}$ VAT P\&P free modular design.
FEATURES: Very low distortion-Integral heatsink-Load line protection-Thefmal protec-
tion-Five connections-No external components
APPLICATIONS: Hi-Fi-High quality disco-Public address-Monitor amplifler-Guitar and organ
SPECIFICATIONS
INPUT SENSITIVITY 500mV. at 1KHz SIGAL/NOISE RATIO 90dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE SIZE 11450 85mm
Price E15 84 + £1 27 VAT P\&P free.
The HY200 now improved to give an output of 120 Watts has been designed to stand the most rugged conditions such as disco or group whlle stlll retaining true Hi-Fi performance.
FEATURES: Thermal shutdown-Very low distortion-Load line protection-Integral heats ink -No external components
APPLICATIONS: Hi-Fi-Disco-Monitor-Power slave-Industrial-Public Address SPECIFICATIONS
OUTPUT POWER 120W RMS into $8 \Omega$ LOAD IMPEDANCE 4-16 $\Omega$ OISTORTION $0.05 \%$ at 100 W at 1 kHz . . SIZE 1145085 mm
Price $£ 23 \cdot 32+£ 1 \cdot 87$ VAT P\&P free.
The HY400 is I.L.P.'s 'Big Daddy"' of the range praducing 240 W into $4 \Omega!$ It has been designed for high power disco address applications. If the amplifier is to be used at continuous high power evels a cooling fan is recommended. The amplifier includes all the quanites of the rest FEATURES: Thermal shutdown-Very low distortion-Load line protection
components.
APPLICATIONS: Public address—Disco-Power slave-Industrial
SPECIFICATIONS at 1 kHz NOISE FATIO 94dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLYY VOLTAGE $\pm 45 \mathrm{I}$ INPUT SENSITIVITY 500mV SIZE 11410085 mm
Price $\mathbf{\Sigma 3 2} 97+\mathbf{5 2} 57$ VAT P\&P free.
PSU36 suitable for two HY30's $£ 522$ plus 65 p VAT. P/P free. SUPPLIES

PSU50 suitable for two HY50's $\mathbf{5 6}$ - $\mathbf{B 2}$ plus 85 p VAT. P/P free
PSU70 suitable for two HY120's $£ 13.75$ plus $£ 1 \cdot 10$ VAT. PIP free.
PSU90 suitable for one HY200 £ 12.65 plus $£ 1$ 05 VAT. P/P free.
PSU180 $£ 23 \cdot 10+£ 5 \cdot 85$ VAT.
B) $£ 0.48+£ 0.06 \mathrm{VAT}$.


TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS
I.L.P. ELEGTRONICS LTD., CROSSLAND HOUSE, NAGKINGTON, CANTERBURY, KENT, CT4 7AD.

## I.L.P. ELECTRONICS LTD., crossland house, nackington, CANTERBURY, KENT, CT4 7AD.

Tel: (0227) 64723.

Please Supply
Total Purchase Price
1 Enclose Cheque $\square$ Postal Orders [] Money Order []
Please debit my Access account Barclaycard account []
Account number
Name and Address
Signature
log containing some 49 stations heard, both mono and stereo, between $87-104 \mathrm{MHz}$ on May 9th, and 68 stations on the 10th. His logs are impressive and give comparable signal strength for the British and Continental stations. The strongest signal on these two days was Lopik 3 s, $96 \cdot 80 \mathrm{MHz}$. Guy, Bob and myself would like to hear more from readers on this subject.

## Microwaves

On April 2nd, Peter Kerry, G8ARO and Don Hayter, G3JHM, established their portable 3 cm equipment, with an 18in dish, on the Hogs Back, Surrey, and worked G8BDJ and G8GKV, situated 40 km away on Chanctonbury Ring, Sussex, at good strength. On May 1st, Peter set up the same gear on top of an 80 ft high residential tower block, 320 ft a.s.l., at Highgate and received the London 3 cm beacon, GB3LBH, at $25 \mathrm{~km}, 48 \mathrm{~dB}$ above the noise. Peter points out that only 30 dB of this was produced by the 18 in dish. At 0950 on May 3rd he recorded a 2dB increase in noise when he pointed the dish towards the sun compared with cold sky.

## OSCAR

John Branegan told me on May 6th "As of today, I have worked 20 countries by satellite" and at 1310 on May 9th he made his first transatlantic QSO with W2BAX, New Jersey, through OSCAR-8. John is now operational on OSCAR-7, Mode A and OSCAR-8, Modes A and $J$ and has had over 70 QSOs via satellite in his first 10 weeks on the air.

## Down under

Anthony Mann, Applecross, Western Australia, says "If sunspot activity keeps on increasing, the start of the next sporadic-E season (southern hemisphere) in October or November ought to see some really high MUFs to the north". Between 1325-1545 on April 16th he received for the first time, via F2, signals on Ch.R1 (Russian) sound, Ch.E3 video and Japanese amateurs on $50 \cdot 1$ and 52.0 MHz .

April 13th was another memorable day for Anthony with E2 and R1 in around 1100 and out at 1810, and late night transequatorial skip producing Korean Broadcast Service, $44 \cdot 3 \mathrm{MHz}$, and Ch.E2 West Malaysia from 2220 to 2255 . The only other evening T.E. skip observed by Anthony this autumn was on March 12th from $1915-2015$, with KBS $44 \cdot 3 \mathrm{MHz}$ and $44 \cdot 9 \mathrm{MHz}$ and Radio Peking, $45 \cdot 3 \mathrm{MHz}$. Around 35 MHz on April 3rd, 8th, and 9th he heard "This is Radio Call Paging Service of Oklahoma City".

## From your letters

"I have just come back to radio as a hobby" writes R. Horsfield, Sandbach, Cheshire, "having started in the early 50 s with an R1155, and after using a R210 have ordered an FRG7 digital", he is also looking for a v.h.f. receiver.
Eleven members of the Brighton and District Radio Society visited the Practical Wireless stand at the RSGB show at Alexandra Palace on May 6th. The mini-bus used for the journey was equipped with an IC240 and an Antec window-mount, ground plane aerial for contacting the exhibition talk-in station, GB2VHF, organised by the Grafton Radio Society.
Many reports exist that static-like radio interference is heard prior to an earthquake, any readers

Reports on the varfous bands are welcome and should be sent difect, by the 1 bth of the month, to $\%$
AMATEUR BANDS EHCDOwdeswell G4AR Silver Firs, Leatherhead Road, A shtead, Surrey KT2 $27 W$ : Logs by bands, each in alphabetical order.
MEDIUM and SW BANDS Charles Mollay G8BUS, 132 Segars Lane, Southport, PR8 3JG. Reports for both bands must be hept separate.
VHF BANDS Ron Ham BRS 15744 , Faraday, Gey friars, Storington, Sussex RH20 4 HE .
who have experienced this, please let we know because Richard Hill of Tunbridge Wells is making a special study of this.
Geoff Drewe, G4CAO, Weybridge, Surrey, is operational on c.w., 625 -line TV, Slow Scan TV, and Facsimile. Geoff had a 2 m FAX contact with G8ONE on April 17th using sync for the first time. The frequency is $144 \cdot 700 \mathrm{MHz}$ and Geoff says "We can now transmit two-way FAX in fine detail in sync without too much stress". He also hopes that more amateurs will become active in this field.
Many thanks for all your interesting reports on such a wide range of subjects.

## PW PERSONALITY VISITS WEST KENT ARS

Richard Leman, G8CDD, challenged fellow members of the West Kent Amateur Radio Society to make a crystal set, to look again at the first principles and provide a competitive activity for the Society.
The completed set had to receive the 200 kHz BBC transmitter and any medium wave station, excluding the BBC World Service transmitter at Crowborough which pounds a signal into Tunbridge Wells. Bonus marks ( $10 \%$ ) were awarded for not using new components, and ( $15 \%$ ) for using wireless parts of the pre-1940 era.

Judging by G8CDD, for loudness, clarity, construction and originality (one competitor used a 30 amp antenna fuse), was carried out on top of a local multistorey car park using a long wire aerial and a connection to the fire hose rising main for earth.

The prizes were presented on May 12th, at the fortnightly meeting of WKARS, by Ron Ham, our VHF Columnist, who was the visiting speaker seen here fourth from left.


# U.K. RETURN OF POST MAIL-ORDER SERVICE ALSO WORLD WIDE EXPORT SERVICE 

R.C.S. 100 watt MIXER/AMPLIFIER all valve


Four inputs. Four way mixing, master volume, treble and hass
controls, suits all speakers. This professional quality amplifier chassis is suitable for all groups, Gisco, P.A., where bigh quality power is required. 5 apeaker outputs. A/C mains operated. Slave ontput. Prodnced by demand for a cuality valve amplifies.
Sond for details. Siend for details.

Chassis onis $£ 94$ err. ${ }^{55}$

## R.C.S. MINI MODULE KIT

3-way Loudspeaker System comprising of Bass, Middle \& Tweeter Units with 3-way Crossover \& Ready Cut Baffle. Full assembly instructions supplied. Response $=60$ to 20000 C.P.S. 12 watt RMS. 8 ohm. $£ 10.95$ per kit. Two kits $\mathbf{E 2 0}$. Postage 75p.
TEAK VENEER HI-FI SPEAKER CABINEIS MODEL "A". $20 \times 13 \times 18 i n$. For 12 Bin . Gia. or 10in speaker.
Illustrated.
I4.50 mustrated.
MODEL "B" BOOKSHELF

KODEL "C" BOOESHELF
For 61 in and tweeter. $\mathbf{E 5} \cdot 95$ post 75p
zoudspeaker cabinet wadding 18 in . wide, 20 p ft.

| GOODMANS CONE TWEETER <br>  ELAC TWEETER 4 ohm 20 watt $22-50$ |
| :---: |
|  |  |


MONO MIXER. Add musical hikhilght ind sound effects to recordings. Will mix Mierophone, recorid, tape and Cuner with veparate controls into single
Operated volit battery
$\mathbf{L 6} \cdot \mathbf{7 5}$ TWO CEANNEL STEREO VERSION OF ABOVE 58.50 LOUDSTEAKER BARGAINS
3 ohm. $7 \times 4 \mathrm{in} . ~ £ 1.50 .8 \times 5 \mathrm{in} .81 .90 .81 \mathrm{in}$. . $11.80 .8 \mathrm{in} . ~ £ 2$. $150.5 \times \operatorname{3in.~} 81.50$
THEA "INGTANT" BULK TAPE ERASER \&
EuEAD DEMAGNETISER
suitable tor cassettes, and sill sizes of tape

| Leafiet S.A.E. | $\mathbf{E 4 . 9 5}$ | $\begin{array}{c}\text { Poat } \\ 50 \mathrm{p}\end{array}$ |
| :--- | :--- | :--- |

## A.C. HLECTRIC MOTORS

${ }_{2}^{2}$ Pole, $240 \mathrm{~V},-2 \mathrm{Amp}$. Spindle $-1.43 \times 0.212 \mathrm{in} .21 .75$. 2 Pole, $240 \mathrm{~V},-15$ Amp. Doable Spinale $-1.75 \times 0.18 i n$.
Ench 1.50 . 2 Pole, $120 \mathrm{~V},-5$ Amp. Spinde $-0.75 \times 0.2 \mathrm{in}$. Two in zeries -240 V . ${ }^{25 \mathrm{p}}$ each. Brush Motor. From



 $10 \times 7 \mathrm{in} .54 \mathrm{p} ; 12 \times 5 \mathrm{in} .44 \mathrm{p} ; 12 \times 8 \mathrm{inin} .70 \mathrm{p} ; 16 \times 8 \mathrm{in} .70 \mathrm{p} ;$

ALUMMINMM BOXES, MANY SIZES IN STOGK. ${ }^{2}$


[^1]BAKER MAJOR |2" $\mathbf{| | 6 . 8 8}$
Nost eramic man together with a BAKER donsity of 14,000 gauss and a total finx of 145,009 moxwells. Bese /s rated 25 watts. NOTE: 4 or 8 or 16 ohms must be stated.

MAJOR MODULE KIT
$30-17,000 \mathrm{e} / \mathrm{s}$ with tweeter, prossover.
baffe $19 \times 12$ in. Pleasc baffle $19 \times 12 \mathrm{tin}$.Pleaze
state 4 or 8 or 18 ohme. Post $11 \cdot 60$
BAKER SPEAKERS "BIG SOUND"
Robustly constructed to atand up to long periods of electronic power. As used by Useful reaponse $30-13,000 \mathrm{cpu}$. Bamis resonance 65 cpa .
GROUP "25" 18in. 30 watt

GROUP "35" 12 in .40 Watt
4,8 or 16 ohms.

GROUP "50/12" £22.68 12in. 60 watt profesnional model. 4,8 or 18 ohms.
Response $=30-16.000 \mathrm{eps}$. Response $=30-16.000 \mathrm{cps}$. With aluminiam presence dome. GROUP "50/15"
16 in .75 watt
8 or 18 ohma.
Post $21 \cdot 60$
Send tor leaflets on Disco, P.A. and Group Gear.
baker 150 WATT
QUALITY
TRANSISTOR
MIXER/AMPLIFIER


Protesuional amplifier using advanced circuit design. Ideal for Manter treble, baut and volume controls. 3 apesker outpat miocketi to suit rarious combinations of zyeakert.
4-8-16 ohm. Siave output. A/C maina.
Guarankeed. Details S.A.2.
100 WATT DISCO AMPLIFER
MADE BY JEMNINGS MUSICAL INSTRUMENTS
4 Speaker ontputs volume, treble, bass, controls
CAN BE USED AS 100 WATE SLAYE
Carr. 41
B.S.R. SINGLE PLAYER DECK

3 apeed. Playa all size records, Stereo Cartridge. Cueing device, Ideal Diseo Deck.

EI7.50 Pots 51.00


DRILL SPEED CONTROLLER/LIGET DMMMER EIT. EAGY to
 STEREO PRE-AMP KIT. All parta to baild this pro-mp. 3 inpats for high medium or low gain per channel, with volume control stereo mixere
R.C.S. SOUND TO LIGHT DISPLAY MK 2 Complate hit of parts with R.C.S. printed circouit. Threo
chancela. 800 to 1,000 watts ench. Wiil operate from 20 MV .


200 Watt Rear Reffecting White Light Bulbs. Idesl for Disco Lights. Edison Screw Fitting 75p. Each.

MAINS TRANSFORMERS Port



 $0-20-40-60$ VOLT 1 AMP. $£ 3.502 \times 18$ VOLT 6 AMP. 29 .
GENERAL PURPOSE LOW VOLTAGE. Voltages available at

R.C.S. TEAK

BOOKSHELF SPEAKERS
$13 \times 10 \times 8 \mathrm{Bin}$.
12 watts rms. 8 ohms
£19 pair post 81.50

## BAKER DISCO SPEAKERS

 HIGH QUALITY-BRITISH MADE
## $2 \times 12^{\prime \prime}$ CABINETS

for Diseo or PA all fitted with earrying handies and corners. Black 60 WATT R.M.S $£ 56$
With one horn $£ 66$
With two horns £74

80 WATT R.M.S. $\pm 60$
With one horn 668
With two horns 476
Carr. $£ 3$
100 WATT
R.M.S. $£ 75$

With one horn 683
With two horns Carr. ${ }^{\text {\& }}$
SINGLE l2inch CABS COMPLETE 30 WATT R.M.S. E32. WITH HORN 440. 40 WATT R.M.S. $£ 34$. WITH HORN 442. 60 WATT R.M.S. E4I. WITH HORN 449. CARR 13 EA.

## "SUPERB HI-FI"

I2in 25 watts
A high quality loudapeazer, its remarkable low cons renonance onnurez cloar roprodaction of the deopest bask. Fitted with a apecial copper dive and concentric tweeter cone retalting in inll able efficiency in the apper regirter.
Ball Renonance
FTux Dentity
25cp: $\begin{array}{ll}\text { Fiux Denity } & \quad 18,500 \text { gaval } \\ \text { Uatul responce } & 20-17,000 \mathrm{cps}\end{array}$ 8 or 16 ohms models.
£24.75 ?

## "AUDITORIUM"

I2in. 35 watts
A full range reproducer tor high powor, Ideal for Hi-Hi and Dincotheques. Electric Guitars pyaioms, electric organs, Basy Reionance $15000^{35 \mathrm{cpa}}$ Useful reaponse

## £23.60

## "AUDITORIUM"

15in. 45 watts
A high waftage loudapeaker of exceptional quality with a level tor Public Address. Dincotheques, Electronic insiruments and the home Hi-Fi.
 $\begin{array}{ll}\text { Flux Dentity } & 15,000 \text { ganalt }\end{array}$ Uretul retponse $20-14,000 \mathrm{cps}$
8 or 16 ohms models.
£29-25

$\qquad$

[^2]


Loudspeaker Cabinet Wadding 18in wide, 20p per ft. Hi-Fi Enclosure Manual containing plans, destgne, crossover
data and cubic tables, 85 p .
E.M.I. $13 \frac{1}{2} \times$ 8in

SPEAKER SALE!

15W model $£ 10.50$
8 ohms. Post 65D
GOODMANS 20W Woofer
Size $12 \times 10 \mathrm{in} 4$ ohms. $\quad \mathbf{\& 9 . 9 5}$
Rubher cone surround.
Hi-Fi Bass unit.


337 WHITEHORSE ROAD, CROYDON Open 9-6 Wed. 9—I Sat. 9-5 (Closed for lunch 1.15-2.30) Minimum post 30p. Components List 20p. Cash price incl. VAT. Access \& Barclay cards welcome. H.P. available. Phone your order Tel. $01-684$ I665



NO
BATTERIES NO WIRES £29.99 PER PAIR

+ FAT $83 \%$ The modern way of instant 2-way communications. Supplied
with 3-core wire, Just plug into power вocket. Ready for use. Crystal clear communications from room to room. Range $\frac{1}{4}$-mile on the same mains phase. Onjoff switch. Volume control. Usetul as inter-office intercom. between office and Farehouse in surgery and in homes. P. \& P. 99p.


£19.95
solve your communica. Solve your communica-
tion problems with thle 4-Station Transistor Mntercom sybtem (1 master and 3 Subs) in robust plastic cabinets tor desk or wall mounting. Call talk/listen from Master to Subs and Subs io Master. Ideally suitable for Business, Surgery, Schools, Hospitale and Otfice. operates on one 9 V battery. On/off switch. Volame contro complete Fith 3 connecting Fires
and other accessories. P. \& $P$. 99p.
NEWI:AMERICAN TYPE CRADLE
TESBMOME AMPLEGE!


ONLY
$\mathbf{~} 15.95$

Lateat transistorised Telephone Amplifler with detached plug-in speaker. Placing the receiver on to the cradle activates a switch for immediate two-way convergation without holding the handset. Many people can listed at for "conference" calls: leaves the user's hands free to make notes, consult fles. No long waiting, saves time with long distance csils. On/off switch, volume control, conversation ecording model at $218 \cdot 95$ + VAT $£ 1 \cdot 52$. P. \& P. 89p

10 -day price refund guarantee on all items.
WEST LONDON DIRECT SUPPLIES (PWO 169 KENSIIGGTON HIGH STREET, LONDON, W8

## BRAND NEW SURPLUS MODULES

AND OTHER ITEMS
2 STAGE STEREO PRE-AMP on $6^{\prime \prime} \times 73^{\prime \prime}$ P.C.B. 4 push buttons, gram, tape in/out, aux on/off. 4 slider conerols. vol., bal., bass., treble input approx. 100 mV for 300 mv out with knobs

STEREO POWER AMP to match on $6 \frac{t^{\prime \prime}}{} \times$ 54" P.C.B. 10W + 10 W out for 60 mV in. Includes rect., smoothing and supply for pre-amp. Bargain at only $£ 4.90$ Build your own music centre SPECIAL OFFER PRE-AMP \& POWER AMP Pair only E10.00 TRANSFORMER to suit 240v/22y
 pair ................................................. $£ 8.50$ STEREO GRAM AMP on $12^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime}$ P.C.B $3 W+3 W$ for 100 mV in controls. vol., bal., treble,
bass, requires $16 \mathrm{v} D C$ for $8 \Omega$ L.S. or $25 v D C$ for bass, requires 16 v DC for $8 \Omega \mathrm{~L} . \mathrm{S}$. or 25 vDC for
$15 \Omega$ L. 5.90 Suitable 14 v transformer and rect. ordered with gram amp
Singly ....

| $E 200$ |
| :--- |
| $E 2.50$ |

$\frac{\text { Singly ...............................................E2. } 50}{\text { MW } 8 \text { LW RECEIVER on } 6 \frac{1^{\prime \prime}}{2^{\prime}} \times 3^{\prime \prime} \text { P.C.B }}$ complete with drive and cursor, ferrite acrial \& knobs. Good sensitivity and volume. Needs oniy 9 y or 6 v batt. and $8 \Omega$ speaker. $\quad € 3.00$ POWER TRANSFORMER 240 v in, 36 y out 2 ype. Impregnated
Quantity available. Exceptional value at 64.90 weighs nearly 41 b -hence $\mathbf{E 3 . 9 0}$ to callers.
PUSH SWITCHES with modern square buttons. 8 switches on bar, 4 independent plus buttons. 8 switches on bar, 4 independent plus
4 inter-dependent latching. As used on music centres etc.
E1.50 $500 \mathrm{pF}+500 \mathrm{pF}$ twin gang, air spaced capacitor diecast frame. Ball bearing shaft. Anti backlash Geared S.M. drive $2 \frac{1}{2}{ }^{\prime \prime} \times 2^{\prime \prime} \times 1$ tr $^{\prime \prime}$, plus shaft $\begin{aligned} & 1 \$^{\prime \prime} \\ & \text { only } 85 p\end{aligned}$
Rear ext. shaft.
Cash with order. Prices inc. P \& P and V.A.T
EIECTRONCAL SUPPLIES CROYOON
40, Lower Addiscombe Rd., Croydon, CRO 6AA.
Tel: 01-688-2950.

## WHAT'S NEW?

## ME, semiconductor feaching hat

The most MODERN, RAPID ECONOMIC way to master space age electronics. Starting even from ZERO
 by performing over

## 100 EXPERIMENTS

creating more than 20
practical applications

You learn all about the most up to date electronic circuits; how to calculate, repair, and design them while pursuing your favourite hobby. Start from scratch, or improve your present knowledge, train and earn money in your spare time, turn your pastime into valuable job opportunities.
compare, "mini prices. you receive the entire Course, "mini laboratory" and components for ESS than the price of the components alone

COMPLETE KIT: nothing else to buy*

## You get:

- Instruction manual: over 200 pages of detailed step-by-step instructions. Start from scratch. explains basic laws and physics of Electricity.
semiconductor principles and operation electronic circuits: form diodes (including diac, zener) transistors, triacs to intesrated circuits (C.MOS. operational amplifiers) etc
Over 200 Electronic components: aerospace tech nology. Printed circuit experiment board, photo(including FET, MOSFET) LEDS plus resistors. capacitors, milliameter, potentiometers, variable measuring instruments (you assemble yourself from among components furnished in kit). MEASURING AMPLIFIER LOGIC INDICATORS REGULATED POWER SUPPLY. MULTIAMTER.

You perform:
Over 100 different experiments: from the most basic voltage measurements to radio transmitter circuits and including HI FI. Flip Flops, Ic apolica-
tions, Triac use, etc.

You construct:
More than 20 complete functional systems: light modulator, high fidelity amplifier, radio control set. radio receiver and transmitter, electronic gadgets and games and many, many more

* Hand tools not furnished.


SAVE 110 - mail coupon today - SAVE $f 10$
saga P.O. Box 401, Kingsmead, Kings Lane, Chipperfield, $\mathrm{Nr}_{\text {r }}$. Kings Langley, Herts WD4 9PB.
Please send me _-_ (QTY) $1 \mathrm{~K} 2 \mathrm{KIT}(\mathrm{S})$
I enclose cheque (money order) for
$f$
Name
Address
$\square$
$\square$

## Educational

GO TO SEA as a Radio Officer. Write: Principal, Nautical College, Broadwater, Fleetwood EY7 8 JZ .

LEARN MORSE CODE the easy way C90 Cassette $£ 3.75$ p.p. 30 p. R. Eastland, 50 Heath Road East, Petersfield, GU3 14FIN.

## TELEVISION TRAINING

15 MONTHS full-time course for beginners to include all the undermentioned subjects. Short courses, combining one or more subjects, for applicants with previous electronics knowledge.

- 13 WEEKS ELECTRONICS AND RADIO
- 13 WEEKS MONOCHROME TELEVISION
- 13 WEEKS COLOUR TELEVISION
- 13 WEEKS CLOSED CIRCUIT TV \& VCR
The training incorporates a high percentage of practical work. Next session starts on September 11th. Prospectus from:


## LONDON ELECTRONICS COLLEGE

Dept. B8, 20 Penywern Road, London SW5 9SU. Tel. 01-373 8721

## Courses

COURSES-RADIO AMATEURS EXAMINA. TION. City and Guilds. Pass this important examination and obtain your G8 licence, with an RRC Home Study Course. For details of this and other courses (GCE, professional examinations, etc.), write or phone: The Rapid Results College, Dept. JX1, Tuition House, London SW19 4DS. Tel: 01-947 7272 (Careers Advisory Service) or for prospectus requests ring 01-946 1102 ( 24 hr Recordacall).

## Books and Publications

SIMPLIFIED TV REPAIRS. Full repair instructions individual British sets $£ 4 \cdot 50$; request free circuit diagram. Stamp brings details unique. TV Publications (Ause PW), 76 Church Street, Larkhall, Lanarkshire.


HOW TO START A BUSINESS. By popular demand a fully illustrated manual has now been produced, showing, in easy, step by step, stages, how to rewind ARMATURES \& FIELD COILS as used in Vacuum Cleaners, Drills and Portable Tools. Chapters on taking data, materials required, test instruments required, rewind instructions, charts, etc. How to cost instruction manual $£ 4 \cdot 00$ plus 30 p P \& P. CWO. COPPER SUPPLIES, 102 Parrswood Road, Withington, Manchester 20. Dept. PWA.

## Ladders

LADDERS. Varnished 20ft 9in extd., £29.72, carr. £2.70. Leaflets. Also alloy ext. up to 62 ft 6 in . Ladder Centre (WIS2), Halesfield (1) Telford. Tel: 586644. Callers welcome.

## Situations Vacant

## Radio Technicians

Government Communications Headquarters has vacancies for Radio Technicians. Applicants should be 19 or over.
STANDARDS required call for a sound knowledge of the principles of electricity and radio, together with 2 years experience of using and maintaining radio and electronic test gear.
DUTIES cover highly skilled telecommunications/electronic work, including the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer and analytic machinery.
QUALIFICATIONS: Candidates must hold either the City and Guilds Telecommunications Part 1 (Intermediate) Certificate or equivalent HM Forces qualification.
SALARY (inc. supps.) from $£ 2,673$ at 19 to $£ 3,379$ at 25 (highest pay on entry) rising to $£ 3,883$ with opportunity for advancement to higher grades up to $£ 4,297$ with a few posts carrying still higher salaries.
Opportunities for service overseas.
Further particulars and application forms available from:

## GCHQ

Recruitment Officer, (Ref PW/8), GCHQ, Oakley, Priors Road, Cheltenham, GL525AJ.
Cheltenham (O242) 21491 Ext 2270

## Service Sheets

SERVICE SHEETS - COLOUR TV SERVICE MANUALS
Service Shoets for Mono TV, Radios, Record Players and Tape Recordere 75p. Please send large Stamped Addressed
Envelope. We can Bupply manuals for most makes of Colour Television Recelvers by return of post. E.R.C. PYE ECKO PHILIPS ITT/KB SONY E.E.C. HITACHI BARRD ULTRA INYICTA FEREUSON H.m.V. MARCON AND MAMY MORE

Let us quote you. Please send Stamped Addraseed Envelope for a prompt reply. Alao comprehensive T,V. repalr G. T. TECHNICAL INFORMATION SERVICE

10 DRYDEN CHAMBERS, 119 OXFORD ST., LONDON WIR 1PA

BELL'S TELEVISION SERVICES for Service Sheets on Radio, TV, etc., 75p plus S.A.E. Colour TV Service Manuals on request S.A.E. with enquiries to B.T.S., 190 King's Road, Harrogate, $N$ Yorkshire. Tel: (0423) 55885.

## LARGE SUPPLIER OF SERVICE SHEETS Ali models at 75p PO/Cheques plus s.a.e. Except Colour and Car Radios. Free TV fault finding chart or TV list. Strictly by return. <br> C. CARANNA <br> 71 Beaufort Park, London NW11 6BX 01-4584882

SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo, etc. With free fault-finding guide, from 50 p and SAE. Catalogue 25 p and SAE. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.
SERVICE SHEETS, Radio, TV etc, 10,000 models. Catalogue 24 p , plus SAE with orders, enquiries. Telray, 154 Brook Street, Preston PR1 7HP.

## Radio Receivers



## For Sale

NEW BACK ISSUES of "PRACTICAL WIRELESS" available 65p each post free. Open P.O./Cheque returned if not in stockBell's Television Services, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

SEEN WHISTONS CAT? 5000 odds and ends. Mechanical/Electrical Cat free. WHISTON (Dept. PW), New Mills, Stockport.

ELECTRONIC KITS-SAE for new catalogue, and clearance list of obsolete kits. AMTRON UK, 7 Hughenden Road, Hastings, Sussex.

OSCILLOSCOPE. Scopex 4D10A, dual trace, 10 MHZ , new, $£ 170$. Telephone Bristol 504152 evenings.

JOYSTICK AERIAL, "system A" with A.T.U. Good condition, $£ 18$ ono. Stevenage 59637.

## Wanted

WANTED. Blueprint for EIEctronic Hawaiian Guitar-"Practical Wireless", June 1965. Harvey, 34 Cambridge Avenue, Peterborough. Phone: (0733) 69320.

## Electrical

STYLI-illustrated equivalents (List 28) also cartridges, leads, etc. Superb quality and service at lowest prices. Fully guaranteed. Free for sae from Felstead Electronics (PW), Longley Lane, Gatley, Cheadle, Cheshire SK8 4EE. (Closed holidays, Aug. 11th to 31st-no service).

## Aerials

## GOT T.V.I.

KILL IT DEAD, Tx-ing or SWL-ing Models: S.W.L., $£ 29.81$ : 500 watt or S.W.L., $£ 41$-05; inc. insulators, 75 ft . feeder, VAT and $P \& P$. Aerial matching units S.W.L. and 500 watt $10-160$ metres inc shipping and B.C. Bands, $£ 16-25$ : Inc. VAT and P \& P
 details, aerial article, test reports and testimonials

G2DYM, LAMBDA, WHITEBALL WELLINGTON, SOMERSET

## Miscellaneous

| ENAMELLED COPPER WIRE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| swg | 1 lb | 802 | 407 | 207 |
| 14-18 | 2.40 | 1.26 | . 62 | . 50 |
| $20-29$ <br> $30-34$ | 2.45 | 1.68 | . 82 | . 64 |
| 35-40 | 2.85 | 1-98 | 1-04 | 78 |
| Incluelve of pap and VAT. <br> SAE brings Catalogue of copper and resistance wires In all coverings. |  |  |  |  |
| THE SCIENTIFIC WIRE COMPANY PO Box 30, London E4 EBW <br> Reg. Omie: 22 Coningaby Gardane, |  |  |  |  |

## WANT MORE DX?

LOSING DX UNDER QRM? DIG it OUT with a Tunable Audio Notch Filter, only Es.90. NO LONG WAVE? ${ }^{100-600 ~ K H z}$ Converter feeds your 4.1-4.6 MHz receiver, only $£ 9 \cdot 90$. WHERE'S THE RARE DX? $1 \mathrm{MHz}, 100,25 \mathrm{KHz}$
Calibrator, markers to VHF ony Calibrator, markers to VHF, only $£ 13.80$. NEW! MSF Receiver gives digital SECONDS, MINUTES and output for MONTH, DATE and YEAR, interna WHAT'S ON MIF?
10 SIG. GEN. $10 \mathrm{~Hz}-200 \mathrm{KHz}$ sine/square, $£ 10 \cdot \mathbf{2 0}$
CLOBRERED? PUNCH THROUGH with a位 your audio at maximum and GET four times TALK POWER for Es 60 Each easy-assembly kit inciudes all parts, printed circult, case, postage, etc., instructions, money back assurance, so SEND off NOW.

## CAMBRIDGE KITS

45 (FH) Old School Lane, Milion, Cambridge

\title{



SUPERB INSTRUMENT CASES by Bazelll, manufactured from P.V.C. faced steel Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90 p , chassis punching facilities at very competitive prices. 400 models to choose from, free literature (stamp would be appreciated). BAZELLI, Dept No 25, St. Wilfrid's, Foundry Lane, Halton, Lancaster LA2 6LT.


## COLOUR <br> MODULATOR <br> 

- For TANK BATTLES and all other TV Games. Each explosion lights-up the whole field with violent crimson flashes!
- Transforms the game with added life and excitement! When you've seen this all other versions are definitely OUT:
- Blue and orange (not pink!) tanks on a rich green battlefield.
RGB inputs allow colour combinations to be altered to personal taste.
- Simple interface circuit details for this and other games ( $8500 / 8600$ ) included.
Kit complete with UHF modulator, PAL bistable and colour crystal.
ONL.Y $£ 6.95$ inclusive of VAT $\&$ postage.
WILLIAM STUART SYSTEMS LTD.
Dower House, Herongate, Brentwood
Essex CMI3 3SD. Telephone 0277-810244


## PRINTED CIRCUITS and HARDWARE

Readily avallable supples of Conatructort' Mardware. Printed clreult boards, top quallity for individual designs. Prompt service. Send 25p for catalogue from:

RAMAR CONSTRUCTOR SERVICES
Masons Road, Stratford-on-Avon, Warwlek Tel: 4879

## 100 WATT GUITAR/PA/MUSIC AMPLIFIER

With superb treble. bass. Overdrive, slimline, 12 monthe guarantee. Unbeatable offer at \&39. Aiso twin channe with separate treble/bass Der channel E4., Money fe turned if not obsolutely delighted within 7 days. Also fuzz watt 12 in . speakers $£ 22 \cdot 50$.
All inclusive of P.P. Send cheque or P.O. to:
WILLIAMSON AMPLIFICATION
62 THORNCLIFFE AVENUE, DUKINFIELD
CHESHRE. TEL: $061-3445007$

OUTSTANDING 2200 HI-FI FM TUNER Latest silicon superhet design, Varicap Tuning, Full Coverage 88-102 MHZ. Ideal for Push button/Manual tuning. Supplied Built \& Tested with full instructions ond £9.95 (P\&P 50p). GREGG ELECTRONICS 86-88 Parchmore Rd, Thornton Heath Surrey.

## DART STATIONERY

## Presents

## For the DX'er

RECEPTION REPORT LETTERS. Professionally styled letters, printed in two colours, on high qualit paper. Made into pads of 100 letters for tidy storage.

1-5 pads $£ 1 \cdot 20$ per pad,
-10 pads $£ 1-10$ per pad
ALL PRICES INCLUDE V.A.T. and P. \& P.
First 25 orders received each month will receive a $15 \%$ discount voucher.
EVERY ORDER RECEIVED CARRIES A 10 DAY
PLETEIY SATISFIED
MAIL ORDERS ONLY PLEASE
Please send cheques or P.O. payable to:-
DART STATIONERY
20 Bromley Road, LONDON E17 4PS

CRYSTALS brand new $0.002 \%$ precision HCl8/U wire leads, $£ 2.95$ each, UK post paid, no VAT: $4 \cdot 0,5 \cdot 0,6 \cdot 0,7 \cdot 0,8 \cdot 0,10 \cdot 0$, $10 \cdot 7,18 \cdot 0,20 \cdot 0,48 \cdot 0,100 \cdot 0 \mathrm{MHz}$. Also $100 \mathrm{kHz} / \mathrm{HCl} 3$ and $1 \cdot 0 \mathrm{MHz} 0.005 \%$, wires or pins, $£ 3 \cdot 25.455 \mathrm{kHz} / \mathrm{HC} 6 £ 3 \cdot 95$. Any freq $2 \cdot 5 \cdot 180 \mathrm{MHz}$, made 6 weeks, $£ 3 \cdot 50$. Also AM/CW/SSB Communication Receiver lowcost modules and kits. New range being prepared. Send SAE for details when ready. P. R. GOLLEDGE ELECTRONICS, Merriott, Somerset TA16 5NS. Tel: 0460 73718.

## NOTICE TO <br> READERS

> Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

## TRANSFORMERS

ALL EX-STOCK—SAME DAY DESPATCH. VAT 8\%

| 2 AND 24 VOLT OR 12-0-12 PRIMARY 220-240 VOLTS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Ref | 12 V | 24 V | E | P\& ${ }^{\text {P }}$ |
| 111 | 0.5 | 0.25 | 2.20 | 0.45 |
| $\stackrel{213}{71}$ | 1.0 | 0.5 |  | 0.78 0.78 |
| 71 | 2 | + | 3. 51 | 0.78 |
| 18 | $\stackrel{4}{4}$ | 2 | 4.03 | 0.96 |
| 70 | 6 | 3 | 5.35 | 0.96 |
| 108 | ${ }^{8}$ | 4 | ${ }^{6} \cdot 88$ | 1.14 |
| 72 | 10 | 5 | 7.67 | $1 \cdot 14$ |
| 117 | 12 | 6 | 8.99 | 1.32 1.32 |
| 17 | 16 |  | 10.39 | $1 \cdot 32$ |
| 115 | 20 | 10 | 13.18 | 2.08 |
| 187 | 30 |  | 17.05 |  |
| 226 | 60 | 30 | 28.82 | OA |

Prim 220/240V Sec 0-20-25-33-40-50V Prim 220/240V Sec 0-20-25-33-40-50V
$20 \mathrm{~V}-0-20 \mathrm{~V}$ or $25 \mathrm{~V}-0-25 \mathrm{~V}$ available by con-
nection to aporopriate taps.

MAINS ISOLATING (SCREENED)

| PRIM 120/240 SEC 120/240 CT |  |  |  |
| :---: | :---: | :---: | :---: |
| Ref | VA (Watts) | ¢ | P\& ${ }^{\text {P }}$ |
| ${ }^{*} 07$ | 20 | 4.40 | 0.79 |
| 149 | 60 | 6.20 | 0.96 |
| 150 | 100 | 713 | $1 \cdot 14$ |
| 154 | 200 | 11.16 | 1.50 |
| 152 | 250 | 12.79 | 1.84 |
| 153 | 350 | 16.28 | 1.84 |
| 154 | 500 | 19.15 | $2 \cdot 15$ |
| 155 | 750 | 29.06 | OA |
| 156 | 1000 | 37.20 | OA |
| 157 | 1500 | $45 \cdot 60$ | OA |
| 158 | 2000 | 54.80 | OA |
| 159 | 3000 | 79.05 | OA |
| *State Volts required 115 V or 240 V . |  |  |  |
| HIGH YOLTAGE MAINS |  |  |  |
| Prisolating |  |  |  |
|  |  |  |  |
|  | Sec 100/120V | or 200/ |  |
| $V a$ | Ref | E | P\&F |
| 68 | 243 | $5 \cdot 89$ | 1-32 |
| 350 | 247 | 14.11 | $1-84$ |
| 1000 | 250 | 41.76 | OA |
| 2000 | 252 | 54.25 | OA |

30 VOLT RANGE
Prim 220/24OV Sec $0-12-15-20-24-30 \mathrm{~V}$ $2 \mathrm{~V}-0-12 \mathrm{~V}$ or $15 \mathrm{~V}-0-15 \mathrm{~V}$ available by con nection to appropriate taps.


COMPONENT PAKS
P\&P
0.55 0 High Quality Metal $\times 5 \% \frac{1}{2}+\frac{1}{4} \mathrm{~W}$ resistors.
150 Mixed Value Capacitors 10 Reed Switches
Wire Wound Resistors mixed.
25 Assorted presets.
303 tag terminal strips.
Hardware pack nuts, bolis Hardware pack nuts,
washers, insulators $70 \mathrm{p} . \mathrm{P} \mathrm{\& P}$ 40p. VAT $12 \frac{1}{2} \%$.



Our wide range of transformers are too numerous to list, please call (open 9am-5pm Mon-Fri) or send yo
Electrosil \& semiconductor stockists. Panel, Multi Meters, Audio accessories, send $15 . p$ stamps for lists.



## Your career in Electronics?

Enrol in the BNR \& E School and you'll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

> BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL,
> P.O. Box 156, Jersey, Channel Islands.

> NAME
> ADDRESS
> (Block caps please) WD 8

| WATFORD ELECTRONICS |  |  |  | OPTO ELECTRONICS* <br> LEDS + CIID 17 Serment Disolays |  | WITCHES* OGGLE 2A 25 PST |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Continued from opposite side) |  |  |  |  |  | DPST 34 <br> DPDT 34 <br> 4 pole on off 384 <br> SUE-MIN  <br>   |  |  |
| DIODES |  |  |  |  |  |  |  |  |
| AA119 | 15 | RECTIFIERS |  | ORP61 |  | SP changeover 59 |  | \% ${ }^{3}$ |
| AA129 | 25 25 | (plastle case) |  | ${ }^{2 \mathrm{O} 5777} \mathrm{OPTO}$ | NO357 An ${ }^{\text {a }}$ | SPST on oft ${ }^{\text {SPST }}$ |  |  |
| ${ }_{\text {AA }}^{\text {A }} 1315$ | 25 15 | $\begin{array}{lll}1 \mathrm{~A} / 50 \mathrm{~V} & 20 \\ \text { A/100V } & 22\end{array}$ | 40 |  |  |  |  | TANK BATTLE |
|  | ${ }^{60}$ | ${ }^{1} \mathrm{~A} / 1200 \mathrm{~V} 25$ |  | 1SOLATORS ${ }_{\text {T1L11/2 }}$ |  | DPDT ClOFF ${ }^{\text {di }}$ | Wixitic |  |
| BA100 | 10 24 | 1A/400V 29 | $\begin{array}{ll} 8 \Omega 5 W & 190 \\ 7^{\prime \prime} \times 4^{\prime \prime} & 199 \\ 8 \Omega 3 W & 40 n \end{array}$ | (1) |  |  | +5\% | Build this fantastic TV GAME with realistic battle |
| ${ }_{\text {BY126 }}$ | 14 | $\begin{array}{ll}1 \mathrm{~A} / 600 \mathrm{~V} & 34 \\ 2 \mathrm{~A} / 50 \mathrm{~V} & 35\end{array}$ |  |  |  |  |  |  |
| $8 \mathrm{BY127}$ | 14 | 2A/100V 44 |  | VOLTAGE REGULATORS* |  |  |  | sounds-Steerable Tanks- |
| $OA90$ | 75 12 | $2 \mathrm{~A} / 2 / 200 \mathrm{~V}$ 46 <br> 2 l  <br> 1  | TRIACS | TO3 Can Type ${ }^{\text {cose }}$ |  |  | 连 | Controllable Shell Trajec- |
| $\bigcirc{ }^{\circ} \mathrm{A} 70$ | 12 | 2A/500V ${ }^{\text {23 }}$ | 6A500V |  | - 2 2, 12, 15 V , 95 | PUSH BUTTON |  | tory and Minefields to |
| OAAT9 | 12 | 4A1900V | 8A 400 V  <br> 8 8500V 119 <br> 10  | LM309K $\quad 135$ | -ve 1A $5 \mathrm{~V}, 12 \mathrm{~V} \quad 175$ | Spring loaded |  | avoid. |
| ${ }_{0}{ }^{\text {A85 }}$ | 12 | ${ }_{4 A}^{4 A} / 400 \mathrm{~V}$ |  | LM323K 625 | $\begin{array}{ll}\text { LM } 320-12-v e ~ & 165 \\ \text { LM } 320-15 \\ \text {-ve } \\ 165\end{array}$ | Latching |  |  |
| $\mathrm{O}^{\mathrm{O}} \mathrm{A} 919$ | 6 | 4A/600V 105 | $\begin{array}{ll}154400 \mathrm{~V} & 165 \\ 164400 \mathrm{~V} & 185\end{array}$ | MVR5 or 12 | LM341-15+va 9 | SPDT C/over 65 |  |  |
| $\bigcirc$ | 8 | $\begin{array}{ll}4 \mathrm{~A} / 800 \mathrm{~V} & 120 \\ 6 \mathrm{~A} 100 \mathrm{~V} & 73\end{array}$ | $\begin{array}{lll}16 \mathrm{~A} 400 \mathrm{~V} & 185 \\ 16 \mathrm{~A} 500 \mathrm{~V} & 180 \\ 210\end{array}$ | 1A -ve: 5V, 12V 220 | Variable Type <br> $723+2$ to +37 V <br> 15 | DPDT 6Tag ${ }^{\text {din }}$ |  | game, simply constructed with our easy to follow |
| OA200 | 9 | ${ }^{6 A} / 100 \mathrm{~V}{ }^{\text {6/ }}$ |  |  $8.2 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$ | LM304H0 + + +40 V 240 | MiniAture | instructions. |  |
| OA202 | 8 |  | 40528  <br> 40669 150 <br> 95  |  | LM317H+1.2-37400 | Push to mak |  |  |  |
| IN946 | 5 | VM18 DIL 40 | DIA | 1A (TO220) 5 VV , 12V | LM325N $\pm 15 \mathrm{~V}$ |  | "PUREECK <br> OSCILLOSCOPE' <br> AUTHOR APPROVED PARTS including PCBs available. Cathode Ray Tube 3BPI £7•75* (p\&p insured 90p). <br> Send S.A.E. for leaflet. | IC AY-3-8710 E9.78* |
| 4001/2**** | 5 |  | ${ }^{\text {ST2 }}$ | $15 \mathrm{~V}, 18 \mathrm{~V}, 24 \mathrm{~V}$, 99 | M326N +12V 240 | ROCKER: (Black) Onloff 10A 250V 23 |  |  |
| N4003 | 8 | ZENERS |  |  | ROCKER: (white) 5A 250V SP change-over centre off |  |  |  |
| IN41 |  |  |  |  | ontrols and mains detach- |  |  |  |
| 1544 | 20 | 1.3W 170 | ${ }_{33 \mathrm{p}}^{\text {clad) }}{ }^{\text {a }}$ 28p ${ }^{\text {(plain) }}$ |  |  | rocker: (illuminated, red) Chrome Bezel 5A 250V SP |  |  |
| $3 \mathrm{~A} / 100 \mathrm{~V}^{*}$ | ${ }_{18}^{15}$ | VARICAPS |  |  | ROTARY: 'Make-A | A-Switch' Make |  |  |
| $3 A / 400 V^{*}$ $3 \mathrm{~A} / 600 \mathrm{~V}^{*}$ | 18 |  |  | ${ }_{69 p}^{69}$ 45p ${ }^{38}$ |  |  |  |  |
| $3 \mathrm{~A} / 1000 \mathrm{~V}$ | 30 |  |  | 1215   <br> 463 128 p 107 <br> 1070   | Accommodates up to 6 Wafers 69 |  |  | Announcing DM900-The DIGITAL |  |
|  | 65 |  | 4i $\times 17^{\prime \prime}$ 252p |  |  |  |  |  |  |  |
|  |  | B8106 40 <br> 80  |  |  | Break Before Make Wafers, 1 pole/ 12 way, 2p/6 way, 3p/4 way, $4 p / 3$ way, 6p/2 way |  | Announcing measures Capacitance tool |  |
|  |  |  | Pin insertion to | Ool ${ }^{\text {990 }}$ |  |  |  |  |
| ${ }_{1}^{1} \mathrm{~A}$ A 10 V | 38 42 42 | $\begin{aligned} & \text { Noise Diode } \\ & \mathrm{ZSJ} \quad 160 \end{aligned}$ | VERO WIRING PEN ${ }^{*}+$ Spool 325 p Spare Wire (Spool) Bop; Combs 10p ea |  | Spacer and Screen 5 |  |  | way your analogue meters, |
| 1 A200V | 4 |  | FERRIC CHLORIDE*1/b bag Anhydrous 65p + 30p p. \& p. |  | 1 pole/2 to 12 way, 2 p/2 to 6 way, 3 pole/ 2 to 4 way, 4 pole/ 2 to 3 way 41 |  |  | here's digital accuracy at only half the price of an equivalent commer- |  |
| 1A400V | 72 | alum. boxes |  |  |  |  |  |  |  |
| 3A50V | 38 | ${ }_{3 \times 2 \times 11^{\prime \prime}}^{\text {with }}{ }^{\text {a }}$ | DALO ETCH RESIST PEN* ${ }^{75 \mathrm{p}}$ |  |  |  | $\begin{array}{ll}2 \text { to } 4 \text { way, } 4 \text { pole/2 to } 3 \text { way } & 41 \\ \text { ROTARY: Mains } 250 \mathrm{~V} \text { AC, } 4 \text { Amp } & 45\end{array}$ |  | cial Multimeter. <br> The DM900 is a 3 it digit multimeter with an $0.5^{\prime \prime}$ L.C.D. display |  |
| $3 \mathrm{Al00V}$ | 43 60 |  | used in No. 18) |  |  |  |  |  |  |  |  |  |  |
| 3 3A400 | 140 | ${ }^{4 \times 4 \times 11^{3 / 1 / 4}}$ |  |  | PW PROJECTS |  | The DM900 is a $3 \frac{1}{2}$ digit multimeter with an $0.5^{\prime \prime}$ L.C.D. display incorporating: |  |  |  |
| 3A600V | 120 |  |  |  | Easybuild Organ, General Coverage |  | 5 AC \& DC Voltage ranges; 6 resistance ranges <br> 5 AC \& DC Current ranges; 4 Capacitance ranges |  |  |  |
| 5 A | 120 | 4x2+1 $\times 2$ |  |  | Receiver, Chromachase, 24hrs, Digital Clock, 'JUBILEE' Electronic Organ, General Purpose SW Receiver, Gas \& |  |  |  |  |  |
| 7A400 | 125 | 5xa |  |  | atery | y. |  |  |  |  |  |  |
| 8 8400 | 150 |  | SOLDERCON PINS** 1000 pins 350p |  |  |  | held, light welght device, builit into a high impact |  |  |  |
| BT106 | 950 50 | $\begin{array}{ll}7 \times 5 \times 23^{3 \prime} & 114 \\ 888\end{array}$ |  |  | General Purpose SW Receiver, Gas \& Smoke Sensor Alarm, 'SEEKIT' Metal |  |  |  |  |  |  |
| C106D | 55 | 10x7x3" ${ }^{\prime \prime}$ | DIL SOCKETS*: Low Profile(TEXAS) 8 pin 10p; 14 pin 12p; 16 pin 13p; 18 pin 20p; 20 pin 27p; 22 pin 30p; 24 pin 30p; |  |  |  | Locator, "PURBECK" Oscilloscope,Tank Battle Game, Audio Distortion Meter. 'AVON' 2m FM Transmitter. |  | Never before have all these features been offered to the electronics enthuslast in a |  |
| TIC | 25 | $10 \times 4{ }^{1 \times 3}{ }^{\prime \prime}$ |  |  |  |  |  |  |  |  |  |  |
| 444 | 25 140 | $\begin{array}{ll}12 \times 5 \times 3^{\prime \prime} & 165 \\ 12 \times 8 \times 3^{\prime \prime} & 210\end{array}$ |  |  |  |  |  |  |  |  |  |  |  |  |

## INDEX TO ADVERTISERS



| Partridge Electronics Ltd. | $\ldots$ | $\ldots$ | 60 |  |
| :--- | :--- | :--- | :--- | :--- |
| P.B. Electronics | ... | .. | $\cdots$ | .. |
| 6 | 70 |  |  |  | Progressive Radio $\quad$... $\quad . . \quad$... $\quad .$. Powell T. ... ... ... .... cover II

Radio Components Specialists .... ... 69
Radio Exchange Ltd. ... ... ... 7

Ramar Constructor Services ... ... 76

R.S.C. (Hi-Fi) |  | $\cdots$ |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llll}\text { R.S.T. Valve Mail Order Co. } . . . & \ldots & 15 \\ \text { Radio \& T.V. Components Ltd. ... }\end{array}$

Seltronics ... ... ... ... ... 74
Sentinel Supplies ... ... ... ... 72
Sonic (Hi-Fi) ... .... ... 71
$\begin{array}{lllll}\text { Sonic Sound Audio } & \text {... } & \text {... } & 60 \\ \text { Southern Valve Co. } & 73\end{array}$

| Southern Valve Co. | $\ldots$ | $\ldots$ | $\ldots$ | 73 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| STE Ltd. | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |

Swanley Electronics $\rightarrow$.... 8
$\begin{array}{lcccc}\text { T.D. Components } & * . & \ldots & \ldots & 74 \\ \text { Technomatic Ltd. ... } & \ldots & 70\end{array}$

T.K. Electronics ... ... ... ... 74

Van Karen Publishing .... ws. ... 75

Watford Electronics ... ... 78,79
West London Direct Supplies ... ... 71
Williamson Amplification ... ... 76
$\begin{array}{lllll}\text { William Stuart Systems } & . . & \ldots & \ldots & 76 \\ \text { Wilmslow Audio ... } & \ldots, & & \text {... } & 12\end{array}$
Z \& I Aero Services


[^0]:    Please supply PCB/s as indicated by tick/s in box/es...... .......

[^1]:    DE LUXE BSR HI-FI AUTOCHANGER Plays 18in. 10in. or 7in. records Anto or Manaal. A high quality anit backed by BSR religbility $200 / 250 \mathrm{~V}$. Size $13 \ddagger \times 11 \mathrm{In}^{2}$. Above motor hourd $\times 12$ inin Aelow motor board 2 tin .
     Below motor board 2hin.
    With MAGNETIC STEREO CARTRIDGE $\pm 21 \cdot 50$ Cueing Device. Bias Compensalor, Balanced Cueing Device. Bias Compensator, Balay
    NEW DECKS
    BSR MP60/P128 with Goldring G850 magnetic
    cartridee. cartridge.
    BSR Budget Autoehanger with ceramic cartridge. Garrard AP76. Single player less cartridge. HSR. P1B3. Belt drive Tarntable, less cartridge. Garrard 5300. Autoohanger with ceramic eartridge. Garrard Minichanger. Plays all size records. Ceramic cartridge.
    BSR. P182. Snake arm, farei urntable, cetamic cartridge. Latest model.

[^2]:    

