News and Views

650 EDITORIAL—A Logical Step?

651 NEWS . . . NEWS . . . NEWS

658 PW READER'S PCB SERVICE—Prices and details of the PCBs available

670 HOTLINES—Recent developments in electronics Ginsberg

671 PRACTICAL WIRELESS—Pre-view of our next issue

676 STRAY SIGNALS ... Point Contact

677 KINDLY NOTE—Jubilee Organ

677 TELEVISION—Details of the January issue

693 ON THE AIR—Amateur Bands ... Eric Dowdeswell G4AR
SW Broadcast Bands ... Charles Molloy G8BUS
MW Broadcast Bands ... Charles Molloy G8BUS
VHF Bands ... Ron Ham BR515744

For our Constructors

652 DIRECT CONVERSION RECEIVER ... Mike Tooley BA, G8CKT

665 THE PW 'JUBILEE' ELECTRONIC ORGAN—5 M. J. Hughes MA, C.Eng, MIERE

672 PROPORTIONAL POWER CONTROLLER .. C. Toms

678 AERIAL PERFORMANCE TEST SET ... F. C. Judd

685 DESIGN YOUR OWN PROJECTS—5 ... Toby Bailey and Bob Whitaker

General Interest

659 SO YOU WANT TO PASS THE RAE?—5 John Thornton-Lawrence GW3JGA and Ken McKoy GW8CMY

690 POTENTIAL BREAD

COPYRIGHT
© IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in 'Practical Wireless' is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by 'Practical Wireless' to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

Practical Wireless, January 1978
Sparkrite Mk.2
Capacitive discharge electronic ignition kit

- Smoother running
- Instant all-weather starting
- Continual peak performance
- Longer coil/battery/plug life
- Improved acceleration/top speeds
- Optimum fuel consumption

Sparkrite Mk.2 is a high performance, high quality capacitive discharge, electronic ignition system in kit form. It is professional, proven, reliable and complete. It can be assembled in two or three hours and fitted in 15/30 mins.

Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misuse due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker bounce is eliminated by reducing the current to about 1/50th of the normal. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging. Sparkrite incorporates a short circuit protected inverter which eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect.) All kits fit vehicles with coil/distributor ignition up to 8 cylinders.

THE KIT COMPRICES EVERYTHING NEEDED

Ready drilled pressed steel base & heat-sink, top quality 5 year guaranteed transformer and components, cables, coil connectors, printed circuit board, nuts, bolts, silicon grease, full instructions to make the kit negative or positive earth, and 10 page installation instructions.

OPTIONAL EXTRAS

Electronic/conventional ignition switch.

Gives instant changeover from “Sparkrite” ignition to conventional ignition for performance comparisons, static, limit, etc., and will also switch the ignition off completely as a security device, includes: switch connectors, mounting bracket and instructions. Cables excluded. Also available RPM limiting control for dashboard mounting (fitted in case on ready built unit).

CALLERS WELCOME. For Crypton tuning and fitting service—
Phone (0292) 33652.

PRICES INCLUDE VAT, POST AND PACKING.

IMPROVE PERFORMANCE & ECONOMY NOW

Note: Vehicles with current impulse tachometers (Smiths code on dial RVI) will require a tachometer pulse slave unit. £3.35 inc. V.A.T. & p&p.

POST TODAY! Quick Installation, no engine modification required.

Electronics Design Associates, Dept. P.W.1
82 Bath Street, Walsall, WS1 3DE. Phone: (0922) 33652

BRITISH NATIONAL RADIO & ELECTRONICS

SCHOOL, WD13

P.O. Box 156, Jersey, Channel Islands.

NAME

ADDRESS

(Block caps please)

Your carpet is no place for the Black Dyke Mills Band

... they should be half way up the wall!

Fidelity Fastenings are the newest, smartest way to place your speakers where they belong – on the wall. Almost undetectable when fitted they are easily adjustable and allow your speaker system to be placed in the best possible acoustical position, where they stay due to the rubber friction mounting. Fidelity Fastenings take a weight of up to 50 lbs and your speakers are easily lifted off for dusting and redecorating.

Available from all good Audio and Hi-Fi shops and stores at £5.49. Look for the red and black box.

If you have any difficulties in obtaining your Fidelity Fastenings, write for details of your nearest stockists to:

The Ridgeway, Iver, Buckinghamshire,
Tel: (0753) 654222.

Your career in Electronics?

Enrol in the BNR & E School and you’ll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you if qualified, in every field of Electronics today.

We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians’ Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR’S LICENCE; P.M. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS’ experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Full details will be gladly sent without any obligation.

BRITISH NATIONAL RADIO & ELECTRONICS
SCHOOL, WD13

P.O. Box 156, Jersey, Channel Islands.

NAME

ADDRESS

(Block caps please)
RSC 200 WATT DISCO SYSTEM

AT A FANTASTIC INCREASE

ALL RSC PRICES INCLUDE VAT

DISCOMAJOR/100 TWIN TURNTABLE POWER CONSOLE £79.95

DISCOMAJOR/200 £159.95

- 200 watt version of above. Terms: Deposit £20 and 12 monthly payments £15-90 (Total £240) Curr. £3-30.

RSC PHANTOM 50 COMBO AMP. £89.95

100W POWER (SLAVE) AMPLIFIER

- Suitable for use with DISCO-Consoles. Also for increasing output of power-amplifiers. Dep. £9-00 and 8 monthly payments £6-05. Matching Cabinets: £1-12 x £9.95, £2-12 x £9.95.

TITAN TA/50A 50W AMPLIFIER

TITAN TA/100A 100W AMPLIFIER

INTEREST REFUNDED

On Credit Purchases settled in 3 mths.

TITAN 'ADD-ON' HIGH FREQUENCY HORN UNITS

MODEL TSH

- Inc. pair of highly sensitive Horns. Range: 3-15 kHz, Imp 16 oh. List with 8 or 152 x 12 x 1 15 or 1 x 18. Drive Unit for best sound clarity & projection. Rating: 100 watts. Either model: £60. Terms: Dep. £9 & 8 monthly payments £6-05 (Total £68-55).

MODEL TH

- With single highly efficient Horn. Range: 3-15 kHz, Imp 8 oh. Use with max 3 x 12 x 1 15 or 1 x 18. Drive Unit for best sound clarity & projection. Rating: 100 watts. Either model: £60. Terms: Dep. £9 & 8 monthly payments £6-05 (Total £68-55).

RSC MAINS TRANSFORMERS

OUTPUT TRANSFORMERS: As previously advertised still available.

NEW BRANCHES

- At Hanley and Wolverhampton.

OPEN ALL WEEKENDS (8 Wkdays)

BOLTON (23 Deansgate, Closed Wed.) Tel: 251490

BOLTON (23 Deansgate, Closed Wed.) Tel: 251490

BOLTON (23 Deansgate, Closed Wed.) Tel: 251490

CARLISLE (58 South Street, Closed Thurs.) Tel: 351212

CARRICKFERGUS (58 South Street, Closed Thurs.) Tel: 351212

COVENTRY (17 Shelton St., The Precinct. Tel: 256604)

CORK (17 Cathedral St., Closed Thurs.) Tel: 431230

DARLINGTON (18 Northcote St., Closed Tues.) Tel: 256604

DURHAM (18 Northcote St., Closed Tues.) Tel: 256604

DONCASTER (3 Queen Street, Waterloo Centre, Closed Thurs.) Tel: 550500

EDINBURGH (10 St. Vincent St., Closed Thurs.) Tel: 5291001

GLASGOW (39 Argyle St. (C.T. Taxis), Tel: 3461200

HULL (7 Whinfell House, Closed Thurs.) Tel: 252000

LEICESTER (4 High St., Closed Thurs.) Tel: 554200

LEEDS (57-7 County (Certified) Arcade, Briggate, Closed Thurs.) Tel: 256200

LONDON (2 Eastbourne Road, W1, Closed Thurs.) Tel: 256200

MANCHESTER (60 Oldham Street, Closed Thurs.) Tel: 256200

NEWCASTLE (56 Grainger St., Closed Thurs.) Tel: 354545

NOTTINGHAM (181 Market Street, Closed Thurs.) Tel: 456789

PRESTON (3 High Street, Closed Thurs.) Tel: 456789

SUNDERLAND (5 Market St., Closed Thurs.) Tel: 354545

WOLVERHAMPTON (60 Wood Street, Closed Thurs.) Tel: 354545

FREE* FAL DISCO LIGHTING SYSTEMS from £59-95

- Includes 2 Spotlights, etc. from PROJECTION CONSOLES...

FREE* TITAN 1000 COMBO

- 100w R.M.S. Amp, incorporating a fabulous Fane Crescendo 12" 100 watt speaker for really superlative results with Lead Guitar. Curr. £197.95 or Dep £177.95 & 18 f'tnly payments £6.69 (Total £385-97).

FREE* TITAN GROUP DISCO SPEAKERS

- Guaranteed Curr. £20, under £6, inclusive. Deposit £20 and 12 monthly payments. Price £24-04

FREE* FAL DISCO LIGHTING SYSTEMS from £59-95

- Includes 2 Spotlights, etc. from PROJECTION CONSOLES...

FREE* TITAN 1000 COMBO

- 100w R.M.S. Amp, incorporating a fabulous Fane Crescendo 12" 100 watt speaker for really superlative results with Lead Guitar. Curr. £197.95 or Dep £177.95 & 18 f'tnly payments £6.69 (Total £385-97).

FREE* TITAN GROUP DISCO SPEAKERS

- Guaranteed Curr. £20, under £6, inclusive. Deposit £20 and 12 monthly payments. Price £24-04

FREE* FAL DISCO LIGHTING SYSTEMS from £59-95

- Includes 2 Spotlights, etc. from PROJECTION CONSOLES...

FREE* TITAN 1000 COMBO

- 100w R.M.S. Amp, incorporating a fabulous Fane Crescendo 12" 100 watt speaker for really superlative results with Lead Guitar. Curr. £197.95 or Dep £177.95 & 18 f'tnly payments £6.69 (Total £385-97).
SUPERSOUND 13 HI-FI MONO AMPLIFIER

HARVERSONIC MANDOLINE P.A.
AN ADVANCED SOLID STATE STEREO AMPLIFIER & SPEAKER SYSTEM.

HARVERSON SURPLUS CO.LTD.
(Deept P.W.) 170 HIGH ST., MERTON, LONDON, S.W.19. Tel: 01-540 3985

Complete digital Clock Kits
TEAK OR PERSPAX CASE
NON ALARM £12.50
ALARM £15.50

FEATURES
4 LED display on 1" high. Red.
• 12 hour display with AM/PM indication
• Mains frequency accuracy
• Easy to build; all components included
• Beautiful real wood veneer: Perspex: White, Black, Red, Green

Flashes to indicate power cuts

NON-ALARM
ALARM

Complete kit including case £15-50
Built-in £4-90
Simple Setting £1-50
Module kit excluding case £12-75
Built-in £4-90

TIMERS:
Output switch up to 24 hours

EXCELLENT VALUE NOVUS GUARANTEED
• LCD clocks with Backlight, Black/Silver £12-75
• 4 Function Calculator £12-50

DISPLAYS
• FSD 500 1" LED £8-48
• 3/8" red LED £3.50
• 1/2" green phosphor £4-50

CLOCK CHIPS
• 500SMN Alarm 12/24h, 4 digit £15-67
• Brand new £10-00
• Brand new £12-40

MICROPROCESSOR
• Z80 CPU 12/24h £11-50
• Z80 UV chip £11-50
• 2124A £10-75

RECHARGEABLE BATTERY SET
• 1.5v £3-50

payment with order to:
BARON (P.W.)
SOUTHVIEW HOUSE, 5 GOWER ROAD,
ROYSTON, HERTS Tel: ROYSTON 6305
Build a microprocessor electronic musical door chime which can play 24 different tunes!

A complete chroma-chime Kit for only £18 inc. p.&p. & VAT.

To CHROMATRONICS, River Way, Harlow, Essex, U.K.

Please send [] Chroma-Chime Kits at £18.00 each including VAT and post and packing

PLEASE USE BLOCK CAPITALS

Name

Address

I enclose cheque/PO value £

or debit my ACCESS/BARCLAYCARD account No.

Signature

N.B. The CHROMA-CHIME is also available, fully assembled, price £24.95 inc. VAT and post and packing.

Please allow 7-21 days for delivery.

The Chroma-Chime is the world's first electronic musical door chime which uses a pre-programmed microcomputer chip to generate tunes. Instead of boring old buzzes, dings or dongs, the Chroma-Chime will play one of its 24 well known tunes from its memory using its tiny 'brain' to all the music synthesizing! Since everything is done by precise mathematics, it cannot play the notes out of tune.

The unit has comprehensive built-in controls so that you can not only select the 'tune of the day' but the volume, tempo and envelope decay rate to change the sound according to taste.

Not only visitors to the front door will be amazed, if you like you can connect an additional push button for a back door which plays a different tune!

This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide, circuit description, installation details and operational instructions all well illustrated with numerous figures and diagrams.

The CHROMA-CHIME is exclusively designed by

CHROMATRONICS
River Way, Harlow, Essex.
HY5 Preamplifier

The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (line, Cartridge, tuner, etc.) are catered for internally. The designed function is achieved via a multi-way switch or direct connection to the appropriate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease new construction and mounting a P.C. connector is supplied with each pre-amplifier.

FEATURES: Complete pre-amplifier in single pack—Multi-function equalization—Low noise—Distortion: High overload—Two simply combined for stereo.

APPLICATIONS: Hi-Fi—Mixers—Disco—Guitar and Organ—Public address

SPECIFICATIONS:

- INPUT: 10mV; L.R.M.S.; Cooper-Ceramic Ceramic Pickup 33mV; Tuner 200mV; Microphone 1mV; Aux (1kHz) 3V
- OUTPUT: 10V; L.R.M.S.; Main output 300V R.M.S.

ACTIVELY TONE CONTROLS: Treble ±10kHz at 10kHz; Bass ±10kHz.

OVERLOAD: 0.1% at 1kHz, Signal Noise Ratio 65dB.

Price £5.22 + 8% VAT P/P free.

HY30 15 Watts into 8Ω

The HY30 is an exciting new kit from I.L.P. It features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of I.C., heatsink, P.C. board, 4 resistors, 6 capacitors, and mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date technology available.

FEATURES: Complete Kit—Low Distortion—Short, Open and Thermal Protection—Easy to Build.

APPLICATIONS: Updating audio equipment—Guitar pre-amp—Hi-Fi amplifier—Audio restoration

SPECIFICATIONS:

- OUTPUT POWER 5W R.M.S. into 8Ω—DISTORTION 0.1% at 5W.
- INPUT SENSITIVITY 30mV, FREQUENCY RESPONSE 10kHz—85dB.
- SUPPLY VOLTAGE ±15V.

Price £5.22 + 8% VAT P/P free.

HY50 25 Watts into 8Ω

The HY30 is an exciting new kit from I.L.P. It features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of I.C., heatsink, P.C. board, 4 resistors, 6 capacitors, and mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date technology available.

FEATURES: Low Distortion—Integration—Heatsink—Only one connection—No external components.

APPLICATIONS: Medium Power Hi-Fi systems—Low power disco—Guitar amplifier

SPECIFICATIONS:

- INPUT SENSITIVITY 50mV.
- OUTPUT POWER 25W RMS into 8Ω—LOAD IMPEDANCE 4-16Ω—DISTORTION 0.04% at 25W at 1kHz.
- SIGNAL/NOISE RATIO 96dB—FREQUENCY RESPONSE 10kHz—45kHz—85dB.
- SUPPLY VOLTAGE ±25V SIZE 114 50 85mm

Price £12.50 + 8% VAT P/P free.

HY120 60 Watts into 8Ω

The HY120 has been designed to give an output of 60 Watts which has been designed to meet the most exacting requirements—3 terminal and thermal protection this amplifier sets a new standard in modular design.

FEATURES: Very low distortion—Integration—Thermal protection—Five connections—No external components.

APPLICATIONS: Hi-Fi—High quality disco—Public address—Monitor amplifier—Guitar and organ

SPECIFICATIONS:

- INPUT SENSITIVITY 90mV.
- OUTPUT POWER 90W RMS into 8Ω—LOAD IMPEDANCE 4-16Ω—DISTORTION 0.04% at 60W at 1kHz.
- SIGNAL/NOISE RATIO 96dB—FREQUENCY RESPONSE 10kHz—45kHz—85dB.
- SUPPLY VOLTAGE ±25V SIZE 114 50 85mm

Price £18.99 + 8% VAT P/P free.

HY200 120 Watts into 8Ω

The HY200 is a new high power range. Designed to meet the most exacting requirements—3 terminal and thermal protection this amplifier sets a new standard in modular design.

FEATURES: Very low distortion—Integration—Thermal protection—Five connections—No external components.

APPLICATIONS: Hi-Fi—Disco—Monitor—Power slave—Industrial—Public address

SPECIFICATIONS:

- INPUT SENSITIVITY 50mV
- OUTPUT POWER 120W RMS into 8Ω—LOAD IMPEDANCE 4-16Ω—DISTORTION 0.01% at 120W at 1kHz.
- SIGNAL/NOISE RATIO 96dB—FREQUENCY RESPONSE 10kHz—45kHz—85dB.
- SUPPLY VOLTAGE ±25V SIZE 114 50 85mm

Price £32.32 + 8% VAT P/P free.

HY400 240 Watts into 4Ω

The HY400 is an exciting new kit from I.L.P. It features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of I.C., heatsink, P.C. board, 4 resistors, 6 capacitors, and mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date technology available.

FEATURES: Low Distortion—Integration—Heatsink—Only one connection—No external components.

APPLICATIONS: Medium Power Hi-Fi systems—Low power disco—Guitar amplifier

SPECIFICATIONS:

- INPUT SENSITIVITY 50mV
- OUTPUT POWER 240W RMS into 4Ω—LOAD IMPEDANCE 4Ω—DISTORTION 0.1% at 240W
- SIGNAL/NOISE RATIO 94dB—FREQUENCY RESPONSE 10kHz—45kHz—85dB.
- SUPPLY VOLTAGE ±25V SIZE 114 100 85mm

Price £42.17 + 8% VAT P/P free.

POWER SUPPLIES

PSU250 suitable for two HY30's £8.62 + 8% VAT P/P free.

PSU25 suitable for two HY400's £3.72 + 8% VAT P/P free.

PSU20 suitable for two HY50's £6.42 + 8% VAT P/P free.

PSU10 suitable for one HY200's £23.10 + 8% VAT P/P free.

91 49 8 + 8% VAT.

TWO YEARS’ GUARANTEE ON ALL OUR PRODUCTS

I.L.P. ELECTRONICS LTD., CROSSLAND HOUSE, NACKINGTON, CANTERBURY, KENT, CT4 7AD.

Please Supply : —

Total Purchase Price: —

I Enclose Cheque: — Postal Orders: — Money Order: —

Please debit my Access account: — Barclaycard account: —

Account number: —

Name and Address: —

Signature: —

Practical Wireless, January 1978 639
SYSTEM 7000—GUARANTEED MODULES FOR ALL DISCO/PA APPLICATIONS

POWER AMPLIFIER MODULES 30—240 WATTS

- Fully tested & guaranteed.
- Fully AM sine wave output.
- Distortion typically 0.2%.
- 10 Transistors, 4 Diodes.
- Response 50-20KHz.
- Fully short & open circuit proof.
- Sensitivity suits most mixers.
- Built-in surge suppression & compensation, twin D.C. & outboard fuses.
- Top line components throughout.

<table>
<thead>
<tr>
<th>Watts</th>
<th>Mono</th>
<th>Stereo</th>
</tr>
</thead>
<tbody>
<tr>
<td>30W</td>
<td>£29-95</td>
<td>£41-95</td>
</tr>
<tr>
<td>50W</td>
<td>£38-95</td>
<td>£51-95</td>
</tr>
<tr>
<td>80W</td>
<td>£44-95</td>
<td>£59-95</td>
</tr>
<tr>
<td>120W</td>
<td>£51-95</td>
<td>£74-25</td>
</tr>
<tr>
<td>240W</td>
<td>£74-25</td>
<td>£99-95</td>
</tr>
</tbody>
</table>

SUPPLY FOR THE ABOVE MODULES—READY WIRE & FUSED ON GLASS FIBRE PCBs

PM201 £22.50 PA201 £33.50
PM400 £59.00 PA400 £79.95

SYSTEM 7000 COMPLETE DISCO MIXERS (With Autofade)

- Mono or Stereo.
- All mixers have 8 balanced inputs, requiring only a panel, case & knobs etc. There are 19 simple connections.
- 1-200W Audio
- 8A RCA Throat (www.americanradiohistory.com)
- Fully suppressed...
- In modular form... AN INTEGRATED MODULAR SYSTEM... THIS IS THE COMPLETE SYSTEM...

SYSTEM 7000 LIGHTING CONTROL UNIT MK II (Four channel)

 Has your light unit got...
- 4000 W handling
- Sequence facility
- Smart 5 tone panel
- Advanced circuitry
- Top grade components
- All your needs in one extremely designed unit...

IN MODULAR FORM—THE QUADRAFECT

£22-50...

CUSTOM MIXER MODULES

Make your own mixer, mono or stereo, up to 2 channels, with full monitoring facilities and provision for each channel's input levels. These mixers are ideal for combining the outputs of microphones, tape recorders, etc. Suitable for DJ's or any 2 channel sound system.

- Inputs for low and high mic, ceramic & magnetic cartridge etc.
- Input stage with low noise distortion & high output power.
- Feed mono into stereo system.
- Multi-fader or 3 channel for 3 up to 12 channels.
- Infinite number of special effects possible...

COMPLETE THREE-CHANNEL MUTE MIXER

With control panel, sockets & knobs.

Mono Input £12-95 Stereo Input £24-95

PRINTED CIRCUIT MODULES

With controls fitted, require only sockets, faders & knobs.

Mono Input £15-75 Stereo Input £30-50

SYSTEM 7000 BASS-DRIVE (2-CHANNEL)

- Complete unit similar to MK II unit above.
- Long established & proven design.
- Good quality Bass & Treble Control.
- RCA 8A Triacs—individual channel fuses.
- 1-20W Input—master Audio level plus Bass/Middle/Treble...

COMPLETE UNIT—Fitted with rear terminals & jack plug in a 4" x 6" case...

£29-75

SAXON 150 HEAVY DUTY AMPLIFIER

£59-00

STROBES & PROJECTORS (We stock the full Pluto range) Send for details

SUPERSTROBE £22-50

PRO-STROBE £37-50

ACCESSORIES

Condenser mics ECM7 £25.00 ECM7 £25.00

ECM7 Dual Impedance £44.95

Heavy duty boomed £49-95

All prices subject to VAT (8%) except SA801/PM8, mixers & headsets (15%).

Add 50c post & packing on all orders except where otherwise shown.

By post...

Send cheque or crossed P.O.'s of 60s or Cheques to send in your Access/Bankcard Number Only

www.americanradiohistory.com
You can work wonders with your free time.

There’s immense satisfaction in making your own equipment. And you’ll get excellent results with Heathkit.

Every kit is absolutely complete down to the last nut and bolt. The quality is the best. And each kit has an easy to follow instruction manual that explains exactly what to do at each step.

So you enjoy assembling your kit and you finish with first-class equipment every time.

That’s why Heathkit are so successful.

And that’s why the range is the biggest in the world.

It’s all in the new edition of the free Heathkit catalogue. Everything from the simplest to the most sophisticated. Alarms, digital clocks, testers, transceivers and lots more… even the tools are there!

See for yourself. Send the coupon now.

NEW CATALOGUE
NEW TEST INSTRUMENTS
NEW DIGITAL BATHROOM SCALES
NEW AMATEUR RADIO EQUIPMENT
NEW AUDIO SYSTEMS AND MANY OTHER NEW ITEMS
BARGAIN

THE SCHEME
Choose from any of the 9 power amplifier modules, with heat sinks if necessary, all have a volume control. The Stirling Sound power supply unit best liked to suit the published prices which are already included V.A.T. and post free in U.K.) Add the prices when you send the money, and

DEDUCT 5%
If you order UNIT ONE at the same time that you order a power amp, and power unit as above, when you send the money.

DEDUCT A FURTHER £1-00
If you order UNIT TWO at the same time that you order a power amp, and power unit when you send the money for the total order

DEDUCT A FURTHER £1-18

UNIT ONE
Combined stereo pre-amp and active tone control unit. Input sensitivity 80mV for 1kHz output, bass ±15dB at 1kHz; treble ±15dB at 1kHz; balance control; volume control. For ceramic p.l.c., radio or tape inputs, with FREE CONTROL PANEL FASCIA.

UNIT TWO
With control facilities similar to UNIT ONE but for magnetic cartridge input. Input sensitivity ±5mV for 200mV out (can be varied). With FREE CONTROL PANEL FASCIA.

CONTROL PANEL FASCIA FOR UNITS ONE OR TWO

SS.100 Basic active stereo tone control module. Input sensitivity ±15dB on bass at 1kHz and ±15dB at 1kHz.

SS.101 Stereo pre-amp suitable for ceramics, tape, radio, etc.

SS.102 Stereo pre-amp for mag, pick-ups

WHEN ORDERING
ALL PRICES QUOTED INCLUDE V.A.T. AND GOODS ARE SENT POST FREE IN U.K. Owing to time between sending our ad. to this journal and the time it appears. prices may be subject to alteration without notice.

E.A.O.E.

Pay by Access or Barclaycard—Simply let us have your No.

Stirling Sound
37 VANGUARD WAY, SHOEBOURNEYS, ESSEX

Telephone (03708) 5543
Shop—220-224 West Road, Westcliff-on-Sea, Essex SS 0 9DF
Phone Southend (0702) 351048

Practical Wireless, January 1978

AMPLIFIERS 3 to 100 WATTS R.M.S.

Ready assembled on P.C.B.s, tested and guaranteed. Easy to connect. With instructions. Output ratings ±15dB.

SS-103 Typically 3 watts R.M.S. using 1V/4.0, I.C. amp, Input 100mV £2-85

SS-105 5 watts R.M.S. into 8Ω using 13-9V, Sensitivity-30mV. THD-0.0% 3% x 2” x 1” £9-00

SS-110 10 watts R.M.S. into 4Ω using 24V, Sensitivity-60mV. THD-0.0% 3% x 2” x 1” £12-43

SS-112 20 watts R.M.S. into 4Ω using 34V, Sensitivity-80mV. THD-0.0% 3% x 2” x 1” £15-15

SS-125 25 watts R.M.S. into 8Ω using 30V, Sensitivity-30mV. Distortion—Less than 0.05% into 8Ω S/N better than 70dB. £17-25

SS-140 40 watts R.M.S. into 4Ω using 45V, Sensitivity-300mV. Distortion typically 0-1%, 3% x 2” x 14”. £20-50

SS-160 64 watts R.M.S. into 4Ω using 50V, Sensitivity-500mV. Distortion typically 0-1%, 5% x 2” x 14”. £25-00

SS-1100 100 watts R.M.S. into 4Ω using 70V/24A. Input sensitivity-600mV. Distortion at half-power, typically 0.5%, 5% x 3” x 12” £30-00

HS-100 Multi-finned heatsink for SS-140 or SS-160. £6-75

HS-1100 Ditto for SS-1100 £10-50

POWER UNITS

Every unit is tested under working conditions before dispatch and guaranteed. All units except SS-312 include a stabilised low voltage take-off point (13-15V) for pre-amp, tone control units etc. Outputs quoted are minimal unloaded ratings.

SS-312 12V/1A £8-60

SS-316 18V/1A £9-65

SS-330 24V/1A £7-45

SS-334 34V/2A £8-75

SS-345 45V/2A £10-95

SS-350 50V/2A £11-75

SS-360 60V/2A £12-75

SS-370 70V/2A £14-75

SS-310/50 Stabilised power supply; variable in output from 10V to 90V/2A and short-circuit protected £17-75

SS-300 Power stabilising unit variable from 10 to 90V/8A max. for adding to exisiting un-stabilised supply units. £25-95

INFO. SHEET—this way to build a useful Stirling Sound Catalogue. About 15 (4x4 size) are at present being planned and the first batch tell you about the modules you see here. Send LARGE S.A.E. stamped for your free copy

To STIRLING SOUND
Please supply

NAME

ADDRESS

for which I enclose £

My Access/Barclaycard No. is

643

NO EXTRAS TO PAY FOR POSTAGE OR V.A.T.
Speed up your precision work with MINIATURE POWER EQUIPMENT

The NEW P2 SUPER DRILL

More powerful, specially designed for the Electronic Design Engineer who needs a small, low voltage drill with high capacity. £16.50 pp 86p.

S2 DRILL STAND A robust, all metal stand with ample throat dimensions. Will take both P1 and P2 Drills. £18.90 pp 106p.

P1 DRILL £9.67 pp 38p

S1 DRILL STAND £5.13 pp 38p

FLEXIBLE DRIVE SHAFT £5.94 pp 34p

TRANSFORMERS

Continuous a/c 12v. D/C £7.56 pp 81p

Variable speed a/c 12v. D/C £9.50 pp 81p

All prices include VAT

PRECISION PETITE LTD

119a HIGH STREET

TEDDINGTON MIDDLESEX TW11 8HG

Tel. 01-971 0878

644

Practical Wireless, January 1978
NEW ELECTRONIC MASTER KIT
WITH SPECIAL MULTI-BAND V.H.F. TUNER MODULE TO CONSTRUCT. A completely Solderless Electronic Construction Kit, with ready drilled Bakelite Panels, nuts, bolts, Wood Screws etc. Also in the kit: Transistors, Capacitors, Resistors, pots, Switches, Wire, Soldering Knobs, Diabs, 5" x 3" Loudspeaker and Speaker Case. Crystal Earpices, etc. Also read all the Projects you can build with the components supplied with the kit, together with comprehensive Instruction Manual pictorial and Circuit Diagrams.

£14.99 + P & P £1.10

NEW ROAMER TEN MODEL R.K. 3

£14.79 + P & P £1.10

NEW MODEL R.K. 1

£8.99 + P & P £9.00

NEW MODEL R.K. 2
M.W. LW and Air Band Receiver: Eight Transistors and Six Diodes. 3" Loudspeaker, Telescopic Aerial, Internal Ferrite Rod Aerial Complete with Carrying Strap and ready-drilled Panels and all components necessary for construction. A sensitive Receiver with the additional luxury of an Air Band section to pick up Aircraft from many miles away. Full Instruction Manual enables stage by stage construction. Uses P.P. P Nine Volt Battery.

£9.99 + P & P £10.10

EDU-KIT MAJOR COMPLETELY SOLDERLESS ELECTRONIC CONSTRUCTION KIT, BUILD THESE PROJECTS WITHOUT SOLDERING IRON OR SOLDER

£7.95 + P & P and Ins. 90p

V.H.F. AIR CONVERTER KIT
Build this converter kit and receive the aircraft band by placing in by the side of a radio tuned to medium wave or the VHF band, as shown in the instructions supplied free with all parts. Transformer, Aerial, tuning condenser, volume control and now with 3in. loudspeaker. Attractive case with red speaker grille, Size 9in. x 5in. x 2in. approx. All parts including Case and Plans.

£4.95 + P & P and Ins. 40p

ALL PRICES INCLUDE VAT

To: RADIO EXCHANGE LTD
61A High Street
Bedford MK40 1SA
Tel: 0234 321267
REG NO. 788372

Callers side entrance "Lavell" Shop
Gen Mon-Fri 10-1, 2.30-4.30 Sat 9-1.30

PW78

Practical Wireless, January 1978
GREENWELL
443 Millbrook Road, Southampton
SO1 0HX
Tel: (0703) 772501

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

* SAVE ON TIME — No delays in waiting for parts to come or shops to open!
* SAVE ON MONEY — Bulk buying means lowest prices — just compare
 here with others!
* HAVE THE RIGHT PART — No guesswork or substitution necessary!

ALL PACKS CONTAIN FULL SPEC.
BRAND NEW, MARKED DEVICES—
SIMILAR RETURN OF POST: VAT INCLUSIVE PRICES.

K05 90V ceramic plate capacitors, 1%, 10 of each value 29p to 100p. Total 79p, €3.38.
K06 Extended range, 29p to 2.75p, 33 values €4.55.
K07 Polyester capacitors, 10 of each value: 0.01, 0.02, 0.05, 0.10, 0.15 0.22, 0.33, 0.47, 0.68, 1.0, 1.5, 2.2, 3.3, 4.7, 6.8, 10, 15, 22, 33, 47, 68, 100, 150, 220, 330, 470, 680, 1000, 1500, 2200, 3300, 4700, 6800, 10000µF. Total 97p, €3.39.
K08 Mica capacitors, 10 of each value 29p to 120p. Total 47p, €1.39.
K09 Polypropylene capacitors, 10 of each value 29p to 55p, 150, 1000, 1500, 2200µF. Total 340p, €11.39.
K10 Capacitor kits, 29p to 100p. Total 79p, €3.38.
K11 Miniature film 5x3µF resistors, 90p to €1.90 ea.
K12 Metal film 10x10µF resistors, 90p to €1.90 ea.
K13 Ceramic plate 10x10µF resistors, 90p to €1.90 ea.
K14 Extended range, 29p to 2.75p, 33 values €4.55.
K15 Miniature carbon film 5x3µF resistors, 90p to €1.20 ea.
K16 Metal film 10x10µF resistors, 90p to €1.85 ea.
K17 Extended range, total 850 resistors from 10 to 100 µF, total 220, €6.10.
K18 Zener diodes, 400mV to 50V, €2.95, 10 of each value 135p to 2.85p. Total 230, €6.30.
K19 Extended range, total 850 resistors from 10 to 100 µF, total 220, €6.10.

THE BARGAIN PARCEL
Hundreds of new component—polyswiss, resistors, capacitors, PCB Boards with semiconductors, loads of old, new, and odd. Always 50p to £3.45.

THE PITCHING KIT MK III
New components 240p sq, iron, copper clad boards. £1.95. Ferrite cores, £0.50. Galloidal resistors £0.50, abrasive cleaner, two miniature keys, battery, etching ink and instructions. £4.12.

FERRIC CHLORIDE
Ammoniacal technique quality 1 lb double sealed packs. 1lb 91p, 10lb 9.30, 100lb 82.90.

MOTORs
48v 60 rpm, High torque, drive with fan 50mm long. Size 56m x 54mm x 22mm.

LED DIGIT DRIVER
ITT type 7102, 16 pin DIL. Package. Supplied with database sheet, 81p.

VERO O utfits
Pack A, £2.00. Pack B, £1.15. Pack C, £1.15. Pack D, £1.15. Each pack contains 10 or 8 pieces with a total area of about 100 sq. In each pack 100V, 240V. Also available by weight. 1lb 63.48, 10lb 69.11. We also have VERO adapters. Thrice the prices on request from Bone Fide Companies.

Our retail shops at: Deaford Broadway, London, SE8 6JY (25) and 38 Lower Addiscombe Road, Croydon (34-98) 2000. Always stock a complete range of the advertised goods for personal callers only. Ring for details. 10% off all orders. Total at least 50p.

Our prices quoted include VAT and UKBFPO postage. Most orders dispatch on day of receipt. BAE with enquiries preferred. Despatch Value £1.00. Orders over £10.00 inclusive of VAT. One week only. 50% deposit required. No returns accepted. Despatch Value £1.00. Sales tax on orders sent to countries outside the European Common Market. 3% offered on orders sent to countries outside the European Common Market.

CARDS
Our card index is second to none. Serialised, comprehensive 2500+ cards. £19.50. Sales tax included.

FIBREGLASS PCB
Large quantity of offcuts, all usable with our usual terms. £1.50 sq. inc. single-sided, double sided or mixed 5.50.

SV 12A REGULATED POWER SUPPLY

Technical Training in Radio, Television and Electronics
ICS have helped thousands of ambitious people to move into higher paid, more secure jobs in the field of electronics — now it can be your turn. Whether you are a newcomer to the field or are already working in the industry, ICS can provide you with the specialist training so essential to success.

Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates
Excellent job prospects awaits those who hold one of these recognised certificates. ICS can coach you for: Telecommunication Techniques, Radio, TV Electronics Technicians Technical Communications Radio Servicing Theory Radio Amateurs Electrical Installation Work Also MPT Radio Communications Certificate

Diploma Courses
Colour TV Servicing Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV and Audio, Engineering and Servicing Electrical Engineering, Installations and Contracting

Qualify for a New Career
Home study courses for leading professional examinations and diploma courses for business and technical subject — G.E.C., 60 subjects for Sales, Purchasing, Engineering Farming, Heating, Sales, Stockkeeping, "A" levels Industrial, Work Study Accountancy Management Building, Mechanical

POST OR PHONE TODAY FOR FREE BOOKLET

ICS To: International Correspondence Schools
11/78

Denzel Street, Intercity House, London
SW8 4JU or telephone 022 962 9991

Subject of Interest

Name

Address

Telephone Number

Practical Wireless, January 1978
Half Price Christmas Offer

S - Decnology
Build all the projects on the S-DeC

The perfect kit for beginners, students, professionals and all users of discrete components. This S-DeK-IT contains 1 S-DeC + control panel, 9 Blob-Boards, 20 double ended Leads + Instruction book. S-De-K-IT complete in ABS box, with component tray.

Normally £6.38
HALF PRICE OFFER £3.19 + £1.00 post and VAT

T-Decnology
Build projects using ICs on your T DeC

This De-K-it contains 1 T-DeC + control panel + 1 16 DIL Carrier + 4 Blob-Boards + components + Circuit Diagrams and step by step instructions to build Burglar Alarm Sound Fuzz Circuit, SR Latch, and Two Tone Siren Complete Kit with Components.

Normally £13.00
HALF PRICE OFFER £6.50 + £1.20 post & VAT

BLOB BOARD
CHRISTMAS PACK

Includes
1 x C for doing Digital Electronics
by Experiment
5 D for doing S Decnology
8 D for doing Blob-a Job

Normally £3.00
HALF PRICE OFFER £1.50 + 40p post and VAT

BRED-CIRCUIT BOARD
Combines versatility of Breadboard with usefulness of Blob-Board

BCB2 board size 6” x 2” with 5 16 DIL Sockets
Pack of 3 boards with 15 sockets

normally £3.84
ONLY £1.92 + 50p post & VAT

SOCKETS
16 DIL IC Sockets with stepped legs

Normally 20p each
Pack of 20 for only £2.00 + 35p Post and VAT

I.C. BREADBOARD
U DeC B Breadboard + 21 2 IC Blob Boards

Normally £14.00
HALF PRICE OFFER £7.00 + £1.30 post & VAT

TO MR. BLOB
Please rush me:

- S-DeK-ITs at £3.19 each + £1.00 post & VAT
- T-DeK-ITs at £6.50 each + £1.20 post & VAT
- Blob Board packs at £1.50 each + 40p post & VAT

- Bred Circuit Board + Socket Packs at £1.92 each + 50p post & VAT
- Pack of 20 sockets at £2.00 + 35p post & VAT
- U DeC B + 21 off 2 IC Blob Boards at £7.00 each + £1.20 post & VAT

P.B. Electronics (Scotland) Ltd, 9 Radwinter Road, Saffron Walden, Essex, CB11 3HU

Practical Wireless, January 1978
SEMICONDUCTORS – COMPONENTS

BANABI BOOK OFFER

Purchase books to the value of £5.00 from the list below and choose any 60p pak from this page FREE.

- BP2 Ham Radio TV & Industrial Transmitting Tube & Valve Equivalents
- BP3 Ham Radio Transistor Circuits
- BP6 Engineers and Machinists Reference Tables
- BP7 Radio & Electronic Colour Codes Data Chart
- BP10 Modern Crystal and Transistor Set Circuits for the Ham
- BP14 Second Book of Transistor Equivalents
- BP15 Transistor Manual of Electronic Circuits for the Amateur
- BP18 Boys and Beginners Book of Practical Radio and Electronic Construction
- BP22 79 Electronic Novelty Circuits
- BP24 90 Projects Using ICs (for beginners)
- BP27 Radio, TV and Electronic Colour Code Handbook for Beginners
- BP31 Large Book of Radio Electronic Semiconductor and Logic Symbols
- BP39 Major Solid State Audio Hi-Fi Construction Projects
- BP33 How to Build Your Own Metal & Treasure Locators
- BP38 Practical Repair & Recovery of Consumer Electronics
- BP39 Handbook of IC Audio Preemphasis & Power Amplifier Construction
- BP63 50 Circuits Using Germanium, Silicon & Zener Diodes
- BP65 50 Projects Using Relays, SCR's and TRIACS
- BP99 (FET) Field Effect Transistor Projects
- 120 Several Generalised Speed Indicator
- 160 Call Design and Construction Manual
- 161 Radio, TV and Electronics Data Book
- 202 Handbook of Integrated Circuits (ICs) Equivalents and Substitutes
- 205 First Book of Hi-Fi Loudspeaker Enclosures
- 208 Electronic Circuit Board Railways
- 212 Audio Enthusiast Handbook
- 231 Electronic Projects
- 238 Area and Novelty Projects
- 282 Build Your Own Solid State Hi-Fi and Audio Accessories
- 283 How to Build Hi-Fi Loudspeaker Enclosures IC Projects
- 284 How to Build High Quality Audio IC Projects
- 286 How to Build Advanced Stereo Receiver
- 287 RCG Resistor Colour Code Disc Calculator

THYRISTORS

<table>
<thead>
<tr>
<th>Code</th>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>THY600/110</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>THY700/250</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>THY700/300</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>THY700/350</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>THY700/400</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>THY700/450</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>THY700/500</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>THY700/550</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>THY700/600</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>THY700/650</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>THY700/700</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

SLIDER PAKS

<table>
<thead>
<tr>
<th>Code</th>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>6 slider potentiometers mixed values</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>6 slider potentiometers, all 470 ohms</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>6 slider potentiometers, all 22k ohms</td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>6 slider potentiometers, all 50k ohms</td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>6 slider potentiometers, all 100k ohms</td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td>6 slider potentiometers, all 47k ohms</td>
<td></td>
</tr>
</tbody>
</table>

CERAMIC PAK

<table>
<thead>
<tr>
<th>Code</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCI 34</td>
<td>miniature ceramic capacitors, 3 of each value 27pf, 33pf, 39pf, 47pf, 68pf and 85pf</td>
</tr>
<tr>
<td>MCI 34</td>
<td>miniature ceramic capacitors, 3 of each value 10pf, 150pf, 150pf, 220pf, 27pf, 10pf</td>
</tr>
<tr>
<td>MCI 24</td>
<td>miniature ceramic capacitors, 3 of each value 20pf, 33pf, 39pf, 47pf, 68pf and 85pf</td>
</tr>
<tr>
<td>MCI 24</td>
<td>miniature ceramic capacitors, 3 of each value 27pf, 33pf, 39pf, 47pf, 68pf and 85pf</td>
</tr>
<tr>
<td>MCI 24</td>
<td>miniature ceramic capacitors, 3 of each value 10pf, 150pf, 220pf, 27pf, 10pf</td>
</tr>
</tbody>
</table>

ORDERING

Please word your orders exactly as printed, not forgetting to include our part number.

POSTAGE AND PACKING

Add 25p for postage and packing unless otherwise shown. Add extra for small items. Min. order £1.

WORLD SCOOP! JUMBO SEMICONDUCTOR PAK

Transistors, Germanium and Silicon Rectifiers, Diodes, Triacs, Thyristors, ICs and Zener.

SEND US OUR 1977 CATALOGUE

126 pages packed with valuable information

ORDER NOW

JUST A SELECTION FROM OUR OFFER
A Logical Step?

MICROPROCESSORS, as those of you who read our competitor magazines will know, are all the rage. As so often happens with modern developments in electronics (and, to a certain extent, in other fields) much thought has been devoted to finding new applications for this answer to all our problems.

The replacement of electro-mechanical control systems in things like cars, sewing machines, washing machines, etc., is a fairly logical step, giving great scope for improvement in reliability, and some reduction in cost. Other applications, such as the "computerised door-chime" reviewed last month, for things which were simply not practicable before, are also obviously valid.

When we get into the realm of the replacement of ranks of logic packages by a microprocessor and its memory, the advantages become more questionable. On a production line, considerable savings in assembly time are possible, though for the home constructor this is not quite so important. Systems can become more flexible, providing you can afford the memory required to store all the different programs—but what are you going to use this flexibility for? For control systems in a space capsule, or for some of the newer and more interesting TV games, all well and good. But for domestic control systems, I wonder.

If you are talking about central-heating controllers, burglar and fire alarms and the like, most of the cost and complexity is in the input/output devices and the sensors and controls, and these remain the same, by and large, whatever form the central processing unit takes. The idea of one box of electronics in a house, controlling a multiplicity of appliances and systems, doesn't really seem to be the answer. Even some microprocessor experts are now admitting that a separate processor in each application is likely to be a better solution. So what price flexibility? Each appliance and system will contain a single microprocessor chip with the necessary memory built in, dedicated to that one purpose and incapable of doing anything else.

For these reasons, we do not think that microprocessors have much application for the home constructor as yet, though obviously they are of interest, especially for anyone also involved professionally in electronics. We will not be ignoring them; one thing for sure, they aren't going to go away. But what do you, our readers, think about the subject? We would love to hear.

Geoffrey Arnold

PLEASE NOTE

We do not operate a Technical Query Service except on matters concerning constructional articles published in PW. We do not supply service sheets or information on commercial radios, TV's or electronic equipment.

All queries must be accompanied by a stamped self-addressed envelope otherwise a reply cannot be guaranteed.
Catalogue with a Plus
Available now from Plustronics, is their latest catalogue containing all the
information on the latest range of portable radios, radio/cassette recorders, tape
decks, headphones, in-car units, digital watches and electronic calculators.
Many of the products in the catalogue are listed under the "Plustron" brand name, including the recently announced MC1500 Music Centre, which is featured on the front cover. Other brand names handled by Plustronics include Fair mate, Roxy, Aiko and Dansk.

For a copy of the Plustron catalogue which is called "A World of Entertainment", contact Plustronics Ltd., Hempstalls Lane, Newcastle, Staffs. ST5 0SW. Tel: 0782 615131 or call at their London showroom at 235-241 Regent Street, London, W1.

Showtime
Aiwa, one of the fastest growing Japanese HiFi manufacturers have recently opened a new London Showroom. Growth of the company has continued since Aiwa were first marketed and distributed by Johnsons of Hendon and continued growing when Aiwa decided to do their own marketing by opening up a new office, warehouse and distribution complex at Leeds.

Well known for their pioneering work in the compact cassette market, Aiwa were first with such innovations as automatic cassette loading; oil-damped ejection; full automatic stop; synchronised recording between cassette and turntable; and the first full HiFi music centre. Another 'First' by Aiwa, is a unique insurance scheme whereby the company offer, free of charge, insurance against fire, theft and accidental damage on every HiFi separate or music centre sold between November 1st 1977, and October 31st 1978. Insurance cover lasts for two years and costs purchaser absolutely nothing. The full range of Aiwa products can be seen, inspected, heard and whatever else you need to do, at the new showroom which is sited at the New Brunswick Shopping Precinct, a short stop from Tottenham Court Road and an even shorter stop from Russell Square tube station.

Aiwa Sales and Service (UK) Ltd., 56-58 Brunswick Centre in Bloomsbury, London WC1. Tel: 01-278 2081.

Stocking-up?
As the old saying goes "stock is as good as money", and by the look of the latest stock list published by Watford Electronics, they would appear to be potential millionaires considering the extensive and varied range of components included in the list. Now available to PW readers, this stock list contains just about everything for the electronic enthusiast, is clearly set out with components under headings and listed by type number. Ratings, where applicable are also shown, together with the type of package and the cost per unit. As the list is about 201 x 300mm in size, please enclose an SAE.

Watford Electronics, 33 Cardiff Road, Watford, Herts. Tel: Watford 40586

Light work
A new family of Silicon Photovoltaic Cells are now available from National Semiconductors Ltd., and are accompanied by claims of good stability, high efficiency and excellent short circuit current linearity over wide ranges of illumination.

Available in TO18, TO5 and 1/4 in diameter hermetically sealed packages these cells also feature low leakage currents of 10 µA max. when reversed biased by only 1.5 V, and fast response rates of typically 8 s. Operating temperature range extends from -60°C to +125°C.

National Semiconductors Ltd., Stamford House, Stamford New Road, Altrincham, Cheshire. Tel: 061 928 3477.

Keep-it-clean!
You've heard what they do to old warships to stop the elements getting to them—they 'mothball' them. Although the 'mothballing' material differs slightly, you can now protect your records in a similar manner, with a new product called 'Sound Guard'.

Originally developed for NASA, as a dry lubricant for the moving parts of space craft, it can now be obtained in a Hi-Fi form which is sprayed onto the surface of records. When buffed up immediately following application it leaves a five-millionth-of-an-inch thin-film solid lubricant of low shear strength bonded to the record groove.

Other advantages are that while Sound Guard bonds to record surfaces, it will not bond to itself, so re-application will not cause a build-up of the coating. Also it contains an anti-static property, which all goes towards keeping the groove clean and free from dust.

Marketed in the UK by Pyser Ltd, a 2oz bottle with a pump sprayer and buffer pad (sufficient for 25 LP's) costs around £4.99.
Short wave listening can be an interesting and absorbing pastime. High performance SSB/CW short wave receivers do however tend to be very complex and rather expensive; it is unfortunate that the complexity of a receiver which has all the desirable features can be somewhat daunting to anyone but the most experienced constructor.

The basic receiver described here covers the popular 20m (14MHz) amateur band. This band offers a considerable long distance (DX) potential. This project is equally suitable for the beginner who requires a simple yet effective design, and the experienced short wave listener who requires a second, highly portable receiver. The unit may also be used in conjunction with a 2m converter having an intermediate frequency (IF) of 14 to 16MHz. The receiver will then cover the bottom end of the 2 metre band (144-0 to 144-4MHz) in which there is a great deal of VHF signal sideband (SSB) activity. Component changes and circuit modifications are also provided for coverage of the other amateur bands between 3-5MHz and 30MHz.

Single band design makes for considerable simplicity as regards coil winding and calibration; it also avoids problems associated with multi-band construction. Furthermore, the direct conversion technique ensures that the receiver is less prone to spurious signals, such as image channel interference, which can often be a problem with conventional superheterodyne receivers using single conversion and a low intermediate frequency.

The receiver uses a minimum number of semiconductor devices and is assembled using a single printed circuit board. The receiver may be built for a modest outlay of around £10 to £15 and alignment can readily be carried out using a signal generator or a second receiver.

Why direct conversion?

The vast majority of amateur activity in the HF bands is either single sideband (SSB) or morse (CW). Conventional receiver designs fall into two main categories. These are tuned radio frequency (TRF) and supersonic heterodyne (superhet). TRF receivers are relatively insensitive and unselective and thus some form of regeneration is needed. A TRF receiver cannot receive SSB or CW signals unless the regeneration is increased to a level which allows the receiver to oscillate continuously. This arrangement lacks frequency stability. The level of regeneration must also be frequently varied according to the strength of the incoming signal.

Superhet receivers, although selective and sensitive, tend to be complex and difficult to align. Furthermore, if SSB or CW signals are to be received using a superhet, it is necessary to incorporate a beat frequency oscillator (BFO) stage and a suitable detector.

The direct conversion receiver is halfway between a TRF receiver and a superhet. The incoming signal is mixed with a local oscillator signal operating on the same frequency. This should be clearly distinguished from the arrangement in a superhet where the local oscillator and signal frequencies differ by an amount equal to the intermediate frequency of the receiver. Thus the direct conversion receiver can be thought of as a superhet receiver with zero intermediate frequency. This may sound rather odd but it simply means that the incoming signal mixes with the local oscillator signal to produce an audible beat frequency. When SSB signals are to be received, the local oscillator is tuned to exactly coincide with the incoming carrier frequency. The result is correctly demodulated audio regardless of whether upper or lower sideband is being used. When a CW signal is to be received, the local oscillator is tuned to a very slightly different frequency from that of the incoming carrier.
Thus the CW signal is converted to a beat note within the audio frequency range.

The basic form of direct conversion receiver is shown in Fig. 1. This incorporates a separate local oscillator stage. A worthwhile improvement in sensitivity can be achieved by the addition of a radio frequency amplifier stage. This offers the further advantage of providing a degree of isolation between the local oscillator stage and the aerial, thus helping to minimise the amount of local oscillator radiation from the receiver. The block schematic of the receiver is shown in Fig. 2. The AF amplifier has a tailored frequency response and is important in setting the selectivity characteristic of the receiver.

Balanced Detector

There is nothing new in the concept of a receiver which uses a phase synchronous detector. The technique is used in both colour TV receivers and in stereo decoders. In order to provide best results, the local oscillator (or reference) should be phase locked to the incoming signal carrier. This is necessary for the reception of AM signals where even a small phase error can be disconcerting due to the presence of an audio image which is unavoidable when a double sideband signal is demodulated. In advanced receivers, a frequency reference is derived from the signal by means of a threshold gate and PLL but this is not necessary for reception of single sideband and CW signals. Furthermore, provided that the detector exhibits a high degree of linearity, the selectivity of the receiver is determined solely by the frequency response of the audio stages. This eliminates IF filters which are found in superhet receivers.

![Fig. 3: Balanced detector circuit.](image)

The simplified circuit of the balanced detector is shown in Fig. 3. It should be noted that, in practice, the reference provides a much greater voltage than that of the signal applied to the detector. D1 and D2 are effectively alternately switched “on” and “off” at the frequency of the reference oscillator. D2 conducts on positive going half cycles and D1 on negative half cycles. R_s represents the source impedance of the reference oscillator circuit amounting to a few hundred ohms. T_p provides signal voltages which are supplied to D1 and D2 in antiphase. C_i is chosen so that it has negligible reactance at the reference frequency and a very high reactance at audio frequency and thus behaves as a high pass filter. L_1 and C_2 form a low pass filter preventing both the reference output and signal input from reaching the audio stages.

![Fig. 4: The upper trace shows SSB signal 100% modulated by a square wave. Note the phase reversals. Without the reference carrier inserted by the receiver local oscillator (middle trace) speech would be received at double the natural frequency and hopelessly distorted. Square wave modulated SSB signals would not be resolved in any form. The lower trace depicts the recovered modulation from the upper trace.](image)

When the signal and reference voltages are in phase, the balance of the detector is preserved and the output voltage after the low pass filter is zero. When a constant phase error exists between the signal and reference voltages the detector no longer remains balanced and a constant DC output voltage is produced. This may be positive or negative depending on the relative phase. When the phase error is not constant but changing, a corresponding alternating output voltage will be produced. Finally, if the signal and reference voltages differ by a constant frequency, say 1kHz, an audio signal is produced at this frequency. Fig. 4 shows a 100% modulated SSB signal applied to the detector.

Circuit description

A dual gate FET is used as the RF amplifier. The gain of the stage is made variable by adjusting the bias voltage applied to gate-2 of the transistor. The input tuned circuit, L_1/C_1, is damped by means of

Practical Wireless, January 1978
R13 to broadly tune to the 14MHz band. Its "Q" is however kept sufficiently high in order to reduce strong out of band signals. The RF stage is followed by a balanced detector arrangement using two germanium diodes, D1 and D2. Coupling from the RF amplifier stage to the detector is via a broadband transformer arrangement with damping provided by R4. Adjustment of the balance of the detector stage is provided by RV1. This compensates for any variation in the characteristics of the two diodes and is adjusted for maximum rejection of breakthrough from strong amplitude modulated signals which may otherwise be demodulated in a conventional manner.

The local oscillator uses a junction gate field effect transistor. Silicon diode, D3, provides automatic negative bias for the gate of the transistor. The supply voltage for the oscillator is stabilised by means of the zener diode, D4. The complete circuit diagram is shown in Fig. 5. The oscillator frequency is varied by means of VC1. The initial adjustment of operating frequency is carried out by means of the ferrite dust core of L2.

The demodulated audio signal is passed to the AF pre-amplifier. RFC2 and CI1 operate as a low pass filter. CI2 and CI3 are used to define the operating frequency range of the pre-amplifier stage, Tr3. The audio power amplifier stage is straightforward and uses an LM380. It produces ample output from a 6V supply.

Construction and layout

With the exception of the controls, VR1, VR2, VC1 and S1, the battery holder and sockets SK1, all components are mounted on a printed circuit board. The component layout is fairly important and the use of a printed circuit board is highly recommended. Other forms of construction (matrix board, Veroboard or point-to-point wiring) may give rise to poor performance or instability unless great care is taken. Where a printed circuit board is not used, a good common earth connection to all parts of the circuit is essential.

The input circuit, comprising L1 and associated components, must be screened from the rest of the circuit. This is accomplished by using a small piece of 20 SWG tinplate cut out and bent as shown in Fig. 6. The printed circuit board (copperside) is shown in Fig. 7, the corresponding component overlay is shown in Fig. 8.

Care should be taken to keep all the internal connecting leads short. The leads to the volume control, VR2, should be screened. The loudspeaker is mounted on the lid of the case and, when the lid is in place, care should be taken not to trail the loudspeaker leads across the circuit board. The aerial and converter input socket, SK1, is mounted on the rear panel of the chassis. The tuning capacitor, VC1, is mounted on a small aluminium bracket. The bracket is secured to the front panel of the receiver by means of the same two screws and nuts which retain a vernier drive mechanism. The "live" connection from VC1 to L2 on the printed circuit board should be made using stiff wire, preferably 18 or 20 SWG; this helps improve the frequency stability. The earth tag of VC1 is returned to the common rail on the printed circuit board by means of a short length of copper braid. The outer conductor removed from a short length of 50 ohm or 75 ohm coaxial cable is ideal for this purpose. The lid of the case should also be earthed to the common rail. This prevents hand capacitance effects.

In the prototype, the printed circuit board is held in place by means of four 25mm spacers which are
secured to the bottom of the chassis by countersunk screws. The battery holder is made from suitably bent aluminium and then lined with a strip of foam rubber. The battery holder fastens to the back of the case by two nuts and bolts.

Coil winding details

Both coils, L1 and L2, are wound on 7mm diameter coil formers fitted with dust cores. L1 comprises a main tuned winding of 20 turns of 26 SWG enamelled copper wire closewound with an aerial winding of 4 turns 30 SWG enamelled copper wire as in Fig. 9a. A thin layer of PVC tape is used to hold the main tuned winding in place while the aerial winding is completed.

L2 consists of a single tuned winding of 24 turns of...
26 SWG enamelled copper wire closewound as in Fig. 9b. After winding, both coils are liberally coated with a quick setting epoxy resin adhesive. This seals the winding in place and provides a very effective protective coating.

The interstage coupling transformer is wound according to Fig. 10. The transformer is wound on a miniature ferrite ring of approximate diameter 12mm. The drain winding (primary) consists of 10 turns 30 SWG enamelled copper wire. The mixer winding (secondary) consists of 5 turns 30 SWG enamelled copper wire. The transformer is similarly sealed with quick setting epoxy resin adhesive. If a ferrite ring is not available, the transformer may be wound using a 17mm x 8mm diameter dust core. The thread on the core facilitates a guide in which the transformer may be wound. The drain winding (primary) consists of 12 turns 26 SWG enamelled copper wire. The mixer (secondary) consists of 6 turns of 30 SWG overwound in the centre of the core. The transformer should be sealed with quick setting epoxy adhesive. The performance of the receiver is slightly better when a ferrite ring is used for the interstage transformer.

components

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R2</td>
<td>33kΩ</td>
</tr>
<tr>
<td>R3</td>
<td>330kΩ</td>
</tr>
<tr>
<td>R4</td>
<td>2.2kΩ</td>
</tr>
<tr>
<td>R5</td>
<td>470Ω</td>
</tr>
<tr>
<td>R6</td>
<td>47kΩ</td>
</tr>
<tr>
<td>R7</td>
<td>330Ω</td>
</tr>
<tr>
<td>R8</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R9</td>
<td>1MΩ</td>
</tr>
<tr>
<td>R10</td>
<td>3.3kΩ</td>
</tr>
<tr>
<td>R11</td>
<td>1kΩ</td>
</tr>
<tr>
<td>R12</td>
<td>22kΩ</td>
</tr>
<tr>
<td>R13</td>
<td>10kΩ</td>
</tr>
<tr>
<td>All</td>
<td>1W 5% carbon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>47pF</td>
</tr>
<tr>
<td>C2</td>
<td>10nF</td>
</tr>
<tr>
<td>C3</td>
<td>100nF</td>
</tr>
<tr>
<td>C4</td>
<td>100nF</td>
</tr>
<tr>
<td>C5</td>
<td>47pF silvered mica</td>
</tr>
<tr>
<td>C6</td>
<td>68pF</td>
</tr>
<tr>
<td>C7</td>
<td>100pF</td>
</tr>
<tr>
<td>C8</td>
<td>10nF</td>
</tr>
<tr>
<td>C9</td>
<td>220pF</td>
</tr>
<tr>
<td>C10</td>
<td>470pF</td>
</tr>
<tr>
<td>C11</td>
<td>22nF</td>
</tr>
<tr>
<td>C12</td>
<td>100pF</td>
</tr>
<tr>
<td>C13</td>
<td>1µF 63V</td>
</tr>
<tr>
<td>C14</td>
<td>100µF 10V</td>
</tr>
<tr>
<td>C15</td>
<td>1µF 63V</td>
</tr>
<tr>
<td>C16</td>
<td>1000pF</td>
</tr>
<tr>
<td>C17</td>
<td>100F</td>
</tr>
<tr>
<td>C18</td>
<td>100µF 10V</td>
</tr>
<tr>
<td>C19</td>
<td>100µF 10V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductors</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tr1</td>
<td>4067</td>
</tr>
<tr>
<td>Tr2</td>
<td>2N3819</td>
</tr>
<tr>
<td>Tr3</td>
<td>BC108</td>
</tr>
<tr>
<td>IC1</td>
<td>LM380N</td>
</tr>
<tr>
<td>D1</td>
<td>OA90</td>
</tr>
<tr>
<td>D2</td>
<td>OA90</td>
</tr>
<tr>
<td>D3</td>
<td>1N4148</td>
</tr>
<tr>
<td>D4</td>
<td>BZY88 C3V9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentiometers</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1</td>
<td>10kΩ lin</td>
</tr>
<tr>
<td>VR2</td>
<td>5kΩ log</td>
</tr>
<tr>
<td>VR3</td>
<td>5kΩ preset</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC1</td>
<td>15pF Jackson type C604, S1 SPDT miniature toggle switch.</td>
</tr>
<tr>
<td>RFC1 RFC2</td>
<td>1nH RF chokes.</td>
</tr>
<tr>
<td>T1</td>
<td>miniature ferrite ring or dust core, two coil formers 7mm diameter fitted with dust cores, vernier dia. 50mm, loudspeaker 50mm B0.5W. Case 127mm x 152mm x 89mm, 14 pin low profile dual-in-line IC socket, battery holder for 4 x HP7 1.5V cells plus snap connector to suit.</td>
</tr>
<tr>
<td>Mounting pillars</td>
<td>Double sided push fit pins. Coax socket for aerial and jack socket for 'phones.</td>
</tr>
</tbody>
</table>
Initial checks and alignment

After completing the wiring and assembly of the receiver, a careful visual check should be made for any faults. A 6V battery (4 x HP7) should be connected and the current consumption measured. If the receiver is working correctly, the supply current should be approximately 12mA. A slight variation should be noticed when the RF Gain control, VR1, is adjusted.

Alignment of the receiver can be carried out by using either an RF signal generator or an existing short wave receiver. The signal generator should be set for an unmodulated output at 14MHz. The tuning capacitor, VC1, should be set to maximum capacitance. L2 should then be varied until a beat note is heard. Carefully adjust L2 for zero beat (i.e. the apparently dead spot at the centre of the two ranges in which an audible beat is heard). Note that it should not be necessary to have the signal generator directly coupled to the receiver for this purpose. Stray coupling, using a short throw-out aerial, should be sufficient to produce a strong beat signal. After locating the zero beat position corresponding to 14-0MHz, re-set VC1 to minimum capacitance. Vary the signal generator frequency until a zero beat is found and note the new frequency. This will be approximately 14-4MHz; it should extend to 14-55MHz if the whole of the 20 metre band is to be covered.

To align the RF amplifier stage, adjust L1. Switch the signal generator to give a modulated carrier at 14-2MHz but leave the setting of VC1 at minimum capacitance (do not search for a beat note). A tone should be heard in the receiver's loudspeaker. If this is not the case, increase the output level of the signal generator accordingly. Note that the tone should not vary in frequency as VC1 is adjusted. Now adjust L1 for maximum loudspeaker output. If necessary, reduce the output level of the signal generator as resonance is approached. Finally adjust VR5 for minimum output—it should be possible to pull the tone out almost completely. The alignment procedure should be repeated once again after which the cores of L1 and L2 should be sealed. An antenna may then be connected to the receiver and its "on-air" performance can be checked.

Where a signal generator is not available, the frequency of the local oscillator can be set using a calibrated receiver. The receiver should be set to 14-0MHz and VC1 adjusted to maximum capacitance. L2 is then adjusted until a strong signal is heard in the main receiver, this will of course appear as an unmodulated carrier. The two receivers should be in fairly close proximity for this purpose and, if necessary, a short length of wire can be used to link the two aerial sockets so that sufficient coupling of the local oscillator signal is obtained. If more than one signal is heard on the main receiver (corresponding to two different positions of the core of L2) make sure that the stronger of the two is selected. This phenomenon is due to the image channel of the main receiver. Re-set VC1 to minimum capacitance and find the new local oscillator frequency by re-tuning the main receiver. This should be above 14-35MHz. Next connect an aerial to the unit and adjust VC1 to a signal which is fairly strong and continuous. A teleprinter signal is ideal for this purpose. Carefully adjust L1 for maximum output from the loudspeaker. If necessary, reduce the RF gain control accordingly. VR3 should be set to mid-position, but if break-through from strong amplitude modulated broadcast signals on adjacent frequencies is subsequently experienced, the preset should be adjusted for a null to minimise the effect.

If the local oscillator frequency coverage is found to be too low even after adjustment of L2, C5 should be replaced by a 33pF silver mica capacitor. If the local oscillator frequency coverage is found to be too high, C5 should be similarly replaced by a 68pF silver mica capacitor or alternatively a 15pF silver mica capacitor can be wired directly in parallel with VC1. If adequate screening is not used between the oscillator and RF circuits, a form of RF instability may occur. This is due to local oscillator radiation entering the RF amplifier and may only manifest itself when the RF gain control is turned fully up. Detuning L1 will usually cure this problem; however, the best solution is to ensure that a screen is fitted and that the lid of the case is adequately earthed (this is usually accomplished by the four securing screws).

Should audio frequency instability be noticed, particularly when not using the recommended printed circuit layout, a 100nF miniature polyester capacitor in series with a 4-7ohm 1/4W carbon resistor should be wired directly between pin 8 and the integrated circuit holder and the common earth rail. Also, when not using a printed circuit board, C19 should be wired as closely as possible between pin 14 of the integrated circuit holder and the common earth rail.

Instability may also occur which manifests itself as a howling at maximum gain settings when headphones are being used. This can be cured by using an RF choke, consisting of 6 turns 30 SWG (or 8 turns 26 SWG on a ferrite ring) wired directly between the loudspeaker output on the PCB and the headphone jack socket, SK4. However, few problems should be experienced if the recommended layout and printed circuit board is used.

Using the receiver

The performance of any short wave receiver depends greatly on the quality of the aerial system with which it is to be used and on the expertise of the user. This design gives acceptable results with a short "throw-out" aerial (15ft of flexible wire is ideal for this purpose). A good earth may improve performance further. If a dipole is available (this should be approximately 35ft in length and fed in the centre) results should be excellent.

Tuning an SSB receiver often presents difficulties to the uninitiated. The newcomer to short wave listening will however find that his ability to resolve SSB signals will improve considerably with practice. The

Practical Wireless, January 1978

657

www.americanradiohistory.com
signal needs to be slowly tuned through until the speech appears normal. An incorrectly tuned signal will make you think that you are listening to Donald Duck. This is, of course, due to a shift in the frequencies of the speech components. With a little practice, the correct tuning point will easily be found. When incoming signals are very strong, the RF gain control should be backed off. This will assist in resolving signals.

In the first few days of use, and with a very modest aerial, over twenty countries were logged with the receiver. These included DK, EA, EI, F, G, GW, HB, I, K, OE, ON, PA, SM, UA, UB, VE, W, YU. Propagation conditions on 20 metres vary considerably during the day and night. Seasonal variations are also noticeable. Thus do not expect instant long distance (DX) reception! A few days listening will soon tell constructors when and where to listen.

This simple receiver was developed with low cost and portability in mind. It will not outperform a complex communications receiver. However, when used with an efficient aerial system, it gives an extremely good account of itself.

appendix

Table of component changes for alternative frequency coverage

<table>
<thead>
<tr>
<th>RF TUNED CIRCUIT</th>
<th>Turns on L1</th>
<th>C1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sec. SWG</td>
<td>pri. SWG</td>
</tr>
<tr>
<td>3·5-3·8 MHz</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>7·0-7·1 MHz</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>21·0-21·5 MHz</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>28·0-30·0 MHz</td>
<td>12</td>
<td>26</td>
</tr>
</tbody>
</table>

Oscillator circuit modification for lower frequencies (see note below).

Oscillator tuned circuit

<table>
<thead>
<tr>
<th>Band</th>
<th>Turns on L2</th>
<th>SWG</th>
<th>VC1</th>
<th>C5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3·5-3·8 MHz</td>
<td>30</td>
<td>see note 30</td>
<td>100pF</td>
<td>220pF</td>
</tr>
<tr>
<td>7·0-7·1 MHz</td>
<td>22</td>
<td>see note 26</td>
<td>15pF</td>
<td>100pF</td>
</tr>
<tr>
<td>21·0-21·5 MHz</td>
<td>16</td>
<td>26</td>
<td>15pF</td>
<td>47pF</td>
</tr>
<tr>
<td>28·0-30·0 MHz</td>
<td>10</td>
<td>26</td>
<td>15pF</td>
<td>47pF</td>
</tr>
</tbody>
</table>

*Note: Use modified circuit for oscillator shown in Fig. 11. Also increase the primary turns on T1 to 20 (30 swg) and secondary to 15 turns (30 swg). The use of a ferrite ring as the core of T1 is strongly recommended for the 3·5 MHz and 7 MHz bands.
Before we consider the behaviour of alternating current and voltage in circuits containing inductors and capacitors, we will have a look at the phenomenon of capacitance.

Capacitance

If we place two metal plates close to one another and separate them with a piece of insulating material, we have an arrangement which will store electricity in the form of a charge. The capacitance of the arrangement depends on a number of factors:—

i. Area of the plates
ii. Distance between the plates
iii. The nature of the insulating material occupying the space between the plates (specifically the Dielectric Constant or relative permittivity).

The unit of capacitance is the farad—an uncommonly large unit for the purposes we require—so that the values found in radio work are micro-farads (10^{-6}), nanofarads (10^{-9}) and picofarads (10^{-12}).

Dielectric Constant

If we measure the value of capacitance of two metal plates, separated by a certain insulating material, and repeat the measurement keeping area of plates and distance apart the same but having a vacuum separating them, then the ratio between the two values of capacitance will be equal to the dielectric constant of the insulating material. This constant is usually denoted by the letter K and the capacitance of a capacitor is given by the relationship:—

\[C = \frac{K A}{d} \]

where \(A \) is the area of the plates and \(d \) the spacing between them.

A capacitor is classified by the material used as the dielectric and the table below shows some types of dielectric used together with their dielectric constants.

<table>
<thead>
<tr>
<th>Material</th>
<th>Dielectric Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1</td>
</tr>
<tr>
<td>Dry paper</td>
<td>2.5 approx</td>
</tr>
<tr>
<td>Polyester</td>
<td>5 approx</td>
</tr>
<tr>
<td>Mica</td>
<td>5-7 approx</td>
</tr>
<tr>
<td>Aluminium oxide</td>
<td>7.5 approx</td>
</tr>
<tr>
<td>(electrolytic)</td>
<td></td>
</tr>
<tr>
<td>Ceramic (Lo K)</td>
<td>up to 20</td>
</tr>
<tr>
<td>Ceramic (Hi K)</td>
<td>up to 10,000</td>
</tr>
</tbody>
</table>

The Dielectric Strength is the voltage at which the dielectric breaks down and this and its thickness determines the maximum safe working voltage which may be applied to the capacitor.

Capacitor Ratings

The two most important practical ratings of a capacitor are its capacitance and its working voltage and these are almost invariably marked on the capacitor. The required value of capacitance depends on the purpose for which it will be used and the voltage rating on the maximum voltage that will be present across the capacitor under all operating conditions.

The required accuracy or tolerance of the capacitance value depends on how critical the circuit is to this. For example, the capacitance of an electrolytic capacitor, providing the smoothing in a power supply, could be greater or less by 20 per cent of its stated value without causing any significant change in performance, but a silvered mica capacitor in the oscillator tuning circuit of a communication receiver would cause serious tuning errors if its value was in error by this amount. In some applications therefore, the tolerance is also an important factor.

There are other factors too, such as insulation resistance, temperature stability, physical size, etc., which affect the suitability of a particular type of capacitor for a particular use.

Air Dielectric Capacitors

These are usually in the form of variable capacity tuning capacitors having a set of fixed plates with a set of moving plates that swing into mesh between the fixed plates. This enables the effective area of the plates, and so the capacitance, to be varied.

Air dielectric tuning capacitors for use in receivers, where the maximum voltage may be only a few volts, can have very close spacing between the plates; but types for use in transmitters where high voltages are present, must have significantly greater spacing to avoid voltage breakdown or flashover. The breakdown voltage of air is about 25,000V/cm and the spacing between the plates of a tuning capacitor for a receiver would be about 0.2mm (mainly limited by the mechanical accuracy) and for a 150W HF transmitter about 1.5mm.

Mica Capacitors

The mica capacitor uses thin sheets of mica as the dielectric and offers the best electrical properties possible but for a given capacity it tends to be large and fairly expensive. Mica is a very stable material naturally, after all it has been lying in the ground stabilising for millions of years, so the capacitor using it as a dielectric will also have excellent stability. The mica capacitor is therefore, ideal for use in tuning or other critical circuits.

The silvered mica capacitor has the electrodes deposited as a film of silver on the surfaces of the mica and so enables very thin blades of mica to be used. The blades are stacked with interconnecting foils and are then clamped or riveted together which gives them their characteristiclly flat “postage stamp” shape. Silvered mica capacitors are available in values from 1pF to about 10,000pF and usually
have a voltage rating of 250 to 500V although higher voltage ratings are available for use in transmitters. They are very suitable for use in RF tuned circuits up to several hundred MHz and will carry appreciable RF currents in transmitter applications.

Some “compression type” trimmer capacitors use mica as a dielectric and in these the mica is sandwiched between spring foil electrodes. The capacitance is varied by squashing the sandwich with an adjusting screw and so changing the dielectric from partly air and partly mica to just mica. These capacitors, which were once seen only in radio receivers are now being used in transistor VHF and UHF transmitters where their very low inductance and low losses make them ideal.

Ceramic Capacitors

Ceramic capacitors are made in various forms, the most popular being the tubular and disc types. The tubular type consists of a small ceramic tube which has silver deposited on the inside and outside surfaces, the capacitance being determined by the area of the surface, the tube wall thickness and the ceramic dielectric constant. The disc type consists of a flat disc of ceramic with silver deposited on each side of the disc. Ceramic dielectric material can be made to have particular characteristics by adjusting the proportions of the ingredients.

The low K ceramic material usually used in the tubular capacitors provides good stability with a fairly low and a predictable temperature coefficient (change of capacitance with temperature) so that in some circumstances they can be used with advantage in a tuned circuit to compensate for the opposite temperature effects in other components in the circuit. Their small physical size and low inductance makes them suitable for use in receivers and low power circuits in the VHF and UHF range.

Tubular ceramic capacitors are also made in a lead-through form for decoupling supplies passing through a screening box or plate and they have a soldering flange or screwed bush for mounting. Variable tubular ceramic capacitors have the internal silvering replaced by a concentric adjusting screw and these are suitable for operation up to several hundred megahertz.

Disc ceramic capacitors are usually of the Hi K ceramic type and have the advantage of very high capacity with small physical size and very low inductance. Hi K ceramic material has a high temperature coefficient which makes these capacitors unstable in value and so unsuitable for use in tuned circuits. They suffer from losses at high frequencies but can be used successfully in bypass and decoupling applications up to 1,000MHz.

Wound Capacitors

Polystyrene, polyester, polycarbonate and paper capacitors are made by winding two strips of metal foil into a roll, insulated by two strips of dielectric film or paper. Connection strips or edges are brought out to form suitable lead-out connections. Polystyrene is a high-grade dielectric having characteristics approaching those of mica; polystyrene capacitors are used in LF, MF and HF circuits where stability is important. Polyester and polycarbonate capacitors are suitable for most LF and MF applications up to a few MHz. Paper capacitors are mainly used in LF applications and for high voltage power supply use where working voltages up to several thousand volts are available. Capacitors of this type are usually hermetically sealed in a can with special high voltage terminals.

Polystyrene capacitors are available in values from 10pF to 1µF and polyester, polycarbonate and paper capacitors from 1,000pF to 10µF approximately.

Now follows the last major theoretical section, but a very important one, leading up to the resonant tuned circuit, an essential part of every transmitter and receiver.

Inductors and Capacitors in series and parallel

(i) **Inductors** (not mutually coupled)

Series

\[L_{\text{total}} = L_1 + L_2 \]

Parallel

\[\frac{1}{L_{\text{total}}} = \frac{1}{L_1} + \frac{1}{L_2} \quad \text{or} \quad L_{\text{total}} = \frac{L_1 L_2}{L_1 + L_2} \]

(ii) **Capacitors**

Series

\[\frac{1}{C_{\text{total}}} = \frac{1}{C_1} + \frac{1}{C_2} \]

Parallel

\[C_{\text{total}} = C_1 + C_2 \]

AC Circuits

Resistors in an AC Circuit.

In this case both voltage and current are “in phase” with one another, i.e. they both reach maximum or minimum values at the same instant of time. When calculating current and voltage, the r.m.s. values are used, thus \(I_{\text{rms}} = V_{\text{rms}} / R \)

Practical Wireless, January 1978
Capacitors in an AC circuit (Capacitive Reactance).

When an alternating current is applied to a capacitor it will charge it, first in one direction and then in the other. The maximum current will be flowing in or out of the capacitor when the applied voltage is changing most rapidly (i.e. as it goes through zero volts) and the current will fall to zero when either peak of the cycle has been reached and the voltage is virtually steady for an instant.

Since the current is at a peak \(\frac{1}{4} \) cycle before the voltage it is said to "lead" the applied voltage by 90° (one full cycle being 360°—see section on sine waves). The energy which is stored in the capacitor during the \(\frac{1}{4} \) cycle charging period is returned to the circuit in the following \(\frac{1}{4} \) cycle. The current flowing is known as Wattless Current as no power is dissipated in the conventional FR sense.

![Fig. 24: The voltage and current in a resistive circuit are in phase.](image)

If the relationship between voltage and current is investigated, the frequency of the alternating current must be taken into account, together with the value of the capacitance in the circuit. In fact, the current flowing is proportional to capacitance, frequency and voltage. By arranging these factors we can extract a quantity which is akin to resistance in a DC circuit. This quantity is known as Capacitive REACTANCE and its unit is the ohm.

Capacitive REACTANCE \((X_C) \) = \(\frac{1}{2\pi fC} \) where

\(f \) = frequency of alternating current, \(C = \) Capacitance and \(\pi = 3.142 \).

Using Ohm's Law and reactance we can calculate the voltage or current in an AC circuit containing a capacitor:

\[
I = \frac{V}{X_C} \quad X_C = \frac{V}{I} \quad V = IX_C
\]

(note that \(V \) and \(I \) are r.m.s. values.

Inductors in an AC Circuit (Inductive Reactance)

When an alternating voltage is applied to an inductor the resultant current causes a back or induced e.m.f. to be generated which is proportional to the rate of change of the current. In the inductor, as in the capacitor, the maximum current occurs when the voltage is changing most rapidly (as it goes through zero), except that in the case of the inductor the current "lags" the voltage by \(\frac{1}{4} \) of a cycle or 90°.

It will be realised that if the frequency of the alternating current increases, so will the rate of change of current; thus the value of the e.m.f. generated in the inductance will be proportional to the frequency and the current flowing inversely proportional to the frequency. From this we can extract a quantity known as the Inductive REACTANCE, unit—again the ohm.

Inductive REACTANCE \((X_L) = 2\pi fL \) where \(f = \) frequency, \(L = \) inductance and \(\pi = 3.142 \).

![Fig. 25: In a capacitive circuit, the current which flows leads the applied voltage by 90°.](image)

Reactances in Series and Parallel

Reactances of the same kind, Inductive OR Capacitive can be treated similarly to resistors:—

Series

\[
\frac{1}{X} = \frac{1}{X_1} + \frac{1}{X_2} + \frac{1}{X_3}
\]

Parallel

\[
X = X_1 + X_2 + X_3
\]

Reactances of opposite kinds, Inductive and Capacitive:—

Series

\[
X = X_L - X_C
\]

Parallel

\[
X = \frac{-X_L X_C}{X_L - X_C}
\]

This follows because when reactances of opposite kinds are combined in a circuit, the currents lag and lead the voltages, in the inductive and capacitive sections respectively, by 90° and consequently they must first be subtracted from one another to find the total reactance. For this purpose, Inductive reactance is normally considered 'positive' and Capacitive reactance 'negative'.

Impedance

In any circuit containing reactances there will be some resistive element in the wires, for example, in the inductor windings thus when we consider the resistance to current flow presented by reactances we must add that presented by the ohmic resistance of the circuit. When we consider all these elements together, inductive reactance, capacitive reactance and resistance, it is known as IMPEDANCE. The resistive element of the impedance may be either in series or in parallel with the reactance.

Practical Wireless, January 1978
Series

The impedance Z in this case is $Z = \sqrt{R^2 + X^2}$, where $Z =$ Impedance (ohms), $R =$ Resistance, and $X =$ Reactance (inductive or capacitive).

Parallel

$$Z = \frac{R \cdot X}{\sqrt{R^2 + X^2}}$$

In circuits which contain impedances, Ohm's Law can be applied as follows: $I = \frac{V}{Z}$ and $V = IZ$ and $Z = \frac{V}{I}$. (use r.m.s. values of V and I).

Resonance

The next characteristic of the AC circuit, that we are going to examine, is RESONANCE. This is a most importance effect which is employed many times over in every radio transmitter and receiver. As the AC frequency, applied to a circuit containing inductance and capacitance, is increased, the value of the inductive reactance increases, whilst that of the capacitive reactance decreases, as shown in the graph below:

![Resonance Graph](image)

From this it is apparent that at a certain frequency, f_r, the capacitive reactance equals the inductive reactance.

Series Resonant Circuit (Acceptor Circuit)

If the frequency of V changes between f_1 and f_2, then the current flowing in the circuit will rise to a maximum at f_r. The impedance, on the other hand, falls to a value equal to R. To summarise this in an expression:

$$X_L = 2\pi fL$$ and $$X_C = \frac{1}{2\pi fC}$$

at f_r $2\pi fL = \frac{1}{2\pi fC}$

$$f_r = \frac{1}{2\pi \sqrt{LC}}$$

Where $f =$ frequency in Hz, $L =$ Inductance in henries, $C =$ Capacitance in farads and $\pi = 3.142$.

The value of the current flowing in the circuit is found as follows:

$$I = \frac{V}{Z} = \frac{1}{\sqrt{R^2 + (X_L - X_C)^2}}$$

Thus, at resonance, the impedance of a series resonant circuit is equal to the resistive component R, X_L and X_C having cancelled each other out.

Parallel Resonant Circuit (Rejector Circuit).

This arrangement is awkward for the purposes of investigating the variation of current and impedance with frequency, so an equivalent parallel circuit is used in which a perfect inductor and a perfect capacitor are in parallel with an assumed resistance, known as the dynamic resistance R_D, R_D being equal to $\frac{L}{C_r}$ at resonance. The expression for the resonant

continued on page 669
Mini-priced breadboards for maxi-sized projects.

Experimentor® low-cost solderless breadboards are the first in the world specially designed for 0.3" and 0.6" pitch DIP's. They clip together by an exclusive interlocking system in any configuration, just like dominoes, so you arrange the breadboards to suit your circuit, not vice-versa.

They are precision moulded from durable, flame-retardant plastic and feature alphanumeric coding for easy circuit building, and non-corrosive, pre-stressed nickel-silver alloy contacts—reliable for well over 10,000 insertions.

Contact resistance is a mere 0.4 mΩ and interterminal capacitance is typically less than 5 pF. The Experimentor® is usable to over 100 MHz.

Experimentor 600 and 650 models are ideal for RAM's ROM's and PROM's (0.6" centres IC's) while the 300 and 350 models are for smaller DIP's (0.3" centres). All four models, of course, also take all standard components, the 0.1" grid being compatible with transistors, diodes, LEDs, capacitors, resistors, pots—in fact any component with lead sizes between 0.015" and 0.032".

A useful quad bus strip (EXP4B) further expands the versatility of the system for the MPU user.

Experimentor breadboards can be used alone or mounted on any convenient flat surface, thanks to moulded-in mounting holes and vinyl insulation backing that prevents short circuits. Mount them from the front with 4-40 flathead screws or from the rear with 6-32 self tapping screws.

But however you use them, Experimentor breadboards are the quickest and easiest way to build and test circuits.

If you're working on IC's, MPU's, memories, displays or any other circuits, buy the breadboards that are designed for you.

Ring us (01-890 0782) with your Access, Barclaycard or American Express number and your order will be in the post that night! Alternatively, send a cheque, or postal order (don't send credit cards!) and it still only takes a few days.

Otherwise ask for our complete catalogue.

Get your hands on an Experimentor and stop wasting time!
Can YOUR Antenna do all this?

A small selection from our huge file of testimonial letters on the Joystick variable frequency antenna (330-300MHz).

Carl V. Guest, Mount Vernon, Ohio, writes:

"I set the Joystick antenna on the floor of my operating room which is at street level. On 40 meter CW I worked out to a distance of 700 miles in the afternoon."

"CQ" Magazine—"If you are high enough the antenna will operate (especially at 15-20) as well as the well-known 3-element beam with which we compared it. The tests were 'operationally, not theoretical.' We find that if we can hear 'em we can work 'em—and in most cases with a 100 watts input."

KAME—"Early results are astounding. I've been using a trap dipole for 40-20-15. This JOYSTICK out-performs the dipole 2 x 1 !"

G3JUB—"Extremely good reports on 160 meters and 80 meters."

WSCJ—"Do I like the JOYSTICK! I guess so! I took five antenna down and now use the Joystick alone!"

IN USE BY AMATEUR TRANSMITTING AND SWL STATIONS WORLD-WIDE AND IN GOVERNMENT COMMUNICATION

SYSTEM "A" £36.00
250 w. p.e.p. OR for the SWL.

SYSTEM "J" £42.60
500 w. p.e.p. (improved 'Q' on receive).

PARTRIDGE SUPER PACKAGES
COMPLETE RADIO STATIONS FOR ANY LOCATION

All Packages feature the World Record Joystick Aerial (System 'A'), with 8' feeder, all necessary cables, matching communication headphones. Deliv. Securicor our risk. Assembled in seconds! BIG CASH SAVINGS!

PACKAGE No. 1 As above with R.300RX
SAVE £17-28 ! £210.55

PACKAGE No. 2 As offered with the FRG7 RX.
SAVE £12-21 ! £193.11

PACKAGE No. 3
New—low priced package.
The all solid state SMC73 RX with all the Partridge extras. SAVE £17-28 !

RECEIVERS ONLY, inclusive delivery, etc.
R.300 £184.50 FRG7 £162.00 SMC73 £128.81

All prices are correct at time of going to press and include VAT at 12½% and carriage.

MAIL ORDER DEPT:-
CRESCENT RADIO LTD
1 ST. MICHAELS TERRACE, WOOD GREEN,
LONDON, N22 45J
TELEPHONE: 888-4474

2 KILOWATT PSYCHEDELIC LIGHT CONTROL UNITS £125.10 EACH
1000 WATT PER CHANNEL
Three channel: Blue, Midlands, Plymouth.
The input of this unit is connected to the loudspeaker terminals of an amplifier and the internal lighting is connected to the output terminals of the unit thus enabling you to produce a fascinating motion to light display.
Full instructions supplied or B.A.E. for details.
Fantastic Value at £250.00 — 25% VAT.

LOUDSPEAKER SELECTION
2s. 250 w. w. £35.50
5s. 500 w. w. £65.00
10s. 1000 w. w. £88.50

EFFECTS PROJECTOR 1/8inch £19.95
5/8 inch £34.95
1/2 inch £68.95

POWER SUPPLY UNITS 3-8 WATTS
F.R.G.— switched 0-4v, 6, 8, 10, 12v at 500ma with on/off switch and pilot light. Approx. size: 10 x 3 x 4in. ONLY 69.
F.R.G.— switched 6, 7, 9v at 300ma. This is a sealed, moulded unit fitted with a 6, 9v, 12v mains plug. Approx. size: 18 x 3 x 4in. ONLY 49.
4S.—AC/DC. Power supply for ear. Switched 3, 6, 7, 9v at 500ma (from 12v DC input). Approx. size: 10 x 5 x 4in. ONLY 68.35.
F.R.G.— switched Supply 3, 6, 7, 9v at 500ma (from 12v DC input). Approx. size: 15 x 7 x 4in. ONLY 75.

ACCESS AND BARCLAYCARD ACCEPTED—PHONE ORDERS WELCOMED
ALL PRICES INCLUDE POSTAGE & P.P., VAT AS SHOWN & B.A.E.
WITH ALL ENQUIRIES PLEASE.
Personal callers welcome at: 164-166 HORK ROAD, WOOD GREEN, N22. Phone: 888-2500 and 13 SOUTH MALL, EDMONTON N9 Phone: 800-1800

We wish you a Happy Christmas

and suggest that one of the best ways to ensure it is to treat yourself to a Home Radio Components Catalogue. Only £1 40 including p. & p. The best Christmas present you could buy—for yourself or for any of your electronics friends or relations.

PAST THIS COUPON with cheque or p. & p. for £1.40

You can write your Name and Address in block capitals

NAME _______________________________________
ADDRESS _____________________________________

P.O. BOX 5, PARTRIDGE HOUSE, PROSPECT ROAD, BROADSTAIRS, CT10-1LD (Callers by appointment).

HOME RADIO Components Ltd., Dept. PW
164-166 London Road, Mitcham, Surrey CR4 3DB

Rep. No. 017956 London

Please write the same name and address in block capitals.

Send the coupon today!
The main differences between this and the calculator keyboard version are the cabinet details, the keyboard wiring loom, and the use of external foot switches to select Minor and Seventh chords. There are one or two minor layout differences.

The accompaniment keys (bottom octave of the 4 octave keyboard) require two separate busbars. One commons together the poles of C, CS, D, DS, E and F while the other commons FS, G, GS, A, AS and B. Use the wiring instructions shown in Fig. 1 to connect between the board pins and the contacts of each key (note) switch—not forgetting the three busbar connections. Use lacing cord to neatly tie the keyboard loom into a bundle.

The rear panel wiring is slightly different from the calculator key version. A stereo jack plug and socket is used to route the Minor and Seventh select wires (together with their common connection) to an external "push to make" pair of foot switches. Although expensive, an electronic piano "Soft/Sustain" pedal pair worked well.

A single pole toggle switch was put in series with the internal loudspeaker connections so that the internal speaker can be muted. The output for the external Phono lead is connected via an extra stereo jack socket. This enables an external foot controlled volume control (swell pedal) to be used. The wiring is such that the control (which should be 10kΩ log) can be plugged into the jack socket if needed but, if unplugged, the signal is left unaffected at the DIN socket.

Practical Wireless, January 1978
Adjustments for both versions

The most obvious problem will be caused by constructors trying to get too much out of the internal amplifier. Remember— it is only capable of putting out about 1W (about the same total volume as a portable radio). When playing a single melody note, it is possible to turn up the gain of the melody pre-amp and produce a very loud sound but as soon as you introduce a chord from the accompaniment, the internal amplifier overloads and produces distortion. This is made even worse by the drums— particularly the bass drum. The secret is to turn all the front panel volume controls to maximum and then switch all the voicing switches to their “on” position. Put the vamp switch in the “off” position and select a rhythm— say “Waltz”. With one hand, depress bottom “C” of the melody keyboard and the chord of “G” from the accompaniment. Adjust the preset gains of the three preamplifiers (VR6, 14 and 16) to get a good balance between melody, accompaniment and drums respectively and set the levels so that the sounds are as loud as possible without distortion. It might be necessary to adjust VR15, 16 and 19 to get the best compromise between level and tonal quality of the cymbals, snare drum and bass drum respectively. Listen, particularly, to the bass drum sound. This is very low frequency and might not be very prominent when heard over a small loudspeaker but it could have a high electronic amplitude driving the drums preamplifier and the internal power amplifier into clipping. Having set the maximum level, do not expect very loud signals if you select the melody string voice unaccompanied.

The “brightest” cymbals sound is heard when VR15 is near its earthy end; likewise for the snare drum control (VR16). The best bass drum setting for VR19 is just before the onset of oscillation; take care, however, not to have too long a decay on the latter otherwise it will sound more like a percussive tone rather than a deep “thump”.

Melody sustain length is increased by increasing the value of C6 by a small amount. Conversely, reducing the value shortens the period. If you get no melody sustain, D2 may be short circuit. Check that D2 is in the right way round and the VR5 wiper is making good contact with the track.

Sustain length of the alternating bass is set by C16. Failure of the bass note to cut off completely is an indication that D3 is faulty, the wrong value or inserted the wrong way round.

Chord sustain is set by the value of C20 (which must be a polyester type). If the chords do not die away completely Tr5 probably has very low gain and it might be best to replace it. Alternatively you can reduce the value of R44 but if you do this you will have to increase the value of C20 to keep a reasonable sustain time constant. If the chords do not sound at all, D5 may be the wrong way round or Tr5 faulty.

Clicks on the attack of the bass note and melody notes can be removed by careful adjustment of VR10 and VR5 respectively. A hesitation on a cymbal stroke is caused by Tr8 having too high a gain and this can be rectified by reducing the value of R58 to 4.7k.

If you wish to alter the amplitude balance between the cymbals, snare and bass drum without changing their tonal quality (the two parameters are linked to some extent) you can change the values of R61, R75 and R86 respectively. Reducing the value by a small amount will increase the volume for that instrument.
The Sinclair PDM35.
A personal digital multimeter for only £29.95

Now everyone can afford to own a digital multimeter

A digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair PDM35 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anywhere.

The Sinclair PDM35 gives you all the benefits of an ordinary digital multimeter – quick clear readings, high accuracy and resolution, high input impedance. Yet at £29.95 (+8% VAT), it costs less than you'd expect to pay for an analogue meter!

The Sinclair PDM35 is tailor-made for anyone who needs to make rapid measurements. Development engineers, field service engineers, lab technicians, computer specialists, radio and electronic hobbyists will find it ideal.

With its rugged construction and battery operation, the PDM35 is perfectly suited for hard work in the field, while its angled display and optional AC power facility make it just as useful on the bench.

What you get with a PDM35

3½ digit resolution.
Sharp, bright, easily read LED display, reading to ±1,999.
Automatic polarity selection.
Resolution of 1 mV and 0.1 nA (0.0001 μA).
Direct reading of semiconductor forward voltages at 5 different currents. Resistance measured up to 20 MΩ. 1% of reading accuracy.

Operation from replaceable battery or AC adaptor.
Industry standard 10 MΩ input impedance.

Compare it with an analogue meter!

The PDM35's 1% of reading compares with 3% of full scale for a comparable analogue meter. That makes it around 3 times more accurate on average.

The PDM35 will resolve 1 mV against around 10 mV for a comparable analogue meter – and resolution on current is over 1000 times greater.

The PDM35's DC input impedance of 10 MΩ is 50 times higher than a 20 kΩ/volt analogue meter on the 10 V range.

The PDM35 gives precise digital readings. So there's no need to interpret ambiguous scales, no parallax errors. There's no need to reverse leads for negative readings. There's no delicate meter movement to damage. And you can resolve current as low as 0.1 nA and measure transistor and diode junctions over 5 decades of current.

Technical specification

DC Volts (4 ranges)
Range: 1 mV to 1000 V
Accuracy of reading: 1.0% ±1 count
Note: 10 MΩ input impedance.
AC Volts (40 Hz-5 kHz)
Range: 1 V to 500 V
Accuracy of reading: 1.0% ± 2 counts
DC Current (6 ranges)
Range: 1 nA to 200 mA
Accuracy of reading: 1.0% ± 1 count
Note: Max. resolution 0.1 nA.
Resistance (5 ranges)
Range: 1 kΩ to 20 MR
Accuracy of reading: 1.5% ± 1 count
Also provides 5 junction-test ranges.
Dimensions: 6 in x 3 in x 1½ in
Weight: 6½ oz.
Power supply: 9 V battery or Sinclair AC adaptor.
Sockets: Standard 4 mm for resilient plugs.
Options: AC adaptor for 240 V 50 Hz power. De-luxe padded carrying wallet. 30 kV probe.

The Sinclair credentials

Sinclair have pioneered a whole range of electronic world-firsts – from programmable pocket calculators to miniature TVs. The PDM35 embodies six years' experience in digital multimeter design, in which time Sinclair have become one of the world's largest producers.

Tried, tested, ready to go!

The Sinclair PDM35 comes to you fully built, tested, calibrated and guaranteed. It comes complete with leads and test prods, operating instructions and a carrying wallet. And getting one couldn't be easier. Just fill in the coupon, enclose a cheque/PO for the correct amount (usual 10-day money-back undertaking, of course), and send it to us.

We'll mail your PDM35 by return!

To: Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE17 4HJ.
Please send me………………………..(qty) PDM35(s)
………………………..(x) £33.00 inc 240 VAT and 65p P&P each
………………………..(x) £…………………………………………………..
………………………..(qty) De-luxe padded carrying case(s)
………………………..(x) £3.00 inc VAT and P&P each
………………………..(x) £…………………………………………………..
………………………..(qty) AC adaptor(s) for
………………………..(x) £…………………………………………………..
………………………..(x) ££…………………………………………………..
……………………….. 240 V 50 Hz power included
………………………..(x) £3.00
………………………..(inc VAT and P&P) each
………………………..(x) £…………………………………………………..
I enclose cheque/PO made payable to Sinclair Radionics Ltd for
………………………..(x) £…………………………………………………..
………………………..(indicate total amount)………………………..
I understand that if I am not completely satisfied with my PDM35 I may return it within ten days for a full cash refund.

Name…………………………………………………………………………..
Address………………………………………………………………………...
PW1

World leaders in fingertip electronics

Practical Wireless, January 1978
MINI CONSOLES
Ideal for small desk control panels and consoles. Moulded in orange, blue, black and grey ABS.
Incorporates slots for holding 1.5mm thick pcb's. Aluminium panel sits recessed into front of console and held by screws running into integral brass bushes.
MC 161 x 90 x 58mm £1.53 (1-9) £1.50 (10+)
MC 215 x 120 x 75mm £2.20 (1-9) £2.17 (10+)
Add 25p per £1 order value for Post & Packing

ECONOMY QUALITY LED's
50 for only £6.00 -- 100 for only £9.00. Mixed bags, all sizes, various colours

FULL SPECIFICATION LED's

<table>
<thead>
<tr>
<th>Size</th>
<th>Red (specify size)</th>
<th>Green, Yellow, Orange (specify size)</th>
<th>£1.00 per pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>10mm</td>
<td>75p pack per</td>
<td>100mm hole by plastic boss</td>
<td>£1.20 per pack</td>
</tr>
<tr>
<td></td>
<td>(Each pack contains 5 LED's, Mounting Clips and Data)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECONOMY QUALITY NEON INDICATORS
Supplied with resistor for 240 Volts operation 100mm leads, held in 8.4mm hole by nut.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Red, Amber, Clear, Opal</th>
<th>£1.25 each (Data supplied with Spec. display only)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Quantity quotations on request</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.P. Note: Unless included in price add 25p Post & Packing for orders totalling under £10. All prices include VAT and are valid in UK only for 2 months from journal issue date</td>
</tr>
</tbody>
</table>

ECONOMY QUALITY SEGMENT DISPLAYS
Full 8 Segment Display. Each segment £1.35. Full 8 Segment Display for 1.25 each (Data supplied with Spec. display only)

<table>
<thead>
<tr>
<th>Common Anode</th>
<th>0.33 - 0.35 Orange</th>
<th>£1.35 each (Data supplied with Spec. display only)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Quantity quotations on request</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.P. Note: Unless included in price add 25p Post & Packing for orders totalling under £10. All prices include VAT and are valid in UK only for 2 months from journal issue date</td>
</tr>
</tbody>
</table>

12 VOLTS MINI HAND DRILL
Ideal for drilling pcb's, chasis etc as well as model making. Supplied with 2 collets that accept tools and drills with 3/32" and 0.90" dia. shanks. £7.56 (Includes VAT & P.P.)

240 VOLTS MINI HAND DRILLS
Ideal for drilling pcb's, chassis etc as well as model making. Supplied with 3 collets that accept tools and drills with 1mm, 2mm and 1/8" dia shanks. £8.75 (Includes VAT & P.P.)

ACCESSORY TOOLS... 5 Burs, 1mm, 2mm, 1/8th Drills, 3/32" Collet Price £1.75 (Includes VAT & P.P.)

STOP WASTING TIME SOLDERING
The NEW MM BREADBOARD accepts Transistors, LED's, Diodes, Resistors, Capacitors and all DIL packages with 6 to 40 pins

Includes slot-in Component Support Bracket and has over 400 individual sockets, plus Vcc and Ground Bus Strips. Price £0.72 (Includes VAT & P.P.)

TYPE MP NEON INDICATOR
Supplied with resistor for 240 Volts operation 150mm leads, held in 8.4mm hole by nut.

<table>
<thead>
<tr>
<th>Red, Amber, Clear, Opal</th>
<th>20p each</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quantity quotations on request</td>
</tr>
<tr>
<td></td>
<td>P.P. Note: Unless included in price add 25p Post & Packing for orders totalling under £10. All prices include VAT and are valid in UK only for 2 months from journal issue date</td>
</tr>
</tbody>
</table>

SEVEN SEGMENT DISPLAYS

<table>
<thead>
<tr>
<th>Common Anode</th>
<th>0.33 - 0.35 Orange</th>
<th>£1.35 each (Data supplied with Spec. display only)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Quantity quotations on request</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.P. Note: Unless included in price add 25p Post & Packing for orders totalling under £10. All prices include VAT and are valid in UK only for 2 months from journal issue date</td>
</tr>
</tbody>
</table>

STANDARD 150V DC AUXILIARY VOLTAGE REGULATORS
Two 150V, 20mA, 1000V, 20mA, 500V, 20mA, 50V, 20mA, 10V, 20mA, 1V, 20mA, 0.5V, 20mA. £7.50 each (Data supplied with Spec. display only)

STANDARD 150V DC AUXILIARY VOLTAGE REGULATORS
Two 150V, 20mA, 1000V, 20mA, 500V, 20mA, 50V, 20mA, 10V, 20mA, 1V, 20mA, 0.5V, 20mA. £7.50 each (Data supplied with Spec. display only)

STANDARD 150V DC AUXILIARY VOLTAGE REGULATORS
Two 150V, 20mA, 1000V, 20mA, 500V, 20mA, 50V, 20mA, 10V, 20mA, 1V, 20mA, 0.5V, 20mA. £7.50 each (Data supplied with Spec. display only)

STANDARD 150V DC AUXILIARY VOLTAGE REGULATORS
Two 150V, 20mA, 1000V, 20mA, 500V, 20mA, 50V, 20mA, 10V, 20mA, 1V, 20mA, 0.5V, 20mA. £7.50 each (Data supplied with Spec. display only)

STANDARD 150V DC AUXILIARY VOLTAGE REGULATORS
Two 150V, 20mA, 1000V, 20mA, 500V, 20mA, 50V, 20mA, 10V, 20mA, 1V, 20mA, 0.5V, 20mA. £7.50 each (Data supplied with Spec. display only)

STANDARD 150V DC AUXILIARY VOLTAGE REGULATORS
Two 150V, 20mA, 1000V, 20mA, 500V, 20mA, 50V, 20mA, 10V, 20mA, 1V, 20mA, 0.5V, 20mA. £7.50 each (Data supplied with Spec. display only)

STANDARD 150V DC AUXILIARY VOLTAGE REGULATORS
Two 150V, 20mA, 1000V, 20mA, 500V, 20mA, 50V, 20mA, 10V, 20mA, 1V, 20mA, 0.5V, 20mA. £7.50 each (Data supplied with Spec. display only)

STANDARD 150V DC AUXILIARY VOLTAGE REGULATORS
Two 150V, 20mA, 1000V, 20mA, 500V, 20mA, 50V, 20mA, 10V, 20mA, 1V, 20mA, 0.5V, 20mA. £7.50 each (Data supplied with Spec. display only)

STANDARD 150V DC AUXILIARY VOLTAGE REGULATORS
Two 150V, 20mA, 1000V, 20mA, 500V, 20mA, 50V, 20mA, 10V, 20mA, 1V, 20mA, 0.5V, 20mA. £7.50 each (Data supplied with Spec. display only)

STANDARD 150V DC AUXILIARY VOLTAGE REGULATORS
Two 150V, 20mA, 1000V, 20mA, 500V, 20mA, 50V, 20mA, 10V, 20mA, 1V, 20mA, 0.5V, 20mA. £7.50 each (Data supplied with Spec. display only)

STANDARD 150V DC AUXILIARY VOLTAGE REGULATORS
Two 150V, 20mA, 1000V, 20mA, 500V, 20mA, 50V, 20mA, 10V, 20mA, 1V, 20mA, 0.5V, 20mA. £7.50 each (Data supplied with Spec. display only)

STANDARD 150V DC AUXILIARY VOLTAGE REGULATORS
Two 150V, 20mA, 1000V, 20mA, 500V, 20mA, 50V, 20mA, 10V, 20mA, 1V, 20mA, 0.5V, 20mA. £7.50 each (Data supplied with Spec. display only)
Trouble shooting

We have already mentioned that the master oscillator operates from a lower supply rail than the dividers and during the constructional tests this was likely to give trouble. Generally the loading on the un-stabilised +15V rail—when all the ICs have been inserted—will clear this problem but it is possible, in some instances, that some instability remains (diagnosed by an irregular or distorted quality of some notes. This can be overcome by increasing the value of +15V rail dropping resistor (R95) to 10 ohms. Remember this must still be a \(\frac{1}{2} \) watt device!

In the unlikely event of total failure you must check the system carefully in a systematic manner. Total failure is most likely to be associated with the power supply, internal amplifier, or master oscillator. Test procedures have been dealt with in previous issues.

It is difficult to decide whether the AY-1-0212 is faulty (IC2) without using an oscilloscope; if you can be certain that the master oscillator is working with no audio tones from the output pins of this IC, there is a high chance that the integrated circuit is faulty. In the absence of a 'scope there is a simple, but effective, test to check the master oscillator. Place a medium waveband transistor portable radio very close (within an inch or two) to Tr1 and Tr2. If you tune over the band, you should hear heterodyne whistles at several points. These may be identified from the master oscillator by turning up the Vibrato Depth control. The whistles turn into chirrups.

Failure of the vibrato oscillator is most likely to be due to incorrect setting of VR2.

As with any printed circuit board project most problems are caused by poor soldering giving rise to dry joints, connections that have been missed—particularly under the large integrated circuits—solder blobs bridging conductor tracks, components put in the wrong holes and components inserted the wrong way round.

It is very unusual for components to be faulty—provided they have not been misused or abused. Remember that it is easy to damage MOS integrated circuits by handling them wrongly. In a complicated design such as the Jubilee Organ, there are bound to be occasions where a component on the extreme end of its tolerance can effect the final performance.

Postscript

Some people might wish to carry out a simple modification which enables the accompaniment section to memorise the last key that was depressed. If this is done, the rhythm and accompaniment sections will continue to repeat the same vamp without the player having to keep his finger on the key. To change the key of the vamp requires a single depression of the next key which is then memorised. Only major chords can be memorised. The modification requires a two pole change-over switch and a break in the printed wiring on the pcb at pins 5 and 35 of IC13 (the Chord Generator). Normally both these pins are strapped to ground 0V. Connecting them to the +15V rail through the switch activates the latch circuitry associated with each chord select key.

SO YOU WANT TO PASS THE RAE?

---continued from page 662---

frequency of the parallel tuned circuit is, in practical terms, the same as for the series tuned circuit,

\[
f = \frac{1}{2\pi} \sqrt{\frac{1}{LC}}
\]

![Fig. 32: A parallel resonant circuit.](W5275)

![Fig. 33: The equivalent circuit of Fig. 32.](W5380)

![Fig. 34: In a parallel RLC circuit at resonance, the impedance is at a maximum, and the current is a minimum.](W5861)

Magnification Factor "Q"

In the circuit shown in Fig. 30, at resonance, the voltage across the inductor (or the capacitor) can be considerably greater than the applied voltage V. As we have seen, the current at resonance is defined by the value of the resistor R, but the voltage across the inductor (or the capacitor) is given by the product of the current and the reactance in question, which is usually very much greater than R. The ratio of the voltage across the reactance to that across the resistor is called the Magnification Factor or "Q" of the circuit.

The "Q" of a practical tuned circuit depends mainly on the quality or "goodness" of the coil as the capacitor normally has very low losses associated with it. A high "Q" tuned circuit has the ability to respond to one frequency whilst rejecting others. In a receiver, this would imply "selectivity", the ability of the receiver to select a wanted signal and reject unwanted ones.

An example of the practical use of a simple resonant circuit is in an Absorption Wavemeter. In this device the resonant frequency of a tuned circuit is used to check the output frequency of a transmitter.

In the next section we will be dealing with diodes, transistors and valves, also block and circuit diagrams.

Practical Wireless, January 1978

669
Pocket-it

With "in" words like Teletext and Oracle commonly in the news these days, one tends to be on the lookout for anything new in this field. The most exciting piece of news this month is that a manufacturer is concentrating its efforts on producing a Teletext receiver which will fit into the coat pocket. Although the company (in Germany) has primarily aimed at producing a portable radio size unit, the pocket version is hot on its heels. It is planned that the unit should be complete i.e. you do not need to plug it in or connect it to a TV receiver in any way. The coat pocket version (it is planned) will have its own aerial and tuner, IF amplifier and Teletext decoder. This will feed a display of LEDs (for the mains version) or liquid crystal cells (battery model) and thus avoid using a conventional cathode ray tube. For anyone following the stock market, this looks a good bet—as and when it becomes available.

After remembering using the old PO 3000 type relays for early model control, I am pleased to note that a new DPDT relay, housed in a dual in-line package and standing only 0.38in high, has appeared on the American market. It fits standard 16-pin DIL sockets which is very useful, constructionwise. Even nicer is the extreme sensitivity of these little beasts: the coil requires 200mW maximum to pull in. On the business side, the contacts will switch a resistive load of 1A at up to 28V DC and will carry 5A. It is amusing to note that the manufacturers of this little relay have the address: 100 Relay Road! Clearly an address which should click with those who are really switched on.

Smart alices!

It seems that we will have to live with the word microcomputer for a while longer—until something even more wondrous takes its place, no doubt. The newest and most interesting development in this field comes from Japan. One of the electronics giants over there is to market a mini-computer-type kit which is aimed at school children between 12 and 14 years old. With a starting production schedule of producing some 4,000 kits a month, the company seems confident it can sell a large number. The price (converted very roughly) would be around £65—£95. Costly, perhaps, but the kit does contain quite a lot. There's a microprocessor (you know of a home without one?), a random access memory and a read-only memory, arithmetic/logic unit, 8-bit latch, audio amplifier, two static RAM chips, keyboard, displays and drivers, and even a loudspeaker. One of the exercises for users is to become an electronic composer. You can compose a tune and enter it into memory. At the touch of a button your masterpiece will be played back using oscillators (yes, these are included in the kit) Tunes of up to 127 notes are possible and are restricted to a maximum of three octaves. This takes in most if not all of the popular melodies for those who might prefer to stick to known tunes. I can see the time when a hush will descend on the Royal Albert Hall, and the soloist will emerge, tuck a 16-pin DIL under his chin and "give forth". Ah, come back Lionel Hampton, all is forgiven!

Valve size?!

New things are often labelled "best" or "biggest" etc. A new semiconductor just released looks as though it could fairly claim to be the biggest transistor in the world. It will handle a peak current of 200A with voltage rating of 550V. These devices have a gain of 15 at the 50A mark and could doubtlessly do nasty things to loudspeakers in disco systems where power is all. Transistors have certainly come a long way since those "red spot" semiconductors I bought in the Edgware Road many summers ago (and they cut off at about 800kHz).

Sunset strip

The recent Energy Exhibition in London highlighted (for me) just how sadly inefficient solar cells are. Manufacturers get excited at anything which exceeds 10% efficiency. While it is almost certain that newer and better materials and techniques will come, there is some work in hand to maximise what is already available. For example, one American company is aiming to get the costs down to fifty cents per watt of power produced. The approach here is to perfect further the technique of "pulling" a ribbon of silicon to get as wide a strip as possible. Up until now, 1in and even 2in wide strips have been produced. Now, the aim is to get 8in widths. The thickness involved is around half a millimetre but by using improved techniques it is hoped to get this down to less than 8 thou.

The strip itself is produced by touching the surface of a molten pool of silicon with a little "seed" bar of silicon. The seed is then very slowly withdrawn. As it rises it "pulls" silicon with it rather like pulling the surface layer of a bowl of hot chewing gum! The cooling length is pulled slowly through a die to form a strip and the silicon allowed to cool at a controlled rate from over 1,200°C down to 600°C. When it is completely cool, it is scribed and broken up into individual cell sizes.

A filter for all occasions

Readers interested in audio filters—particularly electronic music enthusiasts, will find the new SSM 2040 DIL device of interest. It comprises a voltage-controlled monolithic filter and it can be made to synthesise almost any kind of active filter from low-pass to high-pass, band-pass or notch. The manufacturer is offering samples only at the moment and these are quite expensive. Like most things, the price should drop once production increases and the devices would then probably become available to the home constructor. At present, I am waiting further information but it seems possible to use just the one, single filter and to "switch" it to get numerous effects in an electronic musical instrument. Watch this space.
NEXT MONTH IN...
practical WIRELESS

tune up your car with the PW
ECONOMY TIMING STROBE

A very simple design which uses an a.c. mains power supply to drive the Xenon strobe tube. This provides a really bright flash, allowing easy checking of ignition timing even in full daylight. This unit is suitable for conventional or electronic ignition systems.

Also:
Active Tone Control

Medium Wave Tuner/Amplifier

A three-transistor circuit based on the well-known Baxandall tone control, ideal for use in disco or public address systems. A wide variety of source and load impedances can be accommodated.

This unit is designed to provide preamplifier input facilities plus medium wave AM broadcast coverage for feeding into an existing power amplifier, which also furnishes the necessary power supply. Prealigned IF transformers ease the setting-up procedure.
Due to the ever increasing cost of electricity the need was seen for a reliable and efficient method of controlling an electric fire by reference to temperature. It was thought that the control should be the same, if not better than, that of a gas fire. It should be proportional and automatic, i.e. adjusting to a preset level room heat. When switching large currents of 12-15 amps for up to 3 kilowatt fires, radio frequency interference can be a problem when using thyristors or triacs. With this in mind advantage was taken of the fairly new zero voltage switch integrated circuit, which will give very good proportional control with minimum interference. This is the basis of the circuit shown in Fig. 1.

Zero Voltage Firing

With zero point firing the current in the load is turned on at the zero voltage point; this has the effect of reducing radio frequency interference. The power in the load is controlled by the number of half cycles reaching the load in a given period. This technique can only be applied to certain loads, but is particularly suited to heater elements, which have a slow thermal inertia. The type of system described allows just sufficient bursts of power to reach the load, to make up system losses. This is achieved by using an internal generated ramp voltage (see Fig. 2 diagram). The result is very accurate control of the power produced in the load and hence, in this case, the temperature of a room.

Circuit Description

The principle of the operation of the zero voltage switch integrated circuit can be seen in Fig. 2. Here a ramp voltage is generated and used to turn on bursts of current in the load at the control voltage which is determined by, and related to, the temperature of the room, detected by the thermistor's resistance. This reference voltage, set up by the control circuitry, is fed into an operational amplifier. R1, R3, R4 and TH1 form the control circuit to give

![Fig. 1: The circuit diagram of the power controller.](image-url)
a means of controlling the related voltage. The width of the ramp voltage is set using the external components R1 and C1. When Pin 2 is at a lower voltage than the bottom of the ramp voltage, the heater is on, and when the voltage is higher than the top of the ramp the heater is off. Therefore voltages lying between the top and bottom of the ramp produce bursts of power to the load thus maintaining the temperature set by the control. The values of VR1, R4, TH1 type, have been chosen to give a temperature range in the region 40°F to 80°F. The output pulse width is controlled by C2, and was chosen to suit the type of triac used, and is therefore fairly critical to ensure that the triac fires correctly. The economy part of the circuit is effected by R8 and S2, R8 being lower in value than the minimum resistance of the thermistor at the high temperature. This ensures a very low load current at low or high temperatures.

Practical Operation

The load can be any electric heater up to 3 kilowatts, with the exception of those using electric motors, i.e. fan heaters. Due to the values of R1, C1, used for good control of an element (bar type), the motor will operate in bursts, and not run smoothly. The 3 kilowatts could be extended using a larger triac and modifications to the gating circuitry. But 3 kilowatts was thought to be adequate. The sensing ele-
ment is a miniature bead type thermistor, which in the prototype was mounted in a miniature jack plug, using epoxy resin.

When the room temperature is low the heater will be turned on. When the temperature of the room has reached the required level, that set by the position of VR1, just sufficient current is applied to the heater to maintain the temperature constant. When the temperature rises, the thermistor value drops and so the current is reduced. Figs. 5 and 6 show some graphs of the performance. In Fig. 6 it can be seen that the temperature, with the control in the mid-position, was kept quite even over a period of some 3 hours. It was found, in fact, that once 70°F was reached, and the control left in the central position, the temperature varied only 1°-2°F in 8 hours.
Fig. 5: Graph showing relationship between consumption and temperature.

components

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 200kΩ ½W</td>
<td>C1 470nF Polyester</td>
</tr>
<tr>
<td>R2 47kΩ ½W</td>
<td>C2 68nF</td>
</tr>
<tr>
<td>R3 82kΩ ½W</td>
<td>C3 100µF 25V electrolytic</td>
</tr>
<tr>
<td>R4 27kΩ ½W</td>
<td>C4 100µF 25V electrolytic</td>
</tr>
<tr>
<td>R5 6.8kΩ 10W</td>
<td>C5 33nF Polyester</td>
</tr>
<tr>
<td>R6 150Ω ½W</td>
<td></td>
</tr>
<tr>
<td>R7 10kΩ ½W</td>
<td></td>
</tr>
<tr>
<td>R8 2200Ω ½W</td>
<td></td>
</tr>
<tr>
<td>VR1 100kΩ 1n,</td>
<td>Semiconductors</td>
</tr>
<tr>
<td>TH1 GM472</td>
<td>T1 2N5574</td>
</tr>
<tr>
<td>VR2 82k(Ω)</td>
<td>IC1 305/800</td>
</tr>
</tbody>
</table>

Miscellaneous: mains voltage neon, 2 SPST miniature toggle switches, miniature jack plug and socket, 13 amp plug and socket, 13A fuse, fuseholder or fuse clips (20mm), 100mA fuse (20mm), PCB (Readers PCB Service), suitable case.

Fig. 6: Further graph indicating stable temperature level at mid-control position.

Construction

Reference to Figs. 3, 4 and 7 will show the method of construction. First and foremost it must be mentioned that mains voltages are being dealt with and a reasonable amount of care must be taken during construction. To ease the construction it is recommended that the approved P.C.B. is used i.e. Readers P.C.B. services, to minimise wiring errors. The assembly of the P.C.B. should be carried out first. The I.C. should be mounted in an I.C. socket. The case of the prototype was made out of aluminium extrusion, as used in shop fitting work, but any metal box of rigid construction and adequate size could be used. The unit could in fact be mounted flush to the wall, the brickwork giving added heatsinking to the triac. All leads should be kept away from the 6-8k 10 watt resistor. When mounting the triac, it should be fastened to its own heatsink, using the correct insulating kit. Figs. 7a and 7b show the mounting. The sense element in the prototype was mounted in a miniature jack plug, using epoxy resin, see Fig. 7d. There is no reason why the sense element should not be remote from the unit, say in its own small box. This however could possibly interfere with the fact that the unit is normally a portable accessory to an electric fire. If all the correct components are used there is no setting up of the unit to be done, but emphasis must be made here on checking wiring to the P.C.B. to eliminate damage to the I.C. Short circuits around the triac should be checked for, and also to make sure the case is adequately earthed.

Practical Wireless, January 1978

675
Were the summers sunnier, the blooms bigger and life more exciting when you were younger? Was the beer better, were the steaks juicier and the girls prettier? However that may be, I truly believe that the inhabitants of Research and Development Laboratories were more eccentric. In many instances the pranks they got up to were frankly crazy.

In his youth Point Contact spent varying amounts of time in laboratories which were only concerned with electronics in an oblique way, the immediate object of interest being some kind of material, a dielectric or semiconductor for example. Consequently, they were staffed by a motley mixture of Physicists, Chemists and that invaluable oddity, the Tame Mathematician, as well as the occasional Electronic Engineer. PhDs were two a penny, almost every other person had a higher degree except for yours truly and one or two other undergraduates. Whether as vacation students or student apprentices we were privileged for a period to participate in the work of this or that laboratory—and in the play too!

Some of the antics which people got up to were relatively harmless, some were fairly hazardous to the prankster and some potentially dangerous to others. In the first category I remember the Plasticene ploy. Plasticene (like Meccano) is a valuable laboratory aid with a thousand and one uses, like instant mounting for a specimen, plugging material for pipework etc. It was used again and again until it dried out and was thrown away and replaced. If you wanted some you had only to look around and there on the nearest shelf, in the cupboard, on the bench was a lump just waiting to be used. Of course, first of all it had to be well kneaded to make it soft and pliable again—and here care was necessary. The unwary were caught out by the prankster who had carefully fashioned a hollow lump and filled it with water, usually coloured with red ink, before smoothing over the hole and leaving it on the shelf.

Much more spectacular was the party trick of a certain Dr. K, which with a little prompting he would demonstrate. Pouring some liquid air from the Dewar flask of a vacuum-trap into a 50 ml beaker, he would then solemnly take a sip and roll it round and round his mouth. If one held up a smouldering taper he would breathe on it and it would burst into flame. (As liquid nitrogen boils at a lower temperature than liquid oxygen, it boiled off first, so unless replenished from a new delivery, vacuum-trap Dewars usually contained mainly liquid oxygen, as one could see at a glance from the pale blue colour.) He would then spit out the remainder, which vapourised in a flash on hitting the floor. Despite his assurances that it was quite safe if one kept the liquid on the move with one's tongue, I recount this stunt only to illustrate the
further time before failure) for cycle I am board used for or 61.03515Hz. This divides fourteen four as nited. Device clocked 1.01296376 1MHz output frequency, so being available, solar device clocked 1MHz and one cycle at the output would reach completion in 1-01296376 × 10¹⁴ years.

This is a good bit longer than Point Contact is capable of imagining, in fact if just four CD4020s had been switched on in the year AD0, then given a long-life battery and assuming a rather good MTBF (mean time before failure) for all the components including the 1MHz clock oscillator, there would still be another 305 years to go before the output of the last i.c. clocked over!

The said colleague came back the next day with the further useful (?) information that there is a Motorola device number MC14521 which is a 24-stage ripple counter and that a boardful of 35 of these would have an output period (when clocked at 1MHz) of 10³ divided by 7-331559403 × 10²⁹ seconds or approximately 2.3 × 10²⁹ years. A suitable long-life battery not being available, solar cells wouldn’t help much either, he assured me, as the sun is expected to have burnt out in the odd 10⁴⁴ years or so. Figures like these are so meaninglessly incomprehensible that the only thing to be said of them is that they do demonstrate the ample capacity of my informant’s all-singing all-dancing scientific pocket calculator.

THIRTY-CHANNEL REMOTE CONTROL

Remote control of channel changing has been a feature of some TV sets for many years, sometimes along with remote control of sound, brightness and colour. More recently however fifteen and thirty channel remote control systems have been featured on some imported sets and some export models. These are based on a set of CMOS i.c.s, and the use of these more elaborate systems is likely to spread in the near future since they can accommodate the functions required for teletext page selection. The operating principles of this type of remote control will be described, and examples of typical peripheral circuitry given.

DECODER SERVICING

A general guide to the operation of PAL decoders, the faults that occur in them and trouble-shooting procedures, also mentioning some of the more important variations between different designs.

TELETEXT EYEHEIGHT

What? Well, the transmission of digital teletext signals involves many differences from the well known problems of transmitting and receiving normal TV picture signals. For example, with a conventional TV signal the picture worsens gradually with reduction in signal strength, whereas with teletext reception there is an abrupt transition from correct reception to the decoder producing “scribble”. It’s important therefore to be able to assess the quality of a teletext signal, and for this purpose the BBC now inserts teletext test signals on lines 20 and 330. These can be scoped, and the eyeheight of the digits observed. Harold Peters explains.

KINDLY NOTE!

Jubilee Organ Part 3 — November 1977

Page 506: In describing the interim keying tests a mistake was in the text. When the flying lead is connected to the +12V point (positive end of C3) the note is inhibited. It is when the lead is removed from this point that the note will sound and it is under this condition that VR5 should be adjusted. Re-applying the 12V will terminate the tone according to the sustain setting of VR6. When S2 is open the tone burst will occur when the flying lead is REMOVED from the 12V point. The same reversed logic would apply to testing the repeat percussion effects.

next month in

Television

- THIRTY-CHANNEL REMOTE CONTROL
- DECODER SERVICING
- TELETEXT EYEHEIGHT

ORDER YOUR COPY ON THE FORM BELOW:

TO: ____________________________ (Name of Newsagent)

Please reserve/deliver the JANUARY issue of TELEVISION (50p), on sale December 19th. and continue every month until further notice.

NAME: ____________________________

ADDRESS: ____________________________

Practical Wireless, January 1978
Transmitting and receiving aerial performance is difficult to measure with any degree of accuracy particularly when the operating frequency is low and the aerial is, of necessity, very large. At frequencies as high as 28MHz (10m band) one would find it physically impossible to plot the vertical angle radiation pattern, or indeed the plane polar pattern, with the aerial operating in either vertical or horizontal polarisation mode. At 145MHz (2m band) the problem is eased somewhat since the aerials are physically small but even then they need to be mounted very high in order to obtain true “free space” radiation patterns. Further, the transmitted signal source must be a large number of wavelengths away and/or the receiving point must be at a similar distance if the aerial being tested is radiating.

It is usual to test an aerial under receiving conditions; the final result is the same. The writer has in use a 60ft high mast that can be lowered to half way so that 2m aerials for testing can be mounted on a special rotator system that will turn the aerial through 360° as well as from horizontal to vertical mode. The system is remote controlled from the measuring instrument position and the distant transmitters normally used are G8VHF for horizontally polarised signals and GB3PI, or local amateur stations for vertically polarised signals. Even so, the process of carrying out polar pattern and gain measurements is laborious to say the least, and indeed somewhat hazardous, especially when large beams (a recent one was a 12-element ZL Special) have to be hoisted to a small platform about 30ft above ground before being raised to full height for tests. On new designs there is the added problem of making modifications, so an aerial may have to be hauled up and down several times before the design can be approved.

The Theory of Similar Structures

It is well known that aerials scaled down in frequency behave in exactly the same way as they would at the original frequency. At one time the writer used a frequency of 10000MHz to operate a model aerial system capable of obtaining quite accurate polar patterns of both plane and vertical radiation fields. At such a high frequency however, impedance matching, with any degree of accuracy, becomes very difficult indeed.

The “theory of similar structures” is applied in many spheres of engineering. For example, for proving ship’s hulls by using scaled-down models in wave tanks, models of aircraft in wind tunnels and models of bridge structures etc. It is readily adaptable to transmitting aerials and if we take a dipole for example, its familiar figure-of-eight radiation pattern is exactly the same whether the aerial is cut to operate on 2MHz or 200MHz, or any other frequency. This applies, of course, to aerials of all other configurations and to directivity, gain and polarisation as well.

Scaling down makes the aerials much smaller, easier to construct and handle, reduces the distance between the source of transmission and the aerial being tested, and brings the “free space” position much nearer the real earth. If the effect of earth is required as part of the measurement then a metal ground plane of several square wavelengths extent is no great problem. As mentioned however, if the scale frequency is too high matching the aerial to its feed point becomes a problem and to overcome this frequencies of between 600 and 1000MHz are commonly used.

Some years ago the writer used 800MHz for the original design of the “ZL Special” end-fire beam for operation on 14 and 28MHz and which was described in PW recently for 2m operation. At frequencies around those mentioned quite accurate matching is possible, materials for constructing the aerials can be scaled down, as can transmission lines, matching stubs and baluns etc. Even “miniature” co-axial cable, with little loss up to around 1000MHz, is readily available.
A Model Aerial System

A system recently built by the writer and described here operates at a frequency of 650MHz and, as with virtually all systems of this nature, aerials being tested are operated in receiving mode. The transmitter is normally placed at a distance of 10 wavelengths, in this case 4-6m, and it is equipped with a three-element (flat plane reflector) beam aerial to concentrate the radiation forward, to provide a sufficiently large illumination area and to reduce reflected signals to a minimum.

The "receiver" consists basically of a simple diode detector to provide a DC voltage from the RF signal picked up by the aerial being tested and which is used (a) to operate a pen chart recorder to obtain either polar co-ordinate or Cartesian co-ordinate plots of radiation patterns or (b) a continuous direct display of a radiation pattern in polar or Cartesian coordinates on an oscilloscope screen.

The Transmitter

The transmitter is a simple self-excited oscillator using a Mullard TD1-100A valve to provide an RF output at 650MHz of about 2W. Any similar UHF valve would do and frequency stability is not critical provided drift is not more than a few MHz. Audio tone modulation can be applied for quick checks and for demonstration, in which case the model is made to radiate and the space around explored with a single dipole and diode receiver the signal from this being fed to an audio amplifier and speaker. The transmitter must, of course, be completely screened and its output (loop coupled) matched as closely as possible to the transmitting aerial. The circuit used is shown in Fig. 1 and may serve as a guide to anyone interested in embarking on a similar project.

The Measuring System

This system is rather complex in view of the facilities it provides but could be simplified by using a meter to obtain readings for plotting patterns and checking gain, in which case the receiver need consist only of a diode detector, the DC output from this being fed to a micro-ammeter via a simple attenuator.

One of the most important factors in aerial performance measurement is the "reference" to be used and this is normally a dipole. For example, in gain measurement the dipole is first set up and the signal level from this noted. It is then substituted for the aerial to be tested and the level from this ascertained. If the readings are in terms of voltage then the usual formula $20 \log_{10} \frac{V_2}{V_1}$ is used to obtain the gain in dB.

In the system described here a rather more sophisticated reference system is employed, particularly in connection with continuous oscilloscope displays and this uses an "electronic dipole" to be described later.

The block diagram Fig. 2 gives some idea of the complexity of the system, which begins at the aerial being tested, picking up the signal from the transmitter. This is coupled by a rotating loop to the detector and the received signal is rectified, the output being switched to obtain positive or negative (with respect to earth) DC which is fed to a calibrated attenuator. From here the signal goes to a pen-recorder for Cartesian or polar plotting, to a meter for making initial adjustments, or to the oscilloscope DC "Y" amplifier for direct display of Cartesian plots (see various photos). The aerial and polar plotting table are turned by either of two synchronous motors with suitable pulley and/or gear reduction to obtain (a) a slow rotation at about 1 revolution per 30 seconds for pen chart plots or a fast rotation for oscilloscope displays at between 5 and 8 revolutions per second. Directly coupled to the aerial turning shaft are (a) a system for obtaining a sync pulse for each 360° of rotation and pulses for each 10° of rotation which are used for Z modulation (scope "bright up") pulses and (b) the components for generating the electronic dipole signal. The sync and 10° marker pulses are obtained by a light shining through small holes in a perspex disc (painted black).

Fig. 1: Circuit diagram of the author's 650MHz transmitter.

The 650MHz test transmitter with its 3-element aerial mounted above it.
on to photo transistors, the outputs from which are amplified and shaped into short duration pulses. The disc contains 36 holes for the 10° markers and one for the 360° sync pulse.

The electronic dipole signal is obtained by shining light through a rotating disc of Polaroid material and a fixed piece of Polaroid simultaneously on to a photo transistor. As the light fluctuates sinusoidally the transistor generates two "sinusoidal" DC voltages per revolution, the equivalent of the radiation pattern from a dipole in Cartesian co-ordinates, see Fig. 3. The signal is coupled to the Y2 DC amplifier on the oscilloscope via an attenuator so that the level can be set against that from a real "reference" dipole and, of course, retained and displayed simultaneously whilst an aerial is being tested.

An additional feature in progress of being developed is to provide the oscilloscope (an Advance model O5250) with a controllable circular time base; controlled, that is, from the aerial signal to provide continuous display of patterns in polar form as depicted in the block diagram.

Examples of Pattern Plotting

First some examples of plots from the oscilloscope in Cartesian co-ordinate and, apart from the dipole, I have taken one or two of the aerials described in my articles in the PW July 1976 and May 1977. The pattern from a real dipole is shown in Fig. 4 and, as can be seen, compares very favourably with the "electronic dipole" readout in Fig. 3. Each bright spot represents 10° of rotation, through 360°. Now examine the scope readout, Fig. 5, from the "ZL Special" end-fire beam described in PW May 1977, operating in horizontal mode. The two minor rear lobes are displayed to the right and left respectively. Compare this with the polar co-ordinate plot in Fig. 6 taken from the same aerial and with the same equipment.

The $\frac{1}{4}\lambda$ ground plane is a very popular aerial but it is not as efficient as one would suppose due to its high-angle radiation. It is omni-directional and, ideally, maximum radiation should be parallel to the ground. As the vertical angle pattern Fig. 7 shows, maximum radiation is at an angle of about 30° and although some gain is obtained from this aerial over a conventional $\frac{1}{4}\lambda$ ground plane it is wasted in an upward direction. In fact the "gain" on a line parallel to the ground is negative with respect to a vertical dipole. The oscilloscope readout Fig. 8 shows the same pattern in Cartesian co-ordinate.

Performance Defects

With this system of testing all kinds of defects in performance can be seen readily. Taking again the $\frac{1}{6}\lambda$ ground plane, its normal omni-direction pattern

Aerial under test

[Diagram of test setup including aerial, detector, markers, etc.]

A 15-element "ZL Special" mounted on the rotator system atop the author's 60ft mast.

Practical Wireless, January 1978
Fig. 3: Oscilloscope Cartesian plot of the "electronic dipole". (See text)

Fig. 4: A Cartesian plot of the response pattern of a real dipole.

Fig. 5: Cartesian plot of the response pattern of a "ZL Special" array, operating in the horizontal mode.

Fig. 6: A polar co-ordinate plot of the aerial of Fig. 5, plotted using the pen chart recorder.

Fig. 7: Vertical radiation pattern of a \(\frac{1}{2} \)-wave ground plane aerial.

Fig. 8: Oscilloscope Cartesian plot of the response of the aerial of Fig. 7.
should be a circle if the aerial were behaving perfectly. If a mismatch exists, or the aerial is off resonance, the pattern can become distorted i.e., not a perfect circle. The presence of other resonant conductors will also produce this effect. The oscillogram Fig. 9 shows this quite clearly. The lower trace (B) is a reference dipole pattern. The upper trace should be a straight line, therefore there is a loss of radiated power in some directions. The result is perhaps more clearly illustrated by the polar coordinate plot in Fig. 10 of the same aerial with the dipole pattern again for reference.

A 12 element “ZL Special” mentioned earlier, has been developed for operation on 2m and is now operational at G2BCX, the home station. This aerial started out as a 650MHz model and after adjustment and a few modifications to director spacing and length, yielded a gain (over a dipole) of 14dB. The 2m version is physically much smaller than a Yagi array having the same gain. Its radiation pattern, actually plotted operating on 2m is shown in Fig. 11 by comparison with the pattern obtained from the 650MHz model, which is shown dotted.

Slim Jim

Another aerial designed and developed with the aid of the model system is an omni-directional “free space” aerial for 2m known at the moment as the “Slim Jim”. It has no ground plane radials and is vastly superior to a 5/8λ ground plane, due to the radiation being almost parallel to the ground. The vertical angle radiation from the full scale 2m version is shown in Fig. 12. Compare this with vertical angle radiation from a 5/8λ ground plane shown dotted in the illustration. Details of both these 2m aerials will be published in the not too distant future.

To anyone contemplating setting up a test system of this nature I must emphasise that the task is not an easy one, but the results, if they are reasonably accurate, are highly rewarding.
The Blob Story.

Yes, they have got a funny name: Blob Boards.
And if you've never heard of them, you might wonder what on earth they're for.
After all they sound more like sci fi than practical electronics.
But in fact there is a good reason for the name.
It actually describes the way these printed circuit boards work. You just put a tiny blob of solder onto circuit board and component and you've made a perfect contact.
Every time.
There are of course a few other printed circuit boards around.
But we think the prices are a bit shocking.
Our prices, we think you'll agree, are more down to earth.
These Blob Boards are about half the price of the few comparable alternatives.
And unlike those alternatives, on most Bandridge Blob Boards you won't have to break the contact rails to make your circuit.
So you'll be able to use them again and again.
The roller tinned copper on Blob Board makes soldering easy, and it won't corrode, so they'll work for as long as you want them to.
You'll find a Bandridge Blob Board for every circuit you'll ever want to make, from the simplest to the most complex.
And if you're using Bandridge solderless DEC's for your prototypes you'll be pleased to learn that there's a Blob Board that exactly matches every DEC.
So when you're looking for a circuit board it'll be worth your while remembering Blob Boards.
As if you'd ever forget a name like that.

V Range - Easy to use, 1" or 15" matrix board.

IC Range - For integrated circuit work.

D Range - For discrete work, but will take IC package.

For your nearest stockist contact Bandridge Ltd., 80a Battersea Rise, London SW11 1EH. Tel: 01-228 9227.
Whether you are stuck in the frustrating immobility of a traffic jam, or suffering the boredom of a long car journey, you are sure to find facilities for in-car entertainment a great boon. Published information on the choice and installation of mobile audio equipment has not kept pace with the rapidly growing interest in the subject. This book fills the gap in a highly informative, easy-to-read manner. Written by an expert, and illustrated with many attractive two-colour diagrams, it sets out the relative merits of mono, stereo and quad in the car, and describes cartridge and cassette players as well as giving helpful advice on choosing between the systems.

CONTENTS:

1977 128 pages £2.50

A SELECTION OF OTHER USEFUL BOOKS

Beginner's Guide to Electronics — 3rd Edition
T. L. Squires and C. M. Deason
1975 240 pages £2.25

J. A. Reddihough
1975 160 pages £2.25

Gordon King
1977 240 pages £2.75

Foundations of Wireless and Electronics — 9th Edition
M.G. Scroggie
1975 552 pages £3.75

Radio Circuits Explained
Gordon King
1977 175 pages £5.50

ORDER NOW
from your local Bookseller or from

Newnes Technical Books
Borough Green, Sevenoaks, Kent TN15 8PH
In part one of this series of articles we mentioned that many of the circuits that we would be describing were going to be "one off" affairs. By this we meant that every circuit built to our specification may not necessarily work first time, without some playing about with component values. In fact this is also true of designs which are far more "respectable" than our examples! The audio amplifier in part 4 should work every time whereas the courtesy light extender of the previous month probably needs different values of timing capacitor to cater for the spread in gains of the transistors.

In passing we would recommend that if you don't spend a reasonable amount of time experimenting with simple circuits like this one, then now is the time to start. It's one of the best ways of learning about electronics in practice, as of course is reading this series!

Perhaps it's time now to stop philosophising and get down to business. The circuit for this month stems from the problem of finding which wire is which in wiring harnesses and cables. Wires always seem to end up being coated with nasty mixtures of dust and gunge and usually end in the most inaccessible places. The result of this is that "colour coded" wires can appear identical to one another and that you sometimes need to be a contortionist to hold the meter probes and simultaneously look at the meter needle. To put an end to this ritual we are going to go through the design of an audible continuity tester as this month's project.

A little while ago we saw a design for such a device which pointed out the merit of using a low testing voltage (about 0·2V) so as to avoid seeing forward biased semiconductor junctions as short circuits. Although this seems a good idea the circuit was implemented with five transistors and a Zener diode—we felt that this was rather excessive so this month we will start from scratch and "design our own".

Specification

We want to use a 4·5/5V supply, so that we can either use batteries or the 5V supply which we use for driving most of the instruments on our test bench. The device should use a low testing current—certainly no more than about 5mA—and should treat a forward biased germanium junction as an open circuit. The standby current should be as low as possible so that when the tester is left on for a few hours/days/weeks it doesn't precipitate a major energy crisis.

Design

The major problem we have to deal with is the magnitude of the voltages we have to sense. To push three or four milliamps through a forward biased germanium junction is going to need around 0·4V—we realise that the "turn on point" is usually stated to be around 0·2-0·3V but at 4mA it will be a bit more. Now sensing 0·4V is going to be quite difficult and the best solution seems to be to use the sensitivity of a transistor, at the point where it is switching on, to "catch" the small voltages in which we are interested. By far the most convenient way to do this is to work out a way of converting the input signal of a fraction of a volt into a signal of several volts, which we can then use to switch an oscillator on or off.

Early ideas

Initially all our thoughts were directed towards putting the sensing circuit in the supply to the base of the transistor. Fig. 1 shows one of our first circuits.

![Fig. 1: The start of the design.](image)

The idea is that the diode turns on a little before the transistor so that if the test probes are shorted together then the diode steals all of the base current...
from Tr1 and turns it off. If however there is a significant resistance or a junction between the probes then Tr1 will keep its base current and stay turned on.

Now this circuit has all sorts of problems in reality, but the one which caused us to abandon this circuit is that it will gobble up current at an alarming rate during standby. If the collector load resistor R1 is made large so as to reduce the quiescent current then Tr1 will be heavily saturated and hence difficult to switch off.

![Fig. 2: A possible development using a Zener diode.](image)

An alternative solution is to play around with Zener diodes, which alleviates the current problem (see Fig. 2). We don’t like this idea since, by the time you have allowed for the +5% Zener tolerance (+0·2V) and for about half a volt difference between a full battery and a half empty one, the build up of tolerances will produce a bit of a mess.

Anyway, whilst we were thinking about this method, we had a bright idea: why not put the sensing element in the emitter and stabilise the base voltage—which can be done roughly with a couple of diodes? Fig. 3 shows the sort of idea we are getting at—it seems altogether a lot better. The current consumption with

![Fig. 3: A more effective modification involving two diodes.](image)

the probes open circuit need be little more than the base current required to turn on Tr1—only a microamp or two. We will have to decide about the diodes by experiment but doubtless we can trim up the final circuit with a preset potentiometer. To check that this circuit is feasible suppose that we achieve an emitter voltage of 0·3V and that Rc is say 1kΩ: if we short the probes and ensure that Rb is sufficiently small then Tr1 will saturate, whilst if we connect a 200Ω resistor across the probes then a current of about 0·3/200=1·5mA will flow which means that Rc should drop only 1·5V. This all looks very promising.

At stage in the proceedings we can make intelligent noises about how, since we want voltage gain and aren’t particularly fussed about the current gain, a common base circuit (which this is in essence) is going to be at least as useful as a common emitter circuit (which the others were). We feel that whilst this sort of observation may be quite interesting it is not particularly useful and we certainly will not follow the scientific tradition of covering up the luck and inspiration involved by pretending that the circuit was arrived at in this way.

The Oscillator

Having got so far perhaps we should turn to the design of the oscillator. Some sledgehammer solutions spring to mind, such as using a transistor or two to amplify the current available and use this to supply a multivibrator or something. With a bit of thought we can do better than this. What about using the output of Tr1 to control the bias supply to a one-transistor oscillator—something like Fig. 4.

![Fig. 4: Here the circuit has grown into a Hartley-type oscillator.](image)

This may well work but we have a solution which we think is even better. The complementary pair type oscillator in Fig. 5 works as follows. Assume that both transistors are turned off—then C will start charging up via R and the speaker. Soon Tr1 will begin to turn on; this turns Tr2 on and the current through the speaker raises the voltage at that end of C.

![Fig. 5: An oscillator involving a complementary pair.](image)

Now it is one of the fundamental principles of electronic circuitry that you cannot change the voltage across a capacitor instantaneously. This means that the voltage at the other end of C is pushed up even higher and so even more current flows. Eventually the capacitor loses all its charge and the current through the transistors starts to drop. Provided that the component values are within a certain range (which is very wide and we won’t worry about it here) the capacitor will drag the base of Tr1 down sufficiently far to turn off both transistors again. The cycle can then be repeated. The current through the loudspeaker, which should be a low impedance type, flows in short pulses but is of sufficient magnitude to make a fair noise.

The major point of interest that this circuit holds for us is that the resistor acts merely as a charging source for the capacitor. If we take the supply-rail end of R and connect it to a variable voltage source, the oscillator won’t run when the voltage is zero and will oscillate as before when the voltage is equal to that of the supply rail. Somewhere in between these two extremes it will struggle into life and a little experimentation with the circuit on a T-Dec showed that this occurred with R=1MΩ and C=1800pF at around 1·5V.

686 *Practical Wireless, January 1978*
Keeping in touch with a fast developing technology like microelectronics can be difficult. And, like jumping on a moving train, the initial contact can be hazardous, if not actually painful.

That's why a unique line-up of IPC Business Press journals have got together to organise three days of talks and presentations plus an exhibition which will give you a chance to come to grips with the new technology of Microsystems.

That means not just microprocessors, but also interfaces, peripherals and software. Everything, in fact which is needed to transform a microprocessor into an operational system.

So climb on board Microsystems '78. To learn more about the world's fastest moving technology: Without being thrown off-balance or having the door slammed in your face.

We can think of lots of reasons why you should attend Microsystems '78. But we'll give you just eight of them:

Electronics Weekly
COMPUTER WEEKLY data processing
Electrical Times microprocessors
Electrical Review
Electron wireless world

All top journals in their fields and all sponsors of Microsystems '78. Need we say more? Except please complete and return the coupon.

I am interested in Microsystems '78.

☐ Please send me details of the seminar programme, when finalised.

☐ I would like to submit a paper to be delivered at MicroSystems '78.

☐ My company is interested in participating in MicroSystems '78 as an exhibitor.

☐ My company would like to make an industry presentation at MicroSystems '78.

Please tick the appropriate box:

Name

Job Title

Company Name

Company Address

Please return this coupon to Chris Hipwell, Room 125 Dorset House, Stamford Street, London SE1 9LU

Practical Wireless, January 1978

www.americanradiohistory.com
Hi-Fi Stereo at prices everyone can afford

Famous for over 35 years for Short-Wave Equipment of quality, "H.A.C." were the original suppliers of Short-Wave Receiver Kits for the Amateur constructor. Special offer AR1 valves—70p each.

1977 "DX" RECEIVER
Complete kit—Price £7.29 (incl. p. & p. and V.A.T.)
Customer who sent us five QSL cards, one from each continent writes: "Other countries of interest which I have heard are Korea, Japan, Sri Lanka, Liberia and many others. I was very surprised at the simplicity of the set, compared with its efficiency."
This kit is ready to assemble and contains all genuine short-wave components, drilled chassis, valve, accessory and full instructions. Full range of other S.W. kits, including the famous model.t-a plus (illustrated above). All orders dispatched within 7 days. Send for our descriptive catalogue of kits and components.

SORRY, NO CATALOGUES WITHOUT S.A.E.

"H.A.C." SHORT-WAVE PRODUCTS
P.O. Box No. 14, ID Windmill Lane
Leeds Road, East Grinstead, West Sussex RH19 3SZ

INTERLOCKING PLASTIC STORAGE DRAWERS

AS SUPPLIED TO POST OFFICE, INDUSTRY & GOVERNMENT DEPARTMENTS.

SINGLE UNITS (ID) (5ins x 2 1/2ins x 2ins) .£2.95 DOZEN.

DOUBLE UNITS (2ID) (6ins x 4 1/2ins x 2ins) .£4.95 DOZEN.

TREBLE (ID) £6.95 for 6.

DOUBLE TREBLE 2 drawers, in one outer case (AD11) £7.25 for 8.

EXTRA LARGE SIZE (5ID) £6.25 for 8.

PLUS QUANTITY DISCOUNTS!
Orders over £10, less 5%.
Orders over £60, less 7 1/2%.

PACKING/POSTAGE/CARRIAGE: Add 75p to all orders under £10. Orders £10 and over, please add 10% carriage.

QUOTATIONS FOR LARGER QUANTITIES
Please add 8%, V.A.T. to total remittance. All prices correct at time of going to press.

FLAIRLINE SUPPLIES (Dept. PW1)
124 Cricklewood Broadway, London NW2
Tel. 01-450 4044

H.A.C. SHORT-WAVE KITS
WORLD-WIDE RECEPTION

NEW COMPONENT SERVICE
Resistors 5% carbon E12 (1) to 20W 1W (15p each).
Potentiometers 5K x 328 to 10K x 100 (15p each).
Capacitors 0.01uf to 1uf 10p each.
Capacitors 25pf to 500pf 1p each.
Diodes 1N4148 to 1N4149 2p each.
Transistors 2N5501 to 2N5508 3p each.
Miscellaneous components 2p each.

We are always happy to provide prices on request.

100MA RADIO MODELS
With press-stud connectors. V.V. £3.25, 4V £3.40, 6V £3.45.
2-way £3.85, 3-way £4.00.

CASSETTE MAINS UNIT
7V/12V/24V with 5 pin din plug £1.60.
FIBREGLASS BASE £0.60.

CAR CONVERSIONS 12V INPUT
Output 9V 100mA. £1.80.
Output 12V 100mA. £1.50.

BATTERY ELIMINATOR BARGAINS
Send for free leaflet catalogue.
100mA radio types with press-stud battery terminals.
3-4V £1.95, 4V £2.50, 6V £3.00, 12V £6.00.

CASSETTE type 7V100mA with din plug £3.20.

TRANSISTOR STABILIZED 8-way type for low hum.
10mA £1.10, 50mA £1.80, 1A £2.10.
1N4148, 1A £1.95.
Car audio converter 30V DC, Output 12V 500mA £3.20.

BI-PAK AUDIO MODELS
5450 turner £12.50, £10.50.
ALC £7.20, £6.50.
MIC £6.20.

JAI22, JAI30, JAI40 AMPLIFIERS
JAI22 6V IC audio amp with free data and printed circuit £1.95.
Alc new £1.20.

S.WANLEY ELECTRONICS
DEPT. PW, PO BOX 68,
32 GOLDSIL RD., SWANLEY, KENT
Post 30p. Prices include VAT. Official orders welcome. Overseas customers deduct 7% on items marked * and 11% on others.

Practical Wireless, January 1978
If we connect R directly to the collector of the sensing transistor in Fig. 3 we will in fact have produced a resistance tester which will make a noise only when we haven't got continuity. Although this works it is not what we wanted when we drew up our specifications. Never mind, we can turn the circuit of Fig. 5 "upside down" if we reverse the polarity of both the transistors—the two circuits can then be fitted together as shown in Fig. 6. We have tapped the resistor to the oscillator from the potential divider of R2 and R3 so that we can arrange for Tr1 to be near saturation before the oscillator switches on. We have also put a preset potentiometer in the base of Tr1 to trim the circuit for maximum sensitivity. We could have put it in series with the probe leads, but let's leave it where it is for the time being.

![Fig. 6: The "combination" oscillator circuit.](image)

Component values

Perhaps we should justify some of the component values in Fig. 6 which have already been decided. R4 was chosen as 1MΩ because our experiments with the oscillator showed that this value worked well. C1 is 1800pF because this value made a nice noise. As for the transistor types: the 2N3702 and 2N3704 are simply cheap general purpose types and we chose a BC109C for Tr1 because it has high gain which will mean that we need less current in the R1-VR1 circuit and this in turn means lower standby current. What now? Well the best thing to do is to build the circuit on a T-Dec and experiment with the values of the other components.

![Fig. 7: The circuit of the completed design.](image)

on when the probes are shorted. Increasing the value of R1 to 470kΩ rectified this deficiency.

Having set the circuit to the correct operating point with a 4.5V supply we found that resistances of more than about 20Ω did not register as shorts, neither did a selection of germanium junctions in diodes and transistors. The 20Ω figure was rather better than we dared expect and even when the supply voltage was increased to 5V there was little degradation in performance. The complete circuit diagram is shown in Fig. 7.

Flushed with success we transferred the whole circuit directly from the Dec to a piece of Blob Board. A practical layout is shown in Fig. 8. If the transfer is done component by component then the whole process is very fast and you don't have the problem of losing the components among the general chaos of the work bench. We then attached a pair of old probes to the unit along with two leads for the battery.

Where do we start? We wanted a sensing current of three or four milliamps maximum so we want R2+R3 to be in the region of 1-5kΩ. We already know that we want about 1-5V drop across R3 when Tr1 is saturated, to drive the oscillator. A little experimentation showed that when R3=470Ω and R2=1kΩ the voltages were about right. Then we dug out a 500kΩ preset and soldered a couple of leads to it so that we could plug it into the Dec. R1 was chosen to be 270kΩ on the grounds that we can't possibly want more than about 70mA of combined base and diode current. The circuit was then tried without any diodes to make sure that the oscillator oscillated when the probes were shorted and stopped when they were open circuit.

We then experimented with the diodes. It turned out that with one silicon and one germanium diode in series the transistor could not be persuaded to turn on significantly at all, even with the VR1 on minimum. With two silicon diodes in series we couldn't turn the oscillator off when the probes were shorted. This is a disadvantage, as maximum sensitivity is obtained by adjusting VR1 so that the oscillator is just turned

![Fig. 8: A practical layout for the continuity tester.](image)

Practical Wireless, January 1978
In the January 1976 issue of PW we published an article entitled "Want Some Lolly?" which laid down the guidelines for budding authors. The response at the time, and for some time afterwards, was most encouraging so we feel that another similar, but updated, article could be of profit to magazine's readers alike.

First of all, don't imagine that just because you are a genius at developing and constructing electronic circuits you cannot possibly write them up as well. If you go about it in the right way, you can, and get paid for it! You have only to look at any copy of PW to see the style we use for technical articles and then copy that. What could be described as a PCB is to give an accurate account of what you are doing, from the word "go". Use a notebook and not odd bits of paper which are easily lost or used, inadvertently, for lighting your pipe!

We can sometimes arrange to help an author by providing him with a prototype board, if he can supply a rough foil pattern. A project built on stripboard can be eminently suitable for conversion to a PCB, and, again, we can usually assist. It is, perhaps, pertinent to point out here that we normally accept articles for publication on a "sole rights" basis. That is, IPC Magazines retain full copyright in the article on publication and payment of the appropriate fee to the author. Note that this includes the design of any PCB in the article. PCB layouts published elsewhere and possibly already the subject of copyright, cannot be accepted as part of an article submitted for publication.

When experimenting with a circuit you are bound to make voltage or current measurements so put these values on the circuit diagram in your notebook. If using an oscilloscope to check waveforms draw these in at the appropriate point, together with their amplitudes, if these have been measured.

If you think that your brainchild is likely to be of interest to the readers of PW then drop a line to the Editor with a brief résumé of what it is and what it does. If its appearance is important then a colour snapshot of it can be very informative to the Editor. DO NOT SEND THE PRINT UNTIL REQUESTED!

Assuming that an article is requested what does the Editor want to receive from you? Briefly, the manuscript (MS), components list, plus circuits and constructional drawings. So let us look at these requirements in detail.

1. The MS. This should start with a brief introduction describing how the project came into being and what it achieves. If a technical specification is warranted put this on a separate sheet of paper. Next, a description of the circuit/s and how they work, with references to components listed to the circuit diagrams. Adequate constructional information comes next and this should not be skimped. Refer to your drawings as necessary, remembering that we shall be adding our own photographs to assist the reader. Finally, information on the alignment or adjustments that are needed to get the project working properly, together with any notes on snags that may have arisen.

To get a good, clean and presentable MS it is imperative to write it all out beforehand, checking and correct-
WHAT'S NEW?

ME, IK2

does electronics interest you? discover, learn, perfect, and..enjoy yourself

Teaching Kits represent, without a doubt, the most economical and most absorbing method of understanding Electronics perfectly, even starting at zero, without effort, while practising your favorite pastime.

Each kit allows you to make more than 400 experiments, which will lead you to master the theory and practice of circuits. Only the quantity, supply, and direct sale allow us to maintain these prices, so don't wait, we will obliged to raise the price.

A economic and passionate method, from introduction to new job opportunities!

The manuals teach you the techniques of the kit clearly and in detail, at its most recent level, starting from zero, and guide you in making an infinite number of experiments, assemblies, apparatus, enjoyable, often useful, always instructive, and absorbing.

A laboratory in your home: mini, to be sure, but serious and technically important: Electronic voltmeter, logic indicators. On epoxy resin board, you wire the assemblies using the numerous parts furnished. You are sure to understand everything and succeed, and if any point remains unclear, our engineers will reply to all your questions, send only an envelope with your name and address for an answer.

IK2 semiconductors:

Including the most advanced techniques.

The kit also constitutes an excellent base, even for preparation for official exams. And everything one needs too know to approach specialization in the best conditions.

Everything one needs to know - in theory as well as practice - (an infinite number of experiments) about: diodes, transistors, zener, phototransistor, FET, MOS, thyristors, triacs, diacs, etc. to use them rationally, to conceive assemblies, and master the theory of semiconductors needed in the repair of any apparatus.

the material:

1 EPOXY RESIN experiment board, large size. All components needed to make your own: An electronic voltmeter, LF Measures Amplifier, 4 logic indicators, and also numerous components needed to make assemblies and experiments: diodes, transistors, small signal and power, diacs, zener, triacs, LEDs, phototransistor, MOS, Integrated circuit, Resistors, capacitors, loud speaker, VC, coil former, potentiometers, ammeter, operational amplifier, etc.

the manual:

Large size, abundantly illustrated, particularly well detailed. CERTAIN TITLES ONLY: Introduction, laboratory, electricity, resistors, capacitors, alternating phenomena, diodes, transistors, amplifier, MOS and CMOS technology, filters, oscillators, applications, transistors changing state, thyristors, triacs, AM broadcasting, AM Receivers, radio control, troubleshooting, etc. More than a hundred experiments explained.

possibilities:

Some examples: beyond the lab: amplifier-oscillator-games, caterpillar effect, light modulator, broadcasting, radio Receiver, measuring instruments, radio control, gadgets, etc...

DON'T WAIT!

more than 100 experiments

£49 only

complete and mail coupon today (Block letters)

Please send me___(QTY) IK2 teaching Kit(s)

I enclose Cheque/Postal order for____£

NAME___________________________

ADDRESS_________________________

POST CODE_______________________

Practical Wireless, January 1978
Quite a few reports have accumulated since last month but pride of place must go as usual to a reader who has just got his nice new callsign. Andrew Work of Beverley, E. Yorks, often wrote to the column as A8091 but now he is G8NPT and has already been on the air on 2m with some borrowed gear. Regrettably, Andrew has quite rightly decided to forget the code test until his “O” level exams are out of the way next year. Andrew is full of praise for our new RAE series in P&W and feels sure it will bring on a new batch of licencers in due course.

Chas. Mason, subject of my November editorial is now GW4GDJ and active with a KW Vanguard on CW using a 132ft wire, plus an AR88. Chas. is in a very isolated spot in Pembroke, W. Wales, so the DX potential ought to be excellent. Simon Robinson (Stockfield, Northumberland) was on holiday on the Isle of Mull where he met local GM4EHE. Simon’s DX is still not too good, being stuck with an inside aerial around the lamp fittings!

Alan Doherty BR34668 of Portrush, Co. Antrim has not had too much time for DXing but nevertheless found something on all the HF bands. WB6NCO/VQ9 on Diego Garcia was a good find on 15m and FK8CR on Noumea (Both well known). Paul Pasquet reports that fellow listener Iain is now radio cadet with BP and away on a course, but Paul seems to have managed quite well on his own! Weirdest call of all time was 4079WARC which turned out to be in YU-land! Another of Paul’s weirdies was Z44N reported to be on an island near ZC4. A more familiar prefix was KS6 in the shape of KS6FL. A pretty good catch on 15m SSB.

It was good to hear from Dave Peck BR37621 of Cambridge once again with a short list of his RTTY finds on 20m. Dave happened to find out that his neighbour is an Ex-RAF radio op so Dave can now do about 12wpm! Better get him into the local club OM! In Brauntob, N. Devon, Paul Bradbeer now has a new FRG7 to feed from his V-3jr vertical aerial. Wisely, he has added earth radials rather than rely upon the natural earth. His favourite band is 15m although 20m and 40m get their share of his attention. First time writer John Stephen of Glasgow recently bought a Hallicrafters SX140 and is very pleased with results so far but would like to get hold of a manual for it, so if anyone can help write to John at 74 Shakespeare Street, Glasgow G20 8TJ.

Up in Dringhous, York, some CW has been copied by John Hague but he hopes to do better soon with a DX160 which is on the way. John mentions that he is taking his code test very soon but I am not sure that this is very wise. As far as I know the code test certificate is only good for a year so unless John gets his RAE in that time he might have to take the code test again. With the astronomical rise in the cost of taking the code test and the RAE it behoves every candidate to make quite sure that he is 100% ready for the exams before entering.

An interesting letter from 16-year-old Kevin Jones in Nuneaton, Warwick, who is working on communications in the Sea Cadet Corps where he has been able to play around with some of the gear. From Rotherham comes a first letter from Neil Clarke who has succeeded in copying SSB on 40m with two domestic receivers, using one as a BFO! Anyway I think that the bug has bitten Neil hard enough to ensure that he will be getting a set soon that is better suited to the job in hand! One callsign, a G8, caused Neil to ask why he was operating on 40m as he thought G8’s were confined to VHF and up. Well, this G8 was G8RY, an old-timer licenced around 1937/38, the other G8’s have three letters popularly known as G8-T’s. Similarly, my own call G4AR was issued in January 1933, the new licences are G4-T’s.

Old faithful Robin Bayley keeps going up in Shropshire with his EC10 and long wire aerial. Even in summer he still logs DX like HK0 and FP8 on 80m and a VK9 on 40m, with KH6 on 20 and 15m. From Redruth in Cornwall, Bill Caulfield tells me he has been reading PW for years but only now has taken the plunge and bought some gear for the SW bands. It is only what I would call a “glorified” domestic receiver but, like Neil Clarke mentioned earlier, I hope it will lead to better things before long. Bill admits to being 58 which gives him plenty of time to get his ticket and settle down to the greatest of all hobbies!

CLUB NEWS A new radio club for those of you in Devon, namely the Exmoor Radio Club which meets on the second and fourth Thursday each month at the South Molton Community College. They plan to start RAE courses based on the new PW series. Thanks for the compliment, hope it leads to a lot of new tickets. Contact Chairman Dave Stone, 47 Oakford Villas, North Molton, Devon or Secretary Ted Bruns, Loughrigg, East Street, South Molton, Devon.

Log extracts

R. Bayley:— 80m AP2AD CT2AP EA9CR FP8DA HKOCOP 40m DUDITB FP8DH JA1JKK J7W8K VK9XI 20m KH6BB TG9AD 15m HK0CAT KH0IP TG0TL
F. Bradbeer:— 20m VP2DLF VP8PM 15m HM11A HR5JJR KG6SS P29JS VP2GAI YBS5A 5T5JD 10m FMTAV VP8NO 8P6FX 9J2BO
A. Doherty:— 80m JA6BSM 5Z4DI 8P6GN 9GIAR 40m KA2BY TU2E2F 20m FK8CR KS6FL KG6BU 5T2A VP8MX V53XI YB7AAA 2K1DR 5B6DS 15m P29DU WB6MCO/VQ9 (Diego Garcia) ZD7PV VP8BC
P. Pasquet:— 20m KA6KN SN11M 15m J28AM KS6FL VP8NO ZD7S 807AD (Maldives)
D. Peck—RTTY 20m A9XXC EA5IY EA9FJ K8FD KG6FKG LU9CN PY2BIXA SL5LA VE3FQD YV77U 7X4MD
J. Stephen:— 20m CP1BP H55JR TR8JVC TU2GO 15m VP2SAG
B. Harrison:— 80m VP2LDJ 20m KC6BS 15m 8S8TH VR4DN 8Q7AD 10m VP8CZ VP8LP
All reports are SSB.

Practical Wireless, January 1978

693
MEDIUM WAVE DX
by Charles Molloy G8BUS

A useful log of MW DX comes from John McFadden of Belfast who has recently acquired a Yaesu FRG-7 communications receiver. When connected to a 35ft longwire aerial it pulled in CJOH in Halifax, Nova Scotia on 920kHz, CJYQ (ex-CJON) on 930 and three broadcasts from New York City, WINS on 1010, WNEW on 1130 and WQXR on 1560, all heard between 0100 and 0250 GMT. Other DX logged includes Ain Beida in Algeria on 529 at 0014, Istanbul on 1010 at 0216 and an American CBC Radio discussion programme on 650 at 0205. This could be CFCY in Charlottetown, Prince Edward Island which is occasionally heard in the UK. Although privately owned, CFCY may well have been relaying a programme from the CBC (Canadian Broadcasting Commission). Privately owned stations do this, a practice which can easily mislead the DXer.

John says he is interested in UK medium wave stations and asks if it is a good idea to concentrate on one area or just to browse around for anything that happens to be on. Surprise and the unexpected await those who browse around the medium waves. New stations are always appearing and propagation is sometimes favourable to quite unexpected parts of the world. On the other hand, DXing North Americans has an attraction of its own.

There are large numbers of stations, over 4000 in the United States. There is no trouble with identification or language and the majority of stations will QSL. Propagation as usual is the deciding factor on the medium waves. The North American specialist will sometimes find the band alive with stations that interest him while at other times 1010 on a Sunday afternoon is all heard. This occurs when he will have to "browse around" or pack in DXing until the North American path picks up again.

Neal Cartwright (London) who uses a Ecko A239 valve receiver, would like to know how to immobilise its AGC (automatic gain control). Locate the AGC line and connect it to the chassis of a valve or transistor amplifier as a switch can then be switched on or off as required. Although the AGC is useful when turning across the band, as it prevents the receiver from being overloaded by strong signals, it can be a disadvantage when one is trying to listen to a weak station that is close to a strong one. The AGC will respond to the strong signal, reducing the receiver gain and the weak station now appears to be weaker than it really is.

The usual technique to use when the AGC is ON, is to set the RF gain control to maximum and adjust the volume by means of the audio gain control. With AGC switched OFF then a different procedure is called for. Adjust the audio gain for a comfortable volume from the loudspeaker and follow the signal with the RF gain control, backing it off on strong signals to avoid overloading and crossmodulation.

Is there a book giving details of radio stations in North and South America including powers of transmitters, call signs, identifications and addresses, asks John Faulkener from Mansfield. The World Radio and TV Handbook, published annually and distributed in the UK by Billboard Publications, contains this information for the majority of broadcasting stations on the long, medium and short wave bands, throughout the world. The 1977 edition cost £5.50. John already possesses a copy of the World's Short Wave, Medium and Long Wave, FM and TV Listing which covers 1500 medium wave stations in the United States and another 300 in Canada. This paperback, which is published by Babani, costs 60p and is available from bookshops in the UK.

John does his DXing with a Trio 959D communications receiver, a Codar PR40 preselector and a 100ft longwire. North Americans heard with this setup are CFRB in Toronto on 1010 kHz, WBEL on 1080 kHz, WNEW on 1560 kHz and WOR on 1130 kHz. In Antigua the DXer , Charlie Robinson of Selby in Yorkshire is building a loop aerial. He has an unmarked variable capacitor and asks if it is possible to find out its value. An indication of the value can be obtained by substituting it for one of known value in a tuned circuit, such as the tuning capacitor in a radio receiver, though this may not be too easy to do in practice. The unknown capacitor will be lower in value than the known one if the tuned circuit resonates at a higher frequency than before, with the vanes fully meshed.

Why not try the unknown variable on the loop? With the vanes unmeshed, adjust the number of turns on the loop so that it resonates not lower than 1600kHz. When the vanes are fully closed the loop should tune to 540kHz. If it tunes to a higher frequency then the capacitor is too low in value. It can be increased by using a fixed capacitor to try 220pF. The outer 50pF is a switch and the band can now be covered in two ranges. DXers who find it difficult to cover the whole band even when using a 500pF variable, should try this method.

Harold Emblem (Mirfield, Yorkshire) has been busy during the evening with his Edystone 730/4 and loop. Stations heard include Riyadh in Saudi Arabia on 587kHz and Conakry, Guinea on 1070kHz. A loop is sometimes used in the UK and VQ5K, a DXCC specialist, has been heard from Nigeria on 1320kHz.

Harold mentions that all the stations in the CJON network, (610, 670, 880, 930, 1350) are now using the call CJYQ which is abbreviated at times to "CJ Radio". He has sent a reception report to St John's (830) which increased power recently to 50kW and the reply should indicate whether the callsign too has been changed from CJON to CJYQ.

Robin Harvey of Halesworth, Suffolk has heard the medium wave outlet of Mebo 2 under the Spanish station on 735kHz. It is on the air nightly between 1900 and 2300, in parallel with 6205 in the 45m band. Announcements are in English but very small and it is not known where the station is from a ship anchored in the harbour of Tripoli in Libya. During the day it relays the programmes of Libyan Radio. Reception was with a Telefunken TS101 portable and a telescopic aerial.

T. Cridge of Farndon, Cheshire recently purchased a CR100 and has a great deal of pleasure from it. "I have been experimenting with different aerials and at present have a half folded dipole. I don't really know what I am doing but it is great fun finding out". A loop is now under construction which should give some direction to the experiments.

SHORT WAVE BROADCASTS
by Charles Molloy G8BUS

The reference in the October issue of Practical Wireless to Radio Australia's transmission on 21570kHz in the 13m band has brought an interesting reply from George Hew-

Practical Wireless, January 1978
LOOK! Here's how you master electronics.
...the practical way.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a self-employed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1 **Build an oscilloscope.**
 As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 **Read, draw and understand circuit diagrams.**
 In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.

3 **Carry out over 40 experiments on basic circuits.**
 We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.

British National Radio & Electronic School
P.O. Box 156, Jersey, Channel Islands.

NAME __
ADDRESS ___

FREE GIFT

[Image of a free circuit board]

Block caps please.
EASY BUILD SPEAKER DIY KITS

Specialty designed by RT VC for con.

- Conscious hi-fi enthusiasts. These kits

- Incorporate two twin in-line enclosures,

- Two EM 13" x 8" (approx.) tweeters, two

- Tweeters and a pair of matching crossovers.

- Complete with an easy to follow

- Circuit diagram, and crossover components.

- SPEAKERS AVAILABLE WITHOUT CABINETS.

- It's the units we supply with the enclosures.

- Illustrated 5" x 8" (approx.) foam, 25" x

- Tweeter, and matching crossover components.

- Stereo pair

- Power handling 15 watts rms, 20 watts peak, + 95 db (2.0% distortion).

- COMPACT FOR TOP VALUE. These impressive

- enclosures come to you ready wired and professionally

- finished. Each cabinet measures approx. per stereo pair 12" x 8" x 3" deep, and is a 15 wood.

- Complete with two 6" ins. speakers for

- maximum comfort topology of 7.0 watts ISO. + 95 db (2.0% distortion).

- SPEAKERS Two models – one 6, 12, 18, 252; two 6, 12, 18, 252. Ducl III, 20 watts rms, 30 watts peak, 27.5 x 11 x 13" approx.

- Qnl III + P & F 85. Ducl III + P & F 75.

- DECCA 20 WATTS STEREO SPEAKER stereo pair

- This matching loudspeaker system is hand made, it comprises of two 8" ins. speakers approx., base drive unit, with heavy-duty cast chassis laminated cones with rolled P.V.C.

- Surrounds, two 5" ins. diameter approx., dome tweeters complete with crossover network ISO. + 95 db (2.0% distortion).

- PERSONAL SHOPPERS

- STEREO CASSETTE system record play built P.C. board 275.

- AM, FM, TUNER P.C.B. with Mullard L.P. 118, 1150, 1110 models. 1100 Multisurface tuning pots, 6 for 100.

- PAIR STEREO 8 WATTS SPEAKERS 8" base units with 35 ins approx. tweeters.

- Size 13 x 9 x 3" to 15 lbs. & P & F 65. & P & F 85.

- Plić& cover BSR or Garrard finish 60.

- DECCA DC100 Stereo Casette P.C.B.

- Completion with switch oscillator circuits and tape-heads.

- AM, FM Stereo Multiplex Car Cassette player in dash Fixing Negative earth 5 watts output. C.E. Stereo P. Track to Cassette convertor, any 3 track player to cassette player.

- £129.50 each.

- 213 EDMONDS ROAD LONDON W2. Tel.: 01-723 4332 Daily Tuesday. 9.30am-5.30pm. ACTON. Mail Order Only. No callers. GOODS NOT DISPATCHED OUTSIDE UK.

FIRST GRADE DEVICES by MAJOR MANUFACTURERS

Special Xmas Offer OF POPULAR ITEMS SELECTED FOR REGULAR REQUIREMENTS

<table>
<thead>
<tr>
<th>TEXAS TILs</th>
<th>CMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>12p</td>
</tr>
<tr>
<td>7402</td>
<td>12p</td>
</tr>
<tr>
<td>7404</td>
<td>12p</td>
</tr>
<tr>
<td>7406</td>
<td>12p</td>
</tr>
<tr>
<td>7408</td>
<td>12p</td>
</tr>
<tr>
<td>7410</td>
<td>12p</td>
</tr>
<tr>
<td>7412</td>
<td>12p</td>
</tr>
<tr>
<td>7414</td>
<td>12p</td>
</tr>
<tr>
<td>7416</td>
<td>12p</td>
</tr>
<tr>
<td>7418</td>
<td>12p</td>
</tr>
<tr>
<td>7420</td>
<td>12p</td>
</tr>
<tr>
<td>7422</td>
<td>12p</td>
</tr>
<tr>
<td>7440</td>
<td>12p</td>
</tr>
<tr>
<td>7442</td>
<td>12p</td>
</tr>
<tr>
<td>7444</td>
<td>12p</td>
</tr>
<tr>
<td>7446</td>
<td>12p</td>
</tr>
<tr>
<td>7448</td>
<td>12p</td>
</tr>
<tr>
<td>7450</td>
<td>12p</td>
</tr>
<tr>
<td>7452</td>
<td>12p</td>
</tr>
<tr>
<td>7454</td>
<td>12p</td>
</tr>
<tr>
<td>7456</td>
<td>12p</td>
</tr>
<tr>
<td>7458</td>
<td>12p</td>
</tr>
<tr>
<td>7460</td>
<td>12p</td>
</tr>
<tr>
<td>7462</td>
<td>12p</td>
</tr>
<tr>
<td>7464</td>
<td>12p</td>
</tr>
<tr>
<td>7466</td>
<td>12p</td>
</tr>
<tr>
<td>7468</td>
<td>12p</td>
</tr>
<tr>
<td>7470</td>
<td>12p</td>
</tr>
<tr>
<td>7472</td>
<td>12p</td>
</tr>
<tr>
<td>7474</td>
<td>12p</td>
</tr>
<tr>
<td>7476</td>
<td>12p</td>
</tr>
<tr>
<td>7478</td>
<td>12p</td>
</tr>
<tr>
<td>7480</td>
<td>12p</td>
</tr>
<tr>
<td>7482</td>
<td>12p</td>
</tr>
<tr>
<td>7484</td>
<td>12p</td>
</tr>
<tr>
<td>7486</td>
<td>12p</td>
</tr>
<tr>
<td>7488</td>
<td>12p</td>
</tr>
<tr>
<td>7490</td>
<td>12p</td>
</tr>
<tr>
<td>7492</td>
<td>12p</td>
</tr>
<tr>
<td>7494</td>
<td>12p</td>
</tr>
<tr>
<td>7496</td>
<td>12p</td>
</tr>
<tr>
<td>7498</td>
<td>12p</td>
</tr>
</tbody>
</table>

We stress the fact that we are
totally quality conscious and
do not offer sub-standard or
rebranded products for sale.

STAR OFFERS

<table>
<thead>
<tr>
<th>DIPS</th>
<th>18</th>
<th>25</th>
<th>30</th>
<th>110</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>741</td>
<td>8</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>555</td>
<td>8</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>723</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>2102</td>
<td>RAM</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM309K</td>
<td>TO3</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIL208</td>
<td>LED</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Voltage Regulators

Plastic TO-200

- 1 Amp +ve

- 5V 7905

- 12V 7912

- 15V 7915

- 100mA TO92 5V, 12V

OPTO-DEVICES

LEDs: 0.2" Red 14p Green 16p

DISPLAYS: FND 357 0.37" 100p Red C.C.

FND 500/500 0.57" 100p Red C.C./C.A.

TIL 321/322 0.25" 100p Red C.C./C.A.

Minimum order £10 exc. VAT.

Discounts 10% on orders over £50;
20% on orders over £100.

TECHNOMATIC LTD (PW)

54 SANDHURST ROAD

LONDON NW9 9LR

Please add VAT to total.
Please add ins. + P & P 50p.

MAIL ORDER

ORDER ONLY

www.americanradiohistory.com
left of Torquay who is a Monitor to the Broadcasting Branch of Telecom Australia (Radio Australia and VNG). He refers to the antenna bearings which appear in Radio Australia's transmission schedule and in the World Radio Handbook. For British listeners, bearings of 308 and 325, both across the short route, offer the best reception while 110, 118 and especially 126 give the best reception over the long route across the Pacific. Reception of transmissions on other bearings can occur but are more difficult with much depending on time of year and day.

George refers to the Australian Time and Frequency standard VNG which can be heard on 12-0 and 7-5MHz between 0600 and 0800 and on 7-5 and 4-5MHz between 1600 and 2000. Reception is possible throughout the year, the morning times being latest and the evening times earliest, in mid-winter. Station announcements are given a few seconds before each hour, quarter hour, half hour and quarter to the hour. The transmission on 4-5MHz, which appears 30 minutes later than the one on 7-5 should be of interest in Tropical Band DXers as an Indicator of propagation conditions across S.E. Asia.

The International Short Wave Club is offering to send a free sample copy of their monthly bulletin to readers of Practical Wireless. The bulletin presents news and highlights of the short wave world and there is also a section covering the amateur bands. The October issue gives details of the International SWCW new leave station popularity poll. The voting, for 1977, favoured Radio Nederland in all six continents. Request should go to the President, Jim Malone, 19 Seventh Avenue, Manor Park, London E12 and return postage, although not asked for, would no doubt be appreciated.

Brian Steele (Sheffield) has recently purchased a Sony ICF 5900W receiver with which he pulled in the Voice of Turkey on 9515 and 11880kHz, Radio South Africa on 11900 and Radio Canada on 15325. Brian is very pleased with his new receiver which has a military style cabinet, a crystal calibrator and has DX/Local, BFO and bandspread controls.

Harold Emblem (Mirfield, Yorkshire) has been trying his Eddystone 730/4 on the short waves and he reports hearing Trans World Radio, Bonaira on 15275KHz (19m band) at 2215, Sri Lanka on 15425 at 0400, AFRTS on 15450 at 2255. On 16 metres he logged "WINB Red Lion on 17720 signing off at 2000 with announcement of this frequency which is not listed in the WRH, and WYFR Family Radio on 17045 at 2025. Harold Brodribb (St Leonards) has been busy again on the higher frequencies with his CR10 and longwire. On the 11m band he heard Radio Israel in Russian and Yiddish on 25605KHz between 1430 and 1630. On 15 metres, Radio RSA was heard on 21535 at 1435, Radio Australia on 21570 at 0840 with DXers Calling (also on 9570), Radio Israel on 21625 at 1640, BBC World Service on 21710 at 1405 and Radio Norway with Listeners Choice on 21730 at 1345.

Derek Taylor (Preston, Lancs) has been trying out his new Yaesu FRG-7 on the short waves. When connected to a 30ft longwire via an aerial tuning unit, it pulled in Radio Pyongyang on 9420 at 2000, The Voice of Vietnam on 12345 kHz (out of transmission) at 1200, 1850, ELWA Liberia on 11950 at 0625, Tokyo, Japan on 15320 at 0610 and Kinshasa, Zaire on 15350 at 2115. John Hill (Swindon) has a Realistic DX160 receiver which he uses either with a 40ft longwire or connected to the bedspring (not to be recommended with a mains operated receiver)! Stations logged include Radio Australia on 9570kHz at 0650. John, who is new to the short waves is not sure whether his conversion from MHz to kHz is correct. It is very easy to do, just shift the decimal point three places to the right; 9-57MHz is the same as 9570kHz.

Newcomers to the short waves may be confused by the reference to "bands" which are expressed in metres and to individual frequencies which are in kHz or MHZ. The conversion between the two is simple, especially if a pocket calculator is available. Divide 300,000 by the frequency in kHz to obtain the wavelength in metres, and vice versa e.g. Radio Australia on 9570kHz has a wavelength of 31-35 metres. The limits of the international short wave bands are:-

<table>
<thead>
<tr>
<th>Band</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>49 metre</td>
<td>5950kHz to 6200kHz</td>
</tr>
<tr>
<td>41mb</td>
<td>7100 to 7300</td>
</tr>
<tr>
<td>31mb</td>
<td>9500 to 9775</td>
</tr>
<tr>
<td>25mb</td>
<td>11700 to 11975</td>
</tr>
<tr>
<td>19mb</td>
<td>15100 to 15450</td>
</tr>
<tr>
<td>16mb</td>
<td>17700 to 17900</td>
</tr>
<tr>
<td>13mb</td>
<td>21450 to 21750</td>
</tr>
<tr>
<td>11mb</td>
<td>25005 to 26005</td>
</tr>
</tbody>
</table>

and this table should help readers whose receiver is marked in metres, to locate stations mentioned in this column which are in kHz.

Roy Patrick (Mackworth, Derby) sends news of WYFR Family Radio who expect to start testing the first 100kW transmitter from the new transmitting site at Okeechobee, Florida soon. The Scituate station will continue to broadcast until the middle of 1978 when it is scheduled to close down and all Family Radio programmes will then come from Florida. Roy used a Joystick antenna with ATU connected to a Trio 9R59D or a National 1400 portable. With this set-up he logged Radio Rumbos on 4970kHz at 0600, Malta and 0500 on Saturdays only, Radio Nova (Mebo 2) on 6205 with test transmissions in the evening, Radio Andorra on 6280 in French during the morning, the Voice of Iran 9022 from 2000 to 2030 in English, Voice of Turkey on 9515 at 2200 with DX tips nightly at 2230, WYFR on 11805 in Spanish at 1800, Kuwait on 12095 with a good signal from 1800 onwards, WINB 15270 with a good signal at 2130 and the Voice of Greece on 27700 in English at 1200. Thanks Roy for a very useful log.

The last word this month is from John Faulkener of Mansfield who mentions that the World DX Club has its own weekly programme in Adventist World Radio, broadcast over the 100kW station at Sines in Portugal. The programme is on a Sunday from 0835 to 0945 on 9670kHz on the 31m band and was received by John at a SINPO rating of 55555 with his Trio 9R59D receiver and 150ft longwire.

by Ron Ham BRS15744

Despite many overcast periods, Cmdr, Henry Hatfield, Sevenoaks, continues to produce valuable information about the sun's behaviour with his spectrohelioscope and his radio telescope. Frequently, during the latter part of September, John Smith, Cranleigh, Henry, and myself recorded radio noise from "active" events on the sun which were not suitably responsible for widespread isospheric disturbance, reported by the BBC World Service on the 24th, the auroral openings on the 22nd, 24th and 26th observed by John Branegan, Saline, Fife, and Charlie Newton, G2FKZ, London, and the good 10m conditions.

Henry identified 3 sunspot groups on October 2, 4 groups on the 5th and 5th, witnessed 6 bright plages on the 2nd, a spray of gas and a pillar prominence on the 5th, 2 "enormous" filaments on the 9th, and 4 plages and 16 filaments on the 18th. In view of this it is not surprising that John Smith, Henry and myself often recorded strong 'solar noise,' (156MHz), from the 1st to the 15th and severe noise on the 16th, 17th, and 18th. An ionospheric disturbance was reported by the BBC World Service during the early hours of the 19th.

During the auroral events, John Branegan heard 2m
signals from DL, EI, GM, GW, LA, and the UK beams from Lerwick, GB3LER, to Cowan, GB3CTC. Like other observers in the UK, confirmed by G2FKZ, RSGB auroral co-ordinator, John uses GB3LER, 144-955MHz, for early auroral warning. Readers reports will be passed on to G2FKZ and Ron Livesey, Co-ordinator for the British Astronomical Association.

It's good to hear the DX from both hemispheres on 10m again. On October 5, Henry Hatch, G2CBB, told BBC World Radio Club listeners that VK stations were currently being worked from the UK and at 0830 on the 8th I heard YB0ACP, and VK8CC/M. During the early mornings of the 10th and 14th I received strong signals from Japanese stations working into Europe. John Branegan heard stations from Italy, Portugal, South Africa, South East Asia, Japan, and FICL via GB3EM on the USSR on the 8th and 9th, and at 1600 on the 9th the US Citizens Band was wide open and tuned to 27-155MHz, USB, John heard signals from Brazil, California, Louisiana, Nova Scotia, Ontario and Texas.

Harold Brodribb, St. Leonards-on-Sea, Nigel Golds, BRS 36910, West Chiltington, Sussex Lawrence Hobden, Brighton, and myself frequencey heard strong signals from G4CYC, GB3QY, 28-220MHz, between the 8th and the 18th. At 0845 on the 10th I heard, amid QSB, the Bahrain beacon, A9XCl, 28-245MHz, and on the 11th, 14th, 16th, 17th and 18th I received signals around 28-330MHz from an experimental propagation beacon E2JZV. On the 15th, Lawrence Hobden heard the Florida beacon, 54RD, 28-207MHz, on his 1837 receiver which is still going strong, and Nigel heard several VP stations.

Around 1600 on September 27 and 28, Anthony Mann, Applecross, Australia, heard strong signals from the Bahrain beacon on 10m and on October 2 there was a strong opening toward UK and western Europe. During the early morning of October 4, and on several days after, the 10m band was open between Australia and the USA and some of the American CBers on 27MHz were almost at low strength.

Frank Luman, Donald Bassnet, John Thorburn, John McCarrn, from Glasgow and Fred Dinning, Dunlop, have formed a club called, The Scottish VHF AND SW DXers, and currently meet every first and third Saturday afternoons at Frank's home, 2, Ormonde Drive, Netherlee, Glasgow. New members are welcome: he, ed strong signals from Frank Luman. Frank, Donald and Fred have an early warning arrangement which was used on September 22 when 7 Norwegian stations, some in good stereo, were heard in Band II via what may have been the last event of the 1977 sporadic-E "season".

While on a hill some 800ft ASL Nr Dumfries, using a beam of about 16ft AGL, Mark Deutsch, G3VJG, Kettering, could not make any contacts on 2m SSB, so he moved down the hill, about 1 mile away, at 250ft ASL and worked G2HFC, Wigan, via the Welsh repeater, GB3MP, with a 5/8 whip aerial on his car. Mark could also hear the Central Scotland repeater, GB3CS, where there was no trace of its signals at the 600ft level.

Grange Zion, GB1TS, who, from his difficult location in the City of London, with his beam aerial fixed south on his balcony, has received his Four Metres and Down Certificate from the RSGB for 70cms. His achievement includes contacts with stations in northern G and his best DX was GW6CFQ, Wrexham. George now plans to do the same on 25cms.

On September 21, Alf Lee, GADDQ, Ilkworth, worked a GB station via the Irish repeater, GB3C, from his car in Haywards Heath car park. At 0930 on the 30th, Alan Baker, GB1LQ, Newhaven, heard FICIX working DCIWO via the German repeater, DB0UT.

Around 0800 on October 12 the atmospheric pressure began a gradual rise reaching 30-21in by noon on the 13th and at 0400 on the 14th it started to fall. True to form, a large auroral opening occurred and lasted until about 0500 on the 15th when the AP was levelling off at 30-05in. The event covered a wide range of frequencies.

Derek Knight, Storrington, and Harold Brodribb, both reported co-channel interference on UHF-TV and that both the BBC and IBA warned their viewers about the prevailing disturbance.

From midday on the 14th to mid-morning on the 15th I received strong signals from the Sutton Coldfield, GB3SUT, and Emley Moor, GB3EM, beams on 70cms, a good picture on Channel 8, 189MHz, from Lichfield, and several continental broadcast stations in Band II, with one on 40m the final station to fade to Frank. At 2035 on the 14th, Harold Brodribb, using a 2 element beam into his Bush VHF-80 heard French and Dutch stations in Band II and at noon on the 15th he counted 20 French stations between 88 and 101MHz, strong enough to obliterate the BBC signals.

During the morning of the 14th, Alan Baker worked several German stations on 2m via the Stuttgart repeater, DBOWR, on 250ft, and FICL via GB3EM on 2m and DEBUT on 7W7 while located on Beachy Head where both repeater signals were consistently 58. At 1700, Alan called on ERN Hoare, G6BDJ, Brighton, and they both watched Kojak on French TV via Ern's 70m beam. Around 0200 on the 15th, Alan worked G8LCK, London, via both the Birmingham, GB3BM, and Hampshire, GB3SN, repeaters on R5, at the same time. Alan suddenly realised what was happening when the Birmingham repeater signal faded out and he could still hear the 1J watt signal coming from G8LCK. At 1600 he heard the signal from a GM/M through the Kent repeater, GB3KR, and during the event he worked DG6TY, Cologne, about 500km on 2m SSB.

From 1800 until midnight on the 14th, John Heys, G8BDQ, Hastings, proved, the value of a morse key and worked a host of DXs on SW, 3 SPs, 4 OKs, 1 YO and a half hour stint between 1935 and 2005 he contacted 6 OKs on the trot, all on 2m. His best DX was more than 1000km, on a mainly overland path with OK3CDI/P. John said it was his best evening for 20 years and looks forward to another tropo-opening when he can go for YO, YO, HA, and 11.

During the August leg of the RSGB 5cm Cumulative Contest, Sam Jewell, G4DDK, Stone, worked GB8AXE/P on Winter Hill, Bolton, from Brown Clee, Shropshire, a distance of 124km with torrential rain at both ends which had little effect on the signals. Several days later, encouraged by this, G8AXE and G8AFC wanted to try for their Microwave Awards by working over 150kms. Sam set up his gear on the Long Mynd, Shropshire, and G8AXE, G8AFC, G5SMU and G4BBU climbed to the top of Fair Snape Fell in the Calder Fells, Lancs, to establish their stations. The two groups used their TR2200s for talk-back over the 151km path.

A signal on 3cms was received quickly from G6AXE/P but only a weak signal was received from G4DDK. The work began at 1200 and a strong sun set around 2045. A temperature inversion occurred and the signals came up at both ends allowing them to complete the formalities in relative comfort. On October 2, G8AFC and G4DDK set up their 3cm equipment on Axe Edge in the Derbyshire Peak District and exchanged signals over a 148km path with GW4BR5/P on Pumilumon Favre, near Aberystwyth.

Thanks to you all for your fascinating reports, best wishes for Christmas, and let us look forward to another interesting year above 28MHz.

Reports on the various bands are welcome and should be sent direct, by the 15th of the month; to -

AMATEUR BANDS Eric Dowdeswell G4AR, Silver Firs, Leatherhead Road, Ashtead, Surrey KT21 2TW. Logs for bands, each in alphabetical order.

MEDIUM and SW BANDS Charles Molloy G8BUS, 132 Segars Lane, Southport, PR8 3JG. Reports for both bands must be kept separate.

VHF BANDS Ron Ham BR51744, Faraday, Greyfriars, Storrington, Sussex RH20 4HE.

Practical Wireless, January 1978
The C15/15 is a unique Power Amplifier providing Stereo 15 watts per channel or 30 watts Mono and can be used with any car radio/tape unit. It is simply wired in series with the existing speaker leads and in conjunction with our speakers S15 produces a system of incredible performance.

A novel feature is that the amplifier is automatically switched on or off by sensing the power line of the radio/tape unit hence alleviating the need for an on/off switch.

The amplifier is sealed into an integral heatsink and is terminated by screw connectors making installation a very easy process.

The S15 has been specially designed for car use and produces performance equal to domestic speakers yet retaining high power handling and compact size.

C15/15
15 Watts per channel into 4Ω
Distortion 0.2% at 1KHz at 15 watts
Frequency response 50Hz - 30KHz
Input impedance 8Ω nominal
Input sensitivity 2 volts R.M.S. for 15 watts output
Power line 10 - 18 volts
Open and Short Circuit protection
Thermal protection
Size 4 x 4 x 1 inches

S15
6" Diameter
5½" Air Suspension
2" Active Tweeter
20oz Ceramic magnet
15 watts R.M.S. handling
50 Hz - 15KHz frequency response
4Ω Impedance

C15/15 Price £17.74 + £2.21 VAT P & P free
S15 Price pre pair £17.74 + £2.21 VAT P & P free

TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS

I.L.P. Electronics Ltd.,
Crossland House,
Nackington, Canterbury,
Kent CT4 7AD.
Tel. (0227) 63218.
<table>
<thead>
<tr>
<th>SEMICONDUCTORS</th>
<th>BASES</th>
<th>CRT'S</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA119 0.25 ASY215 0.63 BC891 0.13</td>
<td>4EP1 25.00</td>
<td>VCR132A 5.50</td>
</tr>
<tr>
<td>AA710 0.13 AY22 0.59 BC897 0.13</td>
<td>4EP1 25.00</td>
<td>VCR132B 8.00</td>
</tr>
<tr>
<td>AA111 0.25 ASY214 0.63 BC891 0.13</td>
<td>4EP1 25.00</td>
<td>VCR132C 8.00</td>
</tr>
<tr>
<td>AA112 0.25 ASY216 0.63 BC891 0.13</td>
<td>4EP1 25.00</td>
<td>VCR132D 8.00</td>
</tr>
<tr>
<td>AA113 0.25 ASY217 0.63 BC891 0.13</td>
<td>4EP1 25.00</td>
<td>VCR132E 8.00</td>
</tr>
<tr>
<td>AAM61 0.25 ASY218 0.63 BC891 0.13</td>
<td>4EP1 25.00</td>
<td>VCR132F 8.00</td>
</tr>
<tr>
<td>AC870 0.25 ASY219 0.63 BC891 0.13</td>
<td>4EP1 25.00</td>
<td>VCR132G 8.00</td>
</tr>
<tr>
<td>AC871 0.25 ASY220 0.63 BC891 0.13</td>
<td>4EP1 25.00</td>
<td>VCR132H 8.00</td>
</tr>
</tbody>
</table>

Terms of business: CWO, postage and packing valves and semiconductors 25p per order. CRTs 75p. Items marked * add 12½% VAT. Others £1 indicates cheap quality version or surplus, but also available by leading UK and USA manufacturers. Price ruling at time of despatch. Access goods available to approved companies with minimum order charge £10. Carriage and packing £1 on credit orders. Over 10,000 types of valves, tubes and semiconductors in stock.

Telephone 01-677 2424
Telex 946708
E & O.E.

Practical Wireless, January 1978
Electronics. Make a job of it....

Enrol in the BNRF & E School and you'll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians’ Certificates); the Grad. Brit. I.E.R. Exam, the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates, etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor. Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study college specialising in electronics subjects only. Full details will be gladly sent without any obligation.

Brochure without obligation to:

British National Radio & Electronic School
P.O. Box 156, Jersey, Channel Islands.
MULLARD UNILEX
A mains operated 4+4 stereo system. Range of the Mullard models is in the stereo field (mains operated) and would make a wonderful gift for anyone in the audio field. There are models available with a pair of Mullard mono power transistors, costing about £30—£35 but due to a special bulk buy and as an incentive for you to buy this month, we offer the system complete at only £19.98 including VAT and postage.

WINDSCREEN WIPER CONTROL
Very fast of your wiper to suit conditions. All parts and instructions are included. £3.75 and post paid.

ROOM THERMOSTAT
Features a sensitive, but rugged, thermostat built in. Will switch up to 20 amps mains voltages. Covers the range 0°-30°C. Special autumn month £3.90 post and VAT paid.

MICRO SWITCH BARGAINS
Rated at 5 amps 250V, ideal to make a switch panel for a calculator and for dozens of other applications. £1.99 for 10, VAT and post paid.

MULLARD AUDIO AMPLIFIERS
All in module form, each ready built complete with biasing and connection tabs. Data supplied. Model 115 50mW power output £1.59 including VAT and postage. Model 112 7W power output £1.85 including Post & VAT. Model 105 24 watt power output £3.99 including Post & VAT. £5.50 twin channel or stereo amp. £2.95 including Post & VAT.

MULTIPLEX MOTORS
Six speeds are available 200, 300, 510 and 1000 r.p.m. and 7,000, 9,000 and 11,000 r.p.m. Shaft 6 diameter and approximately 11 mm long. 220/240V. Its speed may be controlled with the use of our Thyristor controller. Very powerful and useful motor size made in small numbers. Price £3.45 including VAT and postage.

MILLER MAINS LEAD
With triple 10 amp connector only. No. 20 wire for 120 volts AC, chassis mounting, one screw 50p, 100p, 150p, 200p, 250p each, 10 for £2.95 and VAT paid.

SOUND TO LIGHT UNIT
Add colour or white light to your amplifier. With 12 sets, 1, 2, or 3 lamp sets (100V, 100W) with or without dimmer. £9.95 plus 95p VAT & Post.

SWITCH TRIGGER MATS
Switches are die sets for complete house protection. £3.95 including VAT and postage.

3KW MODEL £2.95 + £1.50 P. & P.

FLUORESCENT TUBE INVERTER
For camping—car repairs—emergency lighting from a car battery you can battery fluorescent lighting. It will even provide a source of power for your home. We offer Philips invertor 12V. 8 watt miniature tube £4.90 including VAT and postage.

SPLIT MOTOR WITH CARTER GEAR BOX
Probably one of the best split motors made. Originally intended to be used in very high priced motors however this can be fitted to any other use. For instance your garden barbecue or to motorize your remote control toys. All parts are included. £3.45 including VAT and postage.

TERMS:
Cash with order—prices includes VAT and carriage. Payments must be 50p to off 3000 pieces, etc. including VAT and postage.

IT'S FREE
Our new monthly Advance Advertising Bargains list gives details of bargains arriving at just the time our advertisers can put them up for sale, and it's free—just send S.A.E. Below is a list of the bargains still available from previous lines.

Starlet—9 T.V. Mains Battery Model time tested switches, ideal for small televisions. Mains operated. £4.95, plus 40p post and VAT. Price £11.00—12s. 6d.

Wiring CO-AXIAL CABLE MASTS
Mats used with CO-AXIAL cables. £2.50 post and VAT paid. £5.40.

Those Robbers
13" x 10" Dig White Light. £2.95 plus VAT. £5.15 including VAT and postage.

Rotary Pump
Self priming, portable. 8s drill or electric motor, pumps up to 200 gallons per minute. £5.20 post and VAT. £7.65.

Mercury Batteries
Basic of 7. Mercury type 625 which approx. 1 diameter by 8 high in plastic tube gives a total of 10 volt. In a plastic tube to hold battery and battery separator £1.19 post and VAT.

MERCUROY BATTERIES
Basic of 7. Mercury type 625 which approx. 1 diameter by 8 high in plastic tube gives a total of 10 volt. In a plastic tube to hold battery and battery separator £1.19 post and VAT.

AMPLIFIER PANEL
6 photo sockets and d.p. changeover slide switch all mounted on insulating board. Glossy black finish size 5" x 6". Includes screws, plugs, nuts, etc. £4.95 including VAT and postage.

MULTISPEED MOTORS
Our Thyristor switch model £2.95 including VAT and postage. Choose unit £4.95. Printed circuit board panel EHT Unit £4.95. 9" turntable for the Mains Battery, £9.95 post and special packing £2.75.

13 Volt Heavy Duty Relay. Plug in type has three pairs of 10 amp change over contacts. Transparent cover. £3.95 including VAT and postage.

AMPLIFIER PANEL
6 photo sockets and d.p. changeover slide switch all mounted on insulating board. Glossy black finish size 5" x 6". Includes screws, plugs, nuts, etc. £4.95 including VAT and postage.

TANGENTIAL HEATER UNIT
A more efficient and quieter running blow-off heater by Selvotram—same as is fitted to many famous car makes. Complete mains induction heaters. £1.69 inc. VAT. £2.50 inc. VAT.

High Load High Voltage EHT Unit and changeover contacts. £4.50 inc. VAT. £5.95 inc. VAT.

Mains Battery Motor £15.95 inc. VAT and postage. £20.45 inc. VAT.

Wheel Switch £1.85 inc. VAT and postage. £2.25 inc. VAT.

Needle Changer £9.95 inc. VAT and postage. £11.95 inc. VAT.

Hand Crank £1.50 inc. VAT and postage. £1.85 inc. VAT.

Martins Mainle
With triple 10 amp connector only. No. 20 wire for 120 volts AC, chassis mounting, one screw 50p, 100p, 150p, 200p, 250p each, 10 for £2.95 and VAT paid.

SOUND TO LIGHT UNIT
Add colour or white light to your amplifier. With 12 sets, 1, 2, or 3 lamp sets (100V, 100W) with or without dimmer. £9.95 plus 95p VAT & Post.

SWITCH TRIGGER MATS
Switches are die sets for complete house protection. £3.95 including VAT and postage.

3KW MODEL £2.95 + £1.50 P. & P.

FLUORESCENT TUBE INVERTER
For camping—car repairs—emergency lighting from a car battery you can battery fluorescent lighting. It will even provide a source of power for your home. We offer Philips invertor 12V. 8 watt miniature tube £4.90 including VAT and postage.

SPLIT MOTOR WITH CARTER GEAR BOX
Probably one of the best split motors made. Originally intended to be used in very high priced motors however this can be fitted to any other use. For instance your garden barbecue or to motorize your remote control toys. All parts are included. £3.45 including VAT and postage.

TERMS:
Cash with order—prices includes VAT and carriage. Payments must be 50p to off 3000 pieces, etc. including VAT and postage.

J. BULL (ELECTRICAL) LTD
(Dept. PW), 103 TAMWORTH RD., GROVSN OR 15G.

Practical Wireless, January 1978
WIRELESS TIME: 12:34

National's MA1012 LED digital clock module is a complete clock & alarm unit, providing you with a variety of features you would expect: Hours-minutes display in bright 0.5" led. Also has second, snooze, alarm, alarm output & off. Eight resettable alarms for each radio/tuner, and requires just 1.75 x 3.7 x 0.7" total. (Ex. transformer). £4.55 per module, isolating mains transformer £1.50 each. (£8 vat) Two modules and two transformers for £20.00 (£8 vat)

In the latest Ambient catalogue: more TOKO coils, chokes, filters, etc., data on the short wave coil sets, a revised price list, micro-microphone inserts, special offer lines etc.

DETECKNOWLEDGE
Metal detector principles and practice, including some of the latest and information manufacturers of £100+ detectors would rather you didn’t know. £1.00 each.

The Bionic Ferret 4000 — a VCO metal detector based on the PW seek, including all parts, production, ready wound coil etc. inc. free copy of deteknowledge. £3.28 in pp and VAT at 8%.

Special announcement: The Bionic Radiometer metal detector is at last to be released. As a VCO aluminium detector, it shows a typical performance of, non-ferrous and ferrous objects. With a little practice, you can actually find objects buried in junk. Outperforms units costing £15.00, 3.00, 5.50.

髻

COMPONENTS
Here with the list of first quality parts and modules for wireless, inc. Europe’s largest range of signal coils and inductors. £50 in stock!

TOKO Coils & Filters
TOKO coils, filters, chokes, transformers, etc.

JOY STICK CONTROLS
DISTRIBUTED FOR DESIGNED BY - GAME (AY-30500-AY-30600) Subminature Size

TELETEXT DECODER
SAVE OVER £50.00

INTERNATIONAL

Number 2, Gresham Road, Brentwood, Essex. CM14 4HN telephone (0287) 30307

New premises are only 200 yards from Brentwood station — with parking facilities outside the door!
SMALL ADS

The prepaid rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60 extra. Semi-display setting 26.20 per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyd's Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2307, IPC Magazines Limited, King's Reach Tower, Stamford St, London, SE1 9LS. (Telephone 01-261 5846)

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepted subject to the conditions appearing on our current classified advertisements, together with the express understanding that the Advertiser warrants that the advertisement does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice.

2. The publishers reserve the right to refuse or withdraw any advertisement.

3. Although every care is taken, the publishers cannot be held liable for errors or their consequences.

TOUCH CONTROLLED LIGHTING KITS

for cabinets, shelves and control 300W of lighting. No mains rewiring required, insulated touch plate, easy to follow instructions. TS300K-TOUCHSWITCH & DIMMER, complete touch plate switch to light on or off. Brightness controlled by small knob 40-52. TR300K-AUTOMATIC, 1 touch plate ON and OFF 40-52. TS300K-AUTOMATIC, one touch plate. Light turns on after preset delay 40-52.

BARGAIN SUPPLIES

1. New PCB's Long Lead Components includes Thyristors, Plastic Sheet, TO3 Power Transistors 4 for £1-50
2. Mains Transformers 12v-12v 100mA 4 for £5.00
3. U1 Typé re-chargeable Ni. Cad. cells 1 for £1.00
4. TO3 Power Transistors 10 for £1.00
5. Push to make switches 4 for £1.00
6. Amplifier/tuner cases 25p for details Terms. Prices inclusive P&P 20p per line extra.

R. JONES SUPPLIES 3 CENTRE VALE CLOSE LITTLEBOROUGH, Lancs OL15 9EZ

NEW PRODUCTS BY RETURN.

Electrolytic capacitors 16V, 25V, 47V...47-1, 47-2, 47-5, 56V-400p, 100V-75p, 250V-80p, 220V-35p, 300V-20p, 450V-10p, 630V-5p. Smallest 0.01uf 25V 7p, 0.01uf 450V 18p, 47uf 220V 14p, 22uf 100V 8p. Miniductor band tantalum electrolytics. 0.1-47uf, 56V-40p, 100V-75p, 250V-85p, 450V-50p, 630V-25p.

Mylar (Peyletre) Film 10V vertical mounting 92p, 0.01uf 470pf, 0.02uf 100pf, 0.03uf 200pf, 0.04uf 310pf.

Miniature resistors Whittaker E2 series 0.1% Carbon Film 0.025w 10 to 10MΩ. 0.01w 10 to 10MΩ, 0.1w 10 to 10MΩ, 0.5w 10 to 10MΩ, 1w 10 to 10MΩ. Potentiometers. Presets. Traps. Disc. Plugs. Sockets. Cable. Vero. Carefully selected ranges, excellent despase range. Some day delivery. B.S.E.L. Ltd. Supplies to A.E.I.R. U.K.A.E.R. Governments Depts, Schools, Universities. Manufacturers, Accounts opened for trade and amateur. Join the professionals. Phone by 4.30 p.m. Goods out 1st class by 5 p.m. Try us and prove it.

Sangamo amplifiers, receivers, televisions (Anything or WANTED. Grundig Sarrelit date. Price £16.50. Sussex. SAE.

Practical SERVICE SHEETS request. Vice BELL'S TELEVISION SERVICES S.W.L. +

G2DYM ANTI-T.V. AERIALS

G2DYM ANTI-T.V. AERIALS
individually designed by En-B.E.C. Transmitter and Aerial Engineer. All custom built for the transmitter or S.W.L. G2Rv's, G2DYM's, Wideband S.W.L. types, Design and Advisory Service. Details-9" x 10" £12 5 A.E. £5 5 10

LAMUNDA ANTENNA STUD FARM, WHITEBELL, WELLINGTON, SOMERSET

BELL'S TELEVISION SERVICES for Service Sheets on Radio, TV, etc., 75p plus SAE Colour TV Service Manuals on request. SAE with enquiries to BTS, 180 Kings Road, Harrogate, N. Yorkshire. Tel: (0455) 555555.

SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo, etc. With free fault-finding guide, from 50p and SAE. Catalogue 25p and SAE. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

SERVICE SHEETS, Radio TV, etc., 10,000 models. Catalogue, 24p plus SAE with orders, enquiries. Telrays, 154 Brook Street, Preston PHI THP.

Radio Receivers

For Sale

NEW ISSUES of "Practical Wireless" available from April 1974 edition up to date. Price 65p post free. Bell's Television Services, 180 Kings Road, Harrogate, N. Yorkshire. Tel: (0455) 555555.

Wanted

WANTED. New Valves, Transistors. Top prices, popular types. Kensington Supplies (C), 367 Kensington Street, Bradford 6, Yorkshire.

SURPLUS?? Turn it into cash. Phone 0461 35520 (Oxon).

WANTED. Rank Bush mono cassette recorder model TP 68. Working P.C.B., case manual. £15. £7504 after 6 p.m.; or write 163 Fitzalan Street, W12 6BA.

WANTED NEW Valves, transistors, I.C.s, amplifiers, receivers, telecommunications (Anything Useful) any quantity, Stan Willetts, 37 High Street, West Bromwich. Tel: 021-555 0166.

Electrical

STYLL CARTRIDGES, AUDIO LEADS, etc. For keenest prices send SAE for free list to: Felstead Electronics (PW), Longley Lane, Gately, Cheddle, Cheshire SK8 3EE.

TIMESWITCHES. CHEAP TIMESWITCHES. Sanazoo 20 amp reconditioned, guaranteed for one year. Only £5.70. Also electric eyes. Write: J. Donohoe, 1 Upper Norfolk Street, North Shields, Tyne & Wear.

Aerials

G2DYM ANTI-T.V. AERIALS

G2DYM ANTI-T.V. AERIALS individually designed by En-B.E.C. Transmitter and Aerial Engineer. All custom built for the transmitter or S.W.L. G2Rv's, G2DYM's, Wideband S.W.L. types, Design and Advisory Service. Details-9" x 10" £12 5 A.E. £5 5 10

LAMUNDA ANTENNA STUD FARM, WHITEBELL, WELLINGTON, SOMERSET

Educational

GO TO SEA as a Radio Officer. Write: Principal, Nautical College, Broadwater, Fleetwood F1Y 6ZJ.

COURSES- Radio Amateurs Examination, City & Guilds. Pass this important examination and obtain your G8 licence, with an RRC Home Study Course. For details of this, and other courses (GCE, Professional examinations, etc.), write or phone: THE RAPID RESULTS COLLEGE, Dept JX1, Tuition House, Winchelsea WD5 1DS. Tel: 01947 1109 (24hr recording service).

Amateur Club

THE BRITISH AMATEUR ELECTRONICS CLUB for all interested in electronics. Four Newsletters a year with help and special offers for members. Major projects sponsored by the B.A.E.C. designed and made by members, currently the B.A.E.C. Z-80 Computer. Membership fee for 1974: £25 0.00, overseas £4-50, 1-50 air-mail, payable in sterling, S.A.E. for details and application forms to The Hon. Sec. J. Margetts, 42 Old Vicarage Green, Keynsham, Bristol.

Miscellaneous

MORS CODE TUTION AIDS

MORS CODE TUTION AIDS Cassette A: 1-25 w.p.m. for amateur radio examination. Cassette B: 19-24 w.p.m. for professional examination. Morse by light system available. Morse Key and Buzzer Unit for sale separately. Prices each Cassette (including booklet) £4: Morse Key and Buzzer £4. Prices include postage etc., Overseas Airmail £1.50 extra.

MHEL ELECTRONICS (Dept PW) 12 Longport Way, Millen, Portsmouth PO4 1LS

IMMEDIATE BY RETURN DELIVERY. Large range of miniature synchronous motors, 1 man, price per hour to 1 rev per 2 days, 10 to 25 0.00 each, 3 and 4 digital mechanical counters, 45p to 50p. Specially priced for marine applications at 25p. SAE for list.

WALLES (ELECTRICAL) LTD., Queenstown, Newton Abbot.

100 Resistors 75p

100 Resistors 75p ²W 5% FILM 10-2.2-2.7-2.9-12.10 (£2 00)

Send stamped envelope for FREE SAMPLE

CWO CASSIETDES 360 All Cassettes In Plastic

CWO CASSIETDES 360 Case with Indexes and

Quantity Descriptions

15 Units £6 84 Units £26

50 Units £33 100 Units £105

W+s all prices include VAT.

HIGH QUALITY

Very Low Distortion

Audio Signal Generator

AN IDEAL INSTRUMENT FOR HI-FI TESTING

TELERADIO ELECTRONICS

PRINTER'S CIRCUIT HARDWARE

Readily available supplies of Constructors' Hardware. Printed circuit boards, top quality for individual designs. Prompt service. Send SAE for catalogue from:

RAMAR CONSTRUCTOR SERVICES

Masons Road, Stratford-on-Avon, Warwick. Tel: 0953 555555.

SUPERB INSTRUMENT CASES by Bazell, manufactured from P.V.C. faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 30p, chassis packing facilities at very competitive prices. 400 models to choose from. Every order is appreciated. BAZELL, Dept No 25, St. Wilfrid's, Foundry Lane, Halton, Lancaster L52 6LT.

H. M. ELECTRONICS

28A FULLWOOD ROAD, BROOKMILL, SHEFFIELD S11, 8BD.

REC. CABINETS (SSQ-Q)

METAL CASES

DRY TRANSFER LETTERING

Send 20p for leaflet (Refundable) Type amanrira
tossed

LOW COST BOXES, instrument cases, aluminium, self tapping screws, BA, bolts and washers. Send a stamped addressed envelope for pamphlet to Harrison Bros, P.O. Box 55, Westcliff-on-Sea, Essex SS6 7LQ.

RECHARGEABLE BATTERIES

ENAMELED COPPER WIRE

-14-12 12 0.40 0.80 0.50 0.40 0.20 0.15

-25-14 14 0.60 0.90 0.50 0.30 0.20 0.15

-33-16 16 0.80 1.20 0.60 0.30 0.20 0.15

-40-18 18 1.00 1.50 0.80 0.50 0.30 0.20 0.15

-45-20 20 1.20 1.80 1.00 0.70 0.30 0.20 0.15

Inclusive of tax and VAT.

SAE brings Catalogue of copper and resistance wires in all catalogues.

THE SCIENTIFIC WIRE COMPANY

PO Box 26, London E14 8BW

SYERO Cases 16in x 12in x 4in Cat. No. ICD-26U, ideal for amplifiers. Test Gear. £8 each. 01-555 3715.

MOTS, COMPONENTS, CMS etc.

SINTEL

KITS, COMPONENTS, CMS etc.

MOD. CMOS Database 2 50

RCM CMOS Database 2 48

2000 Asic. Mem. 12 80

200 As1. Mem. 15 70

50 NS1. Mem. 20 60

50 NS1. Mem. 25 70

All items CWO (Books-Non VAT) £35 p.p.

Full range in our FREE CATALOGUE.

SINTEL, P. O. BOX 756

28 & 30 Finsbury Park, London N1. Orders will be sent on receipt. Tel: (06621) 62125.

PRINTED CIRCUITS AND HARDWARE

SPEAKERS for sale only.

A.J. Lundy, Kibworth, Leics.

PRICES, assembled instrument, plastic case £23, metal case £28. (Kit, 419-59), Tax extra 5%. P.P. and Ins. £1.

Specification, Frequency range: 10 Hz-100 kHz in 4 steps. Output: 1mV @1V in 4 steps. Sine- and Square-wave forms: Distortion, better than 0.5%. Alternator: Powered by 9V battery.

Other instruments: Millivoltmeter, Frequency Meter, Reg. P.P. Units. THD Analysers. Also Hi-Fi Amp Kits 10-100 F.M. Tuners. Aka Speaker Units.

S.A.E. for further information.

TELERADIO ELECTRONICS

www.americanradiohistory.com
FREE DX
from ORS, now as R100, ORS of thin whistle, etc., with a
Tunable Audio Filter, only £7.95.
ADD 100-500MHz with an LF Converter. An antenna, tuners,
fonts 8-15W.
EXPOSE 15-180MHz with a VHF/RF receiver, only £6.95.
FIND DX with Krill Xantoni. Switched 1MHz, 100, 25K_KW Meters to VHF only £3.90.
Make sure your ANTENNA is OKAY with an Antenna Noise Bridge, 1500 KHz, only £8.95.
Each easy-assembly kit includes all parts, printed
circuit, case, hardware, etc., instructions, postage, money
back assurance. Get more DX, SEND TODAY.
CAMBRIDGE KITS
45 (PA) Old School Lane, Milton, Cambridge

3½ DIGIT DVM MODULE kit. Autozero and
Filtered, only £37.95. Details: MLC, 168 College Road, Southwater, Horsham, Sussex.

ARMS & CORR. WINDING
EASIERMOUNT COPPER WIRE
Only top quality materials supplied.
All orders dispatched within 24 hrs.
3½ DIGIT DVM MODULE kit. Autozero and
Filtered, only £37.95. Details: MLC, 168 College Road, Southwater, Horsham, Sussex.

ARTIFACT & CORR. WINDING
EASIERMOUNT COPPER WIRE
Only top quality materials supplied.
All orders dispatched within 24 hrs.

3½ DIGIT DVM MODULE kit. Autozero and
Filtered, only £37.95. Details: MLC, 168 College Road, Southwater, Horsham, Sussex.

BUILD THE
TREASURE TRACER
MK III Metal detector
Brightest, best selling metal detector
Fitted with Pedestal shield.
Sensitivities on 6 bands: 15 kHz only £9.95.
All orders dispatched within 24 hrs.

OUTSTANDING 2200 Hi-Fi FM Tuner. Full
coverage 88-108MHz. Variac tuning. Latest
silicon, supercap energy storage. Ideal for
button/manual tuning, only £9.95. Unique
500W stereo class A Amplifier, power 52
peaks, complete stereo Pre-Amplifier, 2 Power Amplifiers, all inputs accepted. Only £10.85.
500W Tuner Amplifier plus
specification as above 2. Only £10.95. All
equipment built, tested and guaranteed
with full instructions. (P&£ Sop). GREGG
ELECTRONICS, 86-88 Parchmore Road,
Thornhill Heath, Surrey.

DIRECT-READING
AUDIO FREQUENCY METER
* Complete kit £8.95
* Probe £2.50
* VAT £1.97
* £20.95

NOTICE TO READERS
Whilst prices of goods shown in
classified advertisements are
correct at the time of closing
for press, readers are advised to
check with the advertiser
both prices and availability of
goods before ordering from
non-current issues of the maga-
zine.

VALVE BARGAINS
Any 5-45w, 10-61w, 50-75w. Your choice
from the list below.

ECC82, EF80, EF183, EF184, EH90, PC806, PC802,
PC821, PC824, PC825, PC856, PC805, PC804,
PC811, PC806, PC811, 6F14, 6F26, PC820.

Colour Values—PC806, PC809, PC819, 7750w.
All tested. 35p.

AERIAL BOOSTERS
Aerial boosters can produce remarkable
improvements on the picture and sound, in
fringes or difficult areas.

B11—For Th stereo and standard VHF/FM radio.
B12—For the older VHF television—Please
state channel numbers.
B45—For Mono or Colour tv the complete
UHF Television band.

All boosters are complete with battery and
coax plugs and sockets. Next to the net fitting.
£4.20

100—C200/1 CAPACITORS
Values from .01µF to 1uF, 250V/µF. Price £1.50
(mixed packs).

100—ELECTROLYTICS
From 1µF to above 500µF. Mixed voltages.
Price £2.95 (mixed packs).

Please mention Practical
Wireless when
replying to
Advertisements.
Vinyl Coated Instrument Cases
Light blue tops and white lower sections. Very smooth finish.
Type 10 x 3 x 3
WB3
2 x 3 x 3
WB4
2 x 3 x 3
WB5
2 x 1 x 1
WB6
2 x 1 x 1
WB7
2 x 1 x 1
WB8
2 x 2 x 2
WB9
2 x 2 x 2
WBP1
2 x 2 x 2
WBP2
2 x 3 x 3
WBP3
2 x 3 x 3
WBP4
2 x 3 x 3
WBP5
2 x 3 x 3
WBP6
2 x 3 x 3
WBP8
2 x 3 x 3
WBP9
2 x 3 x 3
WBP10
2 x 3 x 3
WBP11
2 x 3 x 3
WBP12
2 x 3 x 3
WBP13
2 x 3 x 3
WBP14
2 x 3 x 3
WBP15
2 x 3 x 3
WBP16
2 x 3 x 3
WBP17
2 x 3 x 3
WBP18
2 x 3 x 3
WBP19
2 x 3 x 3
WBP20
2 x 3 x 3
WBP21
2 x 3 x 3
WBP22
2 x 3 x 3
WBP23
2 x 3 x 3
WBP24
2 x 3 x 3
WBP25
2 x 3 x 3
WBP26
2 x 3 x 3
WBP27
2 x 3 x 3
WBP28
2 x 3 x 3
WBP29
2 x 3 x 3
WBP30
2 x 3 x 3
WBP31
2 x 3 x 3
WBP32
2 x 3 x 3
WBP33
2 x 3 x 3
WBP34
2 x 3 x 3
WBP35
2 x 3 x 3
WBP36
2 x 3 x 3
WBP37
2 x 3 x 3
WBP38
2 x 3 x 3
WBP39
2 x 3 x 3
WBP40
2 x 3 x 3
WBP41
2 x 3 x 3
WBP42
2 x 3 x 3
WBP43
2 x 3 x 3
WBP44
2 x 3 x 3
WBP45
2 x 3 x 3
WBP46
2 x 3 x 3
WBP47
2 x 3 x 3
WBP48
2 x 3 x 3
WBP49
2 x 3 x 3
WBP50
2 x 3 x 3
WBP51
2 x 3 x 3
WBP52
2 x 3 x 3
WBP53
2 x 3 x 3
WBP54
2 x 3 x 3
WBP55
2 x 3 x 3
WBP56
2 x 3 x 3
WBP57
2 x 3 x 3
WBP58
2 x 3 x 3
WBP59
2 x 3 x 3
WBP60
2 x 3 x 3
WBP61
2 x 3 x 3
WBP62
2 x 3 x 3

J. BIRKETT
Radio Component Suppliers
25 The Strait, Lincoln LN2 1JF
Tel: 20767

500yd. REEL OF PVC CABLE, 23 Strand - £54 for £3.
NKT 3/4 TRANSDUCERS similar to OC 71 @ 10p, 5 for 50p.
2 PIN DIN SOCKETS Single @ 10p, Double @ 18p.
BD 187 AMP NPN PLASTIC POWER TRANSISTORS 35p, 5 for £1.00.
MICRO MINIATURE DIODES BA SERIES @ 17p.
50 BC 109 BASS TRANSDUCERS Assorted Unused @ 57p.

VARIABLE CAPACITORS
Direct Drive, 50uf @ 75p, 100uf @ 75p, 150uf @ 95p, 50uf @ 85p, 100uf @ 200p, 125uf @ 125p, 150uf @ 150p, 220uf @ 190p, 330uf @ 330p, 50uf @ 500p.

MATERIALS TRANSFORMERS
AC Input 240V, Type 1, 22V @ 30p, (25p, 30p), Type 2, 22V @ 30p, (25p, 30p, P.P.), Type 4, 50V @ 85p, (100p, 135p), Type 5, 12V @ 300A (25p, 30p, P.P.), Type 8, 150V @ 300A @ 18p, (25p, 30p, P.P.), Type 10, 25V @ 100A (25p, 30p, P.P.), Type 12, 300A @ 30p, (25p, 30p, P.P.), Type 14, 22V @ 100A @ 40p, (25p, 30p, P.P.), Type 16, 300A @ 10p, (25p, 30p, P.P.).

TANTALUM BEAD CAPACITORS
5uf @ 35p, 10uf @ 35p, 22uf @ 55p, 33uf @ 55p, 100uf @ 105p.

MINIATURE ROTARY SWITCHES
2 Pole 4 Way @ 20p, 1 Pole 11 Way @ 40p.

ASSORTED MALLARD C 280 CAPACITORS @ 57p.
BRANDED SILICON DIODES IN 1/4 Or IN 4/8 at 20 for 50p.
10 PLASTIC QC 108 OR BC 213 TRANSISTORS @ 45p each.

F.W. TUNER FRONT END 880 TO 100 M for details with conversion to Aircraft Band @ 144 MHz @ £3.

L.C. SOCKETS DIL 8 Pins $1.45, 14 Pins £4.10 @ 8p.

PHOTO AND PHOTO TRANSDUCERS @ 30p each.

BF 451 SILICON NPN 300 MHZ TRANSISTORS 6 for 35p.
200 ASSORTED 1/4 Watt RESISTORS for 75p.
5 VAR-CAP DIODES Unused 95% for 24p.
5 WATT TOS NP NARLINGTON TRANSISTORS @ 15p each.

B.CX 14 OR BCX 17 TRANSISTORS @ 5 for 50p.
100 P.M.R. TUNING METERS 10 V IN 35p, 5V IN 15p.

POWER TRANSISTORS MP 81/2 @ 15p, MP 10/2 @ 15p.

TANNIS THYRISTORS TIC 47 200 9V 300mA at 38p.

AUDIOPHILE ALARM SYSTEM WITH TRANSISTORS 12V No details @ 75p.

B.C. 3-0800, F.M. L.C. @ 6-1p.
5-15 S MICRO FUSES @ 7p each.

5-15 S MICRO FUSES @ 7p each.

Price complete with pressed steel carrying case and test leads. £14.50

TYPES U4313A & U4313B PROVIDED WITH ANTI-PARALLAX MIRROR SCALES.

TYPE U4320

Sensitivity: 20,000V/1000V D.C.

D.C. Current: 0-0.0006-6.60-600-6000-3A

A.C. Current: 0-0.003-30-300-3000-30A

D.C. Voltage: 0-6-12-18-24-30-36-48-60-100-120-200-240-300V

A.C. Voltage: 0-10-15-60-600-1500-3000V

Resistances: 1000-500-500K-50-5-1-100K-50K-5K-500-50-5-100K-1000K-50M-5M.

Accuracy: D.C. 2.5%; A.C. 4% (of F.S.D.)

PRICE complete with test leads and fibreglass storage case £14.50

THE ABOVE PRICES ARE EXCLUSIVE OF VAT (at present 8%) HANDLING AND POSTAGE CHARGES £1-25 PER INSTRUMENT.

OUR NEW 1976/1977 CATALOGUE IS NOW READY AND WILL BE SENT ON RECEIPT OF REMITTANCE FOR £0.30.

Mail Order Protection Scheme

The Publishers of Practical Wireless are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.

In the unhappy event of the failure of a mail order trader readers are advised to claim a refund with Practical Wireless within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. All refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence.

For the purpose of this scheme, mail order advertising is defined as:-

\[\text{Direct response advertising, displays or postal bargains where cash had to be sent in advance of goods being delivered.}\]

Classified and catalogue mail order advertising are excluded.
R.C.S. 100 watt mixer/amplifier

ALL VALVE CHASSIS

Four inputs. Four way mixing; master volume, treble and bass controls. Suit for record player. This professional quality starter kit includes the following: 4 x 10 watts heads. 4 x 6.3 volt units. 4 x 6.3 volt masts, suitable for 4 x 12 volt battery. Price £45

TEAK VENEER HI-FI SPEAKER CABINETS

Size 16 in. x 8 in. x 5 in. approx. Enamelled 50 to 140 watts rms. 8 ohms. £16 pair

GODMANS CONE TWEETER

Size: 1 in. 10,000 c.p.s. 1 watt. £1.00

**BARGAIN 3 CHASSIS TRANSISTOR MONO MIXER, AMPLIFIER and sound effects recorder. Will mix Microphones, turntables, tape and FM tuner with separate controls and single output. 6 volt battery power. £6.75

THE "INSTANT" BELT TAPE READER & HEAD DEMARKER

Suitable for all sizes and types of tape record, A.C. mains 240/50 Vac. £6.95

WAFER HEATING ELEMENTS

Offered 1/2 into ovens for oven use. 5000 c.p. £2.00 per foot. 8000 c.p. £2.50 per foot. 10,000 c.p. £3.00 per foot. 15,000 c.p. £4.00 per foot. 20,000 c.p. £5.00 per foot. 30,000 c.p. £6.00 per foot. 50,000 c.p. £7.00 per foot. £1.75 per foot 15,000 gauss. £2.00 per foot 20,000 gauss. £2.50 per foot 30,000 gauss. £3.25 per foot 40,000 gauss. £4.00 per foot 60,000 gauss. £5.00 per foot.

DE LUXE BSR HI-FI AUTOCHANGER

Parts £2.10. £2.00 for set. Use Auto or Manual. A high quality unit backed by BSR reliability. 13 combinations. 180 degrees maximum. £6.00-

R.C.S. BOOKSHELF SPEAKERS

Size 16 in. x 8 in. £16 pair £1.00

Baker MAJOR 12" £15-00

Post £1

90-14,000 c.p.s. 12,000 watts, two-way unit and tweeter cone is built into a Baker p.m. cabinet. Ceramic horn has a bass sensitivity of 14,000 ppm and a total range of 400 to 300,000. £19.00 state 8 or 16 ohms. Note: 6 or 10 ohms must be stated.

Baker Speakers "BIG SOUND"

Rigidly constructed in two sections. £125.00-£15.00

GROUP "25" £14.00

GROUP "35" £14.00

GROUP "50/12" £21.00

GROUP "50/15" £26.00

Post £1.60

Baker 150 Watt Quality Transistor Mixer/Amplifier

Professional quality mixing advanced circuit design. Ideal for disco groups, P.A. or musical instruments. 4 inputs x 8 watts. £21.00

DRILL SPEED CONTROLLER/LIGHT DIMMER KIT

Easy to build kit. Will excited all to 500 watts 25.00. £25.00

P.W. SOUND TO LIGHT DISPLAY

Complete Kit with B.C. printed circuit board. £25.00

Mains Transformers

Post £1

4 VOLT 1 AMP. £2.00 3 AMP. £3.00

12 VOLT 1 AMP. £2.00 3 AMP. £4.00

24 VOLT 2 AMP. £4.00 3 AMP. £7.00

50 VOLT 2 AMP. AND 34 VOLT 3 AMP. £5.00

75 VOLT 1 AMP. £2.00 3 AMP. £2.00

100 VOLT 2 AMP. £3.00 3 AMP. £3.00

120 VOLT 2 AMP. £3.00 3 AMP. £3.00

GENERAL PURPOSE LOW VOLTAGE

Turned extruded aluminium. £1.00

E.M.I. 13" x 8in SPEAKER SALE!

With tweeter. And crossover. 15W. Stereo 2 x 8 ohms. £7.95

GOODMANS 20W WOOFER

Size 10 in. x 4 in. £9.95

Baker Disco Speakers

High quality over British made

2 x 12" CABINETS

£52

Baker Disco Speakers

High quality range

£52

Recent Subscriptions

E. M. I. £7.95

Post £1.90
100W RMS STEREO DISCO
A genuine 100W RMS per channel (both channels driven) stereo disco with auto fade on microphone, VU meters, full monitoring and cueing facilities and a very high quality light show. Complete construction booklet MES41 price 25p. Cabinet comes complete with lid and carrying handles.

T.V. GAME
A fascinating TV game kit that plays football, tennis, squash and practice for only £21 19. Reprint of construction details 35p. Add-on rifle kit only £10 60.

ELECTRONIC ORGAN
The only organ you can build in stages and tailor to your requirements as you go along—and at each stage you'll have a fully working instrument! We haven't got the gimmicks yet (they're coming soon) but we have got the most beautiful sounds—you won't find them on any organ less than twice our price. So get one. MES50 series leaflets now! 65p buys the three available so far.

WIDE RANGE OF COILS & CHOokes
Component section in our catalogue includes a wide range of coils, pol cores, ready-wound coils and chokes from microHenries to Henries, plus ranges of Denco coils and i.f. transformers etc.

16 CHANNEL STEREO GRAPHIC EQUALISER
A new design with no difficult coils to wind, but a specification that puts it in the top-flight hi-fi class. All this for less than £70 including fully punched and printed metalwork and woodwork. Send for our component schedule now. Full construction details price 40p.

Who says the Maplin Catalogue's worth having?
"In our 'mums' for readers-to-collect list"—P.E.
"contains...just about everything the DIY electronics enthusiast requires"—P.W.
"probably the most comprehensive catalogue we have ever come across"—E.E.
"has been carefully prepared and is very well presented"—R.E.C.
"make the job of ordering components an easy, accurate and enjoyable pastime"—P.W.
"Only one word describes the publication—superb!"—E.T.I.
OVER 60,000 COPIES SOLD DON'T MISS OUT! SEND 60p NOW.

MAPLIN ELECTRONIC SUPPLIES
P.O. Box 1, RAYLEIGH, ESSEX SS6 8AR
Telephone: Southend (0702) 715155
Shop: 284 London Road, Westcliff-on-Sea, Essex.
(Closed on Monday)
Telephone: Southend (0702) 715155

Our bi-monthly newsletter keeps you up to date with latest guaranteed prices—our latest special offers—details of new projects and new lines. Send 30p for the next six issues (5p discount voucher with each copy).

POST THIS COUPON NOW FOR YOUR COPY OF OUR CATALOGUE PRICE 60p
Please rush me a copy of your 216 page catalogue. I enclose 60p, but understand that if I am not completely satisfied I may return the catalogue to you within 14 days and have my 60p refunded immediately.

NAME
ADDRESS