THE RELIABLE
SOLDERING INSTRUMENT!

SEND COUPON FOR LATEST LEAFLET

ADCOLA PRODUCTS LTD
ADCOLA HOUSE
GAUDEN ROAD
LONDON SW4

NAME
ADDRESS

ORDERS BY POST TO:

G. F. MILWARD
Drayton Bassett, Near Tamworth,
Staffs

Please include suitable amount to cover post and packing.
Minimum order 40/-.

For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8.
DENSHI BOARD KITS

NEW EXPERIMENTAL AND EDUCATIONAL CIRCUIT SYSTEM

The DENSHI BOARD SYSTEM enables the young experimenter and electronics enthusiast to produce a wide range of transistor circuits without soldering or the use of any tools at all. Basically the system comprises a dotted circuit board into which plug-in components and bridge pieces are set to produce up to 50 different circuits. The components are contained in transparent plastic boxes bearing the appropriate circuit symbol and value thus enabling even the complete novice to grasp the fundamentals of circuitry after only a few moments study. In addition each DENSHI BOARD KIT comes complete with an 80 page manual of circuits and data.

DENSHI BOARD KIT SR-1A comprises:
- Dual sound; tuner block; 4 resistors; choke coil; transformer; 30A transformer for RF; 2 diodes; 2 capacitors; battery holder; motor key; crystal earphone; variable bridge and connecting pieces and 80 page manual. This kit permits the building of 16 basic circuits.

DENSHI BOARD KIT SR-2A as SR-1A but with the following additional parts:
- 30A transistor for AF; 2 resistors; 1 capacitor; crystal microphone; test probes; electrode, additional connecting pieces; +V battery. This kit permits the building of 20 basic circuits.

LASKY'S PRICE £4.19.6 Post S&H

GET YOUR LASKY'S AUDIO-TRONICS PICTORIAL

16 colour page catalogue in large 16 x 11½ format packed with 5000 & more items from our vast stocks. 25P, Radio, Electronics, Test Equipment, Components, etc., etc.

LASKY'S PRICE £7.2.6 Post S&H

TRIO

MODEL 90-590D

Brief spec.: A band receiver covering 500 KHz to 30 MHz, continuous and electrical bandwidth on 10.7 Hz, 50 Hz and 100 Hz. An 8 valve 7 diode circuit, 48 ohm output and phase jack. Special features: MBA-40A, 3 meter J aerial, self-sustained signal generator, 40 dB crystal microphone. L.F. frequency 455 KHz, R.F. Band output 9.75 W, Variable RP and AP gain controls.

LASKY'S PRICE £42.0.0 Post FREE

SP-5D “SPEAKER MATE”

T10 communications speaker unit—matching the above receiver in both style and size. Contains 3 x 300G, static, speaker—crystal—designed to give extremely crisp reproduction of voice frequencies. Dark grey metal cabinet—size 7 x 3½ x 4½.

LASKY’S SCOOP

THE WORLD’S SMALLEST 6 TRANSISTOR TWO WAVEBAND RADIO RECEIVER FROM RUSSIA

THE ASTRAD ORION

Made to the highest Russian space-age standard—this remarkable micro-circuit set measures only 11 1/2 x 13 1/2 x 1 1/4 in. yet it contains 6 transistors and other components combined in a photo-electric circuit, output only 1% in, tuning capacitor, ferrite rod, (core) aerial, battery, waveband selection, switch etc. Output to a high impedance, crystal earphone, giving ample volume (automatically adjusted) and clear tone. Brief tech. spec. Waveband coverage—Medium wave 250 to 1500 KHz, Long wave 1500 KHz to 4000 KHz. Sensitivity: 25mV max. Selectivity: 16000 (at mid-tuning), Power consumption 4mA max. Power source: 1 x 1 1/4v Mercury battery (battery type M3255 or equivalent).

The Orion is supplied fully built and tested complete with batteries*, left and right fitting earphone supports and alternative black and grey plastic presentation box. *NOTE: The battery we supply with the Orion is a rechargeable type. Charger units will shortly be available enabling you to recharge the battery from AC mains 240V supply. Price 15/- post free if ordered now with radio—optional 5/-.

LASKY’S PRICE £39.6 Post S&H. Extra battery available 8/6

NEW INTERNATIONAL TAPE

FAMOUS AMERICAN MADE BRAND TAPE AT RECORD LOW PRICES

<table>
<thead>
<tr>
<th>Brand</th>
<th>Tape Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scotch</td>
<td>1/2in. Standard Play</td>
<td>£3.00</td>
</tr>
<tr>
<td>Scotch</td>
<td>3/4in. Standard Play</td>
<td>£3.50</td>
</tr>
<tr>
<td>Scotch</td>
<td>3/4in. Long Play</td>
<td>£3.75</td>
</tr>
<tr>
<td>Scotch</td>
<td>5/8in. Standard Play</td>
<td>£4.00</td>
</tr>
<tr>
<td>Scotch</td>
<td>5/8in. Long Play</td>
<td>£4.25</td>
</tr>
<tr>
<td>Scotch</td>
<td>1/4in. Standard Play</td>
<td>£4.50</td>
</tr>
<tr>
<td>Scotch</td>
<td>1/4in. Long Play</td>
<td>£4.75</td>
</tr>
<tr>
<td>Scotch</td>
<td>1/2in. 3M Standard Play</td>
<td>£5.00</td>
</tr>
<tr>
<td>Scotch</td>
<td>1/2in. 3M Long Play</td>
<td>£5.25</td>
</tr>
</tbody>
</table>

Lasky’s Radio brigade

Branches:
- 207 EDGWARE ROAD, LONDON, W.2
- 33 TOTTENHAM COURT ROAD, LONDON, W.1
- 116 EDGWARE ROAD, LONDON, W.2

Open all day, every day, 9 a.m. to 6 p.m. Monday to Saturday.

ALL MAIL ORDERS AND CORRESPONDENCE TO: 3-15 CAVELL STREET, TOWER HAMLETS, LONDON, E.1

Tel.: 01-790 4821
Mainline Electronics Limited

Service with the personal touch

Mainline Electronics is a new Service for users of electronic equipment and components in the field of experimental work.

Backed by one of Europe’s leading Distributors and enjoying the support of the Industry, Mainline Electronics specialises in quality components from leading manufacturers. These products are characterised by excellent materials and workmanship, proved reliability and known performance.

Service is the watchword of Mainline Electronics’ activities. The company not only supplies the right components at the right price but, also supplies the necessary data through the data service published in the component guide.

Your Complete Professional Guide to Components and Prices

Send today for Europe’s finest, most up-to-date and most comprehensive Price List of Semi-conductors and associated components, with details of manufacturers full application data.

Get this invaluable reference now — to RCA — IR — SGS — Emithus — Semitron — CCL — Plessey — Morganite — Litetosol to name but a few.

A DOZEN OF THE BEST

RCA

SL

SGS

C.O.L. LTD.

Morgan

Litesold

HIVAC

TORCH

Mainline introduce a trio of amplifiers the Mainline ‘12’, Mainline ‘25’, Mainline ‘70’. The design of these audio amplifiers was the result of SGS and RCA combining their tremendous resources to produce these quasi circuits.

Each Kit complete with circuit diagram contains all semiconductors — resistors — capacitors and printed circuit board.

Mainline 12A—£7.00.

Prices: Mainline 25A—£8.50.

Mainline 70A—£10.10.0.

Mainline Electronics Limited,

Thames Avenue, WINDSOR, Berkshire.

(A member of the ECS Group of Companies)
INCREASE YOUR KNOWLEDGE

ICS

MANY COURSES TO CHOOSE FROM incl.
RADIO & TV ENGINEERING & SERVICING,
TRANSISTOR & PRINTED CIRCUIT SERVICING,
CLOSED CIRCUIT TV, ELECTRONICS,
NUMERICAL CONTROL ELECTRONICS,
TELEMETRY TECHNIQUES, SERVOMECHANISMS
PRINCIPLES OF AUTOMATION,
COMPUTERS, ETC.

ALSO EXAMINATION COURSES FOR
C. & G. Telecommunication Technicians' Certs
C. & G. Electronic Servicing
R.T.E.B. Radio/TV Servicing Certificate
P.M.G. Certificates in Radiotelegraphy
Radio Amateurs' Examination
General Certificate of Education, etc

BUILD YOUR OWN RADIO AND INSTRUMENTS
With an ICS Practical Radio & Electronics Course you gain a
sound knowledge of circuits and applications as you build your
own 5-valve Superhet Receiver, Transistor Portable, and high-
grade test instruments, incl. professional-type valve volt meter
(shown below). Everything simply explained. All components
and tools supplied. For illustrated brochure, post coupon below.

MEMBER OF THE ASSOCIATION
OF BRITISH CORRESPONDENCE COLLEGES

THERE IS AN ICS COURSE FOR YOU

Whether you need a basic grounding, tuition to complete
your technical qualifications, or further specialized
knowledge, ICS can help you with a course individually
adapted to your requirements.

There is a place for you among the fully-trained men.
They are the highly paid men—the men of the future.
If you want to get to the top, or to succeed in your own
business, put your technical training in our experienced
hands.

ICS Courses are written in clear, simple and direct language,
fully illustrated and specially edited to facilitate individual
home study. You will learn in the comfort of your own
home—at your own speed. The unique ICS teaching
method embodies the teacher in the text; it combines
expert practical experience with clearly explained theoretical
training. Let ICS help you to develop your ambitions and
ensure a successful future. Invest in your own capabilities.

FILL IN AND POST THIS COUPON TODAY
You will receive the FREE ICS Prospectus listing the examination
and ICS technical courses in radio, television and electronics
PLUS details of over 150 specialized subjects.

PLEASE SEND FREE BOOK ON

NAME

ADDRESS

OCCUPATION AGE

INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 170, INTERTEXT HOUSE, PARKGATE ROAD, London, SW11
RACAL RA-17
First ministry release of world famous communication receivers. Frequency range 200 kHz to 30 MHz. Incorporates BFO. Built-in speaker and phone jack. Metal cabinet. Operation 220 VAC. £30.00. Supplied with new repairs and warranty. Carr. £44.75. 15 gns.

CLASS D WAVEMETERS
A crystal controlled heterodyne frequency meter covering 500 kHz to 30 MHz. Operation on 6 volts B.D.O. Guaranteed. Available in good used condition or brand new with accessories. £7.10.0. Carr. 7/6.

CLASS D WAVEMETERS No. 2

MARCONI CT/44/TF956
AP Absorption Wattmeter
1 µwatt to 6 watts. £29. Carr. 10/-.

LELAND MODEL 27 BEAT FREQUENCY OSCILLATORS
Frequency range 2,000 Hz to 200 kHz. Operation 240 VAC. Supplied in perfect order. £12.10.0. Carr. 10/-.

SOLARTRON CD-1016 OSCILOSCOPE
Double beam. D.C. To 5 M/s. Excellent condition. £55 each. Carr. £35.00.

AM/FM SIGNAL GENERATORS
Goniometric Test No. 2. A high precision instrument for the measurement of phase distortion by a method suitable for use in the laboratory. 180 kHz to 5 MHz. Operation 240 VAC. Supplied in perfect order. £12.10.0. Carr. 10/-.

GEARED MAINS MOTORS
Parallel type S810 230/250V. A.C. Reversible. 10 W. 400 r.m.m. Speed adjustable with capacitor. Excellent condition. £9.00. Carr. 10/6.

SINCLAIR EQUIPMENT

SPECIAL OFFER
Two 2127 Amps., FP Power Supply, St ereo 69 Transcorder, £25, or with two 2127 speakers, £27.

NEW SINCLAIR 2000 SYSTEM

ECHO HS-606 STEREO HEADPHONES
Wonderfully comfortable. Light, with padded earpads and vinyl headband. £5/6 each. £11.00. Carr. 10/-.

UNR-30 4-BAND COMMUNICATION RECEIVER
Covering 500 Kc/s to 30 MHz. Incorporates BFO. Built-in speaker and phone jack. Metal cabinet. Operation 220 VAC. £30.00. Supplied with new repairs and warranty. Carr. £44.75. 15 gns.

TRIO COMMUNICATION RECEIVER MODEL 89-509E
A sensitive receiver covering 250 Kc/s to 30 MHz. Continuous and electrical broadcast. On 16, 10, 5, 3 and 3.5 MHz. A valve tube 7 tubes. For use as a receiver, or on a separate band. £69.10.0. Carr. paid.

FIELD TELEPHONES TYPE E
Generator rigging, metal cases. Operation from 1 to 24 VDC (not supplied). Excellent condition. £11.9.0. Carr. 10/-.

TE-40 HIGH SENSITIVITY A.C. VOLTMETER
10 meg. Input 10 ranges: 0-10, 0-100, 0-1 kV, 0-10 kV. 0-100/500/1000, 0-100 mV, 0-10 V, 0-100 V, 0-1000 V. £50.19.6. Supplied with new batteries and charger. £52.10.0. Carr. 10/-.

TE-22 SINE SQUARE WAVE OSCILLOSCOPE
A.C. VOLTMETER
£4.00 each. £11.5.0. Car. £10.0. 0-10 V, 0-100 V, 0-1000 V. £50.19.6. Supplied with hand book and instructions. £52.10.0. Carr. 10/-.

TE-111 DECADE RESISTOR ATTENUATOR
Variable range 0-5,000 ohms. 500 ohms. £11.5.0. Carr. 10/-.

TE-200 RF SIGNAL GENERATOR
Wide range signal generator covering 100 to 300 MHz. 0-100 Hz to 100 kHz. 0-10 MHz. £50.19.6. Supplied with hand book and instructions. £52.10.0. Carr. 10/-.

CAR LIGHT FLASHERS
Heavy duty light flasher employs a constant discharge principle operating on 240 VAC. £20.00 each. £40.00. Supplied with hand book and instructions. £42.10.0. Carr. 10/-.

G. W. SMITH & CO. (RADAR) LTD. Also see oppos. page.
NEW CATALOGUE

Nearly 200 pages giving full details of a comprehensive range of COMPONENTS, TEST EQUIPMENT, COMMUNICATION EQUIPMENT and Hi-Fi EQUIPMENT. Each section is thoroughly illustrated and fully illustrated. Many items are available at competitive prices.

Free Discount Coupons Value 10/-

SEND NOW - ONLY 7/6 PEPPY

GARRARD

LAFAYETTE SOLID STATE HARRIS RECEIVER

1. High fidelity, tuning to 10,000 kHz, full automatic. Built-in audio and voice signal generator. Tape recorder and playback, 100kHz-200kHz. Ranges 300V, 200V, 150V. 650µA, 450µA. Complete with probe and speaker, £30.00.

2. High fidelity, tuning to 10,000 kHz, automatic. Built-in audio and video signal generator. Tape recorder and playback, 100kHz-200kHz. Ranges 300V, 200V, 150V. 650µA, 450µA. Complete with probe and speaker, £30.00.

LAFAYETTE FF-60 SOLID STATE VHF FM RECEIVER

A new design in solid state receivers covering 108-174 MHz. Fully tunable or crystal controlled (not supplied) for high frequency operation. InTEGRATED CIRCUITry. Ultrasonic output. A unique design for radio and television. Electronic circuits and controls. Tape recorder and playback, 100kHz-200kHz. Complete with probe and speaker, £10.00.

TAPE RECORDER

Model 301

1. High fidelity, tuning to 10,000 kHz, automatic. Built-in audio and voice signal generator. Tape recorder and playback, 100kHz-200kHz. Ranges 300V, 200V, 150V. 650µA, 450µA. Complete with probe and speaker, £30.00.

2. High fidelity, tuning to 10,000 kHz, automatic. Built-in audio and voice signal generator. Tape recorder and playback, 100kHz-200kHz. Ranges 300V, 200V, 150V. 650µA, 450µA. Complete with probe and speaker, £30.00.

MODEL QM TRANSISTOR CHECKER

1. High fidelity, tuning to 10,000 kHz, automatic. Built-in audio and voice signal generator. Tape recorder and playback, 100kHz-200kHz. Ranges 300V, 200V, 150V. 650µA, 450µA. Complete with probe and speaker, £30.00.

2. High fidelity, tuning to 10,000 kHz, automatic. Built-in audio and voice signal generator. Tape recorder and playback, 100kHz-200kHz. Ranges 300V, 200V, 150V. 650µA, 450µA. Complete with probe and speaker, £30.00.

ARR-100 COMBINED AF-RD SIGNAL GENERATOR

1. High fidelity, tuning to 10,000 kHz, automatic. Built-in audio and video signal generator. Tape recorder and playback, 100kHz-200kHz. Ranges 300V, 200V, 150V. 650µA, 450µA. Complete with probe and speaker, £30.00.

2. High fidelity, tuning to 10,000 kHz, automatic. Built-in audio and video signal generator. Tape recorder and playback, 100kHz-200kHz. Ranges 300V, 200V, 150V. 650µA, 450µA. Complete with probe and speaker, £30.00.

TE-05 VALVE VOLTMETER

1. High quality instrument with 50mA, 10mA, 1mA, and 100mA ranges. Complete with probe and speaker, £30.00.

2. High quality instrument with 50mA, 10mA, 1mA, and 100mA ranges. Complete with probe and speaker, £30.00.

RECORDING HEADS

1. 75µm, 50µm, 25µm, 12.5µm, 6.25µm, 3.125µm, 1.5625µm, 0.78125µm. Complete with probe and speaker, £30.00.

2. 75µm, 50µm, 25µm, 12.5µm, 6.25µm, 3.125µm, 1.5625µm, 0.78125µm. Complete with probe and speaker, £30.00.

SOLARTRON MONITOR OSCILLOSCOPE No. 101

An extremely high quality oscilloscope with time bases of 1µs to 200µsec, 6µs, 20µs, 60µs, 200µs. Complete with probe and speaker, £30.00.

NOW OPEN IN EDGWARE ROAD

Our new walk around shop is now open at 111 Edgware Road fully stocked with all Hi-Fi, Communication and Test Equipment. Come and find your nearest shop!

G.W. Smith & Co. (Radio) Limited

3 and 34, Lisle Street, O.F. 437204
Leicester SQ, London, W.2
311, Edgware Road, London, W.2 01-262 0387
TRANSPORTER STEREO AMPLIFIER MODEL 2500

SPECIAL OFFER/of Stereo Cartridges
Look at our special prices!
MAD List £8.6.0
M44-5 List £11.11.0
M44-6 List £11.11.6
M44-7 List £11.11.8
M44-8 List £12.12.6
M44-9 List £12.12.8
M55-6 List £18.18.6
M55-7 List £18.18.8
M55-8 Price £21.0.0
Post and Packaging 1/- each

SPECIAL PURCHASE/EECO "EXPLORER" Car Radio
Frustrated? Export Order! A truly dependable and reliable car radio giving world-wide reception. 8 transistor, 12 volts. Positive or Negative earth operation. Covers 9 wavebands—M.W. 160—670 metres and S.W. bands 2 to 17—9 Million. 60, 45, 31, 25, 19, 16, 14, 12, 9, 7, 5, 3, 2, and 1 metres bands. Size 6" high x 7" wide x 5" in depth. Original price £10. OUR PRICE £8.19.6, P. & P. 3/- (suitable Philips speaker, baffle and brackets £11.0.6, P. & P. 5/-)

MULTI TESTERS
MODEL D14. A really versatile instrument that makes a handy pocket size (z" x 3" x 1"). Complete with battery, test leads and P. & P. instructions.

“VERITONE” RECORDING TAPE
Specially manufactured in U.S.A. from extra strong pre-stretched material. The quality is unequalled.
TENSIONED to ensure the permanent base. Highly resistant to breakage, moisture and heat. High polished spools. Non-finish. Suitable for use throughout the entire audio range. Double wrapped—attractively boxed.

MONO HEADPHONES

MONO GRAM AMPLIFIER

“PREMIER” TAPE CASSETTES
C60 7/6
C90 12/6
C120 17/6

The ‘New Picture-Book’ way of learning
BASIC ELECTRICITY
BASIC ELECTRONICS

You'll find it easy to learn with this outstandingly successful new pictorial method—the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoon-type drawing. The books are based on the latest research into simplified learning techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects.

WHAT READERS SAY

“May I take this opportunity to thank you for such enlightening works and may I add, in terms, easily understood by the novice.”
L. W. M., Birmingham.

“I find that the new pictorial method is so easy to understand, and I will undoubtedly enjoy reading the following five volumes: thank you for a wonderful set of books.”
C. B., London.

“They certainly confirm everything your readers say about them and I am more than delighted with them. They will be of great value to me in my job as Hospital maintenance electrician.”
A. B., Birmingham

A TECH-PRESS PUBLICATION

POST NOW FOR THIS OFFER!!

302
Build yourself a quality transistor radio
backed by our after sales service!

roamer seven mk IV
SEVEN WAVEBAND PORTABLE

SEVEN TUNABLE WAVEBANDS—
MW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND.

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE
WITH SPEAKER AND EARPIECE

Attractive black and gold case. Size 34 x 11 x 31/2in. Tunable over both Medium and Long Waves with extended M.W. band for easier tuning of Luxembourg, etc. All first grade components—7 stages—6 transistors and 2 diodes, supersensitive ferrite rod aerial, fine tune moving coil speaker, also Personal Earpiece with switched socket for private listening. Easy build plans and parts price list 1/6 (£FREE with parts)

Total building costs £4.6 9/6 P & P 3/6

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE
WITH SPEAKER AND EARPIECE

Attractive case with red speaker grille. Size 34 x 11in. x 31/2in. 7 stages—5 transistors and 2 diodes, ferrite rod aerial, tuning condenser, volume control, fine tune moving coil speaker also Personal Earpiece with switched socket for private listening. All first grade components. Easy build plans and parts price list 1/6 (£FREE with parts)

Total building costs £4.7 6/ P & P 3/0

super seven

THREE WAVEBAND PORTABLE WITH 3in. SPEAKER

Attractive case size 34 x 61/2 x 31/2in. with gilt fittings. Covers Medium and Long Waves and Trawler Band. Special circuit incorporating 2 R.F. Stages, push pull output, ferrite rod aerial, 7 stages—5 transistors and 2 diodes, 8in. speaker (will drive larger speakers) and all first grade components. Easy build plans and parts price list 2/- (£FREE with parts). (Personal Earpiece with switched socket for private listening 3/- extra)

Total building costs £6.9 6/ P & P 4/6

roamer six

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER

Attractive case with gilt fittings. Size 34 x 61/2 x 31/2in. Tunable on Medium and Long waves, two Short wave and Tram-Way and Super W. band for easier tuning of Luxembourg, etc. Sensitive ferrite rod aerial and telescopic aerial for Short waves. All top grade components. 8 stages—6 transistors and 5 diodes including Micro-Alloy R.F. Transistors etc. (Carrying strap 1/6 extra). Easy build plans and parts price list 3/-

Total building costs £7.9 6/ P & P 4/6

* Callers side entrance Stylo Shoe Shop
* Open 10-1, 2.30-4.30 Mon-Fri. 9-12.30 Sat

Total building costs £5.19 6/ P & P 7/6 Personal Earpiece with switched socket for private listening 8/- extra.

Parts price list and easy build plans 3/- (Free with parts).

NEW LOOK melody six

TWO WAVEBAND PORTABLE

8 stages—6 transistors and 5 diodes. Covers Medium and Long Waves. Top quality 35in. Loudspeaker for quality output and also with Personal Earpiece with switched socket for private listening. Two R.F. stages for extra boost. High “Q” Ferrite Rod Aerial. Push pull output. Handle pocket size case with gilt fittings. Size 34 x 4 x 2in. Easy build plans and parts price list 3/- (£FREE with parts)

Total building costs £6.9 6/ P & P 4/3

RADIO EXCHANGE CO
61 HIGH STREET, BEDFORD. Tel. 0234 52367

I enclose £.......................... please send items marked

ROAMER SEVEN ☐ ROAMER SIX ☐
TRANSONA FIVE ☐ SUPER SEVEN ☐
POCKET FIVE ☐ MELODY SIX ☐

Parts price list and plans for ..

Name ..

Address ..

Date: .. PW9
R.S.C. SENSATIONAL HIGH FIDELITY STEREO PACKAGES

30 WATT OUTPUT
- Goldring Transcription Turntable on Plinth
- Carlsberg Magnetic Pick-up
- £100f. Super 30 Amplifier in veneered housing
- 68 Gns.
- Price as recommended for optimum performance.
- Special total price. Four fully wired units ready to "plug-in" and use.

70 WATT OUTPUT
- Goldring SP25M Turntable on Plinth
- Goldring CS80 Ceramic P.U. Cartridge
- Super 30 Amplifier in veneered housing
- Fair Stanton Speaker Units
- 75 Gns. Total price.
- Full units ready to show other money saving offers.

15 W HIGH FIDELITY AMPLIFIERS
- Goldring SP25P in veneered unit on plinth
- Goldring CS80 Ceramic P.U. Cartridge
- Super 30 Amplifier in veneered housing
- 51 Gns.

BASS CONTROL:
- HF100D 10' Bass Control with full constructional details.
- £5.19.0

P.U. TWIN/TWO F.P.R.
- 30-20,000 ohms. Classical Tuner.
- £5.19.0

AC 100-240V.
- £5.19.0

CABINET
- £5.19.0

FULLY TRANSISTORED S-STATE CONSTRUCTION
- £5.19.0

SPECIFICATIONS COMPARABLE WITH CONSISTENTLY MORE
- Using with First Class Cartridge. Matches Goldring P.U. TWIN.
- £5.19.0

CONTROL
- A Dual Channel Version of the Super 15. Employed in conjunction with Goldring P.U. Matched Components. Cross Talk: 0.25%.
- £5.19.0

PACKAGE
- £5.19.0

ORDERS TO:
- 107 High Street, (Half-day Thurs.). Tel. 06403

LEICESTER
- 5-7 County (Meca) Arcade, Bridgwater (Half-day Wed.) Tel. 06255

LEEDS
- 17 Darley St. (Half-day Wed.) Tel. 06351

LONDON
- 65A Oldham Street (Half-day Wed.) Tel. CENTRAL 778

MIDDLESBROUGH
- 153 Woodspring Hill, (Half-day Wed.) Tel. 04169

NEWCASTLE
- 15 Exchange Street (Castle Market Bldgs.) (Half-day Wed.) Tel. 02575

SHEFFIELD
- 11 Parkgate Street, (Half-day Thursday) Tel. 02508
THE 'YORK' HIGH FIDELITY 3 SPEAKER SYSTEM

- Moderate size, only 25 x 14 x 10in. Complete Kit 20 Gns.
- Response 25-20,000 c.p.s. 15 ohms.
- Tones balanced to give best response to music.
- Size 35 x 28 x 18 in.
- Complete kit, built and fully guaranteed. Limited number to clear. £7-19-11

R.S.C. A10 30 WATT ULTRA LINEAR HI-FI AMPLIFIER

Highly sensitive, Push-Pull high output, High fidelity.
- Tone Control Range. Sensitivity 0-15W for 100,000 ohm input.
- Built-in controls: Bass, Treble, Level, Tone, and Treble Controls.
- Sensitivity 30 mV. Suitable for high output, high fidelity transformers.
- Designed for use with all types of speakers, stereo systems, and high quality speakers.
- Complete kit, built and fully guaranteed. Limited number to clear. £18-12-9

R.S.C. A11 12-14 WATT AMPLIFIER

Push-Pull Ultra Linear Output.
- Built-in controls: Bass, Treble, Level, Tone, and Treble Controls.
- Sensitivity 30 mV. Suitable for high output, high fidelity transformers.
- Designed for use with all types of speakers, stereo systems, and high quality speakers.
- Complete kit, built and fully guaranteed. Limited number to clear. £14 Gns.

R.S.C. MAINS TRANSFORMERS

- Secondary 250-2500 c.p.s., 4-14 ohms.
- Suitable for Mullard 510 Amplifiers.

R.S.C. BASS-REJECT 50 WATT AMPLIFIER

- Fully transistorized complete kit.
- High fidelity, high output, low distortion.
- Built-in controls: Bass, Treble, Level, Tone, and Treble Controls.
- Sensitivity 30 mV. Suitable for high output, high fidelity transformers.
- Designed for use with all types of speakers, stereo systems, and high quality speakers.
- Complete kit, built and fully guaranteed. Limited number to clear. £18 Gns.

MINI-8 HI-FI Loudspeaker Units Special Offer

- Teak or Afromosia veneered cabinets.
- 20-100 watts.
- 25 Gns. (Each).

F.A.L. 'Phase Fifty' PUBLIC ADDRESS AMPLIFIER

BLACKPOOL AGENT APPOINTED

R.S.C. COLUMN SPEAKERS

Covered in two-tone Rexine/ vinyl, ideal for schools and Public Address. 15 ohm rating.
- Overall size approx. 10 x 14 x 15in. or 9 x 14 x 15in. 16 Gns.
- Complete kit, built and fully guaranteed. Limited number to clear. £7-19-11

R.S.C. HI-WATT SPEAKERS

Covered in two-tone Rexine/ vinyl, ideal for vocalists and Public Address. 15 ohm rating.
- Overall size approx. 10 x 14 x 15in. or 9 x 14 x 15in. 16 Gns.
- Complete kit, built and fully guaranteed. Limited number to clear. £7-19-11

R.S.C. 30 WATT HI-FI AMPLIFIER

For Vocal, Vocal or Instrumental Group A 2 or 4 input, 2 vol. control, HI-FI with separate Bass and Treble controls. Current Voltage Peak output rating.
- £819. 20 Gns. complete kit. £9.10. 20 Gns. complete kit.

F.A.L. 'Phase Fifty' PUBLIC ADDRESS AMPLIFIER

POWER PACK KIT

- Consisting of Mains transformer, Metal detector, Smiths types, and Smiths type, etc.
- Suitable for use in musical or public address equipment.

BLACKPOOL AGENT APPOINTED

R.S.C. COLUMN SPEAKERS

Covered in two-tone Rexine/ vinyl, ideal for vocalists and Public Address. 15 ohm rating.
- Overall size approx. 10 x 14 x 15in. or 9 x 14 x 15in. 16 Gns.
- Complete kit, built and fully guaranteed. Limited number to clear. £7-19-11

R.S.C. HI-WATT SPEAKERS

Covered in two-tone Rexine/ vinyl, ideal for vocalists and Public Address. 15 ohm rating.
- Overall size approx. 10 x 14 x 15in. or 9 x 14 x 15in. 16 Gns.
- Complete kit, built and fully guaranteed. Limited number to clear. £7-19-11

R.S.C. 30 WATT HI-FI AMPLIFIER

For Vocal, Vocal or Instrumental Group A 2 or 4 input, 2 vol. control, HI-FI with separate Bass and Treble controls. Current Voltage Peak output rating. £819. 20 Gns. complete kit. £9.10. 20 Gns. complete kit.

F.A.L. 'Phase Fifty' PUBLIC ADDRESS AMPLIFIER

POWER PACK KIT

- Consisting of Mains transformer, Metal detector, Smiths types, and Smiths type, etc.
- Suitable for use in musical or public address equipment.

BLACKPOOL AGENT APPOINTED

R.S.C. COLUMN SPEAKERS

Covered in two-tone Rexine/ vinyl, ideal for vocalists and Public Address. 15 ohm rating.
- Overall size approx. 10 x 14 x 15in. or 9 x 14 x 15in. 16 Gns.
- Complete kit, built and fully guaranteed. Limited number to clear. £7-19-11

R.S.C. HI-WATT SPEAKERS

Covered in two-tone Rexine/ vinyl, ideal for vocalists and Public Address. 15 ohm rating.
- Overall size approx. 10 x 14 x 15in. or 9 x 14 x 15in. 16 Gns.
- Complete kit, built and fully guaranteed. Limited number to clear. £7-19-11

R.S.C. 30 WATT HI-FI AMPLIFIER

For Vocal, Vocal or Instrumental Group A 2 or 4 input, 2 vol. control, HI-FI with separate Bass and Treble controls. Current Voltage Peak output rating. £819. 20 Gns. complete kit. £9.10. 20 Gns. complete kit.

F.A.L. 'Phase Fifty' PUBLIC ADDRESS AMPLIFIER

POWER PACK KIT

- Consisting of Mains transformer, Metal detector, Smiths types, and Smiths type, etc.
- Suitable for use in musical or public address equipment.

BLACKPOOL AGENT APPOINTED

R.S.C. COLUMN SPEAKERS

Covered in two-tone Rexine/ vinyl, ideal for vocalists and Public Address. 15 ohm rating.
- Overall size approx. 10 x 14 x 15in. or 9 x 14 x 15in. 16 Gns.
- Complete kit, built and fully guaranteed. Limited number to clear. £7-19-11

R.S.C. HI-WATT SPEAKERS

Covered in two-tone Rexine/ vinyl, ideal for vocalists and Public Address. 15 ohm rating.
- Overall size approx. 10 x 14 x 15in. or 9 x 14 x 15in. 16 Gns.
- Complete kit, built and fully guaranteed. Limited number to clear. £7-19-11

R.S.C. 30 WATT HI-FI AMPLIFIER

For Vocal, Vocal or Instrumental Group A 2 or 4 input, 2 vol. control, HI-FI with separate Bass and Treble controls. Current Voltage Peak output rating. £819. 20 Gns. complete kit. £9.10. 20 Gns. complete kit.

F.A.L. 'Phase Fifty' PUBLIC ADDRESS AMPLIFIER

POWER PACK KIT

- Consisting of Mains transformer, Metal detector, Smiths types, and Smiths type, etc.
- Suitable for use in musical or public address equipment.

BLACKPOOL AGENT APPOINTED

R.S.C. COLUMN SPEAKERS

Covered in two-tone Rexine/ vinyl, ideal for vocalists and Public Address. 15 ohm rating.
- Overall size approx. 10 x 14 x 15in. or 9 x 14 x 15in. 16 Gns.
- Complete kit, built and fully guaranteed. Limited number to clear. £7-19-11

R.S.C. HI-WATT SPEAKERS

Covered in two-tone Rexine/ vinyl, ideal for vocalists and Public Address. 15 ohm rating.
- Overall size approx. 10 x 14 x 15in. or 9 x 14 x 15in. 16 Gns.
- Complete kit, built and fully guaranteed. Limited number to clear. £7-19-11

R.S.C. 30 WATT HI-FI AMPLIFIER

For Vocal, Vocal or Instrumental Group A 2 or 4 input, 2 vol. control, HI-FI with separate Bass and Treble controls. Current Voltage Peak output rating. £819. 20 Gns. complete kit. £9.10. 20 Gns. complete kit.

F.A.L. 'Phase Fifty' PUBLIC ADDRESS AMPLIFIER

POWER PACK KIT

- Consisting of Mains transformer, Metal detector, Smiths types, and Smiths type, etc.
- Suitable for use in musical or public address equipment.
The design that's based on PEAK SOUND "Cir-Kit"

- Simplified
- Unit
- Construction
- Fantastic Performance

This 12 + 12 watt integrated stereo hi-fi amplifier and preamp is proving one of the most successful P.W. designs ever. With good ancillary equipment, you will find it one of the best you have ever heard, and it is a delight to build and handle. Basically, the design of the “P.W. Double 12” as described in P.W. April, May and June demonstrates the value of using “Cir-Kit”. However, Peak Sound have contributed more besides to the success of this project. This includes the power amplifiers, the power pack and the ingenuous cabinet which almost assembles itself. Go right ahead and build this exciting new design now with authentic, exact-to-specification Peak Sound kits as recommended by the designers.

This is your PW Double 12 Shopping List

These are the Peak Sound units with which you can build this excellent design. Transistors included:

- 2 P.A. matrix boards
- 1 P.B.A.M. 40 volt power supply kit
- 1 Pack-flat aroamaks tone finished cabinet kit
- 5 Controls as specified
- 6/10

Total cost £53 5 6

Hardware Kit of knobs, plugs, sockets, switches, fuses, screws, wire, etc.

- 2 PA.12-15 Power Amplifier Kits
- 2 PA. Sink assemblies

P.W. Double 12 abridged specification

- Controls—Base and treble cut and lift based on Baxendall circuitry/Volume/Balance/Rotary selector.
- Input Sensitivity—Magentic P.U. (per channel) 2.8mV into 88k.
- Ceramic P.U.—28mV into 37k.
- Potentiometer—C.R. for 2.8mV into 110k.
- Output—12 watts per channel into 150 ohms, (62 speakers may be used).
- Negative Feedback—4/20 ft.
- Cabinet—Flat, aroamaks tone, finished cabinet, easy to build.
- Size 24 x 18 in., high x 18 in.
- Transistors—Ultra low noise in pre-amp and tone control stages.

GO TO YOUR DEALER NOW

for your authentic Peak Sound Kits. In case of difficulty, please send direct, giving the name and address of your usual supplier so that we may be able to assist you. 5/6 if without power pack.

TRADE ENQUIRIES INVITED

PEAK SOUND (HARROW) LTD
32 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM Egham 5316 SURREY.

SPEAKER SYSTEMS

All cabinets are new and speakers are mounted on 3/3, chin coated, baffle. All speakers are tested on 35 watt output of 1.5 watt.

- THE CAXTON COLUMN Cabinet in ash, 93 x 24 x 28 in., 3 per case.
- £23.50 Cm. Kit. Complete with alnico magnet, 2500 line, 1000 ohm, £6.50.
- THE MOLTON A. Hi-Fi Bookshelf Cabinet, 30 x 5 x 5 in., with all the fittings and fittings, £9.60
- THE IMP. Extension Speaker Cabinet, 7 x 1 x 1 in., fitted £3.50. Speaker.
- £23.50. Speaker fitted in three cloth with matching Vynair.
- THE IMP. Speaker Cabinet, 9 x 3 x 3 in., fitted £8.50. Speaker.
- £23.50. Speaker fitted in three cloth with matching Vynair.
- THE BROADWAY Electronics
92 MITCHAM ROAD, TOOTING BROADWAY, LONDON, S.W.17 Telephone 01-672 3934 (Closed all day Wednesday)

(Few minutes from Tooting Broadway Underground Station)

SENSATIONAL STEREO OFFERS!

As Britain's largest Specialists we have the most complete range of Hi-Fidelity equipment available. With a stock of over 30 Hi-Fi Systems, we are sure to have a system to suit your needs. For a full range of Hi-Fi Systems, visit our showroom today. Every system is complete with all leads, plugs, etc., fully guaranteed and backed by 100% NuSound after sales service. Illustrated literature and technical data sent on request.

24 OXFORD STREET, LONDON, W.1
Tel: 01-631 4955, 4651, 5765
50 yards from Tottenham Hale, Road Tube
Open 6 days a week
Comet Discount Warehouse

Reservoir Road, Clough Road, Hull. Tel. 42363

DELIVERY. Comet guarantee that all prices quoted are genuine. All items offered available at these prices at the time this issue closed for press.

Add 3/- for post and packing on all orders.

AMPLIFIERS

DULC12077 Stereo Amplifier
DULC12078 Stereo Amplifier
DULC12079 Stereo Amplifier
GOODMANS Maxamp
New LEAK Stereo 30 Plus
New LEAK Stereo 30 Plus in teak case
New LEAK Stereo 70
LEAK 169 ST 45 Stereo Amplifier
QUAD 500 Series 22 Amplifier
QUAD 303 Stereo Main Amplifier
ROGERS Ravensbrook 50 watt Stereo
ROGERS Ravensbrook 50 watt Stereo
ROGERS Ravensbrook 50 watt Stereo
TELETON 30E
TRUVOX T5A200
WHARFEDALE GR-50
Markii P.A. Amplifier

Rec. Retail Price
£23 0 0
£27 6 0
£44 2 0
£54 0 0
£58 10 0
£63 0 0
£63 10 0
£64 2 0
£65 5 0
£65 6 0
£64 10 0
£70 5 0
£89 1 0
£81 9 0
£50 0 0

Comet Price
£10 0 0
£21 19 0
£24 19 0
£41 19 0
£48 14 0
£50 0 0
£50 0 0
£51 9 0
£56 4 0
£56 4 0
£56 4 0
£65 9 0
£74 19 0
£69 19 0
£52 0 0

TUNERS

ARENA 121 Stereo with Coax
DULC12097 FM Tuner
DULC12098 FM Tuners
DULC12099 FM Tuners
GOODMANS Stereome Sat FM/AM Tuner
LEAK Troubleshooter T.Tuner with Enhancements
QUAD 500 Series 22 FM Tuner
ROGERS Cadet Model 40V Tuner
ROGERS Ravensbrough Tuner with Decoder
TRUVOX FM 200/IC Tuner

Rec. Retail Price
£39 18 0
£82 2 0
£82 0 0
£82 0 0
£80 19 0
£65 11 4
£65 0 0
£65 0 0
£65 0 0
£52 0 0

Comet Price
£24 18 0
£19 0 0
£19 0 0
£19 0 0
£19 0 0
£19 0 0
£19 0 0
£19 0 0
£19 0 0

TUNER-AMPLIFIERS

ARENA 2400 with Decoder
AEG 2400 with Decorder
TELETON MX.990 Stereo Tuner with Diff/Multispeaker
LEAK 900X AM/FM Stereo Tuner/Amplifier 40 Watts RMS
TRUVOX F.2000/AM Stereo Tuner/Amplifier 2 x 5 watts RMS with silicon transistors
TRUVOX R.4000 AM/FM Stereo Tuner/Amplifier 2 x 5 watts RMS complete with 2 speaker boxes
TELETON TAT-1 Stereo Tuner Amplifier AM/FM 30 watts RMS, Stereo Deccoder and E.E.T.
TRUVOX CMS 48 AM/FM Multiplex Tuner/Amplifier with 2 speaker boxes and turntable

Rec. Retail Price
£60 0 0
£67 0 0
£64 13 2
£107 8 3
£43 0 0
£20 0 0
£133 0 0
£126 0 0

Comet Price
£19 9 0
£79 0 0
£19 0 0
£64 19 0
£90 0 0
£19 9 0
£90 0 0

BUDGET HI-FI STEREO SYSTEMS

GARRARD 3000 Turntable, Amplifier 8 watts per channel, VHF Tuner and all of the above components beautifully finished in teak, at a low price of £39 0 0

Rec. Retail Price
£35 0 0

Comet Price
£35 0 0

Hi-Fi Stereo Tape Decks and Tape Recorders

AKAI X-250D deck 4 track
AKAI X-360D deck 4 track
AKAI X-720D deck 4 track
AKAI X-500D deck 4 track
AKAI X-500D deck 4 track
AKAI X-450D deck 4 track
AKAI X-250D deck 4 track
AKAI X-250D deck 4 track

Price
£200 5 0
£250 0 0
£285 0 0
£300 0 0
£300 0 0
£285 0 0
£250 0 0
£250 0 0

Hi-Fi Tape Recorders

FIDELITY HF Play Master 2
FIDELITY HF Play Master 2
FIDELITY HF Play Master 2

Price
£25 0 0
£25 0 0
£25 0 0

Phillips Car Radio, Model 240T
Phillips Car Radio, Model 288
Phillips Car Radio, Model 380
Phillips Car Radio and Cassette Tape Recorder, Model 202

Price
£13 9 0
£19 5 0
£20 0 0
£35 0 0

Car Radios

GARRARD AP-75
GARRARD SL-55
THORDS T.D.17
THORDS T.D.17
THORDS T.D.17
THORDS T.D.17

Price
£15 0 0
£25 0 0
£25 0 0
£35 0 0
£35 0 0
£35 0 0

Comet Discount Warehouse}

Hi-Fi Discount Warehouse

Reservoir Road, Clough Road, Hull. Tel. 42363

DELIVERY. Comet guarantee that all prices quoted are genuine. All items offered available at these prices at the time this issue closed for press.

Add 3/- for post and packing on all orders.
Integrated Transistor Stereo Amplifier

The Duetto is a good quality amplifier, attractively styled and finished. It gives superb reproduction previously associated with amplifiers costing far more.

Specification: R.M.S. power output: 3 watts per channel into 10 ohms speakers.
Input Sensitivity: Suitable for medium or high output crystal cartridges and turntables.
Crosstalk better than 30dB at 1Kc/s.
Controls: 4-position selector switch (2 mono and 2 pos. stereo)
dual ganged volume control.
Tone Control: Treble lift and cut. Separate on/off switch.
A preset balance control.

The new Duo general purpose 2-way speaker system is beautifully finished in polished teak veneer, with matching vynair grille. It is ideal for wall or shelf mounting either upright or horizontally.

Type 1 Specification: Impedance 10 ohms.
It incorporates Goodmans high flux 6" x 4" speaker and 2¹/₂" tweeter. Teak finish.
"12" x 6²/₃" x 6²/₃" 4 gns each, p & p 7/6.
Type 2 as Type 1. Size 17²/₃" x 10²/₃" x 6²/₃".
Incorporating Elac 10²/₃" x 6²/₃", 10,000 lines & 2¹/₂" tweeter. 3 ohms impedance.
5½ gns p & p 7/6

Garrard Changers from £7.19.6 p & p 7/6
Cover & Teak finish Plinth £4.15.0 p & p 7/6

The Classic

8½ Gns. + 7/6 p & p

Controls: Selector switch Tape speed equalisation switch (1½ & 7½ i.p.s.), Volume, Treble, Bass. 2 position scratch filter and 2 position rumble filter.

Specification: Sensitivity New for 10 watt output at 1kHz. Tape head: 3mV (at 31 i.p.s.).
Max. P.U.: 3mV. Car. P.U.: 60mV. Radio: 100mV. Aux.: 100mV. Tape/Rec. output: 100mV. Equalisation for each input is correct to within ± 2dB (R.I.A.A.) from 20Hz to 20kHz. Tone control range: Bass ± 13dB at 80 Hz, Treble ± 14dB at 10kHz. Total distortion for 10 watt output) < 0.5%; Signal noise: < 0.06dB, A.C. mains 200-250v.
Built and Tested. Size 15½" long, 4½" deep, 22" high. Teak finished case.

Goods not despatched outside U.K.
Terms C.W.O.
All enquiries stamped addressed envelope.
THE DORSET
(600mW Output)
7-transistor fully tunable M.W.-L.W. superhet portable — with baby alarm facility, Set of parts.
The latest modularised and pre-alignment techniques makes this simple to build. Sizes: 6 x 8 x 3.5in.
MAIN POWER PACK KIT: 9/6 EXTRA.
Price 5 GNS. + 7/6 p. & p. CIRCUIT 2/6 FREE WITH PARTS.

THE ELEGANT SEVEN
(350mW Output)
7-transistor fully tunable M.W.-L.W. portable. Set of parts. Complete with all components, including ready-stocked and drilled printed circuit board — back printed for foolproof construction.
MAIN POWER PACK KIT: 9/6 EXTRA.
Price £4.9.6 plus 7/6 p. & p. Circuit 2/6 FREE WITH PARTS.

THREE-IN-ONE HI-FI 10 WATT SPEAKER
A complete Loud Speaker system on one frame, combining three matched ceramic magnet speakers with a low cross over network. Peak handling power 10 watts. Impedance 15 ohms. Plus density 11,000 Gauss. Resonance 40-60 c/s. Frequency range 55c/s to 20kc/s. Size 13 x 9 x 4 1/4 inches. By famous manufacturer. List Price £7. Our price 7/6 plus 5/- P. & P.
Similar speaker to the above without tweeters in 3 and 15 ohms 44/6 plus 5/- P. & P.

X101
10W SOLID-STATE HI-FI AMP WITH INTEGRAL PRE-AMP
Specifications: Power Output (into 8 ohms speakers) 10 watts. Sensitivity (for rated output): 1mV into 3k ohms (0-33 microamp), Total Distortion at 1KHz at 5 watts 95-25%, at rated output 2-5% Frequency Response: Minus 3dB points are 30KHz and 40KHz. Speaker 3-4 ohms (15 ohms may be used). Supply voltage: 24V d.c., at 800mA. 0-35V may be used.
2. Treble: PRICE £5.
The above 3 items can be purchased for use with the X101.

CAR TRANSISTOR IGNITION SYSTEM
(by famous manufacturer)
For 6 volt or 12 volt positive earth systems. Comprising: special high voltage working hermetically sealed silicon transistor mounted in molded heat-sink, high output ignition coil, ballast resistor and hardwire (screws, washers etc.). PRICE £4.19.6. (post and packing 5/- extra.)

50 WATT AMPLIFIER A.C. MAINS 200-250V
An extremely reliable general purpose valve amplifier with six commercially mixed inputs, suitable for use with: mics, guitars, radios, turn-tables, organs, etc. Separate bass and treble controls. Output impedance 8, 8 and 15 ohms.

SPECIAL OFFER!
Complete stereo system comprising Balfour 4-speed autoplayer with stereo head, 2 duo speaker systems. size 12in. x 6 1/2in. x 5 1/2in. Plinth (less cover) and the Duett0 stereo amplifier. All above items 19 gns. plus 20/- p. & p.

RADIO & TV COMPONENTS (ACTON) LIMITED
Goods not despatched outside U.K. Terms C.W.O. All inquiries S.A.E. All orders by post to our Acton address
21c High Street, Acton, London, W.3. and also at 323 Edgware Road, London, W.2.

THE RELIANT
SOLID STATE GENERAL PURPOSE AMPLIFIER
Specifications:
Output: 10 watts Input: 0.1 mV into 10K ohms Frequency Response: -3dB at 1KHz at 50mW BASE control range +10dB at 100Hz Frequency Response — with tone controls central. Minus 3dB points are 30KHz and 40KHz Signal to Noise Ratio: better than —60dB. Transistor: 1 silicon PNP type and 5 germanium type. Mains Input: 200 — 250V A.C. Size of chassis — 10 x 4 x 3 1/2" A.C. Mains, 200-250V. For use with Std. or L.P. records, musical instruments, all makes of picks and tuners. Separate bass and treble L.F. control. Two inputs with control for gain, and mix. Built-in and tested. 8 x 8 x 3” speaker to suit price 12/- plus 1/6 P. & P. Crystal clock to suit 12/- plus 1/6 P. & P.
Reliant Mark 1. 51 gns. plus 7/6 p. & p.
As above less test case.
Reliant Mark II. 6½ gns. plus 7/6 p. & p.
In test finished case.

CYLDON
2 TRANSISTOR U.H.F. TUNER
Brand new. Complete with circuit diagram.
£21.00 plus 1/- P. & P.

EXTRACTOR FAN
AC Mains 230/240v, complete with pull switch. Size 6 x 6 x 4". Price 27/6 plus 5/- P. & P.

B.S.R. TD-2 TAPE DECK
This tape deck takes 8in. spools complete with two-track heads. Size 13in. long by 6in. wide. 240v plus 1/6 P. & P.

RECORD PLAYER SNIP
A.C. MAINS 240V
The “Pricer” 4-speed automatic record changer and player engineered with the utmost precision for beauty, long life, and trouble free service, will make up to ten recordings which may be played 10 to 16 or 16. Patent style tone arm design after each playback and at shut off, the pick-up locks itself into its recess, a most useful feature with portable equipment — other features include pick-up height adjustment and flux pressure adjustment. This unit as a fine instrument which you can purchase this month at only £21.8.6 complete with cartridge and ready to play. Post and Insurance 7/6 extra.

POCKET MULTI-METER
Size 5 1/2 x 2 1/2 x 1 1/2, Meter size 2 1/2 x 1 1/2. Sensitivity 1000 O.E.V. on both A.C. and D.C. volts. 0-10, 0-100, 0-1000 D.C. current 0-10mA. Resistance 0-100K. Complete with test probes, battery and full instructions. 2/6. P. & P.
3/- FREE GIFT for orders placed only. 30 watt Electric Roldering Iron free 13/- to every purchaser of the Pocket Multi-Meter.

FIRST QUALITY P.V.C. TAPE
5" Std. 850ft. 11/6 5" L.P. 850ft. 12/-
5" Std. 1200ft. 13/- 5" L.P. 1200ft. 13/-
5" L.P. 2400ft. 5 6 5" L.P. 2400ft. 34/-
6" Std. 850ft. 20/- 6" L.P. 850ft. 44/-
6" L.P. 2400ft. 20/- 6" L.P. 2400ft. 44/-
6" D. 1800ft. 10/- P. & P. on each 1/6.

MOTEK
3 Speed 2 track Tape Desk complete with heads, takes 7in. spool.
Incorporating 3 motors.
A.C. mains, 240 volts, listed at £21.0.0.
Our Price 29.18.6, plus 10/- P. & P.
If it's components you're after...

...you need the

HOME RADIO CATALOGUE

It's the finest, most comprehensive Catalogue we have ever produced—this latest edition. It has 330 pages, over 8,000 items listed, over 1,500 of them illustrated. Everything for the keen constructor—including tools and test gear. With each Catalogue we supply a 30-page Price Supplement, a bookmark giving electronic abbreviations, and an order form. All for only 8/6d plus 3/6 post, packing and insurance. Moreover, every catalogue contains 6 vouchers, each worth 1/- when used as directed.

POST THIS COUPON NOW with cheque or P.O. for 12/-

The price of 12/- applies only to catalogues purchased by customers residing in the U.K.

Third Opportunity

During the heyday of the valve era, designers, constructors, equipment makers and service engineers were plagued with the vast proliferation of valve types. From a handful of basic types, valve manufacturers escalated production to the stage where a complete listing of all new, obsolete and replacement types became well nigh impossible due to sheer numbers.

With the advent of transistors, it seemed that a new era of rationalisation was dawning. Starting with a clean slate it was inconceivable that the same mistakes would be made with transistors as with valves. Alas, the result has been even greater chaos!

There must be tens of thousands of semiconductor devices now in the catalogues, or in replacement lists. Many of these are direct, or almost direct, equivalents, or else the parameters are sufficiently close to make duplication wasteful and frustrating, especially when one considers that there are cases of up to twenty variants of some basic types.

There has been little attempt to rationalise the type numbering system between different countries or even different manufacturers, nor any co-ordination in introducing new types to catalogues. And at this stage of the game, it is too late to remedy matters.

We are now on the threshold of yet another major opportunity for industry to work together for the common good. Integrated circuits are no longer a laboratory novelty and are poised to break into the domestic sphere in a big way. Unless industry can prevent itself—leming fashion—from making the same mistakes the third time, a situation even more chaotic will result. The possibilities (and the temptations) to proliferate will be greater than ever, for we are all set to be overwhelmed by an avalanche of IC devices within the next few years.

Today, ICs are an appetiser. Tomorrow, on the menu, it will be chips with everything. P.W. is preparing for this situation and will have something of great interest to say to constructors in the next issue.
LATEST RADIO-3 STEREOPHONIC TRANSMISSIONS

The unshaded part of this map shows areas where satisfactory stereo reception should normally be obtained. In places where field-strength is low, increased background noise or interference may be heard. Improvement in the sensitivity of the receiving aerial may enable the noise level to be reduced and a more directional aerial may discriminate against interference. Frequencies are: Brighton, 92-3MHz; Holme Moss, 91-5MHz; Kendal, 90-9MHz; Morecambe Bay, 92-2MHz; Northampton, 91-1MHz; Oxford, 91-7MHz; Scarborough, 92-1MHz; Sheffield, 92-1MHz; Sutton Coldfield, 90-5MHz; Swinage, 92-4MHz; Wrotham, 91-3MHz.

MINI POTS

Fitted with Cermet resistance elements, these potentiometers, Type S106, shown actual size, are immune to high humidity effects and chemical attack, making them very suitable for operation at elevated temperatures.

Wattage rating when mounted on a steel plate 100 x 100 x 1mm. is 2.5W, and when mounted on insulated material, 0-7W. These units are available in values from 100Ω to 1MΩ, linear only. Tolerance is ±20% and working voltage 250V d.c. Manufactured by Rosenthal Isolatoren GmbH, the sole UK distributors are: Radio Resistor Co. Ltd., 9-11 Palmerston Road, Wealdstone, Harrow, Middx.

ASPIRING AMATEURS TAKE NOTE

For the last three years at the Knaresborough Further Education Centre, Stockwell Road, Knaresborough, Yorks, they have offered Evening Courses (7-9 p.m.) leading to the City and Guilds Radio Amateurs' Examination and these have included tuition in Morse code.

Fees will be 30s. from September to March.

Local Radio—PO confirms policy on wavelengths

The Postmaster General, the Rt. Hon. John Stonehouse, M.P., has rejected Mr Hughie Green's view that 100 local radio stations could be provided on medium wavelengths. A team of Post Office experts has completed a detailed examination of his proposals and their conclusions were sent to Mr Green.

Mr Green submitted two feasibility studies to the Post Office. Both would have involved the use of directional aerals for some stations, including those for London and Manchester. They would also have involved the use of medium wave frequencies allocated to other countries, under the terms of Article 8 of the 1948 Copenhagen Plan. The Post Office conclusion is that, even by day, not all the stations Mr Green proposed would give satisfactory reception; and, that for the remainder service areas would in general be so reduced after dark as to be completely unsatisfactory. For example, the station proposed for London would cover only 10 per cent of the Greater London area after dark.

Post Office studies reaffirm the conclusions set out in the Government's White Paper on Broadcasting (Cmd. 3169 para. 32, December 1966) that "no general service of local sound broadcasting, which would be available during the hours of darkness as well as in daylight, can be provided only on medium wavelengths allotted to the United Kingdom."

WOW! A STRIPPER

Multicore's Model 3 Bib Wire Stripper and Cutter has been improved. This new one enables insulation to be removed without nicking the wire. The aperture setting for different diameters is adjusted by setting a sliding screw set in one handle.

In addition, this stripper features two cutting positions—one for normal flex cutting and the other on the tip of the unit, for cutting wire in a confined space. A good example is the removal of wire after it has been connected to a tag or bolt. This cutting tip is also suitable for separating extruded twin flex. Each stripper is packaged on an instruction card and costs 5s. 6d. from most hardware, electrical and do-it-yourself stores. Multicore Solder Ltd., Hemel Hempstead, Herts.
NEW RELAYS

The range of ITT’s PZ style relays for printed circuit boards has been augmented by a two-changeover version, the type PZ-2. Overall dimensions of this miniature relay are only 29 x 16 x 14mm. The connections are for direct soldering on to printed circuit boards.

The two-changeover contacts are of the twin type with a choice of silver/palladium or gold/silver contact alloy. Maximum switched power per contact is 12VA (1A at 100V a.c. or d.c.). The relay is for d.c. operation. ITT Components Group Europe, Standard Telephones and Cables Limited, Electro-Mechanical Product Division, West Road, Harlow, Essex.

TO BEAT THE THUGS

The Glasgow Corporation Transport Department, hard on the heels of the Edinburgh and Wolverhampton Transport Departments, has placed an order for 100 v.h.f. f.m. mobile radiotelephones for use by the city’s bus services. Hooliganism has resulted in the placing of this order and the Storno mobile units are to be installed in buses running on late-night routes and will enable the crews to establish immediate contact with transport control where a direct link to police headquarters will speed the police to any emergency.

PHILIPS SECOND GENERATION “AUDIO PLAN”

The new Audio Plan incorporates qualities gained from both experience and technical advances that have occurred over the past few years. Advances like the “touch tuning” facilities of the RH790 tuner amplifier where tuning is accomplished by applying a variable voltage to a varicap. This voltage is set by potentiometers; one coupled to the main tuning control and the other three to preset controls. The appropriate control (therefore appropriate voltage) is selected by means of transistor switches actuated by hand capacity, when the appropriate one of the four “touch tuning” panels is approached by the operator’s finger. The panel is then illuminated and the frequency selected is indicated by a meter which measures the voltage applied to the varicap. The meter is calibrated in MHz, the frequency selected being proportional to voltage applied. Price of this unit is £125.

JACKSONS’ NEW COMPONENTS

A new range of tuning capacitors is announced by Jackson Bros. Type TX5 are capacitors available in single-stator and split-stator versions and with capacitance swing values ranging from 30pF to 1,000pF. They have siliconed ceramic endplates and satin-finished aluminium vanes with radiused edges.

The company also manufactures the “Wavemaster” tuning capacitors with swings ranging from 10pF to 300pF.

New trimmers of the piston type with PTFE dielectric have also been introduced. Ten models are now made and the smallest, measuring 1 x ½ x ½ in. has a capacitance swing of ½pF to 8pF.

Completing the range of new products are two epicyclic ball-drives—the Mini which is designed to fit all makes of miniature variable capacitor with solid dielectric (4:1 ratio) and the Adjustable-Torque ball-drive which provides a reduction ratio of 6:1. On this unit, four spring-loaded screws effect adjustment.

Jackson Brothers (London) Ltd., Kingsway, Waddon, Croydon CR9 4DG.

Tape head cleaning kit

Bib Division of Multicore Solders have introduced a new compact “size J” Head Maintenance Kit. It comprises a 30c.c. bottle of anti-static, non-flammable Bib cleaner, or alcohol for removing oxide and dirt from the tape heads and all parts of the tape path, 10 double-ended, cotton-wool tipped sticks for access where the Bib tools will not reach, and four Bib tools together with a Hi-Fuster absorbent cloth for cleaning the soiled tools and sticks etc.

All these components are contained in a plastic wallet and the recommended retail price is 9s. 9d. including 1s. 11d. P.T. The size J kit is available from all leading stockists. Multicore Solders Ltd., Hemel Hempstead, Hertfordshire.

DATE TO REMEMBER

GB3WRA, operated by a group of local radio Amateurs from the Annual Wycombe Show on the Rye, High Wycombe, Buckinghamshire, will be on the air on Saturday, 6th September, 1969.

Operation will be on all bands 160-4 a.m., c.w., s.s.b. and visiting Amateurs will be especially welcomed. Further information may be obtained from A. C. Butcher, G3FSN, 70 Hughenden Avenue, High Wycombe, Buckinghamshire.
WHEN it comes to v.h.f., most fixed amateur stations use either a transceiver, a crystal controlled superhet converter (with the s.w. receiver as i.f. and a.f. amplifier), or a de-luxe triple conversion receiver.

However, these units are usually quite expensive or difficult to build and align, unless one has considerable experience of v.h.f. techniques.

This super-regenerative t.r.f. design will satisfy the needs of many s.w.l.s and prospective G8s, as there is only one tuned circuit to adjust; it can be easily built in one evening and is not difficult to set up. Having only one tuned circuit, it is also very easy to change the frequency coverage.

The f.e.t. tuner is the heart of the device and if so desired could be used on its own with a jack plug to feed into the input socket of a ready-made amplifier. In this case the tuner could be made quite small. This set-up was in fact used by a local G8 for his first QSO. It will not do for DX, but at least it’s a start. Many readers will have dabbled around with the regenerative t.r.f. type of receiver but in the super-regenerative design, feedback is introduced (via the source to drain capacitor C3 in the author’s design) beyond the point where oscillation just occurs, and the stage is in continuous oscillation until this state is disturbed by an incoming signal. The super-regenerative state brings about a condition of extremely high sensitivity to the circuit; there is also a high level of circuit background noise, commonly referred to as “slush”.

The complete circuit of the receiver is shown in Fig. 1. Even without an aerial the receiver has received good signals from aircraft, radio amateurs and other services up to a distance of approximately 6 miles. Because the prime purpose of building the receiver was to receive local amateur radio transmissions in the Taunton area, the extra encumberance of an elaborate aerial array has not been tried. It is suggested that for experimental purposes an 18in. length of 18 s.w.g. tinned copper wire is simply fitted to the centre of the coax socket. Vertical orientation of the aerial will normally bring forth optimum performance.

The author has built more than one version of this receiver, but that shown in the photograph was built into a wooden cabinet already on hand. This was approximately 8 x 8 x 4in. deep.

As an alternative to the loudspeaker, a low impedance (800) earpiece could be used.

Layout and Construction

Although layout is important at v.h.f., and the effects of extra-long wires and inter-electrode capacitances undesirable, the circuit allows considerable latitude, even on 2 metres. The original mock-up was in fact built up on a 1½ x 2½in. paxolin board. Layout will depend on the cabinet and components used, but VR1 should not be more than 6in. from the coil.

VC1 was actually an Eddystone 35pF variable with brass vanes in the prototype. All these were removed except for one stator and one rotor, but a 5pF C804 (Henry’s Radio) is a suitable ready made

Fig. 1: Circuit of the complete receiver. If only the tuner is required (as depicted in Fig. 2), the audio output should be taken from the slider of VR2. S1 should be shown wired in the +9V supply lead.
Tightly spaced this tinned copper direct soldered connections were component. The stator was cleaned and tinned, and direct soldered connections were made to it.

The coil L2 consists of 3½ turns of 18 s.w.g. tinned copper wire close wound to $\frac{3}{16}$ in. diameter. Tightly spaced this will get aircraft, and stretched over $\frac{3}{16}$ in. it will cover the 144 MHz Amateur Band. Naturally, the coil is sensitive to the effects of hand capacitance. The aerial coupling coil L1 should be a half turn of the same wire placed near to the earthy end of L2.

The 10 pF feedback capacitor C3, if preferred, can be replaced by a conventional tubular variable type, which would also provide a good anchorage for the drain and source of the f.e.t. Alternatively, the unconventional variable "twisted wire" variety may be used. About $\frac{3}{16}$ in. is sufficient to get the circuit "started".

The 1.8 μH r.f.c. in the prototype was filched from a turret-type v.h.f./u.h.f. tuner, but this may be difficult to obtain, and about 25 turns of very thin wire on a 1 megohm $\frac{1}{4}$ watt miniature resistor works equally well.

Wiring should be kept as short as possible, and the same tag should be used for all earth connections in the first stage.

Fig. 2: Layout of the tuner section of the receiver. The audio amplifier stages are not shown, C3 may alternatively be of the "twisted wire" variety (see text). The leads of L2 should be kept as short as possible, one end being soldered directly to the fixed plate of VC1 (5pF type C804 shown in the above diagram).

Distinguish carefully the leads of the f.e.t. and if using the 2N3819 remember that the lead-out is different from that of the MPF102. Although the f.e.t. is silicon and should stand up to about 10 seconds heat from a 15 watt iron, it is best to use a heat shunt when soldering, such as long nosed pliers with a rubber band wound around the handles. An earthed soldering iron should be used, as the f.e.t. can be damaged by mains-derive capacitive

components list

<table>
<thead>
<tr>
<th>Resistors:</th>
<th>Capacitors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 1kΩ</td>
<td>C1 1000pF ceramic</td>
</tr>
<tr>
<td>R2 10kΩ</td>
<td>C2 5pF ceramic</td>
</tr>
<tr>
<td>R3 15kΩ</td>
<td>C3 10pF (see text)</td>
</tr>
<tr>
<td>R4 220kΩ</td>
<td>C4 4700pF ceramic</td>
</tr>
<tr>
<td>R5 10kΩ</td>
<td>C5 0.01µF ceramic</td>
</tr>
<tr>
<td>R6 220kΩ</td>
<td>C6 0.1µF miniature</td>
</tr>
<tr>
<td>R7 1MΩ</td>
<td>C7 8µF 12V electrolytic</td>
</tr>
<tr>
<td>R8 220kΩ</td>
<td>C8 8µF 12V electrolytic</td>
</tr>
<tr>
<td>R9 470Ω</td>
<td>C9 0.1µF miniature</td>
</tr>
<tr>
<td>R10 620Ω</td>
<td>C10 50µF 12V electrolytic</td>
</tr>
<tr>
<td>R11 82Ω</td>
<td>C11 50µF 12V electrolytic</td>
</tr>
<tr>
<td>R12 All 10% 1W miniature</td>
<td>VC1 5pF variable (see text)</td>
</tr>
</tbody>
</table>

Semiconductors:

| Tr1 MPF102 or 2N3819 | Tr2 2N2926 |
| Tr3 OC44 | Tr4 OC71 |
| Tr5 OC81 |

Inductors:

| L1 ½ turn, near earthy end of L2, 22 s.w.g. insulated copper wire. |
| L2 3½ turns, 18 s.w.g. tinned copper wire, $\frac{3}{16}$ in. diameter, air cored. |
| r.f.c. 1.8 μH r.f. choke (see text) |

Miscellaneous:

VR1, VR2 5KΩ potentiometer, S1 single pole on/off switch (may be combined with VR2), 80Ω loudspeaker, paxolin board, tagstrip, coax socket, battery clips, PP9 battery, wire, solder, etc.

Fig. 3: Transistor lead connections.
voltages. As a further precaution, all the f.e.t. leads could be shorted together by the "heat shunt" whilst being fitted.

Operation

Check the polarity of the battery, and the wiring before switching on. If the circuit of Fig. 1 is used the current drain on a 9V battery should be about 35-40mA. Check that none of the f.e.t. leads are shorting and switch on, with VR1 at minimum. A lively background hiss will indicate that the f.e.t. is oscillating. If it is not, advance VR1 towards maximum. The hiss should be extremely loud, much louder than ordinary background hiss with which it should not be confused. Experiment with various settings of VR1 to produce optimum results.

The photograph shows the author's prototype.

When a station is tuned-in there will be a reduction in the circuit background hiss, this depending upon the strength of the received signal. It is usually best to adjust L2 for the desired band on Sunday mornings or evenings as radio amateurs are usually more active on v.h.f. at these times.

The only likely cause of trouble may be C1 working loose or fracturing as a result of the manipulation of L2.

The amount of radiated interference, once the scourge of this class of receiver, appears to be negligible.

AUDIO SIGNAL GENERATOR

This describes the construction of an audio generator, with both sine and square wave outputs. The design is based upon the popular Wien bridge oscillator and covers the frequency range of 15 to 100,000Hz. A mains power supply is built-in, but as an alternative, the generator could be run from a 12V 30mA battery supply.

Thermistor control ensures a constant amplitude output regardless of minor variations in supply voltage and temperature.

PRINTED CIRCUIT DESIGN

Many home constructed transistor designs are invariably built on some form of printed circuit, the tendency is to use ready available SRBP perforated board, or that with copper strip bonded to it. For those who prefer a tailor-made printed circuit, details are given on the preparation and etching of boards to one's own design.

A masking technique utilising adhesive tape gives a professionally finished product.

PLUS OTHER CONSTRUCTIONAL PROJECTS AND REGULAR FEATURES

ORDER YOUR COPY NOW!

TO ..
(Name of Newsagent)

Please reserve/deliver the OCTOBER issue of PRACTICAL WIRELESS (3/-) on sale SEPTEMBER 5th, and continue every month until further notice.

NAME ...

ADDRESS ..

BINDERS AND INDEX

Don't let your copies of PRACTICAL WIRELESS become torn and dirty: hard-cover binders are available at 14s. 6d. from:

BINDING SECTION,
IPC MAGAZINES, LTD.,
SOUTHAMPTON STREET,
LONDON, W.C.2.

Indexes to Vol. 43, 1967-8, are also available at 1s. 6d.

These prices include post and packing.
IN Part 3 the methods of preparing a p-n junction diode were described. The basic p-n junction device is the best known example of the modern diode since it is used extensively in power rectification circuits.

These devices have taken the place of the thermionic diode in most applications. The obvious reason for this is the very significant increase in efficiency over the thermionic counterpart. The voltage drop across a semiconductor diode carrying one ampere is measured in fractions of a volt whilst the voltage drop across the valve is measured in volts. Also the valve requires a filament or heater supply which itself consumes several watts.

The earlier solid state diodes had one disadvantage, their low reverse breakdown voltage. The rectifier has to withstand a voltage several times the peak voltage and in many circuits this can amount to many hundreds of volts. However there are now available diodes with reverse breakdown voltages measured in thousands of volts.

Care has to be taken that this reverse voltage is not exceeded otherwise the diode will suffer irreparable damage. The damage is caused by the excessive heat dissipated by the large reverse current flowing across the high impedance junction.

Point Contact Diodes

The capacitance which a junction diode has between its terminals is dependent upon the area of the junction. For very high frequency applications and for fast switching it is necessary to reduce this capacitance to a minimum. This is achieved in the point contact diode by using a tungsten metal wire with a very fine point which is pressed against a small piece of semiconductor material. This constitutes the simplest type of point contact rectifier similar to the early “cats whisker” detector used in crystal sets.

A much improved performance is obtained when the device is “formed” by passing a short pulse of current through the diode in the forward direction. This produces a heating effect and changes the character of the contact region, although the exact nature of the operation of the device is not wholly clear.

The Metal Rectifier

Although not normally considered when talking about semiconductor diodes the metal rectifier which was used extensively in power rectification in the fifties and before is worth mentioning here. It consists of a metal to semiconductor junction as in the point contact device but a much larger area is used in order to reduce the series resistance of the diode. A layer of copper oxide, CuO, is produced on a piece of copper by oxidation. The oxide layer acts as a donor, or n-type semiconductor, and the equilibrium energy band diagram can be drawn as in Fig. 1.

![Fig. 1: Equilibrium energy band diagram for a metal-oxide rectifier.](image)

The Fermi levels of the oxide layer and the metal must coincide at distances from the junction as in the case of the p-n junction. However the carrier concentrations in the metal are such that the conditions in the metal are unaltered and the result is that electrons from the donor sites in the oxide layer diffuse into the metal leaving a wide region with a positive space charge. It can easily be shown, using the same arguments that were used in Part 3, that the device will act as a rectifier. When the n-type oxide layer is negative with respect to the metal the diode is biased in its forward direction. The opposite polarity is of course the reverse bias case. This form of diode is inferior to the junction or point contact diode in that its reverse current is much larger, it has a large parallel capacitance and its reverse breakdown voltage is low.

The Gold Bonded Diode

This type of diode is used in high speed switching circuits. It consists of an alloyed p-n junction with a very small area in order to keep the capacitance to a minimum. This is achieved by using a very fine gallium doped gold wire pressing against an n-type germanium base wafer. The p-type gold wire acts as an anode when it is alloyed to the germanium by passing a short pulse of current through to heat the junction.

A silicon version of the golded bonded diode is also made using an aluminium wire as the p-type
anode, with an n-type silicon wafer. This device gives a lower reverse leakage current than the germanium equivalent but the forward offset voltage is considerably larger; silicon devices typically have offset voltages of 0.6V compared with 0.3V for the germanium device. This is undesirable in many circuits as it leads to distortion when the diode is used to detect a low level signal. Consequently a compromise has to be adopted in most applications.

Variable Capacitance Diode

It was shown earlier that when the reverse voltage applied to a diode is altered the width of the depletion layer changes. This effect can be likened to separating the plates of a capacitor. This produces a change in capacitance; an increase in separation leads to a decrease in capacitance and vice versa. The same effect occurs in the diode, with some modification because of the presence of ionised atoms between the plates of the “capacitor”. This gives rise to the diode capacitance which changes as the reverse bias is altered.

In the case of the alloyed junction diode the capacitance varies as the inverse square root of the voltage, doubling as the voltage is divided by four. In the case of the diffused junction diode which has a built-in gradient of impurity ions the capacitance increases as the inverse cube root of the voltage, so that an increase in the reverse voltage by a factor of eight is required to halve the capacitance.

The variable capacitance diode is used extensively in circuits which would formerly have used variable reactance valves. Such applications are automatic frequency control of receivers, electronic tuning circuits and parametric amplifier circuits. Diodes are now available which have capacitance ranges of from 500pF with a reverse voltage of 1V to 75pF with reverse voltages of around 100V.

Zener Diodes

The reverse breakdown of a p-n junction has been shown to be due to one of two effects. Breakdown below 6V in due to the zener effect in which the field across the junction leads directly to ionisation; above 6V the breakdown is due to the avalanche process. In practical devices these effects can be made to occur at specific voltages by varying the doping levels and junction widths. A typical characteristic curve is shown in Fig. 2. This type of diode can be used to stabilise a voltage power supply either by using amplification and a series stabilising transistor or by simply using the zener diode as a shunt stabiliser. Breakdown diodes can be obtained with breakdown voltages of from 2V to several hundred volts, capable of controlling hundreds of watts of power.

Unfortunately the breakdown voltage varies with temperature. The temperature coefficient of the devices varies between ±0.1% per degree centigrade. The negative temperature coefficient applies to the zener diode, the positive to the avalanche diode. The dynamic resistance of the breakdown diode can vary from a few ohms for a good device to several thousand ohms for a low current device.

It is worth mentioning that reference voltages of less than 2V can be obtained by using the forward offset voltage of forward biased junction diodes. Several diodes can be connected in series to obtain voltages in steps of 0.3V using germanium devices.

Photodiodes

Another form of diode which is used in the reverse biased condition is the photodiode. The reverse current of a diode increases if light is allowed to fall on to the junction. It was explained in Part 3 that the reverse saturation current is due to the thermal generation of minority carriers near to the depletion region, these being swept across the junction by the internal field. If the junction region is illuminated electron-hole pairs are generated by the photoelectric effect. The minority carriers produced near the junction then increase the reverse current.

This effect occurs in any reverse biased junction and consequently care is normally taken to ensure that no light can reach the junction. However in the case of the photodiode a transparent encapsulation is used so that the junction can be illuminated. Sometimes a lens is used to focus the light to the most sensitive area. The lens is formed in the material of the encapsulation.

From Fig. 3 it can be seen that the dynamic resistance of the photodiode is large so that the reverse current is insensitive to the reverse voltage applied to it.

Light Emitting Diodes

Various semiconducting diodes emit radiation when they are forward biased. This is because the hole-electron recombination occurring in the junction...
region leads to the production under certain circumstances of radiation. Numerous light emitting diodes are now available, exhibiting laser action when very narrow beams of “in phase” or coherent light are produced.

Wavelengths of between 8,500Å and 500Å are available from the devices, giving radiation from the infra red to the ultra violet ends of the spectrum. Only relatively small amounts of light are yet available from the devices; suitable applications are in card reading machines for computers and short range communications systems.

The Tunnel Diode

It might be thought that if an electron meets an obstacle that requires a greater energy to surmount than the energy possessed by the electron, then the electron would be stopped. However the quantum theory of matter predicted that the electron would under these circumstances be able to penetrate a small distance into the barrier, and if the barrier were thin enough the electron could pass straight through it. This process is called tunneling.

If a diode is made with a very high level of doping the Fermi level will lie within the conduction band in the n-type region and within the valence band in the p-type region. Thus when the junction is unbiased the p- and n-type regions will have overlapping valence and conduction bands respectively, as shown in Fig. 4 (a). If a small reverse bias is applied the situation becomes that of Fig. 4 (b), where electrons in filled states in the p-type material are opposite empty states in the n-type material so that the conditions for tunneling apply. This results in a large reverse current flowing.

If a small forward bias is applied electrons from the n-type material will tunnel into the p-type material as long as the conduction and valence bands still overlap as in Fig. 4 (c). However when the forward bias is such that there is no overlap tunneling stops and only the normal diode forward current flows, this initially being smaller than the tunneling current.

![Fig. 4: Tunnel diode energy band diagram when in an open circuit state of equilibrium. (b) Tunnel diode with reverse bias, (c) with small forward bias.](image)

![Fig. 5: Tunnel diode characteristic curve.](image)

The important point in the characteristic above is the sloping region between a and b. This corresponds to a negative resistance region where an increase of the voltage across the device leads to a decrease in current through it. This enables the device to be used in oscillators and amplifiers.

A second point of importance is the fact that at a certain current there are three voltages at which the device can operate. For example the line cd in Fig. 5 cuts the curve at three points. This feature enables the tunnel diode to be used in switching applications.

Impatt Diodes

Various diodes have recently been constructed which are capable of producing oscillations at microwave frequencies. Examples are the Gunn and Read diodes. The theory of these devices is rather involved to discuss here but depends on the bunching of charge carriers as they move across a block of suitable semiconductor.

TO BE CONTINUED
OUR Scientific Correspondent in my daily paper is always quick to tell us that this is the age of automation. What with telecasts from lunar floorshows and David Frost jumping onto the rocket-wagon, anything so mundane as a hand-wired valve radio almost qualifies as an objet d'art. Modules are the order of the day.

Is it any wonder that the average chap begins to fear he will soon be made redundant by a robot? Orwell lurks around the corner. My uncle's pacemaker is a Mark II model and Bob Hope is said to hang a sign at the foot of his hospital bed: 'Just dozing—no transplants.'

Henry has heard it all before. Dire predictions that progress would soon make radio engineers a drug on the market have sounded with every innovation. The Jeremys welcomed transistors with grim warnings that sets-to-be would never go wrong. Printed circuitboards were heralded similarly. Integrated circuits, in theory, should make fault-finding as archaic as the Morris dance. Modules, I repeat, are the in thing.

Funny thing is that I remember somewhat similar remarks when the double-diode-pentode first appeared. 'A complete output...'' one advertisement trumpeted. Lee deForest should have lived to see the day!

It was when television receivers first broke out in a rash of modules that big business took up the cry. Service departments were reorganised to cope with module-changing techniques. We were told that a small stock of P-C boards held by each field engineer would whittle down servicing time. And men, we wondered? Bench engineers surreptitiously studied plumbing between module transplants. Diagnosis, it was whispered, would become a dying art.

Bench engineers perforce began servicing modules, and soon it became a habit. It was cheaper than packaging them, returning them for replacement and hoping a good one would come back.

More important, it was a blow to the pride of a bench engineer to have to send back to the makers a simple printed circuit with a few components, when a modified fault-tracing technique quickly proved where the trouble lay.

In the trade magazines, 'Service Gen' articles began to appear, with C33 and R21 spotlighted as persistent failures. Before the modules had been sculling around long enough to outrun their guarantee, service was back to normal: just a little more difficult because testing a module in situ was not so easy as probing around a tag board.

Biggest joke of the lot was—and still is—the attitude of the copywriters. To read them seriously, one would imagine a setmaker was the engineer's favourite uncle. 'Plug-in modules for easy servicing' claim the blurs. If you believe that, you'll fall for anything.

Plug-in modules do make for easier fault-finding, true, if all you are concerned to do is swap around willy-nilly. In practice, when half our equipment is... what is the word? modulated, modulated (no, can't be that)... any shop carrying sufficient replacements would have too much capital tied up in spares.

So we are back to square one, but this time complicated by the hazard of inaccessibility.

Have you ever looked closely at these modular designs? The method of construction keeps the actual circuit out of reach when it is operating. To test many modern modules, one has first to make a multi-plug jumper lead. Every plug and socket differs.

In one tuner-amplifier I recently serviced, nine dinky modules, completely shielded, plugged into what looked like conventional valve-bases. Good, we thought, what an excellent way of using up old stock. Until we peered a little more closely and discovered that the pin formation of these ceramic bases was like nothing BVA had ever envisaged.

A blow to the bench engineer's pride.

I saw a service instrument once, a magnificent piece of apparatus with more tentacular probes than a Portuguese Man-o'-War. It hooks into a receiver and feels its pulse all over. Could PW please have a constructor's project for such a Henry de-moduliser, Mr. Editor?
LOOKING at the circuit I bet that several of you are doubting last month's claim that our project would fulfil several functions. In fact it will test p-n-p and n-p-n transistors for leakage and comparative gain, test both silicon and germanium diodes, test its own battery and other batteries up to 9V, measure resistance between about 470Ω and 47kΩ and check electrolytic capacitors.

TRANSISTORS

With the switch in the leakage position and a transistor connected in the correct way around (as shown in the circuit), 9V is applied between the emitter and the collector. A meter in the circuit will indicate the current passed—by definition this is the leakage current.

If the switch is then made to the appropriate position a 330Ω resistor is connected between the base and the collector providing the necessary bias allowing the transistor to conduct. If the transistor under test is O.K. the current passed should increase thus indicating gain. By noting the leakage and gain of good transistors it will be possible to get an idea of what the acceptable readings are. It will be found that the most common faults of the transistors in the surplus packs are either short or open circuit or high leakage while some have low gain. Don't worry if no leakage is indicated as this is so low in silicon transistors that this instrument will not measure it.

DIODES

Diodes are tested by clipping the leads between the emitter and collector contacts and then reversing them—one way round a negligible current will be measured, the other way a substantially higher one. As with transistors the readings are comparative.

BATTERIES

If R3 is chosen so that when the emitter and collector clips are shorted the meter will read full scale deflection (f.s.d.) it will follow that when the battery voltage is low, f.s.d. will not be achieved. Other 9V batteries can be substituted and the deflection compared; in fact this test is better than using a sensitive multimeter as, instead of drawing a few dozen microamps, it will test the battery under a 3mA load. Lower voltage batteries will give smaller deflections and the scale can be calibrated for 1-35V (mercury cells) 1-5V, 3V, 4-5V, 6V and 9V.

RESISTANCE

The tester will measure (if not very accurately) resistance between about 470Ω and 47kΩ by clipping the resistor between the emitter and collector contacts. If much use is to be made of this facility it would be a good idea to make R3 variable so that the meter can be “zeroed” each time to compensate for battery voltage variation. The scale will have to be calibrated using close tolerance resistors.

ELECTROLYTICS

If an electrolytic capacitor is connected with its positive to the p-n-p emitter and its negative to the collector clip, the meter should kick over and fall slowly. Note that electrolytics with working voltages of less than 9V should not be tested in this manner.

ADJUSTMENT

The meter in my prototype is a tiny one from an old tape recorder but almost any meter with a sensitivity better than 3mA can be used. Build a mockup of the circuit in Fig. 1 and substitute a 1kΩ pot, initially set at minimum resistance, for Rx and connect a multimeter set on a scale to read 3mA between the emitter and collector contacts. A 5kΩ pot should be substituted for R3. The switch R1 and R2 can be ignored.

First adjust the 5kΩ pot so that the multimeter reads 3mA then adjust the 1kΩ pot so that your meter reads f.s.d. Trim the two pots so that f.s.d. on your meter coincides with 3mA on the multimeter. Finally remove the multimeter and short out the emitter and collector connections and adjust the 5kΩ pot to give f.s.d. again. Measuring the values of the two pots will give you Rx and the exact value of R3.

Next month's project will be a one transistor radio which operates a loudspeaker without the use of an external aerial.
PART 5—MATCHING & RADIATION

THIS is the final part in this series describing transmitter and receiver aerial principles. Most aspects have been covered in sufficient detail, but two important details that have been ignored up to now are aerial matching and radiation patterns. These two subjects will be described in this article, and although the treatment does not pretend to be comprehensive, there should be enough information to be of interest to the beginner and experimenter.

Matching circuits

The most convenient and common impedance matching device for coupling an aerial feeder to a transmitter or receiver is a high frequency transformer using conventional coils and capacitors. If, for example, a 75 Ω coaxial line is to be connected to a transistor receiver, an impedance step-up is required, and this can be achieved with the circuit in Fig. 5.1. L1 C1 form the input tuned circuit, with the aerial feeder tapped up the coil, and L2 is the output coil wound to suit the base input impedance. Under these circumstances, there would be an impedance ratio step-down between the feeder part of L1 and L2, and a step-up ratio between the feeder section of L1 and the whole winding of L1 to avoid damping the tuned circuit severely.

Fig. 5.1: A tuned impedance matching circuit for a coaxial feeder to a transistor.

Another way of achieving the same result is shown in Fig. 5.2, where a transformer input is used instead of the tapping on the tuned circuit. The coaxial cable is connected to its own winding, the tuned circuit is completely independent, and the output to the base again has its own winding. A typical transformer for a receiver working over the range 1.6MHz to 3MHz would have 6 turns for L1, 40 turns for L2 and 4 turns for L3. The physical dimensions of the transformer would be determined by the capacitor used.

Matching transmitter aerial

One of the most practical ways of matching a transmitter to an aerial feeder is to use a tapped transformer or coil. Figure 5.3 shows one way of doing this.

The end-fed Marconi Aerial is tapped into L1 at a convenient point. L1 is also tapped to match the 40 ohm aerial to a 600 ohm feeder line. This couples to a distant transmitter and is tapped into the tank circuit at 600 ohms, the turns ratio so being arranged to match the feeder to 15k ohms of the tank (typical figures).

The turns ratio is given by \(T_2/T_1 = \sqrt{\frac{600}{40}} = 1 : 4 \)

and \(T_2/T_3 = \sqrt{\frac{15,000}{600}} = 1 : 5 \).

Figure 5.4 shows one method of connecting a coax feeder to a transmitter.

The 75 ohm coax is fed into a balanced input transformer which matches this to the tank circuit. Assuming the feeder to be 75 ohms and the tank circuit typically 15k ohms the turns ratio would be

\(L_2/L_1 = \sqrt{\frac{15,000}{75}} = 1 : 14 \).

Where it is desired to use one aerial system for transmitting or receiving as in the usual amateur or professional set-up it is usual to employ an aerial change-over switch. This is commonly a relay remotely operated.

Polar diagrams

The behaviour of an aerial system in space may be expressed by polar diagrams. As the aerial length becomes commensurate with the wavelength in use, current variations along it become pronounced and phase differences appear, causing interference effects between radiation components from different parts of the aerial. These may reinforce the signal radiated in some directions and cancel the radiation in others.

Figure 5.5 depicts an aerial slightly longer than \(\lambda \). At the point Y radiation may arrive via the direct path XY or by incident path XEY. Provided the radiation arriving at Y via each path is similarly polarised, cancellation may occur when the difference in the length of the path is equivalent to an odd number of half-
a new 4-way method of mastering ELECTRONICS

by doing — and — seeing...

1. OWN and HANDLE a complete range of present-day ELECTRONIC PARTS and COMPONENTS

2. BUILD and USE a modern and professional CATHODE RAY OSCILLOSCOPE

3. READ and DRAW and UNDERSTAND CIRCUIT DIAGRAMS

4. CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .

- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- OSCILLATORS
- SIGNAL TRACER
- PHOTO ELECTRIC CIRCUIT
- COMPUTER CIRCUIT
- BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual method—no maths, and a minimum of theory—no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

FREE POST NOW for BROCHURE

To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives

NAME __ BLOCK CAPS

ADDRESS __ PLEASE PW 9
BIGGEST BREAKTHROUGH IN RADIO KITS!

THE REVOLUTIONARY APOLLO "6" CAN BE BUILT

SPECIALY made for the thousands of discriminating people who want the finest ready-to-build radio kit at a reasona­ble price! There is a different breed—it will startle you.

EIGHT MONTHS AGO our two designers were busy producing a radio kit that would fill these technical demands—DEMAND-A, IT SHOULD BE EASY TO BUILD, PAINLESSLY IN ONE EVENING.

ANSWER—the Apollo "6" has simplified, well illustrated step-by-step plans.

CONTAINS FEATURES THAT CAN'T BE BOUGHT IN READY MADE KITS—AT ANY PRICE

- remote volume, wave & trolley broadcast.
- one component brand new—no surplus rejects or "seconds".
- uses latest Silicon Planar Epitaxial transistors.
- six stage stable reflex N.F.F., P.N., and P.F.F.
- circuit consisting of 2 Frequency stages, 1 Diode demodulation stage and 3 Audio Frequency stages. Uses latest Silicon Planar Epitaxial transistors (similar to types used in America's Space

Design

Apollo "6" will probably be bang up-to-date will pick to the seventies it brings with latest technical innovations.

Iron clad guarantee

Should you not be completely satisfied with your purchase when you receive it from us, we will accept it back in full, at once and without question...

The first two transistors give amplification of audio signals (not only 100 microamps collector current approx.) Output transistor gives amplification of 231 to 470, Stable reaming gives the Apollo "6" staggering selectivity, uncomparable sensitivity, true-to-life sound reproduction—in fact its range, power and selectivity must be experienced to be believed.

IT MUST HAVE THE POWER TO OFFER.

BECAUSE

AL LOUDSPEAKER... DEMAND - D. IT MUST GIVE GOOD RECEIPTION IN DIFFERENT AREAS. DEMAND—E. IT MUST WORK CORRECTLY FOR INTERNAL FERRITE ROD AERIAL, ETC. ETC.

ANSWER—The Apollo "6" does this, and much more!

REVOLUTIONARY SILICON PLANAR EPOXY CIRCUIT DESIGN

This project can be built by any two designers and does not require the professional work of a group. Enter a new magic world of reception—station after station (home and abroad).

Thrilling sound of an "SOS" at sea

Listen to the thrilling sound of an "SOS" at sea... tune in to a world you've never heard before... NOTE: Because members of our own Staff (and their friends) are enthusiastic and have already bought Apollo "6" parts, we know demand will be enormous. DON'T DELAY—SEND FOR YOURS NOW, send 59/6-1/6 (all parts, illustrated plans, personal listening earpiece, etc. (all parts can be bought separately)

Money back guarantee (see panel).

Phoenix Electronics (Dept. PW3) 18 Little Preston St., Brighton, 1. Sussex.

BENTLEY ACOUSTIC CORPORATION LTD.

28 CHALCOT ROAD, CHALK FARM, LONDON, N.W.1

The Valve Specialists

Telephone 01-722-9890

Save postal costs! Cash and carry by callers welcome.

All goods are new and subject to the standard 30-day guarantee. W. D. M. do not handle manufacturers' rejects, which are often described as "new and tested" but have a limited and un­reliable life. Business hours Mon.-Sat. 9-12.30 p.m., Sat. 9-1 p.m.

All goods are new and subject to the standard 30-day guarantee. W. D. M. do not handle manufacturers' rejects, which are often described as "new and tested" but have a limited and un­reliable life. Business hours Mon.-Sat. 9-12.30 p.m., Sat. 9-1 p.m.

No soldering iron is necessary and you don't have to have a pair of glasses and tweezers. DEMAND—B. IT SHOULD WORK FIRST TIME...

Answer—Apollo "6" is designed by our own designers Circuitry and every single transistor, diode, capacitor, resistor, inductance is brand new and fully tested—no surplus parts, no manufacturers
waves. In that case these will be 180° out of phase. The total effect at Y may be assessed by adding together the direct ray radiation with the field due to the image aerial in the earth.

The earth acts as an imperfect mirror to electromagnetic waves. If the reflecting area is damp soil or the sea, over 80% of the energy in the wave will be reflected, but dry sand or wooded countryside are poor reflectors of radio waves. The hilliness of the terrain will also affect radio waves especially at h.f. where a hill may become comparable with the wavelength in use. Furthermore, the earth is a much better reflector of long waves than short waves. Peat is also a poor reflector. During the war the author was in charge of a transmitting station sited on peat (Lochar Moss, Tinwald Downs, Dumfriesshire), where an earth mat of copper strip had to be laid down around the station and aerial system to form an effective counterpoise. This extended beyond the plan view of the aerial system by a distance equal to the height of the aerial masts.

Aerial reactance
When the frequency is low, the length of the aerial is a fraction of a wavelength and acts as a capacitance. As the frequency is increased the capacitive reactance decreases and the aerial becomes resistive at a quarter wavelength. If the frequency is increased further still the aerial becomes inductive and tends towards infinite inductive reactance at half wavelength. The aerial next becomes infinite capacitance and follows through the same cycle approaching zero for three-quarter wavelength aerial and on to infinite inductive reactance at a full wavelength.

Figure 5.6 is the vertical polar diagram of an earthed 1/4λ aerial. The full line occurs when the earth is a perfect conductor. The dotted curve is what happens in practice owing to a poor conducting earth.

The effect of raising the aerial above the ground is to cause the radiation to break up into beams. Figure 5.7(a) is of the 1/2λ dipole suspended 1/4λ above the ground.

Figure 5.7(b) shows the state of affairs when the aerial is raised a full wavelength above the ground (λ = wavelength).

The narrow beams of radiation caused by raising the height of the aerial above the ground are concentrated at definite angles increasing as the aerial height is increased. Use is made of this in the design of aerial systems for low-angle radiation. For instance, by stacking arrays of dipoles either in a horizontal or vertical plane and raising these above the ground, usually 1/8, the desired polar diagram may be achieved. The Koomans Array is a practical example of this, and the general form is given in Fig. 5.8 below.

Note the stub matching arrangements and the method of terminating the 600 ohm feeder.

Fig. 5.5: How the image of an aerial affects its radiating properties.

Fig. 5.6: An earthed 1/4λ aerial produces a 55° lobe (theoretically) and a 10° lobe (in practice).

Fig. 5.7(a): The radiation patterns from a 1/2λ aerial 1/2 above ground.

Fig. 5.7(b): The 1/2λ aerial one wavelength above ground produces a much more satisfactory pattern.

Fig. 5.8: The Koomans multi-element aerial array produces a much more predictable pattern than single 1/2λ aerials.
The horizontal Rhombic aerial

The Rhombic or horizontal diamond shaped aerial is substantially aperiodic when correctly terminated and may be operated over a 2/1 frequency band. Its principle of operation is attributed to the fact that a wire in free space carrying travelling waves produces a cone of radiation around it. Figure 5.9 shows the form of such a system with the lobes of radiation around the wires.

For h.f. aerials the sides should be 5λ and the terminating resistance 900 ohms, while for l.f. aerials the sides should be 4λ with a terminating resistance of 600 ohms.

As a transmitting aerial the Rhombic wires carry travelling waves and become in effect a special type of transmission line arranged to radiate. The input or characteristic impedance varies between 900 ohms at I.F. (30-300kHz) and 600 ohms at h.f. (3-30MHz). The terminating resistance is usually made up of three carbon rods in watertight tubes dissipating 30-60% of the power input to the system.

Rhombics may be made more efficient for transmitting purposes by grouping two or three either in series or parallel and in such a way that their combined directivity is maintained and the radiation efficiency may exceed 90%.

For the radiation or reception of ultra short waves (i.e. 17cm.) aerial arrays based on optical principles are employed. These take the form of a paraboloid reflector (usually made of aluminium) with the aerial, a half-wave dipole, fixed at the focus. The aperture of the reflector is typically 18λ across. Figure 5.10 shows the general arrangement of this system.

The gain of this arrangement is in the order of 30dB. The sharpness of the radiated beam is such that turning the dish reflector through 3° reduces the received signal by 10dB (i.e. about 3/1).

To conclude this series on aerials details are given below of a practical power indicator (Fig. 5.11). This practical low-power meter for indicating line or aerial current may be made up from a 0-5 milliammeter. A silicon diode type NKT914 is used as the rectifier. Sufficient coupling can be achieved by fixing the coupling wire close to the feeder, aerial or one wire of a balanced feeder. By this method of coupling a deflection of several mA can be recorded on the meter. This instrument may be used for aerial tuning or for checking standing waves on a feeder.

The general constructional details are left to the constructor. The few components used may be grouped through the back of the meter on a piece of Veroboard and the assembly then mounted in a suitable wood or metal box.

Aerials for amateur use

The most suitable aerial system for amateur use will be determined largely by experience and inspired guesswork, as it is seldom possible to predict with any accuracy the performance of a particular system adopted for the frequency in use. It can be shown that the best height of an aerial is 0.625λ for maximum power efficiency to produce a given field strength at a distant point. Aerials erected at a height of 0.5λ are the usual practice.

References
Radio Communication Handbook, R.S.G.B.
Short wave Radio communication, Ladner & Stoner.
Admiralty Handbook Wireless Telegraphy.

CORRIGENDA

A Comprehensive Audio Mixer. Andrew Dicks
The author has drawn our attention to the following errors in his article. VR1, VR2, VR4 and VR6 should be 250kΩ log. and the wiring of S2, S4, S6 and S9 must be ignored. In Fig. 5, VR3/VR4 and VR5/VR6 should be interchanged; the last hole on the front panel is for Sk8 (not Sk7). In Fig. 3, R22 should be 27kΩ.

Transistor Output Stages. I. Sinclair
At the foot of the second column on page 118 (May issue), the first formula should read Power out = V^2/R_{load}, and the second should be Power Dissipated = $A \times V^2/R_{L}$.

QUERY COUPON

This coupon is available until 5th September, 1969 and must accompany all queries in accordance with the rules of our Query Service. An s.a.e. must be included.

PRACTICAL WIRELESS, SEPTEMBER 1969
DE LUXE STEREO AMPLIFIER

A.C. mains 240-250, 500-550, 500-600, 600-650.

Output heavy transformer, giving bass and treble boost and cut. A dual volume control is used. Balance of the left and right hand channels can be adjusted by means of a separate Balance control fitted at the rear of the chassis. Input sensitivity approximately 150mV for full peak output of 4 watts per channel (6 ohm loads).

GARRARD 3000

Six parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3010

Ten parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3020

Six parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3030

Ten parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3040

Six parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3050

Ten parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3060

Six parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3070

Ten parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3080

Six parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3090

Ten parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3100

Six parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3110

Ten parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3120

Six parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3130

Ten parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3140

Six parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3150

Ten parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3160

Six parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3170

Ten parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3180

Six parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3190

Ten parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3200

Six parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3210

Ten parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3220

Six parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3230

Ten parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3240

Six parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.

GARRARD 3250

Ten parallel tuned circuits. 1025, 1525, 2250, 3100, 3100, 4050 to 10000 Hz. All channels are run in parallel to give an overall bandwidth of 1025 to 10000 Hz. Freq. response is 50 Hz to 20000 Hz.
Here in 4 handy volumes you have on call the vital repair information needed to beat the frustration and time loss that hinders away the opportunity to earn more. In 2,180 pages you have all the CIRCUITS, DATA and VITAL REPAIR INFORMATION for servicing over 1,000 of the popular 1965-69 televisions including Colour TV, Radios, Radiograms. Car Radios, Record Players and Tape Recorders. RADIO & TV SERVICING is the only work of its kind and is much sought after in the trade—a guaranteed money-spinner for years to come.

ALL THESE MAKES COVERED

A superb solid state A.C. mains unit for vocal and Instrumental groups and General Public Address use. 50 Watts Output (Music Rating) High Sensitivity Output matching for speakers from 3-30 ohms 3 separately controlled inputs Separate Bass and Treble Controls Frequency Response 22c.p.s. to 30Kc. Available from your local dealer Wholesale and Retail enquiries to Manufacturers FUTURISTIC AIDS LTD., 103 Henconner Lane, Leeds 13

F.A.L. ‘PHASE 50’ Public Address Amplifier

29 Gns

A superb solid state A.C. Mains unit for vocal and Instrumental groups and General Public Address use.

* 50 Watts Output (Music Rating)
* High Sensitivity
* Output matching for speakers from 3–30 ohms
* 3 separately controlled inputs
* Separate Bass and Treble Controls
* Frequency Response 22c.p.s. to 30Kc.

Available from your local dealer
Wholesale and Retail enquiries to Manufacturers FUTURISTIC AIDS LTD., 103 Henconner Lane, Leeds 13
YOU should be familiar with the Morse key, which is the simplest device that can be satisfactorily used to operate a transmitter. The key is usually connected in such a way that it causes the output from the transmitter to be interrupted, and all that is needed is some dexterity in manipulating the Morse key in accordance with a recognised code, such as the Morse Code. Quite high keying speeds can be attained—25 w.p.m. (words per minute) are not out of the way—but to better this figure considerable practice is demanded.

There is a way to improve one’s speed more easily, fortunately, and this involves using a semi-automatic keyer, preferably of the electronic variety. An electronic keyer, unlike a straight Morse key, has a “paddle” which moves in a horizontal plane between contacts on each side so that moving it to the right produces a succession of, say, long pulses (dashes), or moving it to the left produces short pulses (dots). This is a keyer of the simplest type which forms the subject of this article, but it should be noted that there are many improvements which can be made such as the addition of circuitry to avoid breaking up the last dash if the “paddle” is moved prematurely to the opposite contact (self-completion of characters), and circuits to make sure that all character spacing is perfect, even during the transition from dot to dash and vice-versa. It is even possible to build a simple memory into the more sophisticated keyers.

To gain practice, however, the simple transistorised keyer which the author has designed is ideal, and cheap to build. The contact assembly uses commonly available components, and the electronic circuitry comprises three multivibrators plus a relay amplifier. Describing the electronics first, the heart of the keyer is a couple of multivibrators Tr1/Tr2 and Tr3/Tr4 (Fig. 1), which are operated by taking their supply lines to the differential key. The first multivibrator, Tr1/Tr2, produces a square wave output at the collector of Tr2, and is used as the dot generator. The rate is controlled by VR1, and the mark-to-space ratio is governed by VR2. This multivibrator operates when the key is moved to the left. The second multivibrator Tr3/Tr4 produces the dash signal. As before, the overall speed is controlled by VR3, and the mark-to-space ratio by VR4. By juggling the settings of VR1, VR2, VR3 and VR4 the correct ratio of dot to dash and a constant interval between characters can be achieved for any speed. Unfortunately, with this simple circuit it is not possible to incorporate an overall speed control which would preserve the pre-set ratios.

The outputs from the multivibrators are combined and fed to Tr5, the relay current amplifier. The relay RLA is in the collector circuit of Tr5, and in parallel with it is connected a diode which protects the transistor from high back-e.m.f.s resulting from the interruption of current through an inductor. One set of contacts is used to key the transmitter, while a second set operates a higher frequency multivibrator Tr6 and Tr7, which is used as a keying monitor in conjunction with the headphones. This circuit is particularly useful if the keyer is to be used by an unlicensed enthusiast for practice, but do
THE title of this article is not to be taken too seriously. The instrument to be described is a skin resistance meter or "psycho-galvonometer", which operates by measuring the resistance between two electrodes held in a person's hands or taped to the wrists by passing a negligibly tiny current through. The resistance is found to vary erratically over a range of about 1 to 50kΩ brought on by perspiration which causes large, slow resistance changes, muscle contractions which produce small, slow variations that are hard to detect or sudden changes of emotional mood which can produce large, very fast changes and oscillations of resistance. These form the basis of the uncertain claims for "lie detector" devices.

The circuit of the instrument is shown in Fig. 1. It consists of a two transistor direct coupled current amplifier which drives a 0–1mA moving coil meter. Tr1 is normally non-conducting because R2 holds the base at emitter potential. Tr2 is normally conducting because current flows from emitter to base and through R3. Full collector current flows through R4 and the 1mA meter which indicates full-scale deflection.

When skin resistance electrodes are connected to terminals T1 and T2 a small current flows from Tr1 emitter to base through R1, VR1 and the subject's skin resistance. Tr1 starts to conduct and passes collector current through R3. The potential at Tr1 collector becomes less negative so that Tr2 passes less base current. The collector current therefore decreases also and the meter needle moves towards zero.

VR1 is used to adjust the meter to half-scale deflection (0.5mA) or slightly above. Any slight change in skin resistance will now produce a large swing of the needle to left or right. Half-scale deflection is regained by readjusting VR1. This control should be fitted with a fairly large knob as it will be in constant use and its adjustment is fairly critical. The meter can be brought to half-scale deflection for any resistance up to about 40 to 50kΩ (depending on component tolerances) between T1 and T2. Changes of resistance of as little as 10Ω can be seen on the meter. In view of this the instrument might find use in comparing high tolerance resistors and particularly in finding matched pairs of resistors.

The instrument can be constructed in any kind of cabinet and component layout is not critical. The author used a "Norman" aluminium chassis as a cabinet. The components were mounted on a tiny piece of Veroboard as an enjoyable exercise in miniaturisation and the layout is shown in Fig. 2. There is no need to build so small unless one has the inclination (and the patience) as there is plenty of room in the cabinet. It is easy to convert the layout in Fig 2 to a larger piece of Veroboard by (say) disregarding alternate holes.

Tr1 and Tr2 were OC71 in the prototype but any small signal transistors with current gains of 40 or more, such as the surplus "red spot" variety will work. They should be soldered as quickly as possible to avoid heat damage. The higher their current gains, the more
sensitive will be the instrument to small skin resistance changes. M is a 1mA d.c. moving coil unit and should be as large as possible to show up small deflections, but the calibration is unimportant and any surplus type is suitable. If the instrument is switched on without the electrodes connected a current of almost 3mA flows through M. This causes the meter needle to bang against the pin alarmingly but should not harm the movement. However, a meter required for other accurate measurements should not be used. A little protection can be provided for the meter by wiring one or two germanium diodes, or the junction of a germanium transistor, across it in the forward direction. If M has an internal resistance of about 100Ω the current through it will be limited to about 2mA, but if this is still considered excessive an additional 100 to 130Ω resistor (R5) in series will give further limiting of the maximum meter current but causes some loss of sensitivity. Note that the red or positive (cathode) ends of the diodes are connected to the negative terminal of M.

Suitable skin resistance electrodes for connection to terminals T1 and T2 are shown in Fig. 4. The hand-held electrodes give best results provided they are not

...

Fig. 4: Skin resistance electrodes; (a) for holding in each hand, (b) for holding in one hand and (c) for taping to wrist.

SIMPLE ELECTRONIC KEYER

remember that if a licence is aspired to, the GPO will require the test to be taken using a conventional Morse key. A relay with more contacts could be used, of course, if other outputs are required; for receiver muting, for example.

Construction of the key should be reasonably self-explanatory from Fig. 2. The whole assembly is mounted on a wooden block measuring 4in. x 2in. x 2in. Three brackets about 1in. high with a ¼in. lip for securing them to the base should be cut from a sheet of 18swg aluminium, the widths of two being about ½in. and the rear support, which needs two screws in line, should be about 1in. wide. The “paddle” is easily made from a 5in. metal nail file, drilled with a couple of holes at the narrow end for securing it to the rear bracket. Adjustable contacts are merely screws in the front brackets, each locked with a couple of nuts. Wires can be taken from the bracket mounting screws to the electronic circuitry. Any conventional form of construction is suitable for the electronics, such as Veroboard, Cir-Kit, pin-board or tagstrips. Details have not been given because the wiring is really quite simple.

This unit does demand care when switching from dot to dash and vice versa, to maintain correct element spacing. Nevertheless, with some practice

...

Fig. 3: Appearance of the instrument.
A MINIATURE T.R.F. RADIO COVERING THE M.W. BAND WHICH CAN BE BUILT FOR LESS THAN 25s. AND ITS SIMPLICITY MAKES IT AN IDEAL PROJECT FOR THE BEGINNER.

EVER since transistors first became available on the amateur market constructors have been building radio sets smaller and smaller and these never lose their fascination to a large proportion of both new and established constructors.

The author is not claiming that the one described here is the smallest yet but it uses readily available components and case (always a problem for such sets) and should cost under 25s. to build. Even though the set is very small things are not so tight that building it is a problem. None of the component valves are critical, which is a common fault with many designs of this type and also the circuit is very stable, very important since the effects of handling some simple designs can send them way off tune.

Choice of transistors

Since the physical size of the set is small, obviously the aerial must be very small and consequently a very high gain is required from the transistors used; also, if very high gain transistors are used it will mean fewer stages are needed. There are on the market several transistors with very high gains but amongst the cheapest and highest gain is the BC109, now being replaced by the BC169 which is identical apart from being plastic encapsulated and cheaper. The BC169 costs under 2s. 6d each and two of these are used in the circuit.

In the prototype very cheap near-equivalents were tried with a large measure of success, these being the transistors sold in the 10s. packs, but the component values had sometimes to be altered slightly and consequently such substitutions are not recommended for those building the set straight up without first bread-boarding.

The circuit

Among designs of this type reflexing is very popular, that is, making the r.f. transistor do two jobs, but this was rejected since closer tolerance component values are needed and problems with stability are often encountered.

It is also common practise to bias one of the transistors in such a way that it will detect, but here again a straightforward detector diode is used, as accurate and individually chosen components would be required.

The basic circuit that we are left with is a high gain r.f. amplifier with a limited amount of regeneration provided by VC2 consisting of two lengths of wire twisted together followed by a detector and a high gain a.f. amplifier. The detailed circuit operation is described separately for those interested, the circuit is shown in Fig. 1. It is common to use a high impedance magnetic earpiece acting as the collector load of the second transistor but these cost two or three times the price of crystal types and the performance between the two types was identical.

Choice of components

About the smallest and cheapest method of tuning a coil is by means of a 250pF trimmer costing about 2s. and one is used here. Batteries are a problem and for sets of this sort there is a limited choice. The one chosen was the Ever Ready B154, a 15V battery costing 2s. 9d. This is available from Boots' or other chemists and is used for hearing aids among other things. The current consumption of the radio is only 1·5mA and will power the radio for months.

Since space is limited, a 2·5mm rather than 3·5mm jack and socket are used and the crystal earpiece should be bought with this size. As far as the author is aware, ready wound coils of the size used in the set are not available but it is a relatively easy matter to wind one's own on a 1½in., ¾in. diameter ferrite rod. Details of this are shown in Fig. 2.

The majority of the components are mounted on 0·1in. matrix Veroboard, 13 × 9 holes. To save sawing it to this size, this matrix is easily broken to the correct size along the holes.

The detector diode, OA81, is available in a miniature size and one of these should be used as the larger version will be a tight fit.
circuit operation

The radio waves are picked up on the aerial coil, L1, which has its own inductance and signal pickup qualities greatly increased by the ferrite rod. In combination with VC1, L1 forms a tuned circuit at a particular frequency depending on the position of VC1. The overwind on the coil, L2, considerably transforms the very high impedence of the tuned circuit thus preventing Tr1 from damping the tuned circuit; C1 is a d.c. blocking capacitor. Tr1 greatly amplifies the r.f. signal and part of this is fed back to the tuned circuit through VC2 providing a regenerative action.

The remainder of the signal is passed through C2 and is detected by D1 which is connected directly to the base of Tr2 which further amplifies the audio signal and applies it across the crystal earpiece. R1 and R3 provide the correct bias current for the transistors and R2 and R4 provide the loads across which the r.f. and a.f. signals are developed. As there is always a certain amount of detection in the first transistor, C2 is made large to feed this to Tr2. If it was necessary only to pass an r.f. signal C2 could be considerably reduced.

Constrution

The aerial coil should be wound first using 80 turns of 34 s.w.g. enamelled copper wire. A narrow band of adhesive tape should be wound around one end trapping the end of the wire in this. Eight turns of similar wire should be wound on top of the original windings approximately in the middle.

Only one break is needed in the Veroboard strip and this can be made using a 3/32in. drill. The components should then be mounted on the Veroboard as shown, taking note of the transistor connections, note that the lead arrangements on this type of case (TO92) positions the collector in the middle.

After mounting the components on the board, solder in the wires which will lead to the battery, the earphone socket and the tuning capacitor; finally feed the aerial wires through the appropriate holes, pull tight and solder. The aerial should be pulled close to the board as there is no other means of supporting it.

The tuning capacitor should next be modified. Remove the screw used for compressing the "vanes", screw the fixing nut underneath up tight and saw off the surplus thread. Remove the fixing nut and place the trimmer in position inside the box pressing to mark the position for the hole. Using a 3/32in. drill make the hole for the trimmer, fitting it in right into the corner. A 3/32in. 6BA round-headed screw should next be fitted through the tuning knob and locked with a nut. This can now be screwed through the trimmer and, allowing for the correct amount of movement, fix two locking nuts on the screw. The tuning knob is available as a replacement for some Japanese miniature volume controls.

The battery connections should be soldered, for, although spring contacts could be used these are not as reliable and the battery will have to be changed so rarely that it will be no chore.

The on/off switch is incorporated in the earphone socket by bending the switch section so that instead of being normally on it will be normally off. The jack, when inserted will automatically switch the set on. A 3/32in. hole should be drilled in the side of

components list

Resistors:
- R1 180kΩ
- R2 10kΩ
- All miniature 1/2 watt, 10% tolerance

Capacitors:
- C1 0.01µF (miniature disc types, 12V)
- C2 0.01µF (minimum disc types, 12V)
- VC1 250pF trimmer (Radiospares, available from most component suppliers)
- VC2 See text

Semiconductors:
- Tr1 BC169B Electrovalue Ltd.
- Tr2 BC169B
- D1 OA81, subminiature type

Miscellaneous:
- L1, L2—see text: Crystal earpiece with 2.5mm jack plug; 2.5mm socket; B154, 15V battery; Veroboard, see text for size; Plastic case—see text; Tuning knob (Henry's Radio).
the case to take the earphone socket, this fits inside the case beside the trimmer. The actual case used is widely available, sold holding 30 hairgrips (which may be of use to our longer haired friends to avoid singeing whilst soldering or for the closer cropped section to give to their good ladies!) “Kirbigrips” are the manufacturers of these hair grips and box, and they cost 1s. 6d.

The only setting-up necessary in this radio is adjusting VC2 which is made up by twisting 2in. lengths of insulated wire together. If the set fails to break into oscillation reverse the connections of the overwind. This design, together with the transistors used makes for an “overlap” in oscillation, that is, once oscillation starts it is necessary to reduce VC2 (by untwisting the wires) quite a bit before stability is achieved again. Because of this only a limited amount of regen is possible but it is sufficient to increase sensitivity and selectivity appreciably.

On two prototypes Radios 1, 3, and 4 were received well and under favourable conditions Radio Luxembourg and one or two other continental stations were heard with good volume.
No one knows

I was extremely pleased at first, to read B. R. Meredith's letter (March 1969) on the subject of those elusive fictional holes. I thought that at last people were beginning to understand the work of the theoretical physicist, but I was shattered by the next paragraph, which showed that he had not got the point at all—for he still believes in the fantasy world of the electron. I might even venture to suppose that he regards an atom as consisting of solid spheres of negative charge flying through space round a fixed set of positive and neutral spheres. I dare say many readers believe this as well—but this is where a fundamental misapprehension arises and this belief, I am sorry to say, is fostered by even the best text-books.

The atomic model and the electron-hole theory are not supposed to be, and were never intended to be, taken as literal representations. In each case, what the physicists said was: "We can understand how an atom works and we can do our sums on it, by pretending that it consists of particles having mass, charge, momentum etc., in certain fixed relations. The model, for such it is, is only useful for us in so far as it enables us to explain the results we observe." In a similar way, the physicists have never said that the positive hole exists—all they have said is that we can explain semiconductor action most effectively by pretending that such holes exist and that they move like electrons but in the opposite sense.

If Mr. Meredith knew anything of the results of Quantum Mechanics, he would be utterly confused to say the least. Using this system it is easier to explain atomic spectra and other effects by considering the electron as a smeared-out spherical charge distribution around a hypothetical nucleus. But even this is only a model, for the quantum mechanical electron is in fact a wave in space. However the wave is not a wave as we understand it! So you can see how confusing it gets!

The main point of my argument is that the scientist invents a model which will explain his results and gradually, mainly through the influence of badly written beginners' books, people begin to associate the model with the real thing. I would like to state categorically, here and now, no one knows, or will ever know, exactly what an atom or electron looks like. The nearest we can ever get is to invent a model system which explains all known phenomena.

I must admit, Mr. Meredith's remarks about current flow in paragraph 5, puzzled me somewhat until I realized that he apparently has not yet sorted out the difference between electron flow and conventional current flow. For his benefit and that of his students, I might just point out that for historical reasons the conventional current flow is directly opposite to that of electron flow. I find that authors and "experts" tend to deal in either convention to about an equal extent, depending on which system they were educated in. The advice he gives his students ("What are the electrons doing") is very sound but then it is always very useful if one can appreciate the other point of view.

Incidentally, I believe that it is impossible to explain p-n-p action without the use of "hole theory" and I should be very interested to hear how Mr. Meredith does this.

Finally, as for Hiattitis Pungens, I don't think it ever existed, except perhaps in a confused mind.—K. H. J. Rainbow (Surbiton, Surrey).

Rhodian mod.

With reference to the "Rhodian Tape Recorder" design by Julian Anderson (P.W. March-April 1968), I have a suggestion which may be of help to other constructors of this unit.

In an otherwise excellent design giving very good results, I have found two difficulties, and after some experimenting I have improved one of these—the record level indication. I found the DM70 indicator was not giving any indication until the level, was so high as considerably to over-modulate the tape.

To make the "line" on the DM70 shorten appreciably, the grid must be several volts negative with respect to the cathode. I therefore decided to amplify the bias signal before it was applied to the grid, and for simplicity and small size. I used transistors, powered by a 4 1/2 volt battery the doubler from the heater line—only 7 components are involved. A super-alpha pair is used to match the impedance of the bias signal.

With this arrangement, a short line shows with no signal, and lengthens with increasing amplitude. The only precaution necessary is to keep the unit away from heat, as this alters the d.c. characteristics of the transistors. R1 can be chosen to give a full-length line when recording level is optimum.

This circuit gives a good indication of level, but I should be interested to know whether other constructors have had this problem, and how they have tackled it: also any comments on my other problems, whistles on recording from an a.m. radio, due to radiation from the oscillator coil. Perhaps this is due to building the unit on a printed circuit rather than a metal chassis? I would be glad to hear from other constructors "in any case!"—W. Wright (Muirpark House, Tranent, East Lothian, Scotland).

![Diagram](image-url)

Fig. 1: The "Rhodian" modification. The original circuitry is shown in dotted form.
It was desired at one stage to add an extension from the shed to the main unit in the kitchen but to provide such an extension would have proved expensive using a three-wire connection. Consequently a two-wire extension was devised but having the disadvantage that only one such extension may be parented on to a main unit, see Fig. 6. The operation of the extension is somewhat different from usual in that receiving a call at the main from the extension (announced by a bell) requires that the extension selector on the main unit be operated before communication can be established. A call to the extension from the main unit is made in the normal way.

The original extension unit consisted of a GPO type non-dial telephone with a press-button switch added just in front of the receiver rest for ringing purposes.

It was found that if the two-wire extension parent was unattended, calls to it were fruitless and since the extension has no outgoing selector keys, no connection could be made to the basic network. To overcome this problem, a night extension facility was added to the parent unit so that calls to it could be re-directed to any unit present on the main unit.

This arrangement is shown more clearly in the block diagram in Fig. 7 and the circuit in Fig. 8. The setting-up operation is to lift the receiver, operate the three keys or buttons simultaneously for "night extension", "shed extension" and the selector switch for the unit to which it is desired to extend the call. A call incoming from the extension to the parent will cause the buzzer to ring at the extended unit.
which can receive the call in the usual way. Note that outgoing calls cannot be made from the extended unit to the extension and the parent cannot be used to receive incoming calls (which will be announced by a buzzer in the usual way) unless the night extension facilities are first cancelled by momentarily depressing the receiver, rest switch. Note also that the receiver must be left off the parent unit so that the keys or buttons hold locked. The unit used by the author to parent the two-wire extension was a seven key unit and it was thus a simple matter to use one of the spare keys for the night extension facility.

Auto-Transfer of Two-Wire Extension

It will be seen from the description of the night extension that if a call originating from the extension cannot be dealt with at the parent unit, it can be extended to any of the other units by setting up a "temporary night extension" arrangement. The procedure is as follows: On hearing the bell (announcing a call from the extension) lift the receiver, operate the extension key or button and speak to caller. If the caller wishes to be connected to another unit, release the caller by temporarily depressing the receiver rest key and call the desired unit. On answering, the extension key and night extension key must be operated whilst holding the selected station key so that all three lock down. Since the receiver of the main unit is cut out of circuit, it will be difficult for the operator of the main unit to know when the conversation is over, hence an automatic transfer arrangement was devised having the following facilities:

(i) A call from the extension to the parent operates the bell.

(ii) The operator answering is then asked to transfer the call to another unit.

(iii) The auto-transfer key or button is operated (biased off) and the unit required is dialled (1 to 0 for up to ten extensions) and the ring key operated a few times to call the dialled unit.

(iv) The receiver is replaced and a "doll's-eye" indicator remains held whilst the transfer is in operation.

(v) At the termination of the call, the called unit rings the parent in the usual way. This causes the doll's-eye to drop out and the equipment to reset to normal without the intervention of anyone at the parent.

The circuit diagram is shown in Fig. 9.

Auto-Transfer Circuit

After ascertaining the unit required, the "transfer set" key or button is operated. This applies the earth at CN1 to the relay TRF, which latches via TRF2 and CN1. The doll's-eye indicator operates and the indicator lamp lights from the 24V supply via TRF3. The selector magnet, SR is now disconnected from its self-interrupt springs and homing arc by TRF6. The speech path is set up via TRF1 and TRF4. The incoming wire is switched to the 4.5V relay CN by TRF5 in preparation for cancelling the transfer. It is necessary to isolate the main unit buzzer as this will otherwise interfere with transmission being coupled in parallel to the extension receiver; this is achieved by TRF7. Dialling now steps the selector to the required outlet. On completion of dialling the ring key or button is operated which applies 4.5V battery voltage to the dialled unit via TRF4 and SR1 returning via the common return wire. When the dialled unit answers, the call is announced and the receiver is replaced. At the termination of the call, the called unit rings to the parent and in so doing applies 4.5V across the relay CN via TRF5, CN1 operates to disconnect the earth from TRF which releases. TRF6 deoperates, connecting the selector magnet to the earth on the homing bank via the self-interrupt contacts, SRdm, the magnet now steps successively to home. All other TRF contacts restore to normal causing the doll's-eye to release and the indicator lamp to extinguish. Calls may now be made to and from the parent unit without the further operation of any keys or buttons.

The power supply for the transfer unit is derived from a 20V transformer (or any other suitable voltage so long as it is sufficient to operate the relay, selector and doll's-eye indicator) and a silicon rectifier to give approximately 18V r.m.s.

All the apparatus can be housed in a wooden box containing the dial and doll's-eye indicator or the equipment may be housed with the transformer/rectifier separately from the dial and doll's-eye indicator. No details are given for the construction of the auto-transfer equipment since these will vary with the apparatus of the constructor.

A normally made "transfer cancel" key is connected in series with the relay should it be necessary to cancel a call from the parent unit (e.g. if there is no reply from the call deunit). This takes the form of a key switch (in practice the other "side" of the "transfer set" key).

TO BE CONTINUED
TRANSDUCERS are components which convert physical effects such as temperature, light intensity, mechanical movement, pressure etc. into electrical quantities. Since a number of types of transducer can be used for each physical parameter it will be convenient to consider each group separately.

Temperature

Most electronic components are affected by temperature variation and consequently a wide variety of transducers are available for temperature measurement. Among the most popular are thermostats, thermistors, thermocouples and temperature dependent resistors.

Thermostats

Thermostats are widely used for temperature control where critical operation is not required. The basic construction of a thermostat is illustrated in Fig. 1. Essentially it consists of a bimetal element formed by laminating two metals together. The metals used have radically different coefficients of linear expansion with temperature and consequently when the temperature is changed one element expands more than the other, which results in the strip bending to accommodate the separate requirements of each material. When the strip is heated or cooled the bending occurs and is used to make or break a contact.

The actual temperature at which this occurs is determined by the contact to strip spacing and can be adjusted by moving the contact position. Because of the variation in strip characteristics and the relatively small movement there is a large variation from one unit to another and individual setting of each thermostat is often required.

Thermostats are effective devices for sensing one particular temperature value within a margin of error of 2-5°C and can only be used for a single temperature due to the ON-OFF characteristic of their operation. Consequently they are widely used as control elements in domestic and industrial temperature control applications but are not generally used for temperature measurement and indication.

Applications

In electronic circuits thermostats are used as delay elements and for miniature circuit breaker applications. Components with delay times of 10-100secs are available and are used for valve applications where the application of h.t. potentials are delayed until after the heaters have warmed up. Both normally-open and normally-closed contact configurations are available and generally the bimetal strip is indirectly heated with a coil. The heating coil is wound around the bimetal strip and is electrically isolated from the contact. The coils are generally wound to match heater voltage ratings of 4, 6 and 27V and require current levels of 200-750mA. Contact ratings vary from 0.5A to 2A and depend largely upon size and construction. A typical low cost delay element is shown in Fig. 2; such devices vary in price from £1 to £3. Valve configurations are also available to suit many standard valve bases at prices from £1 to £3.

![Fig. 2: Miniature thermostat delay element.](image)

Miniature thermostat circuit breakers are used for over current and over power protection. Because of the time-lag inherent in the device due to thermal delay they are insensitive to transient conditions. The operation is similar to the delay elements except that the contact is normally closed. The current at which the contact opens is determined by the thermostat and a delay of 5-20secs is inherent. It should be noted that the maximum coil current for operation is dependent upon ambient temperature and reduces as the ambient increases; consequently these devices cannot be regarded as accurate for over current protection applications. They have the advantages of positive switching action and automatic restarting (as the coil cools) and are very cheap at prices from £3 to £5.

Thermistors

Thermistors are temperature sensitive resistors and the circuit symbol is shown in Fig. 3. They are
NEW PRICES ON NEW COMPONENTS

ELECTROLYTIC CAPACITORS (Mullard).—10% to + 50%.

<table>
<thead>
<tr>
<th>Working Voltage (V)</th>
<th>Capacitance (µF)</th>
<th>Price</th>
<th>Pack Prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>4V</td>
<td>6-4V</td>
<td>1W</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>6-4V</td>
<td>1W</td>
<td>0.64</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>1W</td>
<td>0.64</td>
</tr>
<tr>
<td>125</td>
<td>4</td>
<td>1W</td>
<td>0.64</td>
</tr>
<tr>
<td>250</td>
<td>4</td>
<td>1W</td>
<td>0.64</td>
</tr>
<tr>
<td>400</td>
<td>4</td>
<td>1W</td>
<td>0.64</td>
</tr>
<tr>
<td>800</td>
<td>4</td>
<td>1W</td>
<td>0.64</td>
</tr>
<tr>
<td>1600</td>
<td>4</td>
<td>1W</td>
<td>0.64</td>
</tr>
<tr>
<td>3200</td>
<td>4</td>
<td>1W</td>
<td>0.64</td>
</tr>
<tr>
<td>8,000</td>
<td>4</td>
<td>1W</td>
<td>0.64</td>
</tr>
</tbody>
</table>

RESISTORS
High stability, carbon film, low noise. Capless construction, molecular

Dimensions (mm.): Body: 1W: 8 x 2.8

10% tolerance. 100 Volt Watt.

Prices—per Ohmic value.

<table>
<thead>
<tr>
<th>1W</th>
<th>10%</th>
<th>24d.</th>
<th>1/8</th>
<th>3/8</th>
<th>5/8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1W</td>
<td>10%</td>
<td>24d.</td>
<td>7/8</td>
<td>4/8</td>
<td>6/8</td>
</tr>
<tr>
<td>2W</td>
<td>10%</td>
<td>24d.</td>
<td>1/8</td>
<td>3/8</td>
<td>5/8</td>
</tr>
</tbody>
</table>

CAPACITORS
Subminiature Polyester film, Modular for P.C. mounting. Hard epoxy
resin encapsulation. Radial leads.

Prices—per Capacitance value (µF).

<table>
<thead>
<tr>
<th>0.001</th>
<th>0.002</th>
<th>0.005</th>
<th>0.01</th>
<th>0.015</th>
</tr>
</thead>
<tbody>
<tr>
<td>6d.</td>
<td>3d.</td>
<td>3d.</td>
<td>3d.</td>
<td>3d.</td>
</tr>
<tr>
<td>0.01</td>
<td>1/8</td>
<td>4/8</td>
<td>10/8</td>
<td>11/8</td>
</tr>
<tr>
<td>0.02</td>
<td>1/8</td>
<td>4/8</td>
<td>10/8</td>
<td>11/8</td>
</tr>
<tr>
<td>0.05</td>
<td>1/8</td>
<td>4/8</td>
<td>10/8</td>
<td>11/8</td>
</tr>
<tr>
<td>0.1</td>
<td>1/8</td>
<td>4/8</td>
<td>10/8</td>
<td>11/8</td>
</tr>
<tr>
<td>0.2</td>
<td>1/8</td>
<td>4/8</td>
<td>10/8</td>
<td>11/8</td>
</tr>
</tbody>
</table>

JACK PLUGS

JACK SOCKETS

SEMICONDUCTORS: OA5, OA81, 1/9, OC44, OC45, OC71, OC81, OC82D, OC82, 2/5, OC70, OC72, 2/5, AC107, OC75, OC170, OC171, 2/5, AF115, AF116, AF117, AC19, ACY21, 3/5, OC410, 4/3, OC200, 5/3, OC19, 5/3, OC25, 7/3, OC35, 8/3, OC23, OC28, 8/3.

SWITCHES (Chrome body).

PRINTED CIRCUIT BOARD (Vero).

| 0.1in. Matrix: 3in. x 2in., 3/5, 3in. x 2in., 3/5, 3in. x 3in., 3/5, 3in. x 3in., 5/3 |
| 0.1in. Matrix: 5/3, 3in. x 2in., 4/3, 3in. x 2in., 4/3, 3in. x 3in., 4/3, 6in. x 3in., 5/3 |

SEND S.A.E. FOR 1969 CATALOGUE

DUXFORD ELECTRONICS (PW)
97/97A MILL ROAD, CAMBRIDGE

Telephone: CAMBRIDGE (0222) 63687

(Visit us—at your new Mail Order, Wholesale and Retail Premises)

MINIMUM ORDER VALUE 5/-
C.W.O. Post and Packing 1/6
generally available with negative temperature coefficients. They are manufactured from semiconductor material and are consequently robust and reliable.

The resistance falls logarithmically with increase in temperature and a typical thermistor characteristic is shown in Fig. 4. Since the characteristic is continuous they can be used both for control and indication and are particularly useful for power measurement especially in the r.f. to microwave frequency range. Where a linear characteristic is required this can be achieved by shunting the thermistor with a resistor as shown in Fig. 5(a). This results in the modified characteristic shown in Fig. 5(b).

Applications

In electronic circuits thermistors are used for automatic gain and amplitude control and for surge suppression whilst as transducers they are used for measurement, indication and control. Three basic forms of construction are used to suit the varied design requirements and these forms are illustrated in Fig. 6. Bead thermistors are used for amplitude control and the bead is small in order to reduce the thermal delay. Consequently they are fast acting and suitable for direct control. Indirectly heated types in evacuated or gas filled glass encapsulations are also available. Disc thermistors are larger but are not protected except by the end connections. They are therefore more useful for power applications in control and compensation. Rod thermistors have a large surface area for heat dissipation and are particularly useful for surge suppression.

Parameters

Thermistor operating temperatures are wide but generally between 0-300°C. Resistance values vary considerably and are available from 100kΩ to 0.5MΩ at 20°C ambient temperature. The tolerance on thermistors of a particular type is usually ±20% of the ambient 20°C level. At maximum temperature or dissipation the resistance value is usually between 103 and 1kΩ depending on type. Disc and rod thermistors have lower ambient resistance values and are supplied to closer tolerances, usually ±10% or ±5%. Power dissipation levels vary from 20-100mW for bead thermistors to 1-5W for disc thermistors.

Prices vary between 7s. and 20s. for disc thermistors of wide tolerance to 15s. to 35s. for close tolerance devices, whilst bead thermistors vary from 10s. to 50s. depending on tolerance and construction. Generally directly heated bead devices are available in the range 10s. to 25s. for general purpose application. Whilst these prices apply for standard thermistor specialist r.f. and microwave power measurement devices are considerably more expensive.

Thermistors have a number of advantages when compared with thermostats for control purposes. These include the ability to both measure and control, and also non-mechanical operation which results in reduced size and increased reliability and stability. They are also robust and unaffected by high vibration levels. However they do require additional circuitry for control applications and generally are destroyed by high overload values. This is a particular problem in low power measurement at v.h.f. and u.h.f. frequencies.

Thermocouples

Thermocouples are widely used for temperature measurement and control but rarely as components in electronic equipment. Thermocouples are junctions of dissimilar metals and many combinations are used including cromel/alumel, copper/constantan, iron/constantan, and platinum/rhodium to cover the various temperature ranges. They operate by generating a small voltage in the region of mV when the temperature of the junction is raised but have very low source resistances. However when used in conjunction with high input impedance amplifiers rather than galvanometers the lead conditions are not critical.

Temperature ranges vary with the type of metals used for the junction. Commonly copper/constantan (Cu/Con) is used for temperatures from -200°C to +300°C since these are generally available in wire form, whilst cromel/alumel (Cr/Al) is widely used for more critical applications to 1000°C. Platinum/platinum rhodium is used for the range 0-1800°C where exceptional accuracy and stability are required.

continued on page 347
These new bits are electrolytically ironcoated over their whole length, giving tremendously increased life and freedom from seizure. Real savings in initial cost and maintenance of copper bits can be achieved by using Philips bits.

Now available in the shapes illustrated for all seven LITESOLD models (also fit similar "",", and " bit types).

Send for further details:
LIGHT SOLDERING DEVELOPMENTS LTD.
28 SYDENHAM ROAD, CROYDON CR9 2LL
Telephone: 01-688 8589 and 4559

MARTIN IS HIGH FIDELITY
plus
ADD-ON-ABILITY
THRILLING POWER
DEPENDABILITY
GENUINE ECONOMY

How would you like to start with a simple amplifier, say, and add to it until it became a fully stereo twenty watt amplifier with FM tuner and facilities to take the most sensitive low output pickups ever made? With Martin Audiokits it's easy, for with these superbly engineered all-transistor prefabricated units, success is built in from the start and you build to your own preferred plan. IT'S A MONEY SAVING SCHEME, TOO.

Details from:
MARTIN ELECTRONICS LTD., 155 High St., Brentford, Middlesex. ISLeworth 1161

POST THIS COUPON TODAY
for full details of ICS courses in Radio, T.V. and Electronics.

INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 171, Intertext House, Stewarts Road, London, S.W.8
Please send me the ICS prospectus—free and without obligation.
(state Subject or Exam.) ________________________________
NAME ________________________________
ADDRESS __
PW9 ________________________________

INTERNATIONAL CORRESPONDENCE SCHOOLS
Sonitone STA and STA/HC. Diamond Cartridge brand new, boxed in manufacturers carton 49/6 + 2/6 p. Acros GP 91-1 and GP 31-3 stereo compatible cartridges, now in sealed manufacturers' cartons 22/6 + 2/6 p.

BASF TAPE 25% OFF
5" 600ft. 14/- 900ft. 19/- 1200ft. 30/-
5" 900ft. 19/- 1200ft. 24/- 1800ft. 39/-
7" 1200ft. 24/- 1800ft. 35/- 2400ft. 57/-
P. & P. 2/- per reel—over 65 FREE

HI-FI SPEAKER K12TC—12-in. 12 watt
Offers an exceptionally smooth and extended response, with very low level of distortion from the specially designed twin diaphragms.
Frequency Response: 30-18,000Hz.
Impedance: 15000m.

OUR SPECIAL PRICE
PLUS P. & P. 6/6 97/6

Bargain—Speakers, Hi-Fi—The Baker Seihurst Stalwart. 12in. round, 15 watt rating, 12,000 lines coarse, 15 ohms, response 45-18,000c/s.
Bass response 40-900c/s, solid aluminium chassis.
Our price £5.5.6.

Bargain—Changer decks at lowest prices ever

GARRARD
Beautiful turntable 1055 £25.00
plinth and perspex £9.10.0
these units £13.10.0
5 Gns. P. & P. Free 3000 with Sonoma
TRA/HC diam. cart £19.18.0
Add 10/- p/p for each Garrard unit

SPEAKER ENCLOSURES
Type: INFINITE BAFLE
Model 8.5" plus 3" tweeter
Model 136: 13" 3" EMI £25.5.0
Both £4.19.8 each
Model 1012: 10" or 12" plus 4" tweeter £27.5.0
All enclosures are in oiled teak, fully built.
Please ask 8/- & 6/- p/p on each enclosure

Bargain—Speakers, Hi-Fi—The Baker Seihurst Guitar Group 25, 12in., round, 25 wattatt, 12,000, 15 ohms, response 10-10,000c/s, solid aluminium chassis, heavy duty cones.
Our price £5.5.4.

The greatest Hi-Fi Budget system to-day—can't be beaten—price or quality anywhere—look at these great features—then compare.
Teletor F2000 tuner amp. AM/FM with multiplex decoder and A.F.C.—2 x 5w channels R.M.S. Bass Volume Treble Balance controls, a truly outstanding unit £5 8 d
Garrard SP 25 MK II Transcription deck 43 1 0
Teletor SA 1003 matching speaker enclosures 9 5 0
Sonitone 9 TA Diamond Cartridge 4 2 0
Plinth and Perspex cover 7 0 0
Exclusively offered by WALDON at the remarkably low price of 63 gns.

WALDON ELECTRONICS 707 Blackburn Road, Bolton, Lancs. Bolton 54280.
A MINIATURE STABILISED SUPPLY WHICH CAN BE BUILT TO GIVE AN OUTPUT BETWEEN 6V AND 18V. PROTECTION AGAINST ACCIDENTAL SHORT CIRCUIT IS INCORPORATED IN THE DESIGN.

In this modern age of the transistor, there is a wide range of small, portable equipment designed to operate from batteries, and modern power packs offer a very reasonable life. Considered long term, however, there are many cases where the economy of running this same equipment from a mains supply would be of great advantage.

Due to its small size, $4\frac{1}{2} \times 2\frac{1}{2} \times 1\frac{1}{2}$ in., the supply to be described is small enough to mount inside such equipment where the addition of a switch gives the versatility of mains/battery operation.

The supply has a current limit to protect against accidental short-circuit of the output, or overload, and in the form described has a nominal 18V stabilised output. A continuously variable output would not enable the circuit to keep its present advantage of simplicity. The 18V line may be used directly with decoupled line dropping resistors, or even further zeners if very accurate lower voltage lines are required. Alternately the actual output may be reduced to any desired lower level by small component modifications.

As an example of the economy of such a unit, compare, for instance, the requirement for an 18V line and a load current of 30mA. The most convenient method of obtaining this with batteries would be two series PP9's. Assuming a 12 hour/day operation, and allowing the supply to drop to 13V with the PP9's, lifetime would be about 80 hours for 7s. 6d. The cost of the miniature mains unit for the same period is less than two-tenths of a penny!

The circuit, including a sub-miniature mains transformer, is constructed on a piece of Veroboard, and this may be mounted inside the smallest of the Eddy-stone boxes. The supply can be used floating or with earth connected to either polarity. Output is taken from solder pins, and the supply box designed for use as a general purpose bench unit or for mounting inside equipment.

Regulation is better than could be achieved with a simple zener since zener current variation with load current variation has been minimised, thus achieving a 1% regulation.

Figure 1 shows typical output voltage against load current. It is pointed out that the absolute value of output voltage is dependent upon the spread of zener voltage, and will be about 0-7V less than a given zener voltage. For the BZY94 the spread is 16-9V to 19-1V.

CIRCUIT DESCRIPTION

A miniature mains transformer, T1, provides from a 240V mains supply a secondary of 24V r.m.s. This a.c. voltage is fed to a bridge rectifier formed by diodes D1, D2, D3 and D4. C1 is an initial reservoir capacitor tending to lift the full-wave rectified waveform to its peak value, and R1 and C2 provide further smoothing and ripple filtering. C1 and C2 should be capacitors suitable for this purpose, and capable of handling large ripple currents.

Resistor R3 provides zener bias current for D6, and the zener holds the base of Tr2 at a stabilised level, approximately 0-7V higher than the output voltage. The output is taken as an emitter follower and must therefore be tied to the zener voltage by the V_{Be} of Tr2.

R4 provides a small bleed current to keep Tr2 just on when the supply is on open-circuit, and to further ensure that current variation in Tr2 base is minimised. The current through D6 should be kept as constant as possible to maintain accurate regulation of the output.

As shown in Fig. 1, the current limit comes into operation just above the working range of 40mA. This is necessary to ensure that the supply is not overloaded, and means that should an accidental short-circuit be applied to the output, the supply will be protected.

The current limit is provided as follows. The whole of the load current passes through R2, thus the voltage developed across it is proportional to the load current. In fact the circuit biasing current is also passed through R2, and this assists the switching-on action of Tr2, the current limiting transistor. When the voltage reaches a pre-determined level across R2, Tr2 is biased on. The voltage required to do this is the forward voltage across D5 plus the V_{Be} of Tr1. This will be approximately 1-4V, but will vary slightly according to diode and transistor spreads. Because of this, slight adjustment of
R2 may be necessary to ensure that the circuit limits at the correct current. It should not be necessary to get to a lower or a higher resistance value than the next preferred values.

When the current increases to limiting value, the voltage across R2 brings on TR1 which, on short-circuit at the output, goes into saturation. The voltage at TR1 collector is thus made to fall, collapsing the reference voltage provided by the zener diode, and hence the output voltage. Vbe of TR2 must not exceed 0.7V or thereabouts or this transistor will be destroyed. Obviously a short circuit output reduces the emitter to OV, and hence the necessity to reduce the base voltage to something less than 0.7V relative to the 0V output.

After construction, a test should be made with a current meter and a variable load, such as a potentiometer. If the output voltage, which should also be monitored, does not start to drop just after 40mA is reached, R2 should be increased slightly. If the voltage falls suddenly before reaching 40mA decrease R2 slightly. (If two parallel resistors are required for good limiting at the right value, the second resistor may be inserted in the Veroboard layout between holes H11 and H12.)

For further smoothing a capacitor may be placed across the output. There is room for a moderately sized capacitor on the Veroboard between W4 and W11. The higher the capacitance (at appropriate voltage working) the lower the ripple.

Note that whilst a tempting place to put a smoothing capacitor is across the zener diode, this is not to be recommended. If this is done there is a danger of burning out TR2 if a short is applied to the output, since this capacitor will then discharge directly through the emitter-base of this transistor unchecked.

COMPONENT NOTES

All the transistors used are silicon types, and since germanium types behave very different thermally to silicon, and since Vbe's differ considerably, germanium components should not be substituted. It is also stressed that when alternative silicon components are used in the regulatory or limiting sections, the specification may not be achieved.

Small size, low cost silicon diodes may be employed throughout the circuit, including the bridge rectifier, since the supply is only providing limited power. Silicon alternatives to the OA200's may be freely employed.

With regard to the zener diode, the quality used relates to the degree of regulation with varying load current. Whilst zeners of the OAZ series may be used here, for a better regulation the newer BZY types give a superior performance with their sharper knees and smaller zener voltage variation with zener current.

If the constructor has any of the BZY88 range of silicon zener diodes, two of these might be used in series to give approximately 18V, for example, two BZY88 C91V1, giving a nominal voltage of 18-2V. If two such diodes are used in series, however, zener voltages under about 5V are not recommended since for lower voltages slope resistances generally are not as good and regulation will deteriorate. Of the transistors, any 800mW, 30V transistor will be suitable for TR2 with a reasonable gain, preferably greater than 60 (at 1mA). A wide variety of silicon transistors may be used for TR1 with a reasonable gain and Vce of about 30V. The BC107 is recommended for availability and low cost, with the TZX302 or BC167 as alternatives in plastic encapsulation.

The BFX85 or BFX86 are excellent transistors to use as TR2 for free-air mounting.

Note: if it is desired to use two zener diodes in series to provide the 18V reference, these may be mounted on the Veroboard as follows, where the zener shown between U1 and U11 is removed. Connect the cathode of the uppermost to U1 and the anode to U8. Connect the lower diode cathode to V8 and its anode to V11.

OTHER OUTPUT VOLTAGES

It is possible to modify the circuit to give output voltages from anything between about 6V and 18V. For simplicity in the circuit, because output voltage is not variable, the power dissipated by TR2 may be predicted accurately. It will be appreciated that with a variable control, when the power is not dissipated by the load at a high load voltage, the regulating transistor is required to take over on power dissipation. With a fixed output, this may be conveniently limited to a low value, and hence a free-air mounting used. For a lower voltage, it is possible to use a lower voltage zener, but this will reduce the maximum current that can be dissipated.

<table>
<thead>
<tr>
<th>Resistors:</th>
<th>R1 39Ω 10%</th>
<th>R3 2.7kΩ 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R2 22Ω 5%</td>
<td>R4 18kΩ 10%</td>
</tr>
<tr>
<td></td>
<td>All 1W miniature types</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transistors and Diodes:</th>
<th>TR1 BC107, TZX 302, BC167, etc</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR2 BFX 85, BFX 86 etc</td>
<td></td>
</tr>
<tr>
<td>D1 D5 OA 200, OA 202</td>
<td></td>
</tr>
<tr>
<td>D6 BZY 94 C18</td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous: Transformer, Radiospares sub-miniature 12V type, Veroboard 12 × 24 holes, 0.15in. matrix.
MAINS KEYNECTOR

SAVES TIME—SAFELY!

One mains “Keynector” instantly and safely connects electrical appliances to mains supply without the use of a plug. A number of appliances may be used simultaneously up to the total amp rating of this device. A red light glows when “live.” The “Keynector” is fused and has its own robust switch which is incorporated to prevent connections which “live.” Insulated to handyness, compact, dustproof, etc., it is robust.

MT110 1 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT111 1 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT112 1 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT113 1 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-

LOW VOLTAGE 24 VOLT RANGE

Primary 200-250V, Secondary 4V
MT100 1 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT101 1 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT102 1 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT103 1 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-

LOW VOLTAGE 30 VOLT RANGE

Primary 200-250V, Secondary 4V
MT114 1 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT115 1 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT116 1 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT117 1 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-

LOW VOLTAGE 50 VOLT RANGE

Primary 200-250V, Secondary 4V
MT118 1 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT119 1 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT120 1 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT121 1 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-

LOW VOLTAGE 60 VOLT RANGE

Primary 200-250V, Secondary 4V
MT122 1 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT123 1 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT124 1 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT125 1 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-

BATTERY CHARGER TYPES

Primary 200-250V, Secondary 4V
MT250 5 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT251 5 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT252 5 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT253 5 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-

BATTERY CHARGER TYPES

Primary 200-250V, Secondary 4V
MT260 5 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT261 5 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT262 5 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT263 5 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-

BATTERY CHARGER TYPES

Primary 200-250V, Secondary 4V
MT270 5 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT271 5 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT272 5 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT273 5 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-

BATTERY CHARGER TYPES

Primary 200-250V, Secondary 4V
MT280 5 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT281 5 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT282 5 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT283 5 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-

BATTERY CHARGER TYPES

Primary 200-250V, Secondary 4V
MT290 5 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT291 5 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT292 5 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-
MT293 5 Amp Size 3 x 2 x 1. Jam Work 1/2 lb Price 3/-

See our vast range of Electronic Components and Accessories at our enlarged Component Centre 25 Tottenham Court Road

LIND-AIR OPTRONICS LTD
18, 25 & 53 TOTTENHAM COURT ROAD, LONDON W.1.
Telephone: 01-580 2255/4532/7679
Shops open 9-6 pm. Monday to Saturday. Thursday until 7 pm.

ALL MAIL ORDERS
To Dept. PW69
54a Tottenham Court Road
S.A.E. be etc., etc.

CAR RETRACTABLE FLEXIBLE 8012, or to Stereo Dyn 50K/600 Adaptor and 25/- RECORDING TAPE: 4/9 (9d).

TEST PRODS: PP3 ELIMINATOR monaurally with min. wear, Mono GP91 SAPPHIRE 9TAHC, DIAMOND STYLII MULTLMETER: 20,000 0-10/50/100/500/1K volts A.C. (1/-).

Additional Transistors OC28 0026 OC25 0A91 GA85 0A5 BFY18 AF117 AF115 0075 0072 0C45 0044.

FELSTEAD
LONGLEY LANE, GATLEY, CHEADLE, CHEADLE, SK8 4EE

TERMS: Cash with order only. No C.O.D. or cashier service. Post, packing and insurance charges are shown in brackets after all items. Exempted orders under 5/- plus carriage cannot be accepted, and a minimum charge of 1/- is now made. Charges apply to G.B. and Eire only.grocery air or sea personal extra is cost, plus 4/- carriage or insurance fee, S.A.E. please for all enquiries, otherwise order cannot be replied to.

FELSTEAD ELECTRONICS
(PW22)

M. & B. RADIO
15a HUNSLET ROAD, LEEDS LS10 1JQ

RADIO TELEPHONE press to talk microphones. Used. 5/-, plus 25/- carriage.

GPO Telephones with dial, 17/6, plus 6/- p/p. Modern style telephone 42/6, 7/6 f/p.

QQV6/40/37/6 tested, 800ipw 16 amnts silicon on heat sink, 2/6. 2 x OC355 on heat sink, 10/-.

STEREO HEADSETS. Brand new. Ideal for stereo or mono. Low in 7/6, plus 3/- p/p.

TELEMEETER. A well finished cabinet containing lots of useful items for the constructor. Tape unit and head, 2 motors, speaker, auto and mains transformers, miniature valve L.F. unit etc. Ideal for stripping or modifying. 77/- and 7/6 carriage.

STEREO CABINETS. A beautifully finished polished wood cabinet supplied in original carton. NEW. 47/6, plus 6/6 carriage, LIST 8/6, plus SAE.

YOUR CAREER in Radio & Electronics

Big opportunities and big money awaited the man qualified in every field of electronics today—in the U.K. and throughout the world. We offer the finest home study training in radio, television, etc., especially for the CITY & Guilds EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television: Transistors; Radar; Computers; Servo-mechanics; Mathematics; VHF transmitters, miniature valve L.F. unit etc. Ideal for stripping or modifying. 77/- and 7/6 carriage.

To: British National Radio School, Reading, Berks.

Please send FREE BROCHURE to

NAME ADDRESS

 Block Caps. Please

BRITISH NATIONAL Radio SCHOOL

346
ventilation holes, design on this point should be conservative. Thus go for a V_{ee} smaller than 12V, in fact as small as practically possible whilst still allowing for spreads. R_3 may then be increased to ensure that at this current the V_{ee} selected is not exceeded. A zener current of 1-2mA is satisfactory. It may be necessary to reduce R_3 when the lowest voltage at Tr_2 collector is considered (i.e. at say 45mA load current), select R_4 to take about 1mA at the rated output voltage.

Other components will remain the same. For very low output voltages, the centre tap of the transformer may be employed to give full-wave rectification of 12V r.m.s. with two diodes, in the normal manner.

CONSTRUCTION NOTES

The Veroboard layout for the circuit is shown in Fig. 3. For safety reasons, the copper strips are removed over the whole area in the close vicinity of the mains ideally all the appropriate section of strip removed with a razor blade. Apart from clearing the copper tracks here, only one other break is made in the tracks, this being at hole E12.

Resistors R_1 and R_2 are vertically mounted; resistors R_3 and R_4 horizontally mounted. Since the capacitors are rather bulky, they should be the last components to be mounted, after a thorough check of the rest of the circuit has been made. Do not overlook the jumper bar between R2 and R10.

The complete unit may be mounted in the smallest Eddystone diecast boxes size $2\times 4\times 1\frac{1}{4}$ms, but great care must be taken to ensure that the box has plenty of ventilation holes and that, since mains is being applied to the unit, the insulation of the input is adequate. The box itself should be earthed.

No mains switch is provided as in many applications this would not be required since when mounted in equipment, this switch would be remote from the box itself. If desired, there are miniature toggle switches which might be fitted near the output sockets.

Needless to say, every care should be taken to ensure correct circuitry and insulation before switching on since this is a mains unit.

OTHER NOTES

The screen contact of the transformer should be wired to the mains earth lead.

Note that the supply is not intended for use as a constant current generator in the limiting mode as prolonged running on the limiting slope means excessive transformer dissipation. The current limit is intended solely as a protective device.

PW GUIDE TO COMPONENTS

---continued from page 340---

Great care is required when using thermocouples since the low voltage level requires sensitive sensing devices. Consequently they require calibration for a given length of lead and location and when used in remote positions special compensating cable is required.

Glass encapsulated and indirectly heated thermocouples are used for v.h.f. power measurement with standard output voltages of 7mV and 12-15mV, and a typical device is shown in Fig. 7. Prices vary but for this application are between 20s. and 60s.

TO BE CONTINUED
INDUCTORS FOR THE PROGRESSIVE SUPERHET

This receiver was described in the March 1969 issue of Practical Wireless and since then some difficulty has arisen in obtaining the specified inductors. Details for fitting alternatives are given here.

IF Stages
Denco Maxi-Q IFT11 465kc/s intermediate frequency transformers are suitable for all positions. Pin connections remain the same: 1—HT positive; 3—anode; 6—grid or diode; 4—A.V.C. or diode load. These i.f. transformers have the same base size and fixing.

The address is Denco (Clacton) Ltd., 357/9 Old Road, Clacton-on-Sea, Essex.

Oscillator Coils
These may be Denco “Red” (465kc/s) which have single hole fixing as for the original coils. Ranges are numbered from the i.f. band, and correct padders and pin connections are:

Range 1 (l.w.)	110pF	Pin 5
Range 2 (m.w.)	350pF	Pin 2
Range 3 (s.w.)	1,100pF	Pin 3
Range 4 (s.w.)	3,000pF	Pin 4
Range 5 (s.w.)	None	Pin 6

With the highest frequency band Range 5, pin 6 is wired directly to chassis, no padder being used.

Other pin connections for these coils are: 1—C3; 8—C4; 9—chassis. With Range 1 only, pin 7 is taken to C3 and pin 1 is unused.

Aerial and Mixer Coils
For the receiver with r.f. stage, Denco “Blue” coils are suitable for the aerial circuit and “Yellow” coils for mixer grid. If the receiver is first built without the r.f. stage, but this is to be added later, use “Yellow” coils for the mixer grid (aerial). If the r.f. stage is not to be added “Blue” coils can be fitted here. Ranges and approximate band coverage is as follows:

Range 1 (l.w.)	150-500kc.	2,000-750m.
Range 2 (m.w.)	515-1,545kc.	580-194m.
Range 3 (s.w.)	1,675-3,5M.	180-57m.
Range 4 (s.w.)	5-0-15M.	60-20m.
Range 5 (s.w.)	10-5-31.5M.	28-9.5m.

Pin connections are: Blue, 8—aerial; 1 and 9—chassis; 6—tuning capacitor. Yellow, 9—r.f. stage anode; 8—h.t. positive; 1—chassis; 6—mixer grid.

Constructional Points

The Denco coils are slightly larger in diameter than those originally listed, but can be accommodated in the coil box made as in Fig. 3, p.830, March 1969 issue.

Connections to Range 5 and Range 4 in particular, including padder and chassis returns, must be as short as possible, so these coils are sited close to the wavechange switch.

Trimming

The original coils have trimmers incorporated. The Denco coils are without trimmers. No trimmers are needed in the aerial section because a panel trimmer is fitted.

The easiest way to secure maximum efficiency is to place a single beehive or high-stability trimmer across the oscillator section of the ganged capacitor, and to fit a 50pF variable trimmer for mixer grid.

The latter can be operated through an extension shaft so that it occupies the mixer grid section of the coil box. Then no pre-sets are necessary, and no holes for adjusting them are needed in the coil box cover. The mixer grid trimmer is peaked if necessary with very weak signals, in the same manner as the aerial trimmer.

The coil cores are adjusted by threaded rods which project above the chassis, and all normally need unscrewing somewhat as they are fully screwed in for packing. Nuts will lock the coil cores, alignment being as described.

The address of the supplier of the case, chassis, and side brackets is H. L. Smith & Co. Ltd., 287/9 Edgware Road, London, W2.

PRACTICAL TELEVISION

in the SEPTEMBER issue

★ CHIPS WITH EVERYTHING
Chips—trade slang for integrated circuits—are now starting to be used in TV receivers. Their increased use over the next few years is going to change TV receiver design to a far greater extent than any previous changes brought about by technological advance. In the September issue we shall be outlining what this will involve—how the use of integrated circuits will change TV receiver design and what effects this will have on performance and servicing. We shall also be outlining the basic properties of integrated circuits, their capabilities and the problems involved in their use in TV receivers.

★ TRANSISTOR IF STAGES
The servicing techniques needed in the i.f. sections of receivers have changed with the increased number of hybrid chassis in use. In this fault-finding feature, transistorised i.f. circuits are examined in detail and the servicing problems outlined.

★ TV NEWS
Of all TV features the News presents some of the most difficult production problems. In the September issue we take a look at the methods employed in bringing up-to-the-minute News to the TV screen and the organisations that make this possible.

★ TRANSISTORISED TIMEBASES
The line output stage with its high peak voltages is one of the most difficult to transistorise. In the second part of our Transistors in Timebases series the problems will be described and several successful designs that have overcome them illustrated.

PLUS ALL THE REGULAR FEATURES
on sale August 22nd
BARGAIN STEREO/MONO SYSTEM

Attractive CD500-100 Stereo Amplifier + CD500-100 Echo Player + CD500-100 Echo Player (Only 4 pairs of wires to join) £19.19.6

NEW TUNING ELECTRICALS

NEW CERAMIC MOUNTS

CRANE ACCESSORIES

- ELMER, VALVE GUIDE, BOOKS, ETC.

PORTABLE TRANSISTOR AMPLIFIER PLUS

- Dynamic Microphone

PORTABLE TRANSISTOR

- A self-contained fully transistorized 2-watt unit

DE LUXE PLAYERS

- Portable Cabinet村庄

GARRETT TRINKER No. 24.

- All fitted LFP77 styli and cartridge complete.

PORTABLE TRANSISTOR AMPLIFIER PLUS

- Amplifier with mixer, speaker and key.

WEYERD P60 TRANSISTOR COILS

- L.P.F. Brand: Ferrite Aerial

VOLUME CONTROLS

- Coax 8-yd.

GARRARD TRINKER No. 24.

- Complete with complete, speaker and key.

CRYSTAL MIKE INSERTS

BARGAIN STEREO/MONO SYSTEM

MIXED RESISTORS

- 250-350 ohm, 350-500 ohm, 500-750 ohm, 750-1000 ohm

All Models supplied with FREE OFFER.

- £1 5

FUZZY WUZZY

ALL EAGLE PRODUCTS

- AVAILABLE AT LOWEST PRICES

MINI-MODULE LOUDSPEAKER KIT

- 10 watt 55/- 55/-

T.S.I. LOUDSPEAKER CROSSOVER MLP2

- 2 way crossover for 6 in. x 13 in.

LOW VOLUME HI-FI SPEAKERS

- 6 in. x 13 in.

ATION LEVEL SPEAKERS

- 18 in. x 24 in.
Trainfortomorrow’s world in Radio and Television at The Pembridge College of Electronics.

The next full time 16 month College Diploma Course which gives a thorough fundamental training for radio and television engineers, starts on 3rd September 1969.

The Course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are awarded to successful students.

The way to get ahead in this fast growing industry—an industry that gives you many far-reaching opportunities—is to enrol now with the world famous Pembridge College. Minimum entrance requirements: 'O' Level, Senior Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept. PW9), 34a Hereford Road, London, W.2

Please send, without obligation, details of the Full-time Course in Radio and Television.

NAME

ADDRESS

BI-PRE-PAK LTD

223-227 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX

RETURN OF THE UNBEATABLE P.1. PAK.
NOW GREATER VALUE THAN EVER

Full of short lead semiconductors and electronic components, approx. 170. We guarantee at least 30 really high quality factory marked Transistors NPN and NPN, and a host of diodes and rectifiers. Mounted on printed circuit panels. Identification chart supplied to give some information on the transistors.

P.1 PLEASE ASK FOR PAK P.1:
2/- P & P on this Pak. ONLY 10/-

Fak No.
B79 10 Integrated Circuits, Mixed. Types, Data supplied with order.
B80 8 Dual Transistors, 88 NPN. Matched output pairs.
B82 10 D.C.D.C. (DIODE) Transistors, Mullard glass types.
B83 200 Transistor manufacturers rejects all types NPN, PNP Series. German.
B84 100 Silicon Diodes 50-70 C. OAKBS. 40% Power Marked.

NEW, TESTED AND MARKED PAKS
B79 4 TX4047 Silicon Diodes, 100V, 1 Amp Max. Type.
B81 10 Steel Switches, Mixed Types, Large and Small.
B99 200 Capacitors, Electrolytics, Paper, Silver Mica, etc, Post and packing, this Pak 10/-

ALL OUR TESTED SEMICONDUCTORS HAVE A WRITTEN GUARANTEE

Send for our FREE list and catalogue of all our products. Check your own equivalent with our free substitution chart.

Matched Set, NPN/ PNP/ADJ. ADJ. Comp. pair Pak 10/- PR. Complementary Set, NPN/ PNP/ FET/ Germ. Trans. Pak 9/- B.P.

We put 23,340 in our Budget Combination Storage unit!

in our Budget combination storage unit!

Think what you could put in it!

Storage. Lots of it, for a thousand things you stock; replacement parts; light bulbs; cameras; anything up to 7 x 8 x 10 in. Safety drawer-sets as ‘standard’. Smooth guide runners through. All in a compact 3ft. high, 2ft. 11in. wide, 1ft. deep area. Ready assembled, in stove enamelled green or grey. With 16 handy, 6 large, 3 small drawers. At £17 5s. worth every penny! See the rest of the N. C. Brown range!

N.C. BROWN LTD.
pace setters in storage equipment

Send your FREE BROCHURE or Send (how many) Budget Storage Units at £17. 5s. in green or grey.

N.C. BROWN LTD.
pace setters in storage equipment

Send your FREE BROCHURE or Send (how many) Budget Storage Units at £17. 5s. in green or grey.
THE month of August seems to be the month when all or most of the DX-ers pack up and go on holiday. Many stay in the British Isles, some go abroad. The ones that travel into Europe want to visit the Radio station in that country. The best way to assure an interesting tour of the offices, studios and transmitter building is to write to the station well in advance of departure from this country and put down dates you would like to visit that station, don’t just go over and drive up to the station one afternoon and expect them to welcome you with open arms and show you around!

I must thank all readers of this column who have written in so far over my comments in the June issue, they have included some very good points and some very good logs which will be included under our “Heard and Noted” section which now follows.

HEARD and NOTED

Mr. Ray Read has certainly been having a right DX session in Monmouth, Wales, and heard these Latin American stations at fair to good strength between 0330-0400, 4,800 R. Yaracuy, 4,890 R. Diffusora Venezuela; 4,900 R. Juventud, 4,970 R. Rumbus, 4,980 Ecos del Torbes, 5,020 R. Nacional, 5,030 R. Continente, all in Venezuela and Ecos del Torbes has been heard as late as 0800. From Columbia he heard Radio Santa Fe on 4,965, R. Nacional on 4,955 and R. Sutalenza on 5,075 and 5,095. Another good log has come in from Vaughan P. Smith of Banbury, Oxon, Voice of Free China on 9,765 at 1715-1745 SINPO 33242, from Taipei, Formosa. Radio Diffusion Television Algerienne is giving good results with SINPO 44433 on 11,835 from 1700-2400. Radio Amman, Jordan, gives the best signals round about 1500 on 9,560 with SINPO 33333.

The Voice of Vietnam at Hanoi is being heard regularly on 15,018 with SINPO 45343 up until 2030 in Vietnamese, French and English after 1600.

Now from “Heard and Noted” here are some new summer schedule details just received direct from the stations.

EUROPE

Sweden: Radio Sweden, Stockholm is now on the following schedule for its English transmissions. From 1100-1130 on 15,315 and 9,625; 1200-1300 on 21,660 and 15,105, 1400-1430 on 21,575 and 15,316; 1600-1630 on 21,585 and 15,315; 1900-1930 on 15,240 and 11,860; 2045-2115 on 11,705 and 6,065; 2245-2315 on 15,155 and 11,705; 0030-0100 on 11,950; 0200-0230 on 11,950; 0330-0400 on 11,705 and 0515-0545 on 17,840.

CARIBBEAN AREA

Bonaire: Trans World Radio has dropped its transmission to Europe from 2000-2215 for the present, but they hope to resume this service in the future.

NORTH AMERICA

Canada: Radio Canada, Montreal is now on their Summer Service, here is the latest schedule. 0715-0800 on 11,765 and 9,625; 0830-0930 on 9,625 and 5,970; 1100-1212 on 17,820, 15,325 and 11,720; 1217-1313 on 15,325, 11,720 and 9,625; 1315-1343 on 17,820, 15,325 and 11,720; 1345-1830 on 21,595, 17,820 and 15,325; 1832-2152 on 21,595, 17,820 and 15,320; 2200-2250 on 17,720, 15,190 and 9,625; 0100-0400 15,190, 11,720 and 9,625; 0400-0555 on 11,720 and 9,625; 0555-0630 on 11,765 and 9,625; 0631-0706 on 11,720 and 9,625.

PACIFIC AREA

New Zealand: Radio New Zealand is now on its Winter schedule. From 1700-1945 to the Pacific Isles on 9,520 and 6,080; 2000-2145 to Australia and 2200-2400 to Pacific Isles on 15,110 and 11,780; 2200-2400 to Australia on 15,280. From 0015-0545 to Australia on 15,110 and to the Pacific Isles on 15,280; 0600-0800 daily to the Pacific Isles on 9,540 and 6,080; 0800-0845 weekdays only to the Pacific Isles on 9,540 and 6,080; 0800-0845 on Sundays to the Pacific Isles on 9,540 only. On Sundays from 0815-0845 there is a special transmission to the Antarctic on 6,080. Finally from 0900-1145 there is a Daily Service to Australia on 9,520 and 6,080.

Any of our readers who are good writers may be interested in writing a short talk for Radio New Zealand as part of their 21st anniversary they are asking listeners to write a talk of up to 400 words about New Zealand, a talk which might be broadcast. If any of you are interested write in to me immediately for details as the closing date is the 30th August 1969.

ASIA

Israel: Kol Israel has added a new frequency and transmission to its summer schedule. Now from 2015-2044 to Africa on 9,009 and to Europe on 9,725 and 9,625; 2045-2100 on 9,725, 9,625 and 9,009 to Europe. That was the new schedule for the evening English transmission. There is also a test transmission daily to North America in English from 0400-0415.

Japan: Radio Japan now transmits to Europe daily from 0645-0845 on 21,535 and 17,825 and 1930-2100 on 15,195 and 11,960. The English programmes are heard daily from 0800-0830 and 2030-2100.

Due to various problems which arose at the last minute this column could not appear last month, so I hope that this month’s column will make up for that. Please note that on September 7th stations will change to their Autumn or Spring schedules, so information in this column will be liable to alteration from that date onwards. Until next month good listening and 73s.
IT'S been a hard month for the DX enthusiasts. Those goodies have been a bit harder to come by, mainly because conditions were so variable. Going without sleep and meals allowed the really keen types to log the world, but for the less fanatical it's been a case of listening whenever possible and hoping that a nice hole would appear from which our undernourished logs could gain a little sustenance.

Owls and somnambulists (St John's probably) have had quite a time on twenty which has been opening up in the evenings and bubbling away happily, often until long past breakfast time. Generally though, it's been rather unreliable and sometimes more a matter of luck that one managed to listen at the right time.

Similar remarks apply to fifteen which has varied from remarkably good to just plain 'orrible. Oceana has been noticeably absent most of the time while very short skip conditions have had fun with the uninitiated.

If you find the summer months rather heavy going, why not try and plot yourself some propagation maps which you can then compare with those you make next summer? Log all the stations you can hear with as accurate a signal report as you can manage. Log the time too, and by this means you can make up a map of conditions. The final map can take any form you like. You might note the percentage or numbers of stations with, say, reports of 5 & 7 (or better), or you might compare signals from one Continent with those from another.

This is quite a serious task and requires vigilance and concentration. You will need to listen to the QSO in order to hear not only the QTH, but the reports exchanged (compare these with your own report for the stations involved) and you will need to know the power the stations are using. Go on, forget the mini-skirts just this once and become a proper little boffin.

As most readers are aware, these seasonal variations are mainly due to the state of the ionosphere. Interest in the ionosphere is on the increase and enthusiasts will be pleased to hear that a great deal of research is going on. One of the latest methods is to use intensely powerful radar beams to measure the electron density at different heights. I don't suppose this will make the DX any easier to hear, but it may well explain, when all the results are sorted out, why and how the bands do what they do when they do—if you switch on and hear nothing, at least you'll understand why!

LOW HAPPENINGS
Stand smartly to attention with headphones on backwards, we are going to salute the brave few who dared QRX on 7MHz. Persistence, patience plus Palmer, D. Palmer of Lancashire, to be precise. This combination plus a modified 19 set and a 3ft. ground plane at 20ft. raised this lot on 7MHz s.s.b.—CE3FRR, CN8AW, CP8EN, HP1JC, IS1DMN, OY2A, OY2X, PY1NBF, PY2DL, PY4ABH, PY6VZ, PY7ARJ, TF3TF, TF5TP, UA9EU, UV9KAG, VP9M1, YV11IB, ZC4HS, ZP3AB, ZP4MO, 4X4UF, 9H1BL, 9M2DQ. Why don't I hear things like that on 7?

Alan Mercer (Lancashire), 9-transistor Ferguson and 7ft. end fed also reckons that 7 is worth a listen. Alan hooked—BY1QA, EA4JK, F6AGE (running 5W), GW3WJ/MM (lottering in the Bay of Biscay with 25W), HB9AL, HB9BR, I1ROY, LA6OL, OA8NO, ON4PA (running 800mW), PAØSLR, WZOP.

John Mostram (Somerset), really puts me to shame. His log for 3.5MHz shows just what can be done if you're really determined (and don't mind losing the sleep). The rx is an SR200, the antenna a 40ft. end fed, the ears are standard issue and came with the body. Eighty metre c.w. produced—CN8AW, CR6IK (I'm jealous already), CR6IV, CR6LX, HBØ2JG, HB9T/J/P, HV3S1, LA2PH/MM (near Ascension Is.), OD5BA, OH0NC, PY1CAD, PY1NBF, PY2DGB, PY7ASA, V01FX, VP2AA, VP8FL, VP8HZ, VP8KO, WA1JOG/LA, 4X4MR, 5A1TK, 5A2TR, 5Z4KL, 8P6CC, 9H1J. It's no good, I'll have to get a new cats whisker for the front end.

"Why don't more people listen to topband DX?" writes Paul Tomes whose last known address was Swanage, Dorset. A B40 and 165ft. of wire produced—GM3YAC, GW3XRX, HB9CM, HB9NL, OK1DAG, OK2PCN, OL2AKS, OL6AKP, PAØRTT, WI1B/J, ZB2AY.

HIGH HAPPENINGS
High's the word too. Paul Knight built the 2 metre converter described in the November 1967 P.W. His aerial is a dipole built from a pruned "X" Band I TV antenna duly pokéd out of the bedroom window. This set up produced—F1RR, F1A0Y, F4ZK, F6AGF, F8WE, F9PL, PAØCML, PA2CMR, PAØMOT. Paul also logged G2XV (Cambridge) running 500mW to a three ele beam. He also reports hearing FN9J/T receiving TV transmission from G6ADZ/T on 70 cm.

Down to 21MHz where J. East (Worcestershire), has been listening with his 1475 plus RF2B4 converter and dipole. Signals a la s.s.b. loud and clear from—AP2MR, CN5EM, CR6JA, DU1RH, EA9AQ, WA8HWP/HC2, HS1AF, JA1E6F, JA6KCY, JA8DTD, JA9BE, JH1ECQ, KG4DO, KG6ALY, KR6MH, KR8EA, KX6GS, MP4BFO, OX3LP, VE8YJ, VK2BNS/MM (Sea of Japan), VK9X/L (Christmas Is.), VP2AW, VP8KL, V56AL, 9S5M6, XV8AL, YAIAR, YAIJS, ZS3JJ, 457PB, 5A1TL, 5L2BI, 3L2BH/MM (Libera), 5LØ/X/MM, 79RN, 9H1R, 9M2BO, 9V1OE, 9N1MM, 9X5AA.

FUTURE HAPPENINGS
Lots and lots of activity in August. August 4th, 144MHz s.s.b. contest; 10th, 432MHz contest; 16th, R.S.G.B. mobile rally at Woburn Abbey; 17th, 70MHz c.w. contest; 17th, Derby mobile rally; 24th, Torbay mobile rally; 24th, ARMS/RSARS mobile rally, Dorset; 24th, Swindon mobile rally; and a rare one August 9th-23rd, G3JDG/P on 160 metres a.m./c.w. from near Mersea Is. (look it up on the map).
PERSONAL CALLERS
100's
self service racks.
meters, speakers, etc., etc.
There's
SPOT CASH
radios,
100's of
SOLDERS
AUTHORIZED
DISPENSERS.
LONDON'S
*Recommended
Economically
COPPER
ALSO
SOLDERS LTD.,
Hemel
Hempstead, Herts.
ARE
RATES
FOR
SOLDERS
Shop
Solders Ltd.,
TOTTENHAM
W. 1
Tel. 01-636 0647

for fast, easy,
reliable soldering
Contains 5 cores of non-corrosive
flux, instantly cleaning heavily
oxidised surfaces. No extra flux
required.

SAVBIT ALLOY
ALSO REDUCES
COPPER BIT WEAR.
Economically packed for
general electrical
and electronic
soldering, 50 ft.
18 gauge on
plastic reel.
Recommended
retail price 15/-

THIN GAUGE
SOLDER,
ESSENTIAL FOR
soldering small components
and thin wires. High tin
content, low
melting point,
50/50 alloy, 202 ft.
22 gauge on
plastic reel.
Recommended
retail price 15/-

A RANGE OF
SOLDERS IN HANDY
DISPENSERS.

REF. ALLOY SWG
A
60/40 18 2/6*
Size 5
Savbit 18 2/6*
15 60/40 22 3/2.*
Recommended Retail Price

INVALUABLE FOR STRIPPING
FLEX, THE NEW AUTOMATIC
OPENING BIB WIRE STRIPPER
AND CUTTER, easily
adjustable for all
standard
diameters. Plastic
covered handles
can also be used
as wire cutter.
Recommended
retail price 8/6

From Electrical and Hardware shops. If unobtainable, write to:
Multicore Solders Ltd., Hemel Hempstead, Herts.

Now! A FAST EASY WAY
TO LEARN BASIC RADIO
AND ELECTRONICS

Build as you learn with the exciting new
TECHNATRON Outfit! No mathematics.
No soldering—but you learn the practical way.
Now you can learn basic Radio and Electronics at home—the
fast, modern way. You can give yourself the essential technical
'know-how' sooner than you would have thought possible—
read circuits, assemble standard components, experiment,
build... and enjoy every moment of it. B.I.E.T.'s Simplified
Study Method and the remarkable new TECHNATRON Self-
Build Outfit take the mystery out of the subject—make learning
easy and interesting.

Even if you don't know the first thing about Radio now,
you'll build your own Radio set within a month or so!
and what's more,...
YOU'LL UNDERSTAND
EXACTLY WHAT YOU
ARE DOING. The Tech-
natron Outfit contains every-
ting you need, from tools,
transistors... even a versatile
Multimeter which we teach
you how to use. You need
only a little of your spare
time, the cost is surprisingly
low and the fee may be paid
by convenient monthly instal-
ments. You can use the
equipment again and again—and
it remains your own
property.

You LEARN—but it's as
fascinating as a hobby.
Among many other interest-
ing experiments, the Radio
set you build—and it's a good
one—is really a bonus; this is
first and last a teaching
Course. But the training is as
rewarding and interesting as
any hobby. It could be the
springboard for a career in
Radio and Electronics or
provide a great new, spare-
time interest.

BRITISH INSTITUTE OF
ENGINEERING TECHNOLOGY
Dept. 372B, Aldermaston Court,
Aldermaston, Berkshire.

To: B.I.E.T., Dept. 372B, ALDERMSTON COURT,
ALDERMSTON, BERKS.

I would like to know more about your
Practical Radio & Electronics Course. Please
send me full details and FREE 132-page book.

name...
address...
age...

132 pages FREE!
TREAT YOURSELF
World-wide
354
Kit
medium broadcast band. It covers
LOW
pleasure. Bring
scientifically designed
recorders, etc., with this
Add
of
aerials
2/6 p.
Complete with
receivers
finished
comprising RIF aerial tuning section,
ranges
Communications Receiver. Specifications:
for
Consists
Bulk purchase
insurance 15/-. Headphones
suitable
wire
DIAL
wire
condensers. Twelve small
material.
Two
suitable
dial.
One
suitable
10/- each,
but
Telephone
2/-. Four
plan
and
extra,
 rental
brushes.
One
radio
suitable
10/-
free.
Four
for
2/6 post free.
Super Whips Aerials
Bulk purchase of brand new specially designed
telescopic chrome plated 30in. sectional aerials.
Consists of 6 sections and screw base. An ideal aerial
for TX/RX use. Can be used with all types of wire
less equipment. Price only 6/6 each. p. & 1/6. Two
aerials 12/6 post free. Four aerials 21/6 post free.
MINIATURE TRANSISTORISED B.F.O. UNIT
This is a miniature transistorised B.F.O. unit (tabletop) that will
enable your set to receive C.W. or B.B. reception. Complete and
ready to plug in. Gives a fully smoothed fully
regulated equipment. Price only 8/10, carriage 10/-.

RUN YOUR 19
SET TX/RX FROM
AC MAINS
We make a broad new unit ready to
plug in, complete with full
leads and connectors. Contained in
a handsome steel cabinet of robust
construction. Ideal for the
amateur transmitters. Price
only 8/10, carriage 10/-.

TELEPHONE BARGAIN
The Bargain of the Year. Standard
type desk telephones complete
with dial and cord. Not new but in
good condition. Only 2/6 each
Four for 6/- post free. Lambed
stocks.

TELEPHONE SPARES
DEALS NOT
NOW BUT WORKING.
Only 6/-
each. p. & 1/6.
Four for
3/6 post free.

TELEPHONE BARGAIN
One 12in. dia. moving coil speakers. One 12 volt
Heavy duty DPDT switching relay. Up to 50 amp.
switching plus many low current contacts. Twelve
wire wound resistors. One brand new Pattern
complete with full cords. Over 100 sq. ft. of silks
material. One 6ft. whip aerial. Twelve electrolytic
condensers. Twelve small plastic boxes suitable
for containing transistorised units. One telephone
dial. One miniature 10 berry 60 ma. legislating chokes.
All for 8/6, carriage 3/6.

MONSTER CONSTRUCTOR'S PARCEL
Two 12in. dia. moving coil speakers. One 12 volt
Heavy duty DPDT switching relay. Up to 50 amp.
switching plus many low current contacts. Twelve
wire wound resistors. One brand new Pattern
complete with full cords. Over 100 sq. ft. of silks
material. One 6ft. whip aerial. Twelve electrolytic
condensers. Twelve small plastic boxes suitable
for containing transistorised units. One telephone
dial. One miniature 10 berry 60 ma. legislating chokes.
All for 8/6, carriage 3/6.

FREE CATALOGUE
See these models and many
more in our 1969 catalogue.
Models for Stereo/Hi-Fi,
Industry, Education and the
Home Workshop. Heathkit
the world's largest selling
selection of electronic kits and
equipment.

To
DAYSTROM LTD., Dept. PW.9, GLOUCESTER, GL2-6EE.
Please send me FREE CATALOGUE □
NAME ___________________________
ADDRESS ___________________________

Prices and specifications may be subject to change without prior notice

TREAT YOURSELF TO A WORLD TOUR ... WITH
HEATHKIT Shortwave receivers

DE LUXE 5 BAND MODEL GR-54
It covers 2MHz to 30MHz plus 560kHz to 1500kHz AM broadcast band
and 1600kHz to 4200kHz aeronautical and radio navigation band. Receives
AM/CW/SSB, 6 x 4m, PM speaker and sleek "low-boy" styling. Operates
Gb 15v to 230v 50Hz AC.
Kit K/GR-54 £44.16.0. Carr. 9/-

LOW COST 4 BAND MODEL GR-64
World-wide reception, shipping, aircraft, radio amateurs plus the popular
medium broadcast band. It covers 1MHz to 30MHz plus 560kHz to
1820kHz AM, with sleek "low-boy" styling, operates on 115-250/50Hz AC.
Kit K/GR-64 £22.8.0. Carr. 9/-

GR-54
GR-64

354
Pulse Circuits in Operation

I. J. Kampel

The bistable is closely related to both the astable and the monostable circuits but, as its name suggests, the bistable has two stable states. It is incorrect terminology to call the bistable either a multivibrator or a flip-flop, these terms being reserved for astable and monostable circuits respectively. The bistable is sometimes referred to as the Eccles-Jordan Circuit named after the original valve circuit described in 1919 by Eccles and Jordan.

The bistable will rest in either of its two stable states until an external influence causes it to change states. If the output is taken from one collector, therefore, two input pulses are required for every single output pulse at that collector. A series of bistable circuits can thus be used to count input pulses. If there are, for example, four bistable circuits connected such that the output from each feeds the input of the following through to the end of the chain, for every output pulse at the fourth bistable there must be two output pulses from the third bistable, four from the second bistable, and eight from the first bistable. The last bistable will then serve as a counter to a base of 16. By more or less bistables, and by feedback within the chain where necessary via delay lines, counters to bases of 10 or any other number may be designed.

The basic bistable is similar to the multivibrator, where the capacitors are replaced by resistive couplings. This is shown in Fig. 4.1, where the coupling resistors R3 and R4 are shunted by small value speed-up capacitors. Upon switching on, due to unbalance in the circuit, one of the transistors will draw more current than the other, and this transistor will switch on in one of its stable states. We shall assume that Tr1 goes into the ON state, Tr1 bottoms, and under saturation conditions with only about 0.1V at Tr1 collector, Tr2 cannot switch on since the base would have to be supplied with approximately 0.7V, with the extra voltage across R3 also to be taken into account. The circuit will thus stay in this state. If negative pulses are available, a negative pulse at input B will not affect the circuit since as Tr2 is already cut off, the pulse can do no more than drive the base more negative. If, however, the negative pulse is directed to the base of the transistor in the ON state (Tr1) it will cut off this transistor. Tr1 collector will rise towards the positive rail, and as it does so base bias will be provided for Tr2 via R3. C1 provides extra current during the switching transient to drive Tr2 into hard saturation, easing off to just holding it in saturation when the switching has been concluded. As Tr2 goes on, its collector voltage drops down to the saturation level cutting off the supply to Tr1 base. Tr1 can thus not switch on again, and the circuit settles in its second stable state. Only a negative pulse will switch the circuit back to its original state, and this pulse must now be directed to input B. Since there are no large capacitors in this circuit, and the speed-up capacitor may be ignored as far as this is concerned, a fast rise time should be achieved as well as a sharp fall time, unlike the multivibrator, or one side of the monostable.

As in the case of the monostable, it is better to cut the transistor in the OFF state completely off, that is, by reverse bias on the base. Figure 4.2 shows the way to do this by adding a further negative supply rail. If Tr1 is switched on, the potential divider formed by R4 and R6 is adjusted such that the voltage at Tr2 base is

Fig. 4.1: The simplest form of bistable circuit, which rests in either of two stable states, changing only on application of trigger pulses. C1 and C2 are speed-up capacitors for improving switching times.

Fig. 4.2: An adaptation of the simple bistable to ensure that the non-conducting transistor is completely cut-off.
PART 4 — THE BISTABLE

of V_{cesat} now rises to $+V_{cc}$, and the potential divider provides a biasing potential on Tr2 base which switches on Tr2. The potential divider formed by R3 and R5 now takes Tr1 base to a small negative potential which keeps Tr1 off until the circuit is triggered again.

Now it has been shown that the triggering pulse must be steered to the correct input for the bistable to change states, i.e., the input negative pulse must be directed to the transistor in the OFF state to have any effect. In most circumstances there is only one trigger source, and in such a case it is necessary to introduce further circuitry to direct the incoming pulses to the correct bases. This circuit is known as the steering circuit, and Fig. 4.3 shows this steering circuit added to Fig. 4.2.

The steering circuit operates as follows. Assume initially that Tr1 is bottomed, and Tr2 cut off. Now $V_{ce} = V_{cesat} \approx 0.1V$, and $V_{cb} \approx 0.7V$. This means that there is a small voltage across D1 in the forward direction, being $V_{cesat} = V_{cesat} = 0.7 - 0.1 = 0.6V$. The voltage dropped by R3 may be regarded as negligible since it will only slightly reduce the forward voltage across the diode.

Now considering D2, $V_{c2} = +V_{cc}$ and $V_{b2} = -V_{cc}$, i.e., a voltage negative to the earth rail. Diode D2 is thus in hard reverse bias and is non-conducting. The steering circuit viewed from the trigger input is thus a low impedance presented through to Tr1 base via the forward biased diode, and a very high impedance through to Tr2 base via the reverse-biased diode. If a negative pulse is applied at the trigger terminal, therefore, the steering circuit guides the pulse to the base of Tr1, the transistor in the ON state, and the pulse thus cuts off Tr1. The pulse has no effect on D2, the negative swing being insufficient to reduce the reverse bias significantly.

Tr1 collector goes to the positive rail, its base goes negative, and diode D1 goes into hard reverse bias. Meanwhile Tr2 has switched on as bias is provided when the base is taken to 0.7V, and with the collector at saturation voltage and base at its more positive voltage, D2 now comes into forward bias. Thus the gate is now open to Tr2 base for the next negative trigger pulse.

Figure 4.4 is a modified version of the bistable with its steering circuit, and here only one supply is used. This uses the sharing emitter resistor, as described in the case of the monostable, to lift the emitter of both transistors to a potential above earth, and thus allow potential dividers to take the base of the transistor in the OFF state slightly negative with respect to the emitter. The saturation current of both transistors should be the same, and with the same current—this saturation current—always provided for one or other of the transistors, the voltage at the top end of R9 should stay substantially constant.

There is another slight addition to this circuit over that of Fig. 4.3, and that is the diodes placed across the steering circuit resistors. The time constant set by the input capacitors and the steering circuit resistors is set such that the diode will always remain conducting until the end of the input pulse, ensuring that the gate to the other transistor does not open too early. The repetition rate of input pulses is limited by the time required for C3 or C4 to return to its initial potential, and for a good triggering action, the time constant should be about five times the trigger width. For faster switching rates, the diodes as added in Fig. 4.4 allow the input capacitors to recharge more rapidly through the conducting transistor and its associated conducting diode bypassing the appropriate resistor.

The next instalment, Part 5, will deal with the remaining digital circuits, the Schmitt Trigger and complementary switch, and also the ramp generator.
COMPUTER MULTI-CORE CABLE
12, 14/0076 copper cores, each one insulated by colored PVC then separately screened, the 12 metal braided together and PVC covered overall making a cable just under 1 in. dia., 6 ft. only. $7.95 per ft. 5% off. All cut length.

FLEX BARGAINS
Screened 3 Core Flex. Both 14/0076 Copper PVC insulated cores, die-cast metal frame and insulator. $8.95 per spool. The two small screws fit into a 3-pin plug, or a 3-pin plug. Regular price $1.19 per spool. Special price $0.75 per spool.

COMPUTER MULTI-CORE CABLE
12, 14/0076 copper cores, each one insulated by colored PVC then separately screened, the 12 metal braided together and PVC covered overall making a cable just under 1 in. dia., 6 ft. only. $7.95 per ft. 5% off. All cut length.

FLEX BARGAINS
Screened 3 Core Flex. Both 14/0076 Copper PVC insulated cores, die-cast metal frame and insulator. $8.95 per spool. The two small screws fit into a 3-pin plug, or a 3-pin plug. Regular price $1.19 per spool. Special price $0.75 per spool.

COMBINATION DIAL SWITCH
Three separate settings of the dial are necessary before this can be switched on. The switch can be changed as required. A meter Switch for security or novelty. Contact rated at 1 amp.

ELECTRIC CLOCK WITH 20 AMP SWITCH
Made by Smith's these units are as follows: when a man's money stock is over 20, a man's money stock is over 20.

ISOLATION SWITCH
20 Amp D.P. 250 volts. Ideal for control of one or two electrical appliences. Neon indicator shows whether current is on, 6/0. 24 per dozen.

LIGHT Cuum
Almost zero resistance in sun. Ideal for control of one or two electrical appliences. Neon indicator shows whether current is on, 6/0. 24 per dozen.

MINIATURE KEY LEVER SWITCHES
2 pole, 2 way—4 pole, 3 way—2 pole, 2 way—4 pole, 4 way—2 pole, 4 way—3 pole, 4 way—2 pole, 4 way—1 way.

MINIATURE RACKED SWITCHES
2 pole, 2 way—4 pole, 3 way—2 pole, 2 way—4 pole, 4 way—2 pole, 4 way—1 way.

MINIATURE SOCKET SETS
10 volt solenoid for energizing Reed Switches, etc. Also for control of one or two electrical appliences. Neon indicator shows whether current is on, 6/0. 24 per dozen.

MICRO CURRENT NSF SWITCHES
For any name metal case U.S.A. made, with 11ins. x 1ins. x 1ins. thick. 8/0. each.

VOLTMETER
For measuring the being used in record decks. Suitable for use with any other equipment. Neon indicator shows whether current is on, 6/0. 24 per dozen.

SHUTTER SWITCHES
3/6 volt, 200 ma. + 4/6. 48/-. Model 2 pair.

DISTRIBUTION PANELS
Just what you need for work bench or lab. Special price $1.99. Metal box to take standard 13 amp fused plugs. Supplied complete with 6 feet of heavy and 13 amp plug. Similar advertised elsewhere. Our price 3.00 each.

G.E.C. 13A SOCKETS
Opportunity to rewire your house or workshop, or if a contract, to stock up for future use. We offer takeable 13A sockets for flush or surface mounting made by the famous G.E.C. company and listed from 0/6, etc. You CAN HAVE A BOX OF 12 Bush type 24/-, surface type 26/-, and ins. type 26/-.

HI-FI BARGAIN
FULL S1 INCH LOUDSPEAKER. This is undoubtedly one of the finest loudspeakers that we have ever handled. It is made by one of the country's most famous firms. It is a 14-in. metal case (except those specified for Hi-fi food and Rogers & Gilmour and public address. Frequency response 20-20,000 c.p.s.—30 db. at 1000 and 15 db. at 100. Incorporates new type of loud-speakers, plus the crème de la crème, plus the cream of the crop. $29.95 each.

INDICATOR LAMP
12V BLOWER
DC motor with centrifugal blower mounted on top of the motor. 2050 r.p.m. 220v. 50/60 cycle. 25w. 6"-dia. 24/-. Down.

Where postage is not stated than orders under £2 are post free. Below £3 add 3/9. Below £7.95 add 10/6 per order. Over £7.95 post paid. R.M.S. with inquiries please.

ELECTRONICS (CROYDON) LTD
Dept PW 266 London Road, Croydon CRO-2TH
Also 102/3 Tamworth Road, Croydon
the world's most advanced high-fidelity amplifier

This remarkable amplifier has been in production for some months, and now that we have caught up with the backlog of orders, we can supply the IC.10 promptly. We wish to apologise for the delay in reaching full production which was due to circumstances beyond our control. We hope that now you can purchase the IC.10 without difficulty, you will enjoy to the full the great possibilities this unique Sinclair device offers.

The Sinclair IC-10 is the World's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, which has an output power of 10 Watts, is a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick. This tiny chip contains 13 transistors (including two power types), 2 diodes, 1 zener diode and 18 resistors, all of which are formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins.

The IC-10 thus represents a very exciting advance. Not only is it far more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.

The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of the usual tone and volume controls and a battery or mains power supply. However, the IC-10 is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout) etc.

The photographic masks required for producing monolithic I.C.'s are expensive but once made, the circuits can be produced with complete uniformity and at very low cost. So we are able to sell the IC-10 at a price far below that of the components for a conventional amplifier of comparable power. At the same time, we give a 5 year unconditional guarantee on each IC-10 knowing that every unit will work as perfectly as the original and do so for a lifetime.

SINCLAIR RADIONICS LIMITED, 22 NEWMARKET ROAD, CAMBRIDGE

Telephone OCA 52996
Specifications

Power Output: 10 Watts peak, 5 Watts R.M.S. continuous.
Frequency response: 5 Hz to 100 KHz ±1dB.
Total harmonic distortion: Less than 1% at full output.
Load impedance: 3 to 15 ohms.
Power gain: 110dB (100,000,000,000 times) total.
Supply voltage: 8 to 18 volts.
Size: 1 x 0.4 x 0.2 inches.
Sensitivity: 5 mV.
Input impedance: Adjustable externally up to 2.5 M ohms for above sensitivity.

Circuit Description

The circuit diagram of the IC-10 is shown on the right. The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. The output stage operates in class AB with closely controlled quiescent current which is independent of temperature. A high level of overall negative feedback is used round both sections and the amplifier is completely free from cross-over distortion at all supply voltages. Thus battery operation is eminently satisfactory.

Construction

The monolithic I.C. chip is bonded onto a gold plated area on the heat sink bar which runs through the package. Wires are then welded between the I.C. and the tops of the pins which are also gold plated in this region. Finally the complete assembly is encapsulated in solid plastic which completely protects the circuit. The final device is so rugged that it can be dropped thirty feet on to concrete without any effect on performance. The circuit will also work perfectly at all temperatures from well below zero to above the boiling point of water.

Applications

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity uses. These include public address, loud-hailers, use in cars, inter-com., stabilised power supplies, electronic organs, oscillators, volt meters, tape recorders, solar cell amplifier, radio receivers. The transistors in the IC-10 have cut off frequencies greater than 500 MHz so the pre-amp section can be used as an R.F. or I.F. amplifier making it possible to build complete radio receivers without any additional transistors.

GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full at once and without question. Full service facilities available to all purchasers. Goods sent post free in U.K. and Overseas by surface mail. Air-freight charged at cost.

SINCLAIR IC-10

The complete IC-10 with the manual and 5 year guarantee costs

59%
R.S.T. VALVE MAIL ORDER CO.
BLACKWOOD HALL, 16a WELLFIELD ROAD, STREATHAM S.W.16

4/p/c/o
SEMI - CONDUCTORS
2p/c/o 8-24V D.C.
Shrouded. Flying leads conversion.

ORDINARY EXPRESS
6AU6
6AT6
6A05 6/3
6AM6
6AL5
BAKE
6A7
5R4GY 10/6 6E5 7/6 6807
384 8/3
3A4
1A7

REDUCED IN PRICE
Type

9/-
6/-
5/-
4/-
4/-
6/-

SEPARATION
OF VALVES

18/- plus postage

SEND S.A.E. FOR LIST OF 2,000 TYPES

PRACTICAL
2/6 September issue On sale Friday August 15

PADGETTS RADIO STORE
OLD TOWN HALL, LIVERSEDGE, YORKS.
Tel. Cleckheaton 2866

New 12" Speakers with built in tweeter 9 ohm or 15 ohm 6 watts max 25/6, post paid.

Silicon Rectifier 500mA, R.P.M. with Indicator

Motorist
Your Cortina Can Deliver 144 B.H.P.
How? By fitting it with a 3-litre V6 Ford Zodiac engine. Practical Motorist shows you how to carry out this inexpensive conversion.

★ Lotus 7 Road Test
★ BMC 1100 and 1300 Data Sheets

P.C.H. Ltd
74 THE STREET, ASHTEAD SURREY
Radio Communication Handbook
832 pages of everything in the science of radio communication. The Handbook’s British origin ensures easy availability of components. The standard work in its field.

69s post paid

Amateur Radio Techniques
All the good ideas are here. An anthology of the famous “Technical Topics” column from RADIO COMMUNICATION. Fascinating reading and an invaluable information source.

13s 6d post paid

ALL THESE AND MANY MORE, PLUS FREE DETAILS OF THE
RADIO SOCIETY OF GREAT BRITAIN
35 DOUGHTY STREET, LONDON, WC1
TAPE AMPLIFIER FOR MAGNAVOX TAPE DECKS
—2 or 4 TRACK

Chassis 121 x 43 x 43m. high.
Front panel alum and black—
124 x 43m. 200-250 A.C.
Mains Transformer: 019/002
Vol./Mise.: Vol./Gram.; Micro.
Input: Gram. Input: Mono.
Violet Pyramid, EC6, EM6, EM36, EI94 and Rect. 2
Track £19.19.9; 4 Track £125.2.6.
Ready for bolting direct to Magnavox deck.

STEREO AMPLIFIER type HV—
2 x 3 Watts
Fully built. On-off, vol. and tone each channel.
12 x 42 x 6m. high. £30.1.6. for 3-in.
speakers. Double input on main track using hange-
and home plate: suitable for crystal eart., tuner etc.
£15.17.0 (p. & p.). Available in kit with full
instructions at £17.15.0 (p. & p.).

STEREO AMPLIFIER type RC—
2 x 3 Watts
Fully built. 2 x ULE20, metal rect., gauged vol.
and tone cost: on-off, balance. 11 x 69 x 6m. high.
Double wound mains transformer, 105 p. brackets.
For 3-in speakers. £15.2.6. (p. & p.).

SUPERTHE KIT
Mk. 2
MF and LW fully tunable. Wooden cabinet 9 x 8 x 3m.
carrying handle, two tone cabinet, six speakers; 5 fre-
handers: full book of instructions. 9/6 (free with kit)
All parts may be purchased separately. S.A.E. for price list.
Price of parts has been reduced: 9/6p. (p. & p.).

GLADSTONE RADIO
66 ELMS ROAD, ALDERSHOT, Hants.
(2 mins. from Station and Buses). FULL GUARANTEE.
Aldershot 23980
CLOSED WEDNESDAY. S.A.E. for enquiries please.

PRINTED CIRCUIT KIT
BUILD 40 INTERESTING PROJECTS on a PRINTED CIRCUIT CHASSIS with
PARTS and TRANSISTORS from your SPARES BOX
CONTENTS: (1) Copper Laminate Boards 4" x 2", (2) 1 Board for Match-
box Radio, (3) 1 Board for Amplifier, etc., (4) 1 Board for Audio Amplifier,
(5) 1 Board for Control Tone Receiver, (6) 1 Board for Battery Operated
Radio, (7) 1 Board for Power Transformer. £1 each with each kit. (10) Essential
Design Data, Circuits, Chassis Plans, etc. for 40 TRANSISTORISED PROJECTS.
A full and comprehensive selection of circuits to suit every amateur's require-
ments, easy assembly, very latest electronic designs. £19.19.6 (p. & p.)

EXPERIMENTER’S
PRINTED CIRCUIT KIT
8/6
Postage & Pack. 1/6 (UK)
Commonwealth:
SURFACE MAIL or
AIR MAIL to
Australia, New Zealand,
South Africa, Canada.

(1) Crystal Set with Plated Detector. (2) Crystal Set with variable-quadrate
detector. (3) Crystal Set with Dynamic Loudspeaker. (4) Crystal Tuner with Audio
Amplifier. (5) Carrier Power Conversion Receiver. (6) Built-In Neutralised Double
Refriger. (7) Matchbox or Photocell Radio. (8) "TRI-FLEXION" Triple Reflex with
The smallest 3 designs yet offered to the Home Constructor anywhere in the World.
Subminiature Radio Receivers less than the "Triflexion" circuit. Let us know if you
know of a smallest design published anywhere. (15) Postage stamp Radio.
Net only 1/6p. x 135 x 255 x 1/2". (11) Matchbox Radio 1/16 x 1/16 x 1/25".
(12) Ring Radio 1/16 x 1/16 x 1/25". (13) Transistor Radio 1/16 x 1/16 x 1/25".
(14) Radio Control Tone Receiver. (15) Transistor F.P. Amplifier. (16) Inter-
Guided Missiles. (30) Perpetual Motion Machine. (21) Metal Detector. (22)
120A Male/Female Discriminator. (30) Signal Indicator. (25) Pocket Transistor
(Licence required). (27) Constant Tonometer. (28) Remote Control of Models by Induction. (29)
Inductive Loop
Transmitter. (30) Pocket Triple Reflex Radio. (21) Transistor Receiver/Wireless
Switch/Bell Alarm. (31) Transistor Receiver. (32) Quality Stereo Push-Pull Amplifier. (33)
Light-Beam Telephone. (34) Light-Beam Transmitter. (35) Silent TV Sound Adapter. (36)
Ultra-Transmitter. (40) Thyratron Dwell Speed Controller.

YORK ELECTRICS
333 YORK ROAD, LONDON, S.W.11
Send a S.A.E. for full details, a brief description and Photographs of all Kits and all
59 Radio, Electronic and Photographic Projects Assembled.

and work at
the nerve centres
of civil aviation

The National Air Traffic Control Service, a department of the
Board of Trade, needs Radio Technicians to install and maintain
the very latest electronic aids at Civil Airports such as Heathrow, Gatwick
and Stansted, Air Traffic Control Centres, Radar Stations and
specialist establishments.
This is responsible demanding work (for which you will get
familiarisation training) involving communications, computers, radar
data extraction, automatic landing systems and closed-circuit
microphones and it offers excellent prospects with ample opportunities
to study for higher qualifications in this fast-expanding field.
If you are 19 or over, with practical experience in at least one of
the main branches of telecommunications, fill in the coupon now.
Starting salary varies from £969 (at 19) to £1,130 (at 25 or over):
range maximum £1,304 (higher rates at Heathrow), and some posts
attract shift-duty payments. The annual leave allowance is good
and there is a non-contributory pension scheme for established staff.

Complete this coupon for full details and application form:
John Adam Street, London W.C.2, marking your envelope ‘Recruitment’.

Name ____________________________
Address ___________________________

PW/31

Not applicable to residents outside the United Kingdom.
EDUCATIONAL

BECOME "Technically qualified" in your spare time, guaranteed diploma and exam. home-study courses in radio, TV servicing and maintenance, T.T.E.B., City and Guilds, etc. highly informative 120-page Guide—free. CHAMBERS COLLEGE (Dept. 857K), 148 Holborn, London, E.C.I.

CITY & GUILDS (electrical, etc.) on "Satisfaction or Refund of Fee" terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electronics, radio, TV, automation, etc., send for 132-page Handbook—FREE. B.I.E.T. (Dept. 168K), Aldermaston Court, Aldermaston, Berks.

RADIO OFFICER training courses. Write: Principal, Newport and Monmouthshire College of Technology, Newport, Mon.

WANTED

WE BUY New Valves, Transistors and clean new components, large or small quantities, all details returned. WALTON'S WIRELESS STORES, 55 Worcester Street, Wolverhampton.

WANTED NEW VALVES, televisions, radio-grams, transistors, etc. STAN WILLETTS, 37 High Street, West Bromwich, Staffs. Tel.: WES 0196.

WANTED: New valves, transistors etc.; state prices. E.A.V. Factors, 202 Mansfield Road, Nottingham.

WANTED NEW VALVES ONLY

Must be new and boxed

Payment by return

WILLIAM CARVIS LTD

109 North Street, Leeds 7

AVO METERS, MODELS 8 & 9, ANY QUANTITY, ANY CONDITION, ALSO WEE MEGGERS, SEND FOR PACKING INSTRUCTIONS. HUGGETT'S LTD., 24 PAWSON ROAD, W. CROYDON.

LOAN PURCHASE Circuit diagram 1954 "Falcon" Radiogram. VHF, Short, Medium, Long, Gramophone, Box 90

METAL WORK

METAL WORK: All types cabinets, chassis, racks etc., to your specifications. PHILPOTTS METAL WORKS LTD., Chapman Street, Loughborough.

FOR SALE

£6,000 IN VOUCHERS GIVEN AWAY. See free Catalogue for details. Tools, materials, mechanical, electrical, thousands of interesting items. WHISTON, Dept. VW, New Mills, Stockport SK12 4HL.

MORSE MADE EASY

FACT NOT FICTION. If you start RIGHT you will be reading amateur and commercial Morse within a month. (Normal progress to 50 words per minute impossible.)

Using scientifically prepared Supply records you automatically learn to recognize the code ETAIEN without training. You can't help it, it's as easy as learning a language. 1,000 W.P.M. in 4 weeks guaranteed.

For details and course C.O.D. Plant, etc. to: 01-690 2986 send 5/ 10/ 20/ old, stamp for explanatory booklet to: GUEST (Box 11), 45 GREEN LANE, PURLEY, SURREY

EDDYSTONE "840A" Receiver with "732" Mains Filter Unit. £28. 63 Church Hill, Walthamstow E.17.

CONTENTS OF THIS SECTION

- Books & Publications
- Surplus Handbooks
- Surplus Radio Equipment Handbook
- Service Sheets

- Electrical

240 volt ELECTRICITY ANYWHERE

BEST EVER 200/200 VOLT "MAINS" SUPPLY FROM 12 VOLT CAR BATTERY

Exclusive World Wide Purchase. The fabulous MA. ED American Heavy Duty Dynamotor Unit with a Massive 200/200 volt output and giving the most British 0/00.0000 off the mains of all time. Manufacturers for Television, Dits, Power Tools Main Lighting, AC Power Line and all 200/200 volts Universal AC/DC mains equipment. Made by MA. ED. Delivered to dealers at Wholesale prices. Branded Mains and Fully Tested, only £16.95, plus 5/- postage. Money back if not delighted. Please send s.a.e. for interesting details.

Dept. FW STANFORD ELECTRONICS, Rear Derby Road, North Pembridge, Blackpool, Lancashire.

BOOKS & PUBLICATIONS

SURPLUS HANDBOOKS

19 set Circuit and Notes... 6/6 p/p £6
115set Circuit and Notes... 6/6 p/p £6
18 set Technical Instructions... 5/6 p/p £6
46set Working Instructions... 5/6 p/p £6
18 set Technical Instructions... 7/6 p/p £6
BC.521 Circuit and Notes... 5/6 p/p £6
Wavemeter Class D Tech. Insta... 5/6 p/p £6
28 set Circuit and Notes... 5/6 p/p £6
BC.1000 (31 set) Circuit and Notes... 16/- p/p £6
CR.1000/9/9 Circuit and Notes... 16/- p/p £6
R.107 Circuit and Notes... 7/6 p/p £6
AR.66D Instruction Manual... 12/- p/p £6
18 set Circuit and Notes... 5/6 p/p £6
Circuit Diagram S-1 each post free. R.1116/A
R.316/A, R.356, R.332, 24, 25 and 26, A.1154
T.1114, CR.200, BC.315, BC.349, BC.363, BC.348
(W.E.P), BC.464, 22 sets.
22 set Sender and Receiver circuits 7/6 post free

Resistor colour code indicator 2/6 p/p £6

S.A.E. with all enquiries please.

Postage rates apply to U.K. only.

Mail order only:

INSTRUCTIONAL HANDBOOK SUPPLIES

DEPT. PW, TALBOT HOUSE,
28 TALBOT GARDENS, LEEDS 8

SURPLUS RADIO EQUIPMENT HANDBOOK

Over 120 pages of data including circuit operating for 40+ types; many useful mods. and valve transistor equipment, etc., for amateur and ex-government sets. Only £5.00 inc. p. & p. from:

SYMBOL BOOKS (Dept. 3)

210 EASTERLY ROAD, LEEDS LS8 8ED

AUDIO. America's foremost journal. Year's subscription 50/-, Specimen copy 4/6. All American radio journals supplied—list free. Willen (Dept. 46). G1 Broadway, London E.15.

SERVICE SHEETS

SERVICE SHEETS, RADIO, TV, 5,000 Models. List 1/6, S.A.E. Enquiries, TELRAY, 11 Maudland Bank, Preston, Lancs.

SERVICE SHEETS (1925-1969) for TELEVISIONS, RADIOS, TRANSISTORS, TAPE RECORDERS, RECORD PLAYERS, etc., by return post, with free fault-finding guide. Prices from 1/- Over 8,000 models available. Please send S.A.E. with all orders/enquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex.

SERVICE SHEETS (75,000) 5/- each: please add loose 4d. stamp: callers welcome! always open. THOMAS ANGERER, 5 South Street Oakenhaw, Bradford.

The pre-paid rate for classified advertisements is 1/8d. per word (minimum order 20/-), box number 1/6d. extra. Semi-displayed setting £5 2s. 0d. per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL WIRELESS, IPC Magazines Ltd., Fleetway House, Farringdon Street, London, E.C.4 for insertion in the next available issue.
LARGE SUPPLIER OF SERVICE SHEETS
(T.V., RADIO, TAPE RECORDERS, RECORD PLAYERS, TRANSISTORS, STEREGRAMS, RADIOGRAMS, CAR RADIOS)

Only 5/- each, plus large S.A.E.
(Uncrossed P.O.'s please, returned if service sheets not available.)

C. CARANNA
71 BEAUFORT PARK
LONDON, N.W.11

We have the largest supplies of Service Sheets (strictly by return of post). Please state make and model number alternative.
Free TV fault tracing chart or TV list on request.
Mail order only.

SITUATIONS VACANT

SERVICE ENGINEERS—we are an old established electronics company, but headed by a management team and we need you to help us. Age is no barrier to a high salary as you will find out when you join us. If you have experience in T.V., Radio or Hi-Fi Service and want a job that looks ahead phone Michael Adler at 01-636 9006.

RADIO TECHNICIANS

A number of suitably qualified candidates are required for unestablished posts, leading to permanent and pensionable employment (in Cheltenham and other parts of the UK, including London). There are also opportunities for service abroad.

Applicants must be 19 or over and be familiar with the use of Test Gear, and have had practical Radio/Electronic workshop experience. Preference will be given to such candidates who can also offer "O" Level GCE passes in English Language, Maths and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications. A knowledge of Electro-mechanical equipment will be an advantage.

Salary. Scale is from £315 at 19 to £1,150 at 26 (highest pay on entry) rising to £1,374. (These scales are being further increased at 1.1.70.) Posts are unestablished, but opportunities exist for establishment and also advancement to £1,576 and upwards. A few posts carrying still higher salaries.

Annual Leave allowance of 3 weeks rising to 4 weeks 2 days. Normal Civil Service sick leave regulations apply.

Application forms available from:
RECRUITMENT OFFICER (RT 37/54)
GOVERNMENT COMMUNICATIONS HEADQUARTERS,
OAKLEY, PRIORS ROAD,
CHELTENHAM, GLS. GL52 5AJ

SITUATIONS VACANT (continued)

TV and Radio, A.M.I.E.R.E., City & Guilds, R.T.E.B. Certificates etc. on "Satisfaction or Refund of Fees" terms. Thousands of places. For full details of exams and home training Courses (including practical equipment) in all branches of Radio, TV, Electronics etc. write for 132-page Handbook free of charge. Please state subject.
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 137R), Aldermaston Court, Aldermaston, Berks.

SITUATIONS VACANT (continued)

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 169K), Aldermaston Court, Aldermaston, Berks.

AIR FORCE DEPARTMENT

Vacancies at
RAF Sealick, near Chester
RAF Henlow, Bedfordshire
and
RAF Carlisle, Cumberland

Interesting and vital work on RAF radar and radio equipment for:

RADIO TECHNICIANS

Minimum qualification, 3 years training and practical experience in radio engineering.

Starting pay according to age, up to £1,130 p.a. (at age 25) rising to £1,304 p.a. with prospects of promotion.

5 day week—good holidays—help with further studies—opportunities for pensionable employment.

Write for further details to:
Ministry of Defence CE3h(Air)
Sentinel House
Southampton Row
London W.C.1.

APPLICANTS MUST BE UK RESIDENTS

INTERNATIONAL CORRESPONDENCE SCHOOLS

A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

International Correspondence Schools
(Dept. 173) Intertext House, Stewarts Road,
London, S.W.8.

NAME ..
Block Capitals Please

ADDRESS ..

International Correspondence Schools

(continued)
THE NEW ELECTRONIC MUSIC FOR YOU

Now about making you yourself an electric organ! Constructional data, available in full circuits, drawings and notes for £4.14.0d. Special offer, P & P 6/-.

BRAND NEW Sangamo Weston Domestic Full kit and instructions. ELECTRONIC SOLITAIRE. Build this yourself.

DISABLED, Northern Road, Cosham, Portsmouth. P.O. ZEP.

ELECTRONIC SOLITAIRE.

HIFI loudspeaker speaker kit

Send 5d. stamp for complete list of 1,000 type semiconductors in stock.

COMPLETE RANGE of Amateur, Aircraft, Communications receivers. Chassis, panels, cabinets, microphones, etc. STEPHENS-JAMES Ltd., 70 Priory Road, Liverpool 4. Tel. 051-253-7829.

KEYTRONICS 52 Earls Road, London, W.8. Mail order only.

TALKING PHONE-SET

A two-way intercom set. Ideal for all 2-way communication in offices, home, offices use. They will work up to great distances. Each set consists of a master and a slave with a separate mains. The complete set ready for home use. £3.3d. P & P 1/-.

GLOBE SCIENTIFIC LTD

31 BRIDGE END
MEADOW LANE, LEEDS 1.

RECEIVERS & COMPONENTS

150 NEW ASSORTED Capacitors, Resistors, Silvered Mica, Ceramic, etc. Carbon, Hystab, Vitreous, 1-20 watt, 1/26 Post Free. WHITSMAN ELECTRICAL, 33 Drayton Green Road, West Ealing, W.13.

SIGNAL INJECTOR. Transistorised square wave generator probe, British Made, only 19/6, P & P 3/6 d.

From the list below...

ECC83, ECC87, ECL80, EF80, EF85, EF86.

Values BARGAINS

Any 5/-, 10/-1/-, 100 £5.10.0.

FROM THE LIST BELOW...

ECC83, ECC87, ECL80, EF80, EF85, EF86.

COMPONENTS

Samples from our catalogue: Geared motors 300 rpm -1/24H from 7/6, 5V. 300mW Zeners 3/-, 10k +10% 2W 3pin 10gauge./36V. 100W resistors 7/6; 6d stamp for catalogue.

F. HOL福德 & Co.

6 Imperial Square, Cheltenham.
NEW RANGE BBC 2 AERIALS
All UHF aerials are now fitted with tilting bracket and 8 element grid reflectors.
Loft Mounting Arrays, 7 element, 37/-.
11 element, 60/-.
Wall Mounting Arrays, 6 element, 60/., 10 element, 95/.
Wall Mounting with 80/., 11 element, 155/.-.
Remote, 11 element, 185/.
Complete Arrays, 11 element, 255/.
Send S.A.E. for Catalogue.

BBC - ITV AERIALS
BBC (Band I), Tele-Scopic, 4 element, 10/.
Commercial, 4 element, 12.5/.
ITV (Band 2), 3 element, 32/.
4 element, 40/.
6 element, 50/.
Wall Mounting, 3 element, 75/.
All branches.

COMBINED BBC ITV
BBC Aerials 4 element, 13.5/.
7 element, 15/.
11 element, 24/.
ITV 3 element, 32/.
4 element, 40/.
6 element, 50/.
Wall Mounting, 3 element, 75/.
All branches.

MOBILE S.W. LISTENERS
The Halson Mobile Antenna for AMATEUR RECEIVING and TRANSMITTING
The most efficient mobile All-Band Whip on the market. COILS FOR ALL BANDS. Complete with one coil £6.17.6, plus 3/6. Extra coils £3.17.6, plus 3/-.
From leading amateur radio stores or direct from the manufacturers:

HALSON ELECTRICAL SERVICES
Dover Road, off Ansdell Road, Blackpool.

NEW VALVES!
Guaranteed and Tested
24-HOUR SERVICE

BARGAIN BASEMENT
BABY ALARM / INTERPHONE
Fully transistorised. Master & slave interconnections, 5 x 5" x 3" x 1" Crystal clear 2-way intercommunications. Works over 1 mile through 29, 39/11.

FANTASTIC SPEAKER BARGAIN
Popular famous "12" high priority, heavy coil 10 wts. speaker with built-in tweeter.
10 or 15 ohms. (P. & I. 4/9) 9/-
2 for 66/- (P. & I. 6/9).

NEW RELEASE
HI-FI COLUMN SPEAKER CABINET
Beautifully made suitable for 7-12" speakers. Rosewood finish, screwed and glued. Attractive grey cloth front measures 31 x 18" with tweeter hole above.
69/-
(Carr. 10/-)
12 element. Add this 12 ohms unit to your existing speaker system and get real live sound! ONLY 25/6
(P. & I. 3/6)
Variable crossover unit for (Horn) (P. & I. 3/6) 6/-
HI-FI PICK-UP
Your reproduction is only as good as your pick-up. Our diamond turnover unit gives you quality sound.
MONO 16/3; Stereo 30/- Post 1/9.
Send S.A.E. for Catalogue.

MULTIMETER
Measures 1250 AC 0-1000V, AC/DC 1000 ohms. DC current 150 mA. Resistance 100 Kohms. Ideal for checking faults in household and car electrical. Guaranteed.
39/6
(P. & I. 3/6)

MICROPHONE SNIPS!
High Impedance Crystal with stand (as 35/6 (P. & I. illus.)
Foster Dynamic Model 50K/ ohms, response 0/50/5000 c/s. Velocity perf. 55/- (P. & I.)
With stand.

ELECTRAMA
1 George Street, Hailsham, Sussex.

MOBILE S.W. LISTENERS
The Halson Mobile Antenna for AMATEUR RECEIVING and TRANSMITTING
The most efficient mobile All-Band Whip on the market. COILS FOR ALL BANDS. Complete with one coil £6.17.6, plus 3/6. Extra coils £3.17.6, plus 3/-.
From leading amateur radio stores or direct from the manufacturers:

HALSON ELECTRICAL SERVICES
Dover Road, off Ansdell Road, Blackpool.

FANTASTICALLY POPULAR TAPE
We offer you Fully sensitised polyester/mylar and F.Y. tapes of identical quality but, wide range recording characteristics as top grade tapes. Quality control manufacture. We are truly worth more copper than any other brand, standardised, jointed or cheap imports. TRY ONE AND PROVE IT TO YOURSELF
Standard Play Long Play
Sin 100/- 21/6 6/- 25/-
4sin 50/- 41/-
Sin 90/- 5/- 31/-
4sin 40/- 31/-
Sin 120/- 10/- 41/-
4sin 80/- 8/-. 10/-

PLUGS
72/-
51/6 21/-

EL84
1/6 1/6

HOT LINES ON OUR BILLING SYSTEM
30P 8/3 21/6
e 8/-

PRACTICAL WIRELESS
Outlet
AERIALS
COMBINED BBC
On 14 element.
42/6.
Mast Mounting
67/-.
11 stamps
welcomed.
45/-.

NEW RANGE BBC K.V.A.
NEW VALVES
ADVERTISEMENTS

Tel: 01-648 4894

PLEASE MENTION "PRACTICAL WIRELESS" WHEN REPLYING TO ADVERTISEMENTS

HURRY! HURRY!
HUGE SUMMER SALE
AT ALL BRANCHES
PLEASE CALL AND INSPECT WITHOUT OBLIGATION
IF UNABLE TO CALL SEND LARGE S.A.E.
FOR YOUR FREE FLOG LIST NOW

★ LONDON
10 Tottenham Court Rd. (M.U.S 2639)

★ BRIGHTON
6 Queens Rd. (Tel: 23975)

★ PORTSMOUTH
350-352 Fratton Rd. (Tel: 22034)

★ SOUTHAMPTON
72 East Street (Tel: 25881)

★ MAIL ORDER
Devonian Court, Park Crescent Place, Brighton (Tel: 880722)

POSTAGE ON DL94 5/9
DK96 6/8
DK91 5/8
DF96 6/3
DF33 7/6
DAF96 6/3
DAF91 4/3
DAC32
CL33 17/6
CCH35
30PL1 13/8
30P4 11/6
30FL12 14/3
394 6/9
1T4
1E5
INTEGRATED CIRCUIT AMPLIFIERS

ROA Type CASO90
Integrated Circuit Audio Amplifier in TO5 encapsulation suitable for use with 4 or more silicon transistors, 3 diodes and 11 resistors. Power output 500mW. Total harmonic distortion 1%,. Will operate with supply voltage from 3 to 8 volts.

GENERAL ELECTRIC Type PA185
Epoxy moulded dual in-line package equivalent to six p-n transistors, one diode and six resistors. It will provide output of up to 1/2 watts into 15 ohms. Battery operation possible.

The construction of amplifier using the above integrated circuits has been described in March and August issues of F. W. Please note that we only supply the IC’s and no other parts are supplied by us.

GENERAL ELECTRIC Type PA204
1-Watt Audio Amplifier suitable for supply voltage of 5 to 9 volts. It can be used for output power of 4 or 8 ohms. Only 3 capacitors and 2 resistors are required for making up a complete amplifier delivering 1 watt into an input voltage of 600mV. Epoxy moulded dual in-line package.

GENERAL ELECTRIC Type PA277
Similar to PA202, but 2 watts, 40K, plus $1.50.

ROA Type CASO30
For Stereo Amplifiers as described in May issue of Practical Wireless, 10K, plus $2.50.

Motorola MC1200G
Operational Amplifier. Full data supplied on request. 40K, plus $2.50.

NEW LIST OF TRANSISTORS, INTEGRATED CIRCUITS IS NOW READY.
The List gives full specifications and prices of over 200 types of Semiconductors.
Available free on request.
The new edition of "ENGINEERING OPPORTUNITIES" is now available—without charge—to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION or REFUND of FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

RADIO ENGINEERING
- Advanced Radio — Gen.
- Servicing — TV Eng.

ELECTRICAL ENG.
- Installations — Draughtsmanship — Illuminating Eng.

MECHANICAL ENG.
- Advanced Mechanical Eng. — Gen.

CIVIL ENGINEERING
- Advanced Civil Eng. — Gen.
- Structural Eng. — Highway Eng.
- Sanitary Eng. — Road Eng.

AUTOMOBILE ENG.
- Advanced Automobile Eng. — Gen.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your earning power?

British Institute of Engineering Technology

453A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD
SOLID STATE—HIGH FIDELITY

AUDIO EQUIPMENT

Mono or Stereo Audio Equipment developed from Donnalee Mk.I—each unit or system will be available separately with other professional equipment selling at much higher prices.

COMPLETE SYSTEMS FROM

£15.5.0

THE FINEST VALUE IN HIGH FIDELITY—CHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE POUNDS!

SEND FOR FREE BROCHURE (No. 21) TODAY!

DEMONSTRATIONS DAILY AT '303' EDGWARE ROAD

INTEGRATED TRANSISTOR AMPLIFIERS

8 WATTS MONO OR 12 WATTS STEREO

We are pleased to offer two new designs with the choice of either mono or stereo systems. These BRITISH DESIGNED UNITS have exceptional volume—ability, high-fidelity sound, and quality with far greater adaptability, with freedom of battery or mains operation.

MAX WATT OUTPUT 8 WATT MONO 12 WATT STEREO

OPTIONAL STEREO DUAL FET PRE-AMPS £8.10.0

Illustrated subject 14 and FREE on request.

BUILD A QUALITY TAPE RECORDER

To get the best out of your tapes, buy a quality machine. Our expert will advise you before you buy. A quality machine in a box comprises a deck, amplifier, tone arm and speakers, and mechanism to suit your needs. A serviceable machine is one that suits your needs and is well maintained.

STRAIGHT TO HEADPHONE OUTPUT

A built-in equalizer will give you the same results in the home that you get in the professional studio. It will give you the same results in the same way.

All units available separately.

DO IT YOURSELF M.W./L.W. PORTABLE

New designed small design with full power output. Fully tunable on all main bands, 8 transistors plus diode, push-pull circuit, fift 4 inch, speaker, and variable volume. Easy to build with terrific results. All local and Continental stations.

TOTAL COST £8.19.6.

P.P./4 TO BUILD Send for brochure 1

TRANSMIT SYSTEMS FROM

COMPLETE SYSTEMS FROM £46—£200

SEND FOR NEW 8-PAGE ILLUSTRATED HI-FI LIST 16/17

ELECTRONIC ORGANS

KITS TO BUILD YOURSELF

The MAYFAIR Acclaimed by everyone

A completely new development in portable electronic musical instrument.

The MAYFAIR is an instrument of the highest possible quality with a wide range of unique sounds, including classical, operatic and popular music. The instrument produces a full, rich sound that is capable of being used in any musical setting.

The instrument is designed to be used in any room, whether it be a living room, study, or music room. It is lightweight and portable, allowing it to be easily transported and set up in different locations.

The instrument is designed to be used in any room, whether it be a living room, study, or music room. It is lightweight and portable, allowing it to be easily transported and set up in different locations.

The instrument is designed to be used in any room, whether it be a living room, study, or music room. It is lightweight and portable, allowing it to be easily transported and set up in different locations.

The instrument is designed to be used in any room, whether it be a living room, study, or music room. It is lightweight and portable, allowing it to be easily transported and set up in different locations.

The instrument is designed to be used in any room, whether it be a living room, study, or music room. It is lightweight and portable, allowing it to be easily transported and set up in different locations.

The instrument is designed to be used in any room, whether it be a living room, study, or music room. It is lightweight and portable, allowing it to be easily transported and set up in different locations.

The instrument is designed to be used in any room, whether it be a living room, study, or music room. It is lightweight and portable, allowing it to be easily transported and set up in different locations.

The instrument is designed to be used in any room, whether it be a living room, study, or music room. It is lightweight and portable, allowing it to be easily transported and set up in different locations.

The instrument is designed to be used in any room, whether it be a living room, study, or music room. It is lightweight and portable, allowing it to be easily transported and set up in different locations.

Transistor Assembly KITS

£9.9.0

Regularly £12.10.0

GARRETT CATALOGUE

CARRIAGE PACKING 2/4d per model Complete range of accessories available. See new full-page individual £17.2.