BUILDING THE NEW FURY FOUR

PRACTICAL WIRELESS

DECEMBER 1954
EDITOR: F.J. CAMM

Making a Valve Tester
For super tropical service
‘METALPACK’
PAPER CONDENSERS

This range has been developed for operation in high humidities and high temperatures. Their ability to withstand variations from -40°C to +100°C makes them the obvious choice for the most stringent conditions. Internal construction follows the well-proved T.C.C. technique of winding non-inductively two or more layers of paper dielectric to each layer of solid aluminium foil, all impregnated under vacuum, and finally hermetically sealed in aluminium tubes.

<table>
<thead>
<tr>
<th>Cap. µF</th>
<th>Wkgs.</th>
<th>Volts D.C.</th>
<th>L</th>
<th>D</th>
<th>Type No.</th>
<th>List Price Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>.005</td>
<td>1,000</td>
<td>750</td>
<td>14</td>
<td>1</td>
<td>CP45W</td>
<td>1/10</td>
</tr>
<tr>
<td>.01</td>
<td>1,000</td>
<td>750</td>
<td>14</td>
<td>1</td>
<td>CP45W</td>
<td>1/10</td>
</tr>
<tr>
<td>.05</td>
<td>500</td>
<td>350</td>
<td>13</td>
<td>2</td>
<td>CP45S</td>
<td>1/10</td>
</tr>
<tr>
<td>.1</td>
<td>503</td>
<td>350</td>
<td>21</td>
<td>2</td>
<td>CP45S</td>
<td>1/10</td>
</tr>
<tr>
<td>.25</td>
<td>1,000</td>
<td>600</td>
<td>21</td>
<td>2</td>
<td>CP47W</td>
<td>2/6</td>
</tr>
<tr>
<td>.5</td>
<td>350</td>
<td>200</td>
<td>21</td>
<td>2</td>
<td>CP47N</td>
<td>3/10</td>
</tr>
<tr>
<td>1</td>
<td>500</td>
<td>350</td>
<td>21</td>
<td>2</td>
<td>CP91S</td>
<td>4/-</td>
</tr>
<tr>
<td>1.5</td>
<td>350</td>
<td>200</td>
<td>21</td>
<td>2</td>
<td>CP91N</td>
<td>4/-</td>
</tr>
</tbody>
</table>

THE TELEGRAPH CONDENSER CO. LTD
RADIO DIVISION: NORTH ACTON - LONDON - W.3 - Telephone: ACOrn 0061

THE WORLD- FAMOUS
Stentorian CAMBRIC CONE
HIGH FIDELITY UNITS

now available with universal impedance speech coil

Here is a most notable advance in loudspeaker design acclaimed at the Radio Show by experts and public alike. It provides instant matching of the speech coil impedance at 3 ohms, 7.5 ohms and 15 ohms, and is at present available on the three models marked with an asterisk. This development will add immeasurably to the great popularity already achieved by the Cambric Cone range among Hi-Fi enthusiasts. Your dealer can show you these new units, or they may be heard at our London Office, 109 Kingsway, any Saturday between 9 a.m. and noon.

BASS REFLEX CONSOLE CABINET
Easily assembled polished walnut veneer cabinet, designed to give maximum reproduction quality from either the 10” or 12” Cambric Cone unit. Supplied packed flat, with screws, ready for assembly. Size 32” x 22” x 16”. Price £10 - 10 - 0

WHITELEY ELECTRICAL RADIO CO. LTD · MANSFIELD · NOTTS

AT REMARKABLY LOW COST
Model HF510 ... 5” Steel Unit ... £1.17.6
HF510 ... 5” Die cast Unit ... £1.19.6
HF610 ... 6” Steel Unit ... £2.10.6
HF610 ... 6” Die cast Unit ... £2.12.6
HF810 ... 8” Steel Unit ... £3.0.6
HF810 ... 8” Die cast Unit ... £3.5.6
HF112* ... 9” Die cast Unit ... £3.9.6
HF112* ... 10” Die cast Unit ... £3.17.6
HF1214 ... 12” Die cast Unit ... £9.15.6 (Tax paid)
IMPROVED I. F. TRANSFORMERS

IFT.6/465 kc/s or 1.6 Mc/s.—A superior I.F. transformer for use in high-quality receivers and tuners. Permeability tuned, Litz wound coils, using Neosid iron dust cores, and high-quality silver mica condensers housed in an extruded aluminium can. Termination is made by four coloured leads. Coupling is optimum at 465 kc/s and slightly sub-optimum for increased selectivity at 1.6 Mc/s.

IFT.6/1.6: Q at 1.6 Mc/s—125.

The IFT.6A has all leads brought out at the bottom, while IFT.6B has a screened-grid lead. When ordering full details should be given, e.g., IFT.6A/465.

IFT.11/465 kc/s or 1.6 Mc/s.—Miniature I.F. transformers for 465 kc/s or 1.6 Mc/s, giving excellent performance at low cost. The coils are Litz wound and permeability tuned with high-grade Neosid iron dust cores. Coupling is critically adjusted to give maximum gain with good selectivity. Ideal for use with Miniature 89A or 87G based valves.

IFT.11/465: Q at 465 kc/s—75.
IFT.11/1.6: Q at 1.6 Mc/s—100.

Also available for 10.7 Mc/s.
Fixing: Two B & A screws provided. Screening Can: Extruded aluminium.
Retail Prices: Type A, 9/- each.
Type B, 9/4 each.

Obtainable from all reputable stockists, or in case of difficulty direct from Denco (Clacton), LTD. Send 1/- in stamps for General Catalogue.

DENCO (CLACTON) LTD., 357/9 Old Rd., Clacton-on-Sea, Essex
Stop Press: CRYSTAL COIL, PCC.I (see Brimar leaflet) . . . 7/6. GERMANIUM DIODE BRIMAR GDS . . . 7/6. MULLARD 5/10 AMPLIFIER CHASSIS . . . 12/6

BRIMAR VALVES

Brimar’s long experience in the manufacture of special quality TRUSTWORTHY valves is now being reflected throughout the entire Brimar range.

Improved production methods, new and better assembly jigs, tighter control on the composition of materials, and the closer supervision of vital processes have resulted in valves with more uniform characteristics, greater mechanical strength and a higher standard of reliability as shown in the 12AT7.

The 12AT7 is a very reliable frequency changer and is widely used in modern TV receivers, VHF and UHF communications equipment. It is also frequently employed in industrial equipment, computers, navigational aids and test equipment.

Use the BRIMAR 12AT7—with improved performance—at NO EXTRA COST

BRIMAR, MULLARD, MARCONI, OSRAM, Cossor, EMITRON

12AT7 ECC81 B152 & B309 12AT7

Standard Telephones and Cables Limited FOOTSCRAY, KENT. FOOTscray 3333
GREAT BRITAIN'S VALVE MAIL-ORDER HOUSE

SALE (2,000 TYPES) OF VALVES FROM 2/6-

DEMObBED Valves "Make Offer"...

GIVING equivalents of British and American Service and Cross References of Commercial Types with an Appendix of B.V.A. Valves and Comprehensive Price List. We have still some Valves left of various types (281") which are actually sold at the old price. (15/-)

Free 8/6.

ECH3 22;81
ECC90
EBF60
EBT.1
EB31 1129
CYl
CBLl)22'1 2,
AZ1
6SQ7GT 12SQ7GT
6SK7GT
6AÚ6 1ESG
1F4
3\4 714
1T4
1S5
...
RF25
...
6000
TP23.
IR5.
...
Y3GT13
...
Brand
...
35L6GT
2533G,
...
A7
...
20,2i
...
ICiGT
...
3/-
...
VP13C
...
SP92
...
P2
...
MSP4
...
ACHL-
...
220PT
...
71A
...
3S4
...
3V) 7/8
...
1T4
...
1N5GT
...
10';5.20,000
...
VP41
...
SP61
...
SP41
...
1N4
...
148.
...
DK40
...
DK40
...
1M4
...
1M4
...
1M4
...
1M4
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
...
200
...
19/6.
Positively the 2 BEST T/Vs yet built for the Home Constructor!

The SVERN'S "TELE-VIEWERS"

5 CHANNEL SUPERHET RECEIVERS

Suitable for any transmitting channel and for which commercial adaptors will be available.

PERFECT PICTURE QUALITY
SIMPLE DIAGRAMS MAKE CONSTRUCTION EASY
PERFECT FRINGE AREA RECEPTION BETTER RECEPTION AT HALF COMMERCIAL COST

The "WIDE-ANGLE" TELE-VIEWER

* This is the most efficient large screen TV yet offered to constructors.

* Excellent Time Base efficiency producing 15 to 18 K. with plenty of scanning power for C.R.T.'s up to 17 inch.

CAN BE COMPLETELY BUILT FOR
£33 - 0 - 0
(Plus cost of C.R.T.)

This is the 12" TELE-VIEWER and can be completely built for only £28 - 16 - 4
(Plus cost of C.R.T.)

STERN RADIO LTD.
Tel.: CENTRAL 5812-3-4

BARTON'S (Radio)

BUILD YOUR OWN RADIO!

We can supply all the parts (including valves, 5in. moving coil speaker, cabinet, chassis, and everything down to the last nut and bolt) to enable you to build a professional-looking radio. The chassis is punched and drilled ready to mount the components. There is a choice of any of three attractive cabinets 12in. long, 5in. wide by 5in. high, as follows: either ivory or brown bakelite, or wooden, finished in walnut.

MODEL 1. T.R.F. RECEIVER

This is a 5 Valve plus metal rectifier T.R.F. receiver with a valve line-up as follows: 6L7 (HF), 674 (Def) and 6V6 (Output). The dial is illuminated and when assembled the receiver presents a very attractive appearance. Coverage is for the Medium and Long Wave bands. Operates on 200/250 volts A.C. Mains.

Plus 2/6 Packing, Carriage, Insur.
£5.10.0

T.R.F. RECEIVER

We can supply this Receiver ready built at £6.15.6., plus 2/6 p.c.

ALL COMPONENTS SUPPLIED ARE GUARANTEED FOR ONE YEAR.

NOTE: We would respectfully suggest to those interested in building this receiver that they send for our Instruction Booklet. Intending constructors can then judge for themselves how comprehensive this booklet is. Instruction Booklet and priced Parts List for either of the above are available separately at 1½d.

WE CARRY LARGE STOCKS OF COMPONENTS AND WELCOME YOUR ENQUIRIES.

The output transformer supplied is for use with a loudspeaker of 3 ohms impedance and we would suggest that the output of the complete amplifier should be limited to 1Watts. The speakers which can be supplied as follows: £1.15.0; £1.7.0; £1.10.0. All plus 2/6 p.c., curren. ins.

Circuit Diagrams only, available separately at 1½d. To those who require this Amplifier ready-built we can supply it at £5.1.0 plus 3/6 p.c., curren. ins.

4-watt AMPLIFIER KIT

This is a 3 Valve 3 stage Amplifier for use with Gramophone, Microphone or Radio. Valve line-up is as follows: 6H6, 6V6, 574. Negative feed-back. Tone control. Voltage adjustment panel incorporated. 4 watts output. For operation on A.C. Mains 200/350 volts.

The complete Kit includes every item down to the last nut and bolt, drilled and punched chassis, and comprehensive point-to-point wiring circuit diagram. Chassis dimensions: 5in. x 9in. x 2½in.

ALL COMPONENTS SUPPLIED ARE GUARANTEED FOR ONE YEAR.

PRICE
£4.5.0

Plus 2/6
Pkg. Carr. & Ins.
The MULLARD 5 valve 10 watt High Quality Amplifier Circuit

Mullard have designed a new high quality 10 watt audio frequency amplifier circuit around five Mullard valves. It follows conventional lines and comprises a high gain input stage (Mullard EF86), a cathode coupled phase-splitter (Mullard ECC83) and a push-pull output stage employing two Mullard EL84 pentodes.

Its outstanding advantage is that it achieves really high quality reproduction with simple design and modest cost of components. Full details of the amplifier and data for the valves are available in booklet form price 2/6 from Radio Dealers.

In case of difficulty write enclosing remittance direct to Valve Sales Dept. at the address below.

These are the valves for the Mullard 5 valve 10 watt High Quality Amplifier.

MULLARD EF86
MULLARD ECC83
MULLARD . . . EL84 (2)
MULLARD GZ30 or EZ80

MULLARD LTD., CENTURY HOUSE, SHAFTESBURY AVENUE, LONDON, W.C.2
Test Instruments on 'No Interest' Hire Purchase

We can now offer all Taylor instruments on the easiest of H.P. terms including the new 3 months' scheme where all interest is refunded on completion of final payment on due date. Alternatively, you can choose to spread the payments over 10 months or 15 months. Some typical examples are:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Deposit</th>
<th>3 months Payments</th>
<th>10 months Payments</th>
<th>15 months Payments</th>
</tr>
</thead>
<tbody>
<tr>
<td>31A Oscilloscope</td>
<td>£9.00</td>
<td>£19.2. 6</td>
<td>£6.0. 10</td>
<td>£6.0. 10</td>
</tr>
<tr>
<td>171A Valve Voltmeter</td>
<td>£3.19. 6</td>
<td>£8.8. 11</td>
<td>£2.12. 11</td>
<td>£2.17. 9</td>
</tr>
<tr>
<td>88A Multirange Meter</td>
<td>£3. 6. 0</td>
<td>£7. 0. 3</td>
<td>£2. 4. 3</td>
<td>£2. 4. 3</td>
</tr>
<tr>
<td>77A Multirange Meter</td>
<td>£2. 5. 0</td>
<td>£4.15. 7</td>
<td>£1.10. 1</td>
<td>£1.1. 4</td>
</tr>
<tr>
<td>45B Valve Tester</td>
<td>£3.16. 6</td>
<td>£8. 6. 4</td>
<td>£2.12. 2</td>
<td>£2.16. 3</td>
</tr>
</tbody>
</table>

Taylor Electrical Instruments Ltd. Montrose Avenue, Slough, Bucks.

For tape and disc recording, P.A. and amateur radio.

quality crystal microphones

A crystal hand or desk omni-directional microphone for the high quality public address and tape recording field, incorporating a specially designed acoustic filter giving a response flat from 30 to 7,000 c/s.

RETAIL PRICE: £2 - 10 - od.

A handsome omni-directional instrument of high sensitivity and a substantially flat response from 30 to 7,000 c/s. Alternative models, with or without switch, are available with suitable adaptors for floor or table stands or for hand use.

RETAIL PRICE: £3 - 3 - od. without switch or £3 - 8 - 0 with switch.

A general purpose hand microphone of robust construction with substantially flat response from 50 to 5,000 c/s. Suitable for recording apparatus, Public Address equipment etc.

RETAIL PRICE: £1 - 5 - od.

ACOS devices are protected by patents, patent applications and registered designs in Great Britain and abroad.

COSMOCORD LIMITED • ENFIELD • MIDDLESEX
The New "Fury Four"

This issue contains preliminary details of the New Fury Four, exhibited for the first time at this year’s Radio Show. It attracted a great deal of interest, especially among those who built the original Fury Four in the early 30’s. It will, no doubt, be built in large numbers and we propose, as with the original receiver, to produce alternative versions of it. Full-sized blueprints will be available in due course.

A COMPREHENSIVE VALVE TESTER

In response to requests received over the past two years we this month commence publication of constructional details of a comprehensive valve tester. This instrument although it may be built by amateurs is a professional job, and it will accurately test all of the functions of the valve such as emission, mutual conductance, etc., measurements which are necessary, not only in connection with service work, but in checking up after a receiver has been built.

LICENCE EVASION

It is often suggested that to prevent wireless licence evasion, people should obtain their licence through the retailer, or at least show him a licence as a preliminary to purchase. This could apply to both sound and TV licences. The Post Office has carefully examined this suggestion, but in making regulations they can only use the powers at present vested in them under the Wireless Telegraphy Act, which makes it an offence to install or use wireless apparatus without a licence. It does not make it an offence to buy or own apparatus without a licence. The Post Office there has no right whatever to demand that a person shall have a licence before he buys a set, unless he actually installs or uses a set which he has bought. Anyone can buy a motor car, but he may not use it without a Road Fund Licence, and he cannot obtain that without a certificate of insurance and a driving licence.

If the law were to be altered so that the P.O. could compel a person to have a licence before he could purchase a set, there still remains the fact that one licence covers more than one person, and it would be wrong for each man, woman and child in a family to be compelled to possess a personal licence of his own. If that were not done, a great number of people would still be entitled to listen to the wireless and watch TV without having a licence in their own name. If those people were made to show a licence before they bought a set, they would be forced to show somebody else’s and this would mean that radio dealers would be given quite intolerable powers of inquiry into people’s private affairs. The public at present are complaining of the incursions which are continually made into the liberty of the subject.

Wireless dealers present another problem. The P.O. has no power whatever to make wireless dealers sell licences or inspect licences. Whilst many of them would cooperate, many would not. Controversial legislation would be necessary to bring wireless dealers into the scheme which would need another board of inspectors to keep the dealers up to scratch. The P.O. has reached the opinion that there seems to be no means of providing by legislation for a direct tie-up. It would impose a great burden on the vast majority of the listening and viewing public in order to bring a comparatively few people to book. No doubt the detector cars are helping to eliminate the problem.

CAUSES OF ELECTRICAL ACCIDENTS

The Annual Report of the Factory Department of the Ministry of Labour on Electrical Accidents and their Causes points out that portable electrical apparatus at mains voltage has again been responsible for a high proportion of fatal and serious electrical accidents. The socket outlet, the plug, the flexible cable, the connections and terminal arrangements within the portable apparatus and, last but not least, the earth continuity system and the earthing arrangement in the fixed installation to which the portable appliance is connected, each takes its toll.—F. J. C.
B.I.R.E.
The following meetings of the above institution will be held during November:

Scottish Section.—Thursday, November 11th, 7 p.m., at the Department of Natural Philosophy, The University, Edinburgh. "Nuclear Fission and Nuclear Fusion"—Prof. N. Feather, F.R.S.

London Section.—Wednesday, November 24th, 6.30 p.m., at the London School of Hygiene and Tropical Medicine, Keppel Street, Gower Street, London, W.C.I. "The Development and Design of Direct-coupled Oscilloscopes for Industry and Research"—M. J. Goddard.

North-western Section.—Tuesday, November 30th, 7 p.m., at Reynolds Hall, College of Technology, Sackville Street, Manchester. "Electronics and the Wind Tunnel"—G. J. Scoles, B.Sc.(Eng.), (Associate Member).

Miss Tessa Fenton, B.Sc., adjusts the amplifiers on the stereophonic sound system, which has been installed at a Kennington cinema.

Overseas Airlines Order British Radio
Further evidence that British radio equipment is highly respected throughout the world is reflected in current orders received by Marconi's Wireless Telegraph Co., Ltd.'s Aeronautical Division. They include orders from the U.S.A., India, South Africa and France. More than 40 airlines and over 20 Air Forces now use Marconi aeronautical equipment.

By "Questor"

Transatlantic Calls in 1957

Work has commenced on a new cable which will link this country with America, supplementing radio telephonic communication and enabling telephone subscribers in Britain and the U.S.A. to talk to each other as easily as on a local call.

The cable is expected to be ready for use by the end of 1957.

Radio Hire

Many of Britain's radio sets are earning dollars and other hard currencies without leaving the British Isles. The 500-vehicle London carhire specialists, Victor Britain, Ltd., are hiring out Pye attache-case battery portables at a charge of five shillings a day.

The demonstration caused by hiring often results in the sale of a radio or car by British or overseas stores and motor agents.

Stereophonic Sound Adviser

Miss Tessa Fenton, B.Sc., aged 21, of Claygate, Surrey, has been appointed by Mr. S. L. Bernstein, chairman of Granada Theatres, Ltd., to explain to his patrons how the new stereophonic sound system works in his cinemas.

The new sound device employs four magnetic sound tracks and 24 loud-speakers which enable the sound in a film to be heard from the part of the wide screen where the action is taking place. Miss Fenton can also answer questions put to her by interested cinema patrons on the new development.

Broadcast Receiving Licences

The following statement shows the approximate number of broadcast receiving licences issued during the year ended August, 1954. The grand total of sound and television licences was 13,421,629.

<table>
<thead>
<tr>
<th>Region</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>London Postal</td>
<td>1,538,506</td>
</tr>
<tr>
<td>Home Counties</td>
<td>1,419,560</td>
</tr>
<tr>
<td>Midland</td>
<td>1,218,108</td>
</tr>
<tr>
<td>North Eastern</td>
<td>1,604,442</td>
</tr>
<tr>
<td>North-western</td>
<td>1,239,025</td>
</tr>
<tr>
<td>South-western</td>
<td>993,623</td>
</tr>
<tr>
<td>Wales and Border Counties</td>
<td>620,848</td>
</tr>
<tr>
<td>Total England and Wales</td>
<td>8,633,112</td>
</tr>
<tr>
<td>Scotland</td>
<td>1,035,209</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>219,610</td>
</tr>
<tr>
<td>Grand Total</td>
<td>9,887,931</td>
</tr>
</tbody>
</table>

New Branch Office

The Telegraph Construction and Maintenance Co., Ltd., Telcon Works, Greenwich, announce the opening of a new branch office and depot at 2 St. Nicholas Buildings, Newcastle-on-Tyne, under the management of Mr. R. Fenwick. Stocks are carried of P.V.C. wiring cables and flexibles, radio frequency and broadcast relay types of cables. The branch also handles enquiries for other Telcon products, in-
Radio Engineers has announced the recipients of Institution Premiums for papers published during 1953.

The premier award, The Clerk Maxwell Premium, was presented to three joint authors: W. Saraga, Dr. Phil., D. T. Hadley and F. Moss, B.Sc., for their paper "An Aerial Analogue Computer."

Mr. L. A. Sawtell
Leonard A. Sawtell recently celebrated his twentieth anniversary with Mullard Ltd., after more than 30 years in the radio industry.

Mr. S. S. Eriks, managing director of Mullard Ltd., presented Mr. Sawtell with a gold watch and a cheque on behalf of the board of directors and, with other Mullard directors and executives, entertained Mr. and Mrs. Sawtell to lunch. Mr. Sawtell is a Companion of the British Institution of Radio Engineers and a committee member of the Radio Industries Club.

"Ted Ray Time"

The new Ted Ray show, which began in the Home Service on October 25, introduces some new names in sound variety as well as more established favourites. Harold Berens and the multi-voiced Kenneth Connor need no introduction to listeners, but for Audrey Jeams and Don Peters, who have made an impression in other fields of entertainment, it is the first major sound series.

Each week, Ted Ray will have a star guest. Production, as in the last series, is by George Inns.

Increased Sales in West

At the official "switch-on" of a new major electricity supply point at Woodcote, near Axminster, recently, Mr. S. F. Steward, chairman of the South Western Electricity Board, said: "After years of austerity and restrictions, there is an unprecedented boom in the sales of electricity and labour-saving electric appliances in the West Country."

So far this year, he stated, sales were over 20 per cent, higher than the record set up last year and there appeared to be no let-up in the demand.

Premium Awards

The Council of the British Institution of Engineers has announced the recipients of Institution Premiums for papers published during 1953.

The premier award, The Clerk Maxwell Premium, was presented to three joint authors: W. Saraga, Dr. Phil., D. T. Hadley and F. Moss, B.Sc., for their paper "An Aerial Analogue Computer."

Mr. L. A. Sawtell shows some of his colleagues the gold watch presented to him by Mullard, Limited.

A "PRACTICAL" Solution to the Gift Problem!

Have you thought of giving Gift Subscriptions for one of the famous "PRACTICAL" Magazines edited by F. J. Camm? They make ideal Christmas presents—and most of your friends are sure to be delighted to receive one of them. Write to-day to the Subscription Manager (G.2.), PRACTICAL MAGAZINES, Tower House, Southampton Street, Strand, London, W.C.2., enclosing the names and addresses of your friends, the titles of the magazines you wish to send them, and remittance to cover. An attractive greetings card will be sent off, in your name, to announce each gift in good time for Christmas.

A year's subscription to PRACTICAL MECHANICS and PRACTICAL MOTORIST & MOTOR CYCLIST costs 1s. 4d., including postage to any part of the world, to PRACTICAL TELEVISION and PRACTICAL WIRELESS 13s. 6d. (Canada 13s.), and to PRACTICAL ENGINEERING £1 12s. 6d. (Canada £1 10s. 4d.).

Radio Journalism

When the recent newspaper strike began, BBC officials immediately drew up plans whereby leader writers for the different national dailies would be given the opportunity to broadcast their comments over the air, presenting listeners with the political opinions that would have been published normally in the newspapers.

www.americanradiohistory.com
THE tester has been designed for simple operation, providing a very useful portable instrument.

For simplicity A.C. volts are used for the main supplies, and on all tests the meter indicates the average of the current pulses resulting from the self-rectification of the valve under test.

The tester is in two sections, closing together for portability. Circuit connections are made to the valve being tested on the pin-connection panel. This panel, the valve bases, and neon shorts test circuit are fitted in the lid section, connections being made to the other section by an 8-way cord and octal plugs and sockets. Anode and screen supplies from 0 to 250 volts A.C. are in steps of 50 volts, and are supplied from a common winding on the mains transformer. The grid supply is obtained from a 15-volt winding which, after rectification, gives a voltage drop across VR2 of approximately 12 volts; this potentiometer is calibrated in one volt steps for the grid supply. Adjustment of VR1 is made so that when "mutual conductance" switch S7 is pressed, a grid "shift" of one volt occurs, and an indication related to the mutual conductance of the valve is obtained by the change in anode current. The filament supply is obtained from a 12-way switch S4, giving a choice of 2 to 50 volts, which covers the most common values in this range. The meter circuit is associated with a range switch S5, giving a choice of milliamps, volts and ohms ranges as follows: milliamps: 1.5, 3, 6, 9, 15 and 30; volts: 150, 300 and 600; ohms: 0 to 50 kΩ, with two spare positions. Anode, screen, grid and cathode circuits are switched according to the test selected by switch S6 before being connected through to the linking sockets.

Uses

In position 1 of S6, the meter is connected for use as a simple multimeter, and test leads for external use are connected to the appropriate sockets. Position 2, diode test; position 3, rectifier test;

Component List

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Meter</td>
<td>1.5 mA F.S.D.</td>
</tr>
<tr>
<td>T.1. Mains transformer (see text).</td>
<td></td>
</tr>
<tr>
<td>F.1.</td>
<td>1 amp. fuse.</td>
</tr>
<tr>
<td>M.R.1.</td>
<td>Bridge rectifier (see text).</td>
</tr>
<tr>
<td>N.1.</td>
<td>Neon, type "G" Osram.</td>
</tr>
<tr>
<td>Switches</td>
<td>—</td>
</tr>
<tr>
<td>S1-S2.</td>
<td>Single pole 6-way.</td>
</tr>
<tr>
<td>S3.</td>
<td>D.P.D.T. 250 volt, 1 amp.</td>
</tr>
<tr>
<td>S4-S5.</td>
<td>Single-pole 12 way.</td>
</tr>
<tr>
<td>S6.</td>
<td>7 pole 5-way.</td>
</tr>
<tr>
<td>S7-8-9.</td>
<td>Plunger key switches—spring return.</td>
</tr>
<tr>
<td>Condensers</td>
<td>—</td>
</tr>
<tr>
<td>C1.</td>
<td>25 µF, 25 volt working. Wire ended.</td>
</tr>
<tr>
<td>C2.</td>
<td>1 µF. Mainsbridge type.</td>
</tr>
<tr>
<td>C3.</td>
<td>.001 µF. Moulded mica.</td>
</tr>
<tr>
<td>Resistors</td>
<td>—</td>
</tr>
<tr>
<td>R1.</td>
<td>1 megohm. R9. 950 ohm.</td>
</tr>
<tr>
<td>R2.</td>
<td>15 KΩ. R10. 10 ohm. (Stoppers.</td>
</tr>
<tr>
<td>R3.</td>
<td>200 ohm. 1 watt. R11. 100 ohm.</td>
</tr>
<tr>
<td>R4.</td>
<td>7 KΩ. R12. 10 KΩ.</td>
</tr>
<tr>
<td>R5.</td>
<td>140 ohm. R13. 5.7 MΩ.</td>
</tr>
<tr>
<td>R6.</td>
<td>350 ohm. 1 watt. R14. 2 MΩ. (approx.)</td>
</tr>
<tr>
<td>R7.</td>
<td>50 ohm. R15. 400 KΩ. (1 watt)</td>
</tr>
<tr>
<td>R8.</td>
<td>1 MΩ. R16. 200 KΩ.</td>
</tr>
<tr>
<td>R17.</td>
<td>100 KΩ. (All ½ watt, except where stated.)</td>
</tr>
<tr>
<td>Potentiometers</td>
<td>—</td>
</tr>
<tr>
<td>VR1.</td>
<td>200 ohm. wirewound.</td>
</tr>
<tr>
<td>VR2.</td>
<td>2,000 ohm. wirewound.</td>
</tr>
<tr>
<td>VR3.</td>
<td>100 ohm. wirewound.</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>—</td>
</tr>
<tr>
<td>Plugs and sockets, 2 terminals, neon holder, 2 cathode plugs and sockets, miscellaneous valve sockets as required. Hinges, clips and handle.</td>
<td></td>
</tr>
</tbody>
</table>
position 4, cathode leakage test (for indirectly-heated valves only); position 5, valve tests (other than diodes and rectifiers) in which tests are applied for "gas" and "mutual conductance". Facilities are included for the connection of an oscilloscope, for further and more exacting tests. On all tests, filament volts are set and connections made on the pin-connecting panel, as required for the valve under test. For double and triple valves, each section is tested separately; the unused sections being connected to the cathode circuit. Anode, screen and grid volt settings are only required in the "valve test" position of S6.

Test details are as follows:

Diodes: The meter, connected in the cathode circuit of the valve, has a full scale deflection of 1.5 mA. The diode rectified current for an applied 50 volts A.C. is limited to 1 mA for good valves by load resistors R2 and R4.

Rectifiers: The meter is again in the cathode circuit, but shunt R6 is across meter and R4 in series, giving a full-scale deflection of approximately 30 mA. Valve emission is limited to approximately 25 mA by the values of R3, 4 and 6 for a good valve. On rectifier tests, one side of the filament is connected to the cathode so that direct and indirectly-heated valves may be tested without extra switching.

Cathode leakage: Anode, screen and grid circuits are strapped together in this switch position. A 50-volt A.C. supply is connected via the meter in series with R5 to one side of the filament of the valve under test; the other side of the supply goes to the anode. C3 is connected between the filament connection and the cathode and completes the circuit. The valve rectified current is limited by the high impedance of C3, and limited to approximately 1.35 mA by R2 and R5 when C3 is short-circuited. Any leakage across C3 is indicated on the meter, and can be calibrated by substituting various values of resistance across C3, and marking the scale accordingly. Use any good amplifier valve to supply the rectified current.

Fig. 1—Theoretical circuit of the main part of the tester.

Fig. 2—Wiring to the valveholders.

www.americanradiohistory.com
Valve Tests: All settings are made so that the valve has the correct voltages applied to all electrodes. The meter is connected in the anode circuit and range switch S5 is operative, allowing the milliamps range to be set to cover the anode current for the type of valve being tested.

When switching on, the anode current rises and the meter indicates the average current flowing. Usual tests for softness are included, "gas" switch S8 being pressed to insert a 1 MΩ resistance in the grid circuit. Indication of a soft valve is given by excessive rise in anode current on this test. On pressing "mut.-con." switch S7, the resulting drop in anode current is related to the mutual conductance of the valve for the applied volts, giving a useful indication of the "goodness" of the valve.

Working Voltages

For general tests of valves other than diodes and rectifiers, it must be borne in mind that the meter reading is only the average of the anode current pulses, and a reading should be obtained in the region of half the normal current that would be expected for D.C. working applied volts to the electrodes. When determining the electrode voltages to be applied to compile data, attempts should be made to obtain readings of anode current such that the meter reads 2/3 full-scale deflection for a good valve. The "good," "query," "bad" section of the scale is then operative. The limits of the "query" range representing drops in anode current of approximately 10 to 35 per cent. This can be arranged by choosing normal working anode and screen volts, and reducing the grid volts until a convenient reading is obtained. Lower anode and screen volts can be used if the grid volts have to be reduced too low below the normal working value to get this reading. It is advisable to test power valves at anode and screen settings of about 100 volts in order to keep the anode current low enough for the meter ranges provided.

The values of average anode current and "mut.-con." are tabulated on a data chart, which includes pin-connections and voltage settings for the valve types. These are used as a standard of comparison for future valve tests. (Good valves are necessary when compiling data.) The "scope" sockets are connected across a resistance R7 in the anode circuit which is brought into circuit when the "scope" switch S9 is pressed, on any valve test position.

Using a 'Scope

With an oscilloscope connected, the shape of the anode current pulses can be observed, and with the use of a graduated scale, accurate measurements can be made of the anode current and mutual conductance. With a timebase of 100 c.p.s. the pulse shape is shown the full width of the timebase sweep, whilst the non-conducting half cycle provides a base-line trace. Fig. 3 shows the scale for fitting to the oscilloscope screen, the anode current for the applied R.M.S. voltages being measured vertically on the 45 and 135 deg. lines. This application is also useful.

![Diagram](https://example.com/diagram.png)

Fig. 4.—Details of the panel layout. See the illustration on page 714.
as an indication of any noise generated in the valve. Directly-heated valves must have one side of the filament connected to the cathode circuit on the pin-connecting panel, as no provision is made for this connection on S6, except for rectifiers. Testing of suspect valves must be proceeded by a "shorts" test. Leads are connected to the "shorts" terminals and a search made for electrode shorts on the valve base. This neon circuit is arranged so that a low test voltage is applied and there is no danger of false indicated shorts due to fine wire grids being pulled together.

Any leakage across the test leads results in the few extra volts required being supplied to strike the neon.

Constructional Details
The main items required are:
1. Meter.
2. Mains Transformer.
3. Pin-connecting Panel.
4. Rectifier.
5. Switches.

I. Meter. The choice was an ex-Government Western Electrical thermometer marked "air temperature indicator—model 606." This meter encloses a basic 1 mA movement and it is not difficult to fit a new scale, longer pointer, and to zero the pointer to the left-hand end of the scale. The new pointer is a sliver cut from the edge of 18 s.w.g. "hard" aluminium, beaten out and polished with emery paper until a thin section is obtained. The pointer is then cut to shape, and should be 2\frac{1}{2} in. long, and 1/16 in. wide, tapering towards the tip, spade-shaped at the other end, which is formed to a tube to slide over the pointer stub. A 90 deg. twist is inserted in the pointer \frac{1}{4} in. from the tube formed. This forms the pointer into a knife edge over the scales. Check the balance before fixing the pointer. The scale can be made in any of several ways, which have been fully covered in previous Practical Wireless articles, after marking it should be fitted to the movement.

Hair springs at each end of the movement balance one another in the zero position, and in shifting the zero to the left-hand end of the scale, both spring anchors must be moved through the same distance in the same direction. This ensures that the torque required to move the pointer off zero remains the same for the new position. Check the balance by tilting the movement from the horizontal to the vertical position, changes in position of the pointer indicating off balance.

Pieces of fuse wire can be wrapped round the balance arms until balance is achieved. Almost certainly after modification, the meter will require more than 1 mA for full-scale deflection, and it will be necessary to shunt the meter with a suitable resistance to give a full-scale deflection of 1.5 mA, this value being the basis on which the scale is designed. The dial is made of hardwood and a Perspex window is fitted, to the dimensions shown, to which movement and scale are fixed.

(To be continued)
It often happens that a certain component (or combination of components) in a receiver or other piece of equipment being constructed or serviced needs checking to ascertain if it is in good order. Also, and especially in experimental hook-ups, various components may be critical as to value, so that trial and error procedure is adopted until the best all-round practical values have been found. The components concerned are, of course, largely resistors and capacitors.

The experimenter also finds that certain resistance/capacitance combinations can be critical. A combined substitution box, enabling selection of both comparative resistance and capacitance values, is invaluable in such circumstances and can greatly speed up the preliminary tests—a flick of a switch or the insertion of a plug into a socket is much quicker than tedious soldering and unsoldering of the affected component(s).

Although these notes are written primarily for the guidance of newcomers, the experienced constructor who has never used a substitution box may find them food for thought. Such a simple unit can be of great advantage on the test bench. True, they are about as simple as any piece of equipment can be, yet once built up and put into use they will become one of the “indispensables.” Their very simplicity is deceptive and disguises their true usefulness.

The most flexible and easy-to-handle arrangements naturally obtained by building up the selection box around a multi-contact rotary switch, but a very simple idea is shown in Fig. 1. This is, in fact, a capacitor substitution circuit using a British seven-pin valveholder as the “selection panel,” with a different value capacitor wired from each pin to a common return line. One test probe is connected to this common return point and the other to a second terminal—the latter also being connected to a short length of flex terminating in a banana plug which is used as the selection plug. To select any of the values provided, the banana plug is inserted into the appropriate valveholder socket. Note that if a metal box is used to house the circuit, the positive test prod terminal must be insulated from the chassis. It is advisable to use the type of valveholder suggested in view of the larger diameter socket holes—octal valve pins are much smaller and some difficulty may be experienced in obtaining suitable plugs to fit the socket holes.

The values shown are merely suggestions; any other combination could be used to suit individual preference. Resistors could also be used if required or a combination type, using two valveholders—one for resistors and one for capacitors—could be easily constructed.

Switching
A quick-selection substitution box can be built up round a multi-way switch, the only difference being that the switch replaces the plug and socket arrangement (Fig. 2). Two advantages are that selection is easier and quicker and that a greater variety of values are possible in a given space. Assuming the use of a twelve-way rotary switch, the values given in the diagram are probably the most useful for general

Fig. 1. The simplest form of capacitor substitution panel.

Fig. 2. A switched version of a capacitor selector.
purposes. The number can be reduced or increased, or the values changed, according to individual taste and requirements.

A similar arrangement for resistors can be used, but here it will be found that for maximum versatility and usefulness a greater range of selection values will be needed. In this case two separate switching units can be used—one for high values, one for low values. The circuit of Fig. 3 shows how this can be arranged; suitable values are given. This arrangement has the added advantage that by using separate units in conjunction with each other intermediate values can be obtained. Using a shorting link, terminals 1 and 4 are joined together and terminals 2 and 3 become the test connections. By so doing it is possible to place any two resistors (providing they are in separate boxes) in series, thus obtaining extra values not initially provided for.

The resistance substitution box is amenable to a number of variations, despite its simplicity. For instance, if the unit is to be used for the calibration of test equipment, precision resistors could be used. For general-purpose testing, however, ± 10 per cent. tolerance components are suitable. Generally speaking, one-watt resistors should be used up to values of around 100,000 ohms, thereafter half-watt ratings (or quarter-watt for the megalohm values) are usually safe.

Combined Components

For a really "self-sufficient" test box, both capacitance and resistance units can be incorporated in one box. It is not intended to discuss the actual housing arrangements since readers will have their own ideas on the subject. One suggestion, however, is to use a small inverted metal chassis with a wooden or ebonite control panel. The switches can be fitted with a simple indicating "dial" marked with the appropriate values. A carrying handle made from webbing or a simple strap will add a nice touch to the finished job if the unit assumes more than vest-pocket proportions.

A variation on the theme is the decade box which, as the name implies, provides a selection of values (of resistance usually) in steps of 10 ohms. For this it is usual to use three rotary switches and a collection of resistors as shown in Fig. 4. Although generally used for calibrating test equipment and other precision purposes, it can be used much in the same way as the substitution boxes already described. If accuracy is the aim, the S1 can comprise the "tens" (that is, each resistor is 10 ohms), S2 the hundreds (each resistor 100 ohms), and S3 the thousands. Thus, by suitable adjustment of the three switches any value from 10 to 11,100 ohms (to the nearest 10 ohms) can be selected. Although commercial precision resistors with a tolerance of ± 0.01 per cent. can be used, this is an expensive way of doing things, and most readers would make up their own resistors using Eureka wire and observing the usual precautions against inductive effects and so forth.

For more general application, as with ordinary substitution boxes, standard resistors can be used.

One suggestion is that one bank can be used for 100's, one for 1,000's and the third for 10,000's. This would give a range of values from 100 to 111,000 ohms (to the nearest 100 ohms). A fourth switch could be added to increase the overall range of the unit to beyond a megohm. Note that although 10 resistors are used in each section, 11 contacts are required—thus a 12-way switch is generally necessary.

P.O. Board

Another way of laying out specific values of resistance is the Post Office resistance board. This has the virtue that only a small number of resistors are needed and in the example shown in Fig. 5 that number is only four. The resistors are mounted on a flat board with the five terminal points provided in addition to a jumper or shorting link. The whole thing is done on the plug-and-socket principle.

To use the board one refers to
a table which depends on the basic resistance values fitted. To take an example from the table shown below: a resistance of 600 ohms is needed. Simply take the test connections to terminals 2 and 4. Again, if a value of 250 ohms is wanted, the nearest on the list is 242 ohms, and to obtain this one test prod is connected (or plugged into) terminal 2 and the other to terminals 3 and 4 (these two having been joined together). In all cases, one test lead is taken to the first terminal given; the second test lead is taken to a more representative selection from which to choose.

A few simple calculations will enable all manner of variations to this scheme to be worked out. A reference chart (similar to that shown with Fig. 5), could be pasted on the actual board for quick reference.

Combined Panel

Going back to substitution boxes, a brief description of a combined resistance/capacitance panel made up by the writer years ago may be of interest. The circuit is given in Fig. 6 and it is so simple that it is a good proposition for beginners. There are 15 resistors and 15 capacitors arranged in much the same way as previously described but with a few extra "spare" terminals. These are very handy because they can be used to provide any arrangement of parallel capacitance, parallel resistance, or a combined parallel R/C combinations. Also, of course, it will be obvious than any series R/C combination can be used.

This type of substitution box or panel proves that although switched units are probably more convenient in use they have certain limitations. For instance, to select any one capacitor (or resistor), the test probes are connected to the "common" socket and to the appropriate socket of the required value. Combined parallel sets of capacitors can be obtained simply by plugging in shorting jumpers where required (i.e., to get 175 pF, join up the 100, 50 and 25 pF outputs). Again, any series pair can be obtained by inserting the test prods into the free ends of the required pair. The fact that series or parallel resistance/capacitance combinations can be obtained on tap will be of great help to those experimenting with filters and similar work.

A very useful test box can be built up in the form

the combined shorted terminals in the second group of figures—assuming that more than one figure is listed. In other words, the four basic resistors are used in a variety of series and parallel connections. With four resistors, 37 different values can be obtained.

Although this system gives a fairly wide range of values to choose from, the overall limits are somewhat small as will be seen from the chart. To overcome this, the answer is to have a series of such boards. Using a simple example, resistance values of 10 times those already shown (and using the same connections) are obtained by using basic resistances of 10 times the value (i.e., 1,000, 2,000, 5,000 and 10,000 ohms). The range can, by this method, be extended in either direction. Perhaps a better scheme would be to use resistors of greater difference so as to obtain shown in Fig. 7. The basic unit, based on a multi-contact switch, consists of the usual standard resistors and capacitors but has additional provision for two volume (or tone) controls, since it is often desirable to be able to check a suspected variable resistor in a faulty receiver; this enables it to be done without the need to wire in a new control. The various switch positions may, of course, accommodate any component the user considers would be of help. For instance, if a small neon lamp is included this will enable a quick check to be made on "live chassis" receivers that the mains are connected in the safe position. An output transformer could be fitted—this could drive a bench speaker. A choke is another possibility.

With the single switch the unit is quite useful but, it can be greatly improved by the addition of another switch assembly. In the single switch version any
volume controls fitted must have a third separate contact socket. But with the addition of another switch, the third contacts of the potentiometers can be connected to contacts on the second switch—the idea being shown basically in Fig. 7. The main advantage, however, is that using two switch units (not ganged, of course), two separate components may be inserted into two separate circuits, simultaneously, thus greatly increasing the flexibility of the box. In use, test leads are plugged into the output sockets of the substitution box and placed into the required circuit by their free ends terminating in crocodile clips. Naturally, the purpose of each switch position should be clearly marked on the panel of the box.

In these few brief notes, various types of substitution boxes have been discussed. No two people have the same ideas on what they consider necessary in such aids, the final selection of values and scope of the unit being largely dependent on the type of work normally carried out. However, with the suggestions given, the make-up of a substitution box to suit individual tastes should present no difficulties.

![Diagram](image-url)

Fig. 7.—A useful basic test unit, and a suggested modification.

R.S.G.B. Exhibition

The Eighth Annual Amateur Radio Exhibition, organised by the Radio Society of Great Britain, will be held as in former years at the Royal Hotel, Woburn Place, London, W.C.1, from Wednesday, November 24th, to Saturday, November 27th, both dates inclusive. The exhibition will be opened at 12 noon on the 24th by Mr. H. Faulkner, C.M.G., B.Sc.(Eng.), M.I.E.E., F.I.R.E., director of Telecommunications, Engineering and Manufacturing Association. Mr. Faulkner was, until recently, deputy engineer-in-chief of the G.P.O.

As in past years, the exhibition will be supported by companies who specialise in the provision of valves, components, metal work and publications for the radio amateur. In addition, the Services will be represented.

Members of the R.S.G.B. will exhibit a wide range of home-constructed equipment of modern design, including miniaturised, portable and mobile transmitter-receivers for use in connection with the Radio Amateur Emergency Network. Amateur television will be represented by the actual equipment used by Messrs. W. R. and J. Royle, G2WJ, for their historic 70 cm. tests. Single side-band equipment will be featured, as will V.H.F. and V.H.F receivers and transmitters.

New editions of "A Guide to Amateur Radio" and the "R.S.G.B. Amateur Radio Call Book" will be on show on the R.S.G.B. stand together with examples of amateur-built equipment, which has been or is to be described in the Society's journal.

The exhibition will open at 11 a.m. and close at 9 p.m. each day. Admission is free.

Bel Sound F.M. Tuner

Bel Sound Products have produced a kit for a superhet F.M. tuner, with wide-band I.F. amplifier and stable oscillator, running at 90-110 Mc/s. A ratio detector with infinitely adjustable A.M. rejection is provided. The first of three identical high-gain V.H.F. R.F. pentodes acts as R.F. amplifier. It is matched by a pi-network to that portion of V2 which acts as I.F. amplifier. The third valve feeds the discriminator, which is the latest type of ratio detector. The A.F. output appears as the in-phase results of a bifilar winding, and tertiary winding, and the demodulators are two matched germanium crystals. De-emphasis is incorporated, or can be omitted, resulting in a 6 db octave rising characteristic. Booklets are available at 2s. Weak field strengths do occur, in steel buildings, or immediately behind hills, and an I.F. stage may be added in such cases.

The kit is available with all miniaturised components fully worked chassis finished in Admiralty Blue glossy enamel. The coils are prealigned, although an alignment service is offered at 10s. 6d.

Miniature Parts

The minimum of valves and components ensures absence of background noise, no drift complications, alignment permanence, incidence of valve failure and small power consumption. In addition the receiver utilises all miniaturised components and a separate Power Pack is available. The price is £7 5s. with valves, or ready assembled and tested for £11 17s. 6d.
AN EXPLANATION OF THE PRINCIPLES AND CIRCUITS COMMONLY USED

By A. Thomson

(Concluded from page 686 November issue)

It is rather early to give a detailed report on the design that FM receivers in this country will follow, and so a short survey of the types of receivers that are being used in the U.S.A. and Germany will be given. These countries have had a FM system operating now for a considerable period.

Receivers

In the U.S.A. most receivers are of the two-band type capable of receiving the broadcast band (this is equivalent to our Medium Waveband) and the V.H.F. band for FM reception. They are designed to use as far as is possible the same valves for FM as they do for AM, and designers have got up to some very clever schemes. Not all of these receivers are capable of giving the highest fidelity of reproduction that was mentioned at the start of this article. Their big advantage is the freedom from noise and from interfering stations on either side of their carrier frequency, so that FM affords an overall improvement in reproduction over the congested broadcast bands. Of course, some of the larger sets are designed expressly for the highest quality of reproduction and reproduce faithfully the audio frequencies up to the highest limit (usually 15 Kc/s).

In Germany a large number of super-regenerative receivers have been produced, and the danger from these receivers is the oscillation sent out on the aerial and the interference caused to other sets. However, the authorities have issued stringent regulations to prohibit this oscillation taking place.

The majority of sets in both countries have followed the superheterodyne types and they have been combined to receive AM and FM. The tuning condensers for FM consisting of a unit of approximately 10 to 15 pf are built in with the main tuning condensers. Tuning condensers of this type were shown by British firms last year. There appears to be no difficulty in the designing of I.F. and discriminator transformers and the arrangement in these combined sets is that an I.F. transformer for 470 Kc/s and one for 10.7 Mc/s are used. These are switched into circuit dependent on which Band it is desired to use. Many of these receivers employ a ratio discriminator and so do away with the limiter stage, but they sometimes have to add an extra I.F. stage so that a large amount of signal will be fed to the ratio discriminator. However, as most of these sets work in the service area the one I.F. stage is usually found sufficient.

A form of permeability tuning used in some German receivers for tuning the V.H.F. band was shown last month. The drive cord is attached to the main tuning drum.

In this country we have not been standing still in the field of FM on the V.H.F. band and our valve manufacturers have given us special valves for use in these receivers. A circuit which will be popular will be the earthed grid input or R.F. stage using a triode valve. The other half of the double triode can be used as an additive mixer stage. This valve, the Mullard ECC85, has very extensive screening between the triode sections and the use of such a valve in the circuits mentioned will reduce radiation from the oscillator to the aerial. Other valves in this range released by Mullard are the ECH81 triode heptode which can be used as a frequency changer on conventional AM bands and switched over to function as 1st I.F. amplifier on FM. A valve specially designed for I.F. work on FM is the EF85. This valve can also be used as an I.F. amplifier for AM reception. Most constructors are familiar with the double diode triode, and now in FM we meet the triple diode triode, the EABC80. The EABC80 can be used in a combined AM/FM set as a ratio detector and 1st AF amplifier when receiving FM, and as an ordinary detector and 1st AF amplifier when using AM.

Converting A.M. to F.M.

What of converting present-day AM sets to receive this new band? Converters will most likely take the form of a tuner or feeder unit which will plug into the audio circuit of the present set. The feeder unit will consist of an R.F. stage, frequency changer, I.F. stage, limiter and discriminator stages. Do not forget the need for a power pack as not many sets will supply the power requirements for the feeder unit.

Aerials

What about aerials? These will for the most part be simple dipoles erected indoors in the loft or outside on the window frame. In the outdoor areas a dipole with reflector may be necessary for good clear reception, but it is the intention of a FM service that only simple dipoles will be needed to give good reception within the service area of the V.H.F. transmitters. No doubt the aerial manufacturers, who have served us so well with TV aerials, will provide aerials for Band 2 which can be fitted indoors in the room, in the loft, or for attaching to our present TV aerial mast.

FM introduces new problems in the servicing and alignment of these sets, but a description of these must wait until a later article.
INTERNATIONAL ADDRESSES

Name: ___________________________ Age: ______
Address: __________________________

PRACTICAL WIRELESS

December, 1954

"AVO" Precision Electrical Testing Instruments

A dependably accurate instrument for testing and fault location is indispensable to the amateur who builds or services his own set.

The Universal AvoMinor

(as illustrated) is a highly accurate moving-coil instrument, conveniently compact, for measuring A.C. and D.C. voltage, D.C. current, and also resistance: 22 ranges of readings on a 3-inch scale. Total resistance 200,000 ohms. Size: 4ins. x 3ins. x 4ins. Complete with leads, interchangeable probes and crocodile clips, and instruction book.

Price: £10:10:0

The D.C. AvoMinor

is a 24-inch moving-coil meter providing 14 ranges of readings of D.C. voltage, current and resistance up to 600 volts, 120 milliamps, and 3 megohms respectively. Total resistance 100,000 ohms. Size: 4ins. x 3ins. x 4ins. Complete as above. Price: £5:5:0

Safe Proprietors and Manufacturers:—

AUTOMATIC COIL WINDER & ELECTRICAL EQUIPMENT CO., LTD.
Winder House, Douglas Street, London, S.W.1. Phone: Victoria 3404-9

DULCI RADIO/RADIOGRAM CHASSIS

FULLY GUARANTEED

Built to Highest Technical Standards.

DIRECT FROM THE MANUFACTURER

<table>
<thead>
<tr>
<th>Chassis</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>£12/12/0</td>
<td></td>
</tr>
<tr>
<td>£15/15/0</td>
<td></td>
</tr>
<tr>
<td>£18/18/0</td>
<td></td>
</tr>
<tr>
<td>£15/15/0</td>
<td></td>
</tr>
<tr>
<td>£18/18/0</td>
<td></td>
</tr>
<tr>
<td>£23/2/0</td>
<td></td>
</tr>
</tbody>
</table>

For A.C. Mains 100/120 and 200/250 volts

Model B3—Long, Medium, Short
5 Valves. Output 50 watt
£12/12/0

Model B3—Plus Push Pull Stage
6 Valves. Output 50 watt
£15/15/0

Model B3—Double Feature with P/Pull & R.F.
Stage, 5 Valves. Output 50 watt
£18/18/0

Model B6—Six Wavebands, Med., Long, 4 Short.
5 Bandsp, 5 Valves, Output 30 watt
£15/15/0

Model B6—Plus Push Pull Stage
6 Valves. Output 50 watt
£18/18/0

Model B6—Double Feature with P/Pull & R.F.
Stage, 7 Valves. Output 6 watt
£23/2/0

ALL PRICES TAX PAID

Bacchusheen for 6in. x 6in. dial, 4in. extra. Matching speakers P.M. type 3 ohms, 8in. or 12in. available. Chassis sent under money back guarantee conditions against remittance. Free particulars from the manufacturers.

THE DULCI CO. LTD.,
99 VILLIERS RD., LONDON, N.W.2. Telephone: Willesden 7779

T/V TECHNOLOGY
RADIO ENGINEERING
ELECTRONICS
RADIO SERVICING

There's a big future in T/V and Radio. Act now! Increase your knowledge. Back up experience with a sound theoretical background. I.C.S. offer courses of instruction in:

T/V TECHNOLOGY
ADVANCED SHORT-WAVE RADIO
RADIO ENGINEERING
RADIO SERVICE ENGINEERING
RADAR
ELEMENTARY ELECTRONICS
FREQUENCY MODULATION

I.C.S. will also coach you for the following examinations:—

B.I.R.E.; P.M.G. Certificate for Wireless Operators; Radio Servicing Certificate (R.T.E.B.); C. & G. Telecommunications, etc., etc.

DON'T DELAY—WRITE TO-DAY for free descriptive booklet, stating which subject or examination interests you. Fees include all books needed. Examination students coached until successful. Reduced terms for H.M. Forces.

INTERNATIONAL CORRESPONDENCE SCHOOLS,

Please send booklet on

Name: ___________________________ Address: ___________________________
(Letter head, please)

www.americanradiohistory.com
PATTERN GENERATOR TYPE 4

Price £8.0.0 (Postage and packing 3/- extra.)

- 40-70 Mc/s
- A.C. mains operation
- Direct calibration
- Frame and line time base calibration and linearity.
- Vision channel alignment
- Sound channel and sound rejection circuits
- Vision channel bandwidth, etc.

EASY PAYMENT TERMS AVAILABLE ON ALL OUR INSTRUMENTS

SIGNAL GENERATOR TYPE 10

Price £7.10.0 (Postage and packing 3/- extra.)

- 100 Kc/s to 100 Mc/s
- Modulated or unmodulated carrier
- Direct calibration
- Adjustable 400 c.p.s.
- AF signal
- Stable RF oscillator
- Large, easily read scale
- A.C. mains operation.

Obtainable only direct from the manufacturers. Send for full technical details or call at address below.

HOMELAB INSTRUMENTS LTD.,
615-617, HIGH RD., LEYTON, LONDON, E.10

Telephone: LEY 5651

You can rely on us
JUST A FEW ITEMS WE STOCK:

NEW JACKSON CALIBRE SCALE AND DRIVE, calibrated in figures and self marking scales. Price £4.5.0. Made by Johnstone & Co., Glasgow and variable condensers, 10/-.

TRANSFER.-Set for amplifiers and receivers, 3/6. Test equipment in general. Black crackle plates, 3.5/-.

PATTERN GENERATOR TYPE 4 SIGNAL.-Stable 22/8 Mc/s, 17/6. Yost 1/6.

Obtainable only direct from AF 100.

Price £7.10.0. We have Truvox. Tape Molds and Wearite tape docks available. H.P., ask for details (Also all Avo Instruments.)

A FEW SURPLUS BARGAIN COMPONENTS:-
25 mfd, 25 v, very small, 1/6 each (6 for 7/6); 8 mfd, 450 v, 2/6; 55 mfd, 550 v, 1/- each; 12-35 mfd, 450 v, 8/-; 3-5 mfd, 500 v, 4/-; 2-5 mfd, 1-6 ohm ex-Govt., headphones, 12/6 pair; 4/600 values, 7/6; 6/6A, 7/-; 32/2, 8/6; 13GT, 12/-; 153, 14/-; 12AU, 6/6; 12AT7, 8/6. All the above are Brand new and clean.

WE STOCK all enamel, silk, cotton, Eureka, tinned copper instrument wires. Resistors, 1 w, w, 4d; 1 w, 80; 2 w, 1/6; 1/6; 10 w, 2/-; Midget 1 w, 6d; 1 w, 6d. All values from 10 ohms to 10 meg. High stab. 2% precision 1 w, 1/- each, 100 to 2 meg. Over a million in stock. Linar pots, up to 100 K. 3/-: 1. 5 K.; 6/6: 1, 1. 1 m; 2, 6 off; with centre tap 7/6. Midget 3-pin plug and socket. 1/-; 4-pin, 1/3: 5-pin, 1/6. Build three colour panel fitting, contains three bulbs that can be picked to give any one of three colours. 12/-6. Charger transformers 3 v, 6 v, 12 v, at 2 a, 1954; at 4 mams, plus 31 v at 2 a.

MIDGET HUNTS MOLDS SEAL CONDENSERS,-£0.00, 3/0, 10/-.

RES. 0.003; 60, 3/0; 0.006, 0.1; 3 mfd, 6/-.

Write for our 6d. Catalogue and we are pleased to quote any component you may require.

RADIO SERVICING CO.,
82, SOUTH EALING ROAD, LONDON, W.5.

SPECIAL OFFER

G.E.C. & B.T.H.
GERMANIUM CRYSTAL DIODES
1/- each. Postage 2/3d.

Diagrams and three Crystal Set Circuits Free.

A large purchase of these fully GUARANTEED diodes from the manufacturers enables us to make this attractive offer.

POST RADIO SUPPLIES,
33, BOURNE GARDENS, LONDON, E.4.

EQUIPMENT FOR YOUR WORKSHOP

BATTERY CHARGERS, A.C. mains. Charge 2, 6 or 12 volt Batteries at 2 amps. In Grey Steel Case, 8 x 6 x 4 at half normal price. Carriage paid. £3.10.0.

P.K. SANDBLAST. Ideal for cleaning valve bases, Sparking Plugs etc. Operates from transformer. Instrument, abrasive compound, instructions, etc. Post paid, 25/.

RES./CAP. BRIDGE KIT. 6 range. 10 ohms to 5 mohm.—500 pl, to 50 mfd. Instructions, diagrams, etc., 31/6. Post 1/6.

INDUCTANCE BRIDGE KIT. 3 ranges. 50 mly., to 100 Hy. 42/6. Post 1/6.

AUDIO FREQUENCY BRIDGE KIT. 50 to 16,000 cycles, 38/6. Post 1/6.

R.M. TWIN MULTIOMETER KIT. 25/- Post and packing 1/6.

SPOT FREQUENCY SIG. GEN. KIT. Six switched frequencies, 3 medium and 3 long waves. Fully screened, 35/- Post 1/6. Illustrated leaflet on request.

RADIO MAIL,
RALEIGH STREET, NOTTINGHAM.

December, 1954
A Criticism of Critics

EVERY journalist likes to receive not only letters of praise, but letters of criticism. It is his hope that the letters in praise will be greatly in excess of those of criticism. Such has been my experience, and it has been my custom always to deal with the latter, whereas it is de trop to deal with the former, on the principle that self praise is no recommendation.

Criticism is stimulating and informative, provided that it is made bona fide and couched in reasonable terms. On a very few occasions letters of criticism are received which are neither bona fide nor written in reasonable language. Polite letters invite polite replies, but the malicious letter writer, the waspish critic, the critic with the adder fang can hardly expect the contributors concerned to turn the other cheek, even though the gentle answer is expected to turn a deaf ear.

A few weeks ago a bombastic letter was received from one, C. C. Lewry, who hails from the salubrious district of Hanworth. He says: "I wish to protest in the strongest possible terms on the way in which I and at least three other members of my department were caught to-day by the front cover page of PRACTICAL WIRELESS dated November (on which was depicted the P.W. Tape Recorder). This just advertises the P.W. Tape Recorder, and naturally we expected to be able to construct a tape recorder complete. It turned out, however, that all were disillusioned. The article dealt with an amplifier for a recorder already in existence. The laws of libel forbid me to say more, but I shall be very sure to steer clear of your periodical in the future and I am sure that my friends will do the same."

The cover conveys no such suggestion. It merely says "The P.W. Tape Recorder," several articles on which have already appeared. When our cover draws attention to constructional articles it is the custom to say "Building the..." The constructional details of the P.W. Tape Recorder have already appeared, and therefore Mr. Lewry's letter discloses the fact that he is not, as some might claim, "a regular reader from No. 1." It is obvious that he is just one of those casual readers. Every editor and journalist is accustomed to the phrase "I and my friends are disgusted with etc., etc., and we have all agreed not to take your journal etc., etc." Such letters are never sent by regular readers. They usually emanate from those who haunt free libraries or from those who are not regular readers. Mr. Lewry seeks to ignore the fact that a tape recorder consists of a tape deck and accompanying amplifier. In previous designs, we have utilised commercial tape decks as these are in general beyond the ability of the amateur to construct. A tape recorder design, then, consists of a suitable amplifier with switching gear, to suit the particular tape deck, plus the necessary interconnection scheme for the heads, etc. In the tape deck design in question, we used the deck specified for the "Sound Master," as this may be obtained in separate parts by the home constructor and assembled at home, or purchased as a ready-made unit. Our readers, however, have asked for an even cheaper design and the present one has been produced to satisfy those readers. It has the further advantage that it may be converted if desired to the first-class amplifier originally used. Instead of writing a reasonable letter inquiring about the matter, Mr. Lewry dips his pen in vitriol and slashes off the letter I have quoted above. Whilst I as a contributor like to be on the friendliest terms with readers, a state of affairs which has existed for over 21 years, I prefer to be without the casual offensive sort. R. P. Harvey, of Gordon House, Bromsgrove School, Worcs, is another would-be critic of this type. This critic sets himself up as an unpaid corrector of the technical press and in a recent offensive missive criticises in general terms some of our technical matter. He gave no specific examples, but with a supercilious sneer suggested that he would be able to put the matter right. Of course, schoolboys will have their joke, and it turned out that R. P. Harvey is just a schoolboy in the seat of learning I have named. It is obvious that he had not purchased either this journal nor any of our technical books, probably having access to them in the school library. When tackled, this bumptious youth at once caved in, and failed to justify his criticisms when pressed to do so. Naturally, this journal is concerned if criticisms are made, and the matter was taken up with the Principal of Bromsgrove School, who speedily assured us that Master Harvey was merely expressing his own views. It has been pointed out to him that students who write offensive letters on school notepaper can bring discredit on the school, as well as landing them in further trouble. Splenetic letters are seldom based upon reason. They are conceived in hate and bred in malice, and must be dealt with as such.

Schoolboy Harvey admitted in his letter that he had very little technical knowledge! By this time, I am certain, he has learned the error of his ways. If you wish to write a letter of criticism, couch it in reasonable language; do not automatically presume that you are right and that the contributor is wrong. There is always the other point of view, and it is my experience that in the majority of cases it has been the critics who are wrong.
THE usefulness of an amplifier can be considerably increased by using a tuner unit to permit radio reception, and such units need not be of complex design. Many amplifiers have a far better frequency response than the usual receiver of general type, and excellent reception with high-quality reproduction can then be obtained. The tuner may have pre-set or fully variable tuning, and be for local station or distant reception. For local stations, a number of T.R.F. circuits can be used, while a superhet circuit is best when occasional long-distance reception is required, or if the BBC transmitters are poorly received in the locality where the equipment is used. With a superhet tuner and a powerful amplifier, a large number of stations can be received at excellent volume, and with a degree of quality satisfactory for all general purposes.

In general, it is possible to derive current for the smaller type of tuner from the amplifier itself, so that no additional mains section is required. But with larger tuners having more than one valve, the transformer and rectifier ratings of the amplifier should be checked to see that no overloading takes place. If insufficient current is available, then a power-pack for the tuner should be made. This can employ a small mains transformer of suitable rating, and preferably a full-wave rectifier.

The simplest circuit is shown in Fig. 1, and employs a crystal diode. It is only suitable for use where a reasonably good aerial and earth can be provided, and in localities where the local BBC stations are well received. Under such conditions, excellent results can be obtained. A dual-wave coil is suggested, for reception of long- and medium-wave stations, but a coil for medium waves only may be used. In some Midland areas reliable reception, at ample volume and interference-free, may be obtained from Light, Home and Third Programme transmitters with such a circuit.

An earth is almost essential, and volume is very much reduced without it. An outdoor aerial is desirable, but quite good results are possible with a fairly long indoor aerial. Apart from its low cost and simplicity, this circuit has the advantage that no current is required from the amplifier, and no power-supply leads have to be arranged. In suitable areas, for local station reception, it has a definite practical utility.

1-Valve Tuner

If an earth cannot be provided, and the aerial is poor, a tuner using valves becomes essential. It is also necessary in areas where the BBC transmitters are not well received. If simplicity and low cost are important, the circuit in Fig. 2 can be used with success. It employs a standard medium wave (or dual-wave) tuning coil, with reaction. It is in no way a "quality" tuner, but nevertheless can give good results, while the use of reaction very considerably increases range and selectivity. It is particularly suitable for small two or three valve amplifiers which are not designed to give high quality reproduction. With them local and other stations can be received at good strength and satisfactory quality.

As current for one additional valve can usually be derived from the amplifier, the valve should be chosen with this in view. For 6.3 volt A.C. operation, or .3 amp. A.C./D.C. operation, the 6J7 type is satisfactory. It is desirable to arrange a socket strip or similar connector on the amplifier, so that H.T. and heater currents can be drawn by plugging in the tuner. For A.C. operation from a mains transformer, the heater current will be taken from the 6.3 volt heater secondary of the transformer. For A.C./D.C. operation, such as employed in the very simple amplifiers, the tuner valve heater should be connected between chassis and the heater of the first valve in the amplifier. In this case, the circuit will have to be completed when the tuner is not in use, or the heaters of the valves in the amplifier will be disconnected.

Fig. 1.—A simple crystal diode tuner.

Fig. 2.—A simple one-valve tuner.
remain dead. It is also necessary to take the usual precautions required with all A.C./D.C. equipment, since the supply points (and usually chassis) will be common to one main. Chances of severe shocks will be much reduced by assuring that the low-potential, "earthed" or "ve main is the one going to chassis. With A.C./D.C. equipment, no direct earth must be used on the tuner. If an earth is used, a condenser of about .05 μF; 750 volt working, should be included in series with the lead. A condenser of ample voltage working must also be included in series with the aerial, to keep mains voltages out of this wire.

An R.F. Tuner

A circuit for this type of tuner is given in Fig. 3, and though its range is no greater than that of the one-valve tuner in Fig. 2 the standard of reproduction is higher. It may, therefore, be used with high-class amplifiers, and as there is only one valve it should still be possible to derive current from the amplifier. Pre-set tuning is indicated, stations being selected by means of a push-button switch or rotary switch. This provides simple and accurate tuning, while it should be remembered that the tuner is in any case unsuitable for long-distance results. The pre-sets are switched in pairs, and each pair adjusted for best results from the appropriate station. For stations of fairly low wavelength, .0001 μF to .0002 μF maximum capacity pre-sets will be suitable. Those stations of higher wavelength in the medium-wave band (up to about 400 metres) will require .0003 μF maximum capacity condensers, while .0005 μF will be required to reach the high wavelength end of the band with standard coils. For the latter dust-cored components may be used.

The layout of this tuner is more critical than with those previously described. Leads should be reasonably short and direct, and the coils should be screened or situated one above and one below the chassis. If this is not done, instability is likely, especially when the gain control is set at maximum.

Long waves could be pro-

Coupling Circuits

Some simple amplifiers have no grid input lead, it being intended that this be provided externally, by magnetic pick-up or microphone, etc. With these, a grid load must be provided, either in the form of a resistor of about .5 megohms, or a transformer secondary.

Such a stage is shown at "A" in Fig. 4, where transformer coupling between tuner and amplifier is illustrated. The transformer should be of the inter-valve coupling type, of about 1:3 or 1:5 ratio. This is a simple method of coupling the tuner in Fig. 1, when maximum volume is required, and the amplifier is of small type, of moderate gain, and not primarily intended for high-quality reproduction. In these circumstances very satisfying results are obtainable.

The circuit at "B" in Fig. 4 shows capacity coupling, it being assumed that a volume control is already present in the amplifier, as is usual in all but the very simplest equipment. For the tuner in Fig. 1, R1 may be 100 k. The presence of two condensers isolates the tuner from the amplifier voltages. If the amplifier is of A.C. type, with chassis earthed, the .1 μF condenser may be omitted.

For coupling the tuner shown in Fig. 2, it is only necessary to take the "Output" lead to the input socket in Fig. 4 "B" to which the .01 μF condenser is connected. R1 and the two condensers in Fig. 4 are not required.

With the circuit in Fig. 3, either of the methods given for the tuner in Fig. 1 may be used. However, in order to achieve the highest degree of quality, capacity coupling is desirable, while the .1 μF condenser will in any case have to be omitted since a continuous and direct connection is required to furnish H.T. to the valve.

To avoid unnecessary hum and possible instability, the leads from tuner to amplifier should be reasonably short, and leads carrying A.C. should not be near
those carrying the A.F. signal. If necessary, the A.F. signal lead from detector to valve grid or associated circuits may be screened, the braiding being earthed. This will guard against instability and hum.

A Superhet Tuner

With the tuners so far described, lack of high sensitivity largely contributes towards the avoidance of interference. In some areas, however, additional selectivity and sensitivity are essential, and a tuner with two R.F. stages, or of superhet type, becomes necessary.

Such a tuner is shown in Fig. 5 and employs three valves. The coils may be standard aerial and oscillator types, for 465 kc/s intermediate frequency, or a ready-made coil-pack can be employed. If the latter has a short-wave range, the usefulness of the tuner will be further increased. As a general purpose unit, it is sensitive, selective and stable, and will give much better results than the tuners previously described.

The valves may be operated with heaters in parallel, from a 6.3 volt transformer, or with heaters in series, for A.C./D.C. .3 amp. circuits. (In the latter case, no direct earth must be used.) No volume control is provided, since it is assumed that this is already present in the amplifier, as shown at "B" in Fig. 4. If no such control is present, then it may be added to the tuner. To do this, a .5 megohm potentiometer will be required, and will be wired from "output" lead to H.T. lead (Fig. 5). The output to the amplifier will then be taken from the potentiometer slider (centre tag).

The band-width of this circuit may be increased by slightly staggering the I.F. transformers, or by connecting resistors in parallel with some of the windings. For the latter, values of 3 k in parallel with the secondary of the first transformer and primary of the second transformer are suggested. Lower values may of course be used.

Finally, if a triode is available instead of the double diode, the circuit in Fig. 6 can be adopted, and is a good one. With this, it will be necessary to abandon the AVC circuit, or to use a H.F. rectifier for this, unless a diode is also to be made available by using a fourth valve in this capacity.

![Figure 5: A superhet tuner.](image)

![Figure 6: The well-known infinite impedance detector.](image)
UNDISTORTED output is the most important of valve details, as it gives a true indication of the power which the valve will deliver. For example, if we know that a particular valve will give an undistorted output of 500 milliwatts (or .5 watts) and that another valve gives an undistorted output of 1,000 milliwatts we know that the latter valve has twice the undistorted output.

Transformer Curve

In addition to the valve curves the makers of L.F. transformers also publish similar curves which indicate the degree of amplification which may be obtained with those components at various frequencies. It is thus a simple matter to design the amplifier so as to obtain even amplification by choosing two transformers so that the deficiencies of one are compensated for by a high performance of the other. That is to say, if one transformer curve shows that that particular component falls off above 2,000 cycles it is possible to choose a second transformer which has a rising characteristic at that point, and by careful matching overall response will be even.

Pick-up Characteristics

The makers of gramophone pick-ups also publish curves, which are similar in principle to those mentioned above. That is to say, they indicate the level of the response which the pick-up gives, and their use is the same, namely, to enable the amplifier to be designed so that even reproduction of all frequencies is obtained.

The type of the above-mentioned curves is such that they have for their ordinates frequencies usually extending from about 20 cycles to 10,000 cycles, and the co-ordinates are given in terms of amplification. The performance of the component is then indicated by a heavy line running across the graph, and the straightness of the line shows its goodness.

Very few manufacturers of complete receivers or amplifiers issue characteristic curves of the complete apparatus, and manufacturers of loudspeakers are also not, as a rule, willing to issue such a curve. The design of the set may, therefore, only be worked out with respect to the choice of the transformers, pick-up, valves and, in some cases, the condensers.

The above remarks should, however, be sufficient to enable a really straight-line reproducer to be designed in such a manner that all component deficiencies are compensated for.

The Loudspeaker

The loudspeaker is the instrument in the set which transmits to our ears the result of what has been happening within the set itself. No matter how carefully a set has been designed or made, if the speaker is wrongly matched or unsuitable for the set, the result as far as the ear is concerned is unsatisfactory.

The sounds we hear are set in motion by means of the loudspeaker cone, and therefore the position of the speaker in a room in relation to curtains and furniture is very important. When, as is mostly the case to-day, the speaker is built into the receiver, it is sometimes difficult to site the set that best results are obtained. Mostly a set is placed near a window to facilitate the fitting of short aerial and earth.
leads, and so the best position for the set cannot be used. The design of the receiver itself often means that the speaker is not located in the best position in the cabinet. Its position is often decided by that of the tuning control and the gramophone turntable. These are positioned for convenience of operation, and this means that the speaker has to be placed at the bottom of the cabinet and close to the floor.

We are accustomed to hearing the sound of the human voice from a point at an average height of from 5ft. to 6ft. above the ground, and therefore the best height of the speaker is between 5ft. and 6ft. If the speaker is fixed low and the cabinet is standing on a thick pile carpet, close to heavy curtains, as is often the case, the air vibrations are bound to be damped considerably, and will affect the tone of the reproduction. Those who seek after high fidelity reproduction still prefer to have the speaker separate from the set, and away from it, so that the best possible position for it can be found. A corner can often be utilised to advantage owing to the reflection caused by the diverging walls and frequently more pleasing results are obtained when the speaker is placed fairly high so that there is a fair amount of sound reflection from the ceiling.

The Output Filter

There are two reasons why an output filter is fitted to a set; first, that the filter properly arranged will help to match the impedance of the speaker with that of the output valve and, secondly, the filter isolates the speaker from the anode current flowing in the output valve. Only the low-frequency signal current passes through the loudspeaker, and this is important advantage of low cost since the only components required are the output choke and a fixed condenser. The output choke generally should have an inductance of about 20 henrys, and the condenser should be of 2 or 4 μF capacity. The advantage of this scheme is that when long extension leads are used it is only necessary to run one wire from one of the fixed condenser terminals of the output filter to the speaker and the other wire from the speaker to the nearest earth point.

![Fig. 91.—A simple output measuring device. The resistance may be made up by using bare resistance wire wound over a thin former.](image)

The Output Transformer

When a transformer is used the latter component should be of first-class manufacture. The impedance of the secondary is often less than that of the primary, but in some models the primary and secondary are exactly the same. In some cases a drop in signal strength may be noticed when using a 1-to-1 transformer as compared with a choke output. This is often due to a poorly designed transformer.

Matching the Speaker to the Output Valve

It is first necessary to remember that there is a certain current passing through the speaker, and that there is a certain voltage across its terminals. We have seen in an earlier article that volts multiplied by current in amps equal watts, and that watts are a measurement of power. We want to get as much power or as many watts as possible into the speaker. Take two extremes. If the speaker has a negligible resistance we should obtain a large current but practically no voltage across the terminals and therefore zero watts. But the other extreme is, if the resistance of the speaker is very high, we should get a high voltage but no current. The result as before would be zero watts. Somewhere between these two extremes there is a value which will give maximum watts, and correct matching of the speaker depends upon finding that value, (which depends upon the characteristics of the output valve termed the optimum load) for that valve.

The only instruments required for testing are a milliammeter and a wire-wound resistance of, say, 10,000 Ω. The meter should have as low resistance as possible so that we can ignore its resistance in arriving at results. The resistance is usually marked somewhere on the instrument but it should not exceed 200 Ω.

Now, disconnect the speaker, and connect up the milliammeter and the resistance to the output terminals of the receiver as shown in Fig. 91.

(To be continued.)
The Best Value for money offered TODAY

The Alpha AMPLIFIER

This is not a kit of parts. But a fully wired and tested 3-valve amplifier. 75/6

VALVES GUARANTEED NEW AND BOXED

LOCTAL	76T, 75C, 70L, 7TH, 7TU, 76T, 7Q7	All 7/8 ea.
B70 BATTERY MIDGETS	1RH, 1TA, 1RH, 1CA	All 7/8 ea
BATTERY OC-TES	HG1T, 2GHT	All 10/8 ea.

MISCELLANEOUS. 012, 014: UX, 5, 3; 401, 290: 612, 4; 560, 4; 601, 4; 604, 4; 6F8, 1; 6F8, 2; 6F8, 5; 6F6, 2; KT3, 2; FX25, 15; 6SN7, 1; 6P6, 5; 807, 4; PX26, 8; PX28A, 4; QFP711, 7; U7, 2; U7, 15; E260, 8; E311, 10; UC61, 2; UC61, 1.2; UC61, 1.2.

SRA RANGE. P121, 13/6; P123, 13/6; P124, 11/8; P125, 11/8; P126, 11/8; P127, 11/8; P128, 11/8; P129, 11/8; P130, 11/8.

RECEIVERS. VU41 (41U 8, 8).

WIRE WOUND RESISTORS. 22M, 60R, 100R, 150R, 220R, 330R, 470R, 1K, 1.5K, 2.2K, 3.3K, 4.7K, 6.8K, 10K, 22K, 47K, 100K. Tolerance plus or minus 10% each. Kistler type. Sold in 1/10 watt. 12 each; 1/2 watt, 25 each.

FILAMENT TRANSFORMER. Primary 250V/25V, Secondary 6.5V, 1.5Amps, tapped at 4V and 2V. 7/8 ea.

LS80. 1. mil. 800. condensers. 1-ea.

PORTABLE RECORDING OR PROJECTOR CASES. Resin coated tubes for the carrying. 10 (x 9 x 16cm.). Internal dimensions 13cm. long, 11cm. deep. Height, 12cm. Weight 8lbs. Price 1/3 each.

TERMS: Cash with order or C.O.D. Postage to be added to orders or at least $2.00 to 1000; $17.00 to 200; to 400: 2/. up to £5. MAIL ORDER ONLY Send 6d. in stamps or illus. catalogue.

**WHEN ORDERING PLEASE QUOTE **DEPT. P.W.
PRECISION BUILT MATCHED COMPONENTS

M.G. GANG CONDENSER

Available as 1, 2 or 3 gang, 490 p.f. nominal capacity, matched and standardised to close limits. Supplied with trimmers if required.

Other capacities available—details on request.

Cadmium plated steel frame. Aluminium Vanes. Low loss, non-hygroscopic, insulation.

Spindle ½ in. dia. projects 1½ in. from front plate. Front area 2½ in. x 2½ in. including sweep of vanes.

Length excluding spindle:

1 gang — 1½ in. 9/3d.
2 gang — 2½ in. 14/-d.
3 gang — 3½ in. 18/3d.

S.L.8 SPIN WHEEL DRIVE

A precision slide rule drive. Complete with 3-band glass scale, 9½ in. x 4 ½ in.

Printed—short, medium and long wave bands with station names.

Scale length 7 in.

The spin wheel drive gives easy control through a ratio of 24:1. Fitted with constant velocity coupling, eliminating strain on the Condenser, and providing mechanical and electrical isolation from vibration and noise.

Supplied with florentine bronze escutcheon. Price — 27/6d. complete.

Write for fully illustrated catalogue.

JACKSON BROS. (LONDON) LTD.
KINGSWAY . WADDON . SURREY

Telegram: WALFILCO, SOUPHONE, LONDON
Telephone: CROYDON 2754-5

WALFILCO, Telegrams KINGSWAY BROS. -band Aluminium Cadmium Length excluding spindle Front Low ratio Scale SPIN names. length 7 in. supplied noise.

SPIN GANG 3/2 I

I. Weyrad

COIL PACKS

I.F. TRANSFORMERS

AND TV. COMPONENTS

Among the very wide range of components which we produce, types will be found to meet the majority of requirements:

"H" TYPE COILS

Individual iron-cored, Aerial, H.F. Transformer, and Oscillator types providing continuous coverage from 12,000 metres.

"B" SERIES COIL PACKS

Miniature 3-band units covering Long, Medium and Short Wave bands or Medium and 2 Short Wave bands. Alternative tuning capacities 365 pF or 483 pF.

P.4. I.F. TRANSFORMERS

Improved types are being introduced to maintain even higher standards of performance and reliability. For frequencies in the range 460-470 kc/s. Dust-core Trimming.

ILLUSTRATED CATALOGUE - 6d.

WEYMOUTH RADIO MFG. CO., LTD.
CRESCENT STREET - WEYMOUTH.

PRATTS RADIO

1070 Harrow Road, London, N.W.10.
Tel. L.A.Dhroke 1794.

AMPLIFIERS College General Purpose. Ready for use units. Model AC10E, (as illustrated), 10 watt, 4 valve unit. Neg. Feedback, Separate Pentode, Mike Stage and Separate Mike and Gram inputs, 2 Faders and Tone Control. £10.7.6. Model AC125E 6 Valve Unit with Pull-Out Output Transformer. Neg. Feedback, Separate Pentode, Mike Stage and Separate Mike and Gram inputs, 2 Faders and Tone Control. £15.14.0. Mike and Gram inputs, 2 Faders and Tone Control. Feedback over 3 Stages £14.15.0. Model AC20F larger version of AC10E with output of 22 watts £19.15.0. Model U10K for D.C./A.C. Mains. SPEC. as AC10F output 5-10 watts, 6 valves £12.18.6. All the above amplifiers are complete with cases and chromed handles. Outputs match 3, 8 or 15 ohm speaker. All A.C. models (inc. Q.Cs) have H.T., L.T. output for tuning unit, etc. All amplifiers are enclosed and have sectionalised output transformers with super-Silicon Laminations.

TAPE RECORDING. Complete Recorders from £44.13.6. Tape Amplifiers £15. Truevox Tape Deck £28.5.0. Wearies £25. 6SC. Units, etc., available. Send for List TR.

ALL GOODS AVAILABLE ON ONE-THIRD DEPOSIT, BALANCE OVER 12 MONTHS. ALL GOODS ARE BRAND NEW AND CARRIAGE FREE. DEMONSTRATIONS DAILY.

NEAREST STATION KENSAL GREEN.

www.americanradiohistory.com
I

N introducing the new Fury Four we have endeavoured not only to produce an up-to-date version of the original Fury Four circuit, but also to try to produce a design which may be adapted according to the particular needs of the majority of our readers. In January, 1933, we introduced a receiver circuit employing two H.F. stages, as a large number of readers had expressed a preference for the straight receiver rather than a superhet. Although the superhet is very popular among many readers hesitate to build one in view of the probable difficulty of alignment. The question of expense is also often raised. It was, therefore, thought desirable to produce a straight type of receiver which went beyond the usual H.F.-detector arrangement, and again to use two H.F. stages. Normally it is extremely difficult to design a stable receiver with more than one H.F. stage, as elaborate screening becomes necessary, but in the new receiver this difficulty has to a large extent been overcome by using only one tuned circuit in the two stages.

When preparing this design we were also rather concerned to try to cater for a large variety of special needs. When we introduce a design we are usually flooded with inquiries asking how the receiver may be modified to take care of some particular circumstance—one group of readers want tone control, others do not. Some want to use the receiver for record reproduction mainly, whilst others have no interest in this branch of radio but prefer to spend all their spare time searching for long-distance stations. Again, one group of readers want short, medium and long-wave tuning, whilst others have no interest in the short waves. It will be appreciated, therefore, that it is very difficult to design a receiver which can fill all these individual requirements, and usually two or three different models have to be produced. In the new Fury Four we have tried to make the design as flexible as possible, without introducing unnecessary complication, and we therefore present a circuit which may be built as a three- or four-valve receiver; with or without reaction; with or without tone control; for one band or three, and as a special set for the amateur “den” or as the family radiogram.

The Circuit

Examination of the circuit on page 734 will show that several parts have been indicated in broken lines. These are the optional parts of the circuit and may be included or left out as desired without in any way interfering with the performance of the receiver. Taking the receiver stage by stage we see that it starts off with an untuned H.F. stage using a modern B7G type pentode. Isolation is effected for the aerial and earth leads by fixed condensers which must be rated at 750 volts or more, as the mains side of the receiver employs A.C./D.C. technique which leaves the chassis “live” to one side of the mains. The potentiometer which is used in place of the first
Theoretical circuit of the new Fury Four.

Mains transformer 6.3 v 2 amps | Radio Supply
Choke 80 mA 10 H | Co.
Two 27G valveholders and screens | Clix or
One B9A | McMurdoo
One B8A |
Chassis type CH10 (10 in. by 6 in. with)
24 in. runner
Panel 10 in. by 8 in. (see text)
One 25 K potentiometer | Denco
One 500 K | Egen
Two 100 K |
One 310 pF two-gang condenser with L/M | J.B.
feet (Type E.4507)
One .0003 uF solid dielectric condenser | (see text)

One 1500 pF | One 2.2 KΩ | Two 10 KΩ
Two 220 pF | One 4.7 KΩ | One 1 MΩ
One 560 pF | Five 47 KΩ | One 2.2 MΩ

All the above 1-watt type
One 1000 pF (Type M3U—750 v.w.)
One .02 pF (Type 743—750 v.w.)
One .05 pF (Type 743—750 v.w.)
Seven .1 pF (Type 343—350 v.w.)
Two 100 pF (Type CM2ON—350 v.w.)
Two .05 pF (Type 343—350 v.w.)
One .01 pF (Type 346—350 v.w.)
Two 25 pF (Type CE31B—12 v.w.)
One 50 pF (Type CE32B—12 v.w.)
Two 8 pF (Type CE71LE—350 v.w.)
One 32-32 pF (Type CE71LE—350 v.w.)
tuning circuit enables the first valve to operate with considerable gain at all frequencies, and thus makes up for an inefficient aerial, or, if a good aerial is used, gives an appreciable gain to all signals, rather than to one particular frequency, which would be the case if the aerial circuit were tuned. The signals are tapped off by means of the potentiometer, thus providing an effective H.F. or R.F. volume control, and in order to give full efficiency to this form of control it is linked back to the cathode circuit of the second R.F. stage. Thus, as the input is varied, so is the bias on the second valve, which is of the variable-mu type, and the combination acts very effectively in preventing overloading of the detector—a necessary feature if one desires good quality. Coupling between the first and second R.F. stages is effected by a normal H.F. transformer, and here we have employed separate coils rather than a commercial coil unit so that the necessary flexibility may be introduced. The coils are the Maxi-Q products by Denco, and they are easily fixed by means of their one-hole fixing nuts, and have an iron-core for matching. They are tuned by a 310 pF condenser instead of the usual 500 pF, and this improves performance on the short waves. It will be seen in the circuit diagram that a three-way switch is used for each coil (these being in the form of a six-position, three-way Bulgin component), and instead of using a short-, medium- and long-wave coil at each position, the constructor may use two or three short-wave coils, may cut out the switch entirely and use just the medium-wave coil, or otherwise modify the coil combination. The Yellow range of coils is used between the two R.F. stages, and to feed the detector stage a Green coil is used as this has a reaction winding. Again, this winding can be ignored if desired, and it is included as it enables the user to receive C.W. transmissions—which are, of course, not receivable on a superhet unless a beat-frequency oscillator is employed. The entire reaction circuit may be omitted including the reaction condenser, and also in the detector stage will be seen pick-up connections also shown in broken lines. If the receiver is to be used for the reproduction of gramophone records the pick-up sockets should be mounted on the rear runner and connected between grid and earth. A change-over switch may be included if desired, or the entire previous part of the receiver may be omitted and the receiver built from the pick-up terminals onwards, as a record player.

It has been mentioned that the R.F. gain control is used to reduce the strength of signals fed to the detector stage so as to avoid overloading, and the output from this stage may even still be sufficient to overload the first A.F. stage. The output from the pick-up may also, with some records, be too great for the first A.F. stage, and therefore an audio or A.F. volume control has been included. The detector and first A.F. stage form the two triode sections of a double triode, and although an ECC81 has been specified for this, in some localities it may be possible to use an ECC82.
A REPLACEABLE shaft on the top of the deck enables the user to obtain either of the three speeds which have now been standardised for tape recordings, namely 3\(\frac{3}{4}\) in., 7\(\frac{1}{2}\) or 15 inches per second. In addition the main switching control is interlocked so that there is little risk of inadvertently erasing a valuable recording. The switch control has to be linked to a further switch control in the amplifier and details of this together with the amplifier wiring and assembly are given below.

Construction

From the illustrations it will be seen that the change-over switch is mounted to line up with the "Sound-Master" deck selector switch. Suitable brass pillar supports are also fitted for supporting the deck and line up with the appropriate holes in the deck. The holes for these mounting pillars can readily be seen in the illustration of the top of the amplifier.

The layout of the amplifier, as well as the necessary wiring, should be adhered to closely to ensure freedom from instability. Only one small screen is required, layout, and a careful study of the wiring diagrams of the switch and bottom of the chassis will be well repaid.

The press-button switch for bringing in the level indicator SW7, is shown on the front of the amplifier and is a micro-switch. Any type of press-button switch may be used, this particular specimen having been on hand. To the left of the micro-switch will be seen the neon indicator, which is an Osram Type "G".

Fig. 2.—Details of the head connecting leads shown below.

The screened leads and plugs for the two heads.

Fig. 3.—Details of the switch connections.

CONCLUDING DETAILS OF THE NEW AMPLIFIER

(Continued from page 673 November issue)

this being close to the oscillator coil to screen it from the bias control and level indicator. Very little screened wiring is necessary so long as there are no large deviations from the recommended
Incidentally in comparing the wiring diagram, Fig. 5 (page 738), with the theoretical diagram, published last month it will be noted that the rectifying valve is shown in one diagram with a cathode and in the other without a cathode. We have actually used a 6X5 which has a cathode, and if an alternative type of valve is employed of the directly-heated type the H.T. positive connection will be taken to one side of the heater instead of to cathode. All other wiring details may be gathered from an examination of Fig. 5, and the illustration of the underchassis view below.

Testing

When the amplifier has been completed, tests may be carried out, initial checks being made to ensure that there is no direct short in the H.T and heater circuits. Valves may then be inserted and with the selector switch in the centre position, checks can be carried out using a microphone or gramophone pick-up. If these checks are satisfactory, the record and erase heads should be connected to the tape deck and preparations made to produce a recording. Perhaps the most important adjustment which has to be carried out is the setting of the level control priming voltage to the neon indicator, but this can only be done after experience has shown to what level the amplifier has to be set. The best way of arriving at the correct level setting is to make several recordings at different levels and determine which is the best, if necessary also making some adjustments.

neon. This has been fitted with a piece of rubber sleeving for protection only.

Little more need be said about construction except again to emphasise the fact that the layout and the wiring should be strictly adhered to.

Fig. 6.—How the switch assembly is made up.
to the bias control, commencing with this in the mid-position. Having determined the best recording level, then a further recording is made, this time with the level indicator switched in and the control adjusted until the neon flashes on peaks. An incorrect setting of this control will cause the neon to strike continuously or at low audio levels, and it is essential for good recordings that the level control be correctly adjusted. Once this setting has been found it need never again be adjusted unless some modifications are made to the amplifier itself, and in use it is switched in only when first setting up, the recording level adjusted until the neon flashes on audio peaks, the push-button switch released, and so long as there are no wide variations in the audio input the recordings will be free from overloading yet will have adequate output.

Performance

The lack of tone controls has not been found at all serious as in practice there are very few recordings that have shown an excess of top or bass, and in only one case has it been found necessary to reduce the high-frequency response due to the "toppy" nature of the recording, and this was done by connecting a .01\mu F condenser in series with a 50,000\Omega variable resistor between the anode of V3b and chassis.

Fig. 5.—Wiring diagram of the amplifier. Note that R24 should be 220\Omega and not 220K as shown in the list of parts.
These really powerful units in compact form give quality and performance right out of proportion to their modest size and modest cost. Osmor "Q" Coilpacks have everything that one the highest degree of technical skill can ensure — extra selectivity, super sensitivity, adaptability. Size only 12 x 3½ x 3½; with variable iron-dust cores and Polystyrene formers. Built-in trimmers. Preselected receiver-tested and guaranteed. Only 5 connections to make. All types for Mains and Battery Superhet and T.R.F. receivers. Ideal for the reliable construction of new sets, also for conversion of the 21 Valine receiver. TR1195, Type 10, Wartime Utility and others. Send today for particulars!

SEPARATE COILS

OSMOR STATION SEPARATOR

The Separator may easily be tuned to eliminate any one station within the ranges stated and fitting takes only a few seconds. Sharp tuning is effected by adjusting the brass screw provided.

CHASSIS CUTTER

<table>
<thead>
<tr>
<th>Type</th>
<th>Hole Sizes</th>
<th>Prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 in. x 1½ in.</td>
<td>19/6</td>
<td></td>
</tr>
<tr>
<td>2 in. x 1½ in.</td>
<td>18/9</td>
<td></td>
</tr>
<tr>
<td>3 in. x 1½ in.</td>
<td>22/6</td>
<td></td>
</tr>
<tr>
<td>4 in. x 2 in.</td>
<td>27/3</td>
<td></td>
</tr>
</tbody>
</table>

Illustr. list on request.

FREE!

Send 5d. (stamps) for fully descriptive literature including "The really efficient 6-valve Superhet Circuit and practical Drawings." 6-valve direct, 3-valve (plus rectifier) T.R.F. circuit, Battery portable Superhet circuit, Coil and Coupler leaflets. Chassis Cutter leaflet, and full radio and component lists, and interesting miniature circuits, etc.

DIAMETERS VARIOUS DIAMETERS CALIBRATED TO COILS

Type A glass dial assembly, measuring 7½ in. x 7½ in. overall. Markings in any position. Choice of two 3-colour dials, 24½, P. & P. 1½.

OUR TECHNICAL DEPT. WILL BE PLEASED TO ANSWER (BY LETTER ONLY) ANY ENQUIRY RELATING TO CIRCUITS WHICH OSMOR COILS OR COIL PACKS ARE USED OR ARE INTENDED TO BE USED.

"PRACTICAL WIRELESS"

Coronet Four : Beginners' Superhet; Modern High Power Amplifier 2; Attache Case Portable; Radio Bridge Converter; A.C. Band-Pass 3; Modern 1-Valve; 3-speed Autogram, modern rectify, etc.

"WIRELESS WORLD"

"RADIO CONSTRUCTOR"

A LIST OF FIXED CAPACITIES AS REQUIRED FOR SWITCH TUNING AVAILABLE ON APPLICATION

"Q" COIL UNITS MAKE EASY SWITCHING

Wavebands may be added or changed in a few minutes. Switching arrangements can be increased as required. Multi-waveband Coilpacks may be easily made up. The Coil Unit consists of Aerial and Oscillator Coils and Trimmers wired and ready to connect to switch. The simplest and most convenient method of set building so far devised for the amateur.

15/- including 4

UNIT foolproof drawings

DESIGNERS ARE ASSURED OF FULL CO-OPERATION

PLEASE LET US KNOW YOUR REQUIREMENTS

NEWCOMERS TO RADIO. WE HAVE A NEW DEPARTMENT READY AND WILLING TO HELP

SEND US YOUR PROBLEMS
In full swing !!!

Those on the look-out for full value for their money are getting it at

The Walk-around Shop

which we recently opened at

52 TOTTENHAM COURT ROAD, LONDON, W.1

(A few minutes from Lyons Corner House)

If you have not yet paid us a visit, come along as soon as possible and inspect the wide range of surplus lines displayed, including:

- RADIO EQUIPMENT — RECEIVERS — TRANSMITTERS — COMPONENTS, ETC. — LABORATORY INSTRUMENTS — ELECTRICAL ACCESSORIES — AIRCRAFT SUNDRIES, ETC.

RECEIVER UNIT Ex 1143A

Suitable for conversion to 2 metres or F.M. Wrotham transmissions.

Valve line-up:

- (4) EF50
- (1) EL32
- (2) EF19
- (1) EBC33
- (1) EASO

Supplied with circuit diagrams.

PRICE 9/- Post
(less values) Paid.

It will pay you to pay us a visit.

PROOPS BROS. LTD.

OPEN ALL DAY SATURDAY

LANgham 0141.

52, Tottenham Court Road, W.1

Shop hours 9 a.m. - 6 p.m.

Books on the theory and practice of electronics, new developments, circuit design, and other specialized subjects can be quickly supplied through your local Smith's shop or bookstall.

Your copies of PRACTICAL WIRELESS can be bound into attractive volumes; and all your stationery and printed matter supplied through our local branch.

W. H. SMITH & Son

for SPECIALIST BOOKS

Head Office: Strand House, London, W.C.2

Smith’s for Technical Books

PRACTICAL WIRELESS December, 1954

The COMPLETE HOME ENTERTAINER... The

'EDITOR' TCWO-SPEED Suitcase Tape Recorder

Easy to carry — Easy to look at. Operating height only just over 5 inches. The 'EDITOR' is the smallest mains-operated fully automatic two-speed portable tape recorder with 7in. spools on the market. Finest value and quality at only 45 Gns. (C. & P. 15/-)

Complete with Microphone & 1200' Tape

SHOWN WITHOUT LID

H. P. TERMS

26% deposit with balance spread over 12 months.

SPECIFICATION

- Two speeds 31/2 in. and 7 in. per sec.
- Twin track heads
- Three high-grade specially designed motors
- INDEPENDENT BASS AND TREBLE CONTROLS FOR RECORDING AND PLAYBACK
- Overall negative Feedback
- Amplifier may be used independently for very high quality record reproduction and public address
- High fidelity Record head
- Provision for external speaker
- Speaker muting switch
- 4 watts output — brilliant reproduction
- Positive servo braking on all functions
- Size only 16 x 12 x 5 in. (without lid)
- Radio/Gram and microphone inputs
- For 200 - 250 V. A.C. mains
- Automatic Erasure
- Eminently suitable for the new pre-recorded tapes.

E. & G. MAIL ORDER SUPPLY CO. The Radio Centre
33, Tottenham Court Road, London, W.1. MUSEum 6667

PROOPS BROs. LTD.

LANgham 0141.

52, Tottenham Court Road, W.1

Shop hours 9 a.m. - 6 p.m.

www.americanradiohistory.com
SINCE K. G. Jansky, an American scientist, first received a radiation from some source in outer space in December, 1931, radio-astronomy has become a recognised branch of science. The significance of his discovery was not realised at the time, and its development took place only after the last war.

Jansky was investigating atmospheric effects on a wavelength of 15 metres, when he discovered that the intensity of aerial noise did not vary according to the time of the day but with a period of 23 hours and 56 minutes—corresponding with the earth's rotation relative to the stars. The source of the noise was finally traced to the Milky Way, but Jansky failed to detect any emission from the sun.

So far, all our astronomical knowledge had come through the "window" in the earth's atmosphere which admits the visible light, corresponding to a range of wavelengths covering three-and-a-half octaves. It was now evident that there was another, much larger window, covering 10 1/2 octaves, i.e., wavelengths from 1 centimetre up to 15 metres. Molecular absorption limits the window at the high-frequency end, and towards the longer wavelengths, the ionosphere bars the "view." This wide range is a clear advantage of radio-astronomy over classical astronomy, and there is also the fact that the weather puts no restriction at all on the use of our radio-lescopes.

When in February, 1942, British Army radar equipment, working on a wavelength of 4 to 6 metres, was suddenly and seriously interfered with by the occurrence of an extremely high noise, it was feared that the Germans might have discovered some new form of jamming. The source of interference, however, was traced to be the sun which, just then, showed an extremely large sunspot. The observations made at that time finally gave the impetus to the systematic investigations which began in 1946.

Early radio-lescopes consisted of an array of half-wave dipoles, but their power-gain, even when used with a reflector, rarely exceeded 100. Their resolving power also left much to be desired, but this depended on the nature of the received waves. With increasing wavelength the resolving power decreases and at 60 centimetres it is already about one million times smaller than that of quite a small optical telescope.

Considerable improvement, however, was achieved by using several aerials, widely separated and feeding them to a common input at the receiver. These "interferometers" have been constructed with baselines as long as six miles, and in Australia an interferometer for the investigation of solar radiations has been erected which consists of 32 aerial systems. The resolving power of this instrument is about one minute of arc.

Naturally, these aerial systems have to be rebuilt every time a change of wavelength is desired. A more versatile type is the parabolic mirror with a half-wave dipole at its focus. These can be easily constructed as the mirror need only consist of tinplate or wire-mesh because of the long wavelength, and deviations of up to 4/8 from the true form of the parabola have no ill-effects.

Such a telescope was erected at Jodrell Bank, in Cheshire, in 1947. Its diameter is 218 ft., and the receiving dipole at the focus of the mirror is fitted on top of a 126 ft. mast which can be tilted in order to displace the direction of the received beam. The mirror of the instrument consists of wire mesh, the separation of the wires being 8 in. The leakage of this mirror is 37 per cent, at a wavelength of 2 metres. The fact that the departure of the surface of the mirror from the form of a true paraboloid is about 5 in., limits the shortest wavelength receivable at 1 metre.

The rather arbitrary measurements of the instrument were a result of the slender means available to Professor A. C. B. Lovell when he built the mirror, and strangely enough, the height of the rim, which is 23 ft. 4 in., was actually determined by the height of their ladders.

![Fig. 1.—Setting up a radio-telelescope: The declination of the area of the sky investigated depends on the elevation of the beam and on the latitude of the place of observation.](www.americanradiohistory.com)
The results obtained with this telescope were so encouraging that the building of a large, completely adjustable radio-telescope was contemplated which is now actually under construction. Professor Lovell, of Manchester University, is mainly responsible for its design, and the cost of construction is shared between the Nuffield Foundation and the Department for Scientific and Industrial Research.

The mirror of this new radio-telescope will have a diameter of 250ft., and its focal length will be 62½ft. The huge bowl of copper-wire mesh, spaced at 1in. intervals, with its frame and supporting girder weighing in all about 600 tons, can be set to any elevation desired. It is supported by two towers, 185ft. high, which run on a circular railway track, enabling the instrument to be directed towards any part of the sky.

At a wavelength of 21 centimetres this aerial system will have a power-gain of 100,000, and the beamwidth is as small as 12 minutes of arc.

Naturally, these huge instruments are employed to investigate the faintest sources of radio waves reaching us from outer space, but quite small instruments can yield surprising results with nearby sources of the Milky Way and the sun, especially at wavelengths under 1 metre. When receiving very short wavelengths, the dipole at the focus is usually replaced by a wave guide which conducts these microwaves with extremely low losses. The mirrors of these telescopes have diameters of 3 to 6ft., and quite good results have been obtained by amateur radio-astronomers with a 5ft. mirror of 1in. copper-wire mesh, with a dipole at the focus. The wavelengths received were from 15 to 60 centimetres.

The receivers employed in connection with these aerials are always conventional V.H.F. receivers, the only modification being the addition of a field strength recorder either in the anode circuit of an A.V.C. controlled valve, or of the detector valve if a super-regenerative receiver is used. In the latter case, the basic circuit is a detector with separate quench oscillator and one R.F. stage, with a voltmeter connected across the anode load resistor of the detector serving as indicator.

Aerials

Usually, the aerials—if not adjustable—are mounted to face south, similar to the meridian circles of the great observatories. As the earth, relative to the stars, makes one revolution in 23 hours and 56 minutes, the telescope sweeps out a complete circle in the sky during that period, the width of which depends on the beamwidth of the instrument. The transit of a source of radio waves is then recorded in a fashion similar to that of Fig. 2. It will be noticed that the curve is not a smooth one, showing a gradual increase in field strength up to the maximum at transit time, and afterwards a gradual decrease, but numerous kicks over and below the average position will be recorded. This “Scintillation” is just like the twinkling of visible stars whose light never is steady either, and the reason for this is in both cases the instability—electrical or optical—of the earth’s atmosphere.

The discoveries to which the application of radio-telescopes has led are considerable already. Since Bolton and Stanley in Australia detected the first “radio star,” an intense source of emission of very small diameter, in the constellation of Cygnus in 1948, over 100 of these point sources have been discovered. The most remarkable feature of these is that they usually cannot be identified with any visible object in the sky, but the use of the great 200in. telescope on Mount Palomar finally revealed very faint nebulae in an intense state of agitation as the probable sources of radio energy reaching us from a part of the constellation Cassiopeia. The radio star in Cygnus was discovered to be a collision of two galaxies of stars, far beyond our Milky Way system, at a distance of one hundred million light years. A third object has been identified to be the remains of a supernova—a star which exploded in A.D. 1054, an occurrence which was recorded by Chinese astronomers.

The scope of radio-astronomy was considerably extended when I. Ewen and M. Purcell, of the Harvard Observatory, discovered a line-emission, similar to the spectrum lines of visible light, on a wavelength of 21.2 centimetres (1,420 Mc/s) after this had been predicted by the Dutch astro-physicist van de Hulst in 1945. Very sharp tuning was necessary to distinguish this from the continuous spectrum of the radio emissions.

The discovery of this line-emission has been instrumental in the research into the structure of our own galactic system of the Milky Way beyond the point where optical astronomy began to fail, and already the actual distance of a radio star has been determined independently from any optical instruments.

Fig. 2.—Typical recording of the transit of a radiostar, indicating “scintillation.”

Fig. 3.—Cross-section through a parabolic reflector with waveguide for the reception of radiations in the microwave region.

www.americanradiohistory.com
PLASTIC CABINET as illustrated, 14 1/2 x 6 1/2 x 5 1/2 in., in walnut or cream. Also IN POLISHED WALNUT, complete with T.R.F. chassis, 2 waveband, scale, station names, new waveband, backplate, drum, pointer, spring, drive spindle type E 390 and back, 22/6. P. & P., 3/6.

Heater Transformer, Pr. 220-220 volt 6. 6. 6. amperes 21/2 1/2 1/2 d.c., 5/5.

R.I. MAINS TRANSFORMERS, chassis mounting, feet and volume panel. Primaries 220 volt, 220, 220, 220.

350-0-350 75 ma. 6.3 v. 3 a. tap 4 v. 6.3 v. 12/6.

350-0-350 70 ma. 4.5 v. 4 a. 25 a. C.T.

500-0-500 100 ma. 6 v. 4 a. C.T.

4 a. 4 v. C.T. 2.5 a. 27/6.

500-0-500 50 ma. 6 v. 4 a. C.T. 4 a. 4 v. C.T. 2.5 a. 27/6.

500-0-500 45 ma. 6 v. 4 a. C.T. 4 a. 4 v. C.T. 2.5 a. 27/6.

Medium and long wave change switch, 220/6. heater trans. 7/6. 4 v. t. 6/6. 4 v. t. 6/6. 13/6. 13/6. transformer kit 4. 1/8.

“G.T.” 30/-. P. & P. on above transformers 10 1/2.

32 mfd. 335 w. 25 mfd. 335 w. 25 mfd. 23 mfd. 25 w. 22 mfd. 25 w. 50 mfd. 350 w. 25 mfd. 25 w. 50 mfd. 350 w. 25 mfd. 25 w. 100-200 mfd. 350 w.

Ex Govt. mfd. 50 mfd. 25 w. 30 mfd. 25 w. 100 mfd. 350 w. 25 mfd. 25 w. 50 mfd. 350 w. 50 mfd. 350 w. 32 mfd. 320 w. 25 mfd. 3
Prices slashed at Clyde'sdale

December, 1954

Cord Drive: Spindle
Radio 61
Reverse Vernier Drive, i.e., cord runs outside.
Ask for F8256.

Or 3 for 3/- Each.
Paid.

Swang Groupboard
Panax panel 21h. x 23w. 2 hits for mounting 3 condensers or resistors, two.
Ask for F8317.

Or 6d. Each.
Paid.

Throat Microphone
Pair Electro Magnetic lozenge-shaped pieces (7.5 ohms) with strap, lead and jackplugs.
Ask for F7164.

Or 3 for 1/- Each.
Paid.

Co-axial Cable
Any length supplies 6s. 10d. per yard. Minimum 12 yards at 3/- per yard.
Ask for F9966.

Or 4 for 3/- Each.
Paid.

Microphone
Electro Magnetic lozenge-shaped pieces (7.5 ohms) with strap, lead and jackplugs.
Ask for F9971.

Or 3 for 7/- Each.
Paid.

Microphone
Ref. 10A/1001
(350) (Flying Helmet type.)
Electro Magnetic 50 ohms with switch, lead and 2-way socket.
Ask for F1023/1.

Or 3 for 7/- Each.
Paid.

Carbon HAND-SET Micr0phone
Ref. F9631.
(Pair high impedance 4000 ohms. With wire headband and 2-way socket.
Ask for F10296.

Or 10/- 6d. Each.
Paid.

Carbon HAND-SET Micr0phone
Ref. F9631.
(Pair low impedance 50 ohms, with wire headband and jackplugs.
Ask for F7156.

Or 7/- 6d. Each.
Paid.

W. B. Supplies 10o, Oldham Street, Manchester, 4.

Terms.—Cash with order. Orders under 20/- and 6s. 6d. over 20/-, add 1/- postage. Orders dispatched same day.

Selecto Unit 10K/12045, rotary switch complete with relay. 3/- 6d.

Potentiometers.—5 watt type. 15K. 25K. No. 2456. Wire wound, 1/33. Lead for various condensers in suitably furnished cases. 2/-.

Crystal Kit Sets.—Complete set of components and circuit to build simple set. 6/-.

R.T. Battery.—Midget 60 volt—111 volt, 2/- ea. (tested).

Tube Head Condensers.—Wire ends, 1,500 volt test, guaranteed non-leak. 0.001, 0.005, 0.01, 0.025, 0.1 mfd. All at 125. Each.

Valve Equivalents Manual.—Latest publication, giving equivalents for Govt. Surplus and commercial valves, very useful. 5/-.

A Versatile High Gain Amplifier

SOME while ago the writer, whilst answering a problem put to him by a student on the subject of negative feedback, wondered if it were possible to use positive feedback to increase the gain of an audio amplifier. Certainly, if positive were substituted in the formula greater gains could be calculated. When the formulae are used for negative feedback, no case can be made where the amount taken out of the circuit is less than the amount put in, i.e., the gain cannot be reduced past unity. On the other hand, with positive feedback, if the fraction feedback is multiplied by the stage gain, and the result is higher than unity, the amplifier will be of no use as oscillation will occur. The formula for the gain joining the anode of one to the grid of the other by a condenser, such a circuit is used in resistance-capacity oscillators. A modification of this method has been used. Each valve, or should we say section, has its own cathode resistor and the two cathodes are joined by a suitable resistor. The calculations were made, and the resulting value of resistor for a very high gain tried, but the circuit was very unstable, so one of a lower feedback value was used. It is as well to note that the higher the resistance the lower the feedback value. In the end it was found that with a 6SN7GT, with 2,000 ohms for each of the cathode circuits, and an anode load of 62,000, a coupling resistor of 20,000 ohms gave very good results. In the layout of the circuit great care should be exercised to see that no extra stray feedback is introduced—or it will oscillate. The layout employed as can be seen from the photograph is of the straight line type, i.e., everything is in a straight line, power transformer, smoothing and the amplifier. The mains transformer used is an Elstone TV pre-amp type as it will give ample power for the job. As the anode current is small resistance capacity smoothing is used and this is surprisingly efficient. The smoothing and reservoir condensers are in one unit, the Dubilier double unit can-type, the 161650, being used, joined with a 10,000-ohm resistor. The complete circuit is shown in Fig. 1. The layout of the base of the 6SN7GT is shown in Fig. 2, and the reader can do no better than follow it as close as possible. All the other wiring should, where possible, be twisted so as to keep down both the hum and the unwanted feedback.

The case and front panel were knocked out in the writer's own press-shop, and the front panel and chassis were aluminium, whilst the case was made out of sheet steel.

Uses

There are many uses to which the finished unit can be put. As the sensitivity is so very high it can be used as a baby monitor: the writer amused himself by joining it up to the house loudspeaker wiring by a multi-ratio transformer of the ratio of 90:1. With

Fig. 1.—Basic theoretical circuit.

of an amplifier with feedback is \(\frac{\mu}{1 - \alpha \beta} \), where \(\mu \) is the stage gain without feedback, \(\beta \) the gain to the particular point in the circuit from where the feedback is taken, and \(\alpha \) the fraction of the output feedback. In most cases \(\mu \) and \(\beta \) are equal, but in the case of taking feedback from the cathode circuit it will be seen that the gain across the cathode resistor will be different from the gain across the anode load resistor.

The Circuit

Looking around the stock of valves in the laboratory, the old friend the 6SN7GT was chosen, as one-half is capable of driving a loudspeaker at a power of about \(\frac{1}{2} \) watt, and this is sufficient for a very wide range of uses. The simplest type of positive feedback with a double valve is to join the two cathodes together and use a common resistor for the cathode circuit, whilst

View of the underside of the chassis.
this, it was possible—with the wireless switched off, to hear every sound in the rooms fitted with loudspeakers. Normal conversation came over very loudly and the length of wire used for input to the amplifier made no difference, providing that it was earthed.

As a Signal Tracer
Another use is as a signal tracer. The circuit of a simple probe unit is shown in Fig. 2, and the polarity of the crystal is of no consequence, but the condenser should be of ample working voltage.

With a Crystal Set
One final use, of course, is for running a loudspeaker off a crystal set. For the most part components from the junk box can be used, but the resistors should be of the 10 per cent. tolerance.

News from the Clubs

SOUTHEND AND DISTRICT RADIO SOCIETY
Hon. Sec.: J. H. Barrance, M.B.E. (G3BJU) 49, Swanage Road, Southend-on-Sea, Essex.

THE opening meeting, after the summer break, was held at the EKCO Canteen by kind permission of the Directors of Messrs. E. Cole Ltd., when Mr. G. C. Bullivant (G3AXN), a member of the Society, recently returned to U.K., on the Survey ship John Biscoe from an Antarctic Expedition, gave a unique account of the doings of these stalwart explorers in that part of the world where the temperature often reaches 40 below zero.

The subject of Mr. Collon’s talk was “Radio in the Antarctic,” and he illustrated it with about 100 snaps which portrayed the extreme difficulties of radio, where only high-frequency communication was possible and where the whole aerial system was thickly coated with ice. He also acquainted us with that ice-bound part of the world, which was once tropical, and where even now live volcanos still pour out molten lava, which melts the ice in the mountain crevasses into hot lakes.

ROMFORD AND DISTRICT AMATEUR RADIO SOCIETY
Hon. Sec.: N. Miller, 18, Maccalls Gardens, Brentwood, Essex.

THE Society’s winter programme includes film shows, lectures and discussions “on the air,” evenings with G4KF and the monthly “junk sales.”

The Society meets every Tuesday evening at 8.15 p.m. at R.A.F. House, 18, Carlton Road, Romford, and all visitors and new members will be warmly welcomed.

Further information can be obtained from the Hon. Secretary.

BRADFORD AMATEUR RADIO SOCIETY
Hon. Sec.: F. J. Davies, 39, Pullman Avenue, Eccleshill, Bradford, 2.

THE November meetings are as follows: November 9th, Display of Members’ Gear, November 23rd, a talk on “The Human Ear” by an ear specialist. Both meetings are at Cambridge House and will commence at 7.30. Copies of the syllabus may be obtained from the Secretary.

BRIGHTON AND DISTRICT RADIO CLUB (G3EVE)
Hon. Sec.: T. J. Hoggett, 15, Waverley Crescent, Brighton, Sussex.

THE Club meets every Tuesday evening at 7.30 p.m. at the Eagle Inn, Gloucester Road, Brighton. The transmitter is on the air every month on top band and 80 metres, and many interesting Q.S.O.s have been made on both phone and C.W. Phone is used whenever possible to add interest to those who do not know the code. Young members are especially welcome, and demonstrations and talks on simple equipment for the young S.W.L. are being given during the coming winter months. Morse code classes are also held. A new 100-watt transmitter is also under construction for club use.

CLIFTON AMATEUR RADIO SOCIETY

THE Annual General Meeting of the Society was recently held, and the following were re-elected for a further term of office:

The Club Championship cup for 1953/54 has been won by N. Moore.

Meetings are held at the clubrooms 225, New Cross Road, London, S.E.14, every Friday at 7.30 p.m. Details of membership can be obtained upon application to the Secretary.

NEWARK AND DISTRICT AMATEUR RADIO SOCIETY
Hon. Sec.: J. R. Clayton, 160, Wolsey Road, Newark, Notts.

A Film show organised by Messrs. A. Hall and J. Clayton will be held at the “Northern Hotel,” on Sunday, November 7th at 7 p.m., at which several interesting technical films will be shown. The mid-monthly meeting at “Northing House” will be at 7 p.m., on Thursday November 18th, when there will be a demonstration of a commercial transceiver.

All interested are invited to attend.

TORBAY AMATEUR RADIO SOCIETY
Hon. Sec.: L. H. Webber, G3GWD, 43, Lime Tree Walk, Newton Abbot.

A recent meeting G3AVF gave a very interesting talk on “Transistors,” and brought along his TTX for demonstration. In conjunction with this talk, G3GWD brought along a portable receiver, so that the transistor could be heard working.

At the next meeting, G3GWD will talk on the results of the Low Power Field Day, in which he took part.

A proposal has been made to hold, a Winter Inter-club Fone Contest on Top Band and arrangements have been made to have a lecture on “Portable Equipment for RAEN” by G3FNI, and a talk on “Japanese Morse” by G3CSG.

READING RADIO SOCIETY
Hon. Sec.: L. A. Hensford (G2BHS), 30, Boston Avenue, Reading, Berks.

At the annual Hamfest which is to be held on Sunday, November 21st, the Society has been fortunate in obtaining the services of F. J. Charman, Esq., B.E.M. (G3C), who will give a talk and demonstration on aerials.
R.S.C. 25 WATT QUALITY AMPLIFIER 9 Gns.

We firmly believe our All "Push-Pull" Quality Amplifier to be by far the best value in amplifiers offered to-day. The rectifier, transformer, c.r.o.s. and Treble Controls are completely isolated from the sound of a quiet intimate conversation to the full glorious volume of a great orchestra. Its sensitivity is so high that in areas of fine detail it can be heard straight from a crystal receiver. Entirely shielded for high or long playing records in small homes or in large auditoriums. For electronic or guitar or other solid state or battery circuits. Due to an extra fine circuit, the kit is complete to the last detail, and includes everything to follow point-to-point wiring diagrams.

Outputs for 3 or 15 ohm speakers.

Two volume controls with twin input sockets allow SIMULTANEOUS INPUTS for BOTH MICROPHONE and ORAM, or TAPE and RADIO, SEPARATE BASS and TREBLE CONTROLS, giving both LH.F and CUT. FOUR NEGATIVE FEEDBACK.

BATTERY SET CONVERTER KIT. A complete set involving any type of Battery to be used with all A.C. or 250-500 v. 500 v. c.c. Kit is fully assembled and wired, includes a.c. b.c. meter, filter voltmeter, filter with wiring diagrams and instructions, only 4½gns. Or ready to use, 8½ extra.

BATTERY CHARGER KITS For mains 200-250 v. 50 c.s.
To charge 6 v. acc. at 2 a., 25½ gns., 3s.
To charge 6 or 12 v. acc. at 2 a., 49½gns., 6s.
Always consist of transformer, full wave rectifier, fuses, switches and steel case. Always tested and tested. 2½ extra.

THE SKY CHIEF T.T.F. RECEIVER. A design of a 4-stage, 3-valve 200-250 v. A.C. Mains receiver with selenium rectifiers, full wave, separate design, and high sensitivity. I.F. stage followed by a low distortion triode mixer. The next stage is a further triode amplifier with tone correction in a single valve. Price 25/-. Complete with circuit diagrams and instructions. Only 15½ gns., 2s. carr. The complete set is a set for professional use. Crystal units are used. It is on offer for use with all forms of crystal or valves receivers. Brand new, cartoned. Limited stock at only 15½ gns., 2s. carr.

MICROPHONES. Crystal type, wood quality. Recommended for use with our amplifiers. Hand type 5/6; Stand type 15/6.

VOLUME CONTROLS with long (1½") spindles are best for volume amplifier. 2½ gns. with S.P. switch 3½ gns.

R.S.C. MAINS TRANSFORMERS

TOP SHROUDED, DROP IN 200-250 V. 50 C.S. AND 120 V. A.C.

299-0-299 200-250 v. 70 mA, 6.3 v. 2 a, 5 v. 2 a, 1 a 1/2 11/12
499-0-500 200-250 v. 100 mA, 6.3 v. 1 a, 5 v. 2 a, 1 a 1/2 11/12
299-0-500 200-250 v. 250 mA, 6.3 v. 1 a, 5 v. 2 a, 1 a 1/2 11/12

FULLY SHROUDED UPRIGHT

299-0-299 200-250 v. 70 mA, 6.3 v. 2 a, 5 v. 2 a, 1 a 1/2 11/12
499-0-500 200-250 v. 100 mA, 6.3 v. 1 a, 5 v. 2 a, 1 a 1/2 11/12
299-0-500 200-250 v. 250 mA, 6.3 v. 1 a, 5 v. 2 a, 1 a 1/2 11/12
For RF500 conversion 29/9

300-0-350 200-250 v. 100 mA, 6.3 v. 1 a, 5 v. 2 a, 1 a 1/2 11/12
499-0-500 200-250 v. 300 mA, 6.3 v. 1 a, 5 v. 2 a, 1 a 1/2 11/12

FULLY SHROUDED 3-VA Amp with Twin Volume Controls

299-0-299 200-250 v. 70 mA, 6.3 v. 2 a, 5 v. 2 a, 1 a 1/2 11/12
499-0-500 200-250 v. 100 mA, 6.3 v. 1 a, 5 v. 2 a, 1 a 1/2 11/12
299-0-500 200-250 v. 250 mA, 6.3 v. 1 a, 5 v. 2 a, 1 a 1/2 11/12

SELENIUM RECTIFIERS

H.T. Rectifiers H.W.
619-0-75 250 v. 70 mA 7/6
250-0-250 200 v. 35 mA 7/6
250-0-250 200 v. 50 mA 7/6
250-0-250 200 v. 70 mA 7/6
1.5 V. 2 a, 5 v. 2 a, 1 a 1/2 11/12
325-0-250 200 v. 100 mA 7/6
350-0-350 200 v. 150 mA 7/6
375-0-375 200 v. 200 mA 7/6
500-0-500 200 v. 500 mA 7/6

RADIO SUPPLY CO., 32, THE CALLS, LEEDS, 2

www.americanradiohistory.com
P. W. TAPE RECORDER
We can supply complete kits for this recorder.
Send for our fully detailed list.
FULL HIRE PURCHASE FACILITIES
Only 2/- in the £ deposit.

WATTS RADIO
8 Apple Market, Kingston-on-Thames, Surrey.
Telephone: Kingston 4099.

Best Buy at Britain's
COMMUNICATIONS RECEIVER TYPE: R1155.—For world-wide reception. We are once again able to offer these fine receivers absolutely brand new in original transit case at £11/19/6, plus 10/- carr. This delivery is in really fine condition. If you are contemplating the purchase of one of these receivers in the near future, we advise you not to delay in order to secure a really "MINT" receiver.

A few slightly soiled models still available at £7/19/6. Plus 10/- carr. A.C. Mains power packs for same at £10/0/-, £9/6/- and 9/- carr. 30. Send S.A.E. for full details or 1/- for circuit, etc.

RECEIVER TYPE CR105.—A super communications receiver covering 60 kilo to 30 m.c/s in six bands. Built-in A.C. mains power pack. 2 R.F. stages, 3 I.F. stages, variable selectivity Xtal Filter, B.F.O., etc. Good condition, complete with new valves and air test. A bargain at £27/6/- plus £1 carriage.

R1155 RECEIVERS (25/75).—This is a six-valve superhet receiver with 466 kilo, 15 kilo Complete with all valves—2 EBP8, 1 ED32, 2 EF86, 1 KBO35. In good condition with full conversion data. ONLY 27/6 each, plus 2/- post.

POW ER PACK TYPE 201. — Contained in a neat black case size 6½in. x 4½in. x 6½in. height. For 200/250 volts A.C. 50 c.p.s. Outputs 250-0-250 v., 6.3 v. at 2.8 amp. and 6.3 v. at .6 amp. for 6X5 rectifier. 31 v. at .3 amp. supplies metal rectifier for bias. The transformer is a measure of power. Price ONLY 37/6, plus 2/- post.

E.M.I. REGULATING METER. — Desk Type, consists of a 21in. 1 m. meter with full wave bridge rectifier. Ranges 0-250 volts and 0-5 volts. Brand New and boxed. ONLY 35/- each, plus 1/- post.

CHARLES BRITAIN (RADIO) LTD.
11, Upper Saint Martin's Lane, London, W.C. 2. TEM 0545
Shop hours: 9-6 m. (9-1 on Thursday)
OPEN ALL DAY SATURDAY—

PULL IN
SERIES 100
TEST METER
AC/DC 10,000 A/V
21 RANGE
100µa to 1000V
COMPLETE IN JEWELLER CASE WITH TEST LEADS CLIPS AND PIGG
FULLY GUARANTEED

SENDER FREE FOR £2.10s.
DEPOSIT AND TEN FURTHER MONTHLY PAYMENTS OF £1. CASH PRICE £11.50s.

THIRTY RADIOCRAFT LTD
69-71 CHURCH GATE LEICESTER

THE OSRAM
NINE-ONE-TWO
AMPLIFIER INSTRUCTION BOOK
AND HIGHEST QUALITY COMPONENTS
Available from
COVENTRY RADIO
189, Dunstable Road, Luton.
Phone: 2677
Price, 3/-, plus 3d. postage also
Our 1954/5 COMPONENT CATALOGUE at 1/-

CABINETS

LE WIS RADIO LTD.
3, GOL DHAWK ROAD, Dept. M. P.
SHEPHERDS BUSH, LONDON, W. 12.
Telephone: SHEpherds Bush 1729

T.V. SCOPE.—Make this useful instrument as described in the August issue of the "Practical Television" by converting INDICATOR OR UNIT TYPE 6. Unit fitted with cathode ray tube type VTCD7 (Scope tested) Mu motor screen. Valves: VR97 3, VR96 3, VR54 4 pots., resistors, condensers and other useful items. In used, good condition. PRICE ONLY 57/- or less valves PRICE ONLY 37/6. Carriage charge 6/-.

RECEIVER TYPE R.1155. — One of the best known and most popular of ex-Government communications receivers. Frequency range includes 20, 40 and 80 metre "Ham" bands and long and medium wave transmissions. Valve line-up: VR100, Sig. freq. Amp.; VR99, Preq. freq. Amp.; VR101, 1st I.F. Amp.; VR100, 2nd I.F. Amp.; VR101, 3rd I.F. Amp.; VR101, A.V.C. B.F.O.; VR103 Tuning Indicator. With 100 to 1 slow-motion drive, 5 switched wave bands, etc. In very good new condition and carefully tested before dispatch supplied in maker's transit case. PRICE £10.17.6 each. Carriage 7/6.

A.C. MAINS POWER PACK OUTPUT STAGE UNITS FOR R.1155. — Specially designed to supply the receivers direct from 200/250 v. A.C. Mains and to provide for a speaker output. Fitted with 504 rectifier and 6V6 output valves and connector which plugs direct into receiver for immediate use. PRICE £3.10.6, carriage 6/-.

SPARE VALVES FOR R.1155. — Types VR99, VR100, VR101. Price 9/- each, post 1/-.

L.T. TRANSFORMERS. — Primary 200/250 v. 50 c.p.s. mains. Secondary 3, 4, 5, 6, 7, 10, 12, 15, 18, 20, 24 or 30 v. at 2 A. Excellent for model railways accumulator charging, etc. PRICE 15/6, post 1/-.

LE WIS RADIO LTD.
120, GREEN LANE,
PALMERS GREEN,
LONDON, N. 13.
BOWES Park 6064

We can supply any Cabinet to YOUR OWN SPECIFICATION. The one illustrated can be obtained in Walnut, Oak or Mahogany for £19/15/6, or as a complete RADIOGRAM including a 5-wave 3-waveband superhet chassis, 3-speed autochanger and 10in. speaker for £45. (H.P. Terms can be arranged.) Send 1/- for Complete Catalogue of Cabinets, Chassis, Autochangers and Speakers. (Refunded on receipt of Order.)

L.YONS RADIO LTD.

J. B. SERVICE (BEXLEYHEATH) LTD.
RADIO COMPONENT SPECIALISTS
5, MAYPLACE ROAD WEST,
BEXLEYHEATH, KENT.
Phone: BEXLEYHEATH 1000
Wednesday Half Day
44, CHURCH ROAD,
UPPER NORWOOD, S.E. 19
Phone: LIVINGSTON 6222
Wednesday Half Day
All types of Valves Old or Modern Wanted for Cash. Send Full Particulars for prompt offer. N.B.—Not Secondhand used valves.

JAMES B. SERVICE

FLANAGAN (DEPT. C)
72-76 Leather Lane,
HOLBORN, E.C. 1
Phone: CHEneey 6791/2

Television, Radio, Record CABINETS MADE TO ORDER
ANY SIZE OR FINISH
CALL OR SEND DRAWINGS FOR QUOTATION

B. KOSKIE

Telephone, Radio, Record CABINETS MADE TO ORDER
ANY SIZE OR FINISH
CALL OR SEND DRAWINGS FOR QUOTATION
Distortion
A table of the values of grid voltage and anode current at the various points of interception of the curves by the load lines in Fig. 31 can be made and if these are plotted on a graph of anode current versus grid voltage as in Fig. 32 the distortion can be more readily seen. Without distortion this graph should be a straight line and the deviation from straight (the dotted straight line being drawn in so that the curvature can be seen) indicates the degree of distortion. It will be seen that the curve is at one side of the dotted straight line along its length and that it is a single graceful sweep rather like a somewhat misshapen half-cycle of a sinewave. This indicates that the distortion is second harmonic and in fact it is well-known that the predominant distortion in the case of a triode is second harmonic. This is more tolerable to the ear than the third harmonic of a tetrode output valve, which would be represented by a distortion curve that crosses the dotted straight line and is thus more like a full sinewave cycle. The percentage distortion can actually be calculated from the distortion curve by measuring the divergence of the anode current at the quiescent grid voltage point (i.e., 35 volts in the example) which call I. Now, using the maximum anode current I, and the minimum current I, passed by the valve during operation the following formula applies:

\[\text{2nd harmonic} = \frac{1}{2} \left(\frac{I_{\text{max}} + I_{\text{min}}}{I_{\text{max}} - I_{\text{min}}} \right) \times 100\% \]

Output Transformer
One might well wonder why an output transformer is used at all and indeed it would be very convenient beside removing a major source of distortion, if this component could be dispensed with. Unfortunately the practical difficulties in winding the speech coil of a moving coil loud speaker with an impedance approximating to the load required by a valve are too great. The speech coil is carried on the cone as part of the moving system and consequently there are severe limitations on the size and weight permissible. Consequently it is found more satisfactory to accept the disadvantages of the output transformer and to wind the speech coil to a comparatively small impedance. The transformer is then chosen to have a step-down ratio equal to the square foot of the ratio of the load required to the speech coil impedance.

A further complication is that the speech coil impedance is not a constant but actually varies with frequency. The value usually quoted and used for determining output transformer ratio is that at a frequency of 1,000 cycles but as will be seen from Fig. 33 at other frequencies it is much higher. These factors have to be taken into consideration by the valve manufacturer when determining the optimum load for his product and though we shall find the need later to return to this problem, for the time being we will take the easier path of following the maker’s recommendations.

Practical Design
Now the first output stage to work with the amplifier previously described will be attempted. This will use a triode to illustrate the principles discussed but later a tetrode design will be given and so, for the sake of economy and to permit the reader to try out both at a minimum of expense a valve that will demonstrate both types of circuit will be chosen. Also, continuing the policy of demonstrating modern technique, the valve will be chosen from the modern miniature range such as is used in all the latest equipment.

A very suitable valve is the Brimar 6AQ5 which is a beam tetrode but by strapping grid 2 to anode the valve works as a triode. There is a further advantage in following this course in that most available output triodes are directly heated and consequently introduce circuit difficulties whereas, of course, the 6AQ5 is indirectly heated. Fortunately there is an exact equivalent to the 6AQ5 for use in A.C./D.C. circuits and so the basic design that we shall produce will be applicable to this method of working too, and two versions of the amplifier will be given, one using the 6AQ5 in a purely A.C. circuit and the other using the Brimar 19AQ5 in an A.C./D.C. circuit, both operating with the twin-triode amplifier already designed and both capable of being converted for beam tetrode working later for comparison purposes. The Brimar 6BW6 could be used as an alternative to the A.C. version, having the same characteristics but with a B9A base instead of a B7G base.

Valve Data
Fig. 34 gives the anode characteristics for these two valves working as triode. It is proposed to work the valve with a H.T. of 250 volts, this being a convenient
and economical value to provide using standard components, and so the working point is on the vertical line representing this voltage. The maximum anode dissipation given by the makers is 12.5 watts and the line representing this dissipation is shown dotted on the diagram. We must see that when the valve is working along the load line this maximum anode dissipation is not exceeded but we shall go as high as possible up the 250 volt line so as to obtain the maximum output.

Following the 250 volt H.T. line vertically it is seen that the grid bias must be at least about 12 volts if the no-signal condition is not to result in the anode dissipation exceeding the permitted maximum and so we are not in the least surprised to find that the makers specify 13.5 volts for this H.T. voltage.

Point O can therefore be marked in at 250 volts H.T. and -13.5 volts grid bias, where it will be seen that the anode current flowing is 45 mA. The valve lists also give the optimum load as 4,000 ohms. This load, being in the form of a speaker speech coil with its impedance stepped up to the anode of the valve by means of a transformer, has already been seen to have negligible effect on the no-signal condition but from the point of view of the audio signal currents it is very real and it will have an effect on the instantaneous anode voltage which obeys the ordinary principles of Ohm's Law. Thus supposing there were a signal current of 50 mA peak-to-peak produced in the load, then, by Ohm's Law, there would be a signal voltage across the load of:

\[V = I \times R = 50 \times 4,000 \text{ (divided by 1,000 because } J \text{ is in mA).} \]

= 200 volts peak-to-peak.

Now this voltage would swing about the no-signal condition, equally below and above it, so the anode voltage would go from 250 + 100 to 250 - 100 and the current from 45 - 25 to 45 + 25 mA (the higher the current the greater the voltage lost in the load and therefore the lower the voltage actually at the anode and vice versa). So these two points can be marked on the curves, i.e., 350 volts 20 mA and 150 volts 70 mA. These points will be on the load line and so the line can be drawn in joining these points and extended in both directions and the accuracy of the work is shown by the fact that the line passes through the static point O, as it should do.

Reasonably linear operation is practicable along this load line down to zero grid bias; the signal must not be allowed to go beyond this value or grid current will cause distortion. Thus the peak signal that the valve will accept is equal to the static bias i.e. 13.5 volts. The negative half-cycle of the input signal will be of equal amplitude but will swing in the other direction so that the grid goes to 13.5 + 13.5 = 27 volts negative. \(E_{\text{in}} \) in the formula already given is the anode voltage at the least negative (Continued on page 753).

Fig. 34. Characteristic of 6AQ5; 19AQ5; 6BW6.

Fig. 35. Basic circuit of triode output stage.

Fig. 36. Complete circuit for a triode power amplifier—A.C. version.
THE COMPLETELY ASSEMBLED "ALL-WAVE" SUPERHET CHASSIS

The three receivers are designed for operation on A.C. mains, and employ the very latest miniature type valves. They are designed to the most modern specifications, and great attention has been given to the quality of reproduction, which gives excellent clarity of speech and music on both gram and radio, making them the ideal replacement chassis for that "old Radiogram," etc.

- Model B.G. A 7-valve 3 waveband receiver £12.12.0. (Plus 7/6 carr. and ins.) H.P. Terms £3.10.6 Dep. and 12 Months at £1.3.11.
- Model B.R.P.P. A 5-valve 3 waveband Receiver with PUSH-PULL OUTPUT. £15.15.0. (Plus 7/6 carr. and ins.) H.P. Terms £3.19.0 Dep. 12 Months at £1.2.2.

Send S.A.E. for our Illustrated and Descriptive leaflet of various Radiogram Chassis, Autochange Units, Amplifiers, etc.

A GENUINE SPECIAL OFFER!

3-SPEED AUTOCHANGE UNITS BY

FAMOUS MANUFACTURERS from £9.19.6

- Complete with High Fidelity Crystal "Turnover" Head which incorporates two separate stages for L.H. and 78 r.p.m. records.
- Will autochange on 7in., 10in. and 12in. Records, not intermixed.
- Brand New "Mixer" Units, complete with mounting instructions.

WE ALSO HAVE "MIXER" UNITS

The "SUPER-SIX" A DESIGN FOR HOME CONSTRUCTORS

A compact and highly efficient Superhet Radiogram chassis incorporating a Main Amplifier and Autochange Unit. A.C. mains. They make an excellent replacement Radiogram chassis. THEY ARE BRAND NEW AND FULLY GUARANTEED.

Send S.A.E. for our Illustrated and Descriptive leaflet of various Radio, Radiogram Chassis, Autochange Units, Amplifiers, etc.

TWO COMPLETE Hi-Fi AMPLIFIER KITS

A HIGH QUALITY 8-10 watt AMPLIFIER

THE IDEAL AMPLIFIER FOR GENERAL HOME AND SMALL HALLS, etc.

PRICE OF COMPLETE KIT, INCLUDING VALVES AND DRILLED CHASSIS, IS COMPLETELY BUILT FOR £9.10.0. (Plus 7/6 carr. and ins.) Designed for high quality reproduction up to an output level of 10 watts, having G.E.'s in Push-Pull and incorporating negative feedback. Suitable for use with all types of Pick-up and most types of microphones and the output transformer provides for use of 9 and 15 ohm speakers. BRIEF FEATURES:

- Valve line-up: 6J5, 6L6, 300G, J5, 6V6's in push-pull. First class reproduction of radio (a tuning unit is used) and recorded music. Bass, Treble and TWEET controls provide an excellent range of frequency control.

The assembling manual is available for 1/- and includes detailed printed and component Price List.

THE NO. 1 "LIL" 10 AMPERER AND "POINT-ONE" PRE-AMPLIFIER

This amplifier has a maximum output of 10 watts and maintains in every respect the world renowned "Superhet" reputation for precision engineering, fine appearance and fastidious wiring. The Comp-Amp Amplifier will operate from any type or make of Pick-up. There are (1) THE COMPLETE AMPLIFIER with Pre-Amplifier £28.7.0 or £7.2.0 Dep. and 12 Months at £2.15.0. (The No. 1 MAIN AMPLIFIER only £17.17.0 or £4.7.0 Deposit and 12 Months at £3.15.0.) The "POINT-ONE" PRE-AMPLIFIER only £10.10.0 or £2.12.6 Dep. and 12 Months at £3.15.0.

S.A.E. FOR DESCRIPTIVE LEAFLET.

WE HAVE IN STOCK THE STANDARD F.M. RECEIVER. Consisting of a 4 valve Superhet incorporating E.F. (6AX5) and E.C. (12A10) Stages followed by a dual Stage (6AB6) and Ratio Discriminator, the coverage provided being 88-100 M.C.'s. THE COMPLETE KIT, including VALVES and DRILLED CHASSIS is available for £6.13.6. (Plus 7/- carr. and ins.) COMPLETELY ASSEMBLED CHASSIS READY PACKED AND TUNED, £8.17.6. (Plus 7/- carr. and ins.) Suitable for use with any type of High Fidelity Amplifier. Descriptive manual, including circuit and component layout, etc., available for 1/-.
First-class radio courses . .
get a certificate!

Qualify at home—in spare time

After brief, intensely interesting study—undertaken at home in your spare time—you can secure your professional qualification. Prepare for your share in the post-war boom in radio. Let us show you how!

Free guide

Write now for your copy of this invaluable publication. It may well prove to be the turning point in your career.

Founded 1885—over 752 successes

National Institute of Engineering

(Dept. 461), 140, Holborn, London, E.C.I.

Just Published

Transistors and Crystal Diodes
What They Are and How to Use Them
By B. R. Bettridge
5s. Od., postage 3d.

Hints and Rinks for the Radio Amateur, Vol. 5 by "A.R.R.L."
2s. 6d., postage 1d.

Basic Electronic Test Instruments, by R. P. Turner, 2s. Od., postage 1d.
Wireless Servicing Manual, by W. T. Coates, 1s. 6d., postage.

Everyman's Wireless Book, by F. J. Cahn, 1s. 6d., postage 1d.
Reference Data for Radio Engineers, by "Federal Telephone & Radio Co.," 3s. 6d., postage 1d.

Principles and Practice of Radar, by H. E. Penrose and R. A. Boulding, 50s. Od., postage 1d.

Radio Engineering, by F. E. Terman, 50s. Od., postage 1d.

Radio Valve Data, new edition, compiled by Wireless World, 3s. 6d., postage 1d.

The Modern Book Co.

19-23 Praed Street, (Dept. P. 12)
London, W.2.

*Phone: PADDINGTON 4185.
Open all day Saturday.
Please write or call for our catalogue.

Copper Wire
Cotton Covered
SILK COVERED

S.W.G. 2 ozs. 4 ozs. 2 ozs. 4 ozs.
16 1/2 ozs. 2 ozs.
17 1/4 ozs. 1/4 ozs.
18 1/4 ozs. 1/4 ozs.
19 1/2 ozs. 1/8 ozs.
20 1/4 ozs. 1/8 ozs.
21 1/2 ozs. 1/8 ozs.
22 1/16 ozs. 1/32 ozs.
23 1/8 ozs. 1/16 ozs.
24 1/8 ozs. 1/16 ozs.
25 1/8 ozs. 1/16 ozs.
26 1/32 ozs. 1/32 ozs.
27 1/64 ozs. 1/64 ozs.
28 1/64 ozs. 1/64 ozs.
29 1/64 ozs. 1/64 ozs.
30 1/64 ozs. 1/64 ozs.

All at 4/-. Each 4d. Postage 2/-.

Crystal Set
Incorporating the silicon crystal
Adjustable iron coiled coil.

Reception Guaranteed
Polished wood cabinet, 15/-, post H.
A real Crystal Set, not a toy.

Post radio supplies
33 Bourne Gardens, London, E.

Benson's Better Argains

Brand new, original cartons.

R.F. units, Types 28 or 27, 27/4.
24 15/- (Postage 2/6).

Meters, new boxed. M.C. 21m. Fl.
100 microamps. 35/- 300-v. (1
ma F.S.D. only).
20/- 15/0/5 v. 10/6.
100/200 mA. Pro/1.
20/100/400 mA. 120/60/40.
1.500 v. Pro/20/20/1/1.
10/20/40/200 mA. 100/200.
15/100 m. 200/200/200.
15/100 m. 100/200/200.
15/100 m. 200/200/200.
grid voltage of the working range \((E_g = 0 \text{ volts}) \), i.e., 165 volts, and \(I_{\text{min}} \) is the anode current at the most negative grid voltage (27 volts) and is 27 mA. \(E_{\text{HT}} \) and \(I_{\text{HT}} \) are respectively 250 volts and 45 mA, so power output is:

\[
250 \times 45 \cdot \left(1 - \frac{165}{250} \right) \cdot \left(1 - \frac{27}{45} \right) = .765 \text{ watts}
\]

or in round figures \(\frac{1}{2} \) watt. The factor 1,000 that appears in the denominator of the first expression above has to be introduced because \(I_{\text{HT}} \) is in mA.

Distortion

It is meaningless to talk about power output without indicating the degree of distortion present and there must be distortion with the 6AQ5 as with any other valve. If a distortionless state could be set up the anode swing above and below the static voltage would be the same for a given input grid voltage variation. Thus with a sine wave input of the maximum permissible amplitude (as above) of 27 volts peak to peak the grid swings equally 13\(\frac{1}{2} \) volts below the steady bias position and 13\(\frac{1}{2} \) volts above the static condition and so the anode should swing equally above and below the static 250 volts used for the design. In actual fact, however, it is seen that the anode actually swings from 164 volts to 326 volts, i.e., from 88 volts below to 76 volts above 250 volts, so clearly there is a measure of distortion. The makers specify, in fact, 3.5 per cent. total distortion for the working conditions used for this design and if we doubted that information it could be proved by drawing the distortion curve in the form shown in Fig. 31. This amount of distortion is very satisfactory for this simple type of circuit, for in earlier years it was quite common to work with distortions up to 10 per cent.

A.C. Version

The basic power output circuit given in Fig. 35 is developed to include the power and rectifier circuits with the result, for the A.C. case, as shown in Fig. 36, V2 is a normal full-wave rectifying circuit operating from a 250-0-250 volt winding on the mains transformer T2. For the sake of consistency the rectifier valve is chosen from the Brimar range of modern miniature valves and is, in fact, a 6X4. The heater of this valve takes 6.3 volts and not 5 volts, as is provided on the usual mains transformer. The reason is that the heater cathode insulation is made sufficient to withstand up to 450 volts and so the rectifier heater can be connected across the same supply as the other valves in the circuit. From Fig. 36 it will be seen that this is done in the present case and not a single heater winding is required. The transformer chosen has a 5-volt winding as a

![Fig. 37.—Chassis drilling diagram for A.C. amplifier (Fig. 36). Note that the \(\frac{1}{8} \) holes are for grommets.](www.americanradiohistory.com)
then, it is only 7in. x 4in. Fig. 37 gives the drilling data for the components actually used and, as probably most constructors will obtain their chassis ready folded, the markings are as at the outside of the chassis. Perhaps a warning should again be given that the component should be obtained and measured before drilling the chassis (which in the prototype was of aluminium) because the position of the holes might vary slightly. Probably the neatest way is to make a template of drawing paper, marking the positions of the holes. The components can be tried on this and when satisfied the positions can be punched through the template. Notice that at only one point does the earth line contact the chassis, by the input coaxial socket. Apart from this connection chassis returns are not used except for the electrolytic capacitor C2, C3, the case of which is earthed in the usual way via the mounting clip.

Wiring

The wiring diagram is given in Fig. 38 and if the following sequence is followed no difficulty will be experienced.

1. *Input socket to pin 1 V1.*
2. *R1. 220KΩ.* From pin 1 V1 to earth tag by input socket.
3. *Pin 3 V1 to earth tag to pin 3 output power socket to pin 3 V2.*
4. *Pin 4 V1 to pin 4 power output socket to pin 4 V2.*
5. *Pin 6 V1 to pin 5 V1 to tag 3 on output transformer.*
6. *R2. 300Ω* C1. 50µF } Both from pin 2 V1 to earth tag-
7. Pin 5 power output socket to nearest tag on electrolytic to tag 4 on output transformer.
8. Pin 3 power output socket to one side of 6.3 winding on output transformer.
9. Pin 4 on power output socket to other side of 6.3 winding.
10. *R3. 150. From pin 1 V2 to pin 2 V2.*

Using the Amplifiers

To connect the two amplifiers together a coaxial plug is fitted to the coaxial output lead from the voltage amplifier and plugged to the input of the power amplifier. A miniature plug is fitted to the power lead from the voltage amplifier. A four-core cable was used for this purpose in order to offer the maximum flexibility in use but for the present case only three inter-connections are required, one side of both heater and H.T. being earthed. Consequently this interconnection is made in the miniature plug, the lead from the earth busbar of the voltage amplifier and one side of the heater being connected to pin 3 of the plug and so to earth.

A peak signal of a tenth of a volt fed into the voltage amplifier with the volume control at maximum will be found to fully load the output stage.

It is intended that the power amplifier be stowed away in the cabinet of the equipment in which it is to be used rather than placed side by side with the voltage amplifier which has to be so mounted that the control is accessible. Later on, when R.F. amplifiers have been discussed a design will be produced to feed into these amplifiers and to be mounted alongside the voltage amplifier.

Universal Mains Version

The complete circuit for the universal version will be given next month. It will be seen that the valve heaters are connected in series and, of course, the voltage amplifier must be suitably wired as explained in the wiring data of that chassis. High-voltage heater valves are employed so that the minimum voltage remains to be dropped in the series resistor (R4, R5). V1 is the 19AQ5 and a half-wave miniature rectifier, the 35W4 matches this and so is used. The important characteristic in series wiring of heaters is, of course, the current taken by the heaters, not the voltage, and both these valves take .15 amperes. The specified wiring of the voltage amplifier for universal operation results in the same heater current being taken by the 12AU7. The three valves, then, take 67 volts at .15 amperes when connected in series and the dropper has to have a resistance to drop the surplus. Thus, suppose the mains are of 240 volts. The voltage to be dropped is now 240 – 67 = 173 volts at .15 amperes. By Ohm’s Law:

\[
R = \frac{E}{I} = \frac{173}{0.15} = 1,150 \text{ ohms.}
\]

(To be continued.)
PRACTICAL WIRELESS

December, 1954

ALL WAVE RADIOGRAPH CHASSIS THREE WAVEBANDS FIVE VALVES M.W., 200 m., 40 m. or 15 m. Brand New and Guaranteed with 10% F.M. Speaker. 2150/2250 m. Four position Waveband switch. Speaker 25/250 M.W. Sensitivity. Main Motion Tuning. Speaker and Feed-in connections.

PRICE 10/6 (without speaker). 11/15 (Carr. & Ins. 4/6).

SPECIAL.—Recommended for above chassis.

V.C.R.72 TESTED FULL PICTURE

P. & P. 2/6.

MINIATURE VALVES WIRE ENDS

<table>
<thead>
<tr>
<th>MINIATURE VALVES</th>
<th>WIRE ENDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>E85 X 10</td>
<td>E85 X 10</td>
</tr>
<tr>
<td>E84 X 10</td>
<td>E84 X 10</td>
</tr>
<tr>
<td>686 X 60</td>
<td>686 X 60</td>
</tr>
<tr>
<td>686 X 60</td>
<td>686 X 60</td>
</tr>
<tr>
<td>E84 X 10</td>
<td>E84 X 10</td>
</tr>
<tr>
<td>686 X 60</td>
<td>686 X 60</td>
</tr>
<tr>
<td>E85 X 10</td>
<td>E85 X 10</td>
</tr>
<tr>
<td>686 X 60</td>
<td>686 X 60</td>
</tr>
</tbody>
</table>

MINIATURE CHASSIS SIZES

41 VOLT POST FREE. Latest.

MINIATURE CHASSIS SISTERS

Tested Full Picture.

MINIATURE CHASSIS WIRE ENDS

E85 X 10, E84 X 10, E86 X 60.

MINIATURE CHASSIS SIZES

Tested Full Picture.

MINIATURE CHASSIS SISTERS

Tested Full Picture.

MINIATURE CHASSIS WIRE ENDS

E85 X 10, E84 X 10, E86 X 60.

MINIATURE CHASSIS SIZES

Tested Full Picture.

MINIATURE CHASSIS SISTERS

Tested Full Picture.

MINIATURE CHASSIS WIRE ENDS

E85 X 10, E84 X 10, E86 X 60.

MINIATURE CHASSIS SIZES

Tested Full Picture.

MINIATURE CHASSIS SISTERS

Tested Full Picture.

MINIATURE CHASSIS WIRE ENDS

E85 X 10, E84 X 10, E86 X 60.

MINIATURE CHASSIS SIZES

Tested Full Picture.

MINIATURE CHASSIS SISTERS

Tested Full Picture.

MINIATURE CHASSIS WIRE ENDS

E85 X 10, E84 X 10, E86 X 60.

MINIATURE CHASSIS SIZES

Tested Full Picture.

MINIATURE CHASSIS SISTERS

Tested Full Picture.

MINIATURE CHASSIS WIRE ENDS

E85 X 10, E84 X 10, E86 X 60.

MINIATURE CHASSIS SIZES

Tested Full Picture.

MINIATURE CHASSIS SISTERS

Tested Full Picture.

MINIATURE CHASSIS WIRE ENDS

E85 X 10, E84 X 10, E86 X 60.

MINIATURE CHASSIS SIZES

Tested Full Picture.

MINIATURE CHASSIS SISTERS

Tested Full Picture.

MINIATURE CHASSIS WIRE ENDS

E85 X 10, E84 X 10, E86 X 60.

MINIATURE CHASSIS SIZES

Tested Full Picture.

MINIATURE CHASSIS SISTERS

Tested Full Picture.

MINIATURE CHASSIS WIRE ENDS

E85 X 10, E84 X 10, E86 X 60.

MINIATURE CHASSIS SIZES

Tested Full Picture.

MINIATURE CHASSIS SISTERS

Tested Full Picture.
COMMUNICATIONS RECEIVER 4.1155. The famous early exciter and Grid Receiver known the world over to be supreme in its class. Over 15,000 sets to 16.5-7.5 Mc., 7.5-10 Mc., 1,500-600 kc. 500-20 kc. 200-75 kc., and is easily and simply adapted for normal Crystal receiving. A full details being supplied. Aerial tested before despatch these are the only instrument in Maker's ORIGINAL TRANSISTOR CASES. ONLY $11.16.

A.C. MAINS POWER PACK OUTPUT STAGE. — In black metal case enabling the receiver to be operated immediately without additional equipment. Can be supplied as follows — Less Speaker. $4.10; or with 61 in. P. Speaker. $5.25.

DEDUCT 10% FOR PURCHASING RECEIVER & POWER PACK TOGETHER. Please and carriage costs of 50 for Receiver and 50 for Power Pack. $10.00.

100 MICROAMPS METERS. 21m. Circular Flush Mounting. Widely calibrated scale of 15 divisions marked "Yards," which can be re-written to suit requirements. These movements are almost unobtainable to-day and being BRAND NEW in Maker's CARTONS are a snip. ONLY 42.9.

TRANSFORMERS. — Manufactured to our specifications. 25, 50, 100, 200, 500, and 1,000 volts A.C. MAINS supplied. Aerial problems.

VACUUM PUMPS. — These are ex-R.A.F. rotary valve type and are ideal for handly- efficient operation. Price, Guaranteed. ONLY $8.80 (postage, etc. 2-3.

INHOMOPOLTS. — Contains 6 volts A.C. filament metal screen. 4 valves, EFP0 and 2 of IB3X. NEW CONDITION. ONLY $8.80 (carriage, etc., 7/6).

METERS

<table>
<thead>
<tr>
<th>F.A.D.</th>
<th>SIZE AND TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 in.</td>
<td>D.C. 1 in. Flush sphere</td>
<td>15-</td>
</tr>
<tr>
<td>1 in.</td>
<td>D.C. 1 in. Flush circular</td>
<td>22-</td>
</tr>
<tr>
<td>2 in.</td>
<td>D.C. 2 in. Flush sphere</td>
<td>25-</td>
</tr>
<tr>
<td>2 in.</td>
<td>D.C. 2 in. Flush circular</td>
<td>7/6</td>
</tr>
<tr>
<td>3 in.</td>
<td>D.C. 3 in. Flush sphere</td>
<td>19-</td>
</tr>
<tr>
<td>3 in.</td>
<td>D.C. 3 in. Flush circular</td>
<td>7/6</td>
</tr>
<tr>
<td>5 in.</td>
<td>D.C. 5 in. Flush sphere</td>
<td>50-</td>
</tr>
<tr>
<td>5 in.</td>
<td>D.C. 5 in. Flish circular</td>
<td>7/6</td>
</tr>
<tr>
<td>7 in.</td>
<td>D.C. 7 in. Flush sphere</td>
<td>70-</td>
</tr>
<tr>
<td>7 in.</td>
<td>D.C. 7 in. Flush circular</td>
<td>7/6</td>
</tr>
</tbody>
</table>

All meters Brand New in Maker's CARTONS. Amounts given for carriage refer to inland only.

U.E.I. CORPORATION, 138, Gray's Inn Road, London, W.C.1
(Phone: TEMPLES 7957)
(Open until 1 p.m. Saturdays. We are 2 minutes from the (Temple Lane Station) and 5 minutes by bus from King's Cross.)
What is HI-FI?

IS THERE SUCH A THING AS HIGH FIDELITY? A CRITIC EXAMINES THE SITUATION AND MAKES SOME SUGGESTIONS

By "Grid Current"

It is almost an exception at the present time to find descriptions of sound reproducing equipment without the appended descriptive adjective "Hi-Fi."

One of the most curious attributes attached to this label "high fidelity" is the emphasis placed on the ability of such equipment to reproduce the higher range of frequencies, curious because when the folded horn was introduced into the design of the gramophone, thus allowing a considerable extension of bass range of reproduction, and later when the moving-coil loud speaker and baffle still further extended this range, apparently nobody had the brilliant thought of labelling the new equipment as "high fidelity."

Bass reproduction having been obtained with some degree of success, attention was then directed to reproduction of those higher frequencies which play an important part in giving character to the tone character of individual instruments by reason of adequate coverage of a range of upper harmonics and ability to deal with those transients which are important in the accurate reproduction of certain instrumental effects.

Limitations

Two basic difficulties arose when this improvement was attempted. In the case of the radio receiver, certain limitations were imposed by the frequency band normally transmitted by the BBC, and in the case of the record reproducer, needle scratch became horribly apparent and could not entirely be overcome by filters.

In the era when attention was focused on the reproduction of bass frequencies, our enthusiastic friends too often subjected us to demonstrations of "perfect" reproduction consisting largely of bangs, thumps and resonant booms! Since attention has been focused on the higher range, we are now subject to demonstrations which assault our ears with squeaks, screams, hisses, and noises often not far different from that piercing horror which sometimes occurs when a knife edge is accidentally drawn across a dinner plate.

The curious thing about this "high fidelity" reproduction, as so often demonstrated to us by enthusiasts, is that the enthusiast himself appears to be transfixed with the glory of the sounds emitting from the equipment, whereas his family appear to be equally transfixed with horror from the dreadful sounds filling the room.

Perhaps a great deal of this may be put down to excess of zeal and enthusiasm, and a perhaps not too full comprehension of what is really meant by high fidelity—so now let us look at another side of this problem by examining some of the components and circuitry to which this label is from time to time attached. It is obviously impossible in the short space of an article of this nature to analyse such circuits or components, but the reader is invited to spend a few hours carrying out such an examination, and he may well wonder what the term "high fidelity" actually covers. As nobody has set down a definition for the term, it would perhaps be difficult to point an accusing finger in any particular case, and so confusion becomes even more confounded.

Taken literally, high fidelity would mean a high degree of faithfulness of reproduction.

Aim Unobtainable

It is suggested that this idealistic aim is fundamentally unobtainable in most instances. A matter of individual taste even enters into the question—if you are attending a concert in the Royal Festival Hall it may please you to sit in one particular position rather than in another because you prefer the balance of tone of the music which you hear when listening in that position. When you receive the same concert either via a broadcast or via the medium of a record the broadcaster or the recorder has decided for you your physical situation when listening to the music.

Another curious characteristic of the high fidelity enthusiast is that in a considerable number of cases he is unable to give you a demonstration of the reality of his reproduction without turning up the volume to such an extent that your natural desire is to escape from the onslaught at the earliest possible moment. It is rather as though he desired to drive the possibility of any lack of concentration on your part beyond the realms of possibility, and this may possibly be in some way associated with the cacophony of noise hurled upon you by your local cinema at the commencement of a film. I have never discovered whether, in fact, this is done to make it impossible for you to have your mind diverted by conversation with your neighbour at this crucial moment, or whether it is produced as a form of musical mesmerism!

A Definition

Any equipment carrying the label "high fidelity" should:

1. Be capable of accurately handling in their correct proportions those frequencies necessary to produce the characteristic tones of all those sounds it may be called upon to produce.
2. That the apparatus should be free from any cross modulation effects.
3. That at the volume at which it is required to be used the tonal balance can be adjusted to that most pleasing for the listener.
4. That it should not reproduce extraneous noises not present in the original performance.
Programme Pointers

"The Farmer of Sant' Agata"

BELIEVE it or not, "The Farmer of Sant' Agata" was not the story of a farmer who enriched Italy with crops and herds of cattle and sheep, but the life of Giuseppe Verdi, one of the world's greatest musicians and operatic composers, who enriched not only Italy but the world with masterpiece after masterpiece. The title seemed an awful cliché, comparable to "the Bricklayer of Chartwell" or "the Premier of Poland." Surely "Caro Nome" or "Celeste Aida" would at least have had the merit of immediately directing the attention to the subject in hand, as well as being more poetical and romantic sounding.

But, cliché or no cliché, this biographical novel for the microphone based on the life and works of Verdi, by Spike Hughes, read by Felix Felton and produced by Michael Bell, and in five weekly instalments, each an hour's programme, was truly first class and wholly admirable. I rank it the best thing, at any rate of its kind, for months, and easily Spike Hughes' top achievement to date. The story was well told, the parts interestingly balanced, whilst the whole was bound together with a remarkable collection of gramophone records of excerpts of the glorious music.

May we have from Mr. Hughes' pen the fabulous story of Wagner, with the Wagner, Bulow, Cosima triangle unvarnished and the King Ludwig saga complete? Here would be radio entertainment in excelsis. We should have the I.T.A. in full pet after it for exclusive rights!

Two appearances of Sir Thomas Beecham at the Proms—again, happily, a year distant—produced a volume of applause which made one wonder whether the applauses were not starved of good music adequately performed!

Two programmes, each also of an hour's length, "Prelude to War," dealt very much in the manner of the recent Wickham Steed talks with the origins of the two world wars of our time. One felt that we were only being told what good children were wanted to know. For this child at any rate, I already knew everything that was in the programmes and a good bit more. But then I never was a good child. The programmes themselves imparted nothing new. That was not the fault of either the late Professor Temperley or Sir Lewis Namier, the compilers. The programmes had nothing new to convey, but were very well done and very interesting.

Plays

I thought the best play of the month was not a "play" at all, but the radio version of Ivan Goncharov's "Oblomov." A wonderful story of a universal character, as all great books should be about. Oblomov is that person, the laziest person in the world who dodges all life's problems and crises, only to make the best of the baby he is left to carry. The play effectively began with the hero being dragged out of bed and ended with him getting back there to end his story. Robert Eddison was most effective and convincing as Oblomov, Barbara Couper as the girl he lost (although she was wholly "in the bag," as they say) and Susan Richards as the one he gained.

"The Doctor's Dilemma" needs little comment. Even the author's name is too famous to require citation. Jack Allen as Sir Colenso, the Doctor, Maxine Audley as Mrs. Dubedat and Cyril Cusack as Louis Dubedat headed the cast, all of whom put over the play's wit and philosophy with gusto and conviction.

The current serial, "Martin Chuzzlewit," is proceeding with great success. The series of immortal characters are parading before us in all their glory and with great effect.

"Golden Rain" was a pleasant offering from the pen of R. F. Delderfield. A financially harassed country parson is scandalized and morally outraged when he learns that his wife and his cook are sharers in a good slice of the Treble Chance pool. That they have been regular competitors in secret from him only makes his feelings all the more poignant. But religion and love are cleverly reconciled and Ivan Sampson, Ivan Brandt, Rachel Gurney, Kathleen Helme, etc., were very good.

Neville Shute's novel, "No Highway," dealing with the overworking of aeroplanes and their almost certain doom, made good Saturday Night Theatre material for the second time. So did "Random Harvest," James Hilton's story dealing with a first war casualty who loses all recollection of a part of his life until it is brought back by his being cleverly taken to a romantic spot. "Saturday Night Theatre" should be renamed "The Saturday Night Book Club."

Personal Call

The Saturday evening Sports Report has started one of the silliest imaginable minor features, Personal Call. In return for answering a truly babyish question the correspondent is rewarded, amongst other alternatives, with a microphone appearance. The first question I heard asked was "Who won last year's England v. Scotland soccer international?" But, incredible as it may sound, the gentleman, presumably a football fan, else he wouldn't be taking any interest in this particular programme, did not know.
CHIMELITE

It is a ball light as well as a chimene and you can make it in a couple of evenings at the total cost of only 196, including instructions. Post, etc. 2d. Data available separately price 2d.

CABINET

A.C. offered walnut cabinet. When the front is dropped down it is ample for the larger than average radio chassis or amplifier and alongside there is a space for a tape recorder of auto record changer mechanism. Both the radio board and the control board are left uncut to suit your own equipment. Size approximately 30in. high, 12in. wide, and 16in. deep. Price £16.15.0. Carriage 12.6d.

CHASSIS ASSEMBLY

3 colour 3 waveband scale covering standard Long, Medium, and Short wavebands. Scale pan, chassis punched for standard 5 valve superhet, popular dining head, springs, etc., to suit. Scale size 14in. x 3in. Chassis size 13in. x 5in. x 2lin. deep. Price £1.5. plus 1d. post.

TABLE RADIO CABINET

Very fine cabinet, size approx. 16 x 16 x 7-inwalnut veneered and satin finished, 388, carriage and packing 36. This cabinet is the correct one for the chassis above.

BE PREPARED

for a cold winter by making our low cost heater wire and blueprint. 20.-. Special heater only 16. Alternatively make a Red Warmer Construction Data 1.6.

CABINET

19/6

You can make an excellent box reflex cabinet with this wire-made veneered and polished walnut cabinet. Limited quantity offered at 19/6. Carriage, etc. 36.

THIS MONTH'S SNIP

A.C. D.C. THREE, 19/6

A remarkable bargain (mainly operated). Totally self-contained powerful receiver for Long and Medium waves. All parts including valves, coils, resistors, etc., but no loudspeaker and very cabinet will cost you only 196d. post, etc. 1d. Data available separately 2d. post free.

TWO NEW CABINETS

THE BUREAU

This is a really beautiful cabinet elegantly veneered in walnut and finely polished. The control board, revealed when the front is dropped down is ample for the larger than average radio chassis or amplifier, and alongside there is a space for a tape recorder or auto record changer mechanism. Both the radio board and the control board are left uncut to suit your own equipment. Size approximately 30in. high, 12in. wide, and 16in. deep. Price £16.15.0. Carriage 12.6d.

THE CONTEMPORARY

Also in the modern trend is this very stylish contemporary console. Veneered in oak with contrasting mouldings. This has the 0° plan look and is ideal for use with this furniture or with other contemporary fittings or furnishings. The radio and mains board is again uncut, and its size 30in. x 15in. provides ample room for all equipment. Price £8.15.0. Carriage, etc. 12.6d.

TAPE RECORDINGS

ULTRA MODERN TAPE DECK

The latest Truvox incorporates every modern refinement plays H.M.V. and other pre-recorded tapes. Has azimuth head adjustment 50-16,000 c.p.s. response provision for foot control (dialling letters). Is undoubtedly one of the best tape decks available today. Price £23.10. Hire Purchase terms if required. Send a deposit of 35%, or more, balance spread over 12 months. Carriage and insurance 10/6.

CLEVELAND WIDE-BAND TAPE AMPLIFIER

Truvox co-operated in designing this amplifier and fully approve it. Two separate inputs for mixing programmes. Suitable for radio recordings from crystal set or tuner, crystal or magnetic recorder or pickup. Maple veneer indicates depth of recording. 4 watt amplifier includes midget valve cover on separate chassis. Price £15. Hire Purchase terms if required. Send a deposit of 35%, or more, balance spread over 12 months. Carriage and insurance 7/6.

FINER MODERN RADIO

THE CLEVELAND ORGANTONE

5 valve 3 waveband superhet covering Long, Medium, and Short waves—built to attain highest performance of sensitivity, fidelity and output—(crystal miniature valves give low iron, coils—permFebruary tuned P.F.—full A.V.—modern Defensive feedback—bram position on wave change switch—4 watts output—particularly fine tone especially on gram. Chassis size 7 7 x 7 approx. scale size 5 x 4 x 11 approx. Tested in difficult areas where exceptional results have been obtained. Price £11.10.6. or £5.15.6. deposit. Carriage, etc. 7/6.

MAKE IT YOURSELF AND SO SAVE

25-30%

All parts assemble perfectly into professional portabale cabinet. Send for construction etc. booklet today. Price 2/6.

INFRAY LAMP

Means real comfort bed as it emits infra Red Rays which warm and keep you healthy. Economical. Costs only 1d. plus 1d. per unit. Absolutely safe, no electric or fire risk. Test & Return 2/- ideal for many other uses—over pet's basket, rearing pup, chicks, over desk, etc. All complete and ready to work.

SELECTIVE FEED-BACK AMPLIFIER

A.C. mains 3 valve amplifier with variable gain and treble controls to vary negative feedback. Completely made up and ready to work. Price £4.19.6. Plus 2/6 post. Demonstrations gladly at all branches.

EVERLASTING GRAMophone NEEDLES

Jewel (Sapphire) pointed, suit any type of machine made—improves quality, eliminates friction wear. 3 types, loud, soft, midget. £2.6 each.

MULLARD AMPLIFIER

A high Quality Amplifier designed by Mullard engineers. Robust, with a power output exceeding 10 watts and a harmonic distortion less than 4% at 10 watts, its frequency response is extremely wide and level being almost flat from 0.1 to 20,000 C.P.S.—three controls are provided and the whole unit is very suitable for use with the Collaro Studio and most other good pick-ups. Price £36.0.0. carriage and insurance extra. 30c. post. Carriage in each case is 10/- extra. Data will be provided with all orders for components. Send for the "Mullard Amplifier Shopping List."

ELECTRONIC PRECISION EQUIPMENT, LTD.

Post orders should be addressed to Dept. 7, RUISLIP.

Personal shoppers, however, can call at 42-46, Windmill Hill, Ruislip, Middlesex. Phone: RUISLIP 5763. Half day, Monday, Ruislip, Middlesex. Phone: RUISLIP 5763. Half day, Monday.

158-9, Fleet Street, E.C.4. Phone: CENTRAL 2933. Half day, Saturday.

28, Stroud Green Road, Finchley, N.3. Phone: ARCHway 1049. Half day, Thursday.
BENTLEY ACOUSTIC
38, Chalcot Road, N.W.1. Primrose 5906.

1T4 1T4 1LN5 4/8 6Z4
68187 81- 68A7 8l8 647g
6H6g 6C6 6BE6
GRAS 5X4 8/8
345

MAYPOLE ESTATE, ISLINGTON, LONDON,

SOLDERING
ad.

10/-

ECC33 E1391 ACT23 10/6

ACT23 10/6

BEXLEY, KENT

STAND

Corp., Ltd.,

FREE B.A.E. LIMITED;

WEIGHT and 8/9

15/-

250v.

12AT7 5/6 12AX7 5/9

E1391

12AX7 5/9

KTZ63 8/8

HLI32 6/-

WIRELESS

12AX7 5/9

Pan-Pacific 10/6

December, 1954

PRACTICAL WIRELESS

760

ULYDON 5-CHANNEL TV, PRE-TUNER
VALVES. SW7T and 12AX7, are one of
these to your set for better pictures.
Leash valves. 15/-.

SPECIAL OFFER. New and boxed AR129
VP23 valves. 5/- each, 4 for 15/-.

TYPE 6c "SCOPE" UNIT with VCR
(1500) 4 1/2" Tube, 45, and Conversion
Circuit. 50/6.

FISHING ROD AERIALS. 12ft. Set 3-
7/8" Mounting Base. 12 feet 2.5/8" dia.
95 AMPERES, 21in. square M/C, 11/-.

GERMANIUM DIODES. 3/8

FREQUENCY TRANSISTORS. 9.100 and 4.330
Kc. 10/6. 4.800, 4.800 4.200, 504, 551, 500,
990 Kc. 6/6. 6in. Space Pins.

SELENIUM RECTIFIER. P.W. 6 or 4x16 v.
9A. 220/129. 5. A, 30/6. 3A. 14/6 100 ma.
2A. 90/6. 21v. 24A. 20/. 220. 200/6 ma.

TRANSFORMERS, 500-240 volts, tapped
6/2 and 120 400, 200, 200, 200, 200.
Tapped 175-15 volts 5A. 22/85. Tapped
8/12 and 10v. 15/; 12/5.

MIC MICROPHONES AND TRANS-
FORMERS.

NEW OAK 6v. 4-pin Vibrators. 10/6.

MORSE KEYS. 3/-.

BLOOMER MOTORS, 14/6. A.C./D.C.
CABIN TWIST DRILLS. Sets of 6.

U.H.F. AERIALS. 120-200 M/., covering
band, complete with case. 8/6.

1.5kg overload switch. 7/6.

TI2116. Transmitter Section. New
and complete. 4/6,5/8 M/., Easily converted.
10/6. 35v. with descriptive and Oper-
ational Details, 20/-.

ALL POST PAID IN U.K.

THE RADIO & ELECTRICAL MART
2659, Portobello Road, London, W.11.

Phone: Park 6026.

TELETRON SUPER INDUCTOR COILS.

(introduced by Type of X.T.
selective Xta-
12/8.

diode coil, as Radio unit,
in Tape and quality
Amplifiers, 3-5 ma.
dual wave TrF coils (illus-

FERRITE frame Aerials. MW.

120/6. Russia. 41/8.

COILS, H.T. etc. Stamp for list
of components.

THE TELETRON

WHAT'S THE TOPS!

THE BUILDING OF "TV"World Con-

Check list price of components.

NOW MULLARD AMPLIFIER

Build a really portable Tape Recorder
with the New

"CHALLENGER"

Three Speed High Fidelity Tape Deck.

A first-class precision built deck.
Successfully finished in Old Gold stow
Size only 11in. x 7in. Weight 6 lbs.

Britain's lowest priced Tape Deck.

Price £10.10.0.

Ask your dealer or send stamp for
details to:—

E.W.A.,

266, Warbreck Drive, Blackpool.

NEW 48 PAGE
RADIO AND TELEVISION
COMPONENT CATALOGUE
available free on request to

J. T. FILER
MAYPOLE ESTATE, BEXLEY, KENT.
Tel: Bexleyheath 7207.

Introducing the: —

TYANA TRIPLE THREE
MAKE SOLDERING A PLEASURE
SMALL
SOLDERING IRON
Complete with detachable
BENCH STAND 19/6
The smallest high-power
soldering iron. Length
only 6"; adjustable
bit dia. 3/16; mains volt-
ages 240v, 110v, 220v.

The "STANDARD"
Popular Soldering Iron
reduced to 14/-.

KENROY LIMITED
152/257 UPPER ST.,
ISLINGTON, LONDON, N.1.

Post 6d. each. 24 hour C.O.D. service. All
guaranteed. Complete list free S.A.E.

www.americanradiohistory.com
Magnetic Braking

SIR.—I have recently built a tape desk with magnetic braking as described in the article “Magnetic Braking on Tape Recorders,” *PRACTICAL WIRELESS*, January, 1953, page 41. The circuit you give can be simplified, however, by eliminating the relay and the rather inconvenient 6 volts D.C. supply. The circuit of my modification, which has proved to be satisfactory, is appended.

The D.C. braking supply is distributed appropriately by the fourth wafer of the rotary switch. The brakeswitch used was a push-button opening the A.C. and closing the D.C. circuit on pressing. A switch similar to the on/off switch “A” could, however, be used. In the off position, the switch “A” passes D.C. to the spool motors when the rotary switch is turned to the position shown in the diagram. This locks the spools and is useful for tape-threading. No harm

Series Modulation

SIR.—Much has been said, written and thought about modulating a P.A. stage, but I haven’t seen a thing about series modulation. It seems to me that if you wish to anode modulate a 150 watt P.A. stage you will have to pay out terrific sums for assorted chokes ad infinitum. But in S.M. you will need only a single good choke and a couple of high wattage carbon resistors. A point against it is, however, that you need approximately double the original voltage, but with surplus or otherwise mercury vapour rectifiers that causes very little trouble.

Another point is, why are we restricted to 150 watt I.P.? With some of the surplus valves on the market it is possible to have 200 watt modulated carrier. Two VT104s in push-pull, for instance, with a voltage of 1,250, Ia of 250 mA and I expect there are a good many others in P.P. or otherwise which would double this figure for carrier O.P. above. Why can’t the P.M.G. let us have high power stations?—C. McLEAN (Stoke Poges).

Changing Listening Conditions

SIR.—As a radio enthusiast I have taken *PRACTICAL WIRELESS* and your other publications for many more years than I care to remember, although this is the first occasion that I have entered into correspondence. What has prompted me to do so now is the changing and worsening conditions of reception on the medium broadcast band. I am, of course, aware that within the next two years we shall have F.M. and V.H.F. reception which will represent an incalculable change and result in extremely good quality reception.

There are, however, many snags. On these bands we shall be confined to listening to programmes from a local station with a choice of three programmes. For the reception of short and medium wave stations it will still be necessary to retain the present known type of receiver—which, in my opinion, should preferably be an entirely separate unit, although a compromise might be made to connect it to a common amplifier.

The tendency nowadays to build separate tuning units, pre-amplifiers-sum-tone control stages and a main amplifier is a step in the right direction, particularly to an amateur constantly making changes in equipment. It is frequently necessary to alter, rebuild or to construct an entirely new tuning unit which,
with this type of assembly, can be accomplished without alteration to the units succeeding the receiver portion.

May I suggest, therefore, in respect of all future receivers published in which the tuning unit might usefully be used with an existing amplifier that designs should clearly show a termination after the detector stage to enable constructors to make use of the tuning portion of the receiver without having recourse to building the complete set. It is appreciated that this represents no difficulty to the advanced and experienced constructor, but I am sure it would be welcomed by others not possessing the requisite knowledge.

In order to meet present-day conditions, including widespread interference from adjoining stations and television receivers, we have not yet had a design published which includes all features now and in the future more than ever necessary. What I should like to see in Practical Wireless is a receiver with a really elaborate specification.

Mains Surges

SIR—I have been reading with interest the article "Mains Supplies for Battery Valves" in a recent number, and would like to mention that I have solved the problems of surges, etc., mentioned by your contributor in a far simpler way, with many fewer components, by using the circuit on right. The principle of using a power valve as a grid-controlled rectifier is a most useful one for all kinds of supplies, and deserves to be far more widely known than it appears to be.

Assuming 50 mA for the filament chain and, say, 12 mA at 90 volts for the anode supply V may be any indirectly heated output valve capable of the required emission of 62 mA, and will be conductive on alternate cycles. The transformer can be of any type so long as the secondary provides 250 volts or more at the current needed. P is a wire-wound potentiometer of 25 kΩ or 50 kΩ, of which the slider takes off a suitable bias voltage for the grid. The smoothing can be adequate since C2 and C3 need only be of 120 volt working. R1 C1 form a filter in the bias circuit and may be omitted for extreme simplicity and cheapness. R2 drops the volts necessary to run the filament drain from 90 volt. A low-voltage electrolytic condenser may be wired across the chain, but this again is not vital. I have omitted the shunt resistors in the chain for the sake of clarity.

The slider of P is adjusted so that with the load connected the voltage in the anode line is 90 volt. When switching on the mains the high and low volts rise gradually owing to the time taken for the cathode of V to warm up, and both reach the working figure together. There can be no surges above this figure. When switching off the supply to the rectifier is cut off instantly, and the only energy remaining in the circuit is that stored in C2 and C3, which cannot rise above 90 volt, so owing to the comparatively heavy drain of the filament chain the H.T. will have fallen to a very low figure by the time the filaments have begun to cool off. Should the filament chain fail while running or at any other time the self-compensating action of the cathode follower arrangement of V will prevent the rectified voltage from rising to a figure likely to cause any harm—it may go as high as 110 volt—but it is absolutely essential that the H.T. should not rise above 90, it is a very simple matter to include in the filament chain the coil of a relay which will break the anode supply to the set at X if the filament current falls too low.

For mains use a mains on/off switch is all that is necessary. For mains-battery use only the simplest of change-over switching is needed.—(Rev.) S. A. R. GUEST (St. Stephen-by-Saltash).

Modifying R1132A

SIR—I have seen much written in "Open to Discussion" on modifying the R1132A, but after obtaining one of these sets I find I can only receive one station and I would like to know if any of your readers can offer any advice as to how I may improve this?—R. W. HILTON (8, Hogshill Lane, Cobham, Surrey).
EX-AM. RECEIVER TYPE R.1155

5 Frequency ranges: 15.5-7.5 kc a.m.: 12-10 Mr.: 12-16 kc s.w.: 500-20 kc s.w.: 200-75 kc s.w.
Supplied complete with original wood transit case.

PRICE
BRAND NEW... £11.19.6.
Secondhand... £4.7.19.6
Carriage £7.6. extra, including returnable on packing case.

ASSEMBLED POWER PACK/OUTPUT STAGE FOR R.1155.
For use on 220-250 v. A. C. mains.
Complete with 2 valves. In metal case size: 12 7/8 x 5 1/2 ins.
LASKY'S PRICE... 79/6. Carr. £5 extra.
Power Pack as above. Fitted with 6/6 p.m. speaker.
LASKY'S PRICE... 55/-.
Carriage £5 extra.

SPECIAL OFFER TAPE RECORDING "PHIDELITY." High efficiency, single hole fixing. Twin track. Twin record/playback. £2 2/6.
LAMPS: 6V6... 22/6.
Low impedance: 22/6.
Limited quantity only. Size 11 in. diam. Lin. high. £5 10/-.

MANUFACTURING COST: LESS THAN HALF USUAL PRICE.

BAKER'S SELHURST SPEAKER
Carriage 2/- per speaker extra.

RESIN CORED SOLDER: 7/6 per lb. reel.

L.A.M. WAVE E.R.F. COILS.
With Circuit... 4/6 pair.

LOOK: CARBON POTENTIOMETERS. Less switch. Special offer... 1/- each.
LF TRANSMITTERS MINIATURE. 1 - 11 ins.
PRICE 10/8 pair.
WEIGHT... 550. 455-550 kc/s. £6 8/- per pair.
WEIGHT... 500. 450-470 kc/s. £6 8/- per pair.

PLASTIC ESCUTCHEON MARKS.
With dark screen filter. 12 ins. 16/6.

BROMISTORS. Type C.Z.1, 1/6 each. C.Z.3, 10/- each or 6/-.

GANGED TUNING CONDENSERS 2005 MFD.

AERIAL MOUNTING

3-WATT MIDGET AC/D.C. AMPLIFIERS.
4 valves: 2 UL41 in push pull, 1 UC412 and 1 UAP92.
Input voltage 100-150 A.C./D.C. Very easily converted to 15 volt. Supplied with circuit diagram and full parts list. Size: 9 x 3 x 7 ins. Use 2 metal rectifiers, 1 each K.M. and 1N.F. Ideal for ships' record players, tape recorders, home record players, lady alarmers, etc. etc. Supplied complete fully assembled and wired with 4 valves. 65/-.

GANGED TUNING CONDENSERS 2005 MFD.

AERIAL MOUNTING

THE TELE KING

5 Channel 16 or 17 inch SUPERHET RECEIVER.

WIRELESS

This famous and well tried home constructor set can now be built for £2910/-.

THE TELE KING

Every component can be supplied SEPARATELY.

Full constructional data, wiring diagrams and circuits.

WRITE NOW FOR OUR NEW TELE KING PRICE LIST. WE CAN SAVE YOU MONEY.

LASKY'S RADIO.

370, HARROW ROAD, PADDINGTON, LONDON, W.9.

Telephones: CUNNINGHAM 79-7214.

December, 1954

CRYSTAL DIODES

Type W.X.6. Wire w.r.d.

TELESCOPIC PORTABLE AERIAL MADE OF LIGHTWEIGHT BUT EXTREMELY STRONG ALLOY. EXTENDS TO 15 FT. Budapest expanding and centre. Supplied complete with all guy lines.

LASKY'S PRICE... 25/-.

SUPERHET COIL PACKS

With Circuit.

No. 1 L.M.S. Size: 4 1/2 x 5 1/2 ins. With In. spindle... 15/6.
With In. spindle... 10/6.

For use with 966 kc/s.

LOUDSPEAKERS

First Quality. All-in-one speech coil. Less output trans. £4 10/-.

TELEVISION SELENIUM RECTIFIERS

The very latest "Pentier" S.T.C. range.
K3-40. 3.75 kv... 25/6.
K3-45. 3.75 kv... 6/8.
K22-6. 4.0 kv... 8/6.
K3-100. 8.0 kv... 15/6.
K3-200. 12.5 kv... 21/6.
K3-220. 16.5 kv... 26/6.

METAL RECTIFIERS

6 and 12 volt P.W.
2 x 1-5 R.M. 1... 3/10.
3 a. 9.11 R.M. 2... 4/3.
4 a. 12.52 R.M. 2... 5/10.
6 a. 19.10 R.M. 4... 16.

6 Volt...... 2/6.
amp. 2/6.
amp. 3/11.
amp. 4/6.1.
amp. 6/6.

CYLINDER 5-CHAMBER SWITCHED TUNERS

Instant and positive selection of any one of the 5 B.B.C. television channels, by a single control knob. Costs £5 10/- . P.W. pentode and E.C.D.S. or 12A77 Double Duode Triode as frequency changer. Tuning by switching incremental inductions. Size: 4 x 2 x 2 ins. Spindle 21ins. long. In. diam. of tube. 1.5 Mc/s. Output 0.5 Mc/s. Movable figure better than 0.15 dB. I.F. rejection better than 60 dB. all channels. Power gain 24 db.

LASKY'S PRICE... 12/6.

Post free.

AERIAL ROSE SECTIONS.

Steel, 21ins. long. 12ins. long. 17ins. long, 11ins. diameter. Any number may be fitted together. Price 2/6 per doz. Post free.
THE THREE-IN-ONE TOOL FOR ALL RADIO ENTHUSIASTS

Wire Stripper and Cutter

CUTS wire cleanly
STRIPS insulation
SPLITS plastic extruded flax

Adjustable to most wire thicknesses.
No more fiddling with razor blades, or pen-knives whenever necessary. Also Provision for Esmark's 'In-A Minute' tool. Here's the tool that strips, cuts and splits flex in half the time, with half the trouble—and does it more efficiently. Nickel plated and packed in cartons with full instructions. Bib wire strippers are available at ironmongers and electrical shops. Get one today.

In case of difficulty, write to:
MULTICORE SOLDERS LTD.,
Multicore Works, Hemel Hempstead, Herts. (Boxmoor 3656)

G2AK
This Month's
Bargains

G2AK
RACK SIZE CHASSIS.—17in. long x 21in. deep x 12in. high, 15/16, 12, 11, & 10 5/8 in.
POCKET VOLTMETERS. Dual range, 0-15 v. and 0-250 v., 345 O.P.V., M.C. Worth 50/- Our price 17/6 post free.
CRYSTAL HAND MICROPHONES. High quality, very sensitive. Chrome finish, complete with screened lead and standard jack plug. Our price only 25/- ea. Few only.
VALVES. 87G base, 174, 153, 154, 3V4, 7/6 ea., or 4 for 27/6, 807's, 10/- ea. or 2 for 17/6. Most of the 1.4 v. 87G range available at 8/6 ea.
HEADPHONES. Low resistance type CLR No. 3, 9/6. DLR No. 2, 13/6. High resistance CHR Mark 2, 17/6, and the most sensitive of all DHR, No. 5B, 18/6 per pair. P. & P. 1/-. METERS. 0-5 ma. 2in. square, 0-250 ma. 8in. high, 0-10 A. D.C., 7/6. 0-1 ma., 20/-, 0-350 ma. thermo, 7/6, 0-4 A. 5/-, 21in. flush 0-100 ma., 0-10 ma., 12/6 ea. Germanium Diodes, 6N5, or 6 for 9/-.
DEAF-Aid Crystal mike units, 12/6 ea.
T.H.F. FANS. Air Space Co-axial Cable, 150 ohm, good to 600 M/cis ; normal price, 3/11 per foot. Our Price, 20 yard coil 51./- Very limited quantity available, with loose lead terminations, Mains trans. 44/-; Smoothing choke, 28/6; Output transformer, 7/6.

PHILIPS CONCENTRIC AIR TRIMMERS. 8 P.F. max. Each, 2/1-3/1, or 1/- each. P. & P. 1/-. 101/-
FISK SOLARISCOPES.—Complete with charts. Give world time, light and darkness paths. Invaluable to the DX man. List 21/-; our price 17/- post free.

PANL Home Crackle. Black, Brown or Green, 3/- in.

TEST METER. 7 ranges as follows : 1.5 v., 3 v., 150 v., 5 ma., 60 ma., 5,000 ohms, 25,000 ohms, 21in. Dia. scale M.C. meter. Rotary selector switch. Black bakelite case, 6 x 4 x 4 1/2, fitted with removable lid. For plastics it is ideal. 10/-; Price extended, 5/-.

MILLARD 6 VALE. 10 WATT AMPLIFIER. T.C.C. Condensers, 45/-; Eric resistor-pot. kit with ceramic tube resistors very highly recommended. 28/6. Lab resistor kit. 32 4/- T.C.C. condensers. 55/-.

PARTHENOS 101F. 10 WATT AMPLIFIER. Very compact, 6 1/2 in. high, complete with fitting parts for immediate use including wiring diagrams and assembly instructions. 27/6; Price extended, 20/-.

S.R. 3-4 WATT AMPLIFIER. The Ideal Record Reproducer at an attractive price.

Building Cost £4. 15. 0
Plus 2/- post and packing.

Valve line up 68G7, 6V6, 6X5GT.

Very compact. A.C. Mains 200/250 volt. Comprehensive tone control over Bass, Middle, Treble. Neatly laid out on sturdy chassis, 8in. x 8in. x 8in., finished in brass, fitted with cream knobs engraved Bass, Middle, Treble. Vol. On/Off: Pick-up and L.S. Sockets. Send for Construction Leaflet with wiring diagrams and assembly instructions. 1/- per Pack. Made up Amplifier complete. £5.5.0, plus 2/- post and pkg.

SEND FOR RADIO AND TV. CATALOGUE with descriptions and illustrations all types Radio and T.V. components in stock, price list 6d. post free.

Terms : Cash with order or C.O.D. Please add postage.

Open : 9 a.m. to 6 p.m. Monday to Saturday: 1 p.m. Thursday.

SUPERIOR RADIO SUPPLIES
37, Hillside, Stonebridge, London, N.W.10. Phone: E.LGar 3644

HANNEY of BATH offers:—

OSRAM 912 Eric resistor-pot. kit with ceramic tube resistors very highly recommended. 28/6. Lab resistor kit. 32 4/- T.C.C. condensers. 55/-.

COILPacks. DENCO, C.P., L and CP 4/1M. CP 3/370 pf; and CP 3/300 pf., 42/-; OSMOR, 750 pf., 42/-; L.M. 50/-; TIP. 40/-; HP station pack, 30/-; E.T.A. & Station pack, 42/-.

DENCO, Headphones and B.R.P.

Viewmaster.—WIDE ANGLE VIEWMASTER CONVEX. Complete set of parts for conversion of Viewmaster to W.A. less tubes, tubes and mask, £14 18/6. W.A. Conversion instructions. 3/-; WB113, 4/-; WB114, 2/-; WB115, 45/-; WB116 and WB117, 7/- each; WB118, 26/-; WB119, 26/-; WB121, 3/-; WB122, 10/-; Westhinghouse 86700, 17/-.

Plus condensers and resistors as per our general list.

WIDE ANGLE COMPONENTS. ALLEN, Telecaing Chalp. 54/-; Colebrooks (T.K. & Super-Visor), 44/-; L.O. Limited, 40/-; Denhall, 32/-; DC 300, 38/-; CC 352, 31/-; GL 16 & 18, 7/- each; SC 312, 37/-; A 110, 30/-; OP 117, 9/-; WC 314, 18/-; DENCO Chalp. Magnaview, 37/-; Chalp. Super-Visor, 51/-; Collatz, Magnaview, 41/-; W.Bacal 43/-; W.Pacal, 43/-; Waterval, 7/- each; W.Pacal, 42/-; WA.FBST, 16/-; Send 51. stamps for our General List of components for Viewmaster Soundmaster, Williamsen Amplifiers, Telecine Magnaview, (Irish & English Electric large screen TV), Super-Visor, Mullard Universal, Gase Tolerance Silver Micas, etc. etc. Please add 1/- postage to orders under 11.

L. F. HANNEY
77, LOWER BRISTOL ROAD, BATH

Tel. 3811
2,000 BUZZERS. each.
VALVES, RIVETS, ALUMINIUM, £1.0.0 Doz.

RECEIVER. free drawing.

LADIES ONLY! Treat the lady and yourself to a heated blanket for the home. 378 brings a complete heater kit that a lady can fit herself on a winder—delivered free with drawings.

FIRESIDE 'RIPPINGHILLS' HEATER. £2.1.0. Ideal cycles rear or car parking light. Post 4d.

METHANOL HEATERS. New. Not over 10 lbs., sensitive, very very good quality only £12/6. P. & P. 9d. each.

100 MICRO-AMP METRES. As new, boxed moving coil movements 21m. scale in 2in. squaring mount, 12/6, post 1/6, free drawing.

VALVES. New from 1/9 each.

BUILD THIS AMAZING RADIO AN IDEAL XMAS GIFT FOR 30/-

- Selective tuning.
- Acorn low drain valve.
- Loud clear tone.
- Long range.
- No earth.
- Short aerial, 2ft.
- Welded steel case.
- Easy to assemble.
- All parts for this set are sold separately.

Ideal for:
- Fishing, Camping
- Cycling, Touring
- On the beach, etc.

MAIL ORDER ONLY

This little set was designed to give you a real personal portable radio that you can enjoy anywhere without disturbing others. Ideal for camping trips, in bed, in your office or just anywhere. Send 2/- for layout, Wiring diagram and Component Price List.

Details of our 30 - Short Wave Receiver are now ready. Send 2/- for Layout, Circuits and Component Price List.

R. C. S. PRODUCTS (RADIO) LTD., 11, OLIVER ROAD, LONDON, E.17
SITUATIONS VACANT

The engagement of persons answering these advertisements is by no means confirmed by the Local Office of the Ministry of Labour or a Scheduled Employment Exchange. An applicant must be a man aged 18-64, inclusive, or a woman aged 18-59, inclusive, unless otherwise stated. The engagement is from the provisions of the Notification of Vacancies Order, 1952.

SKYWAYS LTD., have vacancies as follows. Each is a firm appointment and will lead to "A" and/or "C" licences. Sheet metal workers with aircraft experience. Aircraft radio mechanics and instrument mechanics with practical maintenance experience. Charge-hand with "X" licence for high voltage e.i. windings and large windings. "X" licence for instruments. Uplisters and trimmers. Please apply to: Skyways Ltd., Clearance Ltd., 27, Tottenham Court Road, London, W.I. (Telephone: Medical 66952.)

ALUM CHASSIS 4 sided 18 S.W.G. 12in. x 9in x 21in. 6/- plus 10/- postage. Special sizes, prices in postcard from J. Rivett, 27, Eastern Road, London, E.1. (Telephone: Medical 66952.)

R.F. UNITS, types 26 at 32/6, 25 at 16/6, 24 at 12/6, brand new in original cartons, with valves; postage 2/6. L.E. Co., Southend Essex. (Telephone: Medical 66952.)

EVERYTHING for radio constructors, Condensers, Coils, Valves, Resistors. Prices guaranteed. Smith 98, West End Road, Morecambe. Quick service.

S.F. BASES converted for AC. With LS. Near £20, TAYLOR. 69, Headley Park, Avenue, Bristol, 3.

VALVES

VALVES, New, Tested and Guaranteed. Pairs, KT66 25/6; KT67 25/-; 6V6G 17/- per pr. 6B8G, 6G7G, 6S7NT 6SL1OT, 6AT6, 6BB6, 6BR7, 6BFT1, 6BFR1, 6XGT6 8/-; 1R5, 1T4, 1SS 3V, 6AM6, 5676, 765, 765S, EBC31, KT35C, 2S5AV 8/-; PL81, PL89, ECL80, 1HS, 1IN, 10/-, 12AX1. Coaxial cable, stranded, 75 ohms in., 6d. yd. R. J. COOPER, 32, South End, Croydon, Surrey. (C.R. 9186.)

NEW VALVES WANTED, small or large quantities; PL81, B81, KT66, 52410, 52409, 52402, 52410. Urgent, urgent, urgent; prompt cash. W.M., CARVIS LTD., 103, North St., Leeds, 7.

R.F. 71/6; EF50 5/-; 30J 41/2; 1A5 31/2; 1L4 6/-, Stamp for list. W.V.RAD, 2A Twyford Road, Eastleigh, Hants.

NEW BOXED, VALVES, 8/3, post free. 90/-, dozen, 1TF4, 15S, 1R5, 35S9, 6AV6 10/-, 6SL7, 6SN7, 6AT6, 6X4, 6BE6, 6BA6, 6AT, 6AB6, 6AM8, 6ALS, 12G10, 12AT7, 12AU7, ECC80, PV08, PV02, UY14, UCH42. Ampl Valves, all types. Efion, 22, Surrey St., Westminster, 11, 12AT5, 12AU7, ECC80, PV08, PV02, UY14, UCH42. Ampl Valves, all types. Efion, 22, Surrey St., Westminster, 11.

SPECIAL OFFER, 813 Type Valves; any quantity purchased. Write: PYPE-HAYES, RADIO, 606, Kingsbury Road, Birmingham, 24.

SEE THE WORLD as a Radio Prospector. Short training: low fees; scholarships; boarding/day students. Bốc for WIRELESS COLLEGE, Colwyn Bay.

WIRELESS—W.A.R., Marine and Air Radio.—Here is an opportunity to train as an A.R.C. Officer. Training is open to you, but you must qualify for the P.M.G. Certificate. Day, Evening and Radio Officers. 6 months training; est. 3 years; s.a.e. for prospectus, from DIRECTOR. THE WIRELESS A.R.C. OFFICE, also for valuations, London, N.7. (Tel.: ARC, 3694.)

www.americanradiohistory.com
WORLD TRAVEL and adventure in the Merchant Navy. Young Men, 15 yrs. up. Inquire in person, at our office in Maritime Wireless and Direction-finding at sea. (Trainers in Forton, London, Galway & Hull eligible for Defenent of Military call-up.) Immediate sea-going position awaiting you. Suitable candidates will be entered as Officers and must be prepared to sail to all parts of the world. Courses: Full or Part-time, also by Correspondence. Recognised by Ministry of Education. Scholarships available. Boarding and modern canteen facilities; low cost laundry. Send 1s. p. o. stating age and height, etc. for complete prospectus to OVERSEAS, Brooks’ Bar, Manchester, 16. (Tel.: MOSS-side 2041.)

FREE! Brochure giving details of Home Study Training in Radio, Television, and all branches of Electronics! Courses for the hobby enthusiast, full-time or part-time at the A.M.Brit.I.R.E., City and Guilds Telecommunications, R.T.E.B., and ultimately leading to examinations (A.M.Brit.I.R.E.) Train with the College operated by Britain’s largest electronic organisation, the World Radios, 2028, E.M.I. INSTITUTES, LTD.

YOU CAN become a first-class Radio Engineer. Our Postal Courses will teach you to earn more money or start a spare-time business of your own. Write now for free details.

T & C RADIO COLLEGE, 36, Northfield Rd.. ringwood. Hants.

ARE YOU STUCK on Electrical or Radio Control? Large stock of Transformers, Rectifiers, Rotary Converters, Motors, Technical Books, S.A.E. for bargain lists. LAURENCE LM. Cranley Road, N.10. (CLI. 6941.)

OSMOR for really efficient Coils. Coilpacks and all Radio Components are specified for “Practical Wireless” circuits. See advert. on page 75 for free circuits offered by the 200W HOTAX RADIO PRODUCTS LTD. (Dept. FC121, 418. Brighton Road, South Croydon. Tel.: Croydon 5149.)

SERVICE SHEETS Hire late 1933 to date. s.a.e. Enquiries P.I.E.D. 80, Old Friends Rd., LEEDS 12.

SERVICE SHEETS for Radio and Television. over 2,000 models. S.A.E. enquiries W. GILBERT, 24, Frithville Terrace, W11.

COLLAR 3-speed Autocliamper Cogm.—You only at £11, complete with studio O’-grip. 409. Condensers Mounted Yellow. 4kV.d.c. working, at 1/- ea. or 10/- for 15 mixed; your selection, 600mfd. 0.0025mfd. 0.0025mfd. 0.001mfd. 0.001mfd. Block Condensers. 4mfd 600v.d.c. over 300 volts. 3mfd 600v. 0.01mfd. 0.01mfd. 0.005mfd. 0.005mfd. 0.0025mfd. 0.0025mfd. 0.001mfd. 0.001mfd. 0.0005mfd. 0.0005mfd.

AMERICAN RADIO Plans and Devices. Now available. Hundreds of new and startling devices you can make. Details of this type available in U.K. Receivers, walki-talkies, amplifiers, recorders, magic eye, alarm devices, etc. Full lists, data, illustrations. Free for stamp Send to-day.—A.P.S. (PW), Sedgeford, King’s Loxwood

WINWOOD FOR VALUE.—New boxed. Sylvania, 6L6G, 504G, EF50, ES77, 6557, all at 8/- each; Valve sets, 524, 6VE, 6GQ, 6K7, 6K8, 29/6, IT4, ISS, 9RS, 35A, 28/-; EF91, 6 for 33/-; EP60, 8/6, Dubliner 1mfd-500v 2/3, 8 x 8-500v 3/4 16 x 16-500v 4/3. Hints 25mfd-25V 1/4, 1mfd 50-50v 7/10 oz. 0.05-500v 7/10 oz. Small waxed 01, 0.01 mfd-100V, all at 1oz. 31/- doz. Lists. WINWOOD, 12, Carnarvon Road, London, E.10 (Mail only)."
HOME RADIO OF MITCHAM

for your

EDDYSTONE and DENO CONDENSERS

DEDNO No. 21 Chassis. 10 x 8 x 2 in. in Aluminium. 8/-.

DENCO 3 cond. 315 in. Tuning Condenser. Price 4/-.

Please send 2d. stamp for detailed list of all parts. Despatch by return C.W.O. or C.O.D.

SPECIAL OFFERS:

- Valveholders, B.G. (EP50), laminated paxolin, 6d. each.
- Sprague Condensers, 1 mfd., 30 mfd., 80 mfd., 6d. each.
- 75 pf Air Spaced Variable Condensers, 1/6 each.
- 24 brand new Eric Resistor, assorted, 4/-.
- 24 brand new assorted Condensers, 6d.
- Limited quantities available.

HOME RADIO OF MITCHAM

187 London Road, Mitcham, Surrey MIT 3282

Open every day including Saturday until 6.30 (Weds. 1 p.m.)

EDDYSTONE 843 Vernier Slow Motion Drive

Anodised satin finish, hard aluminium dial, 4" diameter, with scale having 100 divisions over 360°. Driving head in ballbearing epicyclic type, totally enclosed and giving a reduction ratio of 10:1. Price 1/24.

No. 841 Pointer Knife. Price 1d.

No. 842 Dial. 1½in. Price 8d.

DENO miniature dual purpose rolls. We have the full range in stock, BLUE, YELLOW, RED and WHITE. 3/11 each.

Sounds in GREEN 4/- ea.

GET ON THE BEAM!

... with the

METEOR III GUARANTEED A.C. Mains Set.

SIMPLICITY ITSELF!

Complete KIT only

95/-

plus 2/-6 for postage & packing.

NORMAN H. FIELD

68, Hurst St., Birmingham 5.

SATISFACTION—or we REFUND your CASH!

38 SET WALKI-TALKIE

Complete with Valves and Circuit Diagram.

Post 39/- Paid

**No. 32 SET—Trans. Receiver. Complete with Valves and Power Unit, £4 10/-.

VALVES

4/-

EF50

CONDENSERS

Electrolytic 500 volt wkr. 6 mfd. £6; 75 mfd. £16; 24 18 volt mfd. £4.80; 24 30 mfd. £4.80. Diaheric 600 volt wkr. 30 mfd. £3; 32 mfd. £5. Bass, 25/25 volt or 30 mfd. 10 volt, 2/- each.

VINER'S (Middlesbrough), 59, EAST STREET, MIDDLESBROUGH, Telephone: MID 3143
Practical Wireless

BLUEPRINT SERVICE

PRACTICAL WIRELESS

No. of
Blueprint

CRYSTAL SETS

1/6d. each
1937 Crystal Receiver PW71*
The "Junior" Crystal Set PW94*

2s. each
Dual Wave "Crystal Diode" PW95*

STRAIGHT SETS

Battery Operated
One-valve : 2s. each.
The "Pyramid" One-valver (H.F. Pen) PW93*
The Modern One-valver PW96*

Two-valve : 2s. each.
The Signet Two (D & F) PW76*

Modern Two-valver (two band receiver) PW98*

Three-valve : 2s. each.
Summit Three (H.F. Pen, D, Pen) PW37*
The "Rapide" Straight J. (D, 2 LF, RC & Trans) PW82*
F. J. Camm's "Sprite" Three (H.F., Pen, D, Tet) PW87*

Three. each.
The All-dry Three PW97*

Four-valve : 2s. each.
Fury Four Super (SG, D, Pen) PW34C*

Mains Operated
Two-valve : 2s. each.
Selectone A.C. Radiogram Two (D, Pow) PW19*

Three-valve : 3s, 6d. each.
A.C. Band-Pass 3 PW99*

Four-valve : 2s. each.
A. C. Fury Four (SG, SG, D, Pen) PW20*
A.C. Hall-Mark (HF Pen, D. Push Pull) PW45*

SUPERHETS

Battery Sets : 2s. each.
F. J. Camm's 2-valve Superhet PW52*

Mains Operated : 3s. 6d. each.
"Coronet" A.C. PW100*
AC/DC "Coronet" Four PW101*

SHORT-WAVE SETS

Battery Operated
One-valve : 2s. each.
Simple S.W. One-valver PW88*

Two-valve : 2s. each.
Midget Short-wave Two (D, Pen) PW38A*
Three-valve : 2s. each.
Experimenter's Short-wave Three (SG, D, Pow) PW30A*
The Prefect 3 (D, 2 LF (RC and Trans) PW63*
The Band-Spread S.W. Three (HF, Pen, D, (Pen, Pen) PW68*

PORTABLES

1s. 6d.
The "Mini-Four" All-dry (4-valve superhet)

MISCELLANEOUS

2s. each.
S.W. Converter-Adapter (1 valve) PW48A*
(2 sheets), 7s. 6d.
The P.W. 3-speed Autogram
The P.W. Electronic Organ (2 sheets), 7s. 6d.

TELEVISION

The Practical Television Receiver, (3 sheets), 10/6
The "Argus" (6in. C.R. Tube), 2/6*
The "Super-Visor" (3 Sheets) 7/6*
The "Simplex" 3-4*

ALL the following blueprints, as well as the PRACTICAL WIRELESS numbers below 34 are postcard designs, kept in circulation for these amateurs who wish to utilise old components which may have no longer stocked by retailers.

AMATEUR WIRELESS AND WIRELESS MAGAZINE

STRAIGHT SETS

Battery Operated
One-valve : 2s.
B.B.C. Special One-valver AW387*

Mains Operated
Two-valve : 2s. each.
Consoelectric Two (D, Pen), A.C. AW403

SPECIAL NOTE

These blueprints are drawn full size. The insets containing descriptions of all these sets are now out of print, but an asterisk denotes that constructional details are available, free with the blueprint.

The numbers listed beside the Blueprint Number indicate the periodical in which the description appears. Thus P.W. refers to PRACTICAL WIRELESS, A.W. to Amateur Wireless, W.M. to Wireless Magazine.

Send under no postal order to cover the cost of the Blueprint (stamps over 6d. unacceptable) to PRACTICAL WIRELESS, specimens of each.

PRACTICAL WIRELESS, Ltd., Tower House, Southampton Street, Strand, W.C.2.

Published on the 7th of each month by GEORGE NEWNES, LIMITED, Tower House, Southampton Street, Strand, London, W.C.2, and printed in England by W. SPEIGHT & SONS, Emmor Street, London, W.D. Sole Agents for Australia and New Zealand GORDON & GUTH (A.SIA), LTD., South Africa; CENTRAL NEWS AGENCY, LTD., Subscription rates including postage for the year - Inland and Abroad 16s. 6d. (Canada Inc.) Registered at the General Post Office for the Canadian National Post.

SPECIAL NOTE

This coupon is available until Dec. 6th, 1954, and must accompany all orders, sent in record with the notice on page 761.

PRACTICAL WIRELESS, Dec., 1954.
The G.E.C. metal cone loudspeaker gives lifelike reproduction of any type of sound over a range of 9 octaves. This includes the entire musical fundamental range together with overtones which give tonal quality and character to the performance of each musical instrument. The sound engineer will appreciate the simplification and improvement in performance which has been achieved by combining the following attributes in a single unit.

- Smooth response over a range of nine octaves with extremely good low frequency response
- Negligible inter-modulation
- Unequalled transient response due to special coil and cone construction

For the Home Constructor

This is a professional instrument and must be used under the correct conditions to obtain the optimum results. Cabinets have been designed for use with this loudspeaker, details of which will be available shortly.

Metal Cone Loudspeaker

THE GENERAL ELECTRIC COMPANY LTD., MAGNET HOUSE, KINGSWAY, W.C.2