A C. METER UNIT—See page 332

Practical Wireless

and

PRACTICAL TELEVISION

Contents

Constructing Portables

Noise Suppression Circuits

Thermion’s Commentary

A One-valve Signal Tracer

Practical Hints

What is Modulation?

Home-made Components

Comprehensive Tone-control Unit

Readers’ Letters

USES FOR CAR RADIO

A Radio Consultant for the Expert and Amateur Constructor.

EVERYMAN’S WIRELESS BOOK

By F. J. CAMM

5/- NET.

With 200 illustrations and diagrams.

Explains the Operation, Upkeep and Overhaul of all types of Wireless Receivers, with special chapters on the Principles of Radio Telegraphy, Installation and Systematic Fault-finding.

From all Booksellers, or by post 5/6 from GEORGE NEWNES, LTD. (Book Dept.), Tager House, Southampton Street, Strand, London, W.C.2.
Fault Finding

W.e have published many interesting articles dealing with fault tracing and servicing, and in these have included constructional details of different items of test equipment. It is a recognised fact, however, that for quick fault location and for checking receiver performance, one of the devices known as a Signal Tracer is the best. This generally consists of a standard type of T.R.F. receiver, and by using the H.F. section alone, or the complete receiver, in conjunction with test prods it is possible to inject an artificial signal into a receiver and to check its passage from stage to stage. This idea is preferable to the use of a standard broadcast signal, as it is feasible not only to obtain a constant signal, but also one of either the H.F. or L.F. type. Usually, however, such an instrument is, by its very nature, complicated and bulky. We recently came across a design for a similar type of test set in which only one valve was used, and although it cannot be expected to function so well as a multi-valve tester, it does definitely offer some very interesting scope for test work, and, accordingly, we are reprinting details in this issue. These will be found on page 331.

Star Variety

A "STAR" variety programme for Home Service and Forces listeners will be broadcast from a Midland theatre on July 8th. As a result of the bill " in Carl Brandon, whose last broadcast from the Midlands was shortly before the war. A strong supporting company will include Seaman and Farrell, in a comedy and musical act; Vera Lynn, well-known radio singer; and Patricio Rossborough, a broadcasting pianist of great versatility. The programme will be supported by a theatre orchestra. The name of the compere will be announced later.

Tynwald Ceremony

The ancient ceremony at Tynwald at which new laws for the Isle of Man are promulgated is to be held on July 9th, and J. H. L. Cowin, known to many listeners for his Manx broadcasts, is to give a commentary on this picturesque ceremony.

"Jack the Giant Killer"

There are many giants for any modern Jack to kill these days, and this idea has been raised upon by Francis Dillon, who is to produce an up-to-date and satirical version of "Jack the Giant Killer" in the Home Service programme on July 9th. In this 1940 version of an old nursery favourite listeners will meet a Jack who has fallen down in his castle, only to be disturbed by the rumours of a three-headed giant who is abroad. Jack's subsequent adventures as he sets out giant-killing should make good listening—particularly the good-humoured skits on the characters of famous personalities.

Seaside Concert Party

Jack Radcliffe, the high-spirited Scottish comedian, is top of the bill in a seaside concert party which will broadcast on July 6th. He will be supported by Cyril Guinness, Ira Harris, Helen Norman, Bob Carrol and Jack Ansell and his Band.

Parlour Game

Wilfred Pickles, already known for his versatility in the North, as an announcer, Children's Hour artist, vocalist, compere and actor, is breaking fresh ground. This time he is deviating and producing a Parlour Game—and a good game it promises to be, as he plans to pit husbands and wives against each other. Wilfred, who is married and he will ask a wife a question, or set her some task. If she fails in the attempt then it will be her husband's turn in the opposing team.

Death Travels First

Listeners who heard the first instalment of "Death Travels First," the mystery thriller written by John Rhode and produced by John Cheal, will be able to hear the concluding instalment giving the solution to the crime on July 9th. The story is about five travellers on a suburban train from London during the black-out months. In the dimly-lighted compartment they all found that they killed each other. After the train had reached its destination, one of the five was murdered in the compartment.

Variety from Scotland

Scottish variety artists will entertain listeners in the Forces on July 6th in a programme which the producer, Howard Lockhart, has called "Skit to Skat." In the cast will be Jackie Kellar, a young Glasgow lad who toured and has settled down with some time with Roy Fox and his Band; he is an imitator, not merely of famous stars but of everyday sounds which he reproduces happily and amusingly with the help of a microphone; the Four Smith Brothers, who model themselves on the Mills Brothers; Betty Hogg, the Rhythm Girl; and a comedy sketch will complete the programme, which will be accompanied by the George Bowie Quartet.

Another interesting example of a military portable radio transmitter-receiver. Note the novel aerial array.
Comprehensive Tone Control

Constructional Details of a Useful Full-range Tone-controlling Device

Most receivers incorporating a pentode or tetrode output stage are fitted with some form of high-note cutting device, generally referred to as a tone control. In designing receivers for high standards of reproduction, a tone control is, of course, essential, and a control which functions over very wide ranges will be found much more useful than the usual high-note cut-off just referred to. Such a wide-range control is described in this article, and a study of the accompanying diagrams will show that the unit is composed of a tapped choke, four condensers and a potentiometer, the choke, potentiometer and condenser No. 4 being connected across the speaker windings whilst condensers 1, 2 and 3 are inserted in the leads to the speaker. The arrangement is very simple, and at the same time very effective, allowing the output required to be selected as will. The most important item for construction is the choke, and this must be to the specification given or the results are quite likely to fall very much below the standard required.

The Choke

The original design was made up by using two chokes connected in series, but experiment proved that a single-tapped choke might be used if the correct point of tapping was found, and it is proposed to use one choke on grounds of both expense and space. For the purpose of winding we will call the windings one and two, and the parts being dealt with as a separate choke until the finish. Commencing with choke 1, a hole must be drilled on one side of the bobbin, and the bobbin placed low down near the tunnel for the commencement of the winding.

LIST OF COMPONENTS

Seventy-two No. 30 laminations.
One Bobbin to fit.
Four No. 3 S.W.G. Enamelled Wire.
One Set of Feet and Bolts.
Short length of Flex.
Insulating Tape.
One 0.02 Fixed Condenser.
Two 2 mfd. Fixed Condensers.
One 8 mfd. Fixed Condenser.
One 22,000 ohms Potentiometer.
One Panel, 6 in. by 3 in. by 3 in.
One 6 A.C. Panel, 6 in. by 6 in.
Four 5 A.C. Terminals; 20 S.W.G. Tinned Copper Wire.
One and a half dozen Small Screws.

Pass a short length of flex, with the outer half stripped off, through the choke, clean off the insulation, and solder the end of the 36 S.W.G. enameled wire to it. Insulate with a small piece of ordinary insulating tape and all is ready for winding.

Wind on to the bobbin as evenly possible 1,620 turns, and finish off by soldering on a length of flex as for the commencement, and passing through a hole drilled in the same cheek. This hole may be made slightly larger than the hole for the commencement, as we shall pass the lead for the next winding through this, making two leads in one hole. Having completed the winding and made fast the finishing lead, put two layers of greaseproof paper over the winding, followed by a layer of good quality insulating tape, and choke 1 is finished. Choke 2 is wound in exactly the same manner, as choke 1, the lead for the commencement being pushed through the finishing hole of choke 1, and the wire from the winding soldered to it. For choke 2, 3,240 turns are needed, and in winding this amount of wire the windings are apt to get very uneven. Therefore, at the end of every 800 turns cover the winding with a layer of paper as used for the finish of choke 1. Finish as for choke 1, securing the whole of the windings with an extra layer of insulating tape to make a good firm job. A word of warning, be quite sure that all winding is done in the same direction, otherwise one choke will be in opposition to the other.

Fitting Up

The laminations will be of the usual form of "T" and "U" type, and these are not fitted as so often described for transformers, but by placing all "Ts", into the tunnel in the bobbin until it is filled tightly, and no further laminations can be driven in with a piece of wood. It is important that the laminations are tight if noise is to be avoided. Get the bolts loosely fitted into the clamping feet, ready to fit over the "Us", and then take enough "U" pieces to make up the thickness of the "Us" already in the tunnel. Fit the "Us" round the bobbin and slip the clamping feet over to the ends to hold the whole in position, tighten up the bolts just enough to hold the laminations, but do not screw right home.

To maintain the inductance a gap must be made between the "Ts" and "Us", the size of this being the thickness of two sheets of the paper upon which this article is printed. Cut two slips of this paper and place between the ends of the "Us" and the "Ts" pieces, afterwards closing the laminations up tight and clamping up the feet so that any movement of the laminations is impossible.

The unit may be built into a receiver, and should this be the case the components will be arranged to suit the available space and layout of the remainder of the set, but for existing receivers where a new unit has to be made, a small plexiglas panel or even wooden panel can be used to advantage with the potentiometer, and terminals on the front, and the components mounted on a baseboard.

Wiring

The wiring is very simple, and as all the components, with the exception of the choke, will have terminals, these have not been included on the choke, and connections may be made direct to the different points. When using a separate speaker the unit may be housed in the speaker cabinet, and as one side of the speaker will be at earth potential, as in ordinary choke-capacity coupling, the terminal marked earth may be taken to the nearest earthing point. This is particularly useful when extension leads are being used.

Connections to Receiver

Terminal No. 1 to L.S.
Terminal No. 2 to L.S. and earth.
Terminal No. 3 to H.T.
Terminal No. 4 to anode of output valve.
As a further contribution to the test instruments which we have described, the following data (taken from a recent issue of Radio News) are undoubtedly of appeal to many who are making up such equipment for experimental or service use. It is a very novel and simple piece of apparatus which will certainly do all that is claimed for it.

In servicing wireless receivers, it is almost a truism that a totally inoperative set is easier to fix than one that "sorts of works," i.e., is noisy, distorting, or weak. It was to make it easier to diagnose these headaches that the following device was constructed.

It is essentially a signal tracer which makes it possible to follow a signal, either from a broadcast station or from a modulated test oscillator, from stage to stage and from the point in the component through which the signal is being transmitted. The test set is then set up just where it goes wrong. When that is settled, it is seldom much trouble to find out what is the matter.

Features of the Design

The hook-up used is a pentagrid converter, the oscillator section of which generates frequencies which lie in the regular broadcast band. This is coupled to the aerial and earth of a good set, either a T.R.F. or superheterodyne, but one preferably without A.V.C. A signal fed into the input of the set is to be found in the output of the set and this signal must be then by being anywhere within its in the career, either an H.F., I.F., or L.F., by being fed into the input of the converter circuit, either as part of the test cables, or as the signal is to be examined in the H.F. stages, the oscillator of the converter is rendered inoperative and the signal is simply amplified and passed on to the test set. If the signal is in the L.F. stages, it is changed back to broadcast frequency in the converter, and if the signal is in the I.F. stages it is used to modulate the oscillator frequency in the same manner as a magaphone oscillator. Thus any defective stage may be located quickly.

One prerequisite in such trouble shooting is that the device used shall not load the circuit. That was one of the great difficulties in the analyzer method of set-checking, the extra capacitance introduced by the analyzer cables were generally sufficient to throw the set into an entirely different frame of mind, and with a sheet of analyzer readings on hand it was often more difficult to figure out what they indicated than it would have been to diagnose the trouble "by ear."

That difficulty is avoided in this instance by using a probe which puts such an infinitesimal load on the circuit that the effect is practically zero. In fact, if the set under observation is operating normally at all, it is not necessary to touch the probe to the components; by simply holding the probe near them, enough energy can be picked up from the stray fields to enable one to judge the quality of the signal at that point.

The probe is constructed of a 5in. length of bakelite or fibre tubing of an inside diameter just large enough to admit a flat metal central drawing pin. Two of these drawing-pins, separated by 1/16in. make up a minute air-gap condenser in the body of the probe, which very effectively shields the probe tip from the earth capacity of the shielded cable used to transfer the signal to the input of the converter.

Test Probes

To the point of one drawing-pin a 1in. length of stiff piano wire—gage 20 or 21 is sharpened. A piece of wrapped around the free end of the piano wire flush with the dowel, and soldered to hold the piano wire in place.

The centre wire of a piece of shielded cable about 30 in. long is pushed through another similar piece of wrapping and soldered to the pin of another drawing-pin. The wire is then pulled back through until the head of the drawing-pin is flush with the end of the dowel, and the wire is secured in the same manner as the other.

A very thin coating of speaker cement is then applied to the second piece of dowel and it is pushed through the bakelite tubing until the head of the drawing-pin is just i of an inch from the other end. A very small hole is drilled through both the tube and the dowel and a small brad nail through to hold the dowel in place. The other piece of dowel is then pushed into the open end of the tube, drawing-pin first, until the two drawing-pins are separated by 1/8in. By pushing it in until the two drawing-pins touch, and then withdrawing it, this distance can be judged quite accurately. A few drops of cement and a brad hold it in place. The shielding on the cable is then brought up about an inch over the other end of the probe, and a couple of turns of friction tape wrapped around to hold it in place. A regular 'phone jack is fastened to the free end of the tube, the inside wire going to the tip and the shielding being connected to the earth side. It is then complete. This is the soldered probe.

Another cable is made up exactly like the first except for the probe, which in this case has a .00025 in. mica condenser set into a slot in the end of another similar bakelite tube and taped fast. The inside wire of the cable is soldered to one terminal of the condenser, and a 1-in. length of piano wire is soldered to the other. This is the L.F. probe.

Circuit and Wiring

As to the converter itself, its construction is not difficult. The 6A7 should be well shielded and the current well filtered; any hum which is introduced into this valve will be very confusing when you are using it to locate hum somewhere else. L and D in the diagram are any broadcast band H.F. transformer with its primary cut down to about a dozen turns, if it has more than that, and the tuning condenser that goes with it.

The leads to the primary will have to be reversed if the polarity is not correct, for then the valve will not oscillate. Satisfactory evidence of oscillation will be had by removing the grid cap from the 6A7 and, with the dial of the test receiver set at 900 and the volume control turned down low, slowly turning the tuning condenser on the converter. At about the same setting of the converter dial a loud hum should be heard when the finger-tip is touched to the control grid of the 6A7. If no such hum is heard and the connections are all right otherwise, reverse the primary leads.

Using the Unit

The method of using the instrument is quite simple. When listening in on the H.F. stages the method is to put the tuning condenser closed, rendering the oscillator inoperative. The set under observation is tuned to the strongest local available and the test set tuned to the same station. Either one wire to the speech coil of the set under observation should be unsoldered or a jumper should be put across the speech coil. Then with the H.F.-I.F. test probe the quality of the signal can be ascertained throughout the H.F. stages. If nothing suspicious is disclosed there, the test set should be tuned to some place on the low-frequency end of the dial where no confusing or whatever can be heard normally, the oscillator switch should be opened, and the oscillator dial set to a level higher than the dial of the test set by an amount equal to the I.F. of the set in question. The test set will then receive the I.F. set, and, still using the H.F.-I.F. probe, the quality of the signal can be judged up to the grid of the second detector.

Passing to the low-frequency part of the receiver the I.F. probe is used and the oscillator dial is set to the same reading as the dial of the test set. If the hum of the latter turned down pretty low.
An A.C. Meter Unit

An Add-on Unit for Use Described in Last Week's Issue. By W. J. DELANEY

THE twelve-range meter described in last week's issue was essentially a D.C. unit, but it is interesting to note that arrangements were made in the switching to retain the actual meter as a completely separate unit, that is, on the 1 mA range. In this condition the two test leads which were provided become, in effect, merely extensions of the two terminals on the milliammeter and, therefore, by plugging these leads into any other piece of test equipment it is possible to dispense with the use of a separate meter. For example, suppose you are building up an all-Valve tester. In the normal way this would consist of a panel carrying a number of valve-holders, switches and so on, with a milliammeter inserted somewhere on the panel for indicating purposes. If you intend to make up a number of pieces of test apparatus you will find, however, that many of them have as their main indicating unit a 0.1 milliammeter, and this means that you will have to purchase separate meters in the normal way for each piece of test equipment. However, by making the twelve-range meter a kind of standard, you can afford to purchase a really good meter, and then by fitting two sockets on all your other test equipment which requires a 0.1 mA meter you can merely plug in the two leads from the twelve-range meter, set the indicator on that to read 1 mA, and go ahead with tests on the other instruments.

A.C. Voltage Readings

The series resistors which were included in the meter already described will enable the meter to be used to test any D.C. circuit, but A.C. must not be applied to it. In order to read any A.C. supply with the meter in question it is first necessary to rectify that supply and convert it into D.C.

Smoothing is not necessary, and therefore all that is theoretically essential is a rectifier in series with the circuit. When this is done, however, it should be remembered that, as explained last week, in all tests which are made with such an instrument the meter is actually indicating the current flowing, and voltage readings are actually only interpretations of the current and resistance in circuit. Therefore, the rectifier in series will result in the meter indicating A.C. milliamperes. The needle on the meter then indicates a mean value of the current flowing, but with a true A.C. supply it is necessary to read what is known as the Root Mean Square (or R.M.S.) value. This is actually greater than the mean reading by which the meter will indicate, the ratio actually being 1.11 to 1. Therefore if we include the meter across the circuits so that the full scale deflection is obtained, instead of the current being 1 mA it will actually be 1.11 mA, R.M.S. A.C. The type of scale fitted to good quality moving-coil meters of the type which should be used in the meter described last week will be regular.

Series Resistance Values

It will be seen, however, that we do not wish to have to translate all our readings into such an odd amount, and when set to read 5 volts, for instance, we do not want to have to visualise the scale as being 5.55 volts, and then try to calculate the odd divisions of the scale in such proportions. Accordingly the series resistors which have already been fitted for D.C. will need some modification if the voltage readings are to be in A.C., and this means a fresh set of resistances. It would be difficult to make one self-contained switch also give a change-over of a range of such resistors, and it is therefore necessary to include a further switch to bring into circuit the rectifier and new resistances when A.C. voltages are to be read. Although these could all be included in one box or cabinet, in the present case it was found worth while to make up a special little A.C. box, including a selector or switch, the rectifier, two test leads, and the necessary range of resistances. For a similar range of voltage readings to those given in the D.C. instrument the same type of selector switch may be used, for instance, the Bulgin type S.117/8. The rectifier must be of the 1 mA type, and it is held on the panel of the A.C. box by means of a small bolt. The resistors are arranged around the switch in a similar manner to those shown last week, and the wiring for the complete box will be as shown in Fig. 2.

Resistance Values

For the benefit of those who wish to select any range of voltages for the A.C. box the following details will be found useful. The rectifier voltage drop will be about .9 volts and the voltage drop across the meter will be .1 volts. This should be deducted from the total voltage reading when the meter is used. These readings are divided by 1.11 times the meter full scale current expressed in amperes. As exact values of commercial resistors (such as the Ehrenberg) give a range of values which will not be found obtainable it is preferable to obtain resistors of a slightly lower value which are standard products, and then by means of the meter described last week adjusted to the "resistance" range, to modify the value of the resistor until the desired value has been obtained. By using the carbon type of resistor (such as the Ehrenberg) for such modification, and easily be obtained by filing away the element, using a half-round file and making periodical tests until the desired value has been reached. Remember, however, that you need a low initial value and that removing some of the material does not lower the value, but increases it.

Fig. 1.—Theoretical circuit of the A.C. unit.

Fig. 2.—Suggested layout, and wiring diagram of the meter unit.

Fig. 3.—The completed unit in a suitable box.

The box may be of any desired size, either identical to the D.C. complete meter (for neatness in storage or for bench fitting) or a very small box may be made for portability. It will be noted that there are two input sockets, and into these the two leads from the D.C. meter are plugged. The two flexible leads attached to the A.C. box are made for the purpose of carrying the leads to the main circuit, and there is a safeguarding element in using separate leads of this nature. You are at present unaware of the fact that the current has been changed over, and as an additional precaution and warning for this purpose it is recommended that a much heavier gauge of flex be used on the A.C. box, and also that the leads be twisted or plated through-out their entire length. There is, of course, no polarity with A.C. to worry about, and therefore two flex leads of the same colour may be used and are recommended. Thus, with the D.C. meter you will have a red and black leads giving at once warning of polarity, whereas on the other you have similarly coloured leads indicating no polarity and thus A.C. When carrying out servicing work at high pressure, or under some form of stress such as working against time, you will find this a very valuable safeguard against connecting the instrument wrongly and damage is thereby avoided.

PATENTS AND TRADE MARKS

Any of our readers requiring information and advice respecting Patents, Trade Marks or Designs, should apply to Messrs. Ranken and Co., Patent Agents, of Bank Chambers, 59, Strand, London, W.C. 2, who will give free advice to readers mentioning this paper.
ON YOUR WAVELENGTH

Place Names

[...]

The Morse Code

FROM the number of enquiries I receive from wireless dealers throughout the district, such as the Midtown Radio Stores, I am sure you would agree that there are a large number of Morse code enthusiasts. Also, thousands are now listening in too. I do not know whether the transmitting brigade are keeping their hands in or whether they are just trying to prove to the youngsters how to learn the Morse code.

Valve Cartons

I AM told by a member of the B.R.V.M.A., which are the initials of the British Radio Valve Manufacturers’ Association, that they are interested in obtaining valve boxes which they will collect for re-purposing. Apparently, they are considering the possibility of using these valve cartons again, so do not be surprised if when you purchase a valve you find that the carton has a rubber stamp impression on it, for such will be done every time the carton is re-issued. The words impressed will be “Carton Re-Issued” or “Re-Issued Carton.”

Another suggestion is that valves may be supplied in paper wrapping. Dealers should ask for saleable cardboard boxes in which receivers are delivered.

P.A. Vans

IT appears that the recent ban on radio in motor-cars does not apply to vans equipped with public address apparatus. The Postmaster-General has announced that he does not consider that P.A. vans come within the ambit of the recent order.

The Position of the Experimenter

I HAVE had some amusing stories from genuine British experimenters who have been suspected because of suspicious neighbours. One such experimenter was of the type who lived for the hobby, and spent most of his evenings and early mornings in his wireless den experimenting with short-wave apparatus. Naturally, therefore, he did not mix with his neighbours, who regarded him as a stand-offish fellow. Therefore, after the immense publicity which has been given to the activities of Fifth Columnists and the confiscation by the Post Office of all amateur transmitting apparatus, he immediately suspected him of being a spy. Some well-meaning or malicious soul informed the police that they thought he was a spy and that he was transmitting secret messages to Germany. When I have from time to time examined him and collected a large amount of short-wave receiving apparatus whilst they detained him for some time for questioning, the local police could not tell a receiving-set from an Official Receiver, and it was not until he was able to satisfy them of his bona-fides that they reluctantly let him go. In any case, he does not think that he convinced the police, and he suspects that they may be watching him. My advice to him is to let them have their suspicions and to let them go on watching. An innocent man has nothing to fear. There are thousands of genuine experimenters in this country, and it is unthinkable that they should be treated as spies, although none of them would object to answering reasonable questions properly put by the police. Members of wireless clubs can always produce as evidence of their honesty their membership card to prove that they are serious British experimenters—an added reason why every amateur should join some properly organised club.

The R.S.G.B.

I HAVE no doubt that a large number of members of the Radio Society of Great Britain have been worried in this way, and I have yet to learn of one of them who has failed to satisfy the authorities. The law prohibiting amateur transmissions is very necessary during the war, and amateurs during the last war had to suffer a similar ban. The members are, however, retaining their interest, and the Society is still publishing its members’ journal. When the war is over there will be a veritable boom in amateur radio, and as there undoubtedly will be in home construction. When those who return to civilian life have had a chance to forget the war, they will return to their old hobbies with renewed zest, keen to renew their acquaintance with radio. The letters which come from readers indicate that even though on active service they are following developments with the same interest as they did when in civilian life.

R.A.F. Wireless Operators

MANY readers are joining the R.A.F. or are interested in the wireless branches of the Air Force. It is therefore interesting to note that the designation “Cadet” has been officially approved for airmen training for air crew duties—that is, pilots, observers and wireless operators.

Tabulating Faults

I WAS speaking to a really enthusiastic amateur serviceman the other day and I found that there are hundreds of readers who take such work really seriously. One of the main difficulties of service work is the identification of a fault from some peculiar symptoms in the performance. Usually the serviceman, from constant practice, will be familiar with the effects introduced by certain faults and thus is not very long in putting a set right. When, however, some unusual symptom is experienced, there is some difficulty in identifying the fault. The amateur I refer to had made a very neat form of loose-leaf alphabetical index of faults and their effects, and every one was cross-referenced in several different ways. This prevents a considerable amount of trouble and doubt when a fault is experienced, and a glance in the book helps to instantly see the symptoms and what steps may be taken in finding the fault. I should be glad to hear of any similar ideas or other service aid which readers may have adopted in this connection, and I am sure other readers will be interested in the experiences of servicemen or experimenters in this particular field.

An Appeal

ONE of the getters attached to a searchlight detachment, who is also a reader of this journal, tells me that his company are situated in a lonely spot and they want a wireless set of the battery type. If any reader has a battery portable which they would like to give to the detachment in question, I should be glad to pass along the name and address. Carriage will be refunded.

PRACTICAL WIRELESS

July 6th, 1940

By Thermion

By F. J. CAMM

NOW READY

RADIO ENGINEER’S POCKET BOOK

Vest pocket size

24½ or 31½ by post from George Newnes, Ltd. (Book Dept.), Tower House, Southampton Street, Strand, London, W.C.2.
Constructing Portables

How to Construct Portable-Type Receivers from Existing Sets or Spare Parts

This time of the year may justly be called the portable season, and the recent restrictions regarding the use of car-radio apparatus do not apply to ordinary portables, which may still be used. We can supply certain blueprints of portables, but there are no doubt hundreds of readers who do not feel inclined to go to the expense of a completely new set of components, due to the fact that they have many useful parts on hand which they wish to make use of. It is therefore proposed to suggest a few circuits and approximate layouts of simpler types of portable receivers for the benefit of such readers.

Having decided to build a portable, the first question which arises is: must the set be really small and light, so that it can easily be carried by hand, or is it only required for transport from room to room? In the former case it will be better to make the simplest kind of a two or three-valve, preferably using the receiver proper in one container and the batteries in another. If weight and bulk are not very important considerations, a more pretentious and entirely self-contained outfit will be better. Another point which must be decided is whether loudspeaker or 'phone reception will be required. In most instances the speaker will be preferred, but many will content themselves with 'phones, using the set probably only for receiving news bulletins and the like.

In the majority of cases nothing more than local-station reception will be required, so that the use of a det.-L.F. type of circuit might prove quite satisfactory. Where long-distance reception is specially wanted at least one H.F. stage—preferably using a high-frequency pentode valve—will be especially desirable.

Simple Circuit Arrangement

Now that the preliminaries have been discussed a few useful circuit arrangements can be considered. One excellent circuit for local-station reception up to 20 miles or so on a loudspeaker, or even much greater distances with 'phones, is shown in Fig. 1. It will be seen that a screen-grid valve (which might be replaced by an H.F. pentode) is used as detector, this being followed by a 5: 1 L.F. transformer and a pentode output valve. The circuit is similar to that used for an ordinary 'fixed' set, except that a frame aerial, with reaction winding, is used in place of the usual aerial coil. A "stopper" resistance is included in the grid circuit of the pentode, and a 0.02 mfd condenser is connected between the anode of the pentode and H.T. negative to prevent L.F. instability. A variable potentiometer is shown for controlling the voltage on the screen of the detector, but this might well be a baseboard-mounted pre-set component, since it need not be touched after the preliminary adjustment has been made, so as to obtain smooth reaction control. A suggested arrangement of the components and frame aerial is given in Fig. 2, but this may be modified considerably so as to accommodate the parts in some available attaché-case or other container.

When the set is to be accommodated in a case separate from that containing the batteries, it will be so small that a frame aerial wound round it would not prove very effective on account of its small size. It would, therefore, be better to replace the frame aerial by a dual-range coil, as shown in Fig. 3, and to employ an external aerial. The latter may consist simply of a short length of wire thrown along the floor or over the branch of a tree, or it might be a connection to an earth point, such as a water-pipe. The idea of using an earth for an aerial might sound rather ridiculous to those who have not tried it, but in practice it often works very well. In the case of the other extemporised aerial systems mentioned, still better results will often be obtained by using an earth connection as well, this being joined to the negative terminal on the accumulator.

Increased Volume with a Two-valve Set

The circuit given in Fig. 1 is not suitable when good speaker reproduction is required out of doors, unless the set is used within a very few miles of a regional station.

More volume can be obtained fairly easily (Continued on facing page.)
CONSTRUCTING PORTABLES

(Continued from previous page.)

However, by replacing the single output pentode by one of the new Q.P.P. double-pentodes. This would necessitate the use of an 8 or 10 to 1 Q.P.P. transformer in place of the ordinary L.F. transformer.

PRACTICAL WIRELESS

335

Fig. 5.—Circuit of a 3-valve portable. An H.F. pentode, detector and double output pentode are used.

shown in Fig. 1, whilst the loudspeaker would either have to be of Q.P.P. type or else fed through a special output choke. The double pentode circuit is given in Fig. 4, and this is simply added to the detector portion shown in Fig. 1.

Increased Range

Neither of the arrangements described so far is suitable for any other than purely local reception, and when the set is to be used at distances of more than twenty miles or so from the nearest transmitter, it is better to use a type of H.F. amplification.

An excellent circuit for a powerful three-valve portable receiver is shown in Fig. 5, where it will be seen that an H.F. pentode is followed by a tuned transformer coupling.

leaky-grid detector (a type H valve is very suitable), and a double pentode Q.P.P. output stage. The latter could, of course, be replaced by an ordinary pentode connected as shown in Fig. 1. When the set is being built as a separate unit the frame would be replaced by a dual-rang coil, and an "outside" aerial of one of the types mentioned above would be connected to it.

Provided that the coil was of the same type as that used between the first two valves, a two-gang .0005 mfd. condenser could be employed for tuning. The component layout might well be very similar to that shown in Fig. 2, it being assumed that a frame is to be employed, and that the set is to be entirely self-contained with its own loudspeaker and batteries.

The dimensions will require at least 2x in every direction as those shown in Fig. 2, to allow for the additional components, while an extra 4x in so might be required in the width of the frame according to the particular loudspeaker used.

Using Old Components

Practically all the arrangements suggested so far would entail the purchase of at least a few new parts, and, therefore, a circuit is given in Fig. 6 to show what can be done by using the old and home-made parts throughout. The circuit is a standard one of the S.G.-Det.-L.F. and Power type, and operates from a frame aerial. Both H.F. chokes can be of any good screened, high-inductance type. In the interests of compactness and light weight the two .0005 mfd. tuning condensers might be of the bakelite dielectric variety, although existing air-dielectric condensers which are on hand might be used if compactness is not insisted upon. In regard to the loudspeaker, this can be one of the balanced-armature type, and a suitable unit can be bought for a few shillings at the present time. Similarly, better results would be obtained by using a moving-coil, but that would add to the weight and bulk, besides being more expensive if a new one were to be bought.

B.L. D.L.C.

In spite of the existing strenuous times, during which the majority of us are having to curtail to some extent the number of hours normally devoted to our hobbies, it is very comforting to find that quite a number of members are still able to take a keen interest in the Club's activities. The harder one is working the greater the necessity for some diversions both mentally and physically; therefore if time only permits, say, half an hour devoted to receiving, the relaxation that can be obtained from the simple and easily maintained circuit of Fig. 4 will help to refresh one's mind and body. As we have mentioned before, an hour at the control of the receiver is now likely to produce a more thrilling log than during normal times owing to the fact that the more distant stations are able to be received as the air is no longer swamped by the numerous British stations.

Member 6702

One or two points which we have stressed from time to time are contained in this member's letter and in view of their general interest we are repeating the major portion of his correspondence but space causes us to eliminate the rather long log he sent in. As a reader of PRACTICAL WIRELESS for over a long period I have noticed from time to time remarks made by readers who are contemplating trying out an H.F. Pen untuned stage of H.F. amplification in an S.W. circuit. I have also noticed that many of your readers appear to use sets of the 0-v-1 type or commercial superhets. I submit the following remarks with the hope that they will help prospective constructors who wish to try out H.F. amplification to obtain more accurate indications for them to judge its comparative worth. As an experienced short-wave constructor for over a period of ten years, I have constructed short-wave sets from the simple one-valvers to those utilising four valves, and I have found that a great deal depends on the following. Short-wave coils play a very important part in any S.W. receiver, therefore it pays one to give them careful attention when selecting suitable types. Some use coils covering two or three ranges, while others use the simple plug-in types; in my case I have always adopted the four or six-pin plug-in kind and have always found that they are superior to the multi-range types.

"High-frequency chokes can give lots of trouble if not carefully selected for the particular circuit under consideration. I do not agree with the idea of using a screw type H.F. choke, which I mean one covering all wavelengths, in any receivers designed specifically for shortwave work.

"The selection of suitable valves is another very important matter, but from the articles which have already appeared in these pages readers will no doubt appreciate that without additional emphasis from me. "The set in use at present consists of the following arrangement. A Mazda H.F. Pen acting as an untuned buffer between aerial and an H.LD as the detector. An L210 is used for the L.F. stage and this feeds into a PM24 in the output, the H.T. supply is obtained from an A.C. eliminator. Many short-wave enthusiasts condemn the untuned H.F. Pen as being a waste of a good valve but, when one considers and appreciates the work it does, I think the man who converts an 0-v-1 to a 1-v-1 using this method, will agree that it obviates many sources of trouble experienced in 0-v-1 types of circuit. I found most definitely that the addition of the H.F. valve improved such sets as hand capacity and aerial damping in addition to giving an appreciable amount of amplification. I admit that the resultant selectivity is not what one would like, but have any of the straight types of circuit got that to their credit?"
More Unusual Faults

Servicing Experiences Showing How Troubles May Be Introduced in Unusual Ways

We have published many articles dealing with fault-finding in its various phases, and many constructors are now turning their attention to practical radio servicing. Although there are many "rules" which can be followed in regard to the location of faults it is often found that what may be termed "unusual faults" are experienced which normal servicing methods do not reveal. For instance, an interesting problem was recently presented when it was noticed that reception had become gradually weaker and weaker, and was eventually not worth listening to. A few minutes with a millimicrometer gave convincing proof that the set itself was functioning properly, and that the batteries, and so forth, were in good order. The aerial, installed in the loft, was inspected and appeared to be in excellent condition, the down lead was intact and well insulated, and the earth plate seemed beyond reproach.

The aerial and earth entered the house by two holes drilled in the window frame, and were led to a two-pin socket just inside the window, connection to the set being made by means of a plug inserted in the socket. It was in this socket that the fault was eventually located. The socket itself was a bakelite moulding, open at the back, and was packed with spiders' webs, while a certain amount of damp had gradually short-circuited the radio signals. When the socket had been cleaned out and dried, the set functioned as well as ever.

An Earth Lead Astray

A really perplexing fault occurred in a set that worked fairly well through the winter, but with the coming of lighter days the volume fell off more rapidly than would have been expected. As in the previous case, there was apparently nothing wrong with the set itself or with the batteries. The aerial seemed perfect, and it was, therefore, suggested that the earth was faulty. This consisted of a good copper plate, with the wire securely soldered to it. The wire from the set disappeared in a hole in the floorboard behind the set, and passed through an "air brick" under the floor into the garden, and so to the earth plate (see Fig. 1). There was a thick, insulated wire emerging from the ventilating brick and dipping underground among the flowers. A sharp upward tug convinced us that the soldered joint on the earth plate was intact.

An attempt was then made to pull the wire gently away from the house. Ten feet of wire was pulled out! On going back to the room where the set was installed, however, it was found that the earth wire was still in position. There was nothing for it but to take up a floorboard, and when this was done the mystery was solved, for the wire connected to the earth terminal of the set just led into the empty space under the floor and no farther. It appeared that the aerial and earth had been fitted while the house was being built. The earth plate, with wire already soldered to it, had been buried just outside the wall and the wire fed through the air brick. It had not been possible to manipulate the wire through the hole in the floor, so a stout wire had been pushed down the hole to "fish" for the earth wire, which had eventually been hooked and pulled up through the hole. It will be clear that the hook would have brought up a loop of the earth wire, and the loop had been cut and the wrong end of it used for the earth connection, allowing what had been imagined to be the spare end (but really the end connected to the earth plate) to slip out of sight under the floor.

Creating a Down Lead

Here is a word of advice to those who intend to use loft aerials. Pay particular attention to their position with respect to any water pipes which may be installed in the loft. I once saw a beautifully erected aerial in a loft, the efficiency of which was reduced to a very low value because it was running immediately above a range of water pipes (Fig. 2). The "effective" height of that aerial was certainly less than one metre, and the performance of the set connected to it was very poor. The aerial was taken down and moved to another part of the loft where it was not shielded by the earthed pipes.

A case of poor results with an indoor aerial was eventually traced to the down lead, which ran down the side of the house. Insulated wire of the single-strand variety had been used, and it was fastened to the woodwork of various window frames by so-called "insulated" staples, that is, coppered staples with a piece of thin, unenameled fibre inside the "U." Intermittent good and bad reception led one to suspect a loose contact. Ultimately the fault was found in the down lead under one of the staples which had severed the wire, causing a disconnection, although a rubbing

NEWNES' PRACTICAL JOURNALS

Practical Engineering

The weekly journal for those engaged in all branches of the Engineering and kindred industries.

4d. . . . Every Thursday

Practical Mechanics

The only English Journal of its type. It deals with every branch of Science, Mechanics, Invention, Model-making, Chemistry, Astronomy, Photography.

7d. . . Every month
A Dual-purpose Switch

A Dual-purpose Switch

When adding an extension speaker to my set recently, I found that I needed a switch which would break one circuit and make another, and finding an old wave-change switch, I converted this into the kind of switch I wanted by the following arrangement:

I cut a piece of 1/10in. insulation fibre, ½in. wide, and about 1½in. long, and bored a ½in. hole in the middle. A 1½in. hole was then bored about ½in. from each end. Two strips of fibre were next bent, as shown in the sketch. I then fixed the piece of fibre under the central fixing nut and screwed it down tightly.

The stems of two small terminals were pushed through the holes at each end of the fibre after slipping on the tin contact strips. After adjusting the tin contacts, the switch was ready for use.—J. F. Catfoot (Ampleforth).

Tightening a Loose Nut

I often find that terminals on components work loose and tightening them up again means a lot of trouble, especially with a transformer or similar component where the screw head is inside the component, and the thread will be damaged if held in pliers.

To overcome this difficulty I devised the following method for holding the screw while the nut is being tightened.

Two nuts, B and C, of the same thread as the screw, were wound and placed on the end of the screw. They were then locked against each other by holding one and tightening the other up against it. Then, by gripping the nuts with pliers, the screw was also held tight, and the slack nut, A, could then be made fast.—C. H. Wilman (Bexley).

Anchoring a Pencil

Anchoring a Pencil

Every amateur knows that the most elusive piece of equipment is the common lead pencil. It is always missing just when needed most to take down some real DX signals. I therefore hit upon this scheme to keep a pencil by means of a string.

Top of desk

Length of string to suit

Weight

½ hole drilled through side of panel:

An effective device for keeping a pencil always in a pencil on the desk at all times. All that is necessary is to drill a ½ in. hole just below the desk top, put a piece of string through, tie the pencil to one end, and a weight to the other end. When you require the pencil, reach under the edge of the desk where the pencil is hidden and pull it out—the weight keeps the pencil in place.—Jervis G. Hamer (West Bridford).

PLEASE NOTE!

Will readers please adhere to our request that all Notes sent in must be original. Apart from the dishonesty of copying out an idea from another magazine or even from an early issue of this paper, considerable time has to be spent in comparing not only the sketches but also the text. It should be remembered that awards are only made for wrinkles which are original ideas.

Aerial Fixing

Aerial Fixing

I recently wished to fit an aerial support to a chimney stack on the roof, but had no ladder which would enable me to get right round the stack. This meant that I could not place a band or similar device round the stack. After wondering how to fit the mast rigidly I adopted the following scheme: I obtained two 6in. coach bolts and a strip of iron. The latter was bent to form a ‘U’ to fit round the mast and drilled at the ends to pass the bolt. The latter was then attached direct to the front of the mast (which was accessible) by scraping out mortar between adjacent bricks, filling the hole with cement and pushing the heads of the bolts into the wet cement. When dry the bolts are firmly held, and the mast was then held in position. The ‘U’ clamps slipped over the mast and over the bolts and nutted up. The result is a rigid and neat-looking mast fixture.—J. Hines (Port Arthur).

Flex Bindings

Flex Bindings

To keep the ends of flex wire tidy ordinary valve tubing is ideal. The only difficulty is in getting it down over the flex braid without making this screw up and becoming still more untidy. I found that the simplest way of carrying out the idea was to stretch the tubing open first, after cutting off a length about 1in. long. I clamped three pieces of stiff piano wire to the wire, and with a pair of ordinary pliers opened the three wires slightly. The valve rubber was then slipped over the three wires and they were then opened much wider, stretching the tubing out in a triangular formation. Now the bared end of the flex is slipped inside the stretched rubber and when in the right place the wire jaws are loosened, the rubber springs in and the three wires are then removed.—O. Bourke (Carrick).

Repairing a Potentiometer

Repairing a Potentiometer

Recently I had some trouble with my set, and found that the wire-wound potentiometer had broken down. Wondering what I should do, I eventually cured the trouble by taking the element off its bakelite body and, using 0-grade glass-paper, removed the insulation from the wire on either side of the break. A strip of copper foil 1/16in. wide was then placed over that section, and the element was then replaced. Contact between the body and the element kept the joint tightly in place. This effected a complete cure, and the shorting out of the few turns made hardly any difference to the resistance value.—R. Hicks (Jersey, C.I.)

Resistance element

Copper foil

A simple method of repairing a flat potentiometer.
KNOwn circuit arrangements for sup-
pressing intermittent noise voltages
having an amplitude greater than
that of the desired signal, made provision
for developing the bias potential propor-
tional to amplitude excess of the interference over
that of the desired signal, and the bias
potential is used to render the detector
inoperative so long as the high amplitude
noise continues. One drawback to circuits
of this type is in the fact that noise
suppressing action
cannot begin until the
noise amplitude
exceeds the ampli-
tude of the desired
signal, for otherwise
the signal itself
would be partly sup-
pressed.
In the arrangement
described below, the
detector is rendered
inoperative by
voltages which is determined not only
by the amplitude of an interfering
noise impulses, but also by its rate of
growth, or the speed with which it is
pressed. This is shown in Fig. 1, which
includes a second detector network of a
superheterodyne receiver. The circuit
(1) to the operating inter-
mediate frequency, and is coupled to any
desired type of I.F. network for receiving
its energy. The detector valve itself
is a triode (2) whose anode (10) is coupled
by condenser 11 to a desired point
on the input coil (12). The cathode of
values is earthed (potential), and the
load impedance (13) is connected between
the anode and cathode of detector valve (2).
Any desired value of audio-frequency
voltage may be tapped off from impedance
(15) by the slidable tap (13).
The cathode and anode of (2) provide
a diode rectifier where its conductivity
is regulated by the grid (14). Control bias
for grid (14) is developed by a so-called
noise suppressor or "squish" diode (3)
which has its cathode (15) connected to
collar (12). The anode (16) of diode (3)
is connected to the positive potential ter-
minal of a current source (not shown)
by a resistor (17). The anode end of resistor
(17) is earthed for alternating currents and
a direct current blocking condenser (18)
connects the low potential end of coil (12)
to the earthed end of resistor (17). The
anode end of resistor (17) is earthed
for alternating currents and a direct current
blocking condenser (18) connects the low
potential end of coil (12) to the earthed
end of resistor (17). The cathode (15) of
diode (3) is adjustably biased positive by
the slidable tap (P4) connected to resistor
(17).
Rectified current flowing through diode
(3) is transformed into a voltage propor-
tional to the rate of change of input current.
This is accomplished by the transformer
(4), or equivalent inductive device, whose
primary (20) is arranged in series between
the anode (16) and earth, the radio fre-
quency type condenser (22) being con-
ected across the primary. The secondary
(21) is arranged in a series path comprising
the space current path of diode (16), and
conditioned (such as) the grid (14) of detector
valve (2) is connected to anode (23) of
diode (5). The adjustable tap (P6) is
employed to provide normal positive bias
for the cathode of diode (5) and the tap
(P6) is used to adjust the normal bias for
control grid (14), the resistor (7) being
arranged in the path to lead to the grid.
Operation
The operation of the arrangement is as
follows. In the absence of interference,
tap (P4) is adjusted to bias diode (3)
sufficiently to prevent its drawing much

impacted upon the grid not only paralyses
the detector tube during the time when the
transient amplitude is increasing, but this
charge dies out only after a length of time
determined by the capacity of condenser
(8) and the resistance of resistor (7). By
a suitable choice of these constants the
detector may be arranged to remain
inoperative for a predetermined length of
time which will be chosen sufficient to
permit transients in the intermediate
frequency circuits to die out. The normal
bias on valve (5) will be so chosen that a
slight amount of rectification can be per-
mitted in the absence of noise voltage at
diode (3) without developing enough
voltage in the secondary of transformer
(4) to overcome the bias. This is required
because the modulation of the desired
signal is relatively slow compared to the
signals building up on the output of an
oscillator. Hence, even though the amplitude
of such a sudden transient may not exceed the amplitude of the signal,
yet, due to its higher rate of change, it
may still produce a noise-suppressing action
while the normal signal itself will not. In
order to simplify the explanation, separate
electrodes have been shown for each of the
various functions, but any type of detector
may be used. It will also be apparent that
a separate tube (3) may be dispensed with
by placing the primary of transformer (4)
in the circuit of the detector itself, although
it is preferable to use a separate tube in
order to limit its action to interfering
voltages in excess of the unmodulated

Alternative Scheme
Fig. 2 shows an arrangement similar to
that of Fig. 1, except that the normal bias

on diode (3) is produced by a further
diode rectifier (8). The amount of this bias,
as compared to the intermediate frequency
voltage on diode (3), may be adjusted by the
position of the tap (P7) on coil (12) of
circuit (1) to which rectifier (8) is connected.
For a given signal level the action of the

circuit of Fig. 2 is the same as that of
Fig. 1, and the only difference is that the
bias on diode (3) adjusts itself automatically
in accordance with the carrier-voltage of
the desired signal. The cathode of diode
(3) is connected to the cathode end of resistor
(30) arranged between the cathode of diode
(8) and earth, a large condenser (31) being
connected across resistor (30). This
system has been developed by the Radio
Corporation of America.

PRACTICAL WIRELESS
SERVICE MANUAL

By F. J. CAMM

From The Bellwether & Co. Ltd., 56/58 Little Trafalgar Street, London, W.1.

Previous page: Noise Suppression Circuits

Next page: Modern Wireless Circuits

FIG. 1—The system incorporated around the second detector of a superhet circuit.

FIG. 2—In this circuit an additional diode is used for the production of the bias.

338 PRACTICAL WIRELESS July 6th, 1940
HOME-MADE COMPONENTS

In This Article Constructional Data is Given for Making Various Types of Wire-wound Resistances

There are many components which the beginner can construct quite easily, and which will be found just as efficient in operation as a factory-made article. There are, of course, various difficulties which sometimes have to be overcome, but one of the types of component which does not call for any elaborate tools or apparatus is the wire-wound resistance. This may be employed for all purposes where an inductive type of resistance is permissible. Such resistances are made up in various ways according to the service for which they are intended, and either have a fixed resistance value, or are variable by means of tappings or a sliding contact. As distinct from these differences,

the construction of the resistance may differ in regard to the material employed for the former, and also in the condition and the quality of the wire itself.

Types of Wire-wound Resistances

The types of this class of resistance range from small fixed ones of the strip variety, and flexible ones of the spaghetti type, to mains resistances. These are all made "fixed," or at the most adjustable by tapping. Adjustable ones that may vary in value by the rotation of a contact arm or movement of a slider range from small rheostats and potentiometers of 3 to 5 watts rating to larger ones, mostly adjustable by means of a slider, having ratings up to 60 watts.

Fixed Resistances of Low Carrying Capacity

Resistances which come under this heading as regards carrying capacity may be wound on formers made from fibre, bakelite, ebonite, glass, or similar insulating material. One of the type referred to is shown in Fig. 1. Connections may be provided in a variety of ways, with screws and nuts as illustrated, or by means of clips having extended ends forming soldering tags. Another simple way of doing the same job is to pierce the former at each end to take eyelets. The resistance wire is then anchored under one eyelet at the commencement of the winding and secured by the other at the finish. In this way it is a simple matter, by arranging the centre distance of the eyelets correctly, to allow the resistance to form a link between the terminals of two resistances without using connecting wires. Resistances like this may be wound with bare wire, in which case the wire must be spaced so that adjacent turns do not touch, or where a great number of turns are required the use of silk covered nickel-copper wire will effect a saving in space. Where this is used the turns can, of course, be close together in the same manner as when wire of the same quality having an oxidised surface is to be utilised.

When the wire is space wound it is advisable evenly to serrate the edges of the former as a preventive against the turn slipping and possibly shorting. This can easily be done, where the former material is thin and of a yielding nature, by rubbing each edge of the former across a file, thus reproducing a series of nicks of the same pitch as the teeth of the file used.

Where bare wire is used to wind cylindrical resistances greater satisfaction will be obtained from the use of a threaded former.

Flexible resistances of the spaghetti type are formed by winding the wire on to a former of asbestos string. For this type of resistance the wire needs to be insulated and securely anchored at the ends in good electrical contact with metal bands clipped on to the string. Protection is afforded to the winding by covering with a length of insulating sleeving which should pass freely over the wire, and be bound to the metal clips at each end. The sleeving will then also form a safeguard against the inadvertent "pulling-out" of the wire, which otherwise might occur were the string alone left to take any strain. At the ends, the resistance is finished off with tags for connecting purposes.

Adjustable Resistances of Low Carrying Capacity

Small rheostats having a rotating contact arm may be made in several ways. Perhaps the simplest is to prepare a disc of ebonite or similar material by turning a semi-circular groove in the edge. Two screws are fixed in the bottom of the groove about 2 mm apart. The resistance wire is wound in the form of a small tension spring, the length being such that it is less than the circumference of the former at the bottom of the groove; less, of course, by the distance between the screws. After attaching each end of the coiled wire to a screw, it is sprung into the groove. When in position the "spring" must be in tension sufficiently to leave a space between each coil. A rotating contact arm, carried on a spindle working in a bush in the centre of the former, bears against the coils. Connections are made to one end of the resistance wire, and to the bush in contact with the spindle and arm. An alternative method is to cut a groove, slightly undercut towards the centre, in the face of the disc and concentric with the outside, the wire being prepared and sprung in as before.

In both these the wire must be heavy enough so that when coiled up in position it will form a spring of sufficient rigidity to withstand the action of the contact arm, without bunching the turns close together. A superior method of construction may be obtained by winding the wire on to a threaded former made from ebonite or "erimold" rod. The thread can be cut with a die larger than the diameter of the rod, so as to form a shallow flat, tapped thread. This is necessary to allow the wire when wound to project slightly above the surface of the rod. After winding, the rod is bent, first heating in hot water to soften the material, to fit round the edge of a grooved disc as before. In every instance bare wire is used.

Small potentiometers like that shown in Fig. 2 are wound on thin sheet fibre formers, the projections against the abutting edges forming stops for the contact arm. The wire is wound while the former is flat—Fig. 3 shows a simple means of winding—and afterwards bent to shape in steam. Wire with an oxidised surface is generally used.

(Continued on next page)
HOME-MADE COMPONENTS
(Continued from previous page)
for winding, the adjacent turns touching each other. The oxidation is removed with a line oil stone, used dry, in the track of the contact arm.

Resistances for Heavier Duty
Resistances such as those for mains or power supply, without wire insulation, must be wound on heat-resisting formers. These are usually made of porcelain or from an asbestos preparation. Fairly thick pieces of an electric quality will also serve in cases where it would prove adaptable. The porcelain formers are made with a continuous groove like a thread so that the turns of wire when wound are separated. These formers are made with both fine and coarse pitched spiral grooves; with the latter type the resistance wire is space wound on a core of asbestos string before coiling on the former.

End connections and tapings are made by means of strong clips in both cases. When made up as a variable resistance by means of a slider, the construction should be such that the whole instrument is mechanically sound, the control knob well insulated, and the slider contact must be continuous with the wire during operation.

Choice of Wire
In selecting the gauge of the wire to use for winding a resistance, the first thing to ascertain is, will the wire be capable of carrying the current. Thus it is not only necessary to know the resistance per foot or yard of the wire, but also the carrying capacity in amps. This is important, as if overloaded the wire will become unduly hot.

For the purpose of this article, resistance wire is either an alloy of nickel-copper, or nickel-chromium iron having a high nickel content. The latter wire has a specific resistance of more than twice that of nickel-copper, consequently only half the amount is required to provide a resistance of a certain ohmic value which from a space-saving point is a valuable property.

The accompanying table gives the required data for selecting the proper gauge of wire, and an example of working out the amount of wire required is given in a simple manner.

EXAMPLE.—What gauge and how many feet of nickel-copper resistance wire is required to form a 8 ohm resistance to carry a maximum current of .3 amps. From the table it will be seen that No. 35 gauge will carry .33 amps. with a temperature rise of 100 degrees. The resistance per foot of wire equals approximately 4.09 ohms, therefore, 100 ohms, of the value of the resistance required, divided by the resistance per foot of the wire, is equal to 24.5, this being the number of feet of wire required in the resistance. It should be pointed out that a silk wire would not be suitable, and where it is desired to use a covered wire a heavier gauge must be selected.

A TABLE OF WIRE GAUGES AND RESISTANCE DATA

<table>
<thead>
<tr>
<th>Standard Wire</th>
<th>Heavy-Walled Wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of feet per lb.</td>
<td>Resistance in Ohms per foot</td>
</tr>
<tr>
<td>Number of feet per lb.</td>
<td>Resistance in Ohms per foot</td>
</tr>
</tbody>
</table>

PRACTICAL WIRELESS
July 6th, 1940

Screening the Earth Lead

SCREENING the aerial down lead to reduce local interference is now quite a familiar proceeding, and similar treatment of the earth lead can be equally helpful when such troubles are encountered on short waves. This latter operation, however, is not so well understood by the amateur circles, and so it sometimes fails to yield the desired results; it has certain hidden snags, which must be taken into account if it is to function properly. I have a friend who is a very keen short-wave listener, and he recently moved into a house in which he found it necessary to install his receiver in a room on the second floor, where the earthing problem was a somewhat difficult one. A couple of copper water pipes proved unsatisfactory, producing much mains and other noises, and he was finally driven to installing a longish lead down to a plate buried in the ground.

This gave him very fair results, although he found that his set suffered from bad effects a trifle more than it had been accustomed to do in its previous location. Still, it was much the sort of practical compromise with which one must often put up under domestic conditions, and he was tolerably content with it until the aerial began to run past his house. When this commenced he was troubled on certain wave-bands with the most acute interference from the ignition circuits of the buses, and after trying everything he knew or heard from various sources, he asked whether I could suggest anything further, I prescribed a screened earth lead.

When he saw him again a few weeks afterwards, he wasn't a bit pleased with me or my advice, and expressed strong opinions about both before calling down sufficiently to explain that he had fitted up a really superior screened earth lead, only to find that the interference was scarcely affected, while the performance of the set, he was convinced, had been made to go all to bits. As I expected, he had gone astray in making connection to the screening on the earth lead. He knew that it must usually be earthed, so he had simply joined it to the earth lead itself at the bottom, a method which is often less successful than one might expect.

In this case a remedy was found by simply making two small holes in the screen at its approximate centre, a separate lead being taken from this point to a buried earth plate placed a few feet away from the buried plate. The interference was then much reduced and the performance of the receiver quite unaffected. (G. P. K.)

A COMPLETE LIBRARY OF STANDARD WORKS
By F. J. CAMM.

PRACTICAL WIRELESS ENCYCLOPAEDIA 6th, by post 5/-.
ERYMEN'S WIRELESS BOOK 5/, by post 5/6.
SIXTY TESTED WIRELESS CIRCUITS 3/6, by post 3/10.
COILS, CHOKES and TRANSFORMERS 3/6, by post 3/10.
PRACIAL WIRELESS SERVICE MANUAL 6/-, by post 6/6.
WORKSHOP CALCULATIONS, TABLES & FORMULAE
NEWES' SHORT-WAVE MANUAL 5/-, by post 3/6.
THE HOME MECHANIC ENCYCLOPAEDIA 3/6, by post 4/-.
WIRELESS TRANSMISSION FOR AMATEURS 3/6, by post 3/10.
DICTIONARY OF METALS AND THEIR ALLOYS, 5/-, by post 5/4.
THE SUPERHEAT MANUAL 5/-, by post 5/6.
PRACIAL MECHANICS HANDBOOK 6/-, by post 6/6.

All obtainable from or through Newspapers or from Geo. Newnes Ltd., Tower House, Southampton St., Strand, W.C.2.
For The Beginner

What Is Modulation?

An Explanation in Simple Terms of the Process Which is of the Utmost Importance in Radio Reception

The recent article on the subject of a new form of modulation has created considerable interest, but many newcomers are unable to appreciate the arrangement to the full owing to a lack of understanding of what is really meant by modulation. The term occurs very frequently in the transmitting side of radio, but it is also brought into reception. The following explanation is therefore given for those who are not fully acquainted with the process of modulation. In the radio sense, 'modulation' is the name given to the process whereby the audio-frequency currents, obtained from the microphone and its associated amplifier, are combined with radio-frequency oscillations, prior to being led to the aerial from which their power is radiated as a "modulated carrier wave." Concurrently with this, corresponding modulated high-frequency currents are produced in the aerial circuit at the receiving end; and it is the modulation which is, so to speak, sorted out by the detector and passed on to the low-frequency stages, and speaker, for reproduction as sound.

But while this is a correct definition of the specialised meaning of the word "modulation," the term is also, and quite properly, applied to all cases in which an alternating current impulse is superimposed upon another current which may be either an alternating current of a different frequency, or a direct current.

The Scheme Explained

Fig. 1 shows, in the centre diagram, a conventional audio-frequency wave, and above it an unmodulated carrier of constant amplitude. At (c) is shown the resultant wave which would be produced by the modulation of (a) by (b). Half the distance between the upper and lower curves is called the "depth of modulation," and is usually expressed as a percentage of the carrier amplitude. Two points in connection with the depth of modulation call for comment. In the first place it is clear that it is impossible to modulate a carrier-wave to an extent greater than 100 per cent, without distortion, and in Fig. 2 is shown how 25, 50, and 100 per cent. modulation is expressed diagrammatically.

Next, it must be understood that the depth of modulation for any radio transmission varies from moment to moment even during a single item. Suppose, for example, a military band performance is being broadcast, and that an average modulation of, say, 25 per cent., is being employed. This degree of modulation will be obtained over the bulk of the programme, but for particularly soft passages the percentage modulation will be less, and for specially loud passages it will be considerably more.

Possible Overloading

Now for a radio-frequency signal of a given strength (that is, a carrier of a given amplitude) and for a given degree of voltage amplification in the H.F. and detector stages of the radio receiver, the audio-frequency signal applied to the grid of the output valve is proportional to the depth of modulation. If, then, the percentage modulation ranges, as it does, from a very small value up to 80 per cent. or more, it is necessary to use an output valve which will handle, without distortion, grid voltages corresponding to the strongest signal, and the fullest modulation likely to be received.

This indicates that there are two forms of valve overloading which must be guarded against. Overloading due to a carrier of excessive amplitude, can be avoided by a volume control acting on the aerial circuit, or by the use of variable-mu valves whose signal-handling capacity can be increased by increasing the grid bias. On the other hand, overloading of the low-frequency valves during periods of deep modulation calls for a conservatively rated amplifier which, while giving adequate volume with signals of average modulation, can also handle audio-frequency signals of three or four times average amplitude. This explains why, as has been pointed out many times before in these pages, a valve having a maximum output rating much greater than the normal required output must be used in the last stage if really good reproduction is to be obtained.

Whenever we begin to talk about exact quantities, such as percentages, the question of measurement arises; and it is possible to ask whether it is possible to make exact measurements of the depth of modulation: it is not an impossibility, but an accurate measurement meter is rather beyond the resources of most amateurs, and the measurement itself involves the use of a valve voltmeter as well as other instruments. Moreover, it necessitates various circuit changes, and certainly could not be employed during the reception of a programme in the ordinary way.

It is, however, not only possible, but very helpful, to employ a simplified system of measurement which, while not giving a definite reading of modulation depth, serves as a comparative indication, and assists the listener in operating his set under optimum conditions.

(Continued on next page.)

Fig. 2.—Curves illustrating the different degrees of modulation.
WHAT IS MODULATION? (Continued from previous page)

Before dealing with this point, however, it is necessary to consider other forms of modulation. A receiving valve, when no signal is applied to the grid, passes a certain anode current, the value of which depends upon the rate at which the electrons are emitted by the filament or cathode, that is, upon the anode bias voltage, if any, applied to the grid. When, however, a signal is applied to the grid, the value of the anode current will vary in a manner generally similar to that of the grid bias voltage, if applied, but at a slower rate. The anode current of the H.F. valves will be modulated at audio-frequency, the R.F. modulation being itself modulated at audio-frequency. The anode currents of low-frequency valves, will, of course, be modulated at audio-frequency, and the anode current of a detector valve will be modulated mainly at audio-frequency but with a certain R.F. component. Part of this R.F. energy component, in this case, may be returned to the grid circuit by means of the reaction arrangement, and the remainder—be it positive or negative—will be filtered out by one method or another in order to avoid its transference to the low-frequency stages.

Anode Current Modulation

Consider, now, the effect of this modulation on the anode current. In the case of an amplifying valve, the anode current will swing above and below the mean or average value as indicated in Fig. 3. Note, however, that owing to the curvature at the bottom end of the grid volts/anode current graph, distortion will occur if the signals are large. Similarly distortion will occur if the positive swings overlap the region in which grid current can flow.

It will thus be seen that any over-modulation of the anode current produces distortion, and is, therefore, similar in its results to over-modulation of the carrier wave. An effect of this type can be avoided if care is taken to (1) bias the valve correctly, that is, to the mid point of the straight portion of its characteristic; (2) limit the grid voltage to a value not more than the maximum, which the valve can handle without distortion.

But there is one point at which a rudimentary form of modulation meter might be of service. Such a method is, in fact, used by some very listeners. It consists merely of a milliammeter of suitable range included in the anode circuit of the output valve. Its function is two-fold. In the first place it staves readying when no signal is being received gives an indication that the grid bias is of approximately the correct value. When a signal is being received, the instrument should, theoretically, give a pulsating reading corresponding to the fluctuation of the anode current. But a milliammeter of the ordinary type cannot follow the rapid changes of an audiofrequency. What can be done, however, is to give a general indication of the state of affairs. Thus, if the kicks are moderate a normal state of affairs. Thus, if the kicks are moderate, the meter reads normal direction, so that the mean value of the anode current appears, on the whole, to be increased, it shows that the point is well selected. If, however, the bottom bend, with resultant distortion. The remedy is, of course, to decrease the grid bias slightly, and to increase the operating point by means of the volume control. On the other hand, a general tendency for the kicks to be downward, or an impression that the mean-anode current is reduced, indicates grid-current distortion. In these circumstances the grid bias voltage should be increased, and if this fails to produce the desired result, or introduces bottom-bend distortion, the input should also be reduced.

The Detector Stage

In the case of a detector valve, the rectification and rectified anode current produces the radio-frequency signal and its modulation depth. An anode-bend detector sustains a net increase in the anode current when receiving a signal.

Here again, the effective change of anode current depends jointly upon the strength of the incoming radio-frequency signal and its modulation depth. A milliammeter connected in the anode circuit of a milliammeter will be increased to its lowest value. Quite a cheap instrument will do, and it need not be very accurate.

Another Case

It should be remarked that a device of this sort is not very sensitive in the case of feeble signals, but it is perfectly satisfactory when dealing with the more powerful transmissions. The same idea is also of great service in adjusting the trimming of gauged-tuning circuits. The method is to tune in to the optimum point for one station (that is, minimum reading of the milliammeter in the detector circuit), and then make any adjustments to the trimmers with the

PRACTICAL WIRELESS
July 6th, 1940

G. H. ELLIOTT
the Chocolate-coloured Coon

G. H. ELLIOTT, famous and original "Chocolate-coloured Coon," and one of the outstanding personalities of the British music-hall, will make a welcome return to the microphone in the Forces programme on July 5th. The famous delineator of coon studies, whose melodious voice is so well known to regular listeners, will broadcast a cavalcade of coon songs, from the smooth, swinging lift of "Lily of Laguna," to the present-day rhythm. Even his yodelling will be in rhythm, not the Waltz time as of old.

Imagined Corners

"IMAGINED CORNERS," to be broadcast on July 8th, is an amusing parable for instance. A. T. Brown, who is music adviser to the B.B.C. Feature and Drama Department, in fact, "Imagined Corners" might be described as an experimental play. It is timeless and dateless, and deals with the story of an old man, despite his traditions, sets out to try and prove that the world is round. Strangely enough, the play ends by showing that the man does not prove this theory, but Brown says that the idea behind the play is that "it is better to go and try and find Truth, even if it is not Truth, than just to accept without question anything you are taught."

"I Know What I Like."

WILFRED PICKLES, the well-known Northern announcer and radio artist, will give listeners to the Forces programme on July 7th his idea of a gramophone record programme in the series called "I Know What I Like." The programme is well balanced—neither too high nor too low-brow—and it represents his own tastes entirely. Through his listeners, he will hear records of Paul Robeson singing "Mah Ling Lou" and Turner Layton singing "These Foolish Things," they will also hear the Sibelius "Valse Triste," played by the Philadelphia Orchestra, conducted by Leopold Stokowski, and Elizabeth Schumann singing "Solveig's Song."
BEETHOVEN had many remarkable contemporaries who have left their mark on musical history. Whilst the Bonn master may be likened to the fountain whose waters are fed by the parched soil around it, his colleagues could be compared to the plants that luxuriate and nourish under its splashes. Chief of these were Carl Maria von Weber, 1786-1826, and Franz Schubert, 1797-1828. It will be seen that both had exceptionally brief lives granted them in which to complete their work.

Weber's Operas

Weber was the son of an aristocrat whose fortunes had suffered an eclipse. His life was not unlike that of most young musicians of that day, and in 1816 he was appointed chapel master to the King of Saxony in Dresden. Here he had to wage a fierce combat against Italian influence, but it would seem to have proved the fertilising soil of his genius, as at that time he produced his famous operas "Der Freischütz," "La Preciosa," "Euryanthe," and "Oberon," in that order. He died soon after producing "Oberon" at Covent Garden.

Weber is called the first romantic composer, though "Don Giovanni" is unquestionably a romantic work; whilst some of Beethoven's own movements were intermingled with wealth of colour, he failed to give the feeling that they must be considered a leading inspiration of the movement that was on foot.

His great contribution to music lies in having imbued an intensely romantic spirit into opera, for the first time, by means of his masterly employment of German fairy tales and legends for his libretto. As such the elaborated manner then in use. But one must not forget the romantic plot of "Leonora," when referring to Weber's operas.

Also, the modern overtone is credited to Weber's ingenuity. He employed the thematically unified patterns of the opera as the subjects with better effect than anyone previously, and his practice has since been unceasingly followed.

Mention must be made of his entrancing "Invitation to the Waltz," and some other notable piano works.

Schubert

Schubert's work is not only amongst the most highly esteemed in the musical repertory, but it is probably held in greater affection by the majority of music lovers than that of any other master. Born in Vienna, he was the son of a poor schoolmaster. He became a chorister in the Imperial Chapel, and Salieri gave him lessons whilst he was an assistant at his father's school. Later, and for some years, he was the tutor to the children of Prince Estey, of the imperial court. Schubert's mother, so perfectly reflected in his music, didn't seem to will under the stress of almost constant poverty, and this circumstance ever hindered him from pouring out a constant flow of beautiful music.

Schubert is most renowned for his collection of 650 wonderful songs, such as the world had never seen before, nor since. Entirely to his own original pattern, he composed a peerless melody with an accompaniment which consisted of one rhythmical figure throughout. It formed an integral part of the little work and reflected the mood of the lyric to its uttermost. In this art work in which the components are one as important as another. Their richness and variety are astonishing, whilst the fertility of his inventive genius seems unwinding.

But his limitations were shown up in those works written to a bigger pattern and on a larger scale. He wrote nine symphonies, including the immortal "Unfinished," a host of magnificent chamber works, piano concertos, etc. They are all packed with heavenly melodies, and some of his astounding enharmonic modulations have never been equalled. But they suffer from a lack of design; he frequently failed to realise just when the right moment to stop had arrived. Like some chattering, stammering poltroon, he would begin the conversations, in a little too long, giving the movement a lengthy incoherence and a discursive looseness.

How the "Unfinished" might have been completed has long been one of music's most puzzling enigmas. Many people have supplied a third movement, purporting to be in tune with their idea of how Schubert would have fashioned it. But the composers' idiom and personal style were so marked that the results have never achieved complete satisfaction. Had he completed it himself it is most probable he would have given it both a minuet and trio movement as well as a finale; that is going by his own precedents.

The divine "Wanderer" fantasia for piano must receive special mention even in the briefest essay on the accompaniment to the second subject— from C major to C sharp minor—is one of the most astounding things in all music. Its extreme length—for a work in one movement—might of itself have made its title very appropriate. In reality, however, it is derived from the fact that the second subject, just referred to, was used by Schubert as the theme of his incomparable song "The Wanderer."

Last gave this great work an orchestral accompaniment, and thereby created a dazzling and fascinating addition to the concertetto repertory.

Next week I intend to deal with the origin and rise of the great romantic movement which so dominated nineteenth-century music, and which gave the century's music its greatest names. So I will conclude this instalment with some brief note of some minor though not unimportant musicians of the Beethoven era.

Rossini

I must mention Rossini first, and slightly out of chronological order because almost all of his most important work was all done before Beethoven's death, and because he had to-day we might in retrospect call the effrontery to crush the great master from the affections of the fickle Viennese public. Produced that "The Barber of Seville," "Tancredi," and "Semiramide" there, they completely swept the board there and made such "trifles" as the seventh symphony and the "Missa Sollemnis" seem passé and old fashioned!

They must be remarkable works even if only for the fact that they are as fresh and as entertaining to-day as ever before. But their superficiality and theatricality—the curse to so much Italian music—had evidently been seen before in comparison with the work of the German masters.

Rossini is famed for magnificent crescendos, especially as they are often built up on the most trivial figures, for his skilful use of the human voice for principal operatic roles; and for the suitability of his accompaniments to the action being portrayed. His finest work, William Tell, was produced in 1829, after which he is supposed to have grown sick of music. He wrote practically nothing more from then until his death forty years later.

Hummel

G. N. Hummel, 1778-1837, was a remarkable pianist, and imitated Beethoven, but except for some charming rondo, his many compositions are little known to-day. They are covered with the cobwebs of time. And in the musical world, cobwebs denote the reverse of quality, as in the wine cellar. Hummel knew Beethoven well, who employed him for copying and arranging.

Cherubini

Cherubini, 1760-1842, left a mark on operatic music. Beethoven greatly admired his work. His chief operas, "Lodovika," 1791, "Les Deux Journées," 1805, and "Medee," 1807, were important events. He also wrote a standard work on fugue and counterpoint.

John Field

John Field, 1782-1837, invented the Nocturne, which Chopin was shortly to transform.

Chopin was a renowned teacher and pedagogue, and his remarkable technical exercises, notably "Gradus ad Parnassum," were used in the teaching of his nephew.
Alternative Uses for Car Radio

Many Readers are Anxious to Know If and How they can Use their Car-radio Receivers now that they have Been Removed from the Car.

The Question is Answered here by Frank Preston

As all readers are no doubt aware, it became illegal to have any radio apparatus on a motor vehicle after June 1st, and it has previously been pointed out in these pages that the Order applies to both built-in car-radio instruments and to portable sets which may have been carried in the car. It applies also to any aerial fitted to the car, whether it was of the roof pattern or of any other kind—fitted under the chassis, for example.

There is no reason to suppose, however, that suppressing and allied equipment, which cannot itself be of any use for wireless reception or transmission, need be removed. It is therefore unnecessary to remove resistors and condensers, which will be useful when car-radio is again permitted, and which are effective in preventing interference with short-wave receivers in the vicinity.

Principles of Operation

It may be assumed that every Practical Wireless reader who had a radio receiver on his car (and the Order applies with equal force to all these) has by now removed it completely and dismantled the aerial. The question which is exercising the minds of many concerns the possible use of the car receiver in the home, in an air-raid shelter, or for any other purpose. There are various methods of operating the receiver, but few are convenient or satisfactory.

It will be remembered that in nearly every case both high tension and low tension are taken from the car battery. The valve heaters are fed direct from the battery, and the H.T. supply is maintained by means of a vibrator type interrupter; this feeds into a step-up transformer, the output of which is rectified either by means of a valve or by means of a vibratory rectifier. It is customary, as far as British receivers are concerned, to have two separate models for 6-volt and 12-volt operation. In the case of many American receivers there is only one model for use on either 6-volt or 12-volt supplies. When a 12-volt battery is used a fixed resistor is fitted to drop the voltage to 6; this resistor is often included in a battery feed wire, and is referred to as a line resistor.

Accumulator For H.T. and L.T.

The above general explanation is given so that the reader may more readily understand the possible methods of modifying the receiver for operation away from the car. Actually, however, it is generally agreed by designers and car-radio manufacturers that the most satisfactory method of operating the set is by means of an accumulator. This should be of the voltage for which the set was originally designed, and if a line resistor is used this should be removed so that power is not wasted by it.

If the car is laid up, the obvious method is to remove the battery from the car and use it with the set. Not only does that permit of the set being employed, but it also enables battery to be kept in use—and battery manufacturers never recommend that a battery be allowed to lie idle, for it is almost sure to deteriorate. Where it is convenient to have the battery charged at a charging station this can be done in the ordinary way, taking care that a freshening charge is given once every month or so whether the battery is run down or not. A far better method when the house is wired for electricity is to employ a trickle charger. This is most satisfactory and economical with A.C. mains, of course. A charger with an output of one amp, is sufficient, and it can be put to good use when the car is again put into commission.

Current Consumption

Some readers may even consider it worth while to buy a new battery and convert it for fitting into the car, but that would be a fairly expensive undertaking, especially if a car-type battery is used—and this is not recommended. In choosing a battery it is of use

![Diagram of car-radio receiver circuit]
Radio Training Manual

Sir,—I should like to take this opportunity, now I have had the chance of studying your Training Manual, of thanking you for your effort to help us out in these times. I had dropped radio for the last few years and am now anxious to revise my knowledge with a view to making the most of the material in the other books so as to give me a complete "course." I found instead that the Manual is complete in itself and I do not need the other books. I was recommended by other readers who are similarly situated and again must thank you for a splendid effort. — G. Bolton (Aldershot).

Peculiar Fault

Sir,—I was interested in the fault described in a recent issue and I experienced a similar fault in a set I was once servicing. Although not exactly the same the tuning eye did not give true indications and the fault cleared just as in Mr. Darby's case. I could not find anything wrong and returned the set to the hard times. Five weeks later it came back with the same trouble, and in view of the previous experience I this time took the trouble of putting the built-in transformer into the secondary of the built-in transformer and to feed low-voltage A.C. to the heater connections. This appears a very simple arrangement, but in practice it does not work out as well as may be thought after making a superficial study. One important reason is that the step-up transformer built into the receiver, and used to supply A.C. to the rectifying valve, is normally designed to operate at a frequency of between 100 and 150 c/s; if a 50 c/s supply is fed into it very serious overloading is almost unavoidable. Readers will remember that the number of turns per volt used in transformer construction is inversely proportional to the frequency of the supply. Thus, if 6 t.p.v. were required for a 50 c/s supply, 2 t.p.v. would be suitable. This gives a clear indication of just one of the problems which confront manufacturers having a well-equipped service department, and shows how the amateur would face in the absence of such facilities.

Fleet Short-wave Two

Sir,—I have now had ample opportunity of passing the Fleet S.W. Two through its paces, after overcoming the initial difficulty which you so kindly helped me out with. The set is certainly a worth-while addition to my array of "hook-ups" and it puts them all in the shade. I applaud a log of the stations which I really heard during last week. I must say that all these stations came in easily, clear and free from interference. And I often thought that many of the logs you published were merely call signs which readers had just managed to hear through jumbles of atmospherics and other signals. If they use sets such as the Fleet I can now well understand their colossal scores in the short-wave station game, and I am now an ardent S.W. fan. I shall now try to improve on last week's log and get some really long-distance stuff, and at a later date may try an additional L.F. stage to get good L.S. working on many of these.— H. Bradley (Eastbourne).

Mystery Station

Sir,—I wonder if any reader could tell me the station I heard recently broadcasting announcements in French (which I don't understand) close to Wayne. I cannot find a station in my list on this wavelength, which as near as I could judge would be about 49 metres. I have heard the station on several nights, not so loud as the Wayne station, but generally blotted out when I try to keep it by one of our permanent stations.— J. Halloran (Colwyn Bay).

(A. National Service.

Sir,—As a reader of PRACTICAL WIRELESS for some time now, I feel that I must send a letter of congratulation on the splendid work your journal is doing at a time like this. To keep on in a time like this we are passing through now is literally a high form of National Service, to which I and other readers are indirectly, I spend many spare hours at night in my wireless room with different wireless receivers, and write what I have made up through the guidance of PRACTICAL WIRELESS.—R. Ronalds, (Quinton, Birmingham).

Correspondent Wanted

J, BYRNE of 10, Turriff Street, Glasgow, C.S., wishes to get in touch with a reader who has a battery-operated 100 c/s receiving set, who would assist in short-wave work.

A PRACTICAL PROBLEM

PROBLEM No 407

J. ELYRS built a four-valve set for battery operation, incorporating two H.F. stages. The set was unstable and he decided that he would make a stage-by-stage test, which he did, and as a result decided that decoupling was necessary. He found resistance and condensers of suitable value in his spare box, and incorporated these. There was hardly any improvement, in spite of the fact that H.F. instability was responsible for his trouble. Why did his components fail to effect an improvement? Three books will be awarded for the first three correct solutions opened and each entrant should express his choice of a book selected from the list published on page 430. Entries must be addressed to The Editor, PRACTICAL WIRELESS, George Newnes, Ltd., Tower House, Southampton Street, Strand, London, W.C.2. Envelopes must be marked Problem No. 407 in the top left-hand corner and must be posted to reach the Editor before the first post on Monday, July 8th, 1940.

Solution to Problem No. 406

The variable property of the valve must be taken advantage of in a detector system. Variation of the current flowing through the valve would affect the rectification properties of the valve and this accounted for the effects experienced by Abbot, and this is why he could not solve Problem No. 406.
Converted Switch

"Some time ago you published a wrinkle in your pages showing how to convert a simple push-pull on-off switch into a three-point component. The idea was to solder a flexible lead on the tip of the switch and make this a third point. Well, I recently did this to a little device I made up and it does not work. As a result the battery I was using was not switched off and it ran out in a few days. I should like you to see that wrinkles really work before publishing them as this sort of thing can be expensive."

—M. A. S. (Graydon).

The idea of converting a switch in the manner indicated is quite practicable and does all that is claimed for it. It must be borne in mind, however, that with the average types of push-pull switch the component is mounted on the panel by means of a one-hole fixing bush. Through this the plunger of the switch works. Accordingly, if mounted on a metal panel the plunger and tip will be "live" to the panel. Thus, you must take the elementary precautions to see that any battery supply across the switch is open-circuited when the switch is in the off position. Even with the ideas described this could easily have been obtained by using one of the other terminals on the switch for the battery lead and transferring the lead from the tip to that terminal.

Fitting Fuses

"I enclose a circuit of a mains set I am building and should like to know the best positions for fuses to afford maximum protection in this set. I have many different types of cartridge fuses rated at .5 and 1 amp, and do not mind how many I have to fit so that I shall not run the risk of expensive component or valve replacements."

—R. R. (Silhuram).

There is one drawback to fitting fuses all over a set, and that is that should one of them blow it will take you some time to find the faulty one, and as this may take place during an important broadcast you will waste considerable time and perhaps miss the item you require simply because you cannot easily locate the fault. There are no self-igniting fuses available which would simplify the identification of a blown fuse and therefore tests across each will have to be made. We suggest, therefore, that in an A.C. mains receiver such as that you propose the maximum protection would be afforded by two fuses—one in series with the primary of the mains transformer (1 amp.) and one in series with the H.T. negative lead (.5 amp.). This should be one as close to the centre tap of the H.T. winding.

Fitting Pick-up

"I have a commercial two-valve superhet, but there are no pick-up terminals on it. I should like to fit a pick-up, wonder if you can tell me the best position and secundary on the same way of adding this device."

—P. T. (Nebron).

We do not normally advise any modification to an existing product, but the pick-up leads are merely connected across the L.F. volume control. This is generally included in the double-diode-triode stage, with the centre arm of the control joined to the grid of the D.D.T. valve. If such a valve is not fitted it may be possible to include the pick-up merely by connecting it to certain terminals of a plug-in adapter which can be inserted between one of the L.F. valves and its valveholder. Probably, therefore, the most satisfactory method would be to fit another valve to the makers and ascertain their views on the modification required.

Testing a Transformer

"I have an L.F. transformer which had been taken from a set by a friend because he said it was faulty. I should like to test it to see if it is possible to replace it with one from a different set or substitute a new one."

—J. B. (Albans).

The transformer was not normally used in the way it was taken from the set, and it is not possible to say whether it will work in your set, but it is possible to get to the gap with a small artist's paintbrush, dip this in paraffin and carefully wipe round the gap to remove any gritty bodies or metal filings which may have become fixed there. Finally, combine these two processes, brushing whilst the air jet is directed into the gap. This should effect the desired clearance, but if there is no improvement we suggest that you let the makers overhaul the speaker.

Circuit Diagram

"I am working on a circuit which was given to me by a friend and was taken from an American magazine, I believe. It does not work, the usual trouble is a short on the line, but at various places in the circuit there are components on one side of which is a circle with the symbol for earth. This means that the points indicate connections to a chassis, but I am not clear about the significance of this."

—H. T. E. (Dickson).

The method of indicating earthed points is quite common in America and also in some English papers. It does not, however, necessarily indicate that the points in question are connected direct to earth or to a metal chassis. Therefore it is quite in order for each of the components or points in question to be connected together and to earth or for any number to be connected together and taken to the nearest earth point. Generally speaking, a superhet or modern efficient circuit will be more stable and satisfactory if all the points indicated are connected direct to the nearest point on the chassis, using a metal chassis earthed.

Amateur Call Signs

"I should be glad if you would tell me what countries have call signs with the letters KA and PY. Is there any place I can get a list of all call symbols?"

—L. F. (Chelmford).

A full list for amateur calls originating in the Philippines and PY for forerunners of PY from Brazil. A full list of Amateur Call Signs will be found in our publications "Wireless Transmission for Amateurs," "Encyclopedia" and "Short-wave Manual."

REPLIES IN BRIEF

The following replies to queries are given in abbreviated form. If you are uncertain about our rules, or because the point raised is not of sufficient importance, we will be glad to give full replies.

H. T. (Bangor). We approve the amendment, and it should function perfectly satisfactorily.

N. R. (Liverpool). You will find all the details in the book you have ordered. Constructional data is given fully.

The coupon on page ii of cover must be attached to every query.
As there are some readers who are just entering the short-wave field, it might be explained that dead spots is the same given to those portions of the tuning range over which signals cannot be received or where signal strength is much lower than at other wavelengths. It is not uncommon to find, after completing a new set, that above and below certain wavelengths the receiver functions poorly and if a reliable comparison is made between the two extremes it seems to be lifeless. Generally, it is found that over a narrow band the reaction control has little effect, even if the detector can be made to oscillate at all, it is necessary to advance the reaction control well beyond its normal position.

The Simplest Remedy

The trouble is most often met when using a set of the detector-L.F. type, although it is not always absent even when an H.F. amplifier is incorporated, or, when the set is of the heterodyne type. In the simplest type of instrument, the trouble can often be overcome completely by using a different aerial—a shorter length of wire generally produces the desired effect. The reason for this is that the aerial circuit is similar to a “natural” frequency or wavelength of its own, and conditions may be such that the tuned circuit acts as a form of wave trap. By altering the constants of the circuit the “natural” wavelength is altered so that it is different from any of the wavelengths to which the receiver is tuned.

It will be understood from this that an alteration to the earth lead may have the same effect as changing the aerial. If the lead is more than a few yards in length, shortening the wire will often provide a complete remedy. It is also worth mentioning, in passing, that when a long earth lead must be used, it should be insulated, since it forms an important part of the complete aerial-earth system.

A Variable Series Condenser

A similar effect to that obtained by changing the characteristics of the aerial or earth can be obtained by including a condenser in series with the aerial lead-in, and if an H.F. amplifier is incorporated, or, when the set is of the heterodyne type, the fixed condenser should be mounted on the panel and the fixed values should be connected to the aerial terminal. The condenser is sometimes rather more useful screened, as the effect it has on the bandwidth is that of reducing sensitivity by increasing the fixed aerial-to-earth capacity.

The same effect as that obtained by using the condenser can be obtained by using a separate and untuned aerial coil variably coupled to the grid coil; a dead spot can then be completely eliminated by altering the position of the aerial winding. This method is not normally very convenient, however, for it is not an easy matter to mount a moving coil so that it can be moved smoothly by means of a control on the front of the set.

The Reaction Circuit

In very many cases, dead spots are due to the fact that the detector contains a greater number of turns on the tuned (grid) winding and on the reaction coils are unsuitable. Some designers of coils use a greater number of turns on the reaction winding that on the grid winding, with the result that the reaction circuit is often inclined to “take charge” of the tuning; the usual result is that reaction adjustments affect the tuning and that dead spots are introduced. Because of this it is always safer, and generally better, to have a coil whose reaction winding has about three-quarters of the number of turns wound in the grid circuit. It should be remembered, however, that this makes it necessary to have a reaction condenser of comparatively high capacity. Thus, where a .0006 mfd condenser is used for tuning, a .0002 mfd. condenser may be required for reaction.

Whilst referring to the reaction circuit, which is really a portion of the complete tone-on-frequency tuning process, it will often provide a complete remedy. It is also worth mentioning, in passing, that when a long earth lead must be used, it should be insulated, since it forms an important part of the complete aerial-earth system.

Causes and Prevention of Dead Spots

Look to the Grid Condenser

It is often overlooked that the grid condenser and leak may be the cause of dead spots if they are of unsuitable value. In nearly every case it will be found that if a .0001 mfd. condenser and 3 to 5 megohm leak are perfectly satisfactory, but if trouble persists after checking the other parts of the set, it is worth while to try a pre-set condenser of about .00015 mfd. The maximum value of a false condenser to experiment with various settings of this.
ELECTRONIC BREVITIES

P.E. Cell Screening

This efficient performance of a photo-electric cell, for no matter for what purpose it is employed, is dependent on a number of important factors. Naturally, the maker's recommendations as to the difference between cathode and anode should be adhered to rigidly, for the figure furnished has been determined after a gradual experimental and, furthermore, any excessive divergence may result in damage to the cell itself. While in the early days of gas-filled cells it was quite a common practice to "flash" them by bringing a bright light in the immediate vicinity (often a match was struck outside the glass envelope), this method of ascertaining whether the cells are still operating satisfactorily is now deprecated owing to the entrainment of small dust particles. For certain work it has been found absolutely essential to provide a metallic screen to the cell and its associated leads, and yet in no way interfere with its light-resective response. Obviously, the best way to meet this requirement is to use some form of fairly wide mesh gauze or netting. In certain studio equipment for some early spotlight holders this was a prevention, to prevent any cut-off of the reflected light from the subject being televised, chicken-run netting was used to cover the front sections of each cell mounted in a cylindrical casing. In addition, fine mesh gauze surrounded the leads passing from the cell terminals to the amplifier held on brackets in a metal box above the cells. The scheme, while presenting a rough and ready appearance, proved to be very effective, and satisfactorily neutralised the effects of any stray fields so that complete stability was ensured.

Electronic Instruments

A SHORT time ago a very interesting dissertation was given on the historical development and the present engineering problems involved in musical instruments which depended for their operation on electronic circuits. Ever since the Duddell tube was first described some fifteen years ago, inventors have been inspired to design electronic musical instruments which did not depend on "shocking" or striking wires of different lengths or the application of wind to pipes of different lengths, but instead made use of the properties of electrical circuits which could be made to resonate at controllable frequencies within the acoustical range. While it is agreed that to date electronic instruments, especially the ambitious organs, are still in their infancy when compared with the traditional forms of musical instruments, a stage has been reached when developments should be of a very rapid character. In one case a cathode-ray method of waveform generation has been proposed and, although at first sight this may appear complicating, it has the attraction of avoiding moving parts in just the same way as it revolutionised both television transmitters and receivers. One of the most promising possibilities of the electronic scheme is the greatly increased scope which is offered in models of expression. Organists are always anxious to express new ideas, but when using the standard musical instruments there is a limitation to the chromatic scale and tone colours which, have remained approximately the same over a period of years. In the case of the electronic organ with its very full scope there is no reason why new tone colours and effects should not be expressed, and a minor revolution occur in the musical world.

NEW NEBROS

NEWNES SHORT-WAVE MANUAL
A Complete Treatise on the Science, Construction and Operation of All Short-Wave Equipment.

Price 5/- or 5/- by post from:-

LATEST PATENT NEWS

Group Abridgments can be obtained from the Patent Office, 25, Southampton Buildings, London, W.C. 1, either sheet by sheet as issued, or in a bound volume at 5s. per Group Volume or in bound volumes price 2s. each.

NEW PATENTS

These particulars of New Patents of interest to readers have been selected from the Official Journal of Patents and are published by permission of the Controller of H.M. Stationery Office. The Official Journal of Patents can be obtained from the Patent Office, 25, Southampton Buildings, London, W.C. 1, price Is. weekly a current subscript in £1 6s. 0d. Later.

These particular New Patents of interest to readers have been selected from the Official Journal of Patents and are published by permission of the Controller of H.M. Stationery Office. The Official Journal of Patents can be obtained from the Patent Office, 25, Southampton Buildings, London, W.C. 1, price Is. weekly a current subscript in £1 6s. 0d.

10106.—Philo Radio and Television Corporation.—Rotary inductor device. June 10th.
10125.—Saptony, Ltd., and Okolicany, F.—Television systems. June 10th.
9737.—National Bell Telephones and Cables, Ltd.—Ultra-short wave radio systems. June 7th.
9794.—Standard Telephones and Cables, Ltd.—Tuned antenna systems. June 7th.
10028.—White, E. L. C., and Ball, E. W.—Tuned amplifier circuit.

Specifications Published.

521941.—Thornton, A. A. (Philo Radio and Television Corporation).—Control circuits for gas tubes.
521942.—Thornton, A. A. (Philo Radio and Television Corporation).—Methods and means for rapid heating of electron discharge tube elements.
521951.—Radiolever E. Schrak Akt.-Gees.—Chassis for a radio-receiver or the like.
521983.—M. O Valre Co., Ltd., and Gosgrove, C. W.—Tuning-indicators in radio receivers.
521984.—General Electric Co., Ltd., and Edwards, G. W.—Apparatus for receiving television.
521982.—Marconi Wireless Telegraph Co., Ltd.—Television transmitter cathode-ray tubes.

Printed copies of full published Specifications may be obtained from the Patent Office, 25, Southampton Buildings, London, W.C. 1, at the uniform price of 1s. each.

NEW CHASSIS

ARMSTRONG Co. recommending the following economically priced Radio Chassis for good quality reproduction.

ARMSTRONG Model A2138.—Seventy all-wave Radio given chassis, incorporating the latest circuit, including 4 watts push-pull output. Price 29/9 at back gulf.

ARMSTRONG Co. have made a number of models of equal current, interest to catalogue, 6d. Price from Armstrong Manufacturing Co., Warrington, R. L., London, N. S.

NEW LOUDSpeakers

3,000 Speakers, P.M. and energised 4in, to 14in, including several Epoch 19th.—Simpel Speakers, Tottenham Terrace, Copenhagen Street, London, W. 1.
PREMIER SHORT WAVE BATTERY OPERATED KITS FOR OVERSEAS NEWS
Incorporates many of the features in popular £20 S.W. Coll. 11-€6 metres without real costing. Each Kit is complete with all essential parts, including 2 volt batteries. 3 Band S.W. 1 Valve Kit, 1/4/8/ 3 Band S.F. 2 Valve Kit, 2/4/8.

DE LUXE S.W. KITS
Complete to the last detail, including all Valves and coils, wired up for overseas International conditions for building and working. Each Kit is supplied with a steel case, fitted with grommets. Post and seeds into paid in full to be sent to the colls. To post from 15 to 170 metres.

1 Valve Short Wave Receiver or Adapter Kit 10/-
1 Valve Short Wave Superhet Converter Kit 25/-

SPECIAL OFFER and ROTHERHILL PIEZO BRUSH CRYSTAL PICK UP New Junior P.U. with arm, 15/- Standard 8.8 Model with arm, 21/6. P.M. Model, 18/6.
ROLA MOVING COIL SPEAKERS, complete with Transformer and Complete kit (3) P.M. 16/6.

REPLACEMENT VALVES FOR ALL SETS

PREMIER SHORT WAVE Condensers all brass-base construction, with Triflax Inflation. 15 mm. 1/6 each; 15 mm. 1/2 each; 20 mm. 1/4 each; 25 mm. 3/8 each; 30 mm. 1/2 each; 25 mm. 3/4 each.

PREMIER SHORT WAVE Diode and 6 and 4 pin dress, 15-30, 25-47, 45-75, 170-180 metres, 5 each, with circuit board. Costs 5/-.

LISSEN Dual Range Screened Coils, medium and long waves, 2/8 each.

MERONDE Condenser Units, 2/6 each.

FREE ADVICE BUREAU COUPON
This coupon is available until July 13th, 1940, and must accompany all queries and orders.

PRACTICAL WIRELESS, 6/7/1940.

RADIO MAP AND GLOBE
WEBB'S Radio Map of the World enables you to locate any station heard. Size 40" by 30" inscribed with all the world's stations on land, all the sea stations, all the ships' stations, etc. Heavy paper backed, indexed, etc. 웨브의 라디오 지도는 세계의 모든 스테이션을 찾을 수 있도록 도와줍니다. 사이즈는 40" x 30"이며, 해안 지역의 모든 스테이션, 선박 스테이션 등이 표시되어 있습니다. 중량 종이에 표시되어 있습니다. 인덱스, 등이 있습니다.

READERS BARGAINS
WANTED 3-valve A/F receiver, any make. Pay £1 Deposit 2/- weekly. D. Boulton, 61, Hilborne, Outwood, Essex.

RECEIVERS AND COMPONENTS
BANKRUPT BARGAINS. Brand new 1939-40 models well-known valve makes, makers used circuit, with minutaries, at new 30/- 40/- below listed prices; also Makers', job lots. Send 5/- stamp for Bankrupt Bargains, Dept. P.W. 261-3, Lichfield Road, Ashington.

GOLDFIELD Radio, 22, Gillinish Lane, Oxted, Surrey. All goods previously advertised still available. Special offer. Compressed Record III. Crystal pick-ups, 3/6. Stamp for list.

SOUTHERN Radio's Bargains.
ALL GUARANTEED/EXTRA GUT. 5/- Faced of useful Components, comprising Condensers, Resistors, Inductors, Chokes, Octal Fittings, etc. Valves 25/-, 10/- per pair. 2/- Miscellaneous, 50/- per box.

A.C. H.F. Supercapacitors, Condensers, Volume Controls, Resistances, Tubuholes, Paper, Paper Capacitors, etc. 1/- per article contained, in strong carrying case, 9" x 7" x 17". 10/- per box.

5/- Small Trisler's Faced of Components, 150 Valves comprising all types Condensers, Valve Holders, Resistances, Chokes, Coils, Wire, etc. Value, 3/- each, 1/- per box.

15/- Wire and Resistances, assembled capacitance, 1 and 1/2 each, 10/- per box.

ERDONDE Condenser Units, 2/6 each. Crystal Sets 5/6. Westcote Type W2, 2/6; Crystal Detection, 1/-; Odyssey, 6/-; Merlo; New Wave Valves, etc. 3/- "P.O." Microphones on hand, for man with any receiver, 1/6; Tenna W407 Vintage Midget D.H. 1/6; Motor Tapping Keys, 3/-; Buzzer, 1/-.

4/- Post or Instrument-Carrying Cases, ex Government Stock. Wood 9" x 7" x 7/2.

PREMIER RADIO

WE SUPPLY LATEST MODELS OF ARMSTRONG QUALITY CHASSIS ON EASY TERMS
WRITE FOR FULL DESCRIPTIVE LIST & PRICE SHEET. CALLING CARD. PAYABLE. LONDON RADIO SUPPLY CO., "WINCHESTER ROAD, WILDLIFE, SURREY (Aberlady Address).

FREE ADVICE BUREAU COUPON
This coupon is available until July 13th, 1940, and must accompany all queries and orders.

PRACTICAL WIRELESS, 6/7/1940.

Your Surplus Components Into Cash
Those components for which you have no further use can be turned into cash through the classified columns of "Practical Wireless." Readers' advertisements are inserted at the expense of the owner of the goods (minimum charge 1/-).

ENGINEERING OPPORTUNITIES
This unique Handbook directs the way to success. 9/- net post free. Details and specimen copies of "Radio Engineering Opportunities" are given of the Radio, Television and Engineering Correspondence Schools. Details and rates of radio, television, electronic, and radio-engineering training, etc. Write for the Handbook to-day. 9/- net post free. Men of Science, Volunteers, or any class of person can obtain attractive posts in the Services. BRITISH INSTITUTE OF ENGINEERING EDUCATION 296 Shakespeare House, 17, 18, 19, Strand, Central London, W.C.2.
"PRACTICAL WIRELESS"
SPECIAL OFFER
to you AT HALF PRICE!

INDOOR MODEL RAILWAYS
(HO and OO Gauges)

By E. W. TWINING
(With a Foreword by F. J. CAMM, Editor of Practical Wireless)

HERE is a striking opportunity for all model railway enthusiasts to obtain a comprehensive, lavishly illustrated standard work on the subject at half the published price! The author is one of the best-known model railway experts, and his book deals with scales and dimensions, electric traction motors, reversing gear, modelling prototypes, motor mechanisms, carriages, wagons, third rail and two-rail systems, etc. It contains 126 specially prepared drawings and photographs.

Send in the Order Form below at once. Supplies of this book are strictly limited, so hurry if you wish to take advantage of this bargain offer.

This fully illustrated 5/- book is offered only to readers of PRACTICAL WIRELESS at the special price of

2/6

(Plus 6d. only for packing and postage)

POST THIS ORDER FORM WITHOUT DELAY!

To The Book Publisher, George Newnes, Ltd., Tower House, Southampton Street, Strand, London, W.C.1

Please send me INDOOR MODEL RAILWAYS at the special price of 2/6 plus 6d. for postage and packing.

I enclose P.O. value 3s. No.

NAME

ADDRESS

P.W. 6.7.40.