Making L.F. Transformers

Practical Wireless

Vol. 18. No. 433.

COMMUNICATIONS DEPEND...

BULGIN FOR VALVE-HOLDERS

ONE of the largest and most comprehensive ranges of Valve-holders in the world. Includes types for most usual Valve-bases, including midgets. Made to B.S.S. dimensions and test-data, and in full conformity with R.C.M.F./R.M.A. Specifications. Perfect and unfailing contact under all conditions.

... ON SMALL PARTS

In countless instances quite intricate pieces of apparatus are wholly dependent on the proved reputation and reliability of their component parts.

All products from the House of Bulgin are pre-eminent for superior design and workmanship, and every article bearing our Trade Mark has to pass exacting and exhaustive tests during the course of its production.

We ask the kind indulgence of the public in delivery until peaceful conditions return.

"The Choice of Critics"

BULGIN

A. F. BULGIN & CO., LTD., BY-PASS ROAD, BARKING, ESSEX

TEL. RIPPLEWAY 3474 (4 lines).
HIGH accuracy, simplicity, exceptional versatility and proven reliability have won for "AVO" Instruments a world-wide reputation for supremacy wherever rapid precision test work is demanded. There is an "AVO" instrument for every essential electrical test.

Sale Proprietors and Manufacturers:—
Phone: Victoria 3404-7.
Government Speakers on the Air

We do not think that anyone has a greater audience than Mr. Winston Churchill when he broadcasts, as we think all too infrequently. By his forthrightness and candour he carries the listener with him. He is frank and open; he tells us the good news and the bad news, and to the world as he sees it. In his summary of the war situation, his fine rhetoric and command of choice English are sparkling and stimulating literary epigrams. Although Mr. Churchill is a politician all listeners eagerly look forward to his broadcasts.

We cannot pay this compliment to all political speakers who are given the freedom of the air. A recent example to which many of our readers have taken exception is the broadcast of Sir Stafford Cripps, whose views we are certain are quite sincere. But we pertinently ask whether the war is the right time to promote advanced political beliefs. We have first to win the war, and unless we win it all of these views for the halcyon Utopia, for which most of us hope, will be jejune and plantigrade, for Hitler will impose as he has done in Germany our political creed and germanity our life. No doubt Kingsway would be changed to Königstrasse. Had Sir Stafford Cripps confined his broadcast to an appeal to everyone to make further efforts no exception could be taken, for his experiences in Russia have given him first-hand knowledge of the forces arrayed against us. We strongly object to the advancement of political creeds during the war. It is not so many years ago since the views of Sir Stafford Cripps were unpalatable to his party. His sojourn in Russia and India does not, in our view, entitle him to presume that views which were unpalatable a few years ago may be more palatable now. Political creeds are not our concern. We are, however, closely concerned with the use of the ether as a form of entertainment and dissemination of news, not art.

We do not think that the B.B.C. should permit tendentious broadcasts, and we equally disagree with programme time being occupied by the views of university lecturers unasked, as experts and economic advisers. The economic advice which they have given so far has been unsound. Germany, we were told in the early days of the war, would soon be short of oil and aluminium and steel. The advisers did not take into consideration the fact that Germany planned her war knowing full well the materials she required for it, and planned to conquer the countries which supplied those materials.

University lecturers live in a world of textbooks. They do not base their opinions upon the possibilities outside textbooks. It is misleading for such hypothetical views to be broadcast as inexorable facts, that we merely have to wait the passage of a certain period of time for Germany to throw up the sponge, because they have run out of a particular commodity. It is, indeed, patent to all now that the economic advice given to the Government has been based on false premises. Events have not proved that any of the advice was based on accurate information.

During the war, therefore, it is our considered view that, apart from the Premier, who must be allowed to say what he likes, for he is in possession of all the facts, other political speakers if they are allowed to broadcast at all should be made to confine their remarks to non-controversial and non-political subjects.

Slight Drop in Licences

It is an astonishing thing that according to the Postmaster-General's figures the number of radio licences held from 1937 shows a gradual increase up to 1939, the more surprising fact is that whereas in 1939 the number of licences held was 8,947,570, in 1940 the number had only dropped to 8,904,177, and in 1941 to 8,565,729. This, in spite of the vast numbers who have left their homes and joined the Services. Of course, when a man joins the Army he leaves his family behind, who still wish to operate a wireless receiver, but now that more and more women are being conscripted and are being "directed" to jobs outside their home town, the figures for the current year may show a steeper decline.

Our Free Advice Service

WILL readers bear in mind the fact that we make no charge for answering technical queries. While our advice is free, however, we do not expect to pay for giving it, which is another way of saying that many readers are taking advantage of our Free Advice Bureau, and omitting to enclose the stamped and addressed envelope. Some, indeed, do not even enclose the reply coupon from the current issue. In future, therefore, queries which are not accompanied by a stamped and addressed envelope will be answered through the columns of this journal only, provided that the coupon from the current issue is enclosed. Letters which are not accompanied by a reply coupon will be ignored. Our service is intended to apply to readers of the wireless, and in these days of staff shortage it is even more necessary to economize in replies otherwise addressed to these readers. Letters which are accompanied by a stamped and addressed envelope without a coupon will remain in abeyance until the coupon is supplied.
Licence Figures

In answer to a question in the House of Commons recently regarding the number of radio licences issued for each year from and including 1937 onwards, the Postmaster-General quoted the following figures:

1937, 8,480,822; 1938, 8,908,366; 1939, 8,947,570; 1940, 8,904,177; 1941, 8,625,759.

Utility Radio Sets Being Considered

In Parliament recently Mr. Dalton, President of the Board of Trade, stated that some 225,000 wireless sets for the civilian population are in process of manufacture. He added that the most economical results would be achieved by completing these sets rather than embarking at this stage on the production of utility sets. This, however, was under consideration.

Television Relay System

An extension of the radio-relay system of television between cities, which is already working between New York and Philadelphia, is planned by executives of four American television companies. It is proposed to erect a station in Washington and to link it with Philadelphia.

U.S. Television

The result of the conference of the United States Federal Communications Commission to decide the fate of television for the duration of the war is being anxiously awaited in America. Television is being used by the New York civil defence organisations for the purpose of training personnel.

Listening by Order

By a decree recently published in Germany the personnel of public establishments must at once suspend all service to customers and remain silent during the transmission of German and Italian bulletins and special announcements.

Canadian Broadcast News Service

In a recent address Major W. E. Gladstone Murray, General Manager of the Canadian Broadcasting Corporation, decried the lack of a high-power short-wave station for the dissemination of Canadian news. In reviewing the growth of the Corporation, Major Murray said that if the Corporation had increased its effective coverage from 48.8 per cent. of the population in 1936 to 90.5 per cent. in 1940. Coverage was poorest in the Cariboo Valley of British Columbia.

A.T.S. Girls Fitting Tank Radio

Owing to the shortage of wireless mechanics girls in the A.T.S. who show aptitude for the work, are receiving special training for radio work, and some have already begun work on fitting radio equipment in Valentine and Matilda tanks for the Middle East.

Croaking Radio

A KENT A.A. unit, when investigating interference in radio reception, found a frog in their portable set.

Sheila Borrett Back

Sheila Coxs, who, as Sheila Borrett, was the first woman anno cer, has rejoined the B.B.C. announcing staff.

Tunnel Aerial

It is reported that for some time American owners of car radio receivers have complained of signals fading out when the car is passing under bridges or is in a tunnel. Now a vehicular tunnel, near Pittsburgh, has been equipped with an "outside aerial," with a lead carried on insulators inside the whole length of the tunnel, and good reception is obtained.

Radio-Paris Wrecked

According to a recent report from Vichy the pylons carrying the aerials of the Radio-Paris broadcasting station at Allouis, near Bourges, 130 miles south of Paris, have been blown up with dynamite, by saboteurs. One of the huge pylons, as it fell, destroyed part of the station buildings. Well known to listeners on the long waves before the present war, Radio-Paris was one of the most powerful transmitting stations in the world.

If B.B.C. Programmes are Cut

Mr. Dalton, President of the Board of Trade, recently stated in a Parliamentary reply: "If the B.B.C. Home and Forces programmes were closed down at 20.30 p.m., and listeners then turned off their listening and went to bed, 250,000 tons of coal might be saved during the winter months." Mr. Dalton is, of course, a theorist.

U.S. Broadcast Defence Programmes

A series of programmes titled "Bombing Cincinnati," has become a weekly feature broadcast from four of the five broadcasting stations in Cincinnati. Written, directed, produced and recorded through the facilities of station WLW, the programmes are sponsored by the Hamilton County Council for Civilian Defence in an effort to acquaint local citizens with the possibility of the community being subjected to a bombing raid.
Television Producer Joins R.A.A.F.

B.B.C. Television producer, Harry Pringle, an Australian, has joined the Royal Australian Air Force.

B.B.C. Mobile Recording Units

AUTHENTICITY is keynote of B.B.C. recordings, and future generations will have the advantage of hearing what actually happened on specific occasions. Touring extensively war-time Britain, B.B.C. has eleven "Mobile Recording Units." These camouflaged armoured cars contain gear for making gramophone records.

Calling British Forces in Malta

LISTENERS with relatives serving in Malta are asked to send their messages to the B.B.C. in the form of a lyric, to be sung to any well-known tune or popular air from grand opera to swing. This novel suggestion was made by an Army sergeant just returned from the fortress. Alick Hayes, who produces "Calling British Forces in Malta" every Sunday evening, has adopted it. Sergeant Newmark, the soldier from Malta, launched the lyric programmes when he sent a message to his friends in "S" Company of a famous regiment now stationed in the island, to the tune of "Roll Out the Barrel."

Listeners are asked to address their lyrics to "Malta Lyric Messages, B.B.C., Broadcasting House, London, W.1." Nat Allen and his Backroom Boys will play the chosen airs.

Great favourites in the Malta programmes are Ronnie Shiner, that genial cockney, and the "three-minute padre," who is always gonged when he overstays his time limit.

"Workers' Playtime" Programme

"WORKERS’ PLAYTIME," the popular programme for war workers, started as an experiment by the B.B.C. for a few weeks last year, reached its first anniversary on May 30th when a special programme was broadcast from the London area.

It was John Watt's idea in May, 1941, that the B.B.C. should go to workers who could not come to B.B.C. studios to see and hear performances by famous artists. Three times a week for the past year the B.B.C. has taken companies of first-class artists to entertain the men and women in all parts of the kingdom producing the "tools of war" in Britain. These variety programmes have been broadcast to the world from modern stages in huge canteens of up-to-date factories, from rough huts on mountain sides and from almost every type of factory in Britain.

U.S. Broadcasts for Men in Services

SOLDIERS, sailors and marines of the United States Armed Forces, particularly those stationed in the Canal Zone, and at other places in the world within the reach of WLWQ's Latin American beam, are having an opportunity to hear some of the finest entertainment ever broadcast by a United States radio station. Two programmes especially designed for U.S. military and naval men are "Command Performance" and the newly inaugurated "Baseball Interviews."

"Command Performance" brings entertainment to service men outside of the United States, and it is broadcast each Sunday evening at 9.15 p.m., featuring the greatest names in U.S. radio. Fred Allen, Robert Benchley, Kate Smith and Fred Waring were among the first microphone personalities to make their appearance on "Command Performance," and the producers eagerly await the wishes of the men of the U.S. Armed Forces so that their own favourites may be featured on coming programmes. WLWQ broadcasts "Command Performance" on 9,590 kilocycles, 32.3 metres, and the time, as stated before, is 9.15 p.m. E.W.T.

Music While You Work

MANY North-Country brass bands, dance bands and orchestras, etc., are helping to increase war production. They make this contribution to the nation's war effort in the "Music While You Work" series, which is broadcast twice each day to war factories throughout the length and breadth of the land. In a recent "Music While You Work" programme—on May 17th—the band of the East Yorkshire Regiment, conducted by Patrick Purcell, gave a morning broadcast in the series.

Three Million Factory Listeners

NEARLY 5,000 factories throughout the country are now taking these twice-daily programmes, and more than 140 bands, etc., have contributed to "Music While You Work," since the series began in June, 1940. It is estimated that more than three million workers in factories hear the programme, but the total listening public is nearer 8,500,000. The importance attached by factory managements to these programmes, which are played to their workpeople, is indicated by the correspondence received by the B.B.C. One firm stated some time ago: "When, owing to a breakdown, no music was received, production dropped 15 per cent. When music was re-introduced, not only was normal production regained, but output increased by 5 per cent."

Fees for Music in Factories

ACCORDING to a recent report, the B.B.C. "Music While You Work" programmes, which are amplified by loudspeakers to war workers, have attracted the attention of the Performing Right Society, which collects fees for music composers for presentation of their works. A director of one firm to which the society applied for fees has written a letter to the Press in which he states: "It would be a brake on the national effort if manufacturers are penalised for alleviating monotonous hours at the work bench by diffusing music broadcast for the purpose. The society has already collected fees from the B.B.C." Mr. C. F. James, general manager of the Performing Right Society, has stated that the fees were equivalent to $1.00 per employee per annum for one hour's music a day.
LOW-FREQUENCY TRANSFORMERS

Full Constructional Details of Three L.F. Transformers are Given in This Article
By FRANK PRESTON

A convenient holder for the winding spool is a square stick which fits tightly
within the spool. In this illustration a length of rubber-covered flex has been
soldered to the end of the wire, the joint being covered with insulating tape. In
the rear at the right is a transformer wound on a sectioned spool.

As most readers are aware, a low-frequency transformer is described according to the step-up ratio
between the primary and secondary. In practice, it is the turns ratio which is used as an index of the
step-up ratio. Thus, if there were 1,000 turns on the
primary and 5,000 on the secondary, it would be stated
that the transformer had a ratio of one to five.

Gauge of Wire

Although very fine wire could safely be used for the
winding—in view of the extremely small amount of
D.C. to be carried—it is usually far better for the con-
structor to avoid gauges finer than about 40 s.w.g. Wires
of finer gauge are extremely thin and fragile, so that
they are easily broken when winding. Besides this, the
counting of turns becomes particularly tedious if a
winder of some kind is not available. Some more-
experienced constructors will probably use a lathe for
winding, setting this to run at very low speed and,
perhaps, fitting a counter on the lathe-stock. This is by
no means essential if we stick to cores of fairly large
dimensions; if an attempt were made to use very small
core stampings a larger number of turns would be
required (the position is closely related to that which
exists with regard to the number of turns per volt with
power transformers) and they would be difficult to deal
with.

It is customary when making transformers of this
type to place the two windings one over the other, simply
insulating them the two-and also insulating between every
few layers of each winding—waxed paper, empire tape
or waxed paper. The general idea is shown in Fig. 4,
which represents a long section through the spool.
First the end cheeks are drilled and fitted tightly, on
the rectangular-sectioned tube, and then the bobbin is
wound with insulating tape, empire tape or oiled silk.
This smoothes over the sharp corners besides helping to
give additional support to the end cheeks.

Insulation

The primary is then wound, a layer of insulation
such as waxed paper being placed after approximately
1,000 turns. On completion of the full 2,000 turns, the
counting lead of rubber-covered flex is soldered,
the joint being covered with sealing wax or a slip of
waxed paper, and the lead brought out either through a
hole in a cheek or led up the inside of one of the cheeks.
The primary must then be covered with at least one layer
of insulation, the tape or oiled silk being allowed to bend
up against the inside of the cheeks at the ends; this is
to guard against any secondary turns slipping past it
and, possibly, touching any primary
turns.
A similar procedure is followed in winding the secondary, which is divided into three or four sections by means of layers of insulation. The end of the winding is finished as with the other transformers described, and the whole of the outside of the spool well covered with insulating tape.

Leads and Connections

Although not previously mentioned, it is clearly important that a note should be made of the four leads from the primary and secondary windings. One simple method is to use pieces of felt of different colours for the ends of the windings, another is to paint spots of colour on the flex connecting leads, and a third is to stick pieces of adhesive paper to the flex leads, marking these I.P., O.P., I.S., and O.S. to represent: inside primary, outside primary, inside secondary, and outside secondary respectively. When connecting the transformer I.P. goes to the anode, O.P. to H.T.+, I.S. to earth or G.B., and O.S. to grid.

The method of fitting the core stampings and core clamps is precisely the same as for mains transformers.

More Compact

A somewhat more compact transformer, and one that is perhaps rather easier to make, can be built by using as core, about three dozen pairs of No. 5 Stalloy stampings. The cross section of the winding limb of these is $\frac{3}{16}$ in. by rather more than $\frac{1}{8}$ in., so it is convenient to use a tubular winding spool. This is shown in Fig. 3, and the inside diameter of the tube should be $\frac{11}{16}$ in. For convenience, however, we should use any convenient cardboard, presspahn or cardboard tube with an inside diameter between $\frac{3}{16}$ in. and about $\frac{1}{8}$ in.; if the tube were on the small side it would be necessary to use fewer stampings; if it were a full $\frac{3}{16}$ in. in diameter, we should have to use rather more than three dozen stampings or else pack the tube with a strip of cardboard to wedge the core tightly into the former.

It will be seen that six cheeks in all are fitted to the central tube. These should be $\frac{3}{16}$ in. in overall diameter, and must have a central hole of such a size that the cheeks will sit tightly on to the tube. There is a pair of small anchor holes in each of the two end cheeks, whilst small slots are cut or sawn in the others to permit of the wire being taken from one to the other.

This time the primary should consist of 5,000 turns 40 s.w.g. enamelled wire, this being placed in the central slot. For the secondary use 12,000 turns of 30 s.w.g. enamelled wire equally divided between the other slots; 3,000 turns in each slot. When winding it will be advisable to fill all except one winding section with string to prevent the cheeks from being displaced. Wind the primary first, dividing the total winding into about three parts with insulation. Then wind the secondary, starting from one end of the spool and winding all four remaining sections.

Push-pull Details

A push-pull transformer can be made by following the same general procedure as that already explained. The core should, for preference, consist of three dozen pairs of No. 5 Stalloy stampings, and the spool should be made of rectangular cross section to fit them. Four cheeks are required, these being the same size as shown on Fig. 1. Arrange the cheeks as shown in Fig. 2, and wind the primary in the centre section. This should consist of 2,000 turns of 38-gauge enamelled wire. For a one-to-five ratio transformer, the complete secondary should consist of 20,000 turns of 40-gauge enamelled wire. This is wound as two separate windings, each of 10,000 turns. The method of connecting the ends of the windings is shown in Fig. 2, where it is assumed that all windings are in the same direction, as they should be. In many cases the two G.B. leads from the secondary would be joined together to act as a centre tap, but it is frequently an advantage to employ separate connections for these, especially in a battery set.

Separate secondary windings have much in their favour, as they allow the individual valves in a push-pull output stage to have their grid-bias adjusted independently, thus ensuring equal anode current consumption and more accurate matching.

The winding details given above are intended for P.P. input transformers used in normal Class A circuits, i.e., where each valve is operating on a straight portion of its characteristic curve. For Class-A-B, Class B or Q.P.P. it is essential to use transformers specifically designed for such circuits, as the turns ratio differs a great deal and the secondary windings have to possess certain characteristics to render them suitable for the power input requirements of the methods mentioned.

Unscreened L.F. transformers, a certain amount of care must be taken to prevent interaction in locating them with respect to other components. This applies in particular to mains-operated receivers or amplifiers, as, in addition to interaction between components, there is always present the possibility of wires carrying raw A.C. creating a field which would affect the L.F. transformer windings to the extent of introducing hum.

Soldering a length of flexible wire to the end of the winding. The joint thus formed must be covered with insulating material.
The Valve as a Rectifier

A.C. and D.C.: The Function of a Valve Rectifier; Half- and Full-wave Rectification

Before one can consider using alternating current supplies for the purpose of providing the necessary high tension for a receiver or an amplifier, it is essential to arrange some means whereby the alternating current can be "rectified" so that a steady current, flowing in one direction only—direct current—is obtained. The process is known as "rectification," and in this article it refers to alternating currents of low frequency—the number of times per second that it takes place which determines the periodicity or frequency of the current.

If the two curves are given a little consideration, it will be appreciated that to obtain the required results the alternating-current has to be stopped from flowing in alternate directions, i.e., above and below the zero line; therefore, various methods have been devised to do this, but in this article we are only concerned with the thermionic valve as a rectifier.

The Valve Rectifier

The original thermionic valve (Fleming) employed two electrodes only (diode valve), a filament and an anode, as indicated in Fig. 2. For its operation it depended on the filament, when heated, emitting electrons which passed across the intervening space to the anode, providing the anode was maintained at a positive potential, with respect to the filament. The flow of electrons constitutes an electric current, and the milliammeter M will indicate its presence.

The rectifying valve of to-day is fundamentally the same, though, of course, vast improvements have been made as regards design, construction and efficiency. The modern rectifying valve can be of the directly or indirectly heated type; it can be fitted with one or two anodes for half- or full-wave rectification, while larger electrodes are employed to allow the necessary output and life to be obtained.

The main considerations in design are the reduction of voltage drop across the valve, perfect insulation, and a filament which is capable of giving a generous emission without excessive loss of life. The placing of the anode in relation to the filament is very important, as this has a direct bearing on the voltage drop.
Operation
Referring again to Fig. 2. If the battery "B" is replaced with a source of alternating current, it follows that the anode will be alternately positive and negative; therefore, in view of the previous remarks concerning the Fleming valve, it also follows that current will flow only during the positive half-cycle, i.e., when the anode is positive. During the negative half-cycle, no current will take place, so what really happens is: a unidirectional current is set up, but it is of a pulsating nature due to the time between successive positive half-waves.

This can best be understood by examining Fig. 3, in which curve "A" shows the wave form of the rectified output, and it will be appreciated—by comparison with "x," Fig. 1—that the D.C. thus produced is still far from perfect.

The system described deals with only half of the A.C. wave, it being the most simple method possible, and it is usually known as half-wave rectification.

Full-wave Rectification
If two half-wave rectifiers are connected as shown in Fig. 4 it will be possible to utilise the complete A.C. cycle and obtain a greatly improved output wave form.

The source of alternating current is obtained from the mains via the transformer "T," which can be so designed that the voltage output of the secondary windings is greater or less than the actual mains supply.

The secondary "S" is provided with a tapping at its dead electrical centre, and it is essential that the voltage across "s" and "s.1" is equal to twice the voltage required by the anode of each rectifier, thus giving between "s.3" and "s.1" a voltage equal to that required by each valve.

When the secondary is positive at "s," current will flow through the rectifier "R," but "Rt" will be inoperative. As soon, however, as the polarity of the secondary changes, "s.1" will become positive and the current flow will be through rectifier "Rt," while "R" will cease, as that end of the winding is then negative.

By adopting this method, and it is the one most widely used, both half-cycles of the A.C. wave are rectified, and the resultant output is considerably smoother or, in other words, the big gaps between the pulses "A," discharged, or partially so, during the following negative half-cycles, thus, as the curve shows, filling in, so to speak, the gaps between the pulses or peaks, the part "z" being condenser voltage.

For the average amateur working voltages, a capacity of 4μfd., is quite satisfactory, but it will be found that half-wave rectification requires more smoothing than full-wave.

The unevenness of curve "C" is due, to a great extent, to the presence of "ripple" voltages superimposed on the direct current, and if such are allowed to remain it is highly probable that pronounced "hum" will be experienced; so a simple filter circuit has to be embodied to remove all traces of them. A good I.F. choke and another fixed condenser are all that is necessary, at least, in the majority of cases, and they are introduced into the circuit as shown in Fig. 5, which shows the complete full-wave rectifier arrangement.

With the output of the full-wave circuit, the condenser smoothing has an even greater effect than in the previous case, the resultant curve being shown as "D" (Fig. 3), where it will be seen that the output is no longer a series of heavy pulses, but a fairly steady supply.

The filter circuit is still, however, essential, and its effect can be seen by examining the curve "E" (Fig. 3), which represents a reasonably good D.C. supply.

The choke "Ch," Fig. 5, should have an inductance of at least 20 to 35 henries when carrying the maximum current output of the rectifier concerned, while "Cr" should be 4 μfd. to 6 μfd., and, for safety's sake, it is advisable to see that it is made for a "working" voltage of, say, 50 per cent. higher than the rectified output.

Smoothing
It has been agreed that the outputs obtained so far are still far from perfect and quite unsuitable to feed the anodes of the valves in a receiver or an amplifier, therefore some smoothing arrangements must be employed.

For simplicity's sake, consider the half-wave output first. Quite a high degree of smoothing can be obtained by simply connecting a suitable fixed condenser across the output. In fact, such an arrangement also has a marked effect on the output voltage, tending to raise the value; therefore, although the capacity is not exactly critical, it is advisable to follow the rectifier makers' specifications. If the condenser has too high a value, damage can be caused to the rectifier by excessive charging currents, while, on the other hand, if the capacity is too small, the condenser will discharge its load too quickly or too much before it receives the next charge, thus producing a pronounced ripple.

If the curve "C" (Fig. 3) is examined, the general effect of the condenser can be seen. During the positive half-cycles the condenser receives a charge which is
Having completed the examination of the battery and all external connections, consideration should be given to the circuit specification. For the purpose of illustrating the points to be dealt with, let us assume that the receiver incorporates four valves arranged in the following manner: one stage of H.F. amplification feeding a triode detector, the latter being resistance-capacity coupled to an L.F. valve, which passes on the signal to the output pentode by means of a low ratio L.F. transformer. A valve sequence of this nature would normally provide reasonable sensitivity and ample L.F. amplification—even when receiving a weak signal from a distant transmitter. An average high-tension current consumption for circuits in this class would be in the region of 15 mA.s, but it is highly probable that many individual sets would register figures nearer, say, 18 to 20 mA.s. These would represent heavy loads on the usual dry H.T. battery.

Reducing Current Consumption

Current consumption can be reduced in many ways; before taking hasty, drastic measures—which, in the long run, might not achieve the desired results, plus satisfactory exception—it is best to analyse the complete circuit to determine which stage is doing the least work in proportion to its H.T. consumption. To take the circuit under consideration, it will be reasonable to say that the H.F. stage is taking 24 mA.s, the detector 14 mA.s, the L.F. 5 mA.s and the output pentode 10 mA.s, making a total of 19 mA.s. These figures show that the last two valves are the most extravagant; the output valve is essential—more about that later—but, can one say the same about the L.F. stage?

As mentioned last month, the output power can be reduced considerably without the listener appreciating any change, so it is safe to assume that the L.F. valve can go. This does not mean that components and wiring should be ripped out, in fact, it is quite unnecessary to adopt such drastic steps for any of the suggested modifications. The part of the circuit concerned is shown in Fig. 1, in which the broken lines indicate the new wiring required to cut out the L.F. valve marked V3. The connection from the secondary of the L.F. transformer to the grid of the pentode should be removed and the valve (V3) withdrawn from its holder. The output from V2 will then be fed into the pentode, and it will be necessary to adjust the value of G.B.1 to suit that valve; the connection G.B.2 can be removed from the G.B. battery as it is no longer required. This slight alteration will have a very appreciable effect on the H.T. consumption; the loss in volume—so far as the British transmissions are concerned—is not likely to be sufficient to mar the entertainment value of the programmes. There are, of course, bound to be exceptions to this statement; certain localities are worse than others for general reception; therefore, it is up to individual listeners to apply the various ideas given in this article to determine which is most suited to their conditions.

An alternative to the above alteration, for those who wish to get slightly more power than the new three-valve circuit is capable of giving, is shown in Fig. 2. This allows the transformer to be used as the coupling between V2 and V4 in place of the resistance-capacity unit, thus providing an increase in amplification. Remove V3 as before; leave the transformer secondary connected to the grid of V4 and G.B. in the G.B. battery. Break the H.T. feed to the anode resistance of V2 at the point marked "A," and connect the anode terminals on the valve holders of V2 and V3 together. G.B.1 can be withdrawn from the G.B. battery. The transformer primary is now in the anode circuit of the detector (V2), so that electrode will receive a greater H.T. voltage than before, owing to the lower resistance of the primary compared with the anode resistor. This may upset the reaction operation, and it would be advisable to use a separate H.T. lead to point "B" so that the voltage can be adjusted to suit the detector stage, and, incidentally, allow the most economical value to be selected.

The H.F. Stage

In many districts an H.F. stage is not really necessary;
a little attention to the aerial and the use of an aerial series condenser—variable for preference—will do a great deal towards improving signal strength and selectivity when the H.F. stage is removed. A simple test will show whether the H.F. valve is absolutely essential (bearing in mind economy of H.T. current) and the modifications are shown in Fig. 3.

If the H.F. coupling is of the transformer type, remove the H.F. valve \(\text{V}_3 \), and the H.T. lead to the primary at the point marked \(\text{C}' \). Short-circuit the fixed condenser \(\text{D} \) to earth and connect the aerial to the connection, which is normally joined to the top of the H.F. valve, via a small variable condenser having a maximum value of, say, 0.001 mfd. These alterations cut out the aerial tuned circuit and the H.F. load is therefore, tuning will be flatter but this can be improved by the careful use of the aerial series condenser. If the H.F. coupling is “tuned-grid,” as shown in Fig. 4, the following procedure should be adopted. Remove the valve, break the H.T. lead to the H.F. choke at the point “\(\text{F} \)”, and connect the aerial to the side of the coupling condenser marked “\(\text{E} \)”, making sure that the top-cap connection to the H.F. valve does not touch any earthed parts of the circuit. If selectivity is not good enough, replace the fixed coupling condenser by a variable one, as suggested for the first example.

These tests should be carried out over a reasonable period, as it is not fair to judge the results until one has got used to the modified circuit and results.

The Detector Stage

Assuming that the H.F. valve can be cut out of circuit, it can be used in the detector position with advantage, especially in those districts requiring that little extra efficiency from the modified circuit. The use of an S.G. or H.F. pentode valve in the detector position results in a much greater amplification being obtained than when a normal triode is used. Selectivity is also better, therefore, when dispensing with the H.F. stage it is well worth while to make the slight modifications necessary to allow the valve to be used in the detector position.

If the valve is of the four-pin type, the wiring alterations are: Remove, from the anode terminal of the detector valveholder, all existing connections, and arrange them so that they can be taken—by means of a short length of flexible insulated wire—to the top cap of the S.G. valve when it is in its new position. To the now vacant terminal on the valveholder connect one side of a 0.1 mfd. fixed condenser and a length of flexible wire long enough to reach the H.T. battery. The other side of the fixed condenser is then connected to the negative filament terminal, as shown in Fig. 5. The free end of the flexible lead is inserted in the 24 or 36 volt socket of the H.T. battery, but tests should be made to determine the most efficient value, keeping it as low as possible consistent with good results. Should the H.F. valve be fitted with a seven-pin base, it will be necessary to replace the existing detector valveholder with one of the seven-pin type, and connect it as shown by the diagram on the right of Fig. 5. To avoid purchase, or if it is difficult to obtain a required part, the holder used in the H.F. stage could, of course, be utilised.

The Output Stage

So far, no mention has been made of the valve which has the heaviest current consumption, namely, the output pentode. The H.T. current consumption of the two-volt power and pentode valves normally obtainable varies over quite a wide range of values, when some of the circuit is common within the super class, can impose a heavy drain on an H.T. battery. The majority of single-valve output stages operate on what can be termed Class A conditions, which means that the maximum anode current is flowing the whole time irrespective of the strength of signal being handled. This can be considered—in the light of current economy—as most unsatisfactory, especially when one thinks of the periods during which the valve is not doing any work, i.e., during silent parts of the programme, or when very soft passages are being received. By utilising Class B and Q.P.P. systems of operation, the anode current consumption varies with the strength of the signal being handled, and during idle moments the quiescent current value is only a fraction of the maximum.

It is possible to achieve results very similar to those mentioned above by incorporating a system developed by the makers of the Westinghouse Metal Rectifiers, which uses one of their type W.6 rectifiers. The recommended circuit is shown in Fig. 6, and the principle of operation is as follows.

A small portion of the L.F. output is tapped off and rectified, the D.C. voltage thus obtained being used to bias the output valve according to the power which it is
called upon to handle. An important point to note is that no grid-current flows, therefore there is no need to use a special grid valve or L.F. transformer preceding the output stage.

The grid-bias must be increased above its usual value, to reduce the standing or quiescent current of the valve to a quite low value, this being in keeping with Class B and Q.P.P. operation.

When a signal reaches the grid, the rectifying action of the Westector allows a D.C. voltage to be built up across the resistor R2, the upper end being positive. As it is this point to which the grid-bias lead from the valve is taken, the bias actually applied to the valve will be the resultant of the voltage from the G.B. battery and the rectified voltage across R2.

The effect, therefore, is that when a powerful signal is applied to the grid, the high value of grid-bias from the G.B. battery is automatically reduced to a value sufficient to allow the signal at that instant to be handled without distortion. The system is most satisfactory, provided adequate precautions are taken to prevent the grid-bias value changing at low frequency, and thus ensure that no L.F. reaction is produced between the anode and grid circuits. In the circuit shown, the filter formed by the condenser C2 and the resistor R3 takes care of this by keeping the grid-bias at a frequency lower than the lowest low-frequency signal likely to be handled.

By virtue of the complete action of this economiser circuit, the quiescent value of the anode current consumption is kept at a very low figure, and even when a signal is received by the valve the grid-bias adjusts itself, so to speak, so that the anode current is not allowed to rise above that value necessary for satisfactory reproduction. The overall effect is a considerable saving in current consumption and, likewise, the life of the battery.

The makers of the Westector have prepared a useful table showing relative operating data and values for Rr for the types of battery output valves most widely used, and part of it is reproduced below.

<table>
<thead>
<tr>
<th>Valve</th>
<th>Battery Voltage</th>
<th>Rr ohms</th>
<th>Quies. Current mA</th>
<th>Peak Current mA</th>
<th>Output watt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pen. 220 A</td>
<td>150</td>
<td>100,000</td>
<td>2.0</td>
<td>10</td>
<td>1,100</td>
</tr>
<tr>
<td>Pen. 220A</td>
<td>120</td>
<td>100,000</td>
<td>1.8</td>
<td>16</td>
<td>700</td>
</tr>
<tr>
<td>220 P.T.</td>
<td>120</td>
<td>100,000</td>
<td>1.8</td>
<td>16</td>
<td>640</td>
</tr>
<tr>
<td>Pen. 220</td>
<td>150</td>
<td>200,000</td>
<td>2.0</td>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>P.T. 7</td>
<td>150</td>
<td>20,000</td>
<td>1.4</td>
<td>14</td>
<td>300</td>
</tr>
<tr>
<td>P.220A</td>
<td>150</td>
<td>60,000</td>
<td>0.75</td>
<td>5.5</td>
<td>150</td>
</tr>
</tbody>
</table>

Formulas and Their Applications—1

Formulas are Useless Unless They Can be Applied. Elementary Items are Important.

Some Practical Examples.

It is becoming increasingly evident, more so than during any other period in the history of the amateur radio movement, that technical qualifications are essential, and that it is now no longer good enough for amateurs and, in particular, alleged radio service men who try to cover up their totally inadequate knowledge of the subject by the fraudulent use of the title radio engineer, to apply "hit-and-miss" and "rule-of-thumb" methods to a subject which so obviously calls for an intelligent understanding— if only elementary of its principles.

So many of the thousands of radio enthusiasts, who have responded so splendidly to the appeals from the three Services for radio men, realised when they started their radio training that they did not know as much about their hobby or trade as they had assumed. Radio in the Services naturally calls for special training, but apart from the apparatus and equipment peculiar to Service needs, a recruit possessing a reasonably sound theoretical knowledge of radio has a distinct advantage over others, and is able to make more rapid progress with the training.

It is not intended to convey the impression that "technical qualifications" imply some predetermined fixed standard. The expression is too loose and has too great a field of application for it to be tied down to some rigid quantitative knowledge. The actual limits or requirements are governed by the class of work being considered; speaking in a general sense, one might classify the various spheres of radio activities under headings such as these: Those requiring pure theory; specialised theoretical knowledge; a sound knowledge of theory plus production experience, and, finally, a good understanding of the theory, combined with extensive practical ability and a wide knowledge of commercial receivers and allied equipment.

In this article it is only natural that we are primarily concerned with the amateur constructor, the experimenter, and those who have in mind entering the radio industry and, during the present time, one of the branches of the Service.

To cover these various sections, therefore, especially in an article for general application, it is only possible to touch on the elementary items, which, after all, form the foundation of the knowledge one hopes to acquire. If, as in all other matters, the foundation is shoddy or skimmed, the whole structure will be shaky, and—in the case under consideration—the student will reach a point where he will regret his failure to appreciate the true value of those simple elementary rules, laws and formulas which he passed over too quickly in his eagerness to make the more advanced and, possibly, more interesting stages.

Ohm's Law

In view of the above, no apology is necessary for starting with one of the fundamental but elementary Laws connected with the relationship between Current, I; Voltage, E, and Resistance, R.

The Law states that I=E/R, but from this two other equations can be derived, namely, E=IR and E=IR.

The units for these three equations—which apply only to direct current—are amperes for the current, volts for E and ohms for resistance, R.

Examples:

1. An E.M.F. (voltage) of 500 volts is applied to a circuit having a resistance of 250 ohms. What current will flow in the circuit?

 I = E/ R = 500/250 = 2 amps.

2. The current flowing in a circuit is 4 amps.; the applied E.M.F. is 1,000 volts. What is the resistance of the circuit?

 R = E/ I = 1,000/4 = 250 ohms.

3. A resistance of 400 ohms is inserted in a circuit; the current measured is ½ amp. What is the applied E.M.F.?

 E = I x R = ½ x 400 = 200 volts.

These simple examples can be cross-checked by using equations 1, 2 and 3 to each of them.
With radio work, one is usually more concerned with milliamperes, i.e., a milliampere is one-thousandth of an ampere (1/1000), therefore, when applying any of the above to circuits involving milliamperes (mA's) it is necessary to express the current as a fraction or, better still, decimal part of an ampere, or multiply or divide by 1,000, as shown below.

When current is expressed in mA.s:
\[I = \frac{E \times 1000}{R} \]

Typical Applications

What value bias resistor is required to provide 30 volts bias, if the anode current of the valve is 20 mA's?

Solution.—Apply equation No. 2 with \(E \) representing the bias voltage required.

A resistor has to be inserted in series with the positive H.T. lead to reduce the voltage of 350 volts to 200 volts. The H.T. current flowing is 45 mA.s. Determine value of resistor.

Solution.—Apply No. 2 with \(E \), representing the voltage to be dropped, i.e., 350 volts—200 volts.

An anode decoupling resistor is inserted in series with the load resistor of a resistance-capacity coupled valve. The anode current is 5 mA's; the resistor has a value of 20,000 ohms. What voltage will be dropped across it?

Solution.—Apply equation No. 3.

The chief point to remember in any of the applications is what units are used for the current measurements, amperes or milliamperes.

Wattage

Electrical power (D.C.) is the product of the E.M.F. and current, and can, therefore, be written:
\[(\text{Watts}) = IE \]

The units being the same as for Ohm's Law. Now we have seen that \(E = IR \), therefore, \(W \) also equals
\[1R \times I = IER \]

Also, \(I = \frac{E}{R} \), and, likewise, \(E = \frac{IR}{R} \)

Therefore, \(W \) must also be
\[\frac{E^2}{R} \]

These arrangements allow one to determine the wattage dissipated across a resistor when the current, and resistor values are known, or if the voltage across a resistor and the current flowing through it are known. The last equation given will find application in such cases when the known values are those of the resistor and the applied voltage across it.

Occasions arise to determine the voltage and current in circuits about which only the wattage and resistance values are known. For these the equations
\[E = \sqrt{WR} \]
\[I = \sqrt{\frac{W}{R}} \]

can be applied.

Examples.—A mains voltage dropping resistor in an A.C./D.C. set has a value of 650 ohms. The current flowing through it is 0.2 amp. What wattage will be dissipated?

Solution.—\(W = IE = 0.2 \times 0.2 \times 650 = 0.04 \times 650 = 26 \) watts.

An anode resistor produces a voltage drop of 50 volts when a current of 2.5 mA's is flowing. What must be the wattage rating of the resistor?

Solution. — \(W = EI = 50 \times 0.0025 = 0.125 \) watts.

If in the above question the resistor had a value of 20,000 ohms and still produced a voltage drop of 50 volts but the current value was unknown, how would the wattage be determined?

Solution.—Applying \(W = \frac{E^2}{R} \) we get
\[W = \frac{50^2}{20,000} = 2.500 \]

If a circuit containing a load resistance of 10,000 ohms dissipates a wattage of 5 watts, what are the values of the current and voltage?

Solution.—Applying \(E = \sqrt{WR} \) we get
\[E = \sqrt{5 \times 10,000} = \sqrt{50,000} \approx 224 \text{ volts} \]

These figures can be cross-checked by applying \(W = IE \) in which case we get: \(\cdot 0224 \times 224 = 5.0176 \) watts, a value sufficiently accurate for an example of the application of the formula.

Series : Parallel and Series-parallel

Resistors connected in series : The resultant value is equal to the sum of the individual resistors.
\[R = R_1 + R_2 + R_3 + R_4 \]

The same rule applies to cells (batteries) in series and inductances in series.

Resistors in parallel : The resultant value is expressed thus: The reciprocal of the resultant value is equal to the sum of reciprocals of individual resistors.
\[\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} \]

The same rule applies to inductances in parallel, and condensers in series.

Cells in parallel : The resultant value is that of one cell.

Condensers in parallel : The resultant value is equal to the sum of the individual condensers.
\[C = C_1 + C_2 + C_3 + C_4 \]

(The to be continued)
Mounting Extension Speakers

Some Practical and Pleasing Ideas for Improving the Appearance and Efficiency of External Loudspeakers

During the last year or so, the use of extension speakers has become increasingly popular, and we receive many queries concerning suitable wiring, output circuits and speakers. These items have been covered in a comprehensive manner by articles which have appeared in past issues, but there is one item which has not received a great deal of consideration, and it is hoped that this article will provide the information which experience and requests indicate is sorely needed.

Many constructors still devote a lot of time and labour to the wiring of the extension points; quite a number will go to a lot of trouble to devise some system of remote control or switching, but the majority appear to neglect — or, at least, give very little thought to — the actual location and mounting of the speaker. In many instances, a small square of 3-ply — unstained or polished — is used and, apart from the loss of a wide range of frequency response, the general idea is not to be encouraged, as it is bound to detract from the decorative scheme of the room in which it is used.

While admitting that it is not now so easy to obtain all that one might wish for to complete extension speaker installations, the illustrations show that it is not a difficult or expensive matter to construct simple arrangements which will improve the efficiency and appearance of the unit, without using materials of which the supply is restricted.

Plaque Types

Where space or the lack of a suitable cabinet enforces the use of a plain baffle-board, the ideas depicted by Fig. 2 can be utilised to good advantage. Instead of adhering to the usual square shape, much can be done to reduce the apparent size of the board by cutting it to an octagonal, hexagonal or even circular shape. It will be found that this procedure makes the appearance of the baffle more pleasing to the eye and, therefore, allows one to use a much larger baffle area without it appearing too bulky. Plywood is scarce; it is possible that odd pieces of timber might have to be used to make up the required size. It may happen that the surface of the material is not suitable for staining or polishing; in fact, its condition might be such that in normal times one would not think of using it. The suggested designs shown in Fig. 2 take these items into account, and it will be seen how, by the use of a small amount of ordinary hessian fabric, it is possible to transform a very ordinary piece of board into an article which, while serving its original purpose, possesses a pleasing finish which will harmonise with the general furnishing and decorative scheme of the room.

The hessian can be obtained in various colours, and the beading and cross-bars can be stained or enamelled in tints to suit individual taste and colour schemes. The design shown is but one of many which can be employed, and if a little time is spent drawing out ideas to link up with the shape of baffle-board selected, it is surprising what pleasing results can be obtained and what a refreshing change they will make to the old orthodox square-shaped stained board.

The small rubber buffers are worthy of note. They not only protect the wall covering, but prevent the possibility of chaffer between the edge of the board and the wall.

Fire-screen Types

The design shown in Fig. 3 is, basically, the same as Fig. 2 as regards materials used, but it is of larger proportions and fitted with feet to allow it to stand on the hearth of a fireplace. If a little care is taken with the making and assembly of the simple woodwork and with the selection of the colour scheme, a very useful piece of furniture — serving the dual purpose of speaker-baffle and fire-screen — will be obtained. The fact that it will normally rest on the hearth allows a generous baffle area to be used, and if stout board, or five-ply with neat bracers fitted to the back, is used, the tonal response from the speaker will be most satisfactory. The use of bracers or stiffening pieces is generally...
desirable, with large areas of liveliness, to reduce the possibility of unwanted resonances.

Flush Speaker Mounting

The effect of a cut-out circular opening and an ornamental fret is often spoiled by the exposed cut edges becoming coated with dust. It is not an easy matter to keep these clean— even by using a small brush—as there is always the risk of damaging the material backing the fret. The method shown in Fig. 4 is one which is now widely adopted by many set manufacturers; it not only eliminates exposed edges, but also provides a means of smooth finish to the front of the cabinet. It involves a little extra work, but the resultant effect compensates for that, therefore, in general, it has much to recommend it.

The circular hole should be at least 5 inches greater in diameter than the normal speaker opening. A ring has then to be cut out of wood, preferably plywood, its inner opening being that required for the speaker, and its outer diameter being equivalent to the circular opening in the baffle board. The method of mounting the speaker, as well as fixing the silk is apparent from the diagram, the tension required to keep the silk or fabric taut and free from wrinkles. The inset shows how a baffle can be housed in a set of shelves, such as those often found in the corner of a room.

Corner Cabinets

In many rooms, especially where space is a consideration, good effects can be obtained by housing the speaker in a simple cabinet, as shown in Fig. 1. As it is purely an extension point, and as no set has to be concealed, the bottom half of the cabinet can be utilised in many ways according to the requirements and ingenuity of the constructor.

B.B.C. HANDBOOK FOR 1942

'This is the British Broadcasting Corporation.' Not only in this country, but throughout the world, these words, broadcast during a quarter of an hour just before Big Ben in the Overseas Services, form the signal for action, says the "B.B.C. Handbook, 1942," which is now on sale. News and programme services from Britain are re-broadcast over five continents, and in a hundred distant control rooms, in New Zealand, or New York, Barbados or Fiji, operators wait for the network cue to switch over to the next programme. Within 20 seconds their transmitters are connected and another link has been forged in the world-wide chain of understanding and co-operation.

This extension of re-broadcasting is part of the 1942 development which the handbook reviews in detail. Many illustrations are given of outstanding broadcasting events, as well as information on all B.B.C. services. Fresh impetus was given during 1941 to British broadcasting by a substantial increase in transmitter strength to existing services to Europe, to the Empire, to North and South America and to the Near East, thus enabling the B.B.C. to carry the voice of Britain to new listeners throughout the world. At the beginning of 1941 the Corporation was broadcasting in 32 Empire and foreign languages for 175 hours a week, but when the year ended this had increased to 40 languages with a weekly total of 231 broadcasting hours, and there has since been a further marked increase.

Programming in English to the Empire and United States were broadcast for 27 hours a day; programmes to Central and Western Europe and the Central Mediterranean for 20 hours a day, and to the Near East and special Empire countries throughout the day, while South America was served for five hours a day and Spain, Portugal, the Balkans and Scandinavia for 10 hours.

The handbook reviews B.B.C. efforts in the field of political warfare, emphasising the use of radio as a weapon in the Near East where, in co-operation with diplomacy and the armed Forces, positive results were achieved in three cases last year.

Feature programmes were again proved to be the "striking force" of radio. A recurring theme in such programmes was the story of the resistance of the oppressed peoples of Europe. Epics of the sea and air like the "San Donatello" and the "Battle of Britain" continued to reflect the spirit of Britons, while other features provided occasions for distraction from the war.

Sections of the handbook are devoted to Variety— the problem being to cater for listeners at home and for large numbers of men and women in the Services—and to Talks, Sunday Postscripts, Outside Broadcasting, Recorded Programmes and Group Listening. The handbook includes articles on Broadcasting by E. A. Harding, Director of Staff Training; Re-broadcasting and Exchange Broadcasting by Maurice Gorham, Director of the B.B.C.'s North American Service, and War-time Studies by Dr. F. W. Alexander, Head of the Programme Engineering Department.

The price of the "B.B.C. Handbook, 1942," is 2s. 6d. (2s. rod. post free), and it may be obtained from the B.B.C. Publications Department, The Grammar School, Scarle Road, Wembley, Middlesex, or from any bookstall.
Radio Examination Papers—8
Another Series of "Test Yourself" Questions, With Answers Written By
The Experimenters

1.—Permeability Tuning

This system depends upon a method of altering the resonant frequency of a tuning coil by variation of its effective inductance. It is known that the inductance of any air-core coil is increased if a ferrous core is inserted into it. It is also known that the inductance can be varied by so arranging the ferrous core that it may be moved out of or into the coil; this is done with certain chokes used for controlling equipment fed from A.C. The control corresponds to that provided by a variable resistance in a D.C. circuit.

The insertion of the iron into the core of the coil has the effect of reducing the "resistance to magnetism," or of increasing the permeability of the magnetic circuit. A method such as that described above is perfectly suitable when dealing with A.C. at frequencies up to 100 cycles or so, but it is totally unsuitable when the frequencies concerned are in the region of kilocycles or even megacycles. This is because a solid core of iron or iron alloy introduces serious losses due to the circulation of eddy currents in the metal. It should be explained that these eddy currents are circulating currents which only have the result of causing the development of heat; and if heat is developed power is required to provide it; this power is taken from the H.F. current passing through the winding.

For high-frequency tuning purposes, therefore, a different system must be used. This consists of making a core consisting of extremely small particles of iron or iron alloy, these being insulated one from another. The iron is mixed with a plastic compound, the whole being pressed or shaped under heat so that a solid block results.

A core made from this material is then arranged to slide into and out of an ordinary inductance coil. The inductance increases as the core is moved into the coil; and as the self-capacity remains practically unchanged the resonant frequency is reduced, in the same way as it would be if additional turns were put on the coil. Thus, the resonant frequency (or tuning) can be varied by movement of the core. One method of providing adjustment for the core is illustrated in Fig. 1.

2.—Voltage Dropping

The simplest method of operating a 110-volt universal receiver from 220-volt mains is by inserting in one of the mains leads a 110-volt light bulb. Since the bulb must dissipate the same amount of power as does the set it would be necessary to know the power consumption of the set. This is generally indicated on sets of this type, and for "midget" receivers is normally about 30 watts. A bulb rated at 110 volts, 30 watts would thus meet the requirements. The method of connection is shown in Fig. 2.

If the power consumption of the set was not known, the current consumption would probably be stated. From this it would be an easy matter to find the resistance of the set, and therefore the additional resistance required to "break down" the supply voltage. From a knowledge of this resistance it would not be difficult to find a light bulb of suitable resistance and it need not be of the 110-volt type, but of any other voltage rating provided that the resistance was correct. The resistance of any lamp bulb can be found quite easily by applying Ohm's Law. It is known that wattage is equal to V²/R (current, in amps, squared, times resistance) and that the current passed, in amps, is equal to the wattage divided by the voltage. Thus, a 60-watt, 220-volt bulb would pass .27 amp. Its resistance could be found from the formula already given or, more easily in this case, by dividing the voltage by the current; the answer is 820 ohms. Two such lamps in parallel would have a resistance of 403 ohms, which

(Continued on page 344)
BAIRD BRAND NEW TELEVISION RECEIVERS
Model 26

EVERY receiver is in perfect working order.
Cabinet dimensions 3ft. 4in. high, 20in. wide, 17in. deep. Picture screen size 10in. by 8in. Pick-up sockets are fitted enabling it to be used as a Gramophone Amplifier. Extra loudspeaker sockets. 1t valves.
Simple to operate. Only two main controls, one for picture contrast and the other for sound broadcast. The Vision Receiver is a straight set with 2 R.P. stages, diode detector and one V.F. stage with secondary emission valves. The components alone are worth over £50 at today's prices. Carriage extra.

SPEAKER GRILLES
Solid chromium-plated decorative speaker grilles. Beautifully made, 3/6 each. Similar, lighter weight, nickel-plated, 2/6. Each 1ft. long, 4-bar, 12in. wide.

MOVING COIL MICROPHONES
In heavily nickel-plated cases. Impedance 25 ohms. Our stock of these high-class instruments is limited. As the demand for good quality microphones is rapidly increasing all orders will be executed in strict rotation. Regret increased price—due to rising costs. Price £5.5.0

VARIABLE SLIDING POTENTIOMETERS
These sliding potentiometers have many practical uses. They cannot be repeated at this price. 250 ohms, 10 watt, price 7/6.

MERCURY SWITCHES
Brand new finest mercury switches. Many hundreds of useful applications. Quick make and break will carry 5 amps. Small quantity to clear at low price of 6/6.

PHILIPS HIGH VOLTAGE TRANSFORMERS
These transformers are robust in construction and weigh approximately 12lbs.
Dimensions: 52 by 64 by 4in. Specifications: 350-600 v., 70 m.A. Four tappings giving 4 v., 3 amps., 6.3 v., 4 amps., 4 v., 55 amp. and 4,000 v. at 3 m.A. Input 100/250. Carriage forward. Price 22/-

PHILIPS SMOOTHING CHOKES
Brand new, well-built chokes, 60 ohms D.C. resistance 100/250 m.A. Core size: 1in. by 1½ in. by 12 in., 5.6 each. Also 200 ohms. D.C. resistance 60 m.A. Core size: 1½ in. by 1½ in. by 14 in., 3/6 each.

PHILIPS SPEECH TRANSFORMERS
Ratio approximately 40:1 with feed back windings, 4/6 each.

PLUGS & JACKS
Useful to experimenters. Brand new, exactly as illustrated, 4/- complete. Plugs only, available at 2/- each.

RECTIFIERS
We are fortunate to be able to offer L.T. Rectifiers, made by Standard Telephones. They are brand new and cannot be repeated. 12 volt, 5 amp. output, 5/6. Also 12 volt, 1½ amp. output, 12/6.

VOLUME CONTROLS
We hold a big stock and a good range. 2,000 ohms, wire wound, 4/- each. 500,000 ohms, with switch, 12in. spindle, 6/6 each. Midget type, 5,000 ohms, 3/6 each. Also 1 ohm, 200 ohms, 600 ohms, and 800 ohms, 3/6 each.

LONDON CENTRAL RADIO STORES
23, LISLE STREET, LONDON, W.C.2.

GERrard 2969
is approximately correct for many of the 110-volt "midget" A.C./D.C. receivers.

When the set is to be operated from A.C. mains the best method would be to use a 2:1 step-down transformer if one were available, with sufficient current output. Another method would be to employ an autotransformer, which consists of a single winding having a tapping; in the present case a centre-tapping. It would be connected as shown in Fig. 3.

3. Variable-mu Volume Control

One advantage which variable-mu control possesses is that increased selectivity is obtained as the volume is "turned down" by increasing the applied grid bias. This advantage is also shown, however, by controlling the screening grid voltage, although the gain in selectivity in this case is not quite so pronounced.

Another great benefit is the so-called "variable-mu" control which practically eliminates cross-modulation. This is a form of interference caused by a strong signal modulating a weak signal to which the receiver is tuned. The strong signal may be sufficiently separated in frequency from the other to avoid adjacent-channel interference, but may act in the same manner as the oscillation produced by the H.F. oscillator of a superhet mixer stage. And if the H.F. valve were to act as a first detector a somewhat peculiar "intermediate frequency" would be produced. By increasing the bias to a variable-mu H.F. stage the valve is prevented from acting as a first detector and therefore the cross-modulation cannot occur.

4. Decoupling

Fig. 4 shows the circuit of a detector valve with anode circuit decoupling; the decoupling components are shown in heavy line. It will be seen that the decoupling resistor is connected between the anode load (transformer primary in this case) and H.T.-+, and that the condenser is wired between the "transformer" end of the resistor and the earth line.

If these components were not incorporated there would be a danger of the audio-frequency output from the detector valve being developed across the H.T. supply, especially if this had a fairly high internal resistance. The result of that would be that the supply to the other valves would be modulated by this audio-frequency voltage. That would give rise to distortion and that form of L.F. oscillation which is normally described as motor-boating, because the noise is similar to that made by the exhaust of a motor-boat engine; the "pop-pop-pop-pop" sound. The object of the decoupling resistance is to act as a "stopper" between the A.C. current, while the condenser provides a relatively easy path to earth; the reactance of a 2-mfd. fixed condenser at 1,000 cycles is only about 80 ohms. It is evident, therefore, that the condenser provides a much easier path than does the resistance, which normally has a value in the region of 25,000 ohms.

5. Class B and Q.P.P.

Both of these forms of L.F. amplification can actually be described as class B, but whereas grid current is allowed to flow in the case of class B, it is definitely prevented from flowing in the case of Q.P.P.

Class B is a power-driven amplifier and must be fed from a driver valve, which is of the small-power-type; this is to supply the current which passes to the grid of the double triode through the secondary of the class B push-pull transformer. Class B valves are usually operated without grid bias, although some types are so designed that they require a low bias—in the nature of 1 or 2 volts.

A Q.P.P. amplifier, which has two pentodes in push-pull, or a double-pentode with the two halves in push-pull, is a voltage amplifier. The two grids are heavily biased so that the pentodes pass little or no anode current until signal voltages are applied to them. But on the positive half-cycles of the signal the standing bias is counteracted by the positive signal voltage and anode current rises. The current passed on the application of a signal is proportional to the amplitude of the signal voltage.

In both systems the anode current passed by the valves (for the two halves of the double valve) is proportional to the applied signal voltage. If, therefore, the volume control is turned down the current consumption is reduced. The average anode current is quite small in relation to the output, since it falls when the modulation ceases, and also on quieter passages of music or speech.

6. Transformer Design

On 50 cycles, and with Stalloy core stampings which provide a cross-sectional area of 1 sq. in., it is correct to allow 8 turns per volt for primary and all secondaries.

It will be seen that the total output from the required transformer is only about 70 watts, and therefore that the stampings specified will have an ample volume for this power, even if allowance is made for the losses between primary and secondary. If the transformer efficiency were 80 per cent. (an average figure) the total input would be under 80 watts.

Working on the figures given above it will be seen that 8 times 250, or 1,840 turns would be needed for the primary. For the H.T. secondary it would be necessary to wind 8 times 500, or 4,000 turns; there would be a centre tap at 2,000 turns.

For the L.T. secondary the correct number of turns would be 8 times 6.3, or about 50½ turns. Since the heater voltage required by 6.3-volt valves is not critical, it would be quite in order to wind either 50 or 51 turns.

Fig. 4. The decoupling condenser and resistance for the anode circuit of a detector valve are shown in heavy lines in this diagram.

To find the gauge of wire required for the secondaries it would be necessary to look up wire tables to see what gauges would carry the necessary current, at a current density of not more than 1,500 amps. per sq. in. The usual method would be applied to the primary, after finding the current to be carried. This would be found by dividing the input wattage (say 80) by 230; it would be sufficiently accurate to give this as .25 amp.

EVERYMAN'S WIRELESS BOOK

By F. J. CAMM

NEW EDITION.

6½ or 6½ by post from Geo. Newnes, Ltd. (Book Dept.), Tower House, Southampton Street, Strand, London, W.C.1.
Brains Trust to be Rested

THE B.B.C. has announced that it will shortly “rest” the Brains Trust, and it is unlikely that Mr. Joad will be a member of it if, and when, it resumes. It has, I suppose, been one of the most publicised B.B.C. features in recent years, although why it should have been given the title of Brains Trust I do not know.

I expatiated on the question of what is, and what is not brains, some months ago. I do not know whether my disquisition prompted the recent question on the same subject which the Brains Trust endeavoured to answer, and as modestly has always been one of my strong points I must not say that I still think that my definition is better than theirs! And now I have said it, much as the man who says “needless to say” always says what is needless to say. However, I reassert my opinion that there is no Brains Trust so called, its members should be changed from week to week, in the same way as the manager of a variety theatre changes his bill every week.

For (let us be frank about it), the Brains Trust is not really a Brains Trust. It does not answer real questions. The only questions it endeavour to answer are those in which the answerer can never be proved right or wrong. I, for one, refuse to acknowledge that the only people who can answer any questions set before them are the B.B. Rains Trust. Torments of abusers upon me! However, whether the B.B. has reached the same conclusions as myself and many of my readers, or whether it feels that “the members of the Brains Trust need a period of respite if their replies are not to degenerate into mere adumbrations, we shall never know.

Here is a comment by Timothy Shy from the News Chronicle:

To the reader who, bewitched by obscene curiosity, asks us what we “really think” of the Brains Trust, we relate a moral story concerning the great Jowett, Master of Balliol. A contemporary Brains Trust ace came up to Jowett once, giggling and smirking and devoured by the usual insane vanity, and said: “And what, Master, do you think of the Brains Trust?” To which the great Jowett replied, after blowing his nose: “We do not think of you at all.”

Great Minds Think Alike

AND now I must recount a dream. It was the post-war period, and the B.B.C. were in solemn concourse like politicians and industrialists on the new Post-war Order. The representative of the criers said that he wanted half the programme time, whilst the representative of the hot air merchants claimed the whole of the programme time in view of the vast sacrifices he had made during the war. His salary had been reduced from £19,543 4s. 9d. to £19,543 4s. 9d. He said that he had been promised this by the Ali High. To which the representative of the Brain Trust replied: “I made no such promise!”

Is the Brains Trust Unrehearsed?

I SHOULD like to know whether it is true that the members of the Brains Trust are not given time to think about answers to the questions put to them, and that their replies are spontaneous. By unrehearsed I mean: Are the members of the Brains Trust brought straight to the microphone, and the questions put to them? Do they have any idea beforehand what the questions are, or do they have any idea of framing useful replies? It seems to me that a little rehearsing is necessary if their answers are to be anything more than lugubrious lollipops.

New B.B.C. Rules

SOME new B.B.C. rules are:

1. If the War Office, Admiralty or Air Ministry—or any other department, such as the Post Office—asks the B.B.C. to broadcast a talk by a serving member or official, no fee can be paid to the speaker.

2. If the B.B.C. asks a soldier, sailor, airman or civil servant to talk about his job, they pay only half the fee to the broadcaster. The War Office, Admiralty, Air Ministry, or appropriate Civil Service department, pays the rest of the fee into its own fund.

3. If the B.B.C. asks a soldier to talk about something other than his job, such as coal-mining, or asks a postman to talk about butterflies, not letters, it pays each individual the full fee.

Colour Codes

I HAVE never been able to discern the reason for the complicated cabalistic signs which are used to mark resistances and condensers. It is advantageous to mark multple leads for identification, but surely the value of a resistance or a condenser could be stamped on them, using the usual digits. Why should the body of a resistance be marked with one colour, the tip with another, and a dot or band on the body to indicate its resistance? To read the value one has to take the body colour first, then the tip colour, and then the dot. For example, a 25,000-ohm resistance would have a red body, a green tip, and an orange dot. It is stupid and unnecessary; the values could be stencilled on so that they could be read direct. I know that the Radio Correspondent Federation some years ago approved this code, which must not only be costly to carry out in manufacture, but gives rise to serious mistakes. A number of firms tell me that few manufacturers have been able to train girls to identify colour codes, and resistors were dispached of wrong values. It ought to be abolished, for it is a relic of the early days of radio, and the type of mentality which was in radio in those days. There is no point in trying to make the identification of a resistance value mysterious or clever.
Notes from an Amateur's Log-book

SINCE describing the construction of the two-valve L.F. amplifier, I have been busy fitting the three sections of the Rx into the cabinet, and making one or two final adjustments to the complete circuit and the individual units. It will be remembered that the original Rx was in the form of o-v-t; to this was added the H.F. unit (March issue), making the valve sequence r-v-t. Now that the amplifier has been added, the L.F. stage of the o-v-t arrangement has been removed, so the final layout is r-v-t.

The three separate units fit into the cabinet perfectly, and the centre aluminium panel, flanked on each side by black-crackle finish of the H.F. and L.F. panels, gives the complete assembly a very smart appearance. The mains unit is now protected by a metal covering, and when it is on the shelf fitted to the skirting-board, it is out of the way and not at all conspicuous. The artist's impression of the full outfit—shown above—gives a good idea of how I have arranged things—but I must admit that the artist has made the table look more tidy and spruce than it is usually.

Connecting the Sections

The valve-holder, etc., of the original output stage is removed to allow the two-valve unit to fit into position. The anode resistor—fitted across the 'phone terminals of detector circuit—and the .01 mfd. coupling condenser are retained to provide the input to the new amplifier. The free side of the condenser is connected to the contact on the potentiometer, r, so marked on the plan wiring diagram shown on page 302 (June issue). The next step was to connect the filament circuits right through, so that all four valves are fed by two leads from the accumulator. The H.T. positive lead from the amplifier is taken direct to the "Power" socket on the mains unit, and the lead supplying the positive H.T. to the detector is inserted in the "Detector" socket on the unit. The leads G.B.i and G.B.2 are connected to 11/2 volts and 4½ volts respectively on the G.B. battery. The H.T. supplies to the H.F. stage need, perhaps, a little explanation. The theoretical circuit of this section, page 350 (March issue) shows a variable-mu arrangement, and the screening-grid fitted with its own H.T. lead. The wiring plan—page 351—shows the layout and wiring of the original unit which utilised a "straight" S.G. valve, and had potentiometer control for the H.T. to the screening-grid. Both circuits are perfectly correct, but the theoretical circuit is of the later H.F. stage, i.e., the one now in use. I hope this will clear up any misunderstanding that may have arisen. The wiring plan for the variable-mu circuit is shown in Fig. 1.

The H.T. positive lead 1 should be connected to the socket marked S.G. on the mains unit, but the mode of the H.F. valve receives its H.T.—via the coupling coil in the column—from the socket marked H.F.

To couple the H.F. stage to the detector, the following connections and modifications are necessary. Remove the earth wire from the coupling-coil; connect the new vacant terminal to a lead of suitable length to reach the H.F. socket on the mains unit, and to one side of a .01 mfd. fixed condenser. The other side of this condenser is then connected to the earth terminal. The screened flexible wire from the top-cap of the H.F. valve is fastened to the original aerial terminal on the detector section assembly; the aerial lead-in must then be taken to the switch on the H.F. section, as indicated on the wiring plan. The earth wire can remain on its terminal.

Meter Construction

Since the first mention of the proposal to try to make a meter movement I have been examining all the various types which have come my way. The chief trouble I have experienced is overcoming the defects associated with designs which are most suited to amateur efforts, especially, as in my case, when tools are limited and the services of a lathe are not available. A great deal of time has been spent searching through the stock of those dealers who make a specialty of collecting all the bits and pieces—ranging from rusty screws to motor-cars—with the hope that I would come across the parts I could not make and/or had not the time to make. So far the results have been most encouraging; I brought to light a unit which had long parted from its case and had suffered during that period a fair share of the rough handling and disrespect which appears to be the lot of
those items coming under the heading of “junk.” However, after a good deal of attention, which included dismantling, cleaning and the fitting of two new spiral springs and a temporary pointer, it was reassembled and given an initial test. Its general design is as shown in Fig. 2. The elongated “U”-shaped magnet is of brass, x 3, the thickness of the metal being x 4. At the open end of the “U” two shaped pole-pieces are fitted to the magnet arms by means of screws which pass through the latter into the pole-pieces.

Fig. 2.—An enlarged view of the pole-pieces, core and coil.

Into the circular space thus formed a solid iron cylinder is fitted, its diameter being approximately 4 in. less than that of the circle bounded by the curved faces of the pole-pieces. The cylinder is a fixture; it is held in position by a distance piece and a cross-member—both brass—the latter being screwed to the bottom, when the magnet is in the position shown in the diagram, of the pole-pieces. The edges of the screws are just visible in the drawing, one each side of the zero adjusting arm. The object of this cylinder or core can be allowed to rest on the core inside the speech-coil former of a M.C. speaker, the concentration of the lines of magnetic flux.

The importance of this small element was brought home to me when some initial experiments were being undertaken, using a simple shaped magnet—practically identical with that shown in Fig. 1, page 260 (May issue)—which I obtained from an old toy electric motor. The results were not too satisfactory; the movement was insensitive, very irregular and far from deadbeat. The obvious conclusions were that the lines of force were concentrated chiefly across the tips of the poles of the magnet and that the coil did not, therefore, pass through a magnetic field of reasonably uniform density. The results were loss of sensitivity and uneven scale deflections, plus a swinging pointer, i.e., not deadbeat. The latter, by the way, was due to the fact that I had used a very light wooden former on which to mount and pivot the coil, thus losing the damping characteristic of a metal former.

The coil is rectangular in shape; its dimensions are such that, when in position, it is free to rotate round the metal core in the small circular channel between the core and the pole-pieces. The winding is carried on an aluminium former, which has small pivoting points of brass or phosphor bronze fixed to the short members of the rectangle. The associated bearings are mounted on strips of hard insulating material or non-ferrous metal—the latter being insulated from the magnet and pole-pieces—which are fixed across the front and rear of the assembly. One of the strips—the front one—is seen in Fig. 2. To ensure the pointer returning to its zero setting when no current is flowing in the coil, a hair-spring is fastened to the coil former and a small arm on the bearing strip. The arm must be so arranged that it can be used to vary the tension of the spring, thus allowing the zero position of the coil and likewise the pointer to coincide with the zero mark on the scale. Better than that is a spring provided by two springs, one at each pivoting point of the coil, as this helps to correct any variation in spring tension due to temperature changes. On no account must these hair-springs be made from steel; springy copper, brass or brass foil is often quite satisfactory if it is cut to form a strip approximately 1/8 in., in width, and rolled to form a flat coil around, say, a knitting needle.

The Movement Assembly

It is not possible, in this article, to give a complete set of dimensioned drawings, but it is hoped to be able to do so in the next issue, thus providing some concrete data on which those interested can base their work.

The drawing Fig. 3 does, however, give a very good idea of the essential features, as it depicts the two shaped pole-pieces, complete with core, coil, adjusting springs, bearing cross members and zero setting arm. The items likely to be most difficult to obtain are the two shaped pole-pieces. I can only suggest a continued search—such as that which I had to undertake—of dealers in surplus and junk materials. If one has the use of a lathe or drilling machine, or can enlist the aid of someone who has, it would be possible to shape a piece of iron to the overall rectangular area of the two pole-pieces when placed together, and then drill in the centre a hole having the required diameter. The material could then be cut in half across the diameter of the circular hole and at right angles to the long sides of the rectangular, and the final shape obtained by filing.

When dealing with any assembly work involving magnets so much depends on actual magnet used, i.e., what holes might be drilled in it, etc., as it is out of the question for the average constructor to drill or shape magnets owing to the hardness of the material and the risk of destroying its magnetism.
Altered Valve Connections

A MAINS superhet which was brought into the workshop a few days ago presented some unusual problems until a number of tests had been made. It should be first explained that the receiver was of a cheap and unbranded type which had been bought just over a year ago. The complaint made by the owner was that, although reception had been fairly good for some time, the set had suddenly become "dead." On test it was found to behave as though one of the L.F. stages was not operating.

There was a faint mains "hum" in the speaker, but not a suggestion of signals, nor could anything be heard from the speaker when a pick-up was connected to the pick-up terminals. Voltages were checked at the valve-holder sockets, and were correct. Octal valves were fitted, and since replacements were not immediately available the question of replacing either the double-diode-triode or the output pentode was ruled out.

The valves were taken out of the receiver to be tested, and each one proved to be in good condition. They were therefore replaced—and then the receiver operated correctly! This seemed somewhat mysterious, and it was obviously desirable to find what had previously been the cause of trouble. Possibly a valve had been making bad contact with its holder; and the double-diode-triode—or at least the triode section of that valve—was suspected.

This valve was therefore again removed from its holder and the pins examined for cleanliness. They were quite clean, so attention was directed to the holder. Its sockets also appeared to be clean, but were treated with a trace of carbon tetrachloride on a pipe cleaner. And just as the valve was to be replaced in its holder the cause of trouble was found. In addition to the keyway used to locate the pins there was another partly-formed keyway which had apparently been formed by pressing the valve into the holder. Thus, it was fairly certain that the valve had at first been incorrectly fitted; there was sufficient proof of this when the owner later agreed that he had removed the valves when "spring-cleaning" the set.

Great care should always be taken that valves with octode bases are fitted properly, although a mistake could not possibly be made if the holder were a good one. Those fitted in the set in question were of inferior quality, the top plate being of very thin and fairly soft paxolin. It was fortunate that the valve had not been replaced in such a way that the H.T. voltage was across the heater. There is a moral here for home-constructors: use only good-quality valve holders.

Inferior Reproduction With M.C. Speaker

A NUMBER of sets now coming in for repair are old models which have been brought back into use due to the difficulty in obtaining new ones. We were called upon to test a battery set of this type recently. It was a portable with built-in moving-iron speaker. Hoping to improve reproduction the owner had connected a moving-coil speaker in its place. He was surprised to find that reproduction was a good deal worse with the M.C. speaker, in spite of the fact that this speaker worked quite well on another set.

There was no question of incorrect matching, because the M.C. speaker had a variable-ratio transformer, of which every combination of tappings had been tried. This "fault" was easily corrected, because we had often run across it before. A new high-tension battery at once put matters right, and reproduction on the moving-coil was satisfactory. Had a tapped grid-bias battery been in use it may have been sufficient to tap down the G.B. voltage, but the set had automatic bias so this was impracticable. We did make provision for G.B. variation, however, by replacing the 500 ohm bias resistor with a variable resistor of the same value. Normally this would not be recommended, but now that it is necessary to economise in H.T. batteries the change was justified because the old battery can be kept in service after its voltage has fallen to as little as 60 per cent. of the original figure.

"All-dry" Valves

WE have recently had a fair amount of trouble with receivers fitted with 1.5-volt filament valves. Not because the valves are unsatisfactory, but because owners will insist on taking the filament supply from a two-volt accumulator. Very often the valves will withstand this treatment for a time, but after that signal strength, range and reproduction fall off considerably.

New valves of this pattern cannot readily be obtained—in fact, it is often just impossible to buy them. There are then only two alternatives: to fit new valve holders and re-wire them to take two-volt, four-pin valves, or by some means to "recondition" the old valves whose emission has fallen off very considerably. The first-mentioned method is probably best if the owner is competent to carry out the modifications (which is always easy because of the different characteristics of the two-volt counterparts), or if a competent service mechanic can be found; and most of those who come within this category are now in one of the Fighting Services.

If it is proposed to try the alternative, one method,
to disconnect the H.T. battery and run the valves for a few hours on a 1.5 volt L.T. cell. A more "drastic" method is to "flush" the filaments. This consists of connecting one filament pin to the negative socket of an H.T. battery and then to flick a lead from a 30 volt tapping against the other filament pin. Neither of these methods is very much infallible nor as effective as they were with some of the old-type battery valves. They can, however, be tried before finally discarding the valves.

Overheating of Output Valve

RE-READING the first of these notes brings to mind another fault which was investigated a few weeks ago. The set was a powerful A.C. model with push-pull output stage. Volume had fallen off to a certain extent and reproduction was not up to the original standard. Examination of the set while in operation showed that one of the push-pull valves was running extremely hot, while the other was almost cold. So much heat had been developed in the "hot" valve that the base had cracked.

Removal of the output valve from its holder had no effect, so it was evident that a single valve was handling the bulk of the output. Both valves were tested and found to be O.K., but we discovered that there must be a bad connection to one of them. The valve-holder was suspected, but no fault could be found. And then it was discovered that there was a "dry" joint to the anode socket. When this joint was cleaned and re-made the fault was cleared.

Reduced Signal Strength

A "STRAIGHT" three-valve battery set had to be tested because it had suddenly ceased to bring in any stations other than those giving the "Home" and " Forces" programme. Additionally, tuning had become very critical; so much so that the slightest movement of the tuning knob caused serious distortion, if the signal were not lost entirely.

First, a test was made by transferring the aerial lead to the anode terminal of the V. 3. high-frequency valve. This improved reception and flattened the tuning appreciably, even when full reaction was applied. The H.F. valve was suspected as being faulty, and replaced. This did not affect reception in the least, and suggested that the fault was in the input circuit to the H.F. valve, and that the connections were checked; but without success.

Next, the aerial-series condenser was short-circuited and that brought back full sensitivity, and made tuning too flat. So a new, 000 mfd. condenser was connected in parallel with that in the receiver. Reception was then perfectly normal, showing that the original condenser had developed an open circuit, which was proved by connecting an H.T. battery to its terminals and then attempting to discharge the condenser through the loudspeaker. There was not even a faint "click"—and there would have been a loud "pop" if the condenser had been charged by the battery.

"Two-Programme" Tuning

DURING the past year or so we have modified several receivers for "switched tuning" to the two British programmes. It is not necessary to employ a push-button system, and a three-way switch will suffice; on one position the normal tuning condenser is in circuit, while on the other two switches are employed to provide automatic tuning to the "Home" and " Forces" wavelengths.

The method is straightforward with a "straight" receiver, especially if there is only a single tuning circuit, but a little more care is required for a superhet. This is because a pre-set condenser must be provided for both the input and oscillator tuning circuits. This means that two three-way switches are required. Two "biscuits" of a five-way rotary switch provide the simplest means of arranging for this, and the connections are shown in the diagram.

It is the adjustment of the condensers which calls for care and the adoption of a correct procedure. First wire up the rotary switch-plate in the oscillator circuit to the condensers marked C1, C2 and C3, as shown. The first of these is the oscillator section of the ganged tuning condenser, while C2 and C3 are, respectively, the remaining two. If you use the lower wavelength "Forces" programme it will be better to use a 0000 mfd. pre-set condenser for C3.

With the switch on C1, tune in the "Home" programme on the normal manner. Then switch over to C2 and probably nothing will be heard, so the pre-set condenser must be adjusted until the programme is heard again. Continue the adjustment until maximum signal strength is obtained. Go back to C1 and tune in the "Forces" programme in the ordinary way. Then switch over to C3, and repeat the process carried out on C2.

The oscillator condensers are then correctly adjusted, so the input tuning condensers can be connected and set. Turn the ganged switch to C2 and adjust A.C.2 until the "Home" programme is received at maximum strength. Turn to C3 and adjust A.C.3 in the same way. If the receiver is fitted with a visual tuning indicator, this should be used when setting the pre-set condensers.

When the switch is in the first position the normal variable tuning condenser can be used in the ordinary way; the other two settings provide the automatic tuning.

SYNCHRONOUS TIME DELAY RELAY

LONDEX, LTD., Electrical Remote Control Engineers and Manufacturers, of 207, Anerley Road, London, S.E.20, have just issued a new list, No. 97, which illustrates and describes their new Synchronous Time Delay Relay PRL. The various models cover a time range of from 2 seconds to 28 days.

This type of relay is synchronously driven through easily interchangeable gearing, and is capable of switching up to 500 A. Heavy-duty and up to 500 amperes can be dealt with by using the Londenex Mercury Type Relay LQA in conjunction with the Time Delay Relay PRL.

Easy means are provided for adjusting the time setting. Six models cover between them a time range of from 2 seconds to 28 days.
The Cathode-ray Oscilloscope
An Indispensable Part of Testing Equipment
By S. A.

seen that the whole instrument can be split up into these units and dealt with one at a time, and the best order for doing this is to begin at the tube itself, working backwards through the tube supply and the time base unit to the amplifying stages. As these notes are purely of an elementary nature it will be appreciated that in the interests of clarity there may be slight deviations in the continuity of some of the explanations, but the order of the units as already given are retained as much as possible.

Construction
The cathode-ray tube, as used in oscilloscope designs, is usually of the medium voltage type, with an accelerating potential in the region of 1,000 to 2,000 volts. The tube may be either hard, that is, high vacuum, or soft, containing a trace of gas to assist focusing. The latter are known as gas-focused tubes, and are not dealt with in this article at any length.

Fig. 2.—The electrode arrangement of a tube utilizing the electrostatic focusing system.

High vacuum tubes using electrostatic deflection are the most popular types for use in the medium voltage class of oscilloscope.

With one or two exceptions the electrode construction of a cathode-ray tube corresponds to that of an ordinary valve, and much resembles an ordinary valve in its principle of working. Electrons are emitted from a heated cathode, pass through an electrode referred to as the grid, which operates in much the same way as the control grid of a triode valve in that its potential can either reduce or accelerate the electron stream, and are attracted to a system of electrodes known as anodes, which are supplied with various positive potentials of high tension. In Fig. 1 these various electrodes are shown in their relative positions, together with the two pairs of deflector plates, which come between the final anode and the fluorescent screen.

On the application of heater volts the cathode begins to emit electrons which are attracted along the length of the tube by the positive potentials on the accelerating anodes. The first anode is mounted a short distance above the cathode and usually takes the form of a small cup pierced in the centre by a hole a millimetre or so in diameter. The bulk of the electrons will, if no other arrangements are made, pass on to the anode in much the same way as in the case of a triode valve and create an anode current. This is known as the "beam" current. A certain proportion will, however, proceed

Fig. 3.—Showing the effect of the anodes on the electron beam in an electrical and optical sense.
through the small hole in the anode's centre and pass up the tube by reason of the velocity acquired from the anode potential.

Unless measures were taken the stream would impinge on the fluorescent screen and produce a large and irregular patch of light instead of a small, sharply defined spot, thereby making it necessary to place an electron stream into a concentrated jet. In oscilloscopes there are two methods adopted for this purpose, gas focusing and electrostatic focusing, and of the two, electrostatic focusing is the most popular.

Gas Focusing

As mentioned earlier, one method of doing this is to insert a small quantity of gas into the tube before sealing it off, thereby making it "soft." The electrons on their journey up the tube collide with the gas molecules and ionise them by collision. A formation of ions is thus made to accompany the production of the electron beam, and compared with the high velocity of the electrons, these ions are slow moving and heavy. They are inclined, therefore, to remain in the path of the beam, creating a positive core, and thus neutralising the mutual repulsive force in any particular section of the stream where the number of positive ions is equal to the number of electrons.

An increase in the number of ions after this stage results in an attractive force on the electron flow, concentrating it in towards the axis and producing a sharply defined spot on the fluorescent screen.

Electrostatic Focusing

Turning now to electrostatic focusing, it will be found that with this system the tube is of the vacuum type, and the focusing electrodes consist of an arrangement of two or three anodes built into the interior of the tube (Fig. 2). These anodes perform a variety of functions; besides the purpose of supplying a control of focus they are used as accelerators to the electron beam, constraining it to follow a path which brings it into a fine focal point on the screen's surface. The electrode system and the path of the electrons is shown in Fig. 3, and it will be seen that up to the first anode the stream is widely divergent and of no particular formation. This is assuming that the grid is at cathode potential, and there is no repulsive effect acting on the electrons.

What happens after this depends more or less on the design of the tube, but, generally, the tendency of the beam which emerges from the hole in the first anode is to remain substantially parallel on its journey along the length of the second, or focusing, anode, until it comes within the field of the final anode. This electrode is maintained at the full tube positive high tension supply, and accelerates the electrons while altering the convergence of the beam. It is the second anode which is the important one, and is usually referred to as the focusing anode; in practice its potential is made adjustable, and is quite critical for accurate focusing.

Another way of looking at the action of these electrodes upon an electron stream is to consider the case analogous to the action of lenses on a beam of light, when the fields between the three anodes of the tube assembly can be regarded as three lenses with the second and third having the greatest effect on the focusing of the light. In cathode-ray technique this field of the subject is known as electronic optics.
The brilliancy of the spot depends on the velocity of the beam when it reaches the fluorescent screen, which factor depends on the voltage present on the final anode. The second anode is maintained at a lower potential for the purpose of good focusing; while the first anode voltage is not particularly critical. It is usual in modern tubes to operate the first anode at the same potential as the third through which electrons escape from the cathode, leaving it with a certain initial velocity, but if the grid is made sufficiently negative they are compelled to fall back again, and none of them succeed in escaping to the field of the first anode. As in the case of an ordinary triode, the negative potential on the grid is reduced, so more and more electrons are allowed to pass on their way to the anode until at equal potentials of grid and cathode the maximum flow is obtained and the spot is at its brightest. The grid of a cathode-ray tube as used in oscilloscopes is never run positive with respect to the cathode.

The Deflector Plates

There are two pairs of deflecting plates in the cathode-ray tube, and they are situated immediately beyond the final anode. One pair are used for horizontal deflection, and are designated the X plates, and one pair are used for vertical deflection and are designated the Y plates. The X plates are mounted vertically and the Y plates horizontally.

As the deflection of the beam depends on the potentials applied to the plates, tubes are said to have a particular deflection sensitivity, depending on the particular design of the tube. A typical example might be the expression 500 volts full anode volts mm. per volt. This means that if the anode volts are 1,000, then the deflection is 0.5 mm. per volt of potential difference between a pair of the plates, or, in other words, 20 volts would be required to move the spot a distance of 1 cm. (10 mm.). In some cases the sensitivity of the tube is given more directly, such as 5 cm. per volt. It does not follow that small diameter tubes necessarily require a smaller deflecting potential than larger ones. In all probability the sensitivity of a zin. tube would be very much alike in both cases, due to the fact that the angle of deflection in the small tube would be no greater than in the large tube. A smaller screen diameter is generally accompanied by a decrease in tube length, and the spacing of the deflector plates. As will be seen from Fig. 4, the limit of deflection is determined by the spacing of the defectors and the distance from them to the fluorescent screen. Deflection beyond this limit causes a "shadow" of the particular plates to be cast on the screen, due to the electron stream passing on the outside of the defectors as well as the inside. With wave-forms of high amplitude on the screen this causes an interrupted effect as shown in Fig. 5.

The one main defect with electrostatic deflection is, however, the non-linear effect which the plates exert on the electric beam. With tubes of screen diameter in the region of 6 in. some 250-300 volts might be needed to give full deflection of the beam, which, in turn, is some 20 per cent. of the potential on the final anode. In most oscilloscopes and single-deflecting circuits one of the plates is earthed, and the other has a potential which fluctuates several hundred volts above or below that of the final anode. The beam thus passes through a varying field which tends to upset its focus, especially when it approaches close to one of the plates. As a result, a fine base sweep-applied to one pair of the deflectors would be difficult to focus along the whole length of the line.

To overcome this trouble it is necessary to connect the deflector plates symmetrically with respect to the final anode, so that the mean potential with respect to the anode is zero. This can be arranged by a push-pull circuit arrangement so that when the plates of a pair swings positive the other swings negative by an equal amount. This will be dealt with later on.

Power Supplies

Methods of obtaining the power supplies for cathode-ray tubes are not unlike those used in ordinary receiver power pack circuits, except that the potentials are usually in the region of 1,000 to 2,000 volts, and full-wave rectification is seldom employed. The tube requires its maximum rated potential for the first and final anodes, a lower and adjustable potential for the focusing anode, and a supply for the heater.

Dealing with the heater, the latest tubes use a similar arrangement to ordinary indirectly heated valves and have heaters rated at 4 volts A.C. or D.C. at a current of 1 to 2 amperes. Some tubes might be found with 2-volt heaters, but they are not so common. As in the case of radio valves, the heater supply is derived from a separate winding on the mains transformer and the cathode is strapped down, internally or externally, to one side of the heater lead. In large tubes, using upwards of 3,000 volts where, as is customary, the positive side of the H.T. supply is earthed, care must be taken to see that the winding is thoroughly insulated from the supply, and a small separate transformer is sometimes advisable. Where the H.T. negative is earthed, however, the 4-volt winding may be taken from the time-base supply transformer.

Dealing now with the high voltage supply a basic circuit arrangement is shown in Fig. 6, which is for use with an electrostatically focused tube, and not for the gas-focused type. The latter's power supply is not quite so complicated, usually consisting of a half-wave rectifier with very little smoothing. The application of variable focus control does not enter into the design of this gas tube, and therefore being dealt with, however, it is not proposed to go into their details.

Referring to Fig. 6, it will be seen that a typical half-wave rectifier system is employed, with a smoothing arrangement consisting of condensers C1 and C2, and R and R1. The condensers have a value of about .025 μf, and must be rated for the full voltage supply of the unit, while the resistance is generally of a value between 100,000 ohms. and 0.5 Megohms.

Potentiometer System

The potentiometer system, comprising two fixed resistors and the brilliance and focusing controls is arranged in values to give the correct potential to the various anodes, and the overall resistance is generally kept in the region of 2 Megohms. With this value the beam current of the tube is negligible in comparison with the current drawn by the potentiometer and the separate resistance values can be regarded as proportional to the voltages required.

It should be noticed in the figure that the smoothing resistance R is included in the positive lead. This is all right so long as it is the negative lead which is earthed, but in oscilloscopes designs, where the deflector plates have to be available for external connections, it is the positive side which is usually earthed, and therefore the resistance R should be included in the negative lead.

A resistance is used for smoothing in these circuits because the current drawn is generally too low (2-3 mA) that the voltage across C1 is nearly equal to the peak A.C. input and the ripple is consequently very small. As a result, the purpose of limiting the current in the event of a short circuit across C2 or a flash over between the tube electrodes.

No charge remains on either C1 or C2 after switching off the supply because of the leakage path through the potentiometer network. For the purpose of safety a high resistance C3 is connected in parallel with C2. This should have a value of some 10 Megohms, so that the current drain is of no consequence.

(To be continued.)
Practical Hints

Meter as Auto-Bias Resistance

WHILE wiring up a set I found that the resistance I needed for the automatic grid-bias arrangement was 500 ohms. I had no resistance of this value in the junk-box, but I came across a cheap volt-meter the resistance of which I knew to be exactly 500 ohms. I accordingly wired this up as the resistance element of the automatic grid-bias, mounting the flush-type voltmeter on the side of the chassis. When the set was finished and switched on the volt-meter registered six volts, which was the calculated voltage. I now find that this volt-meter gives an excellent idea of the condition of the H.T. battery, since as its voltage falls so also does the grid-bias voltage. By a simple calculation I can tell how many volts are left in the H.T. battery, and thus am warned in good time to enable me to hunt up a new battery—by no means easy these days.—Wm. NIMMONS (Belfast).

A Simple Dial

ANY reaction condensers are supplied with a very small knob. A simple dial for these condensers can be made from a celluloid protractor and a postcard. Cut a hole in the centre of the base-line to take the condenser fixing bush, and fit flush against the panel. Cut the postcard, as shown in sketch, and make two holes in the ends. One is for the condenser spindle, the other opening covers the degree readings on the dial. Fasten a piece of fuse wire or black thread across the back of this hole in line with the spindle hole. Stick this card on to the back of the original knob and the dial is finished.—G. H. WHALEN (Warrington).

A Novel Alarm Clock

I SUBMIT particulars of a novel alarm clock arrangement I have recently constructed, and which is shown in the accompanying illustrations. The distance the weight has to fall is nine hours, and this I have arranged solely to suit my family’s requirements, as I need it to operate at 6 a.m. I have also especially fixed it at nine hours, so as to have I switch on the radio at 9 p.m. to hear a reminder when the news.

When the weight reaches the contact the clock stops and the weight stands upright; the buzzer operates, and all I have to do is to put my hand out and switch off. The panel is fitted on the wall just at my side, and is stained and varnished to make it neat and the same colour as the bedstead. The timepiece is a small cuckoo-clock, and is fitted in the living-room immediately underneath my bedroom. I had occasion to break the alarm spring in the only alarm clock I had, and having difficulty to get another spring in these times, I was prompted to convert my small cuckoo-clock, as described. The arrangement works very satisfactorily.—C. A. VARDELEY (Coventry).

NEWNES SHORT-WAVE MANUAL

6/6, or 6/6 by post from
George Newnes, Ltd., Tower House, Southampont St., London, W.C.2.
BRITISH LONG DISTANCE LISTENERS’ CLUB

MEMBERSHIP LIST CLOSED

Memories Section: Medium Wave Dx

A Problem

I think I can say that I am a pretty old hand at radio, and I am still as much—if not more—interested than ever, and in the last 20 years I have only had one break and that during my Army career in this war. I was a member of 43rd Brigade Company, R.A.S.C., T.A., and was called up for service in August, 1939 and, later, when Radiolocation came into being, volunteered to take a mechanic’s course.

I was successful in the examinations and later contracted an illness, being discharged as unfit for military duty in November last.

Since then I have been more or less a bed patient at my home.

My reading matter is 95 per cent. radio and with me here are Practical Wireless Service Manual, The Wireless Engineer’s Pocket Book, R.S.G.B. Handbook and supplement, The Amateur Handbook, ‘Coils, Chokes and Transformers; and PRACTICAL WIRELESS.

When I am able to work again I am thinking of taking up Radio Servicing as a means of livelihood, I am now compiling my own book of data needed in Radio Servicing.

In closing may I offer my best wishes to the Editor and staff of PRACTICAL WIRELESS for keeping the flag flying under the present conditions.

Very interesting letter, R.T., and we hope that it will not be long before you are able to take up the work you have in mind. To augment the data you are preparing, the Editor is sending you a copy of Wire and Wire Gauges, this being an award for the month’s best letter of general interest. (Hon. Sec.)

Medium Wave Dx

In response to the request we made for details of reception of Dx medium-wave transmissions. Member 7,204 (G. Ferguson, of Newcastle) has sent us the following, which we hope will prove useful to those who are now working on this band.

In response to your request for reports of medium-wave Dx, I am basing my first report on this subject. All of the following stations were heard during February on a 4-valve D.C. mains superhet of 1934 vintage, with an inverted L-type aerial. The times of reception were between 22.15 and 04.00 hrs. and 05.30 and 09.15 hrs.

246 m., Philadelphia (Columbia) WCAU; 270 m., New York (Independent) WNEW; 275 m., Baltimore (National), WBAL; 277 m., Hartfort (National), WTC; 282 m., Hamilton (Canadian), CBA; 291 m., Pittsburgh (National), KDKA; 300 m., Boston (National), WBZ-WBZA; 314 m., New York (Columbia), WABC; 373 m., Schenectady (National), WJZ; 426 m., New York (Mutual), WOR; 454 m., New York (National), WEAF; 469 m., New York (National), WGY.

The earliest station to come in was CBA, which came in at 22.30. The last station to fade out was WNEW, which remained until 09.15. Stations WHN and WNEW operate 24 hours a day.

I hope that this information will be of use to other B.L.D.C. members.

Finally, could you tell me of any past issue of PRACTICAL WIRELESS which contains constructional details of a good D.C. mains battery eliminator.

Many thanks, G.F., for the information. Regarding constructional details of a D.C. eliminator, we have not.

Correspondence

Now for the letters, the first of which comes from Member 3,830 T. Towne, of Cockerton, Darlington.

I have been very interested in, shall I call it, the ‘Memories Section’ of the letters which have been published recently from ‘the old hands,’ in fact I have become so interested that I decided to contribute my little share towards it.

My first interest in radio was in the days when Poste, Cullercoats, and Le Havre were the listener’s only interest, and then one only received weather and news items. No concerts.

I think the old hands will remember those days, the days when the main components were variometers, home-made condensers, crystals, cat’s whiskers and ‘phones, and, if you were lucky enough to possess a valve, you could almost dispense with any other means of household lighting.

The valves then generally used were mostly Dutch or Austrian, and a 4-volt valve would take anything from 4 to 9 volts or more on the filament.

I have in my possession four of a series of books that were written by Sir Oliver Lodge, and they would cause considerable interest and, possibly, some amusement among the modern amateurs and Dx’ers.

Dx’ing Trials

My first attempt at Dx’ing, as it is to-day, was made through the medium of a home-made 3-valve battery receiver (Det. a.l.f.) when the craze was for sitting till after midnight to try and receive any American stations. This meant very fine dial manipulation and concentration, at which I was very proficient, the log book showing 14 entries of different stations in one session.

For these operations, a good size table was needed to hold the equipment, and the log was made up by the glow from the valves.

Some of the materials used in set construction were: copper strips for condensers, slate for panels, bell wire and cardboard tube for coils.

When valves eventually became popular, only triodes were obtainable; ebonite ‘was bought by weight and some of it appeared to contain any ingredients to make it heavy. The first HF stages I used consisted of an H.F. triode valve, coil, and condenser and were enclosed by a mass of tin or copper screening, the building of which took months and then, maybe, more months; before the results were satisfactory.

Wires were cocoa for coils.

We have not devoted these pages solely to members’ correspondence and details of their activities for some time, so this month we are handing over both pages to those of you who have sent in letters of general interest. Before doing this, however, we have one very important announcement to make. Fortunately it does not affect present members; to those who were thinking of joining our ranks, the news will not be good, as the statement we have to make is that no applications can now be considered for membership of the B.L.D.C. This does not mean that we have reached the limit. It is purely a temporary measure necessitated through the restricted supplies of PRACTICAL WIRELESS and we hasten to assure those interested that the membership list will be opened again at the first possible opportunity.

July, 1942

PRACTICAL WIRELESS
A Problem from York

MEMBER 7,167, V. Goode, of York, submits a case of trouble he encountered during his activities. Fortunately, he also gives his solution, so those interested in diagnosing faults can compare their findings with those given by 7,167.

"Not having written yet as a member I wonder whether war interest members have heard how I gained some very useful experience and had the importance of a certain component brought home to me.

"Some time ago, when I was fairly new to mains sets, I had an A.C./D.C. receiver for servicing, the owner of it having found out later that when this trouble was dispatcled the valve rectifier was not used. It recovered two or three times when I first had it on test, and I took the opportunity to note some of the voltage and current readings taken with my Model 90 Taylor meter. The set had an energised speaker, and I found this to be the most convenient point from which to take the readings, the following, though approximate, are typical (the mains being about 240 volt A.C.): H.T. voltage before the speaker field (smoothing choke) 240 volt, after 200 volt; field current 95 mA. When the trouble finally developed I found that both high and low voltages were in the H.T. current was now only 28 mA., while the H.T. voltage had dropped to 70 volts, rising to 120 volts when the speaker field winding was disconnected (i.e., no load) but with the 8 mA. field condenser still connected (I found later that when this condenser was disconnected the voltage fell to 110 volts, although there was 240 volts A.C. on the rectifier anodes). I thought the valve rectifier must have lost its emission, especially as when I removed the valve, though of course the heater was showing a steady glow, the set worked well. After a lot of trouble I managed to get another valve rectifier of the special type required, but I found that it made not the slightest difference! What, then, was wrong? It could only be one thing. Replacing the electrolytic reservoir condenser with another cured the trouble, because the old one had simply dried up and so lost most of its capacitance. With the new condenser all the voltages were, of course, up again as before, and on no load (i.e., with just the reservoir condenser), instead of 120 volts as previously, it was now about 340 volts.

Deductions

"The following interesting facts emerge from the foregoing: A.D.C. voltage reading of a little less than half the R.M.S. value on the anode is to be expected from a half-wave valve rectifier when the reservoir condenser is disconnected (e.g., with about 240 volt A.C. on the anode a D.C. reading of 110 volts is obtained, as in the above instance), while with the condenser, but no load, connected, the D.C. voltage obtained should be 1.4 times the R.M.S. value (e.g., the 310 volts mentioned above), because this latter is the A.C. peak voltage, and, since the rectifier is charged by one cycle only, the condenser will remain more or less at the highest voltage fed to it; this also shows why it is so necessary to use a condenser having a high peak-working voltage.

"If it had been the valve rectifier instead of the reservoir condenser that had been at fault, the voltages and currents would still have been low, but would most probably have shown 340 volts on no load with, of course, the condenser connected.

"It will probably interest you to hear that Member 7,149 and I have contacted each other as we think we have a number of others in common. I have been wondering if you can give me the names and addresses of some members living in York?"

Who Can Help?

YORKSHIRE members are well to the fore in the correspondence this month, and if it ever becomes a question of which county has the most members, it seems as though Yorkshire might be in the lead.

A new member, 7,172, A. B. White, of Bradford, is in doubt about a transmission he received during the month—on the 30.100 metre band, at 15.51-16.00 hrs. G.M.T. The station announcement was "Voice of Free India," "Voice of Ahdaladin"?

A similar query comes from member 7,139, C. G. Cullen, of Abingdon, Berks, who received a transmission on the 30.100 metre band at 6.30 p.m. (G.M.T., B.S.T., or D.B.S.T ?) which announced "Radio Asiazim" ? "The Voice of Free India"?

Other members who have identified these stations—though it would appear that they are the same—might care to send along their details as they are:

Huddersfield, Yorks. — Any members around 15 years of age in this district are asked to contact No. 7,186, at 35, Carr Street Marsh, Huddersfield.

Wakefield, Yorks. — R. High, who does not quote his membership number, sends us a sketch of his station, but, unfortunately, we are unable to include it in this issue. He describes his set as:

"As our house is not fitted for electric light I have to take my power from dry batteries, and, as a result of this, I find the background noise practically non-existent, even on Dx.

"My aerial, which is an indoor one, consists of a single earthed No. 26 enamelled copper wire, and goes round the room in which my 'station' is housed. With this results are really surprising, and I prefer it to a soft: one: outide.

"My Rx, which is of the o-v-2 type, utilises plug-in coils covering 10-150, 200-800, and 900-1,000 metres.

"I use an Minlad PM2HL as a detector, transformer coupled to a Mazda H2L, which in turn is transformer coupled to a Mazda P2AO.

"An airplane dial facilitates tuning, and I pull in most of my stations with ample volume on the loud-speaker.

"So far I have logged WRC, WNB, WGEA, WGEQ, WRC, WRUL, Australia, Radio Saigon, Finland, Ankara, India, most of the D stations and several Italian stations, all on the L.S.

"May I say in closing that the cover change of Practical Wireless does not affect me in any way, as I always remove it and place the rest of the pages in a file."

WGEQ Reception

MEMBR 8,040, of Kelso, Roxburghshire, was asking on these past month for contacts, wants to know what has happened to WGEQ—31.48 meg-a. since he has not been able to receive it during the last few weeks.

Havana Cuba

A N.-R.A.F. Service member, 7,208—E. Crowder—reports the reception of C.O.K., Havana Cuba, on, approximately, 28 metres between 12 noon and 12 midnight E.S.T. (We assume he means English Summer Time and not Eastern Standard Time.—Hon. Sec.) On March 20th in 2.15 hrs., the signal strength at the receiving station in question—somewhere in England—was R4. The aerial in use was S.E. by S.

Morse Transmissions

FOR those wishing to improve their Morse receiving speed, details are given below of transmissions—In Morse—radiated from Post Office stations in the form of official News Bulletins:

Call signs and wavelengths used are:—

GIA, 15.27 m.; GAD, 15.40 m.; GBL, 20.47 m.; GID, 22.13 m.; GIG, 28.17 m.; GAY, 33.67 m.; GBK, 18.570 m.

The times (G.M.T.) of transmissions are: 09.40 ; GBR, GIA, GID; 10.20 ; GBK, GAD, GIA, GID; 16.00 ; GBR; 23.30 ; GBR, GAY, GBL, GID; 23.30 ; GBR, GAY, GIB.
The Signet Two-valver

Main Constructional Details of a Beginner's Simple Broadcast Two-valver,
Described on Blueprint No. P.W. 76

In 1936 we described a simple two-valver which proved such a great success that we reprinted constructional details in our issue for September 24th, 1938. The demand for blueprints and back numbers of the journal in question has been so great that all the available issues have been sold out, and in response to the requests of many readers we are again reprinting particulars of the set, together with the list of components. Blueprints are still available. In the original specification a special trans-coupler was specified, but this is no longer on the market. Fortunately, however, a similar item is still listed in the Bulgin range, and is known as type L.F.10. This is similar in electrical and physical characteristics and may easily be used in the receiver. The only difference is in the marking of the terminals, and in place of the letters P, H.T.1, and H.T.2 on the original component, the Bulgin item is marked Anode, Low and High. These correspond respectively to the original markings, and thus in this receiver the anode terminal is connected to the point P on the blueprint and the H.T. lead is taken to terminal marked High.

Circuit Details

The circuit is the well-tried detector-L.F. arrangement, a triode valve being used in the detector stage and an economy pentode in the output stage. A triode could be substituted for the pentode, but this would result in loss of volume, therefore the specified valve should be adhered to if possible. The coil is an efficient dual-range type, wave-changing being effected by means of an external threepoint switch.

It is of the transformer type so that a high degree of selectivity can be obtained if the reaction condenser is judiciously operated. This coil works best with an outside aerial of approximately 200 miles when a reasonably efficient aerial is employed.

Range

This simple little set can be relied upon to pick up medium-wave stations at a distance of approximately 200 miles when a reasonably efficient aerial is employed.

Construction

It will be noted that the receiver is ideal for the constructor who is attacking his first piece of constructional apparatus, and the layout has been arranged so that no possible difficulty can arise. The wiring diagram shows how the very few wires are placed in position, and provided that all connections are firmly made (either by making a neat loop for inclusion beneath the terminal head, or by soldering to connecting lugs) the receiver may be relied upon to offer many months of efficient service without risk of breakdown. When wiring the receiver, cross out each wire on the wiring diagram as its counterpart is placed in the receiver, and thereby avoid the risk of omitting one wire and dispose of all doubt as to whether any mistakes have been made. The illustrations may be used as a guide in wiring, and every component required is clearly set out in the list of components.

The Chassis

The chassis is constructed from 5-ply wood, to the dimensions shown on the blueprint. Holes will have to be drilled in order to accommodate the valve holders, the terminal socket strips and for the various connecting wires to pass through. There are nine of these, and a gimlet may be used for the purpose. Alternatively, a hole 3/4 in. in diameter may be drilled in the end plate for the aerial to pass through, the aerial being secured by the terminal head, and the aerial lead connected to the anode terminal of the detector valve.

Symmetrical layout of the controls can be secured by noting the dimensions shown here.
be drilled, but for the valve-holders a hole \(\frac{\text{xin}}{\text{in}} \) in diameter must be drilled. For the socket strips you can drill either a separate \(\frac{\text{c}}{\text{in}} \) hole for each projecting socket, or may cut a slot into which both sockets on each strip will pass. This is done by drilling two \(\frac{\text{c}}{\text{in}} \) holes separated by a space of \(\frac{\text{c}}{\text{in}} \) and sawing away the intervening wood.

Before mounting the components one important factor must be stressed. The on-off switch is included in the L.T. positive lead and, consequently, if one is tempted to use an existing metal chassis, it must be insulated from the chassis which is common with the L.T. negative.

LIST OF COMPONENTS

- One coil (C20) (Bulgin).
- One .0005 mf condenser (1,046) (C1) (J.B.).
- One 1.0025 mfd. reaction condenser (1,081) (C2) (J.B.).
- One L.F. coupler Type L10 (Bulgin).
- One 1 meg. R (Bri).
- One .0001 mfd. condenser (665) (C3) (Dubilier).
- One switch (S36) (Bulgin).
- One fuse holder (Micro fuse).
- Two terminal strips, A.B. and L.S.
- Two valve holders (one 4-pin, one 5-pin) (Chix).
- Two valves 2C8 (H.P.T.).
- B.S.A. component kit.
- Caisson, 10in. by 6in. by 3in.
- One 100mA micro fuse and holder (Micro fuse).
- One speaker, Junior W.B.

Operating Instructions

Connect the aerial and earth leads to the two sockets marked A and E, and plug the leads from the loudspeaker into the loudspeaker sockets. The two L.T. leads should be joined to the positive (+) and negative (−) terminals on a 2-volt accumulator, and the H.T. lead should be inserted in the negative socket on a 120-volt H.T. battery. The lead marked R.T. should be inserted into the positive socket of a 6 volt G.B. battery, and the lead marked G.B.− should be inserted into the 4.5 volt socket on this battery. Lead H.T.+2 should be inserted into the 120 volt socket on the H.T. battery and H.T.+1 should be plugged into the socket marked 99 volts, or somewhere near that value. Pull out both switches, and the receiver will then be in action on the medium waves, and before attempting to tune in a station rotate the reaction condenser in a clockwise direction with the main tuning condenser set at minimum (with the vanes of the disc set away from the reaction condenser), and the vanes of the disc set to zero. If the reaction operates smoothly at the zero point, and is not difficult, or has a tendency to oscillate, try rotating the disc until the reaction operates smoothly over the entire band. A modification of the voltage at H.T.+1 will vary the sensitivity and the smoothness of the reaction control, and a value should be used where a smooth build up is obtained on a station without a sudden plop, which indicates oscillation. If the H.T. voltage here is too low no reaction will be obtained. Stations are located by turning the main tuning condenser, and the strength is increased by the reaction condenser, but this should be used judiciously.

Aerial and Earth

With a simple receiver the best possible aerial should be employed, and this will be obtained when the aerial wire is erected as high above an earthed object as possible. Remember that a five-foot pole over a roof will only give an aerial height of 3ft., and thus the aerial should, wherever possible, be placed so that it passes over clear ground, and as high as convenient. The earth also should be very efficient, and a buried metal plate, with the earth lead soldered to it, is generally the best. If you cannot get an aerial, or to do so means that a very long lead has to be adopted, then a main water pipe should be utilised, with the wire attached by means of a proper type of earthing clip.

YES! BE PREPARED

Times are difficult, but that is no reason why you should not be looking confidently forward to the future. Your future will be what you make it. Use your spare time to increase your earning power, then war or no war your future will be secure.

EARNING POWER IS A SOUND INVESTMENT

<table>
<thead>
<tr>
<th>Accountancy</th>
<th>Metalurgy</th>
<th>Mining, All subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advertising</td>
<td>All subjects</td>
<td>Mining, Electrical Engineering</td>
</tr>
<tr>
<td>Ariculture</td>
<td>All subjects</td>
<td>Motor Engineering</td>
</tr>
<tr>
<td>Applied Mechanics</td>
<td>All subjects</td>
<td>Motor Trade</td>
</tr>
<tr>
<td>Army Certificate</td>
<td>All subjects</td>
<td>Municipal and County Engineers</td>
</tr>
<tr>
<td>Agents</td>
<td>All subjects</td>
<td>Naval Architecture</td>
</tr>
<tr>
<td>Aviation Engineering</td>
<td>All subjects</td>
<td>Novel Writing</td>
</tr>
<tr>
<td>Aviation Wireless</td>
<td>All subjects</td>
<td>Pattern Making</td>
</tr>
<tr>
<td>Book-keeping</td>
<td>All subjects</td>
<td>Pumps and Plumbing Machinery</td>
</tr>
<tr>
<td>Building, Architecture and Clerks of Works</td>
<td>All subjects</td>
<td>Radio Communication</td>
</tr>
<tr>
<td>Builders Quantities</td>
<td>All subjects</td>
<td>Radio Service Engineering</td>
</tr>
<tr>
<td>Cambridge Senior School Certificate</td>
<td>All subjects</td>
<td>Radar Special Courses</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>All subjects</td>
<td>Road Making and Maintenance</td>
</tr>
<tr>
<td>Civil Service</td>
<td>All subjects</td>
<td>Salesmanship, I.S.M.A.</td>
</tr>
<tr>
<td>Commercial Subjects</td>
<td>All subjects</td>
<td>Sanitation</td>
</tr>
<tr>
<td>Commercial Art</td>
<td>All subjects</td>
<td>School Attendance Officer</td>
</tr>
<tr>
<td>Common Premia, F, J.E.B.</td>
<td>All subjects</td>
<td>Secretarial Exams.</td>
</tr>
<tr>
<td>Concrete and Structural Engineering</td>
<td>All subjects</td>
<td>Sheet Metal Work</td>
</tr>
<tr>
<td>Draughtsmanship</td>
<td>All subjects</td>
<td>Shipbuilding</td>
</tr>
<tr>
<td>All Branches, Engineering, All branches, subjects and examinations</td>
<td>All subjects</td>
<td>Short-Story Writing</td>
</tr>
<tr>
<td>General Education</td>
<td>All subjects</td>
<td>Speaking in Public</td>
</tr>
<tr>
<td>G.P.O. Eng., Dept.</td>
<td>All subjects</td>
<td>Structural Engineering</td>
</tr>
<tr>
<td>Heating and Ventilating</td>
<td>All subjects</td>
<td>Surveying</td>
</tr>
<tr>
<td>Industrial Chemistry</td>
<td>All subjects</td>
<td>Teachers of Handicrafts</td>
</tr>
<tr>
<td>Institute of Housing</td>
<td>All subjects</td>
<td>Telephony and Telegraphy</td>
</tr>
<tr>
<td>Insurance</td>
<td>All subjects</td>
<td>Television</td>
</tr>
<tr>
<td>Journalism</td>
<td>All subjects</td>
<td>Transport Inst. Exams.</td>
</tr>
<tr>
<td>Language</td>
<td>All subjects</td>
<td>Viewers, Gaugers, Inspectors</td>
</tr>
<tr>
<td>Languages</td>
<td>All subjects</td>
<td>Weight and Measures Inspector</td>
</tr>
<tr>
<td>Mathematics</td>
<td>All subjects</td>
<td>Welding</td>
</tr>
<tr>
<td>Matriculation</td>
<td>All subjects</td>
<td>Wireless Telegraphy and Telephony</td>
</tr>
<tr>
<td>Mathematics</td>
<td>All subjects</td>
<td>Works Managers</td>
</tr>
</tbody>
</table>

If you do not see your own requirements above, write to us on any subject. Full particulars free.

IF YOU ATTEND TO THIS NOW IT MAY MAKE A WONDERFUL DIFFERENCE TO YOUR FUTURE

COUPON

CUT THIS OUT

DEPT. 104, THE BENNETT COLLEGE, LTD., SHEFFIELD.

Please send me (free of charge)

Particulars of .. (Cross out line which does not apply.)

Your private advice ...

Name ..

Address ...

Please write in block letters.
Impressions on the Wax

Review of the Latest Gramophone Records

Columbia

ONE hundred thalers—about $50—was the sum Mozart received for his immortal opera, "Don Giovanni," which was first performed in Prague in 1787. The story of how the overture was completed only the night before the production is widely known, but there is another interesting fact connected with this opera, and that is the history of three extra numbers that were added when it was produced in Vienna. It is one of these: "Cruel One, Thou Hast Betrayed Me!" (Mi tradi quel' alma ingrata), which Joan Hammond, accompanied by the Hallé Orchestra, conducted by Leslie Howard, records on Columbia DB2075. The skirt expresses the rage of Donna Elvira, and Joan Hammond in her magnificent and thrilling rendering, has extracted—to the last detail—the full unrelentless fury of the betrayed woman.

Another outstanding recording in the classical release is the Hallé Orchestra's performance of the overture to "Die Fledermaus," the baton again being in the able hands of Leslie Howard. Although more than half a century has passed, Johann Strauss captivated Europe with this masterpiece of his, it can truly be said that the beauty of voice and clarity of phrasing of the Hallé Orchestra plays the overture in the style of the Waltz King intended it to be played—with exuberance and brilliant gaiety, typical of the Viennese character and atmosphere of those days. The recording is on Columbia DB1067.

In the standard section, Isabel Baillie (soprano) has made some fine recordings of songs from the land of her birth—Scotland—on Columbia DB2076. These consist of "John Anderson My Jo," "I'm O'wer Young," and "Ca' the Yowes to the Knowes." Her voice has a radiant quality, and her rendering of these Scottish songs will appeal in particular to those north of the border.

Songs by Turner Layton at the piano are always popular, and his latest Columbia recording, FB2754, should not be missed by those who like the warm and sincere manner of presentation characteristic of this artist. "Say a Little Prayer" (introducing Schumann's "Traumerei") and "Bless This House" are the two numbers he has selected for this recording.

Members of the Monte Rey Friends Circle will welcome the latest release of Columbia FB2752 on which is recorded Monte singing—in his own inimitable style—"Your Hand in Mine" and "If You Were Beside Me." These are two very popular numbers, and the singer, accompanied by an orchestra, makes the most of their appeal.

The smooth, easy rhythm, always associated with Carroll Gibbons' piano playing, is, to me, pleasantly relaxing, and the two latest examples of Carroll's lazy fingers, "Solitude" and "Time on My Hands," provide the welcomeful music, and reveal the true skill and technique of this popular artist. The recordings are on Columbia FB2753.

Those who like their dance music in strict dance tempo will appreciate the new releases—Columbia FB2750, FB2797, and FB2792—which record the rendering of "Greetings to you" and "When the Roses Bloom Again"; "Madeline" and "Jim," and "To-morrow's Sunrise" and "Mandy is Two," by that ballroom music maestro, Victor Silvester. Hawaiian enthusiasts have not been overlooked. For example, Madelaine Knowes and his Hawaiian Serenaders offer "La Cumparsa Cubana" and "Lover Come Back to Me"—from "New Moon"—on Columbia FB2783.

An ever-popular trio, the Albert Sandler Trio, has recorded, on Columbia DB2073, "Baby Mine," one of the outstanding hit tunes from the film "Dumbo," and "My Paradise," from "Canyon Song.

Parlophone

RICHARD TAUBER is always refreshingly topical with his recordings, as exemplified by his choice of titles from the hit film Macdonald film "Smiling Through." On Parlophone FB2030, he has recorded "Smiling Through" and "A Little Love, A Little Kiss" and, needless to say, the singing—in English—is true to the standard for which these artists are world famous. Other Parlophone recordings include: If I Could Paint a Memory and "Love in a Houri Figaro," by that trio who perform under the title "The Billy Turner Layton, H. Robinson Cleaver and—the vocalist—Julie Dawn; Tin Pan Alley Medley—No. 43, FB902, by Iver Moreton and Dave Kaye. Geraldo and his Orchestra have a couple of records—Parlophone F1909 and Figaro. It is a selection of the H.M.V. recent releases, all of them being in the BD series. "Day Dreaming" and "Flamingo." H.M.V. BD2003, and I'll Always Remember." The Shrine of Saint Cecilia" on BD1010, are two for those enthusiasts of "Hutch" Leslie A. Hutchinson.

Big-hearted Arthur Askey also has two new records, one—having piano accompaniment—BD1002, on which he records "The Plug-germ" and "The Ant," and the other BD1008, having an orchestral accompaniment, "I Want a Banana Split" and "Spring Again." Duettists at a piano, in the form of Gladys Cooper and George Formby, offer "Day Dreaming" and "The Turn of the Tide," on H.M.V. BD997. A most pleasing combination of voices and piano.

Reginald F. B. on his Giant Moller Concert Organ, records a fine selection from the music of the film "Dumbo." BD1000. The title is "Dumbo" Selection and it occupies both side of the disc.

Here are five fine Dance Orchestra releases, BD5743 being by The R.A.O.C. Blue-Rockets Dance Orchestra, playing—with vocal refrain—"When It's Pраз- wholesome again" and "Ma, I Miss Your Apple Pie." and BD5745, "We're the Couple in the Castle" and "Katy Did Katy Didn't." The other three are by Joe Loss and his Orchestra, which give us "Jim" and "The Maydowlover" on BD7476. It is also the film "Saint Cecilia" and "Greetings From You" on BD7472, and "I Don't Want to Walk Without You" and "Whos'll Buy a Rose from Margareta" on BD5742.

Decca

A RECORD I recommend to all of those who appreciate the works of Rachmaninoff, and the superb technique of Moura Lympany at the piano, playing "No. 8 in C Minor (Op. 23, No. 7)," "No. 7 in C Major (Op. 32, No. 1)," "No. 7 in E Flat (Op. 23, No. 6)", and "No. 10 in E Flat (Op. 23, No. 9)," by Rachmaninoff.

In a very much lighter mood, there is "Charlie Kunz Piano Medley No. D 52" (with rhythm accompaniment) on Decca F9100. This consists of "Concerto for Two," "Russian Serenade," "What More Can I Say," "The White Cliffs of Dover," "Green Eyes," and "Rose O'Day."

No record list would now be complete without Vera Lynn, and I have selected Decca F9200 on which she records, with Mantovani and his Orchestra, "The White Cliffs of Dover," and "I'll Be with You in Apple Blossom Time."
Old-time Sets

Further Notes on the Activities of Some of Our Readers in the Early Days of Radio

We publish on this page a few more details of readers' activities in the early days of radio, submitted in response to Thermion's invitation in our May issue.

A Crystal Set: and Two-Valver

A. J. Bunn, of Harrow, describes his early activities as follows:

"Although I had been a keen and active model engineer for many years, and interested, in a general sense, in electricity, I did not take up wireless seriously until 1921.

"My first experimental and constructional efforts were, naturally, connected with crystal receivers, and I remember the hours that I used to spend winding, mounting and testing the cumbersome solenoid coils which were part and parcel of the then popular crystal circuits. One of the accompanying illustrations shows one of my receivers; it was, in those days, considered a de luxe model, with its double sliders on the coil and the micrometer adjustment for the cat's whisker. In conjunction with this and other sets I made, I used a rather elaborate aerial system, consisting of twin wires, held apart by 6-ft. bamboo spreaders, a 30-ft. wooden mast, and all guys and halyards rigged in true Bristol fashion. The first thrill of receiving the signals from Eiffel Tower on the crystal set will never be forgotten.

"The other illustration shows an early effort using valves. The circuit was of the Det. and L.F. type, aerial tuning being carried out—medium waves only—by means of the vario-coupler, complete with tappings, and a home-made variable condenser. This must have been about 1923, and I well remember the great excitement when I received with it, a broadcast programme—a concert—from 5IT, which was 80 miles from my station!

"For L.T. supply I used a 6-volt accumulator that nearly broke my back every time I had to move it; the H.T. was obtained from 18 flash-lamp batteries—that is, when the connections did not let me down. Those were the days!"

An Adaptable Receiver

M. Joseph, of Wimbledon, writes concerning his early receiver:

"I enclose a couple of prints which show the exterior and interior of a 'very up-to-date' receiver of February, 1924, vintage. The numerous sockets allowed of the different components being connected up to form anything from a-0-v-x to a o-o-t. I used the best 'bits and pieces' that I could get then, but the set was not very good, though, I suppose, good enough for those times.
We practical, students not completely, the Dealer
Radio
principles diploma, course learns
Address
Name
If
marked X. Please
Dept.
International
Provisional certificate
you
wish
to
explain
94,
360
LONDON.
P.M.G.
Certificate for
Institute
Certificate for
Radio
Telegraphy
Certificate for
Radio
Television
Radio
Elementary
Radio
Radio
Telephony
Radio
for Aircraft
Radio
Telegraphy
City and Guilds Telecommunications
Name .. Age................
Address ..
............... ..
(Use penny stamp on unsealed envelope.)

F OR THE
RADIO SERVICE MAN,
DEALER AND OWNER
The man who enrolls for an I. C. S. Radio
Course learns radio thoroughly, completely,
practically. When he earns his
Diploma, he will KNOW radio. We are
not content merely to teach the prin-
ciples of radio, we want to show our
students how to apply that training in
practical, every-day, radio service work.
We train them to be successful!

INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 94, International Buildings,
Please explain fully about your instruction in the subject
marked X.
Complete Radio Engineering
Radio Service Engineers
Elementary Radio
Television
If you wish to pass a radio examination, indicate it below.
Institute of Radio Engineers
P.M.G. Certificate for Wireless Operators
Provisional certificate in radio telephony and
Telegraphy for Aircraft
City and Guilds Telecommunications

Name .. Age................
Address ..
............... ..

A corner of C. R. Neville's wireless den in 1925.

"You will observe the microstats controlling each
valve's filaments, and the Brevett grid leak, then
quite de rigueur. This receiver has reposed in my junk
box for many a year now, and I don't quite know what
to do with the bits. I just keep them in case I might
be short of some odd part or other!"

A Neat Layout
C. R. NEVILLE, of Greenwich, sends the following
short description of his early activities:

"Your article 'The Silent Sets' carried my mind back
to those happy days of the reflex circuits. The
component shortage did not deter our efforts in those
days.

I can remember winding an iron core transformer
with 40 d.s.c. wire, after making a coil winder from
an old Edison Bell phonograph machine, the type that
played cylindrical records.

Then we used to wind our honeycomb coils with the
aid of a piece of broom handle with nails driven into it.
I recall my first portable with frame aerial in the door
and external speaker; it was so bulky that it required
two to carry it. I took it on a tramcar one evening to
see what its performance would be like. I often have a
laugh when I recall the expression on the faces that
peeped over the top of the evening papers when the
Savoy Orpheans dance band burst forth with 'Three
O'Clock in the Morning' from the brown paper parcel
containing the speaker.

We used to get some DX thrills even in those days.
One night I picked up the B.B.C. experimental trans-
mission for their new Glasgow transmitter. My RX
was a one-valve reflex and I logged the transmission at
R6-R7, at a time when atmospheres were bad,

'I enclose a photo taken in 1925, hoping it will be
of interest to you.'"
A Refresher Course in Mathematics

By F. J. CAMM

(Continued from page 322, June issue)

Simple Equations

Further Examples—Division

Further multiplication, addition, or subtraction brings the terms of square brackets together.

Thus:

\[2[5x^2+5axy+5by^2+5bxy-10ax-n] \]

and multiplying that by \(a \) produces:

\[10ax^2+10ady+10bx^2+10bxy-20ax-2n \]

Further Examples

\[a^2+3b-c+5d, \quad 3d+c, \quad a^2+c-d, \quad -a^2+c-d, \]

\[c-d, \quad and \quad 4a^2-2b+3d \]

Answer:

\[5a^2+4b+6c \]

Add:

\[2ab-3ac+b^2-3ay+3, \quad ac+2ay-4, \quad -ab-2ac \]

\[-bx-ay-4, \quad 5ac-2, \quad and \quad ab+by. \]

\[2ab-3ac+b^2-3ay+3 \]

\[ac \]

\[plus \]

\[ab \]

Answer:

\[2ab+ac+3bx-ay-3 \]

If in the last example \(a=2, \quad b=3, \quad c=4, \quad x=5 \) and \(y=6, \) the sum would become:

\[12-24+60-36+5=75-60=15 \]

\[8+24-4=32-4=28 \]

\[6-16-15-12-4=53 \]

\[40+2 \]

\[6+12=18 \]

\[50 \]

Subtract:

\[3a^2-2xy+9 \]

Answer:

\[2x^2-xy+ab-11 \]

Subtract:

\[3a^2+4ab+b^2 \]

Answer:

\[-8a^2-2ab \]

Divide:

\[-x+y \]

Answer:

\[-x+y\]
the two quantities which, multiplied together, produced

to the second or third power, or to the \(n \)th power,

in another way of saying that if you multiply,

which is another way of saying that if you multiply,

divide, subtract from, add to, or raise to a power the

divide, subtract from, add to, or raise to a power the

left-hand side of the equation, we must multiply, divide,

subtract from, add to, or raise to the same power the

right-hand side.

Although mentally we have found that the value of \(a \)
in the above simple equation is 2, it would, in fact, be

solved in the following way:

\[5a + 9 = 19. \]

Now subtract 9 from both sides, thus:

\[(5a + 9) - 9 = 19 - 9. \]

Subtracting, \(a = 10. \)

Dividing throughout by the coefficient 5

\[a = 2. \]

Both sides of the equation remain unchanged, if all

the signs on each side are changed, thus:

\[-5a - 9 = -19. \]

This merely means that we have multiplied the

original equation by -1.

Another method of solving the equation would be

to transpose the figure 9 from one side of the equation

to the other, thus:

\[5a + 9 = 19 \]

\[5a = 10 \]

This boils down to the well-known algebraic rule:

All the unknown quantities are transposed, to one

side and all the known quantities to the other, dividing,

if necessary, by the coefficient of the unknown quantity.

Here are some examples:

\[\frac{5x + 5}{3} = 20 \]

\[\frac{3x - 3}{15} = 5 \]

\[x = 5 \]

\[2(x - 4) = 24 \]

\[2x + 2 = 24 \]

\[2x = 22 \]

\[x = 11 \]

\[\sqrt{x} = 8 \]

\[x^2 - 7 = 11 \]

\[x^2 = 18 \]

\[x = \sqrt{18} \]

\[(a + b) (a - b) = 25 \]

\[a^2 + 2ab + b^2 = 25 \]

This is an identity, and numerical values for \(a \) and \(b \)
cannot be found (except by trial and error) unless we

know the value of one of the unknowns.

\[5x - 7 = 2x + 2 \]

\[3x = 9 \]

\[x = 3 \]

Note that, when transposing from one side to another,

the signs are changed. Negative signs become positive

and positive signs become negative.

Thus in the last example +2x becomes -2x, and -7

becomes +7. This rule is most important.

\[5a^2 - 10a = 8a + a^2 \]

\[9a^2 - a^2 = 10a + 5a \]

\[2a^2 = 18a \]

\[\frac{x}{a} = 9 \]

\[x = 9a \]

\[\frac{4}{3} = 4 \]

Get rid of the fractions by multiplying both sides of

the equation by 9.

\[\frac{9}{3} \times 9 \]

\[3x + x = 36 \]

\[4x = 36 \]

\[x = 9 \]

\[\frac{x + 10}{3} - \frac{3}{2} (x - 2) = \frac{5a + 5}{2} + 2 \]

Multiply both sides by 30 to eliminate the fractions:

\[18(x + 10) - 20(x - 2) = 150 + 25 + 60 \]

\[18x + 180 - 20x + 40 = 25x + 5 + 60 \]

\[18x - 45x = -180 + 40 + 25 + 60 \]

\[-27x = -195 \]

Simple Equations

Algebra is of the greatest use in expressing a problem

in its simplest terms; it is a system of arithmetical

shorthand, more graphic than words and enabling the

relation of the quantities to one another to be seen at

a glance. The problem is converted into symbols, or

symbolical expressions.

Thus, the output of a machine may be stated as \(x \),

and of five machines of similar type \(5x \); or if the

rate of output of a machine is increased by five times,

its output would be \(5x \).

Two numbers may differ by, say, 17. Let \(x \) denote

the larger number and \(y \) the second.

Hence \(x - y = 17 \).

A car travelling a distance of \(x \) miles at a speed of

\(y \) miles an hour would take \(\frac{y}{x} \) hours.

Now, in algebraic calculations certain symbols are

assigned to certain quantities. Thus \(t = \text{time}, \ V = \text{velocity}, \ s = \text{distance}, \ \text{or space, or sum}; \ \ g = \text{gravity}

= 32.2 \text{ft. per sec.} / \text{per sec.} \). These letters convey what they

stand for at a glance, because they are the initial letters

of the quantities.

Any arithmetical or algebraic expression such as

\(x + y = 9, \ \frac{3x + 8}{21} \) is called an equation, since the terms

in each case of the = sign are equal, or equated. All

expressions which are separated by the equality sign are

therefore equations, whether the expressions are

arithmetical or algebraic.

By means of algebraic equations we are able to find

the value of the unknown quantities, and this process

is known as solving the equation, the answer being the

root or solution.

If the problem does not involve the power of any

unknown quantity, it is termed a simple equation; if

one or more of the unknown quantities are squared, the

problem is a quadratic equation; if one or more unknown

quantities are cubed, the problem is a cubic equation.

When the equation relates to an algebraic operation

only, the expression is known as an identity. Thus

\((a + b)^2 = a^2 + 2ab + b^2 \) is an identity, for we have evaluated

the expression \((a + b)^2 \), and reached a result beyond

which it is impossible to proceed.

Continuing with simple equations, let us take the

simple algebraic expression \(5a + 9 = 19 \). In this expres-

sion it is clear that 5 times the unknown number plus

9 = 19. It is apparent that \(a = 2 \), and this simple

example is sufficient to illustrate the process of solving

an equation.

Now it is important to remember that the value of

an equation is not altered by multiplying, dividing,

subtracting, or adding to each side of the equation.

Whatever is done to one side of the equation must be

done to the other. We can, if it is convenient to solve

the equation in that way, raise each side of the equation
Divide throughout by
5=

The reader will become facile at solving equations if he practises making up simple problems and expressing the conditions by symbols.

Here are some examples:
The difference between two numbers is 7. Their sum is 13. What are the numbers?

\[\text{Let } x = \text{the larger number, and } y = \text{the smaller.} \]
\[x + y = 13 \]
\[x - y = 7 \]

Subtracting: \[2y = 6 \]
\[y = 3 \]

Substituting this value in either of the above equations:
\[x + 3 = 13 \]
\[x = 10 \]

or
\[x - 3 = 7 \]
\[x = 10 \]

The numbers are therefore 10, 6, and 4.

The result may be checked by substituting these values in the equation. Thus:
\[10 + 10 = \frac{1}{2} (4 + 6 + 20) + 3 \]
\[20 = 30 + 5 \]
\[x = 5 \]

The sum of two numbers is as 2 to 3, and their sum is 30. Find the number.

Let \(x \) = one number
\[x \] = the second number.
Then
\[3x + 2x = 30 \]
\[5x = 30 \]
\[x = 6 \]

A stone dropped from a window takes 3 secs. to reach the ground. Find the height from which it was dropped.

We must here remember that the velocity of a freely falling body is \(32.2 \) ft. per sec. per sec.; and the relation between distance fallen and time taken is \(s = \frac{1}{2} g t^2 \), where \(s \) = distance in ft., \(t \) = time in secs., and \(g = 32.2 \).

So:
\[s = \frac{1}{2} \times 32.2 \times 3^2 \]
\[= 151.1 \times 9 \]

Height of window = 144.9 ft.

In what time will a stone drop a distance of 144.9 ft.?
\[144.9 = \frac{1}{2} \times 32.2 \times t^2 \]
\[t^2 = \frac{144.9}{16.1} \]
\[t = \sqrt{9} = 3.08 \text{ secs. approx.} \]

By adding 4 to a number, and dividing the result by 5, the result is \(\frac{1}{4} \)th of the original number. What is the number?
\[\frac{x + 4}{5} = \frac{x}{4} \]

Multiply each side by 20:
\[4x + 16 = 5x \]
\[5x - 4x = 16 \]
\[x = 16 \]

Pythagoras' rule for the length of the hypotenuse of a right-angled triangle is \(\sqrt{a^2 + b^2} = \text{hypotenuse} \). The base of a right-angled triangle is 3 ins. and the hypotenuse 5 ins. What is its height?
\[a^2 + b^2 = c^2 \]
\[9 + 25 = 34 \]
\[c = \sqrt{34} \]

One number is one-fifth of another, and their sum is 30. What are the numbers?

Let \(x \) = the smaller number.
Then \[5x = \text{the larger number.} \]
\[5x + x = 30 \]
\[6x = 30 \]
\[x = 5 \]

The two numbers are thus 5 and 25.

The foregoing are simple equations, involving the use of one unknown quantity. It is, of course, impossible to lay down specific rules for every type of problem. The reader must learn the various tricks of calculation to enable him to solve a problem. For example, we have seen that the square of two quantities separated by a plus sign is the square of each quantity, plus twice the two quantities multiplied together. Put in the form of an equation:
\[(x + y)^2 = x^2 + 2xy + y^2 \]

Here is an example of the use which may be made of this rule:

The square of the sum of two numbers is 81. The product of the numbers is 20; their sum is 9 and difference x. What are the numbers? Although this is a quadratic equation, knowing the above rule we write:
\[x^2 + y^2 = 81 \]
\[2xy = 40 \]
\[x^2 + 2xy + y^2 = 121 \]

The factors of \(x^2 + 2xy + y^2 \) are:
\[(x + y) (x + y) \]
and \[x + y = 9 \]

subtracting \(x + y = 1 \)
\[2y = 8 \]
\[y = 4 \]
\[x = 5 \]

Later on I shall explain how to solve quadratic equations, when the facts of the problem are not so fully given as in this example.

Here are some examples for practice:
\[x^2 + y^2 = 25 \]
\[2x + y = 7 \]
\[5y - x = 4 \]

Answer: 8.
Remember, it is always advantageous to clear the fractions.

Solve:
\[x^2 + y^2 + 3a - x \]
\[x + y + 3a - x = a \]

Answer:
\[\frac{ax}{b} + b = bx + a \]

Answer:
\[\frac{ab}{a + b} \]

Solve:
\[x = a + b \]
\[x = a + b \]

Answer:
\[\frac{a + b}{a + b} \]

Solve:
\[x + x + x = a + b + c \]

Answer:
\[abc \]

A man is older than his wife by 10 years, and 15 years ago the man was twice as old as his wife. What are their ages?
Answer: 25 and 35.

(To be continued.)
The S.W. Converter Two

Spare Parts Can be Used to Construct this Efficient S.W. Unit

An efficient short-wave converter is one of those pieces of apparatus which should form part of every constructor's equipment. It does not follow that it is necessary for one to be a most enthusiastic short-wave "fan" before one makes up and uses such gear. Even if the interest is only at passing one, or if short-wave reception is required only for one month a year, the apparatus takes up very little room, does not cost anything to keep, and is inexpensive to build.

With the great increase in news value of the world's

![Circuit Diagram]

Fig. 1.—The circuit of the converter, showing how the S.G. valve is used as a detector-mixer.

S.W. stations, those many odd times when the medium waves have nothing tempting to offer need no longer be idle moments for the receiver, provided that one has an efficient S.W. converter or adapter ready to be put into action.

Types of Units

There are two types of S.W. units which will enable use to be made of a normal broadcast receiver for the reception of the short waves. They are usually known as (a) an S.W. Converter, and (b) an S.W. Adapter. It is possible to combine both types in one unit; but that does not concern us at the moment.

The converter works on the superhet method, and is designed for use with any type of receiver employing one or more stages of high-frequency amplification—a superhet receiver being included. It possesses the following worth-while features: it has a good degree of selectivity—very essential nowadays on the short waves—and it forms, in conjunction with any good receiver, a very sensitive outfit.

The adapter, on the other hand, is the most simple arrangement possible, but as it only utilises the broadcast receiver from the detector stage to the output, it is, naturally, not so selective or sensitive, and the results obtained might not always be good. If you have been using an S.W. and you are not at all convinced that your short waves because of the results you did or did not get, I would say, have another try with the unit described below and then compare notes.

Some converters use a single triode valve as a combined detector and oscillator—two functions necessary in this type of unit—and although such an arrangement is cheap and simple, it is far from perfect in operation. A better method makes use of a tetrode, or a triode and a triode, but once again the constructor runs up against cost, and more valves for stock, so the triode must be ruled out on that score.

An Alternative Circuit

An alternative system—which can be used without any loss of efficiency—is shown in Fig. 1, which is the circuit of the unit under discussion, and which makes use of a triode and an ordinary S.G. valve, both being likely occupants of the spares box.

The triode is used as an oscillator, the S.G. as a detector, and the combination lends itself to easy operation, good selectivity and sensitivity. The tuning or grid condenser C1 should have a capacity of .0015 mfd., while the reaction control C2 has a value of .0003 mfd. The values are not too critical, provided the coil-winding details are adjusted to suit any variation. For example, if a .0002 mfd. reaction condenser is used, it may be necessary to add a turn or two to the reaction winding before a satisfactory effect is produced. If a larger tuning condenser is employed, fewer turns must be used for the grid coil, and so on, but don't go to the extreme and use, say, a .0005 mfd. condenser.

Coil Windings

The details for the coil windings are given with the illustration (Fig. 2), and it will be noted that there is nothing difficult about them. Should it happen that other two-circuit S.W. coils are available, there is no reason why they should not be used, so long as the values of C1 and C2 are selected to suit. It should be noted, at this stage, that the whole secret of the circuit depends on smooth and satisfactory reaction being obtained, otherwise the triode circuit will not be maintained in the required state of oscillation.

Two high-frequency chokes are required, one wound for S.W. work, and the other a normal broadcast type.

The other components need no explanation as they are standard, but it is advisable to adhere to the values shown and use a triode valve of the H.L. type and a screened grid of the "straight" variety.

Operation

With the valves

![Diagram of Construction]

Fig. 2.—The simple constructional details of the coil are shown here.
and coil in position, the batteries all connected and switched on, connect the actual aerial to terminal A and the output (terminal 0) to the aerial terminal of the broadcast receiver, after making sure that the receiver is switched over to the long waves. The broadcast receiver is then switched on and the volume or reaction control set to, say, just below maximum output, care being taken to see that the circuit is not too weak.

The reaction condenser C_2 of the converter is then adjusted until the circuit sounds alive or when a steady rushing—but not whistling—sound is produced, after

which the tuning condenser C_1 can be rotated—very slowly—through its travel or until a station carrier is heard.

Tuning Adjustment

Be careful and patient with the tuning, as it is so easy to pass over transmissions on the short waves without being aware of their existence if the tuning is adjusted too quickly.

It will be found that it is possible, by adjusting the aerial series condenser and the H.T. feed, to find a setting of C_2 which will hold good for all settings of C_1 for the coil concerned, thus allowing one-dial tuning to be obtained. Once a station is received the volume can be adjusted by the reaction and/or volume controls of the broadcast receiver.

Provided the existing aerial is not longer than, say, 60ft. and a long lead-in is not used through the house, it will be quite satisfactory for use with the converter, though one that is well clear of all obstruction and having a good height will, naturally, be more efficient.

THESE BOOKS WILL HELP YOU

CATHODE RAY OSCILLOGRAPHS

By J. H. Reyner, B.Sc. (Hons.), A.C.G.I., etc.

Here is an easily understood guide to the practical application of Cathode Ray Tubes to numerous purposes, including the examination of oscillations or wave forms. Radio men, and particularly those about to enter the services, will find this book a genuine and invaluable guide. It has been given the highest recommendations, both for students and teachers. Electrical Times says: "Anyone desiring a clear understanding of the Cathode Ray Oscillograph cannot do better than purchase this moderately priced book." £8. 6d. net.

MODERN RADIO COMMUNICATION

By J. H. Reyner. Every phase of current radio theory is dealt with in this book. With its clear and concise explanations, its helpful illustrations, and the careful arrangement of its subject matter it is certain to give the greatest possible assistance to students. Volumes I and II together provide a complete groundwork in Radio Engineering, and form an invaluable textbook for all students and practical engineers. Each volume, 7s. 6d. net.

39, PARKER ST., KINGSWAY

TAYLOR

ALL-WAVE (6.5 to 3,000 metres)

SIGNAL GENERATOR

This Taylor Model 60 instrument provides modulated or unmodulated Radio frequency signals for tests on all types of receivers.

All Wave (100 Kc. to 46 Mc. in 6 wave bands). Directly calibrated in frequency. No graphs required. Complete and fine attenuation. 400 cycle output of good wave-form available from 0 to 2 volts. A.C. Mains 200/250 v., 40/100 cycles.

Supplied complete, TAYLOR MODEL 60, with screened output lead, instruction book and frequency conversion table.

Write for further details.

Instrument Sales and Service Department,

TAYLOR

EILOTRICAL INSTRUMENTS LTD.

145a, High Street,

Slofgh, Bucks.
Music and the Times
The Popularity of Beethoven. By Our Music Critic, Maurice Reeve

THIS war is so entirely different from the last one that it would make quite a difficult job to start enumerating all the points at which comparison would fall to the ground. I would hazard that, the war itself apart, the greatest differences are to be seen in the temper of the people and in the revolutionary change it has effected in their everyday life.

Today, there is simply no joy as such. This war seems to be utterly devoid of an atom of "atmosphere." Not a brass band is to be seen or heard, except on rare occasions, nor is a flag waving. Marching columns are so different in their formation that they have, of necessity, had to shed all their glamour. Also, there is no music-hall--comparable to the last war--or theatre, to arouse our patriotic fervour with nationalistic songs, displays and catches. I think that the anthems on the wireless are listened to by most people with a feeling bordering on either boredom or indifference.

No, comparison is far from there. War is just a horrible and vile necessity. Grim determination to see it through, plus disgust at having to sow our hands in it, are all it makes us feel.

Naturally this has had the most profound psychological reactions in the homes of the people. It all began, I think, at 11.15 a.m. on the morning of September 3rd, 1939, when the first air-raid warning of the second world war was sounded--a quarter of an hour after its commencement. Although the fears of the vast majority were not at that moment fulfilled, it drove the people, mentally speaking, into their shelters and air-raid dug-outs for the duration. Whether they knew it or not, their mentalities were made up for them then.

Queen's Hall Concerts
Don't mistake me on one point. That first frightening syren didn't kill the desire of people to go out and attend concerts or other resorts. On the contrary, the few concerts that have been held have, for the most part, been magnificently attended. Four Beethoven programmes at Queen's Hall were each sold out! But a fear was born at the back of one's mind, even if it was left there in most of us in despised oblivion, that whenever we sat down to a programme of any pretensions to seriousness we were liable to be called away from it by the dread summons of the approaching Heinkels, if not of the actual airmen they carry.

Consequently the things we wish to listen to must be chosen by these overriding considerations. Needless to say, what we want is not always obtainable! But when it is, we just go out and grasp it.

It will be recalled that, when the war commenced, the Promenade Concerts were in the middle of a season well over their fourth. Although the imminence of the aerial war--as most people believed--was doubtless the primary cause of their suspension, I think the character of the programmes had something to do with it as well. Audiences had been steadily dwindling during the days preceding the declaration of hostilities, and it was to an almost empty house that Sir Henry Wood announced that they would have to terminate.

Concert-going Public
In normal times and with normal frames of mind and mood, few programmes are as skilfully framed to meet and satisfy the demands of the concert-going public as are those heard at the Promenade Concerts. The skill with which they ranged from a Brandenburg to bolero or from Scarlatti to Sibelius, was astonishing. The specialist as well as the casual music lover each had his wishes catered for, and only the most unreasonable were heard to grumble.
"P.W." in India

We have received the following interesting airgraph from a reader in India:

Sir,—Although I had been a regular reader of "P.W." for some years, the Sept. No. was the last issue I was able to get in the U.K., my particular newsagent's supply having been cut down by one half, and earlier placed orders naturally received preference. It was with great surprise, therefore, that I saw on display the good old "P.W." for Oct. and Nov. '41, and in its new and handler format, the Dec. and the March issue. If I had been confronted with an UNDERGROUND sign, I wouldn't have been much more surprised. Their long journey has enhanced their prices somewhat (the 6d. ones cost 9s. and would, owing 12d.) but they are still good value. Bouquet for you! And for the "Experimenters" (p. 30 of the Dec. issue) a small raspberry for erroneously stating that "the expression 100 means ten multiplied by itself SIX times." (Most incorrect.) Probably I have been forestalled by readers nearer home, but not having the Jan. or Feb. Nos., I don't know. As I still have a little space left, I'm sure priority should be given to an honest mention for Thermion, whose rather sarcastic pen generally produces an amusing page. Best wishes for "P.W." in the future.—J. B. SYMONDES (Begumpet, Secunderabad, India).

[The Experimenters are duly abashed for making this elementary slip.—Ed.]

Station WCW

Sir,—Readers may be interested to know of a fairly new U.S.A. short-wave station which has been operating on 18.9 metres in the evening. It is station WCW, and is owned by "Press Wireless," New York. News is given in many languages, including English. Volume is usually about R8, and signals are very clear and well maintained. Announcements in English are given every fifteen minutes, the usual dialogue being "News in English every hour on the hour!" I would be very grateful if any other readers could help me in definitely establishing the identity of a station which I picked up on the night of September 10th, 1941, about 10 p.m. G.M.T. It appeared to be located in Rio de Janeiro and the call-sign sounded like PPQ. It was on the 25m. band, and there was an interval signal comprising three different notes in quick succession. —W. W. MACVEY (Forestfield).

An L.F. Amplifier

Sir,—I append a description of an L.F. amplifier I have constructed from data collected in "P.W." There is nothing unorthodox in the design, but it may be of interest to other constructors. The first amplifier valve is a Cossor 41 MH, followed by two Cossor 41 MP in class A push-pull.

All the components, except the 8 mF L.F. decoupling condenser, are now, the only snags being the input and output transformers. I had to compromise, with a 1 to 8 input transformer, but quality does not seem to have suffered to any degree.

The output transformer is supposed to be an 8-watt job, the actual ratio being unknown, but it must be near to the correct one (r. 1-50), as it matches up admirably. A 5 megohm volume control was used in the first place, but this did not give enough attenuation, so it was replaced with one of value 1 megohm.

As the rectifier is only running on approximately half load, the electrolytic smoothing condenser was placed between the two fields, but offered no advantage, no hum being present at all. As the amplifier valves are indirectly heated, a Q.M. toggle-switch has been placed in the rectifier heater centre-top (H.T.+) so as to allow the valves to attain their working temperatures, before H.T. is applied across the condensers.

The power pack was built up as a separate unit, being mounted on an extra heavy gauge chassis, owing to the size and weight of the Premier mains transformer (model SF 352) which is a robust job. The speech speaker was mounted on a 3 ft. square board, and gave everything expected of it, the baffle making bass notes audible, which hitherto simply didn't exist.

The whole job is to be mounted in a large gramophone cabinet, which will first be strengthened with heavy boarding. Incidentally, although no fuses are shown these will be incorporated in the circuit, before finally installing in the cabinet.—J. E. WOODWARD (Wolverhampton).

Australian S.W. Transmissions

Sir,—Recently several of the Australian short-wave stations have changed their schedules, and are now "on the air" at the following times: VLQ6 (Sydney), 3.30-3.34 m., 6.05-6.25, beamed on British Isles; VLG6 (Melbourne), 19.59 m., 8.55-09.25 (British Isles); VLQ (Sydney), 31.20 m., 10.25-11.25 (Oceania—in French); VLQ6 (Sydney), 31.32 m., 17.00-17.45 (Western States of North America); VLG6 (Melbourne), 19.59 m., 06.25-07.00 (Western States of North America); Radio Saigon has returned to its old wave
S.W. Listening

SIR.—I am interested in S.W. listening, and use a commercial S.W. two and a 6-valve superhet, with an inverted "L," and a vertical aerial, respectively.

Could you please put me in touch with another person about my own age (19) who is interested in short-wave reception with a view to exchanging logs?

The station W2BCX referred to in your May issue, on the 26 m. band has now been replaced by WRCB, which also operates on the 19 m. band. WLW is also operating on the 19 m. band from 4 p.m. D.B.S.T.

Could you please identify a station on the 25 m. band with a call-sign (indistinct) H1D or H1B, received at 23.30 hours D.B.S.T.—E. E. Hartwell (Southall).

[The transmission you heard on the 25 m. band is evidently from one of the stations in the Republic of Columbia.—Ed.]

Eliminators and Class B

SIR.—The remarks by Mr. S.'W. Marklew, in his letter published in the June issue, about eliminators with Class B and Q.P.P. output circuits, are quite interesting, but open, I think, to question.

The selector 240B has a maximum anode current swing of 50 m.A.s.; it seems only natural that to secure perfect reproduction the anode voltage must be maintained reasonably constant over the wide current variation, i.e., from 4 m. A.s to 50 m.A.s. The resistance of an L.F. choke, such as used in a smoothing circuit, might be anything between 400 ohms and 1,000 ohms. Taking a value of 750 ohms as being representative, and assuming that the choke is in a smoothing circuit common to the H.T. feed to the other valves, a voltage drop of at least 37.5 volts will be produced by the choke alone, when the maximum current for the Class-B valve is drawn. If the output from the eliminator is 120 volts—normal load—it will be reduced to 82.5 volts under the above conditions, and this would not be conducive to the perfect reproduction which S. W. M. claims.—P. Sexton (Greenwich).

Back Numbers Wanted

SIR.—I shall be grateful if any reader will oblige with copies of Practical Wireless for December, 1941, and January, 1942, as I have been unable to obtain these anywhere. I will, of course, refund postage and cost of sending, if you will write to

James Broderick (18, Lenthal Avenue, Grays, Essex).

G. L. Binsley, 17, Buxton Road, Perry Common, Erdington, Birmingham, 23, is anxious to get in touch with any reader who has a spare copy of "Amateur Wireless" No. 646 (October 27th, 1934) for sale. This issue contains instructions for building the "150 Mile Crystal Set."

L. Hadley, 133, Wood Street, Kidderminster, Wores, will be greatly obliged if any reader who has finished with his copy of the April, 1934, issue of Practical Wireless, and wishes to dispose of it, would send his name and address and cost of the journal, including postage, will be gladly sent.

E. M. Keiley, Dormer Cottage, Brackendale Road, Camberley, will be glad if anyone who has a copy of the May issue of Practical Wireless to spare would kindly forward it to him. Postage will be refunded.

Books Received

CORRECTION

The price of the "Radio Handbook Supplement," which was reviewed in the June issue, was given as 2s. This is incorrect, the price being 2s. 6d., or 2s. 9d. post paid.

Look to your future...

TRAINED men get good jobs. Hundreds of our students write to thank us for their successes and increased earnings. Now, more than ever before, men with a good knowledge of radio or mathematics are urgently needed.

Even if you are already in the Forces, or engaged on work of national importance, you should think of your future. A sound technical training is the best insurance against the risks of unemployment.

Our simplified method of Home-Study is a proved success. Even if you know nothing about radio or mathematics, you can master these subjects, and you will really enjoy studying.

Post coupon now for free details of our Home-Study Courses in Mathematics, Radio Calculations, Radio Reception, Radio Servicing, Transmission, Radiolocation and Television.

T. & C. RADIO COLLEGE

29, Market Place, READING

(Post in unsealed envelope, 1d. stamp)

Please send me free details of your Home-Study Courses.

NAME...

ADDRESS...

P. 29...
Conductor Connections

"I have an R.F. radio receiver, which has destroyed two rectifying valves in a short period. I think the common block is at fault, and deciding to replace it, I am now at a loss as to where the leads go. The condenser is a dry electrolytic type and fitted with four leads, a red, black, blue and green. I noted where three of them went, but the fourth—the green one—has beaten me, as it came adrift and I presume is responsible for the trouble. The leads are marked: Red—Com. Pos., Black Neg. 8 Mfd., Blue Neg. 4 Mfd., and Green Neg. 4 Mfd."

If you do not state the type of circuit the receiver uses or the make of the condenser block you are trying to fit, therefore it is rather difficult for us to give any information about the condensers, especially as we cannot trace a condenser having the markings mentioned. It is unusual—unless some special circuit is in use—for a condenser block to have a common positive lead. I am passing through it, whereas in the case of an A.C. mufifier, the common positive lead is not the same as the negative lead of the condenser, and consequently, the various positive connections to be made by means of separate leads.

Speaker Energising

"I have an old energised speaker, designed for a 6-volt accumulator energising. I am building a mains set, and I wondered if this would be good enough to put in the H.T. positive lead with the necessary series resistance to drop only 6 volts across the field. Can you advise me regarding this point?"—H. B. (Crewe).

The field is probably of the type requiring .5 or 1 amp. field current and, therefore, I do not use it in mains work. If you suggest the H.T. current is only of the order of .08 amp. or so and consequently, apart from the fact that the field would not be properly energised, the winding would not large enough to provide normal H.T. smoothing.

Meter Correction

"In measuring A.C. with a single meter plus metal rectifier I have sometimes run into a correction needing. What is the exact amount of this correction? Does it depend upon the resistance of the meter? My meter is 100 ohms and reads 1 milliam full scale. I have a special 1 mA rectifier for use with it."—R. F. (S.E.15).

The correction needed is due to the fact that the meter will give a deflection proportional to the mean value of the current rather than to its root-mean-square value, which is greater than the mean value and a correction is to be applied to it. Therefore, your 1 mA meter would read 1.11 mA, R.M.S. A.C., and the increase in the reading is actually 11 per cent.

S.W.H.F. Choke

"Could you give me an idea what inductance I should need for a short-wave choke to use in a set designed to cover from about 5 to 70 or 80 metres? I thought a former about 8 in. in diameter would be suitable as I have a paxolin former of that size available."—J. K. (Leigh-on-Sea).

An inductance of 170 to 180 mH would be satisfactory, and 100 turns of 26 or 28 enamelled wire close wound would give you a suitable inductance value. If you require a rather high degree of efficiency we would suggest that you split the winding into, say, five sections, each separated by about 8 in.

Unavoidable Hum

"I have built a battery receiver to one of your designs. Every part is as specified and the set is wired in accordance with your blueprint, and the only dimension from your specification is in the values, of which I have used three of my own which are practically identical in characteristics. I have fitted the set in the top part of a radio cabinet and the eliminator is on the lower shelf behind the radio. This is in a loud house all the time and I have moved the eliminator away from the speaker without effect. Is it possible to explain the cause of this hum and how to get rid of it?"—R. H. (Bromley).

The trouble is no doubt due to the eliminator, and this point may be confirmed in the simplest manner by removing the eliminator and using a dry battery for the H.T. supply. If this is done you will know that the mains unit is causing the trouble and that it is not due to earth induction or some other source. If it persists, try a new earth, and also move the speaker leads so that the hum from mains supply wires inside the walls or beneath the floor. If the hum ceases when the mains unit is removed, you will have to modify the circuit, by fitting more complete de-coupling or by earthing the connecting case of the eliminator.

Output Chokes

"I am in some doubt regarding the type of choke needed for an output circuit to feed an extension speaker. In looking at some old catalogues there appears to be a number of chokes all having different ratings, and I should like to know what characteristics I must look for in this particular case."—C. F. (Bogor Regis).

In the output circuit you need a high inductance with a low D.C. resistance. You will find that choke ratings are in inches, with a certain amount of current flowing. The greater the current the lower the inductance. A good all-round value would be 30 henries at the current passed by your output valve. The D.C. resistance should be as low as possible to avoid a serious voltage drop and thus to enable the valve to obtain as much H.T. as possible.

Transformer Ratios

"I have only recently started in the radio game and am confused by the fact that I see L.F. transformers available from 3 to 1 up to 9 to 1 ratio. How is one to determine which ratio should be used in that particular case? Are there any special rules to follow regarding transformers of that sort?"—L. T. (Hove).

The ordinary L.F. transformer is generally only available in ratios from 1.75 to 1 up to 5 to 1. The latter ratio would give the highest step-up and consequently would be used when a minimum number of L.F. stages is in use. Where the highest quality is desirable, you would use the lowest ratio, and in this respect the Ferranti 1.75 to 1 transformer is claimed to give results equivalent to an ordinary resistance-capacity coupled stage, with greater gain. The higher ratios, such as 8 and 9 to 1, are generally for push-pull circuits of the Q.R.P. type, and must, therefore, be used in these particular circuits.

Accumulator Rating

"I have an accumulator which is marked '70 A.H. on slow discharge and 42 A.H. at 100 hour rate.' Can you explain the meaning of this or give me the date of any articles dealing with the subject?"—J. P. R. (Watford).

Accumulators often bear a similar marking, although the wording adopted is often varied. Thus you may find a cell marked at so many ampere-hours at ignition rates and many continuous. In the case of the cell in question the slow-discharge period is rated at 1,000 hours, and it means that if the accumulator is put on discharge over a period of 1,000 hours at the current of 70 amps the current of 2 amps would be given continuously for that period. On the other hand, if discharged over a period of only 100 hours the current given would be 42 amps. It is thus possible from these figures to obtain a rough idea of the hours of service you will be able to obtain from the accumulator with your receiver, the total current drain being, of course, the total consumption of all the valuses you are using.
LOUDSPEAKER REPAIRS

LOUDSPEAKER repairs, British, American, any make, moderate prices.—Sinclair Speakers, 12, Pembroke Street, Copenhagen Street, N.1.

DETECTION.—New theory, circuits, practical experiments. Booklet 2½ p.—D'Arcy Ford, Sandy Street, Exeter.

TALKIES FOR ALL! "Practical Sound Composition for Amateurs," shows you how to adapt any silent projector to sound. 5s. ed. post free from H. G. Benson (PW), 58, Greenfield Avenue, Carpenders Park, Watford, Herts.

MORSE EQUIPMENT

FULL range of Transmitting Keys, practice sets and other equipment for Morse training.—Webb’s Radio, 14, Soho Street, London, W.1. Phone: 6536.

NEW LOUDSPEAKERS

3,000 Speakers, P.M. and energised, 4½ in. to 14½ in., including several Epoch and Sinclair Speakers, 13, Pembroke Street, Copenhagen Street, N.1.

RECEIVERS AND COMPONENTS

COULPHONE Radio, New Longton, Nr. Preston.—Brand new goods only. 5" Pleasey and Goodmans P.M. Speakers with transformer, 2½/-; Electric's, 500 v. 8 mfd., 2/6, 8 by 8 mfd., 8/-, 50 mfd. 50 v., 3/-; Erica 1 watt resistors, all values, 8d. ea. Push back wire, 100 ft., 8/-; S.A.E. for stock list.

VALVES, Components. State requirements.—S.A.E., 2, Waverley House, Illans Road, Liverpool.

THE FLUXITE GUN puts FLUXITE where you want it by a simple pressure. Price 1/6, or filled, 2/6.

FLUXITE LTD. (DEPT. W.P.), BERMONDSEY ST., S.E.1.

RELIEF RADIO SERVICE

9, Pennington Park Road, S.E.11. Phone: R.K. 3381.

All the following goods are now and unused. Purchase Tax has been added where necessary.

Terms: Cash or Order.

B.I. TUBULAR CONDENSERS .002 mfd., 10/6; .003 mfd., 12/6; .005 mfd., 15/6; .007 mfd., 20/-; .009 mfd., 25/-; .012 mfd., 30/-. All 3½/-.

T.T. C. TUBULAR CONDENSERS .002 mfd., 25/-; .003 mfd., 30/-; .005 mfd., 40/-; .007 mfd., 50/-; .010 mfd., 75/-. All 4½/-.

10.6, each 6/-; 25 yl. 8/-; 50 yl. 15/-; 100 yl. 30/-; 200 yl. 50/-. All 9/-.

(T.C.C. TUBULAR CONDENSERS. 0.005 mfd., 5/-; .007 mfd., 7/-; .010 mfd., 10/-; .015 mfd., 15/-; .020 mfd., 30/-. All 1½/-.

(Continued at top of page 371.)
RESISTANCES. Special offer of wire end 1 watt type, 7,000 ohms, 12,000 ohms, 500 ohms, 100 ohms, 3/6 div.; 1.5 meg. 3/6 div.

ERIE RESISTORS. All values, 3/6 watt, 6d. each, 1 watt 10d. each, 2 watt 1/2 each, 3 watt 2d. each. Includes: 3-way butt joints, etc.

VORTEX HOLLOW CORES. Chasis mounting type, 4, 6, 7-pin U.S. 6d. each; 5-7 English Benjamin make 8d. each; Octal, 6d. each, Metal, 6d. Each, 4-pin baseboard type, 2/6 doz.

METAL RECTIFIERS. Made by Standard Telegraph, Littke type Selenium cell. 15 v. 3 amp., 12/6 each.

MAINs DROPPERS. All types in stock. 3/6 amp, 3/6 each. 3/6 amp, 4/6 each. Ferguson, 7/6 each.

ACCUMULATOR CHARGERS. 200/250 v. A.C. input. Will charge 3/6-4 volt accumulator at 2 amps. Super job, 30/6 each.

MORSE OSCILLATORS. Valve type. Operate to perfection for practice. Complete with 2 volt valve, 20/6 each. Morse keys to use with oscillator, 5/6 each.

H.T. PATAK MOTOR. 220-250 volt A.C. input, 150-75 volt output at 30 am. Bargain at 32/6 each.

VOLUME CONTROLS. 3, 3-1/2, and 4 meg., switch, 6d. each. 100 ohms, without switch, 3/6 each. Wire-wound, 10,000 ohms, with switch, 7/6 each.

SPARK Transformers. Good make. 5/6 each.

SOLDIER. 1 lb. reels of real core solder. 3/6 reel.

"JUBILEE" Electric solder iron, 200/250 v.s 60 watts, 12/6 each.

PILOT BULBS. 6.25 v. 3 amp. M.E.S type, 50/6 each.

RECEIVERS AND COMPONENTS (Continued from page 370.)

TUBULAR CONDENSERS. 8 mfd., 300-460 v. about 14/- each. Also 50 mfd. 12 volt, 1/- each. Also 50 mfd. 6 volt, 1/- each.

VALVEHOLDERS. Mazda English octal, 12-pin, 2/6 each. MAINS DROPPERS. 2 1/2 amp, suitable for Lissen, Pye, etc.; Brand new, 3/6 each. Also 3 amp, 6d, each, Ferranti, Maestro, brand, 3/6 each.

MAINs TRANSFORMERS. Brand new, 300-400-500, 120 m.a. 4 v. and 4 v. Also similar giving 0.3 v. and 6 v. output, 15/6 each. Include 6/6 extra for carriage.

PENTODE Output Speaker transformers, brand new, 6 mfd. price, 5/- each.

MICROPHONE screened rubber-covered single flex, heavy gauge, best quality, minimum 12 yrs. for 12/-, Postage 6d. extra.

STAMPED Envelope must accompany all enquiries.

GEETH ELECTRIC, 15, LITTLE NEWPORT STREET, W.C.2. GERRARD 6794.

LONDON CENTRAL RADIO STORES. MORSE KEYS. Don't confuse these with inferior junk. It's a super job. 6/6 each.

VALVES are in short supply. Block of Maple Hill 225/237. Suitable for the 12/6 each. Approximate price to be fixed at 17/6 each. First come, first served.

NEW DIODES. Unusual Mullard RA50, 60 mm. x 12 mm. overall, 6 x. hester at 1.5 amp, 10/6 each.

NEW SWITCHES. Various off and on switches, the new metal-cased push button model, 300 v. working. All brand new and unused. 1 mfd. x 1 mfd, 1/9; 1 mfd. x 1/6.

PRICES - subject to alteration without notice.

Licensed to export to Northern Ireland and Irish Free State.

UNIVERSAL TEMPOVOX chassis, 5 valve, less valves and speakers but with various useful components, not guaranteed complete, 2/6 each.

SPECIAL TERMS to members of H.M. Forces. Our technical advice is at your service.

PRACTICAL WIRELESS

51-52 CHANCERY LANE, LONDON, W.C.2. TELEPHONE: BLOOMSBURY 8866.

ELECTRADIX

MORSE RECORDERS for home training. Service model used in training. Morse direct on tape with dead key, tape driven. A.C. or D.C. G.P.O. transmitting equipment, separate oscillator and key. Price 2/6.

T.C.C. DICTIONARY CREDENZER is the highest note and smallest buzzer made, used by Government, businesses, and has ample platinum contacts. Price 5/-.

O.H.R. Bumpers - fuse protection for telephone and radio. 15/-. Each.

MORSE TRANSFORMERS, Types B.H., 5/-. Type M.F., 2/-. Type S.P., 1/-. Type J., 1/-. Portable model.

REMARKABLE QUALITY. Price 5/-.

ACCUMULATORS, New, 25/- each.

PUSH-PULL INPUT TRANSFORMERS, 50/- each.

PULLING-OUT INDUCTION COILS, 50/- each.

REMARKABLE MURSERS, 25/- each.

F. WALKER LTD.

RECEIVERS AND COMPONENTS

(Continued from page 371).

MINIATURE Rotor switch on porcelain base, 1/2 each.

DOUBLE THROW Panel knife switches, new, 1/9 each.

T.R.A. Fractional H.P. Motors, 225 volts, single phasing devices, 1/10 h.p., 1,400 r.p.m. To clear, 47/6 each.

PAKXON PANELS, Thin panels, 5/6 doz. and 12 doz._cardboard, 1/6 each, brand new, in etched cases, size 3 1/2" x 2 1/2".

PUSH-PULL INPUT TRANSFORMERS, New, nickel iron core, in metal case, size 3" x 1/2" x 1/2". Price 5/6 each.

MORSE KEYS - T.C.C. 5/-. New, 5/-. Each.

TUBULAR TUBULARS, New, 1/6 each.

PULLING-OUT INDUCTION COILS, 50/- each.

REMARKABLE MURSERS, 25/- each.

MORSE KEYS - Tubular Electrolytic 2 mfd. 50 v. working, 3/6 each.

R.P. mfd. 450 mfd. 2 mfd. Block working, 3/6 each.

MINIATURE Rotor switch on porcelain base, 1/2 each.

PULLING-OUT INDUCTION COILS, 50/- each.

MORSE KEYS - Tubular Electrolytic 2 mfd. 50 v. working, 3/6 each.

R.P. mfd. 450 mfd. 2 mfd. Block working, 3/6 each.

MINIATURE Rotor switch on porcelain base, 1/2 each.

PULLING-OUT INDUCTION COILS, 50/- each.

MORSE KEYS - Tubular Electrolytic 2 mfd. 50 v. working, 3/6 each.

R.P. mfd. 450 mfd. 2 mfd. Block working, 3/6 each.

Practical Wireless

BLUEPRINT SERVICE

PRACTICAL WIRELESS

CRYSTAL SETS

- **Blueprints, 6d. each.**
 - 1937 Crystal Receiver, £3.5s. 9d. [PW18]
 - 1937 Crystal Receiver, £3.5s. 9d. [PW19]

STRAIGHT SETS. Battery Operated.

- **One-valve : Blueprints, 6d. each.**
 - 192.2s. 4d. [PW15]
 - 192.2s. 4d. [PW16]

- **Two-valve : Blueprints, 6d. each.**
 - 24.4s. 6d. [PW17]
 - 24.4s. 6d. [PW18]

- **Three-valve : Blueprints, 6d. each.**
 - 18.9s. 9d. [PW19]

PORTABLES

- **Four-valve : Blueprints, 6d. each.**
 - 2.5s. 9d. [PW19]

AMATEUR-WIRELESS AND CRYSTAL MAGAZINES.

- **Blueprints, 6d. each.**
 - 1922 Crystal Set [PW14]
 - 1922 Crystal Set [PW15]

SHORT-WAVE SETS. Battery Operated.

- **One-valve : Blueprints, 6d. each.**
 - 1935 A.C. Single Valve [PW2]
 - 1935 A.C. Single Valve [PW3]

MISCELLANEOUS

- **Four-valve : Blueprints, 6d. each.**
 - 1935 Four-valve Set [PW4]

FREE ADVICE & WIRING COUPON

This coupon is available until July 4th, 1942, and must accompany all Queries and Hints.

PRACTICAL WIRELESS, JULY, 1942.
HAVE YOU HAD YOUR COPY OF "ENGINEERING OPPORTUNITIES"?

Whatever your age or experience—whether you are one of the "old school," or a new-comer to Engineering anxious to hold your position in peace-time—you must read this highly informative guide to the best paid Engineering posts.

WE DEFINITELY GUARANTEE "NO PASS—NO FEE"

If you are earning less than £10 a week, you cannot afford to miss reading "ENGINEERING OPPORTUNITIES"; it tells you everything you want to know to secure your future and describes many chances you are now missing. In your own interests we advise you to write or forward the coupon for your copy of this enlightening guide to well-paid posts, and subsequent matter, NOW—sent (post free) on receipt of 2½d. in stamps.

British Institute of Engineering Technology
Principal: Professor A. M. LOW
409a, Shakespeare House,
17, 18 & 19, Stratford Place, London, W.1

THE B.I.E.T.
IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

TEAR OFF HERE

COUPON

British Institute of Engineering Technology,
409a, Shakespeare House,
17-19, Stratford Place, W.1
Please forward (post free) your Handbook, "ENGINEERING OPPORTUNITIES," and subsequent matter, for which I enclose 2½d. stamp.

NAME..

ADDRESS......................................