The 'making' of the Hallmark 4

—demands Colvern Coils . . . and only Colvern

Designed by Mr. F. J. Camm, the HALLMARK 4 promises to be one of the most outstanding sets of the year. To "make" this brilliant receiver employ Colvern Coils—as specified solely by the designer. The tremendous care with which they are made, and the repeated tests to which Colvern Coils are put, ensures the most outstanding results possible. The fact that they are used by the leading designers and constructors everywhere is a tribute to their superiority. Make no mistake—fit Colvern. As specified for the HALLMARK 4:—One 2 Coil Assembly Type T.D.S. 15'6 per pair.

Write to us to-day for the latest Colvern Booklet, Post Free on request.

COLVERN LTD., ROMFORD, ESSEX.
Makers of the famous FERROCART Coils.
High Fidelity Reproduction

within the reach of all
ROthermel-BRUSH
R 155 "Tweeter"

Here is the new Rothermel-Brush Piezo-
Electric "Tweeter"—a definite necessity in
providing high fidelity reproduction.

"THE WIRELESS WORLD"
(30'11'34) says—

"There are few sounds which are not
better reproduced with this high fre-
quency unit in the circuit, and the
improvement in string tone, oboe,
cymbals and other sounds rich in
harmonics will come as a REVELATION
to most people."

R 155 "Tweeter" can be used with all
moving coil speakers and will provide
a frequency response up to 12,000
cycles.

Overall diameter 5". Depth 1½".

T M C • BRITISH MADE
HYDRA CONDENSERS

The special method of sealing
T.M.C.-HYDRA condensers defini-
tely prevents the penetration of
moisture and so preserves the
high electrical properties of the
condensers.

Write for a copy of the new illustrated
price list.

T.M.C.-HARWELL (SALES) LTD
Britannia House, 233 Shaftesbury Avenue
London, W.C.2. (A few doors from New Oxford Street)
Telephone : Temple Bar 0055 (3 lines)
Made by TELEPHONE MANUFACTURING Co.Ltd.
Cossor for

Uniformity
Efficiency
Dependability

This pentagrid provides a really efficient single-valve frequency changer for battery driven Super-Het Receivers.

Inherently free from harmonics usually associated with frequency changers, it has a very high conversion gain.

These characteristics mean better performance, and because the Cossor 210 PG—like all Cossor Valves—employs the Mica Bridge method of electrode assembly, that better performance is maintained.

FREE!
A NEW WIRELESS BOOK
A 40-page book packed with useful and interesting information—latest circuits—technical terms—how a 'super' works, etc. Send now.

PLEASE USE COUPON

Please send me free of charge, a copy of the Cossor 40-page Wireless Book.

Name
Address

PRICE 18/6
Price does not apply in I.P.S.

Cossor 210 P.G.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament Volts</td>
<td>2</td>
</tr>
<tr>
<td>Filament Current (amps.)</td>
<td>1</td>
</tr>
<tr>
<td>Mod. Anode Voltage (max.)</td>
<td>150</td>
</tr>
<tr>
<td>Screen Voltage (max.)</td>
<td>80</td>
</tr>
<tr>
<td>Mod. Grid Voltage (Variable)</td>
<td>0 to -9</td>
</tr>
<tr>
<td>Osc. Anode Voltage (max.)</td>
<td>150</td>
</tr>
</tbody>
</table>
Two Famous Journals Combine!

This issue introduces a development of the greatest interest to every reader, the greatest development, in fact, in the history of radio journalism. As from this issue, those two important weekly journals, "Practical Wireless" and "Amateur Wireless," which in their respective fields have done so much to foster the interests of technical enthusiasts and home constructors, will as from this issue combine forces under the title of:-

"Practical and Amateur Wireless."

By this fusion of the two papers, the most comprehensive and best-value technical wireless weekly will be made available to the readers of both. "Practical and Amateur Wireless" will virtually be two papers in one, combining all the favourite features of both papers and giving an unrivalled service in news, designs, technical advice, and information of interest to every listener.

The Short-wave Section will be considerably enlarged, and the reader service by post, which has proved so helpful a feature to readers, will be conducted on even more liberal and comprehensive lines than in the past.

Yet, notwithstanding the remarkable value to be given, there will be no increase in price. "Practical and Amateur Wireless" will remain at 3d. and be published every Wednesday. It will be a complete weekly paper for the experimenter, home constructor, and even the general reader interested in the technical side of wireless. Alive, authoritative, and up to date, it will provide through its service of expert writers and designers an indispensable opportunity to everyone desiring to keep abreast of the developments, and more particularly the newer developments, in this fascinating field.

Welcome!

The important amalgamation of Amateur Wireless with Practical Wireless will bring into our ranks many thousands of new readers, and to them we extend a cordial welcome. We hope that the features they have liked have been retained and even amplified. We hope they will look upon Practical and Amateur Wireless as being ready to help them when they are in difficulty or in need of advice. Once again, a cordial welcome.

Special Note to all Readers!

This is the first combined issue of "Practical Wireless" and "Amateur Wireless." In future please ask for "Practical and Amateur Wireless," the Two-in-One Journal — same price 3d. Same Publishing Day—Wednesday. All correspondence intended for the Editor should be addressed to The Editor, "Practical and Amateur Wireless," George Newnes, Ltd., 8-11, Southampton Street, Strand, W.C.2

readers of both papers will like the blending of features presented in this issue. Readers of Amateur Wireless will find that their old favourites will continue to serve the new two-in-one journal. They will find that the features they have liked have been retained and even amplified. We hope they will look upon Practical and Amateur Wireless as being ready to help them when they are in difficulty or in need of advice. Once again, a cordial welcome.

The Moscow Studio Orchestra

Most radio listeners in the United Kingdom are under the impression that the Moscow station spends all its time in broadcasting propaganda. This is far from the fact, as if the condenser dial is turned to 1,724 metres before 9 p.m. G.M.T., excellent vocal and instrumental concerts can be heard. The Soviet Symphony Orchestra, which plays almost daily, claims to be the world's largest assembly of musicians. Until recently it numbered 120, but it has now been increased to 163 instrumentalists.

The Largest Tuning Fork in the World

The new Berlin interval signal—the Morse letter B— is broadcast to the exact frequency of 435 cycles, or the normal musical note A. By this means, orchestras throughout the country, and especially in the provincial radio studios, are able to take this signal as a means of tuning their instruments. The Prague station has also adopted this method, and puts out this note several times daily as a preliminary warning for the time signal.

French Stations Alter their Call

Radio-Paris, since it has been taken over by the State authorities, is acting as the main outlet of the official programmes, and, in consequence, calls itself: "Poste National," although it has been decided in order to make matters perfectly clear that the words: Radio-Paris are still to be tacked on. Radio-Vitus, a private transmitter in the French capital, now disguises itself as the Poste de l'Ile de France. Both Lille and Rennes, in the State network, have adopted Regional names; the former styles itself Radio F.T.T. du Nord, and the latter Radio P.T.T. Ouest. In future, all provincial stations will indicate the district served by their broadcasts.

Readers, Please Note

On page 577 of our issue dated January 12th we illustrated an aeroplane and stated that it had been chartered by Messrs. Peto-Scott Co., Ltd., for conveying kits of Mr. F. J. Camm's $5 Superhet and the Hall-Mark Three to Ireland. Will readers please note that this aeroplane was not chartered by Messrs. Peto-Scott Co., Ltd., but by Mr. W. B. Kay, of 21, South King Street, Dublin, the well-known electrical contractor and wireless specialist. We congratulate this firm on the enterprise shown in this instance, and which they adopted as the only means of having the goods in stock in order to fulfill their customers' requirements.
"Carmen"
ACTS I and II of Bizet's Opera, "Carmen," performed by the Royal Carl Rosa Opera Company, will be relayed for Western listeners from the Pavilion, Torquay, on January 29th. The Torquay Municipal Orchestra will be under the direction of Ernest W. Goss.

"At the Langleys"
ON February 2nd a new Midland feature called "At the Langley" will be broadcast. The idea is that the Langleys (father and son) keep open house at their Birmingham home periodically, and receive and are entertained by people who have something interesting to say or do. The feature will thus have some resemblance to "In Town To-night," although its framework should give it a more intimate character.

"Workaday World"
THIS is the first of a new series of twelve talks for Western listeners under the general heading "Workaday World" which will be broadcast on January 30th. This series will survey the field of industry in Wales and the south-west of England, and it will be opened by a discussion between H. A. Marquand and George Knott under the title "As things are." This discussion will serve to cover a statement of the general situation of industry with a very general diagnosis.

London Music Festival
THE B.B.C. London Music Festival will be held in the Queen's Hall on May 10th, 17th, 24th, 27th, June 3rd, 5th, 12th, 14th. On May 10th, a concert in commemoration of the 250th anniversary of Bach's birth consists of a performance of the B Minor Mass, which Dr. Adrian Boult will conduct. The three concerts on May 17th, 24th, and 27th are to be conducted by Whitaker -Wilson from a contemporary source, and all four concerts in June are to be conducted by Toscanini.

Famous Trials
AN interesting broadcast, the fifth of the "Famous Trials" series, will be given in the Regional programme on January 28th, and in the National programme the following evening. It is the trial of Lady Alice Lisle arraigned for high treason against King James II a fortnight after the battle of Sedgemoor, her offence being that of sheltering two refugees from the Monmouth Army. The trial has been reconstructed by Whittaker-Wilson from a contemporary account given in the State Trials in the Guildhall.

Geraldo and his Band
ON February 4th Geraldo and his band are to give another Non-Stop Dance program which has proved so popular. During the programme listeners will hear Eve Becke, who is well known for her work in "Air-do-Wells" and various musical entertainments, and Peter Burnard, who will sing comedy numbers. Monte Ray is the tenor, and the Review Chorus will be in support.

"Something to Talk About"
AT least two of the well-known Eden Phillpotts' Devonshire comedies had their first performance at the Birmingham Repertory Theatre. The one-act play by this author, entitled "Something to Talk About," will be given by the Repertory Company on January 29th, on the Midland wavelength. Herbert M. Pevitt is the producer.

"Dick Whittington"
SCENES from Reg Maddox's pantomime, "Dick Whittington and his Cat," are to be relayed for Midland listeners from the Kemble Theatre, Hereford, on February Ist. The book is by E. Byam Wyke and the music by Frederick Humprhies. The pantomime has recently had a short resident season at Cheltenham.

Midland Orchestral Concert
PATRICK CORY is the pianist in the Regional programme by the B.B.C. Midland Orchestra on February Ist. H. Foster Clark will conduct, and the programme includes Handel's "Concerto Grossos" in E minor" and Haydn's "Drum Roll" symphony. Mr. Cory, who plays two Scarlatti sonatas and (with orchestra) César Franck's "Symphonic Variations," has been Director of Music at Merchiston School since September, 1932.

"Pleasure on Parade"
FRANK TERRY'S winter concert party, "Pleasure on Parade," will broadcast to Regional listeners on the Strand, W.C.2.

SOLVE THIS!

PROBLEM No. 123
W. Bond had a three-stage valve receiver comprising a detector valve, followed by two L.F. stages, of which the first was resistance-coupled by means of a complete R.C. unit. At first, the set functioned very satisfactorily, but later it had been in use for some time it was noticed that the reaction condenser had no effect, and that the detector valve was proving to be in order by substituting another valve. It was proved to be in order by substituting another one, whilst the tuning and reaction coils were continuous, and the tuner worked properly when placed in another set. What was the cause of the trouble?

Solution to Problem No. 122.
Bond had overlooked the fact that, when considering the optimum load for the valve, the push-pull optimum load of each of the valves must be found. Thus the correct transformer ratio can be determined. The following three readers have correctly solved Problem No. 122 and are being sent to: C. M. Brett, 166, Fitzroy Road, Shilling, S.; W. Wicks, 68, Millfield Road, Ilkeston, Derby; W. Farrant, Sand, Spring Bank, Wigan, Lancs.
In considering the trend of modern valve development the best mode of approach is for the student to understand the defects and limitations of the simple three-electrode valve or triode, as some prefer to call it.

The Triode

In this appliance we have three elements included in a highly evacuated glass or glass and metal bulb. There is first the filament or hot cathode which emits electrons or particles of negative electricity. Then secondly there is the anode or positively charged plate to which the electrons move, and thirdly the control grid which may have a small negative or positive bias given to it, but upon which is superimposed a fluctuating or alternating potential or voltage. When electrons are emitted by the hot cathode they are drawn towards the positively charged anode, but have to pass through the apertures or spaces in the grid to get to the cathode. If the grid has a negative charge the electrons are repelled or hindered from reaching the anode, but if it has a slight positive charge they get a pull towards the anode.

The grid and anode are, however, two conductors near each other, and they form therefore a small condenser said to have "inter-electrode capacity," which may amount to a few micro-microfarads (µµF). The result of this inter-capacity is to tend to make the electron current flowing to the plate from the filament oscillate or fluctuate. This lowers the electron current which interferes greatly with its proper action as an amplifier.

The Screen-grid Valve

Various remedies were formerly applied, but the complete solution of the problem has been the invention of the so-called shielded or screened four-electrode valve. In this a second grid, called the shield, is placed between the plate and the control grid of the valve, and this shield is connected to a point on the H.T. battery so as to give it a positive potential of about half or two-thirds of that of the plate.

The result is to destroy nearly all the capacity between plate and control grid, with all its objectionable results. But the introduction of this shield has another valuable result. If we apply a certain positive voltage to the plate of a triode and keep the grid at zero or at a certain small potential we find that any increase of the positive potential of the grid by a certain small voltage, say 1 volt, increases the electron current, the plate voltage being supposed to be constant. If we keep the grid at constant potential we can make the same increase of electron current by a certain increase of plate voltage. The ratio of the increment of plate voltage to that of grid voltage required to make the same increment in the current is called the amplification factor. For an ordinary triode it may be a number such as 5 to 10 or so.

We cannot increase this amplification by putting the grid and plate closer or increasing the plate voltage, because then we bring in an aggravation of the grid-plate capacity effects. There are also injurious capacity effects due to proximity of the wires or leads from the plate and grid and also between plate and filament.

These are now overcome by putting the plate terminal on the top of the valve bulb and enclosing the whole valve in an aluminium box. Another valuable improvement is to metallise the whole bulb outside by coating it with a deposit of copper or zinc, leaving an uncoated space round the anode terminal and base cap. With such precautions we can bring the plate and control grid closer and use higher plate voltages and secure an amplification factor of 40 to 50 or even 100 easily, and valves can be made with amplifications up to 500 or 1,000. It is these advances which have made possible the receiving sets of to-day with internal frame aerial and yet capable of picking up far distant foreign stations.

Indirectly-heated Valves

Another important valve advance is the indirect cathode heating, which enables us to employ alternating current, drawn from the electric light mains, for the so-called mains receivers. This has been rendered possible by the invention of the dull emitter filament or cathode. One type comprised the now much used thoriated tungsten filament in which thorium was intermingled with the tungsten wire filament. It was found to give a much greater electron emission at a given temperature or conversely to emit adequately at a lower or dull red heat temperature.

Another type consists of a platinum iridium wire coated with barium and strontium oxides. These oxide-coated filaments require only 0.01 watt of power to cause a milliampere of electron emission, whereas the pure tungsten wire required half a watt per milliampere. These improvements render it possible to use a 2-volt accumulator for filament heating. In the indirect emitter or cathode a tungsten cylinder is coated on the outside with barium oxide, and there is a filament of tungsten in the interior, but not touching it, which heated the cylinder by radiation.

Some of the original Fleming valves.
The filament can then be rendered incandescent by an alternating current from a small transformer fed from alternating current circuits of house electric supply. The necessary direct H.T. voltage to the plates is obtained by using a transformer to step-up the house A.C. voltage and there rectifying by a Fleming two-electrode valve having two separate anodes to rectify both phases of the A.C. This somewhat pulsating current is fed into a condenser of rather large capacity—about 4 microfarads—and the charge flows out through an iron-core choke or inductance coil shunted by a smaller condenser called a smoothing condenser. The result is to give a steady direct H.T. voltage which can be applied to the plates.

All-mains Working

The whole receiving set can then be connected to the electric house mains for alternating current supply, and no bother with H.T. batteries or filament accumulator to charge.

In all the best receiving sets one or two screen-grid valves are used in series as amplifiers for the high-frequency oscillations. These valves have then to be rectified or changed into a direct current set, and then any modulations on it are passed on as low-frequency variations of current. We then require in general to amplify these low-frequency changes in current before we can use them to work a loud-speaker telephone. To do this we require to pass from 10 to 25 milliamperes through the loud-speaker, the resistance of which may be from 2,000 to 4,000 ohms. So that we require to put in power of about 0.2 watt, and it may rise to 0.5 watt for loud sounds. If, however, we try to increase the output of the last low-frequency amplifying valve by raising the H.T. voltage the current and it can only be increased again by using very high plate voltage, which is inconvenient or dangerous.

The Pentode

This difficulty is overcome by introducing a third grid between the screen grid and the plate and connecting this third grid to the negative end of the filament or cathode so that we may take a five-electrode valve or pentode which is a low-frequency amplifier of great power output. Hence in modern receiving sets we have three kinds of valve—viz., the screen-grid used for high-frequency amplification, the detector or rectifying valve, and the pentode for low-frequency large power amplification.

The Variable-mu

In addition a fourth variety of valve is called the variable-mu valve. The amplifying power of a triode valve depends, amongst other things, on the closeness of the grid wires. If these wires are close so that the spaces are small through which the electrons have to travel, then a small voltage placed on the grid will make a large change in the plate current. In other words, the characteristic curve will be steep and the amplification large. If the grid spaces are large the amplification will be small.

A variable-mu valve is one in which the grid is so wound that the grid spaces are large at one end and gradually get smaller towards the other. If, then, no bias voltage is put on the grid the amplification is large, but if a gradually-increasing negative bias is given to it the electrons are driven through the large grid spaces in preference to passing through the small ones, and the amplification becomes small. Hence it can be varied at pleasure to suit the loudness of the incoming sounds.

Automatic Volume Control

The important use of the variable-mu valve is at present in connection with the so-called automatic volume control. For reasons too long to state here, the loudness of the received speech or music is liable to vary by what is called fading. To render unnecessary voluntary control by the listener by varying thegrid bias by hand, manufacturers have introduced what are called multiple valves, which rectify the received waves. Each valve is a screen-grid valve, and rectification is effected by the use of such valves in place of the so-called “anode bend” mode of detection which was first introduced by the author of this article in 1908.

By employing a double-filament double-anode Fleming valve it is possible to rectify the carrier-wave and employ it to apply a bias to the grid of a mu valve so as to reduce the negative bias when the carrier-wave falls off in amplitude, and thus increase the amplification accordingly. This reversion to the two-electrode valve as a detector has resulted, then, in the practical achievement of efficient automatic volume control.

Short-wave Transmitting Valves

The most important valve development of the last few years is in the production of short-wave transmitting valves for short-wave wireless or television transmission. In 1919 Barkhausen and Kurz showed that very high-frequency oscillations could be produced with a three-electrode valve by departing from the usual plan of inductive intercoupling of the grid and plate circuits. For passing the electrons coming through, the two grids of this valve must be rendered incandescent by a filament. The method the grid is kept strongly positive by a battery and the plate at the potential of the filament or even negative. The grid and plate are then connected to a pair of parallel wires called Lecher wires with a sliding bridge condenser across them, the position of which can be shifted. Under these conditions high-frequency oscillations are set up, the frequency of which depends on the position of the capacity bridge.

G. Marconi and G. A. Mathieu have developed this plan into a very practical method of generating short electric waves of 30 ems. or less in wavelength by setting up suitable oscillations in a Hertzian oscillatory placed in the focus of a skeleton parabolic mirror.

A.C.A. VALVE TYPE E.472

An air-cooled anode transmitting valve suitable for operation as an oscillator or magnetron in short and long-wavelength transmitters. Used cooled filament. Approximate overall dimensions: 212 x 52 mm. Full-wave rectification. Approximate data:

- Filament volts, 10; filament current, 1.6 amperes; anode volts max., 1,500; anode dissipation, 75 watts; input 250 milliwatts; anode noise, 20 millivolts.
- Maximum anode voltage at wavelengths exceeding 25 metres, Ex. max. = 1,500 volts; at wavelengths exceeding 25 metres, Ex. max. = 1,000 volts; at wavelengths exceeding 75 metres, Ex. max. = 750 volts.
This being our first article in the new journal, we will commence by expressing the hope that all readers will like this special enlarged issue. We must also point out to all those readers who have been good enough to write to us in the past, making suggestions and giving accounts of their experiences with the circuits that we have described, that we hope that their letters will be even more frequent than before. After all, it is very largely the suggestions contained in these letters which indicate to us the kind of experimental work that you would like to describe.

Entirely Home Made

Starting with this first issue of Practical and Amateur Wireless we are going to describe a variety of simple sets that can be made almost entirely from raw material. The reason for this series is that so many readers have pointed out that so-called home construction to-day is not true construction but merely a matter of assembly, and that they would like to have details for the construction of practically every component part of the complete receiver. We fully realise, of course, that many articles have been given in past issues of Practical Wireless on the subject of component building, but in this series a rather different line will be followed: instead of describing several different types of the same component in one article, and then dealing with another component in a later article, the idea will be to deal with the construction of each individual part as it happens to be required in making the sets for which circuits will be given. Although practically every component will be dealt with from the constructional point of view, the circuits will still be arranged in the way that any follower of the articles who wishes to employ some particular part that may be on hand, or who wishes to buy a part that requires more than a moderate amount of time or experience to make at home, may buy that part although making the rest. Thus the reader will have details for connecting, as well as making, the parts.

An Efficient Single-valve

It will be seen from the simple circuit on this page that the first set to be considered is a single-valve of really simple, though very efficient, design. The circuit is quite an ordinary one, but nevertheless one that is capable of giving extremely satisfactory

Results. A dual-range tuner is used, this being wound to cover the two broadcast bands; this is tuned by the customary .0005-mfd. variable condenser, and a .0003-mfd. variable condenser is employed for reaction control. An ordinary three-electrode valve is coupled on the plate-grid system, and the anode circuit of this contains the 'phones—or a loudspeaker may be used when the set is operated near to a broadcasting station.

Making the Coil

The coil is obviously the first item to be tackled, and the drawing (Fig. 2) gives the principal dimensions and winding data for this. It will be seen that a 4in. length of six-ribbed ebonite tubing is used as a former, and that four slots are formed in the ribs to take the pile-wound reaction and long-wave windings. First of all, after having obtained the length of former, the slots should be marked out and made, preferably by using a strip of cardboard marked as shown inset in Fig. 2 as a template. This can be held against each rib in turn while the required slots are made with a small hand file, or by using two or three short lengths of broken hack-saw blade clamped together. Where the constructor has a lathe available, time can be saved by turning the slots, but it will probably be few who are lucky enough to possess a small machine tool of this nature.

After the slots have been made a couple of 1/16in. holes should be made in one of the ribs just below the end slot. Next pass the end of a reel of 32-gauge enamelled wire through the holes so as to anchor it, leaving about 4in. projecting for the purpose of making the terminal connections later. The wire can then be wound into the first slot, winding 60 turns; pass the wire into the second slot and wind a further 30 turns. Make another pair of small holes in the rib, cut off the wire so that it will just thread through these leaving 4in. for connecting up. In another rib make another pair of holes, anchor the end of the wire on the reel and continue to wind on another 30 turns; pass over into the third slot and wind another 60 turns, thus completing the long-wave section. It is very important that care should be taken that all turns are wound in the same direction, if the two halves are in different directions they will tend to "cancel out" and the coil will not function.

The reaction winding can next be tackled by winding 75 turns of the same kind of wire in the
condensation pumps and can hence be used in what are called "bubblers" rendered possible by the discovery of an oil called "Apiezon," which has no sensible vapour pressure at ordinary temperatures and can be closed vacuum tight, but also opened for the finished tuner.

The "bulb" is entirely a steel tube which is mounted on an ebonite base. An ebonite base is used, and two round-headed B.A. screws are tapped into this, placing a soldering tag under the head of each. The next requirement is a short length of springy brass, and this is fitted in the position shown by means of another pair of B.A. screws again tapped into the ebonite, and a soldering tag is again placed under the head of one of these.

This switch gives very positive contact, and the flat on the brass cam provides a definite "on" position.

Mounting the Tuner
Terminal connections for the finished tuner are made by mounting the former on a 3/16in. by 3/16in. ebonite base-plate, as shown in Fig. 3. Small angle brackets, which can easily be made from a strip of sheet brass, are used for attaching the coil to the base, and the screws for these are countersunk on the under-side of the base-plate. The terminal heads are similarly countersunk by making 3/16in. holes half-way through the ebonite from the under-side, after making 3/32in. holes right through. This assumes the use of B.A. terminals, but where terminals of different size or type are employed the hole sizes will be slightly changed. If the terminals used are not fitted with headed shanks it will be necessary to raise the ebonite base by fitting collars or washers over the screws used to mount the tuner on the chassis.

Making a Wave-change Switch
The next requirement will be a three-point wave-change switch, and it might be considered more economical to buy this ready made, although a suitable component can be made very easily by following the details shown in Fig. 4. It will be seen that this is made up from several odd pieces of metal and ebonite, a mounting bush from an old component being used to take the spindle. The latter is a short length of 2 B.A. or 4 B.A. (according to the size of the bush) threaded brass rod, a cam for this being made from a piece of heavy-gauge brass. The cam is secured by three nuts; the spindle is prevented from moving endways by fitting two pairs of nuts that lock together on each side of the brass rod.

Dismountable Valves
Finally must briefly be mentioned the construction of dismountable valves which can be taken to pieces to renew the filament or cathode. The glass or glass-and-metal bulb large power valves are expensive articles, and if the cathode burns out or the grid or plate, the valve is spoilt. Hence attention has been directed to the construction of large high-power transmitting valves in which the bulb is entirely a steel tube which can be closed vacuum tight, but which can also be opened up to replace interior parts. As the metal absorbs air molecules, it is necessary to keep a high vacuum pump continually exhausting this bulb. This has been rendered possible by the discovery of an oil called "Apiezon," which has no sensible vapour pressure at ordinary temperatures and can hence be used in what are called condensation pumps for making high vacua. Such a dismountable valve of 600 horse-power output was exhibited by the Metropolitan Vickers Company at the Albert Hall, London, in 1931. The question whether the dismountable or the metal-glass closed high-power transmitting valve will survive will be determined by initial cost and cost of working, and what unit of power is most convenient. As regards the small receiving valves there does not now seem much alternative, but careful attention will be paid in the immediate future to the production of high-power high-frequency or short-wave transmitting valves for Television and receiving valves also for the same purpose.

Metallic "Getters"
An important improvement in valve construction has been the introduction of metallic "getters" to improve the vacuum. Everyone notes that modern receiving valves have a bright appearance as if silvered on the inside of the bulb. This is due to the introduction of a bit of metallic magnesium into the bulb, which is then volatilized by heat after the evacuation by the pumps has been carried as far as possible. The magnesium vapour combines chemically both with the oxygen and nitrogen atoms of the residual air and produces the extremely high vacua necessary with either thoriated or oxide-coated filaments.

Condensation Pumps and "Apiezon"
Condensation pumps are devices that can be used to create vacuum conditions in a system. "Apiezon" is a type of oil that has no sensible vapour pressure at ordinary temperatures and can be used in bubblers for this purpose.

Dismountable Valves
Dismountable valves are constructed to allow easy access to the filament or cathode. Components such as the bulb, metal, and ebonite are used to create a sturdy and efficient design. Thorough attention is given to the interior parts to ensure longevity and prevent potential damage.

Metallic "Getters"
"Getters" are metallic components introduced into receiving valves to improve the vacuum. They volatilize at high heat, creating a bright appearance inside the bulbs and improving the vacuum conditions required for television and receiving valves.
This Article Explains the Principles Underlying the Use of a Small Supplementary Speaker to Assist in the Reproduction of the High Notes.

It is well known that sound is a wave motion in the same way that wireless radiations, heat, and light are wave motions. But whereas these latter are absolutely independent of any form of matter for their transmission, being disturbances in that intangible medium we call the ether, sound waves can only be propagated through substance. Sound waves are, in fact, mechanical vibrations or movements in the matter itself, so that without the presence of matter there can be no sound.

Producing Sound Electrically

These mechanical vibrations must follow one another fairly quickly to be interpreted by the human ear as sound. If they are slower than this they will not be recognised as sound, but only as movement. For example, if a simple telephone receiver be connected up with a source of electric current as in Fig. 1, the flow of current will cause the diaphragm of the receiver to be attracted towards the magnet; a reversal of the current, on the other hand, will cause a reversal of the movement of the diaphragm as in Fig. 2. Now, if the current while flowing in one direction be gradually reduced in strength to zero, and then slowly increased to its maximum figure in the opposite direction, the diaphragm will gradually move from its position in Fig. 1 to that in Fig. 2. This could be arranged by using an alternating current dynamo as the source of supply and by turning the dynamo slowly. The diaphragm would then oscillate backwards and forwards with each change in the direction and magnitude of the current, but there would be no sound produced. If the speed of the dynamo were now increased until the current changes took place as rapidly as, say, forty times per second then the corresponding vibrations of the diaphragm would produce a low-pitched "burring" sound.

On increasing the speed of the dynamo the vibrations of the telephone diaphragm become correspondingly quicker and the sensation received by our ears is that of a rise in the pitch of the sound being emitted.

Limitations of a Simple Reproducer

By feeding the receiver with alternating current of suitable frequency it will produce any sound from a low "burr" to a high-pitched whistle. It will also, if necessary, produce more than one sound at a time; thus if it is fed with a compound current such as might be found in the output circuit of a radio receiver—one which is, for instance, fluctuating at, say, three distinct frequencies, corresponding to three separate musical notes—it will vibrate in such a manner as to reproduce this compound musical sound. However, no account has been taken of the sensitivity or response of the reproducer. With such a primitive device as that shown here it will be found that the response varies very considerably according to the pitch of the note being reproduced. Thus, if the unit were connected to a wireless set receiving a succession of musical sounds of varying pitch, it would be found that although

Fig. 3.—An elementary form of piezo-electric speaker unit. The two elements are cemented together, and when a P.D. is applied the whole unit warps as shown and operates the cone. Points A, C, and D are fixed.

Fig. 4.—A typical "tweeter" or supplementary speaker specially designed to extend the upper frequency limit of the ordinary speaker. The Rothermel piezo-electric unit is shown here.

Figs. 1 and 2.—Diagrams illustrating the construction of a very simple form of reproducer.
these sounds were each in turn reproduced by the unit, the relative volume of the different notes would be entirely altered. The middle notes of the musical scale would be relatively low in approximately the same relative strengths as the original notes, but the very highest notes, such as the top notes of the piano, would be relatively high. In this way, on reaching the highest audible notes the response would be practically negligible. Coming to the other end of the scale, the very lowest notes would also be reproduced very feebly compared with the middle notes of the scale.

Of course, modern speakers are a great deal more clever than the crude devices depicted in Figs. 1 and 2. Resonance, in particular, has been practically eliminated in the best designs. However, the falling off in response towards either the upper or the lower ends of the musical spectrum, or both, is still apparent in the average unit. However, it is possible to produce a moving-coil instrument at a popular figure which will give an excellent response from quite low down in the scale to about 5,000, or 6,000 cycles, and a great many such speakers are on the market.

This brings us to the "tweeter." This significant term refers to a class of speaker designed especially for the reproduction of musical notes of the upper register, that is to say, those which correspond to frequencies from about 5,000 cycles to, say, 12,000 cycles.

The Piezo-electric Tweeter

The best-known, and probably the most suitable type of tweeter, is a small piezo-electric speaker. An explanation of this type of unit appeared in Practical Wireless dated September 15th, 1934. Briefly, this speaker depends for its operation on the peculiar property of Rochelle salt crystals of distorting when a potential difference is applied between opposite faces of the crystal. By making up a small unit consisting of alternate slabs of crystal interleaved with metal foil electrodes, and cementing the whole assembly together, the cone of the speaker can be operated through the medium of suitable levers connecting it to the unit. On connecting the foil electrodes in the output circuit of the receiver the fluctuations of potential due to the speech or music being received are applied to the sides of the crystal slabs with consequent distortion of the unit, and operation of the levers connected to the cone. (See Fig. 3.)

There are several reasons why a piezo-electric speaker makes a good tweeter. Firstly, it is particularly responsive to frequencies between 4,000 and 12,000 cycles—which is what is required. Secondly, it is more sensitive than a moving-coil instrument, and thirdly, the capacity of the piezo-electric unit has a tendency to bypass the higher frequencies from the main speaker, and so prevent the production of a resonant peak due to the overlapping of the two response curves round about 4,500 cycles.

By using a small diaphragm this type of speaker may be made to give a sharp acoustic cut-off below 3,000 to 4,000 cycles, and thus obviate the necessity for filters to isolate from it those frequencies which it is the job of the main speaker to handle. All that is necessary is to use a simple capacity coupling for the crystal unit. The circuit recommended by the makers of the Rothermel-brush unit shown here is illustrated in Fig. 5. This provides for adjustment of the relative outputs from the main speaker and the crystal unit.

The reality of the reproduction is surprising when a tweeter of this type is used in conjunction with a good moving-coil speaker fed from a quality receiver. Of course, the piezo-electric unit is not the only type of speaker used as a tweeter. Both moving-coil and electrostatic units are adaptable for this purpose. Fig. 6, for instance, shows a matched pair of moving-coil units of the well-known Celestion "tweeter," with volume control. make, of which the smaller unit acts as a tweeter and takes care of the higher frequencies, while the large speaker responds to the middle and lower frequencies. The small speaker with its lighter cone and diaphragm is able to respond much more readily to the rapid fluctuations of current which represent the higher notes. Because of the light weight of its moving parts the electrostatic speaker is also eminently suitable for the reproduction of the higher frequencies. However, the use of an electrostatic speaker as a tweeter in the accepted sense of the word is not quite so simple as in the case of the crystal speaker, since careful matching with the output and more complicated coupling arrangements are necessary.

A Question of Harmonics

It has already been mentioned that the frequency of the top note of the piano is round about 6,000 cycles, and also that many moving-coil speakers are able to respond to all frequencies from a very low note up to 6,000 cycles with a fairly consistent response. It might be argued, therefore, that a speaker with all notes up to the highest on the piano keyboard without any noticeable resonances or falling off in any part of the scale cannot be made perfect, at any rate for the reproduction of musical sounds up to a frequency of 6,000 cycles. However, this supposition is fallacious, because it does not take into consideration harmonics and transients.

If you strike a note on the piano you can say right away that it is C or D, or whatever it happens to be, but the sound you hear is not a single tone, but a combination of tones. Naturally, the main note or fundamental is the most prominent (in the case of middle C this is a note corresponding to 256 vibrations per second), but it has mixed with it certain harmonics, notably the second, fifth, and seventh. These harmonics are all present in all musical sounds, and the term frequencies corresponding respectively to twice, five times, and seven times the frequency of the fundamental. It is largely the number and relative strengths of these harmonics which give the character to different musical instruments, and make it possible to distinguish different instruments playing the same note. Any note of the piano, for example, has quite a different quality from the same note played on the violin.

You will readily appreciate from what has just been stated that there must be a very large range of tones which if attended by, say, only the second harmonic would be deprived of this if the acoustic response of our speaker cut off above, say, 6,000 cycles. Take the note B, for example, which has a fundamental frequency of 496 cycles and accompanied by a certain percentage of second harmonic (990 cycles). This latter frequency would, of course, be right outside the range of the speaker, and would therefore be absent in the reproduction. Looked at from this angle the necessity for the extension of the useful frequency-range well above the usual upper limit of round about 6,000 cycles is apparent. The higher frequencies which it is the tweeter's function to preserve must be present in the output from the receiver. This may sound rather obvious, but there are many receivers, which in contrast with the majority might be called quality receivers, but not designed to give an output covering a frequency range above about 5,000 or 6,000 cycles. A tweeter used with such a receiver would obviously not bring out its fullest extent. However, it is very unlikely that it would be of no use at all, because the upper notes are very rarely missing altogether from the receiver's output, rather are they very feeble in strength compared with those of the middle and lower register.

In this case a very sensitive tweeter such as the one shown in Figs. 4 and 5 could be employed, and if adjusted to its maximum output would in some measure compensate for the falling off in the high-note output of the receiver.
The testing and measurement of various components is of considerable interest to experimental work, besides being an important necessity when anything "goes wrong." And while it is not possible to take accurate measurements of all the parts of the receiver without the use of comparatively expensive and elaborate equipment, reasonably accurate tests can be made of every component by applying a little logic and using nothing more expensive than a good milliammeter.

After all, the majority of the tests consist only of checking for circuit continuity, lack of continuity, or the resistance of certain parts.

Easy Resistance Measurement

Simple tests for continuity, etc., were described in a previous article of this series, where it was shown that nearly every measurement required in connection with the complete receiver can be taken by means of a milliammeter, and several of the methods there described can be applied when dealing with individual components. For instance, if it is desired to measure the value of a resistance, it is only necessary to join this in series with a battery and milliammeter, as shown in Fig. 1. From the simple formula: Resistance (in thousands of ohms) equals the voltage divided by the current in milliamps., it is an easy matter to find the resistance value. For example, if it were found that by using a voltage of 6 a current of 2 milliamps. was recorded, it would be known that the resistance had a value of 3,000 ohms. On the other hand, if a voltage of 9 milliamps. was recorded, the resistance would be known to be one-half of one thousand ohms, or 500 ohms. When one has no idea of the value of the resistance it is better to commence by using a voltage of only about 1½ in order to avoid the possibility of damaging the meter due to the passage of too great a current through it; if necessary the voltage can then be gradually increased until a reading equal to nearly the maximum of the meter is obtained.

In the measurement just described the resistance of the component has not been taken into consideration, but this is unimportant if a moving-coil type of instrument is employed, since the resistance will, in any case, be extremely low by comparison with the resistance itself.

The Resistance "Bridge"

A more accurate method of resistance measurement, however, is by means of a resistance "bridge," a practical example of which is shown in Fig. 2. The only parts required are a 10-ohm variable resistance, a good milliammeter, and a few resistances of known value. Actually, the meter will, in any case, be of this type, but an ordinary one will serve if care is taken. The slider of the variable resistance is set so that the meter gives a zero reading. A certain ratio exists between the various parts of the circuit, and the value of the unknown resistance can easily be calculated. The ratio can best be explained by referring to Fig. 3, which shows the idea in theoretical form. Here, we have the equation:

\[
\frac{R_1}{R_2} = \frac{R_x}{R_3},
\]

or

\[
R_x = \frac{R_1 \times R_3}{R_2}.
\]

In practice it is unnecessary to consider the actual resistances of the portions of the variable resistance marked R1 and R2, and these may be taken as proportional to the distances of the slider from each end of the resistance. Thus, the value of the unknown resistance can be found by taking a certain fraction of the known resistance, R3. In making the "bridge" a scale should be made to fit the variable resistance, and this should be divided equally round its circumference, and a pointer should be fitted to the knob. If marks are made to indicate the ends of travel of the pointer the distances between it and the ends can easily be observed.

Measuring Higher Resistance Values

This method of resistance measurement is particularly suitable for use in conjunction with components of comparatively low resistance—say, 100 ohms—and can therefore be applied to coils and similar components. When parts of higher resistance are concerned it is necessary to use a potentiometer having a maximum value of about 100,000 ohms and to increase the voltage of the battery to about 100. The potentiometer must not, of course, be of the graded type, and must be suitable for carrying a small current. Special care...
must be taken when using the higher voltage, because if the slider of the resistance were near to one end, or if the resistance being measured had a value of only a few hundred ohms, there would be a danger of the milliammeter being burnt out. Because of this it is wise to take the precaution of starting with a very low voltage and gradually increasing it until the needle of the meter begins to show some sign of movement. When the slider is on one side of the “balance” point, the needle will move below the zero mark on the scale, and when it is on the other side it will give a positive reading. Careful adjustment of the potentiometer will bring the needle to the exact zero position.

As an example of the simple calculation required, suppose that the slider had to be set to the seventh point on a ten-point scale, and that the value of the known resistance was 5,000 ohms; the value of R.x would be 7/3 x 5,000, or approximately 12,000 ohms. Although, as stated above, a milliammeter can be used, it is much better to use a centre-zero galvanometer, and one of these can be bought quite cheaply from many of the dealers in Government surplus goods. There is also a centre-zero milliammeter made by Bulgin which costs 7s. 6d.

Capacity Measurement

The measurement of capacity can be carried out on similar lines to the method just described in connection with resistances, but an even simpler method for condensers of .0005 mfd. or less is to connect the condenser in parallel with the tuning condenser in order to tune to a station received when the unknown condenser was in circuit. In that case the capacity of the additional condenser would have to be added to the "difference" capacity in determining the value of the unknown component.

A Capacity “Bridge”

Condenser capacities can also be measured by means of a "bridge" circuit similar to that described in connection with resistance measurements, but a calibrated variable condenser is then required and the circuit becomes as shown in Fig. 3. A 10,000-ohm potentiometer is also used, and the ends of the bridge are connected to a high-note buzzer and battery, whilst the galvanometer used for resistance measurement is replaced by a pair of "phones."

The calibrated variable condenser and the potentiometer are adjusted until there is no sound to be heard in the "phones", or until the buzz is as weak as it can be made. That is, the position is found at which the hum is faint, and such that the movement of either the potentiometer or variable condenser in either direction increases the sound intensity. The formula for calculating the value of the unknown condenser (C.X) after making the adjustments referred to is:

\[C.X = \frac{C \times R}{R + 1} \]

The calibrated variable condenser mentioned above might simply be an old, but reliable, condenser of the circular-plate variety, and the capacity can be taken as being proportional to the amount of rotation of the dial. This, of course, is not very accurate, since the minimum capacity of the condenser will not be zero, but a measurable capacity. For most normal requirements, however, this method of reckoning will be good enough.

When more accurate readings are required it will be desirable to obtain a calibrated laboratory condenser, but this is normally an expensive piece of equipment, although sometimes available at a very "cut" price from dealers in surplus gear. It will be appreciated that, as shown, the capacity "bridge" is suitable for values up to about 0.005 mfd. only, but higher capacities can be dealt with by using a fixed condenser of known value (or two or more condensers in parallel) in place of, or in addition to, the calibrated variable.

COMBINED THERMAL-DELAY SWITCH AND HUMDINGER

The accompanying sketch illustrates a combined thermal-delay switch and humdinger which has been used for some time with success. The sketch itself is self-explanatory, but a word might be said about the construction of the thermal element. This is constructed of 1/16in. ebonite and aluminium of similar thickness riveted together. The distance between the heater and the thermal element should be about 1/4 in., and the contact on the latter should consist of a screw with a pair of lock nuts so that it is adjustable.

If you want a Blueprint of any particular Receiver —from a Crystal Set to a Multi-Valve Receiver, consult Our Blueprint Service!

Full Details on Page 692
January 26th, 1935

PRACTICAL AND AMATEUR WIRELESS

AGAIN CHOSEN

by

MR. F. J. CAMM

Stentorian Senior, type PMS1. The largest W.B. "domestic" model. The exclusive new magnetic material gives enormous sensitivity. New Whiteley speech coil brings a crispness of attack hitherto unobtainable. 100% dust protection. Oversize cone. "As near perfection as I believe perfection possible," says Mr. Camm. CHASSIS 42/-

Stentorian Standard, type PMS2. Exclusively specified by Mr. Camm for his "1934 Superhet," "All Pentode III," and "Hall-Mark III." Similar to Senior Model but smaller. New "Stentorian" magnet material. New Whiteley speech coil. Like the Senior model, it has the "Microlode" feature for accurate matching to any output, whether as principal or extension speaker. Now specified exclusively for the "Hall-Mark Four" battery model. CHASSIS 32/6

Stentorian Baby Model PMS6. A midget speaker of an amazing performance. Magnet and special coil similar to Senior and Standard models, but smaller. Wonderfully sensitive for its size. Provided with tapped transformer for power, pentode, or Q.P.P. output. CHASSIS 22/6

W.B. "Stentorian" energised speaker, model EM2/PW. Specially designed by W.B. engineers to Mr. F. J. Camm's specification for his amazing new set—the "Hall-Mark Four." Each speaker individually tested in the W.B. laboratory to ensure the particular characteristics required. New Whiteley speech coil. Special transformer exactly matched to the "Hall-Mark Four" output. CHASSIS 29/6

Write for the new W.B. Stentorian leaflet.

EXCLUSIVELY SPECIFIED
FOR EVERY

HALL-MARK FOUR MODEL

Mr. Camm's increasing following is largely due to his independent and forthright views on questions of technical design. He guarantees his sets to operate satisfactorily if the components which he has personally tested and chosen are used.

One thing, however, he has in common with other leading designers of to-day—he prefers W.B. Speakers, and specifies them exclusively for every important set.

The amazing new magnetic system and the revolutionary "Whiteley" speech coil will bring to your set an additional volume and a new startling realism which you must hear to believe. Ask your dealer for a demonstration today. You will be astounded.

EXCLUSIVELY SPECIFIED FOR EVERY

HALL-MARK FOUR MODEL

"Frying-pan music" is a so-and-so nuisance

CUT THE CRACKLE OUT OF RADIO

Lots of technically-sound readers are getting on to something which even to them is quite new—the realisation that, in Interference, our old friend atmospherics is guilty only to the extent of about 5 per cent.

The big noise in radio this season is that little thing of no-noise—the Belling-Lee Suppressor, pretty well everything sold at the shops for short of infrequent half-a-guinea atmospheres.

There is a book on the subject, at 6d. per copy; and a free booklet. Use the coupon, making your own choice.

Tick off square which applies:

BELLING & LEE LTD
CAMBRIDGE ASTRID ROAD, ENFIELD, MIDDX.

Please send the Free booklet [] I think I'd better have the book. Here's 6d. remittance.

NAME

ADDRESS

Send for catalogue today.

Tungsram Electric Lamps Works (Gt. Brittain), Ltd.,

Factories in London, Austria, Czechoslovakia, Hungary, Italy and Poland.
IN response to the many thousands of requests we have received during the past six months for a powerful, high-fidelity, yet simple and cheap receiver, we have great pleasure in illustrating and describing on following pages Mr. F. J. Camm's latest design. Publication of this design synchronizes with the completion of the Grid Scheme, which will carry electricity into the remotest parts of the British Isles. Here is a receiver worthy of this latest development, and which is superior to many high-quality commercial receivers costing 20 guineas or more. The Free Blue Print given with this issue shows the position of every wire and every component. Even the beginner can make it. As usual, the A.C. Hall-Mark Four is backed by our Free Advice Guarantee. Readers may thus build it secure in the knowledge that service in the best interpretation of that term exists to help them should difficulties arise.

The First of our New "Q" Receivers
PRACTICAL AND AMATEUR WIRELESS

January 26th, 1935

BUILDING the

Our New High-quality Receiver with Many Striking Features. Follow the Blueprint to Ideal Radio and Enjoy the Reliability and Super Performance of a Hand-made Job. Battery and Universal Mains Models to be Produced. For List of Special Features see page 656

By F. J. CAMM

The grim-looking pylon which you see on the previous page symbolises the network of arteries and veins which thread their way all over the country and feed the remote towns and villages with the form of energy formerly only the prerogative of the few. Thousands of miles of these overhead cables suspended on thousands of pylons feed the whole country with electrical power at the enormous electrical pressure of 166,000 volts. The grid scheme is now virtually complete, and the gradual conversion of the electrical supply system from D.C. to A.C. is now in progress. It would appear from official figures that there are equal proportions of battery users and mains users, and if, as it is expected, the provision of cheap electricity will result in the addition of hundreds of thousands of more homes being supplied with electricity, we may reasonably expect to see the proportion of users of battery-operated wireless sets decline. That is an argument which has been advanced many times during the past five years, but now that the Central Electricity Board has concluded its series of ugly pylons and seemingly provided an excellent means for the paralysis of the country from the power point of view in the time of war, it remains to be seen whether this will, as a fact, be the case.

Personally I am inclined to think so, for the correspondence I am receiving asking for mains receivers grows in volume almost daily. Practical Wireless from its commencement has always catered for the battery user when it has issued a blueprint of a new receiver. It seemed to me an opportune time, now that the Grid Scheme is practically complete, to issue a free blueprint of a mains receiver—the first in the history of the paper. Notwithstanding the immediate and continued success of my three-valve Superhet series recently concluded in this paper, I have received many hundreds of letters from mains users who do not want a superhet and have asked for a reasonably-priced quality receiver capable of large undistorted output and capable of receiving the majority of worthwhile transmissions. Here, in the A.C. Hall-Mark Four, is the result of my experiments in this direction.

It is perfect. But in order that the battery user may have the advantages which this receiver gives, I am also producing a battery version of it, as well as a model using universal valves. These two latter models are introduced on later pages, and full constructional details will be given in the next two issues of Practical and Amateur Wireless.

A word to the D.C. user. I do not propose to produce a special D.C. version of

F for Fidelity of Reproduction
SPECIAL FEATURES

Quality and Large Undistorted Output at Low Cost—more than 2 watts undistorted output.
Ideal for use as Radio Receiver or Radiogramophone.
Ample Selectivity for normal requirements—due to use of aerial coil with loose-coupled winding, and use of efficient H.F. transformer with tuned secondary.
Smooth Reaction Control which increases selectivity when required.
Graded Volume Control by Variable-mu Potentiometer.
Ample Decoupling in all Circuits.
Absence of Mains Hum because of thorough decoupling, and use of Large-capacity Electrolytic Condensers.

The A.C. Hall-Mark Four. When I published the design for my £5 Three-valve Superhet I penned a note asking all those readers who would be prepared to make a D.C. version of it to acquaint me with the fact before I devoted space to such a design. Some hundreds of readers wrote to me, and on the strength of their letters the design duly appeared in these pages. Up to the moment, however, I am assured by those who ought to know—namely, the suppliers of the special parts incorporated in it, that rather less than twenty of the D.C. superhets have been made up. From all points of view, therefore, it would seem that it is undesirable to devote further space to D.C. receivers. I preserve an open mind on the question, however, and I shall be interested to hear from readers who operate D.C. sets. In any case I imagine that the universal model should suit them.

In designing the Hall-Mark Four I had not in mind a receiver which could be described as a world circle, but yet in fact it has turned out to be, for on a recent evening, when compiling a log of stations received, I found that its performance was superior to that of a well-known commercial receiver costing thirty-five guineas.

Just a word or two about quality receivers. The public has unfortunately taken as its unit of comparative value the cheap commercial receiver which you can buy for 5s. down and so much a week. You cannot expect real radio for a few pounds if you are considering commercial receivers. As I have said many times before, you cannot mass-produce wireless sets to give uniform results, and it is possible that in purchasing the finished product you may be unlucky. The hand-made product, on the other hand, has everything in its favour. To start with it must be cheaper, and it must be better; having built it you know your way about it and even though you may know little of the theory of wireless you will be able to put your finger on any spot which may be giving rise to trouble.

It has been something of an eye-opener to me to learn that so many readers are interested in high-fidelity reproduction, and in my past designs I have concentrated rather on reasonable quality of reproduction to satisfy ordinary needs and have indeed sacrificed a certain amount of the refinements of quality in order to gain selectivity and sensitivity. A quality receiver of the type which my readers have asked for postulates at once
The sturdiness and reliability of a hand-made job!

A well-tried circuit, and in the A.C. Hall-Mark Four this may briefly be described as including a variable-mu H.F. stage, leaky-grid detection, and push-pull output. A fair amount of misconception exists regarding push-pull amplification; this receiver is capable of giving 2½ watts undistorted output, but unlike a single output valve capable of fairly high output, which is usually accompanied by blaring, distortion, and lack of quality, with push-pull the high output is there without it being obtrusive. Also, this system of amplification permits of a much finer degree of control, for it is seldom desirable to push the valves to their peak limit. There is always plenty of reserve, so that you can build up the weak stations and "fade" the more powerful ones.

Another great advantage is that it is ideal for use as a radio receiver or radio gramophone, and there seems to be a growing tendency among readers to make the combined instrument. There is ample selectivity for normal requirements, due to the use of an aerial coil with loose-coupled windings and the use of an efficient H.F. transformer with a tuned secondary. The reaction is delightfully smooth and also functions to increase selectivity when required. The volume control is smooth and graded, and there is ample decoupling in all circuits. Hence, there is no trace of mains hum. The use of large-capacity electrolytic condensers assists towards this end.

Now, whenever one attempts to produce a high-quality receiver, the price question looms large and is likely to have a discouraging effect. It discouraged me, until whilst discussing the design with prominent trade designers I secured their co-operation in the matter of special low-priced components. Hence, in the A.C. Hall-Mark Four you have a receiver which is superior to so-called quality receivers costing thirty guineas or more. An examination of the circuit on later pages reveals no intricacies of design, no stunts, and no components which cannot be obtained at all good wireless shops throughout the country. Any reader experiencing the slightest difficulty in obtaining components should immediately get into touch with me, giving the name of his local dealer. I understand that some readers experienced difficulty in obtaining parts for my last receiver in spite of the precautions I took to see that adequate supplies were available. Investigation shows that in many cases the delay was due more to the local dealer than to anyone else, for whilst a local dealer can make several pounds profit on a complete receiver, he is not likely to be anxious to push the sale of wireless components on some of which his profit may only amount to a few pence. This does not, of course, apply in every case, for I have compiled a list of some hundreds of wireless dealers who carry reasonable stocks of all wireless components. Hence my request that if difficulty is experienced in obtaining parts the reader should get into touch with me forthwith.

Clean, simple lines which give the A.C. Hall-Mark Four a professional finish, with the reliability of a hand-made job.

P for 2½ watts Power Output!
holes for the valve-holders it must be remembered that the MVS/Pen valve-holder requires a 1/16 in. hole, whereas the other three require 1/4 in. holes. Secure the valve-holders centrally in the holes to avoid the possibility of short circuits from the pins to the metallised baseboard. This latter, by the way is supplied already assembled, and Messrs. Peto-Scott Co., Ltd., supply them ready drilled to order.

There is ample space between all of the components to avoid interaction, and therefore each individual part may be mounted before wiring is commenced. The reaction condenser and the potentiometer are mounted on adjustable brackets; the exact dispositions are shown on the blue print. The quickest method of locating the exact position of each component is to lay the blue print over the chassis and prick through, thus marking the position of the screw-hole.

A special warning is necessary in connection with the resistance strip, or group board. This considerably simplifies construction, since most of the resistances and certain of the tubular condensers can be fastened in and soldered at one operation. The warning is that care must be taken to space all resistances to avoid the possibility of their ends touching and thus short circuiting.

The two twisted leads for the speaker must be connected to the long red and black leads protruding from the speaker. The three twisted leads marked A, B, C, on the blue print must be connected to terminals P, HT, and P respectively of the transformer attached to the speaker.

It will be noted that the two leads which are shown connected to the large fixing nuts of the two 8-mfd. electrolytic condensers must be passed through the upper surface of the baseboard so as to make effective contact with the condenser casing. It is important, however, to see that the casing of C15 does not make contact with the metallised baseboard. An inspection of the blue print reveals that the wiring is quite simple.

I shall, of course, be glad to advise readers who may strike a difficulty, and next week shall give operating instructions.

(Continued on page 659)
CIRCUIT DIAGRAM OF F. J. CAMM'S A.C. HALL-MARK FOUR

LIST OF COMPONENTS.

Values of components in the above circuit are as follows:
- R_1, 50,000 ohms
- R_2, 25,000 ohms
- R_3, 2,500 ohms
- R_4, 2,000 ohms
- R_5, 10,000 ohms
- R_6, 2,000 ohms
- R_7, 200 ohms
- R_8, 300 ohms
- R_9, 20,000 ohms
- R_{10}, 10,000 ohms
- R_{11}, 10,000 ohms
- R_{12}, 350 ohms
- R_{13}, 350 ohms
- C_1, 0.001 mfd.
- C_2, 0.005 mfd.
- C_3, 0.0015 mfd.
- C_4, 1 mfd.
- C_5, 1 mfd.
- C_6, 1 mfd.
- C_7, 0.001 mfd.
- C_8, 250 mfd.
- C_9, 0.002 mfd.
- C_{10}, 2 mfd.
- C_{11}, 5 mfd.
- C_{12}, 25 mfd.
- C_{13}, 25 mfd.
- C_{14}, 4 mfd.
- C_{15}, 8 mfd.
- C_{16}, 8 mfd.
- R_{14}, 2,000 ohm potentiometer

One input push-pull transformer, type DP.36—Varley.

Twelve 1 watt fixed resistances, 50,000 ohms, 10,000 ohms, 25,000 ohms, 10,000 ohms, 20,000 ohms, 250 ohms, 750 ohms, 250 ohms, 350 ohms, 350 ohms, 5 megohms, 20,000 ohms, and 2,000 ohms—Amplion.

Three tubular fixed condensers, 0.1 mfd., 0.1 mfd., 0.1 mfd.

Two fixed condensers, 0.001 mfd., 0.0002 mfd. (type 65).—Dubilier.

Three electrolytic condensers, 25 mfd., 25 volt working (type 0218).—Dubilier.

Two electrolytic condensers, 8 mfd., 500 volt working (type 0218).—Dubilier.

One fixed condenser, 500 volt working, 4 mfd. (type LBC).—Dubilier.

One screened H.F. choke, HFPJ.—Wearite.

One ON/OFF switch, type 5.30.—Bulgin.

One 10-way group board.—Bulgin.

One 2,000 ohm potentiometer, type VC.26—Bulgin.

One mains transformer—B.T.S.

One H.T.10 metal rectifier—Westinghouse.

One 5 amp. fuse and holder—Microfuse.

One twin socket strip, with plugs marked A. and E.—Belling-Lee.

Four valves, MVS/Pen, 4MHL, 4MP, 4IMP.—Cossor.

LIST OF COMPONENTS.—Continued.

One mains energised loudspeaker, type "Practical Wireless"—W.B.

Two fixed condensers, 1 mfd., 2 mfd., type BB—Dubilier.

Two component brackets.—Peto-Scott.

Four valve holders, 1 7-pin, 3 5-pin.—Clix.

SPECIAL FEATURES OF THE A.C. HALL-MARK FOUR

Quality and Large Undistorted Output at Low Cost—2½ watts undistorted output.

Ample selectivity for normal requirements—due to use of aerial coil with loose-coupled winding, and use of efficient H.F. transformer with tuned secondary.

Smooth Reaction Control which increases selectivity when required.

Graded Volume Control by Variable-mu Potentiometer.

Ample Decoupling in all Circuits.

Absence of Mains Hum because of thorough decoupling, and use of Large—capacity Electrolytic Condensers.

Ample L.F. amplification due to the use of high-ratio push-pull transformer.

Absence of instability in output stage due to the use of grid anti-oscillation resistances, and grid-circuit by-pass condensers.

January 24th, 1935

PRACTICAL AND AMATEUR WIRELESS
If your set buzzes and crackles, here's the way to crystal clear reception.

The Exide High Tension Accumulator gives you the programme truthfully. It adds nothing, no background of buzz or crackle, no harshness. It makes your set more stable.

Its voltage does not fluctuate. It gives silent, steady service to the end of its discharge. And it can be easily, cheaply re-charged—no new batteries to be bought. You listen at less cost with the Exide H.T. Accumulator.

If you prefer a dry battery for H.T., get Drydex the Exide dry battery.

"Still keep going when the rest have stopped"

Reliability cannot be too strongly stressed. One faulty component and the whole set is unreliable.

Westinghouse Metal Rectifiers do not break down.

Their excellent performance is maintained for as long as the set itself is in use... and longer. That is why an H.T.10 is specified for the "A.C. Hall-mark Four."

Send the attached coupon and 3d. in stamps for full particulars and circuits.

WESTINGHOUSE METAL RECTIFIERS

THE WESTINGHOUSE BRAKE & SAXBY SIGNAL CO., LTD., 82, York Road, King's Cross, London, N.1.

COUPON

Please send me "The All Metal Way 1935" for which I enclose 3d. in stamps.

NAME ...

ADDRESS ...

Pract. 26.1.35.
Meantime, it is worth while remembering that with some push-pull valve combinations it may be necessary to fix tone-control condensers between the terminals marked "See Text" on the push-pull transformer. The value of these condensers should be .0001 mfd. each, and they are connected across the two halves of the push-pull transformer secondary—between G and GB terminals.

Free Assistance

For the benefit of the many thousands of new readers who will be perusing Practical and Amateur Wireless this week for the first time I would stress the point to which I have referred so many times in past issues of the paper, that my advice and assistance are yours for the asking. Free of charge, on any matter relating to this set. Such advice and assistance are cheerfully rendered on one understanding only—namely, that you rigidly adhere to the specified parts. There is a very sound reason for this insistence. You cannot expect me to make thirty or forty receivers using the A.C. Hall-Mark Four circuit incorporating in each of them different valves, coils, and condensers I know the performance of my receiver. If you fail to achieve the same results as I have obtained it can only be because you have made a mistake in the wiring, have used a defective component, or have not used the parts I specified. It is in your own interests to use those parts. If for some reason your receiver develops a fault and you write to me explaining the symptoms I am usually able to locate the fault for you straight away. If you have used coils made by "Smiths" when I have specified coils made by "Jones" the fault may be anywhere, and I am unable to help. I am one of the few (probably the only) journalists who freely render advice and assistance in this way, and I devote a considerable amount of time to the analysis of readers' difficulties.

Next Week!

Constructional Details of the BATTERY PUSH-PULL HALL-MARK FOUR and the UNIVERSAL MAINS HALL-MARK FOUR

E for Ease of Building and Operation

Help Yourself

In helping yourself to success by using the parts specified, you are also helping me. I realise that I have a responsibility to my readers when I invite them to spend money in making a receiver of my design. They, in turn, have a duty to themselves to perform. I go to a lot of trouble to make the design right. Don't do one of those who go to a lot of trouble to make it wrong! If you are technically able to vary a design of mine it is fair argument to assume that you should also be able to make it work. If you are unable to locate a fault you are not able to vary a design, and I do not think you will quarrel with the logic of that argument. I stress this point because I received letters from readers who say something like this: "I have built your latest receiver using absolutely the same parts as you did, with the exception of the coils, the valves, and the transformer. These I had by me, and I know they cannot be the cause of the trouble because they worked perfectly in my last receiver." Now a reader who writes to me in this strain is guilty of wrong reasoning; because the Ford gearbox works perfectly well on the Ford, it by no means holds that it is suitable for an Austin or a Morris. In a wireless receiver as with a car you cannot take the units from five different receivers and expect to incorporate them in someone else's design with satisfactory results. A lot of time is spent in balancing out inefficiencies, in getting rid of stray capacities, in stabilising the receiver, in choosing the best arrangement of the components, and in general polishing up of the design so that it is reasonably foolproof. It is for this reason that I have never specified alternatives, with the one exception of my £5 Superhet when readers experienced difficulty in obtaining components.

A Recent Experience

The other evening I visited a reader's house for the purpose of adjusting his Three Valve Superhet which he said he had made to my design. He had taken every liberty with it, he had not used a Metaplex chassis, he had not used ganged coils, he was using a cheap Pentagrid valve of foreign make, he had altered the layout, the fixed condensers were a collection of odds and ends, and the design looked like an imitation of a Heath Robinson creation. I was able to achieve for him some sort of result. I had taken the precaution of bringing with me a two-metre long model which I connected to his aerial, earth and batteries. A look of keen delight suffused his countenance as he noted the remarkable difference. In building my A.C. Hall-Mark Four, therefore, I hope you will not go and imitate this particular reader's performance.
Anti-Microphonic Chassis Valve-holder

To make an ordinary chassis valve-holder of the bakelite "plate" type anti-microphonic, saw four "slits" in the plate, as shown in the accompanying sketch. Although simple, this dodge has a very noticeable effect in "cleaning up" the performance of a set, without being detrimental to the appearance of the valve-holders. A small washer is placed between the valve-holder and the base-board at each screw hole when screwing down.—R. M. Ross (Alness).

A Super-sensitive Microphone

The accompanying diagrams show the method of constructing a very sensitive microphone. The materials necessary are: a parchment loud-speaker cone, a baffle board, cabinet, or other means of mounting the completed microphone, a small microphone button, two cone washers, and a few odd pieces of wood.

To construct the framework, measure the perpendicular height of the cone from the base to cone washers, add it in, to this, and cut two pieces of wood about 3in. wide to this measurement. These pieces form the small projecting shelves, as illustrated in diagram. Screw or glue these two pieces to the baffle, just clearing the diameter of the cone.

Next attach the cone to the baffle in the usual way by adhesive tape, etc., and cut a piece of wood to act as a bridge piece for holding the microphone button. In the centre of this piece of wood drill a 1in. hole for the lug of the "mike" button, which should be held firmly in place. About lin. from this hole drill another one for a terminal, which is connected by a piece of very thin flexible wire to the front electrode of the mike button.

Assemble the button and terminal on to the bridge piece, and then screw the bridge piece across the two projecting shelves, and if the hole for the mike button has been drilled accurately, the front fixing pin of the button should project through the hole in the cone washers. The fixing nuts on the button should now be tightened up on to the cone washers, and the mike is then complete. For the connection to the back electrode a wire should be soldered on to the central lug which projects through the wooden bridge piece.

The great feature of this microphone is its non-directional properties, and its sensitivity is remarkable.—V. Walker (Caf ford).

A Dual-purpose Switch

Here is a suggestion whereby a simple push-pull switch used for the L.T. circuit can also be made to switch on the current from the mains when an H.T. eliminator is used in a set with battery valves.

The combined switch is made by the addition of a spring contact mounted in such a position so that it is operated by the rod of the push-pull switch.

A piece of thin strip brass, similar to that used on a 4½-volt flash-lamp battery, is used for the spring contact by bending it to an L shape to form a foot for screwing it on to a base. The other contact strip is made of slightly stronger brass, and is bent in the same manner. This strip is about ¼in. shorter than the other one, and at the top it is bent as shown. These strips are mounted on a piece of insulating material, such as ebonite, and are set in such a position so that the end of the rod on the push-pull switch breaks the contact when pushed in, and at the same time cuts off the L.T. supply. The long spring can be insulated from the push-pull switch rod by slipping a rubber sleeve over the end of the spring.—J. W. Mather (Blackpool).

A Convenient Test Box

It is sometimes difficult for periodic tests to be made in multi-valve sets with regard to plate voltage and current, so the writer made a box on the following lines. A suitable-sized box was constructed to accommodate all necessary tappings to plates and screens of valves used in the set, all of which were taken to one row of sockets in the box, and the H.T. leads to the other, as shown in the sketch. A switch connecting the two sockets together was mounted between them. The simplicity of testing with this arrangement will be obvious, the meter being inserted between the sockets with the switch in the "off" position—W. A. Hines (North Wembley).
PILOT AUTHOR KIT EXACT TO SPECIFICATION

WARNING

DON'T BE MISLED. PILOT AUTHOR KITS CONTAIN THE IDENTICAL PRODUCTS AS USED BY MR. F.J. CAMM IN BRAND NAMES AS WELL AS VALUES. THAT'S WHY IT IS THE ONLY KIT BACKED BY MR. F.J. CAMM'S PERSONAL GUARANTEE.

A.C. HALL-MARK 4

KIT "A" Cash or C.O.D. £7:6:6

or Yours for £13/6/6 and 11 monthly payments of £1.

Author's Kit of first specified parts, including: Ready drilled Metaplex chassis, less valve, cabinet and speaker.

KIT "B" £17:6:6, or £10/6/6 down and 11 monthly payments of £1.

Including set of 4 specified valves, less cabinet and speaker. Cash or C.O.D. Carriage Paid. £11/6/6, or £7/6/6 down and 11 monthly payments of £1.

KIT "C" £21:6:6, or £12/6/6 down and 11 monthly payments of £1.

Including set of 4 specified valves, less cabinet, less speaker. Cash or C.O.D. Carriage Paid. £15/6/6, or £9/6/6 down and 11 monthly payments of £1.

Battery Hall-Mark 4

KIT "A" £4:5:0, or £2/6/6 down and 11 monthly payments of £1/6/6.

Author's Kit of first specified parts, including: Ready drilled Metaplex chassis, less valve, and speaker.

Battery Hall-Mark 4

1 I.B.S. Ready Drilled Metaplex Chassis, 121/2x10x31/2in. and 11 monthly payments of £1/6/6.

1 Polar 2 gang Midget condenser, with V.P. dial and 11 monthly payments of 19/6.

1 Colvern 2 coil assembly, type T.D.5.

1 Varley Input Push-Pull transformer, type D.P.36

1 Set of 4 specified valves

Peto-Scott De Luxe Walnut A.C. Hall-Mark 4

1 Standard Cabinet, less speaker. Cash or C.O.D. Carriage Paid. £13/6/6, or £8/6/6 down and 11 monthly payments of £1/6/6.

BATTERY RECEIVER KIT

1935 EDDYSTONE KILODYNE

BATTERY MODEL. Kit of Edison醛 335

Kilodyne 4 (battery model) components, including that ready-drilled aluminium chassis and four Cells to cover wavebands between 110-430 metres, less Valves and Payments of £1, Cash or C.O.D. Carriage Paid. £18/6/6, or £10/6/6 down and 11 monthly payments of £1/6/6.

Universal Hall-Mark 4

KIT "A" Cash or C.O.D. £7:6:6

Carriage Paid. £13/6/6, or £8/6/6 down and 11 monthly payments of £1.

Author's Kit of first specified parts, including: Ready Drilled Metaplex Chassis, less valve, cabinet and speaker.

KIT "B" £17:6:6, or £10/6/6 down and 11 monthly payments of £1.

Including set of 4 specified valves, less cabinet and speaker. Cash or C.O.D. Carriage Paid. £11/6/6, or £7/6/6 down and 11 monthly payments of £1.

KIT "C" £21:6:6, or £12/6/6 down and 11 monthly payments of £1.

Including set of 4 specified valves, less cabinet, less speaker. Cash or C.O.D. Carriage Paid. £15/6/6, or £9/6/6 down and 11 monthly payments of £1.

PETO-SCOTT ADAPTABLE

CONVERTS YOUR SET TO A MAGNIFICENT RADIOGRAPH.

High French polished, Chromium free terminals. All joints mortised and screwed. Ready to take your set, speaker, or amplifier as you choose, to your own Gramophone cabinet. With ready-drilled C.A.D. chassis, ready to be fixed to your own domestic furniture at a slight extra cost.

Oak or Mahogany £16/9/6, Cash or C.O.D.

47/6

Card or Postage 2/6 extra.

Peto-Scott Scanning Discs

Light gauge aluminium. Centre hole is an identical block bakelite moulding, fixed white to give true stereo effect, and interlaced with 2 long thin waxed threads of black thread. Printed lines perfectly punched to ensure uniform scanning without perceptible lines. Made in 3 sets and ready for immediate use. 12½ins. 7/6.

Send for Television Lists—

ATLAS ELIMINATOR

Model 120/10. A.C. 200/250 volts 50/100 cycles. Two lampages: 10/10 or 20/20 max. at 200/200 volts. Trickle charger incorporated 2 volts. 50/100 cycles. Sold only by existing dealers in 2 monthly payments of £2/2/6. Cash or C.O.D.

£2/2/6, or £1/1/6 down and 11 monthly payments of £1/1/6.

WEARITE
REGD. TRADE MARK.

COMPONENTS
FOR THE
"HALL-MARK" RECEIVERS

THE "A.C. HALL-MARK FOUR"

The SPECIFIED
WEARITE H.F.
CHOKE
Type H.F.P.J.

Totally screened:
Small overall dimensions.
Effective impedance, 100-2,000 m.
Self Capacity, 7 mufds. (approx.)
Inductance, 220,000 m.h.
D.C. Resistance, 770 ohms (approx.)
Size: 1 in. x 1 in. x 1 1/2 in. high.

PRICE 2/-

THE WEARITE Q.V.G.
VOLUME CONTROL.

"THE UNIVERSAL
HALL-MARK FOUR"

The SPECIFIED
WEARITE
"Q" x "T"
AIR-CORE
COILS

Medium-wave secondary
coils wound with special
stranded wire into low-
loss bobbins. Long-
wave winding in special
wave form to minimise
losses.

Type "Q" complete with switch 7/6
Type "T" complete with switch 7/6

A constant inductance Choke
40h., 100 m.a. soundly
constructed throughout.

Type "Q" complete with switch 7/6
Type "T" complete with switch 7/6

THE SPECIFIED WEARITE
L.F. CHOKE
H.T.P.10
Price 17/6

Make sure of a "good earth"
with this
WEARITE
EARTH TUBE

POST THIS COUPON TO-DAY

COUPON

Please send me
a copy of Cata-
logue 6334

To Wright & Weaire, Ltd.,
740, High Road, Tottenham, N.17.

Name ..
Address

PRAC. 26/1/35.

Send for circuits.
And Still They Come

I HAVE just been trying out a triple-valve valve of the very latest pattern. It is made by Mazda, and does about half a dozen jobs all at once. It also has nine pins on the base, as well as a cap mounted on top of the bulb. Although the connections appear rather formidable at first, they are not so complicated once the wiring has been taken in hand. The parts are made of fewer materials, I am not quite sure in favour of these multi-pin affairs. All the same I must confess a very strong liking for the Mazda AC/DC—give it its due for it is in a most remarkable manner, giving not only second detection (or first if you like), but also delayed automatic volume control, inter-channel noise suppression, and first L.F. amplification. Even this is not all, for, by a very ingenious arrangement, it gives apparently sharper tuning than is normally obtained in connection with A.V.C., and so makes it quite unnecessary to use a visual-tuning indicator.

[The valve referred to above will shortly be described in our pages. En.]

Very Practicable

THE triple-diode-triode, although comparatively new to the constructor, has been in use since last Show by R.I., who have proved its value in modern superhetes. From this it is evident that it is a really practicable job, and that there is no loss in efficiency in this instance by combining what really amounts to about four valves in a single circuit.

Single or Multiple

DESPITE the obvious efficiency of practically all of the multiple valves, I am still very much in favour of using one valve for one function in the set. When you have been performing several functions any slight falling-off in efficiency (such as might be noticed when the valve is becoming old and the cathode losing its emittance) causes the performance to suffer considerably. On the other hand, if a single-purpose valve starts to feel rather " wonky " the impaired performance is by no means so noticeable. In addition, diodes and other single-purpose valves were to be widely used it should be possible to make them quite cheaply, so that a replacement would cost a very few shillings, instead of something like £6. 6d., as at present.

What is " Home-made "?

I WAS talking to a young wireless enthusiast the other day, and he proudly showed me a new—and very elaborate—five-valve superhet, that he said he had just made. The sight of this expensive-looking instrument reminded me very forcibly of the early wireless days, say at least, some twelve years ago—when I made my very first five-valve. But what a difference! I actually made mine, condensers, coils, transformers and all, and the young chap had assembled a few beautifully-made parts that he had bought ready-made. And he had paid just about as much for the whole lot as I had paid for the raw materials for making a couple of variable condensers, a set of coils, and two L.F. transformers.

I tried to console myself with the thought that I probably gained far more pleasure from my home construction than did the owner of the "poot" five-valver-to-day. Yes, perhaps they were "good old days"—and perhaps they weren't. I believe I get as much fun out of wireless now as I did fifteen years ago.

Real Construction

I WOULD not make my own components to-day for anything, but I always recommend all budding enthusiasts to do so. You can never know sufficient about the construction and behaviour of the parts if you have not at least attempted to make them yourself. It is not always a very great saving in the way of cash—in fact, if you have not at least attempted to make them yourself. It is not always a very great saving in the way of cash—indeed, in most cases, performance is slightly more expensive—but it affords a considerable amount of inexpensive experimenting, besides teaching a great deal.

A message from SIR JOHN REITH, Director-General of the B.B.C., to PRACTICAL AND AMATEUR WIRELESS

"I have followed the progress of PRACTICAL Wireless and have been interested in the renewed interest of readers. The B.B.C. is not unmindful of the help it gets from wireless journals such as yours."

Undistorted Output

WHY is it that folk nowadays always seem to be clamouring for more and more volume? Perhaps it is because they have found that great output does not involve distortion, although they have become so accustomed to hearing music without listening to it that they want it forcing into their ears before they can appreciate the stuff. Four watts undistorted (I mean undistorted) in an average-sized room is enough to drive me crazy, but I know people who say that they cannot tolerate anything less than this. Give me about half a watt from a well-designed receiver which gives real quality and I will not thank you for any more. If someone does "turn up the wick", it seems to me that the sound becomes annoying. It seems to me that the only way to enjoy a programme of either music, speech, or anything else is to listen to the loudspeaker; when the volume level is too high there is a tendency not to listen, and merely to allow the matter to percolate into the skull. Before "heaping coals of fire" upon my head, I would ask those who have strong disagreement with my views to try the experiment of reducing the volume level, at the same time being quite sure that they are not losing the words doing so, and to listen to a full evening's programme.

English as She Should Be Spoke!

NOW that we have an excellent means of making speech visible I suggest that all this phoebus about pronunciation

PRACTICAL AND AMATEUR WIRELESS
sent me cheques and postal orders in the presumption that Thornton merely has to issue the order and it is so.

In this way I have been able to help many readers, but I hope I shall not have too many calls of this nature. One reader even sent me the amount less 33 1/3 per cent. discounted for the bank, as he thought, I was able to obtain the bank's services! Nor did he enclose postage! This reader wanted me to save him some money, as well as to go to a certain amount of trouble on his behalf. I, of course, returned his money.

A New Unit

I NOTICED a reference the other day in P.A.W. that I am in the situation of having served both papers, and experience therefore no strangeness in occupying a new platform under a new editor. The editors of both papers I know, in very well indeed, and I appreciate that in PRACTICAL AND AMATEUR WIRELESS I shall not be a prophet without honour.

This journal is now the most powerful in the country, and without waggling the old school tie too much it pleases me to know that I have played a part in the sunbursts which have led to this important amalgamation.

Radio and Spiritualism

I HAVE every respect for the religious beliefs of others, but when I read that radio and spiritualism are allied, I kick. The fact that we know no more about the "life" of the rays than when the world began seems to indicate that it is not a matter which will yield to scientific investigation. Personally, I have always felt that scientists and spiritualists—they strike such a pathetic spectacle and really show an amazing lack of scientific knowledge. Spiritualism will always, I suppose, be the plaything of the charlatan and the third-class philosopher like who like to call themselves scientists, but let us keep radio—an exact science—out of it.

What is Efficiency?

A CORRESPONDENT with a technical background who have the necessary technical training, sent me an eight-page letter bristling with sticky questions which I spent a couple of hours in answering. His final query was whether I wanted to know how to measure the efficiency of a wireless set. Of course, there is the text-book method of expressing the ratio between the input and output. Suppose, further, that one was capable of receiving thirty stations free from interference, and of entertainment value from the point of view of the receiver, only half that quantity; obviously the latter receiver, from the point of view of the receiver, is only 50 per cent. efficient as the former, although from an electrical point of view their efficiencies are equal. Now taking the case of two other receivers one of which gives only 1 watt output for a 40-watt input, whilst the second gives 2 watts output for a 40-watt input. Again, according to the electrical theory, the latter is the more efficient receiver, and yet it is quite possible for the first to be far more efficient from the point of view of quality, range and number of stations received.

To make a receiver efficient from an electrical point of view quite often it will destroy its efficiency from the truly wireless point of view. I leave you to wrestle with these opposing doctrines.

The Price Problem

I LEARN that the prices of all high-tension batteries are now considerably lower. All home constructors will welcome this latest move which, coupled with the recent reduction in the prices of valves, speakers, condensers, and cabinets, should result in a considerable uplift in interest in home-constructed receivers which are always vastly superior to the average cheap commercial job. There is all the difference between a sound home-made job and the commercial mass-produced competitor.

PRACTICAL WIRELESS was the only paper to make a statement regarding the prices of components, and the Leader Three series of receivers was inaugurated to place home construction on a price-competitive basis. As a result of these price reductions the sales of components for the home-constructed market have increased during the past year by no less than 20 per cent.

Keltic or Seltic?

THE B.B.C. have recently issued a booklet prepared by one of their committees which tells you that the word combat is to be pronounced *cumbat* (surely a Scottish pronunciation!) and that Celtic is *Seltic*.

Personally, I prefer, and shall use, the more correct English pronunciation! Meantime, of what use are our dictionaries, all of which are supposed to define meanings and give pronunciations according to common usage? Would not a committee composed of Englishmen, Welshmen, and Scots (equal proportions), under an English chairman, save a lot of argument?

British Broadcasting Monopoly in Greece

FOLLOWING many attempts to establish a broadcasting system, the Greek Government has finally been given the sole right to install and exploit such stations to the Marconi Company, for a period of twenty-five years. The Lucerne Committee allotted three channels in Greece, namely, 499.2 metres (Athens), 373.1 metres (Saloniki), and 233.5 metres for some town in the Southern part of the country. The first station—Maron—a will-water—will be built in the neighbourhood of the capital and should be in operation towards the autumn months; relays or stations of lower power will follow later.
Dubilier Electrolytic Condensers have an unrivalled reputation for reliability, resulting from the intensive research continually taking place, and expressed in the finished product, being universally recognised as the very latest design in Condenser technique. Their constant use by radio manufacturers, designers and constructors is undeniable proof of their sterling qualities.

8 mfd. 500 D.C. peak voltage £6 each.
4 mfd. 500 D.C. peak voltage £4.6 each.
Specified for the

"UNIVERSAL HALL-MARK FOUR"

The POLAR 'MIDGET' TWO-GANG CONDENSER

Steel frame and cover. Ball-bearing shaft. Small overall dimensions. Trimmers operated from top. Matched within 1 per cent. or 1 mmfd. whichever is the greater: 2 x .00055 11/-
also made in
Three-Gang 16/6
Three-Gang Superhet for 110 or 465 ke. I.P. 16/6

—and the POLAR V.P., HORIZONTAL DRIVE

Slow motion with vertical moving pointer. Scale calibrated in wavelengths. Moulded Escutcheon. Lampholders 6/6

Send for NEW POLAR Catalogue

WINGROVE AND ROGERS LTD.
188/9, STRAND, LONDON, W.C.2.

Polar Works: Old Swan, Liverpool.

IMMEDIATE DELIVERY.

YOU ARE SAFE in using Hivac Valves for your
HALL-MARK BATTERY FOUR

Mr. F. J. Camm specified "HIVAC" for his "Hall-mark 3."

HIVAC KIT OF VALVES

Purchasers of this Hivac Kit of Valves for the HALL-MARK BATTERY FOUR are guaranteed entire satisfaction.

The KIT contains:
1 HIVAC VP 215 (4-pin)
1 HIVAC D 210
2 HIVAC Y 220

Complete Valve KIT for £1 15 3

IF any delay locally, we will send KIT C.O.D. immediately on receipt of postcard request.

HIGH VACUUM VALVE CO., LTD.

Telephones: Clerkenwell 3591 & 8064.

THE COLISEUM CATERS FOR LARGE PARTIES OR SMALL FAMILY GATHERINGS VISITING THE THEATRE.

TEAS, SNACKS, LUNCHEONS,
HIGH TEAS and SUPPERS

SERVED IN THE

COLISEUM TERRACE RESTAURANT AND TEA ROOMS

MATINEES

Preceded by Luncheon or Snacks or followed by High Tea or Snacks.

EVENING PERFORMANCES

Preceded by High Tea, Dinner or Snacks, or followed by Supper or Snacks.

The Manager will send a Representative to you upon Application.

LONDON'S OUTSTANDING SUCCESS

LEW BLACKBIRD'S of 1935 ENTIRELY NEW PRODUCTION with the greatest array of Talent ever presented in Revue.

DAILY 2.30 and 8.30

Children under 14 Half-price to all parts except Balcony.
THE TWO-IN-ONE PUSH-PULL AMPLIFIER

A Simple Battery-operated Amplifier that can be Used with any Type of Battery Receiver when a Large, Undistorted Output is Required

The Construction
It will be seen from the list of components accompanying this article that very few parts are required, whilst the photographs give testimony to the utter simplicity of construction of the amplifier. It can also be seen from the wiring plans that very few connections indeed are called for, and those that are used are short, straight, and easily followed, even by the tyro in home construction. The first requirement is the metallised chassis, and this should be drilled to receive the two chassis-mounting valve-holders as well as the terminal-socket strip that is used for the input and output connections. The holes for the valve-holders are 1 in. in diameter and can easily be made by means of a centre bit and a brace; there are four holes for the terminal-socket strip, these being 1 in. in diameter, and they can be made with a twist bit or a shell bit as desired. There are a few other holes for the connecting wires, but these are only about 1/4 in. in diameter and can be made with a mechanic's brace and twist drill, or even with a large bradawl. These holes should not, however, be made until the components have been mounted on the chassis. With regard to the placing of the parts, it should be explained that the exact positions are not critical, although it is desirable that the two transformers should be mounted with their axes at right angles in order to avoid any possibility of interaction; this would be most unlikely in any event, since both transformers are thoroughly shrouded. It should also be made clear that it is not always necessary to employ the output transformer specified, provided that the speaker employed is fitted with a push-pull transformer designed to match a pair of small battery power.

We believe that the interest that will be shown in the various versions of the Hall-Mark Four will be so great that many readers who already have a good battery-operated receiver will wish to construct an amplifier for increasing the output. It is partly for this reason, and partly because the demands of readers for a really good and simple amplifier have been so insistent, that the unit illustrated on this page has been developed. There is no doubt that push-pull amplification is in many respects better than any other arrangement, and we are quite sure that those readers who have not yet tried this system will wish to do so immediately they realise the popularity that the Hall-Mark series is sure to attain.

Simple Construction
The unit illustrated is obviously extremely simple, and it is certainly not very expensive to build, although the parts used are of the highest possible quality. Those whose experience of wireless goes back a number of years will remember that Ferranti were one of the pioneers of push-pull in this country, and it is therefore fitting that their input and output push-pull transformers should be specified in this instance. These components are the result of a considerable amount of research work in L.F. amplifier technique, and there is no doubt that they are as good as money can buy.

The advantages of push-pull amplification have been set out in these pages on more than one occasion, but during the last few years the attention of the constructor has been focused on class B and Q.P.P. to the detriment of ordinary push-pull. In form it is better than either of the two "economy" modifications when real quality is of paramount importance. We fully realise that economy must be considered, but the current consumption of the push-pull amplifier in question is so low (largely due to the use of efficient modern valves), and the price of H.T. batteries has been so much reduced, that we feel fully justified in reviving interest in push-pull.

A push-pull arrangement is inherently good from the point of view of quality, and for this reason it makes quite unnecessary the use of various tone-compensating and tone-control systems.
Reserve your Presentation Volume—now

40 Maps in Full Colours and Other Special Maps
12,000 References Complete and up-to-date
Cloth Bound 14 3/4" x 11 3/4"
Actual Size

This superb Atlas for only 3'6 and 8 Gift Tokens
SPECIAL OFFER TO ALL READERS

NEWNES MODERN WORLD ATLAS

EVERYBODY, nowadays, needs a good Atlas—one that is authoritative and up-to-date, planned on a large scale and printed in clear type for easy reading and capably indexed for speedy reference. Newnes MODERN WORLD ATLAS is all that—and more. Money could not buy a better Atlas. It has been produced, regardless of expense, by Messrs. Bartholomew and Son, Ltd., the world-famous map-makers and official Cartographers to H.M. the King.

Everyone interested in World affairs (and who is not?) needs this great Atlas for the help it gives in enabling him or her to read and discuss the daily newspaper intelligently.

Every Business Man keen to make the most of his opportunities needs it for its invaluable information on new markets and old.

Every Young Man and Young Woman on the threshold of life and Every School Boy and School Girl needs it, too.

Knowing this, it is with real pride and satisfaction that we offer Newnes MODERN WORLD ATLAS to readers of Practical and Amateur Wireless on such generous terms as to bring it within the reach of all.

Don't delay—reserve your copy at once by using the forms below.

OUTSTANDING FEATURES INCLUDE:

Forty coloured large-scale maps and several maps each devoted to a special subject.

A map showing the boundaries of Europe before and after the Great War, a fascinating Chart showing routes covered by all the great explorers of the Globe by land and sea.

Two 'Radio' maps are given—one showing the ramifications of World Broadcasting and the other its development in Western Europe.

The map showing the Postal and Commercial Air Routes is of particular value, as also is that showing the wonderful Electrical Grid Distributive System of Great Britain.

Other maps deal with Shipping Routes, World Cable Routes and the main Roads of Great Britain.

The accompanying letterpress gives the area, population and capitals of all the countries of the World, and an extensive list of the Cities of the World with their population. Two interesting tables give the heights of the highest mountains and the length of the greatest rivers of the World.

The national Flags of the different countries are given in the borders of the appropriate maps.

The whole Atlas has been produced with the meticulous care characteristic of the firm entrusted with its execution. Special alphabetical index.

CONDITIONS

If you are not a regular reader of Practical and Amateur Wireless, place an order with your newsagent to-day.

Affix to the Subscription Voucher which we post to you on receipt of your Reservation Form 8 Gift Tokens cut from Practical and Amateur Wireless for 8 consecutive weeks commencing this week [see page]. This week the Gift Token appears on the last page of text, bottom left-hand corner; in subsequent issues it will appear on the back cover.

When your Subscription Voucher is complete, send it, together with a Postal Order for 3s. 6d., to include the cost of registration, postage, packing, insurance, etc., to Practical and Amateur Wireless Presentation Department, and your volume will be despatched to you immediately. No reader may qualify for more than one copy of this Atlas.

This offer applies to persons residing in Great Britain and Ireland. Readers in the Irish Free State must pay any duty imposed. Any news reader, this offer must be accompanied by a stamped addressed envelope for reply.

DON'T DELAY—POST TO-DAY!

RESERVATION FORM

PRACTICAL AND AMATEUR WIRELESS

Presentation Department,
14, Southampton Street, Strand, London, W.C.2.

In accordance with the conditions of your special offer, please send me a SUBSCRIPTION VOUCHER on which to qualify for my copy of Newnes Modern World Atlas.

Reader's Name

Full Address

Newagent

Address

Signature

Leave Blank

Fill in this form and the label on left in block letters. Stamp the label as directed and post both of them in an unsealed envelope (1d. stamp only required).
valves. When the speaker is not fitted with a push-pull transformer, however, the Ferranti output transformer should certainly be used.

Wiring Connections
The method of connecting the various parts is made quite clear by the large-size drawings, and it need only be explained that the letters on the drawing, near to the various holes, are only for identification purposes, and show the corresponding holes on the under-side and on top of the chassis. The connecting wire may be of the insulated "push-back" variety or of any other kind intended for set wiring.

The terminal-socket strip is marked L.S. and Pick-up, but the two sockets with the latter designation are for the input from the receiver, and should therefore be connected to the speaker terminals on the set. The other two—marked L.S.—should be connected to two of the three speaker terminals provided on the output transformer, the terminals giving the appropriate ratio being chosen. With regard to the ratio, it may be explained that the most suitable one depends upon the loudspeaker employed. When this is intended for use with a small power-output valve it will be found best to use the two terminals marked 1.6:1, but if the speaker is intended for use with a pentode it will generally be found best to use the terminals giving a ratio of 1:1. The third ratio (2.7:1) will generally be required, but it can always be tried in order to choose the most efficient matching in practice.

Battery Connections
The amplifier is provided with its own G.B. battery, and there are three G.B. leads. Of the latter one is the positive connection, and should thus be connected to the positive socket of the battery; the other two are from the two halves of the secondary winding on the input transformer, and will normally require a voltage of minus 6. By having two leads, however, it is possible to match the two valves exactly, and the negative wander plugs should therefore be moved about from the 41-volt to the 71-volt sockets until best results are obtained. It might even be found best to apply the same voltage to both, in which case one plug can be removed and the two leads connected together. Generally, however, it will be rather better to bias both valves separately, so as to secure exactly correct matching.

It might in some instances be noticed that slight instability occurs, and this will be evidenced by a slight, high-pitched whistle. Should this be experienced, fixed resistances of 10,000 ohms each should be included in the grid leads to the two valves at the points marked with crosses in the circuit diagram.

When connecting the amplifier to the receiver, the two spade terminals marked L.T.+ and L.T.- H.T.—should be joined to the corresponding terminals on one of the valve-holders in the receiver, the terminal marked H.T.+ being connected to the high-tension positive terminal on the receiver. When these connections are employed the receiver switch will be operative on the amplifier as well. The amplifier can readily be detached from the receiver without modifying the wiring of the latter, and is therefore valuable in that it can quickly be brought into operation when additional volume is required. It need scarcely be added that the unit is equally suitable for use on either "radio" or "gram.," but it is not intended to be operated directly from a pick-up. The reason for this is that the voltage output from a pick-up is not sufficiently high to load the push-pull stage. Nevertheless, the amplifier may be used in this manner when only a comparatively small output volume is required.

LAY-OUT & WIRING PLANS FOR THE TWO-IN-ONE PUSH-PULL AMPLIFIER

![Wiring Diagram](https://via.placeholder.com/150)

LIST OF COMPONENTS

1. Metalax Chassis, Illn. by 8in. with 2in. runners.
2. Ferranti 4-pin Chassis-mounting Valve-holders.
3. Ferranti Push-Pull Input Transformer, type A.F.5x.
4. Ferranti Push-Pull Output Transformer, type O.P.M.6 (not required if speaker is fitted with suitable transformer).
5. Pair Silver Pw. 3 G.B. Battery Clips.
6. Clix Terminal Socket Strip, marked P.U.
7. and L.S.
8. Clix Wander Plugs, marked G.B.+ G.B.- and G.B.-
10. Ferranti Valves, type L.2.
11. 9-volt G.B. Battery (Exide).

The simple nature of the wiring is clearly shown in the above wiring plans. **H.T.+** and **L.T.+** for the push-pull amplifier are marked given here.
The Assuan Dam, completed 1902, is 1½ miles long, 100 ft. thick, 130 ft. high, contains 1,000,000 tons of masonry, and has 180 sluices passing 15,000 tons of water per second. When full, it contains 1,000,000,000,000 tons of water, affecting river's depth for 140 miles. By control of the sluices, vast tracts of land are irrigated.

Resistances of specific values are included in a set for very similar purposes. If they vary, or are inaccurate, they will pass too much or too little current, so unbalancing your set that you do not get the good results you rightly expected. OHMITES are absolutely consistent and dependable, being made exactly to their stated electrical values, but because of their unique construction they have the added advantage of a wide margin of safety.

“BETTER THAN WIRE WOUND”

Available from stock in all values from 50 ohms to 5 megohms.

If your dealer is unable to supply, order direct from:

GRAHAM FARISH LTD
MASONS HILL, BROMLEY, KENT.
Short Wave Section

REACTION ARRANGEMENTS FOR SHORT WAVES

An Article Describing the More Uncommon Forms of Reaction Circuits.

By G. W. DAVEY

WHEN using a set other than a superhet the success of short-wave reception depends upon easily-controlled, smooth reaction, which should gradually build up a signal in volume, the valve finally going gently into oscillation without any sign of "ploppleness." In view of this, "swinging-coil" reaction has naturally fallen into disfavour, and in this article are described some of the other forms of reaction circuits which work well and which are worth trying out.

A Popular Circuit

The most popular form of short-wave circuit is probably that known as "throttle control." This is shown in Fig. 1, and Fig. 2 shows a modified form giving a very stable and efficient form of control. In order to be able to stop reaction effects, the value of the reaction condenser must be high, compared with that of the .0001 mfd. by-pass condenser, hence the specified value of .0005 mfd. It will also be found that the capacity of the reaction condenser must be increased to stop oscillation, and that these condensers are obtainable so well-made and reliable that they are recommended that one be used. Another form of throttle control is shown in Fig. 3.

This circuit should therefore be of use provided an extension spindle is used on the reaction condenser and preferably also an earthed screen interposed between the condenser and the tuning dial. Once again modifying the circuit, we arrive at that shown in Fig. 4, an arrangement where the aerial input is fed into the anode circuit. This has not been tried by the writer as a short-wave, but again it suffers from the defect that, in this case, neither condenser is at earth potential, and extension spindles and screening will be required on both tuning and reaction controls.

The "Armstrong" Circuit

It is felt that in an article of this nature some mention should be made of the "Armstrong" circuit. This is a super-regenerative receiver designed to make the most of reaction effects. It is well known that a set bursts into oscillation just before the maximum use has been made of reaction in building up the volume of a signal. The design of the "Armstrong" system, two forms of which are shown in Figs. 6 and 7, is a somewhat better arrangement that at 6, as a finer control of H.T. is obtained, and hence a finer control of reaction. Both these systems have the advantages that hand-capacity effects are
The finest Coils ever handled

January 26th, 1935

Messrs. FORMO PRODUCTS Ltd.,
Bromley, Kent.

Dear Sirs,

I have built 6 different wireless sets during 1934, and have been in the wireless game as an amateur since 1917, and I must confess that the new Sensity Coils by yours of which I have 4 in the set I have just finished, are the finest coils I have ever-handled, both for sensitivity and Selectivity.

I bought three from you direct and one from Messrs. FORMO PRODUCTS Ltd., Bromley, Kent.

I have seen sensitive coils before and it is the first time I have ever found four points very much in prominence in one coil.

If you have a complete catalogue of parts, I would like to have it, or an enclosing 3d. in stamps to cover postage.

Yours truly,

E.J.H.

FORMO PRODUCTS

IRON-CORED
SENSITY COIL

represents the greatest advance in scientific coil design in recent years. Comprehensive tests in all parts of the United Kingdom, under widely varying conditions, indicate their enormous possibilities.

The Litzendraht winding is disposed on a bobbin moulded of an entirely new material and is mounted on a white Steatite base having negligible H.F. losses.

The screening can, finished in dreadnought grey, adds just that touch of distinction to an already distinguished design.

Aerial Coil Type T.1, without Reactor 5/-
Aerial Coil Type A.1, with Reactor 6/-
H.F. Coil Type P.1 - - 5/-

This is one of many similar letters received from enthusiastic constructors. Original can be seen at our Head Office any time.

5/- EACH

Messrs. FORMO PRODUCTS Ltd.,
Bromley, Kent.

Dear Sirs,

Will you please send me a free copy of your complete catalogue?

Name

Address

January 26th, 1935
Short-Wave Section

(Continued from page 672)

control system should be found a useful and stable form of reaction circuit.

Smoothness of Reaction

-As was mentioned earlier in the article, the success of reaction on short waves depends upon its "smoothness." As an aid to obtaining this it is recommended that the system of grid-leak return shown in Figs. 6 and 7.-Two forms of a short-wave circuit with finely controlled reaction.

short-wave "fans," but once, after a little experimenting, the best size of reaction control together with the best value of H.T. voltage have been found, the resistance-

negligible, as also is the effect of reaction between G.M.T.

IF anything, to-day there is more excitement to be derived from listening on the short waves than to the ordinary medium wave band, for much activity now prevails. Most of the Continentals are developing their systems for the benefit of nationals overseas, new transmitters being erected and new channels tried out, with the result that the listener who turns to his one- or two-valve nightly is rarely disappointed. On most days he will make fresh captures, and if a log is carefully kept its growth will be rapid.

* * *

SHORT-WAVE GOSSIP

THE new Portuguese short-wave station CTIG0, Lisbon, on 48.4 metres (6,198 k/cs.), which has been reported as answers to the letters CSL is, I am convinced, also runs the Parede medium-wave broadcasting station on 291 metres. On 48.4 metres CTIG0 may be heard daily (except Tuesday) between G.M.T. 12.30-1.30 a.m., and on Sundays between G.M.T. 4.30-6.00 p.m. Another channel—namely 25.4 metres—is also being used on Sundays from G.M.T. 3.40-3.30 p.m., and on Tuesdays, Thursdays, and Fridays from G.M.T. 6.15 p.m. It should be remembered that although it possesses our old friend CTLLA, Lisbon, on 31.25 metres (9,900 k/cs.), whose cuckoo interval signal is so useful for identification purposes. Although I have not logged it personally, I understand that CTICT, also in the Portuguese capital, is still transmitting on 31 metres (9,977 k/cs.), whose closing-down melody it takes a well-known national airs.

On 49.35 metres, both of which work within the latter, Radio Dim. For programmes it relays entertainments from the capital broadcast by the medium-wave station on Thursdays between G.M.T. 2.40 and 4.30 p.m.

* * *

The fact that you possess a modest set of signals to be identified purposes. Therefore, if you do not want to be disappointed, have not logged it personally, I understand that CTICT, also in the Portuguese capital, is still transmitting on 31 metres (9,977 k/cs.), whose closing-down melody it takes a well-known national airs.

As an alternative to this two grid-leaks may be used as shown in the sketch—Fig. 8. The size of grid-leak and of the grid condenser both have an effect on reaction smoothness, and in the event of "plopiness" in its control it would be as well to experiment with different values of these components. In conclusion, it may be mentioned that if any results of values to be obtained with a short-waver a little time and trouble spent on the reaction circuit will be well repaid.

Any of the South Americans have chosen channels above 50 metres, or above Moscow RW59. One that has been heard in the United Kingdom is OA4XO, Lima (Peru), on 51.85 metres (5,780 k/cs.). Calls are given out in Spanish and English; in the former case the station calls itself: La Voz de Peru; in the latter, Radio Dumas. For programmes it relays entertainments from the capital broadcast by the medium-wave station on Thursdays between G.M.T. 2.40 and 4.30 p.m.

* * *

THE new Portuguese short-wave station CTIG0, Lisbon, on 48.4 metres (6,198 k/cs.), which has been reported as answers to the letters CSL is, I am convinced, also runs the Parede medium-wave broadcasting station on 291 metres. On 48.4 metres CTIG0 may be heard daily (except Tuesday) between G.M.T. 12.30-1.30 a.m., and on Sundays between G.M.T. 4.30-6.00 p.m. Another channel—namely 25.4 metres—is also being used on Sundays from G.M.T. 3.40-3.30 p.m., and on Tuesdays, Thursdays, and Fridays from G.M.T. 6.15 p.m. It should be remembered that although it possesses our old friend CTLLA, Lisbon, on 31.25 metres (9,900 k/cs.), whose cuckoo interval signal is so useful for identification purposes. Although I have not logged it personally, I understand that CTICT, also in the Portuguese capital, is still transmitting on 31 metres (9,977 k/cs.), whose closing-down melody it takes a well-known national airs.

On 49.35 metres, both of which work within the latter, Radio Dim. For programmes it relays entertainments from the capital broadcast by the medium-wave station on Thursdays between G.M.T. 2.40 and 4.30 p.m.

* * *

The fact that you possess a modest set of signals to be identified purposes. Therefore, if you do not want to be disappointed, have not logged it personally, I understand that CTICT, also in the Portuguese capital, is still transmitting on 31 metres (9,977 k/cs.), whose closing-down melody it takes a well-known national airs.

As an alternative to this two grid-leaks may be used as shown in the sketch—Fig. 8. The size of grid-leak and of the grid condenser both have an effect on reaction smoothness, and in the event of "plopiness" in its control it would be as well to experiment with different values of these components. In conclusion, it may be mentioned that if any results of values to be obtained with a short-waver a little time and trouble spent on the reaction circuit will be well repaid.

Any of the South Americans have chosen channels above 50 metres, or above Moscow RW59. One that has been heard in the United Kingdom is OA4XO, Lima (Peru), on 51.85 metres (5,780 k/cs.). Calls are given out in Spanish and English; in the former case the station calls itself: La Voz de Peru; in the latter, Radio Dumas. For programmes it relays entertainments from the capital broadcast by the medium-wave station on Thursdays between G.M.T. 2.40 and 4.30 p.m.
PUSH-PULL AMPLIFICATION

Push-Pull amplification enables you to handle great volume in the output stage with the least distortion.

For his latest Push-Pull Amplifier Mr. Camm has exclusively specified the Ferranti AF5cS Push-Pull Transformer (34/-), The OPMIC Transformer (26/-) and two 2v. L2 valves (7/- each). What finer testimony than the implicit faith of the best known radio experts?

A descriptive Leaflet W512 gives particulars of Push-Pull Transformers and their uses. It should be in the hands of everyone interested in the combination of volume and nearly perfect reproduction. Obtainable from your radio dealer or direct. Ask also for complete Valve Catalogue Wb560.

Illustrated is the Push-Pull Transformer AF5cS Price 34/-
RADIO S2

RECORDS

By NAME, PRICE
AND PERFORMANCE

If you want the cheapest valve with the finest performance insist on Record Valves, which are Records on every count. So the next time a valve goes replace it with a Record valve—better still, treat yourself to a set of them, and get them to-day.

BATTERY HEATED VALVES.
D.L. Special non-microphone Detector.
L.2. Low Frequency Amplifier.
L.P.2. Low Consumption Small power.
P.T.2. Pentode.
S.2. Screen-grid H.F. Amplifier and Detector.

INDIRECTLY HEATED A.C. VALVES.
AC/HL. A.C. Detector and Triode Amplifier.
AC/S. A.C. Screen Grid H.F.
AC/V. A.C. Variable Mu.
AC/F. A.C. Pentode.
AC/P. A.C. Power.

RECTIFYING VALVE.
F.W.350 Full Wave Rectifier (output 300 volts, 80 milli-amperes).

Prices From
3/-

From your wireless dealer or from any branch of
RECORD RADIO LTD.,
ELDON ST. HOUSE, 5-3 ELDON STREET, LONDON, E.C.2
Tel.: Bishopsgate 1301.

NEWNES' HOME MECHANIC SERIES

THE HANDYMAN'S ENQUIRE WITHIN.
Hundreds of practical Ideas and Hints—many not previously published. Classified according to the subjects dealt with, an Index being provided to facilitate speedy reference.

MODEL BOAT BUILDING.
All designs shown in this book have been actually made and tested. All sail well and each type is quite simple to make, no elaborate equipment being necessary. Both sailing and power-driven boats are featured.

ACCUMULATORS.
An accumulator (whether for Wireless or the Car), if properly used and cared for, is an extremely reliable piece of apparatus. Proper care and proper use can only follow a possession of the knowledge which study of this book will impart.

SIMPLE ELECTRICAL APPARATUS.
Interesting and useful apparatus, easily constructed, with which the student is enabled to test for himself the theory and practice of Electricity as laid down in the text-books. 138 illustrations.

Each 1/- NET, by post 1/3 each.
From Booksellers, Newsagents, etc., or by post from
GEORGE NEWNES LTD.
8-11, Southamptom Street, Strand, London, W.C.2

Geo. Newnes, Ltd.
THE BEGINNER'S SUPPLEMENT

EFFICIENT AERIAL SYSTEMS.
By H. BEAT HEAVYCHURCH.

The object of an aerial system is to collect the electrical impulses which ultimately will be reproduced as sound in the speaker. So much even the veriest radio novice understands. But the design and installation of an efficient aerial system is not quite the simple matter which it is so often considered. So many listeners erect a sketchy aerial of very conventional type, and as a result have to content themselves with but mediocre reception, whereas if they had spent a little time in a careful review of the situation, and in deciding upon the most satisfactory arrangement for their particular working conditions, the result might have been almost incredibly better.

Of the many points to be considered in connection with the design of aerial systems, the first can be dismissed in a very few words, although it is of prime importance. It is this—the earth connection is definitely a part of the aerial system.

It used to be said that a good aerial was one to adding an extra valve to the set. I would prefer to say that a good aerial in conjunction with an efficient earth is worth something more than an extra high-frequency valve, so ensure that your earth connection is as good as circumstances will allow. It is scarcely necessary to remind readers that a buried earth plate or tube is the best arrangement, while the incoming water main is second best. Further, as one method of reducing interference from electrical sources, see that your radio earth is retained solely for radio, and that no other apparatus, such as electric light conduits, telephone installations, etc., shares the earth.

Points to Watch

Considering the main part of the aerial from the signal-collecting point of view, remember that an outside aerial is the most efficient from this angle; that it should be as high as possible; while a horizontal length of from 50ft. to 70ft. is recommended.

Just a passing reminder that good insulation is essential—two porcelain insulators at least should be used in series at each end. If you are fortunate enough to be able to erect an efficient outside aerial, do not waste the good signals which it can pick up by using a badly designed down-lead. Points to watch in this connection are first, that this wire must be kept away from the building, and especially from metal gutters, rainwater pipes, and similar objects. In order to ensure this, "stand-off insulators" or brackets are of particular value. Second, the down-lead must be so located that it is not likely to be chafed against such objects as roofs, trees, sheds, etc. Third, it should be kept taut so that it will not swing to and fro in the wind. For one thing, a swinging down-lead eventually leads to a broken joint and, possibly more important, as it gradually approaches and recedes from the side of the building a kind of spurious fading in signal strength is produced.

In large numbers of cases, however, an outdoor aerial is out of the question. Loft aerials must be considered second best to outdoor aerials, but they are a very poor second best in many cases.

In installing a loft aerial care should be taken to see that they are just as efficiently insulated as outdoor aerials. Their actual location should be selected carefully to ensure optimum results, but usually this can be achieved only by trial and error experiments. It is, however, well worth while conducting these experiments, as the difference between the best position and the worst is usually quite considerable. The down-lead from a loft aerial should be very carefully run, for owing to the smaller collecting power of this type of aerial there is all the more reason for conserving every millivolt. Technically speaking, the ideal system is to bring the down-lead out under the eaves and down the side of the wall supported on hold-off insulators.

Special Aerials

Sometimes, however, especially in flats, even a loft aerial is not possible and then recourse must be made to a small aerial in the room containing the receiver. Picture-rail aerials are even less efficient collectors than loft aerials, although reasonably good results are sometimes obtainable, particularly when the receiver is of a really sensitive type; that is to say, one employing at least a single efficient high-frequency stage for local station reception. Good spacing away from walls is again a desideratum, although difficult to achieve without making the aerial conspicuous and unsightly. Here, again, a little experiment is usually necessary to discover the most efficient arrangement.

Finally, there is the frame aerial which is a still less efficient collector of signals. A really sensitive set is necessary to obtain good results with a frame, at least two radio-frequency stages or a superb, ar-
The biggest problem in aerial design at the present time; namely, the fact that an aerial system not only collects radio signals, but is also a good collector of interferences radiated from electrical machinery and apparatus of all kinds. These interferences may be due to the electrical installation in the listener’s own home, in neighbouring houses, business premises, factories, by electric trains, trams, trolley buses, signs, lifts, and so on.

As has been mentioned on previous occasions, the correct way to tackle interference of this kind is to suppress it at the point of generation, but no law for compelling this exists, and in most cases listeners have to solve the problem for themselves. Interference carried into the set via the mains connections to the receiver or power unit do not come within the scope of the present article, but quite a large proportion of the interference is actually radiated. The only method of avoiding this form of interference, apart from preventing its propagation, is to locate the aerial system outside the interference field. How does this suggestion affect various types of aerials?

The Chief Problem

We now come to what is really the biggest problem in aerial design at the present time; namely, the fact that an aerial, however, possesses the merit of directional properties, giving maximum signals when the arms of the frame are pointing in a direct line to the station it is required to receive, and minimum signals when the plane of the frame is at right angles to this position. By swinging a frame aerial, therefore, the effective selectivity of the receiver can be very considerably augmented, unless, of course, the wanted station and the interfering station are approximately in the same line from the point of reception.

Many of the more sensitive modern sets give reasonably good results with a mains aerial, such as the arrangement shown in Fig. 1, or with a small plate aerial fitted inside the top of the cabinet. With such aerials, however, listening will usually be restricted to a comparatively small number of the more powerful programmes.

So much, then, for the signal-collecting properties of various types of aerial. It may be objected that the more efficient aerials result in increased interference from stations on adjacent wavelengths. This is really a fallacy. A properly designed receiver will have sufficiently good selectivity to separate stations with the loss of only one or two channels on each side of the more powerful programmes. If, however, the selectivity problem is really acute in any particular installation, the high-efficiency aerial should still be retained and a small coupling condenser inserted between the aerial and the receiver in the well-known manner.

Transmission Lines

If, owing to excessive interference, it is necessary to remove an outdoor aerial to a considerable distance from the house, it will also be necessary to connect it to the set by a “ transmission line.” This is effected by connecting aerial and earth to the primary winding of a step-down high-frequency transformer and by running screened leads from the secondary winding to a corresponding step-up transformer at the receiver, as shown in Fig. 2. Distances up to several hundred yards can be dealt with in this way without serious loss of signals.

A loft aerial is, of course, more susceptible to radiated interference generated inside the building, but it is usually possible to locate it so that direct pick-up from the mains is avoided. Then, with a careful overhaul of switches, plugs, lampholders, and other equipment to avoid loose contacts, and with spark suppressors fitted to refrigerators and other small motors, the installation should be reasonably free from interference. If trouble is still experienced a shielded down-lead should be employed.

Similar remarks apply, but with added force, to picture-rail aerials; for it is still more difficult to find a position for an aerial of this type which is well removed from electrical wiring and other apparatus. A little experiment, however, will usually reveal the best position. Frame aerials are also very prone to “ shock excitation ” from electrical interference, although in this case, swinging the aerial will often permit major interferences, such as tram or trolley-bus radiations, to be avoided. Mains aerials, while usually fairly free from radiated interference, are very prone to mains-borne interference, and no remedy can be found, because the fitting of a mains filter would also result in by-passing also the wanted signals to earth.
For various reasons, push-pull amplification of the "straight" kind, as opposed to Q.P.P. and Class B, has been very much neglected during the past couple of years, and constant inquiries have been received from readers for a really up-to-date set of comparatively simple type with push-pull output. Push-pull is certainly very desirable when a really large output is required, and particularly when quality reproduction is of prime importance. It is to meet the requirements of many correspondents that we are being so bold as to revive push-pull amplification, and to prove that it is ideal for modern conditions.

A Modern Circuit

The Hall-Mark Four (battery version) of which a circuit diagram is given at the top of this page, is in every respect a modern receiver, and provides exactly the type of reception that is being demanded by more and more listeners, who fully realise that quality and punch are of even greater importance than long range and the ability to separate two transmissions emanating from stations situated many thousands of miles away. We know full well that reception of this kind is not always asked for by every listener, and those who are interested in real DX work were well catered for by the £5 Superhet. But we are also aware that every listener at some time or other likes to have by him a powerful receiver ideally suited to the reception at perfect quality of the nearer stations. There are many constructors, moreover, who find it worth while to have two separate receivers, one with which to go "globe-trotting," and the other for local work and for the benefit of the "family," who place ease of control and quality of reproduction before everything else. The Hall-Mark Four forms an excellent "second" receiver for those who come within the latter category. It will be seen from the circuit that the arrangement is on very straightforward lines, and that it is entirely devoid of any "extras" that make a circuit look complicated, but which do nothing to improve performance. Air-core coils of sound design and of a type providing good selectivity are used both in the aerial and in the inter-valve circuits. Both coils are the primary is untuned, and both are fitted with built-in wave-change switching so that the number of external connections is reduced to a minimum.

Distortionless Volume Control

The first valve is a variable-mu H.F. pentode, and this provides a really large measure of amplification besides forming an ideal distortionless volume control. The detector circuit, follows conventional lines, and includes a reaction condenser that gives a smooth control of volume and also enables selectivity to be increased when desired. It is also amply decoupled, with a result that there is no danger of instability or L.F. oscillation, whether the set is used with an eliminator or with an H.T. battery that is past its prime.

It is the output stage, however, that merits most attention, since this includes two modern valves in a modern push-pull circuit. As we have pointed out in recent articles, the degree of amplification given by a push-pull stage is more than double that of a single valve, the output actually being something like two and a half times that of a single L.F. valve. Push-pull has the further advantage that it is practically distortionless, due to the fact that the two valves tend to cancel out any distortion that might otherwise exist.

A Balanced Output Stage

In designing the push-pull output stage of the battery model Hall-Mark Four very great care has been taken to avoid any possibility of instability, and it is for this reason that stopper resistances have been included in the grid leads to the two valves. Still further to ensure perfect stability, however, the two halves of the

(Continued on page 685)
TELEVISION THEORIES DISPROVED

This Article by Percy W. Harris Points Out Important Discoveries Made by Amateurs

and half-baked theories than I care to remember, and have long since come to suspect anything with that label. There are more than enough scientific hitlers in these days, who are much too ready to collect a bare handful of facts and deduce a world-encircling theory from them. Just plain impatience is the real cause of this trouble, and it is a trouble diligently to assemble enough facts, drawn from practical experience, to justify any serious theorising.

"Quasi-optical" Characteristics

Did you observe how quickly, after the first experiences with ultra-short waves had been obtained, the theorists announced the quasi-optical nature of these waves? A little quiet thought would have persuaded them that it would be wise to wait for a few thousand more tests in all kinds of conditions, with a variety of ultra-short waves, before making such a drastic and sweeping statement. Unfortunately, theories are much more welcome than facts, and are such comforting and relieving things. A good fat, all-embracing theory of this kind saves so much thought and worry, and prevents one wasting time. If you accept it, that is.

I have heard this tag attached to more unbaked theories and hypotheses than I care to remember, and have long since come to suspect anything with that label. There are more than enough scientific hitlers in these days, who are much too ready to collect a bare handful of facts and deduce a world-encircling theory from them. Just plain impatience is the real cause of this trouble, and it is a trouble diligently to assemble enough facts, drawn from practical experience, to justify any serious theorising.

Mr. PERCY W. HARRIS.

"No flowers by request!" might be an alternative title to this article, for once more we have to attend the funeral of a wireless theory which has failed to stand the test of time—and a very short time at that! "Short-wave television is not really a practical proposition," we have heard on every side, "everyone knows that these ultra-short waves are like light waves and travel only in straight lines, so that they have a very short range! You can't transmit more than about twenty-five miles with them."

Notice the "everyone knows." I have heard this tag attached to more unbaked theories and hypotheses than I care to remember, and have long since come to suspect anything with that label. There are more than enough scientific hitlers in these days, who are much too ready to collect a bare handful of facts and deduce a world-encircling theory from them. Just plain impatience is the real cause of this trouble, and it is a trouble diligently to assemble enough facts, drawn from practical experience, to justify any serious theorising.

A sudden noise—or an equally aggravating silence... inefficiency somewhere in your set! Take your AvoMinor and find out at once. The AvoMinor is an investment in permanent security, for it is a precision instrument, accurate to a critical degree, and made to stand up to hard usage and even abuse. It is, in fact, a younger brother of the famous Avometer, the instrument used by all the leading manufacturers and their service engineers. With the AvoMinor you can test circuits, valves, components, batteries and power units with the dependable accuracy of the technical expert.

There is no substitute for the AvoMinor. It is a moving coil combination testing meter—ten accurate instruments in one. Supplied in convenient case with leads and interchangeable testing probes and crocodile clips, and complete instruction booklet adequately illustrated.

Fully descriptive Folder post free from:-

THE AUTOMATIC COIL WINDER & ELECTRICAL EQUIPMENT CO. LTD. Winder House, Douglas Street, London, S.W.1. Telephone Vic. 3404/7

Deferred Terms if desired.

PRACTICAL AND AMATEUR WIRELESS January 26th, 1935

THE D.C. AVOMETER

TELLS THE WHOLE TRUTH

40/-

Deferred Terms if desired.

"RADIO SERVICING SIMPLIFIED"

Everyone should own a copy! It explains every technical point on a simple and practical basis. The diagrams and instructions are clear and adequate.

2/6
It is remarkable how the amateurs have been pushed here and there in the spectrum, being first given a waveband because it seems useless, and then being dispossessed of it when they have proved its special value and efficiency. At the beginning, all waves below 300 metres were considered useless for commerce because they were believed to have such poor carrying power. The amateurs were given them for a time. Later they were taken away and the “really useless” range of 180 to 200 metres substituted. I was one of the first to convey to the Marconi Company the news that the Atlantic had been spanned by amateurs using this waveband with a ridiculously low power as well, and I shall never forget the incredulity and patronising amusement with which the statement was received by some of the engineers. Later, when the news was confirmed beyond doubt, it was put down as a “freak,” although still later when such transmissions became almost a daily routine, plenty of theories were devised to account for them, and so the band was taken from us.

So it goes on, and in all directions attempts are made to block up possible paths of progress by soporific theories. I do not want you to imagine for a minute that I do not use and value theories, but they have to be much sounder than many of the newer ones to be of any real value. If you want a good thought-provoking example of how stereotyped we get, let me suggest to you the way attempts are made to get rid of second-channel interference in superheterodynes. You know what happens. The oscillator beats with two fairly widely separated frequencies, the distance between them being twice the beat frequency, so that both are converted into the intermediate frequency. The first signal circuit, being tuned to one of them, gets that one most strongly, and the more sharply the first circuit is tuned, the less of the second frequency there is to get beaten up into the intermediate frequency. If you get this clearly in mind, you will see why pm-selector stages and bandpass circuits are used, with their attendant complications and expense.

The Real Problem
But think a little deeper. What is the real problem? For quality we want the first circuit as flat as possible. The supersonic principle itself can take care of selectivity between adjacent stations, as the intermediates can be made as sharp as we like. What we really want to do is to remove, as sharply as possible, one particular frequency which happens to be a good way away from the desired one. What is really needed then is a wavetrap for the unwanted frequency, not the sharpening and possible attenuation of the one we want. Many a superheterodyne of to-day is unnecessarily losing its quality of reproduction in preselector circuits whose only real use is to remove second-channel interference.

In passing, it may be pointed out that the sole reason for using the superheterodyne in the first place has long since ceased to have any importance! It was, at first, the only way to obtain stable high-frequency amplification, for it preceded the neutrodyne and the screen-grid valve in time. Now we have no difficulty in getting H.F. amplification without it, although it is not easy to gang the same number of tuned circuits as we often use in a “super.” Yet just because of this pre-selection, many supers now have no fewer than four ganged condensers, and that number of ganged condensers in a “straight” set enables us to use three H.F. stages before the detector.
ALTERNATIVE COILS FOR THE £5 SUPERHET THREE.

In view of the difficulty which readers have been experiencing in obtaining the specified coils for the £5 Superhet, we have conducted exhaustive tests with other makes of coils, and find that Colvern G1, G2, G3, Varley BP50, BP50, BP53, or ___IVARLEY 110 KC. I.F.T. are satisfactory substitutes.

Colvern Coils
The Colvern G1 and G2 coils constitute an inductively-coupled H.F. band-pass unit and, therefore, the home-made condenser C4 used with the Telsen coils will not be necessary. The end of the grid winding of G2 is connected internally to the coupling winding and thence to the chassis, and, therefore, in order not to upset the ganging of the band-pass units it will be advisable to bias the first valve by a different method from that used with the Telsen coils. Terminal 1 of coil G2 should be connected to the fixed vane terminal of C2 and also to one terminal of an extra .0005 fixed condenser. The other terminal of this condenser should be connected to the cap lead of the first valve (210 P.G.) and also to one end of a .5 meg. resistance, the other end of this resistance being then connected to the juncture of R2 and C6. The other connec-

Varley Coils
These coils are also of the inductively-coupled band-pass type, but the home-made condenser C4 may be retained if desired and the connections made as follows: BB50-3 to aerial lead, 2 to MB, 1 to fixed vane terminal of C1 and one lead of C4. BB50 (No. 2)—1 to fixed vane terminal of C2 and the other end of C4, 2 to the juncture of C5 and R2. BP53-1 to C6 and fixed vane terminal of C3, 2 to MB, 8 to one terminal of C7, and the other terminal of C7 to MB, 4 to the oscillator anode of the PG210 (pin No. 1), and 6 to C8 and H.T.+ 1 lead.

(Ward and Goldstone GIC5, GIO8, GIC7 may be satisfactorily substituted.

Theoretical diagrams of the H.F. and oscillator circuits of the three sets of coils mentioned above are shown in Figs. 1, 2, and 3, but for the sake of readers who are not conversant with theoreticals, we will give point-to-point wiring instructions.

Colvern Coils
The Colvern G1 and G2 coils constitute an inductively-coupled H.F. band-pass unit and, therefore, the home-made condenser C4 used with the Telsen coils will not be necessary. The end of the grid winding of G2 is connected internally to the coupling winding and thence to the chassis, and, therefore, in order not to upset the ganging of the band-pass units it will be advisable to bias the first valve by a different method from that used with the Telsen coils. Terminal 1 of coil G2 should be connected to the fixed vane terminal of C2 and also to one terminal of an extra .0005 fixed condenser. The other terminal of this condenser should be connected to the cap lead of the first valve (210 P.G.) and also to one end of a .5 meg. resistance, the other end of this resistance being then connected to the juncture of R2 and C6. The other connec-

Varley Coils
These coils are also of the inductively-coupled band-pass type, but the home-made condenser C4 may be retained if desired and the connections made as follows: BB50-3 to aerial lead, 2 to MB, 1 to fixed vane terminal of C1 and one lead of C4. BB50 (No. 2)—1 to fixed vane terminal of C2 and the other end of C4, 2 to the juncture of C5 and R2. BP53-1 to C6 and fixed vane terminal of C3, 2 to MB, 8 to one terminal of C7, and the other terminal of C7 to MB, 4 to the oscillator anode of the PG210 (pin No. 1), and 6 to C8 and H.T.+ 1 lead.

(Ward and Goldstone GIC5, GIO8, GIC7 may be satisfactorily substituted.

Theoretical diagrams of the H.F. and oscillator circuits of the three sets of coils mentioned above are shown in Figs. 1, 2, and 3, but for the sake of readers who are not conversant with theoreticals, we will give point-to-point wiring instructions.

Colvern Coils
The Colvern G1 and G2 coils constitute an inductively-coupled H.F. band-pass unit and, therefore, the home-made condenser C4 used with the Telsen coils will not be necessary. The end of the grid winding of G2 is connected internally to the coupling winding and thence to the chassis, and, therefore, in order not to upset the ganging of the band-pass units it will be advisable to bias the first valve by a different method from that used with the Telsen coils. Terminal 1 of coil G2 should be connected to the fixed vane terminal of C2 and also to one terminal of an extra .0005 fixed condenser. The other terminal of this condenser should be connected to the cap lead of the first valve (210 P.G.) and also to one end of a .5 meg. resistance, the other end of this resistance being then connected to the juncture of R2 and C6. The other connec-
Ward and Goldstone Coil Unit

Connection may also be tried to terminal 6 instead of to terminal 3, and the results compared.

The Superhet Gang Condenser

This incorporates inductively-coupled band-pass coils and an oscillator coil. The home-made coupling condenser C4 should be plainly marked, the wiring made as follows: GIC5—Aerial terminal to the insulated lead protruding from the back of the unit, 1 to fixed vane terminal of C1, 2 to MB, 4 to 6 of GIC6. A to C6-1 to fixed vane terminal of C2, 2 to the juncture of C6 and R2, 4 and 3 to 4 and A of GIC6, as mentioned above. GIC7—1 to C8 and to the fixed vane terminal of C8, 2 to one terminal of C7 and the other terminal of C7 to MB, 6 to MB, A to the oscillator anode of the PG210 (pin No. 1), 4 to C8 and H.T. +1 lead.

The Tracking Condenser

Some of these condensers have their oscillator section at the front end, whilst others have it at the back. Care should, therefore, be taken to connect the oscillator coil (G8, BFG3, or GIC7) to the correct section. This has been referred to as C3 in the text, and may be differentiated from the other two sections by its specially shaped fixed vanes.

The Tracking Condenser

In some cases it has been found that the capacity of the pre-set condenser does not reach 0.003, and, therefore, if results are not entirely satisfactory on the long-wave band, it is suggested that a .001 fixed condenser be connected across the terminals of C7.

The Perfect Gramophone Motor

Nothing to Wear Out.

Nothing to Go Wrong.

Silent, Safe and Strong.

Constant Speed.

- **The Motor is in the Turntable.**

The most efficient, reliable, economical and the quietest gramophone motor obtainable.

From all Good Dealers. **In cases of difficulty, send direct to Appointed Sole Wholesale Distributors for Gt. Britain, Northern Ireland, and Irish Free State by the Sole Licensees and Manufacturers—KINGSWAY RADIO LTD.**

THE BRITISH RADIOGRAMPHONE Co. Ltd.

PILOT HOUSE, CHURCH STREET, STOKE NEWINGTON, LONDON, N.16

Telephone:

Clissold 628718
Amateur Television

Changing Scanning Beam Direction

By H. J. Barton Chapple, B.Sc., A.M.I.E.E.

When using a spot light television transmitter for the purpose of scanning any scene or artist, the best results can be obtained only by "panning" the beam to follow movement. The rapidly moving light spot produced through the medium of the light source and individual scanner, which, of course, are fixed relative to one another, must be turned bodily by the operating engineer so that the subject is never out of the beam.

This is done quite effectively in the Baird mirror-drum transmitter installed in the B.B.C. television studio by moving the gun-like apparatus on runners for right and left lateral movement, or on curved channelling for angular movement. This is seen very clearly in Fig. 1 which shows the machine in question, together with the curved channelling. With certain programmes, however, it is desirable to move the light beam vertically up or down, otherwise the top part of the picture is cut off. Some time ago a proposal was put forward to remedy this, but so far the improvement has not materialised.

The adaptation should not be of a serious character, and one method which could be tried is to use the scheme employed in some of the early disc-scanner transmitters. These first machines did not give any beam movement at all, and it was necessary for the artist to keep strictly to the limited light area when carrying out any performance. Subsequently, a double-mirror reflector device was employed, as shown in Fig. 2. The individual light spots of the scanning beam after emerging from the focusing lens met an inclined mirror surface. This reflected the light vertically where another inclined mirror changed the direction once more to a forward position. The two inclined mirrors were interlinked, and by altering slightly their relative tilt or inclination on site, it was possible to make the light beam move up and down vertically in a most effective manner. Although the amount of movement was rather limited, owing to a possible loss of focus, the scheme met the needs at that period, one of the prime recommendations being the extreme simplicity. If a somewhat similar method could be used by the B.B.C., the work of the producer for certain scenes would be simplified considerably.

Using Ultra-Short Waves

The almost inevitable conclusion that a high definition television service will necessitate the use of ultra-short waves has caused considerable attention to be directed to this form of radio transmission. It has been imagined in many quarters that their use for this purpose dates back about twelve months. This is not correct, however, for, although the new radio technique developed is of very recent rapid growth, the first public demonstration of their valuable properties took place early in 1932.

After months of intense research an ultra-short-wave radio transmitter was built and accommodated in a brick hut on the flat roof of the Baird Co.'s premises at Long Acre, London. Bearing in mind the peculiar nature of the waves and their essential requirement of a high transmitting site (so that even with a very low aerial power, good signal strength would be received at any situation where the receiving aerial was in sight of the transmitting aerial), this location of the transmitter proved a very valuable one. An idea of its height in relation to surrounding roof tops is shown very clearly by a reference to Fig. 3, which shows the well-stayed dipole aerial (half wavelength) erected on the roof of the radio transmitter hut.

Transmitter Details

At that period a wavelength of 6.1 metres was used and the two copper rods, joined at the centre by a delicate meter to register aerial current (needle position being observed through powerful field-glasses), had a total length of 3.05 metres, so that they acted as a true dipole aerial having an approximate equal signal radiation in all directions.

The wire feed from the radio transmitter to the aerial proper for the first experiments consisted of a pair of parallel wires, whose distance of separation was maintained constant. Inductively coupled to the main oscillator drive at one end, connection to the aerial was made electrically at two points in the aerial length, so that the complete copper rod was divided into three equal parts.

Now, although high definition television scanners were being developed at this period, for the purpose of the public demonstration given in April, 1932, signal modulation was provided by the standard thirty-line mirror-drum transmitter machine then (Continued on facing page)
Specified for the F. J. CAMM HALL-MARK SERIES

To mark the fusion of two great radio periodicals, a new series of receivers—the "HALL-MARK"—has been introduced. To justify such a name, only components of superlative merit have been selected for inclusion in these sets, and it is only natural to find several bearing the name BULGIN.

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/6</td>
<td>5 : 80, "On-off" Switch</td>
<td>1/6</td>
</tr>
<tr>
<td>1/9</td>
<td>6 : 32, 10-way group board</td>
<td>1/9</td>
</tr>
</tbody>
</table>

For the "A.C. Hall-Mark Four."

For the "Universal Hall-Mark Four."

For the "Hall-Mark Battery Four."

For the "A.C. Hall-Mark Four."

For the "Universal Hall-Mark Four."

For the "Hall-Mark Battery Four."

The "Choice of Critics."

BULGIN RADIO COMPONENTS

The Volume Control that does a perfect job!

It does a perfect job because it is a perfect job. Erie knowledge—Erie precision—have produced the volume control that does not develop faults. Its bone-hard Erie element and nickel-silver contact give noiselessness for a lifetime's use. All the leading designers are regularly specifying this unequalled Erie product. Ask for the ERIE Volume Control at all dealers.

$1/6 Or with built-in Mains-switch 5/-

When you buy Resistors—make sure you get ERIES per watt in all values.

Erie Volume Control

Genuine Erie Resistors are hall-marked with the Erie label. Make sure you see it. Cheap resistances are definitely not the same thing; they are not an economy. Ask for Eries and make sure of satisfaction.

Write for the Free Erie Service Instruction Booklet.

THE RADIO RESISTOR CO., LTD.,
THE UNIVERSAL HALL-MARK FOUR

A Preliminary Description of a New Four-Valve Receiver for A.C. or D.C. Mains Working. Full Constructional Details will be Given Next Week

Despite the fact that most D.C. mains supplies are gradually being replaced by A.C. mains, there are thousands of listeners whose homes are still wired for D.C. only. These listeners do not wish to go to the expense of a D.C. receiver, since they know that it would become useless to them in a year or two—of perhaps a couple of months. It is to such people that a universal receiver has a special appeal, for it will be just as efficient and valuable as a receiver of the same kind, wired for A.C. current, provided the mains supply has been changed as it is at the present time.

The universal model of the Hall-Mark Four is very similar in general principles to the battery and A.C. versions, but it has a few points of especial interest. For one thing, the output stage (push-pull as in the other versions) comprises a pair of high-amplification pentodes and is capable of providing an undistorted output of 6 watts. This is even greater than the output from the A.C. model, and on this score the universal circuit might be preferred by many readers whose homes are already wired for A.C. current.

As in the case of the battery and A.C. models, a variable-mu H.F. pentode is used in the first stage, and this feeds into a leaky-grid detector which, in turn, is followed by the push-pull output stage. To avoid the possibility of the primary winding of the input push-pull transformer becoming saturated due to the anode current of the detector valve, and also to enable the highest possible step-up ratio (consistent with quality reproduction) to be obtained, the transformer is coupled by means of a resistance-capacity circuit, a further resistance being used for decoupling purposes.

Ample Decoupling

It will be seen from the circuit given above that the grid circuits of the pentodes in the output stage are simply decoupled by means of 10,000-ohm series resistances, whilst any tendency towards L.F. instability, due to slight differences between the pentodes values, is removed by connecting a fixed condenser in parallel with each half of the secondary winding on the input transformer. A point of rather special interest, because it is unusual, is the provision of a potentiometer for controlling the voltages applied to the auxiliary grids of the pentodes. This potentiometer (R14 in the circuit) has its two ends joined to the auxiliary-grid terminals, whilst the slider is connected to H.T. positive. Thus, when the slider is exactly in the centre of the resistance element both grids receive precisely the same H.T. voltage. On the other hand, by moving the slider to either side of the centre point the voltage on one grid is increased, and on the other, reduced. This enables perfect balance to be obtained in the simplest possible manner.

No Mains Hum

The valve rectifier is connected on the half-wave principle and functions as such only when the receiver is connected to an A.C. supply; on D.C. it merely serves as a ballast resistance. The valve heaters are wired in series, and also in series with a voltage-control resistance (R17) which functions on both A.C. and D.C.

Due to the provision of ample smoothing, by means of the 40-henry chokes, and also by the use of large-capacity condensers.
VALVE TYPES AND USES

Rectifying Valves form the Subject of this Fifth Article of the Series

If any excuse is necessary for including rectifying valves in this series of valve articles, let it be that the rectifier is nowadays nearly always included when stating the number of valves which any particular receiver contains. Actually, we believe that the rectifier should not be included in the number, since it is likely to lead to confusion when comparing a receiver with valve H.T. rectification with a similar one employing a metal rectifier. Nevertheless, the value of the rectifier is an extremely important component, and its correct choice calls for a good deal of consideration. The truth of this statement will be well understood when it is pointed out that there are at least five standard types of rectifying valve for outputs of between 250 volts at 60 milliamps. and 500 volts at 120 milliamps. There are, of course, very many rectifiers of other ratings, but these will not be considered here since, so far as the H.T. section of the modern wireless set is concerned, they cannot be considered as standard types.

Three Main Types

The three main types of H.T. rectifier are all of the full-wave pattern, having a directly heated filament and two anodes, and are intended to be fed from a mains transformer having a centre-tapped H.T. secondary and a 4-volt filament winding. The method of connection is well known and is shown in Fig. 1 to avoid any misunderstanding. One small point that is often overlooked by the inexperienced constructor is that the H.T. secondary must give the rated anode voltage for the rectifier on each side of the centre tap. That is, for a valve requiring an input voltage of 250 volts the transformer must give what is generally referred to as (250-0-250 volts), or "250 + 250 volts.

Output Voltage

Another point that often worries the amateur, and which may appear to be "all wrong," is that the actual rated output of the valve is sometimes less than the input voltage from the transformer. For example, the Osram U.10 valve gives 200 volts at 60 milliamps, when fed from a transformer giving 250-0-250 volts. It would be impossible to explain this matter fully without going into mathematics, but it can briefly be explained that the condenser connected across the output leads, and marked C in Fig. 1, has some bearing on this. In fact, the maximum rated voltage would not be obtained if the condenser were omitted or reduced in value below the standard capacity of 4 mfd.; further, if the capacity is increased an even greater voltage is obtained in many cases. That is why "stores" give a certain amount of the output, and helps to "combine" the rectified voltage of the two anodes.

The three standard rectifiers are rated to give approximately 250 volts, 60 milliamps., 350 volts, 120 milliamps., and 500 volts, 120 milliamps. We say "approximately" because the figures vary slightly according to the valves by different manufacturers. Although these figures relate to the maximum output, it is sometimes rather confusing to learn that the voltage output of one valve might be 250 volts, say, the first valve mentioned might rise to 300 volts, and the current load were reduced to 30 milliamps. It is for this reason that the outputs of the rectifiers mentioned in the tables on the next page are given at full and half load. This matter will also be understood more readily by referring to the graph given in Fig. 2, which shows the voltage output of a typical "250 volt" rectifier at different output currents.

The three types of rectifier referred to are often styled A, B and C (not to be confused with Anode 1 and 2). A is the Osram U.10, B the GEK 8A, and C the T.C.R.C. 720. The T.C.R.C. 720 is a pin rectifier.

BIG PAY for TRAINED RADIO MEN

Success of T.C.R.C. Students

The radio industry is prosperous and progressive; it offers rich rewards to the trained man. Many other important industries where radio knowledge is of vital importance, such as gramophone and talkie work, scientific and medical research, are looking for experts.

Leading manufacturers are now preparing for television and there are sure to be equally revolutionary developments for which radio knowledge is essential.

Are you content to remain an onlooker whilst others seize the interesting and highly-paid jobs? Are you wasting precious hours when you should be preparing for well-paid employment and an assured future?

Many of the men who are now earning big incomes started radio as a hobby. Men who have become famous have succeeded because they studied radio under expert tutors.

Quality for Highly-Paid Work

T.C.R.C. Training will give you the knowledge which brings success, as it has brought success to others. It will teach you how to earn a good income or to add to your present one. What it has done for others it can do for you.

The T.C.R.C. is recommended and praised so highly because it specialises in radio. It is a Radio College conducted by practical radio experts.

Practical Wireless stated: "The lessons are prepared from first-hand knowledge and practical experience in a most masterly fashion, by men who know what they are writing about and how to impart their knowledge to others."

Popular Wireless stated: "The student is then a fully qualified technician, ready to take a professional appointment. He has had thorough foundation in the basic principles, and special sections of the Course have dealt with servicing, maintenance, set design, factory testing methods, radio calculations, and, in fact, everything a fully-trained man needs."

BEKO Radio stated: "Those who complete the thorough Course will be well equipped with the valuable knowledge so essential to the modern radio craftsman."

Trained Men Urgently Needed

McMichael Radio stated: "The need for good and well-trained men is a very urgent one."

A student writes: "I am indebted to you for this situation. Without the Course I should not have lasted five minutes."

Another writes: "He engaged me at a big increase in salary."

Another: "Since enrolling I have taken over practically all the battery-set work for a local dealer."

And another: "I would have been lost had I not covered most of the Course when I was engaged."

(Many others testify to the value of T.C.R.C. Training.)

R. Heath Bradley, Principal of T.C.R.C.

Turn Your Spare Time into Money

The T.C.R.C. can help you to find employment or teach you how to earn good money in your spare-time without interfering with your ordinary work. Every student is given individual and personal advice.

Personal Tuition by British Experts

T.C.R.C. Training is conducted by correspondence. In your own home you can learn how to become a radio expert capable of demanding big money. The Courses are easy to understand and intensely interesting.

ACT NOW! Success Awaits You

"We can confidently recommend the T.C.R.C." Popular Wireless, 19/1/35.

"A course of their training is just what you want." Wireless, 7/1/35.

Send now for free copy of the latest T.C.R.C. Prospectus and take the first step to success. It will place you under no obligation and you will not be pestered to enrol.

TECHNICAL AND COMMERCIAL RADIO COLLEGE

GROMWELL HOUSE, HIGH HOLBORN, LONDON, W.C.1

(Post in unsealed envelope, 14 stamps.)

Please send me free copy of latest Prospectus.

NAME

ADDRESS

Pt. 21
confused with methods of L.F. amplification), and these letters provide a convenient means of reference. It will be seen that the filament requirements of the A rectifier is 4 volts at 1 amp. (A.C.), and of the B and C, 4 volts at 2.5 amps. (also A.C.), and thus the L.T. winding of the mains transformer, as well as the H.T. winding, must be chosen to suit the particular type of rectifier to be employed.

such a value that no more than the rated maximum voltage is delivered by the rectifier. Thus, if 250 volts at 30 milliams, were required from the U.10 valve mentioned above the transformer should have an H.T. secondary designed to give about 210 volts.

It might be asked why the standard types of rectifier are designed to give approximately 290, 350, and 500 volts when the average output voltages require maximum anode voltages of 290, 350, and 400. The reason is that the rectifiers must not only supply sufficient voltage for the anode of the last valve but must also supply the G.B. voltage, besides making provision for the necessary voltage drop across the smoothing choke and the primary winding of the output transformer or choke. It will be seen that voltages of 50 and 100 are allowed for this purpose.

Indirectly-heated Rectifiers

Mention has not yet been made of the two indirectly-heated types of full-wave rectifier detailed in the accompanying panel. These are the MU.12 and MU.14, and they are similar in nearly all respects to the U.12 and U.14, the only real difference being that they have a cathode in addition to the filament. The cathode is heated by the filament, and is connected to the latter at one end. This means that the rectifier cannot commence to function until the cathode has attained the correct working temperature. The time taken for this is just about the same as that required by the indirectly-heated cathode of the average receiving valve, with a result that output from the rectifier commences at the same time as the valves begin to pass an anode current.

The advantage of the indirectly-heated rectifiers is that a sudden increase in voltage when the receiver is first switched on is avoided, and thus the fixed condensers used for smoothing, decoupling, etc., do not need to have so high a working voltage as when ordinary directly heated rectifiers are employed. This advantage is chiefly confined to sets in which the receiving valves are of the indirectly-heated-cathode type, since if the output valve were directly heated there would be no appreciable rise in voltage in any case. It should be mentioned in passing that an indirectly-heated rectifier can generally be substituted for one of the directly-heated type, since in most cases both have only, of which the "grid" and "anode" pins are in contact with the two anodes.

For Universal Receivers

Despite what has been written above, mention should be made in this article to the special type of rectifier that has been developed for use in universal receivers; in the Osram range this is the U.30. This valve has an indirectly heated cathode, the heater of which takes 20 volts at .3 amp. There are actually two cathodes and two anodes, so that the valve can be used in one of two ways; as a half-wave rectifier or in a voltage-doubler circuit. When used in the former manner the maximum output is 126 volts at 120 milliams, and in the latter, 425 volts at 75 milliams. It will be seen from these figures that the valve is adaptable for use in nearly any average type of universal mains receiver, or in an A.C. set which is fed directly from the A.C. mains. The U.30 has a smaller base, with which the connections are shown in Fig. 3. When used as a half-wave rectifier the two anodes and the two cathodes are joined together, so connecting the two halves of the valve in parallel, but when used as a voltage-doubler the two halves are placed in series, the connections then being similar to those of a metal rectifier; that is, one A.C. and one D.C. pin is taken to the series connection, the other being joined to the junction of the two fixed condensers wired in series across the output.

The "free" anode and cathode provide the negative and positive output terminals respectively.

Non-standard Rectifiers

In addition to the rectifiers described above there is a number of others of non-standard type. These are mainly of the half-wave pattern, and although they were used fairly extensively a few years ago they are gradually falling into disuse. The valves are still available for replacement purposes, but their use is not recommended in new receivers. In any case, half-wave valves are not so efficient as are the full-wave types, and it is largely for this reason that their use has been discontinued.

RECORDER CHARACTERISTICS

<table>
<thead>
<tr>
<th>Osram U.10 (Directly Heated)</th>
<th>Price 5/-, or 5/6 by post from The Publishing Dept., George Newnes Ltd., 8-11, Southampton Street, Strand, London, W.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament voltage</td>
<td>1 amp</td>
</tr>
<tr>
<td>Maximum anode volts</td>
<td>250-0-250</td>
</tr>
<tr>
<td>Maximum D.C. output</td>
<td>250 volts, 60 m.a.</td>
</tr>
<tr>
<td>Output at half load</td>
<td>300 volts, 30 m.a.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Osram U.12 (Directly Heated)</th>
<th>Filament voltage</th>
<th>2.5 amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum anode volts</td>
<td>350-0-350</td>
<td></td>
</tr>
<tr>
<td>Maximum D.C. output</td>
<td>325 volts, 30 m.a.</td>
<td></td>
</tr>
<tr>
<td>Output at half load</td>
<td>300 volts, 63 m.a.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Osram U.14 (Directly Heated)</th>
<th>Filament voltage</th>
<th>2.5 amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum anode volts</td>
<td>450-0-450</td>
<td></td>
</tr>
<tr>
<td>Maximum D.C. output</td>
<td>410 volts, 60 m.a.</td>
<td></td>
</tr>
<tr>
<td>Output at half load</td>
<td>300 volts, 60 m.a.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Osram MU.12 (Indirectly Heated)</th>
<th>Heter voltage</th>
<th>2.5 volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heter current</td>
<td>2.5 m.a.</td>
<td></td>
</tr>
<tr>
<td>Maximum anode volts</td>
<td>500-0-500</td>
<td></td>
</tr>
<tr>
<td>Maximum D.C. output</td>
<td>410 volts, 120 m.a.</td>
<td></td>
</tr>
<tr>
<td>Output at half load</td>
<td>410 volts, 60 m.a.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Osram MU.14 (Indirectly Heated)</th>
<th>Heter voltage</th>
<th>2.5 volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heter current</td>
<td>2.5 m.a.</td>
<td></td>
</tr>
<tr>
<td>Maximum anode volts</td>
<td>500-0-500</td>
<td></td>
</tr>
<tr>
<td>Maximum D.C. output</td>
<td>410 volts, 120 m.a.</td>
<td></td>
</tr>
<tr>
<td>Output at half load</td>
<td>410 volts, 60 m.a.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Osram U.30 (Typo Universal, Indirectly Heated)</th>
<th>Filament voltage</th>
<th>1 amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heter voltage</td>
<td>2.5 volts</td>
<td></td>
</tr>
<tr>
<td>Heter current</td>
<td>2.5 m.a.</td>
<td></td>
</tr>
<tr>
<td>Maximum anode volts</td>
<td>500-0-500</td>
<td></td>
</tr>
<tr>
<td>Maximum D.C. output</td>
<td>410 volts, 120 m.a.</td>
<td></td>
</tr>
<tr>
<td>Output at half load</td>
<td>410 volts, 60 m.a.</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1.—The theoretical and practical circuits given here show the connection for a full-wave valve rectifier.

Fig. 2.—This graph shows how the output of a typical rectifier varies with the current load.

A STANDARD WORK!

NEWNES TELEVISION AND SHORT-WAVE HANDBOOK

WONDERFULLY COMPLETE AND GIVING ALL THE INFORMATION WHICH THE TELEVISION ENTHUSIAST REQUIRES.

Price 5/-; or 5/6 by post From The Publishing Dept., George Newnes Ltd., 8-11, Southampton Street, Strand, London, W.C.
Stentorian Loud-speaker Details

The accompanying illustration showing a cut-away "Stentorian" "Senior" model speaker, P.M.S.1, will prove interesting to many readers, since it shows details of the magnet, the microphone unit, and the throw-over switch for switching from high impedance to low impedance for extension purposes. It is not possible in this illustration to show details of the Whiteley speech coil, but a photograph of this unit will be published in a forthcoming issue.

The "Stentorian" "Senior" Model P.M.S.1 in part section showing the ingenious switch mechanism.

Two New Valves

Not yet on the market but having come to our notice at the Physical Society Exhibition as an experimental development, the new "Osram" N.40 output tetrode valve has many points of interest. The advantages of a pentode are maintained together with the essential feature of a tetrode, and, as such, avoidance is made of the necessity for a suppressor grid, thus eliminating the screen and the anode, and, possessing a negative charge, will tend to repel the electrons in transit from the cathode to the anode. The secondaries produced at the anode and the transformer for 37s. 6d. and 29s. 6d. respectively, and anode dissipation is 8 watts. The amplification factor is 210. Impedance and optimum load impedance for conditions: anode volts, 250; screen volts, 200; and grid bias, -3.5; are respectively 21,000 and 7,800 ohms. Automatic bias resistance is 90 ohms. The list price of this valve is 18s. 6d.

Compact and Efficient Speaker

The new "Fydelitone" speaker, as illustrated, is a product of the well-known firm of Baker's Schurstadt Radio, Ltd., of Croydon, pioneer manufacturers of moving-coil reproducers, and has been specially designed for the convenience of those who like to have their radio in several rooms. Complete with a sturdily built multi-radio transformer to enable it to be correctly matched to the existing receiver, it combines good appearance, compactness, and efficiency. Two models are obtainable, the "Major" at £1 13s., and the "Minor" at £1 15s. The cabinet is of modern design, moulded in bakelite, and is obtainable in walnut or black and chromium. The overall dimensions are only 8 in. by 8 in., and a new type of permanent magnet gives very high efficiency in a minimum of space. If it is wished to use the speaker with an existing output transformer, it may be obtained without the transformer for 37s. 6d. and 29s. 6d. respectively.

The very efficient Baker Fydelitone speaker referred to on this page.
PRACTICAL LETTERS FROM READERS

The Editor does not necessarily agree with opinions expressed by his correspondents. All letters must be accompanied by the name and address of the sender (not necessarily for publication).

Two-valve Amplifier

Sir,—Referring to the letter on p. 524 of your issue dated December 22nd, re "Two-valve amplifier," I have recently made such a set. It embodies 2 H.L. valves, R.F. coupled, 80-volt ordinary H.T. battery, 20 a. h. jelly acid L.T., 65:1 input transformer, and the microphone (carbon), and single plug-in earpiece, and packs away in the case for carrying. It is, of course, rather heavy owing to the batteries, but is contained in a case about 12in. long x 6in. high x 4in. wide. There is no volume control or tone control.—E. B. (Croydon).

A Satisfied Reader

Sir,—May I congratulate you upon the new series "Circuits and Sets for All." The "Odd Parts III" is the type of article to find favour with thousands of readers, who, like myself, cannot afford fine sets even as cheap as the £5 superhet. I hope in the future we may look forward to many more such circuits. May I suggest one of 2 H.L. valve output, with A.V.C. and to keep absolute economy in mind but not to sacrifice tone quality?—A. M. (Glasgow).

Our Short-wave Section

Sir,—May I voice an opinion regarding the short-wave page of your invaluable weekly? However good a circuit is set out I am afraid that amateurs, especially novices, will have the utmost difficulty in guessing the values of components correctly. Especially have I in mind a circuit which appeared in your journal dated November 10th, 1934, where only three condenser values were given. I feel sure many amateurs would try out many more S.W. circuits if they were sure of the component values; these are often critical.—J. C. Coleman (Siemens, Malta).

[A. G. Bum (Birmingham).]

[The component values very often vary according to the type of valve used, but where the components are not affected by the valves, or other considerations, the values are always given.—Ed.]

A Quality Receiver

Sir,—I should be very interested in a high-class A.C. receiver of the type asked for in Practical Wireless dated Jan. 5. I want to rebuild my own radio-gram, which is out of date now. I may suggest two PX4s in push-pull or a single PP3/400 output with a good variable tone control? Something really worth while on records and radio.—A. G. Burn (Birmingham).

A Colonial Set

Sir,—With reference to Mr. C. A. Rumble's letter in the December 8th, I should like to see a "Colonial Set" designed by your staff, as, being in the Far East myself, I am on the look out for a really good "all-wave" set. The ordinary medium- and long-wave circuits are practically useless out here. An A.C./D.C. version would be best, as supplies of batteries, etc., are very poor overseas; in my case power can be obtained on board at 220 v. D.C., but on returning home to England my supply would, of course, be A.C.

I am pleased to say I get my Practical Wireless copies regularly, and when I get "right into them" I feel at home again.—H. E. Symons (At sea, China Station.)

£5 Superhet Connections for Ward and Goldstone Coils

Sir,—The accompanying sketches may prove of assistance in connection with any queries relating to the operation of the 3-Valve Superhet, incorporating our coil units. It would appear that unfortunately a number of these units have accidentally gone out with a slightly incorrect connection to the wave changing of the G.I.C.7 Oscillator Coil. About 27 of these units were sent out with the wave change switch directly across the terminals 5 and 2 of the G.I.C.7; whereas in fact the bottom end of the switch should go to the No. 6 terminal on the coil. The error is not serious enough for any of the constructors to return the coil, as we can put them right. Actually, to correct the coils it is only necessary to break the connection between the terminal No. 2 and the switch on the underside and merely take the same side of the switch to the metal frame of the coil and switch chassis. The No. 2 terminal will then connect to the preset condenser as already shown on the diagram. All further chassis will of course be correct on this point, and we have already received one or two very good testimonials.—G. V. Cole, for Ward & Goldstone Ltd.

Connections for Denmark Coil

Sir,—Noticing a query from one of your correspondents re connections for a Denmark coil, I have fitted one into a receiver and the connections are as follows:—

1. Grid.
2. Earth.
3. Switch (Wave-change).
4. Aerial.
5. Receptacle.

A .0001 fixed condenser is recommended in between aerial and No. 4 connection. I personally have found that a .0003 condenser gives better results.—J. V. Magnall (Blackpool).

(Continued on page 691)
Overloading and its Remedies

Sr.-In your issue of PRACTICAL WIRELESS for January 26th, on page 506, in an article discussing the德国, curves are suggested which would cause just the opposite effect, making the remedy worse than the disease. I expect a good many who insert milliameters in the output stages and then adjust the G.B. as you suggest will wonder why the needle kicks still higher, and still lower by the method of correction adopted. When the needle kicks upward it shows G.B. to be too high, and when it kicks down G.B. is too low. The remedy is obvious; lowering the G.B. increases anode current and vice-versa. When the needle, after alteration of G.B. kicks upward the output transformer ratio is too low, and when it kicks down the transformer ratio is too high again. When the needle kicks wildly from low to high on the scale the output valve is hopelessly overloaded. The remedy is, of course, to use a valve capable of handling larger input.—Cromerrow (Ashstead).

"Mines of Information"

Sr.-I wish to express my thanks for the prize awarded to me, in connection with Problem 117 in PRACTICAL WIRELESS. I wish to congratulate you and your staff for the way in which the designs of modern receivers are put forward in your splendid weekly. Having been a regular reader since its inception, I can truthfully say that your efforts to keep it the leading wireless weekly are being maintained. Also, the presentation books, which have been offered by you, and for which I qualified, are literally "mines of information."—C. R. Shaw (Preston).
ALBERT SANDLER is such a fine violinist that notable musicians are glad to write compositions specially for him to play. As a mark of his appreciation for Sandler's art, Reginald King, the composer-pianist of wireless fame, wrote two charming little songs, "Daybreak" and "Melody at Dusk," for the violinist to play, and the compliment was returned when Albert Sandler arranged for the composer to accompany him in his recordings of them. This we have a happy combination of artists supreme in their class, and we have, too, for the first time, Sandler announcing his titles. This enjoyable record has been issued and is a Columbia DB1480.

Layton and Johnstone break fresh ground this month in the song "I'm Lonesome for You, Caroline," on Columbia DB1482. In this record there is a remarkable quartet chorus in which Layton and Johnstone sing with Layton on Johnstone, a clever technical feat in double recording. "June in January" is on the other side, sung with studied refinement and charm by Turner Layton. You should certainly hear this record.

In "Stars Fell on Alabama" and "Judy" Carroll Gibbons provides delights such as no other pianist can give in the same way. His tone is warm and friendly, and his playing a model of clarity and rhythm. These "best-sellers" are on Columbia DB1487.

Family Harmony

You met little Norman — the most recent addition to the family — while a rapidly growing hit "Family Harmony" is featured by the B.B.C. Dance Orchestra over the air. The tune is coupled with "Who Made Little Happiness," "Flies Crawled Up the Window," and "Sweep" are samples of the new hits featured by the orchestra. Mr. Ellis sings one or two of the choruses. This is the best short-wave converter on the market.

£5 SUPERHEAT THREE

Complete Kit of parts for this remarkable set as used by Mr. F. J. Camm. Cash Price £12/0/0, or £6 with order and 11 monthly payments of £1/6. Short-Wave Converter. This is the best short-wave converter on the market.

The following list may be of interest:

- **£5 SUPERHEAT THREE** Complete Kit, 5/-; with valve, 8/-
- **£6 SUPERHEAT THREE (batterly model)** Complete Kit, 8/-, carriage paid.
- **£5 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) Set by B.B.C. Patents, 11/-
- **£5 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 1 set specified Cossor valves, 13/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 1 set specified Cossor valves, 21/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 2 sets specified Cossor valves, 24/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 3 sets specified Cossor valves, 27/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 4 sets specified Cossor valves, 30/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 5 sets specified Cossor valves, 33/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 6 sets specified Cossor valves, 36/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 7 sets specified Cossor valves, 39/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 8 sets specified Cossor valves, 42/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 9 sets specified Cossor valves, 45/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 10 sets specified Cossor valves, 48/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 11 sets specified Cossor valves, 51/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 12 sets specified Cossor valves, 54/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 13 sets specified Cossor valves, 57/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 14 sets specified Cossor valves, 60/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 15 sets specified Cossor valves, 63/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 16 sets specified Cossor valves, 66/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 17 sets specified Cossor valves, 69/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 18 sets specified Cossor valves, 72/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 19 sets specified Cossor valves, 75/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 20 sets specified Cossor valves, 78/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 21 sets specified Cossor valves, 81/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 22 sets specified Cossor valves, 84/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 23 sets specified Cossor valves, 87/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 24 sets specified Cossor valves, 90/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 25 sets specified Cossor valves, 93/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 26 sets specified Cossor valves, 96/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 27 sets specified Cossor valves, 99/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 28 sets specified Cossor valves, 102/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 29 sets specified Cossor valves, 105/-
- **£6 SUPERHEAT THREE** (including Telsen specified coils, and all first-class components.) 30 sets specified Cossor valves, 108/-

Send 1d. stamp for details of these and other interesting "Swift" Circuits. "SWIFT" KITS AND COMPONENTS ARE GUARANTEED.
Let Us Send You This 28-Page Booklet—Free

It gives all particulars of various Courses that cover every phase of Radio work. The Radio industry is progressing with amazing rapidity. Only by knowing thoroughly the basic principles can one pace with its demands.

Our Courses

Included in the I.C.S. range are Courses dealing with the installing of Wireless apparatus, and, in particular, with their Servicing, which to-day intimately concerns every wireless dealer and his employees. The Operating Course is vital to mastery of operating and transmitting.

There is also a Course for the Wireless Salesman. This, in addition to inculcating the art of salesmanship, provides that knowledge which enables the salesman to hold his own with the most technical of his customers.

Then there are the Preparatory Courses for the City and Guilds and I.W.T. Exams.

We will be pleased to send you details and free advice on any or all of these subjects. Just fill in, and post the coupon, or write in any other way.

INTERNATIONAL CORRESPONDENCE SCHOOLS

Name ___________________________ Age ____________
Address __________________________

PHONE: 8-11, Southampton St., Strand, W.C.2.

Free Advice on any or all of these Subjects.

The Radio Industry promises an entirely new shape of "Wireless Operators" in the future. Many states have already set up a posse of "Wireless Operators" from whom you receive details of the courses. The Radio World, July 14th, 1935, p. 171. E. L. Cumbers, Maycourt, Campden Road, S. Croydon.

A MARCONI ACHIEVEMENT

In a large and strikingly-produced leaflet the Marconi Telephone Company give details of what they claim to be the outstanding radio achievement of the year—the new Marconophone de Luxe, Model 292. Nothing has been spared to make it an absolutely perfect performance as it is in luxurious appearance. The nine-valve, twelve-stage, band-pass superhet circuit is provided with quiet and delayed A.V.C., variable selectivity, and many other refinements. The new multi-functional moving-coil speaker is a definite step forward for reproduction, while the auto-compensated volume control maintains a perfect balance of tone at any volume. The sight-and-hearing automatic mechanism has been brought to a high degree of efficiency. The circuit consists of a two-stage band-pass aerial filter feeding into a variable- mu signal frequency stage which is followed by a broadband detector-oscillator. Two I.F. stages are next before the double-diode-triode which functions as second detector and mixer. In place of L.F., a further double-diode-triode supplies A.V.C. In the final stage there are two push-pull super-power triodes, while an indirectly-heated pentode supplies S.T. There are thus nine valves and twelve stages in all. The undistorted output is 8 watts. Power consumption is 110 watts: grampophone, 145 watts. The cabinet is of figured walnut in an attractive modern style. Height 33in., width 31in. and depth 20in. The price is 48 guineas.

LATEST LISSEN RANGE

Descriptions of seven attractive models are described and illustrated in the new Lisson catalogue varying in price from £1 10s. for the "Popular" three-valve, two I.F. and pentode receiver to £9 10s. for the all mains A.C. band-pass four-valve receiver. The appearance of the all-mains D.C. four-valve receiver at £9 10s. is particularly attractive and unusual in design. There is a model with figured walnut in an attractive modern style. Height 33in., width 31in. and depth 20in. The price is 48 guineas.

RADIO CLUBS AND SOCIETIES

Club Reports should not exceed 200 words in length and should be received first Monday each week for publication in the following week's issue.

THE CROYDON RADIO SOCIETY

MUSICAL CRITIC: THE CROYDON ADVERTISER. "Amphion" gave an interesting lecture for the Croydon Radio Society on Jan. 22nd at 8-11, Southampton St., Strand, W.C.2. The Chairman, in concluding, announced that on Tuesday, January 29th, the Society will hold a Musical Lecture Night, and he hoped that "Amphion" would be able to attend it. The New Year Programme is now ready.—Hon. Secretary, E. L. Cumber, Maycourt, Campden Road, S. Croydon.

ASK FOR "Practical and Amateur Wireless" 3d. Every Wednesday Published by Geo. Newnes, Ltd., 8-11, Southampton St., Strand, W.C.2. We shall be pleased to help you.

BEFORE

You buy your Speaker for the "HALL-MARK 4" FREE EPOCH REPRODUCER either at your Local Dealer or at our Demonstration Room in Aldwyth House.

FOR PERFECT QUALITY AND GREATEST VOLUME YOU MUST HAVE AN EPOCH

Type 20CP. Specially designed for the "Hall-Mark." New type "Alni" Super Magnet with High Flux Density, latest type Aluminium Frame with 81-inch Diaphragm. With Special Large Core Transformer, ready for use 35/- Fitted in Handsome Oak cabinet 47/-

YOU MUST HEAR AN EPOCH

WRITE NOW FOR FULL ILLUSTRATED LIST TO EPOCH REPRODUCERS RADIO DEVELOPMENT CO., LTD., ALDWYTH HOUSE, ALDWYCH, W.C.2.

Telephone: Holborn 9111.

WE SHALL BE PLEASED TO HELP YOU.
SPAN the ATLANTIC with

HYVOLTSTAR

UNIVERSAL

A.C./D.C. RECEIVERS

13 to 2,000 Metres — All Waves, All Mains

HYVOLTSTAR Universal Superhets are supreme. Any Mains, A.C. or D.C. Superb performance on all wavebands. America easily tuned-in at full loudspeaker strength. Refinements include silent Fluidlight tuning and A.V.C. Test HYVOLTSTAR superiority, have a Receiver on approval! Write for interesting leaflet C.

UNIVERSAL HIGH VOLTAGE RADIO LTD.,
28-29, Southampton Street, Strand, W.C.2.
Telephone: T E M p le B a r 4 085.

NOTE THE LOW PRICES!
Universal All-Wave Super 5 (13 to 2,000 m.)
Chassis and Valves, 14 gns. Complete Table Model, 18 gns. Table Radiogram, 22 gns. Table Model with automatic Record-changer, 49 gns.
Universal All-Wave Super 7 (13 to 2,000 m.)
Chassis and Valves, 22 gns. Table Radiogram, 30 gns. Table Model, 36 gns. Table Model with automatic Record-changer, 90 gns.

UNIVERSAL KITS.
A comprehensive range is available, including Universal S.T.600, All-wave Superhets, Radiograms, and Amplifiers. Ask for leaflet C, giving full details.

Eugen J. Forbat, 28-29, Southampton St., Strand, W.C.2.
Telephone: T E M p le B a r 8 808.

INSIST ON

BENJAMIN

COMPONENTS

and make certain of success!

A comprehensive range of proved components comprising 4, 5, 7 and 9 pin Valveholders, Switches, Chokes, Transformers, Battery Economy Units and Magnavox Loudspeakers.

The COMPONENTS that make

HOME CONSTRUCTION PRACTICAL

THE BENJAMIN ELECTRIC LTD.,
BRANTWOOD WORKS,
TOTTENHAM, N.17.

II TRUE LIFE ADVENTURES
FROM ALL PARTS OF THE WORLD

There is no other magazine like the "WIDE WORLD"; it will quicken your blood and enlarge your horizons. No sex-stuff, no sob-stuff, no "stunts"—nothing but real-life stories and articles full of human interest and actuality. Get a copy to-day.

February Number Now on Sale.

WIDE WORLD MAGAZINE

One Shilling

On sale at all Newsagents and Bookstalls, or by post 1/3 from George Newnes, Ltd., 8-11, Southampton Street, Strand, London, W.C.2.
LET OUR TECHNICAL STAFF SOLVE YOUR PROBLEMS

If a postal reply is desired, a stamped addressed envelope must be enclosed. Every query and drawing which is sent must bear the name and address of the sender. Send your queries to the Editor, PRACTICAL AND AMATEUR WIRELESS, Geo. Newnes, Ltd., 4-11 Southwark Street, Strand, London, W.C.2.

The coupon on Page 700 must be attached to every query.

SPECIAL NOTE

We wish to draw the reader's attention to the fact that the queries service is intended only for solving of problems or difficulties arising from the construction of receivers described in our pages, or on general wireless matters. We are unable to assist in any other way.

1. Supply circuit diagrams of complete multi-valve receivers.
2. Suggest alterations or modifications of receivers described in our contents.
3. Suggest alterations or modifications to commercial receivers.
4. Answer queries over the telephone.

Please note also that all sketches and drawings which are sent to us should bear the name and address of the sender.

Making a Multi-purpose Meter

"I have read with great interest the articles in the series of "Half-Hour Experiments" in 'Practical Wireless,' and have particularly been interested in the matter of measuring voltages by means of a milliammeter. Could you please tell me the values of the shunt resistances required for use in conjunction with a 0-5-milliamp., moving-coil meter to enable me to read up to, say, 0-100 milliamps. and 0-150 volts? I should be greatly obliged if you could also give me information which would enable me to construct a complete test meter of the type referred to at a total cost of not more than about 22."- W. A. (Cleveleys).

We are pleased to know that you find the articles of interest, and it may be possible to include the information you require in a later article of this series. It should be pointed out, however, that the values of shunt and series resistances can only be calculated when the resistance of the meter itself is known; as you do not state any figure in connection with your own meter we regret that we cannot supply the information required. We would add, however, that an article dealing with the construction of a multi-purpose test meter appeared in the issue of 'Practical Wireless,' dated December 30th, 1933, and you will probably find a good deal of information in that article.

Short-circuiting Components

"Referring to the article in the series 'What is Wrong?' ('Practical Wireless,' dated March 4th, 1933), dealing with testing by short circuit, I would like to ask if these tests can be made when the set is switched on. The reason for asking this is that I tried short-circuiting the primary winding of the L.F. transformer in my set and found that the fuse 'blew.' I also tried short-circuiting the secondary when the set, which had previously been inoperative, commenced to function correctly again. I am puzzled to know the cause for these two apparently peculiar happenings."- "Strongbow" (Riverton).

The tests by short circuit should be carried out when the receiver is switched on, care being taken, of course, that the short circuit is applied at the correct points and not across the H.T. or L.T. leads. It would appear from your remarks that when you thought the transformer primary was shorted you were actually shorting the primary winding of the set and found that the fuse 'blew.' In the details you give we are afraid that we cannot account for the change brought about by short-circuiting the secondary winding.

The Leader Three

"I propose to build the Leader Three as described some time ago in 'Practical Wireless,' but as I have a perfectly good new two-gang condenser and a reliable L.F. transformer of well-known make I should like to know if these could be substituted for those components specified."- D. W. C. (Newcastle-on-Tyne).

Whilst it is possible that you have found these components, you should prove quite satisfactory, we cannot recommend alterations to our specification, nor can we guarantee the receiver when made from parts other than those listed in the constructional articles. In your case, however, we have little doubt that good results would be obtained, although perhaps not quite so good as with the original receiver.

Electrical Interference?

"We have recently installed a three-valve battery receiver, but find that only about two stations on each waveband can be received. It should be added that there are electric pylons near the house, and we wonder if these have any ill effect, especially since we are troubled by interference (presumably) which takes the form of continuous 'crackles and bangs.' Any assistance that you may give will be very much appreciated."- C. K. (Bridgend, Glam.).

It is rather difficult to advise you without having a circuit diagram of your receiver, but we should imagine that your trouble is more probably due to a loose connection or faulty component in the receiver than to the electric pylons near the house. You could check this by disconnecting the set and earth -if the noise persists it can be taken that the set is at fault. If, on the other hand, there is then a silence between the moment it may be that you are suffering from electrical interference and the engineering department of the nearest general post-office should be notified: they will arrange for tests to be made and advise you of the best course to follow.

An Extension-speaker Problem

"I have built the portable crystal set recently described in your pages, but I am unable to receive any signals. Can you please tell me where to look for faults? Another question: When using an extension speaker, it was noticed that reception could still be obtained—at much reduced strength—when only one lead was connected. What is the reason for this, please?"- L. W. S. (S.E.3).

There is really very little to go wrong with the crystal set you mention, and we can only suggest that you test the coil and headphones by substituting them in your other receiver.

The extension speaker functions with only one lead attached due to a capacity effect between the second lead and earth. The lead being long and probably running near to a wall, the earth capacity will be fairly high, so that you have almost the equivalent of a choke-capacity output system between the speaker and the pentultimate valve.

A Signal Generator

"With regard to the signal generator described in a recent issue of 'Practical Wireless,' I would like a little information on the following points: Does the 4.5-ohm stud give a reading of ten times the value of the .5-ohm std for the same meter reading? Are the connections shown on the enclosed sketch (not reproduced—Ed.) correct?"- G. H. (Birmingham, 7).

(1) The .5-ohm std gives one-fifth of the output obtained from the second std.
(2) Your sketch is quite correct.

THE ONE AERIAL FOR THE MODERN SET

PIX INVISIBLE AERIAL

PIX, LONDON, S.E.1

Double Length 3/6

Neat
Efficient
Blends with furnishings
Self-Adhesive
PRACTICAL AND AMATEUR WIRELESS

New Clyde Sales Co.
56, (Pr.W.) LODGATE HILL, LONDON, E.C.4

Extra.

goods guaranteed perfect;

PREMIER SUPPLY STORES
30/-

250v. 60 milliamps, with 4v. charger, 8/- extra;

Speaker. £1211010.

17/6.

4v. la. C.T., 4v. la. C.T., 19/6.

0.00035, 9d.

A

Valves and Batteries, 27/6.

SPECIAL OFFER.

DOLAR Star manufacturers' model, 3 -gang control, 49/-.

D.C. model Truspeed, 100/250v., 47/6.

11/-.

PRESIIR instructions and diagram, 2/4.

VARIABLE Constant Square Peak Coils, bandpass type B.P.7 brand new, in maker's cartons, with

elaborate instructions, in original case, £5 5s. 4/6.

SCREENED H.F. Chokes, one of the largest Speciality British-made Meters, ironing, flash

mounting, accurate, 10/-, 15/-, 20/-.

WEBSTER Electric Condensers, 256v., working, 25/-

100,000, 100,000, 2/- each; 1,000 ohm, semi-variable, extra 150/-.

54/579]extra.

High St., Clapham.OFFER the Following Manufacturers' Surplus New

PREMIER SUPPLY STORES
30/-

250v. 60 milliamps, with 4v. charger, 8/- extra;

Speaker. £1211010.

17/6.

4v. la. C.T., 4v. la. C.T., 19/6.

0.00035, 9d.

A

Valves and Batteries, 27/6.

SPECIAL OFFER.

DOLAR Star manufacturers' model, 3 -gang control, 49/-.

D.C. model Truspeed, 100/250v., 47/6.

11/-.

PRESIIR instructions and diagram, 2/4.

VARIABLE Constant Square Peak Coils, bandpass type B.P.7 brand new, in maker's cartons, with

elaborate instructions, in original case, £5 5s. 4/6.

SCREENED H.F. Chokes, one of the largest Speciality British-made Meters, ironing, flash

mounting, accurate, 10/-, 15/-, 20/-.

WEBSTER Electric Condensers, 256v., working, 25/-

100,000, 100,000, 2/- each; 1,000 ohm, semi-variable, extra 150/-.

54/579]extra.

High St., Clapham.OFFER the Following Manufacturers' Surplus New

PREMIER SUPPLY STORES
30/-

250v. 60 milliamps, with 4v. charger, 8/- extra;

Speaker. £1211010.

17/6.

4v. la. C.T., 4v. la. C.T., 19/6.

0.00035, 9d.

A

Valves and Batteries, 27/6.

SPECIAL OFFER.

DOLAR Star manufacturers' model, 3 -gang control, 49/-.

D.C. model Truspeed, 100/250v., 47/6.

11/-.

PRESIIR instructions and diagram, 2/4.

VARIABLE Constant Square Peak Coils, bandpass type B.P.7 brand new, in maker's cartons, with

elaborate instructions, in original case, £5 5s. 4/6.

SCREENED H.F. Chokes, one of the largest Speciality British-made Meters, ironing, flash

mounting, accurate, 10/-, 15/-, 20/-.

WEBSTER Electric Condensers, 256v., working, 25/-

100,000, 100,000, 2/- each; 1,000 ohm, semi-variable, extra 150/-.

54/579]extra.

High St., Clapham.OFFER the Following Manufacturers' Surplus New

PREMIER SUPPLY STORES
30/-

250v. 60 milliamps, with 4v. charger, 8/- extra;

Speaker. £1211010.

17/6.

4v. la. C.T., 4v. la. C.T., 19/6.

0.00035, 9d.

A

Valves and Batteries, 27/6.

SPECIAL OFFER.

DOLAR Star manufacturers' model, 3 -gang control, 49/-.

D.C. model Truspeed, 100/250v., 47/6.

11/-.

PRESIIR instructions and diagram, 2/4.

VARIABLE Constant Square Peak Coils, bandpass type B.P.7 brand new, in maker's cartons, with

elaborate instructions, in original case, £5 5s. 4/6.

SCREENED H.F. Chokes, one of the largest Speciality British-made Meters, ironing, flash

mounting, accurate, 10/-, 15/-, 20/-.

WEBSTER Electric Condensers, 256v., working, 25/-

100,000, 100,000, 2/- each; 1,000 ohm, semi-variable, extra 150/-.
RADIOMART. 8d.; Frequentite English valveholders, 8d.

RADIOMART. Practice key, 3/6. or

made. over El), 2/9.

or

RADIOMART. Screened iron -cored dual -range coils (list 49/6), 25/.

RADIOMART. Consumption (list 27/6), 7/6.

RADIOMART. 1 mfd., 1/2 ;

RADIOMART. Milliammeters (Continued at top of column three)

RADIOMART. Pye lolos short-wave valveholders, 4/-.

RADIOMART. Radiophone 4 -gang short-wave valveholders, 3/9. with disc dial, 6/11.

RADIOMART. Fintglass aerial insulators, 31in.,

 blockbuster, definite despatch, guaranteed satisfaction.

RADIOMART. Triotron " Class B " 71n. cone PM.

RADIOMART. Lissen 12/6 chokes, 25 hy., 70ma.,

RADIOMART. Transformers :

RADIOMART. Resin -cored

BPA NDR new components by quality makers, im-

RADIOMART. 698

BRA ND new components by quality makers, im-

RADIOMART. Transformer, 2/6 ;Token dual -range short-

BRA ND new components by quality makers, im-

RADIOMART. Milliammeters flush, 2lin., 6/6. on

RADIOMART. American stand-off insulated, " EMI " ; " Midget " ; " 70d. ;

RADIOMART. American stand-off insulated, " EMI " ; " Midget " ; " 70d. ;

RADIOMART. Frequency English valveholders, 8d.

RADIOMART. American stand-off insulated, " EMI " ; " Midget " ; " 70d. ;

RADIOMART. American stand-off insulated, " EMI " ; " Midget " ; " 70d. ;

RADIOMART. Frequency English valveholders, 8d.

RADIOMART. American stand-off insulated, " EMI " ; " Midget " ; " 70d. ;

RADIOMART. Frequency English valveholders, 8d.

RADIOMART. American stand-off insulated, " EMI " ; " Midget " ; " 70d. ;

RADIOMART. Frequency English valveholders, 8d.
EASY PAYMENTS

"There's no place like HOLMES"

W.B. SPEAKERS.

Deposit Monthly Payment

STENTORIAN SENIOR...45/6 8/6
STENTORIAN EASY...25/6 2/6

KIT SETS

We strongly recommend.

LIFETIME GUARANTEED ONLY.

COMPLETE SETS

Sizes and values are shown.

STENTORIAN SENIOR WIRELESS...75/6 7/6
STENTORIAN EASY WIRELESS...35/6 3/6

BLACKSEAL.

A.D. Oranges, 3/6 doz.

ACCESSORIES

EXTREME BAND, 100, 2/6. 64/6.
VOLTAGE METER...5/6 5/6
R.F. LATENT FILTER...1/6 1/6
Parts for any set. Any make of speaker.

New goods ordered for future.

Send a list of parts or a description of the parts you want, and we will forward you a definite quotation. Twenty parts afterwards in the Wireless World. Thousands of satisfied customers.

H. W. HOLMES,

NEW ADDRESS:
133, EUSTON ROAD, LONDON, W.1.

MICROFILM GOLDFILM FUSES

20 Stock Ratings.

Typical rating of fuses suitable for Main sets.

ELECTRONIC FUSES.

250 m/A, 47/6.
10 m/A, 4/6.
2 m/A, 4/6.
1 m/A, 4/6.

HALLMARKED: "A.C.

HALL-MARK TUBES. FOUR "

You need one Type F2, 6V6, suitable for Battery sets, 93/6, 9/6, or power Holders 6D, 600 Volts D.C.

FREE ADVICE BUREAU COUPON

This coupon is available before February 2, 1935, and must be used for all letters containing queries.

PRACTICAL AND AMATEUR WIRELESS

January 26th, 1935

VAUXHALL.—Magnavox permanent magnet speakers universal fitted and in stock at £10, 10/-, or push-pull : Tins. cone, 16/6; 10/-, cone, 22/6.

VAUXHALL.—Magnavox or Rola speaker, carriage paid, £15/6 or 50/6. 10/-, cone, 22/6. All brand new complete with honeymoon coils, state prestige. Other models. Send for particulars.

VAUXHALL.—Practical Wireless Universal superb chassis, completely built as specified with either Magnavox or Rola speaker, carriage paid, £15/6-16/6-18/6.

VAUXHALL.—Radio-phile radio-paks R.F. super-con-

VAUXHALL.—Radio-telephones, complete with vacuum transformer, etc.

VAUXHALL.—New Lucifer chassis, name stated by names.

VAUXHALL.—Radio-phones, complete with power transformer, centre tapped primary, secondary on bases with terminals, 5/-

VAUXHALL.—Radio-telephones, complete with coils, piano type superhet, or straight screen, 2/- per gang.

VAUXHALL.—Westinghouse rectifiers set, manufactured surplus skeleton type H.T. 9/6.

HT-10, 10/-.

VAUXHALL.—Westinghouse Westeners, W.A.

V.A.A.—Radio-phones, universal complete, all systems from 5,000 to 50,000, with switch, 3/-.

VAUXHALL.—Westinghouse rectifiers set, manufacturer surplus skeleton type H.T. 9/6.

VAUXHALL.—Magnavox or Rola speaker, carriage paid, £15/6-16/6-18/6.

VAUXHALL.—Magnavox permanent magnet speakers universal fitted and in stock at £10, 10/-, or push-pull : Tins. cone, 16/6; 10/-, cone, 22/6.

VAUXHALL.—Magnavox or Rola speaker, carriage paid, £15/6 or 50/6. 10/-, cone, 22/6. All brand new complete with honeymoon coils, state prestige. Other models. Send for particulars.

VAUXHALL.—Practical Wireless Universal superb chassis, completely built as specified with either Magnavox or Rola speaker, carriage paid, £15/6-16/6-18/6.

VAUXHALL.—Radio-phile radio-paks R.F. super-con-
The Best Books on Wireless

Being a selection of up-to-date Works by practical writers dealing with Wireless from every angle, and priced to suit all pockets.

THE OUTLINE OF WIRELESS
By Ralph Stranger
Fifth Edition 8s. 6d. net (postage 9d.)
The author has an easy style coupled with a thorough knowledge of his subject and the rare faculty of presenting scientific facts in simple language. The result is a book which is both readable and informative. 816 pages, profusely illustrated.

THE MATHEMATICS OF WIRELESS
By Ralph Stranger
5s. net (postage 5d.)
Essential for the amateur who desires to gain a fuller knowledge of his subject. Written by one who has the gift of explaining the most abstruse subject in simple fashion. 256 pages, fully illustrated.

THE ELEMENTS OF WIRELESS
By Ralph Stranger
3s. 6d. net (postage 5d.)
Starts with elementary principles and covers the whole field of wireless reception, finishing with a complete survey of a four-valve wireless receiver, explaining its working from aerial to loud-speaker.

DICTIONARY OF WIRELESS TERMS
By Ralph Stranger
2s. 6d. net (postage 4d.)
A valuable synopsis of technical terms used in wireless that everybody can understand. Indispensable to every enthusiastic constructor.

WIRELESS THE MODERN MAGIC CARPET
By Ralph Stranger
Fifth Edition 3s. 6d. net (postage 4d.)
"The subject in both theoretical and practical aspects is dealt with in a lucid manner guaranteed to inculcate knowledge without pains."—Amateur Wireless.

THE WIRELESS CONSTRUCTOR'S ENCYCLOPAEDIA
By F. J. Camm
(Editor Practical and Amateur Wireless.)
Third Edition 5s. net (postage 6d.)
Compiled by the leading designer and writer on the practical side of wireless construction and recently brought right up to date. The whole field is covered and the work is remarkable for the number of practical diagrams, etc., used to illustrate the text.

FIFTY TESTED WIRELESS CIRCUITS
By F. J. Camm
2s. 6d. net (postage 4d.)
A useful handbook containing every modern circuit, complete with instructions for assembling, component values and notes on operation.

WIRELESS STEP BY STEP
By Dictron
Tenth Edition 2s. 6d. net (postage 4d.)
A handy little book which shows the reader how to obtain the best results and consequently the maximum enjoyment from his receiving set.

FINDING FOREIGN STATIONS
By Ralph W. Hallows
3s. 6d. net (postage 4d.)
A practical book by one who has made a special study of the subject. Contains hints and suggestions which will enable the reader to obtain the best possible results.

WIRELESS FOR THE MAN-IN-THE-MOON
By Coulombus & Decibel
2s. 6d. net (postage 4d.)
Illustrated.
"If you want a really gorgeous text-book on wireless," says the Manchester Evening News, "do read 'Wireless for the Man-in-The-Moon.'" This book should be in the hands of all who are interested in wireless and wish to acquire a complete knowledge of "how it works."

The above books are to be obtained at all Booksellers, etc., or in the event of difficulty by post from

GEORGE NEWNES, LIMITED,
8-11 SOUTHAMPTON STREET, STRAND, LONDON, W.C.2.
Stabilised Electrolyte
for purity and power

Super insulation
for longer life

YOUR EAR will notice
the greater purity of tone

YOUR POCKET will
notice the longer life

A TRIAL MEANS YOU'LL ALWAYS USE GEC HT