The ear alone is not enough...

Science and sight combine to test “His Master’s Voice” true-to-life tone. The Cathode Ray oscillograph is one of the wonders of science, for it turns sound into something you can see. It converts a musical composition into a graph. This has been incorporated in apparatus specially designed by “His Master’s Voice” Research engineers for checking the performance of the intermediate frequency stages of “His Master’s Voice” superheterodyne instruments.

“His Master’s Voice”

THE GRAMOPHONE COMPANY LTD · 98-108 CLERKENWELL ROAD · LONDON · EC1
Cardiff Symphony Orchestra

This popular orchestra, which is composed chiefly of musicians who are not in regular employment, will be heard by West Regional listeners on October 14th. Garforth Mortimer, the conductor, evolved a scheme by which unemployed musicians in the Cardiff area could meet for weekly rehearsals, and as a result the Cardiff Symphony Orchestra came into being. The rehearsals, were held regularly from October, 1933, until May, 1934; they were then suspended as many of the members found summer engagements, but in the beginning of September they were resumed. The artist in the concert will be Clifford Deri of September they were resumed.

Symphony Orchestra came into being. The in the Catdiff area could meet for weekly

a scheme by which unemployed musicians

Garforth Mortimer, the conductor, evolved

by West Regional listeners on October 14th.

not in regular employment, will be heard

Cardiff Symphony Orchestra

of Singing at the Academy.

George Beaumont, which will be broadcast

“This monthly String Orchestral Concert will appear NEXT WEEK

in the Academy.

Variety from Liverpool

On October 17th, a variety entertainment from the Pavilion Theatre, Liverpool, will be broadcast from the North Regional. The programme will include the following artists: Billy Morris and his Commanders, David Poole (ventriloquist), Jim Jessiman (comedian), Lewis and Lunn (acrobat dancers), Henri Hilton (vocalist), Con and Nyla Croake (dancers), and Hildre Baker (comedienne).

“All for t’love of a Lady”

This is the title of a Yorkshire comedy, written specially for the radio by George Beaumont, which will be broadcast from Leeds on October 16th. Produced by Robin Whitworth, it is being presented by James R. Gregson’s Yorkshire Radio Players—including James R. Gregson, Florence Gregson, and George Beaumont himself.

When the Lights Failed

Many singers nowadays declare that they seldom get a kick out of their performances; everything goes according to plan, and naught emerges save the critics’ comments in next day’s papers. Frank Titterton, however, still manages to provide a measure of excitement for himself and his audience. At an August “Prom,” when he was the soloist in the recitative and aria, “Sound an Alarm,” an enthusiastic but misguided member of the audience expressed his views on the music presentation; and a day or two ago the elements themselves conspired to restrain Titterton’s vocal efforts. He was singing at Buxton when a terrific storm broke over the Winter Gardens. In the middle of his solo, “Lend Me Your Aid,” all the lights went out, following a terrific crash of thunder. Without a pause Titterton continued singing, and thus prevented what might have occurred.

“The Northern Concert Hall”

Under this general heading, ten concerts by the Hallé Orchestra, eight by the Liverpool Philharmonic, and an hour’s relay will be taken for West Regional listeners. The strings of the Western Studio Orchestra (augmented) will be conducted by Reginald Redman, and the Hallé Ensemble will be heard in Frank Bridge’s arrangements of “Sally in our Alley” and “Cherry Ripe.” An interesting item will be Introduction and Folk Tune by Reginald Redman, which was given a first performance in London a short time ago.

The B.B.C. Midland Orchestra

This new orchestra, consisting of thirty-five players, will give a programme which includes Grieg’s “Peer Gynt Suite No. 1,” on October 19th, Leslie Howard conducting. The orchestra will be employed all the year round by the B.B.C. It also forms the nucleus of the City of Birmingham Orchestra, whose concerts will be relayed as usual. There are two, for instance, in the Town Hall on October 20th—a Children’s Concert in the afternoon, when Harold Gray will conduct, and a Beethoven Concert in the evening, when Leslie Howard conducts, and Tom Bromley (pianoforte) and the Orchestra play the Concerto in G Minor.

Welsh Orchestral Concert

The monthly String Orchestral Concert in the Reardon Smith Lecture Theatre of the National Museum of Wales will be given on October 17th, and an hour’s relay will be taken for West Regional listeners. The strings of the Western Studio Orchestra (augmented) will be conducted by Reginald Redman, and the Hallé Ensemble will be heard in Frank Bridge’s arrangements of “Sally in our Alley” and “Cherry Ripe.” An interesting item will be Introduction and Folk Tune by Reginald Redman, which was given a first performance in London a short time ago.

An Announcement of the

Greatest Importance to Home Constructors

W E round the World of Wireless...
ROUND the WORLD of WIRELESS (Continued)

October 13th, 1934

A Talk from Chipping Campden

In the broadcast of one of the "Microphone at Large" series, which is to be given on October 17th, London Regional listeners are to share with Midland Regional listeners the experience of a microphone visit to the lovely old market town of Chipping Campden, in the Cotswolds.

ADJUSTING AUTOMATIC RADIO-GRAM MECHANISM.

Mr. F. L. Griggs, R.A., R.E., the well-known artist, who is a local resident, will co-operate with Owen Reed, organizer of Midland Regional features. Others taking part are George Groves, an old wall expert on Cotswold stone, and Harry Keeley, who will talk of thatching, and of the times when he led an ox team for ploughing for a wage of threepence a day. It is also hoped that Polly Wayne, who is aged ninety-four, will give her reminiscences of the Dover Hill Games, an old Cotswold custom.

Out and About

On October 17th, C. Henry Warren will give the first of his fortnightly talks in the Midland Regional programme, which are to be called "Out and About." These will include personal impressions of Midland character and of the countryside—something on the lines of Priestley's "English Journey." Mr. Warren read some of his own poems at the microphone in the Birmingham studio recently.

Loose Fishermen's Choir

This well-known choir will broadcast in the London and West Regional programmes on October 24th; its recital will also be included in the Empire programme. The Choir is believed to be the only one of its kind in Great Britain, being composed entirely of men connected with the fishing industry. As its members spend most of their time at sea, it is only on rare occasions that the whole Choir can be got together for practice, though it is no unusual sight to see small groups of fishermen on the quay or in the shelters of this little Cornish village with their heads close together, bending over a line of music from a new work.

Lord Snell at the Microphone

On October 17th, a speech of welcome by Lord Snell, Chairman of the L.C.C., to the delegates to the third international conference of the Youth Hostel Association will be relayed from the County Hall to London Regional listeners.

Young Men in Industry

The first talk in this series will be given on October 15th from the Midland Regional by J. E. Irvine.

"Europe and its Peoples"

The talk about Belgium in the Scottish School Series bearing the above title will be given on October 19th by Emeritus Professor C. Sarolea, who is a notable linguist and was a friend of the late King Leopold of the Belgians, whom he accompanied on an expedition to South America.

B.B.C. Northern Orchestra

The North Region's new orchestra of thirty-five players will not, as previously announced, be called the Northern Regional Orchestra, but the B.B.C. Northern Orchestra. Conducted by T. H. Morrison and "led" by Alfred Barker, it will broadcast a concert on October 14th, featuring Louis Godowsky, the celebrated Leeds-born pianist. Another well-known Leeds artist, Zerbubbel Leikin, pianist, will broadcast on October 16th.

"During the Interval"

The interval between the first and second parts of the opening Hall concert on October 18th and of other Northern Symphony concerts this season is to be filled by a new feature. It is called 'During the Interval,' and will take the form of a conversation between two members of the Free Trade Hall audience—not necessarily authorities on music—and will activity be relayed from the Free Trade Hall. They will, of course, discuss the concert, but not in specialized terms. Not only will the music claim their attention, but also the audience, and if any distinguished persons happen to be present these may, if convenient, be called up to the microphone to broadcast a message to listeners.

White Sails

This is the title of a musical play about two parties of holiday-makers on the Norfolk Broads, which will be produced by Martyn Green, a master of production and a director of the Watford Repertory Theatre. The author of the book is Victor, the composer. Hatton wrote the radio revue "Midland Masquerade" and the short play "Suicide Party" (replayed from the Birmingham Repertory Theatre), while Jack Hill is the young Birmingham pianist of "Two Jacks" and "The Three Knaves" fame.

Choral Recital from Tenbury Wells

On October 18th there will be a choral recital from St. Michael's College, Tenbury Wells, which is a famous training centre for church musicians, and is also noted for its fine library of early scores. The programme, which is for Midland Regional listeners, will be introduced by the Warden, the Rev. E. H. Swann. The organist is Laurence Crockthwaite, B.Mus.

Problem No. 108

Smith worked in a boiler house attached to a large factory, and to pass away odd moments he built up a small three-valve set which he installed in his workroom. In order to avoid any wiring difficulties he bought a pair of stereo headphones and connected the three cells in parallel so as to enable the generator to last some months without charging. He installed his set, fitted a good indoor aerial and obtained good results. After a few weeks' use he obtained no signals, but within a short time he could obtain no signals. Thinking that the battery had run down rather quickest than he expected, he made up a charger for his D.C. supply and connected the battery. After a suitable length of time he removed the accumulator, connected up the receiver again, but still could obtain no signals. Why? Three booklets will be awarded for the best correct solutions opened. Address your envelopes to The Editor, PRACTICAL WIRELESS, Geo. Newnes, Ltd., 8-11, Southampton Street, W.C.2, London, England.

Solution to Problem No. 107

Although the trouble was traced to the coupling condenser he could not get no connection through it, this was not the trouble. Books have been forwarded to the following readers in connection with marked Problem No. 108, and must be posted to reach here not later than the first post Monday, October 19th, 1934.

INTERESTING and TOPICAL PARAGRAPHS

Radio-gramophones. An engineer is seen here making a final adjustment before the automatic chassis is installed in a radio-gramophone at the H.M.V. factories at Hayes, Middlesex.
CIRCUITS FOR THE EXPERIMENTER

Details of Some Interesting and Efficient Circuit Arrangements Are Given in this Informative Article.

Of the many multi-electrode valves that have been introduced during the past few months, the H.F. pentode is probably the most widely used, this being mainly due to the variety of duties which this valve is capable of performing; it can be satisfactorily employed as an H.F. amplifier, an I.F. amplifier, a detector, and even as an L.F. amplifier if it is followed by a suitable coupling.

Advantages of the H.F. Pentode

In receivers employing two H.F. stages, with ordinary S.G. valves, overloading of the second valve often occurs. The advantage of the H.F. pentode over the ordinary S.G. valve is that a high voltage input can be handled without distortion, and therefore this type of valve is very suitable for use in the second H.F. stage. It can also be used to advantage in the first stage, of course, but unless the input voltage from the aerial is very high, the improvement obtained would not justify the substitution of a pentode for a relatively new S.G. valve.

There are four-pin battery H.F. pentodes available that can be substituted for an S.G. valve without the necessity for wiring alterations. When a seven-pin type is used, however, a seven-pin holder must be fitted in place of the four-pin type. Fig. 1 indicates the holder connections, and Fig. 2 shows a typical H.F. stage using a seven-pin pentode, and the valve electrode numbers shown in Fig. 2 correspond with the holder numbers shown in Fig. 1. The top cap of the valve cannot be shown, of course, but this is connected to the anode, When a mains pentode is fitted in place of an S.G. valve, a slight alteration of the screen-grid resistance values is necessary in most cases.

As a Detector

The H.F. pentode can generally be satisfactorily used in place of a triode detector, and this substitution should result in a marked increase of volume; Fig. 3 shows a suitable circuit arrangement for a battery pentode. When a mains type is used, it is advisable to parallel-feed the transformer, using a 100,000 ohms anode resistance, a 500,000 ohms resistance between the screening grid, and H.T. of 200 to 250 volts, and a bias resistance of approximately 1,500 ohms. These values are subject to slight alteration to suit different valve types, however.

As an I.F. and L.F. Amplifier

Some of the modern superhets employ a Westector as second stage preceding the Westector, however, this valve may be used as an L.F. amplifier if the switching arrangement shown in Fig. 4 is used. It will be noted that when the switch is on "gram," the pentode is choke-transformer coupled to the output valve, and therefore adequate L.F. amplification is obtained.

Bass Boosting Circuit

Some gramophone records are deficient in the bass register, and therefore, in an amplifier used for gramophone amplification, an L.F. coupling that can be adjusted to provide accentuation of frequencies below 100 cycles is desirable. This bass boosting effect may be obtained by means of the circuit shown in Fig. 5. When bass accentuation is desired, switch S should be opened; the transformer winding and the condenser C1 will then produce a resonance in the lower register. A good class transformer should be used, and the value of C1 should be carefully chosen—4 capacity of approximately 100 will be found suitable. If a battery valve is used, the anode resistance shown in the diagram should be replaced by a high inductance choke, in order to avoid loss of voltage.

Push-pull Output

It is generally agreed that a well-designed push-pull output (Continued overleaf)
stage provides practically distortionless amplification, this being mainly due to the absence of the harmonic distortion which is prevalent in an output stage employing a single valve—more especially in this.

If best results are to be obtained from a push-pull stage, however, the electrical characteristics of the valves should be alike, and uniform current must flow through the output transformer primary. The presence of D.C. (anode) current for the winding tends to lower the effective inductance; a push-pull output transformer primary winding is centre tapped, however, and the current is passed through the two halves in opposite directions, and, therefore, provided the current in each half is of the same value, the net effect of the direct current on the core will be zero. In order to obtain this desired effect, however, the anode current consumption of the two valves must be exactly alike. In a battery operated receiver this can be easily effected by using an input transformer having a separate secondary winding section for each valve, and adjusting the current bias voltage until both valves pass the same current. When mains valves with automatic bias are used, the necessary adjustment is not so easily effected. It is the general practise to use a common bias resistance for the two valves, having a value of half that specified for one valve, but adjustment of this resistance varies

 Variety Applause

The question of applause at the Vaudeville entertainments put on the other side, the studios at Broadcasting House is still making some of the officials "hot and bothered." I believe that what listeners most complain of is the senseless giggling and laughter at the actions of the artist rather than the spoken humour, which more often than not drains the joke the listener is straining to hear. Personally, I do not think the fault can be placed at the door of either the artist, audience, or the sensitivity of the wireless receiver. Where the trouble actually originates is in the placing of the microphone in relation to the audience and the artist. Whenever present at one of these performances I have particularly noticed this point, and, more often than not, the audience has been much too near the mike. During the periods an outside broadcast has been relayed from one of the theatres the occasions have been very rare when a similar trouble has occurred. The reason is very plain, for the artist is facing the audience, or the sensitivity of the wireless receiver. Where the trouble actually originates is in the placing of the microphone in relation to the audience and the artist. Whenever present at one of these performances I have particularly noticed this point, and, more often than not, the audience has been much too near the mike. During the periods an outside broadcast has been relayed from one of the theatres the occasions have been very rare when a similar trouble has occurred. The reason is very plain, for the artist is facing the audience, or the sensitivity of the wireless receiver. Where the trouble actually originates is in the placing of the microphone in relation to the audience and the artist. Whenever present at one of these performances I have particularly noticed this point, and, more often than not, the audience has been much too near the mike.

During the periods an outside broadcast has been relayed from one of the theatres the occasions have been very rare when a similar trouble has occurred. The reason is very plain, for the artist is facing the audience, or the sensitivity of the wireless receiver. Where the trouble actually originates is in the placing of the microphone in relation to the audience and the artist. Whenever present at one of these performances I have particularly noticed this point, and, more often than not, the audience has been much too near the mike.

During the periods an outside broadcast has been relayed from one of the theatres the occasions have been very rare when a similar trouble has occurred. The reason is very plain, for the artist is facing the audience, or the sensitivity of the wireless receiver. Where the trouble actually originates is in the placing of the microphone in relation to the audience and the artist. Whenever present at one of these performances I have particularly noticed this point, and, more often than not, the audience has been much too near the mike.

Losing the Set!

I came across a very interesting case the other day which apparently settles a much discussed question. A problem was set for a magistrate is a North Country town with reference to a radio pirate. In short, he had been operating a receiving set without the usual Post Office licence, and, in giving judgment a fine was inflicted and the set ordered to be confiscated. Quite a number of people have been under the impression that this was an extremely harsh decision, and that the fine would meet the case. It is, however, clearly set out in Clause 3, Section I, of the Wireless Telegraphy Act, 1904, that the person using the wireless telegraphy without a licence, shall be guilty of a misdemeanour, and be liable, on conviction before the Justices of the Peace, to a fine not exceeding twelve months, and in either case be liable to forfeit any apparatus for wireless telegraphy installed, or worked, without a licence, but no proceedings shall be taken against any person under this Act except by order of the Postmaster-General, the Admiralty, the Army Council, or Board of Trade. This makes the position quite clear and should be carefully noted, not only by those who use a receiving set, but by the many, who, at the present time, are experimenting with transmitting circuits without first having obtained the necessary permit to do so from the Postmaster-General.

Crystal Palace Acoustics

In the past many great musical festivals and other functions of international importance have taken place at the Crystal Palace which would have been worthy of the attention of the outside broadcast engineers of the B.B.C. I used to wonder why a move had not been taken to broadcast some of these great entertainments until I made enquiries of a B.B.C. official, and was then told the acoustic properties of the great hall did not lend themselves to a satisfactory transmission. You can imagine my surprise when I was informed the other day by an engineer of the H.M.V. Gramophone Company that the trouble with the acoustics had been defeated. He mentioned, when the competing bandmasters at the recent National Band Festival were playing their test pieces in the Crystal Palace, they believed they were only playing to the thousands of people present in the building, whereas records were being made of the performances. It was feared, owing to the volume of the massed bands and the extraordinary acoustics of the building, that it might be impossible to obtain satisfactory records, and therefore the utmost secrecy was preserved. A mobile recording laboratory was hidden away in the grounds, while two microphones were built into the stage fittings. The resulting records are a revelation of perfect pick-up and reproduction.

C. D. K.
ARE YOU NEW TO THE HOBBY?

Although a wireless receiver may easily be constructed in the living-room, perhaps on the kitchen table, there is a great deal to be said for the correct method of proceeding with the task of marking out the necessary panel or baseboard and using good tools and instruments for the necessary cutting and fixing which has to be done. It must not be inferred from this that wireless receiver construction is a complicated procedure, and although many constructors do carry out the work with the aid of only a screwdriver and a bradawl, it is possible greatly to simplify the work by using good tools in the correct manner. The result of so doing will be reflected not only in the appearance of the finished work, but also in the performance.

The "Practical Wireless" Tool Kit

Those readers who availed themselves of the tool kit which was recently advertised by us will have the nucleus of a really good constructor’s outfit, and with the aid of these tools most normal constructional work may be carried out. If it is desired to supplement this kit, a 2ft. steel rule will be found one of the first additions. Such a rule is required when marking out the cabinet front, or squaring up a large baseboard, and it is not an expensive item.

For those who are not fortunate enough to own the kit a nail may be used in an emergency for marking various positions. The small inset at the top of this page shows some of the items mentioned, together with other valuable accessories.

Using a Blueprint

Construction is greatly simplified when a blueprint is obtained, and although this is always to scale, it is not necessary to go to the extent of transferring all measurements from the paper to the baseboard. By placing the print upon the baseboard the various fixing centres may be pierced without seriously damaging the print and the components may then be mounted in the indicated positions. An alternative method is to use a sheet of carbon tracing paper. When a polished ebonite panel is being marked, a sheet of thin tissue paper should be interposed between the rule or other instrument in order to protect the surface of the ebonite, and a very good plan in order to protect the surface of the ebonite and the perfect surface of the ebonite is required on the finished article is to sandwich the panel between two thin boards (after placing thin tissue on each side of the panel) and then to carry.

Construction is greatly simplified when a blueprint is obtained, and although this is always to scale, it is not necessary to go to the extent of transferring all measurements from the paper to the baseboard. By placing the print upon the baseboard the various fixing centres may be pierced without seriously damaging the print and the components may then be mounted in the indicated positions. An alternative method is to use a sheet of carbon tracing paper. When a polished ebonite panel is being marked, a sheet of thin tissue paper should be interposed between the rule or other instrument in order to protect the surface of the ebonite, and a very good plan in order to protect the surface of the ebonite is required on the finished article is to sandwich the panel between two thin boards (after placing thin tissue on each side of the panel) and then to carry.

Some Practical Advice on the Choice and Use of Tools for Home Construction

Altho a wireless receiver may easily be constructed in the living-room, perhaps on the kitchen table, there is a great deal to be said for the correct method of proceeding with the task of marking out the necessary panel or baseboard and using good tools and instruments for the necessary cutting and fixing which has to be done. It must not be inferred from this that wireless receiver construction is a complicated procedure, and although many constructors do carry out the work with the aid of only a screwdriver and a bradawl, it is possible greatly to simplify the work by using good tools in the correct manner. The result of so doing will be reflected not only in the appearance of the finished work, but also in the performance.

The "Practical Wireless" Tool Kit

Those readers who availed themselves of the tool kit which was recently advertised by us will have the nucleus of a really good constructor’s outfit, and with the aid of these tools most normal constructional work may be carried out. If it is desired to supplement this kit, a 2ft. steel rule will be found one of the first additions. Such a rule is required when marking out the cabinet front, or squaring up a large baseboard, and it is not an expensive item.

For those who are not fortunate enough to own the kit a nail may be used in an emergency for marking various positions. The small inset at the top of this page shows some of the items mentioned, together with other valuable accessories.

Using a Blueprint

Construction is greatly simplified when a blueprint is obtained, and although this is always to scale, it is not necessary to go to the extent of transferring all measurements from the paper to the baseboard. By placing the print upon the baseboard the various fixing centres may be pierced without seriously damaging the print and the components may then be mounted in the indicated positions. An alternative method is to use a sheet of carbon tracing paper. When a polished ebonite panel is being marked, a sheet of thin tissue paper should be interposed between the rule or other instrument in order to protect the surface of the ebonite, and a very good plan in order to protect the surface of the ebonite is required on the finished article is to sandwich the panel between two thin boards (after placing thin tissue on each side of the panel) and then to carry.

Construction is greatly simplified when a blueprint is obtained, and although this is always to scale, it is not necessary to go to the extent of transferring all measurements from the paper to the baseboard. By placing the print upon the baseboard the various fixing centres may be pierced without seriously damaging the print and the components may then be mounted in the indicated positions. An alternative method is to use a sheet of carbon tracing paper. When a polished ebonite panel is being marked, a sheet of thin tissue paper should be interposed between the rule or other instrument in order to protect the surface of the ebonite, and a very good plan in order to protect the surface of the ebonite is required on the finished article is to sandwich the panel between two thin boards (after placing thin tissue on each side of the panel) and then to carry.
5,000,000 ohms. Used having a resistance of from 25,000 to 1,000,000 ohms. Because the grid leak is not of the proper type, it is necessary to have a valve operate at their maximum efficiency simply because the grid leak greatly interfered with. These are cast, and if very tightly fixed screw is attacked with one of these instruments, the handle will twist and the blade of the driver will be distorted, or the ratchet mechanism will be destroyed. Similarly, cheap pliers can be obtained from market stalls and in popular bazaars. These are cast, and if very great force is employed in turning an obstinate nut, the handle will break off, and this may lead to a nasty cut or damage to some apparatus, owing to the sudden release of the pressure. These are not imaginary cases, but are actual cases which have been brought to our notice, and a few extra shillings spent upon good tools will always be well repaid by long years of trouble-free service. An oil stone should, of course, find its place in the workshop or tool-case in order that those tools which require it may be kept provided with a sharp edge. A rub at frequent intervals will enable chisels, screwdrivers, and other similar tools to be kept in perfect condition.

USEFUL HINTS

The Variable Grid Leak

There are many wireless enthusiasts, even to-day, who look upon the grid leak as being a very mysterious thing both in construction and operation. It is true that it effects a very delicate operation, allowing the negative charge which accumulates on the grid to leak off at the proper rate. It has often been pointed out in the pages of Practical Wireless that this charge that accumulates on the grid were allowed to reach too high a point, the efficient operation of the valve would be greatly interfered with. So it is of importance that the resistance of the leak be perfectly suited not only to the peculiar characteristics of the valve, but to the circuit in which the valve is used. Too many people overlook the importance of this device. Many receivers are unable to operate at their maximum efficiency simply because the grid leak is not of the proper resistance value. The resistance of grid leaks is measured in megohms, and a megohm is 1,000,000 ohms. Grid leaks are used having a resistance of from 25,000 to 3,000,000 ohms. When trying out a new receiver, or valve in a detector circuit, it is always wise to try out several different values of grid leak in order to find the value which suits the valve used. A variable type of grid leak is undoubtedly ideal if it is impossible to get a reliable one. Those old-fashioned carbon types of the past were not satisfactory, and resulted in more noises and poor reproduction than any other component which went to make up the finished receiver. It is a great pity some manufacturer does not make a speciality of a really reliable variable grid leak. For laboratory use, a simple but efficient variable leak may be made by drawing a thick line with Indian ink on a small piece of Bristol board, and using a sliding contact strip of phosphor bronze. This gives a variation over any desired limits according to size. Unfortunately a similar type could hardly be used in a general set because it would be too susceptible to changes in atmosphere when used in that way.

Plate Voltages

The radio experimenter who ignores the customary rules by trying out some wrinkle of his own without knowing exactly what is happening may find that his experiment proves to be a costly one. For instance, an amateur recently was experimenting with high plate voltage, and noticed voltage variations above those specified by the makers. In the case in point the valve was designed for 150 volts maximum but he was running it with 250 volts, and could not understand why he got such a pretty blue glow of ionization it is useless for any kind of experiment. The user should be very cautious when increasing voltages above 150 on the ordinary radio valve, and particularly so in the case of the high-frequency stage. Too great a flow of current in the input circuit of a detector is not to be desired, since a great deal of distortion which is blamed on the low-frequency circuit originates in the grid circuit of the detector.
A Single Length of Stranded Wire is Not Essential as an Aerial, and Some Interesting Variations of this Valuable Part of the Wireless Equipment are Here Described.

Under the Wireless Telegraphy Acts, 1904-1926, the P.M.G. permits the listener to erect an aerial the length of which shall not exceed 100 feet. In the early days of broadcasting the amateur endeavoured always to utilize the full length of 100 feet of stranded copper wire, although, as has been shown in these pages on several occasions, some variations in the horizontal length of wire are possible and also efficient. For instance, two wires arranged parallel to each other, and both supported parallel with the ground, is an efficient arrangement where space is limited. An umbrella design, in which wires radiate from the top of a pole projecting from the upper window of the house, whilst a narrow cone, or funnel, may take the place of the pick-up apparatus, which wires radiate from the top of a pole and are anchored to one of the hoops, after which the wire is taken across to the opposite hoop, back again, and so on, until the total quantity of wire is used up. From one end a lead is taken to the aerial terminal of the receiver, and the cage is then erected on top of a mast clamped to the wall of the house; suspended from a horizontal pole projecting from the upper window of a house, or hung in an attic or under the roof. In view of the risk of the hoops becoming distorted due to dampness or rain, it is preferable to fit the device inside the roof under cover. The results obtained with this arrangement are quite good and some latitude is possible in the size of the hoops, spacing between them, and the quantity of wire which is used. The principal advantage of this type of aerial is its non-directional property.

A "Brush" Aerial

An alternative method of using the wire is seen in the building of a brush, and a commercial aerial of this type is known as the "No-mast" aerial. Illustrated on the left. The wire is cut into lengths, and these are held at one end on a mass of metal held in a substantial insulator, which is fitted to a metal bracket for easy mounting. Again the principal advantage is the non-directional property, although compactness also has a prominent place in its list of attributes.

A Plate Aerial

Instead of wire, actual metal plates may be used, and these will no doubt be of interest to the newcomer to wireless as well as to those who have previously considered it essential to use a length of stranded wire.

Properties of the Aerial

First of all, let us analyze the aerial system, which may be regarded as one plate of a condenser, the other plate of which is the ground, to which an earth wire runs from the wireless apparatus. The dielectric of this condenser is the air between these two plates. Taking this fact in mind, it is only necessary to preserve a similar capacity to that obtained by the normal aerial and earth. Taking it as a fact that the earth must be retained, and considering the walls of the house as "earth" (owing to the fact that they are in direct contact with the ground), it is only necessary to furnish the second plate of the condenser. And, obviously, this could be carried out by wrapping the 100 feet of stranded wire round a flat board and supporting it near the earth; by using a plate of metal having an equivalent surface area; or by using the wire wound round some spacing medium. Various manufacturers have, from time to time, manufactured aerials on these principles, and no doubt they will be familiar to many readers.
of aerial, that is, plate or wire. As a variation, however, the metal may take the form of a flat plate, stretched across a wooded frame, with the latter nailed to the wall or chimney stack. A sheet, 2ft. by 18in., will be found to provide good results, and perforated zinc forms a suitable material for construction, being obtainable at the popular stores in a suitable handy roll. For the experimenter who prefers to purchase a ready-made aerial of this type, we may recommend the Negrosio Aerial manufactured by Messrs. Ward and Goldstone. This is well-made and provided with all fixing screws, etc. It costs £1 1s. 0d.

A "Ball" Aerial

Still another variation of the metal aerial is to be seen in the device which appeared for the first time at Radiolympia, and which is a product of the London Electric Wire Company. This takes the form of a ball or sphere of copper, with a suitable mounting bracket. It has all the attributes of the previous types of aerial, namely, compactness, non-directional effect, and good pick-up properties.

A Pipe Aerial

Short-wave experimenters have for years found that the vertical type of aerial proves more effective than a horizontal wire, and a very efficient and simply-erected aerial may be constructed from some lengths of gas-piping. Five 4ft. lengths of piping, varying in diameter from 1in., and with reducing sockets for connecting each successive length, may be built up and held about eighteen inches from the wall by means of metal brackets. Insulation must be provided, either between the pipe and the bracket, or between the bracket and the wall. By fitting the brackets at suitable positions on the piping, ordinary red insulators may be used to hold the pipe in position, a cross pin preventing the pipe from dropping through. This type of aerial should, of course, be arranged so that it projects some distance above the roof, and the leading-in wire should be anchored in a gas plug which may afterwards be screwed into the end of the lower section. A gas fitter will supply the piping and carry out the necessary tapping quite cheaply, and this aerial will be found highly effective. Many other variations of these schemes will no doubt suggest themselves to readers.

MARK TWAIN once said that while everybody talked about the weather nobody did anything about it. The reason I mention this is I have just opened three consecutive letters, each of which, complains that broadcasting brings rain and storm, and suggesting that something ought to be done to curtail the energy now being dissipated into the ether.

A Petition

I remember a few years ago the inhabitants of Buxton, Derbyshire Spa, signing a petition asking for the same curtailment, and while this was going on the West Country Press was full of letters from farmers. In the former case the excessive local rainfall was the cause, and in the latter the lack of it. Persons blame radio for everything—weather, illness, accidents, lawlessness, political topy-turvydom, and, I suppose, insanity. One of the correspondents tells me that while the radio has been developed and perfected, so have our varied weather phenomena increased in violence. Another that the seasons are changed, and neither the winters nor summers are what they used to be. It is unfortunate for radio that people should advance radical theories that much of our unusual weather is due to radio activities in the ether, for such rumours spread rapidly into belief among credulous people. It seems to me the weather furnishes a topic about which many who are very ignorant believe they are very wise, and the greatest sport is to blame climatic changes on radio.

Radio Not to Blame

Weather variations have been with us from all time, and long before radio was dreamed of by any unusual weather created consternation and excitement. Records which have been kept by meteorologists of the changes in temperature, pressure, air movements, humidity, etc., near the most powerful radio stations, using the most accurate instruments for the purpose, show that no blame can be put on radio for unusual weather changes. The combined power of all the radio transmitting stations of the world which is put in the ether would hardly be enough to operate a respectable electric motor, much less affect the weather conditions. Artificial excitation is not such a simple point, and I well remember the experiments which were carried out in this connection in London during a drought some years ago, when rockets and gun-fire were employed in order to try and make the clouds discharge their much-needed moisture. The experiments did not produce any marked effects, and that the idea is futile is substantiated by the fact that no further experiments have been carried out in recent years when rain has been urgently needed by the country.
A superb de luxe RECEIVER
incorporating EVERY up-to-date development

The
C OSSOR
ALL-ELECTRIC
SUPERHET RECEIVER

Here is truly de luxe radio—an up-to-the-minute all-electric Superhet, designed and built on entirely new lines. With its neon tuning, its full A.V.C. and its many other features it brings you, with ease, real entertainment from the station of your choice, unmarred by other powerful transmissions.

De luxe in appearance as well as performance—at its modest price it sets a standard of value hitherto impossible in the world of radio.

SPECIFICATION:

MODEL
535

12 GNS

KINGS OF THE AIR

To A. C. COSSOR LTD., Melody Dept., Highbury Grove, London, N.5
Please send me, free of charge, a copy of Folder L120. which gives full details of the new Cossor Superheterodyne Receiver Model 535.

Name

Address

(Received 31st Oct.)
PACKED WITH INFORMATION

the latest Ferranti literature for home constructors

Full of interest and value, these latest Ferranti lists will prove to be of service to all constructors who desire to have the most up-to-date and efficient receivers

We 560. New complete Valve catalogue
Wf 522. New list Mains Components
Wa 561. New list Potentiometers
Wg 550. New Speaker List
R 2 New complete catalogue of Components
Wi 526. New Catalogue, Radio Meters

Any of these publications will be sent on receipt of 1d. stamp, or all of them on receipt of 3d. postage.

There was a young lady named Det
She owned a marvellous radio-set,
But reception was bad—
It made her quite sad—
Now it's soldered with FLUXITE—you bet!

See that FLUXITE is always by you—in the house—garage—workshop—anywhere where simple speedy soldering is needed. Of ALL IRONMONGERS—IN TINS 3d., 1/4d., and 2/6d. Ask to see the FLUXITE POCKET SOLDERING SET complete with full instructions—7/6. Ask also for Leaflet on Case Hardening and Hardening Tools with Fluxite.

THE FLUXITE GUN is a handy and economical tool that enables you to put the Fluxite exactly where you want it on the soldering job. Also used to project grease into bearings, etc.—like a miniature grease gun. Just fill the nozzle portion—half fill the cap—put together and press as required. PRICE 1/6d.

ALL MECHANICS WILL HAVE

FLUXITE
IT SIMPLIFIES ALL SOLDERING

Soldered contacts are better ELECTRICALLY SOLDERED ARE BEST

Switch on a Solon Electric Soldering Iron and in three minutes it is ready for use. It plugs into a lampholder. Use a

Dept. W.P., FERRANTI LTD., HOLLINWOOD, LANCASHIRE
HOW MUCH HIGH TENSION?

In spite of all that has been written concerning the desirability of providing a receiver with an ample supply of high-tension energy, cases are constantly arising in which poor reproduction results from either misdirected high-tension economy or from sheer lack of knowledge on this important subject.

The value of a liberal allowance of high-tension voltage can be grasped very easily by a study of the various stages in a multivalve-operated receiver. Consider first of all the high-frequency amplifying stages. Like all amplifying valves, radio-frequency types, whether of the screen-grid or the high-frequency pentode variety, depend for distortionless reproduction on being worked over the straight portion of their grid-volt anode-current characteristic. If, in an endeavour to economize in high-tension current, the anode voltage is reduced considerably, the effective grid bias is correspondingly shortened, and the valve will therefore fail to handle strong signals without distortion.

Affecting Over-all Performance

This point is illustrated in the diagram reproduced in Fig. 1. Here is shown a "family" of static characteristic curves for a typical screen-grid valve, the fixed-mu type, and the way in which the maximum permissible signal is limited by the value of the anode voltage can be readily appreciated. First of all, over-all performance is affected in several ways. For example, it is clear that at a reduced anode voltage there is a considerable risk of overloading the valve on strong signals, and the only alternative is to reduce the input, which in its turn will reduce the amount of power available at the output stage to operate the loud-speaker. In this connection, it must not be forgotten that many modern speakers lack considerably in quality when operated at low power. Then, the characteristic curves themselves show that the mutual conductance of the valve, as represented by the slope of the curve, is considerably greater at high anode voltages than at low.

In the case of the detector stage, the value of liberality in the matter of high-tension voltage is equally marked. In the old days, when the leaky grid triode detector valve with magnetic or capacity coupling was used almost universally, the guiding precept in designing the detector stage was to use the minimum high-tension voltage which gave adequate output combined with effective and smooth reaction. These were the days when two or more stages of low-frequency amplification followed the detector, and when, moreover, the efficiency of high-frequency amplification was far below what it is to-day, with the result that only comparatively small grid inputs were applied to the detector valve.

To-day, however, thanks to the screen-grid valve, and to the more recent high-frequency pentode, large stage gains are possible on the high-frequency side, and very seldom is it necessary to interpose a low-frequency amplifying stage between the detector and the output valve. This means that the detector must be able to handle comparatively large input signals and must, in addition, add its full quota of amplification in order to load the output valve.

Best Detector Conditions

With a triode detector valve this can be achieved only by operating the valve under what is known as "power-grid" conditions. In this arrangement, the anode voltage is increased, if possible, to the maximum value for which the detector valve is rated, and as a result the anode current is considerably increased. Operated under these conditions the valve will rectify quite powerful signals without distortion, and its amplifying powers are also exploited to the full. But since power-grid detection necessitates a somewhat heavier anode current, its benefit cannot be enjoyed unless the listener is prepared to accept this additional drain upon his high-tension supply.

Fig. 2 illustrates the effect of power-grid detection when compared with the ordinary leaky-grid system, the difference in signal-handling capabilities and in anode-current consumption being illustrated very clearly.

It is, however, in connection with the output stage that the ill effects of parsimony in high-tension supply are perhaps most noticeable. It should be borne in mind that in the output stage is generated the actual power required for driving the loud-speaker. In all other stages the only effect required is to produce in the anode circuit of the valve a large alternating voltage as possible; the power question does not enter into the matter, and the consumption of anode current is merely incidental and perhaps unfortunate. But the output valve must provide a considerable amount of alternating power, as represented by the product of the alternating voltage developed across the "load" in the anode circuit (speaker or output transformer) and the alternating portion of the anode current.

Insensitive Large Speakers

Many speakers which are noted for the fidelity of their reproduction are comparatively insensitive, that is to say, they require a larger power input to produce a certain volume of sound than some of the more sensitive but somewhat less faithful reproducers.

Most listeners know that with the normal or class " A" output valve the A.C. component of the anode current consists of variations of current strength above or below a steady or "mean" value, which latter represents the normal anode current as measured by an ordinary milliammeter. This is shown in the familiar diagram reproduced in Fig. 3, where the top horizontal line represents the "rest" value of the anode current, while the curved line represents the actual anode current when signals are being received, and the dotted line

Some Interesting Sidelights on the Use of a Generous H.T. Supply
In considering the case of the listener who has no alternative but the dry H.T. battery, it can at once be said that he will be wise to allow as heavy a consumption as he feels to be justifiable, bearing in mind the two facts that liberal H.T. makes possible improved performance all round, but at the same time adds to the cost of listening.

Most high-tension batteries, even the "standard" types of quite low capacity, will give quite a big current for a limited time, but only the battery designed for heavy discharge currents will stand up to such service for a reasonable time.

Battery Types

The "standard" type of battery should not be called upon to give more than 6 or 8 milliamps., and under this duty their life is quite satisfactory. "Power" types or so-called double-capacity batteries are usually rated for drains of the order of 12 to 15 milliamps., while the heavy-duty, triple-capacity type may be used where currents up to some 20 milliamps. are required. Each type of battery will give a reasonable life provided its recommended duty is not exceeded. The costs of the various types are in proportion to their capacities, but even so it definitely pays to use a battery at least one size larger than that indicated by the total anode current required by the set. The reason is that the useful life of a battery is not strictly inversely proportional to the drain, so that with a loading of, say, 10 milliamps, a double-capacity battery will give more than twice the life of a single capacity battery.

All dry batteries suffer a considerable drop in voltage towards the end of their useful life, with consequent deterioration of both volume and quality of reproduction. With a large battery this deterioration is postponed, and this is another reason why it pays to be generous with your H.T. supply whenever such a course is economically possible.

Wireless at British Airports

The Air Ministry now controls in Great Britain a comprehensive system of ground-and-air, inter-aerodrome, and meteorological communications for civil aircraft, with transmitting and receiving stations at Croydon, Heston, Lympne, Fulham, and Manchester, as well as the three new stations mentioned recently. The latter are designed particularly to cater for the growth of internal air routes.

"Wonder Bar"

This musical play by André Chariot, which proved very successful on the stage both in Berlin and London, and also as a cinema serial, is the subject of a national programme on October 21st, and in the London Regional programme on October 13th.

MAKING A TANTALUM CHARGER

Details of a Reader's Successful Effort to Overcome Some of the Difficulties Encountered in Building a Charger

Several readers appear to have encountered difficulties in constructing the tantalum charger described in Practical Wireless for January 21st, 1933, and to such readers the following description of my own method may be of assistance.

A worn-out accumulator was obtained for a few pence, and the plates were removed by chipping away the pitch. The container was cleaned out thoroughly, and the lead plate was melted down in a ladle. A mould was then made from clay. A terminal was held in the centre of the hole with pliers and molten lead from the ladle poured in, as in Fig. 1.

When the lead had set the clay was broken away, and a hole was bored in each of the lead flanges for fixing.

Fig. 1—How the mould is built up from clay.

The mould was then made from clay. A mould was then made from clay. The container was cleaned out to such assistance. January 21st, 1933, and to such readers the following description of my own method may be of utility.

Questions of Cost

In considering the case of the listener who has no alternative but the dry H.T. battery, it can at once be said that he will be wise to allow as heavy a consumption as he feels to be justifiable, bearing in mind the two facts that liberal H.T. makes possible improved performance all round, but at the same time adds to the cost of listening.

Most high-tension batteries, even the "standard" types of quite low capacity, will give quite a big current for a limited time, but only the battery designed for heavy discharge currents will stand up to such service for a reasonable time.

Battery Types

The "standard" type of battery should not be called upon to give more than 6 or 8 milliamps., and under this duty their life is quite satisfactory. "Power" types or so-called double-capacity batteries are usually rated for drains of the order of 12 to 15 milliamps., while the heavy-duty, triple-capacity type may be used where currents up to some 20 milliamps. are required. Each type of battery will give a reasonable life provided its recommended duty is not exceeded. The costs of the various types are in proportion to their capacities, but even so it definitely pays to use a battery at least one size larger than that indicated by the total anode current required by the set. The reason is that the useful life of a battery is not strictly inversely proportional to the drain, so that with a loading of, say, 10 milliamps, a double-capacity battery will give more than twice the life of a single capacity battery.

All dry batteries suffer a considerable drop in voltage towards the end of their useful life, with consequent deterioration of both volume and quality of reproduction. With a large battery this deterioration is postponed, and this is another reason why it pays to be generous with your H.T. supply whenever such a course is economically possible.

Wireless at British Airports

The Air Ministry now controls in Great Britain a comprehensive system of ground-and-air, inter-aerodrome, and meteorological communications for civil aircraft, with transmitting and receiving stations at Croydon, Heston, Lympne, Fulham, and Manchester, as well as the three new stations mentioned recently. The latter are designed particularly to cater for the growth of internal air routes.

"Wonder Bar"

This musical play by André Chariot, which proved very successful on the stage both in Berlin and London, and also as a cinema serial, is the subject of a national programme on October 21st, and in the London Regional programme on October 13th.

MAKING A TANTALUM CHARGER

Details of a Reader's Successful Effort to Overcome Some of the Difficulties Encountered in Building a Charger

Several readers appear to have encountered difficulties in constructing the tantalum charger described in Practical Wireless for January 21st, 1933, and to such readers the following description of my own method may be of assistance.

A worn-out accumulator was obtained for a few pence, and the plates were removed by chipping away the pitch. The container was cleaned out thoroughly, and the lead plate was melted down in a ladle. A mould was then made from clay. A terminal was held in the centre of the hole with pliers and molten lead from the ladle poured in, as in Fig. 1.

When the lead had set the clay was broken away, and a hole was bored in each of the lead flanges for fixing.

Fig. 1—How the mould is built up from clay.

The mould was then made from clay. A mould was then made from clay. The container was cleaned out to such assistance. January 21st, 1933, and to such readers the following description of my own method may be of utility.

Questions of Cost

In considering the case of the listener who has no alternative but the dry H.T. battery, it can at once be said that he will be wise to allow as heavy a consumption as he feels to be justifiable, bearing in mind the two facts that liberal H.T. makes possible improved performance all round, but at the same time adds to the cost of listening.

Most high-tension batteries, even the "standard" types of quite low capacity, will give quite a big current for a limited time, but only the battery designed for heavy discharge currents will stand up to such service for a reasonable time.

Battery Types

The "standard" type of battery should not be called upon to give more than 6 or 8 milliamps., and under this duty their life is quite satisfactory. "Power" types or so-called double-capacity batteries are usually rated for drains of the order of 12 to 15 milliamps., while the heavy-duty, triple-capacity type may be used where currents up to some 20 milliamps. are required. Each type of battery will give a reasonable life provided its recommended duty is not exceeded. The costs of the various types are in proportion to their capacities, but even so it definitely pays to use a battery at least one size larger than that indicated by the total anode current required by the set. The reason is that the useful life of a battery is not strictly inversely proportional to the drain, so that with a loading of, say, 10 milliamps, a double-capacity battery will give more than twice the life of a single capacity battery.

All dry batteries suffer a considerable drop in voltage towards the end of their useful life, with consequent deterioration of both volume and quality of reproduction. With a large battery this deterioration is postponed, and this is another reason why it pays to be generous with your H.T. supply whenever such a course is economically possible.

Wireless at British Airports

The Air Ministry now controls in Great Britain a comprehensive system of ground-and-air, inter-aerodrome, and meteorological communications for civil aircraft, with transmitting and receiving stations at Croydon, Heston, Lympne, Fulham, and Manchester, as well as the three new stations mentioned recently. The latter are designed particularly to cater for the growth of internal air routes.

"Wonder Bar"

This musical play by André Chariot, which proved very successful on the stage both in Berlin and London, and also as a cinema serial, is the subject of a national programme on October 21st, and in the London Regional programme on October 13th.

MAKING A TANTALUM CHARGER

Details of a Reader's Successful Effort to Overcome Some of the Difficulties Encountered in Building a Charger

Several readers appear to have encountered difficulties in constructing the tantalum charger described in Practical Wireless for January 21st, 1933, and to such readers the following description of my own method may be of assistance.

A worn-out accumulator was obtained for a few pence, and the plates were removed by chipping away the pitch. The container was cleaned out thoroughly, and the lead plate was melted down in a ladle. A mould was then made from clay. A terminal was held in the centre of the hole with pliers and molten lead from the ladle poured in, as in Fig. 1.

When the lead had set the clay was broken away, and a hole was bored in each of the lead flanges for fixing.

Fig. 1—How the mould is built up from clay.

The mould was then made from clay. A mould was then made from clay. The container was cleaned out to such assistance. January 21st, 1933, and to such readers the following description of my own method may be of utility.
Emphatically the set to build

The RAIDER

THE SENSATION OF 1935 RADIO

Build the RAIDER and get a better Set than factory built—at less cost.

Fully described in issue No. 1 of RADIO CONTACT with which is presented FREE full-sized BLUE PRINT and working instructions.

RADIO CONTACT is the Radio Magazine with a fresh outlook, a shilling Magazine for 3d.

Full of interesting matter for Radio enthusiasts, including—
 Description of wonderful new BATTERY VALVES. Hosts of Ideas for old sets and new. Detailed instructions for building three brilliant circuits, including the RAIDER.
 CONTACT World-wide Station Finder, etc.

Only a few Copies remain unsold.

Secure yours NOW from your local dealer or bookseller, or 4½d., post free, from Graham Farish Ltd., Masons Hill, Bromley, Kent.

Advt. of GRAHAM FARISH LTD., BROMLEY, KENT.
NOT only will you learn about the principles of Parachuting, delayed drop, methods of control, and the construction of Parachutes from the October issue of this remarkable monthly magazine, but you may also read interesting facts about "Cold Light," "How Bridges are Built," the "Uses of Light Filters in Photography," "Water Divining," "How Illustrations are Made," "The Principles of Wireless Valves," "The Latest in Wireless," "Speeding up the Earth," "Wiring the House for Electric Lighting," "The Manufacture of Artificial Silk," whilst practical articles deal with "Lathe Work," "Marking Out for Machining," "New Tools, Gadgets and Accessories," "How to Build a Fuselage Model Biplane." Obtain a copy of this New Magazine Without a Rival to-day!
Fixing an Aerial Pulley

It often happens, especially during the winter months, that the aerial halyard breaks and it appears necessary to lower the mast for repairs to be made. A simpler and much less troublesome method is as follows:

Obtain a length of barbed wire just long enough to form a loose loop round the bottom of the mast, and to the loop attach a pulley. Thread the halyard through the pulley and then with the aid of two or three clothes-props, pull the loop into position at the top of the mast, as shown in the sketch. Now pull the aerial taut by means of the halyard and withdraw the clothes-props. The "barbs" of the wire loop will bite into the mast and a secure repair is the result.—F. E. Morris (Kilburn).

Tapping Resistors

It is sometimes required to tap a carbon resistor to form a potentiometer, or when an exact value is required, as, for instance, a dropping resistance for a multi-range voltmeter. When an exact value is required, as, for instance, a dropping resistance for a multi-range voltmeter, a wire soldered to the resistor, and connection made by soldering a wire to one of the other faces. The paint on the resistor should be removed where the screw makes contact and the ends of the screws should be flat, not pointed. It is also essential to see that the resistor is not of the type having a porcelain or other insulated surface.—L. W. Harvey (Brondesbury Park).

Method of repairing a transformer.

A hole is drilled to the grid battery or bell transformer, and see that the trembler at the top of the coil is working correctly. When the coil is working correctly, the trembler at the top of the coil will be felt. Leave on for one minute, then disconnect and test the transformer. If not repaired, connect again, and again if necessary, and you will find, if the necessary care is taken to see that the transformer is working properly, that the transformer winding is usually welded at the break at the first or second attempt. The spark gap can be regulated by the nut at the end of trembler.

Do exactly the same when repairing speakers, remembering that the main thing is not to take them to pieces. This method consists actually of spot-welding, the arc which takes place at the broken point producing sufficient heat to weld the fine wire.—J. R. Burns (Cork).

Repairs to Transformers, Speakers, etc.

It consists of a metal disc, an ivory full-vision scale, a small lamp-holder, and a L.C. screw-type bulb. A hole is drilled in the centre of the disc to suit the condenser, this hole being made to fit the spindle tightly, or a small collar can be soldered to the disc and a grub-screw fitted to grip the condenser spindle. A slot is cut in the disc to suit the scale, large enough to show the name of the station on the scale. If numbers are used, the slot can be smaller. The lamp is fixed to the back of the disc just behind the slot, and is wired with one wire only from the L.T. switch, the return being made via the condenser spindle. This wire is fixed to the spindle with a rubber band or tape and to the baseboard, leaving a little slack for condenser movement. In some cases the condenser may have to be set back from the panel, but this only requires a small extension to the spindle, the condenser being fixed to a bracket on the baseboard.—Thomas Johnson (Newcastle-on-Tyne).

Repairing Transformers, Speakers, etc.

Should you have the misfortune to have a transformer with one of the windings broken down, don’t take it to pieces, leave it just as it is, then carry out the following scheme: Obtain a good Ford coil, and a grid bias battery (a good 9-volt one); alternatively, if you are on A.C. current, get a bell transformer with secondary of 8 volts, and use that; then connect as shown in the accompanying sketch.

Take care to connect the secondary first, otherwise a violent shock will be felt. When the secondary is connected, join the primary to the grid battery or bell transformer, and see that the trembler at the top of the coil is working correctly. Leave on for one minute, then disconnect and test the transformer. If not repaired, connect again, and again if necessary, and you will find, if the necessary care is taken to see that the transformer is working properly, that the transformer winding is usually welded at the break at the first or second attempt. The spark gap can be regulated by the nut at the end of trembler.

Do exactly the same when repairing speakers, remembering that the main thing is not to take them to pieces. This method consists actually of spot-welding, the arc which takes place at the broken point producing sufficient heat to weld the fine wire.—J. R. Burns (Cork).
The latest apparatus designed for use entirely as a car-radio receiver is the Ferranti "Motorset," a powerful 5-valve superheterodyne which operates entirely from a normal lighting battery as found on the car of to-day. The valves are of the Universal type, and, although only five in number, they include a heptode and a double-diode-triode, so that the circuit arrangement is very similar to a normal 8-valve superhet., the heptode combining the functions of first detector and oscillator, and the double-diode-triode combining the functions of second detector, A.V.C., and first I.F. valve. The necessary high-frequency is 456 kc/s; the wound I.F. transformer. From this valve is fed into a Litz selective tuned circuit. A mixer, and is fed from the lighting battery into A.C. and then stepping it up to the required voltage, after which it is again rectified for the H.T. supply. In view of the utility of the new Droitwich transmitter, special attention has been paid to the long-wave performance of this Ferranti receiver. The entire apparatus is contained in a neat steel cabinet finished in black enamel and designed for fitting below the dashboard. If desired, the entire apparatus may be removed in less than half a minute, yet the mounting is perfectly secure and shock-proof. All the valuable features found in a modern home receiver are included in this particular model, and these include an illuminated dial giving station names as well as wavelength calibrations; single knob tuning; combined manual volume control and on-off switch; tone control; moving-coil loud-speaker delivering an output of 2½ watts when fully loaded. The dimensions of the case are 9½ in. high by 12½ in. wide by 15½ in. deep, and the price is 18 guineas complete.

A NEW battery receiver is announced in the H.M.V. superhet, which follows modern design in every way, employing four valves with delayed A.V.C., double pentode output, new reflecto-light dial and novel "on-off" indicator housed in a handsome walnut cabinet. The new high-power station at Droitwich has been kept well in mind when designing this model.

A New Scale Light
In order to save current, the scale is not illuminated, but is made of special material, which makes the station names and wave-length calibrations stand out clearly from the background, and gives the illusion that the scale is illuminated from behind. As the main switch is turned to "medium wave," "long wave," or "gramophone" a small-transparent scale bearing the word "on" comes into view at the top and in front of the main station scale. All the main controls are mounted on the front of the cabinet. On the left is the volume control, and on the right the master switch. This switch has four positions, MW, LW, Gram, and Off. The actual tuning control is below the scale, and beneath the tuning control is the sensitivity switch, which has a novel push-pull action. A pre-set reaction control, to enable the maximum sensitivity to be obtained, is mounted at the back of the cabinet.

Latest Valves
The first valve, a heptode, acts as a mixer, and is fed from a super-selective tuned circuit. The output from this valve is fed into a Litz wound I.F. transformer. The intermediate frequency is 456 kc/s; the use of this frequency practically eliminates direct second-channel interference. The secondary winding of the transformer is connected to the I.F. amplifier valve—a VS24. The primary of second I.F. transformer is joined to the anode of this valve. Both the primary and secondary of this transformer are tapped. The primary tap is connected to the A.V.C. diode of a double-diode-triode valve (HD21). Both the previous valves are controlled by delayed A.V.C. The split secondary of the transformer feeds the diode rectifier of the same valve, the rectified output being fed into the triode portion, which serves as an I.F. amplifier. The coupling between the I.F. portion of the third valve and the output valve is by means of a parallel-fed transformer, the secondary feeding the grids of the double pentode QP21. Reaction is supplied by means of I.F. feed-back from the second I.F. secondary to the anode of the first valve. This form of regeneration in a superheterodyne receiver is not, of course, new, but it has not previously been found to be productive of good stable results over long periods. The first valve is acting at one frequency, whilst the I.F. valve is operating on a different frequency, and the coupling of the anodes of these two valves might result in all sorts of weird effects, unless certain precautions are taken. The Marconiphone engineers have carried out a great deal of experiment in this connection, and the method which has finally been adopted in this circuit may be said to be productive of good reaction effects without ill-effects.

Provision is made for the attachment of a gramophone pick-up, and the volume control acts on both radio and gramophone. This method of volume-control is to be recommended as it removes the necessity of a further control which is only brought into use at infrequent periods. It is, of course, possible to gang two controls to carry out the combined operation, but a single control acting on the I.F. side enables volume to be controlled on both radio and gramophone. The price is 11 gns.

THE NEW H.M.V.
BATTERY SUPERHET

This photograph shows the neat arrangement of the complete Ferranti "Motorset.")

FERRANTI CAR RADIO
Details of an Interesting Receiver Designed for Use with a Motor-car Lighting Battery.

PRACTICAL WIRELESS
October 13th, 1934
COSMOCORD
BALANCED TONE PICK-UP

Exceptional high volume and delightfully balanced tone entirely free from resonance are the qualities that make this pick-up so popular. All bakelite construction with swivel head for easy needle change. Complete with volume control and 5-ft. silk-covered lead. Sold under the guarantee that should it not meet with entire approval, money will be refunded.

MODEL No. 15
PRICE - 15/-

Send for new comprehensive and instructive booklet showing all products to COSMOCORD LTD. (Dept. P), Cambridge Arterial Rd., Enfield, Middx. Phone: Enfield 40217.

Every set a SHORT WAVE set with the
BRITISH GENERAL
ALL WAVE TUNER.

This famous coil, covering all wave lengths from 14.5 to 2,000 metres, still remains the most successful of all all-wave tuners.

Its remarkable popularity is due to the superb workmanship, reasonable price and, above all, its unequalled efficiency.

Easy fixing and simple tuning.

FREE WIRING DIAGRAM SUPPLIED

Telephone: Lee Green 5015.

From all dealers or direct.

The Pick-Up of the Future

THE ROTHERMEL-BRUSH
PIEZO-ELECTRIC PICK-UP

Acknowledged by the leading authorities as the greatest advance in design and performance that has ever been made, the Rothermel-Brush Piezo-Electric Pick-Up gives a response of from 5 to 5,000 cycles with an output of 5 volts R.M.S. No other Pick-Up can equal this performance. In addition, the Pick-Up is non-magnetic, non-resonant, non-fatiguing. The Pick-Up is available in Любимые 2, 3, and 4 inch sizes, and will last throughout the service of any record. The Pick-Up is non-magnetic and non-fatiguing. The price is 2/- and the Pick-Up is available in all sizes. The Rothermel-Brush Pick-Up is a permanent magnet instrument, and is an outstanding example of the work of this famous firm.

The Technical Press agrees with us in our statement that the Amplion 1935 "Lion" Speakers faithfully uphold our reputation for producing speakers that give life-like reproduction, fine tonal balance, sensitivity and the ability to handle heavy input without the slightest distortion.

"Popular Wireless" says:
"To-day, Amplion moving coil loudspeakers are continuing to enjoy tremendous popularity, proof of which is that the old-time traditions associated with this famous name have been well maintained ... The Amplion "Lion" speaker, a high-class permanent magnet moving coil instrument, is an outstanding example."

Because "Lion" permanent magnet moving coil loudspeakers can be correctly matched to every class of output, they are suitable for use with any receiver.

UNIVERSAL TRANSFORMER, 1 to 20 and 2,000 to 40,000 OHMS.
PROVISION FOR VOLUME OR TONE CONTROL AND USE OF ADDITIONAL SPEAKER.

"Lion" 7" cone, 47/-; "Lion Super" 10" cone, 55/-.
AMPLION SPEAKER, RECEIVER, AND COMPONENT LISTS, FREE.
Quiet A.V.C. or Noise Suppression

is Coming Into Increasing Popularity,

and a Knowledge of the Underlying

Principles is Desirable

NOISE SUPPRESSION

By FRANK PRESTON

seen that if the contacts of the switch connected in parallel with the secondary winding of the L.F. transformer are closed, the L.F. valve will become inoperative, and therefore the loud-speaker cannot respond to any signals tuned in. When using this arrangement, therefore, the "suppressor" switch should be set to the "on" (contacts closed) position, after which tuning can be carried out, using the visual indicator only. As soon as this shows that the station has been correctly tuned, the switch contacts are opened.

Automatic Suppression

This is not really a legitimate system of noise suppression, but it can be employed, and it serves as an indication of the principles involved. A proper system of noise suppression must be entirely automatic so that as soon as the receiver is de-tuned the L.F. amplifier becomes inoperative. This is often referred to as Quiet Automatic-Volume Control, due to the fact that the speaker is silent during the periods between the wavelength positions of various stations when the tuning condenser is being operated. The principle of Q.A.V.C. is not new, and there are various methods of applying it, but it has not generally been used by the amateur. There are several reasons for this, one of which is that an H.F. volume of high value is required (so that the system is practically limited to mains receivers), and another is that it involves the use of either an additional valve or of a multiple valve, such as a double-diode triode, double-diode pentode, triple diode, etc. The general circuit for the second detector of a superheterodyne, which comprises a double-diode triode used for A.V.C. and noise suppression (or Q.A.V.C.), is given in Fig. 2. At first glance this circuit appears to be very complicated, but if the various parts are considered separately it will be seen that the arrangement is not difficult to understand.

A Matter of Bias

First of all it will be appreciated that the two resistances R1 and R2, which are connected in series between the centre tapping on the secondary of the L.F. transformer, and a Knowledge of the Underlying Principles is Desirable.

feature of a number of modern receivers, but the meaning of the term does not appear to be generally understood. In many instances it is thought to be the same as interference suppression, whilst in other cases it is merely taken to imply that some kind of L.F. volume control is provided. In point of fact, however, noise suppression is something quite different from these, and becomes necessary only when automatic volume control is fitted. It is well known that the chief disadvantage of A.V.C. is that it renders the receiver most sensitive when it is not tuned to the wavelength of any particular transmission, the sensitivity decreasing proportionally to the signal intensity when a station is tuned in. The result of this is that an efficient receiver provided with A.V.C. is very "noisy" when off tune, so that the various forms of inter-station mush and so-called background noises come into undesirable prominence. Because of this one hears a succession of "hisses" and the like when rotating the tuning dial whilst tuning in.

The Simplest Arrangement

When only the more powerful transmissions are required, it is possible to eliminate the inter-station noises by turning down the manual H.F. volume control, but this method does not apply when more distant stations are wanted, because the set is rendered comparatively insensitive. If the tuning condenser is fitted with a station-calibrated dial, or if the wavelength positions of a number of stations on the dial are known, the inter-station noise difficulty can perhaps best be overcome by fitting some form of visual-tuning indicator and an L.F. volume control, or even a switch to short the grid circuit of one of the L.F. valves. The complete arrangement of this system is shown in Fig. 1, which is a portion of the circuit of a mains superhet in which A.V.C. is applied to the intermediate-frequency amplifying valves. It will be

Fig. 1.—Skeleton circuit showing how a switch can be provided for noise suppression with a receiver fitted with a visual-tuning indicator. In this case A.V.C. is provided by means of a Westector. Component values are average ones.

Fig. 2.—The circuit for a double-diode triode used as second detector, automatic-volume control and noise suppressor.

(Continued on page 142)
Sketches of two of the new Droitwich coils. Note the small coupling condenser included in the lower end of the coil.

Droitwich Coils

Details of a New and Cheap Type of Coil which is Being Introduced to the Home Constructor

Since the introduction of the iron-core coil there have been many attempts to re-popularise the air-core or simple type of tuning coil, and to this end some interesting types of coil have been introduced. Obviously, in addition to low price the efficiency of the coil has also had to be of such a nature as to warrant the use of the coil in place of the iron-core type, and we have already reviewed several different types of coil in these pages.

With the advent of the Droitwich transmitter, however, some rather more care is required in the design of the coil if it is to prove of utility in all parts of the country. Hitherto, the long-wave band has been regarded as rather simple, and coils have been designed to have their maximum efficiency on the medium waves, with a long-wave performance which was satisfactory only so long as the transmissions on that band were well received. Selectivity on this portion of the tuning scale has generally been a compromise, although there are, of course, many types of coil which do give a very high standard of performance on the long waves.

In America, of course, the long waves are not employed, and the design of receivers in that country has been rendered much more simple owing to the fact that one band of frequencies only has had to be tunable, although in some cases the short-wave band has also been introduced. When, however, a receiver has to be designed to cover also the long waves there are certain difficulties in the way of giving a really high standard of efficiency of both bands.

The High-power Transmitter

In the past this has not been of great consequence owing to the power which has been employed by the long-wave stations. With the increase which is, however, being employed at Droitwich there will be serious overlapping of stations in many parts of the country. Radio-Paris, for instance, will be found to be swamped by Droitwich over a very large area in the Midlands, unless special precautions are taken. Similarly, where a powerful receiver is in use, and the coils have not been designed for selectivity on the long waves, serious difficulty may be encountered in confusing the Droitwich transmitter to a narrow band on the tuning scale. British Television Supplies have tackled this question, and have developed a new tuning coil of the ordinary types of coil, and has been found to give greatly improved results in its long-wave performance. It has been designed for a specific purpose, and it does what is intended.

It must not be inferred from this that its performance on the medium waves is in any way lacking. The combination of condenser and coupling coil results in a very satisfactory performance both as regards signal strength and selectivity on this band, and the coil is comparable with any standard air-core coil. As a matter of fact, at the time of going to press, the manufacturers inform us that an additional refinement in the form of a centre-tap to the grid winding is to be provided so that the coil may be employed in more efficient H.F. receivers in which one or more H.F. stages are employed. This will provide yet a further aid to selectivity, and give the coil greater scope.

Coil Details

The former upon which the coil is wound is 1 in. in diameter, and the medium-wave grid coil is wound at the upper end, in solenoid fashion with silk-covered wire. A short distance from this is the reaction winding, which is disposed to operate on both wave-bands. A short distance from this coil is the long-wave grid winding, and this is wave-wound with silk-covered wire, and a similar type of winding is arranged at the lower end of the former for the long-wave aerial-coupling coil.

Six terminals are arranged round the lower edge of the coil, together with two mounting brackets, and each terminal is identified with a small name plate. The price of these coils is 3s.9d. each.

A diagram of connections for the coil in a simple detector stage.

The use of two coils in an H.F. receiver. A centre-tap is now to be provided on the grid winding for a circuit of this type.
THE cause of hissing is often a faulty S.G.-H.F. valve. The only remedy is to fit a new valve in place of the faulty one. If used later as an S.G. detector for S.W. reception, a valve of the hissing variety is likely to be noisy in operation, and, in addition, may cause a hum to build when carrier-wave is tuned in. Of course, a dry earth or faulty earth connection will produce a similar effect.

Always check wiring against a theoretical circuit. Remember it is current practice in the interests of efficiency, short-wiring, and compactness, to enclose a number of fixed condensers in one metal container or screening box, the latter being used as a common lead to earth via the chassis. L.F. chokes, shown as separate components in diagram, are sometimes centre-tapped chokes fitted into the same screening box.

Should it be necessary to check A.C. or D.C. voltages, use meters suitable for the purpose, and not any old meter to hand. It is better to be safe than sorry.

To ignore the above advice may result in serious damage to the receiver, personal injury, and considerable expense. Be quite sure about what you are going to do, and the correct methods to adopt, otherwise it is better to place the task in the hands of an experienced person. High voltages are no respectors of persons, and will not be played about with in a haphazard manner.

Valve Rectifiers

Drumming, or purring noises, heard in the speaker, superimposed on signals, may be due to a faulty rectifier valve. Place an ear to the valve envelope, and if noises are internal to rectifier, same is faulty. Fading signals will probably be experienced. Replace with new rectifier valve of same type.

Gaseous Valve Rectifiers

As the writer has had considerable experience of this type, which is a standard fitting in certain high-class American short-wave A.C. operated receivers and power packs (eliminators), information concerning them which, by the way, is difficult to obtain, is given for the benefit of Overseas and other readers using apparatus in which the gaseous type rectifier is fitted. There are two makes in the 125 M.A. class, the B. H. Ratheon, and C.R.A.—125 B.H., which are interchangeable and have much to recommend them: long life, silent operation, robustness. Faults, however, are difficult to trace should they develop, unless one has had previous experience.

Purring Noises in Speaker

Purring noises in speaker, also internals of rectifier, together with flash-over between the twin tube elements and underside of cap, and with fading and distorted signals, until only purring noise (like a form of motor-boating is heard), denotes complete burn out. If dial-light flickers and rectifier bulb is very hot, the cause is either a burnt-out rectifier, or due to excessive voltage to plates. Check high voltage and secondary of power transformer, chokes, by-pass condensers, etc.

Should the dial-light flicker violently a few seconds after switching on, and a click be heard in power transformer, a shorted secondary winding is more than likely. This will cause excessive residual voltages to build up, and break-down the gas element of rectifier. Remove transformer, test all tappings and windings. Erratic needle movement will denote trouble when teating off load with power line connected to transformer primary.

It is possible that this effect will be noted on all windings, if secondary high voltage winding is shorted. A re-wind of secondary is, of course, necessary.

Checking Power Transformer Voltages

Unless you have mains checking experience, do not attempt to check power transformer voltages, as 220, or even 275, volts each side of centre tap is quite commonplace.

The maximum plate voltage allowable with B.H. and C.R.A. 125 rectifier, is 300 volts per plate. As these rectifiers are filamentless, continuity test on filament is impossible. The gas element replaces the filament, and to avoid a complete burn out no type of rectifier valve should be used as a replacement, other than B.H., or C.R.A. 125 types.

Detecting Interference

If you are subject to some kind of interference, the quickest way to find out whether it is outside or in the set is to detach the aerial and earth and interconnect the aerial and earth terminals by means of a short piece of wire. If the interference becomes inaudible or considerably reduced, it can generally be taken for granted the interference is not in the set, but outside. It is always advisable, where sets are operated from the mains, to interchange for test both on the aerial and earth terminals to find out whether the interference enters via the mains. If, after the aerial has been detached the noises are still heard in the same way the set should be searched for the cause. Outside interference may be caused by any kind of electrical apparatus, and many cases have been traced to electric lamps, stoves, and inefficient switches in the house. When the search for this sort of trouble commences it is always wise to switch off everything connected to the mains, except the set, and switch each in separately. Inquire of your neighbours whether they are subject to the same type of interference.

NEWNES' TELEVISION AND SHORT-WAVE HANDBOOK

Have You Reserved Your Copy Yet?
met one the other day for the first time, some kind of electrical apparatus? Can Wireless Signals be Heard Without underground tubes.

She was a typist in a City office, and the result of a disordered brain. Though for years I have received letters explaining to her the whole theory of radio, she was kept awake by continuous messages from relations and friends who persisted in telling of the most peculiar experiences. While they are not fast enough to be seen too high to be heard by the human ear, radio waves vibrate at a rate of 70,000,000,000,000 per second, which causes the brain to perceive sound. Radio waves vibrate at a rate of 30,000 to millions of cycles per second while light waves vibrate at the average rate of 600,000,000,000,000,000. This will show that radio waves have a vibration too high by the human ear, while they are not fast enough to be seen by the eye. Feeling any sensations for which we have no term: sound, heat, cold, scents, sights, etc., which are not shared by others, calls for a consultation with a capable physician!
IS THE FRAME AERIAL DEAD?

An Interesting Discussion on the Merits of the Frame Aerial and its Use with Modern Radio Receivers

The frame aerial does not seem to be having a very great measure of popularity at the present time, and a visit to the majority of radio stores reveals a sad lack of display of this type of wireless accessory. Why is this? Is there anything in the device which renders it useless with modern receivers, or is it just that the present-day listener has lost sight of the various advantages which its use confers? As no doubt the majority of our readers are aware, the frame aerial possesses a very valuable feature which may be inherent in a radio receiver, and it is this important feature which enables a ship at sea to ascertain its position, or the position of a radio beacon.

How the Frame Works

The windings which are used in a frame aerial take the place of a tuned circuit, and a variable condenser is joined across the ends of this winding, which is then possessed a very valuable feature which may be inherent in a radio receiver, and it is this important feature which enables a ship at sea to ascertain its position, or the position of a radio beacon.

The Superhet and the Frame

The greatest use of the superhet in the past has been in the super-heterodyne circuit, where the frame was centre-tapped, and was used in a special manner. The modern design of this type of circuit has rendered its use obsolete for this purpose, but it still retains its selective property, and many listeners will probably find it of great value for receiving certain stations which are badly spoiled by interference with their present apparatus. A frame aerial may be wound in any form, as may be seen by examining the sketches of the various commercial aerials shown on this page. For the medium wave-band from 70ft. to 1ft. of wire are required, and these may be wound in any desired form. Special thin flex is highly suitable for the aerial, and it should be passed across ebonite spacing strips at the ends of the frame-arms. Generally speaking, the length of the "sides" of the frame should not be less than 2ft., although for very small portable use a smaller size may be turned to account. Its efficiency is not so high, however, and it pays to use some dimension greater than 2ft. To make the aerial less cumbersome, the apparatus may be designed to fold up, when the ends of the frame should be firmly attached to the ebonite insulators. For a long-wave winding about 200ft. to 250ft. should be employed, and for a frame aerial to cover both bands, a total of 2ft. should be employed, with a shorting switch across approximately 175ft. of the wire. It is possible to arrange a small winding in between the two sections just mentioned, in order to provide reaction effects, but the amount of wire and its disposition in relation to the long and medium windings is rather a matter for experiment and no exact details which a small switch changes can be given from one band to another.

In this type of frame the windings are arranged side by side.
H.F. AND L.F. COUPLING

A Simple Explanation of the Principles of Coupling Together Various Parts of the Receiver, with Some Practical Notes on Obtaining Maximum Efficiency.

The process and method of coupling together the circuits and stages of a receiver are important points which are too often overlooked or insufficiently understood. Most experimenters and constructors realize that, if optimum results are to be secured, the coupling between the detector and L.F. stages, and also between the output valve and the speaker, must be properly matched, but they overlook the fact that the matching of high-frequency sections of the set is of even greater importance.

The question of coupling is bound up principally with such technical points as impedance (more correctly, relative impedances) and transformer ratios. It is not proposed to deal specifically with technicalities in this article, however, but to explain in simple language the main points which are involved. In the first place, it should be explained that the equivalent impedance (resistance to alternating current) of any output circuit should be similar to the impedance of the input circuit which it feeds. In other words, the impedance of the anode-coupling component used with one valve should be made to be equivalent to the impedance of the grid-filament circuit of the valve which follows it. It should also be explained that the grid-filament circuit of any valve is extremely high by comparison with the primary impedance of the anode-filament circuit, and also by comparison with the impedance of the aerial-earth circuit.

Matching Impedances

A transformer—of either the H.F. or L.F. type—provides the simplest means of matching impedances or securing the best coupling, because the ratio of the impedance of the secondary winding to that of the primary winding is proportional to the ratio of the secondary to the primary turns. The impedance ratio is not a simple proportion of the turns ratio, but is actually proportional to the square of the turns ratio. Thus, the impedance of the secondary winding of a transformer is equal to the square of the turns ratio multiplied by the primary impedance. For example, if the impedance of the primary winding of a so-called 1:5 transformer were 10,000 ohms the secondary impedance would be 10,000 multiplied by 5 squared, or 250,000 ohms; if the ratio of the same transformer were reduced to 2:1, the secondary impedance would become 40,000 ohms.

Impedance More Important than Ratio

It would appear from this that optimum results would be obtained when the ratio of an L.F. transformer were made as high as possible, since then the secondary impedance would be greatest. In practice, however, this is not always the case, because increasing the ratio introduces other factors, not least of which is that of voltage step-up. A transformer increases the A.C. voltage flowing through the primary and decreases the accompanying current, but if the voltage is increased beyond certain limits the valve fed by the secondary circuit is in danger of being overloaded. Another difficulty introduced by the use of a high transformer ratio is that of self-capacity which develops between the many turns of the secondary winding. In practice it is therefore generally better to use a transformer with a high primary inductance (which is the principal factor governing the impedance) and to have a moderate step-up ratio.

But the constants of the transformer are not governed only by the secondary impedance, but also by the primary impedance. The latter must be chosen to match the valve in whose anode circuit it is connected, and the value of the impedance in ohms should be equal to twice the A.C. anode-filament impedance of that valve. Thus, if the rated impedance of a detector valve is 15,000 ohms, the primary winding of the transformer connected in its anode circuit should be 30,000 ohms (at a frequency of about 1,000 cycles).

The above explanation shows why better results and greater amplification are often secured by replacing a high-ratio L.F. transformer by one of lower ratio. It also serves to explain the reason for using a step-down transformer, which is often secured by replacing a high-capacity transformer winding with which the circuit is as shown in Fig. 1. In this case the primary winding of the transformer is not connected in the anode circuit of the valve, its place being taken by a fixed resistance. Because of this it is possible to employ a transformer with fewer turns, but with an equally-high step-up ratio without introducing the difficulty of self-capacity.

Finding the Best Ratio

The very same idea of coupling, or matching, applies when feeding the loud-speaker, because the impedance of its speech coil is usually between 2 and 10 ohms, whilst the impedance required in its anode circuit of the last valve is generally something like 10,000 ohms. In this case a step-down transformer is required, and the correct ratio can readily be determined by making use of the information given above. It can be seen that the correct ratio can be found by dividing the impedance required in the anode circuit by the impedance of the speech coil, and taking the square root of the answer. For example, if the impedance required (called the optimum load) were
Although there are factors which tend to counteract the theoretical improvement to be obtained by the use of a small and separate aerial winding, the fact remains that, if the winding is carefully chosen to produce the desired selectivity and signal strength, a decided improvement can be secured. The aerial impedance cannot readibly be measured by the amateur, but it is by no means a difficult matter to vary the size and position of the separate aerial winding until optimum results are secured. An alternative to the separate winding which gives precisely the same effect is the use of a tapping on the grid coil for aerial connection. This is shown in Fig. 4, from which it will be seen that the taps between the aerial tapping and earth represent the primary of the H.F. transformer, the total turns on the coil acting as the secondary. This arrangement is known as an auto-transformer and is frequently used on the L.F. side in conjunction with resistance-feed.

When using home-made coils, or when modernisation is desired, it is well worth while to experiment with various aerial tappings until that which gives the best coupling is found. Trials can easily be made by connecting the aerial lead to a pin, which can be pushed through the insulation of different turns so that it makes contact with the inner wire. When a strip of mica placed under it and a tapping soldered on. See Fig. 5. This should be repeated on the long-wave winding where possible and the two tappings brought out to a combined transfer and wave-change switch as shown in Fig. 6. Incidentally, it should be mentioned that this system is used on modern short-wave coils, and it is not generally recommended that any alteration should be made.

It will be understood from the explanation given above why improved reception is often secured by employing a pair of impedance-matching transformers in conjunction with a screening lead-in or obviating electrical interference. The transformer connected between the aerial and the lead-in gives a step-down effect, while that between the lead-in and the aerial terminal on the set steps-up the signal voltages. By carefully choosing the ratios of these two transformers it is possible to secure an optimum coupling when the aerial-earth impedance is exactly matched to the grid-filament impedance of the first valve in the receiver.

The principles explained in connection with the coupling of the aerial to the first valve apply with equal force to the coupling circuit employed between the H.F. valves, and between that valve and the detector. It is for this reason that it is in many cases possible to secure much-improved reception by using tuned-transformer coupling. Before taking up the details of any improvement, it is necessary to find the most suitable position and number of turns for the primary winding.

How a Condenser is Made Non-inductive

Concluded from p. 104, October 6th issue.

inductance in a paper condenser used in H.F. circuits they are made "non-inductive" by taking a connection from each turn of the rolled-up foil instead of just connecting two wires to the ends of the foil. (The difference was illustrated in Fig. 6.) Each condenser disconnects with the disposition of the connecting wires within the case, since even a straight wire has self-inductance. They are therefore wound together to form a twin-inductive pair, so that the inductance of one wire neutralises that of the other. In this way it is possible to reduce the inductance of the condenser to negligible proportions. In fact, the small residual inductance present is usually masked by that of the external wiring which connects the condenser to other components in the receiver.

The mica condenser, of course, non-inductive and needs no modification to the normal method of assembly. This is only when the dielectric plates are wound as in a paper condenser that this trouble of inductance arises. It is becoming very common to-day to design fixed condensers in a tubular form in order to produce a compact component for use with the modern small receiver, and it is here again that inductance must be avoided. When purchasing a fixed condenser therefore, make quite certain that the condenser is non-inductive unless you are sure that its position in the circuit does not render this precaution necessary.
HOW'S YOUR WATCH?

If you meet with an ardent radio fan, one who likes to do a bit of experimenting or generally playing about with his set or moving-coil loud-speaker, ask him the time. He is sure to tell you the history of a wonderful timekeeper suddenly developing a "one day fast and the next day slow" kind of attitude. Of course, if after reading this he hits you, you will realize how many times he has been asked the question and is feeling very fed up.

A mad watch is apt to lead to all sorts of serious situations and excuses. If you have a timepiece of which you are very proud and particularly one of the wrist type, put it away when you start tinkering with your radio set, otherwise you will perhaps, waiting for the 8.30 train at 7.30 a.m., tell you the job with a coil of wire and some A.C. juice. Dr. Charles Edward Guillaume received the Nobel Award in Physics about twelve years ago for finding a new alloy called "elinvar." When a hairspring of a watch is made from this alloy it is unaffected by temperature changes and cannot be permanently magnetized. Such watches are being made in America for the use of electricians and radio service men, and can be worn near electrical apparatus without any ill effects. Unless they are held deliberately in an exceptionally strong magnetic field they are immune to magnetization. Even in that case a watch equipped with this type of hair spring resumes perfect running immediately it is removed from a magnetic field of such strength as to permanently magnetize every steel part, and which would put out of action any ordinary type of watch.

A little precaution is often better than a cure, so accept this word of warning for the protection of that family heirloom.

THE LAST WORD IN RADIO

Universal ALL WAVES SUPERNET EIGHT.

The set just proves on the radio, any voltage, any wave band. One Universal. Receives all imported stations in the world from 112 to 5,000 metres. Employed delayed A.V.C., fluid flight timing Indicator, and all the other latest refinements in Radio design.

Table Radiogram Model... 36 Gns.
Table Model... 36 Gns.
Chassis complete with Valves... 28 Gns.
Universal ALL WAVES SUPERNET FIVE.

For easy radio listening any wave band. Operates easily from 30 to 2,000 metres. Receives stations from any part of the world, to any part of the world. The one set may cover for perfect quality.

Table Radiogram Model... 30 Gns.
Table Model... 18 Gns.
Chassis complete with Valves... 14 Gns.

Special Features: Great Output. Most economical in cost. NO BARRETTRES.

Radio and Relaxation
Can Wireless Music Aid the Nerves?
A SHORT time ago I sat in one of the B.B.C. studios listening to the Wireless Military Band playing a well-known composition. A few nights afterwards, when visiting a friend, I heard the same band and composition rendered through his radio receiver, to which was attached an excellent mains excited moving-coil speaker. The lady of the house asked the lord and master to please lower the volume. I suppose the volume coming from the speaker was affecting her nerves. In my mind, I wondered whether had she been in the studio listening she would have found the music pleasant and a decided aid to relaxation. The majority of set owners never pause to analyse as I did, why, in one case, the result may be nerve-racking and in the other, restful.

He may have the finest of radio sets, and be proud of drawing the attention of his friends to the bass response and mellowness of tone from the speaker, but if it continually jarred upon the nerves then that must be something very much wrong with either the set or the way it is handled.

NOISE SUPPRESSION
(Continued from page 119)

applied to the pentode will be equal to the sum of the voltage dropped across R3 and R4. The actual voltage need not be considered, for it will obviously be considerably greater than the normal figure, the result being that the valve is heavily over-biased and cannot function.

Approximate values of the various resistances and condensers are given in Fig. 2, but it must be explained that these might have to be modified slightly according to the particular valves employed; they are, nevertheless, sufficiently accurate as to serve as a basis for experiment.

It should also be added that R1 is a variable potentiometer and serves as a normal manual L.F. volume control, in addition to providing the A.V.C. voltage. R3 is also shown as a potentiometer, since it is always best to adjust this carefully in order to ensure the most suitable adjustment for the actual receiver in use. The values of resistances R4, R5, and R6 are not indicated, but, instead, the voltage which they are required to drop is shown; the values can, therefore, be calculated according to the valves and H.T. voltage employed.

In practice it is frequently better to replace the double-diode triode by a double-diode pentode, or even to use a separate valve for noise suppression. The reason for this is that a valve is required which has a sharp bend towards the bottom of its grid volts-anode current curve, so that it gives a so-called "trigger" effect. In other words, the anode current must change from maximum to minimum with a very small change in applied grid-bias voltage. The resistance marked R7 is simply a manual-volume control working on the variable-mu valve, and is not a part of the automatic-volume control circuits. The resistances marked R3 are for de-coupling only, and do not call for any particular consideration.

A maximum (smoothed) high-tension voltage of at least 350 is required for satisfactory results with an automatic volume control system. Like that illustrated, and decoupling resistances of fairly high value should be used in the anode circuits of the two valves, in order to limit the voltages supplied to the anodes to a maximum of 200.
Club Reports should not exceed 200 words in length

THORNTON HEATH RADIO SOCIETY
This evening's annual general meeting of this society was held at St. Paul's Hall, Norfolk Road, on Tuesday, the 25th ult.

Before proceeding to the business of the meeting, the Chairman, Mr. S. J. Meares, welcomed the Vice-President, Mr. B. A. Crossley, and announced that Mr. J. T. Webber, Mr. O. L. Garrold, and Mr. S. J. Meares were again elected to fill the offices of Chairman, Hon. Secretary and Hon. Treasurer respectively.

Mr. Meares then outlined the society's future plans and policy. The society wished to make it clear that it could not alter the name of the society in such a way as to indicate an olio of short-wave work, coupled with the fact that the society was holding its own.

Ms. Meares also mentioned the annual fund-raising lecture which was given in aid of the society's insane and old age funds. Full particulars may be obtained by sending a sixpenny address envelope to the Committee, 36, Norfolk Road, Thornton Heath.

INTERNATIONAL DX'ERS ALLIANCE
This gained interest society has still further increased in membership through the interest shown in expanding its S.W. Section, and Captain H. L. Hall, who has been a member for some time, has now been asked to address the society, and to give his reasons for making this decision.

Mr. S. J. Meares, Mr. J. T. Webber, and Mr. O. L. Garrold were again elected to fill the office of Chairman, Hon. Secretary and Hon. Treasurer respectively.

Some discussion ensued, as a result of which it was decided to reorganize the society in such a way as to include all members interested in short-wave work. It was agreed that this society should be known as the International DX'ers Alliance, and that the committee should be reorganized accordingly.

Mr. S. J. Meares, Mr. J. T. Webber, and Mr. O. L. Garrold were again elected to fill the office of Chairman, Hon. Secretary and Hon. Treasurer respectively.

Mr. Meares also mentioned the society's future plans and policy. The society wished to make it clear that it could not alter the name of the society in such a way as to indicate an olio of short-wave work, coupled with the fact that the society was holding its own. Ms. Meares also mentioned the annual fund-raising lecture which was given in aid of the society's insane and old age funds. Full particulars may be obtained by sending a sixpenny address envelope to the Committee, 36, Norfolk Road, Thornton Heath.

TECHNICAL & COMMERCIAL RADIO COLLEGE
CROMWELL ROAD, LONDON, W.C.I

Telephone: Chancery 7054 & 7055.

FULLY DESCRIBED BY MR. F. J. CAMM ON PAGE 135

DYO receive RADIO-PARIS without interference from DROITWICH? Only if you have fused B.T.S. BAND CONTROL COILS. No other coils give that high degree of selectivity characteristic of modern commercially manufactured Sets. It is the result of the NEW WAVE WINDING, for the first time made available to amateur constructors by B.T.S. Interchangeable for Aerial or Antene Circuits... makes a wonderful improvement in selectivity to many PRACTICAL WAVELESS DESIGNS... See what Mr. F. J. Camm recommends in this issue.

3/6 EACH

- OBTAINABLE FROM ALL RADIO DEALERS
- IN CASE OF DIFFICULTY SEND DIRECT... POSTAGE REFUNDED

BRITISH TELEVISION SUPPLIES, LTD., BUSH HOUSE, LONDON, W.C.2

Telephone: TEMPLE BAR 0131.

Telegrams: TELEWAV, BUSH, LONDON.

PRACTICAL WIRELESS

October 13th, 1934

WORK WAITING FOR TRAINED RADIO MEN

...Trained men are constantly needed. We give the training that brings success. We have done so for others; we can do the same for you.

Read what these T.C.R.C. students say:

"I have much pleasure in announcing an increase in salary and promotion."—J. A.

"I start work on Thursday. I thank you for all the valuable help you have given me."—G. F.

"I am pleased to say that I have secured a post since the starting Course which promises good prospects for the future."—R. H. W.

"He engaged me at a big increase in salary in what I am now getting. I cannot thank you enough and I feel I couldn't have got this situation without your help."—A. G.

"Mr. ... gave me a job which has great possibilities, I feel I can never thank you sufficiently for the extreme trouble you have taken in helping me."—P. T.

"Since enroling I have taken over practically all the battery set work for a local dealer."—J. T.

And many more who feel that the T.C.R.C. training does genuinely give you the ability to obtain radio work and earn good money.

TURm YOUR SPARE TIME INTO MONEY.

If you do not require full-time employment, we can train you to earn money in your spare time. Set designing, installing, maintenance, servicing, set building, writing for the Press, accumulating change, and many other interesting occupations which will not interfere with your ordinary occupation, can bring you in additional money and prepare you for full-time employment in the future, should you need it. Make your hobby pay; we will teach you how.

Please send me free copy of your latest Prospectus (please stamp if posted in unsolicited envelope.)

Name...

Address...

P. 21

ITALICS

Sensational offer to every reader

"DO IT YOURSELF!"

A golden opportunity to obtain a complete Householder's Guide. This money-saving book will enable you to carry out successfully the many jobs that make up an up-to-date, well-run home. Full details in...
PRACTICAL WIRELESS

It enables a pilot to set a direct course towards any suitable wireless transmitting station along the route, and has already shown itself simple and efficient in actual operation on the Indian and African air routes.

Centenary of Birmingham Town Hall

ACCORDING to a recent B.B.C. announcement, the whole of the concert which is to celebrate the Centenary of Birmingham Town Hall will be broadcast from the Midland Regional on October 31st. Birmingham Festival Choral Society, the City of Birmingham Choir, and the City of Birmingham Orchestra will be heard in Handel's Coronation Anthems, Coleridge-Taylor's "Hiawatha's Wedding Feast," and Mendelssohn's "Thanksgiving." The conductors are Harold Gray, G. D. Cunningham, and Leslie Reward respectively. Frank Titterton, the tenor soloist, is a native of Birmingham. The orchestra will give Parez's Trumpet Voluntary and Elgar's Enigma Variations. G. D. Cunningham, the City Organist, will play Bach's Fugue in E flat.

The interval of the local veteran will relate his reminiscences of Town Hall concerts during the past fifty-five years. Birmingham Town Hall was designed by Hansom, who went bankrupt before it was completed; it has been opened to the public; before it was completed; it has been observed several notable first performances by Mendelssohn's "Elijah," conducted by the composer, who appeared three times at the Triennial Festival; Elgar's "Dream of Gerontius," "The Apostles," and "The Kingdom." Jenny Lind and Patti have both sung there, and Dickens once gave

and fidelity of reproduction. I studied the district in which it would be required to operate, got particulars of the acoustic properties of the room, and together with other information, I found the operator had a musical ear, for he was a teacher of music. This was a problem which required careful thought, because too much selectivity and perfect reproduction do not run very well together in harness. However, I decided on a receiver and advised the inquirer to arrange with the manufacturers for a demonstration in the home and under the actual conditions it would be required to operate. The set had two stages of variable-mu high-frequency amplification, power detector, and a push-pull output. This was coupled to what I consider to be the finest and most faithful energized moving-coil loud-speaker. Eventually I received a letter which did not contain any thanks for the trouble I had taken, but upbraided me for suggesting such an instrument. The set was selective, but the heavy bass reproduction made him feel positively ill. He could not listen to it with the least pleasure. The letter went on to say he had visited the local radio store and had been induced to allow the storekeeper to make him up a three-valve set from a well-known kit set, complete with a cone speaker. This was giving perfect satisfaction at about one-eighth of my suggested cost. I am left wondering whether the musical ear has lost much of its keyboard perfectibility or whether it is a case of jingling coins covering up the desideratum.

Your very last chance

NEWNES' TELEVISION AND SHORT WAVE HANDBOOK under the special offer, you can still do so—but you must HURRY!

If you have not yet reserved your Presentation Copy of Newnes' TELEVISION and SHORT WAVE HANDBOOK under the terms of our special offer, you can still do so—but you must HURRY!

Your Greatest Gift Offer

NEWNES' TELEVISION AND SHORT WAVE HANDBOOK

Your only £2.85 and Nine P.W. Gift Tokens

The remarkable book, which has been specially written by Mr. E. J. Cann, is packed with up-to-date information on Television, is described at length in this week's Practical Wireless. The same issue contains the Simple Conditions of our offer and the necessary Reservation Form. Please turn to it (or ask your Newsagent for a copy), fill in and post the Form at once—and thus make sure of obtaining your Presentation Copy of this unique Handbook.

Choosing a Set

A REQUEST was recently sent to me asking if I would recommend a really efficient commercial all-mains receiver, the outstanding merits to be selectivity readings. A great festival to celebrate the Abolition of Slavery, the launching of Joseph Chamberlain's Tariff Reform Campaign, and the presentation of the Freedom of the City of Birmingham to Mr. Lloyd George after the Great War are notable events in the history of the Town Hall. During the Boer War, Mr. Lloyd George had to make his escape from the rear of the building disguised as a policeman!

By JACE

Pifco's New Premises

THE illustration given below shows Pifco House, the new premises of Pifco House, the new premises of The Provincial Incandescent Fittings Co., Ltd., particularly of which were given in a recent issue.

The End of Morse Telegrams

AFTER seventy years, the last Morse telegram was dispatched a few days ago from the Central Telegraph Office. In future all telegrams will be sent by automatic teleprinter machines, which can send 100 telegrams of average length an hour—more than double the capacity of the old Morse instruments. An operator can be trained in six months to send eighty telegraphs an hour.

Wireless for Empire Airways

THE five new D.H. 86 four-engined aeroplanes for the Singapore-Brisbane section of the England-Australia air route, which is expected to be opened by QANTAS Empire Airways Limited, in December this year, are of a special type, designed for long-distance work.

Pifco House, the new headquarters of Pifco, Ltd.

By JACE
SUPPLEMENT TO "PRACTICAL WIRELESS"

AMATEUR TELEVISION

TELEVISION SIGNAL DISTORTION AND CORRECTION

By H. J. BARTON CHAPPLE, B.Sc., A.M.I.E.E.

(Continued from October 6th issue)

As well as phase and attenuation distortion there is a third type of distortion which is sometimes present in transmission circuits for television signals. This arises when a line of one characteristic impedance is joined to another of a different characteristic impedance without adequate compensation at the junction. A pulse of current provided by a television signal on reaching such a junction is partly transmitted and partly reflected, the phase of this reflected pulse depending on whether the signal is propagated from a line of less to greater or greater to less impedance.

To overcome the effects of reflection, which, if several uncompensated discontinuities occur in sequence, gives rise to "echoes" or "ghosts" in a reconstructed television image, somewhat as indicated in Fig. 1, a compensating network is used. This presents an impedance in one direction equal to the characteristic impedance of one line, and in the other an impedance equal to that of the other, and a network of this character is called a transducer.

On the Radio Side

When the television signals are transmitted by radio, although the various forms of line distortion just discussed are not present in the actual radio link, another set of equally, and sometimes greater, deleterious effects is noticeable. First of all, at the radio transmitter itself precautions must be taken to ensure the correct handling of a wider range of frequency components than is required for the transmission of sound. To obtain a recognizable image reproduction the full 9-kilocycle channel width is necessary even with the normal thirty-line B.B.C. transmissions, and if this frequency band could be increased to 20 kc/s then the reproduction would improve considerably, especially if equalization for aperture distortion in the actual television transmitter itself is effected.

Added to this is the necessity for dealing with a number of inconstant and random distortions depending on conditions largely beyond human control. Of these, night fading (image dimming or vanishing), atmospheric interference (light streaks or splashes right across the image), and frequency shift (image blurring) can be very largely reduced by taking due precautions, such as automatic volume control, balanced circuits, and crystal control. Others, however, like skip distance, night-phase distortion, and "echo" are almost beyond human control, although there is reason to believe that even these effects may be minimized or perhaps obviated by the use of aerial arrangements of special form.

An Artificial Limitation

The most serious form of distortion in the television service is the artificial one of imposing the 9-kilocycle sideband difficulty, without resorting to extremely low wavelengths, is akin to inventing perpetual motion machines.

Even when the correct characteristic is provided at the transmitting end of a radio link, it is still necessary to pay attention to the radio set employed for feeding the signals to the television receiver. For example, the best means to obtain tuning efficiency is to use two or more tuned circuits connected up by one of the bandpass tuning schemes. This, of course, reduces the possibility of "cutting" the higher frequencies so essential for detail in the image, although there is an artificial method which has been suggested for obtaining an extended band-pass in radio receivers, as shown in Fig. 2.

Fig. 1.—A television image with its echo or ghost image.

Fig. 2.—An artificial method for obtaining extended band-pass in radio receivers.
IN 1927 A. C. Cossor introduced the first Melody-Maker, and it proved a very popular kit set. Each year the receiver has been brought up to date, and the two newcomers, introduced just before the Olympia Exhibition, are excellent examples of present-day design and embody every possible improvement and many advanced features. The two new kits are exactly similar in appearance, but one is an A.C. Mains model while the other is intended for battery working.

The Circuit

The circuit of the mains model employs three valves and a rectifier. The first is a Cossor MS/PEN acting as a high-frequency amplifier with high-efficiency iron-cored coils in both grid and anode circuits. These coils are very robust and at the same time exceptionally efficient, a combination not easy of attainment.

The deflector stage is particularly interesting as it employs the Cossor MS/PEN, a high-frequency screen-grid pentode acting as power-grid detector. The advantages of such a deflector are threefold—the stage amplification is much greater than that available from a triode; the selectors are easier for all reasonable settings of reaction and, in addition, quality is improved, partly due to the low inter-electrode capacity of the valve and also due to the use of resistance coupling instead of the more usual transformer arrangement.

The output valve is a Cossor 41BP feeding a mains-energized moving-coil loud-speaker with an output transformer specially designed to suit the valve, which, when thus correctly loaded, is capable of an undistorted output of something over 1 watt.

Simple Control

The controls are provided for single knob tuning (with trimmer), selectivity (reaction), volume, and switching. An ingenious arrangement is incorporated so that when the wavechange switch is in the long- and short-wave position, only the appropriate section of the dial is illuminated, while the gramophone position is indicated by the illumination of both scales. The gramophone position on the switch allows the pick-up to be permanently connected to the receiver and obviates the nuisance of having to withdraw a plug and jack.

The chassis is of heavy-gauge steel, copper plated on the underside, the latter to ensure that good contact is made with each wire as are earthed direct to the base plate. The constructional chart is an outstanding example of clear and fool-proof instructions, and assembly is also facilitated by the clean cut holes in the chassis and the ease with which all the parts fit together.

A considerable saving of time is effected in wiring, as the length of each piece of flexible wire is already correctly made as shown on the chart.

With customary thoroughness a small spanner is included for getting at the awkward fixing nuts, a large spanner for tightening up the large component nuts, and a special small screw-driver for tightening grub screws.

Test Results

On test the performance reached a high standard, selectivity and sensitivity being present at the same time in a remarkable degree, thus justifying the makers' claim that the set is more selective than had hitherto been thought possible when using only three valves.

Reproduction is excellent, and the increase of top brilliance due to the pentode detector is most noticeable. Mains hum is absent, and cannot be heard at a distance of eighteen inches from the speaker, even during an interval.

The cabinet is well finished in walnut and black and conveys the idea of a relatively expensive factory-built receiver rather than a kit of parts.

The Cossor All Mains Melody-Maker, which is known as model 357, is sold complete with four valves (including rectifier) and every conceivable item required from the smallest screw to the ready finished cabinet. It has terminals for a gramophone pick-up and plug and socket for extension loud-speaker and is suitable for use on A.C. Mains only 200-250 volts (adjustable) 40/100 cycles.

In addition to the kit set, Messrs. Cossor also supply some other highly efficient receivers in which novel and up-to-date features are included. These range from a simple battery set to all-mains radiogramophone. The all-mains radio-gram model 336 employs four A.C. valves, consisting of variable-mu, G.U., H.F. pentode as a detector, and a pentode-output stage with a valve acting as a full-wave rectifier. A loud-speaker of the mains-energised moving-coil type is fitted and the circuit embodies the useful features described in the preceding paragraphs.

That is to say, single-knob tuning, full vision scale calibrated in wave-lengths, combined off-wave-change gramophone switch, and volume control. The motor is of the induction type, perfectly silent in operation, and accommodating 12-in. records.

The pick-up and tone arm are of advanced design and give really high-class reproduction from standard gramophone records. The console cabinet in which this receiver is fitted measures 3ft. by 1ft. 6in. by 1ft. 6in. deep and is thus highly suitable for the modern house, in which it will be perfectly in keeping with normal furnishing methods.
To save readers trouble, we undertake to send on catalogues of any of our advertisers. Merely state, on a postcard addressed to "THE FRANK H. WOOD CO., LTD., 147, City Road, London, E.C.1.," that you are the purchaser of this magazine, and the names of the advertisers will be enclosed with applications for catalogues. If you have already written, the rest will follow. The above arrangement applies to the names of our advertisers only. In all other correspondences whatsover should be enclosed.

MAGNAVOX.

A new attractive booklet recently issued by the Magnavox Company, Ltd., contains a great deal of information which is of interest to all radio enthusiasts. The booklet is called "Changing Scotland." The pamphlet, which is attractively illustrated and written, is available in large numbers, and a number of the pamphlets have been sold to radio enthusiasts in the United States.

The current consumption is 25 watts. This arrangement makes a considerable difference to the behaviour of the speaker at medium and high frequencies. This new speaker is finished in white and olive drab.

PRACTICAL WIRELESS received.

"RADIO COMMUNICATION : History and Development," by Richard O'Neill, M.A., F.R.I.E.E., price 2s. 6d post free. This book is a brief and profusely illustrated history of radio communication, which traces the history of radio communication from what were primitive forms of telegraphy in the 1870's up to the latest modern developments. Some of the subjects covered are: early experiments, types of detector, the growth of collections, the development of vacuum tubes, telephony and broadcast transmission, the developments of the Quincke, Tesla, and De Forest experiments, and the development of the telephone and microphone. The illustrations include historical apparatus, early experiments, and many curious collections and curiosities, early and modern transmitters, and several drawings and photographs. The descriptions of the various apparatus have been reduced as far as possible to a concise description of cause and effect, so that the majority of those interested in the story of radio science should not find this handbook too difficult to follow. At the same time it should be a valuable supplement to the text-books of the radio student.

BOOKS RECEIVED.

"RADIO COMMUNICATION : History and Development," by Richard O'Neill, M.A., F.R.I.E.E., price 2s. 6d post free. This book is a brief and profusely illustrated history of radio communication, which traces the history of radio communication from what were primitive forms of telegraphy in the 1870's up to the latest modern developments. Some of the subjects covered are: early experiments, types of detector, the growth of collections, the development of vacuum tubes, telephony and broadcast transmission, the developments of the Quincke, Tesla, and De Forest experiments, and the development of the telephone and microphone. The illustrations include historical apparatus, early experiments, and many curious collections and curiosities, early and modern transmitters, and several drawings and photographs. The descriptions of the various apparatus have been reduced as far as possible to a concise description of cause and effect, so that the majority of those interested in the story of radio science should not find this handbook too difficult to follow. At the same time it should be a valuable supplement to the text-books of the radio student.

A MOMENTOUS ANNOUNCEMENT IN NEXT WEEK'S ISSUE!

PRACTICAL WIRELESS received.

"RADIO COMMUNICATION : History and Development," by Richard O'Neill, M.A., F.R.I.E.E., price 2s. 6d post free. This book is a brief and profusely illustrated history of radio communication, which traces the history of radio communication from what were primitive forms of telegraphy in the 1870's up to the latest modern developments. Some of the subjects covered are: early experiments, types of detector, the growth of collections, the development of vacuum tubes, telephony and broadcast transmission, the developments of the Quincke, Tesla, and De Forest experiments, and the development of the telephone and microphone. The illustrations include historical apparatus, early experiments, and many curious collections and curiosities, early and modern transmitters, and several drawings and photographs. The descriptions of the various apparatus have been reduced as far as possible to a concise description of cause and effect, so that the majority of those interested in the story of radio science should not find this handbook too difficult to follow. At the same time it should be a valuable supplement to the text-books of the radio student.

A MOMENTOUS ANNOUNCEMENT IN NEXT WEEK'S ISSUE!

PRACTICAL WIRELESS received.

"RADIO COMMUNICATION : History and Development," by Richard O'Neill, M.A., F.R.I.E.E., price 2s. 6d post free. This book is a brief and profusely illustrated history of radio communication, which traces the history of radio communication from what were primitive forms of telegraphy in the 1870's up to the latest modern developments. Some of the subjects covered are: early experiments, types of detector, the growth of collections, the development of vacuum tubes, telephony and broadcast transmission, the developments of the Quincke, Tesla, and De Forest experiments, and the development of the telephone and microphone. The illustrations include historical apparatus, early experiments, and many curious collections and curiosities, early and modern transmitters, and several drawings and photographs. The descriptions of the various apparatus have been reduced as far as possible to a concise description of cause and effect, so that the majority of those interested in the story of radio science should not find this handbook too difficult to follow. At the same time it should be a valuable supplement to the text-books of the radio student.

A MOMENTOUS ANNOUNCEMENT IN NEXT WEEK'S ISSUE!

PRACTICAL WIRELESS received.

"RADIO COMMUNICATION : History and Development," by Richard O'Neill, M.A., F.R.I.E.E., price 2s. 6d post free. This book is a brief and profusely illustrated history of radio communication, which traces the history of radio communication from what were primitive forms of telegraphy in the 1870's up to the latest modern developments. Some of the subjects covered are: early experiments, types of detector, the growth of collections, the development of vacuum tubes, telephony and broadcast transmission, the developments of the Quincke, Tesla, and De Forest experiments, and the development of the telephone and microphone. The illustrations include historical apparatus, early experiments, and many curious collections and curiosities, early and modern transmitters, and several drawings and photographs. The descriptions of the various apparatus have been reduced as far as possible to a concise description of cause and effect, so that the majority of those interested in the story of radio science should not find this handbook too difficult to follow. At the same time it should be a valuable supplement to the text-books of the radio student.

A MOMENTOUS ANNOUNCEMENT IN NEXT WEEK'S ISSUE!

PRACTICAL WIRELESS received.

"RADIO COMMUNICATION : History and Development," by Richard O'Neill, M.A., F.R.I.E.E., price 2s. 6d post free. This book is a brief and profusely illustrated history of radio communication, which traces the history of radio communication from what were primitive forms of telegraphy in the 1870's up to the latest modern developments. Some of the subjects covered are: early experiments, types of detector, the growth of collections, the development of vacuum tubes, telephony and broadcast transmission, the developments of the Quincke, Tesla, and De Forest experiments, and the development of the telephone and microphone. The illustrations include historical apparatus, early experiments, and many curious collections and curiosities, early and modern transmitters, and several drawings and photographs. The descriptions of the various apparatus have been reduced as far as possible to a concise description of cause and effect, so that the majority of those interested in the story of radio science should not find this handbook too difficult to follow. At the same time it should be a valuable supplement to the text-books of the radio student.

A MOMENTOUS ANNOUNCEMENT IN NEXT WEEK'S ISSUE!

PRACTICAL WIRELESS received.

"RADIO COMMUNICATION : History and Development," by Richard O'Neill, M.A., F.R.I.E.E., price 2s. 6d post free. This book is a brief and profusely illustrated history of radio communication, which traces the history of radio communication from what were primitive forms of telegraphy in the 1870's up to the latest modern developments. Some of the subjects covered are: early experiments, types of detector, the growth of collections, the development of vacuum tubes, telephony and broadcast transmission, the developments of the Quincke, Tesla, and De Forest experiments, and the development of the telephone and microphone. The illustrations include historical apparatus, early experiments, and many curious collections and curiosities, early and modern transmitters, and several drawings and photographs. The descriptions of the various apparatus have been reduced as far as possible to a concise description of cause and effect, so that the majority of those interested in the story of radio science should not find this handbook too difficult to follow. At the same time it should be a valuable supplement to the text-books of the radio student.

A MOMENTOUS ANNOUNCEMENT IN NEXT WEEK'S ISSUE!

PRACTICAL WIRELESS received.

"RADIO COMMUNICATION : History and Development," by Richard O'Neill, M.A., F.R.I.E.E., price 2s. 6d post free. This book is a brief and profusely illustrated history of radio communication, which traces the history of radio communication from what were primitive forms of telegraphy in the 1870's up to the latest modern developments. Some of the subjects covered are: early experiments, types of detector, the growth of collections, the development of vacuum tubes, telephony and broadcast transmission, the developments of the Quincke, Tesla, and De Forest experiments, and the development of the telephone and microphone. The illustrations include historical apparatus, early experiments, and many curious collections and curiosities, early and modern transmitters, and several drawings and photographs. The descriptions of the various apparatus have been reduced as far as possible to a concise description of cause and effect, so that the majority of those interested in the story of radio science should not find this handbook too difficult to follow. At the same time it should be a valuable supplement to the text-books of the radio student.

A MOMENTOUS ANNOUNCEMENT IN NEXT WEEK'S ISSUE!

PRACTICAL WIRELESS received.

"RADIO COMMUNICATION : History and Development," by Richard O'Neill, M.A., F.R.I.E.E., price 2s. 6d post free. This book is a brief and profusely illustrated history of radio communication, which traces the history of radio communication from what were primitive forms of telegraphy in the 1870's up to the latest modern developments. Some of the subjects covered are: early experiments, types of detector, the growth of collections, the development of vacuum tubes, telephony and broadcast transmission, the developments of the Quincke, Tesla, and De Forest experiments, and the development of the telephone and microphone. The illustrations include historical apparatus, early experiments, and many curious collections and curiosities, early and modern transmitters, and several drawings and photographs. The descriptions of the various apparatus have been reduced as far as possible to a concise description of cause and effect, so that the majority of those interested in the story of radio science should not find this handbook too difficult to follow. At the same time it should be a valuable supplement to the text-books of the radio student.

A MOMENTOUS ANNOUNCEMENT IN NEXT WEEK'S ISSUE!
ANNOUNCEMENT

In the sign language of the Broadcasting Room
this symbol means "Announcement."

The I.C.S. Radio Courses cover every phase of radio work, from the requirements of the youth who wishes to make wireless engineering a career to the man who wants to construct and maintain a broadcasting set for his home.

The Radio industry is progressing with amazing rapidity. Only by knowing thoroughly the basic principles can pace be kept with it. Our instruction includes American broadcasting as well as British wireless practice. It is a modern education, covering every department of the industry.

OUR COURSES

Included in the I.C.S. range are Courses dealing with the installing of radio sets and, in particular, with their Servicing, which to-day intimately concerns every wireless dealer and his employees. The Operating Course is vital to mastery of operating and transmitting.

There is also a Course for the Wireless Salesman. This, in addition to inculcating the art of salesmanship, provides that knowledge which enables the salesman to hold his own with the most technical of his customers.

Then there are the Preparatory Courses for the City and Guilds and I.W.T. Exams.

We will be pleased to send you details of any or all of these subjects. Just fill in, and post the coupon, or write in any other way.

INTERNATIONAL CORRESPONDENCE SCHOOLS, LTD.,

Without cost, or obligation, please send me full information about the Courses I have marked X

- COMPLETE RADIO
- RADIO SERVICING
- RADIO EQUIPMENT
- RADIO SERVICING AND SALESMANSHIP
- WIRELESS ENGINEERING
- WIRELESS OPERATORS
- EXAMINATION (state which)

ANNOUNCEMENT

PRACTICAL LETTERS FROM READERS

The Editor does not necessarily agree with opinions expressed by his correspondents. All letters must be accompanied by the name and address of the sender (not necessarily for publication).

An Invention Wanted

SIR,—I have read all your issues since No. 1, and many other wireless journals. I am, however, afraid I have never seen a device described which would suit a scheme which I have for long desired to make up. I have a commercial set, not fitted for an extra loud-speaker. I have connected an ordinary output filter to the set, and have arranged to disconnect the internal speaker when an extra one is in use. I only run one wire to the additional listening point and take a return earth wire from the extra speaker to a convenient earth point. I have tried many volume control devices across this extra speaker, but only with the result that tone reproduction is spoiled. Is there absolutely no way of controlling the amplification of the set by means of a device situated at a distance, without extra wires running all over the place? I have looked through your wrinkles, but cannot say that I have found an efficient solution yet. Perhaps one of your readers has met this problem and found a solution; if so, I should be glad to know of it.−R. PULSON (Highbury).

[We have not the advantage of knowing how it is possible to control the amplification of a receiver by means of a remote control device, but maybe a reader has found some volume control method which would be suitable for Mr. Pulson.—Ed.]

Cost of Maintenance

SIR,—I have had some argument with two friends regarding the cost of operation of mains receivers. They wanted to know that these take more current than a normal lighting circuit. I heard of a case where a listener had purchased a good mains unit from one of your advertisers, but he found that in one week it consumed more current than he normally used for lighting all over the house. What is the normal rating of a set, surely it is not so high as some people make out? It would be a good idea if in future you gave the loading of the mains sets you described as well as certain other details which are of interest to the keen experimenter. The cost is one of the points which every constructor wishes to know before undertaking the building of a set.−T. HANNS (Fimlico).

[It would be a good idea if in future you gave the loading of the mains sets you described as well as certain other details which are of interest to the keen experimenter. The cost is one of the points which every constructor wishes to know before undertaking the building of a set.−T. HANNS (Fimlico).]

"Alternative Connections"

SIR,—I notice you have published my letter on "alternative connections" in the September 22nd issue of PRACTICAL WIRELESS, with your remarks that no mistake was made. May I point out again that there is an error. The article definitely states that Fig. 1 passes the A.C. through the speaker to filament negative, and that Fig. 2 passes the A.C. back through the H.T. This is exactly the reverse, for how can the A.C. component get to earth through the resistance of the H.T. battery? Fig. 2 is the one that does this. I have taken the trouble to go through numerous sections of the Output, but it has not been found to Fig. 1. But I see you referred to my Fig. 1. I even mentioned, while Fig. 2 is the one shown as the more practical circuit.−H. V. Watling (Coichester).

[In his previous letter Mr. Watling stated that Figs. 1 and 2 should have been reversed, and with this we agree. If this is done, however, the statements made in the article are quite correct.—Ed.]

Short-wave Superhets

SIR,—Since PRACTICAL WIRELESS first came out, you have published circuits and details of sets, and these have been of a very high standard. You have, however, published full constructional details of a good short-wave set. Why not? The average price of a commercial short-wave set is £20, and I think a great saving can be obtained by the home constructor if you published constructional details of a short-wave set.

In your issue of March 17th, 1934 (No. 78), was published a circuit of a short-wave superhet which had 2 H.F. periods, etc., but the transmission wire and automatic volume control, which, according to the author, really did function well on the short-wave. With a set of this type results are practically certain, and it would be welcome to the constructor who thinks tuning on the short waves is a fine art. It would also appeal to all the many constructors of the short wave. Now what about it, "P.W. 2?" You cannot afford to shelve this question when so many of us, especially British constructors in our colonies, are asking for such a set. When our colonists write, all we get is this "in hand," and then no more is heard from you. If you can design such good sets as the Galy Four Super, etc., then why do you not design a really good super short-wave set on the lines of the above?−E. R. SARRU (Pecckham).

[We have published constructional details of short-wave sets, but have so far not found a reliable solution to the problem of designing a superhet to function on all wavebands. When we do we shall, of course, give complete details.—Ed.]

NOTICE

The Editor will be pleased to consider articles of a practical nature suitable for publication in PRACTICAL WIRELESS. Such articles should be written on one side of the paper only, and should contain the name and address of the sender. Whilst the Editor does not hold himself responsible for manuscripts, every effort will be made to return them. The author of an article or letter published will be informed of the fact, and the name and address of the sender will be printed. The Editor reserves the right to reject any article or letter submitted. We cannot guarantee to publish all the letters we receive.

PRACTICAL WIRELESS, October 13th, 1934
A New Rola Speaker

The Rola speakers have been exceedingly popular for some considerable time, and they have many novel features which set them in a class by themselves. With the general improvement which has taken place in the design of loud-speakers during the past year certain modifications have been introduced to the Rola models, and some of the older patterns, accompanying illustration.

The Rola FRG-6-P.M. moving-coil loud-speaker.

The novel iron-core coil produced by Formo. This illustration is nearly double the size of the actual coil.

one of the latest type is shown in the accompanying illustration. At a first glance there does not appear to be any radical change in construction between this model and some of the older patterns, but a closer inspection reveals that the cone has been remodelled so that one of the principal causes of trouble with moving-coil speakers has been overcome. We refer to the difficulty occasioned by dust in the air gap. Hitherto, the end of the pole-piece could be seen at the apex of the cone, but in these new models a small “blister” appears at the apex. Although of similar material to that employed for the cone, this small addition is exceedingly thin, and it should not be touched with the fingers in view of the possibility of damage. It closes the air gap from the front, but its shape, thickness, and exact position have received very careful attention, and it makes no difference to the high standard of reproduction which is the hallmark of the Rola speaker. In addition, a special metal-paper-fabric assembly at the rear of the cone serves to protect the gap from the rear, and it is thus impossible for dust or other foreign matter to find its way into this vulnerable part of the speaker. There are other small refinements to be found in the complete speaker, and in performance it gives full proof of the care which has been taken in design. Reproduction has that peculiar brilliancy for which the Rola speakers are famous, speech being remarkably life-like when the speaker is operated from a good receiver. No trace of boominess or artificial resonance can be detected throughout the complete musical scale, but the lowest and the highest notes appear in all their beauty, with the middle register correctly proportioned at all times. The transformer which is fitted is provided with terminals for power or pentode output circuits and covers a wide range of impedances. The price is 39s. 6d., and the speaker may be obtained with an energized winding, but with all the other characteristics of the permanent magnet, for 35s.

Formo Iron-core Coil

A very efficient and neat coil has been produced by the new Formo Company, and our artist’s impression of this coil is given on this page. The actual site of the steatite base which is fitted to this coil is 21in. by 11in. and the overall height of the coil and screen is only 21in. A number of novel features are to be found in this coil, the steatite base being only one of them. Hitherto, this type of base has been fitted only to short-wave coils, but the high efficiency of the iron-core coil warrants the inclusion of a base of this nature in order to remove all possibility of losses being introduced, and so nullifying the advantages of the iron-core. As a further aid to the maintenance of efficiency the former of the coil is made from trolitul, a celluloid-like substance which has extremely low losses. Litz wire is employed for the medium-wave winding, and in every way the losses have been kept down to a minimum, with the result that the coil has a very high standard of performance. High selectivity, high stage gain, and simplicity of connection are some of the leading advantages, and it will be found highly desirable when using these coils to take every precaution to keep down losses in the variable condenser and other parts of the tuned circuit in order that full advantage may be taken of these unique properties. The coil is made in three types, T.1—an aerial transformer without reaction; A.1—an aerial coil with reaction; and P.P.1—an H.F. interstage coil with reaction. Thus, any type of circuit (except a superheterodyne) may be constructed with the coils, and the price of either type is 9s.

Drydex Price Reductions

As from September last the price of a special type of battery, type 2 PT5, has been reduced to 1s. 6d., including the battery. In addition, a number of new radio batteries are introduced and are now available. These include, amongst others, two 144-volt batteries (one of 141 volts, plus 3 volts grid bias, and one of 135 volts, plus 9 volts grid bias) at 17s.; one 114 volt (108 volts H.T., plus 6 volts G.B.) at 10s. 6d.; one 120 volt at 15s. 6d.; one 24-volt G.B. Battery at 1s. 6d.; one 124½ volt (120 volt H.T., plus 4½ volts G.B.) at 14s. 6d.; one 126 volt (120 volt H.T., plus 6 volts G.B.) at 12s.; and a 135 volt (120 volt H.T., plus 15 volts G.B.) at 17s. Although each of these batteries has been designed primarily for a commercial receiver, they will be found extremely useful to the constructor and experimenter, owing to the inclusion of the grid-bias battery, and the removal of the necessity of wondering when to replace this battery. It also ensures that when the H.T. battery is exhausted the grid bias will also be renewed with the removal of the risk of damaging valves due to a discharged G.B. battery.

50 Tested Wireless Circuits

By F. J. CAMM

(Editor of “Practical Wireless”)

Obtainable at all Bookstalls or by post 2½ from Geo. Newnes, Ltd., 8-11, Southampton St., Strand, London, W.C.2

A Magnet Problem

"Is it possible to pass an electric current through an energized magnet without any effect on its magnetic qualities?"—H. B. O. (Hove).

We are afraid your query is not quite clear to us. What do you refer to as an "energized magnet"? Do you mean an eddy-magnet with an energizing winding? If so, it is, of course, necessary to pass a current through the winding in order to magnetize the core. However, if you will repeat your query and give fuller details, we shall be pleased to assist you.

Lightning is dangerous. Could you please let me know their address?"—W. T. (Bloemfontein).

The makers of Wareite components are Messrs. Wright and Westecor, Ltd., 140, High Road, Tottenham, London, N.17. Their advertisements have appeared in our pages on many occasions.

A Droitwich Problem

"I have heard a lot about the new Droitwich station, but I cannot hear it on my set. I have tried several nights when they have supposed to be on, but have only been able to hear Daventry. Can you tell me exactly at what point I shall hear the station, or is it possible that I am not in the direct range?"—G. T. (Bourne-mouth).

Droitwich transmits on exactly the same wavelength as Daventry, and at present takes the place of the latter station during the period of transmission. Eventually it will take over completely the present Daventry transmissions. You should adjust your set to the Daventry setting, and you will probably notice that the only difference when Droitwich is transmitting is the increased signal strength. No adjustment of tuning should be necessary.

A Charging Point

"I am building a receiver, but am rather uncertain regarding the type of detector to employ. I can choose between crystal, Westector, diode, anode-bend, grid leak, etc., but cannot decide which to adopt. Can you help me when I tell you that I require only a few stations with really high quality? I am going to use a paraphase amplifier after the detector."—T. G. (Balham).

The diode will no doubt prove most suitable for you, although an anode-bend rectifier will serve if only powerful stations are received. Personally we should prefer a modern double-diode triode, so that you may obtain the advantage of the triode portion of that valve with the good rectification properties of the diode.

Manufacturer's Name Wanted

"I should be glad if you could give me the address of the makers of the Brown screen-grid D.C. mains set. I have one to repair and should like to get the circuit."—F. J. S. (Belfast).

The receiver was made by S. G. Brown, Ltd., Victoria Road, Acton, London, W.3, but this firm no longer manufactures wireless receivers. However, they may be able to assist you concerning the circuit details of the receiver in question.

Wearete Products

"I am anxious to get into touch with the makers of a Wareite transformer which I have got, but I cannot find their name in the London 'phone directory. Could you please let me know their address?"—W. T. (Bloemfontein).

Special Gang Condensers

"In a wireless publication reference is made to ganged condensers in which the different sets of moving vanes can be separately adjusted. Please let me have the name of some reliable firms making condensers of this type."—Dr. W. R. T. (Broadstairs).

So far as we can ascertain, this type of condenser is not now manufactured. If, however, this query meets the eye of any firm who does market such a condenser, and they will communicate with us, we shall be pleased to give the firm the publicity they are asking for.

Two-valve Mains Receiver

"May I inquire if you have had, or will have in the near future, a design of the following nature? Two-valve for A.C. mains; output about 3 watts. A few stations with perfect reproduction rather than a host of programmes at very indifferent quality. Overall dimensions as small as possible and cost kept as low as possible."—E. A. R. (Leicester).

The nearest we have to your requirements is the A.C.D.C. Two, described in Practical Wireless No. 50 and obtainable in blue-print form—Blue Print No. 31. This is designed primarily for universal operation on any type of mains, and gives really high quality with low cost of construction. In addition, it is very compact, and contains a loud-speaker in its cabinet, which measures 17in. high, 11in. wide, and 8in. deep.

Special NOTE

We wish to draw the reader's attention to the fact that our Technical Service is intended only for the solution of problems or difficulties arising from the construction of receivers described in our pages, from articles appearing in our pages, or on general wireless matters. We regret that we cannot, for obvious reasons—those of copyright and of time—publish diagrams of complete multi-valve receivers.

(1) Answer queries over the telephone.

(2) Recommend alterations or modifications of receivers described in our contents.

(3) Recommend alterations or modifications to commercial receivers.

(4) Answer queries over the telephone. Please note that all sketches and drawings which are sent to us should bear the name and address of the sender.

If a postal reply is desired, a stamped addressed envelope should be enclosed. Every query and drawing which is sent must bear the name and address of the sender. Send your queries to the Editor, PRACTICAL WIRELESS, Geo. Newnes, Ltd., 8-11, Southampton St., Strand, London, W.C.2.

A Magnet Problem

"Is it possible to pass an electric current through an energized magnet without any effect on its magnetic qualities?"—H. B. O. (Hove).

We are afraid your query is not quite clear to us. What do you refer to as an "energized magnet"? Do you mean an eddy-magnet with an energizing winding? If so, it is, of course, necessary to pass a current through the winding in order to magnetize the core. However, if you will repeat your query and give fuller details, we shall be pleased to assist you.

Detector Merits

"I am building a receiver, but am rather uncertain regarding the type of detector to employ. I can choose between crystal, Westector, diode, anode-bend, grid leak, etc., but cannot decide which to adopt. Can you help me when I tell you that I require only a few stations with really high quality? I am going to use a paraphase amplifier after the detector."—T. G. (Balham).

The diode will no doubt prove most suitable for you, although an anode-bend rectifier will serve if only powerful stations are received. Personally we should prefer a modern double-diode triode, so that you may obtain the advantage of the triode portion of that valve with the good rectification properties of the diode.

Manufacturer's Name Wanted

"I should be glad if you could give me the address of the makers of the Brown screen-grid D.C. mains set. I have one to repair and should like to get the circuit."—F. J. S. (Belfast).

The receiver was made by S. G. Brown, Ltd., Victoria Road, Acton, London, W.3, but this firm no longer manufactures wireless receivers. However, they may be able to assist you concerning the circuit details of the receiver in question.

Wearete Products

"I am anxious to get into touch with the makers of a Wareite transformer which I have got, but I cannot find their name in the London 'phone directory. Could you please let me know their address?"—W. T. (Bloemfontein).

The makers of Wareite components are Messrs. Wright and Westecor, Ltd., 140, High Road, Tottenham, London, N.17. Their advertisements have appeared in our pages on many occasions.

A Droitwich Problem

"I have heard a lot about the new Droitwich station, but I cannot hear it on my set. I have tried several nights when they have supposed to be on, but have only been able to hear Daventry. Can you tell me exactly at what point I shall hear the station, or is it possible that I am not in the direct range?"—G. T. (Bourne-mouth).

Droitwich transmits on exactly the same wavelength as Daventry, and at present takes the place of the latter station during the period of transmission. Eventually it will take over completely the present Daventry transmissions. You should adjust your set to the Daventry setting, and you will probably notice that the only difference when Droitwich is transmitting is the increased signal strength. No adjustment of tuning should be necessary.

A Charging Point

"I am building a small charging point, but wish to insert some form of safety device to prevent damage due to the charging current falling below that of the cells on charge. I believe it is possible to fit a kind of automatic cut-out, and should be glad of details."—H. F. T. (Hull).

A small magnet with an armature arranged in the electrical circuit will prove suitable. The strength of the magnet, the weight of the armature, and other details will depend upon the particular charging scheme which you are adopting. A low-priced cut-out may be obtained from Messrs. Ward and Goldstone for 17s. 6d., suitable for 1, 2, 4, and 8 amps. Larger values are obtainable at proportional prices.

The coupon on Page 145 must be attached to every query.

LET YOUR TECHNICAL STAFF SOLVE YOUR PROBLEMS

The Queries Service is intended only for the solution of problems or difficulties arising from the construction of receivers described in our pages, from articles appearing in our pages, or on general wireless matters. We regret that we cannot, for obvious reasons—those of copyright and of time—publish diagrams of complete multi-valve receivers.

(1) Answer queries over the telephone.

(2) Recommend alterations or modifications of receivers described in our contents.

(3) Recommend alterations or modifications to commercial receivers.

(4) Answer queries over the telephone. Please note that all sketches and drawings which are sent to us should bear the name and address of the sender.

If a postal reply is desired, a stamped addressed envelope should be enclosed. Every query and drawing which is sent must bear the name and address of the sender. Send your queries to the Editor, PRACTICAL WIRELESS, Geo. Newnes, Ltd., 8-11, Southampton St., Strand, London, W.C.2.
PREMIER SUPPLY STORES

Offer the Following Manufacturers' and 4v. 3.5a., 4v. 2.3a., 4v. 1.2a. (all C.T.)

STUPENDOUS Purchase of Set Manufacturers' (b) 58. LUDGATE HILL, LONDON, E.C.4.

and 4v. 1-2a., C.T. L.T. and screened primary, 10/-, FACE TYPE and/or CAPITALS

PRECISION SELECTED 100-200v. or 200-500v. output

and 4v. 2.9a., 4v. 2.2a., 4v. 1.2a., 4v. 0.1a.

8/-; all complete with hardwiring coils; please state whether power or Pentode required; A CC-converted kit for above types, 10/-; Magnavox

-NEW- S1/12/6.

Send only 5/- P.M. Moving coil holders, 5-, 6-, or 7-pin, screened wiring end condensers, 0.0001 to 0.1 Bulgin 3 -amp.

Complete Kit for small amplifier including all components.

£3/6/6.

Send -only- 9/- P.M. Moving coil holders, 5-, 6-, or 7-pin, screened wiring end condensers, 0.0001 to 0.1 Bulgin 3 -amp.

Balance in 11

A LARGE Selection of Pedestal, table and radio-

1 nif., 1/-; 2 mf., 1/6.

DISTRIBUTION RATES. Any component, 50 pence, 25 ma., 1/6.

in 151/3.

INDUCTION Type (A.C. only) Electric

NEW 'Ames Sales Co

an iron core, B.C.C. (List, 12/6.)

Send extra 5/-

Send for 1934-35 lists.-Lumen Electric Coy.,

some of these parts is not always easy. We are very glad to be able to

ELECTROLYTIC. 60w. working, 5 mil., 6/6. 4 1/2 mil., 3/9.

2/9 ; 8+4+4, 4/9 ; 25v. 25 ma., 1/2.

and 220,000, 500v. output.

C.O.D. 152, 2,500 ohms, 17/6 ; D.C. 154,

12/6 ; 4+2 mf. 450v. working, 4/- ; 4 mf.,

Model D.C.2054, with.

suitable for 2,500 ohms.12/6 ; 4+2 mf. 450v. working, 4/- ; 4 mf.,

22/-.

$11.00, 250v. output, 15 mil., 50v., 4 mf.

1 ml., 6d., 2 mf. 1/-, 4 mf. 2/-,

C.O.D. Guaranteed. All goods are guaranteed for

150 ohms, 20v., 64 ma., 6/6.

4 mf. 2/-, 1 nif., 1/-.

(Continued on next page)

PREMIER SUPPLY STORES, 60, LUDGATE HILL, LONDON, E.C.4.

12/6.

1 ml., 6d., 2 mf. 1/-, 4 mf. 2/-,

Send for 1934-35 lists.-Lumen Electric Coy.,

please state whether power or Pentode required; A CC-converted kit for above types, 10/-; Magnavox

Send for 1934-35 lists.-Lumen Electric Coy.,

in 151/3.

INDUCTION Type (A.C. only) Electric

NEW 'Ames Sales Co

an iron core, B.C.C. (List, 12/6.)

Send extra 5/-

Send for 1934-35 lists.-Lumen Electric Coy.,

some of these parts is not always easy. We are very glad to be able to

ELECTROLYTIC. 60w. working, 5 mil., 6/6. 4 1/2 mil., 3/9.

2/9 ; 8+4+4, 4/9 ; 25v. 25 ma., 1/2.

and 220,000, 500v. output.

C.O.D. 152, 2,500 ohms, 17/6 ; D.C. 154,

12/6 ; 4+2 mf. 450v. working, 4/- ; 4 mf.,

Model D.C.2054, with.

suitable for 2,500 ohms.12/6 ; 4+2 mf. 450v. working, 4/- ; 4 mf.,

22/-.

$11.00, 250v. output, 15 mil., 50v., 4 mf.

1 ml., 6d., 2 mf. 1/-, 4 mf. 2/-,

C.O.D. Guaranteed. All goods are guaranteed for

150 ohms, 20v., 64 ma., 6/6.

4 mf. 2/-, 1 nif., 1/-.

(Continued on next page)

TOP QUALITY TRANSFORMERS, at prices

ELECTROLYTIC. 60w. working, 5 mil., 6/6. 4 1/2 mil., 3/9.

2/9 ; 8+4+4, 4/9 ; 25v. 25 ma., 1/2.

and 220,000, 500v. output.

C.O.D. 152, 2,500 ohms, 17/6 ; D.C. 154,

12/6 ; 4+2 mf. 450v. working, 4/- ; 4 mf.,

Model D.C.2054, with.

suitable for 2,500 ohms.12/6 ; 4+2 mf. 450v. working, 4/- ; 4 mf.,

22/-.

$11.00, 250v. output, 15 mil., 50v., 4 mf.

1 ml., 6d., 2 mf. 1/-, 4 mf. 2/-,

C.O.D. Guaranteed. All goods are guaranteed for

150 ohms, 20v., 64 ma., 6/6.

4 mf. 2/-, 1 nif., 1/-.

(Continued on next page)
150 volts at 15-50 ma.

When buying a Mains Unit, be sure you get the products of SPECIALISTS. Hayberd have accumulated in Mains Apparatus for over a decade, and have recently marketed a remarkable mains unit.

1. Voltage regulation practically constant at 150 volts throughout the whole range of current.
2. Suitable for any set and specially suitable for Class B Transformers.
3. Absolutely free from all hum and background.
4. GUARANTEED OUTPUT TRANSFORMERS.-Lissen 2-valve A.C. sets, 100/250 volts as above, £2/19/6.

5. Absolutely free from hum and background. These are some of the remarkable features of the Main Unit of the HAYBERD MODEL: 15/50—Output 150 volts at 15-50 ma.

H.T. 1 Variable 46/12.4 Volts, 250 ma. Employed With Mains Woring Rectification.

PRICE 8/-

Address:

F.C. HEAYBERD & Co., 10 FINSBURY STREET, LONDON E.C.2

One minute from Moorgate Stn.

WOBURN RADIO OFFER FOLLOWING MANUFACTURERS' SURPLUS:

200 volts, 10 ma. intermediate section, complete with knob, drive and escutcheon; 7/9 post free.

RADIO CLEARANCE Offers Philips Triple Gang Condensers, 2/0.0005 and 110 Kc. oscillator condenser complete with knob, drive and escutcheon; 7/9 post free.

RADIO CLEARANCE Offers Philips 110 Kc. oscillator condenser complete with knob, drive and escutcheon; 7/9 post free.

RADIO CLEARANCE Offers Philips Transformer, complete with terminals, 150 volts, 30 ma., secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers Philips Mains Transformers, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers Philips Electric Cables, stranded, in 1.5 lb. rolls, 10 lbs. £3-6-6, 20 lbs. £6-1-9.

RADIO CLEARANCE Offers Philips Mains Transformers, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers India's largest surplus of Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers India's largest surplus of Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers India's largest surplus of Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers India's largest surplus of Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers India's largest surplus of Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers India's largest surplus of Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers India's largest surplus of Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers India's largest surplus of Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers India's largest surplus of Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers India's largest surplus of Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers India's largest surplus of Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers India's largest surplus of Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers India's largest surplus of Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers India's largest surplus of Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers India's largest surplus of Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.

RADIO CLEARANCE Offers India's largest surplus of Philips Mains Transformers, complete with terminals, primary 200-250 volts, secondary 200-250 volts at 70 ma., 2-0-2 at 35 ma., £2-9-6. post free.
MONEY-BACK SATISFACTION GUARANTEE

All Goods supplied by OLYMPIA RADIO LIMITED carry the above guarantee.

DECONTROLLED MODELS

E 90 $ 5. 25 three-valve only. With Valves Ag and Speaker, Stand with Seed. Price, $ 5.50.
E 90A $ 5.50 same as above, but not built.
E 90B $ 5.10 same as above, but not built.

The prices listed below are for the above.

7/10 5/30 1 1/2 7/11 3/11

-111, 4/5, 2/7, 1/11, 4/11

11/11 7/11 6/6 D.C.
6/11 BLUE/-
5/11 6/6 BOXED.

10/6 SAMPLE BARGAIN COMPONENTS Parcel

Quick removal job. List price, 10 guineas. Our price, 12 guineas.

MICHAEL TWIN SUPEROX 4-valve A.C. Bandpass Receiver. Westminister Receiver. Twin Reel Section. Interference Switch, etc.

List price, 18 guineas. Our price, 15 guineas.

DICTIONARY OF WIRELESS TERMS

by Ralph Stranger

TWO AND SIXPENCE

-0. The author is a master.

1-0. In this book a valuable and fully explained synopsis of

2-0. Technical and Commercial College

3-0. All Valves and Batteries.

4-0. Our price.

5-0. Send your requirements - we will quote.

6-0. Full instructions.

7-0. Enclose 3d. stamps for surplus goods (Kits,

8-0. Our price, £6/15/0d.

9-0. Osborne, Ltd., 8-11, Southampton

10-0. Our price, 15 guineas.

11-0. We will quote.

12-0. Please mention this paper when

13-0. Our price, £915/0.

14-0. Technical & Commercial College

15-0. List price, 42/-.

16-0. Radio' Special Yearbook, 1934.

17-0. Our price.

18-0. Time, enlarged edition.

19-0. Write for

20-0. Our offer applies.

21-0. embarrassing.

22-0. Our price, 1/-

23-0. Send your requirements - we will quote.

24-0. Full instructions.

25-0. Please mention this paper when

26-0. Our offer applies.

27-0. Check the above.

28-0. Our offer applies.

29-0. Send your requirements - we will quote.

30-0. Full instructions.

31-0. Please mention this paper when

32-0. Our offer applies.

33-0. Send your requirements - we will quote.

34-0. Full instructions.

35-0. Please mention this paper when

36-0. Our offer applies.

37-0. Send your requirements - we will quote.

38-0. Full instructions.

39-0. Please mention this paper when

40-0. Our offer applies.

41-0. Send your requirements - we will quote.

42-0. Full instructions.

43-0. Please mention this paper when

44-0. Our offer applies.

45-0. Send your requirements - we will quote.

46-0. Full instructions.

47-0. Please mention this paper when

48-0. Our offer applies.

49-0. Send your requirements - we will quote.

50-0. Full instructions.

51-0. Please mention this paper when

52-0. Our offer applies.

53-0. Send your requirements - we will quote.

54-0. Full instructions.

55-0. Please mention this paper when

56-0. Our offer applies.

57-0. Send your requirements - we will quote.

58-0. Full instructions.

59-0. Please mention this paper when

60-0. Our offer applies.

61-0. Send your requirements - we will quote.

62-0. Full instructions.

63-0. Please mention this paper when

64-0. Our offer applies.

65-0. Send your requirements - we will quote.

66-0. Full instructions.

67-0. Please mention this paper when

68-0. Our offer applies.

69-0. Send your requirements - we will quote.

70-0. Full instructions.

71-0. Please mention this paper when

72-0. Our offer applies.

73-0. Send your requirements - we will quote.

74-0. Full instructions.

75-0. Please mention this paper when

76-0. Our offer applies.

77-0. Send your requirements - we will quote.

78-0. Full instructions.

79-0. Please mention this paper when

80-0. Our offer applies.

81-0. Send your requirements - we will quote.

82-0. Full instructions.

83-0. Please mention this paper when

84-0. Our offer applies.

85-0. Send your requirements - we will quote.

86-0. Full instructions.

87-0. Please mention this paper when

88-0. Our offer applies.

89-0. Send your requirements - we will quote.

90-0. Full instructions.

91-0. Please mention this paper when

92-0. Our offer applies.

93-0. Send your requirements - we will quote.

94-0. Full instructions.

95-0. Please mention this paper when

96-0. Our offer applies.

97-0. Send your requirements - we will quote.

98-0. Full instructions.

99-0. Please mention this paper when

100-0. Our offer applies.

101-0. Send your requirements - we will quote.

102-0. Full instructions.
S23 A low H.T. non-microphonic screen-grid valve for kit sets and portables employing one or more screen grid valves. Mutual conductance 1.1 ma/volt

Price 12/6

S24 A high slope, non-microphonic screen-grid for all single stage H.F. sets using screened coils. Mutual conductance 1.4 ma/volt

Price 12/6

VS24 A “variable mu” screen-grid to give full and distortionless control of volume with only a 9 volt bias battery. Mutual conductance 1.5 to 0.01 ma/volt

Price 12/6

These Valves can be supplied metallised or plain.

Osram 2VOLT BATTERY VALVES

Made in England

SOLD BY ALL RADIO DEALERS

WRITE for the OSRAM VALVE GUIDE
(1934 Edition) sent post free.