Mr. F. J. Camm's Latest Receiver—Important Announcement

Practical Wireless

AND AMATEUR TELEVISION
EDITED BY F. J. CAMM.

Published every Wednesday by GEORGE NEWNES LTD.
Vol. 4—No. 104.
September 15th, 1934.
Registered at the G.P.O. as a Newspaper.

STENTORIAN SPEAKERS

PLEASE send all your HIRE PURCHASE ORDERS to The PETO-SCOTT Co. Ltd, 77, City Road, LONDON, E.C.1.
EVERY worth-while radio development is incorporated in the Melody Maker. A modern Variable-Mu S.G. Circuit, new Super-Selective Iron-Cored coils and a Moving-coil Loud Speaker combine to give a performance, in respect of selectivity, range and tonal fidelity, comparable only with Receivers much more costly. And the Melody Maker—with all these advanced features is yours for the bare price of the parts.

SEND THIS COUPON FOR CONSTRUCTIONAL CHART

TWO MAGNIFICENT MODELS

BATTERY MODEL KIT 352
Complete Kit of Parts including 3 valves (Variable-mu S.G.—Triode Detector—Pentode Output). Latest type 8" P.M. Moving Coil Loudspeaker. Super-Selective Iron Cored Coils. Handsome walnut finish cabinet, 18" high, 14" wide, 9½" deep. £5.19.0

Hire Purchase Terms—14/- deposit and 12 monthly payments of 12/-.

ALL-ELECTRIC MODEL KIT 357

Hire Purchase Terms—20/- deposit and 12 monthly payments of 16½/-.

Prices do not apply in I.F.S.

Please send me full constructional chart of the new Cossor Melody Maker.

State which model required

Name
Address

Register 15/9/34 5497
VOLUME AND QUALITY

Practical Wireless

ROUND the WORLD of WIRELESS

The Rhythm Symphony Orchestra

Much interest was created by the recent broadcast of Harold Ramsay and his Rhythm Symphony Orchestra, and listeners have asked for particulars of the band. The orchestra consists of twenty-one musicians recruited from some of the finest orchestras in the world, including the London Symphony Orchestra and the Grenadier Guards Band. It is normally composed of three violins, 'cello, double bass, three trumpets, trombones, tuba, five saxophones, two pianos, a harp, and two drummers, but this combination gives little indication of the scope of the orchestra because most of the players "double" on several instruments. Listeners will have an opportunity to get better acquainted with the new orchestra, which will be heard in the programme each week this month.

Midland Mischief Makers

The Midland Mischief Makers, from Wolverhampton, are to revisit the Midland Regional studio on September 18th. Richard Spencer and Garnet Ball, Junior, will devise their programme, which includes numbers for "Joan," the girl "crooner."

Later the same evening (September 18th) Alan Walker and Reginald New will give a piano and organ recital from the Town Hall, Cheltenham, for Midland Regional listeners. The organ there was the gift of Mr. E. J. Burrow, the publisher, its design and construction having been advised on by Sir Herbert Brewer.

The New Bristol Station

The Lord Mayor of Bristol, Councillor F. C.Luke, J.P., will open the new B.B.C. studio for Bristol on September 18th (London Regional and West Regional programmes). After the opening ceremony a concert will be given by the Bristol Symphony Orchestra, conducted by Hubert Hunt and Reginald Redman, with Eva Turner (soprano) and William Parsons (baritone) as soloists. The singers are both closely associated with the city. Eva Turner spent her childhood in Bristol and William Parsons is a Bristolian. The programme will include two works by Bristol composers, the Lyric Overture, "From the West Country," by P. Napier, and a Ballad Overture by Frank Merrick. This overture is an entirely new work, and this will be its first performance. The orchestra will also play Vaughan Williams' "Folk Songs from Somerset" and Edward German's "Rhapsody on March Themes." The large orchestral studio designed by John Proctor has been built in what used to be the garden of the B.B.C.'s new premises in Whiteladies Road.

The Youth Hostels

JOHN CADBURY, a member of the National Council of the Youth Hostel Association and Honorary Treasurer of the Youth Hostels Association and Honorary Treasurer of the

A New Cinema Organ

A new cinema organ, played by a new organist, will be heard by North Regional listeners for the first time on September 18th. The organ is that of the Pyramidal Cinema, at Sale, one of the outlying districts of Manchester, the organist, Reginald Liversidge, a Yorkshireman from Huddersfield. A church organist as a child, Liversidge claims, moreover, to have been the youngest man ever to play a cinema organ in the West End of London; he gained this distinction at the age of seventeen and a half, when temporarily employed at the Astoria, Charing Cross Road.

For Scottish Listeners

A programme of more than passing interest has been arranged for Scottish Regional listeners on September 18th, under the title of "We've Winter the Night." This takes the form of a meal and ale celebration, marking the end of the harvest and the forking of the last sheaf on to the back, and, although this is a custom not now observed in many parts of the country, there will be many listeners to whom this broadcast will bring back memories of this and other similar celebrations which used to be a happy feature of life in the country.

Welsh River Series

The next number in the Welsh River series will be given for Welsh listeners on September 18th, when the River Rhymney will be celebrated. Among the composers associated with the river are Gwilym Gwen and Tom Price. The artists in the programme will be Elinor Foster (soprano), Edgar Phillips, who will give a reading, and the Glan-yr-Afon Glee Party, conducted by T. Emlyn Owen.

Picture People

The Third Edition of "Picture People" will be broadcast from London Regional on September 30th, when another composite variety programme taken from the sound track of recent film successes and films in the making is to be broadcast. Clayton Hutton is responsible for these feature programmes.
A West Regional Revival

W EST Regional listeners who remember the dramatic reconstruction of the trial of Samuel Gooder and Matthew Mahony, which was given in the West Regional programmes in May, 1933, will be interested to know that the play based on this famous West Country trial will be revived on September 17th. Although the usual legal procedure will be followed as far as dramatic considerations allow, the reconstruction of this famous trial has been prompted by dramatic, rather than legal considerations. All the artists in the cast will be from Bristol, and the play will be produced by Cyril Wood, who has written it for broadcasting.

Another Flitch Trial

BOURNE, Lincolnshire, has arranged a Flitch Trial on the same lines as the famous Darvel Burgh trial on September 21st, and this will be relayed by midland Regional from the local Corin Exchange, with Stainless Stephen as the Judge and Peterborough lawyers as counsel. There will be three pairs of claimants, and the usual jury of spinster and bachelors. This is the first outside broadcast from Bourne, which is the birthplace of Hereward the Wake, Lord Burghley (the Elizabethan statesman), Edward Dugby (of Gunpowder Plot fame), and the late Mr. Charles Frederick Worth, the famous dress designer. The curfew is still rung nightly from Bourne Abbey Church.

A Dr. Johnson Anniversary

THE 225th anniversary of the birth of Dr. Samuel Johnson at Lichfield will be celebrated by a relay in the Midland Regional from the house where he was born. It will be the first time this famous literary shrine has been wired for the microphone. A picture of Johnson and Boswell and their times will be followed by a sketch embodying authentic considerations.

Welsh Music

A CONCERT of contemporary Welsh music will be given for West Regional listeners on September 20th, when the artists will be Ivor John (tenor) and the Devonshire Trio. This trio has been closely associated with the educational work of Sir Walford Davies for many years and is well known throughout the Principality, recitals have also been given in London and most of the big towns in England and Ireland. During August they were in casual tour in the Royal Festival at H.M.V. factories and pressed a record of the King and Queen's visit. He will tell listeners how he, "A Novice, goes a-tunnying." Although tunny fishing in English waters is a comparatively new sport, it is already exceptionally popular. It is of particular interest in the North Region inasmuch as the two great centres of the sport are Whitby (where the record tuna, 881 lbs., was landed last year) and Scarborough (where a 756 lb. fish was caught only a week or two ago).

Sir Dan Godfrey's Farewell

THE farewell concert to Sir Dan Godfrey to be given by the Bournemouth Municipal Orchestra and the Bournemouth Military Band, conducted by Sir Dan himself, with Miss Rossborough as the soprano soloist, will be broadcast on the National wavelength on September 20th. At the conclusion of the concert Sir Hugh Allen, on behalf of British composers, will thank Sir Dan Godfrey, who will reply and introduce his successor, Mr. Richard Austin. This little ceremony will be followed by a broadcast by the Studio Orchestra, directed by Frank Cantell, of a number of items by the old midland regional composers, including "Old British Ballads," "The Poacher," "The Derby Ram," and "God Save the King." The relay will be from the Pavilion, Bournemouth.

The Darvel Burgh Band

MATTHEW DICKIE (tenor), who takes part in a Scottish Regional programme with the Darvel Burgh Band on September 17th, began his singing career with a juvenile troupe. After the war he took up singing in earnest and went to Milan, where he studied under Maestro Varzo, Cerrado, and Pettinella, and also at the Conservatoire. The Darvel Burgh Band, which is well known as a successor to the three-voice learning engineering. He left engineering, however, to join the Carl Rosa Opera Company.

SOME MIDS

PROBLEM No. 104.

Martin constructed a three-valve receiver, and in an attempt to obtain good quality with a rather cheap transformer, he decided to use the parallel-plate method of connection. He therefore purchased a resistance and a fixed condenser and joined them in the correct manner. When tested, however, he found that the receiver gave undue prominence to the bass notes, although he had the speaker tested and found that this had no connexion of this type. What had caused the trouble? Three books will be awarded for the first three correct solutions. Envelopes must be marked "Problem No. 104," and must be posted to reach the Editor, at the casting House, London, W.C.2, before November 8th, 1934. The winners from recent festivals in Northern Ireland. Those taking part in the concert have been chosen from prize winners at Ballymena, Carrickfergus, Coleraine, Dunleven, Larne, Newry, and Portadown.

A Midland Band Programme

ON September 17th a Midland Regional studio concert by the Band of the 2nd King's Own Royal Regiment will be conducted by Bandmaster A.T.S. Chandler, with John Lang, of Leicester, who has appeared in many radio plays, giving humorous readings, and Patricia Rossborough rendering synopizzato numbers. Miss Rossborough was a "straight" pianist before turning to "jazz." At nine she played Beethoven's Sonatas Pathétique from memory. She has toured in South Africa, appeared in two films, and claims to have been the first solo artist to play from Broadcasting House, London.

Some Old Midland Songs

M ANY old Midland songs are associated with the Midlands, and three of the most famous are The Lincolnsire Posie, "Shropshire Lad," and "The Shropshire Lad," all traditional airs—will be heard in a programme to be given by the Midland Wireless Singers, conducted by Edgar Morgan, on September 16th. The Midland Orchestra, directed by Frank Cantell, will play eight country dances.

For Belfast Listeners

A PROGRAMME with strong local interest will be relayed by Belfast listeners on September 15th, when a concert will be given by a selection of first prize winners from recent festivals in Northern Ireland. Those taking part in the concert have been chosen from prize winners at Ballymena, Carrickfergus, Coleraine, Dunleman, Larne, Newry, and Portadown.

For Anglers

A S a harbour official of a Yorkshire seaside resort, Major V. Stenton Gray recently contributed a talk to the "Holiday Haunt" series, and, returning to the North Regional microphone on September 22nd, he will tell listeners how he, "A Novice, goes a-tunnying." Although tunny fishing in English waters is a comparatively new sport, it is already exceptionally popular. It is of particular interest in the North Region inasmuch as the two great centres of the sport are Whitby (where the record tuna, 881 lbs., was landed last year) and Scarborough (where a 756 lb. fish was caught only a week or two ago).
The Importance of Tone Correction in Conjunction with Volume Control, and the Relation of Sound Intensity and Frequency Response.

By W. J. Delaney

PROBABLY every listener has noticed that as the volume control on a receiver is operated, the balance of the tone from the loud-speaker also varies in some manner and does not maintain the same quality throughout the complete range of volume control. It will no doubt also have been noticed that when approaching a band in the open air, certain instruments may be heard long before others, and in our own homes it often becomes noticeable that the drums in a dance band may be heard from a neighbour's receiver, although no other instruments or music may appear to accompany them. The question of this balance of tone and volume is a very complex one, and is much too intricate to be gone into here. Suffice it to say that it is due not only to our sense of hearing and the "response curve" of our musical sense, but it is found to be due to the frequency response of the receiver, and at first sight it might appear that some difficulty would be experienced in ascertaining the degree of correction which is required. Fortunately, it is found to be due also to the frequency response of the receiver, the loud-speaker, and the acoustics of the room in which the reproduction takes place. Furthermore, the balance of the musical instruments and their position before the microphone, in conjunction with the characteristics of the microphone and its associated circuits, will also affect the output from our loud-speaker when the volume is varied over the range from silence to maximum.

Tone Control Essential

From the preceding remarks it becomes apparent that in order to maintain a balanced reproduction through the complete movement of the volume control, it is also necessary to vary the frequency response of the receiver, and at first sight it might appear that some difficulty would be experienced in ascertaining the degree of correction which is required. Fortunately, our ear is very accommodating, and certain well-known principles may be incorporated in order to deceive the ear, and thus give an effect of complete correction where, in fact, such correction is far from complete. It is the volume control of your receiver that is adjusted whilst you stand well away from the speaker, you will find that in your particular case either the top or the bass, or both are cut, the middle frequencies remaining apparently unaltered, although the reduction in volume is apparent. That is to say, as the degree of volume of the middle frequencies gradually decreases, the bass notes or the top notes fall away much quicker, with the result that before the tune is inaudible certain instruments will appear to have ceased playing. The actual degree of cut-off will vary with different receivers and different speakers, but it will certainly be found that the cut-off is clearly defined at one end of the scale or the other. In an extreme case, of course, both high notes and bass notes will be lost, but this is not usual, and points to rather sad matching between receiver and speaker.

High-note Gain

Dealing first with high-note gain, this may be said to be the most important, as the majority of receivers suffer from a weak high-note response due to the use of reaction. H.F. by-pass condensers, and other losses. Sharply-tuned circuits also present a source of high-note loss, and therefore it is as well, where quality is desired, to replace the higher frequencies by artificial means, irrespective of volume control. This will permit of a more natural reproduction which will probably be maintained throughout the full movement of the volume control, although further compensation may be added as stated in a later paragraph.

When a condenser is connected across an inductance, a resonant circuit is formed, and it should not be difficult, therefore, to design a circuit, having a resonance in the region of 3,000 cycles or so, to give added amplification to frequencies about this figure, and so produce the desired effect. Such a resonant circuit must be included in the low-frequency side of the receiver, and its effect will be dependent upon the

Further discussion about various methods of compensation, such as L.F. couplings as well as upon the valve with which it is associated. Where a quality receiver, employing resistance-capacitance coupling, is in use, the necessary inductance may be connected in series with the anode resistance, a small parallel condenser completing the tone-control circuit. Fig. 1 illustrates the arrangement, and the choke should have some value between .3 henries and 1 henry. Some experiment may be necessary to find the most suitable value for the particular combination in use.

When transformer-coupling is employed a somewhat different arrangement is called for. The resonant circuit should still be connected in the anode circuit, but the presence of the transformer primary will modify the response, and it becomes necessary to select the value of the resistance with great care. As a guide to the values which might be found desirable L may be selected from the values previously stated, namely .3 to 1 henry; C may be some value between .01 and .0005 mfd., whilst R may be between 500 and 5,000 ohms. As already stated, experiment is essential in order to find the balance required by the particular response of the receiver and associated reproducer. (Fig. 3.)

Combined Control Effects

A more ambitious arrangement is to be found in the fitting of a circuit which varies as the volume control is adjusted, and although it is possible to gang two or more components to produce the desired effect, there is a much simpler solution.

Dealing again with resistance-capacitance coupling, the volume control generally takes the form of a variable grid-leak,
joined in the first L.F. stage. By connecting the resonant circuit already referred to in the grid lead (as shown in Fig. 4), the variation of the tapping point on the grid leak will at the same time modify the total effect of the control and thus, as the volume is reduced, the low notes will this time be strengthened, and therefore the effect is exactly opposite to the previously described arrangement. Obviously, the two circuits could be combined in one receiver where the results justified such a combination.

In Fig. 5 is seen an arrangement which forms both a high- and a low-note strengthener, and this is a most effective device and is, in fact, incorporated in a well-known commercial receiver. With this arrangement the reduction of signal strength by the volume control R_1 is more rapid on the middle frequencies than on the high and low frequencies and thus preserves an admirable balance. The values chosen for the various parts are as follow:

- R_1: 500,000 ohm potentiometer.
- R_2: 50,000 ohm resistance in series with potentiometer.
- R_3: 5,000 ohm resistance.
- L: 3 henries.
- C_1: 0.05 mfd.
- C_2: 0.01 mfd.

If a suitable volume-control potentiometer may be obtained, the combination of R_2 and R_3 may be automatically obtained by making a tapping on the resistance winding in this case a 0.5 megohm potentiometer should be obtained and the tapping point should be made at a point about one-sixth to one-tenth of the distance from the minimum volume end.

I have not dealt with circuits designed to modify the loud-speaker response, as these are more intricate and in general will require some modification of the speaker transformer to be made, but the combination of two loud-speakers, one of which is designed especially for high-note response, and which is fed by means of a tuned circuit which passes on to it all frequencies above a certain figure, may be included in the general schemes here outlined.

Filters

It is obvious that when one of the devices which increases the strength of the high notes is fitted to a receiver of the super-heterodyne type, there will be a tendency for an over-accentuation of whistles which might be introduced by the circuit. Similarly where two broadcasting stations are working on a very near-by wavelength there will be possibility of heterodyne whistles or side-band splash being over emphasized. It will obviously, therefore, be unsuitable to fit a high note strengthener where it has already been found that these difficulties exist. It is not a difficult matter to construct a circuit which acts in an opposite manner from those given in this article, that is to say, which reduces the strength of certain frequencies or bands of frequencies. By suitable choice of chokes and condensers, a circuit may be constructed to have a definite cut-off at a certain point in order to remove the above defects, but obviously it will not be possible to obtain high quality reproduction while these filters are in use. Similarly, any resonances which occur in the speaker or cabinet may be modified in the same way, but it should be the aim of the constructor to choose a circuit, speaker, and components which give as near a straight line response as possible, when the addition of the compensating circuits given in the early part of this article will enable a very high standard of reproduction to be obtained under all circumstances from a number of broadcasting stations. The reproduction of gramophone records may require treatment on a different line owing to the restricted frequencies dealt with on the disc.
Piezo-Electric Loud-Speakers

An Explanation of the Function of the Latest Type of Loud-speaker

About 1890 F. and P. Curie discovered that certain crystals exhibited a remarkable electrical property which they called the piezo-electric effect (from the Greek Piezo, to press). This property was evidenced most strongly by Rochelle salt (sodium potassium tartrate, NaKCl3H4O6, 4H2O), but was also found in quartz, cane sugar, tourmaline and zinc silicate.

The Piezo-electric Effect

The Curies found that when a crystal of Rochelle salt was placed between two metal plates and mechanical pressure was applied, an electrical charge was produced on the plates.

In Fig. 1 a force acting in the direction of the arrows will produce a charge on the plates, and if this force is reversed so that the metal plates (which would be cemented to the crystal) exert a pulling instead of a pressing force, then the electrical charge induced will be reversed as well. Thus we have an instance of the conversion of mechanical energy into electrical energy. It is quite reasonable to expect that by reversing the conditions the opposite effect would be produced. This is found to be true.

If a potential difference is established between the plates the crystal will shorten in one direction and lengthen in the other. This property which is made use of in the piezo-electric loud-speaker.

In Fig. 2 examples are shown of natural Rochelle salt and quartz crystals capable of exhibiting these effects. For practical purposes the whole of the crystal is not used, but a slice is cut from the middle as shown. Quartz has an advantage over Rochelle salt in that it is not appreciably affected by atmospheric conditions, and is almost indestructible. It is, therefore, most suitable for such radio uses as crystal resonators and crystal control transmitters where great constancy is required. For loud-speaker work, however, Rochelle salt is employed owing to its superior response. The difficulty regarding the effects of atmospheric conditions, particularly moisture, is overcome by completely sealing the crystal plates with a coating of waterproof varnish. Other problems, such as the production of crystals of suitable size and the cutting out and machining of the slabs which are produced from them, have at last been successfully overcome, otherwise the idea of the piezo-electric reproducer is by no means new. Its development was held up merely due to the practical difficulties encountered in the production of the crystal slabs.

Crystal Plates

To illustrate how one of these elements can be used to operate the cone of the speaker refer to Fig. 3. The slab when cut from the crystal in the manner already shown and submitted to a potential difference through two metal electrodes will expand diagonally in one direction and contract in the other. This is indicated by the arrows on the left in Fig. 3. Now, if the corner A of the slab be fixed as depicted in the right-hand sketch and the opposite corner B be connected to the cone of the speaker an electric charge on the foil electrode will cause AB to lengthen or contract according to the polarity of the charge.

Likewise any variation in the magnitude of the charge on the electrodes will cause an instant variation in the degree of distortion of the slab. It is clear, therefore, that if the loud-speaker wires from the receiver are connected to the electrode every variation of the potential of the charge which is produced on the metal foil due to the fluctuations in the speech frequencies will be translated into movements of the crystal slab, and therefore of the cone, thus setting up sound waves in the air.

The degree of movement of the cone when connected to the Rochelle salt element is, of course, limited by the size of the unit and consequently the volume of sound produced for a given input is poor. In practice, therefore, the element is made up differently from the arrangement shown in Fig. 3. The actual arrangement is rather ingenious.

Instead of one slab, two are used, and these are cemented together with one foil electrode between them and one on the outside of each. (See Fig. 4.) The centre electrode is connected to one input wire and the two outside electrodes are joined together and connected to the other wires. Thus, when the dividing electrode is positive the outside ones are both negative, and vice versa, so that the charges applied to the two slabs are opposite. This causes one slab to expand in the direction AB and to contract in the direction CD while the other one does the opposite. The resulting strain causes the whole unit to vibrate in the manner indicated by the dotted lines and the arrow.

In order to operate the cone of the speaker the three corners ACB and that on the right Rochelle salt. The dotted lines indicate the part from which the active element is cut.

Fig. 1.—Diagram illustrating the piezo-electric effect. If the crystal were cut between two metal plates an electric charge is produced.

Pressing force, then the electrical charge induced will be reversed as well. Thus we have an instance of the conversion of mechanical energy into electrical energy. It is quite reasonable to expect that by reversing the conditions the opposite effect would be produced. This is found to be true.

If a potential difference is established between the plates the crystal will shorten in one direction and lengthen in the other. This property which is made use of in the piezo-electric loud-speaker.

In Fig. 2 examples are shown of natural Rochelle salt and quartz crystals capable of exhibiting these effects. For practical purposes the whole of the crystal is not used, but a slice is cut from the middle as shown. Quartz has an advantage over Rochelle salt in that it is not appreciably affected by atmospheric conditions, and is almost indestructible. It is, therefore, most suitable for such radio uses as crystal resonators and crystal control transmitters where great constancy is required. For loud-speaker work, however, Rochelle salt is employed owing to its superior response. The difficulty regarding the effects of atmospheric conditions, particularly moisture, is overcome by completely sealing the crystal plates with a coating of waterproof varnish. Other problems, such as the production of crystals of suitable size and the cutting out and machining of the slabs which are produced from them, have at last been successfully overcome, otherwise the idea of the piezo-electric reproducer is by no means new. Its development was held up merely due to the practical difficulties encountered in the production of the crystal slabs.

Crystal Plates

To illustrate how one of these elements can be used to operate the cone of the speaker refer to Fig. 3. The slab when cut from the crystal in the manner already shown and submitted to a potential difference through two metal electrodes will expand diagonally in one direction and contract in the other. This is indicated by the arrows on the left in Fig. 3. Now, if the corner A of the slab be fixed as depicted in the right-hand sketch and the opposite corner B be connected to the cone of the speaker an electric charge on the foil electrode will cause AB to lengthen or contract according to the polarity of the charge.

Likewise any variation in the magnitude of the charge on the electrodes will cause an instant variation in the degree of distortion of the slab. It is clear, therefore, that if the loud-speaker wires from the receiver are connected to the electrode every variation of the potential of the charge which is produced on the metal foil due to the fluctuations in the speech frequencies will be translated into movements of the crystal slab, and therefore of the cone, thus setting up sound waves in the air.

The degree of movement of the cone when connected to the Rochelle salt element is, of course, limited by the size of the unit and consequently the volume of sound produced for a given input is poor. In practice, therefore, the element is made up differently from the arrangement shown in Fig. 3. The actual arrangement is rather ingenious.

Instead of one slab, two are used, and these are cemented together with one foil electrode between them and one on the outside of each. (See Fig. 4.) The centre electrode is connected to one input wire and the two outside electrodes are joined together and connected to the other wires. Thus, when the dividing electrode is positive the outside ones are both negative, and vice versa, so that the charges applied to the two slabs are opposite. This causes one slab to expand in the direction AB and to contract in the direction CD while the other one does the opposite. The resulting strain causes the whole unit to vibrate in the manner indicated by the dotted lines and the arrow.

In order to operate the cone of the speaker the three corners ACB and that on the right Rochelle salt. The dotted lines indicate the part from which the active element is cut.
PIEZO ELECTRIC LOUD-SPEAKERS

(Continued from previous page)

employed to advantage. Used in conjunction with a moving-coil instrument of this latter type, a good response is obtained from the combined units over a wide range of frequencies. In this way far better and more realistic reproduction is obtained than would be possible with

How It Works

It should be noted that the wire is wound from the former held between B and C on to the former held between O and P. When the guider F has travelled across, and therefore one layer has been wound, the screw or clutch M can be screwed against the other pulley so as to lock it and the winding can then be continued in a reverse direction after putting paper on the first layer. It should also be noted that one of the belts attached to the pulley K has a twist in it as shown in Fig. 3. This twist is essential for it gives the reverse direction winding. The belts used could conveniently be of either rubber bands or black tape.

All the details which have been given are those which have been taken from the original model, but it should not be difficult to adapt any existing ideas and apparatus to this novel winding machine. For instance, in place of the cones B, C, O, and P, a special cylindrical former could be used, somewhat after the fashion of the old gramophone. Where large diameter coils have to be wound, the cones will, of course, have to be constructed on different lines, and some form of adjustable arm could be designed for this purpose.

Wire Tension

The tension which is placed on the wire should be governed principally by the actual constructional work, and if it is all carried out in an efficient manner there should be just sufficient tension to enable each turn to lie snugly against the preceding turn. If desired, a special tensioning device could be constructed and fitted in the space between rod H and Q, and a simple friction arrangement could be used—provided it was not sufficiently tight to remove insulation—either enamel, cotton, or silk. For this reason also, the small slot in the member F might be lined with a piece of felt in order to prevent damage. An improvement on the drives might also be effected by using some of the apparatus from one of the popular constructional toys where will be found gear wheels, sprocket wheels, and chains for driving.

A UNIVERSAL COIL WINDER

U and V are two springs fitted over the spindle to give the required tension on the wire.

Details of the coil winding machine.
Earth to a Water Tap

The following idea may prove of use to other readers for a good earth connection to a water tap. After turning off the water, unscrew the top part of the tap. Now from a piece of thin brass, cut out a washer to fit over the thread of the tap as per sketch. Firmly solder your earth wire to washer by means of the holes drilled in the tap and rescrew the tap. This is, I think, much better than a dip.—F. L. Brown (Birmingham).

A Tone-control Circuit

Here is a tone-control system which I have found to be rather more satisfactory than the conventional condenser and resistance in series across the output terminals of the receiver. Incidentally, the introduction of the resistance across the secondary of the transformer seems to considerably flatten out the frequency-response curve of same; as described in Mr. F. J. Camm's Every-man's " Wireless Book." As these resistances have been of the carbon resistor type, filing away some of the carbon has been found the most effective way of increasing the resistance. For thus, by cutting down the cross section of a carbon resistor the resistance is increased proportionately. The correct value can soon be arrived at by repeated filing and testing of the resistance in series with the meter, and a known voltage across the ends. If a little care is taken in filing, very accurate resistances can be thus obtained. —George C. and H. T. W. Addison (Douglas).

Increasing Carbon Resistor Values

It has been found necessary, on numerous occasions, to increase the values of resistances when using them for converting the range of milliammeters, etc., as described in Mr. F. J. Camm's Every-man's " Wireless Book." As these resistances have been of the carbon resistor type, filing away some of the carbon has been found the most effective way of increasing the resistance. For thus, by cutting down the cross section of a carbon resistor the resistance is increased proportionately. The correct value can soon be arrived at by repeated filing and testing of the resistance in series with the meter, and a known voltage across the ends. If a little care is taken in filing, very accurate resistances can be thus obtained. —George C. and H. T. W. Addison (Douglas).

An H.F. Choke

A neat and efficient H.F. choke may be made from an empty cotton reel. Jam the reel by means of paper on a 3/16 in or 5/16 in. drill and fix in chuck of a brace clamped in the vice. While turning with the right hand hold a small saw blade in the left against the rotating reel. Cut six or seven equidistant slots, about 1/4 in. deep, then with a chisel make one longitudinal cut. Slot by slot wind full of thin insulated wire (I use an old transformer winding), and mount on an ebonite base as shown. A black thread reel, being slightly larger, is the best to use.—C. Payne (Goodmayes).

A Neat Tuning Dial

Here is an easy way to convert a "degree" reading condenser into a more modern and easily readable one. Obtain a piece of plywood or a piece of black-glazed ebonite 3/16 in. thick, not less than 5 in. x 5 in. Cut out the sector (No. 1), as shown in sketch in thick lines, and another disc (No. 2) of the same shape in black-glazed ebonite 3/16 in. thick, not less than 5 in. x 5 in. Cut out the sector (No. 1), as shown in sketch in thick lines, and another disc (No. 2) of the same shape except at the bottom along the dotted line. The reason is obvious, as the pointer has to traverse the whole scale. The pointer is cut from brass or copper to the shape shown (2 1/4 in. is long enough) allowing 1/2 in. x 1/2 in. at the bottom for wrapping round a 3/16-in. rod or nail, so that the pointer may be slipped over the "fast motion" spindle, 1/2 in. diameter. A "fixed" speed condenser may, of course, be converted the same way.

100,000 ohms. Place a piece of white drawing paper, marking off as shown in sketch, on the panel face, and over it place No. 2 disc, and calibrate the dial. When satisfied, glue a piece of cellulose over No. 2, place No. 1 disc over this, and screw up, after centralizing the whole indicator, dial (Continued overleaf)
and discs, so that the stations are in their correct positions.

N.B.—The only difference between the two discs is along the inside bottom dotted line.

The grain in plywood should run in the direction of the arrow.—R. M. Ross (Aneress).

Improving the Accumulator

THE following idea will keep a constant supply of grease round the accumulator terminals and stop corrosion of acid. Drill the terminal down the centre with a fine drill, and again drill into this one from the side in the thread. You now require a small brass lubricator with screw-down cap to fit in the top of the terminal.—F. C. Braze (Grantham).

A Handy Soldering Iron Stand

I HAVE found that my electric soldering iron heats more rapidly in this stand and it is more convenient to use without the troublesome cord.

The method which I have adopted is to firmly fasten opposite each other in the handle and in a small plug. The leads to the prongs are near the handle, and passed through the holes. The old cord-hole in the handle is now plugged forcibly with a wooden dowel. Then the cap of the plug is fastened to this with a wood screw and the heating element leads passed through the holes and connected to the prongs which are then screwed back on the cap. The lead previously cut off is connected to a socket on the bench.—Cyril Hall (Wigan).

A Photovoltaic Cell

THE materials required are: a lead strip 6 in. by 1 in., a copper plate 6 in. by 1 in., 1 lb. lead nitrate, and a jam jar. The copper strips are cut with a 2 in. lug connection. There is thus 4 in. for immersion in the electrolyte. It is then treated as follows: One side of the plate is burnished with emery cloth and then held in a hot gas or Bunsen flame until the surface of the copper becomes black, due to the formation of cupric oxide. The plate is allowed to cool, and MAINS the coating of CuO is dissolved off with cuprous oxide on the plate.

The back of the plate is now painted with tar or pitch, and both the lead and copper strips are inserted in the jar through a disc of wood cut to fit the jar tightly. The prepared copper surfaces should be facing the lead strip and be about 4 in. away from the lead and curved towards it. Terminals are now fitted to the top of each electrode, and electrolyte is next poured into the jar, consisting of 1 oz. of lead nitrate crystals to each gill of water. The whole top of the cell is covered with hot pitch to make the cell airtight and leakproof. The cell is really a photo-voltaic cell, and is polarized, the copper plate being positive and the lead plate negative. With a 60 watt lamp 5 ft. from the cell, 1 milliamp, current flows, and at 6 in. 4 milliamps, flow.

A Storm-proof Aerial

WHEN an aerial is erected high in an unprotected position it is necessary to take great care to avoid breakage due to strong winds, the weight of snow, etc. Therefore, I have found that by fixing it at one end only, and arranging a counter-weight at the other end, the whole erection becomes much safer, and one does not have to be continually fixing the wire. The method which I have adopted is to firmly fasten a simple reel insulator to the lower mast or tree, and pass the end of the aerial wire over this (in the form of a pulley), and attach a fair weight to the end of the wire. The actual weight must be found by experiment, and must be obviously just sufficient to enable the aerial to sway without this movement being too great, and thus give signal variations on weak stations. A spring-loaded insulator could be fitted at the upper end if it was felt desirable, and if the situation was sufficiently open to warrant it.

A Novel Microphone

ANY reader who already possesses a gramophone pick-up can easily convert it, temporarily, into a simple but efficient microphone.

Take an ordinary gramophone sound-box. Insert a long (soft-tone) needle. Then take the pick-up and insert it into the protruding portion of the needle. Screw up tightly, and the microphone is then ready for use. Simply connect the pick-up to the P.U. terminals on the set and speak fairly closely into the gramophone sound-box. The pick-up can easily be dismantled for use in the ordinary way.—W. V. Franks (Brighton).

Fitting a condition indicator to an accumulator.

Panel Connectors

A PAIR of snap-fasteners from an old pair of gloves will come in handy for connecting purposes. Into the snap portion solder small sections of 6/32 in. bolts, and secure the other part to the handle. For the connectors, wind some wire round the groove in the button, binding the wire as tightly as possible for a good connection. When you want a connection, simply press the button into the snap.

No doubt many other useful adaptations of the snap fasteners will be found by the experimenter, and it is interesting to note that a similar device may also be obtained in a very much larger size, designed primarily for the purpose of attaching carpets or rugs to a polished floor.
Your troubles are revealed to him in the Crystal...

Whatever lies behind预制·
guarded it is unlikely to think
that one person can tell another
all about his troubles, with the
use of a crystal globe.

Your Radio troubles are revealed to you
in the Pifco A.C. and D.C.
RADIOMETER

Magical, too, seems the
performance of the Pifco
"All-in-One" Radiometer, which makes any
radio test quickly—high
tension, low tension, A.C.
or D.C.

Clearly finished in a solidly
constructed bakelite case,
this new Pifco product,
made, adjusted and tested
by highly skilled British
instrument makers would
be cheap at
five times its
price of...

AVOID and REFUSE SUBSTITUTES
Ask your dealer to show you one now or write
for further details to PIKCO LTD., SHODEHILL,
MANCHESTER, and 150, Charing Cross Road,

BRITISH MADE
RADIO VALVES

SPECIAL CLEARANCE
OF
5,000 British Made Battery
Radio Valves. Send P.O.
immediately. Any valve re-
placed free of charge if
unsatisfactory.

SCREEN-CR ID
DETECTOR
POWER
PENTODE

2/9
EACH

POST FREE

Made by one of Britain's
leading Manufacturers.

RADIO & ELECTRICAL WHOLESALE
SUPPLY—(Dept G.N.)
6, CONDUIT ST., REGENT ST., LONDON, W.1.

Mr. F. J. CAMM
ensures splendid
results with his
All-Pentode ‘3’
using the famous
COVERN
FERROCAR T
COILS

The finest tuning coils of all

The confidence of experts, the enthusiasm of amateur con-
structors, have combined to make Colvern Coils the most popu-
lar tuning units obtainable. Their efficiency and precision
are unparalleled. Their simplicity and compactness are
readily appreciated by the Constructor, and, incorporating
Ferrocart, the world's finest core, this perfectly matched
unit ensures the best results it is possible to obtain. Be sure
that you get the same satisfaction from your All-Pentode as
did Mr. Camm himself by employing Colvern Ferrocart Coils.
Type G 1, 2 and 3 with 3 point switch 39/-

Send to-day for latest Colvern booklet, No. 13, to Colvern, Ltd.,
Romford, Essex.
PRACTICAL WIRELESS
September 15th, 1934

J.B. BABY GANG
J.B. ARCUATE DRIVE
SPECIFIED FOR THE P.W.
ALL-PENTODE THREE

3-GANG BABY GANG 15/–
Very compact design made possible by extremely accurate jig assembly. Per-
manency assured by rigidity of con-
struction and perfect bearings. Com-
plete screening is a notable feature.

ARCUATE DRIVE — 5/9 & 6/6
Two colour scale calibrated in Wave Lengths for use with stand-
ard inductances. Pilot Lamp Holder arranged to
move with hair line indicator with maximum illumination
just where required. Plain type (ratio 8-1) Price 5/9
DUAL RATIO MODEL, giving ratios 8-1 and
150-1 for Short Wave work. Supplied with 0-180 degrees. Price 6/6

NEW AND BETTER

NEW EP 36 Power Transformer, Semi-
shrouded for popular circuits — 22/6
NEW EP 37 ditto, for Westinghouse
Rectifiers — 25/6
NEW EP 38 ditto, for Valve Rectifiers
— 50/–
NEW DP 45 Improved Power Puncher
— 15/6
NEW AVC unit BP 28—Improved type
— 15/6
NEW Three NEW NICORE oscillator
coops, BP 45, 46 and 47 — 10/6
NEW Wonderful new range of NICORE
FLAT-GANG UNITS smaller than
before—in any
combination — 22/– to 44/–

Precise INSTRUMENTS

POST THIS COUPON NOW!
To Jackson Brothers (London) Ltd., 72, St. Thomas’ Street, London, S.E.1.
Please send me Vivid Radio, I enclose 4d. in stamps
to cover postage, etc.
Name
Address

Oliver Pell Control Ltd., Bloomfield Road, Woolwich, S.E.1.
Tel. 2240.
UNTIL fairly recently the average listener has been content to accept as a standard of reproduction which often fell far short of the original, but there are now definite signs that much better quality is being demanded. This is as it should be, for no doubt that well-nigh perfect reproduction is now attainable, provided that the listener is determined to get it and is prepared to go to a little trouble with that end in view.

One reason why quality of reproduction has to some extent been ignored during the last few years is that listeners have, as a general rule, been too intent upon receiving a multiplicity of foreign stations. And it is almost impossible effectively to combine in a single receiver long range, adequate selectivity for real DX reception, and true reproduction. If the listener will be content to listen to no more than the local stations, however, and to build a high-grade amplifier, excellent reproduction is not too difficult to secure. If long-distance reception is required in addition, it is best to employ a separate receiver for the purpose, providing a change-over switch to transfer the L.F. amplifier from one receiver to the other.

Selectivity and Reproduction

It is by now fairly well known that true reproduction cannot be obtained by using a receiver which is very selective, since the sharply-tuned circuits serve to cut the side-bands of the transmission and so cause the high notes to be seriously attenuated, or reduced in strength. A measure of correction can be secured by using suitable tone-control circuits, but the final result is not generally so good as when the tuning circuits are designed to respond to a bandwidth of 10 to 12 kilocycles.

Since nothing but local stations will be required in the case of the "quality" set, it might be considered that no H.F. amplification will be called for, and that the aerial circuit might be fed straight into the detector. In practice, however, it is nearly always better to employ a single variable-mu H.F. stage, partly to ensure an adequate input to the detector (which should preferably be of the power-grid type), and partly so that there will be no necessity for the use of reaction. Another advantage of the H.F. stage is that a variable-mu valve provides an excellent form of distortionless volume control.

The Tuning Circuits

With regard to the tuning circuits, it is usually found best to employ a single-circuit tuner on the aerial-input side and to use a band-pass circuit, adjusted to give a band width equal to the figure mentioned above, between the H.F. and detector valves. Most ready-made band-pass coils are designed to cover a bandwidth of 9 kilocycles, but it is generally only a matter of reducing the capacity of the coupling condenser to increase the band width; for example, if a 9-kilocycle separation is given as required in the case of the "quality" set, a variable-mu valve provides an excellent form of distortionless volume control.

Undistorted Output

The low-frequency side is undoubtedly the most important in the case of any "quality" receiver, but it would be useless to lavish considerable care on this unless the preceding stages were in order. Until a year or two ago it was the rule to design receivers and amplifiers for home use with maximum outputs of about 1 watt, and it was, in fact, considered that reproduction was uncomfortably loud when greater outputs were provided. This was a fallacy which has since been corrected, with a result that outputs up to 4 watts are by no means uncommon. Moreover, reproduction with such an output is considerably better than

When the output was less. In other words, the reason for the previous "deafening" effect, when a large output was employed, was not due to the reproduction being too loud, but due to the distortion which was present. It has also been known quite recently that much of the harshness and "drumming" which has since been corrected, with a result that outputs up to 4 watts are by no means uncommon. Moreover, reproduction with such an output is considerably better than

The Best L.F. Circuit

It is perhaps not necessary to adopt this principle in order to secure good reproduction when an output of between 2 and 4 watts is available, but it is desirable that an amplifier operating on the push-pull or similar principle be employed wherever possible. The advantages of normal push-pull amplification have been set forth in these columns on a number of occasions, whilst several push-pull circuits have been described. It is, therefore, unnecessary to deal here with the standard systems in

(Continued overleaf)
which a centre-tapped input transformer is used to feed the push-pull stage, but mention might be made of a modified arrangement in which all the coupling is on the resistance-capacity system. The circuit of such an amplifier is given in Fig. 2, and it will be seen that the L.F. valve has two load resistances, one being in the conventional position between the anode and high tension positive, and the other between the full secondary winding. The other circuit has resistance and hightension negative; the two push-pull valves are fed in (opposite phase) from the anode and cathode of the L.F. valve respectively.

This circuit is capable of excellent results, the absence of iron-core transformers and chokes ensuring uniformity of response over the full audio scale, besides tending to reduce the cost of the apparatus to a fairly considerable extent. The values of resistances and capacitors indicated in the circuit diagram are correct for the particular valves shown, but will have to be varied slightly for other types.

![Fig. 3. — The circuit for a standard duo-phase amplifier. A special transformer with two secondaries is employed.](image)

Duo-phase Amplification

A comparatively new development in the way of power L.F. amplification is the duo-phase system, a circuit of which is given in Fig. 3. The circuit is unconventional in that a single transformer with two secondary windings is used both for coupling the two duo-phase valves and for output purposes. Contrary to usual practice, the transformer serves to step-down the signal voltages applied to the grid of the last valve, the step-down ratio being quite high. It is not possible to give complete details of the transformer since it has to be designed particularly to match the valves and a capacitor employed, but suitable transformers can be obtained from a number of manufacturers by stating the valve combination which is to be used. An undistorted output of about 3 watts can be obtained by employing two valves such as the Gosser type 41MP, whilst an output up to about 7 watts is possible by using a pair of directly-heated power triodes such as the Mullard type AC 044. In the first case a mains transformer and rectifier giving an output of 350 volts (Class B rectifier) would be needed, and in the second case a current of 500 volts (Class C rectifier) would be called for, assuming in each case the use of a smoothing choke or speaker. Having a D.C. resistance of some 1,500 ohms.

Special Advantage

Duo-phase has all the advantages of push-pull, due to the grids of the two valves being fed with signal voltages of opposite phase, plus the rather important advantage that the circuits are not symmetrical, so that parasitic oscillation is practically impossible. That form of trouble is still further avoided due to the fact that the transformer secondary winding in the grid circuit of the last valve has a very low impedance. This secondary winding eliminates the possibility of mains hum being introduced into the grid circuit due to proximity of mains equipment.

A Simplified Modification

An interesting modification of the duo-phase arrangement is shown in Fig. 4, and in this case the special duo-phase transformer is replaced by a more normal pattern of centre-tapped output transformer. Approximate values of the various transformer elements are indicated, the valves shown being Ostar-Ganz, since the circuit is one which has been successfully employed by the British High Voltage Radio. In practice, this modified circuit has proved to be particularly effective, and an output of no less than 7 watts can be obtained when the amplifier is fed from either A.C. or D.C. mains.

It is scarcely necessary to emphasise the fact that no amplifier can give of its best unless it is coupled to an efficient speaker, and in this respect it is worth while to consider one of the pairs of matched units which have recently become so popular: some of these comprise two moving-coil speakers which give maximum response to the high and low frequencies respectively, others combine the two types in a single unit, whilst others combine a moving-coil with a single multi-electric crystal unit and a standard McV. movement.

TRACING "HUM"

Inadequate filtration in the input circuit of a receiver or loudspeaker valve often be a source of strong hum when the speaker is exceptionally efficient on the low notes, as is most of these speakers are.

Sometimes hum results from the lack of earthing cases and cores of the audio or power transformers.

Oscillation in the amplifier or in the radio portion of a receiver. This may be at any frequency whatever. For example, it may be a very high, parasitic radio-frequency oscillation, or an oscillation in the tuning range of the receiver. Again, it may be an oscillation at audio-frequency due to feed back through the H.T. supply. This oscillation may even be above audibility, or again, below the audible limit. Regeneration is also a possible source of hum since it is the same thing as oscillation. If the regeneration or weak oscillation is near the hum frequencies—that is to say, 50 to 100 cycles—the hum is likely to be very severe.

All these points should be watched very carefully if it is desired to find a satisfactory solution from such difficulties as this troublesome fault brings into being.
Once again it is my privilege to place before readers of PRACTICAL WIRELESS details of the receiver which has been occupying my attention in the PRACTICAL WIRELESS Laboratories for the past few weeks. As regular readers of the paper already know, Number 1 of PRACTICAL WIRELESS marked an entirely new era in radio journalism. We specify only the parts actually used in our designs, and providing those parts are used we issue a generously interpreted guarantee in connection with every receiver built from designs appearing in our pages. Our editorial policy is absolutely unfettered and unaffected by advertising interests, and we make no charge whatever for answering readers' queries. We go to an enormous amount of trouble to perfect our designs before placing them before our readers.

We Lead!

After two years' experience with the policy laid down PRACTICAL WIRELESS is in the enviable position of being the leader of its class, respected alike by home constructors the world over, and by all manufacturers and designers of repute. Hence, in planning the receiver which was to synchronize with our Birthday Number, I have spared no efforts in producing a design which would in every way be worthy of the high standard set by this journal. Manufacturers tell me that I have the reputation of being a hard task-master and that I am too exacting in my demands! It is true that I insist upon an extremely high order of efficiency before I allow a component to appear in any of my receivers, but I am prepared to justify every component I have ever specified. Justification for my attitude is provided by the cordial relations existing between the editorial staff and our readers, and the fact that many thousands of successful receivers built from PRACTICAL WIRELESS Guaranteed Designs are now in operation all over the world.

Droitwich Anticipated

My latest design is a three-valve employing three pentode valves, and with a lively eye to the opening of the new Droitwich Station I have employed inductively-coupled band-pass tuning which, I think it is generally conceded, is far better than capacitative coupling on the long waves.

LIST OF PARTS FOR THE ALL-PENTODE THREE

One Ferrarco 'ganged' coil assembly, type GI, 2, 3 (Colvern).
One 3-amp. midget condenser (Jackson Bros.).
One accurate drive type 1000 (Colvern).
One 0.0015 mfd. fixed condenser, type M (T.C.C.).
One 0.001 mfd. fixed condenser, type M (T.C.C.).
One 0.002 mfd. fixed condenser, type M (T.C.C.).
One 0.001 mfd. fixed condenser, type M (T.C.C.).
Two 0.003 mfd. fixed condensers, type M (T.C.C.).
One 1 mfd. fixed condenser, type 65 (T.C.C.).
One 2 mfd. fixed condenser, type 65 (T.C.C.).
Two 1 mfd. tubular condensers, T.M.C.
One 500 ohm ohmite resistor (Graham Farish).
One 10,000 ohm ohmite resistor (Graham Farish).
One 50,000 ohm volume control (Ferranti).
One screened pentagrid valve (Telenet).
One standard screened choke (Ferranti).
One Max. transformer (Graham Farish).
Two 4-pin valveholders (Colvern).
One 5-pin valveholder (Colvern).
One 4-way battery cord with winder fuse (Belling Lee).
One 90-ma. "Bosco" microphone, G.B., P.4, G.B.
One 4-way battery cord with winder fuse (Belling Lee).
One 90-ma. "Bosco" microphone, G.B., P.4, G.B.
One 5-pin valveholder (Colvern).
direct, and the efficiency is actually demonstrated by the fact that notwithstanding the super-sensitive circuit arrangement employed the receiver is perfectly stable and no screened leads have had to be employed. There is no H.F. or L.F. instability at all, and yet the output is really remarkable.

Station Getting

The station-getting properties of the All-Pentode Three need to be experienced to be believed, and tuning is made additionally easy by means of the new Midget threenganged condenser employed, which not only adds to the attractive appearance of the receiver, but is operated by a new slow-motion drive in which the lamp travels round with the cursor and thus provides easy and accurate wavelength identification. I am not in the least overstating the case when I say that this is probably my best receiver, and I sincerely recommend it to the constructor public. They may build it in the confidence that they have my advice and assistance at their back, advice and assistance which I cheerfully render to every reader who seeks it.

I shall fully describe the construction of my All-Pentode Three in next week's issue, with every copy of which will be presented a full-size One Shilling Blue Print. Readers will not have to write in for this nor pay any fee whatsoever; a copy will be included in every issue of PRACTICAL WIRELESS dated Sept 22nd, on sale on Sept. 19th.

Our New Gift Book Offer

Also to commemorate our Birthday, next week's issue will contain full details of our new Gift Book offer, by means of which readers will be able to obtain a copy of my latest work, "Television and Short-Wave Handbook." I have been encouraged to produce this volume (which is additional to the well-known series of PRACTICAL WIRELESS volumes) owing to the many thousands of letters I have received from readers who have possessed themselves of my earlier works. It is not for me to comment on my own books, but I can modestly claim that this volume will provide a useful auxiliary work to my previous volumes—the "Wireless Constructor's Encyclopaedia," "The Encyclopaedia of Popular Mechanics," and "Everyman's Wireless Book." The "Television and Short-Wave Handbook" will be available to all regular readers of this paper on terms similar to those applying to our earlier gift books, and it is similar in style, size, and binding. Full details, as I have said before, will appear in next week's issue.

Theoretical circuit of F. J. Camm's All-Pentode Three.
The valve is undoubtedly the most important component in the wireless receiver, but it is also the one that gives most trouble to the listener. During the past two or three years great improvements have certainly been effected in valve design and construction, but a number of the background noises in the receiver are still due to valve internal defects. The lay ear cannot, as a rule, differentiate between the various valve noises (commonly termed microphonics), but the experienced wireless engineer can immediately isolate in what part of the valve the fault lies, from the type of noise heard in the speaker when the valve is tapped.

Cathode Rattle

The most frequent offender is the cathode, or filament in the case of the directly-heated valve. As is well known, the cathode is held at the top and bottom extremities by thin strips of mica: it is forced into a small hole in the mica, and appears to be tightly fixed. After the valve has been in use for a short period, however, the cathode tends to become loose in the hole, thereby causing cathode rattle. This form of valve trouble has been minimized as far as degree, however, by riveting the cathode to the mica, or by arranging a small spring to hold it against one side of the hole.

In the battery type valve the filament is stretched between two hooks, and as in the case of a violin string, has a natural frequency according to its mass and tension. When the receiver or valve is tapped, the filament vibrates at its natural frequency—generally between 500 and 1,500 cycles. This tendency to vibrate could be obviated by stretching the filament very tightly, of course, but it has been found that this procedure tends to shorten the life of the valve, and therefore the designer has to strike a compromise in this respect.

The most important measure in the use of the directly-heated valve is the maintenance of the filament tension. Should the filament be very slack, and the valve is in a position to catch the direct sound waves from the speaker, sufficient energy may be fed back from the speaker to the valve to form a sound couple. It is, therefore, found that when this form of microphonic noise is experienced, placing the speaker in a separate cabinet provides a remedy.

Frame Rattle

A less common valve trouble is frame, or holder rattle. Most of the crackles which are heard in the directly-heated valve is of a ringing nature having a frequency varying between 500 and 1,500 cycles according to the filament tension. Frame rattle is a tinny, "tizzing" sound, and generally has a frequency of about 1,000 cycles, and cathode to anode leakage results in crackling noises.

The obvious remedy in every case, of course, is to replace the offending valve, but where this is not possible, a temporary improvement may be effected in most cases by using springy (or anti-microphonic) valve-holders, and housing the set and speaker in separate cabinets.

Possibilities of Radio

It was impossible to estimate how much of the appeal to the sense of hearing had done for human comfort, or what the appeal to sight by means of television, which was now in the offing, would be able to accomplish. The sense of taste and smell had not yet been gratified by radio, but he saw no reason why in the future some type of radio machine might not be perfected for this purpose. You could imagine for yourself what the mention of a radio appeal to the sense of smell might bring forth. The local wit dealt with the introduction to the radio programme by a flooding of the room with the smell of roses, another with the relay of smells and noises from a country farm.

Valve Noises

In this Article Various Causes of Microphonics are Described

Frame Rattle

A less common valve trouble is frame, caused by badly-welded joints, or loose eyelets. The frame tends to vibrate at a resonant frequency, and whenever this frequency is emitted by the speaker, the valve frame resonates in sympathy with it.

Crackling

Most of the crackles which are heard in the speaker when the valve is tapped are due to a leakage between cathode and anode. This often occurs in pentodes, where the outer screen, at low potential, is very close to the anode, at high potential. Indeed, so short is the mica path from the outer screen to the anode, with the resultant likelihood of a leak across it, that some manufacturers use two micas, one to hold the cathode and grids, and the other to hold the cathode and anode, in order that a comparatively large likelihood may be obtained from cathode to anode.

Distinguishing Noises

All the above-mentioned valve faults cause distinctive noises, which may be easily distinguished. The cathode rattle in the indirectly-heated valve is in the form of a dull rumbling sound, and the filament noise in the directly-heated valve is of a ringing nature having a frequency varying between 500 and 1,500 cycles according to the filament tension. Frame rattle is a tinny, "tizzing" sound, and generally has a frequency of about 1,000 cycles, and cathode to anode leakage results in crackling noises.

The obvious remedy in every case, of course, is to replace the offending valve, but where this is not possible, a temporary improvement may be effected in most cases by using springy (or anti-microphonic) valve-holders, and housing the set and speaker in separate cabinets.

Smell by Radio

One young fellow drifted on into the realms of fantasy by drawing attention to the fact that the main advantage of radio was not altogether the great advantages which it bestowed upon the community, but rather the happiness which it was capable of bringing into human life. He felt convinced that just as radio had up to the present appealed to the two senses of hearing and seeing, there did not appear to be any reason why it might not do the same in the future, the other senses of smell, touch, and taste should be equally appealed to by the same means. I think he was quite right in dealing with the question of senses in saying that a complete satisfaction of the special senses is essential to the normal and complete happiness of the human mind, and any devised means which would tend to this end easily would increase human happiness accordingly.

Ingenious Applications

I suppose, as a class, experts have to tie themselves down to hard and fast theoretical and technical rules, and their work
The MIDGET SHORT-WAVE TWO

Full Constructional and Operating Details of a Novel Two-valve Receiver Designed for Use on a Waveband between 10 and 77 metres

It is surprising to find that, comparatively speaking, only a few listeners take advantage of the short-wave wireless transmissions. It is difficult to find the real reason for this, but it may perhaps stem from two causes:

1. The wide choice of programmes on the medium and long wavebands.
2. The mistaken impression that short-wave work is costly and difficult.

While the second reason that deters the greatest number of excep- tionally great number of excep- exception.
The Circuit Used

The theoretical diagram shows the circuit which has been employed. Like most short-wave sets, it is quite simple and straightforward, possessing no really novel features. The aerial feed is taken through a .004 in. fixed condenser C1, to the top of the aerial tuning coil L1. This coil, together with the reaction coil L2, is wound on a small-diameter ribbed four-pin former. The turns are space-wound with 22-gauge enamelled wire, and are being slotted to fit the panel. The maker's specification for these coils gives their length as 10 in., but even the smaller condenser, but as the C1 condenser specified is only .001 mfd., the new values for the coils are as follows: Type LB (light blue spot identification) 10 to 21 metres; Type V (yellow spot identification) 10 to 27 metres; and Type T (red spot identification) 23 to 77 metres. The former is the most important of the short-wave transmitters, and embraces those stations which can be received normally under normal conditions of environment.

The first valve V1 is a straightforward leaky-grid detector, and the reaction feed from this valve's anode is via coil L4 and variable condenser C5. For good short-wave reception it is absolutely essential to have a really smooth reaction control, and, apart from the necessity of neutralizing the correct detector anode voltage to ensure this, a fine degree of accuracy is required in the reaction control. Erroneous or coarse motion must be avoided, and then it is possible to bring in the weak signals which would otherwise be missed. By having a calibrated scale and a ten-to-one reduction input, the controller employed in the actual receiver has proved most reliable.

The Cabinet

The first work to be undertaken is building this midget set. The making of the panel, chassis, and cabinet, of course, follows an exact pattern, the dimensions of this component below the chassis, while the main chassis gives just the right amount of room for a circuit of this character. Finally we have the pentode output valve V2, giving the additional power required when listening to the more distant stations.

Full dimensions of the metal chassis

Theoretical circuit of the Midget Short-wave Two.

From this illustration you can observe the metal cabinet.
used, but where there is a danger of wires hanging and touching, slip a length of insulating sleeving over the wire. The fixed condensers, grid leak, and high-frequency choke are carried in the wiring runs. It is necessary therefore to first make the connections nearest to the underside of the chassis, making each joint a sound one. If the constructor does not desire to use a soldering iron, then take soldered one. Bring out the battery leads through the centre hole at the chassis back, terminating each one in the appropriate marked plug or spade tag. The diagram on this page shows full details of the wiring. When complete, make a final check to see no wire has been omitted or that connections have worked loose.

Testing

Attach the slow-motion dial to the tuning condenser spindle according to the maker's instructions and then proceed to carry out a preliminary test. If an outdoor aerial is being employed or even an indoor one, it is better not to make a direct metallic connection to the terminal. Join a short length of rubber-covered flex, say one foot, to the set's aerial terminal, and twist the aerial lead-in about half a dozen times round this, as shown on page 797, so that the two leads are perfectly insulated from one another. This acts as a small series-capacity feed, being additional to the fixed condenser C3 included in the set itself.

Now connect the phones and earth lead together with the L.T., H.T. and G.B. batteries. Only 2-volt valves are used, while for grid bias apply about 7½ to 9 volts (this can be further adjusted on site as desired), make H.T.+2 approximately 100 volts, and H.T.+1 between 30 to 40 volts. Insert the PM2DX in V1 position, with any one of the three coils in the centrally-positioned valveholder.

The first test is to make any adjustments that may be necessary to ensure a smooth reaction control over the whole of the tuning range. Switch on the set and, advancing the reaction control slowly, note whether the set "slides" smoothly into oscillation or "bursts" suddenly into a howl. If the former, see if there is any overlap between the reaction condenser setting for oscillation to start and stop. A "gloppy" oscillation is useless for short-wave stations.

First of all, from the three coils specified, choose the one to cover the waveband it is desired to receive for the first trials. Initially this should preferably be the 18 to 37 metre coil, for in this band there are a number of European stations which are on the air from as early as 8 a.m., the transmissions continuing until midnight. It is advisable for the reader to obtain details of the times and wavelengths of these transmissions from published lists, for this will prove invaluable in aiding the search for stations.

Operating the Set

Although it is always assumed that the operation of a short-wave set is tricky, in the case of the Midget S.W. two this is certainly not true. First of all, from the three coils specified, choose the one to cover the waveband it is desired to receive for the first trials. Initially this should preferably be the 18 to 37 metre coil, for in this band there are a number of European stations which are on the air from as early as 8 a.m., the transmissions continuing until midnight. It is advisable for the reader to obtain details of the times and wavelengths of these transmissions from published lists, for this will prove invaluable in aiding the search for stations.

With the appropriate coil inserted in the centre valve socket, and the detector and period output valves in the other two sockets, connect up the battery supplies, headphones, aerial and earth to the appropriate terminals. Setting both the reaction and tuning condensers at their minimum readings, switch on the set and turn the reaction control knob in a clockwise direction very slowly until the set begins to oscillate. This condition will be detected readily, for the headphones will emit a low rushing sound or hiss.

LIST OF COMPONENTS

- Three four-pin B.T.S. coils, types A.B.C.
- One Varley Nichel transformer, 1.5V.
- One Bulgin on/off switch, type S80.
- One 3-megohm Erie grid leak.
- One .0001 mfd. Eddystone microdenser.
- One Belling Lee small type terminals, A, E, I, T.
- One .0002 mfd. slow-motion Eddystone condenser, type R.
- One .0001 mfd. Dubilier condenser, type 665.
- One .0001 mfd. Dubilier condenser, type 670.
- One .001 mfd. Dubilier condenser, type 665.
- One .0001 mfd. Dubilier condenser, type 670.
- One Peto-Scott Indigraph slow-motion dial.
- One .0001 mfd. T.C.C. condenser, type M.
- One .0002 mfd. slow-motion Eddystone reaction condenser.
- Four Belling Lee small type terminals, A, B, C, and two phones.
- One Peto-Scott small type terminals, A, B, C, and two phones.
- One Peto-Scott small type terminals, A, B, C, and two phones.
- One Peto-Scott small type terminals, A, B, C, and two phones.
- One Peto-Scott small type terminals, A, B, C, and two phones.
- One Peto-Scott aluminium chassis, panel, and cabinet (sprayed black).
- Two Mullard Valves, PM2DX and PM42.

Wiring diagram of the Midget Short-wave 2.
The Pilot Kit

SERVICE was founded in 1919.

NEW SPEAKERS—ELIMINATORS—KITS

The Pilot Kit

STRAIGHT BATTERY 3

List Price

Bargain Price

Cash or COD. Carriage Paid.

£6.19

£3.76

Buy this by Post—its Quicker—Cash—COD—EASIWAY

NEW ELIMINATORS

ATLAS A.12, for A.C. mains. 100/250 v., three turnovers (60, 90, 120, 150 v.), 12 m.a. at 120 v. Cash or COD. Carriage Paid, £12/12/6.

Balance in 10 monthly payments of 7/-.

PAYMENT OPTIONS:

BLOCK (Platiste) H.T. ACCUMULATOR. 200-500 m.a. Cash or COD. Carriage Paid, £12/12/6.

Balance in 11 monthly payments of 7/-.

Send with order.

Now Available

NEW SPEAKERS—ELIMINATORS—KITS

For further parts, please send £1.00

September 15th, 1934

PRACTICAL WIRELESS

1935 ADAPTGRAM

• Convert your Present Set to a Magnificent Radiogram

Here is the Ideal Cabinet for converting your present set into a Magnificent Radiogram. Hand Polish Finish, and with parts of London's best quality reproduces. All joints mortised and tenoned. Ready to take your set, speaker, power transformer, and your ready-fitted motor board. Price from or permitted to take any part up to 83/-, or as a 12/- deposit in your own shop at a guess extra cost.

MODEL "A" as illustrated, Cash or COD., £95. Carriage Paid, £12/6/6. OVERSEAS $15.50.

MODEL "B" ELECTRIC MOTOR

Stylistic 1935. Adapts to Cohet-Cohet or Gallow Industries Electric Motor with Torch Anode. Push-up and Yellow Control. £7.00. Portable—Automatic Stop—Automatic Needle Drip-Feed, delivers music one at a time. 7 Gns. or 12 monthly payments of £7.50. Ideal prices on application. £3-2-6. See the PILOT on the carton. It's a real guarantee.
In the days when this was the "MIKE"

When a telephone mouthpiece often did service for a microphone, when radio was still almost as "black magic", it was the name of Celestion that meant everything to the man who was buying a Loud-Speaker. Today the name of Celestion has a greater reputation than ever before. For ten years it has stood for quality in its fullest sense. Throughout that time most of the improvements which have come in the reproduction of sound are the result of the skill of Celestion engineers. Follow the experts' choice—Celestion always.

Still to-day—the foremost name in sound reproduction

This Coupon together with 3d. in stamps brings to you a copy of "The All-Metal Way 1935," the modern treatise on A.C. Mains operation and the use of Westectors.

Please send immediately a copy of the "All-Metal Way 1935" for which I enclose 3d. in stamps.

NAME

ADDRESS

PLEASE WRITE IN BLOCK CAPITALS

PRA 15934.

Please send a copy of "The All-Metal Way 1935," the modern treatise on A.C. Mains operation and the use of Westectors.
Last week we saw that, all other things being equal, an increase in the number of tuned circuits resulted in an increase in selectivity. The action of a series of tuned circuits is similar to a row of sieves, with each succeeding one narrowing down the selection until, with the last one, only the wanted particles pass. With several stages of aperiodic, or non-tuned circuits, the losses are increased, and the selectivity until the last one passes is of very low order. In fact, the apparent selectivity, owing to the coupling between the stages, is worse than if no coupling were used.

Why We Use H.F. Stages

As previously mentioned, when two tuned circuits are connected together there is always some loss in signal strength. This depends, of course, on the tightness of the coupling. It may be that only 50 per cent. of the energy is transferred to the second circuit. However, the gain in selectivity is such that it makes it worthwhile. In this respect two coupled circuits differ from a single circuit, for the unwanted signals are much lower than with tuned stages, but the most noticeable difference is that selectivity is of very low order. In fact, for coarse selection and the oximes of the equal amplification of wanted and unwanted signals, is worse than if no H.F. valves were used at all.

Selectivity

How it is Possible to Separate Stations and Avoid Jamming

This is why the H.F. valve is employed. It makes up for the loss between each successive circuit. Of course, modern valves do more than just make up the losses; they give decided amplification. In this connection, it may be easier to understand the function of the H.F. circuits if we consider the valves as the means of coupling the tuned circuits rather than the more usual way of looking upon the tuned circuits as the means of coupling the valves.

Alternative Methods

Let us analyze the various methods of coupling several circuits when we have one or more H.F. valves available. Firstly, let us take the case of just two circuits. Here there are two alternatives. The first one, as we have already seen, is to place both circuits before the detector. This means that the perfect detector has yet to be discovered, and that with the popular leaky-grid arrangement the rectifying effect drops off rapidly below a certain input. This means that very weak signals are to all intents and purposes not rectified at all. Of course, it's no use adding more H.F. stages to bring them in, because you cannot amplify what is not there! If the detector has not rectified them, then they are lost. This is why the H.F. valve is used. It amplifies the H.F. impulses from weak stations so that they are strong enough to make the detector function. This explains the advantage of the circuit of Fig. 3 over that of Fig. 2.

The advantages of the Fig. 2 circuit are chiefly those of quality and cheapness. As previously mentioned, when two valves are used, the signal enters the first one, and, if it is to pull its full weight, cannot restore lost gain in selectivity. If the coupling between the two coils is made so that it is a perfect coupling, then there is no use adding more stages, because no more selectivity is obtained. If, on the other hand, they are arranged to give what is known as a band-pass effect, the quality will be good and no tone compensation will be required in the L.F. stages. Furthermore, the somewhat expensive screen-grid valve is not required. With the circuit of Fig. 3 on the other hand, band-passing is not possible; therefore, if the circuits are made very selective, some loss of high notes is bound to result.

With three tuned circuits there are again two possible arrangements. The first is to use one H.F. stage with a band-pass input and a single interstage circuit as in Fig. 4, and the second is to use two H.F. stages and a high-pass circuit between each. Here again the choice will depend on other considerations than that of selectivity alone, from which point there is not much to choose between them. As the number of tuned circuits is the same, the selectivity will be about equal.

Losses Must Be Avoided

A fact which is not always realized is that to obtain the full selectivity from a number of tuned circuits each must be designed on efficient lines as explained last week. It is not sufficient to have a low-loss aerial coil followed by indifferent interstage coils, and still less so to have all three or more stages of small coils. It is well known that the vacuum tube is so sensitive that the slightest magnification of modern valves will make up for the losses. Certainly the valves will make up for the loss in sensitivity, but they cannot restore lost sensitivity. Each circuit, if it is to pull its full weight, must, therefore, be designed on low-loss lines. If you need practical proof of this statement, you have only to take the aerial stage of the new iron-core coils. These are essentially low-loss.
Accurate Tuning is Essential

Another point is that the higher the selectivity, the more accurately must the circuits be tuned. This fact will often explain why a receiver employing two circuits tuned with separate condensers will give better range than one using three circuits tuned with a three-gang condenser. Owing to inaccurate ganging of the first set, the second set is not properly tuned and is therefore not giving its best.

It is not providing selective coils if they cannot be tuned. On the other hand, if the coils are unselective, it does not matter so much about the condensers being dead accurate. Of course, if full advantage is to be taken of really selective coils used with ganged condensers, then both the coils and the condensers must be carefully matched, and all the stray capacities and inductances due to the wiring balanced out. Regarding this last point, some attempt should be made to obtain some symmetry of lay-out, that is, the connecting wires to each coil should be of the same length and shape as the corresponding wires to the other coils. In this way the added inductances and capacities will be approximately the same for each circuit, and thus guessing will remain more accurate over the whole scale than would be the case if the trimmers were relied upon to make up the differences.

Compactness versus Efficiency

With the increase of tuned circuits there are always two important questions to be considered. One is the means of tuning them and the other is the question of space. With one H.F. stage only (two tuned circuits) it is possible to get a high degree of efficiency by using fairly large coils spaced well away from a single metal dividing screen. This arrangement is very popular, but if still greater selectivity is wanted, then another circuit must be added. To repeat the same arrangement again by using a third similar coil, condenser and screen, would make the whole thing unnecessarily bulky and the voltage across the condensers would be exceedingly difficult to tune. The usual thing to do, therefore, is to employ three comparatively inefficient screened coils and a three-gang condenser.

The resulting arrangement is even more compact than with the single H.F. stage, but it naturally does not give the same increase in selectivity that three low-loss coils and three separate condensers would. An alternative arrangement is to use a two-gang condenser and a single condenser instead of the three-gang one as a sort of compromise. Of course, the iron-core coils already mentioned are a distinct step towards a solution. They do provide in a small space coils of an efficiency equal to very large coils of the ordinary type.

The Detector and Selectivity

There is one point in connection with selectivity which must not be overlooked. That is, the damping effect of the detector valve on the circuit immediately preceding it. With leaky-grid detection this is often considerable and results in reduction of selectivity and general alteration of the tuning. It is not so apparent with a single tuned circuit, because there is no other similar circuit with which to compare it, but with two or more the last circuit is found to be flatter in tuning than the others and also to be difficult to gang with them. Anode-bend detection is often suggested as a solution, but there are certain reasons why this is not quite so suitable, and these will be dealt with in a future article when dealing with rectification.

AN ADJUSTABLE AERIAL

Two pieces of 3in. sheet brass or copper—about 5ins. by 3in. or 4in., are bent as shown in the sketch. Holes are drilled through which passes a brass bolt. A brass pulley wheel runs on these. Further holes are drilled into which wire connected to insulators is fastened in one case, and through which bolts go into the brass and lead weight in the other. The sketch will make this quite clear.

Two pulley wheels are fitted to the top of one mast with two cleats at the bottom. A cord is taken over pulley-wheel A and connected to an insulator on the aerial wire. Anode-bend leads take pulley B to pulley C. The top is fixed by a second cord, A cord attached to brass slider. A small space coils of an efficiency equal to very large coils of the ordinary type. The Detector and Selectivity

There is one point in connection with selectivity which must not be overlooked. That is, the damping effect of the detector valve on the circuit immediately preceding it. With leaky-grid detection this is often considerable and results in reduction of selectivity and general alteration of the tuning. It is not so apparent with a single tuned circuit, because there is no other similar circuit with which to compare it, but with two or more the last circuit is found to be flatter in tuning than the others and also to be difficult to gang with them. Anode-bend detection is often suggested as a solution, but there are certain reasons why this is not quite so suitable, and these will be dealt with in a future article when dealing with rectification.

Fig. 4—Here three tuned circuits are in use, with a single H.F. stage. **Fig. 5**—This circuit will prove more powerful than Fig. 4 owing to the extra H.F. stage...
ODDS AND ENDS

Keep as Quiet as You Can When Testing

It is a great mistake to do final adjustments at full volume in the owner's house, and that is why it is so very useful to have a pair of headphones with some form of universal transformer, so that these tests can be done quietly without disturbing anybody, the set being only switched on when it is in final going order. From a pure showmanship point of view, this is a much more effective way than howling and whistling half an hour on end in the drawing room.

Finally, suspect everything, even the owner's common sense.

The New Droitwich Station

Readers will no doubt be interested in the technical details of the new Droitwich transmitting station, which has been carrying out experimental transmissions. The total power in the aerial is 150 kW, which is a transmitter of the power of any existing B.B.C. station. Owing to the difficulty of obtaining good quality on long waves, special precautions have to be taken in the design of the circuits, and this work has been complicated by the fact that the station has been designed as a dual-programme transmitter, as it will, at a later date, radiate the Midland Regional programmes in addition to the National programmes.

Unlike the majority of existing stations, the power house which has been built generates A.C. and not D.C. This, of course, gives much greater scope for all the power circuits owing to the ready manner in which A.C. may be converted into higher and lower voltages. For the purpose of driving the various machines, large tanks are built, each of which has a capacity of 150 tons of fuel oil. This is sufficient to enable the station to radiate the normal transmitting periods over a total time of three months.

The power house contains four 750 b.h.p. six-cylinder Diesel generator sets, each coupled to a 470-kW. three-phase alternator, having an output of 415 volts. The normal load when both transmitters are working will be about 1,000 kW.

The new Marconi series modulation system is used in the transmitter and the two units of the transmitter are connected in series, with a total voltage across both stages of approximately 20,000. It is anticipated that the station will give a satisfactory service to nearly the whole of the British Isles. It has been found in most parts of the country that a stronger signal is obtainable than was previously possible from Daventry, and the strength of the programme is generally found sufficient to warrant the abandonment of the National transmitters at Washford Cross, Moorcock Edge, and Brookmans Park, but the B.B.C. do not intend to close down these transmitters for some months. Pading is certainly much less noticeable in the majority of districts, but listeners who are at present situated close to the National transmitters mentioned above will no doubt experience a decline in signal strength. Where these listeners are using inefficient sets or aerial systems owing to the local conditions, the remedy is, of course, to improve the equipment and thus take full advantage of the new transmission.

THE PERMANENT MAGNET MOVING COIL SPEAKER THAT CAN BE CORRECTLY MATCHED TO EVERY CLASS OF OUTPUT VALVE.

Ratios are provided for every output valve, with optimum load impedance from 2,000 to 40,000 ohms. The new Sealed Magnetic Gap ensures that quality reproduction is consistently maintained at the pinnacle of perfection!

The AMPLION reputation for producing speakers giving life-like reproduction, tonal balance, sensitivity and the ability to handle heavy input without the slightest signs of distortion is faithfully upheld in these "LION" Speakers.

The matching facilities of "Lion" Speakers render them suitable for use with any receiver.

PROVISION FOR VOLUME OR TONE CONTROL AND USE OF ADDITIONAL SPEAKER.

Send for Folder "N" on Amplion Speakers, Receivers, Radiograms and Components.

AMPLION (1932) LTD. 82-84, Rosoman Street, Rosebery Avenue, London, E.C.1

GROSVENOR DRY BATTERIES AND ACCUMULATORS "THE BEST IN RADIO" GROSVENOR ELECTRIC BATTERIES LTD. 2½, White Street, London, E.C.2

Build it with your own hands "SKYSCRAPER" BAND-PASS 3 WRITE FOR FREE CHART LISSEN LIMITED, ISLEWORTH, MIDDX.
Do You Know What This Graph Means?

The man who can analyse these curves and understand what they indicate knows his job. But if they do not convey to him perfectly definite information, it would appear that he needs more training than he has had. He is not competent to fill a responsible position in wireless.

Radio has developed so rapidly throughout the last ten years that it has now greatly outgrown the supply of technically qualified men required for the better posts. Moreover, it continues to develop with such speed that only by knowing the basic principles can pace be kept with it.

The I.C.S. Radio Courses cover every phase of radio work. Our instruction includes American broadcasting as well as British wireless practice. It is a modern education, covering every department of the industry.

OUR COURSES

Included in the I.C.S. range are Courses dealing with the Installing of radio sets and, in particular, with their Servicing, which enables the salesman to hold his own art of salesmanship, provides that knowledge to mastery of operating and transmitting.

There is also a Course for the Wireless Salesman. This, in addition to inculcating the art of salesmanship, provides that knowledge which enables the salesman to hold his own with the most technical of his customers.

Then there are Preparatory Courses for the City and Guilds and I.W.T. Exams.

We will be pleased to send you details of any or all of these subjects. Just fill in, and post the coupon, or write in any other way.

International Correspondence Schools, Ltd.
Depl. 34, International Buildings,
King'sway, London, W.C.2

Without cost, or obligation, please send me full information about the Courses I have marked X.

- COMPLETE RADIO
- RADIO SERVICING
- RADIO EQUIPMENT
- RADIO, SERVICING AND SALESMAHSHIP
- WIRELESS ENGINEERING
- WIRELESS OPERATORS
- EXAMINATION (state which)

Note: ...
Address
Automatic Programme Selection

With reference to our article on page 753 of last week's issue, it must be understood, of course, that this method of station selection is only applicable to crystal receivers, single valve receivers, or any other type of receiver which has only one tuning circuit. Generally speaking, it is not applicable to receivers employing a H.F. stage unless such stage is choke (or aperiodically) coupled to the detector stage.

A Valve Receiver

For those readers who wish to make up a valve receiver operating entirely by a push button, we would suggest a Reinartz type of receiver employing a H.F. stage coupled to the detector stage.

A Question of Layout

In the receiver illustrated on page 754 of last week's issue complete control is always possible without raising the lid. This particular receiver will also furnish a number of interesting details for the interested wireless experimenter, amongst which may be mentioned the novel mounting of the loud-speakers. These, it will be seen, are fitted to a sloping baffle, the top of which does not come into contact with the front of the cabinet. This removes all tendency to boom on the bass notes and gives an added brilliancy and crispness to musical items without loss of lower frequencies. The cloth bags surrounding the loud-speakers may also be seen, and these prevent the entry of dust into the magnet gap, and so avoid noises and loss of energy due to restricted movements of the speech coil.

Convenience of Testing

The inter-connecting cables may also be seen and these are the two units to be used separately for testing purposes. This particular model is therefore an admirable example of careful thought and efficiency in layout, as distinct from circuit design, although, as is to be expected where such thought has been expended on layout considerations, the circuit has been given as much thought and is just as efficient and up-to-date, employing all the latest features, such as A.V.C., etc. The loud-speakers are of the "double-cone" type, giving the effect of four separate speakers, and the design of each cone has been worked out so as to provide a most complete frequency-response curve.

BULGIN NEW LINES

SKELETON TUNING COILS

List No. 8.121. A screened aerial coil with balanced reaction, highly efficient. Other types: H.F. trans., tuned-grid, band-pass, oscillator, I.F. Prices from 4/6 each.

ROTARY STUD-SWITCHES

New and inexpensive types, three-, four- and five-way, one-hole fixing. Perfect contact ensured. For Wave-change, Tone Control, etc.

VARILABLE RESISTANCES

10-WATT TYPES

Dial type for laboratory and all use. Non-wearing rolling contact. Values from 0/625 to 50,000Ω. Price from 9/6 each.

60-WATT TYPES

Heavy-duty types for all purposes; for laboratory and general use, charging, etc. Values from 20Ω and up. Price 10/- each.

BELLING-LEE CONDENSER SUPPRESSOR

List No. 1118. Each 10/-; Approximate dimensions, 3"×3"×1/2". Not a "Core-oil" type, but in about 80 per cent. cases effective.

BELLING & LEE LTD

CAMBRIDGE ARTERIAL ROAD, ENFIELD, MIDDX

Please send me, post free, a copy of the New Bulgin Catalogue No. 154 "N" for which I ENCLOSE THREE PENCE IN STAMPS.

NAME

ADDRESS

BLOCK LETTERS, PLEASE.

CUT THE CRACKLE OUT OF RADIO

Do your radio programmes suffer from buzzing, clicks and crashes caused by electric signs, etc.? Write for this book which gives details of the methods evolved by the Post Office and by engineers throughout the world for the suppression of electrical interferences with Broadcast. Results of extensive research work conducted by Belling & Lee Ltd. are also included, together with 37 illustrations.

BELLING-LEE CONDENSER SUPPRESSOR

Available in various sizes, from 0.1 to 1000µ. Price 10/- each.

BELLING & LEE LTD

CAMBRIDGE ARTERIAL ROAD, ENFIELD, MIDDX

Please forward book "Cut the Crackle out of Radio." Enclose remittance value 6d.
PRACTICAL LETTERS FROM READERS

The Editor does not necessarily agree with opinions expressed by his correspondents. All letters must be accompanied by the name and address of the sender (not necessarily for publication).

Local Experts

Sir,—Your issue of August 28th contains a letter by W. Parsons, whom I have found exceptionally interesting. I am greatly indebted to him, as I am sure are also many of your readers, for pointing out that "a shock now and again with 2 or 3 amperes passing is not encouraging." I tremble to think of handling our constant-potential battery charging plant which passes a mere two hundred amperes.

I am in complete agreement with your correspondent when he states that "if a receiver and circuit is understood..., reconstructing becomes child's play." Such things as parasitic oscillation and instability, through attempting to use modern high standards of construction, efficiently, in receivers, are, of course, merely details—things to be done before one's breakfast.

I understand on good authority that modern radio engineers generally complete at least one or two designs each morning before breaking their fast.

It is to be regretted, and once again I am sure your readers are with me in one body, that Mr. Parsons "cannot do better than say that unfortunately design changes are rapidly pushing past the general public."

My heart certainly goes out to the six million or so disillusioned listeners which have must be up and down the country. I am glad to say, however, that some of my friends have discovered the complete solution to the problem. They have arranged with their local dealers to have their sets exchanged for the very latest every two months. I pass the tip on for what it is worth.

I also agree with your correspondent "that really good servicemen are few." If he is anxious to become one of them, can strongly recommend "Electricity and Magnetism for Beginners," as being a good starting point. It doesn't contain anything about servicing, but I am sure he will find something of interest about voltage, especially such as is obtained in all-mains transformers. A "WANTED: SERVICEMAN" (Bridge of Allan).

[Correspondents should remember that rudeness is not right.—Ed.]

Sir,—Further to "Observer's" letter re "Local Experts," may I point out that the public, after trying one after another of these self-styled "experts" and local dealers, and finding that one is as bad as another, begin to wonder if anyone is really competent at all. It is, therefore, essential in the public interest that there should be some means of differentiating between the technical dealer and the trader who is just cut out to sell his wares.

As a service to the many listeners who are members of the Wireless League, this body has instituted a series of examinations and practical tests for wireless retailers. About 400 have, to date, passed these tests, and the public as well as our members can turn in safety to these retailers for advice and technical help.

The system is to examine the retailer in his own premises and to see that he is being overcharged or has any other reason for complaint.

Any member can have the name and address of his local dealers—and any listener can have particulars of membership which, incidentally, is only 2s. per annum, and the benefits to be derived therefrom on application to me at 12, Grosvenor Crescent, London, S.W.1.—ALFRED T. FLEMING, M.I.W.T. (General Secretary, The Wireless League).

Do you know

-THAT interaction can take place between the anodes of two valves, if these are not of the metalized variety.

-THAT the grid bias applied to two valves in push-pull is the same as applied to one valve singly.

-THAT a swaying aerial may prevent the reception of a short-wave station.

-THAT one of the simplest tests for faults in a detector receiver is to measure the total H.T. consumption.

-THAT copper tube forms a very good medium for the construction of ultra-short wave coils.

-THAT an energized loud-speaker is, generally speaking, more sensitive than the permanent magnet type, owing to the greater field strength.

The Editor will be pleased to consider articles of a practical nature suitable for publication in Practical Wireless. Such articles should be written on one side of the paper only, and should contain the name and address of the sender. Whilst the Editor does not hold himself responsible for manuscripts, every effort will be made to return them if a stamped and addressed envelope is enclosed. All correspondence intended for the Editor should be addressed: The Editor, Practical Wireless, Grosvenor, Ltd., S.11, Southampton Street, Strand, W.C.2.

Owing to the rapid progress in the design of wireless equipment and to our efforts to keep our readers up to date, we give no warranty that apparatus described in our columns is not the subject of letters patent.
September 15th, 1934

PRACTICAL WIRELESS

907

CATALOGUES RECEIVED

To many readers trouble, we undertake to send on catalogues of any our advertisers. Merely state, on a postcard, the name of the firm from whom you require catalogues, and add "to it Catalogue.

New London, E.C.I.

EDDYSTONE SHORT-WAVE COMPONENTS

CHARLIE-WAVE enthusiasts will find much to interest them in the new season's catalogues issued by Messrs. Stratton Co., Ltd., of Eddystone Works, Bromsgrove Street, Birmingham. Here are to be found components designed especially for short-wave work, and these include variable condensers, non-penetrable column, valve-holders, HF. chokes, I.F. transformers, reaction condensers, condenser drives, etc. Some novel metal cabinets are also seen in this catalogue, and they enable a most efficient short-wave receiver to be constructed free from hum and capacity effects. A most interesting array of components are thus gathered together and will prove of interest to the radio constructor.

HEAYBERED MAINS APPARATUS

In the new season's catalogue is known as the '1935 Handbook of Mains Equipment.' It contains a list of all types of apparatus for mains use, this will be found to be a most useful book for the amateur constructor. Volumes are based on the construction and use of mains apparatus, and circuit diagrams are included of a number of different types of H.T. supply units, triode chargers, etc. In addition, there is an outline in simple language how to connect to mains wiring, how to run models from the mains, how to modify the voltage output from a transformer, and how to charge accumulators. An index enables any particular part of the catalogue instantly to be found. The price of this catalogue is 3d.

MARCONI VALVE LIST

The new Marconi catalogue is printed in a most attractive colour and will be found to be one of the most comprehensive valve lists which is obtainable. In addition to a complete list of all valves which are dealt in by the Record Factory, there will be found a complete guide to valve-base connections for all types of valve, as well as a number of interesting circuit diagrams showing the application of certain types, such as the triode-nilode, triode-nilode, etc. The book also includes a list of all the better-known manufacturers, with a reference to the most suitable Marconi valves for each stage.

ERIE RESISTANCES

The new Erie resistive booklet is in addition to a useful list of all Erie products, also contains some valuable information hitherto excluded from publication. Exhaustive laboratory data, giving such details as numerical elimination, temperature (plus or minus) value and other valuable points, is set out on the type of resistance tables enabling various resistance units to be quickly ascertained. The Erie M.C.A. for resistances is also included in this book, which may be obtained by any member of the association, by request to the secretary. Mr. Misery's address is: The Radio Resistor Co., Ltd., 1, Golden Square, Piccadilly, W.1.

PETO-SCOTT Co. Ltd.

PETO-SCOTT Co. Ltd.

F. S. G.

LUCERNE S.G.

SEND FOR FOLDER L4

SLADE RADIO

NEW CABLES AND SOCIETIES

For Exports

TRADING AGENTS IN:

F. S. G.

LUCERNE S.G.

FREE FULL-SIZE BLUEPRINT

ASSEMBLY INSTRUCTIONS

WITH EVERY KIT

Designed by Peto-Scott specialists in KITS of Parts for the Home Constructor since 1919.

efficient -- The Peto-Scott Lucerne S.G.3 stands un-

rivaled among modern Kit sets for attractiveness, range, volume, and tone under even the most difficult reception conditions.

SIMPLICITY - The operation of the Lucerne S.G.3 is simplicity itself. Equally simple is the assembly of the Kit, requiring no experience and a few everyday tools.

ECONOMY -- Outstanding values for money and economy are the main features. The Lucerne S.G.3 is designed as a complete unit and the price is for the complete set, including all fittings, and even the Lucerne S.G.3 has a two year's guarantee.

BEAUTIFUL CABINET, LIGHTLY ASSEMBLED, AND READY FOR USE -- The Lucerne S.G.3 Kit is a complete unit, ready for immediate use, and contains a beautiful cabinet in which the set will be housed, and all fittings are already included. The Lucerne S.G.3 is complete with all fittings, including all necessary parts, and is ready for immediate use.

EASY PAYMENTS

"There's no place like HOLMES"

The first firm to supply Wireless parts on easy payments. Ten years advertiser in Wireless Press. Thousands of satisfied customers. At the Show: We selected as the finest value the old W. Stannergard 6/-, 47/- deposit. Nine payments of 47/-.

Other selected value is --

E deposition payments

TELEN recent 231 Kit

13/6 1/- 7/6 1/3

TELEN recent 231 Kit

13/6 1/- 7/6 1/3

LISSEN Eyewitness 4 Kit

13/6 1/- 7/6 1/3

EXIDE H.T. Standard 12 volt

13/6 1/- 7/6 1/3

ATLAS Eliminato 231 Kit

13/6 1/- 7/6 1/3

AUD MINOR NETT Kit

13/6 1/- 7/6 1/3

13/6 1/- 7/6 1/3

Parts for any Kit. Any make of Speaker.

New Goods: Obtained for Every Order.

Send us the parts you require and the payments that will suit your convenience, and we will send you a full quotation. Anything Wireless.

H. W. HOLMES, 29, FOLEY ST.,

Phone: Museum 1445.

TELELUX

FOR BRIGHTER PICTURES

Invented to perfect Disc Television

The process of manufacturing TELELUX is one of the latest Television points, and results in a very highly developed lamp which is perfect for Disc Television reception, both of the special spot and broad daylight "green," and "blue-light" types are absolutely identical. Right, near and far-field image remains unchanged, and the new collection lamp is an improvement in the picture. The principle of the TELELUX lamp is that of a light-colouring medium, and the present unswerving method of construction. It is, however, singularly long-lasting and should be supplied to any dealer.

177, CITY ROAD, LONDON, E.C.1.

Phone: Museum 1445.

BRITISH TELEVISION SUPPLIES, LTD.

BUSH HOUSE

DEPT. FILM LONDON, W.C.2

Phone: Temple 5242

Doubt your Valve Output without Cost

This new method possible by "WINAL," a novel Valve Analyser, makes it possible to tell at once the true output of any Wireless receiver, no matter what the set or the power supply. It is possible to tell exactly what the Amplifiers are doing, and the service area would be correspondingly increased.

H. W. HOLMES, 29, FOLEY ST.,

Phone: Museum 1445.

BRITISH TELEVISION SUPPLIES, LTD.

BUSH HOUSE

DEPT. FILM LONDON, W.C.2

Phone: Temple 5242
SUPPLEMENT TO "PRACTICAL WIRELESS"

AMATEUR TELEVISION

NEON LAMP LIGHT SOURCES

Various Methods of Obtaining Illumination for Television Reception

By H. J. BARTON CHAPPLE, B.Sc., A.M.I.E.E.

THE aim of every television experimenter is to secure a bright image; in this way it can be enlarged through lenses as to be visible to a greater number of people when the television transmissions are being watched. Under working conditions the glow lamp has proved a cheap and faithful servant in this connection, although in the simple beehive or spiral patterned form the resultant luminosity leaves much to be desired.

It is for this reason that many steps have been taken to effect improvements. The elongated "night light" pattern first, there is, of course, the familiar method of coating the outside of the lamp with a silver deposit, or gluing silver paper foil to the glass bulb, leaving a rectangular aperture, which in turn is frosted to obscure the shape of the glowing electrode, whose area is scanned by the tiny apertures in the rotating scanning disc. An improved form of this arrangement is the new Telelux lamp, marketed by B.T.S., Ltd., and shown in Fig. 1. Here the whole of the lamp is of a small chamber. This flat electrode lamp, however, is certainly more efficient. In one form the glow is distributed evenly over the whole of the lamp, while in another, an internal reflecting surface so that the quantity of light emitted is the maximum possible.

Flat Plate Type

With the flat plate type of neon lamp the intrinsic brilliancy is greater, but even so it suffers from the disadvantage common to all disc machines, namely that the revolving scanning member utilizes only a small fraction of the total cathode surface at any one instant. This flat electrode lamp, however, is certainly more efficient. In one form the glow is distributed evenly over the rectangular cathode surface by backing it with thin mica sheet, while polishing the surface also increases luminosity.

In connection with a model developed on the continent it has been claimed that with current densities as low as two milliamperes per square inch the glow surface over the whole of the plate is still unbroken. A reference to Fig. 2 shows the general form of construction of the flat plate type of neon lamp, the negative electrode or cathode being the rectangular metal plate made from nickel, the clips at the four corners holding it in place. The mica sheet backing located behind the glowing surface. The short horizontal bar below the plate is the anode and under normal operating conditions the working voltage is of the order of 180, while to give a picture of sufficient brilliancy the current flow is 25 milliamperes.

Hot Cathode Types

When it is desired to use a mirror-drum for image integration the flat plate or beehive type of neon lamp is quite useless. A crater light source is made here to a form of neon lamp which has the property of concentrating the entire luminosity over an extremely small area. Apart from losses due to reflections the mirror-drum receiver is able to use the entire light given by the point lamp and in distinct contrast to the disc-type, machine which only utilizes a very small area of the total glowing portion at any one moment. A television receiver designed to use these point glow lamps is shown in Fig. 3, the lamp itself being housed in the base of the long focusing tube on the right.

Several point source lamps have been developed in America, but in this country they do not appear to be extremely popular. With one form the cathode is narrow and tubular, this being surrounded by a larger diameter cylinder of metal which acts as the anode. A crater light source is obtained through a special shaped hole at the top of the electrode system. Consistency in operation depends very largely on the nature of the gas employed in manufacture and also on the degree of internal pressure within the glass walls of the complete lamp.

In some cases use is made of one of the alkali metals in the construction of the cathode. This has the effect of reducing the voltage required for "striking" the source of light, and coupled with this is the property of removing some of the gas impurities.

In yet another case of this type of lamp, which was marketed on the Continent, the anode takes the form of a small chamber. The cathode has a quartz jacket and the light channel is connected up with the first named chamber. Under working conditions the glow discharge starts with quite low luminosity values, it being claimed that the lamp can be used almost to the point of extinction without any change in brightness. Light concentration on a circular area just over one millimeter in diameter is possible with these lamps. The working voltage is of the order of 180, but the current variation is stated to be over the wide range of 6 to 180 milliamperes. Good brilliancy and clarity are claimed for these point light lamps, but of course they still produce the characteristic orange-red image to which exception is so often taken by many television workers.

Neon and Mercury Lamps

Starting with the first colour television experiments, many efforts have been made to produce a lamp containing a mixture of both neon and mercury. One of the latest of these is the new high-intensity gas discharge lamp made by Television Instruments, Ltd. This is of peculiar shape, the glass tube being coiled, while the electrodes are cylindrical in shape. Samples of this new lamp were on show at Olympia, and according to information issued by the makers they give a brilliant and even field of illumination. Owing to their special construction they can be employed in conjunction with a reflector, thus adding to the light available for scanning purposes.

TELEVISION and X-RAYS

THERE does not seem any relation between television and medical X-ray work, but an American has applied the principles of both to assist in diagnosing particular cases. The patient undergoing examination is placed between the X-ray apparatus proper and the fluorescent screen in the usual manner, but the photograph appearing on the screen, instead of being recorded permanently, is scanned by a disc made from lead and having a series of small equally spaced apertures arranged in a spiral. All the light from the photograph image which passes through these holes in turn falls simultaneously upon three separate photo-electric cells.

Associated with these cells are specially designed filters so that No. 1 cell responds to those portions of the picture possessing contrast, being most sensitive to the medium light sections, while No. 3 cell is activated only by the dark sections in the picture. After suitable amplification the signal voltage output from the cells is transmitted to one or more receivers where it is made to actuate pneumatic discharge lamps of three distinct colours. A second scanning disc geometrically similar, and running in synchronism recreates the image, and the three colour elements are combined.
New Lissen Shielded Four-range Coil

The popular Lissen four-range coil is now obtainable in a completely screened condition and the illustration below will be of interest to short-wave listeners, as it shows very clearly the method adopted in winding this coil to cover both the entire short-wave band as well as the broadcast band. The former is of ribbed ebonite 2in. in diameter, and is slotted to accommodate the various sections of wire. At the lower end, heavy gauge bare copper wire is employed for the grid circuit windings on short waves whilst thin wires are wound in between to form coupling coils. The upper part of the former contains the medium- and long-wave windings arranged in a more or less normal manner, that is with the medium-wave winding in the form of a solenoid and the long-wave windings on short waves. Two wires are used for the lead in and these are crossed over so that although the two wires run apparently parallel throughout their length, they are crossed at regular intervals. This has a very valuable effect on the short waves in reducing various types of interference, and a pamphlet may be obtained from Messrs. Straton and Co., in which some various types of aerial circuit are shown to utilise this feature. Short-wave enthusiasts should make a point of obtaining details of this scheme.

Eddystone Cross-feeder Aerial System

The difficulty of noise-free reception on short waves is rendered very simple by using the new aerial system in which some various types of interference are avoided. For this purpose, small insulating blocks which cost 8d. each are employed, and the aerial wires are linked round the grooved ends of these and crossed over so that although the two wires run apparently parallel throughout their length, they are crossed at regular intervals. This has a very valuable effect on the short waves in reducing various types of interference, and a pamphlet may be obtained from Messrs. Straton and Co., in which some various types of aerial circuit are shown to utilise this feature. Short-wave enthusiasts should make a point of obtaining details of this scheme.

Clix Aerial-Earth Plug

Many constructors prefer to use a plug-in method of connecting the aerial to the receivers, and this is done except that instead of using the usual one-hole bush and a standard jin spindle, a newly designed aerial-earth plug is employed. The new Clix plug has been designed for this express purpose, and it is designed to be accommodated in the output stage. The ebonite push-pull button and the ring at the end of the contact are made sufficiently large to accommodate standard aerial and earth leads, and the terminal is finished in black only and is not engraved. The total diameter of wire and insulation which can be accommodated is 3/16in. The price of this plug is 3d.

Telsen Push-Pull Components

Some new push-pull components have been added to the Telsen range of accessories. These include a push-pull input transformer, having a ratio of 1:4 with a primary inductance of 106 henries. This costs 12s. 6d. An output transformer and an output choke are also obtainable, the former with ratios of 35:1, 50:1 and 61:1. The primary inductance of this component is 16 henries. The output choke provides ratios of 1:1, 1.3:1, 2:1 and 2.5:1, and has an inductance of 18 henries. The price of these two components is also 12s. 6d. A 1:1 output transformer is also obtainable and will be found extremely useful for connecting the loud-speaker or for coupling a neon lamp where voltage drop must be avoided in the output stage. All these components present a very neat appearance, and are fitted in square section boxes with terminals readily accessible on an ebonite plate at the upper end. The case provides complete magnetic screening and earthing, and therefore enables these components to be mounted close together when circumstances warrant.

PRACTICAL TELEVISION

6d EVERY MONTH.
band-pass Tuning

"I have read quite a lot about band-pass tuning, and have seen several articles in your paper. Could you tell me whether I could use the arrangement with my existing receiver in which I use two separate tuning condensers and two coils? The present circuit is H.F., detector, and output."—T. R. (Brixton).

You could use the present coils for a band-pass circuit, although for many reasons it will not prove so efficient as a correctly designed band-pass tuner. The two coils should be arranged at right angles, or in some other manner to prevent inter-action between them, and the condensers should be joined across each coil. A resistance of some value between 50,000 and 100,000 ohms should then be joined to a smoothing choke and the H.T. voltage is obtainable. The choice of the valve, or the smoothing choke resistance, must be made so that another condenser is joined across the other side of the choke. You could throw it over your car, or, alternatively, fit a small aerial winding inside the roof if the car body is of the saloon type. A special aerial is obtainable now for attachment to the running board, and this might prove more useful to you.

International Ampere

"I believe you mentioned in your pages some time ago the difference between an amp. and an international ampere. I cannot find the back number and should be glad if you could explain the point, as I have just met the term in a book I am reading. I appreciate that amp. is an abbreviation for ampere, but I find it is used in the book as amp., yet the other term gives the word ampere in full."—E. W. P. (Highgate, N.).

The international ampere is the amount of current which must be passed through a solution of silver nitrate for one thousand seconds in order to liberate one gramme of silver. The standard ampere is measured in the following manner: A small beam scale is mounted with a single turn of wire attached to the beam, and this turn of wire is fixed in the centre of a solenoid. Pans at each end of the scale are provided with weights, and when a current is passed through the solenoid the single turn of wire rotates and thus alters the balance of the scale. The ampere is one tenth of the current which is required to act upon the small coil in order to provide a torque of 4 gramme-centimetres.

THE WORLD'S HANDIEST AERIAL

SELF ADHESIVE
BEST PICK-UP

PIX INVISIBLE AERIAL

A revolutionary idea in Aerials. Just unroll the tape and press it up in position around the roof or up to the attic—and it sticks. One roll will stick down and leaves no mark. No danger from lightning, reduces static interference and increases selectivity. Ideal for coach and bus pick-up for taxi. Obtainable everywhere. British Piz Co., Ltd., London, S.E.1.
PREMIER SUPPLY STORES

STUPENDOUS Purchase of Set Manufacturers' Surplus New Goods at a Fraction of the Original Cost; all goods guaranteed perfect, carriage paid over 5/-, under 5/- postage 6d. extra, I.P.S. and abroad, carriage extra. Orders under 5/- cannot be sent. C.O.D. PLEASE SEND FOR ILLUSTRATED CATALOGUE POST FREE.

MISCELLANEOUS ADVERTISEMENTS

DEMMER Mains Transformers, output 350-0-350v.

DUREALIER SUPPLY STORES

Announce the Purchase of

FREE.

180-0-180 volta 40 m.a., 4v. 1 amp., iv. 3 amps., 4/6; 4v. la. C.T., 4v. la. C.T., 19/6.

1-2v. 1 amp., C.T., L.T. and screened primary, 10/-; DREMIFR H.T.8 and 9 Transformers, 250v., 60 extra; with Westinghouse rectifier giving 200v. 30 IT milliamps, 20 hys., 2/9.

200v. 50 ma. with 4v. 3-5 Amps. L.T. 27/6.

300v. 60 m.a. with 4v. 3-50. 37/6;

30/-; 300v. 60 m.a. rectified, with 4v. 3-50.

P

20/30 ma. auditorium type power transformer. Handles 10 watts, 30/-.

300-0-300v. 65 m.a., 4v. 1-2a., 4v. 2-3a., 4v. 1-2a. (all C.T.)

3/-; 15 mf. 50v. working, 1/-; 25v. working, 25 nifi,

3/6; 65 m.a., working, 1/-; 4v. 2-3a., 4v. 1-2a. (all C.T.)

42, 77, 78, 23/- ; mainsenergised, 2,500 or 6,500.

WESTERN ELECTRIC VAUXHALL Condensers. Send for list.

300v. working, 61/6.

SPECIAL Offer of Mains Transformers, manufactured by Phillips, input 100-200v. or 200-250v. output 250-0-250v. Handles 4 watts.

200-2,000 metres

WIRE Wound Potentiometers, 15,000 ohms, 1/6; 50,000 ohms, 2/-; 30,000 ohms, 3/-; 15,000 ohms, 4/6.

MAGNAVOX D.C.152, 2,500 ohms, 17/6; D.C.152 magn, 2,500 ohms, 27/6, all complete with bussbucking coils; please state whether power or Pentode required; A.C. conversion kit for above types, 12/6; Mains Transformers, 30/-.

100-250v. ; 8v. 1 amp., 27/6 ; 30v.1 amp., 37/6 ; 2v. 1 amp., 14/6; 8v. 1 amp., 14/6.

REPAIRS-REWINDING-OVERHAULS. CARAVAN CONDENSERS, 435 volt, 250 m.a., 2/6.

150v. working,

6/6.

6v. 2 amp., 27/6 ; 30v. 1 amp., 37/6 ; 2v. 1 amp., 14/6.

Polar Bakelite chokes, 40 milliamps, 25 bye., 4/-; 65 milliamps, 30/-.

LISSEN SKYSKAPER ALL WAVE KIT

Complete kit comprises all components included in the above list. Complete 10/10.

LACROSSE GRAMAFON. Unit Sound Motor, 200-250v. high quality pick-up and volume control. Small and compact, 6/6.

BLINDSPOT Bell Double Speaker Telephones, complete with turn-table and all fittings, a very handsome instrument, 14/-.

SENT ON 7 DAYS' TRIAL

For Power, Pedalo and Class " B " transformers, 0-0-250v. 150 m.a., 4v. 2-5a., 4v. 0-25a. (all C.T.)

SENT FOR IT ON 7 DAYS' TRIAL

Model C.A. 38. For A.G. Mains. 100-300v.; 2 tapings, 0-0-250v. 150 m.a., 4v. 2-5a., 4v. 0-25a. (all C.T.)

TYPICAL Transformer, output 125-0-125v.

ALPHABETIC CLASSifier

N.T.S.

CLASS " B " TRANSFORMER, output 125-0-125v. 50 m.a., 4v. 1-2a., 4v. 0-05a. (all C.T.)

SENT ON 7 DAYS' TRIAL

Chassis built.

BLUE SPOT " STAR " UNIOR M.O.VING-MOULDER-COIL

SENT ON 7 DAYS' TRIAL

With 12-point matching transformer suitable for all output bonds only 5/- for 2 days' trial. If approved, balance in 10 monthly payments of 5/- Cash.

SENT FOR LIST

NEW GULTEME CO

S.E. LUGGATE HILL, LONDON, E.C.4.

(Corrected at top of column three.)
SOUTHERN RADIO’S Bargains.—Set manufac-
tured by Marconi, complete with dials, escutcheons, knobs, fully screened in U.K. Also clearance sale of reconditioned sets and radiograms at gift prices £1 to £10.

ELECTRADIAX RADIOS

Send to Foyle’s for Books!

Wondrous Bargain! 12 ONLY
PETO-SCOTT 1934 ADAPTRAMPS BRAND NEW.

In Walnut or Mahogany Cash or C.O.D.

September 15th, 1934

PRACTICAL WIRELESS

MORE AMAZING BARGAINS BY OLYMPIA RADIO LIKED COLUMBUS.

COLUMBUS 2 Valve Battery Receivers, Self-omnivision and Bell’s, 1/6 each. Also Marconis, But no Batteries. Brand new. Long life. Guanasoni, also with transformers, and boxed. Write for catalogue. Forward.

COLUMBUS M.117 Model P, Dual "QV." Loudspeaker. Complete with Buffer. List price 5/-.

UNIVERSE Pick-up and Tone-arm, complete with mountings. £3 8 0. List price 2/10. Our price 2/1.

ARNAUD Chrome Midget 2 Gang Condensers. £1 6 0. List price £1 7 6. Our price 1/10.

COLUMBUS M.176 M.492 C Gond Condensers. £1 6 0. List price £1 7 6. Our price 1/10.

COLUMBUS M.492 C Gond Condensers. £1 6 0. List price £1 7 6. Our price 1/10.

Carlton Park Avenue, N.W.1. Phone: Arundel 5524.

Send order to

For Books!}

COX’S Bookshop, 6 Great Marlborough St., W.1.

PRACTICAL WIRELESS

FOR BOOKS!

BRITISH RADIO fir the Million, "Station Master" Model with Trickle Charger (2v. 4v. 6v. 9v. 12v.) Our price 8/-.

ELECTRADAX Coils, all types 2 pen., 1/3; Varley L.E.C. Condensers, complete with cover, 3/- each.

L.S. and B. E. Speaker Magnets, large 4-claw powerfull, 10/6; kits, 2/-; B.F.T.P. 4-inch, 3/3 half doz.

Amateur Radio Supplies, W. H. Matthews, 315 Broadway, N.Y.

ELECTRADAX.—L.F. chokes, leading maker, 20 H. L. 4 inch, 1/3; Bourns, 5 inch, 2/6 half doz.

WESTINGHOUSE Rectifiers. A.T. 40, type K.12, with trickle charger, 37/6; cadmium cell test, 2/6.

ELECTRADAX.—L.F. chokes, leading maker, 20 H L. 4 inch, 1/3; Bourns, 5 inch, 2/6 half doz.

B.L. BATTERY, Westinghouse 6 volt 2 amp., 6 per box, 15/-.

ELECTRADAX.—L.F. chokes, leading maker, 20 H L. 4 inch, 1/3; Bourns, 5 inch, 2/6 half doz.

ELECTRADAX.—L.F. chokes, leading maker, 20 H L. 4 inch, 1/3; Bourns, 5 inch, 2/6 half doz.

C.B.S. Midget 2-Gang Variable Condensers, 3/-; with trimmers, and boxed; Hydra block condensers, £1 4 0.

ELECTRADAX.—L.F. chokes, leading maker, 20 H L. 4 inch, 1/3; Bourns, 5 inch, 2/6 half doz.

ELECTRADAX.—L.F. chokes, leading maker, 20 H L. 4 inch, 1/3; Bourns, 5 inch, 2/6 half doz.

ELECTRADAX.—L.F. chokes, leading maker, 20 H L. 4 inch, 1/3; Bourns, 5 inch, 2/6 half doz.

ELECTRADAX.—L.F. chokes, leading maker, 20 H L. 4 inch, 1/3; Bourns, 5 inch, 2/6 half doz.

ELECTRADAX.—L.F. chokes, leading maker, 20 H L. 4 inch, 1/3; Bourns, 5 inch, 2/6 half doz.

ELECTRADAX.—L.F. chokes, leading maker, 20 H L. 4 inch, 1/3; Bourns, 5 inch, 2/6 half doz.

ELECTRADAX.—L.F. chokes, leading maker, 20 H L. 4 inch, 1/3; Bourns, 5 inch, 2/6 half doz.
BRITISH UNION LEADING SPEAKER MANUFACTURERS

BRITISH UNION LEADING RADIO SUPPLIERS

Co-operate in this Amazing Short Wave Offer

W.B. STENTORIAN STANDARD (S.1. on left) With matching Transformer, Powerful, Sensory, Class "B." or O.P.P. Yours for 2/6, balance in 6 monthly payments of 2/6. Cash or C.O.D. 2/6.

W.B. STENTORIAN BABY (On right) With matching Transformer, Super-powerful, Class "B." or O.P.P. Yours for 1/6, balance in 12 monthly payments of 2/6. Cash or C.O.D. 1/6.

EVERYTHING on radio is naturally useful easy terms. See our weekly page advertising.

PETO-SCOTT Co. Ltd., 71, City Rd., London, E.C.1

EVARISIPEARL

VARLEY Constant Square Peak Ball-Press Colls. Type B.P. Complete, all accessories and instructions. New, boxed, 6d. (List: 10/-.)

Polar 3-pole Star Minor Condenser, full screened, trimmed, 2-15, 10-30, 30-50, 75-150, 200-300, 300-450, 450-750, 750-1,000, 1,000-3,000, 3,000-10,000.

Risc-O-1 L.F. Transformers, new and guaranteed. Complete, 11/6.

Volume Controls, 50,000 ohms, New, 1/3.

Pioneer radio, 2/6 Gipte Street, London, W.C.1. Museum 9607.

WESTERN ELECTRIC MICROPHONES. Complete with Transformers, 4s. 6d. Radioophone. Square and curved, rectangularempire, 3, 6d. 5 sw. West Electrophones, 29, 4d.; Columbia Transformers, 9, 1-10. Mains Transformers for metal and valve rectifiers; Step up or down auto-transformers; special Transformers and Mains Chokes to order. Let us quote you for kits and components. Postage, 10, 2/-; 10/-, 10/- Equipment and Radio Co., 7, Woburn Buildings, London, W.C.1.

Practical Motorist

The Weekly for Beginner and Expert.

EVERY WEDNESDAY 3d.
THE second issue of this new journal which is entirely devoted to the popular aspect of the new hobby—"Television" contains informative articles on Televising Talking Films, Noctovision, Phonovision, the Stixograph, Television side lines, more about Scanning Systems, Methods of Coupling a Visor to an Ordinary Receiver, Constructional Details of a Visor, Telenews of the Month, Televiews, and many other highly interesting articles on the newest of all sciences.

PRACTICAL TELEVISION

Printed in Great Britain by NEWNES & PEARSON PRINTING CO., LTD., Exmouth Street, Ladbroke Grove, W.10, and published by GEORGE NEWNES, LTD., 8-11, Southampton Street, Strand, W.C.2. Sole Agents for Australia and New Zealand; GORDON & GOTCH, LTD.

South Africa: CENTRAL NEWS AGENCY, LTD. Practical Wireless can be sent to any part of the world, post-free, for 17/4 per annum; six months, 8/6. Registered at the General Post Office for Transmission by Canadian Magazine Post.