The wonderful new low loss lead in cable definitely eliminates crackle, background noises, mush and all man-made static. It improves selectivity and increased sensitivity. Get one to-day. You can fix it in less than five minutes.

OF ALL DEALERS in lengths of 15 feet 10/-
Longer sizes at proportionate prices.
BRITISH RADIOPHONE LTD., ALDWYCH HOUSE, LONDON, W.C.2
NEW COSSOR MELODY

Unequalled for Range, Selectivity and True-to-Life Tone

"All-Europe" range—amazing selectivity—rich, true-to-life tone—generous volume—all that you’d expect from a highly-priced Receiver for £6.7.6— the price of the Cossor Melody Maker (Model 341). Never before has such efficiency been obtainable at so low a price. Send at once for a free Constructional Chart which tells you how you can save pounds by assembling this remarkable Set at home—even if you know nothing about Wireless. Please use the coupon.

COSSOR MELODY MAKER COUPON BRINGS YOU FULL-SIZE CONSTRUCTIONAL CHART.

Prices do not apply in I.F.S.

Please send me free of charge a Constructional Chart which tells me how to build a Cossor Melody Maker.

*Strike out those not required.

Name
Address

Prices
STRIKE OUT THOSE NOT REQUIRED.

BATTERY MODEL 341
PENTODE OUTPUT
Complete Kit of Parts for assembling Cossor Melody Maker, Model 341, similar to illustration, including Cossor Variable-Mu Screened Grid, Cossor Detector, and Cossor Pentode Valves. Fully screened units, Double-Gang Condenser, Combined Volume Control and On-Off Switch, all-metal chassis, and all the parts for simple home assembly. Hand-woven cabinet 18¾ x 13¾ x 36”, space for batteries and accumulators. Balanced Armature Speaker: provision for Gramophone Pick-up Plug and Jack. Wavelength range 200-530 and 400-1,500 metres. Price Hire Purchase Terms: £6.7.6 deposit and 6 monthly payments of 12/-.

BATTERY MODEL 342
MOVING COIL LOUD SPEAKER
Complete Kit of Parts similar to Model 341 described above, except that it is supplied with a Permanent Magnet Moving Coil Loud Speaker. Price Hire Purchase Terms: £7.2.6 deposit and 6 monthly payments of 15/-.

BATTERY MODEL 344
CLASS "B" OUTPUT
Complete Kit of Parts as Model 341 described above, but with four Cossor A.C. Mains Valves. Price Hire Purchase Terms: £8.2.6 deposit and 6 monthly payments of 16/-.

ALL-ELECTRIC MODEL 347
Complete Kit of Parts, similar to Model 342 described above, but with four Cossor A.C. Mains Valves. Price Hire Purchase Terms: £8.19.0 deposit and 6 monthly payments of 16/-.

SPECIFICATIONS
BATTERY MODEL 341
PENTODE OUTPUT
Balanced Armature Loud Speaker

Complete Kit of Parts for assembling Cossor Melody Maker, Model 341, similar to illustration, including Cossor Variable-Mu Screened Grid, Cossor Detector, and Cossor Pentode Valves. Fully screened units, Double-Gang Condenser, Combined Volume Control and On-Off Switch, all-metal chassis, and all the parts for simple home assembly. Hand-woven cabinet 18¾ x 13¾ x 36”, space for batteries and accumulators. Balanced Armature Speaker: provision for Gramophone Pick-up Plug and Jack. Wavelength range 200-530 and 400-1,500 metres. Price Hire Purchase Terms: £6.7.6 deposit and 6 monthly payments of 12/-.

BATTERY MODEL 342
MOVING COIL LOUD SPEAKER
Complete Kit of Parts similar to Model 341 described above, except that it is supplied with a Permanent Magnet Moving Coil Loud Speaker. Price Hire Purchase Terms: £7.2.6 deposit and 6 monthly payments of 15/-.

BATTERY MODEL 344
CLASS "B" OUTPUT
Complete Kit of Parts as Model 341 described above, but with four Cossor A.C. Mains Valves. Price Hire Purchase Terms: £8.2.6 deposit and 6 monthly payments of 16/-.

ALL-ELECTRIC MODEL 347
Complete Kit of Parts, similar to Model 342 described above, but with four Cossor A.C. Mains Valves. Price Hire Purchase Terms: £8.19.0 deposit and 6 monthly payments of 16/-.
At the Exhibition

UNDOUBTEDLY the most outstanding feature of the Press section of the recent Radio Exhibition at Olympia was the stand of Messrs. Geo. Newnes, No. 8 on the Ground Floor—one of the most packed stands in the whole of Olympia. It was the centre of discussion for every intelligent home constructor. It was really amazing to see the number of different books relating to wireless and published by Geo. Newnes Ltd., which were shown on our stand. Until this stand was visited one could hardly appreciate that so many books had been published by one firm. Judging by the number of people who stopped, and did not depart without purchasing one or more of these publications, many will have commenced to take an even greater interest in wireless than before.

Our Query Service at Olympia

A NOOTHER feature of the Exhibition was the large number of visitors who availed themselves of our free advice service. The technical staff were kept very busy, at times dozens of visitors were seated or standing awaiting their turn to lay their difficulty before one of our technical staff. Some of the problems were very interesting, and all the various points which were touched upon during the course of these discussions are being carefully abrated and filed away for careful consideration.

The Fury Four

It is well known now that a receiver built from identical parts, and exactly to a wiring diagram, must give uniform results. During the Exhibition some readers came to inspect the model of the Fury Four which was exhibited, and after looking at the wiring remarked that they had built the set, and expressed their intense satisfaction at the service they were obtaining from the receiver. Two cases are particularly interesting. In one case a gentleman stated that he had made the receiver and it worked so well that all his friends and neighbours had heard it, and he had been busy for months building up these receivers. His total number to date was seventy. And they all worked uniformly well! Another reader was full of regrets because he had sold his Fury Four in order to purchase a 7-valve superheterodyne by one of the biggest makers in the country. It did not give results anywhere near as good as his old Fury, and he said that the biggest regret of his life was when he disposed of the set. This just shows that by adhering to the instructions and constructing a receiver carefully, you definitely can reproduce the original results.

PRACTICAL WIRELESS... at Forthcoming Exhibitions!

MODEL ENGINEER EXHIBITION
Royal Horticultural Hall, Westminster
August 31st to September 9th.
Our Stand No. 35.

The SCOTTISH RADIO EXHIBITION
KELVIN HALL, GLASGOW
September 1st to 9th.
Our Stand No. 17

NATIONAL RADIO EXHIBITION
City Hall, Manchester
September 27th to October 7th.
Our Stand No. 11 (New Hall)

Provincial readers will find these stands the home of Real, Reliable and Unrivaled Reader Service! A Cordial Invitation is Extended to Every Reader to Visit Us.

What Power to Use

THERE has always been a question regarding the power which is necessary for good reproduction. We have stated, not once, but many times, that although 2 watts will deliver sufficient volume for all normal domestic purposes, it is worth while building a 6 or 6 watt amplifier in order to ensure that at maximum volume the full musical range will be reproduced without distortion. At the Exhibition one visitor came to our stand and asked if we had a blue-print of a 50-watt amplifier. He referred to 50 watts, unamplified (not anode dissipation), and when he was asked if it was for outdoor or concert hall use he looked surprised and said, "No, just for gramophone records at home." We do not know what his neighbours would have said if we had given him the instructions to build such a unit!

One-Armed Constructors

HOW many readers, afflicted by the loss of a hand or arm, are keen wireless constructors? It would appear at first thought that the loss of such a limb would prevent one from indulging in this hobby, but two readers of PRACTICAL WIRELESS called at our stand and asked for details of a receiver employing only one control for all purposes. The reason in each case was that they had lost the right arm. They had each built many of our receivers despite their handicap, and were full of praise for the results they had obtained.

Talks by Well-known Journalists

AN original series of talks will be included in the autumn syllabus of the B.B.C. In "Anywhere for a News Story" a dozen of Fleet Street's "star" newspapermen will describe some of their outstanding exploits. One of these will tell of a classic photographic scoop, a picture taken by him of a sinking ship—the vessel in which he was wrecked. The water was up to his neck when he got the picture, but he preserved the plate intact. Another will relate his adventures when he was sent during the 1906 election to interview the "topmost voter" in the British Isles on his political views. A third broadcaster in this series had been three times round the world and travelled half a million miles in search of news. A well-known war correspondent will describe the relief of Lady-smith where he was one of the beleaguered garrison; while another journalist, whose name is a household word, will talk about many amazing things that he has done in his search for copy. A bicycle ride round the world was one of his adventures.

The talks start in September and the final broadcast will be given by one of the best known personalities in Fleet Street during the past quarter-century, Mr. R. D. Blumenfeld, whose subject will be "Journalism in my Time."
20 kilowatts replace the existing low-powered station. The power of the transmitter is 20 kilowatts which comes under Government control and is supplied from the Company's works in England.

Findings equipment was supplied from the Italian Government to the Marconi Corporation to act with wireless by the Marconi organisation. The flight six deep-sea trawlers were fitted with wireless in the year 1926.

THE British Broadcasting Corporation announces that on and after September 17th the following continuous broadcasting on Sundays from 12.30 p.m. to 10.30 p.m. will be resumed on Sunday, the broadcasting of Cantatas and the B.B.C. organ will be employed for Cantatas and the B.B.C. organ will be employed for motets from the Theatre, Leicester, in the spring.

The masts of the existing station will be replaced by steel and經營, instead of leading unmodulated aerial energy and modulation controls. The transfer of the modulation frequency feeder to convey the energy from the transmitter to the aerial.

A Dickens' Recital

A number of sketches of the works of Charles Dickens have been broadcast with some success. Ernest Shannon are in the cast, and Frank Cartell conducts the Midland Revue Chorus and Orchestra.

The vocalist is Samuel Saul (baritone), One of whose groups consists of 37,000 Musicians in a Strange Concert

One of the queerest concerts ever heard was recently given in London when music of more than twenty nations, performed by over 37,000 musicians, was played at the Science Museum, South Kensington. The opening reception of the World Petroleum Congress took place in this building when oil exports from every quarter of the globe were present. In place of an orchestra a high power H.M.V. electric gramophone, which is one of the museum exhibits, was used, to provide authentic music representative of the nations of all the delegates present.

Among the records heard were some which have been made in the jungle of Africa under great difficulties. There, music of African tribes in which a whole village of thousands of inhabitants have all played at once was heard, but in the last, in which the unique instrument called the Zulka provided the rhythm. This resembles a harp and is played by the toes of native musicians. Another similar instrument is the Vena, which has an octave of 84 notes compared with ours of 8.

There was also an Indian record of flutes which are played with the nose of the instrument. It was difficult to detect any difference between this music and our more conventional mode of performance. Another record made near the source of the Amazon had as its principal "instrument" the teeth of wild animals which are mounted in hard clay and struck with a flint.

"Sultanah"

MIDLAND Regional's principal light feature, in the week beginning September 3rd, is a China adventure, Sultanah, described as a 'curious tale' of the East with plums from the musical comedies. The author, Dorothy Cowles, has had a few sketches besides Evelyn Over and Dorothy Summers, William Hughes, Peter Howard, Alfred Butler and Ernest Shannon are in the cast, and Frank Cartell conducts the Midland Revue Chorus and Orchestra.

A Dickens' Recital

WORTLEY ALLEN gives one of his Dickens recitals on September 8th, the characters he impersonates being Sidney Carton, Mr. Micawber and Mark Tapley. He will be heard by Midland Regional listeners. On the same evening a concert by the Cheltenham Municipal Orchestra, conducted by Arthur Cole, will be relayed. The vocalist is Samuel Saul (baritone), one of whose groups consists of songs from the Hungarian by Torbay.

France's 90 Kilowatt Transmitter

WORK on the super-power station to be erected at Tramoyes near Lyons has already begun, and every effort is to be made to complete its construction by the spring of 1934. The aerial system will be of the latest type, namely a single pylon 750 ft. high.

Girls assembling Listen wireless sets at the recent Radio Show at Olympia.
September 2nd, 1933
PRACTICAL WIRELESS

ANOTHER OUTSTANDING "PRACTICAL WIRELESS" RECEIVER!

IT is now two weeks since I first gave details regarding this new type of receiver, and although I was unable to give you very explicit details last week, owing to the pressure on our space, I have no doubt that the many hundreds who have bought the receiver have by now mastered the operation of the receiver, and need no further remarks from me regarding it. It is always best, however, to explain the little points which have been found by experiment to introduce difficulty, in order that those who have had no experience with the handling of a receiver employing so many valves may obtain a working knowledge of the use of the various controls, and so proceed from one stage to another without meeting obstacles which might cause them to form a poor opinion of home-constructed receiving apparatus. It has already become obvious that this receiver employs iron-cored tuning coils, and from articles which have appeared from time to time in this journal you are all aware that one of the great points of this type of coil is its extreme selectivity.

LIST OF COMPONENTS FOR THE 1934 SUPERSET.

The Tuned Circuits

In this receiver there are three such coils, each of which is tuned by a separate section of a three-gang condenser. Now it is obvious that each section must be adjusted so that when the tuning control is rotated an equivalent frequency adjustment will be made in each circuit. With the normal type of three-gang condenser and ordinary air-core tuning coil this adjustment of each circuit—known as "trimming"—is not very difficult to carry out. When, however, high-efficiency iron-core coils are employed the sharpness of tuning is of such an order that the trimming must be carried out with very great care, otherwise many stations will be lost entirely. When you remember

that a station may be tuned in and out in one degree on a single iron-core coil, you will realize that it requires only a small deviation in each of three circuits to result in a complete absence of signal. Therefore, this

trimming adjustment must be your first attention. Connect up batteries and speaker as instructed last week, and rotate the main control until you hear your local station. It may be necessary to turn the volume control full on for this purpose. When the station is heard the small screws at the top of the tuning condenser must be adjusted, and as it is possible to be misled by slight hand-capacity effects I would recommend that you make for the purpose a special trimming adjuster. You require a piece of wood about 10 to 12ins.-long and about a 1in., or so in diameter. A piece of dowelling answers admirably. Sharpen one end of this to a flat blade similar to the end of a screw-driver. Make this blade just thick enough to fit in the cuts in the adjusting screws. The first trimmer to be adjusted is that nearest the panel, and you should unscrew this, at the

same time turning the tuning control to keep the station on the speaker. As this trimmer adjusts the aerial coil it is possible that the moment you turn it one way or the other the station will disappear, but by rotating

(Continued on page 873)
AN EXPERIMENTER'S BASEBOARD

A Practical Article Explaining its Construction and Uses.

By A. V. D. HORT

THE experimenter with wireless circuits has one or more of many possible objectives in view. He may experiment with different arrangements of connections, with methods of coupling valves, with the valves themselves or with other individual components. Whether you are trying to find the best layout of the components for an accepted circuit, or determining to discover the circuit which will give the best possible signal strength from a given number of valves, there will be certain parts of the circuit which will always remain constant.

For example, you must have valve-holders, and their attendant wiring for the filament circuits. At least one variable condenser will come into your layout, and a few well-placed terminals will assist in connecting batteries, aerial and earth, with the assurance of satisfactory contacts. For this reason, it will be well worth your while as an experimenter to mount permanently on a board such components as you will need for every experiment. In this way you will avoid a great deal of routine assembling every time you try something new.

A glance at Fig. 1, which illustrates a suggested design for such an experimenter's baseboard, will show you that your expenditure on the necessary parts will not be considerable. If you are only going to try out one particular circuit preparatory to building it into a finished receiver, you will, of course, be able to use these parts when you have completed your tests. This, however, is not the real object of the baseboard, which is to provide a permanent nucleus for the trial or circuits of all kinds.

An important consideration in the layout of the baseboard is that of space. You will see from Fig. 1 that 6in. is allowed between the valve-holders, and a further 6in. at each end of the board. This gives ample room for the insertion of this other components. Overcrowding might well give false results, owing to the increased possibility of unsuspected interaction between different parts of the circuit. The board allows for three valves. If you want to use more than this, you should extend the board proportionately, and not try to crowd the components into the smaller space.

Constructional Details

The board itself may consist of two pieces, each 4in. wide, of deal " matching " or " flooring." Avoid hard woods; screws for fixing the components can be put into and removed from a soft wood with much less trouble. Across each end of the boards fix a hatten about 3in. thick and 1in. wide, standing on edge. Fasten them securely with screws. They clamp the boards together, as well as support them clear of the table. Across the centres of the boards fix a piece of the same hatten, with part cut away, as in Fig. 2. This centre hatten will then support the boards from sagging, and will, at the same time, leave a space for wiring underneath. You can fish off underneath by fitting small rubber feet on the badens, so as to be able to do your work wherever you like, without damaging polished furniture.

Fig. 1.—The layout of the baseboard.

Each piece of ebonite is screwed to the edge of the board in an upright position in front, to carry the variable condensers. Scrap ebonite will do quite well here, as appearance is not a serious consideration. Note that the ebonite strips carrying the terminals are fixed flat on the board along the back edge, so that the terminals themselves overhang the edge. The wires from their shanks to the components in the circuit can then be brought underneath the board and up through holes in suitable positions. The terminals may be an odd set, and not necessarily all alike.

You would be unwise to omit the terminals altogether, and to make the battery connections direct to the components. This practice almost invariably results in a disastrous " short" sooner or later. The fuse in the H.T. negative lead should be included for the same reason.

Fitting the Busbar

The negative busbar, which runs right along the back of the board about 1in. from the edge, is of the double-winding type, it may consist of a stout copper wire (12 g.w.g. at least), held by terminals at each end. The connections are then soldered to this wire. Better still, and more convenient, is a length of angle brass. Drill holes in it at intervals of about 5in., and either tap these out for small bolts, or fit small terminals. Mount the bar on a piece of hard wood at each end. There are leads from the components between each valve stage which have to be connected to H.T. negative; the provision of the busbar makes these connections as short as possible. You must, of course, be careful with your H.T. positive leads, as the busbar is bare metal, but with reasonable care there is little risk of damage from this cause.

When you have screwed the valve-holders to the board, drill a hole at each side of each holder, and run the positive and negative filament leads down underneath the board. Between the end valve-holder and the L.T. plus terminal insert a rheostat. This should be of the double-winding type, with an " off " position. This component permits you to use any type of battery valves, and also acts as a switch for the circuit. If you are going to mix 2-volt
The majority of us live in or around big cities or towns, and although we, in imagination, build wonderful erections of steel and wire to support the hindmost end of the aerial, in practice we usually produce a temporary affair, which lasts until the wind blows it down, when we apply a few more nails and "stick it up again," and leave the tall mast to a later date.

The area of many of our gardens does not allow of the erection of a first-class aerial, and in many cases, especially should we dwell in a modern flat, an outside aerial is often a total impossibility. There is, however, usually far more area of unimpeded space we can use, and if it is impossible to get into the roof, or if it is impossible to use the lead roof as the aerial. I have found in many cases that, providing the area is not too large, such an arrangement is very good.

But most important is the advance in receiver design. Practically every receiver, even if of the two-valve type, the simple detector, and a power valve, using about 10ft. of wire for an aerial, is capable of giving loud-speaker results within thirty miles of a main broadcasting station. If the receiver has a stage of screened-grid amplification, then many foreign stations can also be received. Further, if such a receiver is used on a large outdoor aerial, difficulty will be experienced in separating stations, unless special circuits are used. In cases of selectivity troubles, the usual advice given is that the size of the aerial be reduced, and it can usually be cut down to an insignificant size before real relief is obtained. It seems, therefore, that for ordinary listening either a very small outside, or an indoor aerial is all that is required.

Hangers For Indoor Aerial

However, even if the aerial is short it should not be treated as insignificant. The normal losses in an indoor aerial are usually a little greater than that of a carefully-erected outdoor aerial, due generally to being close to walls which always retain a little dampness. Keeping the wire away from the wall even an inch or two will be found better than dropping the wire behind the picture rail, which is usually done. Special hangers for wire can be bought fairly cheaply, but if you prefer to make your own, Fig. 1 shows how this can be done. A is an ordinary picture hook, drilled in two places, one hole in the front to take the screw C, which holds the piece of $\frac{1}{2}$in. dowelling and another to take the screw D, which is used on corners, and at the end of the aerial to keep the hanger in position. The dowelling should be about 1 in. long, drilled through at E to take the wire, and painted to match the colour of the picture rail. Pictures can, of course, be suspended from the hook at the bottom of the hanger in the legitimate way.

The actual arrangement of the aerial round the room depends to a large extent on the shape of the room, and the position of the set. The general direction of the aerial is not important, and the arrangement shown in Fig. 2 will be found suitable, in most cases. Four of the hangers shown in Fig. 1 are used for this layout, but only one need be used in the corner, making a total of three. Fig. 3 shows another layout of two wires running round both sides of the same room, but it should be noted that many more hangers are required to get the aerial round the corners, and the chimney piece, than in the simple arrangement of Fig. 2, and the results, although better, do not warrant the extra trouble.

(Continued on page 842)
PRACTICAL WIRELESS

September 2nd, 1933

ROUND THE WORLD OF WIRELESS

(Continued from page 818)

If the picture rail is rather high, the barbed wire hanging from the rail looks very untidy, and the appearance of the whole aerial can be greatly enhanced if the "stand-off" fitting, shown in Fig. 4, is made up and used. Also, a piece of dowelling switch block, which can be purchased at any electrical shop for a few pence, already polished or painted to suit the decorations of the room. B is a piece of dowelling attached to the block from the underside by the screw C. An ordinary wood screw terminal is screwed into the top end of the dowelling, and the block secured to the wall by the two long screws D. This type of stand-off insulator can be used in place of the hangers should there be no picture rail in the room in which it is desired to erect the aerial.

Loft Aerials

One hears of some remarkable arrangements, and occasionally sees them, of aerials fixed up in the loft. No arrangement which passes round and round the loft or up and over, down and round again is any more efficient than a straight wire; in fact, it is less efficient, due, of course, to the greater capacity and the unnecessary additional inductance and resistance. The best and the least difficult of all arrangements of an aerial in the roof is that shown in Fig. 5. Here the wire is brought straight up into the roof and passed round one of the roof trusses, thence to the far end of the loft, where it is attached to an insulator, which, in turn, is attached to a hook in the end wall.

There are two ways of getting the lead-in into the roof. Fig. 6 shows a simple method of doing this. Just behind the gutter there is a small space, allowed by the builder for ventilation in order to keep the roof dry, and if the lead-in is brought up out of the window and into the loft spot half an inch away from the first. Enlarge the aperture through the plaster until a clear space with a slot between two laths has been made. Next cut a piece of wood about an inch thick, six inches long and two inches wide. Drill a half inch hole right through the centre of the piece of wood, through which to pass the lead-in. Drill a small hole through the centre of a circular wood block, the same as that used for the stand-off insulator shown in Fig. 4, and also two holes for screws. Place the block over the piece of wood previously cut, and mark off the positions of the two fixing holes. Enlarge these two holes in the wood, and insert the screws which are going to be used, so that they will enter easily when the whole job is being assembled on the ceiling. Fig. 7 shows how the pieces are put together, and how the aerial is brought through. A knot is tied on the lead-in wire to prevent pulling it through.

Very often, it is required to bring an aerial down through two or three floors, and this can be done in the corner of the room, especially if a cupboard occupies this space. The ceiling can be fitted with a wood block as shown in Fig. 4, and the holes in the block provided with a guard of thick rubber hose to prevent damage. The aerial should not be attached to the wall or run down alongside water pipes.

Aerials can also be fixed under wood floor, but this is not advised if some other form can be installed, partly due to the trouble entailed in getting the floor boards up and running across the joists, and partly because of the inconvenience due to the upsetting of the broadcast when one walks across the aerial.

SCOTTISH RADIO EXHIBITION

September 1st—September 9th.

OUR STAND NO. —— 17

For some weeks past the Belgian authorities have been considering an interchange of broadcast programmes between the Belgian capital and Leopoldville (Congo). For the purpose of testing possibilities of the scheme transmissions have been carried out through the short-wave station ORK, at Bayeux (East Flanders) and with OIM, Leopoldville, working respectively on 29.04 m. (10,330 kc/s) and 29.68 m. (10,140 kc/s). As these experiments have been of a satisfactory nature it has been decided to erect a medium broadcasting station in the Congo capital for the re-transmission of the Brussels programmes.

Italy behind her Neighbours

Notwithstanding an active publicity campaign, for her broadcasting system, and an equally intense hunt for radio pirates by her police, the number of wireless licences in Italy has remained relatively low. Over the period 1929-1932 Rome did not succeed in securing more than 90,000 subscribers.

The Radio Corriere, official organ of the E.I.A.R., in commenting on the matter, states that the total number of licence holders in the country in proportion to population is much below that of other countries. Italy, the home of Galvani, Volta, Marconi and other great inventors, cannot possibly remain at the bottom of the list of nations possessing well equipped broadcasting stations.

German Propaganda

At the authorities have noticed that the political character of the broadcast programmes has seriously checked the growth of wireless licences, the studies have been instructed to organize brighter entertainments. Most of the propaganda transmissions are being diverted to the short-wave stations, and an intensive campaign in this direction is contemplated. Programmes of this nature are being made on 19.72 m. daily from B.S.T. 13.55-22.30; from 18.00-24.00 on 25.51 m. specially destined to the United States; from 25.00-03.15 on 31.28 m.; and from 01.00-03.15 on 49.93 m. On this last wavelength an official news bulletin is broadcast nightly in German, Spanish and English.

FOR some weeks past the Belgian authorities have been considering an interchange of broadcast programmes between the Belgian capital and Leopoldville (Congo). For the purpose of testing possibilities of the scheme transmissions have been carried out through the short-wave station ORK, at Bayeux (East Flanders) and with OIM, Leopoldville, working respectively on 29.04 m. (10,330 kc/s) and 29.68 m. (10,140 kc/s). As these experiments have been of a satisfactory nature it has been decided to erect a medium broadcasting station in the Congo capital for the re-transmission of the Brussels programmes.

Italy behind her Neighbours

Notwithstanding an active publicity campaign, for her broadcasting system, and an equally intense hunt for radio pirates by her police, the number of wireless licences in Italy has remained relatively low. Over the period 1929-1932 Rome did not succeed in securing more than 90,000 subscribers.

The Radio Corriere, official organ of the E.I.A.R., in commenting on the matter, states that the total number of licence holders in the country in proportion to population is much below that of other countries. Italy, the home of Galvani, Volta, Marconi and other great inventors, cannot possibly remain at the bottom of the list of nations possessing well equipped broadcasting stations.

German Propaganda

At the authorities have noticed that the political character of the broadcast programmes has seriously checked the growth of wireless licences, the studies have been instructed to organize brighter entertainments. Most of the propaganda transmissions are being diverted to the short-wave stations, and an intensive campaign in this direction is contemplated. Programmes of this nature are being made on 19.72 m. daily from B.S.T. 13.55-22.30; from 18.00-24.00 on 25.51 m. specially destined to the United States; from 25.00-03.15 on 31.28 m.; and from 01.00-03.15 on 49.93 m. On this last wavelength an official news bulletin is broadcast nightly in German, Spanish and English.
In the previous article it was stated that the loud-speaker which is recommended for this receiver (the Ampion Sonette) is fitted with three terminals. Actually the particular model is provided with five terminals, and these are fitted with coloured indicating discs. Accompanying the loud-speaker is a pamphlet which indicates the correct terminals to use for any type of output valve, and it is necessary to adhere to the makers' instructions regarding the correct matching of this speaker to the Class B valve. Although this may seem a small point, it is, in fact, one of relatively great importance, as not only is the output reduced if matching is not correct, but the quality will suffer and the loud-speaker may be blamed for not producing the quality which is expected. The output from the Class B valve which is employed, the Cossor 240.B, is approximately 2 watts, but this will not be obtained, for instance, when tuned to Fecamp in a locality such as the North of England. Do not be disappointed, therefore, if this station can only be heard at moderate loud-speaker strength. The actual circuit of the Auto-"B" is a simple detector and two L.F. stages, and the range of a detector valve is not very great. It may be relied upon, however, to bring in a fair number of stations at really good loud-speaker strength, and if a B.B.C. station is situated within a few miles of your locality you may rely upon obtaining the full output of the Class B valve, with its attendant high quality of reproduction.

Tuning

It was mentioned in the previous article that a tuning coil employing the new dust-core was employed. This coil, a Colvern product, is wound on a slightly different principle from the customary aerial coil, as may be seen from the theoretical circuit published on page 712 of the issue dated August 19th. This particular winding enables a very high degree of selectivity to be obtained, and the tuning dial must therefore be rotated quite slowly when searching for stations situated at some distance. The best way of handling the receiver is to take the tuning control in the left hand and the reaction control in the right. Advance the reaction control until the usual rushing noise is heard, but do not permit the receiver to oscillate and produce the disturbing whistling noise. Now, keeping the receiver in this condition, slowly turn the tuning control. When the receiver commences to oscillate, slacken off the reaction slightly, and so proceed through the complete tuning range. It will be found that in this way many stations will be obtained which would otherwise be passed. If the station is too loud, of course the reaction control should be turned back slightly.

Gramophone Reproduction

To use the receiver for the reproduction of gramophone records, the pick-up should be joined to the two terminals at the rear of the chassis marked "Pick-up." It does not matter which way round the pick-up is connected, nor whether or not the pick-up is fitted with a volume control. If your pick-up is fitted with three leads you will find that one of these is simply for earthing (Continued on page 848).
"Coming events cast their shadows before", "History repeats itself.

These two sayings are familiar to everyone, and it is certainly true that events which take place often can be traced to have had a counterpart some time back in our history. Furthermore, certain scientists hold that events which appear to take place in our daily lives are simply etheric vibrations, and that objects which to us appear solid and substantial do not exist in fact. It is, of course, beyond my powers to argue that this book which I now think I am typing on what to me appears to be mere fiction, I should like to explain a point which I know is inexplicable to many and which will give you an idea of the point which I raised above. Scientists tell us, and it can, of course, be proved, that many stars which we see at night ceased to exist thousands of years ago. In fact it is possible to gaze into the sky one night and "discover" a new star. That is, a star which has hitherto never been seen.

By means of astronomical computation, it is perhaps possible to state that this star existed so many thousands of years ago, and died out. Now the light from it has only just reached our earth. It has come into being, has existed for perhaps hundreds of years, and has passed out, yet the light has not reached here until after it had ceased to exist.

I know that many people cannot comprehend this fact, and when they try to visualize the distance away which this star must have been situated they become so lost that they give it up. It is the same with the problem which I now propose to deal with. To many it will appear feasible, but to others it will appear utterly ridiculous. But so long as I can give you food for thought I shall be satisfied, for I am almost convinced that I am not describing an impossibility, although it may be a long time yet before such a thing becomes possible.

Eather Waves

In reading your descriptions of the elementary principles of wireless, you will have read how the electrical impulses are "radiated" from an aerial and travel outwards in the form of etheric vibrations. That is to say, the oscillations produced at the transmitter, together with the speech or music mixed with them, are fed into the aerial wire, and the disturbance so set up travels through the medium of a substance which we call ether. We often see writers describe the radiation of wireless waves as being similar to the ripples on a pond which are caused when a stone is thrown into the water. This is not strictly correct. When the stone hits the water the ripples flow out in ever-increasing circles on the surface. Wireless waves do not travel out from the aerial on a level in the same manner. It is quite true that they consist of undulations (or rises and falls) in a similar manner to the ripples, but they travel away from the aerial in all directions, the aerial being the centre point.

Therefore they travel outwards towards the sky and downwards towards the earth, as well as along a plane parallel with the earth. When a wireless signal is transmitted from the aerial the picture part of the resultant "wave" would travel outwards and so round the earth. Would it come back to the point from which it started? The answer is "Yes". This is not guesswork, but on more than one occasion the returning oscillation has been seen in television receiver. Obviously, it will arrive at the transmitting aerial, or any receiving aerial on the way round, at a slightly later period than when it first passes. As, however, the wireless waves travel at the speed of light—namely 186,000 miles per second—the actual difference in time is very slight indeed. From the sound point of view, therefore, it is highly improbable that the second set of signals would be heard above the first set; but in a television receiver the picture which results from the second set of signals has been seen just behind the primary image, and takes the form of a shadow. It might be argued that this is not the result of receiving a signal which has already passed round the earth, but one which is deflected from the Heaviside Layer. This is believed to be a sort of ionized layer which has the property of preventing the passage of wireless waves. It is not a perfectly smooth-surfaced belt, but has irregularities in the same manner as the earth, and therefore varies in its height above the earth's surface. When the wireless waves strike this layer they are deflected back towards the earth, and naturally the relation between the angles of incidence and the angles of reflection are the same, with the result that the signal will reach the earth slightly after the direct, or earth oscillation. When, however, we remember the distance round the earth, and compare this with the probable height of the Heaviside Layer, we can see that the second signal above referred to cannot have come from above, but must be the one which has already passed round the earth.

Duration of an Oscillation

When a signal leaves a wireless aerial it has definite strength, and quite naturally this gets weaker as we get further away from the station. What is the degree of decrease in strength? Or in other words, does the signal ever die out? If you throw a stone into a pond a large ripple immediately starts to travel shorewards, but this gets smaller and smaller, until it hits against the side of the pond. It has not died out, but has been stopped by the bank at the waterside. Have you ever watched the passing of a ship at the seaside? Although many miles from land you can see the ship pass along with the water spreading out behind in what we call the "wake" of the ship. This seems to us on the shore or cliff to disappear, but if we watch the waves breaking on the shore, what do we see? After quite an appreciable distance where the waves have met with greater force, or come higher up the beach, and it is quite easy to see that these are the increased impulses due to the original disturbance right out at sea. So it is with the wireless waves; they appear to fade out to the present apparatus.

They are still travelling round and round, and if a sufficiently sensitive apparatus can be designed, it should be possible easily to turn in to a programme which has already passed by, and as each signal has its own frequency (or wavelength), and the individual signals are naturally travelling in their original order, a selective piece of apparatus should not be difficult to design which would pick out, for instance, last Wednesday's news from the North National. At first, this may sound absurd, but let me remind you again of the star episode. In case you are unable to appreciate also, the fact that the waves never really die away I would give you a small problem, one which is quite well-known. A frog has to cross a road 20ft. wide. The frog covers 6ft. with his first hop, 5ft. at the second, and so on, each successive hop being half the distance of the preceding one. How long would it take for him to cross the road? If you will eventually give it up you will find that it takes many, many years, because you get down to such infinitesimal amounts towards the end that practically no progress is made. So it must be with the wireless waves.

(Continued on page 860)
However expert or amateur you may be, this new 'Igranipak' cannot fail to save you time, trouble and expense. 'Igranipak' is a complete and compact tuning unit. Upon its rigid metal chassis are mounted:—screened coils with built-in wave-change switch, Igranic 3-gang condenser with cover, escutcheon and disc drive assembly with pilot lamp attachment, mains switch, three 5-pin valve-holders, grid leak and condenser, engraved terminal board. Wavelengths covered: 210-520m. and 900-2,000m. Complete with instructions and simple circuit diagram £5.7/6

Igranic Electric Co., Ltd.,
149, Queen Victoria St., E.C.4

Write for fully illustrated catalogue No. 1126a
At last the day of All-World Radio has arrived, and all the thrill of conquest has returned to radio reception with the introduction of a new Home Constructor's Kit Set by Lissen, which incorporates for the first time four wavelength ranges instead of two—which tunes from 12 to 2,000 metres—which brings America and Australia direct within the range of British listeners who hitherto have only known the home stations and the chief Continental programmes.

The Lissen All-Wave All-World "Skyscraper" marks a milestone in radio progress—a milestone so important that it can only be compared to the change from crystal sets to valves. As the first valve sets made practical a range of hundreds of miles, so the new principles involved in this Lissen All-Wave, All-World "Skyscraper" make practical the thousands-of-miles ranges of Australia and America. It brings two whole new wavelength bands within reach of the ordinary listener—stations and programmes which before he was unable to receive—and leaves open for future development a field which may well be used to solve all the problems of ether-congestion at present perplexing the authorities.

To Lissen, Ltd., Publicity Dept., Isleworth, Middlesex.
Please send me FREE CHART of the All-Wave All-World "Skyscraper."
NAME
P.R.884 ADDRESS
but you've never heard

And you can build the Lissen All-Wave All-World "Skyscraper" 4 for yourself. Lissen have made it a Home Constructor's Kit Set because they feel there are thousands who, when told how, can use their own hands. Building it yourself saves you pounds in first cost, it makes you an enthusiast to feel and to hear what a wonderful thing you have created!

And when you see the Great Free Chart of the All-Wave All-World "Skyscraper" - which tells you how to build it and how to work it and why it gives such marvellous results, you will agree at once that it would be wise of you to build for yourself rather than buy a factory assembled receiver when Lissen have so simplified home construction. YOU CAN'T GO WRONG! There are pictures of every part, with every wire numbered, every hole lettered, every terminal identified. Even the exact length of every connection is given to you!

But get the Chart and see for yourself—then build the Lissen All-Wave All-World "Skyscraper" 4 and become a pioneer of the World Range Radio of 1934—hear the ultra-short and short wavelength stations for the first time.

Lissen have published a splendid Chart of the All-Wave All-World "Skyscraper." It tells you exactly what to do with every single nut and screw, so that success is certain. Post coupon on left for your FREE copy.

NOW BUILD THE SET THAT SPANS THE WORLD!
A Practical Article Dealing With Its Development and Modern Improvements.

By H. J. BARTON CHAPPLE, Wh.Sch., B.Sc., A.M.I.E.E.

(Continued from page 790, August 26th issue)

THE primary reason for the renewed interest in the superhet is the vital need for greater selectivity occasioned by the ever-increasing congestion of the broadcast wave-band. It is very unlikely that this circuit would ever have come back into favour, however, if advances in other directions had not made possible efficient solutions to the problems which, so many years before, had doomed the superhet to almost complete oblivion.

In the first place, the vastly superior efficiency of modern valves makes it possible to design a highly efficient superhet receiver, giving results very much in advance of those obtained with an old seven or eight valve outfit, yet employing no more than four valves, or five at the most. This, of course, economizes in both first cost and in running expenses.

Such a set might consist of one screen-grid valve operating as normal high-frequency amplifier, another screen-grid valve or high-frequency pentode which functions as detector oscillator, one, and certainly not more than two, intermediate frequency amplifying stages, also screen-grid valves, a normal detector, and pentode output stage. Alternatively, instead of the combined detector oscillator, a triode may be used as separate oscillator, with a screen-grid valve as mixer or frequency changer.

No Re-radiation

Modern practice has had other profound effects on the design of superheterodyne receivers. In the first place, the new circuits are quite free from risk of re-radiation, and it is therefore not necessary to employ a frame aerial. Indeed, most present-day superhets are definitely intended for use with an outside aerial.

The band-pass circuit gives ample selectivity in conjunction with the additional tuned circuits represented by the anode coupling of the high-frequency pre-amplifier and the intermediate frequency transformers, all of which are far more efficient and more carefully adjusted than their early prototypes. Indeed, the inclusion of the high-frequency or pre-amplifier stage and the use of an outside aerial bears testimony to this, for both are required primarily to provide some reserve of amplification to make good the losses of signal strength associated with highly selective circuits.

Other remarkable improvements are the result of modern precision manufacture, whereby coils and output stages can be matched very accurately, and condensers ganged and trimmed to a nicety. In the superhet set of to-day, all the tuned circuits, including the local oscillating circuit, are controlled by one knob—at any rate, in the shop-made receivers. The extent to which accurate ganging of tuning and local oscillator can be achieved by the home constructor is open to debate—it certainly cannot be done properly without a considerable amount of careful adjustment and quantitative measurements, although a certain degree of success may be possible by trial and error.

Finally, the design of the present-day superhet is not open to very serious criticism on the score of quality of reproduction. The use of output valves giving large maximum output, high-class components in the audio frequency stages, and, what is much more important, the judicious use of tone control circuits placed the 1933 superhet in association with real "quality" receivers.

On the other hand, it must be admitted, modern developments in "straight" high-frequency amplification are again challenging the superhet, and as straight sets are still simpler to build and adjust, at any rate for the non-technical amateur, it is not safe to prophesy.

No necessity to make any changes in the circuit. The receiver may, therefore, be installed in a radio-gramophone cabinet and used for either broadcast reproduction or gramophone record reproduction at will, although it must be remembered that the pick-up leads must-on no account be permitted to wander about the cabinet, but must be kept short, and preferably screened.

I think you will agree, when you put the receiver into commission, that it is capable of a really high-class performance, both from the point of view of volume and purity of signals. As a final reminder—if you experience any difficulty, either in construction or operation, do not hesitate to avail yourself of the service of our Free Advice department.

FURTHER NOTES ON THE AUTO.-"B" THREE

(Continued from page 845)

makes of pick-ups require different values for the control, and therefore the makers' instructions should be rigidly adhered to in this respect. As, however, the majority of modern pick-ups are fitted with a volume control this point will not be troublesome. The automatic blassing arrangement for the driver valve will still operate when the receiver is used for gramophone reproduction, so that there is no necessity to make any changes in the circuit. The receiver may, therefore, be installed in a radio-gramophone cabinet and used for either broadcast reproduction or gramophone record reproduction at will, although it must be remembered that the pick-up leads must-on no account be permitted to wander about the cabinet, but must be kept short, and preferably screened.

I think you will agree, when you put the receiver into commission, that it is capable of a really high-class performance, both from the point of view of volume and purity of signals. As a final reminder—if you experience any difficulty, either in construction or operation, do not hesitate to avail yourself of the service of our Free Advice department.
The "All-Wave Two" is a delightfully simple receiver to operate, and the average constructor will find no difficulty in obtaining excellent results within a few minutes of connecting up. But for the benefit of new readers with little experience, and for those who are unacquainted with short-wave work, a few notes additional to the brief instructions given last week will probably be of assistance in getting the very best out of this truly remarkable little instrument.

Correct Grid Bias
First of all, it will be assumed that the set has been connected to the batteries in the manner outlined in the previous article, and that everything is ready for giving the set its first trial. The actual voltage of the high-tension battery is not critical, but should not be less than 100 volts— if it is, there will be some trouble in obtaining steady oscillation over the complete range of wavelengths. On the other hand, it is very important that the grid-bias voltage should be adjusted with some care, not only with a view to obtaining "quality" reproduction, but also to minimize the consumption of H.T. current. To find the optimum G.B. voltage it is best to tune in the most powerful station and then to try various voltages from 3 to 6. The highest voltage which enables the set to function correctly without producing a "choking" effect on loud passages of music should be employed; in all probability this will be either 4½ or 5, but it will depend to a great extent upon the particular sample of pentode valve and upon the condition of the 120-volt H.T. battery. Perhaps I may be excused for repeating the old, yet very important, warning that the set must be switched off every time a gridbias adjustment is to be made; failure to follow this rule might result in the pentode being damaged. After the most suitable G.B. voltage has been decided upon it should not require to be altered again for several weeks; or until the H.T. battery begins to run down.

Selectivity Adjustments
To avoid any unnecessary complications the set should first be tried on the broadcast bands, which are brought into use by pushing in the knob of the upper (3-point) wave-range switch. The crocodile clip attached to the pre-set aerial condenser can first of all be connected to the least selective, and, incidentally, the most sensitive tap— terminal number 3 on the short-wave coil (nearest the panel). This clip is merely opened with the finger and thumb and allowed to grip the head of the terminal. Next, set the reaction condenser to its "all out" position by rotating the knob counter-clockwise, and find the local station by slowly rotating the tuning dial. When the station has been found its strength can be increased by advancing the reaction control, taking care not to turn it so far that the set is allowed to oscillate. The next operation is to adjust the value of the pre-set aerial condenser; this is done by screwing the knob up or down until maximum volume is obtained. In almost every case it will be found that the latter condition is fulfilled when the knob is screwed as far down as possible. It should be noted in passing that the tuning will be altered to a slight extent by changing the capacity of the pre-set and should, therefore, be readjusted accordingly. After this setting has been found, selectivity will most likely be insufficient, so the crocodile clip should be transferred first of all to terminal 4 on the short-wave coil and then to terminal 2 on the broadcast one, until tuning is as sharp as is required. Provided that the aerial is suitable, and that other conditions are right, the most powerful station on the medium-wave band should not "spread" over more than three or four degrees on the tuning dial. If the "spread" is greater than this, due to the use of a particularly long or directional aerial, it would be best to reduce the length of the aerial, but tuning can also be sharpened by slightly unscrewing the knob of the aerial pre-set. This latter method is not to be recommended, because it is bound to result in the loss of signal strength, especially on more distant stations. On long waves (wave-change switch turned clockwise), tuning will be a little broader, but even then no station should cover more than seven degrees or so, whilst it should not be difficult to separate stations like Daventry and Radio-Paris; if it is, there is obviously something wrong with the aerial system.

Increasing Volume on Long Waves
In some localities it might be found that long-wave stations do not come in so loudly as may be desired. This will be due to the situation and to shielding effects, but quite often an appreciable improvement can be obtained by connecting the aerial lead-in direct to the crocodile clip.

(Continued overleaf)
Short-Wave Tuning

Short-wave tuning is perfectly easy if the operator will remember to rotate the condenser knob a few degrees past the position to which he has turned it to reach the lowest waveband (15 to 30 metres), since there are more signals to be heard here. The knob of the 3-point switch must be put to medium and the wavechanger knob turned to the left; also put the crocodile clip on terminal number 3 on the short-wave coil. Before trying for stations it is best to make sure that the set is oscillating properly, and this can be done by turning the reaction condenser first one way and then the other. After it gets to a certain point a "breathing" sound should be heard in the speaker (or phones, which are to be preferred for S.W. reception) If it should be possible to keep the set oscillating over the whole of the condenser dial between 0 and 60 degrees, and the reaction setting at the same time, so as to have similar characteristics to that employed in the tests. Nevertheless, the tuning positions mentioned above will serve as a guide, and will enable the constructor to judge with fair accuracy the positions on the dial of other stations.

Just Published

The WIRELESS CONSTRUCTOR'S ENCYCLOPAEDIA

(2nd Edition)

By F. J. CAMM

(Founder of "Practical Wireless")

This new edition is written in plain language by one of the most accomplished designers and writers on wireless construction. The whole subject is fully covered, and the volume is remarkable for the number of practical illustrations it contains.

No matter in what branch of radio you are interested, you will find everything adequately dealt with here.

Obtainable at all Booksellers, or by post 5/- from George Newnes, Ltd., 8-11, Southaman Street, Strand, London, W.C.2.

A three-quarter front view of the finished set.
TELSEN

cover every COIL requirement

At the new reduced prices, the wonderful Telsen range of components represents more than ever radio's finest value. Whatever your coil requirements, be sure and insist on Telsen for lasting efficiency at the lowest cost consistent with quality.

TELSEN DUAL-RANGE AERIAL COIL
Incorporates a variable selectivity device, making the coil suitable for widely varying reception conditions. This adjustment also acts as an excellent volume control, and is equally effective on long and short waves. The wave-band change is effected by means of a three-point switch and a reaction winding is included. Price 5/6

TELSEN H.F. TRANSFORMER COIL
May be used for H.F. amplification with Screened Grid Valve, either as an H.F. Transformer, or, alternatively, as a tuned grid or tuned match. It also makes a highly efficient Aerial Coil where the adjustable selectivity feature is not required. Price 4/6

TELSEN BAND-PASS AND OSCILLATOR COIL UNIT
Comprises the Band-Pass Coils and Oscillator Coil combined into a single compact unit. All wave change switches are ganged with single knob control. Ideal for any Superheterodyne circuit. Price 21/6

TELSEN INTERMEDIATE FREQUENCY TRANSFORMER COIL
Consists of two tuned circuits comprising a Band-Pass intermediate frequency filter tuned to 110 kc. by two pre-set balancing condensers. Adjustable for different values of stray capacities, with variable filter coupling. Price 7/6

TELSEN SCREENED TUNING COILS
With separate coupling coils for medium and long wave, highly suitable for use as aerial coils or as anode coils following a screened grid valve, giving selectivity equal to that of a well-designed band-pass filter. Price 7/6

TELSEN SUPER-HET. TRANSFORMER COILS (Type No. S 330)
For Superhet which do not employ band-pass tuning in their pre-detector H.F. stages. Mechanical construction and wave-change switch assembly almost identical with standard Telsen Screened Transformer Coils. Price 21/6

TELESE SUPERHET. COILS
Comprises two accurately matched Screened Band-Pass Coils, on a single rigid plinth base. The coils are independent of each other and can be wired for any of the three types of Band-Pass Filter to give exceptional quality with selectivity. Price 14/6

TELSEN OSCILLATOR COIL
Particularly suited to Superheterodyne circuits in conjunction with the Telsen Band-Pass Coils. Operate at a frequency separation of 110 kilocycles from the Band-Pass tuning range. Price 7/6

TELSEN FOR EVERYTHING IN RADIO
ANNOUNCEMENT OF THE TELSEN ELECTRIC CO., LTD., ASTON, BIRMINGHAM
SPECIAL G Type GANGED COILS
Complete with gramophone and wave change switch

Two Gang 25/-
Three Gang 37/6
Four Gang 50/-
On and off Switch if required 1/6 extra. State if required for battery or mains receivers.

COLPAK Type H
Comprising Ferrocort G type Coils, Tuning Condenser, Gramophone and on and off switch (state if required for battery or mains receivers).

Coils can be supplied for 1 SGHF stage receivers with Band Pass filter or Band Pass filter and Oscillator Coil for Super-heterodyne receivers.

Price 57/6

STANDARD Type F GANGED COILS
Two Gang 25/-
Three Gang 37/6
Four Gang 50/-
Single Coils 12/6

BE UP TO DATE
CONVERT THAT OLD SPEAKER BY FITTING CONTRA RESONANT CONES, & OBTAIN MOVING-COIL REPRODUCTION WITH YOUR PRESENT UNIT

COLVERN LIMITED, MAWNEYS ROAD, ROMFORD, ESSEX
London Wholesale Depot: 150, King's Cross Road, London, W.C.1

COLPVENYI D FERROCART INTERMEDIATES
Type F C 110 12/6 each
With universal mounting bracket, limited capacity adjustment and band pass coupling controlled externally.

SPECIAL G Type GANGED COILS
Complete with gramophone and wave change switch

Two Gang 25/-
Three Gang 37/6
Four Gang 50/-
On and off Switch if required 1/6 extra. State if required for battery or mains receivers.

COLPVENYI D FERROCART INTERMEDIATES
Type F C 150

R. O. BRIDGER & CO.,
No. 4 FACTORY, SHERFORD PLACE, CHURCH ST., LONDON, N.16

All in 2v., 4v., or 6v. Metalized 3d. extra.

CLASS B & G, Alkali, 7-pin base, 9/-.
A.G. MAINS VALVES, 4-volt, 1 amp. (Indirectly Heated), Prices 7/6 to 12/6. Full List post free.

362 UNBREAKABLE METAL Valves (BATTERY type) will shortly be released.

362 UNBREAKABLE METAL Valves (BATTERY type) will shortly be released.

SAVE 50% ON VALVES
Buy British 362 by post direct from the makers. There is a FULLY GUARANTEED type for every purpose. Post Free from 3/6

BRITISH ALL THROUGH.

Cheques and P.O.'s must be crossed and made payable to:-
THE 362 RADIO VALVE Co., Ltd. (Dept. W. 16), Stoneham Road, London, E.5.

362 UNBREAKABLE METAL Valves (BATTERY type) will shortly be released.

R. O. BRIDGER & CO.,
No. 4 FACTORY, SHERFORD PLACE, CHURCH ST., LONDON, N.16

All in 2v., 4v., or 6v. Metalized 3d. extra.

CLASS B & G, Alkali, 7-pin base, 9/-.
A.G. MAINS VALVES, 4-volt, 1 amp. (Indirectly Heated), Prices 7/6 to 12/6. Full List post free.

362 UNBREAKABLE METAL Valves (BATTERY type) will shortly be released.

Cash with order. Cheques and P.O.'s must be crossed and made payable to:-
THE 362 RADIO VALVE Co., Ltd. (Dept. W. 16), Stoneham Road, London, E.5.

R. O. BRIDGER & CO.,
No. 4 FACTORY, SHERFORD PLACE, CHURCH ST., LONDON, N.16

All in 2v., 4v., or 6v. Metalized 3d. extra.

CLASS B & G, Alkali, 7-pin base, 9/-.
A.G. MAINS VALVES, 4-volt, 1 amp. (Indirectly Heated), Prices 7/6 to 12/6. Full List post free.

362 UNBREAKABLE METAL Valves (BATTERY type) will shortly be released.

Cash with order. Cheques and P.O.'s must be crossed and made payable to:-
THE 362 RADIO VALVE Co., Ltd. (Dept. W. 16), Stoneham Road, London, E.5.

R. O. BRIDGER & CO.,
No. 4 FACTORY, SHERFORD PLACE, CHURCH ST., LONDON, N.16

All in 2v., 4v., or 6v. Metalized 3d. extra.

CLASS B & G, Alkali, 7-pin base, 9/-.
A.G. MAINS VALVES, 4-volt, 1 amp. (Indirectly Heated), Prices 7/6 to 12/6. Full List post free.

362 UNBREAKABLE METAL Valves (BATTERY type) will shortly be released.

Cash with order. Cheques and P.O.'s must be crossed and made payable to:-
THE 362 RADIO VALVE Co., Ltd. (Dept. W. 16), Stoneham Road, London, E.5.
NOW YOU CAN BUILD A SET FOR BOTH A.C. & D.C. MAINS

TUNGSRAM PRODUCE AN A.C.-D.C. UNIVERSAL VALVE

Tungsram have achieved it—a Universal Valve which works on both A.C. and D.C. mains.

With these Tungsram Universal Valves any circuit can be built. All valves, including rectifier, are indirectly heated—there is practically no hum—and they are really economical, for the mains consumption is only 35 watts.

Your dealer stocks them—go to him to-day! Or post the coupon for full particulars and circuit diagrams.

THERE IS A TUNGSRAM VALVE FOR EVERY RADIO NEED

<table>
<thead>
<tr>
<th>Type</th>
<th>Amp. Fac.</th>
<th>Slope, mA/V</th>
<th>Use</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 600</td>
<td>5000</td>
<td>3.0</td>
<td>H.F. Pent. D.C. Post.</td>
<td>10/6</td>
</tr>
<tr>
<td>TP 2118</td>
<td>2500</td>
<td>3.5</td>
<td>Tungsten-H.F. Fil.</td>
<td>14/6</td>
</tr>
<tr>
<td>SE 2118</td>
<td>1000</td>
<td>3.0</td>
<td>S.G. H.F. Det.</td>
<td>14/6</td>
</tr>
<tr>
<td>SE 2118</td>
<td>1000</td>
<td>3.0</td>
<td>V.M. St. Sup. S.G.</td>
<td>14/6</td>
</tr>
<tr>
<td>SE 2118</td>
<td>1000</td>
<td>3.0</td>
<td>S.G. H.T. Det.</td>
<td>14/6</td>
</tr>
<tr>
<td>SE 2118</td>
<td>1000</td>
<td>3.0</td>
<td>Sup. S.G. H.T.</td>
<td>14/6</td>
</tr>
<tr>
<td>SE 2118</td>
<td>1000</td>
<td>3.0</td>
<td>Det.</td>
<td>13/6</td>
</tr>
<tr>
<td>SE 2118</td>
<td>1000</td>
<td>3.0</td>
<td>Power Det.</td>
<td>17/6</td>
</tr>
<tr>
<td>SE 2118</td>
<td>1000</td>
<td>3.0</td>
<td>Power Rect.</td>
<td>20/6</td>
</tr>
<tr>
<td>SE 2118</td>
<td>1000</td>
<td>3.0</td>
<td>Mother Rect.</td>
<td>17/6</td>
</tr>
</tbody>
</table>

COUPON

To TECHNICAL DEPT., TUNGSRAM LTD.,
72, OXFORD STREET, LONDON, W.1.

Please send me full details of Tungsram Universal A.C.-D.C. VALVES, AND OF THE COMPLETE TUNGSRAM RANGE.

NAME

ADDRESS

Pa.W.
'MATCHED PERFECTION'
-a necessity for
every modern set

THE high standard of selectivity demanded to-day makes it essen-
tial to have ganged condensers matched to the nth degree.
For this reason British Radiophone Condensers are invariably
chosen by professional designers and by private constructors. There
are no more perfect or accurately matched components on the
market. Radiophone condensers are guaranteed to be within 1\% of
1\%, and each product has to pass sixteen different tests before
despatch. The all-steel frame and girder construction ensure
freedom from mechanical distortion and give you permanent
matched perfection.
You can use any Radiophone product with confidence. But to
be SURE of satisfaction INSIST on British Radiophone.

RADIOPHONE
MATCHED PERFECTION

BRITISH RADIOPHONE LTD., ALDWYCH HOUSE, ALDWYCH, W.C.2

INSIST ON 'MATCHED PERFECTION'

SOLUS
SPECIFICATION
for the
"SUPERSET"

No more haphazard matching!
Seventeen transformer ratios for really
accurate matching to any power valve
or pentode and four ratios for Class B
or QPP all available on one speaker
by a simple switch adjustment! Added
sensitivity due to the "Mansfield",
magnetic system and better balance
through accurate matching give a per-
formance you must hear to believe!

Write NOW for the W.B. MICROLODE folder
A SHORT time ago in PRACTICAL WIRELESS I drew the attention of readers to the importance of the source of light which has to be modulated by the incoming radio signals in any form of television receiver. Upon the successful functioning of this part of the complete apparatus will depend the brightness and colour of the resultant images.

In the simple disc model machine a neon lamp is utilized, but the prime objection here is the relatively low intensity of light available for building up the images. With the ordinary type of neon lamp, therefore, it is not possible to project the light through the small holes in the disc so that the image can be viewed on any form of translucent screen placed in front of the revolving disc. On the other hand, I pointed out recently in another "Tele-Talkie" article how developments are taking place rapidly in these gas-filled light sources, and should these materialize in a simple practical form one of the prime objections to employing disc television receiving apparatus may be removed.

Glow Modulation

In addition, of course, we have the hot cathode or crater point type of neon lamp, which furnishes a relatively intense spot of light that can be employed in conjunction with a mirror drum to produce an image field on a front screen, as in the experimental model illustrated in Fig. 1. Both the flat plate neon lamp, for use with a perforated disc, and the crater point neon lamp, for projection work with mirror drums, are shown in Fig. 2, left and right respectively, and it should be remembered that these lamps are worked direct. That is to say, they are first of all "struck" or made to glow with a definite applied voltage and current, which acts as a polarizing source, and then their resultant illumination is made to vary (glow darker or brighter) according to the strength of the received television signal passed on from the radio set, and in this way build up the image in association with the scanning device.

As I indicated earlier, however, the images as a rule lack intrinsic brilliancy, and for mirror drum working at least a light modulation device of greater efficiency is called for. As a result of this many experimenters and television workers have turned their attention to what is termed the Kerr cell.

The Kerr Effect

A complete explanation of the Kerr effect and the manner in which it is utilized is too involved to deal with here, so I shall content myself with a brief analysis. A Kerr cell consists principally of a combination of plates arranged alternately somewhat as in a fixed condenser, and interposed with separators at the edges, all of which is immersed in a liquid called nitro-benzine, or a medium of similar electro-optical properties. Now anyone who has had anything to do with the study of light knows that a beam of light consists of transverse vibrations in all directions at right angles to the direction of propagation.

Nicol Prism Action

If we take a Nicol prism and insert it in the light beam its action is to select the component of all these vibrations lying in the direction of a given line, fixed with respect to the prism. For the benefit of those readers who are unfamiliar with a Nicol prism, let me enlighten them by stating that it is a suitable length of Iceland spar (samples of which are shown in Fig. 3Y cut along the long diagonal, ground and joined together again by a thin layer of Canada balsam. The refractive index of Canada balsam for any light is intermediate to the refractive indices of the Iceland spar for the ordinary and extraordinary rays into which the light (Continued overleaf)
Ray is split. If it is therefore possible to get rid of what is known as the ordinary ray by total reflection, while the extraordinary ray passes on practically unaffected.

The ray which passes through the Nicol prism is polarized in a certain plane, and to prove that the light is in this peculiar condition we have only to take a second Nicol prism and view the light through it. When the two Nicol prisms are placed so as to have the similar crystalline faces parallel to one another, the second Nicol will transmit the light which has passed through the first Nicol. On the other hand, if the second Nicol prism is rotated through a right angle and thus set so as to pass only components in a direction at right angles to that of the components passed by the first, the net result would be that no light would get through the combination.

The two Nicols are then said to be "crossed" and if either is rotated, light will again appear. The first Nicol prism is called the polarizer, and the second the analyser, because by it the polarized condition of the ray, after it has passed through the polarizer, is recognised.

Cell Action

The foregoing may at first sight appear irrelevant to the subject we are discussing, that is, a certain aspect of television, but in reality it is of the greatest importance, for Nicol prisms and their peculiar "reactions" to light play a most important part in a Kerr cell combination. If we place one of these cells between the two Nicol prisms, whose action we have just been discussing, and apply a varying voltage to it as indicated in Fig. 4, then it has the effect of distorting the line of vibration passing through the first prism into an ellipse, of eccentricity progressively changing as the applied electrical voltage between alternate layers is increased, passing through a circle and eventually becoming a line of vibration at right angles to the initial direction.

Accordingly, a progressively increasing component is available for passage through the second or analysing Nicol prism. With a good cell the variations of light passing through the combination are practically proportional over a definite range to the corresponding voltage variations due to an applied signal. If we make the voltage variations those due to received television signals passed on from a radio receiver, the reader will at once see that with this device we have a method of modulating a light beam so that the light variation is almost proportional to the light scanning analysis which produced the signal originally at the transmitting end with the aid of photo-electric cells.

Now this scheme has been known and tried by television investigators for some time, but apart from results obtained in a laboratory under the closest attention, little success seems to have been achieved. Originally, the cells, for good action, needed a few thousand volts and, according to the degree of craftsmanship used in building up the cell, gave images which were not consistent. Naturally amateurs have made up cells themselves when building television receivers of the projector type, but although images of a kind have been obtained, they were disappointing and crude, and obviously this course is one which is not recommended to readers of Practical Wireless any more than it would be suggested that they make up valves for themselves and expect to achieve good results. The production is specialist's work, backed by considerable experience.

A New Product

Attention should therefore be turned to the proper commercial product, and I am glad to be able to pass on the first news concerning such a device. It is known as the Baird Grid Cell Unit, being marketed by Baird Television, Ltd. The complete arrangement is seen in Fig. 5, the cell alone being featured in Figs. 6 and 7, and these illustrations call for an explanation.

Briefly, the cell is made up from a set of very thin interleaved electrodes as indicated in Fig. 6. These are then immersed in a fluid in a glass container and hermetically sealed, giving a clear aperture for the passage of light which is one tenth of an inch square. The sealed cell is shown in Fig. 7, and this is mounted finally in a holder or insulating base having two terminal pins, as seen on the right of Fig. 5. The cell is then mounted in a shaped holder so that it is positioned between two light polarizing or Nicol prisms. These prisms, whose action I described earlier, have been made to a very efficient formula, and in this way effect a considerable increase in light, a factor which was one of the objections to the original Kerr cell Nicol prism combinations. In the commercial unit the prisms are orientated one to the other so that a minimum of light is passed through the assembly when zero voltage is applied across the cell pins, this corresponding to the "crossed" condition to which I referred in my explanation of the Nicol prism action.

Cell Range

What happens next when a difference of potential which can be varied is given to the cell electrodes through the medium of the pair of pins ? This is shown quite clearly in Fig. 8 where we have light passed through (that is, light intensity) plotted vertically against polarizing volts horizontally. First of all, the curve indicates a somewhat gradual rise up to a value of 300 volts, and .

Fig. 6.—The grid cell resembles somewhat this form before it is immersed in the fluid.

Fig. 7.—The cell hermetically sealed in its glass container.

Fig. 8.—The light intensity polarizing volts curve for the grid cell combination.

Fig. 9.—Indicating how the maximum cell range can be connected to the output valve.

Fig. 10.—The unit with lamp removed, and showing the condenser lens.
TESTS WITH A NEON LAMP
How It Can Be Used for the Checking of High Resistances by the "Flash" Method. By W. B. RICHARDSON

The ordinary neon lamp as sold for domestic lighting has other applications than that of an "electric night light." Perhaps its greatest sphere of usefulness is as a testing device for the radio constructor. Continuity and insulation tests, condenser tests, and the determination of the values of resistances are all possible with the aid of one of these useful gadgets.

Before carrying out any work with the lamp it is just as well to mount it in a holder on a small wooden base. A small "charging" board as used for accumulator testing from D.C. mains will answer the purpose very well. Such a board is illustrated in Fig. 1 and the wiring underneath is given in Fig. 2.

A "Flashing Sign"
The usual application of the lamp by the radio constructor is as a circuit tester, and indeed, in this direction it is very useful. However, the purpose of this article is to give not only these tests but to describe a further use of the lamp, namely, a means of finding out the values of grid leaks and high resistances. By a suitably arranged circuit the lamp will give a series of intermittent flashes, the speed of the flashes determining the value of the resistances under test. Besides being a very interesting experiment in itself—it provides quite a novel "flashing sign"—without any mechanical mechanism—it is an easy method of checking just those resistances which are usually most difficult to measure, namely, very high ones. With ordinary meters accurate results are very difficult to secure owing to the small readings obtainable.

The neon lamp does not, of course, replace meters, but may be looked upon as supplementary to the ordinary moving-iron instruments. It must be admitted that the method I shall describe is one of substitution, but by drawing a simple graph many different values can be determined from two or three "known" resistances.

Useful Tests
Before going into details of the "flashing sign" tests I will describe some of the more common applications of the lamp.

By fitting two insulated test prods to the terminals on the lamp board the lamp may be quickly connected to any part of the circuit or component under test without fear of the conductivity of the constructor's hand upsetting the results. The prods can be bought or are easily made from pieces of vulcanite rod with the flex passing through the centre and connecting with metal contacts sticking from the end of the prod. A couple of old fountain pens will make excellent prods. A hole should be drilled in the top of each pen for the flex to pass through while the original nib or a cheap brass one will do as the contact. The wire is soldered to the nib before it is inserted in the feed as in Fig. 3.

To make the lamp glow it will have to be connected to an H.T. battery, or plugged into D.C. mains. When buying the lamp the voltage required should be stated. On touching the two prods together the circuit will be completed and the lamp will glow.

Fig. 1.—The completed neon lamp tester.

Testing Condensers
Owing to the comparatively high voltages used the lamp will provide a very stringent test of insulation, and is therefore particularly useful in testing condensers. The test prods are held in contact with the terminals of the condenser for a minuto or two as in Fig. 4. If the condenser is leaky a series of flashes will occur in the lamp, that is to say, that after a short time it will glow momentarily and then go out again immediately, and then after a similar period of time it will suddenly flash again. If this only occurs at long and regular intervals, say once every minute, the condenser may be considered as O.K. although, of course, a perfect condenser would give no flashes at all. However, in a test of this sort allowance has to be made for any slight leakage in the lamp holder, wiring, and test prods, which would give the same effect as leakage in the condenser, so that an occasional flash does not mean the condenser is a "dud." In fact, this test is so searching that a flash every minute or half minute represents a leakage resistance of not less than several million ohms. It is when the flashes occur several times per minute or when they gradually increase in frequency that the insulation may be taken as very poor or broken down. This test may be applied equally well to fixed or variable condensers but cannot, of course, be used for the electrolytic type.

A multitude of other insulation tests may be carried out by placing the prods across the suspected part. For instance, the insulation between the sockets of a valve-holder can be tried by placing the prods in the sockets themselves, or again, the insulation between the windings of a...
As an example we may find that a grid leak of two megohms makes the lamp just glow, whereas a half megohm leak makes about a quarter of the total area of the electrodes light up. If a leak of unknown value is then submitted to the test and found to give a glow area smaller than that of the half megohm leak but more than that of the two megohm one, then we may fairly safely assume its value to be in the region of one megohm.

Obviously this method gives only approximate results, and has the drawback that a large number of known resistances is needed in order to be able to determine the value of any unknown one. A far more accurate and reliable method is that mentioned earlier, namely, the "flash" method.

Measuring Resistances

The circuit necessary is shown in Fig. 5. It consists essentially of a large fixed condenser in series with the lamp, and an H.T. battery or other direct current source, while the resistance under test is placed across the condenser. A good idea is to discard the prods and connect the condenser and the lamp flashed 30 times per minute. Following up from the 30 line on the graph we see that it meets the curve at the same point as the horizontal line marked 2 meg. The value of the resistance is therefore 2 meg. In the same way a resistance giving 18 flashes would be approximately 2.5 megohms.

The accuracy of these results depends to a large extent on getting the lamp to flash at regular and easily countable intervals. To ensure this, a little care in the adjustment of the voltage and the capacity may be required. The flashes occur too quickly to count then larger

LISTENING IN TO THE FUTURE

(Continued from page 84)

They got weaker and weaker, but they must take an enormous time to really die right away, and all that we need is a sufficiently sensitive apparatus in order to pick them up.

From the above remarks, and from the fact that events are probably present in the atmosphere as electrical impulses, or electric waves, can we not, given the apparatus, "tune-in" as it was to, the past. If it can be eventually proved that an event does not actually take place, but is only a vibration in certain fixed vibrations, and should it be possible to design apparatus to receive those vibrations and convert them into sound, then the whole thing could be re-created, and by the same reasoning so could the future.

Bearing in mind that "there is nothing new under the sun," and that "coming events cast their shadows before," events which may occur next year should already exist in the form of these vibrations, and there may come a time when suitable apparatus will be available which could store a vibration of a definite period and convert it into sound or vision, and which would enable us, in effect, to see into the future.
NEW R.S.A. "ALPHA" P.M. MOVING-
COIL SPEAKER DE -LUXE,
with built- in
input transformer.
$2.00.
Balance in 7 monthly payments of 5/9.

NEW W.B. P.M.A.A. MICROLODE
PERMANENT MAGNET SPEAKER
complete with switch controlled
multi-ratio input Transformer.
Send
Cash or C.O.D.
Carriage paid.
$2.00.
Balance in 7 monthly payments of 5/9.

1934 SUPER-SET
PILOT AUTHOR KITS-
YOURS FOR
$14/9
KIT "A"
As Kit "A," including valves and cabinet.
CASH or C.O.D.
Carriage paid, Balance in 11
payments of 5/9.

KIT "B"
As Kit "A," but with
valves only.
CASH or C.O.D.
Carriage paid, 8/12.
or 12 monthly payments
of 5/9.

KIT "C"
As Kit "A," but complete
with Valves and Cabinet.
CASH or C.O.D.
Carriage paid.
$12 7 9
or 12 monthly payments of 22/6.

BUILD YOUR NEW SET
INTO THE INLAID WALNUT ADAPTRAGRAM

LISSEN KITS-
7-VALVE SUPER-HET
YOURS FOR
$15/-
Complete with Lissen Valves in
Sealed Cartron, Cash or C.O.D.
Carriage paid, 8/17.
Balance in 11 monthly payments of 6/5.

NEW LISSEN SKYSCRAPER FOUR
ALL-WAVE CONSOLITE CABINET
SEND MODEL, complete kit, comprising all
parts, inc. R.C.A. Quality Receiver,
Cash or C.O.D.
Carriage paid, 11/2.
Balance in 11 monthly payments of 15/-.

NEW BLUE SPOT 69.P.M. PERMANENT
MAGNET MOVING-Coil Speaker and
AMPLIFIER.
Complete with Valves, inc. Fixed
Compartment, Cash or C.O.D.
Carriage paid, 8/2.

NEW GARRARD MODEL 292A.
12-In. Turn-
table, inc. phonograph
arm, Cash or C.O.D.
Carriage paid, 6/10.

NEW ATLAS ELIMINATOR C.A.25 for A.C.
Mains, Cash or C.O.D.
Carriage paid, 15/0.

NEW TELESCOPE
DECKS
and Accessory
Parts, inc.
B.V.A. 240B valve, wire, and screws, etc.
Cash or C.O.D.
Carriage paid.
37/6.

NOTE:
All accessories are
only
Send
5/-
extra.

AMAZING OFFER
PETO-SCOTT
PERMANENT MAGNET SPEAKER
VINTAGE QUALITY
1932 MODEL
$5.00
T.E.L.S.E.N RADIO
TELSER CLASS "B" 4 CHASSIS
Send Kit in Sealed Cartron, 7/-
Cabinet and Speaker, Cash or
C.O.D. Carriage paid, 8/17.
Balance in 11 monthly payments of 7/-.

TELSER CLASS "B" 4 CONSOLITE KIT,
Send excluding Valves, inc. Fixed
Compartment, Cash or C.O.D.
Carriage paid, 8/10.

TELSER DR. RAHN M.T. GPSPW 2/65
with 3-in.
Cabinet, Cash, or
C.O.D. Carriage paid, 1/6.
Balance in 8 monthly payments of 9/-.

IMMEDIATE DELIVERY

CASH or C.O.D.
Carriage paid.
8/12.

Telephone: (Evelyn) 0267/1.
Walt End Station: 23, High Braid, London, L.P.O.

Dear Sir,
Please send me CASH/C.O.D./D.P.
Pilot Class "B" Conversion Kit
Contains your present Radio Set "Class B" with
Amplification. Complete with all necessary
components, including driver transformer,
"Class B" output chum, W.P. valve,
mains, and other Parts unobtainable from your local dealer.
Send for complete List of Parts and Carriage.
Yours for 8/3.

DIRECT FROM FACTORY.
No MIDDLE-
MAN'S PROFITS. Built by master artisans
of the trade. Real input units, finished,
tuned, French-polished. With receive-
modified by the new METAPLEX PROCESS. Front
really grilles to take your set. Ample room
for Speaker and cabinets. Size 39" high, 28" wide, 15" deep.
Screwed back up, 14" speaker compartment.
BRITISH MADE 21" X 13."
Piano finish or veneer for sets up to 18" X 8." Buffe-
extra 5/- extra.
Balance in 11 monthly payments of 9/9, Carriage paid.
CASH or C.O.D. 63/-
CARRIAGE 26 EXTRA.

IMPORTANT.
We are not responsible for damage or loss
or delays in conveying your parts to you.
We do not send in Any bulk.
Send for complete List of Parts and Carriage.
No extra charges are made.

Telephone: (Evelyn) 0267/1.

Pilot Class "B" Conversion Kit

DIRECT FROM FACTORY.
No MIDDLE-
MAN'S PROFITS. Built by master artisans of the trade.
Real input units, finished, tuned, French-polished.
With receive-modified by the new METAPLEX PROCESS. Front really grilles to take your set. Ample room for Speaker and cabinets.
Size 39" high, 28" wide, 15" deep. Screwed back up, 14" speaker compartment.
BRITISH MADE 21" X 13." Piano finish or veneer for sets up to 18" X 8." Buffet extra 5/- extra.
Balance in 11 monthly payments of 9/9, Carriage paid.
CASH or C.O.D. 63/-
CARRIAGE 26 EXTR.

IMPORTANT.
We are not responsible for damage or loss or delays in conveying your parts to you. We do not send in Any bulk. Send for complete List of Parts and Carriage. No extra charges are made.

Telephone: (Evelyn) 0267/1.

VITAL VESTMENTS ONLY.

WE ARE NOT RESPONSIBLE FOR DAMAGE OR LOSS OR DELAYS IN CONVEYING YOUR PARTS TO YOU. WE DO NOT SEND IN ANY BULK. SEND FOR COMPLETE LIST OF PARTS AND CARriage. NO EXTRA CHARGES ARE MADE.

Telephone: (Evelyn) 0267/1.

Pilot Class "B" Conversion Kit

DIRECT FROM FACTORY.
No MIDDLE-
MAN'S PROFITS. Built by master artisans of the trade.
Real input units, finished, tuned, French-polished.
With receive-modified by the new METAPLEX PROCESS. Front really grilles to take your set. Ample room for Speaker and cabinets.
Size 39" high, 28" wide, 15" deep. Screwed back up, 14" speaker compartment.
BRITISH MADE 21" X 13." Piano finish or veneer for sets up to 18" X 8." Buffet extra 5/- extra.
Balance in 11 monthly payments of 9/9, Carriage paid.
CASH or C.O.D. 63/-
CARRIAGE 26 EXTR.

IMPORTANT.
We are not responsible for damage or loss or delays in conveying your parts to you. We do not send in Any bulk. Send for complete List of Parts and Carriage. No extra charges are made.

Telephone: (Evelyn) 0267/1.

VITAL VESTMENTS ONLY.

WE ARE NOT RESPONSIBLE FOR DAMAGE OR LOSS OR DELAYS IN CONVEYING YOUR PARTS TO YOU. WE DO NOT SEND IN ANY BULK. SEND FOR COMPLETE LIST OF PARTS AND CARriage. NO EXTRA CHARGES ARE MADE.

Telephone: (Evelyn) 0267/1.

Pilot Class "B" Conversion Kit

DIRECT FROM FACTORY.
No MIDDLE-
MAN'S PROFITS. Built by master artisans of the trade.
Real input units, finished, tuned, French-polished.
With receive-modified by the new METAPLEX PROCESS. Front really grilles to take your set. Ample room for Speaker and cabinets.
Size 39" high, 28" wide, 15" deep. Screwed back up, 14" speaker compartment.
BRITISH MADE 21" X 13." Piano finish or veneer for sets up to 18" X 8." Buffet extra 5/- extra.
Balance in 11 monthly payments of 9/9, Carriage paid.
CASH or C.O.D. 63/-
CARRIAGE 26 EXTR.

IMPORTANT.
We are not responsible for damage or loss or delays in conveying your parts to you. We do not send in Any bulk. Send for complete List of Parts and Carriage. No extra charges are made.

Telephone: (Evelyn) 0267/1.

VITAL VESTMENTS ONLY.

WE ARE NOT RESPONSIBLE FOR DAMAGE OR LOSS OR DELAYS IN CONVEYING YOUR PARTS TO YOU. WE DO NOT SEND IN ANY BULK. SEND FOR COMPLETE LIST OF PARTS AND CARriage. NO EXTRA CHARGES ARE MADE.

Telephone: (Evelyn) 0267/1.
WALK IN and hear CLASS B demonstrated

at one of the Multitone Dealers, with the components that first made Class "B" available to the public, or with the new MULTITONE CLASS "B" CONVERTER

You have only to plug this converter into any battery set to convert it immediately to Class "B." There is no interference whatever with the existing circuit. Universally adapted to any driver or Class "B" valve, and any loudspeaker. No terminals or switches.

PRICE ONLY 37/6

Without Valve

Other Multitone Products:

BEPU Driver Transformers (ratios : 1/1, 1.6/1 and 2/1)...

PUCHOKE for matching your existing speaker to Class "B" output...

Tuned Tone-control transformers, in the 1st L.F. stage, give 30% extra H.T. saving...

Graded Potentiometer...

If you do not know who is your nearest Multitone dealer, please write to us (Dept. H).

"MULTITONE BRINGS SOUND TO LIFE"

The Multitone Wireless Set for the Deaf was the sensation of the Radio Exhibition, Olympia. Write for particulars of this amazing new invention.

THE LATEST & BEST STATION SELECTOR

Will give aerials every desired degree of selectivity, cutting the interference from other stations. It is also a most efficient volume control. Can be used with any set on any aerial. Fixed in a few moments, and requires no alterations. A marvellous invention.

Also supplied as the ONLY SELF-CONTAINED VARIABLE AERIAL

already part of SUPERIAL. Electron's Super Aerial. In this form it is positively the world's finest and most selective aerial. There is £100 Free Lightning Insurance with SUPERIAL.

100 FEET 75 FEET 50 FEET

4/6 3/6 2/9

Ask your dealer, or in case of difficulty send remittance to:-

The NEW LONDON ELECTRON WORKS Ltd.

6, EAST HAM LONDON E.6

THE ELEMENTS OF WIRELESS

By RALPH STRANGER

Indispensable to everybody who wants to understand the working of wireless receivers. The Author starts with elementary principles, covers the whole field of wireless reception, both from the theoretical and practical points of view, and finishes with a complete survey of a four-valve wireless receiver, explaining its working from the aerial terminal to the loud-speaker.

On sale at all Booksellers, or by post 3/6 from George Newnes, Ltd., 8-11, Southampton St., Strand, London, W.C.2
TELSEN TUNING
CONDENSERS
cover every requirement

TELSEN AIR-DIELECTRIC
TUNING CONDENSERS
The precision and sturdy construction of this component ensures years of faithful service. Its frame is braced by three solid pillars, and the vanes clamped at three points, making distortion impossible. The rotor is also built into a rigid unit, generous bearings preventing backlash or end-play.

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>'00025 mfd.</td>
<td>2/6</td>
</tr>
<tr>
<td>'00035</td>
<td>3/6</td>
</tr>
<tr>
<td>'0005</td>
<td>3/6</td>
</tr>
</tbody>
</table>

TELSEN DIFFERENTIAL
CONDENSERS
Similar in design and construction to the reaction condensers. Supplied complete with knob.

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>'0003 mfd.</td>
<td>2/-</td>
</tr>
<tr>
<td>'00015</td>
<td>2/-</td>
</tr>
<tr>
<td>'0001</td>
<td>2/-</td>
</tr>
</tbody>
</table>

TELSEN BAKELITE
DIELECTRIC TUNING CONDENSERS
Represent really remarkable value at the new reduced prices. Very rigid construction, with high grade dielectric, ensuring permanently accurate spacing with minimum losses. Exceptionally compact, complete with knob.

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>'0003 mfd.</td>
<td>2/-</td>
</tr>
<tr>
<td>'0005</td>
<td>2/-</td>
</tr>
</tbody>
</table>

TELSEN REACTION
CONDENSERS
 Entirely re-designed. Now incorporate several valuable improvements with no increase in price, the whole unit being also now enclosed in a strong dust-proof bakelite case. Supplied complete with knob.

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>'0003 mfd. W.354</td>
<td>1/9</td>
</tr>
<tr>
<td>'00015 W.355</td>
<td>1/9</td>
</tr>
<tr>
<td>'0001 W.356</td>
<td>1/9</td>
</tr>
<tr>
<td>'00075 W.357</td>
<td>2/-</td>
</tr>
<tr>
<td>'0005 W.358</td>
<td>2/-</td>
</tr>
</tbody>
</table>

TELSEN AERIAL
SERIES CONDENSER
With Switch
Built on similar lines to the new reaction condensers, providing an ideal selectivity and volume control. Supplied complete with knob.

Max. Cap. | Price |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>'0003 mfd. No. W.350</td>
<td>2/-</td>
</tr>
</tbody>
</table>

TELSEN FOR EVERYTHING IN RADIO
ANNOUNCEMENT OF THE TELSEN ELECTRIC CO., LTD., ASTON, BIRMINGHAM
On the Ultra Short Waves

SHORT-WAVE activities seem to be on the increase again, assisted no doubt by the possibility of television on a few metres. By the way, there was a lot of hush-hush work going on at half a metre; possibly something really interesting may be announced shortly in this direction.

Iron-cored Tuning Coils

IRON-CORED tuning coils are becoming popular, and many constructors have been surprised to find that they have rendered their sets unstable by fitting these new coils. This is, of course, a compliment to the coil and the reverse to the receiver, which is either badly laid out or lacking in screening.

Dust Bags and Moving-coil Speakers

MANY moving-coil loud-speakers are equipped with a little muslin bag in which they are totally shrouded, with the intention of preventing dust from entering the coil and the pole piece. This is a very sensible precaution, but, unfortunately, few constructors can reconcile the bag as part of the equipment, and make the fatal mistake of removing it.

Cinemas and Acoustics

MANY of our large new cinemas have been designed with a view to good loud-speak reproduction, but the critical listener cannot fail to notice that many fall short of the standard reached by others. Is this, of course, a compliment to the cinema noted for its acoustics?

Mains Valve with Three Grids

ONE of the latest American mains valves is equipped with three grids, and by suitable connection it may be used as a pentode or a power valve, or may be adjusted for a maximum undistorted output ranging from about 300 milliamps to 6 watts; thus the valve can be adjusted to give the best performance on whatever H.T. current is available.

Emergency Chokes

OCCASIONS doubtless arise when a smoothing choke breaks down, and it is seldom that anybody attempts to patch up the trouble before the choke is replaced. One way out of the difficulty is to use the secondary winding of a spare smoothing choke, realising that with values of this type large outputs and excellent quality can be obtained from moving-coil speakers. Needless to say, these high voltages are obtained from some sort of mains unit as a rule, and many amateurs use resistances to cut down the high voltage output to a more handy figure for feeding the anodes of the other valves in the receiver. This is, of course, wasteful in running cost, but at a few pence per unit the difficulty becomes less serious, although in many ways it would be preferable to utilise a second rectifier to give a lower voltage output for feeding the other valves. The first cost is then much higher, it is true, but in some cases it is practically essential that a separate rectifier be used to supply a higher voltage. With one make of A.C. mains variable-mu valves it is desirable that such an arrangement be used. While it is a simple matter to calculate the correct voltage dropping resistances for ordinary screened grid or detector valves when operated from a 400-volt high-tension supply, this calculation does not hold good in the case of multi-mu valves, because the correct value of resistance depends upon the current flowing in the circuit and the anode current to the multi-mu valves varies between wide limits when the grid bias is adjusted for volume control purposes. As a result, when the anode current is decreased by increasing the grid bias, the drop in voltage in the voltage-dropping resistance is correspondingly decreased and the actual voltage on the anode rises. Owners or builders of receivers employing multi-mu valves in addition to high voltage valves for the output stages should therefore use a second rectifier unit if really satisfactory results are desired, the second rectifier giving a reduced voltage of about 250 volts. It is practically impossible to design a perfect self-compensating system whereby a voltage dropping network for use on a 250-volt supply maintains the anode voltage to multi-mu valves constant for all values of grid bias.

NOVEL USE FOR RADIOGRAM WRAPPINGS

DID you know that “His Master’s Voice” radiograms are now delivered wrapped up in quite good flannelette? It seems that waxed paper was used for covering radio receivers, gramophones, and radio-gramophones originating from “His Master’s Voice” factories, but sometimes the cabinets arrived unwrapped. The Gramophone Company then decided to use a softer material and ultimately chose flannelette. This step caused a minor sensation with girl assistants in radio stores, for they all claimed the material for the making of pyjamas, overalls, and other garments. Others have made hiking shorts of the material, dying them to the desired shade by the use of cold coffee, and a proprietor of a large radio shop who sold the set was entitled to the flannelette. Well, well! This is yet another industry that has benefited by radio.

Snake Charming by Wireless

A PARIS radio paper states that at the Algiers studio, before an invited audience, a native Arab snake-charmer, instead of using for her performance the conventional reed pipes, was able to make her serpents dance to “canned music.” Later, as a further experiment, in order to show that any music would charm these reptiles, they were made to sway rhythmically to the strains of a foreign syncopated dance band, the performance of which was being relayed to North African listeners. It may be true—and also, it may not!

The Diode Valve as Detector

THERE are quite a number of people living so close to the powerful regional stations that they do not know how to control the volume owing to the enormous strength even when the serial is removed altogether. One useful suggestion is to use a diode as the detector, which has the advantage in this case of being extraordinarily insensitive, and permits the volume to be reduced to reasonable proportions even when used under the transmitting aerial.

Preventing Break-through on the Long Waves

NOTHING trouble experienced by listeners so unfortunately situated is the break-in of the short-wavelengths when trying to receive a long-wave station, but a No. 60 or 75 coil of really good design will invariably stop the trouble if placed in series with the serial when listening to the long-wavelengths. A shorting switch can, of course, be used for cutting out this coil when it is desired to listen to the short-waveband.

DON'T LEAVE MONEY IN THE DUST BIN

LET us take your old Set or components in PART EXCHANGE for New ACCESSORIES, or PART KITS—in fact, any RADIO APPARATUS. Best estimates paid by Cash or H.P. Send as your old equipment by return of and NEW KIT, SET or Miscellaneous Components required. WE GIVE YOU MORE.
the rise is then much more rapid and almost straight up to 550 volts.

After this, we have an effect known as "greater dispersion" taking place, that is to say, there is a different treatment for different colours of the spectrum, and in consequence no greater quantity of light is passed through, but the colour of the film changes red, brown, and deep purple.

An examination of this characteristic curve of the Grid Cell unit makes it clear that the maximum range of voltage over which the cell should be worked is 300 to 500 volts (X to Y of Fig. 8). As in the case of ordinary L.F. amplifying triodes, where it is necessary to apply a bias of the valve in order to bring the datum point (Z) of the curve into the direct current range, the cell is never used in this condition. In this new unit it is natural that care should be taken that this condition is not entered into, and that it is unnecessary to apply a bias of the valve.

When using the new cell, apart from the question of mounting, it is necessary to observe one or two points if a premature failure is to be avoided. First of all, the magnitude of the polarizing voltage is much greater than for valve working, namely about 425 volts, and secondly it is positive instead of negative, being shown by Z in Fig. 8. Under this polarized condition, full modulation is achieved by a signal voltage of 125 volts.

In order to achieve the greatest efficiency from this new unit it is natural that care should be taken to avoid the use of too great a bias of the valve, reducing the life of the cell.

As a guide to this worn out or renewed cell, it is natural that care should be taken that this condition is not entered into, and that it is unnecessary to apply a bias of the valve.

When fitted into the holder the cell has a yellow light spot. As a guide to this worn out or renewed cell, it is natural that care should be taken that this condition is not entered into, and that it is unnecessary to apply a bias of the valve.

An examination of this characteristic curve of the Grid Cell unit makes it clear that the maximum range of voltage over which the cell should be worked is 300 to 500 volts (X to Y of Fig. 8). As in the case of ordinary L.F. amplifying triodes, where it is necessary to apply a bias of the valve in order to bring the datum point (Z) of the curve into the direct current range, the cell is never used in this condition. In this new unit it is natural that care should be taken that this condition is not entered into, and that it is unnecessary to apply a bias of the valve.

When using the new cell, apart from the question of mounting, it is necessary to observe one or two points if a premature failure is to be avoided. First of all, the magnitude of the polarizing voltage is much greater than for valve working, namely about 425 volts, and secondly it is positive instead of negative, being shown by Z in Fig. 8. Under this polarized condition, full modulation is achieved by a signal voltage of 125 volts.

In order to achieve the greatest efficiency from this new unit it is natural that care should be taken that this condition is not entered into, and that it is unnecessary to apply a bias of the valve.

When fitted into the holder the cell has a yellow light spot. As a guide to this worn out or renewed cell, it is natural that care should be taken that this condition is not entered into, and that it is unnecessary to apply a bias of the valve.

After this, we have an effect known as "greater dispersion" taking place, that is to say, there is a different treatment for different colours of the spectrum, and in consequence no greater quantity of light is passed through, but the colour of the film changes red, brown, and deep purple.

An examination of this characteristic curve of the Grid Cell unit makes it clear that the maximum range of voltage over which the cell should be worked is 300 to 500 volts (X to Y of Fig. 8). As in the case of ordinary L.F. amplifying triodes, where it is necessary to apply a bias of the valve in order to bring the datum point (Z) of the curve into the direct current range, the cell is never used in this condition. In this new unit it is natural that care should be taken that this condition is not entered into, and that it is unnecessary to apply a bias of the valve.

When fitted into the holder the cell has a yellow light spot. As a guide to this worn out or renewed cell, it is natural that care should be taken that this condition is not entered into, and that it is unnecessary to apply a bias of the valve.

After this, we have an effect known as "greater dispersion" taking place, that is to say, there is a different treatment for different colours of the spectrum, and in consequence no greater quantity of light is passed through, but the colour of the film changes red, brown, and deep purple.

An examination of this characteristic curve of the Grid Cell unit makes it clear that the maximum range of voltage over which the cell should be worked is 300 to 500 volts (X to Y of Fig. 8). As in the case of ordinary L.F. amplifying triodes, where it is necessary to apply a bias of the valve in order to bring the datum point (Z) of the curve into the direct current range, the cell is never used in this condition. In this new unit it is natural that care should be taken that this condition is not entered into, and that it is unnecessary to apply a bias of the valve.

When fitted into the holder the cell has a yellow light spot. As a guide to this worn out or renewed cell, it is natural that care should be taken that this condition is not entered into, and that it is unnecessary to apply a bias of the valve.

An examination of this characteristic curve of the Grid Cell unit makes it clear that the maximum range of voltage over which the cell should be worked is 300 to 500 volts (X to Y of Fig. 8). As in the case of ordinary L.F. amplifying triodes, where it is necessary to apply a bias of the valve in order to bring the datum point (Z) of the curve into the direct current range, the cell is never used in this condition. In this new unit it is natural that care should be taken that this condition is not entered into, and that it is unnecessary to apply a bias of the valve.

When fitted into the holder the cell has a yellow light spot. As a guide to this worn out or renewed cell, it is natural that care should be taken that this condition is not entered into, and that it is unnecessary to apply a bias of the valve.

After this, we have an effect known as "greater dispersion" taking place, that is to say, there is a different treatment for different colours of the spectrum, and in consequence no greater quantity of light is passed through, but the colour of the film changes red, brown, and deep purple.

An examination of this characteristic curve of the Grid Cell unit makes it clear that the maximum range of voltage over which the cell should be worked is 300 to 500 volts (X to Y of Fig. 8). As in the case of ordinary L.F. amplifying triodes, where it is necessary to apply a bias of the valve in order to bring the datum point (Z) of the curve into the direct current range, the cell is never used in this condition. In this new unit it is natural that care should be taken that this condition is not entered into, and that it is unnecessary to apply a bias of the valve.

When fitted into the holder the cell has a yellow light spot. As a guide to this worn out or renewed cell, it is natural that care should be taken that this condition is not entered into, and that it is unnecessary to apply a bias of the valve.

After this, we have an effect known as "greater dispersion" taking place, that is to say, there is a different treatment for different colours of the spectrum, and in consequence no greater quantity of light is passed through, but the colour of the film changes red, brown, and deep purple.

An examination of this characteristic curve of the Grid Cell unit makes it clear that the maximum range of voltage over which the cell should be worked is 300 to 500 volts (X to Y of Fig. 8). As in the case of ordinary L.F. amplifying triodes, where it is necessary to apply a bias of the valve in order to bring the datum point (Z) of the curve into the direct current range, the cell is never used in this condition. In this new unit it is natural that care should be taken that this condition is not entered into, and that it is unnecessary to apply a bias of the valve.

When fitted into the holder the cell has a yellow light spot. As a guide to this worn out or renewed cell, it is natural that care should be taken that this condition is not entered into, and that it is unnecessary to apply a bias of the valve.

After this, we have an effect known as "greater dispersion" taking place, that is to say, there is a different treatment for different colours of the spectrum, and in consequence no greater quantity of light is passed through, but the colour of the film changes red, brown, and deep purple.

An examination of this characteristic curve of the Grid Cell unit makes it clear that the maximum range of voltage over which the cell should be worked is 300 to 500 volts (X to Y of Fig. 8). As in the case of ordinary L.F. amplifying triodes, where it is necessary to apply a bias of the valve in order to bring the datum point (Z) of the curve into the direct current range, the cell is never used in this condition. In this new unit it is natural that care should be taken that this condition is not entered into, and that it is unnecessary to apply a bias of the valve.

When fitted into the holder the cell has a yellow light spot. As a guide to this worn out or renewed cell, it is natural that care should be taken that this condition is not entered into, and that it is unnecessary to apply a bias of the valve.

After this, we have an effect known as "greater dispersion" taking place, that is to say, there is a different treatment for different colours of the spectrum, and in consequence no greater quantity of light is passed through, but the colour of the film changes red, brown, and deep purple.

An examination of this characteristic curve of the Grid Cell unit makes it clear that the maximum range of voltage over which the cell should be worked is 300 to 500 volts (X to Y of Fig. 8). As in the case of ordinary L.F. amplifying triodes, where it is necessary to apply a bias of the valve in order to bring the datum point (Z) of the curve into the direct current range, the cell is never used in this condition. In this new unit it is natural that care should be taken that this condition is not entered into, and that it is unnecessary to apply a bias of the valve.
HIGH FREQUENCY CHOSES FOR SHORT-WAVE RECEIVERS—

By K. E. BRIAN JAY

In order to know what points to look for in a high-frequency choke, whatever wavelength it is to be used on, it is necessary to have some idea of the way in which a choke does its job and of the factors that can influence its efficiency. Before going on to practical details, therefore, it will pay a little about the theory of the subject.

Fig. 1 shows the circuit of the detector portion of a standard short-wave receiver, or for that matter, a long-wave receiver without a high-frequency valve, because the only difference between the two is in the size of the coils and condensers. What is the purpose of the high-frequency choke in the plate circuit of the valve? Without going into details we can say that when a signal from a broadcasting station arrives at the detector grid, the action of the valve is to separate the incoming wave into its constituents, which are a low-frequency part representing the speech and music and a high-frequency carrier wave, and both of which appear in the plate circuit. We really only need the low-frequency part, however, and that is wanted in the primary of the L.F. transformer, but we can make use of the high-frequency part by passing it through a coil coupled to the grid coil and making it boost the energy in the grid circuit; this is known as applying reaction, and the coil L2 is the reaction coil. It is clear from the figure that there are two paths available to both the high- and the low-frequency currents, namely, either through the L.F. transformer primary or through the reaction coil and condenser. Both of these paths offer some opposition to the passage of an alternating current, the amount of which depends on the frequency. The opposition offered by a coil, which is chiefly an inductance, is called an inductive reactance, and it increases as the frequency and inductance increase; a condenser offers a capacitative reactance which decreases as the frequency and capacitance increase. Note that reactance has nothing whatever to do with reaction, but merely means "resistance to an alternating current." The Reaction Coil.

Now the reaction coil is small and would not do much to impede the flow of the low-frequency currents, but the condenser in series with it is quite small and would therefore offer a very large reactance to this current, consequently it is unlikely that the low-frequency current would follow that path; the high-frequency current on the other hand would not find much opposition this way because of its much greater frequency, and would therefore tend to flow down it. In the alternative path the primary of the low-frequency transformer has a moderately high inductance and while still offering a fairly easy path to the low-frequency currents, it should present a great barrier to the high-frequency currents, so turning them in the direction of the reaction circuit; unfortunately this transformer winding has another property, arising from the fact that the adjacent turns of wire in its winding form little condensers which taken all together are equivalent to quite a large capacity across the primary, not large enough to have any effect on the low-frequency currents, but quite enough to present an easy path to the high-frequency currents, which would be by-passed by this so-called self-capacity in spite of the choking effect of the inductance of the winding, with the result that very little high-frequency would flow through the reaction circuit. The reactance of this self-capacity would be much less at very high frequencies, i.e., short wavelengths, than at the ordinary broadcast wavelengths, and therefore the effect would be particularly bad in a short-wave set; it would be hard to get a proper reaction effect and there would be high-frequency currents in the L.F. stage with almost certain instability and general upset. We require therefore some device inserted between the points A and B in Fig. 1 that will turn the high-frequency currents into their proper path through the reaction circuit and at the same time offer as little opposition as possible to the low-frequency currents.

A Simple Method

A small inductance will do the trick, because it can be made to offer great resistance to the high-frequency currents without being big enough to impede the passage of the low-frequency currents. For example, a coil having a pure inductance of 150 millihenries will have a reactance of 940,000 ohms to a current of frequency of 1,000 kilocycles, i.e., a wavelength of 300 metres, but to the highest speech frequency of 10,000 cycles (10 kilocycles) it will only be 9,400 ohms and to the frequency of 5,000 cycles, which is the usual upper limit for a receiver, it will only be 4,700 ohms, whereas the reaction circuit will offer a reactance of more than 300,000 ohms to the same frequency. Such a choke would therefore be quite effective in keeping the two currents of different frequencies in the parts of the circuit where they are wanted. Note however, that I referred to a "pure" inductance, that is to say, a coil which has only inductance and nothing else. Unfortunately it is impossible to make such a coil and every practical choke will have, in addition, resistance, due to the resistance of the wire used to make it, and self-capacity due to the small condensers formed by the adjacent turns of the wire. The presence of these two other properties will seriously modify the reactance of the choke, which will never be as high as the calculated values given above, but the greatest menace to efficient performance is the self-capacity. The presence of this intruder will have two effects; it behaves as a small condenser across the coil and therefore the two form a tuned circuit in the same way as the grid coil and tuning condenser form a tuned circuit, and the condenser also acts as a leak for high-frequency currents, to which it may offer less reactance than the inductance, in a bad case. The action of a parallel tuned circuit is to absorb current at its resonant frequency, so that in this case, the choke, when acting as a tuned circuit, will absorb the high-frequency current that we want to flow through the reaction circuit, and we shall not be able to make our receiver oscillate. Furthermore the absorption will...
not be on only one wavelength, because a tuned circuit can also absorb energy at its harmonics, i.e., at wavelengths which are an exact multiple of the primary wavelength. Consequently, the wavelength is an important factor, so that the reaction effect will be in phase at several wavelengths in the tuning range.

Short-Wave Chokes

Everything I have said so far applies to chokes on short waves. Let us consider those meant specifically for use on short waves. There is, of course, no difference in principle between a short-wave choke and one designed for long waves, the chief difference being in size. On short waves we do not need so much inductance; for example, the 150 millihenry choke referred to above will have a reactance of some 9,400,000 ohms at 30 metres, which is unnecessarily large, since if 940,000 ohms was enough at 303 metres it will be enough at 30, so that we can do with a smaller choke and further, the smaller the capacity the less marked will be the tuned-circuit-absorption effect, and partly because the reactance of a coil decreases with wavelength. An example will emphasize this latter point: a self-capacity of 2 micro-microfarads, quite a good value for our 150 millihenry choke will have a reactance of 60,000 ohms at 303 metres, but this will drop to 6,000 at 30 metres, which is equivalent to a partial short circuit for 303 metre waves. Of course, reducing the inductance of the choke makes the use of fewer turns of wire necessary and, consequently, the self-capacity is automatically reduced, but it is to be noted that this is only possible if the wire is used in an experimental layout, in the ordinary way it is unnecessary.

Putting the Wire on the Former

The size of wire to be used is quite unimportant, although it should be fairly thin; 30 s.w.g., d.c. is a useful compromise between strength and thickness, but anything between 30 and 40 s.w.g. is satisfactory. The actual method of getting the wire on to the former will make a considerable difference to the self-capacity of the finished choke; one way of minimizing this self-capacity is to space the turns apart by about the thickness of the wire, which is wound on simultaneously with a piece of thread or silk, the silk being removed when the winding is finished. This method is a little tiresome and involves a refinement on wavelengths above 20 metres, although it might well be worth while in a receiver intended for use on the ultra-short waves. Another good method is to reduce self-capacity and one which is much less tedious to put into practice is to wind the choke in sections, as illustrated in Fig. 2, where each section of the winding containing about 20 to 30 turns and spaced from its neighbour, say a quarter of an inch. On a three-quarter to one inch former a total of 100 turns will be enough, and these may be increased up to 150 on a half-inch tube.

These are connected to the receiver baseboard by screws through holes in the tube or by providing the choke with a base made of a rectangular piece of sheet, attached by screws or by a base made of two holes in the tube, as in Fig. 2. This method will not serve when test tubes are used, the simplest method then is to obtain a cork that is a good fit in the tube and glue it head down on to the base; the choke is then pushed on to the cork and kept in a vertical position, as shown in Fig. 3.

Mains Units

by Specialists!

When choosing Mains apparatus it is advisable to buy from Specialists. Only this can you be sure that your purchase is safe, sound and reliable. Hayberd Mains Units and Components are not "cut down" to a price. Skilled technicians, using the finest British materials produce Hayberd Mains Apparatus. A searching test is carried out at each stage of manufacture — that is why all Hayberd Units and components carry the well-known Guarantee. For nearly eleven years Hayberd have specialised in Mains apparatus, and the result of their research and experience is at your service. A complete display of the latest Mains Units, Kits, Transformers, Home Chargers and Amplifiers will be shown at Manchester. You will be welcomed at the Hayberd Stand.

STAND
39
MANCHESTER RADIO SHOW

I enclose 3d. stamps for NEW and complete Revised 1934 Handbook—packed with blueprints and kits.

Mr.,

Address

10, FINSBURY STREET, LONDON, E.C.2.

Hayberd

MONARCH OF THE MAINS.

FIFTY TESTED WIRELESS CIRCUITS

By F. J. CAMM

(Editor of "Practical Wireless"

This handbook contains every modern circuit, complete with instructions for assembling, component values, and notes on operation.

2/6

On sale at bookstalls, or by post 1/2d from George Newnes, Ltd., 8-11 Southampton Street, Strand, London, W.C.2.

PRACTICAL WIRELESS

September 2nd, 1933

PRÉSÉNTON'TH'WAX

A REVIEW OF THE LATEST DISCS

Classical, But Popular

THERE is abundant choice of fine orchestral pieces this month, which, although they may sound formidable from their titles, have really popular entertainment value, so tuneful and straightforward are they. We will begin, enthusiastically, with Bach, who has two gems for us. First, The Brandenburg Concerto No. 5, H.M.V. DB1783-4. Here is gorgeous music, delicate and uplifting. There is something about it which brings one back to sunny times of old, a lingering tone that one hears it. The orchestra is the Ecole Normale de Paris and the soloists Cottel (piano), Thibaud (violin), and Cortot (flute). The best of everything in music and performers. Then two more well-known Bach compositions — Air on the G String and Gavotte in E for Strings (Columbia DX476). Here the British Symphony Orchestra under Sir Henry Wood are the players. There is simplicity, placed beauty in these two, melody in its lovebest form. Hear them without fail.

Now for Haydn. First performed in London, the Military Symphony (No. 100) is a tremendously attractive piece. It is not really bellisose; in fact, the Menetto movement makes one completely forget that it is in anything other than a happy, simple piece. It might be well to hear this third movement first to get the atmosphere. The orchestra is the Berlin Grand Symphony Orchestra, and the record Parlophone R1837-40. Now this same orchestra have done (on Parlophone R1861-2) Six German Dances by Mozart. Quite inelaborate music, played with perhaps more opulence than was necessary, but these dances are tuneful throughout and very interesting as accompaniments with those of even Edwardian days. Wagner looks in with the Rienzi Overture, played by the overtures Guards' Band on Columbia DX476. The purists will doubtless object, but the reply is that (i) Military Bands cannot for ever record Sousa, (ii) Military Bands are the best, (iii) the Grenadiers Bands cannot for ever record Sousa, (iv) they play two pieces which is not so well known is Acceleration. You will find a very well-played version of Edith Lorand's Orchestra on Parlophone R1571. Some of Albert Sandler's best heart-throb music is played by his orchestra on Columbia 1148. The titles are Gipsy, Heartless, Quite his customary Sunday evening touch! There is a pleasant pair of tunes very brightly played by Reginald King's Light Orchestra. They are Peruvian March and The Coon Among the Chickens (Sterno 1216).

The Best of the Songs

We have heard much of the Italian lyric tenor, Gigli, and not without reason. Here is a truly great artist whose voice is superb and whose voice is something that really enters into music with real heart and soul in every note. His latest record is H.M.V. DA1292. On it he sings Lucia Lucia and 'A Canzone e Allegro'. These Neapolitan songs are perfect entertainment from every angle. Equally fascinating is his singing of the famous Santa Lucia and the farewell of Turiddu at the end of Cavalleria Rusticana (Mamma quel vine e generoso) on H.M.V. DB1902. Here is illustrated his genius. The first is the song Gigli—operatic. Each is as impressive as it can be.

On an entirely different plane but endowed with much simple charm are Walter Glemillion's pair on H.M.V. B4126. Here are Bird Songs at Eventide and Just Because the Violets. This record is sure to be popular — the appeal of these two songs is very wide. Then Richard Crooks, the American singer, He sings Neapolitan Love Song and In My Garden on H.M.V. DB1876. Into these trifles he puts very considerable artistry, and the result is a performance which reaches a high level. Still amongst the tenors, we reach Tauber, who gives his best for a long time. On an electrical marvel Strauss's Ständcheen and Dream In The Twilight. The first is a old favourite and it suits Tauber's style admirably. As such of these two, melody in its finest form. Here and there in this per- formance there are words which bring to mind the paradoxical saying "just as a simple piece."

I recommend cordially Parlophone R020222. The orchestra is the Berlin Grand Symphony Orchestra under Sir Henry Wood are the players. There is something about it which brings one back to sunny times of old, a lingering tone. And that is how to hear this record. On another record on that electrical marvel — The Neo-Beethoven, has come along from John Hunt (H.M.V. B4438). He plays Schumann's Romance in F Sharp and Bach's Partita in B flat. This invention somehow brings one back to sunny times of old, a lingering tone. And that is how to hear this record. On another record on that electrical marvel — The Neo-Beethoven, has come along from John Hunt (H.M.V. B4438). He plays Schumann's Romance in F Sharp and Bach's Partita in B flat. This invention somehow brings one back to sunny times of old, a lingering tone. And that is how to hear this record.
The Measurement of "B."

The measurement of "B" in the field gap of a moving-coil speaker may be effected in different ways; for the simplest—the method adopted by the author—is to weigh a search coil of known diameter and number of turns, situated symmetrically in the field when carrying a measured current. Alternatively, the load carried is fixed, and the balance is effected by varying the current. Some four or five years ago the writer constructed a "steel-yard" balance for this purpose, as illustrated in the accompanying illustration, Fig. 1. This instrument, which was regarded at the time as little more than a make-shift, has since been used for the measurement of many hundreds of speaker magnet fields and has given perfect satisfaction. It is an instrument that any amateur could make for himself in an afternoon.

The appropriate coil to use depends upon the immediate object in view. If it be desired to explore the gap and ascertain the value of "B" at different points, both within and external to the gap, the winding may be made as compact as possible, and of few turns, as shown in Fig. 2. If, on the other hand, the mean value for the gap is to be determined, then the length of the winding should be approximately the same as the axial length of the gap, or, if preferred, it can be made the same length as the speech coil which it is intended to use. The support for the winding is a paper sleeve of cylindrical form with a wire or thin wooden rod, as illustrated.

The circuit is clearly indicated in Fig. 1.

The equation, giving the value of "B" from the load in grams and current in amperes is:

\[F \times 9800 \]

where

\[B = \frac{F \times 9800}{1 \times i} \]

and

\[F \] = force in grams,

\[i \] = length of wire in search coil,

\[i \] = current in amperes.

To illustrate the use of the instrument more fully, the following example may be given:

Force = 10 grams.

Length of wire in search coil = 120 cm.

Current = 19 millamps.

\[10 \times 9800 = 6800 \text{ lines per cm.}^2 \]

120 \times 119

Other methods have been proposed and used for exploring the field, but none is so simple and easy as that above described.

In the case of permanent Cobalt steel field magnets, such as ordinarily marketed, the value of "B" is usually found to lie between 6,000 and 7,600; for an ordinary speaker of the open cone type this may be regarded as adequate. Claims are often made for far higher figures, but the writer has tested many of these and has never found these claims justified. In one case where, with a great flourish of trumpets, a new construction of field magnet was said to give a 50 per cent. higher field than its competitors, the magnet assembly, when tested, gave B=6,050. By employing massive magnets of 35 per cent. Cobalt steel the writer has succeeded in getting up to 8,000 or 9,000, which is about equal to an average magnet with electrically excited field, but any such figure obtained with a permanent magnet is extravagant and the high cost makes its use prohibitive.

The Measurement of "B" in the field gap of a moving-coil speaker may be effected in different ways; for the simplest—the method adopted by the author—is to weigh a search coil of known diameter and number of turns, situated symmetrically in the field when carrying a measured current. Alternatively, the load carried is fixed, and the balance is effected by varying the current. Some four or five years ago the writer constructed a "steel-yard" balance for this purpose, as illustrated in the accompanying illustration, Fig. 1. This instrument, which was regarded at the time as little more than a make-shift, has since been used for the measurement of many hundreds of speaker magnet fields and has given perfect satisfaction. It is an instrument that any amateur could make for himself in an afternoon.

The appropriate coil to use depends upon the immediate object in view. If it be desired to explore the gap and ascertain the value of "B" at different points, both within and external to the gap, the winding may be made as compact as possible, and of few turns, as shown in Fig. 2. If, on the other hand, the mean value for the gap is to be determined, then the length of the winding should be approximately the same as the axial length of the gap, or, if preferred, it can be made the same length as the speech coil which it is intended to use. The support for the winding is a paper sleeve of cylindrical form with a wire or thin wooden rod, as illustrated.

The circuit is clearly indicated in Fig. 1.

The equation, giving the value of "B" from the load in grams and current in amperes is:

\[F \times 9800 \]

where

\[B = \frac{F \times 9800}{1 \times i} \]

and

\[F \] = force in grams,

\[i \] = length of wire in search coil,

\[i \] = current in amperes.

To illustrate the use of the instrument more fully, the following example may be given:

Force = 10 grams.

Length of wire in search coil = 120 cm.

Current = 19 millamps.

\[10 \times 9800 = 6800 \text{ lines per cm.}^2 \]

120 \times 119

Other methods have been proposed and used for exploring the field, but none is so simple and easy as that above described.

In the case of permanent Cobalt steel field magnets, such as ordinarily marketed, the value of "B" is usually found to lie between 6,000 and 7,600; for an ordinary speaker of the open cone type this may be regarded as adequate. Claims are often made for far higher figures, but the writer has tested many of these and has never found these claims justified. In one case where, with a great flourish of trumpets, a new construction of field magnet was said to give a 50 per cent. higher field than its competitors, the magnet assembly, when tested, gave B=6,050. By employing massive magnets of 35 per cent. Cobalt steel the writer has succeeded in getting up to 8,000 or 9,000, which is about equal to an average magnet with electrically excited field, but any such figure obtained with a permanent magnet is extravagant and the high cost makes its use prohibitive.
You want SHARP, CLEAR, BETTER RECEPTION?

Dealt from present aerial and placed in the AIRCLIPSE. You will be delighted with the immediate improvement in selectivity and clarity. The AIRCLIPSE is a remarkable aerial that's truly革命性. It eliminates lightning danger.

The Secretary of an important Radio Society writes: "The efficiency of this is so amazing that I shall have no hesitation in recommending it on all occasions."

THE SCIENTIFIC VALVE

EXHIBITION SETS . . .

The following HVAC Valves are recommended:

For "Practical Wireless" 1934 SUPERSET

<table>
<thead>
<tr>
<th>Type</th>
<th>No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>V5</td>
<td>210</td>
<td>10/6</td>
</tr>
<tr>
<td>H</td>
<td>210</td>
<td>4/6</td>
</tr>
<tr>
<td>P</td>
<td>220</td>
<td>5/6</td>
</tr>
<tr>
<td>B</td>
<td>220</td>
<td>10/6</td>
</tr>
</tbody>
</table>

For "Practical Wireless"

ALL - WAVE TWO

<table>
<thead>
<tr>
<th>Type</th>
<th>No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>210</td>
<td>4/6</td>
</tr>
<tr>
<td>Z</td>
<td>220</td>
<td>12/6</td>
</tr>
</tbody>
</table>

THE SCIENTIFIC VALVE GIVE "N" gives our complete range of quality valves. A British Radiophone twin drive dial with double calibrated chart, enabling any station to be tuned-in rapidly on either wave-band. A separate pilot light is provided for each window, and the new type of lamp-holder is fitted. This may be pulled out of the box in a moment for bulling or replacement, and slips into place. The reduction gear is 10 to 1, and the fixing bracket will accommodate a quarter-inch spindle. The price is 7s. 6d.

Graham Farish Aerial Kit

WHEN installing a wireless receiver for the first time, an aerial has to be erected and an earth connection fitted. In the ordinary way, this means that insulators, wire, lead-in tube, and other sundries have to be bought, and this results in the efficiency of the system being impaired owing to the fact that the purchasing is usually carried out rather haphazardly, and a finished job is not obtained. Messrs. Graham Farish have now introduced a very neat kit boxed in an attractive manner, and including every necessary for the efficient aerial and earth system. By purchasing this kit you get at one purchase an aerial, insulators, lead-in tube, a tin of Filtri (the well-known chemical earth), and an instruction book. By this means there is no difficulty in getting any part of the system and a slight saving is effected in cost. The various parts are arranged in the box in the correct manner and not just thrown together, and it is certain that by the introduction of this kit many new listeners will be assured of...
good reception owing to the fact that all the essentials for a good aerial and earth are so readily obtainable. The cost is 6d., and the makers are to be congratulated upon their foresight in introducing a kit of this nature. It will do a lot towards improving reception currently.

BULGIN SIGNAL FITTING

**Although the majority of mains receivers are equipped with an illuminated dial, there are many receivers, especially in the battery-operated ones, that have no indication other than a signal from a broadcasting station, whether the valves are switched on or off. Many listeners have experienced the disappointment of finding, when attempting to switch their receiver on for the evening's programme, that the station has been left "On" since the previous day, and the accumulator has run out.

In the case of mains apparatus, this is not only a waste of current, but it also reduces the length of service which the valves will give. Mains Bulgin have introduced many different types of signal lamp to avoid this difficulty, and some of these are well known. Here, for instance, the small red-glass window with a metal escutcheon fixed round it, which may be attached to the panel, and a small bulb screwed into the holder at the rear. By writing this bulb in parallel with one of the valve-holders, the red window will illuminate when the valves are switched on; and this forms a very valuable safeguard, as the illumination afforded is sufficiently bright to attract the attention. The latest introduction by this firm, however, is of a much more attractive nature, and the illustration on page 474 gives only a slight idea of the actual component. A lamp-holder is fitted to a base, and in front of this holder is a curved opal screen, not attractively lined. Mounted in front of this small screen is a neat figure, at present obtainable in four different forms. That illustrated is known as "Knowledge" and is in the shape of an owl. "Meditation" is the figure of a young girl, and was illustrated on page 878 of last week's issue. Another figure is of a dog—known as "Dugy"—and we understand that one or two other designs will be introduced. As many people prize (during the winter evenings) to listen to the dog and in subdued lighting, this ornament offers a very attractive illumination of the right character for concentrated listening. The price is 1½.

OPERATING THE SUPERSET

(Continued from page 839)

the tuning dial it may be kept on the dial. Make quite certain that this trimmer is at its minimum (all out) position. If this point is not attended to first, you will find it impossible to tune in the low wave stations such as Fecamp.

When the tuning dial is being turned, the control of trimmer should be your aim to get an adjustment on each trimmer where it is possible to find on the tuning dial a weak station, and where no further adjustment of any trimmer will increase its strength. It may, in some cases, be found that a station can be made louder at one end of the dial by readjusting a trimmer, but when a return is made to the other end of the dial a further readjustment, upsetting the former adjustment, is necessary. In this case the first trimmer should be given a slight turn, and trimming carried out again. Where the wiring is such that it is found impossible to obtain a setting which holds over the entire range, the wires between coils and valves should be carefully spaced until the inter-stage capacities are equalized.
RADIO has developed with tremendous rapidity during the last ten years, but it must be remembered that the advent has caused much research to be made in other branches of physics. One of the most prominent of these is sound, and it is very helpful, in fact we might say essential, that every wireless enthusiast worthy of the name should have a working knowledge of the subject. It is the beginning and the end of radio—we start off with sound when the speaker addresses the microphone, and we finish with sound as it comes from our reproducers—and the whole problem of broadcasting consists of the conveyance and reproduction with the utmost fidelity of what the microphone hears. The above sketch illustrates diagrammatically the chain of operations.

First, what is sound? Well, sound is a form of energy just like heat and light, and while being similar in many respects, it differs greatly in another, in that the actual quantities we have to deal with in studying it are very small. Sound energy is usually dissipated in the form of friction and heat, but if we had two million people talking continuously for two whole hours they would only heat the earth sufficiently to boil enough water to make a cup of tea. Thus you can see that the power required to affect the ear is extremely small. Loud voice tones do not alter the normal pressure of the air by more than a few millionths of an atmosphere, and as the taking voice increases its power over a range of about 100 to 1 in normal conversation, we can realize the wonderful adaptability of the ear.

To look at the statement electrically, an ordinary good pair of headphones gives a loud signal if 5 microamperes flow through them at 1,000 cycles/sec. frequency. This amount of current represents an input power of about one ten-millionth part of a watt. Now the efficiency of a receiver held close to the ear is somewhere between 1 and 10 per cent., so that the actual amount of sound coming from the diaphragm is something like one thousand millionths of a watt. This is rather small, when you consider it needs a 60-watt lamp to illuminate a small room!
PRACTICAL WIRELESS

Super-selective Superhet Wanted

I SHOULD be glad to see a really super-selective superhet with a minimum of valves—Class B output—using the new iron dust coils, particularly suitable for battery users. I am one of those readers without mains.—P. GREGORY (Beda Vale).

All That's Colour-coded is Not Erie

Sir,—When we introduced colour-coded resistors to the public we fully appreciated the possibility of the colour code being used by others, and therefore resistors of other origin being mistaken for our product.

To obviate this difficulty every Erie resistor distributed to the trade is individually labelled, and it is apparent that trouble cannot occur if this fact is widely known. We have several times circulated the trade to this effect, and have consistently conveyed this information to the public and the service man in our advertisements. Notwithstanding this fact, we frequently have faulty resistors returned to this address which invariably turn out to be someone else's product. Just as consistently we find that the goods have been purchased as Erie products.

We are not so perturbed about the effect of this on our sales, but we are deeply concerned regarding the effect this fact has on the public and the service man in our advertisements. Our Show Issue

I had Rabat (Morocco) (416 metres) at 12.30 a.m. after Atlone (213 metres) had closed. Also Ecole Superiure just above Rome tuning. These results prove there is not much wrong with searching qualities and sensitivity. Midget Ormond S.M. Dials are fitted, 1—190 readings. These are earthed, as well as the reaction knob spindle, with a copper foil behind oak, and a layer of card between foil and condenser; this foil is earthed. We are on a bank of the Mersey estuary, six miles north of Liverpool, on the way to Southport. I can only get Daventry 6XX (1554.4) by reducing H.T. volts to 100.

Readings are as follows:

<table>
<thead>
<tr>
<th>R</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hilselum 118</td>
<td>100</td>
</tr>
<tr>
<td>Radio-Paris 100</td>
<td>63</td>
</tr>
<tr>
<td>Daventry 22-24</td>
<td></td>
</tr>
</tbody>
</table>

Again thanking you for your "Featherweight," which I very much like.—JAMES THOMSON (Liverpool).

The Editor does not necessarily agree with opinions expressed by his correspondents.

Featherweight Portable Four

Sir,—I take this opportunity of offering my thanks for such a compact portable as the Featherweight Four which you sponsored. I have named my set "Julia," and I enclose a few verses concerning it, which may interest you.

In operation, the middle wave is the better of the two, but a graph is of little use as dial readings keep changing with L.T. and H.T. voltage changes. I set the right dial 29 degrees back to match left dial on our North Regional at 140 degrees. Here are some of the other readings:

<table>
<thead>
<tr>
<th>Left dial</th>
<th>Right dial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Munich</td>
<td>150</td>
</tr>
<tr>
<td>Brussels No. 1</td>
<td>150</td>
</tr>
<tr>
<td>North Regional</td>
<td>140</td>
</tr>
<tr>
<td>Rome</td>
<td>122</td>
</tr>
<tr>
<td>Rabat</td>
<td>119</td>
</tr>
<tr>
<td>Athlone</td>
<td>108</td>
</tr>
<tr>
<td>Midland Regional</td>
<td>98</td>
</tr>
<tr>
<td>Scottish Regional</td>
<td>89</td>
</tr>
<tr>
<td>Muhlecker</td>
<td>84</td>
</tr>
<tr>
<td>London Regional</td>
<td>82</td>
</tr>
<tr>
<td>Poste-Parisian</td>
<td>80</td>
</tr>
<tr>
<td>West Regional</td>
<td>70</td>
</tr>
<tr>
<td>North National</td>
<td>67</td>
</tr>
<tr>
<td>London National</td>
<td>54</td>
</tr>
<tr>
<td>Trieste</td>
<td>48</td>
</tr>
</tbody>
</table>

DO YOU KNOW?

- THAT the new Variable-mu H.F. Pentodes have an amplification factor of 5,000 or so.
- THAT an output transformer is unnecessary with a Class B valve. If a special Class B loud-speaker is employed.
- THAT mains transformers designed for use on 25 cycle mains may be employed satisfactorily on 50 cycle mains.
- THAT mains transformers designed for 50 cycle mains should not be used on 25 cycle mains.
- THAT a poor earth connection often gives rise to serious hum troubles with D.C. mains units.
- THAT a home-cinema may give rise to noises in a wireless receiver as far away as 100 yards.
- THAT large metal parts should be kept away from a trance aerial.

CUT THIS OUT EACH WEEK.

The Editor will be pleased to consider articles of a practical nature, suitable for publication in PRACTICAL WIRELESS. Such articles should be written on one side of the paper only, and should contain the name and address of the sender. Whilst the Editor does not hold himself responsible for mistakes, every effort will be made to return them. All correspondence intended for the Editor should be addressed to: The Editor, PRACTICAL WIRELESS, 6-11, Southwark Street, Strand, W.C.2.

Owing to the rapid progress in the design of wireless apparatus and to our efforts to keep our readers in touch with the latest developments, we give no warranty that apparatus described in our columns is not the subject of letters patent.

THE INSTITUTE OF RADIO COMMERCE

9 , 10 , 11 BERKELEY STREET, LONDON, W.1

Informal Correspondence Scholts, Ltd.,

International Correspondence Schools, Ltd.,

Dept. 94, International Buildings,

Without cost, or obligation, please send full information about the Courses I have marked X.

[Box for marking courses:]

- COMPLETE RADIO
- RADIO SERVICING
- RADIO EQUIPMENT
- RADIO SERVICING AND SALESMASTERSHIP
- WIRELESS ENGINEERING
- WIRELESS OPERATORS

Name: ____________________________ Address: ____________________________
A VISIT TO THE WORKS OF MESSRS. A. C. COSSOR, LTD.

On the morning of Thursday, August 10th, a few of the members of the PRACTICAL WIRELESS Technical Staff, in company with other members of the Press, were privileged to inspect the two large and up-to-date works of Messrs. A. C. Cossor, Ltd. The first works to be visited were those in Highbury Grove, from whence a considerable proportion of the world's valves emanate. We were interestingly shown over the factory by one of the Cossor engineers and had the pleasure of seeing what can be done under perfectly organized mass production methods. The first impression on entering the commodious factory was that the whole place was working so smoothly that, despite the enormous output, there were no signs whatever of hurrying or haphazard work. The majority of the operatives were girls, who had obviously received a thorough training in the particular task assigned to them, and they were so arranged on their benches that immediately any one had done her share of the work, her (still incomplete) valves were automatically passed on to the next.

We first of all saw how the sheet metal motor cases were constructed, then how the grids were made in lathe-like machines by winding a length of thin nickel wire so carefully and yet so speedily were they made.

Once the two larger electrodes had been made, they were passed on to another department where the special Cossor 7-point filament expansion was attended to. This consisted in spot welding seven extremely small insulators to the grid, the complete operation taking but a few seconds despite the thoroughness with which it was carried out. In another part of the factory girls were engaged in spot welding the "inverted V" filament to its supports—again a meticulous task, but which, due to the high degree of efficiency maintained, occupied a surprisingly short space of time. Later, we saw the glass bulb itself being moulded and cut off to size in a large machine. Bulbs a good deal longer than those finally required were mounted on rotating pegs projecting from a huge disc, which was itself rotating. A number of fine flame jets played on the bulbs as they rotated, so that by the time the disc had completed one revolution the bulbs were just sufficiently hot to allow them to be quickly cut by a small circular steel cutter. This process was continued indefinitely by girls "feeding" the machine with new bulbs, whilst those which had been finished were automatically removed and passed on to a tray in readiness for further use.

After all the electrodes had been mounted in the glass bulbs, these were placed on the evacuation pump. What could be seen of this was a large hollow ring with a number of rubber tubes projecting upwards and other connecting pipes leading off below. The unfinished valves, without bases, were placed on this automatically directed against the leading out tube, which was thus sealed and cut off in a single operation.

The final process was to fire the magnesium "getter" in every valve. Lowering a coil carrying H.F. currents at still higher voltage over the bulb, this, of course, caught all traces of residual gases and trapped them against the inside of the bulb. Before packing, every valve was individually tested on carefully calibrated machines to ensure perfect accuracy, and any which did not show precisely the correct characteristics were rejected. There is no wonder, therefore, that one very seldom hears of a Cossor valve that does not come up to expectations.

After going through the valve factory (our only regret was that we could not stay longer) we went along to the Kelvin Works, where the famous Cossor receivers and "Molded Makers" kits are produced in tremendous numbers. We saw fine blued-steel chassis pressed out of sheet material in a single operation by means of huge hydraulic presses, whilst condenser vanes and transformer stampings were being produced by similar means. Transformers of both L.F. and mains types were wound with about 5000 turns between the twin turns of copper wire. Each was fitted with counters by which the operator was able to make every winding exactly the same. Resistances were being produced in large quantities for use in Cossor sets and it was fascinating to find how rapidly they were made, adjusted to the exact value required, doubly tested, and given a coat of moisture-resisting cellulose paint.

One came away from the Cossor works with a feeling that the products could be relied on implicitly for accuracy and permanence, so carefully and yet so speedily were they made.
FOR CAR UPKEEP AND OVERHAUL, a Nation covering the engine, deca-
tring, valve grinding, the lighting
system, the carburettor, cooling system,
traction, springs and shock absorbers,
steering gear, brakes, wheels, axles,
tracing noises, etc.

TOY MAKING FOR AMATEURS
How to make clockwork toys, model aer-
planes, model locomotives, model boats,
ingenuous toys operated by sand, wooden
models and toys, electrical toys, steam
models, kaleidoscopes, acrobats, etc.

SIMPLE ELECTRICAL APPARATUS
An excellent little book for those who
wish to make simple and useful electrical
appliances, such as galvanometers, electric
motors, dynamos and other electrical

For full particulars for claiming awards and a com-
plete list of numbers see

TIT-BITS
ON SALE EVERYWHERE SATURDAY SEPT. 2.
The Edison Swan Electric Co. Ltd.
155 Charing Cross Rd., London, W.C.2

Moeda &, d, Takes or
fact (at Br teen for The &1&l, 7 IdCe Led.

RECOMMENDED BY ALL GOOD RADIO DEALERS

Specified by the leading designers

The FOREMOST BRITISH VALVES

The Edison Swan Electric Co. Ltd.
155 Charing Cross Rd., London, W.C.2

Printed by NEWNES & PEARSON PRINTING CO., LTD., Ealing Street, Ladbroke Grove, W.10, and published by GEORGE NEWNES, LTD., 8-11, Southampton Street, Strand, W.C.2. Sole Agents for Australia and New Zealand: GORDON & GUTHRIE, LTD.; SOUTH AFRICA: CENTRAL NEWS AGENCY, LTD. Practical Wireless can be sent to any part of the world "out free, for 17s 4d per annum; six months, 8s. Registered at the General Post Office for Transmission by Canadian Magazine Post.
To DUBILIER CONDENSER CO. (1925), LTD.,
VICTORIA ROAD, NORTH ACTON, LONDON, W.3.
Please send me a copy of the new Dubilier Booklet.

Name
Address

USE BLOCK LETTERS

Supplied FREE

Gives full details of the latest developments in Condenser and Resistance design.
TRIUMPH OF NEW IGRANIC SPEAKER

EFFICIENT REPRODUCTION FROM THE SMALL OUTPUT RECEIVER AS WELL AS HEAVY VOLUME WITHOUT DISTORTION

IGRANIC DUAL TRANSFORMER

The patented magnet construction overcomes all amplitude distortion.

Every frequency in its true proportion, perfect maintenance of tonal balance.

The Igranic D.9, thanks chiefly to the patented magnet construction, has earned the preference of the experts. In quality of reproduction and price it fears no rival.

HEAR IT AT YOUR DEALERS NOW
Interested In Better Radio?
—call at Stand No. 6
Glasgow Radio Exhibition
or send 3d. for a
copy of the 1934
dition of the
“ALL METAL WAY”
which gives full
details of the cople nage of
WESTINGHOUSE
METAL RECTIFIERS & WESTECTORS

POST COUPON to-day!
Please send me “The All Metal Way, 1934,” containing full particulars of
Westinghouse Metal Rectifiers and Westectors. I enclose 3d. in stamps.
NAME
ADDRESS

The Westinghouse Brake & Saxby Signal Co., Ltd.,
82 York Road, King’s Cross, London, N.1.

The Only Book Of Its Kind
COMPILED by an acknowledged expert, this volume forms a complete guide, in alphabetical order, to the
construction, operation, repair, and principles of every type of wireless receiver, with a special section on
television, and complete instructions on the making of various wireless components.
A unique volume with every technical term, formula and
fact explained in language which even the beginner will
understand. A feature of the work is the illustrations, which
include a complete series of circuits for every type of modern
receiver. The contents include every modern development
up to the 1933 Wireless Exhibition. An invaluable volume
which is a treasury of knowledge to the beginner, the expert,
and the ordinary listener.
328 pages
490 illustrations.

THE WIRELESS CONSTRUCTOR’S ENCYCLOPÆDIA
By F. J. CAMM
(Editor of "Practical Wireless")

Obtainable at all Booksellers, or by post 5/4
from George Newnes, Ltd., 8-11, Southampton
Street, Strand, London, W.C.2

THE HEART OF THE SET
362 VALVES
DIRECT BY POST FROM THE
MAKERS AT 50% SAVING.

Post Free from
3/6

“CLASS B”
3-v. Element 9/-
7-pin base.
A.C. MAINS VALVES, 4-volt, 1 amp. (Indirectly
Heated). Prices 7/6 to 12/6. Full List post free.

CUT THIS OUT and post it to-day for your FREE copy of the Cameo Cabinet Catalogue which illustrates and describes the complete range of cabinets, and shows all the latest additions. Don’t hesitate—post
it off to-day; a half-penny stamp will do if you leave the flap unsealed.

FREE CAMCO CABINET CATALOGUE

CARRINGTON MFG. CO., LTD.
Works: S. Croydon.
The nanza that means ‘EXCELLENCE’

Why EDISWAN H.T. will give you service

Here is the answer. These special features clearly demonstrate Ediswan superiority. You can get Ediswan Batteries in all standard sizes, including portable types—Standard or Super Capacity—at the usual prices.

1. A brass cap tightly affixed to the carbon rod forms the positive connection.
2. The cell is sealed by means of a waxed washer over which paraffin wax is poured. This washer assists in centralising the sac in the cell.
3. An air space is left between the top of the sac and the washer to allow for the expansion of the electrolyte during discharge.
4. A substantial zinc container which forms the negative pole of the cell.
5. The sac consists of a highly efficient depolariser, tightly compressed round the carbon rod, the whole being securely strapped and tied.
6. Electrolytic paste of a special chemical composition which fills the space between sac and zinc container and activates the cell.
7. A waxed paper disc which insulates the sac from the bottom of the zinc container.

EDISWAN H.T. BATTERIES

THE EDISON SWAN ELECTRIC CO. LTD.
PONDERS END, MIDDLESEX

What is your Output Stage?

Power or Super Power Valve, Pentode, Q.P.-P. or Class “B”—there is an R. & A. Reproducer specially designed for it

“TYPE 60” DIFFERENTIAL ARMATURE REPRODUCER

For small output valves.

For receivers in which the output is not sufficient to drive even the super-sensitive R. & A. Moving-Coil Reproducers, the Type 60 offers the most satisfactory alternative. It has been specially designed to give maximum volume, purity of reproduction and true balance between bass, middle and upper registers when used in conjunction with even the smallest output valve.

For Super Power, Pentode, Q.P.-P. or Class “B” outputs choose the appropriate “CHALLENGER”

P.M. MOVING COIL REPRODUCER

Standard Model for use with Super Power and Pentode Outputs. Includes 3-ratio Transformer.

OTHER “CHALLENGER” MODELS—

TYPE "B" for Class B Amplification.

 TYPE "P" for Quiescent Push-Pull (15,000 ohms Plate-to-Plate Load.)

EACH MODEL 35/-

Your dealer can supply.

R & A REPRODUCERS AND AMPLIFIERS LTD., WOLVERHAMPTON.
Improve the volume of those "whispering" stations

Those stations that you can only just hear—the ones that are mere whispers in the distance—they too can give you entertainment. Fit a Cossor Screened Grid Valve. You'll be surprised at the difference it will make—longer range, and a general all-round improvement. Your dealer will gladly advise you on the most suitable type for your receiver. Ask him today.

Cossor 2-volt Screened Grid Valves

<table>
<thead>
<tr>
<th>Type</th>
<th>Filament Amperes</th>
<th>Anode Volts</th>
<th>Imped.</th>
<th>Amp. Factor</th>
<th>Mutual Conductance m.a.v.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>218 S.G.</td>
<td>2</td>
<td>125-150</td>
<td>300</td>
<td>1-10</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td>230 B.S.G.</td>
<td>2</td>
<td>125-150</td>
<td>200</td>
<td>1-60</td>
<td>15.4</td>
<td></td>
</tr>
<tr>
<td>230 V.S.G.</td>
<td>2</td>
<td>150-180</td>
<td>150</td>
<td>1-60</td>
<td>15.4</td>
<td></td>
</tr>
</tbody>
</table>

Cossor A.C. Mains Screened Grid Valves

<table>
<thead>
<tr>
<th>Type</th>
<th>Purpose</th>
<th>Imped.</th>
<th>Amp. Factor</th>
<th>Mutual Conductance m.a.v.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 MSG-MA</td>
<td>Super H.F. Amp’s</td>
<td>500.000</td>
<td>1.000</td>
<td>20</td>
<td>17.4</td>
</tr>
<tr>
<td>41 MSG</td>
<td>Super H.F. Amp’s</td>
<td>400.000</td>
<td>1.000</td>
<td>25</td>
<td>17.4</td>
</tr>
<tr>
<td>41 MSG-LA</td>
<td>Super H.F. Amp’s</td>
<td>300.000</td>
<td>1.000</td>
<td>30</td>
<td>17.4</td>
</tr>
<tr>
<td>41 MSG-A</td>
<td>Variable-Ma.</td>
<td>200.000</td>
<td>—</td>
<td>25</td>
<td>17.4</td>
</tr>
<tr>
<td>41 MSG-MA-A</td>
<td>H.F. Pentode</td>
<td>—</td>
<td>—</td>
<td>25</td>
<td>17.4</td>
</tr>
<tr>
<td>41 MSG-PA</td>
<td>Variable-Ma.</td>
<td>—</td>
<td>—</td>
<td>25</td>
<td>17.4</td>
</tr>
<tr>
<td>41 MSG-PA-A</td>
<td>H.F. Pentodes</td>
<td>—</td>
<td>—</td>
<td>25</td>
<td>17.4</td>
</tr>
</tbody>
</table>

The above Valves have Indirectly Heated Cathode, 4 Volts, 5 Amp.

Cossor D.C. Mains Screened Grid Valve

- DVSG
- 41 MSG-PA
- 41 MSG-PA-A

The above Valve has Indirectly Heated Cathode, 12 Volts, 0.25 Amp.

- These Valves are available with or without Metallised Bulbs.
- Characteristics measured at 3 grid volts.
- Stocked with Metallised Bulbs.

Please send me, free of charge, a copy of the 40-page Cossor Valve and Wireless Book B17.
New Long-Wave Station at Droitwich

STEADY progress is being maintained in the construction of the new long-wave station near Droitwich, both with the building and technical equipment, and it is anticipated that the long-wave National transmitter will begin public transmissions in about a year's time, that is, in the summer of 1934. The transmitter will work on the slightly altered wave allotted to this country under the Lucerne plan, namely 1,000 metres (300 kc/s). The new Midland Regional transmitter, which, as stated previously, will be on the same site at Droitwich, will not begin radiating transmissions for some months after the long-wave National transmitter goes into regular service.

Better Signals from Cincinnati

BROADCASTS from WLW, Cincinnati (Ohio) on 428.3 m. (700 kc/s) have been recently heard at better volume on this side of the Atlantic Ocean in the early hours of the morning. This is due to the fact that this 50-kilowatt transmitter is now using its new 830-foot aerial tower. The broadcasts from the Cincinnati and other studios of the Red and Blue networks of the National Broadcasting Company of America, are also available nightly through WSXAL on 49.5 m.

New Television Receiver

KURT SCHLESINGER, a Berlin engineer, recently demonstrated in the city a new receiver for television transmissions; it has aroused considerable interest in German wireless circles. The instrument has been specially constructed for the reception of ultra short waves, and it is stated that the image projected on a small screen is in many ways equal in quality and clearness to that given by a 16 millimetre home cinematograph projector.

More Ascents to the Stratosphere

ALMOST every week news reaches us regarding new attempts to beat Professor Piccard's altitude record. The latest ascent to be tried out is one from Leningrad by the Russian engineer Tcharkovski who, for this purpose, has built a gondola of a specially light alloy, and which has been coated with a new preparation capable of resisting both excessive heat and intense cold. Some items of the technical description would appear to suggest that the inventor has based the construction of his gondola on the lines of a Thermos flask!

Round the World of Wireless

The Housewife's Hour

A FEATURE which has proved a great favourite in the A.V.R.O. (Hilversum-Huizen) broadcasts is the Housewife's Hour. Some items of the technical description would appear to suggest that the inventor has based the construction of his gondola on the lines of a Thermos flask!

"PRACTICAL WIRELESS" at Three Exhibitions!

MODEL ENGINEER EXHIBITION, Royal Horticultural Hall, Westminster
Our Stand No. 35

THE SCOTTISH RADIO EXHIBITION, KELVIN HALL, GLASGOW
Our Stand No. 17

NATIONAL RADIO EXHIBITION, CITY HALL, MANCHESTER
September 27th to October 7th.
Our Stand No. 11 (New Hall)

Provincial readers will find these stands the home of Real, Reliable and Unrivalled Reader Service! A Cordial Invitation is Extended to Every Reader to Visit Us.

Protect the Listener

In the opinion of French fans, in view of the mountainous character of the area for which the service is required, efforts are to be made to retain a wave-length in the 500 metre band. Grenoble PTT, at present, may be heard on 869 metres.
Radio Nantes

Work on the construction of the high-power transmitter at Thouries, near Nantes, destined to provide an adequate broadcast service to France's northwestern provinces, is progressing favourably so that it is hoped to begin tests towards the end of the year. Broadcasts from this station, it is expected, will be heard in the British Isles, and might prove an agreeable alternative to programmes from Paris.

Back to the Jungle

The French newspaper, *Dépêche Coloniale*, states that the authorities of the Upper Katanga province of the Congo have been asked by the native chiefs to erect a broad-}

some eighty-four miles south-east of Bordeaux. Usually working on 453 m, it broadcasts a programme daily between 7.30 and 8.30 p.m. B.S.T. For such a small station, it puts out relatively a long call: *Ici poste départemental de Radio Agen en Lot-et-Garonne*. It is one of the many private transmitters which may be frozen out of the waveband when the Lucerne Plan comes into force.

Hourly Weather Reports

To secure weather bulletins at times other than those at which such broadcasts are made by the B.B.C. stations, tune in to Boston Airport on 833 m. for forecasts transmitted by the Automobile Association. Information secured from the Air Ministry is broadcast almost hourly throughout the day from 9.30 a.m. until 6.30 p.m. B.S.T.

Ex-En-Air

On many occasions when listening to Brussels (No. 1) on 500 m., you may have seen the announcement: *Ici Bruxelles ex-en-air*. The last words stand for the letters N.R.T., an abbreviation of *Institut National de Radiodiffusion* (National Broadcasting Institute). When the concerts are televised, this abbreviation is replaced. For private organization the individual initials follow the call: thus, R.C.B.S. (radio club of Belgium) would indicate that the entertainment was offered by the Radio Catholique Belge.

The Lucerne Broadcasting Conference

It is learnt from the B.B.C. that after five weeks' deliberations a wavelength plan for European broadcasting stations has been accepted by a large majority of countries, represented at the Conference recently held at Lucerne. The new "Plan de Lucerne" is embodied in a Convention which the delegates of seven countries—Finland, Greece, Holland, Hungary, Lithuania, Poland and Sweden—have signed. They have not signed the Convention, but it is anticipated that they will in fact adopt the wavelengths allotted to them. As far as Great Britain is concerned, the number of wavelengths available will be the same, but in general the wavelengths are slightly lower than formerly, several of them also being shared with distant countries. The actual wavelengths allotted to Great Britain are as follows:

- 2200: 500 m.
- 668: 449.1 kHz
- 767: 391.1 kHz
- 804: 342.1 kHz
- 877: 324.1 kHz
- 977: 307.1 kHz
- 1,050: 273.3 kHz
- 1,090: 265.7 kHz
- 1,122: 257.4 kHz
- 1,149: 249.1 kHz
- 1,474: 203.5 kHz

The plan will come into force on January 16th, 1934, and in due course another statement will be made as to the exact use to which the wavelengths allotted to Great Britain will be put.

Scottish Radio Exhibition

Our Stand No. 17.

Model Engineer Exhibition Royal Hornby Model Makers, Westminster.

Our Stand No. 35.
Mr. F. J. CAMM Makes a Critical Survey of the Radio Show at Olympia, and Gives Here His Impressions of His Stand-to-Stand Inspection.

It is not possible to survey the present position of the radio industry so attractively encompassed this year at Olympia unless one has the perspective and the outlook acquired by association with that industry from the earliest inception. It is the absence of such outlook and such experience which leads some "experts" who write for the daily press to besmirch their respective papers with such unmitigated balderdash about radio. You know the sort of stuff: "Firm books million pounds worth of orders"; "Unruly crowd storms Olympia"; "New valve revolutionizes radio," etc., etc.

Most of these hack scribes merely go to Olympia to find a catch headline with no scruples about the accuracy of the matter which appears beneath it. It is for them, too, an occasion to paze upon and quaff the vintage. I feel that editors of daily papers ought in their own interests to avoid this sort of tosh which does immeasurable harm.

As one of the earliest radio journalists in this country (and also one of the first manufacturers of radio sets and components), I have watched the growth of the radio industry; the rise and fall of catch-penny manufacturers; the introduction of every improvement; the booms and the sloughs, and naturally I have visited every Radio Exhibition.

With the publication of No. 1 of PRACTICAL WIRELESS last September it was felt that a fillip could be given to the radio industry in general, and the home constructor market in particular, by pursuing a policy of catering in a practical way for the practical reader. The events of the past year have proved that we were right, for a greatly increased interest, as evinced by the increased sales of those who cater for the home constructor, has been evident everywhere.

Another point which makes this self-evident is the tendency of the manufacturers to cater more this year for the home constructor; last year mains sets represented by far the greater proportion of each manufacturer's programme. This year, however, most of the sets are battery-operated, and even battery-operated radiograms are marketed by some of our largest radio manufacturers.

This year I made a very careful study of every stand, for which purpose I visited Olympia every day during the nine days it was open, and in the course of my discussions with various manufacturers I learned that my belief that 1933-34 would be a home-constructors' year was shared by all of them. In making personal contact also with many hundreds of my readers (may I now apologize to those many hundreds whom I was unable to see?) I have also obtained valuable knowledge as to their requirements for the coming season.

For short-wave work great care has to be taken to reduce losses. This valve-holder by the Eddystone people shows how losses have been removed in the mounting of the valve, and in the leads to it.

(Continued overleaf)
About this state of affairs, and this year, more than any other, the home constructor found at Olympia plenty to interest him. The succession of important developments which took place during the past few months—iron-core tuning coils—quiescent push-pull—Class B amplification—all-metal valves—cold valves—delayed automatic volume-control—all were responsible for the greatly increased attendance this year. Readers freely expressed the hope that future developments should not occur with such bewildering and almost internecine frequency, for, as quite a number of visitors to our stand said, "we hesitate to build a set because we do not know what is coming next." I pass along the hint to the manufacturers.

The arrangement of the Show this year was commendable; the wider gangways permitted even at crowded periods a ready inspection of any exhibit. The theatrical entertainment was a sheer inspiration on the part of the organizers. There might have been, perhaps, better arrangements in the body of the hall and in the gallery for the seating of those visitors who were fatigued. I have no doubt that this will be attended to next year.

Perhaps the most outstanding feature of the Show was the tendency of all manufacturers to increase the sensitivity and the selectivity of the completed receivers. From this aspect alone 1934 receivers by comparison with 1930 receivers are ten years ahead. Another feature of outstanding interest which early impressed even the casual observer was the tendency to reduce

This is of the Band-Pass type and is provided with screened adjustable trimmers to enable the self capacity to be counter-balanced.

(Continued from previous page)

about this state of affairs, and this year, more than any other, the home constructor found at Olympia plenty to interest him. The succession of important developments which took place during the past few months—iron-core tuning coils—quiescent push-pull—Class B amplification—all-metal valves—cold valves—delayed automatic volume-control—all were responsible for the greatly increased attendance this year. Readers freely expressed the hope that future developments should not occur with such bewildering and almost internecine frequency, for, as quite a number of visitors to our stand said, "we hesitate to build a set because we do not know what is coming next." I pass along the hint to the manufacturers.

The arrangement of the Show this year was commendable; the wider gangways permitted even at crowded periods a ready inspection of any exhibit. The theatrical entertainment was a sheer inspiration on the part of the organizers. There might have been, perhaps, better arrangements in the body of the hall and in the gallery for the seating of those visitors who were fatigued. I have no doubt that this will be attended to next year.

Perhaps the most outstanding feature of the Show was the tendency of all manufacturers to increase the sensitivity and the selectivity of the completed receivers. From this aspect alone 1934 receivers by comparison with 1930 receivers are ten years ahead. Another feature of outstanding interest which early impressed even the casual observer was the tendency to reduce

This is of the Band-Pass type and is provided with screened adjustable trimmers to enable the self capacity to be counter-balanced.

(Continued from previous page)

about this state of affairs, and this year, more than any other, the home constructor found at Olympia plenty to interest him. The succession of important developments which took place during the past few months—iron-core tuning coils—quiescent push-pull—Class B amplification—all-metal valves—cold valves—delayed automatic volume-control—all were responsible for the greatly increased attendance this year. Readers freely expressed the hope that future developments should not occur with such bewildering and almost internecine frequency, for, as quite a number of visitors to our stand said, "we hesitate to build a set because we do not know what is coming next." I pass along the hint to the manufacturers.

The arrangement of the Show this year was commendable; the wider gangways permitted even at crowded periods a ready inspection of any exhibit. The theatrical entertainment was a sheer inspiration on the part of the organizers. There might have been, perhaps, better arrangements in the body of the hall and in the gallery for the seating of those visitors who were fatigued. I have no doubt that this will be attended to next year.

Perhaps the most outstanding feature of the Show was the tendency of all manufacturers to increase the sensitivity and the selectivity of the completed receivers. From this aspect alone 1934 receivers by comparison with 1930 receivers are ten years ahead. Another feature of outstanding interest which early impressed even the casual observer was the tendency to reduce

This is of the Band-Pass type and is provided with screened adjustable trimmers to enable the self capacity to be counter-balanced.

(Continued from previous page)

about this state of affairs, and this year, more than any other, the home constructor found at Olympia plenty to interest him. The succession of important developments which took place during the past few months—iron-core tuning coils—quiescent push-pull—Class B amplification—all-metal valves—cold valves—delayed automatic volume-control—all were responsible for the greatly increased attendance this year. Readers freely expressed the hope that future developments should not occur with such bewildering and almost internecine frequency, for, as quite a number of visitors to our stand said, "we hesitate to build a set because we do not know what is coming next." I pass along the hint to the manufacturers.

The arrangement of the Show this year was commendable; the wider gangways permitted even at crowded periods a ready inspection of any exhibit. The theatrical entertainment was a sheer inspiration on the part of the organizers. There might have been, perhaps, better arrangements in the body of the hall and in the gallery for the seating of those visitors who were fatigued. I have no doubt that this will be attended to next year.

Perhaps the most outstanding feature of the Show was the tendency of all manufacturers to increase the sensitivity and the selectivity of the completed receivers. From this aspect alone 1934 receivers by comparison with 1930 receivers are ten years ahead. Another feature of outstanding interest which early impressed even the casual observer was the tendency to reduce

This is of the Band-Pass type and is provided with screened adjustable trimmers to enable the self capacity to be counter-balanced.
A very neat L.F. transformer produced by the British Radiogram Company. This is less a super than two inches tall and can be fitted into the most compact receiver with admirable results.

In the past that time-honoured craft has been invoked to supply veneered imitations with inferior joints and inferior finish. In passing round from stand to stand it occurred to me that the speaker grille, with its frets and gauze backing, is something of an anachronism. No one to-day would dream of purchasing a piano with anachronistic features.

A synchronous 'turntable fitted to a900 (£18.0s. 6d.) machine, already possessed of a synchronous motor, and operating on the transverse current principle, will find many uses. A synchronous turntable is entirely free from the 'wait for the cloud' factor which is associated with the rotating turntable.

For the sake of clarity, the waveforms developed from this microphone may be compared with those developed from a common transformer. The microphone signal is a simple alternating current of approximately 400 cycles per second, whereas the transformer signal is a wave with a frequency of 1500 cycles per second, a wave which resembles the sound wave produced by the mouth of the performer. The microphone produces a direct wave, whereas the transformer produces a wave which is alternating in character.

Produced by the Whiteley Electrical, this knife switch is provided with a spark gap, and is very useful for inclusion in the aerial-earth system. Good meters will be found invaluable, and this neat tester, incorporating two of the high-class Ferranti meters, is designed for measuring A.C. and D.C. potentials.

A very neat L.F. transformer produced by the British Radiogram Company. This is less a super than two inches tall and can be fitted into the most compact receiver with admirable results.

In the past that time-honoured craft has been invoked to supply veneered imitations with inferior joints and inferior finish. In passing round from stand to stand it occurred to me that the speaker grille, with its frets and gauze backing, is something of an anachronism. No one to-day would dream of purchasing a piano with anachronistic features.

A synchronous 'turntable fitted to a900 (£18.0s. 6d.) machine, already possessed of a synchronous motor, and operating on the transverse current principle, will find many uses. A synchronous turntable is entirely free from the 'wait for the cloud' factor which is associated with the rotating turntable.

For the sake of clarity, the waveforms developed from this microphone may be compared with those developed from a common transformer. The microphone signal is a simple alternating current of approximately 400 cycles per second, whereas the transformer signal is a wave with a frequency of 1500 cycles per second, a wave which resembles the sound wave produced by the mouth of the performer. The microphone produces a direct wave, whereas the transformer produces a wave which is alternating in character.

Produced by the Whiteley Electrical, this knife switch is provided with a spark gap, and is very useful for inclusion in the aerial-earth system.
BETTER TO BUILD THAN TO BUY!

COMPLETE WITH SEVEN VALVES
£8.17.6

TWENTY GUINEAS WORTH OF RADIO FOR LESS THAN HALF THAT PRICE!

Seven Valve Superheterodyne for Home Constructors—All the Luxury Features!

Never before has there been any receiver for Home Constructors on such an ambitious scale as this new Lissen "Skyscraper" Seven-valve Superhet. It embodies every up-to-the-minute advance and refinement of the most luxurious factory-built superhets—it gives the constructor the opportunity to build a £20 receiver for less than half that price. The circuit of the Lissen "Skyscraper" Seven-valve Superhet incorporates a 6-stage bandpass filter, giving exact 9-kilocycle channels and therefore providing a standard of selectivity never before achieved by a home-constructor's kit set and very rarely found except in laboratory apparatus. Amplified Automatic Volume Control is provided, a special valve for this purpose having been produced by Lissen for use in this receiver. The use of this Amplified Automatic Volume Control constitutes an entirely new experience in listening; no "fading," no "blasting"—you will find yourself enjoying every word of every programme, however near or however distant, without the slightest temptation to interfere with the receiver once you have tuned it. This is radio listening as it should be enjoyed!

Lissen Class-B Output through a new full-power Lissen Moving-coil Loud-speaker—glorious rich tone and majestic volume, actually more faultless in its reproduction than anything you ever heard from even the most powerful mains receiver, yet working economically in this Lissen "Skyscraper" from H.T. batteries.

Lissen have published for this great new "Skyscraper" Seven-valve Superhet a most luxurious Chart which gives more detailed instructions and more lavish illustrations than have ever before been put into a constructional chart. It makes success certain for everybody who decides to build this set; it shows everybody, even without previous constructional experience, how they can have a luxury receiver and save pounds by building it themselves. A copy of this Chart will be sent FREE in return for coupon on the left, or your radio dealer can supply you. Get your FREE CHART now!

To Lissen, LTD., Publicity Dept., Isleworth.
Please send me FREE CHART of the "Skyscraper" Seven-valve Superhet.
Name
Address

P.R. 114
To obtain the full advantages of Class B working, this neat device is known as an "Aerial Exempter," and is claimed to prolong the life of the H.T. battery, remove noises, modulation hum and interference, and give vastly clearer reception. It costs 3s. 6d.

The luxury market was catered for by sets which combined mental refreshment with that of a more tangible nature, namely, receivers which house also a cocktail bar, a bookcase, etc. The comfort of the listener was borne in mind by one manufacturer who exhibited an adjustable footrest so that the listener could recline in luxurious comfort. Another device for removing disturbances introduced into a receiver via the electric mains is a Blue Spot product. This is plugged into the mains socket, and the receiver plug inserted into the device.

The luxury of bugbears.

This little device is known as an "Aerial Exempter," and is claimed to prolong the life of the H.T. battery, remove noises, modulation hum and interference, and give vastly clearer reception. It costs 3s. 6d.

The new skeleton W.B. valveholder of your present adapter plug is automatically obtained and the conversion is complete.

The luxury market was catered for by sets which combined mental refreshment with that of a more tangible nature, namely, receivers which house also a cocktail bar, a bookcase, etc. The comfort of the listener was borne in mind by one manufacturer who exhibited an adjustable footrest so that the listener could recline in luxurious comfort.

To enable the various voltages applied to the outlet to be defined, apparatus is included between a valve and its sockets on the receiver, It costs 1s. 1d.

Components vied with sets in point of size, for most of the components used by the home constructor, speakers, condensers, transformers, etc., are only about half the size they were formerly. For the first time, a set specially designed for car radio was shown. Also, for the first time, was exhibited a combined receiver.

A pair of Midgut loud-speakers made by Gramson Reproducers. These two speakers are balanced and give a much better reproduction curve than one single speaker, and cost very little more. They may be obtained with permanent magnets or with energized field windings.

The luxury of bugbears.

This is the Challenger speaker made by R. & A. It weighs round about 70 pounds and costs 15 guineas.

Another device for removing disturbances introduced into a receiver via the electric mains is a Blue Spot product. It is plugged into the mains socket, and the receiver plug inserted into the device.

The new skeleton W.B. valveholder of your present adapter plug is automatically obtained and the conversion is complete.

Components vied with sets in point of size, for most of the components used by the home constructor, speakers, condensers, transformers, etc., are only about half the size they were formerly. For the first time, a set specially designed for car radio was shown. Also, for the first time, was exhibited a combined receiver.

A pair of Midgut loud-speakers made by Gramson Reproducers. These two speakers are balanced and give a much better reproduction curve than one single speaker, and cost very little more. They may be obtained with permanent magnets or with energized field windings.

The luxury of bugbears.

This is the Challenger speaker made by R. & A. It weighs round about 70 pounds and costs 15 guineas.

Another device for removing disturbances introduced into a receiver via the electric mains is a Blue Spot product. It is plugged into the mains socket, and the receiver plug inserted into the device.

The new skeleton W.B. valveholder of your present adapter plug is automatically obtained and the conversion is complete.

Components vied with sets in point of size, for most of the components used by the home constructor, speakers, condensers, transformers, etc., are only about half the size they were formerly. For the first time, a set specially designed for car radio was shown. Also, for the first time, was exhibited a combined receiver.

A pair of Midgut loud-speakers made by Gramson Reproducers. These two speakers are balanced and give a much better reproduction curve than one single speaker, and cost very little more. They may be obtained with permanent magnets or with energized field windings.

The luxury of bugbears.

This is the Challenger speaker made by R. & A. It weighs round about 70 pounds and costs 15 guineas.
SOME time ago I was severely criticized by a number of readers for suggesting in one of my articles that the hoarding of old "junk" was a silly practice. I fear I went even farther. It was my remark that such hoarding was merely a sign of meanness which brought forth the greatest wrath and indignation. Of course, I admit that such a statement was rather sweeping. Naturally, we all keep a junk box, but I was thinking at the time more of the inevitable rubbish with the idea that one day it may come in useful, than of the average constructor who naturally collects a few "spare" components in the course of his hobby. Obviously, there is a happy medium in all things; and I should be the last to suggest discarding good components because there is no immediate use for them. It is, therefore, to placate my critics and detractors that I put forward the following suggestions for the use of some of the contents of the inevitable junk box.

You may happen to have an old transformer in which a burnt-out primary winding of which has ceased to function during a performance, this when a transformer has suddenly ceased to function altogether. Any way, the point is that it has no further use as a transformer. However, the secondary winding is most unlikely to be damaged, and for that reason it may still be used as a choke. Choke coupling in the L.F. stages is preferred by many designers to transformer coupling. It is particularly suitable where there is already one transformer stage and where further high stage gain would be neither necessary nor desirable. The connections for a choke-coupled stage using the secondary winding of an old transformer as a choke is shown in Figs. 1-3 (the secondary terminals of a transformer are usually marked "G.B." and "G."). It will be noticed that the only extra parts required are a fixed condenser of from about .01 mfd. to .1 mfd. capacity, and a grid-leak round about 3 or 1 megohm.

Although choke coupling is usually used where there are two L.F. stages, it does not mean to say that it is not suitable in a single stage. I have several times proved this when a transformer has suddenly ceased to function during a performance, owing to the primary winding burning out. By quickly changing over the connections, and using the offending instrument as a choke, the receiver has been going again within a few minutes, while the loss in volume was hardly perceptible.

A Wave Trap

If you happen to have an old filament rheostat to use them as anything else than coils is not usually very successful. I have certainly used a long-wave plug-in coil before now as a temporary H.F. choke, but I cannot recommend the use of any long-wave coil in this capacity. If you happen to have a coil of large inductance and very small self-capacity, it may work. Of course, two large coils connected in series would be better, but here the question of space arises, besides the risk of interaction with other components.

Fig. 3.—How a "burnt out" transformer can be used for coupling two valves. See also Figs. 1 and 2.

A Wave Trap

If you happen to suffer from interference from one source only, such as a powerful local station, then a wave trap is quite a useful accessory to have. It is connected between the aerial and the aerial terminal of the set, and will enable you to cut out Hem from one source only, such as a powerful local station, and so receive others. It cannot, however, cut out more than one station, so that if there are more...
"Whatever circuit it is, the Screened Pentode will plug into it."

That is the wonderful fact about this remarkable new Mullard Valve. Whatever the A.C. circuit, however old, however new, however many valves, this new H.F. Pentode will plug into it, will modernise it, will Pentodise it. Because that's the new ideal in circuit design — complete Pentodisation. Pentode-Detector-Pentode means Pentode power in the first stage as well as in the final stage. Mullard Research first introduced the Pentode type of valve and gave Pentode Power to the L.F. stage. Now it comes along with Pentode for the H.F. stage. Ask your dealer about it. It's going to do a great deal for your receiver.

ASK T.S.D. Whenever you want advice about your set or about your valves—ask T.S.D.—Mullard Technical Service Department—always at your service. You're under no obligation whatsoever. We help ourselves by helping you. When writing, whether your problem is big or small, give every detail, and address your envelope to T.S.D., Ref. D.K.P.

THE NEW SCREENED PENTODE

Mullard

THE MASTER VALVE

The Mullard Wireless Service Co., Ltd., Mullard House, Charing Cross Road, London, W.C.2
is another station causing trouble besides the local it will not be able to deal with both of them. This is because of the principle on which it works. It is tuned to the station it is desired to eliminate, and cannot, of course, be tuned to two stations at once. Now a wave trap can be quite easily constructed from parts found in the junk box. The chief components needed are a tuning coil and variable condenser. The circuit is

Fig. 7.—Another hum-reducing circuit using a potentiometer made from an old rheostat, shown in Fig. 4. This is what is known as a "rejector" type of trap. As you see, it consists essentially of a tuned circuit. If this is connected in series with the aerial and tuned to the wavelength of the unwanted station, then signals on that station will be unable to reach your set.

The construction of such a wave trap, using plug-in coils, is illustrated in Fig. 4. It is best to use tapped coils, then a greater range of control is possible. For instance, with the aerial connected to the end A of the coil (Fig. 4) the trap is most effective, although it alters the tuning positions of the set somewhat. When joined to the other end, that is, to No. 1 tapping, the cutting-out station is least powerful, but there is very little disturbance of the usual tuning positions.

A Stand-by Receiver

Another use which may be found for old coils, etc., is in the construction of a small stand-by receiver. Such a receiver will be very little trouble to make, and should be kept handy in an emergency. How three plug-in coils may be arranged to provide medium and long-wave reception without coil changing is shown in Fig. 9. A medium-wave and a long-wave coil are mounted on the baseboard and another coil needed between them for reception purposes. As there is only one reaction coil it will naturally be a compromise as regards size. It should be rather larger than is normally needed for the medium waves, but placed nearer to the long-wave coil than to the medium-wave one. In this way it will be effective on both wavebands. A simple on-off switch is all that is needed for wave-changing.

Valves which are no longer used because they have lost some of their original emission, and those which have been replaced by later types, provide yet another example of how many parts which in the old days seems sacrilege to place on the scrap heap. I have seen many suggestions for using the bases of old valves as plugs for plugging in amplifiers, short-wave adaptors, etc., but I doubt if the conversion is worth the trouble, since such parts can be bought so cheaply. No, I think the best use for old valves is for testing purposes. Whenever I construct a new receiver I always plug-in old valves when I first switch on. Should there then be any fault which has escaped my checking, I do not run the risk of damaging my new valves.

Of course, one or two spare valves, even if they are past their prime, should always be kept handy in case of emergencies, for although modern valves do not usually cease to function without warning it is best to be prepared. An old valve is better than no valve!

Fig. 8.—Simple conversion of an old multi-stud switch into a radio-to-gram. switch.

Old Type Filament Rheostats

One of the chief features of sets of a few years ago was the noticeable filament resistances on the front panel. There was usually one rheostat for each valve. Many of these have since found a resting place in the bottom of the junk box. However, some of the higher resistance ones, say about 30 ohms, need not necessarily be forgotten. The slider is moved one way for radio reception and the other way for the gramophone. Such a switch may easily be mounted on a small strip of ebonite at the back of the set and was surrounded by an array of studs as in Fig. 8. Such an arrangement on the front of a set would be considered very unsightly nowadays. However it is quite possible to use one of these smaller types as a radio-gram switch. Two such switches can easily be mounted on a small strip of ebonite at the back of the set and will save the cost of a modern push-pull switch.

Fig. 9.—Circuit layout showing method of wave-changing with old plug-in coils without coil changing.

Converting Old Switches

The type of switch which is used probably less than any other nowadays is the multi-contact type which figured so largely in the days of elaborately tapped tuning coils. The arm of the switch was mounted direct on the panel of the set and was surrounded by an array of studs as in Fig. 8. Such an arrangement on the front of a set would be considered very unsightly nowadays. However it is quite possible to use one of the smaller types as a radio-gram switch. Two such switches can easily be mounted on a small strip of ebonite at the back of the set and will save the cost of a modern push-pull switch. The studs should be mounted fairly close together as in Fig. 8 so that the arm does not drop between them as it moves from one to the other. The action will then be quite smooth.

Fig. 10.—How a discarded filament rheostat may be converted into a 3-point wave-change switch.

Converting Old Switches

Many of these have since found a resting place in the bottom of the junk box. However, some of the higher resistance ones, say about 30 ohms, need not necessarily be forgotten. The slider is moved one way for radio reception and the other way for the gramophone. Such a switch may easily be mounted on a small strip of ebonite at the back of the set and will save the cost of a modern push-pull switch. The studs should be mounted fairly close together as in Fig. 8 so that the arm does not drop between them as it moves from one to the other. The action will then be quite smooth.

Fig. 11.—A resistance holder made from parts found in the junk box.

Fig. 12.—How to convert an ordinary valve-holder into the chassis mounting type.
MANY readers who have constructed receivers described from time to time in this journal, must have wondered whether they are getting the best results possible, after adjusting them while listening to broadcast stations. There are many difficulties attendant on the procedure often advocated, of tuning in a weak foreign station on the medium wave-band, and then adjusting trimming condensers, H.T. voltages, and grid-bias until loudest signals are obtained, then repeating the process on long waves; not the least being the tendency for the transmission to fade at the critical moment and upset all one's calculations.

Having had some experience of these annoying phenomena, the writer is of the opinion that the simple oscillator described will prove of exceptional value to the reader who wishes to get the best results from his set. Far from being expensive, the whole apparatus can be rigged up from parts already on hand, and the writer would emphasise that almost any make of variable condenser which has no vanes touching the moving vanes must be insulated from the panel as it is at H.T. potential. The L.F. choke should possess a low inductive valve and must not be enclosed in a case of any sort, but mounted in clamps. Should the constructor possess an old L.F. transformer with the primary intact, this may be used as the choke, the secondary winding being left disconnected.

Principle of Operation

For its operation, the oscillator depends upon the so called dynatron principle, which is merely that a screen-grid valve, suitably fed with anode and screen voltages, will oscillate without the need for coupled circuits, and moreover can be made to provide its own modulating note.

Fig. 1.—The theoretical circuit.

Adjusting and Testing

When the components have been mounted and wired as shown in Figs. 2 and 3, it only remains to connect H.T. and L.T. batteries to their appropriate terminals, and we are ready to begin adjusting our oscillator. First plug a 35-turn coil into the coil-holder, and place the plug attached to H.T. + 1 into the 60-volt pocket of your H.T. battery. The plug attached to H.T. + 2 should be placed in the socket giving the highest H.T. available (120 volts being convenient). The oscillator should then be stood near the aerial connection of the receiver to be tested and, with the set switch on and tuned to roughly 250 metres, the tuning dial of your oscillator should be slowly rotated from zero to maximum. Now if our S.G. valve is oscillating, a rushing noise will be heard in the loud-speaker; if not, it is only one point in our oscillator circuit that is out. The rush noisel is heard, when the oscillator condenser is at the point where the noise is heard. It is possible that the rushing noise will be accompanied by a musical note like the B.B.C. tuning note, but it is unlikely that we shall be lucky enough to make an oscillator function at both high and low frequencies at the first attempt. If, however, such should be the case, do not interfere further, but use the adjustments, but use the oscillator as described later.

Obtaining the Tuning Note

To obtain the musical note it is necessary to adjust the inductances of the L.F. choke.
and the easiest method is to remove some of the lamination from its core. For this purpose, and without altering the tuning of the oscillator in any way, disconnect the H.T. from the unit, take out the choke, unclamp the core and remove, say, ten pairs of lamination. Then reclamp the remaining lamination, reconnect in the circuit and try again. It may be necessary to remove nearly all the lamination in this way before a musical note is heard in the receiver, but trial and error is the only method which will ensure success in this instance. It is interesting to note that the pitch of the note heard may be raised or lowered by removing or adding one or more lamination at a time (Fig. 4) until the note is heard in the loud-speaker and make sure, by carefully moving the gang condenser trimmers, that the receiver is tuned to the changes of intensity of a wave-meter, it being only necessary to tune in powerful broadcasting stations of known wavelength on the receiver, and then to rotate the oscillator condenser until the note is heard superposed upon the broadcast transmission, and a record made of the oscillator dial reading. Many other uses will be found for this handy instrument, and the constructor will find it well worth while to make up such a versatile and interesting piece of apparatus.

Further Adjustments

Now by removing the 35-turn coil from the oscillator and inserting a 150-turn coil in the holder, we can check up the performance of our receiver on long waves, the procedure being exactly similar except that we must switch our receiver to long wave and check at, say, 1,200 and 1,900 metres. It will be found comparatively easy to adjust any receiver with the aid of the steady note given by the modulated oscillator, and the ear is quite sensitive to the changes of intensity of a single note while adjustments to the receiver are being made.

More accurate adjustments can be made to the receiver when there is a visual indication of relative signal strengths. In addition to its use as indicated above, the oscillator can easily be calibrated quite accurately as a wave-meter, it being only necessary to tune in powerful broadcasting stations of known wavelength on the receiver, and then to rotate the oscillator condenser until the note is heard superimposed upon the broadcast transmission, and a record made of the oscillator dial reading. Many other uses will be found for this handy instrument, and the constructor will find it well worth while to make up such a versatile and interesting piece of apparatus.
OSRAM "CATKIN" VALVES are essential for modern receiver practice. Immensely strong yet compact in design, they are constructed to microscopically precise limits and therefore allow for greatly improved set performance. A set equipped with OSRAM "CATKIN" VALVES gives the highest quality reception.

The all-metal construction of OSRAM "CATKIN" VALVES is a radical departure and results prove beyond dispute that they definitely give more uniform results, complete freedom from microphonicity and more effective screening. A change to OSRAM "CATKIN" VALVES is a change to faultless radio reception.

OSRAM (CATKIN)

Valves

Made in England.
Covered by World Patents.

FOR A.C. MAINS RECEIVERS

METAL INSTEAD OF GLASS

TYPES AND PRICES

MS48 High Efficiency Screen-Grid A.C. Mains Valve - 17/6
VMS4 Improved Variable Mu Screen-Grid A.C. Mains Valve - 17/6
MH4 High Magnification Detector A.C. Mains Valve - 13/6
MPT4 Power Pentode A.C. Mains Valve - 18/6

(Other types to follow)

Sold by all Wireless Dealers

WRITE for the OSRAM VALVE GUIDE (1933 Edition) sent post free.

"CATKIN" is the Trade Mark of the M.O. Valve Co. Ltd., manufacturers and patentees.
TELSEN ELECTROLYTIC PAPER AND MICA CONDENSERS

Adaptable to flat and vertical mounting. H.F. losses, even in the larger sizes, have been virtually eliminated. Grid leak clips supplied free with the smaller capacities. In capacities of from '0001 mfd. to '001 mfd.

TELSEN TAG CONDENSERS
At reduced prices

Of compact and sturdy construction. May be mounted on either insulated or metal panels. Tags enable the condensers to be connected to any other components, either directly or by soldering. H.F. losses are negligible. In capacities

TELSEN PRE-SET CONDENSERS
At reduced prices

Give widest variation between maximum and minimum capacities, and exceptional range of selectivity adjustment when used in the aerial circuit. High insulation with low loss. In mfd. capacities of from '001 to '002

TELSEN HIGH VOLTAGE ELECTROLYTIC CONDENSERS
An outstanding achievement in condenser design. Excellent for use in smoothing circuits and other positions in which high voltage high capacity condensers are required. The special bracket and terminal supplied with the condenser enables it to be mounted on any type of backboard or chassis.

TELSEN LOW VOLTAGE ELECTROLYTIC CONDENSERS
Ideal where a very high capacity with a fairly low voltage is required, as in automatic bias circuits for L.F. valves. Very compact, with wired ends for easy suspension in the wiring.

TELSEN PAPER CONDENSERS
Specially designed for 2-way Sizing.

TELSEN RESISTORS WITH WIRED ENDS
Very small and light, and easily suspended in the wiring of a receiver. Supplied in the following values. Power rating of 2 watts: 259, 500, 1,000, 1,250, 1,500, 1,750, 2,000, 2,500, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, 10,000, 15,000, 20,000, 25,000, 30,000, 40,000, 50,000, 60,000 ohms resistance. Price 1/3.

TELSEN FOR EVERYTHING IN RADIO
ANNOUNCEMENT OF THE TELSEN ELECTRIC CO., LTD., ASTON, BIRMINGHAM
The History of Reaction

And How it is Employed in Several
Well-known Circuits

By LAMBDA

It was about twenty years ago that the principle of reaction was first disclosed, but it was not, however, until the advent of broadcasting after the war that this principle was put to any very extensive use. The demand then arose for cheap and efficient receiving sets, and at the prices then ruling the application of reaction to two and three-valve receivers was a tremendous advantage. In the early days receivers were expensive, small battery receivers costing as much as twenty pounds, and by incorporating reaction a saving of practically one valve was effected. Without reaction the cost of a receiver would have been prohibitive, so that few of us could have afforded to indulge in what would have been a very expensive luxury properly handled can be of great benefit, and with care quality does not suffer to any appreciable extent.

To the constructor it has been of considerable utility. Although the cost of receivers and components has been enormously reduced, even now we cannot afford the more pretentious sets incorporating two or more high-frequency stages, or superhets. Even in the two H.F. set, reaction is often incorporated. It is particularly useful in boosting up signals, especially for constructors who live in parts of the country which are rather remote from the local station, or who wish to receive that rather distant foreigner. A three-valve circuit embodying reaction, in the hands of a skilled constructor, has been known to perform prodigious feats, and the number of stations logged by constructors of even some of the more simple receivers described in this journal have been amazing.

During recent years reaction has been somewhat neglected, possibly due to the reduction in the price of components. Many of the early constructors have indulged in more ambitious receivers. Most of us are like the car owner: we start with the modest baby car, but are not satisfied; we want to launch out; want more power; so that eventually the car enthusiast graduates into the six-cylinder type. Likewise the constructor: he wants greater power, greater command over the ether; and why shouldn't he?

However, there now seems to be a tendency for research engineers to direct their attention to regenerative receivers, and it is possible that we may hear of great improvements in this type of circuit in the near future.

In spite of the great benefits derived from the application of reaction in receiving circuits, there has been from time to time an outcry against its use. Unfortunately, over enthusiastic persons have missapplied this instrument, and in forcing their reaction control to the point of oscillation have caused considerable annoyance to their neighbours. The majority of constructors, however, know better, and this interference has been minimized to a very considerable extent.
Among Table Radio Sets

Because

- It is a Superhet Seven
- It has Concert Tone & Volume
- It has Delayed Automatic Volume Control
- It has a Special Static Suppressor
- It has Adjacent Channel Selectivity

And

Because

- It is built by "His Master's Voice"

The Superhet Concert Seven combines the very latest improvements in radio science, such as delayed automatic volume control (which eliminates fading of long-distance programmes), static suppressor (which prevents the amplification of any signal in the "mush"), and real adjacent channel selectivity. It provides not only a range of stations to satisfy the inveterate station hunter, but also a tone to please the most sensitive musical ear.

To prove its supremacy needs but a fractional turn of the tuning knob—to prove its supremacy as a musical instrument, just listen! Here is the realism of the Concert Hall itself—a tone that is true to life! The technically minded will find further details to interest them in the brief specification below.

But besides being good to hear, the set is also remarkably good to look at. Altogether, an instrument you will be pleased to listen to, pleased to look at, and, since it is made by "His Masters' Voice," proud to own. Price 22 Gns. (or by Hire Purchase).

Brief Specification:
Superhet Concert Seven
Model 467
Seven-valve (inc. rectifier) superhet-odyne circuit
Marconi valves.
Power to operate three additional loud-speakers.
Height - 1 ft. 7¼ ins.
Width - 1 ft. 5½ ins.
Depth - 12 ins.

"His Master's Voice"
True-to-Life Radio & Radio-Gramophones

The Gramophone Co., Ltd., 98-108 Clerkenwell Road, London, E.C. 1

(Price does not apply in L.P.S.)
An Earthing Clamp

A very effective earthing device may be constructed from a piece of copper sheet \(\frac{3}{4} \) in. thick and \(\frac{3}{4} \) in. square, two 4BA nuts, bolts and washers. The copper sheet is bent around the water-pipe to which the earth-wire is to be attached, and \(\frac{3}{4} \) in. from the extreme curved edges and along the centre line are drilled two 4BA clearance holes. The two 4BA nuts are firmly soldered to the outside surface of the sheet, from the extreme curved edges and along the centre line are drilled two 4BA clearance holes. The two 4BA nuts are firmly soldered to the outside surface of the sheet, and, to prevent penetration of the pipe when the device is in position, the washers are soldered to the ends of the bolts. The device is placed on the pipe and the earth wire wound around the extreme outside and between the two bolts. By screwing the bolts on to the pipe a varying degree of tension on the earth wire may be made thus ensuring good electrical contact.

G. McGahan (Sunderland).

Switching Arrangement for All-mains Working

The conversion of a battery set to all-mains operation can be done by a method of simple switching, which I have evolved to meet the circumstances of my own case. I have a D.C. eliminator, but found that my accumulators were not being properly charged by the so-called charging stations. Having a six-point switch, I decided to use it to help solve my problem.

I now have no trouble and may say that my set is now all-mains using 2-volt battery valves. The switch is of the six-point type, though any similar switch will do.

The lighting point, or load lamp, can be extended to a table lamp, for use on any small table near the set. When the switch is in top position, the device is of the six-point type, though any similar switch will do. The lighting point, or load lamp, can be extended to a table lamp, for use on any small table near the set. When the switch is in top position, the device is of the six-point type, though any similar switch will do.

This arrangement, as shown in Fig. 1, completely isolates the accumulator from set so that the H.T. fuse in the set is unaffected, and is still serving the purpose of protecting the valves. The circuit can be adapted to A.C. working, as shown in Fig. 2.

Increasing Volume and Sensitivity

The following description of a gadget may interest readers who use portable or transportable receivers and find that reception grows worse during the summer months, and also when their H.T. voltage begins to drop. It consists of a home-made coil of 40 to 50 turns, tuned by an old .0005 tuning condenser, connected in parallel and joined to any form of aerial and earth, as indicated diagrammatically in Fig. 3. The coil and condenser are in my case mounted in a small box which carries terminals for aerial and earth leads. The box is placed close to the frame aerial of the receiver, as in Fig. 4, which is tuned in to a station normally. The gadget is then roughly brought into tune by rotating the knob of the .0005 condenser. A great increase in volume and sensitivity is obtained, whilst the receiver loses a little of its directional property; this, however, is easily overcome by varying the distance between the device and the receiver, or turning the whole device so that the frame aerial of the receiver and the coil in the device are varied from parallel to right angles to each other.

A Useful Microphone Unit

A useful gadget can be built up into a useful portable unit, in the manner indicated in the accompanying sketches. The case in this instance is made from an old fuseboard cover with the glass removed, but anything light and strong will serve. The "mike" is surrounded with a wide rubber band, thick enough to "insulate" it (mechanically) from the large spiral spring. This spring is cut to such a length that, when wound round the microphone, it holds it tightly in place.
enough to prevent a normal jar from disposing it. Next, four stiff rubber bands are passed through the spring at appropriate points, and secured to the case sides by means of small tacks or screws. Place large washers over these screws if the rubber shows signs of tearing away.

The microphone transformer is now screwed into the base of the case at the back, taking care that it does not touch any part of the suspension. An old resistance or crystal detector clip is now fastened at the top left-hand corner of the case, and another in such a position that an ordinary small torrey battery will clip tightly between them.

If the switch is of the type with long fixing bolts, it may be mounted directly over this clip, and one of its bolts used as both connection and fixing for the clip as shown; otherwise it will have to be wired separately.

The wiring and connections will be seen from the diagrams. Small rubber feet and eye hooks complete the job and make the “Mike” readily adaptable. The control panel (potentiometer, etc.), could, if desired, be mounted as a back for the unit, but usually it is more convenient to have it separate.—L. Shepherd (Bradford).

Work Board for Dining-Table

Most radio enthusiasts are, like myself, compelled to do all their set constructing, soldering, etc., on the dining table, owing to lack of space for the accommodation of a proper work bench. An ordinary dining table is quite satisfactory, to work on, but great care has to be taken to avoid burning the table top with the soldering, otherwise it will have to be wired separately.

The wiring and connections will be seen from the diagrams. Small rubber feet and eye hooks complete the job and make the “Mike” readily adaptable. The control panel (potentiometer, etc.), could, if desired, be mounted as a back for the unit, but usually it is more convenient to have it separate.—L. Shepherd (Bradford).

A Pick-up Adaptor

An old valve base makes an excellent plug for connecting a pick-up to a set and at the same time breaking the filament connection to the H.F. valve or valves. Fig. 5 gives a circuit diagram of the switching arrangement and connections of a Clix 4-pin chassis mounting valve-holder which is fitted at the back of the set over the terminal strip.

A Simple Condenser Shorting Device

Of course, this condenser must be shorted when reverting to the medium and long waves or the tuning ranges would be restricted. The following arrangement will be found very convenient for this purpose, and as can be seen from Fig. 6, is quite simple. The parts required are: an ivorine disc (an old terminal indicator), about 2ins. of bare No. 18 gauge wire, and of course a .0005 mfd. fixed condenser. First, make a small loop at one end of the wire just sufficient to clear the terminal shank of the fixed condenser, and at the other end make a larger loop so that the terminal shank does not touch the loop. (See Fig. 8.) Then disconnect the wire that goes from the grid condenser to the variable condenser and take it to one side of the .0005 mfd. fixed condenser. On the same terminal place the ivorine disc. From the other terminal of the fixed condenser take a piece of the smallest vanes of the variable condenser and place the smaller loop on, and tighten. Put the large loop over the other terminal shank so that it rests on the disc but does not touch the shank. On replacing the terminal head and screwing down, the condenser is shorted and is then suitable for the medium and long waves. On unreversing it, the capacity becomes .00005 mfd. for short-wave use. —J. Irwin (Blackburn).

A Correction

On our Wrinkles page in the August 19th issue, under the heading A Handy Tester, we published a wrinkle by J. G. Simpson, of Durham, for which the wrong illustration was inadvertently used. The correct illustration is given below:

![A Handy Tester](image-url)
Home-built radio that gets EUROPE-AMERICA-AUSTRALIA-all on the same set!

At last the day of All-World Radio has arrived, and you can build with your own hands the first receiver to give you not only England and Europe, but America and Australia direct. The Lissen All-Wave All-World "Skyscraper" 4 tunes from 12 to 2100 metres. It brings two complete new wavelength ranges within reach of the ordinary listener—stations and programmes which before he was never able to receive—Ultra Short and Short-Wave transmissions from the ends of the earth. And remember you get these stations through Double-Balanced Pentode Output giving brilliant reproduction on a Moving-Coil Speaker—as much power as a Mains Set from ordinary high-tension batteries.

Lissen have made this All-Wave All-World Radio available to Home Constructors first, because it brings back the thrill of conquest to hear America and Australia direct on a set you have built yourself, it makes you an enthusiast to realise what a wonderful thing you have created!

When you see the Great Free Chart of the All-Wave All-World "Skyscraper" 4, you will agree at once that it will be wise of you to build for yourself rather than buy a factory-assembled receiver which cannot give you these new and intriguing short-wave stations. The FREE CHART simplifies everything; there are pictures of every part, with every wire numbered, every hole lettered, every terminal identified. YOU CAN'T GO WRONG! But get the Chart and see for yourself—then build the Lissen All-Wave All-World "Skyscraper" 4, the SET THAT SPANS THE WORLD!
The introduction of the new high-frequency pentodes has done much to remove the idea that the pentode is solely an L.F. output valve, and it is almost certain that in a very short time H.F. pentodes will have ousted screen-grid valves from receivers altogether, as they have done already in the U.S.A., for there is practically nothing that a screen-grid valve can do that a properly designed pentode cannot do as well or better. This applies as much to detectors in short-wave receivers as to anything else, and these notes are intended to help experimentally inclined readers to try out the pentode in the detector socket of their short-wave sets. At present there are no battery operated, high-frequency pentodes available, although no doubt they will appear soon, but excellent results were obtained with the ordinary low-frequency power type. The chief advantage of the pentode over the screen-grid valve is that owing to its lower internal resistance it does not need such a high impedance load for maximum voltage output; also, the removal of the negative resistance kink in the characteristic curve, by the introduction of the third grid, makes larger voltage swings possible, and the potential of the screening grid of the pentode is not as critical as in the tetrode. The circuit arrangement found most satisfactory is shown in the accompanying illustration, and is practically identical with that used in a tetrode detector; throttle control of reaction is indicated, although the more usual modified Reinartz arrangement can be used; in either case the capacity of C2 can be about .0002 mfd. Screening-grid voltage is supplied by a potentiometer of 50,000 ohms resistance, in series with another 50,000 ohm fixed resistance, the variable contact on the potentiometer being by-passed by a fixed condenser C3, whose capacity may be between .01 and 1 mfd.; C3 should be a mica component for preference, although a non-inductive paper condenser would probably be satisfactory. The detector plate circuit is decoupled by the resistance R6 and condenser C5, whose respective values are 10,000 ohms and 2 mfd. Coupling to the L.F. valve is by an auto-transformer, resistance fed by the 50,000 ohm resistance R5. Choke feed can be tried and may be successful with some valves, but the writer found that it is very conducive to threshold howl. With either feed system, or, if simple resistance or choke coupling is used, the coupling condenser C4 can be about .01 mfd. or more. One of the complete coupling units containing a resistance-fed transformer would be very satisfactory in this position.

Screening Grid Voltage

Although the pentode does not seem to be quite as fussy about its screening-grid voltage as the tetrode, none the less it is desirable to have a means of close adjustment of this potential, hence the provision of R3: it will be found that the voltage should be quite small, about 30 to 40 volts with 135 volts H.T., as otherwise reaction will be very harsh indeed and the tendency to threshold howl accentuated; also, keeping the screen volts low will reduce the plate current taken by the valve and hence prolong the life of the H.T. battery. Too low a screen voltage is undesirable, however, both with screen-grid valves and pentodes, because the amplification may be considerably reduced and it is worth while varying the size of the reaction coil until a combination is obtained, which gives the smoothest control with maximum screen voltage. If, in making the initial adjustment, the screen voltage is too high the set will sound dead, as though it was not oscillating, whereas, actually, it is oscillating much too strongly, as can be verified by putting a moistened finger on the aerial terminal and noting the sharp double click on touching it and again on letting it go.

Reaction Control

Two methods of reaction control are available with the circuit given, viz., by variation of the capacity of the reaction condenser in the usual way, and by variation of the screen-grid potential. This latter method is particularly popular in America, but while offering very smooth control it suffers from the disadvantage that one cannot be sure of working at the optimum screen-grid potential, since the setting of R3 to give maximum signal strength will not necessarily coincide with that for no oscillation. A third control of reaction is possible by making the decoupling resistance R6 a 50,000 ohm variable component; from the point of smoothness and absence of detuning effect this is probably the best method, but it was found difficult to obtain controllable reaction over a wide range of wavelengths with a single reaction coil. It could be used with advantage as an auxiliary source of control to C3 over fairly small bands of wavelengths.

Any ordinary short-wave coil unit can be used, the value of C1 depending on the recommendation of the manufacturers. In the interests of easy tuning it should be as small as possible, of course, and, as usual, the writer prefers the band-spread system, using a small .00005 mfd. condenser C1a in parallel with C1, in the manner previously described in these pages.

The pentode oscillates very easily, but the low-frequency type has a high grid filament input capacity, consequently, the minimum wavelength of a given tuning coil will be somewhat increased and the valve might be a little unsatisfactory on very short waves, around 10 metres. Doubtless a special high-frequency pentode would be free from this fault. No marked increase in signal strength over the screen-grid detector has been noticed when using a pentode, but it does seem to be less critical in its adjustments and to that extent worth while.

By K. E. BRIAN JAY.
The new Telsen Mains Units are the outcome of long research and experiment by some of the finest radio engineers in the country. No effort has been spared to achieve their perfection, every conceivable refinement being embodied in their up-to-the-minute design. Switch over to Telsen now—and rid yourself for good of the distortion and L.F. oscillation which accompany run-down batteries, and the constant expense incurred in their replacement.

TELSEN H.T. UNIT AND L.T. CHARGER FOR A.C. MAINS.
For input voltages between 200 and 250 at 40 to 100 cycles. H.T. output is 28 m.a. at 150 volts, with separate Max., Det. and S.G. tappings, at each of which a choice of high, medium or low voltages is available. Very generous smoothing equipment eliminates hum. Charges 2, 4 or 6 volt accumulators at 0.5 ampere, the use of these facilities leading to such a saving of charging costs that the unit soon pays for itself. Very solidly built, and completely screened by an artistically finished metal case.

TELSEN H.T. UNIT FOR D.C. MAINS.
For D.C. inputs of from 200 to 250 volts. Adequate smoothing is provided to remove ripple. Output is approximately 28 m.a. at 150 volts. Max., S.G. and Det. tappings are provided, at each of which a choice of high, medium or low voltages is available. Enclosed in a well-finished metal case which provides complete screening.

TELSEN FOR EVERYTHING IN RADIO
ANNOUNCEMENT OF THE TELSEN ELECTRIC CO., LTD., ASTON, BIRMINGHAM
It might seem somewhat contrary to the policy of PRACTICAL WIRELESS to introduce yet another new receiver so soon after the three sets described in the "Show" numbers, but there is a very good reason for our describing the "Modern A.C. Three." Whilst we were at Olympia we had the pleasant opportunity of meeting a very large number of our readers, and by so doing to learn just what their views were, and what kind of receivers they would like to build. And despite the enormous amount of interest and enthusiasm shown in our latest battery receivers we discovered that many readers were desirous of changing over to all-electric instruments. We therefore made detailed inquiries in order to learn exactly what type of set in the A.C. class would prove of interest to the majority. It was at once clear that careful consideration must be given to the price question, whilst at the same time all the most important and reliable modern improvements must be incorporated. Immediately after the Exhibition, then, we set to work to design a set which would fulfil the requirements mentioned above, in order that we might maintain the high reputation for which PRACTICAL WIRELESS is now noted of giving Real Reader Service.

After carefully surveying the problem and carrying out a number of experiments another PRACTICAL WIRELESS guaranteed receiver was evolved.

High Selectivity and Power Output

It will be of interest briefly to describe the system which was followed in combining the requirements and ideas of our readers to produce a thoroughly efficient and likeable receiver which will give really good reproduction from a number of stations. The set had to be eminently up to date, which means that it must be ultra-selective and capable of providing an undistorted output of not less than two watts. Tuning must be easy and of the "single-knob variety; a real pre-detector volume control must be incorporated to prevent any possibility of overloading when receiving local stations; there must be provision for connecting a gramophone pick-up and, above all the set must be perfectly safe electrically. Furthermore, the construction must be on easy and straightforward lines.

It was evident that a three-valve circuit, consisting of variable-mu S.G., detector and pentode stages would be most suitable, so this was decided upon. To ensure ample selectivity for all purposes meant that either a band-pass input circuit or iron core coils must be used. Since the latter are both more efficient and cheaper there was no hesitation in adopting them, and it only remained to find two of a type that would most suit the requirements of a provisional circuit which had been drawn up. Telsen type W. 349 were decided upon because they are of the double-wound pattern and can be used as high-frequency transformers to give an extraordinarily high degree of selectivity. By using transformer coupling between the variable-mu and detector valves the usual coupling choke is not required and thus expense is saved, despite the fact that a slightly greater degree of efficiency is at the same time secured. To facilitate the connection of a gramophone pick-up a plug and jack connector was employed, so that when gramophone reproduction is required it is only necessary to insert the plug (to which the pick-up leads have been connected) into the jack. This simple process automatically breaks the lead between the grid and grid condenser of the detector valve and connects the pick-up in place of the tuning circuit. Due to the method of wiring up the grid leak and a voltage dropping resistance a suitable bias voltage is also applied to the detector to make it function as a most efficient amplifier.

Good Bass Response

So as to improve bass response the detector valve is coupled to the AC/Pen. output valve through a resistance-fed transformer.
A Really Efficient and Economical All-Mains Receiver for the Home Constructor. It Has Iron Core Tuning Coils, a Variable-Mu H.F. Valve and Numerous Other Modern Refinements. By THE TECHNICAL STAFF.

Theoretical Circuit of the A.C. Three.

- C1, C7—0.005 mfd. papered. C3—0.001 mfd. C6, C9, C11—1 mfd. C7—0.002 mfd. C8, C12—2 mfd. C10—0.0 mfd. R1, R2—20,000 ohms. R4—150 ohms. R6—2 megohms. R7—400 ohms. R9—300 ohms. R5—15,000 ohm. graded potentiometer.

This transformer is of a type rated at approximately 1:1 ratio, but by connecting it on the automatic principle (both windings being in series), an actual voltage step-up of 4:1 is obtained, and this ratio has been found to be just sufficient to enable the period of the signals to be fully loaded on signals of average strength. Thus, the output valve is able to operate under conditions of maximum efficiency and so to give an undistorted signal output of approximately two watts.

Novel System of Smoothing

It need scarcely be mentioned that every stage is thoroughly decoupled to ensure that the set shall be perfectly stable and free from all kinds of motor-boating and similar noises which are often very objectionable in a mains receiver.

Once the main features of the receiver were decided, the question of the power supply unit came up for consideration. With a view to economy it was decided to employ a valve rectifier, and that chosen is rated to give 220 volts at 60 milliamperes. It is also interesting to observe that the field coil (serving as smoothing choke) is constructed as a串联 choke and only produces a voltage drop of about 90 millivolts. It can be seen from these prices that the cost of the set is distinctly reasonable, especially when the much up-to-date features and the high quality of the parts employed are taken into consideration. It might have been possible to cut down the cost still further, but only at the expense of quality, and we feel sure that such a procedure would not have been welcomed by our readers.

Metallized Chassis for Easy Construction

Although it is not possible to give all constructive details in this issue, because of space limitations, it will be of interest to mention the form of construction employed. The complete instrument, comprising both receiver and power supply unit, is built on a Peto-Scott "Metaplex" (metallized wood) chassis which can be obtained completely assembled and drilled. To facilitate the construction and to enable the set to be easily fitted into the cabinet there is no front panel, the controls being mounted on small angle brackets which are screwed to the front edge of the baseboard. At the rear of the chassis there is a two-point mains (Continued overleaf)
THE A.C. THREE

(Continued from previous page)

plug fitted with twin fuses and this is of moulded bakelite so that it would be impossible to receive a shock whilst making the mains connections, and any wrong wiring in the set could do no more than cause one of the fuses to "blow." A pair of terminals for aerial and earth connections, as well as the pick-up jack, are also mounted at the back of the chassis and are easily accessible.

The controls are four in number and comprise a knob for the two gang tuning condenser, a wavechange switch, reaction condenser and combined variable-mu volume control and on-off switch. A small knob is mounted concentric with that used for operating the tuning condenser and this drives a trimmer; perfectly accurate tuning is thus possible over the whole of both wavelength ranges and yet there are no preliminary and delicate trimming adjustments to be made.

Look out for full constructional details next week; in the meantime you can order the necessary components of which a complete list is given on the preceding page.

Instability with Class "B."

A DIFFICULTY which is occasionally experienced with a class "B" output stage is that there is a certain amount of parasitic oscillation due to slight variations in the class "B" valve, or to other causes. This is generally evidenced by a faint, high-pitched whistle or by a peculiar form of distortion on certain high notes.

A satisfactory cure can nearly always be effected by connecting a condenser of about .005 mfd. across each half of the primary winding of the output transformer. The condensers also have a tendency to reduce the high-note emphasis which is always produced by class "B" valves, but they are not usually quite sufficient in themselves for this purpose. A more complete measure of tone correction may be secured by joining a .02 mfd. fixed condenser between the ends of the secondary winding of the "driver" transformer.

Another point to watch in a class "B" set is that there should be no leakage of H.F. current from the detector anode circuit into the amplifier, because this is liable to be magnified and to cause serious low-frequency instability and distortion. The usual expedient of inserting a .25 megohm resistance in the grid lead of the first L.F. (or "driver") valve is usually sufficient, but occasionally a better effect is produced by wiring a 50,000 ohm resistance in shunt with the primary winding of the first L.F. transformer.

He Never Switched Off !

A GOOD French story was recently published in one of the Paris "dailies." It concerns a forty-year-old citizen who, wishing to secure an annuity policy from an Insurance Company, consulted his doctor as to the means to be adopted to live to the ripe old age of four-score-and-ten. The practitioner examined him and pronounced him a perfectly healthy case.

"Do you smoke?" he asked the patient.

"No." "Do you drink?" "No." "Do you enjoy big meals?" "Not particularly," was the answer. "Do you listen to the Paris radio programmes?" "Yes, I never miss an item." "Great Scott!" said the doctor, "what do you want to live so long for?"
PILOT AUTHOR KITS

KIT "A" Author's Kit of First Specified parts, including Petro-Scott "Metaplex" chassis, less valves, speaker and cabinet.

KIT "B"

As Kit "A" including Ready Assembled Microlode Control and Interference Preventing Components and Interference Preventing Antennas.

GASH of C.O.D. or Cash. Complete with 5/6. monthly payments of $10.2.0. or 12 monthly payments of $7.9.

KIT "C"

As Kit "A", including Ready Assembled Interference Preventing Control Panel and Interference Preventing Antennas.

CELESTION E.H.

CELESTION E.S.

Pack 5/6. monthly payments.

NEW BLUE SPOT 95M. PERMANENT MAGNET MOVING COIL SPEAKER. Complete with tapped input transformer, Cash or C.O.D. Carriage Paid, 3/9/2.

Balance in 7 monthly payments of $5/9.

NEW W.B. P.M.A.A. MICROLODE PERMANENT MAGNET SPEAKER

Complete with switch control, packed in carton. Cash or C.O.D. Carriage Paid, 3/2/0.

Balance in 7 monthly payments of $5/6.

EPOC MODEL 100, 2006 and 2000 PERMANENT MAGNET MOVING COIL SPEAKER

Balance in 5 monthly payments of $5/6.

NEW BLUE SPOT PERMANENT MAGNET MOVING COIL SPEAKER 25 P.M. With input transformer, Cash or C.O.D. Carriage Paid, 4/1/9.

Balance in 6 monthly payments of $5/6.

ROLA P.M. MOVING-COIL SPEAKERS

F.R.S. P.M. Complete with input transformer, Cash or C.O.D. Carriage Paid, 1/9/3.

Balance in 7 monthly payments of $5/3.

F.R.S. Complete with input transformer, Cash or C.O.D. Carriage Paid, 5/1/9.

Balance in 8 monthly payments of $5/6.

IGRANIC D.9 PERMANENT MAGNET MOVING-COIL SPEAKER. Complete with dual transformer, Cash or C.O.D. Carriage Paid, 1/9/3.

Balance in 8 monthly payments of $5/3.

HEAYBERD DISC ELIMINATOR for A.C. Main. 120 volt 18 n/s and 8 volt 25 amp truck charger, topics 40-100 var. 514 volt and 180 volt fixed. Cash or C.O.D. Carriage Paid, 6/4.6.

The Best Methods of Making the Connection in a Set to Ensure Efficient Working.

By H. J. BARTON CHAPPLE, Wh.Sch., B.Sc., A.M.I.E.E.

As I sit at my desk writing, I can see on the bench at the other side of the room my latest receiver—a useful hook up with two of the new screened pentodes in the high-frequency stages, pentode output, and power pack complete. I am rather proud of that set; proud of its wonderful performance, that is, and a little bit proud of the layout. But I am most decidedly not proud of the wiring.

There is this to be said in extenuation; the set was built in a great hurry because I simply had to try out right away a new idea which had come to me overnight. Then, again, in adjusting the layout for best results much of the internal wiring had to be altered more than once—and that, of course, plays havoc with the stillest and most carefully bent wires.

Some time in the near future, when I have more leisure, I am going to rewrite my new receiver, and I am going to do the job carefully and well, using for every connection just the right kind of wire, running each lead along just the best route, and employing the best and most suitable materials for every section of the wiring. Perhaps you will be interested to know what I shall use, and how I shall go about the job.

The First Task

Well, in the first place I shall make a clear sketch of the top and underneath portion of the baseboard, marked with the positions of all the components—coils, condensers, chokes, transformers and the rest of them, and then I shall sketch in the runs of every wire and connection. This, of course, I shall take from the present “lash up” which, as I have remarked, has been altered several times, and now is about as satisfactory as it is ever likely to be. My drawing will naturally correspond to the blue print or point to point wiring diagram which most home constructors follow when building up a set.

The next step will be to complete the wiring of the filament circuit. As this set is for A.C. mains a good heavy, twin metal-braded flex will be used, with the braiding properly connected to earth. Remember, in this connection, that the heater leads have to carry one ampere per valve, and that thin wires not only overheat but cause a voltage drop which may be serious. The earthed metallic braiding is, of course, to avoid risk of inducing hum in other neighbouring leads. It is, I admit, a counsel of perfection, and I have built many successful and humless mains sets using thick twin twisted flex without metal screening, but in those cases the routes of the heater wires were carefully selected.

One merit of metal-covered heater leads is that they may be run almost anywhere without much risk of hum.

Filament Wiring

If the set had been a battery operated one there would not have been the necessity for these precautions—usually the shortest and most convenient route is also the best. For filament wiring in battery sets I prefer No. 16 gauge tinned copper wire—either bought as a roll of bare wire, and with sleeving cut to length for every lead, or one of the many good wires obtainable in convenient coils, and ready insulated. Good insulation of battery wires is a wise precaution, for many a set of valves has been ruined by an accidental contact between H.T. and L.T. due to bare wires sagging and touching each other, or by a loose wire carrying H.T. flicking against the bare filament wiring.

Some constructors like to use different coloured wires for different circuits—red for L.T., blue for high-frequency wiring, yellow for audio-frequency wiring, and so forth. I do not myself, for I think nothing looks nicer than a set neatly wired up with yellow Glazite, but you can suit your own taste in this connection. By the way, if an illuminated dial is incorporated in the set the dial light wiring should be completed with the filament wiring. It is frequently not an easy task to wire up a dial lamp after the whole of the set has been connected up.

Having finished the heater circuit I shall proceed to make every connection which has to be joined to earth. This set is a chassis one, and the chassis itself forms the common earth return. I am not relying on this entirely, however, because I have found from experience that a multitude of earth connections taken to a metal chassis at times causes all sorts of small currents to flow in the chassis, slight differences of potential existing across different connections, and the magnetic effects of these stray currents are not unlikely to affect the general stability of the set. So although the chassis, screening cans, transformer and condenser cases and the like, are earthed via the chassis, I shall run a good stout earth lead from point to point in the set.

Power Pack and L.F. Side

The next stage will be the wiring of the power pack. Good high insulation rubber-covered and metal-braided flex will be used for the incoming mains, and the connection to the power transformer primary. The rectifier filament connections will be carried out in the same wire as the heater circuit of the receiving portion and the same No. 16 gauge for the H.T. leads. A really good quality insulating sleeving is essential here—avoid cheap or inferior makes. The remainder of the audio-frequency circuit may now be finished off, still using No. 16 wire and always running by the shortest route provided neat right angled bends are made wherever possible, as the finished set looks so much smarter.

At this stage of the proceedings I usually make a preliminary test of the low-frequency portion of the set, and the power pack, with a gramophone record or two. Anything wrong with this section can then be put right without the risk of upsetting

(Continued on page 911)
ACCURATE MATCHING AT LAST!

- 17 transformer ratios for really accurate matching to ANY power valve or pentode and 4 ratios for Class B or QPP all available on one speaker by a simple switch adjustment!
- Added sensitivity due to the "Mansfield" magnetic system! Better balance through really accurate matching! The difference in performance must be heard to be believed.

MICROLODE

Type PM4a - 42/⁵, Type PM6 - 32/⁶

MOVING Coil SPEAKERS

With the new Microlode feature and the famous "Mansfield" magnetic system.

Write for the MICROLODE Folder

We are exhibiting at Stand No. 70, Scottish National Radio Exhibition, Glasgow

"PARALLEL FED" TRANSFORMER COUPLING UNIT

Incorporating a high efficiency 6-1 nickel core transformer, tapped resistance and a fixed non-inductive condenser. This compact unit gives a response hitherto unknown and should be used in all modern designed circuits. Technical data and diagrams supplied Free with each.

PRICE

10\(^{-}\)

From all dealers or direct from the manufacturers:

BRITISH GENERAL

BRITISH GENERAL MANUFACTURING CO., LTD.

THE FINEST AERIAL

The success of Aerialite Aerial Wire last season so convinced me that wireless enthusiasts definitely appreciate every step made in the progress of radio reproduction, that I have now produced a super aerial, LEVENSTRAND, which BETTERS THE BEST. This super aerial has a larger copper surface than any other on the market, which ensures better results than have ever been possible before.

Double thickness of the now famous Aerialite covering ensures perfect insulation, and our stupendous offer of £100 FREE LIGHTNING INSURANCE with every coil is your guarantee and safeguard from lightning. LEVENSTRAND is absolutely guaranteed to give better results, more stations and greater volume.

THERE IS NO STEEL WIRE IN LEVENSTRAND.

50 ft. 1/9, 75 ft. 2/6, 100 ft. 3/6.

PERCOLITE

ALL COPPER EARTH TUBE

PERCOLITE proves how all important is a good earth. This 'improved' chemical earth gives remarkable results compared with any other. Percolite will definitely improve reception and is the world's best earth by test. Simple to fix, Percolite is the earth that gets right down to it.

PRICE

2/6

AERIALITE 7-STRAND PURE COPPER AERIAL. You can still obtain AERIALITE 7-strand Pure Copper Aerial Wire in boxes. Prices:

50 ft. 1/6, 75 ft. 1/6, 100 ft. 2/6. From your dealer or direct from:

AERIALITE LTD. AERIALITE HOUSE

AMBER ST., MANCHESTER
Amazing new Radio invention

BIFLO
STATIC CUT-OUT

definitely cuts out electrical interference, atmospherics & all unwanted noises — money back guarantee

No more atmospherics!! — electrical interferences!! No more of those hisses and crackles that have interrupted radio programmes in the past.

The “Biflo” Static Cut-out definitely cuts out electrical interference—including ATMOSPHERICS, and the improvement in clarity is amazing.

Every “Biflo” carries a MONEY-BACK GUARANTEE—there can be no greater proof of the genuineness of this instrument. The “Biflo” fits any set and can be quickly and easily fixed without technical knowledge. The principle on which the “Biflo” is based is admitted by experts to be entirely new. The only article of its kind in the world and BRITISH MADE.

Fit a “Biflo” and see for yourself.

Price 12/6

from your radio dealer—remember the money-back guarantee!

If you would like to know more about “Biflo” SEND THE COUPON in ½d. stamped unsealed envelope.

To the OSDUR MANUFACTURING CO.,
26, ADAM STREET, LONDON, W.1.

Please send me details of the “Biflo” for which I enclose ½d. stamp for postage.

NAME: __

ADDRESS: ___

DEPT. P
carefully spaced radio frequency wiring. Having passed this test, the high-frequency end may be tackled. It is here that the trickiest part of the work occurs. Carefully screened coils and condensers, metallized valves, and precision coils and ganged condensers, avail little or nothing if stray couplings exist between high-frequency circuits.

Widely spaced wires, but always running by the most direct routes possible, are the rule here. Danger points are those at which wires enter screening cans. Be certain that the insulation is intact right up to the terminal head in every case. Also bend each wire so that it is centred accurately in the opening to the can, thus minimizing and equalizing the small capacitances to earth.

Grid and anode leads of the high-frequency valve or valves should be kept well apart, and as the wire from the top anode cap of these valves has usually to be a fairly long one, often passing down through the chassis, it is best to screen it. Most components are fitted with screw down terminals, and a connection made in this way is usually quite satisfactory if properly carried out. Make the loop just big enough to slip over the thread of the terminal—to loose a fit will cause it to open out or escape from the securing nut.

If the terminal nut is very small (and unfortunately there are still some manufacturers who will fit mean little terminals) slip a washer above and below the wire loop. Similarly, use washers when more than one wire is connected to a terminal and always on those rare occasions when you find it necessary to fix flexible wire under a terminal. I strongly advise you not to fix flexibles under terminal nuts—single strands will ride up between the thread and the nut, and prevent it from being screwed home. Where flexible wires must be used it is best to solder the flex to a spade end or tag of some sort. To my mind this is the only instance where a soldering tag is necessary or essential in the main permanent wiring of a set. If a terminal is of any use at all, use it, by all means; but if it is necessary to solder the wire to a tag, why not incorporate the tag in the component and solder direct on to it, thus saving one junction! There are frequently instances in receivers where it is desirable to join one wire to another. A T-joint can be easily made with solder, using a well-tinned iron.

It is fashionable, I know, to make the "outside" wires and leads—battery cords and so forth—permanent connections, but I admit that I have a great partiality for the older system where a terminal strip is provided at the back of the set for all these leads. It makes it so easy to disconnect the set for adjustment. A favourite choice is a set of sockets on the terminal strip, all clearly labelled, and a set of connecting cords bearing corresponding labels. Alternatives are good, large, non-rotating terminals with engraved heads, the leads being fitted with spade ends.
HOW YOUR RECEIVER WORKS

The first of a series of articles in which the author shows how a wireless signal passes through a receiver and explains in simple terms the function of each component.

This week the Aerial Tuning Circuit is dealt with.

By FRANK PRESTON, F.R.A.

It was recently suggested to me by the Editor that readers of PRACTICAL WIRELESS would appreciate a straightforward and semi-technical article explaining the functioning of a wireless receiver. I must confess that at first I was under the impression that the subject had already been dealt with so frequently in various handbooks that further articles on it would appear superfluous. But on collecting and perusing a number of the books I had in mind, it seemed that very many of them were lacking in some way or other. Some were too highly technical to be of interest to the average wireless amateur, others had been written so long ago that they had become more or less obsolete, whilst in other cases the authors had made their books so "readable" that they had found it necessary to omit many things of importance, or to use simple analogies, which were far from accurate. In attempting to write an article which will be free from the above-mentioned defects, I realize to the full that I have set myself a difficult task, but if I succeed in making clear the function of the various components in a typical wireless set I shall feel more than repaid for my efforts.

An Analogy

Before we can appreciate just what a wireless receiver does, it is essential that we should have a clear idea of the material upon which it works, or in other words, of the signal energy which is collected by the aerial-earth system. We speak very loosely about wireless "waves," carrier "waves," and the like whilst, in point of fact, they are probably not waves at all. The analogy of dropping a stone into a pool of water and so creating waves which will cause a cork floating on the surface to "bob" up and down, is frequently exploited to explain the function of a transmitter (the stone), the receiver (cork), and intervening ether (the water). But is this analogy a correct one? It is certainly difficult to imagine a surface on the ether, which we understand being all-pervading, and if there is no surface there can be no waves.

We must, therefore, explain wireless transmission and reception in some other way, and for the present dispel the "wave" idea. If an analogy must be used, let us rather imagine a disturbance inside the water (which we will use to replace the ether for the purposes of an illustration). Should, say, a glass bulb containing compressed air be exploded under water, the explosion would momentarily force a certain amount of water away from the bulb, but due to the pressure of water outside the spot where the explosion occurred there would be some opposition to the water's movement, and, therefore, it would be compressed. Immediately the explosion ceased, however, pressure would be reduced and the water would rush back to the place it had previously occupied. By this simple process, the water would have been set into a state of oscillation, that is, it would have been caused to move backward and forward. But the disturbance would not be confined to the spot where the explosion occurred, and would have been transmitted to the whole volume of water. In consequence there would be an oscillatory movement throughout the mass, so that the pressure at any point would be changing at the same rate as the original oscillation, and this could be detected by the movement of a piece of paper placed in the water.

Please bear in mind that the above is only an analogy intended to convey the idea of oscillation, and once the principle has been grasped, the analogy can be set aside. Let us now see more exactly what happens in the

(Continued on page 917.)

Fig. 1.—(a) Graphical representation of a carrier wave having a frequency of 10,000 cycles per second. (b) This graph represents a musical note of 14,000 cycles frequency. (c) A graphical representation of the oscillating signal voltage applied to the receiver; it represents the carrier wave.

Fig. 2.—There would normally be a voltage or pressure between A and B, but this would vanish if the two terminals were short-circuited as shown by the broken line.

Fig. 3.—Showing the action of an oscillating circuit comprising a coil, condenser, and resistance. (a) A simple oscillating circuit connected through a switch to a battery. (b) When the switch is "closed" current flows through L and causes it to become an electromagnet. (c) When the battery circuit is again broken current flows through the coil L and "charges" condenser C.
ONE VALVE FOR BOTH
A.C. AND D.C. MAINS

Tungsram have achieved it—a Universal Valve which works on both A.C. and D.C. mains.

With these Tungsram Universal Valves any circuit can be built. All valves, including rectifier, are indirectly heated—there is practically no hum—and they are really economical, for the mains consumption is only 35 watts.

Your dealer stocks them—go to him today! Or write to Tungsram Technical Dept. Pr. W. for full particulars and circuit diagrams.

THERE IS A TUNGSRAM VALVE FOR EVERY RADIO NEED.

TUNGSRAM
TUNGSRAM LTD., 72, OXFORD ST., LONDON, W.1
OLYMPIA AGAIN PROVED BLUE SPOT SUPERIORITY

Some Special Features:

- NO WARPING OR FOULING IN GAP
 Special moisture proof new process Cone and Speech Coil ensure positive protection against warping and fouling in the gap.

- EASY MATCHING
 Special transformers fitted with terminals or plugs and sockets for easy valve matching to all outputs. No troublesome switch contacts. (Q.P.P. Pentode models 2/- extra).

- EXTENSION SPEAKERS
 Fit extra Blue Spot speakers to your set and have Radio throughout the house. Special Extension models without transformers are supplied for sets already incorporating suitable transformers.

- OTHER FEATURES
 Magnets forged from highest grade materials; balanced response over all frequencies; clear pure tone—true top, true middle, true bass; and brilliance in attack.

Send for catalogue P.R. I9.S., giving full range of Blue Spot Moving Coil and Moving Iron Speakers. Prices 5/- to 8/-.

CRAMMED WITH EXTRA CHEMICALS!

-and MERCURY

Means Enormously Increased LIFE!

Grosvenor Mercury Batteries are made in three grades for every Radio Need:

- Grosvenor Red Line 5/6 to 1/-
- Grosvenor Brown Line 6/- to 1 5/6
- Grosvenor Blue Line 7/- to 20/-

Next time you buy a battery, remember the amazingly long life, the extra reserves of power that are packed into Grosvenor. Insist on Grosvenor—and get the most for your money!
case of wireless oscillations or signals. They are electromagnetic vibrations and, although they have a pressure of several volts, even hundreds of volts on leaving the transmitter, the pressure falls off rapidly until, by the time signals reach the aerial-earth system of the receiver, it is measurable only in millionths of one volt. The voltage of the oscillations is not the same as that given out by a battery, where one pole is always positive and the other negative, but is constantly changing between positive and negative. It is this fact which gives rise to the use of the name "wave" as applied to the oscillations, because they can be represented graphically as a wave, in the manner shown in Fig. 1 (a). The graph is really a mathematical expression used to show how the voltage varies between maximum positive and maximum negative values with the passage of time, and the number of changes from positive to negative which occur over a given period is dependent, of course, upon the frequency of oscillation. Actually the graph given covers a period of only two thousandths of a second assuming the frequency of the signal voltages to be 10,000 per second (corresponding to a wavelength of 30,000 metres). I have purposely chosen a low-frequency (high wavelength) to simplify the illustration, because to represent a high frequency so many "waves" would be required that it would be impossible to show them clearly on a page of this size.

The oscillations we have considered so far, are those of the "carrier wave" (I refer to it by its popular name, although we know that it is not really a wave at all), in addition to which there are many other oscillations corresponding to sound frequencies. At Fig. 1 (b), a graph is drawn to represent a musical note having a frequency of vibration equal to about 400 per second, and which, incidentally, approximately corresponds to the highest note of a cornet. The frequencies applied to the receiver consist of a mixture of those of the carrier-wave and those due to the musical sounds impressed upon it, and can be represented in graphical form in the manner shown at Fig. 1 (c). It is seen from the latter figure, that the "amplitude" (maximum positive and negative voltage) of the signal currents is constantly varying in sympathy with the musical note, but that the frequency is precisely the same as that of the carrier-wave.

We must now see how the signal affects the receiver. The aerial and earth act like two plates of a condenser, each of which is constantly receiving a fluctuating or oscillatory voltage, and so a potential difference occurs between them; whenever one is positive the other is negative, and vice versa. In consequence, if the two were connected together there would be a flow of current similar to that obtained if points A and B in Fig. 2 were joined together, the difference being that in one case the current would be oscillating or constantly changing in value, whilst in the other it would be of uniform intensity. But we know from our experience of electricity, that if the battery of Fig. 2 was short-circuited by connecting A and B together, there would be no indication of voltage between the latter points. In the same way, there would be no voltage, or potential, difference between the aerial and earth if they were joined together. And since it is the voltage that is required to operate our receiver, we must avoid making a direct connection between the aerial and earth.

Tuning

This brings us to the reason for "tuning" the aerial circuit, generally by means of a coil and condenser. We wish to arrange things so that at any one frequency (corresponding to that of the transmission it is desired to receive) there shall be an infinitely high resistance between the aerial and earth, so that a maximum voltage will be developed between them. On the other hand, however, the signal currents of all other frequencies must not be allowed to develop a voltage, and the aerial and earth must therefore be short-circuited so far as they are concerned. It is thus essential that those components connected in the aerial-earth circuit shall be able to discriminate between various frequencies. When the oscillatory (or tuning) circuit is adjusted to have a frequency of vibration equal to that of the desired signal it prevents the signal current from passing through it, but at the same time provides a very easy leakage path to currents of every other frequency. "But," you say, "how can a coil and condenser be made to have a particular frequency of vibration?" This can best be explained by making a reference to the diagram of Fig. 3 (a), which shows a battery (B) connected through a switch (S) to an "oscillatory circuit" consisting of a coil (L), a condenser (C), and a resistance (R). Suppose the switch be momentarily closed; what will happen? Nothing, so far as the eye can see, but there will be many changes which could be detected by suitable instruments.

GANGED CONDENSERS

You can fit for yourself two or three condensers on one spindle and you will have a ganged condenser cheaper than we can sell to you. But it will not be as efficient as a Utility condenser because it will not be accurately matched.

Utility Condensers are sold with a guarantee of a maximum matching error of 3% between sections, and only the most elaborate apparatus and skilled specialists enable that figure to be attained. But that is not all. The least stress in the chassis of the condenser would upset the delicate matching, so all Utility Ganged Condensers are built into a specially reinforced steel chassis which cannot distort or develop a stress. That also is guaranteed. So buy a Utility Ganged Condenser now and avoid trouble later.

FROM YOUR DEALER OR POST FREE FROM THE MAKERS.

Write for a copy of our new catalogue, it contains full details of our complete range of condensers, dials and switches.
A Precaution Concerning Accumulators

I hope you will know that it is dangerous to hold naked lights over accumulators whilst they are being charged, but you may or may not have read of the accident that befell a continental family the other day. It appears that pater familias was a "junk merchant" who had bought up a lot of old accumulators. He sold the lead plates and not knowing of a use for the old celluloid cases, thought they would make cheap fire-lighters. They did, but the fumes given off poisoned the family, and the economy nearly cost several of them their lives. It appears that on accumulators a deposit of lead in the form of lead sulphate becomes coated on to these cases and this, when heated, gives off fumes of the poisonous gas lead monoxide to anyone inhaling them. Don't, therefore, burn up your old accumulators, thought the other family. We have a piece of wet string to do anything with, to burning celluloid any more than I do. A risky business, at the best!

Using a Pentode Output Valve

Battery set users whose sets employ a small output valve usually have no occasion to consider the stage often ask if it is possible for them to use a pentode valve output and thus obtain "that little extra" which perhaps enables loud-speaker reception to be possible on an increased number of stations. It is usually possible to do so to advantage, but only when one stage of low-frequency amplification is used as attempts to use a pentode in conjunction with another L.F. valve are generally not successful. Therefore, if a moving-coil speaker is being used, it is necessary to see that an output transformer is included in the circuit somewhere, either as a part of the speaker or else as an adjunct to the output side of the receiver. This also applies where an inductor type of speaker is used and often speakers of the balanced armature type which the thought of having anything to do with burning celluloid any more than I do. A risky business, at the best!

Improvised Resistances

A fault particularly common with the ordinary type of detector valve, and is the breakdown of the anode resistance, and if a spare is not immediately available it is the ruin of the set. The substitution of a piece of wet string can be used, although A piece of wet string can be used, although it often happens that the change over to this type of output valve reduces the apparent selectivity of the receiver owing to the fact that signals that were previously inaudible now become a nuisance because of the increased low-frequency amplification which, when applied to a single-valve type which has a small variable capacity, or by the use of a variable-mu valve in the screen grid stage, although the latter cure is perhaps too elaborate for listeners other than ardent enthusiasts. Mention must be made, too, of the facial value to the selectivity of the valve. The output from a pentode is often quite brilliant and has a decided "attack" which some people consider lacking in less might be done to the move. It may mean that it is no go using a voltmeter reading up to 150 volts if the H.T. feeding of the anode in question has a value of, say, 200 volts.

Sensitivity and Power

Do you know the difference between a sensitive set and a powerful one—and when is a set both sensitive and powerful? No prices are offered for solutions of these conundrums, but I hope you will agree that sensitivity is not necessarily power. If you had an efficient detector followed by a multi-stage amplifier you might get a dozen stations at tremendous volume, but a man with a detector stage preceded by one or more stages of efficient H.F. amplification would get a nightly bag of stations at medium strength running well into three figures. The first set would be powerful, but the other one would be the most sensitive, so that the ideal set is one with an efficient H.F. stage to get in the stations and feed their weak signals, sufficiently amplified so as to be capable of being handled by the detector, and the last three stages followed by the low-frequency amplification side to make all the signals audible at good strength on the loud-speaker.

Cold-emitter Valves

There is another problem, the solution of which would do much to further the progress of Empire Broadcasting—or, at least, Empire listening. I refer to the development of cold-emitter valves. You might think it impossible to invent a valve which will give off an electron stream from a perfectly cold cathode, but remember, that it may be done at one time or another to heat a filament to incandescence to persuade it to emit electrons; since then the difficulty has been universally adopted. Various methods have been tried in attempts to produce a cold-emitter valve, but as yet none have proved satisfactory. One way was to coat the cathode with light-sensitive substance such as is used in photo-electric cells, but, although this did give some emission, it was not sufficient to enable the valve to operate successfully. I understand that an alternative method is being experimented with in Germany at the present time. In this case two electrodes, an anode and a cathode, are mounted very close together in a glass bulb containing a small amount of some inert gas. The high-tension voltage is applied between the two electrodes and this produces a glow discharge through the gas. If a conductor, and a free flow of electrons takes place between the cathode and anode, I have not been given any definite information on this. If you had an efficient detector followed by a multi-stage amplifier you might get a dozen stations at tremendous volume, but a man with a detector stage preceded by one or more stages of efficient H.F. amplification would get a nightly bag of stations at medium strength running well into three figures. The first set would be powerful, but the other one would be the most sensitive, so that the ideal set is one with an efficient H.F. stage to get in the stations and feed their weak signals, sufficiently amplified so as to be capable of being handled by the detector, and the last three stages followed by the low-frequency amplification side to make all the signals audible at good strength on the loud-speaker.

The Transmitting Licence

It might prevent a good deal of misunder-standing if I point out that a transmitting licence is not an easy thing to acquire, unless the applicant in mind some useful experimental or research work. I have no desire to damp the ardour of anyone, and it would please me tremen-dously to know that Practical Wireless numbered among its readers not only a portion of amateur transmitters, but I do think that the position should be made clear. Any reader who contemplates serious transmitting experiments should, first of all, write to: The Secretary, General Post Office, London, E.C.1, for a Licence Application Form, which will be accompanied by a list of Conditions of Issue. After studying the latter be will be in a better position to understand what is required of him before a licence can be granted. Space does not permit of my reproducing all the conditions here, but I will give the most important one. Condition Number 4 reads as follows: "Applicants must satisfy the Postmaster-General that they are qualified to conduct experiments of scientific value or public utility. If scientific research is intended these applicants must be certified as competent investigators by a Government Department or some recognized scientific body. After scientific research has been conducted, the same may be submitted in evidence, even with an 'artificial' aerial (i.e., a practically non-radiating aerial), can be granted only if the results of the experiments and other circumstances warrant that course." It will be seen from this that a licence is not just thrown to anyone who cares to make application, and that the applicant must first have in mind the carrying out of some definite and useful experimental work.
Blueprint Service

In order to meet the requirements of readers who prefer to work from a full-size blueprint when building up any of the "Practical Wireless" Receivers, we can now supply full-size Blueprint Wiring Diagrams of all the "Practical Wireless" receivers for 1s. each, post free. When ordering, quote the number. Copies of the paper containing descriptions of the particular receiver cost 4d. each. Address orders to: The Publisher, George Newnes, Ltd., 8-11, Southampton Street, Strand, W.C.2.

Blueprint

Receiver

No.
1. Dolphin Straight Three.
2. Long Range Express Three.
3. Mains Express Three.
4. Sonotone Four.
5. Bijou Three.
6. Argus Three.
7. Empire Short-Wave Three.
8. Solo Knob Three.
9. Midcut Two (6d. only).
10. S-electra Battery Three.
11. Fury Four.
12. Featherweight Class B Four-valver.
15. Ferrocart Q.P.-P. Hi-Mag Three.
17. Beta Universal Four.
18. A.C. Twin.
20. A.C. Fury Four.
21. Radiopax Class B Four.
22. Three-Valve Push-Pull Detector. (6d. only.
23. Double Diode Triode Three.
24. Three-Star Nicore.
25. The D.C. Ace.
26. The Superset.
27. The Auto-B Three.
28. The All-Wave Two.
29. The A.C. Three.

OLD COMPONENTS (Continued from page 894.)

mounted on it is soldered on to the centre bush of the switch as in Fig. 10, or else a flexible wire is connected to the same point. The switch thus becomes a 3-point instead of a 2-point instrument.

A Resistance Holder from Odds and Ends

A use for old telephone terminals which may appeal to some readers is shown in Fig. 11. Two terminals are mounted on a strip of ebonite to form an anode resistance or grid-leak holder. One point of the resistance fits in the hole in one terminal, while the other point fits in a hole drilled in the head of a screw held by the other terminal. The screw has a spring behind it to keep it pressed in contact with the resistance and is fitted with a nut at the other end to keep it from jumping out of the terminal when the resistance is removed.

Ordinary type valve-holders of most makes can usually be converted to the chassis-mounting type for under-baseboard wiring by the method shown in Fig. 12. The terminals are reversed and a hole is drilled in the baseboard or wooden chassis to allow the body of the holder to pass up through as shown. The fixing screws are fitted with small spacing washers to keep the holder well away from the underside of the baseboard so that the heads of the terminal screws do not touch the wood. With a metal chassis instead of a wooden one, the fixing is just the same except that small bolts will be required instead of wood screws for securing the holder in position. In this case the spacing washers must on no account be omitted, otherwise the terminal screws will short-circuit against the chassis.

The plate-less ACCUMULATOR revolution

No bigger than your present 40 a.h. accumulator, costing little more, a Block plate-less accumulator lasts you twice as long per charge—gives 80 a.h. Far more durable, too—and handsome, in its richly coloured bakelite. (Detachable hand-lamp fitting, 10/6.)

"CONDENSED" HIGH TENSION

no need for dry battery expense

Because a Block cell gives twice the capacity for its size, a Block H.T. accumulator of usual capacity can be condensed to half the usual bulk! So give up expensive dry batteries—the new accumulator in its beautiful bakelite casket is little bigger and is remarkably inexpensive. Relieves you at once of radio's biggest nuisance.

PLATE-LESS ACCUMULATORS

Block Batteries Ltd., Abbey Road, Barkingside, Essex. Tel: Grangewood 3346/7

P R I C E S

L.T. 20 a.h. 2G. 5s./doz. 9s./cs. x 19" x 21"
H.T. 60v. 5000 a.h. 145" x 145" x 51" x 31/4 30v. 8 12/16 x 18" x 55/16"
A new article was published in *Practical Wireless* recently on fitting up a workshop, and no workshop can be complete until one of the most indispensable pieces of apparatus is included, namely, a moving-coil instrument. There are many such instruments that can be bought to-day quite cheaply. Its uses are numerous, and while many of them have been ably described, there are still some little-known facts about these instruments—which I will try to make clear—that are an advantage to anyone who buys either a second-hand or new instrument and wants to make it suitable for universal use.

For general utility, I would recommend one for a milliammeter that gives a full scale deflection with one milliamp, and, having bought the instrument, the following points should be noted:

1. The maximum current required to give a full scale deflection. This is the resistance of the moving coil.
2. Whether the instrument has a swamp resistance incorporated in it.
3. The state of balance of the movement.

Figs. 1 and 2.—Methods of winding a swamp resistance.

Now let us take these points one by one and sift them out. Number one can easily be noted by observing the maximum reading on the scale, and as regards number two, an easy method of finding this was given a week or so ago. At this stage, perhaps it is only fair to explain a few of the basic principles which govern the operation of these instruments.

Ohm's Law

All moving-coil instruments take a definite current to give a full-scale deflection, and, as the moving coil has resistance, it always obeys Ohm's Law, namely, the voltage necessary to drive the current through the resistance is always equal to the value of the current multiplied by the resistance, and, knowing any two factors, we can always find the third. Perhaps an example will make this clear. Supposing our milliammeter will give a full-scale deflection when one milliamp flows through it, and that we have found that the moving coil has a resistance of 20 ohms. When we put this in a circuit that is passing one milliamp, we find that across the moving coil we have a difference of pressure equal to .02 volt—or 20 millivolts—and you can now appreciate the fact that our milliammeter is also a calibrated millivoltmeter, giving a full-scale deflection with 20 millivolts, its scale reading being multiplied by 20.

Most milliammeters are designed to give a full scale deflection with 60, 75, or 100 millivolts, and as such, providing the current in the circuit is much greater than that taken by the instrument, it will measure millivolt drop accurately. We have already found that our instrument will give a full-scale deflection with 20 millivolts, and the question that comes to one's mind is, how can we make our instrument give a full-scale reading with any of these pressures? This is where item number three—the swamp resistance—comes in. If we were to examine the inside of a moving-coil instrument that has been designed as a multi-range ammeter, we should find a resistance permanently connected in series with the moving coil.

Swamp Resistance

This is the swamp, or, swamp resistance. It is wound on, say, in a clock-wise direction, and it is as well to check this very thoroughly until the whole circuit is wound. This resistance is from three to four times the value of the moving coil. It is wound non-inductively on either an ebonite or a porcelain bobbin. There are two methods by which this can be done, as shown in Figs. 1 and 2.

In the first case the wire is doubled in two, and the loop fixed to the bobbin with a spot of shellac varnish, and the two wires are then wound on side by side, finishing with a piece of fine flex soldered on to each end of the wires. The winding is now covered with shellac varnish, and over this is placed a layer of insulating tape. If it is found that more than one layer of wire is required a different method must be adopted. One layer must be wound on, say, in a clock-wise direction, insulate this with shellac varnish and tape, then wind the next layer back over the first layer, but in an anti-clockwise direction, insulate as in the previous layer, then the next layer should be wound in a clockwise direction and so on, until the whole amount is on, taking care to thoroughly insulate each layer. This case is extended in the case of series resistances for voltimeters.

Here we have a slab of insulating material cut as shown in Fig. 3.

The wire is first wound in the end slot for a pre-determined number of turns, then the next slot is filled by winding the wire in a reverse direction until the whole amount of wire is on. You must now be wondering what the swamp resistance is used for. Taking our moving-coil instrument, we know that it gives a full-scale deflection with one milliamp, and its resistance is 20 ohms. We further found that each volt applied at the terminals of Ohm's Law would raise the current in the circuit. Now let us take a millivoltmeter and connect it with the circuit the value of the shunt resistance would have to be very low and contact resistance would be a serious factor; further, after the instrument had been in circuit for some time—assuming no swamp—we would find that its readings would become inaccurate owing to temperature errors. Most shunts are designed to give a pressure drop of 60 millivolts (.06 v.), 75 millivolts (.075 v.) or, in the case of some commercial instruments, 100 millivolts (.01 v.), when carrying a certain current. Having found that our instrument requires 20 millivolts for a full-scale deflection, and we want to use it with a shunt that has a drop of pressure of 60 millivolts when carrying a current, we must design the swamp resistance to absorb 40 millivolts, and therefore it should have a resistance of twice the value of the moving coil, namely, 40 ohms. Working this out by Ohm's Law we have R=E/I=60/20=3 ohms.

Checking the Balance

We now come to the final operation, that of checking the balance of the movement, and it is as well to check this very thoroughly, as an instrument that is fairly accurate, and the movement of which is slightly out of balance, can be made most accurate, while if the balance is correct, the instrument can be used in any position, and from this it follows that if the balance is not correct, the instrument can only be used in the position it was calibrated in. Spend plenty of time on this operation.
PRACTICAL WIRELESS

September 9th, 1933

The first thing to do is to lay the instrument flat on its back on the table, and bring the pointer to the 0 position. You will undoubtedly find a zero adjuster for this purpose, if not, you will have to take the cover off the instrument, then this operation can be carried out by altering the arm to which the control springs is soldered. Under these conditions the balance weight will not come into operation, and it has no control over the movement, the position of the pointer being determined by the control springs. Now mount the instrument vertically, as in Fig. 6. The pointer should now remain at the 0 position. In this position the balance weight comes into operation, and if the pointer deviates from it, it can be brought back by altering the position of the balance weight, by running it up or down the screwed thread. However, before you can do this, you will have to free the little nut or nuts, and the best way of doing this is to heat a large steel knitting needle until it is red hot, then hold this on the balance weight when it will be found that the shellac melts, allowing the weight to be moved with a pair of tweezers. Of course this operation will have to be done every time the balance weight requires to be moved. Our next operation is to place the instrument on its side, as in Fig. 7, and if the balance is correct the pointer will stop at 0. If it is out of position, this must be corrected by moving the balance weight. We have still the final operation to carry out, and that is to turn the instrument until the zero lies in the other direction, as indicated in Fig. 8, and if you have accurately the pointer should still stop on the 0. If you find that the balance has been accurate up to this stage, but out on this test, it is best to correct it, and to go through the three previous operations again, and when you find that the instrument obeys all these operations: it should read accurately throughout its range, and in any position. By the way, you may find that you want to lower your weight more than the screwed thread will allow it, in this case a spot of solder on it will take off one of the nuts will enable you to do it. Should you find that through frequent manipulation the weight has become unstuck, a little spot of shellac varnish will put it right, but it must be just a speck or else you will undo all the good work you have done, by upsetting the balance.

By paying attention to these small points and carrying out these tests with great care, you will find that not only are you improving the reliability of your instrument, but you are also acquiring skill and knowledge, and do not forget that the finest way to learn and acquire knowledge is to experiment. Perhaps a useful tip—one which the author has found to serve him well for many years as a test engineer—is to assume nothing, everything is wrong, until you have proved it correct by experiment. This is by far a better method than to assume that everything is correct until you find something that is wrong.

CURING MAINS HUM

Valve terminals as is conveniently possible and not actually across the transformer terminals. To a lesser degree the same course can be adopted when indirectly heated cathode valves are being used, and, furthermore, such a scheme is by no means limited to application in the final stage of the receiving circuit.

The resistance should be adjusted for the elimination of the hum when no signals are being received, but with the receiver or eliminator in operation. The tuning circuits are brought into resonance, but at a wavelength on which no station is transmitting at that moment. This permits the degree of A.C. hum to be noted and the resistance control is turned slowly to left or to right until the hum is tuned "out." It is necessary to select the value of this resistance so that there is no undue objectionable A.C. hum into the filter circuit. If a suitable resistance can be connected across the filament winding as shown in Fig. 1 this hum can invariably be balanced out with ease. The centre tap terminal of the transformer winding is of course left blank.

Where indirectly heated cathode valves are employed the filament leads should be bridged as near as possible to the valves by the resistance, the centre tap of which is taken to H.T.—as indicated in Fig. 2. The variable position of the movable contact should then be adjusted.
A BATTERY ELIMINATOR FOR A.C. MAINS

Conjuctional Details

The construction of an eliminator for a motor based on A.C. mains is a matter which neither calls for specialized technical knowledge nor unusual engineering skill. Many readers who have alternating current in their homes are deterred from building up their own eliminators through having the impression that it is a complex business, involving a multiplicity of calculations and techniques which are beyond their scope.

On the other hand they would, however, have no hesitation in embarking upon the construction of a complicated receiver, which would require considerably more skill and care to carry to successful completion than does an eliminator. The advantages to be derived from a supply of current for the average three-valve set-screened here was designed to supply H.T. for a condensers.

The rectifying circuit are the mains transformer, the rectifying, and the smoothing circuits, the rectifying, and the smoothing. The problems arising from this are really quite simple ones, and are easily solved by the application of Ohm's law, which for our purpose may be expressed in a simplified form, as

$$\text{Voltage Dropping and Decoupling}$$

The reservoir and filter condensers are, in a simplified form, as:

- Ferranti 2 mfd., type. Six of these are required, four of them are for reservoir condensers and should have a working voltage of 200 volts, and the other two are filter condensers and must be of the 60 working voltage type. The Ferranti condensers are made only in 2 mfd. capacity, and 4 mfd. is obtained by connecting two of these in parallel.

The circuit arrangement for rectifying and smoothing is shown in the diagram. Fig. 1. A "Bulgin" fuse, blowing at 1 amp. should be incorporated in the primary circuit of the transformer, and not placed on end, but otherwise the positioning or layout of the components is not of great importance.

Voltage Dropping and Decoupling

We now have a smoothed output available, capable of delivering 250 volts, 60 milliamps, but before it can be used it is necessary to provide the means of obtaining the different voltages required by the valves in the receiver. Separate feeds are provided for each valve, and this is done by means of resistances and condensers.

The chief requirements in the design of an efficient choke will be provided for if the choke is built to the constructional details given. These requirements are:

- Generous dimensions of the iron core, as low a D.C. resistance as possible, and the inductance should be approximately 30 henries when the choke is carrying the full anode current taken by the set. This latter proviso is a necessary one, as the inductance of a choke varies inversely with the current which it is carrying. That is to say, the inductance becomes less if the current is increased, and if the current is reduced the inductance becomes greater.

The actual constructional work is now completed, and the next step is to assemble the components. The rectifier used is the Westinghouse style H.T.S, giving a smoothed output of 250 volts, 60 milliamps, in the voltage doubler circuit. This H.T. rectifier is used for present needs, but the H.T.S was chosen in preference to a smaller rectifier, with a view to possible future requirements.

The completed circuit of a mains battery eliminator is shown in the diagram. The coil, when completed, may be covered with one layer of thin leatheroid, which protects the winding and improves the finished appearance of the coil. The laminated core is next built up, for which 6 doz. pairs of No. 30s. pattern stalloy stampings are required, and the leads enclosed in insulated sleeving are connected to the terminals. The chief requirements in the design of an efficient choke will be provided for if the choke is built to the constructional details given. These requirements are:

- Generous dimensions of the iron core, as low a D.C. resistance as possible, and the inductance should be approximately 30 henries when the choke is carrying the full anode current taken by the set. This latter proviso is a necessary one, as the inductance of a choke varies inversely with the current which it is carrying. That is to say, the inductance becomes less if the current is increased, and if the current is reduced the inductance becomes greater.

The actual constructional work is now completed, and the next step is to assemble the components. The rectifier used is the Westinghouse style H.T.S, giving a smoothed output of 250 volts, 60 milliamps, in the voltage doubler circuit. This H.T. rectifier is used for present needs, but the H.T.S was chosen in preference to a smaller rectifier, with a view to possible future requirements.

The completed circuit of a mains battery eliminator is shown in the diagram. The coil, when completed, may be covered with one layer of thin leatheroid, which protects the winding and improves the finished appearance of the coil. The laminated core is next built up, for which 6 doz. pairs of No. 30s. pattern stalloy stampings are required, and the leads enclosed in insulated sleeving are connected to the terminals. The chief requirements in the design of an efficient choke will be provided for if the choke is built to the constructional details given. These requirements are:

- Generous dimensions of the iron core, as low a D.C. resistance as possible, and the inductance should be approximately 30 henries when the choke is carrying the full anode current taken by the set. This latter proviso is a necessary one, as the inductance of a choke varies inversely with the current which it is carrying. That is to say, the inductance becomes less if the current is increased, and if the current is reduced the inductance becomes greater.

The actual constructional work is now completed, and the next step is to assemble the components. The rectifier used is the Westinghouse style H.T.S, giving a smoothed output of 250 volts, 60 milliamps, in the voltage doubler circuit. This H.T. rectifier is used for present needs, but the H.T.S was chosen in preference to a smaller rectifier, with a view to possible future requirements.
Resistance required = volts to be absorbed, divided by current taken in milliamps, multiplied by 1,000.

We will assume that from the valve maker's curve we ascertain that the approximate anode current consumed by the power valve is 30 mA at 200 volts, the detector valve 3 mA at 150 volts, and that the screened grid valve requires .5 mA at 100 v. on the screen, and 2 mA at 180 v. on the plate. The total current consumed by the set is therefore, 30+3+.5+2 = 35.5 milliamps.

Examining next the maker's voltage regulation curve of the H.T.8 rectifier, we find the 35 mA position on the "smoothed current" line and we see that at 35 mA, the smoothed output of the rectifier is approximately 360 volts. This voltage is in excess of that required by any of the valves, so it must be lowered to suitable values. The maximum anode voltage required is 200 v. for the power valve therefore the output voltage from the rectifier must be dropped from 360 v. to 200 v. by absorbing the surplus voltage by means of a series resistance.

Applying the simplified formula already given, we find that the value in ohms of the resistance required is $\frac{30 \times 1,000}{35} = 857$ ohms, and the nearest standard resistance obtainable would be used. Exactly the same procedure is adopted in calculating the values of the resistance required for the supplies to the other valves in the set.

Decoupling

We now come to decoupling. Each resistance, together with a fixed condenser, forms a decoupling unit in the circuit which forms the H.T. feed to the valve being supplied. The capacity of the decoupling condensers is 2 mfd. This value is adequate, and no advantage is to be gained by increasing the capacities. The condensers should be of the 200 working voltage type.

The object of decoupling is to prevent stray coupling between the different anode feeds to the valves, which would result in low frequency instability with the consequent possibility of motor boating and distortion. The circuit arrangement for decoupling and voltage dropping is shown in the diagram Fig. 2.

Two resistances are connected in series across the H.T. supply and by-passed to earth in the case of the feed to the screen of the S.G. valve. One of these resistances may, with advantage, be made variable, to provide for adjustment of the voltage to obtain the best results, but the actual potential applied is not critically important.

Wiring connections throughout are made with Glazite, or with copper wire, about 18 gauge, insulated with Systolex sleeving. Neatness in laying out and wiring up the components will reflect itself in the finished eliminator. No connection to the lighting mains should be made until the apparatus is completely wired up. Provision for ventilation is essential, and the enclosure of the complete eliminator in an earthed metal case, while not absolutely necessary, is an added refinement.

In the construction of mains transformers or chokes to requirements other than those specified in this article, material assistance will be obtained by reference to PRACTICAL WIRELESS Data Sheets, Nos. 4 and 6.
HOW WE HEAR DX
In This Article the Author Explains How Wireless Waves are Returned to the Air Earth by Reflection at the Heaviside Layer.

The Fig. 3.—Illustrating how a wireless wave returns to earth after passing through the Heaviside layer.

W HEN Marconi first demonstrated telegraphy-without-wires so many years ago the pundits of the time announced that although it was undoubtedly an interesting experiment, as a signalling system it could be of no practical use because the radiations would shoot off at a tangent to the earth and consequently nothing would be heard, if there was heard, outside a comparatively small radius. Marconi had faith in his method, however, so he transported his receiver across the Atlantic, and showed that signals from England could be heard 3,000 miles away, wherefore the pundits had to think again. An explanation of this distinctly puzzling result was finally offered indepentently by the English and American physicists, Heaviside and Kenelly. Their suggestion was that the earth was surrounded, like a yolk by its shell, by a blanket in the upper atmosphere that reflected the signals back to the earth. The kind of blanket that would do this would be a layer of ionised gas molecules, whose height above the earth they calculated as about sixty miles. This layer was our now familiar friend, the Kenelly-Heaviside layer. Many years elasped before a method was worked out to determine its height, but when measurements were made the results were in close agreement with the value predicted. Later on, in the course of some height measurements carried out on the then newly-introduced short waves it was found that the layer sometimes appeared to go up to more than twice its usual height; this phenomenon led Professor Appleton to suggest the existence of a second layer above the first, about 160 miles up, and the new layer, which was christened after its discoverer, is generally regarded as being mainly responsible for the somewhat higher frequency at which the wireless waves are reflected, but as this latter frequency is not yet at the stage of being generally used, I shall not mention it here. The upper layer was found to be about two hundred miles high, and to extend itself for many thousands of miles in width.

When a ray of light travels straight through the air, passes into a more dense medium such as glass? This depends on the angle at which it strikes the glass and a certain property of the glass called its refractive index. Suppose a ray of light starts in air at the point N in Fig. 1 and follows the path NOM, striking the glass at right angles; in this case it goes straight through without changing direction whatever the refractive index of the glass. But if the ray strikes the surface of the glass at any other angle, as the ray PO does, its path inside the glass will be bent away from the surface (or towards the normal greater than the critical angle) because the rays would shoot off at a tangent to the earth and consequently nothing would be heard, if there was heard, outside a comparatively small radius. Marconi had faith in his method, however, so he transported his receiver across the Atlantic, and showed that signals from England could be heard 3,000 miles away, wherefore the pundits had to think again. An explanation of this distinctly puzzling result was finally offered indepentently by the English and American physicists, Heaviside and Kenelly. Their suggestion was that the earth was surrounded, like a yolk by its shell, by a blanket in the upper atmosphere that reflected the signals back to the earth. The kind of blanket that would do this would be a layer of ionised gas molecules, whose height above the earth they calculated as about sixty miles. This layer was our now familiar friend, the Kenelly-Heaviside layer. Many years elasped before a method was worked out to determine its height, but when measurements were made the results were in close agreement with the value predicted. Later on, in the course of some height measurements carried out on the then newly-introduced short waves it was found that the layer sometimes appeared to go up to more than twice its usual height; this phenomenon led Professor Appleton to suggest the existence of a second layer above the first, about 160 miles up, and the new layer, which was christened after its discoverer, is generally regarded as being mainly responsible for the somewhat higher frequency at which the wireless waves are reflected, but as this latter frequency is not yet at the stage of being generally used, I shall not mention it here. The upper layer was found to be about two hundred miles high, and to extend itself for many thousands of miles in width.

For, as the ray strikes the surface of the stratum at an angle greater than the critical angle and hence undergoes total internal reflection, with the result that the wave is started downwards in the direction of the earth's surface. On its down ward journey it is refracted at the boundary of each stratum in the opposite direction to that in which it was refracted on going up, being bent further and farther from the surface. If the strata of the layer were absolutely parallel to one another and to the earth the angle of reflection of the ray would be equal to the angle of incidence, TON, but this is unlikely to occur in practice. By continuing the paths TO and RA of the ray along the dotted lines until they intersect at X we have what is called the "equivalent path," the ray, the path it would have traversed if it had gone straight up to X and been completely reflected there. The vertical distance of X from the earth is called the equivalent height of the layer and it is...
clear from the figure that other things being equal the range of transmission represented by TR will be greater the more the equivalent height increases.

Refraction of Wireless Waves

We see then that the process of returning a wireless wave to earth is not truly one of reflection, but of refraction. In the case of long waves, however, the depth the wave penetrates the layer is so small compared with the wavelength that the process may be regarded as true reflection.

The bending of waves decreases with wave-length and short waves require a higher density of ionisation than long waves. Hence it is easy to see that some waves will be so short that they will not be completely bent round before they reach the upper strata of less highly ionised gas, which will tend to straighten them out again so that they will go right through the layer and not be reflected at all. It is also clear that small angles of incidence TON at the layer will make it necessary for the wave to go farther into the layer before it is bent round and this again may permit some waves to go right through. These short waves will then continue to go upwards until they reach the second, or Appleton, layer, which is much more highly ionised than the first. Here they stand a good chance of being returned, but even this is not enough for very short waves and there are good reasons for believing that waves below about eight metres go clean through the Appleton layer as well so that they are not reflected back to the earth at all.

Skip Distance Effect

We must now discuss a phenomenon known as the skip distance effect. A transmitter at T (Fig. 3) can radiate waves in all directions, the ray TO being one particular wave. Suppose TG in Fig. 3 represents the distance covered by a ground wave and TR the nearest point to T at which the indirect wave is heard; this is called the "skip distance." SKIPPED distance. Skip effects are especially important for long distance work. In connection with the effect of the sun on radio however, the chief points of importance about the attenuation of waves in the ionised regions are that it depends on the intensity of ionisation and the atmospheric pressure in the layer.

More Radio Components than ever are included in this New Season's Catalogue. The Guide to Home Constructors.

IF YOUR RECEPTION IS GOOD

EASY TERMS

The very latest Radio sets, loudspeakers and kits supplied on the lowest monthly terms. trials Privacy. Prompt delivery. All carriage paid. Posts Free.

New LISSEN SKYSCRAPER ALL-WAVE

New NEW SPOT 99

New BLUE SPOT 99

New PM 4A unit

New W. B. MICROLODE, EPOCH, BLUE SPOT 99

New NATIONAL IV I I PHONE

New ATLAS MODEL 250A "B" CONV

New Multitone Class "B" Converter

New National IV I I Phone

New "Airwaves" or "Indirect Waves" to which waves in the ionised regions, which is one of the reasons for their utility for long distance work. In connection with the effect of the sun on radio however, the chief points of importance about the attenuation of waves in the ionised region are that it depends on the intensity of ionisation and the atmospheric pressure in the layer.

Refraction of Wireless Waves

We see then that the process of returning a wireless wave to earth is not truly one of reflection, but of refraction. In the case of long waves, however, the depth the wave penetrates the layer is so small compared with the wavelength that the process may be regarded as true reflection.

The bending of waves decreases with wave-length and short waves require a higher density of ionisation than long waves. Hence it is easy to see that some waves will be so short that they will not be completely bent round before they reach the upper strata of less highly ionised gas, which will tend to straighten them out again so that they will go right through the layer and not be reflected at all. It is also clear that small angles of incidence TON at the layer will make it necessary for the wave to go farther into the layer before it is bent round and this again may permit some waves to go right through. These short waves will then continue to go upwards until they reach the second, or Appleton, layer, which is much more highly ionised than the first. Here they stand a good chance of being returned, but even this is not enough for very short waves and there are good reasons for believing that waves below about eight metres go clean through the Appleton layer as well so that they are not reflected back to the earth at all.

Skip Distance Effect

We must now discuss a phenomenon known as the skip distance effect. A transmitter at T (Fig. 3) can radiate waves in all directions, the ray TO being one particular wave. Suppose TG in Fig. 3 represents the distance covered by a ground wave and TR the nearest point to T at which the indirect wave is heard; this is called the "skip distance." SKIPPED distance. Skip effects are especially important for long distance work. In connection with the effect of the sun on radio however, the chief points of importance about the attenuation of waves in the ionised regions are that it depends on the intensity of ionisation and the atmospheric pressure in the layer.

Refraction of Wireless Waves

We see then that the process of returning a wireless wave to earth is not truly one of reflection, but of refraction. In the case of long waves, however, the depth the wave penetrates the layer is so small compared with the wavelength that the process may be regarded as true reflection.

The bending of waves decreases with wave-length and short waves require a higher density of ionisation than long waves. Hence it is easy to see that some waves will be so short that they will not be completely bent round before they reach the upper strata of less highly ionised gas, which will tend to straighten them out again so that they will go right through the layer and not be reflected at all. It is also clear that small angles of incidence TON at the layer will make it necessary for the wave to go farther into the layer before it is bent round and this again may permit some waves to go right through. These short waves will then continue to go upwards until they reach the second, or Appleton, layer, which is much more highly ionised than the first. Here they stand a good chance of being returned, but even this is not enough for very short waves and there are good reasons for believing that waves below about eight metres go clean through the Appleton layer as well so that they are not reflected back to the earth at all.

Skip Distance Effect

We must now discuss a phenomenon known as the skip distance effect. A transmitter at T (Fig. 3) can radiate waves in all directions, the ray TO being one particular wave. Suppose TG in Fig. 3 represents the distance covered by a ground wave and TR the nearest point to T at which the indirect wave is heard; this is called the "skip distance." SKIPPED distance. Skip effects are especially important for long distance work. In connection with the effect of the sun on radio however, the chief points of importance about the attenuation of waves in the ionised regions are that it depends on the intensity of ionisation and the atmospheric pressure in the layer.

Refraction of Wireless Waves

We see then that the process of returning a wireless wave to earth is not truly one of reflection, but of refraction. In the case of long waves, however, the depth the wave penetrates the layer is so small compared with the wavelength that the process may be regarded as true reflection.

The bending of waves decreases with wave-length and short waves require a higher density of ionisation than long waves. Hence it is easy to see that some waves will be so short that they will not be completely bent round before they reach the upper strata of less highly ionised gas, which will tend to straighten them out again so that they will go right through the layer and not be reflected at all. It is also clear that small angles of incidence TON at the layer will make it necessary for the wave to go farther into the layer before it is bent round and this again may permit some waves to go right through. These short waves will then continue to go upwards until they reach the second, or Appleton, layer, which is much more highly ionised than the first. Here they stand a good chance of being returned, but even this is not enough for very short waves and there are good reasons for believing that waves below about eight metres go clean through the Appleton layer as well so that they are not reflected back to the earth at all.

Skip Distance Effect

We must now discuss a phenomenon known as the skip distance effect. A transmitter at T (Fig. 3) can radiate waves in all directions, the ray TO being one particular wave. Suppose TG in Fig. 3 represents the distance covered by a ground wave and TR the nearest point to T at which the indirect wave is heard; this is called the "skip distance." SKIPPED distance. Skip effects are especially important for long distance work. In connection with the effect of the sun on radio however, the chief points of importance about the attenuation of waves in the ionised regions are that it depends on the intensity of ionisation and the atmospheric pressure in the layer.

Refraction of Wireless Waves

We see then that the process of returning a wireless wave to earth is not truly one of reflection, but of refraction. In the case of long waves, however, the depth the wave penetrates the layer is so small compared with the wavelength that the process may be regarded as true reflection.

The bending of waves decreases with wave-length and short waves require a higher density of ionisation than long waves. Hence it is easy to see that some waves will be so short that they will not be completely bent round before they reach the upper strata of less highly ionised gas, which will tend to straighten them out again so that they will go right through the layer and not be reflected at all. It is also clear that small angles of incidence TON at the layer will make it necessary for the wave to go farther into the layer before it is bent round and this again may permit some waves to go right through. These short waves will then continue to go upwards until they reach the second, or Appleton, layer, which is much more highly ionised than the first. Here they stand a good chance of being returned, but even this is not enough for very short waves and there are good reasons for believing that waves below about eight metres go clean through the Appleton layer as well so that they are not reflected back to the earth at all.

Skip Distance Effect

We must now discuss a phenomenon known as the skip distance effect. A transmitter at T (Fig. 3) can radiate waves in all directions, the ray TO being one particular wave. Suppose TG in Fig. 3 represents the distance covered by a ground wave and TR the nearest point to T at which the indirect wave is heard; this is called the "skip distance." SKIPPED distance. Skip effects are especially important for long distance work. In connection with the effect of the sun on radio however, the chief points of importance about the attenuation of waves in the ionised regions are that it depends on the intensity of ionisation and the atmospheric pressure in the layer.

Refraction of Wireless Waves

We see then that the process of returning a wireless wave to earth is not truly one of reflection, but of refraction. In the case of long waves, however, the depth the wave penetrates the layer is so small compared with the wavelength that the process may be regarded as true reflection.

The bending of waves decreases with wave-length and short waves require a higher density of ionisation than long waves. Hence it is easy to see that some waves will be so short that they will not be completely bent round before they reach the upper strata of less highly ionised gas, which will tend to straighten them out again so that they will go right through the layer and not be reflected at all. It is also clear that small angles of incidence TON at the layer will make it necessary for the wave to go farther into the layer before it is bent round and this again may permit some waves to go right through. These short waves will then continue to go upwards until they reach the second, or Appleton, layer, which is much more highly ionised than the first. Here they stand a good chance of being returned, but even this is not enough for very short waves and there are good reasons for believing that waves below about eight metres go clean through the Appleton layer as well so that they are not reflected back to the earth at all.

Skip Distance Effect

We must now discuss a phenomenon known as the skip distance effect. A transmitter at T (Fig. 3) can radiate waves in all directions, the ray TO being one particular wave. Suppose TG in Fig. 3 represents the distance covered by a ground wave and TR the nearest point to T at which the indirect wave is heard; this is called the "skip distance." SKIPPED distance. Skip effects are especially important for long distance work. In connection with the effect of the sun on radio however, the chief points of importance about the attenuation of waves in the ionised regions are that it depends on the intensity of ionisation and the atmospheric pressure in the layer.
THE MAINS SUPPLY CHANGE-OVER

WITH the increased popularity of running wireless sets from the electric supply mains, the change-over system from direct current to alternating current, at present taking place in this country, is having a marked effect on many users of mains-operated sets. To the mains set owner it is required as with alternating current. Consequently the big point arises: Is it to be universally direct current or universally alternating current.

Advantages of A.C.

The Central Electricity Board is at present engaged, at a heavy expenditure, in securing the maximum efficiency in the generation and transmission of electrical energy. It seems to be generally accepted that alternating current systems are the better, from the supply company's point of view, as well as from the manufacturer's and the consumer's.

Concerning the electrification of a new area. the advantages of an A.C. system over a D.C. system are summed up as follows: 1. Reduction in capital outlay. 2. Reduction in maintenance and development charges. 3. Reduction in valuation for rating purposes. 4. Increased efficiency, with longer life of plant and network.

Where D.C. Systems Exist

In areas where a direct current supply exists the increased demand for electricity has caused these systems to be overloaded, and to make proper provision for the future it would, in some cases, be necessary to double or even quadruple the capacity of the system. However, the Electricity Commissioners have decided that in many cases it is less expensive to install an A.C. system (concurrent with the advantages of standardization and increased efficiency) to give the total capacity required, than to lay down more D.C. plant and network to give the extra required capacity. Hence the decision for an A.C. system for distribution throughout the country.

Concerning the Consumer

The maintenance charges of A.C. motors and control gear are less than those of the corresponding D.C. plant. A.C. is more adaptable to all classes of electric furnaces and heaters. Certain types of high-temperature furnaces, electrical water-heaters, and a large variety of electro-medical apparatus cannot be made for use on D.C. Engineering firms find A.C. a necessity for the many resistance welding methods. For city areas the use of Neon signs as advertisement has brought the advantages of A.C. to the front. Where D.C. systems are already installed the supply companies carry out, at their own expense, any alteration to consumers' existing apparatus to make it suitable for the A.C. change-over supply.

These claims for A.C. distribution, in addition to the generating advantages, form an overwhelming case in favour of installing A.C. systems, or where D.C. systems exist a change-over to a standard supply of alternating current throughout the country.

Mains Wireless Sets

Concerning mains-operated wireless sets, there seems no doubt that, taking all things into consideration, a set can be operated more efficiently, more safely, and much more economically on A.C. than on D.C.

So that on the whole, the standardization of A.C. supply is all to the good from every one's point of view.

Making Short-wave Coils

A REALLY neat job may be made of a home-constructed coil, of the type illustrated, if a special but inexpensive former is used for shaping the turns. This former consists of a round piece of wood, about 2½in. diameter and thin— a short length of stout carpet pole will do— with channels cut along it. In these channels are slipped the ebonite spacers, ready drilled with holes to take the wire, which should be 10 or 18 gauge, enamelled. The depth of the channels must be such that the spacing holes come just level with the surface of the former.

The wire is then threaded through the holes, and bent to the circular shape of the former as it is eased on turn by turn. When the required number of turns is reached, the whole coil can be slipped off, down the channels, with each turn evenly and neatly circular. W. H. CAZALY (London, W.C.).
Mr. F. J. CAMM CHOOSES THE BEST

hence the Exclusive Specification for

B. R. G. (TYPE 55)

MAINS TRANSFORMER

for his latest triumph, the

A.C. THREE

INPUT: 200, 210, 220, 230, 240 and 250 volts.
OUTPUT: H.T. Secondary 250 ± 250 volts at 60 m.a.
Rectifier Filament 2 + 2 volts at 1 amp. L.T. 2 + 2 volts at 23-amps.
WITH COLOURED OUTPUT LEADS FOR QUICK ASSEMBLY.

TYPE 55 WITH OUTPUT TERMINALS IN PLACE

25/-

WE ARE SOLE WHOLESALE DISTRIBUTORS OF THE NEW METAPLEX CHASSIS SPECIFIED IN THE NEW A.C. THREE. Price 3/9

B.R.G. components are invaluable from all standpoints. In case of difficulty return name and address of nearest stockist. Orders are limited to end for latest issues of B.R.G. components and Metaplex Ramboards.

BRITISH RADIOPHONIC CO. LTD., Pilot House, Church Street, Stoke Newington, London, N.16

Appointed TELESEN WHOLESALERS

Telephone: CITY 6027/6028

"SIR MIKE"

The Story of a Studio Tyrant

Mike is a tyrant and a bully. He is only a little chap, too—but I have seen large men and hard-boiled ladies quail before him. I have seen actors with big West-end names, used to playing to crowded houses, gulp convulsively, start to speak their lines, then falter and finally dry up.

An interesting article explaining difficulties which have to be overcome when using the microphone appears in the September issue.
AMATEURS! here is your 1934 Guide to Mains Power

WILLIAMS, Netherend, Cradley, charged. Thousands are charging their own accumulators, why don't you?

CHARGING WITHOUT MAINS

PRACTICAL WIRELESS
September 9th, 1933

SOME D.C. DODGES
Useful Hints on the Construction of Simple Eliminators.
By G. HOWES.

NOWADAYS, owing to the increase of the extent of the grid scheme, listeners on A.C. are generally more often catered for than D.C. listeners. In this article a few hints and circuits voltage, assuming for this example that the latter is 200 v.

\[\frac{200}{X} \]

where \(X \) is the unknown resistance.

From the above, it is evident that the only value of \(X \) which fits is 400 ohms. Therefore the resistance must have a value of 400 ohms: but the power used by the circuit is equal to the current squared times the resistance, i.e., \(\text{Power} = \text{current}^2 \times \text{resistance} \) (in watts).

\[\frac{1}{2} \times 10 \times 400 = 200 \text{ watts} \]

Thus the power used is 200 watts (approximately) and, consequently, a 100-watt lamp can satisfactorily be used. The reason that the power is only approximately 100 watts is that, owing to the fact that the accumulator's 2 volts oppose the mains voltage, only 188 volts are used to pass the current of \(\frac{1}{2} \) amp. A double pole single throw switch is necessary and should be connected as shown.

Eliminator Construction

After L.T. comes the question of providing H.T., which with D.C. is a fairly easy problem. In Figs. 2 and 3 are shown two circuits, illustrating how ordinary L.F. transformers, new or old, may be used to make eliminators. The additional resistances shown are made by coating strips of marble, stone or asbestos with grante polish. For the potentiometer \(P \) (Fig. 3), a strip of insulating cardboard and jin. wide, coated fairly heavily and tapped in the centre, is all that is necessary. The resistances in Figs. 2 and 3 are all about jin. long and jin. wide, costed one side only.

With an eliminator made as in Fig. 2, the tappings on the maximum voltage give 40 mA. at approximately 100 volts and 15 mA. at approximately 160 volts.

In view of the fact that these eliminators can be built for a few shillings, they are well worth trying. One word of warning is necessary, however: before manipulating a home-made eliminator, make a stout metal cover to fit over the baseboard and apparatus. This will prevent any danger of receiving shocks, whilst if an earth connection is joined to it, the eliminator will act as a good screen.
PRACTICAL WIRELESS

September 9th, 1933

Practical Letters from Readers.

The Editor does not necessarily agree with opinions expressed by his correspondents.

does not always mean better, but in your case, no one could seriously suggest that you were not leading the field. However, I have said enough to show you how much I appreciate your work, and I wish you every success.—Horace Chadwick (Rochdale).

From a Reader in the Far East

Sir,—As a wireless constructor, may I commend to you your admirable practical weekly, to which I have been a subscriber since its inception. Also, I can certainly recommend to others the "Short-Wave Two," in "Tested Circuits," by F. J. Oamm. I may point out that you promised, in issue of November 5th, 1932, page 306, to give us the "Experimenter's Short-Wave Three," which is so anxiously awaited by us exiles from home. I again thank you for such excellent, interesting, and practical articles for the beginner, and trust that we may have more of the Short Waves, which is the band of interest to the wireless enthusiast in this country.—Jas. R. Day (Rangoon, Burma).

Grahamvision

Sir,—Besides being interested in wireless I am also interested in television, although, as yet, I don't know much about it, I have a suggestion to make. Why not make a gramophone record of a televised scene. It is a suggestion to make. Why not make a gramophone record of a televised scene. It is a suggestion to make. Why not make a gramophone record of a televised scene. It is a suggestion to make.

A.C. Fury Four Radio-Gram.

Sir,—A few particulars of my "A.C. Fury Four Radio-Gram," which I have recently completed, may be of interest. It is absolutely the best set I have handled, and it gave me great pleasure to build. I have built or rebuilt over twenty sets for friends and acquaintances. I completed the whole of the work in a small top back room equipped as a workshop. The set was built last April and actually tested on April 19th (Sunday) at 6.15 p.m. Paris on the long wave at this time came through at almost unbelievable strength and quality. The set and mains pack were divided by ohms gives the current in amps. That practically every form of man-made material is divided by ohms gives the current in amps. That practically every form of man-made material is divided by ohms gives the current in amps. That practically every form of man-made material is divided by ohms gives the current in amps. That practically every form of man-made material is divided by ohms gives the current in amps. That practically every form of man-made material is divided by ohms gives the current in amps.

A Bouquet from Rochdale

Sir,—Considering the number of periodicals that have been published on wireless, it is nothing less than wonderful that in these days of perfection, and more or less standardization of reproducing apparatus, you should have evolved a paper which is absolutely practical, remarkably constructive, and at the same time entirely different from any other. To be different...
WARD AND GOLDSTONE COIL SWITCH
SOME very efficient coils are manufactured by Messrs. Ward & Goldstone, these being of the type which include a switch in the base. Consequently, when two or more of these coils are included in a receiver it is necessary to arrange a multi-contact switch on the position for wires from each coil to the switch. In some cases this may result in inefficiency unless the wires are efficiently screened. Furthermore, the layout of a receiver with coils arranged in this manner is not always very neat. To overcome these difficulties Messrs. Ward & Goldstone have introduced a special switch unit chassis, and a two-unit chassis is illustrated below. It will be seen that a solid aluminum baseplate is provided with mounts and a combined switch rod. Dials are provided on this rod, and terminals and contact fingers are fitted to the roll mount. In addition to the wavetrain contacts for each coil a S.P.D.T. switch is fitted for account of its neatness of design and general efficiency. In appearance it is not unlike a large T.C.C. condenser with the double fixing lugs moulded into the case. At the top is a twin-class holder, and a substantial matching transformer. The unit consists of two high-voltage type T.C.C. condensers designed for working on 250 volts a.c. or 450 volts d.c. These are joined in series with an earth connection from the centre pole and the input from the mains is connected, via a fuse, to each side of the two condensers. This is, of course, the standard method of removing mains interference, and it must be remembered that this will not effect a cure in every case. There are many forms of interference which coil for special attention, but when the mains are badly smoothed, or interference from a motor or some similar apparatus is fed to a receiver via the mains the unit will be found most useful in removing at least the greater part of the interference. The price is 9s. 6d. complete.

DUBILLER CONDENSERS
A MISO the new developments in “The Dubiller condenser is a redesigned version of the popular type 2024. This is a cylindrical non-inductive condenser obtainable in various capacities from 1 to 10 mfd. A difficulty which very previously encountered in this particular model was that in some cases with mains interference too near the terminals and short-circuiting sometimes occurred due to the connecting wires coming into contact with the case. In the new design the top is domed and the terminals are so disposed that the risk of shorting is almost completely removed. In addition the bottom of the metal case is provided with a course thread and a small cap is screwed on to the lower end and is fitted with screw holes. The great advantage of this is that the small cap may be screwed to the base and thus many values of these condensers in kit is and is then held firmly in position. Changes of values thus may be carried on the connecting wires at the same time the fixed arms in position. The prices remain unchanged, namely 2s. for the lower value and 16s. for the 10 mfd., with proportional rates for intermediate values. Some practical applications are also announced, and these are obtainable in aluminum cases and also as T.C.C. condenser with connecting wires fitted to the ends.

NEW TELSEN IRON-CORE COIL
A MISO the many iron-core coils which we have received, the new Telsen unit presents many novelties. It is used, as readers will no doubt have noticed in the new A.C. Three receivers described in this issue, but its various characteristics are not described in that article. The actual dimensions of the coil are smaller than any which we have so far received, and the method of winding also differs in several ways. The former is of bakelite, and the core is inserted from the base. The medium-wave winding is wound on enamelled wire wound in strict sequel order (in contrast with the majority of L.F. section- wound coils now available). The long-wave winding is wound on to the lower end of the former, but this winding is situated in three slots and is designed for use on to the coil. The coil iron reaction winding has been internally connected to the end of one of the windings so that only the final winding is fitted to the base. The method of winding enables the coil to be used in the serial circuit (with a periodic inductive coil) or in an H.F. transformer, and the actual windings are so arranged and sensitivities are of a much greater order than with the ordinary air-core coil. The coils cost 9s. 6d. each.

NEW BRITISH RADIOGRAM COMPONENTS
We have received three interesting new components from the British Radiogram Company, and these include an L.F. Transformer and a Class B Driver Transformer and a Class B choke. The Transformer is rated at a voltage of 1 to 1 and has a primary resistance of approximately 1,000 ohms. It is admirably suited for use in the sine circuit of a small J.F. valve, but better results are obtained by means of the tuning condenser arrangement. It is a very small component, measuring less than two inches tall, and being just over three inches wide. The Transformer is rated at the moment fixed and will probably be about 1s. The Class B Driver has a primary resistance of approximately 300 ohms and the secondary is of similar rating. The ratio is thus 1 to 1, and this renders it suitable for the ordinary
SPECIAL NOTE

We wish to draw the reader's attention to the fact that the Queries Service is intended only for the solution of problems or difficulties arising from the construction of receivers described in our pages, or on general wireless matters. We are unable, for obvious reasons,
(1) Supply circuit diagrams of complete receivers.
(2) Suggest alterations or modifications of receivers described in our correspondence.
(3) Suggest alterations or modifications to commercial receivers.
(4) Answer queries over the telephone.

Please note also, that all sketches and drawings which are sent to us should bear the name and address of the sender.

H.F. INSTABILITY

"...my receiver has been built up from ideas which I have obtained through reading your interesting book. I have adopted various components which I have had by me, and the result is shown on the attached sheet. Unfortunately, I have apparently not yet fully understood wireless, as the set won't work. Can you offer any suggestions as to the reason. When I switch on all I can hear is a high-pitched whistle, and I have yet to hear a broadcasting station. Any suggestions will be thankfully accepted." — T. G. B. (Preston, Lancs).

We do not recommend the use of the wire you specify. From your remarks we believe that you intend to use the wire for all leads, which would certainly not be wise. Certainly one or two leads may be screened with advantage, but the inductance introduced of covered wire (especially with the larger surface which is exposed in each wire) will introduce lead to instability. Where you do employ this wire, make quite certain that the earth connection is of low resistance, by scraping the surface of the lead cable before wrapping the connecting wire round it.

DATA SHEET No. 51.

Cut this out each week and paste it in a notebook

<table>
<thead>
<tr>
<th>OUTPUT TRANSFORMER RATIOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1,000</td>
</tr>
<tr>
<td>2,000</td>
</tr>
<tr>
<td>2,000</td>
</tr>
<tr>
<td>4,000</td>
</tr>
</tbody>
</table>

Note.—The ratios given are the nearest which is sent must bear the name and address of the sender. The

SCREENING LEADS

"...I am building a mains receiver, and think it advisable to screen some of the leads. I know that special screening is obtainable, but using an electrification I have quite a lot of lead-covered lighting cable on hand. Is there any objection to my using this for wiring, and connecting the lead covering to earth? I believe that lead is as good as the ordinary thin copper screening that is used, but should like your confirmation." — W. T. (Bromley).

We certainly do not recommend any alteration to the existing set. In many cases these sets are two or three years old and we do not, therefore, recommend the use of the old parts in the construction of modern apparatus which will give the utmost satisfaction.

BUILDING RECEIVERS FROM OLD COMPONENTS

We have had many requests from readers who wish to build commercial receivers described in our pages, and who also wish to utilise some of the strips which they have in an existing set. In many cases these sets are two or three years old and we do not, therefore, recommend the use of the old parts in the construction of modern apparatus which will give the utmost satisfaction, but you may, of course, build a receiver to

September 9th, 1933

PRACTICAL WIRELESS

LET OUR TECHNICAL STAFF SOLVE YOUR PROBLEMS

The page must be attached to every query.

If a postal reply is addressed envelope must be enclosed. Every query and drawings which is sent must bear

1934 KITS

ELIMINATORS COMPONENTS...

Please send ALL your

HIRE PURCHASE ORDERS to

Peto-Scott Co. Ltd.

77, City Rd. London, E.C.1

Telephone: Central 86767

Addt. of Peto-Scott Co., Ltd.
VARLEY COMPONENTS

A FIRST range of Varley components is given in this firm's new season's list. Particulars and prices of "Nicore" tuning coils, together with their associated equipment, are given, also the "Nicore" A.Y.G. Unit, a compact and efficient little component which enables automatic volume control to be fitted to almost any type of receiver. Other components include a compensating R.C. coupling unit, power potentiometers, "triode-resistance" L.F. transformers, various Q.P.-P. and Class "B" components, and a useful range of H.F. chokes. Messrs. Varley have also sent us a batch of instruction folders with diagrams showing the connections for their components in various circuits. These folders should prove very useful to home constructors, who can obtain reprints of the catalogue and folders from Kinnerway House, 105, Kinnerway, London, W.C.2.

THE COSISON 3456 MODEL

In our issue dated August 5th, 1933, we gave a test report of the new Cosison 3456 Model receiver. In this article the price was erroneously given as £10 10s. It should, of course, have been £9 10s.

THE THREE-STAR NICORE

We described, in our issue dated June 28th last, a receiver with the name "The Three-Star Nicore." In this receiver a unique component known as the Doseol was employed for controlling reaction and the bias on the H.F. valve on a single control. The makers of this component, The British Radiophone Ltd., now inform us that they have decided to withdraw this component owing to the fact that it is difficult to set this control to give smooth working on the various types of valve which might be employed. It is, however, a most interesting idea, and the component is recommended for future models by the constructor. Consequently, it will be necessary to employ two separate components in future sets of this type. This receiver, and a new circuit will appear in our pages in due course.

CHANGE OF ADDRESS

Stn.—We beg to advise you that we have removed our offices from the 19th Floor, Part 6, to—54, WELTINGTON STREET, LONDON, I, where new premises have been prepared for us containing larger office and store accommodation, which will enable us to hold more comprehensive stocks of goods manufactured and dealt in by us.

Fuller Batteries

For sixty years the name of Fuller has been associated with battery construction, continually improving in quality and performance. This reputation is fully maintained in the range of accumulators and dry batteries shown in this firm's latest price list. Accumulators suitable for multi-valve receivers, for lighting and ignition purposes are obtainable in glass, celluloid or ebonite cases. There is also a range of Fuller 2-volt "Non-Fuse" accumulators, and dry batteries for all purposes. Complete information can be obtained from Fuller Accumulator Co., Ltd., Woodland Works, Chadwell Heath, Essex.

PRACTICAL WIRELESS

September 9th, 1933

shall also have extensive showrooms displaying modern lighting fittings, domestic electrical apparatus, telephones and electrical equipment.

Our telephone number—Leeds 27395 (Private Branch). Telegram—"Halvar, Leeds." Address—"Halvar, Ltd., Leeds 1" (Telegraphic address "HALVAR, LEEDS")—remain unchanged.

SIEBENS BROADCAST LAMPS SUPPLIES

LIMITED.

A. M. Hicks, Secretary.

"THE ALL-WAVE TWO"—PETO-SCOTT PRICE CORRECTION

In an advertisement of Peto-Scott Ltd., which appeared in our August 26th issue, the details and price of the K.E. A was omitted, owing to an error in proof reading. The wording of the advertisement should read:

"K.E. A Authors kit of first specified parts including Peto-Scott Metaplex chassis, panel, parts list, cabinet, and speaker. Cash or C.O.D.

Cash or C.O.D. carriage paid 2s. 6d."

by RIDGWELL CULLUM

THIS absorbing story of life in a gold-rush camp, tells of "Bull Moose," a mysterious renegade white and leader of a murderous tribe of Indians who plages the prospectors of their hard-won gold. Undoubtedly Ridgwell Cullum at his best.

The BULL MOOSE

It's a Neuwens' Novel

On sale at all Newsagents and Bookstalls. It is the sequel of the story of "Bull Moose" by G. E. R. C. Cullum. Published by Neuwens, Ltd., 61-69, Southamptom Street, Strand, London, W.C.2.

The novel Mailand Stand at Radiolympia.
PRACTICAL HANDBOOKS

Clearly written and fully illustrated.

This series covers a wide field and will prove of the greatest value to everyone interested in models and how to make them: woodwork and other crafts.

ACCUMULATORS
An up-to-date handbook dealing with every type of accumulator, methods of charging them at home, care and maintenance, also explains how to erect a charging station.

MOTOR CAR UPKEEP AND OVERHAUL
Information covering the engine, decarbonising, valve grinding, the lighting system, the carburettor, cooling system, lubrication, springs and shock absorbers, steering gear, brakes, wheels, axles, tracing noises, etc. etc.

TOY MAKING FOR AMATEURS
How to make clockwork toys, model aeroplanes, model locomotives, model boats, ingenious toys operated by sand, wooden models and toys, electrical toys, steam toys, pins, kaleidoscopes, acrobats, etc.

SIMPLE ELECTRICAL APPARATUS
An excellent little book for those who wish to make simple and useful electrical apparatus, such as galvanometers, electric motors, dynamos and Leyden jars.

MODEL BOAT BUILDING
Contains designs for battleship, speed boat, paddle steamers and yachts. Excellent models can be built with the simple directions and diagrams given.

THE HOME WOODWORKER
Clear instructions on how to make a large variety of articles in wood, together with many useful hints on wood-working.

MODEL AEROPLANES AND AIRSHIPS
Contains full descriptions of easy-to-make models of every description that will fly.

THE BANDYMAN'S ENQUIRY
Hundreds of practical ideas and hints of value to the man who is clever with his hands.

25 SIMPLE WORKING MODELS
Ingenious and practical designs for electric, steam and clock-work models.

NEWNES' HOME MECHANIC BOOKS
Obtainable at all Newsagents and Bookstalls, or by post 1½d each from George Newnes, Ltd., 9-11, Southampton St., Strand, W.C.2.

1/-

PRACTICAL WIRELESS

LISTENERS IN!
LOOK UP YOUR WIRELESS LICENCE
IT MAY BE WORTH £50

Compare your number and claim your reward

£50 will be paid to holder of Licence No. AN 771316
£25 will be paid to holders of Licences: Nos. AP 367735 AM 178037
£10 will be paid to holders of Licences: Nos. AO 944188 AQ 580611
£5 will be paid to holders of Licences: AP 148320 AO 849805 AQ 177056 AM 879999 AN 247233
£2 will be paid to holders of Licences:

AN 843302 AK 326710 AM 166833 AN 538056 AO 213645 AP 112595
AI 417794 AI 610356 AM 546616 AN 710584 AO 637741 AP 130639
AJ 179620 AM 455633 AN 503596 AO 821919 AP 184993 AP 782902
AJ 502341 AM 887069 AN 734667 AO 678156 AP 158962 AP 809064
AJ 396322 AM 661824 AN 963623 AO 171047 AP 161901 AP 585826 AQ 705691
AK 002783 AM 973194 AN 480084 AN 528315 AP 488975 AQ 912736 AQ 797436

£1 will be paid to holders of Licences:

AN 953642 AJ 006335 AL 106984 AN 140381 AM 538973 AO 518155 AP 115526
AH 71631 AI 390468 AM 801665 AN 421193 AO 895760 AO 368438 AP 929798
AH 576463 AI 591932 AN 482392 AN 405694 AO 183087 AO 592539 AP 695835
AH 686501 AL 500073 AM 235767 AN 654664 AO 181555 AO 876739 AP 738092
AI 340729 AL 826947 AN 374878 AM 243750 AO 785308 AO 630907 AP 310025
AI 922516 AL 549232 AN 789746 AN 385106 AO 285393 AP 977464 AP 203599
AI 368777 AL 432916 AM 709399 AN 872090 AO 415899 AP 210232 AP 655498
AJ 211756 AL 789942 AN 989723 AO 434659 AP 350769 AP 504099 AP 286133

This offer applies to licences which are actually in force on Saturday, September 9, 1933.

Below the numbers are paid, claims must be made within three months of the time the notice appears and must be accompanied by a copy of the Licence, which must be surrendered to the Board of Trade. Claims cannot be considered if not made within the specified time.

£50 will be paid to holders of Licences:

For full particulars for claiming awards and a complete list of numbers see TIT-BITS

ON SALE EVERYWHERE SATURDAY SEPT. 9.
Research goes on all the while in every radio valve laboratory, and every once in a while (but not nearly as often as you might suppose!), there is a real step forward in valve design or construction. But the real all-day and every-day problem of the valve maker is to achieve reliability! It is reliability that has brought Mazda right up to the top in the last three or four years. And it is because of reliability that Mazda will remain there.
STUPENDOUS FREE GIFT NEXT WEEK!

Practical Wireless

Mains short-wave receivers
All about band-pass filters
Lessons of Radiolympia
Why that fading?
How many knobs?
Etc., etc.

-the wonderful new low loss lead in cable definitely eliminates crackle, background noises, mush and all man-made static. It improves selectivity and increases sensitivity. Get one to-day. You can fix it in less than five minutes.

OF ALL DEALERS in lengths of 15 feet £10/-

BRITISH RADIOPHONE LTD., ALDWYCH HOUSE, LONDON, W.C.2
The Igranic Variable “Megostat” High Resistance. Designed and constructed to the highest standards of radio engineering—finish in keeping with the reputation of Igranic—special contact preventing wear and ensuring constant resistance value—can be used as a volume or tone control, as a variable grid leak or as stabilising resistance, etc., in single-hole fixing—at the reduced price of 3/6 in four sizes—another example of that efficiency of performance and reasonableness in price which are typical of every item in the Igranic range. Let Igranic Components be the making of your set.

Send for fully illustrated Catalogue No. J.1271
If you cannot obtain Igranic Components, write to us direct and include the name of your local dealer.

Igranic Electric Co., Ltd.,
149, Queen Victoria Street, E.C.4.
YOU BE THE JUDGE

I present to you

INCONTESTABLE EVIDENCE

... I place before you the actual EVIDENCE of where your set is right or wrong. I am giving you conclusive and all-inclusive evidence of radio faults and efficiency. I give you—not just the circumstantial evidence of amperes, volts and ohms, no mere hypothesis, but proved and tested ACCURACY. I present the precision of the AvoMinor, a younger brother of the famous Avometer, the instrument that is so accurate and efficient that it is preferred and insisted upon by the world's foremost technical experts and service engineers. This in itself is evidence enough that nothing less than the AvoMinor is dependable enough for you.

The AvoMinor

TELLS THE WHOLE TRUTH

Now YOU can test YOUR set—examine it, locate the faults, get first-class results from it—with the ease and precision of the technical expert. You can test ACCURATELY with the AvoMinor—test circuits, valves, components, batteries and power units. There is no test you need that you cannot make with the AvoMinor. It gives TEN different ranges of readings in milliamps, volts and ohms. It is a moving-coil combination testing instrument with a total resistance of 100,000 ohms. Full scale deflection is obtained with only 3 milliamps. No other instrument in the world gives you, at such a convenient price, so many tests with such dependable accuracy.

Ask your radio dealer to show you the AvoMinor. Be satisfied with nothing less. Remember, it's accuracy that is all important. In case of difficulty, write for fully descriptive folder.

THE AUTOMATIC COIL WINDER & ELECTRICAL EQUIPMENT CO., LTD.,

DEFERRED TERMS if desired. Write for particulars.

Complete in handsome case with pair of leads and interchangeable crocodile clips and testing probes.
NEVER BEFORE SUCH RANGE...
SUCH SELECTIVITY ... SUCH
TRUE-TO-LIFE TONE AT SUCH
MODEST PRICES

The **Cossor** MELODY MAKER

VARIABLE-MU
SCREENED GRID
CIRCUIT

PENTODE, CLASS "B" or
MAINS POWER OUTPUT

BALANCED ARMATURE
or MOVING COIL
LOUD SPEAKER

BATTERY
or ALL-ELECTRIC

Up-to-the-minute in design, incorporating Variable-Mu S.G. stage, fully shielded high-efficiency coils, single dial tuning etc., this remarkable new Cossor Melody Maker is exceptional value. Capable of bringing in a wide choice of programmes this powerful Receiver is, in every way, equal to much more costly Sets. Yet, in spite of its efficiency, it is so simple that you can build it at home. No wireless knowledge necessary. Send at once for Constructional Chart—use the coupon.

To A. C. Cosset Ltd., Melody Dept., Highbury Grove, London N.5
Please send me a Constructional Chart which tells me how to build a Cossor Melody Maker Model No.__________________________

NAME: ____________________________
ADDRESS: ____________________________
FAC. 15/9/33

SPECIFICATIONS

BATTERY MODEL 344
PENTODE OUTPUT
Balanced Armature Loud Speaker
Complete Kit of Parts including Cossor Melody Maker, Mains Valves, Decorder, Screened Grid Circuit, and Cossor Pentode Valves. Fully screened make, Double-Gang Condenser, Combined Volumes Control and On-Off Switch, crystal detector, and all the parts for simple home assembly. Hand-sewn needles 3½' x 1½' x 1½' for batteries and batteries. Balanced Armature Speaker: provision for Gramophone Pick-up Plug and Jack. Test and Instruction Sheet. Hire Purchase Terms £6.7.6

BATTERY MODEL 345
MOVING COIL LOUD SPEAKER
Complete Kit of Parts similar to Model 344 described above, except that it is supplied with a Permanent Magnet Moving Coil Loud Speaker. Price Hire Purchase Terms £7.2.6

BATTERY MODEL 346
CLASS "B" OUTPUT
Complete Kit of Parts, similar to Model 344 described above, but with four Cossor A.C. Mains Valves. Factory-built and wired. Noise Unit and Mains Energiser Moving Coil Loud Speaker. Hire Purchase Terms £8.2.6

ALL-ELECTRIC MODEL 347
Complete Kit of Parts, similar to Model 344 described above, but with four Cossor A.C. Mains Valves, Factory-built and wired. Noise Unit and Mains Energiser Moving Coil Loud Speaker. Hire Purchase Terms £8.19.0

Prices do not apply in L.P.S.

3400
THE STANDARD BY WHICH ALL OTHERS ARE JUDGED!

ROUND the WORLD of WIRELESS

"Practical Wireless"—the Most-copied Radio Paper.

Practical Wireless was the first paper to inaugurate (in the interests of the home constructor), the solus specification, which enables us to guarantee every receiver described in our pages. Practical Wireless is the first popular radio weekly to adopt a 100% practical policy, and it is the most-copied radio paper in the world. Most of our features have since found their counterpart in many other radio weeklies. Even in radio periodicals published in foreign countries and in English Settlements and Colonies you will find articles and illustrations lifted en bloc from the pages of Practical Wireless. The worst offenders in this respect appear to be certain Australian papers. Perhaps the editors of these particular journals will take this hint!

Next Week's Birthday Number—Great Free Gift for Every Reader.

This week's issue of Practical Wireless—Number 82—completes the first year of publication of Practical Wireless (and also of Volume II). Next week's issue will be a great Birthday Number, and to commemorate the phenomenal success which has rewarded our efforts we are presenting every Reader with TWO STEEL WIRELESS SPANNERS. They are illustrated actual size in the centre of this page. Two spanners will be given next week (the upper two), and the largest spanner will be given the following week. These spanners are made to the proportions recommended by the Engineering Standards Committee, and fit the normal range of B.A.-size nuts used in a wireless receiver—0 B.A., 2 B.A., 4 B.A., 6 B.A., 8 B.A. and 10 B.A. They are specially made for readers of Practical Wireless, and cannot be obtained in any other way. By a unique manufacturing process, they have a smooth finish and all rough edges are removed. They are made from a heavy gauge of high-class steel, and will last for ever.

Practical Wireless always gives Real, Reliable Reader Service—this also extends to its free gifts as well as its editorial contents.

FREE WITH NEXT WEEK'S GREAT BIRTHDAY NUMBER!

TWO STEEL WIRELESS SPANNERS

The third Spanner will be given in the following week's issue.

See next week's issue also for the most stupendous offer ever made to wireless constructors.

The Most Stupendous Offer Ever, Next Week ADDITIONALLY, next week's issue will contain details of the most amazing offer ever made to the readers of a wireless paper. Full details will be given with next week's issue. Owing to the phenomenal demand, it is very necessary for you to order next week's and the following week's issue NOW.

Our Birthday Superhet

Next week's issue will also contain details of a special Superhet designed at the special request of the many hundreds of readers who called at our stands at Radiolympia and Kelvin Hall, Glasgow.

His American Tour

FOUR days after his return from his "busman's holiday" to the United States, Henry Hall will broadcast a feature programme with the B.B.C. Dance Orchestra; it will be entitled My American Tour. In it, following a brief description of places seen and people met, he will present a selection of the latest American numbers, played according to the interpretation of well-known dance-band conductors on the other side.

Vienna's Tick-Tock

As so many European studios have adopted melodious interval signals, Austrian listeners are loudly complaining of the monotony of their ticking metronome. It had been hoped that the broadcasting officials would replace it by a few bars of The Blue Danube, but it was not to be, as it was deemed that the almost incessant repetition of even a few notes of this classical waltz would discredit it in the ears of the world. It is now suggested that something less widely known but still reminiscent of Vienna may be chosen for the purpose. In the meantime, the high-power Bisamberg station will suspend its transmissions pending the erection of the reflector aerial tower. Possibly, when the transmitter again comes on the air, the question of a new interval signal may have been solved. The metronome is a thing of the past.

More Native Broadcasts from Morocco

This number of registered licences issued in Morocco in the first six months of the present year has already reached twelve thousand, or twice the figure declared for the whole of 1932. Although the broadcasts so far have been destined in the main to a European population of some one hundred thousand souls, it is now hoped to develop them with a view to making them appeal to the six millions of Arabs dwelling within the range of the transmitter. In order to secure the favour of the native population, the authorities have decided to increase the times devoted to oriental concerts in response to appeals.
made in favour of transmissions at more suitable hours. It is expected that during the winter months native broadcasts will be given in the early afternoon, and again between 19.30 and 20.30 nightly. So far they have been limited to four transmissions weekly.

What Chile Listens to

THE Republic of Chile possesses some twenty-five transmitters, most of which, however, only range in power from 100 watts to one kilowatt. Of these, sixteen are located in the capital of Santiago. The important station is CEMAta 4 of kilowatts working on 327 m. (945 kc/s). As the studios mainly sub-sist on sponsored programmes, considerable use is made of gramophone records. In order to introduce more novelty in the entertainment, Santiago stations have been relaying the British Empire broadcasts, much to the delight of English-speaking residents.

Hier Hanover

THE old Cologne studio station, which was dismantled shortly after the opening of the high power Langenberg transmitter, has been re-erected at Hanover to take the Hamburg programmes. Though, it has been entirely overhauled and converted to secure a power of 1.5 kilowatts (aerial). Although not yet officially opened, it is already working on 566 m. (530 kc/s).

Monte Ceneri Temporarily Closed

As considerable alterations have to be made to the aerial system of the Lugano (Switzerland) transmitter, the station, except for occasional tests, will suspend its regular broadcasts until about September 20th next. Steps are to be taken to adapt the aerial to the wavelength allotted by Lucerne to this Transmitter, namely, 257.1 m. (1,167 kc/s) which, in the opinion of the Swiss authorities, may prove a very unfavourable channel.

Ambrose and His Orchestra

THE B.B.C. announces that from September 30th, Ambrose and his orchestra will provide dance music on Saturday nights from 10.30 p.m. until midnight from a studio at Broadcasting House.

Radio Balerae Testing

A SMALL broadcasting station with the call-letters EAJ13 has been erected at Palma (Majorca) with a view to providing daily radio programmes to the inhabitants of the Balaeric Islands. These include, amongst others, Majores, Minorca and Cabrera, forming an archipelago in the Mediterranean off the eastern coast of Spain.

Radio Warnings to Smugglers

ALTHOUGH the Austrian frontier posts equipped with powerful searchlights to assist excise officers in stopping the illicit importation over the Rhine bridges of such commodities as coffee, sugar, tea, and so on, it is reported from Bregenz that the smugglers, to further their operations, have installed small wireless stations on both sides of the frontier, and give a regular service of warnings in regard to the presence of government officials. Broadcasters on the Voralberg-Swiss border have lately greatly increased their portions owing to increased unemployment in the neighbouring Austrian districts.

The French State and Radio Normandie

ACCORDING to a Paris wireless journal, Radio Normandie (Fécamp) had advised its French listeners, and supporting amateur associations, that in view of a refusal by the authorities to place telephone lines at the disposal of its studio, the station will no longer be able to relay outside broadcasts. Moreover, it is also stated that Fécamp may be compelled to reduce its power to 700 watts, its original energy in 1928, to large scale transmissions, in particular on Sundays, have proved great favours with British listeners, and such a drastic reduction in the power of the broadcasts would be keenly felt by them.

High-Power Station for Argentine Republic

IN the Argentine the broadcasting systems, as in the United States of America, have remained in private hands. One of the most important concerns in that of Radio Nacional, which controls a chain of six transmitters. An order has now been placed with a Berlin firm for the erection of a 50-kilowatt station in the neighbourhood of Buenos Aires. When installed this will prove to be the most powerful broadcaster on the South American continent.

Greece May Soon Broadcast

APPELLANTLY Greece will make a further attempt to establish a broadcasting system in 1934, as its Government has decided to raise a loan from the Post Office Savings Bank for a sum of five million drachmas. At to-day's rate of exchange there are approximately 580 drachmas to the pound sterling. It is stated that two years ago radio plant and accessories to the value of three times this amount were purchased and have since been stored in Government warehouses.
Mains Short-Wave Receivers & Adaptors

Points to be Considered to Ensure Their Efficient Working.

The short-wave amateur has in the past been rather inclined to fight shy of using the mains for supplying any part of the power necessary for the operation of a short-wave receiver. More recently, however, the practice of using the mains for this purpose has grown to some extent, and it has been shown that by careful design of the necessary apparatus it is quite possible in the majority of cases to obtain comparatively successful working. Certain precautions have to be noted, of course, but if attention is paid to one or two definite points, successful working) which in this case

valve and the second is the high tension side of the oscillator transformer. The latter will generally be the most satisfactory, as the former method sometimes fails owing to the fact that the extra drain caused by the adaptor valve reduces the voltage to such a low figure as to cause unsatisfactory working. The reason for this will be seen at once, because this reduced voltage necessary for the screening grid is generally obtained through a high resistance and even a small extra load here is sufficient to drop the voltage still very much farther. However, either method should be tried in individual cases.

Here it cannot be too strongly stressed that the A.C. short-wave adaptor or receiver should be very well shielded and in the case of a receiver where the apparatus is being built solely for short-wave reception, the receiver and the power supply apparatus can very well be built in two separate and completely shielded units.

It is sometimes an advantage to provide a separate smoothing system for the detector circuit, and this can be done as shown in Fig. 2. A high frequency filter is also included in the detector supply lead. When building up an A.C. short-wave receiver on the lines indicated, it is a good plan to complete the receiver first and then make one or two experiments with the power supply in order to ascertain which arrangement provides the quietest background and freedom from modulation hum plus a quiet reaction control. The reader can then decide for himself whether or not the extra smoothing indicated in the diagram is actually necessary in his individual case.

Reducing Hum

One type of hum which is liable to be rather pronounced in an A.C. short-wave receiver is a hum which comes in at certain definite positions on the dial when the receiver is oscillating. As the approach to the edge of oscillation is made, the hum becomes louder and, of course, this is a rather hopeless state of affairs, because a quiet background is essential here for the weaker signals. One way of very materially reducing this trouble is to use a superheterodyne arrangement, and the possibilities of this method should be well considered before actually building an all-mains short-wave receiver. In the superheterodyne receiver the reaction control is, of course, far less critical of adjustment than in a straight circuit, and it is thus much easier to obtain an accurate and delicate variation over the range of wavelengths covered. This is a particularly useful feature in a short-wave set. If, however, insufficient smoothing is provided, hum (although it will not be audible when there is no station tuned in) will increase to such an extent in the detector-oscillator valve that every signal tuned in will be modulated by the hum, and every carrier wave heard will carry a definite ripple. So that, although the superheterodyne method reduces the possibility of hum, the same amount of attention must still be paid to other points. The skeleton diagram of such a receiver is shown in Fig. 3.

Finally, in the case of a short-wave adaptor which hums badly, the first step towards correction should be to ascertain whether the humming is caused by the high tension or the filament supply. This can easily be done by substituting temporarily a high tension battery for the power supply, disconnecting the normal H.T. leads to the power section. If the hum still persists, then the trouble is to be found somewhere in the filament circuit. Perhaps the filament centre tap is bad out of centre—then an artificial tap must be made by means of a potentiometer. Beware of the grid circuit and keep all power wires, high or low tension, as far away as possible from any part of the grid circuit.

If attention is paid to some of these points, there is no reason why successful short-wave reception should not be possible with mains apparatus.

Fig. 1.—Diagram showing the necessary alterations for converting a short-wave adaptor to A.C. mains working.

Fig. 2.—The suggested separate detector smoothing circuit.

Fig. 3.—Showing the A.C. short-wave receiver referred to in the text. When no further L.F. stages are to be used, the output valve may be replaced by a directly heated type of triode or pentode.
LEARNING THE MORSE CODE

By "SHORT-WAWER"

THE owner of a short-wave set soon realizes that there are vastly more morse transmissions to be heard on his receiver than telephony or broadcasting, and it is inevitable that he should feel that it would be extremely interesting to know what some of it was all about. This is very true, and it is perhaps not too much to say that he who does not know the morse code is losing ninety per cent. of the possible enjoyment of short-wave reception, not so much in listening to the big commercial transmitters, although when their wavelength is known these are very useful for locating one's position on an unfamiliar wavelength is known these are very useful for locating one's position on an unfamiliar or new receiver, but in listening to amateur transmissions, most of which are continuous wave morse, and which afford the possibility of very impressive and exciting DX reception.

It is by no means difficult to learn the morse code, the process calling mainly for a certain amount of patience and a very great deal of practice. First of all, the code must be memorized. As is generally known, each letter of the alphabet is represented by certain combinations of long and short sounds, usually called dashes and dots. In radio transmission these are produced by stopping and starting the oscillation of the transmitter by means of a telegraph key, and they are heard in the receiver as a series of long and short whistle sounds, which pitch depends on the spark or interruption frequency. With either system the receiving operator learns the signals as long and short sounds and not as dashes and dots, and it is therefore very necessary that in learning the code it should not be memorized as it is usually written or printed, i.e., "A—dot dash," etc., but as two sounds, which may either be whistled or written down phonetically, as "A-dit dah" (clipping the t in "dit" very short). The English letters of the alphabet and the numerals are as follows:

<table>
<thead>
<tr>
<th>Letter</th>
<th>Morse Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>.</td>
</tr>
<tr>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>-.</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>.</td>
</tr>
<tr>
<td>G</td>
<td>-</td>
</tr>
<tr>
<td>H</td>
<td>.-.</td>
</tr>
<tr>
<td>I</td>
<td>.</td>
</tr>
<tr>
<td>J</td>
<td>-.-</td>
</tr>
<tr>
<td>K</td>
<td>-.</td>
</tr>
<tr>
<td>L</td>
<td>.-</td>
</tr>
<tr>
<td>M</td>
<td>-</td>
</tr>
<tr>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>P</td>
<td>.-.</td>
</tr>
<tr>
<td>Q</td>
<td>-.-</td>
</tr>
<tr>
<td>R</td>
<td>.-</td>
</tr>
<tr>
<td>S</td>
<td>.</td>
</tr>
<tr>
<td>T</td>
<td>-</td>
</tr>
<tr>
<td>U</td>
<td>.-.</td>
</tr>
<tr>
<td>V</td>
<td>.-</td>
</tr>
<tr>
<td>W</td>
<td>.-.</td>
</tr>
<tr>
<td>X</td>
<td>.-</td>
</tr>
<tr>
<td>Y</td>
<td>-.</td>
</tr>
<tr>
<td>Z</td>
<td>-</td>
</tr>
</tbody>
</table>

A dash is three times as long as a dot; the space between the elements of a letter is equal to one dot, that between two letters three dots and between two words, five dots.

Memorizing the Letters

These letters must all be memorized, but it is best to do it slowly, learning only three or four at a time and when a new group of three or four is tackled make sure that you have not forgotten the last four. The learning will be much simplified if a friend works with you so that you can test one another, dodging about among the letters in order to prevent any tendency to say, the dashes must not be long, and the proper proportion of timing observed, and each letter must be sent as a whole, without big gaps between its component dots and dashes; for example, do not send C (-.-) as NN (-.-) or Q (---) as MA (-.-), etc. This fault is sometimes due to stiffness of unaccustomed muscles, and should, therefore, wear off, but the learner must keep his eye on it to make sure that he does get rid of it.

For buzzer practice a morse key, dry battery and buzzer are necessary and a pair of telephones and a small fixed condenser of about .002 mfbd. desirable; the connections are made as in Fig. 1. If the telephones are not used the buzzer is listened to with the unaided ear, but using telephones gives a much closer approximation to actual operating conditions and is, therefore, to be preferred. It is important to have a good key, although this need not be expensive; it should, however, have an easy smooth action, with adjustable tension and gap width between contacts, and it must have back contacts, i.e., it should not be the type often described as "tapping keys," which consists merely of a strip of brass providing contacts at one end and screwed to the base at the other. The key arm should be pivoted near the middle, with the far end carrying an adjustable screw permitting variation of the gap between the contacts in the front; for a beginner, the gap between the contacts should be fairly large and the spring fairly tight; these adjustments cannot be made on "tapping keys," which is why they are unsatisfactory. At first, sending must be very slow, but, at the same time, even, that is to say, the dashes must not be long, and the dots hurried, but the proper proportion of timing observed, and each letter must be sent as a whole, without big gaps between its component dots and dashes; for example, do not send C (-.-) as NN (-.-), a very common fault, or Q (---) as MA (-.-), etc. This fault is sometimes due to stiffness of unaccustomed muscles, and should, therefore, wear off, but the learner must keep his eye on it to make sure that he does get rid of it.
ACTUALLY, the set has become a miniature transmitter, and this howl may be heard in other receivers in the vicinity which may be tuned to the same wavelength.

What are the essential requirements of a satisfactory reaction system? First of all it must be critical and capable of being adjusted up to the point where the receiver is nearly in a state of oscillation. It is essential that we have simplicity of operation: some of the circuits to be discussed did not possess this feature and, consequently, fell into disuse. Freedom from hand-capacity effects is also necessary. If other remedies fail, this trouble can generally be cured by employing a differential reaction condenser. This method will be discussed later. It was not, however, available to early experimenters. There must be no backlash. This is occasionally found in receivers, and suggestions for cure will be given later.

There are a considerable number of reaction circuits, but they all embody the principle just described: "a feedback of energy from the plate to the grid circuit."

Swinging-Coil Reaction

One of the first methods to be employed in broadcast receivers was what was commonly known as "swinging-coil reaction." In this method the reaction coil was magnetically coupled to the grid circuit, as shown in Fig. 2. This system was rather difficult to handle, even if some form of vernier control was employed, and it was not easy to get a really fine degree of coupling which was desirable if best results were to be obtained. Also, the close proximity of the reaction coil upset tuning so much that it became necessary, after every reaction adjustment, to retune the receiver. This made the tuning-in of distant stations a very difficult process.

Hartley Circuit

The Hartley circuit, shown in Fig. 3 was, at one time, fairly extensively used in straight sets. The aerial and reaction coil comprise one continuous winding which is centre-tapped. It is a circuit particularly suitable for frame-aerial receivers, as a centre-tapped frame can be used in place of coil. The great disadvantage of this circuit is that both rotor and stator of the variable condensers were above earth potential.

Reinartz Circuit

Among the many adherents to receivers was originally employed, it has been adapted for reception on the other wave bands. This circuit is an improvement on other types, but with the original circuit the reaction coil was a continuation of the tuning coil. As in the Hartley circuit, both sets of vanes of the reaction condenser were at high potential in respect to earth, so hand capacity effects were troublesome. The employment of a metal panel did not overcome this trouble. In its present form, shown in Fig. 4, the moving vanes of the reaction condenser are at earth potential. This circuit is quite satisfactory, and the reaction control is almost independent of the tuning of the receiver; therefore adjustment is fairly easy. It is not unusual, however, for the setting of the reaction condenser to vary over different parts of the tuning dial, but this does not make tuning unduly difficult. With this type of circuit, it is preferable to have a reaction condenser of fairly large capacity, say 0.0003 mfd., and a fairly small reaction coil, as this appears to make receivers easier to handle. It is often found that the amount of capacity required to produce reaction effects is not sufficient to by-pass the H.F. energy completely. To provide the extra by-pass capacity it a 0.0002 mfd. condenser between anode and negative filament of detector valve.

Neutralized H.F. Receiver

With the employment of the screen-grid valve for high-frequency amplification, the neutralized H.F. receiver fell into disuse. Its interest to us is merely to illustrate one method employed in obtaining reaction effects in earlier type receivers. This type of circuit was rather difficult to operate, and some of them were notorious for the howls they emitted.

Capacity Controlled Reaction

Practically every receiver which incorporates reaction now employs capacity control. Capacity control is shown in the Reinartz circuit in Fig. 4. The radio frequency current in the anode circuit of the detector valve is provided with an alternative path back to the filament via the variable condenser, and the tuned circuit connected between grid and filament. Upon the reactance of this variable condenser depends the proportion of current which takes this alternative path back to filament, and, therefore, capable of being controlled by varying the value of the capacity.

Ordinary capacity controlled reaction suffered from the same inherent weakness as the swinging coil reaction circuit.
PRACTICAL WIRELESS

September 16th, 1933

Fig. 7.—Reaction is at maximum in this position.

denser to earth, the fixed vanes being connected to one end of the reaction winding, the other end of the winding being connected to the anode of the detector valve. Upon the introduction of dual range coils, however, it was not always possible to achieve this, as in many cases the low potential end of the winding was taken direct to the same terminal as the low potential end of the grid winding. By employing an ordinary condenser, hand capacity effect would become apparent. A system of reaction control was eventually evolved which overcame this trouble. It must not be thought, however, that this system will not function when the reaction winding is isolated from the grid winding; it can be used with either type of coil.

Differential Reaction

We noticed earlier that for maximum efficiency a detector valve needs a capacity between the anode and filament. In the early days of broadcasting detector efficiency was rather poor, and it was only by careful manipulation of the reaction control and bringing the set to the point of oscillation that foreign station reception could be obtained. In such circumstances quality was bound to suffer. Let us return to our Reimartz circuit (Fig. 4). When the receiver is set at zero there is practically no capacity existing between plate and filament except stray capacities. To remedy this it was quite a simple matter to connect a fixed condenser of about 0.0002 mfd. as shown. If this capacity be too high it may pass an excessive amount of H.F. energy and difficulties may be experienced in obtaining satisfactory reaction over the whole of the tuning scale; it is advisable in this case to use a smaller capacity. With differential reaction a fairly large capacity is provided for between plate and filament. When the condenser is at its maximum setting, reaction effects are nearly zero as in Fig. 6. If the capacity of the reaction coil is increased, the H.F. current flows through the reaction coil (Fig. 7) and at the same time there is a corresponding decrease in the capacity between anode and filament, but a certain proportion of the capacitance will always remain between anode and filament. This is because the reaction coil is generally so arranged that it is not necessary to employ to the full extent the whole capacity of the reaction condenser; therefore, the moving vanes are never fully enmeshed between the fixed vanes connected to the reaction coil. A certain amount of capacity consequently remains connected between anode and filament of valve. As the hand capacity of the operator is nearly always less than this capacity, it will have little effect.

An excellent example of this system of reaction control was that employed in the Selectone 3 described in this journal some time ago. The essential portion of the circuit is reproduced in Fig. 8.

Band Pass Filter and Reception

The reader will undoubtedly be interested to know if it is possible to employ a band-pass filter in conjunction with his straight set. He possibly has wondered why so few sets have been described employing this arrangement. Here, however, is one of the few instances where reaction is not a great success. An illustration of the principle is shown in Fig. 9. Rather unusual effects are experienced with this type of circuit: signal strength does not increase to any appreciable extent, and there is a marked tendency towards double-humped tuning. For ordinary straight sets, the writer prefers a loosely-coupled single-tuned circuit, and with this arrangement reception is relatively quite satisfactory, except when situated very near to a transmitting station.

Reaction Difficulties

Are there any snags encountered in reaction circuits? Like the motor-car, they sometimes prove troublesome. A few suggestions are, therefore, offered which will solve most of the common difficulties arising with reaction circuits. If a receiver refuses to oscillate, fault is generally in the detector circuit, such as a faulty valve, reaction coil or condenser, or open circuit. If failure occurs after a period of use, it may be due to a faulty grid leak in reducing their emission, high-tension voltage dropping due to the H.T. battery failing. Another trouble in reaction circuits is overlap; a common cause of this is the H.T. or L.T. battery running down, insufficient by-passing, high resistance H.T. supply, incorrect anode voltage or unsuitable grid leak. Instead of taking grid return lead to positive filament, connect the grid to slider of 400 ohms potentiometer connected between positive and negative of L.T. battery.

Instability When Using an Eliminator

SOMETIMES, when a rather old-fashioned battery set is connected to an eliminator, mains hum is very troublesome and motor-boating makes good reception impossible. This has often led the user to believe that the eliminator was faulty, though actually the defect was in the set itself. The instability was due to the fact that insufficient decoupling was used and although this passed unnoticed when using a battery of comparatively low voltage it increased very considerably when a greater high tension voltage was employed and the valves began to operate more efficiently.

In a case of this kind it is generally sufficient to decouple the detector by means of a 50,000 ohm resistance and 2 mfd. condenser. Sometimes, however, this is not enough and so the first L.F. valve should also be decoupled by inserting a 20,000 ohm resistance in its anode lead and connecting the customary 2 mfd. by-pass condenser between the resistance and H.T. negative. A still further improvement can be effected by feeding the loud-speaker through an output transformer or choke-capacity filter circuit.

Automatic Volume Controls

SEVERAL of the larger American receivers are fitted with automatic volume controls, but there are very few British sets with this refinement. Because of this please do not draw the conclusion that British designers are backward. The point is that the advantages of the system are rather doubtful, and in the minds of many they are more than offset by the disadvantages. The idea is that the sensitivity of the set is increased when the signal is weak, and reduced when tuned to a powerful signal. But as the signal fades, the atmospheres, "mush," and other forms of interference remain at constant strength, and are therefore amplified to an undesirable extent. In consequence it is not infrequent to find that the required programme is almost drowned out, or at least so swamped as to be not worth listening to. I have recently made a set with automatic volume-control, just to amuse myself, and I must say I have not been disappointed. Two V.M.S.G. valves were used, followed by an anode bend detector and a pentode output valve.
Useful Hints and "Danger Don'ts" Associated with the Choice and Operation of All-Electric Eliminators

By an ELECTRIC SUPPLY ENGINEER

Although the average wireless enthusiast may possess considerable practical knowledge on the operation of his wireless receiver, he often experiences difficulty when the problem of all electric sets is under consideration, chiefly or account of the purely electrical technical knowledge required. Furthermore, due to the very complicated methods of charging for the electrical energy consumed, and the non-standard voltages, frequencies, and nature of the electric supply, restrictions, etc., the problem is still farther amplified to an almost incomprehensible degree.

Before starting to build an eliminator or installing an all-electric set, the nature, voltage, and frequency of the electricity supply should be determined; and undoubtedly this information is best obtained directly from the offices or showrooms of the supply authority concerned, or from the name plate of the electricity meter installed in the house, but often the figures become obscure and are unreliable. Circumstances have been found in practice where two houses, maybe only one hundred yards apart, are supplied at different voltages, one with A.C. current and the other D.C., therefore the importance of obtaining really authentic information on this question is not to be neglected.

If the supply is found to be D.C., further precautions should be taken, and for these, a visit or communication addressed to your supply authority is to be strongly advised, owing to the fact that D.C. is now becoming very rare; what remains is being rapidly converted to A.C., and wireless apparatus incident to date must be replaced at the supply authority's expense when the conversion takes place, thus, if an understanding is definitely arrived at, future trouble and expense may be avoided.

Much the same advice is applicable for A.C. current when the frequency differs from 50 cycles, as this frequency is to be standardized throughout the country, and again replacements in some apparatus will be necessary. The effect of a change in frequency is very pronounced on the speed of the motors usually installed in A.C. radiograms, the motor speed generally being in proportion to the frequency of supply, and the number of poles of the motor, therefore a reduction in frequency means a corresponding reduction in turntable speed, and a converse effect for an increase in frequency. Electric clocks are similarly affected.

Although the frequency is to be standardized, the supply voltages are not, and may be found in general practice to vary for both A.C. and D.C. from 200 to 250 volts. Change-overs from D.C. to A.C. are at the supply authority's own instigation, and are chiefly governed by financial considerations; therefore information concerning future change-overs is rarely obtainable.

Methods of Charging for Electrical Energy

The Board of Trade unit of electrical energy is termed the Kilowatt-hour, and its derivation is very easy to understand. The word Kilowatt is one thousand watts. Now volts multiplied by amps (irrespective of their magnitude) gives the value in watts, and this is merely further multiplied by the time in hours, the current has been flowing or switched on. Thus, kilowatt hours, or in short, K.W.h.

\[
\text{K.W.h.} = V \times A \times \text{time in hours}
\]

Therefore, an electric lamp supplied at a pressure of 200 volts, taking 1 amp current

\[
\begin{align*}
\text{Supply mains} & \\
\text{Transformer} & \\
\text{Rectifier or Set} & \\
\text{Lighting} &
\end{align*}
\]

ORDINARY TRANSFORMER

The effect of a change in frequency is very pronounced in five hours 1 kwh. of electrical energy, or one unit. A wireless set having a normal consumption of 50 watts will consume 1 kwh. in 20 hours.

The cost of the K.W.h. made on the flat rate basis at present varies from approximately 1½d. to 1½d. per unit, which explains the great difference in running costs of various receivers in different localities. The average meter receipt charge is about 4½d. per K.W.h. for lighting, and it is important to remember that in houses where there are two distinct charges, i.e., for lighting and heating, etc., it is often not permissible to utilize the wireless set on the heating circuit, or cheaper rate. In houses where there is only one running charge as when all-in or assessment tariffs are used, this problem does not arise. One word to hired wiring consumers. Where the running charge and installation wiring charge is made in one payment it may often work out to around 3d. to 1½d. per unit. In these circumstances it is advisable to consider very carefully the consumption of the proposed all-electric receiver or distributor, thus if the set is utilized considerably, may be greater than the equivalent battery model.

AUTO-TRANSFORMER

The Board of Trade unit of electrical energy is termed the Kilowatt-hour, and its derivation is very easy to understand. The word Kilowatt is one thousand watts. Now volts multiplied by amps (irrespective of their magnitude) gives the value in watts, and this is merely further multiplied by the time in hours, the current has been flowing or switched on. Thus, kilowatt hours, or in short, K.W.h.

\[
\text{K.W.h.} = V \times A \times \text{time in hours}
\]

Therefore, an electric lamp supplied at a pressure of 200 volts, taking 1 amp current

\[
\begin{align*}
\text{Supply mains} & \\
\text{Transformer} & \\
\text{Rectifier or Set} & \\
\text{Lighting} &
\end{align*}
\]

Connecting to D.C. Mains

As the apparatus in this case cannot be isolated from the supply mains, suitable fuses must be placed in each lead, and supply authorities generally insist that whatever earth-ting is undertaken in the set or apparatus, it must be effected through a condenser not less than 2 mfd, which should be capable of withstanding at least three or four times the normal working increased. The use of condensers or proved reliability should be used for this purpose as failure of its insulation may lead to major short circuit of the supply mains and subsequent damage to apparatus.

The reason for this is that one of the difficulties frequently encountered by the supply authority already.

The reason for this has been fully and clearly dealt with in a recent issue of PRACTICAL WIRELESS, in an article entitled "D.C. Maine Problems," Vol. 2, No. 35; an interested reader cannot do better than refer back to this article.

Fixing Aerials, etc.

For rural and suburban distribution, overhead supply mains for ordinary dwelling houses are coming into considerable use owing to the cheaper cost of protection. This rule is strictly adhered to by the majority of supply authorities, and means that a transformer having a distinct primary and secondary winding must be used, therefore the use of auto transformers is not permitted. This type of transformer is similar to a tapped inductor or choke coil, the essential difference from the ordinary type is easily seen from Figs. 1 and 2, where V1 and V2 represent the primary and secondary voltages, respectively, and I1 and I2 the relative current intensities.

It will be noticed that the connection marked Z in the case of the auto transformer, which comes from one side of the supply mains passes straight on to the rectifier or receiver, and thus if either happens to be faulty when this method of connection is used, a considerable shock may be sustained, and the apparatus seriously damaged, therefore the use of this type of transformer is generally not allowed for mains work.

Connecting to A.C. Mains

With all A.C. commercially-manufactured sets, the problem may safely be left in the hands of the maker, providing the apparatus is designed regarding voltage, frequency, etc. For home-constructed models too much caution cannot be taken. First of all the eliminator, wireless set or battery charger, must definitely be isolated from the supply mains, in such a manner that any internal faults occurring in the apparatus cannot interfere with the supply mains or blow the service fuses. This rule is strictly adhered to by the majority of supply authorities, and means that a transformer having a distinct primary and secondary winding must be used, therefore the use of auto transformers is not permitted. This type of transformer is similar to a tapped inductor or choke coil, the essential difference from the ordinary type is easily seen from Figs. 1 and 2, where V1 and V2 represent the primary and secondary voltages, respectively, and I1 and I2 the relative current intensities.

It will be noticed that the connection marked Z in the case of the auto transformer, which comes from one side of the supply mains passes straight on to the rectifier or receiver, and thus if either happens to be faulty when this method of connection is used, a considerable shock may be sustained, and the apparatus seriously damaged, therefore the use of this type of transformer is generally not allowed for mains work.

Fixing Aerials, etc.

For rural and suburban distribution, overhead supply mains for ordinary dwelling houses are coming into considerable use owing to the cheaper cost of protection. This rule is strictly adhered to by the majority of supply authorities, and means that a transformer having a distinct primary and secondary winding must be used, therefore the use of auto transformers is not permitted. This type of transformer is similar to a tapped inductor or choke coil, the essential difference from the ordinary type is easily seen from Figs. 1 and 2, where V1 and V2 represent the primary and secondary voltages, respectively, and I1 and I2 the relative current intensities.

It will be noticed that the connection marked Z in the case of the auto transformer, which comes from one side of the supply mains passes straight on to the rectifier or receiver, and thus if either happens to be faulty when this method of connection is used, a considerable shock may be sustained, and the apparatus seriously damaged, therefore the use of this type of transformer is generally not allowed for mains work.

Fixing Aerials, etc.

For rural and suburban distribution, overhead supply mains for ordinary dwelling houses are coming into considerable use owing to the cheaper cost of protection. This rule is strictly adhered to by the majority of supply authorities, and means that a transformer having a distinct primary and secondary winding must be used, therefore the use of auto transformers is not permitted. This type of transformer is similar to a tapped inductor or choke coil, the essential difference from the ordinary type is easily seen from Figs. 1 and 2, where V1 and V2 represent the primary and secondary voltages, respectively, and I1 and I2 the relative current intensities.

It will be noticed that the connection marked Z in the case of the auto transformer, which comes from one side of the supply mains passes straight on to the rectifier or receiver, and thus if either happens to be faulty when this method of connection is used, a considerable shock may be sustained, and the apparatus seriously damaged, therefore the use of this type of transformer is generally not allowed for mains work.
THE TESTING AND ADJUSTMENT OF BAND-PASS FILTERS

By P. E. Barnes

The increasing use of band-pass filters in both commercial and homemade sets is a tribute to their effectiveness, and also to the high standard of accuracy attained in the matching and testing of the manufactured article. But to the practical man (and quite rightly) no advertisement, and no amount of faith in the skill of designers and testers, can give him the same feeling of certainty as a practical demonstration, and it is for this reason that the following simple and conclusive tests can be made of the performance of such filters.

The majority of band-pass filters consist of two similar circuits of the normal type, tuned by two sections of a condenser gang, with the addition of one or more components (inductances, condensers, and/or resistances) which are common to both circuits and provide the coupling between them. Figs. 1, 2, 3, 4 and 5 show examples of the more common types of filter. Fig. 5 shows the effect of such a filter and explains its considerable popularity. Curve "A" shows the response to different frequencies of one tuned circuit, curve "B" shows the improvement in selectivity due to the use of two such circuits as serial and tuned anode (or tuned grid) coils.

It will be seen that the filter (curve "C") gives a good response to all the frequencies in a band of 9 kilocycles, while sensitivity outside this band decreases as fast as that of the curve "B." Usually the filter is used as an aerial coil, with an ordinary circuit to couple the detector valve to the H.F. valve, and this combination, which gives us three tuned circuits where the normal arrangement only allows for two, has the effect shown by curve "D." A second band-pass unit can, of course, be used in the inter-valve coupling, but it is not usually necessary. In some sets, too, the band-pass unit is arranged here in order that the set may be used on a frame aerial with the minimum of switching on the high-frequency side.

Working Principles

The theory of band-pass filters is somewhat advanced, but a few of the essentials can be stripped of unnecessary formulae and will enable the working of the filter to be grasped fairly easily. The width of the approximately flat top of the filter curve is dependent on the separation of the "peaks," if they are far apart then the coupling between the coils is said to be "tight," and the degree of tightness depends on the voltage developed across the coupling component. If, to take a simple example, we are using a simple capacity filter as in Fig. 1, the voltage will vary as the frequency (or wavelength) is changed. This might be expected, for we know that high-frequency currents will pass a condenser easily, but the lower frequencies require a larger voltage — this is the property of the condenser of which we make use in by-passing high notes in an amplifier, or high-frequency currents from the plate of a detector valve.

The result, which is what matters, is that as we tune to the higher wavelengths (lower frequencies) the voltage increases, the coupling gets "tighter," and our peaks separate, with the result that the set gets selectivity. The condition of equal inductance and capacity of the filter is changed. If the coupling were of the type shown in Fig. 2, we know that as an inductance offers more resistance to the higher frequencies, the opposite effect will occur, and the peaks will draw together at higher wavelengths, and we will not get a band-pass action.

Matching: Trimmers and Screening

The practical conditions for satisfactory operation are:

1. The tuned circuits must be exactly the same, i.e., must have the same inductance, capacity and resistance.
2. The sections of the ganged condenser must be matched to give the same capacity for all dial readings.
3. All couplings other than the one we provide in the filter must be avoided as far as possible.

The form of two small coils, one wound on each tuning coil former (Fig. 3) and a condenser.

As might be imagined the practical solution is a combination, and this generally takes

Matching:

1. The condition of equal inductance will be satisfied as a rule if matched coils of reputable make are used. Later on you will find the method for detecting and remediying faults in matching. The capacity includes all the stray capacities of wiring and screening cans, but we can make it the same in each circuit by the use of the trimming condensers built into the ganged condenser. The resistance should be low for efficiency, but two similar coils will not differ by any amount worth considering.

2. As far as the matching of the condenser sections is concerned, we must trust the manufacturer. The moral here is too well-known to need repetition. It must be remembered that the trimmers can only be used to equalize the stray capacities in the circuits — they cannot be moved afterwards without upsetting the ganging and necessitating re-adjustment.

For the same reason, the use of an external trimmer is "taboo"; we must have nothing but our one tuning control variable from the panel once the set has been adjusted.

Some makes of condensers have the end vanes divided so that the capacity at any point of the scale can be increased to effect matching, but this is a laborious process, and outside the scope of an ordinary amateur's equipment. If a condenser should turn out really badly matched, the best proceeding is to take it back and make yourself a nuisance. When the circuit is adjusted, do not forget to have one last look at the trimmers. One of these should be at zero, and if it is not, then all trimmers can be reduced in succession until one of them is at its minimum. This will reduce the minimum wavelength to which the set will tune, by reducing the capacity in circuit when the dial reading is 0.

(2) To avoid stray couplings, the usual method is to enclose the coils in aluminum cans and use screened condensers, and this is undoubtedly the best method, as it eliminates all couplings due to external objects, prevents "shock excitation" of the coils due to very near transmitters, and ensures that no alterations in conditions can occur. Make certain, however, that the screens or cans are rigidly fixed, or they may move with most unexpected effects on the tuning, due to the changes in the capacity of the circuit.

(Continued on page 944)
To LISSEN, LTD.,
Fublicity Dept., Isleworth.

£8116

(Never before has there been any receiver for Home Constructors on such an ambitious scale as this new Lissen "Skyscraper" Seven-valve Superhet. It embodies every up-to-the-minute advance and refinement of the most luxurious factory-built superbets—it gives the constructor the opportunity to build a £25 receiver for less than half that price. The circuit of the Lissen "Skyscraper" Seven-valve Superhet incorporates a 6-stage bandpass filter, giving exact 9-kilocycle channels and therefore providing a standard of selectivity never before achieved by a home-constructor's kit set and very rarely found except in laboratory apparatus. Amplified Automatic Volume Control is provided, a special valve for this purpose having been produced by Lissen for use in this receiver. The use of this Amplified Automatic Volume Control constitutes an entirely new experience in listening; no "fading," no "blasting"—you will find yourself enjoying every word of every programme, however near or however distant, without the slightest temptation to interfere with the receiver once you have tuned it. This is radio listening as it should be enjoyed!

Lissen Class-B Output through a new full-power Lissen Moving-coil Loud-speaker—glorious rich tone and majestic volume, actually more faultless in its reproduction than anything you ever heard from even the most powerful mains receiver, yet working economically in this Lissen "Skyscraper" from H.T. batteries.

A Seven Valve Superhet—8 Stages in all and a 6 stage Band Pass filter—exact 9 Kc tuning channels with Amplified Automatic Control—Class B output driving full power Moving Coil Speaker

Lissen have published for this great new "Skyscraper" Seven-valve Superhet a most luxurious chart which gives more detailed instructions and more lavish illustrations than have ever before been put into a constructional chart. It makes success certain for everybody who decides to build this set; it shows everybody, even without previous constructional experience, how they can have a luxury receiver and save pounds by building it themselves. A copy of this Chart will be sent FREE, in return for coupon on the left, or your radio dealer can supply you. Get your FREE CHART now!

Please send me FREE CHART of the "Skyscraper" Seven-valve Superhet.

Name..
Address..

PR 635

FREE CHART POST COUPON

THE CONSTRUCTOR'S LUXURY SET
that we shall shortly see great changes in
we knew of nothing better.
well and has been considered good, because
means of variable condensers.
then necessary adjustments are made by
are approximately equal to the lowest
have remained unaltered.
changed in matters of detail, the principles
design of both coils and condensers has
are wound on a core consisting of very
opened up a vast field for experiment.
so they appear that if they were so constructed
the station is not transmitting
try the spacing out of the turns on the

(Continued from page 942)

Testing
Now we have dealt with the main points of constructing or assembling a filter, and we must test it to see to what extent it really does its job. The apparatus consists of the ubiquitous milliammeter, and one can usually be begged, borrowed, or otherwise procured if you have not one. This should be connected in the usual circuit of the detector-valve, either by using a split anode connector (this can be bought cheaply, and is useful for other tests), or by breaking the circuit at any accessible point, and inserting the milliammeter there.

When the set switched on, rotate the tuning dial slowly until a loud transmission is tuned in, when there will be a drop in the reading which should occur suddenly, remain for a degree or two, and slight further rotation will bring the needle back to its old position. Some sets use an anode bend detector, in which case the terms "rise" and "fall" should be exchanged.

If the rise and fall are sudden, and there is a "still-point" between them, we are securing a band-pass action, but we have yet to check the band width. This we do by tuning in another station on a nearby wavelength. Suppose we receive the London and Midland Regionals at 90 degrees and 110 degrees, respectively. Their frequencies are 843 and 762 kilocycles, so we now know that the 20 degrees difference of dial reading corresponds to 91 kilocycles. The usual band width is 9 kilocycles, or about a sixth of this, i.e., 2 degrees on our dial. That is, the needle must remain still at its lowest point while the dial is turned through 2 degrees. If this is much less, then we are not getting a band-pass effect at all, while if it is much more we are in danger of the station on the next wavelength channel breaking through, perhaps louder than if we were not using a band-pass tuner at all! If the filter is one which has a very small condenser at the high-potential ends of the coils, then matters can usually be put right by adjusting this, until the needle drop remains nearly the same over the desired 2 degrees rotation of the tuning control. This applies to filters shown in Figs. 4 and 8. The commercial mixed filters

will seldom be found out of truth by any appreciable amount, provided that the coupling condenser used at the low-potential ends of the coils has its true value. If the results are unsatisfactory, try substituting another condenser, or wiring small condensers (.006, .01 mfd. say), in parallel, and see the effect. If this makes matters worse, then the condenser is too large to start with, but it seldom happens that any alteration is necessary. Unless

definition of both coils and condensers has changed in matters of detail, the principles have remained unaltered. The coils are so designed that their natural wavelengths are approximately equal to the lowest part of the waveband to be covered, and then necessary adjustments are made by means of variable condensers.

The system has certainly worked very well, and has been considered good, because we knew of nothing better. But I think that we shall shortly see great changes in

"PERMEABILITY" TUNING

the tuning arrangements of our receivers; the introduction of "Ferroart" coils (recently put on the market) has opened up a vast field for experiment. As you will remember, "Ferroart" coils are wound on a core consisting of very small particles of iron contained in a solid insulating substance. As a result, a much higher inductance can be obtained by the use of fewer turns of wire. The complete coils are thus more efficient than those of the usual "air cored" type, since there is appreciably less resistance loss. To my mind, however, the new coils should give us a further, and possibly greater, advantage than increased efficiency. It would appear that if they were so constructed that the core could be withdrawn, an accurate adjustment of wavelength could be made without the necessity for variable condensers. In addition to the great simplicity of the arrangement, it would seem that a much wider wavelength range could be covered by a coil of any particular size. I should not be at all surprised to find "permeability" tuning, as this system could be called, becoming very popular during the next few years.

two steel spanners

given free next week!
BUILDING AND OPERATING THE A.C. THREE

Full Constructional Details are Given Below for this Most Efficient and Economical All-electric Receiver

BY THE TECHNICAL STAFF

A COMPLETE list of parts required for this new receiver was given last week, but it is reproduced on this page for reference. The first step is obviously to obtain all the necessary components, and it cannot be emphasized too strongly that it is absolutely essential that no deviation whatever should be made from the specification. This statement applies not only to the parts for the receiver itself, but is of even greater significance in respect to the loud-speaker. It was explained last week that the speaker specified had been chosen with considerable care, and the design of the whole outfit was worked out round it. For that reason the set cannot be expected to function properly (if at all) should any other type of instrument be employed.

All the parts are of standard patterns and can be obtained from any reliable dealer. It has frequently come to our notice that certain dealers have informed readers that some of the parts specified for other PRACTICAL WIRELESS receivers could not be obtained; this has never been the case, and we therefore ask readers, in their own interests, to insist upon being supplied with the exact types and makes of parts stated. In case a local tradesman refuses to obtain items which he does not keep in stock, any constructor can obtain them from reliable firms who advertise in these pages, whilst complete kits can be purchased in this way if desired.

Assembling the Components

The first step in commencing the constructional work is to mount the parts on the special "Metaplex" chassis, which may be obtained already drilled and ready for immediate use. It will be found most convenient to start on the underside of the chassis, arranging the parts in the positions indicated on the wiring plan. Attach the fixed condensers, L.F. transformer, and H.F. choke by means of pin or pin screws and then attach the four angle brackets with pin screws. Next, turn the chassis over and mount the valve-holders, taking care that they are placed in the exact centres of the 1-inch diameter holes provided. The gang condenser is fixed in place with the screws supplied, and it should be observed that it must be so placed that the end of the spring retaining bush is exactly in line with the front edge of the baseboard. The two coils can next receive attention, and must be arranged with their terminals in the positions shown in the wiring diagram. Finally, the mains plug, mains transformer, electrolytic condensers, and terminal block can be mounted.

Systematic Wiring

Wiring should present no difficulties, even to the beginner, provided that some sequence is followed. We ourselves found it best to start by attaching most of the output leads from the mains transformer. These leads are not marked to show which is which, but they are of different colours and thicknesses; the two thin red leads are the outsiders of the high-tension second-ary winding, and thus go to the grid and anode terminals of the rectifier valve-holder, the thin (double) black lead is the centre tapping from the H.T. secondary, and is the H.T. negative lead; the thick yellow leads are from the 4 volt 3 amp. heater winding, and go to the filament terminals of the pentode valve-holder, whilst the corresponding black lead is the output tapping and goes to H.T. negative; the thinner yellow leads are for the rectifier heater, and the corresponding black lead in high-tension positive. Most of the transformer leads are slightly longer than they are actually required to be, so it is best to lay them in position and then cut

<table>
<thead>
<tr>
<th>LIST OF COMPONENTS FOR THE A.C. THREE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two Talsa Iron-core Tuning Coils, type W.349.</td>
</tr>
<tr>
<td>One Polar Uniknob .0005 mfd. Twin Gang Condenser.</td>
</tr>
<tr>
<td>One Graham Farish " Litus " .00015 mfd. Reaction Condenser.</td>
</tr>
<tr>
<td>One Bulgin 15,000 ohm Volume Control with Switch, type G.S.15.</td>
</tr>
<tr>
<td>One British Radiogram Mains Transformer, type S.45.</td>
</tr>
<tr>
<td>One Igranic Jack, type No. 4.</td>
</tr>
<tr>
<td>One Igranic Plug, type No. 40.</td>
</tr>
<tr>
<td>One Bulgin Mains Connector with Fuses, type F.15.</td>
</tr>
<tr>
<td>One Igranic L.F. Transformer, type T.24.B.</td>
</tr>
<tr>
<td>Four Clix 5-pin Chassis Mounting Valve-holders, Standard type.</td>
</tr>
<tr>
<td>One British Radiogram 2-point Switch, type No. 48.</td>
</tr>
<tr>
<td>Four British Radiogram Component Brackets, type 21.</td>
</tr>
<tr>
<td>One Graham Farish H.F. Choke, type H.M.S.</td>
</tr>
<tr>
<td>Two Talsa 4 mfd. Electrolytic Condensers with Brackets.</td>
</tr>
<tr>
<td>Five T.C.C. 1 mfd. Condensers, type 60.</td>
</tr>
<tr>
<td>Two T.C.C. 2 mfd. Condensers, type 80.</td>
</tr>
<tr>
<td>One T.C.C. .0002 mfd. Condenser, type 34.</td>
</tr>
<tr>
<td>One T.C.C. .0005 mfd. Condenser, type 100.</td>
</tr>
<tr>
<td>One Graham Farish 2 megohm Grid Leak.</td>
</tr>
<tr>
<td>Nine Graham Farish " Ohmite " Resistors ; two each 5,000, 20,000 and 30,000 ohms; one each 150, 300 and 400 ohms.</td>
</tr>
<tr>
<td>One Belling Lee Terminal Mount.</td>
</tr>
<tr>
<td>Two Belling Lee Terminals, marked " A " and " F ".</td>
</tr>
<tr>
<td>One Perco Scott " A.C. Three " Cabinet, and Metaplex Chassis.</td>
</tr>
<tr>
<td>One Celestion Energized Speaker with 1,500 ohm field, type K.8.</td>
</tr>
<tr>
<td>Two Coils Giram, length screening braid, flex, insulating, etc.</td>
</tr>
<tr>
<td>One Mazda AC-SGVM Valve.</td>
</tr>
<tr>
<td>One Mazda AC-2FL Valve.</td>
</tr>
<tr>
<td>One Mazda AC-PEN Valve.</td>
</tr>
<tr>
<td>One Mazda UU.2 Rectifier Valve.</td>
</tr>
</tbody>
</table>

Front view of the A.C. Three. Note the compact lay-out and the simplicity of wiring.
An Automatic Bias Unit

By T. A. Wilson.

extra components needed for the change over are one resistance, and one condenser for each grid-bias voltage required. The condenser should have a capacity of one microfarad. The value of the resistance will be dealt with later.

Let us assume that two tappings are to be used. First of all, obtain a piece of wood about 11/2 in. thick, and the width of the bias battery. The length of the wood should be such that two condensers can be mounted end to end. The method of connecting the resistances and the condensers is made clear in the sketch. The connections to the receiver are also shown. Note that the high tension negative lead must be removed from its usual position to the new point.

So much for the construction of the unit. It now remains for us to find the value of the resistances. To do this it is necessary to know the total H.T. consumption of the set. Now, by dividing the maximum grid voltage required by the consumption in milliamperes and multiplying the answer by 1,000 we get the total resistance needed in the circuit; in other words, the combined value of R^1 and R^2. The resistance of R^1 is found by dividing the voltage required for G.B.1 by the total consumption, and multiplying, as before, by 1,000; R^2 is then found by simple subtraction.

To exemplify this, suppose voltages of 3 and 12 are needed, and the total consumption of the receiver is 100 milliamperes. The combined resistance of R^1 and R^2 would then be 12/10×1,000, which equals 1,200 ohms. R^2 would equal 3×10×1,000, or 300 ohms. Resistances of 300 and 900 ohms would therefore be required.
CLASS B SIMPLIFIED!

THE NEW ROLA PM.M.C. UNIT SPEAKER & IN ONE

MAINS VOLUME FROM ANY BATTERY SET AT VERY LOW USE OF H.T.

A latest type ROLA Permanent Magnet Moving Coil Speaker with which is incorporated a complete, properly matched "CLASS B" amplifier. This assembly when connected with any Battery Set converts it to "CLASS B" output, increasing the overall sensitivity of the set several times, and increasing the power output and volume up to 5 Times!

SEND FOR IT ON 7 DAYS' TRIAL

Send only 5s. for 7 days' trial, if satisfied, pay balance in 10 monthly payments of 7s. 6d. (Cash, 7 days, £3 9s.).

EDISWAN

The name that means Excellence

This Ediswan

H.T. Battery cell reveals the secrets of extra H.T. service

A brass cap tightly soldered to the carbon rod forms the positive connection.

The cell is sealed by means of a waxed washer over which paraffin wax is poured. This washer assists in centralising the sac in the cell.

An air space is left between the top of the sac and the master, to allow for the expansion of the electrolyte during discharge.

A substantial zinc container which forms the negative pole of the cell.

The sac consists of a highly efficient depolariser, tightly compressed round the carbon rod, the whole being securely wrapped and sealed.

Electrolytic paste of a special chemical composition which fills the space between sac and zinc container and increases the cell.

A waxed paper disc which insulates the sac from the bottom of the zinc container.

Don't risk wasting your money on inferior batteries. Insist on Ediswan. You can get them in all standard sizes including portable types—Standard or Super Capacity—at the usual prices.

EDISWAN

H.T. BATTERIES

THE EDISON SWAN ELECTRIC CO. LTD., PONDERS END, MIDDLESEX

EDISWAN—the Better Service Batteries
THE NATIONAL RADIO EXHIBITION, MANCHESTER

LIST OF EXHIBITORS

OUR STAND No. 11

GROUND FLOOR

6a Tonman Hall—Helloes, Ltd., Helloes Works, Morden Road, London, S.W.1.

6b Tonman Hall—Helloes, Ltd., Helloes Works, Morden Road, London, S.W.1.

LIST OF EXHIBITORS

STAND No. 85

Aerialite, Ltd., Aerialite House, Amber Street, Manchester.

Berry and Wilson, Ltd., Manor Works, Great Horton, Bradford.

Belling and Lee, Ltd., Cambridge Arterial Road, Enfield.

Block Batteries, Ltd., Abbey Road, Barking, Essex.

Batteries, Ltd., Abbey Road, Barking, Essex.

British Blue Spot Co., Ltd., 94/6, Rosoman Street, E.C.1.

British Radiophone, Ltd., Aldwych House, Manchester.

British Rola Co., Ltd., Minerva Road, Park Royal, N.W.10.

Cosmocord, Ltd., Cambridge Arterial Road, Enfield.

Helleson, Ltd., Helleseit, Works, Morden Road, London, S.W.

Hollinwood, Lancs.

Hollins, H., and Sons, Ltd., 69, St. John Street, Clerkenwell, London, E.C.

Holtwood, Lancs.

Hoyden, H., and Sons, Ray Lea Road, Maidenhead, Berks.

Hull, F., and Sons, 60, Parkhill Road, Haughton.

Hull, F., and Sons, 60, Parkhill Road, Haughton.

Oxford House, 34, Great Horton, Bradford.

Oxford House, 34, Great Horton, Bradford.
Ebonite Anchor Plates for Battery Leads

A useful battery lead holder can be made from odd pieces of ebonite and screw holes found in the scrap box. Slots are filed across each piece of ebonite and screw holes are made between to take the clamping screw, as shown in the accompanying sketches. If desired, the ebonite strips can be of sufficient length to take a number of slots for accommodating various leads, with screw holes between.—C. P. Chilton (Thornton Heath).

Tantalum Charger

The wrinkle recently published with reference to fixing the tantalum strip reminds me of the method I used to overcome the difficulty. In my case the strip was not wide enough to permit a hole to be drilled through it, so I obtained a one-hole-fixing bush, drilled and threaded a 4BA hole in the side, near the flange. The tantalum strip was then inserted in the flanged end of the bush just far enough for the fixing screw in the hole in the side to grip it. This screw was then filed down flush with the bush, and the whole was mounted on the piece of ebonite carrying the lead. I covered the whole of the flange, etc., on the underside of the ebonite with sealing wax. The result has been a perfectly satisfactory joint.—G. A. Porter (Fulham).

A Home-made Loud-speaker Unit

The accompanying sketches illustrate how I constructed an excellent cone loud-speaker unit. The coil was taken from an old horn loud-speaker. The armature is made from a piece of sheet iron about 3 in. thick, and to this is fixed the reed, to the underside of which is fixed a V-shaped spring. As to the magnet, this can be purchased for a few pence. The magnet is clamped down onto the iron of the coils. This simple unit, which functions very well, will no doubt be of interest to other readers.—L. R. Harding (Stockwell).

Improving Selectivity

Here is a dodge for modernizing an old variable condenser with an ebonite dial. The condenser is mounted, as shown in the sketch, on a piece of plywood held by a metal rod fixed on each side of the plywood supporting the condenser, by two washers and screws. One washer is placed so that in rotating it causes the ebonite dial to rotate by friction, and a small knob is fitted below, and turns a metal rod, fixed on one side of the plywood, to rotate the condenser, thus eliminating two of the common faults in long-wave tuning, viz., non-selectivity and the breaking through of the medium-waves. All the parts may be found in the junk box, except the break-through choke. When tuning medium-waves the fixed condenser is shorted. When tuning on the long-waves the switch is opened, and the fixed series capacity reduces the effective aerial series capacity. The values are not critical and may be varied a little. The unit may be made up in a small box measuring not more than 3 in. by 4 in. by 2 in., deep, as indicated in Fig. 1. The unit may be made up in the cabinet of a receiver if the necessary space is available.

The complete loud-speaker unit.

Slow motion device for a variable condenser.

The circuit is shown in Fig. 2.—C. F. Ward (Henley-on-Thames).

NEXT WEEK'S FREE GIFT!

Two handy steel spanners will be given with every copy of next week's Birthday Number. The third spanner, to complete the set, will be given the following week.
Radio Wrinkles (Continued from previous page)

Plug-in Connections for Receiver in Different Rooms

To save the expense of an extra loud-speaker, I fixed up the arrangement shown in the accompanying sketch for receiving programmes in another room in the house. An outdoor aerial is led into one room and an indoor aerial into the other. The indoor aerial I have brought down the wall underneath the wall-paper in a corner of the room, thus hiding an otherwise unsightly wire. The lead-in is then fixed to one side of an ordinary wall socket, the earth being taken from the other. This is fastened to the skirting board. Both aerials are treated in the same way. The aerial and earth terminals on the set are then joined to a plug which is inserted in the socket. When there happens to be a thunderstorm in the neighbourhood, the receiving set plug is taken out and inserted instead. Sometimes long-distance reception is improved by reversing aerial and earth. This is done quite easily by removing the plug and inserting it round the other way.

R. Taylor (Sunderland).

A Double Circuit Speaker Connector

An old type panel-mounting valve-holder, mounted on an elastic strip, connected as shown in the accompanying sketch, and used in conjunction with a specially wired valve-base, forms an efficient combined battery switch and speaker connector. The valve-holder is connected in the following manner: Plate socket to plate terminal on output valve holder; grid socket to H.F. — cable; lower filament to earthed filament terminal; higher filament to L.T. and H.F. — cable. On the valve-base plug, flexible speaker wires pass through nearby holes to grid and plate. A well-insulated wire short circuits filament legs, and all wires are soldered. The inserting plug connects the speaker in the usual manner; joined filament legs bridge broken battery circuit at filament sockets. Removing the plug disconnects both batteries. — F. J. Gorcin (Salop).

PRACTICAL WIRELESS

A Simple Time Switch

The accompanying sketch shows a cheap, simple, and reliable time switch which has been used with great success during the last three years for the control of a battery receiver. Any type of cheap alarm clock is suitable, providing it has an alarm winding wing nut, as shown in the sketch. If the wing nut is made to swivel on the winding spindle, it should be secured rigidly to the spindle by a touch of solder. Two springy pieces of brass of "U" shape are mounted on blocks of ebonite, wood, or other insulating material. The strips are secured by means of a long screw and a back nut, a second nut and washers being fitted to form connections for the battery lead. The blocks may be mounted on the back of the clock in any suitable manner. A simple way is shown in the sketch, and consists of a metal lug secured by a screw to the block, and then soldered to the side of the clock. One of the leads from the L.T. battery is connected as shown in the sketch, and connection is made to the time switch. It will be seen that when the wing nut is in an approximately vertical position, connection is made between the two brass strips, and consequently the switch is "on." When the wing nut moves through a few degrees, so as to clear both contacts, the circuit is broken. If the receiver is to be switched off at a certain time, the alarm of the clock is set to operate at the desired time in the usual manner. The alarm action is then partially wound so that the wing nut is left approximately vertical in the "on" position. When the alarm operates, the nut turns just enough to clear both contacts. A few momentary variation will be enough to determine exactly how much winding is required. It will be understood that by a slight variation in the initial angle of the winding wing nut, the time switch may be set to switch on the receiver at any desired time instead of switching it off. — C. Musimr. (Leeds).

A Simple Continuity Tester

The accompanying sketch shows a simple method of making a sensitive continuity tester. An ordinary pocket compass is required, and a coil of wire is placed flat underneath it, as shown. To make the coil, wind about 180 or 200 turns of No. 38 or 40 gauge D.S.C. wire round two fingers, and give the coil thus formed a half twist like a figure 8. Fix two lengths of flex to each end of the coil by a touch of solder. Place the compass on top of the coil, and mount them on a small wooden base with sealing wax. An extra length of flex is needed, and two wander-plugs are fixed as shown, with two ordinary needles pushed through the holes and clamped. The needles are used for piercing the insulations of covered wire, to make contact with the wire underneath. A flash-lamp battery connected in circuit completes the tester. — W. Ainsworth (Blackburn).

A Divided Five-Valve Set

A short time ago I decided to build a five-valve set, 2 S.G., det., and 2 L.F., but not wishing to do away with the comparatively small cabinet I then had in use, I adopted the following idea: The 2 S.G. and det. stages were built into the existing cabinet, and the 2 L.F. stages into the loud-speaker cabinet, thus forming two entirely independent units. I use two separate H.T. batteries, which I find is a more economical method, besides saving extra wiring between the units. As for the 2 S.G. and det. stage, this can be disconnected from the speaker portion, and phones used only, thus making alterations an easier job. I may add that the L.S. portion is very good on gramophone reproduction (using a pick-up), and may be carried from room to room without the inconvenience of carrying the whole set, provided a spare L.T. battery is available for heating the filaments of the L.F. valves! Of course, a separate on-off switch should be provided if the speaker portion is used in this manner. — J. S. Broster (Liverpool).
All-World Listening for Home-Constructors ONLY!

All World Listening tour.
Home Constructos

PROVIDE UNIQUE INTERNATIONAL NEWS
AND ENTERTAINMENT SERVICE

At last the day of All-World Radio has arrived, and you can build with your own hands the first receiver to give you not only England and Europe, but America and Australia direct. The Lissen All-Wave All-World "Sky scraper" 4 tunes from 12 to 3,100 metres. It brings two complete new wavelength ranges within reach of the ordinary listener—stations and programmes which before he was never able to receive—Ultra Short and Short-Wave transmissions from the ends of the earth. And remember you get these stations through Double-Balanced Pentode Output giving brilliant reproduction on a Moving-Coil Speaker—as much power as a Mains Set from ordinary high-tension batteries.

Hear the news & views of AMERICA & AUSTRALIA DIRECT and AT FIRST HAND

Lissen have made this All-Wave All-World Radio available to Home Constructors first, because it brings back the thrill of conquest to hear America and Australia direct on a set you have built yourself; it makes you an enthusiast to realise what a wonderful thing you have created!

When you see the Great Free Chart of the All-Wave All-World "Skyscraper" 4, which tells you how to build it and how to work it and why it gives such marvellous results, you will agree at once that it will be wise of you to build it for yourself rather than buy a factory assembled receiver which cannot give you these new and intriguing short-wave stations. The FREE CHART simplifies everything; there are pictures of every part, with every wire numbered, every hole lettered, every terminal identified. YOU CAN'T GO WRONG! But get the Chart and see for yourself—then build the Lissen All-Wave All-World "Skyscraper" 4, the SET THAT SPANS THE WORLD!

To LISSEN LTD.,
Publicity Dept., ISLEWORTH.
Please send me FREE copy of All-Wave All-World "Skyscraper" Chart.
Name
Address

POST COUPON FOR FREE CHART

ULTRA SHORT
AND SHORT WAVES

COMPLETE WITH FOUR VALVES
£5.12.6

WITH WALNUT CABINET AND MOVING COIL SPEAKER
£8.2.6

DOUBLE BALANCED PENTODE OUTPUT AND MOVING COIL SPEAKER

LISSEN ALL-WAVE ALL-WORLD "SKYSCRAPER" 4
LESIONS FROM
An Analysis of the Exhibits at the Recent Radio Exhib
By W. J. DELANEY.

We have already dealt at some length with the Radio Exhibition, and have covered all the exhibits from the point of view of a simple review. Now that there is time to settle down and examine all the various new features which were introduced, and the new styles and fashions which were set, we can, as it were, analyse the position. What can we learn from the exhibits? Are there any features of principles involved which are worth noting? Has the design of radio apparatus improved? These and many other questions occur when we begin to look into the exhibition from a distance, as it were, and the purpose of this article is to try and show how the modern wireless receiver reveals new ideas, and in some cases reveals fallacies which exist regarding the design of radio apparatus.

The illustration above shows what was probably the most elaborate wireless receiver in the whole of the Exhibition. Taking the cabinet work first of all, we can see typified in this particular receiver the aim of the manufacturer to disguise the technical side of the apparatus, and to bring the actual wireless set into the home as part of the furnishing. If we cast our minds back only a few years we can remember the wireless set of that time with its exposed valves standing up like small lamps, and a formidable array of knobs and switches, all tending to give the set the appearance of a complicated laboratory apparatus. Many people, in fact, were afraid to touch it in case of shocks, etc. As, however, the wireless programme to-day is regarded as a part of the normal home-life of the citizen, it is only natural that the means for receiving these programmes should be an integral part of the home, and this can only be brought about by making the apparatus both fool-proof and "domesticated" for want of a better word. This particular piece of apparatus has certainly succeeded in disguising the wireless receiver, and it has also succeeded in combining a really high-class wireless set with an electric gramophone, with the result that perfect music may be obtained at any time of the day from any source. Leaving for a moment the electrical side of this receiver, all the other receivers which were on show at Olympia revealed the same point of view - namely, disguise. With this end in view the number of controls has obviously got to be reduced, and we find that four control knobs is a maximum. These may be divided into the main tuning control; wave-change control; volume control and tone control. Switches to bring the receiver into operation and to switch it off are in most cases combined with a volume control or other control. The Baird television receiver, illustrated at the foot of this page, reveals a further attempt at making the apparatus less conspicuous, and this particular receiver houses both a wireless receiver with loud-speaker, and television receiver with viewing screen. It can be classified under the above description of "fool-proof," and is certainly capable of taking its place in any room without giving an air of workshop or laboratory intrusion. The first lesson, then, is that the modern wireless set must not obtrude, but must be obscured so far as possible, whilst permitting ease of control and unobstructed reproduction.

Circuit Design

When we come to analyse circuit design we find that we have a rather formidable task. In these pages alone we have the two extremes of thought. The elaborate receiver first mentioned employs no less than...
ten valves and four balanced loudspeakers. In addition to the normal superheterodyne circuit which is employed there are included means for automatic volume control, automatic record changing, auto-fidelity control, automatic static elimination, and every other known refinement. At the other end of the scale is the Coswer Melody Maker receiver illustrated at the end of this article. Here is a three-valve receiver (odd-speaker in kit form) which costs a mere six or seven pounds, complete with cabinet and loud-speaker, etc. They both enable the modern broadcast programme to be received at good strength and with good quality. There are thousands who would be pleased to own a Melody Maker receiver (obtainable in kit form) which was the combining of the wireless set with some other article of domestic utility.

Combination Apparatus

ONE trend of thought which impressed me most in the new apparatus was the combining of the wireless set with the mains four-valve receiver, made by Messrs. Clarke & Co. and shown at the foot of page 952 is built into a cabinet which has the loud-speaker at the side of the receiver, in contrast to the majority of receivers of last year which had the speaker overhead. This former arrangement is certainly much more useful, as it gives a cleaner appearance to the finished apparatus and provides for easier wiring. But look at the manner in which the chassis-construction is employed in this receiver. All-metal, barely any wiring exposed, and perfectly safe. A great deal of selectivity trouble is due to direct pick-up on the wiring. In fact, but when this particular all-metal chassis-configuration is employed all the wiring is screened inside the chassis and much trouble is avoided. Furthermore, the layout may be simplified so as to enable the valves to be arranged direct in line and so provide easy replacement or examination. The second lesson, therefore, may be said to be compactness of layout, which, of course, is a tribute to modern component manufacture. Two years ago we could not have attempted to get a two-valve into the space this particular four-valve occupies.

A bookshelf plus a receiver. The upper portion of this Ferranti product houses the complete receiver, whilst the lower portion is designed to accommodate books. It proves a valuable accessory to stand beside the chair for an evening's recreation operated direct from the light mains. There was also a combined cocktail bar and receiver to be seen at Olympia, but this would only interest a few, although it serves to emphasize the fact that the designer is out to cater for everyone.

Car Radio

FINALLY we have the equipment which has been introduced to enable the owner of a car to enjoy a particular item of music or news whilst driving through the country. I cannot say that I agree with the idea of a driver

(Continued overleaf)
The latest version of the well-known Cossor Melody Maker. If you remember the original Melody Maker you will gather from this illustration how the art of receiver construction has advanced.

Of extremely small dimensions, this receiver is intended for operation in a car. The inset shows the small control which is fitted to the steering column. Page Car Radio are the makers of this item.

However, another twelve months will have passed by the time the next exhibition is due, and this will, perhaps, introduce apparatus that is as much unlike present-day equipment as is the 1920 receiver.
PILOT AUTHOR KITS
A.C. THREE

KIT "A" Author's Kit of First Specified parts, including Peto-Scott "Metaplex" chassis (less valves,
speaker and cabinet), Cash or C.O.D. Carriage Paid. Balance in 11 payments of 13/-

Balance in 11 payments of 13/-

KIT-BITS

Pete-Scott "Metaplex" chassis to specification, 13 x 12 x 4.5 in.

- 1 TELSEN Iron Core Tuning Coil, 176/8 oz.

- 10 K. C. (K. T. O'Sullivan) Type 22/6 Magnet, 22/6 oz.

- 1 BRITISH RADIOPHONIC Nato Transformer, Type J5.

- 1 Baby AMPLIFIER TRANSFORMER, Type 432 E.

- 1 Set of Specified Valves

- 1 PETO-SCOTT "Waxwell" Cabinet. Less Tunnels and Switches.

Balance in 11 payments of 13/-

A.C. THREE H.P. PARCEL

- Complete Kit with Valves, Cabinet and Speaker, Cash or C.O.D. Carriage Paid. Balance in 11 monthly payments of 5/-

F. J. CAMM'S SUPER-SET

KIT "A" Author's Kit of First Specified parts, including Peto-Scott "Metaplex" chassis (less valves and
cabinet), Cash or C.O.D. Carriage Paid. Balance in 11 payments of 14/9

- 1 Set of Valves

- 1 BRITISH RADIOPHONIC 3-prong Cond., with full vision scale, Type M04.

- 1 (LISEN) set of 3 Iron Cored Coils

- 1 VALLEY " Nucleol " L.F. Transformer

- 1 BULGIN Type " B " "CS" Control Box

- 1 PETO-SCOTT " Metaplex " Chassis

- 1 PETO-SCOTT " Luxor " Cab.

Balance in 11 payments of 14/9

ALL-WAVE TWO KIT "A"

Author's First Specified parts, including Peto-Scott "Metaplex" Chassis, Ready-
Drilled Panel, Valves, Cabinet and Speaker.

Balance in CASH of C.O.D. Carriage Paid. Balance in 11 payments of 7/-

- 1 Set of Specified Valves

- 1 Pair of TAMRINGTON Coil, type A.

- 1 S.W. with Coupler

- 1 BULGIN " Senator " L.F. Transformer

- 1 Loudspeaker, R. & A. Banfian

- PETO-SCOTT " Metaplex " Chassis (12 x 2 x 11)

Balance in 11 payments of 7/-

Exact to Specification

Dear Sirs, Please send me CASH/C.O.D./H.P.

for which I enclose £———.

NAME

ADDRESS

Tel. : Clerkenswold 9066/7

Dear Sirs, Please send me CASH/C.O.D./H.P.

for which I enclose £———.

NAME

ADDRESS

Tel. : Clerkenswold 9066/7

Dear Sirs, Please send me CASH/C.O.D./H.P.

for which I enclose £———.

NAME

ADDRESS

Tel. : Clerkenswold 9066/7

Dear Sirs, Please send me CASH/C.O.D./H.P.

for which I enclose £———.

NAME

ADDRESS

Tel. : Clerkenswold 9066/7

Dear Sirs, Please send me CASH/C.O.D./H.P.

for which I enclose £———.

Longer life
unwavering power
greater selectivity
from the

WIRELESS BATTERIES
MADE TO POWER
YOUR SET PRECISELY!

IF YOURS IS A BEETHOVEN PORT. S.G.4
you need Ever Ready Batteries — H.T./108 Pop; G.B./9 v. Winner; L.T./2178B. — all made specially for it. If not, simply ask your dealer for the Ever Ready List, showing all popular makes with their special Ever Ready batteries. Your set will be powered perfectly by its appropriate Ever Ready batteries.

THE EVER READY CO. (GREAT BRITAIN) LTD., HERCULES PLACE, HOLLOWAY, LONDON, N.7
Changing Over to Mains Operation

We are constantly receiving queries from readers who have a battery set and who wish to convert it for mains working; our advice is asked for in regard to the best method of procedure. On the face of things the question appears perfectly simple, but when the time comes to draft out a reply numerous difficulties crop up, especially if the querist has omitted to supply complete details of his set. In the first place, if it is desired to make the receiver suitable for "all-mains" operation, that is, to take high tension, low tension and grid bias from the mains supply, a complete re-design is almost invariably necessary. The reasons for this are too numerous to state in full, but the principal one is that A.C. valves of the indirectly-heated cathode type have different characteristics from those designed for battery operation. The former are considerably more efficient and give a much greater degree of amplification, and in consequence the circuit must be designed to deal effectively with the amplification afforded. This means that decoupling must be carried out with especial thoroughness if various forms of instability are to be avoided. Again, the mains valves consume more H.T. therefore the anode circuit components must be chosen to carry the heavier load. In addition, several precautions have to be taken to prevent mains hum, which can result from all kinds of unsuspected causes.

In writing this I do not wish to imply that all work is not worth while or that it is difficult to manage—if the set is properly designed for the purpose. It would not be quite impossible to supply a complete receiver design in the form of a reply to a query because, even though there are a number of more or less "standardized" arrangements, each one requires a certain amount of experiment before it can successfully be embodied in a broadcast set. If you wish to be independent of the charging station and are using a battery set the best thing is to obtain an eliminator fitted with a trickle charger. This will give a very satisfactory form of H.T. supply and will enable you to charge the L.T. accumulator overnight. Generally speaking, no alteration will be required to the set and the system is extremely economical, costing, in fact, only a few coppers per week.

D.C. Mains

Where the electric lighting mains are D.C. a trickle charger is unnecessary since the accumulator can be charged by connecting it in series with a lamp used for lighting purposes. This has been explained once or twice in previous issues of PRACTICAL WIRELESS. It is possible to obtain low tension from D.C. mains merely by connecting a suitable resistance in series with one mains lead, but this is neither a good nor economical method. As the valve filaments are all connected in parallel, should one burn out an excessive voltage will be applied to the others and this will probably impair their efficiency or entirely ruin them. And since the voltage actually required by the valves is only from 2 to 6 (according to the type of valves in use) there is a dead in the internal resistance of the battery. To translate this in terms of expense, and assuming the L.T. consumption is 5 A, it follows that the consumption of power will be .5 multiplied by the mains voltage. If the latter is 200 the number of watts used will be 100, or one-tenth of a unit, per hour. From this you can soon estimate the cost per week and you will find it to be well in excess of that for accumulator charging.

"Helping Out" the H.T. Battery

A SEMI-TECHNIQUE wireless friend was shocked when I recently suggested that he should connect a new 60-volt battery in series with his 120-volt one which was running down. "But surely," he remonstrated, "the old battery would soon ruin the new one." "Nothing of the kind," I replied. "If the batteries were connected in parallel the old one would certainly discharge the new one, but when they are in series, how could it?" He didn't quite know, but he thought I was wrong. In trying to prove to him that his ideas were entirely fallacious, I eventually succeeded in wringing out of him the confessions that I was now suggesting. When the old battery began to run down the set was subject to "motor-boating" and other signs of L.T. instability. So he connected another battery in series, but this had no effect on the motor-boating, and in consequence results were no better than with the old battery alone. I had to explain to my friend that the previous set had no decoupling in the anode circuits and therefore the high resistance of the old battery was the cause of instability. When a new battery was joined up, the high resistance remained, and thus the effect of the additional volt-drop was nullified. "But the set you are now using, like all other reasonably up-to-date sets, is properly decoupled and therefore the internal resistance of the battery can have no ill effect. In short, you can make your results just as good as when the battery was new, by putting another battery in series. When the old 120-volt battery is completely exhausted you can use the new 60-volt battery in conjunction with another similar one to maintain the high-tension voltage at 120."—Economy!

Specified or not specified...

Use Clix Contact Components to ensure highest efficiency from any receiver.

EASY TERMS

The very latest Radio sets, Loudspeakers, and Kits supplied on the lowest monthly terms. High delivery. No carriage or packing charges. Order List FREE.

New Llstrax TENNIS SET ALL-WAY 4 KIT, with Tuner. Cash price £7/2/6. Order price £7/6.—with meter £8/11/6. As above, but with Cabinet. Cash price £12/16/6 or £12/19/6. Assuredly the best 6,000 megacycle set on the market, and value.

Multitone Class A CONVERTER, with valve ready for plugging in to any set. Cash price £12/16/6 or £12/19/6. Assuredly the best 6,000 megacycle set on the market, and value.

Waterlake Traverse, W.C. 1.

PRACTICAL WIRELESS

September 16th, 1933

PANEL TERMINALS

Type B. with special Horizontal shoulder. 4d. for easy mounting. Type A - .

Non-Corrosive SPACED TERMINALS

Small 1d. Large 2d.

"MASTER" PLUG. 1d. 4d.

A "MASSIVE CONNECTION." Clix New Folder "N" gives details of over 35 components for Perfect Contact. Write for a copy now.

Lectro Linx Ltd., 79a, Rochester Row, S.W.1.
COLVERN LIMITED, MAWNEYS ROAD, ROMFORD, ESSEX

London Wholesale Depot: 150, King's Cross Road, London, W.C.1

"Universal" High Voltage Valves

THE ONLY ones which operate direct from
FULL MAINS VOLTAGE, either A.C. or D.C. without the use of transformers or resistances, and greatly reduce the cost of running your set.

Do not confuse these with valves which can only be wired in series.

"UNIVERSAL" KITS

Work from either A.C. or D.C. supply without alteration.

1-valve Set
2-valve Set
3-valve Set
3-valve Amplifier
4-valve Amplifier
All-electric Radiogram Complete

All prices include Valves, Rectifier and full size Blueprint.

EUGEN FORBAT
28-29, Southampton Street, Strand, W.C.2.

Full Details of a HOME-MADE ENLARGER

A. N. ordinary folding camera, a few oddments purchased here and there—a little home-made woodwork—are the components of the highly efficient but inexpensive enlarger described in the September issue. With it you can make enlargements of professional quality from your holiday negatives.

The HOME PHOTOGRAPHER and SNAPSHOTS 6d.
HOW YOUR RECEIVER WORKS—II

The second of a series of articles in which the author shows how a wireless signal passes through a receiver and explains in simple terms the function of each component.

This week the Action of the H.F. Amplifier is dealt with.

By FRANK PRESTON, F.R.A.

(Continued from page 917, Sept. 9 issue.)

In the first place, it is obvious that a current will flow through the low-resistance windings of coil 1, and this will cause the coil to become an electro-magnet having "lines of force" like those represented by broken lines in Fig. 3 (b). When the switch contacts are opened again the magnetic field created (and represented by the lines of force) will again transform itself into an electric current and the latter will flow through the coil in the same direction as the original current supplied by the battery. But where does the current flow to? It must go somewhere. It passes through the resistance to the condenser which it charges as shown at Fig. 3 (c). For a brief period the condenser stores the current and then feeds it back again to the coil through the resistance. Another magnetic field is built up round the coil, and this again causes a current to flow to the condenser. And thus the transference of current from coil to condenser and from condenser to coil could go on indefinitely were it not for the resistance which absorbs a certain amount of current at each transference.

Band-pass Tuning

It would obviously be very convenient if we could combine the advantages of the two circuits considered and, as a matter of fact, we can by employing what is known as a "band-pass" circuit. We cannot go very fully into the theory of the band-pass arrangement here, but it will be interesting to study it briefly in the light of our previously acquired knowledge. Essentially, a band-pass circuit consists of the arrangement of components shown in the diagram of Fig. 7. Instead of a single tuning coil and condenser, we have two of each, and these are connected together through a coupling condenser marked C. The current flowing round the first tuned circuit (marked A) causes a voltage to be set up across C, and this, in turn, drives a current round the circuit marked B. The current in B develops its own voltage across C, and this reacts on the original voltage and so changes the current in circuit A. The whole theory regarding the action and reaction of the two circuits is somewhat involved, and we will not consider it in detail. The net result, however, is represented by curve "C" in Fig. 6, which is seen to have two "humps" in place of the single one of curves "A" and "B." The humps are so close together and the dip between them so slight, that we get virtually an even response to a band of frequencies which extends for some distance on each side of the carrier wave. By altering the capacity of the coupling condenser the distance between the "humps," and consequently the band of frequencies to which the circuit gives maximum response, can be varied within certain limits and therefore the degree of selectivity is under full control. When buying a pair of band pass coils the makers advise us of what capacity the coupling condenser should have, and thus there is no necessity for any difficult calculation on our part.

The band pass circuit we have dealt with is one of many types, and is referred to as a "capacity" filter since the two circuits are coupled together through the medium of a condenser. This system, although frequently used, suffers a serious disadvantage, because the voltage across the coupling condenser is not constant, but varies with the frequency of the signal being received. Actually, the voltage becomes greater as the frequency is reduced (wave-length increased), and therefore the transference of current from circuit "A" to "B" is increased. For this reason the "band-width" varies with the wave-length of the received signal. Fig. 7, by introducing another form of coupling between the two circuits which varies in the opposite manner it is possible to obtain a constant band-width irrespective of wave-length. This other kind of coupling takes the form of two small windings, one of which is placed near to each of the tuning coils. The windings are cross-connected as shown in the sketch of Fig. 8, so that current can flow between them. Each coupling winding "picks up" a small amount of current from its associated coil, and...
HOW YOUR RECEIVER WORKS
(Continued from previous page)

passes on to the other. The transference of current is greater at high than at low frequencies and so counter-balances the opposite effect of the coupling condenser and produces no noticeable band-width. A circuit of the kind shown in Fig. 8 is known as an "inductance-capacity," or "link circuit" band-pass filter.

We have now obtained a fairly clear idea of what happens in the circuit "band-pass filter." We know that the oscillating voltage which is impressed across the condenser on the amplifier or rectifying valve which follows.

It has been seen how the serial circuit is tuned in order to obtain a maximum voltage of signal current between the "emis" of the tuner, and we must now consider how that voltage can most profitably be employed to operate the rest of the receiver. If it is already fairly large it might be "rectified" immediately to separate the high and low frequencies so that the latter may be converted into sound again.

On the other hand, it might be considered necessary to "amplify," or increase the result of the rectification. In almost every case it is desirable to use at least one stage of amplification comprising a screened grid or variable-mu valve, so we will first examine the function of this.

The Action of an H.F. Amplifying Valve

Any type of valve consists essentially of a filament (or cathode), a grid and a plate (or anode), and although S.G. and V.-M. valves have a second grid in addition, we can overlook this for the moment. The three essential electrodes of the amplifying valve are connected as shown in the circuit of Fig. 9. It is seen that the filament is heated by a battery; a source of high tension is connected between one side of the filament and the anode, the latter electrode being joined to the positive H.T. terminal; the tuning circuit, across which the oscillating voltage develops, is connected between the grid and filament; a resistance (R) is shown as being joined between the anode and high-tension positive, but as this does not affect the functioning of the valve it can be ignored until we reach a later stage.

Let us first consider what happens before a signal is tuned in. Essentially a current flows from the high-tension supply by way of the filament to the anode, just as if the valve were an ordinary resistance; the positive potential on the anode attracts the negative potential on the filament. This action is often explained by saying that the filament emits "electrons," which, according to existing theories, might be called (most unscientifically, I agree) particles of negative electricity. I think that we shall obtain a better impression of what actually happens, however, if we merely say that current flows through the valve from the filament to the anode. The density of the current depends entirely upon the voltage of the high-tension supply.

Fig. 7.—This diagram shows the functioning of a "capacity coupled" band-pass circuit.

And now suppose a signal is tuned in—an oscillating voltage will at once be applied between the grid and filament so that the grid will receive a potential constantly varying between positive and negative with the frequency of the carrier wave, and changing in amplitude at the frequency of the impressed modulation. As the grid is situated between the filament and anode in the valve its potential will affect the amount of current flowing from the filament to a much greater extent than will the anode potential. If the grid is negative it will attract current from the filament and when negative it will tend to repel the current. Current will not actually flow to the grid, but since it is of open mesh will pass straight through to the anode, which is of much higher positive potential. The action of the grid will be more easily understood by considering the three circuits of Fig. 10. (a) shows the grid at zero potential, and the current passing from the filament to the anode is represented by small arrows; (b) shows the increase in current as the grid becomes positive, whilst (c) shows how the current is reduced when the grid is made negative. From this brief explanation it will be understood that the varying grid potential causes the filament-anode current to fluctuate. This current fluctuation results in the formation of a fluctuating voltage which appears across the ends of resistance R.

The latter voltage is appreciably greater than the grid potential, and so the grid and anode potentials which are used between the first and second valves.

At this point it will be helpful to give a little attention to the property of an amplifying valve known as "mutual conductance," or, less scientifically as "slope." Mutual conductance is the ratio of the change in anode current to the change in grid potential causing it.

Thus a valve having a high value of M.C. will give a high degree of amplification, and vice versa. It is for this reason that a valve of high slope must always be chosen for the H.F. stage when maximum "stage gain" is required.

The S.G. Valve

The action we have considered is that of a three-electrode (often referred to as an "ordinary") high-frequency valve, so we must next see what is the function of the fourth electrode used in a valve of the more popular screened grid type. It was mentioned that the additional electrode is another grid and it is situated between the first (or control) grid and the anode. This "screening grid," as it is called, is connected to a positive terminal on the H.T. supply and also through a fixed condenser to H.T. negative, as shown in Fig. 11.

In the case of a three-electrode valve there is a certain amount of capacity between the grid and anode due to their close proximity, and as the two electrodes are at different potentials some current is liable to pass back from the anode to the grid across that capacity. If current did pass back the negative anode would oversignal.

A pair of commercial band-pass tuners. (To be continued)
SHORT-WAVE DIODE DETECTION
Its Advantages in Ultra Short-Wave Circuits.

By ERIC JOHNSON

The most popular of all short-wave circuits is still undoubtedly the straight detector, plus one or more stages of amplification. It is true that a screen-grid stage is becoming increasingly common, but the inherent simplicity of the "det. and note-mag." commends itself to newcomer and experienced alike. The efficiency of such a receiver depends almost entirely on the detector—more particularly the control of reaction. Before proceeding further, let us examine the essential adjustments of a short-wave set to achieve this end.

The circuit shown in Fig. 1 is quite conventional. Easy and silky control of reaction depends largely on a correct choice of component values; there must be no signs of "plop" or "backlash," as the full amplification of the detector can only be obtained when the valve is capable of being adjusted to the very verge of oscillation without actually slipping over.

Firstly, it will be obvious that the reaction condenser must not be unduly large, otherwise a small adjustment will mean a big change in feed-back, making it extremely difficult to work the receiver in the hyper-sensitive state so necessary for success; for this reason a value of .0001 mfd. should not be exceeded. More important than this is the correct adjustment of grid-potential. It is customary to return the grid lead to L.T. positive, although this invariably gives the best sensitivity; it is seldom that reaction is smooth. On the other hand, the valve usually goes into oscillation with ideal smoothness when the grid return lead goes to L.T. negative. Obviously there will be a useful compromise between the two positions; thus it is that a potentiometer is usually employed to adjust the grid-potential at a small positive bias only. In the same way it will be found that a detector oscillates far more smoothly with a much lower value of H.T. than is usually the optimum for sensitivity. Modern detector valves often acquire themselves far better with a fairly high H.T. voltage, perhaps as much as 100 volts or more.

Contrasted with this we find that best reaction control may be obtained with as low as 20-30 volts, although, of course, sensitivity will be very much decreased. Any arrangement which would separate the dual functions of the detector valve and allow of the optimum adjustment of each would, therefore, seem a solution. Happily, such a solution is offered by the diode detector shown in Fig. 2.

More Lively Reaction

We are not now concerned with amplification, as the diode does not amplify at all, except, of course, by virtue of reaction. This being so, we can reduce the anode voltage as much as we like without affecting the sensitivity of the circuit. If the valve is of high mutual conductance we may even be able to work it at 20 volts or less, a condition ideal for smooth oscillation. The first L.F. stage, which deputizes for the usual amplifying properties of the triode detector, may be adjusted for maximum amplification, i.e., high anode voltage, without affecting reaction control, as would happen in the normal leaky-grid detector. There are also several other advantages of the diode, perhaps not so noticeable in short-wave reception, but nevertheless worthy of mention. In the first place, it is virtually impossible to overload it; this virtue will hardly be obvious on a short-wave set, but bearing in mind that many listeners use the same set for broadcast also, it is quite a useful adjunct. Secondly, owing to the entire absence of grid-current, there is little or no loading on the preceding tuned circuit. This is borne out in practice by the very real increase in selectivity, although, once again, this is an advantage not appreciated on the short waves. A natural corollary of the very light damping, however, is the tendency to make reaction more lively. It would appear, therefore, that diode detection offers an attraction on ultra short waves. An objection often levelled against the diode is naturally the necessity for another valve. The condition under which it operates, however, means a very low anode current, so objection can hardly be raised on this score.
ABOUT "L"-TYPE AERIALS

By "GRID LEAK"

THE directional property of an aerial is an important matter in radio reception. Any antenna having a horizontal component must be set, trying this and that without material advantage. They are perfectly satisfied with the aerial and earth system. In their estimation it could not be better and it is the last place they would look to help them out of their difficulty. Yet, if they would only try a new aerial, placed at right angles to the interfering station they would find a marked difference in the set's selective properties. For this purpose, the inverted "L" type of aerial is the best all-round for broadcast reception. It requires the least wire and supports. About 70 feet of wire serves excellently, this length including the lead-in. The earth lead should be as short as possible. The lead-in is important.

Run it as direct and straight as is feasible, being insulated from lead-in tube to the set. The diagrams give a good idea of the three best aerials for broadcast reception.

It is obvious, however, that in many gardens it is not possible to erect an aerial of the most suitable type for the particular situation, and therefore some scheme must be devised where the aerial which is erected acts in the most efficient manner. Thus, the Inverted L type may require to be erected across a garden in order to avoid troubles due to the signals from the local station being overpoweringly strong. In any case it is well worth while trying various arrangements before definitely settling upon the final arrangement and where the utmost efficiency is desired it may prove worth while to erect an aerial which is perhaps unsightly from some points of view.

Y+Z LEAD 70 FEET (Y=4 to 10 WIRES IN PARALLEL) directionaL. Transmitting stations which are in line with it will be heard at much stronger signal strength than those at right angles to the horizontal stretch.

This brings a very interesting point to view. Thousands of my readers are up against the trespassing of stations over a great portion of the tuning dial to the detriment of reception from other stations. Time, money, and patience have been spent on the
A Simple Explanation of its Chief Causes.

THE question has recently been raised as to why fading affects to a serious extent the communication between different stations quite consistently near stations whilst it may not be equally affecting stations at very considerable distances.

Throw a small pebble into a pond of still water; waves will spread out at regular intervals from the spot where the pebble entered. Next, throw a large stone into the pond: again waves will be formed on the surface of the water, but these waves will be bigger and more powerful and with greater distance from crest to crest. Roughly speaking, the waves produced by the small pebble and by the large stone correspond respectively to the waves and to the long waves. (It should always be remembered that the water wave analogy is only a diagrammatic one, representative of extremely rapid alternations of electric and magnetic forces moving through the ether at a speed of 186,000 miles a second.)

Now for another experiment. When the surface of the pond is ruffled by wind, throw a small pebble into the water with all the force you can muster. If we were to follow the waves now you will find that before travelling far they are so buffeted as to be practically negligible. Now throw a large stone into the water: the waves produced will seem to ride over the ruffled surface, and will certainly travel much farther than the waves made by the small pebble. "How does this correspond in the case of wireless waves?" one may ask. Well, as I pointed out, the waves correspond in a measure to wireless waves, and if this be so we should expect (in this case the probability of disturbance being ever present) that long waves would travel farther than short waves. This is substantially true so long as the waves travel near to the surface of the earth; and the waves we receive in bright daylight have done so. (I am referring particularly to waves between 200 and 2,000 metres in length.) However, wireless waves possess a characteristic which we could hardly suspect from the analogy of water waves. The shorter the wavelength, the greater is the tendency for the waves to "shoot" outwards at an angle off the earth, as well as attempting to follow its curvature. Now, it has been established that surrounding the earth there are a number of layers, and therefore their surfaces, which are continually in movement, and which under favourable conditions can reflect wireless waves. The layer with which we are particularly concerned in this article is known as the 'F layer', and is situated about sixty miles from the earth's surface.

Absence of Sufficient Reflection

Think for a moment, of standing on a large domed surface of so irregular a nature as to prevent a ball rolling over it, and with a dome roof above your head. You have been ordered to throw a rubber ball to a part of the domed surface about fifty yards away, and out of sight. The most satisfactory way would be to throw the ball at the domed roof, so that it would be reflected to the place you wanted it to go. This reflection to get round a curve is similar to what has happened when we receive a far-distant station. We should have been unable to receive anything if we had only the ground waves. Absence of sufficient reflection is the reason why it is almost impossible to receive Daventry on the long wave.

When we say conditions are favourable we mean (apart from absence of atmospheres) that the reflection on which we rely is occurring definitely and, that the wireless waves are not encountering serious disturbance similar in effect to the reflected water. On ordinary medium waves (between 200 and 600 metres) this reflection will only occur when darkness is falling, or has fallen, and the reasons for conditions being far more favourable at night than in the daytime. "Yes," you may say, "but you set out to explain why fading affects some stations more than others, and apart from showing that high waves will give less fading than short waves, you have not shown why Rome may not fade when, say, the Scottish stations, when received in the Midlands, is fading very seriously. In fact, I am coming to that point. Think of the case of any station receivable by both the waves travelling near the ground, and by the waves travelling through space to be reflected to the receiver, both waves being, at the place of arrival, about equal in strength.

Ground and Indirect Waves

Now try to get a picture of two waves trying to combine; with the aid of a memory of the pond experiments it should be fairly easy. Imagine one wave travelling along the surface, and another wave of similar size travelling to combine itself with the original wave. If both the waves were humped in the same direction at the same depth of double the depth of one wave would obviously be produced. But if one wave were inverted (i.e. 180 degrees phase difference in respect to the other), each would be cancelled out. So it is with the ground wave and the indirect wave. Obviously any degree of partial cancellation or addition can occur in practice from the above cause, and also due to the relative strengths of the two waves. This last factor is largely controlled by the distance from a station, and the wavelength of the transmitter: consequently for a given wavelength the fading will be most marked at one particular distance.

Summing up: if a station is at such a distance as to be receivable by the ground wave and the indirect wave at approximately equal strength, very pronounced fading is likely to occur. If so far away that the ground wave is practically unreceivable, fading of a very severe kind is much less likely, for big disturbances are needed to completely absorb the waves. But to receive with absolute surety we must be situated at such a distance from a station that the ground waves are always strong, and the indirect waves always weak.

NEW LISEN KITS

Free constructional short with each Kit.

NEW SKYSCRAPER 7-VALVE SUPER 15/-

NEW SUPER-HET CONSOLE MODEL 21/-

NEW LISSEN SKYSCRAPER T-VALVE 15/-

NEW R S C A CLASS B PERMANENT MAGNET MOVING-COIL SPEAKER 10/6

NEW BLUE SPOT MP32A 6/-

NEW BLEND COIL R-F TRANSFORMER 5/6

NEW 4 KIT AMPLIFIER 15/-

NEW LISSEN KITS

1934 TELSEN KITS

TELSEN CLASS "B" & "K" 7/-

TELSEN CLASS "A" & "B" 5/-

TELSEN SUPER-SELECTIVE 10/-

TELSEN ALL-WAVE CONSOLETTE 15/-

TELSEN 325 STAR KIT 9/-

NEW R S C A CLASS B PERMANENT MAGNET MOVING-COIL SPEAKER 15/-

NEW BLUE SPOT TRANSFORMER 5/-

NEW BLEND SPOT 325 TYPE 6/-

NEW BLEND SPOT 325 TYPE 5/-

NEW BLEND SPOT 325 TYPE 5/-
PRACTICAL WIRELESS

September 16th, 1933

A NEW PEAK GUARANTEED CONDENSER

The C.B.7 makes another addition to the fine range of Peak condensers. Discriminating designers and constructors specify and use Peak for preference.

Type C.B.7

Tested 1,500 V.D.C. working voltage 500 V.D.C.

<table>
<thead>
<tr>
<th>Value</th>
<th>mfd</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>4/6</td>
<td>6/6</td>
</tr>
<tr>
<td>2.0</td>
<td>4/6</td>
<td>6/6</td>
</tr>
<tr>
<td>2.0</td>
<td>4/6</td>
<td>6/6</td>
</tr>
<tr>
<td>5.0</td>
<td>4/6</td>
<td>6/6</td>
</tr>
</tbody>
</table>

British Made

CONDENsERS

Peak Condensers are fully guaranteed. New Illustrated Price List "N" now ready. Free on request.

"Phone: Central 6581.

The Best Between Aerial and Earth

The Editor of "Practical Wireless" said:

"In actual use in standard receivers, the valves were altogether very good... Although these valves are cheap they may be HIGHLY RECOMMENDED!"

As a happy and efficient combination for a three-valve set we suggest the first three valves listed:

SG 210 10/6
P 220 6/6
L 210 6/6
H 210 4/6
D 210 6/6
B 220 10/6

For details of the full range of HIVAC Valves, write for "HIVAC Valve Guide C".

It puts you right when choosing the valves to suit your set.

HIVAC valves are British Made in our own factories. Obtainable from all dealers. If you are a P.O. and address of nearest dealer.

LOW

IN my earlier article I described sound generally. In this one I want to tell you something about our ears and their peculiarities. In some ways they are most accommodating but in others they are disconcerting in their sensitivity. It would be well to first describe briefly how they work. Fig. 1 is a rough section of the ear.

Air waves impinge on the stretched tympanum or eardrum T, whose motion is transmitted by a chain of bones, which reduces their amplitude to two-thirds, to the membrane covering an oval window O. Here the force is intensified by about seventy times and this force is able to disturb the liquid filling the "cochlea," a snail-shell-like cavity C. (It is shown unrolled in the sketch.) B is the basilar membrane which takes up the vibrations of the liquid and transmits them to the brain. So sensitive is this arrangement that it is estimated that the weight of a single transverse slice of human hair 1/1,000 in. thick (that is, the thickness of a cigarette paper), if applied to the eardrum a thousand times a second will produce the sensation of sound. That in itself is fine, but we come up against a difficulty now in that the ear has not the same sensitivity over the whole band of audio-frequencies. Fig. 2 will help you to understand my meaning. These curves relate to the hearing of a normal person. The lower one is called the "Threshold of Audibility," and any frequencies and pressure variations coming below it would be inaudible. Thus if we had a pressure of 0.001 dyne/cm² at a frequency of 100 cycles it could not be heard. (A force of 1 lb. weight is equal to about 450,000 dynes, so that a dyne is a very small unit of force.)

The upper limit is known as the "Threshold of Feeling." Thus, if we have sounds of such intensity and frequency that they lie above the curve, then those sounds are actually felt as pain. So we see that the response of the human ear depends on two things—the acoustic air pressure and the pitch or frequency.

Variation in Sensitivity

To illustrate the very big variation in sensitivity, let us further consider the graph. You will see that a tone of 1,000 cycles/sec. frequency can be quite comfortably heard with a pressure of only 0.001 dynes per square centimetre, but to get the same loudness at 100 cycles per second we require a pressure of 0.1 dynes per square centimetre—a pressure 100 times as great. And again, if the power imparted to the surrounding air by the vibrating diaphragm of a loud-speaker is doubled, then the increase of volume as perceived by the ear is only just appreciable and not doubled as one might expect. Hence it is apparent that another

(Continued on page 970)
I can very well remember a certain four-valve wireless receiver which I constructed in the very early 'twenties. It was a desk-shaped affair, and the four bright emitter valves projected at an angle near the top of the panel, while the flat top of the cabinet supported a weird array of swinging coil holders. Serried ranks of knobs were arranged with military precision beneath the valves, and altogether there were no fewer than eighteen controls, distributed as follows:

Three main tuning condensers—one in series and one in parallel with the aerial coil, and one for the high-frequency coupling.

Three "vernier" condensers, one associated with each of the above for fine adjustment.

Two coil adjustments—one for varying the aerial coupling and one for reaction.

Four filament rheostats.

A filament switch.

A switch for cutting out one of the two low-frequency stages.

Four variable grid leaks or resistances in the resistance capacity couplings.

With all this paraphernalia it was possible to receive some half dozen or so stations at good headphone strength, and to operate a diminutive loud-speaker on about two programmes, and this was regarded as a good achievement.

Gradual Development

A year or so later I constructed a still more ambitious set, having five valves—two neutralized high-frequency valve stages, a detector valve and two low-frequency valves. In spite of the fact that by this time slow-motion drives and improved design had rendered the use of vernier condensers unnecessary, and that increased knowledge of circuit conditions had led to the disuse of variable anode resistances and grid leaks, the new set had quite as many controls. There were three tuning condensers—two neutralized high-frequency valve stages, a neutralizing condenser, five filament rheostats, three separate wave change switches, filament switch and a switch for changing over from headphones to loud-speaker.

The performance of the set was considered extremely fine. At least two dozen stations were receivable on "phones", and about six at good loud-speaker strength on favourable evenings. But how different to the modern four- or five-valve set, such as the "Fury Four," which, under infinitely more trying conditions, will give a much larger selection of programmes with considerably better volume and quality, yet has no more knobs than can be counted on the fingers of one hand.

To give the reader a fair idea of what is meant by multi-knob sets he is referred to Figs. 1 and 2. Although of an experimental character and of more recent date than the designs referred to, they indicate the multiplicity of controls, which modern technique has abolished except for very special purposes.

Fig. 1.—A really good example of a multi-knob set for experimental purposes.

Fig. 2.—Another case of a multi-knob affair used by a radio enthusiast.

Fig. 3.—Several condenser adjustments are necessary in this intermediate control panel.

It is interesting to note the gradual developments which have made possible the reduction of the number of essential knobs on the set of to-day. First, I think, must rank the improved uniformity in the construction of valves so that a two-volt valve, for example, can be obtained from a two-volt accumulator without the use of a filament regulating resistance. The old bright emitter valves, and even the early dull emitters, required somewhat critical adjustment of the filament current for best results, particularly in the detector stage.

Variable Condensers

Next in order comes the vast improvements in the design and manufacture of variable condensers. The earliest types, with semi-circular vanes, had no particular frequency characteristics, were often hand assembled, frequently by the constructor himself, the spacing of the vanes was seldom uniform, and the ordinary direct-connected dial gave no opportunity for fine adjustment. A small two-vaned "vernier" condenser was therefore necessary, in parallel with each main condenser to give accurate tuning, and, of course, with condensers varying so much between themselves, "ganging" was quite impossible. In Fig. 3 we have shown an example of several controls in the case of tuning condensers, but this unit is an intermediary link at the transmitting end, and in consequence need not worry the listener.

Further reductions in the number of variable condensers required in a receiver came with the introduction of the screened-grid valve, for the inter-electrode capacity of valves of this type is so small that there is no longer any need to balance it out themselves, the spacing of the vanes was seldom uniform, and the ordinary direct-connected dial gave no opportunity for fine adjustment. A small two-vaned "vernier" condenser was therefore necessary, in parallel with each main condenser to give accurate tuning, and, of course, with condensers varying so much between themselves, "ganging" was quite impossible. In Fig. 3 we have shown an example of several controls in the case of tuning condensers, but this unit is an intermediary link at the transmitting end, and in consequence need not worry the listener.

Better knowledge of the requirements of detector and resistance capacity circuits has brought about also a decrease in the number of adjustable components. It is now possible, thanks to valves of uniform characteristics, and to a fuller technical appreciation of their capabilities, to design circuits with fixed values of anode resistances, grid leaks and so forth, thus eliminating from one to four knobs in the average set. Modern receivers also use sets of coils or coil kits, so designed that wave-changing can be performed by a single knob—either by using a single switch or by gagning several switches on one spindle.

Simplicity

It is true that the more general use of the gramophone pick-up and volume control, and also the need for variable grid-leak to valves of the variable type, have necessitated one or two extra

(Continued on opposite page)
PRACTICAL WIRELESS

(Continued from previous page)

knobs which are found on the older receivers, but on balance the number of operating controls on a modern receiver are at least only one quarter as numerous as on sets of five years ago.

Probably the most important factor in the "fewer knobs" movement, however, is the growing desire of the average listener for greater simplicity in his receiver.

In the early days when programmes were much less satisfactory than to-day, and radio was a great novelty, experiment and knob twiddling was rampant.

To-day, however, although amateurs are as keen as ever, the programme is essentially the thing, and the average listener wants to secure a reasonable choice of programme with good quality and the minimum of technical complication, and then to sit down and listen.

How Many?

What, then, can we consider as the desirable number of knobs on a modern receiver? The answer depends upon several factors. In the first place, the number of essential knobs depends upon the type of set—how many valves it contains and the performance it is required to give.

Let us consider, first of all, battery receivers. The simplest is the two- or three-valve detector and low-frequency set. Here the number of essential controls is three only—tuning condenser, reaction condenser, and battery switch. A fourth, a wave-change switch, must be added if both long and medium wave stations are to be received. Other non-essential but useful controls are: a selectivity device, consisting of either a variable aerial coupling or a semi-variable aerial condenser in the aerial lead and a gramophone pick-up switch with volume control.

For a three-valve battery set employing one high-frequency stage no addition to the above number of controls is necessary. The two tuned circuits (or three if band pass filter is used) can be tuned by ganged condensers; there is the usual reaction condenser, a filament switch, and a wave-change switch, the latter being well worth while, because modern coils all incorporate dual wave range and the long-wave stations have very high programme value.

If you are situated fairly close to the local station it is worth while to use a variable-mu valve in the high-frequency stage, and then a potentiometer for varying the bias, to this valve will have to be fitted. Then, if you are using a pentode valve in the output stage, it is wise to fit a combined protective and tone-control circuit across the output. This consists of a small fixed condenser and variable resistance, and is for the purpose of avoiding the destructive voltage rises if the loud-speaker should accidentally be disconnected. In addition, by varying the resistance some of the higher tones can be reduced in order to give a more sonorous reproduction.

In a four- or five-valve, with two high-frequency stages, an actual reduction in the number of knobs can be made, for, if the set is well designed, reaction will be quite unnecessary. On the other hand, with a set of this type variable-mu valves are practically essential, so that the necessary grid bias potentiometers must be included.

Mains sets are even simpler than battery receivers in the matter of knobs, for no filament switch is actually necessary. The mains switch for a set of this type need not be fitted on the set itself, for it is usually included on the wall plug.

Acknowledged

The World's

Best

The most popular and efficient type of fixed resistance for all general purposes.

"Better than wire wound."

All values 50 ohms to 5 megohms.

100 deg. F. Temperature rise
Ohms Milliamps Ohms Milliamps
1,000 40 30,000 6.75
2,000 35 40,000 6
3,000 29 100,000 3.5
20,000 8 Other values see notes

Heavy Duty type, approximately double the above ratings.

Ohmite Resistances

1/6 Each

Heavy Duty Type 2/3

Ensure a safe and efficient Aerial and Earth. The new Aerogicient Kit provides all you need. 6/6 complete.

Send for copy of New Catalogue which describes all our products.

Graham Farish Products

Advertisement of Graham Farish, Ltd., Bromley, Kent.

Export Office: 11/12, Fenchurch St., E.C.3.
BELLING-LEE
FOR EVERY RADIO CONNECTION

Write for Booklet, "Radio Connections."

BELLING & LEE LTD
CAMBRIDGE ARMS SCAFF, WIDNES

FOR EVERY RADIO CONNECTION
FLUXITE
-in the house-garage-workshop-anywhere
See that Fluxite and Solder are always by you
Famous for Soldering-

leaflet on HARDENING STEEL with Fluxite.
full instructions -7s. 6d.
Is. 4d., and Is. 8d. Ask to see the FLUXITE

IT SIMPLIFIES
known everywhere

The voltage simple matter to wire which makes
directly all of which are pro-

duction to the normal broadcast
short-wave bands in addi-

majority of these valves is 20, although two special
valves have a 40-volt heater. Amongst this range is
included a special M.F. Pen/Det. frequency changer
and a Variable M.F. Pen. In the aerial terminal on
this unit the black wire is connected to the aerial
terminal instead of the black one, the
connection from aerial to receiver is through the
aerial terminal and has no effect whatever on the per-
formance.

The new Osram B.21 Class B valve differs from the
ordinary Class B valves in two ways-first, it works on a combination of Q.P.-P. and
positive grid drive, that is to say, it combines the
advantages of both systems and overcomes many of
the disadvantages hitherto associated with each of them. Most listeners have noticed that when using Class 14
valves and rely upon

The latest
TUNGSRAM UNIVERSAL Valve

The construction of a Universal receiver—that is, one
which may be used indiscriminately on
either D.C. or A.C.

The device is then simply an extension
single black end is joined to the aerial lead-in, and the other end
of the aerial and has no effect whatever on the per-
formance.

By THE PRACTICAL WIRELESS TECHNICAL STAFF

NEW CLASS B VALVE

A new type of Class B valve is announced by the
Oxram factory, and this is outstanding in two ways:
first, it works on a combination of Q.P.-P. and
positive grid drive, that is to say, it combines the
advantages of both systems. The latest model of the
Electron Varial which consists of two lengths of the well-
known wire is joined to the aerial terminal on
the set. The device is then simply an extension
of the aerial and has no effect whatever on the per-
formance. When, however, the red wire is joined to
the aerial terminal instead of the black one, the
connection from aerial to receiver is through the
capacity which exists between the two twisted wires and this may be varied by sliding the moulded portion
along and so varying the aerial. Any degree of
selectivity may thus be obtained instantly and the
adjustment made according to the conditions pre-
vailing at any moment. The cost is Is. 6d.

The new B.21 Class B valve differs from the
ordinary Class B valves in that it works with a
small negative grid bias. This is because it has been
found that by making the valve in such a way the
impedance of the associated circuits can be reduced
and the tendency to induce surges of noise (which is the cause of distortion) avoided.

A second point of outstanding interest in the B.21 is the fact that each of the two sections is in itself
designed with a double grid. These two grids are internally connected so that there is no added com-
pliment to the user, but it has been established that
by using the double grid system a better ratio of power
output to input is obtained; in other words, such a
valve will give a better performance without necessarily for a very large power driver stage. In
addition to these two points, the total distortion content for the two sections of the B.21 is only 0.2 amp., and
an entirely new form of both has been employed, giving an extremely small and neat appearance.

A GREAT SURPRISE BIRTHDAY OFFER NEXT WEEK!
"Helping Him Out"

Sir,—I must ask you to forgive me for not writing before, but I feel it my duty to thank you for the "Wireless Encyclopedia." I have received it, of course, I believe it is very invaluable to new beginners. It explains things so simple, especially with such a "Shorthand of Wireless" in the beginning of the book. It is a book to be proud of.

A weekly paper, PRACTICAL WIRELESS. There are many useful hints to be obtained from it. It makes a novice feel that he has someone behind him, and if he experiences any difficulty he can easily have it explained by your "Technical Staff," through the pages of Queries and Enquiries.

Trust that PRACTICAL WIRELESS will carry on helping its readers in all wireless matters.—W. A. Fier (Rhondda).

An Annual ?

Sir,—I do not know if you intend to bring out an "Encyclopedia" this year; but I suggest you do something on similar lines. Why not an Annual which would deal with the events of the preceding year, giving details and the pros and cons of the different developments that have been introduced? Standing matter, such as Ohm's Law, etc., could, of course, be omitted, as we have this already.

The advice and information by your experts in such a publication would be invaluable to any one behind; and judging the performance of a wireless set by its beautifully pleasing tone arm and V.C. knob, plus feather-weighting, etc., the needle-scratch was awful! Tell me, Mr. Editor, when shall we have men on the "Stands" who know all about the things they are selling, even if they have a bit of dirt on their hands, or broken finger nails (and how those workmen would work, study and fight, for the chance to go to the Show to tell the world about the article they had made with their own hands, instead of what we have now—comfy chairs, cigarettes, and the latest jokes).

Let's have the audition rooms back; and the Broadcasting House with the B.B.C. and their Shows.—E. Crook (Beckenham).

CUT THIS OUT EACH WEEK

DO YOU KNOW?

—THAT there are a large number of various valve types on the American market which are, unfortunately, not obtainable in this country.
—THAT many of these valves render the construction of highly efficient receivers extremely simple.
—THAT a convertible triode-pentode for battery operation is only one of the valves above referred to.
—THAT higher efficiency is now being obtained in practically every component of the home-constructed set.
—THAT the self-induction of an H.F. choke plays a great part in its functioning.
—THAT some new developments in aerial-earth systems may be expected this season.
—THAT a mechanism war-change colour signal may now be obtained for fitting to existing lighting circuits.

That this device shows a definite advantage of a different coloured pilot light for each wave-band.

That troublesome hum in a mains operated gramophone may often be traced to interaction between a pick-up and a synchronous motor.

That the pick-up should be moved about with the gramophone switched on, to ascertain whether the above cause is responsible for hum.

The Editor will be pleased to consider articles of practical nature available for publication in PRACTICAL WIRELESS. Such articles should be written on one side only and should contain the name and address of the sender. Whilst the Editor does not hold himself responsible for microscripts, every effort will be made to return them if a stamped and addressed envelope is enclosed. All correspondence intended for the Editor should be addressed to The Editor, PRACTICAL WIRELESS, Geo. Naessén, Ltd., 8-11, Southport Street, Strand, W.C.2.

Mr. F. J. CAMM chooses THE BEST

RADIO EXHIBITION

The Editor will be pleased to consider articles of practical nature available for publication in PRACTICAL WIRELESS. Such articles should be written on one side only and should contain the name and address of the sender. Whilst the Editor does not hold himself responsible for microscripts, every effort will be made to return them if a stamped and addressed envelope is enclosed. All correspondence intended for the Editor should be addressed to The Editor, PRACTICAL WIRELESS, Geo. Naessén, Ltd., 8-11, Southport Street, Strand, W.C.2. Owing to the rapid progress in the design of wireless receivers and to our efforts to keep our readers in touch with the latest developments, we give no warranty that apparatus described in our columns is not the subject of letters patent.
PRACTICAL WIRELESS

PRACTICAL LETTERS

(Continued from page 965)

Our Weekly Problem

Sun.—I want to thank you very much for the book that I have received from you as my prize in connection with Problem 46. It is a very nice gift, and I am quite pleased with it. I think that the problem is an interesting competition, and look forward to it every week.—C. McKENNA (Liverpool).

Our Exhibition Numbers

Sun.—May I congratulate you on the excellent Exhibition Numbers you have just published? Though unable to visit Olympia this year your two issues have made me feel as though I had been there. I always look forward to PRACTICAL WIRELESS, it always being packed with such useful information. All best wishes for the future.—G. WILBOURNE (Deftord).

Our Technical Staff at the Show

Sun.—May I ask you to accept, on behalf of yourself and your staff, my many thanks and appreciation of the untiring and valuable advice tendered to me at the Radio Show? That you and your very excellent paper page no doubt enjoyed a great deal of success and professional interest, as it richly deserves, is the very sincere and earnest wish of ROBERT A. KEMP (Muswell Hill, N.)

A Typographical Treat—Not Tripe!

Sun.—In the hope that my opinion interests you, I am sending it to you. The proportion of the different items is about right. I would urge that you keep that "freshness" that all the practical articles have. It is a treat to read articles by your staff. Their staff is not journalism turned out by the yard.—R. PUNZI (Birmingham).

SOUND AND THE EAR

(Continued from page 965)

unit of comparison is necessary in addition to the pressure one of "dynes per square centimetre," and we have this in the well-known "decibel." The "decibel" scale shows to the eye what the ear will appreciate. The increase in intensity necessary to double the loudness of a note represents an addition of three decibels, while a gain of one decibel represents the minimum increase in loudness capable of being recognised by the trained ear.

Let us study Fig. 2 again.

Auditory Sensation Area

We see that normal hearing is between 20 and 20,000 cycles (although many people cannot hear higher than 16,000 cycles), and that the pressure varies between 0.0005 dynes per square centimetre and 5,000 dynes per square centimetre, that is ten million to one. These limits enclose what is known as the Auditory Sensation Area.

Now following along the threshold of audibility we see that the minimum pressure required for a sound to be audible is at about 1,000 to 2,000 cycles per second and it is therefore in this range that the ear is most sensitive. The ear is relatively much more insensitive at both high and low frequencies, particularly the low frequencies. This accounts for the fact that musical instruments are designed so that tones of different pitch have approximately the same loudness as interpreted by the ear.

If you turn the volume control of your set well down so that it is reproducing at a low loudness level, the result will appear thin and lacking. To get the density and richness of the upper curve in Fig. 2 explains this because at a low loudness level the low-pitched instruments are all inaudible. To gain the intensity is increased so we reach a point when the loudness of the low frequencies comes more rapidly than that of the higher frequencies and once again we get an unbalanced effect, this time with the low frequency predominating.

SEPTEMBER 16TH, 1933

SLADE RADIO

There was a talk on "Olympia, 1933" by Mr. A. S. B. FREEMAN. Mr. Freeman was at the meeting last week. The first part of this talk was carried out with a microphone, and his voice was heard from those parts of the hall which was made to introduce itself to the members. The second part was demonstrated by Mr. Freeman himself. He explained that with these loudspeakers with the aid of a tuning and light station selector, which was then demonstrated, Mr. Freeman then went on to describe the general details of the exhibition and the development which has taken place. Samples of early types of valves were shown together with the latest, which included the Catkin, also the new Osmian Class B (BD) and the driver (L2I). Samples were also exhibited of the early type of variable condenser. Together with the new Ferranti "Gloria," which was demonstrated and proved exceptionally interesting, and the new McMichael with dual speakers and the new R.I. were also exhibited. The talk proved very interesting, especially to those members who had not been able to attend the Show. The Society still has room for more members, and the Hon. Sec will welcome enquiries from anyone interested. Address: 110, Hilliard's Road, Graveshall Hill, Birmingham.

INTERNATIONAL SHORT-WAVE CLUB, LONDON

A big audience attended the reopening of the London Chapter of the International Short-Wave Club at the R.A.C.S. Hall, Wandsworth Road, S.W.8, on Friday, September 1st. Among the attractions were demonstrations of a 5-watt receiver, a Haloid 4 5/6 M.W. and 3 S.W. receivers, which gave quite good results. A lecture on Radiation and Frequencies by a well-known radio authority followed. Great interest was shown in an exhibition of photographs of the world's short-wave stations, among which were many photographs of the Empire Broadcasting Station at Daventry.

HACKNEY RADIO AND PHYSICAL SOCIETY

During the past few weeks we have been informal and generally consisted of discussions on the future programme. From these talks an interest in the programme for the next few weeks has been evolved and a copy is appended. In addition, talks by members of the society and members of various firms and visits to places of interest are being arranged.

LIST OF EXHIBITORS

(Continued from page 934)

Stand No.

62 Main Hall—Whiteley Electrical Radio Co., Ltd., Victoria Street, Mansfield.
61 Main Hall—Wingate and Rogers, Ltd., Piner Works, Old Swan, Liverpool.
40 Gallery—Bryan, Ltd., 740, High Road, London, N.17.

Club Results should not exceed 200 words in length and should be received by Post, giving for publication in the following week's issue.
REPLIES TO QUERIES and ENQUIRIES by Our Technical Staff

If a postal reply is desired, a stamped addressed envelope must be enclosed. Every query and drawing which is sent must bear the name and address of the sender. Send your queries to the Editor, PRACTICAL WIRELESS, 16/9, Southampton St., Strand, London, W.C.2.

SPECIAL NOTE
We wish to draw the reader's attention to the fact that the Queries Service is intended only for the solution of problems or difficulties arising from the construction of receivers described in our pages, from articles appearing in our pages, or on general wireless matters. We regret that we cannot, for obvious reasons-
(1) Supply circuit diagrams of complete multi-valve receivers.
(2) Suggest alterations or modifications of receivers described in our contemporaneous.
(3) Suggest alterations or modifications to commercial receivers.
(4) Answer queries on the telephone. Please note also, that all sketches and drawings which are sent to us should bear the name and address of the sender.

GRANOPHONE PICK-UP
"I have just purchased a gramophone pick-up and am studying, more or less, the theories of sound reproduction. During the course of the little experimenting I have done I have noticed that the angle which the needle forms with the surface of the sound groove affects the reproduction. I should be glad to know whether there is any optimum position, or whether considerable latitude is permissible in this direction."—Y. A. N. M. (Easter).

THEORY OF SHORT WAVE WINDING
"Why is it that the long-wave section of a coil is invariably wound in sections instead of in a single Hank? I appreciate the fact that it could not be wound in solid fashion, but is there any reason why one could not wind it in the same way? I have noticed that the impedances of the following coil are approximately the same.
1,000 ohms.
4,000 ohms.
8,000 ohms.
I think it is the turns of wire, but what is the reason behind it?"—M. G. Grangemouth (Haddington).

LONG-WAVE WINDING
"Why is it that the long-wave section of a coil is invariably wound in sections instead of in a single Hank? I appreciate the fact that it could not be wound in solid fashion, but is there any reason why one could not wind it in the same way? I have noticed that the impedances of the following coil are approximately the same.
1,000 ohms.
4,000 ohms.
8,000 ohms.
I think it is the turns of wire, but what is the reason behind it?"—M. G. Grangemouth (Haddington).

L.F. TRANSFORMER CONNECTIONS
"I have been told that it is possible to alter the ratio of an ordinary L.F. transformer, but I do not understand how this can be done without interfering with the wiring. Would it be possible to explain the method (if it is possible) in a simple manner, as I am only a beginner in radio, but am just picking up hints from your valuable pages."—T. S., Grangemouth, (Haddington).

The transformer consists of two windings, one of which has a ratio of 1 to 2, the other one of more than the other. The windings are connected to the grid circuit of the second valve, and the first valve provides a ratio of 2 to 5 between primary and secondary windings, which is usually connected to the grid circuit of the first valve in the set (via a condenser). The transformer has two windings, each of which has a ratio of 1 to 2, and the windings are connected to the grid circuit of the second valve, and the first valve provides a ratio of 2 to 5 between primary and secondary windings, which is usually connected to the grid circuit of the first valve in the set (via a condenser). The transformer has two windings, each of which has a ratio of 1 to 2, and the windings are connected to the grid circuit of the second valve, and the first valve provides a ratio of 2 to 5 between primary and secondary windings, which is usually connected to the grid circuit of the first valve in the set (via a condenser).

DATA SHEET No. 52

<table>
<thead>
<tr>
<th>Valve Impeidance Ohms</th>
<th>Loud Speaker Impedance Ohms</th>
<th>Transformer Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>2,000</td>
<td>1 to 1.5</td>
</tr>
<tr>
<td>4,000</td>
<td>6,000</td>
<td>1 to 2</td>
</tr>
<tr>
<td>8,000</td>
<td>16,000</td>
<td>1 to 2.5</td>
</tr>
</tbody>
</table>

NOTE.—The ratios given are the nearest commercial ranges which are obtainable. The impedances of a loud speaker is approximately double the D.C. resistance.

SOLDERING FLUXES
"I am busy trying out various ways of soldering, a task which I have always dodged in the past. I notice, however, that all commercial sets are soldered and I believe that many of the crackles given by my set are due to loose contacts under screws. I am finding it very difficult to get the joints to hold together, and should like your advice as to the best way to solder two wires together, or one or more wires to a terminal head. Do you recommend ordinary spirits of salt as a flux?"—T. G., East Twickenham.

Soldering is a very simple job, once the principles are understood. Firstly, the work must be cleaned from grease and other impurities, so that it is really essential to scrape it or use some other form of surface remover. Next, the soldering iron must be sufficiently hot to melt the solder which is used and heat the metal to be soldered. The heat in the iron invariably causes the metal to oxidise, and therefore a flux must be put on the work to prevent this and allow the solder to come into direct contact with the metal. Therefore, the fluxes are—
(1) Suggest alterations or modifications to commercial receivers.
(2) Suggest alterations or modifications to commercial receivers.
(3) Suggest alterations or modifications to commercial receivers.
(4) Suggest alterations or modifications to commercial receivers.
(5) Suggest alterations or modifications to commercial receivers.

FREE ADVICE BUREAU COUPON
This coupon is available until Sept. 23rd, 1933, and must be attached with all letters containing queries.

USSEN SKYSCRAPER KITS
Please send ALL your HIRE PURCHASE ORDERS to Petro-Scott Co., Ltd., 77, City Road, London, E.C.1.

PETRO-SCOTT LTD.
CATERGOIES RECEIVED

To new readers' trouble, we undertake to send on receipt of order a pocket 'Catalogue' of radio, wireless, and electric apparatus, and address it to the Practical Wireless Reader, Ltd., 210-212 Tottenham Court Road, London, W.1.

MULLARD VALVE GUIDE

We have just received a copy of the new Mullard Valve Guide for the coming season, a very useful book of pocket size, giving the operating data and characteristics of the complete range of Mullard valves. The application of each valve is simply explained and useful hints concerning such matters as grid bias, voltage, operating notes, and so forth are included for each type. The Technical Appendix, which occupies thirty-four pages, includes a useful article with many diagrams on Automatic Grid Bias, an authoritative article on the operation of rectifier valves, a handy method of calculating the correct ratios for output transformers, a guide to the standard connections to the new seven-pin base, and many other informative articles. Copies of the handy book can be obtained from the Publicity Dept., Mullard Wireless Services Company, 111, Charterhouse Street, London, W.C.2.

SERADEX BATTERY CHARGERS

PAGES 956-957. A range of high-class battery chargers and eliminators is given in a new season's list issued by Trevor Pepper, 48, Wake Green Road, Moseley, Birmingham. The Seradex V.R. 38a Charger will charge up to two sets of batteries in an estimated time of three hours. It is listed at 23 lbs. There are also H.F. Chargers, combined Chargers, D.C. Charging Boards, and Westminster Service Chargers. All models are fitted with ammeters and voltmeters for the control of charging output. The eliminators include D.C. and A.C. models, the latter consisting of Westinghouse Eliminators. A range of Seradex Rectifiers, incorporating Westinghouse and other types, is also included in the catalogue, of which can be obtained from above address.

MARCOPHONE PRODUCTS

PAGES 969-971. The familiar telephone radiograms and telephones are given in an attractive new season's catalogue just issued by A.F. Bulgin and Co., Ltd., Abbey Road, Barking, Essex, enclosing 3d. for postage.

BULGIN RADIO PRODUCTS

PAGES 947-950. The Catalogue of Bulgin radio apparatus is one of the greatest deterrents to the amateur keeping abreast of all the latest developments. To keep entirely up-to-date, calls the building or purchase of at least one new set per year, whilst the enthusiastic amateur would undoubtedly prefer to change his receiving set even more frequently than this. The trouble is that to do so more often than not entails the scrapping of a considerable amount of gear which is probably in perfectly good condition, and this represents a waste of money which few can afford. The difficulty of disposing of unwanted receivers or apparatus in an economical way was, however, solved some time ago by Messrs. Radiadlad, Ltd. (Dept. P.R.), 46, Brewer Street, London, W.1, and the methods of disposal have been keenly appreciated, by a tremendous number of wireless users. The slogan of the firm is "New Radios for Old," and the idea is that they will make a generous allowance on old receivers and components in exchange for new ones. Any type of new wireless apparatus can be obtained in this way, and the full range of catalogues describing SERADEX PRODUCTS will be sent on receipt of a completed form:

TO TREVOR PEPPER, 575d Moseley Rd., Birmingham, 12.

Address.

NEXT WEEK!

THE MOST STUPENDOUS OFFER EVER
AND Our Free Gift STEEL SPANNERS

The full range of catalogues describing SERADEX PRODUCTS will be sent on receipt of complete form:

Name.

Address.

Please list the following on your regular mailing list:

Pr.W.16311
Ingenious and practical designs for electric, steam and clock-work models.

Newnes’ Home Mechanic Books

Ingenious and practical designs for electric, steam and clock-work models.

Accumulators
An up-to-date handbook dealing with every type of accumulator, methods of charging them at home, care and maintenance, also explains how to erect a charging station.

Motor Car Upkeep and Overhaul
Information covering the engine, de-carbonising, valve grinding, the lighting system, the carburettor, cooling system, lubrication, springs and shock absorbers, steering gear, brakes, wheels, axles, tracing noises, etc.

Toy Making for Amateurs
How to make clockwork toys, model aeroplanes, model locomotives, model boats, ingenious toys operated by sand, wooden models and toys, electrical toys, steam toys, guns, kaleidoscopes, acrobats, etc.

Simple Electrical Apparatus
An excellent little book for those who wish to make simple and useful electrical appliances, such as galvanometers, electric motors, dynamos and Leyden jars.

Model Boat Building
Contains designs for battleship, speed boat, paddle steamer and yachts. Excellent models can be built with the simple directions and diagrams given.

The Home Woodworker
Clear instructions on how to make a large variety of articles in wood, together with many useful hints on wood-working.

Model Aeroplanes and Airships
Contains full descriptions of easy-to-make models of every description that will fly.

The Handyman’s Enquire within
Hundreds of practical ideas and hints of value to the man who is clever with his hands.

25 Simple Working Models
Ingenious and practical designs for electric, steam and clock-work models.

1/- each

Obtainable at all Newsagents and Bookstalls, or by post 3½ each from George Newnes, Ltd., 9-11, Southampton St., Strand, W. C. 2.

PRACTICAL WIRELESS

‘Listeners in’!

Look up your Wireless Licence

It may be worth £50

Compare your number and claim your reward

£50 will be paid to holder of Licence
No. AP 820624

£25 will be paid to holders of Licences:
Nos. AO 836174 AM 095040

£10 will be paid to holders of Licences:
Nos. AO 796222 AN 952893

£5 will be paid to holders of Licences:
AM 189973 AO 659386 AL 262797 AQ 589937 AJ 421100

£2 will be paid to holders of Licences:

£1 will be paid to holders of Licences:

This offer applies to licences which are actually in force on Saturday, September 16, 1933.

For full particulars for claiming awards and a complete list of numbers see 111-Bits.

On Sale Everywhere Saturday Sept. 16.
9,000 "HANDS"—MORE THAN EIGHTY ACRES OF FLOOR-SPACE...THE GREAT HIVE OF INDUSTRY WHERE COLUMBIA SETS ARE BORN!

- Huge, towering buildings of concrete, glass, and steel...as eloquent in their clean severity of line, as in their materials, keen, relentless modern efficiency...

What you see illustrated here is only a part of the great factory where Columbia sets are made—only a part of the largest and most up-to-date radio factory in the world. It is capable of turning out with ease a thousand sets a day—six thousand a week. And yet with this tremendous production there is coupled the most exact microscopic accuracy in a thousand tiny details of each set, to give you the performance and finish the world expects from Columbia, at Columbia prices. Ask to hear any of the four Columbia models listed below at the nearest Columbia dealer.

To hear any of the four Columbia models listed above at the nearest Columbia dealer.
UNIQUE FREE GIFT WITH THIS NUMBER!

Practical Wireless

Published every Wednesday by GEORGE NEWNES LTD.
Vol. 3—No. 53.
SEPTEMBER 23rd, 1933.

Edited by F. J. CAMM.

Exclusive offer to all readers!

The Practical Wireless Pocket Tool Kit

Contains every component needed to make an efficient and permanently safe Aerial and Earth, complete with full instructions, Tuning Chart, etc. Sold by all dealers.

A GRAHAM FARISH PRODUCT

ADVERTISMENT OF GRAHAM FARISH LIMITED, BROMLEY, KENT

ESSENTIAL TO GOOD RECEPTION

The AEROCIENT KIT

6/6 ADVT.
British Radiophone Ganged Condensers have consistently set the fashion. It is imperative to employ scientifically designed precision instruments as surprisingly big losses can occur in badly designed or poorly manufactured Condensers.

Radiophone Condensers incorporate many patented unique features, such as Radial Wedge assembly of vanes, Spring-loaded Tapered Bearings with "Keep Plate" Anchorage. The Steel Girder Frame method of assembly and three-point Suspension guarantee freedom from mechanical distortion.

Every Radiophone Condenser is matched section by section at SIX points of the tuning scale to within ½ per cent. One has only to balance out the stray circuit capacities with the aid of the trimmers conveniently provided at the top of the unit to ensure permanent MATCHED PERFECTION.

Write for list of components to:

BRITISH RADIOPHONE LTD
ALDWYCH HOUSE, LONDON, W.C.2

SPECIALY SUITABLE FOR "IRON CORED" COILS
The delicate matching of "Iron Cored" Coils makes it more necessary than ever to employ condensers matched to the nth degree. Hence the numerous occasions on which these condensers have been exclusively specified in circuits using these coils.

ASK YOUR DEALER TO SHOW YOU ONE—INSIST ON RADIOPHONE
The Transfeeda has been officially specified by the designers of the "Experimenter Shortwave 3" on account of the pure distortionless amplification it affords in the L.F. stage. The Transfeeda can be used to advantage in all your circuits as an efficient substitute to expensive transformers. Ratio 3 to 1. Price 11/6.

A WONDERFUL RECEPTION for the NEW AMPLION SONETTE

It is not surprising that a speaker having so many virtues should arouse such enthusiasm amongst constructors.

The Amplion Sonette is the sturdiest and most compact little speaker ever offered. It gives a remarkable performance and the price is really something to write home about.

Fitted with a universal transformer, it can be used for Power, Super Power, Pentode, Class "B," Q.P.P., and Push-pull.

SEE THE COMPLETE AMPLION RANGE AT STAND 34, TONMAN HALL, MANCHESTER.

PRACTICAL WIRELESS
September 23rd, 1933

SEND FOR IT ON 7 DAYS' TRIAL

Branches: 78/82, Fore St., Edmonton; 77, West Green Rd., Tottenham; 54, St. James St., Walthamstow; and 139, Hertford Rd., Enfield Wash.

WRITE for this new guide to Class 'B'

WRITE to-day for a free copy of this new Complete Guide to Class "B" which has just been published. It describes fully the theoretical and practical sides of Class "B" amplification and tells you all about the Multitone True Tone-Control Transformers, which save an extra 30% H.T. besides ensuring the best quality under all conditions.

Toco Tone Control Transformer... 17/6
Graded Potentiometer... 1/6
Bepu Driver Transformer... 9/6
Puchoke Centre-tapped Choke... 9/6
Class "B" Converter Unit... 9/6

OR IN KIT FORM... 27/6

MULTITONE ELECTRIC COMPANY LIMITED
95-98, White Lion Street, London, N.1, Terminus 5063
BRITAIN'S GREAT HIGHWAY TO SUCCESSFUL CAREERS

Not just a few, but literally thousands of School of Accountancy students have risen from the ranks to important, well-paid positions in Commerce, Industry, Banking, Insurance and Public Services at salaries ranging from £350 to £2,000 a year. They have achieved their successes as a definite and direct result of School of Accountancy Postal Training. Not only have these men and women, most of them of average intelligence and education, multiplied their salaries; they have also made their futures secure.

Many great Business Leaders strongly advise School of Accountancy training as the surest and quickest method by which ambitious men and women can achieve successful careers. Eminent University Lecturers who have examined our lessons and literature have publicly vouched for their efficiency and thoroughness.

SPECIAL AUTUMN OFFER
For full particulars of a special Autumn offer, whereby students enrolling soon can obtain tuition at considerably reduced fees—see special note in the prospectus. Write for your copy today.

THE PROSPECTS FOR TRAINED MEN WERE NEVER BETTER

The need for a higher standard of ability and administration in Commerce and Industry is creating greater opportunities than ever for trained men and women who can apply more efficient methods of working and organising. Whilst the prospects of the untrained tend definitely to deteriorate; the prospects were never better for those who have the courage and enterprise to fall into step with the new conditions of business and to qualify, in their spare time, for higher-paid positions.

Many great Business Leaders strongly advise School of Accountancy training as the surest and quickest method by which ambitious men and women can achieve successful careers. Eminent University Lecturers who have examined our lessons and literature have publicly vouched for their efficiency and thoroughness.

WRITING to-d AY for this free 180 page Guide to Careers.

THE SCHOOL OF ACCOUNTANCY

55 Bush House, London, W.C.2

15 Regent House, Glasgow C.2
Shell House, Johannesburg
Variation of characteristics or of efficiency is definitely prevented in Cossor Mains Valves by the use of the famous Mica Bridge. This well-tried method of construction permits a degree of accuracy in assembly that ensures strict adherence to characteristics, uniform efficiency and, due to the great mechanical strength it imparts to the electrode assembly, long and dependable service. Your dealer will be glad to help you choose the correct types for your Receiver.

Cossor A.C. Mains Valves

<table>
<thead>
<tr>
<th>Type</th>
<th>Purpose</th>
<th>Impedance</th>
<th>Amp Factor</th>
<th>Max. Com. m.a.v.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.S.G.-HA</td>
<td>Super H.F. Amp's</td>
<td>400,000</td>
<td>1.000</td>
<td>1.5</td>
<td>17/6</td>
</tr>
<tr>
<td>M.S.G.-G.A</td>
<td>Super H.F. Amp's</td>
<td>400,000</td>
<td>1.000</td>
<td>1.5</td>
<td>17/6</td>
</tr>
<tr>
<td>M.Y.S.O</td>
<td>Variable No.</td>
<td>250,000</td>
<td>-</td>
<td>-</td>
<td>17/6</td>
</tr>
<tr>
<td>M.Y.S.-PEN</td>
<td>H.F. Pentode</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17/6</td>
</tr>
<tr>
<td>M.Y.S.-PEN</td>
<td>H.F. Pentode</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17/6</td>
</tr>
<tr>
<td>M.Y.S.-PEN</td>
<td>H.F. Pentode</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17/6</td>
</tr>
</tbody>
</table>

Cossor D.C. MAINS VALVES

<table>
<thead>
<tr>
<th>Type</th>
<th>Purpose</th>
<th>Impedance</th>
<th>Amp Factor</th>
<th>Max. Com. m.a.v.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.D.T.</td>
<td>A.V.C. (Detector and L.F. Amp.)</td>
<td>17,000</td>
<td>41</td>
<td>2.4</td>
<td>18/6</td>
</tr>
<tr>
<td>D.P./PEN</td>
<td>Power Pentode</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18/6</td>
</tr>
<tr>
<td>I.D.V.S.G</td>
<td>Super H.F. Amp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18/6</td>
</tr>
<tr>
<td>I.D.V.S.G</td>
<td>Super H.F. Amp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18/6</td>
</tr>
</tbody>
</table>

* Supplied with Plain or Metallised Bulbs. ** Supplied with Metallised Bulb only.
1 Characteristics measured at -1.5 Grid Volts. ** Supplied with plain or metallised bulb.
Priced in this List do not apply in I.F.S. All prices subject to alteration without notice.

Cossor Valve Catalogue

To A.C. COSSOR LTD., Melody Department, Highbury Grove, London, N.3.

Please send me, free of charge, a copy of the 64-page Cossor Valve Catalogue 0.14.

Name

Address

Birthday Greetings

SINCERE thanks to all those readers who have taken the trouble to wish us Many Happy Returns on the occasion of our Birthday! We are quite sure that these good wishes are echoed by our contemporaries with perhaps a slight accent on the "returns."

It is a source of great pleasure to us to learn that we have supplied what the home constructor has needed for the past twelve years. We shall do our best in the second year of our history even to surpass our past year's record. Again, many thanks.

Our Great Birthday Commemoration Scheme

To commemorate our first year we have had specially designed and made the ingenious and handy Pocket Kit which you see illustrated on the cover and on pages 31 to 33 of this week's issue, as well as in the centre of this page. You cannot obtain these tools in any other way, and they are all soundly made, accurate and smoothly finished. They could not be purchased in the ordinary way for less than 12s. 6d. Those readers who care to avail themselves of this special Birthday offer should comply with the simple conditions given on pages 31 to 33 without delay, for, owing to the time taken to manufacture the tools, this offer cannot remain open for long. Notice that we have provided a recess beneath the Set Square for our Free Gift Spanners.

Our Free Gift Spanners

The two spanners given this week form the first two of a set of three. The largest spanner completing the set will be given next week. These spanners are made of steel, and are correctly proportioned according to the Engineering Standard Committee's recommendation. Additionally, they are accurate, realiable and unrivalled reader service again, you see!

The World's Broadcasters

THE World's Broadcasters, recently published by the U.I.R. (Union Internationale de Radiodiffusion), Geneva, show that whereas there were 1,323 broadcasting transmitters operating in the world in 1931, the number had increased to 1,441 by the following year. In the first half of 1933 roughly 90 transmitters were added to the list, thus bringing up the number to a grand total approaching 1,800 stations.

Overhauling the Short-Wavers

WITH a view to an improvement in the quality of transmissions from the Poznań (Poland) short-wave station on 31.6 m., broadcasts have been suspended until September 30th. In the same way, UOR 2 Vienna, which for many months has been working on 49.4 m., has temporarily closed down. It is to be completely re-equipped with new plant to obtain increased power. No date for its re-opening has so far been fixed.

Mexico's Fifty-ninth Station

WITH the re-opening of XEB, Mexico City—now a 10 kilowatt—the number of transmitters in the State of Mexico has almost reached the 60 mark. The new station, now operating on 291.3 m. (1,080 k.c./a), is owned by a cigarette manufacturer and will devote the greater part of its daily programmes to publicity.

Relays of Casino Concerts

LISTENERS to the Belgian and French studios may now hear programmes from koursaal and casinos in popular foreign seaside and watering places. By tuning to one or other of the Brussels transmitters on most evenings it is possible to pick up entertainments given at Ostend or at the Knocke-le-Zoute Casino, Radio Toujours has also made arrangements to relay concerts from Biarritz on several dates in September at 9.0 p.m. B.S.T. Poste Parisien (Paris) in its turn takes you regularly over to Deauville, one of the most fashionable of French coastal resorts, and the French T.T.P. stations, including Eiffel Tower and Radio Strasbourg, frequently broadcast operatic works performed at Vichy-les-Bains.
Broadcasting on Ultra-Short Waves

Experiments carried out at Amstelveen, South Holland, for a period of several months have clearly demonstrated the utility of short waves of the nature of seven to eight metres for the establishment of a local broadcasting service. Tosta proved that only a power of 300 watts was required for a good reception over small areas. Moreover, on these channels, it was found that static interference was almost non-existent. As the working range of these transmitters is strictly limited, neighbouring cities could use the same wavelength without any risk of mutual interference. In a band of frequencies from 40,000 (7.50 m.) to 56,600 kilocycles (7.80 m.) there is a difference of greater than 1,500 kilocycles, which is greater than the separation existing between 200 m. and 2,000 m. (actually only 1,350 kilocycles) or somewhat more than the entire broadcasting band. In effect, this would mean that the band would be sufficient to house with ease all the European transmitters provided for by the new Lucerne plan. The utilization of these short waves may result in the solution of many knotty problems in the field of wireless communications. In Holland, a scheme is being considered to link up Java with the neighbouring island of Bali in the Dutch East Indies by 3-metre trans- missions. The depth of the sea in those districts is such that the laying of a special submarine cable for the purpose would be a much more expensive item than the installation of the necessary wireless transmitting and receiving plant.

Lugano via Sottens

During the temporary suspension of the Monte Ceneri transmitter, concerts from the Lugano (Switzerland) studio will be broadcast through the Sottens station on 403.5 metres.

America Calling

The success of the Bilsom American programme recently presented by the B.B.C. has induced the organizers to offer another edition. In this instance it will take off a number of radio stars like the Mills Brothers and Ted Lewis, for which room could not be found on this instance it will take off a number of radio stars like the Mills Brothers and Ted Lewis, for which room could not be found. Room is now being reserved by 509-metre station plays an old Flemish patriotic song: De Flamenche Leeuw.

German Television Development

One of the most remarkable exhibits at the Berlin Radio Show was a new television projector exhibited by the Fernsah A.G., with which Baird Television (London) Ltd. is associated. The picture produced by the instrument is clearly of better quality than that of the average home cinematograph projector. The system uses a sensitive coated film on which the televised object has been photographed, and projects the picture on to a large screen. In this system the exposed film can be cleaned off and the celluloid used again for a different subject.

Ici Bordeaux Lafayette

The French station you hear almost nightly on 304.9 metres immediately above North International is the FFQ transmitter at Bordeaux. Although it is now calling UIDA would from that date now calling OUIDA would from that date call the letters OUIDA and UOR 2, Vienna, will be known as OER 2.

Another Television System

An American television system has been developed in New York, a San Francisco scientist, Philo Farnsworth, is said to have invented a new television system. The test transmissions would appear to have been perfectly successful, and in statements made by the inventor it is claimed that the means adopted make of the system a commercial proposition of high value.

Notice to Short-Wave Fans

From January 1st, 1934, as its call-sign, Austria will take the International prefix instead of as hitherto. As an amateur in that country now calling UIDA would from that date call the letters OUIDA and UOR 2, Vienna, will be known as OER 2.

Alteration in German Wavelength

The new 150-kw. Hanover relay station was formally opened on August 13th last; it now works on a common wavelength with Flensburg, namely, 227.4 m. (1,319 kilocycles). With the closing down of the old station operations at Hanover, it is now possible to pick up broadcasts from Witten (Poland) on 563 m. without any interference.

Berliner's New High-Power Station

The 100 kwatt transmitter now in course of construction at Berlin and which is destined to increase the power of the weaker Witzleben station may possibly be ready by the Christmas holidays. According to the new wavelength plan it will work on 336.7 metres (841 kilocycles) thus displacing from this position London Regional, which will drop to 342.1 metres (277 kilocycles). With a separation of 60 kilocycles between them there should be no mutual interference.
THE Wireless Exhibitions at Olympia and Glasgow have given us a unique opportunity of meeting a very large number of our readers and learning what kind of receiver appeal to them most. We have been asked many times if we would publish details of a really efficient battery-operated superheterodyne or type suited for use with an outside aerial. To these inquirers we have said that we had such a receiver on our test bench, and that as soon as we were satisfied that it was better than any other similar instrument which had previously been described we should publish full details. Our tests are now completed, and we offer the results to our readers in the form of a five-valve superheterodyne, which we feel is worthy of the seal of perfection which the PRACTICAL WIRELESS guarantee automatically bestows upon it.

The "Premier Super" is entirely free from those defects which have been responsible for our not describing a superheterodyne of this type previously. It is tuned by means of a single knob; requires no difficult preliminary "trimming" and "balancing" adjustments; is free from heterodyne whistles; gives real "quality" reproduction; is delightfully easy to build; is economical in the way of battery current, and can be built very cheaply. It need scarcely be mentioned that the degree of selectivity is as good as it is possible to obtain with any type of receiver when good quality reproduction is insisted upon. Combined with these advantages are those of excellent appearance and compactness.

Extreme Simplicity

It will be evident from the photographs on this page that simplicity and ease of construction have been carefully considered, for it was realized that the set would appeal not only to the experimenter, but also to hundreds of readers who have perhaps never built a receiver of their own.

"Premier Super" demonstrates in a practical manner that it is neither. Some have always regarded the superheterodyne as an expensive piece of apparatus; the fact that this new PRACTICAL WIRELESS receiver can be built for just over £14 0 0, including cabinet, batteries, valves, and moving-coil loud-speaker, or for £6 12 6 for the bare receiver, proves the fallacy of that idea.

Special Features

Before proceeding with the practical constructional details it will be well briefly to mention some of the practical features that have been incorporated in the set. Perhaps the most important of these concerns the use of a metallized chassis. All PRACTICAL WIRELESS sets, right from Number I, have been built on the chassis principle, since this has proved to show innumerable advantages over the use of a flat baseboard. The set can be made more compact, a much "cleaner" appearance is secured and the utmost efficiency can be obtained because the wiring is in length whilst the components can be better disposed. Just as PRACTICAL WIRELESS set the fashion a year ago by adopting chassis construction as standard, so have we more recently made our receivers still better by being the first to use the "Metaplex" chassis. This latter has but recently been available, and although it is made of wood and thus has all the advantages of easy working, it is specially sprayed with metal, under high pressure, so that it also has the advantages of metal, being a perfect conductor. Not only does the metallized chassis act as a screen, therefore, but it can also be used for "earth return" leads, thus considerably simplifying the task of wiring.

(Continued overleaf)
HIGHLY SELECTIVE—LOW PRICED—SINGLE-KNOB TUNING

Some readers will perhaps question the use of air-core coils, now that iron-core ones are available in nearly every make. The point is that iron-core coils are not necessary in a superheterodyne, because an ample degree of selectivity can be obtained without

You will observe from this illustration the simple construction of the Premier Super.

and, we have found that they do not confer any advantages whatever. In fact, our experiments have shown that air-core coils are slightly better in a band-pass circuit, due to the fact that they can be "matched" more easily, and with a better degree of accuracy. There is also another point which is too important to overlook; that is that air-core coils are appreciably cheaper.

A Tested and Reliable Circuit

It will be obvious from a cursory examination of the circuit diagram that there are no "stunt" arrangements, or, in fact, any items which have not been fully proved in practice. Of the five valves, the first is a screened-grid first detector working on the

LIST OF PARTS FOR THE PREMIER SUPER.

Don't depart from these specially selected components.

One Superhet 3-gang Midget Variable Condenser, Type 693, with Straight Line Dial (British Radiophone).
One Set Matched Superheterodyne Coils (2 Bandpass and Oscillator) (Lissen).
Two Intermediate Frequency Transformers (Lissen).
One 50,000 ohm Volume Control Potentiometer, Type V.C.36 (Bulgin).
One 3-point Switch, Type 48 (British Radiogram).
One Push-Pull Radio Gram Switch, Type 50 (British Radiogram).
Three Chassis Brackets, Type 21 (British Radiogram).
One "Pip" 1/1.F. Transformer (Graham Farish).
Six "Ohmite" Resistances—2,000 ohms, 10,000 ohms, 20,000 ohms, 30,000 ohms, 100,000 ohms, and 2 megohms (Graham Farish).
Two 1 mfd. Condensers, Type B.B. (Dubilier).
Two 2 mfd. Condensers, Type B.B. (Dubilier).
One .0001 mfd. Condenser, Type 670 (Dubilier).
One .0002 mfd. Condenser, Type 670 (Dubilier).
One .002 mfd. Pre-Set Condenser (Polar).
Four 4-pin Chassis Mounting Valveholders (Clix).
One 3-pin Chassis Mounting Valveholder (Clix).
Three Terminal Mounds (Belling-Lee).
Six Terminals, Type 8, marked "A," "E," "L.S. —", "L.S. +", and two marked "Pick Up" (Belling-Lee).
One "Metaplex" Chassis (Peto-Scoot).
One Premier Super Cabinet (Peto-Scoot).
One Fuse Holder and Fuse (Bulgin).
Two Coils Quickwire, length of Flex, Screws, etc. (Bulgin).
One P.M.6 "Microlobe" Moving Coil Speaker (W.B.)
One "Aeroscient" Aerial Earth Kit (Graham Farish).
One Length Metal Screened Down Lead (Goltone).
One 2-volt 40 amp. Accumulator (Smiths).
One 9-volt G.B. "Anode" Battery (Smiths).
One 120 volt Triple "Anode" H.T. Battery (Smiths).
One Baffle Baseboard Assembly (Peto-Scoot).

The simplicity of wiring is evident from this illustration.

When required. To ensure an ample bass response and to obtain the maximum

Battery or Eliminator Operation

Ample decoupling is provided throughout the receiver and only two H.T. positive leads are required. Thus the set can be operated from batteries in the ordinary way, or from practically any type of eliminator giving an output of about 15 milliamps at 120 volts. Actually, the anode current consumption varies between about 11 and 15 milliamps, according to the setting of the volume control.

Assembling the Components

A complete list of components is given below, and the first step is to obtain all the parts listed. Please do not think that any other similar components will serve; in rare instances they might, but it is unlikely that they will be good as those around which the circuit was designed, and in any case our guarantee would not apply. The metalized chassis is supplied all ready drilled to receive the valve-holders and other parts, so all you have to do is to mount them in the positions indicated in the wiring plans. It will be found best to carry out the work in a systematic manner by first screwing down the valve-holders, then mounting the components on the under side of the chassis and leaving until all coil assembly, intermediate frequency transformers, and three-gang tuning condenser. No special instructions are necessary in regard to the method of mounting, since the chassis is attached in a straightforward manner by means of suitable screws. These latter are supplied with the kits of parts advertised on other pages of this issue, but for those who prefer to buy separate parts locally it might be mentioned that about one and a half dozen 1/8 in. screws are needed and approximately two dozen 3/16 in. ones. It will be noticed that the two grid bias battery clips are attached to one of the chassis side members; they can be dealt with without dismantling the chassis, but it will be found somewhat easier to remove the side member by taking out the three screws by means of which it is attached to the baseboard.

The Wiring

The wiring need present no difficulty at all so long as some sequence is followed.
Thus you should commence by joining together the filament pins of all the valve holders. After that, start at the aerial end and work right through the set to the loud-speaker terminals. If you are new to set construction you will probably find it a good plan to cross off, or mark in some way, every wire on the wiring plan as you put it into the set. Practically all the connections are made by looping the bared end of the wire fit over the terminal, but in one case a soldered contact is used to prevent the use of an unduly long lead.

Connecting and Adjusting.

Next week we shall give you full particulars in regard to the method of making the few simple preliminary adjustments which are required and will describe in detail just how the best results can be obtained.

For the benefit of those readers who are more experienced, however, and who finish the constructional work before next week's issue is available, the following notes respecting the most suitable voltages will perhaps prove useful.

The grid bias battery should first of all be fitted into the clips which are mounted on the underside of the chassis, when the "G.B.-+" plug should be inserted in the corresponding socket. Put plug "G.B.-1" (which is supplying the pentode) into the grid 4.5 volt socket; put the "G.B.-2" plug (that for the pick-up) into the 1.5 volt socket; and insert plug "G.B.-3," which is for the variable-mu intermediate frequency amplifier, into the maximum (9 volt) socket and try the fourth "G.B.-4" plug first of all in the 3 volt socket.

After trying out the receiver it might be found that better results can be obtained by applying 1.5 volts negative to the grid of the first detector (through plug "G.B.-4"), but the optimum voltage is best found by trial.

Should it be decided that 1.5 volts gives best results, the two flexible leads to plugs 2 and 4 can be joined to the same wander plug.

Note the clean layout of the Premier Super.
RADIO-GRAM MOTORS

The Purpose of This Article is to Help Readers in Their Choice of a Motor for Radiogram Work and, After They Have Obtained the Motor Best Suited to Their Requirements, to Give Some Hints on Its Proper Maintenance.

By ALFRED J. POTTS

T is greatly to be regretted that far too many owners of gramophone motors, particularly of the spring-driven type, have the fixed impression that once put in place the motor needs no attention whatever. Not only this, but they blissfully continue to use the motor after it is out of condition until the spring breaks, when, of course, something has to be done. Would you, on having bought a new car, keep on using it until it would not work satisfactorily and would not run smoothly? Why, then, do this with your gramophone motor?

A further point that is of great importance but which is frequently overlooked is that if the motor does not carry out its required work smoothly and efficiently, then the best pick-up-and-amplifier ever designed cannot give good, clear and undistorted reproduction. This point will become obvious when the explanations given later in this article have been considered.

First to choose the type of motor to be used. Those with electric light are in the fortunate position of having an enormous choice of really good motors, but great care has to be used if a satisfactory choice is to be made.

As it would take a great deal of space to explain all the advantages and disadvantages of the various types of motors, I will give just a short description of each which will aid the reader in his choice of type.

The Synchronous Motor

The simplest and, incidentally, cheapest form of electric gramophone motor is, of course, the synchronous type which makes use of the frequency of the A.C. mains to keep it at a constant speed of seventy-eight. This is, of course, very useful, since many people seem unable to run a record at its proper speed and always run it either too slow or too fast, generally the latter, opening no doubt, to the fact that when the pitch rises the output volume appears to be louder. It should be remembered, however, that this type of motor has only the flywheel effect of the turntable to keep it at a constant speed and that it depends very much upon its design to be efficient for satisfactory results. In addition to this, it must be remembered that most of these motors have to be started with the finger, to put them "in phase" with the electricity supply before they will go at all. This motor is only suitable for A.C. mains.

There is then the universal motor, which can be used on either A.C. or D.C. mains, and which, if of good design, can be very efficient. These motors have a speed regulation of similar nature to a spring-driven motor. Some hints on regulating the speed of all these types of motors being described will be given later in this article. The great trouble in this type of motor which has to be looked out for is sparking, but most motors made by good reliable firms are free from this trouble.

The Induction Motor

The only other type of motor which is in demand is the induction type, which again often has a speed regulation and was mainly designed to overcome the commutator sparking which is sometimes troublesome in the universal type. This type of motor can, of course, only be used on A.C. mains.

Various other types of electric motors have been brought out, but the three types described above are among the best available and are the most popular types.

Many of us are not fortunate enough to have electric light and many, whose pockets are not very deep, cannot afford the extra expense of the mains-driven motor. It should always be kept in mind, too, that even if you are in the happy position of having the mains, a good spring-driven motor is far better than a cheap electrical one.

The choice of a spring motor is just as important as an electric one, and since there is rather more liability in the spring motor for mechanical faults, cheap motors should be definitely put aside. When possible, a double spring motor, or even a triple spring one, should always be used for the following reasons. Many people are under the impression that the governor keeps the speed of the motor absolutely constant. This is not quite true, for this reason.

The governor's duty in the motor is to take the main load of the driving spring. Therefore it is quite easy to see that if no record is being played, when the motor is fully wound up the pressure on the governor is considerably greater than when it is nearly run down. Thus when a record is being played this fault is emphasized considerably owing to the extra pull on loud passages. Since this fault is more noticeable when the motor is nearly run down, it will be seen that it is better for this reason to purchase a double or triple spring motor as, of course, the period in which it is "nearly run down" is lessened to a half and third respectively. A further important reason for the use of the more powerful types of motor is that the tendency (Continued on page 16)
ACCURATE MATCHING AT LAST!

- 17 transformer ratios for really accurate matching to ANY power valve or pentode and 4 ratios for Class B or Q.P.P. all available on one speaker by a simple switch adjustment!

- Added sensitivity due to the "Mansfield" magnetic system! Better balance through really accurate matching! The difference in performance must be heard to be believed.

"Did you notice 'Practical Wireless' says the 'Microlode' was probably the high spot of Radiolympia?"

"I can quite believe it. Perfect matching has certainly made a difference to my set."

AND ONE TYPE SUITS ANY OUTPUT

All the important new constructor sets specify a W.B. "Microlode" either solely or as a first choice.

Sole Agents in Scotland: Radiovision Ltd., 239, St. Vincent St., Glasgow, C.2
FIRST DETAILS OF A NEW OUTPUT VALVE

By LAMBDA

The subject under discussion was valves and valve progress—opinions were divided—finally, had definitely been reached and no further developments were possible. The opinion of the majority was that opinion of the majority was that new developments were needed. The Radio Exhibition at Olympia had not produced any surprises. Class B and H.F. Pentodes were in evidence and the Pentagrid or Herodean would shortly be available for the constructor.

Apart from these valves with which we are fairly familiar, there did not seem to be any further developments forthcoming. However, history tells us that the opinions of the majority are not always correct, and now still further valve improvements have once again proved them to be mistaken.

It is a rather interesting fact that the recent valve developments seem to alternate between this country and America. The Q.P.P. system and the Catkin valve were once again proved to be mistaken. However, history tells us that the opinions of the majority are not always correct, and now still further valve improvements have once again proved them to be mistaken.

It is quite simple if the new valve becomes available in this country it will be essential for you to be able to make the necessary calculations if you wish to fit one of them in the output stage of your receiver. With this valve the first triode A is biased negatively and the second triode B is biased positively, rather a unique arrangement.

Output Power

Output power is delivered by triode B, which operates at the middle point of its Eg Ip characteristic. The input section performs a function somewhat analogous to that of the driver valve in Class B circuits, but a step-down transformer is unnecessary.

Positive and Negative Bias

Triode A is biased 24 volts negative but tied to grid of triode B, therefore the latter will be 24 volts positive as it is 24 volts above H.T. negative. The biasing arrangements of triode A are quite orthodox; that is if the cathode is made 24 volts positive with respect to earth, the grid will be 24 volts negative.

Now the next step. Triode B is 24 volts positive, quite obviously considerably too much. To make it negative we adopt the usual procedure—a resistance in the cathode lead. But we do not want it negative, but 21 volts positive. So subtract 2 volts from 24, leaving us 22 volts, and calculate our biasing resistance for 22 volts, which when placed in the cathode lead will make the grid less positive, thus leaving us the 21 volts we require. It is quite simple if each triode of the complete valve is taken separately.

It is commonly worth while understanding the principle involved in the calculation of the biasing arrangements, because when this valve becomes available in this country it will be essential for you to be able to make the necessary calculations if you wish to fit one of them in the output stage of your receiver. With this valve the first triode A is biased negatively and the second triode B is biased positively, rather a unique arrangement.

Biasing Arrangements

The bias for the first portion is provided by the resistance R1, which is also part of the load for the triode A. We have already mentioned that the cathode was tied to the grid of the output triode B, therefore the voltage drop across this resistance puts the output section at a rather high positive bias, in fact much too high. This high bias is necessary for the triode A but not for triode B. To remedy this state of affairs the output portion is also biased by a resistance in the cathode lead. In calculating the value of this resistance, however, it is necessary to take into consideration the biasing of the input section.

Two in One

The theoretical circuit of the new valve is shown in Fig. 1, notice the two sets of triode elements mounted side by side using a common heater, but electrically separate cathodes. An unusual feature of this valve is that the entire of the cathode of the first portion to the grid of the second portion. In order to understand its functions the diagram has been divided by means of the dotted line and the sections have been marked A and B respectively. The elements marked A are the input and those marked B the output, and the circuit arrangements are shown in Fig. 2.

Mains Receivers

Now a new output valve for mains sets has been designed which appears to be quite revolutionary. With its excellent quality is obtainable without excessively high anode voltages, and with an output of about 4 watts. It is claimed that this new valve can be substituted for many of the existing output valves at present employed in mains receivers, where only relatively low anode voltages of about 200 to 300 are available.

Triodes and Class B

It is generally conceded that the triode output valve provides the best quality, so long as high anode voltages can be obtained. In order to provide an undistorted output of, say, 5 watts, an anode voltage of at least 1000 is usually necessary. The introduction of Class B valves for battery sets enabled 1 to 2 watts output to be obtained with a minimum of H.T. current and voltage. This new valve will, to some extent, perform the same service for the owner of small mains sets, but with the added advantage that it will not be necessary to employ a driver valve or special input transformer.
Now hear DIRECT what AMERICA thinks CHICAGO • NEW YORK • PHILADELPHIA • all within your reach on the ULTRA SHORT & SHORT WAVES!

Now hear DIRECT what AMERICA thinks CHICAGO • NEW YORK • PHILADELPHIA • all within your reach on the ULTRA SHORT & SHORT WAVES!

AUSTRALIA TOO ON LOUDSPEAKER

WORLD WIDE NEWS & ENTERTAINMENT for Home Constructors ONLY!

BUILD WITH YOUR OWN HANDS SAVE POUNDS - SUCCESS CERTAIN

Lissen have made this All-Wave All-World Radio available to Home Constructors first, because it brings back the thrill of conquest to hear America and Australia direct on a set you have built yourself; it makes you an enthusiast to realise what a wonderful thing you have created!

When you see the Great Free Chart of the All-Wave All-World "Skyscraper" 4, which tells you how to build it and how to work it and why it gives such marvellous results, you will agree at once that it will be wise of you to build for yourself rather than buy a factory assembled receiver which cannot give you these new and intriguing short-wave stations. The FREE CHART simplifies everything; there are pictures of every part, with every wire numbered, every hole lettered, every terminal identified. YOU CAN'T GO WRONG! But get the Chart and see for yourself—then build the Lissen All-Wave All-World "Skyscraper" 4, the SET THAT SPANS THE WORLD!
A Publishing Sensation
FOR THE FIRST TIME IN PART FORM
THE GREAT WAR
BY THE RT. HON.
WINSTON CHURCHILL

Mr. Churchill has all the gifts of a great writer, with an unsurpassed style. He can make the past live—The great dramatic moments of the War, the anxious days of hopes and fears, of disasters and triumphs, come vividly before the mind’s eye as chapter succeeds chapter. Mr. Churchill’s brilliant Work gives the most vivid pictures of battles lost and won. But it is far more than that. It is the most instructive and informative History of the Great War. It tells plainly and clearly the Causes and Events that led up to the War, the whole story of the War itself, the history of the peace and the tragic happenings of the years that have followed the Peace treaties. Clearly, and with great dramatic skill, Mr. Churchill relates What happened—all through the Years—and Why.

This brilliant work will be completed in 24 fortnightly parts—order your copies to-day.

PART ONE ON SALE THURSDAY, SEPT. 21st.

ONE SHILLING

AT ALL NEWSAGENTS, BOOKSTALLS & BOOKSELLERS
or Post Free 1½ each part from

GEORGE NEWNES LTD.
8-11, SOUTHAMPTON ST., STRAND, W.C.2
How Electrical Units are Derived

AN ARTICLE GIVING SOME INTERESTING FACTS ABOUT—

MOST of us are, of course, quite at home with volts, amps, and watts. We talk quite glibly of kilowatts and amp-hours and show a condescending familiarity with Ohm’s law; but I wonder how many radio enthusiasts when tackled could give a satisfactory answer to such a simple question as “What is a volt?” or “What is meant by power?” I am afraid quite a number would find such blunt inquiries rather embarrassing. “Oh, hang it all,” they would say, “a volt is a volt, just the same as a pound is a pound, and just as one gramme is the same as one gramme mass.” The slight discrepancy which sometimes exists between the two measurements is due to the fact that weight varies on different parts of the earth’s surface. A pound mass, for instance, may weigh just over a pound in one place and just under in another. It is due to this that mass is used instead of weight as the fundamental measure.

Electro-Motive Force

Well, so much for the mechanical units of force. Now what of the electrical equivalents? Electrical force or pressure is known as the electro-motive force and is the “push” that moves or tends to move electrons from one place to another, in other words causes electricity to flow.

Fig. 1.—Diagram illustrating the derivation of the dyne, a mechanical unit of force.

For instance, a man pushing a truck along a road from A to B is applying a force which, acting for a second on a mass of one gramme, produces an acceleration of one centimetre per second per second. This may sound rather technical, but a study of Fig. 1, will no doubt help to make it clear. Here the mass of one gramme is shown as a cube composed of just one gramme of matter.

Actually, a force of one dyne is very small; and for practical purposes units of a gramme weight or a pound are used. The gramme is the metric unit and the pound the English unit. The former is equal to 981 dynes and the latter to 445,000 dynes.

The unit of force or “voltage” is necessary to make electricity move in a wire. The unit of force or voltage is the volt.

For instance, a man pushing a truck along a road from A to B is applying a force which, acting for a second on a mass of one gramme, produces an acceleration of one centimetre per second per second. This may sound rather technical, but a study of Fig. 1, will no doubt help to make it clear. Here the mass of one gramme is shown as a cube composed of just one gramme of matter.

Actually, a force of one dyne is very small; and for practical purposes units of a gramme weight or a pound are used. The gramme is the metric unit and the pound the English unit. The former is equal to 981 dynes and the latter to 445,000 dynes.

Electro-Motive Force

Well, so much for the mechanical units of force. Now what of the electrical equivalents? Electrical force or pressure is known as the electro-motive force, abbreviated to E.M.F., and is the “push” that moves or tends to move electrons from one place to another, in other words causes electricity to flow.

Just in the same way that pressure in pounds or grammes is required to force water through a pipe, so an electro-motive force or “voltage” is necessary to make electricity move in a wire. The unit of force or voltage is the volt.
used is the volt. The volt is not so easy to define as a mechanical unit since we cannot give it directly in terms of time, length, and mass. One definition states that it is second by which the amount of current flowing is measured.

As with mechanical units there is often more than one unit for the measurement of the same property, so it is with electrical units. For instance, there is the absolute unit of electric current and also the practical, the latter being the amperes which I have just described. The absolute unit is equal to one tenth of an amp, and is that current which, flowing in a circuit, part of which is formed into a circular arc one centimetre long, on one centimetre radius, will act upon a unit magnetic pole at the centre of that arc with a force of 1 dyne. Fig. 4 shows what this means. A B is the current, the force or property, and it is 1 centimetre long, and curved to form the arc of a circle 1 centimetre in radius. The centre of the circle P is the point where the magnetic field surrounding the wire, and due to the current through it, will act on a magnet of unit strength with a force of 1 dyne. Naturally this definition will not convey much unless we know what a “unit magnetic pole” is. This again is another absolute unit, and means a magnetic pole of such strength that if placed one centimetre from a similar pole, it will exert a force of repulsion of one dyne.

Resistance and the Ohm

Of equal importance with the volt and amp is the practical unit of resistance. Resistance is the opposition a body offers to the passage of an electric current. It may also be described as the property of converting the energy of the swiftly moving electrons (which constitute an electric current) into heat. In this connection it is analogous to mechanical friction, which is the opposition encountered by all moving bodies, and which also manifests itself as heat.

The ohm is described as the resistance of a column of mercury 106.3 cms. long and 1 sq. mm. in cross section, and of a mass of 14,4521 grammes at a temperature of 0 degrees Centigrade. Again there is an absolute or electro-magnetic unit based on unvarying factors. There is scarcely need to go into details as to how this unit was evolved, but I mention it, as we have done above, with the other absolute units, to show that it is possible to define such an apparently

evanescence thing as electricity in terms of such tangible factors as time, length, and mass. In fact, electro-motive force (E.M.F.), current, resistance, and inductance, etc., can all be expressed in terms of L, T, and M, and from this the absolute units have been derived. As we have seen, they are not always of a convenient size for ordinary use, and this has led to the introduction of the practical units. In the case of resistance the practical unit, namely the ohm, is equal to 1,000,000,000 (one thousand million or 10^9) absolute units.

Power

Volts multiplied by amps gives watts. A watt is the electrical unit of power. Power is the rate of doing work. Perhaps this needs a little explanation. Work is here used in the restricted sense, not in the general. When a force overcomes a resistance and so moves something, work is said to be done; in fact, when a man lifts a pound weight one foot from the ground he does work. In such a case the work done would equal one foot-pound. If he raised it two feet he would do two foot-pounds of work. Of course time is not taken into the matter. However, if he does the work quickly, he uses more power than if he does it slowly. The English unit of a horse-power is equal to 550 foot-pounds of work performed in one second.

The electrical unit of power—the watt—is equal to $\frac{1}{4}$ horse-power and is the power developed when one volt produces a current flow of one coulomb per second (one ampere).

If an electric lamp takes a current of, say, 1 amp at 240 volts, then the power used is 240 watts (1 x 240). Similarly a lamp taking 3 amp at 120 volts also consumes 360 watts. From these two examples you will see that voltage and amperage alone is no indication of the power expended in a circuit. Power is dependent on both current and voltage.

Hints on All Types of Motor

To conclude this article some general hints of use for all types of motors may be appreciated. The regulator indicating table should not be relied on too blindly, but should be tested in one of the following ways.

Chalk a mark on the edge of a record and play it, counting the times the chalk-mark passes a given spot over a minute, and so on. If the speed is correct, it should be between seventy-eight and eighty. If it is not, the motor should be adjusted in some way, preferably by altering the tension of the spring mechanism.

A final note, may I remind you that you are far better to let a lamp burn out or break your springs if you keep the motor running when winding, as the motor does not have to take the sudden jerk when fully wound as it often does when the turntable is stopped.
VOLTAGE STEADY AS A ROCK
while Current Drain varies from zero to 30 milliamps

THE NEW DEMANDS OF MODERN TRANSIENT LOAD CIRCUITS CAN ONLY BE MET BY A BATTERY OF BIG OXYGEN CONTENT & LOW INTERNAL RESISTANCE

In a modern Transient Load—Q.P.P., Push Pull or Class “B”—Receiver, the amount of high-tension current called for by the receiver depends upon the “noise value” of the programme. That saves a lot of high-tension current because the average programme is relatively quiet. But it reveals also a danger of severe distortion, because VERY FEW BATTERIES can stand up to the load imposed upon them by these new output stages when, for example, a heavy orchestral item is being played or when the drums predominate. A Queen’s Hall Concert, for instance, might well call for 30 milliamps current output from your battery on certain passages. An ordinary high-tension battery simply cannot do it—the voltage immediately drops off alarmingly and the quality of reproduction is ruined.

HOW MANY BATTERIES CAN STAND UP TO 30 MILLIAMP DRAIN WITHOUT VOLT DROP?

The Lissen Secret Process Battery contains a catalytic agent of great potency which liberates oxygen in abundance in the cells and keeps the internal resistance of the battery very low. The new circuits reveal the great advantage of this low internal resistance very strikingly, because a Lissen Battery when called upon can deliver 30 milliamps or more of current instantaneously without volt drop. You have paid a big price and waited a long time for a battery set capable of giving you all the volume you want on an economical basis; it is penny wise and pound foolish to sacrifice this new beauty and power of radio by using inferior batteries. Ask very firmly for a Lissen High-Tension Battery this year—you will HEAR A DECIDED IMPROVEMENT IN LOUD-SPEAKER TONE and enjoy LONGER BATTERY LIFE for LESS MONEY.

"IT STUBBORNLY RESISTS VOLT DROP"

LISSEN SECRET PROCESS HIGH TENSION BATTERY

Mention of "Practical Wireless" to Advertisers will Ensure Prompt Attention
LOW Prices!

60 Volt H.T. 4/6
100 Volt H.T. 7/-
120 Volt H.T. 9/-
9 V. G.B. 10d.
4½ V. Pocket Lamp Battery 4½d

PAY what you like for your H.T. you cannot get a finer Battery than the LION. For the LION is the MASTER Battery, full of the power that enables your set to give its best performance. Long-lasting and low-priced, the LION H.T. Battery is the finest on the market to-day. Don't think that because you pay more you get a better Battery. Stop paying fancy prices for your H.T. . . . and follow the lead of the expert Set Designers who specify the LION H.T. Battery in their circuits.

See the name LION on the next Battery you buy

FULL OF LASTING ENERGY

Advt. of Vinces Dry Batteries Ltd., Garford Street, Poplar, E.14. 'Phone: East 1902.
CLASS B—AND YOUR SET

CLASS B amplification has formed the subject of several articles previously given in PRACTICAL WIRELESS, whilst a complete Class B amplifier and a number of receivers incorporating this wonderful system of amplification have been described in these pages. But despite these facts the numerous inquiries relating to Class B which we received at Olympia and which continue to pour in by post make it perfectly clear that there are many readers who would welcome some additional practical information on the subject. It is therefore proposed to deal in general terms with the methods of adding Class B as, well as with the choice of components for building an amplifier. Some information on how to obtain the best results from Class B will also be given. In short, an attempt will be made to cover, as briefly as possible, all the queries that are most frequently addressed to us.

Although Class B is now well established, there are not a few readers who find it hard to believe that it can give the tremendous volume of output which is claimed with such a modest consumption of H.T. current. As a matter of fact, the claims made—that the undistorted output of a battery set with "B" output is equal to or greater than that given by an ordinary power amplifier—are entirely borne out by practical experience. It is quite as great as that given by an ordinary power amplifier.

Adding a Class B Amplifier

Having decided to fit Class B, the constructor next wants to know the best way of doing it. This, of course, depends upon the design of the existing set and upon personal inclinations. If the set has a single low-frequency transformer, a Class B amplifier can be added without altering the set in any way, by simply connecting it to the loud-speaker terminals. The normal L.F. valve (generally of the small power type) then performs the duties of the "driver" which is necessary to feed the new output valve. When there are two L.F. stages, one of them should be removed because it will no longer be required, as a matter of fact, it could be kept, but it would serve no good purpose and would naturally increase distortion.

A pentode can be used as "driver," but an ordinary triode is better. The reason is that both pentodes and Class B valves tend to give emphasis to the higher musical notes, and thus when the two are combined there is some danger of making reproduction "screetchy."

Choosing the Loud-Speaker

Complete Class B amplifiers, which may be connected direct to the set with a minimum of trouble, can be obtained, but most readers will prefer to make their own. Particulars relating to the construction of an amplifier will be given later. A loud-speaker of the balanced armature or moving coil type is useless with Class B since it is incapable of handling the full output, which is anything from ten to twenty times as great as that given by an ordinary power valve. For this reason, those who contemplate changing over to Class B are recommended to buy a new moving-coil speaker already fitted with a special Class B transformer, or even to buy one of the amplifier-speaker assemblies which are now made by several firms. Those who already have a Class B speaker are much more fortunate, and it gives a boost of from one to two for each of the main reasons. As a matter of fact, it could be kept, but it would serve no good purpose and would naturally increase distortion.

Curing Distortion

Actually, Class B amplification gives particularly good "quality," but for various reasons many users find the reproduction far from good. Distortion is generally traceable to a lack of sufficient decoupling

Some Useful Notes explaining How a Class B Stage can be Added to any Battery Receiver, and also How Optimum Results can be Obtained from it.

By FRANK PRESTON, F.R.A.

Fig. 1.—The circuit of a Class B amplifier suitable for use with any type of battery receiver having a single L.F. stage.
PRACTICAL WIRELESS

September 23rd, 1933

Several readers who have H.T. eliminators ask if these can be used with a Class B set. If the eliminator is operated from D.C. mains it is almost invariably unsuitable, provided that it is a good quality instrument rated to give not less than 30 milliamperes output. Other writers (or the latter proviso) is that the "peak" and content of a Class B valve often attains a figure of from 25 to 35 milliamperes, even though the average consumption is less than 10 milliamperes. With a cheap eliminator the resistance of the smoothing chokes is often fairly considerable, and in consequence the output voltage drop as the current drain is increased. When this happens distortion is immediately produced by the voltage fluctuation on the anodes of the detector and "driver." Another way of applying the bias can be at least 15 volts higher than when the valve is used as a normal L.F. amplifier. Another way, which is applicable if the maximum output of the Class B valve is not required, is to use a type L or H.L. valve as "driver." It need scarcely be mentioned that there are two general types of Class B valves, one of which gives an output of 2 watts, takes an average H.T. of 9 milliamps and a filament current of .4 amp, whilst the other gives 11 watts output and requires H.T. and L.T. currents of approximately 9 milliamps and 25 milliamps respectively.

The small valve is adequate for most purposes and the larger one is only actually required when the speaker is to be used out of doors or in a very large room.

Economical working, which is, of course, one of the main features of Class 3. The anode current consumed by a Class B valve is proportional to the signal voltages applied to its grids. It is therefore wasteful to allow the valve to amplify the high notes only, or the low ones, thereby suppressing these high frequencies prior to the output stage if they do not pass to the grids of the Class B valve and thus do not "cost" anything in the way of high-tension current.

The tone control transformer is used in the anode circuit of the detector valve this can be employed to reduce the high note response, but if not, the best position for the tone control components is between the primary terminals of the "driver" transformer, as shown in broken lines in Fig. 2. The variable resistance should have a maximum value of 50,000 ohms, whilst the condenser may have a value of between .01 and .02 mfd.

The H.T. Supply

Even though Class B amplification is inherently economical there are two or three ways in which a still greater degree of economy can be secured. The most useful of these is to increase the grid bias on the valve being used as "driver"; in nearly every case this bias can be at least 15 volts higher when the valve is used as a normal L.F. amplifier Another way is applicable when the maximum output of the Class B valve is not required, is to use a type L or H.L. valve as "driver." It need scarcely be mentioned that there are two general types of Class B valves, one of which gives an output of 2 watts, takes an average H.T. of 9 milliamps and a filament current of .4 amp, whilst the other gives 11 watts output and requires H.T. and L.T. currents of approximately 9 milliamps and 25 milliamps respectively. The small valve is adequate for most purposes and the larger one is only actually required when the speaker is to be used out of doors or in a very large room.

WILL you join me for a minute or two in the realms of "Might Be," or, if you would rather have it so, "Phantasy"? I have just been listening to an argument on the fourth dimension in which several promising students in the medical world were taking part. One gentleman, who had been paying careful attention to the opinions expressed, got up from his chair with a look of disgust on his face, and before leaving bent down and whispered in my ear: "Crackers. Now I expect many of you to know that I have been fascinated as to the fourth dimension, and the most interesting and easily understood theory is that it is a plane superimposed upon the one on which we live, so that countries, towns, and their peoples may be intermingled with ours without our being able to detect them, we not being able to perceive this fourth dimension, as it has neither length, breadth, nor thickness. Suppose I give you a slight illustration. Take

The interesting Multitone Class B adaptor which is fitted with a plug to enable it to be plugged into the output socket of any existing receiver is liable to sound rather "shilll." Because of this it is usual to fit some kind of tone control or tone compensating device. This consists of a variable resistance and fixed condenser connected in series, and may be inserted in the anode circuit of the "driver" valve or between the two anodes of the Class B valve. Although often used in practice, the latter position is not good from the point of view of

The Fourth Dimension

By GRID LEAK

A sheet of very thin paper and hold it edgewise between you and the light; when you get it in the correct position it will almost disappears from your sight, as it has almost the minimum of length, breadth, and thickness. If you could take away from it these three dimensions it would disappear, becoming an object, and if you could add these dimensions to a fourth-dimensional object, it would become visible to you and be the material plane. We know we live in a three-dimensional world and that every material thing must have length, breadth, and thickness; in other words, that all matter must have solidity. and every thing has mass. We know we live in a three-dimensional world and that every material thing must have length, breadth, and thickness; in other words, that all matter must have solidity.

The scientist, through algebraic formulæ, has been able to prove the fourth dimension, and the next step is whether radio might prove the key to this fourth dimension, and may offer the means of finding and proving its existence, together with the possibility of communicating with its inhabitants. What a new field it would make for radio experimenters! What type of coils, condensers, and power valves would be required to bolster up the undiscovered signals which may be flashing through the ambient ether? It may be that much of the strange phenomena heard by experimenters have an equally strange source of excitation which even a most discriminating ear may pass over as a crash of static, when it is really an authentic signal of another kind.
NOW YOU CAN BUILD A SET FOR BOTH A.C. & D.C. MAINS

TUNGSRAM PRODUCE AN A.C.-D.C. UNIVERSAL VALVE

Tungsrham have achieved it—a Universal Valve which works on both A.C. and D.C. mains.

With these Tungsrham Universal Valves any circuit can be built. All valves, including rectifier, are indirectly heated—there is practically no hum—and they are really economical, for the mains consumption is only 35 watts.

Your dealer stocks them—go to him to-day! Or post the coupon for full particulars and circuit diagrams.

THERE IS A TUNGSRAM VALVE FOR EVERY RADIO NEED

<table>
<thead>
<tr>
<th>Type</th>
<th>Amp. Fac.</th>
<th>Shape</th>
<th>Use</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.R. 218</td>
<td>2,000</td>
<td>3.5</td>
<td>H.F. Pen. Dec. 1st change</td>
<td>14/6</td>
</tr>
<tr>
<td>H.R. 218</td>
<td>2,000</td>
<td>3.0</td>
<td>V. into H.F. Pen. A.C. Mixer</td>
<td>14/6</td>
</tr>
<tr>
<td>SS 218</td>
<td>800</td>
<td>1.2</td>
<td>S.G.H.F. Det</td>
<td>14/6</td>
</tr>
<tr>
<td>SS 218</td>
<td>800</td>
<td>1.4</td>
<td>V. into S.G.H.F.</td>
<td>14/6</td>
</tr>
<tr>
<td>S 218</td>
<td>400</td>
<td>1.0</td>
<td>S.G.H.F. Dec</td>
<td>14/6</td>
</tr>
<tr>
<td>S 218</td>
<td>400</td>
<td>1.0</td>
<td>S.G.H.F. Dec</td>
<td>14/6</td>
</tr>
<tr>
<td>B 218</td>
<td>25</td>
<td>2.2</td>
<td>Power Driver</td>
<td>16/6</td>
</tr>
<tr>
<td>G 218</td>
<td>7</td>
<td>2.2</td>
<td>Multiplier. Output</td>
<td>16/6</td>
</tr>
<tr>
<td>P 218</td>
<td>80</td>
<td>3.0</td>
<td>S. Wave Rect</td>
<td>16/6</td>
</tr>
<tr>
<td>PP 218</td>
<td>60</td>
<td>3.0</td>
<td>ditto</td>
<td>16/6</td>
</tr>
<tr>
<td>Y 218</td>
<td>75 M.A. D.C. Rect. 250</td>
<td>ditto</td>
<td>16/6</td>
<td></td>
</tr>
<tr>
<td>PV 4018</td>
<td>120 M.A. D.C. Rect. 250</td>
<td>ditto</td>
<td>16/6</td>
<td></td>
</tr>
</tbody>
</table>

All Valves '18 Ampere indirectly heated for series heating.

COUPON

To TECHNICAL DEPT. TUNGSRAM LTD., 72 OXFORD STREET, LONDON, W.I.

Please send me full details of Tungsrham Universal A.C.-D.C. VALVES, AND OF THE COMPLETE TUNGSRAM RANGE.

NAME ____________________________

ADDRESS _________________________

Pa.W. ___________________________
LEARNING THE MORSE CODE—II
By "SHORT-WAVER"

Sending and Receiving

Because it seems easier, many people try to learn to send before they can receive, but this is very undesirable, and the two should go hand in hand, with the receiving getting the most attention; the ordinary listener will do more receiving in any case, and if he graduates to a transmitter it is of no use to be able to send at high speeds and not be equally expert at reading the code, in addition to which a bad receiving operator is certain to be a bad sending operator. Once the code is completely memorized and words of two or three letters can be read, however slow the speed, it is best to drop the buzzer practice and concentrate on listening only. Search round on the receiver for someone sending quite slowly; the most likely place to find such a one is in one of the frequency bands of wavelengths, particularly that from 41.1 to 42.9 metres, but some of the commercial stations are slow enough for this work. Having found a suitable transmission try to copy as many letters as possible; as soon as a letter is recognised write it down and forget it, passing on to the next one. When learning more Morse one of the hardest things to avoid is trying to think what the letter was that you just missed, instead of forgetting it and going straight on to the next; while you are searching your mind for the missed letter you are losing the next five as well! It must be frankly confessed that this listening and trying to copy letters is the most disheartening part of the whole process because so little is received and so much seems to be sent, but it is very well worth persevering because it is undoubtedly far and away the best way of learning. As soon as it is found that most of the transmitted matter can be copied, a search should be made for his transmissions an operator always aiming to copy a few words a minute more than your maximum. When the stage is reached of being able to read about eight words a minute the ordinary calls should be used in preference to amateur transmissions, partly because they send faster and for longer uninterrupted stretches, and partly because most of their transmissions are in code, which is much better practice than plain language because it is impossible to guess the end of a word after the first few letters are copied! This is a point to be remembered when getting someone to give you buzzer practice; the best plan is for the sending operator to take as material for his transmissions a passage from a book or magazine and send it backwards, i.e., from the end of the sentence to the beginning, so that the receiving operator cannot guess what is coming next.

Logging Call Signs

Once a speed of about eight words per minute has been attained a great deal of fun can be had on the amateur bands in logging call signs, while at the same time the operating ability will be improved. It will perhaps be as well, therefore, to give some idea of the type of transmissions that are likely to be heard. One of the first things to be noticed will be the great number of groups of letters usually repeated three or four times in succession and sometimes more often. CQ is sent out by a station wishing to get in touch with any other station; it may be translated as meaning "will anyone write please this call me, and I am sending three times followed once by DE (meaning from), and then by the call sign of the transmitting station repeated three or four times. At least, that is the correct procedure; unfortunately a regrettable large number of stations abuse the signal by sending CQ far too many times and signing their call far too little. The use of CQ, though permitted to all operators, is forbidden to amateurs in this country and so they use the group TEST implying a desire to conduct some tests with the other station. After either of these comes the DE, and then the call sign of the sending station, which consists of one, two or three letters (which give the nationality) followed as a rule by a single figure and one, two or three more letters. Examples are:

- X9A—Mexican
- GSEE—British
- O73M—Danish
- HA5H—Hungarian
- W6GAT—American

When answering a CQ call the calling station sends the call sign of the CQing station, followed by DE and his own call, repeated. Owing to the repetitions these transmissions are most likely to be picked up by the novice and quite a large bag of stations can soon be recorded, many of which may be a very great distance off, although DX is more likely to come when the listener is sufficiently familiar with the code to be able to read the call signs of very weak stations. The text of amateur transmissions, when contact has been established, is very largely similar to the beaten path with abbreviations, some merely compressions of ordinary words and some the Q signals, groups of three letters beginning with Q which were laid down in the International Radiotelegraph Convention for the speeding up of ordinary ship to shore traffic, and which have been adopted, with occasional modifications of the literal translation, by amateurs for their own use. There is no room to give them here, but they are obtainable in several publications, notably the "Handbook for Wireless Telegraph Operators" to be issued by His Majesty's Stationery Office on a ninemarine.

An Audio Frequency Oscillator

Another, somewhat aristocratic, method of providing Morse signals for practice is the use of an audio frequency oscillator. This is simply a valve oscillator working at an audible frequency, and an excellent one can be rigged up with a low-frequency transformer in the circuit given last week, as it will be seen is simply an ordinary reaction circuit with the windings of an L.F. transformer in place of the usual coils and with the grid condenser and leak omitted. Such an oscillator will give a pure whistle whose pitch depends on the inductance of the transformer winding and the capacity across it, the addition of more capacity lowering the pitch. The strength of the oscillations depends chiefly on the H.T. voltage, sixty volts or so providing enough volume to work a loud-speaker, while reducing H.T. to the minimum required to maintain oscillations will permit headphones to be used and practice to be carried out without interfering with other people in the same room. If the short-wave receiver is provided with plug-in coils it can easily be converted for use as an audio oscillator without any permanent change by fitting an L.F. transformer with leads going to a plug mounting similar to that used for the ordinary coils, except that if the usual Reimartz control of reaction is used a separate lead will have to be brought out for the headphones and H.T. positive connection, the usual detector H.T. plus wander plug being removed; it is also necessary to short the grid condenser by means of a short piece of wire and two crocodile clips. Fig. 3 shows the arrangement; if no oscillations are obtained the leads to one of the transformer windings must be reversed. The advantage of using an audio oscillator is that it gives a note similar to the best note of a C.W. station.

The code given in last week's issue is that usually referred to as the Morse code, but it is more correctly the Continental Morse code, Morse code proper being used only in America on line telegraph circuits. In addition to the English alphabet there are

(Concluded from page 938, September 16th issue.)
OVERLOADING THE DETECTOR

A PRACTICAL ARTICLE DEALING
AVOIDING THE TROUBLE.

By ERIC JOHNSON

UNTIL the advent of the regional scheme the question of overloading of the detector valve rarely arose. Unless the listener actually lived under the shadow of the broadcasting station, so to speak, he was unlikely to experience this trouble. Nowadays, however, with super-power stations springing up all around us, this fault is becoming increasingly common. The popularity of one or more screened grid stages has also contributed in no small degree to this annoyance by reason of the very high stage gain. Detector overloading manifests itself as a rather peculiar form of distortion which is somewhat dissimilar to overloading of the L.F. stages. To the inexperienced ear there is little difference—indeed in both cases harshness and bursting are prominent; over-accentuation of sibilants, however, which are produced with a curious rasping sound, may be taken as a likely indication of detector overloading. A cure may be effected in a number of ways. Let us examine these in detail.

Converting to Power Grid Detection

The most obvious method of curing the trouble is, of course, to reduce the pick-up of the aerial by shortening it; whilst being most effective, it must be remembered that with a simple set the capabilities depend almost solely on a good aerial system, so unless we are prepared to sacrifice our distant stations we must look around for other cures. If our receiver is a battery model, most probably rectification will be on the "leaky-grid" system which will only deal with a limited input. It is quite a simple matter, however, to convert to the "power grid" principle, which actually shows at its best with a large input such as one is accustomed to get nowadays from the local station.

From an examination of Fig. 1 it will be seen that the conversion is very simple, and is largely a matter of change of component values rather than any wiring alterations. It should be noted, however, that the grid return lead goes to L.T. negative, i.e., it is at zero potential, and not biased positively as with leaky-grid detection. The only other adjustment necessary is an increase of H.T. to anything from 100-150 volts, dependent upon the valve used and the input. (Experts differ on this point.—Ed.).

Even with this alteration, if we are so unfortunate as to live in the shadow of the station, or our detector is preceded by one or more efficient L.F. stages, overloading may still occur. As mentioned above, we do not want to restrict the range of our set by reducing aerial size; the only alternative, therefore, is to fit some form of pre-detector volume control of which there are several methods. Of course, the fitting of variable-mu S.G. stages goes a long way to solving our problem, but does not in any way affect the man with the still popular detector plus L.F. set. The cheapest remedy of all is doubtlessly obtained by connecting a small condenser in the lead-in as shown in Fig. 2; for the best results this may have a very small value, and should certainly not exceed .0001 mfd., provision being made for shorting the condenser when necessary. The great disadvantage of this system is the upsetting of calibration should our tuned circuit be a simple one as depicted, which is still quite common even in these days of ether congestion.

An arrangement which does not suffer from this drawback is given in Fig. 3. Here a high resistance potentiometer is pressed into service, and the input may thus be reduced at will from zero to the maximum. A rather serious snag is the unavoidable damping introduced and the resistance of the potentiometer must in consequence be high—certainly not less than 10,000 ohms. A variation of this scheme is depicted in Fig. 4, but as this involves a constant changing of aerial capacity across the coil, calibration will be seriously affected. A method very much akin to the foregoing, and one which is superior in many respects, is offered us by the capacity potentiometer system shown in Fig. 5. The only additional component needed is a differential condenser. One set of fixed plates is connected to the "top" end of the grid coil, and the other set goes to earth, the aerial being con-

(Continued on page 36)
The Causes of Ionization

In defining ionization I said that a gas molecule becomes ionized when some external agency supplies enough energy to detach an electron from it. In the case of the ionized layers of the atmosphere the source of this energy is the sun, the energy being actually supplied by radiation from the sun. The most obvious of the sun's radiations are, of course, light and heat, but in addition there are the invisible ultra-violet radiations whose therapeutic properties have been so widely recognised of late years, and it is to these very short wavelength rays that the bulk of the ionization of the reflecting layers is attributed. The invisible ultra-violet rays possess immense energy which easily splits up the gas molecules into ions and electrons. In the case of the lower Heaviside layer there is reason to believe that some of the ionization may arise from another ionizing agent in the form of a stream of corpuscles, actual concrete bodies, shot out by the sun. These corpuscles travel at the relatively slow rate of about 1,000 miles per second and possess enough energy when they impinge on the atmosphere to split up the gas molecules and ionize them; definite proof of the existence of this corpuscular stream, however, has not yet been obtained. In any case there is no doubt that the sun's radiations are responsible for the existence of our exceedingly useful layers and therefore we should be able to find some connexion between variations in the sun's behaviour and radio conditions.

Day and Night Effects

The most obvious solar variation is between daytime and night and the corresponding, almost equally obvious, radio variation is in the considerable improvement in signal strength and long and medium waves and the equally marked falling away in signals on waves below about 20 metres, when night comes into the picture. This may be explained as follows. In full daylight the amount of ultra-violet radiation from the sun is a maximum and therefore the ionization of the layers is at a minimum. Towards the lower surface of the Heaviside layer from the ground depending on the pressure of the atmospheric gas in that region, because the greater the gas pressure the more quickly free ions and electrons will combine with other electrons and ions, so leaving an un-ionized region; below about sixty miles the pressure is so great that ions recombine almost as quickly as the ionizing agent disintegrates the molecules and so there is practically no ionization. It is fairly clear, therefore, that with a continual stream of ultra-violet radiation there will be a continual supply of ions and electrons and so in spite of the recombination ionization can exist at a fairly low level. As soon as the ultra-violet stream is interrupted no more ions will be supplied and, recombination taking place, the level of the layer will rise. That is what happens at night time; the stream of electron-producing energy is turned off and ions and electrons recombine to form un-ionized gas molecules, the rate of recombination being greatest nearest the surface of the earth and fairly small in the low pressure regions of the top of the layer and the upper layer. This results in the bottom of the layer rising so that its effective height increases and thus the range of medium wave conditions may last up to 1 a.m. as far as 20-metre signals are concerned.

Varying Radio Conditions

The next major variation is by no means so obvious, but is noticeable to listeners who have used their sets regularly for a long time and have found that some years produce a better bag of DX stations than others. It has, in fact, been found that general conditions for radio reception vary from year to year, but that the variation is repeated every eleven years. That is to say, that if general conditions were for medium wave signals being louder. The cause of short waves is rather different. Medium-short waves give increased signal strength because the reduced electron density in the Heaviside layer results in less attenuation as the waves pass through it on their way to the Appleton layer. Short waves below 25 to 30 metres, however, find the number of free electrons in the upper layer (Appleton layer) insufficient to bend them round so that they are not returned to earth and therefore not heard at all. In the daytime they are stronger than medium-short waves because although both are returned to earth the short waves are much less attenuated than the medium-short waves.

The height of the Heaviside layer rises about twelve miles during the night, but drops very quickly to its lower value when the sun appears again. Actually the layer is affected by the sun before the latter is visible on the earth (i.e., before sunrise) because the layer is nearer the sun than the earth's surface is.

The above explanation of day and night effects serves also for the difference between summer and winter reception conditions. In summer, of course, the ionization is always much greater and the nights much shorter than in winter, so that medium and medium-short wave conditions are not so good. Below 25 metres, however, many stations may be heard and daylight conditions may last up to 1 a.m. as far as 20-metre signals are concerned.

Fig. 1.—Diagram showing the path of reflected signals from the Appleton and Heaviside layers.
Wherever wireless terms are understood “Ohmite” means “The Best Resistance”

OHMITE RESISTANCES

The most popular and efficient type of fixed resistance for all general purposes. “Better than wire wound.” All values, 50 ohms to 5 megohms.

HEAVY DUTY TYPE 2/3

<table>
<thead>
<tr>
<th>Resistance (ohms)</th>
<th>Milliamps (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>8</td>
</tr>
<tr>
<td>2,000</td>
<td>16</td>
</tr>
<tr>
<td>3,000</td>
<td>24</td>
</tr>
<tr>
<td>4,000</td>
<td>32</td>
</tr>
<tr>
<td>5,000</td>
<td>40</td>
</tr>
<tr>
<td>6,000</td>
<td>48</td>
</tr>
<tr>
<td>7,000</td>
<td>56</td>
</tr>
<tr>
<td>8,000</td>
<td>64</td>
</tr>
<tr>
<td>9,000</td>
<td>72</td>
</tr>
<tr>
<td>10,000</td>
<td>80</td>
</tr>
</tbody>
</table>

Safe maximum current carrying capacity of “Ohmites”

100°F Temperature Rise

<table>
<thead>
<tr>
<th>Resistance (ohms)</th>
<th>Milliamps (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>8</td>
</tr>
<tr>
<td>2,000</td>
<td>16</td>
</tr>
<tr>
<td>3,000</td>
<td>24</td>
</tr>
<tr>
<td>4,000</td>
<td>32</td>
</tr>
<tr>
<td>5,000</td>
<td>40</td>
</tr>
<tr>
<td>6,000</td>
<td>48</td>
</tr>
<tr>
<td>7,000</td>
<td>56</td>
</tr>
<tr>
<td>8,000</td>
<td>64</td>
</tr>
<tr>
<td>9,000</td>
<td>72</td>
</tr>
<tr>
<td>10,000</td>
<td>80</td>
</tr>
</tbody>
</table>

Ensure a safe and efficient Aerial and Earth. The new AEROFICIENT KIT provides all you need. Complete 6/6

Send a postcard for our new Catalogue, which describes all our products.

Advertisement of GRAHAM FARISH LTD., Masons Hill, BROMLEY, Kent.

Export Office: 1/12, Fenchurch Street, E.C.3.
All-important new features plus unrivalled quality

DUBLIER PAPER CONDENSERS

1. True non-inductive type of construction.
2. Available for working voltages from 300-900 D.C. peak.
3. Adequate factor of safety.
4. New method of fixing to chassis.
5. Aluminium containers with moulded bakelite top of distinctive appearance to match other components.
6. Takes up minimum amount of space on chassis.

Prices from 1/9.

Write for your copy of the new Dubilier Catalogue now!

DUBLIER CONDENSER CO. (1925) LTD.,
DUCON WORKS, VICTORIA ROAD, NORTH ACTON, W.3.

Another Brilliant win—

for SMITH’S ACCUMULATORS

‘ANODEX’ DRY BATTERIES

exclusively specified for the

“PREMIER SUPER”

S. SMITH & SONS (Motor Accessories) LTD.
CRICKLEWOOD, LONDON, N.W.2.
SLOW-MOTION DEVICE AND FULL-VISION SCALE

THOSE constructors who have found the “wrinkle” in June 3rd issue, on “A slow-motion device for reaction condensers” useful, may be interested in this added refinement, so that it may be adapted to a tuning-condenser with a full-vision scale. It requires instead of a narrow piece of ebonite a slightly larger piece. It must be made long enough to be able to glue a scale on underneath the end of the pointer. This is made by cutting a piece of aluminum (an old condenser plate will answer) to the shape shown. A hole is drilled in the end opposite the pointer and a slot cut at the other end. Drifts of the slow-motion gear drill a hole in the ebonite and fasten a bolt in, allowing it to protrude through the slot. The other end of the pointer is slipped on a bolt on the slow-motion gear. It must be allowed to move freely, but not too much so. Now turn your mechanism to its limit and mark a pencil mark on a slip of paper. Holding it firm, turn the gear through 180 degrees and mark the other end. Between these two marks divide a line into as many divisions as you require (90, 100 or 180) and when finished glue it down in the position it was in when you marked it. A window, slightly larger than the scale, should then be cut in the panel. The sketches clearly show the arrangement. — R. TAYLOR (Sunderland).

KEEPING BATTERY LEADS TIDY

A simple dodge for keeping battery leads tidy, cardboard and run your wires through the corrugations, as shown in the accompanying sketch. Now glue a piece of three-ply wood on the top of this, and mark the connections for the leads, as shown. This simple device keeps the bench tidy and prevents any accidents, such as putting H.T. on the flaments, as very often happens when wires are mixed up. The device can be kept steady on the baseboard by means of ‘tacks.—G. BURNS (Glasgow).

A Multi-Purpose Unit

AFTER a good deal of experimenting I have made a unit which I use for trickle charging, a micro- phone or pick-up amplifier, half-wave rectifier, and other purposes. All the components are assembled in an old crystal set cabinet measuring 6ins. by 7ins. by 5ins. The microphone is enclosed in the lid, while the valve and transformer are inside the cabinet with the terminals arranged on a piece of bakelite running across the top of the box. I also have a nine-volt grid bias battery in the circuit of the pick-up terminals and transformer, and the battery is also housed in the cabinet. The diagram of connections is given in the accompanying illustration. I connected the components as follows:

1. Connect the microphone to the collector of the push-pull tubes.
2. Connect the collector of the push-pull tubes to the battery.
3. Connect the battery to the collector of the rectifier tube.
4. Connect the rectifier tube to the power supply.
5. Connect the power supply to the radio set.

R. JONES (Birmingham).
The circuit diagram for the multi-purpose unit.

An Efficient Indoor Aerial

To those readers who are looking for an indoor aerial of an unusual type, the one described below may be of interest. It is quite easy to construct, the cost is negligible, but it will give results far superior to the average indoor aerial, and compares favourably with a well-erected outdoor aerial. Briefly, it consists of a given number of turns of wire, wound round four pegs, supported on a piece of wood after the manner of a large square-shaped coil. The construction offers no difficulties, and the sketch, together with the following description, should make the method quite clear.

Cut two pieces of plywood about 12in. square (the size is not critical), and drill four holes 1/2 in. diameter, from each corner, and in one piece a fifth hole is drilled in the centre to take an ordinary type pillar terminal; this is for the connection to the lead-in. From a length of 1/2 in. diameter wood or ebony rod, cut four pegs 1/2 in. long plus double the thickness of the wooden sides. Glue the wooden pegs in the piece of wood having five holes, leaving the centre one out. Allow a short time for the glue to set, and then proceed to wind on twenty-five turns of 20 or 22 gauge d.s.c. or d.c.c. copper wire. Commence winding at the top left-hand peg (anchoring the start of winding securely to same), and proceed to put remainder of turns on in a clockwise direction, taking care to keep the wire tight and free from kinks. At the twenty-fifth turn, stop at the bottom right-hand peg, and finish off by looping end of wire round the centre pillar terminal. The insulation will have to be removed before making connection to the transformer, the connection for the lead-in to the set. The second side can now be glued in position, and if strips of wood, cut to size, are glued to sides of frame, the winding will be dust-proof. A small eye screwed to the back of the frame will enable it to be hung in any part of the room.

When hung on the wall in an upper room with a good shielded lead-in of the seven strand type, this arrangement will give results, both as regards selectivity and volume; it will also eliminate the interference from the house wiring installation.

Two more turns to winding.—W. ASPINALL (Manchester).

A Pair of Testing Prods.

As can be seen from the accompanying sketch, these testing prods are very easy to construct, and they are very useful for testing in difficult corners. First choose the battery, one of the small cylindrical type, and then obtain a piece of wood, or tough cardboard tube to fit over the battery. Two nails about 3in. long are next required, and four pieces of hard wood, 1/2 in. thick, and the same diameter as the inside of the tube. Hammer a nail through the centre of each piece of wood, taking care not to split them. Put a washer under the head of each nail to ensure good contact, and proceed to bind insulating tape round the nails, leaving a 1/2 in. bare at the ends. Then fit another wooden disk in end of tube, either by two woodscrews or glue. Thread flex through holes in the disks, which should be about 1/2 in. diameter, and solder to the spring, which can be obtained from an old torch. After putting the battery in the tube, fix the plugs, holding the prods with two woodscrews.—E. BARNES (West Ealing).

Two Useful Dodges.

A SIMPLE method of “slowing down” the tuning on the short-wave band is to reverse the end fixed plate of the tuning condenser (the inside one is to be preferred to avoid fouling any other components), so that, as you tune up the scale, the moving plates are travelling “in” to the reversed fixed plate, and you are travelling “out” to the normal fixed plates. It broadens the tuning to a remarkable degree. I, suppose, to the starting with a higher minimum, moving to a lower maximum. (See Fig. 1.)

The second illustration, Fig. 2, shows the connections for switching an accumulator (A) from a trickle-charger to the set, at the same time switching another accumulator (B) from the set to the trickle-charger with one movement of an ordinary double-throw switch (or a D.P.D.T. jack - switch), and without any troublesome changing over of leads. The first - named type of switch is to be preferred on account of the greater isolation of the contacts.—A. BINGHAM (Liverpool).
NEW—and better than many at double its price

MEGITE POTENTIOMETER VOLUME CONTROL
The element is of the fine nickel-chrome wire embedded in bakelite. The action is through a slipper plate, giving a smooth, positive contact, absolutely silent operation and making broken contacts impossible. Three terminal type. Single hole fixing. Complete with operating knob.

PRICE 3/6
25,000 ohms and over 4/6.

VALVE HOLDERS
These Valve Holders have exceptionally low loss moulded bases, the insulating material between sockets being reduced to a minimum. Contacts are of phosphor bronze, sturdy in design.

Four Pin Five Pin Seven Pin
Type, 6d. Type, 8d. Type £1/2.

The PIP transformer is thoroughly sound in construction and design and gives a result equalling and often better than others at a much higher price. In distinctive red case with nickel terminals.

Made in 3:1 and 5:1 ratios.

PRICE 6/6

GRAHAM FARISH PRODUCTS

Ensure a safe and efficient aerial and earth. The new 6/6 AEROCENTRE KIT provides all you need. Complete.

Send a postcard for our new Catalogue, which describes all our products.
Some Notes and Suggestions on a few Common Ideas that need to be Forgotten or Revised.

By H. BEAT HEAVYCHURCH

Don't Perpetuate Radio Fallacies

Even such a comparatively new scientific development as radio is not free from the danger of being hedged in by false ideas very akin to superstitions. For this reason, every technically-minded listener ought to endeavour to keep abreast with the advances in both the theory and the practice of radio and be ready to jettison old beliefs in favour of the latest ideas.

Looking back to the early days of broadcasting, in the light of modern knowledge, it is easy to see how a number of misconceptions and fallacies arose—fallacies of which listeners ought to disabuse their minds at once.

First of All, Aerials

For example, just because the original broadcast licence limited the total length of wire in a receiving aerial to one hundred feet, the public came to the conclusion that the longer the aerial the more efficient it was. Actually, of course, it is the effective height and not the length of aerial which counts, the longitudinal portion having very little to do with its efficiency. Another fallacy in connection with aerials is that it is desirable always to use the full hundred feet of wire. With present-day high-power transmitters of large wavebands, and with modern highly-sensitive radio frequency amplification, a too-efficient aerial is something of a disadvantage; station distances being, naturally, fixed, it is tuned out, i.e., selectivity is at a premium. It often pays, if selectivity is poor, to reduce the height and length of the aerial and to make fuller use of your L.F. stages.

Before we leave the aerial, let us scotch another superstition, namely, that the best reception is obtained when the aerial is pointing directly in line and away from the station it is required to receive. This is little, if any, foundation in fact for this theory, and if there was, the effect of a directional aerial would be almost entirely masked by other local conditions, such as the contour of the surrounding country, shielding, and so forth. Besides, with our modern receivers, we desire to receive stations from every point of the compass, so that little purpose would be served in designing an aerial which would be particularly effective in one direction.

L.F. Coupling

The next fallacy which I should like to lay low is that L.F. transformer coupling is vastly inferior to R.C.C. I admit to a particular liking, personally, for resistance-capacity coupling—but for quite other reasons. I will readily admit, however, that the average, let alone the best present-day L.F. transformer, is so very superior to the best production of early broadcasting days, that this form of coupling, properly used, is very unlikely to introduce serious distortion. Indeed, I would go so far as to say that a reasonably good transformer is definitely superior to a poorly-designed R.C. coupling.

Detectors

Many fallacies have arisen around detectors. For example, many people imagine that a crystal detector is the most perfect form of rectifier from the quality point of view. As a matter of fact, the curve of the average specimen of crystal is very far from linear, and the device can distort quite badly. This may not be very noticeable when using headphones, but many of us recollect the bitter disappointment we experienced when first we coupled a crystal set to a two-valve low-frequency amplifier.

Then there is a fallacy that an anode bend detector is necessarily freer from distortion than a leaky grid detector. It is nothing of the sort. On weak signals it distorts far more than a rectifier of the leaky grid type, while if the applied signals are too strong, double rectification will also occur, with the consequent distortion. All statements concerning detectors need to be governed by other conditions, one of the most important being strength of signal.

Do not run-away with the idea, also, that all you have to do to convert an ordinary leaky grid rectifier into a power grid detector is to increase the high-tension voltage. Increase them you must, for that is one of the essential features of power grid, but you must also make certain adjustments to the values of the grid condenser and grid leak—usually both must be very considerably reduced.

Again, the unfortunate choice of the term "power" has given rise to the wholly fallacious idea that a detector of this type necessarily increases the output power, and hence the volume of the receiver. The only reason for power grid detection is to enable the detector stage to rectify bigger signals without an undue amount of distortion. In other words, to increase the effective grid base of the detector valve. In a receiver employing one or more efficient stages of high-frequency amplification, comparatively large voltages are available at the grid of the detector and an ordinary leaky grid detector operated at a low anode voltage is apt to distort them. By increasing the working anode voltage, however, the acceptance of the valve is greatly increased.

Distortion

While on the subject of distortion, it will be as well to point out that the belief that distortion occurs mainly in the low-frequency and detector stages is quite erroneous. From personal observation I am convinced that in the average set the low-frequency side is usually remarkably free from distortion—components have improved so greatly in design and the valve makers instructions ameent correct grid-leak potentials and bias generally are very good. What distortion does occur on the low-frequency side generally is the result of overloading the output valve, of which, however, more later.

A considerable amount of distortion certainly occurs in the detector stage, generally due to incorrect operating conditions, or to the misuse of reaction, but the stage which is the most prolific source of distortion is the high-frequency stage.

Overloading, by which, of course, is meant applying too great a signal voltage, is the worst evil of the grid of the valve, as it is of very frequent occurrence in the high-frequency side, and is only cut out by taking the second of two radio frequency stages. As a result part rectification of the signal occurs in the high-frequency stages, the H.F. valves being able to amplify without distortion only a limited input signal. It is for this reason that the variable-mu screened-grid valve was introduced. The effect of increasing the negative grid bias applied to a variable-mu valve is very similar to the effect of increasing the anode voltage to a "power" grid detector, namely, to increase the amplification of the valve, and also to increase the volume of the valve's signal handling capacity. In the case of the variable-mu valve, however, an increase of grid bias also has the effect of decreasing the sensitivity of the valve. A variable-mu valve, therefore, not only permits of adjustment in order to avoid overloading and distortion on strong signals, but also forms a very convenient method of controlling volume.

On the Output Side

The output stage of a receiver is a most fruitful source of radio fallacies. A very common one is that by increasing the volume of sound it is possible to reduce the anode consumption and thus save high-tension electricity. Except in the case of a Class 'B' valve, this is absolutely untrue. A receiving set fitted with an ordinary triode or pentode output valve will always take the same amount of high-tension current, whether or not the volume is loud or soft, and even when no signal is being received at all. The high-tension current is fixed by the value of grid bias and high-tension voltage. What actually happens is that the grid control is turned up, a larger proportion of the power drawn from the high-tension source is converted into sound energy. Things are rather different in the case of a...
GREAT BIRTHDAY OFFER

The "Practical Wireless" POCKET TOOL KIT

For Every Reader

SEE OVER
Exclusive Offer

Here Are the Simple Conditions

All you have to do to obtain your Pocket Tool Kit is:

(a) Complete the Forms below in ink.
(b) Post Form No. 1 and stamped address label.
(c) If not already a regular reader hand Form No. 2 to your Newsagent.

On receipt of Form No. 1 and the address label, we will send you a special Subscription Voucher on which to qualify for your Pocket Tool Kit. Your Kit will be reserved for you, and will be despatched immediately we receive the completed Subscription Voucher.

Affix to the Subscription Voucher which we post to you 11 Gift Stamps cut from the bottom left-hand corner of the back page of PRACTICAL WIRELESS for 11 consecutive weeks commencing this week. (Gift Stamp No. 52).

When your Subscription Voucher is complete, send it, together with a Postal Order for 3s. 6d., to include registration, postage, packing, insurance, etc., to PRACTICAL WIRELESS Presentation Department, and your Pocket Tool Kit will be despatched to you immediately.

No reader may qualify for more than one Pocket Tool Kit.

This offer applies to persons residing in Great Britain and Ireland. Readers in the Irish Free State must pay any duty imposed.

The Test Prods.
The Viewing Mirror.

This is unquestionably the most amazing offer ever made by a wireless paper to its readers.

With the object of serving the needs of home constructors and regular readers of PRACTICAL WIRELESS (and thereby still further strengthening their regard for this paper) the Editor has designed for the purpose of this great offer the special case of wireless instruments illustrated on the previous page. These tools could not be purchased in the ordinary way for less than 12s. 6d. The case is of handy size, coloured in Emerald Green and measuring 6½ in. x 4 in.

Every item in the Kit is made from the best quality steel, and each tool fits snugly in its place in the handy metal case with its specially recessed bed.

The battery of tools provides the home constructor with a ready means of carrying out the various operations required in the construction of the most complex circuit. Every tool has been

IT FITS THE POCKET!

Made to fit the pocket

If undelivered to Geo. Newn

Name

Street

Town & County
To Every Reader!

POCKET TOOL KIT

..."5...
Britain's Foremost Reproducers

"ALPHA" P.M. MOVING COIL. 2 models. Dia., 9in. 35/-

"VICTOR" P.M. MOVING COIL. Dia., 10in. 70/-

"CHALLENGER" P.M. MOVING COIL. 3 models. Dia., 71/2 in. 27/6

"BANTAM" P.M. MOVING COIL. 2 models. Dia., 12in. 21/-

"POLAR STAR MINOR" TWO-GANG CONDENSER
Cadmium plated steel frame. Trimmers operated from top. Matched within 1/4% or 1 mfd. whichever is the greater. 2 x 0006
With full vision "horizontal" drive as illustrated. 12/6

"POLAR "ARCUATE" DRIVE
Slow-motion drive. Bevelled scale in wavelengths and 0-180 degrees. Moulded escutcheon. Lampholder. Fitted with air-dielectric trimmer as "Uniknob" design. 5/9

"POLAR "SEMI-CIRCULAR" DRIVE
Slow-motion drive. Bevelled scale in wavelengths and 0-180 degrees. Moulded escutcheon. Lampholder. Fitted with air-dielectric trimmer as "Uniknob" design. 5/9

"POLAR MOVING SCALE DISC DRIVE
Slow-motion drive. Bevelled scale in wavelengths and degrees 0-180. Moulded escutcheon, Lampholder. Fitted with air-dielectric trimmer as "Uniknob" design. 4/6

Write us for 1934 leaflet and ask your dealer to demonstrate.

Send for NEW POLAR CATALOGUE

WINGROVE & ROGERS, LTD.,
188/9, STRAND, LONDON, W.C.2.
Fig. 2. Indicating the three possible mechanical errors in the disc.

Fig. 1. — Testing the disc for faults arising from incorrect spacing.

Common Disc Faults

The commonest disc faults arise from two causes—namely, lines (black or white) due to incorrect spacing of the holes along the radii, and "steps," or a jagged line effect brought about by mistakes in marking-out the angles between individual radii. To check the former, mount the disc on its motor shaft and revolve it along the radii, and "steps," or a jagged line produced a disc free from mechanical errors, and the offending particles are best removed with a stiff brush. Or again, the punching operations may have produced burrs, and these should be rubbed down with very fine blue-back emery paper. Should any black lines still persist, it shows that two adjacent holes have their respective inner and outer edges underlapping instead of being on the same circumferential arc. The defect is remedied with a piece of suitable glass. The idea is shown in Fig. 1, the screen with the lamp behind it being mounted conveniently on a block of wood.

If any black vertical lines are noticed as the screen is observed through the disc holes, then this may be due to dust clogging the punched apertures, and the offending particles can be removed with a stiff brush. Or again, the punching operations may have produced burrs, and these should be rubbed down with very fine blue-back emery paper. Should any black lines still persist, it shows that two adjacent holes have their respective inner and outer edges underlapping instead of being on the same circumferential arc. The defect is remedied with a piece of suitable glass. The idea is shown in Fig. 1, the screen with the lamp behind it being mounted conveniently on a block of wood.

Always ensure that the disc is adequately illuminated. The Neon Lamp

Assuming that we now have our disc mechanically perfect, attention must be paid to the source of illumination, which has to be modulated by the incoming television signals. A Neon lamp is used here and can be of the flat plate variety such as the one illustrated on page 857 of the September 2nd issue or of the beehive pattern as shown in Fig. 3. The former is the better type as the neon glow is diffused evenly over the rectangular plate surface. It is necessary to furnish a polarizing current of about 25 milliamperes, however, while a volt in the neighbourhood of 180 is essential for "striking" the lamp and maintaining the required brilliancy. These two facts, coupled with the high cost of this special type of lamp, make it necessary in many cases to adopt the beehive or lettered neon pattern as a substitute. They work quite satisfactorily, but naturally, since they are rated at a much smaller milliamp consumption, the resultant television image is not so bright. Again, the neon glow is not diffused evenly over a flat area, and it is a great advantage therefore to "doctor" the lamp before using it.

This is done by attaching very carefully over the glass bulb a layer of tinfoil such as that contained in photographic packets, leaving a "window" slightly larger than the area formed by the rectangle as indicated in Fig. 4, which shows the first and last holes on the punched disc. The foil may be stuck on with glue and where possible the "window" should be "frosted." The neon glow will then be diffused, while the tinfoil covering will serve to reflect the light inside the bulb and give a better illumination. In my next article I shall deal with suitable lenses.

Just Published

THE WIRELESS CONSTRUCTOR'S ENCYCLOPÆDIA

(2nd Edition)

by F. J. CAMM

(Editor of "Practical Wireless")

This invaluable encyclopedia is written in simple language by one of the most accomplished designers and writers on wireless construction. The whole subject is fully covered, and the volume is remarkable for the number of practical illustrations it contains. No matter in what branch of radio you are interested, you will find everything for practical handling with.

Oldham's, 11, Ship Street, shelf, or post 5/- to Geo. Newnes, Ltd., E.11, Southamptom Street, Strand, London, W.C.2.
THE value of a short-wave test oscillator would be more quickly realized if
more short-wave experimenters would regard this piece of apparatus as a
very necessary addition to all the other parts which go to make up the average
short-wave amateur's test bench—or, to be rather less polite, the " junk box"!
A test oscillator has many practical uses, and it can easily be built up from old parts
lying on hand. The circuit of such an oscillator is given on this page. It can be
regarded more or less as the foundation circuit for a single-valve oscillator, as
there are very many variations of this circuit in use to-day. This one is, however,
probably the most useful for general work. The coils in the oscillator circuit, com-
prising L1 and L2, may take the form of any convenient type of plug-in coils, preferably
also with coils available for the medium and long waves. The choke L3
will either have to be of the special type of choke which will operate efficiently from
about 14 to 2,000 metres or, alternatively, two chokes may be used to cover
these wavebands, a short-wave choke being connected immediately after the valve
anode, followed by a normal choke, the two being connected in series. The whole
oscillator can be built into a small wooden case (don't make the mistake of shielding
it as we are relying on the coils in the oscillator to do an amount of radiating,
although there is no objection to using a metal front panel), the batteries themselves
also being included in the case. For any degree of accurate calibration it is very
important to see that the value of high
tension used is kept constant—thus a lower
or higher value will produce slight alterations in the dial readings. If an H.T.
battery of about 60 volts is used, the oscillator may also be used as a complete
one-valve receiver by inserting a pair of
headphones at the point " E"; these two
terminals normally being kept closed by a
shorting strip. The values of the remainder
of the components used are approximately
as follows: C1—.003 mfd., C2—.00025
mfd., C3—.00025 mfd., C4—.0003 mfd.,
R—2 megohms.

It will be seen that in order to cover the
broadcast bands a number of coils will
have to be used, owing to the small size
of the condenser C2. A larger condenser
would be used, but this would very materially
reduce the usefulness of the unit on
the short waves. Almost any type of
2-volt battery valve can be used to produce oscillations, but with a general purpose
type of valve the H.T. consumption will not be more than about 1.5 milliams.

Using the oscillator is a very simple matter as it only requires to be placed
near the short-wave receiver, and it can then be calibrated by tuning in one or two
of the more prominent short-wave stations on the receiver and tuning the oscillator
dial until a " chirp " is heard, plotting the oscillator dial readings on some squared
paper. For anything approaching accurate calibration it is necessary to receive at
least three stations of definitely known wavelength. It is also very important to
note the setting of the reaction condenser C2. If the position of this condenser is
changed, the corresponding dial setting on the tuning condenser C2 will also be
changed. It is, however, necessary to use a variable condenser here owing to the fact
that reaction effects are very much stronger at one end of the tuning dial than at the
other, and that if they become too strong the oscillator will not function at all
and will become more or less uncontrollable. It is therefore advisable to fit a small dial
on the reaction condenser in order that a definite note of the required setting in
relation to that of the tuning dial may be made.

In the next article some further notes will be given concerning the various uses
of this oscillator.

OVERLOADING THE DETECTOR
(Continued from page 23)

Overloading the detector (Continued from page 23)

Overloading would also be an advantage if the diode
were the only sound method; it is virtually impossible to overload a
diode, but absolutely no amplification is obtained therefrom, and an extra L.F. stage will be
necessary as shown by Fig. 6. As a diode consumes no H.T. (or very little if reaction is fitted)
this would not prove a serious drawback on the grounds of
economy. In conclusion, it may be mentioned that it is possible to use one of the recently
introduced Westectors as a rectifier; these will deal with very large inputs, but are hardly
suitable for use in a simple circuit owing to the severe damping occasioned by their low resistance. Where a
receiver is intended solely for local station
reception, however, and selectivity is
unimportant, one of these should certainly
be tried.

Fig. 6. The connections of a diode detector.
NEW LISEN SKYSKRAPER FOUR ALL-YOURS WAY. Cash or C.O.D. Carriage Paid. £2/12/6.
Balance in 11 monthly payments of 10/-.
NEW LISEN SKYSKRAPER FOUR ALL-WAVE CONSOLE CABINET MODEL. Send £2/15/6.
Balance in 11 monthly payments of 15/-.
Balance in 11 monthly payments of 16/-.
NEW LISEN 7-WAVE SUPER-HEX CONSOLE MODEL, in Sealed Carton. Cash or C.O.D. Carriage Paid. £2/11/0.
Balance in 11 monthly payments of 21/-.

LEMINATORS

NEW STATION MASTER MODEL 34 M.C. Complete Kit, with Valves and Cabinet. Carriage Paid. £12/12/6.
Balance in 11 monthly payments of 13/6.
NEW STATION MASTER 34. S.G. Detector and Pentode, complete Kit with Valves, but less Speaker and Cabinet. Cash or C.O.D. Carriage Paid. £4/6/6.
NEW COSSOR MODEL 341. S.G. Detector and Pentode, and Balanced Armature Speaker, complete with Cabinet. Cash or C.O.D. Carriage Paid. £6/7/6.
TEILEN CLASS B 4 CHASSIS KIT in Sealed Carton, Cash or C.O.D. Carriage Paid. £4/17/6.
Balance in 11 monthly payments of 7/-.

PAYMENTS SUGGESTED

5/- each part.
50/- each chassis.
£1/5/0, £5/0/0.
£1/1/6.
£1/12/6.
£2/10/0.
£2/11/0.
£2/13/6.
£2/17/6.
£3/17/6.
£4/6/6.
£5/0/0.
£5/5/0.
£1/0/0.
£1/5/0.
£1/12/6.
£1/15/0.
£1/16/0.
£2/0/0.
£2/12/6.
£3/17/6.
£4/17/6.
£4/19/6.
£4/21/6.

NEW ROLA SPEAKER

NEW W.B. P.M.A. MICROLODE PERMANENT MAGNET SPEAKER

Send £5 for 1934 CATALOGUE.
Intricate deduction, Watson, but the 'All-in-One' confirmed it.

A broken-down grid-bias resistance is a fault that, normally, would need some locating, Doctor, but with the aid of an 'All-in-One' Radiometer it took me very little time to test the whole set and eventually narrow down the field until the real culprit was revealed.

If you possess a radio set you should also possess an "All-in-One" Radiometer. With this wonderful instrument you can always keep your set in 100% condition. It tests everything quickly and surely enabling you to keep the set up to par at all times. Ask to see it demonstrated at your radio dealers, or write direct to PIFCO LTD., High Street, MANCHESTER, or 150, Charing Cross Road, London, W.C.2.

Write for this Booklet

Make sure of your copy of this valuable booklet. Free on request. Two typical pages are illustrated showing the Disturbance Suppressor, describing it in detail. Other pages give clear and interesting explanations with useful data on Pick-ups, Mains Input Connectors, Fuses, Fuseholders, Terminals, Wandering plugs, Plugs and Sockets, and Battery Cords.

Please forward Booklet

Name

Address
MESSRS. LISSEN, of Isleworth, Middlesex, need no introduction to our readers as makers of all wireless components and kits of parts for complete receivers. The 3-valve “Sky scraper,” which Lissens have produced in kit form during the last two seasons, has proved to be an amazingly popular set for home constructors, but we feel sure that the latest “Sky scraper,” the “All-Wave 4,” will be made in even greater numbers. It has for some little time past been obvious that our previous conceptions of a broadcast receiver (one which could be tuned to wavelengths between about 200 and 2,000 metres) must be modified since there are now hundreds of broadcasting stations in all parts of the world which are sending out excellent and interesting programmes on the short and ultra-short waves.

With a short-wave receiver of good design there is no difficulty in obtaining entertaining programmes not only from European, but also from American and Australian stations at most hours of the day, but as there are few amateurs who care to go to the expense of buying two separate sets for normal and short-wave reception it is perfectly clear that sooner or later receiver manufacturers must turn their attention to the production of receivers which will cover every waveband.

Messrs. Lissen are not the first to produce an all-wave receiver, but we believe that they are the first to produce one in kit form, and they are to be congratulated upon their enterprise.

Easily followed Constructional Chart
It gave us great pleasure to receive the “All-Wave Sky scraper 4” for test, and we were more than pleased with the performance which it gave. Perhaps it would be best to describe the set by beginning with the kit of parts which are supplied to the constructor in a strong and partitioned carton. Every component is clearly marked so that the very beginner can recognise it by making reference to the constructional broad sheet, whilst it is soon found that there is a supply of screws and wire so that the complete set can be assembled by means of nothing more than a screwdriver and a pair of pliers. A stout aluminium baseplate is accurately drilled to receive all the component holding down screws, and the task of mounting the parts is one that can be completed in less than an hour by following the full-size drawings supplied. The wiring has been simplified to a considerable extent by extremely careful design, and every connection required is numbered on the plans. Still further to simplify the work, however, the connections are fully described, for example, “Connection 13.—Wire 4in.—secure under T 31.—Sleeving 3/16in.—pass up through hole “G” and secure under terminal “P” of the Q.P.-P. transformer.” Incidentally, there are only 30 connections in all, so it will be realized from this that the construction has been reduced to the simplest possible form.

Alternative Kits
The kit can be obtained in three different forms, the first of which is suitable when the constructor already has a cabinet and speaker which he wishes to use; the second includes a table cabinet (which can be assembled in next to no time without the use of glue) and the third includes a console type of cabinet fitted with the excellent Lissen permanent magnet moving-coil speaker. The prices of the three models, including Lissen valves in each case, are £5 12s. 6d., £6 8s., and £8 2s. 6d. respectively—extremely good value.

(Continued overleaf)
The completed set was fitted into its cabinet, which was of the console type with a self-contained M.C. speaker in our case, and the batteries connected up exactly as stated in the instructions, when Rome was immediately tuned in. After this, no less than thirty other medium-wave stations were brought in at good programme strength, despite the fact that the serial in use consisted of only a 40-ft. length of wire erected at a height of 25 feet. To keep the volume down to reasonable proportions in the average size drawing-room the volume control had to be made use of on about half the total number of stations received. By connecting the aerial to the least selective of the three tappings provided, the “spread” of the local stations less than ten miles away was no more than six degrees on the dial, whilst when the most selective tapping was employed the “spread” was reduced to only two degrees, with a slight reduction in maximum volume. Without doubt the set is admirably selective for modern requirements, and should give every satisfaction in this respect when used in any part of the country. On the long waves we were able to bring in eight stations at good strength, and no difficulty was experienced in receiving Radio Paris, Warsaw, or Eiffel Tower entirely free from the National. There was no trace of medium-wave break-through at any long-wave condenser setting. Although two tuning dials are used they worked so well “in step” that the operation was almost as easy as with any single knob set we have used.

Tuning on the short waves was found to be just as easy as on the higher bands, once the knack of rotating the condenser slowly had been acquired, and within half an hour we were able to bring in eleven stations on the short-wave range (that is, between 28 and 80 metres) and eight on the ultra-short waveband (12 to 20 metres). Of these, three were the American stations, Pittsburgh, Springfield, and Round Brook, one was Sydney, four were European broadcast transmitters, and the others were amateurs in various parts of the world. Of particular interest among the latter was a Canadian station calling up G8SO in London. “No doubt a considerable greater number of short-wavers could have been received had the tests been extended over a longer period.”

We feel that the makers are to be particularly commended upon the perfectly smooth reaction control which is to be obtained on the short waves, for this is one of the greatest difficulties with the majority of short-wave sets. Due to this excellent control, the “Skyscraper” was just as docile and reliable on the short as upon the normal broadcast wavebands.

As the same coils are used to cover the four wavelength ranges we rather expected to find some little interference or “break-through” of the local transmitters, but there was absolutely nothing of this kind. After trying out the set we measured the high-tension current consumption, and found this to be almost exactly 9 milliamperes, which is an extremely low figure when the tremendous volume of signal output is taken into consideration.

In regard to the technical details of the “Skyscraper All-Wave 4,” the interested amateur can find many points of particular interest. The circuit comprises four valves, of course, of which the first is a variable-mu high-frequency amplifier, the second a screened-grid detector (which is no doubt due in no small measure for the excellent short-wave performance of the set), whilst two Lissen type PT2A pentodes are used in quiescent push-pull for the output stage. An extremely interesting and ingenious device is the volume-control, which consists of a grid-bias potentiometer acting on the V.M. valve, ganged with the reaction condenser. This is so arranged that over the first half revolution of the knob the potentiometer is varied from “minimum” to “maximum” volume. Once the V.M. valve has been brought to its most sensitive condition the reaction condenser comes into play and enables a further degree of amplification to be obtained.

The Q.P.P. stage is on conventional lines, but a practical point of great importance is that the two pentodes supplied with the kit are carefully tested before despatch and labelled to show their optimum anode and priming grid voltages. Thus, by applying these voltages the constructor knows that the valves will be perfectly matched.

To anyone who intends to buy a kit set for battery operation and who desires to obtain an up-to-date receiver at a most reasonable price, we recommend the Lissen “Skyscraper All-Wave 4.”

A well-illustrated constructional broad-sheet can be obtained free from the Publicity Dept., Messrs. Lissen, Ltd., Inleworth, Middlesex, if mention is made of Practical Wireless.
Better to Build Than to Buy!

Never before has there been any receiver for Home Constructors on such an ambitious scale as this new Lissen "Skyscraper" Seven Valve Superhet. It embodies every up-to-the-minute advance and refinement of the most luxurious factory-built superhet—it gives the constructor the opportunity to build a £20 receiver for less than half that price. The circuit of the Lissen "Skyscraper" Seven Valve Superhet incorporates a 6-stage bandpass filter giving exact 9-kilocycle channels and therefore providing a standard of selectivity never before achieved by a home constructor's kit set and very rarely found except in laboratory apparatus. Amplified Automatic Volume Control is provided, a special valve for this purpose having been produced by Lissen for use in this receiver. The use of this Amplified Automatic Volume Control constitutes an entirely new experience in listening; no "fading" no "blasting"—you will find yourself enjoying every word of every programme, however near or however distant, without the slightest temptation to interfere with the receiver once you have tuned it. This is radio listening as it should be enjoyed.

Lissen Class "B" Output through a new full-power Lissen Moving-coil Loudspeaker—glorious rich tone and majestic volume, actually more faultless in its reproduction than anything you ever heard from even the most powerful mains receiver, yet working economically in this Lissen "Skyscraper" from H.T. batteries. Lissen have published for this great new "Skyscraper" Seven Valve Superhet a most luxurious Chart which gives more detailed instructions and more lavish illustrations than have ever before been put into a constructional chart. It makes certain that everybody who decides to build this set, or is interested, even without previous constructional experience, how they can have a luxury receiver and save pounds by building it themselves. A copy of this Chart will be sent FREE on request for coupon on the left, or your radio dealer can supply you. Get your FREE CHART now!
"This battery has given me wonderful service"
(Sgd.) P. G., Monkseaton

Most of the leading set-makers fit Exide Batteries for L.T. or Drydex Batteries for H.T. Obtainable from Exide Service Stations and all reputable dealers.

Drydex
by Exide
DRY BATTERIES
FOR WIRELESS
THE EXPERIMENTERS' SHORT-WAVE THREE
A Very Sensitive S.G. Receiver Which is Designed Principally for Use on Short Waves, but Which Can Also Be Used Satisfactorily on the Broadcast Bands.

By FRANK PRESTON, F.R.A.

SOME time ago I described in these columns two or three circuits suitable for a efficient short-wave reception. I explained that although good short-wave reception could be obtained with an adaptor used in conjunction with the normal broadcast receiver, it was a much better plan to employ a separate and complete short-wave set. After briefly discussing different circuit arrangements, I drew the conclusion that, for all-round efficiency and reliability, making use of a screened-grid valve was most satisfactory.

The little set now to be described, and of which you see a photograph on this page, has been designed to embody all those features which experience has taught to be desirable, whilst at the same time cutting out all unnecessary gadgets and “frills.” It is a sound job, which has been evolved after a good deal of experimenting, and it has been thoroughly tested under varying conditions. I do not claim that the set is “perfect”—I have never made anything that I said was “perfect.” I do say that it is extremely good, and forms an ideal arrangement for the experimenter. The set is built in skeleton form, no panel or cabinet being used, so that every component is readily accessible and alterations can be made without disfiguring it at all.

Universal Wavelength Range

Although every component is specially chosen to be “just right” for the function it has to perform, the set can be built for no more than sixty shillings. Again, despite the fact that the set was designed as an ideal short-waver, it can be used with almost equal efficiency on the broadcast wavebands. Unlike most short-wave sets, it will cover a range of from 260 to 550 metres, or from 900 to 1,800 metres, with a single coil. Needless to say, its range of reception on short waves is literally world-wide, and on the higher wavebands it is capable of bringing in some thirty odd European stations. In all cases, loud-speaker reproduction, to say the least, is very good. Tuning is as easy as with a one-knob family receiver, and even the beginner need have no fears in this respect.

Circuit and Components

The circuit given on this page makes clear the sequence of the valve stages and requires only little explanation. The circuit was evolved after a good deal of experimenting, and requires aperiodic coupling. This obviates the necessity for a second tuning control, which would make tuning tricky. A metalised screened-grid valve is used for the first stage, the metal coating acting as a screen between grid and anode circuits. Its screening-grid receives high-tension from a separate tapping, and is by-passed to earth through a .1 mfd. non-inductive condenser. Coupling between the first and detector stages is by means of a high-frequency transformer with tuned secondary. A reaction winding is also included on the transformer, and the degree of feed-back is controlled by a .0002 mfd. reaction condenser. The transformer is of the plug-in type, different units being used for different wavelength ranges. This scheme is considerably more efficient than that of employing tapped coils and shorting switches, and has the decided advantage of being adaptable to absolutely any range, rather than to two or three only. Moreover, it is only very slightly more costly.

The tuning condenser has a maximum capacity of only .00015 mfd., but, thanks to its very low minimum, will cover a very wide range of frequencies. This is very evident by the fact, previously mentioned, that it will cover “either broadcast range with a single coil. Both grid-leak and condenser have more or less usual values, but these components were chosen to match the detector valve (a Cossor 210 Det. metalized). It was found afterwards, however, that they were almost equally well suited to the Cossor 210 L.F., and that is why alternative valves are specified. It was found quite unnecessary to use a potentiometer in conjunction with the grid-leak, because perfect reaction control proved possible by taking the leak to low-tension positive. A special “Universal” H.F. choke is used in the detector anode circuit because it is required to cover both long and short waves. The L.F. valve receives its input through a “Transfeeda” (one of the new popular resistance-fed transformers), and a .1 mfd. stopping condenser is included on its grid circuit. A portion of the resistance in the “Transfeeda” is used in conjunction with a 2 mfd. condenser to decouple the detector anode circuit. The last valve is of the high amplification power-valve type, capable of giving good speaker signals even on small inputs. .002 mfd. fixed condenser is joined between its anode and earth to keep high-frequency currents out of the loud-speaker leads.

Assembling the Components

A list of components is given elsewhere, from which it will be seen that three mounting-brackets are specified. These are for holding the tuning-condenser, the reaction condenser, and shorting switches, respectively, and replace the more usual panel. Should any constructor prefer to make the set as a finished receiver rather than as an experimental model the brackets should be replaced by a 14in. by 7in. panel. The positions of all components on the baseboard can be followed and duplicated by making reference to the wiring plan and photographs.

It will be found best to commence by attaching the brackets and then fixing the condensers and switches to them. Before mounting the tuning condenser a dial pointer must be made and secured under the mounting nut. The pointer is made from a piece of thin brass, or copper-strap to the dimensions given in the accompanying sketch. If copper or soft brass is chosen it can easily be cut with a pair of strong scissors. Next mount the valve holders and terminal blocks, but before screwing down the other components lay them all on the baseboard, insert valves and a .1 coil, and carefully arrange them so that there is ample clearance.

Easy Wiring

The wiring is extremely straightforward, and you should try to duplicate that of my original set by carefully studying the photographs in conjunction with the wiring plan. Glazier is used throughout, a single

(Continued overleaf)
PRACTICAL WIRELESS

September 23rd, 1933

(Continued from previous page)

10 foot coil being more than sufficient. Keep all wires short to ensure maximum rigidity and take them from point to point by the straightest path. The anode connector is attached to a short length of flex connected to terminal 4 of the coil mounting base. Both metallized resistances are attached directly to terminals by their own connecting leads. A 5-way cord assembly is used for connecting up to the batteries, and its end is secured to the baseboard by means of a small brass stirrup, or anchor, to prevent the wires from being pulled loose. Details of the anchor can be obtained from the wiring diagram given on this page.

It will be noticed that although the cord assembly has only five wires it has seven connecting terminal points; this is explained by the fact that plugs "L.T.-", "H.T.-", "G.B.-" are all attached to the same lead. The latter, by the way, is connected to one terminal of the on-off switch.

The 6-pin coils specified are obtainable in all sizes, but the following, given along with the tuning range they cover with the .00015 mfd. tuning condenser, are most useful since they cover the wavebands in constant service:

<table>
<thead>
<tr>
<th>Type</th>
<th>Wavelength Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5 to 28 metres.</td>
<td>2 Y</td>
</tr>
<tr>
<td>24 to 50 metres.</td>
<td>2 G</td>
</tr>
<tr>
<td>260 to 560 metres.</td>
<td>2 GY</td>
</tr>
<tr>
<td>900 to 1,800 metres.</td>
<td>2</td>
</tr>
</tbody>
</table>

Battery Voltages

For the values specified the high-tension battery should have a voltage of not less than 100 for best results, although the set will certainly function with a voltage lower than this. Plug "H.T.+1" should be taken to the highest tapping and "H.T.+2" to the 60-volt tapping. The correct grid bias for 100 volts H.T. is 3 volts. This might be increased to 4 or 5 volts with a H.T. voltage of 120.

Using the Set

When first trying the set on short waves it is advisable to employ phones unless you have already had a fair amount of experience with short-wave reception. I advise this because, although not difficult, tuning is exceptionally sharp, and you might turn straight past a station if using a speaker. Once the knack of accurate tuning is acquired all reception can be carried out on the speaker if preferred. The method of operation, after inserting a suitable coil for the waveband required, is as follows: Switch on and set both reaction and tuning condensers minimum capacity (vanes right out of mesh). Turn the left-hand (reaction) knob slowly until a "chirping" or "rushing" sound is heard, indicating that oscillation has just set in. Now rotate the tuning dial as slowly as possible by means of the vernier scale until, after some time increasing the reaction setting if necessary, to keep the set just on the point of oscillation. During all tuning operations the reaction control should be set so that the set is just in the oscillating condition for it is then most sensitive. More, or less, reaction will appreciably reduce sensitivity, even when signals are strong.

As the tuning dial is turned squeaks or whistles will be heard. Probably the first will be a morse station, or one which can be recognised by the "chirping" sound. When you come to a telephony station a steady whistle will be heard at first, but as the dial is slowly turned the whistle will rise in pitch, disappear for an instant and then return. Go back to the silent point between the whistles and reduce the reaction setting very slightly. By careful final adjustment of the tuning knob the telephony should be heard clearly. Remember that telephony cannot be received clearly until the set is oscillating, but that oscillation is necessary for the reception of morse. When using the smallest coil (type 2LB) the first station you will come to will be Buenos Aires on 14.47 metres. After that you will find Bandung, Java, on 13.53 metres, followed by the American W2XAD on 18.56 metres, Zeessen, Germany, on 19.60 metres, East Pittsburg, on 19.72 metres, Vatican State on 19.84 metres, WSXK again on 25.25 metres, WXXA, Chicago, on 25.34 metres, Rome Rome on 25.44 metres and Chelmsford on 25.53 metres. In addition, several amateurs will be heard between 20.9 and 21.3 metres. This particular wavelength range is always the most interesting, but good reception can nearly always be relied upon on any wavelength up to 50 metres.

Broadcast Reception

When listening on the broadcast bands tuning will be found to be particularly easy, but selectivity will not be a strong feature due to the fact that only a single tuning circuit is employed. Nevertheless, whilst testing the receiver I found it to be noticeably more selective than the average S.G. set. Another very good point is that even if the set is allowed to oscillate, it will not cause interference to neighbours because the oscillations cannot get past the S.G. valve into the aerial circuit.

Now you can go straight ahead and make the "Experimenters' Short Wave Three" with every confidence of success. We shall be pleased to hear of the results you obtain, and in ease of any difficulty, great or small, our Free Advice Bureau is at your service.
"Practical Wireless" build a star superhet around Lissen Coils

"Practical Wireless" have designed the Premier Super in response to an insistent public demand at Olympia for a simple and economical Superhet. The designers have based the set upon the perfectly matched Lissen Triple Ganged and Shielded Coil Unit—a sure foundation for any set requiring selectivity of a really high order with simplicity of control and construction.

In addition, "Practical Wireless" have specified two Lissen Intermediate Frequency Transformers, so that the whole coil-assembly of the set is matched and balanced in the one factory and made to the most exacting standards.

LISSEN KNOW THE NEEDS OF HOME CONSTRUCTORS BETTER THAN ANYBODY—which is why you find Lissen components predominating in this year’s star sets of the constructional papers.

LISSEN Triple-Gang Super-Heterodyne Dual Range Shielded Coils 26/- The Set

LISSEN Intermediate Frequency Transformers 7/6 Each

LISSEN SHIELDED COILS
STOP THOSE NOISES!

Unpleasant noises, such as crackling, humming and other equally annoying interferences deprive the listener of the enjoyment he would otherwise receive.

"GOLTONE" INTERFERENCE SUPPRESSING DEVICES

"GOLTONE" MAINS H.F. CHOKE

(For A.C. and D.C. Supplies) as illustrated W.H.F., 3/6.

Interference Compensators, High-Voltage Condensers, Screened Aerial Down Leads, Impedance Matching Devices, Screened Transmission Lines, Screened Tubings are some of the wide range manufactured. Obtainable from all First-Class Radio Stores. See the name "GOLTONE" on each component before purchasing and refuse substitutes. If any difficulty write direct.

Let "GOLTONE" Technical Department "solve your Interference Problems."

Send Postcard for "Interference Elimination," Form and descriptive Folders.

IMPROVE SPEAKER TONE WITH THE CAMCO "MELODEE" CABINET

To obtain first-class results from a speaker, it is essential to house it in a cabinet with sufficient depth—such a cabinet as the Camco "Melodee" No. 2, which measures 12in. from back to front and gives effect of a large baffleboard but without booming. Suitable for housing most speakers. In oak, 30/-; Mahogany and Walnut, 33/-, with baffleboard, having hole ready cut.

Hear Gracie Fields records as they were meant to be heard

Comedy, sentiment, a beautiful voice—versatile Gracie Fields! To hear her records at their best you should play them with a B.T.H. Pick-up. Then you don’t miss anything—it’s just as if you were seeing as well as hearing. It is because B.T.H. Pick-ups are highly sensitive, correctly damped and properly balanced—and it is those qualities that make experienced radio men use and recommend them and radiogram manufacturers fit them as standard. Ask your dealer to demonstrate with a PICK-UP

B. T. H.

The Edison Swan Electric Co. Ltd.
155 Charing Cross Rd., London, W.C.2
Simple Tests Without Instruments

By W. B. R.

The value of small condensers up to about .0004 or .0005 mfd. can readily be checked if you have on hand one or two condensers of known value. The method is one of substitution, the idea being to compare the effect on the tuning of your set of first the condenser of your set, and then the condenser of known value and then that of unknown value. This method is also very useful if you are making your own fixed condensers and wish to have the capacities correct. It is easier and at the same time more accurate than trying to make them up to certain values by formula alone. Making a condenser by formula means cutting the foil to exactly the right size, using mica or paper of exactly the right thickness (usually entailing the use of a micrometer) and finally making 60 adjustments can be checked before the condenser is fixed up to certain values by formula alone. What you do is to connect a good quality .0003 mfd. fixed condenser (one which is guaranteed accurate by the makers), across the aerial tuning condenser of your set, as in Figs. 1 and 2. Then tuned in a fairly loud station, if possible somewhere near the centre of the dial. Note the dial reading and remove the condenser. In its place connect the condenser to be tested. If this has exactly the same value as the guaranteed one, the tuning will be unaltered, but if not the dial will have to be readjusted to bring in the same station as before. If so the reading has to be increased and the second condenser is of smaller value than the first, if decreased, the other is larger.

When using a home-made condenser it is best to build it up layer by layer, checking it each time a layer is added until the station is tuned-in in the right place. When nearing the correct value it may be found that the addition of another layer will carry its capacity above the required value, although it is too small without it. To make it exact you can either cut the last piece of foil so that there is less overlap or put a slightly thicker piece of mica between two of the sheets of foil.

Fig. 1—Fixed condensers under test are connected across the aerial tuning condenser.

Fig. 2—The circuit of Fig. 1. Dotted lines show where the condensers of known and unknown value are connected.

Fig. 3.—Graph for determining condenser values.

Fig. 4.—A quick polarity test can be made with a neon lamp.
Silent in operation

Individually tested and packed. Plus unrivalled quality

DUBILIER RESISTANCES

These new Dubilier Resistances are the outcome of an improved process of manufacture which ensures an even better resistance than the popular Dubilier Type of 1932. Consistency of characteristics under prolonged load is a most noteworthy feature, and you are always assured of long life and silence in operation. Undoubtedly the finest resistances selling to-day.

Write for your copy of the new Dubilier Catalogue!

DUBILIER CONDENSER CO. (1925) LTD., DUCON WORKS, VICTORIA ROAD, NORTH ACTON, W.3

Whatever the circuit, the experienced constructor will always choose "J.B." For tuning iron-cored coils, in particular, the accurate matching found in J.B. Gangs becomes imperative; and the mechanical rigidity of "J.B." ensures the permanence of this matching.

Illustrated is the new J.B. LINA-TUNE with one trimmer panel—operated by a knob concentric with the main tuning control. It is fitted with the new J.B. Straight-Line Dial, the whole scale being always on view and illuminated by a lamp-holder which travels with the cursor.

Prices (with cover)

2-Gang .. 22/6
3-Gang .. 27/6

THE NEW "J.B." LINATUNE GANG

PRECISION INSTRUMENTS

Variable-Mu

The functioning of a variable-mu is not greatly different from that of an S.G. valve, but its control grid is supplied with a steady negative potential in addition to the oscillating potential representing the incoming signal. The steady potential is derived from a grid-bias battery through the medium of a potentiometer connected as shown in Figure 12, so that the actual amount of grid bias may be varied between the maximum of the battery and zero. As the negative grid-bias voltage is increased the current flowing to the anode is, of course, reduced, and in addition the valve becomes less “sensitive.” Why does it become less sensitive? To appreciate the reason we must think in comparative terms; if the grid is already receiving a voltage of, say, two or three volts it is fairly clear that the effect of the few millionths of a volt of signal voltage will be much more significant than if the initial grid potential were zero. It will be seen in the same way that the higher the bias voltage, the smaller will be the effect of the signal voltage, and therefore the less will be the response of the valve to it. By varying the amount of steady grid potential we can regulate the sensitivity of the valve, and the potentiometer therefore serves as a volume control.

In the circuit of Fig. 12 a fixed condenser is joined between the “lower” end of the tuning coil and high-tension negative, its object being to allow the free circulation of oscillating, or high-frequency, currents, and at the same time to prevent a short-circuit of the grid-bias supply.

The H.F. Coupling

As we have already seen, the output from the amplifying valve (whenever its type) is in the form of an oscillating voltage which appears between the ends of resistance R connected in its anode circuit. This voltage is an exact copy of that across the aerial tuning circuit, but is of much greater magnitude. We can either amplify it still further by the use of another high-frequency choke or we can rectify it. Since the function of a second H.F. valve would be precisely the same as that already considered, we will assume that the second valve is to be a rectifier, or detector.

There are various ways of feeding the amplified voltages to the detector, so perhaps we had better examine each in turn. One way, which is never used at the present time, is to connect one end of the resistance we have called R to the grid of the detector as shown in Fig. 13 (a). At first sight it is a little difficult to see how the voltage developed across R can be applied to the second valve by taking a connection from one end only, but on reflection it will be understood that the other end of the resistance is connected to the filament of the second valve, through the H.T. supply, as shown by a heavy line. The object of the condenser marked C is to pass on oscillating or high-frequency currents whilst preventing the high-tension voltage from being applied to the detector as excessive positive grid-bias. This form of coupling, known as resistance-capacity, is not by any means efficient since the resistance is of sufficiently high value to develop a maximum oscillating voltage across it, it will at the same time cause a large drop in the high-tension voltage reaching the anode of the first valve. It is clear that what is required in place of the resistance is some component that will have a high resistance (or impedance) to oscillating current and a low one to direct current. A high-frequency choke fulfills these conditions, and is connected as shown in Fig. 13 (b). Choke-capacity coupling is used in practice, but not to any great extent due to its comparative inefficiency.

But there is another very important reason why neither of the above systems of H.F. coupling are efficient, and this is because the capacity between the anode of the first valve and earth (by “earth” we mean in this case any point which is at low potential in respect to H.F. currents, such as H.T. positive or H.T. negative) is always sufficiently high to permit of an appreciable leakage of signal current unless some method of counteracting it can be
THE BEGINNERS SUPPLEMENT

(Continued from previous page)

found. It is not only the actual capacity of the valve which causes the trouble, but the inevitable capacity between connecting wires and between the terminals of the coupling components themselves. This capacity is certainly small in amount, but is sufficient to cause a large and measurable loss in efficiency. Expressed in terms of impedance the capacity is often equivalent to only 5,000 ohms or so, and being in parallel with the capacity we can nullify as might first appear. This brings us to a particular arrangement where we have what is known as the tuned-anode circuit. By adjusting V.C. and L. is actually almost identical with that connected between aerial and earth but, as we have seen, its purpose is somewhat different.

Tuned Grid Coupling

The tuned anode circuit, although perfect in theory and in performance, has some mechanical disadvantages, the chief of which is that it cannot be tuned by the normal type of gang condenser of which the moving vanes are connected to H.T. negative. It is principally because of this that tuned anode coupling is not extensively employed. But by making what is really a very slight alteration it can be converted to the turned-grid circuit. In this case the circuit is connected through condensers C., from the anode of the S.G. valve to H.T. negative instead of to H.T. positive. The function of the tuned circuit is precisely the same as before, since both sides of the H.T. supply are at the same high frequency potential. An H.F. choke is used to carry the anode current supply to the first valve and it also serves to divert the high-frequency currents from the high tension to the filament of the detector valve, three-electrode valve. There are four general methods of rectification, which are known respectively as “grid leak,” “power grid,” “anode bend” and “diode,” but only the first two are now in general use. Both are very similar in principle so we will consider them jointly.

The process of rectification, as performed by a valve connected on the leaky-grid principle is somewhat involved, since there are several different actions taking place at once. However, I do not think we shall experience much difficulty in following these actions if we examine each one separately. (To be continued.)

PRACTICAL WIRELESS

September 23rd, 1933

if we were to replace our H.F. choke of Fig. 13 (b) by a variable inductance, we could balance out the capacity at any particular wavelength. Now a variable inductance presents many mechanical difficulties and so we achieve the same result by adding a further variable capacity (in the form of a variable condenser) and using a fixed inductance. This brings us to a particular arrangement where we have what is known as the tuned-anode circuit. By adjusting V.C. and L. is actually almost identical with that connected between aerial and earth but, as we have seen, its purpose is somewhat different.

Tuned Anode

We previously mentioned the possibility of counteracting the “leakage” capacity, and this is not so difficult of accomplishment as might first appear. The electrical opposite of capacity is inductance, and so if we connect a coil of suitable inductance in parallel with the capacity we can nullify the effects of the latter. In other words, this the low-frequency, or audio-frequency, portion must be separated from the high-frequency fluctuations which comprise the carrier wave. In other words we must reverse the process which takes place at the transmitting station where the current fluctuations representing sound frequencies are impressed upon the carrier.

Rectification

This process is known as rectification or detection and is usually carried out by a
Any Intelligent Man or Woman CAN Make These and Make Money!

Many People LIKE YOU Have Doubled Their Incomes!

Let us introduce you to genuine, honest, spare-time work in the comfort of your home at which men and women to-day are making handsome profits regularly—week in and week out.

By simply posting the Coupon below you can learn at once how you can BUILD UP PROSPERITY. You can commence on your Kitchen Table, in a spare room or outhouse. The work is clean, safe, pleasant and quite simple. It is the making of our Patented Wireless Batteries. The demand for Wireless Batteries is so enormous that it runs into MILLIONS.

Help us to supply this demand and help yourself to the profits. Help us to supply this demand and help yourself to the profits.

One Man Earned £960 in Spare Time

We GUARANTEE you profit, and, if necessary, we will take sufficient of your output off your hands to ensure it, provided only that your work comes up to the easily attained standard of efficiency—we undertake to continue your training FREE as long as required.

Start now. The Market is unlimited and cannot possibly become overcrowded. It is a GOOD, CLEAN, HONEST, STRAIGHT FORWARD BUSINESS which will help you to become your own Master.

Send this Form for FREE Instructions How to Start

To Mr. V. ENGLAND-RICHARDS, THE ENGLAND-RICHARDS CO., LTD., 247, King's Lynn, Norfolk.

Sir,—Please send me at once, and FREE, full details as to how I can Make Wireless Batteries and Make Money at Home in my spare time; also Big Broadcast of fully-illustrated original Story of those already making Big Money. I enclose 2d. stamps for postage.

Print your name and address boldly in capital letters on a plain sheet of paper and pin this coupon to it.

P.S. You can start at once.

Coupons Accepted At Any Intelligent Man or Woman CAN Make These and Make Money!

MATRICULATION

There are many ways of commencing a career, but Matriculation is the jumping-off board for all the best ones.

CIVIL SERVICE

Suitable to both sexes. Ages 15½ to 24.

ENGINEERS ALL BRANCHES

There are examinations which are open and suitable to you, others which are not. Get our advice before deciding.

LET ME BE YOUR FATHER

LET ME BE YOUR FATHER
PRACTICAL WIRELESS

September 23rd, 1933

NICORE TUNING COILS

FOREMOST AS PIONEERS

The Best Low-Priced L.F. Transformer on the market

BRITISH GENERAL

"VICTORY"

Beautifully made. Superb performance. Ratio 3½–1, suitable for single or double stage.

4/6

From all dealers or direct from the manufacturers:

BRITISH GENERAL MANUFACTURING CO., LTD.,
Brockley Works - - London, S.E.4

... an outstanding result of years of research by Varley into powdered-metal cores. These new coils combine maximum efficiency with maximum selectivity and are suitable for all circuits. Incidentally, the remarkable consistency of the NICORE core material and its high efficiency have been largely instrumental in enabling Varley to produce the first ganged and working Permeability Tuner—Varley first again.

B.P.30—Aerial or Tuned Grid with Reaction, 10/6. B.P.31—H.F. Intervalve Transformer with Reaction 10/6. Set of 3 coils ganged on base, 33/-. Also complete range for Superhet Circuits.

Write for free illustrated literature.

Br.362 VALVES

DIRECT BY POST FROM THE ACTUAL MAKERS AT 50% SAVING

362 Valves are FULLY GUARANTEE, have as high characteristics as any valve (British or Foreign) and are NON-MICROPHONIC. They are ENTIRELY BRITISH.

"362" BATTERY TYPE VALVES:—HL, HL & L 3/6, Power 4½, Super-Power 4½, S.G. 7/6; Var-Mu 7/6, "Class B", Pentode type 10½.
(Metallic 3½, extra.)

"362" UNBREAKABLE METAL VALVES (BATTERY TYPES):—HL, 4/6, Power 5/6, Super-Power 8½, S.G. 10½, Var-Mu 10½.

"362" MAINS TYPE VALVES:—Small Rect. and General Purpose 7½, Super-Power 8½, S.G. and Var-Mu 12½, Pentode type 15½.

Cash with order. Cheques and P.O.'s must be crossed and made payable to:
THE 362 RADIO VALVE Co., Ltd. (Dept. W.19), Stoneham Road, London, E.5.

Obtain Mains Volume from a Battery Set at Negligible Current Drain. Use only the 362 "Class B" Valve.

WILL RADIALADDIN BEAT RADIOLYMPIA RECORDS?

At Radiolympia all records for Radialaddin sales and supplies were easily broken. The country-wide reputation of Radialaddin for genuine exchanges is growing so rapidly that even this record may be broken.*

RADIALADDIN STAND No. 47
MANCHESTER RADIO EXHIBITION
IT WILL PAY YOU TO CHANGE YOUR OLD SET BECAUSE WE CAN GIVE MORE WHEN YOU BUY YOUR UP-TO-DATE MODEL. BALANCE BY CASH OR H.P. EVERY MAKE OF SET, KIT OR RADIOGRAM SUPPLIED.
COMPLETE TRANSACTIONS EXECUTED BY MAIL, HUNDREDS OF TESTIMONIALS FROM SATISFIED CLIENTS. Write for particulars of our various exchange offers, enclosing 1½d stamp, naming your old set and the new model you fancy.

A FREE QUOTATION WILL FOLLOW
Yield our Showrooms for wonderful bargains.

RADIOLADDIN LTD. (Dept. P.R.), 45, Brewer Street, London, W.1.

The largest Radio Exchange in the United Kingdom. "Phone: Gerrard 4025.

*Obtained from a Battery Set, with negligible current drain, using the 362 "Class B" Valve.

CASH WITH ORDER. CHEQUES AND P.O.'S MUST BE CROSSED AND MADE PAYABLE TO:
THE 362 RADIO VALVE Co., Ltd. (Dept. W.19), Stoneham Road, London, E.5.

Obtain Mains Volume from a Battery Set at Negligible Current Drain. Use only the 362 "Class B" Valve.

WILL RADIALADDIN BEAT RADIOLYMPIA RECORDS?

At Radiolympia all records for Radialaddin sales and supplies were easily broken. The country-wide reputation of Radialaddin for genuine exchanges is growing so rapidly that even this record may be broken.*

RADIALADDIN STAND No. 47
MANCHESTER RADIO EXHIBITION
IT WILL PAY YOU TO CHANGE YOUR OLD SET BECAUSE WE CAN GIVE MORE WHEN YOU BUY YOUR UP-TO-DATE MODEL. BALANCE BY CASH OR H.P. EVERY MAKE OF SET, KIT OR RADIOGRAM SUPPLIED.
COMPLETE TRANSACTIONS EXECUTED BY MAIL, HUNDREDS OF TESTIMONIALS FROM SATISFIED CLIENTS. Write for particulars of our various exchange offers, enclosing 1½d stamp, naming your old set and the new model you fancy.

A FREE QUOTATION WILL FOLLOW
Yield our Showrooms for wonderful bargains.

RADIOLADDIN LTD. (Dept. P.R.), 45, Brewer Street, London, W.1.

The largest Radio Exchange in the United Kingdom. "Phone: Gerrard 4025.

CASH WITH ORDER. CHEQUES AND P.O.'S MUST BE CROSSED AND MADE PAYABLE TO:
THE 362 RADIO VALVE Co., Ltd. (Dept. W.19), Stoneham Road, London, E.5.

Obtain Mains Volume from a Battery Set at Negligible Current Drain. Use only the 362 "Class B" Valve.

WILL RADIALADDIN BEAT RADIOLYMPIA RECORDS?

At Radiolympia all records for Radialaddin sales and supplies were easily broken. The country-wide reputation of Radialaddin for genuine exchanges is growing so rapidly that even this record may be broken.*

RADIALADDIN STAND No. 47
MANCHESTER RADIO EXHIBITION
IT WILL PAY YOU TO CHANGE YOUR OLD SET BECAUSE WE CAN GIVE MORE WHEN YOU BUY YOUR UP-TO-DATE MODEL. BALANCE BY CASH OR H.P. EVERY MAKE OF SET, KIT OR RADIOGRAM SUPPLIED.
COMPLETE TRANSACTIONS EXECUTED BY MAIL, HUNDREDS OF TESTIMONIALS FROM SATISFIED CLIENTS. Write for particulars of our various exchange offers, enclosing 1½d stamp, naming your old set and the new model you fancy.

A FREE QUOTATION WILL FOLLOW
Yield our Showrooms for wonderful bargains.

RADIOLADDIN LTD. (Dept. P.R.), 45, Brewer Street, London, W.1.

The largest Radio Exchange in the United Kingdom. "Phone: Gerrard 4025.

CASH WITH ORDER. CHEQUES AND P.O.'S MUST BE CROSSED AND MADE PAYABLE TO:
THE 362 RADIO VALVE Co., Ltd. (Dept. W.19), Stoneham Road, London, E.5.

Obtain Mains Volume from a Battery Set at Negligible Current Drain. Use only the 362 "Class B" Valve.

WILL RADIALADDIN BEAT RADIOLYMPIA RECORDS?

At Radiolympia all records for Radialaddin sales and supplies were easily broken. The country-wide reputation of Radialaddin for genuine exchanges is growing so rapidly that even this record may be broken.*

RADIALADDIN STAND No. 47
MANCHESTER RADIO EXHIBITION
IT WILL PAY YOU TO CHANGE YOUR OLD SET BECAUSE WE CAN GIVE MORE WHEN YOU BUY YOUR UP-TO-DATE MODEL. BALANCE BY CASH OR H.P. EVERY MAKE OF SET, KIT OR RADIOGRAM SUPPLIED.
COMPLETE TRANSACTIONS EXECUTED BY MAIL, HUNDREDS OF TESTIMONIALS FROM SATISFIED CLIENTS. Write for particulars of our various exchange offers, enclosing 1½d stamp, naming your old set and the new model you fancy.

A FREE QUOTATION WILL FOLLOW
Yield our Showrooms for wonderful bargains.

RADIOLADDIN LTD. (Dept. P.R.), 45, Brewer Street, London, W.1.

The largest Radio Exchange in the United Kingdom. "Phone: Gerrard 4025.

CASH WITH ORDER. CHEQUES AND P.O.'S MUST BE CROSSED AND MADE PAYABLE TO:
THE 362 RADIO VALVE Co., Ltd. (Dept. W.19), Stoneham Road, London, E.5.
A High Resistance Potentiometer.

A USEFUL adjunct to an experimental outfit is a high resistance potentiometer, such as may be used as a variable grid leak or a means of volume control or a similar purpose. One important attribute of a potentiometer or variable resistance for any high-frequency circuit is low electrostatic capacity, and many of the potentiometers on the market are not of good in this respect.

An old method of improving a grid leak, at one time very popular with the amateur, was to draw a line with an ordinary black lead (plumbago) pencil on any suitable insulator such as aebinite, porcelain, or ground glass, or even on a strip of paper; sometimes the resistance so formed was protected by a coat of varnish, lacquer, sprayed on or carefully applied by means of a soft brush. A resistance so constructed in this manner is quite able to serve its purpose, but it is not permanent and is only fit for use in an experimental set or ' lash up.' One advantage of such a grid leak is that its electrostatic capacity may be made very small, and by choosing a suitable "support," and being as sparing as possible in the quantity of insulating material used, the parasitic dielectric losses may be kept down; this is important in an H.F. stage.

It is difficult to say why a resistance or grid leak of this kind is not permanent, and it is difficult to believe that any slow burning away or oxidation of the graphite takes place; the temperature cannot be high enough for normal combustion, and there can scarcely be anything in the nature of electrolytic action. Nevertheless the separation of the graphite particles. So far as the writer knows, the matter has never been thoroughly investigated; it might be well worth while experimenting with various dielectrics and methods of "fixing" the graphite streak. The convenience of being able to prepare grid leaks or resistances as and when required would probably justify the labour. The current such a resistance can safely carry is, generally speaking, small, but obviously several lines can be drawn in parallel and so this objection can be easily met.

In solving a problem involving differential reception it became necessary to devise a potentiometer of minimum capacity and high resistance, and the use of a graphite streak suggested itself as a possible solution. The obvious difficulty is that any rubbing contact would tend to destroy the continuity of the streak (pencil line) and so vary or increase the resistance to an unknown extent. The method adopted to overcome this objection was simplicity itself; the tap or contact was itself made of graphite, in fact it was constituted by a piece of "refill lead" of a pocket pencil, and this laid a track and maintained it. After several movements of the arm carrying the pencil contact, the graphite streak (a semicircle) became formed and tended towards a stable condition, when the resistance became reasonably constant.

The complete potentiometer is illustrated in Fig. 1, which shows the interior, while Figs. 2 and 3 show the general arrangement of parts and connections.

Fig. 1.—Sectional view of the complete instrument.

Figs. 2 and 3.—General arrangement of parts and connections.

resistance is not permanent, and its constancy is ever suspect; perhaps a change in the surface condition of the dielectric may result in some kind of parts and connections. To avoid interferences the potentiometer was mounted in a screen box (earthed) as shown in Fig. 1.
American M.W. Reception

For the last two weeks I have been receiving some of the medium-wave U.S.A. stations and suggest that you should set up one evening and have a "go" for them. Recently I have been too busy to attempt such reception myself, but I am pleased to say that up to the time of writing these notes I have been able to spare an hour between 12.30 and 1.30 a.m.

This was on the night of September 10th (or more correctly, the morning of the 11th), and although using a Del-S L.P. receiver, I was able to obtain fairly good speaker reception from Pittsburgh KDKA on 906 metres and Schenectady, WGY, on 375.5 metres. As I have just said, I commenced to listen at 12.30 a.m., and by taking the tuning position of North Regional as a guide I was very soon able to tune in KDKA. The announcements which were being made did not come in too well and the transmission suffered from high speed fading. So about 12.45 a.m. I tried for WGY, the station operated by the General Electric Company of America, taking the tuning position of the Scottish Regional (375.4 metres) as a guide. After a little juggling with the action and tuning condensers I was able to hear two comedians in a kind of "back-chat" item, but reception was very weak and subject to a good deal of fading. Having located these two stations, however, I made a mental note of the dial settings and kept changing from one to the other. Neither was received really well before 1 a.m., but after that conditions gradually improved until I finally switched off. Atmospheric conditions were far from good and at times signals were entirely drowned by static, but I was satisfied that the reception of these stations was possible. Had I stayed up a little longer I have no doubt that reception would gradually have run up against the same complaint before. He tried in vain to convince his would-be customer that the moving-coil speaker would not affect the consumption of high-tension current in the least. After the customer had left, without making a purchase, I asked the assistant for an explanation. Apparently there are numerous listeners who think that a moving-coil speaker, especially if it happens to look big, causes a heavier drain on the high-tension battery. Of course, the idea is entirely wrong, and I cannot think how it can have originated. The increased consumption has nothing whatever to do with the speaker but depends entirely on the valves.

For Old "RadioGrams"

RadioGrams

<table>
<thead>
<tr>
<th>Reference No.</th>
<th>Receiver</th>
<th>List Price</th>
<th>Our Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Philco 4-v. A.C. 1933</td>
<td>14 15 0</td>
<td>7 7 0</td>
</tr>
<tr>
<td>12</td>
<td>Py M.M. 4-v. A.C. 1932</td>
<td>12 12 0</td>
<td>6 6 0</td>
</tr>
<tr>
<td>16</td>
<td>Phillips 5-v. S.G. A.C. 1932</td>
<td>13 13 0</td>
<td>7 7 0</td>
</tr>
<tr>
<td>22</td>
<td>Alba 4-v. A.C. H.C. 1932</td>
<td>12 12 0</td>
<td>6 6 0</td>
</tr>
<tr>
<td>31</td>
<td>Ultra Lynx 5-v. S.G. A.C. 1933</td>
<td>10 10 0</td>
<td>5 5 0</td>
</tr>
<tr>
<td>39</td>
<td>Ultra Panther 5-v. S.G. A.C. 1933</td>
<td>14 14 0</td>
<td>7 7 0</td>
</tr>
<tr>
<td>46</td>
<td>Lincoln 4-v. A.C. 1931</td>
<td>12 12 0</td>
<td>6 6 0</td>
</tr>
<tr>
<td>55</td>
<td>Marconi 3-v. D.C. 1932</td>
<td>8 8 0</td>
<td>4 4 0</td>
</tr>
<tr>
<td>57</td>
<td>Home Owners 4-v. A.C. 1932</td>
<td>12 12 0</td>
<td>6 6 0</td>
</tr>
</tbody>
</table>

BATTERY RECEIVERS

<table>
<thead>
<tr>
<th>Reference No.</th>
<th>Receiver</th>
<th>List Price</th>
<th>Our Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Py G/E. Q.F.P. 1933</td>
<td>12 12 0</td>
<td>6 6 0</td>
</tr>
<tr>
<td>36</td>
<td>E.U. 400 in Gipps 1932</td>
<td>7 0 0</td>
<td>4 4 0</td>
</tr>
<tr>
<td>41</td>
<td>Calton 3-g. 1932</td>
<td>11 11 0</td>
<td>5 5 0</td>
</tr>
<tr>
<td>43</td>
<td>Marconi 6-g. 1932</td>
<td>9 9 0</td>
<td>5 5 0</td>
</tr>
<tr>
<td>49</td>
<td>Zenophone 2-g. 1932</td>
<td>12 12 0</td>
<td>6 6 0</td>
</tr>
<tr>
<td>51</td>
<td>Faraday 5-v. 1932</td>
<td>14 14 0</td>
<td>7 7 0</td>
</tr>
<tr>
<td>54</td>
<td>Marconi 5-v. Speaker 1932</td>
<td>12 12 0</td>
<td>6 6 0</td>
</tr>
<tr>
<td>200</td>
<td>Red Star 4-v. 1932</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>202</td>
<td>Lotus 5-v. 1933</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>203</td>
<td>Lincoln 5-v. 1932</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>205</td>
<td>Py u/n. Q.F.P. 1932</td>
<td>12 12 0</td>
<td>6 6 0</td>
</tr>
</tbody>
</table>

Suitcase Portables

<table>
<thead>
<tr>
<th>Reference No.</th>
<th>Receiver</th>
<th>List Price</th>
<th>Our Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>208</td>
<td>Farcliff 5-v. 1933</td>
<td>5 5 0</td>
<td>2 2 0</td>
</tr>
<tr>
<td>209</td>
<td>McMichael Upright 1931</td>
<td>17 17 0</td>
<td>8 8 0</td>
</tr>
<tr>
<td>210</td>
<td>Burgoyne 5-v. 1931</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
</tbody>
</table>

SunDrEs

100 Rennsteig Rhinegold | 1 1 0 |
228 Turntable Eliminator | 1 1 0 |
41 Elbro "Rhino" Speaker in cab. | 5 5 0 |
183 Metal Core Speaker in cab. | 5 5 0 |
30 V.D.F. Speaker in Rhine cab. | 0 0 0 |

NEW SETS FOR OLD

All Makes of 1934 Models Supplied

Easy Terms

Any Set Taken in Part Exchange

Radialaddin Ltd.
45, Brewer St., W.1
CONDENSER SPINDLE EXTENSIONS
By V. W. GREENHALGH

SOONER or later most experimenters feel the need for some kind of insulated extension for variable condenser spindles. Such an extension is very useful in short-wave work where hand-capacity effects are often a nuisance.

There are many good extension spindles with insulated couplings, on the market, but none of them are cheap; so perhaps a description of an insulated extension spindle which is at once cheap and efficient may be of interest.

The insulating piece, Fig. 1, is made from 4 in. diameter ebonite rod. A 2 in. length of this is used, and a hole drilled through the length of it with a jin. drill. This hole must be true and great care must be taken in drilling it. It does not matter if the hole is not quite parallel with the sides of the tube, but the hole itself must not waver or change direction at all.

Perhaps the best way of doing this is to clamp the hand-drill to the bench so that it lies parallel to the bench top and far enough above it to allow of easy working. Cut a straight, shallow, V-shaped groove in a piece of timber, and lay it on the bench so that it is exactly in line with the drill, then fix it in this position either by clamping or nailing to the bench. Now place the ebonite rod in the groove and feed it up to the drill with one hand whilst working the drill with the other.

Two small holes will have to be drilled at right-angles to the longitudinal hole to take the fixing screws. These holes should be rather less in diameter than the screws they are to take, in order to allow for the thread.

If no taps are available, the screws themselves can be used as taps, since the ebonite is soft enough to be tapped in this way. Slightly countersink the holes to start the screws, and then force them in slowly but firmly with a screw-driver, taking care that they are kept vertical. Ordinary brass screws may be used if desired, but steel grub-screws are better, and can be bought for about a penny a pair at any ironmonger's.

The condenser spindle goes into one end of the tube, and is secured by the grub-screw, and a piece of jin. brass rod, cut to suitable length to connect with the dial, fits in the other end, as depicted in Fig. 2.

Fig. 1.—The insulating piece made from ebonite rod.

Fig. 2.—Showing the insulating sleeve connecting the condenser spindle and extension rod.

MILESTONES IN RADIO HISTORY
1906 T.C.C. founded with factory operating solely on Condensers and artificial line for submarine cable work.
1914 T.C.C. introduce Mansbridge Condensers and manufacture under original licenses.
1915 T.C.C. working on Condensers for War Office, to Admiralty—Air Service—etc.
1918
1920 T.C.C. manufacture heavy duty Transmitting Condensers.
1922 T.C.C. manufacture Power Condensers.
1926 T.C.C. contract with B.B.C. to supply Condensers for Z.L.O.
1927 T.C.C. discard Mansbridge type and introduce Rolled Condensers using Aluminium Foil of higher conductivity—and greater reliability.
1928 T.C.C. introduce Dry Electrolytic Condensers of very high capacity for low tension smoothing.
1929 T.C.C. introduce Dry Electrolysers for 200 volt working.
1930 T.C.C. introduce Moulded-in Mica Condensers—the now famous "M" Type.
1931 T.C.C. introduce Non-inductive condensers.
1932 T.C.C. manufacture Dry Electrolytic High Voltage Condensers—15000v peak.
1933 T.C.C. first to publish Surge Voltage ratings of paper condensers.
1933 T.C.C. research still building up data, still adding to its specialised knowledge so that Radio Technicians may have available not only a "pedigree" range of condensers, but a range ahead of time.
DON'T PERPETUATE RADIO FALLACIES

(Continued from page 30)

Class "B" valve, for here the anode current, when no signals are being received, is very small, and it rises as the signal voltage applied to its grids is increased.

Another wrong idea about the output stage is that if a super-power valve is fitted the volume of sound will automatically become greater than when a power type valve is used. Nothing could be more erroneous. Actually, for a given signal input a power valve will give a greater volume of sound than a super-power valve because of its higher amplification factor. A power valve, however, can only handle without distortion comparatively weak signals, and if, in order to increase volume, big grid swings are applied, bad distortion is sure to result. The main advantage of a super-power valve is that it has a longer working grid base, that is to say, it will handle without distortion much bigger incoming signals than a power valve, and is therefore not so readily overloaded.

As the maximum signals corresponding to the loudest passages in a programme are some four to five times greater than the average signal from a given station, a small-power valve is very apt to blow and distort when a loud passage occurs. This risk is not so great with a super-power valve, so this type should be used when really good quality is required.

On the other hand, because a super-power valve has a greater acceptance than a small-power valve, it can give for a given percentage distortion a larger volume than a power valve, providing you have a sufficiently strong signal voltage to apply to it. The increased volume, however, will not be in the same proportion as the increase in grid signal voltage, because usually the super-power valve has a considerably lower amplification factor than a power valve, which is designed primarily to give the largest output possible from a fairly small input compatible with reasonably good quality.

LEARNING THE MORSE CODE

(Continued from page 22)

several accented letters, but I have not given these, since they are very seldom heard and there is quite enough for the beginner to do in mastering the English letters. Also there are various punctuation signs which are used; it will perhaps be as well to mention the more common of these:

Preamble — — — (sent once at the beginning of a transmission)

Break sign — — — — (used by amateurs very much as a full stop)

Query (?) — — —

Exclamation mark (!) — — — —

Other groups of this kind consist of one or two letters run together, without a break between them, and are usually referred to by the constituent letters, for example,

S.O.S. — — — (the distress call, popularly known as S.O.S.)

Others commonly heard are the end of message sign — — — (AR) and the end of work signal — — — — (SK).

Lastly I must warn readers to remember the clause in their licence which forbids anyone to reveal the contents of any message intercepted by them to anybody other than a duly authorized official of His Majesty's Post Office.
QUALITY Class B...

Whatever make of Class B Valve you are using there is a Rola Class B Speaker exactly suited to its characteristics. For amazing performance and enduring quality there is no speaker made that is comparable with the Rola units. Here is the Rola Class B range.

For COSSOR 240, FERRANTI HP2, CLARION B24.

PRICE

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROLA FR6-PM-23-Class B</td>
<td>39/6</td>
</tr>
<tr>
<td>ROLA FR6-PM-22-Class B</td>
<td>39/6</td>
</tr>
<tr>
<td>ROLA FR6-PM-21-Class B</td>
<td>49/6</td>
</tr>
<tr>
<td>ROLA FR7-PM-22-Class B</td>
<td>60/6</td>
</tr>
</tbody>
</table>

All prices include Transformer.

ROLA Class B Speaker Amplifier Unit

If you are a battery set owner you can convert your receiver to Class B output in five seconds and secure five times the original volume by your receiver to Class B output in five seconds.

If you are a battery set owner you can convert your receiver to Class B output in five seconds.

Whatever make of Class B Valve you are using is easy to install. Make a jig from a small strip of wood by drilling two holes as shown in the accompanying illustrations, one to take a centre-pin (a drill shank will do) round which the jig rotates, and the other to take a guide bush, which may be simply a screwed socket. Drill the hole for the guide bush first, push the latter home, then mark off the radius of the hole to be cut from the outer edge of the hole in the bush, see dimension X in Fig. 1. This ensures that the centre-pin hole will be accurately spaced.

Avoid making the panel, the underside of the strip should have clearance filed at both edges.

To use the jig, drill a hole in the panel for the centre-pin, and place the jig on the panel with the pin through the hole. Fix a collar to the drill in the hand brace at such a height in the center piece amount and repeat. After once round, sink the drill a further.

To operate the device, get someone to slowly turn the jig round the center-pin whilst the drill, with the collar resting on the top of the guide bush, is revolved fairly rapidly. Fig. 2 shows the groove made after travelling a short distance. After once round, sink the drill a further amount and repeat. Then turn the panel over and cut from the other side. After two or three times round the center piece will fall out, and the slight flint can be removed with a pocket knife.

B.R.G. SPECIFIED AGAIN FOR THE PREMIER SUPER

B. R. G. 3-POINT SWITCH No. 48. With a specially strong phosphor bronze self-cleaning contacts 1/3

B.R.G. 3-POINT SWITCH No. 50. 2/- with special contacts

3 B.R.G. Component Mounting

Brackets, drilled, slotted and plate finished.

SOLE WHOLESALE DISTRIBUTORS FOR

METAPLEX CHAS. PETO SCOTT SIS as specified for Premier Super, size polished Walnut. 29/- for valve holders 3/9 Baffle and Baseboard Assembly 3/6.

In cases of difficulty send direct to the BRITISH RADIOGRAMPHONE CO. LTD., Pilot House, Church Street, Stoke Newington, London, N.18. Phone: 64288.

FIT THIS ELECTRIC CLOCK TO YOUR SET!

Keeps Correct Time! Works off small batteries lasting 12 months, or can be plugged into A.C. battery without affecting radio. Does practically no current. Fits into hole 2B in any panel up to 15/-, large holes in wood and metal. Fits into panel with the inner edge, is revolved whilst the drill, with the collar resting against the bush. Drills take the first point in the panel for the centre-pin hole, is removed with a pocket knife. Nickel-plated brass and polished walnut finish. 12/-.

RIVERSIDE MFG. Co., Ltd., Dept. 21, Crisp Road, Hammondsfield, W.D. Telephone: Riverside 6592.

World's Best Sound

FREE NEXT WEEK!

ANOTHER STEEL SPANNER TO COMPLETE THE SET,

FREE NEXT WEEK!

CHARGING WITHOUT MAINS

Thousands are charging their own accumulators, why don't you? "Tonic" trickle-charger Kits keep two accumulators charged for 24 hours. Ideal for remote districts. From 7/- postage 50/- Full particulars, stamp Williams, Bletchley, Cradley, N. Birmingham
Right from the beginning—
"PRACTICAL WIRELESS"
Designers have specified Heayberd Mains Components

Ever since the early days of “Practical Wireless,” their technicians have exclusively specified Heayberd Mains Apparatus for the majority of their mains circuits. Surely a fine tribute to the reliability and efficiency of Heayberd products. The sets detailed below incorporated Heayberd transformers and chokes:

ALPHA A.C.—D.C. UNIT, A.C. CHARGER, A.C. FURY FOUR, A.C. TWIN, SELECTONE A.C. RADIOGRAM.

It is not too late to build one or more of those units now, you can get all the mains components from Heayberd. Whenever it’s a question of “mains power for your radio,” Heayberd are ready to help you—especially with high-power models. Complete Mains Units, Mains Unit Kits, L.T. Battery Chargers, Mains Efficiency Components—all are fully described, together with helpful hints, tips and circuit diagrams, in the 36-page Handbook. Write TO-DAY for your copy. VISIT STAND 39—MANCHESTER RADIO SHOW.

F. C. HEAYBERD & CO.,
10, FINSBURY STREET, LONDON, E.C.2

---POST COUPON NOW---

* I enclose 6d. stamps for the Heayberd Handbook.
* More Power for your Radio—please send it by return.

Mr.

Address

NEW MULLARD HIGH-VOLTAGE OUTPUT VALVE

Where it is desired to get the very best out of the broadcast programme, it is essential that the output valve should be capable of delivering a really high undistorted output. This term is constantly occurring in reference to output valves, and there would appear to be some misconception among amateurs as to the precise meaning of the term. Another point which seems to cause confusion is the actual value of the output, as it is often stated that for real quality an output of 5 watts is desirable, whilst the average two-volt power valve only delivers a power in the neighbourhood of .3 or .4 watts. The following explanation may help to solve the difficulty, and will tend to show why these large super-power valves are necessary in delivering really high quality programmes.

The grid voltage and filament current of the valve remain constant, the auditory modulation being five or six times the average) when specially loud passages occur in the items being broadcast. In other words, whilst the radio-frequency power transmitted from a station is constant, the audio-frequency modulation varies in accordance with the programme. It is important, therefore, that the output valve in a radio set should be able to handle these extra loud passages without introducing distortion. For all normal purposes the usual triode or pentode output valves provide ample “overload capacity” for domestic reception, but those listeners who require super-quality, combined, perhaps, with rather more volume than that given by the average sets, can use in the output stage of an A.C. mains receiver or radio-gram one of the larger valves giving maximum undistorted outputs of 5 watts and upwards. These valves, it should be noted, require anode voltages ranging from 400 to 500 volts.

There are many such valves obtainable, and one of the most popular of the Mullard valves which has been available for some time now is the Mullard D.O.25. This valve had the remarkably low impedance of 800 ohms, and required 400 volts B.T. with a filament rating of 1.1 amps at 6 volts. This latter requirement prevented many listeners from taking advantage of the volume obtainable from this type of valve, as it necessitated a special transformer winding to deliver the 6 volts, or a separate accumulator had to be used. In accordance with the Mullard policy of producing a Master Valve for every purpose, experiments were carried out in order to improve this particular valve, and bring it into line with the more general type of mains-operated valve. The results of these experiments are embodied in the new D.O.26, and the valve is certainly superior to its predecessor. The B.T. voltage remains at 400, but the filament has been converted into one of the 4 volt 2 amp. type, with the additional improvement that the internal resistance of the valve has been reduced to 600 ohms. This results in an improvement of the conductance which now stands at .63 mA-volt. The grid bias required at maximum working voltages is 92 volts when the anode current is of the order of 6 milliamperes. Enormous signals may be handled by this valve, the total input capacity being 65 volts R.M.S. This valve will undoubtedly do much towards bringing better radio to many of the keen amateurs who do not mind the high rating of the B.T. supply, and to those who do not think such voltages and valves are justified, we would heartily suggest that they take an early opportunity of hearing a receiver or amplifier working under these conditions. We are confident that they will have a pleasant surprise.

The latest Valve Guide issued by the same firm contains most interesting details of many other valves, both of this high-powered type and for the ordinary small battery receiver.

NEW PETO-SCOTT SPEAKER

An interesting speaker is illustrated herewith, and is supplied by Messrs. Peto-Scott. As shown, it is ready for mounting into any type of cabinet, and many of the difficulties of correctly fitting one of these heavier types of moving-coil speakers are overcome by this simple baffle mount. The actual speaker is obtainable in permanent magnet or field-wound types, and the transformer fitted may be obtained for any type of output valve. The cone is of the corrugated type, with a neat, accurate centring device, and the magnet system is mounted rigidly on the metal chassis. We have tested two types, one of the permanent type and one with a mains-excited field, and the results in both cases were certainly very good. Speech was bright and clear, whilst musical items had all the characteristic timbre of the original instruments. Even when grossly overloaded, the distortion was not of the type which makes listening really unpleasant, and this appeared to be due to the particular spider and surrounding which was fitted. The sensitivity is not quite so great as our standard, but is sufficiently good to enable really good results to be obtained with a two-valve unit, or a suitable transformer valve. The speaker is obtainable in the chassis form or in a neat cabinet.
Memories, and it is by no means a collection on Parlophone R1586. Suitable for the same occasions, is a pot-pourri played by Edith Lorand's Orchestra on Parlophone R1586. This is Vienna Memories, and it is by no means a collection of the hackneyed pieces one might expect. There are two bits of very good marches, for instance. Another piece to be commended—also by Parlophone (R1586) is Lose's Joy and Sorrow and Fairy Tale of Love. Here the Orchestra Mousetic (in which everybody seems able to play at least three instruments) gives a very cheery little performance. Then one from Columbia. I know this mention will cause a smile from our young moderns, but there is something very attractive about J. H. Squire's Celeste Octet's playing of Silver Threads Among the Gold and Snowwhite When a Boy. The Aunts and Uncles will love it. The number is DB1155. Lastly, a real up-to-the-minute attraction—Here's the Circus and A Song Goes Round the World, on Parlophone R1587. One of the best recording dance bands on the continent—the Bravour—are responsible.

Where They Sing

Not many vocal hits to write of in this list, but there are one or two which are very tempting. The one I liked far and away the best is by a Children's Choir—that of St. Mary's School, Bridgnorth. I believe they average about twelve years, but their training must have been the work of an artist. Hear The Loss With The Delicate Air and Handel's Oh! Had I Jubal's Lyre on Columbia DB1166. From every standpoint—vocal, enunciative, artistic—the performance is a real gem. In the Handel piece, their "runs" are taken with the confidence of highly trained adults. This kind of record is scarce—hear it. I like Euse Acklies' playing of N. M. Y., B4405. It is a beautiful song, musically and poetically. The other side, Danny Boy, is hardly new (!) but many people collect it, I believe. It's very well done. Here is a queer choice—Taubner singing My Curley Headed Baby (Parlophone R020223). In German, the song sounds equally attractive, and he does sing it as a lullaby. The other side, The Railroad's Song, is not attractive, unfortunately. Norman Allin is very good in W. S. Henley's Invictus and The Blind Artist. Hear The Lass With The Delicate Air and Handel's Oh!

Lighter Fare from Mozart

Next, the Concertante Sinfonie for Violin and Viola (K364) on Columbia DX478-481. First, do not imagine that the two soloists (Sammons and Tertis) are awarded the lion's share of the performance. The orchestral part (played by the London Philharmonic Orchestra), occupies the stage a great deal. This composition is Mozart on the grand scale and yet in the Rondo-movement we arrive at the studio to make a record at her own expense, the recording manager is expected to commissar for the concert. She isDB1155. Lastly, a real up-to-the-minute attraction—Here's the Circus and A Song Goes Round the World, on Parlophone R1587. One of the best recording dance bands on the continent—the Bravour—are responsible.

Lighter Still

A very welcome addition to the "afternoon tea" music, albeit: real music, is Beethoven's famous Manuscript G, and the Entr'acte from Mignon on Parlophone R4404. Entirely on a different plane, but suitable for the same occasions, is a pot-pourri played by Edith Lorand's Orchestra on Parlophone R1586. This is Vienna Memories, and it is by no means a collection of the hackneyed pieces one might expect. There are two bits of very good marches, for instance. Another piece to be commended—also by Parlophone (R1586) is Lose's Joy and Sorrow and Fairy Tale of Love. Here the Orchestra Mousetic (in which everybody seems able to play at least three instruments) gives a very cheery little performance. Then one from Columbia. I know this mention will cause a smile from our young moderns, but there is something very attractive about J. H. Squire's Celeste Octet's playing of Silver Threads Among the Gold and Snowwhite When a Boy. The Aunts and Uncles will love it. The number is DB1155. Lastly, a real up-to-the-minute attraction—Here's the Circus and A Song Goes Round the World, on Parlophone R1587. One of the best recording dance bands on the continent—the Bravour—are responsible.

Where They Sing

Not many vocal hits to write of in this list, but there are one or two which are very tempting. The one I liked far and away the best is by a Children's Choir—that of St. Mary's School, Bridgnorth. I believe they average about twelve years, but their training must have been the work of an artist. Hear The Loss With The Delicate Air and Handel's Oh! Had I Jubal's Lyre on Columbia DB1166. From every standpoint—vocal, enunciative, artistic—the performance is a real gem. In the Handel piece, their "runs" are taken with the confidence of highly trained adults. This kind of record is scarce—hear it. I like Euse Acklies' playing of N. M. Y., B4405. It is a beautiful song, musically and poetically. The other side, Danny Boy, is hardly new (!) but many people collect it, I believe. It's very well done. Here is a queer choice—Taubner singing My Curley Headed Baby (Parlophone R020223). In German, the song sounds equally attractive, and he does sing it as a lullaby. The other side, The Railroad's Song, is not attractive, unfortunately. Norman Allin is very good in W. S. Henley's Invictus and The Blind Artist. Hear The Lass With The Delicate Air and Handel's Oh!

Lighter Fare from Mozart

Next, the Concertante Sinfonie for Violin and Viola (K364) on Columbia DX478-481. First, do not imagine that the two soloists (Sammons and Tertis) are awarded the lion's share of the performance. The orchestral part (played by the London Philharmonic Orchestra), occupies the stage a great deal. This composition is Mozart on the grand scale and yet in the Rondo-movement we
The Varley Nicore A.V.C. unit.

The Varley Nicore A.V.C. unit is designed to give the volume normally required from the receiver, with the ordinary manual volume control is then adjusted for the maximum sensitivity when tuning in weak or distant stations. The price is 12s. 6d.

OUR SHOW REPORTS

In the course of the Show Numbers we mentioned the fact that Stand No. 12 at Radio-Elysium was in respect of Higgs Motors (Birmingham). The name of the owners of this Stand should have been given as Higgs (Great Britain), Ltd., and we shall be glad, therefore, if readers will kindly note this difference.

BORST "BETTBAFF"

Messrs. Borst, Borst, Mohr, the well-known timber merchants, have produced an interesting baffle, bearing the same trade name. This consists of a square of plywood, 24in. by 24in., with a neat fret cut to the centre. In the present model mounted this was 6in, in diameter, but presumably any size fret can be obtained. The finish of the front veneer may be obtained in birch, oak and mahogany, the prices being 6s., 7s. and 7s. 6d., respectively. The novelty lies in the use in the centre of the board of a layer of some compressed material about 5/16in. thick, four layers of thin paper being arranged on each side of this layer to form a total thickness of 3in. Resonances are effectively avoided by this construction, and the reproduction with this baffle certainly sounds less "boomy" than with a similar board of ordinary plywood. In addition, a slight added rippleiness can just be detected on speech. In view of the little increase in cost over the ordinary baffle, it is certainly worth while obtaining one of these "Bettbafs" for the construction of a radio cabin.

SERADEX LOUD-SPEAKER

A neat loud-speaker has been submitted for test by Trevor Pepper. The illustration will show that a novel type of spider is employed, which is extremely light and has very little restoring effect on the cone, whilst at the same time permitting perfect freedom from side play. The magnet is particularly large for such a small type of speaker and lends great strength to the gap, namely, 7,500 gauss. A rubber gasket is fitted at the rear of this to avoid troubles due to metallic dust, etc., finding its way into the gap and thus giving rise to noises or preventing smooth movement of the speech coil, which has an impedance of 2,500 ohms. A rubber gasket is fitted at the rear of this to avoid troubles due to noises or preventing smooth movement of the speech coil, which has an impedance of 15 ohms. A pressed metal frame is employed to hold the periphery of the cone and this is fitted with a corrugated edge to enable the movement to be quite free and "piston-like." On actual test the sensitivity was quite up to standard, and reproduction was forward and brilliant, without any noticeable resonances or dips in the curve. The falling off at either end of the scale was at a suitable point to avoid bad effects, and the speaker may be said to represent very good value for money. The price is 3s. 6d., and the transformer offers ratios of suitable value.

AMPLICON SCREENED H.F. CHOKE

One of the new chokes introduced by Amplicon (1928) Ltd., has been submitted to us for test, and is of rather larger dimensions than the usual type of low-priced choice. The aluminium screen, for instance, is 13in. in diameter and nearly 3in. long. The choke is wound on a slotted enamel former of a diameter sufficiently small to prevent losses due to the screen, yet large enough to enable a high induction value to be obtained with a suitable gauge of wire. Eight slots are provided, and the wire is wound in these slots in the usual manner. The bore is of moulded bakelite fitted with two terminals having fixing holes, one of (Continued opposite page)
from George Newnes, Ltd., 8-11, Southampton
Obtainable at all

The latest valve to be released from the High Vacuum Valve Co.'s works is the B.220. This is one of the new economy Class B valves designed with a filament of the 2 volt, A.B. type, and requiring a maximum high tension voltage of 150.

The valve is housed in a fairly substantial bakelite case, and is provided with four terminals, marked A, B, 1 and 2.

ONE of "BIFLO" STATIC CUT-OFFS is included, and providing an earth connection to the screen. The device is housed in a fairly substantial bakelite case, and is provided with four terminals, marked A, B, 1 and 2.

The valve was tested in various circuits where the load was already in circuit. The results were fully up to the standard, and the output approximated 1.25 to 1.5 watts when fully loaded.

The quality was very bright and clear, with non-injectivity in one particular case for any tone compensation, although perhaps too high. The higher notes would require slightly reducing. Various drivers and driver transformers were tried, all with a high degree of success, and we have no hesitation in recommending this valve, which costs 10s. 6d.

We have no hesitation in recommending this valve, which costs 10s. 6d.

The actual characteristics of this valve, from which the method of numerical assembly may be seen, to be extremely

vitalised and rigid.

One of the latest valves, upon which the method of numerical assembly may be seen, to be extremely

vitalised and rigid.

The visible circuit diagram shown below illustrates one method of improving your reproduction by introducing a "Bulgin Senator" Nickel Alloy Core Transformer as an intercoupling between valves.

It replaces all old type transformers and will give even amplification from lowest bass to treble notes.

The ohmic value of the wire-wound "Spaghetti" resistance should be three times the impedance (in ohms) of the valve whose anode it feeds.

EULGIN "SENATOR" TRANSFORMER

Price

Nickel Alloy Core, Primary Inductance between 75 H and 95 H. Uniform amplification from below 50 to 8,000 cycles.

Ratio 1:1

List No. L.F. 12

Send for Catalogue No. 153 N.

Each

Send for Catalogue No. 153 N.

Each

The well-known Lincoln Stewart Decorations, are available at 2/6d.

We recommend this transformer in all cases where the choke is required.

The circuit diagram shown below illustrates one method of improving your reproduction by introducing a "Bulgin Senator" Nickel Alloy Core Transformer as an intercoupling between valves.

It replaces all old type transformers and will give even amplification from lowest bass to treble notes.

The ohmic value of the wire-wound "Spaghetti" resistance should be three times the impedance (in ohms) of the valve whose anode it feeds.

EULGIN "SENATOR" TRANSFORMER

Price

Nickel Alloy Core, Primary Inductance between 75 H and 95 H. Uniform amplification from below 50 to 8,000 cycles.

Ratio 1:1

List No. L.F. 12

Send for Catalogue No. 153 N.

Each

Send for Catalogue No. 153 N.

Each

The well-known Lincoln Stewart Decorations, are available at 2/6d.

We recommend this transformer in all cases where the choke is required.

The circuit diagram shown below illustrates one method of improving your reproduction by introducing a "Bulgin Senator" Nickel Alloy Core Transformer as an intercoupling between valves.

It replaces all old type transformers and will give even amplification from lowest bass to treble notes.

The ohmic value of the wire-wound "Spaghetti" resistance should be three times the impedance (in ohms) of the valve whose anode it feeds.

EULGIN "SENATOR" TRANSFORMER

Price

Nickel Alloy Core, Primary Inductance between 75 H and 95 H. Uniform amplification from below 50 to 8,000 cycles.

Ratio 1:1

List No. L.F. 12

Send for Catalogue No. 153 N.

Each

Send for Catalogue No. 153 N.

Each

The well-known Lincoln Stewart Decorations, are available at 2/6d.

We recommend this transformer in all cases where the choke is required.

The circuit diagram shown below illustrates one method of improving your reproduction by introducing a "Bulgin Senator" Nickel Alloy Core Transformer as an intercoupling between valves.

It replaces all old type transformers and will give even amplification from lowest bass to treble notes.

The ohmic value of the wire-wound "Spaghetti" resistance should be three times the impedance (in ohms) of the valve whose anode it feeds.

EULGIN "SENATOR" TRANSFORMER

Price

Nickel Alloy Core, Primary Inductance between 75 H and 95 H. Uniform amplification from below 50 to 8,000 cycles.

Ratio 1:1

List No. L.F. 12

Send for Catalogue No. 153 N.

Each

Send for Catalogue No. 153 N.

Each

The well-known Lincoln Stewart Decorations, are available at 2/6d.

We recommend this transformer in all cases where the choke is required.

The circuit diagram shown below illustrates one method of improving your reproduction by introducing a "Bulgin Senator" Nickel Alloy Core Transformer as an intercoupling between valves.

It replaces all old type transformers and will give even amplification from lowest bass to treble notes.

The ohmic value of the wire-wound "Spaghetti" resistance should be three times the impedance (in ohms) of the valve whose anode it feeds.

EULGIN "SENATOR" TRANSFORMER

Price

Nickel Alloy Core, Primary Inductance between 75 H and 95 H. Uniform amplification from below 50 to 8,000 cycles.

Ratio 1:1

List No. L.F. 12

Send for Catalogue No. 153 N.

Each

Send for Catalogue No. 153 N.

Each

The well-known Lincoln Stewart Decorations, are available at 2/6d.

We recommend this transformer in all cases where the choke is required.

The circuit diagram shown below illustrates one method of improving your reproduction by introducing a "Bulgin Senator" Nickel Alloy Core Transformer as an intercoupling between valves.

It replaces all old type transformers and will give even amplification from lowest bass to treble notes.

The ohmic value of the wire-wound "Spaghetti" resistance should be three times the impedance (in ohms) of the valve whose anode it feeds.

EULGIN "SENATOR" TRANSFORMER

Price

Nickel Alloy Core, Primary Inductance between 75 H and 95 H. Uniform amplification from below 50 to 8,000 cycles.

Ratio 1:1

List No. L.F. 12

Send for Catalogue No. 153 N.

Each

Send for Catalogue No. 153 N.

Each

The well-known Lincoln Stewart Decorations, are available at 2/6d.

We recommend this transformer in all cases where the choke is required.

The circuit diagram shown below illustrates one method of improving your reproduction by introducing a "Bulgin Senator" Nickel Alloy Core Transformer as an intercoupling between valves.

It replaces all old type transformers and will give even amplification from lowest bass to treble notes.

The ohmic value of the wire-wound "Spaghetti" resistance should be three times the impedance (in ohms) of the valve whose anode it feeds.

EULGIN "SENATOR" TRANSFORMER

Price

Nickel Alloy Core, Primary Inductance between 75 H and 95 H. Uniform amplification from below 50 to 8,000 cycles.

Ratio 1:1

List No. L.F. 12

Send for Catalogue No. 153 N.

Each

Send for Catalogue No. 153 N.

Each

The well-known Lincoln Stewart Decorations, are available at 2/6d.

We recommend this transformer in all cases where the choke is required.

The circuit diagram shown below illustrates one method of improving your reproduction by introducing a "Bulgin Senator" Nickel Alloy Core Transformer as an intercoupling between valves.

It replaces all old type transformers and will give even amplification from lowest bass to treble notes.

The ohmic value of the wire-wound "Spaghetti" resistance should be three times the impedance (in ohms) of the valve whose anode it feeds.

EULGIN "SENATOR" TRANSFORMER

Price

Nickel Alloy Core, Primary Inductance between 75 H and 95 H. Uniform amplification from below 50 to 8,000 cycles.

Ratio 1:1

List No. L.F. 12

Send for Catalogue No. 153 N.

Each

Send for Catalogue No. 153 N.

Each

The well-known Lincoln Stewart Decorations, are available at 2/6d.

We recommend this transformer in all cases where the choke is required.

The circuit diagram shown below illustrates one method of improving your reproduction by introducing a "Bulgin Senator" Nickel Alloy Core Transformer as an intercoupling between valves.

It replaces all old type transformers and will give even amplification from lowest bass to treble notes.

The ohmic value of the wire-wound "Spaghetti" resistance should be three times the impedance (in ohms) of the valve whose anode it feeds.

EULGIN "SENATOR" TRANSFORMER

Price

Nickel Alloy Core, Primary Inductance between 75 H and 95 H. Uniform amplification from below 50 to 8,000 cycles.

Ratio 1:1

List No. L.F. 12

Send for Catalogue No. 153 N.

Each

Send for Catalogue No. 153 N.

Each

The well-known Lincoln Stewart Decorations, are available at 2/6d.

We recommend this transformer in all cases where the choke is required.

The circuit diagram shown below illustrates one method of improving your reproduction by introducing a "Bulgin Senator" Nickel Alloy Core Transformer as an intercoupling between valves.

It replaces all old type transformers and will give even amplification from lowest bass to treble notes.

The ohmic value of the wire-wound "Spaghetti" resistance should be three times the impedance (in ohms) of the valve whose anode it feeds.
SOUTHERN RADIO'S Wireless Merchants.-Set manufacturer's enclosed cards.

VARIABLE Condensers—British Radiophone 4-gang superhet, 0.00015, 9/- each; Mawson 3-gang constant condensers, 0.00015, from 4/- each. H. W. Holmes, 29, Foley Street, London, W.1. Phone: Museum 1414.

SPARKERS—Collection brand new permanent magnet, 156; S.T.C. Super H.T. Permanent magnet, 156; G.E.C. Stork speakers, Minn energised, 2,500 to 0.500 ohms, complete with 5/- knob and dial; 21/-, bin. cone, 13/-; Utah D.C. mains, 0-250v DC 0-000 ohm per volt, 32/-6, all 750 volt.

CONDUCTED KIT.—Ready Radio 89/6, £3, £29/10; malls 1/-1/, complete with 3 Mallard valves, exide high tension battery, £3, £29/10 (list £6/10). Any make at Speaker. The Editor does not necessarily agree with opinions expressed by his correspondents.

A Woman Constructor

STE.-I should like to take this opportunity of thanking you for the valuable help that your book, Practical Wireless, has been to me. I have taken it from the first number and I still have them from No. 1. They are the best books of reference I have on wireless. I have constructed three sets from your specifications and have never had any trouble with them. My wife has also taken a great interest in your journal, and she has constructed a three-valve set to one of your designs.—R. FLETCHER (Rochester).

CUT THIS OUT EACH WEEK

DO YOU KNOW?

---THAT short wave coils are often constructed of copper tube instead of ordinary copper wire.

---THAT the reason for this is that high-frequency currents travel along the surface of a conductor.

---THAT when the reactance of a coil and condenser are equal, the reservoir coil will tune in the circuit.

---THAT a pentode-valve may be used as a detector.

---THAT a condenser should always be included in the earth lead of a D.C. mains receiver.

---THAT an artificial centre-tap for a push-pull input transformer may be introduced by means of two high resistances joined in series across the secondary.

---THAT a pentode valve may be used as a feed-back injector with a high degree of efficiency.

NOTICE

The Editor will be pleased to consider articles of a practical nature suitable for publication in Practical Wireless. Such articles should be written on one side of the paper used, and should contain the name and address of the author. While the Editor does not hold himself responsible for manuscripts, every effort will be made to return them to the stampless and addressed envelope is enclosed. All correspondences intended for the Editor should be addressed: 'The Editor, Practical Wireless, Geo. Newen, Ltd., 8-11, Southwark Street, Strand, W.C.2.'

Owing to the rapid progress in the design of wireless apparatus and to our efforts to keep our readers in touch with the latest developments, we give no guarantee that apparatus described in any columns is not the subject of letters patents.

ANOTHER FREE GIFT SPANNER NEXT WEEK!
The reply on this page must be attached to every query.

If a postal reply is desired, a stamped addressted envelope must be enclosed.

SPECIAL NOTE

"We wish to draw the reader's attention to the fact that the Queries Service is intended only for the solution of problems or difficulties arising from the construction of receivers described in our pages, or on general wireless matters. We regret that we cannot, for obvious reasons—(1) give advice regarding connections for constructing multi-valve receivers.

(2) Suggest alterations or modifications of receivers described in our columns.

(3) Answer queries over the telephone.

Please note also, that all sketches and drawings which are sent to us should bear the name and address of the sender.

THE DIODE AND REACTION

"I have been using a diode detector for a long time and in my opinion it is impossible to find a better form of rectification. The only drawback is that it is so far as I am now aware, impossible to employ in a receiver, and my H.F. stage is arranged on the low gain principle. Do you think it is possible to add any form of rectification to the H.F. valve without affecting the circuit, so as to give me a little extra boost in weak signal conditions?"—K. N., Lancaster.

We presume that you are using an ordinary valve as a diode, with the anode left free. If, however, you have linked anode and grid, you may disconnect the anode and use this for the purpose of applying return. We would not recommend the use of feed-back in the H.F. stage, but an ordinary H.F. coil with a secondary tapping could be used in this way. In this case, with the anode of the diode connected in the usual way to the receiver-wire, it would be possible to operate the detector as a reaction condenser. An H.F. choke should, of course, be included in the anode circuit between a positive tapping on the H.T. battery and anode. It should be possible to find a voltage which will enable smooth reaction to be obtained and which will in no way affect the quality of the diode detector.

GAUGING INSTABILITY

"I have finished building a three-valve (S.G.) detector and receiver, but do not like the arrangement of the circuit. I find that the small sections of the ganged condenser are rather flat, and that I have to turn the middle one right in to get the set to oscillate. Can I alter this so that I can control it from the panel as it is awkward to get at it inside the cabinet?"—G. H., Lancaster.

We are afraid that your set in unstable, and we have not quite understood its adjustment. The receiver should be perfectly stable with the trimmer controls adjusted correctly. As the centre one controls oscillation it is obvious that the H.F. stage is unstable, and when you adjust the trimmer for resonance the receiver goes into oscillation. You must therefore adjust the detector in stability and when you have adjusted you will find that the trimmers may be adjusted to give a maximum setting without any trace of oscillation, and then the panel controls will function normally.

MAIN INTERFERENCE

"I am troubled by a peculiar form of interference in my homophone receiver. I am only listening to the wireless programmes and bear a rather noisy singing from the loud-speaker. It does not occur every night, but two or three times a week. It starts with a faint tick and seems to be very regular, with a form of up-and-down singing hum. I do not know whether you can recognize any fault from this description, but any suggestions you make will be very thankfully received."—S. A., Margate.

It is possible that the emission of some form of electrical apparatus being used in a nearby house. It may be some medical instrument, or even an electric fan. As a result, however, the sound appears to rise and fall, and it seems to be due to a number of some sort which runs under varying sounds, and you can prevent the interference by fitting a double-centred-tapped condenser across your mains leads. It may be that you do not wish to make up the condenser (which should, of course, be based on the needs of safety), but you wish to obtain a transformer which will enable you to match both speakers with your valve, it will be preferable to connect both in series rather than in parallel, and so obtain more or less equal signal strength from both. An alternative method would be to obtain a suitable transformer of correct voltage to enable a moving-coil loud-speaker to be included in the anode circuit, and use the primary of the transformer for feeding the homophone speaker by means of an output filter arrangement.

SUPERHET CONNECTIONS

"I am trying to build a superhet receiver, but am spoiled by the detuning effects of the ganged condenser. I am interested in building a 'binocular' choke, and the reason is to reduce the effects of induction. However, some manufacturers also screen their H.F. stages, the purpose being the same, namely, to reduce the field. Where, then, is the sense in making a peculiar screened choke, as some firms do? Surely it is unnecessary, and a waste of good time and money."—H. F., Bournemouth.

On the face of it your final remark would appear to be true, but there may be some points you have overlooked. First, the binocular choke construction does not involve any cost of the field, but if this choke is fitted to a backboard, the cost of line and condensers on the potentiometer, coupling between the two could exist, and perhaps instability would result. Again, when you say that you will find that the majority of chokes which are marketed in this form are of the two-ordinary chokes such as are supplied by the name, instead of the one transformer choke which you desire, you cannot give better results than one alone. Thus you get two transformers for the same money, and in general this is not double the cost of the two single chokes. In any case, the two-chokes have greater inductance than the one, and you can add other components and enable a more compact design.

COLOURED SWITCHING LIGHTS

"I have seen remarks regarding a form of distress light which changes colour as you switch from one waveband to another. I wish to know if this is possible and if it is, what sort should I get?"—R. M. S., Rotherham.

There is nothing in the arrangement which can be difficult, and the simplest method is to use two separate pilot lamps, one coloured, the other blue. One side of each lamp should be connected together and to one L.T. lead, and the remaining side of each lamp to a change-over switch. The arm of the switch should be joined to the remaining L.T. lead. The switch should be put on otherwise controlled by your normal wave-change switch, and the method described above and instead upon the special switch which your set employs. A much easier arrangement would be to use the new Bulgin Colour Signal, which is suitable for any form of coil switch.

EXTENSION SPEAKERS

"I have added a moving-coil loud-speaker to my receiver, which is connected up with an ordinary speaker. I find, however, that the speaker in the other room takes all the power from my old speaker, and this is two weeks. Is it due to the leads in the next room, or does the moving-coil speaker take more power and thus starve the old one?"—R. Y., Westbourne Park.

With a moving-coil loud-speaker a much smaller volume of the output is effective. It does not take this power at the expense of the old speaker which you have. The fact is that the impedances of the two speakers are different. There is, too, the possibility that the extension leads are having an adverse effect. If it is not possible to obtain a transformer of correct voltage, it will enable you to match both speakers with your valve, it will be preferable to connect both in series rather than in parallel, and so obtain more or less equal signal strength from both. An alternative method would be to obtain a suitable transformer of correct voltage to enable a moving-coil loud-speaker to be included in the anode circuit, and use the primary of the transformer for feeding the homophone speaker by means of an output filter arrangement.
B.B.I. - NEW SESSION

The first session of the B.B.I. opened on Friday, September 23rd, at 7.30 p.m., with a lecture by Dr. E. J. Heraud, who was chairman for the subject "The Reproduction of Sound via Radio." The meeting was held at King's College, Strand, W.C.2, and was attended by Prof. C. L. Fortescue, O.B.E., M.A.

Replies to Broadcast Queries

Coppenhagen (East Ham): PAOAZ, H. E. Jacobs, 41, Great Floribund Road, Hoxton, London. We do not know wavelength used but many Dutch experimenters work on the 50 m. (557 kc.) band. HAYWARD (Bolton, Lancs.): Without doubt an in-line experimental transmitter in your immediate vicinity. Although transmission was made on a lower wavelength, this would account for a break-through on one of the wave-bands. Cannot trace identity unless calls are given. "Sparky" (Southport): Telephony between ships (transatlantic, etc.) on 173.5 m. (1,690 kc.) g.s. GLINK, River Clyde.

FIRST DETAILS OF A NEW OUTPUT VALVE

An output of 4 watts is obtainable and it appears to be quite suitable for operation in conjunction with existing H.T. power arrangements, in the great majority of mains receivers. Fig. 3 shows the circuit arrangement when this valve is employed in push-pull. With this sort of excellent quality can be obtained with about 10 watts output. Harmonic distortion is generally reduced with push-pull arrangements and particularly so with this valve, especially the odd harmonics, which are considerably reduced.

The output stage of the output stage which has recently received considerable attention. Is the pendulum swinging once more in the direction of mains receivers?

7 DAYS' FREE APPROVAL!

H.T. ELIMINATORS AND TRICKLE CHARGERS.
BRITISH THROUGHOUT.

2 YEARS' GUARANTEE. A.C. models incorporate Westinghouse metal rectifier and a special power supply for illuminating tuning dials. Trickle charger 1s. 6d. extra.

Catalogue free from actual manufacturers:

V.M.C. RADIO COMPANY, LTD., 113-117, Farringdon Rd., E.C.1

15/-

A PRACTICAL HOME-STUDY COURSE IN RADIO

leads to a recognised "licence eligibility" and a "B.R.I."

"We guarantee success and give reasonable guarantees." "A.M.E.T." ""In a Word."

A.R.E.T. We guarantee success and give reasonable guarantees. "A.M.E.T." "In a Word."

No Franchise Charges.

"AIRSPRUNG"

Anti-microbial, non-metal VALVEHOLDER

5 Pin 1/3 4 Pin 1/2

STANDARD TYPE

4 Pin 8d. 5 Pin 9d.

"A MATTER OF CONNECTION"

Panel Terminals Type B: with special hexagonal shoulder for easy mounting.

Type A: 2/2

LECTRO LINX LTD., 79a, Rochester Row, S.W.1.
Some "covered" wires are being boxed and made to look like SUPERIAL. Imitators know that the way to sell you another wire is to make it seem like SUPERIAL.

They imitate the box and the name, but they cannot imitate its vulcanized rubber insulation or the scientific combination of ferrous and non-ferrous metals (including copper). They offer you a stranded wire of one metal only which has a cheap and ineffective cotton "covering." This is not insulation and will not protect the aerial after a little exposure to weather. Some dealers try to deceive you. Avoid deception. DON'T BUY ANOTHER WIRE made to look like SUPERIAL. That cheats you of something you prize.

LOOK AT THE NAME AND THE BOX.
SUPERIAL is more than just an aerial—it is a very particular kind of aerial. It is the ONLY properly insulated aerial. It brings envied results, and does for your reception what every enthusiast wants—BETTER SELECTIVITY, BIGGER VOLUME, BEAUTIFUL TONE. Imitations do not bring what you seek. They are NOT SUPERIAL.

TRY IT at our Expense and then you will know why it is so efficient. Ask your dealer for SUPERIAL—But you must agree to return it if it does not "prove up" to every claim made for it. We guarantee to refund your money unconditionally if SUPERIAL disappoints you. If your dealer does not stock SUPERIAL he can get it for you, or we will send it direct to you upon receipt of your remittance.

Good reception is worth any price you pay. Ask your dealer for SUPERIAL. You will get perfect reception and a £100 Free Lightning Insurance for two years from a Company which is in a position to meet all its obligations.

Try it at OUR EXPENSE
The time has come—not to talk of many things, nor even to sing the praises of any specific "Igranic" component—but simply announce that Igranic are first, as always, with those ultimate refinements in radio design which you very properly demand. We do not hope to convey to you any idea of the Igranic range within the sixty-five square inches of this advertisement. We are content to recommend the new fifty-page Igranic catalogue, which meets the needs of every radio constructor with understanding and due economy. A copy will be sent you free, and by return of post.

The prices of the Igranic Transformers illustrated above are:

- T.24B 5/6
- Parvo 6/9
- Midget 8/6

Write for fully illustrated Catalogue No. J1275 of Igranic Quality Components.

IGRANIC ELECTRIC CO., LTD., 149, Queen Victoria Street, E.C.4
ANOTHER FREE GIFT STEEL WIRELESS SPANNER WITH THIS ISSUE!

Practical Wireless

Published every Wednesday by GEORGE NEWNES LTD.

Vol. 3. No. 54.

SEPTEMBER 30th, 1933.

Registered at the G.P.O. as a Newspaper

EDITED BY F. C. S.

The wonderful new low loss lead in cable definitely eliminates crackle, background noises, mush and all man-made static. It improves selectivity and increases sensitivity. Get one to-day. You can fix it in less than five minutes.

Receptru
FOR TRUE RECEPTION

Have you reserved your Pocket Tool Kit?

OF ALL DEALERS in lengths of 15 feet 10/-

British Radiophone Ltd., Aldwych House, London, W.C.2
British Radiophone Ganged Condensers have consistently set the fashion. It is imperative to employ scientifically designed precision instruments as surprisingly big losses can occur in badly designed or poorly manufactured Condensers.

Radiophone Condensers incorporate many patented unique features, such as Radial Wedge assembly of vanes, Spring-loaded Tapered Bearings with "Keep Plate" Anchorage. The Steel Girder Frame method of assembly and three-point Suspension guarantee freedom from mechanical distortion.

Every Radiophone Condenser is matched section by section at SIX points of the tuning scale to within ½ per cent. One has only to balance out the stray circuit capacities with the aid of the trimmers conveniently provided at the top of the unit to ensure permanent MATCHED PERFECTION.

SPECIALY SUITABLE FOR "IRON-CORED" COILS.

The delicate matching of "Iron Cored" Coils makes it more necessary than ever to employ condensers matched to the nth degree, hence the numerous occasions on which these condensers have been exclusively specified in circuits using these new coils.

ASK YOUR DEALER TO SHOW YOU ONE INSIST ON RADIOPHONE

Write for list of components to:

BRITISH RADIOPHONE LTD.
ALDWYCH HOUSE, LONDON, W.C. 2

TELEPHONE: HOLBORN 6744
A NOTE TO CONSTRUCTION

Hundreds of constructors have purchased moving-coil speakers and have been disappointed by the performance of the only tubes or valves they could get, and yet there are plenty of tubes or valves on the market that will give any constructor the result he wants. The same is true of valves and the tubes they use. The only tubes or valves that will give any constructor the result he wants are the tubes or valves that are guaranteed to give the result he wants. The tubes or valves that are guaranteed to give the result he wants are the tubes or valves that are not guaranteed to give the result he wants.

BLUE SPOT MOVING COIL SPEAKERS ARE ON SALE AT YOUR DEALERS, PRICES 27/- to 87/6.

MOVING IRON SPEAKERS, 12/6 to 30/-

For those listeners whose receivers, by reason of their output, cannot provide really good moving-coil performance, one of the famous Blue Spot moving iron speakers is a sound investment.

The new 69R unit, illustrated here, is now 27/6 (Class B model, 30/-), and is everywhere acknowledged the best speaker of its kind. A cabinet model in oak, 64R, costs 39/6 (Class B model, 42/-). 69R units when mounted on a Blue Spot Motor Chassis, ensure complete satisfaction. Price of chassis, 10/-.

THE BRITISH BLUE SPOT COMPANY LTD., Blue Spot House, 91-96 Rossmore Road, Rosebery Avenue, LONDON, E.C.1.

The Blue Spot moving iron speakers are non-microphonic and are free from stray hum. They are used in all parts of the world. Read this handbook for complete satisfaction.
COLVERN FERROCART COILS

SPECIAL G Type GANGED COILS
Complete with gramophone and wave change switch
Two Gang ... 25/-
Three Gang ... 37/6
Four Gang ... 50/-
On and off Switch if required 1/6 extra. State if required for battery or mains receivers.

COLPAK Type H
Comprising Ferrocart G type Coils, Tuning Condenser, Gramophone and on and off Switch (state if required for battery or mains receivers).
Coils can be supplied for SGHF stage receivers with Band Pass filter or Band Pass filter and Oscillator Coil for Superheterodyne receivers.
Price 57/6

STANDARD Type F GANGED COILS
Two Gang ... 25/-
Three Gang ... 37/6
Four Gang ... 50/-
Single Coils ... 12/6

COLVERDYNE FERROCART INTERMEDIATES
Type F C 110 ... 12/6 each
Type F C 150 ... 16/6 each
With universal mounting bracket, limited capacity adjustment and band pass coupling controlled externally.

COLVERN LIMITED, MAWNEYS ROAD, ROMFORD, ESSEX
London Wholesale Depot: 150, King's Cross Road, London, W.C.1

FINE.

MILLIAMS
0-6 milliamps.
0-20
0-120

VOLTS
0-6 volts.
0-100
0-300

OHMS
0-10,000 ohms.
0-60,000
0-1,200,000
0-3 megohms.

DEFERRED TERMS
if desired, write for particulars

Phone: VIC 3405-7.

THERE could be no surer conviction than that! ... that the AvoMinor, priced at only 40/-, is supremely ACCURATE! It means more than mere fault-finding, more than mere testing. It gives precisely measured evidence of radio faults and efficiency.

It measures TEN different ranges of milliamps, volts and ohms—affording testing facilities combined with positive accuracy which no other instrument at anywhere near its price can give. The AvoMinor is a self-contained moving-coil combination measuring instrument with a total resistance of 100,000 ohms. Full scale deflection is obtained with a consumption of only 3 milliamps.

Make any comparison you like. This little brother of the world-famous Avometer does more, and does it more accurately, than any other combination testing instrument priced so modestly. Ask your radio dealer—he knows!

Be satisfied with nothing less. You will prefer the precision of the AvoMinor. Fully descriptive pamphlet post free.

AVOMINOR TELLS THE WHOLE TRUTH!
CLASS B "Simplified!

THE NEW ROLA P.M. MC UNIT SPEAKER IN ONE

MAINS VOLUME FROM ANY BATTERY SET AT VERY LOW USE OF H.T.

JUST CONNECT TO YOUR SET WITHOUT ANY ALTERATION!

A latest type ROLA Permanent Magnetic Moving Coil Speaker with which is incorporated a complete, properly matched "CLASS B" amplifier. This assembly when connected with any Battery Set converts it to "CLASS B" output, increasing the overall sensitivity of the set several times, and increasing the Power Output of Volume up to 5 Times.

SEND FOR IT ON 7 DAYS’ TRIAL

Send only 5s. for 7 days' trial, if satisfied, pay balance in 10 monthly payments of 7s. 6d. (Cash in 7 days, £3 11s.)

HELLESENS NEW HI-LIFE BATTERIES

50·2% LONGER LIFE PROVED BY TEST

50·2% free in every battery—proved by a famous British set-maker. The reputation of his sets hung on every part he used in them. The batteries must be the best, therefore he chose Hellesens. But first he put them on test, and was convinced by the amazing result his test produced. Only Hellesens have over forty years' experience in battery manufacture. Only Hellesens could produce a battery with this high standard of performance—longer life, greater power, higher capacity, and offer it to you at so low a price.

BRITISH MADE BY BRITISH LABOUR

Stand No. 6A Manchester Radio Exhibition. Sept. 27—Oct. 7

HELLESENS HI-LIFE BATTERY

Hellesens Limited, Morden Road, South Wimbledon, S.W.19.
Cossor Class "B" Battery Console Model 3456

Price does not include Batteries or Accumulator.

Price £9.19.0

Hire Purchase Terms: 2/- deposit and 33 monthly payments of 20/-.

Cossor All-Electric Console (for A.C. Mains) Model 3468

Price £10.15.0

Hire Purchase Terms: 3/- deposit and 33 monthly payments of 21/-.

Cossor All-Electric Console (for D.C. Mains) Model 3469

For D.C. Mains only. 200/250 volts adjustable.

Price £10.15.0

Hire Purchase Terms: 3/- deposit and 33 monthly payments of 21/-.

Legs are detachable on all Console Models and the receivers can be used as table models with legs detached.

Handsome in appearance, simple to operate and economical to use, these Cossor Console Models—due to their moving coil loud speakers—give unusually true-to-life reproduction. Their performance is considerably above that which would be expected from such moderately priced Receivers—they provide a wide choice of programmes with adequate selectivity. Your dealer will be glad to demonstrate the capabilities of these fine Sets.

Cossor Battery & All-Electric Radio

Prices do not apply in I.F.S.

Swiss Radio diffusion Services

The relay services by which subscribers in many Swiss cities are given the benefit of broadcasting programmes via the telephone system have been so arranged that the intervals in the Swiss studio programmes are filled by taking entertainments from the programmes from Bremen, Leipzig, Frankfort, Berlin, Munich, and other cities.

Many people have listened to them by acquaintances who recognize their voices were repro-duced through the telephone. Some have even been able to pick out their own record. Similar tests were made with dogs, by playing a record of their master's voice; in each case the animal showed recognition, but a reproduction of his own bark merely raised the idea that a strange dog was in the room!

New High-power Romanian Station

BOD (Brenndorf), some seven miles distant from Brasov, is the site chosen for the new high-power Romanian station destined to take over the Bucharest transmissions. According to the new Lausanne Plan the exclusive wavelength of 1,875 metres (160 kc/s) was allotted to Romania with freedom to use in that channel up to 150 kilowatts. It is hardly likely that plant of such energy will be installed, but as the wavelength is one which Holland is not likely to relinquish, it is expected that another position in the waveband will be sought. The sharing of wavelengths will be a small one and the limit of power allowed 1 kilowatt.

Have you reserved your pocket tool kit?

Turn to pages 90 and 91 and do it now!

THE HANDIEST POCKET KIT OF TOOLS

This illustration shows the handy size and form of our Birthday Offer Tool Kit. It contains one four-inch Chesterman rule; one steel pocket scriber with chuck; one accurate 30-degree steel set square; a pair of pliers; two end cutting pliers; one reflecting mirror for viewing obscure parts of the set; one set of trammels, with heads, for scribing, cutting holes in ebonite, etc.; one steel centre punch, and one hand-fed screwdriver. The case is of metal finished in blue, and is especially reinforced with a metal-recessed bed into which the tools snugly fit. For the extreme care used in manufacture and the long time taken to produce these kits, it is necessary for everyone to reserve without delay, as the offer is only available for a short time. Turn to pages 90 and 91 and comply with the conditions now!

An Expensive Toy

According to the French newspaper L'Antenne, the price paid by the French Ministry of Posts and Telegraphs for the new Radio-Paris transmitter, which is being taken over by the State in November, is some twelve million francs. At to-day's rate of exchange this works out at roughly £150,000. Yet if rumour is to be believed, the Paris P.T.T. contemplates erecting another high-power station in the neighborhood of the French capital.
Radio-Paris P.T.T.

FROM November 1st, the high-power transmitter erected for Radio-Paris at Remy St. Honoré near the French capital will be taken over by the State authorities, and from that date will act as a unit of the P.T.T. network. It has not yet been decided whether and when the entertainment broadcasts from the Eiffel Tower are to be suspended, but if and when this takes place the station will solely carry out its official telegraphy and telephony transmissions.

The Freedom of the Ether!

WITH the launching on the German market of the Volksempfänger (People's Receiver), the wireless industry in that country has been required to produce at a low price, steps are to be taken by the authorities to prohibit owners of other types of multivalve sets from listening to foreign broadcasts. The VE 301 (People's Receiver) is a two-valve battery or mains set designed to permit its owner to listen only to the Deutschedomender and to his local transmitter. Every effort is to be made to bring this set into general use in Germany. Persons convicted of listening to foreign anti-Nazi broadcasts are liable to a heavy fine, imprisonment, and to immediate confiscation of their wireless receivers!

Interference

THE transmitter from which occasional broadcasts are to be heard in the background of the Hit parade is situated in the hills 1,875 metres, is Moscow (RCD), a new 100 kilowatt station used for telephonic communication with other Soviet cities. Another station in the Russian capital, RAX, on 1,760 metres, with a power of 30 kilowatts, may sometimes be tuned in when Radio-Parse is silent. During the past few months the Soviet authorities have added many new stations, working both on medium and short waves, to their ever-increasing radio system.

Late Night Special

FOR the benefit of British listeners to the night concerts of Radio Normandie, the Focamp studio now broadcasts a special news bulletin in the English language between midnight and 12.15 a.m., R.B.S. As it is followed an hour later by a French broadcast of news from Paris.

A Weekly Ether Tour

ONE occasion you should pick up an English or foreign programme on a wavelength immediately below that of Soviet Russian make a note that it may emanate from Radio Lyons (France) whose broadcast takes its local listeners for a tour through the European ether. The foreign broadcasts are captured by the Radio Club of Lyons, and passed over by its more powerful colleague. In this call the announcer will refer to the city as Lee-yon, and not Lyons as we know it on this side.

Anti-Propaganda Measures

FOLLOWING steps taken by the governments of Czechoslovakia and Lithuania against the public broadcasts of propaganda talks adverse to their respective countries, Austria has also passed a similar law prohibiting its nationals from listening to foreign transmissions of that nature. In the last case where selection is obtained, the culprit may be condemned to three months' imprisonment.

A Popular Relay

ON September 30th, the B.B.C. will place its microphones at the Sadler's Wells Theatre (Islington) for the relay of Act 1 of Gounod's opera Faust, for the benefit of listeners to the National programme.

Japan's Broadcasters

THE number of registered listeners in Japan has already reached 1,470,000, the majority of licensees using crystal or small two-valve receivers. Eight of the bigger stations, in the order of power are: JOAK, Tokio (345 m.); JOHK, Sendai (304.7 m.); JOIK, Sapporo (361 m.); JOBQ, Osaka (400 m.); JOCK, Nagoya (370.3 m.); JOEK, Kumamoto (390 m.); JOFK, Hiroshima (333 m.); and JODK, Kyoto (435 m.); with the exception of the last transmitter all are rated at 10 kilowatts. In view of the great success achieved by the broadcasting system, the authorities are considering the installation of another 150 kilowatt station in the neighbourhood of the capital. Without doubt, on favourable nights broadcasts at such power would be heard many miles afield.

Entertaining the Troops

IN Italy, a special radio-cinema motor lorry has been attached to the Army during the summer manoeuvres. It is fully equipped with electrical turntable, pick-up, and amplifiers, as well as with a talkie projector and wireless receiving apparatus. The entire installation is operated by a picked staff of engineers. The lorry follows the troops on the march, providing them with martial music en route, and in the evenings furnishes both cinema and radio entertainments. By means of a public address system of multiple loud-speakers entertainments, including broadcasts of news bulletins, are given to a very large military audience.

Vaudeville and Revue

FOR the autumn and winter months the B.B.C. announces great plans for the development of the lighter kind of entertainment. From the end of September under the title of First Time Here, a vaudeville matinee will be broadcast every Saturday afternoon to which will contribute a number of artists appearing for the first time before the microphone. Billy Merson will appear in and present his own revue, and Elsie and Doris Waters will take the principal parts in a new show written by Ashley Sterne. The Follies of the Air, in future a regular feature, is a new concert party working on the lines of performances held on September 30th, the B.B.C. will place its microphones at the Sadler's Wells Theatre (Islington) for the relay of Act 1 of Gounod's opera Faust, for the benefit of listeners to the National programme.

A piano-shaped radio-gramophone, priced at £110.10.0, shown at the recent Radio Show at Olympia.

SOLVE THIS!

Problem No. 54.

Whitaker decided that he would build up a three-valve mains receiver, and accordingly wound a mains transformer and choke, using data obtained from our data sheet. He decided to use a Mullard V.F.4 for the E.F. stage, an Oram M.H.4 for the detector and a Mazda M.H.4 for the output stage. The valves are rated at 200 volts maximum H.T. and he accordingly wound his transformer to suit the Westinghouse H.T. 7. All his figures and workings were correct; and when the receiver was finished and checked it was found to be perfectly O.K. Results were, however, very disappointing, valves being sadly lacking and quality very poor. All good components were employed and all were tested and found in order. What was wrong?

Three books will be awarded for the first three correct solutions opened. Address your envelopes to The Editor, PRACTICAL WIRELESS, G. N. X. G. Ltd., 9-11, Southampton Street, Strand, London, W.C.2, and post to reach here not later than October 1st. Mark your envelopes Problem No. 54.

SOLUTION TO PROBLEM No. 53.

Biankamp made a mistake in his calculations, which requires that the nominator of the equation should be the optimum valve load, and not its impedance. The following three readers received books in connection with Problem No. 53.

The last twelve months have seen an increasing tendency towards the use of multi-electrode detectors, and a review of the receivers employing this form of rectification suggests that 50 per cent. of them would work far better with an ordinary 3-electrode valve, while a large percentage of the remainder fail to justify the extra expense involved.

There are a few commercial receivers employing such an arrangement, but in all the cases that have come to the writer's notice there is reasonable justification for such a procedure.

Before going into the matter farther, the advantages and alleged disadvantages of multi-electrode detectors will require considerable investigation.

There are only three possible advantages:

(1) Greater gain.
(2) Superior quality of reproduction, and
(3) Less damping on the tuned circuit immediately preceding the detector valve.

Take first of all the question of gain, where the greatest justification for this form of detection has been found. A valve such as the Cossor MS/Pen-A has considerable possibilities. Readers will probably be aware that this valve is classed as a high-frequency pentode, although a far better idea of the valve can be conveyed by describing it as a screened-grid valve with an extra grid interposed between outer grid and anode to straighten out the kink in the characteristic, which is invariable with the ordinary screened-grid valve. This valve will give 29 volts output when 55 volts are applied between grid and cathode. This represents a stage gain of just over fifty-four times; consequently this effect is proportionately immaterial.

This explanation of the Miller effect would seem to indicate that the high-frequency pentode had the advantages of gain and extra efficiency, but unfortunately this extra efficiency is often a serious disadvantage, because modern components force the constructor to use everything screened except the short wires between one terminal and another. When the pre-detector coil is heavily damped by the detector valve, everything is all right, but when this damping is increased the received becomes hopelessly unstable.

To achieve stability with such a valve extravagant screening is necessary, and infinite care must be bestowed on the actual layout of the circuit. Furthermore, if the set is to be used with reaction, the Miller effect is of no consequence, as the reaction will more than overcome the damping arising from this source.

This valve either requires an external anode voltage of 400 or else the inter-valve transformer must be choke-fed, and the total cost of the stage will be about equal to the cost of an ordinary detector, plus an L.F. stage with R.C. coupling between them, which would give greater gain than the high-frequency pentode by itself.

Summing up the high-frequency pentode within the meaning of the word at the time of writing, it would appear that although it probably represents one of if not the most advanced form of power-grid detector technique, it is doubtful if its presence is desirable under normal circumstances.

Screened-Grid Valves

The next multi-electrode detector that presents itself is an ordinary screened-grid valve, which automatically branches into two classes, the use of a high-impedance or low-impedance type.

The high-impedance type offers remarkable gain and has great possibilities in receivers not employing any high-frequency stages; but when one or more such stages are used a high-impedance S.G. detector valve will overload far too easily.

(Continued on page 118)
How the B.B.C. Does It

An Informative Article by our B.B.C. Correspondent on the Way in which the B.B.C. Experts Design and Operate their Receivers and Amplifiers. This Article will help you in Designing your own Apparatus.

You can learn much from B.B.C. receivers and amplifiers, and by studying the circuit arrangements and component values chosen a help when you come to designing apparatus for yourself. Examine the circuit diagram of the check receiver used at Broadcasting House and you will see what I mean.

These receivers are, of course, a little more elaborate than you would use for ordinary B.B.C. reception, as they are real quality jobs, and no expense is spared nor economy in valves studied. But they are planned for a rather special job, namely, the reception of local transmission with knife-edge selectivity and the best possible quality.

After all, this is what is wanted in any receiver.

In the case of the B.B.C. receivers at Broadcasting House, there are three. Each is tuned definitely to one station. Thus there is one for Daventry, one for London Regional, and one for London National. The tuning circuits are pre-set, and the adjustments checked over every morning.

The sets themselves consist of a screen-grid H.F. stage and push-pull detectors. The output is coupled to an ordinary low-frequency amplifier to bring the volume up to loud-speaker level. However, each of the B.B.C. loud-speakers is fitted with a two-stage mains driven L.F. amplifier in addition.

H.F. and Detector Stages

We will first concern ourselves with the H.F. and detector stages of the check receivers. The tuning circuit is as shown in figure 1. There is a tuning condenser of .0005 microfarad and a series condenser of .0002 microfarads. The tuning condenser is not directly in parallel with the coil, but there is a fixed resistance in series with the coil as part of the tuning circuit.

The value of this resistance depends on the wavelength to which the set is tuned and is the same in both the Daventry National and London National receivers.

A hundred thousand ohm potentiometer is placed across the whole tuning circuit as a pre-detector volume control. This is used to adjust the rectified current output from the detector and is always adjusted to the same value for all the receivers. Thus, there is the same output to the L.F. amplifiers from all of them.

An indirectly heated screen grid valve is used, and the bias on its normal grid is obtained by a 1.5 ohm resistance in the heater lead shunted by a .01 microfarad condenser. In the anode circuit of the screen grid valve is an H.F. choke and a by-pass condenser of 1 microfarad.

There is a common high-tension supply of 300 volts to all stages of the check receiver. There is a 20,000 ohm resistance in series with the screen grid valves to cut down the voltage for the anode.

A split primary H.F. transformer coupled between the screen grid valve and the push-pull detector stage. The coupling between the two primary sections and the secondary section of this H.F. transformer is variable, and both the primary and secondary are tuned. There is a .0005 microfarad condenser across the primary and a .0005 across the secondary. Incidentally the screening grid voltage for the screen grid valve is obtained by dropping resistance. There is a .0003 microfarad condenser across the secondary section of this H.F. transformer.

There is a 10,000 ohm resistance in series with the A and B amplifiers. The coupling condenser to both the output transformer from the A and B amplifiers and the A and B amplifiers is by means of resistances. Half megohm resistances are placed in the filament leads to cut down the voltage. There is a .0001 microfarad condenser across the secondary section of this H.F. transformer.

The tuning condenser is .0005 microfarads. The primary section of the push-pull detector is directly coupled to an ordinary low-frequency amplifier to bring the volume up to loud-speaker level. However, each of the B.B.C. loud-speakers is fitted with a two-stage mains driven L.F. amplifier in addition.

There are three stages in each "A" amplifier, but four valves. This is in order to suit the rather special B.B.C. needs of two separate outputs from each amplifier, and so there are two separate output valves, each with its own output transformer.

Although the coupling between the valves in both amplifiers is by means of resistances, there is resistance coupling. The coupling to the amplifiers in the first place is by means of an iron-cored transformer shunted with resistances.

The iron-cored input transformer to the "A" amplifiers is divided into the primary side by a 374 ohm resistance and on the secondary side by a .25 microfarad condenser. There is a 10,000 ohm resistance in series with the slider of the potentiometer connected across the secondary side of the transformer. The potentiometer, of course, acts as a volume control.

All the four valves in the "A" amplifier are of the indirectly heated type and are triodes. Each valve is separately decoupled, and, of course, in addition the ordinary resistance of the secondaries is coupled. The anode resistance of the first stage has a value of 25,000 ohms and the decoupling resistance is 20,000 ohms.

The decoupling condenser in both cases is a value of 2 microfarads and the coupling condenser between the first and second valves has a value of .5 microfarads. There is a .75 megohm resistor, and of course, the usual automatic bias resistance. There are separate grid bias supplies of 9, 12 and 24 volts. The anode resistance in the second stage has a value of 25,000, but this time the decoupling resistance has a value of only 10,000 ohms.

The coupling condenser to both the output valves in each amplifier has a value of .5 microfarads, and in the anode of each of the output valves there is a 6-microfarad condenser coupling an iron-cored choke to the output transformers. For each pair of output transformers with the iron-cored choke in each anode circuit, there is a 1,200 ohm resistance.

A 4-volt supply is given to the heaters (Continued on page 116)
EVERY owner of an A.C. mains set realizes that one of the most important elements in his equipment is the rectifier, the duty of which is to convert a portion of the alternating current supply to a uni-directional current so that, after it has been smoothed, it will serve as high-tension current for the various receiving valves.

Two types of rectifier unit are available, the electrolytic or metal rectifier and the metal rectifier. Both operate on the same principle, namely, that a heated filament emits electrons, and these electrons will pass across the vacuum in the valve by a positive charge on a metal plate or anode.

Rectifier Operation
Although both metal and valve rectifiers operate on the same principle, namely, that of unilateral conductivity, or, in simple English— one-way traffic, this property is due to vastly different reasons. The metal rectifier consists essentially of metal plates, usually copper, one side of each being covered by a very thin film of copper oxide, arranged alternately with plates of lead.

A metal rectifier consists essentially of metal plates, usually copper, one side of each being covered by a very thin film of copper oxide, arranged alternately with plates of lead.

The usual circuit for metal rectifiers is that known as the voltage doubling arrangement (Fig. 6). Here, during positive half-cycles, the circuit is from the top of the transformer winding, through rectifier A to the H.T. positive terminal, through the receiving valves, etc., and back to the H.T. negative terminal and thence through the condenser C to the bottom end of the transformer winding. During the negative half-cycles the circuit is from the bottom end of the transformer winding, through condenser C to the H.T. positive terminal, through the load (valves, etc.), and back to the H.T. negative, then via rectifier B to the top end of the transformer winding.

In the case of half-wave valve rectifiers, it is usual to employ a valve having a single filament but two anodes, connected as shown in Fig. 7. The H.T. winding of the transformer is centre tapped, and the transformer is so designed that the voltage developed across the whole of the high-tension secondary is twice the voltage it is intended to apply to each anode. It will be seen from the connections in Fig. 7, that while one anode, say A, is being fed with a positive half-cycle, a negative half-cycle is applied to anode B, and vice versa. It follows, therefore, that a load, such as the anode circuits of the various receiving valves, is connected between the filament of the rectifier and the centre tap of the high-tension winding, and high-tension current will flow from the filament connection (H.T. positive), through the load, and back to the centre tap (H.T. negative) through each rectifier anode in turn.

(Continued overleaf)
Some Interesting Points

Now there are several interesting points about this full-wave rectifier system which, although well known, are not generally realized to the full. In the first place, it must be clearly understood that the rectifier does not supply a direct current. Unidirectional current, yes, but a steady direct current, certainly not. The output from such a rectifier is of the general form shown in Fig. 3—a series of impulses, all in the same direction, but dying down to zero every one hundredth of a second (for a standard 50 cycle supply). In this form, the rectifier output is quite unsuitable for high-tension supply in a broadcasting set, and its use would only result in an intolerable hum.

Fortunately, however, there are simple means available for improving matters, namely, the use of a smoothing circuit. This is, in essence, an arrangement of condensers and chokes, and its action may best be studied by examining the result of connecting a fairly large condenser of at least 4 microfarads across the rectifier output, as C1 in Fig. 8. What happens is this: As the rectified voltage grows (a-c-h in Fig. 9) the condenser begins to charge up, resulting in a slowing up of the rise in voltage (a-c). Then, when the rectified voltage begins to fall off, i.e., as soon as it becomes less than the maximum, the condenser commences to discharge and supplies energy to the circuit, thus partially making up for the reduction in rectifier output (c-d). During the next impulse from the rectifier the charge on the condenser is replenished, and the cycle of operation commences all over again. It will be seen from Fig. 9 that the voltage from a combination of full-wave rectifier and "reservoir condenser," as it is called, is definitely more uniform than that from a rectifier by itself. Moreover, the average value of the voltage is definitely higher than the effective mean in the case of the rectifier alone. The relation between the effective voltage of a full-wave rectifier and the voltage from a rectifier plus condenser is given in the curve reproduced in Fig. 10—which shows, incidentally, that little improvement is obtained by increasing the value of the reservoir condenser above 4 microfarads.

Further Smoothing

But the smoothing provided by a single condenser is not sufficient to safeguard factory high-tension supply, so the smoothing circuit is completed by the inclusion of the iron-cored choke in series with the load, and a further condenser as indicated in Fig. 8. The effect of the choke is to oppose changes in current—it may be considered as forcing back the peaks still existing in the output, and causing them to be dealt with more fully by the reservoir condenser; the second smoothing condenser plays a similar part to that of the first, but of course it has to deal with very much smaller variations, which may be described as ripples.

It has already been explained that the voltage obtained from a smoothed rectified supply is greater than the effective value of the voltage applied to each anode of the rectifier. It must not be thought, however, that a rectifier gives an absolutely constant H.T. voltage whatever the load applied. On open circuit, a rectifier will give a direct current voltage substantially greater than the R.M.S. value of the alternating voltage applied to each anode. By the way, in case any reader has forgotten, R.M.S. stands for "root mean square," and is the effective value of an A.C. voltage.

Thus, the open circuit voltage of the usual type of 250 volt milliammeter rectifier, when an alternating voltage of 250 volts R.M.S. is applied to each anode, is very nearly 300 volts. When, however, current is taken from the rectifier, the voltage begins to fall. With a 15 milliamp. drain, the D.C. volts will have dropped to about 280 volts for 35 milliamps to about 270 volts, while when the valve is giving its rated output of 60 milliamps, the voltage will have fallen to the rated value of 250 volts.

Performance

The performance of a typical full-wave rectifier valve is given in the graph reproduced in Fig. 11 which gives the output-voltage corresponding to various output currents for different values of H.T. voltage. This falling off of voltage as the drain on the rectifier increases is, of course, due to the fact that the rectifier valve itself has a definite resistance, and the fall in voltage is in fact the voltage drop in the valve resistance and can be calculated by the well-known formula, voltage drop equals current multiplied by resistance.

Of course, in a receiving set the output current is substantially constant, so that the actual H.T. voltage will also be of practically constant value, and the valve makers' curves, similar to that reproduced in Fig. 11, will enable any listener, once he has measured the amount of H.T. current taken by his set, to ascertain very closely what H.T. voltage he is getting.

I have said that the H.T. current taken by the set is practically constant, but we will see now the extent to which the modulation of the anode currents in the various valves affects the performance of the rectifier and, through the rectifier, of the whole set.
A TYPE of indoor aerial popular at the moment is that which has some sort of foil as a conductor. A very good aerial of this type can be made from something that is usually found in every constructor's junk-box. A fairly large Mansbridge condenser, of 1 mfd. or even 5 mfd. capacity, would do fairly well. As readers are no doubt aware, the Mansbridge type of fixed condenser consists of two long strips of metal foil insulated from each other by a thin greasy-looking kind of paper. If, therefore, we get these long strips out of the case without unduly damaging them we have the very thing required. It does not matter even if the condenser is burnt out or shorted in any other way; unless the damage is exceptionally bad, it will work just as well.

Uses for an Old Condenser

The easiest way to get the condenser out of its case is to stand it upside down in a cup of boiling water for a few minutes, when it should be possible to get it out without trouble. It is sometimes easier to chip the pitch out first and then use hot water to melt the wax inside. It is sometimes easier to chip the pitch out first and then use hot water to melt the wax inside. Many listeners have a tone control, for compensating a pentode valve, already in their sets and consisting of a resistance and condenser wired as shown in Fig. 2. Surely it would be more convenient if this were one self-contained unit? Very well then. Disconnect them from the set and then connect them together inside the condenser case, as in Fig. 3. Practically any size of condenser case will be large enough to take these two small components. Seal up the bottom with a little pitch and you have a neat, self-contained tone-compensating unit ready to be reconnected in the set. Another use for the condenser case is to mount two fairly large terminals in the top, or more if desired, to act as a terminal mount. There are several other uses for these old condenser cases, many of which depend on special individual circumstances. Old coil holders are useful in many ways as plugs and sockets for extensions to loud-speakers, etc., and have one very important and never mentioned advantage in that ordinary plugs and sockets are not suitable for this purpose.

Fig. 1.—Softening the pitch in an old condenser.

Fig. 2.—Circuit diagram showing connections for decoupling components.

Fig. 3.—A simple tone control unit.

Fig. 4.—Circuit diagram showing connections for decoupling components.

Fig. 5—Details of coil formers.

An Article describing how Several Useful Components can be Made with Scrap Materials

By ALFRED J. POTTs

...
The short-wave oscillator described in these notes recently can very easily and efficiently be put to a number of uses other than that of a mere test oscillator. With very little alteration we can bring it into service either as a one-valve short-wave receiver, a one-valve "straight" adaptor, or a one-valve superheterodyne converter. The diagram on this page shows how the unit can be used in the latter manner, the only extra component necessary being a spaghetti or flexible resistance (R2) of about 30,000 ohms. Alternatively, a high-frequency choke (not a short-wave type) can be used here, but the resistance is very effective in this instance. The condenser C4, instead of being earthed on one side, as in the original diagram, is brought out to an extra terminal (A). From this point a wire is taken to the aerial terminal on the receiver and the result is now a complete short-wave superheterodyne outfit. Enough has already been said concerning this type of adaptor, so that it is unnecessary for me to go into the details of operation here. Suffice it to say that the receiver must be tuned to as high a wave-length as possible for satisfactory reception on the converter. This unit is easily used as an adaptor of the "straight" type, merely by omitting the high-tension battery, and taking a wire from the H.T. plus terminal to the plate socket of the detector socket in the receiver. Two stages of L.F. are required to operate a speaker with these noise-interference sources—a fact which the newcomer to short waves will very soon discover for himself. It is certainly rather puzzling, and not a little exasperating, to find that reception is liable to be spoilt at intervals by a series of noises mildly resembling machine-gun fire, until one realizes that such interference happens just when a motor-car passes the house! The difference between operating a short-wave receiver in the middle of a busy town and then out in the open country is really amazing, reception in the country making one realize that short waves can produce a really very quiet background! There is, unfortunately, really very little that the amateur can do to reduce the noise level in a location where such noise is produced mainly by local interference. Here, of course, I am referring strictly to short-wave reception on the medium bands, by careful attention to certain aerial and other details, the noise level can be very materially reduced. With a short-wave receiver it is sometimes possible to use a very short aerial, and this can sometimes be shortened to such a point where the amount of signal strength picked up is still quite reasonable, but the local interference is very much reduced. When using a superheterodyne type of short-wave adaptor with a powerful receiver, it is very advisable to use only a very short length of wire connecting the adaptor to the receiver, otherwise, if this wire is too long, the receiver itself will start fielding noises on the long waves—the intermediate frequency amplifier in this case—and thus the background level would be unnecessarily increased. Probably the worst type of interference on the short waves comes from various types of motor-cars, and where one is unfortunate enough to live very close to a main road the problem becomes rather acute. Probably the best procedure is to install the whole of the apparatus, including the aerial itself, as far away from the road as possible and then hope for the best.

Further Practical Points on the Technical Side

By MANDER BARNETT

Short Waves and Interference

The fact that the short waves, at any rate, those below about fifty metres, are so acutely sensitive to atmospheric disturbance is very little, consolation for the fact that these waves are very much more subject to interference by "man-made" sources—a fact which the newcomer to short waves will very soon discover for himself. It is one very neat escutcheon plate for switches, volume controls, etc. A pair of good examples of simple yet neat designs, which can be used for these escutcheon plates, are shown in Fig. 7. A very simple yet neat shield and reflector can be made for use with a bakelite or porcelain fuse-bulb holder, so that when mounted it will throw a very useful light over the set so that adjustments can be made with ease. The shape for cutting the metal and diagram showing how the finished reflector is fixed are given in Fig. 8. It should be noted that the two wood screws which fix the bulb holder in place also hold the reflector.
Preferred and praised by every Expert

LIT-LOS CONDENSER

A very carefully constructed instrument, compact in size and efficient in design, with accurately gauged bakelite dielectrics and solid brass pig-tail connection to moving vanes. Made in all sizes up to '0005 mfd. (500 cms.) in log mid line and straight line capacities. Used by many leading manufacturers and specified in sets by famous designers. One hole fixing; supplied complete with terminals. Particularly low loss.

**PRICE 2/-

GRAHAM FARISH PRODUCTS

Advertisement of GRAHAM FARISH LTD., Masons' Hill, BROMLEY, Kent.

Export Office: 11/12, Fenchurch Street, E.C.3.
Your complete guide to the construction of Radio Power Units. A 32-page publication which deals fully and clearly with the theory and practice of the subject, giving full working instructions and diagrams for the building of eight different units—AC and DC—from modest to super-power output.

Published by Ferranti, it may be looked upon with confidence as a responsible and authoritative treatise. As such, it is only natural that the components recommended are of unsurpassed quality and unquestioned reliability. The fact that many of these components bear the Ferranti name will be taken as a guarantee that the completed Power Units are entirely safe and exceptionally efficient.

This Booklet W522 will be sent post free on receipt of 3d. in stamps.

List We522/1 (16 pages) gives details of all Ferranti Mains Components and will be sent on receipt of 1d. stamp.

See the range at Stand No. '20, Main Hall, at the Northern National Radio Exhibition, City Hall, Manchester.
ASSUMING that you have connected the three-gang condenser to the receiver, in the correct positions for medium and long waves. The tuning position is found by adjusting the trimmer condenser, so that the signal strength is at a maximum. When this optimum position has been found, the trimmer condenser is fixed in that position, and the trimmer is fixed in the same position for medium and long waves.

For the long-wave band, the trimmer condenser is fixed, and the main tuning condenser is adjusted so that the signal strength is at a maximum. This is done by turning the tuning knob slowly, and fixing the trimmer condenser in the same position for medium and long waves.

The aerial and earth connections have been made, set the volume control to maximum position, turn the wave-change switch to the wave-band required, and the set should now be tuned in and its volume reduced to a level of about medium loudness by means of the variable volume control. Then, with a long screwdriver, turn the tuning knob slowly until the signal strength is at a maximum. This is when the screwdriver must be set to the point where the knob is turned, and the trimmer condenser is fixed in the same position for medium and long waves.

When all the necessary adjustments have been made, set the volume control to maximum position, turn the wave-change switch to the wave-band required, and the set should now be tuned in and its volume reduced to a level of about medium loudness by means of the variable volume control. Then, with a long screwdriver, turn the tuning knob slowly until the signal strength is at a maximum. This is when the screwdriver must be set to the point where the knob is turned, and the trimmer condenser is fixed in the same position for medium and long waves.

The aerial and earth connections have been made, set the volume control to maximum position, turn the wave-change switch to the wave-band required, and the set should now be tuned in and its volume reduced to a level of about medium loudness by means of the variable volume control. Then, with a long screwdriver, turn the tuning knob slowly until the signal strength is at a maximum. This is when the screwdriver must be set to the point where the knob is turned, and the trimmer condenser is fixed in the same position for medium and long waves.

When all the necessary adjustments have been made, set the volume control to maximum position, turn the wave-change switch to the wave-band required, and the set should now be tuned in and its volume reduced to a level of about medium loudness by means of the variable volume control. Then, with a long screwdriver, turn the tuning knob slowly until the signal strength is at a maximum. This is when the screwdriver must be set to the point where the knob is turned, and the trimmer condenser is fixed in the same position for medium and long waves.
by touching the screens in turn with the fingers; if this has any effect, whatever, one of the faults referred to is present.

In Case of Trouble—

So that you may be "forewarned"—if that is necessary—we might just mention one or two minor troubles which may possibly be encountered. For instance, if it is found that the set seems to be prone to oscillation it is a sure sign that either one of the coil screens is not properly screwed down to make contact with the chassis or that the connecting wires are short-circuiting to the screen cover. You can easily check both these points.

LIST OF ADDITIONAL PARTS

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>One .0002 mfd. Condenser, Type 670</td>
<td>One 9-volt G.B. "Anodes" Battery (Dubilier).</td>
</tr>
<tr>
<td>One .0001 mfd. Condenser, Type 670</td>
<td>One 2-volt "Aeroficient" Aerial Earth Kit (Dubilier).</td>
</tr>
<tr>
<td>Two .1 mfd. Condensers, Type B.B.</td>
<td>Two 2-mfd. Condensers, Types 670 and 671 (Dubilier).</td>
</tr>
<tr>
<td>Three Chassis Brackets, Type 21</td>
<td>One 5-pin Chassis Mounting Valveholder (Clix).</td>
</tr>
<tr>
<td>One 3-pin Chassis Mounting Valveholder (Clix).</td>
<td>Three Terminal Mounts (Belling-Lee).</td>
</tr>
</tbody>
</table>
| One "Metaplex" Chassis (Peto-Scott). | One "Minor" pick-up, which is complete with track arm and volume control, is also attached to the motor-board by means of the three screws which are included. Its exact position is very important, since correct "tracking" is essential if good reproduction and minimum record wear are to be secured. This offers no difficulty whatever because the thick cardboard base to which the pick-up is attached when bought serves as an accurate template so that the exact position for the pick-up may be located in a few seconds.

One .002 mfd. Pre-Set Condenser (Peto-Scott). | One "Metaplex" Chassis (Peto-Scott). |
| Four 4-pin Chassis Mounting Valveholders (Clix). | One "Minor" pick-up, which is complete with track arm and volume control, is also attached to the motor-board by means of the three screws which are included. Its exact position is very important, since correct "tracking" is essential if good reproduction and minimum record wear are to be secured. This offers no difficulty whatever because the thick cardboard base to which the pick-up is attached when bought serves as an accurate template so that the exact position for the pick-up may be located in a few seconds.

LIST OF ADDITIONAL PARTS REQUIRED FOR THE RADIO-GRAM CONVERSION

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>One "Premier Super" Cabinet</td>
<td>One 3-pin Chassis Mounting Valveholder (Clix).</td>
</tr>
<tr>
<td>One "Anodex" "Battery Smiths).</td>
<td>One "Anodex" "Battery Smiths).</td>
</tr>
<tr>
<td>One 2-mfd. Condenser, Type 670</td>
<td>One 2-mfd. Condenser, Type 670 (Dubilier).</td>
</tr>
</tbody>
</table>
| One P.M.6 "Microlode" Moving Coil Speaker (Graham Farish). | One "Minor" pick-up, which is complete with track arm and volume control, is also attached to the motor-board by means of the three screws which are included. Its exact position is very important, since correct "tracking" is essential if good reproduction and minimum record wear are to be secured. This offers no difficulty whatever because the thick cardboard base to which the pick-up is attached when bought serves as an accurate template so that the exact position for the pick-up may be located in a few seconds.

LIST OF ADDITIONAL PARTS REQUIRED FOR THE RADIO-GRAM CONVERSION

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>One "Premier Super" Cabinet</td>
<td>One 3-pin Chassis Mounting Valveholder (Clix).</td>
</tr>
<tr>
<td>One "Anodex" "Battery Smiths).</td>
<td>One "Anodex" "Battery Smiths).</td>
</tr>
<tr>
<td>One 2-mfd. Condenser, Type 670</td>
<td>One 2-mfd. Condenser, Type 670 (Dubilier).</td>
</tr>
</tbody>
</table>
| One P.M.6 "Microlode" Moving Coil Speaker (Graham Farish). | One "Minor" pick-up, which is complete with track arm and volume control, is also attached to the motor-board by means of the three screws which are included. Its exact position is very important, since correct "tracking" is essential if good reproduction and minimum record wear are to be secured. This offers no difficulty whatever because the thick cardboard base to which the pick-up is attached when bought serves as an accurate template so that the exact position for the pick-up may be located in a few seconds.

LIST OF ADDITIONAL PARTS REQUIRED FOR THE RADIO-GRAM CONVERSION

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>One "Premier Super" Cabinet</td>
<td>One 3-pin Chassis Mounting Valveholder (Clix).</td>
</tr>
<tr>
<td>One "Anodex" "Battery Smiths).</td>
<td>One "Anodex" "Battery Smiths).</td>
</tr>
<tr>
<td>One 2-mfd. Condenser, Type 670</td>
<td>One 2-mfd. Condenser, Type 670 (Dubilier).</td>
</tr>
</tbody>
</table>
| One P.M.6 "Microlode" Moving Coil Speaker (Graham Farish). | One "Minor" pick-up, which is complete with track arm and volume control, is also attached to the motor-board by means of the three screws which are included. Its exact position is very important, since correct "tracking" is essential if good reproduction and minimum record wear are to be secured. This offers no difficulty whatever because the thick cardboard base to which the pick-up is attached when bought serves as an accurate template so that the exact position for the pick-up may be located in a few seconds.
Wherever wireless terms are understood “Ohmite” means “The Best Resistance”

OHMITE RESISTANCES

The most popular and efficient type of fixed resistance for all general purposes. “Better than wire wound.” All values, 50 ohms to 5 megohms.

HEAVY DUTY TYPE 2/3

1/6

GRAHAM FARISH PRODUCTS

Advertisement of GRAHAM FARISH LTD., Masons Hill, BROMLEY, Kent.

Export Office: 11/12, Fenchurch Street, E.C.3.
More than just making valves...

During the past ten years of radio, more Mullard Valves have been sold than any other make. This definitely proves two things: that Mullard Master Valves must be the finest radio valves obtainable, and that ten years' preference by the radio public has been maintained by continued research and experimenting.

Consequently, ever since Mullards first realised that public appreciation of their product had placed the responsibility of leadership on their shoulders, they have worked continuously in the interest of the public. Scientists are ceaselessly at work in the Mullard Research laboratories. Tests, vigorous and comprehensive, are carried out on every valve before it leaves the Mullard factory. There is a standard to be kept, a responsibility to be realised. And it is this realisation which results in three million aerials leading down to Mullard Master Valves, the finest radio valves in the world; the valves of the past, the present and the future.
Making Transformer Bobbins

A difficulty often experienced when wishing to wind a transformer or choke is that of obtaining a suitable bobbin. I have on several occasions used a bobbin made up in the following manner. A wooden former is planed up, about double the length and the same size as the core. Two pieces of brass or soft iron are made as in Fig. 1, and two cheeks are cut from stiff card, or bakelite sheet, and core holes fretted as in Fig. 2. The two metal strips (Fig. 1) are warmed and a little Chatterton's compound rubbed on the flanges. They are then inserted in the cheeks, drawn apart, and slid on to the former. The cheeks are then drawn well apart, metal strips dabbed with Chatterton's compound, and the core built in. While returning the switch is fixed to the panel and a lettered plate and knob fitted. The only other components required are two pre-set condensers of re-putable make, and wiring to these and the switch will be easily followed from the circuit diagram. An extension rod might, in many cases, shorten the wiring, and if so, this could easily be arranged. Checking up of the positions of the cams and adjusting should be carried out as follows. With switch in position 1 (off) all contacts should be open. In position 2 (Nat.) contacts 1 and 2, 3 and 4, and 5 and 6 should be closed and pre-set condenser C screwed up until the shorter wave local is tuned. In position 3 (Reg.) contacts 1 and 2, 3 and 4, 5 and 6 should be closed and condenser C screwed up until the longer wave local is tuned. Medium-wave stations can be tuned in on the dial in the normal manner with switch in position 4 (Short). Contacts 1 and 2, 3 and 4, 5 and 6 should be closed, and in the same manner long-wave stations can be tuned with the switch in position 5 when contacts 1 and 2, 3 and 4, 5 and 6 are closed. If the set employs two tuned circuits, a larger switch, with all contacts except 1 and 2 doubled or two switches as described ranged together, should be used. — William Mather (Falkirk).

Concealing a Speaker

Possessing a speaker unit on a baffle board 2ft. square, and being desirous of keeping it out of sight, I housed it as shown in the accompanying sketch. Most kitchen tables have an underneath depth of 4 to 6ins, which is sufficient space for a speaker cone and unit. The baffle board faces the floor, and is fixed to the side framework of the table. This arrangement gives excellent results especially when the table is against the wall so that the table acts as a kind of sound box. This method is definitely superior to using the table-top as a baffle board with the cone facing upwards. No trouble was experienced with the drawer, which clears the unit. — Arthur Griffiths (Blackwood, Mon.).

Method of concealing a loud-speaker under a table.

A Combined L.T. and H.T. Trickle Charge

For Use on D.C. Mains

The following details apply to a charger that was operated on supply mains of 220 volts D.C. The components required are two double-pole change-over switches (suitable for high voltage), two lampholders (batten type), eight insulated terminals, and a wood block, approx. 12in. by 9in. The parts are placed on the wood block and the holes marked and drilled for receiving the insulated wire. In my case I used two D.P.C.O. switches mounted on porcelain and coupled them together by means of a strip of ebbonite, one knob being fixed midway between the two switches as

Two views of a multiple switch and details of operating cams.
RADIO WRINKLES
(Continued from previous page)

in Fig. 2, and the other discarded. If this type of switch is used a cover should be made for each one, as shown in Fig. 1. The switches and lampholders are fixed to the block and wired as in Fig. 4. The lamp used for the resistance for the H.T. side is an ordinary 220 volt, 15 watt lamp, and for the L.T., a 60 watt, 220 volt. These give charging rates of approx. 60 milliamperes for H.T., and .27 amperes for L.T. These rates should be noted if you are connected on the positive live side of the mains, this arrangement can be carried out with only one D.P.C.O. switch, provided that H.T.—is connected to L.T.—on the set in use. In this case all wires marked x would be joined together and the three wires on the positive side of Switch No. 2 are transferred to the right-hand contacts of switch No. 1. It is important also to note that when lampholder or two-pin plugs are used to obtain the supply, they must be left in position, or case taken to see that they are not put in the reverse way round after tests for polarity have been carried out.

C. T. COOPER (Barwell).

A Range-Increasing Device

ON installing my set (a commercial one) I found I was unable to tune as low as Picamp or even as Radio-Paris, and evolved the attached gadget which might be of use to other readers. The box, which stands on the window ledge inside the room is made of ordinary thin wood, the top being a piece of ebonite strip in which are fixed four sockets. A banana plug is attached to the aerial lead-in, and when plugged into socket A1, the preset is brought into use enabling me to tune lower. A2 gives the usual cording, and A3, with the two-point switch, enables me to reach above Radio-Paris. When plugged into E the aerial is earthed. The gadget has been in use for some time now and answers the purpose very satisfactorily.

—EDWARD JEFFERSON (St. Boswain). A Simple Tester

ALTHOUGH this neat little device will prove invaluable to the service engineer, the amateur constructor will also find it extremely useful when carrying out various circuit tests. As may be seen from the illustration, an ordinary telephone headpiece is adapted to accommodate a small 1.5 volt cell. An extra hole is drilled in the metal 'phone case, and a small terminal or nut and bolt fitted into this hole. One lead from the 'phone bobbin is left in position, but the other is removed and wired to one of the battery terminals, the return being made by means of the zinc container of the battery and its contact with the metal frame of the 'phones. The battery is thus in series for continuity tests, and the lead may be removed and replaced in its original position to enable the 'phones to be used in the ordinary way. The illustration should make the arrangement quite clear. R. Macarror (Glasgow).

Earthing a Short-wave Set

ADVANCED short-wave practice condemns the use of long, struggling earth leads. Annoying hand-capacity and general instability, even in elaborate and well-designed receivers, may be directly traced to this source. Removing the earth lead entirely may sometimes render the exasperating 'signal-alarming, a little less acute, but a short, direct earth-connection is usually a complete cure. In instances where it is impossible to provide an ideal earth, an ordinary household bucket, partially filled with water and placed directly under the receiver, will answer the purpose admirably. When used on the ground floor, results are equal, if not superior, to those obtained with short-connection earths employing buried
The 'Rolls Royce' of Condensers

ZELOS THREE-GANGED CONDENSER - 19'6

ZELOS FOUR-GANGED CONDENSER - 27'6

Ensure a safe and efficient Aerial and Earth. The new AEROFICIENT KIT provides all you need.

6/6 Complete.

Send a postcard for our new Catalogue which describes all our products.

GRAHAM FARISH LTD., Masons Hill, BROMLEY, Kent.

Export Office: 11/12 Fenchurch St., E.C.3.
A new era opens. Gone are the costly dry batteries. Gone are the bulky H.T. accumulators. To-day comes a new kind of H.T. source—a plate-less accumulator hardly bigger than the old dry battery itself. Starlingly low in first cost, it costs you nothing after except for occasional re-charging. The secret is the Block plate-less cell, that does away with the old weight, space and weakness of accumulator plates. Non-fragile. Elegant (the case is coloured bakelite). More durable than the plate type; inexpensive. Demand is overwhelming—order at once for early delivery.

NO NEED NOW FOR DRY BATTERY EXPENSE

DOUBLE CAPACITY

What a boon!

Cut away view of Block cell. First the coloured bakelite that covers the L.T. type; next a lead cylinder (both the 'negative' and the cell's container). Inside it, active paste. Last is the central 'positive' column and separator.

PRICE OF A F.K.A.H.A.

L.T. 80/- n/a

Block Batteries Ltd, Abbey Road, Barking, Essex.

TENT. GRANGEWOOD 3346/7
WHILE I appreciate that the prime interest of Practical Wireless readers is in the constructors or practical side of television, from time to time it will be necessary to place on record certain developments which may have a far reaching effect on the science itself. An occasion of that character has just transpired at the British Association Meeting, held at Leicester, where demonstrations were given daily of 120-line cathode-ray tube television. In Practical Wireless dated 19th August, I dealt at some length with the problems associated with cathode ray television, and interested readers should refer to that article for further details.

Previous Demonstrations
Television demonstrations have been staged at four previous British Association meetings, namely, Leeds—1927, Glasgow—1928, South Africa—1929, London—1931. At each of these a very definite stage in the progress of Mr. J. L. Baird's work was seen. Simple disc equipment formed the basis in 1927, while in 1928 both colour and stereoscopic images were shown. Images on a large screen, showing for the first time a modulated arc, were featured in 1931, and now, in 1933, a big step forward is portrayed, namely, a 120-line image scanned mechanically at the transmitting end, by means of a rapidly rotating disc, but shown at the receiving end on a cathode ray tube.

It may not be known generally, but on April 6th, 1933, the first demonstration of true television on the cathode ray tube was given at the Press in the Baird laboratories. Hitherto, the demonstrations of cathode ray television had been confined to the transmission and reception of cinema films, but on the day referred to, not only were cinema films shown on the cathode ray tube's fluorescent screen, but also actual living persons.

Apparatus Details
Regarding the actual apparatus used for the Leicester television demonstration, this is shown in simple schematic form in Fig. 1, and it may be stated briefly that a standard film projector was employed with the Maltese Cross removed. An image of the pictures on the film was thrown on to a disc revolving at the high speed of 3,000 revolutions per minute. As a consequence, on the film is scanned by two revolutions of the disc, it will be seen that the combination gives twenty-five pictures per second. Instead of the disc having the more usual spiral of holes, the scanning apertures, which total sixty in number, are set round the periphery of a circle, and in this way it was possible to obtain a 190-line picture with horizontal scanning.

Located behind the disc was a photo electric cell, the light variations passing through the disc holes being converted into radiant voltage variations according to the normal functioning of this device. After amplification through the "A" and "B" amplifiers, the signal was fed to the cathode ray tube.

These demonstrations created an enormous amount of interest at the British Association meeting, a variety of well-known cinema films forming the subjects for transmission purposes. Referring to Fig. 2, we see the special large-ended cathode ray tube which has been developed, having a fluorescent screen size of one foot diameter and giving a nine inch image without lens magnification, and having an image area ratio of approximately six horizontal to five vertical. One important feature of this tube is the pleasing sepia colour of the image. Hitherto, cathode ray television images have been blue or green in colour, and somewhat unpleasant to the eyes, but with this new tube the cream high lights and the soft sepia half tones are a delight to watch.

The Ultra-Short Waves
It is very important to note that the television images demonstrated revealed a whole wealth of detail and were almost flickerless. To the uninstructed it may seem strange, therefore, that a television service embodying all these improvements is not yet available to the public. The problem is to find a medium whereby the signals can be transmitted. The employment of ultra-short waves appears to be the most natural solution, but at the moment the difficulties associated with any form of service through this radio channel are considerable. First of all, we have the restrictions connected with the area of reception due to the fact that these waves, at least as far as can be ascertained with present knowledge, travel in straight lines, and are somewhat like a searchlight beam, inasmuch that obstacles in the wave path mean the radio receiver.

On top of this we have the deleterious effects of outside interference, which badly impair the received image. Then, again, the amplifiers have to be designed to cover a frequency range of at least a hundred kilocycles, while phase changes are another item which has to be guarded against.

Naturally, intensive research technique is being applied towards a solution of these problems, which it should be noted are radio and not television difficulties, but it is likely to be some time before the full fruits of this work are made known. The Baird Company, fully cognisant of this, are pursuing a bold policy, and have rented one of the high towers at the Crystal Palace for a period of four years, so that they can conduct independent ultra-short wave experiments. A special experimental licence has been granted by the Postmaster-General for this purpose, and every advantage will be taken of the valuable height given by this unique situation, for an experimental transmission station, and in due course it is hoped to supply readers with fuller details. In the meantime there is the established thirty-line B.B.C. television service, and the fullest advantage should be taken by readers of these transmissions to gain an insight into transmission reception, as it is unlikely to be superseded by ultra-short waves for an indefinite time. It is more than probable that eventually the two services will be supplementory to one another, owing primarily to the limited range of the transmissions in the case of the ultra-short waves.
THE FILAMENT CIRCUIT IN D.C. MAINS SETS

By H. T. Godley, A.Rad.A.

It may be thought that the much spoken of "grid-system" of A.C. distribution, which is so widely alternating potential to everyone all over the country within a few months, has rendered the design of D.C. receivers of little importance, and, in fact, it is known that the design of this type of set has, in consequence, been allowed to stagnate to some extent. Unfortunately, perhaps, the "grid-system" has not proceeded quite so rapidly as was anticipated, with the result that a very considerable number of amateur constructors now on D.C. mains, are likely to remain restricted to a couple of hundred volts or so for some time yet. Actually, this restriction is available voltage is the only real group of the D.C. user, as generally speaking the construction of a D.C. set is less expensive and, to some extent, less complicated than the A.C. counterpart, as, in any event, a simple mains resistance takes the place of the expensive mains transformer and rectifies essential in an A.C. set. Furthermore, if a large, undistorted output is required, the lack of available high-plate voltages can be overcome by using two pentodes in parallel, by which means an output of some two watts can be obtained with high-tension voltages of only 180 volts or so.

D.C. Distribution

The title of this article should restrict me entirely to filament and heater circuits, but in order to make the later text clearer, I am obliged to enter into a short explanation of the method in general use of distributing D.C. Current is generated by the power station at twice the potential actually supplied to the consumer (i.e., if your input is 230 volts, then the current is generated at 460 volts). This generated output is separated into two branches by what is known as the "three-wire" system, the method being shown clearly in Fig. 1.

It will be seen that one side of the mains is not in the earthed, but not necessarily negative side. Usually, on one side of the street, the negative leg is earthed, and on the other side, the positive. It will be clear from Fig. 2, that if the smoothing choke happens to be in the earthed mains lead (whichever side it may be), then the smoothing efficiency is being seriously reduced owing to the fact that the choke is being partially short-circuited by the smoothing-condenser and the earth condenser, which is being partially shunted across the choke, in this way, smoothing efficiency is being reduced. Therefore, when designing a set or mains-unit for use on D.C. mains it is essential first to ascertain which side of the mains is earthed, and then take care to see that the smoothing choke is in the other lead. If you omit to take this precaution, the chances are that you will practically nothing but hum.

In commercially-designed D.C. receivers, it is, of course, necessary to provide for adequate smoothing regardless of which side of the mains is earthed, and consequently, it is the usual practice to insert a choke in each side, with a 4 mfd. condenser shunted across before the chokes. In this way, smoothing efficiency is assured, as, of course, one of the chokes must be doing its job properly even if the other is partially short-circuited.

Types of D.C. Valves

Now there are three types of valves which can be used in an "all-mains D.C. set," as the manufacturers put it! Firstly, the ordinary battery valves, secondly, the indirectly-heated D.C. valve, and thirdly, the recently-introduced Ostar-Ganz universal valve, which can be used on either D.C. or A.C.

Mains Resistance

The mains resistance must, of course, be of such a value that it will allow only the required filament current to pass, no more and no less. (Incidentally, as the filaments are wired in series, the voltage ratings are of prime importance except for calculating resistance values, but in order to avoid excessive use of shunt resistances, they should all require the same filament current.) Assuming, for our set, the valves are rated at 1 amp, then in order to pass this current from 200 volt mains, we should have to use a resistance of a value of 2,500 ohms, i.e., (R = Voltage/Amps), but as the filaments and chokes have high resistance, we must decide what actual total resistance the filament should have and deduct it from our required total resistance of 2,500 ohms. The manufacturers of the choke will, of course, advise you of the choke resistance, or it can be determined by a suitable measuring instrument, such as the "Avo-meter." They may very probably have a resistance of 200 ohms each, which will we assume is the case. Now for the resistance of the filament: We use for this purpose the Ohms Law formula already given, i.e., Res. = Voltage/Current which, in the case of a 2 volts 1 amp valve, becomes Res. = 2 = 20 volts. Equally, the six-volt filament resistance will be 60 ohms. Therefore, the total filament resistance is 100 ohms, plus the total choke resistance of 400 ohms, being 500 ohms, which we must deduct from the total resistance of 2,500 ohms.

(The to be continued)
NON-INDUCTIVE CONDENSERS

Designed for years of good service. 500-volt test, 250-volt D.C. working. Insulation resistance, 5,000 megohms per mfd. Handsome Bakelite moulded case, providing both upright or flat mounting (Reg. design 723271), with large terminals. A handsome and extremely efficient component at a modest price.

- 25 mfd. 1/6
- 5 mfd. 1/9
- 1 mfd. 2/-
- 2 mfd. 3/-

TUBULAR CONDENSERS

Wire ends anchored by means of eyelets in tube, avoiding any strain on the insert. 250-volts working, 500-volts D.C. test. Very high insulation resistance, hermetically sealed, high quality bakelite tubes made in various sizes.

- 0.0001 mfd. to 0.005 mfd. 1/-
- 0.005 mfd. to 0.009 mfd. 1/3
- 0.02 to 0.25 mfd. 1/6

FIXED CONDENSER

In a complete range of capacities, upright or flat mounting. Every condenser is tested on 750 volts D.C. Capacities accurate within fine limits.

- 0.0005 mfd. to 0.004 mfd. 1/-
- 0.005 mfd. to 0.01 mfd. 1/6

Ensure a safe and efficient Aerial and Earth. The new AEROFICIENT KIT provides all you need. 6/6 Complete.
GREAT BIRTHDAY OFFER

The "Practical Wireless" POCKET TOOL KIT

For Every Reader

DON'T MISS IT!

This amazing offer is made for a limited time only and owing to the cost and expense necessary in the manufacture of the Kit it will not be possible to repeat it. Delay, therefore, is dangerous...
IF NOT, TIME IS FLYING—ACT NOW!

HAVE YOU RESERVED YOUR KIT?

If you have not yet reserved your Practical Wireless Pocket Tool Kit to which, as a reader (new or old) of this paper you are entitled, you should lose no time in doing so.

Never before has a technical paper made such a generous offer and many thousands of readers have already availed themselves of it.

Every home constructor will appreciate the value of this Kit—which if sold in the ordinary way would cost at least 12s. 6d. Each tool is specially designed, made from best quality steel and fits snugly in its place in the neat metal case—which slips easily into the pocket.

In addition to accommodation for the tools mentioned in the accompanying list, recesses are provided for the three Gift Spanners presented with last week's and this week's issues of Practical Wireless.

A glance down the list of Tools and at the illustration opposite will show you that it is, just the thing you, as a practical man, have long needed. A Kit will be reserved for you directly your Application Form is received. Don't delay.

Read These Simple Conditions

All you have to do to obtain your Pocket Tool Kit is:—
(a) Read the simple conditions. (b) Complete the Forms on right in ink.
(c) Post Form No. 1 and stamped address label. (d) If not already a regular reader hand Form No. 2 to your Newsagent.

On receipt of Form No. 1 and the address label, we will send you a special Subscription Voucher on which to qualify for your Pocket Tool Kit. Your Kit will be reserved for you, and will be despatched immediately we receive the completed Subscription Voucher.

Affix to the Subscription Voucher which we post to you 13 Gift Stamps cut from the bottom left-hand corner of the back page of Practical Wireless for 13 consecutive weeks commencing this or last week.

When your Subscription Voucher is complete, send it, together with a Postal Order for 3s. 6d., to include registration, postage, packing, insurance, etc., to Practical Wireless Presentation Department, and your Pocket Tool Kit will be despatched to you immediately.

No reader may qualify for more than one Pocket Tool Kit.

This offer applies to persons residing in Great Britain and Ireland. Readers in the Irish Free State must pay any duty imposed.

Use These Application Forms To-Day!
Receivers naturally drop into various classes, but this compact set stands more or less alone, as it provides a Console receiver using a modest number of valves, and priced at an equally modest figure.

Generally speaking, the man who wants a Console must have five or more valves, whether he wants them or not, which is not always desirable to those who want a set of normal proportions, but prefer it to stand on its own legs as a complete unit.

The Cossor Model 3468 exactly fulfils these requirements, and the excellence of the general design will be more readily understood if the internal arrangements are touched upon.

It comprises a three-valve receiver built on an all-metal one-piece gun-finished chassis, and represents the latest manufacturing principles.

The first valve is a metallized Cossor MVS6 variable-mu screened-grid valve, equipped with the usual bias voltage control upon which this type of valve depends if its advantages over the ordinary screened grid are to be realized. Coupling between this valve and the detector takes the form of a tapped auto-transformer, the coupling condenser being abnormally low—0.00025, which is presumably used to avoid risk of stray hum reaching the detector grid from the S.G. anode. The fact that volume at the detector stage is dependent on the control being out of use is a great tribute to the efficiency of the coil.

The detector valve is the Cossor 41 MH, working with a grid-leak that would normally be associated with a leaky grid detector, but the anode voltage is higher than normal, resulting in rectification somewhere midway between leaky grid and power grid, which is probably the very best compromise between quality and sensitivity, when preceded by only one screened-grid stage.

The output is taken care of by the Cossor 442 BU, a rectifying valve of exceptionally robust construction that will give abnormal long service. The smoothing associated with it is heavy, incorporating the field coil of the loud-speaker as the smoothing choke with generous smoothing condensers. The mains transformer is a particularly massive construction, and among other advantages, it enjoys that of an earth shield between the primary and secondary windings to prevent modulation hum.

The Cossor All-Mains Receiver Model 3468.

The exterior of the set is both pleasing and simple, of walnut clear finish with a very slight matt, the main part of the cabinet being supported on four short legs. The total height is 2ft. 11in. The general proportions and appearance of the cabinet may be readily seen in the accompanying illustration.

The controls are those normally associated with a three-valve variable-mu set, and include one-knob tuning, combined L.T. switch and volume and reaction controls.

The wave-change switch is delightfully light in action, and the wave bands, when checked with a heterodyne wave-meter, extended from 200 metres to rather more than 250 metres on the medium waves, and from rather less than 500 metres to 2,000 metres on the long-wave band.

The mains transformer is found to be 45 watts, which means that the set may be run for twenty-two hours for one unit of electricity, which is a little more than seven hours for 1d., assuming the electric current to cost 3d. per unit. The transformer is tapped to accommodate mains voltages from 200 to 250 alternating mains voltages from 200 to 250 alternating, providing a wide choice of European stations. No difficulty was experienced in getting below 800. An imposing list of stations received could be easily given, but owing to the variation between one locality and another it would mean very little; but it may be mentioned that at twenty-two miles from Brookmans Park all the usual worthwhile European stations were received at excellent strength, and with more than pleasing quality and entirely without any trace of objectionable mains hum. On the long waves, Radio-Paris was easily cleared from 600, and with careful adjustment Königswusterhausen could be almost entirely cleared from the former stations.

The selectivity is of a high order, and the variable-mu valve gives the perfect control of volume with which it is identified.

Mains consumption was measured and found to be 442 mA/V it possesses sensitivity equal to, if not greater than, that of an indirectly heated pentode.

Using the gramophone, the receiver was found to give good quality with a somewhat brilliant top register, which is also true when working on radio. Owing to the sensitivity of the 41 MH it is essential that the pick-up be fitted with a volume control, the volume control on the receiver being out of use when reproducing gramophone records.
NEW LIISEN WALNUT CABINET MOVING- COIL SPEAKER 25, 29, or 4 5/6 Power, Pentode, or "Class B" output.

NEW EPOCH MODEL 200, 20013 and 20CQ PERMANENT MAGNET MOVING-COIL SPEAKER 11/76, 11/11/76 and 11/17/76 complete with tapped input transformer.

NEW LIISEN 7-VALVE SUPER-HET. Receiver, 7 coil, for Class B 120/150 volts and 10/60/120/150 watts at 12 m.A. Cash or C.O.D. Carriage Paid, E25/10.

NEW LIISEN 7-VALVE SUPER-HET. Receiver, 7 coil, for Class B 120/150 volts and 10/60/120/150 watts at 12 m.A. Cash or C.O.D. Carriage Paid, E25/10.

NEW EPOCH MODEL 200, 20013 and 20CQ PERMANENT MAGNET MOVING-COIL SPEAKER 11/76, 11/11/76 and 11/17/76 complete with tapped input transformer.

NEW EPOCH MODEL 200, 20013 and 20CQ PERMANENT MAGNET MOVING-COIL SPEAKER 11/76, 11/11/76 and 11/17/76 complete with tapped input transformer.

NEW EPOCH MODEL 200, 20013 and 20CQ PERMANENT MAGNET MOVING-COIL SPEAKER 11/76, 11/11/76 and 11/17/76 complete with tapped input transformer.

NEW EPOCH MODEL 200, 20013 and 20CQ PERMANENT MAGNET MOVING-COIL SPEAKER 11/76, 11/11/76 and 11/17/76 complete with tapped input transformer.

NEW EPOCH MODEL 200, 20013 and 20CQ PERMANENT MAGNET MOVING-COIL SPEAKER 11/76, 11/11/76 and 11/17/76 complete with tapped input transformer.

NEW EPOCH MODEL 200, 20013 and 20CQ PERMANENT MAGNET MOVING-COIL SPEAKER 11/76, 11/11/76 and 11/17/76 complete with tapped input transformer.

NEW EPOCH MODEL 200, 20013 and 20CQ PERMANENT MAGNET MOVING-COIL SPEAKER 11/76, 11/11/76 and 11/17/76 complete with tapped input transformer.

NEW EPOCH MODEL 200, 20013 and 20CQ PERMANENT MAGNET MOVING-COIL SPEAKER 11/76, 11/11/76 and 11/17/76 complete with tapped input transformer.

NEW EPOCH MODEL 200, 20013 and 20CQ PERMANENT MAGNET MOVING-COIL SPEAKER 11/76, 11/11/76 and 11/17/76 complete with tapped input transformer.

NEW EPOCH MODEL 200, 20013 and 20CQ PERMANENT MAGNET MOVING-COIL SPEAKER 11/76, 11/11/76 and 11/17/76 complete with tapped input transformer.

NEW EPOCH MODEL 200, 20013 and 20CQ PERMANENT MAGNET MOVING-COIL SPEAKER 11/76, 11/11/76 and 11/17/76 complete with tapped input transformer.

NEW EPOCH MODEL 200, 20013 and 20CQ PERMANENT MAGNET MOVING-COIL SPEAKER 11/76, 11/11/76 and 11/17/76 complete with tapped input transformer.

NEW EPOCH MODEL 200, 20013 and 20CQ PERMANENT MAGNET MOVING-COIL SPEAKER 11/76, 11/11/76 and 11/17/76 complete with tapped input transformer.

NEW EPOCH MODEL 200, 20013 and 20CQ PERMANENT MAGNET MOVING-COIL SPEAKER 11/76, 11/11/76 and 11/17/76 complete with tapped input transformer.

NEW EPOCH MODEL 200, 20013 and 20CQ PERMANENT MAGNET MOVING-COIL SPEAKER 11/76, 11/11/76 and 11/17/76 complete with tapped input transformer.

NEW EPOCH MODEL 200, 20013 and 20CQ PERMANENT MAGNET MOVING-COIL SPEAKER 11/76, 11/11/76 and 11/17/76 complete with tapped input transformer.

NEW EPOCH MODEL 200, 20013 and 20CQ PERMANENT MAGNET MOVING-COIL SPEAKER 11/76, 11/11/76 and 11/17/76 complete with tapped input transformer.
Does your radio crackle?

The KB "Rejectostat" helps you to suppress those interfering noises caused by trams, signs, sweepers and other electrical machinery, without any alteration to your set. Ask your local KB Authorised Dealer how a KB "Rejectostat" can be fixed to your aerial.

KB "REJECTOSTAT" UNITS—£1.5s. Od.
Special shielded lead-in cable—4½d. a yard

For radio at its best—you must hear KB—THE NEW RADIO

A simple ★ class "B" mains unit

★ Excellent voltage regulation without using stabilisers or ballast resistances

Mains-driven Class "B" provides super volume with excellent quality. And here is an inexpensive A.C. Mains unit which has been specially designed to cope with the wide variations of current of a Class "B" valve and yet provide a nearly constant voltage output.

It is built round the new H.T.13 Westinghouse Metal Rectifier in a half-wave circuit, and no stabiliser or ballast resistance is necessary. The regulation obtained results in a variation of only 10 volts between the minimum and maximum values of anode current required by the Class "B" valve. Get a copy of "The All Metal Way, 1934," which tells you how to build it.

Westinghouse metal rectifiers

THE WESTINGHOUSE BRAKE & SAXBY SIGNAL CO. LTD.,
82, YORK ROAD, KING'S CROSS, LONDON, N.1

Please send me "The All Metal Way, 1934," for which I enclose 3d. in stamps.

Name ..
Address ..

Post in an unsealed envelope using 3d. stamp.
HOW YOUR RECEIVER WORKS.—IV

In this Instalment the Author Explains the Function of a Detector Valve and Deals with the Principles of Reaction Control.

(Continued overleaf)

Fig. 15.—The principal connections of a leaky-grid detector.

This occurs that current, being of a negative character, will flow through the grid-leak back to the filament from whence it came. And whenever current is passed through a resistance a "voltage drop" occurs between the ends of the latter component. This fact is made use of in obtaining automatic grid-bias and might be more readily appreciated by making reference to that excellent stand-by, Ohm's law, which states that the voltage drop across a resistance is equal to the product of the current and the ohmic value of the resistance. It can thus be seen that if the latter remains constant the V.D. is proportional to the current flowing.

We can now understand that the flow of current through

the grid-leak causes one end to become negative in respect to the other. This negative potential is applied to the grid in the form of grid-bias, the actual value of the latter being dependent upon the current flowing and thus, in turn, upon the "strength" of the signal voltages causing it. This grid-bias voltage quickly attains a steady value, and although it is always very small (since the grid-current never exceeds a few millimetres of an ampere), it is sufficient to serve a very useful purpose.

The steady grid-bias voltage is "added" to the fluctuating signal voltages, with a result that the positive half-cycles are reduced in amplitude, and the negative half-cycles are increased.

The net effect of this is that the mean or average value of the signal voltages is caused to fluctuate in sympathy with the variations in amplitude, as shown in Fig. 17. The latter fluctuation is, therefore, applied to the grid and produces corresponding variations in anode current.

In other words, the anode circuit of the detector valve will contain not only the current fluctuations caused by the carrier wave (called high frequencies), but also others corresponding to the modulation and known as low or audio frequencies. It is the latter which we require to operate our loud-speaker after they have been amplified sufficiently for that purpose.

Throwing Away the H.F. Component

The high-frequency "component" is no longer required, as our first object must be to "throw it away" and prevent it from reaching the L.F. amplifier, where it could do no useful work and would be a nuisance. But how? There are two ways; one is to feed it back to the filament circuit by means of a condenser (C) connected as shown in Fig. 18. Here it should be noted that a condenser has the interesting property of passing high-frequency currents much more easily than those of low frequency, and if a suitable capacity is chosen for C, it will allow easy passage of all L.F. without having any effect whatever on the audio frequencies. By calculation we can find that the most suitable capacity lies between about .001 mfd. and .001 mfd. Incidentally, if the capacity

were greater than this it would allow some of the higher audio frequencies to leak away and would consequently reduce the strength of the higher musical notes and thus spoil the "quality" of loud-speaker reproduction.

Reaction

In the method of "throwing away" the high frequencies which we have discussed, those currents are literally wasted, but we can put them to valuable use by feeding them back to the filament by the path
THE BEGINNER’S SUPPLEMENT

(Continued from previous page)

illustrated in Fig. 19. They are now sent through a variable condenser and a coil which is situated close to the filament coil. The currents are still returned to the filament circuit, but in passing through the coil they cause a magnetic field to be set up and this "links" with the field of the tuning coil and strengthens it. Expressed in other words, some of the current passing through the first coil is "induced" into the second coil. The process of feeding back energy into the grid circuit is known as reaction, and the degree of feed-back can be varied by altering the capacity of the reaction condenser or the distance between the reaction and tuned-grid coils. It is most convenient to fix the position of the reaction coil and vary the amount of current passed into it by means of the reaction condenser, and although there are several variants of this method, they all depend upon the same principle.

The High-frequency Choke

Although we have provided an easy lekage path for the H.F. currents, there is still nothing to prevent their passage into the L.F. amplifier, so we must fix some kind of "barrier" past which they cannot escape. Our barrier consists of a high-frequency choke connected in the position shown in Fig. 19, between the anode of the detector valve and the L.F. amplifier. The choke is a form of inductance coil, which behaves in precisely the opposite manner to a condenser. In other words it does not restrict the passage of low so much as it does the high frequencies. By choosing a suitable value of inductance we can almost entirely prevent the passage of H.F. currents without offering any appreciable restriction to the audio impulses. By calculation it is not difficult to find that the best value of inductance for the choke is in the region of 200,000 microhenries.

L.F. Amplification

We can now revert to the audio-frequency component again and see what is to happen to that. In all probability it will require to be amplified (or increased in amplitude) before it is capable of operating the load-speaker, so another valve will be required for this purpose. Our first problem is to devise a means of feeding the low-frequency currents into the next valve. As a matter of fact, there are three available methods which are not unlike those we considered for passing the amplified signal voltages from the H.F. to the detector valve.

Inter-valve Coupling

Let us make a start by using a resistance R as shown in Fig. 20 and passing the H.F. currents into the grid circuit of the detector valve. Expression in terms of resistance R is of little use, for the resistance R may be replaced by a variable condenser, the results would be the same. If the grid-magnetic circuit is cut so as to reduce the effect of the choke, the high frequency will be required for this purpose. We can, however, replace the resistance by a low-frequency iron-cored choke which will offer the necessary resistance (or more correctly, impedance) to low-frequency currents whilst at the same time having only a small resistance to steady direct current.

We have not yet said very much about the coupling condenser marked C. This has to pass low-frequency currents without hindrance, and so must have a capacity of from about .005 mfd. upwards.

The L.F. Grid-leak

Both of the methods of coupling referred to—resistance capacity and choke capacity—are used in practice, and in each case a grid-leak must be connected between the grid of the L.F. valve and a grid-bias battery. The purpose of the grid-leak is to apply a steady negative voltage to the grid of the valve. We will leave an explanation of the reason for applying grid-bias until next article, when we study the action of the L.F. valve, and dispose of the matter for the present by saying that the leak should have an ohmic value of about four times that of the resistance R, or of the impedance of the L.F. choke.

(To be continued)
Never before has there been any receiver for Home Constructors on such an ambitious scale as this new Lissen "Skyscraper" Seven-valve Superhet. It embodies every up-to-the-minute advance and refinement of the most luxurious factory-built superhets—it gives the constructor the opportunity to build a £20 receiver for less than half that price.

The circuit of the Lissen "Skyscraper" Seven-valve Superhet incorporates a 6-stage bandpass filter, giving exact 9-kilocycle channels and therefore providing a standard of selectivity never before achieved by a home-constructed kit set and very rarely found except in laboratory apparatus. Amplified Automatic Volume Control is provided, a special valve for this purpose having been produced by Lissen for use in this receiver.

The use of this Amplified Automatic Volume Control constitutes an entirely new experience in listening; no "fading," no "blasting"—you will find yourself enjoying every word of every programme, however near or however distant, without the slightest temptation to interfere with the receiver once you have tuned it. This is radio listening as it should be enjoyed!

Lissen Class-B Output through a new full-power Lissen Moving-coil Loudspeaker—glorious rich tone and majestic volume, actually more faultless in its reproduction than anything you ever heard from even the most powerful mains receiver, yet working economically in this Lissen "Skyscraper" from H.T. batteries.

Lissen have published for this great new "Skyscraper" Seven-valve Superhet a most luxurious Chart which gives more detailed instructions and more lavish illustrations than have ever before been put into a constructional chart. It makes success certain for everybody who decides to build this set; it shows everybody, even without previous constructional experience, how they can have a luxury receiver and save pounds by building it themselves. A copy of this Chart will be sent FREE in return for coupon on the left, or your radio dealer can supply you. Get your FREE CHART now!

Never before has there been any receiver for Home Constructors on such an ambitious scale as this new Lissen "Skyscraper" Seven-valve Superhet. It embodies every up-to-the-minute advance and refinement of the most luxurious factory-built superhets—it gives the constructor the opportunity to build a £20 receiver for less than half that price. The circuit of the Lissen "Skyscraper" Seven-valve Superhet incorporates a 6-stage bandpass filter, giving exact 9-kilocycle channels and therefore providing a standard of selectivity never before achieved by a home-constructed kit set and very rarely found except in laboratory apparatus. Amplified Automatic Volume Control is provided, a special valve for this purpose having been produced by Lissen for use in this receiver.

The use of this Amplified Automatic Volume Control constitutes an entirely new experience in listening; no "fading," no "blasting"—you will find yourself enjoying every word of every programme, however near or however distant, without the slightest temptation to interfere with the receiver once you have tuned it. This is radio listening as it should be enjoyed!

Lissen Class-B Output through a new full-power Lissen Moving-coil Loudspeaker—glorious rich tone and majestic volume, actually more faultless in its reproduction than anything you ever heard from even the most powerful mains receiver, yet working economically in this Lissen "Skyscraper" from H.T. batteries.

Lissen have published for this great new "Skyscraper" Seven-valve Superhet a most luxurious Chart which gives more detailed instructions and more lavish illustrations than have ever before been put into a constructional chart. It makes success certain for everybody who decides to build this set; it shows everybody, even without previous constructional experience, how they can have a luxury receiver and save pounds by building it themselves. A copy of this Chart will be sent FREE in return for coupon on the left, or your radio dealer can supply you. Get your FREE CHART now!

A SEVEN VALVE SUPERHET
8 STAGES IN ALL AND A 6 STAGE BANDPASS FILTER EXACT 9K/6
TUNING, CHANNELS WITH AMPLIFIED AUTOMATIC VOLUME
CONTROL CLASS B OUTPUT FULL POWER MOVING COIL SPEAKER

To LISSEN, LTD.,
Publicity Dept., Isleworth.
Please send me FREE CHART of the "Skyscraper" Seven-valve Superhet
Name ...
Address ...
P.R. 634.
Varley again! Leaders in the new tuning technique as in the old... Varley NICORE Coils mark the biggest advance in radio tuning since the introduction of "Square Peak."

Consistency has been the great aim, and the characteristics of NICORE Coils will not alter in use. These New Coils combine maximum efficiency with maximum selectivity and are suitable for all circuits.

The use of powdered metal cores is not new to Varley. As far back as 1926 Varley produced some Constant Inductance Chokes with powdered iron cores. Varley NICORE Coils are an outstanding result of years of research. Write to-day for FREE illustrated literature. B.P.30—Aerial or Tuned Grid with Reaction 10'6 B.P.31—H.F. Intervave Transformer with Reaction 10'6

Set of 3 coils ganged on base 33'—
L.C.R. and L.S.D.

Notes on Power Requirements for All-Mains Working

By H. BEAT HEAVYCHURCH

![Diagram]

The Problems of A.C.

First of all, owing to the very nature of the electricity supply, that is alternating, the current pulses first in a positive direction and then in the reverse direction, maintaining this double positive and negative effect (called a complete cycle of A.C.).

As it stands, this is useless for feeding our mains receiver so recourse is made to some form of rectifying the current or making it unidirectional, and we then proceed to smooth it by means of inductances and condensers before passing it to the valve anodes.

Added to this we have to supply the valve filament, generally of the indirectly-heated cathode type, and included in the method is the power unit or power pack which is required for A.C. mains sets. We have a transformer consisting of a transformer and a transformer lead to deliver the direct current required.

This is shown in Fig. 1 which is entitled "Making simple measurements for finding power consumption." The relation between L.S.D. and L.C.R. is very simple, but when we come to alternating current mains matters are a little more involved.

The title which I have chosen for this article may at first sight seem rather peculiar, but I want if possible to try and show how we can arrive at an approximate cost (L.S.D.) for running our wireless sets (L.C.R.) from the mains.

Almost daily I am confronted by some worried listener who feels that his electricity bill is going to soar in leaps and bounds because he has built or bought a radio receiver which is to derive its power from the mains. Although after a time it is possible to convince each individual that this is entirely a wrong impression I feel that the subject is of sufficient interest to readers of Practical Wireless to warrant an explanation of the items which are involved.

Unfortunately, actual cost figures cannot be given as the various electricity supply companies are not uniform in their tariffs.

In some districts the cost per unit of electricity rules high, while in others the reverse is the case, but no doubt when the "Grid" scheme comes into full operation we shall all be able to obtain electricity at quite moderate charges.

The B.T.U.

Irrespective of whether the supply is direct or alternating in character, the charge is so much per "unit," that is, per kilowatt hour. Here is the first difficulty, what is meant by a kilowatt hour? It is the legal unit of electrical energy fixed by the Board of Trade (hence we sometimes speak of the kilowatt hour as the B.T.U.) for our public supply services, and is the quantity of energy supplied in one hour by a current of electricity at a pressure such that the product of volts, amperes and hours equals one thousand. Thus, supposing we work a piece of domestic apparatus which consumed a current of 2 amperes at a pressure of 250 volts for 6 hours, we should have a total consumption of:

$$2 \times 250 \times 6 = 3 \text{ kilowatt hours}$$

This is shown in Fig. 2, a representative receiver arrangement for use with A.C. mains.

The importance of "Phase"

If we take an alternating current supply and place across it separately a pure resistance load, a pure inductive load, and finally, a pure capacitative load, three different effects will take place. This arises from the fact that this alternating current we have to take account of the difference in phase between the voltage and current, both of which are pulsating. In the case of resistance, the current and voltage are in phase, and the numerical value of both is the same. In the case of D.C., the current leads the voltage by 90 degrees. Here, then, we have our phase difference creeping in and when a complicated load is made up from a combination of resistance, inductance and capacity the phase difference between current and voltage will vary according to the values of each item.

Now when we speak of the power in an alternating current circuit, without in any way qualifying the expression, we understand by this term the mean value of the power over a complete period. Theoretically, it can be shown that the power is not simply equal to the product of voltage and current, but that it is equal to the product multiplied by a factor which is dependent on the phase difference which has just been mentioned. Actually, this modified product which converts volt-amperes or apparent power into watts or true power is termed the power factor of the circuit.

(To be concluded next week.—Editor.)
Artificial Aerial Transmitting

By D. P. TAYLOR

In a recent article published in Practical Wireless it was stated that a beginner applying for a transmitting licence is usually allotted a licence to transmit with "Artificial Aerial" only for a probationary period, and the purpose of this article is to describe some experiments which can be done with an artificial aerial transmitter.

The anode circuit of the transmitter valve when the condenser dial is rotated is coupled with the wave-meter coil held in coupling with the condenser in the transmitter.

A milliammeter is also a useful piece of apparatus for use with the wave-meter. A and good value for use with low power transmitters is 0.25 m.A. and is used for reading the anode current of the oscillator.

A voltmeter is also a useful piece of apparatus for use with the milliammeter in measuring the power input to the transmitter.

A monitor is required for the purpose of listening to the transmissions, and this can consist of a small single valve receiver using a pair of grid-bias batteries as high tension, alternatively a screened receiver could be used with the aerial disconnected, and if the received signals are too powerful such as to overload the detector valve the harmonics of the transmitter should be tuned in.

Instruments Required

In series with the closed oscillatory circuit is connected a hot-wire ammeter to measure the current passing through the artificial aerial. The other pieces which are essential for experiments are—wave-meter, milliammeter, voltmeter, and listening device or monitor.

The wave-meter can conveniently be one of the absorption type consisting of a coil shunted with a variable condenser, and this is calibrated on the receiver from known stations and a graph plotted of wavelength, or frequency against condenser dial readings.

A lamp of the flash-lamp variety is included in the wave-meter circuit for the purpose of detecting resonance with the transmitter, or alternatively, resonance can be detected by the flick of the milliammeter needle in the required wavelength, this being measured by means of the wave-meter.

The exact position of the earth clip can now be located, and circuit adjustments such as the value of the grid resistance made, the object being to obtain the greatest efficiency.

The Armstrong Circuit

The circuit shown in Fig. 2 is the Armstrong or tuned-plate tuned-grid, this circuit depends upon the inter-electrode capacity of the valve for the coupling between the grid and plate. Similar values of components can be used in this circuit as described for use in the Hartley circuit.

The adjustment of the Armstrong circuit is as follows:

The grid tuning condenser is set at approximately the required value and the anode condenser, noting at the same time the anode current as shown by the milliammeter.

As the two circuits come into resonance it will be found that the "dip" sharply and falls to a small value at exact resonance, the correct operating point being where the anode current is about 10 per cent. higher than the minimum value.

The wavelength is now measured, and, if necessary, readjustments of the condensers are made to tune the circuit to the exact wavelength required. The artificial aerial circuit can now be coupled and the current in this circuit noted and adjustment made to obtain the greatest possible efficiency without impairing the stability or purity of tone of the transmitter.

It is essential that in the two transmitters described that the tuned circuits should be of a rigid and low-loss construction, as large circulating currents will flow around this circuit, even in low-power transmitters this current may be as large as an amper.

The use of low-loss well-built condensers, together with coils rigidly built and using heavy-gauge wire is necessary.

Suitable Valves

Suitable for use with the previously described circuits are small power receiving valves and particular mention might be made of the LS5 type of valve for powers up to 10 watts. The anode supply can in the case of low power transmitters conveniently be either dry batteries, or high-tension accumulators, but those having the facilities to do so are advised to use the electric supply mains. A further useful addition which can be produced cheaply is a small flash-lamp bulb having its terminals bridged with a loop of say 0.6 inch diameter, this is used for detecting oscillations and is brought into proximity with the transmitter coils, when the power induced into the loop causes the lamp to glow.

Keeping a Log

It is required by the Postmaster-General that a log shall be kept of all transmissions which take place, and in this log should be entered a record of the power used, wave-length, circuit details, etc. The experiment is advised for the greatest possible details of all experiments in the log, which will be found of great use when the radiating licence is granted. There is no necessity for the experiments which can be performed with an artificial aerial transmitter; many more could be described as using transmitters of the crystal control type, or the variable oscillator type, or the use of telephony, but this is beyond the scope of this article.

Fig. 1.—The Hartley circuit.

Fig. 2.—The Armstrong circuit.
ALL-WORLD RADIO RECEPTION
ON ULTRA-SHORT-SHORT-MEDIUM & LONG WAVES

STATIONS YOU HAVE NEVER HEARD BEFORE

To LISSEN, LTD.,
PRACTICAL WIRELESS
NAME
ADDRESS

CHASSIS KIT COMPLETE WITH FOUR VALVES
£5 12.6

WITH DOUBBLE BALANCED PENTODE OUTPUT AND MOVING COIL SPEAKER

4 WAVELENGTH RANGE INSTEAD OF TWO!

WITH WALNUT CABINET & MOVING COIL LOUDSPEAKER
£8 2.6

To LISSEN, LTD.,
Publicity Dept.,
LILLEWORTH, MIDDLESEX.
Please send me FREE CHART of the All-Wave All-World “Sky-scraper” 4.
NAME
ADDRESS

September 30th, 1933

At last the day of All-World Radio has arrived, and you can build with your own hands the first receiver to give you not only England and Europe, but America and Australia direct. The Lissen All-Wave All-World “Skyscraper” 4 tunes from 12 to 2100 metres. It brings two complete new wavelength ranges within reach of the ordinary listener—stations and programmes which before he was never able to receive—Ultra-Short and Short-Wave transmissions from the ends of the earth. And, remember, you get these stations through Double-Balanced Output giving brilliant reproduction on a Moving-Coil Speaker—as much power as a Mains Set from ordinary high-tension batteries. Lissen have made this All-Wave All-World Radio available to Home Constructors first, because it brings back the thrill of conquest to hear America and Australia direct on a set you have built yourself, it makes you an enthusiast to realise what a wonderful thing you have created!

And when you see the Great Free Chart of the All-Wave All-World “Skyscraper” 4, which tells you how to build it and how to work it and why it gives such marvellous results, you will agree at once that it will be wise of you to build for yourself rather than buy a factory-assembled receiver which cannot give you these new and intriguing short-wave stations. The FREE CHART simplifies everything: there are pictures of every part, with every wire numbered, every hole lettered, every terminal identified. YOU CAN'T GO WRONG! But get the Chart and see for yourself—then build the Lissen All-Wave All-World “Skyscraper” 4, the SET THAT SPANS THE WORLD!
THE correct choice and maintenance of a set's power supply—by which I refer to the low tension, high-tension, and grid circuits—is of far more importance than most amateurs believe, and the exercise of a little thought on this matter can easily be the means not only of increasing the performance of the set, but also of effecting an appreciable saving of hard cash in the way of running expenses. By way of amplifying and proving the latter statement let us consider the matter in detail by examining the three main voltage sources.

Low Tension

The object of the low-tension supply is, of course, to heat the valve filaments, and for this purpose we generally use a 2 volt accumulator of some particular capacity. We can take it that the amount of electricity which the accumulator will hold is the means not only of increasing the performance of the set, but also of effecting a saving in the way of running expenses. By way of amplifying and proving the latter statement let us consider the matter in detail by examining the three main voltage sources.

The "Economical" Accumulator Capacity

Following the same line of reasoning it would appear that a 100 a.-h. accumulator could be used to drive the set for over 180 hours, but this is where we meet our first "snag." An accumulator should regularly be recharged at periods of no more than six weeks if it is to be kept in good condition, and it is actually rather better to reduce the time between charging to four or five weeks. It can be seen that if the latter accumulator were to be exhausted in six weeks the set would have to be in use for 30 hours a week or over four hours per day. The average daily use of most receivers is not much more than two hours. Of course, it does not harm an accumulator to be recharged before it is completely run down, but there are very few of us who like to pay for anything we do not get. Consequently it is the most satisfactory policy to choose an accumulator of such a capacity that it will just drive the set for upwards of a month on one charge. One should not be "penny wise" in this respect, because an accumulator is damaged more by running it for three days in an almost completely exhausted state than by three years of normal use.

While it is uneconomical to use a battery of too large a capacity, it is still more wasteful to buy one which is too small and which will only last for a fortnight or so, because the cost of recharging is only slightly more for the larger one and there is not a great difference in initial cost.

Care of the Accumulator

Having decided on the most suitable capacity for the accumulator, let us form a few rules regarding its correct use. At this point it should be emphasised that a good accumulator properly cared for should have a life of at least five years, although I could recite innumerable cases where batteries have been ruined in less than half that time. The most important rule of all has always been dealt with, namely, recharge at regular intervals of not more than six weeks—whether the battery is running down or not. Another rule is that the accumulator should be disconnected from the set immediately its voltage begins to fall, as indicated by a drop in volume or the necessity for the application of more reaction. After switching off the set the accumulator tends to recuperate to a certain extent; charging only a fraction of an ampere of low-tension current.

Let us see how we can determine the number of hours that an accumulator will last on any particular set. First we must find out how much low-tension current our valves require, and for this purpose we generally use a 2 volt accumulator. By adding together the current ratings of every valve used in the former case the accumulator should have a full scale reading of no more than 2 amperes or else an accurate result will be well nigh impossible. The latter statement let us consider the matter in detail by examining the three main voltage sources.

The object of the low-tension supply is, of course, to heat the valve filaments, and for this purpose we generally use a 2 volt accumulator of some particular capacity. We can take it that by capacity we mean the number of hours that an accumulator would operate the set on a single charge. The current rating of every valve should be added together and the charge, in the particular case, would be 3 amperes. If the latter valves were used in a 40 a.-h. accumulator would operate the set for approximately 73 hours.

The \textit{L.T.} current consumption of such a capacitor is given on the makers' instruction sheets and is also used as a "code figure" in the valve's designation. For example, an S.G. 215 valve requires a filament voltage of 2 and a current of .15 ampere, an H.L. 210 requires the same voltage at a current of .1 ampere, whilst a 230 pen. takes .3 of an ampere. If the latter valves were used in a 40 a.-h. accumulator would operate the set for approximately 73 hours.

The \textit{L.T.} current consumption of such a capacitor is given on the makers' instruction sheets and is also used as a "code figure" in the valve's designation. For example, an S.G. 215 valve requires a filament voltage of 2 and a current of .15 ampere, an H.L. 210 requires the same voltage at a current of .1 ampere, whilst a 230 pen. takes .3 of an ampere. If the latter valves were used in a 40 a.-h. accumulator would operate the set for approximately 73 hours.
SUPPLY

By FRANK PRESTON, F.R.A.

the Choice and Maintenance of the Supplies

tain extent and there is a most foolish practice on the part of some people to use it again after such recuperation. This is distinctly wrong and might result in irreparable damage.

It is not always appreciated that an accumulator can seriously be damaged by allowing it to stand in an uncharged state. If it is not required for some months, it is much better to lend it to a friend who can use it, or otherwise to have it fully charged and then to pour out all the acid. After the acid had been emptied, the plates and inside of the case should be washed out with a small quantity of distilled water; the water must not be left in the case, but should be taken out after washing. When an accumulator runs down more quickly than it should, a fairly serious fault is indicated. The cause might be incorrect charging or careless discharging, but prompt attention is necessary. If the battery is fairly new a cure might be effected by having it charged slowly by a competent electrician, but with an old battery it is probable that the plates are being short-circuited by sediment which has collected in the bottom of the case. It is possible to remove the plates and wash out the sediment, but with modern accumulators this will be of little avail, because they are so designed that when the space below the plates becomes filled with sediment, which drops from the plates, the latter are of no further use.

The above rules apply to the user of the accumulator but there are others which concern the person who charges it. Many amateurs now charge their own from the mains, so a few pointers for them will not be out of place. It is vital to the accumulator that the plates should always be covered with acid and it is usual to maintain the acid level at least three-quarters of the distance from the top of the plates to the base of the case. Even whilst the battery is in use it is due to the evaporation of water. Consequently any drop should be made up with distilled water, which may be obtained cheaply from a chemist. On the other hand, if any acid is spilt, the level should be made up with more acid of correct density. The correct density (often indicated by the letter S.G.) is always stated on the accumulator and should accurately be maintained. It varies from about 1,300 to 1,200, and is measured by means of a hydrometer like that shown in Fig. 1. New acid should be added only when the battery is fully charged, because the S.G. specified by the makers does not apply under any other circumstances. It is usual to buy pure sulphuric acid of full strength (about 1,800 S.G.) and to let it down with distilled water, although it is possible to obtain battery acid of correct density from most accumulator service stations. If you mix your own, remember that the acid should slowly be added to the water, and not vice versa, because chemical action between the acid and water results in the generation of great heat which might be sufficient to crack the container if the proportion of acid to water were too great. This does not apply when adding water to the accumulator, because the acid inside the latter is already diluted.

A voltmeter is practically useless as a means of discovering whether or not the accumulator is fully charged; the only satisfactory test is to measure the acid density by means of a hydrometer. Provided the acid was originally of correct density the hydrometer test will give a true indication of the accumulator’s condition.

How Long Shall I Charge?

The length of time for which an accumulator must be charged is found in exactly the same way as the hours of discharge, that is by dividing the charging current into the ampere-hour capacity. For example, if the charger gives a current of .5 ampere it must be kept in circuit with a 30 a.-h. accumulator for 60 hours. This assumes an efficiency of 100 per cent., so it is best to add about 10 per cent. to the calculated figure to ensure a full charge. The latter calculation takes it for granted that the battery has been completely run down, but actually this should never be the case when a trickle charger is employed. It is better in every way to charge the accumulator overnight once or twice a week, putting just as much current into it as has been used by the set. As an example let us suppose that we have in use a receiver employing the valves referred to above, and that we keep it going for an average of 21 hours per day or 171 hours per week. Since the current consumption is .55 ampere we shall use 17½ multiplied by .55, or nearly 10 ampere-hours, and to replace this we must charge at, say, .3 ampere for 30 hours or at .25 ampere for 40 hours. As explained, the charging may be done at a stretch once weekly or for half the length of time twice a week, whichever is more convenient.

Safety First

Just three safety-first rules about charging:

1. Stand the accumulator on a sheet of rubber, cork or porcelain when on charge, and keep it well away from fabrics, etc., which might be damaged by the fine spray given off when the battery approaches full charge.
2. Keep naked lights away from the accumulator, which gives off inflammable (not explosive or harmful) gas.
3. Carefully wipe the accumulator after charging to avoid acid stains in the receiver cabinet.

High Tension—Dry Batteries

Probably 70 per cent. of set users derive their H.T. supply from dry batteries, so we will consider these first. That we may better understand later remarks in respect to dry batteries let us first get some idea as to how they are made and how they work. The sketch of Fig. 3 will simplify the explanation. The battery consists of a number of cylindrical cells, each giving 1.5 volts, connected in series and thus providing a total voltage equal to one-and-a-half times the number of cells in use. Each cell is made up of a central rod of carbon (fitted with a brass connecting cap) surrounded by a quantity of manganese dioxide contained in a small linen sack or bag. This fits in the middle of a cylindrical zinc container holding a pasty made up of sal-ammoniac. The carbon rod forms the positive pole and the zinc cylinder the negative pole when the cell is in use.

(To be continued)
THE SPEAKER AND OVERLOAD

By Dr. F. W. LANCHESTER, LL.D., F.R.S.

There are two kinds of overload with which the wireless operator is familiar. One is the overloading of the amplifier or set by the speaker and the overloading of the speaker by the set. The latter, the true overload of the speaker, is caused by a dissipation of energy in the cone and its mounting; the former, the reason being that any decent moving-coil speaker, even a miniature, will take, under normal conditions, anything up to 200 milliwatts undistorted output at middle frequencies, whereas there are a vast number of sets, including all dry battery sets, which will not give more than 200 milliwatts undistorted output. The overload of the set or amplifier is a subject which I propose to discuss in a later article; it will suffice to state here that this class of overload is produced in the power stage, though it may come through from the detector. Such overload may cause the most distressing symptoms in the speaker; it is the worst of all, for it is the worst that can happen to a speaker—"rattle," that sounds as if it must be of mechanical origin, but which actually is not. In this, in my early acquaintance with radio, I have been deceived myself, and the general public can only be made to realize the truth by the most rigid demonstration; it is not unnatural; the only noise comes from the speaker, and the speaker is blamed. It is the same with a man who swears and blasphemes; people say he is " foul tongued," when it is his mind (or brain) that is at fault.

In the present article I shall confine myself to the real overload of the speaker such as is liable to occur when the amplifier output amounts to several watts. Such amplifiers are being marketed to-day up to 5 and 10 A.C. output, and there are a vast number of sets, which are capable of handling so great a load. It is easy to demonstrate that this class of overload is produced in the power stage, though it may come through from the detector. Such overload may cause the most distressing symptoms in the speaker; it is the worst of all, for it is the worst that can happen to a speaker—"rattle," that sounds as if it must be of mechanical origin, but which actually is not. In this, in my early acquaintance with radio, I have been deceived myself, and the general public can only be made to realize the truth by the most rigid demonstration; it is not unnatural; the only noise comes from the speaker, and the speaker is blamed. It is the same with a man who swears and blasphemes; people say he is " foul tongued," when it is his mind (or brain) that is at fault.

In the present article I shall confine myself to the real overload of the speaker such as is liable to occur when the amplifier output amounts to several watts. Such amplifiers are being marketed to-day up to 5 and 10 A.C. output, and there are a vast number of sets, which are capable of handling so great a load.

Factors Relating to Overloading

There are, in any type of speaker and in any individual example, two limitations or two factors that limit the capacity and determine the condition of overload. These are the maximum amplitude and the maximum mechanical force the diaphragm, or cone will withstand without ultimate disruption. And both these are related to the acoustical emission. Another factor is the ohmic loss in the speech coil, which might come into the picture as related to the input; the watts energy accepted input is not represented by work done. If this were to come in as a limiting factor it would mean that the speech coil would be distorted or heat burnt out; I have never heard of such an incident being reported. The watts energy accepted by the speaker is disposed of in overcoming the impedance of some, which comprises the ohmic resistance of the speech coil (to which reference has just been made) and the motional impedance of the diaphragm or cone. The latter, in turn, may be considered as divided into two distinct acoustical emission and that due to a dissipation of energy in the cone and its mounting; much of this latter is absorbed in the fabric or leather peripheral surround. The mass of the diaphragm introduces an impedance of a different character; inertia forces due to its motion are controlled by currents in the speech coil, but these are wattless currents; there are also other wattless components introduced from another cause. For our present discussion these wattless currents may be disregarded.

The motional impedance due to acoustical emission (with which we may lump that due to lumping losses without serious objection) is of the same character as ohmic loss; that is to say, the maximum volts and the maximum current are in phase; this is counterpart to the fact that in the generation (or propagation) of an acoustical wave the phase of maximum pressure is also that of maximum forward velocity. Consequently, when we may treat the impedance as made up of two parts, the pure resistances whose algebraic sum gives the total resistance:

\[R = R_1 + R_2 \]

where \(R_1 \) is the ohmic resistance and \(R_2 \) the motional impedance. Furthermore, if \(W \) =total watts input, and \(W_s \) = watts dissipated in C-R losses, and \(W_a \) = watts output:

\[W_0 = W - W_s - W_a \]

and the efficiency (we might say the mechanical efficiency) is given by the expression:

\[\eta = \frac{W_s}{W} \]

In view of the fact that the word sensitivity is used in this connection where efficiency would be more appropriate, we might term \(\eta \) the "sensitivity factor."

\[R = \frac{W_s}{W} \]

Wattage "Acceptance" of Speaker

The above is a necessary preliminary to what follows, for the overloading of the speaker is governed by considerations of watts acoustical emission or output, namely, \(W_a \), whereas the usual form of expression is how much power (watts or milliwatts) will the speaker accept or handle without overload, which is \(W \) and includes \(W_s \), the watts lost in the ohmic resistance of the speech coil. Obviously, a speaker with a low efficiency or sensitivity factor would, other things being equal, "accept" more watts than one whose efficiency was high, so that really it is not the acceptance, but the acoustical output which should be specified. The acceptance of watts to be converted into heat in the speech coil is

\[R = \frac{W_s}{W} \]

Wattage "Acceptance" of Speaker

The above is a necessary preliminary to what follows, for the overloading of the speaker is governed by considerations of watts acoustical emission or output, namely, \(W_a \), whereas the usual form of expression is how much power (watts or milliwatts) will the speaker accept or handle without overload, which is \(W \) and includes \(W_s \), the watts lost in the ohmic resistance of the speech coil. Obviously, a speaker with a low efficiency or sensitivity factor would, other things being equal, "accept" more watts than one whose efficiency was high, so that really it is not the acceptance, but the acoustical output which should be specified. The acceptance of watts to be converted into heat in the speech coil is

\[R = \frac{W_s}{W} \]
frequency, namely, the time required to execute one complete cycle, and call this t, then (W_2 = watts) we have: $W_2 = k/t$ where k is the constant, and k gives the speaker power output. Thus, if the limiting output of a speaker be two watts at 100 frequency, $t=.01$ and $W_2=2$, $W_2=k/t=.02/0.01$. And for any other value of frequency, say 50; and $W_2=.02/0.02=1$ watt, and so for any other low frequency; the constant k defines the output or the acceptance as the case may be, and takes cognisance of the relation of power (watts) to frequency. The question naturally arises: "What is k; is it merely a numeral, constant, or is it a physical reality?" Now a watt is a measure of power just as a joule is a measure of energy; in fact, a watt is one joule (work done) per second, $W=J/t$, and since $k=W x t$ we have $k=J$ or k is actually the joules per cycle.

Acoustic Output

We have seen that it is more scientific to specify acoustical output rather than acceptance, which latter relates to the electrical A.C. output of the amplifier, because a low efficiency or sensitivity factor would be a help to the acceptance, and tend to make a poor speaker look like a good one, but it is not always practicable to specify acoustic output. Authorities are not in very close agreement as to the proportion of energy supplied actually delivered as sound. Hence the assumption is made that the sensitivity in different speakers is up to a certain level, which, owing to commercial competition, is more nearly true than might be expected. This being so, the acceptance in joules per cycle may be allowed as a measure of the acceptance power capacity of the speaker. We then have W, the watts supplied in place of W_2, the watts output ; the expression is the same form as before, but the value of k will be greater for W than for W_2.

In order to make sure that the meaning is understood, we will take a further example. A speaker accepting 2.8 watts is found to be just within its permissible amplitude at 50 cycles, the test being made at mains frequency. Then $k=W x t=2.8 x .02=.056$.

That is to say, the speaker will accept 0.056 joules per cycle. We require to know how many watts it will accept at, say, 120 frequency, $W=k/t=.056 x 120=6.72$ watts.

It must not be thought that if an amplifier has an output of 6.72 watts, the speaker will be limited to 120 as its lowest frequency; all that is implied is that for frequencies below 120 in the example given the amplifier must have a falling characteristic, such that the A.C. output does not exceed 0.056 joule per cycle. Referring to Fig. 1, the acceptance curve of the speaker is a straight inclined line which at 0.056 watts cuts the 120 frequency ordinate. Theory requires that the output characteristic of the set does not at any point rise above the acceptance curve.

Frequency and Impedance

The common or popular method of giving the acceptance of a speaker in watts without specifying the frequency, we have seen, cannot be justified. But if we were dealing with some particular kind of music in which the lowest frequency can be inferred without

' MICROLODE' MOVING-COIL SPEAKERS

\[
\text{Seventeen transformer ratios for really accurate matching to any power valve or pentode and four ratios for Class B or Q.P.P. all available on one speaker by a simple switch adjustment!}
\]

\[
\text{Added sensitivity due to the 'Mansfield' magnetic system! Better balance through really accurate matching! The difference in performance must be heard to be believed.}
\]

Write for the new folder and ask your dealer for a demonstration.
"PREMIER SUPER" DE-LUXE KIT

SPECIFICATION:

1. British Radiophone, single ended all-grid superhet, complete with full fitting and instructions.
2. Scott-Taggart S.T. 400 Kit A
4. Sound Sales Class B Unit complete with Telsen Super Six complete kit with valves.
5. Garrard No. 30 Double Spring Turntable.
7. W.B. Typo P.M. 6 Microlode Moving Cell.
8. M.P.R. Eliminator with trickle charger for Block New Plateless L.T. 'Accumulator 80.'
12. Kit D, as above Specification; with valves and "ACE" Brand Super Con.
14. 6 Belling Lee "Bowspring" wander plugs.
15. 6 Belling Lee Terminal mounts.
16. 1 Polar Preset condenser .002 mid.
17. 2 Dubilier .01 mid condensers type 670.
18. 1 Dubilier .0002 mid condenser type 670.
19. 6 Erie.
20. 3 Chassis Brackets.
21. 1 Clix 5 pin chassis valve holder.
22. 4 Clix 4 pin chassis valve holders (airspaced).
23. 1 Dubilier-.0001 mfd condenser type 670.
24. 1 Bulgin Push-Pull Radio-cram switch.
25. 1 Belling Lee w.w. 50,000 ohm Potentiometer.
26. 1 Set Lissen matched Superhet coils.
27. Connecting wire, flea, screws, etc.
28. "PREMIER SUPER" ACCESSORIES.

PARTS-SPECIFICATION:

1. Ferrites.
2. Mains units.
3. Parts-Speakers-Manufactured Trade-Supplied.
4. Trade-Supplied.

DEPOSIT:

Cash / Deposit. for which I enclose £.

COMPANY:

ADDITIONAL INFORMATION:

- "PREMIER SUPER" ACCESSORIES.
 - Ferrites.
 - Mains units.
 - Parts-Speakers-Manufactured Trade-Supplied.

DEPOSIT:

Cash / Deposit. for which I enclose £.

COMPANY:

The Best Low-Priced L.F. Transformer on the market

BRITISH GENERAL

"VICTORY"

Beautifully made.
Superb performance.
Ratio 31:1, suitable for single or double stage.

4/6

From all dealers or direct from the manufacturers:

BRITISH GENERAL MANUFACTURING CO., LTD.,
Brockley Works - - - London, S.E.4

FROM EVERY POINT OF VIEW

THE AMPLION M.C.22

If quality is your aim then you will appreciate the pure natural tone of the M.C.22.
Equally is it sensitive to distant signals, thereby increasing the usefulness of your receiver.
The provision of a universal transformer means that you can fit the M.C.22 to any type of set, Power, Super-Power, Pentode, Class "B," Q.P.P. and Push-Pull.
As an extension speaker to powerful sets it is eminently suitable, having a power handling capacity of 5-6 watts, undistorted output.
Finally, such a perfect all-round moving-coil speaker at a price of 39/6 represents the finest value for money ever offered to constructors; and so from every point of view your choice will undoubtedly be the Amplion M.C.22.

UNIVERSE 1934 PICK-UP

On every Amplion MC.22 if quality is your aim then you will appreciate the pure natural tone of the M.C.22.
Equally is it sensitive to distant signals, thereby increasing the usefulness of your receiver.
The provision of a universal transformer means that you can fit the M.C.22 to any type of set, Power, Super-Power, Pentode, Class "B," Q.P.P. and Push-Pull.
As an extension speaker to powerful sets it is eminently suitable, having a power handling capacity of 5-6 watts, undistorted output.
Finally, such a perfect all-round moving-coil speaker at a price of 39/6 represents the finest value for money ever offered to constructors; and so from every point of view your choice will undoubtedly be the Amplion M.C.22.

OSBORN CABINET

If quality is your aim then you will appreciate the pure natural tone of the M.C.22.
Equally is it sensitive to distant signals, thereby increasing the usefulness of your receiver.
The provision of a universal transformer means that you can fit the M.C.22 to any type of set, Power, Super-Power, Pentode, Class "B," Q.P.P. and Push-Pull.
As an extension speaker to powerful sets it is eminently suitable, having a power handling capacity of 5-6 watts, undistorted output.
Finally, such a perfect all-round moving-coil speaker at a price of 39/6 represents the finest value for money ever offered to constructors; and so from every point of view your choice will undoubtedly be the Amplion M.C.22.

FROM EVERY POINT OF VIEW

AMPLION M.C.22

If quality is your aim then you will appreciate the pure natural tone of the M.C.22.
Equally is it sensitive to distant signals, thereby increasing the usefulness of your receiver.
The provision of a universal transformer means that you can fit the M.C.22 to any type of set, Power, Super-Power, Pentode, Class "B," Q.P.P. and Push-Pull.
As an extension speaker to powerful sets it is eminently suitable, having a power handling capacity of 5-6 watts, undistorted output.
Finally, such a perfect all-round moving-coil speaker at a price of 39/6 represents the finest value for money ever offered to constructors; and so from every point of view your choice will undoubtedly be the Amplion M.C.22.

AMPLION (1931) LTD., 82-84 ROSOMAN STREET, LONDON, E.C.4.

Clerkenwell 7440-1.
The I.C.S. Radio Courses cover every phase of radio work, from the requirements of the youth who wishes to make wireless engineering his career to the man who wants to construct and maintain a broadcasting set for his home. The Radio industry is progressing with amazing rapidity. Only by knowing thoroughly the basic principles can one hope to keep abreast of developments.

OUR COURSES

Included in the I.C.S. range are Courses... along with the installing of radio sets, and in particular, with their servicing, which to-day intimately concerns every wireless dealer and his employees. The Operating Course is vital to mastery of operating and transmitting. There is also a Course for the Wireless Salesman. This, in addition to inculcating the principles of salesmanship, provides that knowledge which enables the salesman to hold his own among other salesmen.

We will be pleased to send you details of any or all of these subjects.

Condenser Drives

Even the best variable condenser cannot be expected to perform satisfactorily unless it is fitted with suitable means of operation. Tuning is so extremely sharp and critical on short waves that the spread of a wig wag on 30 metres is about a thousand of a degree on the dial of a 0.001 mfd. condenser, so some form of reduction drive is a practical essential. There is a good deal of disparity, both in the desires of manufacturers elsewhere, regarding the most suitable form of reduction drive and the mechanical principle upon which it should operate. Some manufacturers prefer a 100 to 1 reduction and others favor a ratio of only 10 to 1; some say a positive gear drive is essential, and others swear by the frictional method.

I am of the personal opinion that a reduction ratio of between the two is most pleasing from the point of view of ease of operation. A high ratio allows of accurate tuning, but I find it very irksome to have to rotate the tuning knob through fifty whole revolutions to get from zero to 180 degrees on the tuning dial. On the other hand, a ratio of 10 to 1 is not quite sufficient to permit of really accurate tuning, although it does allow "searching" to be carried out more rapidly. A well-made drive, giving a reduction ratio of about 25 to 1 and having a good-sized operating knob, seems to be just about right. I don't think it matters whether the operating mechanism employs gears or friction discs, so long as it is really well made and is entirely free from backlash.

The Reaction Condenser

As to the reaction condenser, the capacity must depend entirely upon the size of the reaction winding. Here again opinions differ, for some designers prefer a small condenser and a large reaction winding, and vice versa. I always prefer to use the smallest winding possible, and this entails the use of a larger condenser. As a general rule, I employ about two-thirds as many turns for reaction as for tuning purposes, and this involves the use of a reaction condenser having a capacity of from 0.002 mfd. to 0.001 mfd. When the reaction winding has more turns than the tuned winding it is liable to be tuned (by the series-connected condenser) to the same wavelength as the tuned circuit, and this can cause all kinds of queer effects. Not least of these is a complete "dead spot" on the tuning dial, over which it is quite impossible to obtain reaction.

Aerial-Earth Systems

Although surprisingly good short-wave reception is often obtained on what are known as European short" aerials, it is worth while to give close attention to this item if maximum efficiency is to result. When it can be erected, a short vertical wire about 20ft. long is best, but it should be kept as far away from earthed objects as the situation permits. If the normal "broadcast" aerial is used, a small series condenser is essential, and the longer the aerial the smaller should the capacity of the be. It is often found that a short indoor aerial gives better results than a long one: such an aerial is certainly worth a trial when the outside one is long or has a high capacity.

The earth lead should either be a first-rate one, or should be discarded entirely. Most short-wave sets will give better results without an earth than with a poor one, but the absence of an earth almost makes the operating mechanism more troublesome. The ideal is one consisting of a similar wire to the aerial and erected below and parallel to the latter. This is called a counterpoise aerial, and, although it is not commonly used by amateurs for receiving, it is very popular with transmitters. The wire should be insulated in such a way as to remain from 6 to 8ft. above the ground. A counterpoise aerial has a very low resistance, and therefore does not add to the damping of the broadcast aerial.

New Polish Stations

Poland, one of the countries which did not agree to the findings of the Locarno Conference, is adding two more transmitters to its wireless net. Poznań, a kilowatt transmitter will be dismantled and re-erected at Toruń (Thorn) at no great distance from Danzig. It will work on a common wavelength with Cracow, in 1934, on 210.6 metres. Poznań, in compensation, will be endowed with a 20 kilowatt station. Work is being hurried forward, and tests may be made before the end of this year.

Cutting Down Broadcasts

In consequence of a "cut" in its revenue, the L.N.R. responsible for radio transmissions from the two Brussels stations has been compelled to curtail its programmes. In future, there will be only two broadcasts daily, namely, from midday to 2 p.m. (week-days), or 10 a.m. to 2 p.m. (Sundays) and from 5 to 10 p.m. daily.

Alternative Channels

It is often very difficult to pick up transmissions from such stations as Belgrade and Ljubljana, and so far for these programmes no alternative channel has been available to the foreign listener. In future, Czechoslovakia and Yugoslavia will exchange a series of conversations and in this manner the latter's best programmes will frequently be heard through Prague. This station is one of the two, besides Berlin, to which twenty kilowatt broadcasts are easily receivable on almost any evening.
THE SPEAKER AND OVERLOAD

(Continued from page 105)

The relation of the total watts supplied, \(W \), to the watts dissipated in the winding \(W' \), and the watts emitted acoustically, \(W'' \), depends upon the value of B, the number of turns in the field, and the ohmic resistance of the winding; these relations will be discussed in a later article. It may be stated here that the theoretical value of \(W'' \), in terms of \(W' \), which is the same as the motional impedance in terms of the total impedance, is commonly in the region of 33 per cent. to 30 per cent., and this (if the theory were complete) would represent the mechanical efficiency of the speaker, or otherwise express its sensitivity factor. But authorities, generally speaking, give it a very much lower figure as based on acoustical measurements. This is in part due to the damping losses and in part due to the "back-wash," i.e., the energy given out from the back of the diaphragm; this latter may easily represent nearly half of the motional impedance of the speech coil and watts sound emission of the diaphragm. It is not actually lost, or not wholly lost, in a speaker as used, but it is not recorded in the measurements made by the microphone in a padded room. There is also the question of the wattless component or components of the working current; it is difficult to say how much this may invalidate the conclusions drawn from the elementary theory.

FROM THE FLASHLAMP

(Continued from page 106)

to break down; with a coil whose diameter is eight to ten times its length, the addendum to be added to the length \(l \) is about 10 per cent. lower, namely, \(l_{04} \) D.

Numerical Example:

Let \(N = 65 \) turns, \(N' = 200 \).

Let \(D = 5 \) cm.; \(D^2 = 25 \).

Then \(l = 4.200 \times 25 = 105 \) cm.

Let \(l' = 25 \); \(l'' = 25 \).

Let \(L = \) inductance in ohms.

Then:

\[
L = \frac{4.200 \times 25}{25} = 200 \text{ microhenries.}
\]

3.25 \times 10^6

The reader is invited to work out examples and compare results with those obtained from other published formulas.

Some formulas give the inductance in centimeters. To those not accustomed to absolute units, or c.g.s. units, this is mystifying. All that is necessary is to remember that 1,000 cm. go to the microhenry, or one microhenry = ten metres.

SCRAP YOUR OLD TRANSFORMER

Bring your set up-to-date by changing over to a modern "Parallel-Fed" inter-coupling unit. This change will give you improved quality of tone and conspicuously uniform amplification from bass to treble. The "Transcoupler" is a universal type for use after any valve and incorporates the necessary wire wound resistances and condenser in a handsome bakelite case.

Send for New 80-page Catalogue No. 153 N.

Enclose 2d. postage.

A. F. BULGIN & CO., LTD., Abbey Road, BARKING, ESSEX.

Telephone: - - -

Addressed 326-376.

AU TO-INDUCTIVE AERIAL

For A.C. MAINS and BATTERY CARS

Of all dealers or direct from.

SOLD YOUR RADIO?

For A.C. MAINS and BATTERY CARS

IT SIMPLIFIES ALL SOLDERING

All Ironmongers sell Fluxite in tins: 4d., 6d., 8d., and 1s. 6d. Ask to see the FLUXITE POCKET SOLDERING SET—complete with full instructions—in 6d. Ask also for our leaflet on HARDENING STEEL with Fluxite. FLUXITE LTD.

(Dept. W.P.), ROTHERHITHE, S.E.16.
THE SUN AND WIRELESS SIGNALS
(Concluded from page 24, September 23rd issue)

FOR example, if reception conditions were good in 1917 and 1928 they will again be good in 1939, and during no year between those dates will the general level of conditions be that of 1917, 1928, 1939, and 1939. Conversely, there will be years when the general level of conditions is bad; 1923 was the last of such, so that we may expect bad conditions again in 1934. It must be realized that since regular observations were only begun in 1915 the existence of this cycle cannot be doubted, as proved beyond all doubt, but it has appeared quite regularly since 1915, and the interesting thing about it is that this cycle of variations follows very closely the sunspots of the previous year. The sunspots are believed to be cyclonic whirlwinds on the sun that show up black against its disc, and these have the interesting property that the number appearing in a year follows a definite cycle of eleven years; if a maximum number of spots is observed in 1917, the next maximum will appear in 1928, and a minimum in 1933 will be repeated in 1943. It has been found that over the period of time investigated the sunspot cycle is accompanied by a parallel variation in radio reception, being best at sunspot maxima and worst at sunspot minima. It is believed that sunspots cause a great increase in the corpuscular radiation from the sun and hence increase the ionization of the Van Allen and Appleton layers. There is experimental evidence to show that the ionization at sunspot maximum is about 60 per cent. greater than that at sunspot minima. The effect of such an increase in ionization on wireless signals depends on the wavelength. Short-wave signals will generally be stronger because, owing to the increased ionization, a greater part of the radiation from a station will be returned to the earth by the Appleton layer than is the case at times of low ionization. At the other end of the wireless spectrum Dr. L. W. Austin showed that very long wave signals also increased in strength at sunspot maximum. Both long and short waves therefore give louder signals at sunspot maximum and their eleven year period is parallel to the sunspot period. The medium wave band between 150 and 400 metres, however, behaves in an opposite fashion, giving loudest signals at times of lowest ionization, i.e., at sunspot minima. This is because these wavelengths known as "critical wavelengths" are much more strongly absorbed in the Van Allen layer than waves either above or below them, and this absorption increases with increased electron density and therefore ionization. Consequently at times of sunspot maximum medium wave signals will be weak.

Reflection from the Appleton Layer

In years of sunspot minimum ionization falls off with the result that short waves are not completely refracted, a higher percentage escaping from the Appleton layer and consequently, the range and signal strength will be reduced. Medium waves, on the other hand, may give stronger signals partly because attenuation is reduced and partly because they may pass through the lower layer, since it is much less ionized, and be reflected at the upper layer, with the result that the range is further since the height of the reflecting layer is greater. Also it must be remembered that the earth acts as a not very efficient reflector, so that a signal on a wavelength, coming from the reflecting layer, may strike the earth and be returned once more to the layer whence the wave is again reflected to the earth, and a signal may make several hops of this kind, following a path such as Tabor in Figure 1. Clearly the longer the hop the less the attenuation, and the reverse effect would be observed on short waves at times of sunspot minima and would explain the unusually good reception from North America during the past winter, which is near a sunspot minimum.

Another periodic change in conditions has been shown to exist by Dr. G. W. Pickard in some observations on medium wave broadcast stations. In this case a cycle change from good to bad conditions every fifteen months was noticed, and it was found that this cycle corresponded very closely with what is called the subsidiary sunspot cycle, a period of fifteen months during which sunspot numbers fluctuate from a minimum to a maximum, about the average value for the year in the eleven-year cycle. It is important to notice that during this fifteen-month cycle the best conditions for reception were found to coincide with sunspot minima. From the discussion of the behaviour of medium waves during the eleven-year cycle, this inverse relationship for the fifteen-month cycle is to be expected, since observations were made on medium wave stations only; it is probable that the reverse effect would be observed on short and very long waves.

There is another important terrestrial phenomenon whose variations follow a cycle parallel to that of the sun's spottedness, and that is what is called the earth's magnetic activity. This refers to changes that occur in the normally steady magnetic field, changes which are called magnetic storms and are detected as violent perturbations of sensitive magnetic needles on the earth's surface. They are believed to arise from a great increase of ionization in the upper atmosphere, causing large electric currents to flow which disrupt the magnetic field, but what causes the increased ionization is not clear. The cycle of magnetic activity is very closely parallel to that of the sun's spots and, consequently, a magnetic storm generally accompanies the appearance of a sunspot, but they do not necessarily appear together, and so it is becoming customary now to describe magnetic storms as arising from what are vaguely called M-regions of the sun.

FOR example, if reception conditions were good in 1917 and 1928 they will again be good in 1939, and during no year between those dates will the general level of conditions be that of 1917, 1928, 1939, and 1939. Conversely, there will be years when the general level of conditions is bad; 1923 was the last of such, so that we may expect bad conditions again in 1934. It must be realized that since regular observations were only begun in 1915 the existence of this cycle cannot be doubted, as proved beyond all doubt, but it has appeared quite regularly since 1915, and the interesting thing about it is that this cycle of variations follows very closely the sunspots of the previous year. The sunspots are believed to be cyclonic whirlwinds on the sun that show up black against its disc, and these have the interesting property that the number appearing in a year follows a definite cycle of eleven years; if a maximum number of spots is observed in 1917, the next maximum will appear in 1928, and a minimum in 1933 will be repeated in 1943. It has been found that over the period of time investigated the sunspot cycle is accompanied by a parallel variation in radio reception, being best at sunspot maxima and worst at sunspot minima. It is believed that sunspots cause a great increase in the corpuscular radiation from the sun and hence increase the ionization of the Van Allen and Appleton layers. There is experimental evidence to show that the ionization at sunspot maximum is about 60 per cent. greater than that at sunspot minima. The effect of such an increase in ionization on wireless signals depends on the wavelength. Short-wave signals will generally be stronger because, owing to the increased ionization, a greater part of the radiation from a station will be returned to the earth by the Appleton layer than is the case at times of low ionization. At the other end of the wireless spectrum Dr. L. W. Austin showed that very long wave signals also increased in strength at sunspot maximum. Both long and short waves therefore give louder signals at sunspot maximum and their eleven year period is parallel to the sunspot period. The medium wave band between 150 and 400 metres, however, behaves in an opposite fashion, giving loudest signals at times of lowest ionization, i.e., at sunspot minima. This is because these wavelengths known as "critical wavelengths" are much more strongly absorbed in the Van Allen layer than waves either above or below them, and this absorption increases with increased electron density and therefore ionization. Consequently at times of sunspot maximum medium wave signals will be weak.

Reflection from the Appleton Layer

In years of sunspot minimum ionization falls off with the result that short waves are not completely refracted, a higher percentage escaping from the Appleton layer and consequently, the range and signal strength will be reduced. Medium waves, on the other hand, may give stronger signals partly because attenuation is reduced and partly because they may pass through the lower layer, since it is much less ionized, and be reflected at the upper layer, with the result that the range is further since the height of the reflecting layer is greater. Also it must be remembered that the earth acts as a not very efficient reflector, so that a signal on a wavelength, coming from the reflecting layer, may strike the earth and be returned once more to the layer whence the wave is again reflected to the earth, and a signal may make several hops of this kind, following a path such as Tabor in Figure 1. Clearly the longer the hop the less the attenuation, and the reverse effect would be observed on short waves at times of sunspot minima and would explain the unusually good reception from North America during the past winter, which is near a sunspot minimum.

Another periodic change in conditions has been shown to exist by Dr. G. W. Pickard in some observations on medium wave broadcast stations. In this case a cycle change from good to bad conditions every fifteen months was noticed, and it was found that this cycle corresponded very closely with what is called the subsidiary sunspot cycle, a period of fifteen months during which sunspot numbers fluctuate from a minimum to a maximum, about the average value for the year in the eleven-year cycle. It is important to notice that during this fifteen-month cycle the best conditions for reception were found to coincide with sunspot minima. From the discussion of the behaviour of medium waves during the eleven-year cycle, this inverse relationship for the fifteen-month cycle is to be expected, since observations were made on medium wave stations only; it is probable that the reverse effect would be observed on short and very long waves.

There is another important terrestrial phenomenon whose variations follow a cycle parallel to that of the sun's spottedness, and that is what is called the earth's magnetic activity. This refers to changes that occur in the normally steady magnetic field, changes which are called magnetic storms and are detected as violent perturbations of sensitive magnetic needles on the earth's surface. They are believed to arise from a great increase of ionization in the upper atmosphere, causing large electric currents to flow which disrupt the magnetic field, but what causes the increased ionization is not clear. The cycle of magnetic activity is very closely parallel to that of the sun's spots and, consequently, a magnetic storm generally accompanies the appearance of a sunspot, but they do not necessarily appear together, and so it is becoming customary now to describe magnetic storms as arising from what are vaguely called M-regions of the sun.
BY THE PRACTICAL WIRELESS TECHNICAL STAFF

WEBSITE A.V.C. UNIT

This is a very neat component designed for inclusion in a powerful receiver employing H.F. stages for the purpose of removing the troubles caused by fading. It is, of course, an additional requirement to the normal manual or hand-operated volume control, but enables the output of the receiver to be kept at a more or less constant level. It measures approximately 3in. long by 1½in. wide and is just over ½in. deep. Its terminals are provided, together with two small shorting straps. The usual circuit arrangement employs a resistance, a transformer, and a metal rectifier (or cold valve) is used, and the unit is connected in the a.c. circuit of the detector valve. Naturally, best results are obtained when two H.F. stages are used in the receiver, and in these operating conditions a distant station may be received with a constant volume level, irrespective of any fading troubles. The price is 10s. 6d., and the makers are Messrs. Wright and Wearie, Ltd.

MILLGATE H.T. BATTERY

This principal feature of the Millgate battery is the inclusion of a fuse in the actual battery. The normal difficulty is to find a fuse that will fit a neat fuse, rated in the model supplied for test at 60 volts, and bears the name Major, at a cost of 4s. 6d. It is built up on similar lines but has a much larger wibing and slightly greater D.C. resistance.

ELEXT MODULATED OSCILLATOR

A novel method of utilizing the radio-gramophone feature, without the necessity of building a large radiogram cabinet, and has the added advantage that with high voltage waves from the oscillator. Furthermore, for test purposes, the oscillator may be adjusted to any frequency over the normal broadcast band, and the receiver under test tuned to the required frequency, and the oscillator modified to the desired oscillations. It is not necessary, therefore, to wait for a transmission in order to test some particular receiver. It is altogether a most valuable piece of apparatus.

GRAHAM-FARISH "P.I.P." TRANSFORMER

This is probably one of the smallest L.F. transformers we have received for test, although as usual it is a well-proportioned and compact component, the size gives no indication of performance. In spite of its size this transformer employs quite substantial windings, the D.C. resistance of the primary being of the order of 50 ohms. Two ratios are obtainable, 9 to 1 and 3 to 1, and the instrument was tested in a simple two valve circuit in order to obtain an idea of its quality given properties. We were agreeably surprised at the overall results, which seemed to extend much further into the lower regions than one would expect from such a component. In a three-valve, two of these transformers were used without ill-effect, and for all normal requirements, where expense is a consideration, we have no hesitation in recommending the use of this component. The price is 6s. 6d., and the makers Graham Farish, Ltd.

FORBAT DOUBLE CHOKE

There are a number of circuits where it is desirable to employ a smoothing choke having two separate windings instead of one. Some types of Universal circuit, for instance, work better with this arrangement. A common iron core being included in both chokes. A neat component of this type has been received from E. B. Fortlow, and employs a core in, thick, with the two windings arranged on a former which is provided with a central distance piece. The ends of the windings are brought out to four terminals mounted on a perspex strip and they are numbered from 1 to 4. The resistance of each coil is approximately 500 ohms, and the inductance of each choke is sufficiently large to provide adequate smoothing at quite high currents. The price is 12s. 6d.

B.R.G. MINOR RINGULAR CHOKE

Very neat and compact H.F. choke of the inductor type is manufactured by the British Radiogram Company, and costs 8s. 6d. Two small cells are arranged to accommodate the windings which are carried out in enamelled covered wire, and terminals are fitted to the tops of the pillars for connection. A small base of rectangular shape is provided and the component is mounted on the base-board with two wood-screws. The D.C. resistance of the choke is only 150 ohms, so that it may be safely included in the a.c. circuit of a detector valve which is used alternatively as an L.F. valve with a gramophone pick-up, without undue voltage drop occurring. A larger type of choke is also obtainable and bears the name Major, at a cost of 4s. 6d. It is built up on similar lines but has a much larger wibing and slightly greater D.C. resistance.

ELEXT MODULATED OSCILLATOR

A novel method of utilizing the radio-gramophone feature, without the necessity of building a large radiogram cabinet, and has the added advantage that with high voltage waves from the oscillator. Furthermore, for test purposes, the oscillator may be adjusted to any frequency over the normal broadcast band, and the receiver under test tuned to the required frequency, and the oscillator modified to the desired oscillations. It is not necessary, therefore, to wait for a transmission in order to test some particular receiver. It is altogether a most valuable piece of apparatus.

GRAHAM-FARISH "P.I.P." TRANSFORMER

This is probably one of the smallest L.F. transformers we have received for test, although as usual it is a well-proportioned and compact component, the size gives no indication of performance. In spite of its size this transformer employs quite substantial windings, the D.C. resistance of the primary being of the order of 50 ohms. Two ratios are obtainable, 9 to 1 and 3 to 1, and the instrument was tested in a simple two valve circuit in order to obtain an idea of its quality given properties. We were agreeably surprised at the overall results, which seemed to extend much further into the lower regions than one would expect from such a component. In a three-valve, two of these transformers were used without ill-effect, and for all normal requirements, where expense is a consideration, we have no hesitation in recommending the use of this component. The price is 6s. 6d., and the makers Graham Farish, Ltd.

FORBAT DOUBLE CHOKE

There are a number of circuits where it is desirable to employ a smoothing choke having two separate windings instead of one. Some types of Universal circuit, for instance, work better with this arrangement. A common iron core being included in both chokes. A neat component of this type has been received from E. B. Fortlow, and employs a core in, thick, with the two windings arranged on a former which is provided with a central distance piece. The ends of the windings are brought out to four terminals mounted on a perspex strip and they are numbered from 1 to 4. The resistance of each coil is approximately 500 ohms, and the inductance of each choke is sufficiently large to provide adequate smoothing at quite high currents. The price is 12s. 6d.

B.R.G. MINOR RINGULAR CHOKE

Very neat and compact H.F. choke of the inductor type is manufactured by the British Radiogram Company, and costs 8s. 6d. Two small cells are arranged to accommodate the windings which are carried out in enamelled covered wire, and terminals are fitted to the tops of the pillars for connection. A small base of rectangular shape is provided and the component is mounted on the base-board with two wood-screws. The D.C. resistance of the choke is only 150 ohms, so that it may be safely included in the a.c. circuit of a detector valve which is used alternatively as an L.F. valve with a gramophone pick-up, without undue voltage drop occurring. A larger type of choke is also obtainable and bears the name Major, at a cost of 4s. 6d. It is built up on similar lines but has a much larger wibing and slightly greater D.C. resistance.

ELEXT MODULATED OSCILLATOR

A novel method of utilizing the radio-gramophone feature, without the necessity of building a large radiogram cabinet, and has the added advantage that with high voltage waves from the oscillator. Furthermore, for test purposes, the oscillator may be adjusted to any frequency over the normal broadcast band, and the receiver under test tuned to the required frequency, and the oscillator modified to the desired oscillations. It is not necessary, therefore, to wait for a transmission in order to test some particular receiver. It is altogether a most valuable piece of apparatus.

GRAHAM-FARISH "P.I.P." TRANSFORMER

This is probably one of the smallest L.F. transformers we have received for test, although as usual it is a well-proportioned and compact component, the size gives no indication of performance. In spite of its size this transformer employs quite substantial windings, the D.C. resistance of the primary being of the order of 50 ohms. Two ratios are obtainable, 9 to 1 and 3 to 1, and the instrument was tested in a simple two valve circuit in order to obtain an idea of its quality given properties. We were agreeably surprised at the overall results, which seemed to extend much further into the lower regions than one would expect from such a component. In a three-valve, two of these transformers were used without ill-effect, and for all normal requirements, where expense is a consideration, we have no hesitation in recommending the use of this component. The price is 6s. 6d., and the makers Graham Farish, Ltd.

FORBAT DOUBLE CHOKE

There are a number of circuits where it is desirable to employ a smoothing choke having two separate windings instead of one. Some types of Universal circuit, for instance, work better with this arrangement. A common iron core being included in both chokes. A neat component of this type has been received from E. B. Fortlow, and employs a core in, thick, with the two windings arranged on a former which is provided with a central distance piece. The ends of the windings are brought out to four terminals mounted on a perspex strip and they are numbered from 1 to 4. The resistance of each coil is approximately 500 ohms, and the inductance of each choke is sufficiently large to provide adequate smoothing at quite high currents. The price is 12s. 6d.

B.R.G. MINOR RINGULAR CHOKE

Very neat and compact H.F. choke of the inductor type is manufactured by the British Radiogram Company, and costs 8s. 6d. Two small cells are arranged to accommodate the windings which are carried out in enamelled covered wire, and terminals are fitted to the tops of the pillars for connection. A small base of rectangular shape is provided and the component is mounted on the base-board with two wood-screws. The D.C. resistance of the choke is only 150 ohms, so that it may be safely included in the a.c. circuit of a detector valve which is used alternatively as an L.F. valve with a gramophone pick-up, without undue voltage drop occurring. A larger type of choke is also obtainable and bears the name Major, at a cost of 4s. 6d. It is built up on similar lines but has a much larger wibing and slightly greater D.C. resistance.

ELEXT MODULATED OSCILLATOR

A novel method of utilizing the radio-gramophone feature, without the necessity of building a large radiogram cabinet, and has the added advantage that with high voltage waves from the oscillator. Furthermore, for test purposes, the oscillator may be adjusted to any frequency over the normal broadcast band, and the receiver under test tuned to the required frequency, and the oscillator modified to the desired oscillations. It is not necessary, therefore, to wait for a transmission in order to test some particular receiver. It is altogether a most valuable piece of apparatus.
T was with profound interest that we recently took the opportunity of examining what must surely be the widest range of moving-coil speakers made by any British manufacturer. These speakers are made by the well-known firm of Messrs. Epoch Manufacturing Co., Ltd., Exmouth.

One of the larger Epoch P.M. moving-coil speakers, the type "A22 P.M."

Street, London, and vary in type from a "Super Dwarf" permanent magnet model with 5-ratio transformer and selling at the attractive price of 23s. 6d. to the large "Super Cinema" model of the mains energized pattern listed at £1 11s. for D.C., or £1 10s. for A.C. The smallest speaker is of particular interest at the present time, due to the immense amount of interest which is being shown in miniature receivers for both car and domestic use. It has a diaphragm of only 5in. diameter and yet is well able to handle as much as two watts of signal output. Additionally, it is extremely sensitive for this type of instrument and will work perfectly on an input so low as one-quarter of a watt. An extremely interesting modification of the "Super Dwarf" is a dual pair of accurately matched speakers mounted together on a small baffle board. This pair gives almost perfect response to the complete range of musical frequencies, and at the price of £2 7s. represents almost unprecedented value.

Excellent Magnet System

Other popular speakers in the Epoch range include the "Twentieth Century" permanent magnet model at £1 15s., the "Eleven-Inch Super" at £2 2s., the "Type A22" P.M. at £3 5s., the "Super Junior" at £1 10s., the "E.5 P.M." at £4 4s., and the "Type D.S.P.M." at £4 11s. 6d. All the latter are of the permanent magnet type and are fitted with excellent 9 per cent. cobalt steel magnets which make them equal to the very best value in the trade. All can be obtained with a special multi-ratio output transformer by means of which they can be correctly matched to any power or pentode valve, or with a well-designed Class B transformer; the price is just the same in either case.

Energized Types

Messrs. Epoch, although they were the pioneers of permanent magnet moving-coil speakers and produced the first efficient instrument of this kind in Great Britain (some eight or nine years ago, by the way), also produce an extensive range of energized moving coils in patterns which can do justice to signal outputs up to 25 watts. The energized models are, of course, of far greater value for public address and auditorium work, but they are also of particular interest to the amateur who requires a large output of really perfect quality. All of them can be obtained for either D.C. or A.C. operation or for use with an accumulator or field energizer.

A Combination Class "B" Speaker

A really ingenious and beautifully turned out instrument which Messrs. Epoch have introduced quite recently in the "Class B Combination Speaker." As the name implies, this is a combined permanent magnet speaker and most efficient Class B amplifier. The complete unit is extremely compact and of excellent appearance.

A very neat combination, P.M. speaker and Class B amplifier made by Messrs. Epoch.

It would, of course, be quite impossible to give anything like full details of each type of Epoch speaker which is available, but the above notes will show very clearly that there is without question a type for every conceivable purpose and at a price which bears no comparison with the obviously high quality and well-made instruments.

The names and prices mentioned above refer to the actual units which can be fitted into any cabinet which might be to hand, but it is also interesting to note that any one can be supplied in a cabinet designed on the best acoustic principles and made from selected timber, beautifully polished.

Matched Pairs for Perfect Reproduction

A further advantage in these days when perfect reproduction is more nearly possible than ever before is that nearly all the smaller speakers can be purchased in matched and balanced pairs. The two units are so chosen that between them they give a practically-uniform response to notes of all frequencies from the lowest to the highest. In view of their low prices these dual speakers should find a very wide application in conjunction with modern effect receivers.

We can only conclude by saying that any reader who is considering the purchase of a new speaker should at least examine the Epoch range before making a final choice.

SOME weeks ago I referred to the better earthy properties of soils as compared with those of sand or similar material. On January 19th a paper was read before the Royal Society by Dr. R. L. Smith-Rose of the N.P.L., in which he described some investigations on the electrical properties of soil which have been carried out at the Laboratory on behalf of the Radio Research Board of the Department of Scientific and Industrial Research. The experiments consisted of the measuring of the electrical resistance of samples of soil from different localities under conditions met with in radio communication. The results of the experiments showed that while dry soil is a poor conductor, the conducting power is increased by more than one thousand times when water is added to bring its moisture content up to the value commonly met with in garden soil. The soil that was taken from different sites was studied and it was shown that its properties varied to a considerable extent, and it is obvious that a knowledge of these properties is important in connection with the location of a wireless transmitting station. At the same time more familiar with the function which the earth connection plays in reception. Unless the receiver is of the portable type, it is essential that the earth connection should have a low electrical resistance. The earth plays another and more important part, however, in wireless communication, particularly in the distribution of broadcasting programmes, for at moderate distances of up to 50 or 100 miles the waves from the transmitting station travel along the earth's surface, and some of their energy is lost in setting up electrical currents which have to overcome the resistance of the earth. If the earth is a good conductor this energy loss is reduced to a minimum and thus the field strength of the waves is maintained to a considerable distance, and good reception results. If the ground is a poor conductor the waves lose their energy rapidly and poor or indifferent reception is obtained. It is because the sea is a good conductor that signals received over an all-sea path are much stronger than those received under similar conditions over land.
The “Selecte Three”

Sr.,—I have built the “Selecte” from the particulars published in Practical Wireless and have had it in operation for some months. It is a first-class job and I am very satisfied with the result; a few of my friends who have heard it were greatly impressed with its performance. Many thanks to Mr. Preston and the rest of your technical staff.—A. J. Oxtoby (Oldbury).

A Barnsley Reader’s Thanks

Sr.,—I thank you very much for the Wireless Encyclopedia just received. I consider the book one of the most interesting and helpful that I have ever read, and it compares with books far more expensive. I had your paper recommended to me about three months ago, and have enjoyed reading each number ever since, many of your articles being a great help to amateurs like myself wishing to improve their knowledge of wireless. Wishing your paper every success.—G. F. Eastwood (Barnsley).

Birthday Congratulations

Sr.,—May I take this opportunity to congratulate you and your staff on the completion of your first year’s work with Practical Wireless. The production is worthy of all praise and I shall make it my business to mention it at my works.—C. J. Cross (Bristol).

A Really Wonderful Volume

Sr.,—I have just received my copy of the “Wireless Constructors’ Encyclopedia” and wish to express my thanks. It is a really wonderful volume. With best wishes for the future of Practical Wireless.—R. V. Lister (Heworth).

A Storehouse of Information

Sr.,—I have received my copy of the “Wireless Encyclopedia” all right, for which many thanks. It is indeed a storehouse of information. I might add that Wireless Day has become quite an international day for me, as I eagerly await my copy of Practical Wireless. Again thanking you.—J. Lawson (Walton).

DO YOU KNOW?

—THAT valves are obtainable which operate with the full mains voltage (200 to 250 volts) on the heaters.
—THAT special short-wave systems are being experimented with in which no present-day practices are carried out.
—THAT a point of research (on the above lines, some novel medical uses have been found for the short-wave radiations).
—THAT great care should be exercised when using headphones on a man-operated receiver.
—THAT the reactance of a condenser varies with the frequency.
—THAT an H.F. decoupling condenser should be chosen with the above fact in mind.
—THAT tone control devices only operate on frequencies which are present—in other words you cannot get anything back which has already been lost.
—THAT peak values must always be considered when deciding upon the rating of a condenser.
—THAT a separate additional tapping may be fitted to an eliminator by means of a pair of resistances and a condenser joined across an existing tapping point.

NOTICE.

The Editor will be pleased to consider articles of a practical nature suitable for publication in Practical Wireless. Such articles should be written on one side of the paper only, and should contain the name and address of the author. Whilst the Editor does not hold himself responsible for material, every effort will be made to return it. If a stamped addressed envelope is enclosed, all correspondence relating to the Editor should be addressed to: The Editor, Practical Wireless, 218, Bishopsgate, E.C.2.

You are urged to submit your work in the best possible condition. All contributions must be typed, double-spaced, and adhere to the usual style and format. The Editor reserves the right to accept or reject any article submitted.

Pearl & Pearl

PRACTICAL WIRELESS

PRACTICAL LETTERS FROM READERS

The Editor does not necessarily agree with opinions expressed by his correspondents.
CONVERTING THE PREMIER SUPER

(Continued from page 80)

spring goes to the grid condenser, that in contact with the shortstoping is joined to the pick-up terminal, and the third goes to the grid terminal on the detector valve-holder. It will thus be seen that the switch must be pushed in for "grain," and pulled out for "radio."

A More Convenient Position for the R-G Switch

For those who wish to use the gramophone side of the equipment fairly often, it will seem a little inconvenient to have to operate the switch through the back of the cabinet, but the particular position was chosen from the point of view of efficiency.

At the same time, the switch can be mounted in a more accessible position on the motor board if care is taken to keep the connections to it as short and direct as possible. The leads should also be screened by lengths of thin wire or "Golone" screening braid over the broadcast and gramophone pick-up leads, a subject which always arouses keen interest at the meetings.

The Premier Super fitted into the handsome and reasonably priced Peto-Scott Adoptagram Cabinet, in neat glass containers. The cells ate self-contained and reasonably priced Peto-Scott Adoptagram Cabinet.

The Premier Super fitted into the handsome and reasonably priced Peto-Scott Adoptagram Cabinet, an adaptation of the Premier Catkin Super, but the particular position was chosen from the point of view of efficiency.

in a more accessible position on the motor board if care is taken to keep the connections to it as short and direct as possible. The leads should also be screened by lengths of thin wire or "Golone" screening braid over the broadcast and gramophone pick-up leads, a subject which always arouses keen interest at the meetings.

The Premier Super fitted into the handsome and reasonably priced Peto-Scott Adoptagram Cabinet, in neat glass containers. The cells ate self-contained and reasonably priced Peto-Scott Adoptagram Cabinet.
SPECIAL NOTE

As a result of my visit to the recent Exhibition I have decided to replace all my old four-year-old valves with the latest ones, as I was told on one of the valve stands that this could be done with practically any set without any trouble and with a big increase in efficiency. Before I risk the outlay I should like you to confirm that I may do this without any risks, and to let me know whether you advise the change." -Y. S. (Glasgow).

We wish to draw the reader's attention to the fact that the Queries Service is intended only for the solution of problems or difficulties arising from the construction of receivers described in our pages, from articles appearing in our pages, or on general wireless matters. We regret that we cannot, for obvious reasons—

We will assume that the detector valve in a mains circuit is 10,000 ohms resistance which may be of the order of 250 volts, and the detector will pass a current of my phone could be stood on the table and the volume adjusted to produce good signals from the loudspeaker, or, alternatively, the whole of headphones should be fitted in a suitable part of the circuit and worn by you to avoid trouble from interference by the magnified conversations.

We have sent you my six months subscription and address of the sender. Send reply which is sent must bear the name and address of the sender.

(a) Join in the table containing the pick-up terminals of your wireless set. The microphone should be fitted in a suitable part of the circuit and worn by you to avoid trouble from interference by the magnified conversations.

(b) We have recommended a Bulgin Control at one, as this will result in decreased selectivity.

(c) The trouble is very often experienced in making connections of the leads to the mains, and this should give perfect control over the tone of reproduction. We would recommend a Bulgin Control at one, as this will result in decreased selectivity.

(d) The trouble is very often experienced in making connections of the leads to the mains, and this should give perfect control over the tone of reproduction. We would recommend a Bulgin Control at one, as this will result in decreased selectivity.

(e) I wish to fit the resistances in the anode leads, and address of the sender.

(f) Will you please let me know whether there are any inaccuracies in your reading due to the method of calculation of the decoupling resistances for commercial receivers. I was told on one of the valve stands that this could be done with practically any set without any trouble and with a big increase in efficiency.

(g) The trouble is very often experienced in making connections of the leads to the mains, and this should give perfect control over the tone of reproduction. We would recommend a Bulgin Control at one, as this will result in decreased selectivity.

(h) The trouble is very often experienced in making connections of the leads to the mains, and this should give perfect control over the tone of reproduction. We would recommend a Bulgin Control at one, as this will result in decreased selectivity.

(i) We have recommended a Bulgin Control at one, as this will result in decreased selectivity.

(j) We will assume that the detector valve in a mains circuit is 10,000 ohms resistance which may be of the order of 250 volts, and the detector will pass a current of my phone could be stood on the table and the volume adjusted to produce good signals from the loudspeaker, or, alternatively, the whole of headphones should be fitted in a suitable part of the circuit and worn by you to avoid trouble from interference by the magnified conversations.

(k) The trouble is very often experienced in making connections of the leads to the mains, and this should give perfect control over the tone of reproduction. We would recommend a Bulgin Control at one, as this will result in decreased selectivity.

(l) We will assume that the detector valve in a mains circuit is 10,000 ohms resistance which may be of the order of 250 volts, and the detector will pass a current of my phone could be stood on the table and the volume adjusted to produce good signals from the loudspeaker, or, alternatively, the whole of headphones should be fitted in a suitable part of the circuit and worn by you to avoid trouble from interference by the magnified conversations.

(m) The trouble is very often experienced in making connections of the leads to the mains, and this should give perfect control over the tone of reproduction. We would recommend a Bulgin Control at one, as this will result in decreased selectivity.

(n) We will assume that the detector valve in a mains circuit is 10,000 ohms resistance which may be of the order of 250 volts, and the detector will pass a current of my phone could be stood on the table and the volume adjusted to produce good signals from the loudspeaker, or, alternatively, the whole of headphones should be fitted in a suitable part of the circuit and worn by you to avoid trouble from interference by the magnified conversations.

(o) The trouble is very often experienced in making connections of the leads to the mains, and this should give perfect control over the tone of reproduction. We would recommend a Bulgin Control at one, as this will result in decreased selectivity.

(p) We will assume that the detector valve in a mains circuit is 10,000 ohms resistance which may be of the order of 250 volts, and the detector will pass a current of my phone could be stood on the table and the volume adjusted to produce good signals from the loudspeaker, or, alternatively, the whole of headphones should be fitted in a suitable part of the circuit and worn by you to avoid trouble from interference by the magnified conversations.
CATALOGUES RECEIVED

PRACTICAL WIRELESS

September 30th, 1933

nu; volume controls, and a three-point miniature toggle-switch, which will safely carry 3 amps. At the end of the booklet an electrical formula is given which involves the half-minute wattage to which a battery will have to be matched, thus providing that the obstacle can be overcome, but when fixing attention on battery receivers only, a triode detector and L.F. valve would be more efficient and less costly. Many readers may be slightly acquainted with some of the very new multi-electrode detectors, such as the double-diode-triode, which have for listening on the amplifier circuits, and for the output arrangements. It is interesting to note that in Broadcasting House, London, alone there are 31 of these "A" amplifiers. They are arranged in racks with the four valves on metal brackets on the front of the panel and with the volume control potentiometer project- ing. The components in these cases are mainly the wire-wound resistances and the heavier components such as the iron-cored transformers and chokes.

In addition to these amplifiers there are the mains operated loud-speaker amplifiers which are installed in each of the moving-coil speaker cabinets in the studios, control rooms, listening rooms, press-listening room, and so on. These are complete units, and in fact are portable, being fitted with carrying handles. They are two stage amplifiers with the 6L6 tubes mounted on a little platform inside the box, and the couplings, components, iron-cored transformers, and so on, underneath. There is a small potentiometer for volume control, and separate jack sockets for external speakers or listening-head phones.

Although the B.B.C. engineers use a large amount of apparatus which is quite different from that which ordinary listeners could use, the check receivers, "A" amplifiers, and loud-speaker amplifiers are typical of amateur practice; listening, you can learn much from the way the B.B.C. does it!

HOW THE B.B.C. DOES IT
(Continued from page 72)

are connected to the frame of the amplifier and to the metal panel front.

From the circuit arrangement and component values of an amplifier like this we can learn much in the design of a power and line impedance transformer. I have not complicated the description by giving details of the special switching arrangement which the engineers have for listening on the amplifier circuits, and for the output arrangements. It is interesting to note that in Broadcasting House, London, alone there are 31 of these "A" amplifiers. They are arranged in racks with the four valves on metal brackets on the front of the panel and with the volume control potentiometer projecting. The components in these cases are mainly the wire-wound resistances and the heavier components such as the iron-cored transformers and chokes.

In addition to these amplifiers there are the mains operated loud-speaker amplifiers which are installed in each of the moving-coil speaker cabinets in the studios, control rooms, listening rooms, press-listening room, and so on. These are complete units, and in fact are portable, being fitted with carrying handles. They are two stage amplifiers with the 6L6 tubes mounted on a little platform inside the box, and the couplings, components, iron-cored transformers, and so on, underneath. There is a small potentiometer for volume control, and separate jack sockets for external speakers or listening-head phones.

Although the B.B.C. engineers use a large amount of apparatus which is quite different from that which ordinary listeners could use, the check receivers, "A" amplifiers, and loud-speaker amplifiers are typical of amateur practice; listening, you can learn much from the way the B.B.C. does it!
NEWNES'
HOME MECHANIC BOOKS

This series covers a wide field and will prove of the greatest value to everyone interested in models and how to make them; woodwork and other crafts.

ACCUMULATORS
An up-to-date handbook dealing with every type of accumulator, methods of charging them at home, care and maintenance, also explains how to erect a charging station.

MOTOR CAR UPKEEP AND OVERHAUL
Information covering the engine, decarbonising, valve grinding, the lighting system, the carburettor, cooling system, lubrication, springs and shock absorbers, steering gear, brakes, wheels, axles, tracing noises, etc., etc.

TOY MAKING FOR AMATEURS
How to make clockwork toys, model aeroplanes, model locomotives, model boats, ingenious toys operated by sand, wooden models and toys, electrical toys, steam toys, guns, kaleidoscopes, acrobats, boats, ingenious toys operated by sand, aeroplanes, toys, model battleship, model steamers, kaleidoscopes, acrobats, boats, ingenious toys operated by sand, aeroplanes, etc.

TWENTY-FIVE TESTED WIRELESS CIRCUITS
All the sets described have been designed and tested by experts, and are equally suitable for home enthusiasts and professional experimenters.

SIMPLE ELECTRICAL APPARATUS
An excellent little book for those who wish to make simple and useful electrical appliances, such as galvanometers, electric motors, dynamos and Leyden jars.

MODEL BOAT BUILDING
Contains designs for battleship, speed boat, paddle steamer and yachts. Excellent models can be built with the simple directions and diagrams given.

THE HOME WOODWORKER
Clear instructions on how to make a large variety of articles in wood, together with many useful hints on wood-working.

MODEL AEROPLANES AND AIRSHIPS
Contains full descriptions of easy-to-make models of every description that will fly. Directions and diagrams given.

THE HANDYMAN'S ENQUIRY WITHIN
Hundreds of practical ideas and hints of value to the man who is clever with his hands.

25 SIMPLE WORKING MODELS
Ingenious and practical designs for electric, steam and clock-work models.

1/- each

Obtainable at all Newsagents and Bookstalls, or by post 1/- each from George Newnes, Ltd., 8-11, Southampton St., Strand, W.C.2.

936

PRACTICAL WIRELESS

LISTENERS IN!

IS YOUR WIRELESS LICENCE NUMBER IN THIS LIST?

IT MAY BE WORTH £50

Compare your number and claim your reward

£50 will be paid to holder of Licence No. AP 246106

£25 will be paid to holders of Licences:
Nos. AQ 308105 AO 511937

£10 will be paid to holders of Licences:
Nos. AP 330777 AN 463896

£5 will be paid to holders of Licences:
AM 606438 AP 207651 AO 823777 AP 701949 AO 734684

£2 will be paid to holders of Licences:
AH 736565 AL 001644 AM 571117 AN 025763 AO 890222 AO 617349 AO 650103

£1 will be paid to holders of Licences:
AH 595032 AL 017333 AM 029400 AN 495347 AO 746908 AP 148677 AP 047266

This offer applies to licences which are actually in force on Saturday, September 30th, 1933. Before the awards are paid, claimants will be asked to undertake a simple publicity service in distributing leaflets to encourage listeners to renew their licences.

For full particulars for claiming awards and a complete list of numbers see TIT-BITS

ON SALE EVERYWHERE SATURDAY SEPT. 30.
However expert or amateur you may be, this new 'Igranipak' cannot fail to save you time, trouble and expense. 'Igranipak' is a complete and compact tuning unit. Upon its rigid metal chassis are mounted: screened coils with built-in wave-change switch, Igranic 3-gang condenser with cover, escutcheon and disc drive assembly with pilot lamp attachment, mains switch, three 5-pin valve-holders, grid leak and condenser, engraved terminal board. Wavelengths covered: 210-520 m. and 900-2,000 m. Complete with instructions and simple circuit diagram.

57/6

If your local dealer cannot supply you, please write to us direct.

Igranic Electric Co., Ltd.,
149, Queen Victoria St., E.C.4.