Cossor for
UNIFORMITY
EFFICIENCY
DEPENDABILITY

Cossor 210 V.P.T.

Price 13/6

Due to its unique design and method of construction the Cossor 210 V.P.T.—a Variable-mu H.F. Pentode—has an exceptionally low inter-electrode capacity and is therefore capable of very high stable amplification. Like all Cossor Valves uniformity of characteristics is assured by strict adherence to laboratory principles during manufacture and the use of the famous Cossor Mica Bridge.
Next Week's Big Event!

THE most important event in the history of radio journalism will coincide with the publication of next week's big 64-page issue (same price, 3d.), for not only will it present a FREE FULL-SIZE BLUEPRINT of our new Quality Receiver—The A.C. HALL-MARK—it will also contain an announcement of the greatest importance to every constructor, every amateur, every experimenter—in fact, to every listener in the country.

The importance of the great event forming the subject of next week's special announcement cannot be overemphasised, for every reader will benefit as a result of the policy which next week's issue introduces. "Practical Wireless" has held a distinguished place among radio journals from its very commencement. It has been responsible for many ingenious features, gifts, and designs, and for a greatly increased interest in home construction. We are not over-optimistic when we state that by the third issue of 1935, January 25th, when Regional listeners on- January 25th, when the artists will be Trefor Jones (tenor) and the Mousehole Male Voice Choir, conducted by Leonard Collins.

The Halle Orchestra

THE HALLE Chorus and Orchestra, conducted by Dr. Malcolm Sargent, are to broadcast Bach's "Mass in B minor" to North Regional listeners from the Free Trade Hall, Manchester, on January 24th. The soloists will be Norah Sinclair (soprano), Sara Buckley (contralto) and Norman Walker (baritone).

ORDER

NEXT WEEK'S BIG 64-PAGE ISSUE NOW!
SAME PRICE—3d.

FREE BLUEPRINT of J. Camm's Strikingly Efficient A.C. HALL-MARK Quality Receiver employing Push-pull Output

A Broadcast Pleasure Cruise

THE first of a new series of programmes for Welsh listeners will be given on January 22nd. This series will take the form of a pleasure cruise round the coast of Wales; there will be passengers and a guide on board, and they will stop at interesting spots which will be pointed out by the guide. Stirring incidents of the past will be described to listeners, including romances of castles and cottages, of ports and villages, and of cathedrals and rivers.

Midland Parliament

THE question to be discussed at the third session of "Midland Parliament" on January 21st is that of responsibility for welfare, or, in other words, what should the State expect the employer to do for his employees besides paying them? Sir Charles Mander, of Wolverhampton, will again act as Chairman, and Lord Trench, whose welfare schemes make special provision for the training of girl workers, many of whom leave to get married, will be one of the speakers. Frank Hodges will also represent the side of the employers; while George Jones, Secretary of the Midland Miners' Federation, and Isaac George, who is employed in a Birmingham motor works, will speak from the workers' angle.

Broadcast Artists from Australia

TWO Australian artists are to provide the Manchester Tuesday Midday Society's Concert, which will be broadcast to the North Region from the Houldsworth Hall on January 22nd. They are Emile Hooke, soprano, who was originally trained as a pianist at the Melbourne Conservatoire and who has since done much choral, oratorio, concert, and operatic work; and Eileen Ralph, pianist from Perth, Western Australia, but who, winning an Associated Board Exhibition, completed her musical studies at the Royal Academy of Music in London.

Liverpool Philharmonic Orchestra

UNDER the direction of Carl Schuricht, famous German conductor, the Liverpool Philharmonic Orchestra will broadcast a concert to North Regional listeners from the Central Hall, Liverpool, on January 22nd. The programme is to include Bach's "Brandenburg Concerto, No. 4 in G," and the Brahms "Concerto in A minor for violin, cello and orchestra" (solos, Orerea Pernel and Antonia Butler).

New Children's Hour Feature

A NEW feature will commence in the Children's Hour on January 22nd. Uncle Mac has arranged for talks to be relayed from our studios, but are actually coming from the towns which they describe. The children will hear André Chenamy talking from Paris, and describing for London children the beauty and charm of his city.
ROUND the WORLD of WIRELESS (Continued)

O. Knine Reception — Without Comment!

According to a recent report from Los Angeles, the new scientist-experimenter is responsible for a novel method of reception. He attaches an aerial to the collar of his Great Dane and clips an ear 'phone to the animal's tail. The canine radio is then complete, and all that is necessary is to place the 'phone to the ear and listen.

INTERESTING AND TOPICAL PARAGRAPHS

Orchestral Concert from Birmingham

THE Birmingham Theatre Royal Orchestra will broadcast for the first time to Midland Regional listeners on January 20th. Sheridan Gordon, the conductor, came to Birmingham last year to re-organise and take charge of the orchestra.

Symphony Concert from Birmingham

On January 24th, Midland Regional listeners will hear a relay of part of the symphony concert by the City of Birmingham Orchestra, from the Town Hall, Birmingham. Sir Thomas Beecham is to conduct the second Sibelius symphony.

In Memory of Jenny Lind

A RELAY will be taken for West Regional listeners from a concert to the memory of Jenny Lind at the Reardon Smith Lecture Theatre of the National Museum of Wales, on January 22nd. Among the artists will be Mavis Bennett-Levis, who has made a special study of the history, tradition, and musical associations of Jenny Lind.

SOLVE THIS!

PROBLEM No. 122.

A voice new to radio will be heard in "Love Needs a Waltz," which Charles Brewer is producing on January 29th. Anne Ziegler is making a film of "Faust," and her voice on the set appeared so suitable for broadcasting that she was invited to give an audition. Charles Brewer is very optimistic of her talent. This musical play was broadcast earlier in the year, but the producer has made many cuts and alterations which will add to the speed and continuity of this musical story.

“Charlot’s Hour” and “Picture People”

INTERESTING January broadcasts will include "Charlot's Hour" on the 22nd and 23rd, and "Picture People" on January 22nd. The latter is a compilation of with 's own shows, and he therefore introduced to radio many of the world's greatest film stars singing the songs of some famous film hits sung by the actual stars themselves. Listeners will be able to compare this programme with John Watts’ "Songs from the Films" on January 28th when famous film song hits will be sung by radio stars.

Variety from Blackpool

On January 18th an extract from a variety bill will be relayed to North Regional listeners from the Palace Theatre, Blackpool.

Hallé Orchestra

NIRJAL MALKO, conductor of the Leningrad Philharmonic Orchestra, is to direct the Hallé Orchestra in a concert which will be relayed to North Regional listeners from the Free Trade Hall, Manchester, on January 17th. The programme includes, appropriately, two Russian compositions—the "Capriccio Espagnole" of Rimsky-Korsakov, and Glazunov's "Concerto for solo violin and Orchestra in A minor" (soloist Henry Holst), in addition to Beethoven’s "Symphony No. 7 in A major.”

"Jack and the Beanstalk"

It will be recalled that, a few days after the sudden death of Julian Wylie, an extract from a rehearsal of his Birmingham pantomime, "Jack and the Beanstalk", was broadcast. On January 20th Midland Regional listeners will hear relays of scenes from this pantomime from the stage of the Theatre Royal, Birmingham. The cast includes Dorothy Ward, Shaun Glenville, Albert Burdan, Marjorie Wyn and Wallace Lupino.

Solve to Problem No. 121.

In ordering the same transformer Carkak had overlooked the fact that since the voltage was being stepped up, the input current to the rectifier should be in excess of the rated output. If the transformer used should have been designed to give approxi- mately 45% of the rated output, the rectifier current would have been noticed if he had carefully noted the recommendations given by the makers of the rectifier.

The following three readers have correctly solved Problem No. 120 and books are being sent to them:

The Editor, PRACTICAL WIRELESS, 606 PRACTICAL WIRELESS, January 19th, 1935

Thurlestone, Devon. J. M. Begg, 5, Thurlby Road, Ealing, W.12. C. T. Barnes, 1, Elmer Street North, Grantham, Lincs. R. J. Daeken, c/o 30, Elew-Road, Altrincham.
MODERN coils are so efficient and generally free from faults that an article under the above heading might scarcely seem to be justified. But the queries received by us from a large number of readers indicate that, as a rule, coils are by no means well-understood, and that the average novice in home construction is at a loss to know how to carry out proper tests when the coils come under suspicion. Let it be pointed out right away that a large number of the minor difficulties which do present themselves in connection with tuners and coil assemblies are due to unsympathetic treatment of them. As an example of this it should be explained that a large number of readers' coils which have been examined in our laboratories at various times, most of these have been damaged by attempting to over-tighten the terminals, with a result that these have been turned round bodily and the thin leads to them from the windings have thereby been broken.

Do Not Over-tighten Terminals

It has been pointed out in these pages on more than one occasion that it is unnecessary to make the terminals more than finger tight, but this warning has not always been observed. As regular readers are aware, we are strongly in favour of soldering connections wherever possible, and if coil connections (and those to most other components for that matter) were made by soldering the leads to small soldering tags fitted under the terminal nuts many difficulties would be avoided. Perhaps makers are in some measure responsible, due to the fact that many of them do not supply the necessary tags with their components, but it need hardly be mentioned that neat and useful soldering tags can be bought for a few coppers per hundred.

A very common reason for coil terminals being loosened is that thin connecting wire, or even stranded flex, is used for making connections; this is very liable to lock the nut on the terminal shank, as shown in Fig. 1, so that when an attempt is made to screw the nut right down the whole terminal must work loose.

Short-circuited Terminals

Even if the lead from the tuning winding to the terminal does not break, there is another difficulty that might present itself in the case of coils the terminals of which are mounted on a pressed metal baseplate fitted with insulating washers or bushes. When the terminal is loosened the washers come apart and allow the terminal to slip out of position and thus make contact with the metal base. As the earth terminal is generally connected to the base, one of the windings will be short-circuited. If it is the tuning winding that is affected, there will be an absence of signals on either one or both wavebands; but if the reaction coil is shorted it is possible that the H.T. supply might be short-circuited, with serious results. A few instances have been noted where the valve-filaments have been burnt out due to this. The reason is illustrated in Fig. 2, where it will be seen that the on-off switch is in the combined H.T. negative-L.T. negative lead, this lead being joined to the earth terminal. When H.T.+ is inadvertently connected to earth due to the coil short the voltage applied to the filaments is equal to that of the H.T. tapping used to feed the detector and of the accumulator in series.

It will be clear from what has been said that, if a coil terminal is loose, it is very important that a careful examination should be made and the looseness corrected. If the lead to the terminal from the winding appears to be badly twisted the wire should be scraped clean and re-soldered.

Measuring the Resistance of the Windings

Really accurate and scientific tests of tuning coils cannot be made by using the limited amount of apparatus usually possessed by the average constructor, but it is generally sufficient to take readings of the D.C. resistance of the various windings, when any break, faulty operation of the wave-change switch, or bad terminal connection can be traced. An ohm-meter is required for taking these measurements, and an instrument such as the "Pico" Rotameter, "Avo-Alinor" or "Avo-meter" is ideal. If the terminals of the meter are connected between the grid and earth terminals of the coil, readings of approximately 2 ohms and 10 ohms should be obtained when the wave-change switch is in the medium- and long-wave positions respectively. These readings will not necessarily be obtained, and the figures will vary to a certain extent according to the

(Continued overleaf)
the particular make of coil being tested, but the ratio between the two resistances should be about 5 to 1. So long as one reading is appreciably greater than the other, however, the exact figures may be ignored. A pair of similar coils, when employed in the same receiver, the D.C. resistance of the windings of both should be the same; if not, it will be a fair indication that the coils are not matched, or that one of them is faulty.

In addition to testing the tuned windings of the coil, the reaction should also be tested for continuity by placing an ohm-meter across its terminals. The resistance of this winding will probably be found to be equal or about half that of the long-wave tuned winding, but provided that there is continuity, the resistance value need not generally be considered. Fig. 3 shows the various points to which the meter should be connected, and gives a rough indication of the readings which one might expect to obtain.

A Simpler Test

When an ohm-meter is not available it is possible to make a suitable instrument by means of a dial voltmeter and various shunt and series resistances, as described in PRACTICAL WIRELESS dated December 30th, 1933. Alternatively, these measurements may be made by means of a home-made "bridge," such as that described in PRACTICAL WIRELESS dated October 14th, 1933. Quite a simple and fairly reliable test can, however, be made as shown in Fig. 4, simply by using a 100-m. fuse bulb and a grid-bias battery. First of all, the positive and 1.5-volt negative battery terminals should be joined, and the two test leads connected to the two ends of the coil, as explained before. When the switch is in the medium-wave position it should be found that the bulb glows, but the light should not be so bright as when the two "test" leads are joined together; if it is, the windings, or connections from them, must be thoroughly checked. If the wave-change switch is turned to the long-wave position the light should either go out completely or become extremely dim. If the light does go right out, increase the voltage of the G.B. battery in 1.5-volt steps until the light returns. If the bulb glows when the switch is in the medium-wave position, and cannot be made to do so on long waves, it is a clear indication that the long-wave winding is either dis-connected from the terminal or broken at some point. The leads to the terminals can be traced, and if these are in order, examination should be made of those parts of the winding where the wire passes from one slot to the next.

If the wire has been broken or fractured at one of these places it will probably be necessary to remove a portion of the winding until the ends of the break can be scraped clean and soldered together again. Should it be found that the resistance is just the same regardless of the position of the wave-change switch, it will generally be found that the switch itself is at fault. Should the resistance remain low (equal to that of the medium-wave section only), the switch contacts are probably failing to "open." On the other hand, if the resistance remains high, but does not keep decreasing as it were, due to the fact that the terminal showing the greater resistance has been short-circuited.

Tracing Coil Connections

It sometimes happens that the constructor has a coil for which the connections are not known. When this is the case it is generally a fairly simple matter to trace out the terminals by applying the tests described above to each of the two particular terminals, whilst the resistance between one of these terminals and a third was 8 ohms, the resistance between the other pair being greater. If the readings just described indicate the reverse direction, it will be evident that the first two terminals were those joined to the ends of the medium-wave winding, and that the second two were those joined to the ends of the long-wave winding. In other words, the tuning condenser would have to be connected between the terminals from which the 8-ohm winding was obtained, the wave-change switch being wired between those terminals between which a resistance of 8 ohms was measured.

This will perhaps be understood more clearly by making reference to Fig. 5, which shows the circuit of a typical coil with the terminals lettered from A to F. With the resistance readings just described indicated, after locating the tuned winding, the next step would be to find the tapping marked B; this could be done by connecting one side of the meter to terminal A and moving the other lead about until a resistance of about 1 ohm was obtained. The reaction winding could be located by finding—by means of the switch—two terminals which were connected together, but which were not in connection with the tuned winding. In some cases, however, the lower end of the reaction coil (terminal A) would come to terminal C, when a reading would be obtained between terminal E and every other terminal on the coil. The reaction coil would thus be located, due to the fact that the terminal showing the least resistance from terminal E would be joined to the other end of the reaction winding.

The tests just described could be carried out fairly satisfactorily by means of a fuse bulb and battery, as explained before, but the process would be somewhat more laborious and slow.

PRACTICAL WIRELESS

January 19th, 1935

PROGRAMME NOTES

McLeod as musical director. Later the same evening the last act will be broadcast and listeners will hear the thunders of applause that greet the final fall of the curtain.

Variety from Doncaster

AN excerpt from the variety bill will be broadcast from the Grand Theatre, Doncaster, on January 24th, to North Regional listeners.

London-Welsh Curiosities

THIS is the title of a talk by Caradog Prichard in the Welsh Interlude for Droitwich National and West Regional listeners on January 26th.

Colliery Band Concert

THE Black Hall Colliery Band from County Durham, winners of the Northern Counties Amateur Brass Band Contest at Gateshead on December 18th, are to broadcast a concert to North Regional listeners from a Newcastle studio on January 22nd.

Talk on Domestic Animals

"FUR AND FEATHER" is the title of a new series of North Regional talks which starts on January 22nd. The talks will be about the care of domestic animals, such as bantams, canaries, rabbits, and cats. The opening talk, given by a well-known Northern authority, will deal with fancy pigeons.

Highest Radio Station in Europe to Transmit News

IT is stated that the Monte Rosa radio station, on the Italian side of the Italian-Swiss frontier, will shortly be used for sending out news bulletins, according to Philips Press Service. Standing on the summit of the Monte Rosa, the transmitter of the station is situated at an altitude of 14,000 ft. above sea level. The station maintains telephonic communication with the Observatory at Sappada, and with the Col d'Olen Institute. The installation comprises a modern ultra-short-wave transmitter, with a capacity of one kilowatt.
THE A.C. HALL-MARK
The First of Our New Series of Quality Receivers
FREE FULL-SIZE BLUEPRINT
WITH NEXT WEEK’S 64-PAGE ISSUE

The correspondence pages of Practical Wireless have, during the past three weeks, given an excellent indication that there exists some thousands of readers who do not seek a set with world-circling proclivities, but prefer one whose chief claim is to the quality of its reproduction, combined with reasonable selectivity and the ability to receive a number of British and Continental programmes at exceptional loud-speaker strength. I must confess that I had not thought so large a market existed, for most of my readers, in addition to expressing a desire for the type of receiver broadly outlined above, have also asked that it should have a really hefty undistorted output in the neighbourhood of two watts or more. Now it is a fundamental thing that you cannot receive a maximum number of stations at maximum strength and extreme quality. If you wish to increase selectivity and sensitivity, something must be sacrificed, usually quality.

Quality First
So, with the A.C. Hall-Mark, a FREE BLUEPRINT FOR WHICH WILL BE GIVEN WITH EVERY COPY OF NEXT WEEK'S ISSUE, I started the other way round, namely, by considering quality first, and then carefully considering what I should sacrifice towards that end. In my latest receiver you have what I think will be admitted to be the best possible compromise between the opposing, and in some instances conflicting, interests of selectivity, sensitivity, quality, and punch.

In the first place, I do not think any reader, however touchy he may be on the question of quality, will have the slightest complaint to make on that score concerning the Hall-Mark Three. I think it fair comment to say that there is no commercial receiver, however expensive, which is superior to it. It has a large undistorted output of no less than 2½ watts, provided by a well-tried circuit—including a variable-mu H.F. stage, leaky-grid detection, and push-pull.

Economy Considerations
Whenever one attempts to design a quality receiver, one comes hard against the thorny question of price. As with a motor-car, economy and quality cannot always go hand in hand. If you purchase a commercial receiver with any claim to real quality of reproduction, you have to pay for it—and pay fairly heavily. In addition, if somewhat difficult problem which is solved in the A.C. Hall-Mark you will find that I have effected it by judicious selection of components, by the balancing out of inefficiency, by a very careful choice of the most satisfactory manner after careful experiment. The circuit has been so designed that, although it follows closely upon accepted principles, and is so simple that it may be made by the varied beginner, it is carefully “balanced” throughout. By this means it has been possible to obtain the high degree of quality and the excellent output wattage demanded by all critical listeners to-day at a price that has been reduced to a minimum.

Tuning is sufficiently sharp for most requirements and when extremely long range is not the chief point at issue. Due to the use of highly efficient air-core coils, with loose-coupled windings, the degree of selectivity afforded is easily ample for the separation of even the nearer and more powerful stations, and will, by the majority of constructors, be considered to be of an extremely high order. But I think I can say with all modesty that my own standards of selectivity are higher than those of most, and it is for this reason that I do not claim “hair-breath,” tuning or “razor-edge” selectivity for this highly-satisfactory receiver.

Easy Operation
Nicety of control has been carefully considered, with the result that any member of the family can operate the set and obtain perfectly good reception. The reaction control fitted, however, is so smooth in its operation that when additional selectivity is required, or when the user desires to “reach out,” there is an ample margin of power. Volume control also is very smooth, acting, due to the provision of a variable-mu potentiometer which gives a well-graded control of loud-speaker output from a whisper right up to the full-bodied reproduction of a brass band. This is assisted by the powerful push-pull output stage which I have mentioned above, and which enables the receiver always to be worked with ample power in hand. To use a motoring metaphor, it is scarcely ever necessary fully to open the throttle; this means that the quality of reproduction is well maintained under all conditions.

SPECIAL FEATURES
OF THE A.C. HALL-MARK

Quality and Large Undistorted Output
at Low Cost—2½ watts undistorted output.

Well-tried Circuit—Variable-mu H.F., leaky-grid detection, Push-Pull Output.

Ideal for use as Radio Receiver or Radio-gramophone.

Ample selectivity for normal requirements—due to use of aerial coil with loose-coupled winding, and use of efficient H.F. transformer with tuned secondary.

Smooth Reaction Control which increases selectivity when required.

Graded Volume Control by Variable-mu Potentiometer.

Ample Decoupling in all Circuits.

Absence of Mains Hum because of thorough decoupling, and use of Large capacity Electrolytic Capacitors.

ORDER NEXT WEEK’S 64-PAGE ISSUE CONTAINING THE FREE GIFT BLUEPRINT NOW!
OLD CIRCUITS
IN NEW GUISES—2

The Similarity of Modern Selectivity Devices with Those in Use Many Years Ago is Pointed Out in This Article
By H. J. Barton Chapple, B.Sc., A.M.I.E.E.

Of late it has become quite normal practice to use two or more loudspeakers with a single receiver, in order to achieve a more realistic reproduction, these speakers being of differing characteristics, so that while one looks after the high notes, the other is responsible chiefly for the lower notes. The high-note speaker is often referred to as a "tweeter," and whereas the other speaker or speakers are usually of the moving-coil type, tweeters are nothing more or less than a direct development of the moving-iron horn speakers we knew so well many years ago.

Coupled Circuits

Turning once more to circuits, the now popular "band-pass" tuning is a linear descendant of a very early device, although twisted almost out of all recognition. One of the very first devices to obtain high selectivity was the use of two tuned circuits, with variable coupling between them. The two circuits usually took the form of a pair of plug-in coils, mounted in a two-way swinging coil holder, and each tuned by a variable condenser, as shown in Fig. 1.

The coupling between the two circuits was purely magnetic, and could be varied by swinging the coils in their holder. Old experimenters will remember that there was always one point of adjustment when signals were at their maximum, and that by decreasing the coupling, signals dropped in strength but the selectivity was improved. Possibly they may also remember that if the coupling was made too tight there was also some falling away of signal strength and a flattening of the tuning, while further tightening of the coupling gave two tuning points for a given wavelength.

This form of variable coupling is not used nowadays, but a development of the idea has stood us in good stead, for the band-pass device simply consists of two tuned circuits in which the coupling, which is now usually capacitative, although sometimes a mixture of capacitative and inductive, is sufficiently tight to cause two "optimum" tuning points separated about 9 kilocycles apart but with a fairly steep cut-off beyond this band. In this way a reasonable proportion of the sidebands are received without serious attenuation, and quality is, therefore, much better than with very sharply tuned circuits which cut off nearly all the sidebands. At the same time, the filter cuts off a large proportion of the sideband interference from stations working on adjacent wavelengths. Figs. 2 and 3 show typical band-pass circuits, while in Fig. 4 is illustrated the effect on the sidebands of sharply-tuned and band-pass circuits.

Wave Traps

Another old friend is the wave trap. Several different variations were developed when ether congestion first became acute and before really selective receivers were in general use. The series rejector trap shown diagrammatically in Fig. 5 was in general use. This consisted of placing a small condenser in series with the aerial—a device well known to-day, although we have given up calling it by a fancy and rather meaningless name. Aerial coupling by means of a small condenser is employed as an aid to selectivity, and many sets are fitted with two or more aerial terminals, each connected through a condenser of different value, so that the series coupling capacity can be varied to suit long or short aerials and the listener's own needs by way of selectivity. Alternatively, a variable condenser is incorporated in the set for the same purpose.

A Special Case

There is, however, one application of the wave trap which has recently cropped up, and is quite excusable, namely, for use in those districts where the additional power of the new Droitwich transmitter renders stations on the first place.

Many years ago, a system known as "constant aerial tuning" was introduced. This consisted of placing a small condenser in series with the aerial—a device well known to-day, although we have given up calling it by a fancy and rather meaningless name. Aerial coupling by means of a small condenser is employed as an aid to selectivity, and many sets are fitted with two or more aerial terminals, each connected through a condenser of different value, so that the series coupling capacity can be varied to suit long or short aerials and the listener's own needs by way of selectivity. Alternatively, a variable condenser is incorporated in the set for the same purpose.

This device is perfectly sound and useful, but unfortunately it has been abused from time to time. Devices have been built on the market under various proprietary names, and often at an unwarrantably high price. In a few cases the device has proved to be nothing more or less than a small fixed condenser, often of the crudest type, mounted in an imposing-looking case. Now a series condenser can certainly improve selectivity. But it cannot, in any circumstances, increase volume—actually it must reduce the signal input. For this reason, not only will volume be reduced—unless increased amplification is provided in the set—but the number of stations which can be received at good strength will be reduced.
By way of a change, it is proposed this week to describe a number of interesting experiments in connection with high-frequency amplification, dealing with the methods employed before the days of the screen-grid valve. Those readers whose experience of wireless goes back eight or nine years will probably have recollections of the high-frequency amplifier of the type using a general-purpose triode valve. They will also remember the remarkable improvement that was effected by the substitution of a valve having an additional electrode—the screening grid. But there are doubtless many whose wireless experience is very limited, and there are certainly many thousands who did not take up wireless as a hobby until Practical Wireless was first published about two and a quarter years ago: these readers, particularly if they are of an experimental turn of mind, will find much of interest in trying out the old circuits.

Triode H.F. Amplification

"Ordinary" H.F. amplification, in which a valve of the H.F. or H type is employed, can be tried very easily by those who have a receiver fitted with an S.G. or V.M. stage simply by removing the leads at present going to the screening-grid terminal on the H.F. valve-holder, and in their place connecting the lead which made contact with the anode terminal fitted to the top of the valve. The idea is illustrated in Fig. 1.

What will be the first observations on making these altered connections? It all depends upon the tuning circuits employed, the efficiency of the coils, and the degree of screening provided. Where the H.F. and detector valves are coupled together on the tuned-grid principle (as they generally are), and if the coils are well screened, it is possible that no very tremendous change will be noticed at first. It will, of course, be found that the degree of H.F. amplification is very much curtailed, and it might be found that many of the stations that were easily received before cannot now be heard at all. On the other hand, if the coils are of a very efficient type—iron-core coils in particular—or if the components are not screened very thoroughly, it is more than likely that the set will become unworkable, especially on the more distant stations. The reason for this will be that the three-electrode valve used in the H.F. stage will immediately fall into self-oscillation, and this oscillation will be unaffected by use of the reaction condenser.

Complete Screening

In the case of air-core coils it will generally be possible to minimise the instability by adding additional screening, preferably fitting an aluminium screening box all round the H.F. components—airial coil, aerial tuning condenser (when separate condensers are used), and the valve itself. In doing this it must be remembered that all parts of the screening box must be in good electrical connection and earthed, and that the metal box must not only extend round the sides of the components, but must also pass overs and under them. This means that the connecting leads must be passed through holes made in the metal box. Incidentally, it might be mentioned that suitable screening boxes
are still available in ready-made form from a few manufacturers, whilst they can often be bought very cheaply from dealers in surplus gear.

Despite the fact that three-electrode valves are never used in modern receivers for H.F. amplification, it is often possible to obtain quite good results after thorough screening has been provided. The results to be obtained are, in fact, vastly superior to those which were possible before the S.G. valve made its advent; this is because the modern triode is considerably better than those made a few years ago, and has a much lower inter-electrode capacity.

Neutralising Inter-electrode Capacity

Mention of inter-electrode capacity leads us to neutralised H.F. circuits, often referred to as neutrodyne circuits, which were used with very great success from eight to ten years ago. The reason for the instability and self-oscillation in the case of the three-electrode H.F. valve is that the capacity between the grid and anode allows a portion of the H.F. energy in the anode circuit to pass back into the grid circuit, just as this feed-back occurs with a detector valve when reaction is applied. It was this that was done in the case of the neutrodyne condenser when reaction is applied to the H.F. valve. Signals will then be made very weak—so weak, in fact, that it might be necessary to place the ear close to the speaker to hear them at all. The neutrodyne condenser should then be adjusted until the signals vanish entirely, or become as weak as they can be made. In this latter respect it should be mentioned that it might be found that signal strength diminishes as the knob of the neutrodyne condenser is screwed down to a certain point, after which it commences to increase again. Should this prove to be the case, the condenser must be set to its midway point. When this has been done, the filament connection to the H.F. valve should be remade, when it should be found that self-oscillation no longer exists. Reception should then be as good as when an S.G. valve is employed. The latter statement might be challenged by pointing out that the S.G. valve would never have become so popular if this were true. That argument may be disposed of by saying that the fairly tricky adjustment of the neutrodyne condenser is the chief objection to the neutrodyne circuit shown in Fig. 4. Another objection is that neutralising cannot very well be applied to a dual-range tuner; if it is, it becomes necessary to alter the neutralising capacity every time a change is made from one waveband to the other, and that is a sufficient deterrent to the average listener, although perhaps not to the experimenter.

Making the Coil

In Fig. 3, details of the two windings are given for a coil covering the lower broadcast band, so that the experimenter can easily try out this circuit. It is necessary that the voltages developed in the neutralising winding should be opposite in phase to those in the tuned winding, and for this reason it might be necessary to reverse the connections to one of the windings.

Dual-range Tuning

Dual-range working can be accomplished, however, in a satisfactory experimental manner by using two independent tuning units for medium and long waves, and by providing a switch to change from one to the other. When such a scheme is to be tried, a second coil unit similar to that illustrated, but where each section consists of four times as many turns, can be employed.

The two windings will then be pile-wound to a tapping on the G.B. battery or to a 25,000-ohm potentiometer, as shown in Fig. 5.

A Standard Work

THE WIRELESS CONSTRUCTOR'S ENCYCLOPEDIA

3rd Edition

By F. J. CAMM

(Editors of "Practical Wireless")

5/- net.

Wireless Terms and Definitions stated and explained in common, clear language. From all Bookstallers, or by post 5/- from W. Neuner, Ltd., Southampton St., Strand, W.C.2.
Three Typical Uses for WESTECTORS

Battery Economy

Used as a battery economiser, the Westector enables a large output to be obtained from a battery set without using special equipment, and is applicable to any type of receiver.

High-Quality Detection

When used as a second detector in a Superheterodyne, the Westector gives straight line rectification with distortionless detection, and it is almost impossible to overload it.

Automatic Volume Control

Usually the introduction of Automatic Volume Control necessitates complicated alterations. But even delayed A.V.C. may be obtained in a simple manner with the Westector.

RALPH STRANGER'S WIRELESS LIBRARY each 1' net

A deservedly popular series of non-technical books on Wireless for the man-in-the-street. There are sixteen books altogether, each dealing with one particular subject. Between them they cover the whole field. Convenient "pocket" size; each book contains 64 pages; profusely illustrated. List of titles, free on request. Send postcard today.

From all Booksellers, or by post 1/2 each from GEORGE NEWNES, LIMITED, 8-11, Southampton St., Strand, London, W.C.2

PERFECTLY MATCHED for MATCHLESS TUNING

For a Happy New Radio Year employ the COLPAK

The finest resolution you can make is to fit the finest tuning unit of all in your Set—the Colpak. The fact that it has been specified time and again by all the leading experts is ample proof of the Colpak's superiority.

Price complete 57/6. COLVERN LTD., ROMFORD, ESSEX.

FREE BLUEPRINTS OF SPLENDID SETS

To COLVERN, Ltd., Romford, Essex. Please send me full details and Blueprint of the COLPAK CLASS B/A.C. MAINS SET.

Made under Licence from patentee, Hans Vogt.

GEO. NEWNES, LTD., 5/6, Stoneham Rd., London, E.

THE VALVE WITH THE 6 MONTHS' GUARANTEE

S.G. Type 3, of exceptionally low inter-electrode capacity. Output valves, giving larger undistorted output than "luxury" price valves.

If you would like a copy of our Ferrocart Booklet, please put a X here.
How to make a Portable Television Receiver

The February issue of this fascinating new monthly contains many practical articles of topical interest, including one describing the construction of a Portable Television Receiver.

The publication of this article is timely in view of the impending publication of the Television Committee's Report. Make this receiver and be one of the first to look in to the television programmes.

Showing the neat and compact arrangement of the portable television receiver, when removed from the cabinet shown on the left.

Other Contents

Focussing with Projection Receivers
Television Side-bands
All about the Cathode-Ray Tube
Cathode-Ray Tube Receivers
Colour Television Possibilities
Various Scanning Methods
Television Receiving Circuits
The A B C of Television.

"Practical Television" is on sale at all Newsagents, Bookstalls and Dealers, or by post 71d. from George Newnes, Ltd., 8-11, Southampton Street, Strand, London, W.C.2.
The Subject of this Fifth Article in the Series is a Simple Three-valve Receiver for All-wave Reception.

By Frank Preston.

POSTCARDS received from a number of readers concerning the type of receiver which they would like to see described in this series indicate that a large percentage are in favour of an all-wave (that is short, medium, and long wave) set of simple type. There are many ways of designing such a set, but there are two important points to be considered in connection with a design that is to be published in these pages; the first of these is that the receiver must be reasonably easy to construct, and the second is that it shall not be tricky to operate.

Both of these requirements, as well as the additional ones of low cost and high efficiency, have been considered carefully in drawing up the circuit shown on this page. Only a cursory examination is necessary to show that the arrangement is very simple, whilst it will also be seen that the valves are all of the pentode type which have proved so entirely satisfactory in modern circuits. The first two valves are high-frequency pentodes, whilst the third is a high-efficiency L.F. pentode.

Aperiodic Aerial Coupling

A rather unusual feature of the circuit is that the aerial system is not tuned, the input signal voltages being developed across a 25-megohm non-inductive resistance. This arrangement is not so satisfactory, in theory, as an accurately-tuned circuit, but in practice it is generally better for short-wave reception, since it is extremely difficult to tune two separate circuits quickly and with any degree of accuracy. In addition to this, however, it is rarely that any appreciable degree of H.F. amplification can be obtained on short waves, and the principal object of the first valve is to remove "dead spots" in the tuning range, simply tuning, and to minimize capacity effects. On the medium and long waves the value of the H.F. amplifier is rather slight, but it does, at least, prevent the set from radiating interference if it should be brought right up to the oscillation point. Additionally, the first stage tends to stabilise the detector, and it is justified on these grounds.

LIST OF COMPONENTS REQUIRED.

One Metaplex chassis, 12in. by 10in., with 3in. runners.—Peto-Scott.

One aluminium panel, 12in. by 8in.—Peto-Scott.

Three 4-pin chassis-mounting valve-holders.

One 0.0003-mfd. variable condenser with drive (C4)—Formo.

One 0.0002-mfd. variable condenser (C3)—Jackson Bros.

One slow-motion-drive—Utility "Micro-Dial." One change-over switch (S1)—Belgin, type 5.81-T.

One 0.0002-mfd. reaction condenser (C5)—Jackson Bros.

One on-off switch (S2)—Graham Firth.

Six 1/4 watt fixed resistances: .25 meg. (R1), 5,000 ohm (R2), 5 meg. (R3), 5,000 ohm (R4), 50,000 ohm (R5), .25 meg. (R6)—Dubilier.

One coil assembly, comprising KSW and K43 coils on baseplate, with combined wave-change switch—Covens.

One 511 H.F. transformer (L.F.T.)—Varley "Nicker.

Four fixed condensers: two .01 mfd. (C1 and C7), one .0003 mfd. (C6), one 2 mfd. (C8)—Dubilier.

One .0002-mfd. pre-set condenser (C2)—Formo.

Connecting wire, terminal brackets, etc.

Three valves: two 210 SPT (V1 and V2) and one 220 HPT (V3)—Cossor.

Coupling between the first two valves is on the customary tuned-grid principle, a universal or all-wave H.F. choke being included in the anode circuit of the first H.F. pentode. It is of low capacity, so that two complete tuners are employed, one of these covering the short waves from just under 18 metres to 65 metres in two bands from 18-35 and 50-65 metres, and the other one covering the normal broadcasting bands from 220 to 550 metres, and from 900 to 2,000 metres. The two coils can be obtained on a common baseplate with a wave-change switch rod operating on both. Thus, the higher or lower band on either short or broadcast wavelengths can be chosen by using the same switch. Another switch (S1) is used to change over from the short-wave coil to that which covers the broadcast bands. It should be mentioned in passing that the wave-change switches fitted into the coils are omitted very satisfactorily in practice. The two windings are in series with each other and with the .0002-mfd. reaction condenser (C5); thus, both windings are in circuit on all wavelengths, and the same reaction condenser serves in every case.

One further point which should be explained in connection with the tuning circuits is that when the switch S1 is turned to the "broadcast" position the anode coupling condenser and the detector grid condenser are connected to terminal 5 on the K43 coil, and this provides a transfer tapping, so that a high degree of selectivity is available on both medium and long waves.

H.F. Pentode Detector

The detector circuit follows standard practice, apart from the fact that an H.F. pentode is used instead of the more usual...
triole valve employing grid potentials for this valve, like that for the first one, is obtained through a 5,000-ohm decoupling resistance, a .01-mfd. tubular condenser being used to by-pass the radio frequencies. A 5:1 ratio transformer is used to couple the detector to the L.F. pentode, and a .35-megohm grid leak is used in the grid circuit of the third valve to act as a "stopper" to any high-frequency currents that "escape" past the detector H.F. choke.

With regard to the assembly of the components, it should be pointed out that the lay-out is in this case very important since capacity between the connecting wires, and also between the grid and anode circuit components, must be kept down to a minimum. For this reason the two-coil assembly should be situated in the centre of the chassis, with the two taming condensers placed one on each side of it. The reaction condenser is best placed below the chassis and immediately beneath the coils. These change-over switch (S1) should be placed on the panel just over the wave-change switch fitted to the coils, and the on-off switch (S2) can be situated to the right of the panel.

Arranging the Components

Place the valve-holders in a line along the back of the chassis with that for the detector valve immediately behind the coils, those for the other two valves being situated about 4in. on each side of the centre. As two similar H.F. choke are used in the anode circuits of both the H.F. and detector valves it is important that these be placed such that no by-passing occurs. For this reason they should be mounted at right angles to each other, whilst that for the H.F. valve should be placed on the under side of the metallised baseboard, and the other on the upper surface, as near as possible to the anode terminal of the detector. As to the other components, the L.F. transformer should be placed beneath the chassis surface along with the decoupling resistances and by-pass condensers; all other components can then be mounted on top of the chassis.

The method of arranging the battery connections is not important, but it will probably be found most convenient to fit flexible leads directly to the various components, but a terminal strip could be placed on one side of the chassis if desired. Either terminals or terminal socket strips can be used for the aerial, earth, and speaker connections, but these are not specified, since the constructor will probably have his own pet ideas on the best method of arranging these connections.

Adjusting and Tuning

The method of operating the finished receiver does not call for a lengthy explanation, since the set is placed in operation by turning the H.F. soup to the broadcasting position, when either long- or medium-wave reception is increased by screwing down the knob, until best results are obtained; the knob is turned to the reaction condenser as the tuning condenser is set to zero (anti-clockwise rotation) and turn the knob of the right-hand (.0005 mfd.) tuning condenser until the set oscillation—it will be found that as the capacity of this condenser is increased the signal strength is increased to a certain extent, although tuning is not quite so sharp.

When this condenser has been adjusted the reaction can be increased, when it should be found that ten or more stations can be received at good loud-speaker strength. Should it be found that reaction control is at all "fierce," a different position in the battery of the H.T. +1 tap marked 72 volts should be tried. It might also be pointed out that the grid-bias voltage marked on the diagram will be correct only if the maximum H.T. voltage of 120 is applied to tapping H.T. +3, and if the specified valve is used in the output stage. If the voltage or valve is changed the G.M. must be varied accordingly.

When it is found that the set functions correctly on the broadcast bands, the change-over switch may be turned to the short-wave position and tuning carried out by the left-hand condenser. This condenser should be operated as slowly as possible after the reaction condenser has been set nearly to the oscillation point; that is, until a faint "breathing" sound is heard in the speaker or headphones. A good number of transmissions should be received on both of the short-wave bands, but it should be remembered that short-wave reception is very variable, and fluctuates according to prevailing conditions, as has been explained in previous pages. The set in its most sensitive condition—just on the verge of oscillation—it will be found necessary slightly to vary the capacity of the reaction condenser as the tuning condenser is turned.

If any difficulty is experienced in making the set oscillate on short waves, or if reception control appears rather unstable, the pre-set condenser should carefully be adjusted until the best position is found. It will probably be noticed that when this condenser is set about its midway position a fair compromise between selectivity, sensitivity, and smoothness of reaction control is obtained on each of the four wavebands.

A Simple Television Receiver

The present time there are only three main types of television receivers in general use, and these are the disc, mirror-drum, and cathode-ray receivers. While the last has many good points it also has two great disadvantages, which are its high cost and its complexity of design. The two former systems are the most popular, but even they have their disadvantages. The disc receiver is rather large and unwieldy, and while the mirror-drum receiver is less bulky, it is more expensive and quite a powerful motor is needed to rotate the drum. Here is an entirely new type of receiver, however, that has two very good points, which are its low cost and ease of construction, for the whole apparatus could be built into a box the size of a small hand camera.

The Scanning Medium

Instead of using a large disc or heavy drum as the scanning medium, a thin light strip of black celluloid or film is contained and is perforated with a number of small holes spaced at regular intervals in just the same manner as is the disc of a disc receiver. The accompanying illustration shows the general construction of the receiver, and it will be seen that it closely resembles the principle of a small cinematograph projector. Square, holes punched at each side of the film enable two sprocket wheels, one of which is mounted at each side of the driving motor, to drive the film past the neon lamp at the correct speed.

There would be no stretching or buckling of the film, for modern methods of manufacture ensure that it maintains its original size and shape under the most adverse conditions.

The Driving System

As regards the driving of the film, an adapted version of the system used in home-movie projectors would be eminently suitable, for such does not vary the position of the film to the lens by even a thousandth of an inch. In a long cylindrical film, even the slightest division of the film from its correct position would be magnified hundreds or even thousands of times on the screen, and

As no flickering can be discerned even then, the great accuracy of the film driving system can be realized.

It must be remembered, too, that the motion of the film in a movie projector is not continuous as it is in the television receiver, and is alternatively stopped and started, so there need be no fear regarding the film moving from its correct position.
An Experimenter’s Potentiometer

POTENTIOMETERS of different values are handy in the junk box, but the one illustrated can be quickly made from a spaghetti resistance, which is easily replaced so that various values can be used as required. A spaghetti of known value is stretched between two parallel terminals, as shown, and a piece of brass rod is supported between two right-angle brackets so that the rod and spaghetti are parallel. A slider, made from an old wire connector, carries a small, grooved wheel, which makes contact with the resistance wire. By shorting a section of flex, the ends of a piece of flex pass the wires through the eye of the stem, twist them, then bind firmly with cotton. A spot of solder at the junction of the three limbs will be an advantage, though not a necessity. Make some and be happy! If a number of these connections is to be made it will be found expedient to drill a piece of 3in. sheet brass, and solder in short lengths of wire, instead of using the wood block and nails. —H. C. Edwards (Reading).

A Dual-purpose Connector

THE experimenter is always needing connectors, and flex is usually more suitable than solid wire. But it is awkward to thread flex through the eye of one type of binding screw and often just as awkward to twist round the stem (or another type) whilst it is loose when the socket for it is being in the least. Suppose we have condensers of 0.001 mfd. and 0.0003 mfd. in tandem or series, all we need to do is to reduce them to like quantities. The first is obviously ten thousandths and the second three thousandths. Treating them as whole numbers, we have (converting the optical formula) $C = \frac{1}{c_1} + \frac{1}{c_2}$

Therefore

$3 \times 10^3 \times 3 \times 10^3 = 2.3$ (approx.)

But the values of condensers are seldom in whole numbers; yet that fact need not worry us, for it does not complicate matters in the least. Suppose we have condensers of 0.001 mfd. and 0.0003 mfd. in tandem or series, all we need to do is to reduce them to like quantities. The first is obviously ten thousandths and the second three thousandths. Treating them as whole numbers, we have (converting the optical formula) $C = \frac{1}{c_1} + \frac{1}{c_2}$

Therefore

$3 \times 10^3 \times 3 \times 10^3 = 2.3$ (approx.)

So why use reciprocals? —H. C. E. (Reading).

A Switch for Wave-changing

THE object of this switch, besides wave-changing, is to introduce a separate long-wave tapping through an anti-break through switched-in choke. The six contact studs are mounted rigidly, and the appropriate connections made to the terminals by nuts or solder. The brass portions on the moving arm are made of springy brass, shaped as nearly into a circle as possible, and fastened by metal thread into the tapped chonite strip. If a quarter of an inch spacing is allowed between the studs, a good snap action is obtained, with self-cleaning surfaces. The circuit diagram shows the connections to the various studs. Note that switches can be ganged if connected as shown in the top right-hand diagram. —F. Palmer (Peterborough).

That Dodge of Yours!

Every Reader of “PRACTICAL WIRELESS” must have originated some little dodge which would interest other readers. Why not pass it on to us? We pay £1-10-0 for the best-wrinkle submitted, and for every other item published on this page we will pay 1½-s. Turn that idea of yours to account by sending it in to us addressed to the Editor, “PRACTICAL WIRELESS,” George Newnes, Ltd., 8-11, Southampton Street, Strand, W.C.2. Put your name and address on every item. Please note that every notion sent in must be original. Mark envelopes “Radio Wrinkles.” Do NOT enclose Qs. or Ss. with your Wrinkle.

The formula for lenses is $F = \frac{f_1 f_2}{f_1 + f_2 - s}$

where F is the resultant focus, f_1 and f_2 the respective foci of the combined lenses, and s the separation, all measurements being in the same units; thus the combined focus of two lenses each of 2-in. focus would be (assuming they are in contact) $\frac{2 + 2}{2 - 1} = 1$ inch.

Figure A Switch for wave-changing.
The Theory and Practice of Coupling Low-frequency Valves are Described in Easily-understandable Language

In the previous article of this series it was explained why a fairly definite value of resistance should be included in the anode circuit of a valve if the maximum transference of energy from that valve to the next were to be obtained. The most suitable value of anode resistance is referred to as the optimum load, and the figure for this is generally given by the makers in respect of power and pentode valves, but not for other valves intended for use in the H.F., detector, and first L.F. stages. In these cases, however, it can generally be taken that the optimum load is approximately twice the rated impedance of the valve.

This will be made quite clear by examining the skeleton circuit given in Fig. 1, where a detector valve is shown coupled to the L.F. stage by a resistance-capacity circuit. The anode resistance R1 should have a value equal to approximately 25,000 ohms, resistance. This is a good ratio to aim at, and therefore the correct condenser value for any anode resistance can be found from Fig. 2.

Grid-leak Resistance

The L.F. grid leak R3 is the next component to be considered, and this should generally have a value of not less than six times that of the anode resistance—ten times is usually better. Thus, the leak required after the valve mentioned above should be of about 25 megohm. Actually, the values and ratios stated above are not arrived at with any great degree of accuracy, but the calculation entailed in determining the exactly correct theoretical values are involved, and their use is unnecessary for most design and constructional work.

The resistance-capacity coupling circuit so far dealt with is the fundamental arrangement, and once it is understood the other methods of coupling low-frequency valves are easy to follow. A form of coupling that is almost identical with R.C.C. is that known as choke-capacity, and for which the connections are the same as those given in Fig. 1, with the exception that an L.F. choke is used in place of R1. The choke should have an impedance, at an average speed frequency of 1,000 cycles, and when carrying the full anode current of the detector valve, of the same value as the optimum load of the valve. The latter explanation will more readily be followed when it is explained that the impedance of a choke always varies with the frequency of the alternating current passing through it, and with the D.C. current which it has to carry, as well as with the inductance value. For example, a typical L.F. choke might offer an impedance of 30,000 ohms at 1,000 cycles and when carrying only 1 milliamp. of D.C. current, but the impedance might fall to only 20,000 ohms if the current is increased to, say, 5 milliamps. For this reason, when deciding upon the most suitable type of choke required, the assumption is made that the anode circuit of a valve is shown coupled to the L.F. stage by a resistance-capacity circuit. The anode resistance R1 should have a value equal to approximately 25,000 ohms, resistance. This is a good ratio to aim at, and therefore the correct condenser value for any anode resistance can be found from Fig. 2.

Grid-leak Resistance

The L.F. grid leak R3 is the next component to be considered, and this should generally have a value of not less than six times that of the anode resistance—ten times is usually better. Thus, the leak required after the valve mentioned above should be of about 25 megohm. Actually, the values and ratios stated above are not arrived at with any great degree of accuracy, but the calculation entailed in determining the exactly correct theoretical values are involved, and their use is unnecessary for most design and constructional work.

The resistance-capacity coupling circuit so far dealt with is the fundamental arrangement, and once it is understood the other methods of coupling low-frequency valves are easy to follow. A form of coupling that is almost identical with R.C.C. is that known as choke-capacity, and for which the connections are the same as those given in Fig. 1, with the exception that an L.F. choke is used in place of R1. The choke should have an impedance, at an average speed frequency of 1,000 cycles, and when carrying the full anode current of the detector valve, of the same value as the optimum load of the valve. The latter explanation will more readily be followed when it is explained that the impedance of a choke always varies with the frequency of the alternating current passing through it, and with the D.C. current which it has to carry, as well as with the inductance value. For example, a typical L.F. choke might offer an impedance of 30,000 ohms at 1,000 cycles and when carrying only 1 milliamp. of D.C. current, but the impedance might fall to only 20,000 ohms if the current is increased to, say, 5 milliamps. For this reason, when deciding upon the most suitable type of choke required, the

assuming the use of a Cosser 210 det. valve in the detector position. It is necessary to point out that the decoupling resistance marked R2 does not enter into consideration at the moment, since it is not strictly situated in the anode-coupling portion of the circuit, being more correctly in the high-tension circuit, since it is by-passed by the decoupling condenser C2.

The next component to be considered in connection with the coupling arrangement is the L.F. grid condenser marked C1. The most suitable capacity for this condenser depends principally upon the value of R1, and the impedance of the condenser, at an average audio frequency of 1,000 cycles, should be low by comparison with that of R1. The graph in Fig. 2 shows how the impedance varies with capacity at 1,000 cycles, and it can be seen from this that a condenser of .05 mfd. has an impedance of 3,000 ohms or approximately one-tenth that of the coupling

![Fig. 1.](image1.png)

This skeleton circuit shows a detector valve coupled to an L.F. stage on the R.C. principle. The various components are referred to in the text.

![Fig. 2.](image2.png)

The above graph shows how the impedance of a condenser varies with capacity at an audio-frequency of 1,000 cycles.

![Fig. 3.](image3.png)

This skeleton circuit shows the connections for wiring an L.F. transformer on the parallel-feed system. The step-up ratio obtained is 5:1.

The Resistance-Capacity Coupling Circuit

The resistance-capacity coupling circuit is generally taken that the optimum load of the valve depends principally upon the value of R1, and the impedance of the condenser, at an average audio frequency of 1,000 cycles, should be low by comparison with that of R1. The graph in Fig. 2 shows how the impedance varies with capacity at 1,000 cycles, and it can be seen from this that a condenser of .05 mfd. has an impedance of 3,000 ohms or approximately one-tenth that of the coupling resistance. This is a good ratio to aim at, and therefore the correct condenser value for any anode resistance can be found from Fig. 2.

Grid-leak Resistance

The L.F. grid leak R3 is the next component to be considered, and this should generally have a value of not less than six times that of the anode resistance—ten times is usually better. Thus, the leak required after the valve mentioned above should be of about 25 megohm. Actually, the values and ratios stated above are not arrived at with any great degree of accuracy, but the calculation entailed in determining the exactly correct theoretical values are involved, and their use is unnecessary for most design and constructional work.

The resistance-capacity coupling circuit so far dealt with is the fundamental arrangement, and once it is understood the other methods of coupling low-frequency valves are easy to follow. A form of coupling that is almost identical with R.C.C. is that known as choke-capacity, and for which the connections are the same as those given in Fig. 1, with the exception that an L.F. choke is used in place of R1. The choke should have an impedance, at an average speed frequency of 1,000 cycles, and when carrying the full anode current of the detector valve, of the same value as the optimum load of the valve. The latter explanation will more readily be followed when it is explained that the impedance of a choke always varies with the frequency of the alternating current passing through it, and with the D.C. current which it has to carry, as well as with the inductance value. For example, a typical L.F. choke might offer an impedance of 30,000 ohms at 1,000 cycles and when carrying only 1 milliamp. of D.C. current, but the impedance might fall to only 20,000 ohms if the current is increased to, say, 5 milliamps. For this reason, when deciding upon the most suitable type of choke required, the

assuming the use of a Cosser 210 det. valve in the detector position. It is necessary to point out that the decoupling resistance marked R2 does not enter into consideration at the moment, since it is not strictly situated in the anode-coupling portion of the circuit, being more correctly in the high-tension circuit, since it is by-passed by the decoupling condenser C2.

The next component to be considered in connection with the coupling arrangement is the L.F. grid condenser marked C1. The most suitable capacity for this condenser depends principally upon the value of R1, and the impedance of the condenser, at an average audio frequency of 1,000 cycles, should be low by comparison with that of R1. The graph in Fig. 2 shows how the impedance varies with capacity at 1,000 cycles, and it can be seen from this that a condenser of .05 mfd. has an impedance of 3,000 ohms or approximately one-tenth that of the coupling

![Fig. 1.](image1.png)

This skeleton circuit shows a detector valve coupled to an L.F. stage on the R.C. principle. The various components are referred to in the text.

![Fig. 2.](image2.png)

The above graph shows how the impedance of a condenser varies with capacity at an audio-frequency of 1,000 cycles.

![Fig. 3.](image3.png)

This skeleton circuit shows the connections for wiring an L.F. transformer on the parallel-feed system. The step-up ratio obtained is 5:1.
impedance should be based upon the inductance of the valve when carrying the normal anode current. It will also be helpful to know that the impedance of a 20-henry choke at 1,000 cycles is 120,000 ohms; the impedance of other chokes at the same frequency can be determined by simple proportion, and a 40-henry choke would offer an impedance of 280,000 ohms in the conditions above laid down.

Choke-capacity Feed

It is often considered that distortionless amplification can only be obtained by using R.C. coupling, and there would be some truth in this if all audio frequencies were transmitted at equal intensities, and if the rest of the receiver gave "straight-line" response. The point is that the impedance (or resistance to A.C.) of a non-inductance resistance remains constant, regardless of the frequency of the currents passing through it, whilst the impedance of a choke or the primary winding of an L.F. transformer—which is the same thing—varies in proportion to the frequency. In practice, however, the L.F. choke is often better than a plain resistance in a circuit of the type shown in Fig. 1, because the D.C. resistance the choke is much lower than that of the resistance. For example, a typical choke which has an impedance of 30,000 ohms at 1,000 cycles has a D.C. resistance of only 300 ohms. Because of this, there is a much smaller loss in voltage across the choke than across a corresponding resistance, so that a higher H.T. voltage can be applied to the anode of the detector valve without increasing the voltage of the H.T. battery. This is especially an advantage when power-grid detection is employed, when a detector valve is used which passes a high anode current, or when a screen-grid or H.F. pentode which has a very high impedance is used as a detector.

Transformer Advantages

As is well known, L.F. transformer coupling is quite different in practice from either of the two forms of connection described above, but the same principles apply. For example, the primary winding should have an inductance of such value that it offers the correct impedance for the valve preceding it. As it is usual to use a transformer giving a voltage step-up, which means that the secondary winding must consist of a greater number of turns than the primary, the grid circuit of the following valve is automatically made of appreciably higher value than the anode circuit of the preceding valve.

The principal advantage of transformer coupling is that it provides a voltage step-up between the two valves coupled together, and this results in increased amplification. If such a transformer, the question of the most suitable ratio has to be considered, although it should be made quite clear that this is of lesser importance than the inductance of the primary winding; a high step-up ratio and low primary inductance give results that are inferior to those obtained when the inductance is high and the ratio low. Provided that the primary impedance is sufficiently high, however, when this winding carries the full anode current, the higher the ratio the greater the degree of amplification, and that the permissible degree of amplification is limited by two things. One is that if the ratio is made too high the secondary must contain such a large number of turns that the self-capacity becomes unduly high, with a result that reproduction is impaired and rendered low-pitched. Another limitation is imposed by the fact that the voltage across the secondary winding is too great the consequent valve will be overloaded, and distortion will again be the result. If it can be taken as a general rule that a ratio of 5 : 1 can safely be employed between a normal detector valve and a high-amplification power-output valve, whilst a ratio of about 3 : 1 is generally better when a high-efficiency pentode follows the detector. When more than one stage of low-frequency amplification is employed it is generally wise not to use transformers having ratios in excess of 3 : 1—2 : 1, or even 1.5 : 1: are usually to be preferred.

The Modern Method

Ordinary transformer coupling is rapidly going out of favour for most purposes, due to the fact that a transformer whose primary will provide a sufficiently high impedance whilst carrying the full anode current of the modern detector valve (especially in a mains set) is unnecessarily expensive to produce. But the advantages of transformer coupling can be combined with those of low-impedance coupling by using the parallel-feed, or resistance-feed arrangement shown in Fig. 3. In this case the value of the anode resistance, and also of the coupling condenser, can be determined by the methods described earlier. By using the circuit shown it is possible to employ quite a low-priced transformer, the primary of which has an amplifying current, but when not carrying any D.C. current, although the anode current is far too low if current were passed through it. Another advantage of parallel-feed transformer coupling is that the step-up ratio can be varied from 1.1 to 6 : 1 in the case of a component with a turns ratio of 5 : 1, or up to a ratio of 4 : 1 when the turns ratio is 3 : 1. The methods of choosing the various step-up ratios are shown in Figs. 3, 4, and 5, where the transformer shown is at rated 5 : 1. A later article will explain the principles, and also the practical details, involved in coupling Class B and other push-pull circuits.

TELEVISION SIGNAL DISTORTION

ALTHOUGH it is realised by most readers that any distortion present in the radio set receiving the signals which are passed on to the television equipment is sure to mar the image, very few appear to differentiate between the several forms of possible distortion. One aspect which is neglected repeatedly concerns amplitude distortion, and this has a very particular application in the detector valve stage. If consideration is given to the two most common methods of rectification it will be found that the grid leak and condenser form is more efficient at low input amplitudes and anode bend at high, the efficiencies being more or less equal in the region of half a volt input. With ordinary grid rectification the results are very non-linear, that is to say there is not true proportionality between input signal voltage and output signal voltage for all amplitudes. It is for this reason that recourse is now so often made to what has come to be known as power grid rectification. The circuit constants and operating conditions are of quite a different character, and it will be noted that the time constant of the grid discharge circuit is less than that of the ordinary grid-bleed power-output stage.

To achieve optimum results with television signal reception it is very essential to preserve the different amplitudes in their correct relative proportions. It is for this reason that pure or linear rectification is as important as correct amplification. One device which provides this is the diode valve, while another unilateral conductor is the Westector, or even the over-depressed crystal. If preferred, a double-diode valve working in push-pull rectification can be used.
THE probability of the eventual use of ultra-short waves for broadcasting and high-definition television, as envisaged in the technical press, raises interesting problems of propagation, the solution of which could be approached in a number of ways. Any attempt to link telephone or telegraph circuits by cable or micro-wave directional transmitters, to a central studio for control purposes, might be supposed to give strong signals and under practically any conditions of propagation.

However, there is one method of propagation which, though it has not to the writer's mind is that before any system of ultra-short-wave transmission, either for sound or high-definition television, is established through a network of relay stations, full-scale experiments might be tried from captive balloons flown at a considerable height. At first sight, this may appear a fantastic suggestion, but let us examine one method by which such tests could be carried out.

In the first place, all that would be required in the balloon would be the RF portion of the transmitter; that is, the oscillator, to which modulated power would be supplied from the ground through cables indicating that many of the difficulties associated with transmitters placed more or less at ground level disappear or are considerably reduced, signals from a comparatively low-powered transmitter being receivable with great strength and consistency over a wide area. The idea in the writer's mind is that before any system of ultra-short-wave transmission, either for sound or high-definition television, is established through a network of relay stations, full-scale experiments might be tried from captive balloons flown at a considerable height.

In the first place, all that would be required in the balloon would be the RF portion of the transmitter; that is, the oscillator, to which modulated power would be supplied from the ground through cables.

The dipole ultra-short-wave transmitting aerial at the top of the Crystal Palace tower, which radiated sound originally on 6.25 metres. A similar U.S. W. transmitter is also used for television experiments.

Eight feet long, being fixed outside and coupled to the oscillator by means of a single feeder system.

All operational difficulties would be eliminated, since the oscillator, once tuned near ground level, would "stay put," while for inspection, testing and safety purposes, the balloon could be wound in at the end of each transmission period. The practical difficulties apparent in such a scheme are:

1. The danger of losing the balloon through gales, and the problem of supplying modulated power to the aerials of the oscillator valves through a long feeder line.

Taking the last first, this should not be insurmountable, having regard to the experience of the Air Ministry and B.B.C. engineers in producing high-fidelity land-line transmissions and the correction of losses in long lines, though admittedly in this ease the problem of line losses is a little different. The modulating power required would be higher than if modulator and oscillator were side by side, while a specially constructed feed line would have to be used.

As regards the two first-named difficulties, the danger from lightning could be greatly minimised by effective earthing, while the possibility of landing is considerably less, as the balloon would be carried up on the balloon holding-cable, the idea being to reduce weight and keep the variables under control, since the power supply and modulating equipment would thus be on the ground. For a test under practical conditions, the transmitter could be a simple low-power self-excitation oscillator of the push-pull tuned-plate, resonant-grid type operated at an input of 20 watts, and driven by a tuned circuit from the oscillator, the output being fed into a suitable aerial. The "basket" could be a light metal gondola, totally enclosing the transmitting transmitter, which would only need to be a light metal rod.

ADVANTAGES OF THE SYSTEM

Whatever the difficulties and the means adopted to overcome them, it is certain that the service area and effective range of a transmitter installed under these conditions would be enormously increased in comparison with one at ground level, with a correspondingly large reduction in the cost of covering adequately an area such as the British Isles. It is probable, judging from the meagre information available from existing data that a certain effective height would be found giving the most convenient service area, while it also seems that at a critical height ultra-short-wave signals propagated by this method would disappear in the area surrounding the plan position of the balloon-transmitter.

In the first place, all that would be required in the balloon would be the RF portion of the transmitter; that is, the oscillator, to which modulated power would be supplied from the ground through cables.

Short Wave Section

BROADCASTING FROM BALLOONS

By AUSTIN FORSYTH
HOW WIRELESS WAVES ARE BENT.

In this Article the Author Deals with the Effects of the Heaviside and Appleton Layers.

Wireless waves are known to be identical with those that give rise to the sensation of light. Both are vibrations in the electro-magnetic ether, the only difference being one of size or—what amounts to the same thing—frequency.

The radio engineer is chiefly concerned with wavelengths of the order of hundreds or even thousands of metres, while the optician does not recognise any wave longer than the one-millionth part of a metre. This enormous disparity in size is responsible for certain rather puzzling differences in the behaviour of the two.

Light waves, for instance, always travel in a straight line, and in the ordinary way throw clear-cut shadows. Wireless waves, on the other hand, are able to bend round the curved surface of the earth. In fact, they can be made to complete the circuit of the earth, not once but several times in succession.

In the early days, scientists were inclined to pooh-pooh the possibility of sending wireless messages over really long distances due to earth curvature. However, when Marconi proved their fears to be ill-founded, by transmitting signals across the Atlantic, they naturally sought for some explanation of the “bending” of the waves. Heaviside in this country, and Kennedy in America, pointed out that an answer might be found by assuming the presence of a reflecting layer situated high above the limits of the ordinary atmosphere.

At the time, the suggestion was purely speculative, though the existence of at least two such zones of reflection has since been definitely established. The highest— or Appleton—layer serves to reflect those shorter waves which succeed in penetrating beyond the lower—or Heaviside—layer.

What happens to a train of waves meeting the layer can perhaps be explained by considering the case of a motor-car which is travelling along a road and suddenly runs into a patch of bad surface. Suppose in the first place that it meets a wide strip of soft sand, set diagonally across the road, so that one of the front wheels runs on to it before the other. Since the first wheel is, for the moment, forced to travel slower than the wheel still on hard ground, the car will tend to slew round, so as to face into the sand.

If, on the other hand, the bad patch is a wide strip of grease or oil, the wheel which strikes it first slithers faster than the wheel which is still subject to the frictional grip of the road, and the car then tends to turn bodily in the opposite direction. In both cases the twist is, in effect, a pivoting movement about the slower-moving wheel.

The Heaviside Layer

The Heaviside layer is a highly-ionised patch formed by the action of the fierce ultra-violet rays from the sun on the rarefied air existing at that altitude. Under the continual bombardment electrons are struck off from the atoms of air, and become free to move bodily over comparatively large distances. In addition to the sensation of light.

The effect, as described, applies more particularly to waves shorter than 7 metres, both the Heaviside and Appleton layers appear to be transparent. Instead of being reflected back to earth, such waves simply pass straight through both layers and are lost in outer space.

For waves shorter than 7 metres, both the Heaviside and Appleton layers appear to be transparent. Instead of being reflected back to earth, such waves simply pass straight through both layers and are lost in outer space. The same applies to waves which travel vertically upwards so that they meet the layer end on, so to speak. Similarly, if the angle of incidence is too abrupt, the layer is unable to twist the front of the wave.
The Tonastat, a tone-control device made by T.X. Products Co.

is not surprising, therefore, that listeners all too frequently fail to realize the real significance of various technical devices, and often expect from them results which are frankly impossible.

A.V.C.

To take a few outstanding examples, the device known as automatic volume control (A.V.C.) is probably the most frequently misunderstood. The general impression formed by many listeners is that a set equipped with automatic volume control will reproduce all stations at equal volume, by increasing the amplification when the signal is turned up in to a weak station. The actual facts, however, are very different. Every set has a very different maximum degree of sensitivity and can only amplify signals to that extent. Automatic volume control operates by permitting the receiver to function at maximum sensitivity on weak signals, and by reducing the amplification of strong signals so as to achieve a more nearly uniform volume level for all stations normally receivable.

This means that, dependent upon the setting of the manual volume control, no programme, however powerful, will be reproduced at anything greater than the predetermined level of volume. It does not mean, however, that every station will be brought up to this volume.

Because the A.V.C. functions by passing back the rectified carrier voltage as additional controlling bias to the variable mu, high-frequency, and intermediate-frequency valves, a certain amount of "control" or reduction of volume will be exercised on every signal, weak or strong, with the simplest forms of A.V.C. With what is known as "delayed A.V.C.," however, control is only applied to signals above a certain strength, so that those signals which are weaker are amplified to the fullest extent permitted by the manual control setting.

An Example

A simple numerical example will make this clear. Suppose the maximum amplifying power of a certain set is represented by the figure 100. Then a signal of strength 1 will be amplified to strength 100; a signal of strength 2 will be amplified to strength 200; and a signal of strength 3 will be amplified only to strength 50. Now imagine the set to be fitted with A.V.C. and also with a manual volume control. We will assume that the manual control is set for a normal volume level of, say, 200. A signal of strength 2 would reach the predetermined level without calling the A.V.C. features into play. For signals stronger than 2 units the amplification would, however, be reduced automatically to limit the volume to 200.

For example, when a signal of strength 4 is turned in, the amplification will be lowered automatically to 50, which will give a volume of 200. But a signal of strength 5 can only still be amplified up to strength 100, and a signal of strength 5 only up to strength 50.

In some sets a further device is included which will reproduce all signals which cannot be reproduced at reasonably good volume. This is achieved by using an additional diode element, which is suitably biased to "mute" the low-frequency amplifier unless a signal above a certain strength is being received.

Another misconception concerning A.V.C. is that it is a complete and certain cure for fading. A.V.C. can and does reduce the effects of certain forms of fading—more particularly the slow type, when the signal gradually weakens and then gradually returns to normal. A.V.C., however, do much to counteract rapid fading, nor can it bring signals up to maximum volume when they have faded below a certain minimum value.

Microphony Misunderstood

A certain amount of misunderstanding occurs under the question of microphony. When the listener hears a continuous note in the speaker, which rapidly grows louder and louder without changing pitch, he immediately diagnoses microphony and puts it down to a faulty valve. Many readers of Practical Wireless know that in most cases microphony is the result of vibration of the electrodes of one or more of the valves in the receiver; but it does not always follow that when the trouble arises of one of the valves is inherently microphonic. As a matter of fact, most modern valves are commendably free from inherent microphony. The prime cause of microphony is, of course, vibration, and usually vibration is caused by the speaker. In most instances audio-frequency vibration from this source is transmitted to the valve either through the chassis to the valve-holder and thence to the valve pins, or else through the air to the bulb of the valve. If the valve is microphonic, that is, if its electrodes are capable of movement, the speaker, speaker, and the sensitivity of the valve will sustain rhythmic variations so that certain notes will be

The Luxus A.C. Superhet fitted with automatic volume control.

T.C.C. interference (Continued on page 625)
PILOT AUTHOR KITS
F. J. CAMM'S

£5 SUPERHERET 3
BATTERY VERSION
KIT "A" Cash or C.O.D. Carriage Paid
or YOURS FOR
2/6

KIT "A" Author's Kit - Kit of first specified parts including Metaphex chassis, less Valves and Cabinet.

KIT "B" As for KIT "A" but including valves and Metaphex chassis. Cash or C.O.D. Carriage Paid.

KIT "C" As for KIT "B" but including valves and Metaphex chassis and Cabinet. Cash or C.O.D. Carriage Paid.

PETO-SCOTT WALLET DE LUXE CONSOLLETTE. Exclusively Fitted with Mr. J. Camm. Range in 6-1/2 Valve Superhet. Cash or C.O.D. £5.00 (net, 2/6 extra), or 5/- down and 7 monthly payments of 2/6 each.

HALL MARK 3

KIT "A" Cash or C.O.D. £2.50:0:0 or 1/- deposit and 11 monthly payments of 6/-

KIT "A" Author's Kit - Kit of first specified parts including PARCEL NET, less Valves and Cabinet.

SPECIAL C.O.D. PARCEL
Comprises: Peto-Scott Hard-Drilled Metaphex Chassis, 8 in., 2 S.T.P. Hall Mark 3 coils complete with carbonised Resistances, and Polar Midget, a good condenser with dial leads. Cash or C.O.D. Carriage Paid.

EXCLUSIVELY SPECIFIED PETO-SCOTT WALLET MALL MARK 3 CONSOLLETTE. Ready Finished. Cash or C.O.D. £15/-

LOWER PRICES APPLY TO GOING OUT STOCK. ASK FOR THE LATEST PRODUCTS.

PETO-SCOTT CO. LTD., 77, PRINCE WELSH, CITY ROAD, LONDON, E.G.I. Phone: Cleghorn 4906/7.

BUY BY POST ITS QUICKER-CASH, C.O.D.-EASYWAY

FOR ALL YOU NEED IN RADIO SEND US YOUR ENQUIRIES

EVERYTHING CASH, C.O.D. OF EASY TERMS

SIMPSON'S 1935 ELECTRIC TURNTABLE

3 SPEEDS - 78, 45 AND 33 Cycles Per Minute

£21 19/6, £8 2/- or £5 6/- down and 11 monthly payments of £1 3/- 9d.

New Garrad A.C. A.C. MAINS ELECTRIC MOTOR. 15th Birthday, twenty plates, automatic stop. Cash or C.O.D. Carriage Paid, £20 10/-, £8 2/- down and 15 monthly payments of £1 3/- 9d.

New Garrad Model 100. 15th Birthday. Electric motor for A.C. mains. Cash or C.O.D. Carriage Paid, £20 10/-, £8 2/- down and 15 monthly payments of £1 3/- 9d.

ROLA F.R.S. PERMANENT MAGNET M.C. SPEAKER

With universal tapped transformer. Will work from 110, 220, 240, 320 and 440 volt current. 30 monthly payments of £1 3/- 9d.

B. T. S. DRIVE DISC TELEVISION KIT

Completes B.T.S. Universal Receiving Televisions for Mono or Stereo. Battery operated, 220volt mains. Easily assembled and quickly assembled. Send for plan and complete list today. £15 0/- or 1/- deposit and 11 monthly payments of 8/-

GARRARD AUTOMATIC RECORD CHANGER UNIT

Universal A.C. or D.C. 10/10 to 16/16 speeds. Plays 7½" or 12" records. Cash or C.O.D. £36 19/6.

B. T. S. HALLMARK 3 COILS
Specified and used by Mr. F. J. Camm for the Hallmark 3.

Purchase without doubt. THERE ARE NO SUBSTITUTE COILS AVAILABLE. Delivery within 2 weeks of receipt of orders. Cash or C.O.D. £36 19/6.
WHEN it is desired to have television images which are extremely bright (relatively speaking), it is necessary to depart from the simple neon lamps and utilise light sources which are intrinsically brilliant. These can be modulated direct by the incoming television signals as, for example, in the case of the new 3T lamp which has a mercury vapour content, or alternatively the source of light can be maintained at a constant intrinsic brilliance, and the resultant beam of light modulated by means of a “valve,” the most common form of which is the commercial type of Kerr cell, as illustrated in Fig. 1. This cell has to work in conjunction with a pair of correctly orientated Nicol prisms, but the mode of action is not the prime consideration at the moment. These notes have been compiled to stress certain important features in connection with the incandescent lamps which are used in the complete cell unit.

For home receiver working, lamps having a wattage of 100 are a popular type. As a general rule, they are of the 12-volt variety requiring, therefore, a current of 8½ amps, when run at their full rating. A lamp of this character is shown in Fig. 1, and the circular glass envelope has the filament mounted at its centre. This filament is wound in the form of a closely-spaced spring which is then held at the top of two vertical metal supports so that there are two or three loops. The resultant light from the 100-watt dissipation is therefore concentrated within a very narrow compass—a prime requirement in this type of television receiver.

Lamp Positioning

To obtain maximum efficiency from this class of lamp and incidentally increase the hours of useful life obtained from it, certain points must be given due care and attention. First of all, it must be used in the vertical position as illustrated. If the metal supports of the filament are horizontal with one support vertically below the other, the intense heat from the filament will rapidly affect them, and cause the metal to bend and the filament to sag. In addition, with a horizontal positioning of the supports it is almost impossible to focus the light correctly, owing to the shadow cast by the supports on the back of the glass envelope. The correct method of positioning the lamp, with reference to the Kerr cell Nicol prism combination is to have the vertical plane of the two supports at right angles to the optical axis of the prisms, the light beam being directed along this axis by placing in front of it a small diameter and short focal length condenser lens.

Ventilation

To prevent loss of light the lamp must be enclosed in some form of box which is bright on the inside to give suitable light reflection, and black on the outside to dissipate the generated heat. Another essential feature is the provision of adequate ventilation to keep the lamp as cool as possible. One method of carrying this out efficiently when employing a mirror drum scanner is to use the shaped box container seen in Fig. 2. The two vertical sides converge towards the front, while the top is shaped to have the same curvature as the drum periphery, the drum itself revolving above the box. As the drum rotates, it forces a current of air into shaped flutes cut in the box top. This air circulates round the lamp and escapes from circular hole vents in the back cover.

A Suitable Connector

The next point to consider is the method of making electrical connection to the lamp itself. As a rule, these lamps have a screwed base similar to a flash-lamp bulb, and are sold without a holder. Allowance must be made for lamp movement for focusing purposes, and many users, therefore, just solder two leads in place—one to the outer screwed shank and the second to the metal projection at the bottom. Remember that these leads, in addition to being flexible, must be of the correct current-carrying capacity (8½ amps. in the case of the 12-volt 100-watt variety). For feeding the lamp with its correct voltage and current an A.C. mains transformer can be used, or, if preferred, heavy-duty accumulators.

SYNCHRONISING WITH A.C. MAINS

The 30-toothed wheel method of synchronisation is too well known now to need any detailed description; however, a recent modification of this scheme appears to have many possibilities, and is somewhat simpler in application.

Use is made of 50-cycle A.C. mains. The synchronising coils are designed to withstand the full mains voltage across them; the phonic wheel having only 8 teeth for present 30-line transmissions.

The advantage of this method appears to lie in the fact that greater flexibility can be obtained on the caged wheel (depending on the design of the electromagnet) and consequently maintaining a very constant motor speed.

The system functions entirely independently of the received signal from the transmitter. It might be said that 100 per cent synchronisation cannot be obtained unless both receiver and transmitter are using the same mains supply; this, of course, is perfectly true.

If, in the future, television developed on the ultra-short-waves—such as the recent 6-metre transmissions from the Crystal Palace—one scheme that has been tried in various parts of the country, it would be quite practical to expect that both transmitter and receiver could be on the same frequency, thus removing the range of transmission on these frequencies.

For the experimenter who wishes to try a mains synchroniser, it may be of interest to note that standard type synchronising coils can be used, the two leads from the coils being taken direct to the mains supply.

It is an advantage to insert a quick make and break switch in one of the leads.

The motor should be switched on ten minutes or so before the actual transmission starts, and the speed adjusted by means of the usual motor resistance until 570 revolutions per minute is reached as indicated by the lines on a stroboscope disc. The synchroniser is then switched in.
COMMON MISCONCEPTIONS
(Continued from page 622)
unduly amplified and re-amplified, producing the well-known audible effect.
Microphony can, however, sometimes be developed even though the valves are perfectly innocent. Instances have occurred in which variable condenser vanes have been set in vibration by the loud-speaker and the rhythmic changes thus produced in the tuning of circuits have then been amplified by the normal action of the receiver, resulting in a microphonic note.

Tone Correction
A large number of listeners fondly imagine that the various tone correction devices and tone controls that are fitted to many sets improve the fidelity of reproduction. Actually, they do nothing of the sort. Departures from perfect fidelity are mostly due to losses of certain audio frequencies—usually it is the treble notes which are "cut." Sometimes, of course, undesirable resonances are added. No tone correction can put back what has been taken away. All that can be done is to suppress or partly suppress those frequencies which, owing to losses in other directions, are now unduly prominent. Jutly applied, tone correction does make reproduction more pleasant, and can also be used to change the character of the reproduction to suit individual tastes.

Interference
Interferences of this type may be radiated from their source and collected by the aerial, the down lead, or the earth wire. They may also circulate in the electric wiring and pass into the set via the mains unit. Radiated interference cannot be avoided simply by using a screened lead-in, unless the main portion of the aerial is outside the interference zone. Similarly, a mains filter installed at the point where the mains enter the set cannot prevent any interference radiated from the household electrical system—it is only effective in preventing mains-borne interference from entering the set. Then, a filter installed where the mains enter the house will only prevent mains-borne interference from reaching the house wiring. It will not avoid interference radiated from neighbouring premises or other external sources.

It would appear, therefore, that the most complete protection would comprise an outside aerial removed as far as possible from all sources of interference, and with a screened lead to carry the signal through the interference zone to the set and to avoid pick-up from the domestic installation, plus a filter at the mains input to the receiver to avoid mains-borne interference.

Even these, however, will not give complete protection, and the only real solution is to tackle all interference at its source and to prevent its generation and propagation.

A TREAT TO LISTEN NOW" with the

T.C.C.
CONDENSER
ANTI-INTERFERENCE UNIT

PRICE complete with instructions 10/6

A nightmare of "crackles" and "buzzes" has ended for this Southampton listener who fitted a T.C.C. Anti-Interference Unit. Neon signs, motors and generators do not exist for him as far as his radio is concerned. Don't let your listening be marred by such "man-made static"—this T.C.C. Unit will cut it out. Ask your Dealer today.
Let Us Send You
This 28-Page
Booklet—Free

It gives all particulars of various Courses
that cover every phase of Radio work.
The Radio industry is progressing with
amazing rapidity. Only by knowing thoroughly
the basic principles can one keep up with it.
I.C.S. instruction includes American broad-
casting as well as British wireless practice. It
is a modern education, covering every depart-
ment of the industry.

OUR COURSES
Included in the I.C.S. range are Courses
dealing with the Insulating of radio sets and,
in particular, with their Servicing, which to-day
intimately concerns every wireless dealer and
his employees. The Operating Course is vital
to mastery of operating and transmitting.
There is also a Course for the Wireless
Salesman. This, in addition to inculcating the
art of salesmanship, provides that knowledge
which enables the salesman to hold his own
with the most technical of his customers.

Then there are the Preparatory Courses for the
City and Guilds Examinations.
We will be pleased to send you details and
free advice on any or all of these subjects.
Just fill in, and post the coupon, or write in
any other way.

International Correspondence Schools, Ltd.,
Dept. 94, International Buildings,

Without cost, or obligation, please send us your
"Radio" booklet of information about the Courses
you have marked X.

COMPLETE RADIO
RADIO SERVICING
RADIO EQUIPMENT
RADIO EQUIPMENT AND SALESMANSHIP
WIRELESS ENGINEERING
WIRELESS OPERATORS
EXAMINATION (state which)

--name-------------------------------Address----------------------

(Continued from previous page)

PRACTICAL WIRELESS

January 19th, 1935

input of little more than that required to
load the "smaller" directly-heated valves
referred to above. This is an important
point when great output is required from
a rectifier having only about four valves,
or from a simple type of gramophone

DIRECTLY-HEATED VALVES

The directly-heated valves can now be
considered, starting with the "smallest"
of those listed, the Cossor 4XP, which
has an output of 1,000 milliamperes (1 watt)
and passes an average anode current of
45 milliamperes. This valve has a 4-volt
filament, but this takes only 0.6 amp. It
can be fed from the same transformer
winding as that used to supply the heating of
preceding valves, when it should be
connected as shown in Fig. 1, or it may be
fed from a separate L.T. winding, as shown
in Fig. 2. The value of the bias resistance
is the same in both cases, although it is
called differently. This particular valve,
however, is particularly suitable for use in a push-pull circuit following an
intermediate I.F. stage, including an
indirectly-heated valve of the L.F. type.
The push-pull arrangement is shown in
Fig. 3.

The Osram PX4 valve is a very popular
directly-heated output valve for use when
a large output is required, as shown in Fig. 4.
It has a maximum output of 25 watts,
combined with a comparatively low am-
plification factor, which means that it
should be preferred in all cases where the
level of I.F. amplification or, when "quality"
is the chief consideration, by two R.C.C.
stages. This valve is one of the largest
available for operation with an H.T. voltage
of 200 to 250. Because of this the
valve can frequently be employed in a
mains receiver in which a Class A (250
volt, 60 m.a.) rectifier is fitted, although,
in order to supply the valve with the
maximum H.T. voltage of 250, as well as
with the necessary 14 volts grid bias, a 350-
volt rectifier is to be preferred. The PX4
valve can be used in any of the circuits shown in
Figs. 1, 2 and 3 provided that the bias
resistance is of the correct value. It is very
well suited to a push-pull circuit when a
large output is required, and it is extremely
valuable when the set has to be fed from
D.C. mains of standard voltage.

FOR FIVE-WATT OUTPUT

The "largest" valve of which data is
given in the accompanying panel is the
 Mullard DO 24, and this gives an output

of 5 watts, for an H.T. current consumption of
only 63 milliamperes; the H.T. voltage
required, however, for a Class C (300 volt)
rectifier is necessary for its
correct operation. A special point concerning
this valve is that it has an amplification
factor of 10. Because of this, the valve will
give the full output of 5 watts with an

A STANDARD WORK!

NEWNES ENCYCLOPÆDIA
OF POPULAR MECHANICS

By F. J. CAMM

A 5s. or $0 by post from
Geo. Newnes, Ltd., 8-11, Southampton Street,
To save readers trouble, we undertake to send on request a copy of one of our advertisers. When ordering, state name of firm from whom you require catalogue, and address it to: "Catalogue," PRACTICAL WIRELESS, Geo. Newnes, Ltd., Wellsway, St. Broad, London, S.C.2. Where advertisers make a charge, or require postage, this should be quoted with applications for catalogues. No other correspondence whatever should be enclosed.

FULLER BATTERIES

A RECENT folder issued by Fuller Accumulator Coy., Ltd., deals with "Inert" high-tension batteries. The range has been designed chiefly for use overseas, but such batteries will also have a definite appeal to wireless users in remote areas, where mains and charging facilities are not available. The "Fuller" "Inert" high-tension battery has a modified form of dry cell, capable of being stored for unlimited periods without deterioration. The battery remains inert until water is added to make the cells active. These batteries are made for varying voltages from 1.5 to 2.5, the low-tension "Inert" battery is designed to take the place of the usual 2-volt accumulator, and both types of battery are housed in strong wooden boxes. Replacement cells are obtainable, and the price for these, as well as the complete batteries, are given in the folder.

PRACTICAL WIRELESS

FULL details of the Pix Invisible Aerial are given in a new leaflet just issued by the British Pix Coy., Ltd. This aerial, which is in the form of a narrow adhesive fabric strip carrying an insulated aluminium conductor, can be quickly attached in any desired position. It can also be used as a counterpoise earth. Among the other items included in the leaflet are a Transparent Aerial, the Pix Metallised Earth, the Model Aerial Control, and the Pix Lightning Arrestor.

RADIO CLUBS AND SOCIETIES

Club Reports should not exceed 200 words in length and should be received first Post after Monday morning for publication in the following week's issue.

THE CROYDON RADIO SOCIETY

THE Croydon Radio Society's first meeting of 1935 took place on Tuesday, January 1st, in St. Peter's Hall, S. Croydon. The lecture was on "Modern Loud-speaker Practice." The lecturer was Mr. G. A. Briggs, who spoke on "Modern Loud-speaker Practice." Among the other items included in the leaflet are a Transparent Aerial, the Pix Metallised Earth, the Model Aerial Control, and the Pix Lightning Arrestor.

SHORT-WAVE RADIO AND TELEVISION SOCIETY (THORNTON HEATH)

A MEETING of this Society was held at St. Paul's Hall, Norfolk Road, on Tuesday, January 1st, when Mr. Mussett, of The Union Radio Co., Ltd., gave a talk and demonstration on the Unaid Short-wave Converter. Mr. Hoare first gave a demonstration of the Ferranti Arcadia Model. Mr. Mussett then continued with a description of the short-wave converter. The set covers a range of 13-55 metres and is designed for A.C. operation on 480/1000, and 200/1000, 40/1000 cycles unit. The first stage is a pre-selector and employs an H.F. pentode. The second is a combined first detector and oscillator. The intermediate frequency thus produced is passed on to the broadcast receiver through a screened lead. This stops any tendency for medium-wave break-through on the short waves. The converter was afterwards demonstrated to members and several American and other stations were tuned in.

ORDER NEXT WEEK'S 64-page ISSUE NOW!
SAME PRICE :: :: 3d.
Random Jottings

By JACE

Far From the Madding Crowd

TWO injured Tottenham Hotspur footballers, Arthur Rowe (captain) and Billy Hall, centre-half and inside-left respectively, who are seen in the illustration on this page, heard their radio programmes through a six-year-old portable until a modern Ekco superhet was installed at their nursing home just in time for the Christmas programmes. Instead of receiving one programme — "two if we turn it round" — they soon had a choice of forty or fifty stations at full speaker strength.

Marconiphone Visual Tuning Apparatus

All Marconiphone users are by now familiar with the two little arrows pointing in opposite directions, with their shafts becoming more and more elongated and approaching one another more closely as the set becomes in tune with a particular radio transmitting station. This visual tuning apparatus fulfils a twofold purpose, inasmuch as it is a ready means of telling when the instrument is in tune, and is therefore invaluable to the layman and also — and this reason is by far the more important — absolutely faithful reproduction is assured when the set is tuned properly to a station.

Perhaps more blame is levelled at radio receivers for bad reproduction than for tuning device than for this tuning device than for bad reproduction than for any other reason. The ordinary user without any technical knowledge whatever tunes his set until he hears something; if the reproduction is not good, he immediately blames the instrument, whereas the turning of the tuning knob perhaps a shade in one direction or the other would ensure accurate tuning and consequently distortionless reproduction.

The whys and the wherefores of this tuning device were explained to visitors to the Physical Society's recent Exhibition. The demonstration was carried out with the help of the current Marconiphone Radio-gramophone Model "289": its chassis was used to tune the device exhibited, and was fed along a screened lead by a small local transmitter situated some distance away.

Radio Communication with Fishing Vessels

THE French Minister for Posts, Telephones and Telegraphs has given ship owners permission to establish telephone communication with their ships at sea, a Phillips Press Service message states. Transmitters on the coast will be permitted as well as on the vessels; one such, in fact, has already been put into use in the harbour of Arcachon.

Loud-speakers as Teachers

No fewer than 30,000 municipalities in France have decided to buy radio sets for use in schools; while a recent municipal ordinance by the city council of Bern has made loud-speakers compulsory in all the schools of the town.

Radio Telephony in Iceland

WE learn that the Icelandic Government has granted a concession for the installation of a short-wave transmitter near Reykjavik, which will shortly be used for telephonic communication.

Radio Underground

A RADIO set has been installed at the "Metro" underground railway station at Chatelle, Paris, to beguile the vigil of prospective straphangers.

Two injured footballers enjoying a radio programme with a new Ekco superhet. The receiver is the model 95—nine-stage A.C./D.C. transportable, and is priced at 15 guineas.

80,000 Amateur Transmitters

THERE are no fewer than 80,000 amateur transmitters in various parts of the world, according to an Austrian expert. This authority also stresses the value of radio communication to governments and forecasts the loosening of the official regulations which handicap amateurs.
What Listeners Want

In a recent article George Bernard Shaw said that all men are 99.9 per cent. alike. If this were really so, there would be almost complete unanimity on the question of which is the ideal radio receiver, and the hundreds of different models now on the market would have but small sales. The survival of so many types of receivers, however, indicates that listeners in bulk have very varied requirements, and suggests that Mr. Shaw has somewhat over-estimated the extent to which humanity is a standardised product.

The great mass of listeners to-day differ from the residue of the early clan of radio fans primarily in that they demand radio entertainment first and foremost, rather than the passing thrill of hearing obscure and distorted foreigners. By entertainment they usually mean realistic reproduction at comfortable volume, combined with the ability to receive the British transmissions, and also a good selection of Continental capital stations having real programme value. The second difference between the present-day listener and the old stager is that the utmost simplicity of operation is now demanded in place of the technical complications and fearsome array of knobs which characterised the early receiver. A switch, a simple volume control, and one tuning knob represents the normal listener’s idea of control gear.

It is interesting to note how all these ideas are interpreted in typical modern receivers. The problems have been recently tackled anew by the Mullard Wireless Service Co., Ltd., who have this season produced their first complete receiver. In this set, which is known as the “M.B. Three,” technical performance as represented by sensitivity (range) and selectivity (ability to receive programmes free from interference), is achieved by the use of three pentode valves, one for high-frequency amplification, one for detection and one for output. Entertainment value is guaranteed by the careful design of the circuit, and the use of a sensitive moving-coil speaker accurately matched to the output valve. The utmost simplicity of control is achieved by avoiding the device known as “reaction” and by careful adjustment of the circuit components so that the tuning controls are accurately matched or “ganged” for operation by a single tuning knob. Moreover, this accuracy in manufacture and adjustment ensures that the tuning dial, which is graduated in wavelengths, is very accurately calibrated so that stations can be immediately identified when they are tuned in. Actually there are only two knobs on this receiver: the tuning knob already referred to also operates the wave-change switch, and the second knob actuates the battery switch and also the volume control. The cabinet is of inlaid walnut, of horizontal shape, and with a simple yet pleasing design for the feet of the loud-speaker opening. The “M.B. Three” is a battery-operated set, and a good combined high-tension and grid-bias battery and low-tension accumulator are included in the price, which is £8 8s.

A Durable Earth Lead

The choice of material for the earth lead is often made on a purely technical basis, such points as high conductivity, easy soldering, and so on, being the only ones to receive consideration. This may prove satisfactory in most cases, but there is a certain situation in which the decision arrived at in this way is not necessarily the best one. I refer to the by no means uncommon combination of an earth lead to a buried plate or tube in a flower bed, and an over-enthusiastic gardener. In such circumstances the lead is apt to receive many a blow from a spade or hoe, and few of the ordinary materials will stand this treatment for long.

I have had occasion to study the problem for some little time, and have now discovered a form of cable which seems able to repel all attacks with the greatest of ease, and which also possesses excellent electrical properties. This invaluable material is the armoured cable used for wiring the lighting circuits on motor-cars, and it can be obtained from most garages. It is somewhat expensive, but one needs only a few yards, and I imagine that those who have been puzzled once or twice by the behaviour of their sets when the earth has carried away will think the security which it gives very cheap at the price.

Inside the armouring this cable contains various layers of rubber or gutta percha insulation, and the conductor itself takes the form of finely stranded copper; this must receive a little protection where it is bared for the connection to the earth tube, since the strands are thin enough to suffer from corrosion unless something is done to prevent it. I find it a good plan to make the actual connection by soldering, and then run melted Chatterton’s Compound over all the exposed strands. Probably a dab of tar would answer the purpose equally well.

NOW exclusively specified for Mr. Camm’s Hallmark Four

For every important receiver this season Mr. Camm has exclusively specified a W.B. Stentorian—proof that in his opinion the remarkable claims made for this revolutionary new instrument are fully justified.

Hear for yourself the amazing extra volume provided by the exclusive magnetic material used. Hear the new clean attack and startling realism which the unique ‘Whiteley’ speech coil brings. Whatever your set, a Stentorian will match perfectly as principal or extra speaker. The improvement in reproduction will astound you. Ask your dealer for a demonstration to-day.

Model PMS1: 42/-, 100 per cent. dust protection.

Oversize cone. Stentorian Standard (PMS2), 32.6.

Stentorian Baby (PMS6), 22.6.

STENTORIAN

Whiteley Electrical Radio Co. Ltd.

(Technical Department),

Radio Works, Mansfield, Notts.

Mains Version of the “Hall-mark Three”

Sir,—Many thanks for a pleasant evening
each week reading PRACTICAL WIRE-
LESS. I have been very much intrigued
with the “Hall-mark Three.” Do you con-
template an all-mains version? If so,
please do not forget those who already have
a mains H.T. unit and who would like to
do away with the L.T. battery. In other
words carry on with your policy of high-
grade receivers at the minimum of cost.—
H. W. (Birkenhead).

[A blue print for such a receiver will be
given FREE with next week’s issue.—Ed.]

A 2 H.F., A.V.C. Receiver

Sir,—I wish to add my support for a 2
H.F., A.V.C. receiver.

In my opinion, a circuit of this nature
can be superior in range to a superhet
(which has no H.F. stage preceding its
first detector) with a definite improvement
in quality.

Also, I have little faith in valves designed
to fulfill more than one purpose, and for
this reason my arrangement would be:
2 V.M. pentodes, diode-tetrode (such as the
Mullard S.D.4) for detection and A.V.C.,
R.C. coupling to first L.F., R.C. coupling
to output triode.

I should further suggest an output of
4 to 6 watts, and the power jack and
amplifier being separate to the H.F. portion.

As far as I am concerned, I should like
to see a design in your excellent pages for
the H.F. portion only, telling your readers
the precise H.T. voltage and the m/ampere
consumption, so that we can adjust our
electric amplifiers for it.

This last item is prompted by the fact
that most readers who have written on
this subject appear to have an amplifier.

One other point occurs to me: choosing
the coils and condenser so that the latter
can be obtained with a dial calibrated
in wavelengths.

Some form of tuning indicator would
also be a valuable refinement.—S. S.
(West Twyford).

A Marvel of Modern Journalism

Sir,—I appreciate very much the good
“fare” you give your readers each week
in PRACTICAL WIRELESS. This weekly
has been my “wireless educator” ever since
No. 1 appeared, and I have kept handy
every issue since for reference.

Your being able to provide week by week
such a wealth of fresh ideas is, to me,
a marvel of modern journalism.

I was fortunate enough to win a prize
in the recent “Buy British Competition”
and so I found myself over the Christmas
holidays with a new set of excellent valves.

The problem was how best to use these
valves. Eventually I decided to replace
the detector and power valves in my set,
leave in the screened grid, and to add
another stage of H.F.

PRACTICAL WIRELESS (Dec. 15th) very
conveniently provided the circuit for the
amplifier. When this had been built and
connected up I saw at once that there was
going to be a real “Radio Christmas” for
me. The sensitivity and selectivity of my
set were materially improved and I have
been able to tune in two American stations
on the medium waves—I have tried many
times before but always failed.

Here is a suggestion. Could you not
make greater use of formulae and numerical
examples in series like “Half-Hour Experi-
ments” and “The Beginner’s Supplement”?
To take an example: I am sure that
many of your readers would like to
know exactly how the values 0.03 mfd. and
100,000 ohms are arrived at in designing
the tone control given on page 471 of the
Dec. 15th issue. With your genius for
clarrification I think you could do this
without becoming too scientific.—H. W.
(Cardiff).

[What do other readers think of the above
suggestion?—Ed.]

Our “Television and Short-wave
Handbook”

Sir,—I must thank you for your “Tele-
vision and Short-Wave Handbook.” I got
your other book, but this one seems to be
even better, as it is going to be nothing else
in a while but short waves. Well, I did
not know much about short waves, but by
your book I have got six months’ teaching
in a fortnight. I am a regular reader of
your paper.—James Tarr (Glasgow).

---that when using a smoothing choke in
the negative lead it is often better to connect the
earth lead direct to the H.T. negative?
---that a high-priced A.C. receiver with push-
pull output is to be described in PRACTICAL
WIRELESS next week?
---that L.F. oscillation can frequently be
cured by revering the leads to the secondary
winding of the L.F. transformer?
---a combination valve is now available
which has three diode sections as well as a
triode L.F. assembly?
--- instability in push-pull amplifiers can
nearly always be overcome by a double
centre-tapped input transformer?
---the output voltage of two valves
connected in push-pull is nearly two-and-a-half
times that obtainable from one of the valves
used in an ordinary circuit?

The Editor will be pleased to consider articles of a
practical nature suitable for publication in PRACTICAL
WIRELESS. Such articles should be written on one side
of the paper only, and should contain the name and
address of the sender. Whilst the Editor does not
hold himself responsible for work sent in, any effort will
be made to return them if a stamped and addressed envelope
is enclosed. In other cases the Editor will be pleased to
consider such articles for possible publication, and
for publication in our columns.

Owing to the rapid progress in the design of wireless
equipment and to our efforts to keep our readers in touch
with the latest developments, we ask no warranty that
apparatus described in our columns is not the subject of letters patent.
A REVIEW OF THE LATEST RECORDS

IMPRESSIONS ON THE WAX

By T. O'nearm

January 19th, 1935

PRACTICAL WIRELESS

633

A New Combination

J. B. Cuvelier's International Novelty Band, which has recently come into prominence, makes a clever record this month on Sterno 1555. This record introduces "Do's Matter to You?" and "Passing Clouds." These alluring melodies by this new novelty combination are sure to appeal to everyone who likes real catchy tunes mingled with dance music.

"Pal O' Mine" and "Can I Be Sure of You?" on Sterno 1559, are two delightful songs, each with lovely refrains, and altogether this is a most attractive record.

Those readers who like light music will enjoy "I Hate to Be Stuck," which appears on Sterno 1558, where Reginald King and his orchestra play two of his own compositions in "Daybreak" and "Mollybub at Duck." These tunes are finely rendered by this well-known company of musicians.

Celebrity Records

Maria Nemeth, soprano, with orchestral accompaniment—"In This Castle" ("Turandot") and "Marretta's Song" ("The Dead City").

First and foremost, from the point of view of celebrity interest, is the record by Maria Nemeth, who now makes her first appearance on Decca-Polydor (C.A. 1881). She is a singer with a big world-wide reputation, and is noted most of all for the peculiar clarity of her voice. Some little time ago she had a difference of opinion with Toscanini, the famous Italian conductor, which led to the cancellation of her Vienna concert. I draw particular attention to the two records of six numbers from the "Chout" Ballet of Prokofiev. They are by Albert Wolff, conducting the Lamoureux Orchestra of Paris (C.A. 1888-9). It is often said by people who should know that the Lamoureux Orchestra is the best recording symphony orchestra, and I feel that the Chout records prove this estimation. Brilliant music, brilliantly played, is brilliantly recorded. The remaining Decca-Polydor records of Furtwangler, conducting the Berlin Philharmonic Orchestra, Brailowsky, and Schlusnus complete a real celebrity list for all lovers of the higher types of music.

Decca Records

I am still convinced that the Boswell Sisters and Dorsey Brothers have never done anything better than "Shout, Sister, Shout." Of the two Calloways, I prefer the "Cohiba Mouth" Rhondosy, although Cab Calloway and I have different views as to the type of music such a romantic title should inspire.

The vocal section is no less stimulating — the Mills Brothers in my favourite weakness, "Miss Otis Regrets," and a new number, "My Headache." They introduce a chorus of three muted brass in the last title, which is very intriguing. The Boswells ride that old war horse, "Alexander's Ragtime Band," in harness with "Doggone, I've Done It," which never received the attention it deserved when issued some months ago.

As a climax to this striking collection of records, Brunswick is proud to present an album of "hot" records entitled "A Short Survey of Modern Rhythm."

Parlophone Records

Lovers of dancing are well catered for in the recent Parlophone list by the recording of a number of popular dance tunes, and special mention should be made of "Then I'll Be Tired of You," and "Two Cigarettes in the Dark," two foxtrot which are played by the Odex Dance Orchestra. The feature of this record is that it has been recorded in strict dance tempo and therefore it should make its appeal to many.

EASY TERMS

We specialise in the supply of all good quality Radio sets, components and accessories. Easy terms. Send list of requirements and keen quotation will be sent promptly. Cash and C.O.D. orders dispatched by return of post.

GARRARD RADIO-GRAM UNIT

Model A.C.6, complete with volume control ready for use. This unit converts any radio receiver into a high-class radio-gram for A.C. mains.

Cash Price £4/0/0, or 7/- with order and 12 weekly payments of 7/-.

W.B. STENTORIAN

Senior P.M. Speaker.

Cash Price £2/2/0, or 2/- with order and 16 monthly payments of 4/-.

Standard P.M. Speaker.

Cash Price £1/12/6, or 2/6 with order and 14 monthly payments of 3/-.

ATLAS 5 H.T. ELIMINATOR

Model T.10/0 with trickle charger. For home or Class 1 sets, and all types of sets.

Cash Price £3/9/6, or 3/- with order and 12 monthly payments of 5/11. For A.C. mains.

ALL CARRIAGE PAID.

Estrd. 1925 THE NATIONAL 1977

LONDON RADIO SUPPLY COMPANY

21 CAT LANE NOBLE STREET LONDON E.C.2

SMASHING PROOF

Wet H.T. SUPREME F.F. (No. 1) 65/-

This unit converts any radio receiver into a high-class radio-gram for A.C. mains.

Cash Price £4/0/0, or 7/- with order and 12 weekly payments of 7/-.

Any volume supplied.

NATIONAL A.E.C. gives an amazing gain, making it possible to enjoy radio in your spare time, with volume control as little as you are interested. A real investment. 120v, 1250 m.a., £2, cash paid. H.P. terms arranged. Also Weston & Batteries, units current or 1 year, £1. Lists free—Write WET H.T. BATTERY CO. (P.W.), 89, Dean Street, Oxford Street, W.1.

Add 50/- WEEKLY to your earnings

by charging accumulators in your spare time.

Any volume supplied. Complete plan for A.C. outlet (specialised) Westinghouse furnished, in above 100 A., calls weekly. Trade price £1 14s., or by special order.

M.P.R. 1st KOMFORD 3350

LIST FREE.

PICKETT F.B. WORKS, Beilholm, N.15, LONDON.
Special Note

We wish to draw the reader’s attention to the fact that the Queries Service is intended only for the solution of problems or difficulties arising from the construction of receivers described in our pages, from articles appearing in our pages, or on general wireless matters. Wherever we omit to give, for obvious reasons:

1. Supply circuit diagrams of complete multi-valve receivers.
2. Suggest alterations or modifications of receivers described in our contents.
3. Suggest alterations or modifications to commercial receivers.
4. Answer queries over the telephone.

Please note also that all sketches and drawings which are sent to us should bear the name and address of the sender.

Transformer Output

"Could you please tell me if a transformer having secondaries marked as 250:250 v., 60 m.a., 2+2 v., 1 amp., 2+2 v., 5 amp. is the same as one marked 250-0-250 v., 60 m.a., 4 v., 1 amp., and 4 v., 5 amp.?" — D. H. (Derby).

In all probability the two transformers are of exactly the same type, although it is possible that the 4-volt secondaries of the second one are not centre-tapped.

Blueprint Wanted

"Could you please tell me where I could obtain a blueprint for the 1930 battery-operated "Commercial" S.G.-det.-pen. three-valve receiver? I understand that the firm is in question has now gone out of business." — W. T. (Blackpool).

So far as we are aware there are no blueprints now available for this receiver since, as you say, the firm is no longer in existence.

Lack of Volume

"I have obtained a second-hand two-valve receiver of well-known commercial make, and although this functions, volume is far from satisfactory. The batteries are all in good condition, and I wonder if you could suggest some simple method of improving the set?" — Y. M. B. (London).

It is difficult to suggest methods of overcoming your difficulty from the brief particulars given. In the first place, however, we would recommend that you try a new set of valves—probably your local dealer would arrange to let you have a set on loan, or to demonstrate the receiver with the new valves in position. Should it be found that the new valves do not give any marked improvement it will be necessary carefully for you to check all the wiring and to test the individual components.

Three-valve Circuit

"Enclosed please find a circuit of a three-valve receiver that I have recently built; I should be pleased if you would criticise the circuit or make any suggestions for its improvement. I might say that the set has functioned quite well, and I am able to receive fifty stations on the medium-wave band, and seven on long waves." — Reader (Castleford).

The circuit which you send is for a perfectly standard type of det.-L.F. receiver using two resistance-coupled L.F. stages. In view of the remarkable results that you have had from the set it would scarcely seem that improvement would be possible, but a slight improvement would probably be obtained by using a good L.F. transformer in place of the first R.C. assembly.

Transformer Ratios

"Could you please tell me the average ratio required for a transformer used to couple together a battery pentode valve and a moving-coil loud-speaker? Also can you please tell me how to find the voltage and current delivered by an electric motor when only the current taken by the field coils and the speed of rotation is known?" — D. O. C. (Tottenham, N.17).

The transformer ratio depends not only upon the optimum load of the output valve, but also on the impedance of the speech coil of the moving-coil speaker. A fairly average ratio for an average battery pentode coupled to a speaker with a 3-clam speed coil is 35:1, but an accurate calculation can only be made by using the following formula:

\[\text{Ratio} = \sqrt{\frac{\text{Optimum load of valve}}{\text{Speech coil impedance}}} \]

In speaking of the output from a motor-driven dynamo when all the constructional data is known, we regret that the matter is rather outside the scope of this Free Advice Bureau, and would advise that the host method would be to look up a text book on the subject.

Fitting a Super-power Valve

"I recently fitted a super-power valve in place of the ordinary small-power valve in my three-valve receiver, but all I can receive now is a continuous motor-boating. Can you tell me where I have gone wrong, and how a cure may be effected?" — R. T. (Tittingbourne).

It would rather appear from the information you give that the new valve is in some way defective, although the trouble may be due to the fact that the eliminator is incapable of supplying the necessary current for this valve. The output should certainly be ample, but if the eliminator is old, and the rectifier somewhat deficient it is possible that the actual output is much less than what it should be. We presume that the G.B. voltage has correctly been adjusted for the new valve, and that the receiver is adequately decoupled: if not, these points should receive attention.

Receiver Design Wanted

"Can you please recommend a blueprint for a receiver to incorporate the following components that will be suitable for use in the "Sixty-Shilling Three," which was described in Practical Wireless dated December 2nd, 1933. A complete wiring plan was given with this issue, which can be obtained from The Back Number Dept., Geo. Newnes, Ltd., Exeter Street, Strand, London, W.C.2, at 5d. post paid."

It is very difficult to recommend a blueprint in a case such as yours, since all those issues in connection with receivers described in Practical Wireless are in connection with definite types of parts. However, it is probable that the parts you have would be suitable for use in the "Sixty-Shilling Three." It is recommended that you consult the manufacturer of the "Sixty-Shilling Three," which was described in Practical Wireless dated December 2nd, 1933.

Replies to...
PREMIER SUPPLY STORES announce a City Branch at 165 and 165a, Fleet St., E.C. next door to Averidge's Hotel for the convenience of callers; post orders and callers to High St., Clapham.

OFFER THE Following Manufacturers Supply New Goods at a Fraction of the Original Cost; all goods, electric type, complete with 5 valves, and Magnavox Super 66 energised under 5/- postage Gd. extra, LES. goods guaranteed perfect, screened, with Uniknob trimmer, and complete slow- and fast-action, 10/6, 0.0001, 0.0005, 1/-.

P.A.S. Valves, 2/0.

SUPPLEMENT STORES Announce the Following Types, 5/- each, 35/-, 125/-, 175/-, 225/-, 47/6, 11/-, 17/-, 22/-, 32/-, 36/-, 38/-, 39/-, 42/-, 77/-, 78/6, 257/-, 5/-, 42/-, 44/-, 53/-, 6B7, 5Z3, 50/-, 56/6, 635.

PREMIER SUPPLY ANNOUNCE a City Branch at 165 and 165a, Fleet St., E.C. next door to Averidge's Hotel for the convenience of callers; post orders and callers to High St., Clapham. The Following Manufacturers Supply New Goods at a Fraction of the Original Cost; all goods, electric type, complete with 5 valves, and Magnavox Super 66 energised under 5/- postage Gd. extra, LES. goods guaranteed perfect, screened, with Uniknob trimmer, and complete slow- and fast-action, 10/6, 0.0001, 0.0005, 1/-.

P.A.S. Valves, 2/0.

SUPPLEMENT STORES Announce the Following Types, 5/- each, 35/-, 125/-, 175/-, 225/-, 47/6, 11/-, 17/-, 22/-, 32/-, 36/-, 38/-, 39/-, 42/-, 77/-, 78/6, 257/-, 5/-, 42/-, 44/-, 53/-, 6B7, 5Z3, 50/-, 56/6, 635.

PREMIER SUPPLY STORES announce a City Branch at 165 and 165a, Fleet St., E.C. next door to Averidge's Hotel for the convenience of callers; post orders and callers to High St., Clapham.

OFFER THE Following Manufacturers Supply New Goods at a Fraction of the Original Cost; all goods, electric type, complete with 5 valves, and Magnavox Super 66 energised under 5/- postage Gd. extra, LES. goods guaranteed perfect, screened, with Uniknob trimmer, and complete slow- and fast-action, 10/6, 0.0001, 0.0005, 1/-.

P.A.S. Valves, 2/0.
PRACTICAL WIRELESS

January 19th, 1935

636

SOUTHERN RADIO'S WIRELESS BARGAINS.

RECEIVERS.—G. T. G. Osman Four-valve (Actual) sets. With four Osram valves, permanent name and guaranteed performance. £11.50 nett. Complete enclosed cabinet. Ready to use on all voltages. A.C. all voltages. B.C. all voltages. In original case, £12 15s. 0d. complete.

CHIME.—Silver and Gold Sets, with three Cosser valves, Permanent name and guaranteed magnificent walnut cabinet. New, in sealed cartons.

BURGOYNE CLASS "B" RECEIVERS 1935 Models. With three Millard valves, Radio Batteries and Accumulator. £3 10s. 0d. per Set. Complete enclosed cabinet. Usually finished with chromium fittings, £5 10s. 0d. complete.

COLRS.—Superior Superhet Set of Four (1 osc. and 2 masts, with Valves). £2 10s. 0d. Complete enclosed cabinet. £3 10s. 0d. Lifesman Superhet three coil Kit. Screened for £1 15s. 0d. VASELY Constant Square Peak Cells B.P. 5, with all accessories in carton 2s. 6d.

ECWOS T.F.B.C., O.S.C.124 (Extrac), T.G.S.R.

SHIPPING.—Markall Model X, 25 (1935 Issue). £3 3s. 6d. (List £3 5s.)

CONVENIENT.—Lotus, 3 gang, £2 7s. 6d.; 4 gang, £3 6s.

All capacity 0½½. Fully screened with trimmers and diodes, trimmers, and condensers. Small 5-valve superhet. Fully screened with trimmers and diodes, small, £6 5s. each (any standard small, 5½ each (List 5s.).

950-1000, secondary 320-0-320v. at 70 m.a., 20-0-2v. 4/6. suitable for tuned grid or tuned detector.

DIX-MIPANTA VEST POCKET TESTER. Heard two miles away, 40/- each.

Cosser valves, complete with ham-becking paddles. £6 8s. 6d. output transistor, £1 10s. 0d.; 22½, 26½ (7½ conn.), 40½. All with 25 or 50 m.a. output.

WESTINGHOUSE rectifiers. HTS, HT6, HT10, HT15, HT30, HT50. Regenerator transformers for HTS or HT0 for 1½, 2½ and 3½ filt.-class makes. Outputs 550a, Ema, and detector, £3 10s. 0d. Each. Filter transformer. £2 7s. 6d. Each type with a amp, tripler-charger, 2½, 5½, 7½, 10½. Each.

DODLER of TCO dry electrolytic condensers 10½, 5½, 7½, 10½. Output transformer, 2½ m.a. fit, 7½ filt.-class makes. Outputs 550a, Ema, and detector, £2 7s. 6d. Each. Filter transformer. £2 7s. 6d. Each type with a amp, tripler-charger, 2½, 5½, 7½, 10½. Each.

WARD, 45, Furrington Road, London, E.C.4, Telephone: 17487, Central 4011.
1935 EDITION—FREE!

A New and greatly enlarged edition of "ENGINEERING" FREE!
NOTICE to the reader of the Press. It describes the easy way in which you may become every aspect of Wireless.
Building.

DO NOT DELAY—send for your copy now. No cost or obligation of any kind.

BIRMINGHAM RADIOMART. Sensitive (list, 27/6), 17/6.

IA D-ADIOMART. Telson—core dual range, 3/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.
RADIO CLEARANCE, 280, HIGH HOLBORN, W.C.I, offers the following stupendous bargains limited quantities only. To order by 4½ post free.

Phone: Holborn 4631.

4055. 46, Brewer Street, Piccadilly Circus, W.1.

radiator at gift prices £1 to £10.

U.K.

Condensers, 1 mfd. 250 volt D.C. working, 1/- each; 4 Valve type, 1/6 each.

1N, l.k m.m., 9d: doe, lengths.

G. C.C., 2/6.

DADIO CLEARANCE offers 8 mfd. Dry Electro- Resistances or 30 Watt Lamps, price 10/6.

RADIO CLEARANCE offers British Radiophone 1N, DADIO CLEARANCE offers Wego 2 mfd.

RADIO CLEARANCE offers Mains Transformers, limited quantities only. To orders

R3 -gang Condensers with 3.0005 sections, complete

Also clearance sale of reconditioned sets and

Army, 7/6 post free.

7/6 for 5/-, post free,

ex W.D., parts worth a lot more than 10 lbs.

wire, Chokes, Condensers, Snitches,

Furnished at 6/- each.

 Amateur sets, have been discarded

Bi, Sullivan.

16/-.

AMPS., reads: 0-121 m/A, and 0.75 ra/A.

THE FLUXITE GUN is a handy and economical tool that enables you to put the Fluxite where you want it on the soldering job and clean and shape in wonderful

removes—no mess—no trouble. Always READY

For Use

Also used to project grease into grease cups.

All parts, complete, 7/6.

Just fill the nozzle portion, bell fill the cup—put together and press, as required. Price 1/6d.

ALL MECHANICS WILL HAVE

ELECTRADIX—

CLASSIC TELEVISION—

WANTED, good modern wireless parts, sets, eliminators, motors, valves, speakers, etc. Exp. cars, radio equipment for exchange. Send letters or telephone.

Want to pay more than any other dealer. Open 9–8—University Desk, 142, Devonshire St., E.8.

Phone: Mission 3560.

SOUTHERN RADIO'S WIRELESS BARGAINS.

RECEIVERS—G. E. C. Oram Four-valve (Actual) sets. With four Osram valves, permanent magnet-moving iron size, 5½ by 7½ by 6½ inch cabinet. Ready to use on all voltages. A.C. all sealed.

BRITISH BATTERY SETS—three Crown valves, British magnet-mov. iron size, 5½ by 7½ by 6½ inch cabinet, New, in sealed cartons. £12/10/0 (list £15/10/0).

CHERRY 3-valve Battery Sets—three British valves, Permanent magnet-mov. iron size, 5½ by 7½ by 6½ inch cabinet, New, in sealed cartons. £12/10/0 (list £15/10/0).

BURGON'S CLASS "B" RECEIVERS 1935

New 3-valve Set, £12/10/0. Three British valves, Radiate Batteries and Accumulator.

Also clearance sale of reconditioned sets and

ALL IRONBOWS—IN TINS 4½ d., 1/4d., and

Ask to see the FLUXITE SMALL-SPACE SOLDERING SET—compact but substantial.

IT SIMPLIFIES ALL SOLDERING

THE FLUXITE is a handy and economical tool that enables you to put the Fluxite where you want it on the soldering job and clean and shape in wonderful

PRACTICAL TELEVISION

3rd, EVERY MONTH

1 unreably know

Complained that his Set had gone "dead": He found an insulating connection—So FLUXITE put THAT right for HIM!

See that FLUXITE is always you—in the house—garage—workshop—wherever simple speedy soldering is needed. Used for 30 years by leading Engineers and Manufacturers. Complete with 3 Mains valves.

There was a young fellow named

RADIO CLEARANCE, 280, HIGH HOLBORN, W.C.I, offers the following stupendous bargains limited quantities only. To order by 4½ post free.

Phone: Holborn 4631.

4055. 46, Brewer Street, Piccadilly Circus, W.1.

radiator at gift prices £1 to £10.

U.K.

Condensers, 1 mfd. 250 volt D.C. working, 1/- each; 4 Valve type, 1/6 each.

1N, l.k m.m., 9d: doe, lengths.

G. C.C., 2/6.

DADIO CLEARANCE offers 8 mfd. Dry Electro- Resistances or 30 Watt Lamps, price 10/6.

RADIO CLEARANCE offers British Radiophone 1N, DADIO CLEARANCE offers Wego 2 mfd.

RADIO CLEARANCE offers Mains Transformers, limited quantities only. To orders

R3 -gang Condensers with 3.0005 sections, complete

Also clearance sale of reconditioned sets and

Army, 7/6 post free.

7/6 for 5/-, post free,

ex W.D., parts worth a lot more than 10 lbs.

wire, Chokes, Condensers, Snitches,

Furnished at 6/- each.

Amateur sets, have been discarded

Bi, Sullivan.

16/-.

AMPS., reads: 0-121 m/A, and 0.75 ra/A.

THE FLUXITE GUN is a handy and economical tool that enables you to put the Fluxite where you want it on the soldering job and clean and shape in wonderful

removes—no mess—no trouble. Always READY

For Use

Also used to project grease into grease cups.

All parts, complete, 7/6.

Just fill the nozzle portion, bell fill the cup—put together and press, as required. Price 1/6d.

ALL MECHANICS WILL HAVE

ELECTRADIX—

CLASSIC TELEVISION—

WANTED, good modern wireless parts, sets, eliminators, motors, valves, speakers, etc. Exp. cars, radio equipment for exchange. Send letters or telephone.

Want to pay more than any other dealer. Open 9–8—University Desk, 142, Devonshire St., E.8.

Phone: Mission 3560.

SOUTHERN RADIO'S WIRELESS BARGAINS.

RECEIVERS—G. E. C. Oram Four-valve (Actual) sets. With four Osram valves, permanent magnet-moving iron size, 5½ by 7½ by 6½ inch cabinet. Ready to use on all voltages. A.C. all sealed.

BRITISH BATTERY SETS—three Crown valves, British magnet-mov. iron size, 5½ by 7½ by 6½ inch cabinet, New, in sealed cartons. £12/10/0 (list £15/10/0).

CHERRY 3-valve Battery Sets—three British valves, Permanent magnet-mov. iron size, 5½ by 7½ by 6½ inch cabinet, New, in sealed cartons. £12/10/0 (list £15/10/0).

BURGON'S CLASS "B" RECEIVERS 1935

New 3-valve Set, £12/10/0. Three British valves, Radiate Batteries and Accumulator.

Also clearance sale of reconditioned sets and

ALL IRONBOWS—IN TINS 4½ d., 1/4d., and

Ask to see the FLUXITE SMALL-SPACE SOLDERING SET—compact but substantial.

IT SIMPLIFIES ALL SOLDERING

THE FLUXITE is a handy and economical tool that enables you to put the Fluxite where you want it on the soldering job and clean and shape in wonderful

removes—no mess—no trouble. Always READY

For Use

Also used to project grease into grease cups.

All parts, complete, 7/6.

Just fill the nozzle portion, bell fill the cup—put together and press, as required. Price 1/6d.

ALL MECHANICS WILL HAVE

ELECTRADIX—

CLASSIC TELEVISION—

WANTED, good modern wireless parts, sets, eliminators, motors, valves, speakers, etc. Exp. cars, radio equipment for exchange. Send letters or telephone.

Want to pay more than any other dealer. Open 9–8—University Desk, 142, Devonshire St., E.8.

Phone: Mission 3560.

SOUTHERN RADIO'S WIRELESS BARGAINS.

RECEIVERS—G. E. C. Oram Four-valve (Actual) sets. With four Osram valves, permanent magnet-moving iron size, 5½ by 7½ by 6½ inch cabinet. Ready to use on all voltages. A.C. all sealed.

BRITISH BATTERY SETS—three Crown valves, British magnet-mov. iron size, 5½ by 7½ by 6½ inch cabinet, New, in sealed cartons. £12/10/0 (list £15/10/0).

CHERRY 3-valve Battery Sets—three British valves, Permanent magnet-mov. iron size, 5½ by 7½ by 6½ inch cabinet, New, in sealed cartons. £12/10/0 (list £15/10/0).

BURGON'S CLASS "B" RECEIVERS 1935

New 3-valve Set, £12/10/0. Three British valves, Radiate Batteries and Accumulator.

Also clearance sale of reconditioned sets and

ALL IRONBOWS—IN TINS 4½ d., 1/4d., and

Ask to see the FLUXITE SMALL-SPACE SOLDERING SET—compact but substantial.

IT SIMPLIFIES ALL SOLDERING

THE FLUXITE is a handy and economical tool that enables you to put the Fluxite where you want it on the soldering job and clean and shape in wonderful

removes—no mess—no trouble. Always READY

For Use

Also used to project grease into grease cups.

All parts, complete, 7/6.

Just fill the nozzle portion, bell fill the cup—put together and press, as required. Price 1/6d.

ALL MECHANICS WILL HAVE

ELECTRADIX—

CLASSIC TELEVISION—

WANTED, good modern wireless parts, sets, eliminators, motors, valves, speakers, etc. Exp. cars, radio equipment for exchange. Send letters or telephone.

Want to pay more than any other dealer. Open 9–8—University Desk, 142, Devonshire St., E.8.

Phone: Mission 3560.
BIRMINGHAM RADIOMART

DADUDIART. Latest British consumpt ion (list, 27/6), 70.

RADIOART. Tomato "Class B" 3m. P.M. speakers, unusual "Class B" transformer, valve-holder ind 49/6, 25c.

LAMPOPHONE 3m. P.M. speakers, unusual "Class B" transformer, super-quality circuit. H.T. transformers for 'ante

class. 0.25. 0.5.

RADIOART. With reaction circuit, 211. 2-volt from 211. 4v. 4a. C.T. IA% winding. 619.

P.B. (2.5mm. 300v., 2.5 mid., 600v., 3/-.

12v., 50 mid., 550v., 3/-.

Meters. listed 12,00, few (ally new and Nex, lit

wire, 25v., 50 mid.

C.0.1. J. C. dry electrolytes 8 mfd., 550v., 3/-.

details, 7in., 31s1, 133 ;Igranic Driver, 1s.

Melin Piezo Ekeme Pick - lips. new and large.

ADT. 0.0001, .00015, 10,1. ; Igranic Driver, 1s.

31s1, I;11: Ericsson, 15-1, 133 ;Igranic Driver, 1s.

WET H.T. Battery Co...

CABINETS. Ideal baffle behind speaker grille. 2/11. Ignite short-wave cone dual range, 3.5.

Mains. listed 100 mid., 100v., 1/6, 1/10. Utility .0005, .0001, .00015, .0002. V.5

Our orders over 703 Cent C.O.D. charges free. (All mail Orders Dues 1-4.

License fee 11.c (in lieu of Postage). All above post paid and guaranteed no matter what -

T.T.-Essex 1434 tungsten coated unit for battery or mains.

T.T.-Essex 1434 Tungsten coated unit for battery or mains.

FULLY guaranteed. Fully guaranteed.

P.Y.E. and Clockwork Model Trains. Splendid

All parts. Mains. listed 100 mid., 100v., 1/6, 1/10. Utility .0005, .0001, .00015, .0002.

T.T.-Essex 1434 tungsten coated unit for battery or mains.

YOUR EDITION I

The Swift Service and Supply Co.

The Swift Service and Supply Co.

V.A.M.'s, A.C.'s, Ltd.

B.B.C., A.M.I.A.M.E., A.M.I.E.T., etc., and contains the full diagrams of the 'Swift' Short Wave Set, 91.

The SWIFT SERVICE AND SUPPLY CO. Dept.

Our new and specially enlarged edition of "ENGINEER NG

PRACTICAL WIRELESS, 17t.M

PRACTICAL WIRELESS

1935 Edition FREE

A New and entirely enlarged edition of "ENGINEERING "OFTWARE AND SUPPLY CO. F. J.

PRACTICAL WIRELESS, 17/t.M

THE SWIFT SERVICE AND SUPPLY CO.

Free advice bureau

All orders over 75 sent C.O.D. charged 20s.

W.0. B. R. N. CO. New, and must be attached to all letters containing

FREE ADVICE BUREAU

THE SQUARE DEALERS

UTILITY SALES. Always something New and interesting in our new Lists. Apply.

THE SWIFT SERVICE AND SUPPLY CO.

The Swift Service and Supply Co.

PRACTICAL WIRELESS, 17t.M

DADUDIART. Latest British consumpt ion (list, 27/6), 70.

RADIOART. Tomato "Class B" 3m. P.M. speakers, unusual "Class B" transformer, super-quality circuit. H.T. transformers for 'ante

class. 0.25. 0.5.

P.B. (2.5mm. 300v., 2.5 mid., 600v., 3/-.

Meters. listed 12,00, few (ally new and Nex, lit

wire, 25v., 50 mid.

C.0.1. J. C. dry electrolytes 8 mfd., 550v., 3/-.

details, 7in., 31s1, 133 ;Igranic Driver, 1s.

31s1, I;11: Ericsson, 15-1, 133 ;Igranic Driver, 1s.

WET H.T. Battery Co...

CABINETS. Ideal baffle behind speaker grille. 2/11. Ignite short-wave cone dual range, 3.5.

Mains. listed 100 mid., 100v., 1/6, 1/10. Utility .0005, .0001, .00015, .0002. V.5

Our orders over 703 Cent C.O.D. charges free. (All mail Orders Dues 1-4.

License fee 11.0 (in lieu of Postage). All above post paid and guaranteed no matter what -

T.T.-Essex 1434 tungsten coated unit for battery or mains.

T.T.-Essex 1434 Tungsten coated unit for battery or mains.

FULLY guaranteed. Fully guaranteed.

P.Y.E. and Clockwork Model Trains. Splendid

All parts. Mains. listed 100 mid., 100v., 1/6, 1/10. Utility .0005, .0001, .00015, .0002.

T.T.-Essex 1434 tungsten coated unit for battery or mains.

YOUR EDITION I

The Swift Service and Supply Co.

The Swift Service and Supply Co.

V.A.M.'s, A.C.'s, Ltd.

B.B.C., A.M.I.A.M.E., A.M.I.E.T., etc., and contains the full diagrams of the 'Swift' Short Wave Set, 91.
FLUXITE GUN

is a handy and economical tool that enables you to put the Fluxite where you want it on the soldering line and in the field. Nothing removes—no mess—no trouble. Always READY at hand.

Also used to project grease into grease cups, especially where it is inaccessible.

Just fill the nozzle portion, half-fill the cup—put together and press required.

Price £1/6.

ALL MECHANICS WILL HAVE

FLUXITE IT SIMPLIFIES ALL SOLDERING

Telephone:—The cheapest letter is a pair of 5/- Sullivan, phones and a 2/- card for any circuit. Brown's "A" card for distress-free. Set, 5/-; 1-25 ohms, 12/-; 120 ohms, 1/-6.

FLUXITUM—7/-, 10/-, 15/-, 2/-, 5/-.

Electrical Supply Co. Ltd., Distribution, 7/-, 10/-, 15/-, 2/-, 5/-.

All capacity 0.0005. Fully screened with trimmers (less dials), any standard dial will fit.

T.E.L. 2559 for short-wave sets, 1,500 ohms, 21/6, 120 ohms 8/-.

Morse Tapping Keys, 5/6.

We are able to offer from stock STAMPINGS FOR SMALL -SPACE SOLDERING SET-compact but substantial—required. Price £1/6d.

Write for latest Radio Banner list—2.

We are able to offer from stock STAMPINGS FOR SMALL -SPACE SOLDERING SET-compact but substantial—required. Price £1/6d.

Write for latest Radio Banner list—2.

There was a young fellow named

"Dial." He found an inspector—

"FLUXITE but THAT right for H.I.M."

See that FLUXITE is always you—in the limited case—anywhere where simple speedy soldering is needed. Used for both in the industry and by the leading Engineers and Manufacturers. For details to:

ALL IRONMONGERS IN TINS 4d., 1d., and

 Canal Water Condensers, 2000-3500, secondary 320-0-320v. at 70 m.a., 2-0-2v. 4/6.

imperfections, chokes, etc., to specification, and Manufacturers.

There was a young fellow named

"Dial." He found an inspector—

"FLUXITE but THAT right for H.I.M."

See that FLUXITE is always you—in the limited case—anywhere where simple speedy soldering is needed. Used for both in the industry and by the leading Engineers and Manufacturers. For details to:

ALL IRONMONGERS IN TINS 4d., 1d., and

See that FLUXITE is always you—in the limited case—anywhere where simple speedy soldering is needed. Used for both in the industry and by the leading Engineers and Manufacturers. For details to:

ALL IRONMONGERS IN TINS 4d., 1d., and

2-0-2v. 4/6.

imperfections, chokes, etc., to specification, and Manufacturers.

There was a young fellow named

"Dial." He found an inspector—

"FLUXITE but THAT right for H.I.M."

See that FLUXITE is always you—in the limited case—anywhere where simple speedy soldering is needed. Used for both in the industry and by the leading Engineers and Manufacturers. For details to:

ALL IRONMONGERS IN TINS 4d., 1d., and

2-0-2v. 4/6.

imperfections, chokes, etc., to specification, and Manufacturers.

There was a young fellow named

"Dial." He found an inspector—

"FLUXITE but THAT right for H.I.M."

See that FLUXITE is always you—in the limited case—anywhere where simple speedy soldering is needed. Used for both in the industry and by the leading Engineers and Manufacturers. For details to:

ALL IRONMONGERS IN TINS 4d., 1d., and

2-0-2v. 4/6.

imperfections, chokes, etc., to specification, and Manufacturers.

There was a young fellow named

"Dial." He found an inspector—

"FLUXITE but THAT right for H.I.M."

See that FLUXITE is always you—in the limited case—anywhere where simple speedy soldering is needed. Used for both in the industry and by the leading Engineers and Manufacturers. For details to:

ALL IRONMONGERS IN TINS 4d., 1d., and

2-0-2v. 4/6.
FREE ADVICE BUREAU

COUPON

This coupon is available until January 20th, 1935, and must be attached to all letters containing queries.

PRACTICAL WIRELESS, 1935/36

ADVERTISEMENT

British Institute of Engineering Technology

Pegasus, Ltd.
Craig, A. C., Ltd.,
Electrical Specialties Co., Ltd.,
Electrical Radios
Exide, Ltd.
Fluke, Ltd.
Granville Electric Co., Ltd.,
Haiyburn, F. C. & Co., Ltd.,
Hithin Electric Engineering Schools
Leоснов, Ltd.
Lownsdale Radio Co., Ltd.
Main Power Radio
New Times Sales Co., Ltd.
Petco, Ltd.
Philips Electrical Co., Ltd.
Ratuatb Electric Co., Ltd.
Sibbald, Ltd.
Whitlock Engineering Co., Ltd.,
Whitehead Electrical Co., Ltd.,
Wills, W. & H. O.

FREE ADVISORY BUREAU

COUPON

This coupon is available until January 20th, 1935, and must be attached to all letters containing queries.

PRACTICAL WIRELESS, 1935/36

ADVERTISEMENT

British Institute of Engineering Technology

Pegasus, Ltd.
Craig, A. C., Ltd.,
Electrical Specialties Co., Ltd.,
Electrical Radios
Exide, Ltd.
Fluke, Ltd.
Granville Electric Co., Ltd.,
Haiyburn, F. C. & Co., Ltd.,
Hithin Electric Engineering Schools
Leоснов, Ltd.
Lownsdale Radio Co., Ltd.
Main Power Radio
New Times Sales Co., Ltd.
Petco, Ltd.
Philips Electrical Co., Ltd.
Ratuatb Electric Co., Ltd.
Sibbald, Ltd.
Whitlock Engineering Co., Ltd.,
Whitehead Electrical Co., Ltd.,
Wills, W. & H. O.

FREE ADVISORY BUREAU

COUPON

This coupon is available until January 20th, 1935, and must be attached to all letters containing queries.

PRACTICAL WIRELESS, 1935/36

ADVERTISEMENT

British Institute of Engineering Technology

Pegasus, Ltd.
Craig, A. C., Ltd.,
Electrical Specialties Co., Ltd.,
Electrical Radios
Exide, Ltd.
Fluke, Ltd.
Granville Electric Co., Ltd.,
Haiyburn, F. C. & Co., Ltd.,
Hithin Electric Engineering Schools
Leоснов, Ltd.
Lownsdale Radio Co., Ltd.
Main Power Radio
New Times Sales Co., Ltd.
Petco, Ltd.
Philips Electrical Co., Ltd.
Ratuatb Electric Co., Ltd.
Sibbald, Ltd.
Whitlock Engineering Co., Ltd.,
Whitehead Electrical Co., Ltd.,
Wills, W. & H. O.
Get improved long range reception

A falling off in the sensitivity of a Set which makes reception of distant stations increasingly difficult probably indicates that the mutual conductance of the screen-grid valve has fallen below standard. In an H.F. Amplifier the overall magnification per stage is a function of the mutual conductance of the valve coupled with its interelectrode capacity.

The design of modern OSRAM Screen-Grid Valves maintains an exact balance between these characteristics and a type is available for every class of Receiver. You would not run your car with the brakes on - make sure that you are not operating your Set with a worn-out screen-grid valve, thus limiting its full capabilities with the risk of losing a foreign programme of particular interest.

Fit a new OSRAM Screen-Grid Valve for long range reception.

OSRAM SCREEN-GGRID VALVES

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 23</td>
<td>For 2-volt Battery Kit Sets and Portables</td>
<td>12/6</td>
</tr>
<tr>
<td>V S 24</td>
<td>For 2-volt Battery Sets with variable mu grid control</td>
<td>12/6</td>
</tr>
<tr>
<td>MS 4</td>
<td>For all A.C. Mains Sets with single stage H.F.</td>
<td>17/6</td>
</tr>
<tr>
<td>MS 4 B CATKIN</td>
<td>or MS 4 B CATKIN</td>
<td>17/6</td>
</tr>
<tr>
<td>MS 4</td>
<td>For A.C. Mains Sets with two stages H.F.</td>
<td>17/6</td>
</tr>
<tr>
<td>VMS 4</td>
<td>For A.C. Mains Sets with variable mu grid control</td>
<td>17/6</td>
</tr>
<tr>
<td>VMS 4 CATKIN</td>
<td>or VMS 4 CATKIN</td>
<td>17/6</td>
</tr>
<tr>
<td>DSB</td>
<td>For 0.25 amp. D.C. Sets</td>
<td>17/6</td>
</tr>
<tr>
<td>VDS</td>
<td>For 0.25 amp. D.C. Sets (variable mu)</td>
<td>17/6</td>
</tr>
</tbody>
</table>