TV RADIATION - CAUSES AND CURE

February 1959

AND TELEVISION TIMES

MAY 1959

INTERLACE

TELEVISION TROUBLES

FITTING TV INTERFERENCE SUPPRESSORS

REPLACING C.R. TUBES

TRANSISTORS IN TV RECEIVERS

YOUR PROBLEMS SOLVED ETC. ETC. ETC.

CONTENTS

A Remote TV "Silencer"
This splendid AVO instrument has been developed to meet a definite demand for a sturdy pocket-size multi-range test meter at a modest price, suitable for use on modern electronic apparatus as well as for radio and television receivers, motor vehicles, and all kinds of domestic appliances and workshop equipment.

Readings are obtainable quickly and easily on a very open scale, and range selection is by means of a robust, clearly marked rotary switch of the characteristic AvoMeter type. Measurements of A.C. and D.C. Voltage, D.C. Current and Resistance are made by means of only two connection sockets.

Designed and Manufactured by

AVO LTD
AVOGET HOUSE • 92-96 VAUXHALL BRIDGE RD • LONDON • S.W.1

IS YOUR T.V. TUBE DIMMING?
YOU CAN EXTEND THE LIFE OF THAT TUBE AND IMPROVE THE PICTURE
Pat. pending. Reg. design.

PRICE 30′
Package & Postage 1/6,
(Postal Orders,
C.W.O., C.O.D.)

One of the most common T.V. Tube faults is low emission, resulting in loss of brightness, contrast, definition and focus. The Sinclair Unit restores the cathode emission and corrects the above faults for a very low cost. Applicable to all sets operating off A.C. mains.

IMPORTANT. State make and model No. of set and tube in block capitals, please. Money refunded if not satisfied.

SINCLAIR ELECTRONICS,
18, NEWPORT COURT, CHARING CROSS ROAD, W.C.2.
Phone: REGent 5520

TELEVISION TUBES
REBUILT

12" - - - - £6. 00
14" - - - - £7. 00
17" - - - - £8.10.0

Carriage and insurance 12/6 extra.
Customers are requested to send their old tubes for rebuilding. We offer 48 hr. service. In the case of 12" MAZDA tubes please confirm before sending. All tubes are guaranteed for twelve months.

MARSHALLS for TELEVISION
131 St. Ann's Road, Tottenham,
London, N.15.
Telephone: STAmford Hill 3267
DUKE & CO. FOR VALUE

RECORD PLAYER CABINET R.P.3. 79/6
A delightful looking cabinet 14\1/2 x 11\1/2 x 8\1/2 in. in 2-tone Leatherette. Will take a B.S.R. Monarch 4-speed Autochanger and 6\1/2 in. round speaker. Carr. & Ins. 4/6.

79/6
Stylish cabinet by famous manufacturer. Cloth covered in contrasting colours (red & grey). Grilled front controls panel. Size 13 x 19 x 8\1/2 in. deep. Beautifully made. A cabinet of which you can be really proud. Takes 4-speed B.S.R. Autochanger and 6\1/2 in. round or elliptical speaker. Room for any amplifier of your own choice. Carr. & Ins. 4/6.

A beautifully styled cabinet. Made by a famous manufacturer. In polka dot cloth with clipped lid and carrying handle. Size 16 x 14\1/2 x 8\1/2 in. Will take B.S.R. Monarch 4-speed Autochanger and 7 in. elliptical speaker and most of the modern portable amplifiers. Carr. & Ins. 4/6.

SINGLE PLAYER CABINET 35/6
Smart cabinet. Size 14\1/2 x 12\1/2 x 6\1/2 in. deep. Various 2-tone colour schemes with white handle and piping. Takes T.U.B. B.S.R. Single Player Unit. 4 x 7 in. elliptical speaker and amplifier D.1 or D.2. Carr. & Ins. 4/6.

A "MUST" for the build your own tape recorder enthusiast:

TAPE RECORDER CABINETS
59/6 Suitable for the Truvox Tape Recording Deck. Less front cast speaker panel. Size 13\1/2 x 15 x 8\1/2 in. deep. Detachable lid with compartment for spare tape. Covered in green washable plastic material. P. P. & Ins. 4/6.

B.S.R. MONARCH 4-SPEED AUTOCHANGER £6.19.6
Incorporating auto and manual control complete with turnover crystal p.u. and sapphire stylus. P. P. & Ins. 5/6.

★ AMPLIFIERS ★
12 Months' Guarantee

★ STEREOPHONIC £7.19.6

PORTABLE AMPLIFIER MARK D.1. 59/6

PORTABLE AMPLIFIER MARK D.2. 79/6

PORTABLE AMPLIFIER MARK D.3. 89/6

EXTENSION SPEAKERS, 19/9

★ IDEAL FOR STEREOPHONIC SOUND ★

B.S.R. FUL-FI CRYSTAL TURNOVER CARTRIDGES, 19/6
Brand new. Including sapphire needles for L.P. and Standard, giving fullest range and finest tone obtainable for any player. Can be fitted to all standard pick-up arms. P. & P. 9d.

DUKE & CO. FOR THE T/V & RADIO ENTHUSIAST

www.americanradiohistory.com
Contemporary ★
EXTENSION SPEAKER
32/6

SOLE SOLDERING TOOL
12/6

SUPER CHASSIS, 99/6
5 valve superhet chassis, including 8in. P.M. speaker and valves. Four control knobs (tone, volume, tuning, volume, switch). Four wibands, with position for gram p.u. and extension speakers. A.C. Ins. carr. 5/6.

★ MAINS TRANSFORMERS ★
DROP THROUGH TYPE,
12/9
350-0-350 v. at 250 m.A. 6.3 v. at 4 amp., 6.3 v. at 4 amp., 4 v. at 2 amp., 2 v. at 2 amp., 4 v. centre-tapped at 1.5 amp., Primary 200-250 v. 50 cycles. P. & P. 1/3.
HEATER TRANSFORMERS,
12/9
T.V. AERIALS,
25/6
For all I.T.A. channels. Outdoor or loft. 3 elements. P. & P. 2/6.
T.V. AERIALS,
7/9
For all channels. Complete with co-ax cable. For use indoors or in the loft. Postage 1/3.
GANG CONDENSERS,
1/9
SOUND/VISION & I.F. STRIP,
5/9
TIMEBASE,
4/9
Containing scanning coils. Focus unit, line transformer, etc., less valves. Drawings free with order. P. & P. 2/6.
POWER PACK & AMPLIFIER,
9/9
CO-AX CABLE, 6d. YARD
Good quality. Cut to any length. 1/6 postage on 20 yds.

★ TELEVOX
TELEPHONE AMPLIFIER
89/6
Invaluable in a noisy office or workshop. 3 valves UY41, UF41, UL41. 3in. speaker and a suction type vibration microphone. A.C./D.C. Size of amplifier 7 x 11 x 3in. Fits any type of G.P.O. telephone. P. & Ins. 4/6.

T/V CHASSIS, TUBES and SPEAKERS
17" T.V. CHASSIS, TUBE & SPEAKER
16 Gns.
17in. Rectangular Tube on modified chassis. Supplied as single channel chassis covering B.B.C. channels 1-5 or, incorporating Turret Tuner, which can be added as an extra, at our special price to chassis purchasers of 50/- giving choice of any two channels (B.B.C. and I.T.A.). Extra channels can be supplied at 7/6 each. Chassis size 12 x 14 x 11in. less valves. Similar chassis are used by well known companies because of their stability and reliability. With Tube & Speakers (less valves) 24 guineas. Complete and working with valves and Turret Tuner 24 guineas. 12 months' guarantee on the tubes. 3 months' guarantee on the valves and chassis. Ins. carr. (incl. tube). 25/-.

14" T.V. CHASSIS, TUBE & SPEAKER
11 Gns.
As above, with 14in. Rectangular Tube. 12 months' guarantee on Tube. 3 months' guarantee on chassis and valves. Chassis with Tube and Speaker (less valves) 11 guineas. Complete and working with valves and Turret Tuner, 19 guineas. Ins., carr. (incl. Tube). 25/-

12in. T.V. CHASSIS
29/6
Complete chassis by famous manufacturer. R.F. E.H.T. unit included. Easily fitted to table or console model owing to this chassis being in three separate units (power, s/vision strip, v/base interconnected). This chassis is less valves and tube. Speaker FREE. I.F.s 16-19.5 Mc/s vision. Channels 1-5 easily converted to I.T.A. by use of a Turret Tuner. Drawings available at 2/6 or FREE with order. Ins., carr. 10/6. 12in. Tube available at 6/- plus ins. carr. 15/6.

REGETTERED IMPROVED VACUUM T.V. TUBES
17in. rect. ... £7.10.0
14in. rect. ... £5.10.0

12 MONTHS' GUARANTEE
Our 12 months' guarantee (6 months full replacement, 6 months progressive) illustrates our wholehearted confidence in the Tubes we offer. We sell many hundreds a week throughout the country and have done so for the past 8 years. Many of them go to the Trade, i.e., to Insurance Companies, Renters and Retailers, who are thoroughly satisfied with our supplies. Remember they also hold a 10 days' money back guarantee.

9in., 10in., 14in., 15in., & 16in. ROUND TUBES
Our special offer of these sizes, £5. 12in. T.V. Tubes, 6/- Three months' guarantee on round tubes. Ins. carr. 15/6.

EXPRESS DESPATCH SERVICE
Please 'phone to confirm tube in stock. Send Telegraph Money Order. Tube despatched Passenger Train same day. This service only available with remittance by a Telegraph Money Order.

DUKE & CO.
(Dept. E5), 621/3, Romford Road, Manor Park, E.12
Send for FREE catalogue.
Open all day Sat. Closed Thurs. 1 p.m.
TERMS AVAILABLE
Tel.: IL. 6001/3.
Here are two ranges representative of the wide variety of T.C.C. condensers available, for all possible electronic applications. Details on request.

'METALPACK'

These paper condensers have been developed for operation in high humidities and high temperatures. Their ability to withstand variations from -40°C to +100°C makes them the obvious choice for the most stringent conditions.

'METALMITE'

Set a new standard both for compactness and ability to withstand extreme tropical conditions: satisfactory insulation resistance is maintained after extensive tests at 100°C and 100% humidity.

LASKY'S RADIO

MAKER'S SURPLUS COMPONENT BARGAINS

WIDE ANGLE 38 mm.
- Line E.H.T. Trans. Ferrox-cube core. 9-16 kV. 19/6
- Soanning Coils. Low Imp. 19/6
- Frame and frame. Ferrox-cube core. 10-15 kV. ETOL winding. Line Trans. with width and linearity controls, circuit dia. pair. 50/-
- Frame Output Transformer. 6/6
- Frame or line block osc. Transformer. 4/6
- Focus Magnets Ferrox-cube core. P.M. Focus Magnets. Cored 19/6
- Duoring Focaliners. 22/6
- 300 m.a. Smoothing Chokes. 10/6

STANDARD 35 mm.
- Line Output Transformers. 8-9 kV. E.H.T. and 6.3 v. winding. Ferrox-cube. 17/6
- Soanning Coils. Low Imp. 7/6
- Frame and frame. Ferrox-cube core. 10-15 kV. ETOL winding. Line Trans. with width and linearity controls, circuit dia. pair. 50/-
- Frame Output Transformer. 6/6
- Frame or line block osc. Transformer. 4/6
- Focus Magnets. Cored. 19/6
- Duoring Focaliners. 22/6
- 300 m.a. Smoothing Chokes. 10/6

SPECIAL OFFER! (FOR CALLERS ONLY)

TV CHASSIS

Limited quantity. Famous manufacturer's surplus, factory soiled, complete with 17in. C.R.T. and all valves. 12-channel turret tuning for I.T.V. and B.B.C. Circuit diagram supplied. Do not miss this opportunity! First come, first served!

LASKY’S PRICE £25

BARGAIN OFFERS OF TURRET TUNERS

By Cyldon and other well-known makers. New and unused in maker's cartons. List price. 7 gns. A few examples:
- E.10.L. (parallel hrs.). I.F. 9-14 mc/s. £5/19/6
 Post 3/6

All other types in stock. List on request.

"STIRLING" BAND III CONVERTER

available on easy terms.

Very efficient, tunable over all 13 channels and incorporates own power supply for 200-250 v. A.C.

Brown metal case. 4in. wide, 7in. deep, 2in. high. CASH PRICE 6 GNS. Post 2/6.

21/- deposit and 5 monthly payments of 21/-.

C. R. TUBE BARGAIN

Special Offer of FERRANTI 9in. C.R. Tubes, type 9/3. 4 v. heater, triode, octal base, standard deflection. New and unused. LIST £12/19/6.

LASKY’S PRICE 59/6 Garr & Ins.

LASKY'S (Harrow Road) LTD.

Open All Day Saturday. Early Closing. Thurs. Mail Orders to Harrow Rd.

THE TELEGRAPH CONDENSER CO. LTD.

RADIO DIVISION North Acton - London W3 - Telephone: ACORN 0061
TELEVIEWS

MORE LINES?

The problem of a third television service is causing much discussion in technical circles. Apart from the important question of the frequency upon which it will be transmitted, there are a number of problems connected with the type of transmission which also tie up with the question of colour television. The P.M.G. announced recently that he is postponing a decision on a third programme until the question of the line definition had been settled. A committee is meeting to discuss this factor. As readers are aware, the British system stands alone with 405 lines. Many experts consider that much better definition is obtained with the American standard of 525 lines or Continental 625. The American standard uses negative modulation for the picture, and the sound section operates with F.M. This is the system which has been adapted for colour, and which the experts in this country have modified to operate on the British standards.

Would it not be desirable to change our system so as to standardise it? Then export markets would be open to our manufacturers, and advantage could be taken of developments introduced in any country without having to try and adapt them to our system. It will be seen, therefore, that the question of line definition is one which needs very serious and unhurried consideration.

ADVERTISING ON TV

There is no doubt that advertising on TV has resulted in increased prosperity in many industries and concerns. At first the advertisers aimed to please the viewer; they amused him with cartoons, for example. Now the emphasis is on the "hard selling" or "direct selling" of goods. The commercials based on this principle are, in our opinion, harsh to both eye and ear in many instances.

With the possibility of the establishment of another commercial TV network in the not too distant future, we think it time for a detailed review of advertising charges and methods, lest the systems reputed to be employed in the U.S.A. make their appearance here.

BUILT-IN SAFETY GLASS

An American manufacturer has made 23in. tubes with a safety panel bonded to the face. This new method of construction will make possible new cabinet designs and smaller tubes for the same picture area. Also, it is said that the light output is increased, as there are fewer reflecting surfaces. This is a logical development from the tube with the separate safety glass and one which should appeal to set designers.

Our next issue, dated June, will be published on May 22nd.
MUCH annoyance can be caused to users of TV sets by interfering electrical appliances. The most common sources of trouble are commutator or universal motors. These are used in a large number of household appliances, such as vacuum cleaners, hair dryers and sewing machines. They need not be faulty in either a mechanical or electrical sense to be a source of interference, although inefficient maintenance may increase the trouble, especially if the offending appliance has been in service for a long time.

Domestic electric motors should be cleaned periodically and all dust and fluff removed. The commutator should be kept clean, and the brushes examined to see that they are well seated on the commutator.

Causes of Interference
The only other cause of interference likely to be encountered in the domestic field is from thermostats of the bi-metal type, as used in irons, heaters, and refrigerators. Interference can be caused when the thermostat opens and an arc is drawn between the two contacts. The modern thermostat has a snap action and causes little

Fig. 2—A suppressor system for thermostats.

The cure for interference is to connect a system of capacitors and inductors or chokes into the circuit of the offending appliance. This neutralizes the generated interference. Most cases can be cured completely, and in others annoyance can be reduced to a tolerable level.

Use Correct Type of Capacitors
A word of warning is necessary here. The correct type of capacitors for interference suppression must be used. These comply with BSS 613, and are not the type of component used in radio construction. They are obtainable from any good radio or electrical dealer. The capacitors commonly available have a value of 470 pF, and may be obtained either single, with two wire connections, or double with three wire connec-

Fig. 1—Showing how to include the chokes.

tions. Inductors, or chokes, are current rated at 1, 2 or 3 amps., and care must be taken to ensure that the correct rating is used for the appliance being suppressed. Overheating and destruction of the chokes may be the price paid for overloading.

Suppressors may be obtained already built up into units to be incorporated into the flexible lead of appliances. Generally, however, suppression must be applied at the source of interference to be fully effective. If flex lead suppressors are used they should be connected as close to the appliance as possible.

Wiring of the Chokes
If suppressor capacitors and chokes are to be fitted to commutator motors the chokes are usually

(Continued on page 491)
Analysing and Servicing TV Receivers

No. 6—Line Timebase Faults

By “Diadem”

(Continued from page 410 of the March issue)

CONTINUING from the March issue, we deal with more faults associated with the line timebase.

No raster, no EHT in self-oscillating line output stage. If oscillation ceases, check all resistors for overheating, watch for red-hot anode and screen grids. A shorted turn in the line output transformer can cause this. If a raster is present, and if the line output valve screen gets red hot in the case of a separate oscillator being used, check drive from line oscillator output to line amplifier. Another cause for the line output stage anodes and grids getting red-hot is a C.R.T. with shorting electrodes; pull off the tube cap and if output stage returns to normal the tube must be checked. (Switch off first!)

Line ringing; vertical bar or bars.—Check line scan coil resistor and condenser damping components and also the width coil (see “stria tions”).

Very bright line on left caused by line foldover. Check line linearity control and its components and the efficiency diode.

Lack of width.—Check H.T. voltage, rectifier and line output valve for low emission, and all its resistors for increase in value. Screen or cathode resistors altering in value in this stage will prevent the stage from operating at its full efficiency. If a separate generator (oscillator) stage is fitted, check this valve for emission and its output condenser for correct capacity. Increasing the width may overdrive the valve and cause distortion. If no fault can be found shunt the line scan coils with a high voltage capacitor of just sufficient capacity to give the required width and refocus. A 200 pF-750 pF condenser will do. The efficiency diode should also be checked, especially if the raster is not linear.

Sawtooth edges on all verticals, ragged picture. Check the line output valve and line transformer (see sync faults).

Left-hand side stretched.—Check the damping resistor and condenser across line scan coils for high resistance and capacity and the anode resistor in the line generator. In extreme cases of non-linearity a white bar on the left may be seen.

Left-hand side compressed.—Check the damping resistor and condenser across line scan coils for low resistance and high capacity. A low voltage on the screen grid or a high bias voltage will also have this effect. Check the efficiency diode.

Right-hand side cramping and foldover. Drive voltage may be too high. Adjust drive control if provided or check the capacity of the condenser coupling the line generator anode to the line amplifier control grid. Check the line output valve for low emission, also the booster diode. Check the bias resistor in the line amplifier, and the screen grid resistor for high resistance. Alteration of bias resistance will also affect width; a low bias causes a cramped right-hand side.

Fig. 24.—A thyratron timebase circuit.
Lack of width on the right with extended left.—Check the efficiency diode and control grid resistor in line output stage; the line output valve and the H.T. line voltage.

Foldover can also be caused by shorting turns on the line output transformer.

Diagonal white lines across the screen from corner to corner. Suspect booster diode fault.

Diagonal lines across screen. Check for shorting in line scan coils.

Bowed verticals appear while servicing. Keep speaker magnets and transformers, chokes, etc., away from the tube. The speaker away from the line valves or the line may refuse to hold. If the fault persists check the H.T. smoothing condensers.

No raster, no EHT, in self-oscillating line output valve. With the line whistle still operating but weak. This is usually caused by shorted turns on the EHT overload.

Horizontal drift.—If the set is fitted with flywheel synchronisation, intermittent drifting will take place if any alterations occur in the characteristics of the two diodes associated with this circuit.

Horizontal drift when not caused by the line generator or its components can be caused by the coupling resistor from the sync anode to the line generator altering in value. Also examine the components of the line clipper if fitted.

Picture ripples when camera swings rapidly. Check H.T. smoothing condensers.

Picture will not lock in a horizontal direction. This is the most common fault in the timebase. Check the line oscillator valve and hold control. The fault will nearly always be found to be increase in value of the resistor connected in series with the hold control. A leaky charging capacitor should also be suspected. Where a blocking oscillator transformer is used, this should be suspected last, as a fault in this will also distort the scan if turns are shorting. If the windings have developed a high resistance, weak horizontal locking is usually present. Do not forget to check the input to the generator from the sync output (see sync faults) and the line clipper stage if fitted.

Wavy edges on raster and verticals wave slowly down the raster. Poor smoothing or interaction of frame pulse on line. Do not confuse this with sound on vision. Long "S" shape on edge of raster with one dark horizontal bar across denotes poor smoothing in half-wave rectification power supply. Check the electrolytic smoothing condensers in the H.T. line, and the smoothing condensers in the EHT supply if it is mains driven. Another check for mains ripple is to reverse the mains plug and the bar will alter position. Two "S" shapes, one "S" being above the other, accompanied by two dark and light bars is the same fault as above but occurs in full-wave rectification circuits.

Red-hot efficiency diode.—Examine the cathode condenser. This was a common fault in the Ferguson 978T. The 5 \(\mu F \) develops a dead short and the PY31 anode overheats. The replacement condenser must be of 500 v. D.C. working.

Faulty generator.—Do not always suspect the line amplifier and EHT rectifier. A faulty generator can cause tearing, a touchy line hold, lack of width, a dim picture, poor focus, and even make the size of the raster vary with picture content. Check the generator valve for fault or low emission and the coupling condenser to the line amplifier.

RESEARCH FLIGHTS BY RADIO SCIENTISTS

Scientists of the Radio Research Station D.S.I.R. are flying with the Meteorological Research Flight of the Air Ministry to obtain new data affecting radio wave propagation. They are measuring and recording changes in the refractive index of the lower atmosphere at heights up to at least 10,000ft. using a microwave refractometer specially built at Slough for this work.

The refractive index is a measure of the property of the air which produces bending of radio waves. Under certain meteorological conditions the strength of an ultra-high frequency signal at a receiving station beyond the horizon is considerably influenced by the atmospheric structure and the variation of the refractive index. Earlier methods of measurement have produced limited information on this feature of the lower atmosphere—and it is hoped that this airborne technique will fill in the gaps in existing knowledge.

The first stage in this research began at Slough about a year ago, when scientists started construction of a suitable microwave refractometer which could be installed into a Hastings aircraft. Equipment proving flights followed, during which the apparatus was tested under varying conditions. Now the scientists look forward to going ahead with the actual measurement work.
TELEVISION RADIATION

ITS CAUSES AND CURE

THE purpose of this article is to assist the home constructor and make newcomers aware of the interference caused to radio sets by an unscreened television receiver. The interference can be particularly bad in large blocks of flats where many television receivers are operating. The unfortunate radio listener is in a hopeless position in these circumstances unless certain precautions are taken.

Receiver Design

In the last few years, commercial receiver manufacturers have gone to great lengths to prevent radiation from the line timebase causing interference with neighbouring radio receivers. In an effort to reduce excessive radiation all manufacturers now work within the accepted limits of a B.R.E.M.A. standard passed several years ago.

In the writer's opinion very few constructors go as far as the manufacturers in screening receivers. Sometimes constructors use no screening at all. As for the real experimenter, he is never satisfied until perfection is obtained and therefore the receiver never sees an ordinary cabinet, let alone a screened one.

Old receivers and certain types of old surplus line transformers and components purchased by constructors are the worst offenders.

All television receivers cause a certain amount of interference with radio reception. This is due to radiation from the line timebase. This radiation is rich in harmonics and its fundamental frequency is approximately 10 kc/s. The resulting interference appears to be worse on the Long waveband. The Light programme on 1,500 metres (200 kc/s) is particularly affected as 202.5 kc/s is the 20th harmonic of the line timebase frequency.

How Interference Travels

Interference travels from TV set to radio by three main routes: (i) by direct radiation and pick-up; (ii) by radiation from the TV aerial owing to poor layout or faulty decoupling in the TV receiver. (Also, that part of the aerial lead in the set may pick up radiation direct from the line timebase circuit); (iii) by way of the mains wiring.

The crux of the whole situation is the line transformer. In some older models this transformer was provided with a metal casing, but nowadays it is supplied unscreened. To reduce radiation, not only must the transformer be screened but the screening should also include the line output valve, the booster diode and the width and horizontal linearity controls. All these components can be fitted into one screening box if desired or into separate boxes. Where the valves are included in the same box as the transformer it is wise to place a screen between the valves and the transformer to prevent the heat from the valves melting the transformer wax or affecting its frequency. The box should be of generous dimensions.
proportions and at least an inch from the transformer all round including at the top. It should be adequately ventilated at the sides and top and painted matt black to prevent heat reflection, and most important of all it should make good contact with the chassis and there should be at least two or more connections from the box to the chassis. Holes should be cut or drilled in the chassis round the base of the transformer to allow an upward draught. You may think the battle is nearly over and that we have all the culprits boxed up, but there are two more still at large, namely the scanning coils and the tube coating.

The Scan Coils

The deflector coils can be screened by wrapping paper-backed metal foil co-axially round the coils and connecting the foil to the chassis, or the coils may be placed in an aluminium can. As the pulse voltage on the line coils is rather high, care must be taken against insulation breakdown between the coils and the metal foil. If the tube is provided with an external graphite coating make sure that the phosphor bronze spring is making good contact with the coating and chassis. Two springs are required for maximum efficiency. Good connections here will help to reduce forward radiation from the scan coils. Whether the tube is provided with an external graphite coating or not, an extra modification will help (Fig. 1). Some receivers have the EHT lead taken direct from the rectifier to the tube anode cap. This lead should be broken preferably at the rectifier end if there is room and a ½ watt resistor value 100kΩ to 2MΩ should be inserted—470kΩ is a popular value in this position, but the value must be found by experiment. Now connect a high voltage condenser between the tube anode cap and chassis adjacent to the resistor, its value being 500 μF and its working voltage will depend on the final anode voltage; this may be any voltage from 6 kV to 16 kV.

Metal Foil Screening

Owing to the layout of certain models it may not be possible to screen all the line components mentioned, if this is the case the alternative is to glue metal foil (paper-backed) on the inside back and bottom panels and connect these to the chassis via phosphor bronze springs (see Fig. 2). The cabinet top and sides should be treated in the same way. As the foil cannot be soldered it should be glued to the cabinet in one piece, starting on the outside of the cabinet underneath. Then when the bottom panel is in place with the foil facing inwards, electrical contact can be made without the use of a spring connection. When the chassis is inserted this will also make contact with the foil. The ventilation holes in both panels must not be covered and will have to be remade by puncturing the foil when the glue is dry. Latex adhesive is the most suitable as it is not affected by heat generated inside the cabinet. As a safety precaution, make sure it is not possible to touch any of the metal foil once the panels are in place.

Radiation Through Walls

As back radiation appears to give the most trouble, especially if a television receiver is installed against a party wall, screening the back panel as given above will help to cut interference to a minimum. Even the simple expedient of placing a metal tray at the back of the receiver and earthing it has cut down radiation and made listening bearable for the unfortunate neighbour. In the place of metal foil the entire inside of the cabinet including the back and bottom panels can be painted with graphite if desired. The procedure regarding connections and precautions are the same as for the foil. All the above remarks apply to direct coupling between the two receivers. Another test can be carried out if direct coupling is suspected by disconnecting the aerial from the TV receiver. If the interference persists, direct coupling is almost certain to be the culprit.

Indirect coupling. If interference is diminished somewhat by disconnecting the TV aerial, this indicates that the interference is mainly due to radiation from the aerial system. The following modifications to the TV should then be tried. Earth the outer screening of the coaxial cable direct to a good low resistance earthing point (see Fig. 3). Connect a 0.1 μF 1,000 V condenser from the chassis to the coaxial cable screening. Connect a 0.5 μF condenser from the H.T. line to the nearest chassis connection (Fig. 4). This condenser should be connected as near as possible to the line transformer H.T. feed.

Check that all the screened parts of the cabinet are making good contact with the chassis.

The Aerial Lead

Where a multi-channel tuner unit is in use, the re-routing of its coaxial aerial cable may be necessary to avoid pick-up. If this cable runs underneath the chassis from back to front, it should be moved to run along the outside of the chassis runner and the aerial input coaxial cable screening true earthed. Make sure no part of the coaxial screening comes in direct contact with the chassis runner if the receiver is of the A.C./D.C. type.

No direct connection should be made between
the chassis and an external earthing point unless the receiver is working from a double wound mains transformer which completely isolates it from the mains.

When radiation from the timebase finds its way into the mains wiring, this can cause as much trouble to radio reception as direct coupling. Each pole of the mains supply should have a condenser of .05 μF, 60 to 1,000 v. working connected between them and the earth terminal (see Fig. 5). A more effective method is to fit suitable filter chokes and condensers in both leads of the mains supply after the on/off switch. These can be home wound or a filter can be supplied ready made by Belling and Lee Ltd.

A filter suitable for incorporation in the set lead is the type L300/3 rated at 1 A or the L305 at 2 A. These may both be used for radio or TV mains inputs, and will reduce line timebase whistle on the medium and long waves.

When designing a filter the maximum value of capacitor for connecting across the mains supply should be 0.5 μF and fuses should always be fitted in both wires of the supply on the mains side of the filter to protect it in case of capacitor breakdown. The paper condensers should be tested before use, and no stock used, although some ex-Government Mansbridge types (metal cased) are suitable. Other types of ex-Government condensers stripped out of units are nearly always leaky and should not be used.

Storage
Paper condensers that have to be stored for future use should be kept in a polythene bag or a glass jar with a screw top lid, as it is almost impossible otherwise to keep the damp out.

Winding the Choke
A low-resistance filter choke can be wound at home to reduce interference in general from reaching the receiver. This choke consists of 300 turns of 26 s.w.g. enamel covered wire wound on a 1½ in. former, with side cheeks 1½ in. in diameter and 3¼ in. apart. Its resistance is about 2½ ohms.

Parasitic Oscillations
In commercial TV receivers steps are taken to prevent interference caused by the re-radiation of parasitic oscillations generated in the receiver and therefore this is seldom of a serious nature. In a home built receiver, however, care should be taken to see that this is kept to a minimum. Particular attention should be paid to the oscillation stopper resistors in the grid and anode circuits, especially in the line output stage. (These can be 10 to 30t. ½ watt.) Ferrite beads could be threaded on to the anode and grid leads as close to the valve as possible.

The Radio
The listener can also take steps to reduce the radiation hazard. The radio aerial should be disconnected to ascertain whether radiation is being picked up by the aerial or the set wiring. If the interference persists with the aerial disconnected, the following can be tried. The receiver should be moved from a party wall and tried out in different parts of the room. Screen the cabinet with foil. If the whistle diminishes when the aerial is removed the sitting of the TV and radio aerials downleads can be altered in an effort to keep these as far apart as possible.

A further improvement to interference free reception is to fit a screened downlead to the radio aerial. Providing the feeder does not exceed some 20ft. in length it will not be necessary to fit a matching transformer.

The radio listener can also fit filter chokes and condensers in the mains lead to prevent interference reaching his set by this route. Condensers alone will often reduce the interference.

FITTING TV INTERFERENCE SUPPRESSORS (Continued from page 486)

fitted on the brush side of the field coils. The first stage is to remove the brush leads from the holders, and a choke of suitable rating is inserted in each lead (see Fig. 1). The wire ends of the choke must first be covered with sleeving and the connections then soldered. Two capacitors, or a double capacitor are used. The wire ends are sleeved and a capacitor connected to each brush holder. The second wire of each capacitor is then connected to the frame of the motor, as shown in Fig. 1. If a double capacitor is used one wire is connected to each brush holder and the third wire to the motor frame.

There is not usually a lot of spare room in these motor cases, but the chokes can be tucked in beside each field coil. A way can usually be found if the situation is considered.

Fitting Extra Chokes
Should a further pair of chokes be needed to obtain better results in a stubborn case, they can be incorporated into the leads on the supply side of the appliance, shown dotted in Fig. 1. This second pair of chokes may be mounted in the hollow handles of hair dryers and vacuum cleaners. If this is done the heater of the hair dryer will be in circuit and the current rating of the chokes must be chosen with this fact in mind.

A suppressor system for thermostats is shown in Fig. 2. Chokes are incorporated on either side of the contact breaker, and a 470 pF capacitor is then connected across the contacts.
Television Receiving Licences

The following statement shows the approximate number of Television Receiving Licences in force at the end of February, 1959, in respect of wireless receiving stations situated within the various Postal Regions of England, Wales, Scotland and Northern Ireland.

<table>
<thead>
<tr>
<th>Region</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>London Postal</td>
<td>1,783,782</td>
</tr>
<tr>
<td>Home Counties</td>
<td>1,179,981</td>
</tr>
<tr>
<td>Midland</td>
<td>1,446,129</td>
</tr>
<tr>
<td>North Eastern</td>
<td>1,489,990</td>
</tr>
<tr>
<td>North Western</td>
<td>1,257,708</td>
</tr>
<tr>
<td>South Western</td>
<td>744,960</td>
</tr>
<tr>
<td>Wales and Border Counties</td>
<td>1,253,285</td>
</tr>
<tr>
<td>Total England and Wales</td>
<td>8,313,936</td>
</tr>
<tr>
<td>Scotland</td>
<td>734,503</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>104,486</td>
</tr>
<tr>
<td>Grand Total</td>
<td>9,152,927</td>
</tr>
</tbody>
</table>

Colour Television

There have been a number of experimental colour television broadcasts undertaken by the BBC and the international aspect of this problem will be studied at the forthcoming C.C.I.R. International Plenary Assembly being held at Los Angeles in April. In the meantime, it is interesting to note that apart from the U.S.A., where regular schedules of broadcasts are made using the N.T.S.C. system, there have been colour transmissions in Havana and Japan, while it is anticipated that France will follow suit during 1959.

Test Transmissions from Mendlesham Station

The Independent Television Authority plans to send out low-power test transmissions from its Mendlesham station near Stowmarket in the summer. The precise date depends on the speed with which the 1,000ft. transmitting mast can be erected and this in turn depends upon weather conditions. However, as far as can be ascertained at this time, test transmissions might begin in July or August. Signals from one of the sets of Pye transmitters will be sent out from a temporary aerial mounted about half-way up the permanent transmitting mast. The effective radiated power will be approximately 10 kW on Channel 11, horizontally polarised. All being well, the Authority hopes to commence full-power trade test transmissions on October 1.

TV Service for Wales Discussed

The Rt. Hon. Henry Brooke, M.P., Minister for Welsh Affairs, and the Rt. Hon. Ernest Marples, M.P., Postmaster General, recently met the Welsh Parliamentary Party at the House of Commons for a full discussion on the question of a self-contained television service for Wales. The Welsh M.P.s stressed the importance of such a service to Welsh culture and the Welsh language, which the two Ministers gave assurance that they fully recognised. The M.P.s asked that the needs for such a service should be fully taken into account in considering the future allocation of TV channels. The Ministers explained the technical background and assured the M.P.s that the case which they had put forward would be carefully considered.

Television is being employed by Vauxhall Motors to test car behaviour under varying conditions. (See page 493.)
Open Circuit Television

To help in studying the behaviour of cars and trucks in motion, Vauxhall Motors' engineers are now using open-circuit television at the Vauxhall Test Centre at Chaul End, near the company's Luton and Dunstable factories.

The camera, mounted on the vehicle close to the component being observed, is connected to a small transmitter inside the body or cab. The aerial is fixed to the roof of the vehicle, and transmits to a receiver aerial on the roof of the nearby Research Laboratory. This is connected to a normal TV receiver inside the building, where several people are able to study the picture at one time. This new "tool" has already successfully revealed the cause of intermittent localised vibration on some models at certain critical speeds.

North Eastern ITV Homes

A MID-FEBRUARY survey of the North Eastern ITV area—the second to be carried out by Television Audience Measurement Limited (TAM) since the area opened on January 20th—revealed that 358,000 homes were then receiving ITV programmes—an increase of 68,000 in approximately four weeks. This rapid increase brought the density of ITV homes to 43 per cent. of all households in the area, a very much higher percentage than that recorded in any other area after a comparable period.

TAM estimate that the number of homes in the North Eastern area receiving ITV is 369,000 as at March 8th last. Individuals in these homes number 1,325,000, rather more than half of the area's 2,615,000 inhabitants.

Scottish TV's New Video Tape

A NEW audio-video tape recording machine—Ampex—recently installed in the Master Control studios of STV, is now ready to reproduce a complete programme on the screen within two minutes of the original production. One of the latest recording machines in the country, the Ampex is basically a "memory," as it records a complete programme, both in sound and vision, in such a way that it is almost indistinguishable from the original.

Mr. A. Buckler, STV's chief engineer, said: "We shall now be able to produce a programme at any time of the day and insert it into our outgoing schedule at any desirable time. It can be flashed back on the screen straight away in the time that it takes the audio-video to rewind the tape, approximately two minutes."

British Standard

"FIXED electrolytic capacitors (aluminium electrodes) for use in telecommunication and allied electronic equipment." (Part 1: General requirements and use)—B.S. 2134: Part 1: 1950. Part 2—to be published later—will specify sizes, ratings, etc., of a standard range of electrolytic capacitors. Use of this standard (as with others in the series) requires reference to B.S. 2011, "British Standard climatic and durability tests for components," which fully describes a range of tests to which components may be subjected in accordance with the requirements of the relevant standards for the individual components. Copies of the Standard may be obtained from the British Standards Institution, Sales Branch, 2, Park Street, London, W.I. Price 7s. 6d. (Postage will be charged extra to non-subscribers.)

Western Nigerian Television Equipment

Premier Obafemi Awolowo's Western Nigerian Government has given a "letter of intent" to Marconi's Wireless Telegraph Company Limited of Chelmsford, to purchase from them television transmitting and ancillary equipment for the Western Nigerian television network to be inaugurated later this year.

Industrial Photographic and Television Exhibition

A MAJOR advance in the history of industry is now being projected (April 20th to 24th) in the Royal Albert Hall, London. The Industrial Photographic & Television Exhibition is the first full-scale display of its kind, designed to speed and raise the efficiency of modern industry through the art of photography. It is sponsored by Industrial & Trade Fairs Ltd. The show has the powerful support of the various trade, technical and specialist periodicals of the younger but no less important sciences in industry.

Equipment on show ranges from basic standard plate cameras to photo-electric controlled units. The whole gamut of development is being shown—industrial television, infra-red photography, radiography, spectroscopy, photomicrography, including cathode-ray oscillographs and other processes.
DETAILS OF THE INSTALLATION AND ALIGNMENT

By Hugh Guy

At the stage reached in last month's article the circuit is almost ready for test, the incorporation of a Band I stop filter being left until the necessity for it has been proved.

First, however, tag C on the terminal board (Fig. 3) at the rear of the convertor must be accommodated. The circuit shows that tag C is connected to the earthy side of the cathode bias resistor in V. Normally this point would be connected to a variable resistor, functioning as a contrast control in the set in which the convertor is installed. For test purposes, this point may be earthed directly via tag H on the same terminal strip, thus giving the convertor maximum gain. This connection may be left permanently if the picture ultimately obtained proves satisfactory, but should it appear too contrasty then a 1,000 ohm wire-wound potentiometer, connected as a variable resistance, should couple tag C to earth.

Supplies to the convertor may now be connected. The heaters in the convertor are series-wired, and are arranged to be connected in series with the existing set heater line-up. The TV set must necessarily be of the A.C./D.C. type having a series heater line-up of 0.3 A current rating.

Superhet and Straight

When the convertor is connected to a superhet set, as explained previously, two valves are removed from the set, as their circuit function is replaced by the convertor. The total heater voltage therefore remains the same in this case.

In the straight set, however, the two convertor valves are an addition to the heater chain, and, strictly speaking, some adjustment of heater voltage should be made accordingly. A total of 16 v. is required to supply the circuit, and should be offset by appropriate reduction of the fixed resistance normally present as part of the heater chain of the set.

If this is impossible then the mains tapping on the set should be reset to the next lowest range of input voltages. This will increase the H.T. voltage as well, but in general this should not seriously adversely affect the life of the set. For the worried reader, however, a safety precaution can be adopted: this is to change the position of the point at which the rectifier is tapped into the heater chain to some 20 volts or so below the present set value, while still readjusting the mains tap as recommended above.

As a final comment most sets will work satisfactorily unmodified in this respect, being unaffected by the additional 16 v. of heaters added to the chain. On 240 v. supply, the heaters will then be operating at approximately 7 per cent. lower voltage than required.

The heater chain is generally most accessible at the base of the tube and one lead of the two to the tube heaters should be disconnected and wired in series with a lead to tag D, say, on the rear terminal. The other heater tag, tag F, should then be connected to the tube heater pin to provide a series circuit for the heater chain.

The earth lead—tag H—is easily accommodated, being wired to the nearest convenient point on the main chassis. Tag M must be connected to the positive H.T. line, and in some sets this is available at the second anode pin on the picture tube base, where the tube in use is a tet rode.

One further point remains to be checked before proceeding, it is an advantage to know which of the thirteen channels provided is the correct one for I.T.A. signal reception. The continuous rotation obtainable with the switch makes this a little difficult. The appropriate switch position—number 9 for London I.T.A.—can be identified, however, by an examination of the wiring associated with the switch inside the convertor.

Fig. 3.—The terminal board at the rear of the tuner.

The wiring loop starts on position 1, next to the tag to which one connection of L5 is made. Count round eight positions in a clockwise direction viewed from the spindle, and the switch wipers should now be in contact with the ninth channel.

Alignment

For test purposes some sort of Band III signal should be obtainable from the existing Band I array. If the latter is selective, however, owing to a complicated series of elements, it may be necessary to improvise. If this is necessary a temporary Band III aerial can be prepared from two lft. 2in. lengths of rod, connected as a dipole to a length of coaxial cable. The other end of the coaxial cable should be terminated in tags A and B on the top of the convertor, the screened braiding being connected to tag B.

To provide an output lead to the set, a short length of coaxial cable should link the aerial socket on the set with tags G and H on the four-way terminal strip on top of the chassis, tag H being earthed. Ensure that the polarity of the mains is such that the chassis will not be live, and then switch on.

(Continued on page 496)
PROCEDING with the unboxing of Models V4, VT7 and V7, unsolder the red and black loudspeaker wires from the tag strip beside the scan coils, remove the tube base: the ion trap magnet (note its setting), the EHT connector, undo the two self-tapping screws holding the scan coil tag strip to the tube cradle and remove the four 2 B.A. bolts with saucer washers holding the scan coil and focus assembly to the tube clamp and remove the whole assembly: chassis and turret to a safe place. Lay the set face down on a cloth and remove the four screws on the outside of the tube clamp which will release the clamp from the tube and enable the tube to be lifted out.

On 17in. sets there are four bars which brace the tube clamp to the cabinet farther down and these should be detached from the tube clamp and swung to the sides prior to the removal of the clamp. The two inner (self-tapping) screws on the two bars on the outside of the tube clamp are locking devices and should be slackened off a turn where fitted.

Reassembly
Thoroughly clean the cabinet inside and all parts before reassembling, bearing in mind the fact that the “safety glass” is Perspex and if not cleaned with an anti-static compound will attract dust during the refitting process. Refit in the reverse order, making sure that the bronze springs on the tube clamp contact the graphited bulb, and that the thick rubber ring is placed over the tube neck first. It is essential that no strain is placed upon the tube neck when the deflector coils are refitted and a sleeve of corrugated cardboard can be fitted as a centering device. Refit the ion trap magnet, tube base connector, EHT connector (before replacing turret), resolder loudspeaker wires and set up as for VT17.

Screen Cleaning
Withdraw chassis to extent of leads, lay set on its non-turret side, remove card bottom, bracket holding speaker and rectangular clip beside it. Peel off the sticky tape and slide the Perspex sheet down through the slot. If it is at all stiff a clammy hand placed flat on the middle of the Perspex usually provides sufficient adhesion to get it started. To re-use the sticky tape, heat it in front of the fire.

Boosting
Use a 6.3 v. transformer, and connect the secondary to pins 1 and 12 of the tube, having previously removed and shorted out the existing heater wiring. Mains for the booster can be picked up between chassis and tag No. 5 of the voltage selector.

V14 and V14C Removal of C.R.T.
Remove card back and four large bolts underneath the chassis. On V14C remove four front knobs and loudspeaker leads and withdraw chassis back through cabinet. On V14 lay set on it face and lift wooden part of cabinet backwards off set. Then remove four front knobs and unscrew black plastic front. Both models:—Slacken the four screws which tighten the metal bands from the tube bowl to the scan coils. Remove EHT lead, ion trap magnet, and base. Take off the two brackets at the top corners of the safety glass and lift out the glass (*). Remove the four clips holding the rubber mask in position and remove the tube and mask.

Refitting
Clean and fit tube to mask face downwards. Refit to chassis, making sure that the rubber ring around the tube neck fits centrally over the scan coils. Fit the clips, window and corner pieces back and tighten up the four metal bands so that the focus assembly is concentric with the tube neck. Ensure that the scan coils are well forward against the tube by slackening the four screws in the twisted slots and screwing the plate in. Refit ion trap magnet. EHT connector, C.R.T. base, and set up picture as for previous models.

Screen Cleaning
Proceed as for changing C.R.T. as far as (*) above.

Boosting C.R.T.
Use a 6.3 v. transformer as for VT17. Obtain
mains for it from between chassis and the centre contact of the voltage selector plug.

Important.—Most of the work in the above tube change is on stiff Philips headed self-tapping screws which are close to the tube. It is preferable to buy the correct sized Philips screwdriver before you start than to use an ordinary screwdriver and perhaps seriously damage some component.

VT7 14in. Transportable

C.R.T. removal : Take off the two halves of the outer cover by removing two screws from the underside flange of each half. Remove the front escutcheon and safety glass (six screws around the edge) (+). Remove the EHT cap, base connector and ion trap magnet, slacken band around the tube face and withdraw the tube. Reassemble in the reverse order.

To Clean Screen

Proceed as above as far as (+).

To Boost Tube

Connect 6.3 volt (plus boost) winding of transformer to pins 1 and 12 of tube having removed previous wires and taped them back unshorted. Pick up mains from the central (thick pin) contacts of the two voltage selector plugs, not between either of these and chassis, as this receiver incorporates a double wound transformer to isolate it from the mains.

Note.—For convenience the two chassis are hinged and may be swung outwards upon release of the central front screw.

Pye FV1 and Other Models in the “FV” Range. Changing the C.R.T.

Remove back and three screws holding rear chassis flange. Unplug 12-way lead from chassis, EHT lead and the pink and blue free leads. Chassis will now withdraw. Stand set on face, unsolder loudspeaker at tag strip, remove C.R.T. base connector and ion trap magnet, undo large nuts at “scissors” supports on the side of the tube cradle and lift out cradle placing it face downwards. Slacken band around tube bowl and lift tube cradle off tube and mask. Clean, fit new tube to mask and replace in reverse order, making sure anode cap comes in the same relative position.

Refitting

Adjustment of the scan coils so that they are tight against the bowl is accomplished by slackening the clamp holding their canister and moving the latter forward. When reconnecting to the chassis the pink free lead goes to the line transformer, the blue one to the chassis beneath the tube base. Setting up as for VT7.

Boosting

Remove wires from pins 1 and 12 of the C.R.T., short the wires together and tape them off. Connect 6.3 volt side of boost transformer to pins 1 and 12 of C.R.T. Mains for the transformer can be obtained from the two shorted pins on the 12-way plug and the chassis wire next to them, making it convenient to service the set without first having to remove the transformer from the woodwork.

Earlier Models

The majority of earlier receivers have the tube strapped to the chassis. The method of changing them is thus self-evident upon unboxing and provided the general principles outlined in previous articles are observed, no difficulties should be experienced.

(To be continued)

TURRET TUNERS

(Continued from page 494)

After warming up, if all is satisfactory, the I.T.A. raster (or picture) should present itself, although the sound may not be present. On the other hand, the reverse state of affairs may be applicable, and in either event adjustment of the fine trimmer should yield both picture and sound.

If sound only is faintly discernible switch the tuner back to Channel 1 to receive the BBC programme, and then adjust the iron dust core of L8, the output transformer, for maximum signal. This procedure will ensure that the I.F. transformer is on tune. Reset the switch to the I.T.A. channel and readjust the trimmer capacity via the shaft on the switch spindle to obtain a picture with sound. Better coverage may be obtained by careful variation of the spacing of the turns on L5, using a matchstick, say. Some adjustment of L7 may also be necessary to optimise results.

Modifying Aerial Array

On completion of the preliminary alignment the screening cover should be replaced after switching off the set, and the cabinet drilled to facilitate mounting access to the controls. However, should tests in conjunction with the correct aerial array show a prohibitively large amount of BBC breakthrough on I.T.A.—an effect which makes itself apparent as annoying varying bands of light moving across the picture, and in some bad cases actual BBC picture moving in a random horizontal fashion superimposed on the I.T.A. picture—then it may be necessary to modify the aerial array.

Greater protection against cross-talk can be achieved by tuning the aerial elements to I.T.A. resonant lengths only. On Channel 1, the BBC will still be received although the aerial will not be functioning as a true dipole.

An alternative and more academically correct solution, involving a little more work on the part of the reader, is to incorporate a simple filter circuit in the converter. This can take the form of a series-tuned circuit designed to resonate at 45 Mc/s, and coupled to the I.T.A. Channel contact on the input wafer of the switch and earth. As a rule, however, aerial adjustment is all that is necessary to obtain an acceptable picture on both channels.
IN the cathode-follower valve-voltmeter circuit which was shown in Fig. 6 last month the voltage on the input grid is developed almost entirely across the cathode resistor in the form of a difference voltage which is then compared with the voltage across the resistor in the cathode of an identical circuit. The matching of valves or resistors is rendered unnecessary by the inclusion of the “set-zero” preset potentiometer, which should be placed in series with the cathode resistor which proves to have the lower resistance of a pair that are nominally identical. There is no need to measure these values if you do not have the facilities, as if you connect the potentiometer in the wrong circuit you will not be able to set the zero: the potentiometer should then be wired in the other circuit, when the setting will be found.

Potentiometer Value
The value of the “set-zero” potentiometer should be about one-third of the value of the cathode resistor, which should be calculated from the values of the voltage across them (assuming the cathodes to be at earth potential), divided by the required anode current in each valve. These currents should be the same. If the potentiometer will not zero the meter when set in either circuit, then the circuits are perfectly matched, and should be put out of balance by adding a resistor of value about half that of the potentiometer in the circuit which does not contain the potentiometer. On the other hand: if the potentiometer is found to have too low a value, then it should be placed in the circuit in which it comes closest to balance, and a resistor of value about half that of the potentiometer should be added in series with it. An alternative method of setting the zero is by adjusting the voltage on the grid of the reference valve: this may be done in the same way as the suggestion for the provision of Y-shift mentioned above.

The input grid resistor may have a very high value indeed, if it is so desired. The A.C. output should be taken to the potential divider gain control of the amplifier. Various ranges of D.C. measurement may be obtained in the usual way by switching in various values of series resistor to the voltmeter.

The Synchronisation Circuit
In most home-constructed oscilloscopes it is considered sufficient to use as a source of synchronisation signal the output of the final Y-amplifier. It is certainly possible to obtain reasonable results in this way, but here it is assumed that the constructor requires a better circuit than this simple arrangement.

A suitable amplifier circuit is shown in Fig. 7, which uses a high-gain pentode such as a 6AM6 or EF91. The biasing arrangements may be new to some, but it is the standard method of biasing many oscillators, e.g., the Colpitts oscillator used in most superhet radio sets. The principle is that, if the grid capacitor is initially uncharged, then grid current will flow when the grid is made positive by the incoming signal. This grid current will be of such a polarity as to charge the input capacitor in such a way that the grid will become negative. Naturally, the charge will leak away slowly through the grid resistor, so that the grid voltage will drift slowly towards zero again. This is prevented when the next positive peak of the waveform causes grid current to flow momentarily once more, thus restoring the grid to its negative voltage.

Pulses
Now, if we consider the anode current during this operation, we find that it is almost cut off for most of the time. but naturally, when the grid goes positive momentarily, the anode current reaches a high maximum. Thus we find that the waveform at the anode consists of a series of sharp, short pulses. These pulses will be negative, that is, the anode will normally remain at a voltage close to that of the H.T. supply, but will become more negative (i.e., less positive) during the pulses, so that a series of negative pulses will be delivered at the output. This is then joined directly to the synchronisation input of the timebase, that is, the screen grid.

If we wish to display on the screen more than one cycle of the waveform being investigated, we may well find that the pulses provided by this circuit are of such great amplitude that the timebase will not lock to any but the exact frequency of the wave being investigated: we must then attenuate the output of the amplifier, and this is best performed by fitting a variable resistor in the anode load position in Fig. 7, and taking the output via the existing capacitor from the tap on the variable resistor. A potential divider circuit should not be used directly between the two circuits, as this will have an upsetting influence on the D.C. conditions of the timebase, so, if it is desired to use this particular method, two coupling capacitors will be essential.

Valve Life
It may be thought that the valve is being operated under adverse conditions with regard to
The value of the grid current flowing will be limited to a very small value if the grid resistor is fairly high, say, half a megohm. The value of the input capacitor will need to be determined experimentally: it is possible that in some designs the optimum value will need to be changed with frequency, in which case it is best altered by a switch ganged to the timebase frequency switch. The anode load can be high, and a quarter of a megohm would not be excessive: the screen resistor should be about twice the value of the anode load. The screen decoupling capacitor need not be large, and neither need the output coupling capacitor.

Distortion

There is one disadvantage of the use of this type of circuit, and that is the tendency to distort the incoming signal. If only one cycle is being examined, however, this distortion is of little importance, as the part of the trace which is distorted will be the part which occurs during, or very close to, the flyback. The distortion is caused by the sudden very short pulse of current which flows to recharge the capacitor; thus there are two methods of reducing it, firstly by using a small value of input capacitor, and secondly by feeding the circuit from a source of low impedance. The best input point is one of the Y-plates, but this is a high impedance source, so the amplifier may be fed from a cathode follower which is R-C coupled from one of the Y-plates.

Picture Display Facilities

This is the only point mentioned in the original specification which has not been covered by the description so far, but it is mainly a matter of providing suitable switching: the grid we have already mentioned as being brought out to the front panel for the brightness modulation, and the only other considerations concern the timebases. As the requirement in the oscilloscope is for a voltage deflection system, it would seem to be best to use the variable timebase for X-deflection, as usual, and insert the Y-deflection at the normal Y-input.

The Complete Circuit

All the foregoing has been to explain the details of the basic design of the various circuits which go to make up the complete oscilloscope, and reference has been made to the interconnection of each separate circuit, but it is possible that some beginners have been confused by these cross-references even though they have been deliberately restricted for this reason. Accordingly, the complete circuit is shown in Fig. 8, and it is hoped that reference to this will clear up any remaining doubts or queries that may have come to mind.

On the left is shown the simple D.C. valve voltmeter circuit, as found in Fig. 6. Here, the circuit has been completed, to show the voltmeter range switch and the set zero control. Note that the output must be via a capacitor. The gain control system has been omitted from the completed circuit in order to avoid the confusion which would inevitably result from such complication of the diagram. However, the positions of insertion are marked, and full instructions are given in Fig. 5 for the wiring.

Although the input is shown via a capacitor, the negative feedback amplifier is here shown in its D.C. amplifier form. This is so that the complete diagram will tie up more closely with Fig. 4. The necessary modifications for conversion are detailed in the text.

X- and Y-shifts

The method of Y-shift mentioned in the text is shown in the complete circuit, coupled, as recommended, with the X-shift control.

The tube circuit and timebase circuit are exactly as described previously, and the only modification to the sync amplifier is that it has been connected to the negative supply rail instead of the positive. In actual fact, this makes no difference whatsoever, except to the consideration of the respective supply currents. The circuit, complete with its buffer amplifier, may be transferred to the positive supply without any modification. The buffer cathode follower is perfectly conventional in design.

Power Supply

It will be seen that the power supply circuit is of the form of Fig. 1(a), this being the most satisfactory for general use. There is no vital necessity for the use of full-wave rectification of the negative supply, and metal rectifiers are to be recommended. On the other hand, a conventional double diode rectifying circuit for the positive supply would be perfectly satisfactory. Modern rectifiers do not even require a separate heater supply, as they are made to withstand the high tension voltage being placed between heater and cathode. This point, incidentally, will need to be watched if valves are used in the positions marked for the sync amplifier valves, as they will need either a high heater-cathode insulation or a separate heater supply. The manufacturers’ data should be consulted.

The grid of the cathode ray tube is seen to be brought out to the front panel for brightness modulation, and this terminal should be earthed when not in use, in order to prevent unwanted 50/cps brightness modulation owing to the heater. As an alternative, it may be connected to the sync amplifier anode for fly-back suppression, the latter also being brought out to the front panel for external synchronisation purposes.

Valve Testing

There are many uses to which an oscilloscope can be put in addition to the normal one of waveform inspection, and one of the most useful is the display of valve characteristic curves.

The theory of the method is that a signal is applied to the grid of a valve, and simultaneously to the X-deflection plates: this signal need not have any particular waveform, and a sine wave will do just as well as a linear timebase. Now, if there is a small resistor in the anode circuit, a voltage will be developed across it which is at all times proportional to the anode current. If this A.C. signal is now displayed, via an
amplifier, on the Y-deflection plates, the tube will trace out the grid voltage/anode current characteristic of the valve being tested. By measurement of the slope of this curve, the gm of the valve may be determined; the complete instrument is best calibrated initially using two or more valves of known gm, as most radio dealers have facilities nowadays for measuring this characteristic.

It will be a relatively simple matter to arrange that the anode, screen, and grid voltages are variable, so that the complete valve tester is fully versatile and can be used for a wide variety of valves.

Dynamic Characteristics

By the provision of a switched range of anode resistors, the dynamic characteristics of the valve may be measured. These are simply the mutual characteristics measured under operating conditions, i.e., with a sizeable anode resistor which causes large fluctuations in the anode voltage when an A.C. signal is applied to the grid. The anode resistor for measuring the mutual characteristic should be as small as possible, in order to give the minimum of such variation of anode voltage consistent with supplying a suitably large output signal.

As mentioned above, the input signal may be of any waveform: the frequency also is of no importance at all, and the amplitude should be sufficient to give a wide swing of grid voltage, so as to display the cut-off and grid current parts of the characteristics. The source providing the signal should have low impedance, and a heat voltage supply is perfectly suitable if of sufficient amplitude to drive the valve from cut-off to grid current in each cycle.

Frequency Response Testing

Another very useful application of the oscilloscope is the direct display of the frequency response of any component, such as a transformer, amplifier, or tuned circuit. The best source signal for this purpose is the timebase in the unit, which is displayed in the normal way. The output of the timebase is also used to control the frequency of an oscillator.

The oscillator is arranged in such a manner that its frequency of oscillation is dependent upon the voltage which is applied to an input terminal. This may be brought about in a number of ways all of which are too intricate to be discussed here, but any constructor who is interested will find that quite a lot of literature has been published on this subject.

If the timebase output is used as the input to such an oscillator, then the frequency of oscillation will rise at a steady rate as the timebase output voltage rises, and then fall suddenly to its lowest value, this cycle being repetitive. As the frequency rises, so the spot on the cathode-ray tube will move from left to right. The starting frequency is controlled within the oscillator, and the range of sweep of frequency is controlled by the sweep voltage amplitude applied to the oscillator input.

If the output of this oscillator is used as the input to the amplifier to be tested, e.g., an I.F. strip, the output of this amplifier is rectified and applied to the Y-deflection plates, then the spot on the screen will trace out the frequency response of the amplifier. With this trace on the screen, the tuned circuits in the amplifier may be adjusted to give the desired frequency response. The system is not, of course, limited to high frequencies; there is no reason why, with a suitable oscillator, the same system should not be applied to audio frequencies.

Null Indicator

The oscilloscope with its associated amplifier is a very effective null indicator. This is the type of indicator which is used to indicate a balance on an A.C. component-measuring bridge. One of the easiest to construct is the type called the

![Fig. 8.—The complete theoretical circuit diagram.](www.americanradiohistory.com)
transformer bridge, which is fed by a sine-wave oscillator of a suitable frequency. The input signal is fed to the primary of a transformer, which has a double-wound secondary. These two windings should be identical as far as possible. The component to be measured is connected between one end of the winding and earth, and the oscilloscope is connected between the centre tap of the double-wound secondary and earth. No signal will be seen on the screen when the other end of the secondary winding is connected to earth via a network which is identical to that being measured.

If an inductor is being measured, then it may well be inconvenient to compare it with another inductor, in which case there should only be a resistor in the "standard" arm, and a variable capacitor should be connected in series with the unknown inductor. When the null setting is found, the value of the inductor may be calculated from the well-known formula:
\[f = \frac{1}{2\pi \sqrt{LC}} \]
or \[f = \frac{1}{2\pi \sqrt{LC}} \]
where \(f \) is the frequency in cycles, \(C \) is the capacity in Farads, \(L \) is the inductance in Henries. \(\tau = 3.14159 \ldots \)

The frequency of an unknown signal may be measured by the use of an oscilloscope by displaying it on the Y-plates, via the amplifier, if necessary. Then a known variable frequency is displayed on the X-plates, and adjusted in frequency until one of Lissajou's Figures is seen.

If the two signals are of the same frequency, then a circle will be seen. If the unknown frequency is half the known, then a figure-of-eight will be seen. If the unknown is twice the known, then a figure-of-eight will be seen, but lying on its side.

Still-picture Transmitter

By H. J. Barton Chapple, B.Sc.

MONOSCOPE equipment is used quite extensively by both the BBC and Independent Television Companies, to provide test card pictures for the benefit of the industry and the trade in checking receiver performance. This special apparatus is primarily a post-war development, but it is interesting to note that equipment was designed prior to the war for testing sets without in any way being dependent on an external transmitter for the signals. The vision signal itself was produced through the medium of a special type of tube which to all intents and purposes was a modified form of cathode ray tube. In place of the usual fluorescent screen was mounted a nickel plate on which was "printed" a picture. The picture, a positive one, was made from a half tone block, similar to those used in these pages, so that both half tones as well as black and white effects would be included in the picture.

Function of Tube

The tube functioned on the principle of varying secondary emission. When the electron beam produced by the normal electrode assembly scanned the picture on the plate, varying numbers of secondary electrons were released according to whether the beam was traversing the metallic portion of the plate or the special composition filling the interstices of the metal. More electrons are released by the metallic portions than by the composition, and this varying secondary electron emission constituted the picture signal, being picked up by a collector anode formed by metalising the inside wall of the tube.

Equipment Housed in Two Racks

The whole equipment was housed in two racks. The picture tube, magnetically focused, was mounted in the top section together with a two-stage vision amplifier, the output from which constituted the vision signal proper. Below this was the monitor tube, mounted vertically, the picture being viewed in a horizontal mirror.

The necessary power supplies were at the base of the rack while the second rack housed the frame and line synchronising pulse generators of the picture tube and the cathode ray-tube monitor. The signal output could be made to modulate a standard carrier fed round the factory and so provide a convenient and efficient test signal.

(Above).—The picture tube. (Right) The rack mounting for the equipment.
WONDERFUL OFFER OF A.M.-F.M. CHASSIS AT £14 (P. & P. 10/-)

Why buy a F.M. Tuner at the same price?
Tapped input 200-225 v. and 226-250 v. A.C. ONLY.
Chassis size 15" x 6½" x 5½" high. New manufacture.
Dial 1½" x 4" in gold, red and deep brown;
Five "piano" push buttons—OFF, L.W., M.W., F.M. and
Gram. Aligned and tested. With all valves.
Covers 1,000-1,900 M.; 200-500 M.; 88-99 Mc/s.
Valves E82 rect., ECH81, EF89, EABC80, EL84, ECC85.
Speaker & Cabinet to fit, polished with back, 70/-;
8" x 5" ELLIPTICAL SPEAKER 20/-.

TERMS:--(Chassis) £5 down + carr. and 5 Monthly Payments of 38/- or with Cabinet and Speaker £6 down + carr. and 6 Monthly Payments of £2.

We are specialists in I.T.A. Converters. All our converters give direct switching I.T.A. to B.B.C., have internal power pack, metal rectifier, coaxial plug, can be fitted in 5-10 mins., and need no alteration to your set. ALL AREAS, ALL SETS, ALL CHANNELS. 12 months' guarantee (3 months on valves).

Price £4.7.6 (3/- post), grey metal finish, 2 valves ECC81. Switch positions OFF—I.T.A.—B.B.C.

ANOTHER "READY TO USE" I.T.A. CONVERTER

Separate gain controls. Valves PCF80 and PCC84. Switch positions I.T.A. (1)—I.T.A. (2)—B.B.C. Bakelite moulded cabinet 8½" x 4½" x 6½". £5.5.0 P. & P. 3/-.

I.T.A. TABLE TOP AERIAL

An I.T.A. table top aerial with amazing performance. The Wolsey Hi-Q at 19/6 (2/6 post). Gives good reception up to 20 miles, and has cross-over unit in base with socket for B.B.C. aerial.

CYLDON 16 Mc/s and 19 Mc/s TURRET TUNER with two sets coils (state B.B.C. & I.T.A. channels). Extra pair of coils, 5/- pr. With knobs. ONLY 77/6 (2/6 post). Valves PCC84 and PCF80 included or valves UCC84 and UCF80.

THE BRAYHEAD TURRET TUNER, £7.7.0, post free. Complete with booklet and fitting instructions. State set and model no. when ordering.

INCREMENTAL TURRET TUNER by famous manufacturer for 35 Mc/s only: with knobs. Valves PCC84 and PCF80. ONLY 77/6, post free, or valves UCC84 and UCF80.

NOVEL "PLINTH" CONVERTER

Your set stands on this converter giving neat appearance. Size 16½" x 14½" x 3½". Valves PCF80 and PCC84. Switch positions I.T.A. (1)—I.T.A. (2)—B.B.C. Separate gain controls. PRICE only £4.15.0 (3/- post), or without power pack £3.3.0. Post free.

CHASSIS CONVERTER INTERNAL MOUNTING.

Specification as Plinth Converter above: with leads for power supply, etc. Size 9½" x 2½" x 5½" high. PRICE £21.17.6 (2/6 post).

Power pack, fully wired with connection instructions, 2½" extra.

GRAMOPHONE AMPLIFIER with 5in. SPEAKER

WHY PAY MORE?

NEW SILVERED MICA CONDENSERS. 50 different values, 10/-, post paid.

RESISTORS. 50 different values. ½ watt to 1 watt. 5/-, post paid.

I.T.A. AERIALS clipping to existing mast 1-2½" dia. 3-element, 27/-; 5-el., 35/-; 9-el., 55/-; Loft mountig. 3-el., 20/-; 5-el., 27½; Combined single B.B.C. and 5-el. I.T.A., 75/- with chimney lashings; Co-axial cable semi-air-spaced, 8d. yd. or 20 yds., 12/6; aerial and cable prices carr. pd.

SEND 6d. FOR CATALOGUE.

BATTERY ELIMINATOR. Converts your Battery Set to Mains. For 4 Low Consumption Valves (DK96 range). 90 v. 15 mA. and 1.4 v. 123 mA., 42/6 (2/6 post). 200-250 v. A.C. Size 5¼" x 3¼" x 2¼". Also for 250 mA. 1.4 v. and 90 v. 15 mA. at same price. Please specify which, or state valves.

PERSPEX UNSCRATCHED, post 2/- each size, 6 post free:
 sizes in ins. 14½ x 11 x 3½, clear, 5/-; 12 x 9½ x 4/-; 16 x 14 x 3½, clear, 7/-; 15 x 12 x ½, tinted or clear, 6/-.

GLADSTONE RADIO, 25 WORDSWORTH ROAD, WORTHING. Tel. : 235
58a High Street, Camberley, Surrey. Tel.: 2633; and 3, Church Road, Redfield, Bristol. Tel.: 51207

Payment orders to Worthing, please. Delivery by return. Terms:—One-third down and balance plus 7/6 in four equal monthly payments. Postage with down payment. (C.O.D. 2/- extra.)

These terms are applicable to all items except A.M.-F.M. chassis.

All goods are new unless otherwise stated.
SUFFOLK REBUILT TV TUBES

Suffolk can rebuld your own C.R. Tube and return it to you within 72 hours—backed by a seven months guarantee from the invoice date—with free delivery in the London area. For quality...

Your Guarantee is this Symbol

The sign of first class workmanship in tube rebuilding.

In addition to rebuilding your own tube, Suffolk can supply completely rebuilt C.R.T.'s with new Gun Units at prices (inc. P.T.) that are truly economical.

SUFFOLK HALL, 1-3, UPPER RICHMOND ROAD, PUTNEY, S.W.15.
Telephone: VAN 4304, 5267

RADIO SUPPLY CO. (LEEDS) LTD., Dept. N, 5/7 COUNTY ARCADE, BRIGGATE, LEEDS, 1

EX-GOVT. MAINS TRANSFORMERS
All 200-250-50 c/s input. Removed from ex-Govt. units.
279-325-250 v 100 ma, 6.3 v a, 5 v a...
229-329-250 v 80 ma, 12.6 v a, 5 v a...
257-500 v 150 ma, 5 v a...
270-500 v 165 ma, 6.3 v a, 5 v a...
400-490 v 250 ma, 5 v a, 5 v a...
420-430-450 v 250 ma, 6.3 v a, 6.3 v a...

C.R.T.'s
12.5 v a, 5 v a...

5/9

EX-GOVT. SMOOTHING CHOKE...
60 ma 9-10 h. 280 ohms...
100 ma 1b 150 ohms...
100 ma 1 b 150 ohms...
250 ma 1h 100 ohms...
250 ma 3-4 h 100 ohms...
250 ma 1b 200 ohms...

ELECTROLYTIC (NEW)

Tube Type
8 mfd 450 v...
8-16 mfd 500 v...
16-25 mfd 500 v...
25 mfd 25...
50 mfd 12...
50 mfd 90...
100 mfd 25...
3,000 mfd 6...
6,000 mfd 6...

Can Type
8-8 mfd 450 v...
9-16 mfd 450 v...
16-16 mfd 450 v...
12-35 mfd 300 v...
33-33 mfd 300 v...
50-33 mfd 300 v...
50-50 mfd 650 v...
100-100 mfd 650 v...
100-200 mfd 275 v...

BATTERY CHARGERS
For 200-250 v 50 c/s A.C. mains. 12 months guarantee. Attractive, well ventilated, hammer finished cases. 6 v or 12 v...
4 amp. with meter and E.B.G. charge rate selector, as illustrated...
8-4 mfd 450 v...
6 v or 12 v...

www.americanradiohistory.com
In this article we deal with timebase and sync faults in Ferranti receivers. Over the years a large number of Ferranti models have been created, and although some of them have chassis which are almost identical to a model of a different number, each will be considered under the appropriate number in this article. One should therefore, bear in mind that a fault given under any particular model may well apply also to receivers of similar chassis construction.

14T3 (Frame Hold at End of Range)
The symptom in this case is that the frame will lock only with the frame hold control set almost at the end of its travel and with the height control turned to maximum. Any deviation from these settings will result in frame slip, sometimes known as “picture roll.”

In some cases, the trouble is caused by an alteration in characteristics of the ECL80 frame timebase valve, and can be cured by valve replacement. Value increase of one or more of the resistors in the frame oscillator circuit is another cause, particularly the 1 MΩ resistor connected to the slider of the hold control.

However, in obstinate cases of the symptom, attention should be directed to C45, which is an 0.003 μF capacitor connected to the anode circuit of the sync separator valve (see Fig. 1). This often goes open-circuit or reduces in value.

Broad Black Bar Horizontal Across Picture
While this symptom may not be connected directly with timebase or sync trouble, the impression that the cause lies in these circuits may be given when the symptom is first encountered.

The trouble is caused by a heater-to-cathode leak in the picture tube, and the symptom may not appear until the receiver has been running for an hour or so. Conclusive evidence that the tube is, in fact, responsible can be secured by gently tapping the tube neck while the symptom is present. If this action temporarily clears the effect, the tube is to blame, and should either be replaced or a low-loss isolating transformer installed.

Incorrect Frame Speed
This is a fairly common symptom on Ferranti models, and can often prove bewildering when all the smaller parts in the frame oscillator stage appear to be normal.

The trouble is generally caused by a faulty frame blocking oscillator transformer, which may well exhibit the correct winding resistance and yet have a shorting turn which completely alters its characteristics. The only conclusive test when such trouble is suspected lies in transformer substitution. The winding resistances of the transformer can also be checked. The resistance of the primary should be about 375 Ω and that of the secondary about 1,150 Ω.

Apart from the obviously incorrect timebase speed which cannot be corrected within the range of the frame hold control, the effect is that the picture is severely folded over and little more than 2 in. in height.

It is often possible to bring to light transformer trouble by pressing the windings with the blade of a screwdriver; this may temporarily correct the effect.

Line Timebase Whistle in Loudspeaker
It is usual to hear the 10.125 c/s whistle from the line output transformer (if one has an auditory response which extends to such a high limit). However, if the whistle comes from the loudspeaker,

Fig. 1.—Basic circuit of the sync separator stage in Ferranti Model 14T3.
then something is wrong.

In the 14/17T4 series the line timebase signal sometimes gains admittance to the A.F. stages by way of unwanted coupling between a bunch of wires in proximity to the volume control tags. The cure lies in separating the wires concerned so as to reduce the coupling, but in obstinate cases it is necessary to fit a small metal shield (earthed to chassis) so as to screen the volume control tags and connections.

If this trouble happens to be caused by defective smoothing electrolytics, the ripple resulting from the hum is usually steady on the screen. Where the ripple slowly ascends the screen, however, attention should first be directed to the line output valve (PL81), for if this has poor heater-to-cathode insulation or other troubles it may be responsible. It is best to check by substitution if possible.

When this is the cause, the line hold control may also be rather critical and require frequent resetting to hold the picture.

17K4 (Frame Flyback Lines Visible)

If the frame flyback lines are clearly visible at normal picture brightness even though the frame is locking properly, the trouble is almost certainly caused by open-circuiting of the 0.005 µF capacitor connected between the anode winding of the frame blocking oscillator transformer and the grid pin of the picture tube. Its replacement should effect a cure.

17T5 (Insufficient Height)

After making the usual tests, a symptom of this kind should lead to a check of the frame scanning coils. Each of the two sections of the coil is shunted by a 2.2 k resistor, and if the coil section goes open-circuited or continuity is maintained by the appropriate resistor. This, though, results in reduced frame scan with either the top or the bottom of the picture being considerably compressed.

Another symptom that this fault produces is a wavy band of picture with four peaks across the screen about 2 in. in height.

20T4 (No Frame Scan)

This is a projection receiver which features a tube protection circuit which comes into operation and cuts off the tube beam current when either timebase fails. Without a battery of instruments it is sometimes difficult to establish (a) whether a blank screen is caused by timebase failure and (b) which timebase is responsible if the protection circuits have been brought into action.

If the receiver is allowed time to warm up, the effect on the screen when it is switched off may well provide a clue. Usually, there appears a diffused patch of illumination on switching off, but before this happens it is often possible to get a glimpse either of a vertical line (indicating that the line timebase is at fault) or a horizontal line (signifying frame timebase trouble).

In the latter case, the Varie frame stabilising feed resistor should be checked. This is mounted between two tags on an insulated strip on top of the mains transformer, but is hidden from view beneath the strip.

24SK4 (Black Horizontal Lines on Picture)

Internal coupling between the EHT generator and the vision circuits causes this trouble, and in most cases it is due to low value of the main electrolytic smoothing capacitor.

129 (Line Timebase Drift)

In order to hold the line oscillator in sync this trouble makes it necessary frequently to reset the line hold control, but this eventually means that the control is at the end of its travel and will not control the lock any more.

The trouble is often due to value alteration of one or both of the 68 k resistors which shunt the line scanning coils, there being a resistor across each coil section. These resistors should be replaced when this symptom is experienced.

T1205 (Frame Jitter)

Sometimes the frame blocking oscillator transformer is to blame, but there have been many reports of the symptom being due to value increase of the frame linearity control.

T1405S (Critical Line Hold)

The effect here is that the picture tends to fall

(Continued on page 505)
How many times do you turn your TV sound on and off every day? With the TV "Silencer" you can turn your set off without getting up from your chair, from anywhere in the room—at a cost of less than ten shillings.

Components Required

Few parts are required. An SPDT toggle switch, a 1-watt resistor of from 10 to 1,000 ohms, ten or more feet of three-conductor cable and a small box (the author used an aluminium cigarette case designed to hold an American-style "pack"). Optional is a three-conductor socket and two plugs.

What the TV "Silencer" does is to switch the secondary of the output transformer from the speaker to the load resistor. Just breaking the speaker circuit would eventually damage the output transformer, so the artificial load of the resistor is switched in.

This remote switch can be installed on any TV set without removing the chassis—if the speaker leads are accessible.

Installation

Installation is simple. Cut one of the leads going from the output transformer to the speaker. Attach each end of the cut wire to one of the conductors in the three-conductor cable. The third conductor is attached to the other speaker lead, but do not cut this lead.

The SPDT switch should then be soldered to the other end of the cable. Wiring should be arranged so that in one position the SPDT switch completes the speaker circuit, and shunts it through the resistor when in the other position.

Fig. 1 explains most of the constructional details, but there are a few things that should be mentioned. An extra plug and socket may be wired in. This serves two purposes. First it allows the TV "Silencer" to be disconnected, and replaced by a plug wired to complete the speaker circuit. The second reason is that in case someone stumbles over the cable, the plug will pull out before any internal wiring is damaged. In spite of this precaution, however, it is still a good idea to anchor all wires well.

TELEVISION TROUBLES

(Continued from page 504)

out of line lock very easily as the picture brightness varies, and that the trouble can be produced simply by increasing the setting of the brightness control.

This model uses a self-oscillating line amplifier stage (EL38), whose circuit in basic form is given in Fig. 3. In most cases of the symptom, resistor R in the anode circuit of the valve has been found to have decreased in value from 120 k to 50 k. Replacement should be made with a 3-watt component.

T1415 (Poor Frame and Line Holds)

With this fault the locks become considerably more stable at a high setting of contrast, but then, of course, the picture is far too "contrasty."

In this model the video, sync and frame time-base circuits are decoupled by way of a common 40 µF electrolytic. Low value or open-circuit of this component causes the trouble due to common coupling effects.
THE subject of interlace is one which has caused considerable worry to many viewers, and it is found that in many cases, receivers are operating with only a single scan, or with what is known as "pairing." Fig. 1 (above) shows a scan taken from a 17in. tube with correct interlace, whilst Fig. 2 shows to the same scale, the same scan without interlace. From this, it is clear that pictures seen with the line structure of Fig. 2 will be coarser than those in Fig. 1, and at the normal viewing distance the line structure will always be visible if there is no interlace.

Degree of Interlace

It is, of course, a rare occurrence for interlace to be completely absent, but very seldom is it perfect in either commercial or home-built receivers—or one might hear less clamour for "more lines." Most often the lines are paired, the divergence from perfect interlace ranging between 20 per cent. and 60 per cent. It is, moreover, not always the cheapest receiver that errs most. "Pairing" gives the appearance of lininess at normal viewing distances, and because the average living-room gives an average viewing distance of about 8ft., a 17in. tube is often really too large. If full interlace can be achieved, the lines on a 21in. tube do almost disappear at 9ft. or thereabouts.

While it is a simple enough matter to specify the conditions needed for perfect interlace, the practical side is quite a different matter. However, it will be as well to set forth the task in theory, so as to see what practice entails. It will then be possible to suggest means whereby the difficulties may be overcome.

D.C. Component

Although over a considerable period, for example over the whole of the sync period, the D.C. component of the two pulse trains is the same, during the short period at the beginning of the pulse and likewise at the end, there are notable...
of Interlace

By D. R. Bowman

Differences in the way the D.C. component would “build up” or “decay.” Now these are just the periods when matters are at their most critical for synchronisation purposes. It follows that accurate synchronisation cannot be obtained if the sync separator relies upon the difference in D.C. component between line and frame pulses to trigger the frame timebase. This is where the plain “integrator” circuit fails: such a circuit converts differences in pulse duration into differences in pulse amplitude, and because on odd frames less time elapses (since the previous line pulse) than is the case on even frames, the resulting voltage starts off at a somewhat greater value. In other words, the sync voltage for odd frames builds up at a greater rate from a higher initial level; the pulses are slightly different for the two frames, and good interlace cannot be obtained—except perhaps by accident.

Frame Generator

Something also depends on the type of waveform generator used for the frame scan. If the flyback is achieved within the frame pulse, differences in the sync pulses at the end of the pulse make no difference. If, however, the frame sync pulse ends first, any differences of the pulse for odd and even frames affect the discharge of the capacitor in the generator, thus causing poor interlace once again. It is hence possible for a sync separator to give good interlace on flyback with poor or no interlace on scan. Conversely, the scan may be well interlaced whilst the flyback is not. In such circumstances the error in triggering is just offset by the error at the end of flyback.

Identical Pulses

It may be said in conclusion that for accurate interlace on “scan,” the sync separator must produce identical pulses on odd and even frames either at the beginning of the frame pulse—if the timebase generator flyback is completed within the frame pulse—or at both beginning and end of the frame pulse, where the flyback takes longer than the frame pulse. The frame sync pulses take altogether about 400 µs; it is therefore necessary to have a timebase generator of less than 400s flyback time, compared with a scan period of 20,000s—a ratio of 50:1, which is not easy to achieve—if the flyback is to be achieved within the frame sync pulse.

In general, therefore, it is more practicable to aim at the second and more exacting of the above requirements. With a thyratron or blocking oscillator generator, a short flyback can be obtained, but with the more usual multivibrator the flyback is relatively long.

There are only three circuits known to the writer which comply with the requirements stated in a really reliable manner. Others, which are commonly encountered in receivers, are not described here.

The Interlace Diode

Fig. 5 shows the best-known of the circuits. It is preceded by the usual pentode sync separator, from the anode of which line sync pulses are
taken in the usual way. In this circuit R1.C is given a time-constant of about 40µs (or somewhat more). C should be kept small—100 pF is a good value—and R1 to suit will be about 470 k. 200 pF and 220 k also work well, as these values are not critical.

The action of the circuit is as follows. The sync separator is fed with positive-going sync pulses (negative-going picture). This is usually taken direct from the C.R.T. cathode though the usual D.C. restoring capacitor and grid leak (0.1 µF and 1 Meg.). Negative-going pulses are thus passed into the first diode of Fig. 5. V is thus cut off during the pulse and C discharges through R. Between pulses C is charged to the full H.T. voltage through the internal resistance of V and the anode load resistor of the sync separator stage.

Patchett's Separator—a three-minute exposure of the camera indicates the high rigidity of scan which is obtained.

On line pulses C has time only to discharge a little, and the cathode of V does not fall below its anode in voltage, which is less than the H.T. voltage because of the voltage dividing network R2. R3. Since the individual frame pulses are of 40 µs duration each, during these pulses C discharges to a much greater extent; the cathode of V2 falls below its anode in voltage, and a pulse of current flows through V2 and R2 to charge C again.

Differentiation
In order to obtain a sharp leading edge to the output, it is as well to differentiate the voltage obtained at the point "X." As it stands, the leading edge is not sharp, but quite "sloping." Connection of "X" through a capacitor of about 100 pF to the grid of the timebase generator, using a grid leak of 100 k. or less will give a suitable sharp-edged pulse for synchronising purposes. It will, however, be positive-going and suitable for a thyratron generator.

Alternatively, a small transformer may be used to complete the timebase generator. The primary winding should be put in series with the anode of V2, and the secondary connected to the grid of the generator. A miniature audio-transformer has been found suitable. Where a blocking oscillator follows, a tertiary winding of about the same number of turns as the primary can be used for the coupling.

The Flip-flop Separator
The second type of circuit to be described is also dependent on discrimination between the durations of line and frame pulses. It is an equally simple circuit, and is shown in Fig. 6.

The circuit is essentially that of a transitron flip-flop. Assuming C1 to be completely discharged, the screen is nearly at H.T. potential and the suppressor is at earth potential. Screen and anode current both flow, resulting in a drop in screen potential because of current flow through R1. This drop in potential is transmitted through C1 to the suppressor, driving it negative; this causes anode current to be diverted to the screen and screen current increases still more, and again its potential drops further. This in turns drives the suppressor more negative; the action is cumulative, resulting in a rapid cut-off of anode current and increase of screen current until the screen is "bottomed." At this point, screen potential cannot drop further, and C1 begins to charge again. As soon as the suppressor potential has risen to the point where it no longer cuts off anode current completely, current begins to be diverted from screen to anode; screen potential begins to rise and the upward trend of screen voltage, communicated to the suppressor via C1, causes the suppressor to go more positive. This then diverts more current from screen to anode, again causing screen current to decrease and screen potential to rise. The action is cumulative once more, ending when the anode is "bottomed" by heavy anode current: at this point screen current is minimum and the screen nearly at H.T. potential. The process then repeats, giving fairly rectangular pulses at screen and anode, the width of which depends on the time-constant C1.R3.

Valve is Cut-off
To effect sync separation, a negative-going video signal (sync pulses positive) is impressed on the control grid through the D.C. restoring components C2, R4. The low operating potentials of the pentode ensure that the valve is cut off at black level, conducting only during the sync pulses. It is, therefore, only during such sync pulses that the transitron can operate. While cut-off at black level, anode and screen currents are zero, and anode and screen are at H.T. potential.

When a line sync pulse appears on the grid, the screen draws current and immediately the suppressor is driven negative; anode current thus cannot flow. If line sync pulse were of considerable duration, the transitron would begin to oscillate, but if C1.R3 is given a suitable time-constant greater than the line pulse duration, the line pulse ends before the suppressor can recharge.

(To be continued)
Aerial Attenuators

SINCE the power of the BBC London transmitter was increased we have received an increasing number of complaints of overloading from this station. Difficulty also seems to be experienced as viewers adapt their receivers to two-station reception, owing to one signal being much stronger than the other. One of the most effective forms of reducing a signal is by means of an aerial attenuator, for reasons which will be explained later, and in response to many requests we give below some details of this device which was originally published in 1952, but which is now entirely out of print. It should be emphasised that the information is applicable only to Band I.

If the signal is too strong it will produce an over-white picture lacking in high-light details, which is obtained even with the contrast control turned to minimum: if the brilliance is reduced, a “soot and whitewash” effect is observed, i.e., a picture in which there is an absence of all the intermediate tones between black and white.

An indoor or other low-efficiency form of aerial may provide a satisfactory solution to the problem in the majority of cases, provided that the level of mains-borne and other forms of interference is negligible. In some instances, however, where the indoor aerial happens to be situated in a closely built-up area, despite a high-field strength, there is a possibility that local industrial and domestic equipment will produce an appreciable background of interference and, furthermore, if the installation is situated alongside a main thoroughfare, the ignition radiation from traffic may also mar reception.

In such cases a great improvement is effected by erecting an outside aerial, such as a single dipole or “H” type, on the roof of the dwelling, but then the chances are that the signal input to the receiver is much too great.

Having secured an improved signal-to-noise ratio, it then becomes necessary to reduce the amount of signal reaching the receiver and for this purpose a simple resistive network can be inserted between the aerial feeder and the receiver input socket. The description “simple resistive network” is real in practice, but examination of the curves shown in Figs. 1 and 2 reveals that the combination of resistance values for different levels of attenuation is cer-
tainly not so simple as one might expect. The reason for this is that not only does a required attenuation call for a definite proportioning of the elements A', A", and B, but that the input and output resistance of the attenuator must always be constant, i.e., in this instance 80 ohms. If an attenuator has an input and output resistance other than 80 ohms, it may introduce reflections back along the aerial feeder. The fact that it also delivers more or less attenuation than originally intended is of little importance, but as mismatching can, under some conditions, introduce undesirable responses on the picture, all that need be stressed here is that in a correctly terminated aerial circuit distortion of this nature is absent.

Type of Attenuator

An attenuator used for the purpose described here is a resistive network designed to introduce a specified power loss when inserted between two circuits of known impedance. The term impedance must be mentioned here because the practical circuits with which we are concerned, i.e., the aerial and input coil of the receiver, contain inductive and capacitive reactance as well as resistance, and it is not usual for such circuits to maintain an entirely resistive condition over the band of frequencies needed for television reception. However, the sum total of resistance and reactance can still be visualised as "so many ohms" and for our convenience the generalised use of the term "resistance" will, where necessary, imply a combination of both components.

Figs. 1 and 2 illustrate two types, and from their configuration the names "T" and "π" are easily recognised. Neither has any functional advantage over the other, but for attenuations greater than 30 db the B resistance in the "T" type can be replaced by a short length of screwed 6 BA rod or thick wire as described later.

Use of Graphs

The calculations necessary to determine the values of the resistances for any desired level of attenuation are relatively straightforward, and a number of examples for both "T" and "π" types have been worked out and presented in the form of an easy-to-work graph for quick reference. An illustration of the use of the graph can be given by assuming that the input voltage to a receiver is to be reduced by 10 times (or 20 db) in power, whichever terminology is preferred and then reading the values of resistance in ohms at the points where the 10 times (20 db) line intersects the A', A" and B curves. From the graphs, a "T" attenuator requires A', A" resistances of 65 ohms, and a B resistor 400 ohms. In any example taken from these graphs the attenuation factor, input and output resistances will be accurate to about 5 per cent., and the use of 5 per cent. resistors will keep mismatch and attenuation factors within acceptable limits.

Construction

The layout should be symmetrical, as shown in Fig. 3, with the internal connections kept as short as possible by using small carbon composition resistors to assist this requirement. It is best enclosed within a small screening can as suggested in Fig. 4 which is the most convenient form for immediate use.

At 28 db attenuation, the B resistance in the "T" type has a value of 6.5 ohms and at 45 Mc/s a 1 in. length of 6 B.A. rod has a reactance of approximately 4 ohms. If the A', A" resistances are made 80 ohms and a 1 in. length of 6 B.A. rod is used as the B resistance (Fig. 5) an attenuation of 32 db is obtained. Other lengths may, of course, be used.

The attenuators described are for use with an unbalanced (co-axial) feeder, and where an attenuator is required for a balanced line the A', A" or B resistors are reduced in value by one-half and inserted in both sides as the configuration shows in Fig. 6. Constructional details are as previously described.

WIRELESS COILS, CHOKES AND TRANSFORMERS

Price 6/-, by post 6/11.
Transistors in TV Receivers

THE FIFTH ARTICLE OF A SERIES DEALING WITH THE USE OF TRANSISTORS IN MODERN TELEVISION EQUIPMENT

(Continued from page 460 of the April issue)

These quadrupoles have their diverging planes set at 90 deg. relative to each other. The optical analogy of the pair is shown in Fig. 16. Figs. 16(a) and (b) can be compared to the requirements shown in Fig. 15. Figs. 16(c) and (d) show the complete system of focusing and magnification for an axial beam.

Sensitivity to EHT Variations

As the magnification of the magnifying lens in the horizontal directions is large the virtual object distance of this lens is relatively short. A small absolute change in the position of the virtual object produces a large change in position of the real image. Consequently the final focus is very sensitive to changes in the EHT potential and in the focus lens (see Fig. 17). In the receiver a change of EHT potential of 50 volts in 18 kV is noticeable.

Having achieved a small size for the undeflected spot the problem is to maintain this with deflection. Simple theory suggests that the field in the magnifying quadrupole should have a constant gradient along both the vertical and horizontal axis in the plane of the quadrupole. Thus the beam suffers the same focusing or defocusing action as it is deflected by either deflection system acting by itself. This field shape (Fig. 18(b)) is achieved (ignoring end effects) by the use of poles shaped as equilateral rectangular hyperbola. An adjustable quadrupole of this ideal shape is indicated in Fig. 18(a). The effect of fringe fields and other requirements (raster shape) modify this simple conception but it will at this stage in the discussion establish that the deflection defocusing problem is not outright impossible.

Special measures are needed to maintain focus in the horizontal direction as the beam is deflected vertically. Consider the system with the magnifying lens removed and note two of its properties. Namely, the depth of focus in the horizontal plane is very small (Fig. 19(a)), and owing to the relatively large deflection angle in the vertical plane the image field curvature produced by the deflection assembly is large (Fig. 19(b)). The result is a significant movement with frame scan of the magnifying lens' virtual object such that the deflection defocusing effect shown in Fig. 20 is produced. Correction may be effected by additional windings on the deflection yoke, energised by the frame timebase, and arranged to give added divergence in the horizontal direction. A complete deflection yoke is shown in Fig. 21.

Raster Shape

The use of a magnifying lens of the form shown in Fig. 18(a) results in considerable pincushion distortion of the vertical edges of the raster. This arises from the greater path length of the electrons in the horizontal diverging field when they are also deflected vertically. Thus the

Fig. 16.—Quadrupole focusing system—Optical Analogy. Solid lines represent extremes of axial beam in quadrupole focusing system. Focusing action of orthogonal pair of quadrupoles: (a) Horizontal plane. (b) Vertical plane. Focusing system in combination with magnifying lens. Dashed lines refer to a conventional focusing system. (c) Horizontal plane. (d) Vertical plane.
magnifying lens must have a field with relatively
greater diverging properties along the horizontal
axis than away from the axis in comparison to
the field shown in Fig. 18(b). A magnifying lens
giving good raster shape may have the form
shown in Fig. 22.

One form of a complete system comprising

![Diagram of a complete system](image)

had already begun to emerge, but no suitable
transistor was likely to be in production for a
very long time. Scan magnification changes the
situation so completely that the circuit techniques
may need rethinking. For example, the EHT
supply can no longer be looked on as an almost
free by-product of the line scanning. Is it still
the best plan to keep these functions of line
scanning and EHT generation together? Will it
be possible to have a common stage and yet
achieve the degree of EHT stabilisation required?
These and many other questions will be answered
in the future. For the present the experimental
receiver employs a separate line scanning stage

![Diagram of line timebase](image)

Line Timebase

The problem of the line timebase was men-
tioned in the introduction. Circuit techniques
Fig. 20 (Left).—Spot size variation for frame scan without image plane curvature correction.

Fig. 21 (Right).—Scanning yoke having correcting windings for image plane curvature.

employing currently available low power transistors in an energy recovery circuit.

The deflector coils require a current of approximately 400 mA p-p and have a resistance of 0.76 Ω and an inductance of 0.9 mH. They are choke-capacitor (L38, C95) coupled to the grounded emitter output stage (Tr28). This form of coupling is necessary to compensate the stretching of the picture edges which occur with flat faced tubes if they are scanned with linear current waveforms. (The system of scan magnification somewhat accentuates this effect.) The circuit operates in the efficiency diode mode, the efficiency (D4) diode conducting for 40 per cent. of the scan. A saturated reactor type of linearity control (L37), and a flyback tuning capacitor (C94), complete the output collector circuit.

The grounded collector driver stage (Tr27) is required to minimise the loading on the oscillator stage so that low power H.F. transistors may be used for the oscillator. Thus fast switching is achieved in the oscillator multivibrator (Tr25 and Tr26), a short rectangular positive-going pulse being produced at the collector of the transistor Tr26. A sawtooth waveform having an extra positive-going pulse during the flyback period is generated by the network R113, C92, R114, RV5, C93 and R115 and applied to the base of the driver transistor Tr27.

A positive-going pulse is applied directly to the output transistor base via the components C91 and L36. (The latter is required to permit initial regeneration in the multivibrator.) This positive pulse provides a reverse bias on the output transistor and ensures a quick clean-up of stored holes at the start of scan. The pre-set variable resistor RV5 is used to set the bias conditions on the driver and the output stage so that the output stage does not bottom too hard, and so to minimise the hole storage.

This arrangement leaves much to be desired as no stabilisation against temperature is incorporated. The same criticism applies with particular force to the oscillator (and in fact to many parts of the field timebase about to be described). Considerable development is needed here; a start has been made by some workers, but the possibility of a practical output stage gives added point to the problem.

The present circuit has a total consumption of 32 mA from the 12 v. H.T. line. The output transistor has a peak collector potential approaching 60 volts, a peak collector current of approximately 200 mA and a mean current of 58 mA. The mean efficiency diode current is about 35 mA.

A circuit for the line timebase referred to above will be given next month.

(To be continued)
News From the Trade

Model 948F Cossor

A NEW 17in. Fringe Model 948F printed circuit "unit" construction television receiver has recently been announced by Cossor Radio & Television Ltd., Cossor House, Highbury Grove, London, N.S. It is similar in appearance to Model 948 and, as with that model, all controls are positioned to permit adjustment to be made with screen in full observation. It costs 69 gns. including purchase tax. Matching legs are optional at 2 gns. extra.

Television Tubes and Valves Reduced

SIEMENS EDISON SWAN LTD., have now considerably reduced the prices of many Ediswan-Mazda television tubes and valves. These reductions have been made possible by improved manufacturing methods and the use of high speed automatic equipment in the company's Sunderland factories.

The maximum reduction is on the most popular 17in. types which with the reduced purchase tax show a saving of up to £3. 4s. 10d. to the man in the street.

"Truvu" Tubes

With reference to the note on page 447 of the April issue, concerning the manufacture of television tubes in Scotland under licence from the Radio Corporation of America, we are asked whilst it cannot be guaranteed that all tubes will respond to treatment, the operation is so cheap and simple that it is always worthy of trial.

The period of time for which the tube can be expected to give reasonable service after rejuvenation is also indeterminate, but in a number of instances it has been proved that some six months of additional life has been obtained. When one bears in mind the high cost of C.R. tubes and the fact that the Labgear rejuvenator is virtually everlasting, it will be seen that at a net trade price of £1.3.10s. it represents a first class business proposition. The instrument measures 71in. X 4\frac{1}{2}in. X 5\frac{1}{2}in. and weighs 8lb. It is made by Labgear Ltd., Willow Place, Cambridge.

The Labgear Cathode Ray Tube Rejuvenator Type E5119.

The 17in. Model 948F Cossor.
May, 1959, PRACTICAL TELEVISION

TV CONVERSIONS

TUNER TUNERS. Complete 13 Channel, with all coils. P.P. $9.75, P.Y. $8.75. This set is if fitted in P.Y. sets. $8.00.

可转换电视接收器

内部安装。可调节至任何Band I电台时2.2 lb. 实心隔板—开关可选择Band I, 优质Band II, 或Band III。完全封装。外表为手雕刻金。非常紧凑。可安装到更昂贵的电视设置。调整控制。列在$21.00。我们的价格为$19.00。

外部I.T.V. 转换器与内部电源包。

常用品牌，价格非常有竞争力，完全封装。外表为手雕刻金。非常紧凑。可安装到更昂贵的电视设置。调整控制。列在$7.50。我们的价格为$6.50。

调谐器。完整的13频道，与所有线圈。P.P. $9.75, P.Y. $8.75。如果安装在P.Y.设置。$8.00。

TV AERIALS

LARGEST SPIRAL COMBINED BAND I AND BAND III T.V. AERIALS. For localities of high signal strength. Adjustable matching unit incorporated. Plug into standard co-ax socket—e.g. either straight into the back of the T.V. set, or into a wall socket. (Price $8.89 if required.) Listed 2/76. Our Price, 9/8.

可转换电视天线

最大的螺旋组合Band I和Band III T.V. 天线。对于信号强的地区。可调节的匹配单元。插入标准同轴插座—例如直接插入电视机背面，或插入墙插座。(如果需要则价格$8.89) 列在2/76。我们的价格为9/8。

TV TUBES

FACTORY RE-VACUUMED. ALL GUARANTEED 6 MONTHS. Carriage and insurance $12.60. Refunds within 30 days. Customer to pay return post. Due to the high quality of our tubes and long normal life of our tubes, we wish to maintain the following unusually low prices.

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $2.50/15.

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $2.25.

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $2.00.

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $1.75.

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $1.50.

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $1.25.

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $1.00.

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 85C6, $0.75.

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 80S6B, $0.50.

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 689C, $0.35.

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $0.25.

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $0.15.

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $0.05.

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $0.00.

可转换电视管

工厂重新抽真空。全部保证6个月。送货和保险$12.60。30天内退款。由于我们的管子质量高，我们的管子寿命长，我们希望保持以下异常低价格。

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $2.50/15。

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $2.25。

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $2.00。

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $1.75。

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $1.50。

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $1.25。

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $1.00。

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 85C6, $0.75。

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 80S6B, $0.50。

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 689C, $0.35。

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $0.25。

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $0.15。

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $0.05。

2A3, 2A7, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, 2A7GT, $0.00。
TELEVISION SPARES

All Makes

All Models

By return of post

LINE OUTPUT TRANSFORMERS

FRAME OUTPUT TRANSFORMERS

DEFLECTOR COILS

LINE AND FRAME BLOCKING OSCILLATOR TRANSFORMERS

ALL POTENTIOMETER AND SLIDER CONTROLS

MAINS DROPPERS

METAL RECTIFIERS

GERMANIUM DIODES

FOCUS MAGNETS

ION TRAPS

E.H.T. CONDENSERS

Our Range of Spares is probably the most extensive in the country and includes all Spares for Tape Recorders, Radio and Record Player Units.

Technical Advice Free. Service Manuals supplied on loan.

Terms: C.W.O. or C.O.D. All Components are supplied at list prices, plus 2/6 p.p.

Please enclose S.A.E. with all enquiries.

NEWBURY RADIO

272, ROMFORD ROAD, FOREST GATE, LONDON, E.7. MARyland 3100

YOUR C.R.T. completely FACTORY REBUILT

New heater and Cathode assembly

COMPARE OUR PRICES

★ 12 in. £5.0.0 ★ 14 in. £6.0.0

(Money back if not completely satisfied)

★ 17 in. £7.7.0 ★ 21 in. £8.8.0

Carriage and Insurance add 12’6

All Mullard and Mazda Types Rebuilt—Fast Service

Send your Tube now—Terms C.W.O. or C.O.D.

KING’S TELE SERVICE CO.,

101-111, DAWES ROAD :: FULHAM, S.W.6
I've caught the hi-fi bug! Taking a little holiday from the TV set, I have invested in an ambitious array of pre-amplifiers, power amplifiers and loudspeakers which reproduce sound from VHF radio, magnetic tape, or discs with the finest possible clarity, realism and "presence." Of these descriptive adjectives, the last—"presence"—is the most important. Leaving my hi-fi speakers to visit a friend's house one night, I could hardly believe the degradation in sound quality that he was cheerfully accepting. To me it sounded woolly and distorted, utterly lacking in both presence and intelligibility. I had been "drugged" with good quality hi-fi sound—this was the other extreme.

Baffled!

It does seem to me that while the picture side of commercial television sets is steadily improving the sound side gets worse and worse. Utterly inadequate loudspeakers are pushed into the chassis, usually at the side, and many of the fundamental principles of good loudspeaker designs and housings are ignored. Of course, I realise that the most important factor in the choice of a television set by the man-in-the-street is the appearance of the cabinet, and that the shape which presents a large picture filling the entire front of the set has a big feminine appeal, for some reason or another. I think, however, it would be fairer to the males (who, after all, want to hear the football and racing results clearly) if external loudspeaker connections were provided as a standard facility. The husband who wanted to hear more clearly the words of some of the mumbling actors could then connect up his hi-fi loudspeaker set, complete with crossover network and tweeters. Separate loudspeakers are a very good idea, anyway, and they can be stood below and in front of the TV set.

Tape Progress

Surprising new facts are being revealed almost every week by users of video tape machines. Speaking at the Royal Society of Arts recently, Mr. T. C. Macnamara, Technical Controller of A-TV, told a British Kinetograph Society audience that it ought to be possible to get better quality telerecordings on film via an Ampex video tape machine than by direct tele-recording. He immediately followed up this assertion by showing excellent demonstration films, which supported his cautious forecast. Direct telerecording was a chance operation, he said, which sometimes gave very disappointing results through some slight discrepancy in any one of the seven or eight links of recording, printing and processing. Faults in early parts of the process are magnified in later stages. On the other hand, direct recording on to magnetic video tape immediately overcomes the first contrasts hazards, making possible a later transfer under less urgent and more controlled conditions, either direct into a reversal positive film, to a negative film (for transmission by phase reversal) or to a final positive print. Mr. Macnamara's paper was packed with valuable practical information and he was ably assisted by Mr. David Stiles, who is in charge of A-TV's Video Recording Department. In the discussion which followed the paper a large audience of technicians pried the speakers with questions. I have since heard of further possible uses to which the Ampex machine could be put. It is a proposal that 16 mm negative scenes could be transferred on to Ampex tape, for

The Postmaster General, The Rt. Hon. Ernest Marples, watching a videotape recording of himself opening the new extension to the Granada TV Centre in Manchester. In the foreground may be seen the very wide tape which is employed.
improved results in the subsequent "playing off" on the air. It seems that the machine (and amplifying equipment used with it) can be used for grading and generally levelling out the photographic qualities from shot to shot.

Programmes and Commercials in the U.S.A.

SENATOR JOHN MARSHALL BUTLER, a member of the Senate Commerce Committee in Washington, recently stated that "a great proportion of American TV programmes are not even second-rate—they are just plain trash." This is a pretty strong statement to make, which will surprise British viewers of the many American TV films shown by the BBC and I.T.A. organisations. However, it has been confirmed to me by three or four visitors returning recently from the U.S.A. that American TV is not always ahead of us. One of these disillusioned people was Paul Beeson, a well-known British film cameraman. "The quality that is tolerated by the public on the receiving sets is atrocious," he said. "My hotel-room set was in such bad shape that I phoned for room-service attention. A few minutes later, a radio engineer arrived to repair it. He took a glance at the picture and said—'Say, boss, it must 'a got right while I was on my way up in the elevator.' To him it looked O.K.!'" An actor from England noticed some fine new equipment in one of the studios. "If only we had equipment like that in the British television studios!" he said. A technician pointed to the labels—which had under the manufacturer's name the heartening words "Made in England."

Fred Karno TV

A NOTHER visitor, managing director of one of the new I.T.A. programme companies, described the happy-go-lucky methods of operation at some of the smaller American stations, resembling in many respects the combined efforts of Heath, Robinson and Fred Karno. "Nobody bothers very much and many of the operators are part-timers, whose principal source of income is from the local garage," he said. But the main grouse of American viewers themselves is the way in which commercial plugs are introduced into the sequences and action of programmes, a method which is far more annoying than the so-called "natural break" for advertising used over here by I.T.A.

As for the American programmes we see over here; these, I am told, are the very best—the few choice grains of wheat selected from many bushels of chaff. It seems that we can lift our heads fairly high on artistic, technical and organisational matters in TV. But we must give full credit for the fantastic evolution of the Ampex video tape system, world acceptance of which has resulted in the expansion of the Ampex factory at Redwood City, Cal., into a veritable city over a period of months.

"The Melody Dances"

BRIGHT and gay musical shows have become relatively commonplace on TV. In fact, there is a comparative embarrassment of riches in this particular department. I am happy to record appreciation of The Melody Dances, the streamlined musical and dance show starring Cyril Stapleton and his band. Producer Dicky Leeman carried this show through at a slick pace levelling a wide choice of dance orchestra close-ups with well-presented vocal numbers by Shirley Sands, Jo Shelton and Michael Desmond. There was also some delightful exhibition ballroom dancing by Brenda Winslade and Desmond Ellison and formation dancing by the Maurice Jay Dancers. All were cheerful, good-looking and splendid artists, even when viewed by this writer through the jaundiced eyes of approaching influenza. The Melody Dances may be routine stuff, but it is first-class of its type.

On the same evening one of the poorer episodes of that usually good, but never-ending Wagon Train followed. My germs had evidently thrived on the discordant musical background, so I gave up the struggle and went to bed! But I firmly believe that had it not been for The Melody Dances my flu would have been far worse! On the other hand, I like to kid myself that the flu would never have developed had I switched off after the last genial close-up of Cyril Stapleton before Wagon Train started.

"Land of Song"

IT is not very often that we in London see features from the smaller provincial programme companies or from the BBC's regional TV centres. Plenty of shows come from Manchester and Birmingham, but nothing much from elsewhere. It was, therefore, a great pleasure to see and hear TWW's "Land of Song" one recent Sunday. This was a well-conceived production, with excellently designed sets, first-class camerawork and a good general gloss and professional touch, which the smaller local stations rarely have the opportunity of attaining. Christopher Mercer directed this musical programme which took full advantage of the spacious 60ft. by 80ft. stage at Pontcanna Studios, Cardiff. It is a sensible, useful floor area and the clearance height to the girders is only 23ft. This is useful, too. Greater height clearances are wasteful for an all-purpose studio. The floor area gives plenty of space for sets which can be used and re-used only requiring refinishing and re-dressing. Small area stages are a mistake, constantly requiring sets to be built and struck to make space for new sets. Compliments to TWW and to Walter Kemp, their Technical Controller.
CONVERTER ACCESSORIES

Speaker, etc., ready to

BAND 3 T/V CONVERTER—180 Mc/s-205 Mc/s

C.R.T. Heater

Isolation Transformers

New Improved types—mains prim. 200/350 v. topped.

C.R.T. Heater

Isolation Transformers

New Improved types—mains prim. 200/350 v. topped.

RECORD PLAYER CABINETS

Contemporary, Japanese, or American-made consoles.

RECORD PLAYER BARGAINS

Single players 4-speed BSR (T19). £29.95.

RE-GUNNED TV TUBES

Genuine Offer

New Heater, Cathode and Gun Assembly can now be used on your old TV Set. Reconditioned virtually as new. Fully guaranteed to highest standards—as used by our own Service Dept. 12in. £8. 14in. £10.50 17in. £10.

SPECIAL OFFER

all 3 units

only £9.50 c.f.

RE-GUNNED TV TUBES

Genuine Offer

New Heater, Cathode and Gun Assembly can now be used on your old TV Set. Reconditioned virtually as new. Fully guaranteed to highest standards—as used by our own Service Dept. 12in. £8. 14in. £10.50 17in. £10.

SPECIAL OFFER

all 3 units

only £9.50 c.f.

RE-GUNNED TV TUBES

Genuine Offer

New Heater, Cathode and Gun Assembly can now be used on your old TV Set. Reconditioned virtually as new. Fully guaranteed to highest standards—as used by our own Service Dept. 12in. £8. 14in. £10.50 17in. £10.

SPECIAL OFFER

all 3 units

only £9.50 c.f.

RE-GUNNED TV TUBES

Genuine Offer

New Heater, Cathode and Gun Assembly can now be used on your old TV Set. Reconditioned virtually as new. Fully guaranteed to highest standards—as used by our own Service Dept. 12in. £8. 14in. £10.50 17in. £10.

SPECIAL OFFER

all 3 units

only £9.50 c.f.

RE-GUNNED TV TUBES

Genuine Offer

New Heater, Cathode and Gun Assembly can now be used on your old TV Set. Reconditioned virtually as new. Fully guaranteed to highest standards—as used by our own Service Dept. 12in. £8. 14in. £10.50 17in. £10.

SPECIAL OFFER

all 3 units

only £9.50 c.f.

RE-GUNNED TV TUBES

Genuine Offer

New Heater, Cathode and Gun Assembly can now be used on your old TV Set. Reconditioned virtually as new. Fully guaranteed to highest standards—as used by our own Service Dept. 12in. £8. 14in. £10.50 17in. £10.

SPECIAL OFFER

all 3 units

only £9.50 c.f.

RE-GUNNED TV TUBES

Genuine Offer

New Heater, Cathode and Gun Assembly can now be used on your old TV Set. Reconditioned virtually as new. Fully guaranteed to highest standards—as used by our own Service Dept. 12in. £8. 14in. £10.50 17in. £10.

SPECIAL OFFER

all 3 units

only £9.50 c.f.

RE-GUNNED TV TUBES

Genuine Offer

New Heater, Cathode and Gun Assembly can now be used on your old TV Set. Reconditioned virtually as new. Fully guaranteed to highest standards—as used by our own Service Dept. 12in. £8. 14in. £10.50 17in. £10.

SPECIAL OFFER

all 3 units

only £9.50 c.f.

RE-GUNNED TV TUBES

Genuine Offer

New Heater, Cathode and Gun Assembly can now be used on your old TV Set. Reconditioned virtually as new. Fully guaranteed to highest standards—as used by our own Service Dept. 12in. £8. 14in. £10.50 17in. £10.

SPECIAL OFFER

all 3 units

only £9.50 c.f.

RE-GUNNED TV TUBES

Genuine Offer

New Heater, Cathode and Gun Assembly can now be used on your old TV Set. Reconditioned virtually as new. Fully guaranteed to highest standards—as used by our own Service Dept. 12in. £8. 14in. £10.50 17in. £10.

SPECIAL OFFER

all 3 units

only £9.50 c.f.

RE-GUNNED TV TUBES

Genuine Offer

New Heater, Cathode and Gun Assembly can now be used on your old TV Set. Reconditioned virtually as new. Fully guaranteed to highest standards—as used by our own Service Dept. 12in. £8. 14in. £10.50 17in. £10.

SPECIAL OFFER

all 3 units

only £9.50 c.f.

RE-GUNNED TV TUBES

Genuine Offer

New Heater, Cathode and Gun Assembly can now be used on your old TV Set. Reconditioned virtually as new. Fully guaranteed to highest standards—as used by our own Service Dept. 12in. £8. 14in. £10.50 17in. £10.

SPECIAL OFFER

all 3 units

only £9.50 c.f.

RE-GUNNED TV TUBES

Genuine Offer

New Heater, Cathode and Gun Assembly can now be used on your old TV Set. Reconditioned virtually as new. Fully guaranteed to highest standards—as used by our own Service Dept. 12in. £8. 14in. £10.50 17in. £10.

SPECIAL OFFER

all 3 units

only £9.50 c.f.

RE-GUNNED TV TUBES

Genuine Offer

New Heater, Cathode and Gun Assembly can now be used on your old TV Set. Reconditioned virtually as new. Fully guaranteed to highest standards—as used by our own Service Dept. 12in. £8. 14in. £10.50 17in. £10.

SPECIAL OFFER

all 3 units

only £9.50 c.f.

RE-GUNNED TV TUBES

Genuine Offer

New Heater, Cathode and Gun Assembly can now be used on your old TV Set. Reconditioned virtually as new. Fully guaranteed to highest standards—as used by our own Service Dept. 12in. £8. 14in. £10.50 17in. £10.

SPECIAL OFFER

all 3 units

only £9.50 c.f.

RE-GUNNED TV TUBES

Genuine Offer

New Heater, Cathode and Gun Assembly can now be used on your old TV Set. Reconditioned virtually as new. Fully guaranteed to highest standards—as used by our own Service Dept. 12in. £8. 14in. £10.50 17in. £10.

SPECIAL OFFER

all 3 units

only £9.50 c.f.

RE-GUNNED TV TUBES

Genuine Offer

New Heater, Cathode and Gun Assembly can now be used on your old TV Set. Reconditioned virtually as new. Fully guaranteed to highest standards—as used by our own Service Dept. 12in. £8. 14in. £10.50 17in. £10.

SPECIAL OFFER

all 3 units

only £9.50 c.f.

RE-GUNNED TV TUBES

Genuine Offer

New Heater, Cathode and Gun Assembly can now be used on your old TV Set. Reconditioned virtually as new. Fully guaranteed to highest standards—as used by our own Service Dept. 12in. £8. 14in. £10.50 17in. £10.

SPECIAL OFFER

all 3 units

only £9.50 c.f.

RE-GUNNED TV TUBES

Genuine Offer

New Heater, Cathode and Gun Assembly can now be used on your old TV Set. Reconditioned virtually as new. Fully guaranteed to highest standards—as used by our own Service Dept. 12in. £8. 14in. £10.50 17in. £10.

SPECIAL OFFER

all 3 units

only £9.50 c.f.
If you are faced with the problem of a failing cathode ray television tube write now for details and prices of Midland's unique rebuilding service. We can completely regun, rebuild and return your own tube to you within 72 hours—guaranteed for seven months from the date of the invoice.

In addition we are able to offer you from stock, rebuilt TV tubes of all sizes at remarkably low cost (inc. P.T.). These tubes are fitted with new Gun Units and are covered by the same comprehensive guarantee.

FOR COMPLETE INFORMATION PLEASE CONTACT:

MIDLAND TUBES LTD.

37 GEORGE STREET, MANCHESTER, 1. Telephone: CEN. 4568

Now...in your own home, LEARN

RADIO - TELEVISION - ELECTRONICS

"The trained electronics engineer has a great career ahead of him."

Valuable FREE Book shows how E.M.I. Institutes' School of Electronics can train you for today's wonderful opportunities.

Radio, Television and Electronics provide an exciting field for the trained man—high pay, a prosperous future—or if you prefer it—Independence in your own business. If you are trained at home by E.M.I. you will be in the hands of specialists who know the quickest way to prepare you for one of the fine jobs open to trained electronics-men. Whether you are a beginner or an advanced student with an examination in mind, E.M.I. Institutes' School of Electronics has a Course exactly suited to your needs—with or without practical equipment—from electricity and magnetism to automation techniques.

FREE BOOK! POST NOW!

Please send me a free copy of your Guide to Careers in Electronics.

NAME

ADDRESS

Subject or Exam

E.M.I. INSTITUTES

SCHOOL OF ELECTRONICS

The Specialist Electronics Division of the British Institute of Engineering Technology.

(DEPT. SE/20), COLLEGE HOUSE, 29-31, WRIGHT'S LANE, KENSINGTON, LONDON, W.8.
COLOUR TELEVISION

SIR,—Compatibility is a term we have come to associate with lack of progress in the field of Colour Television. Because of this rather naive desire to progress and stand still at the same time, a situation has arisen which is both frustrating and downright stupid.

With colour television we had a chance to dispense with silly conventions and give the public a really high definition picture in full colour. But what do we do? We shackle ourselves by clinging to the old out-of-date 405 line system: we add enormously to the time and money spent on development work by trying to ensure that people with black and white receivers also get pictures from the colour transmitter. One wonders if the old low-definition television were still in existence whether the colour experts would be making provision for it as well!

Colour television cannot develop fully until it is completely divorced from its black and white counterpart. As the theatre and cinema have developed side by side for years past, so must these two mediums of television be allowed to develop along their own channels. One medium may eventually disappear but this is the price of progress! One thing is certain. No real progress will be achieved until we have dispensed with this idea of "compatibility."—R. D. COYLE (Harrington).

AERIAL RESULTS

SIR.—On page 116 of PRACTICAL TELEVISION, October, 1958, issue, reference is made to a Band III aerial described in the June, 1957, issue. I made this aerial at the time but could only get sound. After much experiment I found the dimensions given were wrong for Channel 9 which the author claimed to be receiving. So in order to remedy this, I remade the aerial to the correct dimensions and at once got a trace of picture. I then made a duplicate array for use in parallel and got slightly better results. However, the final aerial which gave me a good picture was by removing the two folded dipoles and replacing them with a skeleton slot as described in another issue of PRACTICAL TELEVISION. With this I used a thin mesh galvanised wire netting reflector.

I have now no need of this loft array; with the opening of Chillerton Down on Channel 11 a normal six-element array suffices. Nevertheless, I think it quite an achievement to receive Channel 9 with a loft aerial at this distance. I can well imagine after my better reception with a slot aerial that the quad aerial described in recent issues must be very effective for fringe area reception of Band III. I use an inverted Tee loft aerial for Band I. This gives me the choice of Channels 1, 2 and 3.—A. W. Lyon (Worthing).

RECEIVER DESIGN

SIR.—It seems to my way of thinking that most designers have thrown away many refinements which would ensure the viewer better viewing such as line flywheel sync.

Recently a well-known organisation brought out the "Syncroguide" system which I should imagine would be economical to produce and could be included in every make of TV as it is designed around a single valve of the double triode variety, but some made one run with this facility and then they have reverted back to the blocking oscillator or multivibrator systems, which, I should think, are just as costly to produce as the "Syncroguide" system.

I would sooner pay the extra pound or two for a receiver with an efficient A.G.C. system and flywheel sync, rather than pay less for the old style receiver.

When shall we be able to purchase a receiver with these refinements cheaper than they are being sold today?—F. MALPASS (Hednesford).

UNUSUAL PHENOMENON

SIR.—I recently came across the following phenomenon. On fitting a Band III converter unit to my TV receiver a strong interference pattern persisted on the ITV signal even after careful and accurate adjustment of the converter tuned circuits. Various methods such as wave traps, etc., proved to be of no avail. On checking the leads connecting the aerial to the R.F. amplifier, it was found that an unscreened lead had been used. These, surprisingly enough, were the original leads used by the manufacturer. This ran from the aerial input terminals from the back of the receiver for a distance of about 15in. along the right-hand side of the set to the R.F. end in front. The strong Channel I signal was being picked up by this lead and hence causing the strong interference pattern on the screen. Replacement of this lead by a short length of standard 72/1 coaxial soldered direct to the coupling coil eliminated this interference completely and now an excellent interference-free picture is obtained.

May I take this opportunity of thanking you for an excellent and informative monthly magazine.—P. E. PERERA (London).

SPECIAL NOTE

Will readers please note that we are unable to supply Service Sheets or Circuits of ex-government apparatus, or of proprietary makes of commercial receivers. We regret that we are also unable to publish letters from readers seeking a source of supply of such apparatus.

I would sooner pay the extra pound or two for a receiver with an efficient A.G.C. system and flywheel sync, rather than pay less for the old style receiver.

When shall we be able to purchase a receiver with these refinements cheaper than they are being sold today?—F. MALPASS (Hednesford).

REFRESHER COURSE IN MATHEMATICS

8/6, by post 9/9. 5th Edition. By F. J. CAMM From GEORGE NEWNES, LTD.

Tower House, Southampton Street, Strand, W.C.2
H.M.V. 3807

I intend to fit a turret tuner to my receiver. I will dispense with the first stage R.F. (Z77), making the X78 the first stage. Will the RFT1 aerial input at present serve as an input coil from tuner to the new I.F. stage? If not, can I make an input coil to suit this purpose? I realise I have upset the heater chain by this modification. How can I check and adjust to get this heater line correct? I have a good multimeter.—N. Parry (Liverpool, 8).

Inject tuner output to pin 2 of V2 (X78), removing .001 µF, and 220 kΩ resistor, wiring a 100 Ω resistor in place of the latter. Remove connections to pins 6 and 7 and connect these pins to 3. Derive heater H.T. from pin 7 of V1 and tuner heaters from pins 3 and 4 of V1. Set voltage adjustment from 5 to 4 or 4 to 3.

Ecko TC209

I have had the above set for three years and the picture is perfect except that it has been slowly dimming until daylight viewing is now almost impossible and the sound has lost some of its volume.

I thought that if I renewed the rectifiers and boosted the tube it would help. If you agree with me please tell which valves to change and how to boost the information and any other information. I did try moving the mains tapping from 240 v. to 230 v. and it gave quite an improvement though not enough to bring the set up to standard.—R. Soubritts (Wembley).

The H.T. rectifier is the metal Automat TV5 which is along the front of the chassis, and which is unlikely to be faulty. We suggest you first try boosting your tube using a 13 volt low capacity C.R.T. transformer. Connect the secondary to pins 1 and 12 of the tube having previously removed and shorted the orange and yellow wires. Mains for the transformer may be taken from between chassis and voltage flylead A. taking this latter wire via the spare set of contacts on the F.M./TV switch so that it is disconnected on F.M. Voltage flyleads C and D must be set to the tapping correct for 10 volts higher (i.e., to 250 v. from 240 v.) to compensate for the absence of the tube from the heater chain.

PYE V4—BBC ONLY

My set is five years old and the picture is very good except for a 3in. strip on the left-hand side of the screen which is quite dark. On increasing brightness it becomes milky and the rest of the picture lacks contrast. On increasing contrast the picture becomes silvered or negative. Could you please tell me, in simple terms, what may be the cause of this as I would like to repair it myself if possible.

Also could you please suggest a suitable converter or turret tuner which would be simple and easy to fit?—D. Graham (Glasgow 8.5).

Your shading is probably due to an open circuit bias condenser 25 µF 25 v. between the cathode of the PL81 and chassis. We suggest you use a Clydon P16H turret tuner on your set.

Cossor 933A

The picture is very dark. Advancing the brightness control just brightens the raster and removes the picture; advancing the contrast control makes the picture break up.

Voltages around the tube base, taken on the 500 volts range of a Universal Avominor, show first anode 240 v.; cathode 180 v.; grid 0-50 vols, relative to chassis. I have tried increasing the grid voltage to a maximum of 120 volts, without satisfactory results, also lowering first anode volts.

The set failed when I first had it, and a service engineer took it away saying the tube had failed. I returned it to me with an old tube fitted, which, he said, should last for a while. After a few months the set failed again and I assumed it to be the tube, so I obtained a rebuilt tube and fixed it into the set according to instructions I read in "Practical Television," with the results that I have already mentioned—i.e., very dark picture. The picture is quite normal in all other respects.—A. Palmer (Rotherham).

You describe all the symptoms of yet another faulty C.R.T. We suggest that you first check the ion-trap magnet, which may have lost some of its strength or may have slipped, and the 6Bx6 video amplifier which is on the lower deck adjacent to the video plug and socket. This valve may be exchanged with one in the sound I.F. strip as a quick check.

EHT DISCHARGER

I have been asked on several occasions to examine television receivers, but am dubious about handling the EHT circuits, as I have read of test prods disintegrating. Could you suggest a tool for discharging the EHT condenser with particular reference to suitable insulators.—R. Dent (Newcastle).

A simple tool to discharge EHT lines can be constructed from a length of flexible insulated wire (2ft. of cox inner) with a crocodile clip for (Continued on page 525)
OUR SUPER T/V TUBE FACTORY £20,000 PLANT WILL RECONDITION YOUR OWN TUBE £2 - 10s.–7 Months’ Guarantee

OR COMPLETELY REBUILT AS NEW WITH 12 Months’ Guarantee

QUOTATIONS BY RETURN

Example - - 17in. £7 - 10s.

- OTHERS PRO RATA

Free packing

EXPRESS ELECTRONIC AND CONSTRUCTION CO., LTD.
281 Parliamentary Road, Glasgow, C.4

Bel. 4569

RST

MAIL ORDER DEPARTMENT
211 Streatham Road, Mitcham, Surrey.

ALL VALUES LISTED ARE NEW STOCK
• Terms C.W.O. or C.O.D. Postage 3d. per value.

MITCHAM 8201.

<table>
<thead>
<tr>
<th>Value</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10y</td>
<td>EF70</td>
<td>£6.25</td>
</tr>
<tr>
<td>15y</td>
<td>EF93</td>
<td>£9.90</td>
</tr>
<tr>
<td>20y</td>
<td>EF73</td>
<td>£15.90</td>
</tr>
<tr>
<td>25y</td>
<td>EF72</td>
<td>£19.90</td>
</tr>
<tr>
<td>30y</td>
<td>EF93</td>
<td>£24.90</td>
</tr>
<tr>
<td>40y</td>
<td>EF72</td>
<td>£34.90</td>
</tr>
</tbody>
</table>

SIGNAL GENERATOR

Compact with crystal Mike and 6" Loudspeaker A.C. Mains 240/50 v. Size 9 1/2" x 6 1/2" x 1 1/2" Incorporating 5 valves, R.F. pen., 2 diodes, 2 output pens., and rectifier. For use with all makes and types of pick-up and mike. Negative feedback. Two inputs, mike and gram, and controls for same. Separate controls for Base and Treble III. For use with std. or L.P. records, musical instruments such as Guitars, etc.

£24.19.6

FAMOUS MAKE

"TELETUNER"

Covers all Channels, Bands I and III. Valves used: PCC84, R.F. valve, etc. 200 Mc/s. or more. Metal case 9" x 6 1/4" x 1 1/2" grey hammer finish. Incorporating three miniature valves and Metal Rectifier. A.C. Mains 200/250. Internal Modulation of 400 c.p.s. to a depth of 30%\% modulated on internally and 86.19.6 plus P.

25/6 knobs 3/6 per set extra.

SIGNAL & PATTERN GENERATOR

AC/DC POCKET MULTI-METER KIT

Comprising 2in. moving coil meter scale calibrated in AC/DC volts, ohms and milli-amps. Voltage range AC/DC 0-50, 0-100, 0-250, 0-500, milli-amps 0-10, 0-100. Ohms range 0-10,000. Front panel, range switch, wire-wound pot (for ohms zero setting), toggle switch, rectifiers and meter. Basic movement 2 mA. In grey hammer finished case.

£9.6.6

Point to point wiring diagram 1/-, free with kit.

13 CHANNEL TUNER

34-35 Mc/s. Complete with PCF80 & PCC84. These have been removed from chassis.

RADIO & T.V. COMPONENTS (Acton) LTD.
23, HIGH STREET, ACTON, LONDON, W.3.

All enquiries S.A.E. GOODS NOT DESPATCHED OUTSIDE U.K.
• ADVISORY SERVICE
We offer a complete before and after sales service. Our advice is ALWAYS available and freely given, BUYING or NOT!
Whether expert or novice, let our extensive experience ensure your success.

• AERIALS
An even wider range. We select the ever popular I.T.V. add-ons to illustrate our bargains.
5 ELEMENT: Complete with universal clamp and stand-off arm. Still unbeatable, 39/-6. Also at 45/-.
8 ELEMENT. As above, 51/-6. Also at 62/-6.
Easifix. All aerials pre-assembled and collapsed for transit. Easily fixed. All single aerials can be modified to "double" arrays if desired.

Taketex.nl! DO be careful on the roof. DON'T wear crêpe soles in wet weather. (Better still, wait for good weather.)
NOTE. - Efficiency and gain of aerials depends on number of elements, spacing, etc., and rarely varies with Price which concerns finish, long-term durability and patent assembly methods. DO write us for aerial advice if in doubt.

• CABLE & ACCESSORIES
CO-AXIAL. Hi-grade, low loss, suitable all normal purposes. Expanded polythene type. 8d. per yd. any length.
SEMI-ARSPACED. A "must" for long runs in fringe areas. (Don't spoil the ship," etc.) 1/6 per yd. any length.
DIPLEXERS (junction boxes). Indoor type, 10/-6. Outdoor type, 13/-6.
IF-IN-DOUBT. Use a separate downlead for I.T.V. with a skirting board "diplexer" if necessary.

• TURRET TUNERS
SUCCESSFUL! We have received very appreciative letters. Our supplementary advice ensures success.

• CONVERTERS (external)
6£ 19.6. Accessories, 7/-6. Our external converter gives the very simplest conversion to I.T.V.
Handsome appearance. Easifix (in fact, dead easifix!). Place on top of T.V. and connect up as per our instructions.
Efficient. 2 valve circuit. Best on the market at its price. Definitely superior to the cheap 1 valve efforts.

• AMPLIFIER KITS
Our DO-IT-YOURSELF amplifiers. After exhaustive tests we have selected the famous Cosson 562XX.
Definitely the job for novice or expert. Not a "lash-up" but the real thing. OUR SUPPLEMENTARY ADVICE ensures success.
Printed circuit technique giving Hi-Fi 3 watts output Twin Loudspeakers. Suitable all inputs. Illustrated step-by-step advice, Everything except the cabinet! £15.10 x tax paid.

• RADIO KITS (F.M./V.H.F.)
Our DO-IT-YOURSELF radio. Again, after many tests, we have selected the famous Cosson 701K.
10in. Elliptical loudspeaker. Illustrated construction manual plus our Supplementary Advice, £15.15 x tax paid.

• VALVE KITS FOR YOUR TV
Save hours of faultfinding. Clear 90% faults. One off, each type. Guaranteed valves (all set-tested).
Complete with TV Fault-finding Guide and advice on your TV. Standard Kits: £5.00 post free. (If non-standard, favourable quote by return.) Why pay repair bills? (State make and model number.)

• TERMS OF BUSINESS
Cash with order or C.O.D. (2/6 extra).
Extended credit on more expensive items. Write to us in confidence.
If in doubt or if needing advice WRITE US FIRST.

WILSON
48, CATHAY, BRISTOL, 1.
TEL. 57019 or 26242.

Quality in Tubes
FOR VALUE IN REBUILT TELEVISION TUBES SAY

VIDIO

Alternatively we can rebuild your own tube and return it to you in 72 hours—backed by a 7 months' guarantee from the invoice date. Remember it's VIDIO for VALUE. Write or call for full details.

VIDIO REPLACEMENT CO.
Hale St., Deptford High St., London, S.E.8.
Telephone, TIDEWAY 4501

DO-IT-YOURSELF TRAINING TECHNIQUE

in RADIO & ELECTRONICS

You Learn While You Build.

Announcing—after years of successful operation in other countries—the latest system in home training in electronics introduced by a new British training organisation.
At last—a simple way of learning—by practical means—the "how and why" of electronics with the minimum of theory and no mathematics!
You learn whilst building actual equipment with the components and parts which we send you—and you really have fun whilst learning! And afterwards—you have a first rate piece of home equipment plus the knowledge of how it works and how it can be serviced.
This new system brings an exciting new opportunity and is very moderate in cost. Post the coupon now without any obligation for full details.

Build Your Own: Radio Equipment—Hi-Fi Installation+ Test Gear. And Learn as You Do It.
LOTS OF INSTRUCTIVE EXPERIMENTS AT HOME!
Post coupon now for FREE BROCHURE!

To: RADIOSTRUCTOR
(Dept G29), 46, Market Place, Reading, Berks.

Please send full details of your Radio Equipment Courses without any obligation to:

Name ...
Address ...

(Dept. G29) (May/59)
connection to chassis at one end and a 10 meg 1 watt resistor at the other. This resistor can be housed in the front end of an insulated sleeve to provide a probe and an empty ball pen case may be used in this respect. Always discharge EHT points more than once, as they charge themselves up again from the C.R.T. glass charge.

PYE 18T

The fault is a click from the loudspeaker plus an immediate darkening of the picture. There is no change to either the focus or size of picture. During the few minutes immediately following this disturbance the picture gradually increases in brilliance until it is back to normal conditions. The fault is of an intermittent nature and may not always occur. The tube was recently repaired, but as the set belongs to my sister I do not know whether the fault was in existence before the repair or whether it is a fault in the tube.—R. J. Lean (Cambridge).

The usual cause of your fault is dirty valve pins or faulty decoupling in the vision R.F. stages. We suggest that as a first check you exchange the vision and sound EF50 valves and notice if the fault transfers itself, then progressively bridge each decoupler in the circuit in turn with a good .0015 µF ceramic condenser.

STELLA TYPE ST.1480U

I should be glad if you would assist me in finding a fault which has developed. There is no resistance visible at any setting of the brilliance control and the line whistle seems to be absent. The valves UL44 and UY41 have been tested and are O.K. A resistance check between the anode cap of the UL44 and the anode of one of the EHT rectifiers shows only 10 Ω. The sound is perfect.—J. P. Batty (Beverley, Yorks).

The symptoms are typical of a defective line output transformer and this should be replaced. However, check the small electrolytic capacitor associated with the UY41 cathode as this could be open circuited.

PHILCO 1551

I should be pleased if you could help me find the fault in my 12in. table model TV. I have a perfectly good picture, but down the left-hand side of the screen there are bands of black and white running vertically and covering about one-fifth of the screen horizontally. This gives the impression of a folded curtain, but one through which the picture can be seen, although distorted. When the brilliance control is advanced to maximum, image reversal takes place—this I take to be a failing tube, for which I have fitted a booster transformer with very little effect.—P. Towell (Hartlepool).

Two .001 µF capacitors are wired across the line scanning coils in series. A variable trimmer is wired from the junction of these to the C.R.T. grid. Check these components.

FERGUSON 992

This is a five-channel set which has been converted to ITV, with a Ferguson tuner unit. I installed this second-hand set for a friend in the Midland region, the channels being 4 and 8. The picture on BBC was perfect for a few days, but then it became distorted as though water was flowing across the screen from left to right. Sometimes it would settle and the picture would be perfect, but when I turned the horizontal lock control the picture would break up again. The ITV picture is very poor and it will not lock. I used a combined chimney aerial, made by Antiference. Could you please inform me what would cause these troubles, also if I can remove the Ferguson tuner unit without interfering with the BBC on Channel 4?—A. McGarry (Reading).

Ensure that the BBC is correctly tuned by means of the rear right side station tuner. Tune the required ITV programme in by adjusting the three nuts on the switch spindle so that they depress the tuning pedals (which actuate the coil cores of the tuner unit). Depress these pedals by hand, all together until sound is heard, adjust nuts to bring pedals to this point. Check the vision EF80 valves and the crystal diode vision detector (inside final 1.F. coil can).

PYE BV20

I wish to replace the 100 + 50 µF condenser. This is a 280 v. working electrolytic and I have one which is a 350 v. working. 64-120 µF. Will this do in its place? What effect will the change make?—D. Cole (Coventry).

You should not notice any difference by replacing your condenser by the one you suggest. Be sure and put the 64 µF section nearest the rectifier.

PYE MODEL V4

Sound is O.K. but there is no raster and no whistle. On removing chassis I found no EHT also EHT rectifier (EYS1) failed to light up. I then found that the 500 mA fuse was blown and the anode connecting wire to the top of PY81 was off (looked like melted solder connection between wire and clip). After renewing fuse I made a temporary connection of the PY81 anode and immediately the sound dropped and distorted and the PY81 anode glowed red. This was repeated with the same results. This also caused a resistor coupled from PY81 to PL81 to heat up but I don't think the resistor is at fault. I suspect the line output transformer or scanning coils may be short circuited but have no means of checking this, furthermore I have no service sheet.—R. M. Earle (Northallerton).

We suggest you try and isolate your fault as follows:—Run the set with PL81 top cap connection removed. If PY81 (assumed to be O.K.) still glows suspect line transformer or scan coils. Remove line scan coil feed (screened and pink wires at tag strip beneath scan coils). If this cools the PY81 down replace the scan coils. If it does not, replace the screened lead. If the PY81 still overheats replace the transformer.

PYE RTL/17 CONTINENTAL

Could you tell me what is wrong with the above set which is 16 months old. There is no picture (or raster) and no sound. On shorting heater pins on tube MW43/69 sound is heard and there are blue flashes in the tube gun. A distinct
pinging sound can be heard, which becomes louder when the volume is turned up. I was wondering if it was a short in the tube heater and, if so, would an isolating transformer be of any use?—E. Skade (Manchester).

We would say that your tube has an open-circuited heater and is most probably soft. If this is the case, the fitting of an isolating transformer will be of no assistance.

EKCO T161

My set gives an excellent picture though it is slightly cramped up at the bottom with the lines wider apart at the top. The trouble is that the picture will keep rolling. If I reset the vertical hold, it will be O.K. for a few minutes then roll the other way, and so on, up and down all evening. The vertical hold is central but very critical for position. I have changed the 201.1 and the .25 µF condenser on the chassis without effect.—H. R. Webb (Cambridge).

We advise you to replace the Q3/4 metal interlace rectifier which is situated alongside the frame blocking oscillator transformer and is coded orange-yellow. This should restore your hold, but may still leave a distorted scan. If so, suspect also the 6L18 frame output valve.

BUSH TV24C

This set works quite normally on Band I. When the set is switched over to Band III it works normally for about an hour, then horizontal bands of light flash across the screen. These bands of light move in rapid succession from the top to the bottom of the screen and are accompanied by a crackling in the loudspeaker. If I switch back to Band I it sometimes eliminates the flashing on Band III for about half an hour. Other times the flashing will go off itself for a period. I can tune the cracking out with the loss of sound, but then the bands turn from white to black.—R. Griffiths (Shiremoor, Northumberland).

You should remove the bottom cover of the tuner unit and thoroughly clean the switch contacts. Try the receiver again. If it is still defective, check the PCF80 valve and associated components.

MURPHY 202C

I have recently added an Aerialite converter for Channels 5 and 8, to my set, which gives good results but with a certain amount of patterning. My main problem, however, is that once or twice during viewing, the picture has gone opaque for a second and then restored itself to normal again. The contrast control is right back almost to its stop and if advanced much the picture is too brilliant and the figures stretch vertically. Can you indicate the faulty component, please?—C. Firth (Co. Durham).

Your symptoms are those of a heater-cathode short in the tube. This may be overcome by the fitting of a low capacity isolating transformer to the heaters. This will take the place of the existing 2 volt supply to the heater pins (1 and 12) and mains supplies for its primary should be derived from the set side of the on-off switch.

RE FERGUSON 984T

I have the service sheet and alignment instructions for the above set, but these instructions state that the 2 mA range of an Avo Model 7 should be used for vision alignment, in conjunction with a potentiometer, etc.

I wish to use my Avo Multiminor for this, but this meter has no 2 mA range. Could you please let me know what range I can use on my meter and what difference this will make to the potential value, etc.—A. Simester (Bournemouth).

It is not unduly critical which millamp range is used for reading the signal current as this is really only for comparison purposes. A voltmeter across the video anode load resistor would serve. The degree of deflection or indication of variation is what is required provided the total resistance exceeds 50 kΩ.

H.M.V. 381T

Kindly give me a clue as to what to look for (and where) to cure a slow downward roll on my set. This model is the Northern model, but it has been converted to Rowridge and Chillerton, with a Brayhead.

The vertical hold is fully to the left when facing the open back of the set, and at one point when moving it to the right, a bright bar of light with the picture superimposed on top of it, appears, accompanied by considerable narrowing.—John M. Welchman (Ventnor).

We would suggest that you replace the 25 kΩ pot. (vert. hold) and also the 2.2 MΩ resistor (red-red-green) situated under the flat type capacitor on the long tag strip (yellow lead) near the Z83-B36 valve bases.

FERGUSON 996T

I require to change the EY51 on my set. As it looks rather a complicated business owing to the restricted space, may I ask your advice regarding its removal and replacement.—J. Mulholland (Glasgow).

Pull off front knobs, remove bottom panel and pull out speaker leads from sockets. Remove bottom chassis fixing screws and slide out chassis. Remove tube base socket and ion trap magnet. Remove EHT cap from side of tube, release tube front clamping band and carefully remove tube. Unscrew P.K. screws from metal case covering EY51 box and lift lid. Remove EY51 and solder the new valve into position, having cut the leads to the right size and make connections with well rounded blobs of solder.

QUERIES COUPON

This coupon is available until MAY 22nd, 1959, and must accompany all Queries sent in accord with the notice on page 522.

PRACTICAL TELEVISION, MAY, 1959.
NEW-MAX ELECTRONICS
220 Edgware Road, London, W.2.
For London’s finest Bargains in electronics, television and radio equipment.

LARGE SELECTION OF TAPE RECORDER PARTS ALL GUARANTEED.

- FRUSTRATED EXPORT ORDER.
- INSULATING TAPES/VINYL COIL
- FRAME OUTPUT TRANSFORMER

E200 Official Guide to London's Finest and Best

P.P. COMPONENTS LTD.
(Dept. T.4.), 219, ILFORD LANE, ILFORD, ESSEX. Tel: IIF. 0295

TIME TUNER 6/14/6 12 channel tuner. Suitable for above. Tunable to 9.5 mc/s. 1/2s. Post FREE.

TIME BASE 7/9 As above, with aluminium chassis. P. & P. 3/6 (latest type).

POWER PACK & AMPLIFIER 19/4 Output stage 6W6 with O.P. Trans. Smoother H.T. @ 325 v., 250 ma/s, 6.3 v. @ 5 amp, 22 v. @ 3 amp, and H.T. centre tapped. Less valves. Not tested. Carr. 5/6.

T.V. SLIDER CONTROLS 5/- 5 m. for tube 5K, 10K and 25K. Complete with knobs. P. & P. 1/-.

V.TV STRIPES
- GUARANTEED.
- 65171.m.
- 61m.

T.V. AERIALS 25/6 For all I.T.A. channels, including Channel II. For outdoor or roof top 3 elements. Sold half normal price. P. & P. 2/6.

T.V. AERIALS 7/9 FITTED WITH F.T. COAX. Cable. Suitable for door roof or loft aerial. Price may be supplied at 64. yd. P. & P. 1/3.

AR AERIALS 4/9 Plated. Strip whip antennae. 50 ta. long. Collapsing to 1½ in. Complete with fixing. P. & P. 1/-

Send 3d. stamp for catalogue.

REGRET U.K. ONLY.

8/-, P.M. SPEAKERS
A bargain offer but limited quantities of these modern type speakers. All tested and Manor Back Guarantee. They have a slight cone fault which is repaired and not affecting the quality. P. & P. on 1/2/6; on 2/6. Also 8/- P.M. Speakers 8/9. An ideal gift if fitted in small cabinet, complete with O.P. Transformer fitted, 10/-, P. & P. 2/9.

RESISTORS
- 4d. per Doz.
- 270 K ohms. 1 watt. Post on doz. 6d.; on post 4, 1/-. On post 10 doz. 1/-.

VOLUME CONTROLS

VISCONAL CONDENSERS, 5/-, 0.001 u.f.

SOLDER REELS, 1/6d. 20ft. 3-core ERSIN solder. 60/40. P. & P. 4d.

INSULATING TAPE, 1/6d. Finest quality tape. 75ft. x ½ in. wide. In sealed metal tins. Post on 1 tin 9d., on 6 tins 2/-.
EDUCATIONAL

"HOW AND WHY" of Radio and Electronics made easy by a new non-maths, practical way. Postal Instruction based on hosts of experiments and studies. Sending card at home. New Courses bring enjoyment as well as knowledge of this fascinating subject. Free brochure from Dept. P.T.12, RADIOSTRUCTOR, 46. Market Place, Reading, Berks.

INCORPORATED Practical Radio Engineers construction study courses of radio and T.V. engineering are recognised by the trade as outstanding and authoritative. Moderate fees to a limited number of students only. Syllabus of Instructional Text free. "The Practical Radio Engineer," journal, sample copy 2/-. 6,000 Alignment. Peaks for Superhets. 5/9. Membership and Entry Conditions booklet 1/-; all post free from the SECRETARY, L.P.R.E., 20, Fairfield Road, London. N.8.

STUDY RADIO, TELEVISION, AND ELECTRONICS with the world's largest home study organisation—IDT. Lists the new, the non-christ and for those seeking examination qualification. Brit.I.R.E., City and Guilds, etc. lists. Build your own equipment with Practical Radio Course. Write today for free INTERNATIONAL CORRESPONDENCE SCHOOLS, 71, Kingsway (Dept. 5161, London, W.C.2)

BUILD YOUR OWN HI-FI at home! At last, for reasonable cost—the chance to own your own quality Hi-Fi Audio Equipment and to gain the knowledge to service and maintain it. Free brochure from: Dept. P.T.12, RADIOSTRUCTOR, 46. Market Place. Reading, Berks.

MATHEMATICS, Physics, Electronics courses for G.C.E. etc. Grammar School Education not required. From 6/- weekly. Write: SENIOR TUTOR, Tutorials, 200, Buchanan St., Glasgow.

SETS & COMPONENTS

COMPONENTS, Valves, Tubes, etc. For Valley Stores, AGON TELEVISION, 4, Maxted Rd, Peckham, S.E.15. (New Cross 7152.)

TELEVISION BARGAINS, 12ln. from £9, 14ln. from £18, 17ln. from £25. TYLER TELEVISION, 63, Lea High Rd., Lewisham, S.E.13. (Lee 5979.)

TELEVISION TUBES

NEW TV Tubes, BVA Manufacture.

12ln. Tridode from —— £3.00
10ln. ———— £2.50
8ln. ———— £2.00
12ln. MW types ———— £1.10
14ln. MW types ———— £1.10
17ln. MW & CR types ———— £1.20
FACTORY REBUILT. 12ln. MW types ———— £6.10
14ln. MW types ———— £6.10
17ln. MW & CR types ———— £9.00
21ln. MW types ———— £10.00
N.T.E. months guarantee with tubes.
SIX months with reconditioned tubes. Carringtons. 10ln.
For Speed Record Changers. Collaro Conquest ———— £6.50
BSR Monarch UA8 ———— £6.50

CATHODE-RAY TUBE SERVICE

35, Broomwood Road, St. Paul's Cray, Orpington 2120.

RATES: 4/- per line or part thereof, average five words to line, minimum 2 lines, Box No. 1’s extra. Advertisements must be prepaid and addressed to Advertisement Manager, "How and Why" of Radio and Electronics, Tower House, Southampton St., Strand, London, W.C.2.

MAKE YOUR OWN AERIALS with our fully machined parts. Example: Full kit of parts to resemble new 4-element array, plus 3ft mast and universal clip, 35/-, post paid. Order our new "Superhets" Aerials and Co-ax cheap, H. CLAYTON & CO. 1, High St., Chalvey Slough. (Tel.: 21060.)

LOOK, NEW TUBES with 12 Months’ Guarantee.

12ln. £11 15s. 14ln. Rectangular or Round, £12/2 10s.; 15ln. £14 10s.; 21ln. £18/10/0; all carriage paid. S.A.E. with all enquiries.

A.E.R. SERVICES, 36a, York Street, St. Helens, Lancs. "Phone St. Helens 7947"

T.V. TUBES, rebuilt, 12ln., £6; 14in. and 17ln. £7 6/- months’ guarantee. Send for full list of Valves. Send for complete list.

AERIALS and Co-ax cheap. H. CLAYTON & CO., 1, High St., Slough. (Tel.: 21060.)

RF97 OR 26 (17/6; 24, 14/6, brand new, p.p. 3/6; Bendix Receivers RA-10. 4-band superhet £15/0 0/- m.c.s. complete, new condition. £3/15/-, p.p. 10/0. E.W.S. CO., 26, High St., Moseley, Birmingham.

BREAKING MANY TELEVISIONS

ALL SIZES

L.O.P.T. for most Sets from £1, 5.00
FO.P.T. (BRAYHEAD): £2.00
Focus Mags. £1.00
Scan coils £1.00
Lowpass filters £1.50
diodes £1.50
dichroic glass £1.50

The above quoted prices are current, but vary with late model sets.

TELEVISIONS

Tunable any B.B.C. Programme.

12ln. £13/6 10s.
14ln. £15 0/-
17ln. £18 10s.

TELEVISIONS

VALVES

EF90. 5v. ———— P.L.38, 716
EF11. 6v. ———— P.L. 10/6
All types in Stock. Trade, tested, all checked. Send 3d. for Lists. C.W.O. or C.O.D.

ADDRESS:

SPARES DEPARTMENT, 240D,
124/126, HAYDONS ROAD,
LONDON, S.W.19.

Phone: CHE 2673.

TRADE ENQUIRIES WELCOME

SETS & COMPONENTS (continued)

Heaters, finned, 115v., 20 watts, pair, 4/-.
Switches, toggle, 240v., SIDEK. 15/-, new, with valves, 37/6.

Vibrators, Mallory G634C, 2v., 4-pin, 7/6.
R.F. Transformers, good for small, 3/6.

21in. to 250v., 60 ma. and 6.3v., £3 5/- to 250v., 60 ma., 10/-.

Metal Rectifiers: 240v., 100ma., 4/-; 250v., 100ma., 5/-; 240v, 200ma. 1/- 0v. 30 ma. 7/6; H50, 3/6; J176, 7/6.

Indicators with C.R.T. and VCR13A, 5 valves, etc. 50/- (rall 9/-).

Self-contained Band III Pre-amp., 39/- (rall 7/6). Converters (Rotary), 40/-, to 50v. A.C., 4/- (rall 7/6).

Mic Inserts O.P. carbon, 2/6. Earpieces, inserts, bal. amp. type. Coax filter transformer Set with buzzer and key wired for 41v. battery. 8/-.

Carriage £8.

Converters (Amorad) 1010, £100, 5/6.; Self-contained Band III Pre-amp., 40/- (rall 7/6).

Wiring, £3 15/- to 250v., 60 ma., 20/- (p/p 3/6).

Vibrators, Vibrationaire £3 10/- to 250v., 60 ma., 20/-, £6 0/-, new. with 230v., 60 ma., 20/-.

Valveholders, U.S.A., Octal, doz. 4/1, 600.000; C.W.O., £1 5/-; Potentiometers, 100.00, 20/-, 100/0, 5/-; Reg. c.w.o.; 10/-; 2k. miniature, 1/-.

Trimmers 2-1/2 pf., 15/-.

INDUSTRIAL Components, Y.E.S., Coventry.

While Stocks Last. Postage extra.

The best and only place for all your aerials and fittings.

Example: Double Five Arrays costs only 7/- 6d. Converters 100/- complete. List FREE.

Fringe Area Super-Low Loss Co-axial, 14 yard. Reconditioned T.V. Tubs. 6 months’ guarantee. 12/ 100; 14/ 110; 17/ 100; 21/ 120; 24/ 250v. Tubs delivered in 24 hours all parts U.K. S.A.E. for FULL LISTS.

VALVES: PL81, PY81, PY82, PY80, PF80, PFC80, 20P4, 20P3, ECL80, T.S. Electrolyt, 20F. E.P. (New Cross 7152.)

Address: Brayhead Turret Tuner, 124/126, Haydons Road, London, S.W.19.

Phone: CHE 2673.

TRADE ENQUIRIES WELCOME

www.americanradiohistory.com
SETS & COMPONENTS (continued)

T.V. TUBES
17", £5.00. 14", £4.00. Picture tested and guaranteed 3 months. A few 17" and 14" for testing or boosting at 25/- each. All carriage paid. S.A.E. enquiries please.
S. BRADLEY
6, Beadon Avenue, Waterloo, Huddersfield.

SEND DUD TUBE for re-rac o/c heater repairs (under 3 years old). 12in. and 14in., £3; 17in. and 21in., £4. Save money on spares and equipment; s.a.e. state requirements for reduced quote by return. Examples: Turret Tuner (new and guaranteed), 6 gns.; Factory Re-guns, 17in., £115/6. Special, Stanley Ave., Dagenham, Essex.

FIX IT YOURSELF AERIALS! Preparatory to fitting tuner, for fixing in b.g. "Tech Gen" required. Loft 3 EL, 24/-, Wall 5 EL, 32/-, Clip-on 5 EL, 28/-, 8 EL, 40/- Indoor BB/STV, 16/6, Dipole & SL & Chimney Kit, 7/6, Double 3 Array, 7/6. Fringe Area Standard Law 40/-, Local 5/-, Nearby Law 7/6, 11/-, Standard Low Loss Kit, 7/-, Std. Diplexers, 12/-, Balanced Kit for Fringe Area. Will convert over 600 models. 137/6. State lowest possible cost. ALL CARRIAGE PAID. C.W.O. S.A.E. for Aerial List.

HASE SUPPLIES
34, PRINCE ST., BRISTOL. (Dent. P.T.)

THOUSANDS OF SPARES!: Transformers, Coils, Valves, Tubes, cheap, from dismantled radio, television sets and original items. We may have what you need. 9-19in. Projection Tubes. 3in. + 14in. 7/6. All picture tested. EF80, EF91, EF91/6.Obsolete sets our speciality. Write, phone, call "ST. JOHN'S RADIO," 156, St. John's Hill, S.W.11. (Battersea 9638.)

CALLING 9IN. TELEVISION OWNERS.—Brand new, factory fresh 9in. T.V. Tubes, £14/10/6, will replace Mazda, Brimar, O.E.C. etc., £4/10/6; each, 6 months' guarantee. P.O. box 127, Bromley Rise, Forest Hill, S.E.23.

C. EDWARDS
1070 HARROW ROAD, LONDON, N.W.10 LADSBROKE 1734

OFFERS 5/H T.V. in First-class Condition 12in. £20. 14in. £25. 17in. £37.10. (£24-10-0) 10/- carriage guaranteed tubes, all sizes, 12" 14", 17", 5£ ea. in stock : PYE, FERGUSON, EKCO CASH ONLY. 10/- Carriage. Trade Enquiries Welcome.

T.V. SERVICE SHEETS, over 100 sheets covering 300 popular models. 18/-, post free. Send for full details. All types of Service Sheets for sale and hire. Radio, Television, Electronics Books, Television Servicing, 5/- Radio Servicing, 7/- List free. HAMILTON RADIO, BCM, DATAS, London, W.1.

SERVICE SHEETS FOR SALE, T.V., 4/-; Radio, 3/-; T.V. and Radio Faultfinders (giving most common faults that the receiver is showing). 2/- ea. Also Manuals for sale and hire: Mixed Sheets and Manuals 3/- dozen. Complete list 1/-; immediate delivery; s.a.e. with inquiries, please. SULTAN RADIO, 29B, Albert St., Trambridge Wells, Kent.

WANTED, Service Sheets and Manuals; highest prices paid; 7½ quantity too large or small. SULTAN RADIO, 29B, Albert St., Trambridge Wells, Kent.

SERVICE SHEETS.—We have the largest stock of Radio and Television Service Sheets in the country for sale at 4/- each. Will despatch if out of town; orders to be paid for in advance. For immediate delivery; s.a.e. with inquiries, please. S.F. DISTRIBUTORS, 11, Old Bond St., London, W.1.

SERVICE SHEETS, Radio/TV for sale from 1/-. Each list free. J. PALMER, 32, Neeledon Lane, N.W.10.

TERMS: Cash with order. All orders despatched same day. 6d. per item postage. Post free over £3. 5% discount on orders of £10 or over. All valves BRAND NEW AND GUARANTEED.

IR5 7/6 EBC33 7/6 EF91 6/6
IS5 6/6 EBC90 7/6 EL32 5/6
IT6 6/6 EFCB83 8/6 EF80 6/6
3V4 8/6 EFB83 10/6 EZ60 8/6
ST7 6/6 EF90 9/- EZ81 8/-
6AQ5 7/- EFCB84 7/-
6AT6 7/- ECCB82 10/6 OC71 12/-
6B16 7/- ECCB83 7/- PCF80 11/-
6B46 8/- ECCB84 11/- PCL82 12/-
6D2 5/- ECCB85 9/- PCL94 11/-
6K7 4/- ECHB81 9/- PYZ2 12/-
6K9 6/- ECL82 11/6 PYZ1 9/-
6L18 9/- ECF83 6/- U2Z 216/6-
6LD4 10/- ECF83 9/- U2Z 216/6-
12A88 6/- EAF84 1/6 UAF42 9/-
12AT7 9/- EAF84 1/6 UAF42 9/-
12AU7 9/- EF50 1/6 UC186 11/6-
12AX7 9/- EFB80 7/6 UAF42 9/-
6AB0 6/- EFB80 7/6 UF41 7/-
6EB91 5/- EFB94 9/6 UFY5 7/6

NEW METAL RECTIFIERS: RM2 5/-, RM4 11/-, RMS 17/6, 14A66 15/-, 14A100 18/-, FC103 15/-, About a thousand other types of valves and components, PLEASE ASK.

J. P. WRIGHT
1C, SHOTTON STREET
DONCASTER
QUALITY REBUILT TUBES
Send your TV tubes to us for rebuilding. B.B.C., I.T.V., A.E.I.A.
Both mains and low tension tubes. Post free. 12/-.
61.00. 11n. 8.10.10. 11n. 10.00. Fully guaranteed for an additional 3 months. Guarantee, 48 hr.
Service, C.W.O. or C.O.D. All tubes plus 15% carriage and insurance.

B.B.C.-I.T.V.-F.M. AERIALS
B.B.C. (Bank 1), Tele-
I.T.V. (Bank 3), 3 Ele-
ment loft array. 24’-5”.
Wall mounting. 3 element, 33-8.
5 element, 45-2.
COMBINED B.B.C. +
I.T.V. Loft 1-3 Element.
4-1, 1-3 Element. 48-9.
Wall mounting. 1-3 Ele-
ment. 58-3.
5-1 Element. 65-9.
Chimney and mast
mounting units also available.

F.M. (Bank 2), 2, 3 Ele-
ment. Post free.

K.V.A. ELECTRONICS
(Del. T.P.)
3B, GODSTONE ROAD, KENLEY,
SURREY

CHASSIS
18kg Aluminium. Strenthened corners.
6” x 6” x 3/16” - 6/16” x 1/2” x 2/2. 7/6
21” 3/16” x 1/2” x 1/21. 9/6.
10” 7/16” x 1/2” x 1/11. 9/6.
9/6. Postage free. Fitting and
chassis available. Chassis for all
Mullard circuits available.

Sweetnam & Bradley Ltd. Dept. AX
BRISTOL ROAD, MALMESBURY, WILTS.

FIRST-CLASS TELEVISION AND RADIO COURSES...
GET A CERTIFICATE!
After brief, intensely interesting study
- undertaken at home in your spare
time - you can earn your professional
qualification or learn Servicing
and Theory. Let us prove to you how!

- FREE GUIDE -
The New Free Guide contains 132 pages of information on the greatest
importance to those seeking such success compelling qualifications as
A.M.British, I.R.E., City and Guilds
Final Radio, M.G. Radio
of Educl., London B.Sc. (Eng)
A.M.I.E., A.M.I.Mech.E.,
Draughtsmanship (all branches),
etc., together with particulars of
our remarkable Guarantee of
SUCCESS POST FREE
Writ to us now for your copy of this
invaluable publication. It may well
prove to be the turning point in your

FOUNDED 1885 - OVER 150,000 SUCCESSES -
NATIONAL INSTITUTE OF
PRACTICAL TELEVISION
(Dept. 462), 148, HOLBORN,
LONDON, E.C.I.
S. Africa: P.O. Box 8417, Jo’burg
Australia: P.O. Box 4570, Melbourne.

SPECIAL VALVE OFFER
FOR LIMITED PERIOD
EF80 4/6 PY82 6/6 6F24 7/6
10F1 7/6 PL82 6/6 6F34 7/6
6F1 7/6 PL83 6/6 7C5 5/6
EB91 4/6 6P26 7/6 7F1 5/6
51F 4/6 6T37C 7/6 6D11 5/6
ECL80 6/6 8Y83 7/6 1625 5/6
DH77 6/6 UCH42 6/6 807 4/6
6F13 6/6 6P41 7/6 4D1 2/6
6F14 6/6 Z63 6/6 11L6 9/6
6F15 6/6 Z64 6/6 N37 9/6
65 7/6 9/6 DOL09 9/6
2OL1 7/6 L63 5/6 UF42 8/6
2OF2 7/6 6SN7GT 5/6 UF42 8/6
PY80 6/6 2OP1 7/6 6FG6 6/6

Postage 6d. per Valve.
Air-Spaced Coaxial Cable 75 ohms, 8d. per yard:
- Ion Traps, 5/-; F.M. Twin Feeder, 4d. per yard:
- B.R.S. Dipole Wall Fixing, 2/6.

MAIL ORDER ONLY — NO CALLERS.
Terms: C.W.O. or C.O.D. Minimum
C.O.D. charge 3/6. Postage and Packing
other than valves: 1/6. Under £5, 2/6.
- Aerials, 2/6 Carriage.

ELECTRO-SERVICES & Co.
221 BATTERSEA PARK ROAD,
LONDON, S.W.11.
MAC 1855

RE-COmmended TV Tubes
From only £24.10

RADIO AND TELEVISION
COMPONENTS
We operate a prompt and efficient MAIL
ORDER Service. 3d. stamp (only) for
Catalogue.

JAMES H. MARTIN & CO.
FINSTHWaITE, NEWBY BRIDGE,
ULVERSTON, LANCS.

TRANSFORMERS?
CONTACT FORREST FIRST!
Rewinding and manufacture of all types
for Television, Radio and Electronic
Application.

FORREST (TRANSFORMERS) LTD.
Shirley, Solihull, Warwickshire.
Phone: SHI. 2483.
Est. 34 years.
SUPER-VISION LIMITED
Every item Brand New and Guaranteed at Low Prices.
VALVE HOLDERS
Int. Octal. 4d. each. B7G, 4d. each. H9A, 6d. each.
CER. B9A with screen, 1½ each.
CONDENSERS
2 to 100 pF., 5d. each. 220-5,000 pF., 7d. each.
.1 to 1.0, 8d. each.
RESISTANCES
Variable T/V type pots. 3K, 5K, 25K and 1M, 2½ each.
EGEN SLIDER TYPE
3K, 5K and 25K, 5d. each.
VOLUME CONTROLS
.5M, 2½ each. .5M with DPS switch, 4½ each.
ELECTROLYTICS
60/100 mfd., 5½ each. 32+32+16 mfd., 350 v., 3½ each.
Clips, 3½ each. .50 mfd., 12 v., 8d. each.
AUTO TRANSFORMERS
50 w. to 1,000 w., from £1.10.0 to £9.0.0.
PLEASE INCLUDE SUFFICIENT TO COVER POSTAGE.
13 CHANNEL TURRET TUNED
projection T/V chassiss, also suitable for driving 17½n., 21½n. or
24½n. tube sets. Packing and carriage, 10⁻.
OPTICAL UNIT
for above, complete with tube, deflector coils, focus assembly and connecting cable
and plug. Suitable for picture sizes of 24½n. to 48½n.
33 p.m. Packing and carriage, 10⁻.
13 CHANNEL T/V TUNERS
6-position switched inconstant inductance type. Manufacturers' rejects and may
require attention. Suitable for modifying Band I and III
pre-amps. With PCC84, PCF80 and knobs, £1.10.0.
Less valves, 10⁻. P. & P. 2⁻ extra.
Send for List, Price 3d.

SUPER-VISION LIMITED
136 High Street, Teddington, Middlesex. KINGston 4393

Improve your ability to cope with radio engineering
problems with this new book...

RADIO ENGINEERING
FORMULAE AND
CALCULATIONS
by W. E. Pannett, A.M.I.E.E.

Problems in radio, radar and television engineering are
usually presented either in the form of examination
questions and answers, omitting many intermediate steps,
or are framed solely for the instruction of the student.
In this book, examples have been selected from everyday
practice in design, installation and operation and are
shown fully worked and generously illustrated. Although
it is intended primarily for the practising engineer, it will
be found equally valuable to the technical assistant and
the student about to embark on an engineering career.
Covers 1. Aids to Engineering Calculations—2. Formulæ and Examples:
Resistors and Voltage Dividers—Inductors—Capacitors—A.C. Applications
of Ohm's Law—Circuit Theorems—Gains and Losses—Electrical Tolerances
and Tolerance—Influence—Resonant Circuits—Parallel Circuits—
Antennas and Filters—Thermionic Amplifiers—Amplifier Noise—Re-
corders—Oscillators—Transmitters—Signalling and Modulation—Valve
Cooling and Ventilation—Amplifiers and Propagation—Frequency Trans-
mission Lines—Power Supply—A.C. Rectifiers and Smoothing Filters—
Transformers and Reactors—Cables and Lines—Tests and Measurements—
Transistors—Principles of Television—Radar Fundamentals—Great Circle
Bearings—3. Units and Symbols—4. Mathematical Formulæ, Data and Tables
Index. 208 pages, 163 figures, 17s. 6d.

FROM ALL
BOOKSELLERS

... or in case of difficulty, 18s. 6d., by
post from GEORGE NEATNES LTD., Tower

LINE OUTPUT
TRANSFORMERS
Most types available. State
Make and Model Number
of Receiver when ordering.
S.A.E. please with all enquiries.

HOWORTH
51 POLLARD LANE,
BRADFORD, 2, YORKS
Tel. 37030

RES/CAP. BRIDGE, 37/-
Checks all types of resistors and
condensers.
Easy to Build Up Easy to Use
READY CALIBRATED
Stamp for details of this and other kits.

HUGGETT'S LIMITED
2-4 PAWSONS ROAD, WEST CROYDON

GOVERNMENT SURPLUS
AND MANUFACTURERS CLEARANCE

WESTINGHOUSE: J.50. Pencil Reeds. 600 v. 6 m/A, 5½ each.
PLATE POTS. 1 K-2 mes, assorted, 10⁻ doz.
METERS. 0-1 m/A, 2 in. diam. 400-500 microamps.
3½ in. diam. 37½ each.
HENG CRYSTAL CARTRIDGES. Turnover type for Garrard
and B.B.R. 10 ½ each.
T.T. A. ATTIALLS, New and Boxed. 5 element. 20½, 5 element.
25½, GALV. AXIAL CABLE, 6d. per yd. AIR SPACE, 5d.
NICK CRUCIBLE LIN., 3 x 2½". Unused, 5½ - 6d. 48 doz.
GERMANIUM CRYSTAL DIODES. 1½, 10⁻ doz.
HEADPHONES. Moving iron, low impedence, 6.½, high.
90, Balanced armatures, low, 1½, high, 1½, Moving coil
low only, 10- per pair.
GLANN PINES. 1¼, 12 and 10 amp. only. 5 for 1£.
MAINS POWER PACKS. 250 v. 80 m/amp. or stabilised 150
v. 80 m/amp. with 6 v. winding. 30-.
RELEYS. High speed, box, 1,000, 1,000,000 ohme, plat. cont. 7. 6V.
VALVES. All valves tested before dispatch on
MULTIPLIER latest I.E.C. TESTER.

IVESTIG HOUSE
25 KINGSWAY, LONDON, W.C.2

NEWNES
PUBLICATIONS

www.americanradiohistory.com
PRACTICAL TELEVISION

May, 1959

103 LEEDS TERRACE, WINTOUN STREET, LEEDS, 7.

COVENTRY RADIO LTD.
189/191, Dunstable Road, Luton

If you are unable to visit us at Luton, why not send for one of our
"HI-FI" CATALOGUES?
Price 1/2, plus 6d. postage.
70 pages and listing over 300 items.

Also now on sale: "THE GRUNDIG BOOK"
Price 12/6, plus 1/2 postage.

The owner of any make of tape recorder will find this book an essential for successful recording.

LUTON'S HI-FI CENTRE
Build your own Aerials...

AT HOME

AERIAL FITTINGS FOR BAND III, BAND I & RADIO F/M.

Useful formulas and hints for constructing your own aerial quickly and cheaply. Catalogue illustrating our increased range of Diecast Alloy Fittings, including Band III to Band I Mast Couplers, Reflector and Director Rod Holders, Insulators (both "T" and "H" types), Masthead Fittings, Masts and Elements, Chimney Brackets, etc. Send 1/- in stamps for the above to —

Fringelevision Ltd.

MARLBOROUGH, WILTS. Phone: 657/8

YOUR OWN TELEVISION TUBE RE-BUILT

THE FOLLOWING TYPES AND SIZES ONLY

MULLARD . . 12in. £7-10-0. 14in. £8-10-0.
OR EQUIVALENTS
COSSOR-EMITRON-CATHODEON
17in. £10-10-0. 21in. £12-10-0.

48 Hr. SERVICE
All Tubes plus 10/- carriage and insurance.

TWELVE MONTHS’ GUARANTEE
Terms to the Trade.

OWING TO PURCHASE TAX REGULATIONS WE CAN ONLY RE-BUILD YOUR OWN TUBE. THESE CAN BE SENT TO US BY BRITISH ROAD SERVICES (Parcels) LTD., CARRIAGE FORWARD.

TERMS, CASH WITH ORDER or C.O.D.

RE-VIEW (LONDON) LTD.
81, HIGH STREET . . MERTON S.W.19

Telephone: CHERRYWOOD 3255
G.P.T. ISOLATION TRANSFORMERS
TAPPED MAINS PRIMARIES
TYPE A: 35 - 50 BOOST ON SECONDARY.
5 V. 0.45 6. V. 0.85 8. V. 1.25 V. 1.65 V. 2.05
OUR LATEST SUPERIOR PRODUCT
TYPE A: HIGH QUALITY, LOW CAPACITY.
10.5 A. OPTIONAL BOOST 25, 30, 35
TYPE B: MAINS INPUT, MULTI OUTPUT 25, 30, 35.
BOOST AND 50 LOW CAPACITY 21.
TRIMMERS, Ceramic.
REMPLOY
STENTORIAN.
TWINタイプ
REELS.
QUALITY SUPERIOR 1,200 ft.
59'
G.P. TRANSFORMERS:
Heavy Duty, 50 mva. 46.
Miniature, push-pull. 76. Miniatures, 84, 46.
11. 11. 1., 10. 96.
STANDARD.
HEATER TRANS., .6 v. 1.5 amp. 25.
Tubes, tapped 2, 4, 6, 8, 11 amp.
ALADDIN FORMERS:
Formers, trim, thd., 104.
FORMERS 928, & Dana TV 2, .92.
FORMERS 935, 945. 965.
TWIN TYPE.
MINIATURE.
MIDGET, 25m, 43 m, 62 m. 24.
SMALL, 25m, 43m, 62 m, 0.3 V.
STANDARD, 25m, 43m, 62 m, 0.3 V.
HEATER TRANS., .6 v. 1.5 amp. 25.
Tubes, tapped 2, 4, 6, 8, 11 amp.
ALADDIN FORMERS:
Formers, trim, thd., 104.
FORMERS 928, & Dana TV 2, .92.
FORMERS 935, 945. 965.
TWIN TYPE.
MINIATURE.
MIDGET, 25m, 43 m, 62 m. 24.
SMALL, 25m, 43m, 62 m, 0.3 V.
STANDARD, 25m, 43m, 62 m, 0.3 V.
HEATER TRANS., .6 v. 1.5 amp. 25.
Tubes, tapped 2, 4, 6, 8, 11 amp.
ALADDIN FORMERS:
Formers, trim, thd., 104.
FORMERS 928, & Dana TV 2, .92.
FORMERS 935, 945. 965.
TWIN TYPE.
MINIATURE.
MIDGET, 25m, 43 m, 62 m. 24.
SMALL, 25m, 43m, 62 m, 0.3 V.
STANDARD, 25m, 43m, 62 m, 0.3 V.
HEATER TRANS., .6 v. 1.5 amp. 25.
Tubes, tapped 2, 4, 6, 8, 11 amp.
ALADDIN FORMERS:
Formers, trim, thd., 104.
FORMERS 928, & Dana TV 2, .92.
FORMERS 935, 945. 965.
TWIN TYPE.
MINIATURE.
MIDGET, 25m, 43 m, 62 m. 24.
SMALL, 25m, 43m, 62 m, 0.3 V.
STANDARD, 25m, 43m, 62 m, 0.3 V.
HEATER TRANS., .6 v. 1.5 amp. 25.
Tubes, tapped 2, 4, 6, 8, 11 amp.
ALADDIN FORMERS:
Formers, trim, thd., 104.
FORMERS 928, & Dana TV 2, .92.
FORMERS 935, 945. 965.
TWIN TYPE.
MINIATURE.
MIDGET, 25m, 43 m, 62 m. 24.
SMALL, 25m, 43m, 62 m, 0.3 V.
STANDARD, 25m, 43m, 62 m, 0.3 V.
HEATER TRANS., .6 v. 1.5 amp. 25.
Tubes, tapped 2, 4, 6, 8, 11 amp.
ALADDIN FORMERS:
Formers, trim, thd., 104.
FORMERS 928, & Dana TV 2, .92.
FORMERS 935, 945. 965.
TWIN TYPE.
MINIATURE.
MIDGET, 25m, 43 m, 62 m. 24.
SMALL, 25m, 43m, 62 m, 0.3 V.
STANDARD, 25m, 43m, 62 m, 0.3 V.
HEATER TRANS., .6 v. 1.5 amp. 25.
Tubes, tapped 2, 4, 6, 8, 11 amp.
ALADDIN FORMERS:
Formers, trim, thd., 104.
FORMERS 928, & Dana TV 2, .92.
FORMERS 935, 945. 965.
TWIN TYPE.
MINIATURE.
MIDGET, 25m, 43 m, 62 m. 24.
SMALL, 25m, 43m, 62 m, 0.3 V.
STANDARD, 25m, 43m, 62 m, 0.3 V.
ALADDIN FORMERS:
Formers, trim, thd., 104.
FORMERS 928, & Dana TV 2, .92.
FORMERS 935, 945. 965.
TWIN TYPE.
MINIATURE.
MIDGET, 25m, 43 m, 62 m. 24.
SMALL, 25m, 43m, 62 m, 0.3 V.
STANDARD, 25m, 43m, 62 m, 0.3 V.
HEATER TRANS., .6 v. 1.5 amp. 25.
Tubes, tapped 2, 4, 6, 8, 11 amp.
ALADDIN FORMERS:
Formers, trim, thd., 104.
FORMERS 928, & Dana TV 2, .92.
FORMERS 935, 945. 965.
TWIN TYPE.
MINIATURE.
MIDGET, 25m, 43 m, 62 m. 24.
SMALL, 25m, 43m, 62 m, 0.3 V.
STANDARD, 25m, 43m, 62 m, 0.3 V.
HEATER TRANS., .6 v. 1.5 amp. 25.
Tubes, tapped 2, 4, 6, 8, 11 amp.
ALADDIN FORMERS:
Formers, trim, thd., 104.
FORMERS 928, & Dana TV 2, .92.
FORMERS 935, 945. 965.
TWIN TYPE.
MINIATURE.
MIDGET, 25m, 43 m, 62 m. 24.
SMALL, 25m, 43m, 62 m, 0.3 V.
STANDARD, 25m, 43m, 62 m, 0.3 V.