EASY PC
Reviewing a superb award-winning PCB cad system

MICRO-CONTROLLING A ROBOT CAR
How to put your minimoobiles under automatic control

HOME-BASE
Kodak's CD-ROM breakthrough revolutionises your photography

A CASE FOR TECHNOLOGY
Making the right choice of case to protect your project
Micronta®

Multi Testers

- **FET-Input Multitester.** 10-meg input sensitivity. Continuity sounder. Measures 1000V AC/DC, 10A DC current, 100 megohms resistance and -20 to +62 decibels. Requires one 9V, one “C” battery.
 - 22-220 ... £39.95

- **Range-Doubler.** 50K DC sensitivity, continuity sounder. Measures 1000V DC/AC, 10A DC current. 20 megohms resistance and -20 to +62 decibels. Requires one 9V, one “AA” battery.
 - 22-214 ... £29.95

- **Fold-Up 25-Range.** 20K DC sensitivity. Measures 1000V AC/DC, 300mA DC current, 2 megohms resistance and -20 to +62 decibels. Requires “AA” battery.
 - 22-211 ... £24.95

- **18-Range.** 20K DC sensitivity. Measures 1000 volts DC, 1000 volts AC, 250mA DC current. Resistance to 2 megohms. Requires “AA” battery.
 - 22-201 ... £17.95

- **2K Pocket Multitester.** Measures to 1000 AC/DC. DC current to 150 mA. 100K resistance. Requires “AA” battery.
 - 22-7212 ... £9.95

Accurate Every Time!

Over 500 Tandy Stores And Dealerships Nationwide. See Yellow Pages For Address Of Store Nearest You.

InterTAN U.K. Ltd., Tandy Centre, Leamore Lane, Walsall, West Midlands. WS2 7PS. Tel:0922 710000
NEXT MONTH

WORKING SECURITY

Any PE reader loves the challenge of getting things working: usually we tell you how to construct and complete a brand new equipment design, but next month we look at another aspect — how to find the fault in something that should be working but isn’t! Security is another subject that has wide appeal, particularly when it comes to property protection: we’ve a really superb car alarm system that we shall tell you how to build and install.

And with stereo TV now widely on-air, we’ll be telling you how the Nicam system works.

🌟 WE'RE SYSTEMATICALLY WORKING TO SECURE YOUR INTEREST IN OUR JANUARY 1991 ISSUE

🌟 ON SALE FROM FRIDAY DECEMBER 7TH

🌟 🌟 🌟
INNOVATIVE SIG GENS

Marcos’s innovative 2030 series of signal generators are now available from the IR Group. Packed with features designed to improve productivity and simplify measurement, the signal generators have frequency ranges extending from 10kHz to 1.35GHz (2030) and up to 2.7GHz (2031).

The series incorporates a backlit dot-matrix lcd panel which shows all parameter values simultaneously, giving complete information on the generator’s settings and measurements. Full modulation covering am, fm and phase is fitted as standard to handle all types of receivers. Comprehensive modulation modes allow complete flexibility giving up to four independent modulation channels to simplify testing ssb and narrow band radio equipment.

Further details can be obtained from Peter Melvin, IR Group, Dorcan House, Meadfield Road, Langley, Slough, SL3 8AL. Tel: 0753 580000.

SYSTEM X BILLION

British Telecom and GEC Plessey Telecommunications (GPT) have reached an agreement for the supply of System X electronic exchanges. The agreement is potentially worth nearly £1 billion and covers the period up to March 1992.

BT has already placed orders under the agreement, which will add a further 2.7 million lines to the company’s rapidly growing network of local System X digital exchanges. This will mean more than 14 million lines will be available on digital local exchanges by the end of the financial year.

ARTIFICIAL MAN

What will people think of next? An artificial human being is about to be designed to help in the testing of radio pagers! Radio Frequency Investigation Ltd have won the £60,000 contract from a consortium comprising the DTI, British Telecom, UKPOA and a number of manufacturers. The consortium was formed to address the problem of specifying the sensitivity of radio pagers, in terms of the minimum electromagnetic field strength required for triggering, when the effects of the electrical characteristics of the human body are difficult to estimate.

There are three standard techniques for measuring the required field strength: testing the apparatus in isolation; testing it on a person; and testing it on a ‘salt man’, a 15m high plastic cylinder filled with salt water, which is supposed to simulate the electromagnetic profile of a human.

However, all three techniques have drawbacks. Testing in isolation makes no allowance for the effects of the human body on the operation of the pager. Variations between people make the testing of pagers in situ problematic, as it is difficult to find an electrically average person! The use of the ‘salt man’ at least provides consistency, but the apparatus is impractical and does not generally simulate a human response.

BT currently tests pagers on people, and initiated the forming of the consortium to analyse and quantify the extent of variations in human electrical parameters, and then use this information as a starting point for the creation of a representative artificial human.

RFI is using consultants ITIC to carry out the background research, and will then design the artificial human based on these findings.

“We are approaching this project without any preconceived opinions of what the outcome will look like,” says RFI director Stephen Kirk. “We will go back to the fundamental physics of the problem and work towards a solution.

“It may be that we need only to simulate the electrical properties of the skin; alternatively, we may have to take into consideration the parameters of the whole body. One thing is certain, however; the artificial human being must not be so heavy that a forklift truck is required to move it!”

For more information contact Stephen Kirk, Radio Frequency Investigation Ltd, Ewhurst Park, Ramsdell, Basingstoke, Hants, RG26 5RQ. Tel: 0256 851193.

“REALLY, JUST A BUREAU, SIMPLIFICATION FROM A SIZE, PRACTICAL ELECTRONICS DECEMBER 1990.

PATENT OFFICE

“Packed with features designed to improve productivity and simplify measurement, the signal generators have frequency ranges extending from 10kHz to 1.35GHz (2030) and up to 2.7GHz (2031).”
CAMCORDING AMSTRAD

By the time you read this Amstrad's new high specification camcorder should be in your shops. The introduction of the sub-£50 Videomatic VMC200 completes Amstrad's 1990 leisure product range and follows last year's success of the company's first camcorder, the VMC100. The latter machine proved to be the UK's best selling model with a 27% market share.

Commenting on the introduction, Malcolm Miller, Amstrad Group Sales and Marketing Director said: "We have pursued a programme of leisure product launches throughout this year and to date have introduced a new mesh satellite dish with integrated receiver/decoder, three vcr machines, including the Double-Decker model, a Fidelity branded 20-inch tv and the new three-model range of Amstrad games machines."

The VMC200 has been designed in the UK and is made in Japan by Amstrad subcontractors. It retails at £499 including vat. For more information contact your local Amstrad stockist, or Nick Hower, Michael Joyce Consultants Ltd, 19 Garrick Street, London WC2E 9BB. Tel: 071-836 6801.

QUALIFIED REPAIRS

Alpha Electronics have sent us a brochure about their repair, test and measurement service. The service operates to BS5750 and the company employs fully qualified engineers, and uses manufacturers' spare parts and components. The repairs are fully guaranteed for six months and are normally carried out within seven to ten working days. A local pick up and delivery service is available in many areas. Alpha maintain and repair all types of instrumentation both electrical and electronic, oscilloscopes up to 150MHz bandwidth, all types of multimeters, both analogue and digital, as well as specialist electrical test sets.

Alpha comment that ideally instruments should be checked at regular intervals of 3, 6 or 12 months depending on the type and application. Even if you don't need strict accuracy in your test instruments, you'll certainly find benefit from the company's repair service. we can all be a bit clumsy occasionally. (I was recently, very: carelessly putting several thousand volts into a digital meter incapable of handling such tension. It died of course. In this instance, beyond economical resurrection - as dead as a Monty Python parrot!)

If your equipment's worth caring for, contact Alpha Electronics Ltd, Unit 5, Linstock Trading Estate, Wigton Road, Atherton, Manchester, M29 1QA. Tel: 0942 873434.

CATALOGUE DATABASE

Maplin's 1991 'Buyer's Guide to Electronic Components' has thumped down heavily onto my desk. It's a massive catalogue of over 600 pages and is, I'm told, the biggest and best ever. Nearly a quarter of a million copies have been produced! In his introduction, Doug Simmons says that there are hundreds of new items to look out for, and that you'll find a great new range of in-car stereos and speakers, improved cable stocks, a new range of torches and some brilliant tools. As ever, this is certainly a catalogue which covers most matters electronic, and should be on any constructor's bookshelf. It is priced at £2.45 (plus 50p if posted) and is available from any of Maplin's nationwide shops, or direct from their head office, PO Box 3, Rayleigh, Essex, SS6 2BK. Tel: 0702 554161.

Phonosonic's latest catalogue has benefited from being reset on a DTP system and is free to anyone who requests one via their ansafone service or sends a medium sized stamped addressed envelope. The company specialise in the sale of selected PE projects, and have been doing so for nearly 20 years. Among their recent additions are the Tele-Scope, Scope Expander and Morse Decoder, all of which projects have been of great interest to readers. There are currently around 40 interesting projects listed, and the range is constantly being extended. Phonosonic, Dept PE, Unit P, 8 Finucane Drive, Orpington, Kent, BR5 4ED. Tel: 0689 37821.

Greenweld's 1991 132-page electronic components catalogue can hardly have escaped your attention since it's being given away free with this issue of PE! Do make a point of studying it carefully and keeping it close by you in the workshop. It has a wealth of different products at good prices and will help you to enjoy electronics even more. Further copies of the catalogue can be bought for £1.50 direct from Greenweld Electronics Ltd, 27 Park Road, Southampton, S01 3TB. Tel: 0703 236363.

Sarm's catalogue proves the point that the size of a company's range should not always be judged by the size of its advert. This catalogue is over 90 A4 pages long and has a large range of components relating to many aspects of hobbyist electronic construction. Apart from hardware, such as cable accessories, connectors, potentiometers and switches, there is a large selection of semiconductors including surface mount devices, plus other essential components such as capacitors, resistors and optoelectronic products. The catalogue costs £1.80 and is available from Sarm Digital, 13 Pearle Street, Macclesfield, Cheshire, SK10 2AL. Tel: 0625 613710.
HIGH PLOTTING

Number One Systems, whose Easy-PC pcd cad system is reviewed in this issue have introduced a range of high accuracy plotters which use aerospace technology.

The range covers the latest Roland-DG large-format flat-bed plotters. Good engineering design features prominently in the DPX series. The base plates are constructed in a durable aluminium honeycomb, a technology pioneered in the aerospace industry where light weight and rigidity are of prime importance. This super-rigid base, together with the stretch-free kevlar drive belt, seven times stronger than steel, leads to a plotter with an astonishing accuracy. Even across the full A1 size of the DPX3500. absolute accuracy is maintained to within 0.1 mm with a repeatability better than 0.5mm.

The smaller A2 sized DPX2500 also benefits from the same pin-point precision.

For more information contact Roger Wareham, Technical Director, Number One Systems Ltd, Harding Way, Somersham Road, St Ives, Cambs, PE17 4WR. Tel: 0480 61778.

CARRYING THE TORCH

A new mini gas torch introduced by Maplin will satisfy even professional users. It is a compact and sturdy butane (gas lighter fuel) powered blow-lamp style gas flame torch. Incorporating push-button piezo-electric ignition, the torch is just the job for engineering, jewellery and model making work.

The flame is adjustable and reaches a temperature of 1300°C (2370°F). An adjustable collar varies the amount of air drawn into the burner head, and this provides control of flame temperature. The gas tank holds up to 26g of fuel. Refilling is by means of standard lighter fuel available from newsagents and tobacconists.

JL98G is the torch's order code number, and it costs £19.95 including vat.

A micro-mini gas torch is also available, under code number JL97F, and costing only £5.95 including vat.

For more information see Maplin's new 1991 catalogue, or contact any of their nationwide shops, or the head office at PO Box 3, Rayleigh, Essex, SS6 8LR. Tel: 0702 554161.

Please note: Some events listed here may be trade or restricted category only. Also, we cannot guarantee information accuracy, so check details with the organisers before setting out.

Nov 6-8. Total Solutions. NEC Birmingham. 0799 26699.

Dec 9. SATRO (Science And Technology Regional Organisation) 4th annual show for computer and science enthusiasts. Aberdeen Music Hall. 0224 273161.

1991

April 17-18. Laboratory Manchester. Windsor Hall, G-Mex Centre, Manchester. 0799 26699.

May 15-16. Laboratory Scotland. Scottish Exhibition Centre, Glasgow. 0799 26699.

IEE FARADAY LECTURES 1990-91

Presented by the Universities of Bath and Sussex.

For free tickets and further information contact (enclosing SAE) The Faraday Officer, IEE, Michael Faraday House, Six Hills Way, Stevenage, Herts, SG1 2AY.

MICROPROCESSOR TRAINING COURSES

In conjunction with Colchester Institute, Flight Electronics is offering a range of intensive four-day microprocessor courses.

Contact: Suzanne Kittow, Flight Electronics Ltd, Flight House, Ascupart Street, Southampton SO1 1LU. Tel: 0703 22721.
LIFETIME GIFT

There’s much food for thought in B&R Electrical’s leaflet about their PowerBreaker RCD safety adaptor. It comments that for the DIY enthusiast Christmas inevitably involves receiving a stocking which is strangely shaped like a powerdrill, or a beautifully wrapped present in the shape of a hedge trimmer. “Why not surprise them this year with a safety adaptor shaped gift?” ask B&R. “A winner at the ‘I wonder what it could be stage’, it may save a life sooner than you think.”

The PowerBreaker safety RCD adaptor is a device that provides added protection against the risk of electrocution. Unlike a fuse or standard circuit breaker, which is designed only to protect the electrical appliance and its wiring, an RCD (residual current device) protects the user by automatically cutting the power before you get a serious shock.

B&R ask us to consider the antics of the DIY person about the home and believe that the gift of an RCD could well prove to be the gift of life. We agree.

PowerBreaker RCDs are available as handy adaptors and also as protected 13 amp plugs and single or twin wall sockets. The adaptor is a compact RCD which simply plugs in, requiring no additional wiring.

CHIP COUNT

6805 FAMILY ADDITION

STC Electronic Services has announced the introduction of an extended range of Motorola microcomputers. The MC68HC05B6 is a 6-bit microcomputer that is a member of Motorola’s MC68HC05 family of low cost single chip microcomputers. It contains an on-chip oscillator, cpu, ram, rom, eeprom, a/d converter, pulse length modulated outputs, i/o, serial communications interface, timer system and watchdog.

The fully static design allows operation at frequencies down to 12 so further reducing the already low power consumption to just a few microamps. Power consumption reduction may also be implemented using low power mode instructions. When the processor executes the Stop, Wait or Slow instructions, selected internal operations are turned off.

The internal 16-bit timer is similar to the MC6801 timer and incorporates a 16-bit free running counter. The serial communications interface system is similar to the MC6801C4 but offers an enhanced capability including transmitter clocks allowing synchronous transmissions and separate baud rate selection for transmitter and receiver.

Other hardware features include a security bit for eeprom contents, external timer and serial communication interface interrupts, and external interrupt enable.

Software features are similar to the MC6800 and allow efficient use of program space, versatile interrupt handling, addressing modes and memory mapped i/o.

But it is a chip that should be investigated by those devoted to microprocessor control. I did in fact, make tentative enquiries about it back in June when I saw it listed in my latest edition of the Motorola microcontroller data book. I was considering it as a candidate for use in the Bike Computer. At that time I was told that it was not yet available, but would be released at around £50. The data book states that the eeprom is 256 bytes and the ram is 176 bytes. Emulator and non-eeprom versions are available.

AD2X250 A/D CONVERTER

I include this chip purely for interest because of its price since most of you will be expecting to pay less than £10 for your a/d converters.

Arcom’s AD2X250 is a unique 12-bit a/d converter which provides two channels operating at 250K samples per second, or a single channel operating at 500K samples per second. This exceptional speed provides a foundation for many mechanical, structural, biological and general laboratory data acquisition applications. The converter is in fact a module board rather than a single chip and has other facilities associated with it, but even so the price tag of £495 may leave some of you a trifle stunned.

BAEC EXPANDING

It’s good to read in the British Amateur Electronics Club’s latest newsletter that their membership is again increasing. This is due in part, says Chairman Herbert Howard, to the recent publicity PE has given to the club’s activities. Thanks, Herbert, for your kind comments.

I am always pleased to publicise this worthwhile club and I recommend it to anyone who wishes to share the companionship and experience of others interested in electronics. The regular newsletter is a good source of information too. By being a member of BAEC you can also benefit from a reduced subscription rate to PE, see page 10.

Herbert - where’s your address in the newsletter? I’ve had to look it up from file!

For more information contact Herbert Howard, BAEC, 41 ThwingWall Park, Fishponds, Bristol, BS10 2AJ.

BAEC EXPANDING

I’ts good to read in the British Amateur Electronics Club’s latest newsletter that their membership is again increasing. This is due in part, says Chairman Herbert Howard, to the recent publicity PE has given to the club’s activities. Thanks, Herbert, for your kind comments.

I am always pleased to publicise this worthwhile club and I recommend it to anyone who wishes to share the companionship and experience of others interested in electronics. The regular newsletter is a good source of information too. By being a member of BAEC you can also benefit from a reduced subscription rate to PE, see page 10.

Herbert - where’s your address in the newsletter? I’ve had to look it up from file!

For more information contact Herbert Howard, BAEC, 41 ThwingWall Park, Fishponds, Bristol, BS10 2AJ.

Faster 20mhz Z80 CPU

A new Zilog 20MHz Z80 cpu has become available through Celdis. The Z840020 is claimed to be twice as fast as any other 8-bit microprocessor and has a peak execution time of 5 mips.

Normally, if users want to increase system performance, they would either need to redesign the system using a 16/32-bit processor or use RISC architecture - which are both expensive alternatives. The new device, however, can simply be inserted into a current system board with a suitable circuit, allowing the system to run at twice its original speed. The 20MHz unit is fully code compatible with Z80 architecture and allows users to retain their software.

SOURCE DATA

Arcom Control Systems Ltd., Unit B, Clifton Road, Cambridge, CB1 4WH. Tel: 0223-411200.

Celdis, 37 Loverock Road, Reading, Berks, RG3 1ED. Tel: 0734 585171.

The second generation cordless telephone, CT2 is the first domestic telecommunications system to transmit and receive digital speech. So far all telephones, whether fixed or mobile, have carried speech as an analogue signal, even though the control signals in a cellular system are digital. Full digitisation is what allows the system to work with public base stations or Telepoints, which recognise identification codes from each handset and bill calls made to the user’s home or office.

CLEVER BUT CONFUSING

The CT2 technology is clever, which makes it even more of a pity that the industry has shot itself in the foot by creating a mish mash of standards which confuses the public.

Early radio phone systems used one radio channel for both sides of the conversation (send and receive) and the callers had to say “over” when they finished speaking and switch to receive. Today’s cellular phone systems avoid this by using a separate radio channel for each side of the conversation. But obviously this is wasteful of radio spectrum.

The technical description put out by CT2 plays a clever trick to cram both sides of the conversation (send and receive) onto the same radio channel.

I suspect few people understand the trick because the technical description put out by GPT (the telecoms company making CAI CT2 equipment) is probably the most confusing and garbled document I have ever seen. It only makes sense if you already understand what it is trying to say.

DATA COMPRESSION

This is that the handset first converts speech into the form now standard for telecommunications, linear PCM words tunnings at 64 kilobits/second. Again using standard telecoms techniques, the handset now compresses the data stream into a continuous stream of ADPCM bits running at 32 kbps.

The handset then chops the ADPCM conversation into short segments and transmits each segment at twice its normal speed, ie 64 kbps. The handset at each end does this so each is alternately sending and receiving bursts of double speed code. The bursts are interleaved, so that the radio channel carries a continuous 64 kbps stream of data, which continually reverses direction, in ping pong fashion.

A buffer in each handset takes in each incoming double speed burst and clocks it out again at half speed. This reconstitutes the 32 kbps stream which is expanded to 64 kbps words and converted into an analogue signal. So each caller hears what appears to be seamless speech.

All CT2 systems work with 40 radio channels, each 100 kHz wide, in the uhf radio band between 864-888 MHz. But the CT2 systems currently on the market use different ping pong patterns, and are thus incompatible. This happened because the DTI set only a very loose standard when it released frequencies for CT2 use.

TRIPLE SYSTEMS

And this is why there are now three different and incompatible handset and Telepoint services, Mercury’s Callpoint, BT’s Phonepoint and Ferrari’s Zonephone. Small wonder that sales of CT2 handsets have been pitifully small.

Too late, the DTI called for a common standard. The Common Air Interface (defined by the DTI’s Performance Specification MPT 1375) now specifies the ping pong patterns so that all handsets conforming to the standard are compatible.

In March, telecoms administrations in France, Belgium, West Germany, Spain, Portugal, Italy, Finland and Holland signed a Memorandum of Understanding to adopt the CAI as a European standard. They agreed that by 1993 there will be Telepoint services in all major cities, main railway stations and main airports with the same phone usable in all countries.

ROYALTY FREE

STC, BT, Ferrari, Shaye, Orbitel, Mercury and GPT have pooled all their patents on CAI technology. These patents can be used, royalty free, in any country that adopts the CAI standard. Bell Atlantic Mobile Systems will soon begin trials with CAI equipment, made by GPT, in the US.

The plan is for pan-European handsets to have a slot for a smart card which stores identification codes that authorise its operation with public base stations in each CAI country, with calls billed to the user’s home or office account.

In the UK, all providers of public CT2 services are obliged to conform with the CAI standard from January 1991. This means that the three consortia currently offering a CT2 service with their own proprietary and mutually incompatible technology, will have to install a second set of base station equipment at each Telepoint. Each Telepoint will then provide users with a choice of service, CAI for owners of new handsets and proprietary (Phonepoint, Callpoint and Zonephone) for owners of existing handsets.

The fourth licensed Telepoint provider in the UK, BYPS Communications (a consortium formed by Barclays, Philips and Shell) took a considered decision not to launch a service until CAI equipment was ready. British manufacturer company GPT (formed from the merger of GEC and Plessey telecoms divisions) took a policy decision to manufacture only CAI hardware. Starting this autumn GPT will supply around 2500 Telepoint base stations to each of the existing three CT2 operators, and a similar number to BYPS.

PACKAGE DEALS

GPT’s General Manager, Barry Turnbull, is blunt about the mistakes made by the existing Telepoint operators. The original plan for CT2 was to sell a package of home base station and handset for use as a secure domestic cordless telephone.

Continued on page 14
You've no doubt noticed that all the printed circuit boards that I've designed for PE over the years have been done in the traditional manner - manually. This has entailed the slightly laborious, but enjoyable, task of physically placing black self-adhesive pads and tapes down onto drafting film, cutting and shaping as required.

It is a very acceptable method, but it has its drawbacks. The pads and tapes are quite expensive and usually it's not practical to re-use them. It can also be tricky to make significant modifications to a pcb layout once you are well under way with it - even more so once it's completed.

Many times I've thought about obtaining a computer-aided pcb design program to run on my Amstrad 1640, an IBM-PC compatible machine, but was deterred by the thought that it could take weeks to learn - time that I could ill-afford. Consequently, I stuck with tapes and pads, in the belief that it was quicker in the short-term. How mistaken I was!

The final straws for me were the pcbs for the Tele-Scope (PE Sept 90) and the current Bike Computer. Having taped-up the Tele-Scope pcb I recognised a way in which I could lose two chips from the original design. But this would require an awful lot of retaping - which at first I resisted. However, having seen this more economical route, I felt compelled to follow it. Vast lengths of tracks were stripped off, ic pads removed, and others painstakingly relocated in their place. It took the best part of a day.

Then, while working on the Bike Computer, I found I'd run out of dii rc pads which have tracks going between them, and this microcontroller board needed inter-pad tracking. Being too impatient to reorder and wait for the pads to arrive, I started out on an alternative taping method: working three-times life instead of the usual double-size. In this way I was able to use in-stock component pads for each ic pin hole and run 0.1 inch tracking between without too much trimming of pads or tracks. It worked out ok, though I had to then photographically reduce the image by more than my ‘studio’ is really set up for.

Enough is enough, I thought, let's look into pcb cad packages.

Knowing that Number One Systems regularly advertise in PE a pcb cad package which runs on IBM PCs and compatibles, I gave their Managing Director, Adrian Espin, a call and had a chat with him. He kindly sent me a copy of Easy-PC. It’s fantastic!

It arrived on a Friday and I began examining its demo program early evening. Not long before midnight I'd progressed to the full software and, just for the hell of it, had already redesigned most of the Bike Computer main pcb. By the end of the weekend I had done a couple of other pcb layouts, a fair bit of circuit diagramming, and designed a few extra layout and diagram symbols. It was child's play!

When I think of the hours of manual padding and tracking I needn't have done in the past, I am horrified. There is no need to think that pcb cad is difficult, or expensive. It's not if you choose the right package, as I most certainly did with Easy-PC. Read the full review!

THE EDITOR
SUBSCRIBE AND BE GIFTED!

TAKE OUT 12 MONTHS' SUBSCRIPTION TO PE AND CHOOSE A GIFT:
★ A FREE BINDER TO HOLD 12 COPIES OF PE WORTH £5.95
OR
★ A FREE 300 PAGE BOOK "INTERNATIONAL TRANSISTOR EQUIVALENTS GUIDE" WORTH £3.95

EXTRA SPECIAL OFFER TO STUDENTS, TEACHERS AND BAEC* MEMBERS
SAVE 10% AND RECEIVE THE GIFT OF YOUR CHOICE!
(*British Amateur Electronics Club)

If you already subscribe to PE you can take advantage of this special offer by extending your existing subscription - please advise your current subscription number or say from which month you want your subs to run.

Yes please PE, put me on course to a hi-tech future: Enrol me on your priority subscription list and send me 12 issues and my free gift for the following special price:

UK readers
£18 ..
£16.20 (student/teacher/BAEC)

Overseas Readers
£22 ..
£19.80 (student/teacher/BAEC)

Proof of my student/teacher/BAEC status is attached (e.g. headed notepaper etc.)
I wish my subs to start from the earliest possible issue ..
I wish to extend my existing subscription for a further 12 months commencing with the issue dated ..

As my free gift I would like to receive:
The Binder ..
The Transistor Equivalents Guide

Please send my monthly copy of PE to:
Name and address ..
..
..
Post Code ...

I enclose a cheque / postal order

Please charge to my Access / Visa card number

Send this form (or a photocopy of it) to:
Practical Electronics Subscriptions, 193 Uxbridge Road, London W12 9RA
<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7805/1</td>
<td>6264-128k static RAM</td>
<td>£2.00</td>
</tr>
<tr>
<td>DM88LS120</td>
<td>41256·15 SIMM MODULE</td>
<td>£2.00</td>
</tr>
<tr>
<td>800V BRIDGE RECTIFIER</td>
<td>200V BRIDGE E2</td>
<td>£2.00</td>
</tr>
<tr>
<td>7WATT ZENER 17K</td>
<td>5000V brid</td>
<td>£2.00</td>
</tr>
<tr>
<td>90pf</td>
<td>71£1, 50p rea</td>
<td>£2.00</td>
</tr>
<tr>
<td>1000/E3</td>
<td>20R 110V 10pF</td>
<td>£2.00</td>
</tr>
<tr>
<td>10000µF</td>
<td>100K 220µF</td>
<td>£2.00</td>
</tr>
<tr>
<td>100V 10µF</td>
<td>250V 10µF</td>
<td>£2.00</td>
</tr>
<tr>
<td>MINIBREW</td>
<td>250mm x 150mm</td>
<td>£2.00</td>
</tr>
<tr>
<td>MINIATURE</td>
<td>10µF</td>
<td>£2.00</td>
</tr>
<tr>
<td>MINIATURE</td>
<td>1µF</td>
<td>£2.00</td>
</tr>
<tr>
<td>MINIATURE</td>
<td>0.1µF</td>
<td>£2.00</td>
</tr>
<tr>
<td>MINIATURE</td>
<td>0.01µF</td>
<td>£2.00</td>
</tr>
<tr>
<td>MINIATURE</td>
<td>0.001µF</td>
<td>£2.00</td>
</tr>
</tbody>
</table>

KEYTRONICS

TOLL. 0279-505543

FAX. 0279-757656

P O BOX 634

BISHOPS STORTFORD

HERTFORDSHIRE CM23 2RX

MAIL ORDER ONLY

MIN CASH ORDER £3.00

OFFICIAL ORDERS WELCOME

UNIVERSITIES COLLEGES GOVTS.

DEPARTMENTS

MIN ACCOUNT ORDER £100.00

P & P AS SHOWN IN BRACKETS (HEAVY) ITEMS

50p OTHERWISE (LIGHT) ITEMS

ADD 15% VAT TO TOTAL

ELECTRONIC COMPONENTS

BOUGHT FOR CASH
Previous articles in this series, PE April to June 90, covered simple experiments for the control of a simple vehicle by computer, leading to a micro controlled '8-bit' vehicle including one sensor.

Control software modules were developed and a full menu-driven test program was constructed making particular use of the user programmable keys on the BBC micro and also the highly structured BBC Basic (procedures).

The next phase includes two objectives, i.e. (1) the writing (or conversion) of test program modules in machine code (6502) and (2) the use of an on-board microcontroller (ie hex-input 6502 micro).

Microbe 3 can be developed further in its present form in both the hardware and software sense, although there are certain limitations, especially concerning hardware.

Without extending the vehicle's basic facilities at this stage, work can begin on writing simple machine code control programs so that Microbe 3 can ultimately be controlled by a cpu independently of the BBC micro.

By using a 6502 microcontroller arrangement, a neat solution can be achieved by virtue of the fact that 6502 programs can be developed on the BBC micro’s built-in assembler (removing a lot of the tedious coding function, and also proving programs).

At this point it is worth mentioning that these programs must be written purely in 6502 machine mode and must not make use of labels or BBC operating system routines. This is essential to avoid having to ‘clean up’ the programs later to make them portable.

A highly suitable microcontroller is available from Nikam Electronics and provides a ready made system tailored for use with the BBC micro. The system comprises a 6502 CPU, 2K RAM and 6522 VIA. In this form the controller can communicate directly with the BBC micro via one of its parallel ports (parallel port-to-port link). It can also drive M3 via its parallel port, thereby being a direct substitute for the BBC micro. (Examination of the PE Bike Computer will reveal how its controller will also be suitable. Ed.)

By the use of an optional motherboard, a hardware and software solution is provided, which enables the controller to be connected to the RS423 on the BBC. The purpose of this is to transfer or ‘download’ programs to and from the BBC micro to the 6502 dedicated controller. Thus 6502 machine code programs could be sorted on disk (or cassette) and then downloaded from BBC ram to microcontroller ram, and then run.

If on-board supplies for the controller were provided, the RS423 link cable could be disconnected and then Microbe 3 could be operating under automatic ‘intelligent’ control. Thus maximum flexibility would be achieved with Microbe 3 operating either under the control of the BBC micro or the Nikam controller.

Fig.1 is a simple block diagram of the 6502 microcontroller.

The diagram in Fig.2 shows some uses to which a 6502 microcontroller may be put in the context of micro-robotics.

Fig.2a is the existing Microbe 3 system, whilst Fig.2b shows Microbe 3 driven from the 6502 microcontroller only. Fig.2c shows the BBC micro linked to the controller which in turn controls Microbe 3. This configuration can be considered to be Microbe 3 plus on-board cpu (producing Microbe 4) under direct overall control of the BBC micro (this combination is useful for testing).

Fig.2d shows the vehicle linked to the BBC micro via the RS423 port and motherboard. By connecting the RS423 cable, it can be seen that the motherboard and controller board could be physically mounted on to Microbe 3, thus producing Microbe !

The use of the controller (including two ports) via the serial port releases Port B, enables serial downloading of machine code programs and provides autonomous operation independently of the host computer (‘mother ship’).

An optional parallel cable may be connected for parallel cpu to cpu communication.

Fig.3 provides a more detailed schematic of Microbe 5 which is the robot vehicle system in its final form.

Fig.4 gives details of interconnection of motherboard and microcontroller board. Although the microcontroller is straightforward in itself (input and output via two parallel ports), when connected to the motherboard two lines of Port B are used to transfer serial data to and from RS423. Thus, when used in this mode, only six lines or bits are available from Port B.

The motherboard has two functions:

1. To provide a serial interface (RS423) including level shifting circuitry;
2. As a 'backboard' on to which the microcontroller can be fitted, also providing easy access for connection to all microcontroller connections.

Alan Pickard describes how you can give intelligent freedom of the road to the PE Robot Car by installing a simple 6502 microcontroller. Part One.

MICROCONTROLLING THE ROBOT CAR

Fig. 1. Block Diagram for a 6502 microcontroller suitable for using with the PE Robot Car. You will notice the similarity with the PE Bike Computer microcontroller.
The Microbe 3 interface board can be wired to these pins, and six additional lines are available for control purposes. Thus Microbe 5 has a total of 14 i/o lines available.

The specification of Microbe 5 can be summarised as follows:
- control by on-board (6502) cpu system;
- total of 14 (parallel) input/output lines;
- optional serial connection to BBC micro via RS423;
- facility for receiving downloaded machine code programs held in ram/BBC cassette or disk system;
- benefit of BBC assembler for program development.

The microcontroller board contains a 65C02 CPU and 65C22 VIA (both low power consumption), 2K cmos ram and 2K monitor eprom. There is also a further 2K memory area which can be fitted with 2K ram while developing programs. This ram can eventually be replaced with an eprom for specific 'on board' operating programs. The monitor eprom can be removed and a dedicated program in eprom will autostart on power up.

The program shown in Listing 1 enables the BBC micro to communicate with the 6502 microcontroller. The BBC effectively becomes a terminal or vdu to the Nikam system. A further program is supplied with the system for downloading the contents of ram into the Nikam ram.

The Nikam microcontroller board and motherboard are available separately from Nikam assembled and tested with a very comprehensive and well written user manual. The manual includes full circuits, layouts, memory map, etc.

Bare boards are also available and various other items and interfaces which can be used in conjunction with the system.

Nikam Electronics Ltd. are at: 25 Suffolk Drive, Lacey Green, Wilmslow, Cheshire, SK9 4DE.

In previous articles various test program

![Fig. 2. Various configurations of microcontroller and Microbes 3/4/5.](image)

![Fig. 3. (Left) BBC RS423 to Microbe 4 connections to enable serial downloading of programs.](image)

![Fig. 4. (Right). Nikam controller system connection details.](image)
modules were written in Basic, resulting in the final menu-driven program. For microcontroller applications, these modules and any additional ones, will need to be written in machine code.

The Basic/assembly program in Listing 2 gives an indication of what is required.

Listing 1. Program to convert BBC micro into nikam VDU

```
10 REM TERMINAL
15 REM NIKAM
20 MODE 7
30 REM TRANSMIT 2400 BAUD
40 FX 8,5
50 REM RECEIVE 2400 BAUD
60 "FX 7,5
70 REM TAB TO ESCAPE
80 "FX 220,09
90 st%=&FE08 : REM STATUS
REGISTER
100 tran%=&FE09 : REM
TRANSMIT/RECEIVE
110 IF (?st% AND 1) = 1 PRINT CHR$ ?trn% ;
120 a$=INKEY$(0); IF a$="" ?trn% =
ASCa$ 130 GOTO 110
```

90 jump to delay subroutine at 160-
100-110 put ‘forward’ hex code in data register
120 jump to delay subroutine
130-140 put ‘stop’ hex code in data register

This simple program can be extended to provide the ‘RS’ part of the earlier test routine ‘FRSR’ written in Basic. In its present form the program drives the motor forward briefly and then stops.

This program uses the assembler from within BBC Basic. When run, the program is assembled into machine code (see Listing 3 next month). Thus the block of machine code from &1500-1525 inclusive must be transferred into Nikam ram.

The assembled machine code program is run on the BBC via CALL &1500, but on the Nikam it is run from the appropriate start address in ram, eg 4000 hex, by use of the control character G (command G), ie 4000G followed by RETURN (BBC keyboard).

Thus a control program can be written, debugged and assembled using BBC Basic/assembly and when the final code is transferred to Nikam ram, can be run on the Nikam. (A fast loader program is provided in the Nikam manual for downloading).

Programs for the Nikam cannot of course make use of the BBC operating system routines

Continued next month.
FREE entry to win an ultraviolet exposure Unit Value £200.

Have you sent for your copy yet?

Electronic Components at the right prices.
- FAST SERVICE
- LOW PRICES
- LARGE DISCOUNTS

Competition ends 31 Dec 1990.

0.5" ORANGE DUAL LED DISPLAY
Value £2.00 absolutely free ! ! !

Simply complete and return the order form below and we will send your free gift.

PLEASE SEND A COPY OF THE A & G ELECTRONICS CATALOGUE AT £1.00 (REFUNDABLE WITH MY FIRST ORDER) AND MY FREE GIFT TO:
NAME
ADDRESS .. .

I HAVE ENCLOSED £ Tick box to enter the competition.

A & G ELECTRONICS LTD.
Free Post ,100 Park Avenue ,
London E 6 2BR. (No Stamp Required)
TEL : 081-552 2386 Fax : 081 - 519 3419.

The Antex range of soldering irons and soldering stations have a well-deserved reputation throughout every industry where high quality soldered joints mean the difference between product success and failure.

But equally important are the business end components. The bits themselves.
Antex offer a comprehensive range of SMT de-soldering bits to fit Antex CS; TCS; XSTC; and XSD soldering irons, as well as all the irons in their new industrial range – A245, A545 and A718.
They are available singly or in packs of 12 with a tray.
The bit tray itself is also available separately (and takes most competitive bits).
The entire range is available from leading electronics distributors.

Remember. Antex quality means good business.

Coupon to: Antex (Electronics) Limited
2 Westbridge Industrial Estate
Tavistock, Devon PL19 8DE

Please send me full details of the Antex range of soldering bits and trays. □ (Please tick)
I am also interested in the complete range of Antex soldering products. □ (Please tick)

Name ____________________ Position __________________
Organisation __________________ Address __________________

C-Scope International Ltd., Dept. PE
Wotton Road, Ashford, Kent TAZZ 2LN.
Telephone: 0233 629181

PRACTICAL ELECTRONICS DECEMBER 1990
EASY-PC PCB and SCHEMATIC CAD

For Super Schematics.....

still only £98!!

.....and Perfect PCB’s

- Runs on:-
 PC/XT/AT/386/486 with CGA EGA VGA.
- Design:-
 Single sided, Double sided and Multilayer boards.
- Provides Surface Mount support.
- Standard output includes Dot Matrix printer, Laser Printer, Pen Plotter, Photo-plotter and N.C. Drill.
- Superbly EASY to use.

- Over 5000 installations in over 50 countries worldwide.
- Over 500 installations in Universities, Colleges etc.

Use Award Winning EASY-PC

NEW VERSION - LASER PRINTER SUPPORT!

Write, Phone or Fax for full details: Number One Systems Ltd. The CAD Specialists

REF: PE, HARDING WAY, SOMERSHAM ROAD, ST.IVES, HUNTINGDON, CAMBS, PE17 4WR, ENGLAND.
Telephone: 0480 61778 (6 lines) Fax: 0480 494042 ACCESS, AMEX, MASTERCARD, VISA Welcome.
In the Editorial this month I say how reluctant I was to become involved in learning a pcb computer aided design program because I believed that it would be a time-consuming operation. But having made the decision to acquire a cad package I was amazed at how wrong my assumption had been. The Easy-PC system really is easy to learn and use.

Easy-PC is the brain-child of Number One Systems Ltd and is written for use on an IBM PC, XT, AT, PC386 or equivalent computer, including the Amstrad 1512 or 1640, and having a CGA, EGA or VGA monitor screen. A minimum of 512K of ram is required. It has been designed specifically for printed circuit board design, for producing circuit diagrams and all the associated schematic symbols. An extensive library of symbols is included with the system and it is extremely easy to add more symbols. You can also readily produce line drawings of a non-electronic nature and complete with textual captions.

EASY-PC PCD CAD

MAIN FEATURES

* Complete pcb and circuit diagram design facilities.
* Exceptionally high speed operation.
* Excellent 'what you see is what you get' (wysiwyg!) screen display.
* Multilayer boards with up to eight track layers, top and bottom silk screen overlay details, drilling template and solder resists.
* Selective viewing of any combination of layers.
* Maximum board size 17 x 17 inches (430 x 430 mm).
* Up to 1500 ics per board.
* Up to 5000 tracks with up to 12000 segments.
* Up to 4000 pads in addition to those in ics.
* Up to 100 different symbols per board.
* Up to 6000 text characters in circuit diagrams.
* Choice of 128 track widths from 0.002 to over 0.5 inch, though limited to a maximum of eight widths per board.
* Choice of 128 different pad sizes from 0.002 to over 0.5 inch, though limited to 16 sizes per board.

John Becker examines Number One Systems' computer-aided pcb design package and is highly impressed.

* Choice of 8 pad shapes including circular, oval, square, rectangular, edge connector.
* Choice of different pad hole sizes including no hole.
* Excellent track editing facilities. Existing tracks can be modified anywhere along their length for both route and width.
* Screen grid overlay at 0.1 inch, with snap positioning to 0.1, 0.05, 0.025 inch, plus free-hand positioning off-grid to a nominal resolution of 0.002 inch.
* Auto-via facility providing interconnections between pcb layers.
* Repeat, move, rotate, mirror and erase operations, for individual items or complete blocks.
* Rubber-handing operation, allowing blocks to be moved while retaining track connections.
* Automatic track angle setting of 45° or 90° plus free-hand.
* Extensive libraries of symbols with the ability to modify and create new symbols.
* Reference mode with re-locatable origin for accurate positioning of symbols or blocks.
* Auto-save prompt, settable to user-selected time intervals.
* Sophisticated back-up file operating system to maintain disc data protection even in event of power failure while saving.
* Print-out scales at 1/4, 1/2, 1, 2 or 4 times life size.
* Print-outs to 9 or 24-pin dot matrix printers.
* Camera-ready artwork can be produced on HPGL, pen plotters or Gerber photo-plotters.
* Drilling plot output compatible with NC standard drilling machines.

A selection of circuit symbols from the Easy-PC library
A selection of circuit symbols created using Easy-PC

* Functions selectable via pop-down menus or single keystroke commands.
* Mouse or keyboard control of screen cursor positioning.
* Quick and easy to learn and use.

ON ARRIVAL

Easy-PC is supplied on both 5.25in and 3.5in discs, both sizes automatically being sent in the same package. The single 3.5in disc contains all the program and library files. The same data is split between two 5.25in discs. You use whichever disc size suits your machine and ignore the other.

Additionally supplied with my own package was a 5.25in demo disc complete with its own mini-manual. The demo disc contained a full implementation of the *Easy-PC* program with a few, largely minor, exceptions. The principal exceptions are that you can’t save anything onto disc nor can you produce output for NC Drill, pen plotter or photoplotter. Most of the other *Easy-PC* functions, though, are included and it was a useful exercise to work through the examples in the 14 page manual before moving on to the full system.

The instructional manual for the full system is supplied in a strong ring binder. It is nicely presented, containing a clear contents page, a good index, information on installing the program onto your computer (extremely simple, involving little more than copying the discs onto hard disc or back-up floppies), and then a lengthy tutorial which takes you step by step through all the capabilities of *Easy-PC*. At the end of the manual is a section of useful hints and tips, plus a list of the symbols in the library, presented in words and also as pictures of the symbols themselves. The manual is well written, though was perhaps a bit economical on some descriptions of how the program operates. However, re-reading those passages once I was more familiar with the program made the meanings clear.

BASIC OPERATION

Once the program has been installed on your machine, each time you run it you are first presented with the system logo, followed by a 5-option menu. This gives you choice of designing/editing a pcb layout or circuit diagram, or creating/editing a pcb or circuit symbol, or of quitting the program. A suggested improvement at this point would be the inclusion of a screen statement advising which of the four program modes has been selected since in each mode the initial screen appearances are identical.

In many ways each of the four program modes are similar in use (though the program adopts a slightly different filing routine for each mode): it is basically only a matter of selecting the required pad or line options and then moving the mouse or cursor control keys to position or draw the detail you want. If you make a mistake it is very easy to delete or modify the detail. One nice touch is that a ‘ghost-image’ is retained on screen following deletion, enabling you to see where the data had been. The ‘ghost-image’ disappears when the display is panned or the zoom mode changed.

Pads, lines, text or library symbols can be selected by using the pop down menus, first positioning the cursor over one of ‘pads’ displayed on the top of the screen. The respective menu then pops down and the desired option can be selected by moving the cursor over it and pressing Enter on the keyboard or mouse. Once the option has been selected, the menu disappears and the program then remains in that mode until another option is selected.

The combined use of the Function and selected other keys can achieve the same effect.
The combinations are very easy to remember, many of them simply being the initial letter of the mode required. I found that I quickly learned the coding and that its use provides a very fast change from one mode to another. The Function key selection in particular is logically thought out and with practice my fingers now readily find the correct key without actually looking at it.

By and large, the entire drawing operations are a simple combination of two-handed control, the right hand moving the mouse to position the cursor, and the left hand selecting the mode keys. The right hand also controls several other operations as well, just by pressing one or other of the two mouse keys.

The widths and sizes of pads, tracks and texts can be selected direct from the keyboard, simply by keying in a width or size number. The width or size of pads and lines that these numbers call up can be changed by prior setting of a user-option table, though in practice I have so far found little need to change the default options immediately available at switch-on.

When drawing lines you have a 'rubberbanding' option available. Having set the start point of a line, moving the cursor causes the line to follow it so that you can see precisely where to route it, placing route-changing nodes where you want. Rubberbanding may be switched off if you prefer so that you simply click the mouse at the start and end positions of the line you want drawn, the line appearing after the second click. I prefer the rubberbanding to be on continuously.

All layouts, diagrams and symbols can have text included with them, and all the characters on the keyboard are available.

The library change, as found before, is very easy to make. The libraries have directories, in text form, which can be displayed on screen in response to pop-down menu or keystroke entry. The libraries have directories, in text form, which can be displayed on screen in response to pop-down menu or keystroke command. Regrettably you have to remember the name of the symbol you want since you cannot call it up until the directory display has been removed from screen. Accessing via mouse-controlled highlight selection on the screen directory would be a real advantage here. So too would the inclusion of a 'sort' facility to put the symbol names into alphabetical order.

On the current version of Easy-PC there are over 400 symbols available, mainly relating to digital ic varieties. Although the selection is good, it could be improved by extending it to cover more of the digital ics in current use, plus the inclusion of a linear ic library as well. However, symbols are so easy to create that the limitation is very minor. Number One Systems tell me that they intend to extend the libraries in due course.

An extremely useful 'interrogation' facility has been included. By putting the program into any of the four edit modes and then pressing the + key a screen display tells you full details about the nearest function relating to the mode, covering width, size, shape, variant or name, as appropriate.

LIBRARIES

Symbols have been split into several library files. Those most likely to be used regularly are stored in the library to which the computer defaults at switch on. To access the other libraries you just change the screen prompt entry. The libraries have directories, in text form, which can be displayed on screen in response to pop-down menu or keystroke command. Regrettably you have to remember the name of the symbol you want since you cannot call it up until the directory display has been removed from screen. Accessing via mouse-controlled highlight selection on the screen directory would be a real advantage here. So too would the inclusion of a 'sort' facility to put the symbol names into alphabetical order. On the current version of Easy-PC there are over 400 symbols available, mainly relating to digital ic varieties. Although the selection is good, it could be improved by extending it to cover more of the digital ics in current use, plus the inclusion of a linear ic library as well. However, symbols are so easy to create that the limitation is very minor. Number One Systems tell me that they intend to extend the libraries in due course.

One aspect I do not like is that when modifying a library symbol it is necessary to either give the symbol a new name or to erase the old symbol before saving the new one. I changed several symbols to make them closer in style to that used in PE and preferred to keep the original name. By having to erase the old name first I felt in danger of making an error, with the resultant possibility of losing the symbol entirely. Certainly I could then reload the original symbol from the master disc, but I would prefer to have had a potentially less-hazardous modifying routine available.

GLOBAL CHANGE

An interesting point came up after I had made several symbol changes. I had already designed some pcb's before changing the symbols. Reloading the pcb designs following the library changes, I was surprised to see that the pcb's still showed the original symbols. After some experimentation I found that if I first loaded the changed symbols onto a 'new' screen format, and then 'merged' the pcb design into another area of the same format, all the original symbols in question were automatically changed to the new ones. The 'side line' symbols could then be deleted and the pcb layout re-saved. Next time it was loaded the pcb showed the correct new symbols. It was in effect the equivalent of a 'global change' facility which I found very useful. It also gave an interesting insight into the program's architecture.

ROTATION

The orientation of texts and symbols can be easily changed, allowing them to run horizontally, vertically, upside down, back-to-front and so on. All orientations are related to 90° steps and you cannot rotate text or symbols to other angles. It could be useful in some instances to be able to orientate them in steps of 45° angles. Ideally, a full 360° rotation through 1° steps would make the system an even more versatile package for general non-electronic drawing creation. A very useful line function available is the automatic circle drawing facility. This allows you to draw a line to the radius length you want and then let the program produce a circle from it. The circle consists of many discrete nodes and it is then possible to selectively delete some nodes so that arcs and semi-circles etc can be produced.

BLOCK MODE

One function I really like is the two-mode block-move facility. This allows you to select an area which you want to move and then to reposition it anywhere else on the screen. In one mode just the main detail within the block is moved (though detail which crosses the block boundaries may also be carried along). In the other mode a rubberbanding function comes into play so that any lines extending outside the block follow it to its new position, automatically being rerouted, shortened or lengthened as
A relay symbol turned through four angles A_0, A_1, A_2, A_3 and then A_0-to-A_3 flipped.

needed. This is especially useful if you wish, for example, to make space for additional components. It also allows you to compress or expand the layout once it is otherwise complete. It may sometimes be necessary to redraw some lines to make their routings more aesthetically pleasing, but what a time-saver this option is!

Use of the block mode also allows you to selectively print parts of a layout or circuit.

LAYERS

There are ten layers on which you can place your PCB design details, allowing not only single-sided PCBs to be drawn, but double-sided and multi-layer boards as well. Eight layers are reserved for pad and line details. The top layer (Layer 0) is used for component overlay symbols and textual information. The lowest layer (Layer 9) allows you to put further text on the back of the PCB, and you can tell the program to make this a mirror image so that it appears correct when you turn over the actual manufactured PCB.

For single-sided PCBs you would use Layers 0, 1 and 9. With double-sided PCBs you can use any of the remaining layers for the second side, but would probably use Layer 2 or 8.

You can select which layers you want to see on screen at any one time, from nil to all. The same option applies when printing out to a printer or plotter. This is a vital facility when printing, and is a highly useful option when designing on screen. On screen you can set the layers to appear as different colours, and within certain restrictions can specify in which colours you want to see them. Usually I work with the layers in a combination of white, red and blue.

Although text and lines will only appear on the layers which you specify for them, pads

Top left: combined track, pad, symbol and text layout — this was in red and white on the screen with good visual separation. Bottom left: Symbol and text separation. All symbols were designed using Easy-PC facilities. Top right: reverse side track view. Bottom Right: pads only separation, suitable for solder-resist requirements.
Top: part of the Bike Computer main pcb redesigned on Easy-PC. On screen the main tracks are in red, the pads in white and the vertical links in blue. This part was done in far less time than it took to traditionally tape the original (though not fully completed) the equivalent section of which is reproduced below it.

placed on any one of Layers 1 to 8 will automatically be copied to the other seven designated layers. Component symbols can only be placed on Layer 0.

When designing layout symbols, the line and text data is automatically allocated to Layer 0, though pad data will subsequently appear on all Layers 1 to 8.

Circuit diagram details are confined to a single layer which cannot be changed.

PAN, ZOOM AND GRID

You can view your design at any one of seven magnifications. On the Amstrad 1640, Zoom 4 roughly corresponds to a life-size view. Zoom 1 shows the largest image, eight times that of Zoom 4. Zoom 7 shows the entire 17 x 17 inch layout area. At all zoom sizes you can pan the data in all directions across the screen.

A dotted grid can be switched on or off screen thus facilitating data positioning. Its scale varies with the zoom magnification, though is always related to 0.1 inch steps, except with Zoom 7 when no grid is shown. You can select a grid 'snap' mode which allows you to position the cursor close to a required point and then to let the program 'snap' it to the exact point, making for extremely precise positioning. The 'snap' can be set for scales of 1/4, 1/2 or 1 grid position, or for free-hand.

Another 'snap' function allows the cursor to be placed some greater distance away from a pad, line, symbol or text display. On pressing an edit key, the cursor jumps straight to the nearest node of the display function selected. This is a great advantage when, for example, you want to delete or modify pads in a given area. Each time you press the Pad-edit key, the cursor jumps to the nearest pad, allowing you to make the necessary changes. This is another good timesaver. The 'snap' distance can be varied via the user-options menu.

In addition to the grid reference there is a separate sizing option which can be set for metric or imperial measurements. The initial starting reference point can be set to zero at any time allowing accurate size and distance measurements to be made.

REPEAT MODES

Once you have selected a line, pad, text or symbol mode, the program stays in that mode until told to change. For example, you can select a particular pad size and shape, and constantly repeat it wherever you want across the design simply by clicking the mouse once at each point. The same too with line widths; it will stay in that width until another mode is selected. Text and symbol modes work slightly differently. You stay in the mode, but each time you click the mouse you then enter the text you want, or say which symbol you want brought on screen. If you want to repeat text or symbols you enter edit mode with the cursor over the text or symbol in question, move the cursor to the new position, and press R to repeat it.

PRINTING

There are numerous printing options, allowing selection of scale size, choice of layers, choice of quality including draft, normal and bold. You can selectively print parts of a drawing, using the block function command, and you can reorientate the drawing to allow drawings wider than the paper width to printed vertically, for example.

I use the program with a 24-pin printer (an Epson LQ550, which cost around £310) but it can be used with 9-pin printers instead. It can also be used with pen and photo plotters though I have no experience of these.

For prototyping purposes I print out life-size onto ordinary fan-fold paper, make a good photocopy of the print and spray it with a transparentiser. It is then placed in contact with photo-sensitive copper-clad pcb laminate and exposed in an ultraviolet unit, following which it is developed and etched in the usual way. (I had hoped to use the fan-fold print direct, but the ink image runs when sprayed with transparentiser!)

HIGHLY BENEFICIAL

There are several peripheral but highly useful functions that this excellent program can perform as well, though space prevents their inclusion here.

Easy-PC has really opened my eyes to the value and operational simplicity of pcb cad. Although I still have many pounds worth of conventional pcb design pads and tracks, I doubt that I shall ever have occasion to use them again. The program has revolutionised my pcb and circuit diagram design facilities. No wonder the system won the 1989 British Design Award.

A further advantage of this cad package is the benefits you will experience from the helpful attitude of its designers. Number One Systems recognise how important it is that their customers should be absolutely satisfied with their products. They stress that if anyone has a problem or a query concerning Easy-PC, or any of the company's other software products, then they can ask for advice as many times as they like. Such an attitude is a breath of fresh air. (I know of one cad software company that restricts purchasers to only three queries unless consultation fees have been paid.) Whether you are a commercial pcb designer, or a hobbyist producing just the occasional layout, you will benefit greatly from this software.

I hope that I have whetted your appetite to find out more about Easy-PC. If so, give Number One Systems a call and obtain a free copy of their demo disc. (Tell them I told you to call!) They will even allow you to copy the demo as many times as you want and pass the copies around your friends. I am sure that having played with the demo for a while you'll not be able to resist buying the complete program. It costs only £98 and is worth every penny of it!

Number One Systems are at Harding Way, Somersham Road, St Ives, Huntingdon, Cambs, PE17 4WR. Tel: 0480 61778.
POWERFUL ONION

10" HIGH RESOLUTION MONITOR Amber screen beautifully
cased for best 20hr. display. Brand new, full spec, £12. £10.

Portable REAL POWER CAR SPEAKERS. Stereo pair output 10W each. 4.0m.

110 VOLT TRANSFORMER. Miniature transformer - ideal for equipment
cooling. Case included. Ref. 9P7. £12.00 Cold. £9.00

9V TUBE AMPLIFIER. Made in Japan. 9 volts, 10mW, 700Ω.

SOLDER

220V 50/60Hz mains unit shockproof, filter. Brand new. Each. £12.00 Cold.

25W STEREO AMPLIFIER (IC 741X4)

REAL: ORDER NOW. 25W STEREO AMPLIFIER (IC 741X4).

50W20mV with 12Wm. Requires 14A battery and a few switches.

TV IN PUSH SWITCHES

IN TOGGLE SWITCH

TOGGLE SWITCH

IN PUSH SWITCHES

IN TOGGLE SWITCH

3Pin PLUGS:IDEAL FOR HOME, OFFICE WORKROOM etc. Mades you
refresh your home, office, workshop etc. Makes you feel
better and work harder - a complete mains operated kit. Case Included.

REAL: ORDER NOW. 25W STEREO AMPLIFIER (IC 741X4).

50W20mV with 12Wm. Requires 14A battery and a few switches.

TV IN PUSH SWITCHES

IN TOGGLE SWITCH

TOGGLE SWITCH

IN PUSH SWITCHES

IN TOGGLE SWITCH

3Pin PLUGS:IDEAL FOR HOME, OFFICE WORKROOM etc. Mades you
refresh your home, office, workshop etc. Makes you feel
better and work harder - a complete mains operated kit. Case Included.

REAL: ORDER NOW. 25W STEREO AMPLIFIER (IC 741X4).

50W20mV with 12Wm. Requires 14A battery and a few switches.

TV IN PUSH SWITCHES

IN TOGGLE SWITCH

TOGGLE SWITCH

IN PUSH SWITCHES

IN TOGGLE SWITCH

3Pin PLUGS:IDEAL FOR HOME, OFFICE WORKROOM etc. Mades you
refresh your home, office, workshop etc. Makes you feel
better and work harder - a complete mains operated kit. Case Included.

REAL: ORDER NOW. 25W STEREO AMPLIFIER (IC 741X4).

50W20mV with 12Wm. Requires 14A battery and a few switches.

TV IN PUSH SWITCHES

IN TOGGLE SWITCH

TOGGLE SWITCH

IN PUSH SWITCHES

IN TOGGLE SWITCH

3Pin PLUGS:IDEAL FOR HOME, OFFICE WORKROOM etc. Mades you
refresh your home, office, workshop etc. Makes you feel
better and work harder - a complete mains operated kit. Case Included.

REAL: ORDER NOW. 25W STEREO AMPLIFIER (IC 741X4).

50W20mV with 12Wm. Requires 14A battery and a few switches.
The accuracy of your soldering is of prime importance on the main PCB (it is at any time, but especially so here). Tracking runs between many of the chip pins on the board and it is essential that you check really hard that none of your solder joints allow solder to bridge between the pins and the tracks. Use a powerful close-up magnifying glass to check each and every joint.

LCD, KEYPAD AND BOX

Figs 11 and 12 last month showed the connections to the LCD module and the keypad. Keep the wiring between these and the PCBs neat and reasonably short. Cable ties may be used to group the wires into neat harnesses but don’t put too many wires into each harness otherwise bending them to fit into the case will be tricky.

The main PCB has been designed to fit snugly into the bottom of the box, though you may need to clip off the corners of the PCB to avoid the box corners. The power saver PCB sits above the box corners. The power saver PCB sits above the main board in the box.

In Fig. 12 last month reference is made to an alarm code number you want to use, and as to whether you ought to change the alarm message some time in the future. The latter first:

Hex line 7E0 holds the code which causes the LCD to show the words “ALARM ON” on screen line 1. Translate the hex numbers into decimal and you will see that it is the ASCII code: hex 41 = ASCII 65 = A (as understood by the LCD). If you object to the statement for line 2 as held by hex line 7F0 (which I’ll leave you to translate for yourself) you can either invent your own 8-character message, or set the screen line blank by filling each position on hex line 7F0 with ‘20’ (ASCII 32).

The alarm code number is held in hex line 7EO. As listed it is just ‘1234’. You may enter any 4-number code here using any of the numbers 1 to 7 (0, 8 and 9 are not acceptable).

Hex lines 720, 728, 750 and 758 are the ones which need changing to suit your wheel size. They hold the look-up data used by the program to work out distance factors in relation to wheel turns and time. The numbers shown in the four lines are those for a wheel diameter of 27 inches (68.4 cm). (Looking through Halford’s bike catalogue the range of wheel sizes appears to be from 12.5in to 27.5in, 31.75cm to 70 cm). The bike computer could be used with larger wheel sizes, but further changes would need to be made to the program, partly relating to the Basic program.

SOFTWARE

Most of the hex code for the Eeprom was given last month. The remainder is shown in the LCD Module article of PE May 90. It is not necessary to use it with the Bike Computer.

BIKE COMPUTER

inverter. This is an additional unit that can be bought for use with the LCD module to provide backlighting of the display. Its use was covered in the LCD Module article of PE May 90. It is not necessary to use it with the Bike Computer.

HEX DUMP CONTINUED

<table>
<thead>
<tr>
<th>Hex</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>470</td>
<td>C4</td>
</tr>
<tr>
<td>480</td>
<td>FF</td>
</tr>
<tr>
<td>488</td>
<td>F0</td>
</tr>
<tr>
<td>496</td>
<td>F5</td>
</tr>
<tr>
<td>498</td>
<td>09</td>
</tr>
<tr>
<td>49A</td>
<td>20</td>
</tr>
<tr>
<td>49B</td>
<td>09</td>
</tr>
<tr>
<td>49C</td>
<td>20</td>
</tr>
<tr>
<td>49D</td>
<td>09</td>
</tr>
<tr>
<td>49E</td>
<td>20</td>
</tr>
<tr>
<td>49F</td>
<td>09</td>
</tr>
<tr>
<td>4AF</td>
<td>20</td>
</tr>
<tr>
<td>4B0</td>
<td>09</td>
</tr>
<tr>
<td>4B2</td>
<td>20</td>
</tr>
<tr>
<td>4B3</td>
<td>09</td>
</tr>
<tr>
<td>4B4</td>
<td>20</td>
</tr>
<tr>
<td>4B5</td>
<td>09</td>
</tr>
<tr>
<td>4B6</td>
<td>20</td>
</tr>
<tr>
<td>4B7</td>
<td>09</td>
</tr>
<tr>
<td>4B8</td>
<td>20</td>
</tr>
<tr>
<td>4B9</td>
<td>09</td>
</tr>
<tr>
<td>4BA</td>
<td>20</td>
</tr>
<tr>
<td>4BB</td>
<td>09</td>
</tr>
<tr>
<td>4BC</td>
<td>20</td>
</tr>
<tr>
<td>4BD</td>
<td>09</td>
</tr>
<tr>
<td>4BE</td>
<td>20</td>
</tr>
<tr>
<td>4BF</td>
<td>09</td>
</tr>
<tr>
<td>4C0</td>
<td>20</td>
</tr>
<tr>
<td>4C1</td>
<td>09</td>
</tr>
<tr>
<td>4C2</td>
<td>20</td>
</tr>
<tr>
<td>4C3</td>
<td>09</td>
</tr>
<tr>
<td>4C4</td>
<td>20</td>
</tr>
<tr>
<td>4C5</td>
<td>09</td>
</tr>
<tr>
<td>4C6</td>
<td>20</td>
</tr>
<tr>
<td>4C7</td>
<td>09</td>
</tr>
<tr>
<td>4C8</td>
<td>20</td>
</tr>
<tr>
<td>4C9</td>
<td>09</td>
</tr>
<tr>
<td>4CA</td>
<td>20</td>
</tr>
<tr>
<td>4CB</td>
<td>09</td>
</tr>
<tr>
<td>4CC</td>
<td>20</td>
</tr>
<tr>
<td>4CD</td>
<td>09</td>
</tr>
<tr>
<td>4CE</td>
<td>20</td>
</tr>
<tr>
<td>4CF</td>
<td>09</td>
</tr>
<tr>
<td>4D0</td>
<td>20</td>
</tr>
<tr>
<td>4D1</td>
<td>09</td>
</tr>
<tr>
<td>4D2</td>
<td>20</td>
</tr>
<tr>
<td>4D3</td>
<td>09</td>
</tr>
<tr>
<td>4D4</td>
<td>20</td>
</tr>
<tr>
<td>4D5</td>
<td>09</td>
</tr>
<tr>
<td>4D6</td>
<td>20</td>
</tr>
<tr>
<td>4D7</td>
<td>09</td>
</tr>
<tr>
<td>4D8</td>
<td>20</td>
</tr>
<tr>
<td>4D9</td>
<td>09</td>
</tr>
<tr>
<td>4DA</td>
<td>20</td>
</tr>
<tr>
<td>4DB</td>
<td>09</td>
</tr>
<tr>
<td>4DC</td>
<td>20</td>
</tr>
<tr>
<td>4DD</td>
<td>09</td>
</tr>
<tr>
<td>4DE</td>
<td>20</td>
</tr>
<tr>
<td>4DF</td>
<td>09</td>
</tr>
<tr>
<td>4E0</td>
<td>20</td>
</tr>
<tr>
<td>4E1</td>
<td>09</td>
</tr>
<tr>
<td>4E2</td>
<td>20</td>
</tr>
<tr>
<td>4E3</td>
<td>09</td>
</tr>
<tr>
<td>4E4</td>
<td>20</td>
</tr>
<tr>
<td>4E5</td>
<td>09</td>
</tr>
<tr>
<td>4E6</td>
<td>20</td>
</tr>
<tr>
<td>4E7</td>
<td>09</td>
</tr>
<tr>
<td>4E8</td>
<td>20</td>
</tr>
<tr>
<td>4E9</td>
<td>09</td>
</tr>
<tr>
<td>4EA</td>
<td>20</td>
</tr>
<tr>
<td>4EB</td>
<td>09</td>
</tr>
<tr>
<td>4EC</td>
<td>20</td>
</tr>
<tr>
<td>4ED</td>
<td>09</td>
</tr>
<tr>
<td>4EE</td>
<td>20</td>
</tr>
<tr>
<td>4EF</td>
<td>09</td>
</tr>
<tr>
<td>4F0</td>
<td>20</td>
</tr>
<tr>
<td>4F1</td>
<td>09</td>
</tr>
<tr>
<td>4F2</td>
<td>20</td>
</tr>
<tr>
<td>4F3</td>
<td>09</td>
</tr>
<tr>
<td>4F4</td>
<td>20</td>
</tr>
<tr>
<td>4F5</td>
<td>09</td>
</tr>
<tr>
<td>4F6</td>
<td>20</td>
</tr>
<tr>
<td>4F7</td>
<td>09</td>
</tr>
<tr>
<td>4F8</td>
<td>20</td>
</tr>
<tr>
<td>4F9</td>
<td>09</td>
</tr>
<tr>
<td>4FA</td>
<td>20</td>
</tr>
<tr>
<td>4FB</td>
<td>09</td>
</tr>
<tr>
<td>4FC</td>
<td>20</td>
</tr>
<tr>
<td>4FD</td>
<td>09</td>
</tr>
<tr>
<td>4FE</td>
<td>20</td>
</tr>
<tr>
<td>4FF</td>
<td>09</td>
</tr>
</tbody>
</table>

Part two. In which John Becker
discusses aspects of the software listing and tells you what to expect when checking out.

The Alarm code number listed here should be used. If you have difficulty working out the numbers for your wheel diameter, tell me its size, enclose an sae, and I’ll send you the numbers.

The program gives you the choice of entering your wheel size in inches or centimetres. It then makes the calculations and prints out on your computer screen the entire contents for each of the four lines. You then simply substitute those numbers for the ones shown in the hex listing.

The Basic program listing may need to be slightly corrected to match the dialect of your computer.

Note that although I said in last month’s introduction that the unit may be used with any wheel diameter, the largest practical diameter that can have data entered on these lines is 34.8 inches (88.4 cm). (Looking through Halford’s bike catalogue the range of wheel sizes appears to be from 12.5in to 27.5in, 31.75cm to 70 cm). The bike computer could be used with larger wheel sizes, but further changes would need to be made to the program, partly relating to the Basic program.

PRACTICAL ELECTRONICS DECEMBER 1990
serials with the positive line to drop the voltage

7805 itself consumes battery power, probably as

inches) but I have inserted a 1N4001 diode in

though, that 6V is not exceeded.

you could instead power the unit from a 6V

battery via a 7805 5V regulator IC. There is a

power supply. This can be supplied from a 9V

miles/kms back to zero. It's not

program is working you might prefer to entirely

code, once you have established that the

that.

My own unit is powered by a small 6V I

put the unit into peak and average speed modes

distance and speed in kilometres, at this time

line 2 should show the same time, and line 1

should now read

anything on the screen). At this moment the unit

both lines. (You may need to adjust the

Providing

them from a good supplier.

your work.

mount it on the bike, check out its operation.

and your soldering is satisfactory, the unit

by about 0.7V, thus keeping the voltage below

small protective plastic box.

decimal point position controlling factors. I

regret that neither I nor PE can offer advice on

that.

If you are using an eprom to store the hex

code, once you have established that the

program is working you might prefer to entirely

reprogram it in order to set the master stores for

miles and kilometres back to zero. It’s not

necessary to do so: just remember that the first

few miles/kms on the ‘clock’ were

experimental!

POWER SUPPLY

Strictly speaking the unit unit requires a 5V

power supply. This can be supplied from a 9V

battery via a 7805 5V regulator ic. There is a

draw back with using this method in that the

7805 itself consumes battery power, probably as

much as 10mA. If you feel that this extra drain

is too much, shortening the battery’s useful life,
you could instead power the unit from a 6V

battery without a regulator ic. You must ensure,

though, that 6V is not exceeded.

My own unit is powered by a small 6V 1

amp/hour dryfit battery (approx 2 x 1.6 x 2

inches) but I have inserted a 1N4001 diode in

series with the positive line to drop the voltage

by about 0.7V, thus keeping the voltage below 6V. The battery is kept in the saddlebag in a

small protective plastic box.

CHECKING OUT

Before you put everything into the box and

mount it on the bike, check out its operation.

Providing the eprom is correctly programmed

and your soldering is satisfactory, the unit

should work first time. If it doesn’t, recheck

your work. It is highly unlikely that the

components will fail if you have bought them from a good supplier.

For checking, it is best if you power the unit from a stabilised 5V power supply rather than from a battery.

At switch on, the processor goes through a

brief routine setting up parameters for thelcd module. You will probably see the screen first

display a dark band at the top, then clear,

followed by a series of digits appearing across

both lines (it is useful to adjust the brilliance control VR1 before you can see anything on the screen). At this moment the unit

is in Mode 3 with line 1 showing total miles

travelled and line 2 showing elapsed hours,

minutes and seconds. Line 1 should read

0000.00M (‘M’ indicating Miles) and Line

2 should first read 00.00.00 and then be seen to

increment at one second intervals.

Press key 6 on the keypad. Now in Mode 6,

line 2 should show the same time, and line 1

should now read 0000.00K (‘K’ indicating

Kilometres).

Key 1 puts the screen into distance and speed

mode for miles, line 1 reading 0000.00DM

(Distance, Miles), and line 2 reading 0000.00VM

(Velocity, Miles). Key 4 switches over to
distance and speed in kilometres, at this time

reading 0000.00DK and 0000.00VK. Keys 2 and 5

put the unit into peak and average speed modes

for miles and kilometres respectively. You should

see 0000.00M and 0000.00M in mode 2 and

0000.00K and 0000.00K in mode 5. The J

symbol indicates peak, and K indicates average.

Key 7 brings up the display showing the total

revolutions that the wheel has turned and the

elapsed time as decimal hours, both since last

being reset. Line 1 should read 0000000K (6V

meaning Revs). The numbers in line 2 will

depend on the elapsed time since you switched

on but could at this moment probably show

0000.01 t (indicating decimal hours mode). In

this mode, the decimal places show the

minutes and seconds as a decimal of one hour, for

example 30 minutes will be shown as 00.50.

Now monitor pin 6 of the opamp IC9 with

a voltmeter and set VR2 midway. Move the

magnet closely past the sensor chip and note that

the voltage reading changes as the magnet

passes it. This change will vary in amplitude

depending on which face of the magnet is

towards the top of the sensor. Mark this face and

then finally mounting the magnet and sensor on

the bike make sure that this surface and the top

of the sensor ic face each other. Now monitor

IC6c pin 3 and adjust VR2 until the meter shows

the output changing fully between 0V and 5V as

the magnet passes. It does not matter whether

the output is high or low in the absence of the

magnet, as long as the opposite state occurs

when the magnet is closest. When the unit is

mounted on the bike, VR2 should be adjusted so

that the logic change occurs reliably when the

wheel rotates.

Having established that the sensor is

functioning, look at the screen, still in Mode 7.

The figures in line 1 should have incremented

by one each time the sensor was triggered. Move

the magnet past the sensor and watch the count

changing.

Next check out the reset function. To

minimise the risk of accidental resetting, two

keys need to be pressed simultaneously, keys 1

and 7. Pressing them resets all measurements

to zero except for the total miles/kilometres since

the unit was first put into service.

NEXT MONTH

In part three there will be a bit more on

testing, and I’ll look at the alarm and mounting

options. I’ll also briefly examine how the unit

can be used as a general-purpose microcontroller.
DIGITAL SIGNAL TIME SWITCH ENTRY ALARM ROBOT VOX MODULE CAR ALARM

Please phone or write for catalogue. Enclosing Competitive Prices

SEQUENCER 3-COM CONTROL 3-CHANNEL SEQUENCER

P&P GEM GEM GEM

Module GEM-TECH DEPT PE11, UNIT J, 8 FINUCANE DRIVE, ORPINGTON, KENT, BR5 4ED. 24-HR ANSAPHONE TEL 0689 37821

ALL PRICES INCLUDE VAT. P&P ONLY £1.00 PER ITEM

PRACTICAL ELECTRONICS DECEMBER 1990

GEM TECH

DIY KIT MODULES
All with pcbs and step by step instructions

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope Trace Doubler</td>
<td>£12.50</td>
</tr>
<tr>
<td>Digital Signal Gen</td>
<td>£16.95</td>
</tr>
<tr>
<td>Audio Signal Gen</td>
<td>£17.50</td>
</tr>
<tr>
<td>Robot V.Ox Module</td>
<td>£19.50</td>
</tr>
<tr>
<td>Multiple Sirens</td>
<td>£16.95</td>
</tr>
<tr>
<td>Time Switch</td>
<td>£10.95</td>
</tr>
<tr>
<td>Entry Alarm Controller</td>
<td>£15.95</td>
</tr>
<tr>
<td>Frost Alarm</td>
<td>£10.80</td>
</tr>
<tr>
<td>Car Alarm</td>
<td>£19.95</td>
</tr>
<tr>
<td>Geiger Counter</td>
<td>£58.30</td>
</tr>
<tr>
<td>3-Chan Sound-To-Light Control</td>
<td>£37.95</td>
</tr>
<tr>
<td>3-Channel Light Sequencer</td>
<td>£32.95</td>
</tr>
</tbody>
</table>

PROFESSIONAL QUALITY KITS

Whether your requirement for surveillance equipment is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all of our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including Sophex PCB. Unless otherwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio.

UTX Ultra-miniature Room Transmitter. Smallest room transmitter kit in the world! Incredible 10mm x 20mm including mic. 3-12V operation. 900m range. £35.95

MTX Micro-miniature Room Transmitter. Best-selling micro-miniature room transmitter. Just 17mm x 17mm including mic. 3-12V operation. 1000m range. £52.95

STX High Performance Room Transmitters. High performance transmitters with a buffered output stage for greater stability and range. 25mm x 22mm including mic. 6-12V operation. 2000m range. £39.95

VT500 High-Power Room Transmitter. Powerful 25W output providing excellent range and performance. Size 20mm x 40mm. 9-12V operation. 3000m range. £15.95

VX1 Voice Activated Room Transmitter. Triggers only when sounds are detected. Very low intensity sound, variable sensitivity and delay with led indicator. Size 20mm x 67mm. 9V operation. 1000m range. £18.95

QTX100 Crystal Controlled Room Transmitter. Narrow band FM transmitter for the ultimate in privacy. Operates on 130 MHz and requires the use of a scanner or receiver or our QX110 kit (see catalogue). Size 20mm x 67mm. 9V operation. 1000m range. £18.95

SCRM Subcarrier Scrambled Room Transmitter. Scrambled output from this transmitter cannot be monitored without the SCRM decoder connected to receiver. Size 25mm x 67mm. 9V operation. 1000m range. £23.95

SCRM Subcarrier Decorder Unit for SCRM. Connects to receiver earphone socket and provides decoded audio output to headphones. Size 35mm x 70mm. 9-V operation. £21.95

HVX400 mains Powered Room Transmitter. Connects directly to 220V AC supply for long term monitoring. Size 30mm x 30mm. 900m range. £18.95

ATMR Micro Size Telephone Recording Interface. Connects between telephone line (anywhere) and cassette recorder. Switches tape automatically as phone is used. All conversations recorded. Size 10nm x 20mm. Powered from line. £16.95

UTX Ultra-Miniature Telephone Transmitter. Smallest telephone transmitter kit available. Incredible size of 10mm x 20mm including microphone. Connects to line (anywhere) and switches on and off with phone use. All conversation transmitted. Powered from line. 1000m range. £10.95

TLX100 Micro Miniature Telephone Transmitter. Best-selling telephone transmitter. Being 20mm x 20mm it is easy to assemble than UTX. Connects in line (wherever) and switches on and off with phone use. All conversations transmitted. Powered from line. 1000m range. £14.95

STX High Performance Telephone Transmitter. High power transmitter with buffered output stage providing excellent stability and performance. Connects to line by taping and switches on and off with phone use. All conversations transmitted. Powered from line. 1000m range. £22.95

TXR900 Signalling/Tracking Transmitter. Transmits a low power stream of audio pulses with variable tone and rate. Ideal for signalling or tracking purposes. High power output giving range up to 3000m. Size 25mm x 67mm. 9V operation. £23.95

CD800 Professional Bug Detector/locater. Multichannel现货 of signal strength with variable threshold and variable sensitivity used to detect and locate hidden transmitters. Switch to AUDIO CONFIRM mode to distinguish between localised bug transmission and normal legitimate signals such as pagers, cellular, taxis etc. Size 70mm x 100mm. 9V operation. £49.95

*** SPECIAL ***

DLTX/UXLR Radio Control Switch. Remote control anything around your home or garden, outside lights, alarms, paging system etc. System consists of a small VHF transmitter with digital encoder and receiver unit with decoder and relay output, momentary or alternate. 8 way dial switches on both boxes set your unique security code. TX size 45mm x 45mm, RX size 35mm x 90mm. Both 9V operation. Range up to 200m. Complete system (2 kits). £49.95

Individual Transmitter DLTX. £18.95

Individual Receiver UXLR. £36.95

A build-up service is available on all our kits if required.

UK customers please send cheques, POs or registered cash. Please add £1.50 per order for delivery. Goods dispatched ASAP allowing for cheque clearance. Overseas customers send sterling bank draft and add £5.00 per order for shipment. Credit card orders welcomed on 0827 714476.

OUR LATEST CATALOGUE CONTAINING MANY MORE NEW SURVEILLANCE KITS NOW AVAILABLE. SEND TWO 50P STAMPS OR OVERSEAS SEND TWO UDCS.

SUMA DESIGNS
The Workshops
59 Main Road, Bexley, Nr. Atherstone, Warwickshire CV9 2LE

Tel: 0827 714476
The simple electronic enclosure has come a long way in the past few years. New materials, new designs, new codes of protection have all been introduced to cater for the needs of the professional electronic engineer. The advantages are clear. Enclosure technology today is an increasingly sophisticated science. But with the host of choices and specifications available, how does the amateur electronics enthusiast choose the right product for his needs?

EXPANDING MARKET

As more and more industries enter the electronics era, the enclosure market is expanding. Today's product is being used in a host of new applications and new environments. The medical field is just one example. The environmental monitoring industry is another.

The result of this expanding marketplace is an increasing versatility in the design of enclosures. They now have to be highly adaptable - a property which has to be an advantage to any amateur without the funds, the time, or the required numbers to order custom-built designs to suit his needs.

The demise of the well established general purpose housings - known generically as the 'Verobox', but manufactured by many companies - is a reflection of this need. Today there are a host of alternatives to the small electronics enclosure which dominated the market for so long.

The Elegant range from Bopla is one such alternative which typifies the properties of today's product. Styled in high impact polystyrene, it signals the move away from traditional metal and is at once stronger and more attractive.

The light grey enclosure is highly adaptable to many applications. It can be used free standing or wall-mounted and it makes a comfortable enclosure for hand-held instruments. Moulded in two halves, the case is screwed together from below and is just the right size for a standard Eurocard. Moulded bosses in the base will also take a pcb or chassis and if required a suitably-sized pcb can be sandwiched firmly between the two case halves with no screws needed.

Cases are available with moulded-in ventilation louvres in the top and base, or with a neoprene O-ring seal providing protection to IP54. A further option is the provision of removable end panels in aluminium or plastic for extra flexibility.

There have been many extensions to the standard design for small instrument cases. Element from Bopla is typical. It is made from two interlocking sections with the advantage that when the upper section is removed components can be installed quickly and conveniently into the lower section. Again the cases are moulded in high impact polystyrene, and come in a choice of sizes and colours. Various accessories add to the versatility of the case, ranging from wall mounting metal brackets, to handles to either carry the case or support it at an angle. Dual purpose plastic clips provide an instant snap-on lid.

DESK TOPS

Moving on to look at larger, desk top enclosures, here there has been a similar revolution with the emergence of many new modular designs. These are generally based on a few basic parts which can be made up into many different case combinations to suit individual needs. The result is an off-the-shelf enclosure which can be tailor-made to suit your needs.

Bopla's Combi-Card is one example which comprises four main components; a front section, one or more centre sections, a rear section and a set of tie bars to connect all the pieces. These can be assembled into literally thousands of case combinations to suit a variety of needs with no tooling at all. Among the variations are rear sections incorporating terminal housing compartments for such things as connectors.

Matching tongue and grooves with a neoprene gasket on each section ensure the IP65 seal is maintained for all enclosure combinations.

Left, the Elegant range of enclosures.
Accessories such as carrying handles, card frame components and wall mounting brackets increase the flexibility of the product and make it suitable for a whole range of applications. Look out for these enclosures and seek the advice of your enclosure supplier in the early stages of designing your product if possible. In many instances he will be able to point you to the right enclosure which can be adapted to your proposed design. It can save a lot of time and energy seeking out the enclosure which is right for your needs after you have designed your product.

Today's enclosures are certainly becoming increasingly 'user friendly' in their design. Take card frames and card guides for example. It used to be almost impossible to remove card guides from within their frame without damaging the guide and making it unusable. New products on the marketplace are equipped with guides which can be easily snapped from the narrowest of spaces without any damage at all.

PROTECTION

So much for the design and construction of the enclosure. What about the degrees of protection which today's products afford? This is after all their main function.

Many of today's enclosures are made of plastic. How has this developed over the years and how effective is it in protecting the product against physical impact?

The answer is it can be very effective. With the demise of metal enclosures has come the rapid development of new plastics to meet as many parameters as possible. The aforementioned high impact polystyrene is one example.

Within the range of plastics there are many qualities: low cost, light weight, strength, colour, clarity and ease of cleaning. Not all the virtues will be found in one type, but increasing technology is enabling the development of multi-property plastics. Demand for lightweight resiliance, for example, has seen the development of new plastic to take greater pressure. Polyurethane is a recent illustration. This blend of polystyrene and ABS combines high strength and durability with good flow characteristics.

New flame retardant materials have been developed to meet the demands of applications in hazardous environments. Do beware though, flame retardant material is usually non-standard so minimum quantities are still required in this material.

Materials have been designed to withstand ultraviolet light, oil, acid and alkali - although it is worth remembering that a plastic which stands up to oil may not stand up to alkali.

DRAWBACKS

Plastic can have its drawbacks of course. The problem of RFI and EMI interference is one example. It is a subject which warrants an entirely separate feature. All I would say here is that if you anticipate problems of interference there are cost-effective methods of screening against it.

If you are working on very large racks and cabinets, cost can be reduced by screening only certain components.

This is a growing trend. The problematic circuit board for example can be isolated from its surroundings by using a screened module. This relatively inexpensive method isolates the transmissions from the board.

A series of circuit boards can be enclosed in desk-mounted cases which can then be screened. And a series of card frames can be housed in a fully screened enclosure.

These can be treated using a number of materials. For maximum attenuation you must know the frequency level which your equipment emits. You also need to know how much heat is being produced because when ventilation is introduced into the cabinet, its screening performance will be impaired and a higher specification level may be needed.

Different results can obviously be obtained by using different metals. Electroless nickel deposits are the economic alternative for smaller quantities. Your enclosure manufacturer should, however, be able to guide you around many of the problems in achieving correct and cost-effective enclosures.

DUST AND MOISTURE

From protection against RFI, to protection against dust and moisture: if you are installing your enclosure in dusty, corrosive and wet atmospheres you need to be sure that you achieve the correct level of sealing.

The IP (or International Protection) Codes give basic guidelines as to what sealing a particular enclosure affords. Many of today's smaller enclosures are sealed to IP44 and can be upgraded to IP65. But what exactly does this mean? A brief description follows, but for a more detailed definition, see sections three and four of BS5490:1977.

The first digit covers protection against penetration from the entire spectrum of solid objects - from tiny specks of dust to hands and tools. At the lowest of seven levels (0) no protection is offered, either of the equipment itself from damage by intrusion or of a person contacting live or moving parts. At the highest level (6) there should be no entry of dust. Level 5 permits limited ingress of dust (no harmful deposit).

The same applies to the second digit which covers the degree of protection against the entry of water. Again limited ingress is permitted as long as it is not harmful. Protection is gauged on a progressive scale 0 to 8. For example, number 1 indicates that dripping water should have no harmful effect and number 8 that the equipment is suitable for submersion in water. Level 6 seals against low pressure hoses from any angles, but will permit limited ingress as long as it is not harmful.

It is important to note here that higher ratings do not necessarily mean greater suitability. For example IP55 or IP65 are not a universal answer for outdoor applications. Here sharp drops in temperature can cause condensation to form within an unventilated case. This may in time short-circuit the components within it. So, while the introduction of a ventilator and a drain plug may reduce the rating, it would be a far superior choice for outside use.

MINIATURISATION

Then there is increasing change in electronic design which is having its effect. Component miniaturisation is one prominent example.

Today's electronic components are constantly decreasing in size. This means that it is possible to
The IP Scale

<table>
<thead>
<tr>
<th>1st numeral: Degree of protection with respect to persons and solid objects</th>
<th>2nd numeral: Degree of protection with respect to harmful ingress of water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non protected</td>
<td>Protected against dripping water</td>
</tr>
<tr>
<td>IP00</td>
<td>IP10</td>
</tr>
<tr>
<td>Protected against solid objects greater than ø50mm</td>
<td>IP11</td>
</tr>
<tr>
<td>IP12</td>
<td>IP20</td>
</tr>
<tr>
<td>Protected against solid objects greater than ø12mm</td>
<td>IP21</td>
</tr>
<tr>
<td>IP22</td>
<td>IP30</td>
</tr>
<tr>
<td>Protected against solid objects greater than ø5mm</td>
<td>IP31</td>
</tr>
<tr>
<td>IP32</td>
<td>IP40</td>
</tr>
<tr>
<td>Protected against solid objects greater than ø1mm</td>
<td>IP41</td>
</tr>
<tr>
<td>IP42</td>
<td>Dust tight Same test procedure</td>
</tr>
<tr>
<td>IP43</td>
<td>Dust protected Depress 200mm water column Max air flow 80x volume of enclosure</td>
</tr>
<tr>
<td>IP44</td>
<td>IP65</td>
</tr>
<tr>
<td>IP45</td>
<td>IP54</td>
</tr>
<tr>
<td>IP46</td>
<td>IP55</td>
</tr>
<tr>
<td>IP56</td>
<td></td>
</tr>
<tr>
<td>IP57</td>
<td></td>
</tr>
<tr>
<td>IP58</td>
<td></td>
</tr>
</tbody>
</table>

Will it be subject to RFI, EMI interference? Finally, always approach your enclosure supplier for his advice. With the right advice and information you should be able to choose a product from the vast range which is now available and which is ideal for your application.

In 1979, the British Standards Institution published BS 5490:1977 (1985) as the standard for the testing and marking of enclosures. This standard provided a useful guide to the many factors which need to be considered when choosing the right enclosure for your job and it is still the basis of modern enclosures today. However, it is important to remember that the IP rating of an enclosure is only as good as the materials and design of the enclosure itself. It is always worth seeking the advice of an experienced enclosure supplier.

INFORMATION

Bopla Ltd, 29 Faraday Road, Aylesbury, Bucks, HP19 3RJ. Tel: 0296 399999.

PLASTICS

Valerie James, THE BRITISH PLASTICS FEDERATION, 5 Belgrave Square, London, SW1X 8PD. Tel: 071-235 9483.

IP CODES

BSI, Linford Wood, Milton Keynes, MK14 6LE. Tel: 0908 221 166.

RFI SCREENING

ERA TECHNOLOGY LTD. Cleeve Road, Leatherhead, Surrey, KT2 7SA. Tel: 0372 374 151.

INFORMATION ON ENCLOSURE SUPPLIERS

Alan Jackson, GAMBICA, The Association for the Instrumentation, Control and Automation Industry in the UK, Leicester House, 8 Leicester Street, London, WC2 H7BN. Tel: 071-437 0678.

Extracts from BS 5490 : 1977 (1985) are reproduced with the permission of BSI. Complete copies of the BS can be obtained by post from BSI Sales, Linford Wood, Milton Keynes, MK14 6LE. Tel: 0908 220 022.
This article describes the construction and operation of an adaptor to program the internal eprom of
8748/8749 series microcontrollers. The adaptor is designed to be used in conjunction
with the Eprom Poly-Programmer Project published in PE May and June 90.

MICROCONTROLLER CHIPS

Microcontroller chips are complete microprocessor systems, consisting of ram
(random access memory), rom (read only memory), cpu (central processing unit) and
/i/o (input and output ports) all contained in
one integrated circuit. In order to use a
microcontroller for a particular project
application the internal rom must be
programmed with software instructions (an
operating program), specific to the task
required from the microcontroller.
The 8748/8749 microcontroller’s internal
rom is of the eprom type (erasable
programmable rom). It is programmed by
applying a 21 volt pulse to fuse the data into
the rom, in a similar way to standard eprom
chips. Erasure of the stored data is achieved
by exposing the chip to ultra-violet light for
approximately 20 minutes. Fig. 1 shows the
pin-outs, and Fig. 2 shows the procedure for
programming the internal rom of an
8748/8749 microcontroller.

Kevin Browne shows you how to
program an 8748
with an 8749 (plus
the Eprom Poly-
Programmer!)

ADAPTOR OPERATION

A complete circuit diagram of the
programming adaptor is shown in Fig. 3.
The microcontroller to be programmed is
plugged into socket SK1 on the adaptor pcb.
The adaptor is then plugged into the eprom
socket of the poly-programmer unit. The 5V
supply to operate the microcontroller is taken
from the same unit.
A 3.14 MHz crystal provides the clock
frequency for the operation of the cpu. It is
essential that the internal clock of the
microcontroller is operating before
programming is attempted otherwise the
microcontroller will be irreparably damaged.
To provide a visual check that the internal
clock is operating the ‘ALE’ signal from pin
11 is used, via C1 and TR1 to light LED 1.
The address and data lines for the
microcontroller are taken direct from the
Programmer’s socket address and data lines.
The two control lines ‘TO’ and ‘RESET’ are
taken from the auxiliary outputs of the
Programmer (SK103).

Kevin Browne shows you how to
program an 8748
with an 8749 (plus
the Eprom Poly-
Programmer!)

The 8748/8749, three high
voltage control signals are required. The
programming voltage supply ‘vdd’ is taken
directly from the programmer’s ‘V1’ supply. D2
is required to maintain this input at 5 volts
during address and data input, and during the
verification sequence. The programming
mode enable signal ‘EA’ is an 18 volt supply,
again taken directly from the programmer,
this time however, the ‘V2’ supply. This 18
volt supply is also used via the switching
arrangement of transistors TR2 and TR3
to provide a ‘PROG’ pulse. The control of this
pulse is taken from the ‘PP’ output of the
programmer.

CONSTRUCTION

The programming adaptor consists of two
pcbs. The upper pcb holds the majority of the
components, and assembly is straightforward.

8748 PROGRAMMING
ADAPTOR

Fig. 1 (Left). 8748/8749 Micro­
controller pin-outs.
Fig. 2 (below). 8748/8749 program
and verify sequence.

1. Initial conditions required
VDD=5V, Clock input (3-4MHZ),
RESET=0V, TO=5V, EA=5V
2. TO=0V – select programming mode.
3. EA=18V – activate programming mode.
4. Address applied to BUS and P20-P22
5. RESET=5V – latch address.
6. Data applied to BUS.
7. VDD=21V – programming power.
8. PROG=18V – 50ms programming pulse.
9. VDD=5V
10. TO=5V – select verify mode.
11. Read data on BUS and verify.
12. TO=0V
13. RESET=0V
14. Repeat from step 4 until finished.
15. EA=5V – de-activate programming
mode.

The lower pcb holds only the 28 way dil
header, PL104. This plug should be carefully
soldered to the copper side of the pcb. Next, the
two pcbs should be wired together as stated
below. Using a short length of ribbon cable the
two auxiliary control leads C0 and C1 should
be wired to the 16-way dil header PK103.
Finally, after a careful check of both pcbs for
stray solder splashes, the two boards can be
fastened together using four 6BA nuts and
bolts, with 0.25 inch spacers between the two
pcbs. (Fig. 8).

TESTING

Before attempting to program a
microcontroller it is advisable to check as far as
possible the operation of the programming
adaptor. To do this, insert the adaptor into the
programmer’s eprom socket, connect plug
PK103 to programmer socket SK103 and insert
two 16-pin dil headers in the sockets SK101
and SK102 correctly strapped as shown in
Fig 6. Adjust the programmer’s voltage
supplies V1 and V2 to 21V and 18V
respectively. Next, the Basic program, or an
adaptation of it, should be run. Stop the program
after each step and check the correct conditions
are present on the microcontroller socket
(SK1).

OPERATION AND USE

The adaptor is designed to program both the
8748 (1024 byte eprom) microcontroller, and
the larger 8749 (2048 byte) version. Care must
be taken to insert the microcontrollers correctly, and to check that the green 'ALE' led is lit before, during and after programming.

WIRING DETAILS

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hi address bit P23</td>
</tr>
<tr>
<td>2</td>
<td>Hi address bit P22</td>
</tr>
<tr>
<td>3</td>
<td>Hi address bit P21</td>
</tr>
<tr>
<td>4</td>
<td>Hi address bit P20</td>
</tr>
<tr>
<td>5</td>
<td>Data/IO address bit 0</td>
</tr>
<tr>
<td>6</td>
<td>Data/IO address bit 1</td>
</tr>
<tr>
<td>7</td>
<td>Data/IO address bit 2</td>
</tr>
<tr>
<td>8</td>
<td>0 volt supply</td>
</tr>
<tr>
<td>9</td>
<td>Data/IO address bit 3</td>
</tr>
<tr>
<td>10</td>
<td>Data/IO address bit 4</td>
</tr>
<tr>
<td>11</td>
<td>Data/IO address bit 5</td>
</tr>
<tr>
<td>12</td>
<td>Data/IO address bit 6</td>
</tr>
<tr>
<td>13</td>
<td>Data/IO address bit 7</td>
</tr>
<tr>
<td>14</td>
<td>18V EA/PROG supply.</td>
</tr>
<tr>
<td>15</td>
<td>5V PP program pulse.</td>
</tr>
<tr>
<td>16</td>
<td>21V VDD supply.</td>
</tr>
<tr>
<td>17</td>
<td>5 volt supply.</td>
</tr>
</tbody>
</table>

PL103

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1 aux control ‘TO’ lead</td>
</tr>
<tr>
<td>2</td>
<td>C0 aux control ‘RESET’ lead</td>
</tr>
</tbody>
</table>

BASIC PROGRAM

10 REM 8748 programming
20 LET prog = 5000 : LET error = 0
100 CLS
120 PRINT "8748 Programming"
130 INPUT "8748 Start Address?" ;adr
140 INPUT "No of bytes?" ;byte
150 LET byte = byte - 1
200 REM format RS232 I/F
210 FORMAT "b", 1200
800 REM finished
810 PRINT "Program Finished", error;
820 CLOSE#4
850 STOP
2000 REM hex to dec conversion
2010 LET d$ = "abcdefklmnopqrstuvwxyz";
820 PRINT "Program Finished";
830 PRINT error; "ERRORS"
840 CLOSE#4
850 STOP
2000 REM hex to dec conversion
2010 LET d$ = "0123456789abcdef";
820 PRINT "Program Finished";
830 PRINT error; "ERRORS"
840 CLOSE#4
850 STOP

Fig. 3. Circuit diagram of the programming adaptor.

Fig. 4. (centre) PCB layout details for the adaptor circuit.

Fig. 5 (right) PCB layout for the 28-pin OIL header PL104.

Fig. 6. (left) OIL header wiring for the main poly-programmer.
2040 IF a$(y) <> d$(z) THEN NEXT z
2050 LET data = 16*data + (z-1)
2060 NEXT y
2070 RETURN

NB. The Basic program was written for a Sinclair Spectrum 48K.
C/R is automatically sent by Spectrum software at the end of a 'PRINT' statement.
'prog' is the address in Spectrum ram where data destined for the 8748 eprom is stored.

COMPONENTS

RESISTORS
R1 22k
R2 390 Q
R3,R4 47k (2 off)
R5 10k
R6 1M

SEMICONDUCTORS
D1,D2 1N914 or 1N4148 (2 off)
TR1,TR3 BC108 (2 off)
TR2 BCY71
LED1 GREEN 5mm

CAPACITORS
C1 IN Ceramic

MISCELLANEOUS
XTAL1 3.68MHz.
SK1 40 pin zif
PL101-PL103 16 pin dill header (3 off)
PL104 28 pin dill header
6BA nut/ bolts (4 off)
0.25 inch spacers (4 off)
printed circuit boards

Fig. 7. PCB foil patterns

Fig. 8. Mounting assembly details.

286 Motherboard from £99
286-12 £99 286-16 £130
386sx-16 £260 386-20 £430
386-25 £470 386-33 £470
486 P.O.A.

Build your own 286-12Mhz from £350, include keyboard, 1M RAM and monitor.

Desktop case+PSU (£100); Keyboard (£45); AT multi I/O card with FDD and IDE controller (£55); monitor (£65); 1.2M Floppy drive (£52).

Options
Tower case (£150); 16 bit 1024x768 16 colour VGA card (£110);
VGA Colour monitor 1024x768 £20 (20 bit); 1024x768 £20 (24 bit);
Multisync £20
Hard disk 20M (£145); 40M (£190); 100M (£299) and more.
Floppy drive 1.44M (£45); 1.2M (£52)

DRAM 256x9 £60 1Mx9 £70
SIMM 256x9 £60 1Mx9 £70

Tel:-0279 641119 ext 207; Open Mon-Fr 9:00-5:30 Sat by appointment

ECACHEE SYSTEMS LIMITED
Unit 7, Latton Bush Business Centre, Harlow Essex CM18 7BH

PRACTICAL ELECTRONICS DECEMBER 1990
INDEX
JANUARY 1990 TO DECEMBER 1990
VOLUME 26

Construcational Projects

8748 Programming Adaptor by Kevin Browne. Allows 8748 microcontroller chips to be programmed by the Eprom Poly-Programmer. December

AC Motor Control by Andrew Armstrong. An Ask PE solution to providing variable speed control for ac motors up to 2kW. July

AF Octave Measurer by Joe Chamberlain. Sophisticated multi-octave audio frequency analyser and test display unit. August-October

Bargraph Tachometer by Chris Walker. Three chips and 20 leds display revs and help you look after your car’s welfare. January

Basic Electronics by Owen Bishop. Tutorial features with practical construcational experiments. Ideal for GCSE and other students of electronics.

Part one - Electricity. January
Part two - Resistance. February
Part three - Resistance, capacitance and inductance. March
Part four - Semiconductors. April
Part five - Photo diodes, leds and zeners. May
Part six - Transistors. June
Part seven - More on transistors. July
Part eight - Amplifiers. August
Part nine - Phototransistors, thyristors and jfets. September
Part ten - Current and voltage control. October
Part eleven - Opamps. November
Part twelve - more on opamps December

Baud Rate Converter by Robert MacFarlane. For use on the serial port of IBM PCs and clones. June

Bike Alarm by Chris Brown. Chris’s bike’s alright Jack, with a jack to thwart the hijack! A simple deterrent to push-bike thieves. January

Bike Computer by John Becker. Displays details of your push-bike trips. Also usable as general purpose microcontroller board. November, December

Chiptester by Dave Raynor. Excellently designed unit for testing most digital chips in conjunction with BBC computer. October, November

Circuit Breaker by Steve Bailey. Experimentor’s power line protection circuit that does not require fuses. June

Desk Thermometer by Owen Bishop. Uses led bargraph to digitally display temperature from 0°C to 39°C. September

Eprom Poly-Programmer by Kevin Browne. Microprocessor controlled programmer for a wide variety of eprom types. May, June

Eeprom Programmers by Malcolm Harvey. Two inexpensive projects to open the port to successful microprocessor control programming.
Part one - hex keypad version, with hex code display. January
Part two - simple hex switch version with led readout. February

Flasher Alarm by Paul Benton. Audibly reminds forgetful car drivers that the indicators are still flashing. September

Ingenuity Unlimited. Occasional series in which enthusiastic readers share their handy project design ideas.

Car Burglar Alarm by M.S. McNich. February
Hex Keyboard by M.H.S. Bukhari. February
Low Battery Warning by Nigel Chaffery. March
RF Operated Relay by Paul Benton. February
Voltage Trimming by B. Balet. March

In-Situ Nicad Charger by Dave May. Allows recharging of nicad batteries without removal from their apparatus. November

Intermittent Wiper by Andrew Armstrong. An Ask PE answer to providing a car with intermittent windscreen wiper control. June

Message Maker by John Becker. Using the Sanyo LCMS70 intelligent led display module, provides computerised or eprom controlled message making. Includes Basic software examples. June

Microntrolling the Robot Car by Alan Pickard. Giving the April-June robot car an independent controller. December

Mock Stereo and Equaliser by John Becker. How to turn your mono music into simulated stereo, and add a 3-channel equaliser. February

Modem by Kevin Kirk. High quality, modest cost, hi-tech comms link suitable for use with virtually any computer. February

Morse Decoder by John Becker. An alphanumeric led module to decode and display Morse messages from any source. July

Motor Speed Control by Andrew Armstrong. An Ask PE answer to powering golf trolleys and other dc motorised machines. March

PC Interfacing by Robert Penfold. How the IBM PC and its clones can be readily interfaced for external control and monitoring. April

Radio Clock by John Becker. Analogue and digital electronics combine to pluck time and calendar data from the airwaves. April

Remote Powered Microphones by Vivian Capel. How to obtain better service from Electret microphones. July

Robot Car Building by Alan Pickard. Circuits, controls and experimental software for controlling a variety of motorised mobiles.
Part one - basic operation. April
Part two - peripherals and software procedures. May
Part three - further software and implementation details. June

Scope Expander by John Becker. Provides your scope with at least eight traces, plus 64K digital storage. August, September

Slave Flash by Chris Brown. Principally for use with an existing photographic flash gun but has other functions too. February

Sound Operated Switch by Paul Benton. Causes the voice of a caller at the door to automatically turn on the porch light. October

Tele-Scope by John Becker. Turns your tv into a 2MHz oscilloscope. No internal mods to tv required. September, October

Voltage Probe by Stephen Bailey. Uses led bargraph to show what’s happening in analogue and digital circuits. August

Competitions

25th Anniversary Competition (Nov 89) – results February, answers March

Robot Builder’s Bonanza – competition April, results July
A Case For Technology by Desmond Harvey. Examining the current state of enclosure technology. December

Artificial Intelligence by Richard Mishra. Explaining the basic concepts of AI and the goals aimed at by researchers. April

Blanket Coverage by Wayne Green. Our American correspondent warns us that electric blankets may radiate more than warmth. May

Cellular Radio by Mike Sanders. Examining the principles upon which this public mobile radio system operates. August

Christmas Crossword by Anthony H. Smith. Gives your festive brain something to digest. January, answers February

Computers by Mike Sanders. From Ascii to Zilog, this is the story of how and why a computer works. February-April

Diy PCs by Robert Penfold. Authoritative advice on assembling your own IBM PC compatible computer. July

HF Radio by Mike Sanders. A clear explanation of the hows and whys of radio reception. Part six - RF and IF stage design, filters and detectors. January

History of Technology by Ian Poole. Compact biographies of famous researchers who considerably advanced our technological progress. Edison September Faraday November Hertz July

Hi-Teching Trams by Neil Harding. How electronic technology was used to bring an ancient tram system under automatic control. March

Home Data Systems by Wayne Green. Speculation by our American correspondent on the future for cd-rom data bases. September

Intelligent LCD Modules by John Becker. In-depth examination of Sanyo’s LCM series of alphanumeric led modules. May

Lasers by Mike Sanders. A detailed examination of their history, properties, functions and varieties. November, December

Mobile Radio by Mike Sanders. The history and technology of the comms system that is equally at home in vehicles or your pocket. July

Polyline Metering by Robert Redding. A revolutionary method by which household meters may be remotely monitored. October

Radio Pagers by Mike Sanders. Examining the technology behind these economic users of the overcrowded radio spectrum. September

Resistors in Parallel by Joe Chamberlain. A handy ready-reckoner workshop-wall guide for calculating resistance values. January

Space TV by Frank Mendacio. Could tv repeats be infinitely time-warped across eternity, as this cautionary parable suggests? April

UCT Performance by Anthony H. Smith. What to look for in counter-timers, how the sophistication is achieved, and how to judge the value. January, February

Why Digital Phones? by Tom Ivall. Examining the principles behind the incoming digital public mobile phone systems. November

Barry Fox takes a monthly look at the technology behind the news. CD Video. February, March

Cellular Eavesdropping. January

Consuming Japanese. May

Electronic Yellow Pages. November

Greenhouse Electronics. September

High Tech Hewers. December

New European Electronics. March

Satellited and Letter-boxed. August

St Cecilia Electonica. November

The Megacellphone. July

Two Cultures Revisited. February

A Boost from the ERM. October

Cardboard and Cuckoo City. June

Challenge and Choice. April

Cooperation in Competition. January

Electrons and Photons. May

Insecure Cells. July

Jet Line Griping. August

Mapping Perspective. September

Radio Data Systems. October

Radio Linking. June

Standardising CT2 November

Squaring up to Japan. December

Spacewatch by Dr Patrick Moore CBE. Monthly series of astronomy and space reports.

Tom Ivall’s monthly comments on the electronics industry and the implications for some of its activities.

A Boost from the ERM. October

Cardboard and Cuckoo City. June

Challenge and Choice. April

Cooperation in Competition. January

Electrons and Photons. May

Greenhouse Electronics. September

High Tech Hewers. December

New European Electronics. March

Satellited and Letter-boxed. August

St Cecilia Electonica. November

The Megacellphone. July

Two Cultures Revisited. February

Catalogue Database. Monthly reviews of catalogues received.

Chipcount. Monthly look at selected new chips.

Events Diary. Monthly list of forthcoming exhibitions and conferences.

Track Feedback. Frequent series expressing your views, and offering a few replies.
Summary Points

Circuit Breaker (Jun 90) Fig 3, C1 at top right should be C12, and D4 polarity should be reversed.

Eeprom Poly-Programmer (Jun 90) Fig 14 is incorrectly shown as a mirror image and should be flipped over.

Eeprom Programmer (Jan 90) Fig 4, IC5 pin 4 also goes to IC2 pins 3 and 15. Fig 10, The link to IC3 pin 21/R6 should go to IC3 pin 20, arrow 14 then goes on IC3 pin 21.

Modem (Feb 90) Supplementary sheet of author’s clarifications on a number of arising points is available (first issued April). Send sae.

Video AGC (Dec 89) Fig 2, second TR1 is TR2. Fig 4, reverse positions of R1 and R2.
Dear Sir,

I am impelled to put fingers to keyboard to express my strong disagreement with your stated attitudes in reply to a letter in the Track Feedback column of June 90, entitled Lawful.

You say that it is your strict policy not to publish projects which fall outside the law or are otherwise socially unacceptable. Later you say that to publish information about the coding of satellite broadcasting would be tantamount to inviting readers to commit theft.

The new technologies have given manufacturers and publishers the opportunity to add coding techniques onto their products in order to restrict profits as many of them would be content to lose. This is an offence against what I suggest should be the main objective of your magazine. Only by free unfettered access to information can development of new methods and discoveries be made. This is equally true of manufacturers who design sophisticated copy protection for their products.

The most disturbing question posed by your statement is how many well written and presented articles and projects have you rejected for publication for fear of offending someone's monopoly of some area of knowledge.

I cannot fault your insistence against infringing the law even when the law is an ass. But to make what amounts to moral judgments on the suitability of knowledge for publication is I suggest comparable to book burning. This is not in keeping with the image of PE, or indeed the British Press.

A.G.H. Donnachaidh, Portsmouth, Hants.

MEMORABLE PINNING

Dear Mr Becker,

In response to your speculation as to whether the PE Tele-Scope project was the first of its kind to be published (PE Sept 90), I would like to inform you of a classified ad in an old copy of (censored) magazine. The ad in the September 81 issue read as follows:

> Convert any tv into large screen oscilloscope. External unit plugs into aerial socket. Circuit and plans, send SAE to...

Admittedly this was not a constructional project published by a hobby magazine, so your project may well be a first. Unfortunately I did not reply to the advert, so I do not know how well (if at all) the design worked. Assuming that the design did work, the technology we've been waiting for was with us nine years ago!

I can only assume that the PE project is superior due to newer and faster ics, and has a better specification. Hopefully a Tele-Scope will be part of my test gear sometime in the near future.

D. Brook, Mill Hill, London NW7.

MEMORABLE PINNING

Dear Ed,

Having read the article in PE Aug 90, the Scope Expander article, I think I may have found an error.

Referring to Fig.4 on page 14, the pin out for IC7, the 8161 memory, does not agree with the manufacturer's pin out. I have consulted two sources for the pin outs for this is and they both give the same information, hence, is the pin out in your circuit a misprint?

G.C. Hadley, Lillington, Warks.

MULTIPLES

Dear Sir,

I want to construct the PC Multiplex project which appeared in PE April 89, are photocopies of the pcb track layouts still available?

As a reader of 25 years standing I would like to convey my appreciation for the years of pleasure PE has brought me and trust that today's youngsters are finding the pages of PE as rewarding as I have.

Bob Welch, Mount Vernon, Glasgow.

MEMORABLE PINNING

Dear Ed,

To answer your question which I should have referred to in the text. The pin out numbering is according to my allocation of their use, not the manufacturer's. Although a standard convention exists in which data and address pins are given consistent numbering, this convention does not always need to be adhered to.

In the Scope Expander it did not matter in which order I used the data and address pins, provided I remained consistent within the logic of my own design. Purely for any ease of track routing in the designing of the pcb, I routed the data and address lines from their respective sources to the most convenient pins of the memory. For example, the line I have allocated for D6 through IC10 is taken to memory pin 11. This line is still used as D6 in the memory, and is labelled as such, even though the manufacturer's data quotes this pin as being their D2. It is the use of the lines which determines their notation in this application. There are many situations in which this principle can be applied.

Ed.

MULTIPLES

Dear John,

I very much admire your dedicated work for PE, both past and present. I do wish you good health and many more inspiring years working as the Editor. It is good to see the quality increasing, which is a great reflection on your own dedication to the Journal.

I would be honoured if you would write back to me, albeit briefly, as a small contribution to my extensive and unusual collection of autographed letters.

With best wishes to you, and to PE. I wish you every future success in your own particular field of research work.

Peter W. Laidkin, Erdington, Birmingham.

MULTIPLES

Another 'First' - I've never been autograph hunted before, except by those wanting to sell me something! I was unable to resist YOUR request!

Ed.
An important announcement from Kodak could mean that in about two years time we might be collecting our 35mm photos from the chemist stored on a special compact disc. Kodak has unveiled the results of a project in conjunction with Philips and Sun Microsystems, called Photo CD, which retains the use of conventional 35mm photographic film but stores images captured by film on CD ROM (compact disc read only memory). Prints from these Photo CDs are completely produced via a digital printing process using a specially developed thermal printer which replaces the old and messy liquid chemical processing method. Quality promises to be very high and Kodak will sell Philips produced CD players capable of displaying Photo CD pictures on a tv screen. Photo CD compatibility could well joint other emerging CD based formats like cd-i as a necessary feature of tomorrow’s multimedia CD players, which will of course play ordinary music CDs as well.

If Kodak gets it right, present day 35mm camera technology will be preserved indefinitely despite recent advances in all-digital camera technology like Canon’s Ion still video system and the equivalent Sony Mavica (see Barry Fox, Electronic Snapshots, PE October 1989).

Top photo: The Kodak Photo CD will be housed in an attractive “jewel case” similar to those used in the audio industry. The case will contain an index print displaying all images recorded on the Photo CD. Each image is numbered showing its sequential position on the roll and on the disc.

Right Photo: Users of personal computers and workstations can access images from Kodak Photo CDs using any CD ROM XA (extended architecture) input device. The CD ROM XA technology was jointly developed by Microsoft, Philips and Sony as an industry standard to integrate audio and images into computing applications. Because of its compatibility with this standard, Photo CD can be used with virtually any type of computer adhering to common industry standards.

Photographic enthusiasts have enjoyed many benefits from the advances in digital electronics over the last decade with ultra-responsive and pre-programmed metering systems and auto-focus features. Yet the industry has been struggling to compete with the ever growing popularity of video cameras and other electronic leisure products. You only have to look in the average high street to realise that dedicated camera shops are becoming increasingly rare and even the high-street chains now devote less space to decent examples of 35mm camera technology.

Meanwhile, solid state electronic camera technology has been evolving steadily from video-camera beginnings. Canon and Sony share a still-video camera system based around a tiny 2.5 inch floppy disc capable of storing up to 50 shots - one Sony camera even offers a sound recording feature. The resulting photos can be displayed on a tv screen instantly or printed out using an expensive thermal colour printer. The picture quality is fine for display on tv, but no better than a cheap 110 pocket camera when printed and it’s unlikely that anybody would want to enlarge the prints.

Conventional camera technology based around good old silver halide photographic film is certainly not threatened by still-video camera technology at this point. There are prototype electronic cameras offering around a million pixels of resolution, but that is only around one twentieth that of today’s refined 35mm format photographic film emulsions. No doubt compact electronic cameras will offer equivalent reproduction quality in a few years time, probably with the help of advanced computer-aided image enhancement techniques and exciting new image sensing hardware, but it will probably be considerably later before affordable mass-produced cameras of this type will be generally available. Even today’s low-resolution still video cameras from Canon and Sony cost around £500 a go.

HOME-BASE

Ian Burley reports that Kodak has made an incredible breakthrough that should excite photographers of all calibres and revolutionise the way in which our snapped images are stored for posterity. He’s news on other interesting matters too.

PRACTICAL ELECTRONICS DECEMBER 1990
found on a music CD, there will be an index file of the pictures contained in the CD printed in miniature. Hopefully without excessive optimism, Kodak claims a Photo CD made from a 24 exposure film will cost below £9. That’s not bad considering how much today’s music CDs cost.

MAKING PRINTS

What about getting some prints made? You will still be able to use the negatives or slides originally produced to make conventional prints, but Kodak has developed a new high-resolution thermal printer to produce comparable quality colour prints. The example 10 inch print I was shown was very acceptable and nobody I showed it to thought it was anything other than a conventionally produced print. What is not yet known is exactly how competitive these thermal prints will be price-wise. However the Photo CD does offer advantages in this department - it will be possible to digitally enhance or edit Photo CD images and scratched or damaged negatives should be a thing of the past, just as scratched and crackly 1Ps are now banished to the past by music CDs.

MASSIVE INVESTMENT

Of course, Kodak has massive long-term investments in its film manufacturing and conventional photo-finishing industries. The beauty of Photo CD is that it preserves industry commitment to conventional film while bringing Kodak film into the electronic age. Even the colour thermal print system will be complementary rather than competitive with conventional photo-finishing at first. Kodak should undergo a smooth and balanced transformation from old chemical processing techniques to its new electronic methods. Photo CDs themselves, if successful, should be around for a very long time. Even when digital image capturing overtakes film technology in the future, Photo CD will remain compatible.

Photo CD won’t be commercially available until 1992, but it looks well worth waiting for, unlike Kodak’s last experiment with discs in the early eighties - the unloved small format pocket disc camera which produced worse pictures than even 110 pocket cameras. What a difference a decade makes.

CALLER ID PROGRESS

Caller ID, the ability to identify who is ringing your phone through a small display on the panel on the phone - before you even pick up the receiver, is one clear case where “freedom of speech” must give way to “freedom from speech,” according to one journalist in the States. However, there is much opposition to the new technology which is slowly being introduced at selected sites around the USA.

In an attempt to pacify the anti-Caller ID lobby, selective blocking has been offered by some phone companies. The recipient’s phone Caller ID display can be blocked on a call by call basis by dialling a special code number before the actual phone number. A US West spokesman said that in trials only half the callers used blocking even once, and that nobody blocked their number with every call. US West
Left: Progress flow charts showing the current photographic system and the new Kodak Photo CD system.

became the first local carrier to offer Caller ID service with free optional blocking. The offering was made as part of a five-month trial of several new call management services aimed at small businesses.

BellSouth has applied to offer Caller ID in five states, without blocking, but only Tennessee has said yes. In North Carolina an attorney general has even suggested that Caller ID contravenes state phone-tapping regulations. In conservative Pennsylvania all applications to introduce Caller ID in any form have been blocked. There are problems in the all-important state of California and it now looks increasingly likely that the federal government will be brought in to settle the issue of Caller ID on a national level once and for all. Meanwhile, there don't appear to be any signs that Caller ID will be introduced in the UK just yet, though other value-added services like call diverting, call waiting, outgoing call barring and conference calling are now being introduced here with the opening of new digital System X exchanges. To find out about these services ring Freephone Star Services.

Despite a steady increase in the number of Telepoint cordless phone public base stations successfully installed all over the country, there is little evidence that very many people are using them. About a year after the first Telepoint hand sets were introduced and 20 months since the four Telepoint service providers were licensed by the Department of Trade and Industry, a recent report in the Sunday Times indicated that there are only about 5,000 users. In fact there are probably as many public base station as there are users. To put it mildly, Telepoint has not been a rip-roaring success.

However, all is not doom and gloom. Telepoint dealers I have spoken to agreed that sales had been very disappointing though one dealer had cultivated a niche market selling to offices where the digital cordless phones are used as mobile desk phones in conjunction with a personal base station connected to the office PBX. In fact GPT, makers of the so-far unlaunched Rabbit BYPS phone, have produced a customized version of their Telepoint phone for office use. The cordless office PBX revolution is just around the corner.

Exports are going very well, too. Shaye Communications has announced that it has manufactured over 50,000 of its Forum

Left: If only you could see the 10x8 inch colour original of this photo you would be amazed at its quality. The original is a high quality thermal print reproduced using the Kodak Photo CD system. A 35mm Kodak Ektar negative was scanned and the digital image recorded on a Photo CD. The image information stored on the Photo CD was then sent to a Kodak XL7700 thermal printer. The Kodak XL7700 is currently available.
Telepoint phones, with 40% ending up overseas. One wonders where the 60% supposedly sold here have ended up. Meanwhile there is huge interest in Telepoint in Hong Kong, where 600,000 people already use electronic pagers. A combined Telepoint phone and numeric pager would appear to be a nice alternative to a cellular phone. But another problem is that Telepoint phones are still very expensive at about £200 plus vat. A personal base station doubles the price. Now if they started making the thing in Hong Kong... Perhaps that's what Sir Clive Sinclair, a founder director of Shaye Communications, wants to happen. When I asked him for some comments on the depressing news about Telepoint's first year, he cheerfully replied that things would get better; the prices of hand sets would drop to more affordable levels but in the mean time the priority was to get as many public base stations installed. Stop at any major motorway service station and you will be able to spot the vertical one metre Telepoint base station antennae. Seeing a Little Chef restaurant bristling with antennae from all four telepoint operators, BT Phonepoint, Mercury Callpoint, Ferranti ZonePhone and BUPS Rabbit, was quite amusing when I realised what they were.

It's my feeling that if Telepoint is to be a viable proposition it will have to take off next year. Hardware prices will have to halve; the prices of hand sets would drop to more affordable levels but in the mean time the priority was to get as many public base stations installed. Stop at any major motorway service station and you will be able to spot the vertical one metre Telepoint base station antennae. Seeing a Little Chef restaurant bristling with antennae from all four telepoint operators, BT Phonepoint, Mercury Callpoint, Ferranti ZonePhone and BUPS Rabbit, was quite amusing when I realised what they were.

It's my feeling that if Telepoint is to be a viable proposition it will have to take off next year. Hardware prices will have to halve; the prices of hand sets would drop to more affordable levels but in the mean time the priority was to get as many public base stations installed. Stop at any major motorway service station and you will be able to spot the vertical one metre Telepoint base station antennae. Seeing a Little Chef restaurant bristling with antennae from all four telepoint operators, BT Phonepoint, Mercury Callpoint, Ferranti ZonePhone and BUPS Rabbit, was quite amusing when I realised what they were.

Commodore's much hyped CDTV (Commodore Dynamic Total Vision) multimedia player won't be on sale this Christmas as had been promised. The CDTV was originally launched at the Summer Consumer Electronics Show in Chicago back in June. At that time, confident Commodore spokespersons talked of a Christmas sell-out for the £700 supposed cd-i basher. In reality, the CDTV is far from finished and there was no realistic prospect of getting it into the shops for Christmas. Even if it had made the deadlines, there would be few if any software products on cd for it. The closest we've got to seeing the CDTV over here in the UK was at the recent Computer Entertainment Show at Earl's Court, but Commodore's very low key exhibit consisted of just the one CDTV player in a perspex cabinet.

However, there is realistic talk of a February or March date for initial CDTV shipments. By that time, Commodore hopes there will be around 30 discs available including a world atlas, an illustrated Bible, the complete and illustrated works of Shakespeare, and a dictionary. None of these are exactly innovative and indeed they're based on existing books. There will be some specially produced discs, however, including one on personal health topics. At least Commodore expects the discs to retail for rather less than existing cd roms which can cost from anything around £100 upwards.

Although the CDTV is based on Commodore Amiga computer internals housed in a conventional looking cd player case, Commodore isn't pushing its computer abilities. There is a feeling that association with personal computers will put potential, techno-phobe, buyers off. But that won't prevent ambitious users from buying keyboard and mouse add-ons to bring the CDTV up to full Amiga personal computer spec.

As for CDTV's prospects against its main rival, cd-i (compact disc interactive), it's now clear that CDTV won't have full screen motion video and even its part screen animation is detectably jerky. This is because the CDTV relies on software driven animation. The Philips cd-i system uses customized 68000 based processor technology from Motorola and although full screen motion video isn't quite ready yet, it promises to be quite good. The nuts and bolts of it is that cd-i will be technically superior but later than CDTV. My feeling is that cd-i will become the de facto home multimedia standard, so exactly where Commodore's CDTV will fit in remains to be seen.

Ian Burley is Deputy Editor of Micronet, an on-line computer and technology magazine published on Prestel by British Telecom.

C.A.D. SOFTWARE MADE EASY

ISIS SUPERSKETCH

ISIS SUPERSKETCH is a purpose designed program for drawing circuit diagrams. Our Graphical User Interface and Intelligent Diagram Editor combine to leave all other budget packages far behind in this application. For example, you can draw a wire from pin to pin in just 4 mouse operations: point at first pin, click, point at second pin, click. The wire autorouter does the rest.

- Auto wiring, placement.
- Auto name generator.
- Powerful editing facilities.
- Object oriented 2D drawing with symbol library.
- Comprehensive device libraries available.
- Output to dot matrix, pen plotters, lasers, POSTSCRIPT.
- Export to DTP packages in IMQ or DXF formats.

PRICES

<table>
<thead>
<tr>
<th>Package</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERSKETCH (Basic Library)</td>
<td>£69</td>
</tr>
<tr>
<td>SUPERSKETCH (Extended Library)</td>
<td>£99</td>
</tr>
<tr>
<td>PCB II</td>
<td>£69</td>
</tr>
<tr>
<td>SUPERSKETCH (Ext Lib) + PCB II</td>
<td>£149</td>
</tr>
<tr>
<td>OTHER SW & HW</td>
<td>CALL</td>
</tr>
</tbody>
</table>

PCB II

PCB II is a new state of the art manual PCB layout package sharing the same Graphical User Interface as ISIS SUPERSKETCH. It also features Topological Route Editing which is easy to learn and yet stunningly powerful... our demo disk will reveal all!

For a limited period only, we are offering ISIS SUPERSKETCH (Extended library) and PCB II for just £149 - can you afford not to join the CAD revolution?

Call for demo disks today - 0274 542868.

14 Marriner's Drive, Bradford, BD9 4JT
Last month, we looked at how a vast technology had developed for the research and manufacture of semiconductor lasers for the optical fibre industry. Part one also mentioned how certain techniques could be applied to pulsed lasers in order to release the energy at a given instant to produce a higher peak power than would normally be achieved.

Such techniques include Q switching, cavity dumping and mode locking. These will be explored briefly before moving on to the development and manufacture of semiconductor lasers.

HIGH ENERGY PULSES

An optical resonator can be interrupted in such a way that population inversion can proceed with no feedback, or very little feedback, to cause lasing. Then, when the population inversion has reached a high level, the interruption is removed so that the laser can emit a short, high power pulse.

The devices used are mechanical choppers and rotating mirrors for pulses of the order of 0.001 sec. For pulses of the order of 10⁻⁶ s, acousto-optic modulators are used and Pockels and Kerr cells used for pulses of the order of 10⁻⁹ s. Acousto-optic modulators and Pockels and Kerr cells will be dealt with later.

The Q switches get their name from the Q value of a resonator and is defined as:

\[Q = \frac{2\pi \text{ energy stored}}{\text{energy lost per cycle}} \]

Cavity dumping does not provide the high power pulses that Q switching provides but is useful in instances where the laser cannot be subjected to Q switching. One of the reasons that a laser may not be Q switched is when the laser is not in the lasing state for a sufficient length of time.

Such a technique is used with dye lasers where the energy is allowed to build up with 100% feedback in a cavity. At a given instant the feedback is reduced to a low value and a high energy pulse is emitted.

A cavity is a physical cavity as with klystrons and microwave devices employing metal tubes ("plumbing") or a semiconductor chip in the case of semiconductor lasers. Further, the cavity in semiconductor lasers may be altered by the geometry or the doping of the material in order to restrict the amplification of light to that region, ie, the cavity.

Lasers operate in different modes both along the axis as well as across the cavity. Particularly with the wide band lasers, the modes of the different frequencies oscillate independently and therefore their phase relationships are random. If the modes can be locked together, then the modes can be put in step with each other which results in very short pulses of one pico second or less with very high power.

A popular technique is to use a saturable absorber such as an organic dye which absorbs the radiation in the cavity until all the modes are locked. When all the dye molecules have been excited, the dye is saturated and becomes transparent for a fraction of a second allowing some of the energy to escape.

Using this method as many as one thousand modes can be locked in both continuous wave and pulsed lasers. The length of the dye cell is chosen so that the correct conditions are provided for saturation, (Fig.1).

LIGHT EMITTING DIODES

The basic difference between a light emitting diode (led) and laser is that the laser has to be stimulated but the light emitting diode is spontaneous. This can be appreciated better from the characteristic curves.

Fig.2 shows the characteristic graph of a laser. As the drive current is increased, a threshold is reached when the optical output suddenly increases. By contrast, Fig.3 shows the characteristic curve for a light emitting diode which shows that the emission is fairly linear.

Since the graph of the laser is not linear it is unsuitable for analogue signals since these would distort. However, it is quite suitable for digital on-off keying.

[Diagram of mode locking]

LASERS

Part Two.
Mike Sanders reflects on how in semiconductor lasers, the use of holes, grooves and cavities proves that absence makes the light grow stronger.
Figs. 2 and 3. Laser and led characteristic graphs.

Diode lasers are about 250µm x 50µm in size and emit several watts in pulses ranging from 100ns to 200ns. In the 0.9µm wavelength, several milliwatts average output is available for optical fibre communication, pollution detection and control, infra red illumination and pattern recognition.

The light is emitted parallel to the diode junction in lasers as opposed to perpendicularly to the junction as in most leds. There are about twenty known semiconductor materials from which diode lasers can be fabricated. These can emit from 0.33µm to 40µm in wavelength.

For wavelengths below 0.8µm, electron beam excitation is used and above this wavelength, injection current is used. Fig.7 shows a simple p-n junction diode laser with drive current applied.

Fig.8 shows the energy band which offers opposition to migration across the junction in the unbiased state. When the drive current is applied, migration is much easier and light energy of frequency proportionate to the band gap is emitted. The contacts to the anode and substrate, (Fig.7), are usually gold plated for good conduction.

Diodes with the same semiconductor material on both sides of the junction are called homojunction lasers, but in a homojunction laser, at high currents, it is difficult to confine the holes and electrons to the junction for maximum combination.

In order to assist this process a third semiconductor such as gallium arsenide is applied to the p-n junction. The refractive index of this third layer is higher than the two neighbouring lasers and therefore acts as a waveguide.

Since holes and electrons are confined to

Figs. 4. and 5. Burrus and edge light emitting diodes.

Light emitting diodes operate in the infra red range for communications over optical fibre. The preferred wavelengths are 0.85µm and 0.95µm because of fibre characteristics as we shall see later.

Leds can have a well etched into them so that emitted energy is not lost. The wells are typically 50µm in diameter to accommodate a 50µm diameter optical fibre. Such leds are called Burrus diodes or high radiance light emitting diodes. (Fig.4).

In order to concentrate as well as guide the energy, edge light emitting diodes are constructed as shown in Fig.5. These approximate to laser semiconductors in construction.

The refractive index of the stripe on top is uniform in order to produce a linear output. The stripe also acts as a waveguide and confines the edge emission so that it is sufficiently concentrated.

Figs. 6. Conductors, insulators and semiconductors.

As we have been looking at energy levels and energy bands, let us take another quick look at the differences between insulators, conductors and semiconductors. This is best done by looking at a diagram. Fig. 6 shows the band diagram for a conductor, insulator and semiconductor.

In the conductor the highest occupied band is partly filled. Surprisingly, in the insulator, the highest occupied band is also completely filled but the gap to the next band is wide, much wider than that in the conductor. In a semiconductor the highest occupied band is also completely filled as in an insulator but the gap to the next higher band is narrow, much narrower than that of a conductor.

A simple diode laser would consist of a p-n junction to form the laser cavity, also called the Fabry-Perot cavity. The end mirrors are plane (flat), parallel, partially reflecting mirrors to provide positive feedback.

Diode lasers are about 250µm x 50µm in size and emit several watts in pulses ranging from 100ns to 200ns. In the 0.9µm wavelength, several milliwatts average output is available for optical fibre communication, pollution detection and control, infra red illumination and pattern recognition.

The light is emitted parallel to the diode junction in lasers as opposed to perpendicularly to the junction as in most leds. There are about twenty known semiconductor materials from which diode lasers can be fabricated. These can emit from 0.33µm to 40µm in wavelength.

For wavelengths below 0.8µm, electron beam excitation is used and above this wavelength, injection current is used. Fig.7 shows a simple p-n junction diode laser with drive current applied.

Fig.8 shows the energy band which offers opposition to migration across the junction in the unbiased state. When the drive current is applied, migration is much easier and light energy of frequency proportionate to the band gap is emitted. The contacts to the anode and substrate, (Fig.7), are usually gold plated for good conduction.

Diodes with the same semiconductor material on both sides of the junction are called homojunction lasers, but in a homojunction laser, at high currents, it is difficult to confine the holes and electrons to the junction for maximum combination.

In order to assist this process a third semiconductor such as gallium arsenide is applied to the p-n junction. The refractive index of this third layer is higher than the two neighbouring lasers and therefore acts as a waveguide.

Since holes and electrons are confined to
this layer most of the lasing takes place here and this is now the Fabry-Perot cavity. Since the junction now has two dissimilar materials, this laser is called a heterojunction laser.

The laser cavity can be confined even further by making the electrical contact a narrow stripe and by including a cladding material of a different refractive index on each side of the active region to act as a lateral waveguide.

In this respect the geometry of the stripe laser is similar to that of the edge light emitting diode with one major difference. In the laser the stripe extends over the whole length of the chip, whereas it does not in the edge light emitting diode. The purpose of placing a stripe over the laser is to permit feedback and hence laser action. Since the stripe does not cover the whole chip in the edge light emitting diode, the region without the stripe is an absorption region. Since light is absorbed here, there is no feedback, hence no lasing.

The minimum current required to produce lasing is called the threshold current and because of the heterojunction as well as the stripe, the amount of current is less than it would be without these refinements. The width of the stripe is typically 5μm to 20μm.

New versions of the gallium arsenide laser use double heterojunctions. (Fig.9), with stripe geometry. The double heterojunctions now refer to the junctions between gallium arsenide GaAs and the gallium aluminium arsenide GaAlAs. This large optical cavity reduces the current density, hence the risk of damage from a large radiation field in the chip, is also reduced.

Fig. 9. Double heterodyne junction laser.

Gallium aluminium arsenide has poor thermal conductivity compared to gallium arsenide and the stripe contact improves the heat conduction from the active region. Since the active region is limited to a narrow stripe, lateral heat conduction takes place in the gallium arsenide and the rise in temperature of the active region is reduced.

The energy gap is wider in gallium aluminium arsenide than it is in the gallium arsenide, (Fig. 10), causing both holes and electrons to be reflected back into the active gallium arsenide region. This reduces the current density required to produce lasing.

In addition, the difference in refractive index between gallium arsenide and gallium aluminium arsenide causes light travelling at angles to the axis of the cavity to be reflected back into the active region. Both these factors mean that a smaller current density of the order of 1000A per square centimetre is sufficient to produce lasing.

This allows devices to be operated continuous-wave at room temperature. A typical output is 5mW with a 10 year life. Large optical cavity devices composed of two heterojunctions are called double heterojunction lasers and have cavities tens of micrometers wide instead of the 1μm of a homojunction. This reduces the risk of damage to the crystal from radiation. In spite of these measures the efficiency of a semiconductor laser at room temperature is about 4%.

The wavelength can be adjusted from 0.84μm to about 0.85μm by varying the quantity of aluminium. The active region below the stripe contains 5% aluminium and the other regions contain about 35% or aluminium. This also helps the laser chip expand from the heat generated and prevents it from cracking.

Stimulated emission in lasers produces a purer wavelength compared to spontaneous emission in light emitting diodes. This is because a photon emitted in a laser meets an electron and another photon of the same wavelength is emitted. Therefore the linewidth in a laser is much narrower, about 1nm compared to 20nm in light emitting diodes.

Because of the purer frequency in lasers a much wider communications bandwidth can be obtained (Fig. 11a). Compared to this, suppose there are two frequencies in the led emission, then modulating them with the same bandwidth as the laser will lead to overlapping sidebands (Fig. 11b).

Fig. 11. Communications bandwidth.

As a result of this large bandwidth and the fact that lasers lend themselves to rapid on-off switching they are ideal for telecommunications over optical fibre and can transmit quite high data rates. Currently, 565 Mbit/s is quite common and laboratory experiments have yielded 2.4 Gbit/s, the limitations being as much on the fibre as the laser itself.

Obviously the purer the frequency, the higher the exclusion of other frequencies, the wider the bandwidth that is available from the laser. Also less energy needs to be coupled in and out of the device since all the energy is concentrated into a single carrier.

Fig. 12. Transverse and longitudinal modes.

At this point it would be useful to explain modes. A single frequency laser is not the same thing as a single mode laser. A single mode laser emits only the fundamental in the transverse mode but has several longitudinal modes.

The terms transverse and longitudinal, (Fig.12), do not refer to the electric field of the laser light but to the components of the light wave oscillating across the transverse or longitudinal directions of the laser cavity. The transverse mode is also called the spatial or lateral mode.

The fundamental transverse mode is a sine shaped wave, (Fig. 13), in which the peak of half a wavelength fits across the laser cavity. The waveform is said to have a Gaussian distribution, ie, peak power concentrated in the middle and dying off at the edges.
Fig. 14. Longitudinal mode.

The result is a central line with about a dozen spectral lines spaced 2 Angstroms to 10 Angstroms apart, (Fig.14). Therefore there is one transverse mode but several longitudinal modes. If the laser can be restricted to one transverse and one longitudinal mode, a single frequency laser is obtained.

The obvious question must be asked. Is it not possible to design a filter so as to extract the desired mode? The answer is no, for two reasons. It is very difficult to design a filter with a narrow enough bandpass so that wavelengths only a few Angstroms away would be rejected.

But suppose it were possible to design a narrow band filter, the second hurdle is partition noise. A semiconductor laser is a coupled oscillator which resonates in several longitudinal modes. It can be compared to two pendulums joined by a spring.

If the pendulums are caused to swing, they will swing together some of the time, and at other times, only one will swing since the other will have transferred all its energy to the first. Therefore, although the whole coupled system shares the total available energy, this share is not equal and can in fact go down to zero for either pendulum.

The same thing happens with longitudinal modes in a laser with the energy coupled and transferred between the wavelengths. All the energy is shared between the wavelengths but at any given moment one wavelength could have more, or less energy than the others.

Therefore if one were to succeed in partitioning (filtering) one of the wavelengths it would suffer from partition noise. That is, it would be intense at times and silent at other times. Clearly, this is totally unsuitable for communications purposes and the only acceptable alternative is to construct the laser so that it emits a single frequency that is also stable.

There are four known methods of obtaining a single frequency:

i) coupled cavities

ii) frequency selective feedback

iii) injection locking

iv) geometry controlled lasers

COUPLED CAVITY LASERS

The basic principle is that light travelling in an additional cavity causes radiation to be strengthened provided that wavelength exists in both the main cavity as well as the additional cavity.

One method of creating an additional cavity is to place an external mirror opposite the crystal mirror on the laser, (Fig. 15). The mirror may be flat but in practice is slightly concave to focus the energy back into the laser cavity. The external cavity can be fine tuned by temperature controlling the position of the mirror with a resistance heater.

Another method is to manufacture a two section laser, (Fig. 16), called a grooved coupled cavity laser. One section is the source of light and the other is the reflective element (stalon) and modulator. The first experimenters etched a groove one micrometer wide and used electrical contacts to each section. They managed to obtain single frequency pulses shorter than one nanosecond and tuned the wavelength by varying the current to the reflective element.

Instead of cutting a groove, the laser diode can be cleaved completely to form a cleaved coupled cavity (C³), (Fig. 17). The laser crystal is in unequal pieces and the shorter one is used as a frequency modulator.

When a current is applied to the modulator its refractive index changes. This alters the effective optical length and restricts the longitudinal mode to the required wavelength.

A separate cavity can be created without cleaving the laser crystal entirely. This is realised in the integrated reflective interference laser, (Fig. 18). Two straight segments are joined by a curved segment and this curved segment acts as reflective element between the two straight segments.

Altering the propagation characteristics like this causes the longitudinal modes to interfere with each other. Therefore only the wavelength that is amplified in both straight segments is radiated.

Fig. 15 (top). External mirror.

Fig. 16. Grooved coupled cavity laser.

Fig. 17. Cleaved coupled cavity.

Fig. 18. Integrated reflective interference.

Fig. 19. External grating.

Fig. 20. Distributed Bragg reflector.

Fig. 21. Distributed feedback laser.

FREQUENCY SELECTIVE FEEDBACK LASERS

Coupled cavity lasers force the device to operate at a single wavelength. The wavelength can also be tuned slightly by adjusting the current or temperature. However, the desired frequency cannot be selected by a diffraction grating whereas in the frequency selective feedback laser, the required frequency can be extracted by a diffraction grating.

If the grating is placed outside the laser, (Fig. 19), to form an external cavity, it acts as an external mirror. It can be fitted so that the grooves face the laser with the correct interval to reinforce the desired wavelength. Using this technique, spectral lines as narrow as 10⁻⁶ Angstrom have been obtained. This is a thousand times narrower than the emission from a free running single mode laser.

The distributed Bragg reflector, (Fig. 20), is a complex version of the external grating. Instead of end mirrors, the distributed Bragg reflector has a grating at each end of the diode. This grating is in the plane of the active region.

If the period of the grating is half the wavelength of the required emission or a multiple of half wavelengths, the light is reflected backwards. This is the Bragg condition. The diffraction grating therefore acts as a frequency selective mirror which reflects back into the laser cavity those frequencies which satisfy the Bragg condition and bypasses the others.

A variation of the Bragg reflector is the distributed feedback laser, (Fig. 21), where the grating is fabricated directly above or below the laser cavity and is therefore inside the crystal. Once again the end faces do not determine the limits of the laser cavity. Instead, the wavelength that is reinforced is decided by the period of the grating.
In the technique for producing a short, peak pulses and will only be dealt with briefly here. Frequency uses a single frequency external source to drive the single mode laser, (Fig. 22). The extended driver is of low power and does not have to be a semiconductor laser.

GEOMETRY CONTROLLED LASERS

The main technique in geometry controlled lasers that has been found useful is that of a short cavity (Fig. 23). As before a single mode laser is used but the cavity is only about 50μm which is a sixth of the usual laser cavity. The adjacent longitudinal modes are then spaced about 20 Angstroms apart instead of only a few Angstroms. In addition the single frequency can be assisted by highly reflective coatings on the laser mirrors.

There are also many hybrid designs involving a combination of the above techniques. For instance a fixed external mirror can be combined with a short coupled cavity, (Fig. 24). A bit rate of 2 Gbit/s has been obtained at a wavelength of 1.55μm using this technique. Another hybrid technique combines the idea of a distributed feedback laser with the grooved coupled cavity laser, (Fig. 25). In this multi section design the whole laser cavity has shallow grooves spaced about 40μm apart.

The purpose of producing a single frequency laser is to transmit a wider bandwidth than would otherwise be possible. Therefore, whilst each of the above methods will emit a continuous pure wavelength they can become unstable when the drive current to the laser is modulated. The most common type of instability is mode hopping, that is, hopping from one longitudinal mode to another.

Each of the above techniques has its own problems of manufacture and operation. For instance the distributed feedback type needs an exact grating to be grown within the layers of the semiconductor. These lasers have been tested over 1000 hours of continuous operation using a wide range of current and temperature and their performance has not deteriorated.

The problem with the external mirror laser is to select and maintain the correct distance between laser and mirror in order to provide the required wavelength.

The cleaved coupled cavity is easy to manufacture since it involves cutting the chip into two pieces and attaching wires to each piece. But it is sensitive to changes in temperature and current.

Injection locked lasers can be operated stably and with good purity reducing the line width from about Angstrom to less than 10 Angstrom. They tend to be bulky since the driving laser could be a helium-neon laser.

In the next part we shall look at applications of lasers together with methods of manufacturing this important twentieth century tool.

Spindler and Hoyer UK Ltd, whom the photos for this series, are at 14 Tonbridge Chambers, Pembury Road, Tonbridge, Kent, TN9 2HZ. Tel 0732 770800.

MAKE YOUR INTERESTS PAY!

Over the past 100 years more than 9 million students throughout the world have found what their whisker an ICS home-study course can help you get a better job, make more money and have more fun out of life! It's worth reading the course of your choice. (Tick one box only)

Electronics Basic Electronic Engineering City & Guilds
Hi-Fi Servicing Refrigeration & Air Conditioning
Electric Engineering Car Mechanics
Electrical contracting/ computer Programming
installation

Complete the form below and return with your payment and your FREE INFORMATION PACK on the course of your choice. (Tick one box only)

ICS
International Correspondence Schools, Öpen, G62. S19 3AY. High Street, Surrey PIN 19
Telephone 01393 96121 or 0491 235135 (24 hours)

National College of Technology

Packaged Short Courses

The National College of Technology (NCT Ltd) offers a range of packaged short courses in analogue electronics, digital electronics & fibres, optoelectronics & programmable logic controllers for study at home or at work. The advantages are that you may,

- commence at any time
- work at your own pace
- have a tutor (optional)

and there is no travelling involved. BTEC certificates are available subject to the conditions of the award. These highly popular packed courses contain workbooks, a cassette tape, circuit board and components necessary to provide both theoretical and practical training.

Whether you are a newcomer to electronics or someone who has experience and simply need updating, there is probably a course to suit.

The National College of Technology (NCT Ltd) offers a range of packaged short courses in analogue electronics, digital electronics & fibres, optoelectronics & programmable logic controllers for study at home or at work. The advantages are that:

- you may, (Tick one box only)
- have a tutor (optional)
- and there is no travelling involved. BTEC certificates are available subject to the conditions of the award. These highly popular packed courses contain workbooks, a cassette tape, circuit board and components necessary to provide both theoretical and practical training.

Whether you are a newcomer to electronics or someone who has experience and simply need updating, there is probably a course to suit.

The National College of Technology (NCT Ltd) offers a range of packaged short courses in analogue electronics, digital electronics & fibres, optoelectronics & programmable logic controllers for study at home or at work. The advantages are that you may,

- commence at any time
- work at your own pace
- have a tutor (optional)

and there is no travelling involved. BTEC certificates are available subject to the conditions of the award. These highly popular packed courses contain workbooks, a cassette tape, circuit board and components necessary to provide both theoretical and practical training.

Whether you are a newcomer to electronics or someone who has experience and simply need updating, there is probably a course to suit.

The National College of Technology (NCT Ltd) offers a range of packaged short courses in analogue electronics, digital electronics & fibres, optoelectronics & programmable logic controllers for study at home or at work. The advantages are that you may,

- commence at any time
- work at your own pace
- have a tutor (optional)

and there is no travelling involved. BTEC certificates are available subject to the conditions of the award. These highly popular packed courses contain workbooks, a cassette tape, circuit board and components necessary to provide both theoretical and practical training.

Whether you are a newcomer to electronics or someone who has experience and simply need updating, there is probably a course to suit. Write or telephone for details, quoting Practical Electronics, to:

NCT Ltd, Bicester Hall
5 London Road, Bicester
Oxon OX6 7BU

or telephone (0296) 613067 Ext. 202
90'S DECADE COMPONENT CATALOGUE

- ONE OF THE LARGEST RANGES OF COMPONENTS IN THE UK
- FAST AND EFFICIENT SAME DAY PERSONAL SERVICE
- VERY COMPETITIVE PRICE; QUANTITY DISCOUNTS AVAILABLE
- DISCOUNT VOUCHERS INCLUDED
- NO MINIMUM ORDER

CRICKLEWOOD SUPPLY MOST OF THE COMPONENTS FOR P.E. PROJECTS. 13,000 STOCKLINES (MANY UNOBTAINABLE ELSEWHERE) PLEASE PHONE US FOR YOUR SPECIFIC NEEDS.

FILL IN THE COUPON AND POST IT WITH YOUR CHEQUE, PO ETC FOR £1.50 TO RECEIVE YOUR CRICKLEWOOD ELECTRONICS CATALOGUE AND VOUCHERS WHICH YOU CAN USE AGAINST YOUR NEXT PURCHASE

Cricklewood Electronics Ltd
40 CRICKLEWOOD BROADWAY, LONDON, NW2 3ET
Tel: 081-450 0995/452 0161
Fax: 081-208 1441 Telex: 914977

Astronomy Now
Britain's leading astronomical magazine

In the December issue:

- Volcanoes on Io
- The Case Against Astrology
- Aldebaran – Red Eye of Taurus

plus: News Update - The Night Sky - Picture Gallery and more...

December issue on sale soon - price £1.50!
THE NOVEMBER SKY

With the darker nights, the stars are back in their full glory. Of the planets, Mercury and Venus are to all intents and purposes out of view, and Saturn - still very low in the sky - sets early: but to make up for this we have Jupiter and Mars, both of which are striking all through the month. Mars comes to opposition on November 27; while Jupiter, in Cancer (the Crab) is on view all through the latter part of the night. Jupiter has been particularly interesting in recent months, because of the strange disturbances taking place there; one of the main belts (the South Equatorial), which vanished in 1989 with disconcerting suddenness, has started to reappear together with the famous Great Red Spot, which we now know to be a vast swirling storm coloured probably by phosphorus.

The Moon is at Last Quarter on November 9, new on the 17th, First Quarter on the 25th. Full Moon, on November 2, coincides with perigee - that is to say, the time when the Moon is at its closest to the Earth - though the difference in apparent sizes is not really noticeable with the naked eye. (Incidentally, it is a fallacy to suppose that moonlight is comparable with even weak sunlight. You would need 400,000 Full Moons to equal the light of the Sun.) There are no solar or lunar eclipses this month.

The brilliant winter groups are now coming back into view. Orion rises at a reasonable hour, preceded by Aldebaran in Taurus (the Bull), with the Pleiades; there is also Capella in Auriga (the Charioteer), one of the two brilliant stars which can pass overhead as seen from Britain - Vega, in Lyra, is the other, but during November evenings Vega is descending in the north-west, together with the other members of the so-called Summer Triangle, Altair in Aquila (the Eagle) and Deneb in Cygnus (the Swan).

Ursa Major, the Great Bear, is at its lowest in the north, though it never sets; the W of Cassiopeia is near the zenith or overhead point, and is made up chiefly of carbon dioxide, with little free oxygen. Moreover, the temperature on the surface is very low. But apart from this, Mars is now so well endowed with Martian conditions that it is a wonder that we are not more interested in Mars, rather than in Earth. The surface gravity is one-third that of ours, and the day and night conditions are much the same as Mars has a rotation period about half an hour longer than ours; the axial tilt is also about the same, so that the seasons will be of the same general type as those of Earth apart from being much longer. (Mars has a 'year' of 687 Earth days or 668 Martian days or 'sols'.)

There is no chance of turning Mars into a second Earth; even if we could provide it with a terrestrial-type atmosphere the weak gravity would be unable to hold it down. There is, however, every prospect that by the end of the 21st century there will be flourishing colonies there. Life will always have to be under artificial conditions, and it is also questionable whether a baby born and brought up under Martian conditions would ever be able to adapt to the stronger gravity of Earth; all the same, it does look as though Mars is the one planet beyond the Earth-Moon system where Man may be able to establish himself in the foreseeable future.

ASTRONOMY FEATURE

SPACE

The cause of the problems with the Hubble Space Telescope have now been identified. They arose from a faulty piece of testing equipment, which resulted in the main mirror being given the wrong figure. One must admit that it is hard to understand how such a mistake can have passed unnoticed, particularly since it was, by conventional standards, very large - but we must now make the best of the situation.

Suggestions of bringing the telescope down for repair have been discounted; it would be too risky, particularly in view of all the problems with the Shuttle. The main mirror cannot be put right. Therefore, the only chance seems to be to send up new auxiliary equipment which has 'built-in' errors to compensate for the error in the main mirror. This may be possible; time will tell. Meanwhile, some good results are being obtained, and of course the telescope will be supreme in the ultra-violet range, because the ultra-violet radiation from space cannot penetrate through to the Earth's surface. So perhaps the best verdict at the moment is to say that the telescope is a partial success - even though we have to admit, sadly, that it could have been and should have been so much better.

WATCH

BY DR PATRICK MOORE CBE

Despite its problems the HST is giving us a better view of the universe, though we could soon be examining Mars with the naked eye.

A NEW LOOK AT MARS

Mars reaches opposition this month, and cannot be overlooked: it shines brilliantly, and surpasses any other star or planet apart from Venus and Jupiter. Telescopes show its red surface, its dark patches, and its whitish poles. Mars is a fascinating place - and beyond the Moon, it must surely be our next port of call.

The main trouble about Mars is the lack of a breathable atmosphere. The atmosphere has a ground pressure of below 10 millibars everywhere, and is made up chiefly of carbon dioxide, with little free oxygen. Moreover, the temperature on the surface is very low. But apart from this, Mars is now so well endowed with Martian conditions that it is a wonder that we are not more interested in Mars, rather than in Earth. The surface gravity is one-third that of ours, and the day and night conditions are much the same as Mars has a rotation period about half an hour longer than ours; the axial tilt is also about the same, so that the seasons will be of the same general type as those of Earth apart from being much longer. (Mars has a 'year' of 687 Earth days or 668 Martian days or 'sols'.)

There is no chance of turning Mars into a second Earth; even if we could provide it with a terrestrial-type atmosphere the weak gravity would be unable to hold it down. There is, however, every prospect that by the end of the 21st century there will be flourishing colonies there. Life will always have to be under artificial conditions, and it is also questionable whether a baby born and brought up under Martian conditions would ever be able to adapt to the stronger gravity of Earth; all the same, it does look as though Mars is the one planet beyond the Earth-Moon system where Man may be able to establish himself in the foreseeable future.

PE/PRACTICAL ELECTRONICS DECEMBER 1990
HOW TO DO IT

BUILDING THE PCB

Building the projects published in PE is a lot easier than you perhaps think. Especially when you use one of our professionally made printed circuit boards.

It’s almost like painting by numbers. All the PCBs are fully drilled, and basically all you need to do is slot in the components and carefully solder them to the PCB track pads. Their places are shown in the drawings published with the project.

IDENTITIES

Component identities are usually clearly marked on them. Even if they are colour coded, like some resistors and capacitors, their values are easily worked out from component colour code charts. From time to time we publish these charts, but if you don’t already have one, send a 9in x 4in stamped and self-addressed envelope to the Editorial office asking for one.

TOOLS

For many projects you only need a few simple tools - Soldering iron between 15W and 25W, with a bevelled tip. Damp sponge for keeping the tip clean. Good multicore solder of 18swg or 22swg grade. Fine nose pliers for wire shaping. Adjustable spanner or heavy pliers for tightening nuts. Miniature screwdriver for adjusting preset controls. Small wire cutters for trimming component leads. Drill and selection of bits for drilling holes in boxes. Strong magnifying glass for checking joins in close up. It’s also preferable to have a multimeter for setting and checking voltages. There are some very good low cost ones available through many of our advertisers, but get one that is rated at a minimum of 20,000 ohms per volt. Many projects do not require you to have a meter, but if you are serious about electronics, you really should have one.

ASSEMBLING THE PCB

Authors will sometimes offer their own advice on the order of assembly, but as a general guide, it is usually easier to assemble parts in order of size. Start through with the integrated circuit sockets. Please use them where possible, they make life much easier than if you solder the ICs themselves - with sockets you can just lift out an IC if you want.

Then insert and solder in order of resistors, diodes, presets, small capacitors, other capacitors, and finally transistors. Clip off the excess component wires before soldering, then make sure the solder covers the pads and the wires. Now use a magnifying glass, ideally one that you can hold to your eye, and take a good look at the joints, checking that they are satisfactorily soldered, and that no solder has bridged between the PCB tracks and other joints. Be really thorough with visual checking since errors like this are the most likely reason for a circuit not working first time.

SOLDERING

Bring the tip of the iron into contact with the component lead and the PCB solder pad, then bring the end of the solder into contact with all three, feeding it in as it melts. Once sufficient solder has melted to fully surround the pad and the lead, remove the solder, and then the iron. Now allow the joint to cool before touching it, otherwise the solder may set unsatisfactorily. If it does move, just reheat the joint once more.

WIRING

Connecting the PCB to the various panel controls is the final assembly stage. Do this just as methodically, following the published wiring diagram. You can connect the wires to the PCB in one of three ways. The best is to insert terminal pins into the connecting holes on the PCB, and then solder wires directly to them. Or, pass the end of the wire through the PCB hole, soldering it on the other side. Alternatively, the wire can be carefully soldered directly to the PCB tracking. In all cases first strip the plastic covering off the wire, twist the strands together, and apply solder to them to keep them secure.

TESTING

Now you are ready to test and use the project as described by the author. Components can occasionally fail, but these days it is extremely uncommon, and if you have followed the instructions, been careful with your joints, and bought the parts from a good supplier, you will have the enormous satisfaction of having built an interesting and working unit. It really can be easy if you do it with care.

CHOOSE ONE NOW!

The PE PCB Service list shows all the PCBs available through PE. Look down the list and see which title takes your fancy - there must be at least one that will interest you! You will probably already have the relevant issue of PE, but even if you don’t we can still help you.

BACK ISSUES

We can usually supply copies of back issues of PE up to three years old. These are £1.75 each including postage (£2.25 for overseas readers). If we no longer have the issue needed, we will be pleased to send a photocopy of the article for the project that you want to build. These are £1.00 each per issue, including postage (£1.50 to overseas readers).

OBTAINING PARTS

Some projects are available from advertising suppliers as complete kits. Otherwise, all the components listed in the text will be available from suppliers who specialise in individual components.

Occasionally a specific part may only be available from a particular supplier, if so the source will be given in the parts list. Otherwise there should be no difficulty in buying the parts. We have many good suppliers advertising in PE so have a look through their adverts - that’s why they’re here! Even though a part may not be listed in the adverts, a phone call or two should find a supplier who will be pleased to help. Like us, they too are in the business of encouraging you to enjoy electronics!
W

e began to look at the concept for
addition last month. Let's follow
with an investigation.

Investigation 4 - Adder circuit

Figs. 13 and 14 show how to demonstrate
the adder on a breadboard. The three input
resistors R1-R3 and the feedback resistor R4
all have the same value. We obtain two input
voltage levels from the resistor chain R5-R7.
The voltage at the R5/R6 junction is approximately
0.18V and that at the R6/R7 junction is approximately 0.11V. Actual
values and the results of adding them depend
on the actual values of the resistors used.

There are three flying leads from each
input resistor. Try plugging two or all three of
these into the 0.18V or 0.11V sockets to find
the sum of the following sets of voltages.

\[
\begin{align*}
0.11 + 0.18 &= \\
0.18 + 0.18 + 0.18 &= \\
0.11 + 0.11 + 0.18 &= \\
0.11 + 0.11 + 0 &= \quad \text{(use the 0V rail)}
\end{align*}
\]

How would you modify this circuit to find
the value of 1.5 x (0.11 + 0.18) ? Unless you need the breadboard for something else, keep
this circuit made up, as it needs only a little
modification to prepare the board for the next
investigation.

Part 12: Owen Bishop continues the opamp
theme, discussing addition, subtraction
and integration.

In the investigation we were adding steady
(dc) voltages, but the opamp can add varying
(AC) voltages just as easily. An application of
this is when the opamp is used to add audio
signals - as an audio mixer. The signals from a
microphone, a disc player, an electric guitar
and possibly from other instruments as well,
are fed to the (-) input through separate input
resistors. The output signal contains all the
component signals.

The adder can deal with subtraction too,
simply by inputting negative voltages. Base
your investigation on Fig. 14, but set up a
second potential divider to provide negative
voltages. Fig. 13 has three input resistors, but
we can have more if we need them. Thus the
circuit can add (or subtract) a large number of
values simultaneously.

Fig. 13 shows another way of inputting to
the opamp adder. The voltages are all equal
(Vin) but the resistors differ. The currents
flowing to the opamp are weighted. Running
down the diagram, each current is exactly half
that of the previous input. Let us see how this
works. Suppose that Vin = 0.4V and the
feedback resistor has the value R. We connect
various combinations of inputs to Vin, and
leave others unconnected, to obtain a series of
values of Vout. In the table below, '0'
represents 'unconnected' (or connected to 0V)
and '1' represents 'connected' (to +0.4V).

<table>
<thead>
<tr>
<th>Connections</th>
<th>Currents</th>
<th>Vout</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 1 1</td>
<td>1/4</td>
<td>0.1</td>
</tr>
<tr>
<td>0 1 0</td>
<td>1/2</td>
<td>0.2</td>
</tr>
<tr>
<td>0 1 1</td>
<td>1/2+1/4</td>
<td>0.3</td>
</tr>
<tr>
<td>1 0 0</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>1 0 1</td>
<td>1+1/4</td>
<td>0.5</td>
</tr>
<tr>
<td>1 1 1</td>
<td>1+1/2</td>
<td>0.6</td>
</tr>
<tr>
<td>1 1 1</td>
<td>1+1/2+1/4</td>
<td>0.7</td>
</tr>
</tbody>
</table>

The combinations of inputs on the left
represent the numbers 0 to 7, in binary. The
value of Vout obtained in each case is the
equivalent decimal number, scaled so that
0.1V = 1 on the scale. Thus a binary
weighting of the input resistors gives an adder
circuit that converts binary numbers into
decimal numbers. With more weighted inputs,
the adder could cope with more binary digits

and the values of Vout, although still actually
stepped, would appear to range smoothly over
the scale. This is one way of making a digital
to analogue converter. If the output of the
opamp is used to vary the speed of an electric
motor, for example, we can control the speed
of the motor by means of a binary input, such
as from a computer.

Differential Amplifier

Fig.16 shows the opamp being used to
measure the difference between two input
signals, V1 and V2. Since the resistors are all
equal in value, the voltage at (+) is V2/2.
There is negative feedback to (-) so this must
also be at V2/2. The voltage across the (-)
input resistor is V1 - V2/2 and so the current
trough it is

\[-(V1 - V2/2)\]

This current flows on through the feedback
resistor, so the voltage drop across that
resistor must be:

\[-(V1 - V2/2) \times R = -(V1 - V2/2)\]

With the (-) end of the resistor at V2/2, the
output voltage is

\[V2/2 - (V1 - V2/2) = V2 - V1\]

The output depends upon the difference
between the inputs. Another way of looking at
the action of this circuit is to say it is a
subtractor. You could try breadboarding this
circuit to confirm that it works as stated.

BASIC TUTORIAL

DIFFERENTIAL AMPLIFIER

Fig.16 shows the opamp being used to
measure the difference between two input
signals, V1 and V2. Since the resistors are all
equal in value, the voltage at (+) is V2/2.
There is negative feedback to (-) so this must
also be at V2/2. The voltage across the (-)
input resistor is V1 - V2/2 and so the current
trough it is

\[-(V1 - V2/2)\]

This current flows on through the feedback
resistor, so the voltage drop across that
resistor must be:

\[-(V1 - V2/2) \times R = -(V1 - V2/2)\]

With the (-) end of the resistor at V2/2, the
output voltage is

\[V2/2 - (V1 - V2/2) = V2 - V1\]

The output depends upon the difference
between the inputs. Another way of looking at
the action of this circuit is to say it is a
subtractor. You could try breadboarding this
circuit to confirm that it works as stated.

BASIC ELECTRONICS

Part 12: Owen Bishop continues the opamp
tHEME, discussing addition, subtraction
AND INTEGRATION.

In the investigation we were adding steady
(RE) voltages, but the opamp can add varying
(AC) voltages just as easily. An application of
this is when the opamp is used to add audio
signals - as an audio mixer. The signals from a
microphone, a disc player, an electric guitar
and possibly from other instruments as well,
are fed to the (-) input through separate input
resistors. The output signal contains all the
component signals.

The adder can deal with subtraction too,
simply by inputting negative voltages. Base
your investigation on Fig. 14, but set up a
second potential divider to provide negative
voltages. Fig. 13 has three input resistors, but
we can have more if we need them. Thus the
circuit can add (or subtract) a large number of
values simultaneously.

Fig. 13 shows another way of inputting to
the opamp adder. The voltages are all equal
(Vin) but the resistors differ. The currents
flowing to the opamp are weighted. Running
down the diagram, each current is exactly half
that of the previous input. Let us see how this
works. Suppose that Vin = 0.4V and the
feedback resistor has the value R. We connect
various combinations of inputs to Vin, and
leave others unconnected, to obtain a series of
values of Vout. In the table below, 'O'
represents 'unconnected' (or connected to 0V)
and '1' represents 'connected' (to +0.4V).

<table>
<thead>
<tr>
<th>Connections</th>
<th>Currents</th>
<th>Vout</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 1 1</td>
<td>1/4</td>
<td>0.1</td>
</tr>
<tr>
<td>0 1 0</td>
<td>1/2</td>
<td>0.2</td>
</tr>
<tr>
<td>0 1 1</td>
<td>1/2+1/4</td>
<td>0.3</td>
</tr>
<tr>
<td>1 0 0</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>1 0 1</td>
<td>1+1/4</td>
<td>0.5</td>
</tr>
<tr>
<td>1 1 1</td>
<td>1+1/2</td>
<td>0.6</td>
</tr>
<tr>
<td>1 1 1</td>
<td>1+1/2+1/4</td>
<td>0.7</td>
</tr>
</tbody>
</table>

The combinations of inputs on the left
represent the numbers 0 to 7, in binary. The
value of Vout obtained in each case is the
equivalent decimal number, scaled so that
0.1V = 1 on the scale. Thus a binary
weighting of the input resistors gives an adder
circuit that converts binary numbers into
decimal numbers. With more weighted inputs,
the adder could cope with more binary digits

and the values of Vout, although still actually
stepped, would appear to range smoothly over
the scale. This is one way of making a digital
to analogue converter. If the output of the
opamp is used to vary the speed of an electric
motor, for example, we can control the speed
of the motor by means of a binary input, such
as from a computer.

DIFFERENTIAL AMPLIFIER

Fig.16 shows the opamp being used to
measure the difference between two input
signals, V1 and V2. Since the resistors are all
equal in value, the voltage at (+) is V2/2.
There is negative feedback to (-) so this must
also be at V2/2. The voltage across the (-)
input resistor is V1 - V2/2 and so the current
trough it is

\[-(V1 - V2/2)\]

This current flows on through the feedback
resistor, so the voltage drop across that
resistor must be:

\[-(V1 - V2/2) \times R = -(V1 - V2/2)\]

With the (-) end of the resistor at V2/2, the
output voltage is

\[V2/2 - (V1 - V2/2) = V2 - V1\]

The output depends upon the difference
between the inputs. Another way of looking at
the action of this circuit is to say it is a
subtractor. You could try breadboarding this
circuit to confirm that it works as stated.
What happens if we replace the feedback resistor of an inverting amplifier by a capacitor, as in Fig. 17? Obviously, it is going to have an effect on the way the opamp responds. Let us try it and see.

Investigation 5 - the effect of a capacitor

The breadboard layout is almost the same as for Investigation 4, except that there is only one input resistor, and that the feedback resistor is replaced by a 10μ capacitor. A flying lead is used to short-circuit pins 2 and 6, to discharge the capacitor when required. For this investigation it is preferable to use a testmeter with a moving-coil meter, as we need to be able to visualise the rate of change of voltage, rather than its value. Alternatively, use a digital meter with an analogue ‘bar’ display. Connect the meter with its negative terminal to pin 6 and its positive terminal to OV.

1. Connect the battery. What is the output voltage?
2. Plug the input lead into the 0.11V socket. What happens to the output voltage?
3. Plug the input lead into a 0V socket. What happens?
4. Discharge C1 by using the other flying lead, so that the output voltage returns to 0V.
5. Repeat step 2, using the 0.18V socket. What difference do you notice in the response of the opamp? If necessary, discharge C1 and repeat steps 2, then 4 and 5.
6. Repeat step 2, using a +3V socket. What happens?
7. Now plug the input lead into a -3V socket. What happens?
8. Discharge C1, repeat step 2 using the 0.11V socket but insert the lead and remove it several times. What effect does this have?
9. Replace the input resistor with a 10k resistor, and repeat some of the steps above. What difference do you notice?
10. Replace the 10k input resistor; then replace C1 with a 100μ capacitor and repeat some of the steps above. What difference does this new capacitor make?

INTEGRATION

The investigation shows that output increases (in the negative direction) for as long as there is a positive input voltage. The greater the voltage, the greater the rate of increase. The circuit is acting as a storage device, summing the input voltage over time. In mathematics we describe this action as integration. The equation for the output of this circuit is:

\[V_{out} = \frac{-1}{RC} \int V_{in} \, dt \]

The way this equation is derived is beyond the scope of this series but those who have done calculus at school will recognise that the expression for Vout is an integral in time. The constants R and C show that Vout at any instant also depends on the values of the input resistor and the capacitor. If the resistor is 10k and the capacitor is 100μ, as in step 10 of the investigation, \(RC = 10^3 \times 100 \times 10^{-6} = 1 \) so that Vout = 5V. The output voltage increases at the rate of 0.11V per second. Actually, it is not likely that you will be able to demonstrate this, for two reasons. One reason is that electrolytic capacitors have a relatively high leakage current. This affects the rate at which the charge accumulates. This difficulty can be overcome by using a higher value resistor with a lower value polyester capacitor. A resistor of 10M, with a capacitor of 100n, also makes \(RC = 1 \).

If you try this, you will probably find that Vout either rises or falls slowly, even when Vin is connected to 0V. This is due to a source of error inherent in the opamp. It is known as input voltage offset, and is due to slight asymmetries in the construction of the chip. The consequence of this is that the opamp behaves as if there is a voltage difference between its inputs, when there is not. The input offset voltage varies from chip to chip. Typically this offset is only 1mV-2mV but may be up to 5mV in extreme cases. The offset is small enough to be ignored in many applications but, in the case of the integrator, it is something that increases in importance the longer the circuit is running. With input connected to 0V, the offset voltage becomes integrated with respect to time. Given long enough, the output gradually goes positive or negative (depending on the polarity of the offset voltage) and eventually finishes up fully positive or negative. The next investigation shows how to compensate for voltage offset.

Investigation 6 - input offset compensation

The circuit is the same as in Fig. 18, with the addition of a variable resistor. The input resistor is 10M and C1 is 100n (polyester). Connect the resistor as in Fig. 19.

Plug the input lead into a 0V socket. You may need to reverse the meter connections to get a positive reading on the scale. Watch the meter needle - it is probably moving slowly up or down the scale. If it moves below 0V,
return it to the scale by plugging the input lead into +3V or -3V for an instant. Then return it to 0V.

Slowly adjust the variable resistor. It is possible to make the needle move one way or the other by suitable adjustments. Adjust it until the needle does not move - or at least makes no appreciable movement in a period of about one minute. You have now compensated for the input offset voltage.

Connect the meter as before, with its negative terminal to the opamp output and its positive terminal to 0V. If necessary, touch the input lead to +3V or -3V to bring it to the lower part of the scale. Now plug it in at 0.11V. Measure how much the voltage rises during a period of 10s. What is the voltage change per second?

RAMP GENERATOR

The integrating opamp circuit is an obvious candidate for analogue computing since it is able to perform the mathematical operation of integration. It can perform all sorts of calculations relating to velocities and accelerations, find the areas under curves, find the volumes of complex solids, and any other computations which involve integration.

As illustrated in Investigation 6, the integrator has another useful action as a ramp generator. We met such a circuit in an earlier module (Fig.21), This module (Fig.21) is based on Fig.3 but takes the lead is in the opposite direction. The circuit has many applications in circuits that involve timing - in the feedback resistor is variable, so that the gain of the amplifier can be varied over the range 1 to 1000 or more.

Parts required: VR1 1M miniature horizontal preset resistor. As before but much more slowly. 9) As before but much more slowly.

CONVERSE CIRCUIT

Now we will try swapping round the resistor and capacitor of Fig.17. As we might guess, the new circuit (Fig.20) performs the reverse operation. The reverse of integration is differentiation. When we integrate using an opamp, we convert a voltage into a rate of change of voltage. A differentiator converts a rate of change of voltage into a voltage. The output of the circuit of Fig.20 is given by the equation:

$$V_{out} = -RC \frac{dv}{dt}$$

In this equation, \(\frac{dv}{dt} \) is the rate of change of input voltage. To change the rate of change, we change the gain. The gain of an opamp is variable and can be adjusted by a preset resistor.

DISCUSSION

Investigation 4:

- Outputs are 0.29V, 0.54V, 0.40V, 0.22V, but you will get different results if the voltages on the potential divider are not exactly 0.11V and 0.18V (check them).
- To multiply the sum by 1.5, use a 15k feedback resistor.

Investigation 5:

1) Vout = 0V, 2) Vout slowly swings negative. 3) No change in Vout. 4) Vout swings negative, but more quickly than at step 2. 5) Vout swings more negative still. 6) Vout swings quickly again. 7) Vout swings negative when the lead is in the 0.11V socket; stops swinging when it is in the OV socket; continues when the lead is replaced in the 0.11V socket. 8) As before but much more slowly. 9) As before but much more slowly.

Investigation 6: If the input offset is correctly adjusted, Vout falls as the rate of 0.11V per second.
IT IS EASY TO BUILD
PRACTICAL ELECTRONICS PROJECTS!

Simplify your project assembly - use a ready-made printed circuit board. All are fully drilled and roller tinned. Just slot in the components as shown in the project texts, and solder them. PCBs are the professional route to project perfection.

MAIL ORDERING
Select the boards you want, and send your order to:
PE PCB SERVICE, PRACTICAL ELECTRONICS, 193 UXBRIDGE ROAD, LONDON W12 9RA.

Prices include VAT and postage and packing. Add £2 per board for overseas airmail. Cheques should be made payable to Intra Press (Payments by Access and Visa also accepted). Quote the project name and PCB Code Number, and print your name and address in Block Capitals. Do not send any other correspondence with your order.

TELEPHONE ORDERS
Use your Access or Visa card and phone your order to 081-743-8888 clearly stating your name and address, card number and order details. All orders receive priority attention. Many PCBs are held in stock, so they are dispatched within a few days, but please still allow 28 days for delivery in case a PCB is temporarily out of stock.

We can only supply the PCBs listed here! Please always check the latest issue of PE before ordering.

We can also supply the photocopies of the text at £1.50 for each project part inclusive of postage and packing (overseas £2.00). Please note that we do not supply components - they can be ordered from our advertisers!

FEB 88
DC MOTOR SERVO 165 £7.53
MAR 88
APPLIANCE TIMER 166A/B £9.38
Logic ANALYSER - Double-sided 168 £20.65
APR 88
LIGHT METAL EFFECTS 169 £7.10
JUNE 88
AMSTRAD ROM EXPANSION 173 £12.60
MAINS MODEM 174 £4.90
AUG 88
SPEAKING CLOCK 176 £16.75
SEPT 88
BBC MULTIPLEXER 177 £4.50
OCT 88
METAL DETECTOR 178 £6.50
DEC 88
PANNING MIXER 181 £7.80
MAR 89
CAMERA SHUTTER TIMER 187 £9.95
APR 89
PC MULTIPORT 188A/B £20.55
MAY 90
KIRLIAN CAMERA 189A/C £10.50
JUNE 88
DELUXE METRONOME 198 £10.95
JULY 89
PROJECTOR SYNCHRONISER 190A £9.50
SEP 89
FREQUENCY COUNTER-GENERATOR 194A/B £12.50
OCT 89
HOME SECURITY CONTROLLER 196A/C £19.50

FEB 89
VIDEO AGC STABILISER 199 £6.50
ECHO STATION 200A/B £11.50
MINI METRONOME 201 £5.90
JAN 90
BARGRAPH TACHOMETER 202 £5.90
EEPROM PROGRAMMER (KEYBOARD VER) 203 £14.50

MAR 90
EEPROM PROGRAMMER (SWITCH VERSION) 204 £4.90
MODEM 205 £11.50
M0CK STEREO 206 £4.90

APR 90
RADIO CLOCK (TUNER AND PULSE) 207 £6.50

MAY 90
EPROM POLY-PROG (MAIN PCB) 210 £8.50

JUNE 90
EPROM POLY-PROG (TOP PCB) 211 £7.50
MESSAGE MAKER 212 £9.50
BAUD RATE CONVERTER 213 £4.90
INTERMITTENT WIPER 214 £3.90
CIRCUIT BREAKER 215 £4.90

JULY 90
MORSE DECODER 216 £9.50

AUG 90
SCOPE EXPANDER 217 £9.50
VOLTAGE PROBE 218 £5.80
AF OCTAVE MEASURER:
FILTER DRIVE 219 £6.60
ANALOGUE FILTER 220 £7.35

SEP 90
AF OCTAVE MEASURER
AMPLIFIER 221 £7.35
SWITCHED FILTER 222 £7.35
SWITCHED FILTER DRIVE 223 £7.35

OCT 90
TELE-SCOPE - MAIN PCB 224 £11.50

NOV 90
BIKE COMPUTER - MAIN PCB 228 £9.50
- POWER SAVER 229 £4.90

DEC 90
CHIPTESTER 227 £11.50

PE PCBs are the professional route to project perfection!
HISTORY OF TECHNOLOGY

SAMUEL MORSE

Producing some very fine work. In fact many of his portraits are considered to be amongst the best ever produced by an American artist.

FOREIGN TRAVEL

The reputation of Morse began to grow, as did his income. So he decided to travel to Europe to study more about the styles used there. At this time the electromagnet had just been discovered and a number of elementary forms of telegraph system had also been proposed. Morse, who had retained his interest in electricity, heard about the electromagnet and he started thinking about how this new invention could be used. It was during his trip home an idea for a practicable telegraph system started to develop.

As Morse was very busy with his painting as well as lecturing, he did not devote much time to his idea for a telegraph. It was not for about three years that he was able to develop a prototype. Once he had done so his enthusiasm for the idea grew and in 1837 he gave over all his time to it, putting his painting and lecturing to one side.

Unfortunately he did not have all the resources to build the complete system himself and so enlisted the help of a number of friends to get the system off the ground. One named Alfred Vail was gifted with mechanical ideas and many people believe that he actually invented the Morse key. Progress was swift at first and within a year they had developed a system of dots and dashes to represent the letters and numbers. In fact this original code has many similarities to the one used today and it was used for several years before the need arose for it to be changed.

The partners realised that they had to interest the large organisations and government institutions if their idea was to succeed. They gave demonstrations to the American Congress and several other organisations in America but without success. Undeterred by this they even came to England where they hoped for a different response but again without success.

Morse was not easily stopped. Having failed to secure any interest with the help of his partners he set out on his own and this time he was successful. He managed to gain the support of Congress and received a grant of $30,000 to set up an experimental line between Baltimore and Washington, a distance of about 40 miles. Despite a number of major setbacks it took less than a year to complete and on the 28th May 1844 he sent the famous first message which read “What hath God wrought?”

With this system operating interest grew very fast. Many of the railroad companies saw the possibilities and they started to have systems installed. After only four years more than 5,000 miles of line had been installed to take the new telegraph system. In addition to this, orders soon started to come in from Europe as they heard about the system and how it performed. With all of these orders Morse became very wealthy.

Along with success, though, came trouble. His former partners filed law suits against him as they felt they had not contributed to the system. These legal battles took many years to settle and cost a great deal of money, but eventually Morse won and was able to hold onto all his ideas.

THE NEW CODE

Although the original code which Morse had derived served its purpose well it had several limitations. Some letters had pauses in them, others had dashes which were longer than others, and there was no provision for accents required by some European languages. These problems meant that the code was not always easy to use. As a result of this a new code was devised and introduced in 1851. It bore many similarities to the old one but it was much easier to send having no spaces in the letters themselves and standard lengths for all the dots and dashes. In fact this code is called the International Morse Code and it is the one which is still used today.

LAST YEARS

In his later life Morse was able to enjoy his success and wealth. He bought two houses, one of which was a mansion on an estate overlooking the Hudson River, and it was here that he used to spend most of his time with his family. The other was in New York City, which he used in the Winter.

Morse was generous with his money. He supported many organisations from the religious to the educational. He also supported many itinerant artists because he remembered his time on the road during his younger years.

Morse died in April 1872 at the age of 80. He said he wanted to be remembered chiefly for his invention of the telegraph which he thought was his greatest achievement. However, with new methods of sending data being used more and more these days and the increase in popularity of his paintings it is likely that in years to come he will be remembered chiefly as the foremost American Artist.

Photograph by courtesy of the Institution of Electrical Engineers.

Technological advancement does not necessarily originate from the elite ranks of scientists - Ian Poole reveals that Morse was an artist!

(PE published a semi-intelligent morse decoder in July 90. Ed.)

PRACTICAL ELECTRONICS DECEMBER 1990
PRACTICAL ELECTRONICS CLASSIFIED

Reach thousands of serious electronic and computer enthusiasts. Advertise in PE Classified pages: Rates 20p (plus 3p VAT) per word or £8.50 per single column cm (plus VAT). All classified advertisements must be pre-paid. Send your copy with the remittance (payable to Intra Press or payment by Visa or Access accepted) to: Practical Electronics, Intra House, 193 Uxbridge Road, London W12 9RA. Tel: 081-743-8888. Fax: 081-743-3062

LET PE WORK FOR YOU!

EDUCATION

FULL-TIME TRAINING COURSES

2 YEAR
BTEC NATIONAL DIPLOMA
Electronics and Communications Engineering
(TV, Computers, Programming, IT)

1 YEAR
BTEC NATIONAL CERTIFICATE
1. Electronic Equipment Servicing
 (TV, Video, CCTV)
2. Computing Technology
 (Microprocessors, DataComm, Interfacing)
3. Information Technology
 (Telecomms, Satellite TV, Networks)
4. Software Engineering
 (Assembler, BASIC, Pascal, CAD/CAM)

Those eligible can apply for E.T. grant support
An equal opportunities programme

COURSES COMMENCE
Monday 7th January 1991

LONDON ELECTRONICS COLLEGE

Dept: AA, 20 Penywern Road,
London SW5 9SU. Tel: 071-373 8721

Start training now for the following courses.

- Telecomms Tech C&G 271
- Radio Amateur Licence C&G
- Microprocessor
- Introduction to Television

Send for our brochure - without obligation or telephone us on 06227 79398 (Ref: FE12/90)

Name ..
..
..

Radio & Telecommunications
Correspondence School,
12 Moor View Drive, Teignmouth,
Devon TQ14 9UN

RETAILERS

EDINBURGH

OMNI ELECTRONICS
stock a wide range of electronic components at
174 Dalkeith Road
Edinburgh EH16 5DX
Tel: 031 667 2611
Open Mon-Fri 9am-8pm
Sat. 9am-5pm
NEW CATALOGUE OUT SOON
Price is just £1.50
Contact Omni Electronics now for details

LONDON WEST

TECHNOMATIC LTD
Please see our display advertisement in this issue for more details!

MANCHESTER

THE ELECTRONICS SHOP
We stock a large range of electronic components, test equipment, telephone accessories, computer accessories, microphones, speakers, discolighting, mixers, meters, stylife, so call in and have a look around.
29 Hanging Ditch, Manchester M4 3ES
Telephone: 061-834·1185
Fax:061·833·2969

SOUTHSEA

SOUTHSEA ELECTRONIC COMPONENTS
EVERYTHING FOR YOUR NEXT PROJECT
THE BIGGEST DISPLAY IN THE SOUTH IS AT
FRASER ELECTRONICS
42 ELM GROVE • SOUTHSEA • HANTS
Telephone: 0705-815584
Barclaycard Access

PRACTICAL ELECTRONICS DECEMBER 1990
COMPONENTS

CARBON FIBER RESISTORS
- **N.R. BARDWELL LTD**
 - 200 signal discs, 14416 - £1.00
 - 102 resistor discs, 5440 - £1.00
 - 100 ceramic resistors, 4340 - £0.50
 - 220 ceramic resistors, 4440 - £1.20
 - 100% metal film, ±1%, 5% tolerance - £1.50
 - 100% metal film, ±0.1%, 5% tolerance - £2.50

TEST EQUIPMENT

RACK CHASSIS

FOR THE CONSTRUCTOR

- **N. R. BARDWELL LTD**

C. E. S. N. W.

FOR ELECTRONIC COMPONENTS

- **TEST EQUIPMENT REPAIRS IBM PC ACCESSORIES AT DISCOUNT PRICES**

- **LET US SOURCE THAT DIFFICULT TO FIND COMPONENT FOR YOUR KIT OR PROJECT. SEND FOR DETAILS OF ALL OUR SERVICES.**

APPT. 2, NO. 8 MERION GARDENS, COLWYN BAY, CLWYD, NORTH WALES LL27 7PR

T E L : 0492 533083 **F A X :** 0492 534716

COMPONENT PACKS • COMPUTER PARTS

COOKE INTERNATIONAL

DO YOU WANT USED ESCAPES, SCOPE GENERATORS, POWER SUPPLIES, POWER METERS, DVM'S, OSCILLATORS, ATTENUATORS, TEST EQUIPMENT.

Contact: Cooke International, Unit 4, Fordingbridge Site, Mćin Road, Barnham, Bognor Regis, West Sussex PO22 0EB

Tel: 0243 545111 - Fax: 0243 542457

ENCLOSES

PRACTICAL ELECTRONICS DECEMBER 1990
SURVEILLANCE

SIMPSON'S MANUFACTURING

Manufacturers of chips and security products

Rocket Trading Centre
Broadgreen
Liverpool L14 3NZ
051-220-9328

SURVEILLANCE DEVICES, lasers, Tesla coils, scramblers, ultrasonic and many more, over 150 designs. Send SAE to: Plancentre, Old Wharf, Dynock Road, Ledbury HR8 2HS for free list. NEW VHF MICROTRANSMITTER KIT, tuneable 80-135 MHz, 500 metre range, sensitive electret microphone, high quality PCB. SPECIAL OFFER complete kit ONLY £5.95, assembled and ready to use £9.95 post free. Access orders telephone 021 411 1821. Cheques/ P.O.'s to: Quantek Electronics Ltd, (Dept P.E.), 45a Station Road, Northfield, Birmingham, B31 3TE

VHF MICROTRANSMITTERS. high sensitivity, long range, useful as baby monitors etc. Tunable to 115MHz Guaranteed ready to use, fully encased £8.50 Cheques/POs Mrs. M Hicks, 24 Brewster Road, Boston Lincs. PE21 ODY TEL: 0205 362003

DATAMAN S3 EPROM PROGRAMMER. Many professional features. Will program hundreds of PROM types. In-circuit RAM evaluation up to 64 kbytes. Mint condition. Full documentation. Offers around £450. (0737) 764782

VOICE/SOUND ACTIVATED SWITCHES Easy to follow diagrams and uses, only £1.00. Components and PCBs available from Herrington, London W7 1NL

CIRCUIT DIAGRAM +INSTRUCTIONS for a 25 Watt FM Broadcast Transmitter Cheques/POs £3.50 to AM Enterprises 44 Altyre Way Beckenham, Kent BR3 3HA

WANTED ATARI 65XE COMPUTER. Telephone 0846 693668

"INVENTION DEVELOPMENT & INNOVATION LTD" can help commercialise your idea - telephone Cambridge (0223) 892789

KITS

VELLEMAN KITS

Over 100 Project kits in stock. Send 50p for 1990 catalogue plus price list. Electronic Retailers wanted throughout the country with a view to stocking our product.

High Q Electronics
PO Box 14810
London NW7 4RF
TEL:0707-263562

KITS ARE POPULAR!
Advertise them in Practical Electronics!

Phone David Bonner on
081-743-8888
for advertising details!

CLASSIFIED COUPON

Rates are 20p per word plus 3p VAT (lineage, for semi-display advertisements contact our Ad. Dept.). All classified advertisements must be pre-paid. Please send your copy with the remittance (payable to Intra Press or payments by Visa or Access accepted) to: Practical Electronics Classified Dept., Intra House, 193 Uxbridge Road, London W12 9RA. Tel: 081-743-8888, Fax: 081-743-3062
When a British Telecom technician came to repair our home telephone I was greatly impressed by the speed and efficiency with which he tracked down the fault and cured it (an intermittent short-circuit with arching in the twin line). At the same time he decided to replace our old carbon microphone with one of the latest transmitter insets containing an integrated-circuit amplifier. I asked him what kind of microphone it had.

"Oh, I don’t need a microphone - it’s all electronic," he replied triumphantly.

I was about to explain that there must be some way of converting the voice sounds waves into an electrical signal for the electronics to work on, but stopped and just nodded. It would have been patronising and rude, especially as he was such a nice friendly chap. (Later I discovered that the new microphone is an electret type).

Apparently there was something of a gap between this person’s training and his education. In dealing with the fact he was superb. Yet at the same time he seemed to have the notion that, because the carbon microphone could be dispensed with, no microphone was necessary: it was all somehow done by the magic of electronics.

FUNDAMENTALS

But perhaps it is indeed possible to run an organisation with well trained people who don’t necessarily understand the fundamentals of what they are working at. This is not to say they aren’t able to understand. They might well be intelligent and capable human beings. But because their vocational training only requires them to think and act within certain defined limits, and this is what they are paid for, they have no interest in looking beyond these limits.

The traditional separation between training and education produces not only blind spots in a person’s understanding but also great gaps in his/her abilities. This problem is particularly relevant now in Britain. There’s a severe shortage of skilled people in industry, especially in electronics, and we have a lamentable record on training compared with our industrial competitors (e.g. France has three times as many qualified electronic/electrical technicians).

Professionals like lawyers, doctors and accountants have to be well trained before they are safe to be let loose on the public. But they couldn’t achieve the required level of training without an adequate education to start with. Equally, nobody can become properly educated until they have first been trained to acquire the basic skills of literacy and numeracy. So at certain levels the interdependence of education and training is obvious and considered perfectly natural.

When it comes to manufacturing industry, for example, although total employment has actually declined by about 14% over the past decade, the jobs that remain are demanding higher and higher skills. During this period the proportion of unskilled workers has been falling but the employment of scientists and engineers has practically doubled.

This column has already discussed how information technology is changing the pattern of all industrial work. It’s cutting across the distinction between managers doing largely mental work and factory operatives doing largely manual work on objects. Information technology is gradually making the work on objects more mental than manual.

SOCIAL ATTITUDES

There’s also a blurring of the traditional boundary between professional engineers and technicians/craftsmen. In electronics firms you quite often find academically qualified engineers doing the work of technicians and vice-versa, according to their personal abilities and opportunities.

I think the reason for the UK’s poor performance in industrial training is historically to do with the social attitudes mentioned above. The present Government’s free-market philosophy is probably not helping by leaving so much to employers. What may be expedient for individual companies is not necessarily good for the country as an economic whole. We need a national infrastructure of skill resources. Economic success depends on a highly skilled workforce adding maximum value to materials. And this degree of skill is a product of both training and education.

To remedy the situation we could, of course, just try to catch up with our industrial competitors. Witness the Government’s latest hasty efforts in crisis management: the Technical and Enterprise Councils and what they call New Youth Training (successor to YOP and YTS). But maybe our failure to keep up with the leaders in the race gives us an opportunity to look around and take a wider view.

To begin with, manufacturing industry could undergo changes as a result of world environmental problems and human reactions against perpetual economic growth and the rat-race of a life in competing economies. There are also new ideas brewing in UK education. Critics are arguing that our system of producing a minority of A-level high-flyers and a majority with low-level vocational qualifications is wasteful. They say we should have a unified system of learning resulting in a single qualification. Too many young people are abandonign education at sixteen. Instead of early selection with low participation in full education, we need late selection with high participation.

By Tom Ivall

Inherited attitudes towards manual and mental skills are in danger of inhibiting technological advancement.

In the UK electronics industry, for example, although total employment has actually declined by about 14% over the past decade, the jobs that remain are demanding higher and higher skills. During this period the proportion of unskilled workers has been falling but the employment of scientists and engineers has practically doubled.

This column has already discussed how information technology is changing the pattern of all industrial work. It’s cutting across the distinction between managers doing largely mental work and factory operatives doing largely manual work on objects. Information technology is gradually making the work on objects more mental than manual.

There’s also a blurring of the traditional boundary between professional engineers and technicians/craftsmen. In electronics firms you quite often find academically qualified engineers doing the work of technicians and vice-versa, according to their personal abilities and opportunities.

I think the reason for the UK’s poor performance in industrial training is historically to do with the social attitudes mentioned above. The present Government’s free-market philosophy is probably not helping by leaving so much to employers. What may be expedient for individual companies is not necessarily good for the country as an economic whole. We need a national infrastructure of skill resources. Economic success depends on a highly skilled workforce adding maximum value to materials. And this degree of skill is a product of both training and education.

To remedy the situation we could, of course, just try to catch up with our industrial competitors. Witness the Government’s latest hasty efforts in crisis management: the Technical and Enterprise Councils and what they call New Youth Training (successor to YOP and YTS). But maybe our failure to keep up with the leaders in the race gives us an opportunity to look around and take a wider view.

To begin with, manufacturing industry could undergo changes as a result of world environmental problems and human reactions against perpetual economic growth and the rat-race of life in competing economies. There are also new ideas brewing in UK education. Critics are arguing that our system of producing a minority of A-level high-flyers and a majority with low-level vocational qualifications is wasteful. They say we should have a unified system of learning resulting in a single qualification. Too many young people are abandoning education at sixteen. Instead of early selection with low participation in full education, we need late selection with high participation.
BOOK SERVICE

Here is your Editor's choice of books he thinks will be of interest to electronics and computer enthusiasts.

BEGINNERS AND EARLY STARTERS

- **Mini-Matrix Board Projects.**
 - F.A. Wilson. 112 pages. £5.95. Order Code BP117
 - This book is designed for the absolute beginner, clearly explaining the fundamentals behind the whole subject of electronics.

- **Practical Electronic Building Blocks**
 - R.A. Penfold. There are two books -
 - Book 1: 128 pages. £1.95. Order Code BP117
 - Book 2: 112 pages. £1.95. Order Code BP118
 - Book 1 is about oscillators and gives circuits for a wide range, including sine, triangle, square, sawtooth and pulse waveforms and numerous others from voltage controlled to customised ic types.
 - Book 2 looks at amplifiers, ranging from low level discrete and opamp types to ic power amps. A selection of mixers, filters and regulators is included.

SATELLITE TV

 - Full of vital information for any competent drier who wishes to install a satellite tv antenna and obtain optimum reception quality.

- **An Introduction to Satellite Television**
 - F.A. Wilson. 112 pages. £5.95. Order Code BP115
 - Informative answers to many of the questions about this communications revolution. The information is presented on two levels, one aimed at the complete beginner, the other at professional engineers and serious amateur enthusiasts.

TEST AND MEASUREMENT

- **Getting the Most from Your Multimeter**
 - R.A. Penfold. 112 pages. £2.95. Order Code BP248
 - There's more to what you can do with a meter than meets the casual eye. The book covers the basics of what you can do with analogue and digital meters and discusses component and circuit testing.

- **Oscilloscopes 2nd Edition**
 - I. Hickman. £12.95. Order Code NT3
 - Subtitled 'How to use them, how they work' the book is illustrated with diagrams and photographs and is essential reading for anyone who wants to know about scopes, from first principles to practical applications.

- **How to Get Your Electronic Projects Working**
 - R.A. Penfold. 96 pages. £2.50. Order Code BP110
 - Essential reading for anyone who wants first-time success in project assembly. Covers tracing mechanical faults as well as testing for failures of active and passive components of most types.

AUDIO AND MUSIC

- **Introducing Digital Audio**
 - I. Sinclair. 112 pages. £5.95. Order Code BP102
 - A non-mathematical introduction to the new digital technology, discussing the principles and methods involved in devices such as cd, dat and sampling.

- **Electronic Music Projects**
 - R.A. Penfold. 112 pages. £2.50. Order Code BP74
 - 24 practical constructional projects covering data, with synthesizers, vocoders, digital delay lines and sound generators.

- **More Advanced Electronic Music Projects**
 - R.A. Penfold. 96 pages. £2.95. Order Code BP174
 - Complementing BP71 by covering advanced and complex projects including drum machines, sequencer, effects, mixers and a selection of drum, synth and goog circuits.

- **Computer Music Projects**
 - R.A. Penfold. 112 pages. £2.95. Order Code BP173
 - Shows how home computers can produce electronic music and covers sequencers, analogue and Midi interfacing, digital delay lines and sound generators.

- **Practical Midi Handbook**
 - R.A. Penfold. 160 pages. £5.95. Order Code PC103
 - A practical how-to-do-it book for musicians and enthusiasts who want to exploit the capabilities of Midi. Covers keyboards, drum machines, sequencers, effects, mixers, samplers and computer music software.

- **Midi Projects**
 - R.A. Penfold. 112 pages. £2.95. Order Code BP162
 - Practical details of interfacing many popular home computers with Midi systems, and also covering Midi interfacing to analogue and percussion units.

- **Electronic Synthesiser Construction**
 - R.A. Penfold. 112 pages. £2.95. Order Code BP165
 - Even relative beginners should find the monophonic synthesiser described here within their capabilities if the book is thoroughly read. Individual aspects of the synth are dealt with separately and pcb designs are shown for the main modules.
DIGITAL AND COMPUTING

A Concise Introduction to MS-DOS.
R.A. and J.W. Penfold. 64 pages. £2.95.
Order Code BP232
A ready-reference guide for those who need a quick and easy introduction to this operating system, but do not have the time to learn it fully.

An Introduction to Computer Peripherals.
R.A. and J.W. Penfold. 90 pages. £2.50.
Order Code BP170
A comprehensive introduction to all the basic computer components, with a guide to using them with your computer and each other.

Digital Logic Gates and Flip-Flops.
Ian R. Sinclair. 192 pages. £9.95.
Order Code PC 105
Intelligently looks at the basic building blocks of digital circuits and is intended for keen amateurs.

An Introduction to 6800/6802 Microprocessor Systems.
R.J. Simpson and T.J. Terrell. 238 pages. £10.95.
Order Code BP190
The book covers the range of hardware, software and practical work that will assist in understanding the 6800/6802 microprocessor, with additional information on the 6802/DLE evaluation system.

An Introduction to 68000 Assembly Language.
R.A. and J.W. Penfold. 112 pages. £2.95.
Order Code BP184
A source of useful information that is invaluable compendium of facts, figures and circuit designs for the amateur enthusiast who is likely to need for day-to-day pursuance of electronic projects.

How to Order.
State your order code and your name and address clearly. Enclose a cheque, PO or international money order (add 50p postage per book - £1.00 for overseas surface mail) and send to: PE Book Service, 193 Uxbridge Road, London W12 9RA.

DATA AND INFORMATION BOOKS

New! Microprocessor Pocket Book.
Steve Money. 252 pages. £9.95.
Order Code NT 12
This interesting book is written in a simple non-mathematical style and provides a source of practical circuits that use both common and more sophisticated opamps.

New! Computer Engineer’s Pocket Book - 2nd Edition.
Michael Tooley. 224 pages. £9.95.
Order Code NT 13
Provides a wide selection of information which will be of general use to anyone involved in developing, designing or servicing, or who just wants to learn more about microprocessor systems.

New! Newnes Electronics Pocket Book.
J.E. Parr. £9.95.
Order Code BP233
Proves a source of useful information that the amateur enthusiast is likely to need for day-to-day pursuance of hobby electronics.

New! Newnes Electronics Pocket Book.
J.E. Parr. £9.95.
Order Code BM 101
Tackles the problems of designing circuits from scratch, introducing the concept of target specifications, the design sequence, device selection, rules of thumb, and useful equivalent circuits.

GENERAL CONSTRUCTIONAL

Electronic Science Projects.
Owen Bishop. 144 pages. £2.95.
Order Code BP104
A comprehensive introduction to computer assembly language and includes a number of projects using microprocessors, microcontrollers, and other microcontroller techniques.

Order Code BP94
15 fairly simple projects that can be used with a car and/or boat. Suitable for people who have no previous experience of electronics.

More Advanced Microcontroller Projects.
R.A. Penfold. 112 pages. £2.95.
Order Code BP190
A selection of microcontroller projects, including simple microcontroller designs, fixed voltage and variable voltage circuits, clock circuits, and simple control circuits.

Power Supply Projects.
R.A. Penfold. 96 pages. £2.50.
Order Code BP70
A specialist book for those who wish to learn more about microcontroller systems. The book covers the range of hardware, software and practical work that will assist in understanding the 6800/6802 microprocessor.

Popular Electronic Circuits.
R.A. Penfold. 160 pages. £2.95.
Order Code BP80
A source of useful information that is invaluable compendium of facts, figures and circuit designs for the amateur enthusiast who is likely to need for day-to-day pursuance of electronic projects.

How to Order.
State your order code and your name and address clearly. Enclose a cheque, PO or international money order (add 50p postage per book - £1.00 for overseas surface mail) and send to: PE Book Service, 193 Uxbridge Road, London W12 9RA.

Books are normally delivered within 10 days but please allow 28 days for delivery.

DATA AND INFORMATION BOOKS

New! Radio and Electronics Engineer’s Pocket Book - 18th Edition.
Keith Brindley. 325 pages. £9.95.
Order Code NT 11
An invaluable collection of facts, figures and formulae and is indispensable to the designer, student, service engineer and all others interested in radio and electronics.

New! Microprocessor Pocket Book.
Steve Money. 252 pages. £9.95.
Order Code NT 12
An invaluable collection of facts, figures, circuits and data indispensable to designers, students, service engineers and all others interested in computer and microcomputer systems.

Op Amps.
B. Dance. £7.95.
Order Code NT12
Subtitled Their Principles and Applications, this interesting book is written in a simple non-mathematical style and provides a source of practical circuits that use both common and more sophisticated opamps.

New! Electronic Hobbyists Handbook.
R.A. Penfold. 96 pages. £4.95.
Order Code BP233
Provides a source of useful information that is invaluable compendium of facts, figures and circuit designs for the amateur enthusiast who is likely to need for day-to-day pursuance of hobby electronics.

New! Newnes Electronics Pocket Book.
J.E. Parr. £9.95.
Order Code BM 101
Tackles the problems of designing circuits from scratch, introducing the concept of target specifications, the design sequence, device selection, rules of thumb, and useful equivalent circuits.

How to Order.
State your order code and your name and address clearly. Enclose a cheque, PO or international money order (add 50p postage per book - £1.00 for overseas surface mail) and send to: PE Book Service, 193 Uxbridge Road, London W12 9RA.

Books are normally delivered within 10 days but please allow 28 days for delivery.
“YOU NEVER KNEW THERE WAS SO MUCH IN IT”

The new Winter 90/91 Catalogue Out Now FREE! 25W Soldering Iron Worth £5.98 When you subscribe to this and the next two issues - for only £5.00. Simply fill in the coupon and keep up to date!

Please supply:

☐ Winter '90/91 Catalogue @ £1.60
☐ Winter ‘90/91 Catalogue and subscription to the next two issues @ £5.00

I enclose Cheque/Postal Order for ______________________________

Please debit my Access/Visa card for ______________________________

NAME: __
ADDRESS: __

POST CODE

ACCESS OR VISACOLOR

EXPIRY DATE:

SIGNATURE: __

DATE: ________________

Signal Generators and Detectors, Time and Frequency Standards, Logic Probes, Digital Meters, Power Supplies, LCD Modules

METERS

Moving Coil

PCBs & EQUIPMENT

Prototyping Systems, Artwork Materials

RELAYS

Coaxial, PCB

RESISTORS

Carbon Film, Presets, Rotary Pots, Slide Pots, Multiturn Pots, Precision Pots

RIGS AND RECEIVERS

2m Systems, High Power HF ATUs, Accessories, Scanning Receivers

SEMI nf IC mtr ons

4000 Series CMOS Devices, 74HC Series, 74LS Series TTL, Linear ICs, Prescaler ICs, Microprocessors

Memories, Transistors, Diodes, Regulators and Power Control ICs, Schottky Diode Balanced Mixers, LEDS, Mounted LEDs, Infra Red LEDS, 7 Segment LED Displays, Neon and Signal Lamps

SPEAKERS/SOUN DERS

Piezo Buzzers, Headphones, Loudspeakers, Microphones

SWITCHES

Key, DIL, Push Button, Contact, Code, Rotary

TEST EQUIPMENT

Oscilloscopes, Frequency Meters, Signal Generators, AF and RF Generators, Analogue Multimeters, Digital Multimeters, Multimeter Accessories, RF Power Measurement, Digital Thermometers, Logic Probe and Pulses, DC Power Supplies, LCR Meters, Oscilloscope Probes, Test Leads, Calculators

TOOLS

Soldering Irons, Soldering accessories, Drills and accessories, Screwdrivers, General Tools, Static Protection, Service Aids

TRANSFORMERS

PCB Mounting, Chassis Mounting

● AVAILABLE FROM LARGER NEWSAGENTS OR DIRECT FROM CIRKIT
● £10 WORTH OF DISCOUNT VOUCHERS
● LOW COST MULTIMETERS
● MANY NEW PRODUCTS

Cirkit Distribution Ltd
Park Lane, Broxbourne, Herts EN10 7NQ
(0992) 444111
Practical Electronics is giving away up to £2,000 to its readers!

Yes, with the Christmas season upon us the Publisher is again in a very generous mood.

He is offering to refund 10 readers of Practical Electronics up to £200.00 for purchases made from advertisers in this issue of PE (including all products from our advertisers' catalogues like Maplin, Greenweld etc.)

The rules are simple:
Buy any product from any advertiser and we will refund you all or part of the cost, up to a maximum value of £150, or £200 if you are a subscriber.

All you have to do is complete and cut the coupon below and send it to us. Then if you are one of the lucky readers drawn out of the bag on December the 10th, we will refund your money, upon proof of purchase.

Needless to say, this is one offer you really can’t afford to refuse!

Buy any product from any of our advertisers!

Send to: PE Reader Loyalty Bonus, December 1990, Intra Press, 193 Uxbridge Road, London W12 9RA

I purchased ... price as advertised by ..
Name: ..
Address: ...
Town: ..
Postcode: ...

I AM A SUBSCRIBER □
Complete and return this coupon as soon as possible. The winners will be announced in the February issue of PE.
INDEX TO ADVERTISERS

ADM Electronics.......... 56
A & G Electronics........ 15
Antex 15
Astronomy Now.............. 47
J & N Bull Electrical...... 22
Cache Systems.............. 31
Cambridge Computer Sci. 55
C.E.S. NW. 55
Cirkit Distribution......... 60
Coles Harding 56
Cooke International 55
Cricklewood Electronics... 46
C.R. Supply 55
Electronics Shop 54
Electroparts 25
Fraser Electronics 54
Gem-Tech 25
Greenbank Electronics.... 62
Henry’s Audio 31
High Q Electronics 56
International Comm. Sch... 45
JPG Electronics 55

PLEASE MENTION PRACTICAL ELECTRONICS WHEN REPLYING TO ADVERTS

INDEX TO ADVERTISERS

ADM Electronics.......... 56
A & G Electronics........ 15
Antex 15
Astronomy Now.............. 47
J & N Bull Electrical...... 22
Cache Systems.............. 31
Cambridge Computer Sci. 55
C.E.S. NW. 55
Cirkit Distribution......... 60
Coles Harding 56
Cooke International 55
Cricklewood Electronics... 46
C.R. Supply 55
Electronics Shop 54
Electroparts 25
Fraser Electronics 54
Gem-Tech 25
Greenbank Electronics.... 62
Henry’s Audio 31
High Q Electronics 56
International Comm. Sch... 45
JPG Electronics 55

PLEASE MENTION PRACTICAL ELECTRONICS WHEN REPLYING TO ADVERTS

INDEX TO ADVERTISERS

ADM Electronics.......... 56
A & G Electronics........ 15
Antex 15
Astronomy Now.............. 47
J & N Bull Electrical...... 22
Cache Systems.............. 31
Cambridge Computer Sci. 55
C.E.S. NW. 55
Cirkit Distribution......... 60
Coles Harding 56
Cooke International 55
Cricklewood Electronics... 46
C.R. Supply 55
Electronics Shop 54
Electroparts 25
Fraser Electronics 54
Gem-Tech 25
Greenbank Electronics.... 62
Henry’s Audio 31
High Q Electronics 56
International Comm. Sch... 45
JPG Electronics 55

PLEASE MENTION PRACTICAL ELECTRONICS WHEN REPLYING TO ADVERTS

INDEX TO ADVERTISERS

ADM Electronics.......... 56
A & G Electronics........ 15
Antex 15
Astronomy Now.............. 47
J & N Bull Electrical...... 22
Cache Systems.............. 31
Cambridge Computer Sci. 55
C.E.S. NW. 55
Cirkit Distribution......... 60
Coles Harding 56
Cooke International 55
Cricklewood Electronics... 46
C.R. Supply 55
Electronics Shop 54
Electroparts 25
Fraser Electronics 54
Gem-Tech 25
Greenbank Electronics.... 62
Henry’s Audio 31
High Q Electronics 56
International Comm. Sch... 45
JPG Electronics 55

PLEASE MENTION PRACTICAL ELECTRONICS WHEN REPLYING TO ADVERTS
POWER AMPLIFIER MODULES
POWER AMPLIFIER MODULES

O-Power Amplifier Modules

O-Power Amplifier Modules

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OM-100 MX 11 Bi-Polar Output power 110 watts R.M.S into 4 ohms, Frequency Response 4Hz - 300Hz, T.H.D. 0.04%, S.N.R. - 115dB, Sens. for Max. output 500mW at 10K. Size 355 x 115 x 65mm. Price £339.99 + £3.00 P&P.

OM-500 MX 200 Output power 200 watts R.M.S into 4 ohms, Frequency Response 4Hz - 100KHz - 3dB. Damping Factor - 80. Slow Rate 6V. T.H.D. Type 0.05%, Input Sensitivity 500mV, S.N.R. 130dB, Size 300 x 123 x 63mm. Price £439.99 + £3.00 P&P.

OM-200 MX 300 Output power 300 watts R.M.S into 4 ohms, Frequency Response 4Hz - 25KHz - 3dB. Damping Factor - 80. Slow Rate 6V. T.H.D. Type 0.1%, Input Sensitivity 500mV, S.N.R. 130dB, Size 335 x 175 x 100mm. Price £79.99 + £4.58 P&P.

NEW SERIES II MOS-FET MODELS

OM-MF 100 Mos-Fet Output power 110 watts R.M.S into 4 ohms, Frequency Response 1Hz - 100KHz - 3dB. Damping Factor - 80. Slow Rate 4V. T.H.D. Type 0.02%, Input Sensitivity 500mV, S.N.R. 130dB, Size 300 x 123 x 63mm. Price £339.99 + £3.00 P&P.

OM-MF 200 Mos-Fet Output power 200 watts R.M.S into 4 ohms, Frequency Response 1Hz - 25KHz - 3dB. Damping Factor - 80. Slow Rate 4V. T.H.D. Type 0.03%, Input Sensitivity 500mV, S.N.R. 130dB, Size 330 x 175 x 100mm. Price £439.99 + £3.00 P&P.

OM-MF 300 Mos-Fet Output power 300 watts R.M.S into 4 ohms, Frequency Response 1Hz - 25KHz - 3dB. Damping Factor - 80. Slow Rate 4V. T.H.D. Type 0.03%, Input Sensitivity 500mV, S.N.R. 130dB, Size 335 x 175 x 100mm. Price £79.99 + £4.58 P&P.

MIC RANGe 100-300m SIZES

10M (60-250m), 20M (90-450m), 30M (120-600m) £3.50 P&P.

PeizO ELECTRIC TWITTERS-MOTOROLA

REZO ELECTRIC TWITTERS - MOTOROLA

Join The Peizo revolution. The low dynamic mass the voice coil of a Peizo tweeter produces an improved transient response with a lower distortion level compared to a conventional tweeter, and a crossover point lower than any other tweeter. 25kW 180 watt driving system (up to 110 watts, intriniscally linear). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

TWEETERS

Type A (KNS1025A), 30 watts. Price £126.99 + £3.50 P&P.

Type B (KNS1038A), 60 watts. Price £168.99 + £4.00 P&P.

HORNED SPEAKERS

30 watts. Price £168.99 + £4.00 P&P.

STEREO DISC MIXER

STEREO DISC MIXER with 2 x 3 band L & H graphic equalisers and twin 10 segment L.E.D. Vu Meter. Many outstanding features included. Suitable for individual faders providing a useful combination of the following: 3 Turntables, 2 x 4, 3 x 2, 4 x 1, 4 x 4. For general purpose speakers, disc and P.A. systems etc. Price £339.99 + £5.00 P&P.

STEREO DISC MIXER

Price £449.99 + £6.00 P&P.