PRACTICAL ELECTRONICS
MAY 1969
THREE SHILLINGS

E ORGAN Starting this Month

Also: INFRA-RED BURGLAR ALARM
WIDELY USED BY INDUSTRY & THE DISCERNING ENTHUSIAST FOR RADIO, T.V. & PRINTED CIRCUIT WORK
FROM YOUR LOCAL DEALER OR SEND DIRECT TO:-
ADCOLA PRODUCTS LTD.,
ADCOLA HOUSE,
GAUDEN ROAD,
LONDON. S.W.4.
TELEPHONE 01-622-0291

THE PEAK OF EFFICIENCY!

ILLUSTRATED
Model 64. 3/8 Bit
25 WATTS PRICE 36-

Send coupon for latest leaflet
Name
Address

P.E.159.
This lightweight headphone and boom microphone set is especially suitable for TV camera crews, communication systems, language labs, recording studios, etc. The fully adjustable headband is extremely comfortable to wear for long periods. Low impedance microphone allows long cables to be used without any signal loss. Used with a Tape Recorder this assembly will provide constant monitoring. High quality specification and superb finish at a price you can afford.

FANTAVOX 500 12W STEREO AMPLIFIER

This outstanding amplifier incorporates all the features expected of an expensive unit but at a budget price. The amplifier has separate tone and volume controls for both channels plus stereo mono switch and tuner output socket. Finished in an attractive walnut, grained metal cabinet with anodized pale gold metal front panel. Brief spec.: 12 transistors, 2 silicon diodes. Output: Peak power 12 watts (8 watts per channel). Input sensitivity: Phone. Tuner 200uV, Line: 3V. Size: 9 x 3 x 5-1/4.

NEW

TTC Model A-1008 BUDGET FM TUNER

For size, quality and price we feel sure the Model A-1008 FM Tuner is unbeatable. Probably the world's most compact FM tuner with 6 transistors and 10 diodes printed circuit. Very powerful tuning drive. Housed in beautifully finished integral horizontal tuning scale covering the entire FM band. 38-108 MHz. Complete with FM aerial. Sensitive better than 10uV (at 10dB modulation for 20dB S/N ratio). Brief spec. aerial imp. 75 ohms. Sensitivity less than 10uV. Size 7 x 3 x 5-1/4. Also suitable for use with other FM tuners with MPX inputs.

specialist relays

SCHRACK 4 POLE 12 WAY

This stepping relay includes one step per pulse of the coil, contacts are provided for continuous stepping and 4 pole changeover at positions "A". Case includes anti-creeping Christmas tree lights, selection of stations on multeway intercom systems (using standard 6 way intercom), Servo steering of radio control models. Automatic operation of model railways, etc.

AEI MINIATURE RELAY

A miniature shaven 9 pole "make" relay of the chassis mounting type. DC coil resistance 600 ohms 24V operation. Useful for remote Audio switching circuits, control systems, using low voltages and currents, controlling small three circuits from one switch.

** Fantavox 500 Amplifier **

- **Price:** £12.10.0
- **Post:** 8c

NEW INTERNATIONAL TAPE

FAMOUS AMERICAN MADE BRAND TAPE AT RECORD LOW PRICES

- **Post:** 1/- each. 4 and over Post Free. Special quotes for quantities.

BUDGET PRICED CASSETTES

- **Price:** 15/- each and over. Special quotes for quantities.

ADD MULTIPLEX TO THE MODEL A-1008

You can enjoy stereo sound with the Model A-1008 FM Tuner above by adding the TTC Multiplex Adaptor. Brief Specification: MPX input sensitivity 100mV. Output 10mV. Self powered by a 9V battery. 4 transistor and 6 diode circuit. Size 7 x 3 x 5-1/4. Also suitable for use with other FM tuners with MPX inputs.

NEW INTERNATIONAL TAPE

FAMOUS AMERICAN MADE BRAND TAPE AT RECORD LOW PRICES

- **Price:** £9.19.6
- **Post:** 2/-

AD-76K MOVING MAGNET CARTRIDGE

New high compliance moving magnet stereo cartridge that really breaks the quality/price barrier. SPECIFICATION: Diamond Stereo LP stylus. Compliance 10 x 10^-9 cm/dyne. New high compliance moving magnet stereo cartridge that really breaks the quality/price barrier.

- **Price:** £3.99
- **Post:** 3/-

LASKY'S PRICE 90/-

LASKY'S PRICES

Post: 2/-

LASKY'S PRICES

Post: 2/-
Bargain—Car Radios. Our Price 9 gns. Negative or positive earth (switched) fully transistorised (12V) medium and long waves. Speaker and fitting kit supplied at no extra cost. P/P 5/-.

*** SONOTONE 9TA HC DIAMOND CARTRIDGE ***

BASF TAPE 25% OFF
5in 600ft. 14/- 900ft. 19/- 1200ft. 30/-
5in 900ft. 19/- 1200ft. 30/- 1800ft. 39/-
7in 1200ft. 24/- 1800ft. 39/-
P/P 2/- per reel—over £5 FREE

** TRIO Stereo Moving Magnet Cartridge Model AD78K. Diamond Stereo LP Stylus. Frequency response 20-20,000c/s @ 0.5mV. Full unweighted tracking pressure 2 grammes @ 45c/s. Fully guaranteed. Price 85/-/p/p free.

DULCI Hi-Fi Units
The Dulci range of tuners and amplifiers offer exceptional quality at a sensible price. Amplifiers: 207 and 207M. Tuners: FMT7 and FMT7a. SEND NOW FOR FULL DETAILS

** Hi-Fi SPEAKER K212C—12in 12 watt **
Offers an exceptionally smooth and extended response, with very low level of distortion from the specially designed twin diaphragms.

Type Construction Price Price Price
K212C 6ohm Sub-Min. Plastic 2/6 3/- 4/-
K212D 4-7 ohm Sub-Min. Plastic 3/6 4/- 5/-
K212F 4-7 ohm Sub-Min. Plastic 4/- 5/- 6/-
K212G 6ohm Sub-Min. Plastic 5/- 6/- 7/-
K212H 4-7 ohm Sub-Min. Plastic 6/- 7/- 8/-
K212J 6ohm Sub-Min. Plastic 7/- 8/- 9/-
K212K 4-7 ohm Sub-Min. Plastic 8/- 9/- 10/-
A8 to A7 Guaranteed 90%, Good Trans. A8 & A9

 overs 3 million silicon alloy & germanium alloy power transistors. Over 5 million already sold out to the trade. Under the remarkably low price of 63 gns.

** ﬂush water breakout. Manual:guaranteed.**

** Speaker enclosures**
Type: INFINITE Baffle
Model 8: Sin plus 3in tweeter
Model 138: 13in x 8in EMl
Model 1021: 12in x 12in, plus 4in tweeter
All enclosures are in oiled teak, fully guaranteed.

** Tests and Transistors**

** DIOTRAN **

SALES
P.O. BOX 5
WALTON, HERTS.
TEL.: WARE 3442

** POWER TRANSISTORS**

** TRANSISTORS**

EX-COMPUTER PANELS 1 I.B.M. Size 6x3 £150.

Electricals

Practical electronics by numbers

It's as simple as that: instead of a brush you use a soldering iron.

HEATHKIT SUPPLIES — the engineered design, the kit of parts, the easy-to-follow instructions
YOU SUPPLY — a few hours of enjoyable relaxation and the cash

In no time at all you’ll have first-class test instruments or stereo outfit. We won’t mind if you don’t tell people that you had our expert backing right down the line — it’s understandable.
So if you were thinking of stereo, save yourself some money — send for our catalogue today!

DAYSTROM LIMITED
Gloucester GL2 6EE, England
Tel. Glos. 29451. Telex 43216.
Z.12 - for all you want from any amplifier

The Z.12 is a most versatile integrated amplifier and pre-amp in which power, compactness and high-fidelity standards are combined within a unit of very modest price. The most widely used unit of its kind in the world, the Z.12 has an output of 12W R.M.S. continuous sine wave (24W peak) or 15W music power (30W peak). It has Class B ultralinear output which can be fed into any loudspeaker from 3 to 15 ohms. (Two 3 ohm speakers can be used in parallel.) Frequency response—15 to 50,000Hz ±1dB; input sensitivity—2mV into 2 K/ohms. The Z.12 will operate from any power source between 6 and 20V d.c. As such, a car battery or the PZ.4 are eminently suitable, giving much wider than usual scope in the applications to which the Z.12 may be put. As well as hi-fi, these include systems for P.A. electronic organs, intercom systems, laboratory, education or industry. You will find the Z.12 in use in such instances again and again. The Sinclair Z.12 is supplied ready built, tested and guaranteed, complete with manual of circuits and instructions for matching it to your precise requirements. Two may be used in stereo when, with the Stereo 25 and PZ.4 together with two Q.14s, you will have an ideal high fidelity assembly.

89/6

Q.14 - the unique loudspeaker

New materials and original design techniques have been used to produce speaker of fantastic quality at a most attractive price. Experts and reviewers have enthusiastically endorsed its performance. The shape and size of the Q.14 make it far more adaptable to its environment than is the case with conventionally styled speakers so that it is much easier to position this speaker in the room in which it is to be heard. The Sinclair Q.14 has a substantially flat frequency response from 60 to 16,000Hz and outstandingly good transient response. It will comfortably handle up to 14W loading and is positively brilliant in stereo. Measuring 9½ in square by 4½ in deep, this loudspeaker is finished in matt black with solid aluminium bar trim. Try the Q.14 in your own home without delay. If you are not delighted with it, your money including cost of return postage to Sinclair will be refunded immediately.

£7.19.6
Stereo 25 de-luxe pre-amp/control unit

This is a very elegantly styled unit, which, although designed basically for use with the Z.12, is readily adaptable for use with any high quality power amplifier system. The switched input selector allows for Pick-up, Radio and Auxiliary and there are controls for bass cut and lift, treble cut and lift, volume and stereo balance. P.U. input is equalised to R.I.A.A. curve from 50 to 20,000Hz ± 1dB and the instructions manual provided gives matching details for pick-ups, shows how to connect up, etc. The front panel of the Stereo 25 is finished in brushed and polished aluminium embossed in black. The control knobs are in solid aluminium to match. Size 6½ x 2½ x 2½in plus knobs. Supplied built, tested and guaranteed.

£9.19.6

PZ.4 - stabilised power supply unit

Designed specially to meet the power requirements for an assembly of two Z.12s and the Stereo 25, this heavy duty transistorized power supply unit has stabilised output of 18V d.c. at up to 1.5A. It is for a.c. mains operation 200/250V.

Supplied built, tested and guaranteed.

99/6

SINCLAIR MICROMATIC

Whether you buy your Micromatic in kit form or built ready for use, you must not deny yourself the thrill of owning this fantastically small British receiver. Smaller than a matchbox, it has power, range and selectivity that must be experienced to be believed. The high quality magnetic earpiece supplied with the set ensures excellent reproduction indoors and out. The Micromatic tunes over the medium waveband and has A.G.C. to counteract fading from distant stations. Bandpass tuning makes reception of Radio 1 easier; in fact you will find this set performing in some cases where other sets cannot be heard at all. The Micromatic is housed in a neat black case given an elegant modern appearance by the attractive aluminium front panel and matching tuning control.

YOUR SINCLAIR GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full at once and without question.

FULL SERVICE FACILITIES AVAILABLE TO ALL PURCHASERS.

Goods sent post free in U.K. and overseas by surface mail. Air freight charged as cost.

Please send POST FREE

NAME:________________________ ADDRESS:_____________________

For which I enclose cash/cheque/ money order PE.69

SINCLAIR RADIONICS LTD., 22 NEWMARKET ROAD, CAMBRIDGE

OCA3-52731
MODEL 15

- **EXTREME VERSATILITY**
 Range of 8 interchangeable bits, from 3/64" (.047") to 3/16", including new non-wearing PERMATIPS.

- **ULTRA-SMALL SIZE**
 Length 7 1/4". Weight 1/4 oz. Max. handle dia. 7/16".

- **EXTRA-HIGH PERFORMANCE**
 Heating time 90 secs. Max. bit temp. 390°C. Loading 15 watts — equals normal 30/40 watt iron.

- **ALL VOLTAGES**

The ADAMIN range includes five other models (5, 8, 12, 18 and 24 watts), Thermal strippers (PVC and PTFE) and a De-Soldering Tool. Please ask for colour catalogue A/37.

LIGHT SOLDERING DEVELOPMENTS LTD.
28 Sydenham Rd., Croydon, CR9 2LL
Telephone 01-688 8589 & 4559

STEREOMAT CABLE 619
An elegant Stereogram Cabinet in modern veneered Mahogany and cloth covered Front Panel
BLACK LEATHERETTE SIDE PANELS
Dimensions: 52" x 17 1/2" x 12". Speaker positions for Twin 10" x 8" Speakers

SPEAKERS 6/6
2"—75 Ω. 2 1/2"—35 Ω. P. & P. 2/6.
TRANSISTORS MULLARD MATCHED P/F KIT 9/-/OC681D—2 OC681. P. & P. FREE.
FERRITE RODS 3/6
6" x 8" x 8" complete with LW/MW COILS. P. & P. FREE.

RECORD PLAYER CABINET
Cloth covered, Size 16" x 14" x 8" Takes any modern autochanger, P. & P. 7/6.

SINGLE PLAYER CABINETS
TRANSISTOR CASES 19/6.

WIDEx RANGE OF MODELS
OFFERED IN ELECTRONIC TELEVISIONS
17'-21'-23'-31'

VALVES SAME DAY SERVICE
NEW! TESTED! GUARANTEED!

LIGHT SOLDERING DEVELOPMENTS LTD.
28 Sydenham Rd., Croydon, CR9 2LL
Telephone 01-688 8589 & 4559

READERS RADIO (P.E.)
85 TORQUAY QUAYSIDE, REDBRIDGE, IFORD, ESSEX
Tel. 01-560 7441

Postage £1 valve 5d. extra. On 2 valves or more, postage £6 per valve extra. Any Parcel Insured against Damage in Transit 6d. extra.
Build yourself a quality transistor radio
backed by our after sales service!

roamer seven mk iv
SEVEN WAVEBAND PORTABLE
SEVEN TUNABLE WAVEBANDS—
MW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND.

pocket five
MEDIUM WAVE, LONG WAVE
AND TRAWLER BAND (to 50
metres approx.) PORTABLE
WITH SPEAKER AND EARPIECE
Attractive black and gold case. Size 6 x 8 x 11 cm. Tunable on Medium and Long Waves with extended M.W. band for easier tuning of Luxembourg, etc. All first grade component—7 stages—transistors and 3 diodes, ferrite rod aerial, fine tone moving coil speaker, also Personal Earpiece with switched socket for private listening. Easy build plans and parts price list, 1/6 (FREE with parts).

Total building costs
44/6 P. & P. 3/6

transona five
MEDIUM WAVE, LONG WAVE
AND TRAWLER BAND (to 50
metres approx.) PORTABLE
WITH SPEAKER AND EARPIECE
Attractive case with red speaker grill. Size 6 x 8 x 11 cm. 7 stages—3 transistors and 2 diodes, ferrite rod aerial, tuning condenser, volume control, fine tone moving coil speaker, also Personal Earpiece with switched socket for private listening. All first grade components. Easy build plans and parts price list 1/6 (FREE with parts).

Total building costs
47/6 P. & P. 3/9

super seven
THREE WAVEBAND PORTABLE
WITH 3IN. SPEAKER
Attractive case size 7 x 5 x 1 1/2 in. with gilt fittings. The ideal radio for home, or outdoors. Covers Medium and Long Wave and Trawler Band. Special circuit incorporating 2 R.F. Stages for extra boost. High "Q". Ferrite Rod Aerial. Push-pull output. Handsome pocket size case with gilt fittings. Size 6 x 4 x 2 1/2 in. Easy build plans and parts price list 2/- (FREE with parts). (Personal Earpiece with switched socket for private listening 6/- extra.)

Total building costs
69/6 P. & P. 4/6

roamer six
SIX WAVEBAND PORTABLE
WITH 3IN. SPEAKER
Attractive case with gilt fittings, size 7 x 4 x 1 1/2 in. Tunable on Medium and Long Wave, two short waves. Trawler Band plus an extra M.W. band for easier tuning of Luxembourg, etc. Built-in ferrite rod aerial and telescopic aerial for Short Waves—can be angled and rotated for peak R.W. listening. Socket for Car Aerial. Powerful push-pull output. 7 transistors and 2 diodes including Micro-Alloy R.F. Transistors. Famous make 7 x 4in. P.M. speaker for rich-tone volume. Air spaced ganged tuning condenser. Volume control. Tone control, wave change switches and tuning control. Attractive case with carrying handle. Size 9 x 7 x 4 in. approx. First-grade components. Easy to follow instructions and diagrams make the Roamer 7 a pleasure to build.

Total building costs
£5.19.6 P. & P. 7/6

Parts price list and easy build plans 3/- (Free with parts).

NEW LOOK

melody six

Total building costs
69/6 P. & P. 4/3

RADIO EXCHANGE LTD
61 HIGH STREET, BEDFORD. Tel. 0234 52367

I enclose £ please send items marked
ROAMER SEVEN ROAMER SIX
TRANSONA FIVE SUPER SEVEN
POCKET FIVE MELODY SIX

Parts price list and plans for...

Name...
Address...

P.E.S.69

327
A new HOBBY for the automation age

★ Simple building bricks to build your own ELECTRONIC BRAINS.

★ Easy to understand handbooks to guide you.

★ Learn about LOGIC, BINARY arithmetic and BOOLEAN algebra.

★ Modules are rapidly assembled and dismantled to use again.

★ Make machines that play games, control model railways, etc. and control automatic machines of any description.

MAKE MACHINES that play games,

★

Easy to understand handbooks to

★

Learn about LOGIC, BINARY arithmetic and BOOLEAN algebra.

★

Modules are rapidly assembled and dismantled to use again.

★

Make machines that play games, control model railways, etc. and control automatic machines of any description.

MANUFACTURERS OF

NORKit

A new HOBBY for the automation age

★ Simple building bricks to build your own ELECTRONIC BRAINS.

★ Easy to understand handbooks to guide you.

★ Learn about LOGIC, BINARY arithmetic and BOOLEAN algebra.

★ Modules are rapidly assembled and dismantled to use again.

★ Make machines that play games, control model railways, etc. and control automatic machines of any description.

GEATRONIX LIMITED

EDUCATIONAL ELECTRONIC EQUIPMENT

NORKit Junior

(as shown)

NORKit Senior

£8.16.0

£17.12.0

Handbooks supplied for each kit or available separately

6/- each

LOGIC DEMONSTRATION UNIT TYPE LDU1

A new teaching aid for rapidly setting up and demonstrating logic circuits. Stackable patching leads are used to interconnect logic symbols on a mimic diagram. The symbols are connected to appropriate components inside the unit. Switches and pushbuttons are provided to simulate input conditions and outputs are indicated by lamps and an audible alarm.

£68.0.0

GEATRONIX LTD., 28 REDSTOCK RD., SOUTHEND-ON-SEA, ESSEX

NEW RANGE BBC 2 AERIALS

All U.M.F. aerials now fitted with tilting bracket and 4 element grid refletors.

Loft Mounting Arrays, 7 element, 37/6, 11 element, 45/-, 16 element, 52/6, 18 element, 66/-, Wall Mounting with Franked Arm, 7 element, 66/-, 11 element, 77/-, 13 element, 89/-, 19 element, 115/-, 30 element, 158/-, 36 element, 185/-.

Combination BBC/ITV, 7 element, 47/6, 11 element, 58/-, 16 element, 70/-, 18 element, 82/-, Wall mounting, 4 element, 77/-.

VHF transistor pre-amps, 78/-.

BBC - ITV AERIALS

BBC (Band 1), Telescopic, 5 element, 49/-, 6 element, 52/6, 7 element, 59/-, Wall mounting, 9 element, 67/-.

FeTV (Band 2), 3 element, 37/6, 4 element, 49/-, 7 element, 66/-, Wall mounting, 11 element, 89/-.

Combined BBC/TV, 7 element, 47/6, 11 element, 58/-, 16 element, 70/-, 18 element, 82/-.

VHF transistor pre-amps, 78/-.

COMBINED BBC-ITV - BBC AERIALS

1 1-3 to 9, 70/-, 1-3-5-9, 80/-, 1-3-5-9, 118/-.

Low mounting only. Special leader available.

F.M. (Band 2), Loft 5/6, 5 element, 35/-, 6 element, 40/-, 7 element, 44/-, 8 element, 49/-, 9 element, 54/-, 10 element, 60/-.

P.M. (Band 2), 5 element, 35/-, 6 element, 40/-, 7 element, 44/-, 8 element, 49/-, 9 element, 54/-, 10 element, 60/-.

CALLERS WELCOME

OPEN ALL DAY SATURDAY

K.V.A. ELECTRONICS (Dept. P.E.)

40-41 Monarch Parade

London Road, Mitcham, Surrey

40-41 Monarch Parade

London Road, Mitcham, Surrey

CRESCENT RADIO LTD.

(electronic component specialists)

For all regular components try

49 Mayes Road, Wood Green, N.22

For surplus components and equipment try

11 Mayes Road, Wood Green, N.22

Printed circuit board, B x 6in 2/- each

Zener diode 0.2 volt, 400mA 2/- each

BARGAIN BOARDS

Transistors, diodes, resistors, capacitors and various components all mounted on comparator board, 2/- each, 3 for 5/-, 7 for 10/- and 15 for 20/-. 4/- each

MODEL MOTOR

12 volt, 9,000 r.p.m., 400mA

TRANSISTORS & DIODES

AC127

£1.0.0

OC19

2/- each

2N29526

3/- each

BCL47

4/- each

BY712

7/- each

OA47

1/- each

AA120

2/- each

OA6

6/- each

M3

1/- each

BARGAIN PACK

50 unmarked and untested transis-
tors 10/- per pack

SILICON DIODE RECTIFIERS

750mA, 600V, 6/6 each

COMPONENT BARGAINS

D.P. rotary ON/OFF mains switches 2/- each

Car fuseholders complete with lead and tags 1/- each

Low impedance transistor earpiece 1/- each

SILK aerial transistor type 2/- each

L.A3 type pot core 5/- each

2in. transistor loudspeaker 80 ohm 5/- each

Rev counters (tape recorder type) 5/- each

CASSETTES

12/- each

90/0 each

With our new premises in Mayes Road we can now offer an even wider selection of com-
ponents for the home constructor and enthusiast.

POSTAGE WITH ORDER PLEASE

P.S. Our new catalogue is now available at 1/- per copy.
TO-3 PORTABLE OSCILLOSCOPE.

TO-2 PORTABLE OSCILLOSCOPE

Brand new with handbook. £35.0.0. Carr.

11 valve high grade communication receiver. Tubing 1-200 MHz. Sensitivity 0-50 dB. Output 1-200 MHz. Tests precision vernier driver. BFO. Aerial receiver suitable for tropical use. 1-kW output. Power 300-500 W. High grade communication receiver. Freque

MULTIMETERS for EVERY PURPOSE!

LAFAYETTE DELUXE 100 K VOLTS LAB TESTER

Giant 6in. scale. Built-in meter protection. 0-5/10/20/50/100/200/500/1000 V d.c. 0-50/100/200/500/1000/2000/5000/10000 V a.c.

MODEL 51-1000. 1000 V D.C. Multi-range, mirror scale. Built-in meter protection. 0-1/10/100/1000 V d.c.

MODEL 51-200. 200 V D.C. Multi-range, mirror scale. Built-in meter protection. 0-1/10/100/1000 V d.c.

MODEL 51-10. 10 V D.C. Multi-range, mirror scale. Built-in meter protection. 0-1/10/100/1000 V d.c.

MODEL 91-5000. 5000 V D.C. Multi-range, mirror scale. Built-in meter protection. 0-1/10/100/1000 V d.c.

TRIODE COMMUNICATION RECEIVER MODEL OR-90.

NEW SINCLAIR 2000 SYSTEM

AM/FM SIGNAL GENERATORS

FIELD TELEPHONES TYPE L

Generator OUTPUT 120 volts A.C. or 220 volts A.C. Batteries (not supplied). Excellent condition. £11.10.0. per pair. Carr. 10/-.
VARI-STAT

THERMOSTATIC SOLDERING IRON

HIGH PRODUCTION MINIATURE MODEL D. 50 WATT
- Weight: 2 oz.
- Heating time: 50 seconds
- Nickel or Iron Plated
- Voltage: 250 to 12 volts
- Price: 60/6

HIGH PRODUCTION INSTRUMENT MODEL H. 150 WATT
- Weight: 6 oz.
- Heating time: 1 min. 45 sec.
- Bit Sizes: 3/16", 1/4", 3/8", 7/16"
- Nickel or Iron Plated
- Voltage: 250 to 24 volts
- Price: 87/6

OTHER VARI-STAT IRONS:
- Miniature Model M 50 watt Push-in Bits 1/32", 1/16", 3/32"
- Instrument Model B 70 watt Bit Size 11/64"
- Industrial Model I 500 watt Bit Size 5/8"

CARDROSS ENGINEERING CO. LTD.
Woodyard Road, Dumbarton
Phone: Dumbarton 2655

MARTIN IS HIGH-FIDELITY

The first and still the most satisfactory unit assembly system

For many years now Martin Electronics have been producing highly efficient and dependable prefabricated module-type units for simple assembly into reasonably priced high fidelity systems. Many purchased at the time of the introduction of the Martin Audiokit system are in regular use to this day, completely justifying our claims for years of trouble-free service. No system gives you wider flexibility in the choice of units available than Martin and all equipment conforms precisely to stated specification.

AMPLIFIER SYSTEMS • TUNERS • RECORDERS

Cover the widest possible range of requirements. They are available for Mono, and can be doubled up for conversion to stereo, or as complete stereo units. 3 ohm and 15 ohm systems. Special pre-amp for low output pick-ups. Escutcheon panels to suit the arrangement you choose. Tuner is styled to match.

Start by sending for leaflets at once

MARTIN ELECTRONICS LTD.
154 High Street, Brentford, Middlesex
Please send Recordakit/F.M. Tuner/Audiokit Hi-Fi Leaflets. (Strike out items not wanted)

Name ___________________________
Address ___________________________

P.E.10/68

Goodmans High Fidelity '69

New Edition—Now Out

Thinking of High Fidelity—first read Goodmans 28 page High Fidelity Manual. It contains interesting articles on Stereo; an Introduction to High Fidelity; Stage-built systems; as well as full details of Goodmans High Fidelity audio products.

Send for your free copy

Please send me a free copy of Goodmans Manual

Name ___________________________
Address ___________________________

Goodmans Loudspeakers Limited
Axiom Works, Wembley, Middlesex. Tel; 01-902 1200

MARTIN ELECTRONICS
154 High Street, Brentford, Middlesex

ONLY FROM MARTIN

- 5-stage input selector
- Pre-amp tone controls
- 10 watt amp. (3 ohms)
- 10 watt amp. (15 ohms)
- Mains power supply
- F.M. Tuner

Trade enquiries invited
Battery Eliminator enables transistor circuits to be operated from mains. 48/6. P. 4/9.

CARRIAGE DECKS

SOLDERING GUN

COMPOSITE 2-WAY INTERCOMS

SOLDERLESS board panels, for fast reliable connections. Suitable for 'Projects on 8-DeC'. when used with 'Projects on 8-DeC'. £.1318. DUAL LAMP FLASHER. A switch for dual lamp flashing. Price 29/6. P. & P. 2/-.

LINDA STEREO AMPLIFIER MODEL 827

PLASTIC DECKS

HOT WIND TURBINE CHECKER

SOLDIERS headband panels, for fast reliable connections. Suitable for 'Projects on 8-DeC'. when used with 'Projects on 8-DeC'. £.1318. DUAL LAMP FLASHER. A switch for dual lamp flashing. Price 29/6. P. & P. 2/-.
S.E.S.

COMPLETE SUPPLIER

196 Regent Road, SALFORD 5, Lancashire

TELEPHONE 061-872 5187

(Member of the Harrop Industrial Group)

C.W.O. please 1/- p. & p. for orders of components under £1

Orders of Lektrokit: 2/- handling charge on orders under £1

C.W.O. please 1/- p. & p. for orders of components under £1

THE DORSET (600W Output)

1-stage transformer fully M.W.-L.W. superfine portatile—
with baby alarm facility. Set of parts. Price £5.50. The latest controlled and pre-aimed techniques make this simple to build.

Price £5.50 plus 7/6 p. & p. Circuit 2/6 FREE WITH PARTS.

THE ELEGANT SEVEN MK. II (350W output)

1-stage transformer fully M.W.-L.W. portatile. Set of parts. Complete with all components, including ready soldered and drilled printed circuit board—back printed for foolproof construction.

Price £4.96 plus 7/6 p. & p. Circuit 2/6 FREE WITH PARTS.

50 WATT AMPLIFIER A.C. MAINS 200-250V

An extremely reliable general purpose valve amplifier suitable for use with volume, guitar, transistor, etc.

POCKET MULTI-METER

Size 3½ x 2 x 1¾. Meter size 2½. Sensitivity 1000 ohm.

THE VISCONT

Integrated High Fidelity Transistor Stereo Amplifier

SPECSIFICATIONS: Output: 10 watts per channel into 3 or 4 ohm speakers (20 watts in peak). Input: 0 position rotary selector switch 0 & 1 pos., mono and 3 pos. stereo. P.O.S. Tuner and Tape Rec. Sensitivity: All inputs 100 mV in 1 kohm.

THE RELIANT MK 110 WATT SOLID-STATE HIGH QUALITY AMPLIFIER

Specifications: Output: 10 watts per channel into 3 or 4 ohm speakers (20 watts in peak). Input: 0 position rotary selector switch 0 & 1 pos., mono and 3 pos. stereo.

THE REVENGE MARK II 6.9.10 - 7/6 p. & p. In test-finished case

B.S.R. TD2 TAPE DECK

This tape deck takes ½″ spools complete with two-track heads.

THREE-IN-ONE HI 10 WATT SPEAKER

A complete Sound Speaker system on one frame, including three 10 watt speaker units with a low loss crossover network, giving full power output to 10 watts. Frequency response 40Hz-20kHz. Complete with transformers. Price £15.00 plus 7/6 p. & p. In test-finished case.

BUDO not dispatched outside U.K. Terms T.W.O. All enquiries S.A.R.

RADIO & TV COMPONENTS (ACTON) LTD.

21d High Street Acton London W.3

323 Edgewater Road London W.2

ORDERS BY POST TO OUR ACTON ADDRESS PLEASE

For full details of our stocks send 3/6 for our bright explanatory 120 page catalogue, or 6d. stamp for Data Sheets.
EXCLUSIVE PURCHASE!
PORTABLE AMPLIFIER

By well known
Designed as a Telephone Amplifier but can be used in many other ways. Requires no special difficulty for transistor radio, a baby alarm, intercom, paging system, etc. High sensitivity, heavy duty. Attractive leathercloth covered wooden cabinet with upper scissor, in black, lacquer, speaker in plastic grille. Fitted 3.5 mm jack socket and volume control. Attractive unit. Operates on standard FPV or TV battery. Supplied complete with telephone pick-up. Free delivery.

Our special price 35/-. P. & P.

On or above with 3.5 mm plug and FPV battery for use as an attractive microphone for baby alarm, communications systems, etc. Will operate over distances of up to 1000 ft or more when connected with twin flex or bell wire.

PRICE 40/- P. & P.

(Batteries and case not included)

BRAND NEW 3 OHM LOUDSPEAKERS
4in. 14/-; 5in. 18/-; 7in. 24/-; 10in. 36/-; 15in. 50/-.

E.M.I. 8 ohm, with high flux magnet 18/11. E.M.I. 15x 9/11.

ACO 8 in. 10/-; 15in. 13/-; 18in. 15/-; 24in. 18/11.

E.M.I. 12 in. 10/-; 15 in. 13/-; 18 in. 15/-; 24 in. 20/-.

Speaker leads 30/- per pair.

BRAND NEW 3 OHM SPEAKERS 8 in. 11/-; 10in. 13/-; 12in. 15/-; 15in. 18/-; 18in. 21/-.

“SATIN” TWO CONE LOUDSPEAKERS, 10 units packed 10/-.

35 OHM SPEAKERS
8in. 10/-; 12in. 20/-; 15 in. 30/-; 20in. 40/.

THE TRANSPORTER BARGAINS
Mains transformers. Primary 200-240V turns from 2 separate 5 wave secondarys giving appreciable 12 volt at 1 amp and 30 volt at 2 amp each, can be interconnected in series for 65 volts at 3 amp. Ideal for transistor power supplies. Drop through mounting, sizes 21 x 21 in. 15/11. P. & P. 6/.

BRAND NEW AMPLIFIER TRANSFORMER, for transistor power supplies. Pri. 200-240V Sec. 5-10V at 450 ma. Size 11 X 8 X 4.5 in. P. & P. 6/.

Pri. 10-20V at 3 in 15/-; 60/11. 20-40V at 6 in 18/-; 100/-.

Pri. 200-240V Sec. 6-10 at 200 ma. P. & P. 12/.

PRI. 200-240V Sec. 5-10 at 400 ma. P. & P. 15/11.

BRAND NEW 3 OHM AMPLIFIER TRANSFORMERS, Stack size 11.5 x 5 x 2.5 in. Fitted with 3 ohm and 16 ohm output. 15/- pair plus 5/- P. & P.

5 SPECIAL OFFER: PLEXT TYPE 39 TWIN TUNING GAGS, 400g x 165p. Fitted with trimmers and 12 volt batteries. Good for most twin tuning systems, 11/-.

BASS BOOST approx. to +12dB. TREBLE CUT approx. to —16dB. Negative feedback 18dB over main amp.

BRAND NEW AMPLIFIER KITS, Similar in appearance to the brand new transformers. ECO3, EL84, 350 values separate bass, treble and volume controls. Will take above amplifier and any B.S.R. or GARRARD standard British transformers.

Brands Wadsworth Ltd. Supplied ready fitted with twin -0005 diode and tone controls. Chassis size only Tin. wide x Sin. deep x Sin. high. Output trans, tapped for 3 ohm and 15 ohm output. Limited number.

FULL FBREAD BUILD KITS. Full feedback.

ACO HIGH IMPEDANCE CRYSTAL MICROPHONE. Available in 3 or 8 ohms 15/- each; 15 ohms 75/- (15 ohm 45/-), 6in. 14/11; 6in. 18/-; 8m. 27/-; 7x4in. 18/-; 10x6in. 27/11.

18/11 each. P. & P. 2/6. Also some similar to above but coil resistance 5,800 ohms 48 volt operation. 8/- each. P. & P. 1/6.

Also some similar to above but coil resistance 5,800 ohms 12 volt. 4 e/p, c/o contacts. 1 amp rating. Coil resistance 165 ohms. Size approx. 3 x 1 x 1/4 in. high, 3 x 3 x 1/4 in. wide. P. & P. 2/6.

HIGH GRADE COPPER LAMINATE BOARDS
4in. 40/.

SPECIAL PURCHASE!
E.M.I. 4-CHANNEL PLAYER KITS
Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel resulti...
New catalogue? Well—yet another edition of the "old faithful" that for over eleven years has presented to an ever-growing army of enthusiasts the latest and best radio and electronic components. This latest edition is no exception to our policy of making every new edition better and bigger than the one before! It has no less than 330 pages, lists over 8,000 items, illustrating over 1,500 of them. With each catalogue you get a 30-page Price Supplement, a bookmark giving electronic abbreviations and an order form. All for only 8/6 plus 3/6 post, packing and insurance. Incidentally every catalogue contains 6 vouchers, each worth 1/- when used as directed.

POST THIS COUPON NOW
with your cheque or P.O. for 12/-

...but still the same old
SUPERLATIVE SERVICE

Please write your Name and Address in block capitals

Name

Address

I enclose 12/- for Components Catalogue
HOME RADIO (Components) LTD., Dept. PE,
234-240 London Rd., Mitcham, Surrey, CR4 3HD
SOUND ECONOMICS

Thanks to advances in audio engineering and the availability of quality sound reproduction systems, listening to music has become a popular but highly civilised form of home entertainment. With this widespread appreciation of good music it is not surprising that many non-musicians feel the urge to become music makers themselves and thus extract the ultimate of pleasure this art can offer. In looking for the ideal instrument many turn to the electric organ. Certainly this offers a source of limitless pleasure to performer and listener alike with its flexibility in tonal expression and wide dynamic range.

Electronic organs of musical compass to satisfy the most fastidious of organists, while sufficiently compact in physical form to be compatible with the average home, can be purchased. There is a healthy business in this market, yet because the price of these instruments is comparable with the cost of a family car, such organs are a luxury beyond the reach of countless would-be music makers.

Realisation of this hard economic fact has spurred on many intrepid enthusiasts to the formidable task of designing and building an organ for themselves. It is also abundantly clear that there exists an even greater number of music lovers who would like to build an organ, but who do not wish (or perhaps are not able) to indulge in protracted experiments with circuits and systems.

An organ is a far from standardised instrument. The musical compass can be wide or limited, the voices can be arranged to suit classical works or lighter romantic music, and various musical effects may be included or excluded, according to individual preference. When considering a design for publication, many aspects had to be taken into account in order to satisfy the widest number of potential constructors. Investigations made by the designer of the Practical Electronics Organ showed that the romantic sound characteristic of the theatre organ would be the more generally preferred sound amongst amateur organists: so this kind of voicing has been adopted.

This decision almost automatically solved another major question which always has to be faced when drawing up an organ design, i.e. the type of tone generators to be employed. Divergent views are heard on this subject. There are, for example, those who claim that only the free phase oscillator is satisfactory; this is undoubtedly true if the intention is to synthesise closely the characteristic sound of a pipe organ. For technical and economic reasons, the frequency divider method has much to commend it, although it produces an “electronic” sound which some purists amongst organists might object to. But this method lends itself admirably to the romantic type of organ, so it is used in this present design.

F. E. Bennett—Editor

THIS MONTH

CONSTRUCTIONAL PROJECTS

INFRA RED BURGLAR ALARM 336
P.E. ORGAN—1 356
VERY HIGH IMPEDANCE AMPLIFIER 366
TONE FILTER FOR RADIO CONTROL 381

SPECIAL SERIES

COLD CATHODE TUBES—1 343

GENERAL FEATURES

CHOOSING AND USING A MULTIMETER 350
ELECTRONIC SPIROGRAPH PATTERNS 369
INGENUITY UNLIMITED 377

NEWS AND COMMENT

EDITORIAL 335
NEWS BRIEFS 349, 368
AUDIO TRENDS 363
ELECTRONORAMA 364
MARKET PLACE 373
SPACEWATCH 378
READOUT 389

Our June issue will be published on Thursday, May 15

All correspondence intended for the Editor should be addressed to: The Editor, PRACTICAL ELECTRONICS, IPC Magazines Ltd., Tower House, Southampton Street, London, W.C.2. Advertisement Offices: PRACTICAL ELECTRONICS, IPC Magazines Ltd., Fleetway House, Farringdon Street, London, E.C.4. Phone: 01-236 8080. Subscription Rates including postage for one year, to any part of the world, 42s. @ IPC Magazines Ltd., 1969. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is specially reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or imitations of any of these are therefore expressly forbidden.
Perhaps the most efficient and versatile method of detecting the presence of a burglar is by means of an invisible beam of light, positioned in such a way that the intruder must interrupt the beam to gain entry.

Unfortunately, the modern criminal comes equipped with tools and considerable know-how. He may be able to nullify the alarm before it can give a warning. To be completely effective, an infra-red alarm system must be fail-safe, and proof against knowledgeable tampering. The equipment described here has several novel features, and is designed to combat the efforts of an astute burglar.

DESIGN PRINCIPLES

A light bulb is powered from a 50Hz supply giving rise to modulated light at a frequency of 100Hz, because the bulb is switched off twice per cycle and will glow on both negative and positive waveform peaks. When the light bulb is small, and its filament has a short thermal delay, the modulated light output at 100Hz will have a useful amplitude.

Conventional a.c. methods can be employed to detect and amplify the light signal from the bulb at a distance somewhat greater than can be achieved using d.c. amplification of a steady light signal.

With modulated light, a long beam path is obtainable; typically 150 feet.

A tungsten filament bulb will radiate about 75 per cent of its input energy in the infra-red region of the frequency spectrum; only some 6 per cent will appear as visible light. If a gelatine filter, with good infra-red acceptance properties, is used to block the visible light output from the bulb, there will be very little attenuation of the effective infra-red output.

The same applies when a germanium photo-detector—such as the OCP71, which has a peak response at 1.55 microns—well inside the infra-red region—is arranged to pick up the filtered light from the bulb. The effect of removing the visible light from the beam will be insignificant and there will be virtually no loss of efficiency.

It is usual to employ three units in an infra-red alarm system; a bulb and lens unit to project a narrow beam of light, a photo-detector and amplifier head mounted opposite the projector, and a remote electric bell.

This design, however, combines projector and amplifier into one unit, the beam of light being reflected back to the detector by a small mirror, or collection of mirrors (see Fig. 1a). Note that the beam length is doubled when a mirror is used, and this is where the high sensitivity of a modulated light beam system comes in useful.

PRACTICAL DETAILS

Quite often an infra-red alarm unit is required to detect the presence of an intruder passing along a passageway between two buildings, where the property on one side of the passage belongs to another person. With a small mirror mounted on the opposite wall, all the wiring can be confined to the owner's property, and there is no need to run wires under the floor of the passageway.

Figs. 1b, 1c, and 1d show how alternative mirror arrangements can operate. In Fig. 1b the mirror is fitted to a movable object, which could be a money box or a safe door. The slightest mirror movement will deflect the beam and sound the alarm.

Fig. 1c depicts a method of lacing the beam back and forth across a doorway, for added protection and to detect the passage of small objects.
In Fig. 1d an area is enclosed by the beam, for instance a room with several doors and windows. Entry of an intruder through any door or window would interrupt the beam and trigger the alarm.

The lamp and amplifier must be mains powered if they are to operate continuously for long periods, but provision should be made for sounding the alarm in the event of a supply failure. The bell is therefore furnished with its own battery, and the latching relay is mounted close to the bell.

Fig. 1a. Principle of operation of the infra-red alarm

Fig. 1b. Mirror mounted on moveable object

Fig. 1c. Method of lacing beam across doorway

Fig. 1d. Mirrors arranged to enclose an area
If the mains supply is cut off, the relay will close and the bell will ring. In normal operation, the 100Hz signal from the beam projector holds the relay contacts open. If wires leading to the relay are cut or shorted, the relay contacts will close, and remain closed even if the 100Hz signal is restored later.

PHOTO-DETECTOR AND AMPLIFIER CIRCUIT

Fig. 2 shows the photo-detector and amplifier circuit. Phototransistor TR1 is coupled to the amplifier by C2. C1 is included across the normally open-circuit base of TR1 to prevent high frequency instability.

Light falling on the collector-base junction of TR1 will cause an increase of collector current, and an a.c. signal will appear at the collector when the light is modulated.

To eliminate bulky electrolytic capacitors, keep components to a minimum, and ensure a uniform low frequency response. The amplifier, composed of TR2, TR3, and TR4, is d.c. coupled.

Voltage gain is better than 200, and d.c. negative feedback is applied via resistors R4 and R6, to stabilise the amplifier against temperature drift. Capacitor C3 decouples the feedback network to a.c. and thus prevents attenuation of the signal.

AMPLIFIER CONSTRUCTION

Colour coded wiring is included in the diagrams to simplify connections to the circuit panels. The amplifier circuit panel layout and underside wiring appears in Fig. 3.

It is important to note carefully the connections to the npn and pnp transistors when wiring them into circuit. The panel is drilled and components wired up underneath, using tinned copper wire where the component leads are too short to make a direct connection.
POWER SUPPLY

A standard 6-3V—0—6-3V filament transformer (T1 in Fig. 4) is used. After full-wave rectification (D1 and D2) and smoothing (C4 and C5) a d.c. voltage of approximately 9V is available to feed the amplifier. The bulb is wired to one half of the transformer secondary.

Although RS210AF silicon rectifiers are specified for D1 and D2, almost any silicon diode with a p.i.v. of 100 volts and a maximum current of 500mA or more could be used instead.

Fig. 4. Circuit diagram of the power supply

POWER SUPPLY CONSTRUCTION

Rectifiers D1 and D2, resistor R8, and smoothing capacitors C4 and C5 are positioned on a small s.r.b.p. panel which bolts to the transformer tag panel, forming a compact assembly. Panel layout and underside wiring, together with numbering details of the transformer tag panel, are given in Fig. 5.

Fig. 5. Component layout and wiring of the power supply

COMPONENTS . . .

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Capacitors</th>
<th>Transistors</th>
<th>Diodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 4.7kΩ</td>
<td>C1 0-047μF polyester 250V</td>
<td>TR1 OCP71 or equivalent phototransistor</td>
<td>D1, D2 RS210AF (STC, see text)</td>
</tr>
<tr>
<td>R2 220Ω</td>
<td>C2 0-68μF polyester 250V</td>
<td>TR2 2N2926 (orange spot)</td>
<td>D3, D4 OA81</td>
</tr>
<tr>
<td>R3 4.7kΩ</td>
<td>C3 0-68μF polyester 250V</td>
<td>TR3 AC154 or OC71</td>
<td></td>
</tr>
<tr>
<td>R4 33MΩ</td>
<td>C4 1000μF elect. 12V</td>
<td>TR4 2N2926 (orange spot)</td>
<td></td>
</tr>
<tr>
<td>R5 1.2kΩ</td>
<td>C5 1000μF elect. 12V</td>
<td>Transformer T1 6-3V—0—6-3V, 0-5A mains centre tapped heater transformer</td>
<td></td>
</tr>
<tr>
<td>R6 1MΩ</td>
<td>C6 100μF elect. 9V</td>
<td>Relay RLA reed switch (Radiospares type 7RSR) and 800Ω reed operating coil</td>
<td></td>
</tr>
<tr>
<td>R7 820Ω</td>
<td>C7 2μF elect. 9V</td>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>R8 30Ω 3W wirewound</td>
<td>Transformer XL 6-3V—0—6-3V, 0-5A mains centre tapped heater transformer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All 10%, 1/4W carbon, except R8

Lenses 3in focal length—see text (2 off)
Infra-red filter No. 87, 2in square gelatine sheet (Kodak)
Electric bell, 4.5V
Magnet (see text)
A.C. LATCHING RELAY AND ALARM BELL CIRCUIT

It will be remembered that the relay must respond to a low level a.c. signal, and latch on permanently when the signal is cut off. There are a number of ways of achieving a.c. operation with latching, but in this instance a twin coil reed relay is employed, and is magnetically biased.

The circuit shown in Fig. 6 operates in the following manner. The low level signal from the amplifier output (black lead) is rectified by D3 and D4, and is partially smoothed by C7. About 2 to 3 volts d.c. is developed, under normal long beam path conditions, across the relay coils, not enough to close the reed switch contacts.

If now a permanent magnet is brought close to the reed coils, and orientated in such a way that its field opposes the field induced by the signal voltage, cancellation will occur. Then, when the magnet is brought closer still, the magnetic field will begin to increase in the opposite direction, but will now consist of the permanent magnet field minus the signal induced field.

Therefore, with the magnet positioned just at the point where the reed switch contacts are on the point of closing, removal of the signal will increase the field and the contacts will close.

If the signal reappears it will not be able to re-open the contacts, due to inherent backlash in the reed switch mechanism. The reed relay can be re-set in two ways: either by placing a small sheet of ferrous metal between the magnet and the reed coil—which acts as a magnetic shunt—or by counteracting the effects of the bias magnet with another magnet.

After triggering the reed relay will remain closed and needs no power to keep it in that condition; the bell will ring until its battery is exhausted or until the relay is re-set or switch S1 is turned off.

A.C. LATCHING RELAY CONSTRUCTION

The layout of the latching relay is shown in Fig. 7. Once again, a simple s.r.b.p. panel form of construction is employed, although etched circuits could be used if considered worthwhile. The only points to watch are the capacitor and diode polarities.

The magnet can be taken from an old moving armature headphone. In the original construction, two such magnets were glued together, to increase the magnetic field so that the magnet could be conveniently positioned about 1/4 in from the exterior of the reed coil. A range of magnets are available from technical suppliers and a 1/4 in square by 2 in long bar magnet would be suitable for biasing the reed switch.

OPTICS

A pair of lenses with a focal length close to 3 in are needed. The approximate focal length can be checked by focusing a sharp image of a window on to the wall of a room and measuring the distance of the lens from the wall. Fortunately, the lenses need not be of good quality in this particular application. Plastic lenses taken from two postage stamp magnifiers, were used for the prototype system.

It is false economy to fit very small lenses, as this would tend to reduce the overall sensitivity. Something of the order of 1 1/2 in diameter, or diagonal in the case of rectangular lenses, can be taken as a reasonable size to use.

LENS BOX

The box can be made up from four pieces of 1/4 in plywood; two off 3/4 in x 2 in, and two off 7 in x 2 in. Holes are cut for the lenses in the front panel using a fretsaw, and the joints are glued with epoxy resin.

The box sides are 16 s.w.g. or 18 s.w.g. aluminium sheet; one side is permanently glued to the box, while the other side should be detachable, to give access to circuit panels and wiring. Box details, giving positions of amplifier, bulb, and power unit, are shown in Fig. 8.

The amplifier circuit panel is bolted to the s.r.b.p. partition using stand-off spacers. Holes must be drilled in the partition to take amplifier supply and
Fig. 8. Positioning of components inside the lens housing case

Fig. 9. Details of relay and alarm bell unit

output leads. Phototransistor TR1 is roughly positioned at the focal point of the lens, and can be precisely aligned afterwards by bending its leads.

It is important to ensure that the partition between the amplifier compartment and the bulb compartment is completely light-proof.

Black insulation tape can be glued to the edges of the partition panel to mask off the joint between panel and box. The inside of the amplifier compartment can also be painted matt black, to cut down reflections. Equally important is the elimination of stray light from chinks in the lens box, which could be visible to the burglar in the dark. Painting all joints with matt black paint should stop most of the stray light, and the removable aluminium side can be fitted with a soft plastics or rubber gasket.

The bulb holder is an "L" shaped signal lampholder, and provides a range of adjustment to deflect the beam at an angle to the axis of the lens box.

The inexpensive gelatine filter (No. 87) is 2in square and can be ordered from any supplier of Kodak photographic equipment. A small card frame can be made up to take the filter, so that it can be quickly removed to facilitate initial beam alignment with visible light.

RELAY AND BELL MOUNT

The bell mounting can take the simple form depicted in Fig. 9. Latching relay panel, battery, switch S1, and bell are fixed to an 8½in × 4in × ½in piece of plywood.

A plastics cover may be placed over the relay panel to protect it from dust. Two 4B.A. screws serve as battery contacts, and the battery is held in position by a rubber band. Switch S1 is mounted on a small angle bracket and can be any single pole on-off type switch.
SETTING UP

It is advisable to pre-set the infra-red alarm before installing it in its permanent position. After completing all wiring, check that the amplifier consumes approximately 10mA.

If there is a serious departure from predicted consumption, this might be caused by a fault or by spreads in the gain characteristic of the transistors used. If necessary, the amplifier working point, and consumption, can be adjusted by altering the value of R4 (Fig. 2).

All tests should be conducted away from the light of mains powered lamps when the lens box side cover is removed.

Place the lens box on a flat surface, switch on, and set the lampholder to throw a level beam, and a well defined image of the glowing filament on a wall about 20ft away from the unit. If the image is out of focus, bend the lampholder to move the filament to the focal point of the lens.

The next step is to place a mirror where the image occurs on the wall, and deflect the beam back to the photo-detector lens. With a small piece of white card held near the phototransistor, pick up the returned image and find the true focal point (where the image is smallest and brightest), then bend the phototransistor leads until the collector-base junction is at the focal point and it is receiving the image.

If all is well, connect an a.c. volt meter to the amplifier output; a signal of about 2.5V r.m.s. should be indicated. This can be reduced by placing a hand across the light beam.

A high residual voltage will indicate that hum is occurring in the amplifier, and can usually be reduced by earthing tag 2 on the transformer (Fig. 5). A residual voltage of up to about 0.5V r.m.s. is acceptable for optimum performance.

FINAL ADJUSTMENTS

The lens box can be mounted in its permanent location, on a wall bracket, and mirror adjustments made in dull light, or after dark. When satisfied that the beam is correctly aligned, the infra-red filter can be slipped into place, behind the projector lens, and the lens box side screwed on.

It only remains to find a siting for the latching relay and bell unit, and to fix it in place. This part of the unit should be “behind the beam” so that it is protected from the burglar by the beam. The bell must of course be audible to the householder and/or others. The correct position for the bias magnet is then found and the magnet is glued in place.

The unit is then ready for use and can be tested by breaking the light beam. As soon as the beam is broken the bell should ring and continue to ring after the beam has been restored. The relay can then be reset as described earlier.

DISCOVER

A NEW FOUND

IMAGE

Build these two popular practical projects in next month’s Practical Electronics

STROBOSCOPE

Check the speed of a rotating shaft or reciprocating object—a drill, car engine, machine, loudspeaker cone, etc. The stroboscope gives the illusion of a rotating object appearing stationary so that dynamic phenomena can be observed. A valuable aid in non-destructive testing.

ENLARGER EXPOSURE METER

Determine the exposure time for any enlargement quickly, easily, and accurately by building this valuable aid to darkroom work. Easily operated in low light conditions; high stability under fluctuating supply voltages; suitable for use with several different grades of printing paper. Save the cost of guesswork failures with this reliable, versatile, and inexpensive instrument.

June issue on sale Thursday May 15
ORDER YOUR COPY NOW! 3/-
Cold cathode tubes are widely used in industrial electronic equipment for automation, control, and for other purposes involving switching. Although larger than transistors, simpler and more economical circuits can often be designed using gas filled tubes than is possible with transistors. In the form of numeral character display devices, they are as yet unchallenged by solid state counterparts.

Most cold cathode tubes have a failure rate which is much lower than that of thermionic valves, but they do have the disadvantage that they cannot be used to carry out very high speed switching operations.

Gas filled tubes are not much used by amateur enthusiasts interested in radio as a hobby. Neither are these tubes normally found in commercially manufactured radio and television equipment produced for the domestic market. There are two main reasons for this.

Gas filled tubes are on/off devices which, unlike thermionic valves and transistors, are always fully conducting or completely non-conducting. Such devices which do not have states of partial conduction cannot be used to amplify the sine waves or signals of random waveforms that are found in domestic radio and television equipment.

In addition the positively charged ions in gas move much more slowly than do the electrons in a high vacuum thermionic valve, precluding the use of most types of cold cathode tube at frequencies much above the audio range. Nevertheless the simplicity of many cold cathode tube circuits is an attractive feature for the average amateur experimenter.

Cold cathode tubes are especially useful as function indicators; for example, they may be used for indicating when the potential between two points exceeds a certain value or for indicating the number of electrical pulses counted by a circuit. They can be used for operating relays, generating waveforms (other than sine waveforms) and timing circuits (for example, photographic timers).

Various types of voltage stabiliser circuit have been developed using these tubes. Special types have been produced for counting electrical pulses.

The basic principles of gas discharge ionisation will be discussed in this, the first part; subsequent parts will look into the more important types of cold cathode tube in detail, with practical circuits for their use.

FUNDAMENTALS

If a potential is applied between two electrodes in a gas, no current will flow if the applied voltage is fairly small, since a gas is an almost perfect insulator. As soon as some charged particles (ions) are formed in the gas, however, these ions will be attracted to the electrodes. Their movement to the electrodes constitutes the flow of an electric current, since a current is the movement of charged particles.

Therefore, two conditions must be satisfied before conduction occurs in a gas: a voltage must be applied between the electrodes present in the gas, and ions must be present in the gas at the time the voltage is applied. Ions can be formed in a gas in a number of ways. All materials contain a very small quantity of radioactive atoms.

If the radiation emitted by a radioisotope passes through matter, ions will be created as the radiation gives up its energy. In some types of cold cathode tube a small amount of a radioisotope is incorporated into the tube during manufacture to provide the ions required to initiate a discharge.

In addition to the radiation emitted by radioactive materials, cosmic rays pass through all materials and also form ions. Therefore, even if no ions are artificially introduced into the gas in a tube, the ions formed by cosmic rays and naturally occurring radioisotopes will enable a discharge to take place when a suitable potential is applied.

However, natural sources of ionising radiation do not provide a continuous source of ions and some method of creating ions artificially in a tube which must conduct promptly is required. These methods will be discussed later.

STRIKING AND MAINTAINING VOLTAGES

Cold cathode tubes must be used in series with a resistor in the type of circuit shown in Fig. 1.1. The resistor imposes a limit on the maximum current which can flow. At low applied potentials the current flowing through a gas discharge tube is very small (less than a
micro-microamp), but when the applied voltage reaches a certain value known as the ignition or striking voltage, the current suddenly increases (typically to some milliamps if the series resistor is of a suitable value). Simultaneously the potential across the tube falls.

This process is known as striking or ignition. The voltage across the conducting tube in the circuit of Fig. 1.1, known as the maintaining or running voltage, V_m, if the voltage across the tube is reduced below V_m, the discharge will cease and the gas will become an insulator again.

It must be emphasised, however, that striking can only occur when ions (or, more precisely, electrons) are present in the gas.

CHARACTERISTIC CURVE

The general form of the relationship between the current flowing in a gas filled cold cathode tube and the potential difference across the tube is shown in Fig. 1.2. It is assumed that a small number of ions are present in the tube at all times whilst this curve is being plotted. The current is plotted on a logarithmic scale so that a very wide range of current can be accommodated on a single graph.

As the applied potential is gradually increased from zero, a very small current flows through the tube. This current increases with the applied voltage and with the number of ions being introduced into the gas.

If the applied voltage is increased, the electrons present in the gas discharge can give rise to more ions by a process known as gas amplification or gas multiplication. Electrons are accelerated by the applied electric field towards the anode and gain enough energy to knock further electrons out of atoms of the gas, thereby forming positive ions.

The electrons removed from gas atoms by this process can, after further acceleration, knock other electrons out of other molecules of the gas. This multiplication of the number of electrons present in the tube enables a much greater current to flow than would otherwise be possible. The type of discharge which occurs in region I of Fig. 1.2 is known as the Townsend discharge after the English physicist who worked on it.

FORMATION OF GLOW DISCHARGE

When the potential applied to the tube reaches the striking voltage, V_s, a new phenomenon becomes important. Positive ions are accelerated in the region surrounding the cathode of the tube and strike the cathode with such force that they knock electrons from its surface.

These electrons will undergo gas amplification, thus forming further ions. These in turn bombard the cathode and cause more electrons to be emitted. Thus once the normal glow discharge has occurred, the discharge is self-sustaining and no further ions need be created in the gas for the discharge to continue. The process is one of positive feedback.

The current flowing through the tube is no longer limited by the number of ions introduced into the gas, but is determined only by the value of the series resistor and the value of the applied potential, V_b (see Fig. 1.1).

Once the applied potential reaches the striking voltage of the tube, breakdown is said to occur and the discharge quickly passes through regions 2 and 3 of the curve (Fig. 1.2) to the normal glow region marked 4. In region 3 the discharge shows a negative resistance effect. That is, the current flowing through the tube decreases with an increase of the applied voltage.

If the discharge reaches this region, any random increase in the potential difference across the tube will reduce the current flowing. The voltage drop across the series resistor (Fig. 1.1) therefore falls and this results in a further increase in the potential across the tube. Thus the negative resistance region is unstable and the discharge quickly passes to the normal glow region (region 4) of the characteristic.

In the normal glow region the voltage across the tube is almost independent of the current flowing through it. Tubes operating in this region can therefore be used for voltage stabilisation, but this subject will be discussed in more detail in a later article.

SPACE CHARGE

The properties of tubes operating in the normal glow region of the characteristic are largely due to the formation of a positive space charge around the
PRACTICAL! VISUAL! EXCITING!

a new 4-way method of mastering
ELECTRONICS
by doing — and — seeing...

1 OWN and HANDLE a complete range of present-day ELECTRONIC PARTS and COMPONENTS

2 BUILD and USE a modern and professional CATHODE RAY OSCILLOSCOPE

3 READ and DRAW and UNDERSTAND CIRCUIT DIAGRAMS

4 CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .

- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- OSCILLATORS
- SIGNAL TRACER
- PHOTO ELECTRIC CIRCUIT
- COMPUTER CIRCUIT
- BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual method—no maths, and a minimum of theory—no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

FREE POST NOW for BROCHURE

or write if you prefer not to cut page

To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives

NAME.............................. BLOCK CAPS
ADDRESS............................. PLEASE PE 4

345
DE LUXE PLAYERS
PORTABLE CARRIAGE Attatched. To fit standard player 75/-.
BASS AMPLIFIER 3 WATT. Ready made unit. This is a 20 tubes unit using a transverse push pull valve and speaker coupled valve, giving 2 watts output into a 8 ohm headphones or loudspeakers.

200/250 v. A.C. Leallet S.A.E.

Tape Spools 2/6. Tape Splicer 5/- Leader Tape 4/6

"CUSTOMERS FREE CAR PARK. C.O.D. over £2 5/- extra."

BARGAIN STEREO/CARTON SYSTEM
Attractive Slim Player CARTON with B.B. Stereo speakers ($100 extra), Two match weight LOUDSPEAKERS.

Only 4 FAMOUS TUBULAR POLY 2 v. 3/6. C.O.D. 10/6/ 19-19-6

NEW TUBULAR POLYLECTRICS

CAT TYPES
2 v. 3/6... 100-250 v. 3/6... 10-600 v. 3/6...
60-600 v. 3/6...
6-500 v. 3/6...
5-1500 v. 3/6...
10-2500 v. 3/6...
30-7000 v. 3/6...
100-15000 v. 3/6...

BARGAIN LOUDSPEAKER CARRIAGE

Garr. 10/6

Only 4 FAMOUS TUBULAR POLY 2 v. 3/6. C.O.D. 10/6/ 19-19-6

BARGAIN STEREO/CARTON SYSTEM
Attractive Slim Player CARTON with B.B. Stereo speakers ($100 extra), Two match weight LOUDSPEAKERS.

Only 4 FAMOUS TUBULAR POLY 2 v. 3/6. C.O.D. 10/6/ 19-19-6

BARGAIN LOUDSPEAKER CARRIAGE

Garr. 10/6

DE LUXE STEREO GRAM CHASSIS V.H.F. MW. SW. 18-50m. SW. 60-100m. Magic angle external box.

3 V. 6.3 plus rect. Size 15 x 7 in. 8. 6 in.

PICK-UP ARM Complete with AC/DC 7-80 GP7 Stylo, XAr SP30 T.9, Stereo Ceramic 6-4.

PORTABLE TRANSISTOR AMPLIFIER PLUS DYNAMIC MICROPHONE
A purpose built, fully portable mini p. s. system. Many uses - For Home, for Car, for Pets, or as a Baby Alarms, at the Races, or Downstairs. 3 V. 6.3 plus rect. Phone or Record Player, Amplifier, Ceramic covered cabinet, size 12 x 9 in, with power supply, 4 in. speaker and four transistor one watt power amplifier plus stereo output. Uses FPN Interchangeable battery. Brand new in Makers' cabinet with full makers' guarantee. Winner of many au.

WEYRAD P50 — TRANSISTOR COILS
Radio 8 in. Tetrim Aerial, Spire Core 8 in. 8 8/6 with car aerial coil.

L.F. Driver Trans. LFD 10 in. 8 8/6.

DIN PLUGS 3-pin 8 8/6; 5-pin 8 8/6.

PORTABLE CARAVAN BASE W.B.1. Ready cut out for mounting 1200. 800, A.F. 4, etc.

PORTABLE TRANSISTOR BASE W.1. Ready cut out for mounting 1200. 800, A.F. 4, etc.

CRYSTAL MIKE INSERTS
(For L. F. in 4W, A.C.12 in. 8 8/6.

EMI, 1 in. 8 8/6.

MOY 6 in. 8 8/6.

PARTIES, or as a Baby

AMPLIFIER PLUS XTAL GP67 17/8; Stereo Ceramic 35/

Powerpoint 56 15 -

STEREO L/S 10/6. D.P. 14, 6 FRINGE LOW LOSS 1 Z

5 K. ohms to 2 Meg. LOG or AERAXIAL-AIR SPACED 3rd I.F. P50/3CC 8/-

Weyrad Booklet...

2 -

Iron Condensers 7U/- Free power amplifier plus ultra sensitive microphone. Uses PP9 covered cabinet, size 12 5 x 4in.. with separate controls into single output. 9 volt. 37/0

MINITONE AMPLIFIER
A.C. Mains Transformer. Cassette size 3 x 7 4 in. high. Valves ECL76, C33, 1. 2 watt. Each. 150w. 18 in.; 150w. 30/-; 500w. 92/6; 1000w. 175/-.

Ditto tapped sec. 1.4 v., 2. 3, 4, 5. 6.3 v. 11 amp .. 12/-

Ditto 5%. Preferred values 10 ohms to 22 meg., 9r

Ditto tapped sec. 1.4 v., 2. 3, 4, 5. 6.3 v. 11 amp .. 12/-

Ditto 5%. Preferred values 10 ohms to 22 meg., 9r

Ditto tapped sec. 1.4 v., 2. 3, 4, 5. 6.3 v. 11 amp .. 12/-

SILVER MICA. Close tolerance 1%. 5-500pF 1/-; 560-2,200pF 1/6; 1,0007-0 001, 0-0022, 0 0047, 0 01, 0 02, 1/8; 0-047, 01. 2/6.

This is a 2-stage unit using a

ECS AMPLIFIER 3 WATT.

DELUXE PLAYERS
AUTOCHANGERS MONO UA70Stereo—Mono £12.19.6

Balfour Auto £5.19.6

59 6

GARRARD PEESPEX COVER SPC. lor WB.1 65,-

All fitted LP/78 stylii and pickup crystal complete.

Garrard SP 22 . .£8.19.6

EMI Junior Mains £2.19.6

Sensitivity 200mV.

chassis with knobs. Supplied

Tone and volume

loudspeaker.

FULL WAVE BRIDGE RECTIFIER CHARGERS:

6 or 12v. outputs, li amp. 8/9; 2a., 11 3: 4a., 17/6.

FULL WAVE BRIDGE RECTIFIER CHARGERS:

6 or 12v. outputs, li amp. 8/9; 2a., 11 3: 4a., 17/6.

FULL WAVE BRIDGE RECTIFIER CHARGERS:

6 or 12v. outputs, li amp. 8/9; 2a., 11 3: 4a., 17/6.

FULL WAVE BRIDGE RECTIFIER CHARGERS:

6 or 12v. outputs, li amp. 8/9; 2a., 11 3: 4a., 17/6.

FULL WAVE BRIDGE RECTIFIER CHARGERS:

6 or 12v. outputs, li amp. 8/9; 2a., 11 3: 4a., 17/6.

FULL WAVE BRIDGE RECTIFIER CHARGERS:

6 or 12v. outputs, li amp. 8/9; 2a., 11 3: 4a., 17/6.

FULL WAVE BRIDGE RECTIFIER CHARGERS:

6 or 12v. outputs, li amp. 8/9; 2a., 11 3: 4a., 17/6.

FULL WAVE BRIDGE RECTIFIER CHARGERS:

6 or 12v. outputs, li amp. 8/9; 2a., 11 3: 4a., 17/6.

FULL WAVE BRIDGE RECTIFIER CHARGERS:

6 or 12v. outputs, li amp. 8/9; 2a., 11 3: 4a., 17/6.

FULL WAVE BRIDGE RECTIFIER CHARGERS:

6 or 12v. outputs, li amp. 8/9; 2a., 11 3: 4a., 17/6.
The current can be changed by altering either the resistor, \(R_s \), or the maintaining voltage, \(V_m \), as the current passing through it is altered. Thus if the supply voltage is \(V_b \), the voltage across the series resistor is \(V_b - V_m \) and, applying Ohm's Law to this resistor,

\[
V_b - V_m = IR_s
\]

Thus the current \(I \) can be changed by altering either \(V_b \) or \(R_s \) or both.

ABNORMAL GLOW

If the resistor \(R_s \) is gradually decreased in value, the current flowing through the tube will increase until the discharge covers the whole of the surface of the cathode. A further increase in current will then cause the discharge to move into the so-called “abnormal glow” region of the characteristic; this is marked 5 in Fig. 1.2. In the abnormal glow region the voltage across the tube increases with the current flowing.

ARC DISCHARGE

A further increase in current results in the discharge passing through a second negative resistance region (marked 6 in Fig. 1.2) to the arc discharge region (marked 7 in Fig. 1.2).

The arc discharge region is characterised by very high current densities (amps/sq cm of the cathode surface covered by the glow) and by a low potential across the tube (typically 20 volts).

There are believed to be two kinds of arc discharge. If the cathode is made of a material with very high boiling point (for example, carbon), it becomes so hot under intense bombardment of positive ions that electrons are emitted from it and they sustain the discharge. The emission is like the thermionic emission of electrons in thermionic valve.

If the cathode is made of a material of relatively low boiling point (for example, mercury), the electrons are believed to be drawn out of the cathode by the very intense electric field which can be formed in these circumstances.

TUBE OPERATING REGIONS

A few cold cathode tubes (such as nuclear radiation detector tubes) operate in the Townsend region where the discharge is not self-sustaining. Such tubes pass a current only when a particle of radiation creates ions in the tube.

Most cold cathode tubes operate in the normal glow region. Such tubes include miniature neon indicators, ordinary trigger tubes, decade stepping tubes, most voltage stabiliser tubes, and numerical and character indicating tubes. Some voltage reference tubes operate in the abnormal glow region.

Some types of high current tube operate in the arc discharge region, but most of them are designed for pulse operation only. That is, they are not capable of passing a large continuous current without being damaged. Such tubes include flash tubes for photographic and stroboscopic work and various types of tube for protecting high voltage power lines; the latter types of tube conduct when the voltage surge across them exceeds a certain value.

CONSTRUCTION OF COLD CATHODE TUBES

The composition of the gas employed in cold cathode tubes greatly affects the characteristics of the tubes. Most types are filled with a mixture of inert gases at a low pressure (neon/argon/helium, etc.), but decade stepping tubes are normally filled with pure neon.

Under certain conditions the use of a small amount of hydrogen in the gas mixture enables a tube to operate at a higher speed. Some types of arc discharge tube are filled with gas at a pressure exceeding atmospheric, but these tubes are not very common.

The reasons which determine the choice of a gas mixture for a certain type of tube lie beyond the scope of
CATHODE MATERIALS

The properties of cold cathode tubes are particularly sensitive to the materials elected for the cathode, but the composition of the other electrodes hardly affects the behaviour of the tubes. The reason for this is that the processes which sustain the discharge (ion bombardment and gas multiplication) occur mainly in the region of the cathode surface. Some types of cathode material lose electrons easily (that is, they have a low work function). Such cathodes will emit electrons readily under positive ion bombardment and tubes employing them can therefore operate at a relatively low voltage.

The type of cathodes that emit electrons easily normally consist of a metal surface covered with an oxide coating (similar to that used to coat the cathodes of thermionic valves) or with a metal of low work function such as potassium.

The other type of cathode used in cold cathode tubes has a higher work function and does not emit electrons so readily. Such cathodes normally consist of a pure metal (usually molybdenum or nickel). Although tubes employing these cathodes must necessarily work at a higher voltage than those employing coated cathodes, they are much more reliable and have a longer life than coated cathode tubes. They also have closer tolerance characteristics, but may be rather more expensive.

SPUTTERING

The positive ion bombardment of the cathode results not only in electrons being emitted, but also in atoms of the cathode material being ejected from the cathode surface. This phenomenon is known as “spattering”. It results in a deposit of the cathode material being formed on surfaces near to the cathode; this may result in failure of the tube by the shorting of two of the electrodes.

Sputtering can also result in premature tube failure if it causes the surface of the cathode to be damaged; this is especially liable to occur with tubes employing coated cathodes. However, sputtering is used to good effect in the manufacture of tubes with pure metal cathodes. Heavy sputtering is allowed to occur during the manufacture of these tubes. This not only leaves the cathode surface very clean, but the sputtered material on the glass envelope of the tube retains foreign gas impurities very effectively. Such impurities can affect the characteristics of the tubes.

The rate at which sputtering occurs increases considerably with an increase of the cathode current. In many types of tube the maximum cathode current is set by the need to prevent excessive sputtering from shortening the life of the tube.

PRIMING

Although a limited number of ions are formed intermittently in any gas by natural radiation, if no other ions are artificially introduced, there may be a delay of up to a minute or so between the application of a potential exceeding the striking voltage and the establishment of a discharge. The greater the applied voltage, the smaller this delay.

There are various ways in which the required ions can be introduced into the gas. The introduction of such ions is known as “priming”.

PHOTOPRIMING

Coated cathodes will emit electrons very readily when ordinary light falls onto the cathode surface. Such tubes often rely on light for priming. For this reason one may often read in a data sheet, for a tube employing a coated cathode, that the ambient illumination should not be less than a certain value (for example, 20 lux). If the illumination is low or if the tubes are operated inside a dark instrument case, there may be a delay in the firing of the tubes when a potential exceeding the striking potential is applied to them. In addition it is important that tubes employing coated cathodes should not be operated in bright direct sunlight, or the number of electrons emitted from the cathode may be so great that the striking voltage falls almost to the maintaining voltage of the tube.

Some tubes employing coated cathodes contain a little radioactive gas, usually tritium (hydrogen of atomic weight 3), or another radioactive material such as nickel-63, to provide the priming electrons. Such tubes can be operated in complete darkness but should not be used in very bright direct sunlight. The radiation cannot penetrate the walls of the tube, but even if the tube is fractured, the amount of the radioactive material employed is so small that it is relatively harmless.

Visible light will not cause photoemission from tubes employing pure metal cathodes. Although ultraviolet light can cause the emission of electrons from such cathodes, ultraviolet radiation cannot pass through the glass walls of a normal cold cathode tube. Some other method of priming must therefore be employed if a tube with a pure metal cathode is required to strike within about a millisecond of the application of a potential exceeding the striking potential of the tube.

The use of a radioisotope is not a particularly satisfactory method of priming in tubes which are to be used
NEWS BRIEFS

Printed Circuit Production Increased

By using a new spray-etching plant—developed by APV-Kestner Ltd., of Greenhithe, Kent, for mass production of rigid or flexible printed circuits and small electrical components—a manufacturer of television sets is currently obtaining 110 square metres of finished circuit boards per hour and will be able to increase this output at will to meet future demands.

The installation shown below, consists of separate p.v.c. cabinets which are linked by a variable-speed conveyor and can be assembled in whatever order or number is required for different applications.

Displacement Measurement by Laser

Using an interferometer in conjunction with a specially modulated laser beam, members of the Philips Research Laboratories at Eindhoven have obtained an extreme degree of accuracy in measuring displacements. This facility is required for automatically controlling high-precision metal-working machines or for making integrated circuits. The apparatus will make it possible to achieve even higher precision in automated machining techniques than was previously possible.

Gun Sound Ranging System

Following three years of development work under a contract awarded by the British Government, and extensive users' trials overseas, the Plessey Electronics Group has received an order from the Ministry of Technology for a Gun Sound Ranging System which incorporates radio links.

This equipment represents the most advanced method of locating hostile artillery, known to be the cause of some 80 per cent of battlefield casualties.

The principal of sound ranging is based on the assumption that sound travels uniformly at a known velocity. Thus if a line of microphones, each at a known location, is placed across the line of fire, the intervals between the time of arrival of the sound at each can be transmitted to a central “command post” to be converted to bearings whose intersections will give the source location.
Today, the would-be purchaser of a multi-range testmeter has a considerable range of instruments to choose from. There are models to suit almost every purpose and pocket. As good an instrument as can be afforded should be obtained, as it is considered to be the engineer's best friend. The meter should be accurate and have a fairly wide range of facilities. The robustness of the service engineer’s instrument may not always be necessary, and so some saving in cost can be achieved in this direction, although the ranges may be more limited.

A second test meter can be very useful where it is often necessary to take two voltage readings simultaneously or a voltage and current reading at the same time. Also, a second instrument is a valuable asset as a standby in case of accident or breakdown with the first. The meter needs to be reliable otherwise the whole point of having a measuring device is lost. Economy should be along the lines of restricting the ranges rather than choosing an instrument that offered many facilities but with a poor basic meter movement.

When comparing the specifications of various multi-range meters it may be noticed that some of the cheaper ones offer nearly as much as more expensive ones, and it is tempting to question the necessity of paying so much. Sometimes users of meters of doubtful worth, when faced with an unexpected or unexplained reading, will say: "Perhaps it is the meter playing up again." This should never be; the test meter should always be above suspicion; if it is in any way unreliable, it is defeating its purpose. With test equipment as with so many other things, you get what you pay for.

METER RESISTANCE

The most important feature in the manufacturer’s specification is the meter resistance. Two figures are usually quoted, one for the d.c. ranges and one for a.c. The d.c. resistance is the highest and the most important. It is quoted as so many ohms-per-volt and is related to the range being used, thus a 10,000 ohms-per-volt meter will have a resistance of 1 megohm on the 100 volt range and 10 megohms on the 1,000 volt range.

Beginners often ask what difference the meter resistance makes; if the meter is accurate it will surely read the correct voltage whatever its resistance. This would apply when the impedance of the voltage source, such as a battery or h.t. supply, is very low relative to that of the meter.

Consider the case though, where there are, say, two 1 megohm resistors in series across a voltage supply (Fig. 1); the voltage at their junction will be half that of the supply.

If we now connect the meter, set to 100V range, across the lower resistor R2, we are putting another 1 megohm in parallel across it. Hence the combined resistance of R2 and the meter will be 1 megohm. The voltage ratio now between R1 and the meter + R2 combination will be 2:1 so the actual voltage registered on the meter will be one third of the total supply voltage.

When measuring a voltage through a resistor, there is bound to be an additional voltage drop due to the current drawn by the meter. When the value of the resistor is small relative to that of the meter, the voltage drop is so small that there is little effect on the reading, but when the value is of a similar order, then quite large errors will occur.

It follows from this that a very high resistance instrument should be chosen to obtain the highest accuracy; 10,000 ohms/volt is about the minimum for best results, but 20,000 ohms/volt is regarded as the better standard for most applications except high impedance signal voltages (see later).

While it may seem that higher values are better, there are mechanical limitations to consider. The meter movement has to be made more delicate to overcome friction, since less power is available to move the pointer and return spring.

A meter will only indicate r.m.s. values on a.c. ranges, so only pure sine waveforms can be measured accurately in these circumstances.

SCALE MARKINGS

The scale should be as large as the instrument dimensions will allow so that the divisions on the scale are well separated and easily seen. Various means have been used by makers to give maximum scale length.

Some have made the scale cover the whole of the meter width, and put the range selector control and test prod terminals at the side to make room for it. Others have mounted the meter scale diagonally with the pointer pivot in one corner instead of in the centre of
the instrument. These aim at giving the largest possible scale within small case dimensions.

Poor scales are not sufficiently numerated and the user must sometimes mentally multiply the scale reading by the range factor. This not only slows down measurements, but increases the possibility of error.

The resistance ranges are not linear on the scale, so check to see how cramped the divisions are at the high resistance end of the scale. Some meters boast a resistance range extending to 10 megohms, but the spacing between 5 and 10 megohms is so small, that interpolation between these values is impossible. Take a look too at the lower end of the scale; it should be possible to read 1 ohm easily and with better instruments lesser values should be interpolated fairly accurately. The resistance range should be at the top of the scale to give maximum scale length.

A well designed scale can be quickly read in conjunction with the range setting without confusion. All range numerators should be inscribed on the scale, so if we have voltage ranges of, say, 0–3, 12, 60, 120, 300, 600, 1,200 volts, the scale should have three numerators scales, 0–3, 0–6, and 0–12.

PARALLAX ERRORS

One possible source of error when taking meter readings is due to parallax effect. This is when the pointer appears to occupy a slightly different position relative to the scale, due to viewing it at an angle greater or less than 90 degrees to the scale, see Fig. 2. In most cases, error is small because the distance between the pointer and the scale is small, but it can be significant when reading the cramped upper end of the resistance range.

Also when comparing readings of very small voltage or current differences, parallax errors could be important. For this reason high grade meters incorporate an anti-parallax mirror behind the scale. When taking a reading, the scale is viewed so that the pointer appears to be exactly above its own reflection, which then indicates the true reading on the scale.

The pointer should move smoothly over the scale and come to rest without much, if any, oscillation to and fro.

VOLTAGE RANGES

Now we come to the actual ranges. Even on low priced meters, the d.c. voltage range nowadays is quite extensive and can be as high as 1,000 volts or more. For solid-state electronics though, it is the lower end which is the most applicable, particularly for measurements of less than 1 volt. It should be possible to read a tenth of a volt with a reasonable standard of accuracy.

If it is intended to measure signal voltages in amplifiers, one or two factors will have to be considered. A low range will be needed for this as signal voltages from low impedance amplifier outputs are also low. A decibel range would be useful here, but it is better to employ a transistor or valve voltmeter, with high input impedance, since the frequency response of a multi-range meter may not be adequate for measuring over the required frequency range.

Of course, if audio measurements are not contemplated it can be assumed that most a.c. measurements will be at mains frequency (50 and 100Hz).

RESISTANCE RANGES

Next to the d.c. voltage ranges, the most important are the resistance ranges. These should cover a wide range. Values down to 1 ohm and at least up to 5 megohms should be measurable.

Some meters offer extended upper ohms ranges by using external batteries and resistors. Manufacturers’ instructions should indicate how this is done.

The majority of instruments incorporate a “set zero” control, which is a variable resistor set to compensate for the falling battery voltage. This setting is usually different for each ohms range, so the zero calibration should be checked when switching from one range to another.

With time and use, the “set zero” potentiometer can become worn and it becomes increasingly difficult to find the zero spot. Some thought has been given to this inconvenience by some makers and there are at least two methods of overcoming this problem. One is to use separate controls for each “ohms” range. Once set up, the ranges can be switched without further adjustment until the next occasion the meter is used.

Another method is to use mercury cells instead of the usual carbon/zinc cells to prolong battery life and reduce the necessity for adjustment at frequent intervals.

Some models can be switched from one “ohms” range to another and used immediately without any adjustment. Any meter that has one of these or a similar arrangement is well worth considering, provided other features are as required.

CURRENT RANGES

The current ranges are much less used than the others; in several models a.c. current ranges are omitted altogether. The lowest d.c. current range is usually the basic current rating of the meter movement without shunts, i.e. for a 20,000 ohms per volt movement, 50µA.

Although little used, a.c. current ranges can be very useful at times. A transformer with a short-circuited turn, for example, can most easily be checked by measuring primary and secondary currents and comparing (taking into account the turns ratio of course).

OTHER FACILITIES

A polarity reverse switch is very useful when working on apparatus that has both positive and negative voltages to chassis. This saves reversing the leads and changing over the chassis-clip and test-prod each time an opposite voltage is encountered.

Some meters include a capacitance range, but these usually involve the use of external circuits and are less satisfactory than using a capacitance bridge.

One facility that should be provided is some form of overload protection. This may be a mechanical plunger, which jumps up and disconnects the meter.
when the pointer exceeds a certain speed, or it may be a fuse, or some electronic overload device. A fuse is perhaps less convenient because it will need to be replaced when it blows, and one may not be readily available. However, make sure that the meter is protected in some way.

CONNECTIONS TO CIRCUIT COMPONENTS

The correct use and connection of any test meter must be strictly observed or damage may result to either the meter or the circuit under test. Fig. 3 shows the correct methods of connecting the meter to a circuit or component for measuring current, voltage, and resistance. Remember, always start the meter range setting on the highest range before switching on power supplies.

If the polarity is unknown, connect the test leads, switch to the highest range, have your finger on the “polarity reverse” button, then switch on. If the needle kicks backwards, i.e. to the left of zero, press the button quickly to indicate the correct reading.

GRAVITY INFLUENCE

It should always be remembered that the meter is a delicate instrument. Never leave it in a precarious position where it may topple over. Never leave the test leads dangling over the edge of the workbench as they could easily get caught in clothing and pull the meter off the bench. Mechanical shock can dislodge the movement bearings necessitating repair.

The meter may have an effective overload protection device, but this is no reason to become careless and frequently overload the instrument by selecting the wrong range. Few if any of such devices are 100 per cent fool-proof; they are intended to minimise the risk of damage on the rare occasions a mistake is made.

Inaccuracies may be small when the meter is used in the vertical position, but for the greatest accuracy the meter should be horizontal. When vertical, the needle must overcome its own weight when operating in the first half of the scale; it is in fact moving upward. Readings taken here will be under the true value. In the second half of the scale, the needle is moving back down and so is assisted by gravity, hence readings will be slightly more than they should be.

While the needle is very light in weight, the power available to move it is also very small, especially in high impedance instruments. The degree of error is small, but it should be remembered if highly accurate work is required.

The most accurate part of a meter’s range is in the centre portion of the scale. Again, where extreme accuracy is needed, select the range which brings the pointer into this part.

With high-grade instruments very little difference will be noted in accuracy over the whole scale, but the less expensive ones may show a discrepancy when a voltage is measured on two ranges. This is particularly true of the ohms range, where, in addition to the inaccuracy of the meter movement, we have the unavoidable scale cramping at the higher end.

MEASURING CURRENT

Special care is needed when measuring current; not only may a fault condition exist in the equipment causing a current flow many times higher than expected, but it is possible that a mistake may have been made in connecting the leads.

A crocodile clip may be touching two parts of the circuit and either give an erroneous reading or even damage the meter or circuit. Double check connections and put the meter to its highest range before switching on.

MEASURING RESISTANCE

Inaccurate results can be obtained by overlooking some influencing feature of the circuit under test. This is frequently the case when taking resistance readings.

It is very easy when checking the resistance of a component in circuit, to overlook some part of the circuit which is effectively in parallel with that being tested. The result is a lower reading than expected.

An example of this type of error is shown in Fig. 4. If we attempt to measure R1 in the base-bias divider, there will be two additional circuits that will affect the reading.

The first will be the base/collector junction in the transistor itself with R3, which will give a high or low resistance reading depending on the meter connection. Secondly there is a circuit through resistor R2 and the power supply. This latter may consist of leakage paths through electrolytic capacitors and other networks across the supply line or the supply battery itself. Any reading attempted will therefore be much lower than the actual value of the resistor. As a general rule resistance readings should only be made when disconnected from the associated circuitry.

When checking a diode, it is usually sufficient to compare readings taken backwards and forwards, that is, with the meter leads first one way round and then reversed. The reading in the forward direction should
KING SIZE
QUALITY-TESTED PAKS
2 Drift Trans. 2N1235 Germ. FNP
100 Mil. 10/-. 3/4-
6 Matched Trans. OC142/43/81/81D 10/-. 5/-
20 Red Spot Trans. 2N2000-2000 PIV 5/-. 2/6-
16 White Spot RF Trans. 2N2222 5/-. 2/3-
10 4A Silicon Rects. 100 PIV 5/-. 2/5-
204 Transistors 5/-. each
12 A SCR 100 PIV 5/-. 2/9-
3 825 Silicon Diodes 100mA 30V PIV 5/-. 2/4-
2 Zener Diodes 500mW 3-30V 5/-. each
2 Rectifiers 400mW 3V to 5V 5/-. each 8/-. each
12 High Current Trans. OC22/Erg. 5/-. each
10 Power Transistors 1C01 1G05 10/-. each
10 Silicon Rects. 500mW 5/-. each
10 OCP Transistors Mullard Type 10/-.
10 Power Transistors 2N2177 10/-. each
10 Zener Diodes Sub-min. Marked 10/-. each
2 Low Noise Trans. NPN 6N2000/0 2/8-
1 Si Trans. NPN Mil. Germ. 100mA 5/-. each
5 OA1 Diodes 5/-. each
24 UTZ Transistors 10/-. each
512 Rectifiers 10/-. each
24 GEZ884 Trans. Eqvt. OC44 10/-. each
100 Si Power Rects. 500mA 5/-. each
1002708 Sil. Trans. 300mC, NPN 5/-. each
10 GE2 Silicon Diodes 10/-. each
GT31 LF Low Noise PNP Trans. 10/-. each
10 T211 Sil. Diodes 5/-. each
8 OA8 German. Diodes Sub-min. 10/- each
2 OC92 Power Trans. Germ. 10/- each
70 OC75 Transistors 10/- each
2 AC82G Ultra Low Noise FET's 10/- each
10 AC271288 Comp. pair FNP/NPN 2/9-
100 GSC88 German. Diodes Eqvt. 0A71 10/- each
12 AF141 Transistors 10/- each
FREE
One 10/- Pack of your own choice free with orders over 50/- each.
10 Assorted German. Diodes Marked 10/-
24 AS828 Germ. PNP Trans. 10/- each
40 2N1014 PNP Mini. germ. germ. 5/-. each
3 AF117 Trans. 7/-. each
25708 Sil. Trans. 300mC, NPN 5/- each
10 GE2 German. Diodes 10/- each
3 OC92 Transistors 10/- each
2 AC82G Ultra Low Noise FET's 10/- each
10 AC271288 Comp. pair FNP/NPN 2/9-
100 GSC88 German. Diodes Eqvt. 0A71 10/- each
12 AF141 Transistors 10/- each
1002708 Sil. Trans. 300mC, NPN 5/- each
10 GE2 German. Diodes 10/- each
3 OC92 Transistors 10/- each
2 AC82G Ultra Low Noise FET's 10/- each
10 AC271288 Comp. pair FNP/NPN 2/9-
100 GSC88 German. Diodes Eqvt. 0A71 10/- each
12 AF141 Transistors 10/- each

KING OF THE PAKS
Unqualified Value and Quality
NEW BI-PAK UNTESTED SEMICONDUCTORS
Satisfaction GUARANTEED in Every Pak, or money back.

Pkg No.
1 120 Glass Sub-mini. General Purpose Germanium Diodes 10/-
2 60 Mixed Germanium Transistors AF/RF 10/-
3 70 Germanium High Speed Amplifiers OC4, OA47 15/-
4 40 Germanium Transistors like OC81, 1G06 15/-
5 60 20mA Sub-min. Sil. Diodes 10/-
6 40 Silicon Rectifiers like 3N209A. 1N6827 10/-
7 16 Silicon Rectifiers Top-Max 200mA up to 1600V 10/-
8 20 Sil. Planar Diodes 200mA A020/209 10/-
9 20 Mixed Volts 1 watt Zener Diodes 10/-
10 20 Silicon Rectifiers like 3N209A. 1N6827 10/-
11 18 Silicon Rectifiers 10/-
12 12-1.5amp Silicon Rectifiers Top-Max up to 1000 PIV 10/-
13 40 Germanium alloy Transistors 1G06 Series & OC171 10/-
14 19 3-Amp Silicon Rectifiers Stud Type up to 1000 PIV 10/-
15 29, Germanium PNP AP Transistors TO-5 like AC107-79 10/-
16 40 Transistors like 2N3815. 2N3816 10/-
17 30 silicon NPN Diodes like BC188 10/-
18 12 1.5-amp Silicon Rectifiers Top-Max up to 1000 PIV 10/-
19 40 Germanium alloy Transistors 1G06 Series & OC171 10/-
20 25 Mixed Germanium Transistors 2N-2708 10/-
21 30 Zener Diodes 400mW D07 case mixed Vata. 3-18, 10/-
22 20 Mixed Volts 1 watt Zener Diodes 10/-
23 10 1-amp Glass Min. Silicon Rectifiers High Volts 20/-
24 10 Glass Rectifiers 1N4000 series 10/-
25 10 Silicon Diodes like 1N4148 25/-
26 10 Small Signal Diodes 2N4148 25/-
27 10 3N204 & 3N207 Mini. 40/-
28 10 2SC249 & 2SC249 Mini. 40/-
29 10 2SC361 & 2SC361 Mini. 40/-
30 10 2SC354 & 2SC354 Mini. 40/-
31 10 2SC355 & 2SC355 Mini. 40/-
32 10 2SC360 & 2SC360 Mini. 40/-
33 10 2SC360 & 2SC360 Mini. 40/-
34 10 2SC360 & 2SC360 Mini. 40/-
35 10 2SC360 & 2SC360 Mini. 40/-
36 10 2SC360 & 2SC360 Mini. 40/-
37 10 2SC360 & 2SC360 Mini. 40/-
38 10 2SC360 & 2SC360 Mini. 40/-
39 10 2SC360 & 2SC360 Mini. 40/-
40 10 2SC360 & 2SC360 Mini. 40/-
41 10 2SC360 & 2SC360 Mini. 40/-
42 10 2SC360 & 2SC360 Mini. 40/-
43 10 2SC360 & 2SC360 Mini. 40/-
44 10 2SC360 & 2SC360 Mini. 40/-
45 10 2SC360 & 2SC360 Mini. 40/-
46 10 2SC360 & 2SC360 Mini. 40/-
47 10 2SC360 & 2SC360 Mini. 40/-
48 10 2SC360 & 2SC360 Mini. 40/-
49 10 2SC360 & 2SC360 Mini. 40/-
50 10 2SC360 & 2SC360 Mini. 40/-
51 10 2SC360 & 2SC360 Mini. 40/-
52 10 2SC360 & 2SC360 Mini. 40/-
53 10 2SC360 & 2SC360 Mini. 40/-
54 10 2SC360 & 2SC360 Mini. 40/-
55 10 2SC360 & 2SC360 Mini. 40/-
56 10 2SC360 & 2SC360 Mini. 40/-
57 10 2SC360 & 2SC360 Mini. 40/-
58 10 2SC360 & 2SC360 Mini. 40/-
59 10 2SC360 & 2SC360 Mini. 40/-
60 10 2SC360 & 2SC360 Mini. 40/-

Code Nos. mentioned above are given as a guide to the type of device in the Pak. The devices themselves are normally unmarked.
HIGH FIDELITY SPEAKERS

Whiteley Stentorian Speakers incorporate 40 years of development in acoustic technology. Their frequency response is exceptionally wide, and their overall performance is outstanding. Few speakers can equal, and none can excel the superb reproduction of the high fidelity speakers in the Whiteley Stentorian range.

Stentorian

MODEL H.F.1016 MAJOR
10" Die-Cast Unit, incorporating 16,000 gauss magnet system and has a 15 ohms impedance speech coil. Handling capacity 10 watts. Frequency response 30-16,000 c.p.s. Bass resonance 39 c.p.s.

PRICE: £11.6.8
Plus PT surcharge of £2.16.0

Stentorian

MODEL H.F.1002
10" Die-Cast Unit, incorporating 12,000 gauss magnet. Handling capacity 10 watts. Frequency response 30 c.p.s. to 14,000 c.p.s. Bass resonance 35 c.p.s. Fitted with cambric cone and universal impedance speech coil providing instantaneous matching at 3, 7.5 and 15 ohms.

PRICE: £5.10.3.
Plus PT surcharge of £1.7.3

Ask your dealer for full details of the Stentorian range or write to:

WHITELEY ELECTRICAL RADIO CO. LTD
MANFIELD NOTTS ENGLAND
Tel: Mansfield 24762

London Office: 109 KINGSWAY, W.C.2
Tel: HOLLborn 3074

XCELITE

Precision made hand tools for the professional

10W AMPLIFIER

FLEXIBLE METAL TUBING. Galvanized 1/2" dia. 35/- 100ft.

CHASSIS UNIT: 13 valves. ECC82(5), EB91(6), EF91(2). 60 Resisters, Capacitors, etc. Valve cans and bases. Multi-con Plugs.

30/- P. & P. 6/-.

RESISTORS: Mixed Parcel of 200. 20/- P. & P. 5/-.

TRANSFORMERS

SSTR 894. Pri. 220-230-250V. Sec. 35V(0.5A). £25.0. P. & P. 5/-

S.A.E. FULL LIST

STATUS SUPPLIES

Status House, Wilkinson Avenue, West Park Drive, Blackpool. Tel. 60378 (2 lines)

ELECTRONIC ORGAN CONSTRUCTORS

We can supply just about everything you are likely to need for your project:

MANUALS: 3, 4 and 5-octave

PEDALS: 13, 25, 30 and 32-note

TONE SOURCES: Square-wave, 4-8 octave

CONTACTS: Blocks and printed circuit assemblies

STOP SWITCHES, FOOT SWELLS, etc., and even COMPLETE ORGAN KITS

Drop us a line or phone

Harmonics

Clarion Works, Napier Road, Bromley, Kent.
Tel. 01-460 2122
be much lower than in reverse. Diodes working as a pair, such as in a discriminator circuit should have closely matched forward resistance and any large discrepancy will produce fault symptoms.

When using the ohms range make sure that there is no current being supplied to the circuit other than that from the meter battery. For this reason, nearly all resistance checks, unless there are special circumstances, should be made with the equipment switched off.

Even so, it may be possible that a voltage with a high current potential may persist. For example, with a power supply unit that has an open-circuit smoothing resistor, the reservoir capacitor will be fully charged with no load to “bleed” the charge away (Fig. 5). Even when switched off for some time it would not be safe to check around this circuit with an ohmmeter.

When in doubt, check with the meter on the voltage range first, then discharge the smoothing capacitors through a low resistance path.

Whenever finishing work, always make a point of leaving the meter switched to the highest voltage range. In a workshop where others are present, there is the possibility that someone else may borrow the meter for a quick test on something else; re-check the range settings before connecting to your circuit.

The meter should never be left switched to one of the ohms ranges. It is possible that with the test leads left connected, one prod may touch the other; this will result in a full scale deflection of the needle and a continuous drain on the battery until the leads are moved. It may not be realised for some while during which time the battery may be considerably depleted, if not run right down, by the time the instrument is used again.

BATTERY LIFE

The life of a battery in a meter can be surprisingly long. Even with regular use, life spans of several years are quite common. Really, the conditions of use are ideal for the carbon/zinc cell.

When a battery has finished its useful life, it will be found that it is not possible to obtain a “zero ohms” (full scale) deflection even with the ohms set zero control full out. It may be found that this condition is reached on one ohms range before the others.

Some meters use more than one battery, a single-cell torch unit for the lower ranges and a higher voltage battery for the highest range.

CAUSE OF ERRORS

If the ohms range should prove erratic, with constant adjustment being needed to the “set zero” control, it could be the leads giving trouble; a poor contact can add quite a few ohms to the circuit. Try shorting out the meter terminals on the ohms range with a piece of bare thick copper wire and see if stability is restored; if it is, then the leads are at fault.

Another source of trouble could be the internal battery contacts; these can also be cleaned up and lightly greased in cases of erratic operation.

The potentiometers themselves can become worn or dirty. If access can be obtained to the track, a few drops of switch cleaner may help. In most cases dirt is the answer, but when instrument that has been in use for many years may be worn and a new control from the makers may be the only satisfactory cure. Of course it will be a long time before a new meter gets to this stage.

Oscillator circuits can be prevented from oscillating by the application of the meter or the frequency of oscillation can be radically changed. As voltages in an oscillating circuit differ considerably from those existing when the circuit is not oscillating, it can be seen that completely false readings can be obtained. To minimise the damping effect of the meter, it is best to take measurements in such circuits on the highest range that will give a readable indication.

R.F. circuits can be made unstable by the application of the test prod. As they are then behaving as an oscillator, it follows that voltages will be abnormal. If measurements are confined to points that are decoupled, this problem will not arise.

VOLTAGE READINGS

In the case of voltage measurements, one must take into consideration the effect that the meter itself may have on the circuit, which may affect the operation, hence the reading.

When measuring through a high impedance, the meter will draw current and thereby produce a voltage drop. This must be allowed for, but it can be calculated by finding the ratio of the meter impedance (ohms-per-volt multiplied by the voltage range) to the source impedance and then applying the same ratio to the source voltage.

MAINTENANCE

Apart from replacing the batteries once in a while, there is very little maintenance that is needed. Contacts between the meter terminals and test-lead plugs may need occasional attention. These can be cleaned with methylated spirit and then smeared sparingly with thin grease.

The leads themselves are the most likely cause of trouble because, in spite of being made of special high-flexibility cable with a large number of thin strands of wire, they can go open-circuit with constant flexing. Generally the site of the break is near the ends and sometimes a repair can be made.

Other than the points mentioned, the only maintenance is to keep the case clean. A rub over with a barely damp cloth and a polish with a dry cloth will clean most flat plastic surfaces. To clean rough pimple finish surfaces or grooves use an old toothbrush. Avoid letting any moisture into any of the apertures in the case or damp may start to cause rust on some parts of the interior.

So then, by carefully selecting the most suitable multimeter, giving it reasonable treatment and making the best use of it as we have discussed, we will have a valuable aid in the testing and repair of electronic equipment, whether for business or pleasure.
The PRACTICAL ELECTRONICS organ is based on a number of distinctive solo stops or theatre voices, with a flute or tibia chorus of extended pitch range. Provision is made for an accompaniment manual and in this case, the manuals are reversible by means of a separate expression pedal for each; so that, for example, an 8ft solo tibia can be reduced in volume to accompany a 4ft flute on the lower manual. The useful expressiveness is thus much extended, great volume not being required in the average home.

The pedal section provides the ground bass one octave below the manual pitch, but there is also 8ft tone so that the monotony of 16ft can be relieved. This section of the organ has its own amplifier and loudspeaker to reduce intermodulation.

No electronic vibrato is provided, but a Leslie type rotor is applied to the manual loudspeaker, thus achieving both frequency and amplitude modulation, as in a pipe organ.
In presenting a design for a small electronic organ, we must remember that the present day concept of this class of instrument is far removed from the classical instruments which have relied on pipes for hundreds of years. Current tastes in the field of entertainment bear no relation to those of 50 years ago, and we have largely electronics to thank for this; it is only because of electronics that we can enjoy sound and music of all kinds in our own homes.

However, in the electronic organ we have a special case; for it is an adaptation of old tone colours to a new method of producing them. So that if one is not well acquainted with the original sounds and how they were formed and combined, there is little likelihood of obtaining realistic synthesis. The author is fortunate in that he has made and played pipe organs for very many years, and in this way we know the limitations beyond which a simple generator cannot go.

This particular instrument has a generating system of extreme simplicity, since the general use of silicon planar transistors throughout removes the need for circuitry essential to confine germanium transistors to their correct working characteristics.

FREQUENCY DIVIDER SYSTEM

We can define this organ as being a square wave frequency divider system, generating one single type of waveform from nearly 8kHz to 32Hz, distributed over two manuals and pedal. The use of a single waveform severely limits the tonal synthesis possible, but it does so

SPECIFICATION . . .

<table>
<thead>
<tr>
<th>Solo</th>
<th>Accompaniment</th>
<th>Pedal</th>
</tr>
</thead>
<tbody>
<tr>
<td>61 notes, CC to C</td>
<td>61 notes, CC to C</td>
<td>30 notes, CCC to F</td>
</tr>
<tr>
<td>contra tibia</td>
<td>flute</td>
<td>sub bass</td>
</tr>
<tr>
<td>contra viole</td>
<td>viole acute</td>
<td>major bass</td>
</tr>
<tr>
<td>double horn</td>
<td>clarinet</td>
<td>16ft</td>
</tr>
<tr>
<td>tibia</td>
<td>trumpet</td>
<td>bass flute</td>
</tr>
<tr>
<td>viole</td>
<td>flute</td>
<td>8ft</td>
</tr>
<tr>
<td>echo horn</td>
<td>violina</td>
<td>4ft</td>
</tr>
<tr>
<td>oboe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tibia</td>
<td>Expression pedal</td>
<td></td>
</tr>
<tr>
<td>violina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>piccolo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Circuit

All transistorised. Square wave frequency divider system

Output

Manuals: 15W amplifier driving 10in W.B. unit with Leslie tremulant
Pedal: 7W amplifier driving 12in W.B. unit
Loudspeakers housed in separate two-compartmnet enclosure

Dimensions

<table>
<thead>
<tr>
<th></th>
<th>Width</th>
<th>Depth</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Console:</td>
<td>53in</td>
<td>20(\frac{1}{2})in</td>
<td>45in</td>
</tr>
<tr>
<td>with pedalboard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loudspeaker enclosure:</td>
<td>15(\frac{1}{2})in</td>
<td>24in</td>
<td>55in</td>
</tr>
</tbody>
</table>

Finish

Arborite Superdec Sapele laminate
happen that all the tone colours or voices required for a romantic entertainment organ can be formed from a square wave. It would not do for a church or concert organ, which would have to have sine and sawtooth waves as well.

Naturally, the high harmonic content of a square wave requires careful handling; a common method being to use such heavy filtering that little is left but fundamental tones. Such instruments, whilst sweet and attractive at first, soon pall as there is no life in the sound. Another common failing is that the generating system does not go high enough in pitch.

In most small organs, the top octave, or even the top two octaves, double back in pitch so that in fact stops labelled 4ft and 2ft are misleading because they do not cover the compass stated. Such instruments cannot have any brilliance of tone. It seems a pity, when the basic cost is naturally high, that an extra octave or two is not added—it makes such a difference.

TONAL SPECIFICATION

It is the prevailing custom to divide the small domestic organ into an upper keyboard having predominantly solo voices, and a lower manual really for accompaniment. The pedal section supplies the bass, and we have followed this scheme in the specification shown, but with one very important difference.

Whereas it is customary to have the whole organ on one expression pedal, we use a separate one for each manual and the pedal is not controlled in volume except by the stops. This facility enables us to reverse the organ, as it were, and subdue the upper keyboard voices whilst making the lower ones louder if desired.

In this way, extra solo voices are obtained at negligible cost, and we have added a clarinet and trumpet to the lower keyboard for this reason. Thus, any balance whatever between the two manuals is possible and it is surprising what extra flexibility and tonal range this gives.

One would find this, of course, on a theatre pipe organ as a matter of normal design. It certainly makes the organ a little harder to play, but then any organ has to be carefully studied before the best results can be obtained.

KEY AND PEDAL COMPASS

Many small organs have a keyboard compass of $3, 3\frac{1}{2}$ or 4 octaves which is admittedly a help for the tone circuits, since it eliminates many technical difficulties. But if we can provide sufficient tone colours to interpret a great deal of organ music, then the legitimate 5 octave keyboard is much more useful.

The same applies to the pedals, and we have fitted a full 30 note pedalboard here which can be pulled out and stood on end; but of course, the short compass boards of 13 notes could quite well be fitted if desired.

MODIFICATION

In any organ, we can degrade the system much more easily than improve it, therefore we start with a full scale system and this can be simplified in some respects as will be apparent later on. The question of space may be the deciding factor, but it must also be remembered that all electronic tone generators can be modified or enlarged, so that if, at some future date it is decided to extend or revise the tonal scheme, then if all the playing facilities are there in the first place, it will be much easier.

SIGNAL PATHS

If we look at Fig. 1.1, a block diagram of the complete system, we can trace the path of the signals and.
see how the sections are co-ordinated. The 12 oscillators are powered by the same unit as the 12, 7-octave dividers. The divided signals reach the manual resistive contact switches and are applied to busbars of the correct pitches by printed circuit wiring.

The signals now pass through an emitter follower for each pitch and through a preamplifier to their respective tone networks. Each manual mixed tone net outlet goes to a post amplifier and so to a balancing network. From this, the expression pedals route the tones to the manual power amplifier.

The pedal signals are derived from the upper manual and have their own tone nets and preamplifiers. There are no post amplifiers and the 8 and 16ft tones pass direct to the pedal power amplifier.

The manual speaker has a Leslie type rotor tremulant; the pedal loudspeaker of course has no vibrato. These units are contained in a separate enclosure.

Three power supplies, all well regulated, serve the different sections. The pedal contacts have provision for sustain, although this is not fitted; similarly a reverberation device can be applied after the balancing network if desired. The tone networks are enclosed in a screening box as are the post amplifiers and the balancing circuit. Otherwise no screening is used beyond that on the signal cables.

GETTING STARTED

Now the circuitry associated with a transistorised frequency divider organ is quite light in weight, so that the whole system can be fixed to the kneeboard of the instrument and this means that no cumbersome building frame is required.

We can start with the preliminary console details which are nearly all woodwork. A cutting list of materials required is given on page 360. Ultimately the woodwork can be clad with one of the popular imitation wood finish laminates. Our prototype organ is finished with Arborite Superdec Sapele.

For convenience, cheapness, and strength we make the sides from ¼in plywood. After cutting off the corner pieces as shown in Fig. 1.2, the cut-outs for lower frame members should be made.

To provide a secure base for the sides, two hardwood feet as shown in Fig. 1.3 should be fixed. Prior to this a decorative ¼in chamfer is made along the edges. It is essential to countersink fully for the three 1½in No. 12 woodscrews fixing these hardwood strips so that the screw heads cannot catch in a carpet.

Attachment of the lower frame member D, with two 2in No. 12 countersunk wood screws at each of the sides will enable the frame to stand upright. Additional support is provided when the kneeboard support batten E is slid into the cut-outs of the side panel and glued as shown in Fig. 1.4.

KEYFRAME SUPPORTS

It is surprising how much force is sometimes unwittingly applied to a keyboard. Usually the pair of manuals are carried on a heavy wooden plank, but it is easier, and in many ways more convenient, to use a piece of 1in x 1in x ½in rolled steel angle with a hardboard rear keyboard support rail. Deformation of the keyframes would certainly lead to contact trouble.

Attachment of the front keyboard support rail F is by means of two 2in lengths of 1in x 1in batten which are first screwed to the sides A with a 1½in No. 8 woodscrew. Where the steel angle meets these battens,

holes should be drilled and countersunk to take single ½in No. 4 woodscrews. The rail can now be affixed.

The rear keyboard support rail C, which is of hardwood, has similar batten mounting pieces, the only difference here being that two fixing screws, 1½in No. 8, are used for retention as shown in Fig. 1.5.

OBTAINING THE KEYBOARDS

The next step is to obtain and fit the keyboards. These are of five octaves compass, 61 notes, CC to C, and are obtainable as single units from J. J. Goddard Ltd., or the same but made throughout in plastic and extruded metals from Kimber-Allen Ltd. This is again a single unit set and is made in Sweden; it is much superior to the Italian sets available from some sources.

As we are going to use key switches actuated by their own integral plungers, one might be lucky enough to pick up a second-hand matched two manual set from an organ builder or even from an old harmonium. The small amount of side play cannot affect the kind of key switch proposed, though it might be quite serious with some other forms of contact.

MOUNTING THE LOWER KEYFRAME

The Goddard keyframe is not very strong and is intended to be mounted on a more substantial material which in our case is the steel support rail F and rear batten C, no further reinforcement being necessary.

Centrally position the lower keyboard on the support members then secure it with four short screws through the steel and four long ones through the batten.

When purchased the Goddard key will not have any springs fitted. These can be obtained from Henry's Radio Limited. If plastic keyboards are purchased it will be found that springs are integral to these assemblies.

Examination of the keys at this stage will show a slight upward tilt. By slightly rotating forward the steel angle and rear batten the keyboard position can be made parallel with the floor.

KEYBOARD THUMPER BARS

The upper keyboard rests on two end pieces as in Fig. 1.6. Here again we must tilt the keys forward with a 10 degree slope, which facilitates certain types of playing.

Arrangement of upper and lower manuals. Full details and measurements appear on next two pages.
CONSOLE CUTTING LIST

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Material Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sides (A) (2 off)</td>
<td>1 ft 8(\frac{1}{2}) in x 3 ft 7(\frac{1}{2}) in x (\frac{1}{2}) in ply</td>
</tr>
<tr>
<td>Top (B)</td>
<td>4 ft 3(\frac{1}{2}) in x 2(\frac{1}{2}) in x (\frac{1}{4}) in hardwood</td>
</tr>
<tr>
<td>Rear keyboard support rail (C)</td>
<td>4 ft 6(\frac{1}{2}) in x 3(\frac{1}{2}) in x (\frac{1}{4}) in hardwood</td>
</tr>
<tr>
<td>Lower frame member (D)</td>
<td>4 ft 6(\frac{3}{4}) in x 2(\frac{1}{2}) in x (\frac{1}{4}) in hardwood</td>
</tr>
<tr>
<td>Support batten for kneeboard (E)</td>
<td>4 ft 6(\frac{3}{4}) in x 2(\frac{1}{2}) in x (\frac{3}{4}) in hardwood</td>
</tr>
<tr>
<td>Front keyboard support rail (F)</td>
<td>4 ft 6(\frac{3}{4}) in x 2(\frac{1}{2}) in x (\frac{3}{4}) in hardwood</td>
</tr>
<tr>
<td>Top fillet (G) (2 off)</td>
<td>4 ft 6(\frac{3}{4}) in x 2(\frac{1}{2}) in x (\frac{3}{4}) in hardwood</td>
</tr>
<tr>
<td>Feet (H) (2 off)</td>
<td>4 ft 6(\frac{3}{4}) in x 2(\frac{1}{2}) in x (\frac{3}{4}) in hardwood</td>
</tr>
<tr>
<td>Kneeboard (I)</td>
<td>4 ft 6(\frac{3}{4}) in x 2(\frac{1}{2}) in x (\frac{3}{4}) in hardwood</td>
</tr>
<tr>
<td>End cheeks (J) (2 off)</td>
<td>4 ft 6(\frac{3}{4}) in x 2(\frac{1}{2}) in x (\frac{3}{4}) in hardwood</td>
</tr>
<tr>
<td>Upper keyboard supports (2 off)</td>
<td>4 ft 6(\frac{3}{4}) in x 2(\frac{1}{2}) in x (\frac{3}{4}) in hardwood</td>
</tr>
<tr>
<td>Lower thumper bar</td>
<td>4 ft 6(\frac{3}{4}) in x 2(\frac{1}{2}) in x (\frac{3}{4}) in hardwood</td>
</tr>
<tr>
<td>Upper thumper bar</td>
<td>4 ft 6(\frac{3}{4}) in x 2(\frac{1}{2}) in x (\frac{3}{4}) in hardwood</td>
</tr>
<tr>
<td>Quantity of 1(\frac{1}{4}) in x 1(\frac{1}{4}) in batten as required</td>
<td></td>
</tr>
</tbody>
</table>

Keyboards

- 61 note keyboards (2 required)
 - Kimber-Allen Limited, London Road, Swanley, Kent.

Key springs (not required for plastic keyboard)
Fig. 1.2. Case sides
Fig. 1.3. Hardwood feet
Fig. 1.4. Sides positioned by frame and keyboard supports
Fig. 1.5. Fixing method for keyboard supports
Fig. 1.6. Upper keyboard supports
Fig. 1.7. Lower keyboard thumper bar in position on keys
Fig. 1.8. Upper keyboard thumper bar shown bolted to lower keyframe via woodblock
Fig. 1.9. Ornamental end cheeks
Fig. 1.10. Panel for case top
Fig. 1.11. Kneeboard
When the springs are attached to the keys, these latter will rise at the front, as will those of the lower keyboard.

To check the lower keys a strip of wood called a thumper bar is fixed across the side members as in Fig. 1.7. The height of this is adjusted until the depth of touch, the distance a key will depress, is about 1/4 in. In time, this will fractionally increase due to compression of the felt.

Now we can try the touch resistance of the lower keys and if need be, stretch the springs slightly if too strong.

For the upper keyboard we need a stronger thumper bar and this is made from a piece of duralumin channel section 1/8 in x 1/8 in x 1/8 in wall thickness.

A two point anchorage is required at each end as shown in Fig. 1.8 using 4B.A. nuts and bolts, the bolt length being 2 1/4 in. Again the height is adjusted to give a touch of 1/4 in. To prevent mechanical clicks, the underside of both bars is covered with a strip of red or green felt 1/8 in wide by 1/8 in thick which is obtainable from Goddard Ltd.

When the top keyboard is in position, a wood screw can be passed through the lower thummer bar into the frame of the upper keyboard, which will stiffen this assembly.

Plastic keys have limit stops moulded in, so require no bars, but ornamental strips of wood may be attached to conceal the metal frame.

The complete assembly can be seen in the photograph.

Finally make two ornamental end cheeks as in Fig. 1.9 from 1/4 in thick wood such as oak or mahogany. The illustration shows how they are fitted and they can be seen in the introductory photograph of the organ.

All the foregoing requires great care, but should be persevered with, since if there is any uncertainty about the keys, the organ will never be a pleasure to play.

TOP AND KNEEBOARD

The last two major items of woodwork that complete the console will now be described. Both are essentially rectangular so the carpentry is simple.

First, the top B which is of 1/8 in ply is shown in detail in Fig. 1.10.

For reasons of easy access to electronic subassemblies it was decided not to make this a fixture. A simple method of locating the top to the sides is by the use of triangular key pieces shown dotted.

The actual gluing of these pieces should be delayed until the organ is complete. This will ensure a more precise keying of the top.

The two fillets G are an optional decorative extra.

Fig. 1.11 gives the dimensioning of the 3/8 in ply kneeboard I which will take the bulk of the electronic assemblies.

To fix this, first cut two lengths of 1 in x 1 in batten. These should now be attached as shown in Fig. 1.4, one at either end of the cross members E and C. Fixing should be at the sides A and forward of the rear support rail C using 1/8 in No. 8 woodscrews.

The kneeborder can now be retained by the battens using six 1 in No. 8 woodscrews.

INTERNATIONAL STANDARDS

Whilst the case geometry could be modified to conform with different tastes, one thing is essential, that the keys and stops should be properly related to the pedalboard. We give the preferred measurements in Fig. 1.12 which conform closely to the agreed international standard.

Comfort is essential when playing especially with a full size pedalboard. One can see that the whole physical design is related to the pedalboard, and this also refers to the extent to which the sharps on the pedals are set back from the front of the manual keys.

This in turn determines the position of the expression pedals. So that, if no pedals were fitted, or in the case of a 13 note pedalboard, the dimensions of Fig. 1.12 will still prove to be the most suitable.

Therefore in the console design, we have allowed for the use of the proper full scale parts, and if the pedals are not fitted at once, one can be confident that they will mate with the console at a later date.

Next month we will start on the attachment of the key contact system and some of the electronic subassemblies.

To be continued
leaving a certain air of uncertainty as to its precise location. This problem can and is being overcome in both channels, the "middle" effects, i.e. the balance of the two microphones in the centre of the proceedings. But is this important?

Well, conductors and composers think it is important in order to put over the message they are trying to recreate. What is the true definition of stereo (in the domestic hi fi world)? A strange question one may think, but this was recently brought home to me by recent comments in an article in a Sunday newspaper.

It seems to be a not uncommon practice for some recording companies to cut discs and label them stereo, when really the recording has been made by judicious juggling of faders, to control the relative sound levels of each instrument and feed them into two independent channels. The result can be quite pleasing and the unsuspecting listener is probably unaware of how his recording was produced.

TWO-AND-A-HALF DIMENSIONAL

"So what!" you might say—"the effect is three-dimensional, it sounds like stereo, so what does it matter!" But is it really three-dimensional or only two-and-a-half dimensional? Does it seem to have depth or only as much width?

This is an all important aspect of stereo, but it can become a cheap and easy means for any Tom, Dick, or Harry to set himself up to record music, that is not a true facsimile of the original performance in terms of instrumental positioning. But is this important?

Well, conductors and composers think it is important in order to put over the message they are trying to recreate. The only genuine method is for recording companies to use (as many do) the very simple arrangement of twin microphones in the centre of the proceedings.

But it is claimed that there is a serious risk of "hole-in-the-middle" effects, i.e. the balance of the two channels is such that what goes on in the centre is reproduced in equal magnitude by both channels, leaving a certain air of uncertainty as to its precise location. This problem can and is being overcome in some circles, but is only "small-fry" in comparison with deceiving the customer.

MISLEADING SPECIFICATIONS

On the same topic is the publication of a specification for so-called hi fi equipment, worded in such a way that the customer, who is perhaps only moderately acquainted with the jargon, sees no reason to suspect that the equipment is anything but hi fi. But on comparison with much better gear he finds that the "fi" is not as "hi" as he was led to believe.

So he looks again at the specification. Perhaps he cannot understand what is wrong. Usually it is the phrasing of the specification that is not acceptable.

For instance, a frequency response of, say, "30Hz to 20kHz" means absolutely nothing. If it was termed frequency range then this quotation could be correct, but it says nothing about the sound levels at the ends of this spectrum in relation to the mid-frequency range (1kHz). True, the level at 10 or more kilohertz could be audible, but only just.

Similarly a power rating of so many watts means very little unless some indication of distortion is given with the correct loading. The importance of an accurate description is as important as diagnosing an illness correctly before applying suitable treatment.

If you are not absolutely sure you understand every word in a specification consult an acknowledged expert in hi fidelity audio before committing yourself to a purchase.

But you may think: How do I tell where low fidelity ends and high fidelity begins? Experience will tell, but in the meantime, go along to some of the several hi fi showrooms up and down the country and ask for a demonstration of several combinations of equipment. The dealer will either be very willing to do this for your own sense of satisfaction, or will blus at being behind the times.

SOUND REINFORCEMENT

In addition to the hi fi fraternity, another body, the Association of Public Address Engineers, is equally concerned with moral ethics and standards in specifications, and are always willing to help potential clients of their members in obtaining satisfactory equipment and facilities for the purpose for which it is required.

Sound reinforcement is the preferred term these days and modern equipment has been designed to assist the audience with the absolute minimum of unnatural electronic phenomena imposing upon aural comfort.

Some of this equipment and talks were held at the annual exhibition at the King's Head Hotel on the Hill at Harrow from March 11 to 13.

ON SHOW?—NOT YET!

The rather different appearance of this article this month, with no news of new equipment, is partly deliberate, partly accidental. The fact is that in the few months prior to the Annual Audio Festival and Fair (Olympia, London, October 16 to 21), manufacturers put on "cloak and dagger" and are very reluctant to release details of new developments too soon, for fear of being too helpful to competitors.

Last year, the Fair showed some interesting advances; this year we hope we shall be equally surprised. Nonetheless, the main interest will be to see if the new venue proves acceptable (audibly) and successful (commercially).

It is expected that P.E. will be represented there after another hair-raising stint at the R.S.G.B. exhibition. What are we going to show? Wait and see—we can be just as secretive as the manufacturers, but it will all be worth while.
British Computers Help Europe’s Satellite

The European Space Research Organisation’s HEOS-A satellite successfully lifted off the launch pad at Cape Kennedy after being thoroughly checked out by two British computers. These systems, a Honeywell DDP 516 and DDP 116 (shown right), have been closely involved in the “Highly Eccentric Orbit Satellite” project from first test to final countdown and launch.

The computers provided two complete and identical check-out systems which, via telemetry equipment, were responsible for all communications with the HEOS-A spacecraft. Messages transmitted under keyboard control included up to 200 variable commands for switching experiments on or off, and for changing experimental modes.

Among the experiments being conducted by HEOS-A are investigations of the earth’s magnetic and electrical fields, interplanetary magnetic fields, high energy cosmic ray protons, and low energy solar protons, the flux and spectrum of cosmic ray particles and the so-called solar wind.

Water Pollution Study

Pollution of beaches around our coast is a subject of public concern. The Water Pollution Research Laboratory at Stevenage, a department of the Ministry of Technology, have been carrying out experiments to examine the effects of environmental factors on the dispersion of sewage from sea outfalls.

A radioactive tracer (Bromine 82) is added either to the sewage as it enters the sea or directly to the sea at the site of an existing or hypothetical outfall. The dispersal of the tracer is then determined by a number of radiation counters towed at constant speeds and different depths by the survey vessel shown right.

The output from the counters is fed to a recorder housed in the vessel (see photograph below). The recorder, which is battery powered, has five tracks for recording counter output and three other tracks for a recorded controlled-frequency pilot tone, an audio “notebook” containing readings of the position of the vessel, and an event marker channel for pinpointing the audio position “fixes”.

On completion of the sea survey the recorded tape is replayed in the laboratory on a similar instrument feeding a timer-counter, a paper tape punch and, if required, a decimal printer.

The recorded controlled-frequency pilot tone is used as the time base for the timer-counter to allow for differences in the speeds of the two tape transport systems. The event marker signals corresponding to shore “fixes” appear on the punched tape as serially numbered identification characters.
Electronic Sorting

As a major step towards establishing fully automated postal sorting offices in Britain, The Plessey Company has completed its first production test of electronic coding desks and translators. This equipment substitutes the written postal code/address on letters with a code that can be understood by machines used for mail handling in an automated post office.

After being sorted for size and then letter faced, the mail is presented to an operator on a coding desk who copytypes the six character code on the electronic keyboard, similar to a typewriter. Information is then fed as an electronic signal to the translator which changes the data into two 12 bit binary code patterns, one representing the "post town" of the address and the other the street or road in which the recipient lives.

The binary code patterns are printed on the envelope as two rows of luminescent dots which are almost indiscernible to the human eye. All mail sorting machines are designed to read these dots thus enabling a letter to be processed completely automatically.

CCTV for Concorde

Closed circuit television equipment has been installed in Concorde prototypes 001 and 002. Pictures from any of the cameras can be selected for viewing on two monitors and can also be recorded on a video tape recorder.

This very rugged camera head, specially designed for aircraft use, is completely sealed in a strong aluminium alloy casting. The lens, housed internally, looks out through a sealed window which incorporates an electrical heater. The camera incorporates a sun shutter and when used with the EMI Camera Control Unit type CC1106 provides a fully automatic camera system. The rugged EMI 26mm (1 inch) Vidicon Tube type 9730 and printed circuit scanning coils are used in this unit.

Two of these cameras, one facing aft and one facing forward, are used on each Concorde aircraft for taxiing and landing aid applications.

Three of these cameras have been fitted within various small spaces available in engine nacelles to enable possible inflight icing conditions to be observed and recorded. Special optical devices have been engineered to give the necessary viewing angles required in the confined spaces available.
Before delving into the technicalities of this particular circuit, it is necessary to explain just how important a very high input impedance is in certain applications, and just what is meant by the expression “high impedance”.

The terms “high” and “very high” impedance are, of course, relative terms. In valve circuits, for example, impedances in the range of several hundred kilohms are normal, whereas, in transistor circuits, impedances in the range of a few kilohms are considered to be common. Generally, in transistor circuits, impedances in the range of several tens of kilohms are considered to be “high”, while impedances of greater than a few megohms are regarded as “very high”.

INPUT IMPEDANCE

The higher the input impedance of a unit, such as a voltmeter, valve voltmeter or oscilloscope, etc., the lower will be the power that it takes from any circuit under test and thus the lower will be any error in the readings that are obtained due to loading effects.

CRYSTAL MICROPHONE

When a crystal microphone or pick-up is to be fed to an amplifier, it is very important that the amplifier should have a very high input impedance, if low frequency attenuation is not to take place. The effective circuit of the crystal microphone feeding into the amplifier input is shown in Fig. 1. The equivalent circuit of the crystal microphone is shown dotted in Fig. 1, a voltage generator in series with a capacitance, usually in the order of 1,000pF. This capacitance is in series with the input of the amplifier.

Since C and R are in series, they act as a potential divider network, the attenuation of the circuit depending on frequency. When the reactance of C equals R, the signal appearing at their junction will be half that at the generator terminals (or 6dB down). Thus, for a good low frequency response, R should be as large as possible.

HIGH IMPEDANCE TRANSISTOR CIRCUITS

One transistor circuit which will give a high input impedance is the emitter follower or common collector amplifier, shown in its basic form in Fig. 2a. Another method is to use the Darlington or super-alpha pair, shown in Fig. 2b. Here, TR_2 is connected as a normal emitter follower, as in Fig. 2a, but an additional transistor, TR_1 is interposed between the input and TR_2. The additional transistor has its emitter directly coupled to the base of TR_2; this way the effective gain of the circuit as a whole is equal to the product of the two individual transistor gains.

BOOTSTRAPPING

In Figs. 2a and 2b the base-bias is shown as being current derived via a single resistor R_2; this method of base-bias results in poor temperature stability. For good stability, a voltage-divider base-bias network
Fig. 3. Circuit diagram of the very high impedance amplifier

should be used. Such a network would shunt the input circuit even more and so reduce the input impedance further.

This difficulty can be overcome by employing the technique known as "bootstrapping", as shown in Fig. 2c. Here, the voltage-divider base-bias network comprises R2 and R3. The input signal is fed directly to TR1 base.

The voltage gain of an emitter follower is nearly 1, and virtually the same signal injected at the base will be reflected at the emitter, both signals being in phase.

The a.c. emitter signal is coupled back to the junction of R2, R3, and R4 via C1; thus, the same a.c. signal is present at each end of R4 and no a.c. current flows in this resistor. It follows that the resistor acts as an extremely high impedance to a.c. (but not to d.c.) and thus eliminates the shunting effect of the base-bias network.

The final circuit of the very high impedance amplifier has an input impedance of approximately 5 megohms and the output impedance is one hundred ohms.

PRACTICAL CIRCUIT

Referring to the full circuit diagram shown in Fig. 3, the input is connected via C1 to the base of TR1. TR1 and TR2 are connected as a super-alpha pair in the emitter follower configuration, the emitter load being VR1. The base-bias network, R1 and R2, is coupled to TR1 base via R3. Capacitor C2 feeds the bootstrap voltage from TR2 emitter to the potential divider junction. The effective leakage impedance of TR1 is also bootstrapped, via R4 and C3.

To prevent the emitter load of TR2 from being effectively shunted by the input impedance of TR4, an additional emitter follower stage, TR3, is inserted in the circuit. The base biasing of TR3 is controlled by resistor R5.

Resistor R10 is the emitter load for TR4 which is connected as a common emitter amplifier. As R10 has no decoupling, negative feedback is applied to this stage, and TR4 produces a voltage gain of approximately 8½ times.

Finally, another emitter follower, TR5, has its base

Fig. 4. Layout of components on the board and underside view showing the breaks in the copper strips

COMPONENTS . . .

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Capacitors</th>
<th>Transistors</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 47kΩ</td>
<td>C1 1µF elec. 15V</td>
<td>TR1, 2, 3, 4, 5 NKT277 (Newmarket) (5 off)</td>
<td>BY1 9 volts, type PP7 or PP9</td>
</tr>
<tr>
<td>R2 47kΩ</td>
<td>C2 16µF elec. 15V</td>
<td></td>
<td>Veroboard, battery connectors, p.v.c. covered wire, screened input lead, metal case and coaxial plug and socket (if required)</td>
</tr>
<tr>
<td>R3 100kΩ</td>
<td>C3 16µF elec. 15V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4 68kΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5 100kΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R6 1kΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All ±10% 1/2 watt carbon</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Potentiometer
VR1 5kΩ miniature skeleton preset

Miscellaneous
BY1 -ve 2 holes A'No32 drill
directly coupled to TR4 collector and gives a final output impedance of approximately 100 ohms, via C6.
The emitter load of TR2 is the volume control VR1.

CONSTRUCTION
Start by cutting the Veroboard to size and breaking the copper strips as indicated in Fig. 4.
Wire up the first two stages of the unit—TR1 and TR2. With a voltmeter, check that the voltage on the base of TR1 and the emitter of TR2 is about 4V volts. Carry out a simple function check on this stage.
Wire up the rest of the unit, one stage at a time, checking carefully the wiring and carrying out a functional check on each stage.
When used in high impedance applications, it is essential that a screened input lead be used, and that the completed circuit board be enclosed in a metal case.
Two 6B.A. mounting holes are shown in Fig. 4; the board should be mounted on insulating spacers with two 6B.A. screws. Clear away surplus copper around the screws to avoid the risk of short circuits. A coaxial socket can be mounted on the case if desired or the screened lead can be passed through a hole in the case directly to the board at points 2A and 2G. If the input lead is passed through a hole in the case, a rubber grommet should be fixed in the hole to protect the lead from chafing.

VARIATIONS OF THE CIRCUIT
If the unit is required to act as a straight forward impedance transformer, without amplification, then TR4 and TR5 stages can be eliminated from the circuit, the output being taken from C5 positive.
If greater voltage gain is required in the audio frequency band, connect a 50µF decoupling capacitor in parallel with R10. If a voltage gain in the order of approximately 8± to 25 is required, with maximum possible bandwidth, insert the decoupling capacitor as above and also break the connection between R7 and the negative line and re-connect the top end of R7 to TR4 collector. Adjust the values of R7 and R8 until the required value of gain is obtained, consistent with a no-signal voltage of approximately 4V volts at TR4 collector.
It may be necessary, in both of these cases, to insert a decoupling network in the negative supply line between the TR3 and TR4 stages, to prevent instability. This would be a 4700µF resistor in series with the negative supply line between R7±R9 and TR3 collector. A 100µF capacitor is then connected between TR3 collector and the common positive line.

APPLICATIONS OF THE UNIT
The unit is ideal for use as a buffer stage between a high impedance crystal microphone and the low impedance input to a transistor amplifier. If the TR4 and TR5 stages are eliminated from the circuit and VR1 is replaced with a fixed 4± kilohm resistor, the resulting unit will be small enough to be built into a crystal microphone case. The crystal microphone unit will then have an effective output impedance of 100 ohms and thus overcome the hum troubles that normally occur when these have long connecting leads to amplifiers.
Because of the very low value of input capacitance of the circuit, input impedances some 10 to 15 times greater than are possible with normal test equipment, are available at frequencies above about 100KHz. The voltage rating of C1 will, generally, have to be increased to suit the application.

NEWS BRIEFS

Rapier Anti-Aircraft System to get Radar Eyes
The Ministry of Technology has placed a contract with the British Aircraft Corporation and Elliott Space and Weapon Automation Limited to develop and manufacture equipment to extend the capability of the BAC "Rapier" anti-aircraft missile system. About 70 per cent of the value of this contract will go to Elliotts who will manufacture the Elliott-designed tracking radar units. The "Rapier" system, using optical guidance, has been successful during its trials and has been ordered for both the Royal Air Force and the British Army. Substantial overseas sales have also been made. The new radar tracking system will permit engagement of targets during the hours of darkness and in poor visibility.

Pocket Paging for Stock Exchange
Pocket paging receivers, measuring only 1.5in wide by 5in high by 5in deep, are to be used at the London Stock Exchange to call dealers immediately they are required by their offices. Initially 1,200 pocket receivers will be installed but the system can be expanded up to 4,000 units.
The paging receiver uses copper-clad Bakelite laminate, supplied by BXL, for the circuit board.

Fifteenth VHF Convention
The fifteen VHF/UHF Convention will take place on Saturday, April 26 at the Winning Post Hotel, Whitton, near Twickenham in Middlesex. Tickets for the Convention can be obtained from Mr F. Green at 48 Borough Way, Potters Bar, Herts. Tickets for the whole day are priced at 32s 6d, for the afternoon 5s, and for the banquet only 27s 6d.

Central Training Council Report
The third report of the Central Training Council, under the chairmanship of the Rt. Hon. Frank Cousins, was published on March 3. The report deals with many aspects of Industrial training and gives recommendations for the training of computer staff.
A second Committee was set up to look more closely at the problem of computer staff training, its recommendations for the training of systems analysts (commercial) has now been published and work is in hand on the process and scientific areas of training. Both the "Central Training Council" report and "The Training of Systems Analysts" are available from HMSO at 4s and 5s respectively.

Cricket by Computer
People in South Africa are reading ball-by-ball accounts of the test series with England that never took place. The games are being played by an ICL 1900 computer which has been programmed with the records of batsmen over their past 50 first class games and for bowlers 25 matches have been used.

Even the small variables have not been left out; the computer is programmed for such items as the new ball and the state of the pitch. Team tactics are governed by a captain who programmes the computer on team positions and play tactics.

At the start of the first match John Edrich, the England opener, was clean bowled by the first ball—proving even a computer can keep the surprises in the game.
OF THE many methods of comparing frequencies and phase difference, the phase splitter circuit provides all the visual advantages of the Lissajous figures, but provides a clearer display of phase difference and allows a wide range of measurements of even numbered frequency ratios (as high as 50:1) and a very precise determination of odd-numbered frequency ratios. The simple circuit consists only of resistors and capacitors.

This article describes a development of the ideas behind the circuit in four stages. The cycloid patterns are produced, in effect, as if the spot of the c.r.o. were on the tip of a vector rotating on the tip of another rotating vector. The shape of the patterns depends on (a) the frequencies of the rotating vectors, (b) the amplitudes of the alternating voltages, and (c) on whether the vectors are rotating in the same or opposite directions.

STAGE 1
At the mention of frequency comparison, the familiar display of Lissajous figures immediately springs to mind. The two frequencies are connected, as in Fig. 1, to the X and Y plates of the c.r.o. One member of each pair of plates is common to both deflecting circuits.

For two sources of the same frequency (and the same amplitude), the c.r.o. spot traces out a straight line, an ellipse or a circle depending on the phase difference between the sources. If the two sources have slightly different frequencies, the phase of one will gradually overtake that of the other and the pattern will slowly change through the complete sequence 0-360 degrees. This is shown in Fig. 2.

STAGE 2
One pattern which we will follow up is for the 1:1 ratio with a phase difference of 90 degrees (Fig. 3).
Comparison of cycloid patterns with Lissajous figures for certain frequency ratios. Note that the shapes of both forms of figure depends on the phases of the input voltages, frequency and magnitude.

Assuming that when the voltage source is positive, the spot is deflected as indicated by the arrows for the appropriate sources, and further that the voltages have the same amplitude and the c.r. tube the same deflection sensitivity on both of its axes, the application of the mains (sinusoidal) voltage for \(f_0 \) will produce a circle with \(f_1 \) if their phase difference is 90 or 270 degrees.

STAGE 3

With only one frequency source, the same pattern is obtained with the circuit of Fig. 4, which serves as a simple phase splitting circuit. The voltage across \(C \) (taken to the Y plates) being 90 degrees out of phase with that across \(R \) (taken to the X plates).

If the value of \(R \) is equal to the reactance of \(C \) and if the X and Y gain controls (sensitivity of deflection) have been adjusted to equality, the spot traverses a circle at the frequency of the supply source. The angular displacement (rotation) of the spot is proportional to the time \(t/2 \) and the radius of the circle is proportional to the peak value of the voltage across \(C \) and that of the voltage across \(R \).

If \(C = 0.1\mu F \), then its reactance at mains frequency of 50Hz is \(1/(2\pi fC) = 31,840 \) ohms. The voltages across \(C \) and \(R \) are equal. Otherwise a circular trace would be obtained if \(V_C \times Y_{\text{gain}} = V_R \times X_{\text{gain}} \).

STAGE 4

The basic circuit for frequency comparison with cycloids is shown in Fig. 5. The 50Hz reference
frequency is \(f_2 \) and \(R_2 \) is adjusted to the reactance of \(C_2 \).

\(R_1 \) may be adjusted to be equal to the reactance of \(C_1 \) for the unknown frequency \(f_1 \). If the voltages across \(R \) and \(C \) are applied to the c.r.o. the spot should trace out a circle in each case.

If the pairs of voltages are applied simultaneously, the spot traces out the cycloids. The epicycloid is for the vectors rotating in the same direction; the hypocycloid for the vectors rotating in opposite directions.

INTERPRETING THE CYCLOID PATTERNS

Fig. 6 shows part of a polar-oscillograph or spirograph. For one complete loop-the-loop cycle, the reference vector rotates through an angle \(\omega \) while the added vector rotates in the same time through an angle \(360 + \omega \) (for the epicycloid) or \(360 - \omega \) (for the hypocycloid). The frequency ratio \(m = f_1/f_2 \) is proportional to the ratio of these angles;

\[
m = \frac{360 + \omega}{\omega} = \frac{360}{\omega} + 1 \quad \text{(epicycloid)},
\]

and

\[
m = \frac{360 - \omega}{\omega} = \frac{360}{\omega} - 1 \quad \text{(hypocycloid)}.
\]

If the ratio

\[
\frac{360}{\omega} = \frac{s}{p}, \quad \text{then} \quad m = \frac{s}{p} + 1 \quad \text{(epicycloid)}
\]

and

\[
m = \frac{s}{p} - 1 \quad \text{(hypocycloid)}
\]

where \(s \) is the number of loops or cusps in the pattern, and \(p \) is the number of complete revolutions of the spot for a complete pattern. This can be found by counting the number of intersections along a radius from the centre of the figure. If the radius goes through a cross over point, count 2. Cross-over points are easily distinguished from peaks or sharp loops.

PRACTICAL CIRCUITS

The basic circuit in Fig. 7 is practical, of course, and is easily set up on a circuit board of perforated hardboard, size 10in \(\times \) 8in, using spring connectors.

If the whole audio frequency range has to be coped with, capacitors of value 0.1, 0.05, 0.025, 0.010, 0.005 \(\mu \)F can be inserted at \(C_2 \). If a reference frequency other than 50Hz is to be used, a similar set of capacitors can be used at \(C_1 \) (Fig. 7).

Whether you will get an epicycloid or a hypocycloid depends on the phase of the voltages arriving at the oscilloscope. By throwing the reversing switch \(S1 \) you can change from one kind of cycloid to the other.

A 0–20V a.c. supply is suitable for the reference frequency. It is possible by switches (not shown in the diagram) to switch off either of the signals and adjust the circles individually and then to switch over to both frequencies to produce the combined pattern.
In an alternative circuit, Fig. 8, the R-C components are duplicated again for convenience in superimposing the unknown frequency on the reference frequency to produce epicycloids. The components can be rearranged on the circuit board to produce the hypocycloids.

For sources of equal frequency and equal amplitude, in the case of hypocycloids, there will be a stationary straight line trace which will show an angle of rotation with the vertical. The phase angle is twice the angle of rotation of the trace and is accurate to within 5 degrees (see Fig. 9).

INFLUENCE OF SIGNAL CIRCUITS

The loops at first on the screen can be made into peaks by reducing the amplitude of the voltage with the higher frequency.

If the patterns are not stationary, the frequency difference corresponding to the nearest frequency ratio represented by the pattern, can be determined from the number of peaks (or loops or cusps) per second passing a given point. An extremely accurate determination of frequency ratio can be made in this way. Some typical examples of these patterns are shown in Fig. 11.

As the frequency of one source is increased, the rate at which the pattern changes is increased, but at certain frequency ratios, stationary patterns appear. These patterns are known as Lissajous figures, from which the frequency ratio can be obtained.

In general, if vertical and horizontal lines are drawn (in imagination) on the pattern and the number of intersections counted, the ratio of these numbers gives the frequency ratio of the two sources. If the line is drawn where the trace crosses itself, two intersections on that line are counted (see Fig. 10).

If the frequencies are not in the exact ratios above, the pattern goes through a complete precession of figures. The frequency of repetition is equal to the difference between the frequencies of the two sources. The determination of larger frequency ratios such as 14:3 is not easy because of the difficulty of separating and counting the number of loops in the complex trace produced; phase comparison is almost impossible.

The transformer in the practical circuit has three separate windings, each of 100 turns of 38 s.w.g. enamelled copper wire, on two C-cores. By reversing the connections A and B the epicycloids can be changed into hypocycloids.
Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned.

PRINTED CIRCUIT BOARDS

Many of our readers showed great interest in our Rhythm Generator published in the November and December 1968 issues, but seemed to have been deterred in some cases by the complex wiring appearance of the prototype.

It should be of interest to many, therefore, that a printed circuit board has been developed to make easier, neater and quicker construction. Designed and supplied by Almary Designs, 12 Lattimore Road, Wheathampstead, Herts., the printed board is supplied undrilled with a circuit layout plan and costs 29s 6d including postage.

The board measures 14\(\frac{1}{2}\)in x 5in which is approximately the area of the four Letrokit panels used in the original design. With all the components mounted on one side of the board, all parts of the circuit are easily accessible for testing and fault finding.

S.D.C. Products (Electronics) Ltd., have extended their range of modular solderless breadboarding systems to include two new boards, intended primarily for integrated circuits and discrete components.

The \(\mu\)-DeCs can accommodate two 16-lead digital integrated logic (DIL) modules or four 10-lead TOS modules. The T-DeCs, intended primarily for discrete components, can also accommodate one DIL module or two 10-lead TOS modules.

Spring contacts are of heavy gauge phosphor bronze either silver plated or gold over nickel plated finish. The layout of the parallel contact strips are arranged on two panels, the rows being 5mm apart. This spacing enables short lead devices to be easily inserted directly into the boards.

All DeCs may be interlocked to give a greater working area; full details of the new boards can be obtained from S.D.C. Products (Electronics) Ltd., The Corn Exchange, Chelmsford, Essex.

WIRING BOARD CASE

Two new width sizes have been added to the Chillworth range of portable module cases manufactured by Vero Electronics Ltd. Making six new sizes in all, these cases are designed for use in conjunction with standard modules from the Vero modular rack system 1A. Guides are located in the cases on special trays, and fitted to allow either single or multiple combinations. A detachable rear panel is supplied as standard.

DRY JOINT LOCATOR

To counter the problem of solder joint failure (i.e. "dry" connections), Davian Instruments are now manufacturing a continuity measuring device to detect dry joints.

The unit is basically a linear-scaled ohmmeter of variable (normally preset) sensitivity, and either mains or battery powered. The meter uses low voltage and high current to measure low resistances. By using the high current to measure low resistances any dry joints will be shown by the high joint resistance.

A good soldered joint should have a resistance of less than 50 milliohms and dry joints normally have a resistance greater than 0.5 ohm. Other possible applications are: investigating earth loops and return paths; testing coils for shorted turns and measuring relay contact resistances. Sensitivity is continuously adjustable with a minimum accuracy of 5 per cent f.s.d. The meter has an adjustable full scale deflection of 0.5 ohm minimum and 5 ohms maximum. In order to protect the meter and circuit under test, the maximum applied voltage is limited to less than 1 volt. The applied current is 250mA on the minimum range and 25mA on the maximum. Resolution at 1 per cent f.s.d. is 5 milliohms at minimum and 0.05 ohm at maximum reading.

The Davian Dry Joint Locator costs £17 for the battery version and £19 10s for the mains version; postage and packing is extra. The meters and further information are available from Techmation Ltd., 58 Edgware Way, Edgware, Middlesex.
MINIATURE TRANSFORMERS

A new "off-the-shelf" range of miniature mains transformers has recently been introduced by the Belclere Co. Ltd., 385/7 Cowley Road, Oxford.

Outputs range from 3-0-3 volts to 20-0-20 volts and each transformer delivers up to 600mA. The current output ratings vary from 30mA to 200mA. By not using the centre tap you can obtain 6V at 100mA, 12V at 30mA, 18V at 33mA, 24V at 25mA or 40V at 15mA.

These transformers are varnish impregnated and supplied with printed circuit pin mounting terminals, or can be obtained with clamp mounting fixing with or without an electrostatic screen.

Belclere also run a special sub-miniature transformer design service to order and experimenters are recommended to write to them for further details.

SWITCH

A new type of rocker switch is now being manufactured by Carr Fastener Co. Ltd., Stapleford, Nottingham.

The switch press-fits into a rectangular hole and is rated at 13 amp 250 volts a.c. A useful feature of the switch is that a number of these switches can be ganged together in one hole, a self-retaining push-on linking bar can be supplied when it is required to link any switches electrically.

FUSEHOLDERS

The incorporation of fuses in electronic apparatus is always a recommended safety precaution, particularly for experimental work.

The best type of equipment fuse holder is probably that intended for panel mounting.

A new range is being produced by A. F. Bulgin & Co. Ltd., Bye Pass Road, Barking, Essex, that follows this style. When the screw cap is withdrawn with the fuse, the circuit is automatically disconnected; it is virtually impossible to short out the contacts accidentally.

These new moulded construction fuseholders carry 3/4in diameter fuses and are rated at 15A at 250 volts or 20A at 32 volts. Heavy overload tests carried out with a 20A fuse under direct "short circuit" conditions resulted in no damage to fuseholder or fuse cartridge ferrules.

POWER Supply

A new additional range of stabilised power supplies have been added to the Coutant electronic products. Known as the LM series of power supplies, these units use cascade connected voltage amplifiers to provide the high gain necessary for maximum stability and minimum noise. A fast acting current limiting circuit protects the power supply from damage in the event of an overload or short circuit.

There are two models in the series: the LM 50/30 is a 0 to 30V d.c. at 0.5A model and the LM 100/15 which is a 0 to 15V d.c. at 1A model. Each model includes both coarse and fine panel-mounted potentiometers for accurate adjustment of the output voltage. A built-in meter can be switched to read either the output voltage or current. The output terminals are completely isolated or "floating" and either terminal may be earthed.

The output impedance is less than 5 milliohms at d.c. and less than 500 milliohms at 500kHz. The ripple voltage is less than 1 millivolt peak-to-peak.

Complete details and specification of the LM series can be obtained from Coutant Electronics Ltd., 3 Trafford Road, Reading.

FILM FOR EDUCATION

A new, 36-frame, 35mm colour film entitled "Integrated Circuits" is now available to schools, colleges, evening institutes, clubs and training establishments from the Mullard Educational Service, Mullard House, Torrington Place, London, W.C.1.

The film is intended as an introduction to the subject for students of semiconductor technology and for those with a wider interest in electronics. Although an elementary knowledge of semiconductors is desirable, it is not essential. The notes accompanying the film can easily be edited to suit a wide range of academic levels.

The filmstrip commences with a brief introduction to integrated circuits and illustrates the great reduction in size that the integration technique has made possible. Then follows a step-by-step description of the manufacturing processes; preparing the silicon slice, oxidation, photo-etching, diffusion of the n- or p-type materials, cutting the windows, etc. and finally a description of the testing and encapsulation of integrated circuits is given.

The filmstrip costs £2 from Mullard Ltd., and a set of slides can be purchased for £2 10s., including postage, from The Slide Centre Ltd., Portman House, 17 Brodrick Road, London, S.W.17.

AGENT

The West German firm of Richard Hirschmann have appointed Electrotronic Ltd., 73b North Street, Guildford, Surrey, their sole U.K. agents.

Amongst the wide range of components are terminals, panel mounting and spade types; single-pole sockets, insulated and non-insulated; banana plugs and sockets; five styles of test prods; crocodile clips insulated and non-insulated; and continental plugs and sockets. Catalogues and full information is available from Electrotronic Ltd.
CHEAPEST EVER SOLID-STATE SALE

BEST VALUE IN BRITAIN

40 Silicon Rectifiers, 2N3702, with all resistors, capacitors, diodes, transistor test kit, etc. Guaranteed minimum 50% good.

40 Silicon Rectifiers, TO-3 case, 2N706, BSY9SA, etc. Not tested or coded. Guaranteed minimum 50% good.

3 Silicon Epitaxial Planar Diodes—Sub-milliamp. Type SD19. P/N 103. Not tested or coded. Guaranteed minimum 50% good.

ZENER DIODES

AVAILABLE IN THE FOLLOWING VOLTAGES WITH A DISSIPATION OF 1 WATT AND SIMILAR VOLTAGE RANGE:

200V d.e. working. Min. O-0.05, 0-0.22. £0.33. See page 150V d.e. working. 0.010 to 0.001. £1.00. £2.00, £5.00. £10.00 to £100.00. £1.00. £2.00, £5.00. £10.00.

ZENER DIODES

RESISTORS OR 1 WATT 5% LOW NOISE CARBON TYPES

RAILWAY MODELS & ACCESSORIES

RESISTORS OR 1/2 WATT 5% LOW NOISE CARBON TYPES

CAPACITORS (Mullard) — E.C. Glass Film & Paper Type

ULTRASONIC TRANSDUCERS

OPERATE AT 40 kc/s. CAN BE USED FOR REMOTE CONTROL SYSTEMS.

TRADE SUBSCRIPTIONS TO "TRANSDUCERS"...

ALUMINIUM CHASSIS

SILICON RECTIFIERS & THYRISTORS — SCR'S

POWER TRANSISTORS

TO-3 CASE. SIMILAR TO 2G371B. CASE 50-2. FULLY TESTED AND PROVEN DEVICES.

2G371B AND SD19 ARE MANUFACTURERS TESTED DEVICES.

SILICON RECTIFIER KITS

DD176 CONTAINS 2 200 p.v. 1 amp diodes £5/11

DD175 CONTAINS 4 100 p.v. 1 amp diodes £9/11

DIODES

20 Germanium Transistors 2G371B. Case 50-2. Fully tested and proven devices.

similar to 2G371B. Case 50-2. Fully tested and proven devices.

POWER TRANISTORS

TO-3 CASE. SIMILAR TO BUY1 I. TO-3 CASE. NOT TESTED OR CODED. GUARANTEED MINIMUM 50% GOOD.

ZENER DIODES

15 Silicon Epitaxial Planar Diodes—Sub-milliamp. Type SD19. P/N 103. Not tested or coded. Guaranteed minimum 50% good.

TO-18 CASE. SIMILAR TO BST27, 30 MICRO ALLOY DIFFUSED TRANSISTORS. (MAT TYPE) NOT TESTED OR CODED. GUARANTEED MINIMUM 80% GOOD.

TO-18 CASE. SIMILAR TO BST27, 30 MICRO ALLOY DIFFUSED TRANSISTORS. (MAT TYPE) NOT TESTED OR CODED. GUARANTEED MINIMUM 80% GOOD.

TO-18 CASE. SIMILAR TO BST27, 30 MICRO ALLOY DIFFUSED TRANSISTORS. (MAT TYPE) NOT TESTED OR CODED. GUARANTEED MINIMUM 80% GOOD.

SILICON POWER TRANSISTORS similar to BUYI I. TO-3 CASE. NOT TESTED OR CODED. GUARANTEED MINIMUM 50% GOOD.

SILICON POWER TRANSISTORS similar to BUYI I. TO-3 CASE. NOT TESTED OR CODED. GUARANTEED MINIMUM 50% GOOD.

SILICON POWER TRANSISTORS similar to BUYI I. TO-3 CASE. NOT TESTED OR CODED. GUARANTEED MINIMUM 50% GOOD.
How do you measure the extra quality of EMI speakers?

EMI are famous throughout the world for High Quality sound reproduction. Now our audio design engineers have developed loudspeaker systems suitable for home use.

These EMI Loudspeaker Systems, specially matched, produce every detail of the original sound over the full audio spectrum, at high and low listening levels.

They have many exclusive features. The range includes the unique 950 system with a 19 inches x 14 inches bass unit, power output 50 watts R.M.S.

Send for literature and price lists to:

EMI

EMI SOUND PRODUCTS LTD., HAYES, MIDDX. TEL: 01-573-3888 EXT. 667

Listen!

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which CREI, the Home Study Division of McGraw-Hill Book Co., can provide.

CREI Study Programmes are directly related to the problems of industry including the latest technological developments and advanced ideas. The individual tuition given by the CREI panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Take the first step to a better job now—enrol with CREI, the specialists in Technical Home Study Education.

CREI Programmes are available in:
Electronic Engineering Technology * Industrial Electronics for Automation * Computer Systems Technology * Nuclear Engineering * Mathematics for Electronics Engineers * Television Engineering * Radar and Servo Engineering * City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

A Subsidiary of McGraw-Hill Inc.

Post this coupon today for a better future

Please send me (without obligation) details of your Educational Programmes

please tick
My interest is City and Guilds □ General □

Name
Address

Electronics experience

Send for literature and price lists to:

EMI

EMI SOUND PRODUCTS LTD., HAYES, MIDDX. TEL: 01-573-3888 EXT. 667

376
UNLIMITED!

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

This is YOUR page and any idea published will be awarded payment according to its merit.

TRANSISTOR CHECKOUT

The circuit shown in Fig. 1 has proved very useful for checking gains of "surplus" type transistors. The battery BY1 is connected by a switch S2 for pnp or npn types. The middle position is off.

To set up the tester, the 5 kilohm potentiometer VR3 is adjusted so that an external voltmeter, connected across points (a) and (b), will read 6 volts. A known good transistor is then connected to the test socket or test leads, and a multimeter switched to its 500μA range connected across point (a) and position 2 of switch S1. With switch S1 in position 1, VR2 is adjusted for a reading of 25μA. Then the test lead on position 2 is transferred to position 3 and VR1 adjusted for a reading of 50μA.

Operation is now fairly simple; a sample transistor is connected into the circuit and pnp or npn selected by S2. When S1 is in position 1, ICBO is measured. When the switch is in position 2, d.c. β or hFE can be measured, assuming f.s.d. on the meter is 100. For a.c. β or hFe, with the switch in the same position, the reading in milliamps is taken. Call this I1. Then the reading in milliamps is taken with the switch in position 3. This is I2. Then, hFe is calculated from:

\[
hFe = \frac{I_2 - I_1 (\text{mA})}{0.025 \ (\text{change in } I_b)}
\]

C. Woods, Oadby, Leicestershire.

MORE PLAYERS FOR "STOCKMARKET"?

I have just built the Electronic Stockmarket shown in your December 1968 issue. In doing so I have found it possible to accommodate several players at low cost. The "bank" and "current" account capacitors can be connected to a two-pole multiway switch. By this means only one set of push buttons and one detector circuit are required and the number of players is only limited by the number of positions on the switch.

In practice I have used a three-pole six-way switch, the other pole being used to light low powered indicator lights to show which player is "dealing". The switch must of course be a break-before-make type.

Added interest is achieved by using 100μF, 200μF and 300μF capacitors in the commodity bank, introducing three types of shares: (1) "guilt edged"—with small gains and losses; (2) "normal"—with average gains and losses; (3) "high risk"—with large gains and losses.

These are easily marked by using different coloured lettering.

E. B. Eves,
East Grinstead,
Sussex.

INTEGRATED CIRCUIT HOLDER

I have noticed that many of your contributors who use integrated circuits have warned constructors to be absolutely sure of the circuit's correct position before soldering. I have an idea that might save integrated circuits from destruction during desoldering of a faulty circuit.

If the integrated circuit is soldered into a 5-pin continental plug (as used on many tape recorders), five of the eight leads are accommodated. The earth shield can be used as another connection, leaving two more leads. If needed these can be soldered to flexible leads and taken out of the top of the plug.

The socket can be soldered onto a circuit board. The metal inner case can also be used as a heatsink if desired.

L. M. Newell,
Woodbridge,
Suffolk.

A B9A valveholder and plug would provide the required number of connections.—Ed.
THREE MILE RADIOTELESCOPE

Sanction has been given by the Science Research Council for the new telescope requested by Professor Sir Martin Ryle for the Mullard Radio Astronomy Observatory of Cambridge University. The cost is expected to be of the order of £2·1 million and the work will take about two years to complete.

The old proverb that "It's an ill wind that blows nobody good" is exemplified here. The ideal site for the aerial array is one of the Beeching redundant sections of the Cambridge-Bedford railway track which runs in a straight line almost due east and west at Lord's Bridge. Named after this station, the Observatory site and the railway is on the northern boundary of the site. The straight stretch of track is about three miles long.

Lord's Bridge station which has stood derelict and is roughly in the centre of the three mile stretch will be used as a control room. It is indeed fortuitous that this was available, for had it not been there would have arisen much controversy over any negotiations if more farmland had to be taken over.

RECEIVERS

The new telescope will consist of eight dish aerials each 42ft in diameter. These aerials, to be supplied by the Marconi Company, are the direct descendants of the 40ft dishes built for a military programme. Each dish is made up of aluminium sheets and mounted on a quasi-paraboloid steel structure. They are to be of the Cassigrain type where the ray path is from the source to the dish then to a secondary reflector, which is quasi-hyperboloidal, and from there the ray passes through the main dish to the two detachable receiver horns.

The 250ft dish is to be overhauled and modified. The modification will be the upgrading of the reflecting surface to make it suitable for wavelengths as short as 3cm. This has been announced, there will be an end to delay on the Mark 5 telescope for this will continue with source counting when the three mile telescope, for this will continue with source counting when the three mile telescope, for this will continue with source counting when the three mile telescope. The new telescope will operate in the same manner as the present one mile telescope and works on the principle of aperture synthesis, which has been pioneered by Professor Ryle and his group.

Aperture synthesis is based on the covering of large areas using two or more individual aerials. If one aerial is fixed and another moved, specific relation to it, and a plot over 24 hours is made of the sky in each position (see Fig. 2), then the results in digitised form can be fed into a computer. The result is a map of all the sources seen. If the maximum distances so used are, for example, one kilometre in extent east to west and north to south, this is equivalent to an aerial one kilometre square (see Fig. 3).

RESEARCH NEEDS

The one mile telescope which has already shown its value in the resolving of small sources (or very distant sources) made the need for an ever larger telescope desirable. The resolving power of this telescope is about 20 seconds of arc but it has shown that there are more sources which require the higher resolution of the new telescope. The need to understand the mechanism of quasars and galaxies is of great importance to cosmologists and astrophysicists so that this new venture is another important step in the understanding of the Universe.

The advent of the new telescope does not reduce the work of the one mile telescope, for this will continue with source counting when the three mile unit comes into operation.

Now that the intention of the Science Research Council to support only two schools of radio astronomy has been announced, there will be an end to delay on the Mark 5 telescope for Jodrell Bank. This is to be a 40ft diameter dish with full facilities.

The 250ft dish is to be overhauled and modified. The modification will be the upgrading of the reflecting surface to make it suitable for wavelengths as short as 3cm. This will be accomplished by resurfacing with the same manner as the present one mile telescope and works on the principle of aperture synthesis, which has been pioneered by Professor Ryle and his group.

The new telescope will operate in the same manner as the present one mile telescope and works on the principle of aperture synthesis, which has been pioneered by Professor Ryle and his group.

Aperture synthesis is based on the covering of large areas using two or more individual aerials. If one aerial is fixed and another moved, specific relation to it, and a plot over 24 hours is made of the sky in each position (see Fig. 2), then the results in digitised form can be fed into a computer. The result is a map of all the sources seen. If the maximum distances so used are, for example, one kilometre in extent east to west and north to south, this is equivalent to an aerial one kilometre square (see Fig. 3).

RESEARCH NEEDS

The one mile telescope which has already shown its value in the resolving of small sources (or very distant sources) made the need for an ever larger telescope desirable. The resolving power of this telescope is about 20 seconds of arc but it has shown that there are more sources which require the higher resolution of the new telescope. The need to understand the mechanism of quasars and galaxies is of great importance to cosmologists and astrophysicists so that this new venture is another important step in the understanding of the Universe.

The advent of the new telescope does not reduce the work of the one mile telescope, for this will continue with source counting when the three mile unit comes into operation.

Now that the intention of the Science Research Council to support only two schools of radio astronomy has been announced, there will be an end to delay on the Mark 5 telescope for Jodrell Bank. This is to be a 40ft diameter dish with full facilities.

The 250ft dish is to be overhauled and modified. The modification will be the upgrading of the reflecting surface to make it suitable for wavelengths as short as 3cm. This will be accomplished by resurfacing of the central area to a diameter of 100ft.

DRESS REHEARSAL

Apollo 9 was successfully landed at the time of going to press and marked a significant step forward to man landing on the Moon. Mechanical manoeuvres included taking the moon landing craft through its own orbit and redocking to the main spacecraft. Two astronauts transferred to the lunar landing vehicle through a connecting tunnel. Lunar landing with Apollo 10 and 11 is expected in May and July.
but you can own a circuit tester for under £15

THE HEATHKIT TEST TWINS are now available at just a fraction of the price of comparable models. How come? Because we have eliminated our assembly costs by giving YOU the satisfaction of building your own equipment.

HEATHKIT IT-18 PORTABLE IN-CIRCUIT TRANSISTOR TESTER

Heath engineers have brought about a breakthrough in transistor servicing. They have taken the high cost of transistor testers and brought them down to earth. The IT-18 has all the facilities you need for fast, in-circuit transistor testing.

HEATHKIT IM-17 PORTABLE SOLID STATE VOLT-OHM METER

Transistorised ‘valve-voltmeter’ with an 11 meg-ohm input impedance. Battery powered to work anywhere. Features zero-adjust controls, a DC polarity reversing switch to eliminate switching leads, plus continuous rotation 12 position function switch.
PORTABLE WHEATSTONE BRIDGE

Specifications:
- Type: Moving Coil Galvanometer
- Range: 0-110mH in 0.002mH divisions
- Frequency Range: 40c/s-10 Kc/s for all decades except XI = 40c/s-5Kc/s
- Case: Hammer finished stove enamel
- Maximum power rating: 0.1W per step
- Rated Power Per Component Case: 0.0002W divisions.
- Accuracy: 0.1%.

Price £22.10.0

PORTABLE MULTIRANGE METRO

Specifications:
- Type: Moving Coil, D.C.
- Range: 0.1-11.0M in 0.002M divisions
- Frequency Range: 40c/s-1200 for all decades except XI = 40c/s-1200
- Case: Hammer finished stove enamel
- Maximum power rating: 0.1W per step.
- Rated Power Per Component Case: 0.0002W divisions.
- Accuracy: 0.1%.

Price £22.10.0

HIGH VALUE RESISTANCE BOX

Specifications:
- Range: 0-400-0-40mA, D.C. 1-2 & 12 amps D.C. 0.6-3.6 A, 6-30mA A.C. 24-120mA A.C. 0.24-1.2A A.C. 1-12-300-600-1,200 & 6000 V. D.C. 0.3-6, 2-4, 12-6, 60-200, 600-1200 & 1200-6000 V. A.C. 3-333 ohms, 0.3-30 Kohms, 0.033 megs D.C. Resistance -12 to +78 Decibels. Frequency Range: 50 c.p.s. Input Resistance D.C.: 20,000 ohms/volt, Input Resistance A.C.: 2,000 ohms/volt. Temperature Range: -10 to +50°C. Dimensions: 255 x 215 x 170mm. Weight: 8kg. Supplied with: 2 voltage dividers, H.V. leads, spare rectifiers, 1.5 & 22.5V battery.

List price £22.10.0

DECADIANCE CAPACITANCE BOX TYPE R.7004

Specifications:
- Range: 0.00002uf-1uf in 0.00002uf steps. Accuracy: 0.05%
- Frequency Range: 40c/s-1200 for all decades except XI = 40c/s-1200
- Case: Hammer finished stove enamel
- Maximum power rating: 0.1W per step.
- Rated Power Per Component Case: 0.0002W divisions.
- Accuracy: 0.1%

Price £22.10.0

SET OF MEASURING INSTRUMENTS

Specifications:
- Type: Moving Coil, D.C.
- Range: 1-3-150V, 3-150V, 450V, 0.3-0.75A, 1.5-3A, 10A, 0.1-0.5A, 13-10A.
- Scale Length: 82mm.
- Accuracy: 1.0%

List price £12.19.6

P. F. RALFE RADIO
10 CHAPEL ST., LONDON, NW1
Tel. 01-723 8753
The simplest radio control system uses an unmodulated carrier, and can control only one relay in the model; the addition of a modulator stage in the transmitter and filters in the receiver not only improves selectivity, particularly with super-regenerative receivers, but allows the control of a number of relays. The modulation “tone” is normally detected, amplified and either applied to a reed bank (mechanical resonant switches) or is electrically filtered and operates switching transistors. Thus, a three tone transmitter (three channels) can independently control three operations in turn, or can control more than three if they are linked (sequential).

PROPORTIONAL CONTROL

If the transmitter has multiple modulators then simultaneous modulation by different tones allows simultaneous control of two or more operations; a further development of this is the “proportional” system in which the receiver output is directly applied to a servo motor which develops a torque or displacement proportional to the change in frequency of the modulated tone.

A filter is necessary for each channel of the system; the filter module illustrated consists of four sections which may be connected in series, tandem, or separately as four filters. Banks of filters may be made up as desired, the module being designed to be divided on either axis for packing, each filter weighing less than a half-ounce.

CIRCUIT DESIGN

The circuit of the tone filter (Fig. 1) is relatively simple but many factors affect its design and should be considered when “tailoring” the unit to meet individual needs.

The resonant frequency of a tuned circuit is given by \(f = \frac{1}{2\pi\sqrt{LC}} \) and will be the same provided the product of \(L \) and \(C \) is maintained constant; there is, however, an optimum value for the \(L \) to \(C \) ratio. The frequency range considered is from 1 to 7kHz and for values of \(L \) less than 100mH, capacitors greater than 0-5\(\mu \)F would be required. Since electrolytic capacitors may not be used, the size of the capacitor needed would be excessive for radio control applications.

A reasonable compromise for minimum size and weight of both inductor and capacitor is obtained over the range 0.3 to 1.0H and 0-0001 to 0-05\(\mu \)F. Series tuned circuits only are considered due to the ease with which the necessary low impedance matching is obtained and the fact that there is no d.c. component in the inductor; there is no need to use a larger core with an air gap to off-set the effects of saturation.

Q-FACTOR

The \(Q \) of the circuit is the most important factor and for a single stage filter is determined by \(Q = f/B \) where \(f \) is the filter frequency and \(B \) is the bandwidth (acceptance range) for the low frequency “proportional” signal.

For a tone frequency of say 3kHz and a bandwidth of 100Hz, the \(Q \)-factor will be \(3,000/100 = 30 \).
BANDWIDTH

The performance of such a circuit is shown in Fig. 2, the bandwidth being measured at the 3dB down point (at approximately 70 per cent of the peak signal level).

For a large bandwidth and good adjacent channel rejection, only two channels can be accommodated in the range 1 to 6kHz (the approximate range of a receiver). To improve upon this two stages are used. If both are tuned to exactly the same frequency the effective Q is greater than that of the individual stages, but if one stage is detuned the effect is to give a wider bandwidth with better rejection of adjacent frequencies. It is therefore possible to use five “proportional” channels or more simple “reed” tones having a narrow bandwidth.

The frequency range available is limited by the cut-off frequency of the receiver—say 7kHz for a good superhet receiver—and by approximately 10 times the channel bandwidth, for example, 1kHz for a bandwidth of 100Hz, allowing a minimum factor of 10 to 1 (carrier to modulation) for detection purposes.

DESIGN CALCULATIONS

The Q of a coil is defined as $\omega L/R_1$ or $2\pi fL/R_1$, where R_1 is the effective resistance of the coil—largely the d.c. resistance at low frequency. A fixed length of wire wound on different magnetic formers will produce values of Q related to the inductance produced at the frequency used: the Q will also be proportional to the frequency provided that the core material is suitable.

As an example, the table in Fig. 2 shows the Q-factor for 710 turns of 44 s.w.g. wire on two types of core (d.c. resistance is 66 ohms).

The core material chosen (FX2236) has a Q range of approximately 2:1 (Fig. 3) for the frequency range 1 to 6kHz. The stage Q is determined by the total effective series resistance R_{tot}, i.e. the sum of the coil resistance R_1, the source impedance R_s and the load resistance R_L. The driver output impedance (Z_o) is approximately

$$Z_o \approx r_e + \frac{R_s + r_{bb}}{h_{ie}}$$

and is in parallel with the emitter swamp resistor R_3.

The emitter resistance is

$$r_e \approx \frac{(26)}{I_e} + R_s + r_{bb}$$

where I_e is the emitter current in milliamps, R_s is the signal source resistance and r_{bb} the intrinsic base resistance.

continued on page 385
STEREO HEADPHONES
Adjustable head-band, quality 8-ohm phones, with padded earpieces. Fitted jack. Suitable for 3-16 ohms. Frequency range 25c/s to 14kc/s. D.I.C. Price 69/-.

TRANSISTOR CHECKER
Complete, capacity for checking all transistors pnp and npn for alpha, beta and germanium. Also diodes complete with leads and instructions. ZQ2M2, Price £2.19.6, p.p. 1/-.

MULTIMETER
Return operational, model, 2000 ohm/v. 0-10 mV / 0-100mV / 0-1V / 0-10V / 0-100V. A.c. d.c. 0/uA / 0.1mA / 1mA / 10mA / 100mA / 1A / 10A / 1mA / 100mA / 10A / 100A. D.C. / A.C. 0-uA / 0.1mA / 1mA / 10mA / 100mA / 1A / 10A / 1mA / 100mA / 10A / 100A. For use with aerial. Oscillators. 100/μA

TRANSPORT COMPONENTS AND EQUIPMENT
HENRY'S RADIO LTD.

50,000 OHMS PER VOLT MULTIMETER
Recommended quality instrument with meter scale and overload protection. 0/5/15/30/60/150/300/600/1500/3000/6000. D.C. 0/10/100/1000/10000/100000. A.C. 0/10/100/1000/10000/100000. A.C./d.c. 0/50/100/500/1000/5000. D.C./a.c. 0/50/100/500/1000/5000. Internal batteries 6V. 0/5/10/25/50/100/250/500/1000/2500/5000/10000/25000/50000. A.C./d.c. 0/50/100/250/500/1000/2500/5000/10000/25000/50000. "S" meter, 4-25V. 0/5/10/25/50/100/250/500/1000/2500/5000/10000/25000/50000. Other ranges and sizes available—state requirements.

SINE/SQUARE WAVE AUDIO GENERATOR
Provides audio output on 4 bands. Sine waves 20c/s to 100kc/s, output up to 7V; square wave 60c/s to 30kc/s, 7V p-p. Frequency 20c/s to 30kc/s, 7V p-p. Output impedance 2%. Output power 1W. Variable output amplitude control. Supplied with leads and instructions. A.C. mains operated. TE22, Price £6.10.0, carriage, etc., 10%.

VACUUM TUBE VOLT METER

FIELD STRENGTH METER
Covers 1-2500mc/s. Switches for model control and any p.p. in the range 400kc/s to 200mc/s in 5c/s. Uses 3 transistors plus diode with 50000 ohm meter. Internal batteries 6V. TE15, Price £1.11.0.0.

GRID DIP METER
All transistor grid dip meter, absorption wavemeter and osc. detector. Frequency range 440kc/s to 200mc/s 2-6 volts. Uses 3 transistors plus diode with 50000 ohm meter. Internal batteries 6V. TE15, Price £1.11.0.0.

TRANSISTOR POWER AMPLIFIERS
12W, 3 ohm, 100mV input, 24V supply. Model MPA12/3, £4.10.0, p.p. 4/-.

HENRY'S 320 page Catalogue has over 6,500 stock items. If you read this magazine and have not obtained one, you should—it will save you a lot of money as Henry's stock most things you require in components and equipment at low prices.
Member of the Association of British Correspondence Colleges

EXPERT COACHING FOR:

384 to learn.

without a sound working knowledge of maths.

I.C.S., Dept. 151, INTERTEXT HOUSE,

Through this ICS 3-way Training Method:

MASTER THE THEORETICAL SIDE

From basic principles to advanced applications, you'll learn the theory of electronic engineering, quickly and easily through ICS. That's because each course is set out in easy-to-understand terms.

MASTER THE PRACTICAL SIDE

ICS show you how to develop your practical abilities in electronic engineering—alongside your theoretical studies. It's the only sure way to success. All training manuals are packed with easy-to-follow illustrations.

MASTER THE MATHEMATICAL SIDE

To many this aspect is a bitter problem. Even more so because no electronic engineer is complete without a sound working knowledge of maths. But new ICS teaching makes mathematics easier to learn.

Wide range of courses available include:

Radio/TV Engineering and Servicing, Closed Circuits TV, Electronics, Electronic Maintenance, Servomechanisms, Computer Engineering, Numerical Control Electronics, etc.

EXPERT COACHING FOR:

INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS
CITY AND Guilds TELECOMMUNICATION TECHNICIANS
CITY AND Guilds ELECTRONIC SERVICING
R.E.T. RADIO/TV SERVICING CERTIFICATE
RADIO AMATEURS' EXAMINATION
P.M.G. CERTIFICATES IN RADIO TELEGRAPHY

Build your own radio, transistor portable, and professional-type test instruments with an ICS Practical Radio and Electronics Course. Everything is explained and easy to handle. All components and tools supplied. For details post coupon below.

Member of the Association of British Correspondence Colleges

FOR FREE HANDBOOK POST THIS COUPON TODAY

I.C.S., Dept. 151, INTERTEXT HOUSE,
PARKGATE ROAD, LONDON, S.W.11

NAME

ADDRESS

OCCUPATION

AGE

INTERNATIONAL CORRESPONDENCE SCHOOLS
COMPONENTS

ONE TONE FILTER ONLY

Resistors
R1 5-6kΩ
R2 5-6kΩ
R3 1kΩ
R4 5-1kΩ
R5 1-2kΩ
R6 3-3kΩ
R7 1kΩ
All ±10%, 1/4W carbon

Capacitors
C1 100μF elect. 12V
C2 100μF elect. 12V
C3 100μF elect. 12V
Cx see text

Transistors
TR1, TR2 ASZ21 (2 off)

Inductor
FX2236 Ferrox pot core—see text for coil details

Miscellaneous
Copper clad s.r.b.p. 3/16 x 1/8in (for each section)
Plastic covered wire
6B.A. fixings (for pot core)

Arrangement of four tone filters in one printed circuit board, see Fig. 7

Choosing a high gain ASZ21 ($h_{fe} = 70$), standing at a current of about 3mA (I_e) and with a source impedance of less than 300 ohms, gives an output impedance of 1 kilohm in parallel with 25 ohms.

Similarly with the grounded base stage (TR2) where R_s is kept low by C2 (100μF) in order not to attenuate the low frequency component.

CALCULATION OF Q

The effective Q of a stage can now be calculated. Assume a winding of 510 turns of 40 s.w.g. wire: from

Fig. 4. Graph for determining inductance of coil and value of capacitor Cx, for various frequencies

Fig. 5. Layout and wiring diagram of the printed circuit board for one complete tone filter capacitor. Capacitor Cx may be needed if two units are used in series—see text
Fig. 6. Circuit diagram of a two stage unit. Area enclosed by the broken line indicates one stage.

Fig. 4, inductance = 0.5H; from Fig. 3, \(Q \) at 3kHz = 69. As \(Q = \omega L / R_i \), then

\[
R_i = \frac{\omega L}{Q} = \frac{2\pi \times 3000 \times 0.5}{69} \approx 128 \text{ ohms.}
\]

Assuming the use of high gain transistors as above, we know that \(R_1 \approx 128 \text{ ohms, } \) \(R_3 \approx 25 \text{ ohms, and } \) \(R_L \approx 20 \text{ ohms. Therefore, the total series resistance } \)

\[
R_{\text{tot}} = 128 + 25 + 20 = 173 \text{ ohms. The effective } \]

\[
Q = \frac{\omega L}{R_{\text{tot}}}
\]

\[
Q = \frac{2\pi \times 3000 \times 0.5}{173} = 53
\]

The bandwidth at 3kHz is given by \(B = f / Q \). Therefore

\[
B = \frac{3000}{53} \approx 60\text{Hz}
\]

CONSTRUCTION

The printed circuit board shown in Fig. 5 is laid out for one stage.

When two stages are used the output from the first stage forms the bias for the emitter follower of the second stage, Fig. 6. D.C. coupling is used, omitting \(C_3 \) from the first stage, \(R_1, R_2, \) and \(C_1 \) from the second stage, and linking between \(TR_2 \) collector and \(TR_3 \) base.

Fig. 7 shows the board layout for four units, and may be used for two channels if divided vertically, or one or two double stage units if divided horizontally.

The gain of the double stage unit is approximately 34dB but this can be reduced, if necessary, by approximately 6dB by using the alternative grounded base stage (Fig. 8). This avoids clipping if the input signal is greater than 0.4 volts peak-to-peak and gives a lower output impedance for coupling into the discriminator.

\(C_1, C_3 \) and \(C_5 \) (Figs. 1 and 6) are electrolytic coupling capacitors and should be wired to suit input and output circuit d.c. levels. The bandwidth required is set by detuning one stage of the two stage unit. In practice the tolerance of cheap polyester or similar capacitors is sufficient to achieve this directly but the use of a small value capacitor \(C_t \) as shown in Fig. 6 gives accurate alignment.

Temperature stability is principally dependent on the temperature coefficient of \(C_x \) and \(C_y \); optimum results are obtained by using a parallel combination of positive and negative temperature coefficient capacitors.
Get up-to-date with the latest Mullard Data Book—just published. It contains details of current Mullard valves, picture tubes, semiconductors and components for Radio, TV, Audio and HiFi applications. Each section, colour coded for quick reference, includes comparables and equivalents information plus details of the latest devices in the replacement market.

Buy your copy from your local TV retailer or send 3/6 plus 9d for postage and packing direct to Mullard Ltd.
If you want the best in soldering, Antex irons are for you. Pin point precision, fingertip control, interchangeable bits that slide over the elements and do not stick, sharp heat at the tip, reliable elements and full availability of spares. World-wide users, both enthusiasts and professionals solder with Antex. It's time you joined them. Antex soldering irons are stocked by quality electrical dealers, or you can order direct from us. A free colour catalogue will be supplied on request.

CN 15 watts, fitted \(\frac{5}{32} \) Ferra clad bit. The leading iron for miniature and micro miniature assemblies: 18 interchangeable bits from .040 (1 mm) up to \(\frac{1}{64} \) for 240, 220, 110, 50 or 24 volts.

FROM 32/6

ACTUAL SIZE

Model CN 240/2
15 watts—240 volts
with nickel plated bit (\(\frac{1}{64} \)) and in a handy transparent pack.

COMPLETE PRECISION SOLDERING KIT
Supplied in its own compact, rigid plastic container and includes all of these items:

- CN 15 watts 240 volts miniature model (\(\frac{1}{64} \)) bit - 2 interchangeable spare bits (\(\frac{5}{32} \) and \(\frac{1}{32} \))
- reel of resin-cored solder - heat sink for soldering transistors - felt cleaning pad - soldering iron stand* - storage space for lead and plug.

FROM 31'

Model G — 18 watts. Fitted with \(\frac{5}{32} \) bit. Interchangeable spare bits \(\frac{1}{32} \), \(\frac{1}{64} \) and \(\frac{1}{128} \). For 240, 220 or 110 volts. 32/6.

Model E — 20 watts. Fitted with \(\frac{1}{32} \) bit. Interchangeable spare bits \(\frac{5}{32} \), \(\frac{1}{64} \) and \(\frac{1}{128} \). For 240, 220 or 110 volts. FROM 35/.

Model ES — 25 watts. Fitted with \(\frac{1}{32} \) bit. Interchangeable spare bits \(\frac{5}{32} \), \(\frac{1}{64} \) and \(\frac{1}{128} \). For 240, 220, 110, 24 and 12 volts. FROM 35/.

Model F — 40 watts. Fitted with \(\frac{1}{32} \) bit. Interchangeable spare bits \(\frac{5}{32} \), \(\frac{1}{64} \), \(\frac{1}{128} \) and \(\frac{1}{256} \). For 240, 220, 110, 24 and 20 volts. FROM 42/6.

To: Antex, Mayflower House, Plymouth, Devon.

Please send me the Antex colour catalogue.

Please send me the following irons.

I enclose cheque/P.O. cash value

Telephone.

NAME

ADDRESS

PE.5
Battle of the waves
Sir—We had to reply to the comment in Report from America—bedlam (see February issue). Of course we agree that it is ridiculous to allow anyone to use up to 100mW without a licence, but how about showing the other side of the coin for a change.

It is equally as stupid to allow the importation of CB gear over a long period of time and the sale of tens of thousands of 27MHz transceivers. Later the dealer could still sell them but had to tell the buyer "GPO licence required" but not that it was unobtainable, then they have to state "not licensable in the U.K." but they can still sell them, then the import is banned (theoretically) but dealers are still allowed to sell off their vast stocks.

With a bit of forethought we could have a Citizens Radio Service over here and use the experience of others to our advantage. Let's face it, anything would be an improvement to remember this level, so that next charge is transferred into his bank, surely part of the game for him to try and organ dividers, there is just a resemblance between binary counters and organ dividers, there is just a danger that the i.c. figures in this organ. If it does hope that there is a transistor alternative, but my "down" on i.c.'s will have to be the subject of another letter. Suffice it to say that I feel they are not for the public at large!

No i.c.'s please!
Sir—I look forward to the PRACTICAL ELECTRONICS Organ very much, though my constructive activities are of necessity confined to repair, tuning and servicing a few organs as an offering to some Northumberland churches.

But please inform Mr Alan Douglas that I will boycott the reading of his articles if he has used i.c.'s in his design. The integrated circuit seemed to start in the computer field, and as I see some not remote resemblance between binary counters and organ dividers, there is just a danger that the i.c. figures in this organ. If it does hope that there is a transistor alternative, but my "down" on i.c.'s will have to be the subject of another letter. Suffice it to say that I feel they are not for the public at large!

Meanwhile thanks for an interesting magazine, and keep up the good work!

James W. Robson, Newcastle upon Tyne.

PEAC discussion
Sir—Although I am still only considering building PEAC, I do not anticipate having any serious technical difficulty in its construction. Your articles on the subject appear to cover the subject adequately.

However, not having had any experience in the operation of computers, I envisage having some difficulty in putting it to proper use. It is for this reason that I would like to discuss PEAC with someone who has had some practical experience in using it.

D. Grim, St. Mary Cray, Kent.

“i.c.” a problem
Sir—I have recently had cause to wonder if, in fact, it is going to be worth the trouble to accept a modern type of transistor radio for servicing. With the one repaired this week, the total goes up to five, all of which had developed faults in one direction:

Over the years spanning the increasing popularity of the transistor radio, I have been able to offer a reasonable repair, but at the fantastic cost of replacing modules it is small wonder that my customer today has gone away believing that I am trying to get rich quick—I think that the boffins who dream up such things should guarantee them for life.

I know that this is regarded as progress by the fact that it speeds servicing, and initial assembly at the factory, but it is also fact that I could replace a component and be fair with the customer regarding cost. As things are now, with the natural swing over from conventional to modules, the customer faces the possibility of having to find pounds instead of shillings just for the replacement module, and before the engineer makes his charge. So the days of the transistor radio being a fair proposition are drawing to a close.

To those who think that it is possible to service one of these modules I say good luck, and trust their curses are not as numerous as were mine.

R. W. Craig (Tin Box Rebel), Bexley, Kent.

Your tale of woe is certainly revealing and I wonder if any other readers have been victims of the widespread use of integrated modules in present day equipment. Obviously many other service engineers and general public will feel the impact and you certainly have my sympathies.

—Ed.

389
A TECH-PRESS PUBLICATION

WHAT READERS SAY

"I am highly delighted with the books; I didn’t know a complicated subject could be so easily presented."
—J. K., Earlfield.

"I am pleased to say how understandable your books are. I have now quite a sound knowledge of Electronics."
—P. S., Southgate.

"I know your Manuals will prove invaluable for my training and career as a technician."
—J. L., S. Shields.

THE SERIES WILL BE OF EXCEPTIONAL VALUE IN TRAINING MECHANICS AND TECHNICIANS IN ELECTRICITY, RADIO, AND ELECTRONICS.

BUILD YOUR CIRCUITS ON VEROBOARD

—The Universal Wiring Board—

obtainable from your local Retailer

Trade enquiries to:
NORMAN ROSE (ELECTRICAL) LTD.
8 St. Chad’s Place, Gray’s Inn Road, London, W.C.1

Technical enquiries to:
VERO ELECTRONICS LTD.
Industrial Estate, Chandler’s Ford, Hants

BUILD YOUR CIRCUITS ON VEROBOARD

POST & PACKING—1/6 CASH WITH ORDER PLEASE

KINVER ELECTRONICS LIMITED
STONE LANE, KINVER, STOURBRIDGE, WORCS.

THE 'NEW PICTURE-BOOK' WAY OF LEARNING

BASIC ELECTRICITY (5 VOLS.)

BASIC ELECTRONICS (6 VOLS.)

The series will be of exceptional value in training mechanics and technicians in Electricity, Radio and Electronics.

WHAT READERS SAY

"I am highly delighted with the books; I didn’t know a complicated subject could be so easily presented."
—J. K., Earlfield.

"I am pleased to say how understandable your books are. I have now quite a sound knowledge of Electronics."
—P. S., Southgate.

"I know your Manuals will prove invaluable for my training and career as a technician."
—J. L., S. Shields.

BUILD YOUR CIRCUITS ON VEROBOARD

POST & PACKING—1/6 CASH WITH ORDER PLEASE

KINVER ELECTRONICS LIMITED
STONE LANE, KINVER, STOURBRIDGE, WORCS.

THE 'NEW PICTURE-BOOK' WAY OF LEARNING

BASIC ELECTRICITY (5 VOLS.)

BASIC ELECTRONICS (6 VOLS.)

The series will be of exceptional value in training mechanics and technicians in Electricity, Radio and Electronics.

WHAT READERS SAY

"I am highly delighted with the books; I didn’t know a complicated subject could be so easily presented."
—J. K., Earlfield.

"I am pleased to say how understandable your books are. I have now quite a sound knowledge of Electronics."
—P. S., Southgate.

"I know your Manuals will prove invaluable for my training and career as a technician."
—J. L., S. Shields.

BUILD YOUR CIRCUITS ON VEROBOARD

POST & PACKING—1/6 CASH WITH ORDER PLEASE

KINVER ELECTRONICS LIMITED
STONE LANE, KINVER, STOURBRIDGE, WORCS.

THE 'NEW PICTURE-BOOK' WAY OF LEARNING

BASIC ELECTRICITY (5 VOLS.)

BASIC ELECTRONICS (6 VOLS.)

The series will be of exceptional value in training mechanics and technicians in Electricity, Radio and Electronics.

WHAT READERS SAY

"I am highly delighted with the books; I didn’t know a complicated subject could be so easily presented."
—J. K., Earlfield.

"I am pleased to say how understandable your books are. I have now quite a sound knowledge of Electronics."
—P. S., Southgate.

"I know your Manuals will prove invaluable for my training and career as a technician."
—J. L., S. Shields.

BUILD YOUR CIRCUITS ON VEROBOARD

POST & PACKING—1/6 CASH WITH ORDER PLEASE

KINVER ELECTRONICS LIMITED
STONE LANE, KINVER, STOURBRIDGE, WORCS.

THE 'NEW PICTURE-BOOK' WAY OF LEARNING

BASIC ELECTRICITY (5 VOLS.)

BASIC ELECTRONICS (6 VOLS.)

The series will be of exceptional value in training mechanics and technicians in Electricity, Radio and Electronics.

WHAT READERS SAY

"I am highly delighted with the books; I didn’t know a complicated subject could be so easily presented."
—J. K., Earlfield.

"I am pleased to say how understandable your books are. I have now quite a sound knowledge of Electronics."
—P. S., Southgate.

"I know your Manuals will prove invaluable for my training and career as a technician."
—J. L., S. Shields.

BUILD YOUR CIRCUITS ON VEROBOARD

POST & PACKING—1/6 CASH WITH ORDER PLEASE

KINVER ELECTRONICS LIMITED
STONE LANE, KINVER, STOURBRIDGE, WORCS.

THE 'NEW PICTURE-BOOK' WAY OF LEARNING

BASIC ELECTRICITY (5 VOLS.)

BASIC ELECTRONICS (6 VOLS.)

The series will be of exceptional value in training mechanics and technicians in Electricity, Radio and Electronics.

WHAT READERS SAY

"I am highly delighted with the books; I didn’t know a complicated subject could be so easily presented."
—J. K., Earlfield.

"I am pleased to say how understandable your books are. I have now quite a sound knowledge of Electronics."
—P. S., Southgate.

"I know your Manuals will prove invaluable for my training and career as a technician."
—J. L., S. Shields.

BUILD YOUR CIRCUITS ON VEROBOARD

POST & PACKING—1/6 CASH WITH ORDER PLEASE

KINVER ELECTRONICS LIMITED
STONE LANE, KINVER, STOURBRIDGE, WORCS.

THE 'NEW PICTURE-BOOK' WAY OF LEARNING

BASIC ELECTRICITY (5 VOLS.)

BASIC ELECTRONICS (6 VOLS.)

The series will be of exceptional value in training mechanics and technicians in Electricity, Radio and Electronics.

WHAT READERS SAY

"I am highly delighted with the books; I didn’t know a complicated subject could be so easily presented."
—J. K., Earlfield.

"I am pleased to say how understandable your books are. I have now quite a sound knowledge of Electronics."
—P. S., Southgate.

"I know your Manuals will prove invaluable for my training and career as a technician."
—J. L., S. Shields.

BUILD YOUR CIRCUITS ON VEROBOARD

POST & PACKING—1/6 CASH WITH ORDER PLEASE

KINVER ELECTRONICS LIMITED
STONE LANE, KINVER, STOURBRIDGE, WORCS.

THE 'NEW PICTURE-BOOK' WAY OF LEARNING

BASIC ELECTRICITY (5 VOLS.)

BASIC ELECTRONICS (6 VOLS.)

The series will be of exceptional value in training mechanics and technicians in Electricity, Radio and Electronics.

WHAT READERS SAY

"I am highly delighted with the books; I didn’t know a complicated subject could be so easily presented."
—J. K., Earlfield.

"I am pleased to say how understandable your books are. I have now quite a sound knowledge of Electronics."
—P. S., Southgate.

"I know your Manuals will prove invaluable for my training and career as a technician."
—J. L., S. Shields.

BUILD YOUR CIRCUITS ON VEROBOARD

POST & PACKING—1/6 CASH WITH ORDER PLEASE

KINVER ELECTRONICS LIMITED
STONE LANE, KINVER, STOURBRIDGE, WORCS.
MOTORISED CAM SWITCH
Made by the famous meter company Chamberlain and Hookham, these have a normal mains 230v-400v motor which drives a ratchet mechanism so geared to give one ratchet action per minute on a wheel with 60 teeth; thus a complete revolution of the cam takes place in one hour. The cam, switches, (6 changeover and 2 on/off thus 480 circuit changes per hour are possible). Springs are all special. Also other switch wafers or devices can be attached, the cam system approximately one inch. 47/6, post and ins. 6/6.

VARYLITE
Will dim fluorescent or incandescent bulb up to 600 watts from full brilliance to out. Fitted on M.K. flush plate, same size and fixing as standard wall switch so may be fitted in place of this, or mount on surface. Price complete in heavy plastic box with control knob 3/10.

NADIC RECHARGEABLE BATTERIES
3.6V 50mA size 17½ x 11½ ins, really powerful will power Hedling 15 watts E.M. amp for portable Regular price 2½ each—New and guaranteed. Other voltages are also available: 2.5V 25mA, 2V 12½mA, 1.5V 7½mA Post 10/6, 4/6 and 7/6.

ELECTRIC CLOCK WITH 20AMP SWITCH
Made by Smith's these units are so fitted to many top quality cookers to control the oven. The clock is mains driven and so frequency controlled so it is extremely accurate. The two small dials enable the switch on and off times to be accurately set—also on the left is another timer or alarm—this may be set in minutes up to 4 hours. At the end of the set a bell will sound. Ideal for switching on tape recorders. Offered at only a fraction of the regular price—and unfitted only £3 0/6 post. This is an immensely useful machine which will prove a necessity in any home and will pay its way in less than the value of the clock alone—post and ins. 2/9.

HI-FI BARGAIN
FULL P12 INCH LOUDSPEAKER. This is undoubtedly one of the finest loudspeakers that we have ever offered, produced by one of the country's most famous makers. It has a die-cast metal frame and is strongly recommended for Hi-Fi loud and Rhythm Cabinet and public address. Flux Density 12,000 gauses—Total Flux 44,000 Maxwells—Power Handling 15 watts E.M. amp for portable. Regular price 2½ each—New and guaranteed. Other voltages are also available: 2.5V 25mA, 2V 12½mA, 1.5V 7½mA Post 10/6, 4/6 and 7/6.

DRILL CONTROLLER
Electronically changes speed from approximately 10 revs. to maximum. Full power at all speeds by finger-tip control. Kit includes all parts, coarse or fine control instructions. 1/6/6 plus 5/6 post and insurance. Can be made available made up 29/6, plus 5/6 post.

PROCESS TIME CONTROLLER
Made by Smiths, motorised and mains driven, enables 15A circuit to be started up to 15 minutes in advance and to return to normal at any time up to 15 minutes. Totally enclosed in metal box with glass front and 3-way, plus 4/6 post and ins. £3 10/6.

MAINS TRANSFORMER POWER PACK
Designed to operate transistor sets and amplifiers. Adjustable output 6V, 12V, 8V to 240v mains (class B working). Takes the place of any of the following batteries: P99, PPT, PP5, PP6, PFT, and others. Kit comprises: mains transformer rectifier, smoothing and load resistor, condensers and instructions. Real snap at only 16/6, plus 5/6 post.

REED SWITCH
Suitable for dozens of different applications, such as burglar alarms, conveyor belt switches. These are normally made by a passing permanent magnet coil. A special buy enables us to offer these at 2/6 each, one a deal for 5/6. 1/2 each, 10/6.

Where postage is not stated lbm orders over 2/6 are post free. Below 2/6 add 2d. 5d-overcondensers add 7d, 1/- post free. S.A.E. with enquiries please.

See in the Dark INFRA-RED BINOCULARS
These infra-red binoculars when fed from a high voltage supply can enable objects to be seen in the dark, provided the objects are in the range of an infra-red beam. Each eye contains a complete optical lens system as well as the infra-red cell. The binoculars form part of the Army night driving (Tabley) equipment. They are unmissable and believed to be in good working order but sold without a guarantee. Price £11.10/6, plus 15/- carr. and ins.

INDICATOR LAMP
Infra-red Image. This consists of a red glow lamp in red plastic with lens in red plastic with reflector in lead for mains operation 2/6 each, 5/6 doz.

HEADPHONES
Ex-W.D. unusual and perfect, single head band. 4/6. Double with head band 8/6.

16 RPM GEARED MOTOR
Made by Smiths Electric, these are almost silent running, but are very powerful. They operate from normal 16 rpm and so can be altered to suit a variety of purposes. Ideal for recording, small jigs and other use. 3 for 5/6 plus 2/9 post.

QUICK CUPPA

TELESCOPICAL AIRS
26 yards length 8/6, Self-regulating temperature control. 16/6 post free.

WATERPROOF HEATING ELEMENT
26 yards length 7/6. Self-regulating temperature control. 16/6 post free.

Be first this year! SEED RAISING
Soil heating wire and transformer. Suitable for standard size garden frame £1.50. Post and ins. 3/6.

DOOR INTERCOM
Know who is knocking and speak to them without leaving bed, or chair. Outfit comprises microphone with call push button, connector and master inter-com. Simply plug to gether. Originally designed for home use platted—six sections, extends from 7 1/2 to 47ins. Hole in bottom for 6BA screw. 7/6.

ELECTRONICS (CROYDON) LTD.
Dept. PE, 266 London Road, Croydon CRO-2TH
Also 102/3 Tamworth Road, Croydon

391
ORGAN BUILDERS! SILICON N.P.N. TRANSISTORS TESTED AND APPROVED BY DESIGNER FOR USE IN "PRACTICAL ELECTRONICS" ORGAN CIRCUIT—½ each or £5 per 100.

LATEST LIST OF TRANSISTOR STOCK. ALL BRAND NEW AND TO MANUFACTURERS SPECIFICATIONS.

\[\begin{align*}
\text{NKT211} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT17} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT12} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT73} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT185} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT181} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT12} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT185} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT226} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT12} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT185} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT181} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT12} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT185} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT181} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT12} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT185} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT181} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT12} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT185} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT181} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT12} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT185} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT181} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT12} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT185} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\text{NKT181} & : 8/9/B\text{T1404} & : 8/9/B\text{TD50} & : 8/9/B\text{N1035} & : 4/37/2230A \\
\end{align*}\]

VETOBOARD £3.19.6. Also new bench models. Capacities 48in. x 18 gauge £27.10.0, 24in. x 16 gauge £26.10.0. Carridge free.

Orders by post to:
G. P. BARKER, DRAYTON BASSETT, NEAR TAMWORTH, STAFFS.

Please include suitable amount to cover post and packing. Minimum 2/- sharpened envelopes must accompany any inquiries. 3 per customer in any one order. All materials obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8.
FULLY TESTED AND MARKED

AC107 3/- OC170 2/-
AC127 2/- OC200 2/-
AC129 2/- OC201 1/-
AC141 3/- OC202 2/-
AC177 2/- OC301 2/-
AF116 3/- 2N711 10/-
AF127 3/- 2N302-3 4/-
AF117 3/- 2N304-5 5/-
AF118 2/- 2N306-7 5/-
AF239 12/- 2N308-9 5/-
AF186 10/- 2N384A 5/-
AF139 10/- Power Transistors
BFY25 4/- Transistors
BS135 7/- OC20 10/-
BS176 3/- OC21 10/-
BS127 3/- OC25 5/-
BS128 3/- OC26 5/-
BS129 3/- OC28 7/-
BS55A 3/- OC35 7/-
OC241 2/- OC36 7/-
OC24 1/- OC41 10/-
OC45 1/- AU10 10/-
OC71 2/- Diodes
OC72 2/- 2N442 2/-
OC73 3/- OA95 2/-
OC81 2/- OA20 19/-
OC81D 2/- OA79 19/-
OC81 4/- OA81 19/-
OC19 3/- OA73 19/-
OC10 3/- 1N914 19/-

TRY OUR X PAKS FOR UNEQUALLED VALUE

XA PAK
Germanium NPN type transistors, equivalent to a large part of the OC range, i.e., 44, 45, 71, 72, 81, etc.
PRICE £5 PER 1000

XB PAK
Silicon TO-18 CAN type transistors NPN/PNP mixed lot, with equivalents to OC200-1, 2N706s, BY27/29, BY95A.
PRICE £6.50 PER 500
PRICE £10 PER 1000

XC PAK
Silicon diodes miniature glass types, finished black with polarity marked, equivalents to OA206, OA205, BY499 and DK10, etc.
PRICE £5 PER 1000

ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75% OR MORE GOOD SEMICONDUCTORS, FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK.
P/P 2/6 PER PACK (U.K.)

PRE-PAKS
Selection from our lists

No. Price
B1 30 Unmarked Trans. Untested 10/-
B2 4 Photo Cells Inc. Book of Instructions 10/-
B6 17 Red Spot AF Transistors 10/-
B6A 17 White Spot RF Transistors 10/-
B7 40 ORP 12 Light Sensitive Cell 9/-
B53 25 Sil. Trans. 400 MCs 1 Brand New 10/-
B54 40 3 NPN To 5 Trans Voltage 10/-
B55 40 3 NPN To 18 & Gain Failouts 10/-
B56 40 3 NPN/PNP All Tested 10/-
B66 10 Top Hat Rect. 200 MA 100-800 PIV 10/-
B69 20 Diodes. Gd-Bnd. Germ Sil. Planar 10/-
B74 3 Gd-Bnd. Diodes. 2-OA5, 3-OA5 10/-
B75 3 Comp. Set. 2G371, 2G381, 2G39A 10/-
C1 1 Unijunction Transistor 2N2160 15/-
B79 4 1N4007 Diodes. 1000 PIV, 1 AMP. 10/-
B77 2 Comp. Pair AD161-AD162 10/-
C33 3 Unijunction Transistors 2N2160 10/-
A1 7 Silicon Rectifiers BY100 Type 20/-
A23 5 Mixed Marked and Transistors 20/-
A21 5 Power Transistors 1-AD149-1-OC26 and 2 others 20/-

JUST INTRODUCED 2 BRAND NEW ITEMS !!!
PAK B78
INTEGRATED CIRCUITS. MIXED UNTESTED, TYPES IN-Clude: MIC930, 931, 932, 936, 944, 945, 946, 947, 950, 952, 955, 962. These are SST Type Numbers. Data and Circuits Supplied with Orders.
PAK 82
INTEGRATED CIRCUITS. 4-X-COMPILETOR, ON PANELS, ALL GOOD, DATA AND CIRCUITS WITH ORDERS.

FREE CATALOGUE AND LISTS for:
- ZENER DIODES
- TRANSISTORS, RECTIFIERS
- FULL PRE-PAK LISTS & SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add 1/- post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

BI-PRE-PAK LTD DEPT. A, 222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX TELEPHONE: SOUTHEND (0702) 46344
C. & A. SUPPLIERS

SERVICE SHEETS

T.V., RADIO, TRANSISTORS, TAPES, ETC.
Only 5/- each, plus S.A.E. (Uncrossed P.O.'s please, returned if service sheets not available.)
51 BEAUFORT PARK
LONDON, N.W.11
MAIL ORDER ONLY

RADIO TELEVISION, over 8,000 Models.

SERVICE SHEETS, radio, TV, 5,000 models.
List 1/-, S.A.E. enquiries. TELRAV, 11 Maudland Bank, Preston.

MISCELLANEOUS

BUILD IT in a DEWBOX quality cabinet 21in x 21in x any length. DEW LTD., Ringwood Road, Ferndown, Dorset. S.A.E. for layout plan, for simpler and neater Rhythm Generator. 143in x S^in undrilled, for leaflet. Write now—right now.

PRINTED CIRCUIT for Practical Electronics Rhythm Generator, 141in x 31in undrilled, with layout plan for simpler and neater construction. 286 including postage. Send cash with order to ALMARY DESIGNS, 12 Lattimore Road, Whitehampstead, Herts.

GEARED MOTORS
Rectifiers, Potentiometers
6d Stamp for Catalogue
F. HOFFORD & CO.
6 Imperial Square, Cheltenham

UFO DETECTOR CIRCUITS, data, 10s. (refundable). Paraphysical Laboratory (UFO Observatory), Downton, Wilts.

4 WATT GRAM AMPS.
Volume and tone controls, mains operation. 312 output, new and boxed 65/- POSTPAID.
BIG BARGAIN PARCELS ONLY
OF COMPONENTS 10/- POSTPAID
SALOP ELECTRONICS
Shrewsbury, Shropshire
S.A.E. for lists

RATES : 1/3 per word (minimum 12 words). Box No. 1/8 extra.
Advertisements must be prepaid and addressed to Advertisement Manager, "Practical Electronics"

ICPC MAGAZINE LTD., Fleteway House, Farringdon Street, London, E.C.4

MISCELLANEOUS (continued)

ROBOTS
Well almost, because the NEW range of projects include: an electronic 'animal' which "LEARNS", an Electro Chemical device capable of "REPRODUCING" itself. Other projects SURE TO INTRIGUE you are an audio transmitter/receiver which has an amazing range and requires NO LICENCE; also a machine which "recognizes" itself, and an electronic dog whistle, etc., etc. HOSTS OF EASY-TO-CONSTRUCT projects, for anyone with a basic knowledge of Electronics.
SEND 2/6 for your list—NOW!
To: 'BOFFIN PROJECTS' Incorporating BIONIC DESIGNS 4 CULNIFFE RD.
STONELEIGH, EWEII, SURREY
Designed by GERRY BROWN and JOHN SALMON and presented on T.V.

FOR SALE

PRACTICAL ELECTRONICS from first issue to May 1967, 31 copies complete, postage 6/- Offers to BOX 10.

$6,000 IN VOUCHERS GIVEN AWAY. See free Cat. for details. Tools, Materials, Mechanical, Electrical, thousands of interesting items. WHRSTON, Dept. P.V.E., New Mills, Stockport SK12 4HL.

 TIME SWITCHES, 14 day clock, once on once off every 24 hours, reconditioned and fully guaranteed. 15 amp Horstmann 32/6, 15 amp Venner 42/6. A. N. B. BUCKETHOR (P. E. Dept.), 4 Park Road, Bromley, Bk. 31P.

COMPUTER IN YOUR POCKET. Home, college, workshop. Pocket slide rules, 17/6, 10in desk/bench slide rules, 25/- Full instructions. DEPT. PF, 19 Paynesfield Avenue, S.W.14.

MORSE MADE EASY !!
FACT NOT FICTION. If you start RIGHT you will be reading amateur and commercial Morse within a month (normal progress is expected to be slow).
Using scientifically prepared 3-speed records you automatically learn to recognize the code RHYTHM without translating. You can't help it, it's so easy as burning a tree. 10/-95 (4 weeks guaranteed).
For details and course C.O.D. ring 87/T. 01-0692846 or write 6d, stamp for explanatory booklet. GISESC (Box 19), 45 GREEN LANE, PERLEY, SURREY

BOOKS AND PUBLICATIONS

PRAXIS AA, 5/- per word (minimum 12 words)...

G.B. WIRELESS EQUIPMENT SURPLUS HANDBOOK

This useful Handbook gives detailed information and circuit diagrams for British and American Government Surplus Receivers, Transmitters and Test Equipment. Also contained are some suggested modification details and improvements for the equipment. Incorporated in this revised edition is a surplus/commercial cross referenced valve and transistor guide. This book is invaluable to radio enthusiasts, radio clubs, universities and laboratories. The latest edition priced at 35/- per volume plus 5/- P.A. is obtainable from us at
GILTEXT (LEEDS) LTD

SURPLUS HANDBOOKS
19 set Circuit and Notes 6/6 P.P. 6d
1155 set Circuit and Notes 6/6 P.P. 6d
220 Circuit and Notes 6/6 P.P. 6d
220 set Technical Instructions ... 6/6 P.P. 6d
46 set Working Instructions 6/6 P.P. 6d
88 set Technical Instructions ... 5/6 P.P. 6d
BC. 221 Circuit and Notes 6/6 P.P. 6d
Wavemeter Class D Tech. Instr 5/6 P.P. 6d
BC. 220 Circuit and Notes 5/6 P.P. 6d
BC. 1000 (31 set) Circuit & Notes 6/6 P.P. 6d
BC. 100/B.28 Circuit and Notes 5/6 P.P. 6d
R. 107 Circuit and Notes 7/- P.P. 6d
A.R. 800. Instruction Manual 1/- P.P. 6d
62 set Circuit and Notes 4/6 P.P. 6d
52 set Sender & Receiver Circuits 7/6, post free Circuit Diagrams 5/- each post free.
Resistor Colour Code Indicator... 2/6 P.P. 6d
S.A.E. with all enquiries please. Postage rates apply to U.K. only.
Mail order only:
Instructional Handbook Supplies
Dept. P.E., Talbot House, 28 Talbot Gardens Leeds 9

ELECTRICAL

OUR PORTABLE ELECTRIC SOLDERING IRON is a sensational line. 40V-200/240 volt, plastic covered extension wire. Handle unhears when not in use. Completely safe. 14/11 plus 1/6 P. & P. £H OWS (P.B.I.), 36 Holney Avenue, Felton Pell, Chester-le-Street, Co. Durham.

240 VOLT ELECTRICITY ANYWHERE
most brilliant performance ever from 13-volt Car Battery. BRILLIANT HEAT DUTY 240 volt ASDY RAYDYNAMOTIR with BIG 220 WATT OUTPUT, Marvellous for TELEVISION, ELECTRIC DRILLS, MAINS LIGHTING and ALL UNIVERSAL AC/DC MAINS EQUIPMENT. Incorporates Fluorescent lighting. Thousands of uses. Tremendous purchase of this model makes fantastically low price possible.
ONLY £.6.19/6 each plus 10/6 delivery. C.O.D. with pleasure. M.O. 2ND CLASS if not DELIGHTED or ED. Please send S.A.E. for full illustrated details.
Dept. PE, STANFORD ELECTRONICS
Rear Darby Road, North Promenade BLACKPOOL, Lancaster
Open 7 days a week.
Suitable for most applications (cost approx. £3 per

SECONDHAND PORTABLE SCOPE (preferably D.B.) in good working order and reasonable price. MALLETT, 2 Pine Grove, Weybridge.

TAPE RECORDERS

TAPES TO DISC—using finest professional equipment—45 r.p.m. £2.50. S.A.E. leaflet.

DEROY, High Bank, Hawk Street, Carnforth, Lancs.

EDUCATIONAL

STUDY RADIO, TELEVISION AND ELECTRONICS with the world's largest home study organisation. City & Guilds; R.T.E.B., etc. Also practical courses with equipment. No books to buy. Write for FREE Prospectus to ICS (Dept. 577), Intertext House, London, SW11.

RAILWAY & TELEVISION SERVICING

Radar Theory & Maintenance

Telecommunications

This private College provides efficient theoretical and practical training in the above subjects. One-year day courses are available for beginners and shortened courses for men who have had previous training. Write for details to:—

The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5.

SITUATIONS VACANT

EDUCATIONAL (continued)

TERIFIC TRANSISTORS!
High-gain low-noise npn planars
20V, 220mA, 200mA peak Ic, hfe up to 1000.
BC169 - BC169 (em. BC109, BC151, BC154, 2N3914 etc.)
Prices: BC168, 5 for 10/-; 50 for 90/-.
BC169, 5 for 11/- for £5.
Brand new, can be built to size of FP6 board. Com-plete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
Can be built to size of FP6 board. Complete.
TESTED 2N3926 (all colours) 2/8, 2N3819 8/6, OC71 2/8, S. R. BAIN, Myrtle Cottage, Maryborough, Ross-shire.

OAAI 4d, OAI 6d EX-EQUIPMENT. Free lists. M. A. C. ROBINSON, 2 Thorndon Park Road, Thornhill, Southampton.

TRANSISTOR PANELS
New boxed, signed 5 x 4 with "Valvol" transistors type OC45 or similar, with full length leads, span an even number of OAC5 diodes, H15 resistors, etc. Built on perforated board in a metal frame. Panel of 20 transistors, diodes, etc. 20-30-40-50-60-70-80-90-100. Postage 2/- per panel, 1/- each.

TRANSISTOR CAPACITORS (ELECTROTLYC)
50mF 4V 50mF 10V 10mF 5V 50mF 15V 50mF 25V 12V $1 each. 250 each $15.

LOW NOISE — CARBON F!M SPECIAL OFFER UNTIL MAY 31st, 1969 1 watt 5/-, ETA Series: 2d each. Minimum order 1 doz. — mixed values.

WE ARE BREAKING UP COMPUTERS
EX COMPUTER PRINTED PANELS
2in x 3in packed with semiconductors and top quality resistors, capacitors, diodes, etc. Our price: 10 boards 50p, P. & P. 2/- With a guaranteed minimum of 35 transistors.

PANELS with 2 power transistors sim. to OC28 on each board + components. 2 boards (4 x OC28) 1/6, P. & P. 2/-.

PNP GERMANIUM TOS 1 Watt POWER TRANSISTORS on small heat sink, on 2in x 4in panel. 5 for 10p, P. & P. 2/6.

LONG ARM TOGGLE SWITCHES ex qnt. 15p, P. & P. 50p all types 2/- doz.

ORGAN BUILDERS’ SPECIAL 50 TOI TRANSISTORS on panels. £4.50, P. & P. 6/-.

OVERLOAD CUT OUTS. Panel mounting in the following values... 3 each: 2, 3, 4, 7, 8, 10 amp. P. & P. 1/6.

MINIATURE GLASS NOSNS, 12/6 doz. P. & P. 1/-.

150 PIV 10 amp. BRIDGE RECTIFIERS on Finned Heat Sink (100) 4 for 10p, P. & P. 2/6.

LARGE CAPACITY ELECTROLYTS
450v, 2x1.5mfd. Screw terminals. All 500v, each 1/6 each 5/6 each 10/6 each 5/6.

1,000v, 250mfd. D.C. wkg.
6v, 1,600mfd. 100v, 6mfd 200v, 4mfd 600v, 1mfd.
15,000v, 22mfd. 1000v, 5mfd 2000v, 1mfd.
25,000v, 8mfd. 2000v, 270 4000v, 120.

KEYTRONICS, 52 Earl’s Court Road, London, W.8. Mail order only.
Invisible Beam Optical Kit

Everything needed (except plywood) for building: 1 Invisible-Beam Projector and 1 Photocell Receiver (as illustrated). Suitable for all photocell burglar alarms, counters, door openers, etc. for the experimenter.

Long Range Invisible Beam Optical Kit

Junior Photocell Kit

Versatile Invisible-beam, Relay-in, Steady-light Photo Switch, Burglar Alarm, Door Opener, Counter, etc. for the Experiment.

Contents: Infrared Sensitive Photo-Transistor, 3 Transistors, Plastic Case, Resistors, Screw, etc. Full Size Plans, Instructions, Data Sheet "10 Advanced Photocell Designs".

Junior Optical Kit

From Electrical and Hardware shops, 1s unobtainable. Write to: Multico Solder Ltd., Hemel Hempstead, Herts.

Erisn

for quick, easy, reliable soldering

Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required. Erisn Multico Savibyt Alloy also reduces wear of copper soldering iron bits.

Photoelectric Kit

CONTENTS: S.P.C. (Glass) Bases, Chemicals, Filling Manual, Infra-Red Phototransistor, Latching Relay, 3 Transistors, Condensers, Resistors, Gain Control, Knob Control, Burglar Case, Screw, etc. In fact everything you need to build a Steady-light Photo switch/counter/Burglar Alarm, etc. (Project No. 1) which can be modified for modulated-light operation.

Photoelectric Switch

CONTENTS: 2 P.C. Chassis Boards, Chemicals, Etching Manual, Infra-Red Phototransistor, Latching Relay, 3 Transistors, Condensers, Resistors, Gain Control, Burglar Case, Screw, etc. In fact everything you need to build a Steady-light Photo-switch/counter/Burglar Alarm, etc. (Project No. 1) which can be modified for modulated-light operation.

Photoelectric Switch (New Zealand)

CONTENTS: 2 P.C. Chassis Boards, Chemicals, Etching Manual, Infra-Red Phototransistor, Latching Relay, 3 Transistors, Condensers, Resistors, Gain Control, Burglar Case, Screw, etc. In fact everything you need to build a Steady-light Photo-switch/counter/Burglar Alarm, etc. (Project No. 1) which can be modified for modulated-light operation.

Photoelectric Switch (Europe, Australia, South Africa, etc.)

CONTENTS: 2 P.C. Chassis Boards, Chemicals, Etching Manual, Infra-Red Phototransistor, Latching Relay, 3 Transistors, Condensers, Resistors, Gain Control, Burglar Case, Screw, etc. In fact everything you need to build a Steady-light Photo-switch/counter/Burglar Alarm, etc. (Project No. 1) which can be modified for modulated-light operation.

NEW PRICES ON NEW COMPONENTS

RESISTORS
High quality, carbon film, low noise. Capless construction, molecular termination bonding.
Dimensions (mm): Body; 7W: 8 x 2.8
Leads: 35
10% ranges: 10 Ohms to 10 Megohms (E12 Rantad Series)
2% ranges: 4.7 Ohms to 1 Megohm (E24 Rantad Series)
Prices—per Ohmic value.
7W 10% each 10 off 25 off 100 off
2W 10% each 2d 1/6 3/3 10/4
1W 2% each 2d 1/6 3/3 11/8
5W 2% each 3d 2/- 4/- 12/10

CAPACITORS
±10% tolerance. 100 Volt Working.
Prices—per Capacitance value (µF)
0-001, 0-002, 0-005, 0-01, 0-02 6d 4/3 8/4 30/-
0-047 8d 6/- 12/- 60/-
0-1 10d 7/- 15/- 51/-
0-220µF 1/2 10/- 20/- 68/6
0-47µF 1/8 10/- 20/- 125/-

POLYESTER CAPACITORS (Mullard)
Price
25V 10V 4V
1/4 2/- 17/4 37/4 125 -
Small (all values in fif)
250V 10V 4V
1/4 2/- 17/4 37/4 125 -

SKELETON PRE-SET POTENTIOMETERS (Carbon)
High quality presets suitable for printed circuit boards of 0.1 In. P.C.M.
100 Ohms to 5 Megohms (Linear only).
Miniature: 0-3W at 70°C. ±20% below 4M, ±30% above 4M. Horizontal (O.D. = 0-4in. P.C.M.) or Vertical (O.D. = 0-6in. P.C.M.)
Subminiature: 0-1W at 70°C. ±20% below 2.5M, ±30% above 2.5M.
Prices—per ohmic value.
7W 10% each 10 off 25 off 100 off
2W 10% each 2d 1/6 3/3 10/4
1W 2% each 2d 1/6 3/3 11/8
5W 2% each 3d 2/- 4/- 12/10

JACK PLUGS
Pin Type SE/P1. Side-entry version of P1 plug.
Prices—per each 10 off 25 off 100 off
P1 3/- 25/- 62/- 225/-
P2 2/6 23/- 54/- 200/-
SE/P1 3/6 30/10 68/- 280/-
P5 2/2 19/- 43/- 158/-
P6 1/- 15/- 33/- 116/-

JACK SOCKETS
3.5mm Type S.6. Specification as above.
Available with make/make, make/break, break/break, break/make contacts.
Prices—
3.5 5/- 2/9 25/-
5.6 1/- 1/3 3/4 33/- 100/-

POLYESTER CAPACITORS (Mullard)
Tubular, 10%, 160V 0.01, 0.015, 0.022µF, 7d, 0.033, 0.047µF, 8d, 0.068, 0.1µF, 11d.
Tubular, 5%, 160V 0.01, 0.015, 0.022µF, 7d, 0.033µF, 8d, 0.047µF, 9d, 0.068, 0.1µF, 11d.
Tubular, 10%, 160V 0.01, 0.015, 0.022µF, 7d, 0.033µF, 8d, 0.047µF, 9d, 0.068, 0.1µF, 11d.
Tubular, 5%, 160V 0.01, 0.015, 0.022µF, 7d, 0.033µF, 8d, 0.047µF, 9d, 0.068, 0.1µF, 11d.
Tubular, 5%, 160V 0.01, 0.015, 0.022µF, 7d, 0.033µF, 8d, 0.047µF, 9d, 0.068, 0.1µF, 11d.

SEMI-COPDUCTORS
DUXFORD ELECTRONICS (PE)
97/97A MILL ROAD, CAMBRIDGE
Telephone: CAMBRIDGE (0223) 63687

Send S.A.E. for January, 1969 Catalogue
Annual?

Interested in cutting your motoring costs?

You can save a considerable amount of money by tackling most of the car maintenance jobs yourself and by using the Practical Motorist.

Annual is designed specially to help you. Authoritative articles and step-by-step instructions show you how to maintain the engine, ignition, transmission, suspension and steering, brakes, bodywork, electricity, etc. With holidays in mind there is a most helpful section on camping and caravaning.

For details and prices contact your local bookshop or use the coupon on page 402.

S.A.B. 90WAT AMPLIFIER

Transistor complement, 27.8.0 per channel. PC boards for main amp, 1/- each or free with channel of transistors.

More details and prices will be given at the annual meeting.
VALUABLE NEW HANDBOOK TO AMBITIOUS ENGINEERS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available—without charge—to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
- Advanced Electronic Eng.
- General Electronic Eng.
- Installations — Drangshanship — Illuminating Eng.

CIVIL ENG.
- Advanced Civil Eng.
- General Civil Eng. — Municipal Eng. — Structural Eng.
- Sanitary Eng. — Road Eng.

RADIO & T.V. ENG.
- Advanced Radio — General Radio — Radio & TV Servicing

MECHANICAL ENG.
- Advanced Mechanical Eng.

AUTOMOBILE ENG.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your earning power?

B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

Published about the 15th of the month by IPC Magazines Ltd., Tower House, Southampton Street, London, W.C.2, at the recommended maximum price shown on the cover. Printed in England by THE CHAPEL RIVER PRESS, Andover, Hants. Sole Agents—Australia and New Zealand: GORDON & GOTCH (Australia) Ltd.; South Africa: CENTRAL NEWS AGENCY LTD.; East Africa: STATIONERY & OFFICE SUPPLIES LTD. Subscription rate including postage for one year: To any part of the World £2 2s. 0d.
ENGLANDS LEADING COMPONENT & EQUIPMENT CENTRES

SOLID STATE—HIGH FIDELITY AUDIO EQUIPMENT

Mono or Stereo Audio, Equipment developed from Dinsdale Mk II—each unit or system will compare favourably with other professional equipment selling at much higher prices.

COMPLETE SYSTEMS FROM £15.5.0

THE FINEST VALUE IN HIGH FIDELITY—CHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE POUNDS

All units available separately

SEND FOR FREE BROCHURE (No. 21) TODAY!

DEMONSTRATIONS DAILY AT ‘303’ EDDGWARE ROAD

INTEGRATED TRANSISTOR AMPLIFIERS

MAN 12 WATTS STEREO

MAI MONO OR STEREO MAN £16.10.0

M A1.20.£o.

DO IT YOURSELF

MW/LW PORTABLE

New printed circuit design with full power output. Fully tunable on both MW/LW bands. 5 transistors plus diode, push-pull circuit. Fitted 5 inch speaker. These are ideal for Amateur Radio Operators. Easy to build with simple results. All local and Continental and Distributors’ requirements.

TOTAL COST £19.6. P.P. 4/6

BUILD A QUALITY TAPE RECORDER

To get the best out of your MAGNAVRIS DECK, you need a MAGNAVRIS RECORDING HEAD. This enables you to supply 128 audio amplifiers and generators which gives you the advantage of an almost direct circuit without any thing needed down to the last screw for MAKING A SUPER TAPE RECORDER, which when built will compete favourably with instruments costing two or more. The INSTRUCTIONS MANUAL MAKES BUILDING EASY

for complete listening satisfaction choose either...

ELECTRONIC ORGANS

KITS TO BUILD YOURSELF AND COMPLETE UNITS

Acclaimed by everyone—The MAYFAIR

A complete new development in portable electronic musical instruments and a new field for the hobby constructor. The MAYFAIR project a wide range of tone colours suitable for any musical instrument. The organ is fully polyphonic, that is full sound can be played over the entire keyboard. Supplied as set of parts with Microphone, Push buttons, panel circuit board complete, fully sprung and depth of touch adjusted keyboard, attractive cover and cover with carry handle.

THE GROSFRIER

This instrument is designed for the more ambitious musician and has a much wider range than most conventional organs. It comprises two microfax transistors and 6 in triangle with switches, three pitch (i.e., 90, 180, 360) or four transistors, each pitch, on the lower organ and 20 transistors on the upper organ. The keyboard contains both a volume and tone control. You have 15 pitch and organ tone buttons which can be selected and altered by the removal of the panel. The instrument can be adapted to any size organ or keyboard and variable volume or tone buttons. It has 15 pitch and organ tone buttons which can be selected and altered by the removal of the panel. The instrument is designed for the more ambitious musician and has a much wider range than most conventional organs. It comprises two microfax transistors and 6 in triangle with switches, three pitch (i.e., 90, 180, 360) or four transistors, each pitch, on the lower organ and 20 transistors on the upper organ. The keyboard contains both a volume and tone control. You have 15 pitch and organ tone buttons which can be selected and altered by the removal of the panel. The instrument is designed for the more ambitious musician and has a much wider range than most conventional organs.

NEW MODELS NOMBREX TRANSISTORIZED Test Equipment

PRICE LIST

MAN 8.0. No. 21
MAN 21 R.F. Generator 25 10 0 35
MAN 31 Audio Generator 15 10 0 24
MAN 21 R.F. Generator 12 10 0 22
MAN 22 C.R. Bridge 10 10 0 20
MAN 21 Inductance Bridge 20 0 0 29

VHF FM SUPERHET TUNER MKII

A reliable VHF FM Tuner newly used throughout the country for quality reception. A wide range of listening sets are available with this equipment.

MODEL 3000 DM with 9TACR...

MANUAL as above £12.6.6

NEW—MALLORY LONG LIFE MERCURY BATTERIES

SIMPLE 1.05 volt 1200 each

PRICES

BRAND NEW All below list price

28P 20p

S.R.C.’s from 5

Field Effect Transistors from 96

Power Transistors from 5

Diodes and Rectifiers from 1 6

6,500 ITEMS

320 BIG PAGES

Send for new 6-page brochure 16, 17.

Fully Illustrated CATALOGUE

THE MOST COMPREHENSIVE—CONCISE—CLEAR COMPONENT CATALOGUE

Complete with 10 - worth discount vouchers

FREE WITH EVERY COPY

325 pages of transistors and semi-conductor devices, valves and crystals.

320 pages of components and equipment.

70 pages of microphones, decks and Hi-Fi equipment.

303 Edgware Road, W.2. Mail Order Dept.

Send today 7/6 Postage (£1) on remittance.

303 Edgware Road, London W.2. High Fidelity Sales, P.A. and Test Equipment Record Deals(01) 723 6063