THEORY into PRACTICE

ALSO
New Design- MICROPHONE MIXER
IN THE JET AGE......

EFFICIENCY AND RELIABILITY,
AND CONSISTANT, SUSTAINED PERFORMANCE
ARE BASIC REQUIREMENTS.
ADCOLA SOLDERING INSTRUMENTS MEET THESE NEEDS
AND GO ON MEETING THEM, DAY AFTER DAY, YEAR AFTER YEAR,
WITH UNFAILING REGULARITY.
LEADING MANUFACTURERS THROUGHOUT THE WORLD LIKE THIS,
THEY ALSO LIKE THE QUICK SERVICE WHEN REPLACEMENTS
DO BECOME NECESSARY. SO THEY SPECIFY ADCOLA.

WHY DON'T YOU!

AVAILABLE FROM SHOPS EVERYWHERE
OR DIRECT FROM

SALES & SERVICE DIVISION,
ADCOLA PRODUCTS LTD.,
ADCOLA HOUSE,
GAUDEN ROAD,
LONDON, S.W.4.
TELEPHONE 01-622 0291

SEND COUPON
FOR LATEST LEAFLET
NAME ________________________
ADDRESS ________________________

P.E.167
TCC G-1120

HEADPHONE/BOOM MICROPHONE SET
This lightweight headphone and boom microphone assembly is especially suitable for TV camera crews, communications equipment, language tape, recording studios, etc. The fully adjustable headset is extremely comfortable to wear for long periods. Low impedance microphones allow long cable to be used without any signal loss. Used with a Type Recorder this assembly will provide constant monitoring. High quality headphone is extremely comfortable to wear for long periods. Low impedance microphone allows long cables to be used without any signal loss.

LASKY'S PRICE £6.50

SPECIALIST RELAYS

SCHRACK 4 POLE 12 WAY
This stepping relay inches one step per pulse of the coil, contacts are provided for continuous stepping and 2 pole changeover at position "3". Lead-in programming with non interchangeable contacts, selection of stations on multiway intercom systems (plus standard 2 way interconnect), servo steering of radio control models. Automatic operation of telegraphy relays, etc.

Type RT 319600 OR Type RT 3196120
6V - 1W coil

LASKY'S PRICE 59/6 each

THORN PYGMY PLUG-IN RELAY
A miniature plug-in relay for 10A double changeover configuration. Main contacts are provided for external powered remote mains switching, using the contact as a latch to hold the relay in until the external circuit is broken. Resistance 82ohms, 200-240V AC/DC operation.

LASKY'S PRICE 12/6

AEI MINIATURE RELAY
A miniature 8 pin plug-in relay with 10A double changeover configuration. Relays are operated by the contact directly from 12V-110V AC/DC or by a 12V 5mA coil. The relay is specifically designed for use with 12 pin terminal strips for connecting relays and minor components.

LASKY'S PRICE 8/6

AD-76K MOVING MAGNET CARTRIDGE

LASKY'S PRICE 90/-

NEW INTERNATIONAL TAPE

FAMOUS AMERICAN MADE BRAND TAPE AT RECORD LOW PRICES

3in. Message tape, 1300ft... 12 6 3in. Standard play, Scotch, PVD... 7 6
3in. Message tape, 2900ft... 10 6 3in. Long play, 2000ft, Mylar... 12 6
3in. Triple play, 2000ft... 15 6 3in. Triple play, 2400ft, Mylar... 45 6
4in. Double play, 1200ft, Mylar... 10 6 4in. Double play, 1200ft, Mylar... 15 6
5in. Long play, 1000ft, Acetate... 10 6 5in. Long play, 1000ft, Mylar... 15 6
5in. Standard play, 600ft, PVD... 8 6 5in. Standard play, 600ft, PVD... 12 6
5in. Triple play, 4000ft, Mylar... 30 6 5in. Triple play, 4000ft, Mylar... 45 6
7in. Double play, 1200ft, Mylar... 15 6 7in. Double play, 1500ft, Mylar... 25 6
7in. Long play, 2000ft, Acetate... 12 6 7in. Long play, 2000ft, Mylar... 18 6
7in. Standard play, 1500ft, Mylar... 15 6 7in. Standard play, 1500ft, Mylar... 20 6
7in. Triple play, 3000ft, Mylar... 25 6 7in. Triple play, 3000ft, Mylar... 35 6
8in. Double play, 1500ft, Mylar... 25 6 8in. Double play, 1500ft, Mylar... 30 6
8in. Long play, 1000ft, Acetate... 15 6 8in. Long play, 1000ft, Mylar... 20 6
8in. Standard play, 1200ft, PVD... 20 6 8in. Standard play, 1200ft, PVD... 25 6
8in. Triple play, 3600ft, Mylar... 50 6 8in. Triple play, 3600ft, Mylar... 60 6

P. & P. £1 extra per reel, 4 reels and over Post Free. Special quotes for quantities.

FANTAVOX 500

12 WATT STEREO AMPLIFIER
This outstanding amplifier incorporates all the features expected of an expensive unit but at a budget price. The amplifier has separate tone and volume controls for both channels plus stereo mono switch and tuner output socket. Finished in an attractive walnut grained metal cabinet with moulded pale gold metal front panel. Brief spec.: 12 transistors, 2 silicon diodes. Output, Peak power 12 watts (6 watts per channel). Freq. Response: 40-20,000Hz. Output Impedance 4-16 ohms. Input sensitivity 10mV. Size 9 x 3 x 8in.

LASKY'S PRICE £12.10.0

NEW

TTC Model A-1008 BUDGET FM TUNER

LASKY'S PRICE £9.19.6

ADD MULTIPLEX TO THE MODEL A-1008

You can enjoy stereo sound with the Model A-1008 FM Tuner above by adding the TTC Model A-1005 Multiplex Adaptor. Brief Specification: MPX input sensitivity 100mV. Output 12mV. Self powered by a 9V battery. 4 transistor and 6 diode circuit. Size 5 x 1 x 3in. Also suitable for use with other FM tuners with MPX input.

LASKY'S PRICE 99/6

OVERTURE High quality cassettes from the U.S.A. C.60—10/- C.90—15/- C.120—20/-

P. & P. £1 extra per reel. 4 reels and over Post Free. Special quotes for quantities.
EMI Sound Products Ltd., Hayes, Middlesex, Tel: 01-573-3888 Ext. 667

How do you measure the extra quality of EMI speakers?

EMI are famous throughout the world for high quality sound reproduction. Now our audio design engineers have developed loudspeaker systems suitable for home use.

These EMI Loudspeaker Systems, specially matched, produce every detail of the original sound over the full audio spectrum, at high and low listening levels.

They have many exclusive features. The range includes the unique 950 system with a 19 inches x 14 inches bass unit, power output 50 watts R.M.S.

Send for literature and price lists to:

EMI

EMI SOUND PRODUCTS LTD., HAYES, MIDDX, TEL: 01-573-3888 EXT. 667

SEMI-ConDuctors

BRAND NEW AND FULLY GUARANTEED

Send 6d. STAMP FOR CATALOGUE

P.P. for Components 1/6 per order

A. Marshall & Son
28 Cricklewood Broadway, London, N.W.3 01-452 0161/2/3 CALLERS WELCOME
Z.12 - for all you want from any amplifier

The Z.12 is a most versatile integrated amplifier and pre-amp in which power, compactness and true high-fidelity standards are combined within a unit of very modest price. The most widely used unit of its kind in the world, the Z.12 has an output of 12W R.M.S. continuous sine wave (24V peak) or 15W music power (50W peak). It has Class B ultralinear output which can be fed into any loudspeaker from 3 to 15 ohms. (Two 3 ohm speakers can be used in parallel.) Frequency response - 15 to 50,000Hz, 1dB; input sensitivity - 2mV into 2K/ohms. The Z.12 will operate from any power source between 6 and 20V d.c. As such, a car battery or the PZ.4 are eminently suitable, giving much wider than usual scope in the applications to which the Z.12 may be put. As well as hi-fi, these include systems for P.A. electronic guitars, organs, intercom systems, laboratory, education or industry. You will find the Z.12 in use in such instances again and again. The Sinclair Z.12 is supplied ready built, tested and guaranteed, complete with manual of circuits and instructions for matching it to your precise requirements. Two may be used in stereo when, with the Stereo 25 and PZ.4 together with two Q.14s, you will have an ideal high fidelity assembly.

89/6

Q.14 - the unique loudspeaker

New materials and original design techniques have been used to produce speaker of fantastic quality at a most attractive price. Experts and reviewers have enthusiastically endorsed its performance. The shape and size of the Q.14 make it far more adaptable to its environment than is the case with conventionally styled speakers so that it is much easier to position this speaker in the room in which it is to be heard. The Sinclair Q.14 has a substantially flat frequency response from 60 to 16,000Hz and outstandingly good transient response. It will comfortably handle up to 14W loading and is positively brilliant in stereo. Measuring 9\(\frac{1}{2}\)in square by 4\(\frac{3}{4}\)in deep, this loudspeaker is finished in matt black with solid aluminium bar trim. Try the Q.14 in your own home without delay. If you are not delighted with it, your money including cost of return postage to Sinclair will be refunded immediately.

£7.19.6
Stereo 25 de-luxe pre-amp/control unit

This is a very elegantly styled unit, which, although designed basically for use with the Z.12, is readily adaptable for use with any high quality power amplifier system. The switched input selector allows for Pick-up, Radio and Auxiliary and there are controls for bass cut and lift, treble cut and lift, volume and stereo balance. P.U. input is equalised to R.I.A.A. curve from 50 to 20,000Hz ± 1dB and the instructions manual provided gives matching details for pick-ups, shows how to connect up, etc. The front panel of the Stereo 25 is finished in brushed and polished aluminium embossed in black. The control knobs are in solid aluminium to match. Size 6½ x 2½ x 2⅛ plus knobs. Supplied built, tested and guaranteed.

£9.19.6

PZ.4 - stabilised power supply unit

Designed specially to meet the power requirements for an assembly of two Z.12s and the Stereo 25, this heavy duty transistorized power supply unit has stabilised output of 18V d.c. at up to 1.5A. It is for a.c. mains operation 200/250V.

Supplied built, tested and guaranteed.

99/6

SINCLAIR MICROMATIC

Whether you buy your Micromatic in kit form or built ready for use, you must not deny yourself the thrill of owning this fantastically small British receiver. Smaller than a matchbox, it has power, range and selectivity that must be experienced to be believed. The high quality magnetic earpiece supplied with the set ensures excellent reproduction indoors and out. The Micromatic tunes over the medium waveband and has A.G.C. to counteract fading from distant stations. Bandpass tuning makes reception of Radio 1 easier; in fact you will find this set performing in some cases where other sets cannot be heard at all. The Micromatic is housed in a neat black case given an elegantly modern appearance by the attractive aluminium front panel and matching tuning control.

YOUR SINCLAIR GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full at once and without question.

FULL SERVICE FACILITIES AVAILABLE TO ALL PURCHASERS.

Kit in fitted pack with magnetic earpiece, instructions and free solder

49/6

Built, tested and guaranteed, inc. magnetic earpiece

59/6

Mallor Mercury Cell type RM.675 (2 required) 2/9 each

Please send POST FREE

NAME

ADDRESS

For which I enclose cash/cheque/money order

PE.469

SINCLAIR RADIONICS LTD., 22 NEWMARKET ROAD, CAMBRIDGE OCA3-52731
The 'New Picture-Book' way of learning

** BASIC ELECTRICITY (5 vols.) **

You'll find it easy to learn with this outstandingly successful NEW PICTORIAL METHOD—the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoon-type drawing. The books are based on the latest research into simplified learning techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects.

TO TRY IT, IS TO PROVE IT

The series will be of exceptional value in training mechanics and technicians in Electronics, Radio and Electronics.

WHAT READERS SAY

"I am highly delighted with the books: I didn't know a complicated subject could be so easily presented."

J. K., Earsfield.

"I am pleased to say how understandable your books are. I have now quite a sound knowledge of Electronics."

P. S., Southgate.

"I know your Manuals will prove invaluable for my training and career as a technician."

J. L. S. Shields.

A TECH-PRESS PUBLICATION

** POST NOW FOR THIS OFFER **

The greatest Hi-Fi Budget system today—can't be beaten—price or quality anywhere—look at these great features—then compare.

** WALDON AT $59.95 **

Negative or positive earth, switched, fully transistorised (12V) medium and long waves. Speaker and fitting kit supplied at no extra cost. P/P 5s.

Sonotone 9TA and 9TA/HC. Diamond Cartridge brand new, boxed in manufacturers' carton 40,000 plus 2/6 p/p. Acos GP 91-1 and GP 91-3 stereo compatible cartridges, new in sealed manufacturers' cartons 22/6 plus 2/6 p/p.

BASF TAPE 25% OFF

5in 600ft. 14s. 900ft. 19s. 1200ft. 24s. 1800ft. 39s. 2400ft. 57s.

5in 1200ft. 24s. 1800ft. 39s. 2400ft. 57s.

7in 1200ft. 24s. 1800ft. 39s. 2400ft. 57s. 7m 1200ft. 24/- 1800ft. 35/- 2400ft. 57/-

5/6 p/p.

** BASF TAPE **

HI-FI SPEAKER

K12TC—12in 12 watt
Offers an exceptionally smooth and extended response, with very low level of distortion from the specially designed diaphragms.
Frequency Response: 30-16,000Hz.
Impedance: 15-160Ohms
OUR SPECIAL PRICE 97/6
PLUS P/P 6/8

BARGAIN — Speakers, Hi-Fi —
The Baker Selhurst Stalwart. 12in round, 25 watt rating, 12,000 gauss, aluminium chassis, heavy duty cone.
Frequency: 40-50,000c/s, solid aluminium round, 15 watt rating, 12,000 lines gauss, 15 ohms, response 45-13,000c/s. Bass resonance 40-50c/s, solid aluminium chassis.
Our price £5.9.6. p/p 6/8

DULCI HI-FI UNITS

The Dulci range of tuners and amplifiers offer exceptional quality at a sensible price.
Amplifiers: 207 and 207M. Tuners: FMT7 and FMT7A.
SEND NOW FOR FULL DETAILS

Price 85/- p/p free.

BARGAIN—Changer decks at lowest prices ever

GARRARD
Beautiful teak plinth and perspex.
1025 £8.0.0
2005 £8.10.6
cover to suit AT60 Mk. 11 £12.19.6
these units £12.5.0

36Gns. P/P
Free £3500 with Son
9TA/HC diam. cart. £10.16.6
Add 10/- p/p for each Garrard unit

SPEAKER ENCLOSURES

Type: INFINITE BAFFLE
Model 8: 8in plus 3 in tweeter £4.19.6
Model 138: 13in x 8in EMI £4.19.6
Model 1012: 10in or 12in, plus 4in tweeter £7.19.6
All enclosures are in oiled teak, fully built. Please add 8/- p/p on each enclosure

SPEAKER ENCLOSURES

Type: INFINITE BAFFLE
Model 8: 8in plus 3 in tweeter £4.19.6
Model 138: 13in x 8in EMI £4.19.6
Model 1012: 10in or 12in, plus 4in tweeter £7.19.6
All enclosures are in oiled teak, fully built. Please add 8/- p/p on each enclosure

BARGAIN — Speakers, Hi-Fi —
The Baker Selhurst Stalwart. 12in round, 25 watt rating, 12,000 gauss, aluminium chassis, heavy duty cone.
Our price £5.9.6. p/p 6/8

YOUR'S FREE FOR 7 DAYS

The new Picture-Book way of learning

BASIC ELECTRICITY (5 vols.)

You'll find it easy to learn with this outstandingly successful NEW PICTORIAL METHOD—the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoon-type drawing. The books are based on the latest research into simplified learning techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects.

TO TRY IT, IS TO PROVE IT

To the SELRAY BOOK CO., 60 HAYES HILL, HAYES, BRONLEY, KENT BR2 7HP
Please send me WITHOUT OBLIGATION TO PURCHASE one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 75/-, Cash Price or Down Payment of 20/- followed by 3 fortnightly payments of 20/- each. BASIC ELECTRONICS 90/-, Cash Price or Down Payment of 15/- followed by 4 fortnightly payments of 20/- each. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.

Tick Set required (Only one set allowed on free trial)

BASIC ELECTRICITY

BASIC ELECTRONICS

Prices include Postage and Packing.

Signature _______________________
(If under 21 signature required of parent or guardian)

NAME _______________________
BLOCK LETTERS

ADDRESS _______________________

246
CHEAPEST EVER SOLID-STATE SALE

S-DeGs Single "DC" with accessories and program-able panel mount. Price 1/2 - 7/0 DCkit contains two "DCs", each with instructions, instructional book, all packed in attractive compact case. Price 7/0. "DCK" kit contains four "DCs", each with instructions, instructional book, all packed in attractive compact case. Price 14/0.

BOOKS FROM STOCK

NEONS
Signal lamps for many types of circuit type "N". Price 5/6 each or 10/0 dozen.

HEATINKS Suitable for 2 x OC35, etc. as used in commercial equipment. Type 100. Price 1/0.

ALUMINIUM CHASSIS
6 x 9 x 2/6 with reinforced corners 6/0 each (P. & P. 1/6). Ally panel to fit 1/0. Panel box to fit 3/6. Many other sizes in stock up to 11 x 8 x 3/6. (see catalogue).

X-LINE MODELS YOU CAN OPEN!!

SILICON RECTIFIERS

<table>
<thead>
<tr>
<th>PV</th>
<th>IV</th>
<th>1A</th>
<th>3A</th>
<th>10A</th>
<th>30A</th>
<th>100A</th>
</tr>
</thead>
<tbody>
<tr>
<td>200mA</td>
<td>750mA</td>
<td>2 Amp</td>
<td>10 Amp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>4A</td>
<td>1/2</td>
<td>2/5</td>
<td>7/5</td>
<td>3/5</td>
<td>10/0</td>
</tr>
<tr>
<td>100</td>
<td>4A</td>
<td>1/3</td>
<td>2/7</td>
<td>5/7</td>
<td>3/7</td>
<td>10/0</td>
</tr>
<tr>
<td>200</td>
<td>4A</td>
<td>1/2</td>
<td>2/9</td>
<td>5/9</td>
<td>3/9</td>
<td>10/0</td>
</tr>
<tr>
<td>300</td>
<td>4A</td>
<td>1/2</td>
<td>2/9</td>
<td>5/9</td>
<td>3/9</td>
<td>10/0</td>
</tr>
<tr>
<td>600</td>
<td>4A</td>
<td>1/2</td>
<td>2/9</td>
<td>5/9</td>
<td>3/9</td>
<td>10/0</td>
</tr>
<tr>
<td>1000</td>
<td>4A</td>
<td>1/2</td>
<td>2/9</td>
<td>5/9</td>
<td>3/9</td>
<td>10/0</td>
</tr>
</tbody>
</table>

SOLAR CELLS

ZENER DIODES

<table>
<thead>
<tr>
<th>Value</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1050</td>
<td>1000</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

CAPACITORS

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1050</td>
<td>1000</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

ULTRASONIC TRANSDUCERS

Operate at 44,000. Can be used for remote control systems. Without cables or electronic links. Type: 1004 trans- ducters can transmit and receive. Price 2/6. (P. & P. 1/6).

TRANSISTOR SUBSTITUTION

Our TRO-1C to TRO-1E range are universal replacements for over 1 000 TESCAL. Full SERVICE CENTRE, servicing, all types of INTERESTING DEVICES IN OUR CATALOGUE.

L.S.T.

7 COTIFOLD ROAD
BRENTWOOD
Step up your EARNINGS
with this complete Library of Electrical know-how and practice.

You can have this handsomely-bound library of facts, figures, vital theory and day-to-day practices sent to your home to examine free of charge. It will help you understand the many branches of the vast electrical industry from installation work of all kinds, equipment, instruments, motors and machines, repair work, maintenance and operation right through to the generation and distribution of electricity. And, to make the 2,350 pages of absorbing text crystal clear there are over 2,000 "action" photos and explanatory drawings. In addition you receive a slip-case of 36 large blueprint charts and sheets of handy data. Plus fascinating colour booklets of transparent pages which peal away to reveal how a Nuclear Power Station is operated.

LEADING EXPERTS EXPLAIN IN DETAIL
Written by 87 experts, this PRACTICAL library is planned to give you the knowledge which would normally take a lifetime to acquire. Send for your free trial set now—no obligation to purchase.

You receive 4 VOLUMES
strongly bound in grey Moroquette, set now—no obligation to purchase.

2,100 Photographs, Diagrams, Working Drawings—showing actual operations in works and plants.

24 Data Sheets in colour.

12 Quick-reference Blueprint Charts, each in the large size of 16" in. x 12" in.

NUCLEAR POWER STATION LIBRARY

FREE GIFT
258 illustrations, diagrams, tables.
(Volume 10/6)

Sent to you by post on 7 DAYS FREE TRIAL

To: Buckingham Press Ltd., 18-19 Warwick Street, London, W.1

Please send PRACTICAL ELECTRICAL ENGINEERING without obligation to buy if you accept my application. I will return the books in 8 days or post—

Tick (/) here □ Full cash price of £16, or □ 16-1/2 dep. & 16 monthly payments of 20/-
If you are under 21 your father must fill up the coupon

Full Name... (Block letters)
Address...
County...
Occupation...
Signature...

(Please add 5d Hyde Park, London, W.2. Please hold property...)
Mr. / Mrs. / Miss

(Credit price £16.16s.)

PRINTED CIRCUIT KIT
BUILD 40 INTERESTING PROJECTS on a PRINTED CIRCUIT BOARD with parts and components from your SPARE BOX

CONTENTS: (#) 2 Copper Laminate Boards 41/4" x 2", (2) 1 Board for Matchbox Radio, (2) 1 Board for Wristwatch Radio, etc. (#) Resist. (#) Resist. Solvent. (#) Resistor. (#) Transistor. (#) Switches and Printed Circuits for Advanced. (#) 2 Miniature Radio Boards SW/MW/LW. Also free with each kit. (#) Essential Design Data, Circuits, Chassis Plans, etc. for 40 PRINTED CIRCUIT PROJECTS.

A very comprehensive selection of circuits to suit everyone's requirements and constructional ability. Many recently developed very efficient designs published for the first time, including 10 new circuits.

EXPERIMENTER'S PRINTED CIRCUIT KIT

POSTAGE & PACK. 1/6 (UK)

Australia, New Zealand, South Africa, Canada, etc.

POSTAGE & PACK. 8/-

COMMONWEALTH: SURFACE MAIL 8/-

COMMONWEALTH: AIR MAIL 4/-

COMMONWEALTH: Surface Mail 4/-

COMMONWEALTH: Air Mail 4/-

PHOTOELECTRIC KIT

PHOTOELECTRIC KIT 39/6

POSTAGE AND PACK. 2/6 (UK)

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 7/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 10/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 14/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 18/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 21/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 25/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 30/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 35/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 40/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 45/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 50/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 55/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 60/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 65/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 70/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 75/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 80/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 85/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 90/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 95/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-

PHOTOELECTRIC KIT 100/6

COMMONWEALTH: SURFACE MAIL 3/6

COMMONWEALTH: AIR MAIL 6/-

COMMONWEALTH: Surface Mail 6/-

COMMONWEALTH: Air Mail 6/-
EXCLUSIVE PURCHASE! PORTABLE AMPLIFIER UNIT

By well known British firm.
A luxury unit at a bargain price, 35/- p. & p.

Designed as a Telephone Amplifier but can be used in many different ways—a booster amplifier for transistor radios, a baby intercom, paging system, etc. Has attractive beech finish, covered wooden cabinet with up-stairs speaker, speaker grille, and neat plastic grille. Fitted 2.50 mm jack socket and volume and tone control. Size 7 " x 4 " x 3 " high. Operates on standard 25W or 40W battery. Supplied complete with speaker and instructions. Complete with three-section pad, head and 3.50 mm jack plug.

Our Special price 35/- p. & p.

Or as thrown with 2.50 mm plug and B11N use as sensitive microphone for phone applications, communication systems. Etc. Will operate over distances of up to 500ft or more when connected with twin flat or bell wire.

PRICE 40/- p. & p. (Batteries and tips not included).

TRANSISTOR STEREO 8 + 8 MK II

Now using Silicon Transistors in first five stages on each channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Amplifier Kit. Uses 14 Transistors giving 8 watts push pull output per channel. With Bass, Treble and Volume controls. Suitable for use with Cerwin or other Crystal cartridges. Complete for any stage for any speakers from 2 to 15 ohms. Compact design, all parts supplied. Includes fitting leads, etc. Perfect for kit building or will take any ready built amplifier to be proud of. Bass boost approx. 15-300,000 cycles. Bass boost approx. to 2+35A. Treble cut approx. to -15dB. Negative feedback 18% over main amp. Power requirements 8V at 50ma.

FEATURES: AMPLIFIER KIT $10.15; 8 POWER PACK: $10.15; DIY KIT: $10.15; 15-20 watt speaker complete with Feast-amp, speaker, etc. Included with kit for only 15/- p. & p. Circuit diagram, construction details and parts list (free with kit) 16/- p. & p.

SPECIAL OFFER! E.M.I. 4-CHANNEL POWER AMPLIFIER KIT.

A really clever design employing heavy duty push-pull output transformer matched for 3 ohm and 15 ohm output. Low flutter performance 500 5000 cycles without any feedback. Complete with latest type lightweight pick-up arm and mono cartridge with 1/2" dia. diaphragm. Limited number only 60/- p. & p.

4-CHANNEL POWER AMPLIFIER KIT

All brand new in maker's packing. E.M.I. 4-Ch. 30 watts. Power packed but very small (7in. x 4in. x 3in.) high. E.M.I. 4-Ch. 30 watts. Power packed but very small (7in. x 4in. x 3in.) high. E.M.I. 30 watts. Power packed but very small (7in. x 4in. x 3in.) high. E.M.I. 30 watts. Power packed but very small (7in. x 4in. x 3in.) high. E.M.I. 30 watts. Power packed but very small (7in. x 4in. x 3in.) high. E.M.I. 30 watts. Power packed but very small (7in. x 4in. x 3in.) high. E.M.I. 30 watts. Power packed but very small (7in. x 4in. x 3in.) high. E.M.I. 30 watts. Power packed but very small (7in. x 4in. x 3in.) high. E.M.I. 30 watts. Power packed but very small (7in. x 4in. x 3in.) high.
BUILD YOURSELF A QUALITY TRANSISTOR RADIO — FULL AFTER SALES SERVICE!

SEVEN WAVEBAND PORTABLE

7 FULLY TUNABLE WAVE BANDS — MW1, MW2, LW, SW1, SW2, SW3 and Trawler Band. Extra Medium waveband provides easier tuning of Radio Luxembourg, etc. Built in to facilitate rod aerial for Medium and Long Waves. Section 522 chrome plated telescopic aerial for Short Waves. Can be angled and rotated for peak S.W. listening. Socket for Car Aerial. Powerful push-pull output. 7 transistors and two diodes including Micro-Alloy P.F. Transistors. Famous make 7 x 4 in P.M. speaker. Air spaced ganged tuning condensers. Volumes and tuning switches and tuning control. Attractive case with carrying handle. Size 9 x 7 x 4 in approx. First grade components. Easy to follow instructions and diagrams make the Roamer 7 a pleasure to build. Total building costs Parts price list and easy build plans 3/- (FREE with parts).

SUPER SEVEN

MED. AND LONG WAVE A. BAND. 7 (approx.) 90 metres. With SPEAKER AND EARPIECE. 6 transistors and 2 diodes, forte radio, tuning condensers, moving coil speaker, etc. Size 7 x 3 x 1 in. Total Building Costs 45/-, P. & P. 4/-.

POCKET FIVE

TRANSFORMER FIVE

DEPT. PE4, 81a HIGH STREET, BEDFORD. 0234 52367

KHINER ELECTRONICS LIMITED

81 PARK LANE, HORNCHURCH, ESSEX

ROMford 44473

LINEAR INTEGRATED CIRCUITS

<table>
<thead>
<tr>
<th>G.E. Type</th>
<th>DESCRIPTION</th>
<th>MARKET PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC1084</td>
<td>20V 60mA</td>
<td>$0.40</td>
</tr>
<tr>
<td>EC1045</td>
<td>20V 50mA</td>
<td>$0.35</td>
</tr>
<tr>
<td>EC1025</td>
<td>20V 50mA</td>
<td>$0.30</td>
</tr>
<tr>
<td>EC1018</td>
<td>20V 50mA</td>
<td>$0.25</td>
</tr>
<tr>
<td>EC1015</td>
<td>20V 50mA</td>
<td>$0.20</td>
</tr>
<tr>
<td>EC1022</td>
<td>20V 40mA</td>
<td>$0.15</td>
</tr>
<tr>
<td>EC1021</td>
<td>20V 40mA</td>
<td>$0.10</td>
</tr>
<tr>
<td>EC1020</td>
<td>20V 40mA</td>
<td>$0.05</td>
</tr>
<tr>
<td>EC1019</td>
<td>20V 40mA</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

SPEAKER BARGAINS

E.M.I. 13 x 8 in. With two Tweeters and x /over, 15 ohm, 15/6 each.

HIGH SPEED MAGNETIC COUNTERS

<table>
<thead>
<tr>
<th>COUNTER</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 x 1</td>
<td>12/6</td>
</tr>
</tbody>
</table>

BULK COMPONENT OFFERS

100 Capacitors 20pF to 300pF. $0.40 each.

ANY ITEM 12/-; ANY 5 ITEMS £2.10.

S.C.R.

Type 230/10 50/50 | 10/6

S.C.R.

Type 230/10 50/50 | 10/6

RADIO EXCHANGE LTD

Callers side entrance Stylo Shoe Shop. Open 10-1, 2.30-4.30 Monday - Friday 9.12.30 Saturday
FULLY TESTED AND MARKED

AC107 2-1 OC171 3-1
AC126 2-4 OC171 4-1
AC127 2-4 OC209 5-6
AC128 2-4 OC209 5-6
AC177 2-5 2N3011 2-6
AC178 2-5 2N3011 2-6
AF14 3-1 2N2222 3-6
AF15 3-6 2N711 10-6
AF16 3-6 2N3002-3 4-1
AF17 3-6 2N3045 4-1
AF18 3-6 2N3057 4-1
AF19 3-6 2N3069 5-1
AF26 3-6 2N3844A 5-1
AF29 5-1 Power Transistors

TRY OUR X PAKS FOR UNEQUALLED VALUE

XA PAK
Germanium PNP type transistors, equivalents to a large part of the OC range, i.e., 44, 45, 71, 72, 81, etc.

PRICE £5 PER 1000

XB PAK
Silicon TO-18 CAN type transistors NPN/PNP mixed lots, with equivalents to OC200-1, 2N706s, BY127/29, BY95s.

PRICE £5.50 PER 500

PRICE £10 PER 1000

ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75% OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK.

P/P 2/6 PER PACK (U.K.)

PRE-PAKS
Selection from our lists

No.	**Price**
B1 | 50 Unmarked Trans. Untested - 10/-
B2 | 6 Photo Cells Inc. Book of Instructions - 10/-
B6 | 17 Red Spot AF Transistors - 10/-
B6A | 17 White Spot RF Transistors - 10/-
B9 | 1 ORP 12 Light Sensitive Cell - 9/-
B35 | 35 Sil. Trans. 400 MCs Brand New - 10/-
B34 | 40 .. NPN To 5 (Trans Volage) - 10/-
B50 | 40 .. NPN To18 & Gain Failouts 10/-
B56 | 40 .. NPN/PNP All Tested - 10/-
B68 | 10 Top Hot Rels. 750 M/4 100-800 PIV - 10/-
B69 | 20 Diodes. Glow-Bnd. Germ Sil. Planar - 10/-
B74 | 5 Glow-Bnd. Diodes. 2-OC9, 3-OC5 - 10/-
B75 | 3 Comp. Sel. 2G271, 2G281, 2G291A - 10/-
B76 | 2 1 Unipolar Transistor 2N2160 - 15/-
B77 | 2 Comp. Pair AD161-AD162 - 10/-
C35 | 3 Unipolar Transistors = to 2N2160 - 15/-
A1 | 7 Silicon Rectifiers BY100 Type - 20/-
A4 | 25 Mixed and Tested Transistors - 20/-
A31 | 1 Power Transistor 1-AD1491-OC26 and 3 others - 20/-

AND MANY MORE

JUST INTRODUCED
2 BRAND NEW ITEMS

PAK B.78
INTEGRATED CIRCUITS, MIXED UNTESTED, TYPES INC. CLUDES: 1IC910, 912, 916, 944, 945, 946, 948, 952, 951, & 962.

Two of these are STC Type Numbers, Data and Circuits Supplied with Orders.

PRICE £10 PER ORDER

PAK B.79
Genuine I.T.T. FULLY Tested and Marked Diodes.

IN4007, 1 AMP, 1000 VOLT.

PRICE £10 PER ORDER

Make a Rev. Counter for your Car. The ‘TACHO BLOCK’. This encapsulated block will turn any 0-1mA meter into a linear and accurate rev. counter for any car. State 4 or 6 cylinder.

PRICE 20/- EACH

FREE CATALOGUE AND LISTS FOR:

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS & SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add 1/- post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

THERE IS ONLY ONE BI-PRE-PAK LTD BEWARE OF IMITATIONS

NEW UNMARKED UNTESTED PAKS

<table>
<thead>
<tr>
<th>No.</th>
<th>PAK</th>
<th>Description</th>
<th>10/-</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>BSY95A</td>
<td>NPN Silicon Transistors</td>
<td>10/-</td>
</tr>
<tr>
<td>10</td>
<td>OC49-OC81</td>
<td>Mull. Glass Type</td>
<td>10/-</td>
</tr>
<tr>
<td>25</td>
<td>BSY26-27</td>
<td>NPN Silicon Transistors</td>
<td>10/-</td>
</tr>
<tr>
<td>10</td>
<td>10 Watt Silicon All Voltages</td>
<td>ZENERS</td>
<td>10/-</td>
</tr>
<tr>
<td>25</td>
<td>BSY50-1.2</td>
<td>NPN Silicon Vectors</td>
<td>10/-</td>
</tr>
<tr>
<td>10</td>
<td>4 amp. Stud. Silicon</td>
<td>RECTIFIERS</td>
<td>10/-</td>
</tr>
<tr>
<td>25</td>
<td>BC107-8-9</td>
<td>NPN Silicon Transistors</td>
<td>10/-</td>
</tr>
<tr>
<td>40</td>
<td>1N5145-60Q200/202</td>
<td>Sub. Min. Silicon Diodes</td>
<td>10/-</td>
</tr>
<tr>
<td>150</td>
<td>Min. Germ. High Quality</td>
<td>Diodes</td>
<td>10/-</td>
</tr>
<tr>
<td>25</td>
<td>2N706 A</td>
<td>NPN Silicon Transistors</td>
<td>10/-</td>
</tr>
</tbody>
</table>

PRE-PAK N.605 POWER TRANSISTOR EQUIVALENT TO NKT201-2-3-4

COMPLIMENTSARY SET NPN/PNP GERM. TRANS.

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

BI-PRE-PAK LTD

DEPT. A, 222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX

TELEPHONE: SOUTHEND (0702) 46344
MULTIMETERS for EVERY purpose!

LAFAYETTE DE-LUXE 100 M/VOLT
- 125-point scale.
- 150V range.
- 0 to 100 nA.
- Overload protection.
- Postpaid.

TE-600 £25.00
- 6th full-line meter, 2 color scales, overload protection.
- 0 to 250/500/1000V d.c.
- 0 to 20mA.
- 0 to 20 kA.
- Post paid.

MODEL 100K/VOLT
- 4th color meter in protection. Internal/external power supply.
- 0 to 10/20/100/300/600/1500/ 2000V d.c.
- 0 to 5 mA.
- 0 to 20 x 10 dB.
- Post paid.

NEW MODEL 80.000
- Overload protection.
- 0 to 8/5/2/10/20/100/ 1000/2000V d.c.
- 0 to 5 mA.
- 0 to 20 x 10 dB.
- Post paid.

NEW MODEL 80.000 M/VOLT
- Overload protection.
- 0 to 5/2/10/20/100/ 1000/2000V d.c.
- 0 to 5 mA.
- 0 to 20 x 10 dB.
- Post paid.

MODEL 801
- 0 to 20 x 10 dB.
- 0 to 5 mA.
- 0 to 20 x 10 dB.
- Post paid.

LAFAYETTE SUPER 25,000 O.P.V.
- Voltage: 10/20/50/100/200/ 500/1000/2000/6000/15000/25000V d.c.
- 0 to 10/50/100/200/ 300/600/1000/2000/3000A.
- 0 to 5 mA.
- 0 to 20 x 10 dB.
- Post paid.

TO-2 PORTABLE OSCILLOSCOPE
- A general purpose low cost economy oscilloscope.
- Y amp. Bandwidth 3-1 MHz. Input imp. 9 meg 6 P.F.
- Illuminated scale. 2 in. tabe. 115 x 180 mm.
- Weight: 8 lb. 9 oz.
- Supplied brand new with handbook B52.35.10, Carr. 10/-.

TELL DECADE ATTENUATOR
- 9 decade range from 0.01 to 10,000,000.
- Balanced T and Bridge T. Impedance 6000/1000/100/100/10/100/100/ 100/100/10/100/100/100/100/10/10.
- D.C. to 200kHz (-3dB).
- Accuracy: 0.5%. Transmission 0.01 to 1000. Maximum input less than 4W (5Vt). Built in 600 ohm and resistance with internal switch. Brand new.
- £27.10.0. P. & P. 5/-.

NEW CATALOGUE

Nearly 200 pages giving full details of a comprehensive range of TELEPHONE EQUIPMENT, COMMUNICATION EQUIPMENT AND HI-FI EQUIPMENT. Each section greatly enlarged and full, illustrated. Thousands of items many at bargain prices. FREE DISCOUNT COUPONS VALUE 1/-.

SEND NOW ONLY 7/- P.P.F.

NEW LAFAYETTE SOLID STATE HA600 RECEIVER

5 BAND AM/FSB/SW AMATEUR AND SHORT WAVE, 150Kc/8—30Mc, BANDSWITCHING, EXCELLENT VALUE £10. Carr. 10/-.

TRIO COMMUNICATION RECEIVER MODEL 8R-59DE

4 band receiver covering 200Kc to 30Mc. Continuous and electrical band spread. 10, 15, 20, 30 and 35 metres. 8 valve 7 diode circuit. 4/8 ohm output and phone jack. £12.10.0. P. & P. 3/-.

NEW LAFAYETTE LA-224 TRANSISTOR STEREO AMPLIFIER

The latest in transistor design, 8 transistors, 1HF music power, 30W at 8Ohm. Response 30-50,000 ±3dB at 1W. Good distortion 0.5% or less. £18.10.0. Carr. 10/-.

SEND NOW—ONLY 7/- P.P.F.

GARRARD

FULL CURRENT RANGE OFFERED, BRAND NEW AND GUARANTEED AT FANTASTIC SAVINGS

- **SRP2 Mono** £10.00
- **SRP2 Stereo** £10.00
- **SRP2S Mono** £10.00
- **SRP2S Stereo** £10.00
- **SRP2SST Mono** £10.00
- **SRP2SST Stereo** £10.00
- **SRP2SSTS Mono** £10.00
- **SRP2SSTS Stereo** £10.00
- **SRP2SSTST Mono** £10.00
- **SRP2SSTST Stereo** £10.00
- **SRP2SSTSTS Mono** £10.00
- **SRP2SSTSTS Stereo** £10.00
- **SRP2SSTSTST Mono** £10.00
- **SRP2SSTSTST Stereo** £10.00
- **SRP2SSTSTSTS Mono** £10.00
- **SRP2SSTSTSTS Stereo** £10.00

Garrard—insurance 1/6 extra any model. W43 base £39.10.0. Perspex cover £5.10.0. Carr. extra.

FIELD TELEPHONES TYPE L

- Generator ringing, metal cases. Operates from 2V to 200V a.c. Batteries (not supplied) for fixed frequency operation. £18.10.0. Carr. 10/-.

NEW LAFAYETTE LB-110 COMMUNICATION RECEIVER

- A completely transistorised receiver covering 100—174Mc. Fully tunable or crystal controlled. £15.10.0. Carr. 10/-.

SEND NOW—ONLY 7/- P.P.F.

FREE DISCOUNT COUPONS

Items many at bargain prices. FREE DISCOUNT COUPONS VALUE 1/—.

TIERN EQUIPMENT AND HI-FI

Phone GERHARD 8204 9155
3-34 LISLE STREET, LONDON W.C.2
Mullard DATA BOOK for 1969

Get up-to-date with the latest Mullard Data Book—just published. It contains details of current Mullard valves, picture tubes, semiconductors and components for Radio, TV, Audio and HiFi applications. Each section, colour coded for quick reference, includes comparables and equivalents information plus details of the latest devices in the replacement market.

Quick! Buy your copy from your local TV retailer or send 3/6 plus 9d for postage and packing direct to Mullard Ltd.

Mullard Limited, Distributor Sales Division, Mullard House, Torrington Place, London WC1.

CED 72
BROWSERS AND BEGINNERS

Not all readers of this magazine are doers. Many are armchair constructors—though, let us hasten to add, they are just as welcome as the most zealous manipulators of soldering irons and pliers. That they do at any rate read about electronics is a distinct mark in their favour! But we always try to coax the browsers from their armchairs into productive activity.

The varied range of projects described in these pages provide a strong incentive for action. At one stage or another some of our passive readers become enthused by the possibilities of certain projects and the plunge is taken. But others still hesitate on the brink, as enquiries we receive concerning the possibility of purchasing made-up projects testify.

Knowledge and practical skill are not obtained without effort. As with all specialised interests, electronics demands study of fundamentals and then practice.

Articles aimed at helping the beginner in the first steps of constructional work appear frequently in these pages. This month we are giving extra special attention to the needs of beginners—whether they be new readers or chair-bound regulars. The Constructors Guide included as a supplement in this issue should dispel any remaining qualms in the mind of the most hesitant reader. This guide will familiarise him with the principal features of components and enable him to translate the theoretical circuit diagram into a practical model. The most popular methods of construction are described; the tools and materials required and the techniques employed are concisely but clearly explained.

Having digested this basic information, the first steps in construction can be taken with confidence. Obviously simple projects should be tackled at the start, but with regular practice skills will be acquired and increased familiarity with components gained. A whole range of exciting projects will then come within reach.

But even when a state of high proficiency is reached, there will always be something new to read about: new components and new circuit techniques are constantly being evolved. Things are always happening—that's one reason for the great fascination of electronics. Just reading about the subject is only part of the story however; making practical use of these new developments is even more rewarding.

F. E. Bennett—Editor

This Month

CONSTRUCTIONAL PROJECTS
MICROPHONE MIXER 259
PHASE SPLITTER—FREQUENCY DOUBLER 267
POCKET RADIATION MONITOR 270
ELECTRONIC MIME MOBILE ANIMAL—EMMA 275
INTERRUPTED SCREENWIPER CONTROL 281

SPECIAL SERIES
BIONICS—6 294

GENERAL FEATURES
THEORY INTO PRACTICE 256
LOUDSPEAKERS 286

NEWS AND COMMENT
EDITORIAL 255
NEWS BRIEFS 258, 291, 305
ELECTRONORAMA 284
MARKET PLACE 292
SPACEWATCH 306
READOUT 309

SUPPLEMENT
CONSTRUCTORS GUIDE

Our May issue will be published on Monday, April 14
Transistor circuits lend themselves readily to several simple forms of layout and construction, due to the facilities of direct transistor connection without the need for plug-in holders. Some of these methods are briefly outlined in this month's extra supplement Constructors' Guide in the centre of this issue.

The following article shows just how easy it is to make a constructional layout when given a circuit diagram only. It is based on a three-transistor class A amplifier, which does not boast a hi-fi specification, but can be useful as a monitor in sound recording or as a booster for crystal tuners or pick-ups.

One of the problems faced by the amateur constructor, using laminated plastics and copper wiring boards, is the translation of a theoretical circuit to a practical layout.

This can be done quite easily by using a piece of squared paper to represent the hole matrix of the board. The horizontal rows of holes, those which lie along the length of the copper strips, are given a letter A-Z, and the vertical rows are given a number 1-26 or more. These letters and numbers give a set of co-ordinates to work from. The size of the board to be used is determined after a rough layout has been drawn on the squared paper, showing the physical size of the components that are under consideration.

If space is not a major consideration, the components can be laid out flat on the board; for a more compact layout the resistors and capacitors can be stood up on end as shown in the example. If components are laid flat on the board, one has to determine the amount of space to be occupied, governed mainly by component length.

To give an example for guidance, a 1/2 watt resistor occupies a minimum length of five holes on a matrix pitch of 0·15in.

Fig. 1. Theoretical circuit. This example is a class A amplifier. Junction positions for the component board are shown.

SQUARED PAPER LAYOUT

When preparing the layout of the circuit on the board, take a piece of square paper, and mark it out as near as possible according to the circuit layout in the theoretical diagram. Take as an example for this exercise a simple general purpose linear amplifier (see Fig. 1).

Make a start with the transformer and, after taking a measurement of its size and finding the number of holes required, place this at the top right hand corner of the paper. Position it so that the secondary winding is nearest to the right hand end (Fig. 2). Two rows of holes are left clear of the transformer for the connection wires to the loudspeaker. The holes required are marked on the paper with large dots, for example, 17B and 17D (secondary), 13B and 13D (primary). Enter these references down in a table with the component reference number by the side of it. The copper strips are cut at 15B and 15D so that primary and secondary windings are not shorted.

The components can be drawn on the squared paper in block form and marked with reference numbers. The values can be placed on the position chart if required. The next components to be located will be TR3. The collector is marked out for the hole 12D, the base at...
Fig. 2. Use squared paper to draw plan of component layout based on layout of circuit. External components VR1, LSI, and BY1 are connected by flying leads to the board. Collector is wire nearest spot; base is centre wire on all transistors.

COMPONENTS . . .

Resistors
- R1 120kΩ (3E-3F)
- R2 8.2kΩ (5B-5E)
- R3 39kΩ (11F-11G)
- R4 5.6kΩ (10B-10E)
- R5 1kΩ (7G-7I)
- R6 100Ω (13G-13I)

Potentiometer
- VR1 10kΩ log (Wiper to 1H, Common to 1I)

Capacitors
- C1 25μF elect. 15V (2F-2H)
- C2 25μF elect. 15V (6E-6F)
- C3 50μF elect. 15V (9G-9I)
- C4 50μF elect. 15V (15G-15I)

Transformer
- T1 9:2:1 output transformer (Radiospares type T7/14) (Primary to 13B-13D; Secondary to 17S-17D)

Transistors
- TR1 NKT214 or OC71 (collector to 4E, base 4F, emitter 4I)
- TR2 NKT214 or OC71 (collector to 8E, base 8F, emitter 8G)
- TR3 MKT271 or OC81 (collector to 12D, base 12E, emitter 12G)

Battery
- BY1 9 volts (negative to 12B, positive to 19I)

Component Board
- Printed wiring board, can be either Veroboard (see Fig. 2) or plain s.r.b.p. with Cir-Kit copper strip.

12E and emitter 12G. Next, R6 is marked at 13G and 13I. Following the general form of the theoretical circuit, C4 will be next and is connected to the emitter via hole 15G and 15I.

Resistor R3 is also connected to the emitter of TR3 and the base of TR2. Its position is marked on the paper at holes 11G and 11F. Mark in the conductor strips that are required by drawing parallel lines on the paper for each strip (see Fig. 2) between the points of entry of the components wires to be joined, e.g. between 15G and 11G.

TR2 base is connected to R3 through hole 8F. The collector is direct coupled to the base of TR3 through 8E. The emitter of this transistor is connected through 8G to R5 and C3 negative which are inserted at 7G and 9G respectively. The other end of these two components are inserted at 7I and 9I for direct connection to the positive supply line. It should be an easy matter to follow the layout of the first stage now. The rest of the components are marked out in a similar fashion.

continued on next page
60mW AMPLIFIER

The circuit used in this example is a simple general purpose amplifier suitable for coupling to a crystal set tuner or gramophone crystal pick-up. In the latter application a 100 kilohm resistor should be connected in series with the input to VR1 to avoid mismatch to the amplifier.

TR1 is a small signal amplifier stage providing sufficient drive for the direct coupled power amplifier. The bias current for TR1 is derived through R1 to maintain stable d.c. operating conditions. The bias current for TR3 is taken directly through R4, whilst R3 feeds bias for TR2 from the potential divider formed by T1, TR3 emitter, and R6. With any increase in current through TR2, the base-emitter voltage of TR3 is reduced. This causes less current to flow through TR3. Consequently, the voltage across R6 is reduced, causing a simultaneous reduction in supply to TR2 base. The operating conditions of TR2 and TR3 are heavily dependent on R3 for stable working without overloading TR3. The power output fed to a 3 ohm loudspeaker is about 60mW, which is adequate for personal listening.

TRANSFER TO COMPONENT BOARD

When the last component has been drawn the size of the piece of board can be determined, which in this case will be given by the line J and row 19.

Before placing any components on the piece of board all necessary copper strip breaks must be made. These must be indicated on the paper with crosses.

The drilling of holes is best carried out by clamping the board on a piece of wood, copper side up; this avoids tearing the copper foil. Where a copper strip has to be cut, a 1/8in drill will do this by putting the point of the drill in the holes and twisting it until the copper is removed. Be careful or the copper strip may be lifted.

The components are placed in their respective positions on the plain side of the board and all soldering is done on the copper side. The finished article should look like that in the photograph. With practice quite a compact layout can be achieved, and if the stand up method of fixing is used, a very small layout can be obtained.

When soldering on this type of wiring board a hot, clean iron must be used, and done quickly, otherwise prolonged heat may raise the copper foil from the base board.

Transformers, tags and pins or flying leads are either connected with insulated wire or soldered direct to the copper strip. If volume controls (potentiometers) are to be mounted direct on the printed wiring board, a hole must be carefully drilled in the board to accept the threaded fixing (1/4in). The copper strip must be cleared away from the locking nut with a sharp knife to prevent short circuits. The potentiometer tags are connected to the board by insulated link wires soldered to the appropriate copper strips.

Computers for Hospitals

The Department of Health and Social Security have ordered six small on-line computers, from Elliot Automation System Ltd., for automating bio-chemical analysis in hospitals.

The analysis of bio-chemical samples is carried out by hospital pathology laboratories for diagnostic reasons. By linking mechanical analysers directly to an on-line computer, skilled technicians will be relieved of the repetitive and time consuming clerical work involved in making the manual calculations which are otherwise necessary when producing data sheets.

Solid State Traffic Controller

The first British designed and manufactured solid state traffic controller to be installed in the UK is now in operation at the Bishopsgate-Middlesex Street intersection in the City of London. The design is based on a set of interchangeable modules from which a controller can be assembled and programmed to cater for any intersection. The most complex intersections can be controlled by one equipment and additional modules enable the controller to cope with any increase or change in traffic demands.

The controller is used in conjunction with an inductive vehicle detector which uses a loop of cable buried under the road surface. Two versions of the detector are available—presence and passage detectors—both of which are used in the City of London installation (see photograph below). The presence detector gives an output to indicate queuing vehicles and the passage detector, which is sensitive even to bicycles, is arranged to ignore parked vehicles.
If you make high quality tape recordings that require mixing microphones and high level radio tuner inputs, this five channel audio mixer might be just the companion piece for your tape recorder.

Designed around two of the amplifier circuits that appeared in last month’s article Modern Audio Circuits, this mixer has the added advantage that the constructor need not be limited to the two microphones and three high level signal inputs provided in the prototype as the amplifier circuits can be duplicated so providing more channels if required.

LOW Z MICROPHONES

The mixer can be constructed to cater for low impedance microphones such as ribbon or moving coil types where the microphone transformers are built-in. Otherwise the microphone inputs have a nominal impedance of 120 kilohms which is suitable for low impedance microphones having their own matching transformers to provide a medium to high output impedance.

HIGH LEVEL INPUTS

The high level inputs are suitable for the output from other pre-amplifiers, radio tuners, and tape recorder high level outputs, that is, signals from audio outputs of between 600 ohms (line) and up to 500 kilohms at between 100 to 500mV. Adjustment can be made so that the input signals to both the microphone and high level inputs can be increased without introducing distortion.

NOT FOR CRYSTAL MICROPHONES

While the microphone pre-amplifiers have sufficient gain for use with crystal microphones, the input impedance of 120 kilohms would considerably reduce the bass response. This follows from the fact that crystal microphones have a high source impedance and also high internal capacitance.

Although the high level inputs have an impedance of 500 kilohms, these are equally unsuitable as a high signal voltage is required which the crystal microphone does not produce.

SPECIFICATION . . .

<table>
<thead>
<tr>
<th>Sensitivity at mic inputs</th>
<th>3mV-10mV max. for 1 volt r.m.s. output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity at line (high level) inputs</td>
<td>200mV-500mV max. for 1 volt r.m.s. output</td>
</tr>
<tr>
<td>Distortion for these inputs—Mic: Less than 0.75%</td>
<td>Line: Less than 0.15%</td>
</tr>
<tr>
<td>Microphone input impedance (without transformers)—120 kilohms</td>
<td></td>
</tr>
<tr>
<td>Line (high level) input impedance—500 kilohms</td>
<td></td>
</tr>
<tr>
<td>Output impedance—Nominal 600 ohms</td>
<td></td>
</tr>
<tr>
<td>Signal to noise ratio</td>
<td>Mic inputs—60dB below 1 volt at output</td>
</tr>
<tr>
<td>Frequency response—Mic: 40Hz to 15kHz ± 2dB</td>
<td>Line input—60dB below 1 volt at output</td>
</tr>
<tr>
<td></td>
<td>Line: 30Hz to 20kHz ± 2dB</td>
</tr>
<tr>
<td>Total current consumption—12mA</td>
<td></td>
</tr>
</tbody>
</table>
CIRCUIT DETAILS
The basic amplifier given in Fig. 1 consists of TR1 and TR2 microphone 1 pre-amplifier; TR3 and TR4 microphone 2 pre-amplifier, and TR5 and TR6 the mixing amplifier.

Common to all of the stages is the use of d.c. feedback loops to achieve stabilisation against temperature variations.

The gain of each microphone pre-amplifier is fixed at approximately 40dB for a distortion level of less than 0.75 per cent. The gain of the mixing amplifier is adjustable between approximately 13 and 30dB but, for the overall performance as per the specification, is adjusted to around 15dB. This more than compensates for the insertion losses of the passive network of mixing amplifier input potentiometers and associated series resistors.

A nominal 600 ohm output allows for a long screened connecting lead to a tape recorder without loss of treble response and will provide more than sufficient signal for tape recorder line or high level inputs at impedances between 600 ohms and 500 kilohms or greater.

FEEDBACK CONTROL
The pre-set control VR6 in the emitter circuit of TR5 controls the amount of feedback between the collector of TR6 and the emitter of TR5 and therefore the overall gain of this stage. With VR6 at maximum resistance the gain will be at a minimum but the circuit will accept much larger input signals. At the same time the gain from the microphone pre-amplifiers will be decreased but they will also accept larger input signals.

It follows that the microphone inputs could therefore be used for electric guitar pick-ups with a medium impedance but fairly high signal output, say 50mV or so.

For this application VR6 must be pre-set to its maximum value of 10 kilohms. Otherwise VR6 is adjusted as described later, to provide the performance given in the specification.

POWER SUPPLIES
The mixer operates from an 18V supply, consisting of two 9V batteries in series, at a total current consumption of 12mA. It would undoubtedly operate quite efficiently from a mains power unit, but this could lead to problems with mains hum pick-up by the microphone transformers if these are built into the mixer.

In view of the fairly low current consumption and the fact that a mixer is rarely run for so long and so frequently as most other kinds of audio equipment, it would hardly be worthwhile providing it with a mains supply.

Battery operation has the advantage of making the mixer completely portable and quite independent of mains supplies.
COMPONENTS...

Resistors
R1 120kΩ
R2 4.7kΩ
R3 100Ω
R4 12kΩ
R5 150kΩ
R6 1kΩ
R7 470Ω
R8 1kΩ
R9 120kΩ
R10 4.7kΩ
R11 100Ω
R12 12kΩ
R13 150kΩ
R14 1kΩ
R15 470Ω
R16 1kΩ
All ½ watt ±10% carbon

Capacitors
C1 0.47µF tubular paper
C2 100µF elect. 25V
C3 100µF silvered mica
C4 1µF elect. 25V
C5 100µF elect. 25V
C6 0.47µF tubular paper
C7 100µF elect. 25V
C8 100µF silvered mica
C9 1µF elect. 25V
C10 1µF elect. 25V
C11 1000µF elect. 25V
C12 0.33µF tubular paper
C13 100µF elect. 25V
C14 100µF silvered mica
C15 100µF elect. 25V
C16 1µF elect. 25V

Transistors
TR1-6 BC108A (6 off)—LST Components, 7 Copfesfold Road, Brentwood, Essex.

Potentiometers
VR1-5 500k carbon log. (5 off)
VR6 10k carbon 1 in preset—Electroniques type MPC

Sockets
SK1-6 Standard type jack sockets (6 off)

Switch
S1 Double pole on/off switch

Batteries
BY1, BY2 Ever Ready PP9, 9 volts

Miscellaneous
Aluminium case—Electroniques type, series 222
Calibrated control knobs—Electroniques type NK2
Perforated s.r.b.p. (0.15in matrix) 3½in x 2½in (3 off)
Microphone transformers (if used)—Electroniques/Parmeko type 2549 for 25 ohm microphones, or type 2570 for 100-600 ohm microphones
P.V.C. covered wire. Battery connectors (4 off)
Fig. 2. Component layout and wiring for Board 1, comprising the pre-amplifier for Microphone 1

Fig. 3. Component layout and wiring for Board 2, comprising the pre-amplifier for Microphone 2

Fig. 4. Component layout and wiring for Board 3, comprising the mixing amplifier
CONSTRUCTION

Each amplifier stage is assembled on a piece of perforated s.r.b.p. board measuring 3½in x 2½in. The holes in these boards are on a 0-15in matrix.

Assembly details of these amplifiers is given in Figs. 2, 3, and 4.

Space limitation in the aluminium case demand a vertical mounting of the component boards. Details for making the angle brackets for this purpose are given in Fig. 5b. Fig. 5a gives details for making the battery retaining bracket. Before mounting these the front panel of the case should be drilled as shown in Fig. 6. When this is done, the input potentiometers, jack sockets and supply switch S1 can be attached.

Attachment of boards and brackets and other chassis mounted components can now be done as shown in Fig. 7.

Fig. 8 gives the wiring layout to complete the construction of the mixer.

MICROPHONE TRANSFORMERS

Space for two microphone transformers is shown by the dotted outline in Fig. 7. The transformers can be mounted one above the other on a single fixing bracket.

It should be noted that if the frequency response from the microphone inputs is to be maintained as per the specification, the specified transformers should be used. Inferior microphone transformers will result in poor performance.

Fig. 5. Retaining bracket for (a) the batteries; (b) the three boards

Fig. 6. Front panel drilling details for chassis

Fig. 7. Layout of components and board sub-assemblies connected to chassis base and rear panel
The Electroniques type P.2549 is a 40:1 ratio transformer for 25 to 30 ohm microphones. The type P.2570 is suitable for 400 to 600 ohm microphones and has a ratio of 10:1.

Connections for balanced or unbalanced inputs with these transformers are shown in Fig. 9. Balanced inputs will require three way, sleeve ring and tip, jack sockets.

Fig. 8. Wiring of microphone mixer unit

Fig. 9. Microphone transformer connections for (a) balanced input; (b) unbalanced input

Fig. 10. Frequency response for microphone and line inputs

PERFORMANCE CHECKS

Frequency response and gain checks, etc. should be carried out with an audio signal generator and valve voltmeter.

With approximately 200mV of sine wave signal fed into either of the line inputs and with the gain control set to maximum, adjust the feedback control VR6 until the signal level at the output is approximately 1 volt r.m.s.

With this setting a 2 to 3mV signal fed into the microphone inputs should similarly produce this output of 1 volt.

The overall frequency response for these input and output signal settings is shown in Fig. 10.

If no test instruments are available VR6 must be pre-set by trial.

To perform as in the specification, around 2 kilohms of VR6 will need to be in circuit.

With all the preset resistance in circuit giving maximum negative feedback, the input signals to the high level sockets can be increased to around 1 volt and that to the microphone inputs around 50mV.

264
BRANDED TAPES 20% OFF!
BASF — EMI — GRUNDIG
PHILIPS — SCOTCH — AGFA
Brand new, Fully Guaranteed and in normal manufacturer's pack

<table>
<thead>
<tr>
<th>STANDARD PLAY</th>
<th>List Price</th>
<th>Our Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5" 600'</td>
<td>18/-</td>
<td>14/-</td>
</tr>
<tr>
<td>5" 900' x 2</td>
<td>24/-</td>
<td>19/-</td>
</tr>
<tr>
<td>7" 1200'</td>
<td>18/-</td>
<td>14/-</td>
</tr>
<tr>
<td>10" 2400'</td>
<td>36/-</td>
<td>28/-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LONG PLAY</th>
<th>List Price</th>
<th>Our Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3" 210'</td>
<td>6/-</td>
<td>4/-</td>
</tr>
<tr>
<td>3" 300' x 2</td>
<td>9/-</td>
<td>7/-</td>
</tr>
<tr>
<td>4" 450'</td>
<td>12/-</td>
<td>9/-</td>
</tr>
<tr>
<td>5" 600' BASF</td>
<td>18/-</td>
<td>14/-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOUBLE PLAY</th>
<th>List Price</th>
<th>Our Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3" 300' Not Scotch</td>
<td>6/-</td>
<td>4/-</td>
</tr>
<tr>
<td>4" 400' Scotch only</td>
<td>16/-</td>
<td>13/-</td>
</tr>
<tr>
<td>4" 400' BASF</td>
<td>18/-</td>
<td>14/-</td>
</tr>
<tr>
<td>5" 1200'</td>
<td>24/-</td>
<td>18/-</td>
</tr>
<tr>
<td>4" 900' BASF</td>
<td>20/-</td>
<td>16/-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRIPLE PLAY</th>
<th>List Price</th>
<th>Our Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3" 450' Not Scotch</td>
<td>18/-</td>
<td>14/-</td>
</tr>
<tr>
<td>4" 600' Scotch only</td>
<td>24/-</td>
<td>19/-</td>
</tr>
<tr>
<td>5" 1800'</td>
<td>36/-</td>
<td>28/-</td>
</tr>
<tr>
<td>4" 900' BASF</td>
<td>40/-</td>
<td>32/-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCOTCH DYNARANGE</th>
<th>List Price</th>
<th>Our Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5" 900'</td>
<td>18/-</td>
<td>14/-</td>
</tr>
<tr>
<td>5" 1200'</td>
<td>30/-</td>
<td>24/-</td>
</tr>
<tr>
<td>7" 1800'</td>
<td>45/-</td>
<td>36/-</td>
</tr>
<tr>
<td>6" 2400' (Metal Reel)</td>
<td>95/-</td>
<td>76/-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRUNDIG TAPE AVAILABLE</th>
<th>List Price</th>
<th>Our Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10" 3600' BASF only</td>
<td>95/-</td>
<td>76/-</td>
</tr>
<tr>
<td>10" 3000' BABF 50'</td>
<td>60/</td>
<td>46/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPACT Cassettes</th>
<th>List Price</th>
<th>Our Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.40</td>
<td>17/6</td>
<td>14/3</td>
</tr>
<tr>
<td>C.90</td>
<td>25/-</td>
<td>20/-</td>
</tr>
<tr>
<td>C.120</td>
<td>35/-</td>
<td>28/-</td>
</tr>
</tbody>
</table>

BRAND NEW FULLY GUARANTEED

POSTAGE AND PACKING 2/6. ORDERS OVER £3 POST FREE

ILFORD ZONAL TAPE 40% OFF!
NEW KJ SPECTACULAR
From the Motion Picture and Magnetic Products Division of ILFORD LTD. we are proud to present a New Superbulous BARGAIN OFFER! Never before have you been offered such a breathtaking opportunity. ILFORD-ZONAL premium grade magnetic tape (extensively used by the B.B.C.) at a terrific reduction of 40% Brand New, Boxed, Fully Guaranteed and complete with leaders, trailers and stop foil. UNIQUES TO KJ.

NEW KJ SPECTACULAR

SPECIALISTS in PHILIPS, GRUNDIG, FERGUSON, SANYO and EAGLE EQUIPMENT

BARGAIN OF THE MONTH

PHILIPS 4-TRACK TAPE RECORDER

SALE £7.15.0!

LIST PRICE £48.12.0 **OUR PRICE** £40.17.0

AMPEX TAPE — SAVE 30%
A special offer of top quality, premium grade, mylar (Polyester) base tape with Pull Leader and Stop Fool. Boxed and Fully guaranteed.

COMPACT CASSETTES UP TO HALF PRICE!
Compact Cassettes with 60 and 90 minutes playing time. Brand New and packed in normal plastic library box. Available at this exceptional price.

SPECIFICATION
Free, Range 60-14,000Hz. Signal to noise 45dB. Wow and Flutter ±0.25%. Output Power 2 watts. Inputs Mic. 2mV, Radio/Diode 2mV, Gram. 100mV. Power Supply Mains voltage 110/250V. Dimensions 16½" x 11½" x 5¾".

DISCOUNT BARGAINS + VAST STOCKS OF TAPE & EQUIPMENT + REFUND GUARANTEE.

K. J. ENTERPRISES (Dept. 17) THE BRIDGE, WEALDSTONE, MIDDLESEX (Opposite Harrow and Wpaldstone Station). 01-427 7758. Showroom hours: 9.30a.m. - 5.30p.m. Closed Lunch 12.30 - 1.30p.m. Close 1p.m. Saturday.

FREE Our New 100 page illustrated catalogue sent entirely FREE on request. Britain's most specialised comprehensive range of recording tape, Accessories and Audio equipment. 20,000 reels of tape always in stock with reductions ranging up to 50%.

Our Offer is limited to genuine mail order customers only. Orders under £5 are charged 10/-. Orders over £5 are sent Post Free.
THE DORSET (600mW Output)
7-transistor fully tunable M.W.-L.W. portable— with baby alarm set. Of parts. The latest modular and pre-alignment techniques make this simple to build.
Size: 12 x 5 x 3"
MAIN SIZES PACK KIT: £9/6 extra.

Price £5.50 plus 7/6 p. & p. Circuit 2/6 FREE WITH PARTS.

THE ELEGANT SEVEN MK. III (330mW output)
for optional component pack.
MAIN SIZES PACK KIT: £9/6 extra.

Price £4.9.6 plus 7/6 p. & p. Circuit 2/6 FREE WITH PARTS.

SOUND AMPLIFIER A.C. MAINS 200-250V

Price 27 gns. plus 50/- p. & p.

POCKET MULTI-METER
Size 5½ x 3½ x 1½. Meter size 5⅞ x 3⅞. Sensitivity 1000 O.P.V. on both A.C. and D.C. volts. 0-15, 0-250, 0-1000 D.C. current 0-10mA. Instantaneous 0-1000 Hz. Complete with test prods, battery and full instructions. £2. 6d. P. 6. 5. 3. 0.

For gramophone and microphone. Built and tested. 8" x 6" speaker to suit: Price 14/6 plus 1/6 (with tone controls central): Minus 3dB points are 20Hz and 40kHz. Signal to noise ratio: better than —60dB (R.I.A.A.). From 20Hz to 20kHz. Tone response: ±1.5%.

POLYSTERE CAPACITORS (Mullard): —10% to ±50%.
Subminiature (all values in µF)

4V 5-6 2 24 32 64 125 250 400
4-6V 4-6 25 50 100 200 320
10V 4-6 16 32 64 125 250
16V 2-5 10 20 40 80 125
25V 1-6 4-4 12 25 50 80
40V 4-6 8 16 32 60
60V 6-4 25 5 10 20

Price £5.5.0 plus 8/- p. & p. C.W.O. Post and Packing 1/6.

POLYSTERE CAPACITORS (Mullard): —10% to ±50%.

TRANSCISTOR FULLY TUNABLE 34.W.-L.W. guperhet portable—

Soldering Iron value 16/- to every purchaser of the Pocket Multi-Meter.

DUXFORD ELECTRONICS (PE)
97/97A MILL ROAD, CAMBRIDGE

Send S.A.E. for January, 1969 Catalogue

THE VISOUNT
Integrated High Fidelity Transistor Stereo Amplifier

SPECIFICATIONS: Input: 10 watts per channel into 8 to 4 ohms speakers. Input 6 position rotary selector switch (32 mm stereo, P.M. Tuner, Tape B. Amp. Res. Sensitivity: All inputs 100mV into 1M ohm. Frequency response: 40Hz—30000 Hz. Tone controls: Treble flat (Randall type), separate bass and treble controls. Treble 12dB lift and cut at 12kHz. Bass 12dB lift and cut at 60Hz. Volume controls: Separate for each channel. AC MAINS Input: 250-400V—. 00-60Hz. Size 12¾ x 2¼ x 8½ in. In back-filled case. Built and tested. Price £13 4s. 6d. Postage & Packaging 7/6 extra.

B.S.R. TD2 TAPE DECK
This tape deck takes 24" spools complete with two-track leads. Size 12¾" long by 8½ wide. 28.19.6 plus 7/6 p. & p.

SEND ORDERS BY POST TO OUR ACTON ADDRESS PLEASE
This circuit is intended for use as the phase splitting stage in high quality push-pull amplifiers and oscilloscopes, or in any application where two equal signals, in anti-phase with each other, are required from a single input signal. The unit is particularly useful in applications where two output signals are required to vary about similar or identical mean d.c. levels. By suitably arranging the output connections of the unit, it may be used to act as an amplifier with a single output, variable in voltage gain between approximately +1 and −1, or it may be used as a frequency doubler for all a.f. and low r.f. signals.

Before delving into the details of this particular circuit, it is necessary to mention briefly some of the more conventional methods of phase-splitting, and the relative merits (or otherwise) of these alternative systems.

BALANCED INVERTER

Fig. 1 shows a single-transistor phase splitter, sometimes known as a balanced inverter. The circuit has equal loads in the emitter and collector lines (R3 and R4), and an output is taken from across each load. Since the currents flowing in the emitter and collector lines are nearly equal, the signals appearing across the two loads will also be nearly equal in amplitude, but opposite in phase. Apart from its simplicity, the circuit has the great advantage that the balance of the two output signals is virtually unaffected by variations in the transistor characteristics, since any change (in frequency response, etc.) will affect both output signals by an equal amount. The major snag of the circuit is that the two outputs are at very different impedance levels, so that severe unbalance may result when the outputs are terminated. Other minor snags are that the two outputs are at totally different mean d.c. levels, that the overall voltage gain between each output and the input is slightly less than unity (as in the case of the emitter follower) and, since the emitter and collector currents are not quite identical, the two outputs are not perfectly balanced.

Fig. 1. The balanced inverter phase splitter

Fig. 2. Long-tailed pair phase splitter

PHASE SPLITTER - FREQUENCY DOUBLER
LONG-TAILED PAIR

Fig. 2 shows an alternative phase-splitter circuit, known as the long-tailed pair or paraphase amplifier, which is widely used. Here, two transistors are used, each of which is wired as a common emitter amplifier, but sharing a common emitter resistor (R4). This common resistor introduces negative feedback to both transistors, with the result that, when an input is fed to TR1 base, both transistors are affected by the signal, and, if TR1 collector becomes more negative TR2 collector will become more positive; the circuit thus acts as a phase-splitter. Theoretically the greater the value of the common emitter resistor (R4), the larger will be the negative feedback and the more nearly balanced will be the two output signals.

This circuit offers two particular advantages: both output signals are at the same impedance, and, if components are suitably selected, both outputs are available at the same mean d.c. level.

The circuit also has the following disadvantages: perfect balance of the output signals is obtained (in theory) only when the emitter resistor is infinitely large, in which case the voltage gain of the circuit falls to zero. When practical values of emitter resistance are used, voltage gain is obtained and the two outputs may be nearly balanced, but this balance is upset by any difference in the characteristics of the two transistors (such as gain, frequency response, etc.).

BALANCED PHASE SPLITTER

It can be seen that both the above circuits give rather doubtful results. However the circuit shown in Fig. 3, offers a performance superior to either of these alternative circuits. Here, TR1 is wired as a balanced inverter, but the load in the collector circuit is made variable and slightly greater than that in the emitter circuit. Thus, the two output signals can be made exactly equal in magnitude by suitably adjusting VR1, the balance condition then being unaffected by the transistor characteristics. The output from TR1 emitter is fed, via C2, to the base of TR2, which is wired as an emitter follower, and the output from TR1 collector is fed, via C3, to the base of TR3, which is also wired as an emitter follower.

COMPONENTS . . .

<table>
<thead>
<tr>
<th>Resistors</th>
<th>R1 68kΩ</th>
<th>R5 2.2kΩ</th>
<th>R9 2.2kΩ</th>
<th>R10 47kΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2 18kΩ</td>
<td>R6 47kΩ</td>
<td>R7 5.6kΩ</td>
<td>R8 47kΩ</td>
<td></td>
</tr>
<tr>
<td>R3 2.2kΩ</td>
<td>R4 47kΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All 10%, ±1% carbon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Potentiometers | VR1 500Ω skeleton preset | VR2 10kΩ skeleton preset |

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>C1 16µF elect. 15V</th>
<th>C3 8µF elect. 15V</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2 22µF elect. 15V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Transistors | TR1 NKT277 | TR2 NKT277 | TR3 NKT277 |

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th>Veroboard</th>
<th>Plastic covered wire</th>
<th>Battery terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>9V battery</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The emitter follower circuit has a high input impedance, a low output impedance, and gives a voltage gain of near unity. In Fig. 3 a pre-set variable resistor, VR2, is made common to the base-bias circuits of each emitter follower, making it possible to set both emitters at exactly the same d.c. level, or to set any required degree of difference in d.c. levels that may be needed.

The two balanced outputs of the unit are at low impedance, output 1 being in phase with the input, and output 2 being in anti-phase.

CONSTRUCTIONAL DETAILS

The unit is very easy to build, and all the details for wiring using Veroboard are shown in Fig. 4. The breaks in the circuit board are made first and then the components and fly-leads are wired in. All components are mounted vertically on the Veroboard panel; layout is in no way critical.

FREQUENCY DOUBLER

The principle by which the unit is made to act as a frequency doubler is best understood with the aid of Fig. 5. Here, it can be seen that a conventional centretapped mains transformer and full-wave rectifier are made to act as a frequency doubler, the transformer acting as a phase splitter, while the rectifiers chop off one half of each secondary signal and add the two remaining signals together.

Exactly the same general principle is employed when the phase splitter of Fig. 3 is used as a frequency doubler, this being accomplished by simply shorting the emitters of TR2 and TR3 together after first setting VR2 to give an exact d.c. balance between these two points. In this case, TR1 is used as the phase splitter (in place of the transformer of Fig. 5), TR2 and TR3 act as diodes (in place of the rectifiers), and frequency doubling is obtained. It should be noted, however, that although TR2 and TR3 are used as diodes, they can not be replaced by conventional diodes as correct biasing is essential to circuit operation. Similarly, if the balance of TR2 and TR3 emitters is not correctly set by VR2 before the emitters are shorted together, unbalanced rectification will result.

If the unit is to be built purely as a frequency doubler, the break at “10F” on the Veroboard may be omitted and R7 and R10 replaced by a single 2-7 kilohm resistor. The setting of VR2 for balanced rectification is obtained with the aid of an oscilloscope. It should be noted that, if balanced rectification is to be obtained, the input signal to the unit should be symmetrical, and preferably of sine form.

SINGLE VARIABLE OUTPUT

The unit of Fig. 3 may be adapted to give a single output, the amplitude of which can be varied between approximately +1 and —1. This is done by connecting a 10 kilohm variable resistor across the two output connections and taking the output of the unit from the moving arm of this variable resistor. It should be noted that this modification does not give an output that is fully variable in phase, but an output that is either in phase or anti-phase with the input, but is variable in amplitude.

SETTING UP PROCEDURE

Before the unit is used, it must be correctly set up. An audio generator and an oscilloscope or a.c. valve voltmeter are necessary for this operation. Connect the generator to the input of the unit, and measure “output 1” on the oscilloscope or voltmeter, noting the amplitude of the signal. The frequency of the generator is not particularly important, but the input signal should be approximately 1 volt peak to peak in amplitude. Now connect “output 2” to the oscilloscope or voltmeter and adjust VR1 until the amplitude is the same as that of “output 1”. Disconnect the generator and the oscilloscope or voltmeter, and connect a d.c. voltmeter between outputs 1 and 2, and adjust VR2 until a null is obtained. The unit is now ready for use.

APPLICATIONS OF THE PHASE SPLITTER

Using the phase-splitter described here in a high quality amplifier, gives perfectly balanced drive and the necessary bias for any following transistors can be obtained by suitably adjusting VR2. Thus, although this circuit uses three transistors and gives unity voltage gain, it virtually eliminates the need for heavy negative feedback (to overcome distortion) in a complete amplifier system, thus enabling higher gain to be used elsewhere.

Similarly, the unit may be used in the amplifier stages of an oscilloscope, to give push-pull X or Y deflection, or, if used in an early part of the amplifier, to enable the trace to be displayed either in phase or in anti-phase with the input-signal.

APPLICATIONS OF THE FREQUENCY DOUBLER

As a frequency doubler, the unit may be used, in conjunction with suitable filters, to form the basis of a high quality signal generator. Many generators employ only one oscillator range, additional ranges being added by selecting and filtering harmonics of the fundamental range. This system has the advantage that very pure waveforms can be obtained, and has only one tuning scale requiring calibration, all other scales being multiples of this basic range.

The frequency doubler may also be used to obtain special recording effects, although additional circuitry may be required. “Pinky and Perky” effects can be obtained, for example, by feeding normal voice signals into the input of the unit, and feeding the output to an amplifier or tape recorder via a filter circuit. To cover the full range of voice levels, however, a speech compressor should be used in front of the frequency doubler, and a matched speech expander should be used after the doubler.

Many other uses will, no doubt, occur to the reader.
This radioactivity monitor was evolved as a warning device for persons working near units which emit X-rays such as medical X-ray or cobalt units used in hospitals, thickness gauges in industry, or wherever radioactive isotopes are used. It was designed as a personal alarm and not as an accurate measure of beta, gamma or X-ray radiation.

The author has built a small number of these monitors which are giving good service in X-ray and radiotherapy departments of two large General Hospitals. Full cost of this unit will be between £8 10s Od and £10 maximum, depending on availability of parts. The miniature G.M. tube accounts for £5–£7 of this amount. It may seem an expensive device, however in situations where the need is to be aware of radiation sources it can prove to be a life saver.

The radiation monitor circuit consists basically of four sections: monostable, blocking oscillator, h.t. voltage doubler circuit, and the G.M. tube. See Fig. 2.

The monostable circuitry is in the form of an all-off complementary transistor circuit. TR1 being a pnp transistor is switched on by the negative pulse from the G.M. tube. TR1 when on will also turn on TR2; the latter is an npn transistor and part of its negative going collector voltage is fed back via R3 and C2 to TR1 base, so holding the monostable in the on condition, until the charge has leaked away from C2 via the input circuitry. The negative square wave on TR2 collector is used to supply the base current for the TR3 blocking oscillator circuit, which is then turned on.

THE GEIGER MULLER TUBE

An MX151 Geiger Muller tube is employed as the radiation detector; see Fig. 1 as a guide to operating point. The tube becomes sensitive to particles or radiation at around 350 volts, and its normal operating voltage is where the curve tends to flatten; this portion is referred to as the plateau. With the tube biased between 400 and 600 volts there is little change in its sensitivity, i.e. number of discharges per volt applied. It is not advisable to apply a higher voltage than indicated in Fig. 1 as the tube may be destroyed by the discharge which follows the application of voltages above the plateau region.

When a particle of radiation enters the G.M. tube with the correct voltage applied, a controlled, short discharge through the gas in the tube is triggered off, resulting in a negative pulse being produced at the tube anode. This pulse is used to switch on the circuitry, thus producing an audible bleep, a visible neon tube flash and—through the action of the blocking oscillator—replacement or restoration of the h.t. voltage level.

THE MONOSTABLE

The monostable circuitry is in the form of an all-off complementary transistor circuit. TR1 being a pnp transistor is switched on by the negative pulse from the G.M. tube. TR1 when on will also turn on TR2; the latter is an npn transistor and part of its negative going collector voltage is fed back via R3 and C2 to TR1 base, so holding the monostable in the on condition, until the charge has leaked away from C2 via the input circuitry. The negative square wave on TR2 collector is used to supply the base current for the TR3 blocking oscillator circuit, which is then turned on.

THE GEIGER MULLER TUBE

An MX151 Geiger Muller tube is employed as the radiation detector; see Fig. 1 as a guide to operating point. The tube becomes sensitive to particles or radiation at around 350 volts, and its normal operating voltage is where the curve tends to flatten; this portion is referred to as the plateau. With the tube biased between 400 and 600 volts there is little change in its sensitivity, i.e. number of discharges per volt applied. It is not advisable to apply a higher voltage than indicated in Fig. 1 as the tube may be destroyed by the discharge which follows the application of voltages above the plateau region.

When a particle of radiation enters the G.M. tube with the correct voltage applied, a controlled, short discharge through the gas in the tube is triggered off, resulting in a negative pulse being produced at the tube anode. This pulse is used to switch on the circuitry, thus producing an audible bleep, a visible neon tube flash and—through the action of the blocking oscillator—replacement or restoration of the h.t. voltage level.

THE MONOSTABLE

The monostable circuitry is in the form of an all-off complementary transistor circuit. TR1 being a pnp transistor is switched on by the negative pulse from the G.M. tube. TR1 when on will also turn on TR2; the latter is an npn transistor and part of its negative going collector voltage is fed back via R3 and C2 to TR1 base, so holding the monostable in the on condition, until the charge has leaked away from C2 via the input circuitry. The negative square wave on TR2 collector is used to supply the base current for the TR3 blocking oscillator circuit, which is then turned on.
BLOCKING OSCILLATOR

In the blocking oscillator converter, formed by TR3-T1, an audible frequency around 1 to 2kHz is generated and fed to the earpiece transducer X1 which is connected across the base winding of T1. The “tweet” duration is governed by C1 and C3 in combination.

HIGH VOLTAGE SUPPLY

The high voltage for the G.M. tube is produced or replenished by the h.t. winding on T1. The voltage across the third winding of T1 is doubled by the rectifying circuit D2-D7 and stored in the reservoir capacitor C6, ready for the next particle to produce a discharge in the G.M. tube.

While the “tweet” is audible from the earpiece X1, the h.t. will tend to rise above 600 volts and the neon circuit serves two functions; as a visible indicator, plus a high voltage limiter, making use of the reverse breakdown of the two EC401 diodes. The current through this circuit is limited by R8.

To measure the h.t. voltage use only an electrostatic meter, as the high impedance supply will be loaded by any other meter system. In its quiet condition and at room temperature of 25°C, the monitor’s consumption from a 5 volt mercury battery is measured at less than 15 nanoamps. During the “tweets” which occur at intervals of one to two per minute depending on the natural background radiation, the current rises for a quarter of a second to around 10 milliamps. In areas of high radiation of 50 milli-rientgen or more the unit will produce a continuous tweeting sound and glow from the neon.

In low radiation areas, the batteries can last up to three months in the case of a Mallory TR114. Alternatively, three DEAC 225DK rechargeable cadmium cells can be used.

CONSTRUCTION

The monitor will be sensitive to high level static or r.f. fields if mounted in a plastic case as in the suggested design, and this should be remembered if for instance radiation from television 25kV e.h.t. rectifiers is being monitored. The “tweet” due to an r.f. field is recognisable by its regularity.

Construction is not difficult if one has had some previous experience in building small compact units. If the monitor is not required for carrying in the pocket, a larger, easier-to-construct layout can be adopted.

A piece of circuit board measuring \(1\frac{1}{4}\) in by \(2\frac{3}{4}\) in is used as the base for the monitor, the components being mounted as indicated in Fig. 3. Breaks in the copper strips are made, as shown in Fig. 3, before the assembly work commences. The earpiece X1 rests on a small cushion of sponge material laid on top of C5. Battery clips are fashioned from small pieces of brass, see Fig. 3. The complete assembly fits comfortably into a plastics box with hinged lid measuring \(1\frac{1}{2}\) in by \(1\frac{1}{2}\) in deep.

In the original unit fibre glass board was used for its high insulation properties to prevent leakage from the high impedance h.t. circuitry. However, the standard Veroboard has been used successfully with p.t.f.e. stand-off insulators for the h.t. section. In conditions of high humidity or where leakage in the high voltage circuitry is a problem, a larger reservoir C5 up to \(0.1\mu F\) 630V may be desirable, as the storage in C5 is essential for the continuous operation of the unit.

Encapsulation of the high voltage section is an alternative in high humidity situations.

CRITICAL COMPONENTS

The high voltage diodes D2-D7 have a low reverse leakage. Three Fairchild EC401 125 volt diodes can be used in series, making eight diodes altogether.

High voltage capacitors should be of 630 d.c. volt working but no breakdown has yet been experienced with over-run 400V d.c. working types. Ceramic capacitors may be too leaky for use in this application.

The earpiece should be a near equivalent to the unit type specified. Re-triggering of the monostable and less output volume may be experienced with higher impedance devices. To increase the audible output a small horn or \(2\) in x \(\frac{1}{2}\) in tube fitted over the earpiece will help to resonate the sound and increase the audible output, but this will depend also on the case size.

The only suitable G.M. tube for this circuit is the Mullard MX151, or the Japanese version (which may be available). When fitting do not solder direct onto the

Fig. 2. Circuit diagram of the pocket radiation monitor
Holes shown thus to accommodate two wires

Fig. 3. Layout and wiring of the board. The battery and microphone are positioned as indicated by the dotted lines, see text. The battery clips are made from strips of brass or similar material.

COMPONENTS...

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Capacitors</th>
<th>Diodes</th>
<th>Transistors</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 1MΩ</td>
<td>C1 2μF elect. 6V</td>
<td>D1 EC401 (Fairchild)</td>
<td>TR1 OC202 (pnp silicon)</td>
<td>V1 Neon, wire-ended (Radiospares)</td>
</tr>
<tr>
<td>R2 2.2kΩ</td>
<td>C2 1,000pF paper 1kV*</td>
<td>D2, 3, 4 EC401 (3 off)</td>
<td>TR2 BC107 (n-pn silicon)</td>
<td>V2 G.M. tube MX151 (Mullard)</td>
</tr>
<tr>
<td>R3 47kΩ</td>
<td>C3 25μF elect. 6V</td>
<td>D5, 6, 7 EC401 (3 off)</td>
<td>TR3 OC202 (pnp silicon)</td>
<td>T1 Transformer: primary 6V; secondary 400V (Parmeko L132/1/4)</td>
</tr>
<tr>
<td>R4 4.7MΩ</td>
<td>C4 0.01μF paper 400V*</td>
<td>D8, 9 EC401 (2 off)</td>
<td>XI Earpiece 30-100Ω, miniature magnetic</td>
<td>BY1 5-3V battery, (Mallory TR114); or (Desc 225DK) (3 off)</td>
</tr>
<tr>
<td>R5 390Ω</td>
<td>C5 0.047μF paper 630V*</td>
<td></td>
<td></td>
<td>Veroboard 1″ x 1-3/8″. Plastics box 1-3/4″ x 2-1/4″ x 1/2″</td>
</tr>
<tr>
<td>R6 1MΩ</td>
<td>* Wima (C.E.S. Ltd., P.O. Box 11, Cambridge)</td>
<td></td>
<td></td>
<td>Sponge rubber pad. Material for battery clips</td>
</tr>
<tr>
<td>All ±10%, ±1W carbon</td>
<td></td>
<td></td>
<td></td>
<td>centre anode pin or overheat the tube; use the anode clip supplied and only solder the clip into the circuit with the tube unplugged.</td>
</tr>
</tbody>
</table>

TESTING THE MONITOR

On completion of construction very carefully check the wiring with the circuit diagram. Check also the polarity of C1, C3, and the diodes. The h.t. should be monitored with an electrostatic volt meter—but if this is not available the flashing of the neon will indicate voltages of over 600 or over.

The monitor may be made operative by connecting and disconnecting the 5 volt supply until “tweets” are heard in the earpiece and the neon flashes. Alternatively, a 10 kilohm resistor may temporarily be connected between terminal 2 and 4 of T1. The unit is now ready for a radiation test. The most handy source is a luminous watch dial which will usually give tweets every two or three seconds when the dial is held as near as possible to the tube.

The neon visual indicator should light only for the duration of the audible “tweet”. If it stays lit longer and there is no radiation response, the D8 and D9 EC401 diodes may have too low a reverse breakdown voltage and a third series diode should be tried. The neon may not light if D8 and D9 have too high a reverse breakdown; in this case one or both diodes should be substituted. (In the author's experience this condition only arose in about one in ten diodes, and as their current price is near 3s it is not a bad risk.)

No battery decoupling is used and when the battery is nearing the end of its life the tweet becomes much shorter with a clucking sound. This indicates a change is soon required.
SOLDER ON WITH ANTEX

CN 15 Watts. Ideal for miniature and micro miniature soldering. 18 interchangeable spare bits available from .040” (1mm) up to 3/16” For 240, 220, 110, 50 or 24 volts.

If you want the best in soldering, Antex irons are for you. Pin point precision, fingertip control, interchangeable bits that slide over the elements and do not stick, sharp heat at the tip, reliable elements and full availability of spares. World-wide users, both enthusiasts and professionals solder with Antex. It's time you joined them.

Antex soldering irons are stocked by quality electrical dealers, or order direct from Antex by sending Cash. A free colour catalogue will be supplied on request.

Complete precision soldering kit
This kit—in a rigid plastic "tool-box"—contains everything you need for precision soldering.

- Model CN 15 watts miniature iron, fitted 1/32" bit.
- Interchangeable spare bits 1/32", 1/16", 1/8".
- Reel of resin-cored solder
- Felt cleaning pad
- Stand for soldering iron
- Space for stowage of lead and plug

PLUS 36-page booklet on "How-to-Solder"—a mine of information for amateur and professional.

From Electrical and Radio Shops or send cash to Antex.

15 P'sase send me the Antex colour catalogue
Please send me the following irons

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Model</th>
<th>Bit Size</th>
<th>Volts</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CN 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ES 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F 40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I enclose cheque/P.O./cash value
NAME ...
ADDRESS ...
P.E.4 .. Telephone:

To: Antex, Mayflower House, Plymouth, Devon

273
A.P.T. STABILISED P.S.U. MODEL 515/5
will regulate from 0-500 v. at 500 mA also current regulated from 10 mA to 350mA in 14 stages. These units are in as new condition and perfect working order, save pounds, on this one price, P.P. 20/-. £45.0.0

HIGH QUALITY SWITCHING RELAYS

MINIATURE RELAY of good quality. Suitable for many applications, model control circuits, alarm systems, etc., 6-V 300 ohms 2 pole C/O + I MAKE. Contained in grey enamel case, weight only 30g—price/6 as above but 36-50V. 1300 ohms coil 4 C/O 8/6 ea. p.p. 6/6.

LUCAS HORN AND OVERDRIVE RELAYS

MINIATURE RECHARGEABLE L.A. BATTERIES
Ideally suitable for model boats, portable T.V.’s, etc., these batteries are of the non-spillable type rated at 12V 4 A.H. Size only 4in square fully sealed but not dry charged, complete with instructions, brand new and guaranteed only 45/- ea. p.p. 6/6.

BECKMAN PRECISION POTENTIOMETERS TENTURN
Value TOL. Model Price
2k ohms 0.5 LIN SA1001 45/- post free
10k ohms 0.5 LIN “A” 50/- post free
50k ohms 1 LIN 45/- post free
100k 0.5 LIN 5/- post free
1000-100k LIN 60/- post free
TEN HELICALS have 2in shaft and are rated at 10 watts.

MINIATURE HELICALS—TEN TURN
25k ohms 0.5 LIN SA1337 30/- post free
50k ohms 0.5 LIN 35/- post free
100k ohms 0.5 LIN 40/- post free
500k ohms 0.5 LIN 50/- post free

LEDEX ROTARY SOLENOID SWITCHES
Suitable for all types of remote circuit selection and a variety of switching operations—brand new stocks—no waiting—the shelf delivers of the following types. (1) Miniature type—1 pole 7 positions 5 banks 1/2in dia. wafers for flange mounting. Operating voltage, 12V d.c. 50/-. (2) Standard type as above, 1 pole 2 positions with long shaft to enable user to build up wafers to suit requirements. Voltage 48 d.c. 40/-. Price 15/-(.)

A.E.I. HIGHLY STABILISED P.S.U.
3-30V d.c. at 2A. Type R2240, this power supply is ideally suitable for semiconductor work, the unit has a very high specification and is fully transistorised and infinitely variable throughout its range. Supplied brand new boxed. List price £73. Our price £22.10.0 P. & P. 15/-(.)

“DALE PRODUCTS INC.” HEAT SINK RESISTORS
These high grade resistors are completely sealed against moisture and will withstand rough treatment without failure, this non-inductive resistor lends itself to many applications and is ideal for dummy loads in power amplifiers, etc. in the following values:
15 ohms, 250 W, 45/-; 810 ohms, 200 W, 45/-; 200 ohms, 50 W, 7/6.

DOUBLE BEAM OSCILLOSCOPE TYPE 13A
Bandwidth 2c/s—5Mc/s. The above scope has excellent specifications and is ideally suitable for radio and T.V. engineers. This well-known scope has sealed “C” core transformers and is renowned for reliability. Supplied in first class condition with leads, graticule, instructions and guaranteed working order.

EXCELLENT VALUE AT £22.10.0 P. & P. 25/-(.)

COSSOR DOUBLE BEAM OSCILLOSCOPE TYPE 1049 MK. III
This well-known scope is suitable for all D.C. applications, medical work, servo systems, amplifiers, etc. Supplied in excellent guaranteed condition. List price over £140. Our price £35 P. & P. 30/-(.)

B40 “WORLD WIDE” COMMUNICATIONS RECEIVER
Manufactured by Murphy Ltd. for the British Navy, these high-quality receivers have been carefully checked and serviced, and EF91 valves fitted in RF section. Specification: 10 Valve, 5 BAND, covers from 650Kc/s-30Mc/s continuously. IF frequency 500kc/s 2RF stages. 3IF stages band pass filter, Xtal calibrator, B.F.O. Monitor Spk. 2 phone outlets and many other facilities, size 19 x 16 x 13ins. Weight 81lbs. Our price £27.10.0 carriage 30/-(.)

STARRY OFFERS — BRAND NEW AT SURPLUS PRICES

PORTABLE WHEATSTONE BRIDGE MODEL 7009
Calibrated in 5 ranges from 0/0 to 50K ohms. Miniature Galvanometer scale 10-0-10. Sldewire 0.5 to 50. Case moulded plastic. All ranges are switched, internal source 4V battery supplied brand new at
£19.9.6 P. & P. 4/6

HIGH QUALITY DECADE CAPACITANCE BOX TYPE R7004
4 individual ranges from 0-000002pF to 1/pF in 0-000002pF steps. Accuracy 0.05%. Frequency range 40c/s to 10kc/s. Supplied brand new in hammer finish stove enamel at the much reduced price of
£22.10.10 P. & P. 7/6

HIGH VALUE RESISTANCE BOX TYPE 7003
Range 0/0 to 11.10 Megohm. Accuracy 0.05%. Power rating 0.1 watt per step. Case hammer finish stove enamel.
Price £22.10.0

PORTABLE MULTIRANGE METER TYPE R7020
20K ohms per volt. D.C. current 0—Microms through to 12 Amps in 3 ranges. D.C. Volts 0-6000V in 5 ranges.
A.C. current 0-12 fully switched. A.C. volts 0-6000V. Resistance 0-3 Megohms.
These are very robust high quality meters with an easy-read scale. Supplied with 2 voltage dividers, spare rectifiers, and all leads contained in hinged lid at only
£12.19.6 BRAND NEW and GUARANTEED
Part one of EMMA detailed the theory and wiring of the complete reflex functions board. This month we describe the "muscle" control and load monitoring circuit and board, the power supply wiring and the mechanical details of EMMA's "skeleton". The block diagram for the electronic parts was shown in Fig. 1 (last month), enclosed by a separate broken line, designated "Board No. 2".

"MUSCLE" CONTROL

The "muscle" (motor) control circuits (Fig. 5) consist of two channels providing power switching for the port and starboard motors. Each channel comprises a pair of OC35 power transistors driven by a complementary input arrangement. Due to their inexpensiveness, common types of power transistors have been used as an alternative to more exotic miniature devices connected in full complementary format. Although larger, the cheaper versions have the advantage that with the small current demands made upon them additional heat sinks are not required.

The motor in each channel is connected between the centre-point of its associated power transistors and, via R67, the common point. With either input Mc1 or Mc2 at ground level the input transistors will be effectively non-conducting and the motors will be switched-off. A positive level on Mc1, however, will turn-on TR26 causing TR28 to conduct and hence drive the starboard motor forward. Taking Mc1, negative will turn off TR26 and switch on TR25 thus causing TR27 to conduct and the motor to drive in the opposite direction. The channel controlling the port motor is operated in an identical fashion.

Despite the employment of separate power supplies, some interference resulting from motor "hash" inevitably reaches the reflex functions board. In an attempt to minimise this complaint and make the motor control system a little more sanitary, two OTfT capacitors (C17 and C18) are wired in parallel with the motors. Resistance R67 can be fabricated from easily obtainable electric-fibre element wire. A few turns of this should be cut off and preferably measured on an ohmmeter for correct value. When the resistance is the correct value, the wire ends should be filed clean to facilitate soldering. R67 must obviously be kept low in value because the motors themselves only have a resistance of about 3 ohms.

LOAD SENSING CIRCUIT

During forward motion of EMMA, the joint current demands made by the two motors are monitored by transistor TR33 (Fig. 5) which under no-load conditions is arranged to be just cut-off. Any mechanical load applied to either or both motors will increase the current drawn through R67 and therefore take the emitter of TR33 more positive causing the transistor to conduct. The collector level of TR33 under these conditions will thus tend to go more and more positive with increasing loads and be an indication of the degree of loading. Potentiometer VR3 sets the level for no-load conditions and controls the sensitivity of the circuit.

CIRCUIT BOARD DETAILS

Illustrations of the "muscle" control board are given in Figs. 6a and b. The board should be drilled as indicated to accommodate the four power transistors. No heat sinks are required because the transistors are not called upon to dissipate any over-large currents.

The reflex functions board, which was detailed last month, is firmly mounted by way of 18 s.w.g. wire soldered between its four corners and the corners of the "muscle" control board. Such an arrangement lends itself well to instant modification and occasional "surgery", additional boards being freely accommodated in minutes.

POWER SUPPLIES

The "animal" requires two power supplies, termed "A" and "B". Two sources of supply are used in preference to one because of the demand for large de-coupling capacitors with a single supply. In fact the additional supply takes up less space than would the capacitors. Supply "A" feeds the whole of the reflex circuitry and consists of a pair of type 1289 batteries.
Supply “B” feeds the motor control circuit and comprises a type 126 battery for forward drive (a heavy duty battery is used here because EMMA is more frequently in this mode) and a type 1289 battery for reverse drive. In both cases the supplies are connected so as to form 4.5V—0—4.5V sources (see Fig. 7), the zero point being common to “A” and “B”.

CHASSIS DETAILS

In order to make the construction problem minimal, Meccano components were chosen for the model. The chassis which is of extremely simple construction is shown in Figs. 8, 9 and 10 and essentially comprises a rigid skeleton plinth, formed from two main longitudinal angle girders connected together by five cross members. The cross members in addition to lending strength to the chassis also carry the motors, motor control board, and override switches S1 and S2, the switches being mounted between two chassis members and thereby dispensing with the need for drilling.

Downward extensions at the front and rear of the plinth support the castors and axles respectively. At the rear of EMMA this is constituted by four double-angle strips bolted between the plinth and a tie-strip. The frontal (anterior) end comprises a pair of screwed rods running between the plinth and a lower cross member. This member and the plinth are separated by
Fig. 6a. Top view of the motor control board. The board should be drilled to accommodate the OC35 mounting screws and the base and emitter pins. Mounting holes for the board are made at each corner to line up with the Meccano mounting strips.

Fig. 6b. Underside view of the Veroboard showing component wiring and breaks in the circuit strips. Care should be taken that the emitter and base leads from the OC35's do not short with adjacent copper strips. All link wires should be of the plastic covered type. Transistors TR25 and TR33, which are mounted upside down, should be kept well clear of the copper strips.
Fig. 7. Circuit and wiring of the two power supplies and motors. Capacitors C1 and C2 were shown in the main circuit diagram (Fig. 2) last month.

Fig. 8. Top view of EMMA's skeleton showing chassis construction and component mounting positions. Batteries BY1, 2, 3 and 4 occupy the rear end of the skeleton, above the motors (see photos)
tubular pillars which slide over the screwed rods.

Space for the batteries is provided above and just rear of the motor mounting position. For easy access the batteries can be secured in place by way of elastic bands or plastics strips attached to either side of the chassis.

FINAL-DRIVE ARRANGEMENT

EMMA’s motive power is derived from a pair of Meccano “Power Drive” motor/gearbox units; these are located port and starboard on the chassis and each is secured in position by four 4B.A. nuts and bolts. The gearboxes, which are of the epicyclic type, have provision for the selection of several gear ratios; in the model the lowest (60:1) is used. Output from the gearboxes is taken via bevel gears which provide a further 3:1 reduction, thus giving an overall figure of 180:1 between the motors and road wheels.

The final-drive axles which run through the centre holes of the double-angle strips each carry a road wheel, a large bevel gear, and a pulley. The pulley, properly adjusted, serves the purpose of reducing end-float and ensures correct meshing of the gears.

INTERCONNECTION WIRING

Wiring between the boards, switches, motors and power supplies is shown in Fig. 7. It must be emphasised that motor leads should be kept as short as possible and maintained clear of the reflex functions board and its wiring. The “A” and “B” power supply leads should not run in the same cableform and must have quite separate routes to avoid coupling motor “hash” into the reflex functions circuits.

SYSTEMS CHECK-OUT

When the circuit boards have been completed they should be carefully examined to ensure that components are correctly connected and no dry joints exist. Check too that there are no accidental solder bridge-overs between adjacent conductors.

Prior to check-out of the complete system, the inputs to the motor control board (Mc1 and Mc2) should be temporarily disconnected. At this time the “animal” is best raised off its wheels so that they are free to turn during the checks which follow.

MOTOR CONTROL AND LOAD SENSING

Connect both supplies and switch S2 on. Temporarily connect inputs Mc1 and Mc2 together and take this common input to zero (ground); under these conditions neither motor should run. Reconnect the common input to the positive supply rail; both motors should now run in the forward direction—if this is not the case, reverse the connections to the offending motor(s). Now disconnect the common input from positive and connect to the negative rail, ensuring both motors now run in reverse.

COMPONENTS . . .

MOTOR CONTROL

<table>
<thead>
<tr>
<th>Resistors</th>
<th></th>
<th>Capacitors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R58 2.7kΩ</td>
<td>R64 1kΩ</td>
<td>C17, C18 0.1μF polyester 150V</td>
<td></td>
</tr>
<tr>
<td>R59 2.7kΩ</td>
<td>R65 4.7kΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R60 2.2kΩ</td>
<td>R66 4.7kΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R61 2.2kΩ</td>
<td>R67 0.5μF (see text)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R62 2.2kΩ</td>
<td>R68 680Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R63 2.2kΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transistors

<table>
<thead>
<tr>
<th>TR25 BFX13 or BFX12</th>
<th>TR30 2N706A</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR26 2N706A</td>
<td>TR31 OC35</td>
</tr>
<tr>
<td>TR27 OC35</td>
<td>TR32 OC35</td>
</tr>
<tr>
<td>TR28 OC35</td>
<td>TR33 BFX13 or BFX12</td>
</tr>
<tr>
<td>TR29 BFX13 or BFX12</td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>V1 5kΩ min</th>
<th>R56</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MO1 Meccano “Power Drive” motor/gearbox</td>
<td>R67</td>
<td></td>
</tr>
<tr>
<td>MO2 Meccano “Power Drive” motor/gearbox</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2 double pole on/off toggle switch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY1, 2, 3, type 1289, 4.5V batteries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY4 type 126, 4.5V battery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veroboard 5fin x 2½in (0-15in pitch)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 s.w.g. plastic covered wire</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MECHANICAL

Chassis Components

<table>
<thead>
<tr>
<th>No. 2 strips (8 off)</th>
<th>No. 8a angle girders (2 off)</th>
<th>No. 37a nuts (4 off)</th>
<th>No. 48a double angle strips (4 off)</th>
<th>No. 60 screwed rods (2 off)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meccano</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Drive Components

<table>
<thead>
<tr>
<th>No. 15a axle rods (2 off)</th>
<th>No. 22 pulleys (2 off)</th>
<th>No. 30a bevel gears (2 off)</th>
<th>No. 30c bevel gears (2 off)</th>
<th>No. 187b road wheels (2 off)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meccano</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minature slipper castors (Clayrite, 2 off)
Reconnect the common input (Mc1 and Mc2) to the positive rail and connect a voltmeter between the negative supply point and the collector of TR33. Adjust VR3 for zero indication under no-load conditions. Now gently load both motors, by slowing the road wheels, and ensure that the indicated voltage increases with increasing load. Disconnect the common input, separate Mc1 and Mc2 and return them to their normal connections with the reflex functions board. Switch S1 on.

LOAD THRESHOLD AND AVOIDANCE SYSTEM

Connect the voltmeter between the negative rail and the collector of TR18. Adjust VR2 so that the Schmitt fires at a point consistent with moderate loading; the circuit will fire after a short delay due to the transient damping.

During the load threshold checks one can simultaneously establish that the avoidance system is functioning correctly—i.e. that with application of loads exceeding the set threshold the motors reverse their direction of rotation and that one or other continues to reverse for a further period prior to resumption of the normal forward mode. Remember that there should be obvious randomness as to which motor runs-on in reverse. If not, adjust VR1 a fraction until some degree of randomness is present.

STEERING SELECTION AND FINAL CHECKS

Place EMMA on the floor and ensure that the random function also manifests itself in the forward mode of operation. EMMA should quite unpredictably stop, start and turn right or left. During encounters with various obstacles, EMMA should back and turn to commence a new, more favourable course. Finally, shine a light onto EMMA’s photo-sensors to ensure that she turns away and then resumes her previous mode.

Although crude compared with some of the most simple living animals, EMMA demonstrates in a quite striking way that electronics can be used to model a few of the basic reflexes. In a later article EMMA will “fill-out” her structure with a learning faculty; in the meantime however the constructor will have his hands full with a “pet” running around the house that requires little exercise and lives a lifetime—provided the battery manufacturers stay in business!
A unijunction circuit for modern cars fitted with permanent magnet wiper motors

INTERRUPTED SCREENWIPER CONTROL

By C.J. MILLS

In our October issue we published a “Vari Windscreen Wiper” control; this control was designed for use on any car having self parking wipers. We have since discovered that many modern cars are now fitted with permanent magnet wiper motors which have to be shorted to stop them. The circuit diagram of the latest wipers is shown in Fig. 1; in this case the parking switch is a change over type which disconnects the supply and short circuits the permanent magnet motor to stop it in the parking position; the “Vari Wiper” (October issue) cannot be used with these motors.

This article describes a circuit which is designed for the modern permanent magnet type of wiper and provides power to the motor to move it from the parking position; the motor will then continue to run until the wipers return to the parking position. After a controllable time interval another pulse is applied to the motor and the cycle repeats itself.

CIRCUIT DESCRIPTION

The circuit shown in Fig. 2 uses a unijunction, a transistor and a relay instead of the thyristor used in our previous article. The circuit works as follows: when the delay unit is switched on the 80μF capacitor (C1) charges up through diode D1 and control resistance R2 and VR1 until the unijunction trigger voltage is reached. When the unijunction is triggered its voltage drops, reverse biasing the diode and producing a square wave voltage output at the unijunction base B1. The duration of this square wave is controlled by the discharge time of capacitor C1 through the 5-6 kilohm resistor (R1). The voltage at B1 switches on the transistor and turns the relay on long enough to start the motor and drive it beyond the parking position. The parking switch now completes the motor circuit and breaks the control circuit allowing capacitor C1 to discharge through R1 until the parking position is again reached when the cycle repeats.

Fig. 1. Circuit diagram of a modern screenwiper using a permanent magnet motor

Fig. 2. Circuit diagram of the interrupted screenwiper control. Points a, b and c show connections to the car wiring
Resistors
R1 5-6kΩ R3 100Ω R5 2.2kΩ
R2 22kΩ R4 150Ω
All ±10%, ±1/4W carbon

Potentiometer
VR1 100kΩ carbon linear

Capacitor
C1 80µF, elect. 16V

Semiconductors
TR1 T1543 (unijunction) D1, D3 OA202
TR2 2N3704 D2 OA91

Miscellaneous
RLA 12V 700Ω 2 pole change-over relay (Key-switch type MH2)
SI single pole on-off toggle switch
Perforated s.r.b.p. (3in x 2½in) and solder pins
Die cast box (see text)
Control knob; 3 core SA lead; 6B.A. fixings

PRACTICAL POINTS
The delay time is controlled by the 100 kilohm variable resistor (VR1) in series with the fixed 22 kilohm resistor (R2). If a shorter delay is required the value of C1 should be reduced since resistor R2 is a minimum value for this circuit. Alternative types of unijunction may require different combinations of R and C but if the time constant (RC) is kept the same the delay time will not be affected. Any adequately rated npn switching transistor can be used with a base resistor to limit the base current—the relay given in the components list requires a current of only 17mA. It is a 12V type with two pole change over contacts connected together in parallel. As the inductive motor circuit is broken by the parking switch a 2 amp rating for the relay contacts is adequate and permits a smaller relay to be used.

Note: connections at points “X” in Fig. 2 must be reversed for use with negative earth systems.

CONSTRUCTIONAL DETAILS
The unit can be conveniently built into a small die cast box, although any suitable container may be used. The front of the box is drilled to take the control potentiometer (VR1) and the on/off switch S1. The remainder of the components, except the relay, are mounted on a piece of perforated s.r.b.p. which is trimmed to fit in the box behind the switch and potentiometer. If a small relay is used, the components can be mounted in a box with internal dimensions 4½in x 2½in x 3in. The relay is screwed to the box at one end and wired up using flexible plastics covered wire. The rest of the components are mounted on the board as shown in Fig. 3. A layout is not critical but an arrangement which is similar to the circuit diagram makes wiring and checking easier. Taper pins are used to anchor the component leads and the insulated wire connections from the rest of the circuit.

The prewired board is held in position by four 6B.A. screws (Fig. 4) and the three control leads from the relay are brought out through a grommeted hole. A control knob and a numerical scale complete with unit.

FITTING DETAILS
The die cast box was attached with a suitable bracket to the underside of the parcel shelf. A short 3 core 5 amp lead is required to reach the rear of the wiper on/off switch and the connections are as follows:

(a) Attach a flat female connector to the common relay contact lead and plug it on to the back of the wiper on/off switch in place of the lead which goes to the parking switch.

(b) Attach a flat male connector to the negative and normally closed relay contact lead and plug it into the lead disconnected in (a).

(c) Connect the positive and normally open contact lead to the earth lead on the wiper switch—routing the positive lead via the case and mounting is not recommended.

Double check these connections and then turn on the wiper control at S1. The wiper blades should remain stationary for a short period and then execute one complete sweep and stop for another short period. This process will repeat ad infinitum, the length of the pause being varied by VR1.
Thrill to the sound of a complete family of organ tone colours in your own home. Delight in a frequency range that encompasses keyboard music from 'classics' to 'pop.' Next month PRACTICAL ELECTRONICS gives you the first of a series of articles on how to build a professional class instrument which you will be proud to own for years to come. Designed by an acknowledged authority on organs, it is all solid state using up-to-the-minute silicon planar transistor techniques.

Voiced to produce the sound of an authentic theatre organ, it has two full 61-note manuals, 30 pedals and 19 stops, with the unusual feature of separate expression pedal for both the solo and accompaniment manuals to permit greater flexibility and tonal range. Separate two-unit speaker enclosure. Optional Leslie tremulant to manuals.

Simple unit construction enables you to complete the organ section by section so forestalling any initial large capital outlay. The total cost would be of the order of £200 — the completed job comparable with a commercial organ costing £600 upwards. This is the only home organ in existence with a complete 2ft top octave providing a host of exciting new tonal combinations.

INFRA-RED BURGLAR ALARM
An improved design of alarm based on a modulated infra-red beam.

RELIABLE
SENSITIVE
FAIL-SAFE ACTION
TAMPER PROOF

3/- May issue — on sale Monday, April 14

ORDER YOUR COPY NOW!
In January of this year the G.P.O. opened its new Goonhilly 2 global communications system. The new installation will maintain for the Post Office a leading role as an Earth station owner in the expanding system of global communications via Intelsat III satellites. These satellites have facilities which provide flexible interconnections between a multiplicity of Earth stations, each satellite can carry a total of 1,000 telephony conversations and relay one colour television programme simultaneously. The now outdated Early Bird satellite has facilities to link only two Earth stations, with 240 telephone conversations or one television programme.

The new installation at Goonhilly was built to a Post Office specification, which meets the technical requirements of the International Telecommunications Satellite Consortium (INTELSAT), at a total cost (including roads, buildings, etc.) of approximately £2m.

The 90ft diameter aerial was built by Marconi who were the main contractors, threshold extension demodulators and certain other equipment have been supplied and installed by GEC-AEI (Electronics) Ltd.

The new aerial follows the pattern established by the first Goonhilly installation of dispensing with a radome. This practice has since been followed by most other Earth station designers. The aerial makes use of a Cassegrain configuration with a spinning horn at the apex of the main reflector. The spinning feed-horn introduces a conical scan of the aerial beam only at the frequency of the satellite beacon signal. Thus it avoids unwanted amplitude modulation of the communication carriers or significant degradation of aerial efficiency for either direction of transmission. By this means auto-tracking can be achieved either by servo control of the main reflector mounting or, within a range of about 40 minutes of arc, by deflection of the sub-reflector. Provision has also been made for control of the aerial manually and for the addition of tape control facilities later, if required.

The very weak signals from the satellite in the 4GHz band are amplified by a three-stage parametric amplifier, cooled to 16ºK in a closed-circuit, gaseous-helium refrigeration system, followed by a tunnel-diode amplifier. The four stages have an overall gain of 40dB over the 500MHz frequency band assigned for the down path from the satellite.

The aerial and telecommunications equipment are controlled and monitored from a suite of consoles in the remote control console in the main Goonhilly station building, full control of all components of the Goonhilly 2 space terminal is provided at this position.
Comprehensive testing and monitoring facilities for both colour and black and white television signals is provided at this control console.

central building. Each carrier, which may transmit up to 132 telephony channels, is monitored separately and reserve equipment is switched into use automatically if a disabling fault condition arises. Faults which cause degradation of the service but do not interrupt it can be located and eliminated by manual switching of their component sub-systems without interference with traffic. A separate console enables the television service to be monitored and tested. The extensive use of duplicated equipment and monitoring facilities ensures a reliability of

Production of television picture tubes at the Mullard tube plant at Simonstone, Nr. Burnley has been speeded up with the introduction of a new machine shown below. The machine was developed and built by the Department of Production Engineering and Production Management of Nottingham University and is designed to assemble part of the electron gun automatically.

The electron gun is a precision sub-assembly comprising a large number of small components requiring the use of highly-skilled female labour for assembly; this machine automatically assembles three of the components. The component parts are fed by vibrating feeders to "pick-and-place" units which place the components on mandrels at welding stations, an electronically controlled sequence then takes over and the parts are assembled and eight welds are made to produce the (grid 3) assembly.

On completion of the picture tubes an "ageing" process has to be carried out before the tubes are dispatched. This process is carried out at the Mullard plant whilst the tubes are moving around the factory on a conveyor. The still photograph below is from the film "Mullardability" and shows the conveyor carrying the picture tubes.

Part of the transmitter cabin with an operator adjusting the coolant supply for the output travelling wave tube of one of the transmitters. The local control panel in the foreground is open to show the controls for setting up the drive unit.

99.9 per cent for the complete system, which is less than 9 hours per year out of service.

Initially Goonhilly will operate telephony circuits to only the USA and Canada but as more Earth stations become operational the system will expand until by 1971, Goonhilly is expected to be working to 20 countries. Goonhilly 1 aerial is now being refurbished to communicate with countries to the East and will be back in service as soon as an Intelsat III satellite is available over the Indian Ocean.
There is more to achieving high fidelity reproduction from a loudspeaker system than just matching its electrical impedance characteristic to that of the amplifier. Apart from electro-acoustic efficiency, mechanical loading of the moving element is a significant factor in obtaining an acceptable aural response free from distortion and disturbing resonances.

The loudspeaker can be likened to a transmitting aerial but with polar response related to audio frequencies. Horns or baffles act as deflectors to obtain certain directional properties and avoid frequency cancellation effects. Acoustic impedance matching is another factor to be considered.

This article traces the history of development of electro-acoustic receiving transducers, then goes into the main features of the moving coil loudspeaker with particular emphasis on solving some of these problems.

Horn Loaded Loudspeakers

The earliest type of electro-acoustic receiver was that using an electromagnet with moving metallic diaphragm, still in use in principle today in telephones and headphones. The efficiency is poor due to the difference in mechanical impedance between the diaphragm and the air. See Fig. 1a.

Attempts were made to match these impedances by attaching a conical horn to electro-magnetic receiver (Fig. 1a), the horn acting as an acoustic transformer between the low impedance of the air and the high impedance of the stiff diaphragm of the telephone type of receiver. It was soon discovered that an exponentially shaped horn gave better results, especially in the low frequency range. Sound waves propagated along the axis of an exponential horn are not distorted, as reflections from the wall of the horn are in phase with the propagated waves. Fig. 1c illustrates an example of such a unit.

The efficiency of the horn loaded loudspeaker was limited at the lower frequencies by the size of the horn. Increases in the overall efficiency were achieved by arranging for the resonance of the diaphragm to be in the frequency range over which the unit was used.

The Brown loudspeaker (Fig. 1b) dispensed with the telephone receiver and used instead a spun aluminium diaphragm driven by an electro-magnetically motivated reed. The reed was fixed at one end (Fig. 2), whilst the remaining end was free to move under the influence of a magnetic field produced by a coil. The apex of the diaphragm was secured to the reed, which acted as a "mechanical transformer".

The response of this unit showed a marked improvement upon the response of the units which used a telephone type receiver, but was in many ways inferior to the response of the direct radiator loudspeakers that were to follow.

A further drive mechanism, which when horn loaded gave favourable results, was incorporated in the ribbon loudspeaker. A corrugated aluminium foil ribbon was suspended in the gap between the poles of a powerful magnet.

An electric current was caused to flow through the ribbon, thus giving rise to a magnetic field which interacted with the field produced by the permanent magnet and consequently caused the ribbon to move. The movements of the air surrounding the ribbon were coupled, via an exponential horn, to the outside air. This form of unit is still produced, but is used mainly as a tweeter to reproduce frequencies above 2,000Hz.

The low mass and low impedance, in conjunction with a high value of Young's Modulus for aluminium, make the speaker particularly suitable for the reproduction of high frequencies. (The value of Young's Modulus for a given material, determines the degree of stress that the material will withstand before fracture, i.e. Young's Modulus equals the ratio of longitudinal stress to longitudinal strain.) A powerful magnet is required to produce a high magnetic field strength across the gap in which the ribbon is situated.
ELECTROSTATIC LOUDSPEAKERS

The simplest form of electrostatic loudspeaker comprises two large flat metal plates mounted closely together. A potential difference developed across the plates causes a force to be exerted between the plates. A d.c. polarising voltage is usually required, in addition to the alternating voltage signal provided from the audio amplifier.

In its earlier development stages, it was difficult to obtain a wide frequency response compatible with low distortion; sensitivity was relatively low. However, some commercial concerns have in recent years applied specialised techniques to these shortcomings to provide effective and sometimes competitive results over a wide frequency range.

DIRECT RADIATOR LOUDSPEAKERS

The direct radiator loudspeaker superseded the large exponential horn, the diaphragm being coupled directly to the air. Various systems were used to drive the diaphragm, including a reed as in the Brown loudspeaker. Unless the mechanical arrangements of the reed mechanism is critically controlled, severe amplitude distortion could result.

One method of reducing this distortion is to use a balanced armature system (as in the modern lightweight telephone receiver), in which the reed is pivoted at its centre and attached, via a rod, to a cone. The reed moves under the influence of the magnetic field produced by two coils. An example of this form of loudspeaker is illustrated in Fig. 3.

The most popular form of direct radiator loudspeaker is the moving-coil loudspeaker, early examples of which were produced by Magnavox and Rice Kellogg.

The main functional components of the moving-coil loudspeaker are an electrical conductor in the form of a coil, suspended in a strong magnetic field produced by a powerful magnet (Fig. 4), and attached to a large diaphragm (cone), which is free to move under the influence of the forces exerted upon the coil as a result of the current through it.

Early types of moving-coil loudspeaker employed an electromagnetic field usually powered from the h.t. line, but this was later replaced by a permanent magnet.
Unlike the loudspeaker shown in Fig. 4 all the early moving-coil loudspeakers were fitted with a front “spider” suspension system attached to the magnet for centring the coil in the air gap. The efficiency of a loudspeaker fitted with a front spider tends to be reduced at low frequencies, whilst at higher frequencies severe peaks in the response become prominent. The overall aural effect is rather harsh. Present-day types (Fig. 4) employ a corrugated foil or fabric suspension system behind the cone.

The popularity of the moving-coil loudspeaker is due, in the main, to the ease of construction and use, smaller space requirements, and the much improved frequency response; the latter is mainly due to the dynamic characteristics in relation to the air mass which the cone has to move, and the side effects of wave propagation between front and rear. Fig. 5 illustrates an example of a modern moving-coil loudspeaker.

The main problems in any ideal audio system are concerned with the prevention of unwanted distortion and the maintenance of a reasonably flat frequency response throughout the audio frequency range. The loudspeaker is probably the most difficult part of the reproducing chain in which to achieve anything approaching perfection. Let us now look at the problems involved and see if they can be sorted out.

FREQUENCY RESPONSE

The response of a loudspeaker should not be confused with its efficiency. The efficiency of a loudspeaker is determined by the ratio of the sound power output to the electrical power input. The frequency response of a loudspeaker is a measure of the sound pressure produced at a specific position in the surrounding medium (usually in line with the axis of the cone) due to a known electrical input at a given frequency. The acoustic conditions, under which the test is performed, should also be specified. If the loudspeaker were non-directional there would be no differentiation between the efficiency characteristic and the frequency response characteristic.

A reasonably flat average response over a frequency range can be achieved with a direct radiator, moving-coil loudspeaker. (The term average is used because the speaker should respond to transients, see later.) The main problems are concerned with maintaining the response at both ends of the audio frequency range and reducing peaks in the response which occur at both low and high frequencies.

The mass of the vibrating system of a moving-coil loudspeaker, at low frequencies, may be regarded as equal to the sum of the mass of the voice coil and the mass of the cone; the compliance of the system may be considered as being the resultant of the compliance of the supports of the coil and cone.

The mass of a mechanical system is analogous to the inductance of an electrical system, whereas the compliance of a mechanical system is analogous to the capacitance of an electrical system. Consequently, as in an electrical system, the inherent mass and compliance of a mechanical system produce a fundamental resonance based on these two factors.

RESONANCE

The fundamental bass resonance of a moving-coil loudspeaker is an important factor. For a typical 12in diameter loudspeaker this bass resonance can occur around 30Hz, whereas for an 8in diameter loudspeaker the resonant frequency can be 60Hz or higher.
Fig. 6 shows the frequency response curve for a typical 10in diameter loudspeaker. The fall-off in response of the moving-coil loudspeaker at low frequencies is due, in part, to the inability to match the output of the loudspeaker to the surrounding air. This problem can be partially overcome in a variety of ways. Mounting the loudspeaker in a reflex cabinet (mentioned later in this article), tends to improve the low frequency response, whilst an exponential horn may be used as an "acoustic transformer", as described previously. Of course, the same result can be achieved by using a moving-coil loudspeaker with a larger cone.

The fundamental bass resonance is important in the determination of low frequency response. Below this resonant frequency the response of a loudspeaker falls off rapidly. Furthermore, unwanted harmonics are produced at and around the resonant frequency. It would appear that the aim should be to reduce, as far as possible, the frequency at which bass resonance occurs.

In practice, however, lowering this resonant frequency, by the use of a suspension with a greater deal of freedom can give rise to certain problems. The manufacture of such a loudspeaker tends to be very difficult and also results in a unit whose robustness leaves much to be desired. The centring of the voice coil would be unstable and could be easily affected by small mechanical shocks.

It is worth noting, that although the efficiency of a moving-coil loudspeaker rises at the bass resonant frequency, the actual increases in the response are normally not as great. This is due to the high damping factor of modern amplifiers, which incorporate negative feedback. It is therefore apparent that the effects of variations in the design, which influence the behaviour of a moving-coil loudspeaker, are more readily observed when the loudspeaker is driven by an amplifier without negative feedback.

EFFECTIVE WORKING RADIUS

At low frequencies, the time taken for a displacement of the cone, at its centre, to travel to the rim, is small compared with the period of the signals reproduced, and consequently may be neglected. The cone can thus be considered to behave as a rigid surface, similar to a vibrating piston.

However, at higher frequencies the cone no longer vibrates as a whole; the amplitude of vibration of the cone becomes smaller nearer its rim, hence causing the effective working radius of the cone to be reduced. The overall effect is an increase in the efficiency of the loudspeaker at frequencies in the order of 1,000 to 2,000Hz.

Sharpening of the directional pattern of a moving-coil loudspeaker is lessened by the reduction of effective cone radius which accompanies the increase in frequency.

It can be seen that the reduction of effective radius at higher frequencies is a desirable feature; it may be enhanced by employing a loudspeaker which has circular corrugations formed in its cone.

VOICE COIL

Another point to be considered with regard to the high frequency response of a moving-coil loudspeaker, is the electrical impedance of the voice coil. This impedance increases with frequency, consequently causing a fall-off in the high frequency response. Increases in voice coil impedance, with a constant applied voltage, result in a reduction of the current through the coil, which in turn causes the driving force to be reduced. To maintain the response at higher frequencies requires a reduction in the mass of the voice coil; this can be achieved by using a coil wound with aluminium instead of copper.

Apart from utilisation of various forms of cabinet (mentioned later), a flat frequency response over a wide range can be achieved by using several loudspeakers, each using a filter to reproduce a section of the audio frequency band. The size of loudspeaker cone has a bearing on the frequency range which that loudspeaker can reproduce well; consequently, larger sizes are employed for low frequencies and smaller sizes for high frequencies.

Instead of using more than one loudspeaker it is possible to incorporate two cones in one loudspeaker (Fig. 7), a mechanical arrangement being used to couple the two cones. At low frequencies the entire system vibrates as a whole, both cones radiating together. At high frequencies the small cone vibrates, without damping interference from the large cone. This system is generally termed dual concentric. In some cases the two cones are energised from two separate voice coils, so that each can be suitably tailored for best response within its range.

TRANSIENT RESPONSE

A point often overlooked when considering the sound quality of a moving-coil loudspeaker, is its transient response. The transient response determines the ability of a loudspeaker to follow very rapid changes in the amplitude of the applied signal. The normal frequency response curve only illustrates the ability of a loudspeaker to respond to a constant sinusoidal signal irrespective of time.

In practice a loudspeaker is rarely used to reproduce pure sine waves of constant amplitude, but has to be able to handle signals, the waveforms of which can be of the form shown in Fig. 8. (Notice in this illustration the wave envelope of a piano tone, with its percussive attack and exponential decay.)

The source impedance of the amplifier used to drive the loudspeaker, and the flux density of the magnet used in the loudspeaker, both determine the transient response of the loudspeaker, in addition to the fundamental bass resonance previously discussed. High flux density in the magnet and reductions in the source impedance, by the use of negative feedback in the amplifier, tend to improve the transient response of a moving-coil loudspeaker.

POWER HANDLING

Another important property of a loudspeaker, is its power handling capacity. The output of a moving-coil loudspeaker is limited by the maximum permissible
axial displacement of its cone. The greatest displacements occur at low frequencies, while high frequencies are damped to some degree as mentioned above.

The loudspeaker should be designed to handle the lowest frequency (about 16 or 32Hz for organ music) without the risk of cone tearing or voice coil former being damaged. An unpleasant rasping sound at low frequencies is a sign to employ a larger loudspeaker. Similarly distortion and vibration at medium frequencies could also point to the need for a larger loudspeaker, but not always.

DISTORTION

Most of the distortion produced by a moving-coil loudspeaker is due to non-linearity of the cone suspension system. This non-linearity results in the production of harmonics and subharmonics. The harmonic distortion as stated earlier, is predominant around the fundamental bass resonant frequency, whereas the production of subharmonics due to the cone suspension system occurs at very low frequencies and is not usually noticeable. The troubles associated with the production of subharmonics, are apparent in the mid-frequencies where non-linearity of the cone itself occurs.

Another source of distortion in the moving-coil loudspeaker is non-uniformity of the magnetic field in which the voice coil moves. This can be overcome by employing a voice coil winding, longer than the air gap in which the coil is positioned, thus ensuring that the whole of the voice coil winding remains in the air gap, even during maximum excursions of the coil.

The sources of distortion so far described also give rise to another form of distortion, known as intermodulation distortion. Intermodulation distortion occurs when the simultaneous reproduction of any two frequencies results in the production of another frequency. This form of distortion is reduced by ensuring that the cone suspension system behaves, as far as possible, in a linear manner, and that non-uniformity of the magnetic field is eliminated, in the manner already described.

BAFFLE

The sound energy radiated from the back of the cone of a moving-coil loudspeaker is 180 degrees out of phase with the sound energy radiated from the front. If, therefore, a loudspeaker is not mounted on a baffle board, or in a cabinet of some form, the sound energy radiated from the back of the cone will interfere with the sound energy from the front of the cone, thus resulting in a reduction of acoustic perception at the listening position. This can be overcome by mounting the loudspeaker on a flat baffle of suitable dimensions with frontal aperture.

The choice of dimensions is governed by the size of loudspeaker and required low frequency response; the lower the frequencies to be reproduced, the larger must be the baffle. However, the baffle need only be made large enough to ensure satisfactory response down to the bass resonant frequency of the loudspeaker. Beyond that frequency, no matter how large the baffle is made, the response of the loudspeaker will fall off rapidly.

The use of a small baffle can also produce a dip in the frequency response at higher frequencies. This is more pronounced when using small loudspeakers. It may be significantly decreased by mounting the loudspeaker off-centre on the baffle.

The choice of dimensions is governed by the size of the loudspeaker and required low frequency response; the lower the frequencies to be reproduced, the larger must be the baffle. However, the baffle need only be made large enough to ensure satisfactory response down to the bass resonant frequency of the loudspeaker. Beyond that frequency, no matter how large the baffle is made, the response of the loudspeaker will fall off rapidly.

The use of a small baffle can also produce a dip in the frequency response at higher frequencies. This is more pronounced when using small loudspeakers. It may be significantly decreased by mounting the loudspeaker off-centre on the baffle.

TOTALLY ENCLOSED CABINET

A more satisfactory arrangement is often achieved by mounting the loudspeaker in a totally enclosed cabinet (infinite baffle cabinet). The sound energy radiated into the surrounding air then emanates from the front of the loudspeaker cone only, as with an infinite baffle.

The main objection to this form of cabinet is the increase in the frequency of bass resonance of the loudspeaker, as a result of the additional stiffness contributed by the mass of air confined within the cabinet. This causes the response at low frequencies to begin falling off at a higher frequency than if the loudspeaker were mounted on an infinite baffle.

This may be partially overcome in one of two ways; by increasing the volume of the cabinet, thus reducing the additional stiffness, or by using a loudspeaker with a lower bass resonant frequency (i.e. a loudspeaker suspension with greater freedom).

The sound energy radiated from the back of the cone still produces undesirable effects, in this instance causing, at certain frequencies, standing waves to be set up within the cabinet. This results in unwanted dips and peaks in the frequency response, but can be significantly reduced by lining the interior surfaces of the cabinet with a layer of sound absorbent material (e.g. fibre glass, cotton wool, etc.). This reduces the magnitude of the standing waves and also decreases the peak in the response at the bass resonant frequency.
OPEN-BACKED CABINET
One of the simplest ways of mounting a loudspeaker, is in an open-backed cabinet. This is a suitable way of applying a "folded" baffle where space is limited. Here once again, sound energy radiated from the back of the loudspeaker cone combines with sound energy radiated from the front of the cone to produce a rapid fall-off in the response below the fundamental resonant frequency of the cabinet.

The cabinet resonance, is in itself troublesome, as it introduces an unwanted peak in the frequency response. However, by arranging for the bass resonant frequency of the loudspeaker to be lower than that for the cabinet, a smooth and extended low frequency response may be achieved. Standing waves are not a problem due to the air pressure flexibility at the rear.

REFLEX CABINET
The use of a reflex cabinet enables the sound energy radiated from the back of the cone of a loudspeaker to be added, in phase, with the sound energy radiated from the front, thereby increasing the output at lower frequencies.

The reflex cabinet comprises essentially, an enclosed cabinet with a vent aperture situated below the loudspeaker aperture. At high frequencies the vent has no significant effect and the cabinet behaves as a totally enclosed cabinet. The interior of the cabinet must therefore be lined with a sound absorbent material to avoid the presence of standing waves.

At low frequencies, sound energy, radiated from the back of the cone, after undergoing a phase shift of 180 degrees, emanates from the vent, thereby reinforcing the sound energy, radiated into the surrounding air, from the front of the cone.

At frequencies below the resonant frequency of the cabinet, however, this phase shift rapidly decreases and the air in the vent tends to move in phase with that at the back of the cone. The resultant response due to radiation from the vent and from the front of the cone produces the poor low frequency response associated with a small baffle at frequencies below cabinet resonance.

CONSTRUCTION OF LOUDSPEAKER CABINETS
In the preceding paragraphs the walls of the cabinet have been assumed to provide a definite boundary for the sound waves. In practice, careful attention has to be paid to the choice of cabinet wall dimensions to avoid vibrations of the cabinet itself. This is more important for totally enclosed and reflex cabinets, where high pressures may be set up with the cabinet.

Additional rigidity of the cabinet walls can be achieved by using cavity walls filled with sand. These are constructed by spacing two stout wooden sheets, say ½ in to 1½ in apart, and filling the cavity with dry sand; even better results can be achieved by constructing the cabinet of concrete or bricks.

More precise details of cabinet dimensions are not given here because they should be matched where possible to the loudspeaker to be used. Manufacturers' literature should be consulted or alternatively some text books may offer guidance.

ACKNOWLEDGEMENTS
The author wishes to acknowledge Rank Wharfedale Ltd. and Sir Isaac Pitman & Sons Ltd. for assistance in compiling this article.

NEWS BRIEFS
Talking Books Conversion for New Cassette
THE British Talking Book Service for the Blind, administered by the R.N.I.B. is now rapidly expanding due to the development of the Mark IV type tape cassette. This cassette, which is very much smaller than has hitherto been used, contains up to 13 hours of recording time, playing at ¾ in per second on a ¾ in tape. New features of the MKIV have brought about the development of a small portable machine (shown below) that has largely superseded the larger MKI version. Transistors are employed to amplify the tape signal and, in the case of the students' library, to give audible signals at high speed for fast chapter location.

Whilst there are still large quantities of MKI machines which are expected to offer another 10 years of service, they must be made capable of replaying both MKI and MKIV cassettes.

A special adaptor has been developed to enable the MKIV cassette to be played on the MKI machine, after minor modifications to the machine as shown above.

Due to the rapid expansion of the Talking Book Service (some 250 titles and 6,000 new members each year) the problem of voluntary installation and service mechanics is becoming acute in many parts of the United Kingdom. Persons who are willing to give occasional help on a voluntary basis to enable blind people to use the Talking Book machine and assist with repairs would be gratefully acknowledged. Further information and offers should be addressed to The Manager, British Talking Book Service for the Blind, Mount Pleasant, Alperton, Wembley, Middlesex.
BETTER RECEPTION

Now that colour television programmes are in full swing and more people are taking delivery of colour television receivers, Belling-Lee Ltd., decided to develop a pre-amplifier which would improve colour, black and white, and stereo f.m. radio reception. The result of these developments is the Concord pre-amplifier which is claimed to give a signal amplification of approximately four times.

Designed to operate on all television channels and f.m. radio band, the Concord is an ultra broad band pre-amplifier which boosts the incoming signal giving better picture quality, sharpening contrast, reducing "snowstorm" noise effects, and, on colour sets, gives better colour quality. The pre-amplifier is ideally suited for fringe areas and is easily installed by simply hooking the moulded grey case, measuring 5 in x 3½ in x 2½ in, onto the rear of the television or radio receiver. Plugging the aerial lead into the input socket, inserting a screened link lead between the pre-amplifier output socket and receiver aerial input socket, and connecting the mains lead to the supplies completes the installation.

Power consumption is very small, approximately the same as an electric clock, and the recommended selling price is £7 7s.

Once installed, it is claimed no further adjustments are necessary.

LOGIC KIT

To meet the needs of electronic project work in schools amongst students of all ages, Geatronix Ltd., have developed the Norkit range of electronic kits.

The basic building brick is a N.O.R logic module which, together with the other components supplied, enables the rapid assembly of a sequential control system for any automatic device.

There are three Norkit ranges at the moment: the junior, price £8 16s; the senior, price £17 12s; and the advanced kit, price £26 8s.

The junior kit contains seven N.O.R logic circuits, two output units, diodes, lampholders and lamps, push buttons, reed switch and magnet, capacitors and resistors and all necessary interconnecting wires and solder.

The senior kit contains 12 N.O.R logic units, three bistable circuits, three output units, microswitch, and a larger selection of all components supplied with the junior version.

The advanced kit introduces components associated with automation equipment, and contains power driver units, photo cells, Zener diodes, thyristors, unijunction transistors, etc.

Handbooks supplied with the kits clearly outline the fundamentals of logic and automation and give a good introduction to computer work.

Most items can be purchased separately and further details can be obtained from, Geatronix Ltd., 28, Redstock Road, Southend-on-Sea, Essex.

Another product aimed at education is the Pidam range of teaching modules from West Hyde Developments Ltd.

These modules are digital and analogue plug-in devices which can be used to make up demonstration models, and can be used to construct teaching machines which can be loaded with questions and answers in elementary physics.

Further details can be obtained from, West Hyde Developments Ltd., 30, High Street, Northwood, Middlesex.

SOLDER

A handy size dispenser for solder has just been introduced by Multicore Solders Ltd., Hemel Hempstead, Hertfordshire. The new, pen size pack contains 21ft of 60/40 Ersin 5-core solder and is ideal for the tool box, and for use when soldering small components, fine wires and printed circuit work.

The dispenser is known as size 15, costs 3s and is claimed to be designed so that the solder cannot fall back inside the container. If the reader only requires enough solder for the odd repair, then possibly the size 2 pack will suffice. This is a larger gauge 5-core solder contained in an envelope with full soldering instructions printed on the back. The size 2 pack costs 6d and contains enough solder for 80 average joints.

Belling-Lee ultra broad band pre-amplifier

£8 16s; the senior, price £17 12s; and the advanced kit, price £26 8s.

Junior logic kit manufactured by Geatronix

Solder dispenser from Multicore Solders

Pidam logic modules produced by West Hyde Developments

292
CRYSTAL HOLDERS

Constructors may be interested in the range of Augat crystal holders marketed by Electrosil Ltd., Pallion Trading Estate, Sunderland, Co. Durham and available from some retail stockists.

Crystals may be easily inserted or removed without any adjustments to latches or screws, and once inserted it is claimed that the crystal will not shake loose under severe vibrations.

Developed to take crystal sizes HC-6/U, HC-13/U and sub-miniature type HC-25/U, the holders are easily bolted onto any chassis, and the solder terminals are completely insulated.

A 5-pin TOS outline relay socket is also available from Electrosil Ltd., and can be supplied for printed circuit board or chassis mounting.

FINGER TOOLS

The items in our photograph (bottom right) are not stick-on claws to even up the sexes but finger tools useful for miniature electronic assembly work.

Known as Deli-Cut tools they consist of miniature cutters, tweezers and positioners. The tools are attached to the finger tips by a self-adhesive band and worked by the thumb. A different tool can be carried on each finger, if necessary.

Marketed by Henri Picard and Frere Ltd., 34 Furnival Street, London, E.C.4., the tools are steel hardened and vary in shapes and cutting angles.

IC CARD

A printed board designed specially to accept integrated circuits is now available from A.P.T. Electronic Industries Ltd., Chertsey Road, Byfleet, Surrey.

Designated Cardie 24 (part number LK-3121), 24 dual in-line (14 or 16 leads) integrated circuits can be mounted on one card. Printed copper-clad split pins. The equipment can also be used to demonstrate the logic functions of various types of gate and combination of gates as found in adders and decoders.

Copies of the booklet can be obtained free, from Mullard Educational Service, Mullard House, Torrington Place, London, W.C.1.

Readers of Hi Fi News will know just what to expect in their Audio Annual 1969—fourth edition to be published by Link House Publications. It looks very much like a fat edition of the above journal with layout and presentation in the same style.

All this is by the way—most audiophiles will be looking for the usual run-down of audio equipment test reports and reviews that have appeared over the last year. For those about to embark on a spending spree and want to know more about what has come onto the market during this period, this Annual could be 7s 6d well spent.

A regular group of consultant contributors have provided some light hearted and serious articles on the general aspects of hi fi, including a survey of progress over the past 50 years.

This annual contains 132 pages including 50 pages of advertisements for current equipment. It is available from most large newsagents.

Available from distributors of International Rectifier components are a range of charts giving detailed operating characteristics for thyristors, triacs and unijunctions; low power and Zener diodes; voltage surge protectors, high power diodes and rectifier assemblies.

Further details of nearest IR distributors can be obtained from International Rectifier Co. Ltd., Hurst Green, Oxted, Surrey.
Actual hardware versions of the edge and bug property detectors mentioned in our last discussion really "eat up" photo-cells in the number required to do the job. Such devices additionally demand well matched and sensitive receptors; so even if we had decided upon using, say, ORPI2’s the total cost could have been extremely high. Unfortunately too, most cheap photo transistors are inappropriate in that they are light sensitive only from the side of the glass envelope—the requirements being that a group of receptors be mounted together so that they may be exposed to illumination end-on.

We will therefore "keep our expensive ideas to ourselves" and look at some equally interesting property detectors which require fewer receptor elements. (While in the meantime we can only hope that manufacturers will make an attempt to equalise the scandalous price differential between their transistors and photo-sensitive devices).

Unlike some of the previous examples which were based more upon inductions from physiological data, the property detectors we shall consider now will tend to be of the invented kind. The first is shown in Fig. 6.1.

A CRUDE FORM OF SIMULATION

The notion we have here is one which, although fundamentally simple, could prove to be quite advantageous if utilised in certain automata. One aspect of a higher animal’s abilities is that which permits it to judge the speed of objects moving in relation to itself. Just how this is performed in the biological brain is a matter for further research and contemplation. However, in the diagram we see the basis for a method of obtaining a form of crude simulation. The basic scheme includes just one monostable plus a NAND gate. Its operation is most easily seen if we install a pair of eyes (photo-cells) in the device, so that it can “observe”.

For the sake of example we may assume that the monostable as shown in Fig. 6.1 has a period of 0.7 seconds. Now if a moving light, or even a bright object, passes photo-cell X1 the monostable will be triggered. If during the time the monostable is in this quasi-stable condition the moving object passes X2, the output from the gate will change from 1 to 0 permitting this output to appear up to the time that the monostable reverts to its stable state. On the other hand, if X2 receives the stimulus after the monostable has "switched back", or indeed if it never gets stimulated, the output will remain unchanged.

Such a device, though crude, could be used to classify "fast" and "slow" moving objects. How "slow" and how "fast" we of course do not know, except that the speed of movement was either above or below 0.7 seconds. We cannot be certain either that the stimulus at X2 was caused by the same object! Nevertheless, it is possible to improve the scheme a great deal by employing more classifiers.

MORE ADVANCED DETECTOR

In Fig. 6.2 the scheme is a little more ambitious, for not only does it break the classifications into "fast", "medium", and "slow", but also permits observation of objects from either direction and additionally tells us the direction. (Fig. 6.1 was strictly "one-way only").

This improved property detector operates in much the same way as the previous example, except that now we have three monostables in each side. Now each monostable in a group has a different period; so if, as before, X1 "saw" the approaching object first, then all the monostables in the associated group would turn on.
Fig. 6.1. A crude form of property detector for judging speed of moving objects

Fig. 6.2. Property detector for judging direction and speed of passing objects

We can arrange to do this by mutually inhibiting each group of monostables with the output from the opposite “slow” element. The machine will now be incapable of looking at anything else until the sampling time is over. Unfortunately, there is no easy way of overcoming this fault of “working backwards” once the sampling period is finished, unless we decide when it is going to “take a look”.

COMPLETE CIRCUIT

The constructor might well like to try out the device in Fig. 6.1 for himself, and so in Fig. 6.3 we see the circuit. The monostable used here is fairly conventional and is triggered if X1 (an ORP12) is illuminated. This triggering arrangement, like so many we have used before, is unlikely to require its being preceded by a Schmitt, because generally there is a sufficiently abrupt change in illumination at the photo sensor as to make the inclusion of a threshold element unnecessary.

Following the firing of the monostable, TR2 collector will be at almost ground potential and therefore one half of the gate, TR3, will be enabled. Hence if X2 becomes illuminated at any time during this period, TR4 will be released with the result that the gate output will go negative (the “O” state); thus indicating that the

(Notice that the gates at the outputs of the “slow” and “medium” speed monostables have inhibitory connections taken from the next shorter period element.)

If the moving object passes X2 before the “fast” monostable has reverted to its stable condition, then a “1” will appear at the output of G3. Without the inhibition at gates G1 and G2 a “1” would occur at their outputs too. Assuming the object was moving less quickly, the “medium” or perhaps “slow” speed monostable would probably “catch it”, with the result that G2 or G1 would show a “1”.

As with all our schemes this one is not without its gremlins either, because when the object passes the second receptor all the monostables on the opposite side will fire too! Thus, it is only necessary for a further object to enter the machine’s purview from the same direction to elicit a false response from G4, G5 or G6. This problem can, to a large extent, be overcome by “playing a waiting game” with the “slow” or longest period monostables.

Fig. 6.3. Circuit diagram for property detector outlined in Fig. 6.1

Fig. 6.4. Position detector employing a number of photo receptors. Each sensor delivers an output “1” if the source of illumination is obscured by an object

lighted object passing across the field of view was travelling at a rate faster than the period of the monostable. So far as the machine is concerned, the “apparent” rate of the object will depend on the distance between the sensors.
Just as we perform these transformations, the machine discussed is in principle doing the same sort of thing: it however converts length to voltage. These voltages although already quantised into relatively discrete “bits” by virtue of the all-or-nothing characteristic of each sensor, need to be referred to some standard value if meaningful information is to be obtained. This can be achieved quite simply by taking each summer output to a circuit like that in Fig. 6.6.

STANDARDISATION CIRCUIT

Consider the case where the image of an object measuring an inch just activates two receptors, and we require to set this as our standard. The summer output at this time may also be causing the standardisation circuit to return an output as well, so this level must be backed-off at VR1 until it is reduced to zero. Then for lesser or greater outputs from a summer, there will be corresponding positive or negative levels appearing at the output of the standardisation unit. It will thereby give an approximation to the size of an object in relation to some definite dimension.

DETERMINING LENGTH

Up till now we have assumed that the object within the machine’s purview has been “seen” only by one receptor at a time; suppose though that two, or perhaps three, elements become stimulated. This information could (depending upon the distance of the object) be obtained in a rough idea of the object’s length. To overcome the distance problem, and because the blessing of stereoscopic vision is not being considered, we must cheat just a little by standardising the distance at which objects pass the machine.

If all the passing objects now have this standard distance, we could arrange a device like that in Fig. 6.5. This utilises Kirchhoff resistive summing networks driven from the receptors. When an object stimulates just one receptor a certain voltage will appear at the output from the summer; but if more than one receptor is active then the output level will increase accordingly. Depending then on the length of the object, the summer will return either a greater or a smaller output.

Generally, when we think of a particular length (it might be one inch), if asked to describe it or perhaps draw a line of about the same length, we have little difficulty. We do not possess “odd inches” or “yards” of some fictitious stuff in our heads, but the ability to convert realistically none-the-less exists.

POSITION DETECTOR

In addition to establishing the rates of moving objects, there are other factors of which the machine could be made aware without involving a great deal of difficulty. Assuming an object moved into the field of view then it would be distinctly advantageous if its spatial position could be determined. To achieve this the minimum number of photo receptors required is likely to be about five, see Fig. 6.4. However, these five receptor elements are certain to be called upon to perform other functions as well, so the initially somewhat large number would be justified.

The device in Fig. 6.4 has a number of drawbacks, one in particular being the existence of blind spots between receptors. This effect can be reduced by either decreasing the size of the central receptor, so bringing the remaining elements closer together, or alternatively increasing the overall number of receptors. Nevertheless in view of the relative crudeness of the device certain disadvantages must be expected.
HEATHKIT for a Hobby
that's Fun and Fascinating

Building Heathkit models is so easy. THE CONSTRUCTION MANUAL SHOWS YOU HOW!
Easy to understand instructions and large, clear pictorials illustrate clearly the step-by-step procedure for enjoying a fascinating hobby that takes you away from the 'workaday' routine. There's also the thrill when you switch on and experience that exhilarating sense of self accomplishment, knowing that you've done something you doubted you could ever do.

FOR EXAMPLE

This STEREO RECORD PLAYER IS SO EASY TO BUILD
★ Completely assembled and finished cabinet—no gluing or covering required.
★ Completely assembled Record Changer deck. Simply drop in and connect a few wires.
★ Only a few components to mount on one printed-circuit board.
★ Two 8” x 5” speakers, easily mounted.
★ Takes only a few hours to build.
★ Suitcase portability.
ALL FOR ONLY £28.6.0 KIT SRP-1
Choice of blue/grey or red/grey colour scheme.
(Please state preference)

Send for the FREE CATALOGUE
AND MAKE YOUR SELECTION FROM A WIDE RANGE

The latest Heathkit 36-page full colour catalogue contains details of models for the Hi-Fi and Audio Enthusiast, the Music Lover, the Tape Recordist and the Hobbyist, models for Communication, Test and Servicing, Amateur Radio and Short Wave Listening models for Educational Establishments and Industry. No matter what your vocation, there is something for you in this catalogue.

FREE FACTORY CONSULTATION SERVICE
Heathkit maintain a staff of skilled technical correspondents to advise, help, and answer any questions about selection, construction and use of your model. This service is free. A speedy factory repair service is also at your command should you ever need it.

SHOWROOMS: LONDON, 233 Tottenham Court Road - BIRMINGHAM, St. Martin's House - GLOUCESTER, Factory
In order to compare (as suggested earlier) the duration of one event with another, the outputs from two summation devices can be fed via suitable buffer amplifiers to a differential circuit. This will then give an indication of the degree of parity existing between the two inputs.

PATTERN RECOGNITION

The next natural step from property detectors is of course pattern recognition devices, and ultimately machines capable of reading the printed word. Research which has been aimed at discovering ways and means for achieving machine recognition (essentially of alphabetic characters, i.e. letters and figures), has been conducted for something like the last 20 years.

The results of such labours may however be singularly modest; this to a very large extent being the result of inadequate information concerning the recognition processes employed by animals, particularly humans.

Although various forms of automatic character recognition are an actuality today, they nearly all suffer from disadvantages of one kind or another. Typically their abilities seem limited to recognising typefaces in some standard font and size, so that process by which scansion of the characters is performed may be maintained substantially simple and economic.

An example of a scanning process used in some recognition systems is shown in Fig. 6.8. Here is seen the result of scanning the letter “T”. The output pulses from the machine are produced by moving the character past a number of receptors; in this way a series of bits (binary digits) can be generated which, following suitable translation, uniquely categorise the letter.

The process of readout from the receptors is essentially in serial/parallel form, although some schemes utilise a single photo-cell which is made to scan each character several times to provide a wholly serial output. This of course is much like the method employed for interrogating the images projected on to the mosaic of a Vidicon camera tube. Indeed, with the remarkable resolution which Vidicons display, it is hardly surprising that they too are now finding extensive use in this application.

MACHINES LIMITATIONS

Despite the severe limitations imposed by current recognition devices, a greater degree of versatility has been achieved by endowing them with memories for several forms of typeface. Nevertheless this form of recognition still falls very short of human capabilities in this field. With consummate ease we can decipher sloppy handwriting, and letters either lost in a background of irrelevant “sploshes” or with such a lack of contrast, that one almost doubts if machines could ever approach this standard. To add insult to injury, we also remain perfectly able to read characters in just about any size, configuration, or position. The machine has many problems indeed!

Our considerable feats versus the few merits displayed by some machines do not however constitute a “checkmate”. On the contrary, the people involved in this work are unruffled, and treat this more as a challenge than a vain hope.

BASED ON LOGIC

The argument, if argument there is, for the feasibility of really sophisticated pattern classifiers, stems from the fact that every pattern whether a geometrical figure or the written word is equivalent to some logical function in the field of input data. Hence any example of a particular pattern could have a logical value of “1”, and any other input would constitute a “0”.

In simpler terms this means that any visual image either is or is not a square, a circle, an ellipse, a figure “4” or whatever. Thus for any pattern there must exist a unique set of rules for determining what it is.

However, for a machine to recognise, it must needs be capable of generalising to a certain extent. This is essential since, for example, no two B’s or even “cows” are necessarily alike. Nevertheless, a “B” is always a “B” regardless of the way it may be written, and a “cow” is a “cow” for all that! Each particular pattern therefore has quite definite invariants by virtue of which it can generally be recognised.

Exceptions to this hypothesis are such figures as squares, which if rotated 45 degrees become diamonds, and with moderate distortion can take on the form of rectangles or even parallelograms. Another difficult figure of course is the “X”. This can be taken to mean the letter “X” or a “times” sign; or, if rotated 45 degrees, it becomes a sign for “sum”.

Problems of this kind can often be minimised by inspecting such characters in context with others. Hence if a machine is reading across a row of input patterns and it sees, say, a square, there is little chance that this could be taken to imply a diamond because to make such a mistake the sensors would require to be moving diagonally to their normally accepted direction of travel.

CIRCULAR SCAN SYSTEM

A machine, built in the U.S.A. some years ago, which recognises simple line drawings is certainly worthy of mention here. This is a system which can account to an extent for size, lateral displacement, and rotation of a pattern, yet remain able to recognise it. The machine’s ability to perform in this way is largely dependent on the method of scansion and the placement of its receptors during this process, see Fig. 6.9.
RADIO STETHOSCOPE

RF on 12 or 16—transmit signal from ear to speaker—when signal you've found is strong. Use RF on TV, TV, anything—components kit comprises two standard triggers and all parts including probe tube and crystal earpiece. For two twin switch instead of one.

MAIN TRANSFORMER SNIP

Making a power pack for amplifier or other equipment? These transformers have normal mains primaries (240 V.A.) and isolated secondaries (240 V.A. 1/2). 12V 500 ma at 6V. 12V 1100 ma at 8V.

320 VOLT SOLENOID

Electric time switch

- Switch on and off times to be accurately preset.
- Two contacts changeover when the solenoid is energised by the infra-red strike it. A gold-finished, molded-in plug to fit in most standard wall sockets.

VARILITE

Will-dim fluorescent or incandescent lighting up to 600 watts from full brilliance to cut. Fitted on M.K. flush plate, same dimensions as standard wall switch so may be fitted in place of this, or mounted on surface. Price complete in heavy plastic box with control knob £3.19.6.

NICAD RECHARGEABLE BATTERY

- 3-Volt-960mA hr—size 11—this really powerful unit will deliver a amp for 1 hour.
- Regular price 2/6 each—our price 99p each. Other voltages available.
- Single cell 1.2V 3.5 cell 6V 2.6.

ELECTRIC CLOCK WITH 2 AMP SWITCH

Made by Smiths these units are used for many top quality clocks to control the oven. The clock is mains driven and frequency controlled so it is extremely accurate. The two small dials enable the switch on and off times to be accurately set also on the left of the switch there will be a second switch which is used for some interesting experiments. 7/6 each.

ROTISSERIE MOTOR

Very powerful 7 r.p.m. operates from standard AC Mains, 2.43V, plus 3.7V P.P. 375 ft. 62 cycle.

SNIPERSCOPE

- Tube and crystal earpiece. 29/6—
- Personal transmitter and all parts including probe and crystal earpiece. 29/6—
- Speaker offered for only £3.9.6 pins 7/6 p. & p. 30W 3/9 or 36/- dozen.
- 12V Inverter. Full transistorised for operating a two watt fluorescent tube. Size 6 in. long. 19/6. 31.5.0. Post and insurance 3/-.
- Rotary Cam Operated Switch. 4 positions each of 90°—ideal for light dimmers.
- Headphones. Ex-W.D. unused and perfect, low frequency response 30-10,000 c.p.s.—specify 3 or 15 ohms—Main re-
- Compression. Twin 100V, 1/- each. 12 volt.
- Mounted 4 hole 8/9 each; or 30/- dozen.
- J.P. Loudspeaker. 5 ohms. 12V/60 8/6 each. 12V/80 13/8 each. 12V/180 23/8 each. 12V/360 29/8 each. 12V/600 29/8 each. 12V/1200 36/- each.
- Rotary Cam Operated Switch. 8 positions each of 90°-ideal for light dimmers.
- Mic. Headphones. Ex-W.D. unused and perfect, low frequency response 30-10,000 c.p.s.—specify 3 or 15 ohms—Main re-
- Compression. Twin 100V, 1/- each. 12 volt.
- Mounted 4 hole 8/9 each; or 30/- dozen.
- J.P. Loudspeaker. 5 ohms. 12V/60 8/6 each. 12V/80 13/8 each. 12V/180 23/8 each. 12V/360 29/8 each. 12V/600 29/8 each. 12V/1200 36/- each.
- Rotary Cam Operated Switch. 8 positions each of 90°—ideal for light dimmers.
- Headphones. Ex-W.D. unused and perfect, low frequency response 30-10,000 c.p.s.—specify 3 or 15 ohms—Main re-
- Compression. Twin 100V, 1/- each. 12 volt.
- Mounted 4 hole 8/9 each; or 30/- dozen.
- J.P. Loudspeaker. 5 ohms. 12V/60 8/6 each. 12V/80 13/8 each. 12V/180 23/8 each. 12V/360 29/8 each. 12V/600 29/8 each. 12V/1200 36/- each.
- Rotary Cam Operated Switch. 8 positions each of 90°—ideal for light dimmers.
- Headphones. Ex-W.D. unused and perfect, low frequency response 30-10,000 c.p.s.—specify 3 or 15 ohms—Main re-
- Compression. Twin 100V, 1/- each. 12 volt.
- Mounted 4 hole 8/9 each; or 30/- dozen.
- J.P. Loudspeaker. 5 ohms. 12V/60 8/6 each. 12V/80 13/8 each. 12V/180 23/8 each. 12V/360 29/8 each. 12V/600 29/8 each. 12V/1200 36/- each.
- Rotary Cam Operated Switch. 8 positions each of 90°—ideal for light dimmers.
NEW 1969 EDITION
THE MODERN BOOK COMPANY
BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRÆD STREET
LONDON, W.2
Phone: PADDINGTON 4185
Closed Saturday 1 p.m.

NEW RANGE BBC 2 AERIALS
All U.H.F. aerials now fitted with detaching bracket and 4 element grid reflector.
Loft Mounting Arrays, 7 element, 87/6; 11 element, 45/6; 1 element, 56/-; 15 element, 66/6. Wall Mounting with Cranked Arm, 7 element, 66/-; 11 element, 56/-; 15 element, 77/-; 14 element, 62/-; 18 element, 76/-; Chimney Mounting Arrays, Complete, 7 element, 72/6; 11 element, 86/6; 14 element, 94/6; 18 element, 102/6. Complete assembly instructions with every unit. Low Loss Cable, 1/6 yd. U.H.F. Pre-amps from 75/-, State clearly channel number required on all orders.

BBC • ITV AERIALS
BBC (Band 1), Telescopic loft, 65/6. External S/D, 86/6. "H", 113/6. ITV (Band 2), 3 element loft array, 50/6; 5 element, 60/6; 7 element, 50/6; Wall mounting, 3 element, 67/6; 5 element, 76/6. Combined BBC/ITV, Loft 1+3, 40/-; 1+5, 50/-; 1+7, 60/-; Wall mounting 1+3, 57/6; 1+5, 67/6; Chimney 1+3, 67/6; 1+5, 80/-.

COMBINED BBC—ITV—BBC2 AERIALS
1+3+9, 78/8; 1+5+9, 86/-; 1+5+14, 90/6; 1+7+14, 101/6. Loft mounting only. Special lead available.

CALLERS WELCOME
OPEN ALL DAY SATURDAY
K.V.A. ELECTRONICS (Dept. P.E.)
40-41 Monarch Parade
London Road, Mitcham, Surrey
01-648 4684

THE ELECTRONIC COMPONENTS CATALOGUE
THAT SETS THE STANDARD

Used and acclaimed by:
- SCIENTISTS
- ENGINEERS
- TECHNICIANS
- TEACHERS & STUDENTS

This edition of the Home Radio Catalogue is the result of eleven years of careful selecting, compiling and indexing.

It is the finest, most comprehensive we have ever produced—it has 300 pages, over 8,000 items listed and over 1,500 illustrations. It is a must for anyone interested in radio and electronics. With each catalogue we supply a Book Mark giving Electronic Abbreviations, an Order Form, an addressed envelope, and 6 vouchers each worth 1/- when used as directed. All this for only 6/6 plus 3/- post, packing and insurance. Send the attached coupon today, with your cheque or P.O. for 12/.-
The receptors which form a circle are mounted at the ends of long scanning arms controlled by a motor-driven “iris-like” device. Thus as the motor runs, the iris progressively opens and the arms fan outwards. In this way the receptors are caused to describe a circular scan, and optically interrogate any illuminated pattern presented before them.

It will be seen that if during the scanning process the output from the receptors is sampled, the result will essentially consist of a series of “off” pulses. Furthermore, in the case of a triangle for example, the pattern of signals will almost invariably consist of a “wave” of three separate groups of pulses. Substantially this will hold true despite variations in orientation—the degree of spacing between the signals will in fact afford a measure of information about the shape of the triangle too. Actual identification of a pattern can of course only come following suitable processing.

FIXED MATRIX SYSTEM

Since the inception of this last type of machine, others possessing even more sophisticated modes of operation have come into being. A particularly exotic device was one which appeared (in experimental form) during 1965. This, instead of utilising a scanning system of moving sensors, relies upon a whole matrix of stationary elements upon which the image of the character to be recognised can be mapped. An understanding of the basic operating principles of the machine is best gained by initially referring to Fig. 6.10a.

In the illustration only an extremely small matrix is considered: in practice, a matrix containing an array of something like 30×30 elements would be used. Each sensor in the matrix is connected so as to inhibit the output of a cell containing essentially a pair of bistable elements and an or gate, every gate output passing along common lines to a summing network.

Assuming initially that no image is mapped upon the cells, then none of them will be inhibited; thus as we apply a pulse to any one of the “propagate” inputs, each one of the bistables in the rows or columns will switch successively until this wave of activity ends at the edge of the matrix when they will all be turned “on”. Hence all the associated or gates will present an output, resulting in the summer returning a maximum level. So far, so good!

Facilities (not shown in Fig. 6.10a) do exist for resetting the bistables, and we will accept now that they have all been reset. We might now consider the case where an image has been mapped upon the sensors. For the sake of simplicity we will assume that the machine is expected to recognise any character in a three letter alphabet; this will comprise the letters U, T and H.

RIGHT AND LEFT PROPAGATION

Now depending on the character being interrogated, there will result a corresponding image on the sensors, causing the associated cells to be inhibited. (At this stage it is important to realise that once the cells have been switched or inhibited they will, unless reset, act as barriers to propagation. A propagation can hence continue along every row/column until it encounters either a “barrier” or one of the edges of the matrix.)

Referring to Fig. 6.10b it will be seen that if we propagate “right” then “left”, a different result will...
exist for each character. Thus if, following this operation, we inspect the summer output and discover this to be at maximum, then it can be concluded that the letter T is present. Conversely, if the summer does not return such a result, we can assume that the character must be either a U or an H.

If we continue the operation by propagation “down” the matrix, then check the summer level again, we can now be certain about the identity of the character. A maximum output will thus correspond with the letter U, and a lower output with an H. In practice the summer is generally fed into a number of Schmitt triggers set to fire at the different thresholds corresponding to various patterns.

TRICKY CHARACTERS

The capabilities of the machine are now however limited to just U, T and H. Consider the result of “throwing a spanner in the works” by presenting the machine with an M (Fig. 6.10c).

The same routine as described before can be applied, but when we come to the decision “is the character an H or an M?”, the operation must obviously be modified. The procedure adopted is then to “hold” the unexposed area of cells whilst removing the image and resetting the remainder; following this (and by applicable gating arrangements) the “held” area is then inhibited.

SPEECH RECOGNITION

Yet other devices have been “dreamt up” for recognition of the spoken word; most of these machines are however even more complex than the last! Nonetheless, one relatively simple example of this form of machine will be given now.

Such a machine might be of the adaptive kind; that is to say it could be taught to recognise a certain vocabulary of input words. The actual number of words to be “understood” by the device would be restricted according to the application.

Let us then, for convenience, choose a vocabulary comprising ten words; these might be the numbers zero through to nine. Several avenues for achieving an initial segregation of these input sounds are open to us; we however are only interested in ten basic types, and so the encoding method can be kept relatively uncomplicated.

Referring to Fig. 6.11 we see a rather interesting example of a machine that could be built for simple word recognition. The input sounds are first passed to an audio amplifier which, possessing a measure of a.g.c., maintains signal amplitudes within reasonable limits. The amplifier output is then fed via a bank of four wideband filters to separate transient detectors which indicate either the presence or absence of a particular group of frequencies. In this way the various speech...
a new 4-way method of mastering
ELECTRONICS
by doing — and — seeing . . .

1. OWN and HANDLE a complete range of present-day ELECTRONIC PARTS and COMPONENTS

2. BUILD and USE a modern and professional CATHODE RAY OSCILLOSCOPE

3. READ and DRAW and UNDERSTAND CIRCUIT DIAGRAMS

4. CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .

- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- OSCILLATORS
- SIGNAL TRACER
- PHOTO ELECTRIC CIRCUIT
- COMPUTER CIRCUIT
- BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual method — no maths, and a minimum of theory — no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment; Radio and TV receivers, etc.

FREE POST NOW for BROCHURE

or write if you prefer not to cut page

To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives

NAME:

ADDRESS:

BLOCK CAPS

PLEASE PE 4
GEATRONIX LIMITED
EDUCATIONAL ELECTRONIC EQUIPMENT

MANUFACTURERS OF

NORKit

A new HOBBY for the automation age

★ Simple building bricks to build your own ELECTRONIC BRAINS.
★ Easy to understand handbooks to guide you.
★ Learn about LOGIC, BINARY arithmetic and BOOLEAN algebra.
★ Mixed circuit modules rapidly assembled and dismantled to use again.
★ Make machines that play games, control model railways, etc. and demonstrate logic circuits.
★ Suitable replacement for 1,000 off £8.10.
★ HIGH QUALITY SILICON PLANAR TRANSISTORS
★ To-48 CASE, Transistors to fill a number of requirements.
★ NORTON JUNIOR £8.16.0 (as shown)
★ NORTON SENIOR £17.12.0
Handbooks supplied for each kit or available separately 6/- each.

LOGIC DEMONSTRATION UNIT TYPE LDU.1
A new teaching aid for rapidly setting up and demonstrating logic circuits. Stackable patching leads are used to interconnect logic symbols on a mimic diagram. The symbols are connected to appropriate components inside the unit. Switches and pushbuttons are provided to simulate input conditions and outputs are indicated by lamps and an audible alarm.

£68.0.0

GEATRONIX LTD., 28 REDSTICK RD., SOUTHWELL-ON-SEA, ESSEX
believing that living animals are essentially uncom-

lected things.

have widened (just a little) the scope of amateur

elsewhere in this month’s issue.

sophisticated version of the “animal” EMMA described

devices, while another is likely to deal with a more

concerned with the fabrication of chemical memory

constructional projects: for example, one will be

articles on this subject will appear in due course. Some

have come in contact. For various reasons much has

to, capture just a mere glimpse of those aspects of

words.

RING COUNTER

This function is achieved by utilising the leading edge

produced by any one of the signals to step-up an

“open-ended” ring counter controlling the input gating
to the matrix. Hence, the presence of components in

the first three syllables of a word will be successively

represented as a binary number in any of the first few

rows of the matrix. The fifth row in the matrix is

reserved for syllable duration information: this is
derived from a timer (also triggered by the start of any

signal) which generates a pulse only if a syllable exceeds

some previous duration. No output pulse will appear

from the timer if the next syllable occurs prior to the

completion of this period—in fact the timer will be

reset for the next duration.

LEARNING ABILITY

Having placed all this data into a memory, facilities

must now exist which permit the machine to learn. This

can be performed by first feeding the matrix outputs into an even larger matrix and, by so doing, expanding the original pattern to show it up in greater
detail. The data stored in this expansion matrix can then be passed to a number of binary “weighted” decision devices corresponding with the various positions in the matrix. Combinations of outputs from

decision devices can then be used to drive a partic-

lar lamp relating to the spoken number at the input
to the machine.

If the incorrect lamp comes on, the machine must be

trained to give the right answer by manually adjusting the “weights” in its decision devices until it becomes

successful. Once the machine has been trained for one

word, further inputs may then be given—however as

this process continues it may require re-training for

some of the original words.

IN CONCLUSION

Throughout the present Bionics series, we have tried
to capture just a mere glimpse of those aspects of
electronics which hitherto only a few of us are likely to
have come in contact. For various reasons much has
been omitted; however it can be expected that further
articles on this subject will appear in due course. Some
of these, it is anticipated, will take the form of actual
constructional projects: for example, one will be
concerned with the fabrication of chemical memory
devices, while another is likely to deal with a more
sophisticated version of the “animal” EMMA described
elsewhere in this month’s issue.

In the meantime, it is the author’s hope that he might
have widened (just a little) the scope of amateur
electronics, and simultaneously portray the folly in
believing that living animals are essentially uncom-

NEWS BRIEFS

Solar Storm Probe

The first launch by the European Space Research
Organisation of a fully stabilised sounding rocket
payload, from the Salto di Quirra range in Sardinia,
carryied an experiment designed to probe solar storms and
assess the amount of X-ray radiation emitted from them.
Such research is important because of the health hazard
presented to astronauts and passengers in supersonic
airliners by hard radiation. An understanding of such
storms may also enable short wave blackouts to be
predicted. The payload was aligned with the sun’s centre
to an accuracy of one three-hundredth of a degree by an
attitude control unit supplied by Elliott Space and Weapon
Automation Ltd.

Concorde Engines Simulator

A CONCORDE engines simulator, for training airline pilots
and ground crew, has been ordered from Hawker
Siddeley Dynamics by Rolls-Royce. The trainer (see
picture) will be installed this Autumn in the Patchway
(Bristol) Training School, of the Bristol Engine Division,
pioneers in propulsion system trainers. It will simulate the
Rolls-Royce Bristol/SNECMA Olympus engines of the
Concorde supersonic airliner in all flight phases. Faults
can be injected by the instructor at any stage of the training
programme.

In addition, the trainer can simulate engine ground
running, without noise, and can be used in conjunction
with airline checkout and engine test equipment for ground
crew training. Engine instrumentation in the trainer’s
Concorde flight deck mock-up is represented by realistic,
 inexpensive simulated instruments which receive informa-
direct from a digital computer. The trainer is easy to
maintain and programming is simple and flexible; no
specialised computer training is required.

British Amateur Electronics Club

The British Amateur Electronics Club now boast
twenty overseas members, and is increasing all the
time.

Two members serving in the British Forces in Germany
have arranged an announcement to be made on their local
radio programme about the activities of the club, and hope
this will encourage other members of the overseas Forces to
join.

The club issues a regular Newsletter to all its members
containing much technical information and details of
constructional projects as well as club activities and future
functions. Newsletter No. 11 contains details for a Noughts
and Crosses Computer and an Electronic Roulette
(inspired by an article in P.E.).
ORBISING OBSERVATORY

One of the astronauts speaking of the Apollo 8 flight made the point that although the situation in the sky, so far as the Earth and moon were concerned, took on an entirely new aspect when viewed from the spaceship, the stars were completely unchanged except in respect of clarity. This emphasises the fact that the galaxy and all that lies beyond needs instruments for exploration.

The advantages of being free from the Earth's atmosphere makes near space and the moon itself an obvious place for such instruments. Space platforms are already one evolving method. Here a team of observers will be able to operate sophisticated apparatus with direct control. The cost of such space laboratories will be high but inevitable.

SPACEWATCH

By Frank W. Hyde

In the meantime a half-way house is afforded by the Orbiting Astronomical Observatory. Launched at the beginning of December 1968, America's OAO is engaged on the most extensive mapping of the heavens ever undertaken. It is the heaviest unmanned satellite that has been put into orbit by the USA. It weighs some 2 tonnes and carries 11 telescopes. Its expected lifetime is six months but it may last longer. If it should last a year it will be able to chart some 100,000 stars and should it be fortunate that it lasts for two years then the whole sky will be mapped. OAO is in a circular orbit 474 miles above the Earth.

The mapping programme will be carried out by a battery of four telescopes. They were built by the Smithsonian Astrophysical Observatory under the direction of Dr F. L. Whipple. The heart of the system is a special television tube which is sensitive to ultra-violet light. The telescopes will look at a star and study the wave emission bands in the ultra-violet spectrum before moving on to the next star.

The other seven telescopes were built by the University of Wisconsin under the direction of Dr A. D. Coode. This unit is for the study of a limited number of stars each day. The programme is to be concentrated on "young stars" and also interstellar dust from which new stars are brought into being. A young star is one which is of the order of 100,000 years old and too faint to be seen by Earth based telescopes.

The telescope packages are fitted at either end of the satellite which is 10ft long. They will share the observing time working a week at a time in turn.

The satellite is fitted with a special stabilising system designed so that even at its orbital speed of 16,000 miles per hour the telescopes can be pointed with an accuracy sufficient to lock on to the stars chosen. As a comparison it is about equal to being able to distinguish between two marbles at a distance of about 150ft.

Power supply is obtained from solar cells in panels which extend about 21ft.

Information is stored on tape and disc and on each orbit the storage systems transmit the information to the ground stations. The Smithsonian unit can be used in "real time", that is, it can directly relay its observations on command. Six ground stations receive the transmission as the satellite orbits the Earth. A computer aboard the satellite can store 256 commands, more than for any previous satellite.

Until now the observations planned in the programme have been accomplished only on a few occasions with sounding rockets and balloons. Now there will be a continuous observation, with this and other craft to be launched later, in the gamma-ray, X-ray, and ultra-violet spectrum. It is thought by Dr H. Friedman, an astrophysicist, that X-rays stars may be more numerous than ordinary stars and if this is so new light may be thrown on the origin of the universe.

MARS MISSIONS

It is three years since the first space probe sent back pictures of Mars on its close fly-past. This year there are to be two more such missions.

In 1965 when the spacecraft took 21 pictures from a distance of 6,000 miles they showed that the surface of the planet was marked with craters like the moon. The new spacecraft will be able to approach within about 2,000 miles and there will be a more sophisticated two camera system on board which will take some 66 pictures, some of them with a resolution of the order of 300 yards (as seen by the naked eye).

One spacecraft is to fly by the south polar cap and the other by the equator. At the time of closest approach to the planet the vehicles will be about 62 million miles from the earth. The two camera system which will have wide angle and narrow angle facilities will take pictures of the whole disc and close-ups of specified areas. The spacecraft will carry other scientific equipment to provide information about the martian atmosphere and surface.

The weight of the craft has increased from 10 to 20 watts. The power is supplied by banks of solar cells incorporated in the four "sails" and a high gain dish antenna is used for maintaining contact with Earth.

RADIO CAMERA

A new radio camera device is being developed which will enable the reflection of radio waves to be used to produce pictures with the aid of a special emulsion and laser light. The camera has been developed to make use of the fact that when radio waves are directed at a target a small amount of heat is generated.

The back scatter of waves from a reflecting source, such as a ship for example, is directed on to a plate which has a special assembly. A sandwich of heat sensitive cholesterol backed by mylar plastic to pick up the reflected radio waves, and coated with a thin film of crystals suitable for the production of an image when bathed in laser light. The plate is processed as a negative and contains all the information as a refractory pattern. A laser beam played on the pattern produces a hologram with three dimensional image.

There are many applications for such a camera leading to safety measures for ships and aircraft, examining plastics, even to discover if unborn babies are single or twins.

The Orbiting Astronomical Observatory (OAO-2) undergoes final tests
250 DIODES Sub. Min. 10/-
Sil. Germ and Zeners Identification Chart
Free. Pak No. XB200.

150 TRANS. XA100
Mixed AF/RF 10/-
DO-7 SIM OA200—OA202. Pak No. XB100
The above devices are untested

BULK TRANSISTOR BUYS
New BI-PAK untested — uncoded

BULK TRANSISTOR BUYS
New BI-PAK untested — uncoded

DEDUCT 10% OFF THESE PRICES

NEW SILICON RECTIFIERS TESTED

SCR'S LARGEST RANGE

BRAND NEW TEXAS GERM. TRANSISTORS
Coded and Guaranteed

EX COMPUTER BOARDS
Packed with Semiconductors and Components. Min. 150
25 BOARD 20/- Postage with this Pak No. EX1

20 AMP (RMS) SCR's
Flying Leads TO-48 Stud
100 PIV 10/- 400 PIV 25/- FULLY
200 PIV 15/- 600 PIV 35/- TESTED

25 GERM. TRANS. 20/- ALL KNOWN TYPES EQVT. LIST INCLUDED
PAK NO. T12

20 SIL. ALLOY TRANS.
eqvt. OC200-205
TO-5 25301-304
20/-

20 GERM. DIODES C662
eqvt. OA70-79-81
Pak No. T15

20 GERM. GOLD BONDED
eqvt. OA47
Pak No. T17

10 OA182 GERM. BONDED DIODES.
eqvt. OA5 10/-
Pak No. T16

PLASTIC UNIJUNCTION TRANS.
eqvt. 2N2646 UT46 T1543
2 FOR 10/- Pak No. T18

BI-PAK SEMICONDUCTORS

"IMPORTANT NOTICE" PLEASE USE PAK NO'S WHEN ORDERING, PLUS DESCRIPTION TO AVOID MISTAKES. PLEASE SEND ALL LETTERS DIRECT TO OUR WAREHOUSE and DESPATCH
DEPT. P.O. BOX 6, WARE, HERTS.
PLEASE ADD 1/- TOWARDS POST and PACK.
OVERSEAS ADD EXTRA FOR AIRMAIL.

20% OFF THESE KING SIZE TESTED PAKS. NORMAL PRICE 10/-, SALE PRICE 8/-
Through this ICS 3-way Training Method:

1. MASTER THE THEORETICAL SIDE
 - From basic principles to advanced applications, you'll learn the theory of electronic engineering, quickly and easily through ICS. It's the only sure way to success. All training manuals are packed with easy-to-follow illustrations.

2. MASTER THE PRACTICAL SIDE
 - ICS shows you how to develop your practical abilities in electronic engineering—alongside your theoretical studies. It's the only sure way to success. All training manuals are packed with easy-to-follow illustrations.

3. MASTER THE MATHEMATICAL SIDE
 - To make this an even bigger problem. Even more so because no electronic engineer is complete without a sound working knowledge of maths. But new ICS teaching makes mathematics easier to learn.

Wide range of courses available include:
- Radio/TV Engineering and Servicing, Closed Circuit TV, Electronics, Electronic Maintenance, Servomechanisms, Computer Engineering, Numerical Control Electronics, etc.

EXPERT COACHING FOR:
- INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS
- CITY AND GUILDS TELECOMMUNICATION TECHNICIANS
- CITY AND GUIDS ELECTRONIC SERVICING
- R.T.E.B. RADIO/TV SERVICING CERTIFICATE
- RADIO AMATEURS' EXAMINATION
- P.M.G. CERTIFICATES IN RADIOTELEGRAPHY

Build your own radio, transistor portable, and professional-type test instruments with an ICS Practical Radio and Electronics Course. Everything simply explained and easy to handle. All components and tools supplied. For details post coupon below.

Member of the Association of British Correspondence Colleges
Arsenide Diodes

Sir—I and some fellow members of my school science society would be interested in carrying out some experiments in “Optical Communication using Laser Diodes” as published in the February issue of Practical Electronics.

We would be very grateful if you could indicate a supplier of the gallium arsenide diodes used for this project.

J. Martin, Lymington, Hants.

This is one of many similar enquiries we have received on this subject. GAL 1 and GAL 2 devices can be obtained from S.D.S. (Portsmouth) Ltd., Hillsea Industrial Estate, Portsmouth, Hants, at a cost of £4 and £8 respectively. Unfortunately the price of these devices is rather high; however we understand that Proops Bros. of 52 Tottenham Court Road, London, W.C.1 have offered “surplus” gallium arsenide diodes at low price, in the region of 28s each.

We can only hope that in the course of time these devices will become readily available to the amateur at a lower price—Ed.

Post Office Bill

Sir—Restrictions on the radiation of electromagnetic energy of any frequency is fair enough, following the activities of pirates and industrial spies. Legitimate users are already familiar with radio licensing, and presumably the Post Office will be prepared to grant licences to radio operators on a fairly free basis. However, if the term electromagnetic does not refer to sound then the pirates have an immediate loophole. If they are prepared to go to the trouble of using short range light communication then they can equally well communicate by super-sonic carrier over similar distances, by radiating from a multiple transducer array.

Electric, magnetic, and electromagnetic energy has been subject to restrictions for some time, and the restrictions for some time, and the

Make Light The Way

Sir—Regarding “Post office privilege”, as I understood it, all those proud experimenters, building, and then giving the knowledge—via the various radio magazines— to others, of the use of light rays to pass any form of intelligence from one point to another, are controlled by the same regulations as “Hams”, those with licence to use normal radio methods.

It is quite clear, internal use will be just as one would make use of a signal generator, but I doubt if many would understand this limit when experiments to improve the distance have been tried.

Here then, we have the answer to all those, for and against letters, which Editors have for so long had from, would be “Hams”, and others.

No morse test, no inference with important services, no exams, just pay and keep to the rules.

Many years ago, experts had a very poor opinion of short waves, amateurs being given the use of them lead the way.

Pioneers, make light the way!

C. S. Burton, Bulwell, Nottingham.

Electronics Scouts

Sir—On 2nd, 3rd and 4th May 1969 a camp will be held at Polyapes Camp Site, Oxshott (N.G.R. TQ131597) for all members of the Scout Movement who have an interest in any branch of electronics.

The full programme has yet to be finalised but it is hoped to include demonstrations, talks and discussions on the following: Hi-fi equipment, recording, model control, short wave listening, and amateur radio. In addition it is hoped to have experienced people with test equipment facilities to help the enthusiast with his home constructed projects.

For further details groups or individuals are invited to send a foolscap s.a.e. to:

Amorphous Devices

Sir—Further to R. F. Shaw’s article on Amorphous Semiconductor Devices in February’s edition your readers might like to know some of the history behind the, so called, “Ovionic” devices.

Mr. Shaw refers to the devices as a comparatively recent discovery. By semiconductor standards this is not altogether true. As long ago as 1962 Stanley Ovshinsky—President of Energy Conversion Devices Inc.—was working on specialised materials to form the basis of thermo-electric generators when he suddenly discovered that under certain electrical conditions an alloy of germanium and tellurium showed different apparent conductivity.

The same piece of material would for some apparent reason change from high to low resistance, and on further investigation he found that the material, when changing from a high resistance to a low resistance state, exhibited a characteristic very similar to a gas tube in that when a certain voltage across the material was exceeded it would “break down” and start to conduct. Unlike the gas tube the voltage drop across the material when conducting was very low, i.e. the resistance change was quite extraordinary changing from the order of 10 megohms to approximately 10 ohms. Another unusual phenomenon was that which Mr. Shaw describes as the permanent memory out of circuit.

Although it was not known how the device actually worked Ovshinsky took out patents and proceeded to publish details of practical applications of such a device.
In 1963 a British firm obtained exclusive rights to exploit the device
and started a research programme to try and evaluate the mechanism of
the rather strange conduction characteristics.
At the same time a British Press Conference was called and representa-
tives of most of the technical journals were given a demonstration of the
prototype device. The demonstration was met with a widely differing
reaction from wonderment to sheer scepticism.
Nevertheless a limited budget research programme was started and
attempts were made to obtain government grants to subsidise the
work which was progressing satisfactorily. All attempts to obtain such
a grant failed—perhaps due to the
risk of investing in such an unknown quantity—but the company con-
tinued its work and eventually exhibited a number of development
devices at the 1964 IEA exhibition at
Olympia. Two types of device were
shown; the memory device using pure germanium telluride as a
material and a threshold device—as described by Mr. Shaw—using ger-
amium telluride with added quantities of arsenic.
In those days the devices were
made from pellets of material with
point contacts of beryllium copper
forming the electrodes (see Fig. 1).

Worse still this threshold voltage
would vary for a single device
throughout its life—which was com-
paratively short.
For some unknown reason the
threshold voltage was load sensitive;
for instance with a high resistance
load the break-down could occur at
voltages as high as 200 volts and
with a large load drawing approxi-
mately 2 amps this would fall to the
normal range of value (20 to 100
volts).

Fig. 2 Prototype test rig for the
Quantrol device using a 4V battery
for the high current pulse

Fig. 1 Structure of the germanium
telluride device of 1964

Unfortunately production devices
were never made due to several
artifacts in the development devices.
These problems all stemmed from
the basic problem that the mechanism of
conduction was not known. It was
impossible to predict the all important
breakdown (or threshold) voltage of
the device and this could vary from
batch to batch; typical values being
anything between 20 and 100 volts.
NEW BOOKS

- **FEBRUARY**
 - FET PRINCIPLES, EXPERIMENTS AND PROJECTS by Edward M. Noll, 40/- net
 - 49 EASY TRANSISTOR PROJECTS by Robert M. Brown and Tom Kneitel, 16/- net
 - PHOTOFACT TELEVISION TUNER by the Howard W. Sams Engineering Staff, 40/- net
 - SERVICING DIGITAL DEVICES by Jim Kyle, 28/- net

- **MARCH**
 - UNDERSTANDING ELECTRONICS UNITS AND STANDARDS by Earl J. Waters, 25/- net
 - USING SCOPES IN TRANSISTOR CIRCUITS by Robert G. Middleton, 32/- net
 - TRANSISTOR TV TRAINING COURSE by Robert G. Middleton, 35/- net
 - INDUSTRIAL TRANSISTOR CIRCUITS by Allan Lytel, 24/- net

- **APRIL**
 - 101 QUESTIONS AND ANSWERS ABOUT COLOUR TV by Lee G. Sands, 15/- net
 - HAVING FUN IN ELECTRONICS by Lee G. Sands, 25/- net
 - 101 EASY AUDIO PROJECTS by Robert M. Brown and Tom Kneitel, 28/- net
 - PRACTICAL DESIGN WITH TRANSISTORS by M. Horowitz, 42/- net

VARIABLE VOLTAGE TRANSFORMERS

<table>
<thead>
<tr>
<th>CLASS</th>
<th>TYPE</th>
<th>Specifications</th>
<th>Price</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PORTABLE</td>
<td>1 AMP</td>
<td>£3.10.0</td>
<td>1 AMP</td>
<td>£1.8.0</td>
</tr>
<tr>
<td>TRANSFORMER</td>
<td>230/240 VAC</td>
<td>£10.6.0</td>
<td>500 VAC</td>
<td>£5.6.0</td>
</tr>
<tr>
<td></td>
<td>110/220 VAC</td>
<td>£8.10.0</td>
<td>230/440 VAC</td>
<td>£14.10.0</td>
</tr>
</tbody>
</table>

LIGHT SENSITIVE SWITCH

Kit of parts, including ORP12 Cadmium Sulphide Photocell, Relay, Transistor and Circuit, etc., 10/- 1/2 volt D.C. Price 25/- plus 6/- P. & P. ORP 12 including circuit, 20/- each, plus 2/- 1/2 P. & P.

LIGHT SOURCE AND PHOTO CELL MOUNTING

Precise single point light source with focussable lens assembly and ventilated lamp housing, complete with transformer for ORP 12 or similar cell. Both units are single hole fixing. Price per pair £15.15.0 P. & P.

SERVICE TRADING CO

All Mail Orders—Also Callers—Ample Parking Space
57 BRIDGMAN ROAD, LONDON, W.4 Phone 955 1560 SHOWROOM NOW OPEN CLOSER SATURDAY

Personal callers only 1 LITTLE NEWPORT ST. LONDON, W.C.2 Tel. GER 7956

RELATED PRODUCTS

- LEDS
- TRANSISTORS
- ICs
- Capacitors
- Resistors
- Transformers
- Relays
- Connectors

SHOP HOURS

Monday to Friday: 8:30 AM to 5:30 PM
Saturday: 9:00 AM to 1:00 PM
Closed Sundays

CONTACT INFORMATION

SERVICE TRADING CO
YEOVIL RD, SLOUGH, BUCKS, ENGLAND
R.S.T. VALVE MAIL ORDER CO.
BLACKWOOD HALL, WELLFIELD RD., S.W.16
Special 24 Hour Mail Order Service

POSTAGE 6d. VALVE.

SPEAKERS 6/6
2" - 40W 8", 400W P. & P. 2/6.
ACOS MICS. 35" - STANDARD
ASSORTED CONDENSERS
ASSORTED RESISTORS
ASSORTED CONTROLS

BURGESS INSTANT HEAT SOLDER GUN
Only the tip heats—best fast! About 7 seconds! Pre-focused lamp lights the job up. Exclusive full-length trigger on pistol grip eases finger fatigue. Finger-tight is right for screw-in tips—no pliers needed. Kit complete with conical tip, chisel tip, 6" extension barrel, double-ended probe, gun and solder. £4 12 6.

Burgess Products Co Ltd, Sarcote, Leicester LE9 6JW

GLADSTONE RADIO
45 ELMS ROAD
Loughborough, Han.
(3 mins. from Station and Buses). FULL GUARANTEE. Aldershot 22240
Aids to economical high fidelity

ES/10-15
BAXANDALL SPEAKER

"A thoroughbred"
SAYS
RALPH WEST
Hi-Fi NEWS
OCTOBER, '68

"The immediate impression was of a thoroughbred speaker, smooth and effortless . . . voices were uncannily real. Once again we see the possibility of Rolls Royce standards . . . when you know how."

A revolutionary advance in design logic

We can only quote briefly from the report in Hi-Fi News which goes thoroughly into the merits of this remarkable loudspeaker. We supply the kit exactly to the specifications described by the designer, P. J. Baxandall in Wireless World (Aug. and Sept.). These designer-approved Peak Sound Kits come ready for instant assembly. Frequency range—60 to 14,000 Hz (100-10,000 Hz ±3 dB); impedance—15 ohms; loading up to 10 watts R.M.S.; size 18" x 12" x 10". Here indeed is quality performance of a very high order for a very modest outlay.

Equaliser assembly 36/- (P/P 1/8):
Speaker Unit 38/- + 6/11 P. Tax (P/P 5/-):
Cabinet assembly, paint finished.
+ £5.3.6 + 12/8 P. Tax (Carr. 8/6),
X-over for woofer if required 22/6 (P/P 3/6) (Carr. in U.K. 11/6)

As specified for
P.W. Double 12
described in
Practical Wireless

THE PEAK SOUND
PA/12-15
(12 watts R.M.S. out into 15 ohms)
is for the constructor who appreciates both sensible design and genuine power and hi-fi performance. Available built or in kit form, Response 10 Hz to 45 kHz +3 db at 0.5 db Distortion at max. output—0.1% 43 db neg. feedback. Size 5" x 3" x 13/8". With full instructions.

Pre-amp. details available. (P/P for kit or built 2/6)

BUILT AND TESTED £5.19.6
Heat sink 6/-
Heating 25/-
£3.19.6
(P/P 1/6)

From your dealer or direct in case of difficulty.

PEAK SOUND (HARROW) LTD., 32 St. Judes Road, Englefield Green, Egham, Surrey Telephone: EGHAM 6316

.prepare now
for tomorrow's world

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which CREI, the Home Study Division of McGraw-Hill Book Co., can provide.

CREI Study Programmes are directly related to the problems of industry including the latest technological developments and advanced ideas. The individual tuition given by the CREI panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Take the first step to a better job now — enrol with CREI, the specialists in Technical Home Study Education.

CREI Programmes are available in:

Electronic Engineering Technology * Industrial Electronics for Automation * Computer Systems Technology * Nuclear Engineering * Mathematics for Electronics Engineers * Television Engineering * Radar and Servo Engineering * City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

Post this coupon today for a better future

Please send me (without obligation) details of your Educational Programmes please tick
My interest is City and Guilds [] General []

Name ...
Address ..
Electronics experience ..

Please send (post free) for which I enclose £ s d
NAME ...d
ADDRESS ...

Block letters please P.E.4
The pre-paid rate for classified advertisements is 1/3 per word (minimum order 15/-), box number 1/6 extra. Semi-displayed setting £4.2.6 per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL ELECTRONICS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL ELECTRONICS, IPC Magazines Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

FOR SALE

£5,000 IN VOUCHERS GIVEN AWAY. See free Cat, for details. Tools, Materials, Mechanical, Electrical, thousands of interesting items. See page 247. H. C. H. Sales, Dept. PYE, New Mills, Stockport SK12 4HL.

TIME SWITCHES, 14 day clock, once on once off every 24 hours, reconditioned and fully guaranteed. 30s and Horloisman 20s, 15 amp. Venner 42/6, P & P 4/6. A. E. BATECHER, (P.E. Dept.), 4 Park Road, Bromley, DA3 1HP.

WANTED

NEW VALVES WANTED. Popular TV and Radio types. Best cash price by return. DURKHAM SUPPLIES, 36T Kesington Street, Bradford 8, Yorkshire.

WANTED. Set Newnes R & TV Servicing Volumes, NORMAN H. FIELD, 266 Broad Street, Birmingham 1. Please advise condition, price.

BUILD IT in a DEWBOX Quality cabinet 21in x 24in x any length. DEW LT., Ringwood Road, Ferndown, Dorset. Send post free for leaflet. Write now—right now.

GOVERNMENT SURPLUS HANDBOOKS

This useful Handbook gives detailed informaition and circuit diagrams for British and American Government surplus Receivers, Transmitters and Test Equipment, etc.; also contains some suggested modification details and improvements for the equipment. Incorporated in this revised edition is a surplus/commercial cross-referenced valve and transistor guide. This book is invaluable to radio enthusiasts, universities, and laboratories. The latest edition priced at 32/- per volume plus 5/- P & P is obtainable from us at

ARTIFICIAL LIFE

Well almost, because the NEW range of projects includes an electronic "animal" which "LEARNS," an Electro Chemical device capable of "REPRODUCING" itself! Other projects SURE TENVIGNE YOU after an audio transmitter/receiver which has quite an amazing range and requires NO LICENCE; also a machine which "recognises" itself, and an electronic dog whistle, etc., etc. HOSTS OF EAST-TO-CONSTRUCT projects, for anyone with a basic knowledge of Electronics. SEND 2/6 for your list—NOW.

GOVERNMENT SURPLUS HANDYBOOKS

42 set Circuit and Notes 6/6 P.P. 6d
R.107 Circuit and Notes 7/- P. P. 6d
BC.312 Circuit and Notes 5/6 P. P. 6d
CR.100/B.28 Circuit and Notes 5/6 P.P. 6d
CR.100/B.28 Circuit and Notes 5/6 P.P. 6d
Wavemeter Class A and B 5/6 P.P. 6d
H.R.O. Technical Instructions .. 5/6 P.P. 6d
H.R.O. Technical Instructions . 5/6 P.P. 6d
BC.221 Circuit and Notes 5/6 P.P. 6d
Wavemeter Class A and B 5/6 P.P. 6d
BC.1000 (31 set) Circuit & Notes 6/6 P.P. 6d
BC.1000 (31 set) Circuit & Notes 6/6 P.P. 6d
A.R.8RD. Instruction Manual 6/6 P.P. 6d
R.1116/A (R.223 circuits) ... 6/6 P.P. 6d
R.1116/A (R.223 circuits) . 6/6 P.P. 6d
A.1134, T.1154, CR.300, BC.342, BC.312.
Resistor Colour Code Indicator....... 2/6 P.P. 6d
S.A.E. with all enquiries please. Extra postage for all foreign orders.
A small unit will fit anywhere. Ideal for all tunable sets that will enable your set to receive G.W. or 8.3.B reception. Compact. Single hole fixing. This is a miniature transistorised B.P.O. unit and transistors. Complete down to the last detail. Employs the latest electronic system. A printed circuit layout makes it simple to work. A fully transistorised receiver covering 108-160 mc/s. VHP broadband. Excellent adjustable volume. Small cabinet size approx. 1 1/4 x 1 1/2 x 4 1/2. Operates from a 9 volt internal battery. Fitted internal speaker or headphone output. Available from us. Cartridge and insurance 10/-, C.W.O or C.O.D.

Tape recorders

Tapes to Disc—using finest professional equipment. Only 11/- each, p. & p. Cartridge and insurance 10/-. Two sets for 17/- post free. Tremendous purchase of this model makes fantastic low price possible. Also 6, 14, 28/- each plus 10/- delivery. C.O.D. with pleasure. MONEY BACK if not DELIGHTED. Please send S.A.E. for full illustrated details. Dept. PE, STANFORD ELECTRONICS

RAILWAY TOP BAND RECEIVER KIT

This wonderful little set will provide hours of listening pleasure. Superb in design, a tiny speaker, mirror image output, high performance, and low cost. Price 8/6. Each, post free. Two sets for 15/-, post free. For service people and enthusiasts. This unit is a miniaturised B.P.O. unit (table model) that will enable you to receive G.W. or 8.3.B reception. Complete, Single hole fixing. This small unit will fit anywhere. Ideal for all Radio Communications Officers (New and Second Cars) and most Commercial Types. Included is a fine instruction book. Complete with fitting instructions. 4/6, post free.

SITUATIONS VACANT

A.M.I.E.E., A.M.S.E. (Elec.), City & Guilds, O.C.E. etc. on "Satisfaction or Refund of Fee" terms. Wide range of Home Study Courses in Electronics, Computers, Radio, T.V., etc. Established school. Full details of I.C.S courses in Radio, Television and Electronics will be sent to you by return mail. First-class opportunities in Radio and Electronics await the I.C.S trained man. I.C.S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/TV Engineering and Servicing, Electronics, Computers, etc., Expert coaching for: C & G. TELECOMMUNICATION TECHNICIANS' CERTS., C & G. ELECTRONIC SERVICING., R.T.E.B. RADIO AND TV SERVICING CERTIFICATE., RADIO AMATEURS' EXAMINATION., P.M.G. CERTIFICATES IN RADIODIAGNOSIS.

TECHNICAL TRAINING by I.C.S.

IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the I.C.S trained man. Let I.C.S train YOU for a well-paid post in this expanding field. I.C.S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for: C & G. TELECOMMUNICATION TECHNICIANS' CERTS., C & G. ELECTRONIC SERVICING, R.T.E.B. RADIO AND TV SERVICING CERTIFICATE., RADIO AMATEURS' EXAMINATION., P.M.G. CERTIFICATES IN RADIODIAGNOSIS.

POST THIS COUPON TODAY and find out how I.C.S can help YOU in your career. Full details of I.C.S courses in Radio, Television and Electronics will be sent to you by return mail.

MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES
GUARANTEED 34/- each, post free. WESTEK, built on printed circuit board. Tested and Aldermaston, Berks.

For details of new book, write Dept. 856K, CHAMBERS KIDDERMINSTER. Tel. 5879

KIDDERMINSTER. Tel. 5879

COMPONENTS LTD.

3 COMBERTON ROAD

SOUTHAMPTON, HAMPSHIRE

COMPONENTS AT GIVE-AWAY PRICES.

9.1mH 25V, 10mH 25V, 1mH 25V

64mF 40V i6mF 25V lmF25V

200mF 10V

250mF 4V 100uf 10V 22mF 10V 1mF 10V

L.S.T. ELECTRONIC COMPONENTS LTD.

PLEASE SEE OUR DISPLAY ADVERTISEMENT ON PAGE 247

DOOR BELL. LIST 37/6. OUR PRICE

Single channel Radio Control at a price you can afford

Radio Control and Performance

TRANSMITTER

• Crystal controlled tone Tx.

Rx only £4 5 0

SUITEABLE FOR MODELS OF ALL KINDS.

ONLY £9 10 0 COMPLETE

Full-off-the-shelf Guarantee, including crash damage, for 1 year

OBTAINABLE FROM

MODEL MART 3 COMBERTON ROAD KIDDERMINTON, Tel. 5879

OR DIRECT FROM

RAadio CONTROL PRODUCTS 38 FRANCHE ROAD KIDDERMINTON, Works.

BRAND NEW ELECTRICALS, 15 Volt, Long Wires, 2, 6, 8, 10, 15, 20, 30, 40, 50, 100 Mfs. 7/- 9/- each, post free. ORDERS PRODUCTS, Prospect House, Canal Head, Pocklington, York. NO 2 NN.

COMPONENTS AT GIVE-AWAY PRICES.

Digital Counters, Rev Counters, Thyristors, Transistors, Transistors and Bags, Track Heads, Recording Tape, Aerials, Intercoms, Microphones, Switches, Etc. 6d. stamp only, to DIAMOND ELECTRICAL, 152 Parchment, SW11, post free. CIRCUIT DIAGRAMS, RAY, ALARMS, INTERCOMS, WALKIE-TALKIES, RECEIVERS, SINDRED RECEIVER AND DIAL LIST. UNDER £1 1/- & £1 2/- each over £3—2/6. C.O.D. 3/- 6/.

ONLY £9 10 0 COMPLETE

Full-off-the-shelf Guarantee, including crash damage, for 1 year

OBTAINABLE FROM

Model Mart 3 Comberton Road Kidderminster, Tel. 5879

OR DIRECT FROM

Radio Control Products 38 Franche Road Kidderminster, Works.
SERVICES

Rapid Mail

Unbeatable Value in Semiconductors

80W BAILEY AMPLIFIER
- MSA301IP matched pair output, 8000-44000 Hz, 80W output.
- IC600 S/S:
 - 4000 1950/450 Hz.
 - 1950 1262 Hz.
- IC620 LE:
 - 1250 1124 Hz.
- IC619 8W.
 - Main amp. PC board 1/5 each.
- PCB45 circuit in each complete transducer set.
- Total for one channel 47.8% list with 95% discount only 126.5.
- Total for two channels 143.6% list, with 15% discount only 2.5%.
- Complete power supply kit #54.50.
- Circuit reprint 1/4 each.

G.E. SERIES PLASTIC RANGE

Price reductions
- Red switches:
 - 3/2 overload £2.00
 - 3/2 overload £2.00
- Green, etc.: These transistors have high
- BC108, BC171, BC181, 2N3924
- BC168C (hfe = 450 - 500 @ Ic = 2mA)
- High-gain low-noise npn planars
- PC 220m W.

METAL OXIDE

Resistors

Type TRS 0-8W 5% Tolerance.

Very low noise, low temperature coefficient, low drift.

A professional resistor.

All K2F preferred values 10% to 1M.

Price: 1 to 11: 10; 12 to 23: 14; 24 up: 16.

CARBON FILM

High stab low noise.

W 150, 1G to 515 and W 950 to 1M 1/10, 1/10.

1W 950, 1G to 10M, 2.5W, 17.

1W 235, 7/10 to 8M, 5.5W, 26.

1/2 less per 100 if ordered in complete 10% of units choice value.

Please state resistance values required.

ANALOGUE SIGNALS (continued)

4X-15.

Price £4.60.

Low cost kit £4.00.

May save 6d.

Active low filter kit £1.

另有50%优惠。

No discounts allowable on basic kits only.

PEAK SOUND PRODUCTS

Peak Sound FA-130 Amplifier

Has a maximum distortion level of only 0.1% at 115W, into 8Ω.

In kit form £55.19, plus £3.15 for ready prepared lead head and mounting board.

Power supply PS-60 Kit £4.10.

Price £6.10 each.

LARGE ELECTROLYTICS

(µF) 100µF/500V: £1.10; 50µF/500V: £1.10; 25µF/500V: £1.10; 15µF/500V: £1.10; 15µF/500V: £1.10; 10µF/500V: £1.10; 5µF/500V: £1.10; 5µF/500V: £1.10; 2µF/500V: £1.10; 1µF/500V: £1.10; 1µF/500V: £1.10; 0.5µF/500V: £1.10; 0.5µF/500V: £1.10; 0.1µF/500V: £1.10; 0.1µF/500V: £1.10.

Please note values above quoted immediately after type numbers.

Price: $9.50.

**Red switches:
 - 2 to 6mA, low noise: 7W.
 - 8W, 200V.

Min. Weights

Low noise, low leakage.

Price: $9.50.

Ceramic disc 2%: 0.100µF, 0.01µF, 0.001µF.

1%: 200µF, 100µF, 250µF, 100µF, 50µF, 25µF.

Price: $9.50.

Price £4.60.

Small high quality, 1/2 each.

Sub-mini, type lid each.

317
WE ARE BREAKING UP COMPUTERS

WE ARE BREAKING UP COMPUTERS

CRESCENT RADIO LTD.
(electronic component specialists)

50,000 TRANSISTORS to be cleared in lots of 50 for £1. Types available are germanium similar to OC144, and silicon similar to OC205. All transistors fully tested and guaranteed.

HOLIDAYS

HOLIDAY FOR BOYS 11/16 years August 1969, specializing in engineering, electronics, photography, tuition, and practical work including go-karting. 11 days. £14.10.0.

TO SEND US YOUR TRANSFORMER REQUIREMENTS, 1,000 IN STOCK

SUNDERLAND ELECTRICALS
48 Princess Street, Manchester 1

SOME COMPONENT BARGAINS

50,000 TRANSISTORS to be cleared in lots of 50 for £1. Types available are germanium similar to OC144, and silicon similar to OC205. All transistors fully tested and guaranteed.

HOLIDAYS

HOLIDAY FOR BOYS 11/16 years August 1969, specializing in engineering, electronics, photography, tuition, and practical work including go-karting. 11 days. £14.10.0.

WE ARE BREAKING UP COMPUTERS

WE ARE BREAKING UP COMPUTERS

CRESCENT RADIO LTD.
(electronic component specialists)

50,000 TRANSISTORS to be cleared in lots of 50 for £1. Types available are germanium similar to OC144, and silicon similar to OC205. All transistors fully tested and guaranteed.

HOLIDAYS

HOLIDAY FOR BOYS 11/16 years August 1969, specializing in engineering, electronics, photography, tuition, and practical work including go-karting. 11 days. £14.10.0.

TO SEND US YOUR TRANSFORMER REQUIREMENTS, 1,000 IN STOCK

SUNDERLAND ELECTRICALS
48 Princess Street, Manchester 1

SOME COMPONENT BARGAINS

50,000 TRANSISTORS to be cleared in lots of 50 for £1. Types available are germanium similar to OC144, and silicon similar to OC205. All transistors fully tested and guaranteed.

HOLIDAYS

HOLIDAY FOR BOYS 11/16 years August 1969, specializing in engineering, electronics, photography, tuition, and practical work including go-karting. 11 days. £14.10.0.

TO SEND US YOUR TRANSFORMER REQUIREMENTS, 1,000 IN STOCK

SUNDERLAND ELECTRICALS
48 Princess Street, Manchester 1

SOME COMPONENT BARGAINS

50,000 TRANSISTORS to be cleared in lots of 50 for £1. Types available are germanium similar to OC144, and silicon similar to OC205. All transistors fully tested and guaranteed.

HOLIDAYS

HOLIDAY FOR BOYS 11/16 years August 1969, specializing in engineering, electronics, photography, tuition, and practical work including go-karting. 11 days. £14.10.0.

TO SEND US YOUR TRANSFORMER REQUIREMENTS, 1,000 IN STOCK

SUNDERLAND ELECTRICALS
48 Princess Street, Manchester 1

SOME COMPONENT BARGAINS

50,000 TRANSISTORS to be cleared in lots of 50 for £1. Types available are germanium similar to OC144, and silicon similar to OC205. All transistors fully tested and guaranteed.
P. & P. If-
5/-
4/3

Solder

BUILD YOUR CIRCUITS ON VEROBOARD

BUILD YOUR CIRCUITS ON VEROBOARD

—The Universal Wiring Board—

obtainable from your local Retailer

Trade enquiries to:

NORMAN ROSE (ELECTRICAL) LTD.

8 St. Chad’s Place, Gray’s Inn Road, London, W.C.1

Technical enquiries to:

VERO ELECTRONICS LTD.

Industrial Estate, Chandler’s Ford, Hants

ESSEX.

READERS RADIO (P.E.)

55 TORQUAY GARDENS, REDBRIDGE, ILFORD,

S. E. 7.

Postage on 1 valve 6d. extra. On 2 valves or more, postage 6d. per

valve extra. Any Parcel Insured against Damage in transit 6d. extra.

MINIATURE RESISTORS

LOW NOISE—CARBON FILM

1/2% ±10% tolerance 1/2 to 10 ohms.

50p Each

Free postage and packing but C.W.O

ABRAHAM and PARTNERS

71 Kenley Road, London, S. W.19

BATTERY ELIMINATORS

The ideal way of running your TRANSISTOR

Hi-Fi, RECORD PLAYER, TAPE Recorder

AMPLIFIER, etc. Types available: 6v, 12v, 24v, 40v

4-volt output) (300 each). P. & P. 2/6.

12v - 24v. 5/-

300 each. P. & P. 2/6.

INSULATED LEAD 21 ft. coil of 60/40 Alloy.

Contains 21 ft. coil

of 60/40 Alloy. Ideal for small components, transistors, diodes.

etc. 3/- each.

SIZE 15

SOLDER DISPENSER

Contains 10 ft. coil of 18 s.w.g. Ersin Multicore Savbit

Alloy. 2/6 each.

SIZE 12

Ideal for home

constructors. Contains 90 ft.

of 18 s.w.g. Ersin Multicore Savbit

Alloy on a plastic reel. 15/- each.

BIB MODEL 8

WIRE STRIPPER AND CUTTER

Strips insulation cleanly and

quickly with unique 8

gauge wire guide. Plastic

handles. 9/6 each.

FROM

Electronic and Hardware shops. If unobtainable, write to:

MULTICORE SOLDER LTD., Hemel Hempstead, Herts.

AMAZING MINI-DRILL

Indispensable for precision

drilling, grinding, polishing, etching, gouging, shaping.

Precision power for the

enthusiast. Shockproof.

Completely portable power

from 41 volt external

battery. So much more

scope with MINI-DRILL.

Super Kit (extra power, inter-

changeable chuck) 79 6

terchangeable chuck) 79 6

Super Kit (extra power, in-

terchangeable chuck) 79 6

Cash with Order

P. & P. 1/-

MERLIN SUPPLY CO.

Dept. P.E.3, Nailsea, Bristol BS19 2LP

319
Silicon N.P.N. transistors. Similar to 2N2926. All individually tested. Gold plated leads for easy soldering. Unbeatable value at 1½ each or £5 per 100.

12 VOLT TRANSISTORISED FLUORESCENT LIGHT. 8 WATT 12in TUBE. Current drain only 700mA! Complete and tested 82/19/6 only! Or in kit form:

* Case 10/- Lamp holders—pair 5/- Condensers, etc. 3/- Transformer 13/6 Tub 8/—

*Post and Packing 3/-

TRANSISTORS
OC200, OC203, OC204, all at 2½ each.
Transistors similar to OC244, OC71 and OC72, all 1½ each.
Unmarked, untested transistors, ½d for 50.

LIGHT SENSITIVE TRANSISTORS (similar OCP 71), 2½ each.
30 watt transistors (AS217), 10/- each.
OPR 12 Cadmium sulphide light-sensitive resistors 9/—

RECTIFIERS
BY100, 800 p.v., 2½ each, 2½ or doz., £7/10/- or 100, £5.00 per 1,000.
BY215, 6 amp, 400 p.v., available on same terms.

MULLARD POLYESTER CAPACITORS
FAR BELOW COST PRICE!
0-001uf 400 volts 1/2d 0-01uf 100 volts 8d
0-0018uf 400 volts 1½d 0-02uf 100 volts 6d
0-002uf 400 volts 1½d 0-05uf 100 volts 4½d
0-01uf 400 volts 3½d 0-1uf 100 volts 1/-

VERY SPECIAL VALUE! Small Silver-mica, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values 10/- per 100.
PAPER CONDENSERS, MIXED BAGS, 0-0001 to 0-05uf. 12/6 per 100.

RESISTORS! Give-away offer! Mixed types and values, ½ to ½ watt. 6/6 per 100, 5/- per 1,000. Individual resistors 3d each. Also ½ to 3 watts and 3½ per 100. Mixed values 7/6, 10/0, 5/-, 1-000. £16 for 10.

RECORD PLAYER CARTRIDGES
ACO GP 67/2 Mono. 15/- complete with needles.
GP 67/3 Stereo Compatible 4½/-
GP 93/1 Stereo Ceramic 5/-
GP 94/1 Stereo Ceramic 6/-

Small pick-up arms complete with cartridge and needle, 10/- only.

UNREPEATABLE OFFER! GIANT SELENIUM PHOTO-CELLS PRODUCE UP TO 6mA FROM DAYLIGHT! 67mm. diameter (29.2 sq. cm.) 10/- each. 50mm. x 37mm. (16.5 sq. cm.) 2 for 10/—

TRANSISTORISED SIGNAL INJECTOR KIT R/F, I/F, A/F, 10/-
TRANSISTORISED SIGNAL TRACKER KIT 10/-
TRANSISTORISED REV. COUNTER KIT 10/-

VEROBOARD
24in x 16in 0-15in matrix 1/6 17in x 21in 0-15in matrix 11/-
34in x 21in 0-15in matrix 3/3 17in x 21in 0-15in matrix 14/8
34in x 16in 0-15in matrix 3/11 21in x 0-15in matrix 4/2
5in x 16in 0-15in matrix 3/11 21in x 0-15in matrix 4/9
5in x 32in 0-15in matrix 5/6 5in x 21in 0-15in matrix 5/9
5in x 32in 0-15in matrix 5/6 5in x 21in 0-15in matrix 5/9
5in x 32in 0-15in matrix 5/6 5in x 21in 0-15in matrix 5/9

MULTIMETERS. 20,000 ohms per volt. Ranges: a.c. 1,000V, 500V, 100V, 50V, 10V.
d.c. 250mA. 2.5mA, 50mA.
d.c. 2,500V, 500V, 250V, 100V, 3V, 2V. 5V.
Resistance: 0-060k and 0-06M. Special price £4 only.

ELECTROLYTIC CONDENSERS
0-25uf 3 volt 4½d 4 volt 10/0 25 volt 64½d 9 volt
1uf 6 volt 4½d 12 volt 20½f 60½d 9 volt
1uf 20 volt 4½f 25 volt 25½f 32½d 10 volt
1-25uf 16 volt 6½d 6 volt 12½f 32½d 4 volt
2uf 3 volt 3½f 10 volt 12½f 32½d 4 volt
2uf 125 volt 3½f 25 volt 4½f 40½d 6½f
2uf 250 volt 3½f 30 volt 4½f 40½d 6½f
2½uf 6 volt 8½d 12 volt 10/0 10 volt
3uf 25 volt 10/0 60½d 10 volt
3½uf 12 volt 60½d 10 volt
4uf 16 volt 64½d 25 volt 20 assorted (our selection) 10/—

SKELETON PRE-SET POTENTIOMETERS. 100Ω, 100KΩ, 640KΩ. 6d each.

SMALL TRANSISTOR OUTPUT TRANSFORMERS 2½ each.
SMALL TRANSISTOR DRIVER TRANSFORMERS 2½ each.

TAPE RECORDER MICROPHONES 12/—

Orders by post to:
G. F. MILLWARD, DRAITON BASSETT, NEAR TAMWORTH, STAFFS.

Please include suitable amount to cover post and packing. Minimum 2/-.
Stamped addressed envelope must accompany any enquiries.
For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8.

The most accurate pocket size CALCULATOR in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free Booklet or send 82/6 for this invaluable spiral slide rule on approval with money back guarantee if not satisfied.
CARBIC LTD. (Dept. PE 22) 54 Dundonald Road, London, S.W.19

12in. DE-LUXE MK II £9

The exceptional quality and performance of the “De-Luxe MK II” brings truly rich satisfying sound from a single loudspeaker, recreating the musical spectrum virtually flat ±5db. 25 to 16,000 c.p.s. The unit consists of the latest double cone, woof er and tweeter cone together with a special Baker “FEROBA” magnet assembly having a flux density of 14,000 gauss and a total flux of 150,000 Maxwells. Bass Resonance 3-25 c.p.s. Rated 15 watts. Voice coils available 3 or 8 or 15 ohms. Suitable for any High Fidelity System. Design capability concept and programmed third generation hardware giving fantastically delightful sound.

Further details and 48 page Enclosure

Bensham Manor Road Passage, Thornton Heath, Surrey. 01-684 1665

Baker Reproducers Ltd

UNREPEATABLE OFFER!

GIANT SELENIUM PHOTO-CELLS

PRODUCE UP TO 6mA FROM DAYLIGHT!

67mm. diameter (29.2 sq. cm.) 10/- each.
50mm. x 37mm. (16.5 sq. cm.) 2 for 10/-

MARTIN IS HIGH FIDELITY

plus

ADD-ON-ABILITY
THRILLING POWER
DEPENDABILITY
GENUINE ECONOMY

How would you like to start with a simple amplifier, say, and add to it until it became a fully stereo twenty watt amplifier with FM tuner and facilities to take the most sensitive low output pickups ever made? With Martin Audiokits it’s easy, for with these superbly engineered all-transistor prefabricated units, success is built in from the start and you build to your own preferred plan. IT’S A MONEY SAVING SCHEME, TOO.

Details from:
Trade enquiries invited.

MARTIN ELECTRONICS LTD., 155 High Street, Brentford, Middlesex. 1S Lewisham 1161

To MARTIN ELECTRONICS, 155 High Street, Brentford, Middlesex.

I have not had your leaflets before. Please send them on AMPLIFIERS Q FM TUNER Q RECORD KITS Q

(Tick as required)

NAME

ADDRESS

PE 4
The new edition of "Engineering Opportunities" is now available—without charge—to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "Engineering Opportunities" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'Satisfaction or Refund of Fee' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
- Advanced Electronic Eng.
- Frequency Modulation — Transistors.

ELECTRICAL ENG.
- Advanced Electrical Eng.
- General Electrical Eng.
- Installations — Draughtsmanship — Illuminating Eng.

CIVIL ENG.
- Advanced Civil Eng.
- General Civil Eng.
- Municipal Eng. — Structural Eng.
- Sanitary Eng. — Road Eng.

MECHANICAL ENG.
- Advanced Mechanical Eng.

AUTOMOBILE ENG.
- Advanced Automotive Eng.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your earning power?

You are bound to benefit from reading "Engineering Opportunities"—send for your copy now—FREE and without obligation.

B.I.E.T. is the leading institute of its kind in the world.

Published about the 15th of the month by IPC Magazines Ltd., Tower House, Southampton Street, London, W.C.2, at the recommended maximum price shown on the cover. Printed in England by the Chapel River Press, Andover, Hants. Sole Agents—Australia and New Zealand: Gordon & Gootch (Atd.) Ltd.; South Africa: Central News Agency Ltd.; East Africa: Stationery & Office Supplies Ltd. Subscription rate including postage for one year: To any part of the World £3s. 6d.
SOLID STATE-HIGH FIDELITY
AUDIO EQUIPMENT

MONO or Stereo Audio. Equipment developed from Dinsdale Mk.II—each unit or system will compare favourably with other professional equipment selling at much higher prices.

COMPLETE SYSTEMS FROM £15.5.0

THE FINEST VALUE IN HIGH FIDELITY—CHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE POUNDS

All units available separately.

SEND FOR FREE BROCHURE (No. 21) TODAY!

DEMONSTRATIONS DAILY AT "303" EDGWARE ROAD

Acclaimed by everyone

MAYFAIR ELECTRONIC ORGAN

A completely new development in portable electronic musical instruments and a new field for the home constructor. The MAYFAIR produces a multitude of the most pleasing sounds with a wide range of tone colours suitable for classics or pop music. The organ is fully polyphonic, that is full chords can be played over the entire keyboard. Supplied as a kit of parts which includes 165 transistors, printed circuit panels, printed circuit boards, crystal unit, switch plate, battery case and operation manual. The Mayfair organ is a full-sized keyboard, attractive wood cabinet with cup handle. A complete illustrated and detailed construction manual is provided with controls and full parts list. All kits may be purchased separately. All parts supply are fully guaranteed. Full after sales service.

Once built the MAYFAIR will then provide many years of enjoyable entertainment. ONLY 99 Gns.

DO IT YOURSELF

MV/LW PORTABLE

New printed circuit design with full power output. Fully portable can be used on both mains or batteries. 7 transistors plus diode, push-pull circuit. Paid 6 inch speaker, large ferrite aerial and Mullard transistors. Easy to build with practical results. All local and Commercial stations.

TOTAL COST £113.19.0.

BUILD A QUALITY TAPE RECORDER

To get the best out of your MAGNAVOX DECK, you need a HAIRDOPPER RECORDER. The complete a special high quality 8 valve amplifier and pre-amplifier which comes to you assembled on its own printed circuit boards—just everything needed down to the last screw. MAKING A SUPER TAPE RECORDER, which, when built, will com- pose a fine quality instrument costing just as much, yet you need no experience or technical skill to bring this about.

INTEGRATED SOLID STATE TRANSISTOR POWER AMPLIFIERS

Complete with full Bass Treble, Volume and Selector Controls.

MADE 12 WATTS STEREO

We are pleased to offer two new designs with the choice of either mono or stereo systems. These new DESIGNED UNITS feature the latest in transistors, being suitable for use with all types of PICK-UPS. DECKS and MICROPHONES—with fantastic power and quality with either transistor or valve. With the latest in adaptability, with freedom for technology or美学 operation. Output is from 3-10 (CHASSIS)

Whether you require a home or portable Hi-Fi installation, electronic guitar, P.A. System, Intercoms.

ORGAN COMPONENTS

We carry a comprehensive stock of organ components for TRANSISTOR and VALVE FREE.

PMSE designs.

Ask for BROCHURE 9

NEW MODELS

NOMBREX TRANSISTORIZED Test Equipment.

PRICE LEAFLET

C E. No.

MODEL

Power Supply 14 0.0 22
Audio Generator 19 0.0 24
Prep. Generator 12 0.0 25
R.C. Bridge 10 0.0 26
Inductance Bridge 20 0.0 29

Send for descriptive Illustrated Brochure.

NEW—MALLORY LONG LIFE TACER BATTERIES

50% OFF LIST PRICES

between 0.133 and 0.333 volts.

WE ARE ALSO IN STOCK AND READY FOR COLLECTION. We are in stock and ready for immediate delivery.

MANUFACTURERS—DISTRIBUTORS, — we publish a QUANTITY, SEMI-CONDUCTOR DISTRIBUTOR. Inquire about your requirements from STOCK inreplytoyourquestionatKien

FIELD REPRODUCTION MONO AND STEREO

A portable 8 valve FM SUPERHET TUNER for every shape and size of Hi-Fi set. Microphonic quality at competitive prices. Build yourHi-Fi set in a few hours.

VHF FM SUPERHET TUNER UKW TUBE AMPLIFIERS & TRANSISTORS A 250 OHM 1000 OHM 50 OHM VALUE.

HIGH FIDELITY REPRODUCTION MONO AND STEREO

A complete 8 valve FM tuner for every shape and size of Hi-Fi set. Microphonic quality at competitive prices. Build your Hi-Fi set in a few hours.

MANUFACTURERS—DISTRIBUTORS, — we publish a QUANTITY, SEMI-CONDUCTOR DISTRIBUTOR. Inquire about your requirements from STOCK in reply to your question at Kien

PRICE LEAFLET

C E. No.

PREP. GENERATOR 12 0.0 25
R.C. BRIDGE 10 0.0 26
INDUCTANCE BRIDGE 20 0.0 29

Send for descriptive Illustrated Brochure.

TRANSPORTS—SEMICONDUCTORS

COMPLETELY NEW 1965 LIST OF 1000 TYPES. Send for your FREE CATALOG. TODAY (list 36)

S.C.R.'s from 6/-

Field Effect Transistors from 9/6

Power Transistors from 5/6d.

Diodes and Rectifiers from 1/6

BRAND NEW All below list price

3003 Mono/ Stereo £5.10.0

3003 MIC with STITCH £5.10.0

3000 STITCH £5.10.0

3000 STITCH £5.10.0

3000 STITCH £5.10.0

AP3 10 0

AP3 10 0

SILS 20 0

305 20 0

MINI 5 0

M & F 5 0

Send for illustrated brochures 16, 17 Complete range of accessories available

303 Edgware Road, London, W.2. Mail Order Dept. all types of Components, Organ Dept. (01) 723-1008/9

309 Edgware Road, London, W.2. High Fidelity Sales, P.A. and Test Equipment, Record Decks (01) 723-6963

HI-FI equipment to suit EVERY POCKET

SEND FOR Hi-Fi Stock List Leaflet 16/17. IT WILL PAY TO PAY US A VISIT!

HENRY'S RADIO LTD

OPEN MON.-SAT. 9 a.m.-5 p.m. THURS. 9 a.m.-1 p.m.

FULLY ILLUSTRATED CATALOGUE

COMPLETELY NEW 9th EDITION (1969)

The most COMPREHENSIVE—CONCISE—CLEAR COMPONENTS CATALOGUE

Completely with 10% worth discount vouchers

FREE WITH EVERY COPY

• 32 pages of transistors and semi-conductor devices, valves and crystals.

• 310 pages of components and equipment.

• 70 pages of microphones, decks and Hi-Fi equipment.

6,500 ITEMS

320 BIG PAGES