A DTMF Computer Interface

Use this project to capture and decode phone numbers from the airwaves and display them on your PC.

High-Voltage Power
It has few parts, but this circuit creates plenty of kilovolts.

Wireless Control
Build this transmitter/receiver pair and control almost any electronic device.

Gizmo

Also Inside:
- Digital Camcorder and Camera Reviews
- Affordable Flat-Panel Monitors
- Hall Effect Sensor Circuits
- Scanner Antenna Tips

www.americanradiohistory.com
High-end features. Low-end price.

$299

CircuitMaker 6: Schematic design and simulation software

$299

TraxMaker 3: Printed circuit board layout software

CircuitMaker Version 6 and TraxMaker Version 3 give you the features of professional, high-end software at a fraction of the cost. Plus, with exceptional ease-of-use you'll spend less time learning to use the software and more time designing. Both applications are compatible with your existing software, and feature outstanding technical support. Call now for your free functional demo.

CircuitMaker 6 is a powerful schematic design and simulation program featuring:

- Professional schematic features including printout borders, title block and barred pin names
- Symbol editor and Macro feature for custom devices
- Fast, accurate SPICE3f5/AXSPICE-based simulation
- Complete array of analysis types, including Fourier, AC, DC, Parameter sweep, Transient and more
- Virtual instruments including a digital oscilloscope, multimeter, Bode plotter, curve tracer and more
- Extensive library of over 4,000 models
- Tight integration with TraxMaker® for quick PCB layout
- Output PCB netlists in Protel®, Tango® and TraxMaker® formats for use in a variety of PCB layout programs
- Windows 3.1, 95 and NT

TraxMaker 3 is a powerful printed circuit board layout program featuring:

- Over 2,000 component footprints in a fully-documented, indexed library. Documentation shows footprints actual size
- Built-in autorouter and Design Rules Check
- Supports up to 6 signal layers plus power and ground planes, silk screen overlays and solder and paste masks
- Board sizes up to 32" x 32", with no pin limitations
- Intelligent manual routing with unroutable capabilities
- Import any PCB netlist in CircuitMaker®, Protel® or Tango® format
- Output RS274X Gerber files, Excellon N/C drill files and Bill of Materials
- Print to any Windows-compatible printer or plotter
- Windows 3.1, 95 and NT

For free demo software, or to order, call 1-800-419-4242

©1998 MicroCode Engineering, Inc. All rights reserved. CircuitMaker, TraxMaker, SimCode and MicroCode are registered trademarks of MicroCode Engineering, Inc. All other brand and product names are trademarks or registered trademarks of their respective companies.
CONSTRUCTION ARTICLES
DTMF COMPUTER INTERFACE..Brian Pliler 31
Use it to capture and decode phone numbers from the airwaves and display them on your PC
SUPER-SIMPLE HIGH-VOLTAGE CIRCUIT..Kenton Chun 38
Generate plenty of kilovolts with this project that has a wonderfully low parts count
WIRELESS CONTROL...Frank Montegari 41
Build this transmitter/receiver pair and take remote control of almost any electronic device
TAPPER..John F. Mastromoro 47
Try this updated electronic version of the key-chain-style tip-and-tap games of the past

PRODUCT REVIEWS
HANDS-ON REPORT.. Fujifilm MX-500 Digital Camera 13
PRODUCT TEST REPORT.. JVC Digital Camcorder 15
GIZMO..23
Robo-LEGO, MiniDisc deck, Wireless Net access in your pocket?, software, radio with bass, and more

COLUMNS
MULTIMEDIA WATCH..Marc Spiwak 4
Affordable Flat-Panel Monitors and New Peripherals
NET WATCH...Konstantinos Karagiannis 9
Exploring Robotics Online
SCANNER SCENE...Marc Saxon 12
Discussing a Discone
DX LISTENING..Don Jensen 21
International Smorgasbord
THINK TANK...Alex Bie 54
The Bipolar Transistor and Some New Designs
ANTIQUE RADIO..Marc Ellis 57
Scaling Down for the Depression
CIRCUIT CIRCUS..Charles D. Rakes 59
Hall Effect Sensors
HAM RADIO...Joseph J. Carr 62
A Neat Little WWV/WWVH Receiver

DEPARTMENTS
EDITORIAL..2
LETTERS..3
NEW PRODUCTS...8
ELECTRONICS LIBRARY..53
POPULAR ELECTRONICS MARKET CENTER...67
ADVERTISING INDEX..92
FREE INFORMATION CARD..92A

Postmaster: Please send address changes to Popular Electronics, Subscription Dept., P.O. Box 338, Mount Morris, IL 61054-0932

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

As a service to readers, Popular Electronics publishes available plans or information relating to newsworthy products, techniques, and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, Popular Electronics disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.
Editorial

A Plethora of Projects

Most of you who regularly pick up or subscribe to this magazine want to do more than just read about electronics and gadgets. In recognition of all our readers who enjoy building projects, as well as those who'd like to get started doing just that, we're proud to bring you our Project Builders' Special. It's been a while since our last one, but we haven't forgotten about them.

We get things started this month with our cover story about a DTMF Computer Interface. With this innovative device, you'll be able to capture DTMF tones from the airwaves or any audio source, convert them to digits, and then feed them to your PC. A simple QBASIC program then lets you log the phone numbers and other strings of data for future use. Turn to page 31 to check it out.

Next up is a Super-Simple High-Voltage Circuit. As the article will show you, there's no need to invest big bucks to generate mega voltage. This HV circuit has a low (really low) parts count, but can still generate enough kilovolts to light a large neon tube. Proceed with caution, but do proceed, to page 38 for an enlightening, powerful learning experience.

The Wireless Control project is a transmitter and receiver pair that you can connect to a wide variety of circuits. Whether you want to trigger a gadget from across a room or set a sensor to do the same when you're not around, this is a great project to build. The story begins on page 41.

Want to build your own simple electronic game? Take a look at Tapper, an LED-filled version of those old tip-and-tap key-chain games of yesteryear. Turn to page 47 to get started.

Of course, there's also the usual plentiful do-it-yourself electronics advice in our columns. From Hall Effect magnet-sensing circuits in Circuit Circus to reader contributions in Think Tank, from hands-on reviews of the latest gear to tips from all our expert authors, this issue is packed with information for the electronics activist.

So read on, clear off your workbench, and get those soldering irons warmed up. We've got a terrific installment of Popular Electronics for you this month and look forward to bringing you some really groundbreaking stuff in coming issues. We can't tip our hand just yet, but promise that it will be worth waiting for some special theme issues this year.

See you next time.

Konstantinos Karagiannis
Editor
E-MAIL AWRY?
C'mon, you guys! If you are going to publish e-mail addresses so people can respond to requests in your Letters column, get them right! I responded to two of your letters under "Haves and Needs," (Popular Electronics, February 1999), namely to conway@pacbell.net and ucan-donz@southern.co.nz only to have them bounce back at me as undeliverable! What's the story?
J.T.
Burnaby, BC, Canada

Thanks for writing. There was an error in the e-mail address for Conway Chester. It should read conwayc@pacbell.net. Sorry for any inconvenience that the misprint may have caused, although there was a snail-mail address provided.

The e-mail address for Derek Rout in New Zealand was the one he supplied. Again, there was a snail-mail address published, and in this case maybe the snail will win the race!
—Editor

STRANGE PC
I know that this is probably a question I should be sending to a computer magazine, but seeing as I don't read any of them regularly, I decided to send it to you guys.

I have a Pentium 133 that I'm not quite ready to give up yet. Deciding to give it a bit of an extra boost, I invested in an extra 32MB of RAM to bring the machine to a total of 96MB. Since I installed the memory, however, the machine's been running even slower. It feels more like a 486 now than a Pentium. Did I do something wrong?
C.S.
Little Rock, AR

We appreciate your thinking of us. To make a long story short, your problem is that pre-Pentium II machines cannot "handle" more than 64MB of memory, and more harm than good results by installing this much RAM. Only motherboards with a 440BX motherboard can properly address over 64MB of memory. To really enjoy a speed boost with your machine, return the extra RAM and invest in an overdrive processor.

Incidentally, you'll be able to address such concerns to our new computer-upgrading column, which should begin soon.
—Editor

HAVES & NEEDS
I am looking for old vacuum tubes, type VCH-1 and WY-2, for my antique radio receiver, a C. Lorenz (Germany) production from 1930-39.
Please send me any information about purchasing these vacuum tubes in the United States, or send me the addresses of any dealers who sell these tubes. Thanks for any help.
Jacek Spoczynski
Munkhättsgatan 186-V-16
Malmö, S-215-74
Sweden

Do you know where I could get a scanner that receives 25–80 MHz? The rest of the frequencies are of no interest to me—25–80 MHz only. Thank you for your assistance.
Aaron Greene
P.O. Box 141
Grandmanan Island
North Head, NB
E0G 2M0 Canada

Most commercial scanners cover the range of 29–54 MHz, and then pick up again somewhere over 100 MHz (usually 108 MHz or higher). Anyone know of any products that fit this reader's request? Or perhaps someone has a converter circuit that could do the trick?
—Editor

I need a schematic diagram for a noise-reduction unit for LP records, or even a working or repairable unit. Any help on this matter would be greatly appreciated.
Jose Vitale
414 E. Pine St., Apt. 208
Orlando, FL 32801-2875

LETTERS
Affordable Flat-Panel Monitors and New Peripherals

I predict that flat-panel monitors will really take off with consumer sales by the end of this year. I also predict that you’ll be able to buy a decent flat-panel display, or FPD, for about $500 by then. Here are my reasons:

Around the end of 1997, the Computer Reseller News (CRN) Test Center did its first FPD roundup. At that time, most displays were 14 or 15 inches diagonal, and cost somewhere around $3000 apiece. Some larger units, 16 to 21 inches, ranged in price from $6000 to $10,000 or so. Image quality was not so good in my opinion, and I couldn’t see spending more than what I’d have to for a nice 21-inch CRT display to buy a 15-inch FPD—it seemed like the industry was going back in time with respect to screen size.

It is true that a given flat-panel display offers more screen space than its equally sized CRT counterpart, because FPDs always measure exactly what they’re rated while CRTs always measure about an inch smaller than their rated tube size. In fact, a 15-inch FPD is almost as large as a 17-inch CRT. But I still couldn’t make any sense of FPD prices. For applications where free space is at a premium and money is no object (such as stock exchange floors and medical centers), the flat panels were quickly accepted. But like myself, most consumers simply could not afford flat panels.

Fortunately, like all facets of computer technology, FPD technology did not stand still. Image quality has improved dramatically while prices have dropped just the same. Today you can buy a good FPD for around $1000—one that can display full-motion video and true color, which the early ones could not. Early FPDs were not multimedia-friendly. The FPD monitors sold last year probably set a record for losing value. A 15-inch FPD purchased in early 1998 could be replaced by a newer, better unit from the same manufacturer for maybe a third the price just one year later. So what’s that used one worth now—maybe $300?

The main reason why I feel that you’ll be able to buy a 15-inch FPD for $500 next year is because the 18-inch units have just arrived. Right now they cost several thousand dollars and have roughly the same screen space as 19-inch CRT displays, which can be had for between $500 and $1000. But I expect 18-inch flat panels to follow a price curve similar to 15-inch units and sell for between $1000 and $2000 a year from now. If I’m right about that, then low-end 15-inch units will surely sell for no more than $500. New technology always forces price cuts at the lower end.

FLAT-PANEL DISPLAYS

Flat-panel monitors have some inherent advantages over CRTs. First of all, they are easy to bring home, and they fit quite well on those computer desks that are supposed to fit large displays but never do. FPDs are not affected by electromagnetic interference, and they never flicker. They have low power consumption, low heat output, emit no radiation, and cause less eye fatigue than CRT monitors.

My desk was actually sagging in the middle due to the 80-pound weight of a 21-inch CRT monitor. And poor planning led to my heavy fish tank being only inches away from my heavy computer desk, right next to where the monitor goes. Every CRT I tried showed some screen wobble, which wreaks havoc on the focus. The wobble was caused by electromagnetic interference from the pumps in and around the fish tank. Other image distortions were caused by powerful speakers being too close to the CRT. Finally I tried a flat-panel monitor, and all my troubles went away.

The 21-inch CRT was causing too many problems with my cheap computer desk that was never designed to house or support such a monitor. I had to drill new holes to raise a shelf higher than it was ever designed to go, and had to install an under-desk keyboard draw-

Acer’s AcerView F51 flat-panel display has a great picture in a 15-inch diagonal size for only $999.
er because the 21-inch monitor didn’t leave enough room for a keyboard on the desktop. I was also considering adding some sort of center brace to the desk because of the noticeable sagging. Instead I swapped monitors.

I do all my work on a pieced-together 266-MHz Pentium II, and have a test-bed system that I tinker with that’s based on a 450-MHz Pentium II—more on that system later, I initially had a 15-inch FPD connected to the 450, and a 21-inch CRT on the 266. So now the 21-inch sits in the corner atop a reinforced shelf I built especially for it, used only when I tinker with the 450, and I “suffer” with the trouble-free 15-inch FPD when I work on the 266—but only until I can get my hands on an 18-inch FPD.

While I’m on the subject of flat-panel displays, I should mention three inexpensive units I recently tested. All three are 15-inch units, cost under $1000 on the street, and produce surprisingly good images. I examined units from Acer, KDS, and Panasonic.

Acer’s AcerView F51 has five buttons that control all of the on-screen display (OSD) functions. The controls default to brightness and contrast. The monitor automatically scales resolutions lower than 1024 × 768 to fill the screen. Its display is quite bright, and color and gray scales show up well. Text is sharp and easy on the eyes. The AcerView F51 costs $999.

KDS’s VS-F15 is taller than Acer’s, with the bottom edge of the KDS monitor about six inches above the desktop. The OSD controls are on the back of the unit, which is a bit disconcerting. I also found the image quality to be not quite as good as the Acer unit, but the KDS is still quite acceptable. It, too, costs $999.

The Panasonic LC50s 15-inch FPD has some nice features that the others don’t. The PanaFlat LC50s is equipped with built-in speakers and has a headphone jack on the front panel. The LC50s also has a built-in USB hub, with one upstream port and four downstream ports. It even has a built-in power supply and uses a standard AC power cord, while the Acer and KDS units use notebook-like external power supplies. Even with the extra frills, the LC50s costs only $999.

AOPEN TBS-M450

I was talking earlier about a 450-MHz Pentium II system that I tinker with at home, and I’m proud to say that it’s made by Acer. One of the biggest vendors in the world, Acer is still not everybody’s favorite brand. However, Acer systems are as fast and reliable as anyone else’s with similar hardware. My AOpen TBS-M450 Pentium II 450 from MicroOpen (Acer at heart) was part of a recent roundup I did at work. It was the second-fastest Pentium II 450 we tested, just behind a NextStar 450.

While MicroOpen and NextStar are brands that you might not have heard of, consider that brands such as Compaq, Dell, Hewlett-Packard, and IBM were also part of the roundup—NextStar and
MicroOpen beat them. Vendors were free to use any parts that met the basic requirements for the roundup.

For around $2000, the AOpen TBS-M450 comes with a 450-MHz Intel Pentium II CPU, 128MB of memory, a Matrox Millennium G200 AGP graphics adapter, motherboard-based SCSI, a 9.1GB 10,000-rpm Seagate Cheetah hard drive, a 40X CD-ROM drive, a sound card, and more. Chop all the goodies in half, and you can get a similarly fast system for around $1000.

The system initially came with Windows NT 4.0 Workstation, but I have since redone it with Windows 98 and made it my multimedia test bed. It seems only right to test the latest multimedia hardware and software in a state-of-the-art system. You can order a MicroOpen system exactly the way you want it—you can get a really cheap one or a full-blowen, state-of-the-art workstation. You just have to know how to order.

SOUNDMAN EXTREME

Now I need a way to output sound from my ultimate PC. One possibility is Logitech's SoundMan Extreme, a powerful new speaker system for PCs. This 50-watt, hi-fi system includes compact speakers that save desk space, plus a compact subwoofer that delivers good bass. Logitech's SoundMan Extreme's two satellite speakers have 12.5 watts of power each with a frequency response from 28 Hz to 20 kHz. The subwoofer packs in 25 watts. The speakers are magnetically shielded and automatically turn on and off when they detect an input. SoundMan Extreme costs about $150.

8X CD-R ROCKET

The perfect CD-R drive to go with my fast, new system is an 8X unit from Smart and Friendly. The 8 x 20 CD Rocket records at speeds up to 8X and reads at up to 20X. It supports PC and Macintosh platforms and can burn a full CD in about nine minutes. This would be especially important to those who find themselves needing to burn more discs than their present drive can keep up with.

The 8 x 20 CD Rocket comes with all the software you need to use it. Adaptec Easy CD Creator Deluxe Edition lets you create music, audio, data, video, or mixed-mode CDs on a PC, and Adaptec Toast does pretty much the same for Macs. Sonic Foundry CD Architect lets you burn studio-quality audio CDs, while Sonic Foundry Sound Forge XP helps you compose sound tracks with more than 25 digital audio effects. Diamond Cut Audio Restoration Tools 32 is for restoring audio for CD recording with various noise-removal and audio-enhancement tools. An external version of Smart and Friendly's CD Rocket costs $1099, and a less expensive internal model should also be available by the time you read this.

EXP'S DVD AND HD TRAVELERS

I've also got a couple of peripherals for notebook computer users to help keep them as up-to-date, technology-speaking, as desktop users. EXP Computer's DVD Traveler is an external PC Card DVD-ROM player for notebook computers that you use DVD software and watch DVD movies. The base-model DVD Traveler is basically just a PC-Card-interfaced DVD-ROM drive for 233-MHz and faster MMX notebooks—the drive relies on a software MPEG-2 decoder. The DVD Traveler Plus, which is what you really want regardless of computer speed, works with notebooks of 133 MHz and faster. It comes with the DVD-ROM drive plus an MPEG-2-decoder PC Card.

All necessary power comes from the notebook, which is both good and bad. It makes for a completely portable solution, but it'll suck the life out of notebook batteries rather quickly. The drive is 6.5 by 5.5 by 0.75 inches (DWH) and weighs only 1.3 pounds, so it's easy to travel with. If you already travel with an external CD-ROM drive, swap it with the DVD Traveler, which also reads CD-ROM, CD-R, and CD-RW media. Rated at 2X (for DVD, that is), the DVD Traveler has a maximum data transfer rate of 2700 KB/s for DVD data and 2400 KB/s for CD-ROM data. The DVD Traveler costs $499 while the DVD Traveler Plus costs $699.

EXP's HD Traveler is a 2.1GB external hard drive for notebook computers, and for some reason it also has a game port. The HD Traveler is an ultra-slim external hard drive with a PC Card interface. The HD Traveler is convenient for moving data from one notebook to another or for backing up data. It's also perfect for those confidential files you don't want sitting on your laptop. Fast like any other hard drive, the HD Traveler has an average seek time of 13 milliseconds. The drive can be powered by a notebook's power or from an external 5-volt power adapter. The HD Traveler measures 2.8 inches long by 6 inches wide by 1.1 inches high, and weighs 12 ounces. It costs about $400 for the 2.1GB unit.

SIDEWINDER FORCE-FEEDBACK JOYSTICK

So now I've got a full-blowen PC, loaded with memory, a fast processor, awesome sound, and all the goodies. But I'm looking for a single item that will transform it from being just another fast PC into a true gaming console. Microsoft's SideWinder Force Feedback Pro joystick could be the answer. This hi-tech joystick has a built-in 16-bit processor that generates dynamic force feedback. The game controller provides feedback that can be subtle at times and earth-shaking at others.

The SideWinder Force Feedback Pro comes with two games (Microsoft Urban Assault and Microsoft Fighter Ace Online), but it works with many other titles that are out there as well. The stick can provide feedback for things such as G-force when flying a plane, contact with the ball in a sports game, textures of walls in adventure games, and so on. Force levels are adjustable, or it can be turned off entirely.

The SideWinder Force Feedback Pro also features adjustable electronic spring tension, and eight programmable joystick buttons with a shift button for supported games. It will emulate a CH
$14.99. I've been holding onto some Expert Software titles so I could lump them together this month, and there's quite a few of them. The titles can pretty much be broken up into three main categories: research/productivity, utility, and entertainment.

Research/productivity titles from Expert Software include Easy Maps (which helps you locate any street in the continental US), the Windows 98 Personal Tutor, and Internet Tutorial. Great Guns is the ultimate gun guide with information on guns, ammunition, accessories, and more. It covers the history of guns, too, with manufacturer's specifications, photographs, and so on. Play Better Golf provides expert advice on improving your game.

Utility titles from Expert range from Tamper Proof PC, which helps you set up a secure computer, to 3D Font Creator, Font Magician, and Print Center Deluxe, which collectively let you design custom fonts and documents with tons of clip art. 5000 Sounds features serious and wacky sounds for customizing your PC or for inclusion in multimedia presentations.

(Continued on page 64)

NEW SOFTWARE

That lovable archaeologist/adventurer is back. No, not Indy ... Lara Croft. Eidos Interactive's Tomb Raider III: Adventures of Lara Croft has taken 3D gaming to a new level with its new graphics engine that's so sharp you'll almost think you're watching a movie at times. Explore five new locations—the dark streets of London, the jungles of India, a South Pacific island, the Nevada desert, and a mysterious island near Antarctica—with a newly outfitted character. And we're not just talking about Lara's new outfits; she's also got a few new moves including crawl, monkey swing, and speed dash that help you get her out of trouble. Tomb Raider III costs around $40.

It amazes me how many software titles Expert Software can pump out. The company literally has something for everyone, and most titles cost only...

Get our Freeware version and you will know why more and more PC-boards are designed with EAGLE.
SELF-POWERED LANTERN
Delivering three to six minutes of light for each 30 seconds of winding, the Freepay Self-Powered Lantern is engineered to provide a virtually fail-safe light source without relying on disposable batteries or other outside power sources. You simply rotate the unit’s winding handle to get immediate light.

The compact lantern (7 by 10 by 5½ inches) can be used anytime, anywhere. During prolonged power outages or when the lantern’s being used in remote areas, users can simply generate and store extended power by successively performing 30-second winding sequences. By doing this, human-energy is converted and stored as electrical energy, ready for future use. The unit also accepts a normal electrical charge through a 12-volt AC/DC adapter or car adapter, providing up to two hours of continuous light, for immediate or later use.

In addition to instant light, the lantern can be used as a stand-alone generator. The unit features a three-volt output socket through which it can power a range of devices requiring the equivalent of two “AA” batteries.

The heart of the power source is the patented Freepay Generator, a unique hand-wound spring mechanism that transforms human energy into electricity on demand. It is based on Personal Power Generation technology, in which a textured carbon steel spring is energized by winding it from one spool to the other. As the spring returns to its original position, it releases energy and applies a rotational torque into a transmission. The transmission consists of a gearbox that drives a DC generator to provide the energy for the lantern.

The Freepay Self-Powered Lantern has a suggested retail price of $69.95. For more information, contact Freepay Energy, 80 Amity Road, Warwick, NY 10990; Tel. 914-258-5660 or 800-WIND234; Fax: 914-258-3213; Web: www.freepay.net.

CIRCLE 80 ON FREE INFORMATION CARD

MICROWAVE ALARM
The size of a small pager (2.25 by 1.6 by .75 inches), the MicroAlert Radio/Microwave Alarm fits easily into your purse or pocket. Turn it on and select the sensitivity level you want. The minimum sensitivity is only .001 mW per cm. It is ideal for trying to find out what’s emitting microwave or radio waves in hidden locations or in plain sight!

The switch on top lets you select standard selectivity, high selectivity, or off. A control on the side raises or lowers the sensitivity selected. The unit chirps once when it is turned on to indicate that the battery is good.

At the highest sensitivity, it will detect a typical cellular phone tower ½ mile away, a typical analog cell phone 40 feet away, and a digital phone 20 feet away. It can sense a microwave oven (in use) at a distance of 10–50 feet, usually with a less sensitive setting. The device is most sensitive from 100 MHz to 5 GHz, so ordinary cordless phones do not cause much interference.

A clear loud beep indicates radio waves stronger than the level you select. If you move closer to the radio/microwave source, the beep sounds more frequently. It will ultimately become a solid tone if you move in even closer to the source. As you move away, the beeping stops.

Available in black, gray, and off-white, the unit comes with a 3-volt lithium coin battery, which has an average life of three years, and a pocket clip. The MicroAlert Radio/Microwave Alarm costs $81.50 plus shipping and handling. For more information, contact AlphaLab, Inc., Attn: David, 1280 South Third West, Salt Lake City, UT 84101-3049 (between 12:00 p.m. and 12:00 a.m. PST); Tel./Fax: 808-874-9126; Web: www.rnaui.net/~emf.

CIRCLE 81 ON FREE INFORMATION CARD

TELEPHONE LINE-INTERFACE MODULE
The CYG2911 provides a complete telephone line-interface, plus caller ID, and phone off-hook detection. The module is designed to be a simple “drop-in” solution for Data Access Arrangement (DAA) requirements in various applications, including set-top boxes, bank terminals, plant monitoring equipment, home medical devices, security/alarms systems, utility meters, voice mail systems, vending machines, digital telephone answering machines, and modems. The FCC-compatible CYG2911 module is intended to free designers from the difficult task of designing their own DAA.

Offering complete PSTN (Public (Continued on page 65)
Exploring Robotics Online

Robotics is an area of electronics that has special appeal to most of us. How can you be involved in technology and not take an interest in the idea of interacting with an artificially intelligent machine? Whether you laughed at the antics of C-3PO and R2-D2, or thrilled at the advanced robot-filled society in many of the Isaac Asimov novels, the potential of robotics has likely captured some of your electronics-oriented imagination.

Asimov novels, electronics-oriented imagination. Exploring Robotics Online

One of the easiest ways to get started in robotics is to buy a kit and learn as you build. From all our hunting on the Web, we've found that Mondo-tronics is one of the best sources for

A ROBOT STORE

One of the easiest ways to get started in robotics is to buy a kit and learn as you build. From all our hunting on the Web, we've found that Mondo-tronics is one of the best sources for

Electronic, as well as intermediate and advanced builders.

Powered Robots. Prices range from under $20 to hundreds of bucks, depending on complexity.

For those who like to experiment with their own designs, the site has a wealth of components worth checking out. Robot Brains & Controllers, Sensors (Inputs), Audio/Visual (Outputs), Motor Drivers/Servo Controllers, Motors/ Servos, Communications, Radio Controlled (R/C) Electronics, PC Board Fabrication, and Rechargeable Batteries and Charger all make up the basics of what you need. Of particular note are the Muscle Wire products.

Muscle Wire is a Shape Memory Alloy (SMA)—a composite material that undergoes a shape change when heated or cooled. Because of Muscle Wire's mechanical simplicity, high strength-to-weight ratio, silent operation, and precise control, it is a better actuator to use than a motor in certain applications. The lifetime of the wire can reach several million cycles and was considered dependable enough by NASA to go to Mars. The wire operated a dust-measuring device on the Sojourner Rover, and worked it without a hitch on the recent mission to the red planet. Learn more about this fascinating SMA material and order some through the Mondo-tronics site.

We've only touched the surface of what this site offers to the serious hobbyist. There are a great many other resources available from the company, including mechanical and software aids, as well as a plethora of books. But before we move on to another Web site, we should mention one more facet of Mondo-tronics.

Ever feel like splurging and just buying an assembled robot? Check out the few offered here. Prices range from a few hundred to over $10 million! That's right, if you're as financially endowed as Bill Gates, consider the 40-foot tall, 60,000-pound, fire-breathing Robosaurus. He's also available for daily rental of $25,000, if you just want to stomp on a few cars to pass the time.

To find images and details about some robots with real spunk, visit the Robot Wars Web site. Find out how to enter your machine in this mechanical battle to the 'death.'
A NOTEWORTHY FAQ

Frequently Asked Questions (FAQ) files abound on the Net. These make it easy to find answers to common questions that more than a few people have asked about a subject in the past. Those new to robotics or just new to looking for such information on the Web will want to check out the Robotics FAQ.

Start with basics like the origin of the term robot (did you know that it was coined in 1921 by Czech playwright Karel Capek, who wrote R.U.R. or Rossum's Universal Robots?). Then learn Isaac Asimov's Laws of Robotics, which basically state that robots can't harm humanity as a whole or individuals, have to obey orders from humans, and must protect their own existence (unless it conflicts with an aforementioned law). Though used in science-fiction stories originally, these laws have become a kind of code of ethics that all robot-builders should seriously consider for their creations.

More advanced hobbyists will want to go straight to the FAQ sections that cover robotics-related organizations. Working on automats doesn't have to be a solitary pursuit. The FAQ also lets you in on information about conferences, competitions, and even where you can get graduate and undergraduate degrees in robotics.

Yes, there's also hard-core techie data here. Find out more about sensors, actuators, microcontrollers, and remote control. Even download simulator programs that let you experience the act of controlling a robot, without putting in the construction time.

PUSHING THE LIMITS OF ROBOT LAWS

While Asimov's Laws of Robotics don't really address how these machines should interact with each other, you get the feeling that the writer thought that robots should be peaceful creatures. We wonder what he would think of the Annual Robot Wars if he were still alive.

Robot Wars is a death match unlike any other. In a specially designed 30-by 54-foot arena, radio-controlled and autonomous robots face each other (determined by weight class, up to 300 pounds) in one-on-one fights to the "death." Intricate lighting and techno music all add to the drama of the battle.

The robot that makes it to the final elimination match and wins gets a cash prize of $5000. Of course, if your creation loses, it could be costly. While no explosives are permitted, there are blades and saws of all kind used by the robots to rip into each other. You can imagine the irreparable damage that could occur.

The Robot Wars Web site is full of exciting photos from past events and links to descriptions of the types of warriors that have attacked in those matches. It's a great site to visit if you want to get a feel of one of the ultimate competitions that fellow hobbyists are taking part in.

Also, you may want to consider entering one of your own robots into the battle. If you register for the competition after visiting the site, feel free to send us a shot of your warrior. We'd like to take a look.
INFORMATION CENTRAL

There's another spot on the Web where you can learn about what kinds of robots your peers are developing (most of them seem to be nonviolent, too). At Robot Information Central there's a great RoboMenu, where you'll find dozens and dozens of photos and descriptions of some really neat amateur, but not amateurish, automatons. Some of these listings are technical enough to give a good clue about how the inventor of each unit got the robot to work.

Information Central is also a terrific place to find direct links to all sorts of competitions, parts and kit suppliers, and even industrial robotics sites. There's even some information of interest to general electronics enthusiasts—for instance, software and FAQs devoted to making printed-circuit boards.

HOT SITES

Mondo-tronics’ Robot Store
www.robotstore.com

The Robotics FAQ
www.frc.ricmu.edu/robotics-faq/

Robot Information Central
www.robotics.com/robots.html

Robot Wars
www.robotwars.com

Another terrific resource to which this site gives you direct links is a list of robot-related Usenet newsgroups. The most notable of these is comp.robotics.misc, where all aspects of the hobby and science are discussed. You can also check out what's being said about artificial intelligence at comp.ai, as well as find out about specific robotics systems from newsgroups dealing with vision, speech, and other interfacing technologies. The great thing about Usenet newsgroups is that they're almost always frequently updated by contributors—join in.

And that's about all for this month. If you're interested in robotics and point-and-click your way through just a couple of the aforementioned sites, you'll end up greatly expanding your knowledge of the still-growing art.

As usual, you can send questions, suggestions, or comments via snail-mail to NetWatch, Popular Electronics, 500 Bi-County Blvd., Farmingdale, NY 11735, or e-mail to netwatch@gernsback.com.

Electronics CD ROMs

Want to improve your design skills?

Then you should consider our range of CD ROMs by best-selling author Mike Tooley.

Electronic Circuits and Components provides a sound introduction to the principles and applications of the most common types of electronic components and how they are used to form complete circuits. Sections on the disc include: fundamental electronic theory, active components, passive components, analog circuits and digital circuits. Includes circuits and assignments for Electronics Workbench.

The Parts Gallery has been designed to overcome the problem of component and symbol recognition. The CD ROM will help students recognize common electronic components and their corresponding symbols in circuit diagrams. Quizzes are included. The Parts Gallery is free with Electronic Circuits and Components.

Digital Electronics details the principles and practice of digital electronics, including logic gates, combinational and sequential logic circuits, clocks, counters, shift registers and displays. The CD ROM also provides an introduction to microprocessor-based systems. Includes circuits and assignments for Electronics Workbench.

Analog Electronics is a complete learning resource for this most difficult subject. The CD ROM includes the usual wealth of virtual laboratory in addition to an electronic circuit simulator with over 50 pre-designed analog circuits, which gives you the ultimate learning tool. The CD ROM provides comprehensive coverage of analog fundamentals, transistor circuit design, op-amps, filters, oscillators, and other analog systems.

"...hammers home the concepts in a way that no textbook ever could." Electronics Australia

Interested in programming PIC micros?

We have the perfect solution:

Our PIC Tutor CD ROM can teach you how to write assembly language programs for the PIC series of microcontrollers. The CD ROM's 39 tutorial sections will guide you from basic PIC architecture, commands, and programming techniques to advanced concepts such as watchdog timers, interrupt, sleep modes, and EEPROM data memory use. Over 80 exercises and challenges are provided to test your understanding, and the unique PIC Tutor allows you to write and test programs on screen.

The complementary development kit includes a reprogrammable PIC16C74, which you can program via your printer port. The institution version (designed for use in schools, colleges and industry) includes a quad 7-segment LED display and alphanumeric LCD display. The development kit provides an excellent platform for both learning PIC programming and for further project development work. Assembler and code (via printer port) software is included on the CD ROM.

Prices and Versions

<table>
<thead>
<tr>
<th>Prices</th>
<th>Institution versions are suitable for use in schools, colleges and industry. Student versions are for student/home use.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>student version</td>
</tr>
<tr>
<td>Electronic Circuits & Components</td>
<td>$56</td>
</tr>
<tr>
<td>Digital Electronics</td>
<td>$75</td>
</tr>
<tr>
<td>Analog Electronics</td>
<td>$75</td>
</tr>
<tr>
<td>PIC Tutor (CD and development board)</td>
<td>$179</td>
</tr>
</tbody>
</table>

Shipping cost to Canada on additional $5. Overseas orders please contact CLAGGK Inc. for shipping costs.

Order Form

Please circle the products you would like to buy on the table above right, calculate the total cost, fill in the form below and send it to us. Please allow 4-6 weeks for delivery.

Name: _____________________________

Address: ___________________________

Zip: _____________________________

Telephone: ________________________

I have enclosed my check for $ ______

Signature: ________________________

Number: ________________________

Please charge my credit card for $ ______

Note that the address of the address at which the card is registered must be the same.

Card type: Mastercard, Visa, or Discover only

Date: _____________________________

Clink Inc., PO Box 4099, Farmingdale, NY 11735-0792
email claggk@poptronix.com
Discussing a Discone

One of the peculiarities of scanner monitoring is that, if you intend to do it with all the stops pulled out, your scanner needs to inhale a wide swath of frequencies. A quality modern scanner is designed to be able to tune signals from as low as perhaps 29 MHz and up to 1300 MHz or even higher. A range of this magnitude requires certain wideband design compromises that are not needed in a scanner receiving only a limited frequency range, such as a single band. There are no free lunches in electronics, so the cost of wideband reception may include loss of maximum possible image rejection, selectivity, and other functions.

Likewise, antennas designed for single-band operation can be maximized for high gain (signal multiplication). Moreover, they are often intended for directional use.

But, for scanning you will be most interested in monitoring all of the frequency bands within the capabilities of your receiver. And you'll want to be able to pick up signals equally well from all directions around your station.

One excellent approach to doing this is the discone antenna. It is omnidirectional—receiving signals from all directions. The wideband compromise is that it offers no signal gain. If received signal amplification is needed, of course, you can use a 20-dB preamplifier such as the GRE SuperAmplifier. The RadioShack discone 20-243, for instance, has an overall frequency coverage of 25–1300 MHz, and it can also be used for transmitting in the 50-, 144-, 220-, 440-, 900-, and 1296-MHz Ham bands. The RS 20-243 discone, which costs $59.99, is an easy-to-assemble antenna that weighs very little, stands less than 4 feet tall, and mounts on a standard size mast.

DOUBLE YOUR PLEASURE

How do you connect two scanners to the same antenna? How do you combine two antennas to feed simultaneously into one scanner? These are commonly asked questions from hobbyists who have discovered that using T plugs and sockets offers disappointing results.

If you simply use a T connector to run two scanners from the same antenna, you find that the scanners interact with one another and the scanning keeps locking up. This can happen for several reasons, including one scanner picking up birdies (internal oscillator signals) from the other. Another possible problem comes from the tuned input filters, which are automatically tuned to the receiving frequency. If two scanners are connected in parallel, the scanner that is tuned to a UHF channel causes problems to the other scanner tuned to a VHF frequency.

Should you combine two antennas and feed them in parallel to the same scanner through a simple T connector, they "see" one another. That is to say, the signals picked up by one antenna are radiated by the other antenna.

To be sure, you can save space by running two scanners from the same antenna. And you can combine antennas without the need for switching by hand. Try combining an omnidirectional antenna with a beam (yagi), or combining a wideband antenna with one cut for a specific band. I have a discone combined with a MAX-46-CORD SuperSnooper antenna for 46-MHz monitoring.

Some people have attempted to use "TV splitters" for this. This is an inexpensive approach, costing about $5, but one that has produced little joy. Even forgetting the TV-type connectors and the impedance mismatch (they are for 75-ohm systems and a scanner system is 50 ohms), some TV splitters have minimal isolation and offer high signal loss, especially in the UHF spectrum.

You need to have at least 20 dB of isolation between two scanners to avoid interaction. Some TV splitters claim 22-dB isolation, but the best they do is 20 dB (that's well above 100 MHz).

What's actually called for is a signal splitter suited for scanners, specifically designed for 50-ohm communications systems and fitted with BNC connectors. It should be rated to specifically include frequencies at least between 30–1300 MHz. This should be no problem, as commercial models we have seen cover 10–2500 MHz. With such a device, you can readily operate two scanners from one antenna or feed two antennas into a single scanner. Remember "no free lunches," so expect to pay a lot more for such a device than for a TV splitter—"I'm thinking in the $100 ballpark. Check communications catalogs.

More "no free lunches": When you connect one antenna to two scanners, the received signals will be shared

(Continued on page 66)
Fujifilm MX-500 Digital Camera

Forget about film—here’s a high-quality megapixel camera at a consumer-friendly price.

New technologies often take a little time to capture consumer interest, and digital imaging is no exception. While digital cameras have been out for a few years now, high prices and poor quality have kept most shoppers away from these little devices. As attractive as the idea of doing away with developing film was, the resolution of film just wasn’t there. As appealing as the idea of snapping a shot and having it ready for use in, say, a small-business Web site or flyer was, realistic prices just weren’t there.

Both problems (low resolution and high price) are finally being handled. You can get digital cameras now that, when connected to a photo-quality printer, will produce prints even a pro couldn’t distinguish from film. These cost upwards of $20,000, though, and are used for professional work (e.g., magazine cover photography). They do not really represent what uses the average consumer or small-business person has for a digital camera.

Since most people just want to be able to get a reasonably high-quality print into their computer without hassle, such non-professional photographers would do well to pick up the Fujifilm MX-500. Whether for the Web, brochures, or digital records of fun vacation spots, the MX-500 will capture all the crispness the average user needs, at a price that’s not so hard to like.

The Tech at the Core. The lens in the MX-500 is a 13.2 Fujinon with shutter speeds ranging from 1/4 second up to a maximum 1/1000 second. What happens with this gathered light is totally different than the process found in old film types, however.

Digital cameras are based on a charge-coupled device or CCD, upon which gathered light falls. This type of device contains numerous sensors that each resolve light as a pixel, or single dot that can be electronically stored and viewed. The CCD in the MX-500 contains 1.5 million of these pixel-resolving sensors (1.5 megapixels). Thanks to its high-quality CCD, the MX-500 can capture images at a terrific 1280 x 1024 resolution, in full 24-bit color (16.7 million colors).

What the camera does with this raw data is also pretty impressive. The digital cameras of yesterday sometimes took 30 seconds to process data before you could take another picture. The MX-500 has circuitry that allows it to compress a captured image to standard JPEG format, enhance its quality with an RGB color filter, and store it to a SmartMedia removable storage card in about five seconds. This means you won’t get stuck waiting to take that next shot as an event totally passes you by.

Hold it—SmartMedia? For those who might not have seen them, SmartMedia are thin cards about the size of a large, rectangular postage stamp. On one side they contain highly miniaturized memory, which looks like a gold foil. A SmartMedia reader, such as the one built into the camera, can access the memory for read/write operations. The MX-500 comes with a 4MB card: 8 and 16MB cards are available, should you want to buy extra “film” to have on hand.

A High-Quality Snap. Using the MX-500 for the first time was a real pleasure. The manual is wonderfully complete, yet pleasantly short. With some quick scanning we had the basics down in a few minutes.

Everything you need to get started is in the box. We loaded the four AA batteries, inserted the 4MB SmartMedia card into the camera’s side hinged compartment, and slid the spring Power switch to turn the camera on. A button releases the lens cover (you have to manually pull it closed).

To use the camera, you have to set a dial in the rear, upper-right corner. This lets you choose from Setup, Self-Timer, Manual, Normal, Playback, Erase, Protect, or PC Modes. Setup Mode is a good place to start, as you can choose the flash setting (on, off, auto, or red-eye reduction), quality (normal, basic, or fine), file size (1280 x 1024 or 640 x 480), and sharpness (normal, soft, or hard).

It all sounds a lot more complicated than it really is. What it boils down to is that you have to choose how to manage your camera’s memory. At the highest quality, size, and sharpness settings, you’ll be able to fit five shots on the included 4MB card. Lowering the quality will help you get 22 basic shots.

You’ll take most of your photos in the Normal or Auto Mode, and for space considerations this is the only photo-taking mode we will discuss here. To take a photo you can either use the viewfinder or the 1.8-inch color LCD screen on the back. If you use the latter (a tiny button turns it on or off), you’ll be limiting
Accredited B.S. Degree in Computers or Electronics by studying at Home

Grantham College of Engineering offers 3 distance education programs:
- B.S.E.T. emphasis in Electronics
- B.S.E.T. emphasis in Computers
- B.S. in Computer Science

-Electronics Workbench Professional 5.0 included in our B.S.E.T curriculums
-Approved by more than 200 Companies, VA and Dantes, (tuition assistance avail.)

For your free catalog of our programs dial 1-800-955-2527
http://www.grantham.edu

GCE
Your first step to help yourself better your future!

Grantham College of Engineering
34641 Grantham College Road
Slidell, LA 70460-6815

Some Say Watching Tropical Fish Lowers Blood Pressure & Relieves Stress...

They Could Be On To Something.

Discover the Caribbean aboard a Tall Ship. 6 & 13 day adventures from $650.
For more information call your travel agent or 1-800-327-2601.

Interfacing with the World. So what do you do with your photos? First, you can display them on a television or video monitor using the included composite-video cable. Of course, there's not much you can do with photos on that type of screen.

That's why the MX-500 comes with cables that let you transfer the images to either your PC's serial port or a Mac's modem or printer port. Installing the included software will load a TWAIN (technology without an impressive name) driver in your computer that lets you control the camera from your keyboard. The Picture Shuttle software then lets you transfer images back and forth.

You have another option when it comes to getting data from the MX-500 to a PC. Available on the market is a SmartMedia Floppy Disk Adapter. This device looks like a metal floppy disk and has a slot in which you can insert a SmartMedia card. Then, you can slide the Adapter into your computer's floppy drive, and (assuming you installed the Adapter's driver software) you'll be able to access the images as if they were on a diskette.

Once on your computer's hard drive, images can be manipulated using the included Adobe Photo Deluxe 2.0 software. While not as advanced as Adobe Photoshop, the program is full-featured enough for most consumer and small-business uses. And that's what we have to say about the entire package: full-featured enough. Digital photography is finally "getting there."

The Fujifilm MX-500 is available for $499 (manufacturer's suggested retail price). The optional SmartMedia Floppy Disk Adapter retails for $99. Contact Fuji Photo Film USA, Inc., 555 Taxter Rd., Elmsford, NY 10523; Tel. 800-800-FUJI; or circle 120 on the Free Information Card for additional details. Visit the Fujifilm Web site at www.fujifilm.com.
PRODUCT TEST REPORT

JVC Digital Camcorder

This is the first Mini DV (digital video) camcorder we've tested, but judging by their increasing availability at ever-lower prices it won't be the last. Much of the newfound popularity for the format can be attributed to JVC, whose GR-DVM5 CyberCam hits the test bench here.

Against formidable rivals such as Canon, Panasonic, and Sony, JVC has led the charge to lower-priced Mini DV camcorders. When the company's first CyberCam hit the streets in May 1996, it carried a shocking $2500 sticker. Today, the much-improved GR-DVM5 sells for much less, with an MSRP of $1799, and a street price of about $1499. Meanwhile, entry-level JVC CyberCams can be had for under $800.

The latter pricing is likely an attempt by JVC to replace lost sales in the analog Compact VHS (VHS-C) market. That format is virtually dead in Japan, where 80 percent of new camcorders sold are digital. As there's little difference in price there between top-shelf analog Hi8 camcorders and entry-level digital ones, home moviemakers have been opting for the newer technology. Meanwhile, in other world markets, the Sony-championed 8mm and Hi8 formats now outsell VHS-C by about two to one. Reading the tea leaves, JVC made haste to focus its camcorder efforts on Mini DV so as to leapfrog the competition and establish a beachhead in next-generation video.

There is much to like about digital video and, as we found with the GR-DVM5, there is much to learn. Compared with analog video, your creative and technical options are much greater in the digital domain—maybe too great. The GR-DVM5 comes with one whopper of an owner's manual, which you should read diligently if you wish to fully exploit all of the camcorder's functions.

These include the ability to record digital stills that can be printed as snapshots or sent as e-mail through a PC. You also can perform sophisticated editing and other functions on a PC through the CyberCam's digital IEEE 1394 output (sometimes called iLink and FireWire, which are actually Sony and Apple names for the interface, respectively). Owing to such digital-to-digital transmission and manipulation, there's no generational loss as would be the case with analog dubbing. And even if you're copying to VHS, with its 240 lines of horizontal resolution, the digital source makes for one heck of a master. As digital television (DTV) rolls in and PCs take a more prominent role in casual home-video production, digital camcorders such as the GR-DVM5 will make even more sense as the point of origin for the raw footage.

MINI DV EXPLAINED

You'll find brand-to-brand differences among digital camcorders, but unlike the total incompatibility between analog VHS and 8mm video, the fundamentals of digital operation have been agreed to by all manufacturers who standardized on the Mini DV format. It's called "Mini" to denote the matchbox-size videocassette (about 2 x 2.5 inches). This media has up to 60 minutes of standard-play capacity.

Spec-wise, Mini DV promises horizontal resolution "approaching 500 lines"—practically, though, the "ideal" is 480. Vertical resolution is another matter. It's important to remember that although the recording system is digital at its core, the two types of tape used are much alike conceptually, if not technologically. Mini DV's video format is NTSC—meaning the image is vertically scanned in the interlaced fashion for TV display, rather than progressively in the manner of PC monitors (and the "Standard Definition" mode of DTV). Fact is, though, some Mini DV camcorders (although not the GR-DVM5) also offer the option of progressive scanning for users who intend to confine their editing and display to the PC world.

Mini DV's audio is digital too, but it comes in two flavors. The default is the CD-like two-channels with 16-bit linear quantization. Although the sampling frequency for recording here is 48 kHz, playback output is a CD-like 44.1 kHz. Mini DV also offers a four-channel option, enabling the main stereo soundtrack to be augmented with narration or background music in a more sophisticated four-track mixdown. Audio fidelity in this mode isn't quite CD level, although it's still digital—12-bit nonlinear quantization sampled at 32 kHz.

Since what gets recorded on tape is bits of data rather than an analog waveform, the Mini DV format also is capable of capturing digital stills on tape—some 5000 of them on a 60-minute cassette. Sure, you could pull a freeze frame from an analog camcorder to display a still or print a snapshot, but it can never be as sharp and rock-steady as a digital frame-grab. As you might suspect, the still output is even better 'rom those Mini DVs that offer progressive scanning, as no interlaced line-structure will be evident in the onscreen or printed output (actually, though, some PC editing programs will interpolate adjacent NTSC scan lines for printout).

A HANDS-ON LOOK

Ironically, executing the Snapshot mode of JVC's CyberCam was the
most difficult operation we encountered in hands-on evaluation. That’s the downside of miniaturization—the Snapshot button on this compact 1.25-pound moviemaker is necessarily small and shallow. You might train your left index finger to find it, but in cold weather or when wearing gloves, it’s questionable as to whether you’ll be able to feel it or receive any tactile response—your only confirmation of successful execution might come through the “Photo” message in the viewfinder. For the record, you can only take still photos when the lens is in the optical mode with maximum 10X magnification. The function isn’t operable in the digitally extended zoom modes (up to 100X).

Positives? There are plenty. The slim, lightweight CyberCam fits easily and unobtrusively in the outer or inner pockets of a sports coat, and the polycrystalline silicon active-matrix LCD monitor is a joy to use. The swivel-mounted 2.5-inch display delivers 400 lines of resolution from its 180,000 pixels. Most important though is the brightness derived from the polycrystalline material. Unlike most LCDs used in circumstances of high ambient light (read outdoors and sunny or with high glare conditions), this one doesn’t suffer washout. And because it has an active-matrix grid rather than the less expensive passive scan, the monitor is easily readable even at extreme angles of view (such as when you’re using it as a waist-level viewfinder or holding the camcorder above your head to shoot over a crowd).

If you’ve had any experience with camcorders, you know that small and light units are easy for transporting, but difficult to keep steady when recording. JVC’s CyberCams are no exception. It takes some work to learn how to shoot steadily from the eye through the eye-level viewfinder (ironically, it’s easier to shoot from the hip using the LCD monitor!).

Any erratic camera movement owing to shaky operator hands ought to result in jittery movies. Fortunately, JVC provides Digital Image Stabilization (DIS) to smooth out those jitters. As always, though, the company candidly admits that although the image might remain steady, image quality does deteriorate in the digital-zoom modes. That’s because digitized zooms merely enlarge a smaller portion of the optical image, and sharpness is sacrificed because fewer lines of resolution appear on your TV screen. At extreme magnifications, images bear the tell-tale pixelization of the CCD image sensor.

So much for the potential of the Mini DV format and the handling properties of the GR-DVM5. What follows is the tale of the tape in performance testing.

TABLE 1

PERFORMANCE MEASUREMENTS

The following test results were furnished by the Advanced Product Evaluation Laboratory, an independent testing facility located in Bethel, CT. Measurements were taken in the Standard Play mode, using JVC’s DVM30 metal-evaporated formulation Mini DV cassette. Minimum illumination was measured using EIA Standard EIA-639, with the camcorder in automatic exposure mode.

<table>
<thead>
<tr>
<th>Brand:</th>
<th>JVC Company of America</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model:</td>
<td>GR-DVM5 CyberCam</td>
</tr>
<tr>
<td>Price:</td>
<td>$1799 (MSRP)</td>
</tr>
</tbody>
</table>

VIDEO MEASUREMENTS

<table>
<thead>
<tr>
<th>Minimum Illumination:</th>
<th>11.5 lux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution (Record/Play Video Out):</td>
<td>410 lines</td>
</tr>
<tr>
<td>Camera Resolution:</td>
<td>410 lines</td>
</tr>
<tr>
<td>Signal-to-Noise Ratio (Record/Play Video Out):</td>
<td>45.5 dB</td>
</tr>
<tr>
<td>Chroma AM (100 Hz-500 kHz):</td>
<td>44.4 dB</td>
</tr>
<tr>
<td>Luminance (50 kHz, 4.2 MHz, SC Trap):</td>
<td>45.8 dB</td>
</tr>
<tr>
<td>Signal-to-Noise Ratio (Camera):</td>
<td>44.6 dB</td>
</tr>
<tr>
<td>Chroma AM (100 Hz-500 kHz):</td>
<td>5.0 IRE</td>
</tr>
<tr>
<td>Luminance (50 kHz, 4.2 MHz, SC Trap):</td>
<td>5.0 IRE</td>
</tr>
<tr>
<td>Color Contamination:</td>
<td>Excellent</td>
</tr>
<tr>
<td>White Balance:</td>
<td>Excellent</td>
</tr>
<tr>
<td>Streaking/Lag, Image Retention:</td>
<td>Excellent</td>
</tr>
<tr>
<td>Color Quality (see Fig. 1 vectorscope photo):</td>
<td>Slight Oversaturation</td>
</tr>
<tr>
<td>Phase Accuracy:</td>
<td></td>
</tr>
<tr>
<td>Chroma Saturation:</td>
<td></td>
</tr>
</tbody>
</table>

AUDIO MEASUREMENTS

<table>
<thead>
<tr>
<th>Frequency Response:</th>
</tr>
</thead>
<tbody>
<tr>
<td>48-kHz Sampling (20 Hz to 20 kHz):</td>
</tr>
<tr>
<td>Signal-to-Noise Ratio:</td>
</tr>
<tr>
<td>Maximum Output (built-in stereo mic):</td>
</tr>
<tr>
<td>Input Sensitivity (external mic):</td>
</tr>
</tbody>
</table>

ADDITIONAL DATA

<table>
<thead>
<tr>
<th>Image Sensor:</th>
<th>0.25-inch CCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Focus Distance:</td>
<td>1.5 inches</td>
</tr>
<tr>
<td>Normal:</td>
<td>N/A</td>
</tr>
<tr>
<td>Macro:</td>
<td>10.5 watts</td>
</tr>
<tr>
<td>Power Requirements:</td>
<td>Li-Ion (7.2V, 7200 mAh)</td>
</tr>
<tr>
<td>Battery:</td>
<td>1.25 pounds</td>
</tr>
<tr>
<td>Weight (with battery and tape):</td>
<td>5 ¾ x 1 ¼ x 3 ¼</td>
</tr>
<tr>
<td>Dimensions (HWD, inches):</td>
<td></td>
</tr>
</tbody>
</table>
your opportunities with new computer skills from NRI!

PC Servicing
Get the practical skills and experience to service any computer with confidence. From diagnostic software to CD-ROM tutorials to a high-end Pentium® II 400 computer system, NRI gives you the technological tools and training you need to carve out a successful new career, even start a business of your own! Plus, prepare for valuable A+ certification, the mark of a computer servicing pro! Includes Norton Interactive CD-ROM and ForeFront Troubleshooter software.

Networking With Windows NT
Learn how to save your clients time and money by acquiring the network acumen to obtain information quickly, communicate efficiently, share peripherals and send files, and more! Even prepare for coveted Microsoft NT certification! Includes AMD K6/266 computer and Windows NT software.

Mastering Microsoft Office
Add finesse and style to your office capabilities through Office 97's new suite of office applications. You'll learn how to format quickly, create useful charts and spreadsheets, design winning presentations, and more! Includes AMD K6/266 computer and Microsoft Office 97 software.

PC Applications Specialist
This course gives you hands-on training in four computer applications that are indispensable to businesses everywhere—word processing, database management, spreadsheets, and data communications. Includes AMD K6/266 computer and Microsoft Works software.

Computer-Aided Drafting
This course will teach you traditional drafting techniques, using a variety of computer-generated drawing tools, you'll go on to cover how to manipulate objects, move and add features, rotate, and more. Includes AMD K6/266 computer and AutoCAD LT software.

Bookkeeping & Accounting
Pave the way for career advancement or a business of your own as you learn how to prepare an income statement, handle inventory, keep a balance sheet, create a general ledger, and more. Includes AMD K6/200 computer and Peachtree for Windows accounting software.

No matter which course you choose, you train with a multimedia PC with MMX™ technology, Windows 98, cutting-edge software, and more!

NRI Schools gives you 6 ways to improve your computer proficiency—with courses in PC Servicing, Microsoft Office, PC Applications, Bookkeeping & Accounting, Networking With Windows NT, and Computer-Aided Drafting

Call or send for FREE information:
1-800-321-4634, Ext. 3597
or reach us online at www.nrischools.com
the camcorder’s ability to record in low light and still capture a viewable image. It’s measured in lux—the lower the number, the better. If the CyberCam’s score of 11.5 lux seems unimpressive compared with others you’ve seen in the past, remember that APEL measures by the EIA-639 method. It’s a new industry-standard that’s designed to create a level playing field for all camcorders, compared with the ILS (II-Lightning-Strikes) snakelit of proprietary measurements that companies used in the past to put their goods in the best possible light. APEL’s honest-weight measurement here indicates that the GR-DVM5 handles low-light situations quite well.

directly to a PC, rather than recording to tape.

The signal-to-noise ratio from the GR-DVM5 averages a visible 3 dB better than the best analog camcorders we’ve seen; which is to say it’s quite good. It’s measured under optimal lighting conditions and reveals the amount of usable signal—color (chroma AM) and luminance (brightness—black and white)—above the threshold of electrical noise. By a rule-of-thumb, noise increases with resolution (of which the GR-DVM5 has plenty), as does color contamination. When testing for the latter, we found the presence of unwanted color specks in a black-and-white test pattern to be minimal. Phase accuracy tests look for deviation from true red, toward magenta or yellow. Chroma saturation testing gauges depth, or intensity of hue.

As the bouncing ball in APEL’s vectorscope photo shows (see Fig. 1), phase accuracy is right on the mark. And although chroma saturation appears to be just high of the crosshairs—and therefore a bit oversaturated—you could always adjust it as you wish with the color controls of your TV or monitor.

The tests for streaking/lag and image retention look for flares or tails of light and color that trail behind the highlights of a moving subject. Look for this during action sports on TV, when light reflects off helmets or other shiny gear. Since the advent of CCD image pickups, it’s been virtually banished from home camcorders, and is nonexistent here.

CONCLUSION

Should you buy the GR-DVM5 or, for that matter, any other Mini DV camcorder? Certainly the price is right in terms of performance. And, the movies you make will be stored in digital format, ready for display on the digital TVs just beginning to arrive.

The camera has some great I/O jacks, too, ensuring you can do diverse things with the output. In addition to the IEEE 1394 input and output, there’s an analog A/V output and S-Video output (on the charger station). You’ll also like the infrared remote control.

What probably should determine your choice in the short term is the extent to which you think you’ll use a digital camcorder for digital purposes, such as with a PC. Very capable Hi8 analog camcorders (there are no S-VHS camcorders) already are available at reasonable prices, so it might not make sense to buy digital capability that you won’t use. But if the price spread between analog and digital isn’t much, you might as well buy the digital capability for the future. Meanwhile, you’ll be recording some very high-quality masters for analog display and dubbing.

For more information on the JVC GR-DVM5 CyberCam, contact JVC Company of America, 1700 Valley Rd., Wayne, NJ 07470; Tel: 800-252-5722; Web: www.jvc.com; or circle 50 on the Free Information Card.
International Smorgasbord

One of the interesting developments in international broadcasting in recent years is the "shortwave station without a shortwave station." By that I mean a broadcasting organization that targets overseas listeners without owning any SW transmitters of its own. Two examples are Ireland and Denmark, which operate modest SW broadcasting schedules from somebody else's transmitting facilities located outside their own national territory.

Beginning some 70 years ago, all SW broadcasters operated their own shortwave transmitters, doing their best to pump out strong, clear signals to distant listeners. As frequencies filled up with more and more stations, it took more and more powerful transmitters to outshout the pack. And that cost money!

As things evolved, by the 1960s, countries were finding it more economical and efficient to bolster their own SW signals by adding overseas relay transmitters located closer to intended target areas. And in time, rather than building their own relays, these broadcasters started swapping or leasing air time from other SW stations.

Today, world broadcasters from Spain to China augment programming from transmitters on their own soil with relays of the same broadcasts from SW relay facilities abroad.

But a few smaller countries have gone one step further, airing all their SW programs from other stations outside their own territory. They own no shortwave transmitters at all: no programs are actually aired from their own national territory. While sacrificing some control, they find it more cost effective to simply buy shortwave air-time somewhere else, where and when they need it.

Both Ireland and Denmark once had their own shortwave stations. The Irish outlet, a very low powered station at Athlone, ceased operations at least 40 years ago, a victim of equipment obsolescence. Radio Denmark's 50-kilowatt SW station once ranked right up there among the major international stations, but eventually its aging transmitter also could no longer keep up with the "big boys" and was phased out.

After decades with no shortwave broadcasting presence at all, Ireland's state broadcaster, Radio Telefis Eireann (RTE), in recent years, has taken more of an interest in reaching Irish expatriates. RTE has done this in several ways, including a satellite service and a presence on the Web (www.rte.ie). But the Irish broadcaster also buys broadcasting time on U.S. shortwave station WWCR, near Nashville, TN, and other for-hire facilities on Ascension Island in the South Atlantic and in Singapore in the Far East.

As of this writing, RTE's evening English language newscast is rebroadcast on shortwave 1930 UTC, Mondays through Fridays; and 2000 UTC, Saturday and Sundays; over WWCR's Stateside transmitter on 12,160 kHz. At 1000 UTC Mondays through Fridays, and 1100 UTC Saturdays and Sundays, RTE's programming, also via WWCR, goes out on 5,070 kHz. Reception reports may be sent to Radio Telefis Eireann, P.O. Box 4950, Dublin, 1, Ireland.

A few years ago, rather than invest in its own expensive high-powered SW equipment, Radio Denmark entered into an agreement with its Scandinavian neighbor, Radio Norway International, to share powerful new Norwegian transmitters. The 500-kilowatt transmitters are located at Kvitsoy, not far from Stavanger; and at Sveio, near Haugesund; both along the Norwegian western coast.

Radio Norway International uses those facilities for the first half of each hour. Radio Denmark's Danish language programming, with occasional English identifications, is heard from 30 to 55 minutes past the hour. Radio Denmark programs are aired to North America at 0030 UTC on 11,735 and 13,805 kHz; at 0130 UTC on 11,990 and 13,805 kHz; at 0230 UTC on 11,990 kHz; at 0330 UTC on 11,635 kHz; and at 0430 UTC on 7,485, 9,945, and 11,635 kHz.

Other times for North American services are at 1630 UTC on 13,800, 15,340, and 18,950 kHz; at 1730 UTC on 13,830, 15,220, and 15,705 kHz; at 1830 UTC on 7,485, 15,705, and 15,735 kHz; and at 2330 UTC on 11,640, 11,735, and 13,805 kHz. You can send reception reports to Radio Denmark, Rosenorns Alle 22, DK-1999, Frederiksberg C., Denmark.

DO-WOK-A-DO

Like Chinese food? If you're like me, a wannabe chef, you may even try your hand in the kitchen now and again. If so, I guarantee you'll love a tiny gem of a...
program that I discovered, aired weekly on China Radio International (CRI) from Beijing.

It's called, simply enough, The Cooking Show, and is heard about 0325 UTC, and again an hour later, on Sundays (remember because of the UTC time differential, this is Saturday evening in the U.S. and Canada). I tune the brief—only five or six minutes—program during the latter time slot on 9,690 kHz, but you may find it on other CRI frequencies as well.

Host and resident chef is Stuart, a pleasant and witty fellow, who introduces us to culinary specialties from many regions of China. During one of his recent mini-cooking lessons, he observed that Chinese cooks often prepare purely vegetarian fare that tastes like meat or even fish. Stuart then "woks" us through the preparation of Stir Fried Vegetarian Crab, a non-seafood "taste-alike" made from potatoes, carrots, black mushrooms, eggs and bamboo shoots, spiced up with ginger and coriander.

But Stuart does more than read a recipe. He cooks before our very ears. We hear him mashing the boiled potatoes and stirring the ingredients. We hear him chop the green onions with his razor sharp cleaver. The peanut oil sizzles loudly in the pan. You almost smell the delicious aroma through your receiver's speaker!

I suggest you tape The Cooking Show, so you can play it back later to carefully copy down the ingredient list, although, as Chef Stuart explains, you can write to CRI for a printed copy of the recipe.

It's a great little program!

AND MUSIC, TOO

And if you'd enjoy a little traditional Chinese music while you dine on Stir Fried Vegetarian Crab or one of Stuart's other Oriental delicacies, let me pass along a couple of suggestions from John Figliozzi's excellent "Easy Listening" column in The Journal, the monthly bulletin of the North American SW Association (NASWA).

Just a few minutes after The Cooking Show ends, China Radio International spins up an excellent programming segment called Music from China. More imaginatively named is Jade Bells and Bamboo Pipes, a half-hour musical program from Taiwan's Radio Taipei International, Mondays at 0215 UTC, and again, Tuesdays at 0315 UTC, relayed by WYFR's Florida transmitters on 5,950 and 9,680 kHz.

If you want more program tips from John and his column contributors, you may want to join NASWA and receive The Journal monthly. For more information, send a request and a self-addressed stamped envelope to NASWA at the mailing address listed in this month's credits.

RUSSIAN UPDATER

For those of us who recall vividly the shortwave omnipresence of Radio Moscow not so many years ago, it's little short of amazing to note the changes that have occurred to its post-Cold War successor, the Voice of Russia. While most government radio organizations have suffered budget cuts in recent years, the dismal state of the Russian economy has meant that the Voice of Russia has fared much worse than most.

At its zenith in the mid-1970s, Radio Moscow aired over 200 program hours of broadcasts every day in 65 languages and dialects. In 1988, Radio Moscow had a spectrum occupancy—the number of frequencies multiplied by hours used—of 28,981 hours. That was one and a half times the frequency usage of runner-up United States and 17 times that of Egypt's Radio Cairo.

Currently, the Voice of Russia has cut back to 77 hours of programming daily in just 32 languages. This puts Russia in 15th place among international broadcasters, behind even Egypt! For all that—and despite the layoff of 30 percent of its staff—the Voice of Russia still employs about 1000 people. And it still utilizes 80 shortwave transmitters, 50 of them on Russian territory, the rest in neighboring former Soviet Republics.

The Russian broadcaster changes frequencies too often to include a meaningful list here, but an up-to-date schedule can be found on its Web site: www.vor.ru.

DOWN THE DIAL

Looking for some interesting stations to tune? Try these:

ABKHAZIA—9,490 kHz, Republic of Abkhazia Radio is the SW voice of one of the regions of the former Soviet Union that has declared its independence from Russia. Its non-English programming has been noted here around 0330 UTC.

ALASKA—9,615 kHz, KNLS, at Anchor Point, Alaska, broadcasts mostly in Russian to listeners across the pole. But look for some English language programming and music after 0800 UTC.

AUSTRALIA—21,725 kHz, Radio Australia has English at 0435 UTC and later, including news features, program notes and commentary.

HUNGARY—9,840 kHz, Radio Budapest's English language service is logged here and on parallel frequency, 11,910 kHz, about 0230 UTC.

KENYA—4,915 kHz, Kenya Broadcasting Corp., signs on just before 0300 UTC with the Kenyan national anthem, identification, and a talk, operating in parallel with 4,935 kHz.

MEXICO—4,800 kHz, XERTA, Radio Mexico, noted in the morning around 1000 UTC, and also about 0245 UTC in the evening with Latin American ballads and Spanish identifications.

PARAGUAY—9,735 kHz, Radio Nacional is heard here around 0130 UTC with romantic ballads, Spanish-language news, and a talk show.

SEYCHELLES—6,005 kHz, British Broadcasting Corp. airs English programming directed to Africa from this Indian Ocean island nation until sign off at 2200 UTC.

TAHITI—15,170 kHz, RFO Polynesie Francaise, back on the air after an absence, is noted with French and Tahitian language programming around 0300 UTC. Interference picks up after 0400 UTC.

ABBREVIATIONS

kHz = kiloHertz, unit of frequency measurement, equals 1000 cycles per second; formerly referred to as kilocycles per second, or kcs.

SW = shortwave.

SWL = shortwave listener.

UTC = Universal Coordinated Time, a standard used by most international shortwave stations; equal to the military's Zulu or Z-Time: If you live in the Eastern Time zone, add 5 hours in the winter, or 4 hours in summer, to get UTC: In the Central, Mountain and Pacific Time zones, add 6, 7, or 8 hours, respectively (add 5, 6, or 7 hours, during the summer daylight savings months.)
GIZMO®

Bundled Up

Thinking about taking the MiniDisc plunge? Sony makes it easy with the MD Bundle 5, a one-box way to start recording digital music mixes at home and to listen to them on the road. The MD Bundle 5 packages a MiniDisc home-recording deck, a portable MD player, and two 60-minute recordable MiniDiscs, for a suggested list price of $350.

The MDS-JE320 home-recording deck offers Wide Bit Stream technology said to accurately reproduce soft, low-level music and a 20-bit analog-to-digital converter for superior sound recording. The portable MZ-E40 MD player weighs in at just 10.6 ounces (including headphones and batteries) and is small enough to fit in a pocket. It can play for up to four hours on two “AA” batteries. Its 10-second shock-resistant memory makes it virtually skip-proof.

Memo Master

Sharp’s pocket-sized Memo Master Model EL-6690B ($29.95) electronic organizer offers PC Link capability and enough memory to hold more than 1000 names, numbers, and addresses. With the optional PC Link software, you can easily connect it to a PC and back up and restore data by transferring it from the Memo Master to the computer or to one of Sharp’s more advanced personal digital assistants, such as the Wizard or Zaurus. "Some consumers are still a little nervous about storing information electronically," noted Glen Gillen, product marketing manager of Sharp’s Mobile and Home Office Equipment Division. "We have helped ease this concern by offering a feature that allows information to be stored in two completely separate locations."

The Memo Master provides three separate telephone directories and a bookmark function for recalling frequently used phone numbers. It offers schedule, memo, search, calculator, clock, and alarm functions as well as a "secret" function that lets you safely store confidential information. A timer feature uses an audible alarm to remind you to retry a busy phone number or complete a task. The organizer has a QWERTY keyboard with separate numeric keys and a backlit LCD screen.

Out of the Kitchen

TV/VCR combo sets are quite convenient. With no wires to connect, they’re truly plug-and-play devices. They don’t take up much space and are easy to carry from room to room. Originally introduced in small-screen sizes, they quickly found their niche in kitchens and kids’ rooms.

Panasonic’s PV-M2768 TV/VCR ($699.99) is ready to move into the family room or master bedroom. With its 27-inch screen and four-head, hi-fi stereo VCR, it can do justice to most TV and videotape viewing. Its Panaback Picture tube is said to provide improved contrast over conventional tubes. The built-in Spatializer Audio Processor provides viewers with spacious, 3D sound from the television’s two speakers for a multichannel effect without any additional equipment.

The PV-M2768 also has a built-in FM radio that can serve as a clock radio. It offers Auto Clock Setting, which uses the Extended Data Service (EDS) signal carried by most PBS stations to automatically set the time, even adjusting for Daylight Savings Time.

Getting the Big Picture

Conventional TV sets display only 88% of the image that is broadcast by TV stations and is available from videotapes and DVDs, putting the rest into the “overscan” area of the picture. Samsung’s Vision Plus direct-view televisions are equipped with wider picture tubes that allow you to see up to 94% of the original video image. The Vision Plus line consists of three 28-inch models, all of which come with S-video input, MTS stereo with DBX noise reduction, and universal remote control. The flagship model TXF2899 ($799), pictured here, includes two-tuner picture-in-picture, an Ultra Flat screen with INVAR Shadow Mask, and digital stereo surround sound. A three-way
Priced-Right Digital Camera

Hewlett-Packard's HP Photo-Smart C30 digital camera is the first one-megapixel camera with digital zoom available for less than $400. The camera also provides improved image quality thanks to a built-in primary color (RGB) filter for the CCD imager, and HP's image-processing enhancements. The RGB filter is said to reduce the chromatic noise level and capture images that are sharper and more pleasing to the eye. The color sensor also enhances image sharpness and color fidelity. According to the company, the TWAIN-compatible camera, when used with the HP PhotoSmart photo printer and Photo-Smart photographic papers, allows users to produce digital 3.5 X 5-inch snapshots that look, feel, and last like conventional silver-halide photos.

The C30's 2X digital zoom lets users minimize file size and boost image size by cropping out unwanted portions of a photo. Users can take shots that are instantly ready to e-mail to friends. The built-in digital zoom makes it unnecessary for users to lug around heavy, breakable lenses.

A color LCD on the camera's rear panel allows users to preview photos they want to take, review and select the photos they want to upload to their PC, or delete unwanted photos on the spot to free up memory. The included 4MB removable CompactFlash memory card acts like reusable digital film. The PhotoSmart C30 works with all standard CompactFlash cards.

HP photo-finishing software is included. The software automatically downloads photos whenever the camera is connected to a PC, features index-page printing, and provides exclusive page-layout capabilities that allow the efficient use of paper. An integrated video connection makes it easy to view photos on a TV.

Robo-LEGO

The best toys are not those that make the most noise, come in the fanciest packaging, require the most batteries, have the most frequent commercials, or cost the most. Those might be the ones kids beg for (it's hard to avoid or resist those Toys R Us commercials)—but, for all their flashy appeal, they're usually the first to find their way to the back of the closet. The toys that have true longevity—not only holding the attention of individual children but enthralling generations of kids—are those that stir a child's imagination and creativity. Building blocks, Lincoln Logs, and Tinker Toys come to mind, and, perhaps topping the list, LEGOs.

You might have played with LEGOs when you were a kid, especially if you're a Baby Boomer or younger. The classic plastic bricks—which can be snapped together in virtually limitless ways to form buildings, animals, entire cities, planes, trains, and automobiles—have been around since the 1950s.

The founder of The Lego Group created the name “LEGO” from a contraction of two Danish words meaning “play well.” (Coincidentally, “LEGO” means “I put together” in Latin.) The LEGO System was designed from the start to appeal to children of all ages, to provide hours of quiet play all year, and to encourage imagination and creativity.

Over the past few decades, besides the familiar small, brightly colored, plastic LEGO bricks, the company has introduced oversized LEGO Systems for babies as young as three months old, theme playsets for toddlers and school-age children, and LEGO Technic sys-
tems that use gears and pulleys and can be motorized. And now LEGO has entered the computer age, with the LEGO Mindstorms Robotic Invention System ($199), a building set with a brain. That “brain” is the RCX, a microcomputer that can be programmed using a home PC. The RCX accepts inputs from sensors, processes the data, and uses it to instruct various motors to turn on and off.

The Mindstorms Robotics Invention System, which was created in close cooperation with the Massachusetts Institute of Technology, includes more than 700 LEGO pieces, the RCX, an infrared transmitter, light and touch sensors, motors, gears, wheels, the “Constructopedia” building guide, and software. The general idea is to build a robot using the LEGO pieces, write a program using RCX code, download the program to the RCX via the infrared transmitter, and then sit back and watch your robot do its stuff. And they call this playing!

The RCX itself is about the size of a pocket transistor radio. It has three sensor inputs and three motor outputs and a display to let you know which program is running. It runs on six “AA” alkaline batteries (not included). The little “tubes” protruding from the yellow top of the RCX and molded circles on the gray bottom allow standard LEGO bricks to be snapped onto the unit, so that the RCX actually becomes part of the robot’s body, as well as its brain.

MindStorms is aimed at children aged 12 and older, but computersavvy 9- or 10-year-olds should be able to get a handle on the system, even without parental help. That’s because the program walks you through the robot-building process at your own pace with a guided tour and personalized training.

The tour is a two-minute introduction to the product that familiarizes users with key MindStorms ideas, processes, and terminology. It is followed by a two-stage setup process and guided training to create a simple robot. The set-up process itself describes the RCX and how it works, from installing the batteries to adding sensors and running the unit’s built-in programs. As you successfully complete each stage of the training, you’re rewarded with praise (“So far, you’re brilliant!”).

VCR-like buttons (PLAY, STOP, FAST FORWARD, REWIND) allow you to proceed at your own pace and to repeat any material you didn’t fully understand. If you need extra time (for finding parts and pieces, etc.), you needn’t worry about falling behind. If you pause for an extended period, the program goes into a screensaver mode, complete with cool, realistic thunderstorm sound effects that had fooled us the first time we heard them (on a rainy day, no less).

Next, you’re talked through the connection of the infrared transmitter to the PC’s communication port and the subsequent downloading of the system’s firmware to the RCX. The program will recognize if you’ve connected it correctly; if you haven’t, there’s an extensive troubleshooting section to help you fix the problem.

The next stop is the Training Center where you learn about RCX code, an easy programming environment that uses graphics to build a program. To program the RCX to carry out an action, you click, grab, and link graphical blocks on the screen, stacking them like pieces in a puzzle to create a program. The first training classes guide you through creating a program, downloading it to the RCX, and saving it in the Program Vault.

As you progress through various Training Missions, building upon prior lessons, you eventually find yourself building and programming robots that really do act on your command. Although the on-screen training is thorough and encouraging, mastering even the basics takes time, patience, and concentration. All that hard work (or, play) has a big payoff, however—the satisfaction of learning and creating something new.

It was a lot of fun to build our first Mindstorms robot, following the helpful tutorial’s step-by-step directions. However, we should have read the “helpful hints” before setting the little guy loose. Then we’d have 25

LEGO Mindstorms lets you design and build a robot and then program it to perform simple tasks.
known just how fast he moves and avoided the first fall off the desk! Luckily, LEGO's are built to take a lickin'. We just put him right back together again—for a while at least.

The MindStorms "Constructopedia" includes three types of robot challenges, which are defined as "intriguing invitations to create mechanical programmable robots and other exciting devices all capable of performing one or another specific tasks." According to the Constructopedia, "The challenges are open-ended and can be met in various ways, but each task is clearly described by measurable or observable outcomes."

Robo, Pathfinder, and Acrobat are the three main types of robots in the Robotics Invention System. The simplest, Robo 1 and Robo 2, each require one motor and move in one specific pattern. The Pathfinders use two motors and turn right and left, slowly or quickly. The Acrobat, which also require two motors, move quickly and perform cool moves such as flips and wheelies.

MindStorms is truly interactive on many levels. You and your computer and the LEGO building pieces interact to create a robotic device that responds to its environment while following your commands.

Once you've mastered the basics, your imagination is the only limit. Use pieces from other LEGO sets. Add gears, wheels, and "arms" to your creation. For more ideas, contact other MindStorms users on the Internet (www.legomindstorms.com). You can create your own home page where you can upload programs and display your creations, chat with other users, ask questions of LEGO experts, learn from online tutorials, and discover new challenges.

There are also three "challenge" kits that are sold separately. RoboSports is used to make robots that play games with balls or pucks: Dunkbots, Puckbots, and Grabbots—each with four levels. Extreme Creatures lets you create twelve different robots that resemble living things in three categories, called Helpiles, Mutimals, and Big Bugs. Exploration Mars lets you "explore" the red planet remotely via tele-operated landers and rovers. You can design planet surfaces and have your rovers operate on the surfaces using images from a camera.

MindStorms, even without any additional challenges, is good for hours of intense, educational play. It presents plenty of opportunities for cooperation among siblings, especially if there's someone who's good at building things and someone else with computer skills. There's a good chance that parents will get drawn into the fun as well—in fact, one of the biggest "challenges" MindStorms presents to parents might be surrendering the mouse to their kids!

Radio Days

It often seems that everything in our culture suffers from overkill. It's not enough for a TV to deliver video; today's sets must offer stereo and surround sound. A dozen or so channels won't do; we need cable or satellite systems capable of providing hundreds. All those extras can be nice, but mostly they're just not necessary. We don't need surround sound to watch the evening news, and we certainly don't need dozens of brain-draining programs beamed into our homes simultaneously, 24 hours a day, seven days a week (we don't even have the time to scroll through that huge onscreen guide!). All those bells and whistles jack up prices and make everything more complicated to use.

For instance, when was the last time you heard a stand-alone radio that sounded good and performed well? Not a high-priced component in a fancy stereo system, but a simple, easy-to-use, high-quality radio. We've found one: the Model 88 stereo FM/AM table radio ($199.99) from Cambridge SoundWorks.

The Model 88 was conceived and designed by company co-founder Henry Kloss, whom you might remember as the creator of the renowned KLH and Advent radios of the 1960s and 1970s. In his own words, "The Model 88 is the culmination of my 45-year history of bringing music into people's homes in ways that both suit their lifestyles and provide truly long-term listening satisfaction." The Kloss reputation, not to mention the just-under-$200 price tag, was enough to pique our curiosity.

LEGO MindStorms combines the power of a computer with the popularity of LEGO building blocks to create programmable robots.
We're part of that dwindling minority who really enjoy radio, but we lean toward the quirky, individual programming found on non-commercial and college stations. We're both blessed and cursed living in the New York metro region—blessed with scores of regional radio stations and cursed with high-powered superstations that block reception of smaller, more interesting, lower powered stations. A particular favorite, Fordham University's WFUV, broadcasts from up in the Bronx, and we often have trouble receiving it on the south shore of Long Island. The Model 88 did an admirable job of pulling it in, using only the antenna built into the power cord.

Selecting mono mode helps reduce background noise on distant FM stations. The other listening mode—"wide"—is said to "make some stereo programs expand beyond the width of the radio." Using the aux input with a CD player, we found the wide mode did dramatically widen the soundstage. With most FM programming, the mono blend circuitry, while reducing FM noise, lessened the effectiveness of the mode.

AM listeners will be happy, but not ecstatic, with the Model 88's performance. Special circuitry rejects noise and weak signals, making the AM band very quiet—unsettlingly quiet for some—and making the reception of the weakest signals difficult.

We thought it strange that the Model 88 didn't contain a clock. After all, its tabletop design appears to make it an ideal candidate for a bedside radio. Not so, according to Kloss. The radio is intended to be placed across the room from the listener, and that's where it sounds best.

Cambridge SoundWorks plans to market an alarm clock/remote control as an optional accessory for the Model 88. Priced between $30 and $40, it will turn the radio on at a user-selected time via an infrared transmitter.

Despite its nondescript appearance and small price tag, the Cambridge SoundWorks Model 88 produces accurate, natural, high-quality audio. It's as easy to use as it is
delightful to hear. This is a radio that does just what it's supposed to do and does it well.

Pretty Papers

How many greeting cards does your family send each year? Birthday cards to friends and relatives, anniversary and Valentine's Day cards to loved ones, Mother's Day and Father's Day (and maybe Grandparents' Day?), invitations and thank-you notes—and let's not forget the annual stack of Christmas cards. There are special occasion cards to be sent, and, if you've really fallen for those Hallmark commercials, you might even commemorate such holidays as St. Patrick's Day and Halloween with store-bought greetings. It all adds up.

The Clip Gallery includes Hallmark card designs for cards with personalized greetings but no home-made look.

Just because the program is easy to use doesn't mean the finished products are simplistic. In fact, Home Publishing 99 can be used to create quite professional-looking printed and on-line projects, with its 8000 some pre-designed project templates. For instance, we recently volunteered to edit the bi-monthly newsletter for a club to which we belong. The first issue, we must admit, looked pretty awful. For all our years of writing and editing experience, we were new to desktop publishing and Microsoft Word's columns feature gave us a lot of trouble. We'd add or delete a word in column one on page 2, and find that all the text on pages 2 through 8 had somehow shifted into the wrong places and wouldn't go back where it belonged no matter what we tried!

Home Publishing 99 doesn't use columns in the standard sense. Instead, text goes into "text boxes," and you can have as many of those on a page as you choose. One in column A, one in column B? Fine. Want three columns on the top of a page, but just one on the bottom? No problem. Just use four separate text boxes.

To further spruce up the project, we were able to add icons and borders that complemented the articles (books for the book reviews, a bus next to the text describing an upcoming field trip), borders and backgrounds to visually differentiate articles on the same page, and we could even add digital photographs. The program supplies more than 70,000 graphics, 2500 photos, 2500 motion clips, and 1250 sound and music clips. All are easily accessed from the Clip Gallery. You can search for a specific graphic using a keyword, and then search for more like it.

Although Home Publishing 99 doesn't require any computer expertise, some familiarity with the Windows environment comes in handy, particularly if you want to import files or text from outside the program itself. In our case, we wanted to copy some of the information from our first newsletter (a Word file) directly to the second. It was easy enough to do using the Windows "copy" and "paste" functions, but there weren't any instructions on how to do this. Within the program itself, however, it's easier to use the move function than to cut and paste. You can select an item, or even group of items, and move it to a different place on the page or to another page.

The design screen shows your project on the left and design options on the right.

Home Publishing offers a host of other tools and effects that make it easy for beginners to achieve professional results. Rulers span the top and left sides of the page, allowing you to
align text and graphics precisely where you want them. Once you've added graphics and photos from the Clip Gallery, you can rotate, crop, or flip them to fit your project. If you decide to use your own digital photos, you can even use the included Picture It! Express to get rid of red-eye or fix other common photo problems. Home Publishing lets you get fancy with your text by opening a paragraph with an ornate first letter, adding outlines or shadows, giving it a shape like a circle or triangle, or making it wrap around a graphic. For two-sided projects, a "print wizard" guides you through each step, and animated instructions show you how to properly feed the paper into the printer.

When you're close to finishing, the multilevel zoom function allows you to view the entire page or zoom in at up to 400 percent. A built-in spell-checker gets rid of potentially embarrassing typos. Then you can print out the entire project or only the pages you specify. And should your project happen to be a Christmas card, party invitation, or any other mass-mailing item, Home Publishing 99's mail merge/address book can make short work of addressing envelopes.

We had a good time using this family-oriented program. Besides creating a visually appealing newsletter, we made some calendars, a holiday party invitation, and a "Chores Chart" for our 1/2-year-old (who now earns stars for picking up toys, having his hair washed, brushing his teeth, going to bed, etc.—without making a fuss).
Our second concern is that the program does a disservice to novices by not using some established graphic-design tools (such as cut, copy, and paste), which are well worth knowing and understanding.

Assuming that you’re not planning on a career in page layout, however, Microsoft Home Publishing is a good way to make your own profession-looking, colorful, and fun printed goods and to spruce up your e-mail.

GIZMO NEWS

AOL/Netscape Merger

America Online plans to purchase Netscape Communications Corporation in a $4-billion, all-stock transaction. The proposed deal also includes an alliance with Sun Microsystems Corporation, best known in the PC world for its Java technology. AOL currently distributes Microsoft Internet Explorer software to its subscribers; the merger would allow AOL to distribute Netscape's popular browser and to run Netscape's “Netcenter” Web site. It would also create a company strong enough to truly rival Microsoft, at least on the Internet front.

In fact, Microsoft greeted the news of the planned merger by asking the federal government to drop its antitrust lawsuit against them.

Pocket Surfers?

What will America Online's merger with Netscape mean to you? According to AOL Chairman Steve Case, one of the company's primary goals is the creation of new gadgets to entice the net-surfer from his or her PC. Some of the ideas being tossed about are wireless handheld computers, smart phones with screens, and a flat-panel that sticks to a refrigerator door.

Yes, we know, we've heard it all before. But AOL's $4.2-billion takeover of Netscape and its alliance with Sun Microsystems might inject a healthy dose of reality into those plans—perhaps even enough to allow AOL to beat mega-competitor Microsoft to the marketplace with such devices. AOL plans to put Netscape's software programs to work configuring new versions of the Navigator browser to work with different types of electronic equipment besides PCs.

One major hurdle facing the AOL/Netscape/Sun group, however, lies in convincing consumer-electronics manufacturers to begin producing equipment that can use AOL's content and Internet access, Netscape's Navigator browser technology, and Sun Microsystems's Java programming language. It will be interesting to see what they can come up with, and whether they can beat Microsoft to the punch.

CEMA Approves DTV 1394 Interface Specs

The IEEE 1394 DTV interface specification, outlined in EIA-775, was officially approved by the Consumer Electronics Manufacturers Association (CEMA) back in November 1998. It will provide a simple way for consumers to connect digital cable set-top boxes to digital television receivers while providing the full resolution of the DTV program. It will also offer an interconnection that can carry audio, video, and associated control signals among DVD players, digital VHS players, Dolby Digital surround-sound processors/receivers, digital converter boxes, and other digital products.

CEMA approval does not, however, mean that everyone is in complete agreement over the digital interface. In fact, a battle over a copy-protected digital interface is in full swing among consumer-electronics manufacturers. Such an interface would prevent unauthorized copying of digital programming—there's no debate over its necessity. The argument is over whose copy-protection scheme to use.

On one side, we have the Sony team (dubbed "5C" for "Five Company"), which also includes Hitachi, Intel, Matsushita, and Toshiba. They have developed the Digital Transmission Content Protection (DTCP) method, which they call "the industry's first encryption-based IEEE 1394 link layer." On the other side, we have Zenith and Thomson with their Extended Conditional Access (XCA) smart-card based renewable encryption scheme.

DTCP was specifically designed for the IEEE 1394 with its inherent two-way communication capability and includes both encryption and authentication mechanisms in the digital interface. XCA is designed for both one- and two-way digital interfaces. Using a renewable security system based on smart cards, XCA could also be used with a one-way digital interface such as the EIA-762 RF remodulator standard.

Paul Snopko, director of electronic systems research and development at Zenith, admitted that the DTCP-enabled 1394 line "may be a good solution for an $8000 digital TV," but questioned its appropriateness for a kitchen TV set. The Thomson/Zenith camp calls their XCA "a simple, elegant, and cost-effective solution designed for a range of different digital consumer products."

The 5C proposal is said to have the approval of PC makers, consumer-electronics companies, and motion-picture studios. It was designed to meet the requirements of the Motion Picture Association of America. The DTCP chip will be commercially available this spring.

Snopko noted that while DTCP may appear to have “gone several steps ahead of our XCA proposal,” in reality, “no digital-consumer products [using either copy-protection scheme] exist on the market yet. In that sense, we are still at the same starting line.” Meanwhile, the XCA group is actively trying to gain support for their proposal from the cable-TV industry.

The battle over the interface could translate into a slower resolution of the DTV-cable interface issue, which has been a problem for DTV promoters. The lack of an industry-standard encryption method could also slow the introduction of other digital consumer products.
DTMF Computer Interface

Decode DTMF signals picked up by your scanner and display that information on your computer screen or save it to memory with this simple scanner-to-computer interface circuit.

If you have been looking for an inexpensive method of decoding DTMF digits and you already own a PC or compatible computer, then the DTMF Computer Interface described in this article might just be the monitoring accessory that you have been looking for.

The interface decodes DTMF tones that are received on any scanner, communications receiver, or other source (such as a tape recorder, etc.) and displays the resulting digits on the computer's monitor complete with the approximate time at which the digits were decoded. (The information is also stored automatically in a disk file for logging purposes.) The interface simply connects to the scanner or other receiver through the external speaker jack and to the PC through an ordinary parallel-printer port, such as LPT1.

Circuit Description. A schematic diagram of the DTMF Computer Interface is shown in Fig. 1. Note that relatively few parts are required for the interface. Scanner audio is fed to IC1 (an SSI-75202 DTMF receiver) through ceramic-disc capacitor C1. (Capacitor C1 must be a ceramic-disc unit, or digit decoding performance will be degraded—Do not substitute Mylar types for C1.) The DTMF receiver (IC1), with the aid of a single resistor (R1) and an inexpensive 3.58-MHz colorburst crystal (XTAL1), decodes high. The DV line goes high only while IC1 is decoding a DTMF Digit, signifying that binary-digit data is available from IC1. The binary-digit data that's output at pin 14 of IC1 is considered to be valid for the current digit only while the DV signal is present.

The 4-bit output (plus the DV signal) of IC1 is fed to IC2 (a 74LS04 low-power Schottky, hex inverting buffer). Note that only five of IC2's inverters are used as signal buffers. The data originally output by IC1 is coupled through a short length of cable to your PC.

Operating power for the circuit is provided by a 9-volt battery, whose terminal voltage is regulated to +5 volts by IC3 (an LM78L05 low-power, fixed, 5-volt regulator). Capacitors C2 and C3 filter against power transients, while switch S1 serves as the project's power switch.

Interfacing to the Computer. You are probably wondering how the interface can be connected to the computer's parallel printer port, since it is normally used to output data to a printer. The truth is that while the parallel port is usually considered strictly as an output port, it also has five TTL level input pins that are normally used to monitor status signals from the printer.
such as: error, paper out, etc. It is those five input pins that allow the DTMF interface to communicate with the PC.

A PC can actually have up to three parallel printer ports, normally referred to as LPT1, LPT2, and LPT3, if there is only one parallel printer port (most home systems), it is referred to as LPT1.

Construction. Construction is not critical, as the project can be assembled on a small section of perfboard or a printed-circuit board. For those readers who prefer to go the printed-circuit route, a template of the author's board layout is shown in Fig. 2. After etching your printed-circuit board, examine it carefully for shorted connections, etc., and correct any defects before proceeding.

Using the parts placement diagram shown in Fig. 3 as a guide, begin installing the parts onto the printed-circuit board. The use of sockets for IC1 and IC2 is strongly encouraged. After all of the appropriate parts have been soldered onto the circuit board, check the board for solder bridges and poor connections. (Do not insert IC1 and IC2 into their sockets at this time.) Now temporarily apply power to the board, and check for the presence of +5 volts at the output of IC3 (the regulator). If that checks out, set the completed printed-circuit board aside for the time being.

Prepare the enclosure that’s been chosen to house the project by simply drilling holes for the power switch, audio input wires, and the computer data cable. Note that almost any type of cable can be used to connect the interface to the computer as long as it contains six conductors (five signal lines and a ground), and its length doesn’t exceed 3 to 4 feet.

Before you solder the audio input and computer data wires to the board, it is suggested that several inches of each be pulled into the enclosure. Then, strip and solder each wire to its respective pad (as shown in Fig. 3). After all of the wires have been attached to the printed-circuit board, mount the board into the enclosure, and carefully extract (pull out) any excess slack in the wires, being sure to fasten them securely into the enclosure so that they can’t be pulled out again.

With that done, connect an audio plug (selected to mate with the external speaker or earphone jack on your scanner or other receiver) to the appropriate points on the printed-circuit board through audio-speaker cable. After that, connect a male DB-25 connector to the 6-conductor cable to the printed-circuit board as indicated in Fig. 3. IC1 and IC2 can now be installed into their respective sockets.
PARTS LIST FOR THE DTMF DIGIT COMPUTER INTERFACE

SEMICONDUCTORS
IC1—SS1-75T202 or similar DTMF decoder, integrated circuit
IC2—74LS04 low-power Schottky, hex inverting buffer, integrated circuit
IC3—LM78L05 5-volt, 100-mA, fixed, low-power voltage regulator, integrated circuit

CAPACITORS
C1—0.01-μF, ceramic-disc (see text)
C2—0.1-μF, Mylar
C3—10-μF, 16-WVDC, electrolytic

ADDITIONAL PARTS AND MATERIALS
R1—1-megohm, 1⁄4-watt, 5% resistor
B1—9-volt transistor-radio battery
XTAL1—3.58-MHz, colorburst crystal, HC-18/U case type
S1—SPST miniature toggle switch
PL1—Audio phone plug (see text)
PL2—Male DB-25 connector
Printed-circuit-board materials, enclosure, battery snap, IC sockets, DB-25 hood, wire, solder, hardware, etc.

The Software. The DTMF-digit decoding program (DTMF BAS), which is written in QBASIC, is given in Listing 1.

Note that machines running Windows 95 and greater will not have QBASIC installed, you’ll need to go to the “other” folder of your Win95 CD-ROM, click on “oldmsdos” and copy “QBASIC.EXE” and QBASIC.HLP to your hard drive. There are a few things about the program that should be pointed out. The first is that the program expects the interface to be connected to parallel port LPT1 at address &H379, if the interface is to be connected to LPT2 at address &H279 or LPT3 at address &H3BD, then the “INP (&H379)” statements appearing in lines 11 and 14 must be changed accordingly. For example, if LPT2 is to be used, change line 11 to read: “11 IF INP (&H279) <> 127 THEN 11”, and change line 14 to read: “14 P = INP (&H279) : IF INKEYS = CHRS(27) THEN 50.”

Note: The program was originally written for a 386SX operating at 20 MHz, so the CT value in line 13 (currently 5000) may have to be changed, depending on the computer speed and user preferences.

The CT value is what determines how much time must pass after the last digit was decoded before the system time and date information is displayed. A 5- to 10-second time delay is usually desired by most users. Suitable CT values for various computer speeds are given in Table 2. Note that all of the data that is displayed on the monitor is also saved in a comma-delimited disk file named “DTMFDATA.TXT,” which is placed in the current directory. That data can then be imported into a spreadsheet program for later analysis if desired.

The term “comma delimited” simply means that the different information fields are each separated by a comma. For instance, suppose that the telephone number 555-1234 was decoded at 7:25:00 p.m. on March 13th, 1998. That information would be saved in file “DTMFDATA.TXT” as: 5551234, 07-25:00, 03-13-1998 followed by a carriage return (CHR$(13)), which causes any new decoded information to be placed on a new and separate line.

To use the decoded data in a spreadsheet program, such as the one included with MSWORKS, first start Windows and start MSWORKS. Choose “Open File” and select file “DTMFDATA.TXT.” A dialog box will appear stating that MSWORKS cannot open conversion files; click OK. In the next dialog box that appears, choose “open as spreadsheet.” The spreadsheet program then appears with the data from file DTMFDATA.TXT placed in the first three data fields. Decoded DTMF-digit data appears in the “A” field, the time information appears in the “B” field, and the date information appears in the “C” field.

The data can now be sorted or printed as desired. Other spreadsheet programs should have similar features—refer to their instruction manuals. To enter the program DTMF BAS, boot the PC into DOS or DOS mode. At the DOS prompt (C:>), start QBASIC by typing the word “QBASIC” and pressing <ENTER>. (QBASIC is included with DOS versions 5.0 and above. If you installed it yourself as described earlier, make sure you try to run it from the directory or folder you put it in.) Press the <ESC> key to clear

The diagram in Fig. 3 shows an example of the circuit diagram. Note: The use of sockets for IC1 and IC2 is strongly encouraged.
LISTING 1—DTMF BAS

1 REM DTMF Digit Decoder Program for PC/Compatibles
2 REM by Brian Pilier 8-96 DTMF.BAS
3 REM with Time/Date Stamp & Disk Logging
4 REM Interface Connects to Parallel Port
5 REM LPT1=&H379 LPT2=&H279 LPT3=&H3BD
6 REM Uses System Clock for Time/Date info.
7 CLS : LOCATE 1, 15: PRINT " DTMF Digit Decode Screen Press 'ESC' to End "
8 OPEN "DTMFDATA.TXT" FOR APPEND AS #1
9 CT = 1000000: GOTO 40
10 PRINT #1, CHR$(32); : PRINT CHR$(32); : PRINT TIMES; : PRINT #1.
11 IF INP(&H379) <> 127 THEN 11
12 CT = 0
13 CT = CT + 1: IF CT = 5000 THEN 45
14 P = INP(&H379): IF INKEYS = CHR$(27) THEN 50
15 IF P = 127 THEN 13
16 IF P = 255 THEN DIG = 68: GOTO 10
17 IF P = 247 THEN DIG = 49: GOTO 10
18 IF P = 239 THEN DIG = 50: GOTO 10
19 IF P = 231 THEN DIG = 51: GOTO 10
20 IF P = 223 THEN DIG = 52: GOTO 10
21 IF P = 215 THEN DIG = 53: GOTO 10
22 IF P = 207 THEN DIG = 54: GOTO 10
23 IF P = 199 THEN DIG = 55: GOTO 10
24 IF P = 191 THEN DIG = 56: GOTO 10
25 IF P = 183 THEN DIG = 57: GOTO 10
26 IF P = 175 THEN DIG = 58: GOTO 10
27 IF P = 167 THEN DIG = 59: GOTO 10
28 IF P = 159 THEN DIG = 60: GOTO 10
29 IF P = 151 THEN DIG = 61: GOTO 10
30 IF P = 143 THEN DIG = 62: GOTO 10
31 IF P = 135 THEN DIG = 63: GOTO 10
32 PRINT CHR$(44); : PRINT CHR$(44); : PRINT TIMES; : PRINT #1.
33 TIMES:
34 PRINT CHR$(44); : PRINT #1, CHR$(44); : PRINT TIMES; : PRINT #1.
35 DATES:
36 PRINT CHR$(10); : PRINT #1, CHR$(13)
37 GOTO 14
38 CLOSE #1: CLS : END

The opening dialog box. Press <ALT>, then choose "F" for file, then "N" for new, and press <ENTER>. Now type in the program as it appears in Listing 1, making any needed changes to lines 11, 13, and 14.

After the program has been entered, press <ALT>, then press "F" for file, select "S" for save, and press <ENTER>. Type in the name DTMF.BAS and press <ENTER>.

To run the program (DTMF.BAS) that you just entered and saved, press <ALT>, then press "R" for run, then "S" for start, and press <ENTER>.

The screen will clear, the program will start, and the words "DTMF Digit Decode Screen Press 'ESC' to End" will appear at the top of the monitor screen. Any DTMF digits decoded by the interface will appear on the monitor.

Approximately five seconds after the last digit is decoded, the system time and date information appears to the right of the previously decoded DTMF digits. The next DTMF digit decoded appears on a new line immediately below the first. Once the screen becomes full, the oldest line of information is scrolled upwards one line at a time, as a new line of information is displayed. But don't worry, because all displayed information is saved in disk file "DTMFDATA.TXT," located in the same directory as DTMF.BAS.

To stop the program—whether to make changes or to exit—simply press the <ESC> key. The words "Press any key to continue" will appear at the bottom of the screen. Pressing any keyboard button will return you to the QBASIC main screen. To exit the program and QBASIC, press <ALT>, then press "F" for file, and select Exit from the menu. You'll be returned to the DOS prompt.

Use. With your computer and the DTMF interface both turned off, carefully connect the interface to the appropriate parallel port on your computer and turn on your computer. Make sure the computer is up and running before applying power to the interface. After the DTMF decode program is running, connect the audio cable on the interface to a scanner tuned to an active frequency with DTMF tones present, or other appropriate source of DTMF tones. (Perhaps a friendly ham-radio operator can help you with this.)

DTMF DECODER IC SOURCES

B.G. Micro, Inc.
PO Box 280298
Dallas, TX 75228
Tel. 800-276-2206

Debco Electronics
4025 Edwards Road
Cincinnati, OH 45209
Tel. 800-423-4499

JDR Microdevices
1850 South 10th Street
San Jose, CA 95112-4108
Tel. 800-538-5000

If you are unable to find a suitable source of DTMF tones to test the interface, an alternative would be to create a test tape using your answering machine. Simply ask a friend to call your answering machine, and instead of leaving a normal voice message on the machine, have the friend dial digits

(Continued on page 66)
Make Money In A Computer Career!

Get The Training You Need In As Little As Three Months!

Important Facts About a Career in Computers:
- Over 400,000 jobs are expected to open in the computer field by the year 2005.
- Computer careers are among the highest-paying in the nation, with experienced programmers earning as much as $60,000 a year and more.
- ICS can prepare you for an exciting career in computers in as little as three months!

Train at home in your spare time for a career with a future! Learn at your own pace, without rearranging your schedule. And you need no previous experience—just ambition and the desire to succeed.

Here are just a few of the fast-growing computer careers you can choose from:

PC Repair
- Do PC upgrades, network installations, and more
- Start your own business—choose your own hours
- Professional-quality tools and A+ Certification Test Preparation included

Computer Graphic Artist
- Design newsletters, brochures, and ads
- Construct 3D drawings, edit digital photos, prepare a great portfolio
- CorelDRAW® included with your program at no extra cost

Internet Web Page Designer
- Master HTML and make your mark on the Web
- Work for an established Web design firm or start one of your own
- Program features Microsoft® FrontPage™ 97 and Earthlink Internet Access Software with Netscape® Navigator™

Java®
- Bring the World Wide Web to life with eye-catching animations
- Sun Java® Development Kit included
- Includes practical exercises delivered via the ICS Web site

Call or send for FREE information—and start toward a new career in computers today!

Get the facts about ICS computer training. We'll send you a free information package on how you can train at home to break into a fast-growing computer career.

Yes! Send me free information on how I can train at home for the computer career of my choice. I understand there is no obligation. CHECK ONE BOX ONLY.

PC Repair
Computer Graphic Artist
Internet Web Page Designer
Java®
Visual C++
Visual Basic®
Visual C++
Web Page Designer
Java®
Visual Basic®
Java®
Visual C++
Web Page Designer

Certificate Programs
- Programming in BASIC
- Programming in COBOL
- Computer Science (ASB Degree)
- Desktop Publishing & Design
- Personal Computer Specialist
- Internet Web Page Designer
- PC Repair
- A+ Certification
- Computer
- Graphic Artist
- Internet Web

Mail post-paid card today! If card is missing, send coupon, or call toll free 1-800-596-5505 ext. 9039.

International Correspondence Schools
A Division of Harcourt Brase & Company
Dept. PEM539S
925 Oak Street, Scranton, PA 18515

Yes! Send me free information on how I can train at home for the computer career of my choice. I understand there is no obligation. CHECK ONE BOX ONLY.

International Correspondence Schools
A Division of Harcourt Brase & Company
Dept. PEM539S
925 Oak Street, Scranton, PA 18515

Yes! Send me free information on how I can train at home for the computer career of my choice. I understand there is no obligation. CHECK ONE BOX ONLY.

[Check box for selected program]

Name ____________________________ Age ____________
Street ____________________________ Apt. ____________
City _____________________________ State ______ Zip ____________
Phone () _______________________

Call anytime — 24 hours a day, 7 days a week. http://www.icslearn.com

www.americanradiohistory.com
If you're a dedicated electronics hobbyist, you have probably needed a high-voltage power source at some time or another. Maybe you wanted to energize a neon tube or an old plasma-discharge laser. Or perhaps you were building an electric fence or trying to trigger a xenon strobe tube. No matter what you were trying to accomplish, you probably ran into the same problem every time—how to efficiently and economically generate a high voltage.

High-voltage technology has not changed much in the last century. Usually, we don't electrostatically generate high voltages, except for experimental or educational purposes, or by accident when we pet the cat. In most cases, we want to produce high voltages from relatively low DC voltages or ordinary 117-volt house current. In the case of a DC power supply, the typical solution is to create a DC-to-AC power inverter, and then step up the resulting AC through a transformer. That's often a very inefficient process.

Generating a high voltage from an AC power source is often even worse. In that case, alternating current must be stepped down to some low voltage, rectified (to provide DC), and then put through a DC-to-AC circuit. Talk about inefficient. Each conversion (or inversion) decreases efficiency.

The simplest way to generate a high voltage is to use AC voltage as the initial power source, which can be stepped up via transformer. The latter method is reliable and efficient, but requires enormous transformers (which strictly follow the power factor rules) for even modest voltage gains. Generally speaking, doubling the secondary output voltage requires twice the primary current. A typical neon transformer can supply 10-12 kV at 30 mA and draw almost 400 watts! The killer is that the transformer is likely to weigh about twenty pounds.

Basic DC-to-AC Inverters. Figure 1 illustrates the most basic form of DC-to-AC inverter. When momentary switch S1 is in its normally open position, no current flows in the circuit. Closing S1 causes current to flow from the battery into the primary winding of T1, generating a magnetic field. After a short time, the current reaches its maximum level and S1 is released. The magnetic field in T1 collapses, producing an extremely high-voltage pulse across T1's secondary winding.

While the circuit in Fig. 1 is fairly reliable, it requires a very large current source and a heavy-duty transformer when operated at lower frequencies. Large current demands result in high power factors and high losses. Its greatest drawback is that it requires a warm body to stand around and continually press the button. That type of circuit is also not very energy efficient.

By raising the operating frequency of the circuit, it is possible to use transformers with less iron for the same voltage increase. The reason that WWII avionics ran at 400 Hz was for exactly that reason—you could get away with much lighter transformers. Less weight in an airplane is always better.

Semiconductor-Based Inverter Design. The introduction of mod-
ern semiconductors has made it possible to assemble a DC-to-AC inverter that operates very efficiently. The circuit in Fig. 2 is an example of a basic high-frequency DC-to-AC inverter. Many of the high-efficiency 12-volt DC to 117-volt AC power inverters and uninterruptible power supply (UPS) designs use a similar configuration as the heart of the circuit.

In the Fig. 2 circuit, an NE555 oscillator/timer (IC1) is set up as a pulse generator, the frequency of which can be set to almost any value. The output of IC1 is directed through a transformer and stepped up to the required level. The major limitation of the Fig. 2 circuit is its output power. The NE555 can directly source up to 200 mW through the transformer, but at the power-supply rail of 9 volts, that's barely enough power to light a tiny neon lamp. Only by adding output switches and a higher supply current can the circuit provide enough power to start a laser or a neon tube.

An SCR-Based Inverter. Another solution to the power problem is to use a high-current switch, such as an SCR to drive the primary winding of a large step-up transformer, as shown in Fig. 3. In the Fig. 3 circuit, the power comes from the utility, while the circuit's DC operating voltage is derived from a diode rectifier (comprised of D1 and D2) and a series capacitor (C1). Another capacitor (C2) charges to about 125 volts and supplies current through the Zener-diode regulator and potentiometer to the gate of a unijunction transistor (UJT), Q1. When Q1 discharges, a trigger voltage is applied to the gate of SCR1, causing it to turn on.

With SCR1 turned on, capacitor C3 dumps its charge across the primary of T1, generating a high-voltage pulse in T1's secondary winding. The main drawback to the Fig. 3 circuit is the high parts count and complexity. So what's the alternative?

Another Way. In the world of high-voltage power applications, the tradeoff appears to be efficiency at the cost of size and/or complexity. Wouldn't it be nice to find a single semiconductor component capable of replacing the handful of resistors, capacitors, unijunction transistors, and SCRs, while having the capacity to efficiently switch several amps of power? Well, such a component—dubbed the SIDAC—already exists.

The SIDAC—which can be defined as a silicon, bilateral, voltage-triggered switch—has a high "off" impedance at any voltage below its breakover voltage. When the voltage across the device reaches the breakover point, the SIDAC immediately goes into conduction in the same regenerative manner as a Triac or SCR: as the voltage across the device drops to a typical "on" value of a couple of volts or so. Because the SIDAC is bilateral, it behaves in the same manner regardless of voltage polarity.
age declines toward the zero-crossing point. When the line voltage goes through zero crossing, the SIDAC turns off, waiting as C1 begins to charge to the opposite breakover-voltage point. When the opposite breakover point is reached, the SIDAC once again turns on.

During each half cycle, the circuit produces a high-voltage pulse at the output of transformer T1. That's a very efficient design from a transformer standpoint, since you are putting AC across its primary as opposed to the DC voltage used in the earlier circuits. The bottom line is that you can get away with less hardware, and transformer selection is not as critical as it is with other designs. Just about any transformer will work.

The author used a common 6-volt step-down AC power transformer; the transformer was turned around so that its secondary winding (which is normally used as the output) functioned as its primary. The SIDAC, driving the transformer's secondary winding, produced about a 1:20 step-up factor, or about a 2400-volt output. Not bad for three dollars worth of parts!

if a transformer with a very high turns ratio, such as a television fly-back, is used in that setup, be careful! Even a small transformer can develop very nasty voltages at its output; at the power levels that the Fig. 4 circuit is capable of developing that can be "lethal." Be sure to observe all high-voltage safety precautions when working with the circuit.

Important Note: Using an isolation transformer between the AC power source and the circuit would make the circuit a bit safer to operate.

In the event that the SIDAC fails, which would be the worst case (Continued on page 66)

TABLE 1—SIDAC MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive Breakover Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MKIV-115</td>
<td>V_{BO}</td>
<td>104</td>
<td>115</td>
<td>Volts</td>
</tr>
<tr>
<td>MKIV-125</td>
<td></td>
<td>110</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>MKIV-135</td>
<td></td>
<td>120</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Off-State Repetitive Voltage</td>
<td>V_{DRM}</td>
<td>-</td>
<td>± 90</td>
<td>Volts</td>
</tr>
<tr>
<td>On-State Current RMS (All Conduction Angles)</td>
<td>I_{RM}</td>
<td>-</td>
<td>1.0</td>
<td>Amps</td>
</tr>
<tr>
<td>On-State Surge Current (Non-Repetitive) (60-Hz One Cycle Sine Wave Peak Value)</td>
<td>I_{SM}</td>
<td>-</td>
<td>20</td>
<td>Amps</td>
</tr>
<tr>
<td>Operating Junction Temperature</td>
<td>T_J</td>
<td>-40</td>
<td>+125</td>
<td>ºC</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{st}</td>
<td>-40</td>
<td>+150</td>
<td>ºC</td>
</tr>
<tr>
<td>Lead Solder Temperature</td>
<td>T_L</td>
<td>-</td>
<td>+230</td>
<td>ºC</td>
</tr>
</tbody>
</table>

Electrical Characteristics (T_J = 25ºC unless otherwise noted)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakover Current (60-Hz Sine Wave)</td>
<td>I_{BO}</td>
<td>-</td>
<td>200</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Repetitive Peak Off-State Current (60-Hz Sine Wave, $V = V_{DRM}$)</td>
<td>I_{DRM}</td>
<td>-</td>
<td>10</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Repetitive Peak On-State Current ($T_J = 25ºC$, Pulse Width = 10 µS, Repetition Frequency, $f = 1.0$ kHz)</td>
<td>I_{RM}</td>
<td>20</td>
<td>-</td>
<td>Amps</td>
<td></td>
</tr>
<tr>
<td>Forward "On" Voltage (I_TM = 1.0 A peak)</td>
<td>V_{TM}</td>
<td>1.1</td>
<td>1.5</td>
<td>Volts</td>
<td></td>
</tr>
<tr>
<td>Dynamic Holding Current (60-Hz Sine Wave, $R_S = 0.1$ kΩ)</td>
<td>I_H</td>
<td>-</td>
<td>100</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Switching Resistance</td>
<td>R_S</td>
<td>0.1</td>
<td>-</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>Maximum Rate of Change of On-State Current</td>
<td>di/dt</td>
<td>50</td>
<td>-</td>
<td>A/µS</td>
<td></td>
</tr>
</tbody>
</table>
Wireless Control

Today remote wireless controls of one sort or another are used almost everywhere for almost everything. There are devices available that are designed to transmit audio and video signals or security and computer data from one point to another. They’re also used to open garage doors and turn on lights—the applications for wireless controls are infinite.

However, for a specific control or pulse application not covered by one of the available devices, it’s usually necessary to build your own. Unfortunately, in the past, building a simple and reliable RF transmitter and sensitive receiver was not an easy task. And even if the hobbyist were able to assemble such a system, the circuits required difficult measurements and complicated adjustments in order to set the system’s operating frequency, minize harmonic radiation, and maximize sensitivity. But now thanks to new matched transmitter (TXM-418LC) and receiver (RXM-418-LC) modules from Linx Technologies, those problems are things of the past. The modules—operating at 418 MHz, with a range of better than 300 feet—are based on surface acoustic wave (SAW) technology for accurate frequency control and have excellent stability and sensitivity.

Most wireless devices that are not dedicated to or a part of a video, audio, or computer system simply respond to the pressing of a pushbutton or closing of a switch. But the Wireless Control system outlined in this article, unlike other such systems, is designed so that the transmitter can accept inputs from mechanical and electronics switches: and other electronic devices—such as phototransistors, microprocessors, computers—as well as other sources.

The matching receiver features three sets of complementary outputs—momentary, latched, and sequential—giving it the versatility to handle almost any application.

The Transmitter. A schematic diagram of the Wireless Control’s transmitter circuit is shown in Fig. 1. The circuit is comprised of three integrated circuits, several diodes, the transmit module, and a few additional support components. The signal applied to the transmitter is fed to the circuit through SO1 (a 3-position screw-type terminal block). From there, it travels across C1 and through R3 to the non-inverting input of IC1-a.

The output of IC1-a divides along three paths. In the first path, the output of IC1-a is applied to the inverting input of IC1-b, which then outputs the complement to the input signal. That complementary signal is fed to the inverting input of IC1-c through C3 and D2. In the second path, the non-inverted output of IC1-a is fed to the inverting input of IC1-c through another capacitor/diode combination (C2/D1), making both phases of the input signal available to IC1-c. The output of IC1-c is fed to the inverting input of IC1-d, producing an output signal that is applied to pin 6 of IC2 (a HT680 3 ½ address encoder). That causes IC2 to generate three groups of bits containing data and address information, which is serially transferred to MOD1 (the transmitter module).

While that’s going on, the two phases of the input signal (picked up from the outputs of IC1-a and IC1-b) are also fed to IC2 at pins 3 and 4, causing it to generate unique codes for positive and negative transitions at the input. MOD1 then produces an RF signal that is transmitted through ANT1.

Encoder IC2 can be programmed via S1 (a 4-position DIP switch) for 16 different addresses so that more than one pair of transmitters and receivers can be used in close proximity without interfering with each other. Resistor R1 (a 10k unit), which is connected between

Build a remote-control transmitter/receiver pair that allows you to control almost any electronic device. Just connect the transmitter to a trigger source and the appropriate output of the receiver to the circuit to be controlled, and you’re in business!
The Receiver. The RF signal output by the transmitter is picked up by ANT2 of the receiver circuit—a schematic diagram of which is shown in Fig. 2. The signal picked up by ANT2 is applied to MOD2 (the receiver module), which extracts the original data and address information from the RF signal and outputs same as a sequential data stream. That information is fed to IC4 (an HT692 310 address decoder), where it is stored and compared with previously programmed data. If a match is detected, one of IC4’s data outputs (pins 3 and 4) goes high and remains there as long as a valid data stream is being received. That coding technique ensures that only valid data gets through and random noise pulses are rejected. The decoder can be programmed via S2 (a 4-position DIP switch) for 16 different addresses to match the output of the transmitter.

The decoded data outputs of IC4 at pins 3 and 4 are fed along several paths. In one path, the two outputs are fed to IC5—one of three TC4427 dual, level- translating power drivers, which are used to provide complementary 12-volt outputs that can source or sink 200 mA. The three power drivers accept 0- to 5-volt levels and output 0- to 12-volt, push-pull signal levels that can be used to drive external loads. The driver outputs are also applied to three bi-color LEDs, which are used to denote that data is being received; green indicates a low-to-high transition at the transmitter input, and red a high-to-low transition. Any driver output that is not high can sink up to 200 mA. The two IC5 power drivers (IC5-a and IC5-b) supply momentary pulses that can be used to trigger whatever load is connected to its output terminals.

In a second path, the two data outputs of IC4 are applied to IC6-a (half of a CD4013 dual D-type flip-flop) through S3 (a 4-position DIP switch). Switch S3 can be used to program IC6-a to be both set and reset by IC4’s outputs or to be set by one of the outputs and reset by
pushbutton switch S4. It can also be reset by one of the outputs and set by S4. The latched outputs of IC6-α are fed to IC7-a and IC7-b, whose outputs are used to drive LED2 (another bi-color LED that indicates IC6-α’s output state).

The pin 3 output of IC4, following a third path, is also fed directly to IC6-b at pin 11 (its clock input), causing the flip-flop's outputs (pins 12 and 13) to alternately trigger high or low. The latched outputs of IC6-b are fed to IC8-a and IC8-b, which, like the other power drivers, provides complementary source/sink outputs. LED3 indicates the output state of IC6-b.

The six power driver outputs are fed to SO2 (a 9-position screw-type terminal block), through which the circuit is connected to the chosen load. The momentary outputs of IC5 at terminals 1 and 2 of SO2 can be used to drive a buzzer. It can indicate a transmitter input closing or opening, or can indicate both if two buzzers are used with different tones.

The outputs of IC7 at SO2 terminals 3 and 4 can be programmed via S4 to latch in different states and thus exactly correspond to an input closing and opening, or they can be programmed to latch on closing only or opening only and be manually set or reset by S4. Doing so is useful to store the results of temporary events, such as when a mailbox is opened by the postman.

The outputs of IC8 at terminals 5 and 6 can be used to sequentially turn a lamp on and off through a relay each time a contact is closed at the transmitter. Since the power drivers supply 12 volts and can source or sink 200 mA continuous and more than 1 amp peak, all sorts of load devices can be driven either directly or through mechanical or solid-state relays.

Power for the circuit is provided by T1 (12-volt, 200-mA DC wall transformer), plus a pair of fixed-voltage regulators (IC9 and IC10), along with assorted filter capacitors. Power for MOD2, IC4, and IC6 is provided through IC10 (a 78L05 5-volt, 100-mA fixed voltage regulator), while power for IC5, IC7, and IC8 is provided through IC9 (a 7812 12-volt, 1-amp fixed-voltage regulator).

Construction. The transmitter and...
receiver circuits were assembled on a pair of double-sided printed-
circuit boards. A set of templates (measuring 2½/₄ by 1½/₄ inches) for
the transmitter board is shown in Fig. 3, while a pair of templates (measuring 3½/₄ by 2½/₄ inches) for the receiver
board is shown in Fig. 4. The double-
sided boards provide a good ground plane for the transmit and receive
modules.

Note: The transmit and receive modules are surface-mount units that are supplied already mounted to their respective double-sided PC
boards. Due to a prior agreement with Linx, the manufacturer of these
modules, and their minimum order policy, the supply list in the Parts
List can not offer the modules separate from the board. However, those who wish can purchase the modules directly from the manufacturer in large quantities. Contact Linx Technologies, Inc. (575 S. E. Ashley Place, Grants Pass, OR 97526; Tel. 800-736-6677; Fax: 541-471-
6251; Web: linxtechnologies.com) for details.

In addition, the modules are not certified by the Federal Communi-
cations Commission (assembled kits cannot be sold as a product
without being FCC certified). The kits are for personal or
experimental use only.

Once you’ve obtained all of the components listed in the Parts
Lists, construction can begin. Parts-placement diagrams of the transmitter
and receiver boards are shown in Fig. 5 and Fig. 6, respectively. Begin assembly by installing the resistors and capacitors, followed by the
non-socketed semiconductor components. The bi-color
LEDs (on the receiver board) should be mounted with the long lead
connected to point R and the short lead to G on the circuit board.

Next, install appropriate DIP sockets wherever DIP ICS are indicated: \textit{DO NOT} insert the ICS into their respective sockets at this time.
Install the terminal blocks, DIP switches, and antennas on both boards. For antennas (ANT1 and
ANT2 on the transmitter and receiver
boards, respectively), the author used 6.7-inch lengths of stiff wire.
Then connect a 9-volt battery
connector to the transmitter board as indicated in Fig. 5. Connect T1
(the wall transformer) to the receiver
board, as indicated in Fig. 6.

Note: S4 and the LEDs of the receiver board should be connect-
ed to the receiver board through short lengths of wire so that they can be mounted in a convenient location on the unit’s enclosure.

Check the construction work-
mandship of each board very care-
fully, looking for cold solder joints, sol-
der bridges, or misoriented or mistak-
ently placed components; and cor-

TABLE 1—S3 SWITCH SETTINGS

<table>
<thead>
<tr>
<th>XMIT</th>
<th>SETTINGS</th>
<th>TERMINAL BLOCK NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>S3-a</td>
<td>S3-b</td>
</tr>
<tr>
<td>CLOSED</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>OPEN</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>CLOSED</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>OPEN</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>CLOSED</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

CLOSED = Transmitter input at a down level
OPEN = Transmitter input at an up level
R, G = Red or Green LED indicates a terminal at an up level
* = Momentary - terminal at up level for two seconds
** = Can be reset to opposite color by pressing SD
TOG = Toggles to opposite color
NC = No change
Fig. 4. Like the transmitter, the receiver was assembled on a double-sided printed-circuit board (this one measuring 3 ½ by 2¾ inches). Both foil patterns are shown here.

rect any deficiencies before proceeding. Finally, install the ICs in their respective sockets on the transmitter and receiver boards.

Testing. Connect a 9-volt battery to the connector on the transmitter board. Plug the receiver's wall transformer into a receptacle. Set all the individual switches of S1 (on the transmitter board) and S2 (on the receiver board) off, on, or anywhere in between. Just make sure that, however you set the switches, the setting of S1 matches that of S2. Temporarily connect a SPST switch between the input and ground terminals of SO1 on the transmitter board. Next turn your attention to S3 on the receiver board. Set S3-a and S3-b to the "on" position, and S3-c and S3-d to the "off" position. LED1 should be extinguished, while LED2 and LED3 should light either red or green.

Close the test switch connected to SO1 of the transmitter board; LED1 on the receiver board should momentarily light red (blink) for two seconds and then turn off. LED2 should light red and remain lit, and LED3 should change color. Open the input switch, and LED1 should blink green, LED2 should light green and remain lit, and LED3 should remain as it was.

If the two circuits perform as expected, set S3-a and S3-d to the "on" position, and S3-b and S3-c to the "off" position. LED1 should be extinguished, while LED2 and LED3 should light either red or green.

Set S3-a and S3-d to the "on" position, and S3-b and S3-c to the "off" position. Press S4 to change LED2 to red, assuming that it is not already red. Close the test switch connected to SO1, and LED1 should blink red. LED2 should remain red, and LED3 should change color. Open the test switch; and LED1 should blink green, LED2 should change to green, and LED3 should remain unchanged. Press S4, and LED2 should change to red.

Repeat each of the above tests a few times after changing the S3 switch settings, as some toggling of the latch may occur during the setting of the switches. Table 1 illustrates the functions.

Applications. The transmitter sends a unique digital code when the input toggles from low to high, likewise when it goes from high to low. A low is defined as any voltage below a threshold of +1.2 volts (extending down to -50 volts). A high is defined as any voltage greater than +1.2 volts (up to +50 volts).

The transmitter inputs can be driven from TTL or CMOS devices and circuits, or from a computer, micro-
processor, or other logic circuit. In fact, the input device can be something as simple as a pushbutton switch connected between the "in" and "GND" terminals of SO1. In such an arrangement, when the switch is open, the input is pulled high through R2. Closing the switch grounds the input (pulls it low).

Although a pushbutton switch is used as an example, most any type of switch—magnetic reed, thermalstat, a pair of metal probes (in a moisture-detector arrangement), interfaced printed-circuit traces (a homebrew touch-switch arrangement), light-dependent resistor, transistor, etc., to name a few—can be used as the trigger device. In the case of the homebrew touch-switch and other arrangements wherein a bias voltage may be required, a potentiometer can be connected from the "BIAS" terminal to the signal in terminal of SO1, allowing you to set the transmitter's input trigger level.

The output of the receiver can be used to drive any number of devices. For example, an LED or buzzer and an appropriate current-limiting resistor can be tied between any output and ground to indicate the occurrence of some event detected by the Wireless Control transmitter.

Alternatively, an optoisolator/coupler (with transistor, digital logic, or SCR output) or a relay could be connected to any output along with a current-limiting resistor and used to trigger some other circuit. The possible applications for the Wireless Control's are immense.

Fig. 6. Guided by this parts-placement diagram, assemble the receiver board, making sure that all components are installed in the proper locations and that the polarized components are properly oriented.
Having idle time on your hands can sometimes be frustrating. Coffee breaks and work breaks can usually be accounted for, but I’m referring to those times we just sit around doing no-brainers.

At one time, those small key-chain ball-in-hole games were quite popular. The idea behind those games was to maneuver any number of balls to fill an equal number of holes on a cardboard base. The games, as simple as they were, were convenient and challenging enough to provide a few minutes of fun. Every once in a while, I see someone juggle two or three metal balls in a hand and wonder if that’s the modern day equivalent!

Tapper, the game presented in this article, is designed around those ball-in-hole games. Although Tapper takes a slightly different approach, the object of the game is essentially the same. Briefly, Tapper contains three small ball bearings confined within a ridged and covered area festooned with pairs of metal contacts (target pins) that must be shorted together (bridged) in a given time frame and in a particular order.

Play is initiated by manipulating the ball bearings—tapping and tipping the unit—so that one or more bridge a pair of "start" target pins. After these pins have been bridged, an indicator lights, pointing to the next set of target pins to be bridged. The player must successfully bridge each set of target pins within the stipulated time in order to win. If the player fails to do so, Tapper shuts down and can only be re-initiated by again bridging the two "start" target pins. Each time a pair of target pins is successfully bridged, a hit is registered, causing a short tone to sound.

A Look at the Circuit. A schematic diagram of the circuit is shown in Fig. 1. The circuit is comprised of little more than a 4093 CMOS quad NAND Schmitt trigger (IC1); a 4017 CMOS decade counter/divider (IC2) with ten decoded outputs (only one of which can be high at any given time); ten 1N914 general-purpose, small-signal switching diodes (D1-D10); eight light-emitting diodes (LED1-LED8); a piezoelectric buzzer (B21); nine target pins (HS and H1-H8—which are actually multiple sets of bridgeable metal contacts); and a handful of support components.

At the heart of the circuit is counter/divider IC2, whose ten decoded outputs (O0 through O9) sequentially go from low to high. Nine of IC2's ten available outputs, O0-O8, are tied to target pins HS and H1-H8, while the O9 output is applied to pin 13 of IC1-d through a 1k resistor (R5). Play is initiated by momentarily bridging the start (HS) target pins with a small metal ball.

Prior to the start of play (before the start pins have been bridged), the circuit remains in its default (or standby) mode. In the standby mode, the O0 output of IC2 is high, while all other outputs are low.

Since the HS target pins haven't been bridged, no trigger pulse is applied to the input of IC1-a. Under that condition, the input to IC1-a—which is configured as an inverter—is pulled low through R1 (a 10-megohm resistor), causing its output to go high.

The high output of IC1-a divides along two paths. In one path, that signal is applied to the positive clock input of IC2 at pin 14. In the other path, the high output of IC1-a is fed to IC1-b (also configured as an inverter), causing its output to go low. That low travels along two paths; in the first path, the output of IC1-b is fed to the pin 13 input of
IC1-d. In the other path, the low output of IC1-b is fed to the inputs of IC1-c (which like IC1-a and IC1-b is configured for inverter operation), forcing its output high. That high is applied to the master reset (MR) input of IC2 (causing it to maintain its default or reset condition).

When play is initiated, a positive pulse is fed through D9 to the inputs of IC1-a, causing its output to go low for a time determined by the R1/C1 time constant. With the values expressed for R1 and C1, the time delay is approximately 1 second—sufficient time to keep the ball from causing erratic inputs to IC1-a. The combination of R1 and C1 debounces IC1-a. **(Note:** The cathodes of D1-D9 are wired to the inputs of IC1-a and are included in the circuit to prevent shorting between the active and inactive outputs of IC2.) Once the delay has timed out, pin 3 of IC1-a returns to its normal positive state. During that time, IC2 increments to the next sequential output (target).

The low output of IC1-a is fed to both the positive clock input of IC2 at pin 12 and to IC1-b. The signal causes the output of IC1-b to go high. The high output of IC1-b at pin 4 divides along two paths. In one path, the output of IC1-b is fed through D10 to a third NAND Shmitt trigger, IC1-c, at pins 8 and 9. Note that pins 8 and 9 of IC1-c are tied to a time-delay network (the play timer) comprised of R3 and C3. The R3/C3 time constant sets the period of the play timer to approximately six seconds. The high output of IC1-b causes C3 to begin charging. The charge on C3 is then discharged through R3.

Each positive output pulse produced by IC1-b replenishes the charge on C3, resetting the play timer to six seconds. As long as the charge on C3 remains above half the supply voltage, the output of IC1-c at pin 10 remains low, allowing play to continue. If, on the other hand, C3 completely discharges during play, the inputs to IC1-c are pulled low, causing its output to go high, resetting IC2 and causing any lit LED to extinguish. At that point, the game must be restarted.
Times Are Tough...

Today's headlines scream of the lack of qualified individuals to fill new and existing high-tech job openings. If you feel the robust economy is passing you by, there is something you can do about it. Become CIE Qualified. Since 1934, The Cleveland Institute of Electronics has been providing its students with the necessary technical and academic credentials employers are seeking. In fact, CIE was started in 1934 to fill a similar void in the radio/television industry.

Since then, CIE boasts of over 150,000 worldwide graduates who have benefited from a patented, independent-study program that lets the student complete a Career Course, Associate Degree program, or through our affiliate school World College, a Bachelor Degree program.

If you are currently "under-employed" and want to increase your level of income, the most proven method is an education. With CIE's independent-study program you study when and where you wish with no time constraints on how quickly you can proceed. And though it is an independent-study program you have the full support of the faculty and staff at CIE’s Cleveland Campus.

To discover all the Benefits, Career Courses and Degree Programs available from CIE send for your Free Course Catalog Today!

The Cleveland Institute of Electronics has been approved for the training of eligible veterans and active duty military service members, under the G.I. Bill. Military tuition assistance (Up-Front and Basic) is also available under the DANTES Distance Learning Program.
The high output of IC1-b applied to IC1-c forces its output low. That low is applied to the master reset (mR) terminal (pin 15) of IC2, disabling the chip’s master reset and allowing the counter/divider to count up sequentially whenever a low-to-high transition is registered at its clock input (pin 14).

In the other path, the output of IC1-b is fed to pin 13 of IC1-d, which is configured as an oscillator and is used to drive the piezoelectric buzzer (BZ1). When the output of IC1-b at pin 4 goes high, the oscillator is enabled, causing it to output a frequency that’s determined by a timing network comprised of R2 and C2. Once triggered, the piezoelectric buzzer sounds for approximately 1 second. At the end of that timing period, pin 4 of IC1-d returns to its low state. Resistor R5 is included in the circuit to prevent shorting between pin 13 of IC1-d and the a9 output (pin 11) of IC2.

After scoring on target pins H8, pin 11 (a9) of IC2 goes high, enabling IC1-d and causing BZ1 to sound for as long as the play timer is active. When the play timer deactivates, the game automatically shuts off. A new game is initiated by bridging the HS contacts.

Construction. The author’s prototype was assembled on a small double-sided printed-circuit board, measuring 3 1/16 by 2 1/8 inches. A full-scale template of the foil (non-component) side of the board is shown here. All pads where LEDs, target pins, and mounting hardware are indicated. Press only hard enough to make the indentations, or pencil marks, noticeable for later drilling. When finished, remove the tape and circuit board from the lid.

Drill holes through the lid for the target pins and mounting hardware only. The holes for the target pins were drilled with a #75 (0.021) drill bit, while those for the mounting hardware (three screws) were handled with a 1/16-inch bit. Prior to and while drilling the holes, be careful not to make any unnecessary marks on the playing area. (Even seemingly minor surface blemishes in the play area can dramatically increase the difficulty of play.) It’s very important that all holes be drilled perpendicularly to the surface of the play area. Using a drill press is highly recommended.

Locate the pads for the LEDs. With a 1/8-inch bit, drill through the lid at the points marked for the LEDs. A parts-placement diagram for Tapper’s printed-circuit board is shown in Fig. 4. With the component side of the circuit board facing you, install the ten diodes on the board and trim any excess leads. After that, place the ICs flat to the board.

Fig. 2. The author’s prototype was assembled on a small double-sided printed-circuit board, measuring 3 1/16 by 2 1/8 inches. A full-scale template of the foil (non-component) side of the board is shown here.

Fig. 3. A full-scale template of the component side of Tapper’s printed-circuit board is shown here. If you plan to etch your own printed-circuit board, be sure that the two foil patterns line up. If they don’t, you’ll either have great difficulty in getting the circuit to work or it won’t work at all, depending on how far off the mark the registrations are.
with the proper orientation and solder them in place on both sides of the board to ensure good connections. Try not to use excessive solder. Follow the ICs with the resistors and capacitors (in that order). Before soldering the capacitors in place, leave about 1/4-inch lead on them so that you can bend them each over horizontal to the board. Be sure that C3 (a polarized electrolytic capacitor) is properly oriented!

When that is complete, check the assembly for the usual construction errors—cold solder joints, misoriented or incorrectly placed, components, etc. When satisfied that all is well, move on to the next step.

From the component side of the board insert the eight LEDs, making sure that they are properly oriented. Do not solder them in position at this point! Instead, push the mounting hardware (three screws) through the lid holes from the top sunk-in side and place screw-on spacers on the screws. Attach them tightly. Hold and adjust the circuit board so that it can be screwed down to the spacers from the foil side of the board (i.e., with the component side facing the flat top-side of the lid). Be sure the board is even and tightly secured.

Place the lid (sunk-in side up), with the circuit board attached, on the enclosure. Make sure that the lid-mounted, circuit-board assembly fits easily into its housing and that the lid lays evenly on the bottom half of the enclosure with no obstructions. When satisfied, remove the lid assembly from the bottom portion of the enclosure and flip it over so that the circuit board's foil side faces up.

Adjust the eight LEDs, one at a time, pushing them into their respective holes in the lid so that they protrude evenly. Solder each LED in place (from the foil side only) as you go along. When finished, trim any excess length and remove the three mounting screws holding the circuit board to the spacers. Place the circuit board on the table, foil-side down. Do not disturb the leads of the LEDs.

Solder the leads of a 9-volt battery connector to the circuit board. Red wire to the positive (+) and black to the negative (−) pad. On the foil side of the board, solder short lengths (approximately 1-inch) of bare wire to each of the B21 pads, touch-solder the piezoelectric buzzer to the bare wires, and place a piece of tape between the body of the buzzer and the circuit board.

Circuit Pre-test. Check all solder connections and make sure that all components are properly oriented. If that checks out, connect a 9-volt battery to the battery connector and, using a small flat-head screwdriver, lightly press the tip to short the HS target pads. You should hear a short tone and LED1 should light. Within 12 seconds, short the screwdriver across the H1 target pads; again the buzzer should sound.

Again bridge the HS target pads; LED1 should light. Do nothing at this point but count the seconds until LED1 extinguishes. That is the play timer test. Temporarily remove the piezo element from the two wires for the final step.

Target Pins. Securing the target pins to the circuit board is the final step in assembling the project. Before beginning that process, remove the battery from the battery connector. Re-attach the circuit board tightly and evenly to the spacers, making sure that all the LEDs are placed into their respective holes in the lid with no obstructions.

Fig. 4. Assemble Tapper's printed-circuit board guided by this parts-placement diagram. But before starting down that "road," it is necessary to prepare the enclosure that'll house the unit. (See text for details.)

*SEE TEXT

Prepare the circuit-board assembly for the ICs, capacitors, resistors, etc. When satisfied, place and solder the target pins to the board. The target pins (common straight pins) can be purchased through any craft or department store. The circuit should be working properly; if not, do not continue!

With a fine abrasive cleaning strip, completely rub the shine from all of the pads and the ball bearings. Rub the ball bearings on a strong magnet a few times. From the sink-in side of the lid, insert all of the target pins into their respective holes, while holding the board and enclosure sideways on a flat table top. Make sure each pin goes straight through the hole in the lid and its associated circuit-board pad. Watch out for the pin tips when performing this operation. Place a stiff piece of thin cardboard over the pin heads that are protruding through the sunk-in side of the lid, flip the entire assembly over onto a flat table top, and slide out the cardboard. The pin heads should all drop down even with the top of the sunk-in lid top.

Press down with a flat screwdriver tip and solder each of the pins from the foil side of the board. When that's done, check your work.
PARTS LIST FOR THE TAPPER

SEMICONDUCTORS
IC1—4093 CMOS quad 2-input NAND Schmitt trigger, integrated circuit
IC2—4017 CMOS decade counter/divider, integrated circuit
D1—D10—1N514 or equivalent, general-purpose, small-signal diode
LED1—LED8—Red T1-size, light-emitting diode (Jameco #114673)

RESISTORS
(All resistors are 1/4-watt, 5% units.)
R1—10-megohm
R2—100,000-ohm
R3—3.3 megohm
R4, R5—1000-ohm

CAPACITORS
C1—0.1-µF, ceramic-disc
C2—0.01-µF, ceramic-disc
C3—2.2-µF, 16-WVDC, electrolytic (see text)

ADDITIONAL PARTS AND MATERIALS
BZ1—Piezoelectric buzzer (Jameco #138783 or RS#273073)
B1—9-volt transistor radio battery
H1—H8, HS—1/2-inch steel pins (Singer item #00236)
Printed-circuit materials, battery connector, plastic enclosure, 1/8-inch thick clear plastic sheet, 1/8-inch hex female threaded aluminum spacers (Jameco #133639), ball bearings, wire, solder, hardware, etc.

Note: The following items are available from JFM Compositions, 9 Mechanic St., St. Johnsville, NY 13452: A pre-drilled double-sided printed-circuit board and three ball bearings for $10 (check or money order only). Price includes shipping and handling. Please allow 4 to 6 weeks for delivery. Jameco parts can be ordered from Jameco Electronic Components/Computer Products, 1355 Shoreway Road, Belmont, CA 94002-4100; Tel: 650-592-8097; Fax: 800-237-6948 (domestic), 650-592-2503 (international); Web: www.jameco.com.

To make sure that all pin heads are even, if not, make any necessary adjustments. When satisfied, point the board away from you and trim the pins from the foil side of the board.

When finished, trim the bare wires on the circuit board that were used for the piezoelectric buzzer to about ¼ inch and re-solder the piezo element to them. Connect the battery. Lightly wet your finger and press it across the HS target pins. A tone should sound and LED1 should light, indicating that its target pins are active. Continue on in that manner until all target pins have been tested. Remember the timing between scoring!

Lay the battery flat on its side on the inside bottom surface of the enclosure and tape it down. Make sure that the battery is secured to the end of the enclosure opposite the buzzer. Place a thin piece of cardboard or tape over the battery to prevent it from shorting against the circuit board. Place the lid assembly onto the enclosure.

If you intend to apply decals to the enclosure, do so now. When this step is completed, cut a piece of 1/8-inch clear plastic to fit neatly across the top of the entire playing area. The mounting screws for the circuit board are used as bumpers in the game: decals (dots) can be placed over them if you like.

Drill holes in the clear plastic to accommodate the lid mounting screws. Put the ball bearings into the sunk-in playing area. Place washer(s) between the enclosure lid and the clear plastic cover, and insert screws to secure the lid assembly and plastic cover to the enclosure bottom. Tighten the screws enough to keep the ball bearings from escaping their confinement without restricting their free movement.

Playing Tapper. Once the HS target pins are bridged (transferring a voltage from one target pin to the other), two things happen. First, the play timer is automatically set to approximately 12 seconds. Second, LED1 lights, and its target pins go active and must be bridged via a ball bearing within the remaining play time or the game automatically shuts down. One playing option is slightly magnetizing the ball bearings; magnetizing the ball bearings causes them to attach to each other and/or the target pins when they come in contact. A slight tap then causes the balls to rotate around the pins, completing the electrical circuit and scoring. After playing the game a few times, you will see that the magnetic properties of the balls can either be an advantage or disadvantage.

Let's assume the player has successfully bridged the HS target pins. That produces a short tone and causes LED1 to light, indicating that the HS target pins are active. The player then tries to maneuver the ball(s) to bridge the H1 target pins within the 12-second play time. If the player succeeds in bridging the H1 target pins within the specified time frame, LED2 lights, indicating that its target pins are now active and that the player now has another 12 seconds in which to bridge the H2 target pins. The player continues in that manner until all eight target pins have been bridged, making the player a winner.

Note: The play time depends on the values of R3 and C3. With the values shown in the schematic diagram, play time is a minimum of approximately six seconds (a real challenge). Increasing or decreasing either R3 and/or C3 proportionally adjust play time to your satisfaction. The easy way to change the play time without removing the circuit board from the lid is to touch-solder another capacitor in parallel with C3; that can be done on the foil side of the board. Using a 3.3-µF capacitor gives about 12 seconds of play time.

Playing Hints. Because of the strategy behind the game, Tapper seemed an appropriate name. Due to the light weight of the ball bearings, the player quickly realizes that tapping and tipping the enclosure is the only way to maneuver the balls around the playing area. Now the skill comes in appropriately doing this so that the balls hit and bridge the target pins with enough momentum to make a good electrical contact!

There will be times when it will appear that you've successfully bridged a set of target pins, but the circuit doesn't respond as expected—that's normal during play and is not a flaw in the game. You'll get a feel for how to tap and tip the game to score.

If the balls are magnetized, slightly tapping the enclosure causes the ball(s) to rotate around the pins, eventually bridging them and thereby scoring.

www.americanradiohistory.com
Electronics Library

RADIOSCIENCE OBSERVING,
VOLUME 1
by Joseph J. Carr

Among the hottest radio topics right now are those related to radio astronomy, propagation studies, whistler and spheri-
ic hunting, searching for solar flares using very low frequency radio, and related subjects. In this volume, readers will find chapters on all these topics and more. RadioScience, the term that cov-
ers this field, was coined by the author, a columnist for this magazine.

Aimed at amateur scientists and radio hobbyists, this book provides an introduction to the field, with more in-
depth studies to follow in future volumes. The last chapter, contributed by Dr. H. Paul Shuch, discusses SETI, the search for extraterrestrial intelligence.

The included CD-ROM contains numerous examples of radio frequen-
cies to help you learn how to identify them. It also contains information on celestial bodies, providing information about the natural radio signal genera-
tors of our solar system and beyond. RadioScience Observing, Volume 1 costs $29.95 and is published by Prompt Publications, Howard W. Sams & Company, 2647 Waterfront Parkway, East Drive, Suite 300, Indianapolis, IN 46314-2041; Tel. 800-428-7267; Web: www.hwsams.com.

CIRCLE 90 ON FREE INFORMATION CARD

LICENSE YOUR INVENTION
by Richard Stim

An attorney and intellectual property expert, the author tells inventors everything they need to know to be able to enter into a solid licensing agreement. In addition, the book explains how to show the invention to others without getting ripped off.

There are detailed instructions on working with manufacturers, market-
ers, and distributors who handle the details of merchandising an invention. Inventors are shown how to draft a license that will be fair to all parties. Sample tear-out agreements for patenting an invention in the U.S. are provided, and all the necessary licensing forms are on the included disk.

License Your Invention costs $39.95, and is published by Nolo Press, 950 Parker Street, Berkeley, CA 94710; Tel. 510-549-1976; Fax: 510-548-5902; Web: www.nolo.com.

CIRCLE 91 ON FREE INFORMATION CARD

THE ARRL HANDBOOK CD,
VERSION 3.0: 1999 EDITION
edited by R. Dean Straw, N6BV

Several generations of hams, students, engineers, and technicians have found The ARRL Handbook to be the best all-around electronics reference. Available in a convenient, easy-
to-use CD-ROM format, the 76th edition contains new projects, such as a 13.8 V/40 A switching power supply.

In addition to the complete text and illustrations from the paper edition (which costs $32), this CD-
ROM includes a powerful search engine and tools to create book-
marks for easy return to often-used topics. Text and illustrations can be printed or pasted into the other Windows applications.

All of the "template packages" from the Handbook are found on the CD. Also included is utility software for filter design, transmission analysis, and more. Minimum requirements are a 386 PC, 4MB of RAM, 6MB of available hard disk space, Windows 3.x, VGA graphics, and a sound card.

The ARRL Handbook CD, Version 3.0: 1999 Edition costs $49.95 and is published by American Radio Relay League, 225 Main Street, Newington, CT 06111-1494; Tel. 800-243-7767; Fax: 860-594-0303; Web: www.arrl.org.

CIRCLE 92 ON FREE INFORMATION CARD

POLICE CALL: 1999 EDITION
edited by Richard Barnett

Considered "the scanner users' bible," the 1999 edition is the largest ever. There are nine regional volumes, contain-
ing over 350,000 frequencies. Volume 1 covers New England.

In addition to emergency agencies such as Police and Fire, the books list two-way radio frequencies for 18 additional categories including aircraft, federal government, transportation, sports, entertainment, and more.

Police Call: 1999 Edition costs $12.99 per volume, plus $3.95 S&H, and is published by Hollins Radio Data, P.O. Box 35002, Los Angeles, CA 9003; e-mail: scangene@aol.com; Web: www.policecall.com.

CIRCLE 93 ON FREE INFORMATION CARD
The Bipolar Transistor and Some New Designs

Alex Bié

In this month's "What is a ...?" series, we review a semiconductor device that dates back to the discovery of the transistor. The bipolar junction transistor is used today in vast quantities, both as a discrete component and inside integrated circuits. It is a versatile device found in many applications and circuits, and it can be used over a wide range of frequencies.

The team demonstrated its results in front of a group of executives at Bell Laboratories. The device they showed was called a "point-contact transistor," because it consisted of two metal contacts placed close to one another on a piece of N-type germanium.

During the 1950s other types of transistors based on the same principle were developed. These included the junction transistor, which is "grown" from two junctions fabricated on the same substrate.

It took some while for transistors to become generally accepted. Initially they were very expensive and their performance was poor. However, at the beginning of the 1960s, transistor prices began to fall and their use rose dramatically. Now the world would not be the same without them.

The Structure

In practice, the internal structure of the transistor can be made either in a PNP composition, where an N-type region is sandwiched between two P-type regions, or an NPN structure, where the center section is of P-type material (see Fig. 2).

The center region is called the base. It derives its name from the first point-contact transistors where the center connection also formed the mechanical base for the structure. It is essential that the base region be as thin as possible if high levels of current gain are to be achieved. Often it may only be about 1 μm (one millionth of a meter) across.

A variety of different structures are used to make transistors today. The diagram in Fig. 3 illustrates two of them.

How They Work

So, let's now look at how the bipolar transistor works. Simply speaking, the transistor can be considered as two PNP junctions that are placed back to back. In operation, for an NPN device, the base-emitter junction is forward biased and the base-collector junction is reverse biased, as shown in Fig. 4. When a current flows through the base-emitter junction, a corresponding larger current is seen to flow in the collector circuit.

The same is true for a PNP transistor except that holes are the majority carriers instead of electrons, and the bias voltages are reversed.
Collector-Base Junction

Take a look at Fig. 4. This base-collector junction is reverse biased, and remember that the majority carriers in the N-type region are electrons, and in the P-type region they are holes (this effect was described in the April 1997 Think Tank). In an N-type region there are free electrons that are able to move around the lattice structure of the semiconductor. Similarly, in a P-type region, there are free holes.

When this base-collector junction is reverse biased (i.e., NPN device), the electrons move from the N-type region towards the P-type region and the holes move towards the N-type region. Finally when they reach each other they combine, enabling a current to flow across the junction. Should this junction be forward biased, the holes and electrons move away from one another, resulting in a depletion region between the two areas, and no current flows.

In the case of the transistor, the second junction, between the base and emitter, plays a vital role. In operation, when a current flows between the base and emitter, electrons leave the emitter and flow into the base. Normally the electrons would combine when they reach this area; however, the doping level in this region is very low, and the base is also very thin. This means that most of the electrons are able to travel across this region without recombining with the holes. As a result, the electrons migrate towards the collector, because they are attracted by the positive potential. In this way, they are able to flow across a reverse-biased junction effectively, and current flows in the collector circuit.

The collector current is significantly higher than the base current. The ratio of the collector to base current is given the Greek beta symbol \(\beta \) (small-signal forward-current transfer ratio). Typically the ratio \(\beta \) may be between 50 and 500 for a small-signal transistor. This means that the current in the collector will be between 50 and 500 times that which is flowing in the base. For high-power transistors, the value of \(\beta \) is likely to be smaller, with figures around 20 being unusual.

Current Amplification

The transistor is a current-amplifying device, unlike the vacuum tube and the field-effect transistor (FET), both of which depend upon voltage changes to operate. It is the amount of current flowing in the base circuit that controls the amount of current flowing in the collector circuit. And although it is a current-operated device, the bipolar transistor can be used in just as many applications as FETs, proving to be more suitable in many applications.

In next month's column, we will look at the photo diode—an unusual semiconductor that is used in various commercial applications ranging from commonplace CD players to sophisticated wide-bandwidth optical telecommunications systems.

In this month's reader contributions, we have two designs by Craig Kendrick Sellen of Waymart, PA—nice going!

TONE-RINGING GENERATOR

The circuit in Fig. 5 is a simple tone-ringing generator or ringing oscillator that has many applications. For instance, it can be used as an alarm for electronic devices or toys and other input-voltage-level-sensing circuits.

The 741 op-amp is wired as a bandpass filter, but when a pulse of at least 5-volts peak shocks its input, the bandpass filter becomes a ringing oscillator. Capacitors C2 and C3 and resistor R2 determine the fixed frequency and duration of the ringing signal. The 1500-ohm potentiometer, R3, can be used to vary the period of the ringing frequency. Transistors Q1 and Q2 are added to increase the power output of the op-amp to drive an 8-ohm speaker. With the values shown, the selectivity, or Q, of the filter is about 10 at a nominal frequency of 100 Hz.

Nice simple design, Craig, I am sure hobbyists can find many uses for this type of circuit.

OSCILLOSCOPE-AMPLIFIER LINEARITY TESTER

The circuit, shown in Fig. 6, was designed to test any oscilloscope to see if its amplifiers are linear in operation. This is accomplished by producing an ever-expanding circle on the scope's screen.

In the design, the 2N2646 unijunction transistor, Q1, serves as a sawtooth or ramp generator. Resistors R3–R5 and capacitor C3 develop the ramp voltage. This sawtooth voltage is applied to IC1 through resistor R8. The CA3080E integrated circuit, IC1, serves as a voltage-controlled amplifier that slowly ramps up the sinewave applied to the integrated circuit through capacitor C4. The level of the

![Fig. 4. Transistor operation (NPN device shown). Forward bias the base-emitter junction and reverse bias the base-collector junction to allow current flow.](image1)

![Fig. 5. This simple tone-ringing generator circuit can be used in many applications requiring a voltage level-sensing alarm indication. The 741 single op-amp can be replaced with an NTE 941M or a Thomson SK6514 op-amp.](image2)
sinewave voltage, or circle size, is controlled by potentiometer R9. The output of IC1 is applied to the resistor and capacitor bridge network made up of R15, R16, C9, and C10. This phase-shift network shifts apart the output phase by 90°. This 90° phase shift is buffered by the LF353 dual op-amps, IC3-a and IC3-b, and is applied to the vertical and horizontal inputs of the oscilloscope under test.

If the amplifiers of the scope under test are working properly, and they are linear, a circle will appear on the screen—starting small and expanding ever larger to the outermost edges of the screen. "Expansion Rate Control" R5 governs this action, while "Expanding Linearity Control" R3 smooths out the charging rate of capacitor C3 to produce a smooth linear expansion of the circle. Blanking to the Z-axis of the scope is applied through capacitor C1 or C2, which cuts off the beam on retrace before the start of the next circle. The 741 single op-amp, IC2, functions as a voltage-source reference for IC1 and IC3.

There is one adjustment to be made on the tester. DPDT switch S1 serves as a way to switch from automatic sweeping to manual sweeping, if calibration is needed for the scope. For calibration, toggle S1 to the manual position and set control R5 at mid-point. Place a voltmeter across resistor R11 and temporarily disconnect capacitor C4 from resistor R9 (this connection point is shown as an "X" in the schematic). Now adjust potentiometer R6 (the "DC Offset Control") so there is 0 volts DC across resistor R11 on the voltmeter. Now reconnect C4 to R9 and place S1 back in the automatic position. You should get a sinewave voltage across R11 in proportion to the setting of R5.

Very practical circuit, Craig. This application could go along very well with the many oscilloscope circuits we have featured in this column. I am sure those who build this tester will contact us with additional applications. Craig also notes that for the bridge network to work properly it is important to match capacitors C9 and C10 and resistor R15 with R16 (the value of 121.2K ohms needed can be obtained by series connecting precision 120K- and 1.2K-ohm resistors together). Also capacitors C11 and C12 should be good Mylar or polystyrene-type capacitors.

MAILBAG

This letter describes a handy circuit application. It is written in response to the "untapped voltage source" comment by J.C. (Letters, December 1998) concerning the uses of old Polaroid film-pack batteries. These batteries produce about 6 volts for the flash and motor drives in the cameras.

I have taken these old Polaroid batteries (flat devices, about 3 x 3 inches with two circular contacts on one side) from the film for over 12 years. Some household items for which I have used this source of "free energy" follow:

I have a cooking scale that uses a commercially available 6-volt battery that I have changed over to use the film-pack battery. The battery also works with a similar IR pyrometer requiring the same commercial battery. I used one battery for a rocket launcher—which worked beautifully.

With these Polaroid batteries you can run most items that require 6 volts, up to four C-cells in size, depending upon current drain. I replaced a corroded battery holder with my homemade Polaroid battery holder, to power an old Zenith AM/FM transistor radio, which runs on 6 volts. It looks tacky, but works very well! I used an old battery pack and some 10-gauge solid copper wire to make a Polaroid battery holder that lets me slip out the batteries and slip in new ones.

—Jim Hathaway III, via e-mail

Keep those circuits and ideas coming. For each of your circuits that appear, you'll receive a book from our library. Send in enough circuits to fill a whole column and you will get a nifty kit or electronics tool. Write to Think Tank, Popular Electronics, 500 Bi-County Blvd., Farmingdale, NY 11735.
Scaling Down for the Depression

Let's think back to the year 1929, just before the stock market crash that led to the Great Depression. It was an era of comfortable affluence. Radio broadcasting was entering its golden age, and many middle-class American living rooms were dominated by large and powerful electric consoles.

The cabinets of table models were apt to be crafted of fine wood or elaborately decorated heavy-gauge metal. Transformers, sockets, capacitors, and other parts had beautiful individual finishes or were enclosed in decorative metal cases. The design of these early table models clearly revealed their evolution from battery receivers.

Most had tubes arranged in the straight-line "stage after stage" design typical of the earlier battery sets. And it was usual to have a separate power pack connected to the radio proper via a fat multi-lead cable—much as the battery packs of the 1920s were connected to the sets they powered. A separately purchased external speaker was also generally required, just as with the battery sets of old.

As the depression deepened, many families lost their discretionary income. Food and shelter had to be the major priorities. Little could be spared for entertainment. Yet radio could provide enjoyment, cheer, and temporary escape from care.

DOWNSIZING BY DOWNSIZING

Radio manufacturers who wanted to tap into the potential mass market of entertainment-hungry families had to take a hard look at making their wares affordable. Fortunately, advances in radio technology were making it possible for ingenious designers to create low-cost receivers. Of course the fact that radio stations were becoming more numerous and more powerful was another factor in obtaining satisfactory reception from a minimal radio.

The 4-tube TRF set produced by the Charles A. Hoodwin Co. of Chicago is an excellent example of what might be called the first generation of minimal depression radios. It appears in a 1932 Radio News ad stating that the set was equal in performance to "last year's" 5-tube pentode sets (see Fig. 1). The Hoodwin schematic for the set, shown in Fig. 2, didn't include tube type numbers. However, they were all pentode (5-element) tubes. The pentode was a newly introduced type that was providing unprecedented sensitivity and power with little or no increase in a radio's parts count.

In addition to the set's overall simplicity, note another significant aspect of its design: The field coil of the Aero 4's dynamic speaker receives its energizing voltage by serving as the radio's filter choke. Thus, the manufacturer could eliminate the expensive and bulky choke, reducing the radio's size and cost still further. This design wrinkle became standard until dynamic speakers were replaced by permanent magnet types, which required no field coil.

Another design feature typified by the Aero is the integration of the speaker into the radio circuitry and the housing of the unit within the radio cabinet. As already mentioned, the table models of a previous generation required a separate speaker that had to be purchased as an accessory.

The incorporation of an internal speaker had an interesting effect on the design of radio cabinetry. As shown in Fig. 1, cabinet tops were often rounded off to follow the contours of the speakers they enclosed.

This rounded profile, combined with the elaborately cut patterns of the typical speaker grill—which resembled a stained-glass window—made some sets look like miniature churches. Today, such radios are universally called "cathedral" sets. Similar radios with squared-off tops carry the grim nickname of "tombstones."

The little 4-tube Aero sold for $10 (tubes were $2.95 extra), which may have been a lot of cash to a family on a depression budget. However, it was a sum that even a family with a limited income might hope to raise by hoarding pennies, nickels, and dimes.

DISPENSING WITH THE TRANSFORMER

The International Kadette Universal is another interesting example of a "minimal" depression radio. Take a look at the schematic shown in Fig. 3 and you'll see that, like the little Aero, it is a 4-tube TRF receiver making use of pentode tubes. The types 39, 36, and 38 used in the RF stage, detector, and AF amplifier, respectively, are 6.3-volt types originally developed for use in auto radios. I don't have data handy on the K31 rectifier, but it is apparently a gaseous type—probably a forerun-
ner of the OZ4 that for years was standard in auto radio power supplies.

The Kadette didn’t use the speaker field-coil trick because its speaker didn’t have a field coil. It was a magnetic type—essentially a scaled-down version of the horn speakers used in early battery sets. This short-lived design was used in some of the earlier depression radios. One advantage was that it was a high-impedance device and didn’t require an output transformer to match the audio output tube. (Compare the Kadette output stage with that of the Aero.)

One very important economy measure that was pioneered in the Kadette was the elimination of the power transformer. That chunk of iron was even more costly than the filter choke, so dispensing with it really took a bite out of manufacturing costs. Eliminating the power transformer required replacing its two functions: (1) providing a source of high voltage for the tube plates and screen grids and (2) providing a source of low voltage to light the tube filaments.

Thanks to the high performance of the pentode tubes, standard line voltage did not have to be stepped up by a transformer for use on the plates and grids. It could be rectified and used directly. As for the filaments, the three of them were connected in series like an old-fashioned set of Christmas tree lamps. Also in the series circuit was a 310-ohm power resistor. The resistor dropped the line potential by about 93 volts, leaving about 19 volts for the three 6.3-volt filaments.

The elimination of the power transformer had a side effect that became a useful selling feature. Without the transformer, the radio could be operated on DC just as well as on AC. The downtown sections of many large cities still had DC mains, a holdover from the service provided by the original Edison Illuminating Company.

The DC market wasn’t really big. But the AC/DC, or "universal" feature of the Kadette was a boon to folks who still had DC services. These unpatures had to purchase rotary converters to operate any straight AC appliances (which of course were much more common than DC ones) that they wanted to use.

MIDGET ENCLOSURES

The Kadette was not housed in a vertically oriented "cathedral" or "tomstone" cabinet. Its really small chassis (made possible, in part, by the elimination of the transformer) allowed the use of a small, oblong enclosure. I don’t have any size documentation on this set. However, I do have an ad for the Emerson "Universal Compact" radio (see Fig. 4), which is an almost exact electrical copy of the Kadette, giving the dimensions of the former as 10 by 6 1/2 by 4 1/2 inches (WHD). The Kadette was probably the first "midget" radio, a term later applied to its many similar competitors and successors.

Another trend that made it possible to achieve such dramatic radio downsizing was the "minimizing" of many radio parts. Tuning capacitors became close-spaced so they could achieve the needed capacitance in a smaller format. The "potting" of components into decorative housings was eliminated, with coils and transformers mounted individually as "naked" units.

In addition, stages were grouped so that they could be interconnected with the shortest possible leads rather than hooked up in a straight line, beginning with the first RF amplifier and ending with the audio output. The home radio no longer looked as if it had been built from individual parts in an electronics lab. Rather, it was now a home appliance of integrated design.

Personally, I enjoy the little thirties midgets at least as much, if not more, than the more sophisticated looking and expensively built radios of earlier (and later) times. Only rarely was the appearance of these sets influenced by industrial designers. As a result, many have an ingenuous appearance that I find quite charming.
Get ready for a magnetic adventure, circuiteers, because this visit we're going to look at some CMOS Hall Effect sensors and see what we can do with them. A German company, MICRONAS INTERNET-ALL, produces a relatively new line of inexpensive CMOS Hall Effect sensors, which fall into four categories: bipolar, unipolar, latching, and differential. Our first adventure begins with the HAL 115UA-C bipolar sensor that sells for less than a buck in single quantity (Digi-Key sells it as part number HAL115UA-C-ND; Tel. 800-344-4539).

INSIDE THE 115UA-C

The 115UA-C can operate with a 4.5- to 24-volt supply and output 10 mA to a load. The junction-temperature operating range for this device is 0° to 100°C. Figure 1 shows the plastic transistor-outline package (TO-92UA). Note the branded side of this chip (i.e., the side that shows the sensor's ID numbers), as this is the side that actually contains the Hall Effect sensor (more on this in a moment).

Fig. 1. Here are two views of the HAL 115UA-C that will make it easier to orient the IC in the circuits that follow.

Before we proceed, a word of warning is in order. These are very small devices, measuring only 4 x 3 x 1.5 mm, which can easily get lost on a busy workbench. Murphy has a rule for this size device: If you drop it you lose it. Let's take a brief look at what goes on inside this mini-three-legged magnetic sensitive device. A block diagram of the chip is shown in Fig. 2. Deep inside the tiny package is a monolithic integrated Hall plate or Hall Effect sensor, which responds to a magnetic field. When a magnet is placed close to the plate, with the proper pole parallel to either side (more on polarity later) of the flat area on the IC, the output at pin 3 changes states.

A temperature-dependent bias circuit keeps the Hall Effect sensor stable for any temperature changes within its rated operating range. An over-voltage protection circuit keeps tabs on the input supply voltage, and the output is short-circuit protected. Last but not least in importance is the circuit's built-in hysteresis feature, which eliminates oscillation and allows for clean switching on/off output.

SIMPLE MAGNET DETECTOR

Our first application, shown in Fig. 3, contains the HAL 115 in its simplest circuit form. The output, at pin 3, is normally low without a magnetic field present, causing LED1 to light. However, if the north pole of a magnet is placed near IC1's branded side, the LED will turn off. The same results will occur when the south pole of a magnet is positioned near IC1's opposite, unbranded side. Removing the magnet turns the LED back on. A typical, small donut-shaped magnet, like the ones sold in most hardware stores, will activate the sensor at a distance of about ¼ to 1-inch.

Here's how to check out the IC's hysteresis characteristics: Start with a

Fig. 2. This block diagram of the HAL 115UA-C shows how the Hall Effect plate-sensor signal is processed and made available at pin 3. Note the hysteresis control, which eliminates oscillation and allows for clean switching.

Fig. 3. In this simple circuit, LED1 will turn off when a magnet is brought close to IC1 (see text).

PARTS LIST FOR THE SIMPLE MAGNET DETECTOR (Fig. 3)

IC1—HAL 115UA-C Hall Effect sensor, integrated circuit
LED1—Light-emitting diode, any color
R1—1000-ohm, ¼-watt, 5% resistor
magnet placed about 3 inches away from the sensor and slowly move its north pole toward the branded side of the chip. Stop at the point where the circuit turns the LED off. Now slowly move the magnet away from the sensor and stop where the LED turns back on. The distance between the turn-on and the turn-off point is the sensor’s dead zone. This zone keeps the sensor’s output from flip-flopping back and forth as the magnet is moved toward and away from the sensor.

REVERSED DETECTOR

Our next entry, shown in Fig. 4, adds an NPN transistor, Q1, to invert the previous circuit’s output function. In this circuit the LED remains off until the sensor detects a magnetic field—a more traditional detector scheme.

![Fig. 4. By adding an NPN transistor to the circuit in Fig. 3, we get a detector whose LED](image)

same way by replacing the circuit’s LED with an optoisolator.

Both this circuit and the one in Fig. 3 can operate off a 5-volt power supply and interface with TTL logic IC circuitry. Also Hall Effect ICs will interface with most CMOS logic IC families.

MAGNET-POLE IDENTIFIER

Our next entry (see Fig. 5A) uses two HAL 115 sensors in a magnet-pole identification circuit. IC1 is positioned with its branded side facing out; and IC2 is positioned with its branded side facing in, as shown in the mounting scheme in Fig. 5B.

If the north pole of a magnet is aimed at the two sensors, LED1 will light, indicating a north pole; and if the south pole is aimed at the two sensors, LED2 will light, indicating a south pole. The circuit can also be used to match magnets as to their polarity and relative field strength. If two similar shaped magnets turn on either of the LEDs at the same distance, then you can deduce that their fields are similar in strength.

![Fig. 5. The circuit in A will let you detect the polarity of a magnet. The two ICs are aligned as shown in B.](image)

PARTS LIST FOR THE MAGNET-POLE IDENTIFIER (FIG. 5)

| SEMICONDUCTORS | IC1, IC2—HAL 115UA-C Hall Effect sensor, integrated circuit |
| | Q1, Q2—2N3904 general-purpose NPN transistor |
| LED1, LED2—Light-emitting diode, any color |

| ADDITIONAL PARTS AND MATERIALS |
| R1—10,000-ohm, ¼-watt, 5% resistor |
| R2—1000-ohm, ¼-watt, 5% resistor |

This circuit may be modified for many different circuit applications. As an example, an optoisolator may be used in place of the LED; and the circuit can be used to turn on an AC-operated device, such as a motor, lamp, relay, or solenoid. If the normally “on” output condition is desired, the previous circuit can be used in the

PARTS LIST FOR THE REVERSED DETECTOR (FIG. 4)

| SEMICONDUCTORS | IC1—HAL 115UA-C Hall Effect sensor, integrated circuit |
| Q1—2N3904 general-purpose NPN transistor |
| LED1—Light-emitting diode, any color |

| ADDITIONAL PARTS AND MATERIALS |
| R1—10K resistor |
| R2—1K resistor |

High-Sensitivity Detector

Our next circuit, shown in Fig. 6A, increases the HAL 115’s sensitivity range by a factor of forty. This magnetic regenerative circuit can detect a magnet passing within 30 to 40 inches of the sensor.

The sensor’s magnetic regeneration circuit is not that different in oper-
ation or in principle from the regenerative receiver circuits used in the early days of radio. In a regenerative receiver circuit, a portion of the amplified RF signal is fed back into the input in a controlled manner at a level just below the point of circuit oscillation. Even today a good performing regenerative receiver can rival many of the low-end radios in its ability to receive a weak signal.

Here's how our regenerative circuit operates. Coil L1 (read on for winding details) is positioned, as shown in Fig. 6B, snugly against the non-branded side of the IC. If L1 is temporarily disconnected from Q1's collector, the sensor's output at pin 3 will be low. At this point, the circuit operates in the same way as our first circuit in Fig. 3. By re-connecting L1 to the collector of Q1, the circuit is now operating in a feedback mode. With the sensor's output low, Q1 is biased on sending current into L1, which produces a south pole magnetic field at the non-branded side of the sensor. The sensor detects the south pole's field and tries to turn off; but when the sensor's output starts to go high, Q1 begins to reduce the current flow into L1, reducing its field strength—at this point the circuit goes into oscillation.

The frequency of oscillation is determined by the feedback current through L1 and the coil's inductance. Potentiometer R4 sets the regeneration feedback current level. For the circuit to operate in the traditional manner, R4 is adjusted to the point where the oscillation just ceases. Now if the north pole of a magnet is moved toward the branded end of the sensors, it detects the change in the magnetic field and produces a high output at pin 3. Transistor Q1 then turns off, removing the magnetic field produced by L1; and the sensor's output goes low, turning Q1 back.

Fig. 6. Using a coil (L1) to increase sensitivity, the circuit in A can detect a magnet up to 40 inches away. Align the coil as shown in B.

sensor's output at pin 3 will be low. At this point, the circuit operates in the same way as our first circuit in Fig. 3. By re-connecting L1 to the collector of Q1, the circuit is now operating in a feedback mode. With the sensor's output low, Q1 is biased on sending current into L1, which produces a south pole magnetic field at the non-branded side of the sensor. The sensor detects the south pole's field and tries to turn off; but when the sensor's output starts to go high, Q1 begins to reduce the current flow into L1, reducing its field on to start the circuit oscillating. The frequency of oscillation is determined by the strength of the magnetic field produced by the magnet on the branded side of the sensor.

The circuit's most sensitive mode of operation is with the regeneration control set to the point where the circuit oscillates at its lowest frequency. In fact, at this setting it will sound like the background count of an old Geiger counter or even an early beat-frequency metal locator. For those of you who are not familiar with either of these elderly gadgets, the sound is something like a putt-putt, at a one-second or lower repetition rate. When a magnet is brought into the sensor's detection range, the frequency of oscillation will either increase or decrease depending on the polarity of the magnetic field facing the branded side of the sensor. Transistor Q2 amplifies the audio signal and sends it to the 32-ohm speaker, SPKR1.

The circuit should be built in a non-metallic enclosure, with the speaker mounted perpendicular to the IC and as far away from the chip as possible. Coil L1 can be just about any relay coil with a DC resistance of 100 to 200 ohms, or a hand-wound coil can be built by winding about a thousand feet of 30-gauge enamel-covered copper wire on a soft iron core. A soft iron bolt with a diameter of ⅛ to ⅜ inch and a length of 2 inches will do. I tried several old relay coils with the circuit and they all worked.

If you love experimenting, this is a must-build circuit. I'm sure that some of you will come up with some interesting applications for this unusual magnetic detector circuit. Stay tuned because next month we'll continue with more Hall Effect circuits.
HAM Radio

A Neat Little WWV/WWVH Receiver

From time to time I like to review various products that are of interest to hams, as well as to others. This time I am going to look at a neat little high-performance WWV/WWVH receiver. You can build it yourself or buy it wired and tested.

But first, some background “for those who came in late.”

WWV BASICS

The National Institute of Standards and Technology (NIST), successor to the old National Bureau of Standards, operates several time and frequency standards stations. There are two HF shortwave stations (WWV at Fort Collins, Colorado, and WWVH at Maui, Hawaii), and one 60-kHz VLF station (WWVB, Fort Collins). Both HF stations operate on 2.5, 5, 10, and 15 MHz (WWV also transmits on 20 MHz). You can tell the difference between them by the announcer: WWV uses a male voice and WWVH uses a female voice. On occasion, you can hear both at the same time, but for the most part only one will be audible at any one listening site.

These stations offer a number of different services. The NIST WWV Web site is www.boulder.nist.gov/timefreq/wwv. The site has a couple of QuickTime video movies that explain what the organization does for the public. In brief, the services include: time announcements, standard time intervals, standard frequencies, UT1 time corrections, and BCD time code (which can be used for WWV-controlled time clocks).

Further, NIST broadcasts geophysical alerts, prepared by the Space Environment Services Center of NOAA. These are aired on the 18th minute of the hour to give information on solar activity, geomagnetic fields, solar flares and other geophysical statistics. More Earth-based alerts are given by NIST, too, such as marine storm warnings (prepared by the National Weather Service).

OMEGA Navigation (10–14 kHz) System status reports are also handled, as well as Global Positioning System (GPS) status reports (prepared by the U.S. Coast Guard to give current status information to mariners on the GPS navigation satellites).

The WWV and WWVH output frequencies are useful for secondary frequency measurements and calibration in your ham shack. For example, hams often calibrate 100- and 1000-kHz crystal-marker oscillators to either WWV or WWVH. The time announcements and BCD code are related to the NIST atomic time scales in Boulder, Colorado.

The frequencies as transmitted are accurate to about one part in 100 billion for frequency and about 0.01 ms for timing. Day-to-day deviations are normally less than one part in 1000 billion. The actual received accuracy is far less due to various propagation effects, but is usually about one part in ten million for frequency and about 1 ms for timing.

WWV and WWVH radiate 10 kW on 5, 10, and 15 MHz. WWV radiates 2.5 kW on 2.5 and 20 MHz, while WWVH radiates 5 kW on 2.5 MHz and does not broadcast at all on 20 MHz.

The NIST site describes antenna and modulation characteristics: “The WWV antennas are half-wave dipoles that radiate omnidirectional patterns. The 2.5-MHz antenna at WWVH is also of this type. The other antennas at WWVH are phased vertical half-wave dipole arrays. They radiate a cardioid pattern with maximum gain pointed toward the west. Both stations use double sideband amplitude modulation. The modulation level is 50 percent for the steady tones, 25 percent for the BCD time code, 100 percent for the seconds pulses and the minute

This tiny little Hamtronics RWWV receiver is very selective and sensitive, yet doesn’t carry a very hefty price in kit form. The company even offers an inexpensive alignment tool.

The WWV and WWVH output frequencies are useful for secondary frequency measurements and calibration in your ham shack. For example, hams often calibrate 100- and 1000-kHz crystal-marker oscillators to either WWV or WWVH. The time announcements and BCD code are related to the NIST atomic time scales in Boulder, Colorado.

The frequencies as transmitted are accurate to about one part in 100 billion for frequency and about 0.01 ms for timing. Day-to-day deviations are normally less than one part in 1000 billion. The actual received accuracy is far less due to various propagation effects, but is usually about one part in ten million for frequency and about 1 ms for timing.

WWV and WWVH radiate 10 kW on 5, 10, and 15 MHz. WWV radiates 2.5 kW on 2.5 and 20 MHz, while WWVH radiates 5 kW on 2.5 MHz and does not broadcast at all on 20 MHz.

The NIST site describes antenna and modulation characteristics: “The WWV antennas are half-wave dipoles that radiate omnidirectional patterns. The 2.5-MHz antenna at WWVH is also of this type. The other antennas at WWVH are phased vertical half-wave dipole arrays. They radiate a cardioid pattern with maximum gain pointed toward the west. Both stations use double sideband amplitude modulation. The modulation level is 50 percent for the steady tones, 25 percent for the BCD time code, 100 percent for the seconds pulses and the minute

This tiny little Hamtronics RWWV receiver is very selective and sensitive, yet doesn’t carry a very hefty price in kit form. The company even offers an inexpensive alignment tool.
and hour markers, and 75 percent for the voice announcements.

WWV RECEIVER

Hamtronics, Inc. (65 Moul Rd., Hilton, NY 14468-9535; Tel. 716-392-9430; Fax: 716-392-9420; e-mail: jv@hamtronics.com; Web: www.hamtronics.com) offers a neat little WWV receiver. The Hamtronics model RWWV is a very sensitive and selective AM superhet receiver, crystal controlled on 10,000 MHz.

The RWWV can operate on either a 12-volt DC power supply or a 9-volt DC battery (neither supplied). It is available either in kit form for builders or already assembled. If you purchase the unit with the metal cabinet, a 115-volt AC power adapter is provided so you can simply plug it in the wall. The cabinet has a built-in speaker, but you can also use an external speaker. The receiver even has a squelch circuit that can be used to mute the audio if the signal fades into the noise.

The RWWV is set for 10 MHz—the WWV signal can be heard for a large part of the day throughout the country on this frequency, while frequencies above and below 10 MHz will fade either day or night depending on propagation conditions. A 10-MHz frequency is the best compromise for a single-channel receiver and permits you to get time and frequency calibration almost anytime.

The RWWV has a 50-ohm input so you can connect it to any type of HF antenna. It is pretty sensitive, however, and I got good reception with just a 10-foot length of 22-gauge insulated hook-up wire stretched up to the ceiling (a convenient plant hanger has made a “skyhook” for many an impromptu living-room antenna at my house). You can also use a small telescoping whip antenna of the sort found on FM and shortwave portable radios; a simple, random-length, outdoor wire antenna; or a 10-MHz dipole (46.8 feet overall, 23.4 feet each leg).

Some more specifications of the receiver: Sensitivity is 0.2 μV for 10 dB s/n, selectivity is ±3 kHz at −3 dB and ±10 kHz at −50 dB, image rejection is 43 dB, and audio output is 1 watt.

Prices for the RWWV receiver in its many forms are: PCB-only kit—$59; RWWV Receiver kit with cabinet and speaker and 12-volt DC Adapter—$89; RWWV Receiver assembled and tested with cabinet, speaker, and 115-volt AC Adapter—$129. There are also some accessories you can get: the A2 Tuning Tool is $2.50 (and highly recommended if you buy the kit form, and at least mildly recommended if you buy the built version), and the mating plug for the receiver (#A74 BNC twist-on plug for RG-58/u cable) is $1.75.

Unlike some companies who supply the ham and hobbyist market, Hamtronics provides lifetime technical support for anyone needing help before or after equipment purchase.

One of the things that bothers a lot of neophyte builders who attempt receiver projects is the matter of alignment. However, the RWWV is easy to align, especially with the $2.50 Hamtronics alignment tool. Turn on the newly completed receiver and hook it to a good indoor or outdoor antenna. If you hear the WWV or WWVH signal, then you already have your “signal generator” courtesy of NIST! Otherwise, you can use any service grade or homebrew signal generator that will tune to 10 MHz to “rough it in,” and then use the actual WWV/WWVH signal to complete the alignment process.

Don’t let fear of building get in the way of actually trying the kit. Of course, if your only goal is to obtain a WWV receiver, then buy it built. But if you are “on a budget” or want the experience of building a radio receiver, then try the kit approach. I’ve built two Hamtronics kits, and the instructions are uncommonly good.

AN ANTENNA TO BUILD

The RWWV is a single-channel shortwave radio receiver, so it will work best if connected to a good antenna. The standard half-wavelength horizontal dipole antenna is one of the easiest antennas to build, yet works very well. One does not need a 100-foot tower with a Yagi beam to do pretty well operating on the ham bands (many DXCC and WAC awards were won by people using 100 watts or less into a dipole, so don’t sneer at this handy antenna).

Figure 1 shows the basic construction of a dipole. The supports are shown here as masts, but they can be any combination of things that gives the needed height: trees, buildings, masts (commercial and homemade). The antenna is connected to the masts through ropes. I’ve found over the years that nylon rope works best (nylon parachute cord is easily available). The ropes are tied to end insulators, either ceramic, glass, or nylon.

The wire segments (A) are each a quarter-wavelength long, and the overall (B) is 2A. The general case is that B = 468/ fMHz and A = 234/fMHz. The “468” constant is an approximation of the foreshortening from the “real” half wavelength (492/fMHz) caused by capacitive end effects and wire velocity factor.

The correct lengths for a 10-MHz frequency are 23.4 feet or 7.15 meters for A, and 46.8 feet or 14.3 meters for B. For a 10.075-MHz frequency, use...
23.25 feet or 7.1 meters for A and 46.45 feet or 14.2 meters for B.

OK, so why did I include 10.075-MHz specs for a 10-MHz receiver? The reason is simple: we're hams, aren't we? The 30-meter ham band is right above the 10-MHz WWV/WWVH frequency covered by the Hamtronics RWWV receiver, so we can use a single antenna on both frequencies. The VSWR-versus-frequency curve for the typical dipole is relatively broad, so the antenna can be used over about a 200-kHz portion of a band. The antenna design frequency, 10.075 MHz, is the mid-point between the 10-MHz WWV and the upper end of the 30-meter amateur band. If you want to try QRP operating (covered here last year), then a simple shielded SPDT toggle switch can be used to provide antenna access for both the QRP station and the RWWV.

OTHER USES
Long-time readers of this column know that I am fond of observing natural radio phenomena such as whistlers, spherics, propagation anomalies, and others (a phrase I coined, radioscience observing, covers all of them—see my book RadioScience Observing Volume 1, Howard W. Sams/PROMPT Publishing). One of the needs of radioscience observers is to record time marks. The usual procedure is to record WWV signals on one track of a stereo cassette tape recorder, and the natural radio signals on the other. That procedure allows radioscience observers to accurately time events. The RWWV can be easily modified to output a signal to the recorder. Tap the audio signal at the top of the volume control and feed it to the recorder.

HAMS IN EMERGENCIES
According to a W1AW bulletin transmitted from ARRL headquarters (225 Main St., Newington, CT 06111; e-mail: hq@arrl.org; Web: www.arrl.org), the FCC ordered hams not to use 14.275 MHz (±3 kHz) until “further notice,” unless the hams are involved in handling emergency message traffic for the Honduran emergency following Hurricane Mitch. Recall from news stories last fall that more than 10,000 people were killed by the storm, and more than 1,000,000 were made homeless. Two former U.S. presidents, Carter and Bush, went to Honduras and were utterly appalled by the extent of the damage. Tipper Gore, wife of Vice President Al Gore, called the damage “...of Biblical proportions.”

We keep hearing that hams are no longer relevant for emergency communications because of the explosion of commercial telecommunications. Who needs hams when there are cellular telephones? The answer is simple: everyone. Hams can get back on the air much more rapidly than most commercial sites. A few yards of wire to replace a destroyed antenna and a charged car battery will get many of us back on the air in about twenty minutes time. And give us a couple hours and a light generator and we’re first class. Even when commercial and military facilities come on air, they will be overwhelmed with priority official traffic and have little time for “health and welfare” messages to family and friends. That’s a role hams do real well. A simple “We survived and are well” can be sent as a book message to dozens of recipients at a time.

That’s all for now. I can be reached by snail mail at PO Box 1099, Falls Church, VA 22041, or by e-mail at carrjj@aol.com.

MULTIMEDIA WATCH
(continued from page 7)

Expert’s entertainment titles are varied, but they include all the basic card games in multimedia form such as Bicycle Solitaire, Bicycle Blackjack, Bicycle Poker, Bicycle Euchre, Bicycle Rummy, and Bicycle Bridge. Safari Hunter delivers the thrill of the hunt without needless gore, while Deep Sea Challenge takes you on a virtual fishing expedition. Titanic puts you in charge of an expedition to find the wreck all over again, and you can look for your own clues as to why it sank once you discover the wreck.

Expert Software even publishes famous Sega game titles on CD-ROM for the PC. These include Sega Virtua Squad, which turns you into a super cop in an urban zone that has been overrun by criminals, and Sega Rally Championship, which brings off-road racing to the PC with dirt, mud, jumps and more. Sega Worldwide Soccer puts all the action of the real game on your PC for you to enjoy at home.

And now for a software vendor that’s completely different. Sentinel Returns, from Psygnosis, is based on the 1980s strategy game, so it contains similar gameplay, but with modern enhancements such as a score written by John Carpenter. The haunting game also features stunning 3D graphics with advanced texturing and lighting. This title costs $49.95.

Hasbro Interactive has released a wonderful Star Wars Millennium Falcon CD-ROM playset. It comes with a plastic cockpit (complete with Han Solo action figure) that mounts on top of your keyboard and acts as a game control. The software transports you into the Star Wars universe, where you’ll trade blaster fire with enemies from the Dark Side in locations like Dagobah and Tatooine. The playset, for ages five and up, costs $49.95.

Also from Hasbro Interactive are two other great titles. Tonka Workshop is another ingenious computer playset for kids. This is basically software that lets kids build everything from vehicles to furniture, letting users shape and assemble the materials and even paint the finished product. The ingenious part is a workshop of real tools—real enough, anyway—that straps onto the keyboard providing kids with working sanders, drills, wrenches, and more to interact with in the game. My four-year old thinks he’s really building an airplane, especially when he prints a color picture of it on the inkjet. Hedz turns head hunting into sport, with 20 levels played across four asteroids. As you work your way through the tournament, you collect new heads by shooting other heads until your heads pop off—different heads provide different powers. Tonka Workshop and Hedz each cost about $40.

Access Software has upped the PC golfing ante once again with Links LS 1999 Edition. Links LS 1999 Edition features the St. Andrews Links Old Course plus more than 25 new features. Arnold Palmer takes part, along with two new golfers and several new courses. St. Andrews, the most popular course in the world, and Arnold Palmer’s Bay Hill, are both included in the new course lineup. Of course, the more than 25 already available add-on courses are still compatible with the Links LS 1999 Edition. This title costs about $50. There’s an upgrade version for previous Links customers that costs less.
NEW PRODUCTS
(continued from page 8)

Switched Telephone Network interface circuitry, including ring detection, hookswitch function, gyroror/transformer function, surge protection, and transient protection, the unit provides galvanic isolation and is packaged in a single 1.07 × 1.07 × 0.4-inch plastic module. An innovative electronic gyroror circuit is used to minimize DC resistance and maximize AC impedance seen by the telephone line with the hookswitch closed. Transformer coupling is used for the signal path. The integrated module features 0.01% THD, 1500V peak isolation, and 300V surge protection, and accepts ring voltages up to 150V rms. The module is rated over a temperature range of 0° C to 70° C.

The CYG2911 is priced at $12.90 in quantities of 5000. For more information, contact CP Clare Corp., 78 Cherry Hill Drive, Beverly, MA 01915-1048; Tel. 978-524-6700 or 800-CPCCLARE; Fax: 978-524-4900; Web: www.cpcclare.com.

CIRCLE 82 ON FREE INFORMATION CARD

MINIATURE SOLDERING IRON
Built for comfort and efficiency, this precision miniature soldering iron is ideally suited for electronic assembly work. The heating element of the Antex Model G/3U Precision Miniature Soldering Iron is located directly under the tip for optimum thermal efficiency, while the handle remains cool—and it recovers instantly after soldering each joint. Constructed with a plastic handle and a metal heat shield, this positively grounded industrial-grade soldering iron is only 7½ inches long and ¾ inches wide.

Providing power and performance comparable to a conventional 30-watt soldering iron, this lightweight miniature 18-watt soldering iron reaches 750°F in only 45 seconds. Over 40 different shapes and sizes of slide-on tips including spades, chisels, pyramids, and needles are available for virtually all soldering tasks.

The Antex Model G/3U Precision Miniature Soldering Iron is priced at $23.32 and tips are priced from $1.99 each, depending upon shape, size, material, and quantity. For more information, contact M.M. Newman Corp., 24 Tioga Way/P.O. Box 615, Marblehead, MA 01945; Tel. 781-631-7100; Fax: 781-631-8887; Web: www.mmnewman.com.

CIRCLE 83 ON FREE INFORMATION CARD

FIELD-STRENGTH ANALYZER
With the battery-operated Protek 3201 in hand, engineers can make quick, accurate RF field measurements of any communications installation or equipment, from 100 kHz to 2060 MHz. Its phase-lock-loop circuitry provides precise tuning and frequency stability with 3 PPM accuracy. This 24-oz. handheld 2-GHz instrument automatically scans 160 channels in selectable steps and offers the convenience of manual, memory, and search scans.

A built-in frequency counter provides 50 PPM with 120-mV input sensitivity. The large, easy-to-read, back-lit LCD display panel features a variety of display formats including bargraphs and a spectrum display with 192 ×192 pixel resolution. In addition, there is an audio output stage with built-in speaker and a volume control for monitoring signals.

Operationally, the 3201 can be used to test, measure, install, and maintain RF equipment, including wideband FM and narrowband FM transmitters; single sideband and AM systems; cable television; TV and radio broadcast equipment; PCs and paging systems; antenna sites; cellular, cordless, and mobile telecom communications systems; marine radio and navigation systems; and to do EMC compliance testing. Test setups and measurements can be stored in the internal memory, and the user can select all the functions from the menu or from the RF-232C user interface, which has a 4-baud rate and a parallel-port connector.

Printouts are also possible via a printer port connection. There is a Copy Set Mode to permit DMA of channel setup and data values. This portable instrument can also make measurements on 75-ohm systems via software calibration. RF field-level measurements are from -70 dBm volts to -20 dBm volts (N-FM mode).

The Protek 3201 costs $2100. For more information, contact HC Protek, 154 Veterans Drive, Northvale, NJ 07647; Tel. 201-767-7242; Web: www.hcprotek.com.

CIRCLE 84 ON FREE INFORMATION CARD

AM INDOOR ANTENNA
Intended to receive AM frequencies from 530 kHz to 1700 kHz, for local and distant AM reception, the adjustable AM Advantage permits ease of tuning and superior reception. Using TERK’s Pin Dot Pre-Tuning, the antenna electrically adjusts to the AM station the user is trying to receive. This function allows the user to fine tune the antenna to match the frequency on the tuner or receiver, while minimizing noise and interference caused by unwanted signals.

AM broadcasts are captured clearly on this passive indoor radio antenna with less noise and static distortion than if using an ordinary AM loop antenna. The antenna’s tuning dial enables users to receive AM stations with greater efficiency.

This antenna has a sleek styling that helped it win CEMA’s Innovations Award for 1998. The Advantage is a sculpted two-tone black and gray loop that rests on an arched base with a soft lavender dial in the center.

The AM Advantage costs $49.95. For more information, contact Terk Technologies, 63 Mall Drive, Commack, NY 11725; Tel. 516-543-1900 or 800-942-8375; Web: www.terk.com.

CIRCLE 85 ON FREE INFORMATION CARD
DTMF INTERFACE (continued from page 34)

0-9, *, # several times, and then hang up the phone.

Once the answering machine resets, simply remove the tape and play it back using a cassette recorder with an earphone jack. After cueing up the tape to the portion containing the DTMF tones, connect the interface to the recorder’s earphone jack, and play back your test tape. DTMF digits should now begin appearing on your monitor. If no digits appear, try raising or lowering the tape recorder’s (or scanner’s) volume-control setting and try again. However, normal volume should suffice.

If incorrect digits appear on the monitor (for example, the digit received was known to be a DTMF “1,” but a “4” was displayed), then re-check the wiring of the DB-25 connector and try again. After everything is working properly, install the cover onto the enclosure, and show your friends that useful monitoring accessories don’t have to be expensive. ■

HIGH-VOLTAGE CIRCUIT (continued from page 40)

Assemble on the perfboard the circuit shown in Fig. 4 (the circuit’s schematic diagram) as a guide. Start by temporarily mounting the components to the perfboard section. When mounting power resistor R1, be sure that it is mounted away from anything flammable and that sufficient space is provided between the power resistor and any other components to allow good air flow around the resistor. Note: Although the author specifies a 10-watt power resistor in the Parts List, the unit used in the prototype is a 50-watt, metal-enclosed unit. Using a resistor of sufficient power-handling capacity helps to guard against possible mishap.

Depending on the line voltage in your area and the SIDAC you use, it may be necessary to adjust the value of R1 in order to get the circuit to switch at or before 90 degrees. Doing so reduces the amount of power R1 is required to dissipate, while allowing sufficient margin to enable the SIDAC to fire slightly after 90 degrees in the event that the line voltage goes low.

A two-position barrier block was tied to the transformer output and used to connect the circuit’s high-voltage source to an 18-inch long, small-diameter neon tube.

Use. With its 2400-volt output, the circuit can be used to fire neon tubes. The author used the circuit to repair an ancient “weed-burner” fence charger by replacing the burned-out mechanical vibrator with this SIDAC-based circuit. With high-voltage rectification, the circuit can be used as a plasma neon laser supply or an air ionizer. Use your imagination—the possibilities are limitless!

SCANNER SCENE (continued from page 12)

between them. Split your 16 oz. can of Pepsi with a pal and what’s left for you? Just enough to fill an 8 oz. glass! Split the antenna’s received energy, and it’s divided in half to each scanner. Not to worry. Although each set will notice a minimal 3-dB signal loss, in most instances this should be imperceptible to you. Weak signals can be rejuvenated with a SuperAmplifier.

MONITORING THE FEDS

Barry, of Charleston, SC, reports monitoring unidentified communications on 140.075 MHz, and he asks for more information. We locked it up, and it’s the Channel 1 repeater of the U.S. Naval Investigative Service! This agency uses the same eight channels, nationwide.

Interest in monitoring federal agencies continues to tantalize scanner owners. An excellent guide for Barry and everyone else who’s interested is the huge 308-page Federal Government Frequency Assignments, 8th Edition. Here’s the all-in-one resource for the latest known VHF/UHF frequencies used by the U.S. military services; the Secret Service, ATF, CIA, DEA, FBI, Border Patrol, and Immigration; IRS, Customs Service, and Postal Inspectors; EPA, FAA, FCC, NASA, and NSA; and by the National Park Service, Dept. of Agriculture, and so on. CTSS tone information is provided.

Plenty of additional information reveals military satellite communications channels, White House code names, USAF aircraft IDs, etc. Frequencies are listed by agencies, and they are also cross-indexed. Special lists show all (1500+) assignable federal frequencies from 29-420 MHz.

This great reference is $24.95, plus $5 shipping/handling ($7 to Canada) from CRB Research Books, Inc., 210 O’Connor Blvd., San Diego, CA 92101. We invite your questions, comments, and frequencies. Our direct e-mail address is Sigint@juno.com. Send snail mail to Scanner Scene, Popular Electronics, 500 Bi-County Blvd., Farmingdale, NY 11735.
Robotics for the Next Millennium.
Exploring the New World of Science Kits.

OWL's "Next Generation" of affordable, rugged Robot Kits for the next millennium challenges the enthusiast to solder circuit boards and/or mechanically assemble. Each OWIKIT also incorporates the basic principles of robotic experiments, sensing and locomotion, guaranteeing an exciting, hands-on adventure of knowledge and fun!

But remember! OWI is the recognized founder and leader in Educational Robot Kits. ACCEPT NO IMITATIONS.

Visit our homepage at www.owirobot.com

17141 Kingsview Ave., Carson, CA 90749

Order M - F: 8 a.m. - 4 p.m. PST

<table>
<thead>
<tr>
<th>Product</th>
<th>Model</th>
<th>Description</th>
<th>Pgs.</th>
<th>Book</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAO-G</td>
<td>OWI-968K</td>
<td>Fuzzy Logic</td>
<td>68</td>
<td>$89.95</td>
</tr>
<tr>
<td>ROBOTIC ARM TRAINER</td>
<td>OWI-007</td>
<td>5 Axis Control</td>
<td>53</td>
<td>$69.95</td>
</tr>
<tr>
<td>TRIPLE ACTION SOLAR CAR</td>
<td>OWI-685</td>
<td>Solar Sensor</td>
<td>47</td>
<td>$59.95</td>
</tr>
<tr>
<td>S-CARGO</td>
<td>OWI-926K</td>
<td>Sound Sensor</td>
<td>47</td>
<td>$59.95</td>
</tr>
<tr>
<td>WAO II</td>
<td>OWI-961K</td>
<td>Programmable - Graphic</td>
<td>59</td>
<td>$69.95</td>
</tr>
<tr>
<td>SPIDER</td>
<td>OWI-922K</td>
<td>Infrared Sensor</td>
<td>48</td>
<td>$49.95</td>
</tr>
<tr>
<td>LINE TRACKER</td>
<td>OWI-906K</td>
<td>Infrared Sensor</td>
<td>49</td>
<td>$49.95</td>
</tr>
<tr>
<td>HYPER PEPPY</td>
<td>OWI-909K</td>
<td>Sound / Touch Sensor</td>
<td>46</td>
<td>$39.95</td>
</tr>
<tr>
<td>MOON WALKER</td>
<td>OWI-969K</td>
<td>Solar Sensor</td>
<td>10</td>
<td>$34.95</td>
</tr>
</tbody>
</table>

ELEKIT

E-mail: owi@ix.netcom.com
Web Page: www.owirobot.com
Turn Your Multimedia PC into a Powerful Real-Time Audio Spectrum Analyzer

Features
- 20 kHz real-time bandwidth
- Fast 32 bit executable
- Dual channel analysis
- High Resolution FFT
- Octave Analysis
- THD, THD+N, SNR measurements
- Signal Generation
- Triggering, Decimation
- Transfer Functions, Coherence
- Time Series, Spectrum Phase, and 3-D Surface plots
- Real-Time Recording and Post-Processing modes

Applications
- Distortion Analysis
- Frequency Response Testing
- Vibration Measurements
- Acoustic Research

System Requirements
- 486 CPU or greater
- 8 MB RAM minimum
- Win. 95, NT, or Win. 3.1 + Win.32s
- Mouse and Math coprocessor
- 16 bit sound card

Priced from $299
(U.S. sales only – not for export/resale)

Download FREE 30 DAY TRIAL!

www.spectraplus.com

Visit our web site!
www.mouser.com

Subscribe, download, or view catalog online!

- Over 84,000 Products
- More than 145 Suppliers
- Same Day Shipping
- No Minimum Order

800-992-9943
817-483-6828 Fax: 817-483-6899
catalog@mouser.com

958 North Main St., Mansfield, TX 76063

CIRCLE 165 ON FREE INFORMATION CARD
6-1/2" Two Way System

This is our most popular in-wall. You won't believe how good these really sound. Big enough to produce great home theatre sound and still fit everyone's budget. Put a pair in every room of your house. Great for front or rear speakers in your surround system. The 6-1/2" polypropylene woofer and 1" textile dome tweeter were specially designed with home theatre in mind. The crossover network utilizes a mylar capacitor for crisp clean highs. Piece design make installation in new or existing walls simple. Specifications: 6-1/2" polypropylene cone woofer with poly butyl surround and mylar dome tweeter/midrange; 8 ohm impedance; component L/C crossover network; frequency response; 50-20,000 Hz. Power handling capability: 60 watts RMS/85 watts max. Sensitivity: 89 dB 1W/m. Over-dimensions: 6-1/2" W x 1'-1/2" D x 3-1/2" H. Hole size: 7-1/4" x 10-3/4". Fits into standard 2" x 4" wall. Net weight: 12 lbs. per pair.

#300-036 $89.90 [P] $79.50 [P]

Satellite Speaker Stands

These quality speaker stands are perfect for front or rear surround speakers. The heavy die cast base provides stability. Quality speaker stands with friendly, knowledgeable assistance. *New protection against bending, installations, or for use as rear channel surround speakers. Adding them to your home theatre mix has never been easier! System features a weather resistant 6-1/2" treated paper cone, poly butyl surround, coaxially mounted 1/2" polymer dome tweeter, and built-in crossover with mylar capacitor in the tweeter section. Retrofit design allows installation in both new and existing construction in just minutes. System includes removable mesh grills, built-in mounting bracket, hardware, and installation instructions. Specifications: Impedance: 8 ohms. Frequency response: 60-20,000 Hz. Power handling capability: 30 watts RMS/45 watts max. Sensitivity: 89 dB 1W/m. Over-dimensions: 9" round x 2-7/8" deep. Net weight: 5 lbs. per pair.

#300-408 $69.95 [P] $62.75 [P]

3 Amp Power Supply

This fully regulated power supply is perfect for powering CDS, car radio amplifiers, and VCR, CBs, car radios, and other devices. The high efficiency design makes it a perfect choice for your audio or video equipment. Specifications: *Input Voltage: 13.8 VDC (fixed) *Output Voltage: 3.3 (cont.); 5 amps (surge). *Ripple Voltage: Less than 3mV max. Net weight: 5 lbs. **Weight: 5 lbs. #120-530 $19.95 [P] $18.50 [P]

DMM and LCR Meter

In addition to functions found in regular DMM's, this meter can also measure inductance in 5 ranges (4mH, 40mH, 400mH, 4H, 40H), capacitance in 5 ranges (4uF, 40uF, 400uF, 40mF, 4uF), frequency in 4 ranges (2kHz, 20kHz, 200kHz, 2MHz), TTL logic test, diode test, and transistor FET test. AC/DC ranges up to 1000V (AC/DC). 3-1/2 digit readouts up to 20A and 7 resistance ranges up to 4000 M ohms. Includes test leads, battery, spare fuse, and short circuit protection.

#390-513 $85.99 [EACH]

2.5W Mini Audio Amplifier

This amp contains both pre-amplifier and power amplifier on a super small board measuring only 1-1/8" x 1-1/4" x 1/4". Overall output power is 2.5W into 4 ohms with 12VDC input power. No adjustments required. Short circuit protected.

#320-215 $9.95 [EACH]
kenwood CS-4125 Sale!!!

Free KENWOOD t-shirt with purchase of CS-4125 oscilloscope!!!

KENWOOD

MODEL CS-4125
20 MHz, 2 Channel, includes probes
Suggested Price $595.00
SUPER SPECIAL $389.00!!!

PRINT Products International
8931 Brookview Rd * Silver Spring, MD, 20910 * 800-638-2020 * Fx 800-545-0058
www.prodintl.com

INTERNET SECURITY

The latest tricks and methods hackers use on the Net to pirate software (warez), and hack websites. Includes examples, countermeasures, password defenses, Packet-Switched Networks, UNIX, Sprintnet, X.25, anonymous FTP, brute force tools, lots of tips. More! $29. wins=19.6K

INTERNET TRACKING & TRAICERS - spammers, stalkers, recyclers, and others hide behind the Internet's anonymity to commit serious offenses. Learn from master hackers best methods to track, trace IDs and origins, and to protect your own privacy. More! 25K wins=15.4K

INTERNET FRAUDS - exposes to the many vulnerabilities of the Net, labeled internal 100+. Extrash, labelers, stammers, spammers and snoops. More to the point. $24. $29 wins=18.6K

INTERNET TRACKING - exposed to the predators, stammers, spammers and snoops. More! 25K wins=19.1K

Kposing (BEPPER) GUIDE - how to use, different types and uses, frees, advantages and countermeasures. Plus plans for a Personal Pocket Paging System (mitter and receiver). More! $29 wins=13.1K

Both for only $69!

CALLER ID & ANI SECURITY

FAX MACHINE SECURITY

All known methods to hack Fax and countermeasures. Includes computer fax modems, crimes, intercepts, fax servers, fax-on-demand, protocols, parameters, compression, encryption, and fax surveillance-type tools. More! $29 wins=20.4K

PBX SECURITY

PBX hacking flaws of $5-$10 billion/day? Detailed vulnerabilities (especially for out-dial, countermeasures. Exclusive author interview for tech! 24K wins=17.6K

ATM SECURITY

107 ATM crimes, vulnerabilities, defenses exposed — TEMPEST, mag stripes, false fronts, supercooled! More! Care histories, labeled internal phones! wins=38K wins=14.8K

CELLPHONE/CORDLESS GUIDE

How cellphones operate — mobs. Vulnerabilities to hack attack, countermeasures. Cloning details for NAMs, ESNs, etc. control data formats, computing encoded MNs, ESNs, SIMs, Op Sys, PROMs, forcing ACK, test mode and resets, cable diagrams, scanning, tracking, scanner restorations, freq allocations, roamin, step-by-step to keypad-reprogram 100+ popular cellphones. One FREE-database search. Plus much on Cordless phones. More! $45 wins=18.6K

PAGER (BEPPER) MANUAL - how Pagers work, different types and uses, frees, advantages and countermeasures. Plus plans for a Personal Pocket Paging System (mitter and receiver). More! $29 wins=11.7K

Both for only $69!

STOPPING POWER METERS

As reported on "60 MINUTES"! 6th Edition! Details devices that can slow down (even stop) power meters while loads draw full power - great science projects! Devices plug into one outlet and normal loads into other outlets. Describes meter, operating, troubleshooting, and many other tips. Describes SPMEM device and external magnetic methods used to slow and stop meters! Hosted by a top expert in the field. A must-read for the novice to the pro! Stock up with our SPM-related manuals! $29. (20 min)

THE I.G. MANUAL

Details external magnetic fields (applied to meters) outlaw use to slow down and stop power meters while drawing full loads. $25 wins=19K

KW-HR METERS - how watt-hour meters work, calibration, error modes (many), ANSI Standards, ELC, Demand and Polyphase Methods. Experimental results to slow, stop power meters by others. $25 wins=24.3K

Both for only $49. 3 for $64, all 4 for $79!

COMPUTER SECURITY

Describes in detail how computers penetrate each other, and how VIRUSES, TROJAN HORSES, WORMS are implemented. Dozens of computer crime and abuse methods and countermeasures. Includes disk filled with hacker text files and utilities, and the legendary FLUSH+PROTECT system. Internet intelligence, password defeats, gospy-truck manual + PC Disk! $35 wins=11.6K

THE HACKER FILES - expose 3 rd party disk packs filled with choice raw, colorful, highly informative hacker, phreaker text files covering many topics! $30

BETWEEN VAN ECK TEMPEST

Remote keystroking plans of TV video noise bugs range up to 1 KMs. Describes how Van Eck systems work, and are also used in surveillance of computer systems. Plus TVRO vs phone privacy detailed! $29 wins=14.9K

Van Eck DRM Tag is $79. (15 min. Both for only $49)

MAN Y MORE TITLES!

For complete price & descriptions: BEYOND PHONE COLOR BOXES, ANSWER, MACHINE SECURITY, CASING SECRETS, CHEK & M.Q. SECURITY, CREDIT CARD SECURITY, CRON & SECS DATA BOOK, SOCIAL ENGINEERING, POLYGRAPH SECRETS, THE MACINTOSH ULTIMATE SECRET MANUAL, STEALTH TECHNOLOGY, SIMPLE CHEAP ELEC, SECRET & SURVIVAL RADIO, THE "GOLDFINGER" THE ›SILKWOOD‹ SECRETS OF SOLDIERS BBS, HIGH VOLTAGE DEVICES MIND CONTROL UNDER ATTACK! RADIONIC MANUAL, HEAL YOURSELF! SECRET & ALTERNATIVE IDs, CYPTANALYSIS TECHNIQUES, GOVERNMENT LAND GRAB, ROCKETS RED GLARE, SURVIVAL GUNS & AMMO, THE ULTIMATE DRIVER, THE DIRTY-2 DOZEN! SCIENTIFIC & ENGINEERING: BIOLOGY, CHEMISTRY, PHYSICS, ETC. SEE CATALOG SPECIAL PROJECTS. We will design & build just about anything electronic! Hardware done by SPECIAL PROJECTS. Send FIO SSAS or $1 for SF Application Form, else get at: www.tsc-global.com/slap-spp.html

CIRCLE 142 ON FREE INFORMATION CARD
BREAST CANCER BEGINS EVEN SMALLER THAN THIS. THAT'S WHY YOU NEED A YEARLY MAMMOGRAM, ESPECIALLY AS YOU GET OLDER. MAMMOGRAMS CAN DETECT LUMPS TOO SMALL FOR YOU TO FEEL AND EARLY DETECTION MAY SAVE YOUR LIFE, SO CALL 1-800-ACS 2345.

OSCILLOSCOPES from $169 !!!

ATC O-Scope uses printer port to turn PC-AT into Digital Storage Oscilloscope, Spectrum Analyzer, Freq. Counter, Logger, DVM. DC-500KHz

- Print, log to disk, or export data
- Accepts standard scope probes
- Uses standard printer port
- Small and portable
- Works with laptops
- Same day shipping
- Made in U.S.A.

Order yours today.

800 980 9806
MC/Visa/Amex
Allison Technology Corporation
2006 Finney-Vallet, Rosenberg, TX 77471
PH: 281 239 8500, FAX: 281 239 8006
http://www.atcweb.com

CAD FILES TO CASH PILES

IMAGINE THE POSSIBILITIES!
ROUTE, MILL, DRILL, CARVE,
ENGRAVE, PAINT, ETC.
IN WOOD, PLASTIC, VINYL,
PC BOARD, & LIGHT METALS.

THE ROBOPRO X50 CNC ROBOTIC MACHINING SYSTEM
YOUR WISH IS ITS COMMAND!

Visit us at
www.uscyberlab.com

BUGGED??

SAVE $300 on a Computer with our special offer! Call now to order your computer TODAY. Only $399.95.

SINGERS! REMOVE VOCALS
Unlimited, Low Cost, High Quality Available Background Music. Choose from Original Standard Recordings. Every song is complete. No special equipment required. Save money. Get more work. Order your free catalog now.

FCC License Preparation

Electronics Tech., Avionics, Marine & Radar HOMESTUDY—Fast, Easy, Inexpensive

Order now and receive our special offer.

Free 1-800-800-7555 "Guaranteed Pass" Featured in the World Access Network Business Showcase

Call now for more information. 866-755-2000

www.americanradiohistory.com
XK-700 Digital / Analog Trainer

Elenco's newest advanced designed Digital / Analog Trainer is specially designed for school projects. It is built on a single PC board for maximum reliability. It includes 5 built-in power supplies, a function generator with continuous sine, triangular and square wave forms and a 1560 tie point breadboard area. Tools and meter shown optional. (Mounted in a professional tool case made of reinforced metal).

XK-700
- Assembled and Tested: $189.95

XK-700 - SEMI KIT
- w/ Fully Assembled PC Board: $174.95

XK-700K - Kit
- $159.95

Digital Multimeter

Model M-1740
- Free Holster
- $39.95
- 11 functions
- Freq to 20MHz
- Cap to 20µF
- AC/DC Voltage
- AC/DC Current
- Beeper
- Diode Test
- Transistor Test
- Meets UL-1244 safety specs

DIGITAL LCR METER

Model LCR-1810
- $99.95
- Capacitance 1pF to 20µF
- Inductance 1µH to 200mH
- Resistance 0.1Ω to 200MΩ
- Temperature -20°C to 75°C
- DC Volts 0 - 20V
- Frequency up to 15MHz
- Diode/Audible Continuity Test
- Signal Output Function
- 3 1/2 Digit Display

Digital Capacitance Meter

Model CM-1555
- $44.95
- Capacitors from 1pF to 20mF
- 3 1/2 Digit LCD
- Zero adjust
- Special insertion test
- 12% basic accuracy
- 1µA stand

Digital Audio Generator

Model SG-9300
- $175
- 10Hz - 1MHz
- Low Distortion
- Sine-Square waves
- Built-in 150MHz Frequency Counter

Kit Corner

Model AM/FM-108K
- Transistor Radio Kit with training course: $29.95

35mm Camera Kit
- Learn all about photography: $24.95
- No Soldering Required

Digital Function Generator

Model GP-720K
- 3 fully reg. DC supplies
- 1.5VDC - 15VDC @ 1A
- 15VDC to -15VDC
- 5VDC @ 3A
- Plus
- 6.3VAC @ 1A and 12.6VAC C.T. @1A
- Available assembled model GP-720K $84.95

Power Supply Kit

Model GP-720K
- $54.95

Sweep Function Generator

Model GF-8036
- $225
- Range .02Hz - 2MHz
- Sine, Square, Triangl, Pulse, Ramp
- Ext. counter 1Hz - 10MHz

RF Generator

Model SG-9500
- $225
- 100KHz - 150MHz
- Internal AM Mod of 1KHz
- RF Output 100MW - 35 MHz
- Audio Output 1KHz @ 1V rms

Elenco's High Quality Tools

- Hex Wrench
- Micro Screwdriver
- Spring Hook
- Retaining Ring
- Inclined Base Screwdriver
- Reversible Screwdrivers
- Corner Kat
- 15pc. VCR Service Tool Kit

15pc. VCR Service Tool Kit
- Special: $24.95

Model M-6100
- The M-6100 is Elenco's most sophisticated meter with almost every possible feature available. The M-6100 even has a computer interface for viewing and storing data on a personal computer. It comes complete with software, RS-232 cable, test leads and manual.
- $99.95

Model XP-581
- 4 Fully Regulated DC Power Supplies In One Unit
- 4 DC voltages: 3 fixed +5V @ 3A, +12V @ 1A, -12V @ 1A
- 1 Variable: 2.5 - 20V @ 2A
- $79.95

DIY Projects

- Pentium computer interface available. The Model -720K comes complete with software, and a 1560 tie point breadboard area.

Semi Kit

- $39.95
- Includes:
 - Analog Trainer
 - Digital Capacitance Meter
 - Digital Audio Generator
 - Digital Multimeter

Full Kit

- $54.95
- Includes:
 - Analog Trainer
 - Digital Capacitance Meter
 - Digital Audio Generator
 - Digital Multimeter
 - Power Supply Kit

Complete Kit

- $159.95
- Includes:
 - Analog Trainer
 - Digital Capacitance Meter
 - Digital Audio Generator
 - Digital Multimeter
 - Power Supply Kit
 - Kit Corner

ACCESSORIES

- A complete line of accessories is available to build your own electronic projects.

TURNTABLE

- A complete line of accessories is available to build your own electronic projects.

SATELLITE FINDER

- $39.95
- Aligns Satellite Dishes
- Range 900-2500MHz
- Self Power Check

LOK FOR OTHER MONTHLY SPECIALS ON OUR WEBSITE

C&S SALES EXCELLENCE IN SERVICE

CALL TOLL FREE

(800) 292-7711 orders only
Se Habla Español

15 DAY MONEY BACK GUARANTEE

FULL FACTORY WARRANTY

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

72
Quality Scopes by Elenco

Lowest Prices of the Year!

Includes Free Dust Cover and Probes

C & S SALES
Your one stop source for all your electronic needs!

CALL OR WRITE FOR OUR
NEW FREE 64 PAGE
CATALOG!
(800) 445-3201

Same Day Shipping

Fluke Scopemeters

123 NEW $1140
928 $1445
96B $3495
97 $1695
99B NEW $2095
109B $2545

ALL FLUKE PRODUCTS ON SALE

B & K PRECISION SCOPES

20MHz DUAL-TRACE
Model 2120B - 2 Year Warranty
Special 375
Model 2125A with delayed sweep
$399.95

Affordable Spectrum Analyzers by B&K

500MHz Series
- BK2615A $1250
- BK2620A $1675

1.05GHz Series
- BK2625A $1925
- BK2630A $2595

PORTABLE SEMICONDUCTOR TESTER
B&K 510
$199.00

- In or out-of-order circuit tests for transistor, FETs, SCRs and darlings.

20MHz Sweep / Function Generator with Freq Counter
B&K 4040
- 0.2Hz to 20MHz
- AM & FM modulation
- Burst Operation
- External Frequency counter to 300MHz
- Linear and Log sweep
10MHz B&K 4017 $309
5MHz B&K 4011 $229

$399

Guaranteed Lowest Prices
C&S SALES, INC.
150 W. CARPENTER AVENUE
HEELING, IL 60090
FAX: (630) 541-9904 (630) 541-0170
http://www.elenco.com/c_s_sales/

CIRCLE 32 ON FREE INFORMATION CARD

April 1995 Popular Electronics

www.americanradiohistory.com
DATA ACQUISITION & CONTROL

AFFORDABLE PLUG-IN BOARDS FOR PC'S ISA BUS

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANA100</td>
<td>Analog I/O</td>
<td>$99</td>
</tr>
<tr>
<td>Digi100</td>
<td>Digital I/O</td>
<td>$39</td>
</tr>
<tr>
<td>ANA150</td>
<td>Analog/Counter I/O</td>
<td>$99</td>
</tr>
<tr>
<td>Digi200</td>
<td>Counter I/O</td>
<td>$79</td>
</tr>
<tr>
<td>ANA200</td>
<td>Analog I/O</td>
<td>$79</td>
</tr>
<tr>
<td>ANA201</td>
<td>Analog I/O</td>
<td>$119</td>
</tr>
</tbody>
</table>

On-Line Product Catalog at Our Web Site

http://www.Bsoft.com

E-Mail: Sales@Bsoft.com

Electronic Training Videos

Learn electronics quickly and easily with UCANDO's computer-animated training videos. Students can learn at their own pace, professionals will find the UCANDO videos to be a valuable source of reference material. If these videos aren't the best learning tools you've ever seen, return them within 30 days for a complete refund. These videos are being used by Tech-Schools, CET's, Military Branches, Ham Operators, Industries, and more, across the United States and around the world. Order today and see how UCANDO is "Changing the Way the World Learns Electronics."

SAVE!!! 6 videos for only $240 or 12 videos for only $450

VCR Maintenance & Repair ... $29.95
- Intro to VCR Repair
- Direct Current
- Alternating Current
- Semiconductors
- Power Supplies
- Amplifiers
- Oscillators
- Digital 1
- Digital 2
- Digital 3
- Digital 4
- Digital 5
- Digital 6
- AM Radio
- FM Radio Part 1
- FM Radio Part 2
- TV Part 1
- TV Part 2
- "The Front End"
- TV Part 3
- "Audio"
- Fiber Optics
- Laser Technology

All others ... $44.95 each
- Intro to VCR Repair
- Digital 1
- Digital 2
- Digital 3
- Digital 4
- Digital 5
- Digital 6
- AM Radio
- FM Radio Part 1
- FM Radio Part 2
- TV Part 1
- "Intro to TV"
- "The Front End"
- "Audio"
- Fiber Optics
- Laser Technology

UCANDO Videos

1-800-678-6113

or mail check or money order to:

UCANDO Videos
P.O. Box 928
Greenville, OH 45331

FREE Shipping ... FREE Catalog

CIRCLE 147 ON FREE INFORMATION CARD
POPULAR FUSE KIT

180 Piece Kit

Kit Contains 10 Pieces of each of these items:
- AGC Type: 0.5A, 1A, 1.5A, 2A, 2.5A, 3A, 4A, 5A, 6A, 10A, 15A
- Ceramic Type: 15A
- GMA Type: 1A, 1.5A, 2A, 3A, 4A, 5A

Everything Comes in a Durable Plastic Box

Item # 10-2050

TUN-O-WASH

Fast-drying electronics grade cleaner for tuners, controls and PC boards.
- CPC and HCPC Free
- Not for use on energized equipment

Due to the chemical content, this product can only be shipped by UPS ground service.

Item # 30-0100 (12.5 Oz aerosol)

SOLDERING IRON

General Purpose Applications
- 117V AC, 30 Watts

Item # 50-1325

WELLER WLC100 SOLDERING STATION

- 40W Pencil Iron and ST# inter changeable tip
- Replaceable heating element
- Cushioned foam grip Safety guard iron holder
- On/off switch with "power-on" indicator light

Item # 51-1505

Free 400 Page Color Catalog With your First Order

1-800-325-2264
Any waveform you want!

New Features:
- 21.5 MHz
- .01 Hz steps
- multi-unit phaselock

Telulex Inc. model SG-100A

- DC to 21.5 MHz linear and log sweeps
- Int/Ext AM, SSB, Duatone Gen.
- DC to 21.5 MHz
- Int/Ext FM, PM, BPSK, Burst
- Ramps, Triangles, Exponentials
- Noise
- Arbitrary Waveforms
- Unlimited Possibilities!

Telulex Inc.

2455 Old Middlefield Way S Tel (650) 938-0240 http://www.Telulex.com
Mountain View, CA 94043 Fax (650) 938-0241 Email: sales@Telulex.com

CIRCLE 137 ON FREE INFORMATION CARD

The 5360 DMM, one of the world’s finest digital multimeters. The best of the ASYC II Series, it has the best accuracy, a built-in counter, and displays AC voltage as resistive power or dB (impedance selectable), saving you the time of making the calculation. A careful examination of the performance features and user-conscious design will tell you that you hold a superior DMM in your hand, designed with the measurement capability needed by users who demand the best. The 5360 DMM. You can depend on it anywhere. Regular $249.00, On Special at $195.00!!!

- 50,000 count
- 0.1% DCV
- True RMS, AC or AC + DC
- 0.1% ohms
- 30 kHz AC response
- Autoranging, bargraph
- Capacitance to 50,000 uF
- Frequency, duty cycle
- Sealed case, splashproof
- IEC 1010 class 2 safety compliance
- 3 year warranty

Call, fax or email for your free B&K Precision catalog and a copy of our B4 page test and measurement instrument catalog today!
I covered a lot of miles driving a cab for 13 years... but I sure didn't get anywhere! I mean the hours were long. The pay was short. My boss pushed, pushed, pushed all the time. In the meantime bills were piling up. Medical bills. House repairs. Charge cards. Just the everyday things. I was not just behind the wheel. I was behind the eight ball.

That's when I saw a magazine article that talked about the hottest big money-making career opportunities of the 90's. The one that interested me the most pertained to the NEW explosive SATELLITE DISH/TV/ELECTRONICS field.

I mailed the coupon for the FREE information kit they offered. I liked what I saw. What the information packet came in the mail. What really caught my eye, however, was the idea that I could gain all the knowledge I needed to make a success of this business studying in my spare time at home. Foley-Belsaw's modern, practical bands on course combines simple step-by-step lessons with easy-to-follow video cassette guidance. No special experience, education or electronics background is necessary. Just average mechanical aptitude to follow simple A-B-C repair procedures that are clearly outlined for you.

I decided to get in on the action... and just look at me now! Now I'm really in the driver's seat. I'm doing what I want to do. I'm my own boss. I set my own hours. I'm making more money than my wife and I ever dreamed possible. Would you believe I'm making twice what I made driving a cab... and I work only half as many hours.

Get in the FAST LANE on the New "INFORMATION SUPERHIGHWAY" Everyone's Talking About!

Mail for FREE Information Package

Foley-Belsaw Institute
6301 Equitable Road
Kansas City, MO 64120-1395

Please Check Only One of the Following:

Q Satellite Dish, Dept. 31673
Q Computer Repair, Dept. 94934
Q Gunsmithing, Dept. 92714
Q PC Programming, Dept. 55620
Q VCR Repair, Dept. 62932
Q Vinyl Repair, Dept. 71354

Name:

City:

State:

Zip:

Call Toll-Free 1-800-487-2100
Sun Equipment Corporation
Since 1988
P. O. Box 79703, Raleigh, NC 27624 E-mail: sunequipco@ipass.net
To request free catalog, please call, fax, write, or e-mail us.

LODESTAR
1-800-870-1955 / (919)870-1955 Fax:(919)870-5720

1 Year Warranty. 15 Day Money Back Guarantee. School purchase order accepted. Bids accepted.
DEALERS & SALE'S REP'S WELCOME. DISTRIBUTOR & OEM WELCOME.
VISA, Mastercard, Discover, AmEx

WINTER SPECIALS
SPECIALS
DIGITAL MULTIMETER

GRID DIP METER

FREQUENCY COUNTER

GRID DIP METER

SIGNAL TRAJECTOR/INJECTOR

LCM METERS

DIGITAL MULTIMETER

MICROPROCESSOR TRAINER

AUTO DISTORTION METER

CIRCLE 158 ON FREE INFORMATION CARD

www.americanradiohistory.com
CABLE T.V. EQUIPMENT
Friendly, Knowledgeable Service

ORDERS CALL:
1-800-361-4586

- All Equipment New
- Convertors & Descramblers
- 30 Day Money Back Guarantee
- 6 Month Warranty
- Visa, MC, C.O.D. Welcome

KDE ELECTRONICS, INC.
P.O. Box 1494
Addison, IL 60101
Info. 847-233-0621 HRS: Mon-Fri, 9-6 CST
Fax 847-233-0623 Sat, 10-2 CST

New and Pre-Owned Test Equipment

Goldstar

Model OS-5100 → $899.00
Full 100 MHz Bandwidth!
- Dual-Channel, High Sensitivity
- TV Synchronization Trigger
- Calibrated Delayed Sweep
- Includes Two Probes, 2 Year Warranty

Spectrum Analyzer
- Avcom PSA-37D
- Satellite Downlink
- Installation Maintenance & Service
- Band 1 10 - 1750 MHz
- Band 2 3.7 - 4.2 GHz
- Built-in DC Block & Power for LNA/LNB's
- Line or Battery Powered
- Only $2,475.00!

Pre-Owned Oscilloscope Specials

Tektronix 2213 60 MHz $549.00
Tektronix 2215 60 MHz $649.00
Tektronix 465 100 MHz $599.00
Tektronix 465B 100 MHz $729.00
Tektronix 475 200 MHz $829.00
Tektronix 475A 250 MHz $999.00

- Professionally Refurbished
- Aligned & Calibrated to Original Specifications
- The Industry Standard of Oscilloscopes
- 1 Year Warranty - The Longest Available!!!

SIMCHECK®II PLUS Module Tester
- Tests SIMMs/168 p DIMMs
- Stand alone/portable
- Identifies Module properties
- Advanced Setup Capabilities
- Only $2750.00!

We Buy Surplus Test Equipment

Leader CATV Signal Level Meter Model LF 941
- TV/CATV Coverage from 46 - 870 MHz
- Video/Audio Carrier Measurements $695.00!

Just Released! → "Series III" Multimeters
- Fluke Model 87III $319.00 !!!

CIRCLE 139 ON FREE INFORMATION CARD

Test Equipment Depot
A FOTRONIC CORPORATION COMPANY
99 Washington St. Melrose, MA 02176
(781) 665-1400 • FAX (781) 665-0780
email: sales@fotronic.com
See us on the Web!
www.fotronic.com

No Calories. No Fat.
No Cholesterol.

NO KIDDING. Our free Consumer Information Catalog serves up over 200 free and low-cost government booklets you can really sink your teeth into. Perk up your appetite with subjects like saving money, buying a house, educating your children, getting technical benefits, eating right, staying healthy, and many more.

So come in get it! Whatever your taste, you can feast on the free Catalog. It's filled with plenty of satisfying booklets just call toll-free 1-888-8 PUEBLO.

Or get a bite on the Consumer Information Center website: www.pueblo.gsa.gov

U.S. General Services Administration

www.americanradiohistory.com
Give him or her that special heartbeat.

28 leds form 2 blinking hearts.
Power supply: 9V battery

For different applications (such as model construction) and educational purposes.
Adjustable flashing speed.
Power supply: 9V battery

For different funny and practical applications. 4 high-intensity leds light up and react simultaneously on every sound.
Power supply: 9V battery

Never let you surprise by flooding! Gives alarm sound when water is detected.
Incorporated alarm buzzer. Water sensor can be placed at distance. Cutting the board and using wires to connect the sensor.
Power supply: 9V battery

$70.95

STROBOSCOPE
Adjustable flash frequency: 5-15Hz
Power supply: 120Vac
Power consumption: 13W max.

$19.95

ELECTRONIC CRICKET
This cricket turns on when it gets dark. Great as a practical joke.
The tone and repetition between two crickets is adjustable.
Power supply: 9V battery

$12.49

Superb audio amplifier with incredible tiny dimensions.
Integrated circuit has a pre- and power amplifier which can be used separately.
Max. output power: 2.5W @ 4ohm
Frequency characteristics: 60Hz to 15KHz
Power supply: 4.5V to 15Vdc / 400mA
Exists also as module: M2637

$17.49

WATER ALARM
8 leds running light
Different running effects are selectable (by prog push button).
Adjustable effect speed.
Power supply stand-by by push button.
Power supply: 9V battery

$12.95

LED RUNNING LIGHT

$59.95

LED SOUND-TO-LIGHT UNIT
For different funny and practical applications. 4 high-intensity leds light up and react simultaneously on every sound.
Power supply: 9V battery

$12.95

SIMPLE ONE CHANNEL LIGHT ORGAN
With loudspeaker input. The lamp flashes on the beat of the music. Optical isolated loudspeaker input with adjustable sensitivity: 2W to 60W.
Maximum load: 120W at 120Vac.

$12.95

WHITEHALL STREET SUITE 119
FORT WORTH, TX 76118
(817) 284-7785 F: (817) 284-7712
www.velleman.be email: velleman@earthlink.net

Questions? Contact us for a list of US distributors or to get your FREE catalogue
LASER WINDOW BOUNCE LISTENING SYSTEM

Remarkable concept allows user to hear sounds within a premise over a beam of laser light reflected from a window or similar surface. Experimental device provides hours of interesting and educational use. Utilizes a visible red laser that simplifies alignment and discourages illegal use. Usable range will vary, expect about 20 to 50 meters. Optional lens will increase range. 200 to 400 meters. Further range use requires optical basics. Straight line setup requires patience in alignment and a sturdy video tripod (not incl.)

LWBS Plans $20.00 LWBS5K Kit Plans $149.95
LWBS60 Basic System Assembled and Tested $199.95
LWBS70 Higher Performance Version With High Coherence Laser Gun Sight. Extending Lens, Deluxe Headset...

10-14 of Explosive Bolts of Lightning 250KV TESLA COIL
Transmit Wireless Energy Strange and Bizarre Pseudotechnical effects Ion Motors Anti-Gravity Sensors 20" H x 8" Sq Weight - 25 Pounds 115 Volts 2 Amps AC - 0.006% accuracy CAUTION!
BT3C Plans... $15.00 BT3K Kit/Plans $39.95 BT3C0 Ready to Use... $49.95 BT3C4 Plans 24 to 30" Spkr... $20.00

ION RAY GUN PROJECTS ENERGY!
Star Wars Technology Demonstrates Weapons Potential. See lions In Motion!
ION79 Plans... $10.00 ION COMPLETE KIT $399.95
ION70 Assembled and Tested. $199.95
ION40 & Kit/Plans... $149.95 ION4000 and Tested Kit... $199.95

ATTENTION!
Battery Powered Mpm Sizd Modules for research in HOVERCRAFT, ION GUN, FORCE FIELD SCHEMERS...
MINIMAX4Kv/10ma...$19.95

GRAVITY GENERATOR
Demonstrates a unique phenomena of electrical reactions that produce the effect of 'anti-gravity' you build and elevate a small mock space ship from simple materials.
Excellent scientific demonstration of a fascinating method of levitation on Object!
GRA1 Plans and Book $20.00 GRA1 Pt. Sup Kit/Plans... $99.95 GRA2 Abridged Pt. Sup... $149.95

SHOCK FORCE FIELD/VEHICLE OBJECT ELECTRIFIER
Hand Shock Ball, Weapons, Electricity Objects, Great Payback for $15.00...
SHKIN Kit of Parts Module... $19.95

ALFA ELECTRONICS
HIGH QUALITY TEST EQUIPMENT

CALL 1-800-526-2532 for Order and Free Catalog

DMM
DMM-895 (S197.95) true rms, AC/DC (V/A), Q, b% graph, freq, capac, 8-bit logic, data conversion
DMM-51T ($99.95) 4½ digit, true rms, high resolution, 4½ digit, 8½ digit, capacitance, freq, logi
DMM-28 (S749.5) AC/DC (V,A), freq, contin.
DMM-234 ($99.95) DC/AC (V,A), Q, b% graph, capac, Induct, G, HFE, diode, diode cycle
DMM-123 (S44.95) DC/AC (V,A), G, HFE, diode, continuity
DMM-18 (S149.95) 3½ digit, DC/AC, G, HFE, diode, signal output 3V - 5V, 50mA

Single Output DC Power Supplies
• Constant current, constant voltage mode
• Short Circuit and overload protected

Digital Multimeter Display
PS-301 (S199.95) 20V/3A PS-303 (S219.95) 5V/2A PS-8201 (S299.95) 30V/5A
PS-1112 (S399.95) 60V/5A PS-1106 (S289.95) 120V/1A PS-8107 (S399.95) 150V/5A PS-8108 (S399.95) 300V/5A

Triple Output Parallel to double current output
• Independent of tracking operation

PS-8102 & PS-8103 only

Audio/RF/Func. Gen.
RF Generator + SG-416 (S129.95) 0.1Hz-100kHz sine waves in 8 ranges
• SG-416C/4S/229.95 with 6 digit counter
Audio Generator + AG-2601 (S129.95) 10Hz-1MHz, 0.02% sine, 6 digit counter
• AG-2643C/3 (S229.95) 10Hz-1MHz

Digital Current and Voltage
PS-5001 (S599.95) 100A/5V, 1M/5V PS-5002 (S599.95) 10A/5V, 100V/5V
PS-5004 (S599.95) 10A/5V, 100V/5V

Function Generator + FG-290A (S129.95) 10Hz-1MHz, 0.02% sine, 6 digit counter
• FG-290B (S299.95) Square Wave, 0.02% sine, 6 digit counter

GWINSTEK DC POWER SUPPLIES

20 MHz Scope
Cursors Readout
Triple Output
Single Output Programmable

Function Generator
Benchtop DMM

- OS-420 S134.95
- OS-626G S159.95
- Most economical scope
- Dual CHXO-Y operation
- In/Video sensitivity
- Z-axis input, CH1 output
- TV sync, ALT trigger
- 3½ digit.

ALFA ELECTRONICS
P.O. BOX 8089
PRINCESTON, N.J. 08543-8089
TEL: (800)526-2532 / (609) 897-1135
FAX: 609-897-0206
Email: sales@alfaelectronics.com

www.americanradiohistory.com
FREE Electronics Books Catalog

Visit our Web Site: www.bh.com

Circuit Design Titles

- VCR Troubleshooting & Repair
 0-7506-9940-X
 Paperback 434pp $27.95

- Video Scrambling & Decoding
 0-7506-9980-4
 Paperback 367pp $24.95

- Video Media Servers
 0-240-80926-9
 Paperback 457pp $39.95

- PIC: Your Personal Introduction Course
 0-7506-3932-6
 Paperback 160pp $24.95

- Understanding Telephone Electronics
 0-7506-9944-2
 Paperback 367pp $24.95

- Understanding Automotive Electronics
 0-7506-9944-2
 Paperback 367pp $24.95

- Back-To-Basics Audio Design Manual
 0-7506-9967-1
 Paperback 344pp $39.95

- CRASH COURSE DIGITAL TECHNOLOGY
 0-7506-9997-3
 Paperback 457pp $39.95

- Cellular Telephones and Pages
 0-240-80033-7
 Paperback 336pp $39.95

- Transformers and Motors
 0-7506-9864-4
 Paperback 176pp $22.95

- CRASH COURSE ELECTRONICS TECHNOLOGY
 0-7506-9910-5
 Paperback w/disk 392pp $39.95

- BACK TO BASICS AUDIO DESIGN
 0-7506-9944-2
 Paperback 367pp $24.95

- Understanding Telephone Electronics
 0-7506-9944-2
 Paperback 367pp $24.95

- Understanding Automotive Electronics
 0-7506-9944-2
 Paperback 367pp $24.95

- Back-To-Basics Audio Design Manual
 0-7506-9967-1
 Paperback 344pp $39.95

- CRASH COURSE DIGITAL TECHNOLOGY
 0-7506-9997-3
 Paperback 457pp $39.95

- Cellular Telephones and Pages
 0-240-80033-7
 Paperback 336pp $39.95

- Transformers and Motors
 0-7506-9864-4
 Paperback 176pp $22.95

ORDERING INFORMATION

Phone: 1-800-366-BOOK Fax: 1-800-446-6520 E-mail: orders@bh.com Mail: Newnes, 225 Wildwood Ave, Woburn, MA 01801

Please send me the book(s) listed below.

QTY ISBN TITLE PRICE

Name
Address
City State Zip
Phone Fax E-mail

☐ I have enclosed a check for $☐ Please charge my:
☐ Visa ☐ MasterCard ☐ American Express
Card no. Exp. date

Signature

U.S. Customers: Please add $4.00 handling fee for the first item ordered, $1.50 for each additional item, to all check and credit card orders. Billed orders will be charged additional shipping based on weight and destination. All U.S. orders must include your state sales tax. Prepayment or company purchase order is required for all orders. Prices subject to change without notice.

Canadian Customers: Please pay by credit card or in U.S. funds and include 7% GST on books and handling.

European Customers: Add £2.00 UK and surface postage. ☐ Check for Air Mail; extra cost will be charged.

Please send me a free Newnes catalog, item #645.

TS251

www.americanradiohistory.com
CABLE TV CONVERTERS
Equipment & Accessories
Wholesalers Welcome
Call C&D ELECTRONICS
1-888-615-5775 M-F 10a-6p

PicC C Compiler $59
for Microchip's PIC microcontrollers
Supports Pic16C55x, 16C85x, 16C7x, 16C6x, PIC families
SnXC C Compiler $59
Supports 80C51-based and 8051 microcontrollers
Both compilers based on ANSI C standard. Arrays, unions, structures, pointers, function calls, if, for, switch, while, interrupt vectors, in-line assembler code, 8 & 15 bit variables, etc.
Outputs Intel Hex format and assembly code. Code optimizer included. Excellent development tools!

DebugIDE Debugger $79
Source level debugger for PicC and SnXC compilers. Integrated Development Environment: Step, Run, Stop, Reset. Variable monitoring and modification. Oscillographic Kit ($39)

Zagros Robotics
Write: Chef Engineering and Programming
PO Box 460342
St. Louis, MO 63146-7342
(314)768-1328
info@zagrosrobotics.com
www.zagrosrobotics.com

SURVEILLANCE
The Latest High Tech Professional Electronic Devices
We will not be undersold.
Catalog $5.00 or www.spyoutlet.com

SPY OUTLET
PO Box 337, Buffalo NY 14226
(716) 691-3476/(716) 695-8600

The Pocket Programmer $129.95
The portable programmer that uses the printer port of your PC instead of an internal card.

CABLE TV EQUIPMENT
Converters, Test Cubes & Chips
Video Stabilizers
1 Year Warranty 30 Day Money Back Guarantee

"ABSOLUTELY LOWEST WHOLESALE & RETAIL PRICES"
CABLE U.S.A.
1-888-388-CUBE

Quality Microwave TV Systems
ERICA CABLE - WFTS - MMDS TV - INTERNATIONAL - DIGITAL Amplifiers - Antennas - Booster - Components
*TV Frequency 2100-2170 MHz
**DASE for "FREE" Catalog or Send $1
PHILLIPS-TECH ELECTRONICS
PO Box 460342, ST. LOUIS, MO 63146-7342
CATALOG/INFO: 602-947-7778
ORDER LINE: 602-947-7779
VISA - MASTERCARD - DISCOVER - AMERICAN EXPRESS
FREE SHIPPING

Popular Electronics
Market Center

Since 1971
CHALLENGER SYSTEM
'B/W
3ct

Full-Sized. Full Featured DMM
ONLY $14.95
Part #3300G
Even includes the rubber boot

Electronic Soldering Station with Ceramic Heating Element, 3-Conductor Grounded Power Cord, 250-480°C (470-900°F) Fast Heating
ONLY $39
Part #5R-976
Extra tip selection on our web site.

Compact Circuit Specialists Inc.
800-528-1417/(602)464-2485
FAX (602)464-5824

Full-Size Digital Camera
with Audio Function
ONLY $139
Part #VM3010-A
We also have great deals on bulked (B/W & color) cameras, pinhole cameras (B/W & color), some with audio. Get specs, details & prices from our web site.

You'll
"Bookmark"
This Site!
EPROM+
A device programming system for design, repair and experimentation
- EXCEPTIONAL POWER FOR THE PRO
- EASY-TO-USE FOR THE VOUCHER
- INCLUDES STEP-BY-STEP TUTORIAL

Here's what you get:
A powerful, portable programming unit including the power pack and precise post-cable build of which is inside the case. A 45-page manual and technical manual which includes schematics, directions for programming and pin diagrams for all technology family adapters, a comprehensive wiring guide which is specifically designed to run under DOS, Windows 3.1, and any other software which is able to read programs, C apps and COM programs. No more mess. You have full access to your computer's disk drive including DIAGNOSIS and SOURCE. There are included a data plus, a user's guide, and a comprehensive set of software with more than 20 functions.

$289

$139 Laser LightShow
Draw with a laser beam! Animation, text, music & more! Includes galvos, mirrors, servo amp, demo software, disk, analog and digital computer interface. Use an inexpensive pen pointer or high power gas laser.

Computerized Motors $39
Includes: 2 Stepper motors.
2 DC motors, computer interface, training manual, & demo software disk. Expandable! Up to 12 motors, up to 3 amps per phase.

Now with 4 Axis Linear Interpolation
* Add $5 for shipping. Computer with parallel printer port & cable, assembly, power supply, & laser are required.

FREE FLYER
Voice: 510-582-6602 Fax: 510-582-6603
1271 Industrial Pk. West Bldg. 400 PO Box 5572 Hayward CA 94544-0572

EARN $85/hr! APPLIANCE REPAIR
In almost no time at all you can learn to repair Washers, Dryers, Refrigerators, Dishwashers, and Ranges!

HUGE DEMAND!
FREE INFO: 1-888-329-0880

Appliance Repair Schools Corp. 31855 Date Palm Dr. Suite 3-456 Cathedral City, CA 92234 Dept. PE

April 1998 Popular Electronics

www.americanradiohistory.com
LEADER
For Professionals Who Know The Difference
- Oscilloscopes
- Video Sync/Test Generators
- Waveform Monitors/Vectorscopes
- EFP/ENG Instruments
- RF Signal Level Meters
- Audio Generators & Meters
- Frequency Counters
- Meters & Bridges
- Power Supplies
- Function Generators
- RF Generators

Call, fax or email for your free test and measurement instrument catalog today!
800-638-2020 * Fax 800-545-0058
www.prodintl.com

Test Instruments, Equipment, Tools & Supplies For Electronic Production, Maintenance & Service
8931 Brookville Road, Silver Spring, MD, 20910 * 800-638-2020 * Fax 800-545-0058

CIRCLE 143 ON FREE INFORMATION CARD

Learn MICROCONTROLLERS EMBEDDED SYSTEMS and PROGRAMMING...
...with the AES learning system/embedded control system. Extensive manuals guide you through your development project. All programming and hardware details explained. Complete schematics. Learn to program the LCD, keypad digital, analog, and serial I/O for your applications.

THREE MODELS AVAILABLE. Choose from an Intel 8051, Intel 8088, or Motorola 68HC11 based system. All models come with:
- 32K Byte ROM, 32K Byte RAM - 2 by 16 Liquid Crystal Display - 4 by 5 Keypad - Digital, Analog, and Serial I/O - Interrupts, timers, chip-selects - 26 pin expansion connector - Built in Logic Probe - Power Supply (can also be battery operated) - Powerful ROM MONITOR to help you program, Connects to your PC for programming or data logging (cable included) - Assembly, BASIC, and C programming (varies with model) - Program diode with Cross Assembler and many well documented, program examples - User's Manuals: cover all details (over 500 pages) - Completely assembled and ready to use - Source code for all drivers and MONITOR - Optional Text Book

Call 1-800 -730-3232
Everything you need. From $279.
Money Back Guarantee

CIRCLE 150 ON FREE INFORMATION CARD
Interact ProPad
GAME CONTROLLER
Interact Game Products # SV-230
PC ProPad works with hundreds of
PC games. Very similar to Super
Nintendo controllers, it has a
four-way direction button
on the left, A and B buttons
on the right and speed con-
trols and auto-fire controls in
the middle. 15 pin D-sub con-
nector plugs into the sound
board on most Windows based computers.
$3.00 each
CAT # SV-230
2 for $5.00

3000 MCD ULTRA-BRIGHT
RED LED
Everlight # 3G3URC-2TR1-C(R)
Red, "Ultra-bright" T 1/34 LEDs now at our lowest price ever.
Due to a special purchase of "tape-and-reel" parts we are able to offer these LEDs at an
incredibly low price when pur-
chased on the reel. These are
5 mm diameter water-clear LEDs that
light bright red at 20 ma.
CAT # LED-50
2 for $1.00
100 for $35.00
1000 for $250.00
(25 each)

S-VHS Tape (Used)
Super VHS tape users! Save a bundle on name-brand S-VHS,
T-120 tapes. These tapes were used for a
brief period, then bulk erased. The record-
protect tabs have been broken out, so you will have to cover the
notch with a piece of tape, but they work
great and cost a fraction of the "new" price.
CAT # S-VHS
10 for $28.00 • 100 for $250.00
$3.00 each

Stereo Headset
with Electret Mike
Andrea Electronics # M-150
Designed for use with personal computers for multi-
media, speech recognition, internet telephones, etc.
Stereo head set and boom mike has two separate
3.5mm stereo plugs for connection
to mike and speaker jacks.
Lightweight headphones with adjustable headband.
6' cord.
CAT # PHN-15
$8.75 each

10K Thermostat
Semitec # 103AT-2
10K ohm (1±1%) @ 25 deg. C. Rated
10 mw. Time constant: 15 sec
2 mm x 3 mm. 2.5mm lead spacing.
CAT # THR20
$1.00 each
10 for $8.50
200 for $130.00

250 uh Panel Meter
Good-looking 1.65" x 1.68"
panel meter. Matte-black frame
with a 1.43" x 0.64" viewing window. Scale calibrated from
1 to 10, divided into green
(1-4), yellow (4-6) and red
(6-10) areas. Logo, "The Seeker"
is written under the scale.
CAT # MET-51
10 for $12.50

Encased Piezoelectric Element
0.82" DIAMETER X 0.15"
AVXKyocera # PCRT21BGX
Black plastic front, vented metal
back. Solder loop terminals. Louder than non encased piezo elements. Requires exter-
nal signal to produce sound.
CAT # PE-38
100 for $25.00
1000 for $125.00

Order Toll Free
1-800-826-5432
MAIL ORDERS TO:
ALL ELECTRONICS CORP.
P.O. BOX 567
VAN NUYS, CA 91408-0567
FAX (818) 281-2653 • INFO (818) 904-0524
INTERNET http://www.allcorp.com/
E-MAIL allcorp@allcorp.com
NO MINIMUM ORDER • All Orders Can Be Charged to Visa, Mastercard, American Express or Discover • Checks and Money Orders Accepted by Mail • Orders Delivered in the State of California must include California State Sales Tax • NO C.O.D. • Shipping and Handling $5.00 for the 48 Continental United States • ALL OTHERS including Alaska, Hawaii, P.R. and Canada Must Pay Full Shipping • Quantities Limited • Prices Subject to change without notice.

Manufacturers - We Purchase EXCESS INVENTORIES... Call, Write, E-MAIL or Fax YOUR LIST.
10 Hr. Telephone Recorder $69.95 56.95 SH

Telephone recording controller only $15
3 Hour Micro Telephone recorder with tape $49

FREE CATALOG www.mscelectronics.com

MSC Electronics
PO BOX 461 Jessup, MD 20794
(301) 497-1600
FAX (301) 497-1925

CABLE TV DESCRAMBLERS
GUARANTEED LOWEST PRICES
DESCRAMBLERS FOR ALL SYSTEMS
FREE SHIPPING
CRAZY LIZ'S ELECTRONIC WAREHOUSE
CALL TODAY: 1-800-391-7803

EQUIPMENT IS NEW & GUARANTEED

ADAPT-11 68HC11 Modules for Solderless Boardads
- iexas 2.9 27.8 module
- Ship vertically side at the board talks for easy development
- Boot ROM switch for easy programming at wall pin
- All ICs in dual tapeless containers

For just $95, our Starter Package (68F11) provides every-thing you need to get going fast! Now you can build the power-ful 68HC11 for your project! Includes ADAPT-11 with 68F11-8112, providing 2K EPROM (programmed, 8 kernal & 32K byte internal Flash disk) over a-SSD analog-to-digital Converter (ADC), 1000 digital controls, sour-ces interrupts, Serial Peripheral Interface (SPI), Serial Communic-ations Interface (SCI) & an etc! On-board RS-232 interface guard included. Sound speaker, external reset circuit, and connect-able program switch. Comes with non-commercial versions of 68C11 assembler, BASIC, C, as well as various utilities & exam-ple code. Includes Microcode 68HC11 Pocket Programming Refer-ence Guide and manual with schematics. All you need is a PC to write & program your software. Includes power supply, a solder-less board for pre-built to build your application circuits

Video Media
P.O. Box 93-6025
Margate, FL 33903-6025
(954)-752-9202

Do You Repair Electronics?

RepairWorld.com

Repair Databases for TV, VCR, Monitor, UL
Audio, FCC, and more.
- Over 76,000 records
- Private user forums
- Live on-line chat rooms

Be a private investigator

Home study. Learn surveillance, interrogation, undercover skills, and more. Free literature: 800-223-4542

School of Private Investigation, Dept. JRE541

Electronic Security Devices

A great book for project builders. It is quite common to associate the term "Security Devices" with burglary alarms of various types. However in fact it can refer to any piece of equipment that helps to protect property or property. The text is divided into three basic sections: Chapter 1 covers switch-activated burglary alarms and includes text and entry delays. Chapter 2 discusses other types of burglary alarms and includes Infra-Red, Ultrasonic and Doppler-Shift Systems. Chapter 3 covers other types of security devices such as Smoke and Gas Detectors; Water, Temperature and Baby Alarms; Doorphones, etc. Most circuits are simple, and stripboard layouts are provided.

To order Book BPS5 and send $5.99 includes shipping and handling in the U.S. and Canada only to Electronics Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240. Payment in U.S. funds by U.S. Bank check or International Money Order. Please allow 6-8 weeks for delivery.

Direct from Manufacturer

We will beat any competitor's price

World's Smallest Wireless Video Camera!
- Transmits video up to 1000 ft.
- Runs on 9V battery for 12 hrs.
- Can be built into just about anything (beeper, clock, etc.)

We also carry:
- Color micro video cameras
- BW/micro video cameras
- Hidden cameras
- Custom video systems
- Countersurveillance
- & More

Looking for Distributors

Call for a free catalog
(305) 667-6454
SEURETK
Fax (305) 667-1744
7175 SW 47 St. #205 • Miami, FL 33155
World Passport You By?

Are you interested in Microprocessors & Embedded Control Systems? If not you should! Look around, just about everything these days has an embedded microprocessor in it. TVs, cars, radios, traffic lights & even toys have embedded computers controlling their actions. The Primer is the tool that can not only teach you how these devices operate but give you the opportunity to program these types of systems yourself. Examples & exercises in the Self Instruction manual take you from writing simple programs to controlling motors. Start out in Machine language, then move on to Assembler, & then continue on with optional C, Basic, or Forth Compilers. So don't be left behind; this is information you need to know!

Examples Include:

- Measuring Temperature
- Using a Photocell to Detect Light Levels
- Making a Waveform Generator
- Constructing a Capacitance Meter
- Motor Speed Control Using Back EMF
- Interfacing and Controlling Stepper Motors
- Scanning Keypads and Writing to LCD/LED Displays
- Bus Interfacing an 8255 PPI
- Using the Primer as an EPROM Programmer
- DTMF Autodialer & Remote Controller (New!)

The PRIMER is only $119.95 in kit form. The PRIMER Assembled & Tested is $169.95. This trainer can be used stand alone via the keypad and display or connected to a PC with the optional upgrade ($49.95). The Upgrade includes: an RS232 serial port & cable, 32K of battery backed RAM, & Assembler/Terminal software. Please add $5.00 for shipping within the U.S. Picture shown with upgrade option and optional heavy-duty keypad ($29.95) installed. Satisfaction guaranteed.

EMAC, inc.
11 EMAC WAY, CARBONDALE, IL 62901
618-529-4525 Fax 457-0110
World Wide Web: http://www.emacinc.com

COPY RENTAL TAPES WITH OUR VIDEO STABILIZERS
BEFORE AFTER
FREE CABLE TV CATALOG!

The clearest picture possible playing back movies. GUARANTEED to eliminate copy protection.
- No Rolls/Jitters/Flickers/Fading
- Works on all TVs, VCR's Beta & Cable
- Gold Video Connectors & Cables Included
- 1 Year Warranty
- Money Back Guarantee

VISION ELECTRONICS
1-800-562-2252
2699 S. 156TH CIRCLE • OMAHA, NE 68130
http://www.modernelectronics.com

ATTENTION DEALERS: WHOLESALE ONLY!
BEST PRICES!
FAST SERVICE
SAME DAY SHIPPING

EXCLUSIVE:
2 PIECE SETUPS: $85.00
10 lot • 1 Year Warranty
Latest Technology • Universal Combo's - Ask For Details
CALL US LAST! LOWEST PRICES GUARANTEED!
TOLL FREE: 800-375-3682
FAX: 516-246-5634

ATTENTION CABLE VIEWERS
Own Your Own Unit Today
Cable TV Converters & Descramblers
All Makes / All Models
Free Technical Info: 847-584-2099

ATTENTION CABLE VIEWERS
Own Your Own Unit Today
Cable TV Converters & Descramblers
All Makes / All Models

Call 1-800-577-8775

World's Largest Source for Home Automation

The Best & Most Comprehensive Home Automation Catalog in the Industry
Best Customer Service & Technical Support

FREE 100 page full color catalog!

Thousands of hard-to-find automation, X-10 and wireless control products. Computer interfaces, software development tools, lighting control, telephone systems, security systems, surveillance cameras, infrared audio/video control, home theater, touch screen control, HVAC, pet care automation, wiring supplies, books and videos and much more!

World's Largest Selection!

Lowest Prices Guaranteed!

HOME AUTOMATION SYSTEMS, INC.
Questions: 949-221-9200 Fax: 949-221-9240
e-mail: catalog@smarthome.com
www.smarthome.com

Call for a FREE Catalog! 800-762-7846
800-SMART-HOME
Dealers/Resellers ask about our SmartHome PRO Dealer Program 800-549-6255

ATTENTION CABLE VIEWERS
Own Your Own Unit Today
Cable TV Converters & Descramblers
All Makes / All Models

Call 1-800-577-8775

Technical Info: 847-584-2099

2 PIECE SETUPS: $85.00
10 lot • 1 Year Warranty
Latest Technology • Universal Combo's - Ask For Details
CALL US LAST! LOWEST PRICES GUARANTEED!
TOLL FREE: 800-375-3682
FAX: 516-246-5634
ATTENTION CABLE VIEWERS

CABLE VIEWERS... get back to your
BASiC Cable Needs

Call 1-800-577-8775

For information regarding all of your BASIC cable needs.

5 GOOD REASONS TO BUY OUR FAR SUPERIOR PRODUCT

- PRICE
- EFFICIENT SALES AND SERVICE
- WE SPECIALIZE IN 5, 10 LOT PRICING
- ALL FUNCTIONS (COMPATIBLE WITH ALL MAJOR BRANDS)
- ANY SIZE ORDER FILLED WITH SAME DAY SHIPPING

We handle NEW equipment ONLY - Don't trust last years OBSOLETE and UNSOLD stock!

COMPETITIVE PRICING - DEALERS WELCOME

MEETING TOMORROW'S CHALLENGES TODAY

The men and women in the Navy's Seaman/Airman/Fireman Program are working for America, while learning valuable skills through on-the-job training. They're building solid futures, succeeding in a competitive, high tech world and advancing as quickly as their abilities and performance allow. Find out more about the Seaman/Airman/Fireman Program, as well as other exciting Navy job opportunities, from your local Navy recruiter. This ad is brought to you as a public service of this newspaper.

Navy. Full Speed Ahead.

Hexapod Walker Kit $150.00 Plus S&H

You can build this Hexapod Robot!

This easy to build robot really walks using an alternating tripod gait. It can walk forward, reverse, and turn on a dime, left or right. With a payload of more than 12 oz., this robot is a real workhorse. The robot is programmed using simple BASIC instructions. It makes an excellent foundation for many simple and advanced robot experiments. The kit includes all the hardware, structural components, tilt, servos, First Step Micro kit, software, and an illustrated assembly manual. The Lynxmotion Hexapod Walker is a lot of fun to build and even more fun to operate.

We have many more cool robots, check out our web page or ask for our free catalog!

Lynxmotion, Inc.
104 Partridge Road
Pekin, IL 61554-1403
www lynxmotion.com

Showed with the IRPD, no contact obstacle detector.

Surveillance Hidden Cameras
DIRECf ONE MANUFACTURER-BEST PRICE IN THE MARKET

Phones, televisions, speakers, cables and more! Shortages in stock. Gold, silver, copper, and more. Call us for the latest prices. surf the web with your hexapod robot.

BASIC ELECTRICAL SUPPLY & WAREHOUSING CORPORATION
5401 88th Ave., Suite 350, New York, NY 10017

http://www.americanradiohistory.com

SPECIAL PRICING ON (WE'LL BEAT ANY PRICE!!)

30, 90, 180 DAY MTFN. WRNTY. FREE CATALOG

QTY. DISCOUNTS * DEALERS WELCOME!

1-800-538-2225

HABALMOS ESPANOL

http://www.tvcableboxes.com

GLOBAL ELECTRONICS INC.

CABLE TV BOXES

MEETING TOMORROW’S CHALLENGES TODAY

The men and women in the Navy’s Seaman/Airman/Fireman Program are working for America, while learning valuable skills through on-the-job training. They’re building solid futures, succeeding in a competitive, high tech world and advancing as quickly as their abilities and performance allow. Find out more about the Seaman/Airman/Fireman Program, as well as other exciting Navy job opportunities, from your local Navy recruiter. This ad is brought to you as a public service of this newspaper.

Navy. Full Speed Ahead.

Hexapod Walker Kit $150.00 Plus S&H

You can build this Hexapod Robot!

This easy to build robot really walks using an alternating tripod gait. It can walk forward, reverse, and turn on a dime, left or right. With a payload of more than 12 oz., this robot is a real workhorse. The robot is programmed using simple BASIC instructions. It makes an excellent foundation for many simple and advanced robot experiments. The kit includes all the hardware, structural components, tilt, servos, First Step Micro kit, software, and an illustrated assembly manual. The Lynxmotion Hexapod Walker is a lot of fun to build and even more fun to operate.

We have many more cool robots, check out our web page or ask for our free catalog!

Lynxmotion, Inc.
104 Partridge Road
Pekin, IL 61554-1403
www.lynxmotion.com

Showed with the IRPD, no contact obstacle detector.

Surveillance Hidden Cameras
DIRECT FROM MANUFACTURER-BEST PRICE IN THE MARKET

Phones, televisions, speakers, cables and more! Shortages in stock. Gold, silver, copper, and more. Call us for the latest prices.

BASIC ELECTRICAL SUPPLY & WAREHOUSING CORPORATION
5401 88th Ave., Suite 350, New York, NY 10017

http://www.americanradiohistory.com

SPECIAL PRICING ON (WE’LL BEAT ANY PRICE!!)

30, 90, 180 DAY MTFN. WRNTY. FREE CATALOG

QTY. DISCOUNTS * DEALERS WELCOME!

1-800-538-2225

HABALMOS ESPANOL

http://www.tvcableboxes.com

GLOBAL ELECTRONICS INC.
CLASSIFIED

BUSINESS OPPORTUNITIES

Inventions/new products. ISC, America's leading invention firm, helps submit to companies. Patient Services: 1-800-286-IDEA.

Wholesaler looking for retailer to carry solar electronic and hobby goods. (916) 486-4737. Please leave message.

$450 Weekly Assembling electronic circuit board products from home. For free information send SASE-Home Assembly-PE Box 216 New Britain, CT 06050-0216

CABLE TV

Cable TV Descramblers. One-piece units, Scientific Atlanta, Jerrold, Pioneer, and others. Lowest Prices Around. Precision Electronics Houston, TX, anytime 1-800-676-4610.

FREE TV CABLE CATALOG. Revolutionary new products. Converters, Full viewing boxes, Gold or Silver that do all boxes. Open 7 days a week. 1-800-676-8342

CABLE BOXES ALL MODELS, ALL CHANNELS, In stock now in the United States. Open seven days a week till midnight, Pacific Time. Call (877) 789-7337 Toll Free.

CABLE DESCRAMBLERS, UNIVERSAL, WHOLESALE AND VOLUME PRICING, FULL TECHNICAL SUPPORT. 1-888-922-0671

WHOLESALE TO THE PUBLIC, The industries leading distributor of cable electronics is now open to the public. We will beat all competitor's pricing.

DIMENSION 800-474-2343.

Descramblers, Converters, Activators, RF's, Filt's, Bullet Snoppers, All Options Explained, Best Prices, Services, 2yr, Warranty, Free Catalog 1-800-854-1674 www.resource-leader.com/aapc

CABLE DESCRAMBLING, New secret manual. Build your own Cable Descramblers for Cable and Subscription TV. Instructions, schematics for SSSAI, Gated Sync, Sinewave, $12.95, $2 postage. CABLETROONICS, Box 30502PE, Bethesda, MD 20824.

CB-SCANNERS

CB Radio Modifications! Frequencies, kits, high-performance accessories, books, plans, repairs, amps, 1-10 Meter conversions. The best since 1976! Catalog $3.00. CBGI Box 1988PE, Monterey, CA 93942. www.cbgilf.com

COMPUTER HARDWARE

New computers and parts at wholesale prices. www.Techass.com Toll free 1-877-Tec-hass. We ship all parts and computers 1-877-832-4277.

EDUCATION

BE A COMPUTER SPECIALIST! Learn computer hardware and software. Great career path. Computers are the future. Free information. Call 1-800-326-9221 or write Lifetime Career Schools, Dept-PET-1049, 101 Harrison Street, Archbad, PA 18403.

MISC. ELECTRONICS FOR SALE

RF Transistors & Tubes MRF454, SD1446, 2SC2879, 2SC1969, 2SC2166, 3-500ZG, 4CX2050, 572B, 4CX3000A7, Westgate 800-213-4563.

PLANS-KITS-SCHEMATICS

ELECTRONIC PROJECT KITS: 49 McMichael St, Kingston, ON, K7M 1M8. $3.00 catalog. www.qkits.com. QUALITY KITS

"HEATHKIT COMPANY" is selling photocopies of most Heathkit manuals. Only authorized source for copyright manuals. Phone: 616-925-5899, 8-4 ET.

AWESOME KITS: Voice Changers, Levitators, Lasers, Solar Robots and more! Catalog $1.00. LNS Technologies, PO Box 67243, Scotts Valley, CA 95067, www.ccenet.com/~1stech

MONITORS MADE SIMPLE. Learn to repair computer monitors! Case studies, illustrations, parts sources, manufacturers included! 136 pages, softcover, $19.95 + $2.50 shipping. Order today! Send check or money order to: PikeS Peak Press, 321 W. Henrietta Ave., PO Box 1801, Woodland Park, CO 80866. (719) 687-1499.

SATELLITE EQUIPMENT

DSS Hacking: How to construct and program smart cards, with pic16C84, PCB layout, Complete DSS system schematics, $16.95. Software $25. CABLETROONICS Box 30502PE Bethesda, MD 20824.

DSS Test card. Authorizes all channels for information, plus free bonus. Call toll free 1-888-416-7296.

TEST EQUIPMENT

Large assortment of used test equipment for sale. Request catalog or visit our website. Stevenson Equipment Company 609-888-2846 Fax: 609-888-2547 http://www.stevensonlabs.com

INVENTORS

Take the "America Savings Bond" in America. U.S. Savings Bonds. A public service of this magazine.

MONDO • TRONICS

Your Books

Mailorder

Parts

Source

Videos

For

Models

Robots!

MORE!

[REQUEST YOUR FREE CATALOG]

www.robotstore.com

800-374-5764

Or write to us:

4286 Redwood Hwy #226-137
San Rafael CA 94903
Phone 415-491-1600 • Fax 415-491-4969
Email info@mondo.com

September 1995 Popular Electronics
ADVERTISING INDEX

Popular Electronics does not assume any responsibility for errors that may appear in the index below.

<table>
<thead>
<tr>
<th>Free Information Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D Audio Products</td>
<td>90</td>
</tr>
<tr>
<td>AES</td>
<td>86</td>
</tr>
<tr>
<td>Alfa Electronics</td>
<td>82</td>
</tr>
<tr>
<td>All Electronics</td>
<td>87</td>
</tr>
<tr>
<td>Allison Technology</td>
<td>71</td>
</tr>
<tr>
<td>Amazon Electronics</td>
<td>88</td>
</tr>
<tr>
<td>Andromeda Research</td>
<td>85</td>
</tr>
<tr>
<td>Arrow Electronics</td>
<td>71</td>
</tr>
<tr>
<td>Basic Electrical Supply</td>
<td>90</td>
</tr>
<tr>
<td>Bsoft</td>
<td>74</td>
</tr>
<tr>
<td>C&S Sales, Inc.</td>
<td>72</td>
</tr>
<tr>
<td>Cable USA</td>
<td>84</td>
</tr>
<tr>
<td>Cadsoft</td>
<td>7</td>
</tr>
<tr>
<td>Circuit Specialists</td>
<td>84</td>
</tr>
<tr>
<td>CLAGGG, Inc</td>
<td>11</td>
</tr>
<tr>
<td>Cleveland Inst. of Electronics</td>
<td>49</td>
</tr>
<tr>
<td>Command Productions</td>
<td>74</td>
</tr>
<tr>
<td>Consumertronics</td>
<td>70</td>
</tr>
<tr>
<td>Crazy Liz's</td>
<td>88</td>
</tr>
<tr>
<td>Dalbani</td>
<td>75</td>
</tr>
<tr>
<td>EDE Spy Outlet</td>
<td>84</td>
</tr>
<tr>
<td>Electronic Tech. Today</td>
<td>CV3</td>
</tr>
<tr>
<td>EMAC</td>
<td>89</td>
</tr>
<tr>
<td>Foley-Belsaw</td>
<td>77</td>
</tr>
<tr>
<td>General Device Instruments</td>
<td>88</td>
</tr>
<tr>
<td>Global Electronics</td>
<td>90</td>
</tr>
<tr>
<td>Grantham College of Eng.</td>
<td>14</td>
</tr>
<tr>
<td>Grich RC Inc</td>
<td>84</td>
</tr>
<tr>
<td>Home Automation Systems</td>
<td>89</td>
</tr>
<tr>
<td>ICS Computer Training</td>
<td>37</td>
</tr>
<tr>
<td>Information Unlimited</td>
<td>82</td>
</tr>
<tr>
<td>Interactive Image Technologies CV4</td>
<td>172</td>
</tr>
<tr>
<td>Intronics, Inc</td>
<td>84</td>
</tr>
<tr>
<td>James Electronic Services</td>
<td>89</td>
</tr>
<tr>
<td>KDE Electronics</td>
<td>80</td>
</tr>
<tr>
<td>Lynxmotion</td>
<td>91</td>
</tr>
<tr>
<td>MCM Electronics</td>
<td>79</td>
</tr>
<tr>
<td>Mendelson's</td>
<td>80</td>
</tr>
<tr>
<td>MicroCode Engineering</td>
<td>CV2</td>
</tr>
<tr>
<td>Modern Electronics</td>
<td>85</td>
</tr>
<tr>
<td>Mondo-tronics</td>
<td>91</td>
</tr>
<tr>
<td>Mouser</td>
<td>68</td>
</tr>
<tr>
<td>MSC Electronics</td>
<td>88</td>
</tr>
<tr>
<td>Newnes</td>
<td>83</td>
</tr>
<tr>
<td>NRI Schools</td>
<td>19</td>
</tr>
<tr>
<td>OWI</td>
<td>67</td>
</tr>
<tr>
<td>Parts Express</td>
<td>69</td>
</tr>
<tr>
<td>PHDI</td>
<td>85</td>
</tr>
<tr>
<td>Pioneer Hill Software</td>
<td>68</td>
</tr>
<tr>
<td>Prairie Digital Inc.</td>
<td>86</td>
</tr>
<tr>
<td>Print</td>
<td>86</td>
</tr>
<tr>
<td>Print</td>
<td>70</td>
</tr>
<tr>
<td>ProPlanet</td>
<td>91</td>
</tr>
<tr>
<td>Securetek</td>
<td>88</td>
</tr>
<tr>
<td>Silicon Valley Surplus</td>
<td>85</td>
</tr>
<tr>
<td>Sun Equipment</td>
<td>78</td>
</tr>
<tr>
<td>Technological Arts</td>
<td>88</td>
</tr>
<tr>
<td>Telux</td>
<td>76</td>
</tr>
<tr>
<td>Test Equipment Depot</td>
<td>80</td>
</tr>
<tr>
<td>UCANDO Videos</td>
<td>74</td>
</tr>
<tr>
<td>US Cyberlab</td>
<td>71</td>
</tr>
<tr>
<td>Velleman Inc</td>
<td>81</td>
</tr>
<tr>
<td>Video Media</td>
<td>88</td>
</tr>
<tr>
<td>Vision Electronics</td>
<td>89</td>
</tr>
<tr>
<td>Weeder Technologies</td>
<td>68</td>
</tr>
<tr>
<td>Windjammer Barefoot Cruises</td>
<td>14</td>
</tr>
<tr>
<td>Zagros Robotics</td>
<td>84</td>
</tr>
</tbody>
</table>

ADVERTISING SALES OFFICES

EAST/SOUTHEAST

Megan Mitchell
9072 Lawton Pine Avenue
Las Vegas, NV 89129-7044
Tel. 702-240-0184
Fax: 702-838-6924
e-mail: mmitchell@gernsback.com

MIDWEST/Texas/Arkansas/Oklahoma, Colorado, Arizona

Ralph Bergen
One Northfield Plaza, Suite 300
Northfield, IL 60093-1214
Tel. 847-559-0555
Fax: 847-559-0562
e-mail: bergennj@aol.com

PACIFIC COAST/Mountain States

Anita Bartman
Hutch Looney & Assoc., Inc.
6310 San Vicente Blvd.
Suite 360
Los Angeles, CA 90048-5426
Tel. 323-931-3444 (ext. 227)
Fax: 323-931-7309
e-mail: anita@hlooney.com
Electronics Workbench

Personal Edition

THE WORLD’S MOST POPULAR DESIGN TOOL CHOSEN BY OVER 100,000 USERS!

Electronics Workbench Personal Edition

- True mixed analog/digital fully interactive simulation
- Pro schematic editor
- 6 virtual instruments on screen graphs
- Over 4,000 models
- 8 powerful analyses
- Free technical support

Full-featured schematic capture and SPICE circuit simulation!

The world’s most popular circuit design tool that sets the standard for powerful, insightful SPICE simulation. Create professional looking schematics and then with the flick of a switch, display simulated waveforms live on a suite of virtual instruments. Includes 15 powerful analyses and a library of over 4,000 robust component models.

$299

Electronics Workbench Layout

- Autorouting reroute while move
- 32 routing layers
- 50” x 50” board size
- Over 3,500 library shapes
- Extensive output
- Real-time design rule check
- Density histograms
- Free technical support

Power-packed PCB layout with autorouting and real-time DRC!

EWB Layout is a powerful board layout package for producing high-quality, multi-layer printed circuit boards. Offering tight integration with our schematic capture program, EWB Layout is the best way to quickly produce well-designed boards.

$299

Buy Both and Save! $598 $548

Call for information and pricing on our professional edition.

800.263.5552

For a free demo, visit our website at www.electronicsworkbench.com

CIRCLE 26 ON FREE INFORMATION CARD